—

Springer Studium Mathematlk Master
Algebralc

Geometry |: Schemes

With Examples and Exercises

HONGUHIT

Ulrich Gortz
Torsten Wedhorn

Second Edition

@ Springer Spektrum



Springer Studium Mathematik - Master

Series Editors

Martin Aigner, Berlin, Germany

Heike Faflbender, Braunschweig, Germany
Barbara Gentz, Bielefeld, Germany

Daniel Grieser, Oldenburg, Germany

Peter Gritzmann, Garching, Germany

Jirg Kramer, Berlin, Germany

Volker Mehrmann, Berlin, Germany
Gisbert Wiistholz, Wermatswil, Switzerland



The series “Springer Studium Mathematik” is aimed at students of all areas of math-
ematics, as well as those studying other subjects involving mathematics, and anyone
working in the field of applied mathematics or in teaching. The series is designed for
Bachelor’s and Master’s courses in mathematics, and depending on the courses offered
by universities, the books can also be made available in English.

http://www.springer.com/series/13446
http://www.springer.com/series/13893

Die Reihe ,,Springer Studium Mathematik® richtet sich an Studierende aller mathema-
tischen Studienginge und an Studierende, die sich mit Mathematik in Verbindung mit
einem anderen Studienfach intensiv beschiftigen, wie auch an Personen, die in der
Anwendung oder der Vermittlung von Mathematik titig sind. Sie bietet Studierenden
wihrend des gesamten Studiums einen schnellen Zugang zu den wichtigsten mathema-
tischen Teilgebieten entsprechend den gingigen Modulen. Die Reihe vermittelt neben
einer soliden Grundausbildung in Mathematik auch fachiibergreifende Kompetenzen.
Insbesondere im Bachelorstudium mochte die Reihe die Studierenden fiir die Prinzipien
und Arbeitsweisen der Mathematik begeistern. Die Lehr- und Ubungsbiicher unterstiit-
zen bei der Klausurvorbereitung und enthalten neben vielen Beispielen und Ubungsauf-
gaben auch Grundlagen und Hilfen, die beim Ubergang von der Schule zur Hochschule
am Anfang des Studiums bendtigt werden. Weiter begleitet die Reihe die Studierenden
im fortgeschrittenen Bachelorstudium und zu Beginn des Masterstudiums bei der Ver-
tiefung und Spezialisierung in einzelnen mathematischen Gebieten mit den passenden
Lehrbiichern. Fiir den Master in Mathematik stellt die Reihe zur fachlichen Expertise
Béinde zu weiterfilhrenden Themen mit forschungsnahen Einblicken in die moderne
Mathematik zur Verfiigung. Die Biicher konnen dem Angebot der Hochschulen entspre-
chend auch in englischer Sprache abgefasst sein.

More information about this series at http://www.springer.com/series/13893



Ulrich Gortz - Torsten Wedhorn

Algebraic Geometry I:
Schemes

With Examples and Exercises

Second Edition

@ Springer Spektrum



Ulrich Gortz Torsten Wedhorn

Fakultit fiir Mathematik Fachbereich Mathematik
Universitdt Duisburg-Essen TU Darmstadt

Essen, Germany Darmstadt, Germany
ISSN 2509-9310 ISSN 2509-9329 (electronic)
Springer Studium Mathematik — Master

ISBN 978-3-658-30732-5 ISBN 978-3-658-30733-2 (eBook)

https://doi.org/10.1007/978-3-658-30733-2

Originally Published by Springer Fachmedien Wiesbaden GmbH 2010

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2010, 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Planung: Iris Ruhmann

This Springer Spektrum imprint is published by the registered company Springer Fachmedien Wiesbaden GmbH
part of Springer Nature.

The registered company address is: Abraham-Lincoln-Str. 46, 65189 Wiesbaden, Germany



Contents

INTRODUCTION 1
1 PREVARIETIES 7
Affine algebraic sets . . . . ... L 8
Affine algebraic sets as spaces with functions . . . . .. ... ... ... ... 17
Prevarieties . . . . . . ... 23
Projective varieties . . . . . . ... Lo 26
Exercises . . . . .. 36
2 SPECTRUM OF A RING 41
Spectrum of a ring as a topological space . . . . .. ... ... L. 42
Excursion: Sheaves . . . . . . . . . .. 47
Spectrum of a ring as a locally ringed space . . . . . . ... ... ... ... . 58
Exercises . . . . . . 63
3 SCHEMES 67
Schemes . . . . . . 67
Examples of schemes . . . . . . . ... 73
Basic properties of schemes and morphisms of schemes . . . . . ... ... .. 76
Prevarieties as Schemes . . . . . . .. ... L o 80
Subschemes and Immersions . . . . . . . . . . ... ... ... ... 85
Exercises . . . . . . 90
4 FIBER PRODUCTS 95
Schemes as functors . . . . . . . .. 95
Fiber products of schemes . . . . . . . . . .. . ... ... ... ... 99
Base change, Fibers of a morphism . . . . . . . ... ... ... ... ..... 107
Exercises . . . . . . 117
5 SCHEMES OVER FIELDS 121
Schemes over a field which is not algebraically closed . . . . . . ... ... .. 121
Dimension of schemes over a field . . . . . . . ... ... ... ......... 123
Schemes over fields and extensions of the base field . . . .. .. .. ... ... 136
Intersections of plane curves . . . . . . . . . .. ... 141
Exercises . . . . . . 144
6 LOCAL PROPERTIES OF SCHEMES 148
The tangent space . . . . . . . .. L L 149
Smooth morphisms . . . . . . . . ... 156
Regular schemes . . . . . .. .. L L 161
Normal schemes . . . . . . . . . . . . ..o 165

Exercises . . . . ... e e 167



VI Contents

7 QUASI-COHERENT MODULES
Excursion: Ox-modules . . . . . . . . ...
Quasi-coherent modules on a scheme . . . . . .. ... ... ... .......
Properties of quasi-coherent modules . . . . . . . ... ... ... .......
Exercises . . . . . e

8 REPRESENTABLE FUNCTORS
Representable Functors . . . . . . . ... ... .. ... ..
The example of the Grassmannian . . . . . . . ... ... ... ... .....
Brauer-Severi schemes . . . . . . . . ... o
Exercises . . . . .. e

9 SEPARATED MORPHISMS
Diagonal of scheme morphisms and separated morphisms . . . . ... .. ..
Rational maps and function fields . . . . . . . . ... ... ... ... ... ..
Exercises . . . . .. e

10 FINITENESS CONDITIONS
Finiteness conditions (noetherian case) . . . . . . ... ... ... ... ....
Finiteness conditions in the non-noetherian case . . . . . . ... .. ... ..
Schemes over inductive limits of rings . . . . . .. ... Lo
Constructible properties . . . . . . . ... Lo
Exercises . . . . . . e

11 VECTOR BUNDLES
Vector bundles and locally free modules . . . . . .. ... ... ... ... ..
Flattening stratification for modules . . . . . . . .. .. .. ... ... ....
Divisors . . . . . e
Vector bundleson P! . . . . . . . ...
Exercises . . . . ..

12 AFFINE AND PROPER MORPHISMS
Affine morphisms . . . . .. ...
Finite and quasi-finite morphisms . . . . . . . . ... ... oL
Serre’s and Chevalley’s criteria to be affine . . . . .. .. .. ... ... ...
Normalization . . . . . . . . . . . . e e
Proper morphisms . . . . . ... L L
Zariski’s main theorem . . . . . . . .. ... L
Exercises . . . . ..

13 PROJECTIVE MORPHISMS
Projective spectrum of a graded algebra . . . . . . . ... ... L.
Embeddings into projective space . . . . . . . . ...
Blowing-up . . . . . . ..
Exercises . . . . . .

172
172
184
193
203

208
208
213
222
225

230
231
236
242

244
245
252
261
273
281

288
289
299
301
316
319



14 FLAT MORPHISMS AND DIMENSION
Flat morphisms . . . . . . . . ..
Properties of flat morphisms . . . . . . .. ... L
Faithfully flat descent . . . . . . . .. .. . o
Dimension and fibers of morphisms . . . . . . . ... ... 0oL
Dimension and regularity conditions . . . . . . ... . ... ... ... .. ..
Hilbert schemes . . . . . . . . . .. . L
Exercises . . . . .. e

15 ONE-DIMENSIONAL SCHEMES
Morphisms into and from one-dimensional schemes . . . . . . ... ... ...
Valuative criteria. . . . . . . . . . . ..
Curves over fields . . . . . . . . . . ..o
Divisors on curves . . . . . . ...
Exercises . . . . .

16 EXAMPLES
Determinantal varieties . . . . . . . . . . ...
Cubic surfaces and a Hilbert modular surface . . . ... .. .. ... .....
Cyclic quotient singularities . . . . . . . . . . ... L Lo
Abelian varieties . . . . . . . .
Exercises . . . . . .

THE LANGUAGE OF CATEGORIES
COMMUTATIVE ALGEBRA
PERMANENCE FOR PROPERTIES OF MORPHISMS OF SCHEMES

RELATIONS BETWEEN PROPERTIES OF MORPHISMS OF SCHEMES

= O aQ W »

CONSTRUCTIBLE AND OPEN PROPERTIES
BIBLIOGRAPHY

DETAILED LisT OF CONTENTS

INDEX OF SYMBOLS

INDEX

491
491
493
497
501
506

508
508
925
934
538
545

547

554

582

585

587

592

597

607

611



®

Check for
updates

Introduction

Algebraic geometry has its origin in the study of systems of polynomial equations

fl(xl,...,a:n) = 07

fr(xl,...,mn) =0.

Here the f; € k[X1,...,X,] are polynomials in n variables with coefficients in a field k.
The set of solutions is a subset V(f1,..., f..) of k™. Polynomial equations are omnipresent
in and outside mathematics, and have been studied since antiquity. The focus of algebraic
geometry is studying the geometric structure of their solution sets.

If the polynomials f; are linear with constant term 0, then V(fi,..., f.) is a subvector
space of k™. Its “size” is measured by its dimension and it can be described as the kernel
of the linear map k"™ — k", v = (z1,...,z,) = (fi(x),..., fr(x)).

For arbitrary polynomials, V(fi,..., f») is in general not a subvector space. To study
it, one uses the close connection of geometry and algebra which is a key property of
algebraic geometry, and whose first manifestation is the following: If g = g1 f1 + ... g f»
is a linear combination of the f; (with coefficients g; € k[T1,...,T,]), then we have
V(fi,.-s fr) = V(g, f1,..., fr). Thus the set of solutions depends only on the ideal
a C k[T1,...,T,] generated by the f;. On the other hand we may consider polynomials
f €klTy,...,T,], view them as polynomial functions k™ — k, and define the ideal a’ of
those f such that f vanishes on V(f1,..., f.). It is one of the first main results (Hilbert’s
Nullstellensatz) that if & is algebraically closed, then a' is closely related to a, more
precisely

o =rad(a):={f €k[T,...,Tn]; 3m>0: f" €a}.

The quotient k[T1,...,T,]/a’ may be considered as the k-algebra of polynomial functions
on the “affine variety” V(f1,..., f.). We obtain a close relation between ideals a of
k[T, ...,T,] (or, equivalently, quotient algebras of k[T},...,T;,]) and affine varieties in
k™ — at least if k is algebraically closed. For not algebraically closed fields k this approach
is too naive.

Besides this algebraic description, one can endow the sets V(f1,..., f,) with a “geo-
metric structure”. The only reasonable topology which can be defined purely in algebraic
terms, i.e., without appealing to analytic notions as convergence, is the Zariski topology
which is the coarsest topology (on k™, say) such that all zero sets of polynomials are
closed. Not surprisingly, it is very coarse and therefore is not sufficient to determine the
“geometric structure” of the spaces in question. The right way to remedy this, is to consider
each space together with the entirety of functions on the space. Similarly as a differentiable
(or holomorphic) manifold is determined by its topological structure together with the
entirety of differentiable (or holomorphic) functions on all its open subsets, we obtain a
satisfactory notion of algebraic geometric objects, “affine varieties over k”, by considering
closed subsets of k™ together with the entirety of functions on them, which in this case
means all functions defined by fractions of polynomials.

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2020
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2 Introduction

Polynomial equations also arise in number theory, and especially in the last decades
algebraic-geometric methods have become extremely fruitful for solving number-theoretic
problems. In this case the polynomials have coefficients in Q or Z (or more generally in
number fields, finite fields, or p-adic rings). One of the most famous examples is Fermat’s
equation z™ 4 y™ = 2™ with x,y, 2 € Z. The proof of Fermat’s Last Theorem which
asserts that this equation has no solutions for m > 3, xyz # 0, by Wiles and Taylor in
1995 relies heavily on modern algebraic geometry.

The unifying approach to study polynomial equations fi, ..., f, over arbitrary (com-
mutative) rings R is the theory of schemes developed by Grothendieck and his school. Tt
allows to attach to an arbitrary commutative ring A (e.g., A = R[T1,...,Tn]/(f1,---, fr)
or A=Z[X,Y,Z]/(X™+Y"™—Z™)) a geometric object Spec A consisting of a topological
space X and a datum Ox of “systems of functions” on this space such that the ring
of “globally defined functions” on Spec A is the ring A itself. Such a pair (X, Ox) is a
so-called locally ringed space. This allows us to view commutative rings as geometric
objects called affine schemes. The affine variety V' (f1,..., f) C k™ can be recovered from
the affine scheme Spec k[Th, ..., T.]/(f1,---, fr)-

As in elementary geometry some problems only have a satisfying solution if we consider
them not in affine space but in projective space. For instance two different lines in the
affine plane intersect always in one point except if they are parallel. By adding points
at infinity (the “horizon”) we obtain the projective plane, where any two different lines
intersect in precisely one point. The projective space can be obtained by gluing affine
spaces. Vastly generalizing this process we arrive at the central notion of this book: a
scheme. It is defined as a locally ringed space that is locally isomorphic to an affine
scheme. Note the similarity to the definition of a smooth n-dimensional manifold which is
a geometric object that is locally isomorphic — within the right category — to an open
subset of R™.

For schemes geometric notions as dimension or smoothness are defined. As schemes are
locally given by commutative rings, many of these notions are defined in terms of rings
and ideals. Conversely, every definition or result in commutative algebra has its geometric
counterpart in the theory of schemes. Thus algebra and geometry become two aspects of
the same theory.

Another reason for the importance of schemes is that it is often possible to parameterize
interesting objects by schemes. An example is the Grassmannian which is a scheme that
parameterizes subvector spaces of a fixed dimension in a given finite-dimensional vector
space. The general concept behind schemes as parameter spaces is the point of view of
schemes representing certain functors. This plays an important role in modern algebraic
geometry and beyond. It will be one of the main focuses in this book.

Grothendieck’s theory of schemes is technically demanding but essential in modern
algebraic geometry even for applications in classical complex algebraic geometry. Even
more so it is indispensable in arithmetic geometry. Moreover algebraic geometry has also
become an important tool with many applications in other fields of mathematics such as
topology, representation theory, Lie theory, group theory, string theory, or cryptography.

The goal of this book is to provide its reader with the background in algebraic geometry
to go on to current research in algebraic geometry itself, in number theory, or in other
fields of mathematics. It strives for the necessary generality to be a stable stepping stone
for most of these fields.

There is a wealth of literature on algebraic geometry from which we learned a lot.
It is a pleasure to acknowledge the overwhelming influence of the pioneering work of



Grothendieck and Dieudonné ([EGAI],[EGAInew], [EGAII],[EGAIII], [EGAIV]). Other
sources are Mumford’s red book [Mul], and the books by Shafarevich [Sh], Hartshorne
[Ha3] and Perrin [Per]. Furthermore we list the more specialized books, each with its own
focus, by Mumford [Mu2], Griffiths and Harris [GH], Liu [Liu], Harris [Har], Eisenbud
and Harris [EH], and Harder [Hal.

Further sources had a more local impact. We followed Kurke [Kul], [Ku2] and Pe-
skine [Pes| quite closely in our proof of Zariski’s main theorem. In our treatment of
geometric properties of schemes over a field one of our main references was Jouanolou’s
book [Jo]. Our main source for determinantal varieties was the book [BV] by Bruns and
Vetter. For the example of cubic surfaces we profited much from Beauville [Bea] and [Ge]
and for the example of Brauer-Severi varieties from Gille and Szamuely [GS].

Leitfaden

The notion of scheme which is the main object of investigation of the whole book is
introduced in Chapter 3, using the affine schemes defined in Chapter 2 as local building
blocks. These two chapters are therefore indispensable for all of the book. In Chapter
1 we discuss a precursor of schemes, namely prevarieties (over an algebraically closed
field). These prevarieties are much closer to geometric intuition, and on the other hand
comprise a large number of interesting schemes. However, besides other defects of this
notion, prevarieties are not suitable for discussing arithmetic questions because it is not
easily possible to link objects living over base fields of different characteristics. In Chapter
4 we introduce fiber products of schemes which are ubiquitous in all of the remainder. In
particular fiber products allow us to view the fibers of morphisms of schemes as schemes,
so that we can make precise the philosophy that a morphism f: X — .S of schemes should
be seen as a family (f~!(s))ses of schemes. For beginners in algebraic geometry, working
through all of Chapters 1 to 4 is therefore recommended. For those with a background in
classical algebraic geometry, Chapter 1 can probably be skipped, and all readers with
some knowledge about schemes should be able to start with Chapter 5 without too many
problems.

After this first part of the book, some choices can be made. In Chapter 5, the part
on dimension of schemes over a field should be read in any case — not only since it is
used at many places, but because the dimension of a scheme is a fundamental notion in
algebraic geometry as a whole. The parts on schemes over non-algebraically closed fields,
and on base change of the ground field, are more specialized and can be skipped at a first
reading. References to the latter can usually be avoided by assuming that the base field
in question is perfect or algebraically closed. The part on intersections of plane curves
with a proof of Bézout’s theorem is one of the first applications of the theory developed
so far, but is not strictly necessary for the rest of the text; the only place where it is used
again is the discussion of elliptic curves in Chapter 16.

The topic of Chapter 6 are local properties of schemes, in particular the notions of
tangent space, smooth, regular and singular points and of normality. We make essential
use of the notion of normal scheme in Chapter 12 when we discuss normalizations and
Zariski’s main theorem.

Chapter 7 provides definitions and results on (quasi-coherent) &'x-modules. Its first part
should be read rather selectively because there we collect all constructions of &'x-modules
which are used in the rest of the book. The other parts are central for most of the following
chapters.



4 Introduction

The functor attached to a scheme is introduced in Chapter 4 and discussed in quite
some detail in the first part of Chapter 8. This is an essential concept of modern algebraic
geometry and is used in many places of the book. So the first part of this chapter is
a requisite. The second and third parts on Grassmannians and Brauer-Severi schemes
provide examples. While the Brauer-Severi schemes can easily be omitted, if necessary, the
example of Grassmannians is of a more fundamental nature, because the projective space
and more generally projective bundles are a special case of Grassmannians. Nevertheless,
with a little care in Chapter 13, one can replace the definitions of projective bundles in
term of Proj schemes (and recover the functorial description).

The first part of Chapter 9 is dedicated to the notions of separated schemes and
separated morphisms. Being separated is analogous, in comparison with topological
spaces, to being Hausdorff, and not surprisingly is a property which almost all schemes
occurring in practice have. In the second part we discuss rational maps, i.e., “morphisms”
which are defined only on an open subset of the source. Rational maps and in particular
the closely related notion of birational equivalence are a central object of study in algebraic
geometry. In the rest of the book, they are relevant in particular in Chapter 11 when we
study divisors.

In Chapter 10 we study finiteness notions of schemes. In the noetherian case there are
many simplifications, so that we deal with this case first. Next we look at the general
case. As it turns out, for quasi-compact and quasi-separated schemes many of the results
in the noetherian case have good analogues. In fact, these two properties occur so often
that we abbreviate them to gcgs. The next two parts of Chapter 10 are dedicated to the
question how properties of schemes and morphisms behave under “transition to the limit”.
More precisely, we study an inductive system of rings (Ry)x, and families (X ), where
each X is an Ry-scheme. This setup is relevant in many different situations; it can often
be used to eliminate noetherianness hypotheses, but is also relevant for problems about
noetherian schemes. Nevertheless, at a first reading it might be enough to read the first
part of Chapter 10 (and make noetherianness assumptions later in the book).

The two main topics of Chapter 11 are vector bundles, and in particular line bundles,
and divisors. We look at the close connection between line bundles and divisors. Line
bundles are essential in Chapter 13. The study of divisors in the special case of curves
is taken up in Chapter 15. The flattening stratification and the classification of vector
bundles over the projective line will not be used in the rest of this volume except in some
remarks in Chapter 12 and Chapter 16. These two parts may thus be skipped at a first
reading.

Next, in Chapter 12, we look at affine, finite and proper morphisms. All three of these
are fundamental properties of schemes (and morphisms of schemes) which distinguish
interesting classes of schemes. For instance, properness corresponds to the notion of
compactness for topological spaces or manifolds. The most important theorem of the
chapter is Zariski’s main theorem which clarifies the structure of morphisms with finite
fibers (so-called quasi-finite morphisms) and has a large number of handy applications.
Because the proof is rather involved, it might be appropriate to take the theorem as a
black box at first — while the result is used in several places in later chapters, the methods
of the proof are not.

Chapter 13 serves to study projective schemes, i.e., closed subschemes of projective
space or of projective bundles. From a slightly different point of view, we study, given
a scheme X, how X can be embedded into projective space. It turns out that this is
controlled by the behavior of line bundles on X. Projective morphisms (i.e., families of



projective schemes) are special cases of proper morphisms, so the results of Chapter 12
are used frequently.

The main topic of Chapter 14 is flatness, a notion which encodes that a family of schemes
(or modules) varies continuously. For instance, under mild assumptions the dimension
of the fibers of a flat morphism is constant. After studying elementary properties of flat
morphisms in the first part of the chapter, we prove a number of deep theorems like
the valuative criterion and the fiber criterion for flatness in the second part. Here we
rely heavily on the local criterion for flatness (see Appendix B). If X’ — X is a flat and
surjective morphism, then X inherits many properties of X’; a similar principle applies
for morphisms, and to some extent to objects over X’ and X, respectively. This principle
is called “faithfully flat descent” and is the object of the third part of Chapter 14. As
an example, we take up the theory of Brauer-Severi schemes again. The next two parts
are dedicated to a more advanced treatment of dimension theory, and in particular to an
investigation how the dimensions of the fibers of a morphism vary. Finally, we briefly look
at a central example of a scheme parameterizing interesting objects, namely the Hilbert
scheme.

A large class of interesting, but relatively well accessible schemes is formed by the
1-dimensional schemes, i.e., by curves. In this case, many of the previously looked at
concepts become more concrete and more tangible, and we look at curves in detail in
Chapter 15. A particular application are the valuative criteria which characterize separated
and proper morphism in a geometrically very tangible way. We also mention, without
proof, the theorem of Riemann-Roch, a central result in the theory of curves (and in fact,
in a generalized form, also in the theory of much more general schemes).

The final chapter, Chapter 16, contains several examples which are developed in parallel
to the advancement of the theory in the main part of the book. Each example is split up
into several portions, and for each of them we indicate which of the previous chapters are
needed. These examples illustrate most of the concepts introduced in the book. Specifically,
we look at determinantal varieties, and at several topics that are linked by their relation
to the theory of Hilbert modular surfaces: cubic surfaces, cyclic quotient singularities,
and abelian varieties.

Each chapter concludes with exercises. We have marked the easier exercises with the
symbol O.

Readers interested only in the noetherian case can omit large parts of Chapter 10,
and many reductions in later chapters. The most important facts to keep in mind are
that all noetherian schemes are quasi-compact, and that every morphism whose source is
noetherian is quasi-compact and quasi-separated. Readers interested only in schemes of
finite type over an algebraically closed base field can ignore, in addition, the subtleties
of base change by extension fields as detailed in Chapter 5. Over an algebraically closed
field, having some property, or having it geometrically, is the same. In a few places it is
helpful to assume that the base field is of characteristic 0, but apart from Chapter 16,
this does not make a real difference.

Notation

We collect some general notation used throughout the book. By C we denote an inclusion
with equality allowed, and by C we denote a proper inclusion; by C we denote an inclusion
where we do not emphasize that equality must not hold, but where equality never occurs
or would not make sense (e.g., m C A a maximal ideal in a ring).



6 Introduction

By Y we denote the complement of a subset Y of some bigger set. By Y we denote
the closure of some subspace Y of a topological space.

By convention, the empty topological space is not connected.

If R is a ring, then we denote by M,,x,(R) the additive group of (m X n)-matrices
over R, and by GL,,(R) the group of invertible (n x n)-matrices over R.

The letters Z, Q, R, C denote the ring of integers and the fields of rational, real and
complex numbers, respectively.

Corrigenda and addenda
Additions and corrections of the text will be posted on the web page
www.algebraic-geometry.de

of this book. We encourage all readers to send us remarks and to give us feedback.

Acknowledgements

We thank all people who sent us their comments about preliminary versions of this text,
in particular: Kai Arzdorf, Philipp Hartwig, Andreas Miiller, Niko Naumann, Andreas
Riedel, Ulrich Schmitt, Otmar Venjakob.

Most of the pictures were produced with the program Surf [Surf].

Preface to the second edition

We received a lot of positive feedback for our book, and are very grateful for that.

In the second edition, we have corrected several serious mistakes and many smaller
errors and misprints. Except for the corrections, we did not make substantial changes.

We are very grateful to the many people who notified us of mistakes, large and small,
in personal discussions, by email or via the web page listing the errata, in particular:

P. Barik, Alexey Beshenov, Félix Baril Boudreau, Thomas Brazelton, J. Buck, Zhaodong
Cai, J. Calabrese, P. Carlucci, Owen Colman, B. Conrad, O. Das, Florian Ebert, A. Elashry,
C. Frank, C. Frei, L. Galinat, D. Gerigk, A. Graf, F. Grelak, A. Gross, Vishal Gupta,
A. Haase, Yun Hao, U. Hartl, P. Hartwig, B. Heintz, D. Heiss, J. Hilgert, M. Hoyois,
Longxi Hu, Yong Hu, H. Iriarte, Alexander Isaev, R. Ishizuka, M. Jarden, Peter Johnson,
Shuho Kanda, M. Kaneda, A. Kaucikas, T. Keller, S. Kelly, K. Kidwell, S. Kobele, O.
Kérner, Mahdi Majidi-Zolbanin, Louis Martini, Akira Masuoka, Sebastian Schlegel Mejia,
Nick Mertes, K. Mohri, Shahram Mohsenipour, Laura Brustenga Moncusi, Menachem
Dov Mostowicz, A. B. Nguyen, Jesis Martin O., Safak Ozden, M. Pereira, Nathan
Pflueger, Lam Pham, Richard Pink, L. Prader, T. Przezdziecki, Caiyong Qiu, Fabian Roll,
Matthieu Romagny, Sandeep S, Kannappan Sampath, Immanuel van Santen, J. Scarfy,
A. Schiller, Ehsan Shahoseini, Eduardo dos Santos Silva, B. Smithling, A. Steinbach,
F. Gispert Sanchez, Viktor Tabakov, Yugo Takanashi, Kuo Tzu-Ang, E. Viehmann, J.
Watterlond, Jan Willing, Shaopeng Z, Y. Zaehringer, Victor Zhang, Han Zhou, Yehao
Zhou, P. Zsifkovits.

We will continue to collect and publish errata (concerning either of the two editions) at
www.algebraic-geometry.de.



1 Prevarieties

Contents

Affine algebraic sets

— Prevarieties

— Projective varieties

Affine algebraic sets as spaces with functions

®

Check for
updates

The fundamental topic of algebraic geometry is the study of systems of polynomial
equation in several variables. In the end we would like to study polynomial equations
with coefficients in an arbitrary ring but as a motivation and a guideline we will assume
in this chapter that our ring of coefficients is an algebraically closed field k. In this case
the theory has a particularly nice geometric flavor.

If we are given polynomials fi,..., f, € k[T1,...,

properties” of the set of zeros

V(fi,- s fr) ={(ts, ..., tn) € K"

Let us illustrate this by a simple example.

Example 1.1. Consider the polynomial f =
T3 —TE(Th+1) € k[T, Ty]. To visualize V (f)
we show in Figure 1.1 the set of zeros of T3 —
T2(Ty + 1) € R[Ty, T»] in R2. Of course, this
is not an example for our situation as the field
R of real numbers is not algebraically closed
(and sometime the visualization obtained in
this way may be deceptive, see Exercise 1.8).
Nevertheless it is often helpful to look at the
“real picture”.

In this illustration we see a “one-dimen-
sional” object (the notion of dimension in
algebraic geometry will be defined in Chap-
ter 5). Another observation is that the set of
zeros looks “locally” in every point except the
origin (0, 0) essentially like a real line. But in
the origin its local shape is different. We may
describe this behavior by saying that at all
points outside the origin we can find a unique
tangent line, however not in the origin. This
corresponds to the distinction of “smooth”

Figure 1.1: The solutions in R? of the
equation 75 — T (T1 + 1) = 0.

and “singular” points, that we will describe in Chapter 6.

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2020
U. Gortz und T. Wedhorn, Algebraic Geometry I: Schemes, Springer Studium
Mathematik — Master, https://doi.org/10.1007/978-3-658-30733-2_2

T, ], we are interested in “geometric
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The theorem of implicit functions implies that the set of zeros of f is diffeomorphic to

R at those points (z1,x2) where the Jacobi (1 x 2)-matrix (68—7]:1 %) has rank 1. The

partial derivatives of polynomials can be defined over arbitrary base fields and thus this
criterion can be formulated algebraically. We will see in Section (6.8) that this is indeed a
way to describe which points are “smooth”.

Notation

Let k be an algebraically closed field. Occasionally we write k[T] instead of k[T, ..., T,],
the polynomial ring in n variables over k. For « = (z1,...,2,) € k™ and f € k[T] we
write f(x) = f(z1,...,Tn).

Affine algebraic sets

The first step towards geometry is to define a topology on the set of zeros V' (f1,. .., f-). We
obtain a very coarse topology which is useful but does not capture all essential geometric
properties. The purpose of the following sections will be to endow these topological spaces
with additional structure. Here we will see that analytic aids used in differential geometry
or complex analysis are replaced by methods of commutative algebra. Over algebraically
closed field the connection of geometry and commutative algebra is established by Hilbert’s
Nullstellensatz 1.7. In its most basic form (Corollary 1.11) it says that attaching to
x = (x1,...,2,) € k™ the ideal (11 — z1,..., Ty — x,) C k[T, ..., T,] yields a bijection
between points in k™ (geometric objects) and maximal ideals in k[T},...,T,] (algebraic
objects).

(1.1) The Zariski topology on k", the affine space A" (k).

Definition 1.2. Let M C k[Ty,...,T,] = k[T] be a subset. The set of common zeros of
the polynomials in M is denoted by

V(M):{(tl,,tn) c k" ) VfEMf(th,tn):O}
If M consists of elements f;, i € I, we also write V(f;,i € I) instead of V({fi;i € I}).

If M C k[T] is a subset and a the ideal generated by M, it is clear that V(M) = V (a).
The Hilbert Basis Theorem (Proposition B.34) implies, that the polynomial ring k[T
is a noetherian ring, that is, all ideals are finitely generated. Every generating set M of
a finitely generated ideal a contains a finite generating set. Hence there exist for every
subset M C k[T] finitely many elements f1,..., f, € M such that V(M) =V (f1,..., fr).

Another obvious property is that V(=) reverses inclusions: For M’ C M C k[T] we
have V(M') D V(M).

Proposition 1.3. The sets V(a), where a runs through the set of ideals of k[T], are the
closed sets of a topology on k™, called the Zariski topology.



Proof. The proposition follows from the following more precise assertions.
(1) 0=V (1), k" =V(0).
(2) For every family (a;);er of ideals a; C k[T] we have

V() =V _a).

i€l i€l
(3) For two ideals a,b C k[T] we have
V(@) UV (b) =V (anb) = V(ab).

The first point is obvious. Moreover, we have

V() ={zek™ Viel,fea;: f(z) =0} =V(Jw),

el i€l

and this proves the second point because ), ; a; is the ideal generated by the union
U, a;. Third, since ab C anb C a,b, it is clear that V(a) UV (b) C V(anb) C V(ab).
If conversely © € V(ab) and = ¢ V(a), there exists an f € a with f(z) # 0, and for all
g € b we have fg € ab and hence f(z)g(x) = (fg)(z) = 0. Therefore g(z) = 0 and hence
x € V(b). O

From now on we will consider k™ always as a topological space with the Zariski topology
and we will denote this space by A™(k). We call this space the affine space of dimension
n (over k). The phrase of dimension n should be understood as fixed expression for now.
Only later we will introduce the notion of dimension (and then of course prove that A™(k)
really has dimension n).

(1.2) Affine algebraic sets.

Definition 1.4. Closed subspaces of A™(k) are called affine algebraic sets.

Sets consisting of one point x = (z1,...,2,) € A"(k) are closed because {z} = V(m,),
where m, = (11 —x1,...,T, —x,) is the kernel of the evaluation homomorphism k[T] — k
which sends f to f(z). As finite unions of closed sets are again closed, we see that all
finite subsets of A™(k) are closed.

The Zariski topology has the advantage that it can be defined over arbitrary ground
fields. On the other hand it is very coarse. Proposition 1.20 will show, that for n > 0 it is
not Hausdorff. The following examples also show this for n = 1, 2.

Example 1.5. For n = 1 the polynomial ring k[7] is a principal ideal domain. Therefore
the closed subsets are of the form V(f) for a polynomial f € k[T]. As every polynomial
f # 0 has only finitely many zeros, the closed subsets of Al(k) are Al(k) itself and the
finite subsets of Al(k).

Example 1.6. To describe the topological space A%(k) is more difficult. We have the
following list of obvious closed subsets.

o A2 (k).

e Sets consisting of one point {z} = V(my).

o V(f), f € k[T1,T»] an irreducible polynomial.
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We will see later that every closed set is a finite union of sets from this list. In fact the
above sets are the closed subsets of the form V(p) where p C k[T7,T5] is a prime ideal,
i.e., the “irreducible” closed subsets (a notion which will be explained in Section (1.5)).
This will follow from the fact that in k[T7, T»] all non-maximal prime ideals are principal
ideals (Proposition 5.31).

(1.3) Hilbert’s Nullstellensatz.

As mentioned above, the connection between affine algebraic sets and commutative algebra
is established by Hilbert’s Nullstellensatz (and its corollaries).

Theorem 1.7. (Hilbert’s Nullstellensatz) Let K be a (not necessarily algebraically
closed) field and let A be a finitely generated K -algebra. Then A is Jacobson, that is, for
every prime ideal p C A we have

p= ()] m

m2p
mazimal ideal

If m C A is a mazimal ideal, the field extension K C A/m is finite.

We will base the proof of the theorem on Noether’s normalization theorem. Recall that
a homomorphism of rings R — R’ is called integral if each element of R’ is a root of a
monic polynomial with coefficients in R. A homomorphism of rings R — R’ is finite if it
is integral and R’ is generated as an R-algebra by finitely many elements (Section (B.10)).
We will study this notion in more detail later (see Chapter 12) where we will also obtain
a geometric interpretation. Here we remark only that R — R’ is finite if and only if R’ is
finitely generated as an R-module (Section (B.3)).

Note that this notion of integral is not related to the notion of integral domain. Below we
often use the term integral K -algebra (where K is a field) by which we mean a K-algebra
which is an integral domain.

Theorem 1.8. (Noether’s normalization theorem) Let K be a field and let A #0
be a finitely generated K-algebra. Then there exists an integer n >0 and t1,...,t, € A
such that the K-algebra homomorphism KTy, ..., T, = A, T; — t; is injective and finite.

We will not prove this theorem but refer to Theorem B.58. To deduce the Nullstellensatz
from Noether’s normalization theorem we will first show two lemmas.

Lemma 1.9. Let A and B be integral domains and let A — B be an injective integral
ring homomorphism. Then A is a field if and only if B is a field.

Proof. Let A be a field and b € B nonzero. Then A[b] is an A-vector space of finite
dimension. As B is an integral domain, the multiplication A[b] — A[b] with b is injective.
It is clearly A-linear and therefore it is bijective. This shows that b is a unit.
Conversely let B be a field and let a € A\ {0}. The element a= € B* satisfies a
polynomial identity (a=1)" + B,_1(a=1)" "1 + ...+ By = 0, B; € A. Therefore we have

a = —(Bu1 + Buoa+ -+ Boa"t) € A O

Lemma 1.10. Let K be a field and let L be a field extension of K that is a finitely
generated K-algebra. Then L is a finite extension of K.
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Proof. We apply to L Noether’s normalization theorem and obtain a finite injective
homomorphism K[T},...,T,] — L of K-algebras. By Lemma 1.9 we must have n = 0
which shows that K — L is a finite extension. O

Proof. (Hilbert’s Nullstellensatz) Lemma 1.10 implies at once the second assertion: If
m C A is a maximal ideal, A/m is a field extension of K which is finitely generated as a
K-algebra.

For the proof of the first assertion we start with a remark. If L is a finite field extension
of K and ¢: A — L is a K-algebra homomorphism, the image of ¢ is an integral domain
that is finite over K. Thus Im ¢ is a field by Lemma 1.9 and therefore Ker ¢ is a maximal
ideal of A.

We now show that A is Jacobson. Let p C A be a prime ideal. Replacing A by A/p it
suffices to show that in an integral finitely generated K-algebra the intersection of all
maximal ideals is the zero ideal. For o # 0, A[z~!] is a finitely generated K-algebra # 0.
Let n be a maximal ideal of A[z71], then L := A[z~!]/n is a finite extension of K by the
second assertion of the Nullstellensatz. The kernel of the composition ¢: A — A[z~1] — L
is a maximal ideal by the above remark, and it does not contain x. O

If K =k is an algebraically closed field, the Nullstellensatz implies:

Corollary 1.11.

(1) Let A be a finitely generated k-algebra, m C A a mazimal ideal. Then A/m = k.

(2) Letm C k[Ty,...,T,] be a mazimal ideal. Then there exists x = (x1,...,2,) € A"(k)
such that m =my = (Th —x1,..., Ty — zp).

Proof. (1). As k is algebraically closed, the homomorphism k& — A — A/m, which makes
A/m into a finite field extension of k by the Nullstellensatz, has to be an isomorphism.
(2). Let x; be the image of T; by the homomorphism k[T71,...,T,] — k[L]/m = k.
Then m is a maximal ideal which contains the maximal ideal m, = (T} — 1, ..., Ty, — 2y).
Therefore both are equal. O

(1.4) The correspondence between radical ideals and affine algebraic sets.

To understand the affine algebraic sets V' (a) better, we need the notion of the radical of
an ideal: Let A be a ring. Recall that if a C A is an ideal, we call

rada:={f€A; IreZsy: fr€a}.

the radical of a. It is easy to see that rad a is an ideal and that we have rad(rad a) = rad a.
If A is a finitely generated K-algebra for a field K we have

(1.4.1) rada = ﬂ p= ﬂ m.
aCpCA aCmCA
prime ideal maximal ideal

Indeed, the first equality holds in arbitrary commutative rings (B.1.1) and the second
equality follows immediately from the Nullstellensatz.

We now study the question when two ideals describe the same closed subset of A™(k).
Clearly this may happen: As f"(z) = 0 if and only if f(z) = 0, we always have the
equality V(a) = V(rada). If Z C A™(k) is a subset, we denote by
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1(Z):={f €klI]; Yz e Z: f(x) = 0}

the ideal of functions that vanish on Z. For f € k[T] and = € A" (k) we have f(z) =0 if
and only if f € m,. Thus we find

(1.4.2) 1(Z) = () m,.
reZ

We have the following consequence of Hilbert’s Nullstellensatz.

Proposition 1.12.
(1) Let a C k[T] be an ideal. Then

I(V(a)) =rada.

(2) Let Z C A" (k) be a subset and let Z be its closure. Then

Proof. (1). As xz € V(a) is equivalent to a C m,, we have

I(V(a)) (142 m m, = ﬂ m

zeV(a) m2a
maximal ideal

[
=
>

rad a.

(2). This is a simple assertion for which we do not need the Nullstellensatz. On one
hand we have Z C V(I(Z)) and V(I(Z)) is closed. This shows V(I(Z)) 2 Z. On the
other hand let V(a) C A™(k) be a closed subset that contains Z. Then we have f(z) =0
for all x € Z and f € a. This shows a C I(Z) and hence V(I(Z)) C V(a). O

If A is a ring, we call an ideal a C A a radical ideal if a = rad(a). This is equivalent
to the property that A/a is reduced (i.e., does not contain nilpotent elements # 0). In
particular, every prime ideal is a radical ideal.

The proposition implies:

Corollary 1.13. The maps

a—V(a)
{radical ideals a of k[T|} ————— {closed subsets Z of A™(k)}
1(Z)2Z

are mutually inverse bijections, whose restrictions define a bijection

{mazimal ideals of k[T]} < {points of A"(k)}.

In the following sections we study further properties of the Zariski topology on A™(k) and
on affine algebraic sets. We will see that these spaces are quite different from Hausdorff
spaces for which the notions of irreducible or noetherian spaces introduced below are
uninteresting (see Exercise 1.3).
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(1.5) Irreducible topological spaces.

Definition 1.14. A non-empty topological space X is called irreducible if X cannot be
expressed as the union of two proper closed subsets. A non-empty subset Z of X is called
irreducible if Z is irreducible when we endow it with the induced topology.

Proposition 1.15. Let X be a non-empty topological space. The following assertions are
equivalent.

(i) X is irreducible.

(ii) Any two non-empty open subsets of X have a non-empty intersection.

(iii) Every non-empty open subset is dense in X.

(iv) Every non-empty open subset is connected.

(v) Every non-empty open subset is irreducible.

Proof. Taking complements the equivalence of (i) and (ii) is immediate. A subset of X
is dense if and only if it meets every non-empty open subset of X. This shows that (ii)
and (iii) are equivalent. If there exist non-empty open subsets U; and Us that have an
empty intersection, their union is a non-connected open subset. Conversely if U is a
non-empty non-connected subset we can write U as the disjoint union of two non-empty
open subsets of U (and hence of X). This shows that (iv) and (ii) are equivalent.
Obviously (v) implies (i). Let us show that (iii) implies (v). Let U C X be open and
non-empty. We show that every open non-empty subset V' C U is dense in U (this shows
that U is irreducible as we have already seen that (iii) implies (i)). Now V is also open in
X and therefore dense in X by (iii). But then V is certainly dense in U. O

Corollary 1.16. Let f: X — Y be a continuous map of topological spaces. If Z C X is
an trreducible subspace, its image f(Z) is irreducible.

Proof. If Vi and V4 are non-empty open subsets of f(Z), their preimages in Z have a
non-empty intersection. This shows that V3 NVa # (). O

Lemma 1.17. Let X be a topological space. A subspace Y C X is irreducible if and only
if its closure Y is irreducible.

Proof. By Proposition 1.15 (ii) a subset Z of X is irreducible if and only if for any two
open subsets U and V of X with ZNU # 0 and ZNV # () we have ZN(UNV) # 0.
This implies the lemma because an open subset meets Y if and only if it meets Y. [

If U C X is an open subset and Z C X is irreducible and closed, Z N U is open in
Z and hence, if ZNU # 0, an irreducible closed subset of U whose closure in X is Z.
Together with Lemma 1.17 this shows that there are mutually inverse bijective maps

{Y C U irreducible closed} +» {Z C X irreducible closed with ZNU # (}

(1.5.1) Y Y (closure in X)
ZNU 2

Definition 1.18. A mazimal irreducible subset of a topological space X is called an
irreducible component of X.
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Let X be a topological space. Lemma 1.17 shows that every irreducible component is
closed. The set of irreducible subsets of X is ordered inductively, as for every chain of
irreducible subsets their union is again irreducible. It is non-empty since every singleton
is irreducible. Thus Zorn’s lemma implies that every irreducible subset is contained in an
irreducible component of X. In particular, every point of X is contained in an irreducible
component. This shows that X is the union of its irreducible components.

For later use, we record one more lemma.

Lemma 1.19. Let X be a topological space and let X = |

X by connected open subsets U;.

(1) If X is not connected, then there exists a subset ) # J C I such that for all j € J,
ieI\J,U;NnU; =0.

(2) If X is connected, I is finite, and all the U; are irreducible, then X is irreducible.

.1 Ui be an open covering of

Proof. To prove (1), note that if we can write X = V5 U V5 as a disjoint union of open
and closed subsets Vi, V5, then each U; is contained in either Vi or V5, so we can set
J ={i eI, Ui CVi}. Now we prove the second part. If Z C X is an irreducible
component and Z NU; # 0, then Z N U; is dense in Z, s0o ZNU; = ZNU; = Z. It follows
that Z = U, by the maximality of Z and the irreducibility of U;. In particular, X has only
finitely many irreducible components, say X7, ..., X,. Assume n > 1. Since the X, are
closed, and X is connected, X; must intersect another irreducible component, so we find,
say, ¢ € X1 N Xs. Let ¢ € I with x € U;. Then U; N X3 is open and hence dense in X7,
and similarly for X5, so that the closure of U; in X contains X; U X5, a contradiction. [

(1.6) Irreducible affine algebraic sets.

Proposition 1.20. Let Z C A™(k) be a closed subset. Then Z is irreducible if and only
if 1(Z) is a prime ideal. In particular A™(k) is irreducible.

Proof. The subset Z is irreducible if and only if it is not union of two proper closed
subsets. As every closed subset can be written as intersection of sets of the form V(f),
this is equivalent to the property that for any two elements f,g € k[T1,...,T,] with
V(fg) =V (f)UV(g) D Z we have V(f) D Z or V(g) 2 Z. But this means precisely that
for any two polynomials f and g with fg € I(Z) we have f € I(Z) or g € I(Z), that is,
that I(Z) is a prime ideal. O

Remark 1.21. The correspondence of Corollary 1.13 induces a bijection

{irreducible closed subsets of A™(k)} +> {prime ideals in k[T},...,T,]}.

(1.7) Quasi-compact and noetherian topological spaces.

Definition 1.22. A topological space X is called quasi-compact if every open covering
of X has a finite subcovering.

Clearly any closed subspace of a quasi-compact space is again quasi-compact. An
open subspace of a quasi-compact space is not necessarily quasi-compact (see however
Lemma 1.25 below).
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Definition 1.23. A topological space X is called noetherian if every descending chain
X27Z12222 -
of closed subsets of X becomes stationary.

Clearly, X is noetherian if and only if every non-empty set of closed subsets of X has a
minimal element with respect to inclusion.

Lemma 1.24. Let X be a topological space that has a finite covering X = J;_, X; by
noetherian subspaces. Then X itself is noetherian.

Proof. Let X D Z1 O Zy O --- be a descending chain of closed subsets of X. Then
(Z; N X;); is a descending chain of closed subsets in X;. Therefore there exists an integer
N; > 1 such that Z; N X; = Zn, N X, for all j > N;. For N = max{Ni,...,N,} we have
Z;=Zy forall j > N. O

Lemma 1.25. Let X be a noetherian topological space.

(1) Ewvery subspace of X is noetherian.

(2) Every subset of X is quasi-compact (in particular, X is quasi-compact).
(3) Every subset Z C X has only finitely many irreducible components.

Proof. (1). Let (Z;); be a descending chain of closed subsets of a subspace Y. Then the
closures Z; of Z; in X form a descending chain of closed subsets of X which becomes
stationary by hypothesis. As we have Z; = Y' N Z;, this shows that the chain (Z;); becomes
stationary as well. This proves (1).

(2). By (1) it suffices to show that X is quasi-compact. Let (U;); be an open covering of
X and let U be the set of those open subsets of X that are finite unions of the subsets Uj;.
As X is noetherian, ¢ has a maximal element V. Clearly V = X, otherwise there would
exist an U; such that V' C V UU; € Y. This shows that (U;); has a finite subcovering.

(8). It suffices to show that every noetherian space X can be written as finite union of
irreducible subsets. If the set M of closed subsets of X that cannot be written as a finite
union of irreducible subsets were non-empty, there existed a minimal element Z € .Z.
The set Z is not irreducible and thus union of two proper closed subsets which do not lie
in M. This leads to a contradiction. O

Proposition 1.26. Let X C A™(k) be any subspace. Then X is noetherian.

Proof. By Lemma 1.25 it suffices to show that A™(k) is noetherian. But descending
chains of closed subsets of A™(k) correspond to ascending chains of radical ideals of
E[T] (Corollary 1.13). As k[T] is noetherian by Hilbert’s basis theorem, this proves the
proposition. O

By using the correspondence between (irreducible) closed subsets and (prime) radical
ideals we obtain from the decomposition of an affine algebraic set into its irreducible
components a weak version of the so-called primary decomposition in noetherian rings
(e.g., see [AM] Chapter 4 and Chapter 7):

Corollary 1.27. Let a C k[Ty,...,T,] be a radical ideal, i.e., a = rad(a). Then a is the
intersection of a finite number of prime ideals that do not contain each other. The set of
these prime ideals is uniquely determined by a.
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(1.8) Morphisms of affine algebraic sets.

As affine algebraic sets are zero sets of polynomials, it is only natural to define morphisms
between these sets as maps that are given by polynomials, more precisely:

Definition 1.28. Let X C A™(k) and Y C A™(k) be affine algebraic sets. A morphism
X — Y of affine algebraic sets is a map f: X — Y of the underlying sets such that there
exist polynomials f1,..., fn € k[T, ..., Tp] with f(x) = (fi(x),..., fo(z)) for all z € X.

We denote the set of morphisms from X to Y with Hom(X,Y).

Remark 1.29. The definition shows that a morphism between affine algebraic sets
X CA™(k) and Y C A"(k) can always be extended to a morphism A™ (k) — A"(k) (but
not in a unique way unless X = A™(k)). If f = (f1,..., fn) is a tuple of polynomials f; €
k[Ty,...,Ty] defining a morphism A™ (k) — A™(k), we obtain a k-algebra homomorphism
L(f): k[Ty,...,T)] — k[T1,...,Tw] by sending T} to f;. If V(a) C A"(k) is a closed
subset, then f~1(V(a)) = V(I'(f)(a)) is again closed. This shows that morphisms of affine
algebraic sets are continuous.

Let X C A™(k), Y C A™(k) and Z C A"(k) be affine algebraic sets and suppose
f: X =Y and g: Y — Z are morphisms given by polynomials f1,..., fn, € k[T1,...,Tp]
and ¢1,...,9- € k[T],...,T}]. Then we have for z € X:

(1.8.1) 9(f(@)) = (91 (@), fa(@), s 90 (Fr(@), s Fu()))-

Therefore g o f is given by the polynomials h; € k[Ty,...,T,] (i = 1,...,r) that are
obtained from the g; by replacing the indeterminate T]f with f; for j = 1,...,n. In
particular, g o f is again a morphism of affine algebraic sets. We obtain the category of
affine algebraic sets.

We give some examples of morphisms of affine algebraic sets.

(1) The map A'(k) — V(Ty —T%) C A%(k), 2 — (22, ) is a morphism of affine algebraic
sets. It is even an isomorphism with inverse morphism (z,y) — y. In general a
bijective morphism of affine algebraic sets is not an isomorphism (see Exercise 1.12).

(2) The map Al(k) — V(T22 —THTy + 1)), x> (22 — 1,2(2? — 1)) is a morphism. For
char(k) # 2 it is not bijective: 1 and —1 are both mapped to the origin (0,0). In
char(k) = 2 it is bijective but not an isomorphism.

(3) We identify the space M, (k) of (n x n)-matrices with A" (k), thus giving M,, (k)
the structure of an affine algebraic set. Then sending a matrix A € M, (k) to its
determinant det(A) is a morphism M,, (k) — Al(k) of affine algebraic sets.

(4) For k = C consider the exponential function exp: A!(C) — A!(C). This is not a
morphism of algebraic sets (Exercise 1.17).

(1.9) Shortcomings of the notion of affine algebraic sets.

The notion of an affine algebraic set is still not satisfactory. We list three problems:

e Open subsets of affine algebraic sets do not carry the structure of an affine algebraic
set in a natural way. In particular we cannot glue affine algebraic sets along open
subsets (although this is a “natural operation” for geometric objects).
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o Intersections of affine algebraic sets in A"(k) are closed and hence again affine
algebraic sets. But we cannot distinguish between V(X) NV (Y) C A?(k) and
V(Y)NV(X2-Y) C A?(k) although the geometric situation seems to be different
(we will see similar phenomena later when we study fibers of morphisms).

e Affine algebraic sets seem not to help in studying solutions of polynomial equations
in more general rings than algebraically closed fields.

The first problem is due to the fact that affine algebraic sets are necessarily embedded
in an affine space. This problem will be solved in the following sections. To deal with the
second and the third problem is more difficult and part of the motivation to introduce in
Chapter 3 the notion of a scheme.

Affine algebraic sets as spaces with functions

Having defined morphisms between algebraic sets in Section (1.8), we can in particular
speak of functions on an affine algebraic set X, i.e., morphisms X — A!(k). These
functions form a reduced finitely generated k-algebra I'(X). We will show that this
construction yields a contravariant equivalence between the category of affine algebraic
sets and the category of reduced finitely generated k-algebras. This is another incarnation
of the correspondence of algebraic and of geometric objects.

Next we introduce the algebra of functions &'x (U) on an open subset U of an irreducible
affine algebraic set X. Thus we obtain a topological space X together with a k-algebra
of function Ox (U) for every open subset U C X. This is similar to the language of real
smooth manifolds which can also be considered as topological spaces M together with the
R-algebras C*°(U) of smooth functions on open subsets U C M. We formalize this concept
by introducing the notion of a space with functions. A similar notion (“systéme local de
fonctions”) has already been introduced in the Séminaire de Chevalley [Ch]. Although all
(real or complex) manifolds, all irreducible algebraic sets, and all prevarieties (defined
later in this chapter) are spaces with functions, this concept will be only a stepping stone
for us to motivate the notion of ringed spaces that we will need to define schemes. Ringed
spaces will be defined in Chapter 2.

Our hypothesis that the algebraic set X is irreducible will not be strictly necessary but
it will make the construction of &x easier and more explicit. In later chapters, in which
we use the languages of schemes, we will get rid of this hypothesis (and several others).

(1.10) The affine coordinate ring.

Let X C A™(k) be a closed subspace. Every polynomial f € k[Ty,...,T,] induces a
morphism X — Al(k), z — f(x), of affine algebraic sets. The set Hom(X, Al(k)) carries
in a natural way the structure of a k-algebra with addition and multiplication

(f +9)(@) = f(z) +9(z), (f9)(x) = f(z)g(x).

To elements of k we associate the corresponding constant function. The homomorphism
k[T] — Hom(X, Al (k)) is a surjective homomorphism of k-algebras with kernel I(X).
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Definition 1.30. Let X C A™(k) be an affine algebraic set. The k-algebra
[(X):=k[Ty,...,T,]/I1(X) = Hom(X, A (k))
is called the affine coordinate ring of X.

For z = (z1,...,2,) € X we denote by m, the ideal
m, ={fel(X); f(z) =0} CT(X).

It is the image of the maximal ideal (T} — x1,...,T, — z,,) of T'(A"(k)) = k[L] under
the projection 7: k[I] — T'(X). In other words, m, is the kernel of the evaluation
homomorphism I'(X) — k, f — f(z). As the evaluation homomorphism is clearly
surjective, m, is a maximal ideal and we find I'(X)/m, = k.

If a CT'(X) is an ideal, consider

Ve)={zeX;Vfca: f(z)=0}=V(n*a)NX.

Thus the V' (a) are precisely the closed subsets of X if we consider X as a subspace of
A" (k). This topology is again called the Zariski topology. For f € I'(X) we set

D(f)={zeX; fx) #0} = X\ V(f).
These are open subsets of X, called principal open subsets.

Lemma 1.31. The open sets D(f), f € T(X), form a basis of the topology (i.e., for every
open subset U C X there exist f; € I'(X), i € I, with U = J; D(f;)). Finite intersections
of principal open subsets are again principal open.

Proof. Clearly we have D(f)ND(g) = D(fg) for f,g € I'(X). It remains to show the first
statement: Every open subset U is a union of principal open subsets. We write U = X'\ V (a)
for some ideal a. For generators fi,..., f, of this ideal we find V(a) =, V(f:), and
hence U = JI_; D(f:). O

Proposition 1.32. Let X be an affine algebraic set. The affine coordinate ring T'(X) is
a reduced finitely generated k-algebra. Moreover, X is irreducible if and only if I'(X) is
an integral domain.

Proof. As T'(X) = k[T]/I(X), it is a finitely generated k-algebra. As I(X) = rad(I(X)),
we find that I'(X) is reduced. Proposition 1.20 shows that X is irreducible if and only if
I(X) is a prime ideal, that is, if and only if I'(X) is an integral domain. O

(1.11) The equivalence between the category of affine algebraic sets and re-
duced finitely generated algebras.

Let f: X — Y be a morphism of affine algebraic sets. The map
I'(f): Hom(Y,A'(k)) — Hom(X,A'(k)), g+ gof

defines a homomorphism of k-algebras. We obtain a functor
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I': (affine algebraic sets)°P? — (reduced finitely generated k-algebras).

Proposition 1.33. The functor I' induces an equivalence of categories. By restriction
one obtains an equivalence of categories

I: (¢rreducible affine algebraic sets)°P® — (integral finitely generated k-algebras).

Proof. We show that I' is fully faithful, i.e., that for affine algebraic sets X C A™(k),
Y C A"(k) the map I': Hom(X,Y) — Hom(I'(Y), (X)) is bijective. We define an inverse
map. If ¢: T'(Y) — I'(X) is given, there exists a k-algebra homomorphism ¢ that makes
the following diagram commutative

1 KT, T

i i

rYy)—*% - r(x).

E[T!,.... T

We define f: X — Y by

f@) = (@(T) (@), .., &(T})(x))

and obtain the desired inverse map.

It remains to show that the functor is essentially surjective, i.e., that for every reduced
finitely generated k-algebra A there exists an affine algebraic set X such that A = T'(X).
By hypothesis, A is isomorphic to k[Ti,...,T,]/a, where a C k[T] is an ideal with
a=rada. If we set X = V(a) C A"(k), we have I'(X) = k[T, ..., T,]/a.

That this equivalence induces an equivalence of the category of irreducible affine
algebraic sets with the category of integral finitely generated k-algebras follows from
Proposition 1.32. O

Using the bijective correspondence between points of affine algebraic sets X and
maximal ideals of T'(X), we also have the following description of morphisms.

Proposition 1.34. Let f: X — Y be a morphism of affine algebraic sets and let
L(f): T(Y) = I'(X) be the corresponding homomorphism of the affine coordinate rings.
Then T(f)~'(mg) = my, for all z € X.

Proof. This follows from g(f(z)) = T'(f)(g)(z) for g € T(Y) = Hom(Y, Al(k)). O

(1.12) Definition of spaces with functions.

We will now define the notion of a space with functions. For us this will be the prototype
of a “geometric object”. It is a special case of a so-called ringed space on which the notion
of a scheme will be based.

Definition 1.35. Let K be a field.

(1) A space with functions over K is a topological space X together with a family Ox
of K-subalgebras Ox(U) C Map(U, K) for every open subset U C X that satisfy the
following properties:
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(a) IfU" CU C X are open and f € Ox(U), the restriction fy € Map(U’, K) is
an element of Ox (U").
(b) (Aziom of Gluing) Given open subsets U; C X, i € I, and f; € Ox(U;), i € I,
with
fijvinu; = fjjuinu;  foralli,jel,
the unique function f: \J, Ui — K with f\y, = fi for all i € I lies in Ox (U, Us).
The space with functions (X, Ox) will often be simply denoted by X .
(2) A morphism g: (X, 0x) — (Y, Oy) of spaces with functions is a continuous map
g: X — Y such that for all open subsets V. C'Y and functions f € Oy (V) the
function f o gig-1vy: g~ H (V) = K lies in Ox (g~ (V).

Clearly spaces with function over K form a category.

Definition 1.36. Let X be a space with functions and let U C X be an open subspace.
We denote by (U, Ox v ) the space U with functions

Oxiu(V)=0x(V) forV CU open.

If not stated explicitly otherwise, from now on we will consider only spaces with
functions over our fixed algebraically closed field k.

(1.13) The space with functions of an affine algebraic set.

Let X C A™(k) be an irreducible affine algebraic set. It is endowed with the Zariski
topology and we want to define for every open subset U C X a k-algebra of functions
Ox (U) such that (X, Ox) is a space with functions.

As X is irreducible, the k-algebra I'(X) is a domain, and by definition all the sets
Ox (U) will be k-subalgebras of its field of fractions.

Definition 1.37. The field of fractions K(X) := Frac(I'(X)) is called the function field
of X.

If we consider I'(X) as the set of morphisms X — Al(k), elements of the function field
5, fyg9 € T(X), g # 0 usually do not define functions on X because the denominator

may have zeros on X, but £ certainly defines a function D(g) — A'(k) (it might be even
defined on a bigger open subset of X as there exist representations of the fraction with
different denominators). We will use functions of this kind to make X into a space with
functions.

Lemma 1.38. Let X be an irreducible affine algebraic set and let é% and g—z be elements of
K(X) (f1, f2, 91,92 € T(X)), such that there exists a non-empty open subset U C D(g1g2)

with:
fi(z) _ fa(x)
gi(x)  ga(x)

Ve eU:

Then L1 = L2 in K(X).
g1 92

Proof. The closed subset V(f1g2 — f291) of X contains the dense subset U and is hence
equal to X. That implies that figs — fog1 = 0, because I'(X) is reduced. The lemma
follows. O
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Definition 1.39. Let X be an irreducible affine algebraic set and let ) # U C X be open.
We denote by m,, the mazimal ideal of T'(X) corresponding to x € X and by I'(X)m, the
localization of the affine coordinate Ting with respect to m,. We define

Ox(U)= () T(X)m, C K(X).
zeU

We let Ox(0) be a singleton.

The localization I'(X )y, can be described in this situation as the union

IX)m, = | T KX).
FET(X)\my

To consider (X, Ox) as space with functions, we first have to explain how to identify
elements f € Ox (U) with functions U — k. Given x € U the element f is by definition
in I'(X)m, and we may write f = ¢ with g,h € I'(X), h ¢ m,. But then h(x) # 0 and we
may set f(x) := % € k. The value f(x) is well defined and Lemma 1.38 implies that
this construction defines an injective map Ox (U) — Map(U, k).

If ) #V C U C X are open subsets we have Ox (U) C Ox (V) by definition and
this inclusion corresponds via the identification with maps U — k resp. V' — k to the
restriction of functions.

To show that (X, Ox) is a space with functions, we still have to show that we may glue
functions together. But this follows immediately from the definition of &x (U) as subsets
of the function field K (X). We call (X, Ox) the space with functions associated with X.
Functions on principal open subsets D(f) can be explicitly described as follows.

Proposition 1.40. Let (X, Ox) be the space with functions associated to the irreducible
affine algebraic set X and let f € I'(X). Then there is an equality

Ox(D(f)) =T(X)y
(as subsets of K(X)). In particular Ox(X) =T(X) (taking f =1).
Proof. Clearly we have T'(X); C Ox(D(f)). Let g € Ox(D(f)) and set
a={heT(X); hgeT(X)}.

Obviously a is an ideal of T'(X) and we have to show that f € rad(a). By Hilbert’s
Nullstellensatz we have rad(a) = I(V(a)). Therefore it suffices to show f(x) = 0 for all
x € V(a). Let € X be a point with f(z) # 0, i.e., z € D(f). As g € Ox(D(f)), we find

91,92 € I(X), g2 ¢ mg, with g = 2. Thus g5 € a and as gz(z) # 0 we have x ¢ V(a). O

Remark 1.41. If X is an irreducible affine algebraic set, U C X open, and f € Ox(U),
there do not necessarily exist g, h € I'(X) with f = £ € K(X) and h(z) # O forall z € U.
Only locally on U we can always find such a representation of f. An example for this
situation will be given when we learn dimension theory (Example 5.36). At least, it is
easy to see that this problem cannot occur if I'(X) is factorial, e.g. if X = A" (k).

Remark 1.42. The proposition shows that we could have defined (X, Ox) also in
another way, namely by setting
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Ox(D(f)) =T(X)y for f € I(X).

As the D(f) for f € T'(X) form a basis of the topology, the axiom of gluing implies that
at most one such space with functions can exist. It would remain to show the existence
of such a space (i.e., that for f,g € I'(X) with D(f) = D(g) we have I'(X); = I'(X),
and that gluing of functions is possible). This is more or less the same as the proof
of Proposition 1.40. The way we chose is more comfortable in our situation. For affine
schemes we will use the other approach (see Chapter 2).

Remark 1.43. If A is an integral finitely generated k-algebra we may construct the space
with functions (X, Ox) of “the” corresponding irreducible affine algebraic set (uniquely
determined up to isomorphism by Proposition 1.33) directly without choosing generators
of A. Namely, we obtain X as the set of maximal ideals in A. Closed subsets of X are
sets of the form

V(a)={m C Amaximal ; mDa}, aC A an ideal
For an open subset U C X we finally define

Ox(U)= () Am C Frac(A).
meU

This defines a space with functions (X, €x) which coincides with the space with functions
of the irreducible affine algebraic set X corresponding to A. This approach is the point of
departure for the definition of schemes.

(1.14) The functor from the category of irreducible affine algebraic sets to the
category of spaces with functions.

Proposition 1.44. Let X, Y be irreducible affine algebraic sets and f: X —Y a map.

The following assertions are equivalent.

(i) The map f is a morphism of affine algebraic sets.

(ii) If g e T(Y), then go f e I'(X).

(iii) The map [ is a morphism of spaces with functions, i.e., f is continuous and if
UCY open and g € Oy (U), then go f;-1wy € Ox(f~HU)).

Proof. The equivalence of (i) and (ii) has already been proved in Proposition 1.33.
Moreover, it is clear that (ii) is implied by (iii) by taking U =Y. Let us show that (ii)
implies (iii). Let ¢: T'(Y) — T'(X) be the homomorphism h +— ho f. For g € T'(Y) we
have
FU(D(g) = {2 € X ; g(f(x) £ 0} = D((g)).

As the principal open subsets form a basis of the topology, this shows that f is continuous.
The homomorphism ¢ induces a homomorphism of the localizations I'(Y")y — T'(X)(g)-
By definition of ¢ this is the map Oy (D(g)) = Ox(D(¢(g))), h+ ho f. This shows
the claim if U is principal open. As we can obtain functions on arbitrary open subsets of
Y by gluing functions on principal open subsets, this proves (iii). O

Altogether we obtain
Theorem 1.45. The above construction X — (X, Ox) defines a fully faithful functor

(Irreducible affine algebraic sets) — (Spaces with functions over k).
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Prevarieties

We have seen that we can embed the category of irreducible affine algebraic sets into the
category of spaces with functions. Of course we do not obtain all spaces with functions in
this way. We will now define prevarieties as those connected spaces with functions that
can be glued together from finitely many spaces with functions attached to irreducible
affine algebraic sets. This is similar to the way a differentiable manifold can be glued from
open subsets of R” endowed with their differentiable structure (see Remark 1.49).

(1.15) Definition of prevarieties.

We call a space with functions (X, Ox) connected, if the underlying topological space X
is connected.

Definition 1.46.

(1) An affine variety is a space with functions that is isomorphic to a space with functions
associated to an irreducible affine algebraic set.

(2) A prevariety is a connected space with functions (X, Ox) with the property that
there exists a finite open covering X = U?Zl U; such that the space with functions
(Ui, Ox\v,) is an affine variety for all i =1,...,n.

(3) A morphism of prevarieties is a morphism of spaces with functions.

We remind the reader that by convention the empty topological space is not connected,
whence the empty space with functions is not a prevariety.

We obtain the category of prevarieties. Clearly affine varieties are examples of prevari-
eties. At this moment we cannot explain why we speak of affine varieties instead of affine
prevarieties. Later (in Chapter 9) we will define varieties as “separated” prevarieties and
see that affine varieties in the above sense are always “separated”.

If X is an affine variety, we often write I'(X) instead of &x(X) as we have seen that
Ox (X) is the affine coordinate ring of the corresponding irreducible affine algebraic set.

By Proposition 1.33 and Theorem 1.45 we obtain:

Corollary 1.47. The following categories are equivalent.

(i) The opposite category of the category of integral finitely generated k-algebras.
(ii) The category of irreducible affine algebraic sets.

(iii) The category of affine varieties.

We define an open affine covering of a prevariety X to be a family of open subspaces
with functions U; C X, ¢ € I that are affine varieties such that X = Uz U;.

Proposition 1.48. Let (X, Ox) be a prevariety. The topological space X is noetherian
(in particular quasi-compact) and irreducible.

Proof. The first assertion follows from Lemma 1.24, the second one from Lemma 1.19. [
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Remark 1.49. (Comparison with differential/complex manifolds) In differential
geometry (resp. complex geometry) the notion of a differentiable manifold (resp. a complex
manifold) is often defined by charts with differentiable (resp. holomorphic) transition
maps. This is problematic in our situation because we cannot consider open subsets of
affine algebraic sets again as affine algebraic sets. But on the other hand it is possible to
use our approach in differential or complex geometry.

If we define for a differentiable manifold X the system &x of R-valued functions by
Ox(U) = C>(U) for U C X open, we obtain a fully faithful functor X — (X, Ox) from
the category of differentiable manifolds into the category of spaces with functions over R.
Thus one could define differentiable manifolds also as those spaces with functions over R
whose underlying topological space is Hausdorff and that have open coverings of those
spaces with functions that are attached in the above way to open subsets of R™. Similarly,
using holomorphic functions, one can define complex manifolds.

(1.16) Open Subprevarieties.

We are now able to endow open subsets of affine varieties, and more general of prevarieties,
with the structure of a prevariety. Note that in general open subprevarieties of affine
varieties are not affine, see Exercise 1.13.

Lemma 1.50. Let X be an affine variety, f € T'(X) = Ox(X), and let D(f) C X be
the corresponding principal open subset. Let T'(X) s be the localization of T'(X) by f and
let (Y, Oy) be the affine variety corresponding to this integral finitely generated k-algebra.
Then (D(f), Ox|ps)) and (Y, Oy) are isomorphic spaces with functions. In particular,
(D(f),Ox|p(y)) is an affine variety.

Proof. Let X C A™(k) and a = I(X) C k[T1,...,T3] be the corresponding radical
ideal. We consider k[T1,...,T,] as a subring of k[T},...,T,+1] and denote by o’ C
k[T, ..., Th4+1] the ideal generated by a and the polynomial 75,11 — 1. Then the affine
coordinate ring of Y is I'(Y) = I'(X) s Z k[T1, ..., Th+1]/d, and we can identify ¥ with
V(d') C A"HL(E).

The projection A"+1(k) — A"™(k) to the first n coordinates induces a bijective map

31 Y ={(z,2041) € X x A'(k) 5 zpp1f(2) =1} = D(f) ={z € X ; f(x) #0}.

We will show that j is an isomorphism of spaces with functions. As a restriction of a
continuous map, j is continuous. It is also open, because for fiN eI'(Y) (with g € T'(X))
we have j(D(fiN)) =4(D(gf)) = D(gf). Thus j is a homeomorphism.

It remains to show that for all g € I'(X) the map Ox(D(fg)) > I'(Y)y, s+ soj,is
an isomorphism. But we have Ox(D(fg)) = I'(X)sy = I'(Y),, and this identification
corresponds to the composition with j. O

Proposition 1.51. Let (X, Ox) be a prevariety and let U C X be a non-empty open
subset. Then (U, Ox|u) is a prevariety and the inclusion U — X is a morphism of
prevarieties.

Proof. As X is irreducible, U is connected (Proposition 1.15). The previous lemma shows
that U can be covered by open affine subsets of X. As X is noetherian, U is quasi-compact
(Lemma 1.25). Thus a finite covering suffices. O
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The open affine subsets of a prevariety X (i.e., open subsets U of X such that (U, Ox )
is an affine variety) form a basis of the topology of X because this holds by Lemma 1.50
for affine varieties, and X is covered by open affine subvarieties by definition.

(1.17) Function field of a prevariety.

Let X be a prevariety. If U,V C X are non-empty open affine subvarieties, then U NV
is open in U and non-empty. We have Ox (U) C Ox(UNV) C K(U) by the definition
of functions on U, and therefore Frac(Ox (U NV)) = K(U). The same argument for V'
shows K(U) = K(V). Thus the function field of a non-empty open affine subvariety U of
X does not depend on U and we denote it by K(X).

Definition 1.52. The field K(X) is called the function field of X.

Remark 1.53. Let f: X — Y be a morphism of affine varieties. As the corresponding
homomorphism I'(Y) — I'(X) between the affine coordinate rings is not injective in
general, it does not induce a homomorphism of function fields K(Y) — K(X). Thus
K(X) is not functorial in X. But if f: X — Y is a morphism of prevarieties whose
image contains a non-empty open (and hence dense) subset, f induces a homomorphism
K(Y) - K(X). We will see in Theorem 10.19 that every morphism with dense image
satisfies this property (see also Exercise 10.1). Such morphisms will be called dominant.

Proposition 1.54. Let X be a prevariety and U C X a non-empty open subset. Then
Ox(U) is a k-subalgebra of the function field K(X). If U’ C U is another non-empty
open subset, the restriction map O(U) — O(U') is the inclusion of subalgebras of K(X).
If U,V C X are arbitrary non-empty open subsets, then Ox(UUV) = Ox(U)N Ox (V).

Proof. Let f: U — Al(k) be an element of &x (U). Then its vanishing set f~(0) C U
is closed as f is continuous and {0} C Al(k) is closed. Therefore if the restriction of f
to U’ is zero, f is zero because U’ is dense in U. This shows that restriction maps are
injective. The axiom of gluing implies therefore Ox (U U V) = Ox(U) N Ox (V) for all
open subsets U,V C X. O

(1.18) Closed subprevarieties.

Let X be a prevariety and let Z C X be an irreducible closed subset. We want to define
on Z the structure of a prevariety. For this we have to define functions on open subsets U
of Z. We define:

Oy(U)={feMap(U,k); VeeU: Iz €V C X open, g € Ox(V): flunv = gjunv }-
The definition shows that (Z, 07) is a space with functions and that &% = Ox. Once we

have shown the following lemma, we will always write €z (instead of 07).

Lemma 1.55. Let X C A™(k) be an irreducible affine algebraic set and let Z C X be an
irreducible closed subset. Then the space with functions (Z,0z) associated to the affine
algebraic set Z and the above defined space with functions (Z, 0%) coincide.
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Proof. In both cases Z is endowed with the topology induced by X. As the inclusion
Z — X is a morphism of affine algebraic sets it induces a morphism (Z,0z) — (X, Ox).
The definition of €7, shows that €% (U) C 0z (U) for all open subsets U C Z.
Conversely, let f € 04 (U). For x € U there exists h € T'(Z) with z € D(h) CU. The
restriction fp) € Oz(D(h)) =T'(Z) has the form f =%, n >0, g € I'(Z). We lift g

and h to elements in §,h € T'(X), set V := D(h) C X, and obtain z € V, }% € Ox(D(h))

and flunv = 5 unv. U

As a corollary of the lemma we obtain:

Proposition 1.56. Let X be a prevariety and let Z C X be an irreducible closed subset.
Let Oz be the system of functions defined above. Then (Z,0z) is a prevariety. The
inclusion Z — X is a morphism of prevarieties.

Projective varieties

By far the most important example of prevarieties are projective space P"(k) and sub-
varieties of P"(k), called (quasi-)projective varieties. In this subchapter we will define
the projective space as a prevariety. Closed subprevarieties of P (k) are vanishing sets
of homogeneous polynomials. They are called projective varieties. We will study several
examples.

(1.19) Homogeneous polynomials.

To describe the functions on projective space we start with some remarks on homogeneous
polynomials. Although in this chapter we will only deal with polynomials with coefficients
in k, it will be helpful for later applications to work with more general coefficients. Thus
let R be an arbitrary (commutative) ring.

Definition 1.57. A polynomial f € R[Xy,...,Xy] is called homogeneous of degree
d € Z>o, if f is the sum of monomials of degree d.

If R is an integral domain with infinitely many elements (e.g., R = k), a polynomial
f € R[Xy,...,X,] is homogeneous of degree d if and only if

fA\zo, ..., dzn) = Nf(zo,...,x,) forall zg,...,z, € R, 0#ANER

(see Exercise 1.20).

The zero polynomial is homogeneous of degree d for all d. We denote by R[Xo, ..., X,]q
the R-submodule of all homogeneous polynomials of degree d. As we can decompose
uniquely every polynomial into its homogeneous parts, we have

R[Xo,...,Xn] = EBR[XO, L Xa
d>0
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Lemma 1.58. Let i € {0,...,n} and d > 0. There is a bijective R-linear map

o, =0 R[Xo,...,X0la S {g€R[Ty,....Ts...,T,] ; deg(g) <d},
o f(To,.. 1, T).

(Elements of a tuple with = are omitted.)

Proof. We construct an inverse map. Let g be a polynomial in the right hand side set
and let g = Zj‘:o g; be its decomposition into homogeneous parts (with respect to T, for
£=0,...,n, £ #1). Define

d
Ui(g) = X gi(Xo,... . X, Xa).

=0

It is easy to see that ®; and U; are inverse to each other (as both maps are R-linear, it
suffices to check this on monomials). O

The map ®; is called dehomogenization, the map ¥; homogenization (with respect to
X;). For f € R[Xo,...,Xy]a and g € R[Xy,...,X,]e (with d,e > 0) the product fg is
homogeneous of degree d + e and we have

(1.19.1) o\ ()l (g) = " (fg).

If R = K is a field, we will extend homogenization and dehomogenization to fields of
fractions as follows. Let F be the subset of K (Xj,...,X,) that consists of those elements
5, where f,g € K[Xy,...,X,] are homogeneous polynomials of the same degree. It is
easy to check that F is a subfield of K(Xj,...,Xy,). By (1.19.1) we have a well defined
isomorphism of K-extensions

~ = f @)
1.19.2 O FS3K(To,..., Ty Th), L .
Often, we will identify K (T, ... ,ﬁ, ..., T;,) with the subring K();?j Yoy )f(") of the field

K(Xo,...,X,). Via this identification the isomorphism (1.19.2) can also ‘be described
as follows. Let 5 € F with f,g € K[Xo,...,X]q for some d. Set f = and g = -Z

X7
Then f,§ € K[))g“,,))%} and @i(g) =

~

x4

Qi

(1.20) Definition of the projective space P" (k).

The projective space P™(k) is an extremely important prevariety within algebraic geometry.
Many prevarieties of interest are subprevarieties of the projective space. Moreover, the
projective space is the correct environment for projective geometry which remedies the
“defect” of affine geometry of missing points at infinity. For example, in A?(k) there exist
lines that do not meet (namely parallel lines) but we will see in Section (1.23) that two
different lines in the projective plane always meet in one point.

As a set we define for every field &k (not necessarily algebraically closed)

(1.20.1) P"(k) = {lines through the origin in k"*} = (k"1 \ {0})/k*.
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Here a line through the origin is per definition a 1-dimensional k-subspace and we
denote by (k"+1\ {0})/k* the set of equivalence classes in k" 1\ {0} with respect to the
equivalence relation

(s .. ) ~ (T4 xy,) & INERS (Vi a; = ).

Then the second equality in (1.20.1) is given by attaching to the equivalence class of
(zo,...,2y) the 1-dimensional subspace generated by this vector. The equivalence class
of a point (zo,...,z,) is denoted by (z¢ : ... : z,). We call the x; the homogeneous
coordinates on P™ (k).

To endow P" (k) with the structure of a prevariety we will assume from now on that k
is algebraically closed. The following observation is essential: For 0 < i < n we set

U ={(zo:...:@,) €P™(k); z #0} CP"(k).
This subset is well-defined and the union of the U; for 0 < i < n is all of P*(k). There are
bijections
Ui — A™(k), (x0:...:2,) (xo,...,xi,...xn>.

Via this bijection we will endow U; with the structure of a space with functions,
isomorphic to (A" (k), Oan(x), which we denote by (U;, Oy, ). We want to define on P" (k)
the structure of a space with functions (P"(k), Opn(y)) such that U; becomes an open
subset of P"(k) and such that Opn(yyju, = Oy, for all i = 0,...,n. As |J,U; = P"(k)
there is at most one way to do this:

We define the topology on P (k) by calling a subset U C P™(k) open if UNU; is open in
U; for all i. This defines a topology on P" (k) as for all i # j the set U;NU; = D(T;) C U; is
open (we use here on U; = A" (k) the coordinates T, . . . T, ... , Tr). With this definition,
(Ui)o<i<n is an open covering of P™(k).

We still have to define functions on open subsets U C P™(k). We set

Opn i) (U) ={ f € Map(U, k) ; Vi €{0,...,n}: flunu, € Ou,(UNU;) }.

It is clear that this defines the structure of a space with functions on P"(k), although we
still have to see that Opn (v, = Oy, for all i. This follows from the following description
of the k-algebras Opn () (U) using the inverse of the isomorphism (1.19.2) of the function

field k(To,...,T;,...,T,) of U; with the subfield F of k(Xy,...,X,).
Proposition 1.59. Let U C P"(k) be open. Then

Opniy(U) ={f: U —=k;VxeU3IxrecV CU open and
g,h € E[Xo,...,X,] homogeneous of the same degree
(v)

such that h(v) #0 and f(v) = % for allv e V}.

Proof. Let f € Opn(1y(U). As flunu, € Oy, (U NU;), the function f has locally the form
% with §,h € k[Tp, ... T, ,Tn]. Applying the inverse of (1.19.2) yields the desired
form of f.

Conversely, let f be an element of the right hand side. We fix i € {0,...,n}. Thus
locally on U N U; the function f has the form { with g,h € k[Xo, ..., Xy]q for some d.

Once more applying the isomorphism (1.19.2) we obtain that f has locally the form
with g, i € k[To, ..., T, ..., Ty]. This shows funu, € Op, (UNU;).

RS
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Corollary 1.60. Leti € {0,...,n}. The bijection U; = A™(k) induces an isomorphism
(Ui, Opn iy v,) = A™ (k).
of spaces with functions. The space with functions (P"(k), Opn (1)) is a prevariety.

Proof. The first assertion follows from the proof of Proposition 1.59. This shows that
P (k) is a space with functions that has a finite open covering by affine varieties. Moreover,
Lemma 1.19 shows that P"(k) is irreducible. O

The function field K (P"(k)) (Section (1.17)) of P™(k) is by its very definition the
function field K(U;) = k;(XO ,7”) of U;. Using the isomorphism ®; (1.19.2), we
usually describe K (P"(k)) as the field

(1.20.2) K(P"(k))={f/g9; f,g € k[Xo,...,Xy] homog. of the same degree, g # 0 }.

For 0 < i,j < n the identification of K (U;) = K(U;) is given abstractly by ®; o ®;'.
This can be described explicitly as

X() Xn XO Xn
K =k . k|l —,....— | = K(U;
(U) <Xz’ ) Xﬁ) — <Xja ) X]) (U])7

X XX X
X, X, X, X,

i.e., as subfields of K (Xy,...,X,), all the K(U;) coincide, and coincide with K (P"(k)),
and the isomorphism induced by our identifications is the identity map. We use these
explicit descriptions to prove the following result.

Proposition 1.61. The only global functions on P"(k) are the constant functions, i.e.,
Opn iy (P"(k)) = k. In particular, P"(k) is not an affine variety for n > 1.

Proof. By Proposition 1.54 we have
Xo X,
Opn " =
ey (B (0) = [ Oeny(Ui) = ) ’f[ Xi:| k,
0<i<n 0<i<n

where the intersection is taken in K (P"(k)). The last assertion follows because if P" (k)
were affine, its set of points would be in bijection to the set of maximal ideals in the ring
k = Opn i) (P"(k)). This implies that P™(k) consists of only one point, so n = 0. O

(1.21) Projective varieties.

Definition 1.62. A prevariety is called a projective variety if it is isomorphic to a closed
subprevariety of a projective space P™(k).

As in the affine case, we speak of projective varieties rather than prevarieties. Similarly,
we will talk about subvarieties of projective space, instead of subprevarieties. For an
explanation why this is legitimate, we refer to Chapter 9.
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Forx = (zg : -+ : x,) € P*(k) and f € k[Xo, ..., X,] the value f(zo,...,x,) obviously
depends on the choice of the representative of x and we cannot consider f as a function
on P*(k). But if f is homogeneous, at least the question whether the value is zero or
nonzero is independent of the choice of a representative. Thus we define for homogeneous

polynomials fi,..., fm € k[Xo, ..., X,] (not necessarily of the same degree) the vanishing
set
V+(f1,...7fm) = {(LEO Lt xn) (S ]P)’ﬂ(k) ) V] : fj(l’o,...,xn) = 0}
Subsets of the form Vi (fi,..., fm) are closed. More precisely we have for i =0,...,n:

V+(f1, .. .,fm) nU; = V(q)i(fl)7 e '7(I)i(fm))=

where ®; denotes as usual dehomogenization with respect to X;. We will see that all
closed subsets of the projective space are of this form.
To do this we consider the map

Fo AP R A0} = P(R), (@0, s@n) > (0 o+t 20).

As for all 4 its restriction f)s—1(y,): f ~Y(U;) — Uj; is a morphism of prevarieties, this also
holds for f. If Z C P"(k) is a closed subset, f~1(Z) is a closed subset of A"™1(k)\ {0}
and we denote by C(2) its closure in A"*!(k). Affine algebraic sets X C A" (k) are
called affine cones if for all z € X we have Az € X for all A € k*. Clearly C(Z) is an
affine cone in A"*1(k). It is called the affine cone of Z.

Proposition 1.63. Let X C A" (k) be an affine algebraic set such that X # {0}. Then
the following assertions are equivalent.

(i) X is an affine cone.

(ii) I(X) is generated by homogeneous polynomials.

(iil) There exists a closed subset Z C P™(k) such that X = C(Z).

If in this case I(X) is generated by homogeneous polynomials fi,..., fm € k[Xo,..., Xn],
then Z =Vi(f1,..., fm)-

Proof. We have already seen that (iii) implies (i). Let us show that (i) implies (ii). To show
that I(X) is generated by homogeneous elements, we use that an ideal a C k[T] is generated
by homogeneous elements if and only if for each g € a its homogeneous components
are again in a. Thus let g € I(X) and write g = )~ , g4, where gq is homogeneous of
degree d. As X is an affine cone, we have g(Ax) = 0 for all x = (z¢,...,z,) € X and
A € k. If there existed g4 ¢ I(X), we would find z € X such that g4(x) # 0. Then
> 49a(z)T? € k[T is not the zero polynomial and there exists a A € k* with

0# Y ga(@)A! =" ga(Az) = g(A\z) = 0.
d d

Contradiction!
If I(X) is generated by homogeneous polynomials, finitely many suffice, say fi,..., fm.
Then it is clear that for Z := V.. (f1,..., fm) we have X =V (I(X)) = C(Z). O

In particular we see that for every closed subset Z C P™(k) there exist homogeneous
polynomials f1,..., fr € k[Xo,...,X,] such that Z =V, (f1,..., fm)-
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(1.22) Change of coordinates in projective space.

Let A = (aij)ij=0,..n € GLnt1(k) be an invertible (n + 1) x (n + 1)-matrix. The
map k"1 — k"1 described by A maps one-dimensional subspaces to one-dimensional
subspaces and induces a map P (k) — P"(k). It is given by

n n
(o : - :xp) — (Za(),-xi D Zamxi)
i=0 i=0

and we obtain a morphism of prevarieties which we denote by p4. For A, B € GL,,11(k) we
have pap = papp. In particular, ¢ 4 is an automorphism and we obtain a homomorphism
of groups

¢: GLyy1(k) — Aut(P™(k)).

The automorphism ¢ 4 is called the change of coordinates described by A.

The kernel of ¢ consists of the subgroup Z := { A\I,41 ; A € k* } of scalar matrices. We
will see in Section (11.15) that ¢ is surjective and therefore defines a group isomorphism
PGL,41(k) = Aut(P"(k)). Here PGL,,41(k) := GL,41(k)/Z is the so-called projective
linear group.

(1.23) Linear Subspaces of the projective space.

For m > —1 let ¢: k™! — k™! be an injective homomorphism of k-vector spaces.
It maps one-dimensional subspaces of k™! to one-dimensional subspaces of k"*! and
we obtain an injective morphism ¢: P™(k) — P"(k) of prevarieties. This is in fact an
isomorphism of P™ (k) onto a closed subprevariety of P™(k): If A = (a;;) € My (ng1)(k)
is a matrix such that Ker A = im¢, then ¢ defines an isomorphism of P™(k) with
V+(f1, ey fg), where fz = Z_?:O a,;ij S k'[Xo, NN 7X7,]

Closed subprevarieties of this form are called linear subspaces of P*(k) of dimension
m. They are precisely those closed subprevarieties Z of P"(k) for which there exists a
subvector space U of dimension m + 1 of k"1 such that Z consists of the one-dimensional
subspaces of k"1 that are contained in U. As GL,41(k) acts transitively on the set of
subvector spaces of k"1 of dimension m + 1, the projective linear group PGL,, (k) acts
transitively by change of coordinates on the set of linear subspaces of P™(k) of dimension
m.

The only linear subspace of dimension —1 is the empty set, the linear subspaces of
dimension 0 are the points. Linear subspaces in P" (k) of dimension 1 (resp. 2, resp. n—1)
are called lines (resp. planes, resp. hyperplanes).

For every two points p # g € P"(k) there exists a unique line in P™(k) that contains p
and ¢. This is clear, because two different one-dimensional subspaces of k™1! are contained
in a unique two-dimensional subspace. We denote this line by pq.

We also see that two different lines in P?(k) always intersect in a unique point: Lines in
P2(k) correspond to two-dimensional subspaces in k2 and any two different two-dimensional
subspaces in k% meet in a unique one-dimensional subspace — which corresponds to a
point in P2(k). Similar assertions can be made for intersections of linear subspaces in
higher-dimensional projective spaces (see Exercise 1.26).

A far reaching generalization for intersections of closed subvarieties of projective spaces
that are given by homogeneous polynomials of arbitrary degree is the Theorem of Bézout
(see Section (5.15) for a special case and Volume II for the general case).
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(1.24) Cones.

Let H C P"(k) be a hyperplane and let p € P"(k) \ H be a point. Let X C H be a
closed subvariety. We define the cone X,p of X over p by

Xap = U qp.
qgeX

This is a closed subvariety of P"(k): Indeed, after a change of coordinates we may assume
H=V,(X,)andp=(0:...:0:1). Then we have

X =Vi(fi,eoos fm) CP"YEk)=H for f; € k[Xo,..., Xn 1]

Let ﬁ be the polynomial f; considered as an element of k[Xo,...,Xn]- Then we obtain
Xap = V+(f1a . 7fm)

This construction can be generalized as follows: We say that two linear subspaces A
and U of P"(k) are complementary if they are defined by subvector spaces U and V of
k"+1 that are complements of each other (i.e., we have A N ¥ = () and the smallest linear
subspace of P™(k) that contains A and ¥ is P"(k) itself).

If A and ¥ are complementary and if X C W is a closed subvariety, we define the cone
X, A of X over A by

(1.24.1) XA=Jah
qeX

where ¢, A = Upe A P is the smallest linear subspace that contains ¢ and A. Then X, A is
a closed subvariety of P"(k). This can be shown directly, similarly as above, or by noticing
that X, A arises by iterating the first construction for points p; which span A.

In Section (13.17) we will generalize this construction and also show that (1.24.1) still
yields a projective variety if we only assume that X N A = (.

(1.25) Morphisms of quasi-projective varieties.

We will now see that morphisms between (open subprevarieties of) projective varieties
are given by homogeneous polynomials — just as morphisms of affine varieties are given
by polynomials.

Definition 1.64. A prevariety is called quasi-projective variety if it is isomorphic to an
open subvariety of a projective variety.

Projective varieties and affine varieties are clearly quasi-projective. Up to isomorphism
quasi-projective varieties are those that are of the form (Y, Oy ), where Y C P*(k) is a
locally closed subspace and where 0y = Ox |y for a closed subvariety X of P"(k) such
that Y is open in X. The structure of a prevariety depends only on Y and not on the
choice of X (although this is not difficult to show, we do not prove it here; once we
identified prevarieties with integral schemes of finite type over k, this follows at once
from the assertion that for every locally closed subspace of a scheme there exists a unique
reduced subscheme structure, see Proposition 3.52).
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Proposition 1.65. Let Y C P"(k) be a quasi-projective variety.
(1) Let fo,..., fm € k[Xo,...,X,] be homogeneous polynomials of the same degree such

that for ally = (yo : ... :yn) €Y there exists an index j such that f;(y) # 0. Then
h:Y = P™E), y— (foly): . .: fm(y))
is a morphism of prevarieties. Another family go, ..., gm € k[Xo, ..., X,] as above

defines the same morphism h if and only if fi(y)g;(y) = f;(¥)gi(y) for ally € Y and
alli,j € {0,...,m}.

(2) Conwversely, let h: Y — P™(k) be a morphism of prevarieties. Then there exists for
every y € Y an open neighborhood U of y in'Y such that hjy is of the above form.

Proof. Our hypotheses imply that h is independent of the choice of representative of y,
and hence is a well-defined map. Let U; = {x € P (k) ; x; # 0}, as usual. It suffices to
show that each component of the restriction

o . e m hy) Ly )
h (UJ)*{yGYafJ(y)#O}%UJ%A (k)a y'_><f](y)aaf](y)vaf](y)>

of h is a morphism of prevarieties. But this follows from Proposition 1.59. The second
assertion in (1) is clear.

Conversely if h: Y — P™(k), y — (ho(y) : ... : hyn(y)), is a morphism, for all y € Y
there exists an open neighborhood U of y such that each component h; is on U of the
form y — F;(y)/G;(y), where F; and G; are homogeneous of the same degree. Clearing
denominators we see that hjy is as in (1). O

Example 1.66. (Projections with center in a linear subspace) Let A and ¥ be comple-
mentary linear subspaces of P (k) of dimensions d and n — d — 1, respectively. E.g., if
d =0, then A is a point and W is a hyperplane not containing A. We define a morphism
pa: P*(k)\ A — ¥ as follows. For z € P"(k) \ A let z, A be the d + 1-dimensional linear
subspace generated by = and A. This subspace intersects ¥ in a unique point which we
define to be pa(x). We call pp a projection with center A.

Let us show that ps is a morphism of prevarieties. After a change of coordinates, we
may assume that

A={(zo: - :an) €EPY; xgp1 = =2, =0},
V={(zg: 1@y EPy;z0="=24=0}
In this case, pa((g : - 2p)) = (0: -+ :0: @gqe1 : -+ : xy) and therefore py is a

morphism by Proposition 1.65.

For y € W the fiber le(y) consists of all z € A, := y, A such that = ¢ A. Therefore
the fiber is an affine space of dimension dim A + 1 which is openly embedded into the
projective space A, = pxl(y) UA.

Consider the special case that A consists of a single point ¢ and let X C P"(k) be a
closed subvariety with ¢ ¢ X. Then pq_l(y) N X =g,y N X and this is a proper closed
subset of the projective line 7,7 (because it does not contain ¢) and hence must be finite.
Thus we have seen that the restriction pj|x has finite fibers.

We will generalize this construction in Remark 8.18 and strengthen the last remark in
Proposition 13.88.
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(1.26) Quadrics.

In this section we assume that char(k) # 2.

Definition 1.67. A quadric is a closed subvariety @ C P (k) of the form V,(q), where
q € k[Xo,...,Xn]2 \ {0} is a non-vanishing homogeneous polynomial of degree 2.

Let Q = V. (q) be a quadric and let 3 be the bilinear form on £"*! corresponding to g,
ie.,

B(v,w) = %(q(v +w) — qv) — q(w)), v,we k"

It is an easy argument in bilinear algebra to see that there exists a basis of k"' such
that the matrix of 8 with respect to this basis is a diagonal matrix with 1 and 0 on its
diagonal. By permuting the basis we may assume that the first entries of the diagonal
are 1’s. Then the change of coordinates induced by the base change matrix yields an
isomorphism Q = V(X2 + -+ X2_;), where r > 1 is the rank of 3, i.e., the number of
1’s. In particular, r is independent of our choice of the basis.

Lemma 1.68. The polynomial X2 + - -+ + X2_, is irreducible if and only if r > 2. The
closed subspace Vi (XZ + -+ + X2_,) of P"(k) is irreducible if and only if r # 2.

Proof. The claims are obvious for 7 = 1. For » = 2 we have
X¢ + X7 = (Xo+ V-1X1)(Xo — V-1X3),
where /—1 € k is an element whose square is —1. Thus we have
Vi (XS + X7) = Vi (Xo + V-1X1) UV (Xo — V—1X3).

As char(k) # 2, this is a decomposition into different irreducible components. For r > 2
it is easy to check that X2 + -+ + X2_, is irreducible (if it were not, we would find a
decomposition into two homogeneous polynomials of degree 1; an easy comparison of
coefficients then yields a contradiction). Therefore Vi (X2 +---+ X2_,) is irreducible. [

For the following proposition we will not give a proof here. With some effort we could
show the result now, but later (Proposition 6.11) it will follow easily from the general
theory, and we use the proposition as one motivation to develop the theory further.

Proposition 1.69. For r # s the quadrics Vi (X3 +---+ X2 1) and Vo (X2 +-- -+ X2_])
are non-isomorphic.

Linear algebra tells us that there exists no change of coordinates of P" (k) that identifies
Vi(XZ+ -+ X2 ) with V4. (Xg + -+ + X2_,). As already mentioned above, we will
see later (Section (11.15)) that all automorphisms of P™(k) are changes of coordinates.

Definition 1.70. Let Q C P*(k) be a quadric and let v > 1 be the unique integer such
that Q =V, (X2 +---+ X2_,). Then we say that Q has dimension n — 1 and rank 7.

Corollary 1.71. Let Q1 and Q2 be quadrics (not necessarily embedded in the same
projective space). Then Q1 and Q2 are isomorphic as prevarieties if and only if they have
the same dimension and the same rank.
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Figure 1.2: The quadric of dimension 1 and rank 2 on the left, and the solution sets in R?
of the equations X2 + Y2 =1 (in the middle), and of XY =1 (on the right). Note that
the latter two equations both define quadrics of rank 3, and in particular are isomorphic
over C.

Proof. The condition is clearly sufficient. By Proposition 1.69 it suffices to show that
two isomorphic quadrics have the same dimension. Let @ C P™(k) be a quadric of rank
r. We show that the transcendence degree over k of the function field (of an irreducible
component) of @ is always equal to the dimension. As isomorphic prevarieties have
isomorphic function field, this shows the corollary. We may assume that Q = V, (X +
<+ X2 }). Forr =1 we have Q = V, (Xo) =2 P"~!(k), and thus K(Q) = k(Ty,...,Th_1)
and trdeg;, K(Q) =n — 1. For r = 2 the two irreducible components Z; and Z; of @ are
given by a linear equation and thus are hyperplanes in P*(k). Thus Z; = P"~!(k) and
hence trdeg, (K(Z;)) =n — 1.

For r > 2 we know that @ is irreducible. We identify A™(k) with the open subset
Uy of points (g : ... : x,) € P*(k) with zg # 0. Then for U := A™(k) N Q we have
U=V(Q+T:+---+T?) C A"(k) and this is a non-empty open affine subset of Q). We
have

K(Q) = K(U) = Quot(I'(U)) = Quot(k[T1, ..., Tn] /(L + T + - + T}))

and again we find trdeg, (K(Q)) =n — 1. O

Example 1.72.

(1) in P*(k): The quadric of rank 2 consists of two points; in particular it is not irreducible.
The quadric of rank 1 consists of a single point.

(2) in P?(k): The quadrics of rank 2 and 3 are shown in Figure 1.2 (as usual we show only
the “R-valued points”, i.e., the solutions of the corresponding equations over R). As a
variety it is isomorphic to P(k): We can assume it is given as Q = V, (Xo X2 — X?),
and then an isomorphism P!(k) — @ is given by (zg : z1) — (2% : zox1 : 29),
cf. Exercise 1.30. The quadric of rank 2 is the union of two different lines, and the
quadric of rank 1 is a line.

(3) in P3(k): Quadrics of rank 4, 3, and 2 are pictured in Figure 1.3.

A quadric Q C P*(k) with rank r and dimension d is called smooth, if r = d + 2, i.e.,
if the rank of a matrix of ¢ is maximal. In Section (6.8) we will define in general when
a prevariety is smooth and see that for quadrics the general definition coincides with
the definition given here. We see that if @) is a quadric of rank r > 2 and dimension
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Figure 1.3: Quadrics of dimension 2 and rank 2, 3, and 4.

d, then Q is a cone Q, A of a smooth quadric @ of dimension r — 2 with respect to a
d — r 4+ 1-dimensional subspace A.

The cases 7 = 1 and r = 2 are “degenerate”: The quadric Q =V, (X3) = V(Xp) is
a hyperplane in P™(k). The additional information that @ is given by the square of an
irreducible polynomial is not visible for the quadric Q. But in the theory of schemes it
will be possible to make a distinction. For r = 2 the quadric Q = V, (X2 + X?) is not
irreducible and therefore not a prevariety in our sense. But again the theory of schemes
will give us a satisfactory tool to deal with “reducible varieties”.

Exercises

Throughout, k£ denotes an algebraically closed field.

Exercise 1.1. (Hilbert’s basis theorem) Let A be a noetherian ring. Show that the
polynomial ring A[T] is again noetherian.

Hint: Consider for an ideal b C A[T] the chain of ideals a; C A, where a; is the ideal
generated by the leading coefficients of all polynomials in b of degree < i.

Exercise 1.2. Show that I(A™(k)) = 0 without using Hilbert’s Nullstellensatz.

Exercise 1.30. Determine all irreducible Hausdorff spaces. Determine all noetherian
Hausdorff spaces. Show that a topological space is noetherian if and only if every open
subspace is quasi-compact.

Exercise 1.4¢. Show that the underlying topological space X of a prevariety is a
T1-space (i.e., for all x,y € X there exist open neighborhoods U of z and V of y with
y¢Uand x ¢ V).

Exercise 1.5.

(a) Consider the twisted cubic curve C = {(t,t*,t%); t € k} C A3(k). Show that C is an
irreducible closed subset of A%(k). Find generators for the ideal I(C).

(b) Let V=V(X?-YZ,XZ — X) C A%(k). Show that V consists of three irreducible
components and determine the corresponding prime ideals.
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Exercise 1.6. Let f € k[X1,...,X,] be a non-constant polynomial. Write f = []\_, f/"
with irreducible polynomials f; such that (f;) # (f;) for all ¢ # j and integers n; > 1.
Show that rad(f) = (f1--- f») and that the irreducible components of V(f) C A™(k) are
the closed subsets V(f;),i=1,...,r.

Exercise 1.7. Let f € k[T}] be a non-constant polynomial. Show that
X, :=V(Ty — f) c A%(k)

is isomorphic to Al(k) and show that X, := V(1 — f13) C AZ%(k) is isomorphic to
AY(k)\ {x1,...,2,} for some n > 1. Show that X; and X» are not isomorphic (look at
the invertible elements of their coordinate rings).

Exercise 1.8. Show that the affine algebraic set V(Y2 — X2 4+ X) C A?(k) is irreducible
and in particular connected. Sketch the set { (z,y) € R? ; y?> = 23 — 2} and show that it
is not connected with respect to the analytic topology on R2.

Exercise 1.90. Describe the union of the n coordinate axes in A™(k) as an algebraic
set.

Exercise 1.10. Identifying Al(k) x A'(k) and A%(k) as sets, show that the Zariski
topology on A2%(k) is strictly finer than the product topology.

Exercise 1.11. We identify the space My (k) of 2 x 2-matrices over k with A*(k) (with
“ Z) € My(k) is nilpotent if A2 = 0 or,

equivalently, if its determinant and trace are zero. Thus if

coordinates a, b, ¢, d). A matrix A =

a:= (a®+ be,d* + be, (a + d)b, (a + d)c), b = (ad — be,a + d),

we have that
V(a)=V(b) ={Ae Myk); A nilpotent }.

Show that rada = b and that V/(b) is an irreducible closed affine cone in My(k) = A*(k)
(the so-called nilpotent cone).

Exercise 1.12.

(a) Let chark # 2 and let Z; = V(U(T —1) — 1) and Zy = V(Y2 — X2(X + 1)) be closed
subsets of A2?(k). Show that (t,u) — (t> — 1,#(t* — 1)) defines a bijective morphism
Z1 — Z5 which is not an isomorphism.

(b) Show that the morphism Al(k) — V(Y2 — X3) C A%(k), t — (t2,3) is a bijective
morphism that is not an isomorphism.

Exercise 1.13. Show that for n > 2 the open subprevariety A™(k) \ {0} C A" (k) is not

an affine variety. Is Al(k) \ {0} affine?

Exercise 1.14. Let X be a prevariety and let Y be an affine variety. Show that the map
Hom(X,Y) — Hompa1)(I'(Y),I'(X)), fr= f"ro=pof,

is bijective. Deduce that Hom (X, A™(k)) = T'(X)™.

Exercise 1.15¢0. Let n > 1 be an integer. We identify M, (k) with the affine space
A"’ (k). Show that the subset GL, (k) C M, (k) is an open affine subvariety. Describe its
coordinate ring I'(GL, (k)).
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Exercise 1.16. Let X be a prevariety. Define on the set of all pairs (U, f), where
) #U C X open and f € T'(U), an equivalence relation by setting (U, f) ~ (V,g) if
there exists () # W C U NV open such that fw = gjw. Define the structure of a field
extension of k on the set of equivalence classes and show that this field extension is
naturally isomorphic to the function field of X.

Exercise 1.170. Let k = C. Show that that Zariski topology on A!(C) = C is coarser
than the complex analytic topology. Show that the exponential function, sine, and cosine,
considered as functions A*(C) — A!(C), are not continuous for the Zariski topology (and
in particular not morphisms of affine varieties).

Exercise 1.180. Let f € k[Xy,..., X,] be homogeneous. Show that

Di(f) ={zeP(k); f(z) #0}

is an open subset of P"(k) and that the open subsets of this form are a basis for the
topology of P (k).

Exercise 1.19. Formulate and prove a projective analogue of Exercise 1.6.

Exercise 1.20. Let K be a field.

(a) Assume that K is infinite. Show that f € K[Xy,...,X,] is homogeneous of degree d
if and only if f(Azo,. .., \z,) = A f(zo,...,2,) for all zg,..., 2, €k, 0 £ N € K.

(b) Let a C K[Xy,...,X,] be an ideal. Show that the following assertions are equiva-
lent.
(i) The ideal a is generated by homogeneous elements.
(ii) For every f € a all its homogeneous components are again in a.
(ili) We have a = @~ a N K[Xo, ..., X]4.
An ideal satisfying these equivalent conditions is called homogeneous.

(¢) Show that intersections, sums, products, and radicals of homogeneous ideals are again
homogeneous.

(d) Show that a homogeneous ideal p C K[Xy,...,X,] is a prime ideal if and only if
fg € p implies f € p or g € p for all homogeneous elements f and g.

(e) Show that every homogeneous ideal a C K[Xj, ..., X,] is contained in the homoge-
neous ideal (Xo, ..., Xp).

Exercise 1.21. Let a C k[Xy, ..., X,] be a homogeneous ideal (Exercise 1.20) and set
Vi(a) :={xz € P"(k); f(x) =0 for all homogeneous f € a}.

Show that the maps a +— Vi (a) and Z — C(Z) define bijections between the following
sets.

(1) The set of homogeneous radical ideals a C k[Xy, ..., X,] with a # (Xo,..., X,).

(2) The set of closed subspaces Z of P (k).

(3) The set of closed affine cones C' C A"1(k) such that C # {0}.

If Z CP™(k) is a closed subset we denote by I (Z) the corresponding homogeneous ideal.
Show that I (Z) = I(C(Z)) and deduce that the following assertions are equivalent.

(i) Z is irreducible.

(ii) I+(Z) is a prime ideal.

(iii) C(Z) is irreducible.
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Exercise 1.22. Let L; and Ly be two disjoint lines in P3(k).

(a) Show that there exists a change of coordinates such that Ly = Vi (X, X1) and
Ly = Vi (X2, X3).

(b) Let Z = Ly U L. Determine the homogeneous radical ideal a such that V(a) = Z
(Exercise 1.21).

Exercise 1.23. Let Z C P*(k) be a projective variety and let p C k[Xo,...,X,] be the
corresponding homogeneous prime ideal (Exercise 1.21). Show that the function field
K(Z) is isomorphic to the ring of rational functions f/g, where f,g € k[Xy,...,X,] are
homogeneous of the same degree, g ¢ p, modulo the ideal of f/g with f € p.

Exercise 1.24. Let n > 1 be an integer. We identify A™(k) with the open subprevariety
Uo={(zo::ay) €Pk); mo#0} of P*(k). For f € k[Ty,...,T,] of degree d let f
be its homogenization in k[Xy, ..., X,]q (with respect to Xj).
Let X =V (a) C A"(k) be an affine algebraic set and define a C k[ Xy, ..., X,,] as the
ideal generated by the elements f for f € a. Let X be the closure of X in P"(k).
(a) Show that X is irreducible if and only if X is irreducible.
(b) Show that X = V. (@) (notation of Exercise 1.21).
(¢) Find generators f1,. .., f; for the ideal I(C) of the twisted cubic curve C' (Exercise 1.5)
such that fi,..., f. do not generate I(C).
(d) Show that X + X defines a bijection between the set of non-empty closed subvarieties
X of A"(k) and closed subvarieties Z of P™(k) with Z N A™(k) # 0.
The closed subset X of P"(k) is called the projective closure of X.

Exercise 1.25. An affine subspace H C A™(k) of dimension m is a subset of the form

v+ W, where v € k™ and W C k™ is a subvector space of dimension m.

(a) Show that affine subspaces are closed subvarieties of A™(k).

(b) Show that attaching to H its projective closure H in P"(k) (Exercise 1.24) defines an
injection of the set of affine subspaces of dimension m of A™(k) into the set of linear
subspaces of dimension m of P"(k). Determine the image of this injection.

(c) Determine those affine algebraic sets in A"*1(k) that are affine cones of linear
subspaces of P (k).

Exercise 1.26. Let Y, Z be linear subspaces of P (k). Show that Y N Z is again a linear
subspace of dimension > dim(Y’) + dim(Z) — n. Deduce that Y N Z is always non-empty
if dim(Y') + dim(Z) > n.

Conversely let Y7, ...,Y, C P"(k) be finitely many linear subspaces and let 0 < d <n
be an integer such that max; dim(Y;) + d < n. Show that there exists a linear subspace
Z of P™(k) of dimension d such that Y; N Z = for all = 1,...,r. Deduce that for any
finite subset X C P"(k) there exists a hyperplane Z of P"(k) such that X N Z = 0.

Exercise 1.27. Let Y be a quasi-projective variety. Show that every finite subset of Y
is contained in an open affine subvariety of Y.
Hint: Exercise 1.26.

Exercise 1.280. Let n > 0 be an integer. Let G be the affine variety GL,41(k)
(Exercise 1.15) and let Ly C k"*! be a fixed one-dimensional subvector space. Show that
the map G — P*(k), g — g(Lo) is a surjective morphism of prevarieties.

Exercise 1.29. Let X be an affine variety.
(a) Show that any morphism P"(k) — X is constant.
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(b) Let Z be a prevariety such that every morphism Z — P!(k) has a closed image (we
will see in Corollary 13.41 that this is the case if Z is a projective variety). Show that
every morphism Z — X is constant.

Hint: Tt suffices to consider the case X = Al(k).

Exercise 1.30. Let n,d > 0 be integers. Let My, ..., My € k[X, ..., X,] be all mono-

mials in Xy, ..., X, of degree d.

(a) Define a k-algebra homomorphism 6: k[Yy,...,Yy] = k[Xo,...,X,] by Vi —» M;
and let a = Kerf. Show that a is a homogeneous prime ideal (Exercise 1.20). Let
V, (a) € PV (k) the projective variety defined by a (Exercise 1.21).

(b) Consider the morphism

vg: PP(k) = PN(k), (o : - :an) = (Mo(xo,..., %) Mn(20,...,2)),

and show that vy induces an isomorphism P"(k) = V, (a) of prevarieties. Is V, (a) a
linear subspace of PV (k)?

(c) Let f € k[Xo,...,X,] be homogeneous of degree d. Show that vg(Vi(f)) is the
intersection of V; (a) and a linear subspace of PV (k).

The morphism vy is called the d-Uple embedding or d-fold Veronese embedding.



®

Check for
updates

2  Spectrum of a Ring

Contents

— Spectrum of a ring as topological space
— Excursion: Sheaves

— Spectrum of a ring as a locally ringed space

In the first chapter we attached to a system of polynomials fi,..., f. € k[T1,...,T,] with
coefficients in an algebraically closed field k its set of zeros in A™(k) = k™. If this set
was irreducible we endowed it with the structure of a space with functions. The spaces
with functions obtained in this way were called affine varieties. This construction gave us
an anti-equivalence of categories between finitely generated domains A over k and affine
varieties X. Here the points of X corresponded to maximal ideals of A.

In a second step we glued finitely many of these affine varieties along open subsets and
called the obtained spaces with functions prevarieties. This allowed us to consider sets of
zeros of homogeneous polynomials in projective space (projective varieties).

We remark that the reasons that we restricted ourselves to irreducible affine varieties
and to the gluing of a finite number of affine varieties were of purely technical nature.
With slightly more work we could have worked with arbitrary closed algebraic subsets to
define (a more general notion of) an affine variety and we could have allowed the gluing
of infinitely many affine varieties.

But as already explained in the third point of Section (1.9) it is unsatisfactory that our
affine varieties depend only on the underlying subset of A™(k). Another major drawback
is the fact that the theory of varieties works for polynomials with coefficients in an
algebraically closed field but not for coefficients in more general rings (as needed in
number theory for example).

It would be desirable to associate to arbitrary rings A a geometric object which
generalizes the construction of affine varieties out of finitely generated domains over an
algebraically closed field. This will be done in the current chapter. In a first step we
associate to A a topological space Spec A. As a set this will be the set of prime ideals
of A. This differs from the approach in the first chapter where the points of an affine
variety corresponded to the maximal ideals. But for arbitrary rings there are “too few”
maximal ideals (e.g. for local rings). Moreover, if ¢: A — B is a ring homomorphism, the
inverse image of a maximal ideal in B is not necessarily a maximal ideal of A while the
analogous statement for prime ideals is true. Thus working with prime ideals we obtain a
functorial construction. This is the content of the first part of this chapter.

But from the topological space Spec A we certainly cannot get back the ring A: For
example for any field K the set Spec K consists of one element only (in the setting of
chapter 1 this ambiguity did not exist, because for any finitely generated algebra A over
an algebraically closed field k, which is itself a field, the natural homomorphism k — A
is an isomorphism by Lemma 1.10). Therefore we again endow Spec A with “functions”.
More precisely, we define a sheaf @gpec 4 of rings on Spec A. Therefore the second part
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of this chapter will be a short excursion in which we present the necessary notions from
the theory of sheaves, which are generalizations of systems of functions. Equipped with
this machinery we can construct Ogpec 4 in the third part of this chapter. Topological
spaces endowed with sheaves of rings are called ringed spaces. In fact, (Spec A, Ogpec 4)
will be always in the subcategory of so-called locally ringed spaces. Locally ringed spaces
isomorphic to (Spec A, Ospec 4) Will be called affine schemes, and we will show that
A — (Spec A, Ospec a) defines an anti-equivalence from the category of rings to the
category of affine schemes.

As for affine varieties the next step then will be to define objects obtained by gluing
affine schemes. This will be done in the next chapter. In this way we will obtain the basic
objects of modern algebraic geometry: schemes.

Spectrum of a ring as a topological space

(2.1) Definition of Spec A as a topological space.
We start with the following basic definition. Let A be a ring. We set
(2.1.1) Spec A :={p C A ; p prime ideal }.

We will now endow Spec A with the structure of a topological space. For every subset M
of A, we denote by V(M) the set of prime ideals of A containing M. Clearly, if a is the
ideal generated by M, V(M) = V(a). For any f € A we write V(f) instead of V({f}).

Lemma 2.1. The map a+— V(a) is an inclusion reversing map from the set of ideals of
A to the set of subsets of Spec A. Moreover, the following relations hold:

(1) V(0) =Spec 4, V(1) =0.

(2) For every family (a;);er of ideals

V(U Cli) = V(Z Cli) = ﬂ V(ai).
i€l iel iel
(3) For two ideals a, o
V(ana)=V(aa)=V(a)uV(a).

Proof. Assertions (1) and (2) are obvious, and (3) is simply the fact that a prime
ideal contains a or a’ if and only if it contains a N a’ or equivalently, if it contains aa’
(Proposition B.2). O

The lemma shows that the subsets V' (a) of Spec A form the closed sets of a topology
on Spec A. This leads us to the following definition.

Definition 2.2. Let A be a ring. The set Spec A of all prime ideals of A with the topology
whose closed sets are the sets V (a), where a runs through the set of ideals of A, is called
the prime spectrum of A or simply the spectrum of A. The topology thus defined is called
the Zariski topology on Spec A.

If x is a point in Spec A, we will often write p, instead of  when we think of z as a
prime ideal of A.
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Note that the definition of Spec A and the sets V' (a) is analogous to the definitions
made in Section (1.1) where we considered the case A = k[T1,...,T,] for an algebraically
closed field k and where the points in V(a) corresponded to the maximal ideals of A
containing a. We will explain in Section (3.13), why working with maximal ideals suffices
for finitely generated algebras over a field.

Again we have a construction to attach ideals to subsets of Spec A: For every subset Y
of Spec A we set

(2.1.2) 1Y) =[] »

pey

We obtain an inclusion reversing map Y +— I(Y") from the set of subsets of Spec A to the
set of ideals of A. Note that I(#) = A. The maps V and I are related as follows.

Proposition 2.3. Let A be a ring, a C A an ideal, and Y a subset of Spec A.

(1) rad(1(Y)) = I(Y).

(2) I(V(a)) =rad(a), V(I(Y)) =Y, where Y denotes the closure of Y in Spec A.
(3) The maps

a—V(a)
{ideals a of A with a = rad(a)} ———— {closed subsets Y of Spec A}
(Y)Y

are mutually inverse bijections.

Proof. The relation a = rad(a) means that for f € A, f™ € a implies already f € a. This
certainly holds for prime ideals and therefore for arbitrary intersections of prime ideals
as well. That proves (1). The first assertion of (2) follows from the fact that the radical
of an ideal equals the intersection of all prime ideals containing it (B.1.1). A closed set
V(b) (for some ideal b) contains Y if and only if b is contained in all prime ideals that
belong to Y. This is equivalent to b C I(Y'). Therefore V(I(Y)) is the smallest closed
subset of Spec A containing Y. This shows the second assertion of (2). Part (3) follows
from (2). O

In particular we see that the closure of a set consisting of only one point « € Spec A is
the set V(p,,) of prime ideals containing p,,.

(2.2) Properties of the topological space Spec A.
Let A be a ring. Let

(2.2.1) D(f) := Da(f) := Spec A\ V()

be the open set of prime ideals of A not containing f. Open subsets of Spec A of this form
are called principal open sets of Spec A. Clearly, D(0) = @, D(1) = Spec A, and more
generally D(u) = Spec A for every unit u € A. As for a prime ideal p and two elements
f,g € A wehave fg ¢ pifand only if f ¢ p and g ¢ p, we find

(2.2.2) D(f) N D(g) = D(fg)-

Lemma 2.4. Let (f;) be a family of elements in A and let g € A. Then D(g) C |, D(f;)
if and only if there exists an integer n > 0 such that g™ is contained in the ideal a generated
by the f;.



44 2 Spectrum of a Ring

Proof. Indeed, D(g) C U, D(fi) is equivalent to V(g) 2 V(a) which is equivalent to
g € rad(a) by Proposition 2.3. O

Applying this to g = 1 it follows that (D(f;)); is a covering of Spec A if and only if the
ideal generated by the f; is equal to A.

Proposition 2.5. Let A be a ring. The principal open subsets D(f) for f € A form
a basis of the topology of Spec A. For all f € A the open sets D(f) are quasi-compact
(Definition 1.22). In particular, the space Spec A is quasi-compact.

Proof. By Lemma 2.1 (2), every closed subset of Spec A is the intersection of closed sets
of the form V(f). By taking complements we see that the D(f) form a basis for the
topology.

Let (gi)icr be a family of elements of A such that D(f) C J,c; D(g:). Then we have
seen above that there exists an integer n > 1 such that f* =3, ; a;g;, where a; € A
and a; =0 for all i ¢ J, J C I a suitable finite subset. Hence D(f) C ;¢ ; D(g;). This
proves that D(f) is quasi-compact by the first part of the proposition. O

Proposition 2.6. Let A be a ring. A subset Y of Spec A is irreducible if and only if
p:=I(Y) is a prime ideal. In this case {p} is dense in Y.

Proof. Assume that Y is irreducible. Let f,g € A with fg € p. Then
Y CV(fg) =V(fIuV(g).

As Y is irreducible, Y C V(f) or Y C V(g) which implies f € p or g € p. L

Conversely let p be prime. Then by Proposition 2.3, Y = V(p) = V(I({p})) = {p}.
Therefore Y is the closure of the irreducible set {p} and therefore irreducible. This implies
that the dense subset Y is also irreducible (Lemma 1.17). O

Note that for arbitrary irreducible subsets Y the prime ideal I(Y") is not necessarily a
point in Y. But this is clearly true if Y is closed or, more generally, if Y is locally closed
(see Exercise 2.8). Together with Proposition 2.3 we obtain:

Corollary 2.7. The map p — V(p) = m s a bijection from Spec A onto the set of
closed irreducible subsets of Spec A. Via this bijection, the minimal prime ideals of A
correspond to the irreducible components of Spec A.

We introduce the following notions, which will be used throughout the book, to deal
with such topological spaces.

Definition 2.8. Let X be an arbitrary topological space.

(1) A point x € X is called closed if the set {x} is closed,

(2) We say that a point n € X is a generic point if {n} = X.

(3) Let x and ' be two points of X. We say that x is a generization of z’ or that 2’ is a
specialization of = if 2’ € {z}. o

(4) A point x € X is called a maximal point if its closure {x} is an irreducible component
of X.

Thus a point nn € X is generic if and only if it is a generization of every point of X.
As the closure of an irreducible set is again irreducible, the existence of a generic point
implies that X is irreducible.
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Example 2.9. If X = Spec A is the spectrum of a ring, the notions introduced in

Definition 2.8 have the following algebraic meaning.

(1) A point z € X is closed if and only if p,, is a maximal ideal.

(2) A point n € X is a generic point of X if and only if p, is the unique minimal prime
ideal. This exists if and only if the nilradical of A is a prime ideal. Thus Proposition 2.6
shows that X is irreducible if and only if its nilradical is a prime ideal.

(3) A point x is a generization of a point «’ (in other words, 2’ is a specialization of z) if
and only if p, C p,/.

(4) A point z € X is a maximal point if and only if p, is a minimal prime ideal.

(2.3) The functor A — Spec A.

We will now show that A +— Spec A defines a contravariant functor from the category of
rings to the category of topological spaces. Let ¢: A — B be a homomorphism of rings.
If q is a prime ideal of B, ¢ ~!(q) is a prime ideal of A. Therefore we obtain a map

(2.3.1) %p = Spec ¢: Spec B — Spec A, q— o (q).

Proposition 2.10. Let ¢: A — B be a ring homomorphism.
(1) For every subset M C A, the relation

Y V(M) = V(p(M))
holds. In particular, for f € A,
Y1 (D(f)) = D(e(f))
(2) For every ideal b of B,

(2.3.2) V(p™'(b)) = %V (0))-

Proof. (1). A prime ideal q of B contains ¢(M) if and only if ¢ ~!(q) contains M.
(2). By Proposition 2.3 (2), we can rewrite the right hand side as V(I (*¢(V(b)))). But

I("e(V(0) = (] ¢ '(a) =¢ "(rad(b)) = rade ™" (b),
qeV(b)

and the claim follows by applying V(—). O

The proposition shows in particular that “¢: Spec B — Spec A is continuous. As
(¢ o ) = “p o %) for any ring homomorphism 1: B — C, we obtain a contravariant
functor A — Spec A from the category of rings to the category of topological spaces.

Corollary 2.11. The map *¢ is dominant (i.e., its image is dense in Spec A) if and
only if every element of Ker(yp) is nilpotent.

Proof. We apply (2.3.2) to b =0. O
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Proposition 2.12. Let A be a ring.

(1) Let ¢: A — B be a surjective homomorphism of rings with kernel a. Then *¢ is a
homeomorphism of Spec B onto the closed subset V(a) of Spec A.

(2) Let S be a multiplicative subset of A and let p: A — S™*A =: B be the canonical
homomorphism. Then %o is a homeomorphism of Spec S™'A onto the subspace of
Spec A consisting of prime ideals p C A with SNp = 0.

Proof. In both cases it is clear that ®¢ is injective with the stated image. Moreover in both
cases a prime ideal q of B contains an ideal b of B, if and only if ¢»~!(q) contains ¢ ~1(b).
This shows that ¢p(V (b)) = V(¢ 1(b)) NIm(%p). Therefore % is a homeomorphism onto
its image. O

Remark 2.13. Let A be a ring and let p,q C A be prime ideals. Proposition 2.12 shows
that for a prime ideal p C A the passage from A to A, cuts out all prime ideals except
those contained in p. The passage from A to A/q cuts out all prime ideals except those
containing q. Hence if q C p localizing with respect to p and taking the quotient modulo
q (in either order as these operations commute) we obtain a ring whose prime ideals are
those prime ideals of A that lie between ¢ and p. For ¢ = p we obtain the field

(2.3.3) k(p) == Ay /pA, = Frac(A/p),
which is called the residue field at p.

(2.4) Examples.

First of all note that Spec A = () if and only if A = {0}. If A is a field or any ring with a
single prime ideal, Spec A consists of a single point. The spectrum of an Artinian ring is
finite and discrete (Proposition B.36).

Example 2.14. Let A be a principal ideal domain (e.g. A =7 or A = k[T for a field
k). In this case, the maximal ideals are of the form (p) for a prime element p of A, and
all prime ideals are maximal or the zero ideal. Therefore the closed points of Spec A
correspond to equivalence classes of prime elements p € A, where p and p’ are called
equivalent if there exists a unit v € A with p’ = up (i.e., p and p’ generate the same
ideal of A). Let n € Spec A be the point with p,, = {0}. Then the closure of {n} is Spec A.

. [ ] ® ® ® ® [ ] [ ] L ] [ ] [ ] LR ]
(0) (2) (3) (5) (7) (11) (13) (17) (19) (23) (29)

Figure 2.1: A schematic picture of the spectrum of Z. The closed points correspond to
the maximal ideals of Z, and besides them there is the generic point (0) which is dense in
SpecZ.

As A is a principal ideal domain, every closed subset of Spec A is of the form V(f)
for some f € A. Assume f # 0 (i.e., V(f) # Spec A) and let f = p{'ps?---ptr with
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pairwise non-equivalent prime elements p1,...,p, (r > 0) and integers e; > 1. Then
V(f) consists of those closed points which correspond to the prime divisors of f, that
is, V(f) = {(p1),...,(pr)}. Therefore the closed subsets # Spec A are the finite sets
consisting of closed points.

If g # 0 is a second element of A, V(f)NV(g) =V(f,g9) = V(d), where d is a greatest
common divisor of f and g. Moreover, V(f) UV (g) = V((f) N (g)) = V(e), where e is a
lowest common multiple of f and g.

If A is a local principal ideal domain, but not a field (i.e., A is a discrete valuation
ring), Spec A consists only of two points 7 and z, where p,, is the maximal ideal and
p, = {0}. The only nontrivial open subset of Spec A is then {n}.

Example 2.15. Let k£ be an algebraically closed field. We saw in Chapter 1 that there is
a contravariant equivalence between the category of finitely generated integral k-algebras
A and the category of affine varieties V. If A corresponds to V', the maximal ideals of A
are the points of V. Therefore we can consider V as a subset of Spec A. It follows from the
definition of the topology on V (see Sections (1.1) and (1.2)) that the variety V carries
the topology induced by Spec A.

Example 2.16. Let A = R[T], where R is a principal ideal domain. We assume that
R is not a field (otherwise R[T] is a principal ideal domain and this case was already
considered in Example 2.14). Let X = Spec R[T]. As R is factorial, R[T] is factorial as
well, and the prime elements of R[T] are either of the form p, where p is a prime element
of R, or of the form f, where f € R[T] is a primitive polynomial which is irreducible in
Quot(R)[T] (by GauB’ theorem, e.g., see [La] IV §2, Thm. 2.3).

If p € R is a prime element, R/pR is a field. By Proposition 2.12, the closure V (pR[T])
of {pR[T]} is homeomorphic to Spec(R/pR)[T], and (R/pR)[T] is a principal ideal domain
with infinitely many nonequivalent prime elements (cf. Example 2.14). We see that (pR[T])
is not a maximal ideal, and the prime ideals in V(pR[T]) different from (pR[T]) are the
maximal ideals generated by p and f where f € R[T] is a polynomial such that its image
in (R/pR)[T] is irreducible.

The situation is more complicated for prime ideals of the form fR[T], where f is
a primitive irreducible polynomial. If the leading coefficient of f is a unit in R, it is
possible to divide in R[T] by f with unique remainder, and therefore R[T]/fR[T] is
finitely generated as R-module (even free of rank deg(f)). This implies that fR[T] is
not a maximal ideal, as otherwise R would be a field by Lemma 1.9. For other primitive
irreducible polynomials f, fR[T] might be a maximal ideal, namely if R contains only
finitely many prime elements (up to equivalence): If 0 # a € R is an element which is
divisible by all prime elements of R we have, with f :=aT — 1,

R[T]/fRIT] = R[a~"] = Quot(R),

which shows that fR[T] is a maximal ideal.

Excursion: Sheaves

It is clear that the topology on the space Spec A is not sufficiently fine to determine
the geometric objects we are looking for, as was already the case with prevarieties. We
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therefore want to equip this topological space with additional structure. As a guideline, we
take the situation of prevarieties: there we defined a system of functions on a prevariety,
and found that this additional datum determines the structure up to isomorphisms given
by polynomials. The functions made up the affine coordinate ring of the prevariety. In
the current situation, in a sense we are working backwards: we start with a ring A, and
associate to it the topological space Spec A of prime ideals in A. This means that the
elements of A should be thought of as the functions we want to consider on Spec A. Let
us discuss this important heuristic a little more precisely.

First, how can we think of elements of A as of functions of Spec A? Strictly speaking,
we cannot. However, given f € A and x € Spec A, we get an element f(z) € k(x), where
f(z) is the residue class in x(z) := A,, /psA,, of the image of f in the localization A, .
This is completely analogous to the situation with prevarieties. However, we do not get
a function with a well defined target, but rather a collection of values f(z) in different
targets k(x), € Spec A. Nevertheless, this is a useful point of view. For instance, we can
interpret D(f) as the set of points where f(x) # 0, i. e. where the function f does not
vanish.

On the other hand, since the elements of A are not, strictly speaking, functions on
Spec A, we cannot use the notion of system of functions as in Chapter 1. We need a
more flexible construction instead, and it turns out that the key point for working with
“functions” is restricting and gluing of functions (rather than evaluating them at points
of the source). This leads to the notion of sheaf, which we will define and study in the
following sections. Although the setting is more abstract now than it was with systems of
functions, it is still advisable to think of sections of a sheaf on an open subset (see below)
as some kind of functions defined on this open subset.

(2.5) Presheaves and Sheaves.

Definition 2.17. Let X be a topological space. A presheaf F on X consists of the
following data,
(a) for every open set U of X a set #(U),
(b) for each pair of open sets U €'V a map resi;: F (V) — F(U), called restriction
map,

such that the following conditions hold
(1) resy =idg (v for every open set U C X,
(2) for U CV C W open sets of X, res}y = resy; oresly .

Let &1 and F5 be presheaves on X . A morphism of presheaves p: F1 — F5 is a family
of maps vy : F1(U) = Fo(U) (for allU C X open), such that for all pairs of open sets
U CV in X the following diagram commutes

FV) = (V)

res); i lresg

F(U) 2 75 (U).

If U C V are open sets of X and s € # (V) we will often write s instead of resy;(s).

The elements of .Z (U) are called sections of .# over U. Very often we will also write
(U, %) instead of Z#(U).
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We can also describe presheaves as follows. Let (Ouvx) be the category whose objects
are the open sets of X and, for two open sets U,V C X, Hom(U, V) is empty if U € V,
and consists of the inclusion map U — V if U C V (composition of morphisms being
the composition of the inclusion maps). Then a presheaf is the same as a contravariant
functor .# from the category (Ouvx) to the category (Sets) of sets.

By replacing (Sets) in this definition by some other category C (e.g. the category of
abelian groups, the category of rings, the category of R-modules, or the category of
R-algebras, R a fixed ring) we obtain the notion of a presheaf .# with values in C (e.g. a
presheaf of abelian groups, a presheaf of rings, a presheaf of R-modules, or a presheaf of
R-algebras). This signifies that .% (U) is an object in C for every open subset U of X and
that the restriction maps are morphisms in C. A morphism .%#; — %5 of presheaves with
values in C is then simply a morphism of functors.

Let .# be a presheaf on a topological space X, let U be an open set in X and let
U = (U;)ier be an open covering of U. We define maps (depending on %)

p: FU) — Hﬁ(Ui), s (8)U,)i

il

o [[Z7W)— JI ZWinU), (si)i = (sijoinv,) i)
icl (i,9)eIxI

o: [[7W0)— [I ZWnu), (s)iv (sjj0.00,) )
iel (i,9)eIxI

Definition 2.18. The presheaf .F is called a sheaf, if it satisfies for all U and all coverings
(U;) as above the following condition:

(Sh) The diagram

FU) L= 70 == Il FUinU)
i€l o (i,j)eIXI

is exact. This means that the map p is injective and that its image is the set of
elements (s;)ier € [[;c; 7 (Us) such that o((s;)i) = o' ((5i)i)-

In other words, a presheaf .# is a sheaf if and only if for all open sets U in X and every

open covering U = | J, U; the following two conditions hold:

(Shl) Let s,s" € #(U) with sy, = sy, for all 4. Then s = 5.

(Sh2) Given s; € .F(U;) for all i such that s;jy,nu;, = sjjv,nv; for all i,j. Then there
exists an s € .#(U) such that 5|y, = s; (note that s is unique by (Shl)).

Heuristically, these conditions say that functions are determined by local information,

and that functions can be glued. Compare Section (1.12).

A morphism of sheaves is a morphism of presheaves. We obtain the category of sheaves
on the topological space X, which we denote by (Sh(X)). In the same way we can define
the notion of a sheaf of abelian groups, a sheaf of rings, a sheaf of R-modules, or a sheaf
of R-algebras.

For presheaves of abelian groups (or with values in any abelian category) we can
reformulate the definition of a sheaf slightly: Such a presheaf .% is a sheaf if and only if
for all open subsets U and all coverings (U;) of U the sequence of abelian groups
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7(U) - [[ 7 W) %H F(U; N U;)

S (5|U,;)ia (si)i — (Sz‘\UmUj - Sj\U,-mUj)i,j

(2.5.1)

is exact.

Note that if # is a sheaf on X, .Z((}) is a set consisting of one element (apply the
condition (Sh) to the covering of the empty set with empty index set). In particular, if
X consists of one point a sheaf # on X is already uniquely determined by % (X) and
sometimes we identify . with % (X).

Examples 2.19.

(1) If & is a presheaf on a topological space X and U is an open subspace of X we
obtain a presheaf .|y on U by setting .7 (V) = # (V) for every open subset V in
U.If 7 is a sheaf, # |y is a sheaf on U. We call 7|y the restriction of & to U.

(2) Let X and Y be topological spaces. For U C X open let .#(U) be the set of continuous
maps U — Y and define the restriction maps by the usual restriction of continuous
functions. Then .7 is a sheaf.

(3) Let K be a field and let (X, Ox) be a space with functions over K (Section (1.12)).
Then O is a sheaf of K-algebras on X.

In particular, if X is a real C"-manifold (0 < r < o0) and if we denote for any open
subset U of X by €% (U) the set of C"-functions U — R, €% is a sheaf of R-algebras
on X.
(4) Let X be a topological space and define

F({U)={f:U — R continuous ; f(U) C R bounded }

for all U C X open. Then & is a presheaf (the restriction maps being the usual
restriction of functions) but it is not a sheaf in general.

If we know the value .#(U) of a sheaf on every element U of some basis B of the
topology on X, we can use the sheaf property to determine .% (V) on an arbitrary open.
We simply cover V' by elements of B. Here is a more systematic way of saying this:

F(V) {(sv)v € H F(U); for all U' C U both in B : syjy = sy}

veB
vcv

Using this observation, we see that it suffices to define a sheaf on a basis B of open sets
of the topology of a topological space X: Consider B as a full subcategory of (Ouvx).
Then a presheaf on B is a contravariant functor .7 : B — (Sets). Every such presheaf .#
on B can be extended to a presheaf .#’ on X by setting, for V open in X,

/ .
(2.5.2) F'(V) = {Elﬁ(U),

U
where U runs through the set of U € B with U C V (ordered by inclusion, the transition

maps given by the restriction maps). A morphism of presheaves on B is again defined as
a morphism of functors.
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To formulate the sheaf property, first assume that B is stable under finite intersections.
Then we call a presheaf .# on B a sheaf if .# satisfies condition (Sh) of Definition 2.18
for every U € B and for every open covering (U;); of U with U; € B for all i.

In general, the intersections U; N U; in the previous paragraph might not be in B, so
we have to cover them by elements of B. We arrive at the following proposition, which is
easy to prove.

Proposition 2.20. The presheaf F' on X is a sheaf if and only if F satisfies the
following condition: For every U € B, for every open covering (U;); of U with U; € B for
all i, and for every open covering (Ui;i)x of Ui NU; with all Uy, € B, the diagram

FU) L] ZU;) == ] ZUin)
iel o’ i,j.k

is exact (cf. condition (Sh) of Definition 2.18; the maps o, o' are defined analogously).

In this case, we say that .% is a sheaf on B. Attaching to .% the sheaf .%’ on X is
clearly functorial in .# and we obtain an equivalence between the category of sheaves on
B and the category of sheaves on X.

Similar results hold for sheaves in a category C in which projective limits exist, e.g.,
the category of abelian groups.

(2.6) Stalks of Sheaves.

Let X be a topological space, .# be a presheaf on X, and let x € X be a point. The
system ((Z (U))v, (resy;)vor) which is indexed by the set of open subsets U C X with
x € U, ordered by reverse containment, is a filtered inductive system.

Definition 2.21. The inductive limit

Fy = lim F(U)
—
U>dzx
18 called the stalk of % in x.

In other words, %, is the set of equivalence classes of pairs (U, s), where U is an open
neighborhood of z and s € .% (U). Here two such pairs (Uy, s1) and (Us, s2) are equivalent,
if there exists an open neighborhood V of x with V' C U; N Us such that S1v = S2|v-

For each open neighborhood U of x we have a canonical map

(2.6.1) F(U) = Fy, 5> Sy

which sends s € .Z (U) to the class of (U, s) in .%,. We call s, the germ of s in x.
If o: F — & is a morphism of presheaves on X, we have an induced map

Og = lim py: Fp > 9,
—
Usz

of the stalks in 2. We obtain a functor .# — %, from the category of presheaves on X to
the category of sets.

If Z is a presheaf with values in C, where C is the category of abelian groups, of rings,
or any category in which filtered inductive limits exist, then the stalk %, is an object in
C and we obtain a functor .# — %, from the category of presheaves on X with values in
C to the category C.
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Example 2.22. Let X = C and O¢ be the sheaf of holomorphic functions on X (i.e.,for
every open set U in C, O¢(U) is the set of holomorphic functions U — C). This is a
sheaf of C-algebras. Fix zy € C. Then two holomorphic functions f; and fs defined in
open neighborhoods U; and Us, respectively, of zy agree on some open neighborhood
V C U; NUs if and only if they have same Taylor expansion around zy. Therefore

0c,» = g an(z — z9)" power series with positive radius of convergence » |
n>0

and the identity theorem says precisely that for a connected open neighborhood U of z,
the natural map ¢(U) — Oc ., is injective.

Proposition 2.23. Let X be a topological space, F and 4 presheaves on X, and let

o, F — 94 be two morphisms of presheaves.

(1) Assume that & is a sheaf. Then the induced maps on stalks ¢.: Fr — Y, are
injective for all x € X if and only if py: F(U) — 4(U) is injective for all open
subsets U C X.

(2) If # and 4 are both sheaves, the maps p, are bijective for all x € X if and only if
py s bijective for all open subsets U C X.

(3) If F and & are both sheaves, the morphisms ¢ and ¥ are equal if and only if @, = V.
forallxz € X.

Proof. For U C X open consider the map

FU) — H Fuy S+ (Sz)zeU-
zeU

We claim that this map is injective if # is a sheaf. Indeed let s,t € % (U) such that

Sy =t for all x € U. Then for all x € U there exists an open neighborhood V,, C U of x

such that sy, = t)y,. Clearly, U = |J,c;; Vo and therefore s = t by sheaf condition (Shl).
Using the commutative diagram

xzecU

F(U) —[Lsev 7=

APU\L \LHI Pax

g(U) — erU gﬂw

we see that (3) and the necessity of the condition in (1) are implied by the above claim.
Moreover, a filtered inductive limit of injective maps is always injective again (as can be
checked instantly, see Exercise 2.11), therefore the condition in (1) is also sufficient.

Hence we are done if we show that the bijectivity of ¢, for all x € U implies the
surjectivity of py. Let t € 4(U). For all 2 € U we choose an open neighborhood U?* of
in U and s* € % (U?) such that (¢y=(s*)), = t.. Then there exists an open neighborhood
V® C U?® of x with ¢y« (s|ve) = tjy=. Then (V*)zer is an open covering of U and for
z,yeU

ovenve (s venve) = tveave = @venve (8Yvenvy ).

As we already know that pyenyv is injective, this shows s yenyy = s¥|yznyy and the
sheaf condition (Sh2) ensures that we find s € .#(U) such that sy« = 7|y« forall z € U.
Clearly, we have ¢y (s), = t, for all z € U and hence ¢y (s) = t. O
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We call a morphism ¢: # — ¢ of sheaves injective (resp. surjective, resp. bijective) if
Oz Fr = 9, is injective (resp. surjective, resp. bijective) for all z € X.

If p: # — ¢ is a morphism of sheaves, ¢ is surjective if and only if for all open subsets
U C X and every t € 4(U) there exist an open covering U = | J,; U; (depending on t) and
sections s; € .7 (U;) such that oy, (s;) = t|u,, i.e., locally we can find a preimage of ¢. But
the surjectivity of ¢ does not imply that ¢y : F(U) — 4(U) is surjective for all open
sets U of X (see Exercise 2.12).

If F, & are (pre-)sheaves on X such that % (U) C 4(U) for all U C X open, and such
that the restriction maps of # are induced by those of ¢, then we call # a subsheaf (or
a subpresheaf, resp.) of 4.

(2.7) Sheaves associated to presheaves.

Proposition 2.24. Let .7 be a presheaf on a topological space X. Then there exists a
pair (J L), where F is a sheaf on X and vg: F — F is a morphzsm of presheaves,
such that the following holds: If ¢ is a sheaf on X and p: % 9 is a morphism of
presheaves, then there exists a unique morphism of sheaves ¢: F — 4 with poirg = p.
The pair (9 L) 1s unique up to unique isomorphism.
Moreover, the following properties hold: ~
(1) For all x € X the map on stalks vz 2 Fyp — Fy is bijective.
(2) For every presheaf 4 on X and every morphism of presheaves p: F — 4 there exists
a unique morphism @p: F — g making the diagram

F F

Y ——

commutative. In particular, F +— ZFisa functor from the category of presheaves on
X to the category of sheaves on X.

(2.7.1)

H

The sheaf .% is called the sheaf associated to F or the sheafification of #. We can
reformulate the first part of the proposition by saying that sheafification is the left adjoint
functor to the inclusion functor of the category of sheaves into the category of presheaves.

Proof. For U C X open, elements of .% (U) are by definition families of elements in the
stalks of .% which locally give rise to sections of .#. More precisely, we define

FU):={(s2) € H F; Yo € U: 3 an open neighborhood W C U of z,
zeU
and t € F(W): Yw € W: sy =ty }.

For U C V the restriction map .Z (V) — .Z(U) is induced by the natural projection
[oev F2 = [locy F=- Then it is easy to check that .# is a sheaf. For U C X open, we
define 1z : F(U) = F(U) by s — (52)scv. The definition of .# shows that, for z € X,

Fy = F

« and that ¢z , is the identity.
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Now let & be a presheaf on X and let ¢: .7 — ¢ be a morphism. Sending (s, ), € F(U)
0 (02(52))z € G(U) defines a morphism .# — ¢. By Proposition 2.23 (3) this is the
unique morphism making the diagram (2.7.1) commutative. R
If we assume in addition that ¢ is a sheaf, then the morphism of sheaves 1 : 4 — ¥,
which is leGCtlve on stalks is an isomorphism by Pr0p051t10n 2.23 (2). Composing the
morphism & — & with Lg , we obtain the morphism ¢: % — ¢. Finally, the uniqueness

of (Z,17) is a formal consequence. O

From this definition and from Proposition 2.23 (2), we get the following characterization
of the sheafification: Let .# be a presheaf and ¢ be a sheaf. Then ¥ is isomorphic to the
sheafification of .% if and only and if there exists a morphism ¢: % — ¢ such that ¢, is
bijective for all x € X.

Example 2.25. Let £ be a set and denote by .# the presheaf such that .#(U) = E for
every open set U of X (the restriction maps being the identity). Let % be the associated
sheaf. Then .# “(U) is the set of locally constant functions U — E.

The sheaf .% is called the constant sheaf with value E and sometimes denoted by E or
Ey.

Finally it is clear that if .% is a presheaf of rings, of R-modules, or of R-algebras, its
associated sheaf is a sheaf of rings, of R-modules, or of R-algebras.

(2.8) Direct and inverse images of sheaves.

Let f: X — Y be a continuous map of topological spaces. It is a natural question, how
we can transport sheaves from X to Y, or the other way around, using f. First, let # be
a presheaf on X. We define a presheaf f..# onY by (for V C Y open)

(fF)V)=Z(f71(V))

the restriction maps given by the restriction maps for .%. We call f,.%# the direct image
of F under f. Whenever ¢: %] — %5 is a morphism of presheaves, the family of maps
fe(@)v == @p-1(v) for V.CY open is a morphism f.(¢): fu#1 — f«.F2. Therefore f, is
a functor from the category of presheaves on X to the category of presheaves on Y. The
following properties are immediate.

Remark 2.26.

(1) If Z is a sheaf on X, f«.7 is a sheaf on Y. Therefore f. also defines a functor
fx: (Sh(X)) — (Sh(Y)).

(2) Ifg: Y — Z is a second continuous map, there exists an identity g.(f«F) = (go f)«F
which is functorial in F.

We now come to the definition of the inverse image of a presheaf. Again let f: X — Y
be a continuous map and let ¢ be a presheaf on Y. Define a presheaf on X by

(2.8.1) Ur  lim 9(V),

V2 fU),
V CY open
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the restriction maps being induced by the restriction maps of ¢. Momentarily we denote
this presheaf by f+%. Let f~'% be the sheafification of fT¢. We call f~'%¢ the inverse
image of 4 under f. Note that even if ¢ is a sheaf, ft% is not a sheaf in general. If f is
the inclusion of a subspace X of Y and ¢ is a sheaf on Y, then we also write ¢ x instead
of f714. If X is an open subspace of Y this definition coincides with the one given in
Example 2.19 (1). Although the definition may look complicated at first sight, you should
convince yourself that it is the obvious one: Since we can only evaluate ¢ on open subsets
of Y, we cannot talk about sections of ¢ on f(U). Instead we “approximate” f(U) by
open subsets of Y containing it. Compare also the definition of the system of functions
on a closed subprevariety, see Section (1.18).

Again the construction of f7%¢ and hence of f~1'¢ is functorial in 4. Therefore we
obtain a functor f~! from the category of presheaves on Y to the category of sheaves on
X.

If z is a point of X and i: {z} — X is the inclusion, the definition (2.8.1) shows that

i \F = F,

for every presheaf .# on X. It follows that for each presheaf 4 on Y we have an identity,
functorial in ¥,

(7). = (17 9)e = iy (F*9)(V)
zcU
=lim Ly 4(V)= Ty H(V) =Yy,
zeU f(U)CV flx)ev

(2.8.2)

where the first identification follows from Proposition 2.24 (1).

Now let g: Y — Z be a second continuous map and let 5 be a presheaf on Z. Fix
an open subset U in X. An open subset W C Z contains ¢g(f(U)) if and only if it
contains a subset of the form g(V'), where V' C Y is an open set containing f(U). This
implies that fT(g"5#) = (g o f)" . Furthermore, (2.8.2) implies that the natural
morphism f~1(gT ) — f~1(g7 ') induces isomorphisms on all stalks, and hence is
an isomorphism by Proposition 2.23. We deduce an isomorphism

(2.8.3) g ') = (go ),
which is functorial in JZ.

Direct image and inverse image are functors which are adjoint to each other. More
precisely:

Proposition 2.27. Let f: X — Y be a continuous map, let F be a sheaf on X and let
4 be a presheaf on'Y. Then there is a bijection

Homsn(x)) (f '¥,.#) < Hom(presny)) (9, [+F),
o,
YF e
which is functorial in F and 9.

Proof. Let ¢: f~'9 — Z be a morphism of sheaves on X, and let V C Y be open.
Since f(f~1(V)) C V, we have a map (V) — fY4(f~1(V)), and we define ¢}, as the
composition
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G(V) = fr9FHV)) — G V) LD F (V) = LEY).

Conversely, let ©: 4 — f..% be a morphism of presheaves on Y. To define the morphism
Yt it suffices to define a morphism of presheaves ft% — .#, which we call again 9. Let U
be open in X, and s € fT¥4(U). If V is some open neighborhood of f(U), U is contained
in f=1(V). Let V be such a neighborhood such that there exists sy € 4(V) representing
s. Then ¥y (sy) € fo. 7 (V) = Z(f~1(V)). Let w?](s) € Z#(U) be the restriction of the
section ¢y (syv) to U.

Clearly, these two maps are inverse to each other. Moreover, it is straightforward —

albeit quite cumbersome — to check that the constructed maps are functorial in .# and
9. O

The adjunction between direct image and pull-back and the fact that (go f). = g« o f
for any two morphisms f: X — Y, g: Y — Z gives another way to prove (2.8.3).

Remark 2.28. We will almost never use the concrete description of f~'¢ in the sequel.
Very often we are given f, %, and ¢ as in the proposition, and a morphism of presheaves
¥: 9 — f..7. Then usually it is sufficient to understand for each x € X the map

2.8.2) , ._
W G P2 (1Y) — F

induced by *: f~'% — .7 on stalks. The proof of the proposition shows that we can
describe this map in terms of ¢ as follows: For every open neighborhood V' C Y of f(x),

we have maps
G(V) 25 F(fHV)) — o,

and taking the inductive limit over all V' we obtain the map % : Gi@) = Fa-

Note that if % is a sheaf of rings (or of R-modules, or of R-algebras) on X, f..% is a
sheaf on Y with values in the same category. A similar statement holds for the inverse
image. Finally, Proposition 2.27 holds (with the same proof) if we consider morphisms of
sheaves of rings (or of R-modules, etc.).

(2.9) Locally ringed spaces.

Definition 2.29. A ringed space is a pair (X, Ox), where X is a topological space and
where Ox is a sheaf of (commutative) rings on X.

If (X,0x) and (Y, Oy) are ringed spaces, we define a morphism of ringed spaces
(X,0x) — (Y,0y) as a pair (f, f°), where f: X — Y is a continuous map and where
f’: Oy — f.Ox is a homomorphism of sheaves of rings on'Y .

Note that the datum of f° is equivalent to the datum of a homomorphism of sheaves of
rings f*: f~10y — Ox on X by Proposition 2.27. Often we simply write f instead of
(f. 5 or (£, f).

The composition of morphisms of ringed spaces is defined in the obvious way (using
Remark 2.26 (2)), and we obtain the category of ringed spaces. We call Ox the structure
sheaf of (X, Ox). Often we simply write X instead of (X, Ox).



o7

We think of the structure sheaf on X as the system of all “permissible” (within the
current context) functions, where permissible might mean continuous, differentiable,
holomorphic, given by polynomials, etc. The map f: X — Y should certainly have the
property that composition of a permissible function on an open subset V of Y with f
gives rise to a permissible function on f~!(V). Since viewing sections of the structure
sheaves as functions is only a heuristic, we cannot actually compose sections with the
map f. As a substitute, we request that we are given a map Oy (V) — Ox(f~1(V)) for
every open V C Y. These maps must be compatible with restrictions, and constitute the
sheaf homomorphism f”.

Usually we will work with a subcategory of the category of ringed spaces. To introduce
this subcategory, we recall the following notation. If A is a local ring, we denote by m4
its maximal ideal and by x(A) = A/my4 its residue field. A homomorphism of local rings
w: A — B is called local, if p(mg) C mp.

A morphism (f, f°): X — Y of ringed spaces induces morphisms on the stalks as
follows. Let # € X. Let ff: f~'0y — Ox be the morphism corresponding to f° by
adjointness. Using the identification (f~'@y ), = Oy, f() established in (2.8.2), we get

fﬁ ﬁyj(w) — ﬁX,z~

By Remark 2.28 there is the following more explicit description of this homomorphism:
The maps f2,: Oy (V) — Ox(f~*(V)) for every open neighborhood V of f(z) induce
maps Oy (V) — Ox , and hence a map I Oy t@) =lim Oy (V) = Ox 4.

—

Definition 2.30. A locally ringed space is a ringed space (X, Ox) such that for all
x € X the stalk Ox 5 is a local ring.

A morphism of locally ringed spaces (X, Ox) — (Y, Oy) is a morphism of ringed spaces
(f, f*) such that for all x € X the induced homomorphism on stalks

8 (f Oy )e = Oy o) — Ox
is a local ring homomorphism.

The composition of two morphisms of locally ringed spaces is again a morphism of
locally ringed spaces. Therefore locally ringed spaces form a category. Note that there
exist locally ringed spaces (X, Ox) and (Y, Oy) and morphisms f: (X, 0x) — (Y, Oy)
of ringed spaces which are not morphisms of locally ringed spaces; in other words, the
subcategory of locally ringed spaces is not a full subcategory (Exercise 2.18).

Let (X, Ox) be a locally ringed space and x € X. We call the stalk Oy , the local ring
of X in z, denote by m, the maximal ideal of Ox ;, and by k(x) = Ox ,/m, the residue
field. If U is an open neighborhood of z and f € 0x(U), we denote by f(x) € k(z) the
image of f under the canonical homomorphisms Ox (U) = Ox , — k().

Why do we work with locally ringed spaces? Although we have not yet defined the
structure sheaf on X = Spec A, we can explain this heuristically. We think of sections of
the structure sheaf as functions on an open subset, and then the elements of the stalk at
a point x are functions defined in some open neighborhood of . A reasonable property
to ask of such functions is that those which do not vanish at = are invertible in some
(small) neighborhood of z. Then all elements of the stalk not contained in the ideal of
functions vanishing at x are units of the stalk. This shows that the stalk is indeed a
local ring, with maximal ideal the ideal of all functions vanishing at x. Now consider
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a morphism (f, f°): X — Y of ringed spaces of this nature. The sheaf homomorphism
is our replacement for “composition of functions with f”. Certainly, if some function
on Y vanishes at a point f(z), z € X, then its composition with f must vanish at x.
In other words, the maximal ideal of Oy, t(,) must be mapped into the maximal ideal
of Ox ., which is exactly the property we requested above. Since we do not really deal
with functions, we do have to put it into our definitions explicitly. In the following two
examples, the sections of the structure sheaf are functions, and our philosophy turns into
a precise statement.

Example 2.31. Let X be a topological space and consider the sheaf €x of R-valued
continuous functions on X (i.e., for U C X open, €x (U) is the R-algebra of continuous
functions s: U — R). For z € X, €x 5 is the ring of germs [s] of continuous functions s
in a neighborhood of . Let m, C %x , be the set of germs [s] such that s(z) = 0. Clearly,
this is a proper ideal.

We claim that this is the unique maximal ideal (and hence (X, %x) is a locally ringed
space). Indeed, let [s] € €x . \ m,. For every representative s € [s] we have s(x) # 0 and,
as s is continuous, there exists an open neighborhood U of = such that s(u) # 0 for all
u € U. Therefore 1/(s|y) exists. This shows that @’x , \ m, is the group of units in €x ,
which shows our claim. Moreover, the ring homomorphism %x , — R sending [s] to s(z)
is surjective with kernel m, and therefore identifies x(z) with R.

If f: X — Y is a continuous map to another topological space, composition with f
defines for all open sets V' of Y a homomorphism of R-algebras

oy (V)= Ex(fHV)) = f.€x(V), tetof.

The associated homomorphism f¥ induces on stalks the map Gy, f(x) — Cx,o that sends a
germ [t] of continuous functions at f(x) to the germ [t o f] of continuous functions at x.
Obviously, f#(my(,)) € mg, and (f, f ®) is a morphism of locally ringed spaces.

If we interpret the system of functions on a prevariety as a sheaf, we obtain a locally
ringed space, as well:

Example 2.32. Let (X, Ox) be a prevariety over an algebraically closed field k, in the
sense of Section (1.15). For U C X now Ox (U) consists of certain functions f: U — Al(k)
which are continuous for the Zariski topology. As in Example 2.31 we see that for z € X
the ideal of germs [f] at x with f(z) = 0 is the unique maximal ideal of O , (using that
Al(k)\{0} is open in Al(k) for the Zariski topology). Therefore (X, Ox) is a locally ringed
space and the surjective homomorphism Ox , — k, [f] — f(x), induces an isomorphism
k(z) > k for all z € X.

Spectrum of a ring as a locally ringed space

Let A be a ring. We will now endow the topological space Spec A with the structure of a
locally ringed space and obtain a functor A — Spec A from the category of rings to the
category of locally ringed spaces which we will show to be fully faithful.
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(2.10) Structure sheaf on Spec A.

We set X = Spec(A). We have seen in Proposition 2.5 that the principal open sets D(f)
for f € A form a basis of the topology of X. We will define a presheaf &x on this basis
(Section (2.5)) and then prove that the sheaf axioms are satisfied with respect to this basis.
The basic idea is this: Looking back at the analogy with prevarieties, we certainly want to
have Ox(X) = A. More generally, for f € A, we consider the localization Ay of A with
respect to the multiplicative set { £ ; i > 0}. Denote by ty: A — Ay the canonical ring
homomorphism a + a/1. By Proposition 2.12, ®+; is a homeomorphism of Spec Ay onto
D(f). So it seems reasonable to set Ox (D(f)) = Ay. (We think of Ay as functions which
might have poles along V(f), the set of zeros of f.) Let us check that this is a sensible
definition: we must check that Ay = A, whenever D(f) = D(g), define restriction maps,
and check that the sheaf axioms are satisfied on the basis of the topology (D(f))sea.
Recall from Lemma 2.4 that, for f,g € A, D(f) C D(g) if and only if there exists
an integer n > 1 such that f™ € Ag or, equivalently, g/1 € (Af)*. In this case we
obtain a unique ring homomorphism py ,: Ay — Ay such that py 40ty = 1. Whenever
D(f) C D(g) € D(h), we have pg 40 pgp = psn- In particular, if D(f) = D(g), py,q is an
isomorphism, which we use to identify A, and Ay. Therefore we can define

(2.10.1) Ox(D(f)) == Ay

and obtain a presheaf of rings on the basis B := { D(f) ; f € A} for the topology of
Spec A. The restriction maps are the ring homomorphisms py 4.

Theorem 2.33. The presheaf Ox is a sheaf on B.

We denote the sheaf of rings on X associated to Ox again by Ox. For all points
x € X = Spec(A) we have

(2.10.2) Ox = h_r}n Ox(D(f)) = h_I)n A=A,
D(f)>z féEpa

(localization of A in the prime ideal p,). In particular, (X, Ox) is a locally ringed space.
We will often simply write Spec A instead of (Spec A, Ogpec 4)-

Proof. Let D(f) be a principal open set and let D(f) = (J;c; D(fi) be a covering by

principal open sets. We have to show the following two properties.

(1) Let s € Ox(D(f)) be such that s|p(y,) =0 for all i € I. Then s = 0.

(2) For i € I let s; € Ox(D(fi)) be such that s;p(synp(s;) = Sj|p(si)np(y,) for all
i,j € I. Then there exists s € Ox (D(f)) such that s ps,) = s; for all i € I.

As D(f) is quasi-compact, we can assume that I is finite; this is clear for part (1), and
for part (2) we can first glue for a finite subcover and then use part (1) to check that
the resulting section s restricts to s; for all i. Restricting the presheaf &x to D(f) and
replacing A by Ay we may assume that f = 1 and hence D(f) = X to ease the notation.
The relation X = J, D(f;) is equivalent to (f;; ¢ € I) = A. As D(f;) = D(f]") for all
integers n > 1 there exist elements b; € A (depending on n) such that

(2.10.3) D obiff =1

icl
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Proof of (1). Let s = a € A be such that the image of a in Ay, is zero for all . As I
is finite, there exists an integer n > 1, independent of ¢, such that f*a = 0. By (2.10.3),

a= (Zie[ bifi*)a=0.

Proof of (2). As I is finite, we can write s; = for some n independent of i. By

f’fl
‘“ and of in Ay, s, are equal for all 7, j € I. Therefore there

hypothesis, the images of

exists an integer m > 1 (whlch agaln we can choose independent of ¢ and j) such that
(fify)"(fj'ai — fi'a;) = 0. Replacing a; by f{"a; and n by n + m (which does not change
s;), we see that

(2.10.4) firai = f'a;
for all 4,j € I. We set s := > . bja; € A, where the b; are the elements in (2.10.3).
Then ( )
n n n n 2.10.3
frs = £3 by = 3o bi(fray) TEY (3 bifa
jel jel jeI
This means that the image of s in Ay, is s;. O

(2.11) The functor A — (Spec A, Ospec 4)-

Definition 2.34. A locally ringed space (X, Ox) is called affine scheme, if there exists
a ring A such that (X, Ox) is isomorphic to (Spec A, Ospec 4)-

A morphism of affine schemes is a morphism of locally ringed spaces. We obtain the
category of affine schemes which we denote by (Aff).

Let ¢: A — B be a homomorphism of rings and set X = Spec B and Y = Spec A. Let
%p: Spec B — Spec A be the associated continuous map (Section (2.3)). We will now
define a morphism (f, f°): X — Y of locally ringed spaces such that f = *p and

(2.11.1) for A=0y(Y) = (f.0x)(Y)=B

equals ¢.
Set f = %p. For s € A, we have f~(D(s)) = D(p(s)) (Proposition 2.10) and we define

(2.11.2) Ib(sy: Ov(D(s)) = As = By = (fOx)(D(s))

as the ring homomorphism induced by ¢. This ring homomorphism is compatible with
restrictions to principal open subsets D(t) C D(s). As the principal open subsets form a
basis of the topology, this defines a homomorphism f°: @y — f,Ox of sheaves of rings.
Choosing s = 1 in (2.11.2) we obtain (2.11.1).

For z € X, the homomorphism

f5: Oy jw) = Api(p,) = By, = Oxa

is the homomorphism induced by ¢ and in particular it is a local ring homomorphism.
This finishes the definition of (f, f*).
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This morphism Spec B — Spec A of locally ringed spaces associated to ¢ will be often
simply denoted by Spec(p) or *¢. It is clear from the definition that, for a second ring
homomorphism ¢: B — C, we have *(1) o) = “po%). We obtain a contravariant functor

Spec: (Ring) — (Aff).

Conversely, if f: (X, O0x) — (Y, Oy) is a morphism of ringed spaces, we obtain a ring
homomorphism

L(f) = fy: T(Y,0y) = Oy (Y) = (X, Ox) = (f.0x)(Y) = Ox(X).

In this way we get a contravariant functor I" from the category of ringed spaces to the
category of rings. Restricting I' to the category of affine schemes defines a contravariant
functor

I': (Aff) — (Ring).

Theorem 2.35. The functors Spec and I' define an anti-equivalence between the category
of rings and the category of affine schemes.

Proof. The functor Spec is by definition essentially surjective. Moreover, I" o Spec is clearly
isomorphic to id(ring). Therefore it suffices to show that for any two rings A and B the
maps

Spec
Hom (ging) (A, B) =<—= Homag)(Spec B, Spec A)
r

are mutually inverse bijections. By (2.11.1), T o Spec = id. Now let f: Spec B — Spec A
be a morphism of affine schemes and set ¢ := I'(f). We have to show that *¢ = f. If p,
is a prime ideal of B, corresponding to a point 2 € X := Spec B, f! is the unique ring
homomorphism which makes the diagram

(2.11.3) A—2 - B

L

Apf(w) fu > BPm

commutative. This shows that ¢~ 1(p,) C Pr(z)- As fF is local, we have equality. This
shows that ¢ = f as continuous maps. Now the definition of ®¢# shows that %%
makes (2.11.3) commutative as well and hence ¢ = f¥ for all z € X. This proves
2ot = f* by Proposition 2.23. O

(2.12) Examples.

Example 2.36. (Affine Spaces) Let R be a ring. We set A%, := Spec R[T1, ..., T,]. This
is called the affine space of relative dimension n over R.

Example 2.37. (Integral Domains) Let A be an integral domain and K its field of
fractions. Let X = Spec A. The zero ideal of A is a prime ideal and we denote the
corresponding point of X by 7. The closure of {n} consists of X and therefore every
non-empty open set of X contains 7, i.e., n is a generic point of X. The local ring Ox ,, is
the localization of A by the zero ideal (2.10.2):
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Oxn =K.

For all multiplicative subsets S C T of A with 0 ¢ T, the canonical ring homomorphism
S~1A — T~1'A is injective and we can consider all the localizations S™'A as subrings
of K. For all f € A, we have Ox(D(f)) = Ay by the definition of the structure sheaf. If
U C X is an arbitrary open subset, (2.5.2) shows that Ox(U) = (; Ay where f runs
through the set of elements f € A such that D(f) C U. On the other hand, we have
Ay = ﬂp A,, where p runs through the set of prime ideals not containing f, i.e., through
the points « € D(f): Given an element g € K which lies in the intersection ), Ay, let
a={h € A; hg € A}. Since g € A, for all p with f & p, a Z p. In other words, all
prime ideals containing a also contain f, i.e., f € rad(a). This shows g € Ay, as desired.
(Cf. the argument of Proposition 1.40, but note that the Nullstellensatz is not needed in
the current setting.) As A,, = Ox , for every point € X, we see that for any non-empty
open set U of X we have
Ox(U)= () Ox.a

zelU

Example 2.38. (Principal open subschemes of an affine scheme) Let X = Spec A be an
affine scheme. For f € A let j: Spec Ay — Spec A be the morphism of affine schemes that
corresponds to the canonical homomorphism A — Ay. Then j induces a homeomorphism
of Spec A onto D(f) by Proposition 2.12. Moreover, for all z € D(f), j& is the canonical
isomorphism A, = (Ay),,. Hence we see that (j,j*) induces an isomorphism of the
affine scheme Spec Ay with the locally ringed space (D(f), Ox|p(s))-

Example 2.39. (Closed subschemes of affine schemes) Let X = Spec A be an affine
scheme. For an ideal a of A let i: Spec A/a — Spec A be the morphism of affine schemes
that corresponds to the canonical homomorphism A — A/a. Again by Proposition 2.12,
induces a homeomorphism of Spec A/a onto the closed subset V' (a) of Spec A. Moreover,
for all € V/(a) the morphism ¢, is the canonical homomorphism A, — (A/ a)p, where
p, is the image of p, in A/a. We use the homeomorphism i: Spec A/a — V(a) to equip
V(a) with the structure of a locally ringed space which we again denote by V'(a) and will
always identify with Spec A/a via i.

In Chapter 3 we will define the general notion of a closed subscheme and show that
every closed subscheme of Spec A is of the form V' (a) for some ideal a C A.

Example 2.40. Let B be a ring, and b C B an ideal. As every prime ideal of B contains
b if and only if it contains b™ for some integer n > 1, the closed subset V' (b™) of Spec B
does not depend on n. But as affine scheme, Spec(B/b™) = V(b™) depends on n.

We explain the difference between these affine schemes in the case B = k[T] and
b = (T), where k is an algebraically closed field. The closed points of A} = Spec k[T (i.e.,
the maximal ideals of k[T]) correspond to elements of k, and the point corresponding to
bis 0. Let A=Kk[T]/(T™) and set X = Spec A. Then X consists of a single point x. For
the structure sheaf we have Ox(X) = Ox , = A, the maximal ideal m, is the ideal that
is generated by the residue class of T' (and hence m, # 0 for n > 1), and x(z) = k. As
explained in Example 2.39 we should picture X as a closed “subscheme” of A}, that is
“concentrated in 0”.

As explained in Example 2.15, we can consider A} as the affine variety A'(k), and
the k-algebra of functions on Al(k) is just B = k[T]. The restriction of such a function
f € k[T] to X is given by the canonical homomorphism k[T] — k[T]/(T™). For n =1,
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E[T]/(T™) = k, and this is the map f — f(0). But for n > 1 we keep the higher order
terms of the “Taylor expansion” of f in 0. We suggest to picture X as a slightly fuzzy
point, that has an “infinitesimal extension of length n — 1 within Ai”.

We would like to motivate this kind of picture in another way as well. Consider the
affine space A? = Spec k[T, U] which we visualize as the plane { (u,t) ; u,t € k}. The
ideals a; := (U) and ag := (U — T™) define closed subvarieties

X1 ={(u,t) e A’(k); u=0}, Xo={(ut)€A*(k); u=1t"}.

As a set, the intersection of both varieties consists only of the origin (0,0). But it should
play a role that X; and X5 do not intersect transversally for n > 1.

As affine scheme we will define the intersection in Section (4.11) as Spec k[T, U]/ (a1 +az).
Using k[T, U]/ay = k[T], k[T, U]/(a1 + az) is just k[T]/(T™). Hence the point of view of
affine scheme allows us to describe the intersection behavior more precisely.

Exercises

In all exercises, A denotes a ring.

Exercise 2.1¢). Let a and b be ideals of A. Show that the following properties are
equivalent:

(i) V(a) C V(b).

(ii) b Crad(a).

(iii) rad(b) C rad(a).

Exercise 2.20. Let f be an element in A. Show that D(f) = 0 if and only if f is
nilpotent.

Exercise 2.3. Show that the nilradical of A is equal to the Jacobson radical of A if and
only if every non-empty open subset of Spec A contains a closed point of Spec A.

Exercise 2.4. Let Z C X := Spec A be a finite set and let U be an open neighborhood
of Z.
(a) Show that there exists an f € A such that Z C D(f) CU.
Hint: Use Proposition B.2 (Section (2)).
(b) Set Ox z := S™'A, where S = A\ U, b.. Show that Ox z = lim Ox(U).

—U 2O Z open
(c) Show that O z is a semi-local ring with maximal ideals S~!p, where z runs through
those points « € Z that are not generizations of points # x in Z.

Exercise 2.50. Let a C A be an ideal, let py,...,p, be prime ideals of A and let
Z; =V (p;), j=1,...,r, the corresponding closed irreducible subset. Assume that for all
Jj there exists an f; € a such that f; does not vanish on Z; (ie., Z;  V(f;)). Show that
there exists an f € a such that Z; € V(f) for all j.

Hint: Proposition B.2 (Section (2)).

Exercise 2.6. Show that an open subset U of Spec A is quasi-compact if and only if it
the complement of a closed set of the form V'(a), where a is a finitely generated ideal.
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Exercise 2.70. Let a be an ideal such that a is contained in the Jacobson radical of A.
Show that the only open set of X = Spec A that contains V'(a) is X itself. Deduce that,
if A is a local ring, the only open set of X containing the unique closed point of X is the
space X itself.

Exercise 2.8. Let X = Spec A.

(a) Show that every locally closed irreducible subset of X contains a unique generic point.

(b) Show that every irreducible subset of X contains at most one generic point.

(¢) Now let A be a principal ideal domain with infinitely many maximal ideals (e.g. A = Z
or A = k[T], where k is a field). Show that any subset of Spec A that consists of
infinitely many closed points is irreducible but does not contain a generic point.

Exercise 2.9. Let I" be a totally ordered abelian group. A subgroup A of I' is called

isolated if 0 <y < and 6 € A imply v € A.

(a) Let A be a valuation ring, K = Frac A. Show that p — A, is an inclusion reversing
bijection from Spec A onto the set of rings B with A C B C K and that such a ring
B is a valuation ring of K. Its inverse is given by sending B to its maximal ideal
(which is contained in A).

(b) Let A be a valuation ring with value group I, see Section (B.13). For every isolated
subgroup A of T set pa := {a € A ; v(a) ¢ A}. Show that A — pa defines an
order reversing bijection between the set of isolated subgroups of T' and Spec A (both
totally ordered by inclusion).

(c) Show that the value groups of the valuation ring A,, is isomorphic to I'/A and the
value groups of the valuation ring A/pa is isomorphic to A.

(d) For an arbitrary totally ordered abelian group I' let R = k[I'] be the group algebra of
I over some field k. Write elements u € R as finite sums u =} aye?. Define a map
v: R\ {0} — T by sending » to the minimal v € I" such that c., # 0. Show that R is
an integral domain and that v can be extended to a valuation v on K = Frac R with
value group I'. In particular A :={z € K ; v(z) > 0} is a valuation ring with value
group I'.

(e) Let I be a well-ordered set. Endow Z! with the lexicographic order (i.e., we set
(ni)ier < (my)ier if and only if J := {¢ € I ; m; # n; } is non-empty and n;, < m;,
where i is the smallest element of J). Show that Z! is a totally ordered abelian
group and that for all k € I the subsets I'>, of (n;); € Z' such that n;, = 0 for all
i < k are isolated subgroups of Z!.

(f) Deduce that for every cardinal number ¢ there are valuation rings whose spectrum
has cardinality > &.

Exercise 2.10. Let X be a topological space, & a sheaf on X and let s,t € Z(U) be
two sections of % over an open subset U C X. Show that the set of x € U such that
Sz =tz is open in U.

Exercise 2.110. Let I be a filtered preordered set, fix inductive systems ((X;), (aji)i<j)
and ((Y;)i, (85:)i<;) of sets, indexed by I, and let X and Y be their respective inductive
limits. Let (u;: X; — Y;); be a morphism of inductive systems and let u: X — Y be its
inductive limit.

(a) Show that if there exists an ¢ € I such that u; is injective for all j > ¢, u is injective.
(b) Show that if there exists an ¢ € I such that u; is surjective for all j > 4, u is surjective.

Exercise 2.120. Let ¢ be the sheaf of holomorphic functions of C.
(a) Show that (C, O¢) is a locally ringed space. What is x(z) for z € C?
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(b) Let D: Oc — O¢ be the morphism of sheaves, which sends f € ¢ (U) (U C C open)
to its derivative f’ € Oc(U). Show that D,: O¢ , — Oc,, is surjective for all z € C.
Give an example of an open set U in C such that Dy is not surjective. Can you
characterize the open subsets U, such that Dy is surjective?

Exercise 2.13. Let X be a topological space. A sheaf . on X is called locally constant
if every point 2 € X has an open neighborhood U such that .7 |y is a constant sheaf
(Example 2.25).
(a) Let X be irreducible. Show that the following properties for a presheaf .# on X are
equivalent.
(i) The set % (0) consists of one element, and for every non-empty open subset
U C X, the restriction map .#(X) — .# (U) is bijective.
(ii) # is a constant sheaf on X.
(iii) % is a locally constant sheaf on X.
(b) Conversely, let X be a topological space and assume that there exists a sheaf # such
that .7 (X) — Z(U) is bijective for all non-empty open sets U C X and such that
Z(X) contains more than one element. Show that X is irreducible.

Exercise 2.14. Let X be a topological space and i: Z — X the inclusion of a subspace

Z. Let .7 be a sheaf on Z. Show the following properties for the stalks i.(.%),.

(a) For all x ¢ Z, i,.(F), is a singleton (i.e., a set consisting of one element).

(b) For all x € Z, i (F), = Fu.

(c) Now assume that every point in the closure of Z has a fundamental system of open
neighborhoods which intersect Z in a connected set and that .# is a constant sheaf
with value E, where E is some set. Show that i.(%), = E for all x € Z.

Note that the conditions in (c¢) are automatically satisfied, if Z = {z} for some point

x € X. Then i.(.F) is called the skyscraper sheaf in x with value E.

Exercise 2.15. Let X be a locally compact topological space and let .# be the presheaf
of bounded continuous functions on X with values in R (Example 2.19 (4)). Describe the
associated sheaf 7.

Exercise 2.16. Let X be a topological space and let (U;); be an open covering of X.

For all i let #; be a sheaf on U;. Assume that for each pair (4, 7) of indices we are given

isomorphisms ¢;;: .Z; v, = Zi|u.nu; satistying for all 7, j, k the “cocycle condition’

Pik = Pij © Pjk ON U, N Uj N Ug.

(a) Show that there exists a sheaf .# on X and for all i isomorphisms ¢;: % = .7 |u,
such that v; o ;; =1; on U; N Uj for all ¢, 5. Show that .% and the 1; are uniquely
determined up to unique isomorphism by these conditions. Show that an analogous
result holds for sheaves with values in an arbitrary category.

Remark: The sheaf .% is said to be obtained by gluing the %, via the gluing data ¢;;.

(b) Make sheaves on (U;); and gluing data into a category and show that this category is
equivalent to the category of sheaves on X.

)

Exercise 2.17. Let (X, Ox) be a locally ringed space.

(a) Let U C X be an open and closed subset. Show that there exists a unique section
ey € I'(X, Ox) such that ey |y = 1 for all open subsets V of U and ey |y = 0 for all
open subsets V of X \ U. Show that U — ey yields a bijection

OC(X) «» Idem(I'(X, Ox))
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from the set of open and closed subsets of X to the set of idempotent elements of the
ring I'(X, Ox).
(b) Show that eyey = eynyr for U, U’ € OC(X).
(c) Assume that X # (). Prove that the following are equivalent:
(i) X is connected.
(ii) There exists no idempotent element e € I'(X, Ox) with e # 0, 1.
(iii) There exists no decomposition I'(X, Ox) = R; X Ry where Ry, Rs are non-zero
rings.

Exercise 2.18. Let (X, 0x) be a ringed space such that X consists of one point x

(e.g. X = Spec K, where K is a field). We set B := Ox(X) = Ox 5. Clearly, (X, Ox) is

locally ringed if and only if B is a local ring.

(a) Let (Y, Oy) be a second ringed space. To every morphism f: (X, Ox) — (Y, Oy) of
ringed spaces we associate (f(z), f£). Show that this defines a bijection, functorial in
(Y, Oy), between the set of morphisms (X, Ox) — (Y, Oy) and the set of pairs (y, )
where y € Y and ¢: Oy, — B is a ring homomorphism.

(b) Show that if B is local and (Y, Oy ) is a locally ringed space, f is a morphism of
locally ringed spaces if and only if f£ is a local ring homomorphism.

(c) Give an example of a morphism of ringed spaces between affine schemes which is not
a morphism of locally ringed spaces.

Exercise 2.190. Let (X, Ox) be a locally ringed space, and f € &x(X). Define

Xp={zeX; fz) #0}.
Show that Xy is an open subset of X. What is X if X is an affine scheme?

Exercise 2.20. Let A be a local ring. Show that Spec A is connected.
Hint: Exercise 2.17.

Exercise 2.21. Let A be a ring, a C A an ideal such that A is a-adically complete, and
let i: Spec A/a < Spec A be the canonical morphism. Show that U + i~1(U) yields a
bijection from the set of open and closed subsets of Spec A to the set of open and closed
subsets of Spec A/a.
Hint: Exercise 2.17.

Exercise 2.22. Let R be a principal ideal domain, and let f € R be a nonzero element.
Describe the affine scheme X = Spec R/ fR (its underlying topological space, the stalks
Ox ., and Ox (U) for every subset U of X) in terms of the decomposition of f into prime
factors.

Exercise 2.23. A ring A is called Boolean if a® = a for all a € A. Let A be a Boolean

ring and X = Spec A.

(a) Show that every prime ideal of A is a maximal ideal and that x(z) = Fq for all z € X.
Deduce that ¢ — Ker(yp) yields a bijection between the set of ring homomorphisms
A — F5 and Spec A.

(b) Show that X is a compact totally disconnected space and that A — Spec A yields an
equivalence of the category of Boolean rings (as a full subcategory of all rings) and the
category of compact totally disconnected spaces (where the morphisms are continuous
maps). A quasi-inverse of A — Spec A is given by sending X to the Fy-algebra of
continuous maps X — Fy (where Fy is endowed with the discrete topology).

Remark: See also Exercise 10.10.
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In the current chapter, we will define the notion of scheme. In a sense, the remainder of
this book is devoted to the study of schemes, so this notion is fundamental for all which
follows. Schemes arise by “gluing affine schemes”, similarly as prevarieties are obtained
by gluing affine varieties. Therefore after the preparations in the previous chapter, the
definition is very simple, see Section (3.1). As for varieties we define projective space
(Section (3.6)) by gluing copies of affine spaces. This is an example of a scheme which is
not affine.

Even though prevarieties are not schemes themselves, we can in a natural way embed
the category of prevarieties over some algebraically closed field k as a full subcategory of
the category of k-schemes. In Sections (3.8)—(3.13) we will discuss the properties of those
schemes which are in the essential image of this embedding, and will explain how we can
identify prevarieties over k with “integral schemes of finite type over k”.

Finally we will discuss the notion of subscheme and in particular of the underlying
reduced subscheme of a scheme.

Schemes

(3.1) Definition of Schemes.

In order to define the notion of scheme, we proceed as in Chapter 1 where we defined
prevarieties, using affine varieties as building blocks. In the current situation, the local
pieces will be affine schemes, i. e. the spectra of rings, seen as locally ringed spaces.

Definition 3.1. A scheme is a locally ringed space (X, Ox) which admits an open covering
X = U, Us such that all locally ringed spaces (Us, Ox|u,) are affine schemes.
A morphism of schemes is a morphism of locally ringed spaces.

We obtain the category of schemes which we will denote by (Sch). Clearly any affine
scheme is a scheme. Usually we denote a scheme (X, Ox) simply by X.

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2020
U. Gortz und T. Wedhorn, Algebraic Geometry I: Schemes, Springer Studium
Mathematik — Master, https://doi.org/10.1007/978-3-658-30733-2_4
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Let S be a fixed scheme. The category (Sch/S) of schemes over S (or of S-schemes) is
the category whose objects are the morphisms X — S of schemes, and whose morphisms
Hom(X — S, Y — S) are the morphisms X — Y of schemes with the property that

NV

commutes. The morphism X — S is called the structural morphism of the S-scheme X
(and often is silently omitted from the notation). The scheme S is also sometimes called
the base scheme. In case S = Spec R is an affine scheme, one also speaks about R-schemes
or schemes over R instead. For S-schemes X and Y we denote the set of morphisms
X —Y in the category of S-schemes by Homg(X,Y) or by Hompg(X,Y), if S = Spec R
is affine.

By definition the S-scheme idg: S — S is a final object in the category (Sch/S).

We add a remark about the terminology: Originally (in particular in Grothendieck’s
[EGAI-[EGAIV]) the objects which we call schemes were called preschemes (and what we
will call separated schemes, Definition 9.7, were called schemes). Nowadays (and already
in [EGAInew]) only the terminology introduced above is used.

X Y

(3.2) Open subschemes.

Proposition and Definition 3.2.

(1) Let X be a scheme, and U C X an open subset. Then the locally ringed space (U, Ox i)
is a scheme. We call U an open subscheme of X. If U is an affine scheme, then U is
called an affine open subscheme.

(2) Let X be a scheme. The affine open subschemes are a basis of the topology.

More precisely, in the second part of the proposition we should say that those open
subsets which give rise to an affine open subscheme are a basis of the topology.

Proof. By definition the locally ringed space X can be covered by affine schemes, and by
Proposition 2.5 each of these affine schemes has a basis of its topology consisting of affine
schemes. This yields both parts of the proposition. O

Let U C X be an open subset, and j: U — X the inclusion. We consider U as an open
subscheme of X. If V C X is open, the restriction map of the structure sheaf Ox gives
us a ring homomorphism

L(V,0x) = T(VNUOx)=TG""(V),0xpw) =T(V,j.Oxv)

Altogether, these maps constitute a homomorphism j°: Ox — 5,0 x|u of sheaves of rings
and together with the inclusion U C X a morphism U — X of schemes. Whenever we
(possibly implicitly) speak about a morphism of schemes from U to X, then this is the
one which is meant.

An affine open covering of a scheme X is an open covering X = |J, U;, such that all U;
are affine open subschemes of X.
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We will study open (and closed and locally closed) subschemes in more detail in
Sections (3.15) — (3.16). Finally, we note the following lemma which will be useful for
us. Recall that whenever X = Spec A is an affine scheme, and f € A an element of its
affine coordinate ring, then (D(f), Ox|p(s)) is an affine scheme with coordinate ring Ay.
Subschemes of this form are called principal open, see Example 2.38.

Lemma 3.3. Let X be a scheme, and let U, V be affine open subschemes of X. Then
there exists for all x € UNV an open subscheme W C U NV with W 3 x such that W is
principal open in the sense of Section (2.2) in U as well as in V.

Proof. Replacing V' by a principal open subset of V' containing x, if necessary, we may
assume that V' C U. Now choose f € I'(U, Ox) such that z € D(f) C V, and let f|y denote
the image of f under the restriction homomorphism I'(U, 0x) — I'(V, Ox). Then Dy (f) =
Dy (f]v). (The sheaf axioms then also imply that I'(U, Ox)s = I'(V, Ox)y/,, -) O

(3.3) Morphisms into affine schemes, gluing of morphisms.

Morphisms of an arbitrary scheme (or even an arbitrary locally ringed space) into an
affine scheme are easy to understand, as the following proposition shows.

Proposition 3.4. Let (X, Ox) be a locally ringed space, Y = Spec A an affine scheme.
Then the natural map

Hom(X,Y) — Hom(A, (X, 0x)), (f, ) — fo,

is a functorial bijection. Here the set on the left side denotes the set of morphisms X — Y
of locally ringed spaces, and the set on the right side denotes the set of ring homomorphisms
A— F(X, ﬁx)

If X is a scheme, the proof is an easy gluing argument that we will give first. After
that we will give an independent proof of the general statement.

Proof. First proof if X is a scheme. In this case, there exists an affine open covering
X =, U;. We know from Theorem 2.35, that for all U; the natural map

Hom(U;,Y) — Hom(A,I'(U;, Ox))
is a bijection. For an affine open V' C U; N U; the diagram

Hom(U;,Y) —— Hom(A,T'(U;, Ox))

| l

Hom(V,Y) —— Hom(A4,T'(V, Ox))

is commutative, since I'(—), i. e. taking global sections, is functorial. The assertion now
follows from the very general Proposition 3.5 below about gluing of morphisms.

Second proof in the general case. We first construct a map Hom(A,I'(X,0x)) —
Hom(X,Y), so let p: A — I'(X, Ox) be a ring homomorphism. Let us start by defining
amap f: X — Y between the underlying sets of X and Y. For z € X, let p := {a €
A p(a)(z) =01in k(z) }. Then A/p embeds into the field x(z), so p is a prime ideal,
and we set f(z) :=p.
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For s € A, we have f~}(D(s)) ={z € X ; o(s)(z) Z0} ={z € X ; o(s). € O, } =
Xo(s), an open subset of X (cf. Exercise 2.19). Hence f is continuous. Also note that
¢(8)x,., 18 a unit in I'(X,(s), Ox), because this is true locally and the inverse elements
are unique and hence can be glued.

To define a sheaf morphism 0y — f.O0x, it is enough to give ring homomorphisms
Oy (D(s)) — Ox(f~1(D(s)), compatible with restriction maps, for all s € A. But
Oy (D(s)) = As, and ¢(s)|x, € ['(X, (), Ox)* = Ox(f~H(D(s))*, so there is a unique
such map which is compatible with the given map ¢: A — I'(X, Ox). In this way, we
obtain the desired sheaf homomorphism f°: &y — f.Ox.Forp = f (x) € Spec A, we have
Oy, f(z) = Ap, and the map induced by f > on stalks is the ring homomorphism Ap = Ox 4
induced by ¢. For a € p, ¢(a) lies in the maximal ideal of O , by definition of f, which
implies that this is a local ring homomorphism. Altogether we have constructed a map
Hom(A,T'(X, Ox)) — Hom(X,Y).

It remains to show that the two maps are inverse to each other. By construction, it is
clear that starting from an element ¢ € Hom(A,T['(X, Ox)), we get back ¢ after applying
both maps. Conversely, let f € Hom(X,Y), and let ¢ = f2. Denote by g: X — Y
the morphism constructed from ¢ as above. Since f is a morphism of locally ringed
spaces, it induces homomorphisms A — k(f(x)) <= x(x) for every z € X. As a prime
ideal in A, f(x) is just the kernel of A — k(f(x)), so we see that f = g as continuous
maps. To check the equality of the two sheaf morphisms Oy — f.0x, it is enough to
consider the maps induced on stalks (Proposition 2.23). But on stalks both f and g
induce homomorphisms A, — Ox , (with p = f(z) = g(z)) which fit into a commutative
diagram with ¢: A — I'(X, Ox ). Hence they must be equal by the universal property of
the localization. O

Proposition 3.5. (Gluing of morphisms) Let X, Y be locally ringed spaces. For every
open subset U C X, let Hom(U,Y') be the set of morphisms (U, Ox\y) — (Y, 0y) of
locally ringed spaces. Then U — Hom(U,Y) is a sheaf of sets on X.

In other words: If X =, U; is an open covering, then a family of morphisms U; =Y
glues to a morphism X — Y if and only if the morphisms coincide on intersections
U; NUj, and the resulting morphism X — Y 1is uniquely determined.

Proof. Easy. (Analogously, we can glue morphisms of sets or of topological spaces. It
is then easy to see that one can also define the sheaf homomorphism &y — f.0x by
gluing.) O

Because for every ring R there is a unique ring homomorphism Z — R, we obtain:

Corollary 3.6. Let X be a locally ringed space. Then there exists a unique morphism
X — SpecZ of locally ringed spaces. In particular, SpecZ is a final object in the category
of schemes.

We also see that Hom(X, Spec Z[T]) = I'(X, Ox). More generally, for an R-scheme X
we have an identification of R-algebras

(3.3.1) Homp(X,AL) = I'(X, Ox).

Thus we may consider global sections of &x as morphisms on X with values in the affine
line.
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Remark 3.7. We may apply Proposition 3.4 also to A = I'(X, Ox). Thus for every
locally ringed space X there corresponds to idr(x,¢,) a functorial morphism of locally
ringed spaces

cx: X — SpecT(X, Ox)

which we call canonical.

(3.4) Morphisms from Spec K, K a field, into schemes.

Let X be a scheme. Let x € X, and let U C X be an affine open neighborhood of
x, say U = Spec A. Denote by p C A the prime ideal of A corresponding to z. Then
Ox = Oyg = Ay, and the natural homomorphism A — A, gives us a morphism

(3.4.1) Ja: Spec Ox , = Spec Ay — SpecA=U C X

of schemes. By Proposition 3.2 (2) this morphism is independent of the choice of U. By
Proposition 2.12, j, is a homeomorphism from Spec Ox , onto the subspace Z of all
points 2’ € X that are generizations of x (Definition 2.8), i.e., Z is the intersection of all
open subsets of X which contain z.

Let k(z) = Ox »/m, be the residue class field of z in X. We obtain a morphism of
schemes,

(3.4.2) iz: Speck(z) — Spec Ox , — X,

called canonical. The image point of the unique point in Spec x(z) is x.

Now let K be any field, let f: Spec K — X be a morphism, and let z € X be the image
point of the unique point p of Spec K. Since f is a morphism of locally ringed spaces,
f induces a local homomorphism Ox , = K = Ogpec k,p, and hence a homomorphism
t: k(z) = K between the residue class fields. In other words: The morphism f factors as
f =iz 0 (Spect): Spec K — Speck(z) = X.

Proposition 3.8. The above construction gives rise to a bijection

Hom(Spec K, X) — {(z,¢); z € X, ¢v: k(z) = K}

Proof. Conversely, we map an element (z,¢: k(x) — K) of the right hand side to the
morphism

s iz
Spec K —2% Spec (z) —> X,

and these two maps are inverse to each other. O

More generally, we have an analogous description for Hom(Spec R, X ), where R is a
local ring, see Exercise 3.18.

(3.5) Gluing of schemes, disjoint unions of schemes.

Definition 3.9. A gluing datum of schemes consists of the following data:
e an index set I,
e foralli e I a scheme U;,
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o foralli,j €l an open subset U;j C U, (we consider U;j as open subscheme of U;),
o foralli,j € I an isomorphism j;: Us; — Uy of schemes,

such that

(a) Uy =U; foralliel,

(b) the cocycle condition holds: vi; o wj; = @r; on Uiy N Uik, 4, j,k € 1.

In the cocycle condition we implicitly assume that in particular ¢;;(U;; N Uix) C Ujg,
such that the composition is meaningful. For i = j = k, the cocycle condition implies
that ¢;; = idy, and (for ¢ = k) that <p;j1 = ¢;;, and that ¢;; is an isomorphism
Uij NU;, — Uji M Ujk.

Obviously, one can completely analogously define the notion of gluing datum for sets,
topological spaces or (locally) ringed spaces. In each of these cases, one can construct
from a gluing datum a new object of the concerning category by “gluing” the objects U;,
which satisfies a universal property as explained below. For schemes, we prove this fact in
the following proposition.

Proposition 3.10. Let ((U)ier, (Usj)ijer, (pij)ijer) be a gluing datum of schemes.
Then there exists a scheme X together with morphisms v;: U; — X, such that
e for all i the map ; yields an isomorphism from U; onto an open subscheme of X,
o Yjopj =1 on U foralli,j,
o X =U;vi(Ui),
o »i(Ui) N (U;) = vi(Us;) = ¢;(Uji) for alli,j € 1.
Furthermore, X together with the v; is uniquely determined up to unique isomorphism.

Proposition 3.5 about gluing of morphisms shows that the scheme X in the proposition
satisfies the following universal property: If T is a scheme, and for alli € I, &: U; - T
is a morphism of schemes which induces an isomorphism of U; with an open subscheme
of Tj, such that §; o ¢;; = & on Uy; for all 4, j € I, then there exists a unique morphism
& X =T with Eop; =& forall i € 1.

In particular this implies the uniqueness assertion in the proposition. (The uniqueness
of course can also easily be obtained directly from Proposition 3.5 about the gluing of
morphisms.)

Proof. To define the underlying topological space of X, we start with the disjoint union
[1;c; Ui of the (underlying topological spaces of the) U; and define an equivalence relation
~ on it as follows: points x; € U;, x; € Uy, 4,j € I, are equivalent, if and only if x; € Uy,
xj € Uj; and x; = ¢;;(x;). The cocycle condition implies that ~ is in fact an equivalence
relation. As a set, define X to be the set of equivalence classes,

X=JJvi/~.
iel
The natural maps ¢;: U; — X are injective and we have ;(U;;) = ¥;(U;) N;(U;) for
all 4,57 € I. We equip X with the quotient topology, i. e. with the finest topology such that
all ¥; are continuous. That means that a subset U C X is open if and only if for all ¢ the
preimage ;' (U) is open in U;. In particular, the ¢;(U;) and the ¢;(Us;) = 1;(U;) N (U;)
are open in X.
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To obtain a locally ringed space, we have to “glue” the structure sheaves on the U; so as
to define a sheaf Ox of rings on X. The sheaf Ox is uniquely determined by its sections
(and the corresponding restriction maps) on a basis of the topology. It is thus sufficient to
define it on those open subsets U C X which are contained in one of the ;(U;), and to
check that this is well-defined and satisfies the sheaf axioms (Proposition 2.20). For each
such U, we fix once and for all an i with U C v;(U;), and we set Ox (U) = Oy, (1; *(U)).
If U C ¢;(U;) N (U;), then we identify the rings Oy, (¢; ' (U)) and Oy, (¢; ' (U)) via
@ji- This allows us to define restriction maps. We obtain a sheaf &’y of rings on X which
is independent of our choices. Since all the U; are locally ringed spaces, the same is true
for X.

Furthermore, with this definition the 1; are morphisms of locally ringed spaces; they
identify U; with (¢;(U;), Ox|y,(v,))- Finally all the U; are schemes by assumption, i. e.,
they are covered, as locally ringed spaces, by affine schemes, and therefore X is a scheme
as well. By construction of X, we have X = |Jv;(U;). O

Example 3.11. (Disjoint union) As a (trivial) special case of this construction we have
the disjoint union of schemes (or locally ringed spaces). We simply let U;; = 0 for all ¢, j,
so the underlying topological space is indeed the disjoint union of the U;. The structure
sheaf is the “obvious” sheaf. We denote the disjoint union by [, ; Us.

Example 3.12. Let X1,..., X, be affine schemes, X; = Spec A;. Then []!"_, X; is also
an affine scheme, which is isomorphic to Spec [, A;. The disjoint union of infinitely
many (non-empty) affine schemes is not affine, though (see Exercise 3.9).

Example 3.13. (Gluing of two schemes) Note that in case the index set I has only
two elements, any two open subsets U;o C U;, Us; C Us together with an isomorphism
@: Ups = Us already yield a gluing datum. Denote by X the scheme obtained by gluing
Uy and U, along . We can then view U; and Us as open subschemes of X. The definition
of the structure sheaf &x in the proof of Proposition 3.10 shows that for every open
subset V' C X we have

L(V,0x) ={(s1,52) e (VNUy, Oy,) x T(VNUs, Oy,) ; Spb(52|U21rTV) = S1|Ui2nV }

As an example, we consider the “affine line with a double point”: Let k be a field,
and let U; = Uy = A} = Speck[T)]. Fix a closed point = € A} and let Uy = Uy \ {z},
Uz = Uy \ {x}. We define a gluing isomorphism ¢: Uya — Usp as the identity morphism.
By gluing, we get a scheme X which we should think of as an affine line with the point x
doubled. This scheme is not affine (see Exercise 3.26).

Examples of schemes

Again one of the most important examples of a scheme is projective space P} — now
defined over an arbitrary base ring R. Again we may define for a set M of homogeneous
polynomials in R[Xj, ..., X,] the vanishing scheme V, (M). Once we have defined the
notion of a closed subscheme in Section (3.15), we will see that V(M) is a closed
subscheme of P%. In Chapter 13 we will generalize the construction of P} and of Vi (M)
and prove that every closed subscheme of P, is of the form V(M) (Proposition 13.24).
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(3.6) Projective Space P7,.

Let R be a ring. We define the projective space P}, (over R) by gluing n+1 copies of affine

space A%. To distinguish between the different copies, we write U; = A%, ¢ =0,...,n. So
U, is the spectrum of a polynomial ring in n indeterminates over R. It is useful to choose
))g“ sy § ey % as coordinates (where ﬁ means that 7; is to be omitted), so we have
X0 Xi X
U =SpecR|—,...,—,...,— |,
=P X, X, X,
and we can view all these rings as subrings of the ring R[Xy,..., X, X(;l, X

We define a gluing datum with index set {0,...,n} as follows: For 0 < i,5 < n let
Uij = DU(%) CU; if i # j, and U;; = U;. Further, let ¢;; = idy, and for ¢ # j let

wji: Uiy = Uji

be the isomorphism defined by the equality

R

XO 5(\1 Xn
Xi7...,Xi’...7AXi‘| HR

X X;
X X

(as subrings of R[Xo,...,X,, X', ..., X !]) of the affine schemes U;; and Uj;. Since the
pi; are defined by equalities, the cocycle condition holds trivially, and we obtain a gluing
datum and by Proposition 3.10 a scheme. This scheme is called the projective space of
relative dimension n over R and it is denoted by IP%. We consider the schemes U; as open
subschemes of P}, and denote them also by Dy (X;).

Remark 3.14. It is easy to see that the canonical ring homomorphism R — I'(P%, ﬁp%)
is an isomorphism (Exercise 3.10). This implies that for n > 0 the scheme P’ is not affine,
since otherwise we would have P} = Spec R.

Remark 3.15. If k is an algebraically closed field, we had a morphism of prevarieties
A"TL(k) \ {0} — P"(k) sending (zo,...,2n) to (zg : -+ : z,). An analogous morphism
can also be defined for the projective space over an arbitrary ring. Let R[Ty,...,T,] = R
be the R-algebra homomorphism that sends T; to 0 for all 4. The corresponding scheme
morphism 0: Spec R — A%H defines an isomorphism of Spec R onto V (Ty,...,T,). We
denote by A%ﬂ \ {0} the open complement of V(Ty,...,T,) in A;ﬁfl considered as an
open subscheme of A", Clearly we have A%\ {0} = U, D(T;). For all i = 0,...,n
let p; be the scheme morphism

_ Xo X; X
i+ D(T;) = Spec R[Ty, ..., T,, T, '] = Do (X;) =SpecR | =,..., =, ..., ==
pi: D(T;) = Spec R[Ty ;1 = Dy(X;) = Spec X, X, X,

corresponding to the R-algebra homomorphism given by X;/X; — T;/T;. Then it is easy
to see that the p; glue together to a scheme morphism

(3.6.1) p: AR\ {0} — PR
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(3.7) Vanishing schemes in projective space.

Let again R be a ring. As in Section (1.19), we view R[Xy,...,X,] as a graded R-
algebra. Let M C R[Xj,...,X,] be a subset of homogeneous polynomials and let I C
R[Xy,...,Xp] be the ideal generated by M. Ideals generated by homogeneous elements
are called homogeneous ideals. For such an ideal we have I = @ ,(I N R[Xo, ..., X,]a)-
We want to construct a scheme Vi (M) = V(I) which is the analogue of the variety
of common zeros of the homogeneous polynomials in I (see Section (1.21)), by gluing
affine schemes. If M = {fy,..., f-} is a finite set, we also write V. (f1,..., fr) instead of
Vi (M).

As in Section (1.20), let U; = Spec R[ ,...,%, cey X +]. By dehomogenizing with
respect to X; (compare Section (1.19)) every homogeneous polynomial in [ yields an
element in I'(U;, Oy, ). Denote the ideal generated by all these elements by ®;(I). We

want to glue the schemes V; := Spec'(U;, O, )/®;(I) along their open subschemes

X .
wrﬂm<;)gm

The gluing isomorphisms which we used to glue the U; in Section (3.6) restrict to
isomorphisms Vj; = Vij, since for a homogeneous polynomial f € I of degree d we have

X1®i(f) = XJ®;(f),

for the dehomogenizations with respect to X; and Xj,
then ®;(f) and ®;(f) differ only by a unit. Hence the images of the 1deals ;(I) and
®;(I) in the coordinate ring of U;; = Dy, (;’ ) coincide, and this gives us the desired
identification V;; = Vj;. Since the cocycle condition holds for the U; and Uy, it is satisfied
in this situation, as well. So by gluing we obtain a scheme which we denote by V. (I),
together with a morphism ¢: V; (I) — P%. The underlying topological space of V4 (1)
is a closed subspace of P%, and the morphism ¢ is a so-called closed immersion; see
Section (3.15), in partlcular Example 3.48. We call V. (I) the vanishing scheme of I (or
of M).

In this way, we obtain a huge number of examples of schemes: whenever we write down
homogeneous polynomials in Xy, ..., X,, with coefficients in a ring R, we can consider
their scheme of common zeros inside P%. We will study these schemes in more detail in
Chapter 13. Usually these schemes are not affine (see Corollary 13.77 for a more precise
statement).

In Proposition 1.65 we have seen that morphisms between projective varieties can
be described by homogeneous polynomials. This is also true over arbitrary rings (see
Section (4.14)).
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Basic properties of schemes and morphisms of schemes

(3.8) Topological Properties.

Definition 3.16.

(a) A scheme is called connected, if the underlying topological space is connected.

(b) A scheme is called quasi-compact, if the underlying topological space is quasi-compact,
i. e., if every open covering admits a finite subcovering.

(c) A scheme is called irreducible, if the underlying topological space is irreducible, i. e.,
if it is non-empty and not equal to the union of two proper closed subsets.

We have seen in Proposition 2.5 that all affine schemes are quasi-compact. A (trivial)
example of a scheme which is not quasi-compact is the disjoint union of infinitely many
non-empty schemes. But there also exist connected (and even irreducible) schemes which
are not quasi-compact; see Exercises 3.2 and 3.26.

Definition 3.17. A morphism f: X — Y of schemes is called injective, surjective
or bijective, respectively, if the continuous map X — Y of the underlying topological
spaces has this property.

Similarly, f is called open, closed, or a homeomorphism, respectively, if the underlying
continuous map has this property.

Finally, f is called dominant if f(X) is a dense subspace of Y.

Note that a homeomorphism of schemes in general is not an isomorphism (see Exer-
cise 3.6 or Exercise 12.21 for examples).

(3.9) Noetherian Schemes.

The notion of a noetherian ring is central in algebra. Of similar importance is its general-
ization to schemes in algebraic geometry.

Definition 3.18. A scheme X is called locally noetherian, if X admits an affine open
cover X = JU;, such that all the affine coordinate rings T'(U;, Ox) are noetherian. If in
addition X is quasi-compact, X is called noetherian.

Because any localization of a noetherian ring is noetherian again, every locally noetherian
scheme has a basis of its topology consisting of noetherian affine open subschemes. Because
all affine schemes are quasi-compact, in this case the notions “noetherian” and “locally
noetherian” coincide.

We also see that all the local rings Ox ,, of a locally noetherian scheme X are noetherian.
But even for affine schemes X it is not true that if &x  is noetherian for all z € X, then
X is noetherian (see Exercise 3.21).

Proposition 3.19. Let X = Spec A be an affine scheme. Then X is noetherian if and
only if A is a noetherian ring.
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Proof. By definition, the condition is sufficient. Now assume that X is noetherian. Let
I C A be an ideal; we show that it is finitely generated. By assumption, we can cover
Spec A by finitely many affine open subschemes, which are spectra of noetherian rings.
Since any localization of a noetherian ring is noetherian again, we may (using Lemma 3.3)
even cover Spec A by affine open subschemes of the form D(f;), fi € A, i =1,...,n,
such that all Ay, are noetherian rings. The ideals J; := I Ay, of Ay, are hence finitely
generated, and the claim follows from the following lemma. O

Lemma 3.20. Let A be a ring, and let Spec A = | J,.; D(fi) be a finite open covering
by principal open subsets (i.e., the ideal generated by the f; is all of A). Let M be an
A-module. Then M is finitely generated if and only if for all i, the localization My, is a
finitely generated Ay, -module.

Proof. Clearly, the condition is necessary. Now let My, be finitely generated over Ay,,
for all 4, say by elements m;;/(f;)", j = 1,...,r;, mj; € M. Then the submodule
N C M generated by all the m;; is a finitely generated A-module, with the property
that Ny, = My, for all 4. For the A-module M/N we therefore get that all localizations
(M/N), =2 M/N ®4 A, at prime ideals p € Spec A vanish, which implies that M/N =0,
hence M = N is finitely generated. O

Remark 3.21. The underlying topological space of an affine noetherian scheme is clearly
noetherian (in the sense of Definition 1.23). Moreover Lemma 1.24 then implies that if
X is any noetherian scheme, the underlying topological space of X is noetherian (and
in particular has only finitely many irreducible components). The converse statement is
false, see Exercise 3.4.

Corollary 3.22. Let X be a (locally) noetherian scheme and U C X an open subscheme.
Then U is (locally) noetherian.

Proof. In the locally noetherian case, this is obvious. If X is noetherian, then by Re-
mark 3.21 the underlying topological space is noetherian, hence every open in it is
quasi-compact by Lemma 1.25. O

(3.10) Generic Points.

The underlying topological spaces of schemes have usually lots of points that are not
closed. In particular they are far from being Hausdorff. Instead of viewing this as a
pathology one should think of this as an advantage: There are points x such that their
closure {z} is quite large and this will enable us to reduce the analysis of certain properties
to considerations about a single point. We will see examples of this throughout the book.

Let X be a scheme. In Chapter 2 we introduced the following terminology. If Z is a
subset of X, then a point z € Z is called a generic point of Z, if {z} is dense in Z. As
the closure of an irreducible subset is again irreducible, the subset Z must be irreducible,
if it admits a generic point.

In those topological spaces which arise as the underlying spaces of schemes, a much
stronger property is satisfied: Every irreducible closed subset has a uniquely determined
generic point. This statement is the key point of the following proposition.
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Proposition 3.23. Let X be a scheme. The mapping

X — {ZCX; Z closed, irreducible}
z = fz}

is a bijection, i. e. every irreducible closed subset contains a unique generic point.

Proof. We know already that this property is true for affine schemes (Corollary 2.7). Now
let Z C X be irreducible and closed, and let U C X be an affine open subset such that
Z NU # 0. Then the closure of ZNU in X is Z because Z is irreducible. In particular,
Z N U is irreducible, and the generic point in Z N U is a generic point of Z.

If z € Z is a generic point, then z is contained in every open subset of X which meets
Z, hence also in every U as above, and hence the uniqueness statement in the affine case
implies the uniqueness of generic points in general. O

Let X be a scheme. For every point z € X there exists a maximal point 7 (i.e., i is the
generic point of an irreducible component of X) such that 7 is a generization of z (i.e.,
x € {n}). The existence of specializations that are closed points is more subtle. In general
it may happen that a non-empty scheme X does not have any closed point, even if X
is irreducible (see Exercise 3.14). Clearly this cannot happen if X is affine (because any
prime ideal is contained in a maximal ideal), and it is not difficult to deduce that if X
is a quasi-compact scheme, then for any = € X there exists a closed point y of X such
that y € {z} (Exercise 3.13). In Section (3.12) we will see another important special case
where every point has a specialization that is closed, namely schemes locally of finite type
over a field. In fact this holds more generally for arbitrary locally noetherian schemes, see
Exercise 5.5.

The following purely topological statement is an example for a property that has only
to be checked at the generic point.

Proposition 3.24. Let f: X — Y be an open morphism of schemes and let Y be
irreducible with generic point n. Then X is irreducible if and only if the fiber f=1(n)
(considered as a subspace of X ) is irreducible.

Proof. As f is open, we have f=1(n) = f~*({n}) = f~*(Y) = X. Thus the claim follows
from Lemma 1.17. O

Although schemes are almost never Hausdorff, they at least satisfy the following weaker
separation property.

Proposition 3.25. Let X be a scheme. Then the underlying topological space of X is a
Kolmogorov space (or Ty-space), i. e. for any two distinct points x,y € X there exists an
open subset of X which contains exactly one of the points.

Proof. Without loss of generality, we may assume that X is affine. Then the points z, y
correspond to prime ideals p, ¢ in the affine coordinate ring I'( X, Ox). We may assume
that p Z q. Let f € p\ q. Then D(f) is an open subset of X which contains q, but does
not contain p. O

We will study in Chapter 9 a property of schemes which in a sense is a substitute for
the Hausdorff property, the so-called separatedness.
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(3.11) Reduced and integral schemes, function fields.

In this section we generalize the notion of being reduced or an integral domain from rings
to schemes.

Definition 3.26.
(a) A scheme X is called reduced, if all local rings Ox o, x € X, are reduced rings.
(b) An integral scheme is a scheme which is reduced and irreducible.

Proposition 3.27.

(1) A scheme X is reduced if and only if for every open subset U C X the ring I'(U, Ox)
1s reduced.

(2) A non-empty scheme X is integral if and only if for every open subset ) # U C X
the ring T(U, Ox) is an integral domain.

(3) If X is an integral scheme, then for all x € X the local ring Ox , is an integral
domain.

The converse in (3) does not hold (see Exercise 3.16).

Proof. (1). Let X be reduced, let U C X be open, and consider f € T'(U, Ox) such that
f™=0. If we had f # 0, then there would exist € U with f, # 0 (in Ox ), but I = 0.

The converse is also easy: Let f € Ox , be a nilpotent element. Then there exists an
open U C X and a lift f € T'(U, Ox) of f. By shrinking U, if necessary, we may assume
that f is nilpotent, and hence = 0.

(2). Let X be integral. Because all open subschemes of X are integral, too, it is
enough to show that I'(X, Ox) is a domain. Take f, g € I'(X, Ox) such that fg = 0. Then
X =V(f)UV(g), so by the irreducibility we get, say, X = V(f). We want to show that f
must then be 0. We can check this locally on X, so we may assume that X is affine. Then
f lies in the intersection of all prime ideals, i. e. in the nil-radical of the affine coordinate
ring of X. Since X is reduced, by (1) the nil-radical is the zero ideal.

If conversely all T'(U, Ox) are integral domains, then by (1) X is reduced. If there
existed non-empty affine open subsets Uy, Uy C X with empty intersection, then the sheaf
axioms imply that

F(Ul U UQ, ﬁx) = F(Ul, ﬁx) X F(UQ, ﬁX)

But the product on the right hand side obviously contains zero divisors.
(8). This follows from (2), since any (non-zero) localization of a domain is a domain. [

An affine scheme X = Spec A is integral if and only if A is a domain. The generic point
1 of X then corresponds to the zero ideal of A, and the local ring Ox ,, is the localization
Aoy, which is just the field of fractions of A. This also shows that the local ring at the
generic point of an arbitrary integral scheme is a field.

Definition 3.28. Let X be an integral scheme, and let n € X be its generic point. Then
the local ring Ox 5, is a field, which is called the function field of X and denoted by K (X).

For an integral scheme all “rings of functions” are contained in its function field. More
precisely we have:
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Proposition 3.29. Let X be an integral scheme with generic point n and let K(X) be

its function field.

(1) If U = Spec A is a non-empty open affine subscheme of X, then K(X) = Frac(4). If
z € X, then Frac(Ox ,) = K(X).

(2) Let U CV C X be non-empty open subsets. Then the maps

resg f'_>fn

are injective.
(3) For every non-empty open subset U C X and for every covering U = |J,U; by
non-empty open subsets U; we have

LU, 0x) = (0, 0x) = () Ox.a

zeU
where the intersection takes place in K(X).

Proof. For x € U = Spec A C X we have y € U and 7 corresponds to the zero ideal in the
integral domain A. Moreover Ox , = A,,. Hence K(X) = Oy, = Frac(A) = Frac(A4,,).
This proves (1).

To show (2) it suffices to prove that for ) # U C X and f € I'(U, Ox) with f,, =0 we
have f = 0. As f = 0 is equivalent to f|yw = 0 for all open non-empty affine subschemes
W C U, we may assume that U = Spec A is affine. But in this case the map is simply the
canonical inclusion A — Frac(A4) = K(X).

The first equality in (3) follows from the injectivity of restriction maps and the fact
that Ox is a sheaf. The second equality follows from the analogous assertion for affine
integral schemes in Example 2.37. O

Prevarieties as Schemes

In a sense, schemes provide a generalization of the notion of prevariety which we defined
in Chapter 1. However, prevarieties are not schemes — they are missing exactly the generic
points of irreducible closed subsets which consist of more than one point. On the other
hand, there is a natural way to associate a scheme to any given prevariety. In the case
of affine varieties, the obvious way to do this is to associate to an affine variety X the
spectrum SpecI'(X, Ox) of its coordinate ring. In the following sections, we will deal with
the general case. We will obtain a fully faithful functor from the category of prevarieties
over an algebraically closed field k to the category of k-schemes. One of our tasks is to
analyze which schemes arise in this way. Among the properties all schemes arising from
prevarieties have, is being “of finite type” over the base field; this is the content of the
next section.
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(3.12) Schemes (locally) of finite type over a field.

If A is the coordinate ring of an affine variety over an algebraically closed field k, then
A is a finitely generated k-algebra. Let us define a corresponding notion in the case of
arbitrary k-schemes (and arbitrary fields k).

Definition 3.30. Let k be a field, and let X — Speck be a k-scheme. We call X a
k-scheme locally of finite type or say that X is locally of finite type over k, if there is
an affine open cover X = |J,c; U such that for all i, U; = Spec A; is the spectrum of a
finitely generated k-algebra A;. We say that X is of finite type over k if X is locally of
finite type and quasi-compact.

In Section (10.2) we will define more generally, when a morphism f: X — Y of schemes
is called “(locally) of finite type”. The definition above is the special case Y = Speck.

Because every finitely generated k-algebra is noetherian, it follows immediately from
the definition that every k-scheme (locally) of finite type is (locally) noetherian.

Proposition 3.31. Let X be a k-scheme locally of finite type and let U C X be an open
affine subset. Then the k-algebra T'(U, Ox) is a finitely generated k-algebra.

Proof. Let B =T'(U, 0x). Since the localization of a finitely generated k-algebra with
respect to a single element is again finitely generated, we see, using Lemma 3.3, that
we can cover U by finitely many principal open subsets D(f;), f1,..., fn € B, such that
all localizations By, are finitely generated k-algebras. The claim now follows from the
following lemma (with A = k). O

Lemma 3.32. Let A be a ring and let B be an A-algebra. Let fy, ..., f,, € B be elements
generating the unit ideal (1), and such that for all i, the localization By, is a finitely
generated A-algebra. Then B is a finitely generated A-algebra.

Proof. By assumption, there exist g; € B with ), g; fi = 1. Furthermore, all the By, are
finitely generated, so we can find finitely many elements b;; which generate By, as an
A-algebra. We write b;; = ¢;;/ f" with ¢;; € B and some m > 0, which we may assume
to be independent of i, j.

Let C be the A-subalgebra of B generated by all elements g;, f;, ¢;;. We will show that
C = B, which of course implies that B is finitely generated. Let b € B. For N sufficiently
large, and all i, we have f{¥b € C. Because Y, ¢;fi = 1, we get that the f; generate
the unit ideal in C, so the same is true for f{¥, ..., fN (Lemma 2.4), hence there exist
ui,...,u, € C such that >, u; f = 1. So we obtain b = (3", u; fN)b e C. O

Proposition 3.33. Let k be a field, let X be a k-scheme locally of finite type, and let
x € X. Then the following assertions are equivalent.

(i) The point x € X is closed.

(ii) The field extension k — k(x) is finite.

(iii) The field extension k — k(x) is algebraic.

Proof. If x € X is a closed point, there exists an open affine neighborhood U = Spec A of
x such that z is closed in U and hence corresponds to a maximal ideal m of the finitely
generated k-algebra A. By Hilbert’s Nullstellensatz (Theorem 1.7) A/m = x(x) is a finite
extension of k. This proves that (i) implies (ii). The implication “(ii) = (iii)” is clear.



82 3 Schemes

Let us assume that x(z) is an algebraic extension of k and let U = Spec A be an open
affine neighborhood of . Consider the composition

k— A— A/p, — Frac(A/p,) = k(x).

As k(z) is integral over k, the subring A/p, is also integral over k. But by Lemma 1.9
this shows that A/p, is a field. Thus z is closed in U for all open affine neighborhoods U
of x. This shows that x is closed in X. O

Note that in general, it can happen that a point z of some scheme X has got an
open neighborhood in which it is closed, without being closed in X (e. g. take x in
U = {z}, where z is the generic point of the spectrum X of a discrete valuation ring, see
Example 2.14). However, the proposition shows that for schemes locally of finite type
over a field this cannot happen.

We will now see that the set of closed points in a k-scheme locally of finite type is very
dense in the following sense.

Definition and Remark 3.34. A subset Y of a topological space X is called very dense,

if the following equivalent conditions are satisfied:

(i) The map U — U NY defines a bijection between the set of open subsets of X and the
set of open subsets of Y.

(ii) The map F — FNY defines a bijection between the set of closed subsets of X and
the set of closed subsets of Y.

(iii) For every closed subset F C X, we have F = FNY.

(iv) Every non-empty locally closed subset Z of X contains a point of Y.

Proof. The equivalence of (i), (ii), and (iii) is clear. We prove “(iii) = (iv)”: Write
Z = F \ F' for closed subsets F/ C F of X. If we had (FNY)\ (F'NY)=2ZnNnY =,
then FNY = F'NY and hence F = F' by (iii).

Let us also prove the implication “(iv) = (ii)”: Assume F, F’ are closed subsets
of X with FNY = F'NY, or equivalently ((FUF')\ (FNF'))NY = (. Then
(FUF)\ (FNF')=0,s0 F=F' O

Proposition 3.35. Let X be a scheme locally of finite type over a field k. Then the subset
of closed points of X is very dense in the topological space X .

Proof. We prove that every non-empty locally closed subset of X contains a closed point.
By shrinking the subset in question, we may assume that it is closed in an affine open
subset U = Spec A of X. By our assumption, A is a finitely generated k-algebra. Every
closed subset in U has the form V(a) for an ideal a C A, and since V(a) # 0, the ideal a
is contained in a maximal ideal of A. This shows that V(a) contains a closed point of
Spec A. But Proposition 3.33 shows that in our situation all closed points of Spec A are
also closed in X, and this proves the proposition. O

As we have seen in Theorem 1.7, in a finitely generated k-algebra every prime ideal is
the intersection of maximal ideals. Hence the proposition also follows from Exercise 10.16.
As another consequence of Proposition 3.33, we obtain the following corollary, where, in
the second term, we write k = k(z) to indicate that the homomorphism k — x(z) given
by the k-scheme structure of X is an isomorphism.



83

Corollary 3.36. Let k be algebraically closed and let X be a k-scheme locally of finite
type. Then

{x e X ; x cosed} ={x e X ; k=r(z)} = X(k) := Homy(Speck, X),

where the second identity is given by Proposition 3.8. Moreover the set of closed points is
very dense in X.

(3.13) Equivalence of the category of integral schemes of finite type over k
and prevarieties over k.

We will now define the correspondence between prevarieties and certain k-schemes. So let
k be an algebraically closed field. We have already shown that the following categories are
equivalent (the equivalence of (i) and (ii) holds by Theorem 2.35 and Proposition 3.31,
the equivalence of (ii) and (iii) is Corollary 1.47):

(i) the category of integral affine schemes of finite type over k

(ii) the opposite category of the category of integral finitely generated k-algebras

(iii) the category of affine varieties (in the sense of Definition 1.46)

We extend this equivalence of categories as follows. For a k-scheme X locally of
finite type we will identify X (k) = Homy(Spec k, X) with the set of closed points of X
(Corollary 3.36). In particular we view X (k) as a very dense subspace of the underlying
topological space of X. We define a sheaf of rings by

ﬁX(k) = Ck_lﬁx,
where a: X (k) — X is the inclusion. We obtain a ringed space (X (k), Ox ))-

Theorem 3.37. The above construction (X,0x) — (X (k), Oxu)) gives rise to an
equivalence of the following categories:

e the category of integral schemes of finite type over k

e the category of prevarieties over k (in the sense of Definition 1.46)

We will divide the proof into two parts.

Proof. (Part I: The functor (X, Ox) + (X(k), Oxk))) We start by showing that the
above construction indeed defines a functor from the category of integral k-schemes X of
finite type to the category of prevarieties. Let U C X be an open subset. Let us show
that we have inclusions

Ox sy (U N X (k) = Map(U N X (k), k),

such that the restriction maps of the sheaf Oy are given by the restriction of maps.
This means that (X (k), Oxx)) is a space with functions.
Given f € Ox ) (UN X (k)) = Ox(U), we associate to it the map

UNX(k) —k, xw— flx):=m(f),

where 7, denotes the natural map n,: Ox(U) — Ox , — k(x) = k. Here we consider
x as a closed point. Then restriction of sections corresponds precisely to restriction of
functions. It remains to show that elements f,g € Ox ) (U N X (k)) giving rise to the
same function U N X (k) — k must coincide. This however can be checked locally on U,
so we can assume that U is affine, say U = Spec A. Then 7,(f) = m.(g) for every closed
point x € Spec A, in other words:
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f-ge () wm=nil(4) =0,
mCA
maximal ideal
because A is a finitely generated reduced k-algebra.

Since we can cover X by finitely many affine schemes, which are the spectrums of
integral finitely generated k-algebras, we obtain that the space with functions defined in
this way, is indeed a prevariety.

Furthermore the construction is functorial, because any morphism of schemes of finite
type over k maps closed points to closed points (Proposition 3.33). O

To define a quasi-inverse of the functor (X, Ox) — (X (k), Ox (1)) we first start with a
general topological construction that will produce from the underlying topological space
of a prevariety the underlying topological space of the corresponding scheme.

Given a scheme, every irreducible closed subset of its underlying topological space
has got a unique generic point. In some sense, the existence of these points is the only
difference between integral schemes of finite type over k and prevarieties over k: in a
prevariety, every point is a closed point. To get the equivalence of categories we are
aiming at, we would like to construct, for any given prevariety, a locally ringed space
whose underlying topological space has the property that every irreducible closed subset
contains a unique generic point. Such spaces are also called sober. The general topological
construction is the following.

Remark 3.38. (Sobrification of topological spaces) Let X be a topological space in
which all points are closed. We define a topological space ¢(X) as follows: As a set, t(X)
is the set of all irreducible closed subsets of X.

We now define a topology on #(X): Whenever Z C X is a closed subset, {(Z) is a
subset of ¢(X). We define the closed subsets of ¢(X) to be precisely the subsets of the
form t(Z), for Z C X closed. Because t((); Z;) = (t(Z;) and t(Z1 U Zs) = t(Z1) Ut(Z2)
for closed subsets Z1, Z5, Z; C X, we see that these sets in fact are the closed sets of a
topology on ¢(X). If f: X — Y is a continuous map, then we obtain a continuous map
t(f): t(X) — t(Y), by mapping each point of t(X), corresponding to an irreducible closed
subset of X, to the closure of its image under f, considered as a point of ¢(Y). All in all,
we have defined a functor from the category of topological spaces all of whose points are
closed to the category of topological spaces.

Every irreducible closed subset of ¢(X) is of the form #(Z) for Z C X closed and
irreducible, and has the point Z € ¢(Z) as its unique generic point.

Given X, we have a natural continuous map ax: X — ¢(X): it maps each point z € X
to the (irreducible, closed) subset {z} € t(X). The mapping U ~ ay'(U) is a bijection
between the set of closed subsets of ¢t(X) and the set of closed subsets of X. So ax is a
homeomorphism from X onto the set of closed points in ¢(X), and this set is very dense
in t(X).

In fact, this construction can be generalized to arbitrary topological spaces. One obtains
a functor from the category of topological spaces to the full subcategory of sober topological
spaces which is left adjoint to the inclusion functor (see e.g. [EGAInew| 0; (2.9.2)).

Proof. (Part II: The quasi-inverse of (X, Ox) — (X (k), Oxk))) Let X be a prevariety.
Let ax: X — t(X) be the natural map considered above. We consider the system of
functions Ox we are given on X as a sheaf on X. Then (¢(X), ax .Ox) is a locally ringed
space: In case X is an affine variety with affine coordinate ring A, we can identify the
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topological space X with the set of maximal ideals of A with the Zariski topology, and
then ¢(X) is homeomorphic to Spec A (Proposition 1.20). Since Ox (D(f)) = Ay for all
f € A, our claim is proved in this case, and the general case follows by considering a
covering of X by affine varieties.

Now let f: X — Y be a morphism of prevarieties. By functoriality, we obtain a
continuous map t(f): t(X) — t(Y) and a sheaf homomorphism ay, .0y — t(f).(ax «Ox).
Because the morphism of the “sheaves” on X and Y is given by composition of functions,
we get a morphism of locally ringed spaces.

Because affine varieties, as well as affine schemes, are determined uniquely by their
affine coordinate ring, it is not hard to see that the two functors are quasi-inverse to each
other. O

Remark 3.39. Let k be an algebraically closed field, and let X be an integral scheme
of finite type over k. Let X (k) be the corresponding prevariety. Then the function fields
K(X) and K(X(k)) coincide.

Via this equivalence of categories the k-scheme A} (resp. P}) corresponds to the
prevariety A"(k) (resp. P*(k)). Thus the notation of the functor blends nicely with the
notation used in Chapter 1.

In Section (4.2) we will see that although in general a scheme X is (obviously) not
determined by its set X (k) of k-valued points for some field k, it is determined by all the
sets X(R) := Hom(Spec R, X) of “R-valued points”, R a ring, together (considered as a
functor from the category of rings to the category of sets).

Subschemes and Immersions

(3.14) Open Immersions.

In 3.2 we defined the notion of open subscheme; it has since played an important role. For
a scheme X and any open subset U C X, there exists a unique open subscheme whose
underlying topological space is U. An open immersion is a morphism of schemes which
induces an isomorphism between its source and an open subscheme of its target, in other
words:

Definition 3.40. A morphism j: Y — X of schemes is called an open immersion, if
the underlying continuous map is a homeomorphism of Y with an open subset U of X,
and the sheaf homomorphism Ox — j.Oy induces an isomorphism Ox |y = (j*ﬁy)lU (of
sheaves on U ).

(3.15) Closed subschemes.

The notion of closed subscheme is a little more involved. This can be seen already in
the case of affine schemes: If A is a ring, and a an ideal of A, then we can identify the
topological space Spec A/a with the closed subspace V(a) of Spec A. Certainly it is a
good start to say that schemes of the form Spec A/a should be the closed subschemes of
Spec A. Two such “subschemes” should coincide if and only if the corresponding ideals
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are equal. This means that unlike in the case of prevarieties, there may be many closed
subschemes with the same underlying closed subset (compare Example 2.40). This means
that in addition to the closed subset, we also must consider the information given by the
structure sheaf. We will show that the following definition of closed subschemes has the
desired properties, and that the closed subschemes of an affine scheme Spec A correspond
bijectively to the quotients of A.

Given a ringed space (X, Ox), we call a subsheaf # C Ox a sheaf of ideals, if for
every open subset U C X the sections I'(U, #) are an ideal in I'(U, Ox ). The quotient
sheaf Ox/_# is defined as the sheaf associated to the presheaf U — Ox (U)/ _#(U). It is
a sheaf of rings. The canonical projection Ox — Ox/_# is surjective (since the stalks of
Ox — Ox/ ¥ agree with the stalks of the presheaf above).

Definition 3.41. Let X be a scheme.

(1) A closed subscheme of X is given by a closed subset Z C X and an ideal sheaf
J COx suchthat Z ={x € X ; (Ox/ ) #0} and (Z,(0/ 7 )z) is a scheme.

(2) A morphism i: Z — X of schemes is called a closed immersion, if the underlying
continuous map is a homeomorphism between Z and a closed subset of X, and the
sheaf homomorphism i’ : Ox — 1,0y is surjective.

If Z C X is a closed subscheme as in (1) with corresponding ideal sheaf ¢, then Z is
determined by ¢ (in the terminology introduced in Section (7.6), Z is the support of
Ox/_# ). Writing i for the inclusion Z < X and 0z = (0/ ¢ )|z, we have i,.07 = Ox | ¢
and denoting by i’ the canonical projection &x — Ox/_ ¢ =i.0z, the morphism (i,%)
is a closed immersion. We can recover _# as the kernel of i’. On the other hand, every
closed immersion induces an isomorphism of its source with a uniquely determined closed
subscheme of its target.

Note that in part (1) of the definition we explicitly require that (Z,i*(0x/_#)) be
a scheme. This will not be true for an arbitrary sheaf of ideals #. Our aim will be to
gain a better understanding about which sheaves of ideals give rise to closed subschemes.
(We will ultimately reach this aim in Chapter 7, where we will define the notion of
quasi-coherent sheaf; we will then see that a sheaf of ideals defines a closed subscheme
if and only if it is quasi-coherent. Thus we obtain a bijection between the set of closed
subschemes of a scheme X and the set of quasi-coherent ideal sheaves of Ox.)

Given a ring A and an ideal a C A, Spec A/a C Spec A is a closed subscheme, as we
wanted (see Example 2.39). At this point it is not at all clear, however, that all closed
subschemes of Spec A are of this form; we will prove this now.

Theorem 3.42. Let X = Spec A be an affine scheme. For every ideal a C A let V(a) be the
corresponding closed subscheme (with the scheme structure induced via the homeomorphism
V(a) = Spec A/a). The mapping a — V(a) is a bijection between the set of ideals of A
and the set of closed subschemes of X. In particular, every closed subscheme of an affine
scheme is affine.

Proof. Assume that Z is a closed subscheme of X, and i: Z C X is the inclusion. Then
by definition the sheaf homomorphism Ox — i,0 is surjective, and we write

IZ = Ker(A = F(X, ﬁx) — F(X,Z*ﬁz) = F(Z, ﬁz))

This is an ideal of A. If Z is of the form V'(a), as we want to show, then clearly I = a.
To prove the theorem, it is therefore enough to show that for every closed subscheme Z
of Spec A we have Z =V (Iz).
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By definition, the ring homomorphism ¢: A — I'(Z, &) factors through A/Iz, and
hence the inclusion of Z into X factors through Z — Spec A/I. By replacing A by A/I,
we may therefore assume that ¢ is injective. Under this additional assumption we have to
show that the inclusion Z < X is an isomorphism.

We first show that the underlying continuous map is a homeomorphism. We know that
it is injective and closed, so it is enough to show that it is surjective. Let s € A with
Z C V(s). We claim that for N sufficiently large, p(s) = 0. If U C Z is open, such
that (U, Oz y) is affine, we get U C Vi (¢(s)|v), hence ¢(s)jy € I'(U, Oz) is nilpotent.
Covering Z by finitely many affine schemes, we obtain that in fact ¢(s") = 0. But ¢ is
injective, so sV = 0, which translates to V(s) = X. Since Z is closed in X, this shows
that i(Z) = X.

Let us identify the topological spaces Z and X. It remains to show that the sheaf
homomorphism Ox — 07 is bijective. Since it is surjective by assumption, it is enough
to show injectivity. We check this on stalks. For z € X, Ox , = A;_, and we see that it
is enough to show that every element of Ker(0x , — 0z,) of the form { is 0 in Ox .
Given g, we cover Z = U U|J,;; U; by finitely many open subsets U, U;, such that:

(1) The schemes (U, Ozyy) and (U, Oy y,) for all i are affine.
(2) We have x € U and ¢(g);y = 0.

Choose s € A with x € D(s) C U. If we can show that ¢(s"g) = 0 for some N, then
sV g = 0 because ¢ is injective, and it follows that 4 =0in Ox 4, as desired, since s is a
unit in O .. Since ¢(g)|y = 0 by assumption, we have ¢(sg)|y = 0. Now [ is finite, so we
can search a suitable N for each U; separately. Because Dy, (¢(s)y,) = D(s)NU; € UNU;,
we obtain ¢(9)|py, (4(s),p,) = 0- In other words, the image of ¢(g) in the localization

(v, ﬁZ)w(S)w, is 0, which is precisely what we had to show. O

(3.16) Subschemes and immersions.

Open and closed subschemes are special cases of the notion of (locally closed) subscheme.

Definition 3.43.

(1) Let X be a scheme. A subscheme of X is a scheme (Y, Oy), such thatY C X is a
locally closed subset, and such that Y is a closed subscheme of the open subscheme
U C X, where U is the largest open subset of X which contains Y and in which Y is
closed (i. e. U is the complement of Y \'Y ). We then have a natural morphism of
schemes Y — X.

(2) An immersion i: Y — X is a morphism of schemes whose underlying continuous
map is a homeomorphism of Y onto a locally closed subset of X, and such that for all
y € Y the ring homomorphism zg Ox ity) = Oy, between the local rings is surjective.

Whenever Y is a subscheme of X, then the natural morphism Y < X is an immersion.
On the other hand, every immersion induces an isomorphism of its source with a unique
subscheme of its target. If Y is a subscheme of X, whose underlying subset is closed in X,
then Y is a closed subscheme of X. (The corresponding statement for open subschemes is
false, cf. Section (3.18) below).

Remark 3.44. Any immersion i: Y — X can be factored into a closed immersion Y — U
followed by an open immersion U < X, where U is the complement of i(Y) \ i(Y). We
will see in Remark 10.31 that under certain (mild) hypotheses it can also be factored into
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an open immersion Y < Z followed by a closed immersion Z < X, where the underlying
topological space of Z is the closure of i(Y) in X.

Example 3.45. If k is a field, and X is a k-scheme of finite type, then all subschemes of
X are of finite type over k. Indeed, if X is affine, then this is obvious for principal open
subsets of X; this shows that the statement is true for arbitrary open subschemes of a
k-scheme of finite type. On the other hand every closed subscheme of a k-scheme of finite
type is again of finite type over k, because the affine coordinate rings are just quotients
of the corresponding rings of the larger scheme.

Note that given a morphism f: X — Y and a subscheme Z C Y with f(X) C Z
(set-theoretically), f will not necessarily factor through Z as a morphism of schemes; see
Exercise 3.25. In fact we can define a partial order on subschemes as follows.

Definition 3.46. Let X be a scheme. For two subschemes Z and Z' of X we say that Z'
majorizes Z if the inclusion morphism Z — X factors through the inclusion morphism
7' = X.

We sometimes write Z < Z’ or simply Z C Z' if Z’ majorizes Z. This defines a partial
order on the set of subschemes of a scheme X.
We close this section with an easy remark.

Remark 3.47. Let P be the property of a morphism of schemes being an “open immersion”

(resp. a “closed immersion”, resp. an “tmmersion”).

(1) The property P is local on the target, i. e.: If f: Z — X is a morphism of schemes,
and X = J, U; is an open covering, then f has P if and only if for all i the restriction
Y (U;) = U; of f satisfies P.

(2) The composition of two morphisms having property P has again property P.

Example 3.48. Let R be a ring, and let I C R[Ty,...,T,] be a homogeneous ideal.
Then the scheme V, (I) defined in (3.7) is a closed subscheme of P%. This is a direct
consequence of part (1) of the previous remark. In Section (13.6) we will see that every
closed subscheme of P is of this form.

(3.17) Projective and quasi-projective schemes over a field.

Even if, when we defined prevarieties and schemes, one of our goals was to have a definition
which is independent of an embedding in a larger space, of course subschemes of a well
understood scheme are often easier to handle. In particular, it is often useful if one knows
that a certain scheme can be embedded as a subscheme in projective space. In fact, this
is the case for many of the schemes which play a role in practice. In Chapter 13 we will
study systematically how to embed schemes into projective space.

Definition 3.49. Let k be a field.

(1) A k-scheme X is called projective, if there exist n > 0 and a closed immersion
X — P

(2) A k-scheme X is called quasi-projective, if there exist n > 0 and an immersion
X = Py,

As remarked above, the schemes V. (I), where I C k[Xy, ..., X,,] is a homogeneous ideal,
are closed subschemes of projective space, so they are projective schemes. Example 3.45
shows that every quasi-projective k-scheme is of finite type.
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Every affine k-scheme X of finite type is quasi-projective: Indeed, let X = Spec A, where
A = k[Ty,...,T,]/a. Therefore there exists a closed immersion i: X — A}'. Moreover,
projective space P} is covered by open subschemes which are isomorphic to A} by
construction. In particular we can find an open immersion j: A} — P}. The composition
jotis then an immersion X — P} by Remark 3.47.

(3.18) The underlying reduced subscheme of a scheme.

Let X be a scheme. In general, there exist several closed subschemes of X with the same
underlying topological space. Among these, there is a smallest one, which is characterized
by the fact that it is reduced. To prove this, denote by A" := A% C Ox the sheaf of
ideals which is the sheaf associated to the presheaf

U —nil(I(U, 0x)), U C X open

(here nil(R) denotes the nilradical of a ring R). Note that the proof of the following
proposition shows that A% (U) = nil(T'(U, Ox)) for every affine open subset U of X . This
sheaf is called the nilradical of X.

Proposition 3.50. The ringed space Xyeq := (X, Ox /AN) is a scheme, so it is a closed
subscheme of X, and it has the same underlying topological space as X. If X' C X is
any closed subscheme with this property, then the inclusion morphism Xieq — X factors
through a closed immersion X,eq — X'. Furthermore, X,cq is reduced.

If X = Spec A is affine, Xyeqa = Spec(A/ nil(A)).

We call X;oq the underlying reduced subscheme of X.

Proof. In order to prove that X,.q is a scheme, it is enough to consider the case that
X = Spec A is affine. The presheaf defined above restricted to the basis of principal open
subsets is in fact a sheaf, and for every f € A,

nil(T'(D(f), Ox)) = nil(Ay) = nil(A)A;

is the ideal of Ay generated by the nilradical of A. So in this case, X;eq is the closed
subscheme Spec A/ nil(A). Obviously this is a reduced scheme.

Now consider X’ as in the statement of the proposition. We must show that the sheaf
homomorphism Ox — Ox /A factors through €x/, or in other words, that Ker(Ox —
Ox/) C A . Tt is enough to show that

Ker(D(U, &x) — T(U, Ox.)) C T(U, A)

for every affine open subset U C X, and we may assume that X = Spec A is affine. Since
it is a closed subscheme, X’ is affine as well, say X’ = Spec B. Our hypothesis that the
surjective ring homomorphism A — B induces a homeomorphism between the spectra,
means that its kernel must be contained in every prime ideal, and hence in the nilradical
of A. O

Attaching to a scheme X its underlying reduced subscheme X,.q defines a functor from
the category of schemes to the category of reduced schemes:
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Proposition 3.51. For every morphism of schemes f: X — Y there exists a unique
morphism of schemes fired: Xred — Yied Such that

ix
Xred >

o)

iy
}/red >

commutes, where ix and iy are the canonical inclusion morphisms.
If g: Y — Z is a second morphism of schemes, we have (g0 f)red = Gred © fred-

Proof. As iy is a monomorphism, fi.q is uniquely determined. To show its existence we
therefore may assume that X = Spec B and Y = Spec A are affine (Proposition 3.5). Then
f = %p for a ring homomorphism ¢: A — B by Section (2.11). But clearly ¢(nil(A4)) C
nil(B) and therefore ¢ induces a ring homomorphism ¢,eq: A/ nil(A) — B/ nil(B) and
we can set frea = “(Pred)-

The equality (g o f)red = Gred © frea follows from the uniqueness of (g o f)red- O

Proposition 3.52. Let X be a scheme and Z C X a locally closed subset. Then there
exists a unique reduced subscheme Z..q of X with underlying topological space Z.

Proof. The previous proposition implies that there exists at most one reduced subscheme
with underlying topological space Z. To prove its existence we can replace X by an open
neighborhood U of Z such that Z is closed in U. Hence it is enough to consider the case
that Z is closed in X.

If X = Spec A is affine, then Z has the form V' (a), and the closed subscheme we are
looking for is Spec A/rad(a). In general, we consider an affine open covering X = |JU;.
For every i there is a uniquely determined reduced subscheme Z; with underlying space
Z N U;. For all 4, j, the scheme Z;; := (Z N Ui, Oz, z0v,,) (where Uj; = U; N Uj) is a
reduced subscheme with underlying space Z N U;;. From the analogous property of the
Zj;, we obtain Z;; = Z;;, and this gives us a gluing datum in the sense of Section (3.5),
where the gluing isomorphisms are given by the identity (and thus in particular satisfy
the cocycle condition). By gluing the Z; we construct the reduced subscheme of X with
underlying space Z that we are looking for. O

Proposition 3.52 implies that for any locally closed subspace Z the partially ordered
set of subschemes (Definition 3.46) whose underlying topological spaces contain Z has a
unique minimal element, namely Z..q. It is called the reduced subscheme with underlying
subspace Z.

Exercises

Exercise 3.10. Show that the spectrum of the zero ring is an initial object in the
category of schemes.
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Exercise 3.2. Prove that there exists a scheme which admits a covering by countably
many closed subschemes each of which is isomorphic to the affine line A,lﬁ (over an
algebraically closed field), indexed by Z, such that the copies of A} corresponding to i
and ¢ + 1 intersect in a single point, which is the point 0 when considered as a point in
the i-th copy, and the point 1 when considered as an element of the (i + 1)-th copy.
Prove that this scheme is connected and locally noetherian, but not quasi-compact.

Exercise 3.30. Let k, k¥’ be fields of different characteristic. Let X # () be a k-scheme,
and let X’ be a k’-scheme. Show that there is no morphism X — X’ of schemes.

Exercise 3.4¢. Give an example of a non-noetherian scheme whose underlying topological
space is noetherian (or even consists only of one point).

Exercise 3.50. Let p be a prime number, let I, be the field with p elements, and let
i(p): SpeclF, — SpecZ be the canonical morphism. We call a ring A of characteristic p,
if in A we have p-1 = 0. Prove that for a scheme X the following are equivalent:

(i) For every open subset U C X, the ring I'(U, Ox ) has characteristic p.

(ii) The ring I'(X, Ox) has characteristic p.

(iii) The scheme morphism X — SpecZ factors through ).

A scheme satisfying these equivalent conditions is said to be of characteristic p. A scheme
X is said to be of characteristic zero if the scheme morphism X — Spec Z factors through
SpecQ — SpecZ.

Exercise 3.6). Let p be a prime number, and let X be a scheme of characteristic p
(Exercise 3.5). Show that there exists a unique morphism Frobx = (f, °): X — X of
schemes such that f = idy and that for every open subset U C X, f,bj is given by the
ring homomorphism T'(U, Ox) — T'(U, Ox), a + aP.

Give an example of a scheme X, such that the morphism Frobx induces an isomorphism
on the global sections I'(X, Ox) without being an isomorphism itself.

The morphism Frobyx is called the absolute Frobenius morphism of X.

Exercise 3.70. Let X be an irreducible scheme, and let n € X be its generic point.
Prove that the intersection of all non-empty open subsets of X is {n}.

Exercise 3.80. Let f: X — Y be a morphism of integral schemes such that the generic
point of Y is in the image of f. Show that f induces an inclusion K (Y) — K(X) of the
function fields.

Exercise 3.90. Let (R;)ies be a family of rings R; # {0}.

(a) Assume [ is finite. Prove that [, ; Spec R; = Spec([[;.; R:)-

(b) Assume that I is infinite. Show that X := [[,.; Spec R; is not an affine scheme (use
that X is not quasi-compact).

Exercise 3.10. With the notation of Section (3.6) set V; :=UpU---UU; for i =0,...,n.
In particular V,, = P%. Show that I'(V;, ﬁp%) = R for 4 > 0 and deduce that V; is not
affine for i > 0.

Exercise 3.11. Give an example of a local ring A, such that Spec A is neither reduced
nor irreducible.

Exercise 3.12. Let f: X — Y be a morphism of irreducible schemes, and let 1 (resp. 6)
be the generic point of X (resp. of Y). Show that f is dominant, if and only if § € f(X).
In this case f(n) = 6.



92 3 Schemes

Exercise 3.13. Let X be a non-empty quasi-compact scheme.

(a) Show that X contains a closed point. Deduce that any point « € X has a specialization
that is a closed point of X.

(b) Assume that X contains exactly one closed point. Prove that X is isomorphic to the
spectrum of a local ring.

Exercise 3.14. Let A be a valuation ring such that the maximal ideal of A equals the
union of all prime ideals properly contained in it. (In particular, A has infinitely many
prime ideals; see Exercise 2.9.) Let € X = Spec A be its closed point. Show that the
open subscheme U := X \ {z} of X does not contain a closed point. Deduce that U is
not quasi-compact. Cf. [MO], q/65680, in particular Knaf’s comment.

Exercise 3.15. Let X be a locally noetherian scheme. Prove that the set of irreducible
components (see Definition 1.18) of X is locally finite (i. e. every point of X has an open
neighborhood which meets only finitely many irreducible components of X).

Exercise 3.16. Let X be a scheme.
(a) Consider the following assertions.
(i) Every connected component of X is irreducible.
(ii) X is the disjoint union of its irreducible components.
(iii) For all z € X the nilradical of Ox ; is a prime ideal. (For instance, this is the
case if O, is a domain.)
Show the implications “(i) = (ii) = (iii)”. Show that all assertions are equivalent if
the set of irreducible components of X is locally finite (e.g., if X is locally noetherian;
see Exercise 3.15).
(b) Let X be connected, and assume that the set of its irreducible component is locally
finite. Then X is integral if and only if for all z € X the local ring Ox , is a domain.
(c) Let Ky,...,K, be fields, n > 1. Set X = Spec(]]; K;) and prove that X is not
integral, although Ox , is a field for every z € X.

Exercise 3.17. Let Y be an irreducible scheme with generic point n and let f: X — Y
be a morphism of schemes. Then the map Z — f~1(n) N Z is a bijective map from the set
of irreducible components of X meeting f~!(n) onto the set of irreducible components of
f~t(n), and the generic point of Z is the generic point of f~1(n) N Z.

Exercise 3.18. Let X be a scheme and let R be a local ring. Show that every mor-
phism Spec R — X factors through the canonical morphism j,: Spec Ox , — X (see
Section (3.4)), where x is the image point of the unique closed point of Spec R. Prove
that in this way, one obtains a bijection between Hom(Spec R, X) and the set of pairs
(z,¢), where z € X and ¢: Ox , — R is a local homomorphism.

Exercise 3.19. Let R be a local ring, and let n > 1. Show that the set Hom(Spec R, P})
of morphisms from Spec R to projective space over R can be identified with the set M/R*,
where M C R™*! is the subset of tuples where at least one entry is a unit in R, i.e.,
we can write every “R-valued point” f: Spec R — P% (see Section (4.1)) as given by
homogeneous coordinates (xg: - - : ), well-determined up to multiplication by a unit
in R. What happens without the assumption that R is local?

Exercise 3.20. Let A be a local ring and let a C A be an ideal such that A is separated
and complete for the a-adic topology. Set Y := Spec A and Y,, := Spec A/a"*!. Let S be
a scheme and assume that Y is an S-scheme. Show that for every S-scheme X there is a
functorial bijection
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Homg (Y, X) = lim Homg(Y,,, X).
—

Hint: Use Exercise 3.18.

Exercise 3.21. Let k be an algebraically closed field and let (a;);eny be a family of
pairwise distinct elements of k. Set

A=k[U, T, Ty,...]) (U= a)Tiw1 — T;, T?).

Show that the nilradical of A is not finitely generated (in particular A is not noetherian)
but that A, is noetherian for all prime ideals p C A.
This example is due to J. Rabinoff.

Exercise 3.22. Let R be a ring, S = Spec R and n > 0 an integer. Show that the
following assertions are equivalent.

(i) S is reduced (resp. irreducible, resp. integral).

(if) A% is reduced (resp. irreducible, resp. integral).

(iii) P is reduced (resp. irreducible, resp. integral).

Exercise 3.23. Let k be a field, A = k[T1,T»,T3], p1 = (T1,T3), p2 = (T1,T3) and
a = p1p2. Set X = A% = Spec A, Z; = V(p;), Y = V(a). Show that Z; and Zs are
integral subschemes of X and show that Y = Z; U Z; (set-theoretically). Show that Y is
not reduced and describe Yieq.

Exercise 3.24¢. Prove that every immersion i: Z — X is a monomorphism in the
category of schemes.

Exercise 3.25. Let Y be a scheme, and let i: Z C Y be a subscheme. Then a morphism
f: X — Y of schemes factors through the subscheme Z if and only if the following
conditions are satisfied:

(1) f(X) C Z (set-theoretically),

(2) f°: Oy — f.Ox factors through the surjective homomorphism @y — i, 0.

Prove that (1) implies (2) if Z is an open subscheme, or if X is reduced.

Exercise 3.26. Let Y be a scheme, and let U be a non-empty open subscheme. Fix a

non-empty index set I. For all i € I'let U; := U;; :=Y and for4,j € I, i # j, set U;; :=U,

considered as an open subscheme of U;. For all 4, j € I we define ¢;;: U;; — U;; as the

identity morphism. Check that ((U;), (Uij), (¢ij)) is a gluing datum. Let X be the scheme

obtained by gluing. The U; can be viewed as open subschemes of X. We assume that Y

is integral.

(a) Show that for every open subset V of X and for all ¢ € I, the restriction homomorphism
INV,0x) — T'(VNU;, Ox) is an isomorphism (for instance, use Exercise 3.8).

(b) Assume that U # Y. Conclude from (a), that X is not affine.

(¢) Assume that Y is a noetherian scheme, and that U # Y. Prove that X is integral
and locally noetherian. Furthermore, show that X is quasi-compact if and only if [ is
finite.

Exercise 3.270. Describe A} and Pj.

Exercise 3.28). Let n > 1 be an integer and set X = SpecQ[S,T]/(S™ + T™ — 1).
Translate the condition that there exist nonzero integers x,y, z € Z with 2™ 4+ y™ = 2"
into a statement about X (Q).
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Exercise 3.29. Let X be a noetherian scheme. Show that the nilradical A4 is nilpotent
(i-e., there exists an integer k > 1 such that I'(U, 4% )* = 0 for every open subset U C X;
see also Exercise 7.23).

Exercise 3.30. Let k be a field, and let A be a local k-algebra of finite type. Prove that
Spec A consists of a single point, and that A is finite-dimensional as a k-vector space. In
particular A is a local Artin ring (why?), and x(A)/k is a finite field extension.

Exercise 3.31. Let X be a scheme.
(a) If X is affine, show that X,.q is affine.
(b) Assume that X is noetherian. If X,oq is affine, show that X is affine.
Hint: Use that #x is nilpotent (Exercise 3.29) and reduce to the case 452 = 0. Then
show that the canonical morphism X — SpecI'(X, Ox) is an isomorphism.
Remark: The second assertion is also proved in Lemma 12.38 using a criterion of Serre.
There it is also explained that the hypothesis that X is noetherian is superfluous.
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4 Fiber products
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— Schemes as functors
— Fiber products of schemes

— Base change, fibers of a morphism

In this chapter we study one of the central technical tools of algebraic geometry: If S is a
scheme and X and Y are S-schemes we define the product X xgY of X and Y over S
which is also called fiber product. We do this by defining X xg Y as an S-scheme which
satisfies a certain universal property (and by proving that such a scheme always exists).

The importance of this construction stems from the fact that different interpretations
and special cases of the fiber product allow constructions such as fibers of morphisms,
inverse images of subschemes, intersection of subschemes, or the change of the base scheme
(e.g. passing from k-schemes to k’-schemes for a field extension k < k).

To characterize the fiber product by its universal property we start this chapter by
considering schemes as functors. This is a point of view that is also very helpful at other
occasions and we will see examples of schemes that are defined by their associated functors
throughout the book. In Chapter 8 we will study the question whether, conversely, a
given functor is defined by a scheme.

Schemes as functors

(4.1) Functors attached to schemes.

The point of origin in algebraic geometry is the goal to understand the set of zeros of
polynomial systems of equations. If R is a ring, f1,..., fi, polynomials in R[T},...,T,]
and A an R-algebra, solutions x € A™ of the equations fi(z) = --- = f;,(z) = 0 correspond
to homomorphisms R[T1,...,T,]/(f1,---, fm) — A of R-algebras and hence to (Spec R)-
morphisms Spec A — Spec R[T1,...,Ty]/(f1,-.., fm). This observation shows that it is
natural to attach to a scheme X the functor

hx: (Sch)®P — (Sets),
T+ hx(T) := Homen (T, X), (on objects),
(f:T"—=T) (Hom(T,X) — Hom(T',X), g+~ go f), (on morphisms).

This definition is all the more useful because, as we will see in Section (4.2), the scheme
X is determined by the functor hx.

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2020
U. Gortz und T. Wedhorn, Algebraic Geometry I: Schemes, Springer Studium
Mathematik — Master, https://doi.org/10.1007/978-3-658-30733-2_5
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The set Homgepn) (T, X) is called the set of T-valued points of X. Usually we simply
write X (T') instead of hx (T') = Homgen) (T, X). If T = Spec A is an affine scheme, we
also set X (A) := X(Spec A). More generally, we might consider an arbitrary functor
F: (Sch)°P® — (Sets) as a “geometric object” and we call F(T) the set of T-valued points
of F.

Let now S be a fixed scheme. Instead of the category (Sch) we also consider the category
(Sch/S) of S-schemes (Section (3.1)). Again every S-scheme X provides a functor

(Sch/S) — (Sets), T — Homg (T, X).

Instead of Homg (T, X) we write shorter Xg(7T) or even X (T') if it is understood that all
schemes are considered as S-schemes. If S = Spec R or T' = Spec A is affine, we also write
Xr(T) resp. Xs(A) (or even Xg(A), if S and T are both affine).

Example 4.1. Let k be an algebraically closed field and let X be a k-scheme locally of
finite type (Section (3.12)). For every k-valued point 2: Speck — X its image Im(z) is a
closed point of the underlying topological space of X. The map X (k) — Xo, z — Im(x)
is a bijection of X (k) onto the set of closed points X of X. If X is integral and of finite
type, we thus obtain a bijection of X} (k) onto the associated prevariety (Section (3.13)).

Example 4.2. Consider the affine space: Let n > 0 and X = A™ = Spec(Z[T1, ..., Ty]).
Then for every scheme T we have by Section (3.3)

Hom(sch) (T, An) = Hom(Ring) (Z[Tl, e ,Tn], F(T, ﬁT)) = F(T, ﬁT)n,
v (o(Th), - (Th)).

In particular, we have A™(R) = R" for every ring R.

Example 4.3. More generally, let R be aring and fi,..., f,. € R[T1,...,T,] polynomials
and set X = Spec(R[T]/(f1,---,fr)). Then for every R-scheme T we have again by
Section (3.3)

XRr(T) = Hom g aig) (R[L]/(f1,. .-, fr), T(T, Or))
= {S GF(TvﬁT)n 3 fl(s) = :fr(s) :O}

Example 4.4. Set X = Spec R[U,U~!]. Then we obtain for every R-scheme T
Xg(T) = Homg a1 (R[U, U, T(T, Or)) = (T, Or)*.

In fact, this is a special case of Example 4.3, as we have R[U, U] = R[U,V]/(UV —1).
In particular we have Xg(A) = A* for every R-algebra A.

Considering I'(T, Or)* as a group, we obtain a functor from (Sch/R) into the category
of groups. Such functors are called group schemes (see Section (4.15) below). The group
scheme X above is denoted by G,,, g and is called the multiplicative group (over Spec R).

Example 4.5. Let n > 0 be an integer, R a ring, and let P = A%\ {0} be the complement
of the zero section (Section (3.6)). Thus P is an open subscheme of A%.

Let A be an R-algebra, let f: Spec A — A’} be an R-morphism, and denote the
corresponding R-algebra homomorphism by ¢: R[T4,...,T,] = A. Set a; = ¢(T;) € A.
Let 7: R[T1,...,T,] — R be the projection mapping each T; to 0. Then f factors through
P if and only if Ker(r) = (T1,...,T,) is not contained in p~!(p) for all p € Spec A.
Equivalently, there must not exist a prime ideal p C A that contains p(Ker()), which is
the ideal generated by ai,...,a,. Thus we have seen that
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(4.1.1) Pr(A) ={(ai1,...,a,) € A" ; ay,...,a, generate the unit ideal in A }.

(4.2) Yoneda Lemma.

Now let C be an arbitrary category (we will mainly use the examples that C is the category
(Sch/S) for some scheme S). As above we define for every object X of C the functor

hx: C°PP — (Sets),
S = hx(S) := Home(S, X),
(u: 8" = S) = (hx(u): hx(S) = hx(S"),x — zou).
If f: X — Y is a morphism in C, for every object S the composition
hy(S): hx(S) = hy(S), g~ foyg

defines a morphism hy: hx — hy of functors. We obtain a (covariant) functor X — hx
from C to the category C of functors COPP —» (Sets).

Of central importance will be the Yoneda lemma: Let F': C°PP — (Sets) be a functor
and X be an object of C. Let a: hx — F be a morphism of functors, in other words, for
all objects Y we are given a map «(Y): hx(Y) — F(Y), functorially in Y. Then we have
a(X)(idx) € F(X).

Lemma 4.6. (Yoneda Lemma) The map
Homg(hx, F) = F(X), o a(X)(idx)
is bijective and functorial in X.

Proof. For £ € F(X) we define the map a¢(Y): hx(Y) = F(Y) by f — F(f)(&) for
f € hx(Y)=Home(Y, X). Then £ — g is an inverse map. The functoriality is clear. [J

If we apply the Yoneda lemma to the special case F' = hy for an object Y of C, we see
that the functor X — hx induces a bijection

(4.2.1) Homc (X, Y) — I’IOHICA(]”LX7 hy)

In other words, X + hy is a fully faithful functor C — C. See Exercise 4.1 for an explicit
example.

We will apply the Yoneda lemma mainly in the case that C is the category of S-schemes,
where S is a fixed scheme. Then it obtains the following form:

Corollary 4.7. Let X and Y be S-schemes. Then it is equivalent to give the following

data.

(i) A morphism of S-schemes from X toY .

(ii) For all S-schemes T a map f(T): Xg(T) — Ys(T) of sets which is functorial in T,
i.e., for all morphisms u: T' — T of S-schemes the following diagram is commutative

Xs(1) s vy (1)

(4.2.2) xs(u)i J«YS(”)
(1)

Xs(T") ——=Ys5(T).
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(i) For all affine S-schemes T = Spec B a map f(T): Xg(T') — Ys(T') of sets which is
functorial in B.

Proof. The equivalence of (i) and (ii) is just a reformulation of the Yoneda lemma. The
equivalence of (ii) and (iii) follows from the fact that morphisms in the category of schemes
can be glued (Proposition 3.5) and that for every scheme the open affine subschemes form
a basis of the topology (Proposition 3.2). O

(4.3) A surjectivity criterion for morphisms of schemes.

By Section (4.2) it is equivalent to give a morphism f: X — Y in a category (Sch/S)
or to give maps fs(T): Xg(T) — Ys(T'), functorial in T. Often it is helpful to express
properties of f in terms of properties of the maps fs(T) (and vice versa). We give an
example here. Other examples we will see throughout the book.

Proposition 4.8. A morphism of schemes f: X — Y 1is surjective if and only if for
every field K and for every K-valued point y € Y (K) there exist o field extension L of K
and x € X(L) such that f(L)(x) = yr, where yr, is the image of y under Y (K) — Y (L).

For schemes of finite type over a field, this criterion can be sharpened considerably
(Exercise 10.6).

Proof. The condition is sufficient: Let yg be a point of the underlying topological space of
Y, and let y: Spec(k(yo)) — Y be the canonical morphism (3.4.2). If z: Spec(L) — X
is an L-valued point of X with f(L)(z) = yr and z¢ € X is the image of x, then we have
f(zo) = yo.

The condition is necessary: Let f be surjective, y € Y(K), and yo € Y be the image of
y. There exists a point xg € X with f(xg) = yo. Consider the corresponding extension
k(yo) — K(zo). Choose a field extension L of k(yp) such that there exist x(yo)-embeddings
of k(xg) and of K into L (e.g., set L = (k(x0) ®y(y,) K)/m where m is a maximal ideal
of K(xg) ®y(y,) K). The composition x: Spec(L) — Spec(r(xg)) — X has the desired
properties. O

Remark 4.9. In particular we see that f is surjective if f is surjective on K-valued
points for every field K. The converse does not hold: Let r > 1 be an integer and let
fr: G, — Gy, be given on S-valued points by

[r(S): Gn(S) =T(S,05)" — G, (S), = —a”.

Then f.(K) is surjective if and only if for all x € K* there exists an r-th root. In
particular, if K is algebraically closed, f,.(K) is surjective, and Proposition 4.8 shows
that f, is surjective. But of course there are fields K such that f,.(K) is not surjective
(e.g., K =R and r even, or K = Q and r > 2 arbitrary).
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Fiber products of schemes

(4.4) Fiber products in arbitrary categories.

Let C be a category and let .S be a fixed object in C.

Definition 4.10. For two morphisms f: X — S and g: Y — S in C we call a triple
(Z,p,q) consisting of an object Z in C and morphisms p: Z — X and q: Z — Y with
fop=goq a fiber product of f and g or a fiber product of X and Y over S (with respect
to f and g), if for every object T in C and for all pairs (u,v) of morphisms u: T — X
and v: T =Y such that f ou = gowv there exists a unique morphism w: T — Z such
that pow =u and gow = v.

Clearly the fiber product of X and Y over S with respect to f and g is uniquely
determined up to unique isomorphism if it exists. We write X X ¢ g ,Y or simply X xgV
for the object Z. We also call p: X xgY — X the first projection and ¢: X xg¥Y — Y
the second projection. The morphism w is denoted by (u,v)s. We visualize the universal
property of the fiber product by the following diagram

(4.4.1)

Note that if S is a final object in C, the fiber product X xg Y is the categorical product
X x Y. Fiber products are special cases of projective limits (Example A.3). In fact it
follows formally from the existence of fiber products in the category of schemes (proved
in Theorem 4.18 below) that there exist arbitrary finite projective limits in the category
of schemes (Exercise 4.3).

Remark 4.11. We can describe the universal property of the fiber product (X xsY,p, q)
also as follows. Recall that a morphism h: T'— S in C is called an S-object. Sometimes
we will simply write T' instead of h: T' — S. The morphism h is called the structure
morphism of T. Recall that for two S-objects h: T — S and f: X — S in C we denote
by Homg (7, X) the morphisms w: T — X such that f o w = h. These morphisms are
called S-morphisms. In this way S-objects and S-morphisms form a category that we
will denote by C/S. Usually we write Xg(T) instead of Homg(T, X) and call Xg(T) the
set of T-valued points of X (over S). Note that the object idg in C/S is a final object.

Then (X xgY,p,q) is the unique (up to unique isomorphism) triple such that for all
morphisms h: T — S the map

HOms(T, X xg Y) — I{OIIls(T7 X) X HomS(T, Y),

4.4.2
( ) w— (pow,qow)

is a bijection. In other words, the fiber product of f: X — S and g: Y — S in C is the
same as the product of the S-objects f and g in C/S.
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Example 4.12.
(1) In the category of sets (Sets) arbitrary fiber products exist: Let S be a fixed set and
let f: X - S and g: Y — S be maps of sets. Then it is immediate that

(4.43) X = XxsYi={(r,y) e XxY; flx)=g(y)} = Y,
o T (x,y) — Yy
is a fiber product in the category of sets.

(2) Let (Top) be the category of topological spaces (objects are topological spaces,
morphisms are continuous maps). If f: X — S and ¢g: Y — S are continuous
maps of topological spaces, we can endow the fiber product of the underlying sets
{(z,y) € X XY ; f(x) = g(y)} with the topology induced by the product topology
on X X Y. Then it is easy to check that the resulting topological space is a fiber
product in the category of topological spaces.

From now on we assume that in the category C all fiber products exist. We will show
in Section (4.5) that this is the case if C is the category of schemes.

Remark 4.13. The fiber product is functorial in the following sense: If X, Y, X’, and
Y’ are S-objects and u: X — X', v: Y — Y’ are S-morphisms, then there exists a
unique morphism, denoted u x g v (or simply u x v), such that the following diagram is
commutative

X x S Y — =X

| e N

Y X' xgYV —= X’

>

Y ——— 8.
Indeed, we have u Xg v = (uop,voq)g, where p and g are the projections of X xg Y.

Recall that the Yoneda lemma implies that it is equivalent to give an S-morphism
f: X =Y inC/S or to give for all S-objects T' maps fs(T'): Xs(T) — Ys(T') on T-valued
points which are functorial in 7. The following proposition collects some easy functorial
identities of fiber products.

Proposition 4.14. Let S be an object in C and let X, Y, and Z be S-objects. There are
isomorphisms (functorial in X, Y, and Z), called canonical,

(4.4.4) XxgS3X,
(4.4.5) XXSY:)YXsX,
(446) (X ><5'Y) XSZ;XXS(Y XSZ),

giwven on T-valued points, for h: T — S any S-object, by
Xs(T) x Ss(T) = Xs(T), (z,h) — z,
( y

Xs(T) x Ys(T) 5 Ys(T) x Xs(T), (z,y) = (y,2),
(Xs(T) x Ys(T)) x Zs(T) = Xs(T) x (Ys(T) x Zs(T)), ((x,9),2) = (2, (y,2))-
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A commutative diagram

v, X
|s
S

in C is called cartesian if the morphism (u,v)s: Z — X Xg Y is an isomorphism. We
indicate the property of a rectangle being cartesian by putting a square [J in the center.
The Yoneda lemma implies:

(4.4.7) v

N=<=—N

E——
g

Remark 4.15. The commutative diagram (4.4.7) is cartesian, if and only if for all objects
T of C the induced diagram in the category of sets

Hom(T, Z) — % Hom(T, X)

v(T)J( lf(T)

Hom(7T,Y) ——= Hom(T, S)
9(T)

is cartesian (Example 4.12).

Therefore it suffices to prove the following proposition for C = (Sets), where it follows
immediately from the explicit description of the fiber product of sets.

Proposition 4.16. Let

XNLX/L>X

1

S//H/S/HS

f f

be a commutative diagram in C such that the right square is cartesian. Then the left square
is cartesian if and only if the entire composed diagram is cartesian.

(4.5) Fiber products of schemes.

We will now prove that fiber products of schemes always exist. To do so, we will reduce
to the case of affine schemes. Therefore let us deal with this case first.

Proposition 4.17. Let A <+ R — B be homomorphisms of rings, let S = Spec(R),
X = Spec(A), and Y = Spec(B). Set Z = Spec(A ®r B) and let p: Z — X and
q: Z —'Y be the morphisms of schemes corresponding to the ring homomorphisms

a:A—>ARrB, a~ra®1l,
B:B—AQrB, b—1R®b.

Then (Z,p,q) is a fiber product of X andY over S in the category of schemes, and also
in the category of locally ringed spaces.
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Proof. Recall that for all locally ringed spaces T and all affine schemes Spec C' there is a
functorial bijection Hom gy (7', Spec C') = Hom ging) (C,I'(T, Or)) (Proposition 3.4). If
T — S is a morphism of locally ringed spaces, then we therefore have bijections, functorial
in T,

Hom(T, Z) = Hom(g.a1g) (A ®r B, I(T, Or))
= Hom(R—Alg) (A7 F(Tv ﬁT)) x Hom(R—Alg)(Ba F(T» ﬁT))
>~ Hom(7T, X) x Hom(T,Y),

where the second bijection is induced by composition with o and . This shows the
proposition. [

Theorem 4.18. Let S be a scheme and let X and Y be two S-schemes. Then the fiber
product X xXgY exists in the category of schemes, and also satisfies the universal property
of the fiber product in the category of locally ringed spaces.

We can rephrase the theorem as saying that the fiber product of X and Y over S exists
in the category of locally ringed spaces, and actually is a scheme (and thus equals the
fiber product in the category of schemes).

Proof. When we say in the sequel of this proof that a fiber product of schemes exists, we
mean that as a short-hand statement to say that the fiber product exists in the category
of schemes, and is also a fiber product in the category of locally ringed spaces. To ensure
this property, we have to do all constructions in the category of schemes, and check the
universal property with arbitrary locally ringed spaces as test objects.

The idea of the proof is rather simple: We cover S, X, and Y by open affine subschemes.
We have already seen that the fiber product for affine schemes exists. Thus it remains
to glue all the fiber products of affine schemes together. To make this more precise, we
proceed in several steps. We denote by x: X — S and y: Y — S the structure morphisms.

(i). Let j: U < X be an open subscheme. Assume that (X xgY,p,q) exists. Then we
claim that the open subscheme p~1(U) of X x 5Y together with the restrictions of p and ¢ is
the fiber product U x 5 Y in the category of locally ringed spaces. Indeed, if h: T — p~*(U)
is a morphism of locally ringed spaces, we obtain morphisms f := poh: T — U and
g:=gqoh: T —Y such that )y o f =y og. Conversely, let f: T — U and g: T — Y be
a pair of morphisms with 2|y o f =yog. As X XgY is a fiber product, there exists a
unique morphism A': T — X xg Y such that poh/ = jo f and qo h' = g. This shows
that b/ factors through p=1(U) and thus induces a morphism h: T — p~1(U) such that
f:=pohand g:=qoh.

(ii). Let (U;)ier be an open covering of X. We claim that if Z; := U; xg Y exists
for all i, then X xg Y exists. Indeed, we consider Z; via the second projection as a
Y-scheme. Let p;: Z; — U; be the first projection and set Z;; := pi_l(Ui nyU;) C Z.
Let p;;: Z;; — U; N U; be the restriction of p;. By (i) the schemes Z;; and Zj; are both
a fiber product of U; NU; and Y over S. Therefore there exists a unique isomorphism
jit Zij — Zj; of Y-schemes such that pj; o ¢;; = ps;. Its inverse isomorphism is ;.
The uniqueness of these isomorphisms implies that they satisfy the cocycle condition. We
denote by Z the scheme obtained by gluing the schemes Z; along Z;; via the isomorphisms
@i;- The second projections Z; — Y glue to a morphism ¢: Z — Y and the first projections
p; glue to a morphism p: Z — X.
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It remains to show that (Z,p, ) is the fiber product of X and Y over S. Let f: T'— X
and ¢g: T — Y be morphisms of locally ringed spaces such that x o f = y o g. Let
fi: T; := f~Y(U;) — U; be the restriction of f. Then there exists a unique morphism
hi: T; — Z; such that p; o h; = f; and q o h; = g|1,. These morphisms glue to a unique
morphism h: T — Z such that poh = f and g o h = g. Therefore (Z, p, q) satisfies the
defining property of the fiber product of X and Y over S.

(iii). Let W C S be an open subset. Assume that (X xgY,p,q) exists. Then we claim
that the open subscheme (z o p) 1 (W) = (yoq) 1 (W) of X x5 Y together with the
restrictions of p and ¢ is the fiber product =1 (W) xy y~1(W). Indeed, similarly as in (i)
it is easy to check that (zop)~!(W) satisfies the defining property of 2=*(W) xy y~1(W).

(iv). Let (W;);csr be an open covering of S, set X; := 2~ 1(W;) and Y; := y~1(W;). We
claim that if X; xy, Y; exists for all ¢, then X xg Y exists and (X; Xw, Y;); is an open
covering of X X g Y. Indeed this is proved in a similar way as (ii) using (iii) instead of (i).

(v). Now we can prove the existence of the fiber product of arbitrary schemes X and
Y over S: Covering S by open affine subschemes, (iv) shows that we may assume that
S is affine. Covering X by open affine subschemes, (ii) shows that we may assume that
X is affine. As the arguments in (ii) are clearly symmetric in X and Y, we finally may
also assume that Y is affine. But then we have already shown the existence of the fiber
product in Proposition 4.17. O

If S = Spec R is affine, we will often write X xgr Y instead of X xg Y. If Y = Spec B is
affine, we also write X ®g B or, for S = Spec R affine, X ®p B instead of X xg VY.
The proof of Theorem 4.18 shows in particular:

Corollary 4.19. Let S be a scheme, let X and Y be S-schemes, let S = J,; S; be an
open covering and denote by X; (resp. Y;) the inverse image of S; in X (resp. in'Y'). For
all i let X; = U Xij and Y; = UkeKi Y be open coverings. Then

XXSY:U U Xij Xs, Yig
i jeTikeK;

JjEJi

is an open covering of X Xg Y.

Special cases of the following proposition will be used very often. We start with the
following general setting. Let S be a scheme, X and Y two S-schemes, and let f: X' — X
be a morphism of S-schemes. Set g := f xg idy. We obtain a commutative diagram,
where all squares are cartesian (Proposition 4.16)

X' xgV —L > X xsV L+ >V

(4.5.1) p'l ] J{p ] l

X’ 7 X S

and where p’, p, and ¢ are the projections.

Proposition 4.20. Assume that f: X' — X can be written as the composition of scheme
morphisms which satisfy the following condition: each morphism is a homeomorphism
onto its image and also satisfies one of the assumptions (1), (II):
(I) For each point ' € X', the homomorphism fﬁ,: Ox f(w) — Ox' .4 15 surjective,
and there exists an open affine neighborhood V' of f(x') such that f=*(V) is quasi-
compact.
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(II) For each point x' € X', the homomorphism fﬁ,,: Ox f(a) = Ox' o is bijective.
Weset Z' =X'"xgY and Z =X xgY.
(1) The morphism g is a homeomorphism of Z' onto

(4.5.2) 9(2") = p~ (F(X")).

(2) For all points 2’ € Z' consider the commutative diagram induced on local rings by the
left square of (4.5.1)

gﬁ

2!

ﬁZ’,z’ ﬁZ,g(z’)

f
T TPQ(Z’)

Ox () <7 Ox.p(g())-
p’(z")
ﬁI

the kernel of fﬁ,(z/) under Pg(z’)'

Then the homomorphism g., is surjective and its kernel is generated by the image of

Proof. Because of the transitivity of the fiber product (Proposition 4.16) we may assume
that f satisfies assumption (I) or assumption (II).

We first assume that f satisfies (II). Therefore f*: f~1(€0x) — Ox/ is an isomorphism
or, in other words, that f yields an isomorphism (X', Ox/) = (f(X'),Ox|¢(x1)) of
locally ringed spaces. In this case it is easy to check that (p~'(f(X")), Oz|p-1(s(x7)))
is a fiber product of X’ with Z over X in the category of locally ringed spaces and
in particular in the category of schemes. Therefore g gives rise to an isomorphism
(Z',07) = (07 (f(X")), Oz)p-1(s(x7)))- This implies all assertions.

Thus from now on we assume that f satisfies assumption (I). All assertions can be
checked locally on S, Y and X. Observe that the second assumption in (I) is preserved by
replacing X by an affine open U C X: If 2’ € f~1(U) and V is an open affine neighborhood
of f(z') such that f~1(V) is quasi-compact, there exists a principal open V; inside V/
which is contained in U. Covering f~1(V) by finitely many affine open subschemes, we see
that f=1(V3) is covered by finitely many principal opens inside these (Proposition 2.10),
and hence is again quasi-compact. Cf. Proposition/Definition 10.1 for the same argument
in a more general context.

We can therefore assume that S = Spec R, X = Spec A and Y = Spec B are affine
and that X’ is quasi-compact. Then f corresponds to an R-algebra homomorphism
p: A—T(X', Ox/) and factorizes as

fox s Spec(A/ Ker(y)) L2, X = Spec A.

Then fs is a closed immersion and hence surjective on stalks and a homeomorphism onto
a closed subspace of X. As f is a homeomorphism onto its image, the same therefore
holds for f;. As f induces surjections on the local rings, the same holds for f;. We see
that it suffices to prove the proposition if f is a closed immersion or if in addition the
corresponding R-algebra homomorphism ¢ is injective.

Let us first consider the case that f is a closed immersion and hence X’ = Spec A/a
for some ideal a C A. Proposition 4.17 shows that Z and Z’ are affine as well, and ¢
corresponds to the natural surjective R-algebra homomorphism A @ B — A/a ®p B.
Then all assertions are clear.
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Therefore we may assume that ¢ is injective. We claim that for all 2 € X' the surjective
ring homomorphism
fi, : ﬁX,f(a:’) — ﬁXQw’

is injective and hence bijective (then we are done because we proved all assertions already
under assumption (II)).

To prove the claim we start with a general remark (which is a special case of Theorem 7.22
below). For a scheme Z and ¢t € I'(Z,0%) let Z; be the open set of z € Z such that
t(z) # 0. The restriction I'(Z, €z) — T'(Z, Oz) defines a homomorphism p;: T'(Z, Oz); —
['(Z;, 0z). This homomorphism is injective if Z is quasi-compact. Indeed, choose a
finite affine covering (U;); of Z and set C; = I'(U;, 0z). Defining t; = t;y, we have
(IL; Ci)¢ = I1;(Ci)s, because the product is finite. We obtain a commutative diagram

[(Z,03) —2—>T(Z;, 0y)

l |

[1:(Ci)e, ——TL; T (Uit Oz)

with injective vertical arrows. Moreover, the lower horizontal homomorphism is the
product of the isomorphisms (C;);, = I'(D(t;), Ov,) (2.10.1). This shows the injectivity
Of Pt

To prove the injectivity of fi, let p C A be the prime ideal corresponding to f(z'). For
all s € A\ plet ps: Ay = I'(X', Ox/),(s) be the injective homomorphism obtained from
¢ by localizing in s and denote by v the injective composition

’(/JS:AS LPS ( ﬁX’)(p(s ﬁF( ﬁxl).

90(5)’

Now X[ = f~ L(D(s)). As the D(s), for s € A\ p, form a basis of open neighborhoods
of f(x ) and as f is a homeomorphism onto its image, the X;(S) form a basis of open

neighborhoods of z’. Hence hm (X, ﬁ’xf) = Ox/ 4, and we have lii{lwé fu, which
shows the injectivity of fﬁ,. O

Remark 4.21. The hypotheses of Proposition 4.20 on f are satisfied in the following
cases which are the cases of main interest.

(1) f is an immersion of schemes (Section (3.16)).

(2) f is the canonical morphism Spec Ox , — X for some point z € X (3.4.1).

(3) f is the canonical morphism Spec k(z) — X for some point z € X (3.4.2).

Indeed, in case (1) the morphism f can be written as the composition of a closed immersion
(which satisfies assumption (I)) followed by an open immersion (satisfying (II)). In case (2)
we can choose an open affine neighborhood U of z and f can be written as the composition
of Spec Ox , — U (which satisfies (I)) and the open immersion U — X (satisfying (II)).
In case (3) the morphism f satisfies assumption (I).
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(4.6) Examples.

PRODUCTS OF AFFINE SPACES.

Let R be a ring, and A% = Spec(R[T1,...,T,]) be the affine space over R. For integers
n,m > 0 one has R[T1,...,T,] ®r R[Tn+1,- - Tnam] = R[T1,...,Thim] and therefore
the description of fiber products for affine schemes (Proposition 4.17) that

(4.6.1) A% x g AT = AT,

PRODUCTS OF PREVARIETIES.

Let k£ be an algebraically closed field and let X be a k-scheme of finite type. In Sec-
tion (3.13) we have shown that attaching to a k-morphism z: Speck — X its image
defines an identification Xy (k) = Xo, where Xy C X denotes the subspace consisting of
the closed points of X. Moreover we have seen that attaching to a scheme X of finite type
over k the ringed space (Xo, Ox|x,) defines an equivalence of the category of integral
schemes of finite type over k and the category of prevarieties over k. Let us show that
this construction is compatible with products.

Lemma 4.22. Let k be a field and let X and Y be k-schemes (locally) of finite type.
Then X XY is (locally) of finite type over k.

This follows from a general result on morphisms of finite type (Proposition 10.7).
Alternatively we may see this as follows.

Proof. By definition there exist (finite) open coverings X = {J; X; and Y = {J; ¥}, where
X, and Y; are affine k-schemes of finite type. By Corollary 4.19 the X; x;Y; form a (finite)
open cover of X X, Y. Therefore we may assume that X = Spec A and Y = Spec B,
where A and B are finitely generated k-algebras. Then X X Y is the spectrum of A ® B
which is again a k-algebra of finite type. O

The following lemma follows from the more precise results of Proposition 5.51 below.

Lemma 4.23. Let k be an algebraically closed field and let X and'Y be integral k-schemes.
Then X X Y is again integral.

Let k& be an algebraically closed field. Let X and Y be integral k-schemes of finite
type. Then the lemmas show that X X Y is also an integral k-scheme of finite type.
Let Xy and Yy be the prevarieties corresponding to X and Y, respectively, and let Z,
be the prevariety corresponding to X X Y. Then the universal property of the fiber
product (4.4.2) shows

ZO = (X Xk Y)k(k) = X/C(k‘) X Yk(]f) = Xo X Yo.

If we view the category of prevarieties over k as a full subcategory of the category of
k-schemes, we deduce that the fiber product of two prevarieties Xy and Yj is again a
prevariety Z, and that Zy = Xy x Yj.

Note that this identity is an identity of sets. The projections Zy — Xy and Zy — Yj
are continuous but the topology on Zj is usually finer than the product topology of X
and Yy (see Exercise 4.11).
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Remark/Definition 4.24. (Frobenius morphism) Let p be a prime number and let
S be a scheme over F,, (i.e., for every open subset U C S and every section f € I'(U, Os)
we have pf = 0). We denote by Frobg: S — S the absolute Frobenius of S: Frobg is the
identity on the underlying topological spaces and Frobbs is the map = — 2P on I'(U, O)
for all open subsets U of S. Note that pI'(U, s) = 0 implies that Frobg: Os — Og is a
homomorphism of sheaves of rings.

Now let f: X — S be an S-scheme. Note that Froby is in general not an S-morphism.
Instead of the absolute Frobenius we therefore introduce a relative variant. Consider the
diagram

X
‘ Frobx
F.
(4.6.2) X X o x
lf(p) O fl

Frobg

S——=F5,

where X ®) is defined by the cartesian square and F = Fx/s is the unique morphism
making the above diagram commutative. The morphism Fx,s is called the relative
Frobenius of X over S.

We describe this diagram locally: Assume that S = Spec R and X = Spec(A) are affine.
Via the choice of generators of A as an R-algebra, we can identify A with R[T]/(f) where
T = (T3)er is a tuple of indeterminates and f = (f;);ecs is a tuple of polynomials in
R[T]. Then the diagram (4.6.2) is given by:

(1) X® = Spec(A®) with AP) = R[I]/(f;p);j € J), where for any polynomial, say
f= ZyeNgn a, T € R[T], we set fP) = ZVGN(@ abT”.

(2) The morphism o% : A — A® is induced by R[T] — R[T], f + f®.

(3) The relative Frobenius F* = F} /s is induced by the homomorphism of R-algebras
R[T] — R[T] which sends an indeterminate T} to T7.

Base change, Fibers of a morphism

We now study special cases of the fiber product and gain the notion of base change, fibers
of a morphism, inverse image of subschemes, or intersections of subschemes.

(4.7) Base change in categories with fiber products.

Let C be a category in which arbitrary fiber products exist (e.g., the category of schemes),
and let u: S’ — S be a morphism in C. If X — S is an S-object, X x5 5’ is an S’-object
via the second projection that is sometimes denoted by u*(X) or by X(g). It is called
the inverse image or the base change of X by u. If Y — S is a second S-object and
f: X — Y an S-morphism, the morphism f xgidg : X xg5" =Y xg S is a morphism
of S’-objects that is sometimes denoted by u*(f) or by f(s/) and called the inverse image
or the base change of f by u. We obtain a covariant functor
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u':C/S —C/S

from the category of S-objects in C to the category of S’-objects. This functor is called
base change by u.

Proposition 4.16 implies that “transitivity of base change” holds: If v': §” — S’ is
another morphism in C, the functors (v o v')* and (u')* o u* from C/S to C/S" are
isomorphic.

If h: T — S’ is an S’-object, we can consider T as an S-object by composing its
structure morphism with u. Let p: X gy — X be the first projection. We obtain mutually
inverse bijections, functorial in 7" and in X,

t'—pot’

(4.7.1) Homg/ (T, X(s)) Homg (T, X).

(t,h)g<+t

(4.8) Fibers of morphisms.

Let f: X — S be a morphism of schemes and let s € S be a point. We will now endow
the topological fiber f~1(s) with the structure of a scheme.

Definition 4.25. Let Spec k(s) — S be the canonical morphism. Then we call
X = X ®g5 k(s)
the fiber of f in s.

Hence X is a (s)-scheme (via the second projection). By Proposition 4.20 (applied to
S, X =8, X' =Speck(s), Y = X) the underlying topological space of X is indeed the
subspace f~!(s) of X. In the sequel the notation f~!(s), when understood as a scheme,
will always refer to this k(s)-scheme.

Thus we have seen that every morphism f: X — S gives rise to a x(s)-scheme X for
every point s € S, in other words, we obtain a family of schemes over fields parameterized
by the points of S.

Example 4.26. Let k£ be an algebraically closed field and set

As UT — S € k[U, T, 5] is irreducible, we may consider X (k) as an affine variety. The
associated integral k-scheme of finite type is

X = Speck[U,T,S]/(UT — S).

Let X — A} be the projection given on k-valued points by (u,t,s) — s. For each point
s € Al(k) the fiber X, is by definition X, = Spec A,, where

Ay = k[U,T, S)/(UT — §) @41 k[S)/(S — 5) = k[U, T)/(UT — s).

Note that UT — s € k[U, T is irreducible for s # 0 and reducible for s = 0. We see that
X — A! defines a family of k-schemes X, parametrized by s € Al(k) such that Xy is
reducible and X is irreducible for all s # 0.
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Figure 4.1: The closed subscheme

V(Y2 - X%3(X +1)— %OZ) C A3

The fibers of the projection A3 — A to
the Z-coordinate over Z =0, Z =1

and Z = —3 are marked.

Example 4.27. For a field &k, a € k>,
we set

X =V(Y?-X*X+1)—-aZ) C A}

Let f: X — AL, = Speck[Z] be
the morphism corresponding to the
canonical ring homomorphism k[Z] —
k[X,Y,Z]/(Y? — X2(X +1) — aZ). Let
z € Al(k) = k, considered as a closed
point of A}. We have by definition X, =
Spec A, where

A, =k[X,Y]/(Y? = X*(X +1) — az).
For z = 0 we obtain
Xo = Speck[X,Y]/(Y? — X3(X + 1))

whose R-valued points we have already
seen in Chapter 1 (Figure 1.1).

Lemma 4.28. Let S be a scheme, let f: X — S and g: Y — S be S-schemes and let

p: X XgY = X and q: X XgY — Y be the two projections. Let x € X andy € Y be

points and £: Speck(x) = X and ¢: Speck(y) = Y the canonical morphisms.
(1) There exists a point z € X xgY with p(z) = x and q(z) = y if and only if f(z) = g(y).
(2) Assume that the condition in (1) is satisfied and set s := f(x) = g(y). Then

¢ =& xs 1 Z = Spec(n(x) @p(s) £(y) = X x5Y

is a homeomorphism of Z onto the subspace

(Z)=p () Ng ()

Proof. This follows from the identity Z = p~!(z) X (xxsv) ¢ ' (¥). O

(4.9) Permanence properties of scheme morphisms.

Definition 4.29. Let P be a property of morphisms of schemes such that every isomor-
phism possesses P.

(1) P is called stable under composition if for all morphisms f: X =Y and g: Y — Z
possessing P, the composition g o f also possesses P.

(2) P is called stable under base change if for all morphisms f: X — S possessing P
and for all morphisms S" — S, the base change fsy: X gy — S’ possesses P.
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Proposition 4.30. Let P be stable under composition and stable under base change.
Then for all schemes S and all S-morphisms f: X' — X and g: Y' — Y possessing P,
the fiber product f xg g also possesses P.

Proof. As f xg g is the composition (f x gidy)o (idx: Xsg), we may assume that g = idy-.
We consider X’ as an X-scheme via f. Then

fxgidy: X' xg YV =X'xx (X x5Y) = X x5V
is the morphism f(xx.y) and possesses therefore P. O

In the category of schemes almost all properties of morphisms that we are going to
define will be stable under composition. But there are some properties (most of the time
of topological nature) that are not stable under base change, e.g., the property of being
injective (see Proposition 4.35 and Exercise 4.16).

Definition 4.31. If P is a property of morphisms of schemes, we say that a morphism

f: X = S of S-schemes possesses P universally if f(s) possesses P for all morphisms
S = S.

For example, we say that f is universally injective if fg is injective for all S — S. In
Section (4.10) we will answer the question which of the properties of scheme morphisms
defined so far are stable under base change.

Absolute properties of schemes are very often not compatible with base change. E.g.,
even if k is a field and K and L extension fields of k, K ®; L might be non-noetherian
and non-reduced (Exercise 4.18); see also the section in Chapter 5 on extensions of the
base field for schemes over a field.

We finally make precise what it means for P to be local:

(1) We say that P is local on the target if for every morphism f: X — Y of schemes
and for every open covering Y = Uje ; Vj the morphism f possesses P if and only if
flr-1vy): f7Y(V;) — V; possesses P for all j € J.

(2) We say that P is local on the source if for every morphism f: X — Y of schemes
and for every open covering X = (J;.; U; the morphism f possesses P if and only if
fiu,: Ui — Y possesses P for all i € I.

(4.10) Permanencies of properties of scheme morphisms.

We now study which properties of scheme morphisms introduced so far are stable under
composition, base change, local on the target, or local on the source.

Proposition 4.32.

(1) The following properties of scheme morphisms are stable under composition: “injec-
tive”, “surjective”, “bijective”, “homeomorphism”, “open”, “closed”, “open immer-
ston”, “closed immersion”, “immersion”.

(2) The following properties of scheme morphisms are stable under base change: “surjec-
tive”, “open immersion”, “closed immersion”, “immersion”.

(3) The following properties of scheme morphisms are local on the target: “injective”,
“surjective”, “bijective”, “homeomorphism”, “open”, “closed”, “open immersion”,
“closed immersion”, “immersion”.

(4) The property “open” is local on the source.
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Proof. The assertions in (1), (3), and (4) are obvious. Proposition 4.20 shows that the
properties “open immersion”, “closed immersion”, and “immersion” are stable under base
change (see the discussion at the beginning of Section (4.11)). The property “surjective”
is stable under base change by Lemma 4.28. O

The following properties are not stable under base change: “injective”, “bijective”, and
“homeomorphism” (Exercise 4.16), “open” (Exercise 12.23), and “closed” (Exercise 4.21).

Let P be a property that is not necessarily stable under base change and let P’ be the
property “universally P”. Of course, P’ is stable under base change. Moreover if P is
stable under composition (resp. local on the target), the same is true for P’. In particular,
the following corollary follows from Proposition 4.32:

Corollary 4.33. The following properties of scheme morphisms are stable under composi-
tion, stable under base change, and local on the target: “universally injective”, “universally
bijective”, “universal homeomorphism”, “universally open”, “universally closed”.

Attaching to a scheme X its reduced subscheme X,oq (Section (3.18)) is compatible
with fiber product in the following sense.

Proposition 4.34. Let S be a scheme and let X andY be S-schemes. Then the canonical
immersions Xied — X and Yieqa — Y induce an isomorphism

(Xred X Sred )/red)red = (Xred XS Y;ed)red :> (X XS Y)red-

Proof. The equality Xyed X8,y Yred = Xred X5 Yred 18 clear as Syeq — S is a monomorphism.
As Xieqa — X and Yieq — Y are surjective immersions, their fiber product X,eq X g Yieda —
X xg Y is also a surjective immersion (Proposition 4.32) and therefore induces an
isomorphism on reduced subschemes. O

Note that the fiber product of reduced schemes (or even the fiber products of spectra
of fields) is in general not reduced (Exercise 4.18; see also Proposition 5.49 when this is
the case for schemes over a field).

We conclude this subsection with a characterization of universally injective morphisms.

Proposition 4.35. Let f: X — Y be a morphism of schemes. Then f is universally
injective if and only if f is injective and for all x € X the extension x(f(x)) — k(x)
induced by f% is purely inseparable.

Proof. Let f be universally injective. Assume that x(x) is not a purely inseparable
extension of x(f(x)). Then there exist two distinct (f(x))-embeddings of x(z) into an
algebraically closed extension K of x(f(z)) (Corollary B.102). These embeddings define
two distinct Y-morphisms Spec K — X and hence give rise to two distinct morphisms
Spec K — X ®y K of K-schemes. Therefore X ®y K contains at least two points, and
the morphism f(x): X ®y K — Spec K is not injective.

Now let us prove the converse. First note that f is universally injective if and only
if for every morphism Y’ — Y and for every point ¥’ € Y/ with image y in Y the fiber
(X xy Y')y = Xy ®y(y) Spec k(y’) consists of at most one point. We may assume that X,
is non-empty, so by hypothesis (X, )rea = Spec K, where K D k(y) is purely inseparable.
We therefore may assume by Proposition 4.34 that Y = Speck and X = Spec K where
K D k is purely inseparable and it suffices to show that Spec K ®j &’ has only one point
for an arbitrary field extension k’ of k. This follows from Corollary B.102. O
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Sometimes universally injective morphisms are also called purely inseparable. The
French notion is morphisme radiciel.

(4.11) Inverse images and schematic intersections of subschemes.

Let f: X — Y be a morphism of schemes and let i: Z — Y be an immersion. Proposi-
tion 4.20 shows that the base change i(x): Z xy X — X is surjective on stalks and a
homeomorphism of Z xy X onto the locally closed subspace f~!(Z) (where we identify
Z = i(Z)). Therefore i(x) is an immersion. In the sequel we consider Z xy X as a
subscheme of X and call it the inverse image of Z under f. From now on, f~1(Z), when
seen as a scheme, will always mean this subscheme.

Clearly, f~1(Z) is a closed subscheme of X if Z is a closed subscheme of Y. Proposi-
tion 4.20 also shows that if Z is an open subscheme of Y, f~1(Z) is an open subscheme
of X.

Example 4.36. If X = Spec B and Y = Spec A are affine and Z is closed in Y, the
morphism f corresponds to a ring homomorphism ¢: A — B and Z = V(a) = Spec A/a
for some ideal a C A. Then we have an identity of closed subschemes

(4.11.1) Y (V(a) = V(e(a)B).

As a special case of the inverse image of a subscheme we can define the intersection of
two subschemes: Let i: Y — X and j: Z — X be two subschemes. Then we call

YNZ:=YxxZ=i'2)=jY)

the (schematic) intersection of Y and Z in X. The universal property of the fiber product
implies the following universal property for Y N Z: A morphism 7' — X factors through
Y N Z if and only if it factors through Y and through Z.

Example 4.37. If X = Spec A and Y = V(a), Z = V(b), the identity (4.11.1) becomes

(4.11.2) V(a) NV (b) =V(a+b).

Example 4.38. If R is a ring and if f1,..., fr,91,...,9s € R[Xo,...,Xn] are homoge-
neous polynomials, we have for the intersection of closed subschemes of P%:

Vilfioo s ) O Vilgr, s 9s) = Vi fr, oo frog1, -, 9s) € PR

(4.12) Base change of affine and of projective space.

AFFINE SPACE.

Recall that we denote by A™ the affine space of relative dimension n over Z. For every
scheme S we consider A% := A™ xz S as an S-scheme via the second projection and call
this S-scheme the affine space of relative dimension n over S. If S = Spec R is affine,
A% = Spec(Z[Th,...,T,] ®z R) = Spec R[T1,...,T,] is the affine space A%, defined in
Example 2.36. For every morphism S’ — S we find
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(4.12.1) Al xg S =A" xz 8 xg S =Al,.

For a scheme X “functions on X” are by definition the elements of I'(X, Ox). We have
identifications

F(X’ ﬁx) = Hom(Ring) (Z[T]7 F(X7 ﬁX)) = Hom(SCh) (X7 A%)v

where the first one is given by sending a ring homomorphism ¢: Z[T] — T'(X, Ox) to
©(T') and where the second is given by Proposition 3.4. Moreover, if X is an S-scheme
we obtain by (4.7.1) an identification

(4.12.2) (X, 0x) = Homg (X, Ay).

PROJECTIVE SPACE.

Similar as for the affine space we define P¢ = Py x7z S for every scheme S and call this
S-scheme the projective space of relative dimension n over S. Then it is easy to see that
if S = Spec R is affine, P . r is the projective space P defined in Section (3.6). For
every morphism of schemes S — S we have

(4.12.3) % 2 PE xg S

Let R be a ring and let R’ be an R-algebra. Let f1,..., fr € R[Ty, ..., T,] be homogeneous
polynomials and let f1,..., f. be their images in R'[Ty,...,T,]. Then we have an equality
of closed subschemes of P, =P} @gr R’

(4.12.4) Vilfloeoo ) = Valfireoo o fr) @R R

(4.13) Morphisms of projective schemes.

In Section (1.25) we have seen that morphisms between projective varieties can be
described by homogeneous polynomials. For morphisms between closed subschemes of
projective space over an arbitrary ring R a similar description can be given.
Let P" = A%\ {0} be the complement of the zero section in A% (Section (3.6)).
Let
p=pn: P*"— P%

be the projection defined in Section (3.6). We choose coordinates Xy, ..., X, on P%. For
each i we have

(4.13.1) D(X;) = p~ ' (D4(Xy)) = D4 (X;) x g (AR \ {0}).
Let Z C P}, be a closed R-subscheme and set V; = D4 (X;) N Z. Then (4.13.1) shows that
(4.13.2) p (Vi) = Vi xg (AR \ {0}).

Let Z := Vi (I) be a closed subscheme of P%, where I C R[Xy,...,X,] is a homogeneous
ideal. The affine cone of Z (defined for varieties in Section (1.21)) is

(4.13.3) C(Z) = Spec R[Xo, ..., Xn]/T C A%
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Then we have C(Z) N P* = p~1(Z).

Now let fo,..., fm € R[Xo,...,X,] be homogeneous polynomials of the same degree.
They define an R-algebra homomorphism R[X}, ..., X | = R[Xo,...,X,]/I by sending
Xj to f; modulo I. We obtain a morphism of R-schemes f: C(Z) — AT This induces
for every R-algebra A a map on A-valued points

f(A): C(Z2)r(A) = {a=(ag,...,an) €A™ VgeT:gla)=0} — A™FL.

By the description of A-valued points of P" in Example 4.5, the morphism [ satisfies
f(C(z)nP™) C P™ if and only if for all a = (ag, . . ., a,) € A"t! such that g(a) = 0 for all
g € I and such that ag,...,a, generate the unit ideal the elements fy(a),..., fm(a) € A
generate the unit ideal of A. In this case we obtain a morphism of R-schemes f: Z — P}
that is the unique morphism such that the following diagram commutes

Pn i ian
7 f

m
— L spr

In fact, as above we write V; = D, (X;) N Z and identify p,' (Vi) = Vi xg (A} \ {0}).
The map R[T,T~'] — R, T + 1, gives us a morphism Spec R — AL \ {0} and thus a
morphism

Vi = Vi xp Spec R — Vi x g (AR \ {0}).

Composing this with the morphism

Pm

Vi xg (AL {0}) € C(2)n P —L P P

we obtain a morphism V; — P%}. Now one checks that these morphisms for varying ¢ can
be glued and give rise to the desired morphism f: Z — P}j.
(4.14) Products of projective spaces, Segre embedding.

Let n,m > 1 be two integers. If R is non-zero, it can be shown that the product P} x ¢ P%
is never isomorphic to Pg for some integer N > 0 (this is for example an easy corollary
of the computation of the Picard groups of these schemes, see Example 11.46; see also
Exercise 10.41). But there exists always a natural closed immersion

(4141) o= Un,m: IED’;L% XR ]P)’rl‘g s ]P%erner

called the Segre embedding. To define o denote by &: A?{H X A;’;H — A%LH)("LH) the
morphism of R-schemes that is given on A-valued points by

AU A S (20, By Y05 -5 Ym) > (23Y5) 0icn € ATTDOMHD,
0<j<m

Then &(15" XR ]5"‘) C prmtntm and the Segre embedding ¢ is the unique morphism of
R-schemes that makes the following diagram commutative
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F)n X R Pm o pnm+n+m

Pn ><Pmi lpnmﬁ»ner

}Pyré X R ]P)%L # ]Pﬂ}L%m—ﬁ-n—&-m.
In Remark 8.19 we will describe the Segre embedding on S-valued points.

Proposition 4.39. The morphism o = oy m 15 a closed immersion.

Proof. We choose coordinates X;, Y;, and Tj; for i =0,...,n, j =0,...,m on P%, PR,
and P respectively. Then we have o~ (D4(T};)) = D4(X;) xg D4 (Y;). As the
property of being a closed immersion is local on the target, it suffices to show that the
restriction 0% : D (X;) x g D4 (Y;) = D4 (T;;) of o is a closed immersion. Writing
X; - Y; ~
D, (X;) =SpecR X 0<i<n|, Di(Y;)=SpecR v 0<j<m|,
i J
T
DA(Ty) =Spec | 72,

ogign,ogjgm},
ij

the morphism ¢ corresponds to the R-algebra homomorphism

T;5 X; Y X; . Y; .
— = —=Q=€cR|—, R|Z, 7.
T X, &® Y, X, 1| Qr Y, J
This homomorphism is surjective, as § is the image of ;] and % is the image of %
K3 ¥ J ]
This shows that o;; is a closed immersion. O

Remark 4.40. Bihomogeneous polynomials define closed subschemes of P, x g P . More
precisely, let M C R[Xq, ..., X,, Y0, ..., Y] be aset of polynomials that are homogeneous
in each set of variables Xo,..., X, and Yy, ...,Y,, and let I be the ideal generated by M.
We set

Xo Xi X

YO ?; Ym
X, . Xi,...,Xi

Yj,...,yj,..., Y,

U; = SpecR , W; = Spec R

)

fori=0,...,nand j =0,...,m such that (U;); (vesp. (W;);) is an open affine covering of
P} (resp. P). As in Section (3.7) there exists a (unique) closed subscheme Z of P}, x g PR
such that Z N (U; xgp W;) = V(®; ;(I)) where ®; ;(I) is the ideal of dehomogenizations of
polynomials in I with respect to the variables X; and Y. With the results of Chapter 13
one can show that all subschemes of P}, x g P} are of this form. We call Z the vanishing
scheme of M (or of I).

In the same way, closed subschemes of products of any number of projective spaces can
be described.

Example 4.41. Let R be a ring, n > 2 an integer. We will define the closed subscheme
C of points in (P%)?3 that are collinear. Collinear points in P% correspond to lines in A%Jrl
lying in one plane, i.e., lines generated by vectors such that, if we group them together to
a matrix, this matrix has rank < 2. We therefore choose coordinates X;; (¢ =0,...,n) for
each copy Y; of P% (j =1,...,3) and let M be the set of 3-minors of the matrix (X;;).
Then all elements of M are homogeneous in the X;; for j fixed and we can define C' as
the vanishing scheme of M.
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(4.15) Group schemes.

Let (Grp) be the category of groups and V': (Grp) — (Sets) the forgetful functor. Let
S be a scheme and let G be an S-scheme. The following data for G are equivalent by
Yoneda’s lemma (Section (4.2)).

(i) A factorization of the functor hg: (Sch/S)°*? — (Sets) through the forgetful functor
V: (Grp) — (Sets).

(ii) For all S-schemes T' the structure of a group on Gs(T") which is functorial in T (i.e.,
for all S-morphisms 7" — T the associated map Gs(T) — Gs(T") is a homomorphism
of groups).

(iii) Three S-morphisms m: G xg G — G (multiplication), i: G — G (inversion), and
e: S — G (unit) such that the following diagrams commute.

mXxidg

G Xsg G Xs G G Xg G
idg Xml \Lm “associativity”
Gxg@G m G,
(id,e)s
GxgS ——GExg G
(4.15.1) lm “unit”
G idg c.
(id,i)s
G———Gxs (G
i lm “inverse”
S——= > G.

A scheme together with these additional structures is called a group scheme over S. As we
can glue morphisms (Proposition 3.5) it suffices to give in (ii) functorial group structures
on Gg(R), where Spec R — S is an S-scheme which is affine.

If f: S — S is a morphism of schemes and (G, m,i,e) is a group scheme over S, then
(G xs 8", m(sr),i(s),e(s)) is a group scheme over S’. For every S’-scheme T' we have
(G x5 8)s/(T) = Gg(T), where we consider T as S-scheme via composition with f.

Definition 4.42. A homomorphism of S-group schemes G and H is a morphism G — H
of S-schemes such that for all S-schemes T the induced map G(T) — H(T) is a group
homomorphism.

A morphism f: G — H of S-schemes is a homomorphism of group schemes over S if
and only if the corresponding morphism hg — hy of functors is a morphism of functors
to (Grp). Denoting by mg, mpy the respective multiplication morphisms, we can also
express this condition as f omg = myg o (f x f) by the Yoneda lemma.

Example 4.43. The following functors G are group schemes over S.

(1) S =SpecZ and G := GL,, with GL,,(T) := GL,(T'(T, Or)), the group of invertible
(n x m)-matrices over I'(T, Or), for any scheme T and for a fixed integer n > 1.
The underlying scheme of GL,, is Spec A with A = Z[(T};)1<i j<n][det '], where
det := > g s80(0)T1o(1) * Tho(n) is the determinant of the matrix (73;); ;. This
group scheme is called the general linear group scheme. We call G,,, := GL; the
multiplicative group scheme.
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For an arbitrary scheme S we also define S-group schemes GL,, s := GL,, x2S and
in particular G, s := G, Xz S.

(2) For a group T" let G = 'y be the associated constant group scheme, i.e., T¢(T) is the
set of locally constant maps T'— I' for any S-scheme T'. The underlying scheme is
the disjoint union J[ . S.

(3) The additive group scheme G, g over S is defined by G, (T') = I'(T, Or) for every
S-scheme T Its underlying S-scheme is AJ.

Instead of group schemes one can define ring schemes or schemes of R-algebras (for
R some fixed ring) similarly. Moreover the notion of an action of a group scheme on a
scheme is defined in the obvious way:

Definition 4.44. Let G be an S-group scheme and X be an S-scheme. Then a morphism
a: GxgX — X of S-schemes is called an action of G on X if for all S-schemes T the
map a(T): G(T) x X(T) — X(T') on T-valued points defines an action of the group G(T)
on the set X(T).

Similarly, we have the notions of subgroup scheme and of kernels:

Definition 4.45.

(1) Let G be an S-group scheme. A closed subscheme H C G is called a subgroup scheme,
if the closed immersion H — G is a group scheme homomorphism, or equivalently, if
for all S-schemes T', H(T) is a subgroup of G(T).

(2) Let f: G — H be a homomorphism of S-group schemes. Then the kernel Ker f of f
is the fiber product G x g S, where e denotes the unit section of H.

If f: G — H is a homomorphism of S-group schemes and the unit section e of H is a
closed immersion, then Ker f is a subgroup scheme of G.

Exercises

Exercise 4.1. Let R be a ring, and for every R-algebra A let a4: A — A be a map of
sets such that for every R-algebra homomorphism p: A — A’, one has p o g = aar 0 .
Prove that there exists a polynomial F' € R[T] such that for every A and every a € A,
a4(a) = F(a) in two different ways: using, resp. not using, the Yoneda lemma.

Exercise 4.20. Let S be a scheme and let (X;) and (Y}) be two families of S-schemes.

Show that
(JT X xs (ITY5) = [T(Xi xs Y5).
i J 0,J
Exercise 4.3. Let C be a category in which a final object and fiber products exist. Show
that in C finite projective limits exist. Deduce that for every scheme S finite projective
limits in (Sch/S) exist.

Exercise 4.4¢. Let S — S be a morphism of schemes and let X be an S-scheme
considered as a functor (Sch/S)*" — (Sets). Let X': (Sch/S’)°*® — (Sets) be the
restriction of X to (Sch/S")"", ie., X'(T — S') := Xg(T — S’ — S). Show that the
functor X’ is given by the S’-scheme X xg 5’.
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Exercise 4.5. Let X be a scheme and let X = J, U; an open covering. Show that for
every local ring R we have an equality of R-valued points X (R) = |J, U;(R). Give an
example where this equality does not hold for a non-local ring R.

Exercise 4.6. Let R be a local ring. Show that P*(R) is the set of tuples (zo,..., )
with ; € R and some z; € R* modulo the equivalence relation

(oy -y Tn) ~ (Yo, -, Yn) © Ja € R*: z; = ay;Vi.

Remark: The S-valued points of P™ for an arbitrary scheme will be determined in
Section (8.5).

Exercise 4.7. Let f: X — S and ¢g: Y — S be morphisms in a category C such that
the fiber product (X xg Y,p,q) exists. Let s: S — Y be a section of g. Show that
t:= (idx,s o f)g is a section of p and that the following diagram is cartesian

X#XXSY

/| |

S—= Y.

Exercise 4.8. Let f: X — X' and g: Y — Y’ be S-morphisms in a category where fiber
products exist. Show that if f and g are monomorphisms, then f X g g is a monomorphism.

Exercise 4.9. Let S be an object in a category where fiber products exist. Let X, Y, Z
be S-objects, f: X — Z, g: Y — Z two S-morphisms. Show that for every morphism
S" — S there is a functorial isomorphism (X Xz Y)(s) = X(s1) X 7o/, Y(s7)-

Exercise 4.10. Let X be a scheme.

(a) Let f: Z — X and f’: Z' — X be (universally) closed morphisms of schemes. Show
that the induced morphism Z ][ Z’ — X is (universally) closed.

(b) Assume that the family (X;); of irreducible components of X is locally finite (e.g.,
if X is locally noetherian; see Exercise 3.15). Show that the canonical morphism
[I; Xi = X is universally closed and surjective.

Exercise 4.11. For every scheme Z we denote by Zi,, the underlying topological space
of Z and by Zy C Zop the subspace of closed points. Let S be a scheme and X and Y be
two S-schemes. Show that the two projections of X x g Y yield a continuous surjection

T (X xgY — X X Y
to
top - ( S )top top  Stop Ltops

where the right hand side is the fiber product in the category of topological spaces.

Now let S = Speck, where k is a field, and all schemes are assumed to be of finite type
over k. For every k-scheme Z we consider Z(k) C Zy C Ziop, as subspaces. Show the
following assertions.

(a) myop induces a continuous surjective map mo: (X X; Y )o — Xo x ¥y and a continuous
bijective map 7(k): (X xx Y)i(k) — Xk (k) x Yi (k).

(b) Assume that X =Y = Aj. Show that 7o is bijective if and only if k is separably
closed. Show that there is no field k such that 7, is bijective or such that mp is a
homeomorphism. Show that 7 (k) is a homeomorphism if and only if k is finite (in
that case Zj (k) is finite and discrete for any k-scheme Z of finite type).
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Exercise 4.12¢. Let S be a scheme and let X and Y be S-schemes. Let f,g: X =Y
be two S-morphisms and for all S-schemes T let f(T') and g(7') be the induced maps
Xs(T) — Ys(T). Show that the following assertions are equivalent.

(i) f=g

(ii) f(T) = g(T) for all S-schemes T

(iil) f(X) = g(X).

(iv) There exists an open covering X = |J,; U; such that f(U;) = g(U;) for all .

Exercise 4.13. Let k be a field. Describe the fibers over all points of the following
morphisms Spec B — Spec A corresponding in each case to the canonical homomorphism
A — B. Which fibers are irreducible or reduced?

(a) Speck|T, U]/(TUf 1) — Speck[T].

(b) Speck[T,U]/(T? — U?) — Speck[T].
(c) Speck[T,U]/(T? + U?) — Spec k[T].
(d) Speck[T,U]/(TU) — Speck[T].

(e) Spec k[T U, V,W]/((U+T)W,(U+T)U?+U?+UV? - V?)) = Speck[T).
(f) SpecZ[T| — SpecZ.

(g) SpecZ[T]/(T? + 1) — SpecZ.

(h) SpecC — SpecZ.

(i) Spec A/a — Spec A, where a is some ideal of A.

Exercise 4.14. Let k be an algebraically closed field and let Ly, Ly C P} be two linear
subspaces with non-empty intersections. Show that the schematic intersection L N Lo is
a linear subspace.

Exercise 4.15¢0. Let k be a field, n > 1 an integer and consider in X = A? = Spec k[T, U]
the closed subschemes Y7 := V(T™ + U™ — 1) and Y5 := V(T + 1). Describe the schematic
intersection Z :=Y; N'Ys. How many points has Z7 Is Z irreducible or reduced?

Exercise 4.16¢. Let k be a field, k — K and k < &’ two field extensions. Set S = Spec k,
X = SpecK, and S’ = Speck’. Clearly f: X — S is a homeomorphism. Show that if
K Dk is a finite separable extension of degree n, there exists always a finite separable
extension &' D k such that X x g5’ consists of n points. In particular, f(g/): X x55" — 5’
is not injective if n > 1.

Exercise 4.17. Let S be a scheme over F,. Show that the absolute Frobenius Frobg is
a universal homeomorphism. Let X be an S-scheme. Show that the relative Frobenius
Fx/s: X — X ®) is a universal homeomorphism.

Exercise 4.18. We keep the notation of Exercise 4.16. Assume that k is a non-perfect
field, and that K and k' are perfect closures of k. Show that A := K ®; k' is a ring with
a single prime ideal. Show that this prime ideal (equal to the nilradical) is not finitely
generated and deduce that A is a non-reduced non-noetherian ring.

Hint: Corollary B.102.

Exercise 4.19. Let k be an algebraically closed field of characteristic # 2.

(a) Show that the quadric of rank 4 in P$ is isomorphic to P} xj, Pi.

(b) Show that every quadric in P contains infinitely many lines (i.e., linear subspaces of
P? of dimension 1).
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Exercise 4.20. Let n,m > 0 be integers. Show that the schemes P™ x P™ and P are
isomorphic if and only if n =0 or m = 0.

Hint: Count (P™ x P™)(k) and P"*™ (k) when k is a finite field.

Remark: See also Example 11.46 for a different proof and Exercise 10.41 for a generalization.

Exercise 4.21. Let k be a field and let f: A} — Speck be the structure morphism. Show
that f is closed but that f(Allc)I A? — A} is not closed.

Exercise 4.22. Give an example of two group schemes G and H over a field k such
that the underlying schemes of G and H are isomorphic but such that G and H are not
isomorphic as group schemes.

Hint: Consider the group scheme G such that for all k-algebras R one has

G(R) = {(a;;) € GL,(R) ; a;; =0 for all i > j and a;; = 1 for all i }.
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A very important special case are schemes that are of finite type over a field. Thus
before we progress with the general abstract theory of schemes we focus in this and
the next chapter on the case of schemes of finite type over a field (although some of
the definitions and results are formulated and proved in greater generality). In fact this
is also an important building block for the study of arbitrary morphisms of schemes
f: X — S because we have seen how we may attach to each s € S its fiber X, = f~1(s)
(Section (4.8)). Thus f yields a family of schemes over various fields and we may study f
by first studying its fibers and then how these fibers vary.

Schemes over a field which is not algebraically closed

(5.1) Schemes locally of finite type over a field.

In this section let k be an arbitrary field, and let X be a k-scheme locally of finite type
(Definition 3.30). A point z € X is closed if and only if x(z) is a finite extension of k
(Proposition 3.33) and the set of closed points is very dense in X (Proposition 3.35). A
point « € X is called k-rational if k — x(x) is an isomorphism. A k-rational point is
always closed. Sending a k-morphism Spec k — X to its image yields a bijection between
the set X (k) = Xy (k) of k-valued points of X and the set of k-rational points of X
(Proposition 3.8). In the sequel we will often identify k-rational and k-valued points for
k-schemes.

If k is algebraically closed, all closed points are k-rational. In other words the very
dense subspace of closed points can be identified with the set X (k) of k-valued points of
X. If X is of finite type and integral, then X corresponds to a prevariety over k, and we
have a good understanding of the topological space X in terms of this prevariety.

For a general field k it is often difficult to decide whether a given k-scheme X has
a k-rational point (see Exercise 3.28). The following two examples show that even for
quite simple k-schemes the residue fields x(x) might be complicated field extensions of
k. Moreover it might happen that there is no k-morphism Speck — X (and hence no
k-rational point of X).

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2020
U. Gortz und T. Wedhorn, Algebraic Geometry I: Schemes, Springer Studium
Mathematik — Master, https://doi.org/10.1007/978-3-658-30733-2_6


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-30733-2_6&domain=pdf

122 5 Schemes over fields

Example 5.1. Let X = A} = Spec k[T]. The points of X are the prime ideals of k[T]. As
k[T] is a principal ideal domain, the prime ideals are the zero ideal and all principal ideals
generated by irreducible polynomials (see Example 2.14). Hence every finite extension
field which is generated over k by a single element (in particular every finite separable
extension) occurs as a residue class field of a point of X.

Example 5.2. Let X = Speck’ be the spectrum of a non-trivial extension field k'/k.
This gives us an example of a k-scheme which contains no point with residue class field k
and which does not admit any k-morphism Speck — X. A scheme X of this form is of
finite type over k, if and only if the extension k/k is finite (Lemma 1.10).

(5.2) Points and Galois action.
Let k be a field. Given a k-scheme X and a field extension k — K, we let
X(K) := Xy (K) = Homy(Spec K, X)

be the set of K -valued points of X (see Section (4.1)). Any K-valued point x: Spec K — X
defines by Proposition 3.8 morphisms Spec K — Spec k(z) — X — Speck and therefore
gives rise to field extensions

k— k(z) = K.

For K = k attaching to x: Speck — X its image point in X defines then a bijection
(5.2.1) X(k) = {x € X ; k< k(z) is an isomorphism }.
As Example 5.2 shows, X (k) might be empty.

Example 5.3. Let fi,...,f € k[Xo,...,X,] be homogeneous polynomials and let
X =V (f1,..., fr). For every field extension k — K we have

X(K)={z=(zo:...:2y) e P"(K); fi(z) =---= fr(z) =0}

Let G be the group of k-automorphisms of K. We obtain an action of G on X(K) by
composition of the morphism z: Spec K — X with *o: Spec K — Spec K for o € G.

Let X = Spec A, where A is a k-algebra. By choosing generators of A as a k-algebra,
we can write A = k[(T})ier]/((fj)jer), where (T;);cr is a family of indeterminates, and
(f;)jes is a collection of polynomials f; € k[(T;);]. Then

X(K) = Homy(A, K) = { (t:) € K' 5 f;((t:):) = 0 for all j € J},

and the group action of G on X (K) defined above is the restriction of the componentwise
action of G on K. In particular we see that for every subgroup H C G with fixed field
K C K the set X(K)H of fix points in X(K) under H coincides with the set X (K ).
Now consider an arbitrary k-scheme X and an open affine covering X =, Ua. Then
X(K)=U,Ua(K), and Uy (K) is a G-invariant subset of X (K). Therefore again

(5.2.2) X(K)H = X(KH)

for every subgroup H C G.
In particular, if K is a Galois extension of k, then the set of fix points of the action of
G = Gal(K/k) on X (K) is precisely X (k).
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~ Now let K = k be an algebraic closure of & and G be the group of k-automorphisms of
k. For k-schemes locally of finite type we can describe the set of closed points as follows:

Proposition 5.4. Let X be a k-scheme locally of finite type. Let 5 be the unique point in
Speck. The map 7

a: X(k) = X, (Z: Speck — X) — (5)

induces a bijection between the set of G-orbits in X (k) and the set of closed points of X.

Proof. Proposition 3.8 about morphisms from the spectrum of a field into a scheme shows
that an element of X (k) is the same as a point z € X together with a k-homomorphism
k(r) — k. Because of Proposition 3.33, = necessarily is a closed point (and for every
closed point there exists a corresponding element in X (k)). We obtain a G-equivariant
bijection
X(k) = {(z,t) ; v € X closed, ¢: k(z) =k},

where all the homomorphisms ¢ are requested to be k-homomorphisms. On the right hand
side, G acts via (x,t) — (z,0 o) for o € G. The proposition follows, since G operates

transitively on the set of embeddings k(x) — k. O

Dimension of schemes over a field

In this section, we investigate the notion of dimension, where we concentrate on schemes
of finite type over a field, which is the situation where this notion works best. A further
discussion of the notion of dimension is contained in Chapter 14.

Naively, the dimension of a space should encode the “number of parameters” needed
to describe a point of this space. For instance, affine n-space A} over a field k should
certainly have dimension n. If X is a k-scheme of finite type and X — A} is a morphism
with finite fibers, then X should also have dimension n. Using Noether normalization,
one sees that this comes down to defining dim X = trdeg;, K (X). This approach leads to
a satisfactory theory of dimension for schemes of finite type over a field. For more general
schemes, however, we use a different definition, modeled on the fact that the dimension of
a vector space is the maximal length of a flag of subspaces. In the context of the Zariski
topology, this gives us a viable definition of the dimension of an arbitrary scheme, and we
start with this general notion.

(5.3) Definition of dimension.

Definition 5.5. Let X be a topological space. The dimension dim X of X is the supremum
of all lengths of chains
Xo2X,2---2X;

of irreducible closed subsets of X. (The length of a chain as above is l.) If X is a scheme,
then its dimension is by definition the dimension of the underlying topological space. A
topological space X is called equidimensional (of dimension d), if all irreducible components
of X have the same dimension (equal to d).

So the dimension is —oo (if and only if X = (}), a non-negative integer, or co.



124 5 Schemes over fields

For an affine scheme X = Spec A, we have an inclusion reversing bijection between
irreducible closed subsets of X and prime ideals of A (Corollary 2.7). Thus we have
dim X = dim A, where

dim A :=sup{l € Ny ; Ipo C p1 € --- C p; chain of prime ideals of A}

is called the Krull dimension or simply the dimension of the ring A.

Example 5.6. If k is a field, then dim Speck = 0. If A is a principal ideal domain (but
not a field), then dim Spec A = 1. In particular, we have dim A} = 1 for any field k. If A
is any ring and pg C - -+ C p,- is a chain of prime ideals in A, we obtain a chain of prime
ideals in A[T] by poA[T] € --- € p-A[T] € p, + (T). Therefore we see that

(5.3.1) dim A[T] > 1+ dim A.

In Theorem 14.100 we will see that whenever A is a noetherian ring, then dimA% =
n + dim A. (This statement is not true for an arbitrary ring!) If A =k is a field, we will
show in Corollary 5.18 that dim A} = n for all n.

We add a word of warning, however. Even for noetherian schemes the notion of dimension
is sometimes quite counter-intuitive (see Exercise 5.3, for instance). If one restricts oneself
to the case of schemes of finite type over a field, then the theory of dimension works mostly
as expected, and is a very useful invariant. We first discuss some simple observations in
the general case.

Lemma 5.7. Let X be a topological space.

(1) Let Y be a subspace of X. Then dimY < dim X. If X is irreducible, dim X < oo,
and Y C X is a proper closed subset, then dimY < dim X.

(2) Let X =, Uq be an open covering. Then

dim X = supdim U,,.

(3) Let I be the set of irreducible components of X. Then

dim X = supdimY.
Yel

(4) Let X be a scheme. Then

dim X = sup dim Ox ..
reX

Proof. (1). If Z is an irreducible closed subset of Y its closure Z in X is irreducible and
ZNY = Z. This shows the first assertion of (1). The second follows as every chain inside
Y can be enlarged to a chain inside X by adding X.

(2). Let Zy 2 Zy 2 -+ 2 Z; be a chain of irreducible closed subsets of X. Then there
exists U, such that U, N Z; # 0. Then () # U, N Z; is open in Z; and hence irreducible
and closed in U,. Moreover the closure of U, N Z; in X is Z; and thus the Z; N U, form
a chain of length [ in U,. This shows that sup, dim U, > dim X. The converse inequality
follows from (1).

Assertion (3) is clear and for the last assertion we may assume that X = Spec A is
affine by (2). But in this case dim Ox , is the supremum of the length of chains of prime
ideals of A ending in p,. O
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Assertion (2) shows that for many questions concerning the dimension, we can restrict to
the case of affine schemes and by (3) to the case of irreducible affine schemes. Furthermore
the dimension of a scheme depends only on the underlying topological space; in particular,
we have dim X = dim X,¢q. Thus often we may restrict to the case that X is an affine
integral scheme.

The second part of Assertion (1) has the following consequence.

Corollary 5.8. Leti: Y — X be a closed immersion of schemes, where X is integral. If
dim X =dimY < oo, then i is an isomorphism.

For a general morphism of schemes f: X — Y one does not have dim X > dim f(X)
(see Exercise 5.3). However we have:

Proposition 5.9. Let f: X — Y be an open morphism of schemes. Then we have
dim X > dim f(X).

There is a similar — but simpler — result for closed morphisms of schemes; see Exercise 5.6.

Proof. We may replace Y by the open subscheme f(X) and therefore assume that f is
surjective. Then it suffices to show that if (y;)o<i<n is & sequence of points in Y such that

yi—1 € {y;} for all i = 1,...,n, then there exists a sequence (x;)o<;<n of points in X such
that ¢;—; € {x;} for all : = 1,...,n and f(x;) = y; for all i. This follows by induction
from the following lemma. O

Lemma 5.10. Let f: X — Y be an open morphism of schemes. For every point x € X
and every generization y' of y := f(x) there exists a generization x' € X of x with

f@) =y

Proof. We may assume that X = Spec B and Y = Spec A are affine. Then the set Z of
all generizations of x is Spec Ox , = (), D(t), where ¢ runs through B\ p,. As D(t) is
an open neighborhood of z, its image f(D(t)) is an open neighborhood of y and hence
contains y'. We find that, setting f; := f|p(), the fiber f 1 (y') is non-empty for all t.

We now assume that 3’ ¢ f(Z). If g denotes the composition Spec Ox , - X — Y, we
therefore have ¢! (y") = Spec(Ox » @4 k(y’)) = 0 and hence

Oxo@ak(y)= lim (B, ®4 k(1Y) = 0.
tEB\p,

Therefore 0 = 1 in the limit, and hence in some B; ® 4 £(y"). But then we obtain that
fr (') = Spec(B; @4 r(y')) = 0; contradiction. 0

(5.4) Dimension 0.

Let us describe more precisely what it means for a locally noetherian scheme to have
dimension 0. Note that a ring has dimension 0 if and only if every prime ideal is maximal
(or equivalently: if every prime ideal is minimal). A noetherian ring is of dimension 0
if any only if it is Artinian, see Proposition B.36. We translate the characterizations of
Artinian rings into statements about schemes.
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Proposition 5.11. Let X be a locally noetherian scheme. The following are equiva-
lent:
(i) dimX =0
(ii) The topological space of X carries the discrete topology.
(iii) All local rings of X are local Artin rings.
(iv) The natural morphism
H Spec Ox » —+ X
zeX

is an isomorphism.

Proof. All properties propagate to open subsets, and can be checked on an open covering.
Therefore we may assume that X is noetherian and affine, and the proposition follows
from Proposition B.36. O

(5.5) Integral morphisms of affine schemes.

Recall that a ring homomorphism A — B is called integral if every element of B is the
zero of a monic polynomial with coefficients in A. The following proposition is a geometric
version of Theorem B.56.

Proposition 5.12. Let X = Spec B and Y = Spec A be affine schemes, let p: A — B be
an integral ring homomorphism, and let f: X — Y be the corresponding scheme morphism.
If Z=V(b) C X is a closed subspace, where b C B is an ideal, then

(5.5.1) [(Z2) =V(e~'(b).

In particular, f is closed. Moreover:
(1) One has dim f(Z) = dim Z.
(2) If ¢ is in addition injective, then f is surjective.

Proof. By Proposition 2.10 (2) the image f(V (b)) is dense in V(p~1(b)). Replacing A by
A/~ 1(b) and B by B/b it suffices to show that f is surjective and dim X = dimY if ¢
is integral and injective. This follows from Theorem B.56: The surjectivity follows from
Going Up (2). Going Up also shows that dim B > dim A, and Assertion (1) of loc. cit.
implies that dim B < dim A. O

Theorem 5.13. Let ¢: A — B be an integral injective ring homomorphism of integral
domains, and set K = Frac(A) and L = Frac(B). Let f = %p: Spec B — Spec A be the
associated morphism. Assume that L is a finite extension of K (e.g., if ¢ is finite) and
that A is integrally closed.

Then the norm map N i L — K satisfies Ny (B) C A. For b € B we have

f(V (b)) = V(NL/k(b))

(equality of sets) and dim V' (b) = dim V (N, (b)).
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Proof. Let b € B, and let us show that a := N,k (b) is integral over A (and hence lies in
A). By assumption b is integral over A, so it is a zero of a monic polynomial P € A[T].
Clearly, the minimal polynomial minpol;, /Kb of b with respect to the field extension L/K
divides P, so all zeros (in an algebraic closure of L) of the minimal polynomial are integral
over A. But then the same is true for the coefficients, which are polynomial expressions in
the zeros, and in particular for the norm a, which is (up to sign) a power of the absolute
coefficient of minpol ;.

To complete the proof, it is enough to show that rad(bB) N A = rad(aA) by Propo-
sition 5.12. Writing minpoly, /x, = Zj:o a;T* with ag = 1, we find a € agA. From
ap =~ ivp a;b* we see that a € bB. Conversely, if s € A and s™ € bB, say s™ = bt for
some t € B, then

s"EKT = Np e (5™) = Ny (D)NL k(1) € aA. O

Lemma 5.14. Let A — B be a finite ring homomorphism. Then all fibers of the morphism
Spec B — Spec A are finite (as sets).

Proof. Let p C A be a prime ideal. We must show that the ring B ® 4 k(p) has only
finitely many prime ideals. However, this ring is a finite-dimensional x(p)-vector space
and thus it is Artinian (every ideal is also a k(p)-subvector space, and every descending
chain of subvector spaces of a finite-dimensional vector space becomes stationary) and
therefore its spectrum has only finitely many points by Proposition B.36. Alternatively,
one can use Proposition 5.11 and Proposition 5.12. O

(5.6) Dimensions of schemes of finite type over a field.

We fix a field k. We start by recalling a refined version of Noether’s normalization theorem
(Theorem B.58).

Theorem 5.15. Let A # 0 be a finitely generated k-algebra.

(1) There exist t1,...,tq € A such that the corresponding k-algebra homomorphism
w: k[Th,...,Tq] = A, T; — t;, is injective and finite.

(2) If ap Cay C -+ C a, C A is a chain of ideals in A (r > 0), then the t; in (1)
can be chosen such that o~ (a;) = (T1,... yThy) for all i = 0,...,r and suitable
0<h(0) <h(l)<--- < h(r) <d.

Remark 5.16. In more geometric terms, this means the following: Given an affine scheme

X of finite type over k, we find a morphism f: X — A% of k-schemes such that the

following assertions hold.

(1) The associated k-algebra homomorphism is finite and injective. In particular, by
Proposition 5.12 and Lemma 5.14, f is closed, surjective, and has finite fibers.

(2) Furthermore, given a chain Z,. C --- C Zj of closed subschemes of X, we may arrange
f such that each Z; is mapped onto a coordinate hyperplane V(T1,...,Tyy) in Ad.

(3) If Z. € --- C Zy is a chain of integral closed subschemes (i.e., Z; = V(a;) for
some prime ideal a; C A), Theorem B.56 (1) shows that we automatically have
h(0) < h(1) < --- < h(r) for the numbers h(¢) obtained from part (2) of the theorem.
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Corollary 5.17. Let A # 0 be a finitely generated k-algebra, and d > 0 be an integer.
Then dim A = d if and only if there exists a finite injective k-algebra homomorphism
E[Ty,..., Ty — A.

Proof. Noether normalization yields a finite injective homomorphism k[T, ..., T;] — A.
By Proposition 5.12 we have dim A = dim k[T7,...,T,]. By Remark 5.16 (3) we have
dim A < d and by (5.3.1) we have dim k[T1, ..., Ty] > d. O

Corollary 5.18. Let n > 0 be an integer. Then dim A} = dim P} =n.

Proof. The equality dim A} = n follows immediately from Corollary 5.17. Moreover, as
projective space P} admits an open covering by copies of A}, we have dimP} = n by
Lemma 5.7 (2). O

If A is a ring, we call a chain of prime ideals in A mazimal if it does not admit a
refinement. Similarly, we call a chain of closed irreducible subsets of a topological space
maximal, if it is maximal with respect to refinement.

Theorem 5.19. Let A be a finitely generated algebra over a field k and set d = dim A.

Assume that A is an integral domain. Let qp1y S -+ S dner) be a chain of prime ideals

of A such that dim V (qpe;)) = d — h(i).

(1) There exists a finite injective k-algebra homomorphism @: k[Ty,...,Tq] — A such
that (p_l(qh(i)) = (T1,... ,Th(i)) foralli=1,...,r.

(2) For every homomorphism ¢ as in (1) the chain (qp;)s can be completed to a chain of
prime ideals qo C -+ € qq of A such that ¢~ (q;) = (Th,...,T;) forallj=1,...,d.

In particular, any chain of prime ideals in A can be completed to a maximal chain of

prime ideals and all maximal chains have the same length.

Proof. We apply Theorem 5.15 to A and the given chain of prime ideals, and denote by
w: k[Ty,...,Ty] — A the resulting homomorphism. By Corollary 5.17 we have d' = d.
We set by = (T1,...,T;) C k[T1,...,Ty] and thus have w‘l(qh(i)) = by (s for some
0 < h'(i) < d. It follows that h(i) = h'(7) because by Proposition 5.12 we have

We now prove (2). Let ¢ be an index such that h(i+1) > h(i) +1. We have to find prime
ideals q; for h(i) < j < h(i+ 1) with qa@) C dn@)+1 C -+ C da@+1) and @~ (q;) = b;.
Replacing k[T1,...,T4] by k[T, ..., T4]/bpe) (this is again a polynomial ring) and A by
A/qn(i) we may assume that qp(;) = 0. But then Theorem B.56 (3) shows the existence of
the q;- L]

Schemes of finite type over a field k of dimension 0 are particularly simple:

Proposition 5.20. Let X be a non-empty k-scheme of finite type. The following are

equivalent:

(i) dim X = 0.

(ii) The scheme X is affine, the k-vector space I'(X, Ox) is finite-dimensional, and
I'X,0x) =11, Ox..

(iii) The underlying topological space of X is discrete.

(iv) The underlying topological space of X has only finitely many points.
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Proof. If dim X = 0, then (iii) holds by Proposition 5.11, and (iii) implies (iv) because
X is quasi-compact. We show that (iv) implies that all points of X are closed (which
implies (i)). Let U be the set of points z € X that are not closed. As X is finite, this is
an open subset of X. As the closed points of X are very dense (Proposition 3.35), U has
to be empty.

If (ii) holds, X is the spectrum of an Artinian ring and therefore the underlying
topological space of X is finite and discrete. Conversely, we show that (i), (iii), and (iv)
imply (ii). If X is finite and discrete, X is clearly affine, say X = Spec 4, and A =[], Ox .
Corollary 5.17 shows that the structure morphism X — Speck corresponds to a finite
homomorphism k — A. O

Corollary 5.21. Let X be an integral k-scheme of finite type, such that dim X = 0. Then
X = Speck’, where k' [k is a finite field extension.

The central result on the dimension of schemes over a field is the following theorem.

Theorem 5.22. Let X be an irreducible k-scheme locally of finite type with generic point

7.

(1) dim X = trdeg, k(n).

(2) Let x € X be any closed point. Then dim Ox , = dim X.

(3) Let f: Y — X be a morphism of k-schemes of finite type such that f(Y) contains the
generic point n of X. Then dimY > dim X. In particular we have dimU = dim X
for any non-empty open subscheme U of X.

(4) Let f: Y — X be a morphism of k-schemes of finite type with finite fibers. Then
dimY <dim X.

If X is integral, then k(n) is simply the function field of X.

A theorem of Chevalley (see Theorem 10.20) will show that under the hypotheses
of the proposition the property that 7 is contained in f(Y") in (3) is equivalent to the
property that f(Y') is dense in X (one can also use Exercise 10.1 or Exercise 3.12 if Y is
irreducible).

A morphism f as in (4) is called quasi-finite. This notion will be discussed more
thoroughly in Section (12.4).

Proof. (1). We may assume that X is reduced, and covering X by non-empty open affine
subschemes U we may assume that X = Spec A, where A is an integral finitely generated
k-algebra. Then we have k(n) = Frac(A). Let ¢: k[T4,...,T4] — A be a finite injective
homomorphism as in Corollary 5.17 with d = dim A. Then Frac(A) is a finite extension
of K := k(Ty,...,Ty) and we have trdeg (Frac(A)) = trdeg, (K) = d.

(8). By hypothesis there exists § € Y such that f(0) = n. Therefore f induces a
k-embedding k(n) — (). Denote by Z the closure of §. Then

dim X = trdeg k(1) < trdeg x(f) = dim Z < dim Y.

(2). By (3) we may replace X by an open affine neighborhood U of x in X,eq. Thus
again we may assume that X = Spec A, where A is an integral finitely generated k-algebra.
Then x corresponds to a maximal ideal p, of A and dim(&x ;) is the supremum of lengths
of chains of prime ideals of A that end in p,. But the chain consisting of the single prime
ideal p, may be completed to a maximal chain of length dim A by Theorem 5.19. This
proves (2).
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(4). Let Z be an irreducible component of Y with generic point 6 and set = := f(0).
We will show that trdeg,, k() < dim X. Replacing X by an open affine neighborhood
U of x and Y by an open affine neighborhood of 6 in f~1(U) we may assume that
X = Spec A and Y = Spec B are affine. Then B is a k-algebra of finite type and in
particular an A-algebra of finite type. The fiber f~1(x) = Spec(B ®4 r(x)) is thus
a k(z)-scheme of finite type with only finitely many points. By Proposition 5.20 the
point 4 is closed in f~!(z) and therefore £(6) is a finite extension of x(z). This shows
trdeg;, k(0) = trdegy, k(z) = dim {z} < dim X. O

Corollary 5.23. Let X be a k-scheme locally of finite type and let x € X be a closed
point. Then dim Ox , = sup, dim Z, where Z runs through the (finitely many) irreducible
components of X containing x.

(5.7) Local dimension at a point.

Definition 5.24. Let X be a topological space and x € X. The dimension of X at x is

dim, X = irl}f dim U,

where U runs through all open neighborhoods of x.

Lemma 5.25. Let X be a topological space.

(1) Let U be an open neighborhood of x. Then dim, U = dim, X.

(2) One has dim X = sup, ¢y dim, X. If X is a quasi-compact scheme and F' is the set
of closed points in X, then dim X = sup,cp dim, X.

(3) Letn be an integer. Then {x € X ; dim, X <n} is open in X.

Proof. Recall that we have dimY < dim X for every subspace Y of X (Lemma 5.7). This
implies (1) and the inequality sup,cy dim, X < dim X in (2). Let Xg 2 --- 2 X; be a
chain of closed irreducible subsets of X and choose z € X;. If U is an open neighborhood
of z, then (U N X;)o<i<; is a chain of irreducible subsets which are closed in U and
which are pairwise different because the closure of U N X; in X is X;. Thus dimU > [
which shows sup, ¢y dim, X > dim X. The second assertions follows because if X is
quasi-compact, X; is also quasi-compact and thus contains a closed point x.

Let x € X with dim, X = n. Let U be an open neighborhood of = such that dimU = n.
Then for every y € U we have dim, X = dim, U < n by (1) and (2). This proves (3). O

Proposition 5.26. Let X be a scheme locally of finite type over a field and let I be the
(finite) set of irreducible components of X containing x. Then dim, X = sup,.;dim Z.
If v € X is a closed point, then dim, X = dim Ox ,.

Proof. As the set of irreducible components of X is locally finite, dim, X = infy dim U
where U runs through those open neighborhoods of « which meet precisely the irreducible
components in 1. But then dim U = sup,¢; dim(Z NU) = supz¢; dim Z, where the first
equality follows from Lemma 5.7 (3) and the second equality from Theorem 5.22 (3). The
last assertion follows then from Corollary 5.23. O
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(5.8) Codimension of closed subschemes.

Definition 5.27. Let X be a topological space.

(1) Let Z C X be a closed irreducible subset. The codimension codimy Z of Z in X is the
supremum of the lengths of chains of irreducible closed subsets Zy 2 Z1 2 -+ 2 7
such that Z;, = Z.

(2) Let Z C X be a closed subset. We say that Z is equi-codimensional (of codimension
), if all irreducible components of Z have the same codimension in X (equal to r).

If X =Spec A and Z = V(p) for some prime ideal p C A, the codimension of Z is also
called the height of p. It is the supremum of the lengths of chains of prime ideals of A
that have p as its maximal element. This implies easily that for an arbitrary scheme X
and a closed irreducible subset Z with generic point 1 we have

(5.8.1) codimyx Z = dim Ox ,, = ing dim Ox .
FAS

This shows that the following definition agrees with the definition given above if Y is
closed and irreducible.

Definition 5.28. Let X be a scheme and let Y C X be an arbitrary subset. Then

codimy (Y) := inf dim Ox ,
yey

1s called the codimension of Y in X.

Remark 5.29. Let X be a scheme.
(1) I Y is a closed subset of X, we find

codimy Y = irZ1f codimy Z,

where Z runs through the set of irreducible components of Y.
(2) A closed subset Y of X is of codimension 0 if and only if Y contains an irreducible
component of X.

If Z C X is closed irreducible, we clearly have dim Z + codimyx Z < dim X. But in
general (even for irreducible noetherian schemes) it may happen that this inequality is
strict (see Exercise 5.7). The situation is better if X is of finite type over a field k:

Proposition 5.30. Let X be an irreducible scheme of finite type over a field k. Set
d:=dim X.

(1) All mazimal chains of closed irreducible subsets of X have the same length.

(2) For all closed subsets Y of X we have

dimY + codimyx Y = dim X.

Proof. (1). It Z, C -+ C Zy is a maximal chain, then Z,, = {z} for some closed point
x € X and we have r = dim Ox ,. Therefore (1) follows from Theorem 5.22 (2).

(2). We first assume that Y is irreducible. Then dimY + codimx Y is the supremum
of the lengths of maximal chains of closed irreducible subsets of X having Y as a member.
Thus the claim follows from (1).

In general let Y;, 1 <14 < n be the irreducible components of Y. If dim Y, is maximal
for some g, then codimy Y;, = dim X — dim Y;, is minimal and we have dimY = dimYj,
and codimy Y = codimy Y;,. O
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Note that the hypothesis that X is irreducible is necessary (see Exercise 5.9).

(5.9) Dimension of hypersurfaces.

We work over a fixed field k. In this section we analyze the dimension of closed subschemes
defined by a single equation.

In the special case X = Spec A, where A is a unique factorization domain, the situation
is particularly simple (and we do not even need that A is of finite type over a field).

Proposition 5.31. Let X = Spec A, where A is a noetherian unique factorization domain.
Let Z C X be a reduced closed subscheme of X equi-codimensional of codimension 1.
Then there exists 0 # f € A with Z = V(f). Conversely, every closed subscheme Z of the
form V(f) for an element 0 # f € A is equi-codimensional of codimension 1.

Proof. We first show that an integral subscheme Z = V(p) for some prime ideal p C A
has codimension 1 if and only if Z = V(f), where f € A is an irreducible element. Indeed,
assume that p has height 1 and let g € p be a nonzero element. As p is a prime ideal,
an irreducible divisor f of g is also contained in p. Thus we have inclusions of prime
ideals (0) C (f) C p. As p has height 1, we have p = (f). Conversely let p = (f) for some
irreducible element f. Then the height of p is at least 1 and we find a prime ideal q C p
of height 1. We have already shown that q = (f’) for some irreducible element f’. Thus f
divides f’ and hence p = q.

Now let Z be reduced and equi-codimensional of codimension 1. As A is noetherian, Z
has only finitely many irreducible components. Each irreducible component Z; is of the
form V(f;) for some irreducible element f; € A and thus we find Z = V ([, fi)-

Conversely, let 0 # f € A and f =[] f{* be a decomposition in pairwise non-associated
irreducible elements f; with integers e; > 1. The irreducible components of V (f) are the
V(f{*) = V(f;) which we have shown to be of codimension 1. O

Note that for the first assertion the hypothesis that Z is reduced is necessary (see
Exercise 5.10). In general the situation is more complicated even for schemes of finite
type over a field k: it may happen that there are closed integral subschemes Z of
codimension 1 of an integral affine k-scheme X of finite type, such that Z cannot be
defined as the vanishing scheme of a single equation (Exercise 5.13). On the other hand,
every closed subspace of A} is always the set-theoretic intersection of n hypersurfaces
(Exercise 5.14). To study the general situation we start by proving a geometric version of
Krull’s Hauptidealsatz (principal ideal theorem, cf. Proposition B.63).

Theorem 5.32. Let X be an integral k-scheme of finite type, and let f € T(X,Ox) be a
non-unit, and different from 0 (i. e., D CV(f) € X ). Then V(f) is equi-codimensional
of codimension 1 in X.

Proof. Since V(f) has only finitely many irreducible components Zi, ..., Z,, there exists
for each ¢ = 1,...,r an open affine neighborhood U; of the generic point of Z; such that
UinNZ; =0 for j # i. By Theorem 5.22 (3) we have dim X = dimU;. Replacing X by
Us and f by f|u,, we therefore may assume that X = Spec A is affine and that V(f) is
irreducible.
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Let ¢: k[T, ...,T4] < A be a finite injective k-algebra homomorphism, as given by
Noether normalization. Let K = k(T1,...,T4), and L = Frac(A), and let g = N /g (f).
By Theorem 5.13, g € k[Ty,...,Ty], and the morphism X — A{ given by ¢ induces a
surjective morphism V (f) — V(g) whose associated ring homomorphism is again finite, so
that dim V(f) = dim V' (g) by Proposition 5.12. But on the other hand dim V(g) =d — 1,
because in the case X = A¢ the theorem follows from the previous proposition. O

As a generalization, we have the following result.

Corollary 5.33. Let X be a k-scheme of finite type, and let f1,..., fr € T(X, Ox) with
V(f1,---, fr) # 0. Then codimx V(f1,..., fr) <.

Proof. We argue by induction on r. Assume the result is true for V(fi,..., fr—1), and
let Z be an irreducible component of the latter scheme. Then f,, restricted to Z, either
vanishes identically, in which case Z is contained in V(fi,..., f-), or it does not vanish
identically, and we can apply Theorem 5.32. O

In the following proposition, we look from a different angle at the fact that in the
situation of the corollary we can have dim V' (fi,..., f,) > dim X — r, namely setting out
with a closed subscheme of codimension 7. It is not in general possible to obtain it as the
set of zeros of r equations. In fact, this is not even possible locally, and the local failure
can be seen as a measure of failure of “smoothness” (cf. the discussion of the notion of
locally complete intersections in Volume II). Globally, the best we can hope for in general
is this:

Proposition 5.34. Let X = Spec A be an integral affine k-scheme of finite type, and
let Z C X be an integral closed subscheme of codimension r > 0 in X. Then there exist
fiy.-oy fr € A such that Z is an irreducible component of V(f1,..., fr)red-

Proof. We can prove this by induction, but the induction has to be set up carefully.
Indeed, let us choose a chain Z = Z, C Z,_1 C --- C Z; of closed irreducible subsets
with codim Z; = i. We show that there exist fi,...,fr € A such that for all i, Z; is
an irreducible component of V(f1,..., f;) (set-theoretically), and that all irreducible
components of V(fi,..., f;) have codimension 4.

For r = 1, take any f; € A which vanishes on Z;. Theorem 5.32 implies that all
irreducible components of V'(f1) have codimension 1, and in particular Z; is one of them.

Now let » > 1. By induction, we find fi,..., fr—1, such that Z,._; is an irreducible
component of V(f1,..., fr—1), and such that the irreducible components Y7,...,Yx of
V(f1,..., fr—1) all have codimension r — 1. By dimension reasons, Z, does not contain
any of the Y;, so for the corresponding prime ideals we have I(Z,.) € I(Y;). Because
the I(Y;) are prime, we obtain that I(Z,) € U;I(Y;), see Proposition B.2 (2). Now let
fr € I(Z:) \ U;I(Y;). Since f, does not vanish completely on any irreducible component
of V(f1,..., fr—1), it follows that V(f1,..., fr) is equi-codimensional of codimension r,
and in particular Z, C V(f1,..., fr) is one of its irreducible components. O

Using Krull’s principal ideal theorem (Proposition B.63) as starting point instead of
Theorem 5.32 the same proofs as in Proposition 5.34 and Corollary 5.33 show also the
following result.
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Proposition 5.35. Let A be a noetherian ring, X = Spec A, let Z C X be a closed
irreducible subspace, and let v > 0 be an integer. Then the following assertions are
equivalent.

(i) codimx Z < r.

(ii) There exist elements fi,...,fr € A such that Z is an irreducible component of

V(fi, -y fr)-

Example 5.36. As an example, we come back to Remark 1.41. Consider A% with
coordinates X, Y, Z, W,andlet C = V(XW -YZ),U = (D(Y)UD(W))NC. So C is the
affine cone over a smooth quadric in P} (at least if char k # 2), and U is the complement
in C of the affine plane D := V(W,Y) C C. The scheme C is integral and Theorem 5.32
shows that dim(C) = 3.

Define a function h € T'(U, 0¢) by gluing the functions X/Y € T(D(Y)NC, O¢) and
ZIW eT(D(W)NC, Oc¢). Since XW =Y Z on C, this can be done. We claim that there
do not exist f, g € I'(C, O¢) such that h = f/g on all of U. (Of course, h has this property
locally on U, as follows from the definition, and as is true for every element of I'(U, O¢).)

Suppose, to the contrary, that h = f/g on U, where g has no zero in U. This means
that V(g) € C\ U = D. All irreducible components of V (g) have dimension 2, so either
V(g)=0,0rV(g) =D.

In the first case we would obtain that h extends to a function on all of C, or in other
words, h, as an element of K(C'), lies in I'(C, 0¢). Since X = Y'h on a dense open subset,
and hence on all of C, this is a contradiction: evaluating at the point (1,0,0,0) gives
1=0.

In the case that V(g) = D we consider the plane D' := V(X,Z) C C. We get
{(0,0,0,0)} = DN D' = V(g) N D', which means that g gives rise to an element in
(D', 0p) = k[W,Y] whose zero set (over an algebraic closure of k) is {(0,0)}. Such
elements do not exist.

(5.10) Dimension for products and for extensions of the base field.

Proposition 5.37. Let X, Y be non-empty k-schemes locally of finite type. Then

dimX X Y =dim X +dimY.

Proof. Let (U;); and (V;); be open affine coverings of X and Y, respectively. Then
the products (U; x Vj); ; is an open affine covering of X x; Y (Corollary 4.19). Thus
by Lemma 5.7 (2) we may assume that X and Y are affine. Define m := dim X and
n := dimY. The Noether normalization theorem gives us finite injective homomor-
phisms k[T4, ..., T, = T(X, Ox) and k[T i1, - - s Tinan] — (Y, Oy ). Taking the tensor
product we obtain a homomorphism

k[Tla"'va+n] - F(X, ﬁX) Ok F(Y, ﬁY) = F(X Xk KﬁXXY)-

This homomorphism is again finite and injective, and the result follows from Corollary 5.17.
O

A similar argument shows:
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Proposition 5.38. Let X be a k-scheme locally of finite type, and let K be a field
extension of k. Then dim X = dim X ®; K.

Proof. Again we may assume that X = Spec A is affine of dimension n > 0 and therefore

we find a finite injective homomorphism k[T, ...,T,] — A. Tensoring with K we obtain
a finite injective homomorphism K|[Ti,...,T,] = A ®; K. This shows that X ®; K has
again dimension n by Corollary 5.17. O

This result can be further refined; see Corollary 5.47 below and Exercise 5.12.

(5.11) Dimension of projective varieties.

The above results all yield analogous statements about projective varieties, and in one
respect the situation even improves in the projective case: As we will see, if X C P}
is a projective variety of dimension r, then its intersection with any non-empty closed
subscheme Vi (fi,..., fr) C P} is non-empty. We start with a lemma.

Lemma 5.39. Let X C P} be an integral closed subscheme and let C(X) C AZH be
the cone over X, i. e., the closure in AZ‘H of its inverse image under the projection
AP\ {0} = PP, Then dim O(X) = dim X + 1.

Proof. This follows from (4.13.2) and Proposition 5.37. O

Proposition 5.40. Let X C P} be an integral closed subscheme of dimension > 0, and
let f € k[Xo,...,X,] be a homogeneous polynomial such that V. (f) # 0 and X € V,.(f).
Then X NVi(f) #0, and X NV, (f) is equi-codimensional of codimension 1 in X.

Proof. With the results of the previous section at our disposal, it is enough to show that
X NVi(f)#0. Let C(X) C AP be the cone over X. Then dim C(X) = dim X +1 > 2.

Now consider V(f) C A}, Since the origin lies in C(X) N V(f), this intersection is
non-empty, and hence by Theorem 5.32 has an irreducible component of dimension at
least 1. Therefore the origin cannot be the only point in C(X) N V(f), and every other
point gives rise to a point in X NV, (f). O

By induction, we obtain the following generalization.

Corollary 5.41. Let X C P} be an integral closed subscheme, and let fi,..., [ €
k[Xo, ..., Xn] be non-constant homogeneous polynomials. Then all irreducible components
of X NVi(f1,..., fr) have codimension <r in X. If dim X > r, then the intersection is
non-empty.

There is also an analogous version of Proposition 5.34; see Exercise 5.15.

Corollary 5.42. Let Z C P} be an integral closed subscheme. Then Z is of codimension
1 if and only if Z = V,.(f) for an irreducible homogeneous polynomial f.

Proof. Apply the reasoning of Proposition 5.31 to C(Z) C AZ“. O

Subschemes of P} of the form Vi (f) for a homogeneous polynomial f € k[Xo, ..., X,]
of degree d > 0 are called hypersurfaces of degree d.
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Corollary 5.43. Letn > 2, and let X = V. (f) C P} be a hypersurface (f non-constant).
Then X s connected.

Proof. 1t is enough to show that any two irreducible components of X intersect. But the
irreducible components are hypersurfaces themselves, so this follows from Corollary 5.41.
O

Schemes over fields and extensions of the base field

We now study the following question. Let k be a field, X a k-scheme and let K be a field
extension of k. We set X := X ®; K. Which properties of X are inherited by Xx and
vice versa?

(5.12) Extension of scalars for schemes over a field.

Let k be a field. We use the following result (which we will prove below, see Theorem 14.38).

Proposition 5.44. Let S be a scheme whose underlying topological space is discrete.
Then any morphism f: X — S of schemes is universally open.

We will use this proposition in the situation where S is a field, and in most cases f
will be of finite type. In this case the proof of the proposition simplifies considerably; for
instance, one can invoke Theorem 14.35.

Corollary 5.45. Let X and Y # () be k-schemes and denote by p: X X, Y — X the
projection.

(1) The morphism p is surjective and universally open.

(2) The map Z — p(Z) is a well-defined surjective map

(5.12.1)  {irreducible components of X X Y} — {irreducible components of X}.

(3) The image p(C) of every connected component C' of X Xi Y is contained in a unique
connected component of X and we obtain a well-defined surjective map

(5.12.2)  {connected components of X x Y} — {connected components of X}.

(4) Assume that X Xy Y has one of the following properties: “irreducible”, “connected”,
“reduced”, “integral”. Then X has the same property.

Proof. The structure morphism Y — Speck is universally open by Proposition 5.44 and
surjective, so the same is true for its base change p.

We prove (2). To see that the map (5.12.1) is well-defined, we need to show that p sends
maximal points (i.e., generic points of irreducible components) in X x; Y to maximal
points in X. This follows from (1) and Lemma 5.10, or more directly from the fact that
the morphism Y — Speck, and hence its base change X x; Y — X are faithfully flat;
compare Lemma 14.9. At this point, we can however avoid using (1) and the notion of
flatness by the following ad hoc argument:
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We may assume that X = Spec A and Y = Spec B are affine. We set C' = A ® B, so
X X, Y =SpecC. Let q C C be a minimal prime ideal, let p = gN A C A be the image
under p. We have to show that p is again minimal. As a prime ideal t in a ring R is minimal
if and only if R, has only one prime ideal, it suffices to show that the homomorphism
A, — Cq between the stalks induces a surjective morphism f: Spec Cq — Spec A,. So let
p’ C A, be a prime ideal. The fiber of f over this point is the spectrum of Cq ® 4, x(p’),
so we must show that the latter ring is # 0. We do this in two steps. First, consider the
ring Cq ®4, Ap/p’ = Cy/p'Cy. This ring clearly is not zero, because it surjects onto x(q).
On the other hand, we can rewrite these rings as

Cq ®a, k(p') =Cq @c C®4 k(p') = Cq ®c B @ K(p'),
Cq®a, Ap/p = Cq@c C®a Ap/p = Cq@c Bk Ap/y,

and since the injectivity of the map A, /p" — Frac(A4,/p’) = k(p’) is preserved by tensor
products over the field k, we are done.

The map is surjective because p is surjective. Assertion (3) holds for every continuous
surjective map.

The assertion of (4) for the properties “irreducible” and “connected” is clear by the
above. To establish the result for reducedness, we may assume that X = Spec A and
Y = Spec B are affine, so X X Y = Spec A ®; B. But the map A — A ®j B is injective
(because B is free as a k-module), so the claim follows. Together we also get (4) for the
property “integral”. O

Corollary 5.46. Let X be a k-scheme and let K D k be a purely inseparable extension.
Then the projection p: Xxg — X is a universal homeomorphism.

Proof. By Corollary 5.45 the projection p is universally open and (universally) surjective.
By Proposition 4.35 it is universally injective. O

Corollary 5.45 may be in particular applied if Y = Spec K for a field extension K of k.
We see that if X has one of the properties listed in (4), X possesses this property as
well. The converse holds only under certain hypotheses, see Corollary 5.56 below.

Corollary 5.47. Let X be a k-scheme locally of finite type, let K be an extension field
of k, let x € X be a closed point, and let T € Xg = X Xgpeck Spec K be a point lying
over . Then

dim ﬁX,x = dim ﬁXK,E-

Proof. Replacing X by an open neighborhood of x, we can remove those irreducible
components of X which do not meet = (cf. Corollary 5.23), so we may assume that
dim X = dim &x ;. Then by Proposition 5.38 we have

dim Ox , = dim X = dim X > dim O, 7.

As T is closed in X, there exists an open neighborhood U C X of T of dimension
dim O, 7. The projection p: Xx — X is open by Corollary 5.45 (1), so U maps onto
an open neighborhood of z, whence dim €x , < dimp(U) < dimU = dim Ox,. 7, where
the second inequality holds by Proposition 5.9. O
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(5.13) Geometric properties of schemes over fields.

In general it may happen that a k-scheme X has some property P (for instance one of
the properties in Corollary 5.45 (4)) but there exist field extensions K of k such that the
base change X does not have P. Therefore we make the following definition.

Definition 5.48. Let P be one of the following properties of a scheme over a field:
“irreducible”, “connected”, “reduced”, or “integral”. We say that a k-scheme X possesses
P geometrically if the K-scheme X possesses P for every field extension K of k.

Thus we say, for example, that X is geometrically irreducible if X is irreducible for all
field extensions K of k. For the next proposition recall that the notion of a separable field
extension is defined for an arbitrary (not necessarily algebraic) extension (Definition B.91).

Proposition 5.49. Let X be a k-scheme. Then the following assertions are equiva-

lent.

(i) X is geometrically reduced.

(ii) For every reduced k-scheme Y the product X X Y is reduced.

(iii) X is reduced and for every mazimal point 1 of X the residue field k(n) is a separable
extension of k.

(iv) There exists a perfect extension Q of k such that Xq is reduced.

(v) For every finite purely inseparable extension K of k, Xk is reduced.

Proof. We may assume that X = Spec A is affine, where A is a k-algebra. By Corol-
lary 5.45 (4) each assertion implies that X is reduced. Thus we may assume that A is
reduced. Let (;);cr be the family of maximal points of X. As A is reduced, the canonical
homomorphism

(5.13.1) A= ] xm)
iel
is injective and x(n;) is a localization of A for all ¢ € I. Let L be a field extension of k. If

A ®y, L is reduced, then its localization x(1;) ® L is reduced. Conversely, we have an
injective homomorphism

(5.13.2) A®y L — <H ﬁ(m)> @k L [[(5(n:) @k L).

icl el

Therefore A ®y, L is reduced if and only if k(n;) ® L is reduced for all ¢ € I. Thus by
Proposition B.97 assertion (iii) is equivalent to (i), to (iv), and to (v).

The implication “(ii) = (i)” is trivial. Thus it suffices to show that (iii) implies (ii).
For this we may assume that Y = Spec B is affine. Let (L;);cs be the family of residue
fields of maximal points of Y. We obtain an injective homomorphism

(5.13.3) Aep [ [[Li ] = (Hn(m)> @ [ [] L ‘—>H r(ni) @x Lj)

j€J i€l je€J

Thus first using (5.13.1) for B and then (5.13.3) shows that A ®; B is a k-subalgebra of
a product of rings which are reduced (again by Proposition B.97) because all x(n;) are
separable over k. O
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Proposition 5.50. Let X be a k-scheme. Then the following assertions are equiva-
lent.

(i) X is geometrically irreducible.

(ii) For every irreducible k-scheme Y the product X x Y is irreducible.

(iil) X is @rreducible and if n is the generic point of X, then k is separably closed in k(7).
(iv) There exists a separably closed extension Q2 of k such that Xq is irreducible.

(v) For every finite separable extension K of k, Xk is irreducible.

Proof. By Corollary 5.45 (4) each assertion implies that X is irreducible. Thus we may
assume that X is irreducible. Let n be its generic point. For every k-scheme Z the
projection p: X Xj Z — X is open (Corollary 5.45) and thus X xj Z is irreducible if
and only if p~1(n) = k(n) @ Z is irreducible (Proposition 3.24). Applying this remark to
Z = Spec L, where L is an arbitrary (resp. a separably closed, resp. a finite separable)
extension, we see that (i), (iii), (iv), and (v) are equivalent by Proposition B.101. It
remains to show that (iii) implies that k(n) ®; Y is irreducible for every irreducible
k-scheme Y. But again the projection ¢: x(n) ® Y — Y is open and Proposition 3.24
shows that k(n) @ Y is irreducible if and only if k(1) ®j () is irreducible, where 6 is
the generic point of Y. This again follows from Proposition B.101. O

Combining Proposition 5.49 and Proposition 5.50 and using Corollary 5.45 we obtain:

Proposition 5.51. Let X be a k-scheme. Then the following assertions are equiva-

lent.

(i) X is geometrically integral.

(ii) For every integral k-scheme Y the product X XY is integral.

(iii) X is integral and if n is the generic point of X, then k is algebraically closed in k(n)
and k(n) is separable over k.

(iv) There exists an algebraically closed extension Q of k such that Xq is integral.

(v) For every finite extension K of k, Xk is integral.

To characterize the property “geometrically connected” we recall the following purely
topological fact (see, e.g., [BouGT] I, 11.3, Prop. 7).

Remark 5.52. Let f: X — Y be a continuous open and surjective map of topological
spaces. If Y is connected and if for all y € Y the fiber f~!(y) is connected, then X is
connected.

Proposition 5.53. Let X be a k-scheme. Then the following assertions are equiva-
lent.
(i) X is geometrically connected.
(ii) For every connected k-scheme Y the product X XY is connected.
(iii) There exists a separably closed extension Q of k such that Xgq is connected.
If X is quasi-compact, these assertions are also equivalent to
(iv) For every finite separable extension K of k, X is connected.

We will prove that (iv) implies the other assertions only under the stronger hypothesis
that X is of finite type over k. The general case can be proved using the technique of
schemes over inductive limits of rings explained in Chapter 10 (see Exercise 10.27 for the
idea of a proof if X is quasi-compact and quasi-separated, or [EGAIV] (8.4.5) in general).
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Proof. The implications “(ii) = (i) = (iii)” and “(i) = (iv)” are clear. Let us prove
that (i) implies (ii). Consider the projection ¢: X XY — Y which is open and surjective
by Corollary 5.45. By Remark 5.52 it suffices to show ¢~ !(y) = X ® x(y) is connected
for all y € Y. But this holds by hypothesis.

We will show that (iii) implies (i). Let K be an extension of k and let L be a field
containing K and . As the canonical morphism X; — X is surjective, it suffices
to show that X is connected. Consider the canonical morphism p: X; — X which
is open and surjective. Thus again it suffices to show that for all x € Xq the fiber
p~1(x) = Spec(k(z) ®q L) is connected. But as  is separably closed in L all fibers are
even irreducible by Proposition 5.50.

It remains to show that (iv) implies (iii) if X is of finite type over k. Let ) be a separable
closure of k. Assume that X is the union of two closed non-empty disjoint subsets Y and
Z. Let (U;); be a finite affine covering of X. Then U; = Spec A;, where A; is a finitely
generated k-algebra. Thus Y N (U; ® Q) = V(a;) for an ideal a; C A; ®j,  generated by
finitely many elements f;;. Similarly we find elements g;; defining Z N (U; ®% Q) in U;. Let
k' be a finite subextension of €2 such that f;;, gy € A; Q@ k' for all ¢,7,1. Let Y' C X}
be the subscheme such that Y/ N (U; ® k') is defined for all i by the ideal generated by
the f;; in A; ® k. Similarly we define Z' C Xj/. Then, if r: Xq — X} is the canonical
surjective morphism, we have 7~1(Y’) =Y and r—1(Z’) = Z. This shows that the closed
subsets Y’ and Z’ are non-empty and disjoint. Therefore Xy is not connected. O

Exercise 5.23 shows that if X is a connected k-scheme and k is separably closed in x(x)
for some point z € X (e.g., if X (k) # @), then X is already geometrically connected.

Corollary 5.54. Let X be a k-scheme and let K be an algebraically closed extension of
k. Then X is geometrically irreducible (resp. geometrically connected, resp. geometrically
reduced, resp. geometrically integral) if and only if Xk is irreducible (resp. connected,
resp. reduced, resp. integral).

Remark 5.55. The corollary shows that for a k-scheme X the number of irreducible
(resp. connected) components of X is independent of the choice of the algebraically closed
extension K of k. This number is called the geometric number of irreducible components
(resp. the geometric number of connected components).

Corollary 5.56. Let X be a k-scheme.

(1) If X is reduced and K D k is a separable extension, then Xy is reduced.

(2) If X is irreducible (resp. connected) and K 2D k is a field extension such that k is
separably closed in K, then X is irreducible (resp. connected).

(3) If X is integral and K D k is a separable field extension such that k is algebraically
closed in K, then X is integral.

Proof. (1). The k-scheme Spec K is geometrically reduced and the assertion follows from
Proposition 5.49.

(2). The projection p: X — X is open and surjective by Corollary 5.45. As X is
irreducible (resp. connected), the same holds for X if we can show that for all x € X
the fiber p~!(z) is irreducible (resp. connected), see Proposition 3.24 (resp. Remark 5.52).
But Spec K — Spec k is geometrically irreducible and therefore p~1(z) = Spec k(z) @) K
is irreducible (and in particular connected) for all 2 by Proposition 5.50.

(3). This follows from (1) and (2). O
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Corollary 5.57. Let k be a perfect field (e.g., if char(k) = 0). Then any reduced k-scheme
is geometrically reduced.

Intersections of plane curves

As an example we study hypersurfaces in Pi, i.e., curves in the projective plane. The main
result is the Theorem of Bézout 5.61. It says that — roughly speaking — two curves in P%
given by equations of degree d and e, respectively, meet in ed points. Intersections points
have to be “counted with multiplicity” and thus we first define intersection numbers for
plane curves to motivate this and to make this precise. The proof of Bézout’s theorem given
here is elementary. In Volume II we will study so-called Hilbert functions of projective
schemes and deduce a generalization of Bézout’s theorem in higher dimensions.

(5.14) Intersection numbers of plane curves.

Let k be a field.

Definition 5.58. A plane curve is a closed subscheme C' of P? that is of the form Vi(f),
where 0 # f € k[X,Y,T] is a non-constant homogeneous polynomial. The degree of [ is
called the degree of C.

The degree of a plane curve C' C P may depend on the embedding (rather than only
on the isomorphism class of the k-scheme C). In Volume IT we will see that if the degree
of C is at least 3, it depends only on the isomorphism class of the k-scheme C (more
precisely on the arithmetic genus of C'). Compare also Section (14.31).

By Proposition 5.40 a plane curve is equidimensional of dimension 1. Let f = f{* --- fer
be the decomposition of f into irreducible factors (e; > 1 and (f;) # (f;) for i # j).
Then V4 (fi*),i=1,...,r, are the irreducible components of V4 (f). The scheme Vi (f)
is reduced if and only if rad((f)) = (f), that is, if and only if e; = 1 for all 4.

We are interested in the (schematic) intersection of two plane curves

Vi(f)NVi(g) = Vi(f.9) C P
We start with the following lemma.

Lemma 5.59. Let 0 # f,g € k[X,Y,T] be non-constant homogeneous polynomials. Then
dim V. (f,g9) =0 if and only if f and g have no common factor.

Proof. As V. (f) and V,(g) are both of dimension 1, we have dim(V,(f,g)) < 1. By
Proposition 5.40 we know that V. (f, g) # 0. Now a homogeneous polynomial h of positive
degree is a common factor of f and g if and only if the intersection Vi (f,g) contains
the plane curve V, (h). Therefore the existence of such an h implies dim(V,.(f,g)) = 1.
Conversely, if dim V. (f,g) = 1, Corollary 5.42 shows that there exists a closed integral
subscheme Z C V. (f, g) of the form Z = V, (h) for an irreducible factor h of f and g. O
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Thus if f and g do not have a common factor, then Proposition 5.20 implies that
Z :=V,(f,g) is the spectrum of a finite-dimensional k-algebra, consists of finitely many
points 21, ..., 2y, and as a scheme it is the disjoint union [[}"_; Spec 0% .., where O .,
is a finite-dimensional local k-algebra. One or both of the following phenomena may
occur:

(1) Oz, is non-reduced.

(2) The residue field of 0z ., is a finite nontrivial extension of k.

The geometric interpretation of (1) is that V. (f) and V4 (g) do not intersect “transversally”
in z;. We will give a precise definition of transversal intersection in Volume II (see also
Exercise 6.7). Here we illustrate this remark just with two examples:

Let f=YT —X%and g=Y. Then (0:0:1) € Z(k) defines a point z € V. (f,g) and
this is the only point of Z. By dehomogenizing with respect to T' we have

[(Z,07) = Oz, = k[U,V]/(V—-U?*V) = k[U]/(U?).

This agrees with the picture that V. (f) and V4 (g) are tangent of order 2 to each other.
Note that we have dimy(T'(Z, 0z)) = 2.

As a second example we choose f = Y?T — X?(X +T)and g =Y. As V. (T)N Z = 0,
we consider Z = Z N D4 (T), that is we dehomogenize again by 7. Then

L(Z,07) = kU]/(U*(U +1)) = k[U)/(U?) x k[U]/(U +1).

Again this agrees with our picture that V, (g) meets Vo (f) transversally in (—1:0:1)
(corresponding to dimy k[U]/(U +1) = 1) and meets two “branches” of Vi (f)in (0:0:1)
(corresponding to dimy, k[U]/(U?) = 2). In this case we have dim(T'(Z, 0z)) = 3.

To illustrate (2) consider k =R, f = X? 4+ Y2+ T2 and g =Y. Then V,(f) and hence
Z has no R-valued points, but Z has the C-valued points (¢ : 0: 1) and (—i: 0: 1), where
1 is a square root of —1. Both points lie in the same orbit with respect to the action of the
Galois group Gal(C/R), and therefore define a single closed point z of Z (Proposition 5.4).
Dehomogenizing with respect to T' we find I'(Z, 0z) = 0z, 2 R[U]/(U? +1) 2 C and

These examples make the following definition plausible.

Definition 5.60. Let C, D C IP’% be two plane curves such that Z := CN D is a k-scheme
of dimension 0. Then we call i(C, D) := dim(T'(Z, Oz)) the intersection number of C'
and D. For z € Z we call i,(C, D) := dimy (07 ,) the intersection number of C' and D at
z.

As explained above, we have i(C, D) = _onp i-(C, D).

(5.15) Bézout’s theorem.

The aim of the section is to show the following theorem.

Theorem 5.61. (Theorem of Bézout) Let k be a field. Let C = Vi (f) and D =V, (g) be
plane curves in ]P’i given by polynomials without a common factor. Then

i(C, D) = (deg f)(deg g).

In particular, the intersection C N D is non-empty and consists of a finite number of
closed points.
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The proof will occupy the rest of the section. We start with an easy remark. Let R be
a factorial ring and let f, g € R be elements that do not have a common divisor. Then for
a,b € R we have

(5.15.1) af +bg=0& 3t € R:a=gt, b=—ft.

Indeed, the existence of ¢ is clearly sufficient. Conversely let af + bg = 0. As f and g do
not have a common divisor, g divides a and there exists ¢t € R such that a = gt. Then
af + bg = 0 shows that b = — ft.

The following easy lemma shows that we may replace k& by some field extension.

Lemma 5.62. Let K be a field extension of k and set C'x := C® K and D = D®y K.
Then Cx = Vi (fk) C P%, where fx is the polynomial f considered as a homogeneous
polynomial with coefficients in K. Similarly, Dix =V, (gx) C P%. We have

i(C, D) = i(Cx, Dx).

Proof. Everything but the last equality is clear. We have
Cxk N Dk :=Ck Xp2, Di = (C Xp2 D)erK=(CnNnD)®y K=(CND)k.

Setting A :=I'(C N D, Ocnp) we therefore have A ®y K =T'((C N D)k, Ocrp),) and
hence
i(CK,DK) :dlmK(A R K) :dimkA:i(C,D). O

To prove Bézout’s theorem we may therefore assume that k is algebraically closed. As
Z := CN D is finite, we find a hyperplane (= line) L in P? such that LN Z = ). Thus we
may choose coordinates X, Y, and T on P? such that Z NV, (T) = 0.

We set S := k[X,Y,T] and denote the degrees of f,g € S by n :=deg(f), m := deg(g).
Then S = P, Sq is a graded k-algebra and a := (f, g) is an ideal of S which is generated
by homogeneous elements. Therefore B := S/a is graded as well, that is B = € By. Note
that dimy, Sy = (‘%2). In particular By is a finite-dimensional k-vector space.

Lemma 5.63. For d > n+ m we have dimy By = nm.

Proof. We claim that the sequence
(5.15.2) 0= Si—n-m LN Sd—n ® Sa—m LN Sq— Bs—0

with p(s) = (gs,—fs) and v(s',s”) = fs' + gs’ is exact. Clearly p is injective and
Coker(v) = By. Moreover we have Im(u) = Ker(v) by (5.15.1) and this shows our claim.

Thus we have dimg By = dimy Sy — dimy Sy_,, — dimy Sg_,, + dimy Sq_n_,» and an
easy calculation using dimy, Sq = (d + 2)(d + 1)/2 proves the lemma. O

In the language that will be introduced in Volume II this lemma shows that the Hilbert
polynomial of Z is constant with absolute coefficient nm.

Proof. (Bézout’s theorem) Let

d: S=k[X,Y,T] - k[X,Y], h—h=h(X,Y,1),
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be the dehomogenization map with respect to T. As Z C D, (T) we have Z = Spec A
with A = k[X,Y]/(f,§). Then the map ® induces a surjective k-algebra homomorphism
B = S/(f,g) — A and in particular a k-linear map vg: By — A. To prove Bézout’s
theorem we have to show that dim; A = nm. Thus in view of the above Lemma it suffices
to show:

Claim: The k-linear map vy is an isomorphism for d > n + m.

(i). We first show that the multiplication with 7" on B is injective. For h € S we
denote the image of h in k[X,Y,T]/(T) by hg. Now let h € S such that Th € (f,g),
that is, Th = af + bg. We have to show that h € (f,g). As V. .(f,g9) NV (T) = 0, the
images fo and go are still without a common divisor. Thus (5.15.1) shows that there
exists tg € k[X,Y,T]/(T) such that ag = goto and by = — foto. Lifting ¢t to an element
t € k[X,Y,T) we find a = gt + Ta’ and b = — ft + Tb". This implies h =a'f +b'g € (f,9).

Note that (i) together with Lemma 5.63 shows that the multiplication with T induces
an isomorphism By = By, for d > n + m. o

(ii). We now show that vy is injective. Let h € Sy such that ®(h) = af + bg for
abe k[X,Y]. Let a,b € Sy be the homogenization of a and b with respect to T for some
d' > d. Then we find T®h = TPaf + T7bg € (f,g). By (i) we have h € (f,g) and this
shows the injectivity of vg.

(7). Tt remains to show that vy is surjective. Let h € A be arbitrary. Lifting h
to k[X,Y] and homogenization with respect to T yields an element h € S.. We may
assume e > d. Let h € B, be its image. As remarked above, multiplication by 7°~¢ is an
isomorphism By — B., so there exists an element 1/ € By such that T¢ %h’ = h. Then
we have vg(R') = h and vy is surjective. O

Exercises

Exercise 5.10. Let p be a prime number, ¢ = p" for an integer r» > 1, and let IF, be a
finite field with ¢ elements. Describe A]%-q.

Exercise 5.2. Let k be a field, kP a separable closure, I' := Gal(k*P /k), and let X be
a k-scheme locally of finite type. Show that for all z € X (k%¢P) the I'-orbit of x in X (k5°P)
is finite.

Remark: The finiteness of the I'-orbits is equivalent to the continuity of the action

T x X (K5P) = X (k*P),

where T is endowed with its profinite topology and X (k*P) is endowed with the discrete
topology.

Exercise 5.30. Let A be a discrete valuation ring and let Y = Spec A. Let K be
the field of fractions of A and k its residue class field. The canonical homomorphisms
i: A — K and m: A — k yield a ring homomorphism ¢: A — K x k, a — (i(a),7(a)).
Let X = Spec(K x k) and let f: X — Y be the morphism of schemes corresponding to ¢.

Prove that K x k is an A-algebra of finite type, that f is bijective, and that dim(X) =0
and dim(Y) = 1.
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Exercise 5.4. Let X be a locally noetherian scheme and let z € X a point such that
{z} is locally closed in X. Show that dim {z} < 1.
Hint: Use the lemma of Artin-Tate (Corollary B.65).

Exercise 5.5. Let X be a locally noetherian scheme. Show that any closed subset Z
of X contains a point that is closed in X. Deduce that for every z € X there exists a
specialization of x that is closed in X.

Hint: Show first that there exists a point w € Z such that {w} is locally closed in X.
Then use Exercise 5.4.

Exercise 5.6. Let f: X — Y be a morphism of schemes.
(a) Show that if f is closed and surjective, then we have dim X > dimY.
(b) Show that if f is injective, then we have dim X < dimY'.

Exercise 5.7. Let A be a discrete valuation ring with uniformizing element 7. Let
X = Spec A[T]. Define ideals m; = (7T — 1) and my = (T, 7) of A[T]. Show that these
ideals are maximal in A[T]. In particular Z; := V(m;) has dimension 0. Show that
codimyx Z; = 1 and codimyx Z5 = 2.

Exercise 5.8¢). Let X be an equidimensional scheme of dimension d of finite type over a

field.

(a) Let Zgy € -+ € Zg, € X be a chain of closed integral subschemes Z;, such that
dim Z;4, = d;. Show that this chain can be completed to a chain Zyp C Z; C --- C Zy
of closed integral subschemes of X such that dim Z; = j for all j =0,...,d.

(b) For any two closed irreducible subsets Y C Z C X show that

codimyx Y = codimz Y + codimx Z.

Exercise 5.9¢. Give an example of a non-irreducible scheme X of finite type over a field
k and an irreducible closed subset Y of X such that codimy Y +dimY < dim X.

Exercise 5.10. Let X = A? with coordinates T, U. Show that Z = V(TU,T?) is closed
irreducible of codimension 1 in X but that there is no f € k[T, U] such that Z = V(f).

Exercise 5.11. Let k be a field with char(k) # 2, n > 2 an integer, and let SO,, ;, be the

group scheme over k such that SO, x(R) = { A € GL,(R) ; ‘AA =1, det(A) =1} for

all k-algebras R. Let s0,, ; be the k-scheme such that so, ,(R) = { A € M, (R) ; 'A =

—A}

(a) Show that SO,, j is a scheme of finite type over k and that so,,

(b) Show that A ~ (I,,+A)~ (I, — A) defines an isomorphism of an open dense subscheme
of s0,, , onto an open dense subscheme of SO,, ;.

(c) Deduce that SO,, j, is irreducible and of dimension n(n —1)/2.

Remark: so, (k) is the tangent space at I,, € SO,,(k); see Exercise 6.5.

~ Az(n—l)/Q.

Exercise 5.12. Let X be a k-scheme locally of finite type, let Z C X be an irreducible
component. Let K D k be a field extension, let p: X ®; K — X be the projection and let
7' C X ® K be an irreducible component such that p(Z’) = Z. Then dim Z’ = dim Z.

Exercise 5.13. Let k be a field, A = k[a, b, ¢,d]/(ad — bc), X = Spec A and Z := V(a,b).
Show that X is an integral scheme, Z is a closed integral subscheme of codimension 1,
that Z is an irreducible component of V(a), and that Z itself cannot be written as V'(f)
for some f € A.
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Exercise 5.14. Let k be a field, n > 0 an integer, and X a closed reduced subscheme of
A7, Show that there exist fi,..., fn € k[T1,...,T,] such that X = V(f1,..., fu)red-
Hint: The following steps show the following more general result.
(*) Let R be a noetherian ring of finite dimension d and let a C R[T] be an ideal.
Then there exist fi,..., fqr1 € a such that rad(a) = rad(f1,..., fa+1)-

The result can be shown by induction on d along the following steps.

(a) Show that it suffices to prove (*) if R is reduced. From now on let R be reduced.

(b) Let S be the multiplicative set of regular elements in R and K := FracR = S™'R.
Show that KT is a finite product of principal ideal domains and deduce that every
ideal in K[T7] is a principal ideal.

(c) Let f € a be a generator of S~'a and g1, ..., g; generators of a. Show that there
exists a regular element r € R, h; € R[T] and integers n; > 1 such that rg;” =h;f.
Show that V(a) C V(f) CV(r)UV(a) (as sets). Deduce the result if r is a unit.

(d) Apply the induction hypothesis on R/(r).

Exercise 5.15.

(a) Let X C P} be a closed integral subscheme, where k is a field. Let Y be a non-
empty integral closed subscheme of X, with codimyx Y = r. Show that there exist
non-constant homogeneous polynomials f1,..., f» € k[Xy,..., X,] such that Y is an
irreducible component of (X NV, (f1,..., fr))red-

(b) Let X be as in part (a), and let r = dim X + 1. Prove that there exist non-constant
homogeneous polynomials fi,..., f. € k[Xo, ..., X,] such that X NV, (f1,..., f.) is
empty.

Exercise 5.16. Let & be a field, char(k) # 2, let a € k be an element that is not a square
in k, and X = Speck[T,U]/(T? — aU?).

(a) Show that X is integral, geometrically reduced and geometrically connected.

(b) Show that X is not geometrically integral.

Exercise 5.17. Let k be a field, let X and Y be k-schemes locally of finite type, and let
f,9: X =Y be two k-morphisms. Assume that X is geometrically reduced over k. Show
that f = g if and only if there exists an algebraically closed extension €2 of k such that f
and ¢ induce the same map X () — Y%(92) on Q-valued points.

Exercise 5.180). Let X be a scheme over a field k. Show that X is geometrically
connected (resp. geometrically irreducible) if and only if X,eq is.

Exercise 5.19. Let k be a field and let X and Y be k-schemes. If X and Y are geomet-
rically reduced (resp. geometrically irreducible, resp. geometrically integral, resp. geomet-
rically connected), then show that X xj Y has the same property.

Exercise 5.20. Let k be a field, X a k-scheme, z € X.
(a) Show that the following assertions are equivalent.
(i) For every extension K of k and for every point &’ € X over x the local ring
Oxy 2 1s reduced.
(ii) Spec Ox , is a geometrically reduced k-scheme.
(iii) There exists a perfect extension €2 and a point ' € Xq over x such that Ox,, ,
is reduced.
(iv) Ox 4 is reduced and for every irreducible component Z of X containing x the
residue field k(nz) in the generic point of Z is a separable extension k.
(v) For every finite purely inseparable extension &’ of k the local ring O, ,+ in the
unique point z’ over z is reduced.
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If these equivalent conditions are satisfied, X is called geometrically reduced at x.

(b) Show that if X is locally noetherian, then the conditions in (a) are equivalent to the
condition that there exists an open neighborhood U of x such that U is geometrically
reduced over k.

Exercise 5.21. Let k be a field, X a locally noetherian k-scheme, x € X. Then X is
called geometrically integral at x if for every extension K of k and for every point 2’ € X
over z the local ring Ox, , is an integral domain. If X is geometrically integral at all
points © € X, we call X geometrically locally integral. Now assume that X is of finite
type over k and show that the following assertions are equivalent.

(i) X is geometrically locally integral.

(ii) X is geometrically reduced and the geometric number of irreducible components is

equal to the geometric number of connected components.

Exercise 5.22. Let A — B be an integral ring homomorphism. Show that the corre-
sponding morphism of schemes Spec B — Spec A is universally closed. Deduce that if K
is an algebraic extension of a field k, then the projection X — X is universally open,
universally closed, and surjective.

Exercise 5.23. Let k be a field and let X be a connected k-scheme.

(a) Assume that there exists a non-empty geometrically connected k-scheme Y and a
k-morphism Y — X. Show that X is geometrically connected.
Hint: Use Exercise 5.22 to show that Xo — X is open, closed, and surjective for
a separable closure Q2 of k and show that there are no nontrivial open and closed
subsets of Xgq.

(b) Assume that there exists a point 2 € X such that k is separably closed in k(x) (e.g.,
if X (k) # 0). Show that X is geometrically connected.
Hint: Use that Spec k() is a geometrically irreducible k-scheme.
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6  Local Properties of Schemes

Contents

The tangent space

Smooth morphisms
— Regular schemes

— Normal schemes

Consider a scheme X of finite type over an algebraically closed field k. If X is reduced then
“locally” around almost all closed points X looks like affine space. Compare Figure 1.1:
zooming in sufficiently, this is true for the pictured curve at all points except for the
point where it self-intersects. However, while in differential geometry this can be used as
the definition of a manifold, the Zariski topology is too coarse to capture appropriately
what should be meant by “local”. Instead, one should look at whether X can be “well
approximated by a linear space”.

To make this precise, we define the (absolute) tangent space T, X of a scheme X at
a point x. If X is embedded in an affine or projective space, then we can imagine 7, X
as the linear subspace generated by all tangents to X in x. Although the definition of
T.(X) is purely algebraic, it can be described similarly as in differential geometry: If
X is (locally around z) the vanishing scheme of equations fi,..., f, in A}, then T, (X)
is (after possibly extending the base field) the kernel of the Jacobi-matrix defined by
fiy..., fr. Alternatively, T,,(X) can also be described as space of “derivatives of small
curves through the point #”. A locally noetherian scheme X where dim7,(X) = dim Ox ,
is called regular.

If X is locally at = the vanishing scheme of equations fi,..., fr in A} (r < n) such
that the rank of the Jacobi matrix of the f; at = is r, then we call X smooth at x over k.
The notion of smoothness is a relative one and depends on the base field k. In fact we
will define “smoothness” for an arbitrary morphism of schemes. It is connected to the
notion of relative tangent space T, (X/k) which is introduced in Section (6.6) and which
behaves better under base change and in families. On the other hand we will see, that its
calculation can be reduced to the calculation of an absolute tangent space. In this chapter
we will mainly consider smooth schemes over a field. General smooth morphisms will be
studied in Volume II.

In Theorem 6.28 we will link the notions of regularity and smoothness. In particular
we will see that they are equivalent if & is algebraically closed (or, more generally, if & is
perfect).

For singular, i.e., (possibly) non-smooth, schemes there is a whole arsenal of notions to
describe their singularities. Maybe the most important one is normality. It corresponds
to the algebraic concept of an integrally closed ring and we will study it at the end of
the chapter. Its importance stems from the fact, that for all (integral) schemes there is a
rather simple process to “normalize” these schemes. This will be studied in Chapter 12.

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2020
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Mathematik — Master, https://doi.org/10.1007/978-3-658-30733-2_7
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The tangent space

(6.1) Formal derivatives.

If R is aring, and f = Z?:o a;T* € R[T) is a polynomial, we define the formal derivative

d
_— = E iaiT’_l.
i=1

If f € R[Ty,...,T,], we define the “partial derivative” 0f/9T; by viewing the polynomial
ring as R[Tl, f ., T,,][T;] and applying the previous definition with the ground ring
R[Ty,....T;,....T ] Then 0/0T;: R|T] — RI[T] is an R-derivation of R[T], i.e. 3/0T; is
R-linear and

ofg _ .09  Of
or; ~ ‘ot " Yo,
for all f,g € R[T] (“Leibniz rule”).

Let S C R[T},...,T,] be a multiplicative set. Then we can extend the definition to
the localization S™'R[TY,...,T,] (using the customary rules for derivatives of fractions).
In particular, if R = k is a field, we can take partial formal derivatives of elements of
k(Ty,...,T,). An analogous definition applies to formal power series instead of polynomi-

als.

Lemma 6.1. Let R be a ring, and let f € R[Ty,...,T,] be homogeneous of degree d.
Then the partial derivatives satisfy the Euler relation

Proof. Because of linearity, it is enough to check the statement when f is a monomial,
and that is easy. O

(6.2) Zariski’s definition of the tangent space.

Let X be a scheme. We want to define the tangent space of X in a point z; it is a
k(x)-vector space. Heuristically, thinking of X as embedded in some ambient space, we
would like to obtain the “vector space generated by all lines tangent to X in x”. This
heuristic is not a good starting point, though, for instance because the tangent space
would possibly depend on the embedding. It will turn out however that the notion we
define fits well into this picture, if X is embedded in an affine space. Let m, denote the
maximal ideal of the local ring Ox ;.

Definition 6.2. Let X be a scheme, and let x € X. Then m,/m2 is a vector space over
Ox »/my = k(x), and the (Zariski, or absolute) tangent space of X at x is by definition
the dual vector space

T.X = (mx/mi)*
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Let us point out right away that this notion behaves best if X is a scheme over a field
k, and x € X is a point with residue field k, which is the setting which we will see almost
exclusively below. On the other hand, if for instance 7 is the generic point of any integral
scheme X, we have m, = 0, so the K (X)-vector space (m,/m2)* does not contain any
information about X.

In Section (6.6) we will introduce the notion of relative tangent space, which behaves
better for non-rational points and in families. But we will also see how to obtain the
relative tangent space from an absolute tangent space. For now, we are concerned only
with the absolute tangent space in the sense above, and usually simply call it the tangent
space of X at x.

Remark 6.3. Let X be a scheme and z € X.

(1) Nakayama’s lemma shows that if m, is finitely generated, dim,,) 7 X is the cardi-
nality of any minimal generating set of m,. In particular dim,,) T, X is finite if X is
locally noetherian.

(2) If U C X is an open neighborhood of z, we clearly have T, X = T, U.

(3) The tangent space is functorial in (X, ) in the following sense. Let f: X — Y be
a morphism of schemes and let z € X be a point such that dim(s()) Trw)Y is
finite. Then the local homomorphism f£: Oy, f(z) = Ox ., induces a (zr)-linear map
mf(w)/m?(w) Qu(f(a)) (x) = my/m2. If the extension (x)/k(f(x)) is finite or Ty, Y
is a finite-dimensional k(f(z))-vector space, then dualizing we obtain an induced map
on tangent spaces

(6.2.1) dfe: To X = Ti2)Y ®@p(f(a)) 5(2).

This construction is compatible with composition of morphisms in the obvious way.

(6.3) Tangent spaces of affine schemes over a field.

Let us investigate (and at the same time motivate) the definition of the tangent space in
detail in the case where X is a scheme over a field k, and x is a k-valued point of X. We
start with the situation for affine spaces.

Example 6.4. Let k be a field. We first compute the tangent spaces of k-valued points
of A. So let x € A} (k) = k", say = (21,...,25). The maximal ideal in k[T, ..., T,]
corresponding to x is (71 — 21,...,Ty — Z,). The elements T; — x; yield a basis of the
k-vector space m,/m2. We can describe the resulting isomorphism k™ = T,,A? explicitly
by

_ g
2
(V1,0 .y 0,) (mz/mm—>k, g E vlaTZ(x))

Now let fi,..., fr € K[T1,...,T,], and let f: A7 — A} be the map given by the f;. Let
= (x1,...,2,) € k" = A™(k). Then the induced map df,: T,A} — Ty)A" is given,
using the identifications of the tangent spaces with k" and k", resp., as above, by the

matrix
@
8Tj i=1,...,r, '
j=1,..., n
This is checked easily by using “Taylor expansions” of the f; around = = (x1,...,2,),

i. e., by writing the f; as polynomials in T — x;.
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Whenever we are given polynomials f1,..., f,. € R[T1,...,T,] over some ring R, we
denote by
Ofi
(6.3.1) I fr = € Myxn(R[Th,...,Ty))
oT; i,

the Jacobian matrixz of the f;.

Example 6.5. As in the previous example, let k be a field. Let X =V (f1,..., fr) C A}
be a closed subscheme, f; € k[T},...,T,]. Fix a k-valued point = of X (in other words, a
(closed) point with residue field x(x) = k). The natural morphisms X < A} — A7 (the
second one being given by the f;) yield homomorphisms

Our f(z) = Orpx = Onp o/ (frs- . fr) = Ox

and taking the maximal ideals of these local rings modulo their squares, and dualizing,
we get an exact sequence

of k-vector spaces. Together with the computation in the previous example, we see that
we can identify 7, X with the subspace

T, X =Ker(Jy, . 5.(x)) CTAL = k™.

This is the description which is customarily used in differential geometry for submani-
folds of affine space.

If X is any scheme locally of finite type over k and x is a k-valued point of X, we can
choose an open affine neighborhood U = Spec A of . Then U = V (f1,..., f.) for suitable
polynomials f; € k[Ty,...,T,] and we can compute T, X = T, U as above.

Example 6.6. The one basic piece of computation which is still missing is computing
the map induced on tangent spaces by a morphism given by rational polynomials.

Again, let k be a field. Let f1,..., fr,01,...,9- € k[T1,...,T,]. Consider the open
subset X = D(g1 ---g,) € A}, and consider the morphism h: X — A} given on R-valued
points, R a k-algebra, by

o) <f1<x> m)) |

gi(z)”" gr(x)

For z € X (k), it induces a homomorphism dh, : k" = T, A} = T, X — Ty ,)Aj, = k. To
compute it, we identify X with the closed subset V(g1 Ty11 — 1,..., g Tnyr — 1) C AZ”.
We can then decompose h as X — AP™" — A7 where the second morphism is given by

(@1 Tir) = L@ @0) Tt (@1, T0) )

Taking the tangent space is compatible with composition of morphisms, and it is a
straightforward computation to show that dh, is given by the (r x n)-matrix

(Far ).,
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(6.4) Tangent space as set of k[¢]-valued points.

Often k-schemes are not defined via equations but by their R-valued points for k-algebras
R. Then the following interpretation of the tangent space in functorial terms is often
helpful (see e.g., Exercise 6.4 or Section (8.9)). It is the algebraic version of the definition
of the tangent spaces in differential geometry for abstract manifolds as the space of
derivatives of small curves through the point z.

We start with the definition of the algebraic version of an “infinitesimally small curve”.
For a field k, we denote the ring k[T]/(T?) by k[e], where ¢ denotes the residue class of T,
i. e., €2 = 0. This ring is called the ring of dual numbers (over k). We think of Spec k[¢]
as an infinitesimal small subcurve of A}C; see Example 2.40.

Now let X be a k-scheme. Recall the notation X (k[e]) = Homy(Spec k[e], X ). Given
a k-valued point x of X, we denote by X (k[e]), C X (k[e]) the preimage of 2 under the
projection X (k[e]) — X (k).

If f: Speckle] — X is an element of X (k[¢]),, then the induced morphism Ox , — k[e]
maps m, into ek = k, and we obtain a map m,/m2 — k, i. e., an element of T, X.

Proposition 6.7. Let X be a k-scheme, and x € X (k). The map
constructed above is a bijection which is functorial in (X, x).

Proof. Take a homomorphism ¢: m,/m2 — k, and consider the induced map m, — €k,
m — et(m mod m?). Since by assumption O, /m, = k, we can extend this map in a
unique way to a k-algebra homomorphism €x , — k[e]. This construction is inverse to
the one described before. O

Remark 6.8. We can also express the structure of k-vector space on X (k[e]), induced
by the above bijection in functorial terms. We set kle1, e2] := k[T, T /(TE, T3, Th T3),
where ¢; is the residue class of T;. Then we have a natural map p: k[e1,e2] — k[e],
€1 > &, g9 — . Now let v1,v9 € T, X be tangent vectors which we view, using the
above bijection, as morphisms v;: Speck[e] — X with image {x}. The v; correspond to
morphisms Ox , — kle], s — s(z) + €0;(s), and we obtain a map a: Ox , — kle1, 2],
s+ s(x) + £101(8) + £202(s). Then the sum vy + vo corresponds to the k[e]-valued point

Speck[e] — Speckleq, ea] = X,

where the first morphism is the one induced by p, and the second one is induced by a.
The multiplication by scalars a in k is given as follows: Let m,: k[e] — k[e] the k-algebra
homomorphism that sends € to ae. If v € T, X corresponds to v: Speck[e] — X then av
corresponds to the composition

Specmg

Spec k[e] 2% Spec kle] - X.

As an immediate application we obtain that the formation of the tangent space is
compatible with products:

Proposition 6.9. Let k be a field, let X, Y be k-schemes, and let x € X(k), y € Y (k)
be k-valued points. Then there is a natural isomorphism

Loy (X xx V) = T, X @ T,Y.
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Proof. This is an easy consequence of the description of the tangent space as the space of
k[e]-valued points and the universal property of fiber products (4.4.2). O

This result can be easily generalized to fiber products of k-schemes (Exercise 6.6).

(6.5) Computation of the tangent spaces of projective schemes.

Let us apply Example 6.6 in order to look at the tangent spaces of points in projective
space. We continue to work over our fixed field k. Clearly, since P} can be covered
by affine spaces of dimension n over k, all tangent spaces TP} of points x € P} (k)
are n-dimensional k-vector spaces. However, this reasoning does not give us a natural
choice of basis, and hence no natural identification with k™. To obtain a more intrinsic
description, we consider the morphism A} \ {0} — P? (see (3.6.1)). Let us fix a point
i = (zg,...,7,) € AP (k)\ {0}, and denote by z its image in PP (k). We obtain a
homomorphism
kM = T AR — T, PR

Let us compute its kernel. There exists ¢ with x; # 0. To simplify the notation, we assume
that ¢ = 0. We denote by Uy C P} the corresponding open chart of PP} of points with 0-th
homogeneous coordinate # 0, and we identify Uy = A} as usual. We use Tp,..., T, as
coordinates on AZH, and consider the principal open subset D(T}). We can compute the
kernel we are interested in terms of the map

D(Ty) = Uy = A, (z0,...,2n) (xalxl, . ,xglxn),

which means that we are in the situation of Example 6.6. The map induced on the tangent
spaces is given by the matrix

—xl/xo 1
zy" : € My (ni1)(K).
—Zp/x0 1
Therefore the kernel of the homomorphism k"1 — T, P} is the line & - (o, ..., 2,). Since

T, P} is n-dimensional, this implies in particular that the map in question is surjective,
and altogether we have proved the first part of

Proposition 6.10. Let k be a field.
(1) Letx = (zg:---: xp) € PR(k). Then we have a natural identification

T,P7 = k" Jk(xo, ..., x,).

(2) Let X =Vi(f1,...,[r) CP} be a closed subscheme, given by homogeneous polynomi-
als fi, and let © € X (k). Then

T,X = <Ker (g;; ($)>i,j> Jkz.

Proof. We write C(X) = V(f1,..., f») € A", and obtain a cartesian diagram (Sec-
tion (4.14))
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CX)\ {0} —= AP\ {0}

lp |

X— P

Fix a point & € C(X) \ {0} mapping to x, and consider the corresponding homomorphism
dpi: Tz C(X) — T X. Because of Lemma 6.1, we have > 7, g%] (x)x; = deg(f;)fi(x) =0
for all 4, so the line kz is contained in the kernel. Now to prove our claim, it is enough
to show that the homomorphism dp; is surjective. This can be checked locally on X, so
by (4.13.1) we are reduced to a product situation, and Proposition 6.9 shows that the

homomorphism on the tangent spaces is the projection onto a direct summand. O

Let us apply the proposition to continue our investigation of quadrics; see Section (1.26).

Proposition 6.11. Let k be an algebraically closed field of characteristic # 2, and
let Q be a quadric over k, i. e., Q is isomorphic to a closed subscheme of the form
Vi(Xg+- -+ X2,) CP} for somen>1and1<r<n+1.

(1) The scheme Q is reduced if and only if r > 1.

(2) The scheme Q is irreducible if and only if r # 2.

(3) Assume that Q is reduced. Then for all closed points x € Q), we have

n—1<dmT,Q <n,

and there exist x with dimT,QQ =n — 1. If r = n + 1, then the set of closed points
x € Q where dim T,,QQ = n is empty; otherwise it is the set of closed points of a linear
subspace of P} of dimension n —r.
In particular, this proves that quadrics of different rank or different dimension cannot be
isomorphic; cf. Proposition 1.69, Corollary 1.71.

Proof. Parts (1) and (2) are clear; note that they were discussed without using the
language of schemes in Section (1.26).

Part (3) easily follows from Proposition 6.10, which shows that the tangent space in a
closed point z = (xg : -+ : x,) of Q is given by

(Ker(2xo, . ..,22,_1,0,...,0): k"™ = k) /kx. O

(6.6) The relative tangent space at a k-valued point.

The Zariski tangent space is a good concept for k-rational points of a scheme over a field
k. For arbitrary points the following generalization of the tangent space at a k-valued
point is more useful. Consider a commutative diagram of schemes, where K is a field

Spec K <

(6.6.1) \ /
S.

X
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Define T¢(X/S) as the set of S-morphisms ¢: Spec K[e] — X such that the composition
of t with Spec K — Spec K[¢] is equal to £&. As in Section (6.4) we can endow T¢(X/S)
with the structure of a K-vector space. We call this K-vector space T¢(X/S) the (relative)
tangent space of X in & over S. If x € X is a point and £: Spec k() — X is the canonical
morphism we also write T, (X/S) instead of T¢(X/S). If S = Spec R is affine, we also
write T¢(X/R) or T,(X/R).

Note that T¢(X/S) depends on S. If k is a field, S = Speck = Spec K, and z is a
k-valued point, we have T,(X/k) = T, X. But in general one has to distinguish between
the relative and the absolute tangent space: Even for a k-scheme X of finite type it may
happen that the x(x)-vector spaces T, X and T,(X/k) are not isomorphic for a point
x € X that is not k-rational (see Exercise 6.3).

Remark 6.12.

(1) The relative tangent space can be defined in terms of the absolute tangent space as
follows. Consider again the diagram (6.6.1) above. By definition of the fiber product,
the morphism & corresponds to a K-valued point & of the k-scheme X xg Spec K.
In a similar way, the S-morphisms Spec K[e] — X correspond to K-morphisms
Spec K[e] — X xg Spec K. Via Proposition 6.7 we obtain an identification of K-
vector spaces

Te(X/S) = Tz(X xg Spec K).

(2) The relative tangent space is functorial in £ in the following sense. In the situa-
tion of (6.6.1), let ¢: K < L be a field extension corresponding to the morphism
p: Spec L — Spec K. Then composition with ¢ ® idgp): Kle] — Lle] induces an
isomorphism of L-vector spaces

(6.6.2) Te(X/S) @k L = Teop(X/S).

(3) Consider the following special case. Let X be a scheme over a field k, x € X a point,
k — k' a field extension, and let 2’ € X’ := X ®; k' be a point that projects to x.
Then we have

(6.6.3) To (X'/K') = Te(X/k) = To(X/k) ®p(a) £(2),
where ¢ is the composition Spec k(z') — Spec k(z) — X.

The dimension of the relative tangent space is upper semi-continuous:

Proposition 6.13. Let k be a field and let X be a k-scheme locally of finite type. Then
for each integer d the set {x € X ; dim(,) T (X/k) > d} is closed in X.

Proof. The question is local on X and we can therefore assume that X = Spec A with
A=Ek[T,...,T,])/(f1,--., fr). For each z € X we have

To(X/k) = To(X @ £(x)) = Ker(Jy, .7, (7)) S r(2)".

Thus we see that {z € X ; dimT,(X/k) > d } is the closed subspace of zeros of the ideal
of A generated by the images of (n — d+ 1) X (n — d + 1)-minors of the Jacobian matrix
Tt O
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(6.7) The projective tangent space.

Let k be a field, let X be a closed subscheme of IE”fCV, and let z: Spec K — X be a K-valued
point, where K is some field extension of k. We can consider the (relative) tangent space
T.(X/k) of X at x as a K-subvector space of T, (PY /k) = T,(P¥). Then there is a
unique linear subspace A C P¥ such that T, (A) = T (X/k): If X = V. (f1,..., f,) for
homogeneous polynomials f; € k[Tp, ..., Tn], then A is the subspace of PkN corresponding
to the linear subspace of KV given by the kernel of the matrix ((sz/aTj)(x))” viewed

as linear map KN*+! — K" (Proposition 6.10). We call A the projective tangent space of
X at x and denote it by T,.(X C PV /k). Note that it depends on the embedding of X
into PV. Its dimension as a linear subspace of P¥ agrees with dimg T, (X/k) again by
Proposition 6.10.

Smooth morphisms

(6.8) Definition of smoothness.

In this section, we define the notion of smooth morphism, and in particular the notion
of smooth k-schemes (for a field k). Heuristically, smoothness should mean that the
scheme in question “locally” looks like affine space. However, the Zariski topology is not
sufficiently fine to appropriately make sense of this. Instead one has to use the étale
topology; this will be explained in Volume II. Here we define smoothness by the condition
that locally, the scheme in question is defined by equations fi, ..., f, in some affine space
which behave as coordinate functions 717, ...,T,, at least if we only consider their first
derivatives. This notion of smoothness is the same as the one used in differential geometry.

Definition 6.14. Let f: X — Y be a morphism of schemes and d > 0 be an integer.
(1) We say that f is smooth of relative dimension d at © € X, if there exist affine open
neighborhoods U of x and V = Spec R of f(x) such that f(U) C V, and an open

mmersion

U< SpecR[Ty,...,Tu)/(f1,- -, fn—d)

of R-schemes for suitable n and f;, such that the Jacobian matriz

It s@) = (GH@) € Mapenln(a)

9

has rank n — d.
(2) We say that f: X — 'Y is smooth, or that X is smooth over Y, (of relative dimension
d), if it is smooth (of relative dimension d) at all points x € X .

Recall for this definition that we denote for g € R[T},...,T,] (e.g., g = g%) and for
x € A% (or z in a subscheme U of A%) by g(x) € k(z) the image of g in 'ﬁA%@/mw.
In part (1), requiring that the open immersion U < Spec R[Th,...,T.]/(f1,- -, fn-d)
be a morphism of R-schemes amounts precisely to saying that its composition with
the projection to Spec R equals the restriction of f to U. If R = k is a field and
pe =Ty —aq,..., T, —ay) for a = (ay,...,a,) € k™, then g(z) € (z) = k is simply the
usual evaluation of ¢ in a.
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One of the obvious problems of our definition of smoothness is that it is hard to prove
that a certain morphism is not smooth. To this end, it is desirable to show that, in a
suitable sense, the validity of the condition is independent of the choice of representation
as a subscheme of some A%. We will come back to this question in a special situation in
the section about regular rings, see Corollary 6.31, and in full generality in Volume II.

Proposition 6.15.

(1) Let f: X =Y be a morphism of schemes, and let x € X be a smooth point of relative
dimension d for f. There exists an open neighborhood U of x, such that f is smooth
of relative dimension d in every point of U.

(2) Smoothness is local on the source and on the target, in the following sense: given a
morphism f: X =Y, an open subset U C X, and x € U, then f is smooth at x if
and only if the restriction U — Y is smooth at x. If V. CY is open and x € f~1(V),
then f is smooth at z if and only if the restriction f=*(V) — V is smooth at x.

(3) If f+ X =Y is smooth of relative dimension d at © € X, andY' — Y is a morphism,
then the morphism X Xy Y’ — Y’ obtained by base change is smooth of relative
dimension d at all points of X Xy Y’ which project to x.

(4) Let f: X =Y and g: Y — Z be morphisms, and assume that f is smooth at x € X,
and that g is smooth at f(x) € Y. Then go f is smooth at x.

(5) Open immersions are smooth of relative dimension 0.

For a morphism f: X — Y we call the open subscheme
(6.8.1) Xom = Xem(f) ={x € X ; fissmoothat 2} C X
the smooth locus of X with respect to f.

Proof. Since the rank condition in the definition of smoothness can be phrased by saying
that there exists a r x r minor of the Jacobian matrix which does not vanish at z (i. e. is
# 0 in s(z)), it is an open condition. This proves the first point. The assertions (2), (3),
and (5) are clear. We skip the proof of Assertion (4) (it is not used in Volume I and we
will give a proof in Volume II). O

A smooth morphism of relative dimension 0 is also called étale. We will study étale
morphisms in more detail in Volume II.

In particular, whenever f: X — Y is a morphism of schemes which is smooth at x of
relative dimension d, then the fiber X,y = X xy Specs(f(x)) is smooth over x(f(z))
at z. As Theorem 6.28 below shows, in this case dim Ox,,, » = d, i.e. the maximal
dimension of the irreducible components of X (,) containing x is d (Corollary 5.23). This
justifies the term “of relative dimension d”.

In most of this chapter, we will only consider the special case Y = Speck, k a field.
Note that for a k-scheme X, whenever x € X is a smooth point, the neighborhood U of
z in the definition above is of finite type over k. Therefore, every smooth k-scheme is
locally of finite type over k.

Examples 6.16.
(1) Let S be a scheme. Then A% and P% are smooth of relative dimension n over S.
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(2) Let k be a field, let X be a k-scheme locally of finite type, and let x € X (k). Then
we will see in Theorem 6.28 that X is smooth at z if and only if dim 7, X = dim, X.
This shows that in this case the criterion defining smoothness is independent of the
choice of embedding of a neighborhood of x into affine space. We also see that for
X =Vi(fi,..., fr) CPE, f; homogeneous, and x € X (k), we can check whether X
is smooth at x looking at the Jacobian matrix of the homogeneous equations defining
X (use Proposition 6.10). See also Exercise 6.13.

(3) In particular: Let k be an algebraically closed field of characteristic # 2, and let Q be
a quadric of dimension n and rank n + 1 over k. Then @ is smooth over k.

(4) Let k be an algebraically closed field of characteristic # 2, and let f € k[X] be a
polynomial. Then V(Y2 — f(X)) C A? is smooth if and only if f has no multiple
zeros. (To see that V(Y2 — f(X)) is not smooth when f has multiple zeros, use
Theorem 6.28, cf. part (1) above.)

(6.9) Existence of smooth points for schemes over a field.

Lemma 6.17. Let X and Y be k-schemes locally of finite type. Let x € X andy € Y
and let @: Oy, = Ox, be an isomorphism of k-algebras. Then there exists an open
neighborhood U of x in X and V of y in'Y and an isomorphism h: U =V of k-schemes
with h(z) =y such that hf, = .

This is a special case of a more general result of extending morphisms from stalks to
open neighborhoods, see Proposition 10.52. Here we will give a quick proof in the case
that X and Y are integral (the only case we need in this chapter).

Proof. (if X and Y are integral) We may assume that X = Spec B and Y = Spec A are
affine. Let p = p, C A and q = p, C B be the prime ideals corresponding to y and z. By
hypothesis there exists an isomorphism ¢: A, = B4. We denote the induced isomorphism
Frac(A) = Frac(B) again by .

Since A and B are finitely generated, we can find elements f € A, ¢ € B such that
@(A) € By C ¢(Ay), and since p(A) C p(Ay) = By D B, we can even choose f € A\ p,
¢’ € B\ q. But then for suitable n > 0, g := (¢')"¢(f) lies in B\ q, too, and ¢(Ay) = By.
Thus ¢ yields an isomorphism h: U := D(g) = V := D(f). O

Proposition 6.18. Let k be a field and let X be an integral k-scheme of finite type
of dimension d > 0. Assume that its function field K(X) is a separable extension of k
(e.g., if k is perfect). Then there exists a dense open subscheme U C X such that U is
isomorphic to a dense open subscheme of Speck[T1,...,Tq,T]/(g), where g is a monic
separable irreducible polynomial g € k(Ty, ..., Ty)[T] with coefficients in k[Ty, ..., Ty).

Proof. The function field K(X) is a finitely generated separable extension of k, i. e., we
can find a transcendence basis T1, ..., T4 of K(X) over k such that K(X) 2 k(T4,...,Ty)
is finite separable; see Proposition B.97. In particular, the latter extension is generated
by a single element o € K(X) (Proposition B.98). Replacing a by fa for a suitable
f € k[T1,...,T4], we may assume that the minimal polynomial g € k(T1,...,T4)[T] of
a over k(Th,...,Ty) has coefficients in k[Th,...,Tq]. Set B = k[T1,...,T4,T]/(g) and
Y = Spec B. Then X and Y have isomorphic function fields and the claim follows from
Lemma 6.17, applied to the generic points. O]
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Theorem 6.19. Let k be a perfect field, and let X be a non-empty reduced k-scheme
which is locally of finite type. Then the smooth locus Xgm of X over k is open and dense.

Proof. We know already that X, is open in X (Proposition 6.15 (1)). To prove density
it suffices to show that for every irreducible component Z of X there exists a non-empty
open affine subscheme U of X which is contained in Z such that Uy, is dense in U. The
set of irreducible components of X is locally finite because X is locally noetherian. Thus
there exists a non-empty open subset U of Z that does not meet any other irreducible
component of X and hence is also open in X. Thus we may assume that X is integral.
By Proposition 6.18 we may then assume that X = Speck[Th,...,Tq, Tat+1]/(g) with g
irreducible and separable as a polynomial in T 1 with coefficients in the field (T4, ..., Ty).

Cousider the partial derivatives dg/9T; € k[T1,...,Tg+1]. We must show that they
are not all divisible by the irreducible polynomial g. Because of degree reasons, this just
means that they do not all vanish. But since g is irreducible and separable as a polynomial
in Tyy1, we have 0g/0Tq41 # 0. O

Remark 6.20. The proof shows that instead of assuming that k is perfect it suffices

to make one of the following weaker assumptions (which are equivalent by Proposi-

tion 5.49):

(i) For each irreducible component Z of X the function field K (Z) is a separable extension
of k.

(ii) The k-scheme X is geometrically reduced.

A similar idea shows the following result.

Proposition 6.21. Let X be a scheme locally of finite type over a field k. Assume that
Xyea 18 geometrically reduced. Then the set of closed points x € X such that k(x) is
separable over k contains an open dense subset of X.

Proof. Replacing X by X;eq we may assume that X is geometrically reduced. Let Y
be the closed subset of points in X which are contained in at least two irreducible
components. Replacing X by the open and dense subscheme X \ Y we may assume
that every connected component of X is irreducible. By proving the theorem for each
component we may assume that X is integral.

As X is geometrically reduced, its function field is a separable extension of k (Propo-
sition 5.49). By Proposition 6.18 we may assume that X = Spec(B), where B =
k[T1,...,Tar1]/(g) for a separable monic irreducible polynomial g € k(T1, ..., Ty)[Ta+1]
with coeflicients in k[Th,...,Ty].

We have obtained a morphism f: Spec(B) — A{ = Spec(k[T}, ..., T4]). The subset of
points z € A% such that the image g of ¢ in x(2)[T4+1] is non-separable is the vanishing
locus of the discriminant of the polynomial g, cf. Section (B.20) and Exercise 6.26,
hence a Zariski closed subset. Since g is separable over k(T1,...,Ty) it does not contain
the generic point, so its complement V is open and dense. Whenever z € V, the fiber
Spec(k(2)[Ty+1]/(g)) of the above morphism over z is the spectrum of a product of
separable extensions of k (since g might not be irreducible over k(z), we might have more
than one factor). In particular, for all x € f~1(V), the extension x(z)/k is separable. As
X is integral, f~*(V) is (open and) dense. This shows the proposition. O
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(6.10) Complete local rings.

In the analytic world, we have the inverse function theorem which shows that under a
condition analogous to our smoothness condition above, zero sets are locally isomorphic to
R™ (or C™). In our setting, we cannot expect the same result to hold because the Zariski
topology is far too coarse. We cannot work with convergent power series either, because
we do not have a notion of convergence. At least, Proposition 6.23 below shows that the
corresponding result holds formally, i. e., for formal power series, where we simply do not
require convergence: the complete local ring at a smooth k-valued point is a power series
ring.

Lemma 6.22. Let R be a ring, n > 1. An R-algebra homomorphism
¢: R[Y1,..., Y] — R[X1,...,X,] with o(Y;) € (X1,...,X,) forall j
is an isomorphism if the Jacobian matrix

(%‘ﬁ?(o))m € My xn(R)

is invertible over R.

Proof. The ring R[Y1,...,Y,] is complete with respect to the (Y1,...,Y,)-adic topology
(Example B.47 (1)). Therefore by Proposition B.49 the homomorphism ¢ is an isomorphism
if and only if the induced homomorphism gr¢: R[Y1,...,Y,] = R[X1,...,X,] on the
associated graded rings (Example B.48) is an isomorphism. But

o)) =3 280 o) x, s
i=1 ¢

Proposition 6.23. Let k be a field, let X be a k-scheme, and let © € X (k) be a point
which is smooth of relative dimension d over k. Then the completion ﬁx,m of the local
ring Ox o (with respect to its mazimal ideal) is isomorphic to a power series ring over k
in d indeterminates.

Proof. By the definition of smoothness, and because we can compute the local ring in
an arbitrary open neighborhood of x, we may assume that X is the closed subscheme
of A} defined by polynomials fi,..., f, with r = n — d, such that the Jacobian matrix
J :=Jy, ... t.(x) has rank r. By a change of coordinates in A} we may furthermore assume
that x is the origin in A} (and hence f; € (T1,...,T;,) for all ¢). By renumbering the T;
we can assume that the (r X r)-minor given by the first r columns of J does not vanish at
x. Using Lemma 6.22, we see that the homomorphism k[[Uy,...,U,]] = k[[T1,...,Ty]] =

Our o« given by
fi 1<i<r
Ui = { T, r<i<n
is an isomorphism. But this means that

éX,x = ﬁAZ,m/(fla .. '7f7") = k[[Ur+1a .. 7Un]]

is isomorphic to a ring of formal power series over k in d = n — r indeterminates. O
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Regular schemes

We now study the notion of regular schemes, which is based on the commutative algebra
notion of a regular (local) ring. For schemes over a field it mostly can (should) be replaced
by the notion of smoothness. However, it does serve an important purpose in the arithmetic
setting. Let us explain this. It is often important to consider morphisms f: X — Y of
k-schemes where X is smooth, but f is not necessarily smooth. If k is a perfect field, we
can replace the smoothness condition by requiring that X is regular. A typical analogue
in the arithmetic setting would be a morphism f: X — SpecZ. Continuing the analogy,
we would not want to require f to be smooth; asking that X is regular, however, is often
useful (and cannot be replaced, in this context, by a smoothness condition on X because
there exists no ground field); see Exercise 6.16 for examples.

(6.11) Regular schemes.

It is straightforward