
Springer Undergraduate Mathematics Series

Arkadii Slinko

Algebra
for Applications
Cryptography, Secret Sharing,
Error-Correcting, Fingerprinting,
Compression

Second Edition

Springer Undergraduate Mathematics
Series

Advisory Editors

M. A. J. Chaplain, St. Andrews, UK

Angus Macintyre, Edinburgh, UK

Simon Scott, London, UK

Nicole Snashall, Leicester, UK

Endre Süli, Oxford, UK

Michael R. Tehranchi, Cambridge, UK

John F. Toland, Bath, UK

The Springer Undergraduate Mathematics Series (SUMS) is a series designed for
undergraduates in mathematics and the sciences worldwide. From core foundational
material to final year topics, SUMS books take a fresh and modern approach.
Textual explanations are supported by a wealth of examples, problems and
fully-worked solutions, with particular attention paid to universal areas of difficulty.
These practical and concise texts are designed for a one- or two-semester course but
the self-study approach makes them ideal for independent use.

More information about this series at http://www.springer.com/series/3423

http://www.springer.com/series/3423

Arkadii Slinko

Algebra for Applications
Cryptography, Secret Sharing,
Error-Correcting, Fingerprinting,
Compression

Second Edition

123

Arkadii Slinko
Department of Mathematics
The University of Auckland
Auckland, New Zealand

ISSN 1615-2085 ISSN 2197-4144 (electronic)
Springer Undergraduate Mathematics Series
ISBN 978-3-030-44073-2 ISBN 978-3-030-44074-9 (eBook)
https://doi.org/10.1007/978-3-030-44074-9

Mathematics Subject Classification (2020): 11A05, 11A07, 11T71, 11Y05, 11Y11, 68P25, 68P30

1st edition: © Springer International Publishing Switzerland 2015
2nd edition: © Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-44074-9

To my parents Michael and Zinaida,
my wife Lilia,
my children Irina and Michael, and
my grandchildren Erik and Yuri.

Preface to the Second Edition

In our work, we are always between Scylla and Charybdis;
we may fail to abstract enough, and miss important physics,
or we may abstract too much and end up with fictitious
objects in our models turning into real monsters that devour
us.

Murray Gell-Mann (Nobel Prize in Physics in 1969)

My goals for this edition remain the same. I would like this book to be a basis for a
one-semester undergraduate course in applied algebra. I want it to be mathemati-
cally rigorous and self-contained, and at the same time to provide a glimpse into the
exciting world of applications. The challenge for such a course is to avoid getting
overexcited about proving theorems and, on the other hand, not to get bogged down
with technical details of the applications. This is a delicate balance, and it is up to
the reader to decide how well I managed to steer the exposition between these
Scylla and Charybdis.

Apart from correcting misprints and improving the order of exercises I added
several small but significant sections that provide links between chapters and make
the whole construction of the course more connected. The most notable additions
are:

• The chapter on secret sharing (Chap. 6) has now an application to cryptography
proper (Chap. 2). By using secret sharing we show how a cryptosystem like
RSA can be used by an organisation to share the decryption key between
members of that organisation.

• The chapter on polynomials (Chap. 5) was extended by a new section on per-
mutation polynomials which relates this chapter to Chaps. 2 and 3.

• The chapter on compression of information (Chap. 8) was a bit one-sided since
it was dealing with encoding of an unknown source but not a known one. The
reason was that encoding of an unknown source (universal encoding) has not
been adequately reflected in the undergraduate literature while encoding a
known source (famous Huffman’s codes) was everywhere. However, for the
purpose of this book to be self-contained, I wrote a section about Huffman’s
codes, adding it to Chap. 8.

vii

I also added a number of exercises. Since in the first edition of this book all
exercises had solutions (and they still have), I decided to add new exercises (with a
few exceptions) without solutions. Those without solutions are marked with a small
circle. I also added an index to the book.

Enjoy the book!

Auckland, New Zealand
February 2020

Arkadii Slinko

viii Preface to the Second Edition

Preface to the First Edition

The aim of a Lecturer should be, not to gratify his vanity by a
shew of originality; but to explain, to arrange, and to digest
with clearness, what is already known in the science…

George Pryme (1781–1868)

This book originated from my lecture notes for the one-semester course which I
have given many times in The University of Auckland since 1998. The goal of this
book is to show the incredible power of algebra and number theory in the real
world. It does not advance far in theoretical algebra, theoretical number theory or
combinatorics. Instead, we concentrate on concrete objects like groups of points on
elliptic curves, polynomial rings and finite fields, study their elementary properties
and show their exceptional applicability to various problems in information han-
dling. Among the applications are cryptography, secret sharing, error-correcting,
fingerprinting and compression of information.

Some chapters of this book—and especially number-theoretic and cryptographic
ones—use GAP for illustrations of the main ideas. GAP is a system for compu-
tational discrete algebra, which provides a programming language, a library of
thousands of functions implementing algebraic algorithms, written in the GAP
language, as well as large data libraries of algebraic objects.

If you are using this book for self-study, then, studying a certain topic, famil-
iarise yourself with the corresponding section of Appendix A, where you will find
detailed instructions how to use GAP for this particular topic. As GAP will be
useful for most topics, it is not a good idea to skip it completely.

I owe a lot to Robin Christian who in 2006 helped me to introduce GAP to my
course and proofread the lecture notes. The introduction of GAP has been the
biggest single improvement to this course. The initial version of the GAP notes,
which have now been developed into Appendix A, was written by Robin. Stefan
Kohl, with the assistance of Eamonn O’Brien, kindly provided us with two pro-
grams for GAP that allowed us to calculate in groups of points on elliptic curves.
I am grateful to Paul Hafner, Primož Potoćnic, Jamie Sneddon and especially to
Steven Galbraith who in various years were members of the teaching team for this
course and suggested valuable improvements or contributed exercises.

ix

Many thanks go to Shaun White who did a very thorough job proofreading part
of the text in 2008 and to Steven Galbraith who improved the section of cryp-
tography in 2009 and commented on the section of compression. However, I bear
the sole responsibility for all mistakes and misprints in this book. I would be most
obliged if you report any noticed mistakes and misprints to me.

I hope you will enjoy this book as much as I enjoyed writing it.

Auckland
March 2015

Arkadii Slinko

x Preface to the First Edition

Contents

1 Integers . 1
1.1 Natural Numbers . 1

1.1.1 Basic Principles . 1
1.1.2 Divisibility and Primes . 4
1.1.3 Factoring Integers. The Sieve of Eratosthenes 9

1.2 Euclidean Algorithm . 14
1.2.1 Divisors and Multiples . 14
1.2.2 Greatest Common Divisor and Least Common

Multiple . 15
1.2.3 Extended Euclidean Algorithm. Chinese Remainder

Theorem . 18
1.3 Fermat’s Little Theorem and Its Generalisations 23

1.3.1 Congruences. Fermat’s Little Theorem 23
1.3.2 Euler’s /-Function. Euler’s Theorem 26

1.4 The Ring of Integers Modulo n. The Field Zp 29
1.5 Representation of Numbers . 34

2 Cryptology . 41
2.1 Classical Secret-Key Cryptology . 42

2.1.1 The One-Time Pad . 43
2.1.2 An Affine Cryptosystem . 46
2.1.3 Hill’s Cryptosystem . 47

2.2 Modern Public-Key Cryptology . 51
2.2.1 One-Way Functions and Trapdoor Functions 52

2.3 Computational Complexity . 53
2.3.1 Orders of Magnitude . 54
2.3.2 The Time Complexity of Several Number-Theoretic

Algorithms . 58
2.4 The RSA Public-Key Cryptosystem . 62

2.4.1 How Does the RSA System Work? 63
2.4.2 Why Does the RSA System Work? 66
2.4.3 Pseudoprimality Tests . 68

2.5 Applications of Cryptology . 74

xi

3 Groups . 79
3.1 Permutations . 79

3.1.1 Composition of Mappings. The Group
of Permutations of Degree n . 79

3.1.2 Block Permutation Cipher . 84
3.1.3 Cycles and Cycle Decomposition 86
3.1.4 Orders of Permutations . 88
3.1.5 Analysis of Repeated Actions . 91
3.1.6 Transpositions. Even and Odd 93
3.1.7 Puzzle 15 . 97

3.2 General Groups . 100
3.2.1 Definition of a Group. Examples 100
3.2.2 Powers, Multiples and Orders. Cyclic Groups 103
3.2.3 Isomorphism . 105
3.2.4 Subgroups . 109

3.3 The Abelian Group of an Elliptic Curve 112
3.3.1 Elliptic Curves. The Group of Points of an Elliptic

Curve . 113
3.3.2 Quadratic Residues and Hasse’s Theorem 119
3.3.3 Calculating Large Multiples Efficiently 123

3.4 Applications to Cryptography . 124
3.4.1 Encoding Plaintext . 124
3.4.2 Additive Diffie–Hellman Key Exchange

and the ElGamal Cryptosystem 126

4 Fields . 129
4.1 Introduction to Fields . 129

4.1.1 Examples and Elementary Properties of Fields 130
4.1.2 Vector Spaces . 132
4.1.3 Cardinality of a Finite Field . 136

4.2 The Multiplicative Group of a Finite Field is Cyclic 138
4.2.1 Lemmas on Orders of Elements 139
4.2.2 Proof of the Main Theorem . 141
4.2.3 Proof of Euler’s Criterion . 142
4.2.4 Discrete Logarithms . 143

4.3 Elgamal Cryptosystem Revisited . 144

5 Polynomials . 147
5.1 The Ring of Polynomials . 147

5.1.1 Introduction to Polynomials . 147
5.1.2 Lagrange’s Interpolation . 152
5.1.3 Factoring Polynomials . 154
5.1.4 Greatest Common Divisor and Least Common

Multiple . 157

xii Contents

5.2 Finite Fields . 159
5.2.1 Polynomials Modulo mðxÞ . 159
5.2.2 Minimal Annihilating Polynomials 164

5.3 Permutation Polynomials and Applications 167
5.3.1 Permutation Polynomials . 167
5.3.2 Cryptosystem Based on a Permutation Polynomial 168

6 Secret Sharing . 171
6.1 Introduction to Secret Sharing . 172

6.1.1 Access Structure . 172
6.1.2 Shamir’s Threshold Access Scheme 173

6.2 A General Theory of Secret Sharing Schemes 176
6.2.1 General Properties of Secret Sharing Schemes 176
6.2.2 Linear Secret Sharing Schemes 181
6.2.3 Ideal and Non-ideal Secret Sharing Schemes 186

6.3 Applications of Secret Sharing . 190

7 Error-Correcting Codes . 191
7.1 Binary Error-Correcting Codes . 192

7.1.1 The Hamming Weight and the Hamming Distance 192
7.1.2 Encoding and Decoding. Simple Examples 195
7.1.3 Minimum Distance, Minimum Weight.

Linear Codes . 198
7.1.4 Matrix Encoding Technique . 202
7.1.5 Parity Check Matrix . 207
7.1.6 The Hamming Codes . 212
7.1.7 Polynomial Codes . 215
7.1.8 Bose–Chaudhuri–Hocquenghem (BCH) Codes 217

7.2 Non-binary Error-Correcting Codes . 221
7.2.1 The Basics of Non-binary Codes 221
7.2.2 Reed–Solomon (RS) Codes . 224

7.3 Fingerprinting Codes . 227
7.3.1 The Basics of Fingerprinting . 228
7.3.2 Frameproof Codes . 230
7.3.3 Codes with the Identifiable Parent Property 231

8 Compression . 235
8.1 Encoding a Known Source . 236

8.1.1 Motivating Example . 236
8.1.2 Prefix Codes . 237
8.1.3 Huffman’s Optimal Code . 240

8.2 Encoding an Unknown Source . 243
8.2.1 Compressing Binary Sequences (Files) 244
8.2.2 Information and Information Relative to a Partition 245

Contents xiii

8.2.3 Fitingof’s Compression Code. Encoding 248
8.2.4 Fitingof’s Compression Code. Fast Decoding 251

8.3 Information and Uncertainty . 254

9 Appendix A: GAP . 257
9.1 Computing with GAP . 257

9.1.1 Starting with GAP . 257
9.1.2 The GAP Interface . 257
9.1.3 Programming in GAP: Variables, Lists, Sets

and Loops . 258
9.2 Number Theory . 260

9.2.1 Basic Number-Theoretic Algorithms 260
9.2.2 Arithmetic Modulo m . 262
9.2.3 Digitising Messages . 264

9.3 Matrix Algebra . 266
9.4 Algebra . 267

9.4.1 Permutations . 267
9.4.2 Elliptic Curves . 268
9.4.3 Finite Fields . 271
9.4.4 Polynomials . 272

10 Appendix B: Miscellania . 275
10.1 Linear Dependency Relationship Algorithm 275
10.2 The Vandermonde Determinant . 276
10.3 Stirling’s Formula . 277

11 Solutions to Exercises . 281
11.1 Solutions to Exercises of Chap. 1 . 281
11.2 Solutions to Exercises of Chap. 2 . 295
11.3 Solutions to Exercises of Chap. 3 . 312
11.4 Solutions to Exercises of Chap. 4 . 326
11.5 Solutions to Exercises of Chap. 5 . 331
11.6 Solutions to Exercises of Chap. 6 . 340
11.7 Solutions to Exercises of Chap. 7 . 346
11.8 Solutions to Exercises of Chap. 8 . 358

Literature . 363

Index . 365

xiv Contents

1Integers

We must get back to primeval integrity.

Rhinoceros. Eugène Ionesco (1909–1994)

The formula ‘Two and two make five’ is not without its
attractions.

Notes from Underground. Fyodor Dostoevsky (1821–1881).

The theory of numbers is the oldest and the most fundamental mathematical disci-
pline. Despite the old age, it is one of the most active research areas of mathematics
due to two main reasons. Firstly, the advent of fast computers has changed num-
ber theory profoundly and made it in some ways almost an experimental discipline.
Secondly, new important areas of applications, such as cryptography, have emerged.
Some of the applications of number theory will be considered in this course.

1.1 Natural Numbers

1.1.1 Basic Principles

The theory of numbers is devoted to studying the set N = {1, 2, 3, 4, 5, 6, . . .} of
positive integers, also called the natural numbers. The most important properties of
N are formulated in the following three principles.

The Least Integer Principle Every non-empty set S ⊆ N of positive integers con-
tains a smallest (least) element.

© Springer Nature Switzerland AG 2020
A. Slinko, Algebra for Applications, Springer Undergraduate Mathematics Series,
https://doi.org/10.1007/978-3-030-44074-9_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44074-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-44074-9_1

2 1 Integers

The Principle of Mathematical Induction Let S ⊆ N be a set of positive integers
which contains 1 and contains n + 1 whenever it contains n. Then S = N.

The Principle of Strong Mathematical Induction Let S ⊆ N be a set of positive
integers which contains 1 and contains n + 1 whenever it contains 1, 2, . . . , n. Then
S = N.

These three principles are equivalent to each other: If you accept one of them,
you can prove the remaining two as theorems. Normally one of them, most often the
Principle of Mathematical Induction, is taken as an axiom of arithmetic but in proofs
we use all of them since one may be much more convenient to use than others.

Example 1.1.1 On planet Tralfamadore there are only 3 cent and 5 cent coins in
circulation. Prove that an arbitrary sum of n ≥ 8 cents can be paid (provided one has
a sufficient supply of coins).

Solution Suppose that this statement is not true and there are positive integers m ≥
8 for which the sum of m cents cannot be paid by a combination of 3 cent and
5 cent coins. By the Least Integer Principle there is a smallest such positive integer
s (the minimal counterexample). It is clear that s is not 8, 9 or 10 as 8 = 3 + 5,
9 = 3 + 3 + 3, 10 = 5 + 5. Thus s − 3 ≥ 8 and, since s was minimal, the sum of
s − 3 cents can be paid as required. Adding to s − 3 cents one more 3 cent coin we
obtain that the sum of s cents can be also paid, which is a contradiction.

Example 1.1.2 Prove that

1

12
+ 1

22
+ · · · + 1

n2
< 2.

Solution Denote the left-hand side of the inequality by F(n). We have a sequence
of statements A1, A2, . . . , An, . . . to be proved, where An is F(n) < 2, and we are
going to use the Principle of Mathematical Induction to prove all of them.

The statement A1 reduces to

1

12
< 2,

which is true. Now we have to derive the validity of An+1 from the validity of An ,
that is, to prove that

F(n) < 2 implies F(n) + 1

(n + 1)2
< 2.

Oops! It is not possible because, while we do know that F(n) < 2, we do not have
the slightest idea how close F(n) is to 2, and we therefore cannot be sure that there
will be room for 1

(n+1)2
. What shall we do?

1.1 Natural Numbers 3

Surprisingly, the stronger inequality

1

12
+ 1

22
+ · · · + 1

n2
≤ 2 − 1

n

can be proved smoothly. Indeed, A1 is again true as

1

12
= 2 − 1

1
,

and

F(n) ≤ 2 − 1

n
implies F(n) + 1

(n + 1)2
≤ 2 − 1

n + 1
(1.1)

is now true. Due to the induction hypothesis, which is F(n) ≤ 2 − 1
n , to show (1.1)

it would be sufficient to show that
(
2 − 1

n

)
+ 1

(n + 1)2
≤ 2 − 1

n + 1
.

This reduces to
1

(n + 1)2
≤ 1

n
− 1

n + 1
= 1

n(n + 1)
,

which is true.

This example shows that we should not expect that someone has already prepared
the problem for us so that the Principle of Mathematical Induction can be applied
directly.

The reader needs to be familiar with the induction principles. The exercises below
concentrate on the use of the Least Integer Principle.

Exercises
1. Verify that each of the following two statements is false:

(a) Every non-empty set of integers (we do not require the integers in the set to
be positive) contains a smallest element.

(b) Every non-empty set of positive rational numbers contains a smallest element.

2. Prove that, for any integer n ≥ 1, the integer 4n + 15n − 1 is divisible by 9.
3. Prove that 11n+2 + 122n+1 is divisible by 133 for all n ≥ 0.
4. Let Fn = 22

n + 1 be the nthFermat number . Show that F0F1 . . . Fn = Fn+1 − 2.
5. Prove that 2n + 1 is divisible by n for all numbers of the form n = 3k .
6. Prove that an arbitrary positive integer N can be represented as a sum of distinct

powers chosen from 1, 2, 22, . . . , 2n,
7. Use the Least Integer Principle to prove that the representation of N as a sum of

distinct powers of 2 is unique.

4 1 Integers

8. Several discs of equal diameter lie on a table so that some of them touch each
other but no two of them overlap. Prove that these discs can be painted with four
colours so that no two discs of the same colour touch.

9◦. Suppose that you begin with a chocolate bar made up of n × k squares. At each
step, you choose a piece of chocolate that has more than two squares and snap
it in two along any line, vertical or horizontal. Eventually, it will be reduced to
single squares. Show by induction that the number of snaps required to reduce
it to single squares is nk − 1.

1.1.2 Divisibility and Primes

The set of all integers

. . . ,−3,−2,−1, 0, 1, 2, 3, . . .

is denoted by Z.

Theorem 1.1.1 (Division with Remainder) Given any integers a, b, with a > 0,
there exist unique integers q, r such that

b = qa + r , and 0 ≤ r < a.

In this case we also say that q and r are, respectively, the quotient and the remain-
der of b when it is divided by a. It is often said that q and r are the quotient and
the remainder of dividing a into b. The notation r = b mod a is often used. You can
find q and r by using long division, a technique which most students learn at school.
If you want to find q and r using a calculator, use it to divide b by a. This will give
you a number with decimals. Discard all the digits to the right of the decimal point
to obtain q . Then find r as a − bq .

Example 1.1.3 (a) 35 = 3 · 11 + 2, (b)−51 = (−8) · 7 + 5; so that 2 = 35 mod 11
and 5 = −51 mod 7.

Definition 1.1.1 An integer b is divisible by an integer a �= 0 if there exists an integer
c such that b = ac, that is, we have b mod a = 0. We also say that a is a divisor of
b and write a|b.

Let n be a positive integer. Let us denote by d(n) the number of positive divisors
of n. It is clear that 1 and n are always divisors of any number n which is greater
than 1. Thus we have d(1) = 1 and d(n) ≥ 2 for n > 1.

1.1 Natural Numbers 5

Definition 1.1.2 A positive integer n is called a prime if d(n) = 2. An integer n > 1
which is not prime is called a composite number.

Example 1.1.4 (a) 2, 3, 5, 7, 11, 13 are primes; (b) 1, 4, 6, 8, 9, 10 are not primes;
(c) 4, 6, 8, 9, 10 are composite numbers.

A composite positive integer n can be always represented as a product of two other
positive integers different from 1 and n. Indeed, since d(n) > 2, there is a divisor n1
such that 1 < n1 < n. But then n2 = n/n1 also satisfies 1 < n2 < n and n = n1n2.
We are ready to prove

Theorem 1.1.2 (The Fundamental Theorem of Arithmetic) Every positive integer
n > 1 can be expressed as a product of primes (with perhaps only one factor), that is

n = pα1
1 pα2

2 . . . pαr
r ,

where p1, p2, . . . , pr are distinct primes and α1,α2, . . . ,αr are positive integers.
This factorisation is unique apart from the order of the prime factors.

Proof Let us prove first that any number n > 1 can be decomposed into a product
of primes. We will use the Principle of Strong Mathematical Induction. If n = 2, the
decomposition is trivial and we have only one factor, which is 2 itself. Let us assume
that for all positive integers which are less than n, a decomposition into a product
of primes exists. If n is a prime, then n = n is the decomposition required. If n is
composite, then n = n1n2, where n > n1 > 1 and n > n2 > 1, and by the induction
hypothesis there are prime decompositions n1 = p1 . . . pr and n2 = q1 . . . qs for n1
and n2. Then we may combine them

n = n1n2 = p1 . . . prq1 . . . qs

and get a decomposition for n and prove the first statement.
To prove that the decomposition is unique, we shall assume the existence of

an integer capable of two essentially different prime decompositions, and from this
assumption derive a contradiction. This will show that the hypothesis that there exists
an integer with two essentially different prime decompositions cannot be true, and
hence the prime decomposition of every integer is unique. We will use the Least
Integer Principle.

Suppose that there exists a positive integer with two essentially different prime
decompositions, then there will be a smallest such integer

n = p1 p2 . . . pr = q1q2 . . . qs, (1.2)

where pi and q j are primes. By rearranging the order of the factors, if necessary, we
may assume that

p1 ≤ p2 ≤ . . . ≤ pr , q1 ≤ q2 ≤ . . . ≤ qs .

6 1 Integers

It is impossible that p1 = q1, for, if it were the case, we would cancel the first factor
from each side of Eq. (1.2) and obtain two essentially different prime decompositions
for the number n/p1, which is smaller than n, contradicting the choice of n. Hence
either p1 < q1 or q1 < p1. Without loss of generality we suppose that p1 < q1.

We now form the integer

n′ = n − p1q2q3 . . . qs . (1.3)

Since p1 < q1, we have n′ = n − p1q2q3 . . . qs > n − q1q2q3 . . . qs = 0, thus this
number is positive. It is obviously smaller than n. The two distinct decompositions
of n give the following two decompositions of n′:

n′ = (p1 p2 . . . pr) − (p1q2 . . . qs) = p1(p2 . . . pr − q2 . . . qs), (1.4)

n′ = (q1q2 . . . qs) − (p1q2 . . . qs) = (q1 − p1)(q2 . . . qs). (1.5)

Since n′ is a positive integer, which is smaller than n and greater than 1, the prime
decomposition for n′ must be unique, apart from the order of the factors. This means
that if we complete prime factorisations (1.4) and (1.5), the result will be identical.
From (1.4) we learn that p1 is a factor of n′ and must appear as a factor in decompo-
sition (1.5). Since p1 < q1 ≤ qi , we see that p1 �= qi , i = 2, 3, . . . , s. Hence, it is a
factor of q1 − p1, i.e., q1 − p1 = p1m or q1 = p1(m + 1), which is impossible as
q1 is prime and q1 �= p1. This contradiction completes the proof of the fundamental
theorem of arithmetic. �

Example 1.1.5 396 = 22 · 32 · 11 and 17 = 17 are two prime factorisations. The
corresponding output of GAP will look as follows:

gap> FactorsInt(396);

[2, 2, 3, 3, 11]

gap> FactorsInt(17);

[17]

GAP conveniently remembers all 168 primes not exceeding 1000. They are stored
in the array Primes (in Sect. 9.2 all the primes in this array are listed). GAP can
also check if a particular number is prime or not.

gap> IsPrime(2ˆ(2ˆ4)-1);

false

gap> IsPrime(2ˆ(2ˆ4)+1);

true

What GAP cannot answer is whether or not there are infinitely many primes. This is
something that can only be proved.

1.1 Natural Numbers 7

Theorem 1.1.3 (attributed to Euclid1) The number of primes is infinite.

Proof Suppose there were only finitely many primes p1, p2, . . . , pr . Then form the
integer

n = 1 + p1 p2 . . . pr .

Since n > pi for all i , it must be composite. Let q be the smallest prime factor of n.
As p1, p2, . . . , pr represent all existing primes, then q is one of them, say q = p1
and n = p1m. Now we can write

1 = n − p1 p2 . . . pr = p1m − p1 p2 . . . pr = p1(m − p2 . . . pr).

We have got that p1 > 1 is a factor of 1, which is an absurdity. So our initial assump-
tion that there were only finitely many primes must be false. �

In the past many mathematicians looked for a formula that always evaluates to
a prime number. Euler2 noticed that all values of a quadratic polynomial P(n) =
n2 − n + 41 are prime for n = 0, 1, 2, . . . , 40. However, P(41) = 412 is not prime.
For the same reason Fermat introduced the numbers Fm = 22

m + 1, m ≥ 0, which
are now calledFermat numbers, and primeFermat numbers are calledFermat primes.
He checked that F0 = 3, F1 = 5, F2 = 17, F3 = 257 and F4 = 65537 are primes.
He believed that all such numbers are primes however he could not prove that F5 =
4294967297 is prime. Euler in 1732 showed that F5 was composite by presenting its
prime factorisation F5 = 641 · 6700417. We can now easily check this with GAP:

gap> F5:=2ˆ(2ˆ5)+1;

4294967297

gap> IsPrime(F5);

false

gap> FactorsInt(F5);

[641, 6700417]

1Euclid of Alexandria (about 325 BC–265 BC) is one of the most prominent educators of all
times. He is best known for his treatise on mathematics The Elements which is divided into 13
books: the first six on geometry, three on number theory, one is devoted to Eudoxus’s theory of
irrational numbers and the last three to solid geometry. Euclid is not known to make any original
discoveries, and the elements are based on the work of the people before him such as Eudoxus,
Thales, Hippocrates and Pythagoras. Over a thousand editions of this work have been published
since the first printed version appeared in 1482. Very little, however, is known about his life. The
enormity of work attributed to him even led some researchers to suggest that Euclid was not a
historic character and that the Elements were written by a team of mathematicians at Alexandria
who took the name Euclid from the historic character who lived 100 years earlier.
2Leonhard Euler (1707–1783) was a Swiss mathematician who made enormous contributions in
fields as diverse as infinitesimal calculus and graph theory. He introduced much of the modern
mathematical terminology and notation [3]. He is also renowned for his work in mechanics, fluid
dynamics, optics, astronomy and music theory.

8 1 Integers

Since then it has been shown that all numbers F5, F6, . . . , F32 are composite. The
status of F33 remains unknown (May 2020). It is not also known if there are infinitely
many Fermat primes.

Many early scholars felt that the numbers of the form 2n − 1 were prime for all
prime values of n, but in 1536 Hudalricus Regius showed that 211 − 1 = 2047 =
23 · 89 was not prime. French monk Marin Mersenne (1588–1648) gave in the pref-
ace to his Cogitata Physica-Mathematica (1644) a list of positive integers n < 257
for which the numbers 2n − 1 were prime. Several numbers in that list were incor-
rect. By 1947 Mersenne’s range, n < 257, had been completely checked, and it was
determined that the correct list was

n = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127.

Mersenne still got his name attached to these numbers.
As ofMay 2020 there are 48 knownMersenne primes. The last onewas discovered

in January 2013 by the Great Internet Mersenne Prime Search (GIMPS) project led
by Dr. Curtis Cooper.3 The new prime number is 257,885,161 − 1; it has 17,425,170
digits. This is the largest known prime to date. We can check with GAP if the number
of digits of this prime was reported correctly:

gap> n:=57885161;;

gap> 2ˆn-1;

<integer 581...951 (17425170 digits)>

But checking its primality is currently beyond GAP. 4

Exercises
1. Write a GAP program that calculates 2007th prime p2007. Calculate p2007.
2. Write a GAP program that finds the smallest k for which

n = p1 p2 . . . pk + 1

is composite. It should output k, n and its prime factorisation.
3. Find all integers a �= 3 for which a − 3 is a divisor of a3 − 17.
4. Prove that the set P of all primes that are greater than 2 is split into two disjoint

classes: primes of the form 4k + 1 and primes of the form 4k + 3. Similarly, P
is split into two other disjoint classes: primes of the form 6k + 1 and primes of
the form 6k + 5.

5. Prove that any prime of the form 3k + 1 is also of the form 6k + 1 (but for a
different k, of course).

3See http://www.mersenne.org/various/57885161.htm.

http://www.mersenne.org/various/57885161.htm

1.1 Natural Numbers 9

6. GAP remembers all 168primesnot exceeding1000.The commandPrimes[i];
gives you the i th prime. Using GAP:

(a) Create two lists of prime numbers, called Primes1 and Primes3, which include
in the first list all the primes p ≤ 1000 for which p = 4k + 1 and include in
the second list all the primes p ≤ 1000 for which p = 4k + 3.

(b) Output the number of primes in each list.
(c) Output the 32nd prime from the first list and the 53rd prime from the second

list.
(d) Output the positions of 601 and 607 in their respective lists.

7. (a) Use GAP to list all primes up to 1000 representable in the form 6k + 5.
(b) Prove that there are infinitely many primes representable in the form 6k + 5.

8. Give an alternative proof that the number of primes is infinite along the following
lines:

• Assume that there are only k primes p1, p2, . . . , pk .
• Given n, find an upper bound f (n) for the number of products

pα1
1 pα2

2 . . . pαk
k

that do not exceed n by estimating the number of values that α1,α2, . . . ,αk

might assume.
• Show that f (n) grows slower than n for n sufficiently large.

9◦. Prove that there exist infinitely many positive integers n such that 4n2 + 1 is
divisible both by 5 and 13.

10◦. Show there is no positive integer n for which n, n + 10, n + 20 and n + 30 are
all prime.

11◦. Prove that for every positive integer n there exists a positive integer x such that
each of the terms of the infinite sequence x + 1, xx + 1, xx

x + 1, . . . is divisible
by n. (Note that ab

c = a(b
c).)

12◦. Given an integer n, show that a positive integer can be found which contains only
digits 0 and 1 (in the decimal representation) and which is divisible by n.

1.1.3 Factoring Integers.The Sieve of Eratosthenes

Noneof the ideaswehave learned up to nowwill help us tofind the prime factorisation
of a particular integer n. Finding prime factorisations is not an easy task, and there
are no simple ways to do so. The theorem that we will prove in this section is of
some help since it says where to look for the smallest prime divisor of n.

Firstly, we have to define the following useful function.

Definition 1.1.3 Let x be a real number. By �x	we denote the largest integer n such
that n ≤ x . The integer �x	 is called the integer part of x or the floor of x .

10 1 Integers

Example 1.1.6 �π	 = 3, �√19	 = 4, �−2.1	 = −3.

Theorem 1.1.4 The smallest prime divisor of a composite number n is less than or
equal to

⌊√
n
⌋
.

Proof We prove first that n has a divisor which is greater than 1 but not greater than√
n. As n is composite, we have n = d1d2, where d1 > 1 and d2 > 1. If d1 >

√
n

and d2 >
√
n, then

n = d1d2 > (
√
n)2 = n,

which is impossible. Suppose, d1 ≤ √
n. Then any of the prime divisors of d1 will

be less than or equal to
√
n. But every divisor of d1 is also a divisor of n, thus

the smallest prime divisor p of n will satisfy the inequality p ≤ √
n. Since p is an

integer, p ≤ �√n	. �

Now we may demonstrate a beautiful and efficient method of listing all primes
up to x , called the Sieve of Eratosthenes.

Algorithm (The Sieve of Eratosthenes) To find all the primes up to x , begin by
writing down all the integers from 2 to x in ascending order. The first number on the
list is 2. Leave it there and cross out all other multiples of 2. Then use the following
iterative procedure. Let d be the smallest number on the list that is not eliminated.
Leave d on the list and, if d ≤ √

x , cross out all other multiples of it. If d >
√
x ,

then stop. The prime numbers up to x are those which have not been crossed out.

For example, if we write all positive integers not exceeding 100 in a 10 × 10
square table, then at the end of the process our table will look like:

2 3 5 7
11 13 17 19

23 29
31 37
41 43 47

53 59
61 67
71 73 79

83 89
97

The numbers in this table are all primes not exceeding 100. Please note that we had
to cross out only multiples of the primes from the first row since

√
100 = 10.

The simplest algorithm for factoring integers is Trial Division.

1.1 Natural Numbers 11

Algorithm (Trial Division) Suppose a sufficiently long list of primes is available.
Given a positive integer n, divide it with remainder by all primes on the list which
do not exceed

√
n, starting from 2. The first prime which divides n (call this prime

p1) will be the smallest prime divisor of n. In this case n is composite. Calculate
n1 = n/p1 and repeat the procedure. If none of the primes, which do not exceed

√
n,

divide n, then n is prime, and its prime factorisation is trivial.

Using the list of primes stored by GAP in array Primes we can apply Trial
Division algorithm to factorise numbers not exceeding one million. Practically, it is
virtually impossible to completely factor a large number of about 100 decimal digits
only with Trial Division unless it has small prime divisors. Trial Division is very fast
for finding small factors (up to about 106) of n.

It is important to know how many operation will be needed to factorise n. If we
do not know how many operations are needed, it is impossible to estimate the time it
would take to use the Trial Division algorithm in the worst possible case—the case
in which small factors are absent.

Let π(x) denote the number of primes which do not exceed x . Because of the
irregular occurrence of the primes, we cannot expect a simple formula for π(x). The
following simple program calculates this number for x = 1000.

gap> n:=1000;;

gap> piofx:=0;;

gap> p:=2;;

gap> while p<n do

> p:=NextPrimeInt(p);

> piofx:=piofx+1;

> od;

gap> piofx;

168

As we see there are 168 primes not exceeding 1000. GAP stores them in an array
Primes. For example, the command

gap> Primes[100];

541

gives you the 100th prime.
One of themost impressive results in advanced number theory gives an asymptotic

approximation for π(x).

Theorem 1.1.5 (The Prime Number Theorem)

lim
x→∞ π(x)

ln x

x
= 1, (1.6)

where ln x is the natural logarithm, to base e.

12 1 Integers

The proof is beyond the scope of this book. The first serious attempt towards prov-
ing this theorem (which was long conjectured to be true) was made by Chebyshev4

who proved (1848–1850) that if the limit exists at all, then it is necessarily equal to
one. The existence of the limit (1.6) was proved independently by Hadamard5 and
Vallée-Poussin6 with both papers appearing almost simultaneously in 1896.

Corollary 1.1.1 For a large positive integer n there exist approximately n/ ln n
primes among the numbers 1, 2, . . . , n. This can be expressed as

π(n) ∼ n

ln n
, (1.7)

where ∼ means approximately equal for large n (In Sect.2.3.1 we will give it a
precise meaning).

Example 1.1.7 Using (1.7) we approximate π(999) as 999
6.9 ≈ 145. The real value of

π(999), as we know, is 168. The number 999 is too small for the approximation in
(1.7) to be good.

Example 1.1.8 Supposen = 999313. Let us see howmuch effortwill go into finding
a prime factorisation for it. We have �√n	 = 999. So, if we try to find a minimal
prime divisor of n using Trial Division, then, in the worst case scenario, we might
need to perform 168 divisions. However n = 7 · 142759, so the fourth division will
already reveal the smallest prime divisor of n which is 7. When 7 is factored out, we
will need to deal with the prime factorisation of 142759. Since �√142759	 = 377
and π(377) = 74, we need, in the worst case scenario, to perform 74 additional
divisions dividing 142759 by all primes smaller than or equal to 377. Since 142759
is prime all 74 divisions will be indeed needed. So the total number of divisions
required will be 78.

The following two facts are also related to the distribution of primes. Both facts
are useful to know and easy to remember.

Theorem 1.1.6 (Bertrand’s Postulate) For each positive integer n > 1 there is a
prime p such that n < p < 2n − 2.

4Pafnutii Lvovich Chebyshev (1821–1894) was a Russian mathematician who is largely remem-
bered for his investigations in number theory. Chebyshev is also famous for the orthogonal polyno-
mials he invented. He had a strong interest in mechanics as well.
5Jacques Salomon Hadamard (1865–1963) was a French mathematician whose most important
result is the prime number theorem which he proved in 1896. He worked on entire functions and
zeta functions and became famous for introducing Hadamard matrices and Hadamard transforms.
6Charles Jean Gustave Nicolas, Baron de la Vallée Poussin (1866–1962) is best known for his
proof of the prime number theorem and hismajorworkCours d’Analyse.Hewas additionally known
for his writings about the zeta function, Lebesgue and Stieltjes integrals, conformal representation,
algebraic and trigonometric series.

1.1 Natural Numbers 13

In 1845Bertrand7 conjectured that there is at least one primebetweenn and2n − 2
for every n > 3 and checked it for numbers up to at least 2 · 106. This conjecture,
similar to one stated by Euler one hundred years earlier, was proved by Chebyshev
in 1850.

Theorem 1.1.7 There are arbitrarily large gaps between consecutive primes.

Proof This follows from the fact that, for any positive integer n, all numbers

n! + 2, n! + 3, . . . , n! + n

are composite. This is true since for any 2 ≤ k ≤ n

n! + k = k

(
n!
k

+ 1

)
.

Thus, for any n there are n − 1 consecutive composite integers. �

Exercises
1.(a) Use the Sieve of Eratosthenes to find the prime numbers up to 210. Hence

calculate π(210) exactly.
(b) Calculate the estimate that the prime number theorem gives for π(210) and

compare your result with the exact value of π(210) obtained in (a).
2. Convince yourself that the following program implements the Sieve of Eratos-

thenes

n:=2*10ˆ3;;

set:=Set([2..n]);;

p:=2;;

while p<RootInt(n)+1 do

k:=2;;

while k*p<n+1 do

RemoveSet(set,k*p);

k:=k+1;

od;

p:=NextPrimeInt(p);

od;

and stores in an array “set” all primes not exceeding 2000.

7Joseph Louis Francois Bertrand (1822–1900), born and died in Paris, was a professor at the
École Polytechnique and Collège de France. He was a member of the Paris Academy of Sciences
and was its permanent secretary for twenty-six years. Bertrand made a major contribution to group
theory and published many works on differential geometry and on probability theory.

14 1 Integers

3. Professor Woodhead has compiled a list of all primes that are less than 10,000
and is very proud of himself. He checks that the number n = 123123137 does
not have any prime divisors in his list by dividing n by all of the primes that he
found.

(a) Can he claim that n is prime?
(b) Estimate the number of additional divisions that Professor Woodhead must

perform in order to be able to claim that n is prime.

4. A composite number n does not have prime divisors which are less than or equal
to � 3

√
n	. Prove that it is a product of two primes.

5. Use Bertrand’s postulate to show that any integer greater than 6 is the sum of two
relatively prime integers each of which is greater than 1.

6. What would be the output for the following GAP program?

n:=10ˆ6;

set:=Set([1..n]);

p:=3;

while p<n+1 do;

k:=1;

while k*p<n+1 do;

RemoveSet(set,k*p);

k:=k+1;

od;

p:=NextPrimeInt(p);

od;

set;

In particular, how many numbers will be displayed?
7◦. Prove that the integers {1, 2, . . . , 2k} can be arranged into k disjoint pairs so that

the sums of the numbers in each pair is prime. (Hint:: Use Bertrand’s postulate.)

1.2 Euclidean Algorithm

1.2.1 Divisors andMultiples

Let n be a positive integer with the prime factorisation

n = pα1
1 pα2

2 . . . pαr
r , (1.8)

where pi are distinct primes andαi are positive integers. How canwe find all divisors
of n? Let d be a divisor of n. Then n = dm, for some m, thus

n = dm = pα1
1 pα2

2 . . . pαr
r ,

1.2 Euclidean Algorithm 15

Since the prime factorisation of n is unique, d cannot have in its prime factorisation
a prime which is not among the primes p1, p2, . . . , pr . Also, a prime pi in the prime
factorisation of d cannot have an exponent greater than αi . Therefore

d = pβ1
1 pβ2

2 . . . pβr
r , 0 ≤ βi ≤ αi , i = 1, 2, . . . , r . (1.9)

Theorem 1.2.1 The number of positive divisors of n is

d(n) = (α1 + 1)(α2 + 1) . . . (αr + 1). (1.10)

Proof Indeed, we have exactly αi + 1 possibilities to choose βi in (1.9), namely
0, 1, 2, . . . ,αi . Thus the total number of divisors will be exactly the product (α1 +
1)(α2 + 1) . . . (αr + 1). �

It is important to note that Eq. (1.10) does not give us a self-contained algorithm
of calculation of d(n) as we need to run the prime factorisation algorithm first. No
direct method of calculation is known.

Definition 1.2.1 The numbers in, where i = 0,±1,±2, . . ., are called multiples of
n.

It is clear that any multiple of n given by (1.8) has the form

m = kpγ1
1 pγ2

2 . . . pγr
r , γi ≥ αi , i = 1, 2, . . . , r ,

where k has none of the primes p1, p2, . . . , pr in its prime factorisation. The number
of multiples of n is infinite.

1.2.2 Greatest Common Divisor and Least CommonMultiple

Let a and b be two positive integers. If d is a divisor of a and also a divisor of b,
then we say that d is a common divisor of a and b. As there are only a finite number
of common divisors, there is a greatest common divisor, denoted by gcd(a, b). The
numberm is said to be a common multiple of a and b ifm is a multiple of a and also
a multiple of b. Among all common multiples there is a minimal one (Least Integer
Principle!). It is called the least common multiple, and it is denoted by lcm(a, b).

In the decomposition (1.8), all exponents were positive. However, sometimes it
is convenient to allow some exponents to be 0 as in the formulation of the following
theorem.

Theorem 1.2.2 Let

a = pα1
1 pα2

2 . . . pαr
r , b = pβ1

1 pβ2
2 . . . pβr

r ,

16 1 Integers

where αi ≥ 0 and βi ≥ 0, be two arbitrary positive integers. (We could assume that
a and b are expressed using the same primes p1, p2, . . . , pr because we allowed
some exponents to be 0.) Then

gcd(a, b) = pmin(α1,β1)
1 pmin(α2,β2)

2 . . . pmin(αr ,βr)
r , (1.11)

and

lcm(a, b) = pmax(α1,β1)
1 pmax(α2,β2)

2 . . . pmax(αr ,βr)
r . (1.12)

Moreover,

gcd(a, b) · lcm(a, b) = a · b. (1.13)

Proof Formulas (1.11) and (1.12) follow from our description of common divi-
sors and common multiples. To prove (1.13), we have to notice that min(αi ,βi) +
max(αi ,βi) = αi + βi . �

Example 1.2.1 Let

a = 136995569568 = 25 · 311 · 11 · 133 = 25 · 311 · 111 · 133 · 170,
b = 84474819 = 35 · 112 · 132 · 17 = 20 · 35 · 112 · 132 · 171.

Then gcd(a, b) = 35 · 11 · 132 = 415737.

Theorem 1.2.2 gives us an algorithm for calculating the greatest common divisor.
However, it depends on the prime factorisation algorithm. However with the exist-
ing methods the calculation of prime factorisation is computationally difficult. It is
suspected but has not yet been proved that no easy algorithms for prime factorisation
exist. So it is desirable in any number-theoretic algorithm to avoid factorisation of
the numbers involved. The algorithm given above for finding the greatest common
divisor cannot be used unless prime factorisation has already been done. Fortunately
the greatest common divisor gcd(a, b) of numbers a and b can be found without
knowing the prime factorisations of a and b. Such an algorithm will be presented
below. It was known to Euclid; he could even be the first to discover it. The algorithm
is based on the following simple observation.

Proposition 1.2.1 Let a, b, q, r be any integers such that a = qb + r . Then
gcd(a, b) = gcd(b, r).

Proof Indeed, if d is a common divisor of a and b, we have a = a′d and b = b′d.
Then r = a − qb = a′d − qb′d = (a′ − qb′)d and d is also a common divisor
of b and r . Also, if d is a common divisor of b and r , then b = b′d, r = r ′d
and a = qb + r = qb′d + r ′d = (qb′ + r ′)d, whence d is a common divisor of a
and b. �

1.2 Euclidean Algorithm 17

Now to the algorithm, the idea of it is clear: Start with the pair (a, b) for which
the greatest common divisor is sought, and replace it with a “smaller” pair with the
same greatest common divisor. Repeat the process (if necessary) until the greatest
common divisor is easily seen.

Theorem 1.2.3 (The Euclidean algorithm) Let a and b be positive integers. We use
the division algorithm several times to find:

a = q1b + r1, 0 < r1 < b,

b = q2r1 + r2, 0 < r2 < r1,

r1 = q3r2 + r3, 0 < r3 < r2,

...

rs−2 = qsrs−1 + rs, 0 < rs < rs−1,

rs−1 = qs+1rs .

Then rs = gcd(a, b).

Proof By Proposition 1.2.1, gcd(a, b) = gcd(b, r1) = gcd(r1, r2) = . . . =
gcd(rs−1, rs) = rs . �

Example 1.2.2 Let a = 321, b = 843. Find the greatest common divisor gcd(a, b).
The Euclidean algorithm yields

321 = 0 · 843 + 321

843 = 2 · 321 + 201

321 = 1 · 201 + 120

201 = 1 · 120 + 81

120 = 1 · 81 + 39

81 = 2 · 39 + 3

39 = 13 · 3 + 0,

and therefore gcd(321, 843) = 3 and lcm(321, 843) = 321 · 843
3

= 107 · 843 =
90201.

Definition 1.2.2 If gcd(a, b) = 1, the numbers a and b are said to be relatively prime
(or coprime).

For example, the numbers 200 = 23 · 52 and 567 = 34 · 7 are coprime.

18 1 Integers

Exercises
1. How many divisors does the number 22 · 33 · 44 · 55 have? (No GAP, please.)
2. How many divisors does the number 123456789 have?
3. Find all common divisors of 10650 and 6750.
4.(a) Find the greatest common divisor and the least common multiple of m =

24 · 32 · 57 · 112 and n = 22 · 54 · 72 · 113.
(b) Use GAP to check up the identity lcm(m, n) · gcd(m, n) = m · n.

5. Find all positive integers n ≤ 10000 with exactly 33 distinct positive divisors.
6. Calculate d(d(246246)), where d(n) is the number of divisors of n.
7. Show that gcd(a, b) = gcd(a, a − b).

8. Show that the fraction
8n + 13

13n + 21
is in lowest possible terms for every n ≥ 1.

9. Suppose two positive integers a and b are relatively prime.

(a) Prove that gcd(a2, a + b) = 1.
(b) Suppose a + b and a2 + b2 are not relatively prime. Find the greatest com-

mon divisor of this pair and give an example of two such integers.

10. Prove that gcd(2a − 1, 2b − 1) = 2gcd(a,b) − 1.
11. Show that any two distinct Fermat numbers are coprime. (Use Exercise 4 of

Sect. 1.1.1).
12. Use Fermat numbers to give an alternative proof that the number of primes is

infinite.
13◦. Let a, b, c be positive integers. Determine whether the following assertions are

true or false. If true, prove the result, and if false, give a counterexample.

(a) If a3 | c2, then a | c;
(b) If a2 | c3, then a | c;
(c) lcm(a2, ab, b2) = lcm(a2, b2).

14◦. Let p be an odd prime and m, n be positive integers. Show that

gcd(pm − 1, pn − 1) = pgcd(m,n) − 1.

1.2.3 Extended Euclidean Algorithm.Chinese Remainder Theorem

Given two integers a and b we can consider all their possible linear combinations
k1a + k2b, where k1, k2 ∈ Z. Let us denote this set as<a, b>. We note that a and b
belong to this set since a = 1 · a + 0 · b and b = 0 · a + 1 · b.We also note thatwhen
we add two numbers from <a, b>, even with some coefficients, we always remain
in <a, b>. Indeed, suppose we have linear combinations k1a + k2b and k′

1a + k′
2b.

Then

u(k1a + k2b) + v(k′
1a + k′

2b) = (uk1 + vk′
1)a + (uk2 + vk′

2),

which is an element of <a, b>.

1.2 Euclidean Algorithm 19

Analysing the chain of divisions with remainder in the formulation of
Theorem 1.2.3, we come to the conclusion that all remainders ri , i = 1, 2, . . . , s
belong to <a, b>. In particular, gcd(a, b) belongs to <a, b>. This is an important
fact, and we formulate it as theorem for further references.

Theorem 1.2.4 Let a and b be positive integers. Then there exist integers m and n
such that

gcd(a, b) = ma + nb. (1.14)

The numbers m and n in (1.14) are not unique, moreover there exist infinitely
many such pairs However, sometimes, knowing even one pair of such numbers is
more important than knowing the greatest commondivisor itself.One pair of numbers
m and n satisfying (1.14) can be easily obtained from theEuclidean algorithmbyback
substitution. The following theorem provides uswith a convenient way of calculating
them. It also gives an alternative proof of the existence of m and n based on linear
algebra.

Theorem 1.2.5 (The Extended Euclidean algorithm) Let us write the following
matrix with two rows R1, R2, and three columns C1, C2, C3:

[C1 C2 C3] =
[
R1
R2

]
=

[
a 1 0
b 0 1

]
.

In accordance with the Euclidean algorithm above, we perform elementary row
operations R3 := R1 − q1R2, R4 := R2 − q2R3, . . ., each time creating a new row,
so as to obtain:

[C ′
1 C

′
2 C

′
3] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a 1 0
b 0 1
r1 1 −q1
r2 −q2 1 + q1q2

...

rs m n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Then gcd(a, b) = rs = ma + nb.

Proof Note thatC1 = aC2 + bC3. In linear algebra youhave learned that elementary
row operations do not change linear relationships between columns. Since new rows
were obtained by means of elementary row operations on the existing rows, the
relationships between the columns of C1,C2,C3 must be exactly the same as those
between the columns ofC ′

1,C
′
2,C

′
3 (see Sect. 10.1 of Appendix B for the justification

of this claim). Thus we conclude thatC ′
1 = aC ′

2 + bC ′
3. In particular, rs = ma + nb.

�

Example 1.2.3 Let a = 321, b = 843. Find a linear presentation of the greatest
common divisor in the form gcd(a, b) = ma + nb.

20 1 Integers

The Euclidean algorithm on these numbers was performed in Example 1.2.2, and
we know that gcd(321, 843) = 3 and all the quotients obtained at each division. The
Extended Euclidean algorithm yields

321 1 0
843 0 1 0
321 1 0 2
201 −2 1 1
120 3 −1 1
81 −5 2 1
39 8 −3 2
3 −21 8 13

where for convenience of performing row operations the quotients are placed on
the right of the bar. Thus we obtain the linear presentation gcd(321, 843) = 3 =
(−21) · 321 + 8 · 843. So m = −21 and n = 8.

The following properties of relatively prime numbers are often used. They are
gathered in the following

Lemma 1.2.1 Let a and b be relatively prime positive integers. Then

(a) a and b do not have common primes in their prime factorisations;
(b) If c is a multiple of a and c is also a multiple of b, then c is a multiple of ab;
(c) If ac is a multiple of b, then c is a multiple of b;
(d) There exist integers m, n such that ma + nb = 1.

Proof Suppose as in the proof of Theorem 1.2.2 that

a = pα1
1 pα2

2 . . . pαr
r , b = pβ1

1 pβ2
2 . . . pβr

r ,

where αi ≥ 0 and βi ≥ 0 are non-negative integers. Then by (1.11)

gcd(a, b) = pmin(α1,β1)
1 pmin(α2,β2)

2 . . . pmin(αr ,βr)
r = 1,

which impliesmin(αi ,βi) = 0 for all i = 1, 2, . . . , r . Thismeans that either prime pi
does not enter the prime factorisation of a or it does not enter the prime factorisation
of b. Thus a and b do not have primes in common. This proves (a).

Let us prove (b). As we know from (a) numbers a and b do not have primes in
common in their prime factorisations. Hence

a = pα1
1 pα2

2 . . . pαr
r , b = qβ1

1 qβ2
2 . . . qβs

s ,

where pi �= q j for all i and j . We have

c = pα1
1 pα2

2 . . . pαr
r k = qβ1

1 qβ2
2 . . . qβs

s m,

1.2 Euclidean Algorithm 21

Since prime factorisation is unique k must be divisible by qβ1
1 qβ2

2 . . . qβs
s , which is

b, and m must be divisible by pα1
1 pα2

2 . . . pαr
r , which is a. As a result, c is divisible

by ab,
Let us prove (c). We have ac = bd for some positive integer d so

ac = pα1
1 pα2

2 . . . pαr
r c = bd = qβ1

1 qβ2
2 . . . qβs

s d,

Due to the uniqueness of prime factorisation of ac the number c must be divisible
by qβ1

1 qβ2
2 . . . qβs

s which is b.
Now (d) follows from Theorem 1.2.5. �

The following result is extremely important. Its author is not known exactly but
it could be Sun Tzu (or Sun Zi)8 in which book it was first mentioned.

Theorem 1.2.6 (The Chinese remainder theorem) Let a and b be two relatively
prime numbers, 0 ≤ r < a and 0 ≤ s < b. Then there exists a unique number N
such that 0 ≤ N < ab and

r = N mod a and s = N mod b, (1.15)

that is, N has remainder r on dividing by a and remainder s on dividing by b.

Proof Let us prove, first, that there exists at most one integer N with the conditions
required. Assume, on the contrary, that for two integers N1 and N2 we have 0 ≤
N1 < ab, 0 ≤ N2 < ab and

r = N1 mod a s = N1 mod b, r = N2 mod a s = N2 mod b.

Without loss of generality let us assume that N1 > N2. Then the number M = N1 −
N2 satisfies 0 ≤ M < ab and

0 = M mod a 0 = M mod b. (1.16)

By Lemma 1.2.1(b), condition (1.16) implies that M is divisible by ab, whence
M = 0 and N1 = N2.

Now we will find an integer N such that r = N mod a and s = N mod b, ignor-
ing the condition 0 ≤ N < ab. By Theorem 1.2.4 there are integers m, n such that
gcd(a, b) = 1 = ma + nb. Multiplying this equation by r − s we get the equation

r − s = (r − s)ma + (r − s)nb = m′a + n′b.

8Sun Tzu (3rd–5th century AD) (or Sun Zi) was a Chinese mathematician and astronomer. He
investigated Diophantine equations. He authored “Sun Tzu’s Calculation Classic,” which contained,
among other things, the Chinese remainder theorem.

22 1 Integers

Now we define the number

N = r − m′a = s + n′b

It clearly satisfies condition (1.15). If N does not satisfy 0 ≤ N < ab, we divide
N by ab with remainder. Let N = q · ab + N1, where N1 is the remainder. Then
0 ≤ N1 < ab and N1 satisfies (1.15) since N1 has the same remainder as N on
division by a and also by b. The theorem is proved. �

Example 1.2.4 Find the smallest positive integer N such that

5 = N mod 991, 8 = N mod 441.

Using the Extended Euclidean algorithm we find

991 1 0
441 0 1 2
109 1 −2 4
5 −4 9 21
4 85 −191 1
1 −89 200 4
0

thus yielding 1 = (−89) · 991 + 200 · 441. We may write 8 − 5 = 3 = (−267) ·
991 + 600 · 441 and obtain the number N = −264592 = 8 − 600 · 441 = 5 +
(−267) · 991, which satisfies all the requirements apart from being between 0 and
437031 = 991 · 441. We divide N by 437031 with remainder. We have −264592 =
(−1) · 437031 + 172439, and the remainder N1 = 172439 will be the number
required.

Exercises
1. Use the Extended Euclidean algorithm to find the greatest common divisor d of

3773 and 3596 and find any integers x and y such that d = 3773x + 3596y.
2. Using the Extended Euclidean algorithm, find at least one pair of integers (x, y)

satisfying 1840x + 1995y = 5, and at least three pairs of integers (z, w) satisfying
1840z + 1995w = −10.

3. Let a, b, c and d be non-negative integers with c > 1 and d > 1. Suppose that
there exists an integer N such that

a = N mod c and b = N mod d.

Prove that a − b is a multiple of gcd(c, d).

1.2 Euclidean Algorithm 23

4.(a) Find any integer y such that

y = 9 mod 26 and y = 35 mod 68.

(note that 26 and 68 are not relatively prime.)
(b) Find the unique integer x such that 0 ≤ x < 3550 and

x = 4 mod 50 and x = 19 mod 71.

5.(a) Prove that there are no integers x, y satisfying 1840x + 1995y = 3.
(b) Let a and b be nonzero integers. Describe the set of integers c for which there

exist integers x and y satisfying the equation ax + by = c.
6◦. Find three consecutive positive integers which are not square-free. (Recall that

n is said to be square-free if it is not divisible by m2 for any m > 1.)

1.3 Fermat’s Little Theorem and Its Generalisations

1.3.1 Congruences. Fermat’s Little Theorem

Definition 1.3.1 Let a and b be integers andm be a positive integer. We say that a is
congruent to bmodulom and write a ≡ b mod m if a and b have the same remainder
on dividing by m, that is a mod m = b mod m.

For example, 41 ≡ 80 mod 13 since the numbers 41 and 80 both have remainder
2 when divided by 13. Also, 41 ≡ −37 mod 13. When a and b are not congruent,
we write a �≡ b mod m. For example, 41 �≡ 7 mod 13 because 41 has remainder 2,
when divided by 13, and 7 has remainder 7.

Lemma 1.3.1 (Criterion) Let a and b be two integers and m be a positive integer.
Then a ≡ b mod m, if and only if a − b is divisible by m.

Proof By the division algorithm

a = q1m + r1, 0 ≤ r1 < m, and b = q2m + r2, 0 ≤ r2 < m.

Thusa − b = (q1 − q2)m + (r1 − r2),where−m < r1 − r2 < m.We see thata − b
is divisible by m if and only if r1 − r2 is divisible by m but this can happen if and
only if r1 − r2 = 0, or r1 = r2, which is the same as a ≡ b mod m. �

Lemma 1.3.2 Let a and b be two integers and m be a positive integer. Then

(a) If a ≡ b mod m and c ≡ d mod m, then a + c ≡ b + d mod m;
(b) If a ≡ b mod m and c ≡ d mod m, then ac ≡ bd mod m;

24 1 Integers

(c) If a ≡ b mod m and n is a positive integer, then an ≡ bn mod m;
(d) If ac ≡ bc mod m and c is relatively prime to m, then a ≡ b mod m.

Proof (a) is an exercise.
(b) If a ≡ b mod m and c ≡ d mod m, thenm|(a − b) andm|(c − d), i.e., a − b =

im and c − d = jm for some integers i, j . Then

ac − bd = (ac − bc) + (bc − bd) = (a − b)c + b(c − d) = icm + jbm = (ic + jb)m,

whence ac ≡ bd mod m;
(c) follows immediately from (b).
(d) suppose that ac ≡ bc mod m and gcd(c,m) = 1. Then, by the criterion, (a −

b)c = ac − bc is a multiple of m. As gcd(c,m) = 1, by Lemma 1.2.1(c) a − b
is a multiple of m, and by the criterion a ≡ b mod m.

�

Theorem 1.3.1 (Fermat’s little theorem) Let p be a prime. If an integer a is not
divisible by p, then a p−1 ≡ 1 mod p. Also a p ≡ a mod p for all a.

Proof Leta be relatively prime to p. Consider the numbersa, 2a, . . ., (p − 1)a. They
all have different remainders on dividing by p. Indeed, suppose that for some 1 ≤
i < j ≤ p−1 we have ia ≡ ja mod p. Then by Lemma 1.3.2(d) a can be cancelled
and i ≡ j mod p, which is impossible. Therefore these remainders are 1, 2, . . .,
p − 1 and by repeated application of Lemma 1.3.2(b) we have

a · 2a · . . . · (p − 1)a ≡ (p − 1)! mod p,

which is

(p − 1)! · a p−1 ≡ (p − 1)! mod p.

Since (p − 1)! is relatively prime to p it can be cancelled by Lemma 1.3.2(d) and
we get a p−1 ≡ 1 mod p. When a is relatively prime to p, the last statement follows
from the first one. If a is a multiple of p, the last statement is also clear. �

Example 1.3.1 Find 3282013 mod 7.
Firstly we note that 6 = 328 mod 7 and using Lemma 1.3.2(c) we find that

3282013 mod 7 = 62013 mod 7. Now we have to reduce 2013. We can do this using
Fermat’s little theorem. Since for all a relatively prime to 7 we have a6 ≡ 1 mod 7
we can replace 2013 with its remainder on division by 6. Since 3 = 2013 mod 6 we
obtain

3282013 mod 7 = 62013 mod 7 = 63 mod 7 = 6.

The latter follows from the calculation 63 = 36 · 6 ≡ 1 · 6 mod 7 = 6.

1.3 Fermat’s Little Theorem and Its Generalisations 25

Fermat’s little theorem is a powerful (but not perfect) tool for checking primality.
Let

p :=20747222467734852078216952221076085874809964747211172927529925899121966847

50549658310084416732550077

be a random 100-digit prime. Then the calculation

gap> PowerMod(3,p-1,p);

1

gap> q:=pˆ2;;

gap> PowerMod(3,q-1,q)=1;

false

shows that 3p−1 ≡ 1 mod p but for q = p2 we have 3q−1 �≡ 1 mod q thus revealing
the compositeness of q . Wewill discuss thoroughly primality checking in Sect. 2.4.3.

Despite its usefulness, Fermat’s little theorem has limited applicability since the
modulus p must be a prime. In the next section we will prove Euler’s theorem that
generalises Fermat’s little theorem to an arbitrary positive integer n. It will be very
important in cryptographic applications.

Exercises
1. Find the remainder of 2(2

2013) on division by 5.
2. Using Fermat’s little theorem find the remainder on dividing by 7 of the number

333555 + 555333.

3. Let n = 1234567890987654321 and a = 111111111. Calculate an−1 mod n. Is
the result consistent with the hypothesis that n is prime?

4. Let p > 2 be a prime. Prove that all prime divisors of 2p − 1 have the form
2kp + 1.

5◦. Prove that 2n+4 + 33n+2 ≡ 0 mod 25 for any positive integer n.
6◦. Let An = 111 . . . 11 (n ones). Prove that for any prime p > 5

(a) Ap is not divisible by p;
(b) Ap−1 is divisible by p.

7◦. Suppose that p and q are distinct primes, a p ≡ a mod q , and aq ≡ a mod p.
Prove that a pq ≡ a mod pq .

26 1 Integers

1.3.2 Euler’sφ-Function. Euler’s Theorem

Definition 1.3.2 Let n be a positive integer. The number of positive integers not
exceeding n and relatively prime to n is denoted by φ(n). This function is called
Euler’s φ-function or Euler’s totient function.

Let us denoteZn = {0, 1, 2, . . . , n−1} and byZ∗
n the set of those positive numbers

from Zn that are relatively prime to n. Then φ(n) is the number of elements of Z∗
n ,

i.e., φ(n) = |Z∗
n|.

Example 1.3.2 Let n = 20. Then Z∗
20 = {1, 3, 7, 9, 11, 13, 17, 19} and φ(20) = 8.

Lemma 1.3.3 If n = pk,where p is prime, thenφ(n) = pk − pk−1 = pk
(
1 − 1

p

)
.

Proof It is easy to list all positive integers that are less than or equal to pk and
not relatively prime to pk . They are 1·p, 2·p, 3·p, . . . , (pk−1 − 1)·p. They are all
multiples of p, and we have exactly pk−1 − 1 of them. To obtain Z

∗
n , we have to

remove from Zn all these pk−1 − 1 numbers and also 0. Therefore Z∗
n will contain

pk − (pk−1 − 1) − 1 = pk − pk−1 numbers. �

An important consequence of the Chinese remainder theorem is that the function
φ(n) is multiplicative in the following sense:

Theorem 1.3.2 Let m and n be any two relatively prime positive integers. Then

φ(mn) = φ(m)φ(n).

Proof Let Z∗
m = {r1, r2, . . . , rφ(m)} and Z

∗
n = {s1, s2, . . . , sφ(n)}. Let us consider

an arbitrary pair (ri , s j) of numbers, one from each of these sets. By the Chinese
remainder theorem there exists a unique positive integer Ni j such that 0 ≤ Ni j < mn
and

ri = Ni j mod m, s j = Ni j mod n,

that is, Ni j has remainder ri on dividing bym, and remainder s j on dividing by n, so

Ni j = am + ri , Ni j = bn + s j . (1.17)

We have gcd(Ni j ,m) = gcd(m, ri) = 1 and gcd(Ni j , n) = gcd(n, s j) = 1, that is
Ni j is relatively prime tom and also relatively prime to n. Sincem and n are relatively
prime, Ni j is relatively prime to mn, i.e, Ni j ∈ Z

∗
mn . Clearly, different pairs (i, j) �=

(k, l) yield different numbers, that is Ni j �= Nkl for (i, j) �= (k, l). We note that there
are φ(m)φ(n) of the numbers Ni j , exactly as many as there are pairs of the form
(ri , s j). This shows φ(m)φ(n) ≤ φ(mn).

1.3 Fermat’s Little Theorem and Its Generalisations 27

Suppose now that a number N ∈ Zmn is different from Ni j for all i and j . Then

r = N mod m, s = N mod n,

where either r does not belong to Z
∗
m or s does not belong to Z

∗
n . Assuming the

former, we get gcd(r ,m) > 1. But then gcd(N ,m) = gcd(m, r) > 1, in which case
gcd(N ,mn) > 1 too. Thus N does not belong to Z∗

mn . This shows that the numbers
Ni j—and only these numbers—form Z

∗
mn . Therefore φ(mn) = φ(m)φ(n). �

Theorem 1.3.3 Let n be a positive integer with the prime factorisation

n = pα1
1 pα2

2 . . . pαr
r ,

where pi are primes and αi are positive integers. Then

φ(n) = n

(
1 − 1

p1

) (
1 − 1

p2

)
. . .

(
1 − 1

pr

)
.

Proof We use Lemma 1.3.3 and Theorem 1.3.2 to compute φ(n). Repeatedly apply-
ing Theorem 1.3.2 we get

φ(n) = φ
(
pα1
1

)
φ

(
pα2
2

)
. . .φ

(
pαr
r

)
.

By Lemma 1.3.3 this can be rewritten as

φ(n) = pα1
1

(
1 − 1

p1

)
pα2
2

(
1 − 1

p2

)
. . . pαr

r

(
1 − 1

pr

)

= p
α1
1 p

α2
2 . . . pαr

r

(
1 − 1

p1

)(
1 − 1

p2

)
. . .

(
1 − 1

pr

)
= n

(
1 − 1

p1

) (
1 − 1

p2

)
. . .

(
1 − 1

pr

)
,

as required. �

Example 1.3.3 φ(264) = φ(23 · 3 · 11) = 264
(1
2

) (2
3

) (10
11

) = 80. We also have
φ(269) = 268 as 269 is prime.

The following corollary will be important in the cryptography section.

Corollary 1.3.1 If n = pq, where p and q are primes, then φ(n) = (p − 1)(q −
1) = pq − p − q + 1.

There are no known methods for computing φ(n) in situations where the prime
factorisation of n is not known. If n is so big that modern computers cannot factorise
it, you can publish n and keep φ(n) secret.

Euler’s theorem is a generalisation of Fermat’s little theorem.

28 1 Integers

Theorem 1.3.4 (Euler’s theorem) Let n be a positive integer. Then

aφ(n) ≡ 1 mod n

for all a relatively prime to n.

Proof Let Z∗
n = {z1, z2, . . . , zφ(n)}. Consider the numbers z1a, z2a, ..., zφ(n)a. Both

zi and a are relatively prime to n, therefore zi a is also relatively prime to n. Suppose
that ri = zi a mod n, i.e., ri is the remainder ondividing zi a byn. Since gcd(zi a, n) =
gcd(ri , n), one has ri ∈ Z

∗
n . These remainders are all different. Indeed, suppose

that ri = r j for some 1 ≤ i < j ≤ n. Then zi a ≡ z j a mod n. By Lemma 1.3.2(d)
a can be cancelled and we get zi ≡ z j mod n, which is impossible. Therefore the
remainders r1, r2, ..., rφ(n) coincide with z1, z2, . . . , zφ(n), apart from the order in
which they are listed. Thus

z1a · z2a · . . . · zφ(n)a ≡ r1 · r2 · . . . · rφ(n) ≡ z1 · z2 · . . . · zφ(n) mod n,

which is

Z · aφ(n) ≡ Z mod n,

where Z = z1 · z2 · . . . · zφ(n). Since Z is relatively prime to n it can be cancelled by
Lemma 1.3.2(d), and we get aφ(n) ≡ 1 mod n. �

Example 1.3.4 Using Euler’s theorem compute the last decimal digit (unit’s digit)
of the number 32007.

Since the last decimal digit of 32007 is equal to 32007 mod 10 we have to calculate
this remainder. As gcd(3, 10) = 1 and φ(10) = 4 we have 34 ≡ 1 mod 10. As 3 =
2007 mod 4 we obtain

32007 ≡ 33 ≡ 7 mod 10.

Hence the last digit of 32007 is 7.

Exercises
1. Show that:

(a) Both sides of the congruence and its modulus can be simultaneously divided
by a common positive divisor.

(b) If a congruence holds modulo m, then it also holds modulo d, where d is an
arbitrary divisor of m.

(c) If a congruence holds for moduli m1 and m2, then it also holds modulo
lcm(m1,m2).

2. Without using mathematical induction show that 722n+2 − 472n + 282n−1 is
divisible by 25 for any n ≥ 1.

3. Compute φ(125), φ(180) and φ(1001).
4. Factor n = 4386607, which is a product of two primes, given φ(n) = 4382136.

1.3 Fermat’s Little Theorem and Its Generalisations 29

5. Find m = p2q2, given that p and q are primes and φ(m) = 11424.
6. Find all positive integer solutions x, y to the equation φ(3x5y) = 600, where φ

is the Euler totient function.
7. List all positive integers a such that 0 ≤ a ≤ 242 forwhich the congruence x162 ≡

a mod 243 has a solution.
8. Without resorting to GAP, factorise n if it is known that it is a product of two

primes and that φ(n) = 3308580.
9◦. Use GAP to find all solutions to the equation φ(x) = 24, where φ is the Euler’s

totient function. Justify the correctness of your algorithm.
10◦. Show that φ(n) = 14 is impossible.

1.4 The Ring of Integers Modulo n.The Field Z p

God of infinity finds refuge in a ring,
Birds of eternity sing there.
And you too find a ring in your heart.

Velemir Khlebnikov (1885–1922).

We will consider the set Zn = {0, 1, 2, . . . , n−1} as an algebraic object, called inte-
gers modulo m, by introducing two algebraic operations on it. First, given a, b ∈ Zn ,
we define a new addition a ⊕ b by

a ⊕ b := a + b mod n. (1.18)

According to the definition, a ⊕ b is the remainder on dividing a + b by n and
therefore it is always in Zn .

Example 1.4.1 In Z11 the following identities hold: 3 ⊕ 4 = 7, 5 ⊕ 9 = 3,
4 ⊕ 7 = 0.

Theorem 1.4.1 The new addition satisfies the following properties:

1. It is commutative, a ⊕ b = b ⊕ a, for all a, b ∈ Zn.
2. It is associative, a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c, for all a, b, c ∈ Zn.
3. Element 0 (zero) is the unique element such that a ⊕ 0 = 0 ⊕ a = a, for every

a ∈ Zn.

4. For each a ∈ Zn there exists a unique element (−a)
d f= n−a ∈ Zn such that a ⊕

(−a) = (−a) ⊕ a = 0.

Proof Only the second property is not completely obvious. We prove it by noting
that a ⊕ b ≡ a + b mod n. Then by Lemma 1.3.2(a)

(a ⊕ b) ⊕ c ≡ (a ⊕ b) + c ≡ (a + b) + c mod n

30 1 Integers

and

a ⊕ (b ⊕ c) ≡ a ⊕ (b + c) ≡ a + (b + c) mod n,

whence (a ⊕ b) ⊕ c ≡ a ⊕ (b ⊕ c) mod n. But these numbers are in Zn , and the
difference between them is less than n. Therefore (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c). �

Properties 1–4 in algebra axiomatically define a commutative group.

Definition 1.4.1 An algebraic system< G,+ > which consists of a set G together
with an algebraic operation + defined on it is said to be a commutative group if the
following axioms are satisfied:

CG1 The operation is commutative, a + b = b + a, for all a, b ∈ G.
CG2 The operation is associative, a + (b + c) = (a + b) + c, for all a, b, c ∈ G.
CG3 There exists a unique element 0 such that a + 0 = 0 + a = a, for all a ∈ G.
CG4 For every element a ∈ G there exists a unique element −a such that a +

(−a) = (−a) + a = 0, for all a ∈ G.

Thus we can reformulate Theorem 1.4.1 by saying that < Zn,⊕ > is a commu-
tative group.

Corollary 1.4.1 An equation a ⊕ x = b has a unique solution in Zn, namely x =
(−a) ⊕ b.

Proof Suppose that a ⊕ x = b, where x is a solution. Add (−a) to both sides of the
equation. We get

(−a) ⊕ (a ⊕ x) = (−a) ⊕ b,

from where, by using properties 1–4, we can find that (−a) ⊕ (a ⊕ x) = ((−a) ⊕
a) ⊕ x = 0 ⊕ x = x , hence x = (−a) ⊕ b. Similar computations show that x =
(−a) ⊕ b is indeed a solution. �

Example 1.4.2 Equation 18 ⊕ x = 13 inZ26 has a solution x = (−18) ⊕ 13 = 8 ⊕
13 = 21.

Now, given a, b ∈ Zn , we define a new multiplication a � b by

a � b := ab mod n. (1.19)

According to the definition, a � b is the remainder on dividing ab by n and therefore
it is always in Zn .

Example 1.4.3 In Z12 the following identities hold: 5 � 5 = 1, 2 � 4 = 8,
4 � 6 = 0.

1.4 The Ring of Integers Modulo n.The Field Zp 31

Theorem 1.4.2 The new multiplication modulo n satisfies the following properties:

5. It is commutative, a � b = b � a, for all a, b ∈ Zn.
6. It is associative, a � (b � c) = (a � b) � c, for all a, b, c ∈ Zn.
7. It is distributive relative to the addition, a � (b ⊕ c) = (a � b) ⊕ (a � c) and

(a ⊕ b) � c = (a � c) ⊕ (b � c), for all a, b, c ∈ Zn.
8. There is a unique element 1 inZn such that a � 1 = 1 � a = a, for every a ∈ Zn.

Proof Statements 5 and 8 are clear. The two other can be proved as in Theorem 1.4.1.
�

Properties 1–8 in algebraic terms mean that Zn together with operations ⊕ and � is
a commutative ring with a unity element 1 which is defined by the following set of
axioms.

Definition 1.4.2 An algebraic system< R,+, · >which consists of a set R together
with two algebraic operations + and · defined on it is said to be a commutative ring
if the following axioms are satisfied:

CR1 < R,+ > is a commutative group.
CR2 The operation · is commutative, a · b = b · a, for all a, b ∈ R.
CR3 The operation · is associative, a · (b · c) = (a · b) · c, for all a, b, c ∈ R.
CR4 There exists a unique element 1 ∈ R such that a · 1 = 1 · a = a, for all

nonzero a ∈ R.
CR5 The distributive law holds, that is, a · (b + c) = a · b + a · c, for all a, b, c ∈

R.

Example 1.4.4 Other commutative rings include the ring of polynomials Z[x] with
integer coefficients or else with rational or real coefficients. The set of all n × n
matrices over the integers Zn×n is also a ring but not commutative since axiom CR2
is not satisfied.

Definition 1.4.3 An element a of a ring R is called invertible if there exists an
element b in R such that a · b = b · a = 1. An element b in this case is called a
multiplicative inverse of a.

Lemma 1.4.1 If a ∈ Zn possesses a multiplicative inverse, then this inverse is
unique.

Proof Suppose thatwehave two inverses ofa, sayb and c, so thata � b = b � a = 1
and a � c = c � a = 1. Then

b � (a � c) = b � 1 = b,

32 1 Integers

and

(b � a) � c = 1 � c = c,

hence b = c due to the associative law of multiplication. �

Definition 1.4.4 If a multiplicative inverse of a exists, it is denoted a−1. In this case
the element a is called invertible.

Theorem 1.4.3 All elements from Z
∗
n are invertible in Zn.

Proof Let a ∈ Z
∗
n . Then gcd(a, n) = 1, and we can write a linear presentation of

this greatest common divisor 1 = ua + vn. Let us divide u by n with remainder w.
We have u = qn + w, where 0 ≤ w < n, and we substitute qn + w instead of u:

1 = (qn + w)a + vn = wa + (qa + v)n.

It is clear now that w ∈ Zn and that w � a = 1, which means w = a−1. �

Example 1.4.5 Find 11−1 in Z26 and solve 11 � x ⊕ 5 = 3.

Solution We use the Extended Euclidean algorithm

26 1 0
11 0 1 2
4 1 −2 2
3 −2 5 1
1 3 −7 3

to find a linear presentation 1 = 3 · 26 + (−7) · 11. As −7 = (−1) · 26 + 19 we
have

1 = 3 · 26 + (−7) · 11 = 3 · 26 + ((−1) · 26 + 19) · 11 = 2 · 26 + 19 · 11.

Thus 11−1 = 19 and 11 � x ⊕ 5 = 3 can be solved as follows: 11 � x = 3 ⊕
(−5) = 3 ⊕ 21 = 24. Finally, x = 11−1 � 24 = 19 � 24 = 14. �

Definition 1.4.5 A nonzero element a ∈ Zn is called a zero divisor if there exists
another nonzero element b ∈ Zn such that a � b = 0.

Example 1.4.6 4 � 5 = 0 in Z10.

Lemma 1.4.2 A divisor of zero in Zn is never invertible.

1.4 The Ring of Integers Modulo n.The Field Zp 33

Proof Suppose that a � b = 0, a �= 0, b �= 0 and a is invertible, that is a−1 exists.
Then we have a−1 � (a � b) = a−1 � 0 = 0. The left-hand side is equal to a−1 �
(a � b) = (a−1 � a) � b = 1 � b = b. hence b = 0, a contradiction. �

Theorem 1.4.4 If gcd(a, n) = d > 1 for some 0 �= a ∈ Zn, then a is a zero divisor
in Zn. All elements from Z

∗
n are invertible in Zn and all other elements are not

invertible.

Proof Let a = bd and n = md. Then am = bdm = bn, which is a multiple of n.
Thus a � m = 0 and a is a zero divisor. Thus, inZn , aside fromZ

∗
n , we have the zero

element and the zero divisors. On the other hand, by Theorem 1.4.3 all elements of
Z

∗
n are invertible. �

Hence, depending on n, the following property may be or may not be true for Zn :

9. For every nonzero a ∈ Zn there is a unique element a−1 ∈ Zn such that a �
a−1 = a−1 � a = 1.

Definition 1.4.6 A commutative ring < R,+, · > is called a field if the following
axiom is satisfied.

F1 For every nonzero a ∈ R there is a unique element a−1 ∈ R such that a · a−1 =
a−1 · a = 1 .

Theorem 1.4.4 gives us a complete answer on when Zn is a field.

Theorem 1.4.5 Zn is a field if and only if n is prime.

Proof If p is prime, then Z
∗
p consists of all nonzero elements of Zp. And by

Theorem 1.4.3 all elements of Z∗
p are invertible. Hence Zp is a field. Suppose Zn

is a field. Since all nonzero elements of any field are invertible, by Theorem 1.4.4
Z

∗
n = Zn \ {0}, that is all integers smaller than n are relatively prime to n. This is

possible only when n is prime. �

Exercises
1. Prove that in any commutative ring R a divisor of zero is not invertible. (Hint: prove

first that for any a ∈ R we have a · 0 = 0. Then follow the proof of Lemma 1.4.2.)
2. (a) List all invertible elements of Z16 and for each invertible element a give its

inverse a−1.
(b) List all zero divisors of Z15 and for each zero divisor a give all nonzero

elements b such that a � b = 0.
3. (a) Which one of the two elements 74 and 77 is invertible in Z111 and which one

is a zero divisor? For the invertible element a, give the inverse a−1 and for
the zero divisor b give the element c ∈ Z111 such that b � c = c � b = 0.

34 1 Integers

(b) Solve the equations 77 � x ⊕ 21 = 10 and 74 � x ⊕ 11 = 0 in Z111.
4. Let a and b be two elements of the ring Z21 and let f : Z21 → Z21 be a linear

function defined by f (x) = a � x ⊕ b (where the operations are computed in
Z21).

(a) Describe the set of all pairs (a, b), for which the function f is one-to-one.
(b) Find the range of the function f for the case a = 7, b = 3.
(c) Suppose a = 4 and b = 15. Find the inverse function f −1(x) = c � x ⊕ d

which satisfies f −1(f (x)) = x for each x ∈ Z21.

5. How many solutions in Z11 does the equation x102 = 4 have? List them all.
6. Given an odd number m > 1, find the remainder when 2φ(m)−1 is divided by m.

This remainder should be expressed in terms of m.
7. (Wilson’s Theorem) Let p be an integer greater than one. Prove that p is prime

if and only if (p − 1)! = −1 in Zp. (Hint: 1 and −1 = p − 1 are the only self-
inverse elements of Z∗

p.)
8◦. Find 299−1 in 328.
9◦. Find all solutions to the equation 205 � x = 287 has in Z328.

10◦. Prove that in a ring with identity all invertible elements form a group relative to
the multiplication.

11◦. Show that a finite commutative ring without zero divisors is a field.

1.5 Representation of Numbers

There is an important distinction between numbers and their representations. In the
decimal system the zero and the first nine positive integers are denoted by symbols
0, 1, 2, . . . , 9, respectively. These symbols are called digits. The same symbols are
used to represent all the integers. The tenth integer is denoted as 10, and an arbitrary
integer N can now be represented in the form

N = an · 10n + an−1 · 10n−1 + . . . + a1 · 10 + a0, (1.20)

where a1, a2, . . . , an are integers that can be represented by a single digit 0, 1,
2, . . . , 9. For example, the year this course was first taught can be written as

1 · 103 + 9 · 102 + 9 · 10 + 8.

We shorten this expression to (1998)(10) or simply 1998, having the decimal system
in mind. In this notation the meaning of a digit depends on its position. Thus two-
digit symbols “9” are situated in the tens and the hundreds places and their meaning
is different. In general, for the number N given by (1.20) we write

N = (anan−1 . . . a1a0)(10)

to emphasise the exceptional role of 10. This notation is called positional, and its
invention has been attributed to the Sumerians or the Babylonians. It was further

1.5 Representation of Numbers 35

development by Hindus and proved to be of enormous significance to civilisation.
In Roman symbolism, for example, one wrote

MCMXCVIII = (thousand) + (nine hundreds) + (ninety) + (five) + (one) + (one) + (one),

It is clear that more and more new symbols such as I, V, X, C, M are needed as
numbers get larger while with the Hindu positional system, now in use, we need
only ten “Arabic numerals” 0, 1, 2, . . . , 9, no matter how large is the number. The
positional system was introduced into medieval Europe by merchants, who learned
it from the Arabs. It is exactly this system which is to blame for the fact that the
ancient art of computation, once confined to a few adepts, has become a routine
algorithmic skill that can be done automatically by a machine and is now taught in
primary school.

Mathematically, there is nothing special about the decimal system. The use of ten
as the base goes back to the dawn of civilisation and is attributed to the fact that we
have ten fingers on which to count. Other numbers could be used as the base, and
undoubtedly some of them were used. The number words in many languages show
remnants of other bases, mainly twelve, fifteen and twenty. For example, in English
the words for 11 and 12 and in Spanish the words for 11, 12, 13, 14 and 15 are not
constructed on the decimal principle. In French the word for 20—vingt—suggests
that number had a special role at some time in the past. The Babylonian astronomers
had a system of notation with base 60. This is believed to be the reason for the
customary division of the hour and the angular degree into 60 min. In the theorem
that follows we show that an arbitrary positive integer b > 1 can be used as a base.

Theorem 1.5.1 Let b > 1 be a positive integer. Then every positive integer N can
be uniquely represented in the form

N = d0 + d1b + d2b
2 + . . . + dnb

n, (1.21)

where “the digits” d0, d1, . . . , dn lie in the range 0 ≤ di ≤ b−1, for all i .

Proof The proof is by induction on N , the number being represented. Clearly,
the representation 1 = 1 for 1 is unique. Suppose, inductively, that every inte-
ger 1, 2, . . . , N−1 is uniquely representable. Now consider the integer N . Let
d0 = N mod b. Then N − d0 is divisible by b and let N1 = (N − d0)/b. Since
N1 < N , by the induction hypothesis N1 is uniquely representable in the form

N1 = N − d0
b

= d1 + d2b + d3b
2 + . . . + dnb

n−1,

Then clearly

N = d0 + N1b = d0 + d1b + d2b
2 + . . . + dnb

n

is the representation required.

36 1 Integers

Finally, suppose that N has some other representation in this form, i.e.,

N = d0 + d1b + d2b
2 + . . . + dnb

n = e0 + e1b + e2b
2 + . . . + enb

n .

Then d0 = e0 = r as they are equal to the remainder of N on dividing by b. Now
the number

N1 = N − r

b
= d1 + d2b + d3b

2 + . . . + dnb
n−1 = e1 + e2b + e3b

2 + . . . + enb
n−1

has two different representations which contradicts the inductive assumption, since
we have assumed the truth of the result for all N1 < N . �

Corollary 1.5.1 We use the notation

N = (dndn−1 . . . d1d0)(b) (1.22)

to express (1.21). The digits di can be found by the repeated application of the division
algorithm as follows:

N = q1b + d0, (0 ≤ d0 < b)

q1 = q2b + d1, (0 ≤ d1 < b)
...

qn = 0 · b + dn (0 ≤ dn < b)

For example, the positional system with base 5 employs the digits 0, 1, 2, 3, 4,
and we can write

1998(10) = 3 · 54 + 0 · 53 + 4 · 52 + 4 · 5 + 3 = 30443(5).

But in the era of computers it is the binary (or dyadic) system (base 2) that has
emerged as the most important. This system has only two digits, 0 and 1 and a very
simple multiplication table for them. But under the binary system, representations
of numbers get longer quickly. For example,

150(10) = 1 · 27 + 0 · 26 + 0 · 25 + 1 · 24 + 0 · 23 + 1 · 22 + 1 · 2 + 0 = 10010110(2).
(1.23)

Leibniz9 was one of the ardent proponents of the binary system. According to
Laplace: “Leibniz saw in his binary arithmetic the image of creation. He imag-
ined that Unity represented God, and zero the void; that the Supreme Being drew

9GottfriedWilhelm von Leibniz (1646–1716)was a German mathematician and philosopher who
developed infinitesimal calculus independently of Isaac Newton, and Leibniz’s mathematical nota-
tion has been widely used ever since it was published. He invented an early mechanical calculating
machine.

1.5 Representation of Numbers 37

all beings from the void, just as unity and zero express all numbers in his system of
numeration.”

Let us look at the binary representation of a number from the information point
of view. Information is measured in bits. One bit is a unit of information expressed
as a choice between two possibilities 0 and 1. The number of binary digits in the
binary representation of a number N is therefore the number of bits we need to
transmit N through an information channel (or input into a computer). For example,
the Eq. (1.23) shows that we need 8 bits to transmit or convey the number 150.

Theorem 1.5.2 To input a number N by converting it into its binary representation
we need �log2 N	 + 1 bits of information.

Proof Suppose that N has n binary digits in its binary representation. That is

N = 2n−1 + an−22
n−2 + . . . + a12

1 + a02
0, ai ∈ {0, 1}.

Then 2n > N ≥ 2n−1 or n > log2 N ≥ n − 1, which is equivalent to �log2 N	 =
n − 1. Hence n = �log2 N	 + 1. �

Example 1.5.1 To input 150, we need �log2 150	 + 1 = �7.2	 + 1 = 8 bits.

Example 1.5.2 The input is the number 15011. Convert it to binary. What is the
length of this input?

Solution Let 15011 = (anan−1 . . . a1a0)(2) be the binary representation of 15111.
We can find the binary digits of 15011 recursively by a series of divisions with
remainder:

15011 = 2 · 7505 + 1 −→ a0 = 1,
7505 = 2 · 3752 + 1 −→ a1 = 1,
3752 = 2 · 1876 + 0 −→ a2 = 0,
1876 = 2 · 938 + 0 −→ a3 = 0,
938 = 2 · 469 + 0 −→ a4 = 0,
469 = 2 · 234 + 1 −→ a5 = 1,
234 = 2 · 117 + 0 −→ a6 = 0,
117 = 2 · 58 + 1 −→ a7 = 1,
58 = 2 · 29 + 0 −→ a8 = 0,
29 = 2 · 14 + 1 −→ a9 = 1,
14 = 2 · 7 + 0 −→ a10 = 0,
7 = 2 · 3 + 1 −→ a11 = 1,
3 = 2 · 1 + 1 −→ a12 = 1,
1 = 2 · 0 + 1 −→ a13 = 1,

we see that 15011 = 11101010100011(2), reading the binary digits from the column
of remainders from bottom to the top. Hence the length of the input is 14 bits. �

38 1 Integers

Example 1.5.3 To estimate from above and from below the number of bits required
to input an integer N which has 100 digits in its decimal representation, we may
use GAP command LogInt(N,2) to calculate �log2 N	. A 100-digit integer is
between 1099 and 10100, so we have

gap> LogInt(10ˆ100,2)+1;

333

gap> LogInt(10ˆ99,2)+1;

329

So the number in this range will need between 329 and 333 bits.

The negative powers of 10 are used to express those real numbers which are not
integers. This also works in other bases. For example,

1

8
= 0.125(10) = 1

10
+ 2

102
+ 5

103
= 0

2
+ 0

22
+ 1

23
= 0.001(2)

1

7
= 0.142857142857 . . .(10) = 0.(142857)(10) = 0.001001 . . .(2) = 0.(001)(2)

The binary expansions of irrational numbers, such as

√
5 = 10.001111000110111 . . .(2) ,

are used sometimes in cryptography for simulating a random sequence of bits. But
this method is considered to be insecure. The number,

√
5 in the example above, can

be guessed after knowing the initial segment, which will reveal the whole sequence.

Exercises
1. Find the binary representation of the number 2002(10) and the decimal represen-

tation of the number 1100101(2).
2. (a) Find the binary representation of the number whose decimal representation

is 2011.
(b) Find the decimal representation of the number whose binary representation

is 101001000.
3. Use Euler’s theorem to find the last three digits in the binary representation of

751015.
4. How many nonzero digits are there in the binary representation of the integer

100 . . . 001︸ ︷︷ ︸
n

(2) · 100 . . . 001︸ ︷︷ ︸
m

(2)?

5. The integer n has base 7 representation n = abcd(7) , where a, b, c, d are base 7
digits of n. Prove that n is divisible by 6 if and only if the sum a + b + c + d of
its digits is divisible by 6.

1.5 Representation of Numbers 39

6. The symbols A, B, C, D, E and F are used to denote the digits 10, 11, 12, 13, 14
and 15, respectively, in the hexadecimal representation (i.e., to base 16).

(a) Find the decimal representation of 2A4F(16).
(b) Find the hexadecimal representation of 1000(10).

7◦. Prove that the sequence of Fibonacci numbers mod m is periodic with period of
length at most m2 − 1.

2Cryptology

Enigmatic words—they are all full of meaning.

Nikolai Roerich (1874–1947)

Cryptology (or cryptography) is about communication in the presence of adversaries
or potential adversaries. In medieval times diplomats had to communicate with their
superiors using a messenger. Messengers could be killed and letters could be cap-
tured and read by adversaries. During times of war, orders frommilitary headquarters
needed to be sent to the line officers without being intercepted and understood by
the enemy. The case of a war is an extreme example where the adversary is clearly
defined. But there are also situations where the existence of an “adversary” is less
obvious. For example, corporate deals and all negotiations must remain secret until
completed. Sometimes two parties want to communicate privately even if they do
not have any adversaries. For example, they wish to exchange love letters, and con-
fidentiality of messages for them remains a very high priority. Thus, a classic goal
of cryptography is privacy. Authentication is another goal of cryptography which is
any process by which you verify that someone is indeed who they claim they are.
We use passwords to ensure that only certain people have access to certain resources
(e.g., if you do your banking on the Internet you do not want other people to know
your financial situation or to tamper with your accounts). Digital signatures are a
special technique for achieving authentication. Apart from signing your encrypted
emails, digital signatures are used for other applications, for example, to ensure that
automatic software updates originate from the company they are supposed to, rather
than being viruses. Digital signatures are to electronic communication what hand-
written signatures are to paper-based communication. Nowadays cryptography has
matured and it is addressing an ever increasing number of other goals.

© Springer Nature Switzerland AG 2020
A. Slinko, Algebra for Applications, Springer Undergraduate Mathematics Series,
https://doi.org/10.1007/978-3-030-44074-9_2

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44074-9_2&domain=pdf
https://doi.org/10.1007/978-3-030-44074-9_2

42 2 Cryptology

In his Chap.13 of the Handbook of Theoretical Computer Science, Ronald Rivest
writes: “The invention of radio gave a tremendous impetus to cryptography, since
an adversary can eavesdrop easily over great distance. The course of World War II
was significantly affected by use, misuse, and breaking of cryptographic systems
used for radio traffic. It is intriguing the computational engines designed and built
by the British to crack the German Enigma cipher are deemed by some to be the first
real “computers”; one could argue that cryptography is the mother (or at least the
midwife) of computer science”. (This chapter can be downloaded from Ron Rivest’s
web page.)

Rivest mentioned the famous computers “Colossus” here. Until recently all infor-
mation about themwas classified. The Colossus computers were built by a dedicated
team of British mathematicians and engineers led by Alan Turing and Tommy Flow-
ers. It was extensively used in the cryptanalysis of high-level German communica-
tions. It is believed that this heroic effort shortened the Second World War by many
months. Recently Colossus was recreated and outperformed a modern computer (in
deciphering messages which had been encrypted using the Lorenz SZ 40/42 cipher
machine).1 Due to secrecy that surrounded everything related to Colossus, there
arose a myth that the ENIAC was the first large-scale electronic digital calculator in
the world. It was not.

2.1 Classical Secret-Key Cryptology

One of the oldest ciphers known is Atbash. It even appears in the Hebrew Scriptures
of the Bible. Any occurrence of the first letter of the alphabet is replaced by the last
letter, occurrences of the second letter are replaced by the second to last, etc. Atbash
is a specific example of a general technique called inversion.

Caesar is also a very old cipher used by Gaius Julius Caesar (130 BC–87 BC).
Letters are simply replaced by letters three steps further down the alphabet. This
way “a” becomes “d”, “b” becomes “e”, etc. In fact, any cipher using a displacement
of any size is now known as a Caesar. Caesar is a specific example of a general
technique called displacement.

These two ciphers are examples of the so-called substitution methods which use
a mapping of an alphabet onto itself that replace a character with the one it mapped
onto. If the mapping does not change within the message, the scheme is known as a
mono-alphabet scheme. Such cryptosystems were not very secure but were sufficient
enough when literacy was not widespread.

For both of these cryptosystems it is essential to keep the method of encryption
secret, because, even publicising the idea on which it is based on, might give away
an essential part of the security of the system, especially if the adversary managed
to intercept sufficiently many encrypted messages.

1Read about this exciting project and many other historical information about Colossus at http://
www.codesandcyphers.org.uk/lorenz/rebuild.htm.

http://www.codesandcyphers.org.uk/lorenz/rebuild.htm
http://www.codesandcyphers.org.uk/lorenz/rebuild.htm

2.1 Classical Secret-Key Cryptology 43

By the end of nineteenth century it became clear that security must be introduced
differently. In 1883 Auguste Kerckhoff’s2 wrote two journal articles titled La Cryp-
tographie Militaire, in which he stated six design principles for military ciphers. His
main idea was—which is called now Kerckhoffs’ principle—that the security must
be a result of not keeping the encryption mechanism secret but as a result of keeping
a changeable part of the encryption mechanism—called secret key—secret. Depend-
ing on the secret key the encryption mechanism should encrypt messages differently.
So, even if the adversary knows the encryption method but does not know the key,
they will not know how to decrypt messages.

Thus, until recently, a standard cryptographic solution to the privacy problemwas
a secret-key cryptosystem, which consisted of the following:

• A message space M: a set of strings (plaintext messages) over some alphabet
(e.g., binary alphabet, English, Cyrillic or Arabic alphabets);

• A ciphertext space C: a set of strings (ciphertext messages) over some alphabet
(e.g., the alphabet of the dancing men in one of the Arthur Conan Doyle’s stories
of Sherlock Holmes);

• A key space K: a set of strings (keys) over some alphabet;
• Anencryption algorithm E : M × K → C,which to every pairm ∈ M and k ∈ K

puts in correspondence a ciphertext E(m, k);
• Adecryption algorithm D : C × K → Mwith the property that D(E(m, k), k) =

m for all m ∈ M and k ∈ K.

The meaning of the last condition is that if a message is encrypted with a key k,
then the same key, when used in the decryption algorithm, will decrypt this message
from the ciphertext.

To use a secret-key cryptosystem the parties wishing to communicate privately
agree on akey k ∈ K,which theymust keep secret. They communicate amessagem ∈
M by sending the ciphertext c = E(m, k). The recipient can decrypt the ciphertext
to obtain the message m by means of the key k and the decryption algorithm D
since m = D(c, k). The cryptosystem is considered to be secure if it is infeasible in
practice for an eavesdropper, who has discovered E(m, k) but does not know k, to
deduce m.

Below we present three examples.

2.1.1 The One-Time Pad

The one-time pad is a nearly perfect solution to the privacy problem. It was invented
in 1917 by Gilbert Vernam (D. Kahn, The Codebreakers, Macmillan, New-York,

2Auguste Kerckhoffs (1835–1903) was a Dutch linguist and cryptographer who was professor of
languages at the Ecole des Hautes Etudes Commerciales in Paris.

44 2 Cryptology

1967) for use in telegraphy. In this secret-key cryptosystem the key is as long as the
message being encrypted. The key, once used, is discarded and never reused.

Suppose that parties managed to generate a very long string k of randomly chosen
0’s and 1’s. Suppose that they alsomanaged to secretly deliver k to all parties involved
with the intention to use it as a key. If a party A wishes to send a telegraphic message
m to other parties, then it writes the message as a string of zeros and ones m =
m1m2 . . . mn , takes the first n numbers from k, that is k

′ = k1k2 . . . kn and adds
these two strings component-wise mod 2 to get the encrypted message

c = m ⊕ k
′ = c1c2 . . . cn, where ci = mi ⊕ ki .

Then A destroys the first n numbers of the key. On the receiving end all other parties
decrypt the message c by computing m = c ⊕ k

′
and also destroy the first n numbers

of the key. When another message is to be sent, another part of the key will be
used—hence, the name “one-time pad”. This system is unconditionally secure in the
following sense. If c = c1c2 . . . cn is the ciphertext, then an arbitrary message m =
m1m2 . . . mn could be sent. Indeed, if the key were m ⊕ c, then m ⊕ (m ⊕ c) = c
and the ciphertext is c.

For written communication this system can be modified as follows. Each letter of
the alphabet is given a number in Z26:

A B C D E F G H I J K L M
0 1 2 3 4 5 6 7 8 9 10 11 12

N O P Q R S T U V W X Y Z
13 14 15 16 17 18 19 20 21 22 23 24 25

You then agree to use a book, little-known to the general public (considered as a
very long string of letters), as the secret key. For example, “The Complete Poems of
Emily Dickinson” would be a good choice.3 Then you do the same as we did with
telegraphic messages except that we add messages mod 26. Suppose we need to
send a message

and the first unused poem from the book is

Best Witchcraft is Geometry
To the magician’s mind -
His ordinary acts are feats
To thinking of mankind.

3This choice reflects author’s fascination with Dickinson’s poetry.

2.1 Classical Secret-Key Cryptology 45

Then the message will be represented as the following string of 16 numbers:

B U Y T E L E C O M S H A R E S
1 20 24 19 4 11 4 2 14 12 18 7 0 17 4 18

and the first 16 letters from the poem will be

B E S T W I T C H C R A F T I S
1 4 18 19 22 8 19 2 7 2 17 0 5 19 8 18

Adding these two messages mod 26 we get

2 24 16 12 0 19 23 4 21 14 9 7 5 10 12 10
C Y Q M A T X E V O J H F K M K

so the cryptotext will be

This version of the one-time pad is much less secure as it is vulnerable to frequency
analysis.

Exercises
1. Use Khlebnikov’s poem

Today I will go once again
Into life, into haggling, into the flea market,
And lead the army of my songs
To duel against the market tide.4

as the key to encrypt BUY MORE PROPERTY and to decrypt RCXRN-
WOAPDYWCAUERKYWHZRGSXQJW.

2. Use GAP command Random([0..25]); to generate a sequence of random letters
of the alphabet of length 20.

3. Using the sequence, obtained in the previous exercise, as a key for one-time pad
cryptosystem, encrypt and then decrypt back the sentence by Emily Dickinson
“I HAVE NO TIME TO HATE”. The GAP programmes LettertoNumber
and NumbertoLetter found in Sect. 9.2.3 can help you to convert messages
into the digital format and back.

4Velemir Khlebnikov (1885–1922) was one of the key poets in the Russian Futurist movement but
his work and influence stretch far beyond it. He was educated as a mathematician and his poetry is
very abstract and mathematical. He experimented with the Russian language, drawing deeply upon
its roots.

46 2 Cryptology

4◦. Explain why the one-time pad becomes insecure if the same key is used more
than once.

5◦. A Latin square of order n is an n × n matrix L=(�i j), where �i j∈{1, 2, . . . , n},
such that each element of the set {1, 2, . . . , n} appears exactly once in each row
and in each column of L . A Latin square defines a cipher with the message space
M = {1, 2, . . . , n} and the key space K = {1, 2, . . . , n} defined as E(m, k) =
�mk .

(a) Construct a Latin square L of order 4.
(b) Encode the message 1111 with key k = 3.

2.1.2 An Affine Cryptosystem

This is a substitution cipher which is also based on modular arithmetic. The key
to this cryptosystem is a pair k = (a, b) of numbers a ∈ Z

∗
26, b ∈ Z26. Under this

system a number in Z26 is assigned to every letter of the alphabet as in the previous
section. Each letter is encoded into the corresponding number x it is assigned to
and then into the letter to which the number a � x ⊕ b is assigned. For instance,
if a = 3 and b = 5, then the letter “H” will have a numerical encoding “7”. Then
3 � 7 ⊕ 5 = 0 is computed, and we note that “0” is the numerical encoding for “A”,
which shows that “H” is encrypted into “A”. Using the key k = (3, 5), the message

will be encrypted into

The requirement that a ∈ Z
∗
26, i.e., gcd(a, 26) = 1 is needed to ensure that the

encryption function is one-to-one. Indeed, this is equivalent to having the function

E(x) = a � x ⊕ b

be one-to-one. If a is a divisor of zero and a � d = 0 for some d 	= 0, then E(x) =
E(x ⊕ d) and E is not one-to-one. In particular, E(0) = E(d) and unambiguous
decryption is impossible. On the other hand, if a is invertible, then a � x ⊕ b = y
implies x = a−1 � (y ⊕ (−b)) and the decryption function exists:

D(y) = a−1 � (y ⊕ (−b)).

Since the key is very short, this system is not secure: one can simply use all keys one
by one and see which key gives a meaningful result. However it can be meaningfully
used in combinationwith other cryptosystems. For example, if we use this encryption
first and then use the one-time pad (or the other way around), the frequency analysis
will be very much hampered.

2.1 Classical Secret-Key Cryptology 47

Exercises
1. Is it possible to use k = (13, 11) as a key in an affine cryptosystem?
2. Using the affine cryptosystem with the key k = (11, 13) encrypt the message

CRYPTO and decrypt the message DRDOFP.
3. In the affine cryptosystem with an unknown key Eve guessed that the letter F was

encrypted as N and the letter K was encrypted as O. Help Eve to calculate the
key.

4. A plaintext (in English) has been encrypted using the affine cryptosystem. The
obtained ciphertext is:
ljpcc puxya nip ljc cbhcx quxya wxrcp ljc aqo achcx nip ljc rskpn bipra ux ljcup
jkbba in alixc xuxc nip miplkb mcx riimcr li ruc ixc nip ljc rkpq bipr ix jua rkpq
ljpixc ux ljc bkxr in miprip sjcpc ljc ajkrisa buc ixc puxy li pwbc ljcm kbb ixc puxy
li nuxr ljcm ixc puxy li vpuxy ljcm kbb kxr ux ljc rkpqxcaa vuxr ljcm ux ljc bkxr
in miprip sjcpc ljc ajkrisa buc
Find the original plaintext. The following estimation on relative frequencies of
the 26 letter in English texts may be of some help. You are encouraged to use any
help of computers you find useful.

letter rel. freq. letter rel. freq. letter rel. freq.
a .082 j .002 s .063
b .015 k .008 t .091
c .028 l .040 u .028
d .043 m .024 v .010
e .127 n .067 w .023
f .022 o .075 x .001
g .020 p .019 y .020
h .061 q .001 z .001
i .070 r .060

2.1.3 Hill’s Cryptosystem

We now consider a slightly more sophisticated encryption procedure, sometimes
called The Hill Cipher which was invented in 1929 by Lester S. Hill. Instead of sub-
stituting letters it substitutes blocks of letters of fixed length m. The whole message
is divided into such m-tuples and each m-tuple is encrypted separately as follows.
The key for this cryptosystem is an invertible m × m matrix over Z26. Both matrix
operations, addition and multiplication, are defined by means of addition and mul-
tiplication modulo 26. Since we do not use any other operations, it is no longer
appropriate to write symbols ⊕ and � for modular operations. To simplify things
we will use ordinary notation. We will consider the case m = 2 and therefore pairs
of letters and 2 × 2 matrices. Let

K =
[

a b
c d

]

48 2 Cryptology

be the key matrix. The encryption of a pair of letters (P1, P2) is carried out by

(P1, P2) →
[

x1
x2

]
→ K

[
x1
x2

]
=

[
y1
y2

]
→ (C1, C2),

where x1, x2 are the numerical codes for P1, P2 and y1, y2 are the numerical codes
for C1, C2. The invertibility of K is needed for unambiguous recovery of x1, x2 from
y1, y2.

Example 2.1.1 Let

K =
[
3 3
2 5

]

and suppose the plaintext message is HELP. Then this plaintext is represented by
two pairs

HELP →
[

H
E

]
,

[
L
P

]
→

[
7
4

]
,

[
11
15

]
.

Then we compute

[
3 3
2 5

] [
7
4

]
=

[
7
8

]
,

[
3 3
2 5

] [
11
15

]
=

[
0
19

]

and continue encryption as follows:

[
7
8

]
,

[
0
19

]
→

[
H
I

]
,

[
A
T

]
→ HIAT

so the cryptotext is HIAT.
The matrix K is invertible, hence, an inverse K −1 exists such that K K −1 =

K −1K = I2, where I2 is the identity matrix of order 2. It follows that

K −1K

[
x1
x2

]
= I2

[
x1
x2

]
=

[
x1
x2

]
,

and decryption is possible. To implement decoding, we compute

K −1 = 9−1
[
5 23
24 3

]
= 3

[
5 23
24 3

]
=

[
15 17
20 9

]
.

Let us see how we can decrypt the ciphertext HIAT:

HIAT →
[

H
I

]
,

[
A
T

]
→

[
7
8

]
,

[
0
19

]

2.1 Classical Secret-Key Cryptology 49

Then we compute

[
15 17
20 9

] [
7
8

]
=

[
7
4

]
,

[
15 17
20 9

] [
0
19

]
=

[
11
15

]

and continue decryption as follows:

[
7
4

]
,

[
11
15

]
→

[
H
E

]
,

[
L
P

]
→ HELP.

We need a criterion of invertibility of a matrix over Z26. The standard criterion
of invertibility for matrices over R is a nonzero determinant. Since Z26 has divisors
of zero, we have to slightly modify the standard criterion.

Theorem 2.1.1 An n × n matrix K over Z26 is invertible if and only if det(K) is an
invertible element in Z26.

Proof We will prove this theorem only for n = 2. Let us consider a 2 × 2 matrix

K =
[

a b
c d

]
whose determinant is � = det(K) = ad − bc. Let us compute

[
a b
c d

] [
d −b

−c a

]
=

[
� 0
0 �

]
(2.1)

If � is a divisor of zero, say �� = 0, then

[
a b
c d

] [
d −b

−c a

] [
� 0
0 �

]
=

[
0 0
0 0

]
.

Let us denote the product of the two rightmost matrices as

L =
[

d −b
−c a

] [
� 0
0 �

]
.

If L 	= 0, then K L = 0 and K is a left divisor of zero. As in Lemma 1.4.2 it can be
shown that K cannot be invertible. If however

L =
[

d −b
−c a

] [
� 0
0 �

]
=

[
�d −�b

−�c �a

]
=

[
0 0
0 0

]
,

then �a = �b = �c = �d = 0 and then
[

a b
c d

] [
� 0
0 �

]
=

[
0 0
0 0

]
,

whence K is again a left divisor of zero.

50 2 Cryptology

On the other hand, Eq.2.1 shows that if � is invertible, then

[
a b
c d

]−1

= �−1
[

d −b
−c a

]

is the inverse. �

Hill’s cryptosystem is not considered secure. In particular, it is vulnerable to the
so-called known plaintext attack. Indeed, if an k × k matrix K is a key, then it is
normally enough to know that message fragments m1, m2, . . . , mk are encrypted
as c1, c2, . . . , ck . Indeed, if the i th column of a matrix X represents the numerical
encodings of the plain text fragment mi and the i th column of a matrix Y represents
the numerical encodings of the cipher text fragment ci , then Y = K X fromwhich the
key can be found as K = Y X−1. In rare cases thematrix X may appear degenerate, in
which case we will not be able to find K exactly but still will have much information
about it.

In cryptanalysis which is an art of breaking ciphers the so-called method of cribs
is widely used. This term was introduced by cryptographers in Bletchley Park and
it means a suspected plaintext. For example, an English language text contains the
word “that” with high probability and a letter often starts with the word “dear”.

Exercises
1.(a) Which one of the two matrices being considered as matrices over Z26

[
1 12
12 1

]
,

[
1 6
6 1

]

is invertible and which is not? Find the inverse for the invertible matrix.
(b) Let M be the invertible matrix and found in part (a). Use it as a key in the

Hill’s cryptosystem to encrypt YEAR and to decrypt ROLK.
2. In the Hill’s cryptosystem with the key

K =
[
11 12
12 11

]

find all pairs of letters XY which do not change after being encoded twice, i.e.,
if we encode XY we get a pair ZT which is being encoded as XY.

3. You have captured the ciphertext

You know it has been encrypted using the Hill cipher with a 2 × 2 matrix and
you know the first 4 letters of the message are the word “DEAR”. Find the
secret key and obtain the message.

2.1 Classical Secret-Key Cryptology 51

4. The key for Hill’s cryptosystem is the following matrix over Z26

K =

⎡
⎢⎢⎢⎢⎣

1 2 3 4 5
9 11 18 12 4
1 2 8 23 3
7 14 21 5 1
5 20 6 5 0

⎤
⎥⎥⎥⎥⎦ .

Use GAP to decrypt the message

5. (advanced linear algebra required) Prove that a square n × n matrix A over Z26
is invertible if and only if its determinant det(A) is invertible element of Z26.

6◦. Generate randomly 4 × 4 invertible matrix K overZ26. Use it as a key to encode
and then decode a message of your choice.

7◦. Eve eavesdrops on the correspondence of Ark, Pip and Tom who use Hill’s
cryptosystem to communicate. She discovered that they split messages into
segments which are three letters long and that the names ARK, PIP and TOM
are encoded as GCB, APM and BWZ, respectively. Find the matrix K which
is used as the key.

2.2 Modern Public-Key Cryptology

Traditional secret-key cryptology assumes that both the sender and the receiver must
be in possession of the same secret key which they use both for encryption and
decryption. This secret key must be delivered all around the world, to all the corre-
spondents. This is a major weakness of this system.

The modern public-key cryptology breaks the symmetry between the sender and
the receiver. It requires two separate keys for each user, one of which is secret (or
private) and one of which is public. The public key is used to encrypt plaintext,
whereas the private key is used to decrypt ciphertext. Since the public key is no
longer secret it can be widely distributed without compromising security. The term
“asymmetric” stems from the use of different keys to perform the encryption and the
decryption, each operation being the inverse of the other—while the conventional
(“symmetric”) cryptography uses the same key to perform both.

The computational complexity is the main reason why the system works. The
adversary will know how to decrypt messages but will still be unable to do it due to
the extremely high complexity of the task.

52 2 Cryptology

2.2.1 One-Way Functions andTrapdoor Functions

The idea of public-key cryptology is closely related to the concept of one-way func-
tion.

Definition 2.2.1 A function n
→ f (n) is said to be a one-way function if the com-
putation of f (n), given n, is computationally easy while the computation of n, given
f (n), is intractable.

Example 2.2.1 Given the availability of ordinary telephone books the function

TELEPHONE NUMBER = f (NAME)

can be easily performed in seconds as it is easy to find the name in the book since
they are listed in the alphabetical order but the function

NAME = f −1(TELEPHONE NUMBER)

can hardly be performed at all, since in the worst case you need to read the whole
book in order to find the name corresponding to a given number. You might need a
month to do that.

We note that Definition 2.2.1 should not be treated as a rigorous mathematical
definition. It contains references to “easy” and “intractable” tasks which may be
dependent on the computing resources available.

A publicly available one-way function f has a number of useful applications. In
time-shared computer systems, instead of storing a table of login passwords, one
can store, for each password w, the value f (w). Passwords can be easily checked
for correctness at login, but even the system administrator cannot deduce any user’s
password by examining the stored table.

Definition 2.2.2 Let n
→ f (n) be a one-way function and let t be an additional
parameter (it can be a number, a graph, a function, anything) such that it is compu-
tationally easy to compute n, given f (n) and t . Then t is called a trapdoor and f is
called a trapdoor function.

Example 2.2.2 Imagine that you have taken the time to enter the telephone directory
into your computer, sorted all phone numbers in increasing order, and printed them.
Suppose that it took one month of your time. Then you possess a trapdoor to the
one-way function f described in Example 2.2.1. For you it is easy to compute f or
f −1 and you are the only person (at least for the next month) who can compute f −1.

We describe the idea of a public-key cryptosystem on the following example.
Imagine that Alice possesses a trapdoor function

f (TEXT) = CIPHERTEXT

2.2 Modern Public-Key Cryptology 53

with a secret trapdoor t . Then she puts this function f in the public domain, where it
is accessible to everyone, and asks everybody to send her f (TEXT) each time when
the necessity arises to send a message TEXT confidentially. Knowing the trapdoor t ,
it is an easy job for her to compute the TEXT from f (TEXT)while it is infeasible to
compute it for anybody else. The function f (or a certain parameterwhich determines
f uniquely) is called Alice’s public key and the trapdoor t is called her private key.

Example 2.2.3 Let us see how we can use the trapdoor function of Example 2.2.1
to construct a public-key cryptosystem. Take the University of Auckland telephone
directory and announce the method of encryption as follows. Your correspondent
must take a letter of her message, find a name in the directory starting with this letter,
and assign to this letter the phone number of the person with the chosen name. She
must do it with all letters of her message. Then all these phone numbers combined
will form a ciphertext. For example, the message SELL BRIERLY, sent to you, will
be encrypted as follows:

S SCOTT 8751
E EVANS 8057
L LEE 8749
L LEE 5999
B BANDYOPADHYAY 7439
R ROSENBERG 5114
I ITO 7518
E ESCOBAR 6121
R RAWIRI 7938
L LEE 6346
Y YU 5125

The message in encrypted form will look like this:

87518057874959997439511475186121793863465125

For decryption you must use your private key, which is the inverse telephone direc-
tory.

2.3 Computational Complexity

In this section we will develop several rigorous concepts necessary for implementing
the idea of the previous section. Tomeasure the running time of an algorithmwe need
first to choose a unit of work, say one multiplication, or one division with remainder,
etc.; we will often call them steps.

It is often the case that not all instances of a problem under consideration are
equally hard even if the two inputs are of the same length. For example, if we feed
an algorithm two different—but equally long—inputs (and we feed them in one at a
time, not both at once), then the algorithm might require an astronomical number of

54 2 Cryptology

operations to deal with the first input, but only a handful of operations to deal with
the second input. The (worst case) time complexity of an algorithm is a function that
for each length of the input shows the maximal number of units of work that may
be required. We say that an algorithm is of time complexity f (n) if for all n and
for all inputs of n bits, the execution of the algorithm requires at most f (n) steps.
The worst-case complexity takes into consideration only the hardest instances of the
problem. It is relevant when people are pessimistic, and think that it is very likely
that a really hard instance of the problem will crop up.

Average case complexity, on the other hand, estimates how difficult the relevant
problem is “on average”. An optimist, thinking that hard instances of the problem
are rare, will be more interested in the average-case than the worst-case complexity.
At present, much less is known about the average-case complexity than about the
worst-case one, so we concentrate on the former.

We need a language to compare the time complexity functions of different algo-
rithms.

2.3.1 Orders of Magnitude

Firstly, we will say what it means to be asymptotically equal.

Definition 2.3.1 Let f (x) and g(x)be two real-valued functions.We say that f (n) ∼
g(n) (read “ f is asymptotically equal to g”) if

lim
n→∞

f (n)

g(n)
= 1.

Example 2.3.1 Let f (x) = ∑d
k=0 ak xd−k be a polynomial of degree d. Then

f (n) ∼ a0nd . Indeed, when n → ∞
f (n)

a0nd
= a0nd + a1nd−1 + . . . + ad

a0nd
= 1 + a1

a0
· 1

n
+ . . . + ad

a0
· 1

nd
→ 1.

Example 2.3.2 The famous Stirling’s formula

n! ∼ √
2πn · nne−n (2.2)

gives us a tool to compare the factorial growth with the others.

For comparing growth of functions we use the “little-oh,” “big-Oh” and “big-Theta”
notation.

Definition 2.3.2 We say that f (n) = o(g(n)) (read “ f is little-oh of g”) if

lim
n→∞

f (n)

g(n)
= 0.

2.3 Computational Complexity 55

Informally, this means that f grows slower than g when n gets large.

Example 2.3.3 1000n2.9 = o(n3).
It is almost obvious since

1000n2.9

n3 = 1000

n0.1 → 0.

However not all comparisons can be done so easily. To compare the rate of growth
of two functions one often needs L’Hospital’s rule. We formulate it in the form that
suits our applications.

Theorem 2.3.1 (L’Hospital’s rule) Let f (x) and g(x) be two differentiable functions
such that limx→∞ f (x) = ∞, and limx→∞ g(x) = ∞. Suppose that

lim
x→∞

f ′(x)

g′(x)

exists. Then

lim
x→∞

f (x)

g(x)
= lim

x→∞
f ′(x)

g′(x)
.

Example 2.3.4 ln n = o(
√

n).
Let us justify this using L’Hospital’s rule. Indeed,

lim
x→∞

ln x√
x

= lim
x→∞

(ln x)′

(
√

x)′
= lim

x→∞
1/x

1/2
√

x
= lim

x→∞
2√
x

= 0.

Example 2.3.5 (a) n1999 = o(en), (b) cn = o(n!).
(a) again follows from L’Hospital’s rule and we leave it as an exercise. (b) follows

from Stirling’s formula. Indeed,

lim
n→∞

cn

n! = lim
n→∞

cn
√
2πn · nne−n

= lim
n→∞

1√
2πn

· (ec)n

nn = lim
n→∞

1√
2πn

·
(ec

n

)n = 0.

Definition 2.3.3 Let g(n) be a function taking only non-negative values.We say that
f (n) = O(g(n)) (read “ f is big-Oh of g”) if there exists a number C > 0 and an
integer n0 such that for n > n0

| f (n)| < Cg(n).

Informally, it means that f does not grow at a faster rate than g when n gets large.

56 2 Cryptology

Example 2.3.6 (a) sin n = O(1), (b) 1000n3 + √
n = O(n3).

In the first case sin n ≤ 1 · 1 so we can take C = 1. In the second we note that√
n ≤ n3, hence

1000n3 + √
n ≤ 1001n3

and we can take C = 1001.

Proposition 2.3.1 Let f (x) = ∑d
k=0 ak xk be a polynomial of degree d. Then f (n) =

O(nd).

Proof Let C = |a0| + |a1| + · · · + |ad |. Then xi < xd for sufficiently large x , and

| f (x)| = |a0 + a1x + a2x2 + · · · + ad xd | ≤ (|a0| + |a1| + |a2| + · · · + |ad |)xd = Cxd ,

which proves the statement. �

Definition 2.3.4 Let g(n) be a function taking only non-negative values.We say that
f (n) = �(g(n)) (read “ f is big-Theta of g”) if there exist two numbers c, C > 0
and an integer n0 such that for n > n0

cg(n) < | f (n)| < Cg(n).

Informally, it means that f grows as fast as g does when n gets large.

Example 2.3.7 πn + sin(n) = �(n) since2n < |πn + sin(n)| < 5n sowecan choose
c = 2 and C = 5.

The functions 1, log n, n, nd , cn (c > 1), n! are considered to be standard and we
measure the growth of other functions by comparing their growth against the standard
ones:

O(1) at most constant
O(log n) at most logarithmic

O(n) at most linear
O(n2) at most quadratic
O(n3) at most cubic
O(nd) at most polynomial
O(cn) at most exponential
O(n!) at most factorial

�(1) constant
�(log n) logarithmic

�(n) linear
�(n2) quadratic
�(n3) cubic
�(nd) polynomial
�(cn) exponential
�(n!) factorial

These functions are listed in increasing order of the rapidity of growth. Of course
there are some intermediate cases like O(log log n) and O(n log n). The table below

2.3 Computational Complexity 57

provides estimates of the running times of algorithms for certain orders of complexity.
Here we have problems with input strings of 2, 16 and 64 bits.

Problem size Order of complexity
n log n n n log2 n n2 2n n!
2 1 2 2 4 4 2
16 4 16 64 256 6.5 × 104 2.1 × 1013

64 6 64 384 4096 1.8 × 1019 > 1089

If we assume that one operation (unit of labour) requires 1µs (= 10−6 s), then it is
worth noting that a problem with exponential complexity will require on input of 64
bits:

1.84 × 1019 µs = 5845 centuries.

Problems, which can only be solved by algorithms whose time complexity is expo-
nential, quickly become intractable when the size of the input grows. That is why
mathematicians and computer scientists consider polynomial growth as the upper
bound of what can be practically computed. Everything which is beyond polynomial
growth is considered to be intractable (though there are some interesting intermedi-
ate cases, such as the subexponential time complexity algorithms for factorisation
of integers).

Exercises
1. Prove that (log n)2 = o(

√
n).

2. Use L’Hospital’s rule to compare the growth of the two functions:

f (n) = n2007, g(n) = 2
√

n .

3. Let f (x) = ∑d
k=0 ak xk be a polynomial of degree d. Prove that f (n) = �(nd).

4. It has been experimentally established that the function ψ(x) = ∫ x
2

dt
ln t approxi-

mates the function π(x) introduced in Sect. 1.1.3 even better than x/ ln x . Using
L’Hospital’s rule, prove that

ψ(x) ∼ x

ln x
.

5. List the following functions in the increasing order of magnitude, when n → ∞:
(a) f (n) = (ln n)1000, g(n) = n10, h(n) = 3

√
en .

(b) f (n) = esin n, g(n) = n2, h(n) = ln n!
6. We say that � is a perfect power if there are positive integers m > 1 and k >

1 such that � = mk . Suppose that the unit of work is execution of one GAP
command RootInt(x,y) and that multiplication is costless. Write a GAP
programme that has a polynomial complexity and determines if the given integer
n is a perfect power or not. Find out if the following number n is a perfect power

58 2 Cryptology

32165915990795960806201156497692131799189453658831821777511700748913568729
08523398835627858363307507667451980912979425575549941566762328495958107942
76742746387660103832022754020518414200488508306904576286091630047326061732
13147723760062022617223850536734439419187423527298618434826797850608981800
75920878659088367693192622340064634811419535028889335540064440165586139725
67864525460233092587652156920261205787558242189274149331895101172683052822
80727849358699658455141506222721476847645629705008614991371536420103263486
34959615993459063845793313984237722143683892937148998975391746809877568851
72762336013543700624574174575024244791527281937.

If it is a perfect power, output m and k such that n = mk .
7. Use Stirling’s formula to establish the character of growth of the following

binomial coefficients:
(a)

(n
k

)
, where k is fixed,

(b)
(n

k

)
, where k ∼ αn, and α is a fixed real number with 0 < α < 1.

8◦. Let us call a number N almost prime if does not have prime divisors smaller
than (log2 N)2.
(a) Prove that there exist almost prime numbers that are composite.
(b) Using GAP find the smallest almost prime number that is composite.

2.3.2 TheTime Complexity of Several Number-Theoretic
Algorithms

In a Number-Theoretic algorithm the input is often a number (or several numbers).
So what is the length of the input in bits if it is an integer N? In other words,
we are asking how many zeros and ones one needs to express N . This question
was solved in Sect. 1.5, where we learned how to represent numbers in binary. By
Theorem 1.5.2 to express N in binary we need n = �log2 N� + 1 bit of information.
For most calculations it would be sufficient to use the following approximations:
N ≈ 2n and n ≈ log2 N .

Now we will consider two algorithms for calculating cN mod m, where c and m
are fixed numbers. Here N is the input and cN mod m is an output. The running
time of the algorithm will be measured by the number of modular multiplications
required. In ordinary arithmetic this measure might not be satisfactory since the
numbers grow in size and some multiplications are much more labour intensive than
the others. However in modular arithmetic all numbers are of approximately equal
size and our assumption is realistic.

Algorithm 1 is given by the formula cN = (. . . (((c · c) · c) · c) . . .) · c. That is we
calculate powers of c recursively by setting c1 = c and ci+1 = ci · c. To calculate
cN by this method we require N − 1 multiplications. Hence the complexity function
f (n) for this algorithm is f (n) = N − 1 ≈ 2n − 1, where n = �log2 N� + 1 is the
length of the input. Since 1

22
n < f (n) < 2n we have f (n) = �(2n). This algorithm

has exponential complexity.

2.3 Computational Complexity 59

We have been too straightforward in calculating cN mod m and the result was
appalling. We can be much more clever and do much better.

Algorithm 2 (Square and Multiply) Let us represent N in binary

N = 2k + ak−12
k−1 + . . . + a12

1 + a02
0, ai ∈ {0, 1},

where k = �log2 N� = n − 1. We can rewrite this as

N = 2i0 + 2i1 + . . . + 2is , k = i0 > i1 > . . . > is, s ≤ k + 1 = n,

By successive squaring we compute

c2
1 = c2 mod m, c2

2 = (c2)2 mod m, c2
3 = (c2

2
)2 mod m, . . . , c2

k = (c2
k−1

)2 mod m

using k = n − 1modular multiplications. Atmost, another s ≤ n additional modular
multiplications may be required to calculate

cN = c2
i0+2i1+...+2is = c2

i0 · c2
i1 · . . . · c2

is
mod m.

So n − 1 ≤ f (n) ≤ 2n − 1. This means that f (n) = �(n) and the algorithm has
linear complexity. We have now proven the following theorem.

Theorem 2.3.2 Let c and m be positive integers. Then for every positive integer
N we can calculate cN mod m using at most 2 log2 N multiplications modulo m.
Algorithm 2 (Square and Multiply) has linear complexity.

Example 2.3.8 How many multiplications are needed to calculate c29 using Algo-
rithms 1 and 2?

The binary representation for 29 is as follows:

29 = 16 + 8 + 4 + 1 = 11101(2).

and n = �log2 29� + 1 = 5. Hence we need 4 multiplications to calculate c2, c4,
c8, c16 by successive squaring, and then we will need 3 more to calculate c29 =
c16 · c8 · c4 · c. Thus Algorithm 2 would use 7 multiplications in total. Algorithm 1
would use 28 multiplications.

The complexity of the Euclidean algorithm will also be important for us. So we
prove:

60 2 Cryptology

Theorem 2.3.3 For any two positive integers a and b the Euclidean algorithm will
find their greatest common divisor after at most 2 log2 N + 1 integer divisions with
remainder, where N = max(a, b).

Proof Let us make one observation first. Suppose a = qb + r is a division with
remainder, a

′ = a/gcd(a, b), b
′ = b/gcd(a, b), and r

′ = r/gcd(a, b). Then a
′ =

qb
′ + r

′
is also a division with remainder. Hence the number of steps that the

Euclidean algorithm (Theorem 1.2.3) requires is the same for the pair (a, b) as
for the pair (a

′
, b

′
). This allows us to assume that gcd(a, b) = 1. Let us also assume

that a is not smaller than b.
We will first prove that if a ≥ b (as we just assumed) then on dividing a by b with

remainder

a = qb + r , (0 ≤ r < b),

we get r < a/2. Indeed, if q ≥ 2, then r < b < a/q ≤ a/2, and when q = 1, then
b > a/2, hence r = a − b < a/2.

Let us perform the Euclidean algorithm on a and b

a = q1b + r1, 0 < r1 < b,

b = q2r1 + r2, 0 < r2 < r1,

r1 = q3r2 + r3, 0 < r3 < r2,

...

rs−2 = qsrs−1 + rs, 0 < rs < rs−1,

rs−1 = qs+1rs .

Then rs = gcd(a, b). Due to the observation in the beginning of the proof we can
conclude that

r3 < r1/2 < a/4, r5 < r3/2 < a/8,

and by induction r2k+1 <
a

2k+1 and r2k <
b

2k
. Suppose the algorithm stops at step

s, i.e., after calculating that rs = 1. Then if s = 2k + 1, we have 2k+1 < a and
k < log2 a, whence s = 2k + 1 < 2 log2 a + 1. Hence s ≤ 2 log2 a = 2 log2 N . If
s = 2k, then 2k < b, whence k < log2 b ≤ log2 N , and s = 2k < 2 log2 N .

If a is smaller than b, then we will need an additional step, and the number of
steps will be not greater than 2 log2 N + 1. �

Nowwe canmake conclusions about the time complexity of the Euclidean algorithm.
For one unit of work we will adopt the execution of a single a mod b operation that
is division of a by b with remainder.

Corollary 2.3.1 The Euclidean algorithm has linear worst-case complexity.

2.3 Computational Complexity 61

Proof The upper bound in the Theorem 2.3.3 can be interpreted as follows. The
number log2 N , where N = max(a, b), is almost exactly the number of bits, say k,
in the binary representation of N . So the length of the input, n, (numbers a and b) is
at least k and at most 2k while the number of units of work is at most 2k. So for the
time complexity function f (n) we have f (n) ≤ 2n. Thus f (n) = O(n). �

In Sect. 1.1.3 we saw that the Trial Division algorithm for factoring an integer n
(which, we recall, could involve performing as many divisions as there are primes
between 2 and �√n�), was computationally difficult. Nowwe can state this precisely.
It has exponential time complexity!

Theorem 2.3.4 (A worst-case time complexity for factoring) Trial Division algo-
rithm for factoring integers has exponential complexity.

Proof Let the unit of work be one division. Let us assume that we have an infinite
memory and that all primes are stored there: p1, p2, . . . , pm, Given a positive
integer N we have to try to divide it by all primes which do not exceed M = �√N�.
According to the prime number theorem there are approximately

M

ln M
≈ 2

√
N

ln N

such primes. This means that in the worst-case scenario we have to try all of them
and thus perform 2

√
N/ ln N divisions. Since N ≈ 2n , where n is the number of

input bits, the worst-case complexity function takes the form

f (n) ≈ 2

n ln 2

√
2n ≈ 2

ln 2
· 1

n
·
(√

2
)n

.

Let
√
2 = αβ, where α > 1 and β > 1. Then

1

n
·
(√

2
)n = αn

n
· βn > βn .

Thus f (n) is growing faster than βn . �

In the case of calculating N th powers we know one efficient and one inefficient
algorithm. For factoring integers we know only one and it is inefficient. All attempts
of researchers in number theory and computer science to come up with a more effi-
cient algorithm have resulted in only very modest improvements. Several algorithms
are known that are subexponential with the time complexity function, for exam-
ple, f (n) = ecn1/3(ln n)2/3 (see [14]). This growth is still very fast. At the moment of
writing it is not feasible to factor a 200 digit integer unless it has many small divisors.

62 2 Cryptology

Exercises
1.(a) Estimate the number of bits required to input an integer N which has 100

digits in its decimal representation.
(b) Represent n = 1234567 in binary and decide how many multiplications

mod m the Square-and-Multiply algorithm would require to calculate
cn mod m.

2. The Bubble Sort algorithm takes a finite list of numbers and arranges them in
increasing order. Given a list of numbers, it compares each item in the list with
the item next to it, and swaps them if the former is larger than the latter. The
algorithm repeats this process until it makes a pass all the way through the list
without swapping any items (in other words, all items are in the correct order).
This causes larger values to “bubble” to the end of the list while smaller values
“sink” towards the beginning of the list.
Assume that one needs 100 bits to input any number on the list (so the length of
the input is 100n). Take one swap as one unit of work. Determine the worst case
complexity of the Bubble Sort algorithm. Use the appropriate notation (big-oh,
little-oh, etc.) to express the character of the growth.

3. The input of an algorithm is a positive integer N . The algorithm tries to divide N
by the first (log2 N)3 primes and, if one of them divides N , it declares N com-
posite. If none of those primes divide N , the algorithm declares N interesting.
What is the worst-case complexity of this algorithm?

4. Let (fn) be the sequence of Fibonacci numbers given by f0 = f1 = 1 and
fn+2 = fn+1 + fn .

(a) Prove that

fn < 2 fn−1 and fn+5 > 10 fn .

(b) Using part (a), prove Lamé’s theorem that the number of divisions with
remainder required by the Euclidean algorithm for finding gcd(a, b) is at
most five times the number of decimal digits in the smaller of a or b.

5◦. Algorithms A and B spend exactly f A(n) = cAn log2 n and fB(n) = cBn2

microseconds, respectively, for a problem of size n. Find the best algorithm
for processing n = 220 data items if the algorithm A spends 10µs to process
1024 items and the algorithm B spends only 1µs to process 1024 items.

2.4 The RSA Public-Key Cryptosystem

Alice wishes to receive confidential messages from her correspondents. For this
purpose she may use the public key RSA cryptosystem, named after Rivest, Shamir

2.4 The RSA Public-Key Cryptosystem 63

and Adelman [18], who invented it in 1977. It is widely used now. It is based on the
fact that the mapping

f : x
→ xe mod n

for a specially selected very large number n and exponent e is a one-way function.

2.4.1 HowDoes the RSA SystemWork?

Alice creates her public and private keys as follows:

1. She generates two large primes p 	= q of roughly the same size;
2. Calculates n = pq and φ = (p − 1)(q − 1), where φ is the value of the Euler’s

φ-function, φ(n);
3. Using trial and error method, selects a random integer e with 1 < e < φ and

gcd(e, φ) = 1;
4. Computes d such that ed ≡ 1 mod φ and 1 < d < φ.

We will later discuss how Alice can generate two large primes. She can then do steps
2–4 because the complexity of the extended Euclidean algorithm is so low that it
easily works for very large numbers. Note that finding d is also done by extended
Euclidean algorithm.

Alice uses a certain public domain which is accessible for all her correspondents,
for example, her home page, to publish her public key (n, e), keeping everything
else secret; in particular, d which is Alice’s private key (which will be used for
decryption). It must be clear for everybody that (n, e) is indeed Alice’s public key
and nobody but Alice could publish it.

She then instructs how to use her public key to convert text into ciphertext. In the
first instance all messages must be transformed into numbers by some convention
specified by Alice, e.g., we may use “01” instead of “a”, “02” instead of “b”, etc;
for simplicity, let us not distinguish between upper and lower case, and denote a
space by “27”. Thus a message for us is a non-negative integer. The public key (n, e)
stipulates that Alice may receive messages, which are non-negative integersm which
are smaller than n. (If the message is longer it should be split into several shorter
messages.) The message m must be encrypted applying the following function to the
message:

f (m) = me mod n.

This function is uniquely determined by Alice’s public key. It is a one-way function
to everybody but Alice who has a trapdoor d (we will see later how it used for
decryption). For example, when Bob wishes to send a private message to Alice, he
obtains Alice’s public key (n, e) from the public domain and uses it as follows:

• Turns the message text into a non-negative integer m < n (or several of them if
breaking the text into blocks of smaller size is necessary);

64 2 Cryptology

• Computes the ciphertext c = me mod n;
• Sends the ciphertext c to Alice.

Alice then recovers the plaintext m using her private key d (which is the trapdoor
for f) by calculating

m = cd mod n.

This may seem to be a miracle at this stage but it can (and, below, will) be explained.
This system can work only because of the clever choice of the primes p and

q . Indeed, p and q should be chosen so that their product n = pq is infeasible to
factorise. This secures that p and q are known only to Alice, while at the same
time n and her public exponent e are known to everybody. This implies that Alice’s
private exponent d is also known only to her. Indeed, to calculate d from publicly
known parameters, one needs to calculate φ(n) first. But the only known method
of calculating φ(n) requires calculation of the prime factorisation of n. Since it is
infeasible, we can publish n but keep φ(n), and hence d, secret.

Example 2.4.1 This is of course very small example (too small for practical pur-
poses), just to illustrate the algorithms involved. Suppose the Alice’s arrangements
were as follows:

1. p = 101, q = 113;
2. n = pq = 11413, φ = (p − 1)(q − 1) = 11200;
3. e = 4203 (picked at random from the interval (1,φ), making sure that gcd(e, φ) =

1);
4. d = 3267 (the inverse of e in Zφ);
5. The public key is therefore (11413, 4203), the private key is 3267.

If Bob wants to send the message “Hello Alice” he transforms it into a number
as described. The message is then represented by the integer

0805121215270112090305.

This is too large (≥11413), so we break the message text into chunks of 2 letters
at a time.

A. The first message fragment is m = 0805;
B. Bob computes c = me = 8054203 ≡ 6134 mod 11413;
C. Alice decrypts this message fragment by calculating cd = 61343267 ≡ 805 mod

11413.

If Bob wants to receive an encrypted answer from Alice he has to set up a similar
scheme. In practice people do not set up cryptosystems individually but use a trusted
provider of such services. Such a company would create a public domain and place
there all public keys attributed to participating individuals. Such a company creates

2.4 The RSA Public-Key Cryptosystem 65

an infrastructure that makes encrypted communication possible. The infrastructure
that is needed for such cryptosystem to work is called a public-key infrastructure
(PKI) and the company that certifies that a particular public key belongs to a certain
person or organisation is called a certification authority (CA). The most known such
companies are Symantec (which bought VeriSign’s business), Comodo, GlobalSign,
Go Daddy, etc. Furthermore, we will show in Sect. 2.5 that the PKI also allows Alice
and Bob to sign their letters with digital signatures.

Exercises
1. With the primes given in Example 2.4.1 decide which one of the two numbers

e1 = 2145 and e2 = 3861 can be used as a public key and calculate thematching
private key for it.

2. Alice and Bob agreed to use RSA cryptosystem to communicate in secret. Each
message consist of a single letter which is encoded as

A = 11, B = 12, . . . , Z = 36.

Bob’s public key is (n, e) = (143, 113) and Alice sent him the message 97.
Which letter did Alice sent to Bob in this message?

3. Alice’s public exponent in RSA is e = 41 and the modulus is n = 13337. How
many multiplications mod n Bob needs to perform to encrypt his message
m = 2619? (Do not do the actual encryption, just count.)

4. Set up your own RSA cryptosystem. Demonstrate how a message addressed to
you can be encrypted and how you can decrypt it using your private key.

5. Alice and Bob have the public RSA keys (20687, 17179) and (20687, 4913),
respectively. Bob sent an encrypted message to Alice, Eve found out that the
encrypted message was 353. Help Eve to decrypt the message, suspecting that
the modulus 20687 might be a product of two three-digit primes. Try to do it
with an ordinary calculator first, then check your answer with GAP.

6. Alice and Bob encrypt their messages using the RSA method. Bob’s public key
is (n, e) = (24613, 1003).
(a) Alice would like to send Bob the plaintext m = 183. What ciphertext should

she send?
(b) Bob knows that φ(n) = 24300 but has forgotten his private key d. Help Bob

to calculate d.
(c) Bob has received the ciphertext 16935 from Casey addressed to him. Show

how he finds the original plaintext.
7◦. Suppose that Alice and Bob use RSA public keys with the same modulus n but

different encryption exponents e1 and e2. Prove that Eve can decrypt a message
sent simultaneously to Alice and Bob provided that gcd(e1, e2) = 1.

66 2 Cryptology

2.4.2 Why Does the RSA SystemWork?

There are five issues here:

1. Why is m = (me)d mod n?
2. Can me mod n and cd mod n be calculated efficiently?
3. To what extent can the RSA cryptosystem be considered secure?
4. How can the encryption exponent e and the decryption exponent d be found?
5. How can large primes p and q be found?

Let us address these issues one by one.
1. First we consider the question why the text recovered by Alice via her pri-

vate decryption key is actually the original plaintext. This means we must consider
(me)d mod n. We note that since ed ≡ 1 mod φ and φ = φ(n) = (p − 1)(q − 1)
we have ed = 1 + φ(n)k for some integer k. Suppose first that m and n are coprime.
Then by Euler’s theorem mφ(n) ≡ 1 mod n and

(
me)d = med = m1+φ(n)k = m ·

(
mφ(n)

)k ≡ m mod n. (2.3)

There is a very small probability that m will be divisible by p or q but even in this
unlikely case we still have m = (me)d mod n. To prove this we have to consider
(me)d mod p and (me)d mod q separately. Indeed,

(
me)d = med = m1+(p−1)(q−1)x = m · m(p−1)(q−1)x

≡
{

m mod p if gcd(m, p) = 1,
0 mod p if p|m.

since in the first case by Fermat’s Little Theorem m(p−1) ≡ 1 mod p. In both cases
we see that m ≡ (me)d mod p.

Similarlywefind (me)d ≡ m mod q . Then the statement follows from theChinese
remainder theorem (Theorem 1.2.6). According to this theorem, there is a unique
integer N in the interval [0, pq) such that N ≡ m mod p and N ≡ m mod q . We
have two numbers with such property, namely m and (me)d mod n. Hence they
coincide and m = (me)d mod n.

We have established that the decrypted message is identical to the message that
was encrypted. This resolves the first issue.

2.To resolve the second issuewe considered the computational problem of raising
a number to a power. The complexity of this operation is very low, in fact it is linear
(see Theorem 2.3.2). Hence me mod n and cd mod n can be calculated efficiently.

3. It is evident that if the prime factorisation of the number n in the public key is
known then anybody can compute φ and thus d. In this case encrypted messages are
not secure. But for large values of n the task of factorisation is too difficult and time
consuming to be feasible. So the encryption function (raise to power e mod n) is a
one-way function, with d as a trapdoor.

2.4 The RSA Public-Key Cryptosystem 67

To illustrate how secure the system is Rivest, Shamir and Adelman encrypted a
sentence in English. This sentence was converted into a number as we did before
(the only difference was that they denoted a space as “00”. Then they encrypted it
further using e = 9007 and

n = 11438162575788886766932577997614661201021829672124236256256184293

5706935245733897830597123563958705058989075147599290026879543541.

These two numbers were published, and it was made known that n = pq , where p
and q are primes which contain 64 and 65 digits in their decimal representations,
respectively. Also published was the message

f (m) = 9686961375462206147714092225435588290575999112457431987469512093

0816298225145708356931476622883989628013391990551829945157815154.

An award of $100 was offered for decrypting it. This award was only paid 17
years later, in 1994, when Atkins, Graff, Lenstra and Leyland [3] reported that
they decrypted the sentence. This sentence—“The magic words are squeamish
ossifrage”,—was placed in the title of their paper. For decrypting, they factored
n and found p, and q which were

p = 3490529510847650949147849619903898133417764638493387843990820577

and

q = 32769132993266709549961988190834461413177642967992942539798288533.

In this work 600 volunteers participated. They worked 220 hours on 1600 com-
puters to achieve this result! Recently another effort concluded in 2009 by sev-
eral researchers who factored a 232-digit number (RSA-768) utilising hundreds of
machines over a span of two years.5 Of course, doable does not mean practical but
for very sensitive information one would now want to choose primes as large as
containing 150 digits and even more.

It can be shown that finding d is just as hard as factoring n, and it is believed that
finding any trapdoor is as hard as factoring n, although this has not been proven. 30
years have passed since RSA was invented and so far all attacks on RSA have been
unsuccessful.

4. To find e and d we need only the Euclidean and the extended Euclidean algo-
rithms. Indeed, first we try different numbers between 1 and φ(n) at random until
we find one which is relatively prime to φ(n) (the fact that it can be done quickly
we leave here without a proof). This will be taken as e. Since d is the inverse of e
modulo φ(n), we find d using the extended Euclidean algorithm. This can be done
because the Euclidean algorithm is very fast (Corollary 2.3.1).

5See, http://eprint.iacr.org/2010/006.pdf for details.

http://eprint.iacr.org/2010/006.pdf

68 2 Cryptology

5. One may ask: if we cannot factorise positive integers efficiently, then surely
we will not be able to say if a number is prime or not. If so, our wonderful system
is in danger because two big primes cannot be efficiently found. However this is not
the case and it is easier to establish if a number is prime or not than to factorise it.
We devote the next section to checking primality.

In the case of RSA it is preferable to use the following encodings for letter:

A B C D E F G H I J K L M
11 12 13 14 15 16 17 18 19 20 21 22 23

N O P Q R S T U V W X Y Z
24 25 26 27 28 29 30 31 32 33 34 35 36

The advantage of it is that a letter has always a two-digit encoding which resolves
some ambiguities. We will use it from now on and, in particular, in exercises.

Exercises
1. In RSA Bob has been using a product of two large primes n and a single public

exponent e. In order to increase security, he now chooses two public exponents
e1 and e2 which are both relatively prime to φ(n). He asks Alice to encrypt her
messages twice: once using the first exponent and then using another one. That
is, Alice is supposed to calculate c1 = me1 (mod n), then c2 = ce2

1 (mod n),
and send c2 to Bob. He has prepared also two decryption exponents d1 and d2
for decrypting her messages. Does this double encryption increase security over
single encryption?

2. Eve intercepted the following message from Bob to Alice:

5272281348, 21089283929, 3117723025, 26844144908, 22890519533,

26945939925, 27395704341, 2253724391, 1481682985, 2163791130,

13583590307, 5838404872, 12165330281, 28372578777, 7536755222.

In the public domain Eve learns that this message was sent using the encryption
modulus n = pq = 30796045883. She also observes that Alice’s public key is
e = 48611. Decode the message which was encoded using the encodings A =
11, B = 12, . . . , Z = 36.

2.4.3 Pseudoprimality Tests

In this sectionwewill discuss four probabilistic tests thatmight be used for testing the
compositeness of integers. Their sophistication and quality will gradually increase.
And only the last one will be practical.

2.4 The RSA Public-Key Cryptosystem 69

Definition 2.4.1 By a pseudoprimality test we mean a test that is applied to a pair
of integers (b, n), where 2 ≤ b ≤ n − 1, and that has the following characteristics:

(a) The possible outcomes of the test are: “n is composite” or “inconclusive”.
(b) If the test reports “n is composite” then n is composite.
(c) The test runs in a time that is polynomial in log n (i.e., in the number of bits

necessary to input n).

If n is prime, then the outcome of the test will be “inconclusive” for every b. If the
test result is “inconclusive” for one particular b, then we say that n is a pseudoprime
to the base b (which means that n is so far acting like a prime number).

The outcome of the test for the primality of n depends on the base b that is chosen.
In a good pseudoprimality test there will be many bases b that will reveal that n is
composite in case it is composite. More precisely, a good pseudoprimality test will,
with high probability (i.e., for a large number of choices of the base b) declare that
a composite number n is composite. More formally, we define

Definition 2.4.2 We say that a pseudoprimality test applied to a pair of integers
(b, n) is good if there is a fixed positive real number t such that 0 < t ≤ 1, and every
composite integer n is declared to be composite for at least t(n − 2) choices of the
base b, in the interval [2, n − 1].

A good pseudoprimality test will find the compositeness of n with probability at
least t and, most importantly, this number t does not depend on n. This is, in fact,
sufficient for practical purposes since we can increase this probability by running this
test several times for several different bases. Indeed, if the probability of missing the
compositeness of n is p, then the probability of missing the compositeness running
it for two different bases will be p2 and for k different bases pk . For k → ∞ this
value quickly tends to 0, hence, we can make our test as reliable as we want it to be.

Of course, given an integer n, it is silly to say that “there is a high probability that
n is prime”. Either n is prime or it is not, and we should not blame our ignorance on
n itself. Nonetheless, the abuse of language is sufficiently appealing and it is often
said that a given integer n is very probably prime if it was subjected it to a good
pseudoprimality test, with a large number of different bases b, and have found that
it is pseudoprime to all of those bases.

Here are four examples of pseudoprimality tests, only one of which is good.

Test 1 Given b, n. Output “n is composite” if b divides n, else “inconclusive”.

If n is composite, the probability that it will be so declared is the probability that
we happen to have found an integer b that divides n. The probability of this event, if
b is chosen at random uniformly from [2, n − 1], is

p(n) = d(n) − 2

n − 2
,

70 2 Cryptology

where d(n) is the number of divisors of n. Certainly p(n) is not bounded from below
by a positive constant t , if n is composite. Indeed, if ni = p2i , where pi is the i th
prime, then d(ni) = 3, and

p(ni) = 1

ni − 2
→ 0

as i → ∞.

Example 2.4.2 Suppose n = 44 = 22 · 11. Then d(n) = 3 · 2 = 6, and

p(n) = 4

42
= 2

21
.

This test is not good.

Test 2 Given b, n, where 2 ≤ b ≤ n − 1. Output “n is composite” if gcd(b, n) 	= 1,
else output “inconclusive”.

This test runs in linear time and it is a little better than Test 1, but not yet good.
If n is composite, the number of bases b for which Test 2 will produce the result
“composite” is n − φ(n) − 1, where φ is Euler’s totient function. Indeed, we have
φ(n) numbers b that are relatively prime to n; for those numbers b and only for those
we have gcd(b, n) = 1. We also have to exclude b = n which is outside of the range.
Hence the probability of declaring a composite n composite will be

p(n) = n − φ(n) − 1

n − 2
.

For this test the number of useful bases will be large if n has some small prime
factors, but in that case it is easy to find out that n is composite by other methods.
If n has only a few large prime factors, say if n = p2, then the proportion of useful
bases is very small, and we have the same kind of inefficiency as in Test 1. Indeed,
if ni = p2i , then φ(ni) = pi (pi − 1) and

p(ni) = ni − φ(ni) − 1

ni − 2
= p2i − pi (pi − 1) − 1

p2i − 2
= pi − 1

p2i − 2
∼ 1

pi
→ 0

if pi → ∞.

Example 2.4.3 Supposen = 44 = 22 · 11.Thenφ(n) = 44
(
1 − 1

2

) (
1 − 1

11

) = 20,
and

p(n) = 44 − 20 − 1

42
= 23

42
.

2.4 The RSA Public-Key Cryptosystem 71

Test 3 Given b, n. If b and n are not relatively prime or if bn−1 	≡ 1 mod n then
output “n is composite,” else output “inconclusive”.

This test rests on Fermat’s Little Theorem. Indeed, if gcd(b, n) > 1 or gcd(b, n) =
1 and bn−1 	≡ 1 mod n, then n cannot be prime since, if n was prime, by Fermat’s
Little Theorem in the latter case we must have bn−1 ≡ 1 mod n. It runs also in linear
time if we use the Square-and-Multiply algorithm to calculate bn−1. And it works
much better than the previous two.

Example 2.4.4 To see how this test works let us calculate 232 mod 33. We obtain:

232 = 25 · 25 · 25 · 25 · 25 · 25 · 22 ≡ (−1)6 · 22 ≡ 4 mod 33.

Hence 33 is not prime.

Unfortunately, this test is still not good. It works well for most but not for all num-
bers. The weak point of it is that there exist composite numbers n, called Carmichael
numbers, with the property that the pair (b, n) produces the output “inconclusive”
for every integer b in [2, n − 1] that is relatively prime to n. An example of such
a Carmichael number is n = 561, which is composite (561 = 3 · 11 · 17), but for
which Test 3 gives the result “inconclusive” on every integer b < 561 that is rela-
tively prime to 561 (i.e., that is not divisible by 3 or 11 or 17). OnCarmichael numbers
Test 3 behaves exactly like Test 2 which we know is unsatisfactory. Moreover, it was
proved recently that there are infinitely many Carmichael numbers [2] which means
that the drawback is serious. The first ten Carmichael numbers6 are:

561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, 29341 . . .

Despite such occasional misbehavior, the test usually seems to perform quite well.
When n = 169 (a difficult integer for Tests 1 and 2) it turns out that there are 158
different b’s in [2, 168] that produce the “composite” outcome from Test 3, namely
every such b except for 19, 22, 23, 70, 80, 89, 99, 146, 147, 150, 168.

Finally, we will describe a good pseudoprimality test. The idea was suggested in
1976 by Miller (see the details in [2]).

Test 4 (Rabin–Miller) Given b, n, where2 ≤ b ≤ n−1we firstly calculate gcd(b, n).
If gcd(b, n) > 1 then we output “composite”. If gcd(b, n) = 1, let us represent n − 1
as n − 1 = 2s t , where t is an odd integer. If

6Sequence A002997 from The On-Line Encyclopedia of Integer Sequences http://oeis.org/.

http://oeis.org/.

72 2 Cryptology

(a) bt 	≡ 1 mod n, and
(b) for every integer i in [0, s − 1]

b2
i t 	≡ −1 mod n,

then return “composite”, else return “inconclusive”.

Let us convince ourselves that Test 4 works. For this we need the identity

(a − 1)(a + 1)(a2 + 1) · . . . · (a2s−1 + 1) = a2s − 1, (2.4)

which can be easily proved by induction.
Suppose that conditions (a) and (b) are satisfiedbutn is prime.Thengcd(b, n) = 1.

Substituting a = bt into the identity (2.4) and, using Fermat’s Little Theorem, we
will obtain

(bt − 1)(bt + 1)(b2t + 1) · . . . · (b2
s−1t + 1) = b2

s t − 1 = bn−1 − 1 ≡ 0 mod n.

However by (a) and (b) every bracket is nonzero modulo n. Hence there are zero
divisors in Zn which contradicts to primality of n. This means that if the test outputs
“composite”, the number n is composite.

What is the computational complexity of this test? Part (a) of the test by Theo-
rem 2.3.3 can be done in O(log n) divisions with remainder. and the complexity of
this is at most linear. Similarly, in part (b) of the test there are O(log n) of possible
values of i to check, and for each of them we do a single multiplication of two inte-
gers calculating b2

i t = b2
i−1t · b2

i−1t , each of which has O(log n) bits. Hence the
overall complexity is still linear.

Theorem 2.4.1 (Rabin) If n is composite then for at least 3
4 (n − 2) of the integers

b, such that 2 ≤ b ≤ n − 1, Test 4 gives the result “n is composite”.

Thismeans that Test 4 is a good pseudoprimality test and, if we choose b at random
to prove the compositeness of n, then we will find the required b with probability
greater than 3/4. Hence we can set t = 3/4. The proof of this result cannot be
considered in this book.

Example 2.4.5 If n = 169, then it turns out that for 157 of the possible 167 bases
b in [2, 168] Test 4 will output “169 is composite”. The only bases b that 169 can
fool are 19, 22, 23, 70, 80, 89, 99, 146, 147, 150, 168. In this case the performance
of Tests 4 and 3 are identical. However, there are no analogues of the Carmichael
numbers for Test 4.

2.4 The RSA Public-Key Cryptosystem 73

How can this pseudoprimality test be used to find large primes? Suppose that you
want to generate an n-digit prime. You generate an arbitrary n-digit number r and
subject it to a good pseudoprimality test (for example, Rabin–Miller Test) repeating
the test several times. Suppose that we have done k runs of the Test 4 with different
random bs and each time got the answer “inconclusive”. If r is composite, then, the
probability that we get the answer “inconclusive” once, is less than 1/4. If we run this
test k times, the probability that we get the answer “inconclusive” k times is less than
1/4k . For k = 5 this probability is less than 10−3. For k = 10 it is less than 10−6,
which is a very small number already. Since Test 4 is very fast to perform we may
run this test 100 times. If we got answer inconclusive all 100 times, the probability
that n is composite is negligible.

In 2002 Manindra Agrawal, Neeraj Kayal and Nitin Saxena [1] came up with a
polynomial deterministic algorithm (AKS algorithm) for primality testing. It is based
on the following variation of Fermat’s Little Theorem for polynomials:

Theorem 2.4.2 Let gcd(a, n) = 1 and n > 1. Then n is prime if and only if

(x − a)n ≡ (xn − a) mod n.

The authors received the 2006 Gödel Prize and the 2006 Fulkerson Prize for
this work. Originally the AKS algorithm had complexity O((log n)12), where n is
the number to be tested, but in 2005 C. Pomerance and H. W. Lenstra, Jr. demon-
strated a variant of AKS algorithm that runs in O((log n)6) operations Ð a marked
improvement over the bound in the original algorithm. Despite all the efforts it is
still not yet practical but a number of researchers are actively working on improv-
ing this algorithm. See [22] for more information on the algorithm and a proof of
Theorem 2.4.2.

Exercises
1. We implement the first and the second pseudoprimality tests by choosing at ran-

dom b in the interval 1 < b < n and applying it to the pair (b, n).
(a) What is the probability that the first pseudoprimality tests finds that 91 is

composite?
(b) What is the probability that the second pseudoprimality tests finds that 91 is

composite?
2. Show that the third pseudoprimality test finds that 91 is composite for the pair

(5, 91).
3. Prove that any number Fn = 22

n + 1 is either a prime or a pseudoprime to the
base 2. (Use Exercise 4 Sect. 1.1.1.)

4. Write a GAP programme that checks if a number n is a Carmichael number. Use
it to find out if the number 15841 is a Carmichael number.

5. Provewithout usingGAP that 561 is aCarmichael number, i.e.,a560 ≡ 1 mod 561
for all a relatively prime to 561.

74 2 Cryptology

6. Show that 561 is a pseudoprime to the base 7 (i.e., n = 561 passes the third
pseudoprimality test with b = 7) but not a pseudoprime to the base 7 relative to
the Rabin–Miller test.

7. Show that the Rabin–Miller test with b = 2 proves that n = 294409 is composite
(despite 294409 being a Carmichael number).

8. Show that a power of a prime is never a Carmichael number.

9◦. Calculate the probability that Test 2 (the second pseudoprimality test) finds the
number 111111111 composite.

10◦. Choose 100 bases b at random to estimate the probability that Test 3 (the third
pseudoprimality test) finds the number 1000001 composite.

11◦. Let k be a positive integer such that the three numbers 6k + 1, 12k + 1, 18k + 1
are all prime numbers. Prove that their product n = (6k + 1)(12k + 1)(18k + 1)
is a Carmichael number. Use GAP to find first five Carmichael numbers of this
kind.

2.5 Applications of Cryptology

1. Diffie–Hellman exponential secret-key exchange. This idea was suggested in
1976 by Diffie and Hellman [9], and it triggered the development of public-key
cryptography. Two parties A and B openly agree on two parameters: positive integer
n and g ∈ Z

∗
n . They secretly choose two exponents a and b, respectively. Then A

sends ga to B and B sends gb to A. After that, B takes the received ga to the exponent
b to get gab and A takes gb to the exponent a and also gets gab. Then they use gab as
their secret key. An eavesdropper has to compute gab from g, ga and gb which for n
sufficiently large is intractable. This is called the Diffie–Hellman problem. ElGamal
cryptosystem, which we will study later, develops this idea further.

2. Digital signatures. The notion of a digital signature may prove to be one of
the most fundamental and useful inventions of modern cryptography. A signature
scheme provides a way for each user to sign messages so that the signatures can be
verified by anyone. More specifically, each user can create a matched pair of private
and public keys so that only they can create a signature for a message (using their
private key) but anyone can verify the signature for the message (using the signer’s
public key). The verifier can convince himself that the message content have not
been altered since the message was signed. Also, the signer cannot later repudiate
having signed the message, since no one but the signer possesses the signer’s private
key.

For example, when your computer receives a software update, say from Adobe,
it checks the digital signature to make sure that this is a genuine update from Adobe
and not a virus or Trojan.

At this stage the only public-key cryptosystem that we know is the RSA but as
we will see the idea can also be used for other cryptosystems. If in RSA n = pq
is the product of two large primes p and q , then the message space M is the set
{0, 1, 2, . . . , n − 1}. We have functions EU and DU (encryption and decryption in

2.5 Applications of Cryptology 75

RSA) as

EU : m
→ meU mod NU , DU : m
→ mdU mod NU ,

where eU and dU are the public exponent and the private exponent of userU , respec-
tively. One can turn this around to obtain a digital signature. If m is a document
which is to be signed by the user U then she computes her signature as s = DU (m).
The user sends m together with the signature s. Anyone can now verify the signature
by testing whether EU (s) ≡ m mod NU or not.

This idea was first proposed by Diffie and Hellman [9]. The point is that if the
message m was changed then the old signature would be no longer valid, and the
only person who can create a new signature, matching the new message, should be
someone who knows the private key DU and we assume that only user U possess
DU .

By analogy with the paper world, where Alice might sign a letter and seal it in an
envelope addressed to Bob, Alice can sign her electronic letter m to Bob by append-
ing her digital signature DA(m) tom, and then seal it in an “electronic envelope”with
Bob’s address by encrypting her signed message with Bob’s public key, sending the
resulting message EB(m|DA(m)) to Bob. Only Bob can open this “electronic enve-
lope” by applying his private key to it to obtain DB(EB(m|DA(m))) = m|DA(m).
After that he will apply Alice’s public key to the signature obtaining E A(DA(m)).
On seeing that E A(DA(m)) = m, Bob can be really sure that the message m came
from Alice and its content was not altered by a third party.

These applications of public-key technology to electronic mail are likely to
become widespread in the near future. For simplicity, we assumed here that the
message m was short enough to be transmitted in one piece. If the message is long
there are methods to keep the signature short. We will not dwell on this here.

3. Pay-per-view movies. It is common these days that cable TVoperatorswith all-
digital systems encrypt their services. This lets cable operators activate and deactivate
cable service without sending a technician to your home. The set-up involves each
subscriber having a set-top box which is a device, which is connected to a television
set at the subscribers’ premises and which allows a subscriber to view encrypted
channels of his choice on payment. The set-top box contains a set of private keys of
the user. A ‘header’ broadcast in advance of the movie contains keys sufficient to
download the actual movie. This header is in turn encrypted with the relevant user
public keys.

4. Friend-or-foe identification. Suppose A and B share a secret key K . Later, A
is communicating with someone and he wishes to verify that he is communicating
with B. A simple challenge-response protocol to achieve this identification is as
follows:

• A generates a random value r and transmits r to the other party.
• The other party (assuming that it is B) encrypts r using their shared secret key K

and transmits the result back to A.
• A compares the received ciphertext with the result he obtains by encrypting r

himself using the secret key K . If the result agrees with the response from B, A

76 2 Cryptology

knows that the other party is B; otherwise, he assumes that the other party is an
impostor.

This protocol is generallymore useful than the transmission of an unencrypted shared
password from B to A, since the eavesdropper could learn the password and then
pretend to be B later. With the challenge-response protocol an eavesdropper pre-
sumably learns nothing about K by hearing many values of r encrypted with K as
key.

An interesting exercise is to consider whether the following variant of the above
idea is secure: A sends the encryption of a random r , B decrypts it and sends the
value r to A, and A verifies that the response is correct.

Exercises
1. Alice and Bob agreed to use Diffie–Hellman secret-key exchange to come upwith

a secret key for their secret-key cryptosystem. They openly agreed on the prime

p = 100140889442062814140434711571

and an element g = 13 ∈ Zp. Alice has decided on her private key by choosing
a=123456789. She also got amessage gb = 92639204398732276532642490482
from Bob. Calculate their shared secret key.

2. Alice and Bob have the following RSA parameters:

n A = 171024704183616109700818066925197841516671277, eA = 1571,

nB = 839073542734369359260871355939062622747633109, eB = 87697.

Bob knows his two primes which are

pB = 8495789457893457345793, qB = 98763457697834568934613.

Alice signs a message m by calculating her signature s = mdA (mod n A). She
then encrypts the pair (m, s) usingBob’s public key by calculating (m1, s1), where
m1 = meB (mod nB) and s1 = seB (mod nB). She obtains

m1 = 119570441441889749705031896557386843883475475,

s1 = 443682430493102486978079719507596795657729083

and sends the pair (m1, s1) to Bob. Show how Bob can find the message m and
verify that it came from Alice. (Do not try to convert digits of m into letters, the
message is meaningless.)

3◦. Eve has intercepted the following message from Bob to Alice

2.5 Applications of Cryptology 77

[427849968240759007228494978639775081809,

498308250136673589542748543030806629941,

925288105342943743271024837479707225255,

95024328800414254907217356783906225740]

She knows Alice uses the RSA cryptosystem with the modulus

n = 956331992007843552652604425031376690367.

and that Alice’s public exponent is e = 12398737. She also knows that, to convert
their messages into numbers, Bob and Alice usually use the encodings: space =
00, A = 11, B = 12, . . . , Z = 36. Help Eve to break the code and decrypt the
message.

4◦. Alice and Bob use RSA cryptosystem with the following parameters:

n A = 116843187579509698439177769751386474940457877351734068668377, eA = 1234567,

nB = 41989230468376560622264958706569326838563915099140031193663, eB = 7654321.

Bob creates a message to Alice splitting it into two parts m1 and m2, then
signs the last bit applying his decryption key to m2 obtaining m3. Then he
encrypts the whole message with Alice’s public key obtaining the cryptotext
c = [c[1], c[2], c[3]] where

c[1] = 113438632352422763265675742513046812673537179044234633006538,

c[2] = 45013089611237457780987479205118742551558572798511252012986,

c[3] = 111491725228799790475033209306493492319899494161842598114763

Demonstrate how Eve will decrypt this message, when intercepted, and check
that it has come indeed from Bob.

3Groups

There is nothing in the world that I loathe more than group
activity, that communal bath where the hairy and slippery mix in
a multiplication of mediocrity.
Vladimir Nabokov (1899–1977)

It may seem pretty obvious what a group is, but it’s worth giving
it some thought anyway.
(from business management literature)

The concept of a group helps to unify a great variety of different mathematical
structures which at first sight might appear unrelated. In this chapter, we will start by
looking at groups of permutations from which groups take their origin. We will then
give a general definition of a group, andmove on to studying the multiplicative group
ofZn and the group of points of an elliptic curve. The latter two groups have recently
gained cryptographic significance. Group theory plays a central role in cryptography;
as a matter of fact, any large finite group can potentially be a basis of a cryptographic
system.

Permutations are ubiquitous in cryptography. In Sect. 5.3, we will revisit permu-
tations and learn that the RSA encryption function is in fact a permutation.

3.1 Permutations

3.1.1 Composition of Mappings.The Group of Permutations
of Degree n

Let A, B, andC be three sets. Supposewehavemappings f : A → B and g : B → C .
For any element a ∈ A, we can find its image f (a) ∈ B under f and for that element
of B we can find its image g(f (a)) ∈ C under g. We have now implicitly defined a
third mapping which maps a ∈ A onto g(f (a)). We denote this mapping as f ◦ g
and call the composition of mappings f and g. As a formula, it can be written as
(f ◦ g)(a) = g(f (a)).

© Springer Nature Switzerland AG 2020
A. Slinko, Algebra for Applications, Springer Undergraduate Mathematics Series,
https://doi.org/10.1007/978-3-030-44074-9_3

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44074-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-44074-9_3

80 3 Groups

Important Note The convention we use runs contrary to that used in Calculus,
where (f ◦ g)(x) = f (g(x)) (i.e., first compute g(x), then apply the function f to
the result). This may cause some minor problems to students used to a different
convention. The great advantage to write the composition the way we do is that it is
the same convention as the one used in GAP.

One of the properties of composition of major importance is its compliance with
the associative law.

Proposition 3.1.1 Composition of mappings is associative, that is, given the sets
A, B, C, D and mappings f : A → B, g : B → C and h : C → D, we have

(f ◦ g) ◦ h = f ◦ (g ◦ h).

Proof Two mappings from A to D are equal when they assign exactly the same
images in D to every element in A. Let us calculate the image of a ∈ A first under
the mapping (f ◦ g) ◦ h and then under f ◦ (g ◦ h):

((f ◦ g) ◦ h)(a) = h((f ◦ g)(a)) = h(g(f (a))),

(f ◦ (g ◦ h))(a) = (g ◦ h)(f (a)) = h(g(f (a))).

The image of a under both mappings is the same. Since a ∈ A was arbitrary, the two
mappings are equal. �

Let A be any set. It is a well-known that if f : A → A is a function which is both
one-to-one and onto then f is invertible, i.e., there exists a function g : A → A such
that

g ◦ f = f ◦ g = id, (3.1)

where id is the identity mapping on A. In this case f and g are called mutual inverses
and we use the notation g = f −1 and f = g−1 to express that. Equation (3.1) means
that g maps f (a) to a while f maps g(a) to a, i.e., g undoes the work of f , and f
undoes the work of g.

Example 3.1.1 Let R+ be the set of positive real numbers. Let f : R+ → R and
g : R → R+ be given as f (x) = ln x and g(x) = ex . These are mutual inverses and
hence both functions are invertible.

In what follows we assume that the set A is finite and consider mappings from A
into itself. If A has n elements, for convenience, we assume that the elements of A
are the numbers 1, 2, . . . , n (the elements of any finite set can be labelled with the
first few integers, so this does not restrict generality).

3.1 Permutations 81

Definition 3.1.1 Let n be a positive integer. A permutation of degree n is a function

π : {1, 2, . . . , n} → {1, 2, . . . , n},

which is one-to-one and onto.

Since a function is specified if we indicate what the image of each element is, we
can specify a permutation π by listing each element together with its image, as

π =
(

1 2 3 · · · · · · n − 1 n
π(1) π(2) π(3) · · · · · · π(n − 1) π(n)

)
.

Given that π is one-to-one, no number is repeated in the second row of the array.
Given that π is onto, each number from 1 to n appears somewhere in the second row.
In other words, the second row is just a rearrangement of the first.1

Example 3.1.2 π =
(
1 2 3 4 5 6 7
2 5 3 1 7 6 4

)
is the permutation of degree 7 which maps 1

to 2, 2 to 5, 3 to 3, 4 to 1, 5 to 7, 6 to 6, and 7 to 4.

Example 3.1.3 The mapping σ : {1, 2, . . . , 6} → {1, 2, . . . , 6} given by σ(i) =
3i mod 7 is a permutation of degree 6. Indeed,

σ(1) = 3, σ(2) = 6, σ(3) = 2, σ(4) = 5, σ(5) = 1, σ(6) = 4,

and thus

σ =
(
1 2 3 4 5 6
3 6 2 5 1 4

)
.

Theorem 3.1.1 There are exactly n! permutations of degree n.

Proof Let us consider a permutation of degree n. It is completely determined by its
bottom row. There are n ways to fill the first position of this row, n − 1 ways to fill
the second position (since we must not repeat the first entry), etc., leading to a total
of n · (n − 1) · . . . · 2 · 1 = n! different possibilities. �

The composition of two permutations of degree n is again a permutation of degree
n (see and do Exercise 1 after this section). Most of the time we will omit the symbol
◦ for function composition, and speak of the product πσ of two permutations π and
σ, meaning the composition π ◦ σ.

1Clearly, in this case of finite sets, one-to-one implies onto and vice versa but this will no longer be
true for infinite sets.

82 3 Groups

Example 3.1.4 Let

σ =
(
1 2 3 4 5 6 7 8
2 4 5 6 1 8 3 7

)
, π =

(
1 2 3 4 5 6 7 8
4 6 1 3 8 5 7 2

)
.

Then

σπ =
(
1 2 3 4 5 6 7 8
2 4 5 6 1 8 3 7

)(
1 2 3 4 5 6 7 8
4 6 1 3 8 5 7 2

)

=
(
1 2 3 4 5 6 7 8
6 3 8 5 4 2 1 7

)
,

and

πσ =
(
1 2 3 4 5 6 7 8
4 6 1 3 8 5 7 2

)(
1 2 3 4 5 6 7 8
2 4 5 6 1 8 3 7

)

=
(
1 2 3 4 5 6 7 8
6 8 2 5 7 1 3 4

)
.

Explanation: the calculation of σπ requires us to find

• the image of 1 when we apply first σ, then π, (1
σ�→ 2

π�→ 6, so write the 6 under
the 1),

• the image of 2 when we apply first σ, then π, (2
σ�→ 4

π�→ 3, so write the 3 under
the 2),

• etc.
...

All this is easily done at a glance and can be written down immediately; BUT
be careful to start with the left-hand factor!

The calculation of πσ requires us to find

• the image of 1 when we apply first π, then σ, (1
π�→ 4

σ�→ 6, so write the 6 under
the 1)

• the image of 2 when we apply first π, then σ, (2
π→ 6

σ→ 8, so write the 8 under
the 2)

• etc.
...

All this is easily done at a glance and can be written down immediately; BUT
be careful to start with the left-hand factor again!

Important Note The example shows clearly that πσ �= σπ, that is, the commutative
law for permutations does not hold; so we have to be very careful about the order of
the factors in a product of permutations. But the good news is that the composition
of permutations is associative. This follows from Proposition 3.1.1.

3.1 Permutations 83

We can also calculate the inverse of a permutation; for example, using the same
π as above, we find

π−1 =
(
1 2 3 4 5 6 7 8
3 8 4 1 6 2 7 5

)
.

Explanation: just read the array for π from the bottom up: since π(1) = 4, we must
have π−1(4) = 1, hence write 1 under the 4 in the array for π−1, since π(2) = 6, we
must have π−1(6) = 2, hence write 2 under the 6 in the array for π−1, etc. In this
case we will indeed have ππ−1 = id = π−1π.

Similarly, we calculate

σ−1 =
(
1 2 3 4 5 6 7 8
5 1 7 2 3 4 8 6

)
.

Simple algebra shows that the inverse of a product can be calculated from the product
of the inverses (but note how the order is reversed!):

(πσ)−1 = σ−1π−1. (3.2)

To justify this, we need only check if the product of πσ and σ−1π−1 equals the
identity, and this is pure algebra: it follows from the associative law that

(πσ)(σ−1π−1) = π(σ(σ−1π−1)) = π((σσ−1)π−1) = ππ−1 = id.

Definition 3.1.2 The set of all permutations of degree n, with the operation of com-
position is called the symmetric group of degree n, and is denoted by Sn .

We call Sn a group since the following axioms are satisfied:

1. Sn is associative, i.e., (πσ)τ = π(στ) for all π,σ, τ ∈ Sn ;
2. Sn has an identity element id, i.e., π id = idπ = π for all π ∈ Sn ;
3. every element π ∈ Sn has an inverse π−1, i.e., ππ−1 = id = π−1π.

In Sect. 1.6 we defined a commutative group. This group is not commutative as πσ is
not necessarily equal to σπ. The concept of a group was introduced into mathematics
by Évariste Galois.2

2Évariste Galois (1811–1832), a French mathematician who was the first to use the word “group”
(French: groupe) as a technical term in mathematics to represent a group of permutations. While
still in his teens, he was able to determine a necessary and sufficient condition for a polynomial to
be solvable by radicals, thereby solving a long-standing problem. His work laid the foundations for
Galois theory, a major branch of abstract algebra.

84 3 Groups

Exercises
1. In the following two cases calculate f ◦ g and g ◦ f . Note that they are different

in both cases and even their natural domains are different.

(a) f (x) = sin x and g(x) = 1/x ,
(b) f (x) = ex and g(x) = √

x .

2. Let Rθ be an anticlockwise rotation of the plane about the origin through an
angle θ. Show that Rθ is invertible with the inverse R2π−θ.

3. Show that any reflection H of the plane in any line is invertible and the inverse
of H is H itself.

4. Determine how many permutations of degree n act identically on a fixed set of
k elements of {1, 2, . . . , n}.

5. Show that the mapping σ : {1, 2, . . . , 8} → {1, 2, . . . , 8} given by σ(i) = 5i
mod 9 is a permutation by writing it down in the form of a table.

6. Let the mapping π : {1, 2, . . . , 12} → {1, 2, . . . , 12} be defined by π(k) = 3k
mod 13. Show that π is a permutation of S12.

7. The mapping τ : {1, 2, . . . , 12} → {1, 2, . . . , 12} is defined by τ (k) = k2 mod
13. Show that τ is not a permutation of S12 by showing that both one-to-one and
onto properties are violated.

8. Calculate the inverse and all distinct powers of the permutations:

ρ =
(
1 2 3 4 5 6
3 4 5 6 1 2

)
, τ =

(
1 2 3 4 5 6
4 6 5 1 3 2

)
.

9. Let

σ =
(
1 2 3 4 5 6 7 8 9
2 4 5 6 1 9 8 3 7

)
, γ =

(
1 2 3 4 5 6 7 8 9
6 2 7 9 3 8 1 4 5

)
.

Calculate (σγ)−1 and check yourself with GAP.
10. Prove rigorously that the composition of two permutations of degree n is a

permutation of degree n.

3.1.2 Block Permutation Cipher

A permutation π of order n can be used as a secret key in the following cryptosystem
called permutation cipher. In this cryptosystem a plaintext and ciphertext are both
over the same alphabet. Let m = a1a2 . . . an be a message of fixed length n over
alphabet A. Then the corresponding ciphertext is defined as

E(m, π) = aπ(1)aπ(2) . . . aπ(n),

whichmeans the symbols of themessage are permuted in accordwith the permutation
π. If the message is longer than n, we split it into smaller segments of length n (it

3.1 Permutations 85

is always possible to add some junk letters to make the total length of the message
divisible by n.)

Example 3.1.5 Suppose the secret key is

π =
(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 12 3 16 4 10 9 15 7 8 6 5 14 1 13 11

)

and the message is

ALL ALL ARE GONE THE OLD FAMILIAR FACES

We split it into two submessages of length 16 each:

ALLALLAREGONETHE OLDFAMILIARFACES

and then apply π to both submessages:

LNLEAGEHARLLTAEO LFDSFAIEILMACOAR

The final message is then

LNLEAGEHARLLTAEOLFDSFAIEILMACOAR

The permutation cipher is difficult to break with the knowledge of ciphertext
only. Indeed, the length of blocks is unknown, and even if known, the space of secret
keys is very large: it has n! possible permutations and n! grows very fast. Even
for reasonably small n like n = 128, the number of possible keys is astronomical.
However, if one can guess even a fragment of the plaintext, it may become easy.
To make guessing the plaintext difficult, a substitution cipher can be applied first.
The combination of substitutions and permutations is called a product cipher. The
product ciphers are not normally used on their own but they are an indispensable
part of modern cryptography. For example, adopted on 23 November 1976 the Data
Encryption Standard (DES) involved 16 rounds of substitutions and permutations.

The main steps of the DES algorithm are as follows:

• Partitioning of the text into 64-bit blocks;
• Initial permutation within each block;
• Breakdown of the blocks into two parts: left and right, named L and R;
• Permutation and substitution steps repeated 16 times (called rounds) on each part;
• Re-joining of the left and right parts then the inverse of the initial permutation.

DES is now considered to be insecure for many applications. In 1997, a call
was launched for projects to develop an encryption algorithm in order to replace

86 3 Groups

DES. After an international competition, in 2001, a new block cipher Rijndael3 was
selected as a replacement for DES; it is now referred to as the Advanced Encryption
Standard (AES).

3.1.3 Cycles and Cycle Decomposition

A permutation π of order n which “cyclically permutes” some of the numbers
1, . . . , n (and leaves all others fixed) is called a cycle.

For example, the permutation π =
(
1 2 3 4 5 6 7
1 5 3 7 4 6 2

)
is a cycle, because we have

5
π→ 4

π→ 7
π→ 2

π→ 5, and each of the other elements of {1, 2, 3, 4, 5, 6, 7}, namely
1,3,6, stay unchanged. To see this, wemust of course chase elements around; the nice
cyclic structure is not immediately evident fromour notation.Wewriteπ = (5 4 7 2),
meaning that all numbers not on the list are mapped to themselves, while the ones in
the bracket are mapped to the one listed to the right, except the rightmost one, which
goes back to the leftmost on the list.

Note Cycle notation is not unique, since there is no beginning or end to a circle.
We can write π = (5 4 7 2) and π = (2 5 4 7), as well as π = (4 7 2 5) and π =
(7 2 5 4)—they all denote one and the same cycle.

We say that a cycle is of length k (or a k-cycle) if it moves k numbers. For example,
(3 6 4 9 2) is a 5-cycle, (3 6) is a 2-cycle, (1 3 2) is a 3-cycle. We note also that the
inverse of a cycle is again a cycle. For example (1 2 3)−1 = (1 3 2) (or (3 2 1) if
you prefer). Similarly, (1 2 3 4 5)−1 = (1 5 4 3 2). To find the inverse of a cycle one
has to reverse the arrows. This leads us to the following.

Theorem 3.1.2 (i1 i2 i3 . . . ik)
−1 = (ik ik−1 . . . i2 i1).

Not all permutations are cycles; for example, the permutation

σ =
(
1 2 3 4 5 6 7 8 9 10 11 12
4 3 2 11 8 9 5 6 7 10 1 12

)
(3.3)

is not a cycle (we have 1
σ�→ 4

σ�→ 11
σ�→ 1, but the other elements are not all fixed

(2 goes to 3, for example). Let us chase other elements. We find: 2
σ�→ 3

σ�→ 2 and
5

σ�→ 8
σ�→ 6

σ�→ 9
σ�→ 7

σ�→ 5. So in the permutationσ three cycles coexist peacefully.

3J. Daemen andV. Rijmen. The block cipher Rijndael, Smart Card research andApplications, LNCS
1820, Springer-Verlag, pp. 288–296.

3.1 Permutations 87

Two cycles (i1 i2 i3 . . . ik) and (j1 j2 j3 . . . jm) are said to be disjoint, if the sets
{i1, i2, . . . , ik} and { j1, j2, . . . , jm} have empty intersection. For instance, we may
say that

(1 5 8) and (2 4 3 6 9)

are disjoint. Any two disjoint cycles σ and τ commute, i.e., στ = τσ (see Exercise
1). For example,

(1 2 3 4)(5 6 7) = (5 6 7)(1 2 3 4).

However, if we multiply any of the cycles which are not disjoint, we have to
watch their order; for example: (1 2)(1 3) = (1 2 3), whilst (1 3)(1 2) = (1 3 2),
and (1 3 2) �= (1 2 3).

The relationship between a cycle and the permutation group it belongs to is much
like that between a prime and the natural numbers.

Theorem 3.1.3 Every permutation can be written as a product of disjoint cycles.
Moreover, any such representation is unique up to the order of the factors.

Proof Let σ be a permutation of degree n. Take any element i1 ∈ {1, 2, . . . , n}
and start a cycle: σ(i1) = i2, σ(i2) = i3, etc. Suppose that i1, i2, . . . , ik were all
different and σ(ik) ∈ {i1, i2, . . . , ik} (this has to happen sooner or later since the set
{1, 2, . . . , n} is finite). If σ(ik) = i1, we have a cycle. No other possibility can exist.
If σ(ik) = i� for 2 ≤ � ≤ k, then σ(i�−1) = i� = σ(ik), which contradicts to σ being
one-to-one. We observe then that σ = (i1 i2 i3 . . . ik)σ

′, where σ′ does not move
any element of the set {i1, i2, . . . , ik} and acts as σ on the complement of this set. So
σ′ fixes strictly more elements than σ does. This operation can be now applied to σ′
and so on. It will terminate at some stage and at that moment σ will be represented
as a product of disjoint cycles. �

In particular, the permutation σ given in (3.3) can be represented as

σ = (1 4 11)(2 3)(5 8 6 9 7 5).

Exercises
1. Explain why any two disjoint cycles commute.
2. Let the mapping π : {1, 2, . . . , 12} → {1, 2, . . . , 12} be defined by π(k) = 3k

mod 13. This is a permutation, don’t prove this. Find the decomposition of π into
disjoint cycles.

3. Calculate the following product of permutations in S5

(1 2)(1 3 5 2)−1(4 3 5)(2 5).

and represent it as a product of disjoint cycles.

88 3 Groups

4. Let

σ =
(
1 2 3 4 5 6 7 8 9
9 8 7 6 5 3 1 4 2

)
, τ =

(
1 2 3 4 5 6 7 8 9
6 2 1 4 7 5 9 3 8

)
.

Calculate (στ)−1 and represent the result as a product of disjoint cycles.
5◦. Find the decomposition into disjoint cycles of

(a) σ =
(

1 2 3 4 5 6 7 8 9 10 11 12
12 3 2 5 9 6 11 1 4 7 8 10

)
;

(b) τ = (1 4 3 2)−1(3 4 5 6)(1 2 5 6).
6◦. Show that the mapping σ given by σ(i) = 5i mod 11 is a permutation from S10.

Write it down in the standard table view and as a product of disjoint cycles.

3.1.4 Orders of Permutations

An element of a group has an important characteristic—its order. Orders are very
important for cryptography. Nowwewill define the order of a permutation, and show
how the decomposition of this permutation into a product of disjoint cycles allows
us to calculate its order.

It is clear that if a permutation τ is a cycle of length k, then τ k = id, i.e., if this
permutation is repeated k times, we will have the identity permutation as a result
of this repeated action. Moreover, for no positive integer s smaller than k we will
have τ s = id. Also it is clear that if τm = id for some positive integer m, then k is a
divisor of m. This observation motivates our next definition.

Definition 3.1.3 Let π be a permutation. The smallest positive integer i such that
πi = id is called the order of π.

It is not immediately obvious that any permutation has order. We will see later
that this is indeed the case.

Example 3.1.6 The order of the cycle (3 2 6 4 1) is 5, as we noted before.

Example 3.1.7 Let us calculate the order of the permutation π = (1 2)(3 4 5). We
have:

π = (1 2)(3 4 5),

π2 = (3 5 4),

π3 = (1 2),

π4 = (3 4 5),

π5 = (1 2)(3 5 4),

π6 = id.

3.1 Permutations 89

So the order of σ is 2 · 3 = 6 (note that π has been given as a product of two disjoint
cycles with relatively prime lengths).

We see that for those powers k = 2, 3, 4, 5 for which (1 2)k = id, we have
(3 5 4)k �= id and the other way around. This happens because the orders of (1 2)
and (3 4 5) are relatively prime.

Example 3.1.8 The order of permutation ρ = (1 2)(3 4 5 6) is four. To see this let
us calculate

ρ = (1 2)(3 4 5 6),

ρ2 = (3 5)(4 6),

ρ3 = (1 2)(3 6 5 4),

ρ4 = id.

So the order of σ is 4 (note that ρ has been given as a product of disjoint cycles but
their lengths were not coprime).

More generally, this suggests that the order of a product of disjoint cycles equals
the least common multiple of the lengths of those cycles. We will upgrade this
suggestion into a theorem.

Theorem 3.1.4 Let σ be a permutation and σ = τ1τ2 · · · τr be the decomposition of
σ into a product of disjoint cycles. Let k be the order of σ and k1, k2, . . . , kr be the
orders (lengths) of τ1, τ2, . . . , τr , respectively. Then

k = lcm (k1, k2, . . . , kr). (3.4)

Proof We first notice that τm
i = id if and only if m is a multiple of ki . Then,

since the cycles τi are disjoint, we know that they commute and hence for
k = lcm (k1, k2, . . . , kr)

σk = τ k
1 τ k

2 . . . τ k
r = id.

So the order of σ is not greater than lcm (k1, k2, . . . , kr).
Suppose now σm = id for some m. Let us prove that m is a multiple of

lcm (k1, k2, . . . , kr). We have

σm = τm
1 τm

2 . . . τm
r = id.

The powers of cycles τm
1 , τm

2 , . . ., τm
r act on disjoint sets of indices and, since

σm = id, it must be τm
1 = τm

2 = . . . = τm
r = id. If, however, τm

s (i) = j with i �=
j , then the product τm

1 τm
2 . . . τm

r cannot be equal to id because all permutations
τm
1 , . . . , τm

s−1, τ
m
s+1, . . . , τ

m
r leave i and j invariant. Thus the order of σ is a multiple

of each of the k1, k2, . . . , kr and hence the multiple of the least common multiple of
them. Thus the order of σ is not smaller than lcm (k1, k2, . . . , kr). This proves the
theorem. �

90 3 Groups

Example 3.1.9 The order of

σ = (1 2 3 4)(5 6 7)(8 9)(10 11 12)(13 14 15 16 17)

is lcm(4, 3, 2, 3, 5) = 60. Before applying the formula (3.4) wemust carefully check
that the cycles are disjoint.

Example 3.1.10 To determine the order of an arbitrary permutation, first write it as
product of disjoint cycles. For example, to determine the order of

σ =
(
1 2 3 4 5 6 7 8 9 10 11 12
4 3 2 11 8 9 5 6 7 10 1 12

)

we represent it as

σ = (1 4 11)(2 3)(5 8 6 9 7),

and therefore the order of σ is 30.

Exercises
1. Find the orders of the permutations

(a) σ =
(
1 2 3 4 5 6 7 8 9
5 3 6 7 1 2 8 9 4

)
,

(b) τ = (1 2)(2 3 4)(4 5 6 7)(7 8 9 10 11).

2. There is an amusing legend about Flavius Josephus, a famous historian and math-
ematician who lived in the first century A.D. The story says that in the Jewish
revolt against Rome, Josephus and 40 of his comrades were holding out against
the Romans in a cave. With defeat imminent, they resolved that, like the rebels
at Masada, they would rather die than be slaves to the Romans. They decided
to arrange themselves in a circle. One man was designated as number one, and
they proceeded clockwise around the circle of 41 men killing every third man.
At first it is obvious whose turn it was to be killed. Initially, the men in positions
3, 6, 9, 12, . . . , 39 were killed. The next man to be killed was in position 1 and
then in the position 5 (since the man in position 3 was slaughtered earlier), and
so on.
Josephus (according to the story) instantly figured out where he ought to stand
in order to be the last man to go. When the time came, instead of killing him-
self, he surrendered to the Romans and lived to write his famous histories: “The
Antiquities” and “The Jewish War”.
(a) Find the permutation σ (called the Josephus permutation) for which σ(i) is the

number of the man who was i th to be killed.
(b) In which position did Josephus stand around the circle?
(c) Find the cyclic structure of the Josephus permutation.
(d) What is the order of the Josephus permutation?
(e) Calculate σ2 and σ3.

3.1 Permutations 91

3. The mapping π(i) = 13i mod 23 is a permutation of S22 (do not prove this). Find
the decomposition of π into a product of disjoint cycles and determine the order
of this permutation.

4◦. Without using GAP, find the disjoint cycle decomposition and the order of each
of the following two permutations. Remember that permutations are read from
left to right.

(a) σ =
(

1 2 3 4 5 6 7 8 9 10 11 12
10 5 2 3 12 6 11 1 4 7 8 9

)

(b) τ = (1, 2, 5, 6)−1 (3, 4, 5, 6) (1, 4, 3, 2).
5◦. Generate in GAP permutation group S4, then list its elements and then list their

orders by giving commands:

gap> S4:=SymmetricGroup(4); List(S4); List(S4,Order);

6◦. What is the largest possible order of a permutation in S42 that has exactly two
cycles?

3.1.5 Analysis of Repeated Actions

In this section we consider one important application of permutations. Sometimes
(and often in cryptography) a certain action is performed repeatedly and we are
interested in the outcome that results after a number of repetitions.

As one particularly instructive example, we will analyse the so-called interlacing
shuffle that card players often do with a deck of cards. Suppose that we have a deck
of 2n cards (normally 52) and suppose that our cards were numbered from 1 to 2n
and the original order of cards in the deck was

a1a2a3 . . . a2n−1a2n .

We split the deck into two halves which contain the cards a1, a2, . . . , an and
an+1an+2, . . . , a2n , respectively. Then we interlace them as follows. We put the
first card of the second pile first, then the first card of the first pile, then the second
card of the second pile, then the second card of the first pile etc. This is called the
interlacing shuffle. After this operation the order of the cards will be

an+1a1an+2a2 . . . a2nan .

We put the permutation

σn =
(
1 2 3 . . . n n + 1 n + 2 . . . 2n
2 4 6 . . . 2n 1 3 . . . 2n − 1

)

in correspondence to this shuffle. All it says is that the first card goes to the second
position, the second card is moved to the fourth position, etc. We see that we can

92 3 Groups

define this permutation by the formula:

σn(i) = 2i mod 2n + 1

and σn(i) is the position of the i th card after the shuffle. What will happen after
2, 3, 4, . . . shuffles? The resulting change will be characterised by the permutations
σ2

n, σ3
n, σ4

n, . . . , respectively.

Example 3.1.11 For n = 4

σ4 =
(
1 2 3 4 5 6 7 8
2 4 6 8 1 3 5 7

)
= (

1 2 4 8 7 5
) (

3 6
)

The order of σ4 is 6.

Example 3.1.12 For n = 5

σ5 =
(
1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 1 3 5 7 9

)
=

= (
1 2 4 8 5 10 9 7 3 6

)
.

Also σ10
5 = id and 10 is the order of σ5. Hence all cards will be back to their initial

positions after 10 shuffles but not before.

Let us deal with the real thing that is the deck of card of 52 cards. We know that
the interlacing shuffle is defined by the equation σ26(i) = 2i mod 53. GAP helps us
to investigate. We have:

gap> lastrow:=[1..52];;
gap> for i in [1..52] do
> lastrow[i]:=2*i mod 53;
> od;
gap> lastrow;
[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40,

42, 44, 46, 48, 50, 52, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27,
29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51]

gap> PermList(lastrow);
(1,2,4,8,16,32,11,22,44,35,17,34,15,30,7,14,28,3,6,12,24,48,43,33,13,26,52,51,
49,45,37,21,42,31,9,18,36,19,38,23,46,39,25,50,47,41,29,5,10,20,40,27)
gap> Order(last);
52

Thus the interlacing shuffle σ26 is a cycle of length 52 and has order 52.

3.1 Permutations 93

Exercises
1. A shuffle of a deck of 15 cards is made as follows. The top card is put at the

bottom, the deck is cut into three equal decks, the bottom third is switched with
themiddle third, and then the resulting bottomcard is placed on the top.Howmany
times must this shuffle be repeated to get the cards back in the initial order? Write
down the permutation corresponding to this shuffle and find its decomposition
into disjoint cycles.

2. Use GAP to determine the decomposition into disjoint cycles and the order of the
interlacing shuffle σ52 for the deck of 104 cards which consists of two copies of
ordinary decks with 52 cards in each.

3. On a circle there are n beetles. At a certain moment they start to move all at once
and with the same speed (but maybe in different directions). When two beetles
meet, both of them reverse their directions and continue to move with the same
speed. Prove that there will be a moment when all beetles again occupy their
initial positions. (Hint: Suppose one beetle makes the full circle in time t . Think
about what will happen after time t when all beetles move.)

4◦. Let σn be the permutation corresponding to the interlacing card shuffle of a deck
of 2n cards.
(a) What is the order of σn when n = 2, 4, 8, 16, 32?
(b) What is the order of σn when n = 1, 3, 7, 15, 31?
(c) Can you guess what is the order of σ when n = 210 = 1024? and when
n = 210 − 1 = 1023?

3.1.6 Transpositions. Even and Odd

Cycles of length 2 are the simplest permutations, as they move only two elements.
We define the following.

Definition 3.1.4 A cycle of length 2 is called a transposition.

It is intuitively plausible that any permutation is a product of transpositions (indeed,
every arrangement of n objects can be obtained from a given starting position by
making a sequence of swaps). We will observe, first, that a cycle of arbitrary length
can be expressed as a product of transpositions. Then using Theorem 3.1.3 we will
be able to express any permutation as product of transpositions. Here are some
examples.

Example 3.1.13 (1 2 3 4 5) = (1 2)(1 3)(1 4)(1 5) (just check that the left-hand
side equals the right-hand side!).

We can express an arbitrary cycle as a product of transpositions in exactly the same
way:

(i1 i2 . . . ir) = (i1 i2)(i1 i3) . . . (i1 ir). (3.5)

94 3 Groups

As a result we have come to the following theorem.

Theorem 3.1.5 Every permutation can be expressed as a product of transpositions.

Proof To express any permutation σ as product of transpositions, first decompose
σ into a product of disjoint cycles, then write the cycles as product of transpositions
as in formula (3.5). �

Example 3.1.14 Here is a decomposition of a familiar to us permutation:

(
1 2 3 4 5 6 7 8 9 10 11
4 3 2 11 8 9 5 6 7 10 1

)
= (1 4 11)(2 3)(5 8 6 9 7) =

(1 4)(1 11)(2 3)(5 8)(5 6)(5 9)(5 7).

Example 3.1.15 Note that there are many, many different ways to write a permuta-
tion as product of transpositions; for example, (1 2 3 4 5) can be written in any of
the following forms:

(1 2)(1 3)(1 4)(1 5) = (3 4)(3 5)(3 1)(3 2) = (3 4)(3 5)(2 3)(1 3)(2 3)(2 1)(3 1)(3 2).

(Don’t ask how these products were found! The point is to check that all these
products are equal, and to note that there is nothing unique about how one can write
a permutation as product of transpositions.)

However, there is something in common in all decompositions of a given permuta-
tion into a product of transpositions. Aswewill see the number of such transpositions
will be either always even or always odd.

Definition 3.1.5 A permutation is called even if it can be written as a product of an
even number of transpositions. A permutation is called odd if it can be written as a
product of an odd number of transpositions.

To make this definition meaningful we need to prove that there is no permutation
which is at the same time even and odd—this justifies the use of the terminology.
We will establish that by looking at the polynomial

f (x1, x2, . . . , xn) =
∏
i< j

(xi − x j).

For example, for n = 4 we get a polynomial

f (x1, x2, x3, x4) = (x1 − x2)(x1 − x3)(x1 − x4)(x2 − x3)(x2 − x4)(x3 − x4).

3.1 Permutations 95

It is clear that for π = (i i+1) we have

f (xπ(1), xπ(2), . . . , xπ(n)) = − f (x1, x2, . . . , xn) (3.6)

since in all brackets but one will remain the same except (xi − xi+1). It will become
(xi+1 − xi) = −(xi − xi+1) so we will have one change of sign.

Arguing by induction we suppose that (3.6) is true for all permutations π = (i j)
for which | j − i | < �. Suppose now that | j − i | = �. Since

(i j) = (j−1 j)(i j−1)(j−1 j)

we conclude that (3.6) holds for the transposition π = (i j) with | j − i | = � too.
Hence (3.6) holds for any product of an odd number of transpositions. It is now also
clear that

f (xπ(1), xπ(2), . . . , xπ(n)) = + f (x1, x2, . . . , xn) (3.7)

whenever π is a product of an even number of transpositions. This implies that there
is no permutation which is both even and odd.

Example 3.1.16 (1 2 3 4) is an odd permutation, because (1 2 3 4) = (1 2)(1 3)
(1 4). On the other hand the permutation (1 2 3 4 5) is even, because (1 2 3 4 5) =
(1 2)(1 3)(1 4)(1 5).

Example 3.1.17 Since id = (1 2)(1 2), the identity permutation is even.

Example 3.1.18 Let π =
(
1 2 3 4 5 6 7 8 9
4 3 2 5 1 6 9 8 7

)
. Is π even or odd?

First we decompose π into a product of cycles, then use the result above:

π = (1 4 5)(2 3)(7 9) = (1 5)(1 4)(2 3)(7 9).

This shows that π is even.

Theorem 3.1.6 A k-cycle is even if k is odd and odd if k is even.

Proof Immediately follows from (3.5). �

Definition 3.1.6 We say that two permutations have the same parity if they are both
odd or both even and different parity if one of them is odd and another is even.

96 3 Groups

Theorem 3.1.7 In any symmetric group Sn

(i) The product of two even permutations is even.
(ii) The product of two odd permutations is even.

(iii) The product of an even permutation and an odd one is odd.
(iv) A permutation and its inverse have the same parities.

Proof Only the statements 4 needs a comment. It follows from (iii). Indeed, for any
permutation π we have ππ−1 = id, and, since the identity permutation is even, by
(iii), π and π−1 cannot have different parities. �

Theorem 3.1.8 Exactly half of the elements of Sn are even and half of them are odd.

Proof Denote by E the set of even permutations in Sn , and by O the set of odd
permutations in Sn . If τ is any fixed transposition from Sn , we can establish a one-
to-one correspondence between E and O as follows: for π in E we know that τπ
belongs to O . Therefore we have a mapping f : E → O defined by f (π) = τπ. The
function f is one-to-one since τπ = τσ implies that π = σ; f is onto, because if κ
is an odd permutation then τκ is even, and f (τκ) = ττκ = κ. �

Corollary 3.1.1 The number of even permutations in Sn is n!
2 . The number of odd

permutations in Sn is also n!
2 .

Corollary 3.1.2 The set An of all even permutations of degree n is a group relative
to the operation of composition called the alternating group of degree n.

Example 3.1.19 We can have a look at the elements of S4, listing all of them, and
checking which of them are even, which of them are odd.

S4 = {id, (1 2 3), (1 3 2), (1 2 4), (1 4 2), (2 3 4), (2 4 3),

(1 3 4), (1 4 3), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3),

(1 2), (1 3), (1 4), (2 3), (2 4), (3 4), (1 2 3 4), (1 4 3 2),

(1 3 2 4), (1 4 2 3), (1 2 4 3), (1 3 4 2)}.

The elements in the first two lines are even permutations, and the remaining elements
are odd. We have

A4 = {id, (1 2 3), (1 3 2), (1 2 4), (1 4 2), (2 3 4), (2 4 3),

(1 3 4), (1 4 3), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.

3.1 Permutations 97

Exercises
1. Write the permutations

(1 3 7)(5 8)(2 4 6 9), (1 3 7)(5 7 8)(2 3 4 6 9)

as a products of transpositions.
2. What would be the parity of the product of 11 odd permutations?
3. Let π, ρ ∈ Sn be two permutations. Prove that π and ρ−1πρ have the same parity.
4. Let π, ρ ∈ Sn be two permutations. Prove that π−1ρ−1πρ is an even permutation.
5. Determine the parity of the permutation σ of order n such that σ(i) = n + 1 − i .
6◦. Which of the following permutations in S10 are even? and which are odd?

(a) (1, 2)(3, 4, 5, 6, 7)
(b) (1, 2)(3, 4, 5, 6, 7, 8)
(c) (1, 2)(3, 4, 5)(6, 7, 8)
(d) (1, 2)(3, 4, 5)(6, 7, 8, 9)
(e) (1, 2, 3)(4, 5, 6, 7, 8, 9, 10).

3.1.7 Puzzle 15

We close this section with a few words about a game played with a simple toy. This
game seems to have been invented in the 1870s by the famous puzzle-maker Sam
Loyd. It caught on and became the rage in the United States in the 1870s, and finally
led to a discussion by W. Johnson in the scholarly journal, the American Journal of
Mathematics, in 1879. It is often called the 15-puzzle.

Consider a toy made up of 16 squares, numbered from 1 to 15 inclusive and with
the lower right-hand corner blank.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

The toy is constructed so that the squares can be slid vertically and horizontally,
such moves being possible because of the presence of the blank square. Start with
the position shown above and perform a sequence of slides in such a way that, at
the end, the lower right-hand square is again blank. Call the new position realisable.
The natural question is: How can we determine whether or not the given position is
realisable?

What do we have here? After a sequence of slides we have shuffled about the
numbers from 1 to 15; that is, we have effected a permutation of the numbers from
1 to 15. To ask which positions are realisable is merely to ask which permutations
can be carried out. This is a permutation of S16 since the blank square also moves
in the process. In other words, in S16, the symmetric group of degree 16, which
permutations can be reached via the toy? For instance, can the following position be
realised?

98 3 Groups

13 4 12 15

1 14 9 6

8 3 2 7

10 5 11

We will denote the empty square by the number 16. The position

a1 a2 a3 a4

a5 a6 a7 a8

a9 a10 a11 a12

a13 a14 a15 a16

will be then characterised by the permutation

(
1 2 . . . 16
a1 a2 . . . a16

)
.

Example 3.1.20 The position

1 3 5 7

9 11 13 15

2 4 6

8 10 12 14

will correspond to the permutation

σ =
(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 3 5 7 9 11 13 15 2 4 16 6 8 10 12 14

)
.

If we make a move pulling down the square 13, then the new position will be

1 3 5 7

9 11 15

2 4 13 6

8 10 12 14

3.1 Permutations 99

and the new permutation will be
(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 3 5 7 9 11 16 15 2 4 13 6 8 10 12 14

)
= σ (13 16).

We observe the rule how the permutation changes: when we swap the square
with number i on it with the neighbouring empty square, the permutation is being
multiplied on the right by the transposition (i 16).

Theorem 3.1.9 If a position characterised by the permutation σ can be transformed
by legal moves to the initial position, then there exist transpositions τ1, τ2, . . . , τm

such that

id = σ τ1τ2 . . . τm . (3.8)

If the empty square was initially in the right bottom corner, then m is even and σ is
even.

Proof Suppose that a position characterised by the permutation σ can be trans-
formed by legal moves to the initial position. As we noted in Example 3.1.20,
every legal move is equivalent to a multiplication by a transposition (i 16) for some
i ∈ {1, 2, . . . , 15}. Since the initial position is characterised by the identity permu-
tation, we see that (3.8) follows. It implies

σ = τmτm−1 . . . τ2τ1

from which we see that the parity of σ is the same as the parity of m.
Let us colour the board in the chessboard pattern.

Every move changes the colour of the empty square. Thus if at the beginning and
at the end the empty squarewas blank, then therewas an even number ofmovesmade.
Therefore, if initially the right bottom corner was empty and we could transform this
position to the initial position, then an even number of moves was made, m is even,
and σ is also even. �

It can be shown that every position, with an even permutation σ, can be trans-
formed to the initial position but no easy proof is known.

100 3 Groups

Exercises
1. Given the following two positions in 15-puzzle show that one of them is real-

14 10 13 12

6 11 9 8

7 3 5 1

4 15 2

10 14 13 12

6 11 9 8

7 3 5 1

4 15 2

isable and one is not without writing down the corresponding permutations and
determining their parities.

2◦. For each of the following arrangements of 15-puzzle, determine the parity of the
corresponding permutation.

1 3 2 4

6 5 7 8

9 13 15 11

14 10 12

13 5 3

9 2 7 10

1 15 14 8

12 11 6 4

Which one is realisable and which is not.
3◦. In the 15-puzzle, suppose the initial state (on the left) is transformed by legal

moves to the state on the right in the diagram below:

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

12 6 3 1

15 2 4 14

13 8 11 9

5 10 7

Howmany timesmust this transformation be repeated to return to the initial state?

3.2 General Groups

3.2.1 Definition of a Group. Examples

Surprisingly many objects in mathematics satisfy the same properties as symmetric
groups defined in Definition 3.1.2. There is good reason to study all such objects
simultaneously. For this purpose we introduce the concept of a general group.

3.2 General Groups 101

Definition 3.2.1 A set G together with a binary operation ∗ is called a group if it
satisfies the following three properties:

1. The operation ∗ is associative; i.e.,

(a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G.

2. G contains an identity element; i.e., there exists an element e ∈ G such that

e ∗ g = g ∗ e = g for all g ∈ G.

(This element is often also denoted by 1, or, if the group operation is written as
addition, it is usually denoted by 0.)

3. Every element of G possesses an inverse; i.e., given g ∈ G there exists a unique
element h in G such that

g ∗ h = h ∗ g = e (e is the identity element of G).

The element h is called the inverse of g, and denoted by g−1 (when the operation
is written as addition, the inverse is usually denoted by −g).

We denote this group (G, ∗), or simply G, when this invites no confusion. A group
G in which the commutative law holds (a ∗ b = b ∗ a for all a, b ∈ G) is called a
commutative group or an abelian group.

In any group (G, ∗) we have the familiar formula for the inverse of the product

(a ∗ b)−1 = b−1 ∗ a−1

for all a, b ∈ G. This can be proved in the same way as can (3.2).

Example 3.2.1 We established in the previous sections that Sn is a group, the opera-
tion beingmultiplication of permutations (i.e., composition of functions). This group
is not abelian.

Example 3.2.2 Here is an example where the group operation is written as addi-
tion: Zn is an abelian group under addition ⊕ modulo n. This was established in
Theorem 1.4.1.

Example 3.2.3 Z
∗
n (the set of invertible elements in the ring Zn) is a group under

multiplication modulo n. In particular, Z∗
8 = {1, 3, 5, 7} with 3−1 = 3, 5−1 = 5,

7−1 = 7.

When we talk about a group, it is important to be clear about the group operation;
either it must be explicitly specified, or the group operation must be clear from
the context and tacitly understood. The following are cases where there is a clear
understanding of the operation, so it will often not be made explicit. Most important
are:

102 3 Groups

• When we talk about the group Zn , we mean the set of integers modulo n under
addition modulo m.

• When we talk about the group Z
∗
n , we mean the set of invertible elements in the

ring Zn under multiplication modulo n.

Normally, whenmaking general statements about groups, we write the statements
inmultiplicative notation; but it is important to be able to apply them also in situations
where the group operation is written as addition (some obvious modifications must
be made).

Definition 3.2.2 Let G be a group and e be its identity element. The number of
elements of G is called the order of G and denoted by |G|.

Example 3.2.4 Orders of several groups:

• Sn is a group of order n!.
• Zn is a group of order n.
• Z

∗
n is a group of order φ(n), where φ is Euler’s totient function; for example,

|Z∗
12| = 4.

• Z is an infinite group.
• Positive integersR+ with the operation of usual multiplication of the reals is also

an infinite group.

Exercises
1. Show that the division a�b = a : b is a binary operation on R \ {0}. Show that

it is not associative.
2. Show that a�b = ab is a binary operation on the setR+ of positive real numbers.

Show that it does not have a neutral element.
3. Let Cn be the set of all complex numbers satisfying the equation zn = 1. Prove

that this is an abelian group of order n.
4. Prove that the setGLn(R) of all invertible n × n matrices is a non-abelian group.
5. Prove that for arbitrary four elements g1, g2, g3, g4 of a groupG (where operation

is written as multiplication)

(g1g2)(g3g4) = (g1(g2g3))g4.

List all possible arrangements of brackets on the product g1g2g3g4 and show
that the result will be always the same so that we can write

g1g2g3g4

for all of them without confusion. Finally you may try to prove that a product

g1g2 . . . gn

involving n ≥ 3 elements is independent of the way in which these elements are
combined and associated.

3.2 General Groups 103

6◦. Let G be the set of all points of the segment [0, 1) of reals with the addition
a ⊕ b = {a + b}, where {x} is the fractional part of x . Check that this is a group.

3.2.2 Powers,Multiples and Orders. Cyclic Groups

Definition 3.2.3 Let G be a group whose operation is written multiplicatively, g an
element of G, e the identity element of G, and n ∈ Z. We define

gn =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

gg · · · g︸ ︷︷ ︸
n times

if n > 0,

e if n = 0,
g−1g−1 · · · g−1︸ ︷︷ ︸

|n| times

if n < 0.

Since we know that the product g1g2 . . . gn is independent of the way in which these
elements are associated, it becomes clear that the usual law of exponents gig j = gi+ j

holds (totally obvious in the case where both i and j are positive, and still trivial in
all other cases). The set of all powers of g ∈ G, we denote by < g >.

Definition 3.2.4 LetG be a groupwhose operation iswritten additively, g an element
of G, 0 the identity element of G, and n ∈ Z. We define

ng =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g + g · · · + g︸ ︷︷ ︸
n times

if n > 0,

0 if n = 0,
(−g) + (−g) + · · · + (−g)︸ ︷︷ ︸

|n| times

if n < 0.

The usual law of multiples mg + ng = (m + n)g also holds. The set of all mul-
tiples of g ∈ G, we also denote by < g >.

Definition 3.2.5 Any group G which consists of powers (multiples) of a single
element g is called cyclic. This fact can be written as G =< g >. Element g in this
case is called the generator of G.

We note that every cyclic group is abelian since gig j = g jgi and mg + ng =
ng + mg.

Example 3.2.5 Several examples:

• Sn is NOT a cyclic group since it is not abelian.
• Zn =< 1 > and is cyclic.
• Z

∗
5 =< 2 > and is cyclic. Check this by calculating all multiples of 2.

• Z =< 1 > is an infinite cyclic group.

Later (see, e.g., Exercise 1) we will see that abelian groups do not have to be
cyclic.

104 3 Groups

Definition 3.2.6 Let G be a group and e be its identity element. Then the order of g
in G is the least positive integer i such that gi = e, if such an integer exists; otherwise
we say that the order of g is infinite. It is denoted by ord (g).

We note that this definition is consistent with the definition of the order of a
permutation given earlier.

In an additively written group G the order of g ∈ G is the least positive integer m
such that mg = 0, if such an integer exists; if no such integer exists, we say that the
order of g is infinite.

Example 3.2.6 Confirm for yourself that:

• Each of the non-identity elements of Z∗
12 have order 2;• In Z12 the element 10 has order 6;

• Element 6 in the group Z has infinite order.

As we will see later, in a finite group G, the orders of its elements and the order
of the group |G| are closely related.

We start to establish this link with the following

Lemma 3.2.1 If ord (g) = n, then < g >= {e, g, g2, . . . , gn−1}, and all n powers
of g in this set are distinct, i.e., | < g > | = n. Conversely, if | < g > | = n, then g
is an element of order n.

Proof Suppose ord (g) = n. Then gn = e and all powers of g belong to the set
{e, g, g2, . . . , gn−1}. Indeed, for any k ∈ Z we may divide k by n with remainder
k = qn + r , where 0 ≤ r < n. Then gk = gqn+r = gqngr = (gn)qgr = gr , which
belongs to {e, g, g2, . . . , gn−1}. Hence < g >= {e, g, g2, . . . , gn−1}, On the other
hand, if any two powers in this set are equal, say gi = g j with i < j , then g j =
gig j−i = gi and g j−i = e. This is a contradiction since j − i < n and n is the order
of g. Therefore, if the order of g is finite, the order of g is the same as the cardinality
of the set < g >.

Suppose now that the cardinality of < g > is n. Then we have only n distinct
powers of g and there will exist two distinct integers k and m such that gk = gm .
If we assume that k > m then we will find that gk−m = e, and g will have finite
order. We have already proved that in this case the order of g and the size of < g >

coincide. Hence ord (g) = n. �

In the following corollary a link between the two concepts of “order”. It is often
useful since we can decide whether a group is cyclic or not by looking at the orders
of its elements.

Corollary 3.2.1 For a group of order n to be cyclic, it is necessary and sufficient
that it has an element of order n.

3.2 General Groups 105

Example 3.2.7 Z
∗
8 is NOT a cyclic group, because |Z∗

8| = φ(8) = 4 and there is no
element of order 4 in this group (indeed, check that they all have order 2).

The following theorem is an important tool that allows to calculate orders of
elements in Zn .

Theorem 3.2.1 The order of i ∈ Zn is ord (i) = n

gcd(i, n)
.

Proof To see this, note that the group is written additively, so the order of i is the
smallest positive integer k such that ki ≡ 0 mod n. That is, ki is the smallest positive
number which is a multiple of i as well as of n. This means that ki = lcm(i, n). Now
solve this equation for k using (1.131):

k = lcm(i, n)

i
= in

i gcd(i, n)
= n

gcd(i, n)
.

This proves the theorem. �

Example 3.2.8 The order of 110 in Z121 is

ord (110) = 121

gcd(121, 110)
= 121

11
= 11.

Exercises
1. Find the orders of elements 5, 1331, 594473 in Z16427202.
2. Find all elements of order 7 in Z84.
3. Find the order of i = 41670852902912 in the abelian group Zn , where n =

563744998038700032.
4. Show that Z∗

12 is an abelian group which is not cyclic.
5. Show that the order of the interlacing shuffle σn (defined in Sect. 3.1.5) is equal

to the order of 2 in Z∗
2n+1.

6◦. Find all elements of order 7 in Z105.
7◦. Consider the function θ : Z15 → Z15 given by θ(k) = 7k + 2 (mod 15) for all

k ∈ Z15.

(a) Show that θ is a permutation, and find its order.
(b) Find two permutations ψ and τ of orders 4 and 15 such that θ = ψτ .

3.2.3 Isomorphism

A single group may have several very different presentations. To deal with this
problem mathematics introduces the concept of isomorphism.

106 3 Groups

Definition 3.2.7 Let G and H be two groups with operations ∗ and ◦, respectively.
An onto and one-to-one mapping σ : G → H is called an isomorphism if

σ(g1 ∗ g2) = σ(g1) ◦ σ(g2) (3.9)

for all g1, g2 ∈ G.

What it says is that if we rename the elements of H appropriately and change the
name for the operation in H , we will obtain the group G. If two groups G and H are
isomorphic, we write G ∼= H . Equation (3.9) written as

g1 ∗ g2 = σ−1(σ(g1) ◦ σ(g2))

has also a computational interpretation. It says that instead of computing g1 ∗ g2 of
elements g1 and g2 in group G, one can compute σ(g1) ◦ σ(g2) for images σ(g1) and
σ(g2) of these elements in H and take the preimage of the result.

Example 3.2.9 A classical, most known example of an isomorphism is the isomor-
phism of the groupR, which is the reals with the operation of addition, and the group
R

+, which is positive reals with the operation of multiplication. The isomorphism
σ : R → R

+ between these two groups is given by σ(x) = ex . Indeed, the condition
(3.9) is satisfied since

σ(x + y) = ex+y = ex ey = σ(x)σ(y).

The famous slide rule—a commonly used calculation tool in science and engineering
before electronic calculators became available—was based on this isomorphism.

Example 3.2.10 We claim Z4 ∼= Z
∗
5. Let us look at their addition and multiplication

tables, respectively.

Z4
⊕ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Z
∗
5� 1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

We may observe that the first table can be converted into the second one if we
make the following substitution:

0 → 1, 1 → 2, 2 → 4, 3 → 3

3.2 General Groups 107

(check it right now). Therefore this mapping, let us call it σ, from Z4 to Z
∗
5 is an

isomorphism. The mystery behind this mapping is clarified if we notice that we
actually map

0 → 20, 1 → 21, 2 → 22, 3 → 23.

Then the isomorphism property (3.9) follows from the formula 2i � 2 j = 2i⊕ j .
Before continuing with the study of isomorphism we make a useful observation:

in any group G the only element that satisfies g2 = g is the identity element. Indeed,
multiplying this equation by g−1 we get g = e.

Proposition 3.2.1 Let (G, ∗) and (H , ◦) be two groups and e be the identity element
of G. Let σ : G → H be an isomorphism of these groups. Then σ(e) is the identity
of H.

Proof Let σ(e) = ε, where e is the identity element of G. Let us prove that ε is the
identity element of H . We note that ε2 = σ(e)2 = σ(e2) = σ(e) = ε. Any element
in a group with this property must be the identity so ε is the identity of H . �

Theorem 3.2.2 Let (G, ∗) and (H , ◦) be two groups and σ : G → H be an isomor-
phism. Then σ−1 : H → G is also an isomorphism.

Proof We need to prove

σ−1(h1 ◦ h2) = σ−1(h1) ∗ σ−1(h2) (3.10)

for all h1, h2 ∈ H . For this reason we apply σ to both sides of this equation. As
σσ−1 = idG and σ−1σ = idH , and due to (3.9)

σ(σ−1(h1 ◦ h2)) = h1 ◦ h2,

σ(σ−1(h1) ∗ σ−1(h2)) = σ(σ−1(h1)) ◦ σ(σ−1(h2)) = h1 ◦ h2.

The result is the same both times. As σ is one-to-one (3.10) is proven. �

Any isomorphism preserves the orders of elements.

Theorem 3.2.3 Let σ : G → H be an isomorphism and g be an element of G of
finite order. Then ord (g) = ord (σ(g)).

Proof By Proposition 3.2.1 σ(e) = ε, where e is the identity element of G and ε is
the identity of H . Suppose now ord (g) = n. Then gn = e. Let us now apply σ to
both sides of this equation. We obtain σ(g)n = σ(gn) = σ(e) = ε, from which we
see that ord (σ(g)) ≤ n, i.e., ord (σ(g)) ≤ ord (g). Since σ−1 is also an isomorphism,
which takes σ(g) to g, we obtain ord (g) ≤ ord (σ(g)). This proves the theorem. �

108 3 Groups

We now move on to one of the main theorems of this section. The theorem will,
in particular, give us a tool for calculating orders of elements of cyclic groups which
are also written multiplicatively.

Theorem 3.2.4 Every cyclic group G of order n is isomorphic to Zn.

Proof Since G = <g> has cardinality n, by Lemma 3.2.1 we have ord (g) = n and
G = {g0, g1, g2, . . . , gn−1}. We define σ : Zn → G by setting σ(i) = gi . Then

σ(i ⊕ j) = gi⊕ j = gi+ j = gig j = σ(i)σ(j),

where ⊕ is the addition modulo n. This checks (3.9) and proves that the mapping σ
is indeed an isomorphism. �

Now we can reap benefits of Theorem 3.2.4.

Corollary 3.2.2 Let G be a multiplicative cyclic group and G =< g >, where g is
an element of order n. Then

ord (gi) = n

gcd(i, n)
. (3.11)

Proof This now follows from the theorem we have just proved and Theorems 3.2.1
and 3.2.3. Indeed, the order of gi in G must be the same as the order of i in Zn . �

Exercises
1. Let σ : G → H be an isomorphism and g be an element of G. Prove that

σ(g−1) = σ(g)−1.
2. Let Cn be the group of all complex numbers satisfying the equation zn = 1.

Prove that Cn ∼= Zn .
3. Prove that the multiplicative group of complex numbersC∗ is isomorphic to the

group of matrices

G =
{[

a −b
b a

]
| a, b ∈ R

}

under the usual multiplication of matrices.
4. Both groups G1 = Z

∗
191 and G2 = Z

∗
193 are cyclic (do not try to prove this).

Which of these groups does contain elements of order 19? How many?
5. Knowing that 2 is a generating element for the cyclic group Z∗

211, determine the
order of 2150 in Z∗

211.
6. 264 is a generator of Z∗

271, i.e., the (multiplicative) order of 264 in Z271 is 270,
as is shown by the following calculation:

gap> OrderMod(264,271);
270

3.2 General Groups 109

Without GAP determine the multiplicative order of 26472 in Z∗
271.

7◦. Given that the multiplicative group Z∗
14591 of field Z14591 is cyclic:

(a) Give reasons why there exist elements of multiplicative order 1459 in
Z

∗
14591 but not 1458;

(b) Using GAP, find one element of order 1459 in this group.
8◦. Are the groups Z∗

12 and Z5 isomorphic? Give reasons.
9◦. Let G be a group of even order. Consider the inversion function ν : G → G

given by ν(x) = x−1 for all x ∈ G.
(a) Show that ν is a bijection.
(b) Show that ν is an isomorphism if and only if G is abelian.
(c) What are the elements of G with the property that ν(x) = x (i.e. “fixed”

by ν)?
(d) By pairing the elements not fixed by ν, show that if |G| is even, then G

has an even number of elements of order greater than 2, and at least one
element of order 2.

(e) What happens when the order of G is odd?
10◦. Show that a group of order 6 is either commutative or isomorphic to S3.

3.2.4 Subgroups

Definition 3.2.8 Let G be a group. We say that a subset H of G is a subgroup of G
if it satisfies the following properties:

1. H contains the identity element of G.
2. H is closed under the group operation; i.e., if a and b belong to H , then ab also

belongs to H .
3. H is closed under inverses; i.e., if a belongs to H then a−1 also belongs to H .

We write H ≤ G to denote that H is a subgroup of G. If G is any group, then
G ≤ G and {e} ≤ G. These are trivial examples. Let us consider a non-trivial one.

Firstly, we would like to introduce a construction which, given an element g ∈ G,
will always give us a subgroup containing this element. Moreover, this subgroup will
be the smallest subgroupwith this property.This is familiar to us< g >= {gi | i ∈ Z}
which is the set of all powers of g.

Proposition 3.2.2 Let G be a group, g ∈ G. Then < g > is a subgroup of G. This
is the smallest subgroup of G that contains g.

Proof To decide whether or not < g > is a subgroup, we must answer three ques-
tions:

• Does the identity e of G belong to < g >? The answer is YES, because g0 = e
and < g > consists of all powers of g.

• If x, y ∈< g >, does xy also belong to < g >?

110 3 Groups

x ∈< g >means that x = gi for some integer i ; similarly, y = g j for some integer
j . Then xy = gig j = gi+ j , which shows that xy is a power of g and therefore
belongs to < g >.

• If x ∈< g >, does x−1 also belong to < g >?
x ∈< g > means that x = gi for some integer i ; then x−1 = g−i , i.e., x−1 is also
a power of g and therefore belongs to < g >.

So < g > is indeed a subgroup. It is the smallest subgroup containing g ∈ G since
any subgroup that contains g must also contain all powers of g. �

We will call < g > the subgroup generated by g ∈ G.
Another example gives us a subgroup of a non-commutative group.

Example 3.2.11 Let us establish that the set of permutations V = {e, a, b, c} ⊂ S4,
where e is the identity permutation and

a = (1 2)(3 4), b = (1 3)(2 4), c = (1 4)(2 3),

is a subgroup of S4. This statement makes the following claims:

1. The identity e belongs to V . This is obvious.
2. The product of two elements of V also belongs to V . We check:

ab = ba = c, bc = cb = a, ac = ca = b, a2 = b2 = c2 = e,

and see that this is true.
3. V is closed under taking inverses. This is also true since a−1 = a, b−1 = b,

c−1 = c.

We see thatV is indeed a subgroup of S4. This group is known as theKlein four-group.

Additional information about orders may be extracted using Lagrange’s theorem.
We will state and prove this theorem below, but first we need to introduce the cosets
of a subgroup. Let G be a group, H a subgroup of G, and g ∈ G. The set gH =
{gh | h ∈ H} is called a left coset of H and the set Hg = {hg | h ∈ H} is called a
right coset of H .

Example 3.2.12 Let us consider G = S4 and H = V , the Klein four-group which
is a subgroup of S4. Let g = (12). Then the corresponding left coset consists of the
permutations

(12)V = {(12), (34), (1 4 2 3), (1 3 2 4)}.
Indeed, (12) = (12) e, (34) = (12) a, (1 4 2 3) = (12) b, (1 3 2 4) = (12) c.

3.2 General Groups 111

Proposition 3.2.3 If H is finite, then |gH | = |Hg| = |H | for any g ∈ G.

Proof We need to prove that all elements gh are different, i.e., if gh1 = gh2, then
h1 = h2. This is obvious since we can multiply both sides of the equation gh1 = gh2
by g−1 on the left. This proves |gH | = |H |. The proof of |Hg| = |H | is similar. �

We are now ready to state and prove Lagrange’s theorem.

Theorem 3.2.5 (Lagrange’s theorem) Let G be a finite group, H a subgroup of G.
Then the order of H is a divisor of the order of G.

Proof Our proof relies on the decomposition of G into a disjoint union of left cosets
of H , all of which have the same number of elements, namely |H |. Let us prove
that such decomposition exists. All we need to show is that any two cosets are either
disjoint or coincide.

Suppose the two cosets aH and bH have a nonzero intersection, i.e., ah1 = bh2
for some h1, h2 ∈ H . Then b−1a = h2h−1

1 ∈ H . In this case any element ah ∈ aH
can be expressed as b(b−1a)h, where (b−1a)h belongs to H . This proves aH ⊆ bH
and hence aH = bH as both sets have the same cardinality. Hence these cosets must
coincide. We obtain a partition of G into a number of disjoint cosets each of which
has cardinality |H |. If k is the number of cosets in the partition, then in total G has
k|H | elements. This proves the theorem. �

Corollary 3.2.3 The order of an element g of a finite group G is a divisor of the
order of G. In particular, g|G| = 1.

Proof Just note that by Lemma 3.2.1 the order of an element g ∈ G equals the order
of the subgroup < g > of G. Then Lagrange’s theorem implies that the order of g
is a divisor of |G|. Let ord (g) = m, |G| = n, and n = mk for some integer k. Then
gn = gmk = (gm)k = 1k = 1. �

Example 3.2.13 Find the order of the element 2 ∈ Z
∗
17.

A naive approach is to calculate all powers of 2, until one such power is found
to be the identity. We have a more economical way to find the order: since Z∗

17 has
16 elements, it is sufficient to calculate all the powers 2i where i is a divisor of 16
until the result equals 1. We know that 216 mod 17 = 1 and we need to calculate
only 22 mod 17, 24 mod 17, and 28 mod 17. Our calculations will terminate when
we find that 28 = 1 mod 17; the order of 2 in Z∗

17 is therefore 8.

Example 3.2.14 Find out if 2 is a generator of the group Z∗
13.

The question asks: Is the order of 2 in Z
∗
13 equal to 12? Now we see that it is

not necessary to calculate each of the powers of 2, but only those powers 2i where
i is a divisor of 12 (which is φ(13) as the order of the (multiplicative) group Z

∗
n is

φ(n)). So we calculate 22 mod 13, 23 mod 13, 24 mod 13, and 26 mod 13. If

112 3 Groups

none of them turn out to be 1, then we can be sure that the order of 2 in Z
∗
13 is 12,

and that 2 is a generator of the group Z∗
13 (which is therefore cyclic). It turns out that

2k mod 13 �= 1 for k = 2, 3, 4, 6 and 2 therefore is indeed a generator of Z∗
13.

Exercises
1. Let SLn(R) be the set of all real matrices with determinant 1. Prove that this is

a subgroup of GLn(R).
2. Let m, n be positive integers and let m be a divisor of n. Prove that Cm is a

subgroup of Cn .
3. Prove that a cyclic group G of order n has exactly φ(n) generators, i.e., elements

g ∈ G such that G =< g >.
4. LetG be a finite groupwith |G| even. Prove that it contains an element of order 2.
5. Prove that any finite subgroup of the multiplicative group C

� of the field C of
complex numbers is cyclic.

6◦. Is the group Z∗
8 isomorphic to Z3? or to Z4? or to V4?

7◦. (a) Can a group of order 12 have a subgroup of order 4?
(b) Does every group of order 12 have a subgroup of order 6?
(c) Can a group of order 12 have a subgroup of order 9?

8◦. Let A, B, C , and D be the (additive) cyclic subgroups of Z20 generated by 2,
4, 5, and 10. Find the orders of these subgroups, and the sizes of their pair-
wise intersections A ∩ B, A ∩ C , A ∩ D, B ∩ C , B ∩ D and C ∩ D. Is there
anything special that you can see happening every time?

9◦. Find all the subgroups of A4.
10◦. Find two different right cosets H x and H y for the subgroup H = 〈(1, 2, 3, 4)〉

in the symmetric group S4.

3.3 The Abelian Group of an Elliptic Curve

During the last 20 years, the theory of elliptic curves over finite fields has been
found to be of great value to cryptography. As methods of factorisation of integers
are getting better and computers are getting more powerful, to maintain the same
level of security the prime numbers p and q in RSA have to be chosen bigger and
bigger, which slows calculations down. The idea of using elliptic curves over finite
fields belong to Neal Koblitz [11] and Victor Miller [16] who in 1985 independently
proposed cryptosystems based on groups of points of elliptic curves. By now their
security has been thoroughly tested and in 2009 the National Security Agency of
the USA stated that “Elliptic Curve Cryptography provides greater security and
more efficient performance than the first generation public key techniques (RSA and

3.3 The Abelian Group of an Elliptic Curve 113

Diffie–Hellman) now in use”. Some researchers also see elliptic curves as the source
of cryptosystems of the next generation. Certicom www.certicom.com is the first
company that markets security products using elliptic curve cryptography.

3.3.1 Elliptic Curves.The Group of Points of an Elliptic Curve

Elliptic curves are not ellipses anddonot look like them.They received their namedue
to their similarities with denominators of elliptic integrals that arise in calculations
of the arc length of ellipses.

Definition 3.3.1 Let F be a field, and a, b be scalars in F such that the cubic X3 +
aX + b has nomultiple roots. An elliptic curve E over a field F is the set of solutions
(X , Y) ∈ F2 to the equation

Y 2 = X3 + aX + b, (3.12)

plus a “point at infinity” denoted by ∞.

When F is the field of real numbers the condition on the cubic can be expressed
in terms of a and b. Let r1, r2, r3 be the roots (maybe complex) of X3 + aX + b,
taken together with their multiplicities, such that

X3 + aX + b = (X − r1)(X − r2)(X − r3). (3.13)

Then it is possible to check that

d = (r1 − r2)
2(r1 − r3)

2(r2 − r3)
2 = −(4a3 + 27b2). (3.14)

This real number is called the discriminant of the cubic, and the cubic has nomultiple
roots if and only if this discriminant is nonzero, i.e.,

d = −(4a3 + 27b2) �= 0. (3.15)

This condition also guarantees the absence of multiple roots over an arbitrary field
F .

Example 3.3.1 The equation

Y 2 = X3 + 3X + 4

defines an elliptic curve overZ7 since the discriminantd = −(4a3 + 27b2) = 6 �= 0.
The point (5, 2) ∈ Z

2
7 belongs to this curve since 22 ≡ 53 + 3 · 5 + 4 mod 7 with

both sides being equal to 4.

www.certicom.com

114 3 Groups

Fig. 3.1 Two types of elliptic curves over R

When F = R is a field of reals, the graph of an elliptic curve can have two different
forms depending on whether the cubic on the right-hand side of (3.12) has one or
three real roots (see Fig. 3.1).

Jacobi4 (1835) was the first to suggest using the group law on a cubic curve. In
this section we will introduce the addition law for points of the elliptic curve (3.12),
so that it will become an abelian group. We will do this first for elliptic curves over
the familiar field of real numbers. These curves have the advantage that they can be
represented graphically.

Definition 3.3.2 Let E be an elliptic curve over R and P = (x, y) ∈ E . Then we
define −P as the point (x, −y), which is symmetric to P about x-axis. It is clear
that (x, −y) ∈ E whenever (x, y) ∈ E .

Definition 3.3.3 Let E be an elliptic curve over R and P, Q ∈ E .

(a) Suppose that P �= Q and that the line P Q is not parallel to the y-axis. Then P Q
intersects E at the third point R (will be shown). Then we define P + Q as −R
(see picture below).

(b) Suppose that P = Q and the tangent line to the curve at P is not parallel to the
y-axis. Further, suppose that the tangent line to the curve at P intersects E at
the third point R. Then we define 2P = P + P = −R. (If the tangent line has a
“double tangency” at P , i.e., P is a point of inflection, then R is taken to be P .)

4Carl Gustav Jacob Jacobi (1804–1851) was a German mathematician, who made fundamental
contributions to elliptic functions, dynamics, differential equations, and number theory.

3.3 The Abelian Group of an Elliptic Curve 115

(c) Suppose that P �= Q and P Q is parallel to the y-axis. Then we define P + Q =
∞.

(d) Suppose that P = Q and the tangent line to the curve at P is parallel to the
y-axis. Then we define 2P = P + P = ∞.

(e) For every P ∈ E (including P = ∞) we define P + ∞ = P .

Theorem 3.3.1 The elliptic curve E over R relative to this addition is an (infinite)
abelian group. If P = (x1, y1) and Q = (x2, y2) are two points of E, then P + Q =
(x3, y3), where

1. in case (a)

x3 =
(

y2 − y1
x2 − x1

)2

− x1 − x2, (3.16)

y3 = −y1 +
(

y2 − y1
x2 − x1

)
(x1 − x3). (3.17)

116 3 Groups

2. in case (b)

x3 =
(
3x21 + a

2y1

)2

− 2x1, (3.18)

y3 = −y1 +
(
3x21 + a

2y1

)
(x1 − x3). (3.19)

Proof First, we have to prove that the addition is defined for every pair of (not
necessary distinct) points of E . Suppose we are in case (a), which means x1 �= x2.
Then we have to show that the third point R on the line P Q exists. The equation of
this line is y = mx + c, where m = y2−y1

x2−x1
and c = y1 − mx1. A point (x, mx + c)

of this line lies on the curve if and only if (mx + c)2 = x3 + ax + b or

x3 − m2x2 + (a − 2mc)x − (c2 − b) = 0. (3.20)

Since we have already two real roots of this polynomial x1 and x2, we will have the
third one as well. Dividing the left-hand side of (3.20) by (x − x1)(x − x2) will give
the factorisation

x3 − m2x2 + (a − 2mc)x − (c2 − b) = (x − x1)(x − x2)(x − x3),

where x3 is this third root. Knowing x1 and x2, the easiest way to find x3 is to notice
that x1 + x2 + x3 = m2, and express the third root as x3 = m2 − x1 − x2. Since
m = y2−y1

x2−x1
, this is exactly (3.16). Now we can also calculate y3 as follows

y3 = −(mx3 + c) = −mx3 − (y1 − mx1) = −y1 + m(x1 − x3)

(remember (x3, y3) represents −R, hence the minus). This will give us (3.17).
Case (b) is similar, except that m can now be calculated as the derivative dy/dx

at P . Implicit differentiation of (3.12) gives us

2y
dy

dx
= 3x2 + a,

or dy/dx = (3x2 + a)/2y. Hence m = (3x21 + a)/2y1. (We note that y1 �= 0 in this
case.) This implies (3.18) and (3.19). �

It helps to visualise the point at infinity ∞ as located far up the y-axis. Then it
becomes the third point of intersection of any vertical line with the curve. Then (c),
(d), and (e) of Definition 3.3.2 will implement the same set of rules as (a) and (b),
for the case when the point at infinity is involved.

We deduced formulae (3.16)–(3.19) for the real field R but they make sense for
any field. Of course we have to remove references to parallel lines and interpret the
addition rule in terms of coordinates only.

3.3 The Abelian Group of an Elliptic Curve 117

Definition 3.3.4 Let F be a field and let E be the set of pairs (x, y) ∈ F2 satisfying
(3.12) plus a special symbol ∞. Then for any (x1, y1), (x2, y2) ∈ E we define:

(a) If x1 �= x2, then (x1, y1) + (x2, y2) = (x3, y3), where x3, y3 are defined by for-
mulae (3.16) and (3.17).

(b) If y1 �= 0, then (x1, y1) + (x1, y1) = (x3, y3), where x3, y3 are defined by for-
mulae (3.18) and (3.19).

(c) (x, y) + (x, −y) = ∞ for all (x, y) ∈ E (including the case y = 0).
(d) (x, y) + ∞ = ∞ + (x, y) = (x, y) for all (x, y) ∈ E .
(e) ∞ + ∞ = ∞.

Theorem 3.3.2 For any field F and for any elliptic curve

Y 2 = X3 + aX + b, a, b ∈ F,

the set E with the operation of addition defined in Definition 3.3.4 is an abelian
group.

Proof It is easy to check that the identity element is∞ and the inverse of P = (x, y)

is −P = (x, −y). So two axioms of a group are obviously satisfied. It is not easy
to prove that the addition, so defined, is associative. We omit this proof since it is a
tedious calculation. �

Example 3.3.2 Suppose F = Z11 and the curve is given by the equation Y 2 = X3 +
7. Then P = (5, 0) and Q = (3, 10) belong to the curve. We have

P + Q = (6, 5), 2Q = (3, 1), 2P = ∞.

Indeed, if P + Q = (x3, y3), then m = y2−y1
x2−x1

= 10
−2 = −1

−2 = 1
2 = 6 and

x3 = m2 − x1 − x2 = 3 − 5 − 3 = 6,

y3 = −y1 + m(x1 − x3) = 0 + 6(−1) = 5.

So P + Q = (6, 5). Calculating 2Q = (x4, y4), we get m = 3·32+0
9 = 3 and

x4 = m2 − 2x1 = 9 − 2 · 3 = 3,

y4 = −y1 + m(x1 − x4) = −10 + 3 · 0 = 1.

So 2Q = (3, 1). The last equation 2P = ∞ follows straight from the definition (part
(c) of Definition 3.3.4).

The calculations in the last exercise can be done with GAP. The program has to
read thefileselliptic.gd andelliptic.gifirst (given in appendix). Then the
command EllipticCurveGroup(a,b,p); calculates the points of the elliptic

118 3 Groups

curve Y 2 = aX + b mod p. As you see below GAP uses the multiplicative notation
for operations of elliptic curves:
Read("/.../elliptic.gd");
Read("/.../elliptic.gi");
gap> G:=EllipticCurveGroup(0,7,11);
EllipticCurveGroup(0,7,11)
gap> points:=AsList(G);
[(2, 2), (2, 9), (3, 1), (3, 10), (4, 4), (4, 7), (5, 0),

(6, 5), (6, 6), (7, 3), (7, 8), infinity]
gap> P:=points[7];
(5, 0)
gap> Q:=points[4];
(3, 10)
gap> P*Q;
(6, 5)
gap> Qˆ2;
(3, 1)
gap> Pˆ2;
infinity

Exercises
1. Which of the following equations define an elliptic curve over Z13:

Y 2 = X3 + 4X + 11, Y 2 = X3 + 6X + 11?

2. Prove that from Eq. (3.13) it follows that

r1 + r2 + r3 = 0, r1r2 + r1r3 + r2r3 = a, r1r2r3 = −b. (3.21)

3. Prove (3.14) using (3.21).
4. Consider elliptic curve E given by Y 2 = X3 + X − 1 mod 7.

(a) Check that (1, 1), (2, 3), (3, 1), (4, 2), (6, 2) are the points on E ;
(b) Find another six points on this curve;
(c) Calculate −(2, 3), 2(4, 2), (1, 1) + (3, 1);
(d) Use GAP to show that E has 11 points in total.

5. Let F = Z13 and let the elliptic curve E be given by the equation Y 2 = X3 +
5X + 1.
(a) Using GAP list all the elements of the abelian group E of this elliptic curve.

Hence find the order of the abelian group E .
(b) Find (manually) the order of P = (0, 1) in E . Is E cyclic?

6. Using GAP generate the elliptic curve Y 2 = X3 + 7X + 11 in Z46301. Deter-
mine its order and check that it is cyclic.

7◦. Let E be the abelian group of the elliptic curve Y 2 = X3 + 1234X + 17 over
Z346111. (GAPwill take about aminute to generate this group using the command
EllipticCurveGroup. Be patient. Do not try to display this group on your
screen.)
(a) Check that Q = (283468, 291812) is a point on this curve.
(b) Choose a randompoint on E , let it be called P (use commandRandom(G)).

3.3 The Abelian Group of an Elliptic Curve 119

(c) Use P as a reference point to input Q = (283468, 291812) as a point of E .
(See Sect. 9.4.2 to see how this can be done.)

(d) What is the order of Q in E?
(e) Calculate the order of G and decide whether Q is a generator of G.

8◦. The elliptic curve E overZ11 is given by Y 2 = X3 + X + 4. Let G be the group
of points on this elliptic curve.
(a) Check that points P = (0, 9) and Q = (2, 5) are on the curve.
(b) Calculate the sum P + Q of these two points in the group G.
(c) Bob wants to represent messages 8 and 9 as x-coordinates of points on E .

In which case will he succeed?
9◦. On the basis of the following GAP calculation
gap> G:=EllipticCurveGroup(11,2,17);
EllipticCurveGroup(11,2,17)
gap> Size(G);
13

proves that the group of points of the elliptic curve Y 2 = X3 + 11X + 2 over
Z17 is cyclic.

10◦. Using trial and error, find the smallest integer x which is greater than or equal
to 2010 and for which there exist a positive integer y such that (x, y) is a
point on the elliptic curve y2 = x3 + 111x + 328 mod 3001. (Use command
RootMod(x,p) for extracting a square root of x mod p (it will give you one
of them).)

3.3.2 Quadratic Residues and Hasse’s Theorem

Definition 3.3.5 Let F be a finite field. An element h ∈ F∗ is called a quadratic
residue if there exists another element g ∈ F such that g2 = h. Otherwise, it is
called a quadratic non-residue.

Theorem 3.3.3 If F = Zp for p > 2, then exactly half of all nonzero elements of
the field Z

∗
p are quadratic residues.

Proof Since p is odd, p − 1 is even. Then all nonzero elements of Zp can be split
into pairs,

Zp \ {0} = {±1,±2, . . . ,±(p − 1)/2}.
Since i2 = (−i)2, each pair gives us only one quadratic residue, hence we cannot
havemore than (p − 1)/2 quadratic residues. On the other hand, if we have x2 = y2,
then x2 − y2 = (x − y)(x + y) = 0. Due to the absence of zero divisors, we have
x = ±y. Therefore we have exactly (p − 1)/2 nonzero quadratic residues. �

Example 3.3.3 In Z7 we have 12 = 62 = 1, 22 = 52 = 4, and 32 = 42 = 2 so the
set of nonzero quadratic residues is {1, 2, 4}.

120 3 Groups

Determining whether or not a particular element a of Z∗
p is a quadratic residue

or non-residue has a great importance for applications of elliptic curves. Even more
important are the algorithms for finding a square root of a, if it exists. The first
question can be efficiently solved by using the following criterion.

Theorem 3.3.4 (Euler’s criterion) Let p be an odd prime and a ∈ Z
∗
p. Then

a
p−1
2 =

{
1 if a is a quadratic residue

−1 if a is a quadratic non-residue

Proof Since by Fermat’s little theorem
(

a
p−1
2

)2 = a p−1 = 1, we conclude that

a
p−1
2 ∈ {−1, 1}. If a is a quadratic residue with b2 = a, then by Fermat’s little the-

orem a
p−1
2 = bp−1 = 1. For the converse see Exercise 5. �

The importance of this criterion is that we can use the Square and Multiply algo-
rithm to raise a to the power of p−1

2 and thus check if a is a quadratic residue or not.
By Theorem 2.3.2 the Square and Multiply algorithm has linear complexity, hence
this is an easy problem to solve. It is somewhat more difficult to find a square root
of an element of Zp, given that it is a quadratic residue. Reasonably fast polynomial
time algorithms exist—most notably Tonelli–Shanks algorithm5— however it is not
fully deterministic as it requires finding at least one quadratic non-residue. This nec-
essary quadratic non-residue is easy to find using trial and error method with the
average expected number of trials being only 2. No fully deterministic polynomial
time algorithm is known.

GAP uses Tonelli–Shanks algorithm to extract square roots in finite fields. For
example, the following calculation shows that 12 is a quadratic non-residue in Z103
and 13 is a quadratic residue in this field:
gap> RootMod(12,103);
fail
gap> RootMod(13,103);
61

Let p be a large prime. Let us try to estimate the number of points on the elliptic
curve Y 2 = f (X) over Zp, where f (X) is a cubic. For a solution with the first
coordinate X to exist, it is necessary and sufficient that f (X) is a quadratic residue.
It is plausible to suggest that f (X)will be a quadratic residue for approximately half
of all points X ∈ Zp. On the other hand, if f (X) is a nonzero quadratic residue, then
the equation Y 2 = f (X)will have two solutionswith X as the first coordinate. Hence
it is reasonable to expect that the number of points on the curvewill be approximately

5Daniel Shanks. Five Number Theoretic Algorithms. Proceedings of the Second Manitoba Confer-
ence on Numerical Mathematics, pp. 51–70, 1973.

3.3 The Abelian Group of an Elliptic Curve 121

p
2 · p + 1 = p + 1 (p plus the point at infinity). Hasse6 (1930) gave the exact bound,
which we give here without a proof:

Theorem 3.3.5 (Hasse’s theorem) Suppose E is an elliptic curve over Zp and let N
be the number of points on E. Then

p + 1 − 2
√

p ≤ N ≤ p + 1 + 2
√

p. (3.22)

It was also shown that for any p and N satisfying (3.22) there exists a curve over Zp

having exactly N points.
As we have already seen, cryptography works with large objects with which it is

difficult to calculate. Large elliptic curves are of great interest to it. Hasse’s theorem
says that to have a large curve we need a large field. This can be achieved in two
ways. First is to have a large prime p. The second is to keep p small but to try to
build a new large field F , as extension of Zp. As we will see later, for every n there
is a field containing exactly q = pn elements. There is a more general version of
Theorem 3.3.5 which also often goes by the name of “Hasse’s Theorem”.

Theorem 3.3.6 Suppose E is an elliptic curve over a field F containing q elements
and let N be the number of points on E. Then

q + 1 − 2
√

q ≤ N ≤ q + 1 + 2
√

q. (3.23)

For cryptographic purposes, it is not uncommon to use elliptic curves over fields of
2150 or more elements. It is worth noting that for n ≥ 20, it is infeasible to list all
points on the elliptic curve over a field of 2n elements.

Despite the fact that each curve has quite a few points, there does not exist a
deterministic algorithm which will produce, in less than exponential time, a point on
a given curve Y 2 = f (X). In particular, it is difficult to find X such that f (X) is a
quadratic residue. In practice, fast probabilistic methods are used.

Example 3.3.4 Let F = Z5. Consider the curve Y 2 = X3 + 2. Let us list all the
points on this curve and calculate the addition table for the corresponding abelian
group E . The quadratic residues of Z5 are 1 = 12 = 42 and 4 = 22 = 32. We shall

6Helmut Hasse (1898–1979) was a German mathematician who worked on algebraic number the-
ory, and was known for many fundamental contributions. The period, when Hasse’s most important
discoveries were made, was a very difficult time for German mathematics. When the Nazis came to
power in 1933, a great number of mathematicians with Jewish ancestry were forced to resign and
many of them left the country. Hasse did not compromise his mathematics for political reasons, he
struggled against Nazi functionaries who tried (sometimes successfully) to subvert mathematics to
political doctrine. On the other hand, he made no secret of his strong nationalistic views and his
approval of many of Hitler’s policies.

122 3 Groups

list all possibilities for x and see what y can in each case be:

x = 0 =⇒ y2 = 2, no solution

x = 1 =⇒ y2 = 3, no solution

x = 2 =⇒ y2 = 0 =⇒ y = 0

x = 3 =⇒ y2 = 4 =⇒ y = 2, 3

x = 4 =⇒ y2 = 1 =⇒ y = 1, 4

Hence we can list all the points of E . We have E = {∞, (2, 0), (3, 2), (3, 3), (4, 1),
(4, 4)}. Let us calculate the addition table.

+ ∞ (2, 0) (3, 2) (3, 3) (4, 1) (4, 4)
∞ ∞ (2, 0) (3, 2) (3, 3) (4, 1) (4, 4)

(2, 0) (2, 0) ∞ (4, 1) (4, 4)
(3, 2) (3, 2) (4, 1) (3, 3) ∞
(3, 3) (3, 3) (4, 4) ∞ (3, 2)
(4, 1) (4, 1) ∞
(4, 4) (4, 4) ∞ (3,2)

We see that 2 · (2, 0) = ∞, hence ord ((2, 0)) = 2. Also 3 · (3, 2) = 3 · (3, 3) = ∞,
while 2 · (3, 2) �= ∞ and 2 · (3, 3) �= ∞, hence ord ((3, 2)) = ord ((3, 3)) = 3.

Exercises
1. Fill the remaining empty slots of the table above and find the orders of (4, 1)

and (4, 4).
2. Find all quadratic residues of the field Z17.
3. Use Hasse’s theorem to estimate the number of points on an elliptic curve over

Z2011.
4. Prove that

(a) the product of two quadratic residues and the inverse of a quadratic residues
are quadratic residues;

(b) the product of a quadratic residue and a quadratic non-residue is a quadratic
non-residue;

(c) the product of two quadratic non-residues is a quadratic residue.

5. Prove that, if a is a quadratic non-residue, then a
p−1
2 = −1. (Use Wilson’s

theorem, which is Exercise 7, Sect. 1.4.)
6. Use trial and error method to find a quadratic non-residue in Zp, where

p = 359334085968622831041960188598043661065388726959079837.

3.3 The Abelian Group of an Elliptic Curve 123

7◦. For each of the two elements 96 and 97 of the field Z331, determine whether or
not it is a quadratic residue or a quadratic non-residue. (Use the Euler’s criterion
formulated in Theorem 3.3.4.)

8◦. Is there an elliptic curve E over Z5 such that
(a) E contains exactly 11 points (including the point at infinity ∞)?
(b) E contains exactly 10 points (including the point at infinity ∞)? If the

answer is positive, find such a curve and list all of its points, if it is negative,
prove it.

9◦. Given an elliptic curve E over the finite field Z101. Find the number of points
on this curve if it is known that there is a point of order 116 on this curve.

3.3.3 Calculating LargeMultiples Efficiently

For calculating multiples efficiently the same rules apply as to calculating powers.
Below we give a complete analogue of the Square and Multiply algorithm.

Theorem 3.3.7 Given P ∈ E, for any positive integer N it is possible to calculate
N · P using no more than 2�log2 N� additions.

Proof We assume N is already written in binary (otherwise we need another
�log2 N� divisions to convert N into binary representation):

N = 2m0 + 2m1 + · · · + 2ms ,

where m0 = �log2 N� and m0 > m1 > · · · > ms . We can find all multiples 2mi · P ,
i = 1, 2, . . . , s by successive doubling in m0 additions:

21 · P = P + P,

22 · P = 21 · P + 21 · P,

. . .

2m0 · P = 2m0−1 · P + 2m0−1 · P

Now to calculate

N · P = (2m0 + 2m1 + · · · + 2ms) · P = 2m0 · P + 2m1 · P + · · · + 2ms · P

we need no more than m0 extra additions. In total no more than 2m0 = 2�log2 N�.
Since n = �log2 N� is the length of the input, the complexity function f (n) is at
most linear in n or f (n) = �(n). �

The algorithm presented here can be called Double and Add algorithm. It has
linear complexity. Up to an isomorphism, this is the same algorithm as Square and
Multiply.

124 3 Groups

We see that it is an easy task to calculate multiples of any point P on an elliptic
curve. That is it is easy to calculate N · P given an integer N and a point P on the
curve. However there are no easy ways to calculate N given N · P and P . So the
function N �→ N · P is a one way function and it has been recognised by now that
it has a great significance for cryptography. This branch of cryptography is called
Elliptic Curve Cryptography (ECC). It was proposed in 1985 by Victor Miller and
Neil Koblitz as a mechanism for implementing public key cryptography alternative
to RSA. We will show one of the cryptosystems of ECC in the next section.

Exercises
1. If GAP uses theDouble andAdd algorithm to compute largemultiples of points of

elliptic curves, howmany additions will GAP perform when calculating 1729 · P
for some point P?

3.4 Applications to Cryptography

3.4.1 Encoding Plaintext

This is not so straightforward as for RSA to encode a message as a point of the given
elliptic curve. To illustrate the difficulties we may face here, it is enough to say that
there is no known polynomial time algorithm for finding a single point on that curve.
This problem has not been fully resolved yet. However there are fast probabilistic
methods which work for most messages, however for small proportion of them these
methods fail to produce a point. The probability of such an unwanted event can be
managed and made arbitrarily small.

The following method was suggested by Koblitz (1985). Suppose that we have an
elliptic curve over Zp given by the equation Y 2 = X3 + aX + b. We may assume
that our message is already represented by a number m. We will try to embed this
number in the x-coordinate of the point P = (X , Y) ∈ E . Of course, we would like
to make X = m but this is not always possible since f (m) = m3 + am + b is a
quadratic residue only in about 50% of cases. A failure rate of 1/2 is, of course,
unacceptable.

Suppose that a failure rate of 2−k is acceptable for some sufficiently large positive
integer k. Then, for each of the numbers mi = km + i , where 0 ≤ i < k, we check
if f (mi) is a quadratic residue. If f (mi) is a quadratic residue, then we can find a
point P = (X , Y) ∈ E , for which X = mi (using, for example, the GAP command
RootMod(f(mi),p); to find a matching Y). This will be the plaintext. The mes-
sage m can always be recovered as m = �X/k�. We should choose p sufficiently
large so that (m + 1)k < p for any message m. Since we now have k numbers mi

that represent the message, the probability that for none of them f (mi) is a quadratic
residue will be less than 2−k .

If k = 10, then this means that we can add another junk digit to m (it will be
placed in the rightmost position) in order to get a point on the curve. This junk digit

3.4 Applications to Cryptography 125

will be discarded at the receiving end. If k = 100, then we can add two junk digits.
This is already sufficient for practical purposes as 2−100 is very small.

Suppose we have chosen prime number p = 17487707 and we would like to
represent the message “HAPPY NEW YEAR” using points of elliptic curve Y 2 =
X3 + 123X + 456 mod p. Let us encode letters as follows: A = 11, B = 12, . . .,
Z = 36 and suppose we view the failure rate 2−10 as acceptable. Since our chosen
prime has 8 digits, we can make messages 6 digits long and still have a possibility
to add one junk digit. This means we have split our message into blocks with three
letters in each:

[HAP,PYN,EWY,EAR] → [x1, x2, x3, x4] = [181126, 263524, 153335, 151128].

The message will be encoded as

[(1811261, 11301481), (2635241, 14638357), (1533350, 13487258), (1511282, 9580769)].

Calculating this, we initially added a junk digit zero to every xi and tried to find a
matching yi . If we failed, we would change the last digit to 1, and, in the case of
another failure to 2, etc. We see that x3 was a quadratic residue straightaway, x1 and
x2 needed the second attempt with the last digit 1 and x4 needed three attempts with
the last digits 0,1,2.

Exercises
1. Use trial and error method to find a quadratic residue r and a quadratic non-

residue n in Zp, where

p = 359334085968622831041960188598043661065388726959079837.

Find an element s ∈ Zp such that r = s2 in Zp.
2. Represent messageCHRISTMAS using the points of elliptic curve Y 2 = X3 +

123X + 456 mod 17487707. (Note that you do not have to generate the whole
group of points for this curve, which would be time consuming.)

3◦. Encode message CRYPTO as a sequence of two points of elliptic curve Y 2 =
X3 + 111x + 1111 mod 65231563.Use themethodwith the failure rate 1/210.
Use the following numerical encodings for the letters of English alphabet:

A = 11, B = 12, . . . , Z = 36.

(Note that it is not necessary to generate the full group of points for this question
which may be beyond GAP.)

126 3 Groups

3.4.2 Additive Diffie–Hellman Key Exchange and the ElGamal
Cryptosystem

The exponential Diffie–Hellman key exchange can be easily adapted for elliptic
curves. Suppose that E is a publicly known elliptic curve over Zp. Alice and Bob,
through an open channel, agree upon a point Q ∈ E . Alice chooses a secret positive
integer kA (her private multiplier) and sends kA · Q to Bob. Bob chooses a secret
positive integer kB (his private multiplier) and sends kB · Q to Alice. Bob then
calculates P = kB · (kA · Q) = kAkB · Q, andAlice calculates P = kA · (kB · Q) =
kAkB · Q. They now both know the point P which they can use as the key for
a conventional secret key cryptosystem. An eavesdropper wanting to spy on Alice,
and Bobwould face the following task called the Diffie–Hellman problem for elliptic
curves.

Diffie–Hellman Problem Given Q, kA · Q, kB · Q (but not kA or kB), find P =
kAkB · Q. No polynomial time algorithms are known for this problem.

Elgamal7 (1985) modified the Diffie–Hellman idea to adapt it for message trans-
mission (see [2], p. 287). It starts as above with Alice and Bob publicly announcing
Q and exchanging kB · Q and kA · Q, which play the role of their public keys. Alter-
natively you may think that there is a public domain run by a trusted authority where
Q is stored and that any new entrant, say Cathy, chooses her private multiplier kC

and publishes her public key kC · Q there.
Suppose that messages can be interpreted as points of an elliptic curve E in an

agreed upon way, and that Bob wants to send Alice a message M ∈ E . He chooses
a secret random integer s (for each message a distinct random number should be
generated)), reads Alice’s public key kA · Q from the public domain and sends Alice
the pair of pointsC1 = s · Q andC2 = M + s · (kA · Q).On the receiving end,Alice,
using her private multiplier kA, can calculate the plaintext as M = C2 − kA · C1.
Nobody else can do this without knowing Alice’s private multiplier kA.

Exercises
1. Alice and Bob are setting up the ElGamal elliptic curve cryptosystem for

private communication. They’ve chosen a point Q = (88134, 77186) on the
elliptic curve E given by Y 2 = X3 + 12345 over Z95701. They’ve chosen
their private multipliers kA = 373 and kB = 5191 and published the points
Q A = (27015, 92968) and Q B = (55035, 17248), respectively. They agreed

7Taher Elgamal (born 18 August 1955) is an Egyptian-born American cryptographer. In 1985,
Elgamal published a paper titled “A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms” in which he proposed the design of the ElGamal discrete logarithm cryp-
tosystem and of the ElGamal signature scheme. He is also recognised as the “father of SSL”, which
is a protocol for transmitting private documents via the Internet that is now the industry standard
for Internet security and ecommerce.

3.4 Applications to Cryptography 127

to cut the messages into two-letter segments and encode the letters as A = 11,
B = 12, . . ., Z = 36, space = 41, ’ = 42, . = 43, , = 44, and ? = 45. They also
agreed that, for each point (x, y), only the first four digits of x are meaningful
(so that they can add additional junk digits to their messages, if needed, to obtain
a point on the curve).

(a) Alice got the message:

[[(87720, 6007), (59870, 82101)], [(34994, 7432), (36333, 86213)],
[(50702, 2643), (33440, 56603)], [(34778, 12017), (81577, 501)],
[(93385, 52237), (38536, 21346)], [(63482, 12110), (70599, 87781)],
[(16312, 46508), (62735, 69061)], [(64937, 58445), (41541, 36985)],
[(40290, 45534), (11077, 77207)], [(64001, 62429), (32755, 18973)],
[(81332, 47042), (35413, 9688)], [(5345, 68939), (475, 53184)]]

Help her to decrypt this message.
(b) She suspects that the sender of the message was Bob. Show how Alice may

reply to this message and how Bob will decrypt it.
2◦. Consider the elliptic curve variant of the Diffie–Hellman key exchange protocol

with the elliptic curve E : y2 = x3 + 3x + 4 mod 17 and the point P = (1, 5).
Let Alice’s choice of integer be ka = 3 and let Bob’s choice be kb = 4. Finish
the protocol and show your steps.

4Fields

Oh field of battle, field of dying,
Who sank on you with glory here?

Ruslan and Liudmila. Alexander Pushkin (1799–1837)

4.1 Introduction to Fields

In Sect. 1.4 we defined a field and proved that, for any prime p, the set of integers
Zp = {0, 1, 2, . . . , p − 1} with the operations:

a ⊕ b = a + b mod p,

a � b = ab mod p

is a field. This field has cardinality p. So far, these are the only finite fields we have
learned. In this chapter we prove that a finite field must have cardinality pn for some
prime p and positive integer n, i.e., its cardinality may be only a power of a prime.
Such fields exist and we lay the grounds for the construction of such fields in Chap.5.
In this chapter we also prove a very important result that the multiplicative group
of any finite field is cyclic. This makes it possible to define discrete logarithms—
special functions on finite fields that are difficult to compute, and widely used in
cryptography. We show that the Elgamal cryptosystem can also be based on the
multiplicative group of a large finite field.

© Springer Nature Switzerland AG 2020
A. Slinko, Algebra for Applications, Springer Undergraduate Mathematics Series,
https://doi.org/10.1007/978-3-030-44074-9_4

129

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44074-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-44074-9_4

130 4 Fields

4.1.1 Examples and Elementary Properties of Fields

We recap that an algebraic system consisting of a set F set equipped with two
operations addition + and multiplication · is called a field if the following nine
axioms are satisfied:

F1. The addition is commutative, a + b = b + a, for all a, b ∈ F .
F2. The addition is associative, a + (b + c) = (a + b) + c, for all a, b, c ∈ F .
F3. There exists a unique element 0 such that a + 0 = 0 + a = a, for all a ∈ F .
F4. For every element a ∈ F there exists a unique element−a such that a + (−a) =

(−a) + a = 0, for all a ∈ F .
F5. The multiplication is commutative, a · b = b · a, for all a, b ∈ F .
F6. The multiplication is associative, a · (b · c) = (a · b) · c, for all a, b, c ∈ F .
F7. There exists a unique element 1 ∈ F such that a · 1 = 1 · a = a, for all nonzero

a ∈ F .
F8. The distributive law holds, that is, a · (b + c) = a · b + a · c, for all a, b, c ∈ F .
F9. For every nonzero a ∈ F there is a unique element a−1 ∈ F such that a · a−1 =

a−1 · a = 1.

Here and later, for any field F , the set of nonzero elements will be denoted as F∗. We
note that axioms F1–F4 mean that F is an abelian group relative to the addition and
axioms F5–F7mean that F∗ is also an abelian group but relative to themultiplication.
Axioms F1–F8 mean that F is a commutative ring relative to the two operations.
And only the last axiom is specific for fields only.

The examples of infinite fields are numerous. The most important are the fields
of rational numbers Q, real numbers R and complex numbers C.

Definition 4.1.1 Let F be a field and G be a subset of F . Sometimes G is also a
field relative to the same operations of addition and multiplication as in F . If so, we
say that G is a subfield of F .

Example 4.1.1 Q is a subfield of R, and R is a subfield of C.

Three basic properties of fields are stated in the following theorem. The second
one is called absence of divisors of zero and the third solvability of linear equations.
We saw these properties hold forZp but nowwewould like to prove them for arbitrary
fields.

Theorem 4.1.1 Let F be a field. Then for any two elements a, b ∈ F

(i) a0 = 0 for all a ∈ F;
(ii) ab = 0 if and only if a = 0 or b = 0 (or both);
(iii) if a �= 0, the equation ax = b has a unique solution x = a−1b in F.

4.1 Introduction to Fields 131

Proof (i) Firstly we need to prove that 0 · a = 0 for all a ∈ F . We have

0 · a F3= (0 + 0) · a F8= 0 · a + 0 · a,

Adding −(0 · a) to both sides we get

0 = −(0 · a) + (0 · a + 0 · a)
F2= (−(0 · a) + 0 · a) + 0 · a F4= 0 + 0 · a F3= 0 · a.

Hence 0 · a = 0. This proves also the “if” part of (ii).
(ii) Suppose now that ab = 0 and either a �= 0 or b �= 0. Without loss of generality

we assume the former. Then by F9 we know that a−1 exist.We have now

0 = a−1 · 0 = a−1(ab)
F6= (a−1a)b

F9= 1 · b F7= b.

So b = 0 which proves the “only if” part of (ii).
Let us prove (iii). Since a �= 0, we know a−1 exists. Suppose that the equation

ax = b has a solution. Then multiplying both sides by a−1 we get a−1(ax) = a−1b.
As in the proof of (i) we calculate that the left-hand side of this equation is x . So
x = a−1b. It is also easy to check that x = a−1b is indeed a solution of ax = b. �

A very important technique is enlarging a given field to obtain a larger field with
some given property. After learning a few basic facts about polynomials we discuss
how to make such extensions.

Exercises
1. Prove that the set of all non-negative rational numbers Q+ is NOT a field.
2. Prove that the set of all integers Z is NOT a field.
3. Prove that the set of all real numbers Q(

√
2) of the form x + y

√
2, where x and

y are in Q is a field.
4. ConsiderQ(

√
3), which is defined similarly to the field from the previous exercise.

Find the inverse element for 2 − √
3 and solve the equation

(2 − √
3)x = 1 + √

3.

5. Solve the system of linear equations

3x + y + 4z = 1

x + 2y + z = 2

4x + y + 4z = 4

with coefficients in Z5.

132 4 Fields

6◦. Prove that the following matrices over Z2 relative to usual addition and multipli-
cation of matrices

[
0 0
0 0

]
,

[
1 0
0 1

]
,

[
0 1
1 1

]
,

[
1 1
1 0

]
.

form a field consisting of 4 elements. Show that its multiplicative group is cyclic.

4.1.2 Vector Spaces

The reader familiar with linear algebra may well skip this section.

Definition 4.1.2 Suppose that the following objects are given:

VS1. a field F of scalars;
VS2. a set V of objects, called vectors;
VS3. a rule (or operation) called vector addition, which associates with each pair of

vectors u, v in V a vector u + v in V , called the sum of u and v, in such a way
that

(a) Addition is commutative, u + v = v + u;
(b) Addition is associative, u + (v + w) = (u + v) + w;
(c) There exists a unique vector 0 in V , called the zero vector, such that

u + 0 = u for all u in V ;
(d) For each vector u in V there is a unique vector −u in V such that u +

(−u) = 0;

VS4. a rule (or operation) called scalar multiplication, which associates with each
scalar a in F and vector u in V a vector au in V , called the product of a and
u, in such a way that

(a) 1u = u for all u in V ;
(b) a1(a2u) = (a1a2)u;
(c) a(u + v) = au + av;
(d) (a1 + a2)u = a1u + a2u.

Then we call V a vector space over the field F .

Example 4.1.2 Where F is a field, Fn is the set of n-tuples whose entries are scalars
from F . It is a vector space over F relative to the following addition and scalar

4.1 Introduction to Fields 133

multiplication:

⎡
⎢⎢⎢⎣
a1
a2
...

an

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣
b1
b2
...

bn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
a1 + b1
a2 + b2

...

an + bn

⎤
⎥⎥⎥⎦ , k

⎡
⎢⎢⎢⎣
a1
a2
...

an

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
ka1
ka2
...

kan

⎤
⎥⎥⎥⎦ .

In particular, Rn , Cn and Z
n
p are vector spaces over the fields R, C and Zp, respec-

tively.

Example 4.1.3 Let Fm×n be the set of m × n matrices whose entries are scalars
from a field F . It is a vector space over F relative to matrix addition and scalar
multiplication. The sets of allm × nmatricesRm×n ,Cm×n and (Zp)m×n with entries
from R, C and Zp are vector spaces over the fields R, C and Zp, respectively.

Example 4.1.4 Let F be a field, and Fn[x] be the set of all polynomials of degree
at most n whose coefficients are scalars from F . It is a vector space over F relative
to the addition of polynomials and scalar multiplication. The sets of all polynomials
Rn[x], Cn[x] and (Zp)n[x] of degree at most n with coefficients from R, C and Zp

are vector spaces over the fields R, C and Zp, respectively.

Example 4.1.5 Let F be a field, F[x] be the set of all polynomials (without restric-
tion on their degrees), whose coefficients are scalars from F . It is a vector space
over F relative to addition of polynomials and scalar multiplication. The sets of all
polynomials R[x], C[x] and Zp[x] with coefficients from R, C and Zp are vector
spaces over the fields R, C and Zp, respectively.

The most interesting example for us is given in the following theorem.

Theorem 4.1.2 Let F be a subfield of a field G. Then G is a vector space over F
relative to the following operations. The addition of elements of G is the operation
of addition in the field G. The scalar multiplication of elements of G by elements of
F is performed as multiplication in the field G.

Proof Check that the vector space axioms for G all follow from the field
axioms. �

Example 4.1.6 The field of complex numbers C is a vector space over the reals R
which is a subfield of C. Both C and R are vector spaces over the rationals Q.

The axioms of a vector space have many useful consequences. The two most
important once are as follows:

134 4 Fields

Proposition 4.1.1 For any element v of a vector space V we have

0 · v = 0, (−1) · v = −v.

Proof We will prove only the first one, the second is an exercise. We will use VS4
(d) for this. We have

0 · v = (0 + 0) · v = 0 · v + 0 · v.
If we denote x = 0 · v, then we will have x = x + x in the group < V ,+ >. Adding
−x on both sides we will get 0 = x. �

Definition 4.1.3 Let V be a vector space over the field F and v1, . . . , vk be arbitrary
vectors in V . Then the set of all possible linear combinations a1v1 + a1v2 + · · · +
akvk with coefficients a1, . . . , ak in F , is called the span of v1, . . . , vk and denoted
span{v1, . . . , vk}.

Definition 4.1.4 Let V be a vector space over the field F . The space V is said to
be finite dimensional, if there exists a finite number of vectors v1, v2, . . . , vk , which
span V , that is V = span{v1, v2, . . . , vk}.

Example 4.1.7 The space of polynomials Fn[x] is finite dimensional as the set of
monomials {1, x, x2, . . . , xn} spans it. The space of polynomials F[x] is infinite
dimensional.

Proof We will concentrate only on the second part of this example (for the first
see exercise below). Suppose F[x] is finite dimensional and there exist polynomials
f1, f2, . . . , fn such that

F[x] = span{ f1, f2, . . . , fn}.
Let us choose a positive integer N such that N > deg (fi) for all i = 1, . . . , n.
As { f1, f2, . . . , fn} spans F[x] we can find scalars a1, a2, . . . , an such that xN =
a1 f1 + a2 f2 + · · · + an fn . Then the polynomial

G(x) = xN − a1 f1(x) − a2 f2(x) − . . . − an fn(x)

is a polynomial of degree N which is identically zero. This is a contradiction since
G(x) cannot have more than N roots. (When F = R, this result is well known. For
an arbitrary field this will be proved in Proposition 5.1.3.) �

Definition 4.1.5 Let V be a vector space over the field F . A subset {v1, v2, . . . , vk}
of V is said to be linearly dependent if there exist scalars a1, a2, . . . , ak in F , not all
of which are 0, such that

a1v1 + a2v2 + · · · + akvk = 0.

A set which is not linearly dependent is called linearly independent.

4.1 Introduction to Fields 135

Example 4.1.8 Let Fm×n be the space of all m × n matrix with entries from F . Let
Ei j be the matrix whose (i j)-entry is 1 and all other entries are 0. Such a matrix is
called a matrix unit. The set of all n2 matrix units is linearly independent.

Example 4.1.9 The set of monomials {1, x, x2, . . . , xn} is linearly independent in
Fn[x].

Definition 4.1.6 Let V be a vector space. A basis for V is a linearly independent set
of vectors which spans V .

Theorem 4.1.3 Let V be a finite-dimensional vector space. Then every spanning
subset of V can be reduced to a basis.

Proof Suppose V = span{v1, v2, . . . , vk} but {v1, v2, . . . , vk} is not linearly inde-
pendent. Then

a1v1 + a2v2 + · · · + akvk = 0

and at least one coefficient is nonzero. Without loss of generality we may assume
that ak �= 0. Then

vk = −(a−1
k a1)v1 − . . . − (a−1

k ak−1)vk−1

and now every linear combination of v1, v2, . . . , vk can be written as a linear com-
bination of v1, v2, . . . , vk−1. Indeed,

b1v1 + b2v2 + · · · + bkvk = (b1 − a−1
k a1bk)v1 + . . . + (bk−1 − a−1

k ak−1bk)vk−1.

This implies that V = span{v1, v2, . . . , vk} = span{v1, v2, . . . , vk−1}. We continue
this process until the remaining system of vectors is linearly independent. Then we
will have arrived at a basis for V . �

Proposition 4.1.2 Let {v1, v2, . . . , vn} be a basis for a finite-dimensional vector
space V over a field F and v ∈ V . Then there exist a unique n-tuple (a1, a2, . . . , an)
of elements of F such that

v = a1v1 + a2v2 + · · · + anvn . (4.1)

Proof The fact that there is at least one such n-tuple follows from the fact that
{v1, v2, . . . , vn} spans V . Suppose there were two different ones:

v = a1v1 + a2v2 + · · · + anvn = b1v1 + b2v2 + · · · + bnvn .

Then

(a1 − b1)v1 + . . . + (an − bn)vn = 0,

which contradicts to {v1, v2, . . . , vn} being linearly independent. �

136 4 Fields

Lemma 4.1.1 Let F be a finite field with q elements. Suppose {v1, v2, . . . , vn} is a
basis for V over F. Then V contains qn elements.

Proof Every element v of V can be written in a unique way as a linear combination
(4.1). Each coefficient ai appearing in this linear combination may take any one of
q values. The total number of such linear combinations will therefore be qn . This is
how many elements V has. �

In the case when F is finite, it is now clear that all bases are equinumerous, i.e.,
contain the same number of vectors. In general it is also true.

Definition 4.1.7 Let V be a finite-dimensional vector space over a field F . The
dimension for V is the number of vectors in any basis of V . It is denoted as dimF V .

Exercises
1. Check that Fn satisfies all axioms of a vector space observing how these axioms

follow from the axioms of a field.
2. Justify the statement in Example 4.1.8.
3. Justify the statement in Example 4.1.9.
4. Prove that the set of symmetric n × n matrices S = {A ∈ Fn×n | AT = A} is a

vector space over F . Find its dimension over F .
5. Let V be the set of positive real numbers with the addition

u ⊕ v := uv,

i.e., the new addition is the former multiplication. Also for any real number a ∈ R
and any u ∈ V we define the scalar multiplication

a � u := ua .

Prove that < V ,⊕, � > is a vector space over R.
6◦. Let V =< V ,+, · > be a vector space over the field of complex numbers C. Let

us define a new operation α ◦ v := ᾱ · v, where α ∈ C and v ∈ V . Prove that
V =< V ,+, ◦ > is also a vector space over C.

4.1.3 Cardinality of a Finite Field

Theorem 4.1.4 Any finite field F contains one of the fields Zp for a certain prime
p. In this case F is a vector space over Zp and it contains pn elements, where
n = dimZp F.

4.1 Introduction to Fields 137

Proof Letm be a positive integer. Consider the elementm · 1 of F which is obtained
by adding m ones, that is m · 1 = 1 + . . . + 1 (m times). When m = 1, 2, . . ., we
obtain the sequence

1, 2 · 1, 3 · 1, . . . ,m · 1, . . .
The following is clear from the ring axioms: for any positive integers a, b

a · 1 + b · 1 = (a + b) · 1, (4.2)

(a · 1) · (b · 1) = (ab) · 1. (4.3)

Since F is finite, we getm1 · 1 = m2 · 1 or assuming thatm1 < m2, we get (m2 −
m1) · 1 = 0. Let p be the minimal positive integer for which p · 1 = 0. Then p is
prime. If not, and p = ab for a < p and b < p, then a · 1 �= 0 and b · 1 �= 0 but
(a · 1) · (b · 1) = (ab) · 1 = p · 1 = 0. This is a contradiction since F , being a field,
by Theorem 4.1.1 contains no zero divisors.

Now, since p · 1 = 0, the Eqs. (4.2) and (4.3) become

a · 1 + b · 1 = (a ⊕ b) · 1,
(a · 1) · (b · 1) = (a � b) · 1,

where⊕ and� are the addition and multiplication modulo p. We can now recognise
that the set {0, 1, 2 · 1, . . . , (p − 1) · 1} together with the operations of addition and
multiplication in F is in fact Zp. By Theorem 4.1.2 F is a vector space over Zp.
Moreover, F is finite dimensional over Zp since it is finite. Let n = dimZp F . By
Lemma 4.1.1, there are exactly pn elements of F . �

The theorem we have proved states that the cardinality of any finite field is a
power of a prime. The converse is also true.

Definition 4.1.8 If p · 1 = 0 in a field F for some prime p, then this prime p is said
to be the characteristic of F . If such prime does not exist, the field F is said to have
characteristic 0.

Theorem 4.1.5 For any prime p and any positive integer n there exists a field of
cardinality pn. This field is unique up to an isomorphism.

Proof Wewill show how to construct the fields of cardinality pn in the next chapter.
The uniqueness, however, is beyond the scope of this book. �

The unique field of cardinality pn is denoted GF(pn) and is called the Galois
field of pn elements.1

1See Sect. 3.1.3 for a brief historic note about Évariste Galois.

138 4 Fields

Exercises
1. Let n1 = 449873499879757801 and n2 = 449873475733618561. Find out if

there are fields GF(n1) and GF(n2). In case GF(ni) exists for i = 1 or i = 2,
identify the prime number p such thatZp ⊆ GF(ni) and determine the dimension
of GF(ni) over Zp.

2. Let F be a finite field of q elements. Prove that all its elements are roots of the
equation xq − x = 0. (Hint: Consider the multiplicative group < F∗, · > of this
field and use Corollary 3.2.3).

3◦. Prove that in a field of characteristic p the following identity holds for every
positive integer m:

(x + y)p
m = x pm + y p

m
.

4◦. In the field GF(pn) the mapping x
→ x p is an automorphism of this field (i.e.,
isomorphism onto itself).

4.2 TheMultiplicative Group of a Finite Field is Cyclic

In any field F the set F∗ of all nonzero elements play a very important role. Axiom
F9 states that all elements of F∗ are invertible. Moreover, this axiom, together with
axioms F5–F7 imply that F∗ relative to the operation of multiplication is a commu-
tative group. This group is called the multiplicative group of F . Our goal for the rest
of this chapter is to prove that in any finite field F the multiplicative group of F is
cyclic.

We will concentrate our attention on orders of elements in F∗. Eventually, we
will find that there is always an element in F∗ whose order is exactly the cardinality
of this group, thus proving that F∗ is cyclic.

We now look at the field Z7 to get an intuition of what is to come. In this case
Z

∗
7 = {1, 2, 3, 4, 5, 6}. Let us calculate the powers of each element:
Powers of 1: 1, 12 = 1.
Powers of 2: 2, 22 = 4, 23 = 1; so there are 3 elements in Z7 which are powers

of 2.
Powers of 3: 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5, 36 = 1; so all nonzero elements

are powers of 3.
Powers of 4: 4, 42 = 2, 43 = 1, so there are three distinct powers of 4.
Powers of 5: 5, 52 = 4, 53 = 6, 54 = 2, 55 = 3, 56 = 1, so all nonzero elements

are powers of 5.
Powers of 6: 6, 62 = 1, so there are two powers.
We summarise our experience: the element 1 has order 1, the elements 2 and 4

have order 3, the elements 3 and 5 have order 6, and the element 6 has order 2. Hence
Z

∗
7 =< 3 >=< 5 >, it is cyclic and has two generators 3 and 5.

4.2 The Multiplicative Group of a Finite Field is Cyclic 139

4.2.1 Lemmas on Orders of Elements

Lemma 4.2.1 Let G be a group and g be an element of G of finite order. Then
ord (g) = ord (g−1).

Proof Since (gk)−1 = (g−1)k it follows that gk = 1 implies (g−1)k = 1 and the
other way around. Therefore the orders of g and of g−1 are the same. �

Lemma 4.2.2 Every element of a finite group has finite order. Moreover, in a finite
group the order of any element is a divisor of the total number of elements in the
group.

Proof Let G be a finite group containing g. Then by Proposition 3.2.1 ord (g) =
|<g>| which is a divisor of |G| by Lagrange’s theorem. �

Lemma 4.2.3 Let G be a group and g be an element of G of finite order. Suppose
that gn = 1. Then ord (g)|n, i.e., ord (g) is a divisor of n.

Proof Let ord (g) = m. Suppose n = qm + r , where 0 ≤ r < m, and suppose that
r �= 0. Then 1 = gn = gqm+r = (gm)q · gr = gr which contradicts to theminimality
of m. �

Equation (3.11) will play a crucial role in the proof of our next lemma. To recap,
Eq. (3.11) says that for any element g ∈ G and positive integer i

ord (gi) = ord (g)

gcd(i, ord (g))
. (4.4)

Lemma 4.2.4 If g is an element of a group G and ord (g) = ki , where k and i are
positive integers, then ord (gi) = k.

Proof Indeed by (4.4) we have

ord (gi) = ord (g)

gcd(i, ord (g))
= ki

i
= k. �

Lemma 4.2.5 Let G be a commutative group, and a and b be two elements of G that
have ordersm and n, respectively. Suppose that gcd(m, n) = 1. Then ord (ab) = mn.

Proof Since (ab)mn = amnbmn = 1, we know by Lemma 4.2.3 that ord (ab)|mn.
Suppose that for some k the equality (ab)k = 1 holds. Then (ab)k = akbk = 1
and ak = (bk)−1. Let c = ak = (bk)−1. Then cm = (ak)m = (am)k = 1 and cn =
((bk)−1)n = ((bn)k)−1 = 1. As 1 = gcd(m, n) = um + vn for some integers u and
v, we may write c = cum+vn = cum · cvn = (cm)u · (cn)v = 1. Thus ak = bk = 1

140 4 Fields

and by Lemma 4.2.3 we have m|k and n|k. This implies mn|k, because m and n are
relatively prime. If k = ord (ab), we getmn|ord (ab) and together with ord (ab)|mn
we get ord (ab) = mn. �

Corollary 4.2.1 Let G be a commutative group and let a1, a2, . . . , ak ∈ G be ele-
ments of finite order such that ord (ai) = pαi

i and all primes p1, p2, . . . , pk are
distinct. Then

ord (a1a2 . . . ak) = pα1
1 pα2

2 . . . pαk
k .

Proof Follows immediately from Lemma 4.2.5. We have to apply it k − 1
times. �

Example 4.2.1 Let a, b, c be elements of a commutative group G with orders

ord (a) = 53 · 17, ord (b) = 72 · 5, ord (c) = 172 · 7.
Let us show how to use these elements to construct an element g ∈ G such that
ord (g) = m and am = bm = cm = 1.

We claim thatm can be taken as lcm(ord (a), ord (b), ord (c)) = 53 · 72 · 172 and
g = a17b5c7. Indeed, by Lemma 4.2.4 we have

ord (a17) = 53, ord (b5) = 72, ord (c7) = 172,

and by Corollary 4.2.1 we get ord (g) = 53 · 72 · 172. If m = 53 · 72 · 172, then
ord (a)|m, ord (b)|m, ord (c)|m, which implies am = bm = cm = 1.

Exercises
1. Let G be an abelian group of order 105 containing elements of orders 3, 5 and 7.

Prove that it is cyclic.
2. Let g, h, k be elements of a finite abelian group G of orders 183618, 131726,

127308, respectively.Useg, h, k to construct an element ofG of order 1018264646281,
i.e., express an element of this order using g, h, k.

3◦. Let g, h, k, � be elements of a finite abelian group G of orders

ord (g) = 11490055587882733971157745622141044411,

ord (h) = 63642900438454938873473894132841241058592519601,

ord (k) = 3810716361,

ord (�) = 1885175497551,

respectively. Use g, h, k.� to construct an element e of G of order

362508549058231790456378224742027510209972363534502717904836842272670521.

Express it in terms of g, h, k, �.

4.2 The Multiplicative Group of a Finite Field is Cyclic 141

4.2.2 Proof of theMain Theorem

Theorem 4.2.1 Let G be a finite commutative group. Then there exists an element
g ∈ G such that ord (g) = m ≤ |G| and xm = 1 for all x ∈ G.

Proof Let us consider the set of integers I = {ord (g) | g ∈ G} and let p1, p2, . . . , pn
be the set of all primes that occur in the prime factorisations of integers from I . For
each such prime pi let us choose the element gi such that ord (gi) = pαi

i qi , where
gcd(pi , qi) = 1 and the integer αi is maximal among all elements of G. (Note that
the same element might correspond to several primes, i.e., among g1, g2, . . . , gn not
all elements may be distinct.) Then by Lemma 4.2.4 for the element hi = g

qi
i we

have ord (hi) = pαi
i . Set g = h1h2 . . . hn . Then, by Corollary 4.2.1,

m = ord (g) = pα1
1 pα2

2 . . . pαn
n ,

and it is also clear that the order of every element in G divides m, thus xm = 1 for
all x ∈ G. Moreover, m ≤ |G| by Lemma 4.2.2. �

Theorem 4.2.2 Let F be a finite field consisting of q elements. Then there exists an
element g ∈ F∗ such that ord (g) = |F∗| = q − 1, i.e., F∗ = <g>.

Proof It is sufficient to prove that there exists an element g ∈ F∗ of order q − 1.
By Theorem 4.2.1 there exists an element of order m ≤ q − 1 such that xm = 1 for
all x ∈ F∗. In the next chapter we will prove that a polynomial of degree n over any
field has nomore than n roots in that field. The polynomial xm − 1 can be considered
as a polynomial from F[x]; it has degree m and q − 1 roots in F . Since q − 1 ≥ m,
this is possible only if m = q − 1. The theorem is proved. �

Definition 4.2.1 Let F be a finite field consisting of q elements. Then an element
g ∈ F∗ of order q − 1 is called a primitive element of F .

Corollary 4.2.2 Every finite field has a primitive element.

Corollary 4.2.3 Let F be a finite field consisting of q elements. Then ord (a) divides
q − 1 for every element a ∈ F∗.

Proof Let g be a primitive element of F . Then ord (g) = q − 1 and a = gi for some
1 ≤ i < q − 1. Then by Lemma 4.2.4,

ord (a) = ord (gi) = q − 1/gcd(i, q − 1),

which is a divisor of q − 1. �

142 4 Fields

Theorem 4.2.3 For each prime p and positive integer n there is a unique, up to
isomorphism, finite field GF(pn) that consists of pn elements. Its elements are the
roots of the polynomial f (x) = x pn − x.

Proof We cannot prove the first part of the statement, i.e., the existence of F =
GF(pn) but we can prove the second. Suppose F does exist and g is a primitive
element. Then every nonzero element a of F lies in F∗, which is a cyclic group of
order pn − 1 with generator g. By Corollary 4.2.3 ord (a) is a divisor of pn − 1,
hence, a pn−1 = 1. It follows that a pn = a for all a ∈ F , including 0, which proves
the second part of the theorem. �

The idea behind the proof of the existence of GF(pn) is as follows. Firstly we
construct an extension Zp ⊂ K such that every polynomial with coefficients in Zp

has a root in K . Then the polynomial f (x) = x pn − x will have pn roots in K and
we have to check that f (x) does not have multiple roots. These pn distinct roots will
then be a field GF(pn).

From our considerations it follows that, if m|n, then GF(pm) is a subfield of
GF(pn). Indeed, any root of the equation x pm = x will also be a root of the equation
x pn = x (see Exercise 3 that follows).

Exercises
1. Consider the field Zp, where p = 192837481 is prime. Do there exist elements

in Z∗
p of orders 11561 and 58380?

2. Let p be a prime and m, n be positive integers. Then pm − 1 divides pn − 1 if
and only if m divides n.

3. GF(pm) is a subfield of GF(pn) if and only if m|n.
4◦. How many primitive elements are there in the field Z2017?
5◦. Find generators of the multiplicative groups of fields (a) Z31 and (b) Z1237 (one

for each field). In each case, how many other generators are there?

4.2.3 Proof of Euler’s Criterion

Now we can give a more natural proof of Euler’s criterion (Theorem 3.3.4) based on
Theorem 4.2.2. Let g be a primitive element of Zp, where p is an odd prime. Then
ord (g) = p − 1 and p − 1 is even. Suppose p − 1 = 2s t , where t is an odd integer.
As g is a generator of the cyclic group Z

∗
p by Lemma 4.2.3 we have gn = 1 if and

only if ord (g)|n. Suppose a is not a quadratic residue in Zp. Then by Theorem 4.2.4
we have a = gk , where k is odd. But then k · p−1

2 = 2s−1tk, where tk is odd, so

this number is not a multiple of p − 1 = 2s t . Hence a
p−1
2 = g

k(p−1)
2 �= 1 and then

a
p−1
2 = −1.

4.2 The Multiplicative Group of a Finite Field is Cyclic 143

4.2.4 Discrete Logarithms

Definition 4.2.2 Let F be a finite field consisting of q elements and let g ∈ F∗ be
a primitive element of F . Then the equation gx = h has a unique solution modulo
q − 1 which is called the discrete logarithm of h to base g, denoted logg(h).

Example 4.2.2 As was computed in the previous section

Z
∗
7 = {31 = 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5, 36 = 1}.

Thus 3 is a primitive element of Z7 and log3(3) = 1, log3(2) = 2, log3(6) = 3,
log3(4) = 4, log3(5) = 5, log3(1) = 6.

Example 4.2.3 For example, g = 3 is a primitive element of Z19 as seen from the
table featuring powers of 3:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

3n 3 9 8 5 15 7 2 6 18 16 10 11 14 4 12 17 13 1

Therefore the table of logarithms to base 3 will be:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

log3(n) 18 7 1 14 4 8 6 3 2 11 12 15 17 13 5 10 16 9

Computing discrete logarithms in a finite field is believed to be computationally
difficult. So we can now add the following problem to our list of apparently hard
problems in number theory.

Discrete Logarithm Problem Given a prime p, a generator g ofZ∗
p and an element

h ∈ Z
∗
p, find the integer x such that gx = h and 0 ≤ x ≤ p − 2.

We recap that a nonzero element h of a finite field F is a quadratic residue if there
exists another element g ∈ F such that g2 = h.

Theorem 4.2.4 Let F be a finite field. Let g ∈ F∗ be any primitive element of F.
Then an element h ∈ F∗ is a quadratic residue if and only if logg(h) is even.

Proof If logg(h) = 2k is even, then h = g2k = (gk)2, thus h is a quadratic residue.
The reverse is clearly also true. Indeed, if h is a quadratic residue, then h = (h1)2 for
some h1 ∈ F∗. Since h1 = gk for some k, we get h = (gk)2 = g2k and logg(h) = 2k
is even. �

144 4 Fields

Exercises
1. How many primitive elements are there in the field Z1237?
2. Let F = Z17.

(a) Decide whether 2 or 3 is a primitive element of F . Denote the one which is
primitive by g.

(b) Compute the table of powers of g in F and the table of discrete logs to base
g.

3. Let g be a primitive element in a finite field F consisting of q elements. Prove
that

logg(ab) ≡ logg(a) + logg(b) mod q−1.

4◦. (a) By trial and error, using the GAP command OrderMod(m,n);which deter-
mines the order of m in the multiplicative group Z

∗
m of Zm , find a primitive

element g of Z23 with the smallest numerical value.
(b) Generate Z23 using the command F:=GF(23); and list its elements using

the command AsList(F); note that GAP lists all nonzero elements of F =
GF(23) as powers of g.

(c) Using the command Int(a); which gives the numerical value of a ∈ F fill
the table of discrete logarithms to base g.

5◦. Characterise all primes p �= 2 for which −1 = p − 1 is a quadratic residue.

4.3 Elgamal Cryptosystem Revisited

In Chap.2 we studied a public-key cryptosystem whose security is based on the
complexity of factoring integers. Here we present a cryptosystem whose security is
based on the complexity of calculating discrete logarithms. It is based on the Diffie–
Hellman key exchange agreement. It was invented by Taher Elgamal in 1985. The
Elgamal algorithm is used in the free GNU Privacy Guard software, recent versions
of PGP and other cryptosystems.

In a public domain, a large prime p and a primitive elementα ofZp are displayed.
Each participant of the group, who wants to send or receive encrypted messages,
creates their private and public keys. Alice, for example, selects a secret integer kA
and calculates αkA which she places in the public domain as her public key. Bob
selects a secret integer kB and calculates αkB which he places in a public domain as
his public key. Now they can exchange messages.

Suppose, for example, that Bob wants to send a message m to Alice. We will
assume that m is an integer such that 0 ≤ m < p. (If m is larger, he breaks it into
several block as usual.) He chooses another secret random integer s and computes
c1 = αs in Zp. He also takes Alice’s public key αkA from the public domain and
calculates c2 = m · (αkA)s . He sends this pair (c1, c2) of elements of Zp to Alice so
this is the cyphertext. On the receiving end Alice uses her private key kA to calculate

4.3 Elgamal Cryptosystem Revisited 145

m as follows: m = c2 · ((c1)kA)−1. For the evil eavesdropper Eve to figure out kA
she must solve a discrete logarithm problem, which is difficult.

Exercises
1. Alice and Bob agreed to use Elgamal cryptosystem based on the multiplicative

group of field Zp for p = 53. They also agreed to use 2 as the primitive element
of Zp. Since p is small their messages consist of a single letter which is encoded
as

A = 11, B = 12, . . . , Z = 36.

Bob’s public key is 32 and Alice sent him the message (30, 42). Which letter did
Alice sent to Bob in this message?

2. Alice and Bob have set up the multiplicative Elgamal cryptosystem for private
communication. They have chosen an element g = 123456789 in the multiplica-
tive group of the field Z p, where p = 123456789987654353003. They have cho-
sen their private exponents kA = 373 and kB = 5191 and published the elements
gA = 52808579942366933355 and gB = 39318628345168608817, respectively.
They agreed to cut the messages into ten-letter segments and encode the letters as
A = 11, B = 12, . . ., Z = 36, space = 41, ’ = 42, . = 43, , = 44, ? = 45. Bob
got the following message from Alice:

[[83025882561049910713, 66740266984208729661],

[117087132399404660932, 44242256035307267278],

[67508282043396028407, 77559274822593376192],

[60938739831689454113, 14528504156719159785],

[5059840044561914427, 59498668430421643612],

[92232942954165956522, 105988641027327945219],

[97102226574752360229, 46166643538418294423]]

Help him to decrypt it.
3◦. Alice and Bob have set up the multiplicative Elgamal cryptosystem for private

communication. They agreed to cut the messages into ten-letter segments and
encode the letters as A = 11, B = 12, ..., Z = 36, “,” = 37, “.” = 38, “!” = 39,
space = 40.
Moreover, they agreed to use Elgamal cryptosystem based on the multiplicative
group of the field Zp for p := 112211293740262525327 with the primitive ele-
ment g = 3. Bob’s public key is gkB = 2014.

(a) Alice sent Bob the following message:

[[109247194023665333196, 1176253216713736656587021548404671132096],
[106327406037146532225, 1761120487089701330655633148625834924019],
[7466307393140907153, 326143913360704463304844857246247116890],
[9229617509201388951, 37580022640750556252639107007714521998]]

146 4 Fields

Show how Eve can decrypt it using command LogMod(h,g,p);
which calculates logg(h) in Zp.

4◦. Alice and Bob agreed to use Diffie–Hellman secret key exchange to come up with
a secret key for their secret-key cryptosystem. They openly agreed on the prime

p = 100140889442062814140434711571

and primitive element α = 13 of Zp. Alice has decided on her private key by
choosing kA = 123456789. She also got a message 9263920439873227653264
2490482 fromBob.Whichmessage should she send toBob and how she calculates
the shared secret key?

5Polynomials

A polynomial walks into a bar and asks for a drink. The barman
declines: “We don’t cater for functions.”

An old math joke.

This chapter is about polynomials and their use. After learning the basics we discuss
the concept of “secret sharing” and learn Shamir’s secret sharing scheme, which
relies on the properties of polynomials over large finite fields. Then, after proving
some further results on polynomials, we give a construction of a finite field whose
cardinality pn is a power of a prime p. The field constructed will be an extension of
Zp and in this context we discuss minimal annihilating polynomials which we will
need later for error-correcting codes.

5.1 The Ring of Polynomials

5.1.1 Introduction to Polynomials

Let F be a field. Any expression

f (x) =
k∑

i=0

ai xi , ai ∈ F, (5.1)

where k is an arbitrary positive integer, is called a polynomial over F . The set of all
polynomials over F is denoted by F[x]. For k = 0 there is no distinction between
the scalar a0 and the polynomial f (x) = a0. Thus we assume that F ⊂ F[x]. The

© Springer Nature Switzerland AG 2020
A. Slinko, Algebra for Applications, Springer Undergraduate Mathematics Series,
https://doi.org/10.1007/978-3-030-44074-9_5

147

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44074-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-44074-9_5

148 5 Polynomials

zero polynomial 0 is a very special one. Any other polynomial f (x) �= 0 we can
write in the form (5.1) with ak �= 0 and define its degree as follows.

Definition 5.1.1 Given a nonzero polynomial f (x) = ∑k
i=0 ai xi , with ak �= 0, the

number k is said to be the degree of f (x) and will be denoted deg (f). Note that
deg (f) is undefined if f = 0. Colloquially speaking, the degree of f (x) is the
highest power of x which appears.

Definition 5.1.2 Let

f (x) =
k∑

i=0

ai xi , g(x) =
m∑

i=0

bi xi

be two polynomials of degree deg (f) = k and deg (g) = m, respectively. We say
that these two polynomials are equal, and write f (x) = g(x), if k = m and ai = bi

for all i = 0, 1, 2, . . . , k.

The addition and the multiplication in the field induces the corresponding opera-
tions over polynomials. Let

f (x) =
k∑

i=0

ai xi , g(x) =
m∑

i=0

bi xi

be two polynomials and assume that deg (f) = k ≥ m = deg (g). Then we define

f (x) + g(x) :=
k∑

i=0

(ai + bi)x
i ,

where for i > deg (g) we assume that bi = 0. The multiplication is defined in such
a way so that xi · x j = xi+ j is true. The only way to do this is to set

f (x)g(x) :=
k+m∑

i=0

(

i∑

j=0

a j bi− j)x
i .

The same convention works also here: ap = 0, when p > deg (f), and bq = 0, when
q > deg (g).

By defining these two operations we obtained an algebraic object which is called
the polynomial ring over F ; it is also denoted as F[x].

Example 5.1.1 Let f (x) = x2 + x + 1 and g(x) = x3 + x + 1 be two polynomials
from Z2[x]. Then

f (x) + g(x) = x3 + x2, f (x)g(x) = x5 + x4 + 1.

5.1 The Ring of Polynomials 149

(Some training in handling these operations is desirable. Try several examples your-
self.)

We observe that

Proposition 5.1.1 For any two nonzero polynomials f , g ∈ F[x]

1. deg (f + g) ≤ max(deg (f), deg (g));
2. deg (f g) = deg (f) + deg (g) and, in particular, F[x] has no zero divisors.

Division with remainder is also possible.

Theorem 5.1.1 (Division Algorithm) Given polynomials f (x) and g(x) in F[x]
with g(x) �= 0, there exist a “quotient” q(x) ∈ F[x] and a “remainder” r(x) ∈ F[x]
such that

f (x) = g(x)q(x) + r(x)

and either r(x) = 0 or deg (r) < deg (g). Moreover, the quotient and the remainder
are uniquely defined.

Proof Let

f (x) =
k∑

i=0

ai xi , g(x) =
m∑

i=0

bi xi

be two polynomials with deg (f) = k and deg (g) = m. Then there are two cases to
consider:
Case 1. If k < m, then we can set q(x) = 0 and r(x) = f (x).
Case 2. If k ≥ m, we can define

f1(x) = f (x) − b−1
m ak xk−mg(x) = f (x) − g(x)q1(x),

where q1(x) = b−1
m ak xk−m . This polynomial f1(x)will be of smaller degree than f ,

since f (x) and q1(x)g(x) have the same degree m and the same leading coefficient
am . By induction hypothesis,

f1(x) = g(x)q2(x) + r(x).

with either r(x) = 0 or deg (r) < deg (g). Therefore

f (x) = g(x)(q1(x) + q2(x)) + r(x).

Now suppose that

f (x) = g(x)q1(x) + r1(x) = g(x)q2(x) + r2(x).

150 5 Polynomials

Then

g(x)(q1(x) − q2(x)) = r2(x) − r1(x).

This cannot happen for r1(x) �= r2(x) since the degree of the right-hand side is
smaller than the degree of the left-hand side. Thus r2(x) − r1(x) = 0. This can
happen only when q1(x) − q2(x) = 0, since F[x] has no zero divisors. �

The quotient and the remainder can be computed by the following “polynomial
long division” process, commonly taught in high school. For example, let us consider
polynomials f (x) = x4 + x3 + x2 + x + 1 and g(x) = x2 + 1 from Z2[x]. Then

x2 + x
x2 + 1 x4 + x3 + x2 + x + 1

x4 + x2

x3 + x +1
x3 + x

+ 1

encodes a division with remainder of polynomial f (x) by g(x). It shows that the
quotient q(x) and the remainder r(x) are

q(x) = x2 + x, r(x) = 1,

that is

x4 + x3 + x2 + x + 1 = (x2 + x)(x2 + 1) + 1.

We say that a polynomial f (x) is divisible by g(x) if f (x) = q(x)g(x), i.e., when
the remainder is zero.

A polynomial (5.1) defines a function f : F → F with

f (α) =
k∑

i=0

aiα
i .

It is straightforward to check that this function satisfies the following conditions:

(f + g)(α) = f (α) + g(α), (f g)(α) = f (α)g(α).

In analysis this function is always identified with the polynomial itself. However,
working over a finite field we cannot do this. Indeed, 12 + 1 = 0 and 02 + 0 = 0. So
the polynomial f (x) = x2 + x over Z2 is nonzero but the function associated with
it is the zero function.

5.1 The Ring of Polynomials 151

Definition 5.1.3 An element α ∈ F is called a root1 of f (x) if f (α) = 0.

Proposition 5.1.2 An element α ∈ F is a root of a polynomial f (x) if and only if
f (x) = g(x)(x − α), i.e., f (x) is divisible by x − α.

Proof Let us divide f (x) by (x − α) with remainder:

f (x) = q(x)(x − α) + r ,

where r ∈ F is the remainder and q(x) is the quotient. Substitutingα in this equation
we get 0 = 0 + r , whence r = 0 and f (x) is divisible by (x − α) and q(x) can be
taken as g(x). Conversely, if f (x) = g(x)(x − α), then f (α) = g(α) · 0 = 0. �

Definition 5.1.4 We say that α ∈ F is a root of a polynomial f (x) of multiplicity k
if f (x) is divisible by (x − α)k but not divisible by (x − α)k+1.

Proposition 5.1.3 A polynomial

f (x) =
k∑

i=0

ai xi , ai ∈ F . (5.2)

of degree k cannot have more than k roots in the field F, where each root is counted
as many times as its multiplicity.

Proof Suppose that α is a root of f (x) of multiplicity m. Then

f (x) = (x − α)mg(x), deg (g) = k − m.

If there are no other roots we are done. If β �= α is also a root of f (x), then it is a
root of g(x). Indeed, substituting β in this equation we get

0 = f (β) = (β − α)mg(β).

Since in any field there are no divisors of zero and β − α �= 0, we conclude that
g(β) = 0. By induction hypothesis there are no more than k − m roots in g(x).
Hence f (x) has at most m + (k − m) = k roots. �

1A purist would talk about a zero of the polynomial f (x) but a root of the equation f (x) = 0. We
are not making this distinction.

152 5 Polynomials

Exercises
1. Consider the following polynomials in Z7:

f (x) = 5x4 + x2 + 3x + 4, g(x) = 3x2 + 2x + 1.

Find the quotient and the remainder of f (x) on division by g(x).
2. Find the roots of f (x) = x4 + 2x3 + 2x2 + 2x + 1 in Z5[x]. Hence find a fac-

torisation of f (x) into linear factors.
3◦. Use GAP to find the roots of f (x) = x4 + 5x2 + 4x + 5 in Z7[x]. Hence find a

factorisation of f (x) into linear factors.

5.1.2 Lagrange’s Interpolation

Sometimes we need to reconstruct a polynomial knowing a number of values of this
polynomial.

Proposition 5.1.4 Let α0,α1, . . . ,αk be distinct elements of F and β0,β1, . . . ,βk

be arbitrary elements of F. Then there exists no more than one polynomial f (x) of
degree at most k such that f (αi) = βi for i = 0, 1, . . . , k.

Proof Suppose that two distinct polynomials f (x) = ∑k
i=0 ai xi and g(x) =∑k

i=0 bi xi satisfy f (αi) = βi and g(αi) = βi for all i = 0, 1, 2, . . . , k. Then the
polynomial h(x) = f (x) − g(x) is not zero, and its degree is not greater than k.
Also

h(αi) = f (αi) − g(αi) = βi − βi = 0,

and h(x) has at least k + 1 distinct roots α0,α1, . . . ,αk . However, by Proposi-
tion 5.1.3 this is impossible. �

Theorem 5.1.2 Let α0,α1, . . . ,αk be distinct elements of F and β0,β1, . . . ,βk be
arbitrary elements of F. Then there exists a unique polynomial

f (x) =
k∑

i=0

βi
(x − α0) . . . (x − αi−1)(x − αi+1) . . . (x − αk)

(αi − α0) . . . (αi − αi−1)(αi − αi+1) . . . (αi − αk)
(5.3)

of degree at most k such that f (αi) = βi for i = 0, 1, . . . , k.

Proof The polynomial (5.3) was constructed as follows. We first constructed poly-
nomials gi (x) of degree k such that gi (αi) = 1 and gi (α j) = 0 for i �= j . These
polynomials are:

gi (x) = (x − α0) . . . (x − αi−1)(x − αi+1) . . . (x − αk)

(αi − α0) . . . (αi − αi−1)(αi − αi+1) . . . (αi − αk)
.

5.1 The Ring of Polynomials 153

Then the desired polynomial was constructed as f (x) = ∑k
i=0 βigi (x). We immedi-

ately see that f (αi) = βi , as required. This polynomial is unique because of Propo-
sition 5.1.4. �

Example 5.1.2 As an example, let us construct a polynomial f (x) of degree at
most 2 over F = Z5 with the properties: f (1) = 2, f (2) = 4, f (3) = 4. We apply
Theorem 5.1.2 to the case F = Z5, k = 2, α0 = 1, α1 = 2, α2 = 3, β0 = 2, β1 = 4,
β2 = 4.

The formula tells us that

f (x) = 2
(x − 2)(x − 3)

(1 − 2)(1 − 3)
+ 4

(x − 1)(x − 3)

(2 − 1)(2 − 3)
+ 4

(x − 1)(x − 2)

(3 − 1)(3 − 2)

is the desired polynomial. If we want to know the coefficients of this polynomial, we
have to expand all the expressions, bearing in mind that all the arithmetic is in Z5:

f (x) = 2
x2 + 1

4 · 3 + 4
x2 + x + 3

1 · 4 + 4
x2 + 2x + 2

2 · 1 =

x2 + 1 + (x2 + x + 3) + 2(x2 + 2x + 2) = 4x2 + 3.

(You can easily check that indeed f (1) = 2, f (2) = 4, f (3) = 4. Do it!)

Note: a simple alternative to using the formula is to calculate the coefficients of
the desired polynomial as the unique solution of a system of linear equations: if
f (x) = ax2 + bx + c and f (1) = 2, f (2) = 4, f (3) = 4, we have the system

⎧
⎨

⎩

a + b + c = 2,
4a + 2b + c = 4,
4a + 3b + c = 4.

The usual method of Gaussian elimination (all arithmetic in Z5) leads to a = 4, b =
0, c = 3, confirming the result obtained by the previous method. Another way to
solve this system of linear equation is of course to calculate the inverse of the matrix
of this system and multiply it by the column on the right-hand side.

Corollary 5.1.1 Let us consider the class of polynomials

f (x) =
k∑

i=0

ai xi , ai ∈ F,

with an arbitrary but fixed a0 ∈ F. Let α1, . . . ,αk be distinct nonzero elements of
F and β1, . . . ,βk be arbitrary elements of F. Then there exists a unique polynomial
f (x) of degree at most k in this class such that f (αi) = βi for i = 1, 2, . . . , k.

Proof Since a0 = f (0) it is enough to set α0 = 0 and β0 = a0 and apply Theo-
rem 5.1.2. �

154 5 Polynomials

In the next chapter we will look at one particular application of Lagrange’s inter-
polation to cryptography, namely to secret sharing.

Exercises
1. Use Lagrange’s interpolation to find f (x) = ∑2

i=0 ai xi ∈ Z7[x] with f (1) =
f (2) = 1 and f (3) = 2.

2. Find the constant term of the polynomial f (x) of degree no greater than 2 with
coefficients in Z7 such that f (1) = 3, f (3) = 2, f (4) = 1.

3. Find the constant term of the polynomial f (x) of degree at most 3 in Z7 such that

f (1) = 3, f (2) = 2, f (3) = 2, f (5) = 1.

4. Use GAP to find a polynomial f (x) ∈ Z13[x] of degree at most 3 such that

f (1) = 5, f (2) = 7, f (3) = 0, f (5) = 3.

5. Let F be a finite field. Show that for every function f : F → F of F to itself
there exist a polynomial g(x) ∈ F[x] such that f (a) = g(a) for all a ∈ F .

5.1.3 Factoring Polynomials

Definition 5.1.5 Any polynomial

f (x) =
k∑

i=0

ai xi , ai ∈ F . (5.4)

where k is an arbitrary positive integer and ak = 1 is called a monic polynomial of
degree k over F .

Example 5.1.3 The polynomial f (x) = 5x2 + x5 − 1 is a monic polynomial of
degree 5. The polynomial g(x) = x2 + 2x5 − 1 is not monic.

Definition 5.1.6 A polynomial f (x) from F[x] is said to be reducible over F if
there exist two polynomials f1(x) and f2(x) from F[x], each of degree greater than
or equal 1, such that f (x) = f1(x) f2(x). Otherwise f (x) is said to be irreducible
over F .

Example 5.1.4 The polynomial f (x) = x2 + 1 is irreducible over R and reducible
over C since f (x) = (x − i)(x + i). The polynomial g(x) = x2 − 2 is irreducible
overQ and reducible overR. The polynomial h1(x) = x2 + 2 ∈ Z5[x] is irreducible
over Z5, and h2(x) = x2 + 2 ∈ Z11[x] is reducible over Z11 since x2 + 2 = (x +
3)(x + 8).

5.1 The Ring of Polynomials 155

We see that the reducibility or irreducibility of a given polynomial depends heav-
ily on the field under consideration. We will be especially interested in irreducible
polynomials overZ2. Of course, both linear polynomials x and x + 1 are irreducible.
Since x2, (x + 1)2 = x2 + 1, x(x + 1) = x2 + x are reducible, the only irreducible
polynomial of degree 2 is x2 + x + 1. There are eight polynomials of degree 3:

f1(x) = x3,

f2(x) = x3 + 1,

f3(x) = x3 + x + 1,

f4(x) = x3 + x,

f5(x) = x3 + x2,

f6(x) = x3 + x2 + 1,

f7(x) = x3 + x2 + x,

f8(x) = x3 + x2 + x + 1.

To check them for irreducibility, the following proposition is useful.

Proposition 5.1.5 A polynomial f (x) ∈ F[x] of degree 3 is irreducible over F if
and only if it has no roots in F.

Proof If f (x) is irreducible clearly it has no linear factors, nor by Proposition 5.1.2
does it have any roots in F . Conversely, suppose that f (x) has no roots in F . If
it is reducible, then f (x) = g(x)h(x), where either g(x) or h(x) has degree 1, and
polynomial of degree 1 always has a root in F . This gives us a contradiction to
Proposition 5.1.2. �

Returning to our list, we know that any reducible polynomial f (x) of degree 3
has a root in Z2, i.e., either f (0) = 0 or f (1) = 0. Six out of the eight polynomials
in the table have roots in Z2 and only f3(x) = x3 + x + 1 and f6(x) = x3 + x2 + 1
do not have roots, hence, irreducible.

Theorem 5.1.3 If a polynomial f (x) ∈ F[x] of degree n is not divisible by any
irreducible polynomial over F of degree not greater than 	 n

2
, then it is irreducible
over F.

Proof If f (x) is reducible over F , then f (x) = g(x)h(x), where g(x), h(x) ∈ F[x]
both have degrees at least one. Then at least one of them will have degree not greater
than 	 n

2
. Any of its irreducible factors will have degree not greater than 	 n
2
. Hence,

if there are no irreducible polynomials over F of degree not greater than 	 n
2
 that

divide f (x), it must be irreducible over F . �

156 5 Polynomials

Example 5.1.5 Let us determine whether or not f (x) = x5 + x4 + 1 is irreducible
over Z2. We check that f (0) = f (1) = 1, that is f (x) has no roots in Z2. But does
this imply its irreducibility? Not at all. The absence of roots means the absence of
linear factors. However it is possible now that a polynomial of degree five has no
linear root but is reducible by having one quadratic irreducible factor and another
one of degree three. We have now to check that there are no quadratic irreducible
factors. The only possible irreducible quadratic factor is x2 + x + 1, so we have
to divide f (x) by x2 + x + 1 and calculate the remainder. We find that f (x) =
(x2 + x + 1)(x3 + x + 1). Hence f (x) is reducible.

Irreducible polynomials play a similar role to that played by prime numbers. The
following theorem can be proved using the same ideas as for integers.

Theorem 5.1.4 Any polynomial f (x) from F[x] of degree no less than 1 can be
uniquely represented as a product

f (x) = cp1(x)
α1 p2(x)

α2 . . . pk(x)
αk

where p1(x), p2(x), . . . , pk(x) ∈ F[x] are monic irreducible (over F) polynomials,
c is a nonzero constant, and α1,α2, . . . ,αk are positive integers. This representation
is unique apart from the order of p1(x), p2(x), . . . , pk(x).

Exercises
1. Let F be a field and let f (x) ∈ F[x]. True or false:

(a) If f (x) has a root in F then f (x) is reducible in F[x].
(b) If f (x) is reducible in F[x] then f (x) has a root in F .

2. Find all irreducible quadratic polynomials in Z3[x].
3. Explain why checking irreducibility is much easier for cubic (degree 3) polyno-

mials than for quartic (degree 4) polynomials.
4. Which of the following polynomials are irreducible in Z3[x]:

(i) f (x) = x3 + 2x + 2,
(ii) g(x) = x4 + 2x3 + 2x + 1,
(iii) h(x) = x4 + x3 + x2 + x + 1?

5. Represent f (x) = x5 + x + 1 ∈ Z2[x] as a product of irreducible polynomials.
6. Show that f (x) = x5 + x2 + 1 ∈ Z2[x] is an irreducible polynomial over Z2.

5.1 The Ring of Polynomials 157

5.1.4 Greatest Common Divisor and Least CommonMultiple

Definition 5.1.7 Let F be a field and f (x), g(x) be two polynomials from F[x]. A
monic polynomial d(x) ∈ F[x] is called the greatest common divisor of f (x) and
g(x) iff:

(a) d(x) divides both f (x) and g(x), and
(b) d(x) is of maximal degree with the above property.

The greatest common divisor of f (x) and g(x) is denoted gcd(f (x), g(x)) or
gcd(f , g)(x). Its uniqueness follows from the following

Theorem 5.1.5 (The Euclidean Algorithm) Let f and g be two polynomials. We use
the division algorithm several times to find:

f = q1g + r1, deg (r1) < deg (g),
g = q2r1 + r2, deg (r2) < deg (r1),

r1 = q3r2 + r3, deg (r3) < deg (r2),
...

rs−2 = qsrs−1 + rs, deg (rs) < deg (rs−1),

rs−1 = qs+1rs .

Then all common divisors of f and g are also divisors of rs . Moreover, rs divides
both f and g. Thus rs = gcd(f , g).

The extended Euclidean algorithm also holds.

Theorem 5.1.6 (The Extended Euclidean algorithm) Let f and g be two polynomi-
als. Let us form the following matrix with two rows R1, R2, and three columns C1,
C2, C3:

(C1 C2 C3) =
(

f 1 0
g 0 1

)
.

In accordance with the Euclidean algorithm above, we perform elementary row
operations R3 := R1 − q1R2, R4 := R2 − q2R3, . . ., each time creating a new row,
so as to obtain:

(C ′
1 C ′

2 C ′
3) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

f 1 0
g 0 1
r1 1 −q1
r2 −q2 1 + q1q2

...

rs m n

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

158 5 Polynomials

Then gcd(f , g)(x) = rs(x) = f (x)m(x) + g(x)n(x).

Proof The proof is exactly the same as for numbers. �

Example 5.1.6 Let f (x) = x4 + x3 + x2 + 1 and g(x) = x4 + x2 + x + 1 are
from Z2[x]. We write:

x4 + x3 + x2 + 1 = (x4 + x2 + x + 1) · 1 + (x3 + x)

x4 + x2 + x + 1 = (x3 + x) · x + (x + 1)

x3 + x = (x + 1) · (x2 + x).

So gcd(f , g)(x) = x + 1.

The extended Euclidean algorithm gives

x4 + x3 + x2 + 1 1 0
x4 + x2 + x + 1 0 1

x3 + x 1 1
x + 1 x x + 1

Hence gcd(f , g)(x) = x + 1 = f (x)x + g(x)(x + 1).

Definition 5.1.8 Two polynomials f (x), g(x) ∈ F[x] are said to be coprime (rela-
tively prime) if gcd(f , g)(x) = 1.

Corollary 5.1.2 Two polynomials f (x), g(x) ∈ F[x] are coprime if and only if there
exist polynomials m(x), n(x) ∈ F[x] such that

1 = f (x)m(x) + g(x)n(x).

Definition 5.1.9 Let F be a field and f (x), g(x) be two polynomials from F[x].
A monic polynomial m(x) ∈ F[x] is called the least common multiple of f (x) and
g(x) if:

(a) m(x) is a multiple of both f (x) and g(x);
(b) m(x) is of minimal degree with the above property

It is denoted lcm(f (x), g(x)) or lcm(f , g)(x).

All the usual properties of the least common multiple are satisfied. For example,
as for the integers, we can prove:

5.1 The Ring of Polynomials 159

Theorem 5.1.7 Let f (x) and g(x) be two monic polynomials in F[x]. Then

lcm(f (x), g(x)) · gcd(f (x), g(x)) = f (x)g(x).

Example 5.1.7 Let f (x) = x4 + x3 + x2 + 1 and g(x) = x4 + x2 + x + 1 be two
polynomials in Z2[x]. We know that gcd(f , g)(x) = x + 1. Hence lcm(f , g)(x) =
f (x)g(x)

x+1 = x7 + x6 + x5 + x4 + x2 + 1.

Exercises
1. Find the greatest common divisor d(x) of the polynomials f (x) = x7 + 1

and g(x) = x3 + x2 + x + 1 in Z2[x] and represent it in the form d(x) =
f (x)m(x) + g(x)n(x).

2. Let f (x) = x5 + x4 + 1 and g(x) = x5 + x + 1 in Z2[x]. Calculate by hand and
check with GAP:

(a) gcd(f (x), g(x)) and its representation in the form a(x) f (x) + b(x)g(x),
(b) lcm(f (x), g(x)).

Check that gcd(f (x), g(x))lcm(f (x), g(x)) = f (x)g(x).
3. Let f (x) = a0 + a1x + . . . + an xn be a polynomial from F[x], where F is any

field. We define the derivative of f (x) by the formula:

f ′(x) = a1 + 2a2x + . . . + nan xn−1.

(a) Check that the product rule holds for such a derivative.
(b) Prove that any multiple root of f (x) is also a root of gcd(f (x), f ′(x)).
(c) Let p be a prime. Prove that the polynomial f (x) = x pn − x does not have

multiple roots in any field F of characteristic p.

5.2 Finite Fields

5.2.1 Polynomials Modulom(x)

Let m(x) be a polynomial over F of degree n. Let us consider the set

F[x]/(m(x)) = { f (x) | f = 0 or deg (f) < n}

of all polynomials of degree lower than n. This is exactly the set of all possible
remainders on division by m(x). Clearly F[x]/(m(x)) is an n dimensional vector
space over F spanned by the monomials 1, x, . . . , xn−1.

Let f (x) be a polynomial from F[x] and r(x) be its remainder on division by
m(x). We denote

r(x) = f (x) mod m(x).

160 5 Polynomials

Wewill alsowrite f (x) ≡ g(x) mod m(x) if f (x) mod m(x) = g(x) mod m(x).
Note that f (x) mod m(x) belongs to F[x]/(m(x)) for all f (x) ∈ F[x].

Let us nowconvert F[x]/(m(x)) into a ring2 by introducing the following addition
and multiplication:

f (x) ⊕ g(x) := (f + g)(x) mod m(x), (5.5)

f (x) � g(x) := f g(x) mod m(x). (5.6)

Note that the “new” addition is not really new as it coincides with the old one.
But we do indeed get a new multiplication. All properties of a commutative ring for
F[x]/(m(x)) can be easily verified.

Example 5.2.1 Let us consider the ringR[x]/(x2 + 1). Since deg (x2 + 1) = 2, this
is two-dimensional space over the reals with basis {1, x}. The addition is

(a · 1 + bx) ⊕ (c · 1 + dx) = (a + c) · 1 + (b + d)x,

and the multiplication

(a · 1 + bx) � (c · 1 + dx) = ac · 1 + (ad + bc)x + bdx2

≡ (ac − bd) · 1 + (ad + bc)x .

One must be able to recognise the complex numbers (with x playing the role of i).
In mathematical language the ring R[x]/(x2 + 1) is said to be isomorphic to C.

As in the case of the integers, and by using the same approach, we can prove

Theorem 5.2.1 F[x]/(m(x)) is a field if and only if m(x) is irreducible over F.

Proof Suppose m(x) is of degree n and is irreducible over F . Then we need to
show that every nonzero polynomial f (x) ∈ F[x]/(m(x)) is invertible. We know
that deg (f) < n. Since m(x) is irreducible we have gcd(f ,m) = 1 and by the
extended Euclidean logrithm we can find a(x), b(x) ∈ F[x] such that a(x) f (x) +
b(x)m(x) = 1. Let us dividea(x) bym(x)with remainder:a(x) = q(x)m(x) + r(x)
and substitute into the previous equation. We will obtain

r(x) f (x) + (q(x) f (x) + b(x))m(x) = 1.

This means that r(x) � f (x) = 1 in F[x]/(m(x)), thus f (x) is invertible and r(x)
is its inverse.

On the other hand, if m(x) is not irreducible, we can write m(x) = n(x)k(x),
which will lead to n(x) � k(x) = 0 in F[x]/(m(x)). Then, having divisors of zero,
by Lemma 1.4.2 F[x]/(m(x)) cannot be a field. �

2Those familiar with basics of abstract algebra will recognise the quotient-ring of F[x] by the
principal ideal generated by m(x).

5.2 Finite Fields 161

Fromnowon,wewill not use the special symbols⊕ and� to denote the operations
in F[x]/(m(x)); this will invite no confusion.

Example 5.2.2 Prove that K = Z2[x]/(x4 + x + 1) is a field, and determine how
many elements it has. Then find (x3 + x2)−1.

Solution To prove that K is a field we must prove that m(x) = x4 + x + 1 is irre-
ducible. If it were reducible, then it would have a factor of degree 1 or 2. Since
m(0) = m(1) = 1, it does not have linear factors. So, if it is reducible, the only pos-
sibility left is that it is the square of the only irreducible polynomial of degree 2, that
is (x2 + x + 1)2 = x4 + x2 + 1. This does not coincide with m(x), hence m(x) is
irreducible. Hence K is a field. Since dimZ2 K = deg (m(x)) = 4, K has 24 = 16
elements.

By using the extended Euclidean algorithm we get

x4 + x + 1 1 0
x3 + x2 0 1

x2 + x + 1 1 x + 1
x x x2 + x + 1
1 x2 + x + 1 x3 + x

Thus (x3 + x2)−1 = x3 + x . �

Example 5.2.3 Let us continue to investigate K = Z2[x]/(x4 + x + 1) for a while.
We know that, as a finite field, K must have a primitive element, in fact φ(15) = 8 of
them. The polynomial x4 + x + 1 is very convenient since x is one of the primitive
elements of K . Let us compute powers of x and place all elements of K in the
following table below.

Note that x15 = 1, so logs are manipulated mod 15. We have now two different
representations of elements of K : as tuples (or polynomials) and as powers. The
first representation is best for calculating additions and the second for calculating
multiplications and inverses.

162 5 Polynomials

4-tuple Polynomial Power of x Logarithm
0000 0
1000 1 1 0
0100 x x 1
0010 x2 x2 2
0001 x3 x3 3
1100 1 + x x4 4
0110 x + x2 x5 5
0011 x2 + x3 x6 6
1101 1 + x + x3 x7 7
1010 1 + x2 x8 8
0101 x + x3 x9 9
1110 1 + x + x2 x10 10
0111 x + x2 + x3 x11 11
1111 1 + x + x2 + x3 x12 12
1011 1 + x2 + x3 x13 13
1001 1 + x3 x14 14

The following calculations clarify the use of this table:

1. (1 + x2)−1 = (x8)−1 = x−8 = x15−8 = x7 = 1 + x + x3.
2. log(x + x2 + x3) = 11 and log(1 + x + x2 + x3) = 12. Thus log(x + x2 + x3)

(1 + x + x2 + x3) = (11 + 12) mod 15 = 8, hence (x + x2 + x3)(1 + x +
x2 + x3) = 1 + x2.

Theorem 5.2.1 allows us to construct a field of cardinality pn for any prime p and
any positive integer n. All we need to do is to take Zp and an irreducible polynomial
m(x) of degree n. Then Zp[x]/(m(x)) is the desired field. In this book we will not
prove that for any p and any positive integer n such a polynomial indeed exists
(although it does!). Moreover, for any prime p and positive integer n the field of pn

elements is unique up to an isomorphism. This is why it is denoted G F(pn) and
called the Galois3 field of cardinality pn . Again, proving its uniqueness is beyond
the scope of this book.

Theorem 5.2.2 For any prime p and any positive integer n there exists a unique, up
to an isomorphism, field G F(pn) consisting of pn elements.

In the advanced encryption standard (AES) algorithm adopted in 2001, the field
GF(28) is used for calculations. This field is constructedwith the use of the irreducible
polynomial m(x) = x8 + x4 + x3 + x + 1.

3See Sect. 3.1.3 for a brief historic note about this mathematician.

5.2 Finite Fields 163

Exercises
1. Use the extended Euclidean algorithm to find the (multiplicative) inverse of β =

1 + x + x2 + x3 in F = Z2[x]/(x5 + x3 + 1).
2. Let F = Z3[x]/(x2 + 2x + 2).

(a) Prove that F is a field.
(b) List all elements of F .
(c) Show that 2x + 1 is a primitive element in F by calculating all powers of

2x + 1 and constructing the “logarithm table” as in Example 5.2.3.
(d) Using the “logarithm table” which you created in part (c), calculate

2x7(x + 1)−5(2x + 2) + (x + 2)5.

(e) How many primitive elements are there in the field F? List them all.

3. Generate a field consisting of 16 elements using GAP. It will give you:

gap> F:=GaloisField(2ˆ4);
GF(2ˆ4)
gap> AsList(F);
[0*Z(2), Z(2)ˆ0, Z(2ˆ2), Z(2ˆ2)ˆ2, Z(2ˆ4), Z(2ˆ4)ˆ2, Z(2ˆ4)ˆ3, Z(2ˆ4)ˆ4,

Z(2ˆ4)ˆ6, Z(2ˆ4)ˆ7, Z(2ˆ4)ˆ8, Z(2ˆ4)ˆ9, Z(2ˆ4)ˆ11, Z(2ˆ4)ˆ12, Z(2ˆ4)ˆ13,
Z(2ˆ4)ˆ14]

(a) Explain why Z(24)5 and Z(24)10 are not listed among the elements.
(b) Using GAP find the polynomial in Z2[x] of smallest degree of which Z(24)7

is a root.

4◦. Let x5 + x4 + x2 + x + 1 ∈ Z2.

(a) Show that this polynomial is irreducible over Z2.
(b) Howmanyelements does thefield K = Z2[x]/(x5 + x4 + x2 + x + 1)have?

Which of the fields G F(pn) is it isomorphic to?
(c) Find (x3 + 1)−1 in K using extended Euclidean algorithm.

5◦. A field F with 9 elements can be constructed from Z3 as Z3[x]/(x2 + 1).
(a) Show that g = 2x + 1 is a primitive element in F by calculating all powers

of 2x + 1.
(b) Create the logarithm table for this field.
(c) How many primitive elements are in the field F? List them all.

164 5 Polynomials

5.2.2 Minimal Annihilating Polynomials

Let F and K be two fields such that F ⊆ K . We say that F is a subfield of K and
that K is an extension of F if the addition and multiplication in K , being restricted
to F , coincide with the operations in F of the same name.

Example 5.2.4 Elements 0 and 1 ofZ2 can be identifiedwith constant polynomials 0
and 1 of K = Z2[x]/(x4 + x + 1). So Z2 is a subfield of K = Z2[x]/(x4 + x + 1).

Definition 5.2.1 Let F ⊂ K be an extension of fields and a ∈ K . We say that a
polynomial f (t) ∈ F[t] is an annihilating polynomial of a if a is a root of f (t), i.e.,
f (a) = 0. (Please note that the coefficients of f (t) lie in F while a is an element
of K .) A polynomial f (t) ∈ F[t] is called the minimal annihilating polynomial of
a over F if it is an annihilating polynomial which is monic and of minimal possible
degree.

Example 5.2.5 In the extensionR ⊆ C, check that the polynomial f (t) = t2 − 2t +
2 is the minimal annihilating polynomial for a = 1 + i over R.

Solution Indeed, we have f (a) = (1 + i)2 − 2(1 + i) + 2 = 2i − 2 − 2i + 2 = 0
so f (t) is annihilating for a. At the same time there can be no linear annihilating
polynomial. Such polynomial would have real coefficients and hence would be of
the form g(t) = t − r , where r ∈ R. Substituting a will give (1 + i) − r = 0 which
is not possible. �

Exercise 5.2.1 Every complex number has an annihilating polynomial overRwhich
is at most quadratic.

Example 5.2.6 In the extension Z2 ⊆ Z2[x]/(x4 + x + 1) the polynomial f (t) =
t4 + t + 1 is the minimal annihilating polynomial for x .

Solution We note first that f (x) = x4 + x + 1 ≡ 0 mod x4 + x + 1, hence f (t)
is an annihilating polynomial for x . On the other hand, if it were possible to find
an annihilating polynomial of degree 3 or smaller, say g(t) = αt3 + βt2 + γt + δ1
with at least one coefficient nonzero, then

αx3 + βx2 + γx + δ1 = 0,

which means that 1, x, x2, x3 are linearly dependent over Z2. But this was a basis
of Z2[x]/(x4 + x + 1), so we have drawn a contradiction. �

Theorem 5.2.3 Let F ⊂ K be an extension of fields such that dimF K = n and
a ∈ K . Then the minimal annihilating polynomial for a has degree at most n.

5.2 Finite Fields 165

Proof Let us consider thefirstn + 1powers ofa, that is, 1 = a0, a, a2, . . . , an . Since
the dimension of K over F is n, these n + 1 vectors must be linearly dependent over
F . Thus there exist c0, c1, . . . , cn ∈ F , not all zero, such that

c01 + c1a + c2a2 + . . . + cnan = 0.

This is the same to say as f (a) = 0 for f (t) = c0 + c1t + . . . + cntn from F[t], so
we have found an annihilating polynomial of degree at most n. �

Theorem 5.2.4 Let F ⊂ K be an extension of fields and a ∈ K . Then

(i) The minimal annihilating polynomial of a is irreducible over F.
(ii) Every annihilating polynomial of a is a multiple of the minimal annihilating

polynomial of a.

Proof (i) Suppose that f (t) is the minimal annihilating polynomial of a and that it
is reducible, i.e., f (t) = g(t)h(t), where g(t) and h(t) can be considered monic and
each of degree strictly less than deg (f). Then 0 = f (a) = g(a)h(a), whence (no
zero divisors in K) either g(a) = 0 or h(a) = 0, which contradicts the minimality
of f (t).

(ii) Suppose that f (t) is the minimal annihilating polynomial of a and g(t) is any
other annihilating polynomial of a. Let us divide g(t) by f (t) with remainder:

g(t) = f (t)q(t) + r(t), r = 0 or deg (r) < deg (f).

We claim that r = 0. Otherwise we substitute a to obtain g(a) = f (a)q(a) + r(a)
or 0 = 0 + r(a), from which r(a) = 0 but the degree of r(t) is strictly smaller than
that of f (t), and thus we have arrived at a contradiction. �

For calculating the minimal annihilating polynomial we use the linear depen-
dency relationship algorithm (see description of it in Sect. 10.1). Suppose we need
to find the minimal annihilating polynomial of an element a ∈ K over a subfield
F of K . Suppose n = dimF K . We choose any basis B of K over F . Then every
element x ∈ K can be represented by its coordinate column [x]B relative to the basis
B. For element a ∈ K we consider the matrix A = ([1]B [a]B [a2]B . . . [an]B).
Its columns are linearly dependent (as any n + 1 vector in n-dimensional vec-
tor space). By row reducing A to its reduced echelon form we find the first
k such that {[1]B, [a]B, [a2]B, . . . , [ak]B} is linearly dependent. This reduced
row echelon form will also give us coefficients c0, c1, c2, . . . , ck−1 such that
c0[1]B + c1[a]B + c2[a2]B + . . . + ck−1[ak−1]B + [ak]B = 0. Then f (x) = xk +
ck−1xk−1 + . . . + c1x + c0 is the minimal annihilating polynomial of a over F .

Example 5.2.7 In the extension Z2 ⊆ Z2[x]/(x4 + x + 1), find the minimal anni-
hilating polynomial of a = 1 + x + x3.

166 5 Polynomials

Solution We calculate the coordinate tuples of the following powers of a:

a0 = (1 + x + x3)0 = 1 → 1000
a1 = (1 + x + x3)1 = 1 + x + x3 → 1101
a2 = (1 + x + x3)2 = 1 + x3 → 1001
a3 = (1 + x + x3)3 = x2 + x3 → 0011
a4 = (1 + x + x3)4 = 1 + x2 + x3 → 1011

These five are already linearly dependent, so we do not have to compute any fur-
ther powers. Now we use Linear Dependency Relationship Algorithm to find linear
dependency between these tuples. We place them as columns in a matrix and take it
to the row reduced echelon form:

⎛

⎜⎜⎝

1 1 1 0 1
0 1 0 0 0
0 0 0 1 1
0 1 1 1 1

⎞

⎟⎟⎠
rre f−→

⎛

⎜⎜⎝

1 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1

⎞

⎟⎟⎠ ,

fromwhich it follows that 1, a, a2, a3 are linearly independent (hence no annihilating
polynomials of degree ≤ 3) and that a4 = 1 + a3, whence the minimal annihilating
polynomial of a will be f (t) = t4 + t3 + 1.

Exercises
1. What is the dimension of the field F = G F(24) over its subfield F1 = G F(22)?
2. Let K = Z2[x]/(1 + x + x4) introduced in Example 5.2.3. Find the minimal

annihilating polynomial over Z2 for:

(a) α = 1 + x + x2;
(b) α = 1 + x .

3. Let K be the field K = Z2[x]/(x4 + x3 + 1). Then K is an extension of Z2.

(a) Create a table for K as in Example 5.2.3. Check that x is a primitive element
of this field.

(b) Find the minimal annihilator polynomials for x , x3 and x5 over Z2.
(c) Calculate (x100 + x + 1)(x3 + x2 + x + 1)15 + x3 + x + 1 in the most effi-

cient way and represent it as a power of x and as a polynomial in x of degree
at most 3.

4◦. Let m(x) be a minimal annihilating polynomial of a ∈ G F(pn) over G F(p).
Prove that m(x) divides x pn−1 − 1.

5◦. Let m1(x), . . . ,mk(x) be all of the distinct minimal annihilating polynomials for
nonzero elements of G F(pn) over G F(p). Prove that

k∏

i=1

mi (x) = x pn−1 − 1.

5.3 Permutation Polynomials and Applications 167

5.3 Permutation Polynomials and Applications

5.3.1 Permutation Polynomials

Let F = Zn where n ≥ 2 is a positive integer. A polynomial

f (x) =
k∑

i=0

ai xi , ai ∈ F

defines the function f : F → F (which we denote with the same letter f) given by

f (α) =
k∑

i=0

aiα
i .

(We have seen this in Sect. 5.1.1 in case F is a field.) As we have seen this func-
tion may not be a bijection (it can be identically zero even if F is a field). Those
polynomials for which this function is a bijection have numerous applications.

Definition 5.3.1 A polynomial f (x) ∈ F[x] is said to be a permutation polynomial
if the mapping α �→ f (α) from F to F is a bijection, i.e., onto and one-to-one.

Example 5.3.1 Let us consider the polynomial f (x) = x5 + 2x2 ∈ Z7[x]. Then we
have

f (0) = 0, f (1) = 3, f (2) = 5, f (3) = 2, f (4) = 6, f (5) = 4, f (6) = 1.

Hence this is a permutation polynomial. The permutation corresponding to this poly-
nomial will be

π f =
(
1 2 3 4 5 6 7
1 4 6 3 7 5 2

)
= (2 4 3 6 5 7),

i.e., this is a 6-cycle.

Example 5.3.2 The polynomial f (x) = x(2x + 1) is a permutation polynomial in
Z8[x]. We can check it with GAP:

gap> s:=[0,0,0,0,0,0,0,0];;

gap> for i in [1..8] do

> s[i]:=(2*(i-1)ˆ2+(i-1)) mod 8;

> od;

gap> s;

[0, 3, 2, 5, 4, 7, 6, 1]

For the general case of this statement see Exercise 1.

168 5 Polynomials

Proposition 5.3.1 Let F be a finite field. Then for every permutation polyno-
mial f (x) of F[x], there exists a unique polynomial f −1(x) of F[x] such that
f (f −1(x)) = f −1(f (x)) = x for all x ∈ F; it is called the (compositional) inverse
of f (x).

Proof Since f is a bijection, it has an inverse f −1. By Exercise 5 of Sect. 5.1.2 this
inverse must be a polynomial. �

Example 5.3.3 (Continuation of Example 5.3.1) The compositional inverse f −1(x)
can be calculated by Lagrange’s interpolation. GAP shows:

gap> InterpolatedPolynomial(GF(7),[0,3,5,2,6,4,1],[0,1,2,3,4,5,6]);
x_1ˆ5+Z(7)ˆ5*x_1ˆ2
gap> Int(Z(7)ˆ5);
5

So f −1(x) = x5 + 5x2.

If F is not a field, interpolation task becomes tricky. In particular, not every
function can be represented by a polynomial (see Exercise 2).

Example 5.3.4 Every linear polynomial f (x) = ax + b with a ∈ Z
∗
n is a permu-

tation polynomial in Z
∗
n . We know this since the compositional inverse is easy to

calculate: f −1(x) = a−1(x − b).

Example 5.3.5 If n = pq , where p and q are distinct primes, then for any pos-
itive integer e such that gcd(e,φ(n)) = 1 the monomial f (x) = xe mod n is a
permutation polynomial in Zn[x]. This must be true since we know from (2.3) that
f −1(x) = xd mod n, where d = e−1 mod φ(n).

5.3.2 Cryptosystem Based on a Permutation Polynomial

In RSA cryptosystem, as we seen in Example 5.3.5, the public-key encryption con-
sists in the evaluation of a permutation polynomial.We can generalise this as follows.
Let f (x) ∈ Zn[x] be a permutation polynomial whose compositional inverse is dif-
ficult to calculate without knowing the factorisation of n. The encryption will be the
evaluation of f (m) at a given value m which represents the plaintext:

c := f (m) mod n.

Obviously, for the permutation polynomial f (x) to be used in a practical public-key
scheme there must be an efficient algorithm to evaluate this polynomial. Such an
algorithm exists if f (x) has small degree, or small number of terms (then Square-
and-Multiply algorithm can be used).

5.3 Permutation Polynomials and Applications 169

The decryption is also implemented as the evaluation of the inverse polynomial
f −1, which is a private key, at the value which represents the ciphertext c:

m := f −1(c) mod n.

We can have f −1 as a private key since it is not feasible to calculate it without know-
ing the factorisation of n = pq which is a trapdoor. However, knowing this factori-
sation finding f −1 should be easy. In general, however, it is difficult to construct
permutation polynomials whose inverses are known or are not too complicated to
construct. J. Schwenk and K. Huber (1998) suggested a scheme in which a much
larger class of permutation polynomials can be used for which there is no easy algo-
rithm for calculation of f −1(c) even knowing the prime factorisation of n. The idea
is to find a unique root of the equation f (x) − c = 0 in Zn . This algorithm is based
on the following lemmas.

Lemma 5.3.1 Let n = pq, where p and q are distinct primes and let f (x) = ak xk +
. . . + a1x + a0 be a permutation polynomial in Zn. Then

f p(x) = ak xk + . . . + a1x + a0,

where ai = ai mod p, is a permutation polynomial in Zp.

Proof Let u ∈ Zp. Let us choose any v ∈ Zn such that u = v mod p. Since f (x)
is a permutation polynomial, there exist z ∈ Zn such that f (z) = v. Reducing this
equation modulo p we get f p(z̄) = u, where z̄ = z mod p. Hence f p : Zp → Zp is
onto. Since Zp is finite, f p is a bijection, hence a permutation polynomial. �

Lemma 5.3.2 Let f (x) ∈ Zp[x] be a permutation polynomial. Then for any a ∈ Zp

we have

gcd(f (x) − a, x p − x) = x − b

for some b ∈ Zp.

Proof As we know x p − x splits into linear factors x p − x = ∏
a∈Zp

(x − a) all of
which are distinct. At the same time f (x) − a has only one root, say b ∈ Zp and
is therefore equal to f (x) − a = (x − b)g(x), where g(x) has no roots in Zp and
therefore gcd(g(x), x p − x) = 1. The statement of the lemma follows. �

Now the decryption procedure for n = pq can proceed as follows. We find

gcd(f p(x) − a, x p − x) = x − u, gcd(fq(x) − a, xq − x) = x − v,

and then using the Chinese Remainder theorem we find c ∈ Zn such that u =
c mod p and v = c mod q .

170 5 Polynomials

Exercises
1. Prove that f (x) = x(2x + 1) is a permutation polynomial in Z2n [x].4
2. Let F = Z4. Consider the function

f (x) =
{
0 if x ∈ {0, 1};
1 if x ∈ {2, 3}.

Show that it cannot be represented as a polynomial in Z4[x].
3◦. Show that permutation polynomials in Zn form a group relative to the operation

of composition.

4In Rivest, Ronald L., et al. “The RC6 block cipher”. in First Advanced Encryption Standard (AES)
Conference. 1998 it was used that polynomial f (x) = x(2x + 1) is a permutation polynomial in
Zw[x], where w is the word size of the machine.

6Secret Sharing

The very word ’secrecy’ is repugnant in a free and open society;
and we are as a people inherently and historically opposed to
secret societies, to secret oaths, and to secret proceedings.

John F. Kennedy (1917–1963)

Secrecy is the first essential in affairs of state.

Cardinal Richelieu (1585–1642)

Certain cryptographic keys, such as missile launch codes, numbered bank accounts
and the secret decoding exponent in an RSA public-key cryptosystem, are so impor-
tant that they present a dilemma. If too many copies are distributed, one may be
leaked. If too few, they might all be lost or accidentally destroyed. Secret sharing
schemes invented by Shamir (1979) and Blakley (1979) address this problem and
allow arbitrarily high levels of confidentiality and reliability to be achieved. A secret
sharing scheme “divides” the secret s into “shares”—one for every user—in such
a way that s can be easily reconstructible by any authorised subset of users, but an
unauthorised subset of users can extract absolutely no information about s. A secret
sharing scheme, for example, can secure a secret over multiple servers and remain
recoverable despite multiple server failures.

Secret sharing also provides a mechanism to facilitate a cooperation—in both
human and artificial societies—when cooperating agents have different status with
respect to the activity and certain actions are only allowed to coalitions that satisfy
certain criteria, e.g., to sufficiently large coalitions or coalitions with players of
sufficient seniority or to coalitions that satisfy a combination of both criteria. The
banking systemwhere the employees are arranged into a hierarchy according to their
ranks or designations provides many examples. Simmons,1 for example, describe the
situation of a money transfer from one bank to another. If the sum to be transferred

1Simmons, G. (1990). How to (really) share a secret. In: Proceedings of the 8th annual international
cryptology conference on advances in cryptology (pp. 390–448). London, UK: Springer-Verlag.

© Springer Nature Switzerland AG 2020
A. Slinko, Algebra for Applications, Springer Undergraduate Mathematics Series,
https://doi.org/10.1007/978-3-030-44074-9_6

171

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44074-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-44074-9_6

172 6 Secret Sharing

is sufficiently large, this transaction must be authorised by three senior tellers or two
vice-presidents. However, two senior tellers and a vice-president can also authorise
the transaction. Tassa2 provides another banking scenario. The shares of the vault
key may be distributed among bank employees, some of whom are tellers and some
are department managers. The bank policy could require the presence of, say, three
employees in opening of the vault, but at least one of them must be a departmental
manager.

6.1 Introduction to Secret Sharing

6.1.1 Access Structure

More formally, we assume that the set of users is U = {1, 2, . . . , n} and D is the
dealer who facilitates secret sharing.3 It is always assumed that the dealer knows the
secret.

Definition 6.1.1 Let 2U be the power set4 of the set of all users U . The set � ⊆ 2U

of all authorised coalitions is called the access structure of the secret sharing scheme.
An access structure � is any subset of 2U such that

X ∈ � and X ⊆ Y , then Y ∈ �. (6.1)

The condition in the definition of an access structure is called the monotone
property, and it reflects the natural requirement that if a smaller coalition knows the
secret, then the larger one will know it too. The access structure is public knowledge,
and all users know it.

Let � ⊆ 2U be an access structure. A coalition C ⊆ U is called minimal autho-
rised coalition if it is authorised and any proper subset of C is not authorised. Due
to the monotone property (6.1) the access structure is completely defined by the set
�min of its minimal authorised coalitions.

We assume that every user participates in at least oneminimal authorised coalition.
If not, such a user never brings a useful information to any coalition of users, is
redundant and called a dummy.

Example 6.1.1 The threshold access structure “k-out-of-n” consists of all subsets
of 2U consisting of k or more users.

According to Time Magazine, May 4, 1992, a typical threshold access structure
was realised in USSR. The three top state officials, the President, the Prime Minister

2Tassa, T. (2007). Hierarchical threshold secret sharing. Journal of Cryptology, 20, 237–264.
3The dealer is not necessarily a person, this can be a computer.
4The set of all subsets of U .

6.1 Introduction to Secret Sharing 173

and the Minister of Defence, each had the so-called nuclear suitcase and any two
of them could authorise a launch of a nuclear warhead. No one of them could do it
alone. So it was two-out-of-three threshold scheme.

In a two-out-of-three scheme U = {1, 2, 3} and �min = {{1, 2}, {1, 3}, {2, 3}}.
We see that all users are equally important. If however, U = {1, 2, 3} and �min =
{{1, 2}, {1, 3}}, then user 1 is much more important than the two other users. Without
user 1 the secret cannot be accessed. But user 1 is not almighty. To access the secret,
she needs to join forces with at least one other user.

Here is a couple of real-life examples.

Example 6.1.2 Consider the situation of a money transfer from one bank to another.
If the sum to be transferred is sufficiently large, this transaction must be authorised
by three senior tellers or two vice-presidents. However, two senior tellers and a
vice-president can also authorise the transaction.

Example 6.1.3 The United Nations Security Council consists of five permanent
members and ten non-permanent members. The passage of a resolution requires that
all five permanent members vote for it and also at least nine members in total.

Wewill deal with threshold access structures first. A very elegant construction, by
Shamir, realising the threshold access structure is based on Lagrange’s interpolation
polynomial and will be presented in the next section.

Exercises
1. Let U = {1, 2, 3, 4} and �min = {{1, 2, 3}, {3, 4}}. List all authorised coalitions.
2. Write down the minimal authorised coalitions for the access structure in Exam-

ple 6.1.2. Assume that the vice-presidents are users 1 and 2 and the senior tellers
are users 3, 4, 5.

3. Find the number of minimal authorised coalitions in Example 6.1.3.
4. Let U1 and U2 be disjoint sets of users and let �1 and �2 be access structures over

U1 and U2, respectively. Let U = U1 ∪ U2. Then

(a) The sum of�1 and�2 is�1 + �2 = {X ⊆ U | X ∩ U1 ∈ �1 or X ∩ U2 ∈ �2}.
Prove that �1 + �2 is an access structure.

(b) The product of�1 and�2 is�1 × �2 = {X ⊆ U | X ∩ U1 ∈ �1 and X ∩ U2 ∈
�2}. Prove that �1 × �2 is an access structure.

6.1.2 Shamir’s Threshold Access Scheme

In this section we will look at one particular application of polynomials to cryptog-
raphy, namely to secret sharing.

Suppose that the secret is a string of zeros and ones. We may assume that it is
the binary representation of a positive integer s. We choose a prime p which is

174 6 Secret Sharing

sufficiently large. Then the field Zp is large and we may assume that s ∈ Zp without
danger that it can be easily guessed. Thus our secret will always be an element of a
finite field.

Suppose n users wish to share this secret by dividing it into “pieces” in such a
way that any k people, where k is a fixed positive integer not exceeding n, can learn
the secret from their pieces, but no subset of less than k people can do so. Here the
word “dividing” must not be understood literally. Shamir proposed the following
elegant solution to this problem. The secret can be “divided into pieces” as follows.
The dealer:

1. generates k random coefficients t0, t1, . . . , tk−1 ∈ Zp and sets the secret s to be
t0;

2. forms the polynomial p(x) = ∑k−1
i=0 ti xi ∈ Zp[x];

3. gives user i the “piece” p(i), for i = 1, . . . , n. Practically it can be an electronic
card where a pair of numbers (i, p(i)) is stored.

Now, given any k values for p(x), one can use Theorem5.1.2 to interpolate and to find
all coefficients of p(x) including the secret t0 = s. However, due to Corollary 5.1.1,
a subset of k−1 values for p(x) provides absolutely no information about s, since for
any possible s there is a polynomial of degree k−1 consistent with the given values
and the possible value of s.

Example 6.1.4 The company Dodgy Dealings Inc. has four directors. According to
a clause in the company’s constitution any three of them are allowed to get access to
the company’s secret offshore account. The company sets up a Shamir’s threshold
access secret sharing scheme for facilitating this clause with the secret password
being an element of Z7. According to this scheme the system administrator issued
magnetic cards to the directors as required.

Suppose that three directors with the following magnetic cards

1
3

2
0

4
6

gathered to make a withdrawal from their offshore account. Show how the secret
password can be calculated.

Solution A quadratic polynomial p(x) = t0 + t1x + t2x2 ∈ Z7[x] satisfies

p(1) = 3, p(2) = 0, p(4) = 6;
given that, we must find c. Using the Lagrange interpolation formula

p(x) = 3
(x − 2)(x − 4)

(1 − 2)(1 − 4)
+ 6

(x − 1)(x − 2)

(4 − 1)(4 − 2)
= 3

(x + 5)(x + 3)

3
+ 6

(x + 6)(x + 5)

6

6.1 Introduction to Secret Sharing 175

= (x2 + x + 1) + (x2 + 4x + 2) = 2x2 + 5x + 3,

hence the secret is t0 = 3. �
If in Shamir’s scheme the enumeration of users is publicly known, then only the

value p(i) must be given to the i th user. In this case the secret s and each share p(i)
are both an element of the same field and need the same number of binary digits to
encode them. As we will see one cannot do any better.

Exercises
1. According to the three-out-of-four Shamir’s threshold secret sharing scheme with

the secret in Z7 the administrator issued electronic cards to the users:

1
4

2
4

3
x

4
0

(a) Show how the secret can be calculated by users 1,2 and 4.
(b) Find x and determine the card of user 3.

2. Shamir’s secret sharing scheme is set up so that the secret is an element of Z31
and the threshold is 3 which means that any three users are authorised. Show how
the secret can be reconstructed from the shares

1
16

5
7

7
22

3. The league club Crawlers United has six senior board members. Each year the
club holds an anniversary day, and on this day the senior board members have a
duty to open the club vault, take out the club’s meagre collection of trophies and
put them on display. According to a clause in the club’s constitution any four of
them are allowed to open the vault. The club sets up a Shamir’s threshold access
secret sharing scheme for facilitating this clause with the secret password being
an element of Z97. According to this scheme the administrator issued electronic
cards to the senior board members as required.
Suppose that four senior board members are gathered to open the vault with the
following cards:

1
56

2
40

4
22

6
34

(a) Show how the secret password can be calculated.
(b) Guess which cards were given to the two remaining senior board members?
Hint: Use GAP commands InterpolatedPolynomial and Value.

176 6 Secret Sharing

4◦. Suppose you are an army cryptographer. In the army there are oneGeneral and five
Lieutenant Generals. Your mission is to design a secret sharing scheme allowing
one General and one Lieutenant General or five Lieutenant Generals to fire a
missile. Accomplish your mission (You may give more than one share to an
individual.).

5◦. There are four persons A, B, C, D in a room, and one of them is a foreign spy.
Other three participants share a secret using the Shamir’s threshold scheme with
secret in Zp, where p = 11 such that any two of them can recover the secret. The
foreign spy chooses his share randomly. As a result, these four participants have
the following four shares:

1
7

3
0

5
10

7
9

Find out who is the foreign spy and calculate the secret.

6.2 A General Theory of Secret Sharing Schemes

6.2.1 General Properties of Secret Sharing Schemes

Let us see now how we can define a secret sharing scheme formally.
Let S0, S1, . . . , Sn be finite sets where S0 will be interpreted as a set of all possible

secrets and Si will be interpreted as a set of all possible shares that can be given to
user i . Suppose |Si | = mi . We may think of a very large table, consisting of up to
M = m0m1 · · · mn rows, where each row contains a tuple

(s0, s1, . . . , sn), (6.2)

where si comes from Si (and all rows are distinct). Mathematically, the set of all such
(n + 1)-tuples is denoted by the Cartesian product S0 × S1 × . . . × Sn . Any subset

T ⊆ S0 × S1 × . . . × Sn

of this Cartesian product is called a distribution table. Thus T consists of several
rows like the one shown in (6.2). If a secret s0 ∈ S0 is to be distributed among users,
then one (n + 1)-tuple

(s0, s1, . . . , sn) ∈ T
is chosen by the dealer from T at random uniformly among those tuples whose first
coordinate is s0. Then user i gets the share si ∈ Si .

There is only one but essential component of a secret sharing scheme that we
have not introduced yet. We must ensure that every authorised coalition must be

6.2 A General Theory of Secret Sharing Schemes 177

able to recover the secret. Thus we need to have, for every authorised coalition
X = {i1, i2, . . . , ik} ∈ � a secret recovery function (algorithm)

fX : Si1 × Si2 × . . . × Sik → S0

with the property that fX (si1 , si2 , . . . , sik) = s0 for every (s0, s1, s2, . . . , sn) ∈ T . In
particular, in the distribution table there cannot be tuples (s, . . . , si1 , . . . , si2 , . . . ,

sik , . . .) with s �= s0.

Example 6.2.1 Let us consider a secret sharing scheme for n = 3 users, � =
{{1, 2}, {1, 3}} with Si = Z3 for i = 0, 1, 2, 3 and the distribution table

T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

D 1 2 3
0 0 0 0
1 1 1 2
0 1 2 1
1 2 0 0
2 2 2 1
0 2 1 2
2 1 0 0
1 0 2 1
2 0 1 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (6.3)

The two secret recovery functions s0 = f{1,2}(s1, s2) and s0 = f{1,3}(s1, s2) can be
given by the tables

s1 s2 f{1,2}(s1, s2)
0 0 0
1 0 2
0 1 2
1 1 1
0 2 1
2 0 1
1 2 0
2 1 0
2 2 2

s1 s3 f{1,3}(s1, s3)
0 0 0
1 0 2
0 1 1
1 1 0
0 2 2
2 0 1
1 2 1
2 1 2
2 2 0

respectively. Note that the function f{2,3} does not exist. Indeed, when (s2, s3) =
(0, 0) the secret s0 can take values 0, 1, 2 so f{2,3}(0, 0) is not defined.

Example 6.2.2 (n-out-of-n scheme) Let us design a secret sharing scheme with n
users such that the only authorised coalition is the grand coalition, that is the set
U = {1, 2, . . . , n}. We need a sufficiently large finite field F and set S0 = F so
that it is infeasible to try all secrets one by one. We will also have Si = F for all
i = 1, . . . , n.

178 6 Secret Sharing

To share a secret s ∈ F , the dealer generates n − 1 random elements
s1, s2, . . . , sn−1 ∈ F and calculates sn = s − (s1 + . . . + sn−1). Then he gives share
si to user i . The distribution table T will consist of all n-tuples (s0, s1, s2, . . . , sn)

such that
∑n

i=1 si = s0 and the secret recovery function (in this case the only one)
will be fU (s1, s2, . . . , sn) = s1 + s2 + . . . + sn .

The distribution table is convenient for defining the secret sharing scheme, how-
ever, in practical applications it is normally huge so schemes are normally defined
differently.

Definition 6.2.1 A secret sharing scheme realising access structure � is called per-
fect if for every non-authorised coalition of users { j1, j2, . . . , jm} ⊂ U , for every
sequence of shares s j1 , s j2 , . . . , s jm with s jr ∈ S jr , and for every two possible secrets
s, s′∈S0 the distribution tableT contains asmany tuples (s, . . . , s j1 , s j2 , . . . , s jm , . . .)

as tuples (s′, . . . , s j1 , s j2 , . . . , s jm , . . .).

In other words, if the scheme is perfect a non-authorised coalition
X = { j1, j2, . . . , jm} with shares s j1 , s j2 , . . . , s jm will have no reason to believe
that the secret s was more likely chosen than any other secret s′. For example, in
Example 6.2.1 if users 2 and 3 have shares 2 and 1, respectively, they will observe
the following rows of T

D 1 2 3
0 1 2 1
2 2 2 1
1 0 2 1

and will be unable to determine which row was chosen by the dealer. So the scheme
in that example is perfect.

The scheme from Example 6.2.2 is obviously perfect. Let us have another look at
the perfect secret sharing scheme invented by Shamir and specify the secret recovery
functions.

Example 6.2.3 (Shamir 1979) Suppose that we have n users and the access structure
is now � = {X ⊆ U | |X | ≥ k}, i.e., a coalition is authorised if it contains at least k
users. Let F be a large finite field and we will have Si = F for i = 0, 1, . . . , n. Let
a1, a2, . . . , an be distinct fixed publicly known nonzero elements of F (in the earlier
example we took ai = i).

Suppose s ∈ F is the secret to share. The dealer generates randomly t0, t1, . . . ,
tk−1 ∈ F , sets s = t0, and forms the polynomial

p(x) = t0 + t1x + · · · + tk−1xk−1. (6.4)

Then she gives the share si = p(ai) to user i . Note that s = p(0).

6.2 A General Theory of Secret Sharing Schemes 179

Suppose now X = {i1, i2, . . . , ik} be a minimal authorised coalition. Then the
secret recovery function is

fX (si1 , si2 , . . . , sik) =
k∑

r=1

sir
(−ai1) . . . (̂−air) . . . (−aik)

(air − ai1) . . . ̂(air − air) . . . (air − aik)
,

where the hat over the term means its non-existence. This is the value at zero of the
Lagrange’s interpolation polynomial

k∑

r=1

p(air)
(x − ai1) . . . ̂(x − air) . . . (x − aik)

(air − ai1) . . . ̂(air − air) . . . (air − aik)
,

which is equal to p(x).

We now may use the idea in Example 6.2.2 to construct a perfect secret sharing
scheme for an arbitrary access structure �. We will illustrate this method in the
following

Example 6.2.4 Let U = {1, 2, 3, 4} and �min = {{1, 2}, {2, 3}, {3, 4}}. Let s ∈ Zp

be a secret. Firstly we consider three coalitions of users {1, 2}, {2, 3} and {3, 4}
separately and build two-out-of-two schemes on each of these sets of users. Under
the first scheme users 1 and 2 will get shares a and s − a, under the second scheme
users 2 and 3 get shares b and s − b and under the third scheme users 3 and 4 get
shares c and s − c. Thus altogether users will get the following shares:

1 ← a,

2 ← (s − a, b),

3 ← (s − b, c),

4 ← s − c.

Let us show that this scheme is perfect. For this we have to consider every maximal
non-authorised coalition and show that it has no clue about the secret. It is easy
to see that every coalition of three or more players is authorised. So the maximal
non-authorised coalitions will be {1, 3}, {1, 4}, {2, 4}. The coalition {1, 3}will know
values a, s − b and c. Since a, b, c were chosen randomly and independently, a,
s − b and c are also three random independent values which contain no information
about s. Similar for {1, 4} and {2, 4}. Note that under this scheme users 2 and 3 will
have to hold as their shares as two elements of Zp each. Their shares will be twice
as long as the secret (in binary representation).

180 6 Secret Sharing

This can be developed into a general method that allows to prove:

Theorem 6.2.1 For any access structure � there exists a perfect secret sharing
scheme which realises it.

Sketch of Proof Let us consider the set �min of all minimal authorised coalitions.
Suppose they are W1, W2, . . . , Wq and their cardinalities are m1, m2, . . . , mq . We
consider then q separate smaller access structures where the i th one will be defined
on the set of users Wi andwill be anmi -out-of-mi access structure. Let si be the share
received by user i in this reduced access structure. So, in total, user i receives the vec-
tor of shares (s1, s2, . . . , sq). As the access structure is public knowledge, user i will
use his share si only when an authorised coalition with his participation contains Wi .
If a coalition is not authorised, then it does not contain any of the W1, W2, . . . , Wq ,
and it is possible to show that its participants cannot get any information about the
secret. �

Under this method if a user belongs to k minimal authorised coalitions, then she
will receive k elements of the field to hold as her share.

Suppose 2d−1 ≤ |S0| < 2d or �log2 |S0|� = d. Then we can encode elements of
S0 (secrets) using binary strings of length d. In this case we say that the length of
the secret is d. Similarly we can talk about the lengths of the share that user i has
received. We say that the information ratio of the secret sharing scheme S is

i(S) = n
max
i=1

�log2 |Si |�
�log2 |S0|� .

This number is themaximal ratio of the amount of information that must be conveyed
to a participating user to the amount of information that is contained in the secret. In
the secret sharing literature it is also common to use the term information rate, which
is the inverse of the information ratio. The information ratio of the scheme constructed
in Theorem 6.2.1 is terrible. For example, for the (n

2 + 1)-out-of-n scheme (assume
that n is even) every user belongs to

(n
n/2

)
authorised coalitions, which by Stirling’s

formula grows approximately as 2n/
√

n. More precisely, we will have

i(S) ∼
√
2

π
· 2n

√
n
,

i.e., the information ratio of such scheme grows exponentially with n. We know we
can do much better: The information ratio of Shamir’s scheme is 1. However, for
some access structures the information ratio can be large. It is not exactly known
how large it can be.

6.2 A General Theory of Secret Sharing Schemes 181

Exercises
1. Consider the secret sharing scheme with the following distribution table.

s0 s1 s2 s3 s4 s5 s6
0 0 0 1 1 2 2
0 0 0 2 2 1 1
0 1 1 2 2 0 0
0 1 1 0 0 2 2
0 2 2 0 0 1 1
0 2 2 1 1 0 0
1 0 1 1 2 2 0
1 0 2 2 1 1 0
1 1 2 2 0 0 1
1 1 0 0 2 2 1
1 2 0 0 1 1 2
1 2 1 1 0 0 2

(a) What is the domain of secrets? What is the domain of shares?
(b) Show that the coalition of users {1, 2} is authorised but {1, 3, 5} is not.
(c) Give the table for the secret recovery function for the coalition {1, 2}.

2◦. Design a perfect secret sharing scheme for the access structure

{{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3, 4, 5}}

on the set of users U = {1, 2, 3, 4, 5}.
3◦.Let � be an access structure on the set of users U . We say that a coalition X ⊆ U

is blocking if its complement Xc is not authorised. The set �∗ = {X ⊆ U |
Xc /∈ �} is the set of all blocking coalitions. Prove that �∗ is also an access
structure, called the access structure dual to �.

4◦.What is �∗, if � is k-out-of-n threshold access structure?

6.2.2 Linear Secret Sharing Schemes

Let us look at Shamir’s scheme from a different perspective. We can observe that the
vector of the shares (where we think that the secret is the share of the dealer) can be
obtained by the following matrix multiplication as

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 . . . 0
1 a1 a2

1 . . . ak−1
1

1 a2 a2
2 . . . ak−1

2
.

1 an a2
n . . . ak−1

n

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

t0
t1
...

tk−1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

p(0)
p(a1)

...

p(an)

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

s0
s1
...

sn

⎤

⎥
⎥
⎥
⎦

, (6.5)

182 6 Secret Sharing

where p(x) is the polynomial (6.4). Since all a1, a2, . . . , an are assumed to be dif-
ferent and nonzero, any k rows of the matrix in (6.5) are linearly independent since
the determinant of the matrix formed by these rows is the well-known Vandermonde
determinant (10.4) which is nonzero. This is why any k users can learn all the coeffi-
cients t0, t1, t2, . . . , tk−1 of p(x), including its constant term t0 (which is the secret).

Let us write (6.5) in the matrix form as H t = s, where

H =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 . . . 0
1 a1 a2

1 . . . ak−1
1

1 a2 a2
2 . . . ak−1

2
.

1 an a2
n . . . ak−1

n

⎤

⎥
⎥
⎥
⎥
⎦

, t =

⎡

⎢
⎢
⎢
⎣

t0
t1
...

tk−1

⎤

⎥
⎥
⎥
⎦

, s =

⎡

⎢
⎢
⎢
⎣

s0
s1
...

sn

⎤

⎥
⎥
⎥
⎦

, (6.6)

and denote the rows of H as h0,h1,h2, . . . , hn . Then the following is true: The span
of a group of distinct rows {hi1 , hi2 , . . . , hir }, none of which is h0, contains h0 if and
only if r ≥ k. We may now define the k-out-of-n access structure as follows:

�H = {{i1, i2, . . . , is} ⊆ U | h0 ∈ span{hi1 ,hi2 , . . . ,his }}. (6.7)

This can be generalised by considering matrices H other than the one in (6.6).

Theorem 6.2.2 (Linear Secret Sharing Scheme) Let H be an arbitrary (n + 1) × k
matrix with coefficients in a finite field F. Let h0,h1, . . . , hn be the rows of H. Let
us define a secret sharing scheme on the set of users U = {1, 2, . . . , n} as follows.
Choose the coefficients of vector t = (t0, t1, . . . , tk−1) randomly, calculate the vec-
tor s = (s0, s1, . . . , sn) from the equation H t = s, declare s0 to be the secret and
s1, s2, . . . , sn the shares of users 1, 2, . . . , n, respectively. Then this is a perfect secret
sharing scheme realising the access structure �H defined as in (6.7).

Proof Suppose h0 is in the span of {hi1 , hi2 , . . . , hir }. Then

h0 = λ1hi1 + λ2hi2 + . . . + λrhir ,

where the coefficients λ1,λ2, . . . ,λr can be found by solving this system of linear
equations. Multiplying both sides of this equation by t we obtain

s0 = λ1si1 + λ2si2 + . . . + λr sir , (6.8)

hence the secret s0 can be calculated from the shares of users i1, i2, . . . , ir .
Suppose now that h0 is not in the span of {hi1 ,hi2 , . . . ,hir }.Without loss of gener-

ality wemay assume that i1 = 1, . . . , ir = r , i.e., that there are users 1, 2, . . . , r with
their shares s1, s2, . . . , sr and thath0 is not a linear combination of theh1,h2, . . . , hr .
Let Hr be the matrix with rows h1,h2, . . . ,hr and Hr be the matrix with rows
h0, h1, . . . ,hr. By the assumption we have rank(Hr) = rank(Hr) + 1.

6.2 A General Theory of Secret Sharing Schemes 183

Let also sr be the column vector with entries s1, s2, . . . , sr and s̄r be the column
vector with entries s0, s1, s2, . . . , sr . Since the system

Hr t = sr (6.9)

is consistent we have rank(Hr | sr) = rank(Hr), where (Hr | sr) is the augmented
matrix of the system (6.9). As the matrix (Hr | s̄r) is obtained by adding just one
row to (Hr | sr) its rank is either the same or larger by 1. On the other hand, it is
not smaller than the rank of Hr . Since rank(Hr) = rank(Hr) + 1 it will be true that
rank(Hr | s̄r) = rank(Hr), and this system is consistent for every s0. Since the dimen-
sion and hence the cardinality—remember F is finite—of the solution is determined
by the rank of Hr only, we will have the same number of solutions to the equation
Hr t = s̄r no matter what s0 was. So members of the coalition {i1, i2, . . . , ir } will be
unable to identify s0, hence this coalition is not authorised. �

The following corollary will be very useful later.

Corollary 6.2.1 For an authorised coalition X = {i1, i2, . . . , ir } the secret recovery
function fX is linear in the shares.

Proof Due to (6.8) we have

fX (si1 , . . . , sir) = λ1si1 + λ2si2 + . . . + λr sir ,

where λ1,λ2, . . . ,λr do not depend on the shares. �

Example 6.2.5 Let U = {1, 2, 3} and �min = {{1, 2}, {1, 3}}. We can realise this
access structure by a linear scheme. Consider the matrix

H =

⎡

⎢
⎢
⎣

1 0
1 1
1 −1
2 −2

⎤

⎥
⎥
⎦ .

The dealer may choose two random elements t0, t1 from a field Z p for some large
prime p and calculate

⎡

⎢
⎢
⎣

s0
s1
s2
s3

⎤

⎥
⎥
⎦ = H

[
t0
t1

]

,

where s0 is taken as the secret, and s1, s2 and s2 are given as shares to users 1,2 and
3, respectively. (Note that s0 = t0.) If users 1 and 2 come together, they can find t0
and t1 from the system of linear equations

[
1 1
1 −1

] [
t0
t1

]

=
[

s1
s2

]

184 6 Secret Sharing

because the determinant of this system is nonzero. Similarly, 1 and 3 also can do
this. But, if 2 and 3 come together, they will face the system

[
1 −1
2 −2

] [
t0
t1

]

=
[

s2
s3

]

,

which has exactly p solutions. Their shares therefore provide them with no informa-
tion about t0 and hence s0.

Exercises
1. Determine the minimal authorised coalitions for the access structure realised by

the linear secret sharing scheme with the matrix

H =

⎡

⎢
⎢
⎢
⎢
⎣

1 0
1 1
2 −2
3 3
4 −4

⎤

⎥
⎥
⎥
⎥
⎦

over Z11.
2. Let F be a sufficiently large field Zp. Find the access structure which is realised

by the linear secret sharing scheme with the matrix

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
1 1 1
1 2 4
1 3 9
0 0 1
0 0 2
0 0 3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

3. Let F be a sufficiently large field. Find the access structure which is realised by
the linear secret sharing scheme with the matrix

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
1 1 0
1 2 0
1 3 32

1 4 42

1 5 52

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

6.2 A General Theory of Secret Sharing Schemes 185

4. Let F be a sufficiently large field. Find the access structure which is realised by
the linear secret sharing scheme with the matrix

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
1 a1 0
1 a2 0
1 a3 a2

3

1 a4 a2
4

1 a5 a2
5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where a1, . . . , a5 are distinct nonzero elements of the field F .
5. A linear secret sharing scheme for the group of usersU = {1, 2, 3, 4, 5} is defined

by the matrix over Z31:

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

h0
h1
h2
h3
h4
h5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
1 2 3 0
1 3 3 0
11 5 2 0
0 1 1 2
0 6 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

These users got shares 2, 27, 20, 10, 16, respectively, which are also elements of
Z31. Let A = {1, 2, 3} and B = {1, 4, 5} be two coalitions.

(a) Show that one of the coalitions is authorised and the other is not.
(b) Show how the authorised coalition can determine the secret.

6. Let H be an (n + 1) × k matrix over a field F and �H be the access structure
defined by the formula (6.7). Let us represent the i th row hi of this matrix as hi =
(ci ,h′

i), where ci ∈ F is the first coordinate of hi and h′
i is a (k − 1)-dimensional

row vector of the remaining coordinates. Suppose the coalition {i1, i2, . . . , ir } is
not authorised in �H . Then

r∑

j=1

λ jh′
j = 0 =⇒

r∑

j=1

λ j c j = 0

for all λ1, λ2, . . . , λr .
7. Let U and V be disjoint sets of k and m users, respectively. Let M and N be two

matrices realising linear secret sharing schemes with access structures �M and
�N . Find the matrix realising the access structures

(a) �M + �N ,
(b) �M × �N

on the set of users U ∪ V .

186 6 Secret Sharing

8. Prove that the access structure �min = {{1, 2}, {2, 3}, {3, 4}} on the set of users
U = {1, 2, 3, 4} cannot be realised by a linear secret sharing scheme.

9. Let n > 2. The access structure with the set of minimal authorised coalitions

�min = {{1, 2}, {1, 3}, . . . , {1, n}, {2, 3, . . . , n}}

on the set of users U = {1, 2, . . . , n} cannot be realised by a linear secret sharing
scheme.

10◦. (GAP question) A linear secret sharing scheme for the group of users U =
{1, 2, 3, 4, 5, 6} is defined by the matrix over Z97:

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

h0
h1
h2
h3
h4
h5
h6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
1 1 1 1
1 3 9 27
1 2 4 8
3 3 8 1
0 0 5 6
0 0 3 4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

These users got shares 18, 11, 52, 81, 79, 16, respectively,which are also elements
of Z97.

(a) Show that the coalition A = {1, 3, 5, 6} is authorised and helps it to recover
the secret.

(b) Show that the coalition B = {1, 4, 5, 6} is not authorised.

6.2.3 Ideal and Non-ideal Secret Sharing Schemes

Given a secret sharing scheme with access structure �, a user is called a dummy if
she does not belong to any minimal authorised coalition in �min. A dummy user can
be removed from any authorised coalition without making it non-authorised.

Theorem 6.2.3 Let S0 be the set of possible secrets and Si be the set of possible
shares that can be given to user i in a secret sharing scheme S. If this scheme is
perfect and has no dummy users, then |Si | ≥ |S0| for all i = 1, . . . , n or i(S) ≥ 1.

Proof Let i be an arbitrary user. Since no dummies exist, i belongs to one of the
minimal authorised coalitions, say X = {i1, i2, . . . , ik}, andwith no loss of generality
we may assume that i = ik . Suppose that there is a tuple (s0, s1, . . . , sn) ∈ T in the
distribution table where s0 is the secret shared and si1 , si2 , . . . , sik−1 are the shares
given to users i1, i2, . . . , ik−1. Since the scheme is perfect the distribution table
contains tuples (s, . . . , si1 , . . . , si2 , . . . , sik−1 , . . .) for every s ∈ S0. However if we
add user i = ik we get the coalition X which is authorised and can recover the secret.
Thus, when the shares si1 , si2 , . . . , sik−1 of users i1, i2, . . . , ik−1 are fixed, the secret

6.2 A General Theory of Secret Sharing Schemes 187

depends on the share of the user i only. Hence for every possible secret s there is a
share t(s) which, if given to the user i , leads to recovery s as the secret by coalition
X and can be calculated using the secret recovery function fX of coalition X , that is

fX (si1 , . . . , sik−1 , t(s)) = s.

The mapping t : S0 → Si is one-to-one as if t(s1) = t(s2), then

s1 = fX (si1 , . . . , sik−1 , t(s1)) = fX (si1 , . . . , sik−1 , t(s2)) = s2.

Thus Si has at least as many elements as S0, that is |Si | ≥ |S0|. �

Definition 6.2.2 A secret sharing scheme S is called ideal if it is perfect and
i(S) = 1.

Ideal schemes are the most informationally efficient having their information rate
equal to 1. By Theorem 6.2.3 this is the best possible rate for a perfect scheme. An
equivalent statement would be that |Si | = |S0| for all i = 1, . . . , n. Normally in such
cases both secret and shares belong to the same finite field. In particular, this is true
for Shamir’s secret sharing scheme given in Example 6.2.3. Indeed, if the elements
a1, a2, . . . , an are publicly known, the secret is p(0) and the share of the i th user is
p(ai) for the polynomial p there defined. More generally,

Theorem 6.2.4 Any linear secret sharing scheme is ideal.

Proof We need to recap how the shares in this scheme are defined. We have a
(normally large) field F and an (n + 1) × k matrix H over this field. Then we define
a k-dimensional vector t over F at random and calculate the (n + 1)-dimensional
vector H t = s = (s0, s1, . . . , sn)T . Here s0 is the secret and si is the share of user i .
Both are elements of F . �

However there exist very simple access structures for which there are no ideal
secret sharing schemes. Theorem 6.2.4 tells us that we have to look for such examples
among nonlinear schemes.

Example 6.2.6 For the access structure � of Example 6.2.4 with

�min = {{1, 2}, {2, 3}, {3, 4}}

there are no ideal secret sharing schemes realising it.

188 6 Secret Sharing

Proof Suppose on the contrary there is an ideal secret sharing scheme S with the
distribution table T realising �. Then for some positive integer q we have |Si | = q
for i = 0, 1, 2, 3, 4. For any subset I ⊆ {0, 1, 2, 3, 4} let TI be the restriction of T
to columns indexed by numbers from I and let #TI stand for the number of distinct
rows in TI . Let us firstly note that

#T{1,2} = #T{2,3} = #T{3,4} = q2.

Let us consider, for example, T{1,2}. Take any s1 ∈ S1. As in the proof of Theo-
rem 6.2.3 we conclude that for any secret s0 there will be exactly one value s2 ∈ S2
such that (s0, s1, s2, s3, s4) is a row in T . Hence there will be exactly q distinct rows
in T{1,2} with s1 in column 1. As |S1| = q there are exactly q2 distinct rows in T{1,2}.

Let us now fix arbitrary elements s0 ∈ S0 and s2 ∈ S2. Since both {1, 2} and {2, 3}
are authorised, there will be unique s1 and s3 such that (s0, s1, s2, s3, s4) is a row in
T . In other words s1 uniquely determines s3 in any row of the distribution table. This
leads to the coalition {1, 4} being authorised. Indeed, since the table T is the public
knowledge users 1 and 4 can figure out the share given for user 3 and then can figure
out the secret since {3, 4} is authorised. �

The construction of the previous theorem leads us to a definition of a generalised
linear secret sharing scheme which may not be ideal.

Example 6.2.7 A familyL of subspaces {L0, L1, . . . , Ln} is said to satisfy property
“all-or-nothing” if for every subset X ⊂ {1, 2, . . . , n} the span of {Li | i ∈ X} either
contains L0 or has zero intersection with it. Any such family defines a certain access
structure, namely

�L = {X ⊆ U | span{Li | i ∈ X} ⊇ L0}.

Now the secret and the shares will be finite-dimensional vectors over F . Let
{L0, L1, . . . , Ln} be subspaces of Fk satisfying the property all-or-nothing. Let Hi

be the matrix whose rows form a basis of Li . Then we generate random vectors ti of
the same dimension as dim Li and calculate the secret and the shares as si = Hi ti ,
i = 0, 1, . . . , n. As in the Theorem 6.2.2 it leads to a perfect secret sharing scheme
realising �L, however it may not be ideal as the following example shows.

Example 6.2.8 Let subspaces L0, L1, L2, L3, L4 be the row spaces of the following
matrices:

H T
0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0
0 1
0 0
0 0
0 0
0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, H T
1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0
0 0
1 0
0 1
0 0
0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, H T
2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
0 1 0
1 0 0
0 1 0
0 0 1
0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, H T
3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1
0 0 0
0 0 0
0 1 0
0 0 1
1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, H T
4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0
0 1
0 0
0 0
1 0
0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

6.2 A General Theory of Secret Sharing Schemes 189

This family satisfies the property all-or-nothing. The access structure associated with
it can be given by the set of minimal authorised coalitions as follows:

�min = {{1, 2}, {2, 3}, {3, 4}}.
Since the secret is two dimensional and some shares are three dimensional the infor-
mation rate of such scheme will be 3/2. As 3/2 < 2 this is more efficient secret
sharing scheme realising � than the one in Example 6.2.4. In fact, it can be proved
that the scheme for this example is optimal for � in the sense that it gives the best
possible information rate.

Exercises
1. Let T be the distribution table of a perfect ideal secret sharing scheme with the

set of user, U = {1, 2, . . . , n}, the dealer 0 and the cardinality of the domain of
secrets q . Prove that

(i) If a coalition C is authorised and C ′ = C ∪ {0}, then #TC ′ = #TC ;
(ii) If a coalition C is not authorised and C ′ = C ∪ {0}, then #TC ′ = q · #TC .

2. Prove all the missing details in Example 6.2.8.
3. In this exercise we consider the case, when for an access structure � of a secret

sharing scheme with the distribution table T all minimal authorised coalitions
have size 2. In this case�min can be interpreted as edges of a graphG(�)definedon
U = {1, 2, . . . , n}.We assume that this graph is connected. Let also the cardinality
of the domain of secrets be q .

(i) Show that, if {i, j} ∈ �min, then #T{i, j} = q2.
(ii) Prove that #TU∪{0} = q2.
(iii) Prove that if {i, j} /∈ �min, then #T{i, j} = q .
(iv) Prove that if {i, j} and { j, k} are both not authorised, then {i, k} is not

authorised too.
(v) Prove the following theorem

Theorem 6.2.5 Let � be an ideal access structure such that all minimal authorised
coalitions have size 2 and G(�) is connected. Then the complementary graph of
G(�) is a disjoint union of cliques.5

4◦. Construct an ideal secret sharing scheme for the access structure

{{p1, p2}, {p1, p3}, {p2, p3}, {p4, p5}}
on a set of participants P = {p1, p2, p3, p4, p5}.

5A clique is a subgraph where any two vertices are connected.

190 6 Secret Sharing

6.3 Applications of Secret Sharing

In recent years the importance of secret sharing has significantly increased. Invented
by Shamir and Blakley in 1979, initially it was just used for storing securely sensitive
data like missile launch codes or decryption keys. Nowadays, secret sharing has
acquired many applications and becomes one of the major cryptographic primitives.
For example, it is used in:

• Secure Multiparty Computation (MPC) which allows n parties to compute a
function in n inputs (one per participant) without leaking any extra information
about the inputs (electronic voting is one such example).

• Threshold Cryptography where the decryption key of a cryptosystem is shared
between a group of participants, e.g., employees of a large organisation.

• Perfectly Secure Message Transmission over a network that is not trustworthy.
In this case there are several channels of communication between parties but some
of them can be monitored by an adversary.

• Multi Cloud Storage. The Snowden leak has changed the way data is backed
up forever. Snowden, who created a widely implemented backup system for the
NSA, was given full administrator privileges. For example, IBM’s secure cloud
uses secret sharing to achieve a reliable and private alternative to the use of a
single cloud server.

Here we will show how the threshold cryptography works. The idea belonged to
Yvo Desmedt (1988). Suppose a large organisation (e.g., Microsoft or Adobe) uses
RSA cryptosystem with modulus n and has an encryption exponent e and decryption
exponent d. The decryption exponent is used, as we know, not only for decrypting
incoming messages but also for signing messages on behalf of this organisation. No
wonder this key is too valuable to trust anybody to be in charge of it. Hence it has to
be shared.

Suppose now X = {i1, i2, . . . , ik} be a minimal authorised coalition and d is
shared between them with the shares di1 , . . . , dik . Then the secret recovery function,
as we know by Corollary 6.2.1 is linear in shares:

d = λi1di1 + . . . + λik dik .

Suppose c is a cyphertext. Party j can calculate cdi j and send it to a trusted combiner
who will calculate

cd = cλi1di1+...+λik dik =
k∏

j=1

(cdi j)
λi j .

The message is decrypted but the decryption key was used but not revealed! An
outgoing message can be signed exactly in the same way.

7Error-CorrectingCodes

All sorts of computer errors are now turning up.
You’d be surprised to know the number of doctors
who claim they are treating pregnant men.

Isaac Asimov (1920–1992)

This chapter deals with the problem of reliable transmission of digitally encoded
information through an unreliable channel. When we transmit information from a
satellite, or an automatic station orbiting the moon, or from a probe on Mars, then
for many reasons (e.g., sun-bursts), our message can be distorted. Even the best
telecommunication systems connecting numerous information centres in various
countries have some nonzero error rate. These are examples of transmission in space.
Whenwe save a file on a hard disc and then try to read it onemonth later, wemay find
that this file has been distorted (due to, for example, microscopic defects of the disc’s
surface). This is an example of transmission in time. The channels of transmission in
both cases are different but they have one important feature in common: they are not
100% reliable. In some cases even a single mistake in the transmission of a message
can have serious consequences. We will show how algebra can help to address this
important problem.

We think of a message as a string of symbols of a certain alphabet. The most
common is the alphabet consisting of two symbols 0 and 1. It is called the binary
alphabet and we can interpret these symbols as elements of the finite field Z2. Some
non-binary alphabets are also used, for example, we can use the symbols of any finite
field F . But we will initially concentrate on the binary case.

The symbols of the message are transmitted through the channel one by one. Let
us see what can happen to them. Since mistakes in the channel do occur, we assume
that, when we transmit 0, with probability p > 1/2 we receive 0 and with probability

© Springer Nature Switzerland AG 2020
A. Slinko, Algebra for Applications, Springer Undergraduate Mathematics Series,
https://doi.org/10.1007/978-3-030-44074-9_7

191

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44074-9_7&domain=pdf
https://doi.org/10.1007/978-3-030-44074-9_7

192 7 Error-Correcting Codes

1 − p we receive 1 as a result of a mistake in the channel. Similarly, we assume that
transmitting 1 we get 1 with probability p and 0 with probability 1 − p. Thus we
assume that the probability of a mistake does not depend on the transmitted symbol.
In this case the channel is called symmetric. In our case we are talking about a binary
symmetric channel. It can be illustrated as follows:

•

•

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
..

......................................

...
............

..........
...

• x

x

x ⊕ 1

p

1 − p

Here the error is modelled by means of addition modulo 2. Let x be the symbol to
be transmitted. If transmission is perfect, then x will also be the symbol received, but
if a mistake occurs, then the message received will be x ⊕ 1, where the addition is
in the field Z2. Indeed, 0 ⊕ 1 = 1 and 1 ⊕ 1 = 0. Thus the mistake can be modelled
algebraically as the addition of 1 to the transmitted symbol.

In practical situations p is very close to 1, however, even when p = 0.98, among
any 100 symbols transmitted, on average two will be transmitted with an error. Such
channelmay not be satisfactory to transfer some sensitive data and an error correction
technique must be implemented.

7.1 Binary Error-Correcting Codes

Binary error-correcting codes are used when messages are strings of zeros and ones,
i.e., the alphabet is Z2 = {0, 1}.

7.1.1 The HammingWeight and the Hamming Distance

If we transmit symbols of our message one by one, then there is no way that we can
detect an error. That is why we will try to split the message into blocks of symbols
of fixed length m. Any block of m symbols

a1a2 . . . am, ai ∈ Z2

can be represented by an m-dimensional vector (a1, a2, . . . , am) ∈ Z
m
2 . Note that

according to the long-established tradition in coding theory the messages are written
as row vectors—this is different from the convention used in most undergraduate
linear algebra courses where elements of Rm are viewed as column vectors. Since
we split all messages into blocks of length m wemay consider that all messages have
a fixed length m and view them as elements of the m-dimensional vector space Zm

2
over Z2. When considering vectors as messages we will often omit commas, e.g.,
(1 1 1 0) is the vector (1, 1, 1, 0) treated as a message.

7.1 Binary Error-Correcting Codes 193

As above, mistakes during the transmission can be modelled algebraically. Sup-
pose that a message a = (a1, a2, . . . , am) ∈ Z

m
2 was transmitted and b =

(b1, b2, . . . , bm) ∈ Z
m
2 was received with one mistake in position i . Then

b = a + ei ,

where ei = (0, . . . , 0, 1, 0, . . . , 0) with a 1 in the i th position and 0 elsewhere. If
positions i1, i2, . . . , ik were damaged, then

b = a + ε,

where ε = ei1 + · · · + eik is a vector with k ones and m − k zeros. In this case ε is
called the error vector.

Definition 7.1.1 The (Hamming) weight of a vector x ∈ Z
m
2 is the number of nonzero

coordinates in x. It is denoted as wt(x).

Proposition 7.1.1 If a message a = (a1, a2, . . . , am) ∈ Z
m
2 was transmitted and

b = (b1, b2, . . . , bm) ∈ Z
m
2 was received with k mistakes during the transmission,

then b = a + ε with wt(ε) = k.

Example 7.1.1 If a = (0 1 0 1 0 1) and b = (0 1 1 0 0 1), then ε = (0 0 1 1 0 0)
with wt(ε) = 2.

Another useful concept is that of the Hamming distance.

Definition 7.1.2 The Hamming distance between two vectors x, y ∈ Z
m
2 is the num-

ber of coordinates in which these two vectors differ. It is denoted as d(x, y).

Lemma 7.1.1 d(x, y) = wt(x + y).

Proof Let x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , ym). Then, for all i=1, . . . , m,
we have xi + yi = 0, if xi = yi , and xi + yi = 1, if xi �= yi . Hence every i for which
xi �= yi increases the weight of x + y by one. This proves the lemma. ��

We may now reformulate Proposition 7.1.1 as follows:

Proposition 7.1.2 Suppose that a message a = (a1, a2, . . . , am) ∈ Z
m
2 was trans-

mitted and b = (b1, b2, . . . , bm) ∈ Z
m
2 was received. Then the fact that k mistakes

occur during the transmission is equivalent to d(a, b) = k.

194 7 Error-Correcting Codes

Theorem 7.1.1 (Properties of the Hamming distance) It is a metric on Z
m
2 , which

means that

1. d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y;
2. d(x, y) = d(y, x) for all x, y;
3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z;

Proof The first two properties are obvious. Let us prove the third one. Suppose
that xi �= zi and the position i contributes 1 to d(x, z). Then either xi = yi and
yi �= zi or xi �= yi and yi = zi . Hence the i th position will also contribute 1 to the
sum d(x, y) + d(y, z). Suppose now that xi = zi and the position i contributes 0
to d(x, z). Then either xi = yi = zi and the i th position contributes also 0 to the
sum d(x, y) + d(y, z) or xi �= yi �= zi and the i th position contributes 2 to the sum
d(x, y) + d(y, z). Hence the right-hand side is not smaller than the left-hand side. ��

The following sets play a special role in coding theory. For any x ∈ Z
m
2 we define

Bk(x) = {y ∈ Z
m
2 | d(x, y) ≤ k}, and we call it the ball of radius k with centre x.

Example 7.1.2 Let a = (1 1 1 1) ∈ Z
4
2. Then

B1(a) = {a, (1 1 1 0), (1 1 0 1), (1 0 1 1), (0 1 1 1)}.

Theorem 7.1.2 The cardinality of the ball of radius k with centre x is

|Bk(x)| =
(

m

0

)
+

(
m

1

)
+ · · · +

(
m

k

)
. (7.1)

Proof Lety ∈ Bk(x).Wemayconsider the “error vector” e such thaty = x + e. Then
y ∈ Bk(x) if and only if wt(e) ≤ k. It is enough to prove that, for each i = 1, . . . , k,
there are exactly

(m
i

)
vectors e ∈ Z

m
2 such that wt(e) = i . Indeed, we must choose i

positions out of m in the zero vector and change the coordinates there to ones. Hence
every vector e with wt(e) = i corresponds to an i-element subset of {1, 2, . . . , m}.
We know that there are exactly

(
m

i

)
= m!

i !(m − i)!
such subsets. (see, for example, [1], p.271). Now it is clear that the formula (7.1)
counts all “error vectors” of weight at most k, and hence all vectors y which are at
Hamming distance k or less from x. ��

Example 7.1.3 The cardinality of the ball of radius 2 with centre x is

|B2(x)| =
(

m

0

)
+

(
m

1

)
+

(
m

2

)
= 1 + m + m(m − 1)

2
.

7.1 Binary Error-Correcting Codes 195

Exercises
1.(a) Consider the following binary vectors:

u = (1 1 0 1 1 1 0), v = (1 0 0 0 1 1 1).

Determine the Hamming weights of u, v. Find d(u, v).
(b) The vector x = (0 1 1 1 0 1 0 1 1 0) was sent through a binary channel and

y = (0 1 0 1 0 1 1 1 1 0) was received. How many mistakes have occurred?
Write down the error vector.

2. List all vectors of B2(x) ⊂ Z
4
2, where x = (1 0 1 0).

3. Let x be a word in Z
7
2. How many elements are there in the ball B3(x) of radius

3?
4. Explain why the cardinality of Bk(x) does not depend on x.
5◦. Let u and v be binary vectors of length n and denote by s the number of positions

where u and v both have a 1. Show that wt(u + v) = wt(u) + wt(v) − 2s.
6◦. Show that the set W of vectors of even weight in Z

n
2 is a subspace of the vector

space Zn
2.

7.1.2 Encoding and Decoding. Simple Examples

By nowwe have already understood the convenience of having all messages of equal
length, say m. Longer messages can be split into several shorter ones. The idea of
error correction is to increase the length m of a transmitted message and to add to
each message several auxiliary symbols, so-called check symbols, which will not
bear any information but will help to correct errors. Hence we increase the length of
every message from m to n, where m < n.

Definition 7.1.3 An error-correcting code C consists of an encoding function
E : Zm

2 → Z
n
2 and a decoding function D : Zn

2 → Z
m
2 ∪ {error} which satisfies

D(E(x)) = x for all x ∈ Z
m
2 . Such a code is called a (binary) (m, n)-code.

We note that the encoding function is necessarily one-to-one. Indeed, if we had
E(x1) = E(x2), then x1 = D(E(x1)) = D(E(x2)) = x2 i.e., x1 = x2.

Definition 7.1.4 Elements of E(Zm
2) are called codewords (or codevectors).

Example 7.1.4 (parity check code) This code increases the length of a message by
1 adding only one check symbol which is the sum modulo 2 of all other symbols.
That is

E(x1, x2, . . . , xm) = (x1, x2, . . . , xm+1),

196 7 Error-Correcting Codes

where xm+1 = x1 + · · · + xm . Note that the sum of all coordinates for any of the
codevectors is equal to 0:

x1 + · · · + xm+1 = (x1 + · · · + xm) + (x1 + · · · + xm) = 0.

Let us see now what happens if one mistake occurs. In this case for the received
vector y = (y1, y2, . . . , ym+1) we will get

y1 + · · · + ym+1 = x1 + · · · + xm+1 + 1 = 0 + 1 = 1.

Hence if we organise the decoding as follows:

D(y1, y2, . . . , ym+1) =
{

(y1, y2, . . . , ym), if y1 + y2 + · · · + ym+1 = 0
error if y1 + y2 + · · · + ym+1 = 1,

this code will detect any single error.

Example 7.1.5 (triple repetition code) This code increases the length of a message
threefold by repeating every symbol three times:

E(x1, x2, . . . , xm) = (x1, x2, . . . , xm, x1, x2, . . . , xm, x1, x2, . . . , xm),

Decoding may be organised as follows. To decide on the first symbol the algorithm
inspects y1, ym+1, and y2m+1. If the majority (two or three) of these symbols are 0s,
then the decoding algorithm decides that a 0 was transmitted, while if the majority of
symbols are 1s, then the algorithm decides that a 1 was sent. This code will correct
any single error but will fail to correct some double ones.

The ability of a particular code C = (E, D) to detect or correct errors depends on
the geometric properties of the set of codewords E(Zm

2) ⊂ Z
n
2 and the properties of

the decoding function D.

Definition 7.1.5 Suppose that for all y ∈ Z
n
2 the vector x = D(y) is such that the

vector E(x) is the closest (in respect to the Hamming distance) codeword to y (any
of them if there are several within the same distance), then we say that the decoding
function D satisfies maximum likelihood decoding.

Maximum likelihood decoding is based on the assumption (that can be proved)
that, under the assumption that mistakes are random and independent, in the symmet-
ric channel with p > 1

2 the probability of k mistakes during the transmission is less
than the probability of j mistakes if and only if j > k. Therefore, if our assumption
on the distribution of mistakes is true, the maximum likelihood decoding minimises
the probability of the decoder making a mistake and will always be assumed.

7.1 Binary Error-Correcting Codes 197

Theorem 7.1.3 For a code C the following statements are equivalent:

(a) C detects all combinations of k or fewer errors;
(b) For any codeword x the ball Bk(x) does not contain codewords different from x;
(c) The minimum distance between any two codewords is at least k + 1.

Proof We will prove that (c) ⇒ (b) ⇒ (a) ⇒ (c). Suppose that the minimum dis-
tance between any two codewords is at least k + 1. Then, for any codeword x, the
ball Bk(x) does not contain any other codeword, hence (c) ⇒ (b). Further, if a com-
bination of k or fewer errors occurs, by Proposition 7.1.2 the received vector y will
be in Bk(x). As there are no codevectors in Bk(x), other than x, the error will be
detected, hence (b) ⇒ (a). Finally, for a maximum likelihood decoder to be able to
detect all combination of k or fewer errors, for any codeword x all vectors in Bk(x)
must not be codewords. Hence the distance between any two codewords is at least
k + 1, thus (a) ⇒ (c). ��

Theorem 7.1.4 For a code C the following statements are equivalent:

(a) C corrects all combinations of k or fewer errors,
(b) For any two codewords x and y of C the balls Bk(x) and Bk(y) do not intersect.
(c) The minimum distance between any two codewords of C is at least 2k + 1.

Proof We will prove that (c) ⇒ (b) ⇒ (a) ⇒ (c). Suppose that the minimum dis-
tance between any two codewords is at least 2k + 1. Then, for any two codewords
x and y the balls Bk(x) and Bk(y) do not intersect. Indeed, if they did, then for a
certain z ∈ Bk(x) ∩ Bk(y)

d(x, z) ≤ k, d(y, z) ≤ k.

This, by the triangle inequality,

d(x, y) ≤ d(x, z) + d(z, y) = k + k = 2k,

which is a contradiction, hence (c) ⇒ (b). Further, if nomore than k mistakes happen
during the transmission of a vector x, the received vector y will be in the ball Bk(x)
and will not be in the ball of radius k for any other codeword. Hence y is closer to x
than to any other codevector. Since the decoding is a maximum likelihood decoding
y will be decoded to x and all mistakes will be corrected. Thus (b) ⇒ (a).

On the other hand, it is easy to see that if the distance d between two codewords
x and y does not exceed 2k, then a certain combinations of k or fewer errors will not
be corrected. To show this let us change d coordinates of x, one by one, and convert
it into y:

x = x0 → x1 → · · · → xk → · · · → xd = y.

Then xk will be no further from y than from x. Hence if k mistakes take place and
the received vector is xk , then it may be decoded as y (even if d = 2k). This shows
that (a) ⇒ (c). ��

198 7 Error-Correcting Codes

Exercises
1. Consider the triple repetition (4, 12)-code. Find necessary and sufficient con-

dition on the error vector e = (e1, e2, . . . , e12) for the message to be decrypted
correctly. Give an example of an error vector e of Hamming weight 4 which the
code corrects.

2. Letm = m1m2 be composite. Let us consider a two-dimensionalm1 × m2 array
and write our messages into this array (in any but fixed way). To every message
a = (a1, a2, . . . , am) we add m1 + m2 additional symbols e1, e2, . . . , em1 and
f1, f2, . . . , fm2 , where ei is the sum (modulo 2) of all symbols in row i and f j

be the sum of all symbols in column j . Thus we have an (m, n)-code, where
n = m + m1 + m2. Show that this code can correct all single errors and detect
all triple ones.

3◦. Let A(n, d) denote the maximum possible size of a binary code of length n and
minimum Hamming distance d. Then

A(n, d) ≤ 2n∑t
i=0

(n
i

) ,

where t = � d−1
2 �. This inequality is known as the Sphere Packing Bound.

4◦. Prove that A(n, d) ≤ 2A(n − 1, d).

7.1.3 MinimumDistance,MinimumWeight. Linear Codes

Let C = (E, D) be an (m, n)-code, where E : Zm
2 → Z

n
2 is the encoding function,

D : Zn
2 → Z

m
2 is the (maximum likelihood) decoding function and D ◦ E = id or

D(E(x)) = x holds for all x ∈ Z
m
2 . We observed that the set of codewords E(Zm

2) is
an important object. It is so important that it is often identifiedwith the code itself and
also denoted C. We will also do this when it invites no confusion and the encoding
function is clear from the context. We saw that it is extremely important to spread
C = E(Zm

2) in Z
n
2 uniformly and that the most important characteristic of C is the

minimum distance between any two codewords of C

dmin(C) = min
a �=b∈C

d(a, b).

We may now reformulate Theorems 7.1.3 and 7.1.4 as follows:

Theorem 7.1.5 A code C detects all combinations of k or fewer errors if and only
if dmin(C) ≥ k + 1 and corrects all combinations of k or fewer errors if and only if
dmin(C) ≥ 2k + 1.

The following table shows the error-correcting capabilities of codes depending
on their minimum distance.

7.1 Binary Error-Correcting Codes 199

dmin 1 2 3 4 5 6 7 8 9
Errors detected 0 1 2 3 4 5 6 7 8
Errors corrected 0 0 1 1 2 2 3 3 4

Now let us consider several examples.

Example 7.1.6 Let H1 =
[
1 1
1 −1

]
and let us define inductively: Hk+1 =[

Hk Hk

Hk −Hk

]
. Then Hn is a matrix of order 2n × 2n . For example,

H2 =

⎡
⎢⎢⎣
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤
⎥⎥⎦ , H3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It can be proved by induction that any two distinct rows of Hn are orthogonal (see
Exercise 2). This, in turn, is equivalent to the matrix equation

Hn H T
n = nIn, (7.2)

where In is the identity n × n matrix.

Definition 7.1.6 An n × n matrix H with entries from {+1, −1} satisfying (7.2) is
called an Hadamard matrix.

The orthogonality of rows of Hn means that any two rows of Hn coincide in 2n−1

positions and also differ in 2n−1 positions. Hence if we replace each−1 with a 0, we
will have a set of vectors with minimum distance 2n−1. For example, if we do this
with the rows of H3 shown above we will get eight vectors with minimum distance 4.
We can use these vectors for the construction of a code. For example,

(0 0 0) → (1 1 1 1 1 1 1 1),

(1 0 0) → (1 0 1 0 1 0 1 0),

(0 1 0) → (1 1 0 0 1 1 0 0),

(0 0 1) → (1 0 0 1 1 0 0 1),

(1 1 0) → (1 1 1 1 0 0 0 0),

(1 0 1) → (1 0 1 0 0 1 0 1),

(0 1 1) → (1 1 0 0 0 0 1 1),

(1 1 1) → (1 0 0 1 0 1 1 0).

200 7 Error-Correcting Codes

We obtain a (3, 8)-code with minimum distance 4.
In fact, we can do even better as the following exercise shows.

Exercise 7.1.1 Wemay consider the matrix

[
H3

−H3

]
and replace in this matrix each

−1 by a 0. Then we will obtain 16 vectors which may be used to construct a (4, 8)-
code with minimum distance 4.

When, in 1969, the Mariner spacecraft sent pictures to Earth, the matrix H5 was
used to construct 64 codewords of length 32 with minimum distance 16. Each pixel
had a darkness given by a 6-bit number. Each of them was changed to one of the
64 codewords and transmitted. This code could correct any combination of 7 errors.
Since the signals from Mariner were fairly weak such an error-correcting facility
was really needed.

We may also define the minimum weight of the code by

wtmin(C) = min
0 �=a∈C

wt(a).

This concept will be also quite important, especially for linear codes.
We remind to the reader of the definition of a subspace. Let F be a field and V be a

vector space over F . A subset W ⊆ V is a subspace if for any two vectors u, v ∈ W
and any two scalars α, β ∈ F the linear combination αu + βv is also an element of
W . In this case W becomes a vector space in its own right.

Exercise 7.1.2 Let W be the set of all vectors from Z
n
2 whose sum of all coordinates

is equal to zero. Show that W is a subspace of Zn
2.

Definition 7.1.7 An error-correcting code C = (E, D) is called linear if E : Zm
2 →

Z
n
2 is a linear transformation from Z

m
2 into Zn

2 . For a binary field, where the only
scalars are 0 and 1, this means that

E(x + y) = E(x) + E(y)

for all x, y ∈ Z
m
2 .

Exercise 7.1.3 Prove that the parity check code is linear.

An important property of a linear code is formulated in the following proposition.

Proposition 7.1.3 For any linear code the set of codewords C is a subspace of Zn
2 .

In particular, the zero vector 0 is a codeword.

7.1 Binary Error-Correcting Codes 201

Proof We will prove that C is a subspace of Zn
2 if we show that the sum of any two

codewords is again a codeword. (As our coefficients come from Z2, linear combina-
tions are reduced to sums.) Let b, c be two codewords. Then b = E(x) and c = E(y)
and

b + c = E(x) + E(y) = E(x + y) ∈ C.

In particular, 0 = b + b ∈ C. ��

For a linear code finding the minimum distance is much simplified.

Theorem 7.1.6 For any linear code C

dmin(C) = wtmin(C).

Proof Suppose dmin(C) = d(a, b). Then as we know from Lemma 7.1.1 d(a, b) =
wt(a + b), and since a + b ∈ C we get

dmin(C) ≥ wtmin(C).

On the other hand, if wtmin(C) = wt(a), then, again by Lemma 7.1.1, wt(a) =
d(0, a), and hence

dmin(C) ≤ wtmin(C).

This completes the proof. ��

Theorem 7.1.6 is very useful. There are M = 2m codewords in any (m, n)-code.
To find the minimum distance we need to perform M(M − 1)/2 calculations of
distance while to find the minimum weight we need only M such calculations.

Example 7.1.7 For the following (3, 6)-code C

0 = (0 0 0) → (0 0 0 0 0 0) = 0

a1 = (1 0 0) → (1 0 0 1 0 0) = c1
a2 = (0 1 0) → (0 1 0 1 1 1) = c2
a3 = (0 0 1) → (0 0 1 0 1 1) = c3

a1 + a2 = (1 1 0) → (1 1 0 0 1 1) = c1 + c2
a1 + a3 = (1 0 1) → (1 0 1 1 1 1) = c1 + c3
a2 + a3 = (0 1 1) → (0 1 1 1 0 0) = c2 + c3

a1 + a2 + a3 = (1 1 1) → (1 1 1 0 0 0) = c1 + c2 + c3,

it is easy to see that it is linear. We see that C = Span{c1, c2, c3}, and dmin(C) =
wtmin(C) = wt(c1) = 2.

202 7 Error-Correcting Codes

Exercises
1. Prove by induction that in the sequence of matrices H1, H2, . . . , Hn, . . . all

matrices are Hadamard matrices.

2. Let H be a Hadamard matrix. Let us construct a 2n × n matrix

[
H

−H

]
and then

replace each −1 by a 0. Prove that in the resulting matrix every two distinct
rows have Hamming distance of at least n/2 between them.

3. Let Ei : Z3
2 → Z

7
2, i = 1, 2 be the encoding mappings of the codes C1 and C2,

respectively, given by

(a) E1(a) = (a1, a2, a3, a1 + a2, a2 + a3, a1 + a3, 0),
(b) E2(a) = (a1, a2, a3, a1 + a2, a2, a1 + a2 + a3, 1).
Which code is linear and which is not?

4. Show that in a binary linear code, either all codewords have even Hamming
weight or exactly half of the codewords have even Hamming weight.

5◦. Prove that if n × n Hadamard matrix exists, then n is 1 or 2 or a multiple of 4.
6◦. Prove that in any binary linear code C, either all codewords begin with a 0 or

exactly half the codewords begin with a 0.

7.1.4 Matrix EncodingTechnique

Let C = (E, D) be a linear (m, n)-code. Let us consider the vectors e1, e2, . . . , em

of the standard basis of Zm
2 , where ei = (0 . . . 1 . . . 0) is the vector which has the

only one nonzero element 1 in the i th position. Let us consider the vectors

E(e1) = g1, . . . , E(em) = gm,

which encode the simplest possible messages e1, e2, . . . , em . These vectors are
important since in the linear code they fully determine the encoding function. Indeed,
for an arbitrary message vector a = (a1, a2, . . . , am) we have

E(a) = E(a1e1 + a2e2 + · · · + amem)

= a1E(e1) + · · · + am E(em) = a1g1 + a2g2 + · · · + amgm .

Hence the subspace of all codewords C is spanned by {g1, g2, . . . , gm}. We can now
represent the encoding function by means of matrix multiplication

E(a) = a1g1 + a2g2 + · · · + amgm = aG, (7.3)

where

G =

⎡
⎢⎢⎢⎣
g1
g2
...

gm

⎤
⎥⎥⎥⎦

7.1 Binary Error-Correcting Codes 203

is the matrix with rows g1, g2, . . . , gm . Equation (7.3) shows that the code is the row
space of the matrix G, i.e., C = Row(G).

Definition 7.1.8 Let C = (E, D) be a linear (m, n)-code. Then the matrix G such
that

E(a) = aG,

for all a ∈ Z
m
2 , is called the generator matrix of C.

Example 7.1.8 Suppose the encoding function of an (2, 4)-code is

E(a) = (a1, a2, a2, a1 + a2).

Then

E(a) = (a1, a2, a2, a1 + a2) = a1(1, 0, 0, 1) + a2(0, 1, 1, 1) = (a1, a2)

[
1 0 0 1
0 1 1 1

]
.

Proposition 7.1.4 Let C = (E, D) be a linear (m, n)-code with generator m × n
matrix G. Then the rows of G are linearly independent. Moreover, rank(G) = m
and dim C = m.

Proof It is enough to prove linear independence of the rows g1, g2, . . . , gm . The two
remaining statements will then follow. Suppose on the contrary that a1g1 + a2g2 +
· · · + amgm = 0 with not all ai ’s being zero. Then, since E is linear,

0 = a1g1 + a2g2 + · · · + amgm

= a1E(e1) + a2E(e2) + · · · + am E(em) = E(a1e1 + · · · + amem).

Since the standard basis is linearly independent, we have a = a1e1 + · · · + amem �=
0. This contradicts the fact E is one-to-one, since we have E(0) = 0 and E(a) = 0.

��

Example 7.1.9 (parity check code revisited) The parity check (m, m + 1)-code is
linear. Indeed, if the sum of coordinates for both x and y is zero, then the same is
true for x + y. We have

E(e1) = (1 0 . . . 0 1),

E(e2) = (0 1 . . . 0 1),

. . .

E(em) = (0 0 . . . 1 1).

204 7 Error-Correcting Codes

Hence

G =

⎡
⎢⎢⎣
1 0 . . . 0 1
0 1 . . . 0 1
..

0 0 . . . 1 1

⎤
⎥⎥⎦ = [Im 1m],

where Im is the m × m identity matrix and 1m is the m-dimensional column of 1s.

Example 7.1.10 (triple repetition code) The triple repetition code (m, 3m)-code is
also linear. We have

E(e1) = (1 0 . . . 0 1 0 . . . 0 1 0 . . . 0),

E(e2) = (0 1 . . . 0 0 1 . . . 0 0 1 . . . 0),

. . .

E(em) = (0 0 . . . 1 0 0 . . . 1 0 0 . . . 1).

Hence

G =

⎡
⎢⎢⎣
1 0 . . . 0 1 0 . . . 0 1 0 . . . 0
0 1 . . . 0 0 1 . . . 0 0 1 . . . 0
..

0 0 . . . 1 0 0 . . . 1 0 0 . . . 1

⎤
⎥⎥⎦ = [Im Im Im]

Example 7.1.11 Let us define a linear (3, 5)-code by its generator matrix

G =
⎡
⎣ 1 0 0 0 1
0 1 0 1 0
0 0 1 1 1

⎤
⎦ .

Then the encoding function is

E(a1, a2, a3) = (a1, a2, a3)

⎡
⎣ 1 0 0 0 1
0 1 0 1 0
0 0 1 1 1

⎤
⎦ = (a1, a2, a3, a2 + a3, a1 + a3).

We see that the codeword E(a), which encodes a, consists of the vector a itself
embedded into the first three coordinates and two additional symbols.

Definition 7.1.9 A linear (m, n)-code C = (E, D) is called systematic if, for any
a ∈ Z

m
2 , the first m symbols of the codeword E(a) are the symbols of the word a,

i.e.,

E(a1, a2, . . . , am) = (a1, a2, . . . , am︸ ︷︷ ︸
info symbols

, b1, b2, . . . , bn−m︸ ︷︷ ︸
check symbols

).

The symbols of a in E(a) are called the information symbols and the remaining
symbols are called the check symbols. These are the auxiliary symbols which we
mentioned earlier.

7.1 Binary Error-Correcting Codes 205

Proposition 7.1.5 For a linear (m, n)-code to be systematic, it is necessary and
sufficient that its generator matrix has the form G = (Im A), where A is an m ×
(n − m) matrix.

Proof Any systematic code C = (E, D) must encode e1, e2, . . . , em into vectors

E(ei) = gi = (0, . . . , 1, . . . , 0, ai1, ai2, . . . , ai n−m),

Hence

G =

⎡
⎢⎢⎢⎣
g1
g2
...

gm

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣
1 0 . . . 0 a11 . . . a1n−m

0 1 . . . 0 a21 . . . a2n−m

..

0 0 . . . 1 am1 . . . amn−m

⎤
⎥⎥⎦ = [Im A].

The converse is easy and left as an exercise. ��

Definition 7.1.10 Two (m, n)-codes C1 = (E1, D1) and C2 = (E2, D2) are called
equivalent if, for every a ∈ Z

m
2 , their respective codewords E1(a) and E2(a) differ

only in the order of symbols, moreover the permutation that is required to obtain
E1(a) from E2(a) does not depend on a.

Example 7.1.12 The two codes

(0 0) → (0 0 0 0)
(0 1) → (0 1 0 1)
(1 0) → (1 0 0 1)
(1 1) → (1 1 0 0)

(0 0) → (0 0 0 0)
(0 1) → (0 1 0 1)
(1 0) → (0 1 1 0)
(1 1) → (0 0 1 1)

are equivalent. The permutation that must be applied to the symbols of the first code
to obtain the second is (1 3)(2 4).

It is clear that two equivalent codes have the same minimum distance.

Theorem 7.1.7 Let C be a linear (m, n)-code with minimum distance d. Then there
is a systematic linear (m, n)-code with the same minimum distance d.

Proof Let C be a linear (m, n)-code with generator matrix G. When we perform
elementary row operations over the rows of G we do not change Row(G) and hence
the set of codewords (it will change the encoding function however).

Wemay, therefore, assume that our matrix G is already in its reduced row echelon
form. Since G has full rank (its rows are linearly independent), we must have m pivot
columns which are them columns of the identity matrix Im . Let the positions of these
columns be i1, i2, . . . , im . Then in a codeword E(a) we will find our information
symbols a1, a2, . . . , am in positions i1, i2, . . . , im .Moving these columns (and hence
the respective coordinates) to the first m positions, we will obtain a systematic code
which is equivalent to the given one. ��

206 7 Error-Correcting Codes

Example 7.1.13 Let C be a (3,6)-code with the generator matrix

G =
⎡
⎣ 1 0 1 0 1 1
0 1 1 1 1 0
0 0 0 1 1 1

⎤
⎦ .

Then reducing G to its reduced row echelon form

G =
⎡
⎣ 1 0 1 0 1 1
0 1 1 1 1 0
0 0 0 1 1 1

⎤
⎦ →

⎡
⎣ 1 0 1 0 1 1
0 1 1 0 0 1
0 0 0 1 1 1

⎤
⎦ = G ′

gives us a generator matrix G ′ of a new code with the same minimum distance. It is
equivalent to the systematic code with the generator matrix

G ′′ =
⎡
⎣ 1 0 0 1 1 1
0 1 0 1 0 1
0 0 1 0 1 1

⎤
⎦ ,

which is G ′ with columns 3 and 4 swapped.

Example 7.1.14 The following matrix

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 1 1
0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1
0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1
0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

is the generator matrix of the famous Golay code. This is a (12, 24)-code and its
minimum distance is 8. It was used by the Voyager I and Voyager II space-crafts
during 1979–1981 to provide error correction when the Voyagers transmitted to
Earth colour pictures of Jupiter and Saturn.

7.1 Binary Error-Correcting Codes 207

Exercises
1. The encoding function E : Z4 → Z

7 of the linear code is

E(a) = (a1, a2, a3, a1 + a2 + a4, a2 + a3, a1 + a3 + a4, a4).

Construct the generator matrix.
2. Check by inspection that the Golay code is systematic.
3. Show that elementary row operations performed on a generator matrix G do

not change the set of codewords and, in particular, the minimum distance of the
code.

4. Let C1 be the (3,6) linear code with the following generator matrix over Z2

G =
⎡
⎣1 0 1 0 1 0
1 1 0 0 1 1
1 1 1 0 0 0

⎤
⎦ .

(a) Encode (1 1 1) and show that C1 is NOT systematic.
(b) Find the generator matrix of another (3, 6) linear code C2, which is sys-

tematic and equivalent to C1.
(c) List all codewords of C2 and determine its minimum distance.

5◦. Consider the linear code C : Z3 → Z6 which has the generating matrix

⎡
⎣ 1 0 0 1 1 1
0 1 0 1 0 1
0 0 1 0 1 1

⎤
⎦

(a) Write down all codewords of C.
(b) Determine the minimal weight of the nonzero codeword and therefore deter-

mine the minimum distance between two distinct codewords.
(c) Which of the following are codewords

(1 1 1 0 0 1), (0 1 0 1 0 0), (1 0 1 1 0 0), (1 1 0 1 1 1), (1 0 0 0 0 1)?

(d) Which of thewords in (c) can be corrected uniquely usingmaximum likelihood
decoding? Correct these!

7.1.5 Parity CheckMatrix

The generator matrix of a code is a great tool for the sender since with its help the
encoding can be done by means of matrix multiplication. All she needs is to store
the generator matrix which contains all the information about the encoding function.
However the generatormatrix is not very useful at the receiving end. On the receiving
endwe need another matrix—the parity checkmatrix whichwewill introduce below.

208 7 Error-Correcting Codes

Definition 7.1.11 Let C be a linear (m, n)-code. An (n − m) × n matrix H is called
a parity check matrix of C if x ∈ C if and only if HxT = 0.

By definition, the null-space of H is Null(H) = {x | HxT = 0}. Therefore we
can reformulate the above definition as follows: an (n − m) × n matrix H is a parity
check matrix of C if and only if C = Null(H).

Having this matrix at the receiving end we may quickly check if the received
vector y was the codevector by calculating its syndrome S(y) = HyT . Then y ∈ C if
and only if S(y) = 0. If the syndrome is the zero vector, the decoder assumes that no
mistakes happen. Later we will learn how the syndrome S(y), if nonzero, can help
to correct mistakes that occurred.

But, firstly, we have to learn how to construct such a matrix given the generator
matrixG.Wewill assume that our code is systematic andG has the formG = (Im A),
where A is an arbitrary m × (n − m) matrix. In other words,

G =

⎡
⎢⎢⎢⎣
g1
g2
...

gm

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣
1 0 . . . 0 a11 . . . a1n−m

0 1 . . . 0 a21 . . . a2n−m

..

0 0 . . . 1 am1 . . . amn−m

⎤
⎥⎥⎦ .

Let us assume for a moment that an (n − m) × n parity check matrix H exists.
Since gi ∈ C, for any i = 1, 2, . . . , m, wemust have HgT

i = 0 and hence H GT = 0.
We also have G H T = (H GT)T = 0. This means that all columns of H must be
solutions to the system of linear equations GxT = 0. Since G is already in its reduced
row echelon form, we separate variables to obtain

x1 = −a11xm+1 − . . . − a1n−m xn

x2 = −a21xm+1 − . . . − a2n−m xn

. . .

xm = −am1xm+1 − . . . − amn−m xn

(of course in Z2 we have −ai j = ai j however we would like to leave a possibility of
a non-binary alphabet). Setting, as usual, the values of the free variables to be

⎡
⎢⎢⎢⎣

xm+1
xm+2

...

xn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
1
0
...

0

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣
0
1
...

0

⎤
⎥⎥⎥⎦ , . . . ,

⎡
⎢⎢⎢⎣
0
0
...

1

⎤
⎥⎥⎥⎦ ,

7.1 Binary Error-Correcting Codes 209

we obtain a basis {f1, f2, . . . , fn−m} for the solution space of the system GxT = 0
calculating

fT
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a11
−a21

...

−am1
1
0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, fT
2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a12
−a22

...

−am2
0
1
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, . . . , fT
n−m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a1n−m

−a2n−m
...

−amn−m

0
0
...

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Wewill show that the matrix H with rows {f1, f2, . . . , fn−m} is a parity check matrix
for this code. Indeed, HgT

i = 0, hence for any codeword c ∈ C we have c = a1g1 +
a2g2 + · · · + amgm and

HcT = H(a1g1 + a2g2 + · · · + amgm)T = a1HgT
1 + · · · + am HgT

m = 0.

Therefore C ⊆ Null(H). On the other hand, since H has rank n − m, we get
dimNull(H) = n − (n − m) = m = dim C. Hence Null(H) = C and H is indeed
a parity check matrix for C. We see that H has the form

H =
[−A

In−m

]T

= (−AT | In−m).

We have proved:

Theorem 7.1.8 Let C be a linear (m, n)-code. If G = (Im | A) is a generator matrix
of C, then H = (−AT | In−m) is a parity check matrix of C.

This works in the other direction too: given an (n − m) × n matrix H = (A |
In−m), where A is an (n − m) × m matrix, we can construct a linear (m, n)-code C
with the generator matrix G = (Im | −AT) and it will have H as its parity check
matrix.

Example 7.1.15 Suppose that the generator matrix for a binary (4, 7)-code is

G =

⎡
⎢⎢⎣
1 0 0 0 1 0 1
0 1 0 0 0 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 0

⎤
⎥⎥⎦ = (I4 | A).

Then

H =
⎡
⎣ 1 0 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 0 0 0 1

⎤
⎦ = (AT | I3).

210 7 Error-Correcting Codes

If we encode a = (1 0 1 0), we get

b = aG = (1 0 1 0)

⎡
⎢⎢⎣
1 0 0 0 1 0 1
0 1 0 0 0 1 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

⎤
⎥⎥⎦ = (1 0 1 0 0 1 1).

Wehave S(b) = HbT = (0 0 0)T = 0 but for c = b + e2 = (1 1 1 0 0 1 1)wehave
S(c) = HcT = (0 1 1)T �= (0 0 0)T . If c was received, this would show that one or
more mistakes happened.

Let hi be the i th column of the parity check matrix, that is, H = (h1 h2 . . .hn).
We know that a vector b ∈ Z

n
2 is a codevector if and only if S(b) = 0.

Let a be a codevector and suppose b = a + e. We may treat b as the codevector a
with an error. Our goal is to determine how the syndrome S(b) of the vector b ∈ Z

n
2

depends on the codevector a and on the error vector e. We will find that it does not
depend on a at all! This will allow us to develop a method of error correction.

Lemma 7.1.2 Let a be a codevector and suppose b = a + e, where the error vector
e has Hamming weight s and ones in positions i1, i2, . . . , is , which corresponds to
s mistakes in the corresponding positions. Then

S(b) = hi1 + hi2 + · · · + his . (7.4)

Proof By Proposition 7.1.1 e = ei1 + ei2 + · · · + eis , where e j is the j th vector of
the standard basis of Zn

2. Then

S(b) = HbT = H(a + e)T = 0 + HeT

= H(eT
i1 + eT

i2 + · · · + eT
is
) = hi1 + hi2 + · · · + his ,

since HeT
it

= hit . ��

We see that, indeed, the syndrome of the received vector depends only on the
error vector and not on the codevector.

Theorem 7.1.9 Let H = (h1,h2, . . . ,hn) be an (n − m) × n matrix with entries
from Z2 such that no two columns of H coincide. Then any binary linear (m, n)-
code C with H as its parity check matrix corrects all single errors. If a single error
occurs in i th position, then the syndrome of the received vector is equal to the i th
column of H, i.e., hi .

Proof Suppose that a codevector a was sent and the vector b = a + ei was received
(which means that a mistake occurred in the i th position. Then due to (7.4)

S(b) = HbT = hi .

We now know where the mistake happened and can correct it. ��

7.1 Binary Error-Correcting Codes 211

Exercises
1. Let

A =
⎡
⎣ 1 2 1 2 1
1 2 1 0 2
2 1 0 1 0

⎤
⎦

be a matrix over Z3.

(a) Find a basis for the nullspace Null(A) of this matrix;
(b) List all vectors of the Null(A);
(c) Find among the nonzero vectors of Null(A) the vector whose weight is

minimal.
2. Let us consider a binary code C given by its parity check matrix

H =

⎡
⎢⎢⎣
0 0 1 1 1 0 1
0 1 0 1 0 1 1
1 0 0 0 1 1 1
1 1 1 1 1 1 0

⎤
⎥⎥⎦ .

(a) Compute the generator matrix for C. What is the number of information
symbols for this code?

(b) Will the code C correct any single mistake?
(c) Will the code C correct any two mistakes?
(d) Will the code C detect any two mistakes?
(e) Encode the message vector whose coordinates are all equal to 1;
(f) Decode y1 = (1 1 0 1 0 0 1) and y2 = (1 1 0 1 1 0 0);
(g) Show that a single mistake could not result in receiving the vector z =

(0 1 0 1 1 1 1). Show that two mistakes could result in receiving z.
3◦. A linear binary (3, 6)-code C is defined by the following parity check matrix:

H =
⎡
⎣ 1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0

⎤
⎦ .

(a) Find the generator matrix of C .
(b) The parity check matrix H does not allow the presence of the codewords

of weight at most 2 (apart from the all zero codeword). Explain why?

212 7 Error-Correcting Codes

7.1.6 The Hamming Codes

Richard Hamming1 was an American mathematician and computer scientist. He
started a new subject within information theory. Hamming codes, Hamming distance
and Hamming metric are standard terms used today in coding theory but they are
also used in many other areas of mathematics.

We start with the Hamming (4, 7)-code. Let us consider the binary 3 × 7 matrix

H = (h1 h2 h3 h4 h5 h6 h7) =
⎡
⎣0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎤
⎦ , (7.5)

where in the i th column hi of H we write the binary representation of i from i = 1
to i = 7. Theorem 7.1.9 gives us reason to believe that the (4, 7)-code with this
parity check matrix will be good since by that theorem such a code will correct all
single errors. We also note that all nonzero three-dimensional columns are used in
the construction of H and every binary 3 × 8 matrix will have equal columns. This
says to us that the code with parity check matrix H must be in some way the optimal
(4, 7)-code.

Let us find a generator matrix G that will match the parity check matrix H . We
know that by row reducing H we do not change the nullspace of H , hence the set
of codewords stays the same. We will therefore be trying to obtain a matrix with
the identity matrix I3 in the last three columns in order to apply Theorem 7.1.8. The
technique is the same as for finding the reduced row echelon form. We obtain:

H =
⎡
⎣0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎤
⎦ −→

⎡
⎣0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 1 0 1 0

⎤
⎦ −→

⎡
⎣0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 1 0 1 0 0 1

⎤
⎦

−→
⎡
⎣0 1 1 1 1 0 0
0 1 1 0 0 1 1
1 1 0 1 0 0 1

⎤
⎦ −→

⎡
⎣0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

⎤
⎦ = (C | I3).

Therefore the generator matrix of this code is

G = (I4 | CT) =

⎡
⎢⎢⎣
1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

⎤
⎥⎥⎦ .

1Richard Wesley Hamming (11 February 1915–7 January 1998) He participated in the
Manhattan Project that produced the first atomic bombs during World War II. There he was respon-
sible for running the IBM computers in Los Alamos laboratory which played a vital role in the
project. Later he worked for Bell Labs after which he became increasingly interested in teaching
and taught in a number of leading universities in USA. Hamming is best known for his work on
error-detecting and error-correcting codes. His fundamental paper on this topic “Error detecting
and error correcting codes” appeared in April 1950 in the Bell System Technical Journal.

7.1 Binary Error-Correcting Codes 213

The vector a = (1 1 1 0) will be encoded to

b = aG = (1 1 1 0)

⎡
⎢⎢⎣
1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

⎤
⎥⎥⎦ = (1 1 1 0 0 0 0).

Suppose that the vector c = (1 0 1 0 0 0 0) is received. The syndrome of it is

S(c) = HcT =
⎡
⎣0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
1
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎣ 0
1
0

⎤
⎦ = h2

Assuming that only onemistake happened, we know that this mistake occurred in the
second position. Hence the vector b = (1 1 1 0 0 0 0) was sent and a = (1 1 1 0)
was the original message.

This code is very interesting. It has 24 = 16 codewords and, since it corrects any
single error, it has minimum distance of at least 3. So, if we take a ball B1(x) of
radius one centred at a codeword x, it will not intersect with other similar balls of
radius one around other codewords. Due to Theorem 7.1 every such ball will have
eight vectors of Z7

2 . In total, these balls will contain 16 · 8 = 128 = 27 vectors, that

is all vectors of Z7
2. The whole space is the union of those unit balls! This means that

the Hamming (4,7)-code corrects all single mistakes but not a single double mistake
since any double mistake will take you to another ball. Lemma 7.1.2 provides an
alternative explanation of why any double mistake will not be corrected. Indeed,
the syndrome of a double mistake is the sum of corresponding two columns of H .
However, since all three-dimensional vectors are used as columns of H , the sum of
any two columns will be a third column. This means that any double mistake will be
treated as a single mistake and will not be corrected.

Suppose, for example, that the vector a=(1 1 1 0) encoded as b=(1 1 1 0 0 0 0),
was sent, and the vector c = (0 1 1 0 0 0 1) was received with mistakes in the first
and the seventh positions. The syndrome of it is

S(c) = HcT =
⎡
⎣0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= h1 + h7 =
⎡
⎣ 1
1
0

⎤
⎦ = h6.

The received vectorwill be decoded as (0 1 1 0 0 1 1) and then (0 1 1 0). This double
mistake will not be corrected as it will mimic as a single mistake in position 6.

214 7 Error-Correcting Codes

The (4, 7) binary Hamming code is the “smallest” code from the infinite family
of Hamming codes.

Definition 7.1.12 A binary Hamming (2k − k − 1, 2k − 1)-code is any code with
the parity check matrix H , whose r th column contains the binary representation of
the integer r , for r = 1, 2, . . . , 2k − 1.

Example 7.1.16 The Hamming (11, 15)-code is given by its parity check matrix

H =

⎡
⎢⎢⎣
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

⎤
⎥⎥⎦ .

Corollary 7.1.1 A binary Hamming (2k − k − 1, 2k − 1)-code corrects all single
mistakes.

Exercises
1. We have defined the Hamming (4, 7)-code by means of the parity check matrix

H and we computed the generator matrix G, where

H =
⎡
⎣ 1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

⎤
⎦ , G =

⎡
⎢⎢⎣
1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

⎤
⎥⎥⎦ .

(a) Encode the vector u = (1 1 0 1);
(b) Decode the vector v = (1 0 0 1 1 0 0);
(c) Find all strings of length 7 which are decoded to w = (1 1 0 1).

2. A code that, for some k, corrects all combinations of k mistakes and does not
correct any combination of � mistakes for � > k, is called perfect. Prove that all
codes of the family of Hamming codes are perfect.

3◦. Show that the binary repetition code of length n with encoding function

0 �→ (0 0 . . . 0), 1 �→ (1 1 . . . 1)

is perfect when n is odd. How many errors does it correct?
4◦. Show that the minimum distance of a perfect code must be odd.

7.1 Binary Error-Correcting Codes 215

7.1.7 Polynomial Codes

There is one particular class of linear codes the construction of which uses some
advanced algebra and because of that these codes are very effective. In this section
we will consider (m, n)-codes obtained in this way. We will identify our messages
(strings of symbols of length m or vectors from Z

m
2) with polynomials of degree at

most m − 1. More precisely, this identification is given by the formula

a = (a0, a1, . . . , am−1) �→ a(x) = a0 + a1x + . . . + am−1xm−1.

Given a message we take its symbols as coefficients of a polynomial. Of course,
the message a can be easily recovered from the polynomial a(x). Suppose now that
we have a polynomial g(x) = g0 + g1x + · · · + gk xk , where k = n − m. Then we
can define an (m, n)-code C as follows. For every a = (a0, a1, . . . , am−1) ∈ Z

m
2 we

define

E : a �→ a(x) = a0 + a1x + . . . + am−1xm−1 �→ a(x)g(x) = b0 + b1x + . . . + bn−1xn−1 �→ b,

where b = (b0, b1, . . . , bn−1) ∈ Z
n
2. Such code is called a polynomial code and the

polynomial g(x) is called the generator polynomial of this code.

Example 7.1.17 Suppose g(x) = 1 + x2 + x3 and a = (1 1 1 0). Then

a(x) = 1 + x + x2, b(x) = a(x)g(x) = 1 + x + x5

and hence b = (1 1 0 0 0 1 0).

Theorem 7.1.10 The polynomial codeC is linear with the following m × n generator
matrix

G =

⎡
⎢⎢⎢⎢⎣

g0 g1 . . . gk

g0 g1 . . . gk

g0 g1 . . . gk

.

g0 g1 . . . gk

⎤
⎥⎥⎥⎥⎦ , (7.6)

where all empty places are filled with zeros.

Proof The linearity of the encoding function follows from the distributive law for
polynomials. Suppose that E(a1) = b1 and E(a2) = b2 with a1(x), b1(x), a2(x),
b2(x) being the corresponding polynomials. We need to show that E(a1 + a2) =
b1 + b2. Indeed, we have

a1 + a2 �→ a1(x) + a2(x) �→ (a1(x) + a2(x))g(x) = a1(x)g(x) + a2(x)g(x)

= b1(x) + b2(x) �→ b1 + b2,

as required.

216 7 Error-Correcting Codes

To determine the generator matrix we need to calculate E(e1), . . . , E(em). We
have

ei �→ xi−1 �→ xi−1g(x) = g0xi−1 + g1xi + · · · + gn−m xn−m+i−1

�→ (0, . . . , 0︸ ︷︷ ︸
i−1

, g0, g1, . . . , gn−m, 0 . . . , 0).

This must be the i th row of the generator matrix G. This gives us (7.6). ��

Although for a polynomial code the generator matrix (7.6) is easy to obtain, it is
sometimes more convenient (and gives more insight) to multiply polynomials and
not matrices.

Example 7.1.18 Let g(x) = 1 + x2 + x3. Using it we can define an (m, m+3)-code
for allm. Let us choosem = 4. Then we obtain a (4, 7)-code whose generator matrix
will be

G =

⎡
⎢⎢⎣
1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1

⎤
⎥⎥⎦ .

To encode (1 1 1 0) we perform the following multiplication of polynomials:

(1 1 1 0) → 1 + x + x2 → (1 + x + x2)(1 + x2 + x3) = 1 + x + x5 → (1 1 0 0 0 1 0).

By row reducing G (when we change the encoding function but not the set of
codewords), we get

G =

⎡
⎢⎢⎣
1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1

⎤
⎥⎥⎦ →

⎡
⎢⎢⎣
1 0 1 0 0 1 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

⎤
⎥⎥⎦ →

⎡
⎢⎢⎣
1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

⎤
⎥⎥⎦ .

Since it is now in the form (I4 | A), by Theorem 7.1.8 we may obtain its parity check
matrix H as (AT | I3), that is,

H = (AT | I3) =
⎡
⎣ 1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

⎤
⎦ .

From this we observe that the code which we obtained is equivalent to the Hamming
code since H = (h5, h7,h6,h3,h4,h2,h1), where h1,h2, . . . ,h7 are the columns
of the parity check matrix of the Hamming code.

7.1 Binary Error-Correcting Codes 217

Exercises
Let g(x) = 1 + x + x3. Consider the polynomial (5, 8)-code C with g(x) as gener-
ator polynomial. For this code

1.(a) Encode a = (1 0 1 0 1);
(b) Find the generator matrix G of the code C.
(c) Find a systematic linear code C′ (in terms of its parity check matrix) which is

equivalent to C.
2◦.Let g(x) be a generator polynomial of a polynomial binary code C of length n.

Prove that all codewords in C have even weight if and only if g(x) is a multiple
of 1 + x .

7.1.8 Bose–Chaudhuri–Hocquenghem (BCH) Codes

This is one particularly good class of polynomial codes which was discovered inde-
pendently around 1960 by Bose, Chaudhuri and Hocquenghem. They enable us to
correct multiple errors. Since the construction of the generator polynomial for these
codes is based on a finite field of certain cardinality, we have to construct one first,
say F , and then find its primitive element α.

In Chap.5 we discussed a method of constructing a field which consists of pn

elements. It is unique up to an isomorphism and denoted by G F(pn). To construct
it we need to take Zp, find an irreducible polynomial m(x) over Zp of degree n
and form F = Zp[x]/(m(x)). There are very good tables of irreducible polynomials
over Zp of virtually any degree (see, for example, [2]).

BCH codes work equally well for binary and for non-binary alphabets but in this
section we put the main emphasis on the binary case. The general case is not much
different with only minor changes needed.

As usual we will consider (m, n)-codes, where m denotes the number of infor-
mation symbols and n the length of codewords. The minimum distance of the code
we will denote by d. For BCH codes we, first, have to decide on the length of the
codewords n and on the minimum distance d, then m will depend on these two
parameters but this dependence is not straightforward.

This restriction on the length is not important in applications because it is not
the length of codewords that is practically important (we may divide our messages
into segments of any length) but the speed of transmission, which is characterised
by the ratio m/n, and the error-correcting capabilities of the code, i.e., the minimum
distance d.

We use the extension Z2 ⊆ F for the construction, where F = G F(2r) for some
r which is an extension of Z2.. The length of the word n will be taken to the number
of elements in the multiplicative group of the field F . As we consider the binary
situation, this number can only be n = 2r − 1,where r is an arbitrary positive integer,
since the field F of characteristic 2 may have only 2r elements for some r .

218 7 Error-Correcting Codes

Letα be a primitive element of F . Then it hasmultiplicative ordern and the powers
1 = α0, α,α2, . . . , αn−1 are all different. To construct g(x) we need to know the
minimal annihilating polynomials of α,α2, . . . ,αd−1. Let mi (x) be the minimal
annihilating polynomial of αi .

Theorem 7.1.11 The polynomial code of length n with the generator polynomial

g(x) = lcm(m1(x), m2(x), . . . , md−1(x)) (7.7)

has minimum distance at least d. It has m = n − deg g information symbols.

Proof Since this code is linear, the minimum distance is the same as the minimum
weight. Hence it is enough to prove that there are no codewords of weight d − 1 or
less. Since the code is polynomial, all vectors fromZ

n
2 are identifiedwith polynomials

of degree smaller than n and the codewords are identified with polynomials which
are divisible by g(x). Hence, we have to show that there are no polynomials of degree
smaller than n which are multiples of g(x) and have less than d nonzero coefficients.
Suppose on the contrary that the polynomial

c(x) = c1xi1 + c2xi2 + · · · + cd−1xid−1

is a multiple of g(x). Then it will be an annihilating polynomial forα,α2, . . . , αd−1,
i.e.,

c(α) = c(α2) = . . . = c(αd−1) = 0.

This can be rewritten as

c1α
i1 + c2α

i2 + · · · + cd−1α
id−1 = 0

c1α
2i1 + c2α

2i2 + · · · + cd−1α
2id−1 = 0

. . .

c1α
(d−1)i1 + c2α

(d−1)i2 + · · · + cd−1α
(d−1)id−1 = 0.

Let us set βk = αik . We see that the system of homogeneous linear equations

β1x1 + β2x2 + · · · + βd−1xd−1 = 0

β2
1 x1 + β2

2 x2 + · · · + β2
d−1xd−1 = 0

. . .

βd−1
1 x1 + βd−1

2 x2 + · · · + βd−1
d−1xd−1 = 0

has a nontrivial solution (c1, c2, . . . , cd−1). This can happen only if the determinant
of this system vanishes. This however contradicts to the classical result of the theory
of determinants that, for any k > 1, the Vandermonde determinant

7.1 Binary Error-Correcting Codes 219

∣∣∣∣∣∣∣∣

β1 β2 . . . βk

β2
1 β2

2 . . . β2
k

.

βk
1 βk

2 . . . βk
k

∣∣∣∣∣∣∣∣
is zero if and only if βs = βt for some s �= t such that s ≤ k and t ≤ k (see Sect. 10.2
of the Appendix for the proof). Indeed, in our case k = d − 1 and βs = αis �= αit =
βt because is ≤ d − 1 and it ≤ d − 1. This contradiction proves the theorem. ��

The following lemma significantly helps with the calculation of g(x).

Lemma 7.1.3 Let Z2 ⊂ F be an extension of fields. Let α ∈ F and let m(t) be
the minimal annihilating polynomial of α over Z2. Then m(t) is also the minimal
annihilating polynomial of α2.

Proof Let m(t) = tk + a1tk−1 + · · · + ak · 1, where ai ∈ Z2. Then we have

m(α) = αk + a1α
k−1 + · · · + ak−1α + ak · 1 = 0. (7.8)

We note, first, that a2
i = ai as 02 = 0 and 12 = 1 for ai ∈ {0, 1}. We also note that

since 2x = 0 for all x ∈ F , then (x + y)2 = x2 + y2 for all x, y ∈ F and by induc-
tion

(x1 + x2 + · · · + xn)2 = x21 + x22 + · · · + x2n

for all x1, x2, . . . , xn ∈ F . Now (7.8) implies:

0 = (m(α))2 = (αk)2 + (a1α
k−1)2 + · · · + (ak · 1)2

= (α2)k + a1(α
2)k−1 + · · · + ak · 12 = m(α2).

Hence m(t) is also an annihilating polynomial for α2. Therefore the minimal irre-
ducible polynomial of α2 must divide m(t). Since m(t) is irreducible, this is possible
only if it coincides with m(t). ��

Example 7.1.19 Suppose that we need a code which corrects any two errors and
has length 15. Hence d = 5, and we need a field containing 16 elements. Such field
K = Z2[x]/(x4 + x + 1) was constructed in Example 5.2.3. We saw also that the
multiplicative order of x was 15, hence x is a primitive element of F . Let α = x .

For correcting any two mistakes we need a code with minimum distance d = 5.
Theorem 7.1.11 tells us that we need to take the generator polynomial

g(t) = lcm(m1(t), m2(t), m3(t), m4(t)).

Then we know that m1(t) = t4 + t + 1. By Lemma 7.1.3 we have m1(t) =
m2(t) = m4(t). Hence g(t) = m1(t)m3(t) and we have to calculate m3(t) which is
theminimal irreducible polynomial for β = x3. Using the table in Example 5.2.3, we

220 7 Error-Correcting Codes

calculate that β2 = x6 = x2 + x3, β3 = x9 = x + x3, β4 = x12 = 1 + x + x2 +
x3. Elements 1,β, β2,β3,β4 must be linearly dependent in the 4-dimensional vec-
tor space K and we can find the linear dependency between them using the linear
dependency relationship algorithm (see Sect. 10.1). By row reducing the following
matrix to its reduced echelon form⎡

⎢⎢⎣
1 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 1 1 1 1

⎤
⎥⎥⎦ rre f−→

⎡
⎢⎢⎣
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

⎤
⎥⎥⎦

we find that m3(t) = t4 + t3 + t2 + t + 1. Now we calculate

g(t) = (t4 + t + 1)(t4 + t3 + t2 + t + 1) = t8 + t7 + t6 + t4 + 1.

Nowwemay say that m = n − deg g = 15 − 8 = 7 and our code C will be a (7, 15)-
code. It will correct any two errors.

It is easy to construct a parity check matrix for this code. Over K this matrix will
be

H =
[
1 a a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14

1 a3 a6 a9 a12 a15 a18 a21 a24 a27 a30 a33 a36 a39 a42

]
=

[
1 a a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14

1 a3 a6 a9 a12 1 a3 a6 a9 a12 1 a3 a6 a9 a12

]
=

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 0 0 1 1 0 1 0 1 1 1
0 1 0 0 1 1 0 1 0 1 1 1 1 0 0
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0
0 0 0 1 0 0 1 1 0 1 0 1 1 1 1
1 0 0 0 1 1 0 0 0 1 1 0 0 0 1
0 0 0 1 1 0 0 0 1 1 0 0 0 1 1
0 0 1 0 1 0 0 1 0 1 0 0 1 0 1
0 1 1 1 1 0 1 1 1 1 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Let us look at the quality of this code.As it is a (7, 15) code, there are 27 codewords
in Z

15
2 . As it is 2-error correcting, each codeword c must have a ball B2(c) all for

itself. We have

|B2(c)| =
(
15

0

)
+

(
15

1

)
+

(
15

2

)
= 1 + 15 + 105 = 121 < 27.

The syndromes are 8-dimensional, hence there can be 28 of them. So there are at least
twice as many syndromes than mistakes to be corrected. This code is far from being
perfect. In general the quality of BCH codes grows with the length of the codeword.

A more practical example is a code widely used in European data communication
systems. It is a binary (231, 255)-code with a guaranteed minimum distance of 7.
The field consisting of 28 = 256 elements is used and the encoding polynomial has
degree 24.

7.1 Binary Error-Correcting Codes 221

Exercises
1. Construct a binary (m, n)-code with the length of codewords n = 15, which

corrects all triple errors, in following steps:

(a) Using the field K = Z2[x]/(x4 + x3 + 1), compute the generating poly-
nomial g(t) of a binary BCH code with the length of the codewords n = 15
and with a minimum distance 7;

(b) What is the number m of information symbols?
(c) Write down the generating matrix G of this BCH code;
(d) Encode the message which is represented by the string of m ones.

2. In European data communication systems a binary BCH (231, 255)-code is used
with guaranteed minimum distance 7. Using GAP find the generator polynomial
of this code.

3◦. Prove that polynomials mi (x), i = 1, . . . , d − 1, and the generator polynomial
g(x) in Theorem 7.1.11 are divisors of x2

n − 1.
4◦. Let C be a binary BCH code of an odd length n. Prove that exactly one of the

following holds:

(a) Every codeword in C has even weight;
(b) The word 11...11 is a codeword.

7.2 Non-binary Error-Correcting Codes

Non-binary codes have many different uses. Any finite field Zp can be used as an
alphabet of a code if the channel allows us to distinguish p different symbols. Even if
it is not, non-binary codes can be used as an intermediate step in construction of good
binary codes. Non-binary codes can be also used in construction of fingerprinting
codes which we will discuss in the next section.

7.2.1 The Basics of Non-binary Codes

Wewill again consider (m, n)-codes. The encoding function of such a code will be a
mapping (normally linear) E : Fm → Fn for a certain finite field F which serves as
the alphabet. The Hamming weight and the Hamming distance are defined exactly
as for binary codes.

Example 7.2.1 Let u = (0 1 2 0 2 1 0) and v = (0 2 2 0 2 0 0) be vectors of Z7
3.

Then wt(u) = 4, wt(v) = 3 and

d(u, v) = wt(u − v) = wt (0 2 0 0 0 1 0) = 2.

Ifuwas sent and vwas received, then the error vector is e = v − u = (0 1 0 0 0 2 0).

222 7 Error-Correcting Codes

With non-binary codes we do not have the luxury that −a = a anymore. With
ternary codes we have −a = 2a instead! But the following theorem is still true:

Theorem 7.2.1 A code C detects all combinations of k or fewer errors if and only
if dmin(C) ≥ k + 1 and corrects all combinations of k or fewer errors if and only if
dmin(C) ≥ 2k + 1.

The error correction capabilities of any code will again be dependent on the
minimum distance of the code. And the minimum distance for a linear code will be
equal to the minimum weight.

Theorem 7.2.2 For any linear code C

dmin(C) = wtmin(C).

The concepts of generator matrix G and parity check matrix H are the same.
A little refinement must be made for finding G from H and the other way around.
Namely, if G = (Im | A), then H = (−AT | In−m). Theorem 7.1.9 must be also
slightly generalised to allow designing non-binary error-correcting codes capable of
correcting all single mistakes.

Theorem 7.2.3 A linear (non-binary) code with parity check matrix H corrects all
single mistakes if and only if no one column of H is a multiple of another column.

Proof Let e be an error vector of weight 1. Then e = aei for some i = 1, 2, . . . , m
and some 0 �= a ∈ Zp, i.e.,

e = (0 . . . 0 a 0 . . . 0) = a(0 . . . 0 1 0 . . . 0).

The syndrome of such a mistake will be

HeT = ahi ,

where hi is the i th column of H . If there is no other column in H that is a multiple
of hi , then we can find both i and a. If there is such a column the identification of
the mistake would be impossible. ��

Example 7.2.2 Suppose p = 3. We can obtain an analogue of the Hamming code
by defining a code by its parity check matrix

H =
⎡
⎣0 0 0 0 1 1 1 1 1 1 1 1 1
0 1 1 1 0 0 0 1 1 1 2 2 2
1 0 1 2 0 1 2 0 1 2 0 1 2

⎤
⎦ .

7.2 Non-binary Error-Correcting Codes 223

The secret behind this matrix is that every nonzero column vector from Z
3
3 is either a

column of H or a multiple of such a column. Then this code will be a (10, 13)-code
that corrects any single mistake. For example, the syndrome

HyT =
⎡
⎣ 2
0
1

⎤
⎦ = 2h7,

for y ∈ Z
13
3 shows that a mistake happened in the seventh position and it should be

corrected by subtracting 2 (or adding 1) to the coordinate y7.

Exercises
In exercises below, all matrices and codes are ternary, i.e., over Z3.

1. Suppose the matrix

H1 =
⎡
⎣2 2 1 2 1 1
1 2 1 0 2 1
2 1 0 1 0 2

⎤
⎦

is taken as a parity check matrix of a ternary error-correcting code C1. Does this
code correct all single errors?

2. Let C2 be the ternary code with parity check matrix

H2 =
⎡
⎣ 1 2 1 2 1 1
1 2 1 0 2 2
2 1 0 1 0 1

⎤
⎦ .

(a) Show that it corrects all single errors;
(b) Find the generator matrix for the code C2;
(c) Suppose that the code C2 was used. Decode the vector y = (0 2 2 2 2 2).

3◦. Show that a ternary code with the parity check matrix

H =

⎡
⎢⎢⎣
0 0 0 1 0 1
0 0 2 0 1 0
0 1 2 2 0 0
1 0 1 2 0 0

⎤
⎥⎥⎦

has minimum distance d = 4.
4◦. The cardinality of the ball of radius t with centre x in G F(q)m is

|Bk(x)| =
(

m

0

)
+

(
m

1

)
(q − 1) + · · · +

(
m

k

)
(q − 1)t .

224 7 Error-Correcting Codes

5◦. Let Aq(n, d) denote the maximum possible size of a binary code over G F(q)

of length n and minimum Hamming distance d. Then

Aq(n, d) ≤ qn∑t
i=0

(n
i

)
(q − 1)i

,

where t = � d−1
2 �. This inequality is the q-ary version of the Sphere Packing

Bound.

7.2.2 Reed–Solomon (RS) Codes

No changes at all should be made for polynomial codes and BCH codes. Among
non-binary BCH codes Reed–Solomon codes are of special practical importance.
They are also widely used for building up other good codes, including good binary
codes.

Definition 7.2.1 Let F be a finite field of q = pr elements and α be any of its
primitive elements. Let d > 1 be a positive integer. A Reed–Solomon (or RS) code
over F is a polynomial (q − d, q − 1)-code with the generator polynomial

g(x) = (x − α)(x − α2) . . . (x − αd−1). (7.9)

Theorem 7.2.4 The Reed–Solomon (q − d, q − 1)-code with the generator poly-
nomial (7.9) has a minimum distance of at least d.

Proof We consider the trivial extension of fields F ⊆ F . Let mi (x) be the minimal
irreducible polynomial of αi over F . Then mi (x) = x − αi and we see that the RS
code is a BCH code. By Theorem 7.1.11 its guaranteed minimum distance is d. ��

Example 7.2.3 Let F = Z2[t]/(t2 + t + 1). Then F = {0, 1, α,β}, where α = t
and β = t + 1. We note that β = α2, so α is a primitive element of F . The RS
(2, 3)-code over F with generator polynomial g(x) = x + α (which is the same
as x − α) will have minimum distance 2. It will have 42 = 16 codevectors. Let us
encode the message (α β). We have

(α β) �→ α + βx �→ (α + βx)(x + α) = α2 + (αβ + α)x + βx2 = β + βx + βx2 = (β β β).

Here is the table of all the codevectors:

(0 0 0) (α 1 0) (0 α 1) (α β 1)
(β α 0) (0 β α) (β 1 α) (1 1 1)
(1 β 0) (0 1 β) (1 α β) (α α α)

(β 0 1) (α β 1) (1 0 α) (β β β)

7.2 Non-binary Error-Correcting Codes 225

Example 7.2.4 Let F = Z5. We take α = 2 as the primitive element of Z5. The
RS (2,4)-code over F with generator polynomial g(x) = (x − α)(x − α2) = (x −
2)(x − 4) = x2 + 4x + 3 will have minimum distance 3. It will have 52 = 25 code-
vectors:

(3 4 1 0), (2 1 4 0), (1 3 2 0), (0 3 4 1), (1 1 1 1),

The Reed–Solomon codes are among the best known. To substantiate this claim
let us prove the following

Theorem 7.2.5 (TheSingletonbound)LetC be a linear (m, n)-code. Then dmin(C) ≤
n − m + 1.

Proof Let us consider the codeword E(e1) = g1. It has only one nonzero information
symbol. It has n − m check symbols which may also be nonzero. In total, wt(g1) ≤
n − m + 1. But

dmin(C) = wtmin(C) ≤ wt(g1) ≤ n − m + 1.

The theorem is proved. ��

Now we can show that any Reed–Solomon code achieves the Singleton bound.

Theorem 7.2.6 Let C be a Reed–Solomon (m, n)-code. Then dmin(C) = n − m + 1.

Proof Let us consider the Reed–Solomon code C of length n with the generator
polynomial

g(x) = (x − α)(x − α2) . . . (x − αd−1).

Let m be the number of information symbols. We know that dmin(C) ≥ d since d
is the guaranteed minimum distance of this code. Since the degree of the generator
polynomial is d − 1, this will be the number of check symbols of this polynomial
code, i.e., d − 1 = n − m. Hence dmin(C) ≥ d = n − m + 1. By the previous theo-
rem we obtain dmin(C) = n − m + 1 and C achieves the Singleton bound. ��

As we mentioned good binary codes can be obtained from RS-codes. Let F be a
field of 2r elements, n = 2r − 1. We know that F is an r -dimensional vector space
overZ2 and any element of F canbe represented as a binary r -tuple. Firstwe construct
a RS (m, n)-code over F and then, in each codeword we replace every element of
F with the corresponding binary tuple. We obtain an (rm, rn)-code which is binary.
Such codes are very good in correcting bursts of errors (several error occurring at a
close proximity) because such multiple errors affect not too many elements of F in
codewords of the RS-code and can be therefore corrected. Such codes are used in
CD-players because any microscopic defect on a disc results in a burst of errors.

226 7 Error-Correcting Codes

We see that our choice of a code might be a result of the selected model for
mistakes: when they are random and independent we use one type of codes, when
they are highly dependent (and come in bursts) we use another type of codes.

Example 7.2.5 In Example 7.2.3, using the basis {1, α} for F , we may represent
the elements of F as follows:

0 → (0 0), 1 → (1 0), α → (0 1), β = α2 → (1 1).

Then we will obtain a binary (4,6)-code with the following codevectors:

(0 0 0 0 0 0) (0 1 1 0 0 0) (0 0 0 1 1 0) (0 1 1 1 1 0)
(1 1 0 1 0 0) (0 0 1 1 0 1) (1 1 1 0 0 1) (1 0 1 0 1 0)
(1 0 1 1 0 1) (0 0 1 0 1 1) (1 0 0 1 1 1) (0 1 0 1 0 1)
(1 1 0 0 1 0) (0 1 1 1 1 0) (1 0 0 0 0 1) (1 1 1 1 1 1).

Example 7.2.6 In the original paper of Irving S. Reed andGustave Solomon (1960),
every codeword of the Reed–Solomon code is a sequence of values of a code polyno-
mial of degree less than k; this is why it is also called the Reed–Solomon evaluation
code. Let F = G F(q) be a field and β1, β2, . . . ,βn ∈ F with n ≤ q − 1.

In order to obtain a codeword of the Reed–Solomon code, the message
a=(a0, a1, . . . , ak−1) is interpreted as the a polynomial a(x)=a0 + a1x + . . . +
ak−1xk−1 of degree at most k − 1 over the field F . Further, this polynomial a(x) is
evaluated at n ≤ q − 1 distinct points:

E(a) := (a(β1), . . . , a(βn), (7.10)

Usually, we use n = q − 1 and βi = αi , i = 1, . . . , q − 1.

Exercise 7.2.1 Prove that E is a linear function.

A codeword has a zero symbol in the coordinate corresponding to βi if and
only if a(βi) = 0; i.e., if and only if βi is a root of the equation a(x) = 0. Since
deg(a(x)) ≤ k − 1, by Proposition 5.1.3 this equation can have at most k − 1 roots
in G F(q). Therefore a nonzero codeword can have at most k − 1 symbols equal
to zero, so its weight is at least n − k + 1. Since the code is linear, this implies
that its minimum distance is at least d ≥ n − k + 1. But by the Singleton bound,
d ≤ n − k + 1; thus d = n − k + 1. It can be shown that this code is equivalent to
RS-codes that were derived from BCH framework.

We see that the codeword consists of q − 1 values of the code polynomial a(x).
However, by Theorem 5.1.2 on polynomial interpolation any k values determine it.
However we do not knowwhich values came unchanged.We need to perform several
interpolations and see which polynomials appear more often than others. However
there are more efficient ways for decoding RS-codes.

7.2 Non-binary Error-Correcting Codes 227

Exercises
1. In a series of exercises below we construct a ternary BCH-code of length n = 8

with minimum distance 4 using the field F = Z3[x]/(x2 + 2x + 2).

(a) Show that α = x is a primitive element of F . Build a “table of powers” of
α.

(b) Show that the minimal annihilating polynomials of α, α2 and α3 are

m1(x) = x2 + 2x + 2, m2(x) = x2 + 1 and m3(x) = x2 + 2x + 2,

respectively.
(c) Determine the generating polynomial g(x) of C.
(d) How many information symbols does this code have?
(e) Find the generator matrix G of C.

2◦. Find the generator polynomial for a double-error correcting BCH (17, 26)-code
over Z3.

3◦. Find the generator polynomial for the RS evaluation code.

7.3 Fingerprinting Codes

The rapid growth of the digital economy, facilitated by spread of broadband avail-
ability,and rapid increases in computing power and storage capacity, has created
a global market for content and rights holders of intellectual property. But it also
creates a threat that without adequate means of protection piracy will prevent this
market from functioning properly.

Managing intellectual property in electronic environments is not an easy task. On
the one hand owners of the content would like to sell it for profit to paying customers
but at the same time to protect it from any further illegal distribution. There are many
ways to do so. One avenue is opened with the recent development of fingerprinting2

codes that provide combinatorial and algebraic methods of tracing illegally “pirated”
data. The idea is that a codewordmight be embedded in the content (software, music,
movie) in such a way that any illegally produced copies will reveal the distributor.

For example, such situation emerges in the context of pay TV, where only pay-
ing customers should be able to view certain programs. The broadcasted signal is
normally encrypted and the decryption keys are sent to the paying subscribers. If an
illegal decoder is found, the source of its decryption keys must be identified.

Fingerprinting techniques have been used for quite some time; fingerprints have
been embedded in digital video, documents and computer programs. However only
recently it became possible to give protection against colluding malicious users.
This is what fingerprinting codes are about. This section is largely based on the
groundbreaking paper of Boheh and Shaw [5] and also on the paper by Staddon,
Stinson and Wei [6].

2Or watermarking, the war in terminology is currently raging.

228 7 Error-Correcting Codes

7.3.1 The Basics of Fingerprinting

There are numerous ways to embed a codeword identifying the user in the content
which is normally represented as a file. A copy of the file sold to the user, can
therefore be characterised by a vector x = (x1, x2, . . . , xn) ∈ Z

n
q , specific to this

particular copy. This is a fingerprint of this copy. Any subset C ⊂ Z
n
q may be used

as the set of fingerprints and will be called a fingerprinting (watermarking) code.
A malicious coalition of users may try to create a pirate copy of the product by

trying to identify the embedded fingerprint and to change it. To achieve this, they
might compare their files—for example, using diff command—and find positions
in which their files differ. These will certainly belong to the code so the coalition
may discover some but not all symbols of the fingerprint. They might change the
symbols in the identified positions with the goal to produce another legitimate copy
of the product that was sold to another user (or has not yet been sold). This way they
might “frame” an innocent user.

The owner of the property rights for the content would like to design a scheme
that enables the identification of at least one member of the coalition that produced a
pirated copy. As the bottom line, the scheme shouldmake it infeasible for amalicious
coalition to frame an innocent user by producing their fingerprint. Of course, we have
to make an assumption that the malicious coalition is not too large (and here we have
clear analogy with error-correcting codes that too are effective if there were not too
many mistakes during the transmission).

Let us now proceed to formal definitions.

Definition 7.3.1 Let X ⊆ Z
n
q . For any coordinate i we define the projection

Pi (X) =
⋃
x∈X

{xi }.

In other words Pi (X) is the set of all i th coordinates of the words from X .

Example 7.3.1 Let X = {x, y, z}, where

x = (0 1 2 3),

y = (0 0 2 2),

z = (0 1 3 1).

Then P1(X) = {0}, P2(X) = {0, 1}, P3(X) = {2, 3}, P4(X) = {1, 2, 3}.

7.3 Fingerprinting Codes 229

Definition 7.3.2 We also define the envelope of X

desc(X) = {y ∈ Z
n
q | yi ∈ Pi (X) for all i .}

Elements of the envelope are called descendants of X and elements from X are called
their parents. It is clear that X ⊆ desc(X).

A descendant of a set of vectors X = {x1, x2, . . . , xn} inherits coordinates from
vectors in X but may take, say 1-st coordinate from x5, the second from x2 and all
the rest from x3. For example, in Example 7.3.1 vector (0 0 3 3) is a descendant of
X but vector (0 2 2 2) is not.

Definition 7.3.3 For any positive integerw, we will also define a restricted envelope
descw(X), which consists of all descendants of subsets of X of cardinality w.

We illustrate the difference between desc(X) and descw(X) in the following
example.

Example 7.3.2 Let X = {x, y, z}, where

x = (1 0 0),

y = (0 1 0),

z = (0 0 1).

Thenanyvector inZ3
2 will be a descendant of X .At the same time (1 1 1) /∈ desc2(X).

Example 7.3.3 Let C ⊂ Z
4
4 be the fingerprinting code consisting of the vectors

u = (0 1 2 3),

v = (1 2 3 0),

w = (2 3 0 1),

x = (3 0 1 2),

y = (0 0 0 0),

z = (1 1 1 1).

The triple X = {v, y, z} can produce the descendant s = (0 2 1 1) but not t =
(2 0 1 1). We see that s ∈ desc3(X) but s /∈ desc2(X). To prove the last statement
we note that for s to be a descendant of a pair of vectors from C, one of them must
be either u or y (otherwise we cannot get the first coordinate 0). Neither of these two
vectors has 2 as their second coordinate. Hence the second vector in this pair must
be v. But P4({u, v, y}) does not contain 1. Hence s /∈ desc2(X).

230 7 Error-Correcting Codes

Exercises
1. Let X = {x1, x2, x3}, where

x1 = (1 1 1 0 0 0 2 2 2),

x2 = (1 1 2 2 0 0 1 1 2),

x3 = (1 2 2 0 2 0 1 2 0).

(a) Find the projections Pi (X) for i = 1, 2, 3.
(b) Find the number of elements in the envelope desc(X).
(c) Write down a vector y which belongs to desc2(X) but for which no parent

can be identified.
2. Give an example of a set of vectors X such that |X | > 1 and desc(X) = X .
3. Suppose X = {x1, x2, . . . , xn} and Pi (X) = mi for i = 1, . . . , n. Prove that

|desc(X)| = m1 · . . . · mn .

7.3.2 Frameproof Codes

One goal that immediately comes to ourmind is to secure that a coalition ofmalicious
users cannot frame an innocent user. Of course, such protection can be put in place
only against resonably small malicious coalitions in a direct analogy with error-
correcting codes where the decoder is capable of correcting only a limited number
of mistakes.

Definition 7.3.4 A code C is called w-frameproof (w-FP code) if for every subset
X ⊂ C such that |X | ≤ w we have

desc(X) ∩ C = X .

In other words, a code isw-frameproof if no coalition of size at mostw can frame
another user, who is not in the coalition, by producing the fingerprint of that user.

Example 7.3.4 The code C consisting of the n elements of the standard basis of Zn
q

e1 = (1 0 0 . . . 0),

e2 = (0 1 0 . . . 0),

. . .

en = (0 0 0 . . . 1)

is w-frameproof for any w = 1, 2, . . . , n.

7.3 Fingerprinting Codes 231

Example 7.3.5 The code in Example 7.3.3 is 3-frameproof. Indeed, the first four
users cannot be framed by any coalition to which they do not belong because each
of them contains 3 in the position, where all other users have symbols different from
3. It is also easy to see that the two last users cannot be framed by any coalition of
three or less users.

The following function will be useful in our proofs. For any two words u, v of
length n we define I (u, v) = n − d(u, v). In other words, I (u, v) is the number of
coordinates where u and v agree.

As in the theory of error-correcting codes, theminimumdistance dmin(C) between
any two distinct codewords is an important parameter.

Theorem 7.3.1 Let C be a fingerprinting code of length n. Suppose that

dmin(C) > n

(
1 − 1

w

)
,

then C is a w-frameproof code.

Proof Suppose that a coalition X = {x1, x2, . . . , xw} can frame an innocent user
y ∈ C \ X , that is y ∈ desc(X). Since y, xi ∈ C, for every i = 1, 2, . . . , w we have
d(y, xi) > n (1 − 1/w) and hence we obtain I (y, xi) = n − d(y, xi) < n − (n −
n/w) = n/w. This means that y and xi coincide in less than n/w positions and,
hence less than n/w positions of y could come from xi . Since we have exactly w

elements in X , it follows now that less than w · n/w = n coordinates in y can come
from vectors of X . Hence at least one coordinate of y, say y j , does not coincide with
the j th coordinates of any of the vectors x1, x2, . . . , xw and therefore y j /∈ Pj (X).
This contradicts the assumption that y is a descendant of X . ��

Exercises
The code C ⊂ {1, 2, 3}6 consists of six codewords:

c1 = (1 1 1 1 1 1), c2 = (2 2 2 2 2 2), c3 = (3 3 3 3 3 3),

c4 = (1 2 3 1 2 3), c5 = (2 3 1 2 3 1), c6 = (3 1 2 3 1 2).

1. Find the minimum distance of this code.
2. Prove that it is 2-frameproof.

7.3.3 Codes with the Identifiable Parent Property

Definition 7.3.5 We say that a code C has the identifiable parent property of order
w (w-IPP code) if for any x ∈ descw(C) the family of subsets

{X ⊆ C | |X | ≤ w and x ∈ desc(X)} (7.11)

has a nonzero intersection.

232 7 Error-Correcting Codes

What this says is that, for any w-IPP code and for any x ∈ descw(C) this vector
cannot be produced without a participation of a certain user: the one who is in the
intersection of the family of subsets (7.11). Therefore this user can be identified. The
w-IPP property is stronger than w-frameproofness.

Proposition 7.3.1 Any code C with the identifiable parent property of order w is
w-frameproof.

Proof Suppose that the w-IPP property holds but a certain coalition X with no
more than w users can frame an innocent user c ∈ C \ X . Then c ∈ desc(X) and
c ∈ desc({c}). Since {c} ∩ X = ∅, this contradicts the w-IPP property. ��

Let us now give a non-trivial example of a w-IPP code.

Example 7.3.6 The following code has the identifiable parent property of order 2
and was constructed with a help of a Reed–Solomon code.

c1 = (1 1 1 1 1),

c2 = (1 2 2 2 2),

c3 = (1 3 3 3 3),

c4 = (1 4 4 4 4),

c5 = (2 1 2 3 4),

c6 = (2 2 1 4 3),

c7 = (2 3 1 4 2),

c8 = (2 4 3 2 1),

c9 = (3 1 4 2 3),

c10 = (3 2 3 1 4),

c11 = (3 3 2 4 1),

c12 = (3 4 1 3 2),

c13 = (3 4 1 3 2),

c14 = (4 2 4 3 1),

c15 = (4 4 2 1 3).

It is really hard to check that this code indeed is 2-IPP but relatively easy to check
that dmin(C) = 4. As we will see later Theorem 7.3.3 will imply 2-IPP for this code.

Codes with the identifiable parent property normally require a large alphabet. The
binary alphabet is the worst one.

Proposition 7.3.2 There does not exist a binary 2-IPP code C with |C| ≥ 3.

7.3 Fingerprinting Codes 233

Proof Suppose x, y, z ∈ C be three distinct codewords and X = {x, y, z}. We define
a descendant u in the following way. For each i , we consider the coordinates xi , yi ,
zi ; among them there will be a majority of zeros or a majority of ones. We define ui

to coincide with the majority. Then u belongs to each of the desc(x, y), desc(x, z),
and desc(y, z). However, {x, y} ∩ {x, z} ∩ {y, z} = ∅. ��

For generalisation of this to alphabets containing q elements see Exercise 1 below.
We see from the Example 7.3.6 that it is not too easy to check that the code in the

above example satisfies the identifiable parent property of order 2. But there exists
one slightly stronger property that is much easier to check.

Definition 7.3.6 AcodeC is calledw-traceable (w-TAcode) if for any y ∈ descw(C)

the inclusion y ∈ desc(X), for some subset X ⊆ C with |X | = w, implies the exis-
tence of at least one codeword x ∈ X such that d(y, x) < d(y, z) for any z ∈ C \ X .

If a code is anw-TA code, we can always trace at least one parent of y ∈ descw(C)

using a process similar to maximum likelihood decoding for error-correcting codes.
Indeed, the following proposition is true.

Proposition 7.3.3 Suppose that a code C is w-traceable, and y ∈ desc(X) for some
subset X ⊆ C with |X | = w. Let x1, x2, . . . , xk be the set of vectors from C such
that d = d(y, x1) = . . . = d(y, xk) and no vector z ∈ C satisfies d(y, z) < d. Then
{x1, x2, . . . , xk} ⊆ X.

Proof Suppose xi /∈ X for some i . Then by the traceability property there must be a
vector inx ∈ X such thatd(y, x) < d(y, xi) = d,which contradicts to theminimality
of d. ��

Let us state now one obvious fact.

Lemma 7.3.1 Let X = {x1, x2, . . . , xw} and y ∈ desc(X). Then there exists i ∈
{1, 2, . . . , w} such that I (xi , y) ≥ n/w.

Proof Suppose on the contrary that I (xi , y) < n/w for all i ∈ {1, 2, . . . , w}. Then
y inherited less than n/w coordinates from each xi . In total it inherited less than
n · n/w = n coordinates from vectors of X and cannot be a descendant of X . ��

Theorem 7.3.2 Any w-TA code C is also an w-IPP code.

Proof Suppose that the code C is w-traceable. Let x ∈ descw(C). Let us consider a
family of subsets (7.11). Suppose y ∈ C is the closest or one of the closest vectors of
C to x, i.e., the distance d(x, y) is the smallest possible. Because C is w-traceable y
must belong to every subset of the family (7.11), hence its intersection is non-empty
and w-IPP property holds. ��

234 7 Error-Correcting Codes

Theorem 7.3.3 Suppose that a code C of length n has a minimum distance

dmin(C) > n

(
1 − 1

w2

)
.

Then C is a w-traceable code and hence has the identifiable parent property of
order w.

Proof Let X ⊆ C with |X | = w. Suppose X = {x1, x2, . . . , xw}. Let us consider any
z ∈ C \ X . Then, for any i , I (z, xi) = n − d(z, xi) < n − (n − n/w2) = n/w2, i.e.,
the number of coordinates where z and xi agree is less than n/w2. We now define

I (z, X) = { j | z j ∈ Pj (X)}.

We obtain now

I (z, X) ≤ w I (z, xi) < w · n

w2 = n

w
. (7.12)

On the other hand, by Lemma 7.3.1, for every y ∈ desc(X)we can find a xi such that
I (xi , y) ≥ n/w. Thus we obtain d(xi , y) ≤ n − n/w = n(1 − 1/w) while for any
z ∈ C \ X we will have I (z, y) ≤ I (z, X) < n/w and hence d(z, y) > n − n/w =
n(1 − 1/w), proving w-traceability. ��

This theorem works only for a reasonably large alphabet.

Exercises
1. Let the size of the alphabet be q . Then there does not exist an w-IPP code C with

|C| > w ≥ q .
2. UsingReed–Solomon codeC overZ17 of length 16with theminimumdistance 13,

show that there exists a fingerprinting code with the identifiable parent property
of order 2 containing 83521 codewords.

8Compression

Good things, when short, are twice as good.

Baltasar Gracián y Morales (1601–1658)

Compression of files is an important practical question. Memory is always a limiting
resource so if our files can be stored in a more economic fashion, this has to be
done. Some files, like pictures, contain a lot of redundancy and can be compressed
significantly even without loss of quality of pictures. There are numerous ways to
do so.

There are three major approaches to measuring the quantity of information in a
message of a certain alphabet: probabilistic, combinatorial and algorithmic. Prob-
abilistic view is that information is anything that resolves uncertainty. The more
uncertain an event that may or may not take place in the future, the more information
is required to resolve the uncertainty. This works well with messages generated by
random sources but cannot help answering questions like: “What is the quantity of
information in Lev Tolstoy’s War and Peace”? or “How much information is needed
for the reproduction of a particular form of cockroach?”

Combinatorial approach tries to reduce complex events to some basic ones. Sup-
pose you would like to know if there will be rain tomorrow. You look the weather
forecast and get the answer. This is a simple “yes” or “no” situation and it is easy to
resolve. Suppose a 1means “no rain” and a 0means rain, then one binary digit carries
all the information you need. One bit is a unit of information expressed as a choice
between two possibilities 0 and 1. Asking whether there will be rain tomorrow you
ask for one bit of information. Information of more complex events can also be mea-
sured in bits. Given a set of possible events we ask how many bits of information is
required to individualise each particular event. Suppose n binary digits are sufficient

© Springer Nature Switzerland AG 2020
A. Slinko, Algebra for Applications, Springer Undergraduate Mathematics Series,
https://doi.org/10.1007/978-3-030-44074-9_8

235

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44074-9_8&domain=pdf
https://doi.org/10.1007/978-3-030-44074-9_8

236 8 Compression

to give a distinctive label to every event and you cannot do this with n − 1 binary
digits. Then we say that every event in the set of events carries n bits of information.

The algorithmic approach is closely related to the concept of (Kolmogorov) com-
plexity. Roughly speaking the longer is the program that we have to write for a
computer to output the given message, the less redundancy this massage has and less
compressible it is.

Here we give a glimpse of the combinatorial approach to compression describing
Huffman’s and Fitingof’s compression codes. The first needs information about the
source, i.e., we need to know how the file was generated. The second type of codes
is universal as they can be used when we do not know where the data came from.
Boris Fitingof (1966) developed the first such code, and the construction is quite
elegant. His paper was inspired by paper of Kolmogorov (1965). However it is fair
to consider Fitingof as the founder of the universal encoding.

8.1 Encoding a Known Source

8.1.1 Motivating Example

Example 8.1.1 Suppose that we have a 100,000 character data file that we wish to
store in a most economical way. The file contains only six characters a, b, c, d, e, f
appearing with the following frequencies:

a b c d e f
frequency in thousands 40 25 12 10 8 5

A binary code encodes each character as a binary string called codeword. We
would like to find a binary code that encodes our file using as few bits as possible,
i.e., compresses it as much as possible.

Firstly, let us try to use a fixed-length code that encodes every symbol in the same
number of binary digits. Since we have only four combinations of binary digits of
length 2, namely 00, 01, 10, 11, we must use combinations of three digits to encode
letters, perhaps,

a → 000, b → 001, c → 010, d → 011, e → 100, f → 101.

Then our file will be stored as a string of binary digits of length 300,000. It will be
easy to decode: indeed, the first three digits encode the first symbol, the next three
digits encode the second and so on.

Let us now try to use the fact that a and b are the most frequent symbols and e
and f are the least frequent. Consider the encoding

a → 0, b → 10, c → 110, d → 1110, e → 11110, f → 111110.

8.1 Encoding a Known Source 237

Then our file will be stored using

(40 · 1 + 25 · 2 + 12 · 3 + 10 · 4 + 8 · 5 + 5 · 6) · 1000 = 236,000 bits,

which is much more economical. Will we be able to uniquely decode the file? Yes,
we will since not a single codeword is the beginning of the other. For example,
0110011110010 can be uniquely decrypted as acaeab. The next section explains
why.

8.1.2 Prefix Codes

Let X be a finite alphabet. By W (X) we will denote all possible words of finite
length in this alphabet. In particular, W (Z2) is the set of all words in binary alphabet
Z2 = {0, 1}.

Definition 8.1.1 A mapping ψ : X → W (Z2) will be called a binary code if it is
one-to-one. This code is said to be a prefix code if for every two symbols x, y ∈ X
neither of the two codewords ψ(x), ψ(y) is the beginning of the other.

Thewordw = x1x2 . . . xn in alphabet X will be encoded asψ(x1)ψ(x2) . . . ψ(xn).
A prefix code guarantees that encoded words can be uniquely decoded.

Example 8.1.2 Let X = {a, b, c} and ψ(a) = 1, ψ(b) = 01, ψ(c) = 00. This is a
prefix code and the message 0001101100 can be uniquely decoded as

0001101100 = ψ(c)ψ(b)ψ(a)ψ(b)ψ(a)ψ(c) −→ cbabac.

Every rooted binary tree with n leaves gives us a prefix code for an alphabet X of
size n. We assign a 1 to each edge from a parent to its left child and a 0 to each edge
from a parent to its right child. Then the set of all terminal vertices can be identified
with the set of codewords of a prefix code. Indeed, for any terminal vertex, there
is a unique directed path from the root to it. This path gives a string of 0s and 1s
which we assign to the terminal vertex. Since we always finish at a terminal vertex,
no path is a beginning of the other and therefore no codeword will be a beginning of
the other. We have proved

Theorem 8.1.1 Every rooted binary tree determines a prefix code and every prefix
code corresponds to a rooted binary tree.

Example 8.1.3 For example, the tree belowcorresponds to the code {0, 11, 101, 100}:

238 8 Compression

•

•

• •

•

• •

101 100

0

11

...........
...........
...........
...........
...........
...........
...........
...........
...........
...

...........
...........
...........
...........
...........
...........
...........
...........
...........
...

...........
...........
...........
...........
...........
...........
...........
...........
...........
...

The following theorem tells us howmany codewords of a particular length a prefix
code may have.

Theorem 8.1.2 (Kraft’s Inequality) Suppose that |X | = q. Then a prefix code
ψ : X → W (Z2) with the lengths of codewords m1, m2, . . . , mq exists if and only if

q∑

i=1

2−mi ≤ 1. (8.1)

Proof We will assume that m = max(m1, . . . , mq), which means that the longest
codeword has length m. Suppose that a prefix code possesses a codeword u of length
i . Then the 21 = 2 words u0 and u1 cannot be codewords. The 22 = 4 words u00,
u01, u10 and u11 also cannot be codewords. In general all 2k−i words of length k
obtained by extending u to the right cannot be codewords. If v is another codeword
of length j then it excludes another 2k− j words of length k from being codewords.
The codewords u and v cannot exclude the same word, otherwise one of them will
be the beginning of the other.

Let us denote by S j the number of codewords of length j . Then, as we just noticed,

S1 · 2k−1 + S2 · 2k−2 + . . . + Sk−1 · 2

words of length k cannot be codewords. This number plus Sk , which is the number of
codewords of length k, should be less than or equal to 2k , which is the total number of
words of length k. The existence of a prefix code with the given lengths of codewords
implies that the following inequality holds for any k = 1, . . . m:

2k − S1 · 2k−1 − S2 · 2k−2 − . . . − Sk−1 · 2 − Sk ≥ 0. (8.2)

Thus, all these inequalities are necessary conditions for the existence of such a prefix
code. But the inequality for k = m is the strongest because it implies all the rest.
Indeed, (8.2) implies

2k − S1 · 2k−1 − S2 · 2k−2 − . . . − Sk−1 · 2 ≥ 0

8.1 Encoding a Known Source 239

and after dividing by 2 we get

2k−1 − S1 · 2k−2 − S2 · 2k−3 − . . . − Sk−1 ≥ 0,

i.e., the same inequality for k − 1. Thus, indeed, the inequality for k = m implies all
other inequalities.

Taking this strongest inequality (8.2) and dividing it by 2m we get

m∑

j=1

S j · 2− j ≤ 1. (8.3)

This is equivalent to (8.1) as

m∑

j=1

S j · 2− j =
q∑

i=1

2−mi .

Hence the inequality (8.1) is necessary condition for the existence of a prefix code
with lengths of codewords m1, m2, . . . , mq .

Let us show that it is also sufficient. Let S j be the number of codewords of length
j andm be themaximal length of codewords.Wewill again use (8.1) in its equivalent
form (8.3) which implies (8.2) for all k = 1, . . . , m.

Firstly,we take S1 arbitrarywords of length 1. Since (8.2) for k = 1gives 2 − S1 ≥
0 we have S1 ≤ 2 and we can do this step. Suppose that we have done k − 1 steps
already and have chosen Si words of length i for i = 1, . . . , k−1 so that no one word
is the beginning of the other. Then the chosen words will prohibit us from choosing

S1 · 2k−1 + S2 · 2k−2 + . . . + Sk−1 · 2

words of length k. But due to (8.2)

2k −
(

S1 · 2k−1 + S2 · 2k−2 + . . . + Sk−1 · 2
)

≥ Sk,

hence we can find Sk words of length k which are compatible with the words previ-
ously chosen. This argument shows that the construction of the code can be completed
to the end. �

Example 8.1.4 Let us consider the following equation:

1

21
+ 1

22
+ 1

23
+ 1

23
= 1. (8.4)

If X = {a, b, c, d}, then according to Theorem 8.1.2 there exists a prefix code
ψ : X → W (Z2) with the lengths of the codewords 1, 2, 3, 3. Let us choose the
codeword ψ(a) = 0 of length 1, then we cannot use the words 00 and 01 for the

240 8 Compression

choice of the codeword for b of length 2 and we choose ψ(b) = 10. For the choice
of codewords for c and d we cannot choose the words 000, 001, 010, 011 (because
of the choice of ψ(a)) and the words 100, 101 (because of the choice of ψ(b)), thus
we choose the two remaining words of length 3, i.e., ψ(c) = 110 and ψ(d) = 111.

Example 8.1.5 Suppose now that X = {aa, ab, ba, bb}. Then |X | = 4 and we can
use (8.4) again for this situation to define a code ψ : X → W (Z2) as follows:

ψ(aa) = 110, ψ(ab) = 0, ψ(ba) = 10, ψ(bb) = 111.

The the words abba and baabab will be encoded as 010 and 1000, respectively. The
word 11111001000 can be represented as

11111001000 = ψ(bb)ψ(aa)ψ(ab)ψ(ba)ψ(ab)ψ(ab)

and therefore it will be decoded to bbaaabbaabab.

Exercises
1. Check that the set {11, 10, 00, 011, 010} is a set of codewords of a prefix code

and construct the corresponding tree.
2. Given the equation

1

22
+ 1

22
+ 1

23
+ 1

23
+ 1

24
+ 1

24
+ 1

24
+ 1

24
= 1,

give an example of a prefix code the existence of which can be implied from this
equality?

3. Let X be an alphabet consisting of 9 elements. Construct a prefix binary code
ψ : X → W (Z2) with the lengths of the codewords: 2, 3, 3, 3, 3, 3, 4, 5, 5 in
following steps:

(a) Use Kraft’s inequality to prove that such a code does exist.
(b) Construct any tree that corresponds to such a code.
(c) List the codewords (their choice is not unique).

8.1.3 Huffman’s Optimal Code

In our motivating example we knew frequencies of symbols. Alternatively, we can
assume that the source that generates symbols generates them with known probabil-
ities. Under this assumption we can speak about optimal encoding of these symbols.

Definition 8.1.2 Let X = {x1, x2, . . . , xn} be an alphabet and the source generates
xi with frequency pi . The average bits per symbol of a prefix code ψ : X → W (Z2)

8.1 Encoding a Known Source 241

is the sum over all symbols of their frequency times the number of bits in their
encodings, i.e.,

AB(ψ) =
n∑

i=1

pi · |ψ(xi)|,

where |ψ(xi)| is the length of the codeword encoding symbol xi .

We would like to find a prefix code that has the lowest possible average bits per
symbol.

Definition 8.1.3 For a given alphabet X = {x1, x2, . . . , xn} with probability distri-
bution p1, p2, . . . , pn the prefix code with the smallest average bits per symbol is
called the optimal code.

In 1951,DavidA.Huffman and hisMIT information theory classmateswere given
the choice of a term paper or a final exam. The professor, Robert M. Fano, assigned
a term paper on the problem of finding the most efficient binary code. Huffman,
unable to prove any codes were the most efficient, was about to give up and start
studying for the final when he hit upon the idea of using a frequency-sorted binary
tree and quickly proved this method themost efficient. In doing so, the student outdid
his professor, who had worked with information theory inventor Claude Shannon to
develop a similar code. Huffman avoided the major flaw of the suboptimal Shannon–
Fano coding by building the tree from the bottom up instead of from the top down.
It starts with n vertices x1, x2, . . . , xn with no edges.

Step 1 Pick two letters x, y from alphabet X with the smallest frequencies px and
py and create a subtree that has these two letters as leaves adding the root of this
subtree denoted z.

Step 2 Set the frequency pz = px + py . Remove x, y and add z creating new alpha-
bet

X ′ = X ∪ {z} − {x, y}.
Note that |X ′| = |X | − 1.

Repeat this procedure, called merge, with new alphabet X ′ until an alphabet with
only one symbol—the root—is left. The resulting tree corresponds to an optimal
code.

The following lemmas will provide a justification of this construction.

Definition 8.1.4 A binary tree is full if every node that is not a leaf has two children.

Lemma 8.1.1 The tree for an optimal code is full.

242 8 Compression

Proof If there is a vertex with just one child, then this vertex can be removed and
the tree streamlined. �

Lemma 8.1.2 Consider the two letters, x and y with the smallest frequencies. Then
there is an optimal code in which tree these two letters are sibling leaves at the lowest
level.

Proof Let T be an optimum tree for this code, and let b and c be two sibling leaves
at the maximum depth of the tree. (It may be possible that {x, y} ∩ {b, c} 	= ∅). Such
two symbols must exist because T is full. Assume without loss of generality that
pb ≤ pc and px ≤ py (if this is not true, then rename these characters). Since x and
y have the two smallest frequencies it follows that px ≤ pb (they may be equal) and
pc ≤ py (may be equal as well). If we swap x with b and y with c wewill not increase
the average bit number. Indeed, the more frequent b and c will be now encoded by
shorter codewords. �

Example 8.1.6 The optimal tree for Example 8.1.1 is shown on the following
picture.

40 25 12 10 8 5

100

60

35

22 31

It produces the following Huffman code:

a → 1, b → 01, c → 0011, d → 0010, e → 0001, f → 0000.

We have

(40 · 1 + 25 · 2 + 35 · 4) · 1000 = 230,000 bits,

which gives us even more efficient encoding than we had before.

Exercises
1. Show that sometimes Huffman’s tree may not be unique. Give an example of an

alphabet and probabilities of its symbols that are all different but for which there
may be several Huffman trees constructed.

2. ConstructHuffman’s tree for the alphabet {a, b, c, d, e, f , g, h}with probabilities
1

54
,

1

54
,

2

54
,

3

54
,

5

54
,

8

54
,
13

54
,
21

54
,

8.1 Encoding a Known Source 243

respectively.
3. Consider the code for the alphabet X = {x1, x2, x3, x4, x5, x6} given by the table

Source symbol Probability Codeword
x1 0.26 00
x2 0.24 01
x3 0.14 100
x4 0.13 110
x5 0.12 101
x6 0.11 111

(a) Show that this code is an optimal prefix code;
(b) Show that it is not a Huffman code.

4. Let X be an alphabet consisting of 100 symbols. Find the multiset of codeword
lengths of an optimal binary encoding (Huffman code) of the uniform distribution,
when every symbol appears with probability

pi = 1

100
, (i = 1, 2, ..., 100).

That is the source is uniform on 100 symbols. Just find how many codewords of
various lengths exist. You do not need to produce the actual code.

5. For every full tree the Kraft’s inequality becomes an equality.
6. Prove or disprove: if |X | = q andm1, m2, . . . , mq be the lengths of the codewords

of Huffman’s code, then
q∑

i=1

2−mi = 1,

i.e., Kraft’s inequality for Huffman’s code becomes an equality.

8.2 Encoding an Unknown Source

To construct Huffman’s code one needs to know the probabilities of symbols, which
are never known exactly. It is a drawback of those codes. It came as a surprise that the
exact knowledge is not so much needed actually. Boris Fitingof (1966) developed a
single code, which is good enough for each Bernoulli source. His paper was inspired
by A. N. Kolmogorov (1965). He campaigned enthusiastically for that code and it is
fair to consider B. Fitingof the founder of the universal encoding.

244 8 Compression

8.2.1 Compressing Binary Sequences (Files)

When we need to compress files on a computer, our method in the previous section
will not work. Firstly, our alphabet is already binary, second we have no idea how
the file was generated. However we can get some useful methods if we encode not
symbols of the alphabet which are now 0 and 1 but the words in the alphabet Z2 of
a fixed length n, which can be identified with vectors in Z

n
2.

Definition 8.2.1 Let n be a positive integer. By a non-uniform (compression) code
we understand a mapping

ψ : Zn
2 → W (Z2). (8.5)

This means that every word w from Z
n
2 is encoded into a binary codeword ψ(w).

Note that the length of w is strictly n while the length of ψ(w) can be arbitrary.
This gives us a chance to compress sequences of bits (files). The code of a sequence
M , which is a word from W (Z2), will be obtained as follows. We divide M into
segments of length n and the tail which is of length at most n (but by agreement
it can be viewed also of length n; for example, for English words we may add as
many letters “z” at the end of the message as is needed). Then M is represented as
M = w1w2 . . .ws . . ., where wi ∈ Z

n
2 and we define

ψ(w1)ψ(w2) . . .ψ(ws) . . . (8.6)

to be the encoding for M . What we should take care of is that the message (8.6) can
be uniquely decoded and that this decoding is as easy as possible. This is non-trivial
since the words ψ(w1), . . . ψ(ws) . . . may have different lengths and we may not
know, for example, where ψ(w1) ends and where ψ(w2) starts. We use the same idea
as in the previous section.

Let us recap that a non-uniform code ψ : Zn
2 → W (Z2) is said to be a prefix code

if for every two words w1,w2 ∈ Z
n
2 neither of the two codewords ψ(w1), ψ(w2) is

the beginning of the other.
If our code is a prefix one, then we can decode (8.6) uniquely. Indeed, there will be

only one codeword which is the beginning of (8.6) and that will be ψ(w1). Similarly
we decode the rest of the sequence.

We need to look into the structure of Zn
2.

Let us also recap that the number of ones in a sequence w ∈ Z
n
2 is called the

Hamming weight of w, denoted wt(w). Let X = Z
n
2 and Xd = {x ∈ X | wt(x) = d}

be all vectors of Hamming weight d. Then we obtain a partition

X = X0 ∪ X1 ∪ . . . ∪ Xn,

where |Xd | = (n
d

)
. This situation needs comprehension from the information theory

point of view.

8.2 Encoding an Unknown Source 245

Exercises
1. Find the Hamming weight of the vectors u = 1100101 and v = 0111011.
2. How many vectors of Hamming weight 3 is there in X = Z

7
2? And vectors of

Hamming weight 5?

8.2.2 Information and Information Relative to a Partition

Let � be a finite set and |�| be the number of elements in it. Suppose that we want
to give an individual label to each element of � and each label must be a sequence
of zeros and ones. How long must our sequences be so that we have enough labels
for all elements of �? Since we have exactly 2n sequences of length n, this number
should be taken so that 2n ≥ |�|. If we aim at sequences of the shortest possible
length, we should choose n so that

2n ≥ |�| > 2n−1. (8.7)

This means that to specify an element of � requires n bits of information. The
labeling, for example, can be done in the following way. Let |�| = 2n (or n =
log2 |�|), and ω0,ω1, . . . ,ω|�|−1 be elements of � listed in some order. Then we
can think of the correspondence

ωk �→ k �→ k(2),

where k(2) is the binary representation of k written according to the following con-
vention: if k, in binary, has � < n binary digits then n − � zeros are added in front
of the standard binary representation of k. In other words, the information contained
in ωk is the binary representation of k. Then, under this arrangement, every element
of � carries exactly n bits of information.

Example 8.2.1 Let |�| = 16, n = 4. Then ω5 can be put in correspondence to 5 and
to 5(2) = 0101. Thus, every element of � carries 4 bits of information.

Definition 8.2.2 Information (as defined by Hartley 1928) of an element ω ∈ � is
by the definition

I (ω) = log2 |�|, (8.8)

where |�| denote the number of elements in �.

Here and further in this section all logarithms will be taken to base 2.

Let �x
 be the nearest integer which is greater than or equal to x . Then (8.7)
implies n ≥ log |�| > n − 1, hence, for an element ω ∈ �, the integer �I (ω)
 is
the minimal number of binary symbols necessary for individualising ω among other
elements of �.

246 8 Compression

Let now

� = �1 ∪ �2 ∪ . . . ∪ �n (8.9)

be a partition of � into n disjoint classes. Let π(ω) denote the class which contains
ω.

Definition 8.2.3 Information of an element ω ∈ � relative to the given partition is
defined as

I (ω) = log |π(ω)|. (8.10)

It can be interpreted as follows. In a partitioned set, to individualise ω we can do it
in two stages: firstly, we can individualise the class π(ω) to which ω belongs and
second to individualise ω within the class π(ω). Equation (8.10) does the latter. In
the extreme case, when there is only one class in the partition, i.e., the set � itself,
we get the same concept as in Definition 8.2.3.

Example 8.2.2 Let � = Z
4
2 be the four-dimensional vector space over Z2. Let

�i = {y ∈ Z
4
2 | wt(y) = i},

where wt(y) is the Hamming weight of y. Then � = �0 ∪ �1 ∪ �2 ∪ �3 ∪ �4 is a
partition of �. Let u = 1111, v = 0010, w = 0101. Then

I (u) = log |�4| = log

(
4

4

)
= log 1 = 0 bits,

I (v) = log |�1| = log

(
4

1

)
= log 4 = 2 bits,

I (w) = log |�2| = log

(
4

2

)
= log 6 ≈ 2.6 bits.

Example 8.2.3 Let � = Z
n
2 and

� = �0 ∪ �1 ∪ . . . ∪ �n

be the partition for which, as in the previous example, �i consists of vectors of
Hamming weight i . Let z ∈ Z

n
2 has weight d. Since |�d | = (n

d

)

I (z) = log |�d | = log

(
n

d

)
.

If d is small, then

I (z) = log

(
n

d

)
= log

n(n − 1) . . . (n − d + 1)

d! < log nd = d log n,

8.2 Encoding an Unknown Source 247

i.e., the information of a vector of a small weight is rather small relative to n. If d
is close to n, the information will be small too. It will be maximal for d = n/2 in
which case, due to the asymptotic formula

(
n

n/2

)
∼

√
2

π
· 2n

√
n
, (8.11)

which can easily be obtained from Stirling’s formula (2.2). This implies

I (z) = log

(
n

d

)
= log

(
n

n/2

)
∼ n − 1

2
log n + 1

2
(1 − logπ) ∼ n,

which is only slightly smaller than n and asymptotically equal to n.

Proposition 8.2.1 For the partition (8.9)

∑

ω∈�

2−(I (ω)+log n) = 1. (8.12)

Proof For any element ω of the class �i

−(I (ω) + log n) = − log |�i | − log n.

Thus

∑

ω∈�

2−(I (ω)+log n) =
n∑

i=1

|�i |2(− log |�i |−log n) =
n∑

i=1

|�i |
|�i |n =

n∑

i=1

1

n
= 1. �

We shall see soon what Eq. (8.12) means.

Corollary 8.2.1 Let � = Z
n
2 and

� = �0 ∪ �1 ∪ . . . ∪ �n

be the partition for which, as in the previous example, �i consists of vectors of
Hamming weight i . Then there exists a prefix code ψ : � → W (Z2) such that for
any ω ∈ � the length of the codeword ψ(ω) is �(ω) = �I (ω) + log n
, where I (ω)

is the information of ω relative to the given partition.

Proof By Proposition 8.2.1

∑

ω∈�

2−�I (ω)+log n
 ≤
∑

ω∈�

2−(I (ω)+log n) = 1,

and the result follows from Theorem 8.1.2. �

248 8 Compression

This corollary tells us that there is a prefix code that can be organised as follows.
To encode the element of � we can specify the code of the equivalence class using
log n binary symbols and then specify the label of the element in this class. This is
implemented in Fitingof’s code.Also existence of the code is not everything.Another
important issue is fast decodability. We will see that Fitingof’s code is good on this
front too.

Exercises
1. How many bits of information does one need to specify one letter of the English

alphabet?
2. In a magic trick, there are three participants: the magician, an assistant and a

volunteer. The assistant, who claims to have paranormal abilities, is in a sound-
proof room. The magician gives the volunteer six blank cards, five white and one
blue. The volunteer writes a different integer from 1 to 100 on each card, as the
magician is watching. The volunteer keeps the blue card. The magician arranges
the five white cards in some order and passes them to the assistant. The assistant
then announces the number on the blue card. How does the trick work?

8.2.3 Fitingof’s Compression Code. Encoding

Weneed to compress fileswhenwe are short ofmemory andwant to use it effectively.
Since computer files are already written as strings of binary digits in this section we
will consider the code ψ : Zn

2 → W (Z2) which encodes binary sequences of fixed
length n into binary sequences of variable length. The idea of Fitingof’s compression
is expressed in Example 8.2.3, where it was shown that the information of a vector
from Z

n
2 of small (or large) Hamming weight is relatively small compared to n.

Therefore if we encode words in such a way that the length of a codeword ψ(x)

will be approximately equal to the information of x , then words of small and large
Hamming weights will be significantly compressed. This, for example, often works
well with photographs.

In this section we will order all binary words of the same length using lexico-
graphic order. This order depends on an order on our binary symbols and we will
assume that zero precedes one (denoted 0 ≺ 1).

Definition 8.2.4 Let y = y1y2 . . . yn and z = z1z2 . . . zn be two binary words of the
same length. We say that y is lexicographically earlier than z, and write y ≺ z, if for
some k ≥ 0

y1 = z1, y2 = z2, . . . , yk = zk, but yk+1 ≺ zk+1,

(which means that yk+1 = 0 and zk+1 = 1).

This order is called lexicographic since it is used in dictionaries to list words. For
example, in Oxford Dictionary the word “abash” precedes the word “abate” because

8.2 Encoding an Unknown Source 249

the first three letters of these words coincide but the fourth letter “s” of “abash”
precedes in the English alphabet the fourth letter “t” of “abate”.

For example, all 15 binary words of length 6 and weight 4 will be listed in
lexicographic order as shown:

001111 ≺ 010111 ≺ 011011 ≺ 011101 ≺ 011110 ≺ 100111 ≺ 101011 ≺ 101101

≺ 101110 ≺ 110011 ≺ 110101 ≺ 110110 ≺ 111001 ≺ 111010 ≺ 111100.
(8.13)

We can refer to these words by just quoting their ordinal numbers. We adopt the
agreement that the first word has ordinal number zero. Thus an ordinal number of
a word x is the number of words that are earlier than x. In particular, the ordinal
number of 101011 is 6.

Lemma 8.2.1 Let X = Z
n
2 and Xd = {x ∈ X | wt(x) = d} be all vectors of weight

d. If Xd is ordered lexicographically, then the ordinal number N (x) of x in Xd can
be calculated as

N (x) =
(

n−nd

1

)
+ · · · +

(
n−n2

d−1

)
+

(
n−n1

d

)
, (8.14)

where 1s in x occupy the positions n1 < n2 < . . . < nd (counting from the left).

Proof Firstly, we count all the words of weight d whose n1−1 leftmost symbols
coincide with those of x, i.e., are all zeros, and the position n1 is also occupied by
a zero (this condition secures that all such words are lexicographically earlier than
x). Since we have to distribute d ones between n−n1 remaining positions, there will
be

(n−n1
d

)
such words. Secondly, we have to count all the words whose first n2−1

symbols coincide with those of x and which have a zero in the position n2. There are(n−n2
d−1

)
such words as we have to distribute d−1 ones between n−n2 places. Finally,

we will have to count all words whose first nd−1 symbols coincide with those of
x and which have a zero in the position nd . There will be

(n−nd
1

)
such words. All

the words that are lexicographically earlier than x are now counted. As the ordinal
number of x is equal to the number of words which are lexicographically earlier than
x, this proves (8.14). �

Example 8.2.4 Consider the word x = 101011 in X4 where X = Z
6
2. Then n1 = 1,

n2 = 3, n3 = 5, n4 = 6 and d = 4. Then

N (x) =
(
0

1

)
+

(
1

2

)
+

(
3

3

)
+

(
5

4

)
= 0 + 0 + 1 + 5 = 6,

which is consistent with (8.13).

We are now ready to describe Fitingof’s compression code ψ : Zn
2 → W (Z2).

The idea of this code is to characterise any word x from X = Z
n
2 by two parameters,

250 8 Compression

namely its Hamming weight d and the ordinal number N(x) of x in Xd . We partition
X = Z

n
2 into n + 1 disjoint classes

X = X0 ∪ X1 ∪ . . . ∪ Xn, Xd = {x ∈ X | wt(x) = d}.

The codeword ψ(x) for x ∈ Xd (i.e., for a word x of weight d) will consists of
two parts: ψ(x) = μ(x)ν(x), where μ(x) is the prefix of fixed length �log(n + 1)
,
which is the binary code for d, and ν(x) is the suffix, which is the binary code of
the ordinal number N (x) of x in the class Xd consisting of �log |Xd |
 = ⌈

log
(n

d

)⌉

binary symbols. Both parameters together characterise x uniquely. In total the length
of the codeword ψ(x) = μ(x)ν(x) will be

�(ψ(x)) = �log(n + 1)
 +
⌈
log

(
n

d

)⌉
.

Asymptotically the length of the word ψ(x) will be

�(ψ(x)) = I (x) + o(n),
o(n)

n
→ 0,

i.e., equal to its information relative to the given partition.

We now state the main theorem of this chapter.

Theorem 8.2.1 (Fitingof’s theorem) There exists a prefix code ψ : Zn
2 → W (Z2) for

which the length of the codeword ψ(x) is asymptotically equal to the information of
the word x and for which there exists a decoding procedure of polynomial complexity.

Proof Wehave shown already that the length of the codewordψ(x) is asymptotically
equal to the information of the word x. Let us prove that Fitingof’s code is a prefix
one. Suppose ψ(x1) = μ(x1)ν(x1) is a beginning of ψ(x2) = μ(x2)ν(x2). We know
that the length of μ(x1) is the same as the length of μ(x2), hence μ(x1) = μ(x2) and
hence x1 and x2 has the same weight. But then the length of ν(x1) is the same as the
length of ν(x2) and hence ψ(x1) and ψ(x2) have the same length. However in such
a case one cannot be a beginning of another without being equal.

The proof will be continued in the next section devoted to the decoding
algorithm. �

Let us consider an example.

Example 8.2.5 Consider the Fitingof’s compression code ψ : Z31
2 → W (Z2). For

the vector

x = 0000000100000101000100000000000

we will have μ(x) = 00100 because wt(x) = 4 = 100(2) and the prefix must be of
length 5 to accommodate all possible weights in the range from 0 to 31. The length

8.2 Encoding an Unknown Source 251

of the suffix ν(x) will be �log (31
4

)
 = 15. Further, we will have n1 = 8, n2 = 14,
n3 = 16, n4 = 20 and

N (x) =
(
11

1

)
+

(
15

2

)
+

(
17

3

)
+

(
23

4

)
= 9651 = 10010110110011(2),

tus the suffixν(x)will be 010010110110011.Thus,ψ(x) = 00100010010110110011
has length 20.

Exercises
1. Put the following three words of Z7

2 in the increasing lexicographic order:

a = 0110111, b = 0111101, c = 0111011.

2. How many vectors of Hamming weight at least 4 and at most 5 are there in Z10
2 ?

3. Calculate the ordinal number of the word w = 0011011 in X4 ⊂ Z
7
2.

4. Let ψ : Z15
2 → W (Z2) be Fitingof’s code. Let x = 000010100000100.

(a) Determine the prefix of x which shows the Hamming weight of the word?
(b) How long must be the suffix of the codeword ψ(x)?
(c) Determine the suffix of the codeword ψ(x)?
(d) Encode x, i.e., find ψ(x).

5◦. (a)Calculate the size of the class X5 ⊆ Z
15
2 that consists of all vectors ofHamming

weight 5;
(b) Find the ordinal number of the vector

x = 100011000100100

in the class X5.
(c) What would be the encoding ψ(x) of this vector in the Fitingof’s code
ψ : Z15

2 → W (Z2)?

8.2.4 Fitingof’s Compression Code. Fast Decoding

To decode a message we have to decode the codewords one by one starting from the
first. Suppose the first codeword is ψ(x). First, we separate its prefix μ(x) (because
it is of fixed known length �log(n + 1)
) and reconstruct d = wt(x). Then, knowing
d, we calculate the length of the suffix ν(x), which is

⌈
log

(n
d

)⌉
. Then looking at the

suffix ν(x) and knowing that it represents the ordinal number N (x) of x in Xd , we
reconstruct N = N (x). Then we are left with the equation

(
xd

1

)
+ · · · +

(
x2

d−1

)
+

(
x1
d

)
= N (8.15)

252 8 Compression

to solve for xd < . . . < x2 < x1, where xi = n − ni . This can be done in a fast and
elegant way using the properties of Pascal’s triangle,1 part of which is shown below:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

The nth row of this triangle contain the binomial coefficients
(n

m

)
, m = 0, 1, . . . n,

where m increases from left to right. These binomial coefficients are defined induc-
tively by the formula

(
n

j

)
=

(
n−1

j

)
+

(
n−1

j−1

)
(8.16)

and the boundary conditions:
(0
0

) = 1, and
(0

m

) = 0 for all 0 	= m ∈ Z. We also know
the explicit formula

(
n

m

)
= n!

m!(n−m)! ,
which involves factorials.

The solution of (8.15) will be based on the formula

(
n−d

0

)
+

(
n−d+1

1

)
+ · · · +

(
n−1

d−1

)
+

(
n

d

)
=

(
n+1

d

)
. (8.17)

We prove it by induction on d for fixed but arbitrary n. If d = 1, then (8.17) becomes

(
n

0

)
+

(
n

1

)
=

(
n+1

1

)
or 1 + n = n + 1,

which is true. Let us assume that (8.17) is true for d = k − 1. Then by induction
hypothesis, applied to the first k − 1 summands of the left-hand side of (8.17) and
using (8.16) we get

(
n−k

0

)
+

(
n−k+1

1

)
+ · · · +

(
n−1

k−1

)
+

(
n

k

)
=

1The triangle is called after French mathematician Pascal, although it had been described centuries
earlier by Chinese mathematician Yanghui almost 500 years earlier, and the Persian astronomer
Omar Khayyám, who is better known for his poetry.

8.2 Encoding an Unknown Source 253

[(
(n−1)−(k−1)

0

)
+

(
(n−1)−(k−1)+1

1

)
+ · · · +

(
n−1

k−1

)]
+

(
n

k

)
=

(
n

k−1

)
+

(
n

k

)
=

(
n+1

k

)
,

which proves (8.17) for d = k. Hence, by induction, (8.17) is proven.

Proposition 8.2.2 Suppose Eq. (8.15) is satisfied for some x1, . . . , xd such that xd <

xd−1 < . . . < x1. Then x1 can be found as the largest integer satisfying the inequality(
x1
d

)
≤ N .

Proof Suppose that x1 < m, wherem is the largest integer satisfying
(m

d

) ≤ N . Then,
since xd < xd−1 < · · · < x1, we have x2 ≤ x1 − 1, x3 ≤ x1 − 2 and all the way to
xd ≤ x1 − d + 1. By (8.17)

(
xd

1

)
+ · · · +

(
x2

d−1

)
+

(
x1
d

)
≤

(
x1−d+1

1

)
+ · · · +

(
x1−1

d−1

)
+

(
x1
d

)
=

(
x1+1

d

)
− 1 <

(
m

d

)
≤ N ,

which is a contradiction. Hence x1 = m. �

Proposition 8.2.2 gives us a fast algorithm for solving Eq. (8.15). Indeed, we find
x1 directly applying Proposition 8.2.2. Then we move the term

(x1
d

)
to the right

(
xd

1

)
+ · · · +

(
x2

d−1

)
= N −

(
x1
d

)

and apply Proposition 8.2.2 again to get x2, etc.

Example 8.2.6 If d = 4 and N = 30, then for the equation
(

x4
1

)
+

(
x3
2

)
+

(
x2
3

)
+

(
x1
4

)
= 30

we find successively:

(
x1
4

)
= 15 and x1 = 6,

(
x2
3

)
= 10 and x2 = 5,

(
x3
2

)
= 3

and x3 = 3,

(
x4
1

)
= 2 and x4 = 2.

If we needed, for example, to find the word x which has ordinal number 30 in
X4 ⊂ Z

7
2, then according to the Eq. (8.14)

(
7−n4

1

)
+

(
7−n3

2

)
+

(
7−n2

3

)
+

(
7−n1

4

)
= 30,

254 8 Compression

then we would get 7−n1 = 6, 7−n2 = 5, 7−n3 = 3, 7−n4 = 2 or n1 = 1, n2 = 2,
n3 = 4, n4 = 5, whence x = 1101100.

Exercises
1. Let ψ : Z

15
2 → W (Z2) be Fitingof’s compression code. Decode ψ(y) =

00100011110, i.e., find y.
2. Solve the equation

(
x4
1

)
+

(
x3
2

)
+

(
x2
3

)
+

(
x1
4

)
= 43,

where x4 < x3 < x2 < x1.

3. Let ψ : Z15
2 → W (Z2) be Fitingof’s code.

(a) How long is the prefix which shows the Hamming weight of the word?
(b) Given x = 000100001001000, how long must be the suffix of the codeword

ψ(x)?
(c) Encode x, i.e., find ψ(x).
(d) Decode ψ(y) = 00100011110, i.e., find y. Make use of Pascal’s triangle.

8.3 Information and Uncertainty

A more traditional measure of information contained in a binary word x of length n
is based on the assumption that this word was generated by a random source. This
is of course not always a realistic assumption so our approach here is more general.
We will show, however, that in the case of a random source the two approaches are
asymptotically equivalent, i.e., when n gets large. Let us consider a random source
which sends signal “1” with probability p and signal “0” with probability 1 − p.
Then the measure of uncertainty about what the next signal will be is given by the
binary entropy function

H(p) = −p log p − (1−p) log(1−p)

(logarithms are to the base 2 and it is assumed that 0 · log 0 = 0). The uncertainty
is minimal when p = 0 or p = 1, in which case we essentially do not have any
uncertainty and the entropy of such source is zero. If p = 1/2, then the uncertainty
is maximal and the entropy of such source is equal to 1. We say that one symbol sent
from such random source contains H(p) bits of information. Thus we have 1 bit of
information from a symbol from a random source only in the case of probability 1/2.
A word of length n contains nH(p) bits of information.

Given a binary word x of length n consisting of m1 ones and m2 zeros we define

H(x) = −m1

n
log

m1

n
− m2

n
log

m2

n
.

8.3 Information and Uncertainty 255

Of course, if this word was generated from a random source with probability p, then
m1/n → p, when n gets large, and H(x) → H(p). The following theorem then
shows that the two approaches are equivalent.

Theorem 8.3.1 For every binary word x of length n it is true that

I (x) = n (H(x) + o(1)) ,

where as usual o(1) → 0, when n → ∞. Moreover, o(1) ∼ log n
n .

Proof Let us assume that the Hamming weight of x is m1 and let m2 = n − m1. We
will need Stirling’s formula (2.2) again. We use it to calculate

I (x) =
⌈
log

(
n

m1

)⌉
∼ log

(
n

m1

)
= log

n!
(m1)!(m2)! ∼ log

√
2πn nne−n

(
√
2πm1 m

m1
1 e−m1)(

√
2πm2 m

m2
2 e−m2)

= 1

2
log

n

2πm1m2
+ log

1
(m1

n
)m1

(m2
n

)m2
= 1

2
log

n

2πm1m2
− m1 log

m1

n
− m2 log

m2

n
.

Therefore

I (x)
n

= 1

2n
log

n

2πm1m2
− m1

n
log

m1

n
− m2

n
log

m2

n
= o(1) + H(x),

where o(1) is of order log n/n. The theorem is proved. �

9AppendixA:GAP

9.1 Computing with GAP

9.1.1 Starting with GAP

GAP is a system for computational algebra. GAP has been and is developed by
the international cooperation of many people, including user contributions. This
package is free, and you can install it onto your computer using the instructions
from the website www.gap-system.org. A reference manual and tutorial can
be found there. There is plenty of information about GAP available online too.

9.1.2 The GAP Interface

Once you have started GAP, you can start working straight away. If you type a simple
command (i.e., “quit”) followed by a semicolon, GAP will evaluate your command
immediately. If you press enter without entering a semicolon, GAP will simply give
you a new line to continue entering more input. This is useful if you want to write a
more complicated command, perhaps a simple program. If you wanted your simple
command to be evaluated, then simply enter a semicolon on the new line and press
enter again. Double semicolon executes the command but suppresses the output.
Since GAP ignores whitespace, this will work just the same as if you had entered
the semicolon in the first place. A semicolon will not always cause GAP to evaluate
straight away; GAP is able to work out whether you have finished a complete set of
instructions or are part of the way through entering a program.

Another way to interact with GAP, which is particularly useful for things you
want to do more than once, is to prepare a collection of commands and programs in a
text file. Then you can type the command Read (“MyGAPprog.txt”), and GAP will
evaluate all of the instructions in your text file. If your file is not in the same place

© Springer Nature Switzerland AG 2020
A. Slinko, Algebra for Applications, Springer Undergraduate Mathematics Series,
https://doi.org/10.1007/978-3-030-44074-9_9

257

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44074-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-44074-9_9

258 9 Appendix A:GAP

that GAP was launched from, you will have to provide its relative path (for example,
“../../GAPprogs/Example1.txt”).

9.1.3 Programming in GAP:Variables, Lists, Sets and Loops

You can declare a variable in GAP using the “:=” operator. For example, if youwant a
variablen to equal 2000, youwould entern := 2000, or if youwantn to be the product
of p and q , you would enter n := p ∗ q;. You can also declare lists using the “:=”
operator, for example, zeros := [0,0,0];. The command list:=[m..n];
defines the list of integersm,m + 1,m + 2, . . . , n. A list may have several identical
numbers in it. Lists have a length given by command Length(listName);,
and their entries can be referenced individually by typing listName[index];
(indices start from 1!). In GAP a list of primes≤ 1000 is stored. It is called “Primes”.
This is very useful.

gap> Primes;
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73,
79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167,
173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263,
269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367,
373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463,
467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587,
593, 599, 601, 607, 613, 617, 619, 631, 641,643, 647, 653, 659, 661, 673, 677, 683,
691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811,
821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929,
937, 941, 947, 953, 967, 971, 977, 983, 991, 997]

The command

gap> Length(Primes);
168

gives us the number of primes in this list. We can find the prime in 100th position
and the position of 953 in this list as follows:

gap> Primes[100];
541
gap> Position(Primes,953);
162

Sets cannot contain multiple occurrences of elements, and the order of elements
does not matter. Basically GAP views sets as ordered lists without repetitions. The
command Set(list); converts a list into a set removing duplication.

gap> list:=[2,5,8,3,5];
[2, 5, 8, 3, 5]
gap> Add(list,2);
gap> list;
[2, 5, 8, 3, 5, 2]
gap> set:=Set(list);
[2, 3, 5, 8]

9.1 Computing with GAP 259

gap> RemoveSet(set,2);
gap> set;
[3, 5, 8]

For loops and while loops exist in GAP. Both have the same format:

for (while) [condition] do [statements] od;

For example, the following for loop squares all of the entries in the list “boringList”
and places them in the same position in the list “squaredList”:

gap> boringList:=[2..13];
[2 .. 13]
gap> squaredList:=[1..Length(boringList)];
[1 .. 12]
gap> for i in [1..Length(boringList)] do
> squaredList[i]:=boringList[i]ˆ2;
> od;
gap> squaredList;
[4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169]

Here is the example of using a while loop. We want to square the first five numbers
of the boringList.

gap> boringList:=[2..13];;
gap> i:=1;;
gap> while i<6 do
> boringList[i]:=boringList[i]ˆ2;
> i:=i+1;
> od;
gap> boringList;
[4, 9, 16, 25, 36, 7, 8, 9, 10, 11, 12, 13]

List may contain other lists. Analyse the following program that lists all pairs of twin
primes not exceeding 1000. It also illustrates the use of “if-then” command.

if [condition] then [statements] fi;

Here it is:

gap> twinpairs:=[];
[]
gap> numbers:=[1..Length(Primes)-1];
[1 .. 167]
gap> for i in numbers do
> if Primes[i]=Primes[i+1]-2 then
> Add(twinpairs,[Primes[i],Primes[i+1]]);
> fi;
> od;
gap> twinpairs;
[[3, 5], [5, 7], [11, 13], [17, 19], [29, 31], [41, 43],

[59, 61], [71, 73], [101, 103], [107, 109], [137, 139],
[149, 151], [179, 181], [191, 193], [197, 199], [227, 229],
[239, 241], [269, 271], [281, 283], [311, 313], [347, 349],
[419, 421], [431, 433], [461, 463], [521, 523], [569, 571],
[599, 601], [617, 619], [641, 643], [659, 661], [809, 811],
[821, 823], [827, 829], [857, 859], [881, 883]]

260 9 Appendix A:GAP

9.2 Number Theory

Most of the number-theoretic commands in GAP are self-explanatory. Some of them
we have already encountered in the previous section.

9.2.1 Basic Number-Theoretic Algorithms

One of the most important commands is the command FactorsInt(n);. It out-
puts the prime factorisation of n or, more precisely, the primes that enter this prime
facorisationwith theirmultiplicity. The commandPrintFactorsInt(n); gives
a nicer view of this prime factorisation but you cannot use the output as a list which
you can do with the output of FactorsInt. The command DivisorsInt(n);
canbeused tofindall of the divisors ofn. The commandPrimeDivisorsInt(n);
finds the set of unique prime divisors of n. For example,

gap> FactorsInt(571428568);
[2, 2, 2, 71428571]
gap> PrintFactorsInt(571428568);
2ˆ3*71428571
gap> DivisorsInt(571428568);
[1, 2, 4, 8, 71428571, 142857142, 285714284, 571428568]
gap> PrimeDivisors(571428568);
[2, 71428571]

The command IsPrime(n); answers the question if n is prime. The command
NextPrimeInt(n); gives the smallest prime number that is strictly greater than
n. The action of the command PrevPrimeInt(n); is similar. For example,

gap> IsPrime(571428568);
false
gap> NextPrimeInt(571428568);
571428569
gap> PrevPrimeInt(571428568);
571428527

The list of primes “Primes” contains only the 168 primes that are smaller than 1000.
Using the commands that we have just introduced we can, for example, create a list
of the first 5000 primes:

gap> biggerPrimes := [];
[]
gap> counter := 1;
1
gap> currentPrime := 2;
2
gap> while counter < 5000 do;
> biggerPrimes[counter] := currentPrime;
> counter := counter + 1;
> currentPrime := NextPrimeInt(currentPrime);
> od;

9.2 Number Theory 261

The remainder and quotient of n divided by m are given by the commands
RemInt(n,m); and QuoInt(n,m);, respectively. For example,

gap> RemInt(9786354,383);
321
gap> QuoInt(9786354,383);
25551

The following command does the same thing as RemInt(n,m):

gap> 9786354 mod 383;
321

The greatest common divisor of a and b is given by GcdInt(a,b);. For example,

gap> GcdInt(123456789,987654321);
9

To find m, n such that ma + nb = gcd(a, b), use the GAP command Gcdex(a,b);.
For example,

Gcdex(108,801);

returns

rec(gcd := 9, coeff1 := -37, coeff2 := 5, coeff3 := 89, coeff4 := -12)

wherem =coeff1, n =coeff2 (m1 =coeff3 and n1 =coeff4 will also work). Another
example,

gap> Gcdex(123456789,987654321);
rec(gcd := 9, coeff1 := -8, coeff2 := 1, coeff3 := 109739369,

coeff4 := -13717421)

To find the least common multiple ofm and n, use the GAP command LcmInt(m,
n);. For example,

gap> LcmInt(123456789,987654321);
13548070123626141

The Euler’s totient function φ(n) is given by the command Phi(n);. For example,

gap> Phi(2ˆ15-1); Phi(2ˆ17-1);
27000
131070

262 9 Appendix A:GAP

TheChinese remainder theorem states the existence of theminimal solution N ≥ 0 of
N = a1 mod n1, N = a2 mod n2, ..., N = ak mod nk . The command for finding
this solution is ChineseRem([n1,n2, ...,nk], [a1,a2, ...,ak]);. For example

gap> ChineseRem([5,7],[1,2]);
16

GAP does not provide automatic conversion between bases. One way of doing base
conversion is to use the p-adic numbers package, feel free to investigate this on
your own. Another way is to write simple programs. For example, 120789 can be
converted to binary as follows:

gap> n := 120789;
120789
gap> base := 2;
2
gap> rems := [];
[]
gap> pos := 1;
1
gap> while n > 0 do;
> rems[pos] := RemInt(n,base);
> n := QuoInt(n,base);
> pos := pos + 1;
> od;
gap> n;
0
gap> rems;
[1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1]

That is, 120789 is 11101011111010101 in binary. If you are not sure why the list
rems are read in the reverse order, you need to study the Base Conversion algorithm
in Chap. 1. As for converting from another base into decimal, you should now be able
to do it themselves. Write a simple program to convert 100011100001111100000
from binary to decimal.

The commands RootInt(n,k); and LogInt(n,b); can be used to deter-
mine, respectively, the integer part of the kth (positive real) root of n and the loga-
rithm of n to the base b, that is, � k

√
n� and �logb(n)�. These should be used instead

of computing roots and logarithms as GAP does not support real numbers.
Despite not supporting real numbers GAP can display a complicated fraction as

a floating-point real number, e.g.,

gap> Float(254638754321/387498765398);
0.657134

9.2.2 Arithmetic Modulom

The multiplicative order of a modulo m is given by OrderMod(a,m);. For
example,

9.2 Number Theory 263

gap> OrderMod(10,77);
6

The command SmallestRootInt(n); determines the smallest root of the inte-
ger n, which is the integer r of smallest absolute value for which a positive integer
k exists such that n = rk . For example, 135 = 371293 and this command gives

gap> SmallestRootInt(371293);
13

The command PowerMod(r,e,m); returns the e-th power of r modulo m. For
example,

gap> PowerMod(987654321,123456789,987654321123456823);
171767037218848697

Calculating this number as

987654321ˆ123456789 mod 987654321123456823;

will be a mistake. The latter may take centuries (guess why). The command
QuotientMod(r,s,m) returns the quotient rs−1 of the elements r and s mod-
ulo m. In particular, using the command QuotientMod(r,s,m) is preferable to
using s−1 mod m. For example,

gap> QuotientMod(1,123456789,987654321123456823);
743084182864240163
gap> 123456789ˆ-1 mod 987654321123456823;
743084182864240163

For larger moduli, the first command works faster.
The primitive root modulo m is given by PrimitiveRootMod(m), and the

discrete log of a to the base bmodulom is given byLogMod(a,b,m). For example,

gap> PrimitiveRootMod(23);
5
gap> LogMod(11,5,97);
86

The command RootMod(m,p) will be especially useful dealing with elliptic
curves; it determineswhether or notm is a quadratic residue inZp and, if it is, outputs
k such that m = k2 mod p.

gap> q:=[0,0,0,0,0,0,0,0,0,0,0,0];
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
gap> for i in [1..12] do
> q[i]:=RootMod(i,13);
> od;
gap> q;
[1, fail, 9, 11, fail, fail, fail, fail, 3, 7, fail, 8]

264 9 Appendix A:GAP

9.2.3 DigitisingMessages

In the crypto section we needed to convert messages into numbers. Two small pro-
gramsLettertoNumber andNumbertoLetter do the trick.1 They are not part
of GAP so you have to execute them before converting.

LtoN (acronym of “Letter to Number”) takes any capital letter, whichmust be put
between apostrophes, e.g., “A”, and returns the corresponding number in the range
[0..25]. Any other argument would return −1 and print out an error message.

LtoN:=function(itamar)
local amith;
if itamar < ’A’ or ’Z’ < itamar then

Print("Out of range\n");
return -1;

else
amith:=INT_CHAR(itamar)-65;
return amith;

fi;
end;;

NtoL (acronym of “Number to Letter”) takes any number, positive or negative,
and finds the corresponding letter. The argument must be an integer.

NtoL:=function(itamar)
local amith;
amith:=CHAR_INT(itamar mod 26+65);
return amith;

end;;

Now we can digitise ABRACADABRA to numbers and back:

gap> Read("LettertoNumber");
gap> Read("NumbertoLetter");
gap> letters:="ABRACADABRA";
"ABRACADABRA"
gap> numbers:=[1..Length(letters)];
[1 .. 11]
gap> for i in [1..Length(letters)] do
> numbers[i]:=LtoN(letters[i]);
> od;
gap> numbers;
[0, 1, 17, 0, 2, 0, 3, 0, 1, 17, 0]
gap> letters2:="ZZZZZZZZZZZ";
"ZZZZZZZZZZZ"
gap> for i in [1..Length(numbers)] do
> letters2[i]:=NtoL(numbers[i]);
> od;
gap> letters2;
"ABRACADABRA"

In certain applications, for example in RSA, it is convenient to have all messages
of the same length. In such situations the following two programs can be used instead.

1I owe former student Amith Itamar for writing these.

9.2 Number Theory 265

LtoN1 takes any capital letter, which must be put between apostrophes, e.g., “A”,
and returns the corresponding number in the range [11..36]. Any other argument
would return −1, and print out an error message.

LtoN1:=function(itamar)
local amith;
if itamar < ’A’ or ’Z’ < itamar then

Print("Out of range\n");
return -1;

else
amith:=INT_CHAR(itamar)-65+11;
return amith;

fi;
end;;

NtoL1 takes any two-digit number, positive or negative, and finds the corre-
sponding letter. The argument must be an integer.

NtoL1:=function(itamar)
local amith;
amith:=CHAR_INT(itamar-11 mod 26+65);
return amith;

end;;

The following program CNtoL1 written by Joel Laity is very convenient for
decryption of messages in RSA. It converts a number with any number of digits into
a message. For example,

gap> n:=1112131415161718192021222324252627282930313233343536;
1112131415161718192021222324252627282930313233343536
gap> CNtoL1(n);
"A B C D E F G H I J K L M N O P Q R S T U V W X Y Z"

Here is the code for it:

CNtoL1 converts a number with an even number of digits to a sequence of characters.
The last two digits will be converted to a character, two at a time, using the
function NtoL1 until the entire number is exhausted. The output is a string of the
characters with spaces in between.

CNtoL1:=function(joel)
local n, string, temp, i;

if IsInt(joel) then
string:=[];
while joel > 0 do

n:=joel mod 100;
joel:= (joel-n)/100;
Add(string,NtoL1(n));
Add(string,’ ’);

od;
#reverses the order of the list
for i in [1..QuoInt(Length(string),2)] do

temp:=string[i];
string[i]:=string[Length(string)+1-i];
string[Length(string)+1-i]:=temp;

266 9 Appendix A:GAP

od;
#removes extra space
string:=string{[2..Length(string)]};
return string;

else Print("Input must be an integer!");
fi;

end;;

9.3 Matrix Algebra

GAP treats row vectors as a special case of lists.

gap> v:=[1,2,3];
[1, 2, 3]
gap> IsRowVector(v);
true

You can calculate linear combinations of vectors as usual.

gap> 2*[1,1,1] + [1,2,3];
[3, 4, 5]

A matrix is a list of rows. For example, the matrix

A =
⎡
⎣
1 2 3
4 5 6
7 8 9

⎤
⎦

will be presented as

gap> A:=[[1,2,3],[4,5,6],[7,8,9]];
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
gap> IsMatrix(A);
true

We can calculate the vector-matrix product

gap> u:=[1,1,1];
[1, 1, 1]
gap> u*A;
[12, 15, 18]

One has to note that if we multiply the matrix A by a row vector u (which would not
be normally defined), it will actually calculate AuT , e.g.,

gap> A*u;
[6, 15, 24]

We can calculate the determinant of A as

9.3 Matrix Algebra 267

gap> Determinant(A);
0

and calculate the inverse in two ways:

gap> B:=[[1,1,1],[0,2,1],[0,0,13]];
[[1, 1, 1], [0, 2, 1], [0, 0, 13]]
gap> Bˆ-1;
[[1, -1/2, -1/26], [0, 1/2, -1/26], [0, 0, 1/13]]
gap> Inverse(B);
[[1, -1/2, -1/26], [0, 1/2, -1/26], [0, 0, 1/13]]

Matrices with entries in Z26 can be added, multiplied and inverted adding mod 26
at the end of the line, e.g.,

gap> C:=[[1,1,1],[0,3,1],[0,0,5]];
[[1, 1, 1], [0, 3, 1], [0, 0, 5]]
gap> Cˆ-1 mod 26;
[[1, 17, 12], [0, 9, 19], [0, 0, 21]]

9.4 Algebra

9.4.1 Permutations

Permutations in GAP are represented as products of disjoint cycles. For example,
the permutation

π =
(
1 2 3 4
2 1 4 3

)

will be represented as (1, 2)(3, 4). The identity permutation is represented as (). For
example:

gap> pi:=(1,2)(3,4);
(1,2)(3,4)
gap> piˆ2;
()

Permutations can also be defined by its last row using the command PermList.
For example, permutation π can be defined as

gap> pi:=PermList([2,1,4,3]);
(1,2)(3,4)

Given a permutation written as a product of disjoint cycles, we may recover its last
row using the command ListPerm:

gap> tau:=(1,3,4)(2,5,6,7);
(1,3,4)(2,5,6,7)
gap> ListPerm(tau);
[3, 5, 4, 1, 6, 7, 2]

268 9 Appendix A:GAP

The image π(i) is calculated as iπ . For example:

gap> c:=PermList([2,3,4,1]);
(1,2,3,4)
gap> 2ˆc;
3

The order of a permutation can be calculated with GAP too.

gap> Order(PermList([2,4,5,1,3]));
6

The symmetric group can be defined by the command G:=Symmetric
Group(n);. Then you can ask to generate a random permutation of degree n.
Say,

gap> G:=SymmetricGroup(9);
Sym([1 .. 9])
gap> Random(G);
(1,9,2,8,4,6,3,7)

9.4.2 Elliptic Curves

For working in elliptic curves, first of all we have to read the two files elliptic.gd and
elliptic.gi, given in appendix:

gap> Read("elliptic.gd");
gap> Read("elliptic.gi");

Then an elliptic curve Y 2 = X3 + aX + b modulo Zp can be defined by the com-
mand:

gap> G:=EllipticCurveGroup(a,b,p);

If we try to input parameters for which the discriminant of the cubic d = −(4a3 +
27b2) is zero, it will show a mistake. If the discriminant is nonzero, it will generate
the group G. To list it, we may use the command AsList(G);

gap> G:=EllipticCurveGroup(3,2,5);
EllipticCurveGroup(3,2,5)
gap> AsList(G);
[(1, 1), (1, 4), (2, 1), (2, 4), infinity]

Now let us consider a larger group.

gap> H:=EllipticCurveGroup(17,19,97);
EllipticCurveGroup(17,19,97)
gap> ptsList := AsList(H);
[(2, 35), (2, 62), (3, 0), (4, 32), (4, 65), (5, 36), (5, 61),

(7, 44), (7, 53), (8, 45), (8, 52), (10, 5), (10, 92),
(12, 37), (12, 60), (13, 20), (13, 77), (14, 24), (14, 73),

9.4 Algebra 269

(16, 33), (16, 64), (23, 8), (23, 89), (24, 34), (24, 63),
(25, 8), (25, 89), (31, 48), (31, 49), (35, 18), (35, 79),
(36, 40), (36, 57), (37, 45), (37, 52), (38, 21), (38, 76),
(40, 0), (41, 31), (41, 66), (44, 3), (44, 94), (45, 27),
(45, 70), (46, 19), (46, 78), (47, 47), (47, 50), (49, 8),
(49, 89), (51, 29), (51, 68), (52, 45), (52, 52), (54, 0),
(55, 2), (55, 95), (56, 12), (56, 85), (60, 27), (60, 70),
(63, 2), (63, 95), (65, 47), (65, 50), (66, 16), (66, 81),
(68, 39), (68, 58), (69, 17), (69, 80), (70, 21), (70, 76),
(71, 25), (71, 72), (76, 2), (76, 95), (79, 34), (79, 63),
(81, 4), (81, 93), (82, 47), (82, 50), (83, 23), (83, 74),
(85, 30), (85, 67), (86, 21), (86, 76), (89, 27), (89, 70),
(91, 34), (91, 63), (92, 10), (92, 87), (93, 9), (93, 88),
(96, 1), (96, 96), infinity]

gap> Size(H);
100

In GAP the group of an elliptic curve is represented multiplicatively so we have to
multiply points instead of adding them and calculate P−1 instead of −P:

gap> point1:=ptsList[2];
(2, 62)
gap> point2:=ptsList[21];
(16, 64)
gap> point1 * point2;
(81, 93)
gap> point1ˆ-1;
(2, 35)
gap> g := Random(G);
(92, 87)
gap> gˆ5;
(69, 80)

You can determine orders of all elements of the group simultaneously using the
command

gap> List(ptsList,Order);
[50, 50, 2, 25, 25, 25, 25, 25, 25, 50, 50, 50, 50, 50, 50, 10, 10, 50, 50,

50, 50, 50, 50, 10, 10, 50, 50, 50, 50, 50, 50, 5, 5, 50, 50, 25, 25, 2,
50, 50, 50, 50, 50, 50, 25, 25, 50, 50, 50, 50, 25, 25, 5, 5, 2, 50, 50,
25, 25, 50, 50, 50, 50, 25, 25, 50, 50, 50, 50, 10, 10, 50, 50, 50, 50, 25,
25, 10, 10, 50, 50, 50, 50, 50, 50, 10, 10, 50, 50, 25, 25, 10, 10, 50, 50,
50, 50, 50, 50, 1]

The group of an elliptic curve for a ten-digit prime is already too big for GAP; it will
not be able to keep the whole group in the memory. For example, the two commands

gap> p:=123456791;;
gap> G:=EllipticCurveGroup(123,17,p);

will show a mistake. If one wants to calculate in larger groups, a special technique
must be applied.

We can find out if the group is cyclic or not.

gap> n:=NextPrimeInt(12345);
12347

270 9 Appendix A:GAP

gap> G:=EllipticCurveGroup(123,17,n);
EllipticCurveGroup(123,17,12347)
gap> Size(G);
12371
gap> Random(G);
(11802, 5830)
gap> P:=Random(G);
gap> Order(P);
12371
gap> IsCyclic(G);
true

There is no known polynomial time algorithm which finds a point on the given curve
although the following randomised algorithm gives us a point with probability close
to 1/2. This algorithm chooses x at random and tries to find a matching y such that
(x, y) is on the curve. For example,

gap> p:=NextPrimeInt(99921);
99923
gap> G:=EllipticCurveGroup(123,17,p);
EllipticCurveGroup(123,17,99923)
gap> Size(G);
100260
gap> IsCyclic(G);
true
gap> x:=12345;
12345
gap> fx:=(xˆ3+123*x+17) mod p;
51321
gap> y:=RootMod(fx,p);
fail
gap> x:=1521;
1521
gap> fx:=(xˆ3+123*x+17) mod p;
42493
gap> y:=RootMod(fx,p);
72372

and we obtain a point (1521, 72372) which belongs to G.
It is not so easy to input a point of a given elliptic curve. Suppose we want to

input a point M = (2425, 89535) of the curve

Y 2 = X3 + 12345 mod 95701.

We must generate the curve but we also have to explain GAP that M is the point of
the curve we have defined. For this we present GAP with the already known point
of the target curve (i.e., we can generate a point P on this curve at random) and say
that we will input a point of the same curve. See how this can be done in the example
below:

gap> G:=EllipticCurveGroup(0,12345,95701);;
gap> P:=Random(G);
(91478, 65942)
gap> M:=EllipticCurvePoint(FamilyObj(P),[2425,89535]);
(2425, 89535)

9.4 Algebra 271

9.4.3 Finite Fields

GAP knows about all the finite fields. To create the finite field Z p, type GF(p); For
example,

gap> F:=GF(5);;
gap> List:=Elements(F);
[0*Z(5), Z(5)ˆ0, Z(5), Z(5)ˆ2, Z(5)ˆ3]

The first element is 0 (GAP makes it clear that this is the zero of Z5 and not, say,
of Z3). The remaining elements are powers of a primitive element of Z5, and, in
particular, the second element is 1. Type Int(Z(5)); to determine the value of
Z(5) (as an integer mod 5).

gap> Int(Z(5));
2
gap> value:=[0,0,0,0,0];;
gap> for i in [1..5] do
> value[i]:=Int(List[i]);
> od;
gap> value;
[0, 1, 2, 4, 3]

Let us consider also Z7:

gap> F:=GF(7);
GF(7)
gap> Elements(F);
[0*Z(7), Z(7)ˆ0, Z(7), Z(7)ˆ2, Z(7)ˆ3, Z(7)ˆ4, Z(7)ˆ5]
gap> # Here 0*Z(7)=0, Z(7)ˆ0=1, Z(7)=3, Z(7)ˆ2=2, Z(7)ˆ3=6, Z(7)ˆ4=4, Z(7)ˆ5=5.
gap> # Z(7) is not 2 since 2 is not a primitive element.

Addition is carried out using + and multiplication using ∗.
In GAP the generator of Z(p) is chosen as the smallest primitive root mod p, as

is obtained from the PrimitiveRootMod function. Here is how to verify this for
p = 3 and p = 5:

gap> PrimitiveRootMod(7);
3
gap> p:=123456791;;
gap> PrimitiveRootMod(p);
17

To generate a finite field GF(pk), where p is a prime and k > 0 is an integer, we
type GF(p∧k);. For example,

gap> GF4:=GF(4);
GF(2ˆ2)
gap> F:=Elements(GF4);
[0*Z(2), Z(2)ˆ0, Z(2ˆ2), Z(2ˆ2)ˆ2]

272 9 Appendix A:GAP

Since F∗ is a cyclic group, GAP uses a generator of this cyclic group, denoted Z(pk),
to list all elements (except zero) as its powers.

gap> GF4:=GF(4);
GF(2ˆ2)
gap> gf4:=Elements(GF4);
[0*Z(2), Z(2)ˆ0, Z(2ˆ2), Z(2ˆ2)ˆ2]
gap> # Note that GAP lists elements of Z_2 first.
gap> GF8:=GF(8);
GF(2ˆ3)
gap> gf8:=Elements(GF8);
[0*Z(2), Z(2)ˆ0, Z(2ˆ3), Z(2ˆ3)ˆ2, Z(2ˆ3)ˆ3, Z(2ˆ3)ˆ4, Z(2ˆ3)ˆ5, Z(2ˆ3)ˆ6]

Note that GF(8) contains GF(2) but not GF(4). It is a general fact that GF(pm)
contains GF(pk) as a subfield if and only if k|m.

gap> GF9:=GF(9);
GF(3ˆ2)
gap> gf9:=Elements(GF9);
[0*Z(3), Z(3)ˆ0, Z(3), Z(3ˆ2), Z(3ˆ2)ˆ2, Z(3ˆ2)ˆ3, Z(3ˆ2)ˆ5, Z(3ˆ2)ˆ6,

Z(3ˆ2)ˆ7]

Note that GAP lists elements of Z3 first. Next, let us try adding, subtracting and
multiplying field elements in GAP. For example in GF(9):

[0*Z(3), Z(3)ˆ0, Z(3), Z(3ˆ2), Z(3ˆ2)ˆ2, Z(3ˆ2)ˆ3, Z(3ˆ2)ˆ5, Z(3ˆ2)ˆ6, Z(3ˆ2)ˆ7]
gap> gf9[5]+gf9[6]; gf9[5]-gf9[7];
Z(3)
Z(3ˆ2)ˆ3
gap> gf9[5]ˆ2;
Z(3)

In a finite field the discrete logarithm of an element z with respect to a root r is the
smallest nonnegative integer i such that r i = z. The commandLogFFE(z,r) returns
this value. (Note that r must be a primitive element of the field for this command to
work.) An error is signalled if z is zero, or if z is not a power of r .

gap> LogFFE(Z(409)ˆ116, Z(409)); LogFFE(Z(409)ˆ116, Z(409)ˆ2);
116; 58

9.4.4 Polynomials

It is not too hard to explain to GAP that we now want x to be a polynomial. We can
define the polynomial ring F[x] first. For example, we define the polynomial ring in
one variable x over Z2 as follows:

gap> R:=PolynomialRing(GF2,["x"]);
PolynomialRing(..., [x])
gap> x:=IndeterminatesOfPolynomialRing(R)[1];
x

9.4 Algebra 273

Now GAP will understand the following commands in which we define a poly-
nomial 1 + x + x3 ∈ Z2 and substitute the primitive element of GF(8) in it. All
calculations therefore will be conducted in the field GF(8):

gap> p:=Z(2)+x+xˆ3;
xˆ3+x+Z(2)ˆ0
gap> Value(p,Z(2ˆ3));
0*Z(2)

This tells us that the generator Z(23) of GF(8) is a root of the polynomial p(x) =
x3 + x + 1 over Z2.

We can factorise polynomials as follows:

gap> Factors(xˆ16+x+1);
[xˆ8+xˆ6+xˆ5+xˆ3+Z(2)ˆ0, xˆ8+xˆ6+xˆ5+xˆ4+xˆ3+x+Z(2)ˆ0]

Euclidean and Extended Euclidean algorithms can be performed as follows:

gap> g:=xˆ3+1;
xˆ3+Z(2)ˆ0
gap> h:=xˆ4+xˆ2+1;
xˆ4+xˆ2+Z(2)ˆ0
gap> Gcd(g,h);
xˆ2+x+Z(2)ˆ0
gap> GcdRepresentation(g,h);
[x, Z(2)ˆ0]
gap> x*g+Z(2)ˆ0*h;
xˆ2+x+Z(2)ˆ0

Alternatively we can define the polynomial x as follows. This time we define x
as a polynomial from Q[x]:
gap> x := Indeterminate(Rationals);
x_1
gap> Factors(xˆ12-1);
[x_1-1, x_1+1, x_1ˆ2-x_1+1, x_1ˆ2+1, x_1ˆ2+x_1+1, x_1ˆ4-x_1ˆ2+1]

When you type x GAP understands what you want to say but still gives the answer
in terms of x1. Another useful command:

gap> QuotientRemainder((x+1)*(x+2)+5, x+1);
[x_1+2, 5]

InterpolatedPolynomial(R,x,y) returns, for given lists x and y of
elements in a ring R of the same lengths, say, n, the unique polynomial of degree
less than n which has value y[i] at x[i], for all i = 1, 2, . . . , n. Note that the elements
in x must be distinct. For example,

gap> InterpolatedPolynomial(Integers, [1, 2, 3], [5, 7, 0]);
-9/2*xˆ2+31/2*x-6

274 9 Appendix A:GAP

Using GAP we can calculate minimal annihilating polynomials. For example,

gap> F:=GF(2ˆ6);
GF(2ˆ6)
gap> elts:=Elements(F);
[0*Z(2), Z(2)ˆ0, Z(2ˆ2), Z(2ˆ2)ˆ2, Z(2ˆ3), Z(2ˆ3)ˆ2, Z(2ˆ3)ˆ3, Z(2ˆ3)ˆ4,

Z(2ˆ3)ˆ5, Z(2ˆ3)ˆ6, Z(2ˆ6), Z(2ˆ6)ˆ2, Z(2ˆ6)ˆ3, Z(2ˆ6)ˆ4, Z(2ˆ6)ˆ5,
Z(2ˆ6)ˆ6, Z(2ˆ6)ˆ7, Z(2ˆ6)ˆ8, Z(2ˆ6)ˆ10, Z(2ˆ6)ˆ11, Z(2ˆ6)ˆ12, Z(2ˆ6)ˆ13,
Z(2ˆ6)ˆ14, Z(2ˆ6)ˆ15, Z(2ˆ6)ˆ16, Z(2ˆ6)ˆ17, Z(2ˆ6)ˆ19, Z(2ˆ6)ˆ20,
Z(2ˆ6)ˆ22, Z(2ˆ6)ˆ23, Z(2ˆ6)ˆ24, Z(2ˆ6)ˆ25, Z(2ˆ6)ˆ26, Z(2ˆ6)ˆ28,
Z(2ˆ6)ˆ29, Z(2ˆ6)ˆ30, Z(2ˆ6)ˆ31, Z(2ˆ6)ˆ32, Z(2ˆ6)ˆ33, Z(2ˆ6)ˆ34,
Z(2ˆ6)ˆ35, Z(2ˆ6)ˆ37, Z(2ˆ6)ˆ38, Z(2ˆ6)ˆ39, Z(2ˆ6)ˆ40, Z(2ˆ6)ˆ41,
Z(2ˆ6)ˆ43, Z(2ˆ6)ˆ44, Z(2ˆ6)ˆ46, Z(2ˆ6)ˆ47, Z(2ˆ6)ˆ48, Z(2ˆ6)ˆ49,
Z(2ˆ6)ˆ50, Z(2ˆ6)ˆ51, Z(2ˆ6)ˆ52, Z(2ˆ6)ˆ53, Z(2ˆ6)ˆ55, Z(2ˆ6)ˆ56,
Z(2ˆ6)ˆ57, Z(2ˆ6)ˆ58, Z(2ˆ6)ˆ59, Z(2ˆ6)ˆ60, Z(2ˆ6)ˆ61, Z(2ˆ6)ˆ62]

gap> a:=elts[11];
Z(2ˆ6)
gap> MinimalPolynomial(GF(2),a);
x_1ˆ6+x_1ˆ4+x_1ˆ3+x_1+Z(2)ˆ0
gap> MinimalPolynomial(GF(2ˆ3),a);
x_1ˆ2+Z(2ˆ3)*x_1+Z(2ˆ3)

So the minimal annihilating polynomial over Z2 is of degree 6:

m(t) = t6 + t4 + t3 + t + 1

while the same element has minimal annihilating polynomial

m1(t) = t2 + αt + α,

where α = Z(23) is a primitive element of GF(23) over Z2.

10Appendix B:Miscellania

10.1 Linear Dependency Relationship Algorithm

This algorithm is based on the following observation.

Lemma 10.1.1 Let A = [a1, a2, . . . , an] and B = [b1,b2, . . . ,bn] be two m × n
matrices given by their columns a1, a2, . . . , an and b1,b2, . . . ,bn. Suppose that A
is row reducible to B. Then

x1a1 + x2a2 + · · · + xnan = 0 if and only if x1b1 + x2b2 + · · · + xnbn = 0.
(10.1)

In particular, a system of columns {ai1 , ai2 , . . . , aik } is linearly independent if and
only if the system {bi1 ,bi2 , . . . ,bik } is linearly independent.

Proof Let x = (x1, x2, . . . , xn)T . Then

Ax = x1a1 + x2a2 + · · · + xnan and Bx = x1b1 + x2b2 + · · · + xnbn .

Since elementary row operations do not change the solution set of systems of linear
equations, we know that

Ax = 0 if and only if Bx = 0.

Hence (10.1) is true. �

The algorithm is used when we are given a set of vectors v1, v2, . . . , vn ∈ R
n and

we need to identify a basis of span{v1, v2, . . . , vn} and express all other vectors as
linear combinations of that basis.We formamatrix [v1 · · · vn]whose columns are the
given vectors and reduce it to the reduced row echelon form where all relationships
are transparent.

© Springer Nature Switzerland AG 2020
A. Slinko, Algebra for Applications, Springer Undergraduate Mathematics Series,
https://doi.org/10.1007/978-3-030-44074-9_10

275

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44074-9_10&domain=pdf
https://doi.org/10.1007/978-3-030-44074-9_10

276 10 Appendix B:Miscellania

Example 10.1.1 The matrix A = [a1, a2, . . . , a5] with columns a1, a2, . . . , a5 is
brought to its reduced row echelon form R=[r1, r2, . . . , r5] with columns
r1, r2, . . . , r5 as follows:

A =

⎡
⎢⎢⎣
1 −1 0 1 −4
0 2 2 2 0
2 1 3 1 4
3 2 5 4 0

⎤
⎥⎥⎦

rref−→

⎡
⎢⎢⎣
1 0 1 0 2
0 1 1 0 3
0 0 0 1 −3
0 0 0 0 0

⎤
⎥⎥⎦ .

The relationships between columns of R are much more transparent than that of A.
For example, we see that {r1, r2, r4} is linearly independent (as a part of the standard
basis ofR4) and that r1 + r2 − r3 = 0 and r5 = 2r1 + 3r2 − 3r4.Hencewe can con-
clude that {a1, a2, a4} is linearly independent, hence a basis of span{a1, a2, . . . , a5}
and that a3 = a1 + a2 and a5 = 2a1 + 3a2 − 3a4.

10.2 TheVandermonde Determinant

The Vandermonde determinant

Vn(x1, x2, . . . , xn) =

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
x1 x2 · · · xn
x21 x22 · · · x2n
...

...
. . .

...

xn−1
1 xn−1

2 · · · xn−1
n

∣∣∣∣∣∣∣∣∣∣∣

(10.2)

plays a significant role in algebra and applications. It can be defined over any field,
has a beautiful structure and can be calculated directly for any order.

More precisely, the following theorem is true.

Theorem 10.2.1 Let F be a field and a1, a2, . . . , an be elements of this field. Then
the value of the Vandermonde determinant of order n ≥ 2 is

Vn(a1, a2, . . . , an) =
∏

1≤i< j≤n

(ai − a j). (10.3)

Proof Since V2 = a2 − a1 we get a basis for induction. Suppose the theorem is true
for order n − 1. Consider the determinant

f (x) =

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
x a2 · · · an
x2 a22 · · · a2n
...

...
. . .

...

xn−1 an−1
2 · · · an−1

n

∣∣∣∣∣∣∣∣∣∣∣

10.2 The Vandermonde Determinant 277

If we expand it using cofactors of the first column we will see that it has degree
n − 1. Also it is easy to see that f (a2) = . . . = f (an) = 0 since if we replace x with
any of the ai for i > 1 we will have a determinant with two equal columns. Hence

f (x) = C(x − a2) . . . (x − an).

From the expansion of f (x) by cofactors of the first column we see that C =
Vn−1(a2, . . . , an). Hence we have

f (x) = Vn−1(a2, . . . , an)(x − a2) . . . (x − an).

Substituting a1 for x and using the induction hypothesis, we get

Vn(a1, a2, . . . , an) = f (a1) = (a1 − a2) . . . (a1 − an)
∏

2≤i< j≤n

(ai − a j) =
∏

1≤i< j≤n

(ai − a j). �

Corollary 10.2.1 If a1, a2, . . . , an are distinct elements of the field, the Vander-
monde determinant Vn(a1, a2, . . . , an) is nonzero.

The determinant

V ′
n(x1, x2, . . . , xn) =

∣∣∣∣∣∣∣∣∣∣∣

x1 x2 · · · xn
x21 x22 · · · x2n
...

...
. . .

...

xn−1
1 xn−1

2 · · · xn−1
n

xn1 xn2 · · · xnn

∣∣∣∣∣∣∣∣∣∣∣

(10.4)

is also sometimes called the Vandermonde determinant. It is closely related to the
original Vandermonde determinant as the following theorem states.

Theorem 10.2.2 Let a1, a2, . . . , an be elements of the field F. Then

V ′
n(a1, a2, . . . , an) =

(
n∏

i=1

ai

)
Vn(a1, a2, . . . , an). (10.5)

Proof Immediately follows from Theorem 10.2.1 (exercise). �

10.3 Stirling’s Formula

Sometimes one encounters product notation instead of summation notation. By far
the most common product is factorial: n! = 1 · 2 · 3 · . . . · (n − 1) · n = ∏n

i=1 i .Our
goal in this section is to find a good, closed-form estimate of n!. The best way to

278 10 Appendix B:Miscellania

Fig. 10.1 Illustration of the
proof of Stirling formula

handle a product is to convert it into a sum by taking the logarithm. In the case of
factorial, this gives:

ln n! = ln(1 · 2 · 3 · . . . · (n − 1) · n) = ln 1 + ln 2 + ln 3 + . . . + ln(n − 1) + ln n =
n∑

i=1

ln i .

Wewill use the IntegralMethod to bound the terms of this sumwith ln x and ln(x + 1)
as shown in Fig. 10.1.

This gives bounds on ln n! as follows:
∫ n

1
ln xdx ≤

n∑
i=1

ln i ≤
∫ n

1
ln(x + 1)dx

or

n ln(
n

e
) + 1 ≤

n∑
i=1

ln i ≤ (n + 1) ln(
n + 1

e
) + 1

or
(n
e

)n
e ≤ n! ≤

(
n + 1

e

)n+1

e.

We now have a closed form estimate of n!, namely, n! ≈ (n
e

)n . (We are ignoring
stray e and n factors.) A more accurate estimate of n! can be obtained with a more
careful calculation:

10.3 Stirling’s Formula 279

Theorem 10.3.1 (Stirling’s formula)

n! ∼ √
2πn

(n
e

)n
, (10.6)

which means that

n!√
2πn

(n
e

)n → 1,

when n → ∞.

11Solutions to Exercises

11.1 Solutions to Exercises of Chap.1

Solutions to Exercises of Sect. 1.1.1
1.(a) The whole set of integers itself does not contain a smallest element.
(b) The set {1/2, 1/3, . . . , 1/n, . . .} does not contain a smallest element.

2. Here we just need the Principle of Mathematical Induction. For n = 1, the integer
4n + 15n − 1 = 18 is divisible by 9. This is a basis for the induction. Suppose that
4n + 15n − 1 is divisible by 9 for some n > 1. Let us consider 4n+1 + 15(n +
1) − 1 and represent it as 4 · 4n + 15n + 14 = 4(4n + 15n − 1) − 45n + 18.
This is now obviously divisible by 9 since both 4(4n + 15n − 1) and 45n + 18
do (The former by induction hypothesis). Thus 4n+1 + 15(n + 1) − 1 is divisible
by 9, and the induction step has been proven.
For n = 0 we have 112 + 121 = 133 which is, of course, divisible by 133. This
gives us a basis for the induction.

3. We need the Principle of Mathematical Induction again. Suppose now 133 |
11n+2 + 122n+1 (induction hypothesis) and let us consider

11(n+1)+2 + 122(n+1)+1 = 11n+3 + 122n+3.

We rearrange this as follows:

11n+3 + 122n+3 = 11 · 11n+2 + 144 · 122n+1 = 144(11n+2 + 122n+1) − 133 · 11n+2.

The right-hand side is divisible by 133. Indeed, the first summand is divisible by
133 by induction hypothesis, and the second is simply a multiple of 133. Thus
11n+3 + 122n+3 is divisible by 133 which completes the induction step and the
proof.

© Springer Nature Switzerland AG 2020
A. Slinko, Algebra for Applications, Springer Undergraduate Mathematics Series,
https://doi.org/10.1007/978-3-030-44074-9_11

281

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44074-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-44074-9_11

282 11 Solutions to Exercises

4. We have F0 = 3 and F1 = 5. We see that F0 = F1 − 2, and this is a basis for our
induction. The induction step

F0F1 . . . Fn = Fn+1 − 2 implies F0F1 . . . Fn+1 = Fn+2 − 2

will be proved if we could show that (Fn+1 − 2)Fn+1 = Fn+2 − 2. We have
(Fn+1 − 2)Fn+1 = (22

n+1 − 1)(22
n+1 + 1) = 22

n+2 − 1 = Fn+2 − 2.
5. For k = 1 we have 3k = 3 which is a divisor of 23 + 1 = 9. This gives us a basis

for the induction.
Suppose now 3k | 23k + 1 (induction hypothesis). Then there exists an integer m
such that m · 3k = 23

k + 1 and let us consider

23
k+1 = (23

k
)3 = (m · 3k − 1)3 = m3 · 33k − m2 · 32k+1 + m · 3k+1 − 1 = t · 3k+1 − 1,

where t = m3 · 32k−1 − m2 · 3k + m is an integer. Thus 3k+1 | 23k+1 + 1, which
proves the induction step.

6. Let M be the minimal number that cannot be represented as required. Then M is
between two powers from the list, say 2k < M < 2k+1. Since M is minimal, the
number M − 2k can be represented as

M − 2k = 2i1 + . . . + 2is ,

where i1 < . . . < is . Since M − 2k < 2k , it is clear that 2k > 2is . Therefore

M = 2i1 + . . . + 2is + 2k

is a representation of M as a sum of distinct powers of 2 contrary to what was
assumed. This contradiction proves the statement.

7. Let M be the minimal positive integer which can be represented as a sum of
distinct powers of 2 in two different ways:

M = 2i1 + . . . + 2is = 2 j1 + · · · + 2 jt .

Suppose that i1 < . . . < is and j1 < . . . < jt . Then either i1 = 0 or j1 = 0. If
not, we can divide both sides by 2 and get two different representations for M/2
which contradicts the minimality of M . If i1 = j1 = 0, then 2i1 = 2 j1 = 1, and
subtracting 1 on both sides we would get two different representations for M − 1
which again contradicts the minimality of M .
Hence

1 + 2i2 + . . . + 2is = 2 j1 + . . . + 2 jt

and j1 > 0. But then the left side is odd and the right is even. This contradiction
shows that such minimal counterexample M does not exist and all integers can
be uniquely represented.

11.1 Solutions to Exercises of Chap. 1 283

8. Consider a minimal counterexample, i.e., any configuration of discs which cannot
be painted as required and which consists of the least possible number of discs.
Consider the centres of all discs and consider the convex hull of them. This hull is
a convex polygon, and each angle of it is less than 180◦. If a disc with the centre
O is touched by two other discs with centres P and Q

O

P

Q

then, as PQ ≥ PO and PQ ≥ QO , then ∠POQ ≥ ∠PQO and ∠POQ ≥
∠QPO , whence ∠POQ ≥ 60◦. Thus every disc with centre at a vertex of the
convex hull cannot be touched by more than three other discs. Remove any of the
discs whose centre is at the vertex of the convex hull. Then the rest of the discs
can be already painted because the counterexample was minimal. But then the
removed disc can be painted as well since it was touched by at most three other
discs, and we can choose the fourth colour to paint it. This contradiction proves
the statement.

Solutions to Exercises of Sect. 1.1.2
1. The 2007th prime will not be stored in Primes so we have to use the command

NextPrimeInt to find it:

gap> p:=1;;

gap> n:=2007;;

gap> for i in [1..n] do

> p:=NextPrimeInt(p);

> od;

gap> p;

17449

We see that p2007 = 17449.
2. The following GAP program

gap> k:=1;;

gap> N:=Primes[1];;

gap> while IsPrime(N+1)=true do

> k:=k+1;

284 11 Solutions to Exercises

> N:=N*Primes[k];

> od;

gap> k;

6

gap> N:=N+1;

30031

gap> FactorsInt(n);

[59, 509]

It shows that the smallest k forwhich Nk = p1 p2 . . . pk + 1 is composite is k = 6.
Then N6 = 30031 = 59 · 509. Both 59 and 509 are greater than p6 = 13.

3. We have a3 − 27 = a3 − 33 = (a − 3)(a2 + 3a + 9) and therefore a − 3 divides
a3 − 27. Hence a − 3 divides a3 − 17 if and only if it divides the difference
(a3 − 27) − (a3 − 17) = 10. This happens if and only if

a − 3 ∈ {±1, ±2,±5, ±10},

which is equivalent to a ∈ {−7, −2, 1, 2, 4, 5, 8, 13}.
4. We will prove the second statement. Let p > 2 be a prime. Let us divide it by

6 with remainder: p = 6k + r , where r = 0, 1, 2, 3, 4, 5. When r takes values
0, 2, 3, 4, the right-hand side is divisible by 2 or 3, hence in this case p cannot be
a prime. Only two possibilities are left: p = 6k + 1 and p = 6k + 5. Examples
of primes of these two sorts are 7 and 11.

5. Let p = 3k + 1 be a prime. Then p > 2, and hence, it is odd. But then 3k = p − 1
is even and 3k = 2m. Due to uniqueness of prime factorisation, kmust be divisible
by 2, i.e., k = 2k′. Therefore p = 3k + 1 = 6k′ + 1.

6. Here is the program:

Primes1:=[];;

Primes3:=[];;

numbers:=[1..168];;

for i in numbers do

if RemInt(Primes[i],4)=1 then

Add(Primes1,Primes[i]);

fi;

if RemInt(Primes[i],4)= 3 then

Add(Primes3,Primes[i]);

fi;

od;

Length(Primes1);

Length(Primes3);

Primes1[32];

Primes3[53];

Position(Primes1,601);

Position(Primes3,607);

11.1 Solutions to Exercises of Chap. 1 285

Run this program yourself to find out the numerical answers.
7. (a) Here is the program and the calculation:

gap> NicePrimes:=[];

[]

gap> for i in [1..Length(Primes)] do

> if RemInt(Primes[i],6)=5 then

> Add(NicePrimes,Primes[i]);

> fi;

> od;

gap> NicePrimes;

[5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107,

113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239,

251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383,

389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509,

521, 557, 563, 569, 587, 593, 599, 617, 641, 647, 653, 659,

677, 683, 701, 719, 743, 761, 773, 797, 809, 821, 827, 839,

857, 863, 881, 887, 911, 929, 941, 947, 953, 971, 977, 983]

(b) We know (see Exercise 4) that all primes p > 3 fall into two categories: those
for which p = 6k + 1 and those for which p = 6k + 5.
One additional observation: if we take two numbers of the first category if
n1 = 6k1 + 1 and n2 = 6k2 + 1, then their product

n1n2 = (6k1 + 1)(6k2 + 1) = 6(6k1k2 + k1 + k2) + 1 = 6k3 + 1

will also be from the same category.
Now we assume that there are only finitely many primes p such that p =
6k + 5. Then there is the largest such prime. Let p1, p2, . . . , pn, . . . be the
sequence of all primes in increasing order with pn being the largest prime that
gives remainder 5 on division by 6. Consider the number

N = p1 p2 . . . pn − 1.

Since p1 = 2 and p2 = 3, the product p1 p2 . . . pn is divisible by 6. Hence N
has remainder 5 on division by 6 and hence belongs to the second category.
Let q be any prime that divides N . Obviously it is different from all of the
p1, p2, . . . , pn . Since q > pn , it must be of the type q = 6k + 1. Thus every
prime that divides N has remainder 1 on division by 6, then, as we noted above,
the samemust be true for N , which contradicts to the fact that N has remainder
5 on division by 6.

8. There are many alternative proofs of the fact that the number of primes is infi-
nite. Here is one of those. Assume on the contrary that there are only k primes
p1, p2, . . . , pk . Given n, let us find an upper bound f (n) for the number of prod-
ucts

pα1
1 pα2

2 . . . pαk
k

286 11 Solutions to Exercises

that do not exceed n by estimating the number of values that integers
α1,α2, . . . , αk might assume. Since n ≥ pαi

i ≥ 2αi , we obtainαi ≤ log2 n. Then
the number of products which do not exceed n will be at most

f (n) = (log2 n + 1)k .

It is easy to show that f (n) grows slower than n for n sufficiently large. For
example, we may use L’Hospital rule to show that

lim
n→∞

f (n)

n
= 0.

This will be an absurdity since for large n there will be not enough prime factori-
sations for all positive integers between 1 and n.

Solutions to Exercises of Sect. 1.1.3
1. (a) Notice that since

√
210 < 17, all composites below 210 divide 2, 3, 5, 7, 11

or 13. The primes to be found are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,
43, 47, 53, 59, 61, 67, 71, 73, 79, 83,89, 97, 101, 103, 107, 109, 113, 127,
131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199.
Hence π(210) = 46.

(b) We have

210

ln 210
≈ 39,

which is somewhat lower than 46. This shows that the approximation given
by the prime number theorem is not very good for small values of n.

2. Straightforward.
3. (a) No, because

√
n > 11093 and n can be, for example, a square of a prime p

such that 10000 < p ≤ 11093.
(b) The number of possible prime divisors is approximately x/ln(x) where x =√

123123137, so approximately 1193 divisions are needed. The professor
has already done 10000/ ln(10000) = 1085 divisions; he needs to do another
108.

4. Since n is composite, n = p1 p2 . . . pm , where pi is prime, for all i = 1, 2, . . . ,m,
and we do not assume that all of them are different. We are given that pi > � 3

√
n�,

and m ≥ 2. Then, we have also pi > 3
√
n because pi is an integer. Suppose that

m ≥ 3. Then

n = p1 p2 . . . pm ≥ p1 p2 p3 > (3
√
n)3 = n,

which is a contradiction. Thus m = 2 and p is a product of two primes.
5. Let n > 6 be an integer. If n is odd, then 2 and n − 2 are relatively prime (since

n − 2 is odd) and n = 2 + (n − 2) is a valid solution. More generally, if there
is a prime p which is smaller than n − 1 and does not divide n, we can write
n = p + (n − p) and gcd((, p), n − p) = 1.

11.1 Solutions to Exercises of Chap. 1 287

Since n > 6 we may assume that 2|n, 3|n, 5|n and hence 30|n. In particular, n is
composite. Let q be the largest prime divisor of n. Then n ≥ 6q so 5 ≤ q ≤ n/6.
By Bertrand’s postulate there is a prime p such that q < p < 2q ≤ n/3 < n.
Now gcd((, p), n) = 1 and so n = p + (n − p) is the solution (note that n − p ≥
n − n/3 > 1).

6. The program does some kind of sieving but the result is very different from the
result of the Sieve of Eratosthenes. It outputs all powers of 2 between 1 and 106,
there are 20 such numbers in total.

Solutions to Exercises of Sect. 1.2.2
1. Firstly we represent the number as a product of primes:

22 · 33 · 44 · 55 = 210 · 33 · 55

and the number of divisors will be (10 + 1)(3 + 1)(5 + 1) = 264. Note that we
cannot use the formula straight as 4 is not prime.

2. We factor this number with GAP:

gap> FactorsInt(123456789);

[3, 3, 3607, 3803]

so the prime factorisation is 123456789 = 32 · 3607 · 3803. The number of divi-
sors then will be (2 + 1)(1 + 1)(1 + 1) = 12.

3. The common divisors of 10650 and 6750 are the divisors of gcd(10650, 6750).
So, let us calculate this number using the Euclidean algorithm. We will find:

10650 = 1 · 6750 + 3900

6750 = 1 · 3900 + 2850

3900 = 1 · 2850 + 1050

2850 = 2 · 1050 + 750

1050 = 1 · 750 + 300

750 = 2 · 300 + 150

300 = 2 · 150

Hence

gcd(10650, 6750) = 150 = 2 · 3 · 52.
Therefore the common divisors of 10650 and 6750 are the factors of 150, which
are 1, 2, 3, 5, 6, 10, 15, 25, 30, 50, 75, 150.

4. (a) We have gcd(m, n) = 22 · 54 · 112 ; lcm(m, n) = 24 · 32 · 57 · 72 · 113.

288 11 Solutions to Exercises

(b) Using GAP we calculate

gcd(m, n) · lcm(m, n) = 302500 · 733713750000 = 221948409375000000.

Also

mn = 1361250000 · 163047500 = 221948409375000000,

which is the same value.
5. The prime factorisation of 33 is 33 = 3 · 11. This number of divisors can occur

when the number is equal to p32, where p is prime, or when the number is p10q2,
where p, q are primes. As 232 > 10000, the first possibility cannot occur. In the
second, since 310 > 10000, the number can be only of the form n = 210q2. The
smallest unused prime is q = 3. This gives us the number n = 102 · 32 = 9216.
No other prime q works since n = 102 · 52 > 10000. So the only such number
is 9216.

6. Since the prime factorisation of 246 is 246 = 2 · 3 · 41, the prime factorisation
of 246246 will be

246246 = 2246 · 3246 · 41246
and d(246246) = 2473. As 247 = 13 · 19 we have 2473 = 133 · 193 and
d(d(246246)) = 4 · 4 = 16.

7. If d is a divisor of a and b, then a = a′d and b = b′d and a − b = (a′ − b′)d,
whence d is a common divisor of a and a − b. If d is a divisor of a and a − b,
then a = a′d and a − b = cd. Then b = a − (a − b) = (a′ − c)d that is d is
also a common divisor of a and b.

8. We use the previous exercise repeatedly. We have gcd(13n + 21, 8n + 13) =
gcd(8n + 13, 5n + 8) = gcd(5n + 8, 3n + 5) = gcd(3n + 5, 2n + 3) =
gcd(2n + 3, n + 2) = gcd(n + 2, n + 1) = gcd(n + 1, 1) = 1.

9. (a) Suppose a2 and a + b have common prime divisor p. Then it is also a divisor
of a and hence of b = (a + b) − a, contradiction.

(b) As in Exercise 6 we notice that gcd(a, b) = gcd(a, qa + b) for any integer
q . Then, since a2 − b2 = (a − b)(a + b) is divisible by a + b, we have

gcd(a2 + b2, a + b) = gcd((a2 + b2) + (a2 − b2), a + b) = gcd(2a2, a + b) = 2.

This is because by (a) a2 and a + b do not have prime divisors in common.
Since a + b and a2 + b2 are not relatively prime, their greatest common
divisor can be only 2. This can be realised taking two arbitrary odd relatively
prime a and b, say a = 25 and b = 49.

10. Let a > b and a = qb + r , where r is the remainder on division of a by b. Firstly,
we note that

2a − 1 = 2a−b(2b − 1) + 2a−b − 1,

11.1 Solutions to Exercises of Chap. 1 289

thus implying that

gcd(2a − 1, 2b − 1) = gcd(2a−b − 1, 2b − 1) = . . . = gcd(2b − 1, 2r − 1),

which in turn implies the statement (follow the Euclidean algorithm applied to
a and b.)

11. Let Fi and Fj be two Fermat numbers with i < j . Then by Exercise 4 of
Sect. 1.1.1 F0F1 . . . Fj−1 = Fj − 2. Since the left-hand side is divisible by Fi ,
the only common divisor of Fi and Fj could be 2. However, these numbers are
odd, hence coprime.

12. If there were only finite number k primes, then among any k + 1 Fermat numbers
there will be two with a common prime factor. However this is not possible due
to the previous exercise. Hence the number of primes is infinite.

Solutions to Exercises of Sect. 1.2.3
1. The Extended Euclidean algorithm gives

3773 1 0
3596 0 1 1
177 1 −1 20
56 −20 21 3
9 61 −64 6
2 −386 405 4
1 1605 −1684 2

Looking at the last line we find that

gcd(3773, 3596) = 1 = 3773 · 1605 + (−1684) · 3596.

So, x = 1605, y = −1684.
2. Perform the Extended Euclidean algorithm on 1995 and 1840 gives

gcd(1995, 1840) = 5 and hence x = 95 and y = −103 may be taken that will
satisfy 1995x + 1840y = 5.
Multiply now 1995x + 1840y = 5 by (−2) to see that z0 = −2x = −190 and
w0 = −2y = 206 satisfy 1995z0 + 1840w0 = −10.Next, observe that 1995(−k ·
1840) + 1840(k · 1995) = 0, for any integer k. Sum the last two equations to
obtain 1995(z0 − 1840k) + 1840(w0 + 1995k) = −10, for any integer k. It is
now easy to find two additional solutions, for example z1 = z0 + 1840 = 1650
and w1 = w0 − 1995 = −1789, or z2 = z0 − 1840 = −2030 and w2 = w0 +
1995 = 2201.

3. We are given that N = kc + a and N = td + b for some integers k and t . Sub-
tracting the two equalities yields 0 = kc + a − td − b. Therefore

a − b = kc − td.

290 11 Solutions to Exercises

Since the right-hand side is divisible by gcd(c, d), we see that a − b is divisible
by gcd(c, d) as well.

4. (a) The Extended Euclidean algorithm applied to 68 and 26 gives 2 =
gcd(68, 26) = 5 · 68 + (−13) · 26. Multiplying both sides by (35 − 9)/2 =
13, we see that 35 − 9 = 13 · 5 · 68 − 13 · 13 · 26. Hence, the number x =
35 + 13 · 13 · 26 = 9 + 13 · 5 · 68 = 4429 satisfies our congruences. (There
are many other solutions, all of them are congruent modulo 884 =
lcm(26, 68), i.e., all these solutions are given by 4429 + 884 · n, n ∈ Z .)

(b) The Extended Euclidean algorithm applied to 71 and 50 gives 1 = 27 ·
50 + (−19) · 71. Now, 15 = 19 − 4 and the number x ′ = 4 + 15 · 27 · 50 =
19 + 15 · 19 · 71 = 20254 satisfies our congruences but is greater than 3550.
But x = x ′ mod 3550 = 2504 is the unique solution of the two congruences
which lies in the interval [0, 3550).

5. (a) We know from Exercise 2 that gcd(1995, 1840) = 5. If there were integers x
and y satisfying 1840x + 1995y = 3, then 3 = 5(368x + 399y) and 3 would
be divisible by 5, a contradiction.

(b) Let C be the set of integers c for which there exist integers x and y satisfying
the equation ax + by = c, and let d = gcd(a, b). By the Extended Euclidean
algorithmwe know that there are some integers x0, y0, such that ax0 + by0 =
d. Let k be an arbitrary integer. Then a(kx0) + b(ky0) = kd, showing that
kd ∈ C , soC contains all multiples of gcd(a, b). Let us prove thatC contains
nothing else.Write a = da′ and b = db′, for some integers a′ and b′, and take
an arbitrary c ∈ C . Then, for some integers x and y, we have c = ax + by =
d(a′x + b′y), showing that c is a multiple of d. Therefore, C is indeed the
set of all multiples of gcd(m, n).

Solutions to Exercises of Sect. 1.3.1
1. By Fermat’s little theorem 24 ≡ 1 mod 5 so we need to find the remainder of

22013 on division by 4. This remainder is obviously 0 so the remainder of 22
2013

on division by 5 is 1.
2. By Fermat’s little theorem we have a6 ≡ 1 mod 7 for all a ∈ Z, which are not

divisible by 7. As 333 = 47 · 7 + 4 and 555 = 92 · 6 + 3,

333555 ≡ 43 ≡ 64 ≡ 1 mod 7.

As 555 = 79 · 7 + 2 and 333 = 55 · 6 + 3,

555333 ≡ 23 ≡ 1 mod 7.

Thus 333555 + 555333 ≡ 1 + 1 = 2 mod 7, and the remainder is 2.
3. We compute an−1 mod n as follows:

gap> n:=1234567890987654321;

1234567890987654321

11.1 Solutions to Exercises of Chap. 1 291

gap> a:=111111111;

111111111

gap> PowerMod(a,n-1,n);

385560404775530811

The result is not equal to 1, and this shows that by Fermat’s little theorem n is not
prime. Indeed, we see that n has four different prime factors:

gap> Factors(n);

[3, 3, 7, 19, 928163, 1111211111]

4. Let q be a prime divisor of 2p − 1. Then by Fermat’s little theorem q|2q−1 − 1
and by assumption q|2p − 1. By Exercise 10 of Sect. 1.2.2 this is possible only
when q − 1 is a multiple of p that is q − 1 = �p. But since q − 1 is even we have
also � even, say � = 2k. Hence we obtain that q = 2kp + 1.

Solutions to Exercises of Sect. 1.3.2
1. (a) This follows from m | (a − b) if and only if dm | (da − db)

(b) Since a ≡ b mod m means m | (a − b), we see that for any divisor d | m we
have d | (a − b) which is the same as a ≡ b mod d.

(c) Indeed, a ≡ b mod mi is equivalent to mi | (a − b). This implies

lcm(m1,m2, . . . ,mk) | (a − b),

which means the equivalence holds also for the least common multiple of
mi ’s.

2. We have 72 ≡ −3 mod 25, 47 ≡ −3 mod 25 and 28 ≡ −3 mod 25. Thus

722n+2 − 472n + 282n−1 ≡ (−3)2n+2 − (−3)2n + 32n−1 mod 25.

Since 2n + 2 and 2n are even, the right-hand side will be

32n+2 − 32n + 32n−1 = 32n(27 − 3 + 1) = 25 · 32n,

which is obviously divisible by 25.
3. Using the prime factorisation of these numbers and the formula for φ(n) we

compute:

φ(125) = φ(53) = 53 − 52 = 100,

φ(180) = φ(22 · 32 · 5) = 180

(
1

2

) (
2

3

) (
4

5

)
= 48,

φ(1001) = φ(7 · 11 · 13) = 6 · 10 · 12 = 720.

292 11 Solutions to Exercises

4. We know that n = 4386607 = pq for some prime integers p, q . In this case
φ(n) = 4382136 = (p − 1)(q − 1). Thus n − φ(n) = 4471 = p + q − 1,
whence p + q = 4472. Solving the system of equations

p + q = 4472

pq = 4386607

we find that p = 3019 and q = 1453.

5. Wehaveφ(m) = p1 p2(p1 − 1)(p2 − 1) = 11424 = 25 · 3 · 7 · 17.Hence p1 and
p2 can be only among the primes 2, 3, 7, 17. By the trial and error method we
find p1 = 7, p2 = 17 and m = 14161.

6. We have φ(3x5y) = 3x−15y−1 · 2 · 4 = 3x−15y−1 · 23 and 600 = 23 · 3 · 52. By
uniqueness of prime factorisation, we have x − 1 = 1 and y − 1 = 2. Hence
x = 2 and y = 3.

7. Let S be the set of positive integers a for which the congruence has a solution.
We see that 243 = 35 and φ(243) = 2 · 34 = 162. By Euler’s theorem:

If gcd(x, n) = 1, then xφ(n) ≡ 1 mod n.

Hence if gcd(x, 243) = 1, then x162 ≡ 1 mod 243. Hence 1 ∈ S. If gcd(x, n) >

1, then x = 3y and x162 ≡ 0 mod 243. Thus S = {0, 1}.
8. We are given that n = pq where p and q are primes. Moreover, we know that

φ(n) = φ(p)φ(q) = (p − 1)(q − 1) = pq − p − q + 1 = 3308580, and there-
fore p + q = n − 3308580 + 1. We now determine p and q from the equations:

{
pq = 3312913,

p + q = 4334.

This shows that p and q are the roots of the quadratic equation x2 − 4334x +
3312913 = 0 inwhich roots are 3343 and 991. The result is n = pq = 3343 · 991.

Solutions to Exercises of Sect. 1.4
1. By the distributive law (CR5) we have a · 0 + a · 0 = a · (0 + 0) = a · 0. Now

subtracting a · 0 on both sides we get a · 0 = 0. We further argue as in
Lemma 1.4.2.

2. (a) The invertible elements of Z16 are those elements that are relatively prime to
16 = 24 (i.e., those which are odd). We have

12 = 72 = 92 = 152 = 1, 3 · 11 = 1, 5 · 13 = 1,

thus 1, 7, 9, 15 are self-inverse, 3−1 = 11, 11−1 = 3, 5−1 = 13 and
13−1 = 5.

11.1 Solutions to Exercises of Chap. 1 293

(b) The zero divisors of Z15 are those (nonzero) elements that are not relatively
prime to 15 = 3 · 5 (i.e., multiples of 3 or 5). We have

{3, 6, 9, 12} � {5, 10} = 0.

That is, a � b = 0 whenever one of a and b is a multiple of 3 and another is
a multiple of 5.

3. (a) Using the Euclidean algorithm, we find that gcd(111, 74) = 37 and that
gcd(111, 77) = 1, so 77 is invertible and 74 is a zero divisor. Since 111 =
3 · 37, we have 74 � c = 0 for any c that is amultiple of 3. From the Extended
Euclidean algorithm 1 = 34 · 111 − 49 · 77, hence 77−1 = −49 = 62.

(b) We have

77 � x ⊕ 21 = 10 ⇒ 77 � x = 10 ⊕ (−21) = 10 ⊕ (90) = 100.

Hence

x = (77−1) � 100 = 62 � 100 = 95,

so that x = 95, while

74 � x ⊕ 11 = 0 ⇒ 74 � x = −11 = 100,

and there are no solutions because {74 � x | x ∈ Z111} = {0, 37, 74}.
4. Since we will have only operations in Zn for various n but not in Z we will write

+ and · instead of ⊕ and �. Recall that a function from a set A to A itself is
one-to-one, if no two (different) elements of A are mapped to the same element
of A. For a finite set this is also equivalent to f being onto which can be also
restated as the range of f being all of Z21.

(a) If a is a zero divisor in Z21, that is, if there is an element d �= 0 in Z21, such
that ad = 0 mod 21, then f (d) = ad + b = b = f (0), and f is not one-to-
one. On the other hand, if a is not a zero divisor, then gcd(a, 21) = 1, and
there exists (a unique) element c ∈ Z21, satisfying ac = 1 mod 21. But then
f (x1) = f (x2) implies c f (x1) = c f (x2), or c(ax1 + b) = c(ax2 + b), which
reduces to x1 + cb = x2 + cb and finally implies that x1 = x2, proving that f
is one-to-one in this case. The set of pairs (a, b), for which the function f is
one-to-one is therefore {(a, b) | a, b ∈ Z21 and gcd(a, 21) = 1}.

(b) Since 7 is not relatively prime with 21 the function f is not one-to-one, and so
the image of f is a proper subset of Z21. The expression 7x , for x ∈ Z21, takes
only three values inZ21, namely 0 if x is a multiple of 3, 7 if x is congruent to 1
modulo 3, and 14 if x is congruent to 2 modulo 3. The image of f is therefore
{3, 10, 17}.

(c) Condition f −1(f (x)) = x , for all x ∈ Z21, is equivalent to c(ax + b) + d =
x , or (ac)x + (cb + d) = x . It is sufficient to take ac = 1 and cb + d = 0.We
can find c by solving the equation 4c + 21y = 1 using the Extended Euclidean
algorithm, which gives us c = −5, y = 1, or better, c = 16, y = −3. Now,
d = −cb = −16 · 15 = 12 mod 21. So, f −1(x) = 16x + 12.

294 11 Solutions to Exercises

5. Little Fermat theorem says that if p is prime and a is not divisible by p, then
a p−1 ≡ 1 mod p. Hence x10 = 1 in Z11. So x102 = x2 in Z11. The equation
x2 = 4 has in Z11 two solutions: x1 = 2 and x2 = −2 = 9.

6. Since m is odd, gcd(m, 2) = 1, whence 2φ(m) ≡ 1 mod m. Thus 2φ(m)−1 ≡
2−1 mod m which is the inverse of 2 in Zm . Since m is odd, m + 1 is an even
number and (m + 1)/2 is an integer. This number is the inverse of 2 in Zm since
2 � (m + 1)/2 = 1. Therefore 2φ(m)−1 ≡ (m + 1)/2 mod m.

7. If (p − 1)! ≡ −1 mod p, then gcd(j, p) = 1 for all j ∈ Z
∗
p. Hence p is prime. If

p is prime, then the equation x2 = 1 in Zp is equivalent to (x − 1)(x + 1) = 0,
hence has only two solutions x = ±1 that is either x = 1 or x = p − 1. Then for
every j ∈ {2, . . . , p − 2} we have j−1 �= j . This means 2 · 3 · . . . · (p − 2) = 1.
Hence (p − 1)! = p − 1 = −1.

Solutions to Exercises of Sect. 1.5
1. 2002(10) = 11111010010(2); and 1100101(2) = 26 + 25 + 22 + 1 = 99(10).

2. (a) 2011(10) = 11111011011(2);
(b) 101001000(2) = 28 + 26 + 23 = 256 + 64 + 8 = 328(10).

3. Observe first that the last three digits in the binary representation depend only
on the remainder on division by 8. Namely if a = an2n + . . . + a323 + a222 +
a12 + a0 is the binary representation of a, then a ≡ a222 + a12 + a0 mod 8.
Clearly 751015 ≡ 31015 mod 8.ByEuler’s theorem, 3φ(8) = 34 ≡ 1 mod 8.There-
fore, 751015 ≡ 3253·4+3 ≡ 33 ≡ 3 mod 8. Since 3 = 11(2), we see that the last
three digits in the binary representation of 751015 are 011.

4. We calculate as follows:

10 . . . 01︸ ︷︷ ︸
n

(2) · 10 . . . 01︸ ︷︷ ︸
m

(2) = (2n−1 + 1)(2m−1 + 1) = 2n+m−2 + 2n−1 + 2m−1 + 1.

Therefore, there are 4 nonzero digits if m �= n, 3 nonzero digits if m = n > 2,
and 2 nonzero digits if m = n = 2.

5. We are given that n = a · 73 + b · 72 + c · 71 + d. Since 7 ≡ 1 mod 6, this
means that n ≡ a + b + c + d mod 6. Therefore n ≡ 0 mod 6 if and only if
a + b + c + d ≡ 0 mod 6.

6. (a) 2A4F(16) = 2 · 163 + 10 · 162 + 4 · 16 + 15 = 10831,
(b) 1000 = 16 · 62 + 8, and 62 = 16 · 3 + 14, so

1000 = 62 · 16 + 8 = (16 · 3 + 14) · 16 + 8 = 3 · 162 + 14 · 16 + 8 = 3E8(16).

11.2 Solutions to Exercises of Chap. 2 295

11.2 Solutions to Exercises of Chap.2

Solutions to Exercises of Sect. 2.1.1
1. To encrypt we will do the calculation pi ⊕ ki = ci where pi , ki , ci are the encod-

ings of the i th positions of the plain text, the key and the cypher text, respectively.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Plaintext B U Y M O R E P R O P E R T Y

pi 1 20 24 12 14 17 4 16 17 14 16 4 17 19 24
Key T O D A Y I W I L L G O O N C
ki 19 14 3 0 24 8 22 8 11 11 6 14 14 13 2

pi + ki = ci 20 8 1 12 12 25 0 24 2 25 22 18 5 6 0
Cyphertext U I B M M Z A Y C Z W S F G A

So the cyphertext is UIBMMZAYCZWSFGA.

Conversely, to decrypt we add (−ki) to each side of the above to get pi = ci +
(−ki).

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Cyphertext R C X R N W O A P D Y W C A U

ci 17 2 23 17 13 22 14 0 15 3 24 22 2 0 20
Key T O D A Y I W I L L G O O N C
−ki 7 12 23 0 2 18 4 18 15 15 20 12 12 13 24

ci + (−ki) = pi 24 14 20 17 15 14 18 18 4 18 18 8 14 13 18
Plaintext Y O U R P O S S E S S I O N S

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Cyphertext E R K Y W H Z R G S X Q J W

ci 4 17 10 24 22 7 25 17 6 18 23 16 9 22
Key E A G A I N I N T O L I F E
−ki 22 0 20 0 18 13 18 13 7 12 15 18 21 22

ci + (−ki) = pi 0 17 4 24 14 20 17 4 13 4 12 8 4 18
Plaintext A R E Y O U R E N E M I E S

The plaintext is therefore YOUR POSSESSIONS ARE YOUR ENEMIES.
2. We will place the result in an array called random:

gap> random:=[1..20];;

gap> for i in [1..20] do

> random[i]:=Random([0..25]);

> od;

gap> random;

[24, 19, 16, 9, 1, 9, 24, 24, 15, 3, 12, 3, 10, 11, 21, 23, 19, 6, 19, 24]

3. The message as a numerical string will be [8, 7, 0, 21, 4, 13, 14, 19, 8, 12, 4, 19,
14, 7, 0, 19, 4].

296 11 Solutions to Exercises

gap>#Entering the key:
gap> k:=random;;
gap>#Entering the message:
gap> p:=[8, 7, 0, 21, 4, 13, 14, 19, 8, 12, 4, 19, 14, 7, 0, 19, 4];;
gap> c:=[1..Length(p)];
[1 .. 17]
gap> for i in [1..Length(p)] do
> c[i]:=(p[i]+k[i]) mod 26;
> od;
gap> c;
[6, 0, 16, 4, 5, 22, 12, 17, 23, 15, 16, 22, 24, 18, 21, 16, 23]
gap># which in letters will be GAQEFWMRXPQWYSVQX
gap> # Decoding back:
gap> q:=[1..Length(p)];;
gap> for i in [1..Length(p)] do
> q[i]:=(c[i]-k[i]) mod 26;
> od;
gap> p=q;
true

Solutions to Exercises of Sect. 2.1.2
1. (13, 11) cannot be used as a key since 13 is not invertible in Z26 and the mapping

x �→ 13x + 11 (mod 26) would not be one-to-one.
2. The cyphertext forCRYPTOwill be JSRWOL. The inverse function for decrypt-

ing is

C −→ x −→ y = 19x + 13 mod 26 −→ L

and the plaintext for DRDOFP is SYSTEM. We can calculate the latter using
subprograms LtoN and NtoL:

gap> str := "DRDOFP"; ;

gap> outstr := "A";

gap> for i in [1..Length(str)] do

> outstr[1] := NtoL((19*LtoN(str[i]) + 13) mod 26);

> Print(outstr);

> od;

SYSTEM

3. Since the letter F was encrypted as N, the letter K was encrypted as O. Then
for the encryption function f (x) = ax + b mod 26 we will have f (5) = 13 and
f (10) = 14. Solving the system of equations in Z26

5a + b = 13,

10a + b = 14

we find a = 21 and b = 12, hence the key is the pair (21, 12).
With GAP this would be

11.2 Solutions to Exercises of Chap. 2 297

gap> M:=[[5,1],[10,1]];

[[5, 1], [10, 1]]

gap> rhs:=[13,14];

[13, 14]

gap> [a,b]:=Mˆ-1*rhs mod 26;

[21, 12]

4. A straightforward counting shows that the relative frequencies of the 26 letters in
the cyphertext are as given in the table below.

letter rel. freq. letter rel. freq. letter rel. freq.
a 0.049 j 0.076 s 0.017
b 0.052 k 0.045 t 0.000
c 0.135 l 0.076 u 0.062
d 0.000 m 0.031 v 0.007
e 0.000 n 0.031 w 0.007
f 0.000 o 0.035 x 0.101
g 0.000 p 0.093 y 0.021
h 0.007 q 0.017 z 0.000
i 0.101 r 0.066

Since the most frequent letter in the cyphertext is c while in the English texts
this role usually plays e, our guess is that the encryption function f (x) = ax +
b mod 26 maps the integer value of e, which is 4, to the integer value of c, which
is 2. This gives the first equation:

4a + b = 2 mod 26. (11.1)

The second most frequent letter in English is t, while in our cyphertext the second
place is shared by x and i. Suppose first that the letter t was encrypted to x. Then

19a + b = 23 mod 26, (11.2)

implying 15a = 21 mod 26, a = 7 · 21 = 17 mod 26 and b = 2 − 4a =
12 mod 26. If the encryption function is f (x) = ax + b mod 26, then the decryp-
tion function is g(x) = cx − cb mod 26, where ca = 1 mod 26. In the case
a = 17, b = 12, we get c = 23 and so g(x) = 23x + 10 mod 26. If we decrypt
the cyphertext with this function we get

djree rctqk xmr ...

which is obviously not an English text. Our guess that t was encrypted to x must
therefore be wrong. We get similar nonsense if we assume that t is encrypted to
i. We can either proceed in this fashion until we get something meaningful, or
observe that in our cyphertext the group of three letters ljc is very frequent. Since
our guess is that c is in fact encrypted to e, it is very plausible that the group ljc

298 11 Solutions to Exercises

represents the word the. If this is the case, then t is encoded to l, which gives the
equation

19a + b = 11 mod 26, (11.3)

This, together with (11.1), implies that a = 11 and b = 10. The decrypting func-
tion is theng(x) = 19x + 18.Decrypting the cyphertextwithg gives the following
plaintext:

three rings for the elven kings under the sky seven for the dwarf lords in their halls of
stone nine for mortal men doomed to die one for the dark lord on his dark throne in the
land of mordor where the shadows lie one ring to rule them all one ring to find them one
ring to bring them all and in the darkness bind them in the land of mordor where the
shadows lie

Solutions to Exercises of Sect. 2.1.3
1. (a) Computing the determinants of these matrices we get

det

[
1 12
12 1

]
= 13, det

[
1 6
6 1

]
= 17.

Since 13 is not relatively prime to 26 the first matrix is not invertible because
its determinant is not invertible. Since 17−1 = 23 exists, the second matrix is
invertible with

[
1 6
6 1

]−1

= 23

[
1 20
20 1

]
=

[
23 18
18 23

]
.

(b) We use the matrix

M =
[
1 6
6 1

]

for encryption. Encrypting YEAR we replace letters by the numbers

YEAR → (24, 4, 0, 17)

then compute

M

[
24
4

]
=

[
1 6
6 1

] [
24
4

]
=

[
22
18

]

and

M

[
0
17

]
=

[
1 6
6 1

] [
0
17

]
=

[
24
17

]
.

Now we can complete the encryption:

YEAR → (24, 4, 0, 17) → (22, 18, 24, 17) → WSYR.

11.2 Solutions to Exercises of Chap. 2 299

To decrypt ROLK, we represent letters by numbers

ROLK → (17, 14, 11, 10)

and then use the inverse matrix M−1 to compute

M−1
[
17
14

]
=

[
23 18
18 23

] [
17
14

]
=

[
19
4

]

and

M−1
[
11
10

]
=

[
23 18
18 23

] [
11
10

]
=

[
17
12

]
.

Now we can complete decryption:

ROLK → (17, 14, 11, 10) → (19, 4, 17, 12) → TERM.

2. Let v = (x, y)T be the vector of numerical encodings for X and Y, respectively.
Then we know that K (Kv) = v that is K 2v = v. Of course, v = (0, 0)T is one
solution. If v �= 0, then it is an eigenvector of K 2 belonging to the eigenvalue 1.
We have

K 2 − I =
[
5 4
4 5

]
−

[
1 0
0 1

]
=

[
4 4
4 4

]

The nullspace of this matrix is spanned by the vector (1,−1)T = (1, 25)T

The other eigenvectors will be (2,−2)T = (2, 24)T , etc., up to (13, −13)T =
(13, 13)T . Together with (0, 0)T we will have 14 pairs:

XY = AA,AZ,BY,CX, . . . ,NN.

3. Write the unknown secret key as

K =
(
a b
c d

)
.

The first four letters of the ciphertext correspond to the vectors (13, 22) and
(14, 11). The first four letters of the message correspond to (3, 4) and (0, 17).
Hence, the secret key satisfies the equations

(
a b
c d

) (
3
4

)
≡

(
13
22

)
,

(
a b
c d

) (
0
17

)
≡

(
14
11

)
mod 26.

Using the second equations first we find 17b ≡ 14 (mod 26) and 17d ≡ 11
(mod 26). Compute 17−1 ≡ −3 ≡ 23 (mod 26) using the Extended Euclidean
algorithm (or Gcdex in GAP) and hence determine that b = 10 and d = 19.

300 11 Solutions to Exercises

Nowuse the first equations to solve for a and c. One has 3a ≡ 13 − 4b (mod 26).
Since 3−1 ≡ 9 (mod 26), one determines that a = 17. Similarly, 3c ≡ 22 − 4d
(mod 26) and so c = 8.
Now that one has the key, compute

K−1 =
(
5 22
2 25

)

and decrypt the ciphertext. The original message is

DEARBOB IHAVEGOT ITX

(the letter X at the end was added to make the total number of letters in the
message even).

4. Firstly we input of what is given: the key K and the cryptotext c:

gap> K:=[[1, 2, 3, 4, 5], [9, 11, 18, 12, 4], [1, 2, 8, 23, 3],
[7, 14, 21, 5, 1], [5, 20, 6, 5, 0]];;

gap> c:= [24, 12, 9, 9, 4], [4, 25, 10, 4, 22], [7, 11, 16, 16, 8],
[18, 3, 9, 24, 9], [2, 19, 24, 4, 20], [1, 24, 10, 5, 1],
[22, 15, 1, 1, 4]];;
gap>#Calculating the inverse of the key matrix:
gap> M:=Kˆ-1 mod 26;
[[21, 16, 22, 25, 11], [17, 9, 22, 21, 9], [6, 10, 23, 17, 20],
[13, 14, 8, 11, 2], [22, 2, 3, 4, 17]]
gap># Preparing the list for the plaintext:
gap> p:=[[],[],[],[],[],[],[],[],[],[],[],[]];;
gap>#Calculating the plaintext:
gap> for i in [1..12] do
> p[i]:=c[i]*M mod 26;
> od;
gap> p;
[[12, 0, 19, 7, 4], [12, 0, 19, 8, 2], [8, 0, 13, 18, 0],
[17, 4, 12, 0, 2], [7, 8, 13, 4, 18], [5, 14, 17, 2, 14],
[13, 21, 4, 17, 19], [8, 13, 6, 2, 14], [5, 5, 4, 4, 8],
[13, 19, 14, 19, 7], [4, 14, 17, 4, 12], [18, 25, 25, 25, 25]]
gap># This reads: "Mathematicians are machines for conversion of coffee into
gap># theorems."
gap># This famous statement belongs to Paul Erd\"{o}s.

5. Let us start with some brief linear algebra preliminaries. Let R be a commutative
ring and A be an n × n matrix with entries from R.
The (i, j) minor of A, denoted Mi j , is the determinant of the (n − 1) × (n − 1)
matrix that results fromdeleting row i and column j of A. The cofactormatrix of A
is the n × n matrix C whose (i, j) entry is the (i, j) cofactor Ai j = (−1)i+ j Mi j .
Finally, the adjugate adj(A) of A is the transpose of C , that is, the n × n matrix
whose (i, j) entry is the (j, i) cofactor of A.
The adjugate is defined so that the product of A and its adjugate yields a diagonal
matrix whose diagonal entries are det(A):

Aadj(A) = adj(A)A = det(A)In,

11.2 Solutions to Exercises of Chap. 2 301

where In is the identity matrix of order n. If det(A) is invertible, then A−1 =
1

det(A)
adj(A) is the inverse of A.

On the other hand, if A is invertible and there exists a matrix B such that AB =
BA = In , where In is the identity matrix of order n, then

det(A) det(B) = det(AB) = det(In) = 1

and det(A) is invertible.

Solutions to Exercises of Sect. 2.3.1
1. We have

lim
x→∞

(log x)2√
x

= lim
x→∞

((log x)2)′

(
√
x)′

= 4
log x√

x
→ 0

(as in Example 2.3.4).
2. Let us apply L’Hospital rule once:

lim
n→∞

n2007

2
√
n

= lim
x→∞

x2007

2
√
x

= lim
x→∞

(x2007)′

(2
√
x)′

= lim
x→∞

2007 · x2006
ln 2 · 2√

x · 1
2 x

−1/2
= k1 · lim

x→∞
x2006.5

2
√
x

,

where k1 = 4014
ln 2 . If we continue applying L’Hospital rule 4014 times, we will

obtain

lim
x→∞

x2007

2
√
x

= k4014 · lim
x→∞

1

2
√
x

= 0.

Hence f (n) = o(g(n)).
3. Straightforward.
4. Letχ(x) = x

ln x , so thatwe are trying to prove thatψ(x) ∼ χ(x), or in otherwords,
that

limx→∞
χ(x)

ψ(x)
= 1.

Since limx→∞ψ(x) = limx→∞χ(x) = ∞, we can apply L’Hospital’s rule to get

limx→∞
χ(x)

ψ(x)
= limx→∞

χ′(x)
ψ′(x)

= limx→∞
ln x − 1

(ln x)2
· 1

1
ln x

= limx→∞
(
1 − 1

ln x

)
= 1,

where we differentiated χ(x) using the quotient rule and ψ(x) using the Funda-
mental Theorem of Calculus.

302 11 Solutions to Exercises

5. (a) We have f (n) = o(g(n)) since

lim
n→∞

(ln n)1000

n10
= 0.

This can be established by L’Hospital’s rule:

lim
n→∞

(ln n)1000

n10
= lim

n→∞
1000(ln n)999

10n10
= . . . = lim

n→∞
(1000)!
101000n10

= 0.

Also g(n) = o(h(n)) since by L’Hospital’s rule

lim
n→∞

n10

en/3 = lim
n→∞

10n9

1/3en/3 = . . . = lim
n→∞

10!
(1/3)10en/3 = 0.

So the functions are already listed in the increasing order of magnitude.
(b) The function f (n) is bounded from above and below: | f (n)| ≤ e so f (n) =

O(1). We apply Stirling’s formula to find

h(n) ∼ ln
√
2πn

(n
e

)n = 1

2
(ln(2π) + ln n) + n(ln n − 1) ∼ n ln n.

This is faster than constant but slower than n2. Hence we have to order the
functions as f (n), h(n), g(n).

6. The algorithm is based on the observation that the equality

(� i
√
n�)i = n

is true if and only if n is a i th power of an integer. Indeed, if n is not a perfect i th
power, then i

√
n is not an integer and � i

√
n� < i

√
n. Then

(� i
√
n�)i < n.

What is the maximal number i for which we shall try to check this equation. If
n = ai , then i = loga n which reaches the maximal value at log2 n. Hence we
should check the equation for i = 2, 3, . . . , log2 n.
Thus the program performs log2 n operations RootInt, hence its complexity is
linear in the number of bits of n, which is the size of the input.

gap> i:=1;;

gap> ell:=LogInt(n,2);

2121

gap> while i<(ell+1) do

> if RootInt(n,i)ˆi=n then

> m:=RootInt(n,i);

> k:=i;

> fi;

> i:=i+1;

11.2 Solutions to Exercises of Chap. 2 303

> od;

gap> m;

113

gap> k;

311

Hence n = 113311.
7. (a) We have

(
n

k

)
= n!

k!(n − k)! = 1

k!n(n − 1) · · · (n − k + 1) ∼ �(nk)

so this growth is polynomial.
(b) The Stirling approximation asserts that n! ∼ (n

e

)n √
2πn. This gives

(
n

αn

)
∼ (n/e)n

(nα/e)nα(nβ/e)nβ
·

√
2πn√

2πnα
√
2πnβ

,

where β = 1 − α. After simplifications we get

(
n

αn

)
∼ 1

αnαβnβ

1√
2πnαβ

.

Upon taking logarithm to base 2, we get:

1

n
log2

(
n

αn

)
∼ −(α log2 α + β log2 β) − log2(2πnαβ)/(2n) = H(α) + O

(
ln n

n

)
.

The function H(α) = −(α log2 α + β log2 β) is called the entropy function.
We get as a result that (

n

αn

)
∼ enH(α),

which is exponential growth.

Solutions to Exercises of Sect. 2.3.2
1. (a) The exact number of bits required to input an integer N will be �log2 N�. We

are interested in integers between 1099 and 10100, so we have

log2 10
99 = 99 log2 10 ≈ log2 10

100 = 100 log2 10 ≈ 330.

(b) Using the repeated division algorithm, we have

1234567 = 1001011010110100001112.

We can use GAP to establish the sequence of remainders:

304 11 Solutions to Exercises

gap> n:=1234567;

1234567

gap> base:=2;

2

gap> rems:=[];

[]

gap> pos:=1;

1

gap> while n>0 do;

> rems[pos]:=RemInt(n,base);

> n:=QuoInt(n,base);

> pos:=pos+1;

> od;

gap> n;

0

gap> rems;

[1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1]

They give us the digits but in the reverse order.
Since the binary representation is 21 digits long, we need to calculate c2

0 =
c, c2

1 = c2, . . . c2
20

first. This requires 20 multiplications. Since the binary
representation contains 11 digits 1, we need to multiply 11 of these entries
together to obtain cn , which is a further 10 multiplications, for a total of 30.

2. Suppose that n items are being bubble sorted. We need to determine the greatest
possible number of swaps that can occur. For each item x in the list, let Sx be the
set of items in the list that are smaller than x , and ahead of x in the list. Each time
a swap occurs where x is the larger item, the order of Sx decreases by one, and
when Sx is empty no more swaps with x as the larger item can occur. While Sx is
still non-empty, the list is not yet sorted. So |Sx | is exactly the number of swaps
that will occur with x as the larger item. Seeing that in every swap one of the two
items involved is the larger, we simply need to add up these values for every item
to determine the number of swaps. In other words, the total number of swaps to
sort a list will be

∑
x |Sx |.

An obvious upper bound on |Sx | is the number of items in the list that are smaller
than x . The i th smallest item in the list can have at most i − 1 items that are
smaller than it, so

∑
x

|Sx | ≤
n∑

i=1

(i − 1) = n(n − 1)

2
= �(n2).

We also need to check that this can actually occur, and clearly it can, for example,
the list {n, n − 1, . . . , 2, 1} will require this number of swaps.

3. In the worst-case scenario we might need (log2 N)3 divisions. For large N , this is
less than

√
N/ ln

√
N divisions required by the standard algorithm of factoring.

Therefore some composite numbers together with primes might be declared to

11.2 Solutions to Exercises of Chap. 2 305

be interesting. This algorithm has polynomial complexity. Indeed, since we may
consider that N ≈ 2n , where n is the number of bits necessary to input N , the
worst-case complexity function is f (n) ≈ (log2 2

n)3 = n3. It is cubic.
4. (a) Obviously fn ≥ fn−1. Hence fn = fn−1 + fn−2 ≤ 2 fn−1. We have fn+5 =

fn+4 + fn+3 = 2 fn+3 + fn+2 = 3 fn+2 + 2 fn+1 = 5 fn+1 + 3 fn = 8 fn +
5 fn−1 > 8 fn + 4 fn−1 ≥ 8 fn + 2 fn = 10 fn .

(b) We may assume a > b. We use the Euclidean algorithm to find:

a = q1b + r1, 0 < r1 < b,

b = q2r1 + r2, 0 < r2 < r1,

r1 = q3r2 + r3, 0 < r3 < r2,

...

rs−2 = qsrs−1 + rs, 0 < rs < rs−1,

rs−1 = qs+1rs .

where rs = gcd(a, b). We may set b = r0.
We have rs ≥ 1 = f2 and rs−1 ≥ 2 = f3. By induction on i we prove that
rs−i ≥ fi+2 for all i = 0, 1, . . . , s. Indeed, if the statement is true for all i such
that 0 ≤ i < k, then rs−k = qs−k+2rs−k+1 + rs−k+2 ≥ rs−k+1 + rs−k+2 ≥
fk+1 + fk = fk+2, which proves the induction step. In particular, b = r0 ≥
fs+2.
Suppose now that s > 5k, where k is the number of decimal digits in b.
However, by (a) we get b ≥ fs+2 > f5k+2 > 10k f2 = 10k , which is a con-
tradiction.

Solutions to Exercises of Sect. 2.4.1
1. As e1 = 2145 and φ(n) = 11200 are obviously not coprime (have a factor 5 in

common), e1 cannot be used in a public key. On the other hand, e2 = 3861 is
coprime with φ(n), and the Extended Euclidean algorithm gives us 1 = 1744 ·
11200 + (−5059) · 3861. So d = 11200 − 5059 = 6141. Checking with GAP:

gap> QuotientMod(1,3861,11200);

6141

2. Wefirst need to calculateBob’s private keywhich is e−1 mod φ(n) = 113−1 mod
120 = 17 and then calculate 9717 mod 143 = 15. So the letter was “E”.

3. Bob calculates m2, m4, m8, m16, m32 by successive squaring. Then he multiplies
m32 · m8 · m = m41 using in total seven multiplications.

5. (a) We calculate �√20687� = 143. Assuming that 20687 is a product of two
three-digit primes, the smallest prime factor of 20687 should be one of these
primes:

101, 103, 107, 109, 113, 127, 131, 137, 139,

306 11 Solutions to Exercises

Trying all of them we find that 20687 = 137 · 151. Thus φ(20687) = 136 ·
150 = 20400. Now we may compute Alice’s private key which is d =
17179−1

mod 20400. We compute

20400 1 0

17179 0 1

3221 1 − 1

1074 −5 6

1073 11 − 13

1 −16 19

Hence d = 19 (aren’t we lucky that it is so small!). Thus the plaintext will
be 35319 mod 20687. We note that 19 = 16 + 2 + 1 = (10011)(2). Thus we
have to compute 3532 and 35316 and then 35319 operating inZ20687.We com-
pute (fingers crossed) 3532 = 487, 3534 = 4872 = 9612, 3538 = 96122 =
2042, 35316 = 20422 = 18618. Hence 35319 = 18618 � 487 � 353 =
6060 � 353 = 8419, which is the plaintext.

Checking with GAP:

gap> QuotientMod(1,17179,20400);

19

gap> PowerMod(353,19,20687);

8419

6. (a) The cyphertext Alice needs to send to Bob is c = me mod n = 1831003 mod
24613. Without GAP, this number can be efficiently calculated as follows:
first, find the binary representation e = 1111101011(2) and construct the
sequence (computed in Zn)
m0 = m = 183,
m1 = m0

2 = 8876,

m2 = m1
2 = m0

22 = 21776,

m3 = m2
2 = m0

23 = 118,

m4 = m3
2 = m0

24 = 13924,

m5 = m4
2 = m0

25 = 1175,

m6 = m5
2 = m0

26 = 2297,

m7 = m6
2 = m0

27 = 9027,

m8 = m7
2 = m0

28 = 17699,

m9 = m8
2 = m0

29 = 4950.
Now,

c =1832
9+28+27+26+25+23+2+1 mod n =

((((((m9 � m8) � m7) � m6) � m5) � m3) � m1) � m0 = 20719.

11.2 Solutions to Exercises of Chap. 2 307

GAP, of course, simplifies calculations greatly:

gap> n:=24613; ; e:=1003;; m:=183;;

gap> PowerMod(m,e,n);

20719

(b) The private key d and the public key e satisfy the equation ed = 1 mod φ(n),
or equivalently, ed + yφ(n) = 1. The Extended Euclidean algorithm gives a
negative solution d ′ = −533, which is congruent to d = d ′ + φ(n) = 23767
modulo φ(n).

gap> QuotientMod(1,e, 24300);

23767

(c). Bob can decrypt the cyphertext c = 16935 raising c to power d, m =
cd mod n = 1693523767. Applying the same procedure as in (a) we get
m = 135. Alternatively we may use GAP as follows:

gap> PowerMod(16935,23767,n);

135

Solutions to Exercises of Sect. 2.4.2
1. The double encryption with e1 and then with e2 is the same as one encryption with

e = e1e2, since c2 ≡ ce21 ≡ (me1)e2 ≡ me1e2 mod n. As gcd(e1e2,φ(n)) = 1,
the product e1e2 is another legitimate exponent. For decryption we can use expo-
nent d = d1d2, since e1e2d1d2 ≡ 1 mod φ(n) andm ≡ (cd22)d1 ≡ cd1d22 mod n.
Thus double encryption is the same as a single encryption (with another exponent),
and it does not increase security over single encryption.

2. Eve has to try to factorise n, and if it is successful, then calculate φ(n) and then
Alice’s private decryption exponent d.

gap> n:=30796045883;
30796045883
gap> e:=48611;
48611
gap> factors:=FactorsInt(n);
[163841, 187963]
gap> # So the factorisation was successful!
gap> phi:= (factors[1]-1)*(factors[2]-1);
30795694080
gap> d:=QuotientMod(1,e,phi);
20709535691
gap> # Eve inputs cryptotext in the list c
gap> c:=[5272281348, 21089283929, 3117723025, 26844144908, 22890519533,
26945939925, 27395704341, 2253724391, 1481682985, 2163791130,
13583590307, 5838404872, 12165330281, 28372578777, 7536755222];;

308 11 Solutions to Exercises

gap> # Now she decodes the crytpotext writing the output into the list m:
gap> m:=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];;
gap> for i in [1..15] do
> m[i]:=PowerMod(c[i],d,n);
> od;
gap> m;
[2311301815, 2311301913, 2919293018, 1527311515, 2425162913, 1915241315,

1124142431, 2312152830, 1815252835, 1929301815, 2731151524, 2516231130,
1815231130, 1913292116, 1711312929]

gap> # This reads: "Mathematics is the queen of sciences and number theory
gap> # is the queen of mathematics KF GAUSS"

Solutions to Exercises of Sect. 2.4.3
1. (a) The test (b, 91) reveals compositeness of 91 with probability 2/89 for the

interval b ∈ {2, . . . , 90} as only b = 7 and b = 13 reveal that are divisors of
91;

(b) There are n − φ(n) − 1 = 18 numbers b in {2, 3, . . . , 90} that are not rela-
tively prime to n = 91 and will reveal compositeness of n = 91. The proba-
bility sought for is 18/89;

2. Sinceφ(91) = 72, by Euler’s theorem 572 ≡ 1 mod 91. Hence 590 ≡ 518 mod 91
and since 18 = 16 + 2 = (10010)(2) we have to compute 52 and 516.We compute
in Z91 as follows: 52 = 25, 54 = 252 = 79, 58 = 792 = 53, 516 = 532 = 79.
Hence 518 = 64 and 590 �≡ 1 (mod91). We know that 91 is composite by the
third test.

3. We use Exercise 4 of Sect. 1.1 as follows:

2Fn − 2 = 2
(
2Fn−1 − 1

)
= 2

(
2

(
22

n
)

+ 1 − 2

)
= 2(F2n − 2) = 2F0F1 . . . F2n−1.

Since n < 2n − 1, we get Fn | 2Fn − 2 or 2Fn ≡ 2 mod Fn . Hence, if Fn is not
prime, it is a pseudoprime to base 2.

4. Here is a GAP program. It counts the number of integers i between 1 and n such
that they are relatively prime to n and such that in−1 ≡ 1 mod n. If this number
is equal to φ(n) and n is composite, the number n is a Carmichael number.

gap> n:=15841;;

gap> counter:=0;

0

gap> for i in [1..n] do

> if GcdInt(i,n)=1 then

> if PowerMod(i,n-1,n)=1 then

> counter:=counter+1;

> fi;

> fi;

> od;

11.2 Solutions to Exercises of Chap. 2 309

gap> counter=Phi(n);

true

gap> IsPrime(n);

false

We see that indeed n = 15841 is a Carmichael number.
5. Wenote that 561 = 3 · 11 · 17.Let gcd(a, 561) = 1.Thengcd(a, 3) = gcd(a, 11)

= gcd(a, 17) = 1. Hence by Fermat’s little theorem we have a2 ≡ 1 mod 3,
a10 ≡ 1 mod 11 and a16 ≡ 1 mod 17. Thus a560 = (a2)280 ≡ 1 mod 3, a560 =
(a10)56 ≡ 1 mod 11, anda560 = (a16)35 ≡ 1 mod 17.ByChinese remainder the-
orem, these imply a560 ≡ 1 mod 561. This is true for all a relatively prime to 561.
Hence 561 is a Carmichael number.

6. The output of the third pseudoprimality test is “inconclusive”, because 7560 ≡ 1
mod 561 Therefore 561 is pseudoprime to the base 7. Note that 561 = 3 · 11 · 17
is not prime. Consider the following decomposition of 7560 − 1:

7560 − 1 = (735 − 1)(735 + 1)(770 + 1)(7140 + 1)(7280 + 1) ≡ 0 mod 561.

Every expression in the brackets is not divisible by 561:

735 − 1 ≡ 240 mod 561, 735 + 1 ≡ 242 mod 561, 770 + 1 ≡ 299 mod 561,

7140 + 1 ≡ 167 mod 561, 7280 + 1 ≡ 68 mod 561.

So Miller–Rabin test will find 561 composite.
The product of expressions is divisible by 561, because of the presence of zero
divisors 3, 11, 17 of Z561. More precisely, 735 − 1 is divisible by 3, 735 + 1 is
divisible by 11 and 7280 − 1 is divisible by 17.

7. We use the Rabin–Miller test with b = 2 to prove that n = 294409 is composite.
Obviously gcd(n, 2) = 1.

gap> n:=294409;

294409

gap> s:=0;; t:=n-1;;

gap> while RemInt(t,2)=0 do

> s:=s+1;

> t:=t/2;

> od;

gap> s;

3

gap> t;

36801

gap> 2ˆs*t+1=n;

true

gap> # So our s is 3 and t is 36801.

gap> 2ˆt mod n;

310 11 Solutions to Exercises

512

gap> # i.e. bˆt is not congruent to 1 and -1 mod n

gap> 2ˆ(2*t) mod n;

262144

gap> # i.e. bˆ2t is not congruent to -1 mod n

gap> 2ˆ(4*t) mod n;

1

gap> # bˆ4t is not congruent to -1 mod n

gap> Hence 2 is a Rabin-Miller witness that n is composite.

8. Suppose p is an odd prime and n = pk , where k > 1. Then by Euler’s theorem
for any a relatively prime to p we have aφ(pk) = a pk−pk−1 ≡ 1 mod n. If n is a
Carmichael number, then also a pk−1 ≡ 1 mod n. We have gcd(pk − pk−1, pk −
1) = p − 1. Hence we can find integers s and t such that s(pk − pk−1) + t(pk −
1) = p − 1. Then we have

a p−1 = (a pk−pk−1
)s · (a pk−1)t ≡ 1 mod pk .

As k ≥ 2, this, in particular, implies

a p−1 ≡ 1 mod p2.

This must be true for all a relatively prime to pk and in particular for a = p − 1.
But using binomial expansion we find that

(p − 1)p−1 ≡ (p − 1)p + 1 ≡ 1 − p mod p2,

which is not 1 mod p2, a contradiction. For p = 2 the argument is similar but
easier. It is left to the reader.

Solutions to Exercises of Sect. 2.5
1. Here is the GAP program

gap> p:=100140889442062814140434711571;

100140889442062814140434711571

gap> g:=13;

13

gap> a:=123456789;

123456789

gap> # Alice received the following m from Bob:

gap> m:=92639204398732276532642490482;

92639204398732276532642490482

gap> # Alice has to send gˆa to Bob:

gap> PowerMod(g,a,p);

11.2 Solutions to Exercises of Chap. 2 311

49776677612066280125182950089

gap> # and take as the secret key mˆa

gap> PowerMod(m,a,p);

16685041818541498009742672048

2. Firstly, lets findBob’s decryption exponent dB . For this purpose computeφ(nB) =
(pB − 1)(qB − 1).

gap> pB:=8495789457893457345793;;

gap> qB:=98763457697834568934613;;

gap> phi:=(pB-1)*(qB-1);

839073542734369359260764096691906894721352704

We know that eBdB ≡ 1 mod φ(nB), so

gap> eB:=87697;;

gap> dB:=PowerMod(eB,-1,phi);

259959042568078902255663939554592635205071473

Bob needs to decrypt the message (m1, s1) using his private key dB :

gap> m1:=119570441441889749705031896557386843883475475;;

gap> s1:=443682430493102486978079719507596795657729083;;

gap> nB:=pB*qB;;

gap> m:=PowerMod(m1,dB,nB);

1234567890000000000987654321

gap> s:=PowerMod(s1,dB,nB);

127780754898627768266801147589372430259685176

Bob can verify that message is from Alice by computing seA mod nA. If the
message is from Alice, then the result will be m, which is indeed the case.

gap> nA:=171024704183616109700818066925197841516671277;;

gap> eA:=1571;;

gap> ms:=PowerMod(s,eA,nA);

1234567890000000000987654321

gap> ms=m;

true

312 11 Solutions to Exercises

11.3 Solutions to Exercises of Chap.3

Solutions to Exercises of Sect. 3.1.1
1. We have:

(a) f ◦ g(x) = 1
sin x , and g ◦ f (x) = sin 1

x ;

(b) f ◦ g(x) = √
ex = ex/2, and g ◦ f (x) = e

√
x .

2. Indeed, Rθ ◦ R2π−θ = id since this composition is a rotation through an angle
of 2π.

3. We have H ◦ H = id.
4. Without loss of generality we may assume that our permutations fix elements

n − k + 1, n − k + 2, . . . , n. Any such permutation can be identified with per-
mutations on the set {1, 2, . . . , n−k}. Hence there are (n − k)! of them.

5. We have

σ(1) = 5, σ(2) = 1, σ(3) = 6, σ(4) = 2, σ(5) = 7, σ(6) = 3, σ(7) = 8, σ(8) = 4,

hence

σ =
(
1 2 3 4 5 6 7 8
5 1 6 2 7 3 8 4

)
.

The numbers in the last row are all different, hence this is a one-to-one mapping,
hence a permutation.

6. Since for finite sets one-to-one implies onto, it is enough to prove that π is
one-to-one. Suppose π(k1) = π(k2). Then 3k1 ≡ 3k2 mod 13, which implies
k1 ≡ k2 mod 13 since 3 and 13 are coprime. Hence π is one-to-one and is a
permutation.

7. Since i2 ≡ (13 − i)2 mod 13, themapping is not one-to-one.Wehave12 mod 13
= 1, 22 mod 13 = 4, 32 mod 13 = 9, 42 mod 13 = 3, 52 mod 13 = 12, and 62

mod 13 = 10. Therefore 2, 5, 6, 7, 8, 11 are not in the range of τ , hence it is not
onto.

8. We have

ρ =
(
1 2 3 4 5 6
3 4 5 6 1 2

)
, ρ2 =

(
1 2 3 4 5 6
5 6 1 2 3 4

)
, ρ3 = id.

Hence

ρ−1 = ρ2 =
(
1 2 3 4 5 6
5 6 1 2 3 4

)
.

We also have τ2 = id, hence τ−1 = τ .

9. (σγ)−1 =
(
1 2 3 4 5 6 7 8 9
9 1 3 7 6 5 8 4 2

)
. Calculating this with GAP:

11.3 Solutions to Exercises of Chap. 3 313

gap> sigma:=PermList([2,4,5,6,1,9,8,3,7]);;

gap> gamma:=PermList([6,2,7,9,3,8,1,4,5]);

gap> mu:=sigma*gamma;;

gap> ListPerm(muˆ-1);

[9, 1, 3, 7, 6, 5, 8, 4, 2]

thus confirming the result obtained.
10. We have to show that if f and g are permutations on {1, 2, . . . , n}, then f ◦ g is

also a permutation. It is enough to prove that it is one-to-one. Suppose not, then
for two distinct elements a, b ∈ {1, 2, . . . , n}we have f ◦ g(a) = f ◦ g(b). This
means that g(f (a)) = g(f (b)). Since g is one-to-one, we conclude that f (a) =
f (b). However f is also one-to-one which implies a = b, a contradiction.

Solutions to Exercises of Sect. 3.1.3
1. Let π = στ , where σ and τ are disjoint cycles. Suppose σ moves elements of the

set I and τ moves elements of the set J . Since these cycles are disjoint, I and J
have no elements in common. Let K = {1, 2, . . . , n} \ (I ∪ J). Then π(i) = σ(i)
for i ∈ I , π(j) = τ (j) for j ∈ J and π(k) = k for k ∈ K . Exactly the same result
we obtain for π′ = τσ.

2. The calculation shows

π =
(
1 2 3 4 5 6 7 8 9 10 11 12
3 6 9 12 2 5 8 11 1 4 7 10

)
= (1 3 9)(2 6 5)(4 12 10)(7 8 11).

This can be also done with GAP:

gap> s:=[1..12];;

gap> for i in [1..12] do

> s[i]:=3*s[i] mod 13;

> od;

gap> s;

[3, 6, 9, 12, 2, 5, 8, 11, 1, 4, 7, 10]

gap> PermList(s);

(1,3,9)(2,6,5)(4,12,10)(7,8,11)

3. (1 4 3)(2 5).

4. (στ)−1 =
(
1 2 3 4 5 6 7 8 9
6 9 2 8 4 7 5 1 3

)
= (1 6 7 5 4 8)(2 9 3).

Solutions to Exercises of Sect. 3.1.4
1. (a) Since

σ =
(
1 2 3 4 5 6 7 8 9
5 3 6 7 1 2 8 9 4

)
= (1 5)(2 3 6)(4 7 8 9),

the order of σ is lcm(2, 3, 4) = 12.

314 11 Solutions to Exercises

(b) τ = (1 2)(2 3 4)(4 5 6 7)(7 8 9 10 11) = (1 3 5 6 8 9 10 11 7 4 2) so τ is
actually a cycle of length 11 so its order is 11.

2. Let J be the Josephus permutation.

(a) gap> j:=[3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 1, 5, 10, 14,
19, 23, 28, 32, 37, 41, 7, 13, 20, 26, 34, 40, 8, 17, 29, 38, 11, 25, 2,
22, 4, 35, 16, 31];;
gap> J:=PermList(j);
(1,3,9,27,26,20,28,34,11,33,38,4,12,36,2,6,18,19,23,41,31,17,14)(5,15)
(7,21,32,29,40,16,10,30,8,24)(13,39,35,25)(22,37)

(b) In which position did Josephus stand around the circle?

gap> 41ˆJ;

31

So Josephus stood 31th.
(c) What is the order of the Josephus permutation?

gap> Order(J);

460

(d) Calculate σ2 and σ3.

gap> Jˆ2;
(1,9,26,28,11,38,12,2,18,23,31,14,3,27,20,34,33,4,36,6,19,41,17)
(7,32,40,10,8)(13,35)(16,30,24,21,29)(25,39)
gap> Jˆ3;
(1,27,28,33,12,6,23,17,3,26,34,38,36,18,41,14,9,20,11,4,2,19,31)(5,15)
(7,29,10,24,32,16,8,21,40,30)(13,25,35,39)(22,37)

3. The mapping i �→ 13i mod 23 is one-to-one mapping of S22 into itself since 13
and 23 are relatively prime. Now

gap> list:=[1..22];;
gap> for i in [1..22] do
> list[i]:=13*i mod 23;
> od;
gap> list;
[13, 3, 16, 6, 19, 9, 22, 12, 2, 15, 5, 18, 8, 21, 11, 1, 14, 4, 17, 7, 20, 10]
gap> PermList(list);
(1,13,8,12,18,4,6,9,2,3,16)(5,19,17,14,21,20,7,22,10,15,11).

The order of this permutation is lcm(11, 11) = 11.

Solutions to Exercises of Sect. 3.1.5
1. The permutation corresponding to the shuffle will be

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
11 2 3 4 5 6 12 13 14 15 1 7 8 9 10

)
= (1 11)(7 12)(8 13)(9 14)(10 15).

11.3 Solutions to Exercises of Chap. 3 315

The order of this permutation is 2 so repeating this shuffle twice will bring cards
in the initial order.

2. Weknow that the interlacing shuffle is definedby the equationσ(i) = 2i mod 105.
Thus we have

gap> lastrow:=[1..104];
[1 .. 104]
gap> for i in [1..104] do
> lastrow[i]:=2*i mod 105;
> od;
gap> s:=PermList(lastrow);
(1,2,4,8,16,32,64,23,46,92,79,53)(3,6,12,24,48,96,87,69,33,66,27,54)(5,10,20,
40,80,55)(7,14,28,56)(9,18,36,72,39,78,51,102,99,93,81,57)(11,22,44,88,71,37,
74,43,86,67,29,58)(13,26,52,104,103,101,97,89,73,41,82,59)(15,30,60)(17,34,68,
31,62,19,38,76,47,94,83,61)(21,42,84,63)(25,50,100,95,85,65)(35,70)(45,90,
75)(49,98,91,77)
gap> Order(s);
12

For this deck of cards this shuffle is very bad.
3. We assume, first, that each beetle has a number 1, 2, . . . , n and each carries a

little-coloured flag and all flags are of different colour. Suppose that when any
two beetles meet, they exchange their flags. Now all flags move with the same
constant speedwithout ever changing their directions, so after a certain time t they
will occupy their initial positions. This means that the beetles will also occupy
their initial positions but now in place of beetles 1, 2, . . . , n we will find beetles
i1, i2, . . . , in . We will take time t as a unit of time. Hence, every unit time interval
the beetles exchange places according to the permutation

σ =
(
1 2 3 . . . n
i1 i2 i3 . . . in

)
.

When k units of time pass, they will exchange places according to the permutation
σk . If σ is the product of m disjoint cycles of length �1, �2, . . . , �m , respectively,
then σ� is the identity permutation for � = lcm(�1, �2, . . . , �m) being the order
of σ. Hence after � units of time all beetles will occupy their initial positions.

Solutions to Exercises of Sect. 3.1.6
1. Using equation (3.5) we get

(1 3 7)(5 8)(2 4 6 9) = (1 3)(1 7)(5 8)(2 4)(2 6)(2 9),

(1 3 7)(5 7 8)(2 3 4 6 9) = (1 3)(1 7)(5 7)(5 8)(2 3)(2 4)(2 6)(2 9).

Another representation can be obtained if we first represent the permutation as a
product of disjoint cycles:

(1 3 7)(5 7 8)(2 3 4 6 9) = (1 4 6 9 2 3 8 5 7) = (1 4)(1 6)(1 9)(1 2)(1 3)(1 8)(1 5)(1 7).

316 11 Solutions to Exercises

2. It is odd.We can prove by induction that the product of an odd number of odd per-
mutations is odd. Suppose this is true for any 2n − 1 odd permutations. Consider
the product � = π1 . . .π2n+1. We can write it as

� = (π1 . . . π2n−1)(π2nπ2n+1).

The induction hypothesis gives us that the first bracket is odd and the second by
Theorem 3.1.7(ii) is even. Then � is even by by Theorem 3.1.7(iii).

3. We must consider four cases, here we will consider only one: π is even and ρ is
odd. By Theorem 3.1.7 (iv) ρ−1 is also odd. Then by Theorem 3.1.7 ρ−1π is odd
and ρ−1πρ is even. Hence π and ρ−1πρ have the same parity. The other three
cases are similar.

4. By the previous exercise π−1ρ−1π has the same parity as ρ. Hence by
Theorem 3.1.7 π−1ρ−1πρ is an even permutation.

5. If n = 2k, this permutation is a product

(1 n)(2 n − 1) . . . (k k + 1).

If n = 2k + 1, then

(1 n)(2 n − 1) . . . (k k + 2).

Hence the parity of this permutation is the parity of the number � n
2 �.

Solutions to Exercises of Sect. 3.1.7
1. The two positions differ only by a switch of neighbouring squares 10 and 14. In

this case the corresponding permutations will be of different parities, hence only
one of them is realizable.

2. Calculating the corresponding permutations in GAP:

gap> first:=[1,3,2,4,6,5,7,8,9,13,15,11,14,10,12,16];

[1, 3, 2, 4, 6, 5, 7, 8, 9, 13, 15, 11, 14, 10, 12, 16]

gap> s:=PermList(first);

(2,3)(5,6)(10,13,14)(11,15,12)

This one is even, hence the first position is realisable.

gap> second:=[13,16,5,3,9,2,7,10,1,15,14,8,12,11,6,4];

[13, 16, 5, 3, 9, 2, 7, 10, 1, 15, 14, 8, 12, 11, 6, 4]

gap> t:=PermList(second);

(1,13,12,8,10,15,6,2,16,4,3,5,9)(11,14)

This one is odd, hence the second position is not realisable.

11.3 Solutions to Exercises of Chap. 3 317

Solutions to Exercises of Sect. 3.2.1
1. It is a binary operation since, if a and b are two nonzero real numbers, a�b = a : b

is also a nonzero real number. We have

(a�b)�c = a

bc
, a�(b�c) = ac

b
,

which are different if |c| �= 1. Hence this operation is not associative.
2. If e is a neutral element, then we must have e�a = a�e = a for all a ∈ R+. This

means ea = ae = a for all a. Since for e > 1 the function ex grows faster than
xe and for e < 1 the function ex grows slower than xe, the only option is e = 1
which is also impossible.

3. Obviously the identity element 1 is in Cn . If z1 and z2 are any two roots of unity,
that is |z1| = |z2| = 1, then |z1z2| = |z1||z2| = 1, so their product also lies in
Cn . Hence multiplication is an algebraic operation on Cn . Associative law for it
follows from the properties of multiplication in C. Also, if z is a root of unity,
|z−1| = |z|−1 = 1 and hence z−1 also belongs toCn . HenceCn is a group relative
to the operation of multiplication. (It is a subgroup of the multiplicative groupC∗
of C). We know there are exactly n roots of degree n of unity:

ψi = cos
2iπ

n
+ sin

2iπ

n
, i = 0, 1, 2, . . . , n − 1.

4. A matrix A is invertible if det(A) �= 0. If A, B are two invertible matrices, then
det(AB) = det(A) det(B) �= 0 and hence AB is also invertible. The inverse of an
invertible matrix is also invertible, and the identity matrix In is invertible. Thus
GLn(R) contains the identity, inverses and its multiplication is associative. Hence
GLn(R) is a group.

5. We have to use the associative law twice:

(g1g2)(g3g4) = (g1g2)g3)g4 = (g1(g2g3))g4.

The following are all possible arrangements of brackets on the product g1g2g3g4:

g1((g2g3)g4)) = g1(g2(g3g4)) = (g1g2)(g3g4) = (g1g2)g3)g4 = (g1(g2g3))g4.

Let us now prove that all arrangements of brackets on g1g2 . . . gn will give us
the same element as (g1g2 . . . gn)r = (. . . ((g1g2)g3) . . .)gn . Suppose now that
the bracket arrangement is arbitrary, this gives us the product uv, where u is
g1g2 . . . gk with some arrangement of brackets and v is gk+1gk+2 . . . gn also with
some arrangement of brackets. We have |u| = k and |v| = n − k, where by |w|
we denote the number of group elements involved.
If |v| = 1, then the statement follows from the induction hypothesis. If |v| >

1, then we have v = v1v2, where |v1| < |v| and |v2| < |v|. Then we apply the
associative law as follows:

uv = u(v1v2) = (uv1)v2 = u′v′,

where |v′| < |v|. By induction hypothesis uv = (g1g2 . . . gn)r as required.

318 11 Solutions to Exercises

Solutions to Exercises of Sect. 3.2.2
1. Since in Zn

ord (i) = n

gcd(i, n)
,

we calculate that the orders of the elements 5, 1331 and 594473will be 16427202,
12342 and 7986, respectively. Indeed,

gap> n:=16427202;; i1:=5;; i2:=1331;; i3:=594473;;
gap> order1:=n/GcdInt(i1,n);order2:=n/GcdInt(i2,n);order3:=n/GcdInt(i3,n);
16427202
12342
7986

2. Using the formula as in the previous exercise we see that for having order 7 the
element i must satisfy gcd(i, 84) = 84/7 = 12. We have six such elements: 12,
24, 36, 48, 60, 72.

3. The order of i ∈ Zn is calculated as

ord (i) = n

gcd(i, n)
= 87330619392.

Here is the calculation:

gap> n:=563744998038700032;; i:=41670852902912;;

gap> gcd:=GcdInt(n,i);

6455296

gap> order:=n/gcd;

87330619392

4. This is a group of order 4 but each nonzero element has order 2. Hence all cyclic
subgroups have order 2 and the group is not cyclic.

5. We know that σn(i) = 2i mod 2n + 1 Suppose σk
n = id for some k. Then 2ki ≡

i mod 2n + 1 for all i including those which are relatively prime to 2n + 1. By
Lemma 1.3.2(d) this is equivalent to 2k ≡ 1 mod 2n + 1. Hence the order of σn

is equal to the order of 2 in Z∗
2n+1.

Solutions to Exercises of Sect. 3.2.3
1. We have gg−1 = e, where e is the identity element of G. We know from the

proof of Theorem 3.2.3 that σ(e) = ε, where ε is the identity of H . Applying σ to
gg−1 = e and using the property thatσ(gh) = σ(g)σ(h)we obtainσ(g)σ(g−1) =
ε. This means that σ(g−1) = σ(g)−1.

2. In Exercise 1 of Sect. 3.2.1 we defined roots of unity ψi . It is straightforward to
check that

ψiψ j = ψi⊕ j .

11.3 Solutions to Exercises of Chap. 3 319

This makes the mapping i �→ ψi an isomorphism.
3. We define a mapping τ : C∗ → G as

τ (a + bi) =
[
a −b
b a

]
.

Thismapping is one-to-one and onto. Also let z1 = a + bi and z2 = c + di . Then

z1z2 = (a + bi)(c + di) = (ac − bd) + (ad + bc)i

and [
a −b
b a

] [
c −d
d c

]
=

[
ac − bd −ad − bc
ad + bc ac − bd

]
,

which means τ (z1z2) = τ (z1)(z2) and τ is an isomorphism.
4. Both 191 and 193 are primes, hence |G1| = 190 and |G2| = 192. The second

number is not divisible by 19 and the first is. So G2 has no elements of order
19 but G1 has. Let g be a generator of G1. Then element gk will have order 19
if gcd(k, 190) = 10. Hence elements gk will have order 19 for k = 1, . . . , 18, in
total 18 such elements.

5. ord (2150) = 210

gcd(150, 210)
= 210

30
= 7.

6. ord (26472) = 270

gcd(270, 72)
= 270

18
= 15.

Solutions to Exercises of Sect. 3.2.4
1. If det(A) = det(B) = 1, then det(AB) = det(A) det(B) = 1, also if det(A) = 1,

then det(A−1) = det(A)−1 = 1. Finally we notice that det(In) = 1. All require-
ments of a subgroup are satisfied: SLn(R) is closed under the multiplication,
under inverses, and contains the identity element. Hence SLn(R) is a subgroup
of GLn(R).

2. If m is a divisor of n, then zm = 1 implies zn = 1. Hence Cm ⊆ Cn . Since Cm is
known to be a group on its own, it will be a subgroup of Cn .

3. An element gi is a generator of < g > if ord (gi) = n. Since

ord (gi) = n

gcd(i, n)

for gi to be a generator, it is necessary and sufficient to have gcd(i, n) = 1. We
have exactly φ(n) such numbers i .

4. Suppose that for no element 1 �= g ∈ G we have g2 = 1. Then for no element
g �= 1 of G we have g = g−1. Hence we can split the whole set G \ {1} into
disjoint pairs {g, g−1}. Then G \ {1} has an even number of elements and G has
an odd number of elements. This is a contradiction.

320 11 Solutions to Exercises

5. Suppose G is a subgroup of C∗ and |G| = n. Then by Corollary 3.2.3 gn = 1 for
every g ∈ G. This implies G = Cn since elements of G must then coincide with
n roots of unity in C.

Solutions to Exercises of Sect. 3.3.1
1. The discriminant of the cubic X3 + 4X + 11 is zero, so the first equation does

not define an elliptic curve, the discriminant of X3 + 6X + 11 is 3, so the second
equation does define an elliptic curve over Z13.

2. Compare coefficients of the polynomials in the right-hand side and in the left-hand
side of the equation.

3. Direct calculation.
4. (a) Direct calculation.

(b) With every point (x, y) there must be also the point −(x, y) = (x, −y). This
gives us another five points on E , namely (1, 6), (2, 4), (3, 6), (4, 5), (6, 5).
Also the point at infinity ∞.

(c) −(2, 3) = (2, 4), 2(4, 2) = (6, 5), (1, 1) + (3, 1) = (3, 6).
(d) GAP shows that we found all points on E :

gap> G:=EllipticCurveGroup(1,-1,7);
EllipticCurveGroup(1,-1,7)
gap> AsList(G);
[(1, 1), (1, 6), (2, 3), (2, 4), (3, 1), (3, 6), (4, 2),
(4, 5), (6, 2), (6, 5), infinity].

5. (a) Generating this elliptic curve with GAP:

gap> G:=EllipticCurveGroup(5,1,13);

EllipticCurveGroup(5,1,13)

gap> AsList(G);

[(0, 1), (0, 12), (3, 2), (3, 11), (6, 0), (11, 3),

(11, 10), infinity]

gap> Order(G);

8

(b) Since the order of E is 8, LagrangeÕs theorem tells us that the order of P
is a factor of 8, i.e., 2 or 4 or 8. Then 2(0, 1) = (0, 1) + (0, 1) = (3, 11),
4(0, 1) = (3, 11) + (3, 11) = (6, 0), and 8(0, 1) = (6, 0) + (6, 0) = ∞, so
the order of P is 8 and the group G is a cyclic group with P as generator.

6. gap> p:=46301;;
gap> G:=EllipticCurveGroup(7,11,p);
EllipticCurveGroup(7,11,46301)
gap> Order(G);
46376
gap> IsCyclic(G);
true

11.3 Solutions to Exercises of Chap. 3 321

Solutions to Exercises of Sect. 3.3.2
1. The complete addition table is

+ ∞ (2,0) (3,2) (3,3) (4,1) (4,4)

∞ ∞ (2,0) (3,2) (3,3) (4,1) (4,4)
(2,0) (2,0) ∞ (4,1) (4,4) (3,2) (3,3)
(3,2) (3,2) (4,1) (3,3) ∞ (4,4) (2,0)
(3,3) (3,3) (4,4) ∞ (3,2) (2,0) (4,1)
(4,1) (4,1) (3,2) (4,4) (2,0) (3,3) ∞
(4,4) (4,4) (3,3) (2,0) (4,1) ∞ (3,2)

Firstly we note that (4, 4) = −(4, 1) so they have the same order. We have

2(4, 1) = (3, 3), 3(4, 1) = (2, 0), 4(4, 1) = (3, 2), 5(4, 1) = (4, 4), 6(4, 1) = ∞

so the order of both (4, 1) and (4, 4) is 6.
2. In any field x2 = (−x)2, hence the following are all quadratic residues of Z17:

12 = 1, 22 = 4, 32 = 9, 42 = 16, 52 = 8, 62 = 2, 72 = 15, 82 = 13.

The answer is {1, 2, 4, 8, 9, 13, 15, 16}.
3. The number of points N on such elliptic curve by Hasse’s theorem will be in the

range

2012 − 2
√
2011 ≤ N ≤ 2012 + 2

√
2011

As
√
2011 ≈ 44.84417465, we see that 1923 ≤ N ≤ 2101.

4. We have three cases to consider:

(a) The product of two quadratic residues is a quadratic residue. Indeed, if g = g21
and h = h21, then gh = (g1h1)2. The inverse of a quadratic residue is again a
quadratic residue. Indeed, if g = h2, then g−1 = (h−1)2.

(b) Suppose now that the product of a quadratic residue g and a quadratic non-
residue h is a quadratic residue k. Then h = g−1k is a quadratic residue due
to the two observations made above, a contradiction. Hence the product of a
quadratic residue and a quadratic non-residue is a quadratic non-residue.

(c) Let g be an arbitrary quadratic non-residue. Let us consider the function
σ : h �→ hg from Z

∗
p to itself. Since g is invertible, this is a permutation of

Z
∗
p. Let q = (p − 1)/2. Then Theorem 3.3.3 tells us that there are q quadratic

residues, let us denote their set as R and q quadratic non-residues, let us denote
their set N . Then we have shown that σ maps R into N . Since σ is invertible
and R and N have the same cardinality, then σ maps R onto N . In such a
case σ must map N onto R which means that the product of any quadratic
non-residue and g is quadratic residue. Since g is arbitrary we have proved
that the product of any two quadratic non-residues is a quadratic residue.

322 11 Solutions to Exercises

5. SinceZp is a field, for every nonzero c ∈ Zp the equation cx = a has a solution c′
inZp which is also nonzero. Also c′ �= c since a is a non-residue. Thus all nonzero
elements of Zp are split into disjoint pairs (c1, c′

1), . . . , (c(p−1)/2, c′
(p−1)/2) such

that ci c′
i = a. Then by Wilson’s theorem

a
p−1
2 =

(p−1)/2∏
i=1

ci · c′
i = (p − 1)! = −1.

6. We generate numbers at random and then use Euler’s criterion to check if it is a
quadratic non-residue or not. In fact the first attempt gives us a non-residue,the
second gives a quadratic residue:

gap> a:=Random([1..2ˆ28]);

153521494

gap> PowerMod(a,(p-1)/2,p);

359334085968622831041960188598043661065388726959079836

This is actually p-1 so 153521494 is a non-residue.

gap> a:=Random([1..2ˆ28]);

199280309

gap> PowerMod(a,(p-1)/2,p);

1

And this shows that 199280309 is a quadratic residue.

Solutions to Exercises of Sect. 3.3.3
1. 1729 = 110110000012, so GAP will first perform 10 additions to calculate 2 ·

P, 4 · P, . . . 1024 · P , and then a further 4 additions to compute the sum P + 64 ·
P + 128 · P + 512 · P + 1024 · P; 14 additions in total.

Solutions to Exercises of Sect. 3.4.1
1. We generate numbers at random and then use Euler’s criterion to check if it is a

quadratic non-residue or not. In fact the first attempt gives us a non-residue,the
second gives a quadratic residue:

gap> a:=Random([1..2ˆ28]);

153521494

gap> PowerMod(a,(p-1)/2,p);

359334085968622831041960188598043661065388726959079836

This is actually p-1 so 153521494 is a non-residue.

gap> a:=Random([1..2ˆ28]);

199280309

gap> PowerMod(a,(p-1)/2,p);

1

And this shows that 199280309 is a quadratic residue.

11.3 Solutions to Exercises of Chap. 3 323

gap> b:=RootMod(a,p);

286534778672701806664621728123564904392266164296221884

gap> a=bˆ2 mod p;

true

So indeed b is a square root of a.

2. We make the following steps:

CHRISTMAS --> [CHR, IST, MAS] --> [131828, 192930, 231129] -->

[(1318281, 15879309), (1929301, 3765260), (2311294, 6775980)].

Here is the calculation:

gap> p:=17487707;;

gap> m:=[131828, 192930, 231129];;

gap> x1:=m[1]*10;

1318280

gap> f1:=(x1ˆ3+123*x1+456) mod p;

7287640

gap> RootMod(f1,p);

fail

gap> x1:=x1+1;

1318281

gap> f1:=(x1ˆ3+123*x1+456) mod p;

5117601

gap> RootMod(f1,p);

15879309

gap> x2:=m[2]*10;

1929300

gap> f2:=(x2ˆ3+123*x2+456) mod p;

2898698

gap> RootMod(f2,p);

fail

gap> x2:=x2+1;

1929301

gap> f2:=(x2ˆ3+123*x2+456) mod p;

3728942

gap> RootMod(f2,p);

3765260

gap> x3:=m[3]*10;

2311290

gap> f3:=(x3ˆ3+123*x3+456) mod p;

14098022

gap> RootMod(f3,p);

324 11 Solutions to Exercises

fail

gap> x3:=x3+1;

2311291

gap> f3:=(x3ˆ3+123*x3+456) mod p;

16049134

gap> RootMod(f3,p);

fail

gap> x3:=x3+1;

2311292

gap> f3:=(x3ˆ3+123*x3+456) mod p;

14380285

gap> RootMod(f3,p);

fail

gap> x3:=x3+1;

2311293

gap> f3:=(x3ˆ3+123*x3+456) mod p;

9091481

gap> RootMod(f3,p);

fail

gap> x3:=x3+1;

2311294

gap> f3:=(x3ˆ3+123*x3+456) mod p;

182728

gap> RootMod(f3,p);

6775980

Solutions to Exercises of Sect. 3.4.2
1. I will first show how the message was encrypted and then show how to decrypt it.

You have to do the opposite: first decrypt the message and then encrypt a message
of your own.

gap> Read("elliptic.gd");
gap> Read("elliptic.gi");
gap> # Defining the curve:
EllipticCurveGroup(0,12345,95701)
gap> P:=Random(G);
(91478, 65942)
gap> # Encoding the message "I’m nobody. Who are you?"
gap> M:=[0,0,0,0,0,0,0,0,0,0,0,0];
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
gap> M[1]:=EllipticCurvePoint(FamilyObj(P),[1942,37617]);
(1942, 37617)
gap> M[2]:=EllipticCurvePoint(FamilyObj(P),[2341,44089]);
(2341, 44089)
gap> M[3]:=EllipticCurvePoint(FamilyObj(P),[2425,89535]);
(2425, 89535)
gap> M[4]:=EllipticCurvePoint(FamilyObj(P),[1225,46279]);
(1225, 46279)

11.3 Solutions to Exercises of Chap. 3 325

gap> M[5]:=EllipticCurvePoint(FamilyObj(P),[1435,60563]);
(1435, 60563)
gap> M[6]:=EllipticCurvePoint(FamilyObj(P),[43410,66195]);
(43410, 66195)
gap> M[7]:=EllipticCurvePoint(FamilyObj(P),[3318,58656]);
(3318, 58656)
gap> M[8]:=EllipticCurvePoint(FamilyObj(P),[25413,63045]);
(25413, 63045)
gap> M[9]:=EllipticCurvePoint(FamilyObj(P),[1128,14737]);
(1128, 14737)
gap> M[10]:=EllipticCurvePoint(FamilyObj(P),[1541,72018]);
(1541, 72018)
gap> M[11]:=EllipticCurvePoint(FamilyObj(P),[3525,29201]);
(3525, 29201)
gap> M[12]:=EllipticCurvePoint(FamilyObj(P),[3145,46983]);
(3145, 46983)
gap> M;
[(1942, 37617), (2341, 44089), (2425, 89535), (1225, 46279),

(1435, 60563), (43410, 66195), (3318, 58656), (25413, 63045),
(1128, 14737), (1541, 72018), (3525, 29201), (3145, 46983)]

gap> # In M[6] and M[8] we had to add an additional fifth digit in order
gap> # to get a point.

gap> # These are in the public domain:
gap> Q:=EllipticCurvePoint(FamilyObj(P),[88134,77186]);
(88134, 77186)
gap> QkA:=EllipticCurvePoint(FamilyObj(P),[27015, 92968]);
(27015, 92968)

gap> # All Bob needs for encryption is QkA which is in the public domain.
gap> C:=[0,0,0,0,0,0,0,0,0,0,0,0];
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
gap> for i in [1..12] do
> C[i]:=[P,P];
> s:=Random([1..(p-1)]);
> C[i][1]:=Qˆs;
> C[i][2]:=M[i]*(QkA)ˆs;
> od;
gap> C;
[[(87720, 6007), (59870, 82101)], [(34994, 7432), (36333, 86213)],

[(50702, 2643), (33440, 56603)], [(34778, 12017), (81577, 501)],
[(93385, 52237), (38536, 21346)], [(63482, 12110), (70599, 87781)],
[(16312, 46508), (62735, 69061)], [(64937, 58445), (41541, 36985)],
[(40290, 45534), (11077, 77207)], [(64001, 62429), (32755, 18973)],
[(81332, 47042), (35413, 9688)], [(5345, 68939), (475, 53184)]]

gap> # Now Alice decrypts this message using her private key kA
gap> kA:=373;
373
gap> for i in [1..12] do
> M1[i]:=C[i][2]*((C[i][1])ˆkA)ˆ-1;
> od;
gap> M1;
[(1942, 37617), (2341, 44089), (2425, 89535), (1225, 46279),

(1435, 60563), (43410, 66195), (3318, 58656), (25413, 63045),
(1128, 14737), (1541, 72018), (3525, 29201), (3145, 46983)]

gap> # Here we have to ignore any fifth digit in x-component which occurs.
gap> # Alice reads the message as "I’m nobody. Who are you?" which is the
gap> # first line of the following poem by Emily Dickinson:

I’m Nobody. Who are you?
Are you - Nobody - Too?

326 11 Solutions to Exercises

Then there’s a pair of us?
Don’t tell! They’d advertise - you know!

How dreary - to be - Somebody!
How public - like a Frog -
To tell one’s name - the livelong June -
To an admiring Bog!

11.4 Solutions to Exercises of Chap.4

Solutions to Exercises of Sect. 4.1.1
1. A negative of 1 does not exist in Q+ so F3 is violated.
2. The (multiplicative) inverse of 2 does not exist in Z, hence F9 is violated.
3. To prove that Q(

√
2) is a field we have to show that it contains 1, which is true

since 1 = 1 + 0
√
2, that Q(

√
2) is closed under the multiplication, and that a−1

is in Q(
√
2) whenever a is. Suppose a = x + y

√
2 and b = x ′ + y′√2. Then

ab = (x + y
√
2)(x ′ + y′√2) = (xy + 2x ′y′) + (xy′ + x ′y)

√
2

andQ(
√
2) is closed under the multiplication. To show that a = x + y

√
2 has an

inverse in Q(
√
2), we calculate the product

(x + y
√
2)(x − y

√
2) = (x2 − 2y2)

and observe that it is inQ. We also observe that for a �= 0 we have x2 − 2y2 �= 0,
since

√
2 is irrational. Thus we have aa−1 = 1 for a−1 = x

x2−2y2
− y

x2−2y2
√
2.

4. In Q(
√
2) we will have (2 − √

3)−1 = 2 + √
3. Further, x = (2 + √

3)(1 +√
3) = 5 + 3

√
3.

5. All standard linear algebra techniques for finding such a solution works: you can
find the solution by Gaussian elimination or by calculating the inverse of the
matrix of this system of linear equations. Here we show how this can be solved
with GAP:

gap> A:=[[3,1,4],[1,2,1],[4,1,4]];

[[3, 1, 4], [1, 2, 1], [4, 1, 4]]

gap> b:=[1,2,4];

[1, 2, 4]

gap> Determinant(A) mod 5;

3

Hence the matrix is invertible.

gap> Aˆ-1 mod 5;

[[4, 0, 1], [0, 2, 2], [1, 2, 0]]

The solution can now be calculated as

11.4 Solutions to Exercises of Chap. 4 327

gap> Aˆ-1*b mod 5;

[3, 2, 0]

Thus we have a unique solution x=3, y=2, z=0.

Solutions to Exercises of Sect. 4.1.2
4. We have to check, firstly, that S is an abelian group. We will use properties of

the transpose. If A and B are symmetric, then (A + B)T = AT + BT = A + B
and their sum is also symmetric. Hence the set of symmetric matrices is closed
under the addition. It is also easy to see that the zero matrix is symmetric and,
if A is symmetric, then −A is also symmetric. Also we have to note that if A is
symmetric, then λA, where λ is a scalar is also symmetric. The dimension of S
will be 1

2n(n + 1). The basis or F can be taken consisting of all diagonal matrix
units Eii and of all matrices Ei j + E ji for i �= j .

5. Let us prove first that< V ,⊕ > is an abelian group.Associative law for⊕ follows
from the associative law of multiplication. 1 is obviously the zero of this abelian
group since u ⊕ 1 = u. Also u ⊕ u−1 = 1, hence −u = u−1.
Let us check further axioms. We have

1 � u = u1 = u,

(ab) � u = uab = ((ub)a = a � (b � u),

(a + b) � u = ua+b = uaub = a � u ⊕ b � u,

a � (u ⊕ v) = (uv)a = uava = a � u ⊕ a � v.

Thus < V , ⊕,� > is a vector space.

Solutions to Exercises of Sect. 4.1.3
1. We use GAP to factorise n1 and n2:

gap> n1:=449873499879757801;;

gap> n2:=449873475733618561;;

gap> FactorsInt(n1);

[670726099, 670726099]

gap> FactorsInt(n2);

[12347, 12347, 54323, 54323]

We see that n1 = 6707260992 is a power of a prime p = 670726099. Hence
Zp will be contained in GF(n1) and the dimension of GF(n1) over Zp will be
logp(n1) = 2.
Also n2 = 123472 · 543232 is not a power of a prime. Hence GF(n2) does not
exists.

328 11 Solutions to Exercises

2. Obviously the zero is a solution to this equation. Suppose a �= 0. Then a belongs
to the multiplicative group F∗ of F which has q − 1 element. By Corollary 3.2.3
aq−1 = 1 and, in particular, aq = a.

Solutions to Exercises of Sect. 4.2.1
1. Let g, h, k be elements ofG of orders 3, 5, 7, respectively. Then byCorollary 4.2.1

for the product a = ghk we have ord (a) = 3 · 5 · 7 = 105. Since ord (a) = |G|,
the group G =< a > is cyclic.

2. Let g, h, k be elements of a finite abelian group G of orders 183618, 131726,
127308, respectively. We have to use g, h, k to construct an element x of G of
order 1018264646281. The prime factorisations of the numbers involved are as
follows:

gap> ordx:=1018264646281;

1018264646281

gap> FactorsInt(ordx);

[97, 97, 101, 101, 103, 103]

gap> ordg:=183618;

183618

gap> FactorsInt(ordg);

[2, 3, 3, 101, 101]

gap> ordh:=131726;

131726

gap> FactorsInt(ordh);

[2, 7, 97, 97]

gap> ordk:=127308;

127308

gap> FactorsInt(ordk);

[2, 2, 3, 103, 103]

As the order of the element x sought for is 972 · 1012 · 1032 we need to construct
elements x1, x2, x3 ∈ G of orders 972, 1012, 1032, respectively. Since orders of
g, h, k are 18 · 1012, 14 · 972, 12 · 1032, we can take x1 = h14, x2 = g18, x3 =
k12. Then x = x1x2x3.

Solutions to Exercises of Sect. 4.2.2
1. Let a be the generator of Z∗

p. We factorise p − 1, which is the order of Z∗
p and

both 11561 and 58380.

gap> p:=192837481;;

gap> FactorsInt(p-1);

[2, 2, 2, 3, 5, 11, 139, 1051]

gap> FactorsInt(11561);

[11, 1051]

11.4 Solutions to Exercises of Chap. 4 329

gap> FactorsInt(58380);

[2, 2, 3, 5, 7, 139]

We see that 58380 does not divide p − 1 hence by Corollary 3.2.3 an element of
this order cannot be in Z∗

p.
Let us calculate (p − 1)/11561 = 16680. Then ord (a16680) = 11561 by
Lemma 4.2.4. So an element of order 11561 exists.

2. Let us divide n by m with remainder: n = qm + r with 0 ≤ r < m. Then

pn − 1 = pn−m(pm − 1) + (pn−m − 1),

that is gcd(pn − 1, pm − 1) = gcd(pn−m − 1, pm − 1) from which we obtain
gcd(pn − 1, pm − 1) = gcd(pr − 1, pn − 1). This means that when we divide
pn − 1 by pm − 1 the remainder will be pr − 1. The statement follows from
here.

3. Suppose now GF(pn) contains a subfield F of cardinality pm . All elements of
the first field satisfy the equation x pn−1 = 1 and elements of the second satisfy
x pm−1 = 1. Let g be a primitive element of the smaller field F . Then ord (g) =
pm − 1. Since it lies in the multiplicative subgroup GF(pn)∗ which cardinality
is pn − 1 the order of g must divide pn − 1 (Corollary 3.2.3). Hence pm − 1
divides pn − 1 and m | n by Exercise 14 of Section 1.2.2.
Suppose now that F = GF(pn) and m | n. Then pn − 1 = k(pm − 1) and in
the multiplicative group F∗ there are elements of order pm − 1. Indeed, by
Lemma 4.2.4 if g is a primitive element of F∗, then ord (gk) = pm − 1. Let
h = gk . The subgroup G =< h > then contains pm − 1 elements. All elements
of G and only they satisfy the equation x pm − 1 = 0 (indeed this equation
may have no more than pm − 1 roots). We need to show that G is a subfield.
Since it closed under inverses and under the multiplication we only have to
show that it is closed under the addition. Let x, y ∈ G. Then binomial theorem
gives us (x + y)p = x p + y p and by induction (x + y)p

m = x pm + y p
m
. Since

x pm = y p
m = 1, we have (x + y)p

m = 1, i.e., x + y ∈ G. This finishes the proof.

Solutions to Exercises of Sect. 4.2.4
1. The number of primitive elements in the field Z1237 is the number of generators

of its cyclic multiplicative group of order 1236, which is φ(1236) = φ(22 · 3 ·
103) = 1236 · 1

2
· 2
3

· 102
103

= 408.

2. (a) We have 28 mod 17 = 1 and 38 mod 17 = 16 = −1. Hence 2 is not primitive
and 3 is a primitive element of F . Let us set g = 3.

(b) Since g = 3 is a primitive element of Z17 all its powers of 3 in the following
table are different:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3n 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6 1

Therefore the table of logarithms to base 3 will be

330 11 Solutions to Exercises

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
log3(n) 16 14 1 12 5 15 11 10 2 3 7 13 4 9 6 8

(c) Let us note first that by the definition of the discrete log we have glogg(x) = x .
To prove

logg(ab) = logg(a) + logg(b) mod q−1. (11.4)

we take g, the primitive element to the power k = logg(ab) and to the
power m = logg(a) + logg(b) mod q−1. Since all powers gi are different
for i = 0, 1, . . . , p − 2 we get gk = gm if and only if k = m since k,m ∈
{0, 1, . . . , q − 2}. Since gq−1 = 1 we have

gm = glogg(a)+logg(b) = glogg(a) · glogg(b) = ab.

Also gk = glogg(ab) = ab, which proves (11.4).

Solutions to Exercises of Sect. 4.3
1. Bob’s secret exponent kB can be easily calculated. Indeed, since 25 = 32 we have

kB = 5. Then the message M can be calculated as

M = C2/C
kB
1 = C2/C

5
1 = 42 � 30−5 = 42 � 235 = 12.

Hence Alice sent letter “B” to Bob.
2. All Bob needs to know is his private key kB = 5191 and p. The calculation may

be performed as follows:

gap> kB:=5191;
5191
gap> p:=123456789987654353003;
123456789987654353003
gap> c:= [[83025882561049910713, 66740266984208729661],

[117087132399404660932, 44242256035307267278],
[67508282043396028407, 77559274822593376192],
[60938739831689454113, 14528504156719159785],
[5059840044561914427, 59498668430421643612],
[92232942954165956522, 105988641027327945219],
[97102226574752360229, 46166643538418294423]]

gap> m:=[0,0,0,0,0,0,0];;
gap> for i in [1..7] do
> m[i]:=(c[i][2]*(PowerMod(c[i][1],kB,p))ˆ-1) mod p;
> od;
gap> m;
[19244117112225192941, 16191522142944411631, 22224125164116222533,

15282944412628192319, 30193215411522152315, 24302941141124131541,
16252841182531282943]

gap> # Which reads: "In Galois fields, full of flowers, primitive elements
gap> # dance for hours."

11.5 Solutions to Exercises of Chap. 5 331

11.5 Solutions to Exercises of Chap.5

Solutions to Exercises of Sect. 5.1.1
1. We use long division:

4x2 + 2x

3x2 + 2x + 1| 5x4 + x2 + 3x + 4

5x4 + x3 + 4x2

−x3 − 3x2 + 3x

−x3 − 3x2 − 5x

x + 4

We see that the quotient is 4x2 + 2x and the remainder is x + 4, which means
5x4 + x2 + 3x + 4 = (3x2 + 2x + 1)(4x2 + 2x) + x + 4.

2. We just evaluate f (a) at each a ∈ Z5.
a 0 1 2 3 4

f (a) 1 3 0 0 0
So the roots of f are 2,

3 and 4, hence by Proposition 5.1.2 f (x) has factors x + 3, x + 2 and x + 1. By
long division (omitted), we find

f (x) = (x + 1)(x3 + x2 + x + 1)

= (x + 1)(x + 2)(x2 + 4x + 3)

= (x + 1)(x + 2)(x + 3)(x + 1)

= (x + 1)2(x + 2)(x + 3).

Solutions to Exercises of Sect. 5.1.2
1. We use k = 2 and α0 = 1, α1 = 2, α2 = 3, β0 = β1 = 1 and β2 = 2. The

Lagrange interpolation formula then gives

f (x) = β0
(x − α1)(x − α2)

(α0 − α1)(α0 − α2)
+ β1

(x − α0)(x − α2)

(α1 − α0)(α1α2)
+ β2

(x − α0)(x − α1)

(α2 − α0)(α2 − α1)

= 1
(x − 2)(x − 3)

(1 − 2)(1 − 3)
+ 1

(x − 1)(x − 3)

(2 − 1)(2 − 3)
+ 2

(x − 1)(x − 2)

(3 − 1)(3 − 2)

= 1
x2 − 5x + 6

6 · 5 + 1
x2 − 4x + 3

1 · 6 + 2
x2 − 3x + 2

2 · 1
= 1

2
(x2 + 2x + 6) + 1

6
(x2 + 3x + 3) + 2

2
(x2 + 4x + 2)

= 4x2 + 2x + 2.

332 11 Solutions to Exercises

2. We need the constant term of the interpolation polynomial

f (x) = 3
(x − 3)(x − 4)

(1 − 3)(1 − 4)
+ 2

(x − 1)(x − 4)

(3 − 1)(3 − 4)
+ 1

(x − 1)(x − 3)

(4 − 1)(4 − 3)

This will be

f (0) = 3
(−3)(−4)

(1 − 3)(1 − 4)
+ 2

(−1)(−4)

(3 − 1)(3 − 4)
+ 1

(−1)(−3)

(4 − 1)(4 − 3)
= 3.

3. We will use two methods of calculation.
Method 1: is to use the formula for the Lagrange interpolation polynomial, f (x)
but evaluate just the constant term:

f (x) = 3
(x − 2)(x − 3)(x − 5)

(1 − 2)(1 − 3)(1 − 5)
+ 2

(x − 1)(x − 3)(x − 5)

(2 − 1)(2 − 3)(2 − 5)

+2
(x − 1)(x − 2)(x − 5)

(3 − 1)(3 − 2)(3 − 5)
+ (x − 1)(x − 2)(x − 3)

(5 − 1)(5 − 2)(5 − 3)

The constant term of this polynomial is

3(−2)(−3)(−5)

(−1)(−2)(−4)
+ 2(−1)(−3)(−5)

1(−1)(−3)
+ 2(−1)(−2)(−5)

2 · 1 · (−2)
+ (−1)(−2)(−3)

4 · 3 · 2 =

3

4
− 3 − 5 − 1

4
= 6 − 3 − 5 − 2 = 6.

(Note that here 3
4 means: find the inverse of 4 in Z7 and multiply the result by 3.)

Method 2: is to use linear algebra to determine the coefficients of the polynomial:
we must find a0, a1, a2, a3 such that

⎡
⎢⎢⎣
1 1 12 13

1 2 22 23

1 3 32 33

1 5 52 53

⎤
⎥⎥⎦

⎡
⎢⎢⎣
a0
a1
a2
a3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 1 1 1
1 2 4 1
1 3 2 6
1 5 4 6

⎤
⎥⎥⎦

⎡
⎢⎢⎣
a0
a1
a2
a3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
3
2
2
1

⎤
⎥⎥⎦

Form the augmented matrix and solve the system:

⎡
⎢⎢⎣
1 1 1 1 3
1 2 4 1 2
1 3 2 6 2
1 5 4 6 1

⎤
⎥⎥⎦ −→

⎡
⎢⎢⎣
1 0 0 0 6
0 1 0 0 5
0 0 1 0 5
0 0 0 1 1

⎤
⎥⎥⎦

The constant term is 6, as before. We also have all the other coefficients of our
polynomial: f (x) = x3 + 5x2 + 5x + 6 (but only the constant term of the poly-
nomial was required).

11.5 Solutions to Exercises of Chap. 5 333

4. This can be done by the following GAP command

gap> InterpolatedPolynomial(Integers, [1, 2, 3, 5], [5, 7, 0, 3]) mod 13;
4*x_1ˆ3+4*x_1ˆ2+x_1+9

5. Suppose |F | = q < ∞ and F = {α1,α2, . . . , αq}. Let f (αi) = βi for i = 1, 2,
. . . , q . Then Lagrange’s interpolation formula gives us a polynomial g(x) of
degree at most q − 1 such that g(αi) = βi .

Solutions to Exercises of Sect. 5.1.3
1. (a) True; (b) False.
2. There are nine quadratic polynomials in Z3[7] but three of them with 0 constant

term are divisible by x so we are left with

x2 + 1, x2 + 2, x2 + x + 1, x2 + x + 2, x2 + 2x + 1, x2 + 2x + 2.

We notice that x2 + 2x + 1 = (x + 1)2, x2 + x + 1 = (x + 2)2 and x2 + 2 =
(x + 1)(x + 2). The remaining ones are

x2 + 1, x2 + x + 2, x2 + 2x + 2 (11.5)

are indeed irreducible since it is easy to check that they have no roots in Z3.
3. Checking irreducibility of degree 3 polynomials only require a search for roots.

However, with a degree 4 polynomial f each irreducible monic quadratic poly-
nomial must be checked as a potential factor of f . This entails compiling a list of
all of the irreducible quadratics first. For larger fields this will be time consuming.

4. (i) Since f (x) has no roots, it is irreducible.
(ii) As g(1) = 0 and has a root in Z3. Hence g(x) is reducible.
(iii) We first determine that h(x) has no roots. Then, we check each of the three

monic reducible quadratics found in (11.5) as a potential factor by doing
long division. Since none of these monic polynomials divide h(x) (details are
omitted), h(x) is irreducible.

5. We need to check if f (x) has divisors among irreducible polynomials of degree
1 and 2. As f (0) = f (1) = 1 �= 0 it does not have linear factors. The only irre-
ducible polynomial of degree 2 is x2 + x + 1, so we have to try to divide by
x2 + x + 1. By the long division algorithm we get

f (x) = x5 + x + 1 = (x2 + x + 1)(x3 + x2 + 1).

Now the polynomial x3 + x2 + 1 is irreducible since it has no roots in Z2. Hence
we have got the factorization sought for.

334 11 Solutions to Exercises

6. We need to check if f (x) has divisors among irreducible polynomials of degree
1 and 2. As f (0) = f (1) = 1 �= 0 it does not have linear factors. The only irre-
ducible polynomial of degree 2 is x2 + x + 1, so we have to try to divide by
x2 + x + 1. By the long division algorithm we get

f (x) = x5 + x2 + 1 = (x2 + x + 1)(x3 + x2) + 1.

Thus f (x) = x5 + x2 + 1 is irreducible.

Solutions to Exercises of Sect. 5.1.4
1. Applying the Euclidean algorithm:

x7 + 1 = (x3 + x2 + x + 1)(x4 + x3 + 1) + (x2 + x)

x3 + x2 + x + 1 = (x2 + x)x + (x + 1)

x2 + x = (x + 1)x,

we get gcd(f , g)(x) = x + 1. Now let us perform the Extended Euclidean algo-
rithm:

x7 + 1 1 0
x3 + x2 + x + 1 0 1

x2 + x 1 x4 + x3 + 1
x + 1 x x5 + x4 + x + 1

This yields the following:

x + 1 = x · (x7 + 1) + (x5 + x4 + x + 1) · (x3 + x2 + x + 1).

2. Omitted.
3. (a) Straightforward calculation.

(b) Suppose that a is a multiple root of f (x). Then f (x) = g(x)(x − a)k , where
k ≥ 2. By the product rule

f ′(x) = g′(x)(x − a)k + kg(x)(x − a)k−1 = [g′(x)(x − a)k−1 + kg(x)(x − a)k−2](x − a)

anda is also a root of the derivative.Hence it is also a root of gcd(f (x), f ′(x)).
(c) The polynomial f (x) = x pn − x does not have multiple roots in any field

F of characteristic p > 0 since f ′(x) = −1 and f (x) is relatively prime to
f (x).

11.5 Solutions to Exercises of Chap. 5 335

Solutions to Exercises of Sect. 5.2.1
1. We use the Extended Euclidean algorithm:

x5 + x3 + 1 1 0
x3 + x2 + x + 1 0 1

x2 1 x2 + x + 1
x + 1 x + 1 x3

1 x2 x4 + x3 + x2 + x + 1

Thus (x3 + x2 + x + 1)−1 = x4 + x3 + x2 + x + 1.
2. Let K = Z3[x]/(x2 + 2x + 2).

(a) To prove that K is a field, we need to show that m(x) = x2 + 2x + 2 is irre-
ducible over Z3. Since it is of degree 2, it is enough to show that it does not
have roots in Z3. Indeed,m(0) = m(1) = 2,m(2) = 1 and no roots have been
found.

(b) The elements of K are all scalar and linear polynomials over Z3. That is

K = {0, 1, 2, x, x + 1, x + 2, 2x, 2x + 1, 2x + 2}.

(c) Let us calculate the powers of 2x + 1 and form the “logarithm table”

2-tuple polynomial power of x logarithm
00 0 0 −∞
10 1 1 0
12 1 + 2x 2x + 1 1
22 2 + 2x (2x + 1)2 2
01 x (2x + 1)3 3
20 2 (2x + 1)4 4
21 2 + x (2x + 1)5 5
11 1 + x (2x + 1)6 6
02 2x (2x + 1)7 7

1 (2x + 1)8

(d) Let a = 2x + 1. Now we can compute the following expression as follows:

2x7(x + 1)−5(2x + 2) + (x + 2)5 = a4 · (a3)7 · (a6)−5 · a2 + (a5)5 = a5 + a = (2 + x) + (2x + 1) = 0.

(e) There are φ(8) = 4 primitive elements in this field. They are a = 1 + 2x ,
a3 = x , a5 = 2 + x , a7 = 2x .

3. (a) Elements Z(24)5 and Z(24)10 are not listed in the form the other powers
of Z(24) did because Z(24)5 = Z(22) and Z(24)10 = Z(22)2, i.e., they are
elements of the subfield GF(22).

336 11 Solutions to Exercises

(b) We generate GF(24) as follows and denote for brevity Z(24)7 as a:

gap> F:=GaloisField(2ˆ4);
GF(2ˆ4)
gap> e:=Elements(F);
[0*Z(2), Z(2)ˆ0, Z(2ˆ2), Z(2ˆ2)ˆ2, Z(2ˆ4), Z(2ˆ4)ˆ2, Z(2ˆ4)ˆ3, Z(2ˆ4)ˆ4,

Z(2ˆ4)ˆ6, Z(2ˆ4)ˆ7, Z(2ˆ4)ˆ8, Z(2ˆ4)ˆ9, Z(2ˆ4)ˆ11, Z(2ˆ4)ˆ12, Z(2ˆ4)ˆ13,
Z(2ˆ4)ˆ14]

gap> a:=e[10];
Z(2ˆ4)ˆ7

We have to conduct an intelligent search for the polynomial. Firstly, it cannot
have degree greater than 4 since 1, a, a2, a3, a4 are already linearly dependent
over Z2 being five vectors in a four-dimensional vector space. Since we are
looking for a polynomial of minimal degree, it must be irreducible. Therefore
the only polynomials we have to try are x2 + x + 1, x3 + x + 1, x3 + x2 + 1,
x4 + x + 1, x4 + x3 + 1, x4 + x3 + x2 + x + 1. We substitute a into each
of them one by one:

gap> aˆ2+a+1; aˆ3+a+1; aˆ3+aˆ2+1; aˆ4+a+1; aˆ4+aˆ3+1; aˆ4+aˆ3+aˆ2+a+1;
Z(2ˆ4)ˆ4
Z(2ˆ2)
Z(2ˆ4)ˆ2
Z(2ˆ2)ˆ2
0*Z(2)
Z(2ˆ4)

At this stage we see that a = Z(24)7 is a root of x4 + x3 + 1. GAP can also
do it for you with a command:

gap> MinimalPolynomial(GF(2),a);

x_1ˆ4+x_1ˆ3+Z(2)ˆ0

Solutions to Exercises of Sect. 5.2.2
1. As |GF(16)| = |GF(4)|2 the dimension is 2.
2. Since this field was studied in the lectures, it is easy for us to compute what we

want:

(a) α = 1 + x + x2;
We calculate the coordinate tuples of the following powers of α:

α0 = (1 + x + x2)0 = 1 → 1000
α1 = (1 + x + x2)1 = 1 + x + x3 → 1110
α2 = (1 + x + x2)2 = x + x2 → 0110
α3 = (1 + x + x2)3 = 1 → 1000
α4 = (1 + x + x2)4 = 1 + x + x2 → 1110

11.5 Solutions to Exercises of Chap. 5 337

These five will be already linearly dependent, so we do not have to compute
any further powers. Now we use Linear Dependency Relationship algorithm
to find linear dependency between these tuples. We place them as columns in
a matrix and take it to the row reduced echelon form

⎛
⎜⎜⎝
1 1 0 1 1
0 1 1 0 1
0 1 1 0 1
0 0 0 0 0

⎞
⎟⎟⎠ rre f−→

⎛
⎜⎜⎝
1 0 1 1 1
0 1 1 0 1
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎠ ,

from which it follows that 1, α are linearly independent hence no annihilating
polynomials of degree ≤ 2 and that α2 = 1 + α (clearly seen without any
row reduction), whence the minimal annihilating polynomial will be f (t) =
t2 + t + 1.

(b) Let now α = 1 + x . We calculate the coordinate tuples of the first five powers
of α:

α0 = (1 + x)0 = 1 → 1000
α0 = (1 + x)1 = 1 + x → 1100
α1 = (1 + x)2 = 1 + x2 → 1010
α2 = (1 + x)3 = 1 + x + x2 + x3 → 1111
α3 = (1 + x)4 = x → 0100

These five will be already linearly dependent, so we do not have to compute
any further powers. Now we use Linear Dependency Relationship algorithm
to find linear dependency between these tuples. We place them as columns in
a matrix and take it to the row reduced echelon form

⎛
⎜⎜⎝
1 1 1 1 0
0 1 0 1 1
0 0 1 1 0
0 0 0 1 0

⎞
⎟⎟⎠ rre f−→

⎛
⎜⎜⎝
1 0 0 0 1
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0

⎞
⎟⎟⎠

fromwhich it follows that 1,α,α2,α3 are linearly independent hence no anni-
hilating polynomials of degree ≤ 4 and that α4 = 1 + α, whence the minimal
annihilating polynomial will be f (t) = t4 + t + 1.

338 11 Solutions to Exercises

3. (a) The table can be calculated as follows:

4-tuple polynomial power of x logarithm
0000 0 0 −∞
1000 1 1 0
0100 x x 1
0010 x2 x2 2
0001 x3 x3 3
1001 1 + x3 x4 4
1101 1 + x + x3 x5 5
1111 1 + x + x2 + x3 x6 6
1110 1 + x + x2 x7 7
0111 x + x2 + x3 x8 8
1010 1 + x2 x9 9
0101 x + x3 x10 10
1011 1 + x2 + x3 x11 11
1100 1 + x x12 12
0110 x + x2 x13 13
0011 x2 + x3 x14 14

We see from it that x is a primitive element of K since all powers of x are
different and represent every element of K . We denote α = x .

(b) What is theminimal irreducible polynomialm1(t) ofα? Let p(t) = t4 + t3 +
1. Thenm1(x) = x4 + x3 + 1 = 0 in K , i.e., x is a root of p(t) = t4 + t3 + 1.
On the other hand, from the table we see that 1, x, x2 and x3 are linearly
independent, hence 4 is the minimal degree of an anihilating polynomial.
Hence m1(t) = p(t) = t4 + t3 + 1.
To compute the minimal annihilating polynomial for β = x3, we use the table
to find β2 = x6 = 1 + x + x2 + x3, β3 = x9 = 1 + x2, β4 = x12 = 1 + x .
These elements must be already linearly dependent (as any other five vectors
in a four- dimensional space) and we use Linear Dependency Relationship
algorithm to find that dependency:

⎛
⎜⎜⎝
1 0 1 1 1
0 0 1 0 1
0 0 1 1 0
0 1 1 0 0

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝
1 0 1 1 1
0 1 1 0 0
0 0 1 1 0
0 0 1 0 1

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝
1 0 0 0 1
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝
1 0 0 0 1
0 1 1 0 0
0 0 1 0 1
0 0 0 1 1

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

⎞
⎟⎟⎠

and we see that β4 = 1 + β + β2 + β3, while 1,β, β2,β3 are linearly inde-
pendent. Thus, m3(t) = t4 + t3 + t2 + t + 1 is the minimal annihilating
polynomial for β.

11.6 Solutions to Exercises of Chap. 6 339

To find the minimal annihilating polynomial m5(t) ∈ Z2[t] of the element
γ = x5 we calculate the coordinate tuples of the following powers of γ:

γ0 = x0 = 1 → 1000

γ1 = x5 = x + x3 → 1101

γ2 = x10 = x + x3 → 0101

These first three powers are already linearly dependent, so we don’t have to
compute anymore powers.We even do not need to use the LinearDependency
Relationship Algorithm to find a linear dependency between these tuples. It
is obvious that γ2 = 1 + γ, whence the minimal annihilating polynomial will
be f (t) = t2 + t + 1 (because there can be no annihilating polynomials of
degree 1 as x /∈ Z2).

(c) We can now calculate using the table:

(x100 + x + 1)(x3 + x2 + x + 1)15 = (x3 + 1)(x3 + x2 + x + 1)15 = x3 + 1.

Thus

(x100 + x + 1)(x3 + x2 + x + 1)15 + x3 + x + 1 = x .

Solutions to Exercises of Sect. 5.3.2
1. Suppose f is not one-to-one and f (a) = f (b) for distinct a, b ∈ Z2n that is

a(2a + 1) − b(2b + 1) ≡ 0 mod 2n .

This is equivalent to

[2(a + b) + 1](a − b) ≡ 0 mod 2n .

Since 2(a + b) + 1 is odd and relatively prime to 2n , by Lemma 1.3.2(d) we have
(a − b) ≡ 0 mod 2n which is impossible since both a and b satisfy 0 ≤ a < 2n

and 0 ≤ b < 2n .
2. If we could represent f as a polynomial in Z4[x], then we would have

1 = f (3) ≡ f (1) = 0 mod 2,

which is a contradiction.

340 11 Solutions to Exercises

11.6 Solutions to Exercises of Chap.6

Solutions to Exercises of Sect. 6.1.1
1. {3, 4}, {1, 2, 3}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}.
2. {1, 2}, {3, 4, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}.
3. In a minimal authorised coalition all permanent members must be present and any

four non-permanent members. Hence there are
(10
4

) = 210 minimal authorised
coalitions.

4. We will prove only (a) since (b) is similar. All we need to show is the monotone
property. Suppose X , Y are both subsets of U , X ⊆ Y , and X ∈ �1 + �2. Then
X ∩U1 ∈ �1 or X ∩U2 ∈ �2 and we suppose that the former is true. But then
Y ∩U1 ⊇ X ∩U1 ∈ �1 and Y ∩U1 ∈ �1 due to the fact that �1 is monotonic.
Hence Y ∈ �1 + �2.

Solutions to Exercises of Sect. 6.1.2
1. (a) We are looking for the polynomial of degree≤ 2 such that f (1) = f (2) = 4,

and f (4) = 0. Lagrange interpolation formulae gives us

f (x) = 4
(x − 2)(x − 4)

(1 − 2)(1 − 4)
+ 4

(x − 1)(x − 4)

(2 − 1)(2 − 4)
= 4

(x − 2)(x − 4)

3
+ 4

(x − 1)(x − 4)

5
=

4 (5(x − 2)(x − 4) + 3(x − 1)(x − 4)) = 6(x − 2)(x − 4) + 5(x − 1)(x − 4)

= 4(x + 1)(x + 3) = 4x2 + 2x + 5

(b) As f (3) = 5, the remaining card will be
3
5

2. GAP helps us to find the interpolation polynomial. Then we calculate the constant
term substituting 0 into it:

gap> f:=InterpolatedPolynomial(GF(31),[1,5,7],[16,7,22]);

Z(31)ˆ29*x_1ˆ2+Z(31)ˆ4*x_1+Z(31)ˆ28

gap> Int(Value(f,0));

7

So the secret is 7.
3. We do the interpolation as follows:

gap> f:=InterpolatedPolynomial(GF(97),[1,2,4,6],[56,40,22,34]);
Z(97)ˆ46*xˆ3+Z(97)ˆ58*xˆ2+Z(97)ˆ77*x+Z(97)ˆ87
gap> # Calculating the secret:
gap> Int(Value(f,0));
55
gap> # Calculating the share of the third and the fifth board member:

11.6 Solutions to Exercises of Chap. 6 341

gap> Int(Value(f,3));
96
gap> Int(Value(f,5));
4

Hence the secret is 55, and the cards of the two remaining board members are

likely to be
3
96

5
4

Solutions to Exercises of Sect. 6.2.1
1. (a) S0 = {0, 1} and S1 = · · · = S6 = {0, 1, 2}.

(b) The coalition {1, 2} is authorised since s0 = s′
0 whenever s1 = s′

1 and s2 = s′
2.

Let us pay attention to the first and the seventh rows of the distribution table.
The shares of participants are the same: 0, 1, 2, but the secrets are different.
Thus this coalition would not know which row the dealer had chosen and
would not know the secret.

(c) The secret recovery function will be

s1 s2 f{1,2}(s1, s2)
0 0 0
1 0 1
0 1 1
1 1 0
0 2 1
2 0 1
1 2 1
2 1 1
2 2 0

Solutions to Exercises of Sect. 6.2.2
1. Let h0, h1, . . . ,h4 be the rows of H . We note that h3 = 3h1 and h4 = 2h2. Only

one from each pair can be in a minimal authorised coalition. The coalition {1, 2}
is authorised since h0 = 1

2h1 + 1
4h2. Similarly, the coalitions {1, 4}, {2, 3}, {3, 4}

are authorised. These four are minimal. A coalition of size 3 cannot be minimal
authorised since it contains either h1 and h3 or h2 and h4.

2. Let us denote h0,h1, . . . ,h6 the rows of H . Any three rows among h0, h1, h2, h3
are linearly independent (the corresponding determinant is the Vandermonde
determinant). The implications of this comment are the following: the coalition
{1, 2, 3} is authorised and no subset of it is. Hence this is a minimal authorised
coalition. Let us consider the determinant

∣∣∣∣∣∣
1 a a2

1 b b2

0 0 c

∣∣∣∣∣∣ = (b − a)c.

342 11 Solutions to Exercises

If b �= a and c �= 0 it is nonzero. The implications are that the coalitions {1, 2, 4},
{1, 2, 5}, {1, 2, 6}, {1, 3, 4}, {1, 3, 5}, {1, 3, 6}, {2, 3, 4}, {2, 3, 5}, {2, 3, 6} are
minimal authorised. It remains to note that no coalitions containing two of the
users 4, 5, 6 areminimal authorised: if it is, then one of these users can be removed
without making coalition losing (indeed their respective rows are one multiple of
another). Therefore the minimal authorised coalitions listed so far are all minimal
authorised coalitions.

3. See next problem which is more general.
4. Let {1, 2, . . . , n} be a set of users. For a linear secret sharing scheme with matrix

H with rows h0,h1, . . . , hn a coalition {i1, i2, . . . , ik} is authorised if h0—which
is normally taken to be (1, 0, . . . , 0)—is in the span of hi1 , . . . ,hik .
It is immediate that {1, 2} and {3, 4, 5} are authorized for any distinct nonzero

a1, a2, a3, a4, a5. Indeed, the determinant

∣∣∣∣ 1 a1
1 a2

∣∣∣∣ �= 0, hence (1, 0) = x1(1, a1) +
x2(1, a2). But then (1, 0, 0) = x1(1, a1, 0) + x2(1, a2, 0) too. Also

∣∣∣∣∣∣
1 a3 a23
1 a4 a24
1 a5 a25

∣∣∣∣∣∣ �= 0.

as this is the Vandermonde determinant. So the row (1, 0, 0) can be expressed as a
linear combination of the rows of this matrix. Let us show that {1, 2} and {3, 4, 5}
are minimal authorized coalitions. While it is obvious that the first is minimal, it
is not so clear for the second. To prove this, it would be sufficient to show that

D =
∣∣∣∣∣∣
1 0 0
1 ai a2i
1 a j a2j

∣∣∣∣∣∣ �= 0.

for i, j ∈ {3, 4, 5}. Expanding D using cofactors of the first row we will get

D =
∣∣∣∣ ai a

2
i

a j a2j

∣∣∣∣ = aia j

∣∣∣∣1 ai
1 a j

∣∣∣∣ = aia j (a j − ai) �= 0.

Coalitions {i, j, k}, where i ∈ {1, 2} and j, k ∈ {3, 4, 5}may ormay not be autho-
rized depending on the values a1, a2, a3, a4, a5. To find out the exact condition
when {i, j, k} is authorized, let us consider the determinant

∣∣∣∣∣∣
1 a 0
1 b b2

1 c c2

∣∣∣∣∣∣ =
∣∣∣∣b b2

c c2

∣∣∣∣ − a

∣∣∣∣1 b2

1 c2

∣∣∣∣ = bc(c − b) − a(c2 − b2).

Thus this determinant is zero if and only if a = bc

b + c
.

Now let us consider the coalition {i, j, k}, where i ∈ {1, 2} and j, k ∈ {3, 4, 5}.
If hi ∈ Span{h j , hk}, then we know that this coalition is not authorized since h0

11.6 Solutions to Exercises of Chap. 6 343

as we know is not in Span{h j , hk}. On the other hand, if hi /∈ Span{h j , hk}, then
{hi ,h j , hk} form a basis of R3, h0 is in the span of this set and coalition {i, j, k}
is authorized. So coalition {i, j, k} is authorized if and only if ai �= a jak

a j + ak
.

5. (a) Let us try A first. We will apply Linear Dependency Relationship algorithm.
Consider the matrix

H ′ = [hT1 hT2 hT3 eT1] =

⎡
⎢⎢⎣
1 1 11 1
2 3 5 0
3 3 2 0
0 0 0 0

⎤
⎥⎥⎦ .

We row reduce it to the reduced echelon form:

H ′ →

⎡
⎢⎢⎣
1 1 11 1
0 1 14 29
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦

Wemay stop row reducing here. As the last column contains a pivot, e1 is not
a linear combination of h1,h2,h3. So A is not authorized.
Let us now try B. Consider the matrix

H ′ = [hT1 hT4 hT5 eT1] =

⎡
⎢⎢⎣
1 0 0 1
2 1 6 0
3 1 1 0
0 2 1 0

⎤
⎥⎥⎦ .

We row reduce it to the reduced echelon form:

H ′ →

⎡
⎢⎢⎣
1 0 0 1
0 1 6 29
0 1 1 28
0 2 1 0

⎤
⎥⎥⎦ →

⎡
⎢⎢⎣
1 0 0 1
0 1 6 29
0 0 26 30
0 0 20 4

⎤
⎥⎥⎦ →

⎡
⎢⎢⎣
1 0 0 1
0 1 6 29
0 0 1 25
0 0 20 4

⎤
⎥⎥⎦ →

⎡
⎢⎢⎣
1 0 0 1
0 1 6 29
0 0 1 25
0 0 0 0

⎤
⎥⎥⎦

→

⎡
⎢⎢⎣
1 0 0 1
0 1 0 3
0 0 1 25
0 0 0 0

⎤
⎥⎥⎦

This means that e1 = h1 + 3h4 − 6h5. So B is authorized.
(b) The secret now can be calculated as s0 = s1 + 3s4 − 6s5 = 29.

6. Suppose that
r∑
j=1

λ jh′
j = 0 but

r∑
j=1

λ j c j = c �= 0.

344 11 Solutions to Exercises

In such a case we will have

c−1
r∑
j=1

λ jh j = e1,

which means that the coalition {i1, i2, . . . , ir } is authorised.
7. Let |U | = p and |V | = q and M and N be (p + 1) × k and (q + 1) × r matrices,

respectively, with rowsm0,m1, . . . ,mp and n0, n1, . . . ,nq , wherem0 and n0 be
the target vectors (1, 0, . . . , 0) of dimensions p and q , respectively. We represent
the matrix M as M = (M1, M−1), where M1 is the first column of M and M−1
consists of all other columns. Similarly, N = (N1, N−1).
(a) Let us construct the following (p + q + 1) × (k + r − 1) matrix for the sum
�S = �M + �N :

S =
⎡
⎣ 1 0 0
M1 M−1 0
N1 0 N−1

⎤
⎦ ,

Obviously, all coalitions authorised in �M or in �N will be authorised in
�S . Suppose now that two coalitions {i1, i2, . . . , is} ⊆ U and { j1, j2, . . . , jt } ⊆
V are non-authorised in �M and in �N , respectively, but {i1, i2, . . . , is} ∪
{ j1, j2, . . . , jt } is authorised in �S . Then for some scalars β1,β2, . . . ,βs and
δ1, δ2, . . . , δt we have

s∑
i=1

βimi +
t∑

j=1

δ jn j = t,

where t is the target vector which is the top row of matrix S. Let mi = (ci ,m′
i)

and n j = (d j ,n′
j). Then

s∑
i=1

βim′
i =

t∑
j=1

δ jn′
j = 0

and by the previous exercise

s∑
i=1

βi ci =
t∑

j=1

δ j d j = 0,

from which
s∑

i=1

βimi =
t∑

j=1

δ jn j = 0,

a contradiction.

11.7 Solutions to Exercises of Chap. 7 345

(b) The matrix P such that �P = �M × �N can be constructed as follows:

P =
⎡
⎣ 1 0 0
M M1 0
0 N1 N−1

⎤
⎦ .

We leave the proof to the reader.
8. Suppose that we have an 5 × n matrix H with rows h0, h1, . . . , h4 such that h0 =

(1, 0, . . . , 0) and for � = �H we have �min = {{1, 2}, {2, 3}, {3, 4}}. As {1, 2}
is authorized, we have coefficients a, b, c, d, e, f ∈ F such that ah1 + bh2 =
ch2 + dh3 = eh3 + f h4 = h0. Assume first that b �= c. Then ac

b h1 − dh3 =
(cb − 1)h0 and h0 ∈ Span{h1,h3}. This is not the case since {1, 3} is not autho-
rized. Then b = c and h3 = a

d h1. But then
ae
d h1 + f h4 = h0 and {1, 4} is autho-

rized which is again not the case. Hence it is impossible to find such matrix H .
9. Let H be an (n + 1) × kmatrix over a field F with rows h0,h1, . . . , hn and�H be

the access structure given by �min. Since coalitions {1, i} are authorised and {1} is
not, this means that hi ∈ span{h0,h1}. It cannot happen that the span{h2, . . . , hn}
is one dimensional since in such a case all singletons {2}, . . . , {n} would be
authorised. If there are two vectors, say h2 and h3 that are not multiples of each
other, then span{h2,h3} = span{h0, h1} and, in particular, h0 ∈ span{h2, h3}, so
{2, 3} is authorised. This contradiction proves the statement.

Solutions to Exercises of Sect. 6.2.3
1. (i) If C is authorised, then their shares are compatible with only one value of a

secret, hence #TC ′ = #TC .
(ii) If C is not authorised, then, since the scheme is perfect, their shares are
compatible with any of the q secrets, hence #TC ′ = q · #TC .

3. (i) Follow the argument in Example 6.2.6.
(ii) Let A be a maximal authorised coalition and A′ = A ∪ {0}. Then arguing as

in Example 6.2.6 we can prove that #TA′ = q2. Suppose A �= U , then, due to
connectedness, we will have i ∈ A and j /∈ A such that {i, j} is authorised.
Let us fix a share si . Then as in the proof of Theorem 6.2.3 we obtain a
one-to-one correspondence between S0 and S j . Hence the secret s and si
uniquely determine s j . This implies that #TA′∪{ j} = q2 which contradicts to
maximality of A.

(iii) Due to (ii) we have #T{i, j} = q or #T{i, j} = q2. Let us prove that the second
option cannot happen. Take any two shares si and s j . Since {i, j} is not
authorised, we have at least q rows in T containing si and s j (as there must
be such row for every secret s). This implies #T{i, j} = q .

(iv) This follows from (iv) since #T{i, j} = #T{ j,k} = q implies #T{i,k} = q .
(v) From (iv) we deduce that the relation

i ≡ j ⇐⇒ {i, j} /∈ �min

is an equivalence relation. This implies the statement of the theorem.

346 11 Solutions to Exercises

11.7 Solutions to Exercises of Chap.7

Solutions to Exercises of Sect. 7.1.1
1. (a) wt(u) = 5 and wt(v) = 4. Also d(u, v) = 3.

(b) The error vector e = y − x = (0 0 1 0 0 0 1 0 0 0). Two mistakes have
occurred.

2. Firstly, this is the word x = (1 0 1 0) itself. Then comes four vectors

(0 0 1 0), (1 1 1 0), (1 0 0 0), (1 0 1 1),

whose distance from x is 1. Then comes six vectors

(0 1 1 0), (0 0 0 0), (0 0 1 1), (1 1 0 0), (1 1 1 1), (1 0 0 1)

whose distance from x is 2.
3. |B3(x)| = (7

0

) + (7
1

) + (7
2

) + (7
3

) = 1 + 7 + 21 + 35 = 64.
4. The cardinality of Bk(x) does not depend on x since it consists of all vectors

x + e, where wt(e) ≤ k and the number of the latter does not depend on x.

Solutions to Exercises of Sect. 7.1.2
1. This condition is that in every set {ei , ei+4, ei+8}, for i = 1, 2, 3, 4, there are at

most one 1. An error vector of weight 4 that will be corrected is, for example,
e = (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0).

2. If one mistake happened, say in the i th row and j th column, then ei = f j = 1,
while es = 0 for s �= i and ft = 0 for all t �= j . This will allow us to locate the
exact position of the mistake. If three mistakes happen, then either in one of the
columns or in one of the rows there will be a single 1. This means that at least
one symbol among e1, e2, . . . , em1 , f1, f2, . . . , fm2 will be equal to 1. This will
show that at least one mistake took place.

Solutions to Exercises of Sect. 7.1.3
1. Let us prove this by induction. For this it is sufficient to prove that, if H is an

Hadamard n × n matrix, then H ′ =
[
H H
H −H

]
is a 2n × 2n Hadamard matrix.

Since H ′ is a±1 matrix, it is sufficient to prove that, given that the system of rows
{h1,h2, . . . ,hn} of H is orthogonal, then the system of rows {h′

1, . . . , h
′
2n} of H ′

is also orthogonal. We have h′
i = (hi , hi) for i = 1, . . . , n and h′

i = (hi ,−hi)
for i = n + 1, . . . , 2n. Now h′

i · h′
j = 2(hi · h j) = 0 for i, j ∈ {1, . . . , n} or

i, j ∈ {n + 1, . . . , 2n} with i �= j . Also h′
i · h′

j = hi · h j − hi · h j = 0 for all
i ∈ {1, . . . , n} and j ∈ {n + 1, . . . , 2n}. This proves the statement.

11.7 Solutions to Exercises of Chap. 7 347

2. Let h1,h2, . . . , hn be the system of rows of H . It is, as we know, orthogonal.
Consider the vector −hi for some i = 1, . . . , n. It will remain orthogonal to
all vectors h j for j �= i , hence it will have n/2 agreements with hi and n/2
disagreements. After the change of −1s to 0s, the Hamming distance between
these vectors will be n/2. Also hi and −hi will have n disagreements and after
the change of −1s to 0s the distance between these vectors will be n. Finally, the
distance between −hi and −h j , with i �= j , after the change will be n/2 since
−hi and −h j are orthogonal.

3. Let a = (a1, a2, a3) and b = (b1, b2, b3). Then a + b = (a1 + b1, a2 + b2, a3 +
b3). We have

E1(a + b) = (a1 + b1, a2 + b2, a3 + b3, (a1 + b1) + (a2 + b2), (a2 + b2) + (a3 + b3), (a1 + b1) + (a3 + b3), 0) =

(a1, a2, a3, a1 + a2, a2 + a3, a1 + a3, 0) + (b1, b2, b3, b1 + b2, b2 + b3, b1 + b3, 0) = E1(a) + E1(b)

so E1 is linear. E2 is not linear since E2(0) �= 0.
4. Let C be a binary linear code. Suppose not all codewords have even Hamming

weight and there is a codeword c0 whose Hamming weight is odd. Let E ⊆ C be
the set of all codewords of even Hamming weight. Then the set

E + c0 = {c + c0 | c ∈ E}

consists of codewords of odd length and its cardinality is the sameas the cardinality
of E . Let us show that every codeword with an odd Hamming weight is in E + c0.
Let d be such a codeword. Then d + c0 is also a codeword and has an even
Hamming weight, that is, d + c0 = c ∈ E . But then d = c + c0 ∈ E + c0.

Solutions to Exercises of Sect. 7.1.4
1. We get

E(a) =(a1, a2, a3, a1 + a2 + a4, a2 + a3, a1 + a3 + a4, a4) =
a1(1, 0, 0, 1, 0, 1, 0) + a2(0, 1, 0, 1, 1, 0, 0) + a3(0, 0, 1, 0, 1, 1, 0) + a4(0, 0, 0, 1, 0, 1, 1) =⎡
⎢⎢⎣

1 0 0 1 0 1 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
(0 0 0 1 0 1 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
a1
a2
a3
a4

⎤
⎥⎥⎦ = Ga.

2. Straightforward.
3. It is known from linear algebra that elementary row operations performed on G

do not change the row space of G, which is exactly the set of codewords.
4. (a) (1 1 1)G = (1 0 0 . . .), hence it is not systematic as the first three coordinates

do not represent the message.

348 11 Solutions to Exercises

(b) We row reduce G as follows using only elementary row operations:

G =
⎡
⎣1 0 1 0 1 0
1 1 0 0 1 1
1 1 1 0 0 0

⎤
⎦ →

⎡
⎣ 1 0 1 0 1 0
0 1 1 0 0 1
0 1 0 0 1 0

⎤
⎦ →

⎡
⎣ 1 0 1 0 1 0
0 1 1 0 0 1
0 0 1 0 1 1

⎤
⎦

→
⎡
⎣ 1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 0 1 1

⎤
⎦ .

The latter is the generator matrix of a systematic code C2. The codewords are
the rows of the following matrix:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 0 1 1
1 1 0 0 1 1
1 0 1 0 1 0
0 1 1 0 0 1
1 1 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The minimum distance is the minimum weight, which is 2.

Solutions to Exercises of Sect. 7.1.5
1. Let us row reduce A to its row reduced echelon form:

A =
⎡
⎣ 1 2 1 2 1
1 2 1 0 2
2 1 0 1 0

⎤
⎦ −→

⎡
⎣ 1 2 0 0 1
0 0 1 0 1
0 0 0 1 1

⎤
⎦ .

The latest matrix is already in the reduced row echelon form with columns 1,3
and 4 being pivotal.

(a) The equation Ax = 0 is equivalent to the system

x1 = x2 + 2x5
x3 = 2x5
x4 = 2x5

with x2, x5 being independent variables and x1, x3, x4 being dependent. One
of the possible bases for NS(A) is

f1 =

⎡
⎢⎢⎢⎢⎣

1
1
0
0
0

⎤
⎥⎥⎥⎥⎦ , f2 =

⎡
⎢⎢⎢⎢⎣

2
0
2
2
1

⎤
⎥⎥⎥⎥⎦ .

11.7 Solutions to Exercises of Chap. 7 349

(b) Apart from these two, there are seven other vectors in NS(A), namely

0 = (0 0 0 0 0)T ,

2f1 = (2 2 0 0 0)T ,

2f2 = (1 0 1 1 2)T ,

f1 + f2 = (0 1 2 2 1)T ,

f1 + 2f2 = (2 1 1 1 2)T ,

2f1 + f2 = (1 2 2 2 1)T ,

2f1 + 2f2 = (0 2 1 1 2)T .

(c) We have wt(f1) = wt(2f1) = 2. These are the two vectors which have the
minimum Hamming weight, which is 2.

2. (a) Let us row reduce the parity check matrix to the form (A | I4):

H =

⎡
⎢⎢⎣
0 0 1 1 1 0 1
0 1 0 1 0 1 1
1 0 0 0 1 1 1
1 1 1 1 1 1 0

⎤
⎥⎥⎦ −→

⎡
⎢⎢⎣
0 0 1 1 0 0 0
1 1 1 0 1 0 0
1 0 0 0 0 1 0
1 1 1 0 0 0 1

⎤
⎥⎥⎦ .

Hence G = (I3 | AT) and C has three information symbols.

G =
⎡
⎣ 1 0 0 0 1 1 1
0 1 0 0 1 0 1
0 0 1 1 1 0 1

⎤
⎦ .

(b) Yes, because all columns of H are different.
(c) No, it will not because h2 + h5 = h7, hence if two mistakes will occur in the

second and fifth positions, they will give the same syndrome as one mistake
in seventh position. As the decoding is maximum likelyhood decoding, the
decoder will decide that a single error in the seventh position has occurred
and that will result in decoding error. This is not the only example. There are
other double mistakes that will not be corrected.

(d) Yes, because all columns of H are different and hence hi + h j �= 0 for all
i �= j . Thus a syndrome of a double mistake is never (0 0 0 0)T .

(e) (1 1 1)G = (1 1 1 1 1 1 1).
(f) HyT1 = (0 1 0 1)T = h2, hence we assume one mistake occurred in the sec-

ond position and decode to (1 0 0). Also HyT2 = (1 1 1 1)T . This syndrome
is not equal to any of the columns and also not even to the sum of two
columns. The easiest way to see this is to notice that to have the last coor-
dinate 1 one should take the last column and any other column. Hence we
have more than two mistakes! We have h1 + h2 + h3 = (1 1 1 1)T but also
h3 + h4 + h5 = (1 1 1 1)T , hence the decoding will not be unique here. The
decoder may well report a decoding failure, depending on how it was pro-
grammed.

350 11 Solutions to Exercises

(g) The syndrome HzT = (1 0 1 0)T is different from all columns of H , hence
such a syndrome cannot be a result of one mistake. As (1 1 1 0)T = h1 + h3,
this syndrome may appear as a result of two mistakes in positions 1 and 3.

Solutions to Exercises of Sect. 7.1.6
1. (a) To encode the vector u = (1 1 0 1), we compute

uG = (1 1 0 1)

⎡
⎢⎢⎣
1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

⎤
⎥⎥⎦ = (1 1 0 1 0 0 1).

(b) Suppose that the vector v = (1 0 0 1 1 0 0) was received. Computing the
syndrome

HvT =
⎡
⎣0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
1
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎣ 0
0
0

⎤
⎦ ,

hence v is a codevector. We assume that no mistakes happen and decode
it to (1 0 0 1). Suppose that the vector w = (1 1 1 1 0 0 0) was received.
Computing the syndrome

HwT =
⎡
⎣0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎣ 1
0
0

⎤
⎦ = h4,

which is the fourth column of H . Thus we immediately know that a mistake
occurred in the fourth position. Then we decode w by correcting the fourth
coordinate and cutting off the three last check symbols to get (1 1 1 0).

(c) We saw in (a) that u = (1 1 0 1) will be encoded to z = (1 1 0 1 0 0 1). This
vector will be decoded back to u. Moreover, if onemistake happens during the
transmission, then we receive a vector z + e, with wt(e) = 1, then again z + e
will be decoded to u since the code corrects all single mistakes. No z + e,
when wt(e) > 1, will be corrected to u, since the Hamming code does not

11.7 Solutions to Exercises of Chap. 7 351

correct any combination of two ormoremistakes. There are seven possibilities
to choose e, hence apart from z, the only vectors which are decoded to u are

(0 1 0 1 0 0 1), (1 0 0 1 0 0 1), (1 1 1 1 0 0 1), (1 1 0 0 0 0 1),

(1 1 0 1 1 0 1), (1 1 0 1 0 1 1), (1 1 0 1 0 0 0).
2. Such a code contains 2k − k − 1 information symbols, hence 22

k−k−1 codewords.
The number of points in a ball of radius 1 is 2k − 1 + 1 = 2k . So if we surround
each codewordwith a ball of radius 1, theywill collectively contain 22

k−k−1 · 2k =
22

k−1 codewords and these are all vectors in Z
2k−1. This means that all single

mistakes will be corrected but no more mistakes will be.

Solutions to Exercises of Sect. 7.1.7
1. (a) We find a(x) = 1 + x2 + x4 and

b(x) = a(x)g(x) = (1 + x2 + x4)(1 + x + x3) = 1 + x2 + x4 + x7

Hence b = (1 0 1 0 1 0 0 1).
(b) The matrix G has five rows and eight columns:

G =

⎡
⎢⎢⎢⎢⎣

1 1 0 1 0 0 0 0
0 1 1 0 1 0 0 0
0 0 1 1 0 1 0 0
0 0 0 1 1 0 1 0
0 0 0 0 1 1 0 1

⎤
⎥⎥⎥⎥⎦ .

(c) Row reducing, we find a matrix G ′ for a systematic code with the same
minimum distance:

G → G ′ =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 1
0 1 0 0 0 1 1 0
0 0 1 0 0 0 1 1
0 0 0 1 0 1 1 1
0 0 0 0 1 1 0 1

⎤
⎥⎥⎥⎥⎦ .

From this we form the parity check matrix

H ′ =
⎡
⎣0 1 0 1 1 1 0 0
0 1 1 1 0 0 1 0
1 0 1 1 1 0 0 1

⎤
⎦ .

352 11 Solutions to Exercises

Solutions to Exercises of Sect. 7.1.8
1. (a) This binary BCH code C has parameters n = 15 (length of codewords) and

d = 7 (minimum distance). We have to choose a primitive element α of K ,
then the generating polynomial of the code C will be given by a formula

g(t) = lcm [(m1(t),m2(t),m3(t),m4(t),m5(t),m6(t)] .

wheremi (t) is theminimal annihilating polynomial ofαi . Since every element
has the sameminimal annihilating polynomial as its square, we havem1(t) =
m2(t) = m4(t) and m3(t) = m6(t), hence

g(t) = (m1(t)m3(t)m5(t).

The polynomial m(x) = 1 + x3 + x4 does not have roots in Z2 as m(0) =
m(1) = 1. It is not divisible by the only irreducible polynomial of degree 2,
namely x2 + x + 1. Indeed,

x4 + x3 + 1 = (x2 + 1)(x2 + x + 1) + x .

This means thatm(x) is irreducible inZ2[x]. If it were reducible, then it could
be factorised into a product of two polynomials, one of degree 1 and one of
degree 3 or else it can be (x2 + x + 1)2. The latter, as we saw, is not true.
The former is not possible since a linear factor means that m(x) has a root in
Z2. We know that the ring K = Z2[x]/(m(x)) is a field ifm(x) is irreducible.
Since m(x) is irreducible, K is a field. We see from it that x is a primitive
element of K since all powers of x are different and represent every element
of K . We take α = x .
What is theminimal irreducible polynomialm1(t) ofα? Let p(t) = t4 + t3 +
1. Thenm1(x) = x4 + x3 + 1 = 0 in K , i.e., x is a root of p(t) = t4 + t3 + 1.
On the other hand, from the table we see that 1, x, x2 and x3 are linearly
independent, hence 4 is the minimal degree of an anihilating polynomial.
Hence m1(t) = p(t) = t4 + t3 + 1.

11.7 Solutions to Exercises of Chap. 7 353

4-tuple polynomial power of x logarithm
0000 0 0 −∞
1000 1 1 0
0100 x x 1
0010 x2 x2 2
0001 x3 x3 3
1001 1 + x3 x4 4
1101 1 + x + x3 x5 5
1111 1 + x + x2 + x3 x6 6
1110 1 + x + x2 x7 7
0111 x + x2 + x3 x8 8
1010 1 + x2 x9 9
0101 x + x3 x10 10
1011 1 + x2 + x3 x11 11
1100 1 + x x12 12
0110 x + x2 x13 13
0011 x2 + x3 x14 14

To compute the minimal annihilating polynomial for β = x3, we use the table
to find β2 = x6 = 1 + x + x2 + x3, β3 = x9 = 1 + x2, β4 = x12 = 1 + x .
These elements must be already linearly dependent (as any other five vectors
in a four- dimensional space), and we use Linear Dependency Relationship
algorithm to find that dependency:

⎡
⎢⎢⎣
1 0 1 1 1
0 0 1 0 1
0 0 1 1 0
0 1 1 0 0

⎤
⎥⎥⎦ −→

⎡
⎢⎢⎣
1 0 1 1 1
0 1 1 0 0
0 0 1 1 0
0 0 1 0 1

⎤
⎥⎥⎦ −→

⎡
⎢⎢⎣
1 0 0 0 1
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1

⎤
⎥⎥⎦ −→

⎡
⎢⎢⎣
1 0 0 0 1
0 1 1 0 0
0 0 1 0 1
0 0 0 1 1

⎤
⎥⎥⎦ −→

⎡
⎢⎢⎣
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

⎤
⎥⎥⎦

and we see that β4 = 1 + β + β2 + β3, while 1,β, β2,β3 are linearly inde-
pendent. Thus, m3(t) = t3 + t2 + t + 1 is the minimal annihilating polyno-
mial for β.
To find the minimal annihilating polynomial m5(t) ∈ Z2[t] of the element
γ = x5, we calculate the coordinate tuples of the following powers of γ:

γ0 = x0 = 1 → 1000

γ1 = x5 = x + x3 → 1101

γ2 = x10 = x + x3 → 0101

These first three powers are already linearly dependent, so we do not have to
compute anymore powers.We even do not need to use the LinearDependency

354 11 Solutions to Exercises

Relationship algorithm to find a linear dependency between these tuples. It is
obvious that γ2 = 1 + γ, whence the minimal annihilating polynomial will
be f (t) = t2 + t + 1 (because there can be no annihilating polynomials of
degree 1 as x /∈ Z2). We can now calculate

g(t) = (m1(t)m3(t)m5(t) = (t4 + t3 + 1)(t4 + t3 + t2 + t + 1)(t2 + t + 1) =

t10 + t9 + t8 + t6 + t5 + t2 + 1.

(b) The number of information symbols is m = n − deg(g) = 15 − 10 = 5.
(c) This must be 5 × 15 matrix. Here it is

G =

⎡
⎢⎢⎢⎢⎣

1 0 1 0 0 1 1 0 1 1 1 0 0 0 0
0 1 0 1 0 0 1 1 0 1 1 1 0 0 0
0 0 1 0 1 0 0 1 1 0 1 1 1 0 0
0 0 0 1 0 1 0 0 1 1 0 1 1 1 0
0 0 0 0 1 0 1 0 0 1 1 0 1 1 1

⎤
⎥⎥⎥⎥⎦ .

(d) (1 1 1 1 1)G = (1 1 0 0 0 0 1 0 1 0 0 1 1 0 1).
2. We need to construct the field GF(28), find a primitive element α of this field

and then calculate the generator polynomial as

g(x) = lcm(m1(x), . . . ,m6(x)) = m1(x)m3(x)m5(x),

wheremi (x) is the minimal annihilator polynomial of αi . Here is the calculation:

gap> F:=GF(256);
GF(2ˆ8)
gap> elts:=Elements(F);
[0*Z(2), Z(2)ˆ0, Z(2ˆ2), Z(2ˆ2)ˆ2, Z(2ˆ4), Z(2ˆ4)ˆ2, Z(2ˆ4)ˆ3, Z(2ˆ4)ˆ4,
Z(2ˆ4)ˆ6, Z(2ˆ4)ˆ7, Z(2ˆ4)ˆ8, Z(2ˆ4)ˆ9, Z(2ˆ4)ˆ11, Z(2ˆ4)ˆ12, Z(2ˆ4)ˆ13,
Z(2ˆ4)ˆ14, Z(2ˆ8), Z(2ˆ8)ˆ2, Z(2ˆ8)ˆ3, ...

gap> a:=elts[17];
Z(2ˆ8)
gap> m1:=MinimalPolynomial(GF(2),a);
x_1ˆ8+x_1ˆ4+x_1ˆ3+x_1ˆ2+Z(2)ˆ0
gap> m3:=MinimalPolynomial(GF(2),aˆ3);
x_1ˆ8+x_1ˆ6+x_1ˆ5+x_1ˆ4+x_1ˆ2+x_1+Z(2)ˆ0
gap> m5:=MinimalPolynomial(GF(2),aˆ5);
x_1ˆ8+x_1ˆ7+x_1ˆ6+x_1ˆ5+x_1ˆ4+x_1+Z(2)ˆ0

gap> g(x)=m1*m3*m5;
x_1ˆ24+x_1ˆ23+x_1ˆ21+x_1ˆ20+x_1ˆ19+x_1ˆ17+x_1ˆ16+x_1ˆ15+x_1ˆ13+x_1ˆ8+x_1ˆ7+
x_1ˆ5+x_1ˆ4+x_1ˆ2+Z(2)ˆ0

Hence the generator polynomial g(x) of this code will be

g(x) = x24 + x23 + x21 + x20 + x19 + x17 + x16 + x15 + x13 + x8 + x7 + x5 + x4 + x2 + 1.

11.7 Solutions to Exercises of Chap. 7 355

Solutions to Exercises of Sect. 7.2.1
1. No, the second column is negative of the last column. By Theorem 7.2.3 this code

does not correct all single errors.

(a) All columns are different and no one is the negative of another one. By Theo-
rem 7.2.3 this code corrects all single errors.

(b) Let us row reduce

H2 =
⎡
⎣ 1 2 1 2 1 1
1 2 1 0 2 2
2 1 0 1 0 1

⎤
⎦ −→

⎡
⎣ 1 2 1 2 1 1
1 2 1 0 2 2
0 0 1 0 1 2

⎤
⎦ −→

⎡
⎣ 2 1 2 1 2 2
1 2 1 0 2 2
0 0 1 0 1 2

⎤
⎦ −→

⎡
⎣ 1 2 1 1 0 0
1 2 1 0 2 2
0 0 1 0 1 2

⎤
⎦ −→

⎡
⎣ 1 2 1 1 0 0
2 1 2 0 1 1
0 0 1 0 1 2

⎤
⎦ −→

⎡
⎣ 1 2 1 1 0 0
2 1 2 0 1 1
1 2 2 0 0 1

⎤
⎦ −→

⎡
⎣1 2 1 1 0 0
1 2 0 0 1 0
1 2 2 0 0 1

⎤
⎦ = (A | I3).

Hence the generator matrix for this code will be

G = (I3 | −AT) =
⎡
⎣ 1 0 0 2 2 2
0 1 0 1 1 1
0 0 1 2 0 1

⎤
⎦ .

(c) Decoding y we calculate

HyT =
⎡
⎣ 2
2
0

⎤
⎦ = 2h3.

Hence the error vectorwas (0 0 2 0 0 0) and the codevector sentwas (0 2 0 2 2 2).
Hence the message was (0 2 0).

Solutions to Exercises of Sect. 7.2.2
1. (a) The powers of α in the following table generate all of F∗, so α is a generator

of F .

356 11 Solutions to Exercises

i αi

0 x0 = 1
1 x1 = x
2 x2 = (x2 + 2x + 2) + x + 1 = x + 1
3 x3 = x(x + 1) = x2 + x = (x2 + 2x + 2) + 2x + 1 = 2x + 1
4 x4 = x(2x + 1) = 3x2 + x = 2(x2 + 2x + 2) + 2 = 2
5 x5 = 2x
6 x6 = 2x2 = 2(x2 + 2x + 2) + 2x + 2 = 2x + 2
7 x7 = x(2x + 2) = 2(x2 + 2x + 2) + x + 2 = x + 2
8 x8 = x(x + 2) = x2 + 2x = (x2 + 2x + 2) + 1 = 1

(b) First, we note that these quadratic polynomials are irreducible (it is straight-
forward to check that they have no roots) and monic.
Evaluating, we find thatm1(α) = α2 + 2α + 2 = (x + 1) + 2x + 2 = 3x +
3 = 0. So m1(x) is an annihilating polynomial of α. Since it is irreducible
and monic, it is the minimal annihilating polynomial of α.
Similarlym2(α

2) = α4 + 1 = 2 + 1 = 3 = 0, som2(x) is the minimal anni-
hilating polynomial of α2.
Finally m3(α

3) = α6 + 2α3 + 2 = (2x + 2) + 2(2x + 1) + 2 =
6x + 6 = 0 is the minimal annihilating polynomial of α3.

(c) Note that m1(x) = m3(x).
g(x) = lcm(m1(x),m2(x),m3(x)) = m1(x)m2(x) = (x2 + 2x + 2)
(x2 + 1) = x4 + 2x3 + 2x + 2.

(d) s m = n − deg(g), so there are 8 − 4 = 4 information symbols.
(e) The generator matrix will be

G =

⎡
⎢⎢⎣
2 2 0 2 1 0 0 0
0 2 2 0 2 1 0 0
0 0 2 2 0 2 1 0
0 0 0 2 2 0 2 1

⎤
⎥⎥⎦ .

Solutions to Exercises of Sect. 7.3.1
1. Let X = {x1, x2, x3}, where

x1 = (1 1 1 0 0 0 2 2 2),

x2 = (1 1 2 2 0 0 1 1 2),

x3 = (1 2 2 0 2 0 1 2 0).

(a) P1(X) = {1}, P2(X) = {1, 2}, P3(X) = {1, 2}.
(b) There are 27 = 128 elements in the envelope desc(X).
(c) We use the “majority” rule to obtain (1 1 2 0 0 0 1 2 2). This vector can be

produced by any pair of vectors in X .

11.8 Solutions to Exercises of Chap. 8 357

2. For example,

c1 = (1 1), c2 = (2 1), c3 = (1 2), c4 = (2 2).

3. In the i th coordinate of a descendant we can find any element from Pi (X) and they
can be chosen independently of each other. Hence the total number of descendants
is m1 · . . . · mn .

Solutions to Exercises of Sect. 7.3.2
The code C ⊂ {1, 2, 3}6 consists of six codewords:

c1 = (1 1 1 1 1 1),

c2 = (2 2 2 2 2 2),

c3 = (3 3 3 3 3 3),

c4 = (1 2 3 1 2 3),

c5 = (2 3 1 2 3 1),

c6 = (3 1 2 3 1 2).

1. By inspection we see that dmin(C) = 4.
2. To prove that it is 2-frameproof we use Theorem 7.3.1. Indeed, dmin(C) = 4 >

3 = 6(1 − 1/2).

Solutions to Exercises of Sect. 7.3.3
1. Let us choose a set X = {x1, x2, . . . , xw+1} consisting of any w + 1 codewords

from C. Let 1 ≤ i ≤ n and let us consider the projection Pi (X). Since q < w + 1
at least one element of Pi (X) is the i th coordinate of at least two vectors in X .
Let us call this element ci . Then a vector c = (c1, c2, . . . , cn) belongs to any
desc(X ′), where X ′ is a subset of X of cardinality w. Hence C does not have the
w-IPP property.

2. Using Reed–Solomon code C over Z17 of length 16 with the minimum distance
13, we can show that there exists a fingerprinting code with the identifiable parent
property of order 2 containing 83521 codewords. Such a Reed–Solomon code, if
we take 3 as the primitive element, will have a generating polynomial

g(x) = (x − 3)(x − 9)(x − 10)(x − 13)(x − 5)(x − 15)(x − 11)(x − 16)(x − 14)(x − 8)(x − 7)(x − 4).

of degree 12. Being of length 16, it will have distance 13 and have 12 check
symbols and four information symbols, hence 74 = 83521 codewords. Since

dmin = 13 > 12 = 16(1 − 1/22),

it will have the identifiable parent property of order 2 by Theorem 7.3.3.

358 11 Solutions to Exercises

11.8 Solutions to Exercises of Chap.8

Solutions to Exercises of Sect. 8.1.2
1. We have three words of length 2 and two words of length 3. Since

1

22
+ 1

22
+ 1

22
+ 1

23
+ 1

23
= 1

such a code exists due to Kraft’s inequality. The tree would be, for example,

• •

• •••

•

•

011 010

0111 01

...........
...........
...........
...........
...........
...........
...........
...........
...........
...

...........
...........
...........
...........
...........
...........
...........
...........
...........
..

...........
...........
...........
...........
...........
...........
...........
...........
...

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...•

2. For example, {11, 10, 011, 010, 0011, 0010, 0001, 0000}.
3. (a) We calculate

1

22
+ 1

23
+ 1

23
+ 1

23
+ 1

23
+ 1

23
+ 1

24
+ 1

25
+ 1

22
+ 1

25
= 1

4
+ 5 · 1

8
+ 1

16
+ 2 · 1

32
= 1.

Hence such a prefix code does exist.
(b) Straightforward.
(c) Example of such a code:

{11, 100, 101, 011, 010, 001, 0001, 00001, 00000}.

Solutions to Exercises of Sect. 8.1.3
1. Let the alphabet consist of a, b, c, d with frequencies 0.1, 0.2, 0.3 and 0.4, respec-

tively. After joining a and b into a single vertex u the frequencies of u, c, d will be
0.3, 0.3 and 0.4, respectively. At this point there are two choices for d to partner
with: either with c or with subtree combining a and b. There will be two different
Huffman’s trees as a result.

2. Omitted.
3. The average bit number for the given code is

(0.26 + 0.24) × 2 + (0.14 + 0.13 + 0.12 + 0.11) × 3 = 2.5.

11.8 Solutions to Exercises of Chap. 8 359

The code is clearly not a Huffman code since the level 4 leaf does not have a
sibling. But to decide on its optimality we have to construct the Huffman code. It
will be slightly different:

Source symbol Probability Codeword
x1 0.26 00
x2 0.24 01
x3 0.14 100
x4 0.13 101
x5 0.12 110
x6 0.11 111

but with the same average bit per symbol. The original code is not Huffman’s
code since the two least frequent symbols x5 and x6 in Huffman’s code must be
siblings.

4. Since the distribution is uniform, the Huffman tree will consist of word lengths
of �log2 100� = 7 and �log2 100� = 6. As 26 < 100 we should have codewords
of length 7. Suppose in the contrary we have a leaf of depth 5 corresponding to
symbol x . Then we can give to this leaf two children converting it into an internal
node and make both children leaves and assigning x to one of them. This will
leave us with an unassigned node of level 6 to which we move one of the words
that were previously assigned a code of length 7. At this point our changes are
neutral (unless x was at level 4 or higher). That word x had a sibling y also of
depth 7, which will now become the only child of a certain node of depth 6. In
such case that node of degree 6 can be deleted and y will move to level 6. Then
average bit length of the code will be improved, contradiction.
There are 64 nodes of depth 6, of which (64 − k) will be leaf nodes; and there
are k internal nodes of depth 6 which will be parents of 2k leaf nodes of depth 7.
Since the total number of leaf nodes is 100, we have (64 − k) + 2k = 100, from
which k = 36. So there are 64 − 36 = 28 codewords of length 6 and 2 · 36 = 72
codewords of length 7.

5. This proves that for every full tree the Kraft’s inequality becomes an equality.
Let m = maxqi=1mi be the maximal length of a codeword, and Si be the number
of codewords of length i . Arguing as in the proof of Kraft’s inequality we will
obtain that

2m − S1 · 2m−1 − S2 · 2m−2 − . . . − Sm−1 · 2 − Sm > 0,

which means that at the lastmth level not all words are prohibited and we can add
another one and connect it with a path to the root. The internal vertex to which
this path is connected had therefore only one child. This means that the tree was
not full, contradiction.

6. Huffman’s tree is full, and the result follows from the previous exercise.

360 11 Solutions to Exercises

Solutions to Exercises of Sect. 8.2.1
1. wt(u) = 4 and wt(v) = 5.
2. There are

(7
3

) = 35 vectors of Hamming weight 3 in Z
7
2 and

(7
5

) = 21 vectors of
Hamming weight 5.

Solutions to Exercises of Sect. 8.2.2
1. 5 bits.
2. The magician has five cards with numbers on them and no two numbers coincide.

He can put them in increasing order, decreasing order or something in between.
There are 5! = 120 ways to arrange the cards, and each arrangement can be
associated with an integer between 0 and 100. The magician and the assistant
must agree in advance on the way arrangements of cards are associated with the
numbers.

Solutions to Exercises of Sect. 8.2.3
1. a ≺ c ≺ b.
2. The number of vectors of weight k such that 3 < k ≤ 5 in Z

10 is equal to

(
10

4

)
+

(
10

5

)
= 210 + 252 = 462.

3. We have n1 = 3, n2 = 4, n3 = 6, n4 = 7, hence

N (w) =
(
7 − 3

4

)
+

(
7 − 4

3

)
+

(
7 − 6

2

)
+

(
7 − 7

1

)
= 2.

4. (a) Themaximumweight is 15 and �log2 15� = 4. This is the length of the prefix.
(b) As wt(x) = 3, the prefix will be 0011.
(c) The length of the suffix will be �log2

(15
3

)� = 9.
(d) As n1 = 5, n2 = 7, n3 = 13, the number of x in the orbit is

N (x) =
(
15 − 5

3

)
+

(
15 − 7

2

)
+

(
15 − 13

1

)
= 150 = 10010110(2).

As N (x) has 8 binary digits we have to put an additional zero in front of its
8 digits immediately after the prefix, i.e., the suffix would be 010010110.

(e) Hence x will be encoded into 0011010010110.

Solutions to Exercises of Sect. 8.2.4
1. We separate the first four bits 0010 of ψ(y), this is the prefix and we discover that

wt(y) = 2. From the remaining part we see that the number N (y) of y in the orbit
is 11110(2) = 30. From Pascal’s triangle we solve the equation

(
15 − n1

2

)
+

(
15 − n2

1

)
= N (y) = 30

11.8 Solutions to Exercises of Chap. 8 361

by finding

(
15 − n1

2

)
= 28 =

(
8

2

)
,

(
15 − n2

1

)
= 2 =

(
2

1

)
.

Hence n1 = 7 and n2 = 13, and y = 000000100000100.
Since our codelength is very short, no real compression occurs in this case.

2. We will make use of the Pascal’s triangle

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

We see that
(7
4

) = 35 ≤ 43 < 56 = (8
4

)
, hence x1 = 7. Then 43 − 35 = 8 and 4 is

maximal such that
(4
3

) = 4 ≤ 8, hence x2 = 4. Now 8 − 4 = 4 and 3 is maximal

such that
(3
2

) = 3 ≤ 4. Hence x3 = 3. Now 4 − 3 = 1 and 1 is maximal such that(1
1

) ≤ 1, hence x4 = 1.
3. (a) Themaximumweight is 15 and �log2 16� = 4. This is the length of the prefix.

(b) The length of the suffix will be �log2
(15
3

)� = 9.
(c) As wt(x) = 3, the prefix will be 0011. As n1 = 4, n2 = 9, n3 = 12, the

number of x in the orbit is

N (x) =
(
15 − 4

3

)
+

(
15 − 9

2

)
+

(
15 − 12

1

)
= 165 + 15 + 3 = 183 = 10110111(2).

As N (x) has 8 binary digits we have to put an additional zero in front of its
8 digits immediately after the prefix. Hence x will be encoded into ψ(x) =
0011010110111.

(e) We separate the first four bits 0010 of ψ(y), this is the prefix and we discover
that wt(y) = 2. From the remaining part we see that the number N (y) of y
in the orbit is 11110(2) = 30. From Pascal’s triangle we solve the equation

(
15 − n1

2

)
+

(
15 − n2

1

)
= N (y) = 30

by finding

(
15 − n1

2

)
= 28 =

(
8

2

)
,

(
15 − n2

1

)
= 2 =

(
2

1

)
.

Hence n1 = 7 and n2 = 13, and y = 000000100000100.

Literature

1. Agrawal, M., Kayal, N., and Saxena, N. Primes is in P. Dept of Computer Science and Engi-
neering, Indian Institute of Technology, Kanpur, India, 6 August, 2002.

2. Alford, W.R., Granville, A., and Pomerance, C. There are infinitely many Carmichael numbers.
Ann. Math. 140 (1994), 703–722.

3. Atkins, D., Graff, M., Lenstra, A.K., and Leyland, P.C. The magic words are squeamish
ossifrage. ASIACRYPT-94, Lecture Notes in Computer Science, 917, Springer, 1995.

4. Boneh, D and Shaw, J. Collusion-Secure Fingerprinting for Digital Data. IEEE Transactions
on Information Theory, 44(5), 1897–1905, 1998.

5. Brickell, E.F. and Davenport, D.M. (1991) On the classification of ideal secret sharing schemes.
Journal of Cryptology, 4: 123–134.

6. Daniel Shanks. Five Number Theoretic Algorithms. Proceedings of the Second Manitoba Con-
ference on Numerical Mathematics. pp. 51–70, 1973.

7. Desmedt, Y. G. (1988) Society and group oriented cryptography: a new concept. In Advances in
Cryptology, Proceedings of Crypto 1987 (Lecture Notes in Computer Science 293) C. Pomer-
ance, Ed. Springer–Verlag pp. 120–127.

8. Desmedt, Y.G. (1994) Threshold cryptography. EuropeanTransactions onTelecommunications
5: 449–457.

9. Diffie, W., and Hellman, M., 1976, New directions in cryptography, IEEE Transactions on
Information Theory IT–22, 644–654.

10. Fitingof B.M. (1966) Optimal Encoding under an Unknown or Changing Statistics. Problems
of Information Transmission, Vol. 2(2), 3–11.

11. Koblitz, N. Algebraic Aspects of Cryptography. Springer, 1998
12. Koblitz, N. Elliptic Curve Cryptosystems. Mathematics of Computation. 48: pp. 203–209.
13. Kolmogorov A.N. (1965) Three Approaches to the Definition of the Concept “the Quantity of

Information”. Problems of Information Transmission, Vol. 1(1), 3–11.
14. Lenstra, A.K., Lenstra, H.W., Manasse, M.S., Pollard, J.M. The number field sieve. Proc. 22nd

Ann. ACM Symposium on Theory of Computing. Baltimore, May 14-16, 1990. pp 564–572.
15. Macwilliams, F.J., and Sloane, N.J.A. The Theory of Error-Correcting Codes. North-Holland,

1977.
16. Miller, V. Uses of Elliptic Curves in Cryptography. Advances in Cryptology - Crypto’85. pp.

417–426. 1986.
17. Peterson W.W., and Weldon, E.J. Error-Correcting Codes. 2nd ed. MIT Press, 1972.

© Springer Nature Switzerland AG 2020
A. Slinko, Algebra for Applications, Springer Undergraduate Mathematics Series,
https://doi.org/10.1007/978-3-030-44074-9

363

https://doi.org/10.1007/978-3-030-44074-9

364 Literature

18. Rivest, R.L., Shamir, A. and Adelman, L. A method for obtaining digital signatures and public
key cryptosystems. Commun. ACM, 21(2) (1978), 120–126.

19. Ross, K. and Wright, K. Discrete Mathematics, Prentice Hall. 1999.
20. Schwenk, Jörg, and Klaus Huber. (1998) Public key encryption and digital signatures based on

permutation polynomials. Electronics Letters 34.8: 759–760.
21. Shamir, A. (1979) How to share a secret. Communications of the ACM 22 : 612–613.
22. Song Y. Y. Primality testing and integer factorization in public key cryptography. Kluwer, 2004.
23. Staddon, J. N., Stinson, D. R. and Wei, R. Combinatorial properties of frameproof and trace-

ability codes. IEEE Transactions on Information Theory. 47(3), 1042–1049, 2001.
24. Stinson, D.R. (1992) An explication of secret sharing schemes. Designs, Codes and Cryptog-

raphy, 2:357–390.
25. Trappe, W., and Washington, L.C. Introduction to Cryptography with Coding Theory. Prentice

Hall. 2002.
26. Williams, H.C. Primality testing on a computer. Ars Combinatoria, 5 (1978), 127–185.

Index

A
Access structure, 172, 180
k-out-of-n, 172, 182
linear, 182
threshold, 172

Addition of points on elliptic curve, 115
Advanced Encryption Standard (AES), 86, 162
Algorithm
Agrawal–Kayal–Saxena (AKS) for primality

testing, 73
of decoding of Fitingof’s code, 251
division of polynomials, 149
Double and Add, 123
Euclidean, 17, 19, 60, 62, 67
Euclidean for polynomials, 157, 273
Extended Euclidean, 19, 22, 32
Extended Euclidean for polynomials, 157,

158, 161, 273
Lagrange’s interpolation, 168
linear dependency relationship, 165, 220,

275
of Schwenk and Huber, 169
of secret recovery, 177
Square and Multiply, 59, 62, 71, 120, 123
Tonelli–Shanks, 120
Trial Division, 10–12, 61

All-or-nothing property, 189
Asymptotically equal, 54
Authorised coalition, 172
minimal, 172

B
Ball, 194
Basis of a vector space, 135

Bertrand’s Postulate, 12
Binary (m, n)-code, 195
Binary entropy function, 254
Binary tree
rooted, 237

Bit of information, 37, 235, 245

C
Certification authority, 65
Characteristic of a field, 137
Chinese remainder theorem, 21, 26, 66, 169,

262
Cipher
Atbash, 42
Caesar, 42
permutation, 84, 85
product, 85
substitution, 46

Ciphertext, 43, 64, 169
Code
BCH, 217
binary, 237
compression, 244
equivalent, 205

Fitingof’s, 249
frameproof, 230
Hamming, 212, 214
Huffman’s, 240
Huffman’s optimal, 241
(m, n), 201
optimal, 241
parity check, 195
perfect, 214
polynomial, 215

© Springer Nature Switzerland AG 2020
A. Slinko, Algebra for Applications, Springer Undergraduate Mathematics Series,
https://doi.org/10.1007/978-3-030-44074-9

365

https://doi.org/10.1007/978-3-030-44074-9

366 Index

prefix, 237
Reed-Solomon (RS), 224
systematic, 204
triple repetition, 196
w-frameproof, 230
with identifiable parent property, 231
w-traceable, 233

Codevector, 195
Codeword, 195
Commutative group, 30
Complexity
average case, 54
worst case, 54

Complexity of
Euclidean algorithm, 59, 60, 63
Square and Multiply, 59
Trial Division, 61

Composition
of mappings, 79
of permutations, 81

Cryptology
public key, 51
secret key, 42

Cryptosystem
affine, 46
based on a permutation polynomial, 168
Elgamal, 144, 145
public key, 52, 62, 74
RSA, 62, 66, 67, 75, 79, 168, 190
secret key, 43

Cycle permutation, 86
Cycles
disjoint, 87

D
Data Encryption Standard (DES), 85
Decomposition into disjoint cycles, 87
Degree of a polynomial, 148
Descendant, 229
Diffie–Hellman
problem, 74

for elliptic curves, 126
secret key exchange, 74, 76, 126, 144

Digital signature, 74
Digits, 34
Dimension of a vector space, 136
Discrete logarithm, 143, 272
problem, 143

Discriminant of the cubic, 113
Disjoint cycles, 87, 267
Distribution table, 176
Divisible, 4
Division of polynomials with remainder, 149
Division with remainder, 4

Divisor, 4
Dummy, 172, 186

E
Elliptic curve, 113, 268
Encryption, 168
Error vector, 193
Euler’s criterion, 120, 142
Euler’s φ-function, 26, 63
Euler’s theorem, 25, 27, 28, 38, 66
Euler’s totient function, 26, 261
Exponent
decryption, 190
encryption, 190

Extended Euclidean algorithm, 63

F
Factorisation of integers, 57, 61, 68
Factorisation of polynomials, 156
Fermat numbers, 7
Fermat primes, 7
Fermat’s little theorem, 24, 25, 27, 66 71, 72,

120
Field, 33, 130
extension, 164
finite, 159, 271
finite-dimensional, 134
Galois, 137, 162
GF(pn), 162
Zp , 129

15-puzzle, 97
Fingerprinting (watermarking) code, 228
Fitingof’s theorem, 250
Function π(x), 11, 57
Fundamental theorem of arithmetic, 5

G
Generator matrix, 203, 208, 209
Generator of
the cyclic group, 103

Generator polynomial, 215
Greatest common divisor, 15, 261
for polynomials, 157, 159

Group, 79, 83, 101
abelian, 101
alternating of degree n, 96
of an elliptic curve, 268
commutative, 83, 101
cyclic, 103
multiplicative of a field, 138, 145
symmetric

of degree n, 83, 96, 268
Growth

Index 367

exponential, 57
factorial, 54
measure of, 56
polynomial, 57

H
Hadamard matrix, 199
Hamming distance, 193
Hamming weight, 193, 244
Hasse’s theorem, 121
Hill’s cryptosystem, 47, 50

I
Information ratio of the secret sharing scheme,

180
Information relative to a partition, 245
Integers, 4
composite, 68
modulo m, 29
modulo n, 102
positive, 1

Inverse of
an element of the group, 101
a permutation, 83

Invertible element, 31
Isomorphism, 106

K
Known plaintext attack, 50
Kraft’s Inequality, 238

L
Lagrange’s interpolation polynomial, 173
Lagrange’s theorem, 110, 111, 139
Least common multiple, 15
for polynomials, 158

Length of the secret, 180
L’Hospital’s rule, 55, 57
Linearly dependent set of vectors, 134

M
Maximum likelihood decoding, 196
Mersenne primes, 8
Minimum distance, 198, 201
Minimum weight, 200
Mono-alphabet scheme, 42
Multiple, 15
Multiplicative inverse, 31
Multiplicity of a root of a polynomial, 151
Mutual inverses, 80

N
Natural numbers, 1

Notation
big-Oh, 54
big-Theta, 54
little-oh, 54

Number
Carmichael, 71, 73, 74
composite, 5
Fibonacci, 62
floating-point real, 262
prime, 5–12, 63, 64, 66, 69, 258

Number of positive divisors, 15
Numbers
congruent modulo m, 23
coprime, 17
relatively prime, 17
twin prime, 260

O
One-time pad, 43, 45, 46
One-way function, 52, 63
Order
lexicographic, 248

Order of
an element, 111, 138–141
an element multiplicative, 262
an element of the group, 104
a permutation, 88, 268
the group, 102

P
Parity check matrix, 207–209
Parity of permutation, 95
Permutation, 79, 81, 267
even, 94
interlacing shuffle, 91
Josephus, 90
odd, 94
of degree n, 81, 83
random, 268

Permutation group, 87
Permutations
of degree n, 81

Plaintext, 43, 64, 168
Polynomials, 147
annihilating, 164, 165

minimal, 164, 165, 274
coprime, 158
irreducible, 154–156
Lagrange’s interpolation, 179
modulo m(x), 159, 161
monic, 154
permutation, 167–169
reducible, 154
relatively prime, 158

368 Index

Positional notation of numbers, 34
Prefix of the codeword, 250
Prime factorisation, 5, 6, 8, 9, 11, 14–16, 27,

66, 260
Prime Number Theorem, The, 11
Primitive element, 161
Primitive element of a field, 141, 143
Primitive root modulo m, 263
Principle
of mathematical induction, 2
of strong mathematical induction, 2
of the least integer, 1

Private exponent in RSA, 64
Private key, 53, 63
Private multiplier, 126
Pseudoprimality test, 69
good, 69, 71
Rabin–Miller, 71

Public exponent in RSA, 64
Public key, 53, 63, 66
Public Key Infrastructure (PKI), 65

Q
Quadratic non-residue, 119
Quadratic residue, 119, 124, 142, 143, 263
Quotient, 4, 261

R
Remainder, 4, 261
Representation of a number
binary, 37, 58
decimal, 34
to base b, 35

Restricted envelope, 229
Ring
commutative, 31
of integers modulo n, 29
of polynomials, 148, 272

Root of a polynomial, 151

S
Secret recovery function, 177
Secret sharing scheme, 172
generalised linear, 188
ideal, 187

linear, 181
perfect, 179, 180
Shamir’s, 174, 175
threshold, 174

Sieve of Eratosthenes, 10
Singleton bound, 225
Smallest prime divisor, 10
Span, 134
Steps of an algorithm, 53
Stirling’s formula, 54, 278
Subfield, 130, 164
Subgroup, 109, 110
Substitution methods, 42
Suffix of the codeword, 250
Symbols
check, 204
information, 204

Symmetric channel, 192
Symmetric group, 83
Syndrome, 208

T
Threshold cryptography, 190
Transposition, 93
Trapdoor, 52
function, 52

Tree
binary, 237
binary rooted, 237
fbinary

ull, 241

U
Universal encoding, 243

V
Vandermonde determinant, 182, 276
Vector space, 132

W
Wilson’s Theorem, 34

Z
Zero divisor, 32

	Preface to the Second Edition
	Preface to the First Edition
	Contents
	1 Integers
	1.1 Natural Numbers
	1.1.1 Basic Principles
	1.1.2 Divisibility and Primes
	1.1.3 Factoring Integers. The Sieve of Eratosthenes

	1.2 Euclidean Algorithm
	1.2.1 Divisors and Multiples
	1.2.2 Greatest Common Divisor and Least Common Multiple
	1.2.3 Extended Euclidean Algorithm. Chinese Remainder Theorem

	1.3 Fermat's Little Theorem and Its Generalisations
	1.3.1 Congruences. Fermat's Little Theorem
	1.3.2 Euler's φ-Function. Euler's Theorem

	1.4 The Ring of Integers Modulo n. The Field mathbbZp
	1.5 Representation of Numbers

	2 Cryptology
	2.1 Classical Secret-Key Cryptology
	2.1.1 The One-Time Pad
	2.1.2 An Affine Cryptosystem
	2.1.3 Hill's Cryptosystem

	2.2 Modern Public-Key Cryptology
	2.2.1 One-Way Functions and Trapdoor Functions

	2.3 Computational Complexity
	2.3.1 Orders of Magnitude
	2.3.2 The Time Complexity of Several Number-Theoretic Algorithms

	2.4 The RSA Public-Key Cryptosystem
	2.4.1 How Does the RSA System Work?
	2.4.2 Why Does the RSA System Work?
	2.4.3 Pseudoprimality Tests

	2.5 Applications of Cryptology

	3 Groups
	3.1 Permutations
	3.1.1 Composition of Mappings. The Group of Permutations of Degree n
	3.1.2 Block Permutation Cipher
	3.1.3 Cycles and Cycle Decomposition
	3.1.4 Orders of Permutations
	3.1.5 Analysis of Repeated Actions
	3.1.6 Transpositions. Even and Odd
	3.1.7 Puzzle 15

	3.2 General Groups
	3.2.1 Definition of a Group. Examples
	3.2.2 Powers, Multiples and Orders. Cyclic Groups
	3.2.3 Isomorphism
	3.2.4 Subgroups

	3.3 The Abelian Group of an Elliptic Curve
	3.3.1 Elliptic Curves. The Group of Points of an Elliptic Curve
	3.3.2 Quadratic Residues and Hasse's Theorem
	3.3.3 Calculating Large Multiples Efficiently

	3.4 Applications to Cryptography
	3.4.1 Encoding Plaintext
	3.4.2 Additive Diffie–Hellman Key Exchange and the ElGamal Cryptosystem

	4 Fields
	4.1 Introduction to Fields
	4.1.1 Examples and Elementary Properties of Fields
	4.1.2 Vector Spaces
	4.1.3 Cardinality of a Finite Field

	4.2 The Multiplicative Group of a Finite Field is Cyclic
	4.2.1 Lemmas on Orders of Elements
	4.2.2 Proof of the Main Theorem
	4.2.3 Proof of Euler's Criterion
	4.2.4 Discrete Logarithms

	4.3 Elgamal Cryptosystem Revisited

	5 Polynomials
	5.1 The Ring of Polynomials
	5.1.1 Introduction to Polynomials
	5.1.2 Lagrange's Interpolation
	5.1.3 Factoring Polynomials
	5.1.4 Greatest Common Divisor and Least Common Multiple

	5.2 Finite Fields
	5.2.1 Polynomials Modulo m(x)
	5.2.2 Minimal Annihilating Polynomials

	5.3 Permutation Polynomials and Applications
	5.3.1 Permutation Polynomials
	5.3.2 Cryptosystem Based on a Permutation Polynomial

	6 Secret Sharing
	6.1 Introduction to Secret Sharing
	6.1.1 Access Structure
	6.1.2 Shamir's Threshold Access Scheme

	6.2 A General Theory of Secret Sharing Schemes
	6.2.1 General Properties of Secret Sharing Schemes
	6.2.2 Linear Secret Sharing Schemes
	6.2.3 Ideal and Non-ideal Secret Sharing Schemes

	6.3 Applications of Secret Sharing

	7 Error-Correcting Codes
	7.1 Binary Error-Correcting Codes
	7.1.1 The Hamming Weight and the Hamming Distance
	7.1.2 Encoding and Decoding. Simple Examples
	7.1.3 Minimum Distance, Minimum Weight. Linear Codes
	7.1.4 Matrix Encoding Technique
	7.1.5 Parity Check Matrix
	7.1.6 The Hamming Codes
	7.1.7 Polynomial Codes
	7.1.8 Bose–Chaudhuri–Hocquenghem (BCH) Codes

	7.2 Non-binary Error-Correcting Codes
	7.2.1 The Basics of Non-binary Codes
	7.2.2 Reed–Solomon (RS) Codes

	7.3 Fingerprinting Codes
	7.3.1 The Basics of Fingerprinting
	7.3.2 Frameproof Codes
	7.3.3 Codes with the Identifiable Parent Property

	8 Compression
	8.1 Encoding a Known Source
	8.1.1 Motivating Example
	8.1.2 Prefix Codes
	8.1.3 Huffman's Optimal Code

	8.2 Encoding an Unknown Source
	8.2.1 Compressing Binary Sequences (Files)
	8.2.2 Information and Information Relative to a Partition
	8.2.3 Fitingof's Compression Code. Encoding
	8.2.4 Fitingof's Compression Code. Fast Decoding

	8.3 Information and Uncertainty

	9 Appendix A: GAP
	9.1 Computing with GAP
	9.1.1 Starting with GAP
	9.1.2 The GAP Interface
	9.1.3 Programming in GAP: Variables, Lists, Sets and Loops

	9.2 Number Theory
	9.2.1 Basic Number-Theoretic Algorithms
	9.2.2 Arithmetic Modulo m
	9.2.3 Digitising Messages

	9.3 Matrix Algebra
	9.4 Algebra
	9.4.1 Permutations
	9.4.2 Elliptic Curves
	9.4.3 Finite Fields
	9.4.4 Polynomials

	10 Appendix B: Miscellania
	10.1 Linear Dependency Relationship Algorithm
	10.2 The Vandermonde Determinant
	10.3 Stirling's Formula

	11 Solutions to Exercises
	11.1 Solutions to Exercises of Chap. 1
	11.2 Solutions to Exercises of Chap. 2
	11.3 Solutions to Exercises of Chap. 3
	11.4 Solutions to Exercises of Chap. 4
	11.5 Solutions to Exercises of Chap. 5
	11.6 Solutions to Exercises of Chap. 6
	11.7 Solutions to Exercises of Chap.7摥映數爠eflinkchap777
	11.8 Solutions to Exercises of Chap. 8

	 Literature
	Index

