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Introduction

An Invitation

In many cases, events and objects are given to observation as extended through time and
space, and so the data about these is local and distributed in some fashion. For now, we can
think of this situation in terms of the data being indexed by, or attached to, given delimited
regions or domains of some sensors. In a very general and rough way, by local we typically
understand that something is being compared to what is around or nearby it; this is as
opposed to the global, generally understood to mean compared to everything or across an
entire domain of interest. Satisfying a property at a local level does not necessarily entail
that the same will obtain at the global level. In saying that the data is local, we just mean
that it holds throughout, or is defined for, a certain limited region; that is, its validity is
restricted to a prescribed region or partial domain or reference context. We also use this
language of locality to describe a way of evaluating a property or data ascribed to a part
or point of its extended domain in terms of what that property or data looks like viewed
from its immediate surroundings—that is, whenever it holds somewhere, it should also
hold nearby.

We collect temperature and pressure readings and thus form a notion of ranges of possi-
ble temperatures and pressures over certain geographical regions; we record the fluctuating
stockpile of products in a factory over certain business cycles; we accumulate observations
or images of certain patches of the sky or the earth; we gather testimonies or accounts
about particular events understood to have unfolded over a certain region of space-time;
we build up a collection of test results concerning various parts of the human body; we
amass collections of memories or recordings of our distinct interpretations of a certain
piece of music; we develop observations about which ethical and legal principles or laws
are respected throughout a given region or network of human actors; we form a concept
of our kitchen table via various observations and encounters, assigning certain attributes
to those regions of space-time delimiting our various encounters with the table, where we
expect that the ascribed properties or attributes are present throughout the entirety of a
region of their extension. Even if certain phenomena are not intrinsically local, frequently
their measurement or the method employed in data collection may still be local.

But even the least scrupulous person does not merely accumulate or amass local or par-
tial data points. From an early age, we try to understand the various modes of connections
and cooperations between the data, to patch these partial pieces together into a larger whole
whenever possible, to resolve inconsistencies among the various pieces, to go on to build
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coherent and more global visions out of what may have been given to us only in pieces. As
informed citizens or as scientists, we look at the data given to us on arctic sea-ice melting
rates, on temperature changes in certain regions, on concentrations of greenhouse gases at
various latitudes and various ocean depths, and so on, and we build a more global vision
of the changes to our entire planet on the basis of the connections and feedbacks between
these various data. As investigators of a crime, we must piece together a complete and con-
sistent account of the events from the partial accounts of various witnesses. As doctors, we
must infer a diagnosis and a plan of action from the various individual test results concern-
ing the parts of a patient’s body. We take our many observations concerning the behavior
of certain networks of human actors and try to form global ethical guidelines or principles
to guide us in further encounters.

Yet sometimes information is simply not local in nature. Roughly, one might think of
such nonlocality in terms of how, as perceivers, certain attributes of a space may appear to
us in a particular way but then cease to manifest themselves in such a way over subparts
of that space, in which case one cannot really think of the perception as being built up
from local pieces. For a different example: in the game of ScrabbleTM, one considers the
assignment of letters, one by one, to the individual squares in a lattice of squares, with
the aim of building words out of such assignments. One might thus suspect that we have
something like a “local assignment” of data (letters in the alphabet) to an underlying space
(15 × 15 grid of squares). Yet this assignment of letters to squares to form words is not
really local in nature, since, while we do assign letters one by one to the grid of squares,
the smallest unit of the game is really a legal word, but not all subwords or parts of words
are themselves words, and so a given word (data assignment) over some larger region of
the board may cease to be a word (possible data assignment) when we restrict attention to
a subregion.

Even when information is local, there are many instances where we cannot synthesize
our partial perspectives into a more global perspective or conclusion. As investigators, we
might fail to form a coherent version of events because the testimonies of the witnesses can-
not be made to agree with what other data or evidence tells us regarding certain key events.
As musicians, we might fail to produce a compelling performance of a piece because we
have yet to figure out how to take what is best in each of our trial interpretations of certain
sections or parts of the entire score and splice them together into a coherent single per-
formance or recording of the entire piece. A doctor who receives conflicting information
from certain test results, or testimony from the patient that conflicts with the test results,
will have difficulty making a diagnosis. In explaining the game of rock-paper-scissors to
children, we tell them that rock beats scissors, scissors beats paper, and paper beats rock,
but we cannot tell the child how to win all the time, that is, we cannot answer their pleas to
provide them with a global recipe for winning this game.

For distinct reasons, differing in the gravity of the obstacle they represent, we cannot
always lift what is local or partial up to a global value assignment or solution. A problem
may have a number of viable and interesting local solutions but still fail to have even a
single global solution. When we do not have the “full story,” we might make faulty infer-
ences. Ethicists might struggle with the fact that it is not always obvious how to pass from
the instantiations or particular variations of a seemingly locally valid prescription, valid or
binding for a subset of a network of agents, to a more global principle, valid for a larger
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network. In the case of the doctor attempting to make a diagnosis out of conflicting data, it
may simply be a matter of either collecting more data, or perhaps resolving certain incon-
sistencies in the given test results by ignoring certain data in deference to other data. Other
times, as in the case of rock-paper-scissors, there is simply nothing to be done to overcome
the failed passage from the given local ranking functions to a global ranking function, for
the latter simply does not exist. The intellectually honest person will eventually want to
know if their failure to lift the local to the global is due to the inherent particularity or con-
textuality of the phenomena being observed or whether it is simply a matter of their own
inabilities to reconcile inconsistencies or repair discrepancies in data-collecting methods
so as to patch together a more global vision out of these parts.

Sheaf theory is the roughly seventy-year-old collection of concepts and tools designed
by mathematicians to tame and precisely comprehend problems with a structure like the
sorts of situations introduced above. I hope the reader will have noticed a pattern in the
various situations just described. We produce or collect assignments of data indexed to
certain regions where, whenever data is assigned to a particular region, we expect it to
be applicable throughout the entirety of that region. In most cases, these observations or
data assignments come already distributed in some way over the given network formed
by the regions; but if not, they may become so over time, as we accumulate and com-
pare more local or partial observations. In certain cases, together with the given value
assignments and a natural way of decomposing the underlying space, revealing the rela-
tions between the regions themselves, there may emerge correspondingly natural ways of
restricting assignments of data along the subregions of given regions. In such cases, in this
movement of decomposition of the space and restriction of the data assigned to the space,
the glue or system of translations binding the various data together, permitting some sort of
transit between the partial data items, becomes explicit. In this way, an internal consistency
among the parts may emerge, enabling the controlled gluing or binding together of the local
data into an integrated whole that now specifies a solution or system of assignments over
a larger region embracing all of those subregions. Such structures of coherence emerging
among the partial patches of local data, once explicitly acknowledged and developed, may
enable a unique global observation or solution, that is, an observation that no longer refers
merely to yet another local region but now extends over and embraces all the regions at
once. As such, it may even enable predictions concerning missing data or at least enable
principled comparisons between various given groups of data.

Sheaves provide us with a powerful tool for precisely modeling and working with the
sort of local-global passages indicated above. Whenever such a local-global passage is pos-
sible, the resulting global observations make transparent the forces of coherence between
the local data points by exhibiting to us the principled connections and translation formulas
between the partial information, making explicit the glue by which such partial and distinct
clumps of data can be fused together, and highlighting the qualities of the distribution of
data. And once in this framework, we may even go on to consider systematic passages or
translations between distinct such systems of local-to-global data.

On the other hand, when faced with obstructions to such a local-global passage, we typ-
ically revise our basic assumptions, or perhaps the entire structure of our data, or maybe
just our manner of assigning the data to our regions. We are usually motivated to do this
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in order to allow precisely such a global passage to come into view. When we can sat-
isfy ourselves that nothing can be done to overcome these obstructions, we examine what
the failure in this instance to pass from such local observations to the global can tell us
about the phenomena at hand. Sheaf cohomology is a tool used for capturing and revealing
precisely obstructions of this sort.

The very natural distinction between local and global, hinted at above, in fact posits a
large class of problems involving relations between the local and global. For instance, given
an overall domain of interest, or space, if we consider some part of that, when is it possible,
just through knowledge of such portions, to deduce knowledge about the whole domain of
interest? Perhaps unsurprisingly, the antagonism between the local and the global found its
initial articulation within the frameworks of geometry and topology (the study of space),
where there is a very natural account of locality or what it means for something to hold
locally. One of the virtues of sheaves and associated techniques (like sheaf cohomology) is
to have allowed for an appreciation of how this local-global dialectic is still more universal
and reaches beyond its initial appearance in the context of topology and geometry.

The main purpose of this book is to provide an inviting and (I hope) gentle introduction
to sheaf theory, where the emphasis is on explicit constructions and applications, using a
wealth of examples from many different contexts. Sheaf theory is typically presented as
a highly specialized and advanced tool, belonging mostly to algebraic topology and alge-
braic geometry (the historical homes of sheaves), and sheaves accordingly have acquired
a somewhat intimidating reputation. Even when the presentation is uncharacteristically
accessible, emphasis is typically placed on abstract results, and it is left to the reader’s
imagination (or “exercises”) to consider some of the things they might be used for or some
of the places where they can be found. This book’s primary aim is to dispel some of this
fear, to demonstrate that sheaves can be found all over (and not just in highly specialized
areas of advanced math), and to give a wider audience of readers a more inviting tour of
sheaves.

Especially over the last few years, the interest in sheaves among less specialized groups
of people appears to be growing immensely, but whenever I spoke to newcomers about
sheaves, they often expressed that the existing literature was either too specialized or too
forbidding. This book accordingly also aims to fill a gap in the existing literature, which
for the most part tends to either focus exclusively on a particular use of sheaves or assumes
a formidable preexisting background and high tolerance for abstraction. I do not share the
view that applications or concrete constructions are mere corollaries of theorems, or that
examples are mere illustrations with no power to inform deeper conceptual advances. I am
not sure if I would go as far as to endorse Vladimir Arnold’s idea that “the content of a
mathematical theory is never larger than the set of examples that are thoroughly under-
stood,” but I do believe that one barrier to the wider recognition of the immense power of
sheaf theory lies in the tendency to present much of it as if it were a forbiddingly abstruse
or specialized tool, or as belonging mainly to one area of math. One thing this book aims
to show is that it is no such thing. Moreover, well-chosen examples are not only use-
ful, both pedagogically and psychologically, in helping newcomers get a better handle on
the abstract concepts and advance forward with more confidence but they can even jostle
experts out of the rut of the “same old examples” and present interesting challenges both
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to our fundamental intuitions of the underlying concepts and to preconceptions we might
have about the true scope of applicability of those concepts.

Before outlining the contents of the book and discussing some of its unique features, the
next section offers a more explicit, but still naive, glimpse into the idea of a sheaf via a toy
construction, with the aim of better establishing intuitions about the underlying sheaf idea.

A First Pass at the Idea of a Sheaf

Suppose we have some region, which, for the moment, we can represent very naively and
abstractly as

We are less interested in the “space itself” and more in how the space serves as a site
where various things take place. In other words, we think of this region as really just an
abstract domain supporting various happenings, where such happenings carry information
for appropriate sensors or measuring instruments (in a very generalized sense), so that
interrogating the space becomes a matter of asking the sensors about what is happening
on the space.1 For instance, the region might be the site of some happenings that supply
visual information, so that as a sensor monitors the happenings over a region (or some part
of it), it collects specifically visual information about whatever is going on in the area of
its purview:

1. The description of sheaves as “measuring instruments” or the “meter sticks” associated to a space that we
are invoking—so that the set of all sheaves on a given space supply one with an arsenal of all the meter sticks
measuring it, yielding “a kind of superstructure of measurement”—ultimately comes from Grothendieck, who
was largely responsible for many of the key ideas and results in the early development of sheaf theory. In speaking
of (another early sheaf theorist) Jean Leray’s work in the 1940s, Grothendieck said this:

The essential novelty in his ideas was that of the (Abelian) sheaf over a space, to which Leray associated a corresponding
collection of cohomology groups (called “sheaf coefficients”). It is as if the good old standard “cohomological metric” which
had been used up to then to “measure” a space, had suddenly multiplied into an unimaginably large number of new “meter
sticks” of every shape, size and form imaginable, each intimately adapted to the space in question, each supplying us with
very precise information which it alone can provide. This was the dominant concept involved in the profound transformation
of our approach to spaces of every sort, and unquestionably one of the most important mathematical ideas of the 20th century.
(Grothendieck 1986, promenade 12)

Then the sheaves on a given space will incorporate

all that is most essential about that space . . . in all respects a lawful procedure (replacing consideration of the space by
consideration of the sheaves on the space), because it turns out that one can ‘reconstitute,’ in all respects, the topological
space by means of the associated ‘category of sheaves’ (or ‘arsenal’ of measuring instruments). . . . [H]enceforth one can
drop the initial space. . . . [W]hat really counts in a topological space is neither its ‘points’ nor its subsets of points, nor the
proximity relations between them; rather, it is the sheaves on that space, and the category that they produce. (Grothendieck
1986, promenade 13).

The reader for whom this is overwhelming should press on and rest assured that we will have a lot more to say
about all this later in the book, and the notions and results alluded to in the above will be motivated and discussed
in detail.

The related “sensor” perspective has been developed more recently, to great effect, in the work of Robert
Ghrist, Michael Robinson, and Justin Curry, for example, Curry (2014, chap. 10).
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There might then be another sensor, taking in visual information about another region or
part of some overall space, offering another “point of view” on another part of the space;
and it may be that the underlying regions monitored by the two sensors overlap in part:

Since we are ultimately interested in the informative happenings attached to the space, we
want to see how the distinct perspectives on what is happening throughout the space are
themselves related; to this end, a very natural thing to do is to ask how the data collected
by such neighboring sensors are related. Specifically, it is very natural to ask whether and
how the perspectives are compatible on such overlapping subregions, whenever there are
such overlaps between the underlying regions over which they, individually, collect data.

A little more explicitly: if we assume the first sensor collects visual data about its region
(call it U1), we may imagine, for concreteness, that the particular sort of data available to
the sensor consists of sketches, say, of characters or letters (so that the underlying region
acts as some sort of generalized sketchpad or drawing board):
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While not really necessary, the sensor might even be supposed to be equipped to process
the information it collects, translating such visual inputs into reasonable guesses about
which possible capital letter or character the partial sketch is supposed to represent. In any
event, attempting to relate the two points of views by considering their compatibility on the
region where their two surveyed regions overlap, we are really thinking about first making
a selection from each of the collections of data assigned to the individual sensors:

Corresponding to how the underlying regions are naturally related by a relation of inclu-
sion, the compatibility question, undertaken at the level of the selections (highlighted in
gray above) from the collections of all informative happenings on the respective regions,
will involve looking at whether those data items “match” (or can otherwise be made “com-
patible”) when we restrict attention to that region where the individual regions monitored
by the separate sensors overlap:
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If the given selection from what they individually “see” does match on the overlap, then,
corresponding to how the regions U1 and U2 may be joined together to form a larger region,

at the level of the data on the happenings over the regions, we can pull this data back into an
item of data given now over the entire space U1 ∪U2, with the condition that we expect that
restricting this new, more comprehensive, perspective back down to the original individual
regions U1 and U2 will give us back whatever the two individual sensors originally saw for
themselves:
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In other words, given some selection from what sensor 1 sees as happening in its region
U1 and from what sensor 2 sees as happening in its region U2, provided their “story”
agrees about what is happening on the overlapping region U1 ∩U2, then we can paste their
individual visions into a single and more global vision or story about what is happening
on the overall region U1 ∪U2—and we expect that this story ultimately “comes from” the
individual stories of each sensor, in the sense that restricting the “global story” to region
U1, for instance, will recover exactly what sensor 1 already saw on its own.

Another way to look at this is as follows: while the sensor on the left, when left to its
own devices, will believe that it may be seeing a part of any of the letters {B, E, F, P, R},
checking this assignment’s compatibility with the sensor on the right amounts to constrain-
ing what the left sensor believes by what the sensor on the right knows, in particular that
it cannot be seeing an E or an F. Symmetrically, the sensor on the right will have its own
“beliefs” that might, in the matching with the left sensor, be constrained by whatever the
left sensor “knows.” In matching the two sensors along their overlap, and patching their
perspectives together into a single, more collective perspective now given over a larger
region (the union of their two regions), we are letting what each sensor individually knows
constrain and be constrained by what the other knows.

In this way, as we cover more and more of a “space” (or, alternatively, as we decompose
a given space into more and more pieces), we can perform such compatibility checks at
the level of the data of the happenings on the site (our collection of regions covering a
given space) and then glue together, piece by piece, the partial perspectives represented by
each sensor’s local data collection into more and more embracing or global perspectives.
More concretely, continuing with our present example, suppose there are two additional
regions, covering now some southwest and southeast regions, respectively, so that, alto-
gether, the four regions cover some region (represented by the main square), where we
have left implicit the obvious intersections (U1 ∩U2, U3 ∩U4, U1 ∩U3, etc.):
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With the four regions U1, U2, U3, and U4, to each of which there corresponds a particular
sensor, we have got the entire region U = U1 ∪U2 ∪U3 ∪U4 “covered.” Part of what this
means is that, were you to invite another sensor to observe the happenings on some further
portion of the space, in an important sense this extra sensor would be superfluous—since,
together, the four regions monitored by the four individual sensors already have the overall
region covered.

For concreteness, suppose we have the following further selections of data from the data
collected by each of these new (southwest and southeast) sensors, so that altogether, having
performed the various compatibility checks (left implicit), the resulting system of points
of view on our site can be represented as follows:
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This system of mutually compatible local data assignments or “measurements” of the hap-
penings on the space—where the various data assignments are, piece by piece, constrained
by one another, and thereby patched together to supply an assignment over the entire space
covered by the individual regions—is, in essence, what constitutes our sheaf. The idea is
that the data assignments are being “tied together” in a natural way



12 Introduction

where this last picture is meant to serve as motivation or clarification regarding the
agricultural terminology of “sheaf”:

Here one thinks of various regions as the parcels of an overall space covered by those
pieces, the collection of which then serves as a site where certain happenings are held to
take place, and the abstract sensors capturing local snapshots or measurements of all that
is going on in each parcel are then regarded as being collected together into “stalks” of
data, regarded as sitting over (or growing out of) the various parts of the ground space
to which they are attached. A selection of a particular snapshot made from each of the
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individual stalks (collections of snapshots) amounts to a cross-section and the process of
restriction (along intersecting regions) and collation (along unions of regions) of these
sections captures how the various stalks of data are bound together.

To sum up, then: the first characteristic feature of this construction is that some infor-
mation is received or assigned locally, so that the records or observations made by each of
the individual sensors are understood as being about, or indexed to, the entirety of some
limited region, so that whenever something holds or applies at a point of that region, it
will hold nearby as well. Next, since together the collection of regions monitored by the
individual sensors may be seen as collectively covering some overall region, we can check
that the individual sensors that cover regions that have some overlap can “communicate”
their observations to one another, and a natural expectation is that, however different their
records are on the nonoverlapping region, there should be some sort of compatibility or
agreement or mutual constraining of the data recorded by the sensors over their shared,
overlapping region; accordingly, we ask that each such pair of sensors covering overlap-
ping regions “check in” with one another. Finally, whenever such compatibility can be
established, we expect that we can bind together the information supplied by each sensor,
and regard them as patching together into a single sensor supplying data over the union of
the underlying (and partially overlapping) individual regions, in such a way that were we
to restrict that single sensor back down to one of the original regions, we would recover
exactly the partial data reported by the original sensor assigned to that individual region.

While most of the more fascinating and conspicuous examples of such a construction
come from pure and applied math, something very much like the sheaf construction appears
to be operative in so many areas of everyday life. For instance, related to the toy example
discussed above, even the way our binocular vision system works appears to involve some-
thing like the collation of images into a single image along overlapping regions whenever
there is agreement (from the input to each separate eye).2 More generally, image and face
recognition appears to operate, in a single brain (where clusters of neurons play the role of
individual sensors), in something like the patchwork “sum of parts” way described above.
Moving beyond the individual, collective knowledge itself appears to operate in a funda-
mentally similar way: a society’s store of knowledge consists of a vast patchwork built
up of partial records and data items referring to delimited (possibly overlapping) domains
of interest, each of which data items can be (and often are!) checked for compatibility
whenever they involve data that refers to, or makes claims about, the same underlying
domain.

The very simple and naive presentation given to it above admittedly runs the risk of
downplaying the power and scope of this construction; it would be difficult to overstate
just how powerful the underlying idea of a sheaf is. An upshot of the previous illustration,
though, is that while sheaves are often regarded as highly abstract and specialized con-
structions whose power derives from their sophistication, the truth is that the underlying
idea is so ubiquitous, so “right before our eyes,” that one might even be impressed that it

2. That visual information processing itself seems to fundamentally involve some sort of sheaf-like process
appears even more acutely in other species, such as certain insects, like the dragonfly, whose compound eyes
contain up to 30,000 facets, each facet within the eye pointing in a slightly different direction and taking in light
emanating from only one particular direction, resulting in a mosaic of partially overlapping images that are then
integrated in the insect brain.
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was finally named explicitly so that substantial efforts could be made to refine our ideas of
it. In this context, one is reminded of the old joke about the fish, where an older fish swims
up to two younger fish, and greets them, “Morning, how’s the water?” After swimming
along for some time, one of the younger fishes turns to the other and says,

“What the hell is water?”

In this same spirit, Grothendieck would highlight precisely this “simplicity” of the
fundamental idea behind sheaves (and, more generally, toposes):

As even with the idea of sheaves (due to Leray), or that of schemes, as with all grand ideas that
overthrow the established vision of things, the idea of the topos had everything one could hope
to cause a disturbance, primarily through its “self-evident” naturalness, through its simplicity (at
the limit naive, simple-minded, “infantile”)—through that special quality which so often makes
us cry out: “Oh, that’s all there is to it!” in a tone mixing betrayal with envy, that innuendo of the
“extravagant,” the “frivolous,” that one reserves for all things that are unsettling by their unforeseen
simplicity, causing us to recall, perhaps, the long buried days of our infancy. (Grothendieck 1986,
promenade 13)

Outline of Contents

The rest of the book is structured as follows. The first three chapters, together with the sixth
and seventh chapters, are dedicated to exposition of the most important category theoretic
concepts, tools, and results needed for the development of sheaves. Category theory is
indispensable to the presentation and understanding of the notions of sheaf theory. While
in the last decade there have appeared a number of accessible introductions to category
theory,3 feedback from readers of earlier drafts of this book convinced me that the best
approach to an introduction to sheaves that aims to reach a much wider audience than
usual would need to be as self-contained as possible. In these chapters, all the necessary
categorical fundamentals are accordingly motivated and developed. The emphasis here, as
elsewhere in the book, is on explicit constructions and creative examples. For instance,
the concept of an adjunction, and key abstract properties of such things, is introduced
and developed first through an extended example involving “dilating” and “eroding” an
image, then through the development of “possibility” and “necessity” modalities applied
to modeling the consideration of attributes of a person applied to them qua the different
“hats” they wear in life, and then applied to graphs of traveling routes.

Chapter 1 introduces categories, some important examples of categories, and some of
what one can do with categories.

Chapter 2 develops functors and presheaves in considerable depth. It discusses four
main perspectives on presheaves, works through some notable examples of each of them,
and develops some useful ways of understanding such constructions more generally.
This is done both for its own sake and in order to build up to the following chapters,

3. The general reader without much, or any, background in category theory is especially encouraged to have a look
at the engaging and highly accessible Spivak (2014). Readers with more prior mathematical experience may find
Riehl (2016) a compelling introduction, displaying as it does the ubiquity of categorical constructions throughout
many areas of mathematics. Lawvere and Rosebrugh (2003) are also highly recommended, especially for those
readers content to be challenged to work many things out for themselves through thought-provoking exercises,
often giving one the feeling of rediscovering things for oneself.
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especially chapter 5, dedicated to the initial development of the sheaf concept. Natural
transformations are also introduced in this chapter.

Chapter 3 covers universal properties and some important universal constructions.
All that is needed to offer a definition of a sheaf is the notion of a presheaf (covered

in chapter 2) and some basic notions from topology, such as that of a cover. With the aim
of exposing the reader to the sheaf notion sooner rather than later, chapter 4 covers the
requisite notions from general topology, and raises some more philosophical questions that
are taken up in later parts of the book (including the appendix).

Chapter 5 introduces sheaves (on topological spaces) and some key sheaf concepts and
results through some initial examples. Throughout this chapter, some of the vital concep-
tual aspects of sheaves in the context of topological spaces are motivated, teased out, and
illustrated through the various examples.

Chapter 6 is dedicated to the Yoneda results—perhaps the most important idea in
category theory—and the associated Yoneda philosophy.

Chapter 7 returns to, and completes, the treatment of categorical foundations for sheaves,
by covering adjunctions. As usual, the key features of this construction are teased out
through a variety of examples and worked-out constructions.

Chapter 8 returns to sheaves and covers some more involved results, rooted in histori-
cally significant examples. This chapter also includes a section on what is not a sheaf, or
when and how the sheaf construction fails, as well as an important case where the notions
of sheaf and presheaf coincide.

Chapter 9 is dedicated to a “hands on” introduction to sheaf cohomology. The center-
piece of this chapter is an explicit construction, with worked-out computations, involving
sheaves on complexes. There is also a brief look at cosheaves and an interesting example
relating sheaves and cosheaves.

Chapter 10 revisits and revises a number of earlier concepts, and develops sheaves from
the more general perspective of Grothendieck toposes. The important notions are motivated
and developed through a variety of examples.

We move through various layers of abstraction, from sheaves on a site (with a
Grothendieck “topology”) to elementary toposes, the topic of chapter 11. The later sections
of chapter 11 are devoted to illustrations, through concrete examples, of some slightly more
advanced topos-theoretical notions. The book concludes with an abridged presentation of
some special topics, including a brief glimpse into cohesive toposes. There are many other
directions the book could have taken at this point, and more advanced sheaf-theoretical
topics that might have been considered, but in the interest of space, attention has been
confined in that final section to the special topic of cohesive toposes.

Finally, there is an appendix, dedicated to exploring in greater depth the open philosoph-
ical questions raised in chapter 4 on general topology and the concept of space, doing so by
building on some of the constructions introduced in chapter 7’s treatment of adjunctions.

Remarks on Distinct Features of This Book

This book has three notable features that may deserve brief discussion:

1. an emphasis on pictures;
2. an emphasis on detailed worked-out examples from different areas of application; and
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3. an emphasis on ideas.

Regarding the first of these: a colleague once told me that they had read an entire book on
sheaf theory, but it was not until years later, after they saw a simple and evocative picture
drawn of a certain sheaf, that they finally felt like they understood what sheaves were about.
I suspect that this person is by no means alone in their experience. If this is really a fair
description of the experience of some newcomers to sheaves, you could say that, at least as
far as sheaves are concerned, a picture is worth not a thousand words but many thousands
of words! Inspired by this experience, I have tried to include, throughout the book, a great
many pictures.

The second feature of the book is that it takes part in the burgeoning area of applied
category theory, and as such aims to expand the repertoire of examples of sheaves, beyond
those that have already had great impact within mathematics. As in any area of life, there
can be a kind of “groupthink” that takes over an academic niche, and examples are usu-
ally the first things to suffer the negative consequences of this common phenomenon—for
instance, many standard texts on sheaves start with the constant sheaf and then are satisfied
to mention a handful of other standard examples and well-established uses within mathe-
matics, before pressing on with abstract results. Especially in recent years, there has been
something of a push against this, with a number of exciting new applications of sheaves to
topological data analysis,4 to sensor networks,5 to opinion dynamics (including selective
opinion modulation and lying) on social networks,6 to target tracking,7 to dynamical sys-
tems and behavior types,8 to name just a few. This book has been greatly inspired by such
efforts.

Regarding the third feature of this book: throughout each chapter, I occasionally pause
for a few pages to highlight, in a more philosophical fashion (in what I call “Philosophical
Passes”), some of the important conceptual features to have emerged from the preceding
technical developments. The overall aim of the “Philosophical Pass” sections is to period-
ically step back from the technical details and examine the contributions of sheaf theory
and category theory to the broader development of ideas. These sections may provide some
needed rest for the reader, letting the brain productively switch modes for some time, and
giving them something to think about beyond the formal details. A lot of category theory,
and the sheaf theory built on it, is deeply philosophical, in the sense that it speaks to, and
further probes, questions and ideas that have fascinated human beings for millennia, going
to the heart of some of the most lasting and knotty questions concerning, for instance:

• What is an object (and can we give an entirely relational account of objects, that is,
display an object in terms of all its relations)?

• What is universality?
• What is negation?
• What fundamental notions are codified by our concept of space?

4. As in Curry (2014).
5. As in Robinson (2016b).
6. As in Hansen and Ghrist (2020).
7. As in the work of Robert Ghrist.
8. As in Schultz and Spivak (2017) and Schultz, Spivak, and Vasilakopoulou (2016).
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While a number of other issues will be discussed, some of the main philosophical issues
that will be explored in the book engage a few decisive dialectics, notably that of the

• local-global,
• continuous-discrete,
• particular-universal, and
• object-relation.

The struggle to articulate the peculiar relations and antagonisms between each of the mem-
bers of such pairs has been ongoing for centuries, and while mathematics has advanced
inquiry into these matters more than any other discipline, it remains the case that there is
a great history to investigating such dialectics, and they are not the sole property of math-
ematics. Occasionally stepping back to ground specialized treatments of these matters in
the broader discussion is useful not only for reminding us of some of the stakes of our
formalism, but also for connecting the activity of mathematics back to the longer history
and future of inquiry, as human beings, into such fundamental questions.

A word about philosophy.9 Specialization has manifold benefits, and even if it didn’t,
it seems to be the price we must pay, as beings with very limited resources, for doing
something well. At times though—especially during times like ours, an age of increased
specialization—the incentive structures for engaging with something outside one’s special-
ization and subspecializations can deteriorate. Whether the thick boundaries of the adult’s
specialized world have barely been felt by them, or because they still have the luxury of
not being overly concerned with the pursuit of excellence, children are good at refreshingly
disrespecting the adult’s divided world. As we grow out of being a child, those boundaries
become more and more real for us, yet most of us (even the hardened specialist) do not
really entirely outgrow or utterly forget that state of the child, nor do we ever come to fully
believe in the reality of those boundaries. And even if we tell ourselves that we do, the child
seems to return, however faintly or mischievously, in unexpected ways. We find ourselves
wondering if such a thing as humor can be defined within music in a purely musical way, or
if certain growth patterns found throughout nature can tell us something about the impulse
movements of financial markets. Through a mixture of curiosity, a drive to unify and orga-
nize, or sometimes just a stupid whim, we retain something of this impulse to take concepts
beyond where we are told they belong. Such inquiries can only be vague and tentative at
first, and there is always a risk they will not lead anywhere. Over time, certain inquiries
mature and start to appear a little differently to us: we find ourselves seriously considering
if there is life on other planets, or how we can get machines to learn complicated behav-
iors purely using reinforcements built into the environment, the way so many animals do.
If we look carefully, even in those more established questions we can still recognize that
same childlike impulse to disregard the myriad cues that exert pressure on the questioner
to leave concepts where they belong: “‘Life’ is a here thing!” “Learning is something only
carbon-based beings can do!”

9. No part of this book rests on the remarks made in the next three paragraphs. They are provided for context,
and were prompted by questions I received from separate mathematician colleagues curious about how I, as a
professional philosopher, understood “philosophy” and its relation to category theory.
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When it works, taking concepts beyond the confines of their native setting can have the
effect of attaining greater generality. This impulse to attain greater generality—which is
born out of taking concepts beyond where they belong—is the minimal working sense of
“philosophical” that I intend in the present context. In this sense, philosophy is something
that we all do and that does not at all belong to “the philosopher.” And while it is perhaps
one of the greatest beneficiaries of the advantages of specialization, mathematics funda-
mentally shares this same strong drive toward the general—which may in part account for
why, throughout the centuries, there has been a great deal of interaction between the disci-
plines of philosophy and mathematics, even to the point that for much of history it would
have been difficult to draw a sharp line between the two. This intimate bond becomes espe-
cially evident with category theory. One could argue that, at least in large part, philosophy
(in a more traditional sense) has evolved as the informal study of universality (and uni-
versal phenomena). One could argue that category theory is the formal study of formal
universality. As such, it is no surprise that there appear to be a number of especially strong
connections between the matters pursued by category theorists and those of philosophers.

I happen to believe that many of the staple questions that were originally the provenance
of the philosopher will eventually be handled with the care they deserve once they are ade-
quately framed as problems within category theory, and that in the near future every major
philosophical dialectic—universal-particular, continuous-discrete, global-local, quality-
quantity—and even less obvious problems, such as those of “personal identity,” will be
handed over to, and considerably enriched by, the category theorist. In the other direction,
a variety of basic elements of category theory appear to raise philosophical questions of
their own, and certain more advanced developments (such as with cohesive toposes, dis-
cussed in chapter 11) seem almost inherently philosophical, and poised to attack a number
of the traditional philosophical problems. But we are probably at least 100 years away from
a world in which one can adequately realize that category theory is everything philosophy
ever strove to be, and let that long, rich, and frustrating tradition take on a new form. In the
meantime, one of the aims of this book is to encourage those from each camp to engage
with the other—and the “Philosophical Pass” sections are opportunities to step back from
the formal details, gather our thoughts, relate the mathematical concepts to broader or tan-
gential conceptual developments, and occasionally engage in a little pushing of the formal
concepts beyond where they belong.

I would encourage all readers to pursue the philosophical sections of this book—though
they are set off in boxes to mark them off from the rest of the text so that the more narrowly
focused reader can easily find their way around them should they insist on reading only
the mathematics. To encourage the more strictly mathematical reader to engage with those
sections, though, I will just add that it seems that nearly all great mathematicians of the past
have let themselves be provoked by, and at times have even engaged with, the philosophical
dimensions of their work.

Finally, while emphasis on concrete examples from unexpected areas beyond the con-
fines of pure mathematics is already unusual enough for a text on sheaf theory, and while
engagement with philosophical dimensions of the mathematics is itself atypical for a pri-
marily mathematical text, the reader might be even more surprised to find these two things
paired together. In response to this reaction, let me bastardize the philosopher Kant and say
this: knowledge of examples and applications without a sense of the general ideas these
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exemplify and are powered by is blind, while knowledge of general ideas without a famil-
iarity with all sorts of examples and applications is empty. Various philosophers of the past,
like Aristotle and Spinoza, have set as an ideal for the most demanding and adequate kind
of knowledge one that can look past the apparent immediacy of the universal and the par-
ticular, taken on their own, and instead achieve a more unified understanding of the subtle
mediations between our knowledge of the universal and of the particular. Moreover, it has
been my experience that often the only way to really grasp the most general, and to appre-
ciate the various needs to keep pushing things in the direction of the more general, is to
sink as deeply as possible into certain particular problems. In a peculiar slogan: often what
is furthest (most general) can be most readily approached through closer consideration of
what is nearest (least general). In this connection, I believe that the ideal mathematician
would represent some sort of fusion between the Grothendieckian impulse toward extreme
abstraction and general ideas, on the one hand, and the intimate exploration and care for
particulars embodied by the likes of a Ramanujan, on the other. While I would not pretend
to achieve anything remotely close to this fusion for myself, I do believe that it is a noble
ideal to strive for, and the atypical pairing of engagement with general ideas and respect
for examples found in this book has been influenced by that belief.

What the Book Is (and Requirements of the Reader)

I should add a word about what this book aims to be and who it is for. One reviewer of an
earlier version characterized the book’s most significant contribution as

providing an accessible sheaf theory book filled with fun examples, with a broad philosophical
bent.

I think this is a very clear statement of what I have wanted to achieve with this book. There
also happens to be a great gap between the few accessible books on the basic category
theory (and other prerequisites) needed to develop sheaves and any currently published
book on sheaf theory. Anyone who would find a bridge over that chasm useful, or who
would be engaged by a sheaf theory book that meets the above description, will likely find
this book valuable.

Realistically, though, anyone who would find their way to this book will likely have
some prior mathematical training and interests. The primary audience of this book should
include open-minded mathematicians, scientists and engineers with some broader math-
ematical interests, and mathematically inclined philosophers. Because of the distinctness
of these three groups, I highlight, at the beginning of each chapter, the mathematical and
philosophical goals and topics explored. As for those with interests of the practical sort:
there are a number of examples, constructions, and discussions that should be of interest;
however, there may be certain sections (appealing to those with more abstract aspirations
or those with a philosophical bent) that might be of less interest to such a reader. Such read-
ers might try dipping their toes into those sections and skimming on first reading, focusing
most of their attention on the examples.

As for general requirements of the reader, I have tried to make this book as self-contained
as possible and minimize the prerequisites in order to extend the reach as far as possible
to nonexperts. I thus assume only some basic familiarity with set theory and mathematical
reasoning—all other concepts needed for the formulation and understanding of sheaves,
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including the basics of category theory, topology, and anything else, are motivated and
introduced in this book.

In the end, I have tried to write the book I wish I had when I was first learning sheaf the-
ory. There are some outstanding books on sheaf theory—notably Mac Lane and Moerdijk’s
Sheaves in Geometry and Logic—but such texts can be rather demanding on the beginner,
assume a great deal of mathematical maturity, and generally appeal to a rather expert and
self-sufficient audience. In this book, I have tried to assume a great deal less than such
texts, to engage a broader audience, and generally adopt a more gentle approach.

What the Book Is Not

As one might already imagine, given its unique aims and approach, this book is not meant
to be a standard textbook for experts learning about sheaf theory as it is usually taught in
one of its specialized contexts, such as algebraic geometry. An expert reader who has cer-
tain expectations about what this book should be, based on standard specialized references
on sheaves, will surely have those expectations violated.

In this connection, this book deliberately minimizes treatment of applications to prob-
lems in algebraic geometry, one of the historical homes of sheaf theory. This was
intentional—in part since these applications require a level of mathematical maturity which
this book tries not to assume of the reader, in part because there are already many references
devoted to sheaves in algebraic geometry. Beyond this, the omission is also somewhat
philosophical. Tom Leinster wrote, in 2010, a blog post entitled “Sheaves Do Not Belong
to Algebraic Geometry”:

They are, of course, very useful in algebraic geometry (as is the equals sign). Also, human beings
discovered them while developing algebraic geometry, which is why many of them still make the
association. But. . . sheaves are an inevitable consequence of general ideas that have nothing to do
with algebraic geometry.

This is a perspective I share, and I have accordingly sought to avoid including applications
to algebraic geometry, with the aim of redistributing the somewhat disproportionate control
algebraic geometers have taken over these (demonstrably more general and far-reaching)
ideas.

This book is also not meant to be a complete reference. This is part of a trade-off one
must make when attempting to appeal to, and sustain the interest of, a wider audience of
nonexperts. There are a number of additional topics I would have loved to cover, and further
examples I would have loved to include, yet doing so with the aim of completeness could
have easily made this book extend to over 1,000 pages. It seemed to me more desirable to
welcome more newcomers to sheaves with a book of a more manageable size.
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In which we meet categories, explore some notable examples, consider distinctions
of size, formulate some of the important ways of constructing new categories from
old, and reflect on an alternative definition.

The language of category theory is indispensable to the presentation and understanding of
the notions of sheaf theory. Chapters 1–3, together with chapters 6 and 7, will motivate
and develop all the category theory needed in this book, emphasizing constructions and
perspectives that will take center stage in the development of sheaves.

1.1 Categorical Preliminaries

Fundamentally, the specification of a category involves two main tasks: establishing some
data or series of givens, and then ensuring that this data conforms to two simple axioms or
laws. To define, or verify that one has, a category, one should first make sure the right data
is present. This first main step of establishing the data of a category really involves doing
four things.

First of all, it means identifying a collection of objects. Especially when one is assem-
bling a category out of already established mathematical materials, these objects will
typically already go by other names, like vertices, sets, vector spaces, topological spaces,
types, various algebras or structured sets, and so on.

Second, one must assemble or specify a collection of morphisms (also called arrows
or maps), each with two objects associated to it, namely a dedicated “source” object
and “target” object. Fundamentally, a morphism is just some principled way of establish-
ing connections between the objects. We depict morphisms with arrows—for example, a
morphism f with source object A and target object B is represented diagrammatically by

A B.
f

Again, when dealing with already established structures, morphisms will usually already
have names, like directed edges, functions, linear transformations, continuous maps, terms,
homomorphisms or structure-preserving maps, and so on. Many of the categories one
meets in practice have sets with some structure or supplementary furnishings attached to
them for objects and (the corresponding) maps or functions between the underlying sets
for morphisms (where these “respect the structure”), so this is a good model to keep in
mind at the outset.
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Third, and perhaps most important, one must specify an appropriate notion of composi-
tion for the morphisms, where for the moment this can be thought of in terms of specifying
an operation that enables us to form a “composite morphism” that goes directly from object
A to object C whenever there is a morphism from A to some B such that this morphism can
be juxtaposed with another morphism that lands in C (in particular, whenever the “source”
of this second morphism is the same B that was the “target” of the first morphism). In other
words, given any pair of morphisms

A B1 B2 C
f g

such that the target of the first morphism f is in fact the same object as the source of the
second morphism g (i.e., B1 = B2)—in which case, they are compatible for composition—
then there exists a specified way of combining these mappings to get a resulting morphism
g ◦ f : A→C, called the composite (of f and g). We use the notation ◦ to denote compo-
sition, and it is read as “following” (or “after”), so that with g ◦ f , for instance, we would
have “g following f .” In other words, g gets applied after f —as such, one might parse this
by reading right-to-left: first apply f , then run g on the result. As a very simple example,
when dealing with sets of numbers equipped with structural mappings corresponding to
addition and multiplication, if f is the function defined by f (x) = x2 and g is the function
defined by g(x) = x + 3, then we know what the composite of f and g must be, namely
(g ◦ f )(x) = g(f (x)) = x2 + 3.

We shall see that this composition operation in fact already determines the fourth data
item of a category: that for each object, there is assigned a unique identity morphism that
starts out from that object and returns to itself.

A AidA

If you think for the moment of the model supplied by those commonly encountered cate-
gories that have structured sets for objects and structure-preserving maps for morphisms,
then you might think of the identity morphism as the “trivial” action, the one that trivially
preserves the structure by effectively “doing nothing.” These four constituents—objects,
morphisms, composite morphisms, and identity morphisms—supply us with the data of
the (candidate for a) category.

Next, one must show that the data given above conforms to two very natural laws or
axioms governing compositions. The first axiom concerns the behavior of the identity

morphisms under composition. Consider how, for an arbitrary morphism A
f−→B, such a

morphism will automatically be compatible for composition with the identity morphisms
(on either end). The first axiom effectively says that morphisms that are supposed to do
nothing (i.e., the designated identity morphisms) really do nothing when composed with
other morphisms (i.e., really act as identities, or the “trivial” action, with respect to the
morphisms with which they can be composed). More specifically, it stipulates that if we
have a morphism f (as above) from source object A to target object B, then first applying the
identity morphism on A and then traveling along the morphism f should be the same thing
as “just” traveling along the morphism f ; and the same goes for applying the morphism f
straightaway and following this with the identity morphism on the target object B. In short,
it is required that the identity morphisms do not do anything to change other morphisms
with which they may be composed, in the precise sense that f ◦ idA = f = idB ◦ f . Observe
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that this identity axiom is effectively a condition on composition, namely that compos-
ing any morphism with the identity morphisms (on either side) is equal to the original
morphism.

Second, suppose you have a string of morphisms

A B C D,
f g h

which are compatible for composition, by construction. Given such morphisms, a variety
of distinct composites can be formed, yielding (in principle) distinct paths from A to D.
For instance, while you could of course get from A to D by stepping through each of the
individual morphisms as above, you might instead form the composite map h ◦ g and then
use this, after taking f to B, to end up in D, as in

A B D.
f h◦g

Similarly, you could form the composite map g ◦ f and use this to get from A to C, and then
take h to D, as in

A C D.
g◦f h

The second axiom just says that if you have a string of morphisms f , g, and h as above, then
it should make no difference whether you choose first to go directly from A to C (using
the composite map g ◦ f that we have by virtue of the third step in the data construction)
followed by the map from C to D, or if you go from A to B followed by a direct map from
B to D (using the composite map h ◦ g). This axiom effectively says that composition is
associative, in the sense that the outermost arrows of the following diagram are equal:

A B C D
f

g◦f

h◦(g◦f )

(h◦g)◦f

g

h◦g

h

An entity that has all the data specified above, data that in turn conforms to the two laws
described in the preceding two paragraphs, is a category. The mostly informal description
given in the preceding paragraphs is given more formally in the following definition.

Definition 1 A category C consists of the following data:10

• A collection of objects A, B, C, . . . ;11

10. Throughout this book, categories are generally designated with bold font. However, sometimes we may use
script font instead, especially when dealing with things like orders (discussed below), where each individual order
is already a category. Context should always make it clear what category we are working with, so this should not
be a problem.
11. The reader who finds themselves worried about what is meant by this apparently somewhat vague word
“collection”—which, for now, you may take to mean “set” more or less (though “class” would be better, if that
means something to you)—should be reassured that we will address what is going on here in section 1.3.
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• A collection of morphisms f , g, h, . . . , where each morphism has designated source
object and target object—so that, for instance, f : A→B signifies that f is a morphism
with source A and target B;12

• To each object A in the collection of objects is assigned a designated morphism in the
collection of morphisms from A to A (i.e., where source and target are both the object
A), denoted by idA (or 1A), called the identity morphism on A;

• For any pair of morphisms f , g such that the target of f is equal to the source of g—as

in A
f−→B and B

g−→C—there exists a composite morphism A
g◦f−−→C, with source equal to

the source of f and target equal to the target of g.

This data gives us a category provided it further satisfies the following two axioms:

• Associativity (of composition): for any composable triple of morphisms f , g, h, as in

A
f−→B

g−→C h−→D, we have h ◦ (g ◦ f ) = (h ◦ g) ◦ f .

A B C D
f

g◦f

h◦(g◦f )

(h◦g)◦f

g

h◦g

h

• Identity: for any morphism f : A→B, the composites formed by composing f with the
identity morphism (on either side, i.e., on source or on target) are equal to f itself—that
is, we have f ◦ idA = f and idB ◦ f = f .

Before turning to examples of categories, let us make a brief observation. The associa-
tivity of composites may be expressed with what is called a commutative diagram, which
is why a diagram appeared in the associativity axiom of the definition. While we will have
much more to say about diagrams in later chapters, and be more precise about all this,
for now observe how we have been displaying the various objects of a category, together
with their morphisms and morphism composition, in the form of diagrams, where these
are effectively directed graphs with morphisms as directed edges and objects as the names
of the implied vertices or nodes attached to such edges. With the display of a morphism f
with source A and target B as

A B,
f

we already have an example of a basic diagram. Now suppose we have a diagram involving
three morphisms, as in

12. The term “morphism” comes from homomorphism, which is how one refers in abstract algebra to a structure-
preserving map between two algebraic structures of the same type (such as groups or rings). The morphisms of a
category are also commonly referred to as “arrows” or “maps.”

I should also note that while, in this definition, we are using A, B, C, . . . to range over objects, and f , g, h, . . .
to range over morphisms, this convention will not always be respected. For instance, sometimes we will
use a, b, c, . . . , or some other natural names, for objects, and similarly reserve other appropriate notation for
the arrows. These notation choices mostly just follow what is customary in the special topic being treated
categorically, and this should not cause confusion.
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A B

C

f

h
g

Provided we are indeed working with a category, we know that the composable morphisms
f : A→B and g : B→C will support the existence of the composite g ◦ f morphism, leaving
us with a parallel pair of morphisms from A to C, as in

A B

C

f

h

g◦f

g

In principle, the two morphisms of such a parallel pair need not be the same—but when
they are, so that h = g ◦ f , we then say that this diagram (the triangle) commutes, and display
it with the diagram

A B

C,

f

g◦f
g

where occasionally a checkmark is drawn in the center if one wants to really stress that
a diagram commutes. Other than “degenerate” diagrams involving identities, commutative
triangles give us the most basic and paradigmatic instance of commutativity in diagram-
matic form. But commutative diagrams one meets in the wild can have many more moving
parts. In general, we will say that a diagram commutes, or is commutative, provided all
directed paths with the same start and endpoints compose to give the same morphism—that
is, a commutative diagram visualizes equalities between composite morphisms. As such,
commutative diagrams are sometimes said to be for the category theorist what equations are
for the algebraist. Commutative diagrams, and diagrammatic reasoning in general, are the
main tool of the category theorist. They are not merely visual, intuitively spatial aids to the
understanding of formal facts, but they even supply new proof techniques—especially that
of the “diagram chase,” which involves establishing a property of a particular morphism by
tracking the components of a commutative diagram. A lot more will be said about diagrams
throughout the book. For now, let us consider some examples of categories.

Example 2 Set is a category, where this consists of sets for objects and functions (with
specified domain and codomain) for morphisms. Composition is given by the usual func-
tion composition (which is moreover associative), and identity morphisms are exactly what
you imagine (where the identity functions moreover behave as the “units” for composition).

Example 3 (Order Categories) A relation between sets X and Y is just a subset R⊆X× Y ,
so that a binary relation on X is a subset R⊆X×X. It is customary to use infix notation
for binary relations and use the symbol ≤X (or just ≤, if the carrier set is understood) for
the relation on a set X, so that, for instance, one writes a≤ b for (a, b)∈R.

We can then define a preorder as a set with a binary relation (call it ≤) that further
satisfies the properties of being reflexive and transitive. In other words, it is a pair (X,≤X)
where we have
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• x≤ x for all x∈X (reflexivity); and
• if x≤ y and y≤ z, then x≤ z (transitivity).

Then a partially ordered set (poset for short) is a preorder that is additionally antisymmet-
ric, where this means that having x≤ y and y≤ x implies that x = y.

It is often useful to represent a given poset (or preorder) with a diagram. For instance,
suppose we have an order-structure on the set X = {a, b, c, d} given by a≤ c, b≤ c, b≤ d,
together with the obvious identity (reflexivity) x≤ x for all x∈X, which we will leave
implicit. For a reason that will be better appreciated in a moment, the data of this poset
may be displayed by the diagram:

c d

a b

Preorders (posets) can themselves be related to one another, and the right notion here is
that of a monotone (or order-preserving) map.

Definition 4 A monotone (order-preserving) map between preorders (or posets) (X,≤X)
and (Y ,≤Y ) is a function f : X→Y on the carrier sets satisfying that for all elements a, b∈
X,

if a≤X b, then f (a)≤Y f (b).

There is then a category Pre, the category having preorders for objects and order-
preserving functions for morphisms. Pos is another category, one having posets for objects
and order-preserving functions for morphisms.13 Each identity arrow will just be the cor-
responding identity function, regarded as a monotone map. One can verify that for two

monotone maps X
f−→ Y and Y

g−→ Z between orders, the function composition g ◦ f is also
monotone.

While we are already talking about orders, let us introduce a few other order-theoretic
notions, allowing us to further expand our repertoire of order categories. Suppose we fur-
ther add the property to a poset that for all a, b∈X, either a≤ b or b≤ a, that is, any two
objects are comparable. Adding this condition gives us what are called linear orders (or,
sometimes, total orders). If we take finite nonempty linear orders as our objects and mono-
tone (order-preserving) functions between such linear orders as our morphisms, we get
another category: FLin, the category of finite nonempty linear orders. For a simple exam-
ple of such an order, take a natural number n∈N, and consider the standard linear order
[n] = ({0, 1, . . . , n},�), where every such finite linear order may be represented by

· · ·0 1 2 3 n≤ ≤ ≤ ≤ ≤

13. As can be seen from the few examples given thus far, it is common to let the objects determine the name of a
category in question. While this is an entirely sensible practice, it is worth noting that it is at odds with the general
spirit or philosophy of category theory, which gives priority to the morphisms (or at least demands that objects be
considered together with their morphisms), a matter that is explored further in section 1.5.
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When we take such finite linear orders [n] for our objects (one for each n∈N) and the
order-preserving maps between these for our morphisms—defined, for each pair of objects
[m], [n], as all the functions f : {0, 1, . . . , m}→ {0, 1, . . . , n} such that for every pair of
elements i, j∈ {0, 1, . . . , m}, if i� j, then f (i)� f (j)—we get what is called the simplicial
category (or simplex category), typically denoted by Δ. As it turns out, these two cate-
gories can be shown to be equivalent, but we postpone making this precise until chapter
2, once we have the resources to do so. For now, this observation may justify thinking
of the apparently enlarged category of finite nonempty linear orders in terms of the more
manageable objects of the sort depicted above.

For a final example of this sort, we can also consider what is called a cyclic order. Just as
the names imply, while a linear order is effectively an arrangement of elements along a line
(where this has a prescribed direction), a cyclic order can be regarded as an arrangement of
elements on a circle (where there is again a direction, such as clockwise). Observe that for
elements arranged on a line with a specified direction, it makes sense to say things like “a
comes before (or after) b”; however, for elements arranged in a circle with a direction (say,
clockwise), the same sort of thing cannot be said—for instance, it doesn’t make sense to
say that “a is more (or less) clockwise than b.” This observation motivates the definition of
a cyclic order: it is given not in terms of a binary relation, but more naturally as a ternary
relation [a, b, c] (read “after a, one arrives at b before c”) on a set. The months of the
year form such a cyclic order, where we have, for instance, [March, September, February]
but not [March, February, September]. More formally, a cyclic order on a set is a ternary
relation that satisfies the following properties (effectively ternary versions of the properties
characterizing a linear order):

1. cyclicity: if [a, b, c], then [b, c, a];
2. asymmetry: if [a, b, c], then not [c, b, a];
3. transitivity: if [a, b, c] and [a, c, d], then [a, b, d];
4. totality: if a, b, and c are distinct, then we have either [a, b, c] or [c, b, a].

The notion of a monotone (order-preserving) function between linear orders has its coun-
terpart for cyclic orders in the following: given the cyclic orders (X, []X) and (Y , []Y ), we
say that a function f : X→Y is monotone provided it preserves the relation for any ele-
ments that have pairwise distinct images under f , that is, if given [a, b, c] and the images
f (a), f (b), and f (c) are pairwise distinct, then [f (a), f (b), f (c)]. This data ultimately gives
us a category, one that has for objects all finite nonempty cyclically ordered sets, and for
morphisms the monotone maps (in the above sense).

Similar to how we were able to generate a further category of interest by confining
attention to the standard linear orders [n], it is also useful to consider the standard cyclic
orders, where a cyclic order on a finite set with n elements can be pictured as an (evenly
spaced) arrangement of the set on an n-hour clockface.
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Such an order is designated Λn. If we take such Λn as our objects (one for each n∈N),
and we take as our morphisms (from an object Λm to Λn) the monotone functions, then
we arrive at what is called the cyclic category (or cycle category), usually denoted by Λ.
Following Connes and Consani (2015),14 it is more common to see this category Λ given
a description that takes the standard orders as objects (one for each n∈N) but where the
morphisms (from Λm to Λn) of Λ are instead seen as functions f on the integers that satisfy
both of the following properties:

• nondecreasing/order-preserving: if x≤ y, then f (x)≤ f (y);
• periodicity/“spiral property”: f (x + m + 1) = f (x) + n + 1 for all x∈Z.

Composition is then just the usual composition of functions. To complete the construction,
one then takes equivalence classes of such functions under the relation f ∼ g whenever their
difference is a constant multiple of n + 1. This equivalence relation is compatible with the
composition of functions, and there can be only finitely many such equivalence classes of
functions for each pair of natural numbers m, n.

Orders, especially preorders and posets, are very important in category theory, and we
will see a lot more of them throughout the book.

Example 5 A graph is typically represented by a bunch of dots or vertices together with
edges between certain of the vertices, so that each edge is linking a pair of vertices, sup-
plying what is called a relationship of incidence between the vertices and edges. More
formally, a (simple) graph G consists of a set V of vertices, together with a collection of
two-element subsets {x, y} of V (where we generally assume x 
= y), called the edges. Some-
times the collection of two-element subsets of V is instead just represented by a set E that
consists of the “names” of such pairings, where one then specifies an additional mapping
that interprets edges as pairs of vertices. On this approach, a graph effectively consists of
two sets—a “vertex set” V and an “edge set” E—together with a map that works to assign
each edge to a pair of vertices (via a certain one-to-one function from E to 2-element sub-
sets of V). The relevant notion of a map G→G′ from a graph G to a graph G′ is then given
by a graph homomorphism, where this is a function f : V→V ′ on the vertices such that if
{x, y} is an edge of G, then {f (x), f (y)} is an edge of G′.

As the pairs of vertices making up the edge set were implicitly defined to be unordered,
since they were said to be sets of the form {x, y} rather than ordered pairs, the graphs

14. Alain Connes was the first to describe this category; see Connes (1983), where it is given a somewhat different
description.
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we just defined are undirected. Moreover, assuming that the map interpreting edges as
unordered pairs of vertices does so in a one-to-one way amounts to requiring that the
graph be simple in the sense of having at most one edge between two vertices. Taking such
unordered simple graphs together with the associated notion of a graph morphism, we have
the materials of a category, namely the category of undirected (simple) graphs, UGrph, or
more commonly SmpGrph. The objects of this category are what the graph theorist usually
means, by default, when they speak of a “graph.” One such graph is pictured below (the
names of vertices and edges left out):

If we had instead allowed the function from edges to pairs of vertices to be many-to-one,
so that for each unordered pair of distinct vertices there could be an entire set of edges
between these, we would be left with undirected multigraphs, such as

We can further define directed graphs (which are often thought of by the category the-
orist as quivers), where our edges now become arrows. These are the sorts of graphs that
will be of most interest to us. Fundamentally, a (directed) graph G = (V , A, s, t) can be seen
as being comprised of two sets and two functions. Specifically, it consists of a set V of
vertices, a set A of directed edges or arcs (arrows), and two functions

A V
s

t

that effectively act to pick out the source and target of an arc.
Then if G = (V , A, s, t) and G′ = (V ′, A′, s′, t′) are two graphs, the relevant notion of a

morphism, namely a graph homomorphism f : G→G′, is defined as a pair of morphisms
f0 : V→V ′ and f1 : A→A′ such that sources and targets are preserved, that is, both the
diagrams

A A′ A A′

V V ′ V V ′

f1

s s′

f1

t t′

f0 f0

commute, in the sense that we have

s′ ◦ f1 = f0 ◦ s and t′ ◦ f1 = f0 ◦ t.
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One can verify that composing two such graph homomorphisms f , g will leave us with
another morphism g ◦ f that is itself a graph homomorphism. Altogether, we have a cate-
gory called DirGrph (or just Grph), which has directed graphs as objects and their directed
graph homomorphisms as morphisms.

In general, as before, we may further allow there to exist several parallel arrows—that is,
with the same source and same target—in which case we would be dealing with directed
multigraphs. Furthermore, if we were to add closed arrows or loops—that is, arrows whose
source and target are identical—then we would be dealing with looped (or reflexive) graphs.
There is a lot more to say about distinctions between different graphs, the distinct cate-
gories each gives rise to, and their categorical features of interest; but we will postpone
further discussion of such matters.15

Example 6 It is probably fair to assume that the reader is already very familiar with vector
spaces and the associated ideas of linear algebra. But if not, or in case a refresher is needed,
here is the definition.

Let k be a given field—these supply us with the scalars by which we scale, by multiply-
ing with, our vectors; so think, for concreteness, of k =R, the real numbers under addition
and multiplication. Let V be a (nonempty) set with addition and scalar multiplications that
assigns, to any u, v∈V , a sum u + v∈V , and to any u∈V and k∈ k, a product ku∈V .
Then V is said to be a vector space (or linear space) over k, the elements of V being called
vectors, if the following axioms hold:

• A1: For any vectors u, v, w∈V , we have (u + v) + w = u + (v + w).
• A2: There exists a vector in V , denoted 0 and called the zero vector, for which u + 0= u

for any vector u∈V .
• A3: For each vector u∈V , there exists a vector in V , denoted by –u, for which we have

u + (–u) = 0.
• A4: For any vectors u, v∈V , we have u + v = v + u.
• M1: For any scalar k∈ k and any vectors u, v∈V , we have k(u + v) = ku + kv.
• M2: For any scalars a, b∈ k and any vector u∈V , we have (a + b)u = au + bu.
• M3: For any scalars a, b∈ k and any vector u∈V , we have (ab)u = a(bu).
• M4: For the unit scalar 1∈ k, we have 1u = u for any u∈V .

Matrices furnish us with a basic example of such a thing. Letting Mm,n denote the set of all
m× n matrices over an arbitrary field k, then Mm,n will be a vector space over k, with the
usual operations of matrix addition and scalar multiplication. Other important examples are
given by the space of all polynomials P[x] with coefficients in some field k, and function
spaces, where the elements are all functions from some given nonempty set into some k.

Mappings between two vector spaces V , W over the same field are given by linear
transformations (or vector space homomorphisms), where these are defined as functions
F : V→W that satisfy, for any vectors v, u∈V and any scalar k∈ k, the following two
conditions:

15. For now, just note that while quiver and directed graph are often used synonymously, technically the graph
theorist expects of its directed graphs that there is at most one arc from one vertex to another, and the notion of
a quiver allows for there to be multiple “parallel” arcs between vertices, that is, a quiver is a directed multigraph
(where loops are also allowed).
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• F(v + u) = F(v) + F(u)
• F(kv) = kF(v).

In other words, F is linear if it “preserves” the two fundamental operations of a vector
space, vector addition and scalar multiplication.

The category Vectk is the category of k-vector spaces (for a given field k, dropping the k

when this is understood), which has vector spaces V , W, . . . over k for its objects and linear
transformations for its morphisms. To see that this is indeed a category, suppose F : V→W
and G : W→U are linear transformations between the specified vector spaces. Then, for
any v, v′ ∈V and any a, b∈ k, we must have

(G ◦F)(av + bv′) = G(F(av + bv′)) = G(aF(v) + bF(v′))

= aG(F(v)) + bG(F(v′)) = a(G ◦F)(v) + b(G ◦F)(v′),

which just shows that the composite G ◦F : V→U must itself be a linear transforma-
tion. Moreover, for any vector space, the identity function will be a linear transformation.
Finally, associativity of composition comes for free, since linear transformations are
functions and function composition is always associative. If we restrict attention to just
finite-dimensional vector spaces, this would yield the category FinVect, which is where
most of linear algebra takes place.

In vector spaces, the scalars come from the given field and act on the vectors of the
space by scalar multiplication (which then obeys the axioms). Every field is a ring, but
there are rings that are not fields, as the notion of a ring generalizes that of a field (for a
ring, multiplication need not be commutative and multiplicative inverses need not exist);
for example, the ring of integers Z is not a field, since 2, for instance, has no multiplicative
inverse in Z. A module is just like a vector space, except the scalars need only come from
a ring (with identity), and (left or right) multiplication is defined between elements of the
ring and elements of the module. So while any ring R that is also a field recaptures the
notion of vector spaces, there are plenty of modules that are not vector spaces. We call a
module taking its coefficients in the ring R an R-module.

For a concrete illustration of a module, here is one that is often used by music theorists.
First consider that, in general, for a set X and a vector space V , we can define the set of all
functions from X to V . Then, for f , g in that set and for c∈ k the field of scalars, addition
is defined as (f + g)(x) = f (x) + g(x) and scalar multiplication as f (cx) = c(f (x)) for all x∈X.
It can be shown that this set of functions is itself a vector space (over the field k). And in
fact, for X the set of n-tuples, it can be shown that this function vector space is isomorphic
to the vector space of n-tuples. Applied to music, we might accordingly consider the space
R{O, P, L, D}, by taking X = {O, P, L, D}, where O stands for the onset values, P for pitch, L
for loudness, and D for duration, and where these give ordered quadruples taking values
in O in the first component, P in the second component, and so on. In other words, the
members f of this function space can be thought of as the “note event” vector

f = (fO, fP, fL, fD),

where, for simplicity, onset fO may come in units of quarter notes ♩, pitch fP in units of
semitones, loudness fL in units of cents, and duration fD in units of quarter notes. This in
fact forms an R-module (obviously, since it is in fact a vector space), one that is isomorphic
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to R4, the vector space of all ordered quadruples of real numbers (x1, x2, x3, x4), and it
happens to be of some use to music theorists.

Returning to the more general account: a map between two R-modules will be a map that
satisfies the same conditions on a linear transformation (except that the scalar is an r∈R),
that is, it is a function between modules that “preserves” the module structures. More pre-
cisely, if we let M and N be R-modules, an R-homomorphism (or module homomorphism)
from M to N is a map f : M→N that satisfies for every a, b∈M and r∈R

• f (a + b) = f (a) + f (b), and
• f (r · a) = r · f (a).

Modules over a fixed ring R, together with such R-module homomorphisms, assemble into
a category ModR.

Given a homomorphism f from an R-module M to an R-module N, we can define another
map g : M→N by g(x) = n + f (x), where n∈N. Such a map is called an affine transforma-
tion, and when the underlying modules are the same, that is, M = N, then such a g captures
symmetries. Affine maps can be composed just as functions are composed, and thus by tak-
ing R-modules together with such maps between them we end up with another category,
one that might be denoted by ModAffR. Incidentally, such a category—and, more broadly,
the algebraic theory of rings and modules—supplies a natural setting for the treatment of
many aspects of music theory. For instance, if you think of a score of music in terms of
the module R{O, P, L, D} representing notes with onset, pitch, loudness, and duration, then
morphisms as affine maps or symmetries on this module capture all kinds of musically
meaningful (and geometrically representable) transformations—such as pitch transposi-
tion, vertical and horizontal inversion and dilation, rhythmic shift, onset-pitch arpeggio,
and so on—and a variety a fundamental results concerning things like harmonic analysis
and modulation can be derived within this framework.16

Example 7 The category Mon (Group) of monoids (groups) has monoids (groups) for
objects and monoid (group) homomorphisms for morphisms. (This example, together with
the necessary definitions, will be discussed in more detail in a moment.)

The previous examples involve categories whose objects are sets equipped with some
additional structure and whose morphisms are functions that preserve the underlying struc-
ture. Categories such as these effectively take given structures of the same sort, together
with their structure preserving maps, and package them into a single structure. Concep-
tually, such categories do what they sound like they do: essentially categorizing existing
mathematical structures. As such, these categories supply us with a few salient examples of

16. Modules play a large role in much of mathematical music theory, especially variants of R{O, P, L, D} and the
module of integers mod 12 (under addition), together with its affine transformations. At least as far back as Lewin
(see Lewin (2010), originally published in 1987), transformations between musical elements (instead of musical
objects like the C major chord) became the focus of many music theorists, where the transformations in question
often form a group. Certain elements of algebra, especially group theory, have accordingly been used for some
time to systematize the treatment of common operations on musical chords, and geometrical models of musical
structure have also been considered by a few authors (such as Tymoczko (2011)). Approaches to questions of
music theory that incorporate category theory (starting with Mazzola (1985)) are somewhat harder to come by,
but the reader curious about more category theoretic takes on music may find interesting Popoff, Andreatta,
and Ehresmann (2018), Noll (2005), and the work of Guerino Mazzola and followers. The module R{O, P, L, D}

presented above, together with further uses of it, is discussed in Mazzola and Andreatta (2006).
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what you might think of as categories of structures. When Eilenberg and Mac Lane (1945)
first defined categories and the related notions allowing categories to be compared (intro-
duced in the next chapter), they stressed how it provided “opportunities for the comparison
of constructions. . . in different branches of mathematics.” But with Grothendieck’s Tôhoku
paper a decade later,17 it started to become evident that category theory was not just a con-
venient tool for comparing different mathematical structures, but was itself a significant
mathematical structure of its own intrinsic interest. While earlier uses of category the-
ory treat categories as largely dispensable tools for helping to identify properties of given
mathematical entities such as Abelian groups or certain modules, in Grothendieck’s paper
categories become objects of mathematics in their own right, whose common properties
start to take on an intense mathematical interest. One way of starting to appreciate the sort
of shift here is to realize that we do not just have categories consisting of mathematical
structures of interest, but equally important are those categories that allow us to view cat-
egories themselves as mathematical structures of interest in their own right. The following
two examples supply an initial way into this perspective of categories as structures (each
of which example reveals crucial features of categories in general and is accordingly often
said to supply us with a means of doing “category theory in the miniature”).

Example 8 (Each order is already a category) Let (X,≤X) be a given preorder (or, less
generally, a poset). It is easy to verify that we can form the category Xby

• taking for objects of X the elements of X; and
• declaring that there exists a morphism in X from a to b exactly when a≤ b (and there is

at most one such arrow, so this morphism will necessarily be unique).

Notice how transitivity of the relation ≤ will automatically give us the required com-
position morphisms, while reflexivity of ≤ just translates to the existence of identity
morphisms. Thus, we can regard any given preorder (poset) (X,≤X) as a category X in
its own right.

In the other direction, if for every pair of objects A, B in a category C, there is at most
one morphism between A and B, then C in fact defines a presentation of a preorder (poset).

Example 9 (Each monoid is already a category) A monoid M= (M, ·, e) is a set M
equipped with

• an associative binary multiplication operation · : M×M→M, that is, · is a function from
M×M to M (a binary operation on M) assigning to each pair (x, y)∈M×M an element
x · y of M, where this operation is moreover associative in the sense that

x · (y · z) = (x · y) · z
for all x, y, z∈M; and

• a designated “unit” element e∈M, where this acts as a two-sided identity in that it
satisfies

e · x = x = x · e
for all x∈M.

17. See Grothendieck (1957); it is now common to refer to this as the Tôhoku paper.
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Comparing this definition to that of a category, it is straightforward to see how any monoid
M can be regarded as a category of its own. Specifically, it is a category with just one
object. It does not matter what this object is taken to be, and a priori it has nothing to do
with sets and certainly does not come with any structure. To indicate as much, we can just
represent it with an arbitrary symbol, such as �. For morphisms of this category we just
use the elements x∈M, that is, for each x∈M there will be a morphism

� �x

The identity morphism id� is then taken from the monoid unit e and the composition
formula for morphisms

� �

�

x

y◦x=y·x y

from the monoid multiplication. As this operation is associative and e acts as an identity,
we do indeed have a category.

In the other direction, notice that if C is a category with only one object C—or just
picking one object out from the category—and we let Hom(C, C) denote its collection
of morphisms (i.e., all the morphisms from C to itself, called “endomorphisms”), then
(Hom(C, C), ◦, idC) will be a monoid.

Finally, an element m∈M of a monoid is said to have an inverse provided there exists an
m′ ∈M such that m ·m′ = e and m′ ·m = e. This lets us define a very important mathematical
object: that of a group. A group is just a monoid for which every element m∈M has an
inverse. Moreover, if the group operation does not depend on the order in which two group
elements are written, then the group is said to be abelian. Similar to what we saw with a
monoid, any group itself can be shown to give rise to a category in which there is just one
object, but where every morphism (given by the group elements) is now an isomorphism,
in the following purely category theoretic sense:

Definition 10 In a category C, a morphism f : A→B for which there exists a morphism
g : B→A in C such that g ◦ f = idA and f ◦ g = idB is called an isomorphism.

Inverses are unique, so we can write g = f –1. Observe that the objects A and B are then
said to be isomorphic, denoted A∼= B, whenever there exists an isomorphism between them.
Such a notion is used to inform us about when we can regard two objects of some category
as the same.

The previous two examples—orders and monoids—are not just examples of any old
categories, but in an important sense, categories in general may be regarded as a sort of
fusion of preorders on the one hand and monoids on the other. Over and above the fact
that each monoid and each preorder is itself already a category in its own right, these
two examples are special in that, through them, we can appreciate how categories more
generally are exceptionally “monoid-like” and “preorder-like.” We saw that every monoid
can be exhibited as a single-object category. Seen from the other side, categories in general
may be regarded as the many-object version of monoids. We saw that every preorder can
be exhibited as a single-arrowed category, as between any two objects there is at most
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one arrow. Seen from the other side, categories in general may be regarded as the many-
arrowed version of preorders. Sometimes, like Leibnizian monads, within a small part of
the universe, set off on its own, we can see reflections of the whole. In this sense, individual
monoids and preorders are like microcosms in which we can glimpse “in the miniature”
the essential features of the general notion of a category. Monoids furnish us with not just
a study of composition “in the miniature” (by collapsing down to a single object), but in a
sense the associative binary operation and neutral or identity element that comprise the data
of a monoid seem to provide a prototype for the general associativity and identity axioms
of a category. Preorders, for their part, furnish us not just with a study of comparison of
objects via morphisms “in the miniature” (by collapsing down to at most one morphism
from any object to another), but in a sense the reflexivity and transitivity of the order seems
to provide the model for the key data specifying a category, that is, the assignment of an
identity arrow to each object (via reflexivity) and the composition formula (via transitivity).

There is another important (if more philosophical) way in which monoids in particu-
lar can shed light on categories. This has the added benefit of introducing the interesting
notion of oidification and an alternative (philosophically appealing, if somewhat less use-
ful) definition of categories. In order not to unduly distract the reader, we press on with
some additional examples of categories and other more pressing matters, leaving a brief
section on this topic to the very end of the chapter.

1.2 A Few More Examples

There are many more categories that we might mention, and that are important to mathe-
maticians. However, we will instead just draw attention to a few more categories, and let
the rest that will be of particular use to us emerge organically throughout the book.

Example 11 Top is the category that has topological spaces for objects and continuous
functions for morphisms. This category, and topology in general, is discussed in detail in
chapter 4.

Example 12 Measure is the category that has measure spaces for objects and (on one
definition) appropriate equivalence classes of measurable functions for morphisms.

Example 13 Man is the category that has smooth (infinitely differentiable) manifolds for
objects, smooth maps for morphisms.

Example 14 Suppose we are given V a vector space. Then we can define a category V as
follows:

• for objects: V has only one object, called ∗;
• for morphisms (arrows from ∗ to ∗): the vectors v in V;
• for the identity arrow for ∗: the zero vector; and
• for composition of vectors v and v′: their sum.

Let us now have a look at an example involving a rather important category, one that
starts to make better sense of the idea that, in being visualized by arrows between dots,
category theory might be regarded as some sort of graph theory, but with something extra
(where this involves some extra structure regarding composition of arrows). In our ear-
lier definition of a (directed) graph from example 5, observe that there were no conditions
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placed on arcs and vertices other than those involving the source and target functions,
picking out the source vertex and the target vertex of a given arc a; in particular, there
was no requirement regarding the composition of arcs. Thus, it is not the case that a cate-
gory is a graph, for a directed graph in general has no notion of composition of arcs (and
does not even have a notion of identity arrows). However, any category—well, any small
category18—does have an underlying graph. While the converse does not hold, it is an
important fact that every directed graph can be made into a certain category, via a special
construction, discussed in the following example.

Example 15 Given a directed graph G, we first describe the notion of a path in G, as any
sequence of successive arcs where the target of one arc is the source of the other. More
explicitly, for each n∈N, we define a path through G of length n as a list of n arcs,

i(0) i(1) i(2) · · · i(n)
e(1) e(2) e(n)

where the target of each arc is the source of the next one. A path of length 1 would then
amount to a single arc, while a path of length 0 would be a vertex (node). We can create
a category Pth(G), the category of paths through G, with objects the vertices of G and for
morphisms from objects x to y all the paths through G from x to y. Given two paths,

i(0) i(1) i(2) · · · i(n)

and

j(0) j(1) j(2) · · · j(m),

with the end node of the first equal to the start node of the second, that is, i(n) = j(0), we
form the composite path by concatenating or sticking together the two paths along this
identical node, that is,

i(0) i(1) · · · i(n) = j(0) j(1) · · · j(m)

resulting in a new path from i(0) to j(m). Then, concatenating paths end to end is associa-
tive, making composition in Pth(G) associative. As for ensuring that each object (vertex
of G) has an identity arrow in Pth(G), we can observe that each vertex has an associated
“length 0” path, and sticking such a path at the end of another path does nothing to change
that other path. Thus, we can just take the paths of length 0 as our identity arrows, that is,
the identity at an object x is given by the path of length 0 from x to x. Moreover, given a
graph homomorphism f : G→G′, every path in G will be sent under f to a path in G′.

We will have more to say about this category, and the construction that generates it, in
the next chapter.

1.3 Returning to the Definition and Distinctions of Size

Before moving into consideration of how we can get some new categories from old, let us
take the opportunity to make an important observation, leading to some important notions
and distinctions having to do with size. We have stressed how many of the examples given
thus far are categories whose objects are structured sets and where the morphisms are

18. The meaning of this distinction is discussed in a moment, in section 1.3.
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(some appropriately “structure-preserving”) functions between the underlying sets. Cate-
gories of this sort are sometimes called concrete categories. Beyond Set itself, of those
categories introduced thus far, Pre, Pos, Top, Mon(Group), ModR, Vectk, Grph, and Man

are all examples of concrete categories. Such examples might lead us to believe that all
categories involve just considering some mathematical structures that are fundamentally
set-like together with the appropriate notion of morphism between them (where this is
some sort of function). However, in an arbitrary category, it cannot be assumed that objects
are structured sets and morphisms structure-preserving functions, something that will
become more evident especially as we consider more complicated categories. Moreover,
the morphisms of a category are not always functions. For now, consider “nonconcrete”
(or abstract) examples furnished by each poset (or preorder) regarded as a category, each
group (or monoid) regarded as a category, and example 14. With a given monoid regarded
as one object category, recall that the single object has nothing in principle to do with
sets, and the morphisms don’t carry any structure. Likewise, the morphisms of a given
poset regarded as a category are just derived from the order relation, and a priori are not
functions.

Considerations of this sort let us raise another important matter, taking us back to
the original definition of a category we gave in definition 1. Recall how this definition
mentioned a “collection” of objects and a “collection” of morphisms. While I originally
suggested that the reader think of a “collection” roughly in terms of a “set,” this is not
in fact accurate, as the collection of objects may not be a set and arrows need not even
be functions. In particular, some collections will not be sets for they are “too big” to be
sets—an observation that leads to an important distinction of categories and a few useful
definitions.

To better motivate discussion of these matters, first observe that for each of the concrete
categories we have looked at, the “collection” of objects will not form a set. To appreciate
this, it suffices to consider the case of the category Set. We said that this category was
concrete, where this meant that the objects of the category are each themselves (perhaps
structured) sets, and the arrows are functions (perhaps of a certain “structure-preserving”
type). But notice what this does not say: it does not say that the collection of all objects
of the category—which is what we are interested in, as far as the first data item of the
definition is concerned—forms a set. Suppose that by “collection” in the definition of a
category we had meant set. Then, as far as Set goes, the first data item of such a category
would be a set of all sets. But for reasons having to do with Russell’s paradox, which first
emerged in the context of naive set theory, assuming such a set of all sets could even exist
leads to a number of fatal foundational problems. So what is the status of the “collection”
of objects?

The most direct way this sort of problem was addressed with set theoretical solutions
involves prohibiting the unrestricted formation of sets so that such a set of all sets does
not exist, and to introduce classes as a way of retaining “set-like” collections that can still
be clearly defined by a property that all its members share, while being distinct from sets
and so avoiding paradoxes of the sort first brought to light by Russell. In the Zermelo-
Fraenkel (ZF) set theory the reader may be familiar with, one does not see a formal notion
of classes, yet it is still common to speak informally of classes, referring to a class that is
not a set as a proper class (or large class), while a class that is a set is called a small class.
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The precise formal notion of “class”—and the consideration of whether a given entity
constitutes a large class or not—ultimately depends on foundational context, that is, on the
choice of a set theoretical framework that might allow for the formulation of such things.
Strictly speaking, from the axioms of ZF, the class of all small classes (i.e., of all sets)
cannot even be formally constructed and attempting to do so leads to contradictions of the
sort involved in Russell’s paradox. However, adopting certain extensions of ZF, such as
the von Neumann-Bernays-Gödel axioms (NBG), allows us to formally distinguish classes
and sets, and offers perhaps the most basic technical solution. Classes are taken to be the
basic objects of the theory, and a set is formally defined in terms of it: a set is just a class
that can be an element of other classes (and a proper class, then, is just a class that is not
a set, in this sense). In such a context, the “collection” of all sets that supplies the objects
of Set can be seen as a proper class, rather than a set—and the same would go for other
similar categories, such as Group.

There are other ways of addressing the issues at stake here, including using
“Grothendieck universes,” but going deep enough into these matters to do them justice
would take us too far afield.19 Without stressing about which foundational framework we
are using, let us agree to say that

Definition 16 A class is small if it is a set; it is large otherwise.

While any individual set—being a set!—is small, the point is that (within the founda-
tional contexts that allow for the precise formulation of such notions) there are classes that
are large, and the class of all sets is one example of such a thing.

Definition 17 A category C is said to be small if both the collection of objects of C and
the collection of morphisms of C are sets; it is large otherwise.

Occasionally one will see a small category C defined as one for which the collection
of all morphisms in C is small (large otherwise), that is, where there is no more than a
set’s worth of morphisms. Adopting the framework of NBG, then, we would be saying
that a large category is one whose class of morphisms is a proper class; otherwise, the
category is small. Such definitions that focus on the size of the collection of morphisms
is ultimately the same as the one given in definition 17, using the fact that objects can be
shown to correspond bijectively with identity morphisms, which morphisms of course form
a subclass of the morphism class of a category, from which it follows that if C is small in
the sense that its morphism class is small, then the class of objects of C will be small (i.e.,
a set) as well.

There are many categories that are not small, which can be seen by noting how the
concrete categories introduced above each have too many objects to be small, and so are
all examples of categories that are large. Yet, a category that is not small may locally—that
is, between any pair of fixed objects—look like a small category. This notion is captured
by the following definition:

Definition 18 A category is said to be locally small whenever between any pair of objects
there is only a set’s worth of morphisms.

19. Shulman (2008) is a nice reference for the reader interested in pursuing these size issues and the related
foundational matters.
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We could thus say that a category is small if and only if (iff) it is both locally small and
its class of objects is small. Of course, any small category is thus locally small, but many
large categories end up being locally small as well. For instance, the concrete categories
we have seen thus far, while not small, are indeed locally small in this sense.20 For a locally
small category C, it is customary to write HomC(A, B) or (dropping the subscript) C(A, B)
for the collection of morphisms from A to B in the category C. As this collection is indeed
a set, it is customary to call the set of morphisms between a pair of fixed objects a hom-set
(regardless of whether these are literal homomorphisms). The reader should also be aware
that it is now customary to use this hom-set notation even in the case of categories that are
not necessarily locally small, a custom adopted in this book.

The distinctions just introduced will be useful to us going forward and issues related to
the size of a category will occasionally resurface throughout the rest of the book. Before
ending this section, though, let us address one potentially lingering issue. At this point, the
reader who has followed this remark so far might be wondering:

if removing any vagueness in the word “collection,” thereby cashing in on the definition, is to
make use of some rigorous foundation allowing for, say, the notion of classes, why not just say
“class” and specify what is meant by this in the first place?

Adopting a rigorous foundation, such as NBG, capable of supporting the theory of classes,
and then writing “class” everywhere we wrote “collection” in the definition is indeed a
perfectly acceptable approach, and one will sometimes see authors do this. However, it is
even more common to see the definition stated in terms of “collections,” as we did. One
might viably understand “collection” to encompass both sets and proper classes, as “class”
does—but since the precise definition of “class” itself depends on the foundational context,
one prefers not to commit to saying “class” (and having to specify the foundational context)
and instead uses the more agnostic and deliberately vague “collection.” Another reason for
preferring the word “collection” is a little more philosophical: a category is really just any-
thing that conforms to the definition’s conditions. And if any rigorous foundation allowing
us to make the relevant distinctions might be used in support of the definition, so that it
is effectively independent of chosen foundation, then being overly specific about the par-
ticular set theoretical notion of class, for instance, seems to suggest that the concept of a
category ultimately rests on some prior set theoretical framework and that any categori-
cal treatment of set theory, for its part, may end up involving some circularity. But this
is misleading and misrepresents the power of category theory. There are some thornier
issues here, certainly, but let us instead end this section by noting that while Set is indeed
a very important category, one is not to imagine that category theory somehow lives within
set theory. In a way that we can make more precise in chapter 6, set theory itself can be
thought of as doing “zero-dimensional” category theory. Moreover, since the 1970s with
the work of Lawvere, efforts have been made to show that effectively all the mathemati-
cally significant portions of set theory and logic (in the narrow sense) can be seen as part
of category theory.

20. In part because so many categories of interest are locally small, some authors accordingly even take local
smallness as part of their definition of a category.



40 Chapter 1

1.4 Some New Categories from Old

There are many important things one can do to categories, to generate new categories from
old ones. Attention is confined, in this final section of the chapter, to those that will be most
important for our purposes.

Definition 19 Let C be a category. The dual (or opposite) category Cop is then defined as
follows:

• objects: same as the objects of C;
• morphisms: given objects A, B, the morphisms from B to A in Cop are exactly the

morphisms from A to B in C (i.e., just reverse the direction of all arrows in C).

Identities for Cop are defined as before, composites are formed by interchanging the order
of composition as one would expect, yielding a category. In more detail, for each C-arrow
f : A→B, introduce an arrow f op : B→A in Cop, so that ultimately, these give all and only
the arrows in Cop. Then the composite f op ◦ gop will be defined precisely when g ◦ f is
defined in C, where for

A B C,

f

f op

g

gop

we have that f op ◦ gop = (g ◦ f )op.

In slogan-form,

Given a category, just reverse all its morphisms and the order of composition, and you’ll get
another category (its dual)!

With this seemingly innocuous construction, every result in category theory will have a
corresponding dual, essentially got “for free” by simply formally reversing all arrows (and
respecting the induced change in the order of composing arrows). In general, given a state-
ment or construction framed in the language of category theory, when we refer to the dual
of that statement or construction, we simply mean the statement or construction that is
obtained by interchanging the source and target of each morphism as well as the order of
composition of two morphisms. When a statement is true in a category C, then its dual will
be true in the dual category Cop—“by duality” will refer to this invariance of truth under
the operations involved in taking the opposite category. Such duality not only can clarify
and simplify relationships that are often hidden in applications or particular contexts but
it also reduces by half the proof of certain statements (since the other, dual statement will
“follow by duality”)—or, to see things another way, it multiplies by two the number of
results, as each theorem will have its corresponding dual. Finally, for any C, note that we
will have that (Cop)op = C.

Next, we consider how, given a category C, we can form a new category by taking as
our objects all the arrows of C.

Definition 20 For a category C, we define the arrow category of C, denoted C→, as
having

• objects: the morphisms A
f−→B of C;
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• morphisms: from the C→-object A
f−→B to the C→-object A′ f ′−→B′, a morphism is a pair

〈A h−→A′, B k−→B′〉 of morphisms from C, making the diagram

A A′

B B′
f

h

f ′

k

commute (in C).

Composition of arrows is then carried out by placing commutative squares side-by-side,
that is, we put

A A′ A′′

B B′ B′′
f

h

f ′

l

f ′′

k m

so that 〈l, m〉 ◦ 〈h, k〉= 〈l ◦ h, m ◦ k〉. The identity arrow for an object A
f−→B is given by the

pair 〈idA, idB〉.
With the arrow category, we are seeing all the arrows of the old category as our objects in
the new category. The next construction instead looks at just some of the old arrows, where
we restrict attention to arrows that have fixed domain (source) or codomain (target).

Definition 21 Given a category C, and an object A of C, we can form the two categories
called the slice and co-slice categories, respectively denoted

(C ↓A) (A ↓C),

also called the category of

objects over A objects under A,

respectively.21 The objects of the new category are given by

arrows to A arrows from A.

In other words, objects of the slice category are given by all pairs (B, f ), where B is an
object of C and f : A→B an arrow of C, and of the co-slice category by all pairs (B, f ) such
that f : B→A is an arrow of C.

Morphisms in the new category are given by h : (B, f )→ (B′, f ′), where this is an arrow
h : B→B′ of C for which the respective triangles

B B′ A

A B B′
f

h

f ′
f f ′

h

commute in the sense that, for instance, for the triangle on the left, f ′ ◦ h = f .

21. These categories are also particular cases of a more general construction, known as comma categories. It is
not uncommon to see the slice category of objects over A∈Ob(C) referred to as C/A, and the co-slice category
of objects under A referred to as A/C.
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Composition in (C ↓A) and (A ↓C) is then given by composition in C of the base arrows
h of such triangles.

Categories of this type play an important role in advancing some of the general theory,
in addition to being of some intrinsic interest. For now, the slice category of objects over A
might be thought of as giving something like a view of the category seen within the context
of A (and the corresponding dual statement for the category of objects under A).

Finally, we define the following notion of a subcategory.

Definition 22 A subcategory D of a category C is got by restricting to a subcollection of
the collection of objects of C (i.e., every D-object is a C-object), and a subcollection of the
collection of morphisms of C (i.e., if A and B are any two D-objects, then all the D-arrows
A→B are present in C), where we further require that

• if the morphism f : A→B is in D, then A and B are in D as well;
• if A is in D, then so too is the identity morphism idA;
• if f : A→B and g : B→C are in D, then so too is the composite g ◦ f : A→C.

Moreover, we can also define the following:

Definition 23 Let D be a subcategory of C. Then we say that D is a full subcategory of C

when C has no arrows A→B other than the ones already in D, that is, for any D-objects A
and B,

HomD(A, B) = HomC(A, B).

Example 24 The category FinSet of finite sets—the category whose objects are all finite
sets and whose morphisms are all the functions between them—is a subcategory of Set. In
fact, it is a full subcategory.

The category of abelian groups Ab is a (full) subcategory of the category of groups
Group. ModR is a subcategory of ModAffR.

If C is the category that has for objects those parts of Rn that are open—we will have
more to say on this in chapter 4—and for morphisms those mappings between objects that
are continuous, then a subcategory D of C is formed by restricting to mappings that have a
derivative, where a rule of basic calculus shows that D has composition. A further subcat-
egory of D could be got by further restricting to those mappings that have all derivatives
(i.e., the smooth ones). There are many other important examples of subcategories that we
will encounter throughout this book.

There are a number of other useful things one can do with categories, not to mention the
important things one can do and find within categories. Discussion of such matters is taken
up in the next chapters, and left to emerge organically throughout the book.

The real power of category theory, however, only really comes into its own once it is real-
ized how, by putting everything on the same “plane,” we can consider principled relations
between categories. This is what we discuss in the next chapter.
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1.5 Aside on ‘‘No Objects”

Box 1.1

No Objects

It is entirely common to name categories after their objects, and in most cases entirely natural
to present categories in a “two-sorted” manner, with the two sorts objects and morphisms. In
a given mathematical context, we are often already very familiar with the objects, and com-
fortable with seeing the relevant structure-preserving morphisms as entities that sit on top of,
or are somehow secondary to, the objects. More generally, as human beings, we seem espe-
cially ready to divide up the world into objects, on the one hand, and processes or connections
between those objects, on the other, where we take the latter to be somehow parasitic on the
more primitive objects.

But as natural as this approach may seem, the objects of a category are in fact in bijective
correspondence with (i.e., equivalent to) the identity morphisms—which, on account of one of
the axioms, are uniquely determined by how they act as two-sided identities for composition.
As such, it is really just the algebra of morphisms (without objects) that determines a category.
Guided by this, one can give alternative definitions of a category that use only morphisms. The
following presents such a single-sorted or “no objects” version of the definition of a category.

Definition 25 (Category definition again [“no objects” version]) A category (single-sorted)
is a collection C, the elements or “individuals” of which are called morphisms, together with
two endofunctions s, t : C →C (think “source” and “target”) on C and a partial function ◦ :
C ×C →C, where these satisfy the following axioms:

1. x ◦ y is defined iff s(x) = t(y);
2. s(s(x)) = s(x) = t(s(x)) and t(t(x)) = t(x) = s(t(x)) (so s and t are idempotent endofunctions

on C with the same image);
3. if x ◦ y is defined, then s(x ◦ y) = s(y) and t(x ◦ y) = t(x);
4. (x ◦ y) ◦ z = x ◦ (y ◦ z) (whenever either is defined);
5. x ◦ s(x) = x and t(x) ◦ x = x.

Notice how the elements of the shared image of s and t—that is, the x such that s(x) = x
(equivalently, t(x) = x)—are the identities (or what we would normally construe as the objects).

It is likely that the “punch” of this definition is lost on a reader seeing it for the first time. The
important thing to realize is that behind this presentation is the idea that each object in the
usual definition of a category can in fact be identified with its identity morphism, allowing us
to realize an arrows-only (or “object-free”) definition of a category.

Moreover, referring back to example 9, it is in the context of such an arrows-only version
that we can even more easily see how monoids are just one-object categories—which really
matters because it ultimately lets us better appreciate how categories in general are just many-
object monoids. From a given monoid, we would obtain a category by defining s(x) = t(x) = e,
where e is the monoid constant (identity) element. Going the other way, given a (nonempty)
category satisfying any of

• s(x) = s(y),
• s(x) = t(y), or
• t(x) = t(y),
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we can define e as the (unique) identity morphism, and thus obtain a monoid. Note, by the
way, how this says that s is a constant function (and thus, so is t, and they are in fact equal).

In this way, single-sorted categories can be seen to emerge via what is sometimes called
“oidification” (in this case, of monoids), where this describes a general twofold process
whereby

1. some construction is realized as equivalent to a certain category with a single object; and
then

2. the construction is generalized (“oidified”) by moving to a further instantiation or version
of that same category type that now has more than one object.

As the nLab highlights, in terms of nomenclature, categories give a pretty notable exception
to this general rule of appending “oid” to a concept as we move to its many-object version,
and perhaps we should all be greatly relieved that enough people did not succumb to the
temptation to replace the term category with what this process suggests we should call such
many-object monoids: a monoidoid!

We will see more examples of this process later on. For now, let us remark briefly on the
broader significance of this object-free perspective. Consider how, in the context of graphs
and graph theory, the novice will likely see arcs (arrows) as secondary to vertices (objects),
for the arcs are frequently construed as just pairs of vertices. It also seems plausible that
“psychologically” it is somehow more natural or easier for many of us to begin with objects (as
the irreducible “simples”) and then move on to relations between those objects. But in more
general treatments of graphs, dealing with directed multigraphs or quivers for instance, one
begins to appreciate that this proclivity really gets things backward: in fact, in more general
settings, arcs are more naturally seen as primary and vertices can be seen as degenerate sorts
of arcs, or as equivalence classes of arcs under the relations “has the same source (target) as.”

In a similar fashion, one might argue that our default object-oriented mindsets can get things
backward, in terms of what is really fundamental conceptually. It is often said in category
theory that “what matters are the arrows/relations, not objects”—which is the substance of
the observation that it is the algebra of morphisms that really determines a category, but it
goes far beyond this as well. This is a very powerful idea, one that seems to permeate many
aspects of category theory, and it even resurfaces in a particularly poignant way with one of
the key results in category theory (the Yoneda results, covered in chapter 6). The object-free
definition of a category given above is not typically the one seen in an introduction to cate-
gories, perhaps because it seems to complicate the presentation of many classical examples
of categories, whose presentation is comparatively more straightforward using the standard
two-sorted definition of a category. However, the object-free approach is arguably even more
fundamental conceptually, and well attuned to the core philosophy of much of the categorical
approach—which insists, in a number of ways, that what really matters is how objects and
structures interact or relate—so it is worthwhile to at least be familiar with the existence of
such a definition.



2 Prelude to Sheaves: Presheaves

In which we climb up the ladder of abstraction—scaling up the “morphisms
are what’s important” paradigm—by introducing morphisms between categories
(functors) and morphisms between those (natural transformations), and then
develop a store of examples of, and perspectives on, certain sorts of functors called
presheaves, a construction on which the central object of this book depends.

It is often said that category theory privileges relations over objects, and in the last chap-
ter you were exposed to what we might call the “morphisms are what’s really important”
perspective. As you meet more and more examples of categories, and especially as you
begin to appreciate how a category is itself a mathematical construction with characteristic
structure of its own intrinsic interest, a natural set of questions arise: if we treat categories
themselves as objects, do we have a notion of morphisms between categories? And if so,
what do the morphisms between categories look like? Is the model of preservation of struc-
ture still a good one? And if so, what is the relevant structure of a category that will have
to be preserved by morphisms between categories?

Morphisms between categories are supplied by functors. Here is where the remarkable
power of these categorical notions really starts to kick in, and where we lean even further
into the “morphisms are what’s really important” philosophy. To begin to appreciate where
this might lead us, recall the arrow category, defined last chapter in definition 20, where
one just takes the morphisms of a given category as the objects of a new category. What if,
extending this idea, we now regarded functors as objects? Is there a notion of morphisms
between functors? Yes, these are natural transformations. These constructions interact in
an astoundingly rich manner, and we can continue further with this same controlled scaling
procedure.

This chapter introduces functors and natural transformations, considers a wide variety
of examples of functors and exhibits the many things we can do with them, introduces the
concept of a presheaf (another name for a certain type of functor) and a category built
out of presheaves, and uses a variety of examples of presheaves to further reflect on the
different classes of things the presheaf does. The central object of this book, the sheaf,
depends on this more general concept of the presheaf. In the introduction, we mentioned
that sheaves effectively attach information locally to regions of some “space,” doing so
in a way that permits passage from local to global. Slightly more formally, the space can
be made into a category, and so can the data. Then a presheaf will be a certain principled
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association of the first category to the second one, where a sheaf will amount to a presheaf
that satisfies some further conditions. This will all be substantially improved upon. For the
present chapter, we focus on developing a good understanding of functors and presheaves.

2.1 Functors

If a category is a context for studying a specific type of mathematical object and the
network of relations entertained between those objects, a functor is a principled way of
comparing categories, translating the objects and actions of one category into objects and
actions in another category in such a way that certain structural relations are preserved
through this translation. As a way of moving in a controlled way between categories, one
can initially think of a functor as doing any of the following things: specifying data locally;
producing a “picture” of the source category inside the target category, modeling the one
category or some aspect of that category within another; taking advantage of the methods
available in the target category to analyze the source category; converting a problem in
one category into another where the solution might be more readily apparent; realizing an
abstract theory of some structured notion (such as a group) in a certain background or on
a specific “stage”; forgetting or deliberately losing some information, perhaps in order to
examine or identify those features more robust to variations or to ease computation. But
underneath these different interpretations or uses is a very simple requirement: a functor
just transforms objects and maps in the source category into objects and maps in the target
category, in such a way that two equations (amounting to the preservation of the structure
supplied by identities and composites) are satisfied. Functors also come in two flavors,
depending on their direction or variance. Formally,

Definition 26 A (covariant) functor F : C→D between categories C and D is an
assignment of

1. an object F(c)∈D for every object c∈Ob(C); and
2. a morphism F(f ) : F(c)→F(c′) in D for every morphism c→ c′ in C,

which assignments satisfy the following two axioms:

1. For any object c in C, F(idc) = idF(c) (“F of the identity on c is the identity on F(c)”);
2. For any composable pair f , g in C, F(g) ◦F(f ) = F(g ◦ f ).

Observe that this last condition just states that F of a composite of two morphisms in C is
the composite (in D) of their images under F, that is, whenever we have

c c′

c′′

f

g◦f
g

commutative in C, then the induced diagram

F(c) F(c′)

F(c′′)

F(f )

F(g◦f )
F(g)

commutes in D.
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While such functors preserve the “direction” of morphisms—since the source of a mor-
phism in C is assigned to the source of the image morphism in D, and the same for
targets—there are plenty of constructions throughout mathematics that would supply us
with examples of functors, in that they seem to do everything a functor does, except that
they reverse direction by taking sources to targets and targets to sources. The notion of a
contravariant functor lets us accommodate such things.

A (contravariant) functor F from category C to category D is defined in the same way on
objects, but differently on morphisms (where the source and target are swapped). Explic-
itly, to each morphism f : c→ c′ ∈C a contravariant functor F assigns a morphism F(f ) :
F(c′)→F(c)∈D. This assignment must satisfy the same identity axiom F(idc) = idF(c) as
above, but for any composable pair f , g in C, we must now have F(f ) ◦F(g) = F(g ◦ f ) (note
the change in order of composition).

All the information of this definition is displayed below (the covariant case on the left
and contravariant case on the right, and with identity maps omitted except for on one of
the objects):

c F(c) c F(c)

c′ F(c′) c′ F(c′)

c′′ F(c′′) c′′ F(c′′)

C D C D

f

g◦f

idc

F(f )

F(g◦f )

F(idc)

f

idc

g◦f

F(idc)

g F(g) g

F(f )

F(g)

F(g◦f )

F F

We will write F : C→D, or C
F−→D, to indicate that F is a functor from C to D. Functors

will usually be denoted with upper-case letters (F, G, etc.), though we may occasionally
use a more evocative name to indicate what the functor does.

Remark 27 Observe that by simply reversing the direction of all the morphisms in the
category C—that is, using the opposite category Cop, as defined in definition 19—and then
just using a covariant functor, we recover the notion of a contravariant functor on C. On
account of this, in principle a contravariant functor F : C→D can always be replaced by
a covariant one F : Cop→D, using the opposite category for the source category. Accord-
ingly, whenever we speak of “functor,” we will by default mean covariant functor, and to
handle contravariant functors we will just speak of (implicitly covariant) functors and use
the opposite category for our source category.

The truth of the frequently cited claim of Eilenberg and Mac Lane that “the whole con-
cept of a category is essentially an auxiliary one; our basic concepts are essentially those of
a functor and of a natural transformation”22 proves itself in time to anyone who works with

22. Eilenberg and Mac Lane (1945, 247). Natural transformations, the morphisms between functors, are
introduced in the next section of this chapter.
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categories. Before helping the reader to better appreciate this for themselves by exploring
a variety of examples of functors, let us use the notion of a functor to introduce a few other
items of interest.

In addition to their intrinsic interest, functors are of special interest to us because of their
essential role in the definition of presheaves—a concept that, as the name suggests, will be
rather important to the development of sheaves.

Definition 28 A (set-valued) presheaf on C—where C is assumed to be a small category—
is a functor Cop→Set.23

As we will see, a presheaf can often be thought of as consisting of some specification
or assignment of local data, according to the “shape” of the domain category; a sheaf
will emerge as a special sort of presheaf in that its local data can be glued or patched
together locally. Before addressing in more detail the nature of presheaves, we give another
important definition and then provide some examples of functors in general.

By now the reader should be comfortable with the core idea of taking mathematical
objects of a certain type together with their (possibly structure-preserving) morphisms and
assembling this into a category. In this same spirit, functors define morphisms between
categories, there is a natural notion of composition of functors as well as a functor that
acts as the identity, and the composition of functors can be shown to respect the axioms on
associativity and identities. So categories and functors can be assembled into a category of
their own!

Definition 29 The category of (small) categories, denoted Cat, is the category that has

• objects: small categories;
• morphisms: functors between them.

To verify that this is indeed a category, we need to establish identity morphisms (func-
tors), that the composition of two functors (when defined) leaves us with a functor, and that
all this data satisfies the axioms on associativity and identity. Explicitly, we will need the
following very boring, but ultimately quite useful, functor.

Definition 30 Given a category C, the identity functor is the functor idC : C→C that does
what you would expect it to do. Explicitly, it takes an object to itself and a morphism to
itself, that is,

• idC(c) = c,
• idC(f ) = f .

As for composites: letting C, D, and E be (small) categories, and F : C→D and G : D→
E be (covariant) functors, we can then define the composition of G with F, or composite
functor G ◦F : C→E, on objects c of C by (G ◦F)(c) := G(F(c)), and on morphisms f : c→
c′ of C by (G ◦F)(f ) := G(F(f )). We can then show that the composition of two functors

23. Incidentally, as a presheaf is just a contravariant functor from a category C to Set, the reader may wonder
why we give it two names. Such a reader might find useful the fun notion, used by the nLab authors, of a concept
with an attitude—meant to capture those situations in math when one and the same concept is given two different
names, one of the names indicating a specific perspective or attitude suggesting what to do with the objects, or
the sorts of things one might expect to be able to do with them. In renaming a (set-valued) contravariant functor
as a presheaf, then, we have a concept with an attitude, specifically looking forward to sheaves.
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is a functor. Letting f , g be morphisms of C such that their composite g ◦ f is defined, we
have

(G ◦F)(g ◦ f ) = G(F(g ◦ f ))

= G(F(g) ◦F(f ))

= G(F(g)) ◦G(F(f ))

= (G ◦F)(g) ◦ (G ◦F)(f ),

where the first and last lines are by definition of the composition of functors and the middle
two use the fact that F and G are assumed to be functors themselves. Moreover, observe
that for any object c of C, we have

(G ◦F)(idc) = G(F(idc))

= G(idF(c))

= idG(F(c))

= id(G◦F)(c).

This shows that the composite G ◦F of two functors is itself a (covariant) functor.24 It is
straightforward to show that, as morphisms, functors obey the associativity and identity
axioms, thus ensuring that Cat indeed forms a category.

Remark 31 In section 1.3, we raised some size issues and important distinctions related
to size. In considering possible definitions of the category of categories, the same sorts
of size issues take on an even greater significance. In definition 29, we implicitly tried to
get ahead of some of these lurking size issues by only counting small categories among
our objects. Observe that the resulting category Cat itself will be locally small, yet not
small. This is good, since it means that, being large itself, Cat won’t be an object of itself,
and so we skirt any issues analogous to Russell’s paradox. However, in taking only small
categories for objects, categories like Set, Pos, Mon will not be found among the objects
of Cat. (Though they are subcategories.)

Naturally, this raises a question: if such nonsmall (large) categories cannot be found
among the objects of Cat, is there a category that does include them among its objects?
We will denote such a category, which admits large categories as objects and the functors
between them as morphisms, by CAT. Again hoping to avoid problems analogous to the
paradox discussed in section 1.3, we are inspired to stipulate that the objects in CAT still
be locally small; defined thus, CAT for its part would not be locally small, and so it is not
in danger of being an object of itself.

In this book, we won’t worry too much further about differences between these two
categories, and will mostly just find ourselves dealing with Cat.

2.1.1 Examples of Functors

Functors appear all over mathematics. But perhaps the lowest-hanging examples of func-
tors can be found by looking at those established mathematical structures of a certain type

24. Relying on this fact, and in order to avoid certain notational infelicities like (G ◦F)(g ◦ f ), we will occasionally
use the juxtaposition notation GF for composite functors, where this is understood to be the same as G ◦F.
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that individually assemble into a category and thereby supply us with a particularly simple
way in to categories as objects of study in their own right. In these cases, we would expect
that a functor between such objects, now each regarded as an individual category in its own
right, would recover the usual important structure-preserving relations that are expected to
obtain among such objects as they appear in their native setting. This is what is illustrated
by the following two examples.

Example 32 Recall from example 3 (chapter 1) that a preorder X:= (X,≤) is traditionally
defined as a set X together with a reflexive and transitive binary relation ≤. Recall also
that we can transform a given preorder into a category X by defining, for every pair of
objects x, x′ ∈X, the hom-set HomX(x, x′) as either empty (in case the pair (x, x′) is not
related by ≤) or as consisting of the unique morphism x→ x′ (just in case x≤ x′), making
the composition formula completely determined. In other words, it is a category that has at
most one morphism between any two objects.

If X:= (X,≤X) and Y:= (Y ,≤Y ) are two preorders, regarded as categories, then what
is a functor F : X→Y? First of all, it assigns an object x in the set Ob(X) = X to the
object F(x)∈Ob(Y) = Y . In other words, it acts as a function on objects. Given a morphism
f : x→ x′ in X (from which, from the traditional perspective of the preorder, we are just
saying that x≤ x′), by the definition of a functor this will get sent to F(x)→F(x′) in Y,
which will moreover be unique (and corresponds, at the level of the preorder, to saying that
F(x)≤F(x′)). But this just says, at the preorder level, that x≤ x′ implies F(x)≤F(x′). In
other words, with the notion of a functor between preorders treated as categories we have
recovered the usual notion of maps between preorders, namely a monotone map, as defined
in definition 4. Moreover, it is easy to see that a contravariant functor between preorders
regarded as categories will just recover the notion of an antitone (order-reversing) map,
that is, whenever x≤ x′, then f (x′)≤ f (x).

Example 33 Recall from example 9 (chapter 1) that each monoid (and each group) can be
regarded as its own category. Explicitly, we saw that a monoid (M, e, ·) can be considered
as a category Mwith one object and with hom-set equal to M, where the identity morphism
comes from the monoid identity e and the composition formula from the monoid multipli-
cation · : M×M→M. Given two monoids (M, e, ·) and (N, e′, �), where these are regarded
as one-object categories M and N, we might hope that a (covariant) functor from one to
the other would just recover the usual notion of a morphism between monoids, a monoid
homomorphism, where this is defined as a map φ : M→N that respects the structure in the
sense that

φ(m ·m′) =φ(m) � φ(m′) and φ(e) = e′.

One can immediately see that the above equations are the same as defining a covariant
functor between M and N, when these are each regarded as a category. A contravariant
functor from M to N, for its part, is exactly a monoid morphism that flips the elements,
that is, φ(m ·m′) =φ(m′) � φ(m).

Since a group is just a monoid in which every element is invertible, a similar story can
of course be told using groups. A group can be regarded as a category with one object
such that every morphism is an isomorphism, and then a functor between such categories
recovers the notion of a group homomorphism.
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Before leaving this example, we might also mention a few other prominent functors
relating the mathematical structures under consideration. There exists a functor Core :
Mon→Group that ingests a monoid (M, e, ·) and spits out the subset of invertible ele-
ments of that monoid—which of course leaves us with a group, typically called the core of
the monoid M. There is a related functor Cat→Grpd sending a category C to the largest
groupoid inside C, also called its core.25 It’s also worth mentioning that when we said that
each monoid could be regarded as its own category we were really just appealing to the
fact that there is a functor Mon→Cat that takes a monoid to its corresponding category!

Moving beyond examples where the functors pass between categories that are funda-
mentally the same type of structure, we need to begin to appreciate some of the other
important things functors do.

Example 34 In many settings, one might want to transfer one system of objects that
present themselves in a certain way in one context to another context where irrelevant
or undesirable (e.g., noisy) features are suppressed, while simultaneously preserving cer-
tain basic qualitative features. In the definition of a category, and indeed in the definition of
many mathematical objects, typically one specifies (1) underlying data, together with (2)
some extra structure, which in turn may satisfy (3) some properties. One obvious thing to
do when considering some category C is to deliberately lose or ignore some or all of the
structure or the properties carried by the source category. This process informally describes
forgetful functors, which provide us with a large source of examples.

There are many examples where Set is the target category, since many important cate-
gories are sets with some structure; however, forgetful functors need not have Set for the
target category. For instance, since a group is just a monoid (M, e, ·) with the extra property
that every element m∈M has an inverse, this means that to every group we can assign its
underlying monoid and every group homomorphism will get assigned to a monoid homo-
morphism between its underlying monoids—this is carried out simply by forgetting the
extra conditions on a group. Thus, there is a forgetful functor U : Group→Mon.

While the “forgetting” terminology might suggest some sort of (possibly pejorative) loss
of information, another way of looking at the same process is that it extracts and empha-
sizes only the important features of the objects under study. An illustration of this comes
from detectors, which in practice often act to forget or lose information carried by a sig-
nal, while preserving fundamental features of the underlying signal. This is exactly what is
useful about such tools, since what is removed is clutter, leaving us with a compressed rep-
resentation of the original information (with the effect that the result of applying the functor
might be more robust to variations, more relevant to a particular application, simpler for
computation, etc.).

A signal is essentially a collection of (local) measurements related to one another, and
the topology associated with these measurements tells us how a measurement is affected by
noise; for instance, a signal over a discrete set is typically either not changed by noise at all
or it changes drastically, while a signal over a smoother space may depend less drastically

25. A groupoid is just like a group except that it can have more than one object, as the discussion of oidification in
section 1.5 would suggest. More formally, a groupoid is a category such that every morphism is an isomorphism;
a morphism between groupoids is also just a functor. As such, we could then define a group as a groupoid with
only one object.
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on perturbations.26 As already anticipated, as a forgetful functor, a detector acts to remove
something—specifically, it acts to remove topological structure from the signal (which may
have the effect of quantizing signals)—but, as a functor, it should also preserve certain
features of the signal.

As a specific and simple instance of this, consider a threshold detector.27 A detector
can just be regarded as a functor from some category of signal data into some subcate-
gory of Set. We can describe a threshold detector as a detector that ingests a continuous
(real-valued) function f ∈Cont(R) and spits out the open set on which f (x) > T for a given
threshold T ∈R. The domain of this functor will be the category Cont(R) which has for
objects the continuous real-valued functions and for morphisms f → g whenever f (x) > g(x)
for all x∈R. The threshold detector is thus a functor D that assigns to each f ∈Cont(R)
the open set D(f ) = {x∈R | f (x) > T}, that is, it lands in the category Open(R) of open
sets of R, whose morphisms are given by subset inclusion. Moreover, one can see that if
f → g, then we will have D(g)⊆D(f ), making D a contravariant functor from Cont(R) to
Open(R), that is, our threshold detector D is a functor D : Cont(R)op→Open(R).

In general, forgetful functors frequently can tell us interesting things about the source
category. For instance, we have a functor U : Cat→Grph, which informs us that cate-
gories have underlying graphs. Recall from the definition of a directed graph (see example
5, chapter 1) that a graph G = (V , A, s, t) just consists of a set V of vertices, a set A of edges
(which will be directed, so we also call them arrows), and a pair of functions s, t : A→V
codifying the direction of the edges (arrows) by assigning to each a∈A its source vertex
s(a) and target vertex t(a). In general, we have been displaying the objects and morphisms
of a category as the vertices and edges of a directed graph, and we draw directed graphs
the way we draw categories—which may superficially suggest graphs and categories are
fundamentally “the same” sort of thing. But observe that, as defined, directed graphs just
consist of vertices and edges—where the directedness of the edges is codified by infor-
mation regarding designated source and target vertices—and a priori there is no notion of
composition of edges and no identities to speak of.

To appreciate how the functor in question works, consider that, when defining a category,
we could have equally defined a (small) category by saying that the data of the category
involves a set of objects (let’s denote this by C0), a set of morphisms (denoted C1), and

a diagram C1 C0,
s

t together with some structure (composition and identities) and
properties (identity and associativity axioms). Really, the additional structure and proper-
ties concerning composition and identities can be codified by supplementing the previous
diagram with another map i : C0→C1 assigning identity arrows to each object, and another
set C2 := {(f , g)∈C1×C1 | t(f ) = s(g)} together with a partial operation capturing com-
position C2

◦−→C1. In this way, we are effectively describing a small category C with the
diagram

C2 C1 C0
◦

t

s
i

26. All matters of topology—including the open sets and related topological matters invoked in the next
paragraphs—are discussed extensively in chapter 4.
27. This idea for this threshold example comes from Robinson (2014).
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where the expected behaviors of compositions and identities are codified by further equa-
tions. Comparing this formulation to the definition of a directed graph, it should come as
no surprise that there is a functor sending categories to their underlying directed graph.
What the functor U does is take the objects of a category to vertices of its underlying graph
and the morphisms to the graph’s directed edges (arrows), where the associated source
and target functions of the graph agree with the source (domain) and target (codomain)
assignments of the category. As there is no further structure or conditions having to do
with composition of arrows or with identities in a graph, U basically “forgets” anything
having to do with specifications of identities and composition. More explicitly, U can be
seen as taking the category C—described by the diagram above—to the underlying graph

C1 C0

s

t

and then acting on morphisms (functors) by ignoring parts of the category diagram that
contain information about i and ◦ (since graph homomorphisms, as simply a mapping of
edges to edges and vertices to vertices that preserves sources and targets, effectively have
nothing to say about matters of identities and compositions).

Forgetful functors often come paired with corresponding free functors. For instance,
corresponding to the “underlying graph” functor U, there exists the free category functor
F : Grph→Cat, which we have in fact already met in example 15 (chapter 1). Recall that,
given a directed graph G, we can create a category Pth(G), the category of paths through G,
with objects the vertices of G and morphisms the paths through G. The resulting category
of paths of a graph G, Pth(G), gives us the free category generated by G, which can be
thought of as the result of freely adding to a given directed graph all paths (all possible
composite arrows) as well as all the identity arrows. The resulting category has the same
set of objects (i.e., vertices) as the original graph, but it will in general have a larger set
of morphisms, for the hom-set Hom(v, v′) in the resulting category will consist of all the
paths in the graph G from v to v′, which may include arrows that were not in the original
graph. Graph homomorphisms then extend into unique (covariant) functors.

In short, this path construction gives rise to a functor F : Grph→Cat, called the free
category functor. Pth(G) is always the largest category generated by G. On the other hand,
G also generates a smallest category by taking the quotient of Pth(G) by the relation that
identifies two paths that share the same source and the same target. In this connection,
any category C can be obtained as a quotient of the corresponding category of paths of its
underlying graph, under the equivalence relation identifying two paths if and only if they
have the same composite in C.28

Altogether, constructions and results established in the context of graphs can be applied
to categories, once we forget about composition; and conversely, results concerning cate-
gories can be applied to graphs by simply replacing a graph by its category of paths. And
these things are codified by the existence of the functors just described.

28. Getting ahead of ourselves somewhat, it is worth noting that the pair of functors Cat Grph
U

F
are

related in a very special way, one that will be explained in the treatment of adjunctions in chapter 7. This relation
is especially significant, for it forms an important adjunction that gives rise to a particular construction called a
monad that is a starting point for the generalization to n-categories.
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Example 35 We just saw that categories have underlying graphs. There is the important
related notion of a diagram in a category C, a notion that in some sense captures a general-
ized idea of a subgraph of a given category’s underlying graph.29 A diagram is defined as
a functor F : J→C where the domain, called the indexing category or template, is a small
category. Typically, one thinks of the indexing category as a directed graph, that is, some
collection of nodes and edges that serves as a template defining the shape of any realiza-
tion of that template in C and that may also specify some commutativity conditions on the
edges which are to be respected by C. Then a diagram can be regarded as something like
an instantiation or realization in C of a particular template J. Each node in the underlying
graph of the indexing category is instantiated with objects of C, while each edge is instan-
tiated with a morphism of C. If we write the objects in the index category J as i, j, . . . ,
and the values of the functor F : J→C in the form F(i), F(j), . . . , then a diagram amounts
to a family of objects F(i) of C indexed by the nodes of J and a family of arrows F(e)
of C indexed by the edges of J. Accordingly, one sometimes speaks of a diagram F as a
J-indexed set, or Jop-parametrized set (depending on the variance of the functor). Functori-
ality demands that any of the composition relations (in particular, commutative diagrams)
that obtain in J carry over (under the action of F) to the image in C.

We will have a lot more to say about this perspective later in this chapter. For now, let us
look at a few concrete illustrations of this. First consider the category

•0 •1

id0 id1

of two objects and a single non-trivial morphism, often called 2.30 With such a category for
our indexing category, a (set-valued) diagram yields a category that has as objects all the
functions from one set to another set, and as morphisms the commutative squares between
those arrow-objects. In more detail: a morphism from object f : A→B to object g : C→D
will be a pair of functions 〈h, k〉 such that

A C

B D

h

f g

k

commutes. Composition is component-wise, that is, 〈j, l〉 ◦ 〈h, k〉= 〈j ◦ h, l ◦ k〉, and the
identity arrow for f : A→B will be the function pair 〈idA, idB〉. Does it look familiar? It
should. This is just the arrow category introduced earlier, in definition 20!

Suppose instead we take for our indexing category 3, or [2], the linear order category
with length 2

29. A subgraph is just what it sounds like: a subset of a (directed) graph’s edges (and associated vertices) that
constitutes a (directed) graph. For undirected graphs, the notion is even more straightforward: graph G′ is a
subgraph of graph G when the vertex set V′ of G′ is a subset of the vertex set V of G and the edge set E′ of G′ is
a subset of the edge set E of G. In other words, a subgraph is essentially a graph within a larger graph.
30. 2 is isomorphic to the linear order [1], so one will occasionally see it go by that name.
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•0 •1

•2
Then a diagram on this category just acts to pick out as objects commutative triangles. As
a final example, taking the category 2× 2× 2 as our indexing category just serves to pick
out as objects commutative cubes

• •

• •

• •

• •
in the target category.

As we will see, this diagram approach can be significantly generalized and can even
be used to provide definitions of n-categories, specifying the data for an n-category as
a diagram (presheaf) A :Σop→Set, where Σ is some category of shapes and the functor
yields, for each shape, a set of “cells” of that shape.31

Example 36 Expanding on the previous perspective, assume we are given as indexing
category J :=

a

d

b

c

q ri

f g h

Now let the diagram F : J→Set be given on objects by

F(a) = {1, 2}, F(b) = {1, 2}, F(c) = {1, 2, 3},

F(d) = {1, 2, 3, 4}, F(q) = {1, 2, 3}, F(r) = {1, 2}

31. Treatment of n-categories is beyond the scope of this book. Instead, let us just observe how this diagram
approach already suggests a more general definition of presheaves: for categories C and J, a C-presheaf on J

can be defined as a contravariant functor from J to C. Instead of taking presheaves to be functors taking values
in Set, we can thus use other target categories, like the category of groups, rings, vector spaces, modules, and
so on. While this more general definition is perfectly coherent (and is useful for achieving greater generality),
presheaves are classically regarded as valued in Set. While this is not entirely necessary, as we just saw, there is
also good reason for it. In brief, it has to do with the fact that the category of sets occupies a somewhat special
place: as we will explore in chapter 6, the usual categories are enriched over sets, by which we effectively mean
that given a pair of objects X, Y ∈C, we can form HomC(X, Y), an object of Set. Moreover, another factor here
has to do with the fact that only set-valued functors are representable. Both of these matters—that of enrichment,
and representable functors—are covered in chapter 6. For now, however, it is worth noting that in most categories
C, the hom-sets HomC(X, Y) are richer than just sets.
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and on morphisms by

F(f ) = 1 �→ 1, 2 �→ 2;

F(g) = 1 �→ 1, 2 �→ 2, 3 �→ 1;

F(h) = 1 �→ 1, 2 �→ 2, 3 �→ 4;

F(i) = 1 �→ 2, 2 �→ 1, 3 �→ 1.

This can be pictured as follows:

(a, 1)

(a, 2) (d, 1)

(d, 2)

(d, 3)

(d, 4)

(b, 1)

(b, 2)

(c, 1)

(c, 2)

(c, 3)

(q, 1)

(q, 2)

(q, 3)

(r, 1)

(r, 2)

This realization affords us a concrete illustration of another important construction, the
category of elements, which will be defined in chapter 3 and used to explain why there are
different thicknesses of arrows in this picture.

There are also many functors that recover important established constructions that
appear within the context of more specialized study of certain mathematical structures.
The following is an example of that.

Example 37 Graph coloring problems are a commonly discussed class of problems in
graph theory having to do with assigning colors to certain components of a graph subject
to certain constraints. Such problems can ultimately be formulated as a problem of ver-
tex coloring, where this is an assignment of “colors” (or any label) to a graph’s vertices
such that no two adjacent vertices share the same color, that is, so that whenever an edge
connects two vertices, those vertices are assigned distinct colors. Moreover, one speaks
of a coloring of a graph G by n colors as an n-coloring of the graph G. For an applica-
tion of such a problem, the vertices of a graph might represent radio stations, where two
vertices are adjacent (i.e., connected by an edge) whenever the stations are near enough to
cause interference, so that a coloring would then amount to an assignment of noninterfering
frequencies to the stations.

Recall the category of undirected (simple) graphs, SmpGrph, introduced in example
5 (chapter 1). The objects of such a category are the graphs that a graph theorist usually
means by the word, and the morphisms are the usual (undirected) graph homomorphisms,
that is, a graph homomorphism from a graph G = (V , E) to a graph G′ = (V ′, E′) is a func-
tion f : V→V ′ on the vertices such that if {x, y} is an edge of G, then {f (x), f (y)} is an
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edge of G′. There is a contravariant functor from this category of undirected graphs to the
category of sets—that is, a functor nColor : SmpGrphop→Set—that takes a graph to the
set of n-colorings of its vertices, so that for any graph G, nColor(G) will consist of the set
of all n-colorings of G. Observe how an n-coloring of a graph G′ together with a graph
homomorphism G→G′ will give rise to an n-coloring of G, illustrating the contravariance
of this functor. We will return to this functor in later chapters.32

Here is an example of a different flavor, one that also ties together a number of
constructions introduced thus far.

Example 38 There are natural language expressions that we use all the time to express
that someone or something has a certain property qua (or as) one thing but not qua some
other thing. For instance, one might say

John is fair qua businessman, but not qua politician,

or

Maria is inspirational qua teacher, but not qua basketball player.

We often make use of judgments involving the logic of qua. Suppose someone asks
you whether your friend Abe is honest. You might answer, “Well, it depends: in some
respects/aspects, Abe is honest; in other respects/aspects, not so much.” Perhaps you know
him to be an honest friend, and have no reason to suspect his dishonesty as a businessman,
but you have serious doubts about his honesty as a card player. In attempting to form a
judgment about your friend’s honesty, you can argue about which of the aspects are rele-
vant, or most relevant, and also about how Abe’s behavior, under a particular aspect, should
be interpreted (as honest or dishonest). However, in general, this sort of answer—“In some
aspects, yes; in others, not so much”—and the ensuing discussion or debates make sense.
Once agreement about these matters (which aspects are relevant, etc.) has been achieved,
we may use these assessments to arrive at a global judgment about Abe’s honesty.

We might conceptualize this situation category theoretically, using a particular category
of aspects or qua category.33 In this setting, we will be able to model things like the honesty
of Abe under aspect A, and moreover model the assembly of global judgments of the type
“Abe is honest,” “Abe is not honest,” “Abe is dishonest,” and so on, from this data of
judgments about Abe’s honesty qua the various relevant aspects.

Let us first define something we could call the nominal category CN.

Definition 39 The nominal category, CN, has for

32. Looking ahead, a sheaf will be defined as a particular presheaf satisfying certain properties with respect to
“covers” of the objects of the domain category (which we will meet more formally in chapter 4, dedicated to
topology). Anticipating this, the nColor presheaf functor defined on a related subgraph category will turn out to
give us a sheaf, since if some subgraphs Gi cover G, and if {ci ∈ nColor(Gi) | i∈ I} is a family of colorings such
that the colorings agree on intersections among the Gi, then the ci’s induce a unique coloring of the entire graph
G, which essentially is what it means to have a sheaf in this instance.
33. The idea for this, and the key definitions provided below (as well as the example, with mostly trivial
modifications), comes from Reyes et al. (1999).
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• objects: CNs (count nouns) relevant to discussion, for example, “a student,” “a
coworker,” “a husband,” “a parent,” “a family man,” “a student, a coworker, and a family
man,” written as

a s , a c , a h , a p , a f , a scf .

• morphisms: “identification” postulates of the form (copula connecting nouns)

a f a p , a scf a f ,is is

where these are meant to capture the identifications frequently used in natural languages,
such as “a family man is a parent,” “a student, a coworker, and a family man is a family
man,” “a dog is an animal,” and so on.

Identity morphisms are those particular axiomatic identifications of the form

a f a f .is

Composition is given by stringing together identifications in the obvious way, that is, when-
ever we have two arrows, the codomain of one as the domain of the other, we complete the
graph by adding an arrow that is the composition of the two arrows, and where this corre-
sponds to the common rule of inference in natural languages from things like “a human is
a primate” and “a primate is a mammal” to “a human is a mammal.”

Arrows of this category can be thought of as supplying a system of identifications, where
this replaces a notion of equality between kinds (since equality is a relation that might be
argued to obtain only between the members of a given kind). This category is assumed to
be posetal, where this means there is at most one arrow between two objects.

We know from definition 20 (chapter 1) that for a category C, we can form the arrow
category of C, denoted C→. Moreover, it turns out that we can identify any object A of C

with the object A idA−→A in C→. Using this arrow category construction, we can define our
main category of interest.

Definition 40 The qua category34 of CN, Qua(CN) (or just Qua), is defined as (CN→)op.

Because of how CN was defined, we will have at most one morphism from an object A
to an object B. When such a morphism exists, we can see A→B as A qua B, for example,

a f a p

will be to look at “a family man qua a parent.” Identifying A idA−→A with A, we are thus
identifying the count noun A with its global aspect A qua A, that is, as itself.

In modeling consideration of the various aspects of people, we will be interested in
a particular subcategory of (CN→)op, namely the co-slice category of objects under the
global object. For instance, the category

34. This is called the aspectual category in Reyes et al. (1999).
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a scf ↓CN

of objects under “a student, a coworker, a family man”—where this is identified with

the global aspect a scf
qua−−→ a scf —forms a subcategory A of the qua category

(CN→)op.
For concreteness, suppose we have

a scf qua a scf

a scf qua a s a scf qua a c a scf qua a f

a scf qua a p a scf qua a h

where the identity maps and those induced by composition are left implicit. In this way,
such an A will thus serve as a way of representing those aspects of a person, including
for instance Abe, relevant to whether or not a certain predicable holds of them, like “hon-
esty.” This is something that will be evaluated “qua scf” (in terms of all their “hats,” via
the global aspect), “qua student,” “qua family man,” and so on, where this latter has two
subaspects: “qua parent” and “qua husband.” Abbreviating these aspects, then, we could
have displayed A as

G

S C F

P H

Before defining the relevant functor towards which we have been building, let us also
record the following definition of a concept we will use here and throughout this book.

Definition 41 A functor F : Cop→Set is a subfunctor (subpresheaf ) of a functor G : Cop→
Set if

• for all c∈C, F(c)⊆G(c); and
• for all morphisms f : c→ c′ of C, F(f ) : F(c′)→F(c) is the restriction of G(f ) to F(c).

In other words, put more abstractly, for any f : c→ c′ in C there exists a commutative
diagram

F(c′) F(c)

G(c′) G(c).

F(f )

G(f )
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For reasons that will be better appreciated after we have introduced a few other notions,
we sometimes write F ↪→G to indicate that F is a subfunctor of G.

Now, given a qua category and P a set of predicables that are applicable to the count
nouns of CN—where predicables may be thought of for now as just involving grammat-
ical expressions consisting of adjectives, verbs, or adjectival and verb phrases, including
expressions such as “mortal” or “honest,” and “to be a person,” where this is derived from
or sorted by a count noun—we define an interpretation of (Qua, P) as a functor

X : Quaop→Set

together with a set
{Xφ ↪→X | φ∈P}

of subfunctors of X that satisfy the following conditions:

1. X
(

A qua B
)

= X
(

A qua A
)

; and

2. Xφ

(
A qua B

)
= Xφ

(
B qua B

)
◦X

(
B qua B → A qua A

)
Notice that since Qua = (CN→)op, then its dual, Quaop, is just CN→, making X equiva-
lently expressible as a functor

X : CN→→Set.

That we can compare the interpretations of count nouns in fact forms the basis of the pos-
sibility of comparing the corresponding interpretations of predicables that are functorial.
Using this notion of interpretation, and given a subcategory of Qua such as A above, we
can restrict the interpretation to the subcategory. Fundamentally, the functoriality here can
be understood as saying, for instance, if Abe is honest qua family man, then he is honest

qua parent. Moreover, a p will be interpreted as a set of parents, a scf as a set of
students who are also coworkers and family men. We will return to this example later in
the chapter, and again in later chapters.

The next example is very important for the general theory that will be developed in later
chapters, especially chapter 6.

Example 42 Let C be a category, and fix an object a of C. Then we can form the
(covariant) hom-functor HomC(a, –) : C→Set, which takes each object b of C to the set
HomC(a, b) of C-morphisms from a to b, and takes each C-morphism f : b→ c to the
following map between hom-sets:

HomC(a, f ) : HomC(a, b)→HomC(a, c), (2.1)

which outputs f ◦ g : a→ c for input g : a→ b. In other words, the action on morphisms is
given by postcomposition. This hom-functor will be defined for any object whenever the
hom-sets of C are small, that is, whenever C is locally small. Intuitively, the set HomC(a, b)
can be thought of as the set of ways to pass from a to b within C, or the set of ways a
“sees” b within the context or framework of C. Then, refraining from filling in the object
b, it should be obvious how Hom(a, –) can be thought of as representing in a rather general
fashion “where and how a goes elsewhere” or “how a sees its world.” Given an object
a∈C, we say that the covariant functor Hom(a, –) is represented by a; for reasons we will
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explore in chapter 6, this functor is also denoted Ya (or sometimes ha). It will turn out to
be an important observation that instead of restricting ourselves to the hom-functor on a
given a, we can assign to each object c∈C its hom-functor Hom(c, –), and then collect all
these together.

We can also form the contravariant hom-functor HomC(–, a) : Cop→Set, for a fixed
object a of C, which takes each object b of C to the set HomC(b, a) of C-arrows from b
to a, and takes each C-arrow f : b→ c to HomC(f , a) : HomC(c, a)→HomC(b, a), that is,
outputting g ◦ f : b→ a for input g : c→ a, acting by precomposition. This functor can be
thought of as representing “how a is seen by its world.” Given an object a∈C, we say
that the contravariant functor Ya := Hom(–, a) is represented by a. As above, instead of
restricting ourselves to the hom-functor on a, we can ultimately let this functor vary over
all the objects of C.

Throughout this book, we will see many more examples of functors. For now, though, we
can continue to develop the main concepts, ascending once more in generality, now regard-
ing functors as objects in a category, with morphisms given by certain transformations
between the functors.

2.2 Natural Transformations

Functors are important for many reasons. In particular, as we will explore in chapter 3 and
beyond, universal properties are given in terms of functors. Moreover, it is possible to use
two functors to do a variety of important things, such as produce a new category from
old categories. However, perhaps most important for our present purposes is the fact that
functors can be composed, and there is a nice notion of comparing functors.

There may exist a variety of ways of embedding or modeling or instantiating one cate-
gory within another, that is, there may exist many functors from one category to another.
Sometimes these will be equivalent, but sometimes not. Moreover, the same blueprint may
be realized in different ways, that is, there can be different functors that act the same way
on objects. Natural transformations enable us to compare these realizations. If functors
allow us to systematically import or transform objects from one category into another and
thus translate between different categories, natural transformations allow us to compare the
different translations in a controlled manner.

Definition 43 Given categories C and D and functors F, G : C→D, a natural transforma-
tion α : F⇒G, depicted in terms of its boundary data by the diagram

C D

F

G

α

consists of the following:

• for each object c∈C, an arrow αc : F(c)→G(c) in D, called the c-component of α,
the collection of which (for all objects in C) defines the components of the natural
transformation; and
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• for each morphism f : c→ c′ in C, the following square of morphisms (depicted on the
right), called the naturality square for f , must commute in D:

c F(c) G(c)

c′ F(c′) G(c′)

f

αc

F(f ) G(f )

αc′

The collection of natural transformations from F to G is sometimes denoted by Nat(F, G).

Let’s step back and unpack this a little. In the general context of a category, we think of
each arrow of a category as a way of comparing two objects. As we climb the ladder of
abstraction and introduce functors, we think of functors as distinct ways of comparing two
categories. As we suggested earlier—though we will refine this in the coming sections—
one way of viewing a functor from C to D is as supplying some sort of “picture” of C within
the world of D. Taking the next step on the ladder of abstraction, a natural transformation
effectively compares two functors. Following Goldblatt (2006), one way of building intu-
ition of the idea of a transformation from F to G is to imagine that, within D, you have to
superimpose or slide the picture of C given by F onto the picture of C given by G, where
you make use of the structure of D in carrying out this translation. Minimally, to compare
a picture given by F to one given by G, we ought to assign to each object c of C an arrow
in D going from the image F(c) of c under F to the image G(c) of c under G. For a given c,
we could name this “component” of the transformation by αc : F(c)→G(c), to track which
object we are attending to. Collecting these together, for all the objects of C, gives us the
components of our transformation α. But there surely needs to be something else to this
process, beyond just an indexed family of arrows. As functors, we also have information
about how F and G act on the morphisms of C, and we will need to use this to complete the
pictures supplied by F and G. Incorporating this information, for each morphism f : c→ c′

of C, we automatically end up with diagrams like the naturality square depicted above. As
a final step, asking that such diagrams commute (in D) is exactly the “natural” thing to do,
if we want to continue with the same sort of notion of structure-preservation that we have
been developing on lower rungs of the ladder of abstraction.

We will see a variety of examples of natural transformations in the coming sections. For
now, let us make a few other useful observations and definitions. First of all, observe that
the same notion works for functors of the other common variance as well. If F and G are
both contravariant functors, then the same definition applies, except the vertical arrows are
reversed in each of the naturality squares.

Now, if natural transformations are ways of comparing functors, at the extreme we ought
to be able to use this notion to develop a refined idea of when two functors are fundamen-
tally the same functor. The following notion helps us do just that—and, as we will see, a
lot more.

Definition 44 A natural isomorphism is a natural transformation α : F⇒G for which
every one of the components αc : F(c)→G(c) is an isomorphism (in the target category).
In other words, each αc has an inverse α–1

c : G(c)→F(c), where these inverses form the
components of a natural transformation α–1 from G to F.

When α is such a natural isomorphism, we denote this by writing α : F∼= G.
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Let’s push this further. We already know that we can compose functors, and we have
also met the identity functor on a category. Combining these ingredients together with
the notion of a natural isomorphism provides us with a more refined notion of when two
categories are equivalent.

Definition 45 An equivalence of categories consists of a pair of functors F : C→D, G :
D→C together with the natural isomorphisms η : idC

∼= G ◦F and ε : F ◦G∼= idD. Another
way of saying this is that the functors are inverse to each other “up to natural isomor-
phism of functors.” The categories C and D are then said to be equivalent if there exists an
equivalence of categories between them, and in such cases we write C�D.

Remark 46 Recall the category-theoretic notion of an isomorphism from definition 10
(chapter 1). By running that definition on the category of categories (say, Cat), we get the
concept of an isomorphism of categories, where this is a pair of functors F : C→D, G :
D→C such that their composites equal the respective identity functors, that is, G ◦F = idC

and F ◦G = idD. This will moreover induce a bijection between the objects of each category
as well as between their morphisms.

The overly restrictive notion of an isomorphism of categories should be compared to
the more relaxed (and ultimately superior) criterion of identity or “sameness” of two cate-
gories we find in the notion of an equivalence of categories. Even rather simple categories
can be found to illustrate the point that, as far as categories are concerned, the notion of
isomorphism of categories is not the right thing to consider—many categories may indeed
appear “the same” in all important respects, yet they won’t be isomorphic (often for rea-
sons that appear to be trivial or irrelevant). Grothendieck, who first introduced the notion
of equivalence of categories, accordingly stressed the differences between the two notions,
and how the notion of an isomorphism of categories is, in many cases of practical interest,
not at all a useful notion. He was in part motivated to this because he was dealing mainly
with functor categories (introduced below), and among such categories it is common to
find categories that appear to be the same in every important categorical respect, yet are
not isomorphic.

If we know from constructions like the arrow category that it is sensible to take things
like functors as objects, and if natural transformations can be regarded as morphisms
between functors, this data should let us form a new category! Indeed, this gives us the
following important category.

Definition 47 For any fixed pair of categories C and D, we can form the functor category,
denoted by DC (or, less commonly, by Fun(C, D)), where this has for

• objects: all the functors from C to D;
• morphisms: all the natural transformations between such functors.

Of course, to exhibit this as a category, we need identities and composites, and to show
that the relevant axioms are satisfied. For a functor F : C→D, we can assign its identity
natural transformation idF : F⇒F to be the natural transformation whose components are
each identities. For composition of morphisms in DC, we use the following notion:

Definition 48 Let α : F⇒G and β : G⇒H be natural transformations between the parallel
functors F, G, and H, from C to D, as depicted by the diagram:
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C D

F

G

H

α

β

There is a natural transformation β ◦α : F⇒H, where this is defined on components: com-
ponents (β ◦α)c :=βc ◦αc are taken to be the composites of the components of α and
β.

You might think of this, at the level of the components and their naturality squares, as a
matter of pasting the naturality squares together into rectangles.

For reasons discussed briefly in the remark to follow, this sort of composition is usually
referred to as vertical composition.

One can verify that this composition operation satisfies the two axioms of a category, by
checking it on components and using the fact that composition automatically satisfies these
properties in D (since it is a category). We thus have a category, and a rather important one
at that, as we will see.

Remark 49 After you have sat with categories and natural transformations, it may occur
to you that the notion of natural transformations seems to support another kind of compo-
sition, distinct from that given in definition 48. Indeed, imagine we move “horizontally”
via functors from one category C to D and then again via functors from D to E, as depicted
in the following diagram:

C D E.

F1

G1

F2

G2

α β

Horizontal composition uses the symbol � and gives β �α : F2 ◦F1⇒G2 ◦G1, whose
component at c of C is defined as the composite of the following commutative square:

F2F1(c) G2F1(c)

F2G1(c) G2G1(c).

βF1c

F2(αc)
(β�α)c

G2(αc)

βG1c

While we will not be needing this notion of horizontal composition in this text, it is used
to further generalize the definition of a category, defining a 2-category, a starting point for
higher and higher climbs up the ladder of abstraction.

For our purposes, perhaps the most important thing to note here is that since presheaves
are just (contravariant) functors, so that we are given a notion of a morphism of presheaves
from F and G as just a natural transformation α : F⇒G, we can form the presheaf functor
category.

Definition 50 The presheaf category, denoted SetCop
or PreSh(C), is the (contravariant)

functor category having for objects all functors F : Cop→Set, and for morphisms F→G
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all natural transformations θ : F⇒G between such functors. As a natural transformation,
such a θ will assign to each object c of C a function θc : F(c)→G(c), and do so in such as
way as to make all diagrams

d F(d) G(d)

c F(c) G(c)

θd

F(f ) G(f )f

θc

commute for each f : c→ d in C.

Example 51 For J, an arbitrary category viewed as a template or indexing category for C,
we can define another sort of functor category by looking at the category CJ of J-diagrams
in C, where each object is a functor F : J→C, and for two such objects F, G, a morphism
of CJ from F to G is a natural transformation between the functors.

Especially on account of the important place that presheaf categories will occupy in our
story, we will see many more examples of natural transformations in action, in a variety of
contexts. For now, let us delve a little deeper into what it is to be a presheaf.

2.3 Seeing Structures as Presheaves

When we work with a mathematical structure, it is common to try to approach it in terms
of its elements. In general, it is very natural to want to break things down by decomposing
more complicated structures into their components—and elements, like points, are one
sort of component we seem especially ready to recognize as such. But in certain settings,
one needs to consider figures of a more general shape than points. Points, after all, might
be regarded as just a particularly simple kind of “shape.” For instance, suppose you are
presented with the structure X:

This X depicts what is called a bouquet. Figures in the bouquet X with the shape “point”
can be regarded as maps •→X, each of which map names a point in X:



66 Chapter 2

We use the generic shape • to locate and name all the distinct point-like figures of X, that
is, via a particular map • a−→X we name with a one of the various •-like components of X.
Altogether, the data of our point-like figures in X really just amounts to a set

X(•) = {a, b, c, d},

which you might read as saying “X realizes a, b, c, and d as its figures of shape •.”
But you could not hope to understand all that this structure X is just by considering the

point-like figures! After all, points are not the only sort of figural component in X. Thus,
there are in fact many distinct bouquets that may even have the same set of points (yet
will look rather different!). So we also need a way of picking out those figures in X whose
shape is that of a “loop.” Similar to our point-like figures in X, we can pick out and name
loops via maps from the generic shape into X:

In other words, the data here is captured by the set

X( ) = {α,β, γ, δ, ε, ζ, η, θ, ι},

which you might read as saying “X realizes α,β, γ, . . . as its figures of shape .”
But do we then have enough information to reconstruct X? Well, many bouquets may

have the same set of loops, but the home point at which they live may be different. You
would not regard these as the same thing. To fully capture X, then, we also need a way
of extracting the data of where each loop-shaped figure lives, that is, how the loop-shaped
figures relate to the point-shaped figures. Corresponding to the inclusion of the generic
shape “point” in the generic shape “loop”

• i−→ ,
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we should then have a map

X( )
X(i)−−→X(•)

l �→ p,

taking a loop l to the point p at which it is stationed, and so informing us about which loops
get stationed at which points. For instance, this will tell us that

X(i)(α) = c,

or “the loop-shaped component named α lives at the point-shaped component named c.”
The equations telling us which point each of the loops are assigned supply us with what
are called the incidence relations.

With all this information—the set X(•) and X( ), together with a map describing how
the loop elements in the latter set are sent to the points in the former set—it would seem
that we will be able to recover the whole of the information of the bouquet X itself.

But described in this way—and this is the point!—what else have we been saying but
that X itself can just be regarded as a presheaf

X :Bop→Set,

where the indexing category B is

B := • i ?

In general, what we are starting to develop is the extension of an idea whereby we consider
maps with codomain X as figures in X, where the domain of a figure is regarded as its shape
or type, and where the incidence relations giving such an X its structure, and describing
how the figures of distinct shapes relate, are then specified in terms of a map between the
figures. In this same manner, if our domain or source category is regarded as consisting of
some generic “shapes,” related in some particular way (such as points included in pointed
loops), then the result of realizing or figuring those shapes, via the image of a specified
presheaf X, can be imagined as a “container” holding onto the various concrete realizations
or instantiations of the different generic shapes supplied by the source category, where the
natural relation that obtains between the underlying shapes is respected by the associated
figures realized in the target category.35

In a similar way, suppose we instead take for our indexing category of shapes the single
object ∗ and all the morphisms generated by iterations of σ, that is, the free monoid on one
generator (σ),

E := ∗

σ

35. This figure perspective, applied to presheaves, is advocated by Lawvere, especially in Lawvere and Schanuel
(2009). This approach is taken even further in the delightful Reyes, Reyes, and Zolfaghari (2008), which much of
the remainder of this chapter is inspired by and which is highly recommended to the reader who finds the topics
and discussions of this chapter of particular interest.
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Then presheaves X on this arise as dynamical systems (evolutive sets) or automata, where
X supplies the set of possible states, and the given endomap σ gives rise to the evolution of
states (think the change in internal state that results after the passage of one unit of time,
or as a result of pressing the “button” σ on the outside of a machine). In other words, if X
is a presheaf on E, we think of its image as a container containing a set of figures—shaped
in the form of dots, corresponding to various instantiations of the object ∗ of C, and in the
form of arrows between certain of those dots, corresponding to the endomap σ of E—with
a process taking each element to a next stage or next element. In this way, we might end
up with an X such as

a

e f

d

i

b
c

g h

Altogether, as we will see, SetE
op

, the category of presheaves on E, with objects like X, will
itself be none other than the category of evolutive sets or dynamical systems.

Similarly, if we instead took as our indexing shape category the category of n-evolving
sets, that is, En, freely generated by n nonidentity morphisms:

En := ∗σ1

σ2

···

σn

then the container of En-shaped figures would have figures similar to the picture of a
presheaf on E, except with (up to) n different processes carrying one ∗-figure to the next,
for example,
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A similar approach can also be taken when using more distinct indexing categories.
For instance, recall the particular subcategory A of Qua from example 38. Applying an
interpretation functor X : Aop→Set then results in a container of A-shaped figures, for
example,

As before, we could regard X(S), for instance, as picking out or naming those who are
“shaped like,” or of type, student. If we organize things a bit, grouping together those
people that are picked out as conforming to the same shape (in this case, their role), then
what is fundamentally going on here can be displayed more sensibly as
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An interpretation X of such an A is really just an object of the presheaf category SetAop

together with a set of subfunctors corresponding to the predicables of P . Morphisms of
this category are just natural transformations from an interpretation X to an interpretation
Y such that the restrictions to Xφ ↪→X can be factored through Yφ ↪→Y .

As in the previous examples, the idea here is that the domain category supplies the
generic shape according to which figures or instantiations of such shape are organized, and
where the overall realization of such figures as figures of such a shape, constrained to relate
in a way that respects the underlying relations of the shapes of the domain, is accomplished
via the functor.

Generalizing from such examples, the story we are starting to tell is that for a presheaf
P : Cop→Set, for certain C it is often natural to think of the result of applying P as leaving
us with some sort of container of C-shaped figures, where the various objects c of C are
thought of as supplying the generic figures, or templates of a figure, that are then instanti-
ated or figured or realized in Set; for example, P(c) is some particular set of instantiations
or figures of c-shape. A functor is fundamentally a way of turning objects and structured
connections in one world C into objects and maps in another world D, and doing it in such
a way that certain equations are satisfied (where these equations code for the preservation
of structure, or compatibility of the transformation with the composition of maps in D).
Another way of thinking of a presheaf is thus as a realization of C in Set.

So far, we have mostly dwelt on how the presheaf operates on objects. Obviously, as
a functor, we must also consider the action specified by the (contravariant) functor, that
is, how it acts on morphisms. The basic idea will be that, following the figures of generic
shape c interpretation, a morphism in C from one object to another will give rise to a
change of figures, where this means, more precisely, that if we have a figure x of shape
c (i.e., x∈P(c)) and a figure y of shape c′ (i.e., y∈P(c′)), then asking about the effect of
changes of figures amounts, at the level of the presheaf, to asking to what extent the figures
are incident or overlap (and what this overlap structure looks like) or otherwise relate.
But the same idea would apply to less geometrical settings, for instance using an indexing
category that is more time-like, and adopting the interpretation of P(c) as a set existing at
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stage c. Then the morphisms of C, when acted on by the presheaf, would model varying
the stage, or transitions between stages—so that, overall, the functor can be interpreted as
supplying a picture of a set varying through time. In the next section, we start to look more
closely at interpretations such as the incidence relation, as well as some others such as the
variable-set interpretation—as always, via examples. Such examples will enable us to start
to think more systematically about presheaves and their action. Moreover, in building on
some of the examples thus far, looking closer at the resulting presheaf category, we will
see some further examples of natural transformations.

2.4 The Presheaf Action

It is not uncommon to see in the literature on presheaves references to right C-sets (which
are the same as left Cop-sets). Similarly, one will sometimes hear talk of a presheaf’s right
action. We will think of there being four characteristic kinds of cohesivity or variability
presented by presheaf categories in accordance with four main ways the right action of the
presheaves in question can be found to operate. But before discussing these interpretations
of a presheaf (illustrating them each through select examples), it may be useful to further
explain the reference to the presheaf action as a right action, in case it is not already clear
why one can see this being referred to as an action (and, moreover, why the action is right).

2.4.1 Right Action Terminology

A presheaf is ultimately just a functor (one with a particular variance). At least with the
usual set-valued presheaves, in applying a given functor P to each of the objects of the
domain category C, we just get a bunch of sets, P(c), P(c′), and so on, indexed by the
objects of C. The functoriality of the given presheaf P, then, just means that for every
map f : c′→ c in C, we will have a function—since we are landing in Set, after all!—
P(f ) : P(c)→P(c′) going the other way. So we just have a function that takes the elements
x of the set P(c), that is, the set P seen at stage c (or “seen in the shape of” c), to elements
of the set P(c′), that is, P seen at stage c′ (or “seen in the shape of” c′). In other words,

for each element x of P(c) and each map c′
f−→ c of C, there is an associated element xf of

P(c′).36

Now, the contravariance of the functor of course means that the functor applied to a

composite f ◦ g, where c′′
g−→ c′

f−→ c, should be the same as the functor first acting on f
then acting on g. In other words, in terms of the elements x∈P(c), f , g, and xf as above,

whenever c′′
g−→ c′

f−→ c, we must have x(f ◦ g) = (xf )g in P(c′′). Moreover, functors must
respect identities. But all this data essentially means that we are dealing with what, in other
settings, one would call a right action of C on the underlying set (formed by the presheaf
P), and where this right action expresses the incidence relations or transitions among the
various figures x, x′, and so on.

In those other contexts, if we have some mapping X×A→X, it is common to refer to
such a map as a right action of A on X. Usually A is some monoid or group (and X is a set).
The basic idea is that A is thought of as furnishing a set of “buttons” that control the states

36. The reason for writing the element xf this way is explained below.
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of X, while the given action X×A α−→X is regarded as supplying us with the data of a state-
machine or automaton. Considering a particular “button” a then gives rise to an endomap
of X, specifically α(–, a), where this means that for each element x of X, its image α(x, a)
under the action map α is just a new element of X. “Pressing” a once takes a particular state
x into the state α(x, a); pressing it twice takes x to α(α(x, a), a); and so on. Of course, we
can also press a different button (i.e., take a different object a′ of A). Combining things, we
can press one button and then another. This will mean: suppose we are in state x and button
a is pressed and then button a′, the resulting state will be α(α(x, a), a′). As is common,
we can choose, notationally, to represent the result of the action α(x, a) = x · a, which you
might read as “having pressed a on state x.”

In a similar fashion, with presheaves we speak of a right action of C on a set P that is
partitioned into sorts coming from the objects of C (i.e., parameterized by the objects of
C). Being a “right action” here means that whenever we have an arrow f : c′→ c in C and
an element x∈P(c)—that is, an element of the set P of sort c—then xf yields an element
of P of sort c′ subject to the conditions

x idc = x;

x(f ◦ g) = (xf )g whenever c′′
g−→ c′

f−→ c∈C.

We may write the action in the form of concatenation; that is, xf is short for x · f where the
action α : Set×C→Set is defined as α(x, f ) = x · f and the set in question is actually just
the disjoint union �c∈Ob(C)P(c).

The idea, then, is that given an element x∈P(c) for some c∈C, such an x will be acted

on by all the morphisms c′
f−→ c in C, and in such a way that composite morphisms act as

above. In asking what the value of a function f : c′→ c in C at such an element x will look
like, we are asking about P(f )(x). Regarding this in terms of a right action α(x, f ) = x · f ,
we have for composite maps (which we write here with juxtaposition notation), α(x, fg) :=
x · (fg) =α(α(x, f ), g) = (x · f ) · g. If we agree, notationally, then, to let x · f = P(f )(x),37 it is
evident that the contravariance of the functor P is equivalent to specifying that C acts (and
does so on the right) on P (regarded as a set). This is evident since

α(x, fg) =α(α(x, f ), g)

x · (fg) =α(x · f , g)

x · (fg) = (x · f ) · g
P(fg)(x) = P(g)(P(f )(x))

P(f ◦ g)(x) = P(g) ◦P(f )(x).

Having established the reasoning behind that terminological and notational choice, let
us now consider more closely the various interpretations this presheaf action takes on in
practice and explore what the natural transformations will look like for various presheaf
categories we have already introduced.

37. That f gets written on the right of x here not only is meant to reveal the underlying right action, but it is a good
notational choice since it accords with the induced notation for a composite arrow f ◦ g as x · (f ◦ g) = (x · f ) · g.
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2.4.2 Four Ways of Acting as a Presheaf

We will think of there being four characteristic kinds of cohesivity or variability presented
by presheaf categories in accordance with four main ways the right action can be found to
operate:

1. As processual, for example, as passing from sets indexed by one stage to sets indexed
by another. Here, objects of C play the role of stages; for every c in C, the set P(c)
is the set of elements of P at stage c, while the morphisms model transitions between
stages.

2. As extracting boundaries (or picking out components), for example, using the source
and target map to pick out the vertices of a graph’s edge, picking out lower-
dimensional boundaries of simplices (generalizations of triangles or tetrahedrons to
arbitrary dimensions). For something like a space that consists of points, edges, tri-
angles, and so on, in changing figures we pass from higher-dimensional figures to
lower-, so that, for instance, the action works by extracting the endpoints of an edge
or extracting the edges of a triangle.

3. As conditions on how different “probes” of a space relate to each other, for example
given a category C of geometrical figures or spaces of some sort, a presheaf X is
regarded as a rule assigning to each object U (each “test space”) of C the set X(U)
of admissible maps from U into a generalized space or geometrical object X—giving
“probes of X by U”—and the presheaf action then concerns how maps from one test
space U to another test space V induce maps of sets X(V)→X(U), ultimately codifying
how probes of X by V transform into probes of X by U.

4. As restriction, for example, whenever some sort of topology is involved, where the
data specified over or about a larger region can be restricted to the data specified over
a region included in the former region.38

We illustrate these four action perspectives, in order, via specific examples.

Example 52 We discussed earlier how presheaves on C, as functors, can be thought of as
providing a set of figures with the shape of the indexing category for each object in C and
a process operator for each morphism in C. For each a in Cop, the resulting set F(a) is a set
of elements of F at stage a, while each arrow between objects in Cop induces a transition
map between the varying set F at stage a and the varying set F at stage b (for an arrow
from b to a), so that, altogether, we are regarding the objects of C as playing the role of
stages of F : Cop→Set and F itself as a set that varies through the stages.

This perspective of the action as exemplifying a kind of process is nicely illustrated by
considering presheaves on a variety of finite indexing categories. For instance, consider the
case of finitely free monoids. We said in section 2.3 that if E is free monoid on one gener-
ator σ, or the additive monoid of natural numbers, then SetE

op
, the category of presheaves

on E, is none other than the category of evolutive sets or dynamical systems. Objects of

38. It is not uncommon to see presheaves and sheaves introduced exclusively via this fourth approach—and,
indeed, our first look at sheaves in chapter 5 falls under this umbrella—but the first three perspectives are also
important to consider, especially since the first two often involve examples with finitely generated categories (and,
as such, provide a good stock of simple and computationally tractable examples) and the third achieves a level of
generality that, were it pursued to its end, would ultimately let us speak of sheaves in “higher dimensions.”
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SetE
op

consist of a set X equipped with a “process” endomap. For objects X of SetE
op

, in
other words, X supplies the set of possible states, and the given endomap σ gives rise to
the evolution of states. Referring back to our earlier such X,

a

e f

d

i

b
c

g h

the idea is that, with this picture, we are displaying the presheaf consisting of X(∗) =
{a, b, c, d, e, f , g, h} and where σ (i.e., ∗→∗) acts for instance on the figure a (i.e., on
∗ a−→X) to produce the figure b : ∗→X; that is, X(σ) : X(∗)→X(∗) takes the particular
∗-figure given the name “a” to the particular ∗-figure given the name “b.”39

Then a morphism in this entire presheaf category from a presheaf X (with endomap
named α) to another object (presheaf) Y (with endomap β) will be the expected “equivari-
ant map” (the usual map of relevance for such mathematical structures) in SetE

op
, that is,

just a natural transformation (X,α)
f−→ (Y ,β), where this preserves the structure in the sense

that f ◦α =β ◦ f .
We also saw how the same story is easily generalized to the category of n-evolving

sets, that is, En, freely generated by n nonidentity morphisms, so that the container of
En-sets would have figures similar to the above picture, except with (up to) n different pro-
cesses carrying one ∗-figure to the next. We could also further consider finitely generated
monoids, such as E1,R, where certain relations are imposed on the indexing category. For
instance, taking E1,R with one object and nonidentity morphism σ obeying some relation
R—say the relation σ2 = id∗—the resulting category of presheaves on E1,R gives rise to
what is usually called, in other contexts, the category of involution sets. We could gener-
alize this to any presentation of a monoid M, En,R, for n generators (i.e., sigmas), and R
relations, ultimately leading us to show that the usual Cayley graph for a group is nothing
other than a presheaf on the category En,R.

In this context, we can take the opportunity to highlight that presheaves on a monoid are
just equivalent to the usual right actions on a set by a monoid (which is in part responsible
for the “right action” terminology). Recall that a monoid, viewed as a category M with
just one object ∗, will imply that a set-valued functor on M yields just one set, F(∗)∈
Ob(Set). We must also supply, though, a function from HomM(∗, ∗) to HomSet(F(∗), F(∗)),
that is, from M to HomSet(F(∗), F(∗)). In general, given a set A, for any sets X, Y , there is a

39. Incidentally, the notation ∗ a−→X will be fully justified by the Yoneda results, covered in chapter 6. Looking
ahead to that, for any object of SetCop

, that is, some presheaf F, and any object c of C, the set of elements of
F of sort or type c can be naturally identified with the set of SetCop

-morphisms from HomC(–, c) to F, which
is precisely what justifies the abuse of notation that alternately treats the elements of F of sort c as a morphism
c→F in SetCop

, letting any c→F be interpreted as a particular figure in F of sort c.
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bijection
HomSet(X×A, Y)

∼=−→HomSet(X, YA)

where YA := HomSet(A, Y) the set of functions from A to Y . Moving between these two
equivalent formulations via the bijection is sometimes called “currying.” Our function from
M to HomSet(F(∗), F(∗)) just belongs to HomSet(M, F(∗)F(∗)). Currying, this is the same
as a function M×F(∗)→F(∗). Functors preserve identities by definition, so the monoid
action law concerning the unit element e is satisfied, while the composition law for func-
tions provides the other monoid action law. This shows that each monoid action is nothing
other than a set-valued functor. Depending on the variance of the functor from a monoid
M to Set, we get the left (covariant) or right (contravariant) M-sets.40

The variability provided by the right action in each of the above examples is fundamen-
tally processual. This perspective is even clearer in an important related example, where
we consider sets varying over some time-like linearly ordered category, such as over N (the
linearly ordered set of natural numbers N, regarded as a category), in terms of a functor.
With such a category as our indexing category, objects in SetN are just sets varying through
n successive stages, that is, (n – 1)-tuples of maps:

X : X0
f0−→X1

f1−→X2
f2−→· · ·Xn–2

fn–2−−→Xn–1.

The functor N→Set picks a sequence X0→X1→· · · of sets Xn and functions Xn→Xn+1.
A morphism between two such objects (sequences) is a sequence of functions, for example,

X0 X1 X2 · · ·

Y0 Y1 Y2 · · ·
such that each individual square commutes. More generally, we have an N-indexed family
of functions (fi : Xi→Yi)i∈N compatible with the maps, that is, whenever i≤ j, this square
commutes:

Xi Xj

Yi Yj

fi

αij

fj

βij

This is equivalently just to describe a natural transformation between X and Y viewed as
functors. As such, these transition functions αij : Xi→Xj for each i≤ j should satisfy

• αik =αjk ◦αij whenever i≤ j≤ k
• αii = idXi for all i.

Composing would look just as you would expect:

40. Just as for monoids, a group action on a set S∈Ob(Set) is just a functor G→ Set that sends the single object
of G to the set S. Right G-sets are the same as the presheaf category SetGop

.
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X X0 X1 X2 X3 · · ·

Y Y0 Y1 Y2 Y3 · · ·

Z Z0 Z1 Z2 Z3 · · ·

f

α01 α12 α23

g

β01 β12 β23

γ01 γ12 γ23

where we require that each individual square commutes. The basic idea here is that once
an element is in a set, for example, x∈Xt, it remains there, that is, αtt′ (x)∈Xt′ . However,
certain elements a, b∈Xt could become identified in the long run (so the αs do not have to
be injective); additionally, new elements can appear over time (something that is expressed
by the fact that the maps do not have to be surjective).

The resulting category SetN that we have been describing is just a presheaf category
SetCop

, taking Nop as our C, where Nop of course has natural numbers for objects and for
morphisms n→m the pairs 〈n, m〉 such that n≥m. Part of the power of this way of seeing
this construction is that there is not really any need to restrict attention to linear orders.
Thus, we could similarly consider the functor category SetP of sets varying over a preorder
or poset P, something we take up in later chapters. Here, too, it is entirely sensible to regard
the resulting functor objects as P-variable sets, since we have sets varying according to the
shape of the order supplied by P. For instance, the category SetR, with R the ordered set of
real numbers regarded as a category, has for objects sets varying through real time. More
generally, the idea of a set varying over an ordered (poset or preordered) set is really all just
a specialization of the general idea of a set “varying over” some arbitrary small category.

Example 53 Moving beyond examples using single-object categories such as the monoids
introduced in the previous example, we might also consider presheaves on categories with
more than one object. For instance, consider the presheaf from the very beginning of
section 2.3, where the indexing category was

B := V Li ,

the object V standing for vertex and L for loop, and the single (nonidentity) morphism i
including the vertex in the vertex of the loop. The presheaves on this B yielded bouquets, or
those structures with any number of loops stationed at vertices. A particular presheaf X on
this indexing category, then, gives all the data of a particular bouquet X, entirely described
by a set X(V) of vertices and a set X(L) of loops, together with a function X(L)

X(i)−−→X(V)
that acts to pick out the vertex of each of the loops. The action γ · i = c or X(i)(γ) = c, where
γ ∈X(L), just extracts the appropriate vertex (boundary) of the loop in question. Finally, a
natural transformation from one bouquet (presheaf on B) X to another bouquet (presheaf
on B) Y will just amount to a rule that sends loop-figures in X to loop-figures in Y , point-
figures of X to point-figures of Y , and does so in such a way that it preserves the incidence
relations. In other words, τ : X⇒Y is a natural transformation making the diagram
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X( ) Y( )

• X(•) Y(•)

τL

X(i) Y(i)i

τV

commute, recovering the appropriate notion of a mapping between bouquets.
For our purposes, the thing to note in the above example is how the presheaf action is

one that amounts to an operation of boundary extraction. The presheaf action operates by
extracting from a loop-figure the vertex-figure to which it is attached, an operation it is very
natural to think of as taking the boundary, or extracting the simpler elements that form the
components of given (higher-dimensional) figures.

For another example of this type, consider a (directed, multi)graph X

a

d e f

g

b c

η

α
β

γ

θ

δ

ε
ζ

ι

As we have been doing with the other examples, we can regard this as a functor, that is,
as being generated by a presheaf on a particular indexing category. Moreover, there is then
the obvious action representing the “boundary extraction” of the source and target vertices
(boundaries) from a given arrow. More explicitly, take for indexing category the category
consisting of two nonidentity arrows (the identities again left implicit),

G:= V A
s

t

where the arrows s, t go from an object V (think vertex) to another object called A (think
arrow). Regarding X as a presheaf on G, then, is straightforward: the presheaf X : Gop→Set

just assigns a set of vertex-shaped objects, a set of arrow-shaped objects, and functions
X(A)

X(s)−−→X(V) and X(A)
X(t)−−→X(V), where the function X(s) just assigns to each arc its

source vertex and the function X(t) picks out each arc’s target vertex, thus giving us a
presheaf action that can naturally be thought of as performing a sort of boundary extraction.

More explicitly, for our given graph X displayed above, the data (including some of the
action data) is

X(V) = {a, b, c, d, e, f , g}

X(A) = {α,β, γ, δ, ε, ζ, η, θ, ι}

X(s)(α) = X(s)(β) = a, X(s)(γ) = X(s)(δ) = b, X(s)(ε) = X(s)(ζ) = c, . . . .

By taking presheaves like X for our objects, and natural transformations between such func-
tors for our morphisms (which preserve the incidence relations), we recover the usual graph
morphisms, that is, graph homomorphisms—showing that the presheaf category SetG

op
is

none other than Grph (actually, provided we have multigraphs, it is Quiv), consisting of
irreflexive directed graphs. We can perform a similar analysis for other sorts of graphs, for
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instance reflexive graphs. A graph is reflexive provided each vertex v is assigned a des-
ignated edge v→ v. Equivalently, in terms of quivers, a reflexive quiver has a designated
identity edge idX : X→X on each object X. For reflexive graphs, we would take for our
indexing category

G′ := V A
s

t
l

which consists of two nonidentity arrows, just as in G, but now with an extra, third arrow (l
for “looped edges”) going in the other direction from the two already given. This indexing
category is subject to the following equations:

l ◦ t = idV = l ◦ s.

Using this as our indexing category, SetG
′op

recovers the category of reflexive (directed,
multi)graphs, rGrph (or rQuiv).41 Maps of reflexive graphs, that is, natural transforma-
tions between the presheaf objects of SetG

′op
, must not only respect the source and target

maps, but also the extra piece of structure given by l.
As a final observation on this sort of example, let us briefly note that we could generalize

all this to (n-uniform) “hypergraphs” taking values in “multisets”—where a hypergraph is
a generalization of a graph, where edges can join any number of vertices, and where a
multiset is a generalization of the standard “set,” where there can be multiple occurrences
of a given element—or still other graph structures. Moreover, as we discussed in example
34, each category can be regarded as a directed graph with some structure. In order to begin
to appreciate the third perspective, we could generalize this and consider the n-dimensional
analogue of a directed graph, that is, via so-called globular shapes.42

Definition 54 For n∈N, an n-globular set X is a diagram

X(n) X(n – 1) · · · X(1) X(0)
s

t

s

t

s

t

s

t

of sets and functions such that s(s(x)) = s(t(x)) and t(s(x)) = t(t(x)) for all m∈ {2, . . . , n} and
x∈X(m).

But an n-globular set can also be defined as a presheaf on the category Gn generated by
the objects and arrows

n n – 1 · · · 1 0
σn

τn

σn–1

τn–1

σ2

τ2

σ1

τ1

which moreover satisfy the equations σm ◦σm–1 = τm ◦σm–1 and σm ◦ τm–1 = τm ◦ τm–1 for all
m∈ {2, . . . , n}.

In short, the category of n-globular sets can also be defined as the presheaf category
SetG

op
n . For X an n-globular set, we call elements of X(m) the m-cells of X: for instance, a∈

X(0) is a dot or vertex labeled by a; f ∈X(1) is an arrow with a source and target boundary;

41. Observe that there is an obvious forgetful functor U : rQuiv→Quiv from reflexive graphs to irreflexive
graphs, where this acts by neglecting the structural component l.
42. The following definition and page or so of discussion can be skimmed or skipped on a first reading and
resumed with the next example.
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α∈X(2) looks just like a natural transformation arrow satisfying certain relations; a three-
cell x∈X(3) an arrow between arrows of the natural transformation type, and so on. In this
way, various prominent mathematical constructions including the likes of simplicial sets,
cubical sets, and globular sets can be construed as examples of presheaf categories. The
basic idea in all this is that one selects a category C of cell shapes with morphisms “face
inclusions” and “degeneracies”; then, as above, one produces a presheaf category SetCop

,
and the boundary extraction action perspective will generally fit such situations. But such
constructions also encourage the (third) view that for a category C, whose objects can be
regarded as certain geometrical figures or spaces of a certain sort and its morphisms as
structure-preserving morphisms between those spaces, presheaves on such a category give
rise to spaces modeled on C in the sense that they are probed by the objects of C.

The idea with this third perspective can be roughly sketched as follows.43 If D is taken
to be, for example, the category of sets or certain topological spaces,44 and if we regard
the indexing category C as some category supplying the shapes or generic (geometrical)
figures, then the presheaf category DCop

will be a (generally large) category that will include
more general geometrical or spatial objects that are probable or testable with the help of
C. Altogether, this provides a perspective according to which a presheaf on C can be seen
as a very general space modeled on C, where this otherwise unknown space emerges from
“probing” it with the known objects of C.

In referring to “probes” of a hypothetical space X (for now, just think of some generic
space, not necessarily a topological space in the strict sense), we are really thinking of
all the ways of mapping into X using the objects of C. In other words, if you start with
a test space U (an object in C) and are returned a set X(U), we are thinking of this set
X(U) as designating the set of ways U can be mapped into X, supplying the probes or ways
of testing X with U. However, these probes alone will not usually suffice to give you a
very discriminating or complete understanding of the space X. To attain a more complete
picture, you also need to know about how the different tests or probes of the space relate
to one another. This is what the presheaf action takes care of. If you have a map f : U→V
in C, then given some (probe) element V

p−→X of X(V), precomposing with f (acting on the

right) will induce a map going in the other direction X(V)
X(f )−−→X(U) that will tell you how

probes of the space X by V change into probes by U; and with that information, you can
get an accurate picture of what X itself is. In this way, in describing a generalized space
modeled on the objects of C, we are in fact describing nothing but a presheaf X on C, where
each presheaf is a rule assigning to each U ∈C the set X(U) of admissible maps from U
into the space X, and where this comes with the information of how certain probes of X
change into other probes of X. One of the purposes of doing this is that by probing a big
space with a number of smaller or simpler test spaces, not only can we model parts of the
space into which we are mapping but we can ultimately look to piece together the small or
partial tests into information about tests with bigger test spaces, arriving at a picture of the
overall space of interest. This is of particular importance since the information such probes

43. This general perspective largely follows Lawvere; see, for instance, Lawvere (2005).
44. One usually starts with thinking about topological spaces, that is, the category Top, but really we just need
it to be a category and for this category to support some notion of how certain objects can be covered by other
objects. There is much more on this in chapter 4 and in the final chapters.
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gather turns out to be most useful precisely when the presheaves are in fact sheaves, that
is, satisfy some further consistency conditions.45

Example 55 To illustrate the last (but arguably most significant) perspective on the
presheaf action—namely, action by restriction—we can begin by considering the construc-
tion of a presheaf on the partial order of open sets O(X) (or Open), for X a topological
space.46 A presheaf on X is just a functor F : O(X)op→Set. For each open U⊆X, we then
think of the set F(U) as the set that results from assigning set-values or data throughout or
over all of U. An open subset V ⊆U can be seen in terms of an inclusion arrow V ↪→U
when regarded in the poset O(X) seen as a category, so applying the (contravariant) func-
tor F will give us a function that passes from the data assigned throughout or specified
over U (the generally “larger” region) to the data assigned throughout the subregion V , in
a process aptly called the restriction, and typically denoted by ρU

V : F(U)→F(V) (or just
F(V ↪→U)). Especially when the particular application involves looking at all the func-
tions of a certain type (e.g., continuous functions) defined throughout that region U, given
an element f ∈F(U), one sometimes denotes ρU

V (f ) by f |V and speaks of the restriction of
f from U to V , treated like the usual restriction of a function along a part of its domain.

As a first illustration of such a functor, we can consider the set of all continuous real-
valued functions, that is, functions from U⊆X to R. Importantly, when there is an inclusion
of opens V ⊆U, we will have a restriction ρU

V : Top(U,R)→Top(V ,R), which just sends
f : U→R to f |V : V→R. The presheaf here thus acts to restrict the collection of functions
given over some region (say, (0, 6)) down to the open subsets of that region (say, (2, 4) in
particular), as suggested by the following picture:

45. The reader intrigued by this admittedly more subtle perspective may find the extended discussion in nLab
Authors (2019) particularly illuminating; the paragraph above leans on this discussion.
46. Topological spaces and the poset of open sets of a space are discussed in ample detail in chapter 4.
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The action of this presheaf is thus given by restriction, an action that is clearly func-
torial. Observe, also, how each of the collections Top(U,R) of continuous functions in
fact assembles into a ring structure, meaning that the restriction functions will in fact be
ring homomorphisms—as such, this presheaf Top(–,R) is actually a presheaf of rings (as
opposed to being valued in Set).47

For another restriction-type example, but of a rather different flavor, start by considering
for regions the set J of jurisdictions with their subjurisdictions, that is, (J,⊆) a preorder.48

We can consider that within the set of possible laws—where laws are just treated as propo-
sitions, that is, objects of the preorder Prop regarded as a category whose objects are
logical formulas or propositions and whose morphisms are (equivalence classes of) proofs
or derivations that one proposition implies another—some of these laws are being followed
by all people in the region. To each jurisdiction V , then, we can assign a set R(V) consist-
ing of whatever laws are being respected by all the people throughout V . In other words,

47. Another standard way of producing presheaves on a space arises by taking the local sections of a con-
tinuous function p : E →X, via the “local section functor.” A local section of p is a continuous function
s : U →E from an open subset U of X to E, such that p ◦ s(x) = x for all x∈U. If we let Γ(p)(U) = {s : U →
E | s is a local section of p}, then by considering that whenever V ⊆U we can restrict local sections over U to
local sections over V , we see that this defines a presheaf on X. Don’t worry if this doesn’t make sense yet. We
have a lot more to say about this local section approach in chapters 5 and 8.
48. This example comes from Spivak (2014, 263-264). See also Awodey (2010) for more on the category of
propositions that is used in the example.
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laws are being assigned locally to each jurisdiction; after all, a law is dictated to be valid
only within a specific region. If V is a subjurisdiction of U, that is, V ⊆U, then any law
respected throughout U is obviously respected throughout V , so we can restrict from the
laws respected throughout U to those respected throughout V . Clearly any law respected
throughout the state of Illinois will be respected throughout any county in Illinois, so we
can regard such a law given over Illinois from the restricted perspective of a county in that
state. But observe that the converse is not true! A law respected throughout a part of Illinois
need not be respected throughout all of Illinois.

Here we have a local assignment of data to the space of jurisdictions that moreover
obeys the property that whenever we have a region V included in U, then the action of the
presheaf works in the opposite direction: it takes data assignments given throughout U and
restricts them to (the same) data assignments now given throughout V , the smaller region.
The idea to keep in mind here is this: if you have some data (like a list of those laws being
respected by everyone) assigned to some region (like Illinois), and you have another list of
those laws being respected by everyone in some subregion included in Illinois (like Cook
County), then you will expect that the list of laws respected by everyone throughout Cook
County will be (equal if not) larger than the list of laws respected by everyone throughout
Illinois. In a larger region, there are more chances for the data not to fit—for example, for
someone to fail to respect that law—than there is in a smaller region.

The main takeaway is that in the previous construction, we have made use of two key
ingredients: (1) a local assignment of data to a space (each of the laws in the “respected
laws data” is expected to hold throughout all of the jurisdiction region to which it is
assigned); and (2) a natural operation of restriction (induced by the natural inclusion
relation governing the overall space of jurisdictions) allowing us to move from the data
assigned throughout a region to data assigned throughout subregions. Formally, these two
ingredients just specify what we need to have a functor R that is contravariant, that is, we
have been describing a presheaf R : Jop→Prop.

With an eye toward sheaves, the restriction-style action is in some sense the most deci-
sive of the four perspectives considered, or at least the most immediately relevant to the
subsequent initial presentation of sheaves in terms of sheaves on topological spaces. Thus,
it pays to understand it well. We could dwell at length on the notion of restriction and
its relation to some of the other key basic categorical concepts that we will meet—for
instance, that restrictions are not “right cancellable” in general, and that it is easy to con-
struct many examples of distinct mappings that have equal restrictions to the same part, that
is, mappings f , g such that f |i = g|i but f 
= g. For now, a few general observations concerning
restriction may be worth stressing.

Given an inclusion V ↪→U, restriction tells us that we can take some x∈F(U) and restrict
that data assignment to the part of U that makes up V , and this will leave us with a viable
data assignment on V . It should be easy to see, both intuitively and precisely (on the model
of function restriction), how this amounts to a restriction. However, it is important to rec-
ognize what is not going on: it would be a mistake to take the language of restriction as
implying that, at the level of the presheaf itself, we are passing from a (generally) bigger
set of data to a smaller one—“restricting our attention” as it were. Strictly speaking, at the
level of the maps between the presheaf data F(U) and F(V), this is not what is going on.
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This should already be evident from close consideration of the laws example, where the set
of respected laws R(U) specified over a larger region U will actually typically be smaller
than the set of respected laws R(V) specified over the subregion V ⊆U. The same is true
of the continuous functions: it is easier to be continuous on a smaller region; that is, over
a bigger region there will be more opportunities to fail to be continuous. It is perhaps an
unnecessary warning, but the point is that, at the level of the presheaf maps themselves,
for example, moving from R(U) to R(V), we are not generally dealing with a restriction in
the sense of moving from a bigger dataset (set of value assignments) to a smaller dataset.
Confining our attention to U and V as regions or components of a space, it makes sense
to think of these objects (regions) as constraints of sorts, according to which V , a sub-
region, amounts to a weaker constraint on any data specified locally over the regions. It
should be evident that given any inclusion of a smaller region into a larger region, more
data will generally be able to satisfy the weaker constraint (corresponding to the smaller
region) than will satisfy the stronger one (corresponding to the larger region). Yet, at the
level of a particular data assignment, we can regard the presheaf maps as amounting to a
restriction of that data along inclusions of subregions. The next and final example of this
chapter should help to further clarify this.

Example 56 Consider time intervals as objects and morphisms given by inclusions, yield-
ing a category we will denote T. For concreteness, suppose we consider the period
spanning from January 1 (at midnight) of 2018 until June 1 (at midnight) of 2018. Then,
suppose this period is decomposed into various two-month intervals

[Jan1, March1], [Feb1, April1], [March1, May1], [April1, June1],

that together “cover” the entire half-year period from Jan1 through to the end of May.49

The natural overlapping subintervals produce the following overall structure on the system
of intervals ordered by inclusion (as indicated by the inclusion arrows):

where the single dates like Feb1 are short for the degenerate interval [Feb1, Feb1]
representing the instant of midnight on February 1.

Now, for a particular company with some (generally fluctuating) stockpile of products,
we can define a contravariant functor S : Top→Set that assigns to each time period [t, t′]
the products that are in stock throughout the entire interval [t, t′] (where, for the moment
and for simplicity, we just imagine that a product is simply present or absent, say, as if the
only important question was whether the company had at least one item of the product or
had none, ignoring the question of quantity). S([t, t′]) is thus just the set of products the
company has in stock throughout the entirety of the time period [t, t′].

49. For now, you can think of this notion of “covering” in a naive way. We will be precise about this sort of thing
below, starting in chapter 4.
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Then, for any inclusion of time periods i : [t, t′] ↪→ [u, u′], the functor S acts (contravari-
antly) by restriction, mapping each stocked item onto itself. Clearly, any product present
in the company’s store throughout the bigger time interval [u, u′] must be present as well
throughout any subinterval [t, t′]. But this tells us that the “list” of products recorded as
present throughout the bigger time interval [u, u′] is in general likely to be shorter or
smaller than the list of products assigned to the smaller time interval [t, t′].

A particular presheaf on such a Tmight then be given by something like the following
(where each of the A, B, C, and so on, sitting over each interval-object, represents one of
the products held by the company throughout the entire interval):

Inspecting the diagram, one can see that the sets of value assignments (of products present)
throughout each interval are generally smaller over larger regions (time intervals); thus,
strictly attending just to the part of the diagram sitting on top of the network of time
intervals, the presheaf arrows in fact generally go from smaller sets to larger ones.50

A final thing to realize is that, in general, restriction along an inclusion is not neces-
sarily either surjective or injective (despite what a naive understanding of the language
of restriction might seem to imply, for instance, suggesting at least surjectivity). An easy
counterexample is provided by the following.51 As was seen in an earlier example, restric-
tion of continuous functions is continuous. However, take the (poset) category A that
consists of just two objects, U and C with the single nonidentity (inclusion) map U→C,
where U is the open interval (0, 1) and C is the closed interval [–1, 1]. Now let the presheaf
F : Aop→Set act on objects as follows: F(U) is the set of all continuous real-valued func-
tions given over the open interval (0, 1) and F(C) is the set of all continuous real-valued
functions over the closed interval [–1, 1]. Then the induced presheaf action F(C)→F(U)
is clearly by restriction; yet, it should be evident that this particular restriction process can

50. This relates to the warning discussed just before this example.
51. This counterexample is derived from Lawvere and Rosebrugh (2003).
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be neither surjective nor injective. It is not surjective since there are functions that remain
continuous over (0, 1) while having discontinuities at either or both “end points”—in par-
ticular, at 0—so that such functions cannot come from any continuous functions specified
over all of [–1, 1]. It is not injective since there exist distinct continuous functions given
over all of [–1, 1], each of whose restrictions to (0, 1) are identical.

2.5 Philosophical Pass: The Four Action Perspectives

Box 2.1

On the Presheaf

The general understanding of presheaves developed in section 2.3 might be thought of in terms
of Plato’s notion of the form or shape (eidos) of something, that structural schema according to
which the concrete realizations thereof are organized. This form also supports a great variety
of realizations or “manifestations” (phantasmata), and the plurality of particular manifesta-
tions of it populates a world that acts as some sort of “receptacle” for such instantiations of
the forms. The process by which the manifestations are unfolded according to the structural
schema of the form is what Plato would call the participation (methexis) of the form. The form
is held to be invariant, its components sufficiently generic, and altogether it is fundamentally
simpler (and so, in the end, more intelligible) than its many realizations or manifestations.

Applied to presheaves, the gist here is that the “generic figures” supplied by the domain cate-
gory C act as something like the form, while the value assignments P(c) for each object of C

supply something like the concrete appearances or manifestations of the static components of
the form, and the presheaf action enforces dynamic relationships between the various mani-
festations modeled on the invariant generic relationships between the components of the form.
The presheaf P itself, on this way of seeing things, would then be nothing other than the pro-
cess of manifestation or participation of the form in concrete particulars, and to understand
how the concrete manifestations and their components respect among themselves the rela-
tions that obtain between the components of the form itself is just to understand the general
functoriality of the functor P.

Presheaves accordingly supply a uniform framework for capturing, in an at once compressed
and illuminating way, many structures that appear throughout math and that can otherwise
appear, in their traditional presentation, rather complicated or haphazard (frequently leading
to a complicated or haphazard description).

Many important mathematical structures and categories—including some of those already
discussed, such as dynamical systems, bouquets, graphs, hypergraphs, and more—arise as
a presheaf category consisting of contravariant functors on some simple indexing category,
where the result of applying the functor to the objects of the indexing category yields what
we naturally think of as containers (in Set) holding on to various manifestations or figures
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each of which conforms to the shape or form determined by the generic figures populating the
indexing category (one for each of its objects), and where the changes of figure indicated by
the indexing category (given by its morphisms) are respected by the figures of the container.
While this perspective is perhaps most appropriate, or easy to countenance, when the objects
and morphisms of the indexing category C have some sort of geometrical interpretation, it is
a surprisingly useful perspective even in more general cases.

As for the four perspectives on the presheaf action, the fundamental idea that they share is that
the domain category C plays the role of specifying the general internal structure or schema—
in the form of the figure-types or shapes, the glue, the nature of the internal dynamic, or the
locality of data assignments—in which all the sets in SetCop

must participate. The resulting
presheaf category in each case has for its objects different instantiations or realizations of the
general form supplied by C. The other way of looking at this is that the domain category plays
the role of a parameter specifying in an invariant form how (temporal, dynamic, geometric)
variation or cohesion is to take place, while the target category (Set) serves as the container or
arena holding on to all the particular values or results of trying to “participate in” or “realize”
this form of variation. One might accordingly think of a presheaf itself as mediating between
the invariance or fixedness of a structure “outside of time” belonging to the domain category,
on the one hand, and its multifarious concrete presentations or manifestations “in time,” on
the other.

Most of the presheaf functors above are valued in Set, which can be useful in taming many
problems or otherwise complicated structures, and there are good reasons for the central role
Set plays in classical category theory, largely accounting for why presheaves classically take
values in Set. (Again, these reasons have to do mainly with the Yoneda results, covered in
chapter 6.) However, it is worth emphasizing that, philosophically speaking, presheaves are
anything but the static and qualitatively barren objects the usual set-theoretical perspective on
sets as “bags of fixed objects” might encourage us to believe.

Considering presheaves as coming equipped with an action that is processual recaptures a
dynamic perspective in which objects are not regarded as static collections; instead, the sets
are seen as evolving through stages, either merely temporally or in accordance with an inter-
nal dynamic (as in cases of evolutions subject to certain equations). Against the generally
discrete and static context of sets, this restores a more continuous and dynamic perspective.
The boundary-extraction perspective, for its part, reveals the incidence relations, relations
that together describe something like how the overall structure “holds together” or coheres.
Against the usual set-theoretical perspective of sets of objects grouped together more or less
arbitrarily into a set that cannot internally differentiate objects or discern important qualitative
(or dimensional) features of those objects or their modes of relation, this perspective restores
a kind of continuity in telling us how the various components of a structure can be regarded as
glued or stitched together from other (lower-dimensional) components. The third perspective
lets us regard a space in terms of all the ways of probing it from the outside and thinking about
the entire space in terms of how these various probes behave with respect to one another. This
perspective, similar to that of the relationism of Yoneda (discussed in chapter 6), is more “con-
tinuous” in the sense that it insists that we understand something in terms of all the relations or
perspectives on it, instead of as something set off on its own or intelligible by itself. Finally,
acting via restriction, presheaves open onto a range of relationships between the parts of a
whole. In general, such a relationship emerges as “regular” in the sense that in passing from
data specified over some containing region to data over a subregion, there remains a kind of
conformity or identity of the data given over the parts in relation to the same rule or function
describing the containing region. This perspective thus opens onto the notion of a conformity
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of parts of a whole to a single rule or idea (as opposed to the usual set-theoretical considera-
tion of a whole independently of the specific way, beyond whether or not a part belongs, the
whole enforces relationships among the parts).

In short, while we are able to benefit from certain tame properties of Set, the presheaf per-
spective lets us recapture a generally more dynamic, nuanced, and continuous (in a general
sense) perspective on many structures of interest.





3 Universal Constructions

In which we learn about the decisive category-theoretic notion of universality (uni-
versal properties), familiarize ourselves with a variety of notable examples of this
phenomenon, present definitions of other important notions making use of these
properties, and consider the broader significance of the notion of universality
developed here.

3.1 Limits and Colimits

In category theory there is a very important notion of limits and colimits. These terms really
codify and powerfully generalize certain decisive constructions that had been noticed in
many concrete cases all over mathematics well before category theory was born. Through-
out mathematics, we are constantly building new mathematical objects from old ones.
Categorical limits and colimits are, in an important sense, the most efficient way of doing
so. Examples include many familiar constructions—like taking disjoint unions or the inter-
sections of sets, the least upper bound (supremum) or greatest lower bound (infimum) of
a set of numbers, forming Cartesian products, direct sums, kernels and cokernels, forming
the coarsest topology making a map continuous, and more. Limits capture a wide array
of constructions where a certain subcollection of given objects is isolated, while colimits
capture something like the amalgamation or gluing together of given objects. What specific
instances of each construction have in common—usually indicated by the use of a superla-
tive adjective, like the largest, least, coarsest, and so on—is that the construction or object
satisfies a certain universal property in relation to other components of the category.

To carry out these constructions, we need to know what we are taking the (co)limit of.
Rather than confining our attention to special objects—like numbers whose maximum or
whose least common multiple we are interested in taking—the right way to develop this
is to give the most general account, allowing for potentially complex input data. The input
data for both notions will be a diagram, that is, some collection of objects in a category
and some morphisms between them. In chapter 2, we met and began to explore the notion
of a diagram (as a functor), where this was thought of as involving an instantiation of a
particular template supplied by the shape or generic figures of an indexing category. There,
you were invited to regard the indexing category as a template consisting of some nodes
together with directed edges between certain nodes, that is, as a directed graph, on which
the instantiations were patterned. A diagram instantiates (within the target category) each
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node of the template with an object of the target category and each edge with an arrow
of the target category, thus yielding a diagram built out of shapes whose generic form is
provided by the template category.

A diagram in a given category can be thought of as posing two problems, the left and
right problems, the solutions to which are supplied by certain objects, together with a
collection of morphisms, that “complete” the diagrams at either end. Such gadgets formed
by the object and arrows of the left solution—that is, a special object C together with a
collection of arrows, one for each object in the diagram, such that for any arrow between
objects of the diagram there are arrows from C that make the resulting triangles commute—
are called cones. Similarly, for a right solution in which all arrows terminate, such a thing
is often called a cocone.

In general, on any particular side, a solution need not exist at all (or it may exist on one
side but not on the other); on the other hand, each problem may have many solutions. A
universal solution is one through which each (left or right) solution must pass by means
of a (fundamentally) unique mediating arrow. In other words, if there are solutions (of the
relevant handedness), then the universal solution is one that is abstractly “nearest” to the
diagram and, as such, is the best or most optimal solution to the problem (“better” than
any other object that could be used to complete the diagram). A limit is just a universal left
solution, a colimit a universal right solution. If a diagram has a (co)limit, this (co)limit will
be essentially unique, so that whenever such a solution does exist, we can in fact speak of
the (co)limit. In short, and in the general case, a limit and a colimit are given by nominated
objects among the (co)cones, that “universally complete” the diagram on the left and on
the right (respectively).

Let us be more explicit about all this. Recall the notion of J-shaped diagrams F : J→C,
first introduced in example 35. Using this construction and natural transformations, we can
introduce the concepts of cones and cocones of a diagram, thereby characterizing the limit
and colimit of a diagram as the universal such (co)cone.

3.1.1 Cones and Cocones: Limits and Colimits Defined

Suppose

•

• •
is the template for the diagram

B

A C

in a category C. Observe that, in general, for any given object X in a category C, there will
be a constant functor—one that we will just call by the name X—from J to C. This functor
acts to send every object to X and every morphism to the identity map on X. This lets us
view the object X itself as a diagram, X : J→C.
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Thus, given any functor (diagram) F : J→C, we can consider a natural transformation
between X (now viewed as a functor) and the diagram F. This natural transformation will
just consist of a collection of morphisms between X and the objects found in the diagram
F, such that these morphisms moreover commute with the morphisms found in the dia-
gram. When the arrows go from X to the diagram F, this construction is called a cone
over D; when the arrows go the other way, now from the diagram F to X, then the con-
struction is called a cone under D (or a cocone). In this way, using the diagram introduced
above, a natural transformation X⇒F will look like the image on the left, while a natural
transformation F⇒X will look like the image on the right:

cone over

X

B

A C

B

A C

X

cone under

Now, there many be many such (co)cones over (under) a diagram. The punch line toward
which we will build is that

the limit of a diagram F is just a special (optimal) cone over F, in that it is the cone that “gets as
close as possible” to the diagram F (where this means that any other cone will have to factor or
pass through it);

and

the colimit of a diagram F is just a special (optimal) cone under (cocone for) F, in that it is the
cocone that “gets as close as possible” to the diagram F (where this means that any other cocone
will have to factor or pass through it).

Let us now do this more formally, starting with the limit. There are a few steps. First, let
us be more precise about how to regard any given object of a category in terms of a cone.
In a category C, a terminal object is a special object, usually denoted 1 (owing to the fact
that in Set, it is just a one-element set), satisfying a certain universal property:

for every object X of C, there exists a unique morphism ! : X → 1.

If such a terminal object exists, it will be unique (up to unique isomorphism). Dually, an
initial object in a category C is an object ∅ such that for any object X of C, there is a
unique morphism ! : ∅→X. Similarly, an initial object, if it exists, will be unique up to
unique isomorphism, letting us speak of the initial object. Note that an initial object in C

is the same as a terminal object in Cop.
But Cat is a category, and we thus speak of the terminal object in Cat as the terminal

category. This is just the category with a single object and a single morphism (necessarily
the identity morphism on that object). We denote this 1 (or sometimes 1).
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Let t : J→ 1 denote the unique functor to the terminal category. Suppose, given a cate-
gory C, we are given an object X ∈Ob(C). Such an object can be represented by the functor
X : 1→C. Then, precomposing this functor with t to get X ◦ t : J→C will just give us the
constant functor at X, where this sends each object in J to the same C-object X and every
morphism in J to the identity idX on that object. In other words, composing with t induces a
functor C∼= Fun(1, C)→Fun(J, C), which is commonly denoted Δt : C→Fun(J, C) = CJ.
Altogether, this actually gives Δ : C→CJ that takes an object X to the constant functor at
X and a morphism f : X→Y to the constant natural transformation, where each compo-
nent is defined to be the morphism f . One can observe that each arrow f : X→Y in C will

induce a natural transformation Δ(X)
Δ(f )−−→Δ(Y) such that

(ΔX)(i) (ΔY)(i) i

(ΔX)(j) (ΔY)(j) j

Δ(f )i

(ΔX)(e) (ΔY)(e) e

Δ(f )j

commutes for each edge e of the indexing category J. But recall that the constant functor
just sends every object to itself and assigns the identity map to each edge, so the previous
diagram in fact just reduces to

X Y

X Y

Δ(f )i

idX idY

Δ(f )j

which obviously commutes.
If we now consider, for an arbitrary J-diagram F : J→C and for X ∈C, the arrows

(which are in fact natural transformations)

ΔX−→F F−→ΔX,

we get that a typical arrow in CJ corresponding to these arrows is just a natural
transformation, that is, a family of arrows of C,

(ΔX)(i)
ξ(i)−−→F(i) F(i)

ξ(i)−−→ (ΔX)(i)

indexed by the various objects or nodes of J and such that

(ΔX)(i) F(i) i F(i) (ΔX)(i)

(ΔX)(j) F(j) j F(j) (ΔX)(j)

ξ(i)

(ΔX)(e) F(e) e F(e)

ξ(i)

(ΔX)(e)

ξ(j) ξ(j)

commute for each such edge e : i→ j in J. But when we apply the functor Δ, these
commutative squares collapse to the commutative triangles
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F(i) i F(i)

X X

F(j) j F(j)

F(e) e F(e)

ξ(i)ξ(i)

ξ(j) ξ(j)

The definitions guarantee that whenever the indexing category has composable edges, the
corresponding composite triangles commute. The natural transformations represented by
the triangles on the left give a left solution for the diagram in C, sometimes also called a
cone over the diagram F with summit vertex X. The natural transformations represented by
the triangles on the right give a right solution for the diagram, also called a cocone for (or
cone under) the diagram F with nadir X.52

We can then take such gadgets and use them to form the category of cones, where an
object in the category of cones over F will be a cone over F, with some summit, while a
morphism from a cone ξ : X⇒F to a cone μ : Z⇒F is a morphism f : X→Z in C such
that for each index j∈ J, μj ◦ f = ξj, that is, a map between the summits such that each leg
of the domain cone factors through the corresponding leg of the codomain cone.

Using these notions, we can define the limit of F in terms of a universal cone, where
a cone α : L→F with vertex L is universal with respect to F provided for every cone
ΔX→F, there is a unique map g :ΔX→L making

X L

F(i) i

F(j) j

ξ(i)

ξ(j)

g

α(i)

α(j)

F(e) e

commute. In such a case, one usually refers (somewhat improperly) to the universal cone
by just the vertex L, and calls this the limit of F.

For reasons that will become clearer after chapter 6 on the Yoneda results and repre-
sentability, we can also see a limit for a diagram F : J→C as a representation for the
corresponding functor Cone(–, F) : Cop→Set, sending X ∈C to the set of cones over F
with summit X.53 The limiting cone will fundamentally be universal in the sense that for
any other cone over F, there will exist a unique arrow from the summit of that cone to the
summit of the limiting cone, that is, any other cone must pass uniquely through the limiting
cone if it wants to pass down to F. In short,

52. I hope this is already clear, but in case it is not: the terminology of “over” and “under” has to do with the fact
that the above triangles can be presented as rotated clockwise 90 degrees, as we did earlier.
53. While we could consider limits and colimits in any category, something called the Yoneda lemma (discussed
in chapter 6) assures us that the constructions of (co)limits of diagrams valued in the category Set suffice to
provide formulae for (co)limits in any category. To ensure that we have a set of cones, we need only assume that
the diagram is indexed by a small category J and that C is locally small, thereby guaranteeing that the functor
category CJ is locally small. Under certain conditions, we can weaken these restrictions.
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Definition 57 The limit of a diagram F : J→C is an object lim F in C together with a
natural transformation η : lim F⇒F satisfying the following universal property:

for any object X and for any natural transformation α : X ⇒F, there is a unique morphism g : X →
lim F such that α = η ◦ g.

The dual construction leaves us with a category of cocones CoCones(F), wherein the uni-
versal cocone emerges as the colimit of the diagram F, denoted colim F, where this can
be seen as a representation for Cone(F, –), forcing all cocones to receive maps from the
colimiting cone if they want to receive maps from F. Explicitly,

Definition 58 The colimit of a diagram F : J→C is an object colim F in C together with
a natural transformation ε : F⇒ colim F that satisfies that for any object X and any natural
transformation β : F⇒X, there is a unique morphism h : colim F→X such that β = h ◦ ε.

Altogether, in terms of where we began this discussion, for such a diagram, we can
picture the limit and colimit as follows:

X

lim

B

A C

B

A C

colim

X

But while this gives us a nice and literal “cone-like” way of picturing things, there is no
reason why we should have to restrict ourselves to diagrams of precisely such a shape—by
considering diagrams of different shapes, taking limits and colimits of such diagrams will
again recover a number of important constructions found across mathematics. Let us start
with some examples of limits.

3.1.2 Examples of Limits

Example 59 An extreme case, where we take the limit of the empty diagram—the diagram
that has no objects and no morphisms—yields a construction we have in fact already met:
the terminal object. One can check that the limit of the empty diagram will be just one
object, if one exists, that has the property that there is a unique morphism to it from every
object in the category. While not every category has a terminal object, if it does, then it is
unique.

Concrete instances of this include the following:

• In Set, the terminal object is given by the singleton set ∗, for if X is any set, then there
is only one possible function X→∗, the one that just takes everything to ∗.
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• In a poset P, the terminal object will be its greatest element, when such a thing exists.
In other words, it will be an element l such that p≤ l for all p∈P. In particular, then, in
the poset [0,∞], the terminal object is∞, as x≤∞ for all x∈ [0,∞].

• For bouquets, the terminal object will be given by a single loop stationed at a vertex.
• In Top, the terminal object is the one-point space, that is, the one-point set ∗ equipped

with the indiscrete topology (described explicitly in chapter 4); note that if X is any
space, then there will be only one possible continuous function from X to this one-point
space.

• In Group, the terminal object is given by the group with one element {e}; note that if G
is any group, then there will be only one possible group homomorphism G→ {e}.

Example 60 Suppose we instead use a discrete diagram, where this is one that consists of
just objects (dots), with only identity morphisms. Taking the limit of such a diagram yields
some very familiar “product-like” constructions, when specialized to familiar categories.
Again, products need not exist—for instance, in particular, not every poset has all products.
For some concrete examples of this construction, we have the following:

• In Set, the limit of a discrete diagram consisting of sets X1, X2, . . . , is the Cartesian
product

∏
i∈I

Xi, where this construction comes with projection maps
∏
i∈I

Xi→Xi onto each

of the factors.
• In a poset P, the limit of a discrete diagram (set of elements p1, p2, . . . ) is their infimum

(or greatest lower bound)
∧
i∈I

pi.54

• In Top, the limit is given by the Cartesian product
∏
i∈I

Xi equipped with the product

topology.

Example 61 Suppose we have a diagram of shape

•

• •
In a category C, the limit of a diagram of such a shape is called the pullback (or fibered
product)—this will consist of an object together with morphisms satisfying the stipulated
universal property. Explicitly, we can define this as follows:

Definition 62 Given any two maps with common codomain, as in

Y

X Z,

g

f

by their pullback (or fibered product) we mean a pair of maps π0, π1 with common domain
P that

54. In general, in the context of posets, given a subset S⊆P, we say that p∈P is a lower bound for S if for all
s∈ S, p≤ s. The infimum inf(S) of S, provided it exists, is then an element p such that (1) p is a lower bound for
S and (2) if p′ if another lower bound for S, then p′ ≤ p. It is common to write

∧
a∈A a for inf(A); we also use ∧,

especially when considering the infimum of a pair of elements x and y, written x∧ y, where this is referred to as
the meet of x and y.



96 Chapter 3

1. forms a commutative square f ◦π0 = g ◦π1,

P Y

X Z

π1

π0 g

f

and also
2. is universal among all such commutative squares, that is, for any T , x, y

T Y

X Z

y

x g

f

if f ◦ x = g ◦ y, then there exists a unique map k : T→P such that x =π0 ◦ k and y =
π1 ◦ k, as in

T

P Y

X Z.

k

x

y

π1

π0 g

f

In a poset P, the pullback of a diagram

q

p r

≤

≤

will be given by an element l, with l≤ p and l≤ q, that moreover satisfies that for any
element s for which it is also the case that s≤ p and s≤ q, we have s≤ l.

s

l q

p r

≤

≤

≤

≤

≤ ≤

≤

In other words, l will be the greatest lower bound of p and q.
In a poset, it turns out that the pullback reduces to the product. However, in more general

categories, the two need not coincide.
Working in Set, Top, Group, in particular, the pullback will consist of (1) the subset (or

subspace, or subgroup) of the product X× Y that comprises pairs (x, y) such that f (x) = g(y),
together with (2) two projection morphisms X×Z Y→X and X×Z Y→Y , the first mapping
(x, y) onto the first factor x, and the second onto the second factor y. What, then, will
this pullback be like? The short answer is that it depends not just on the category we are
working within but also on how the data of this category is defined: in particular, on what
the given objects are and how the morphisms are defined. By adopting certain objects, or
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choosing certain given morphisms, this construction recovers a number of other familiar
constructions. For instance, even just confining our attention to Set, the following can all
be constructed using the pullback construction:

• Suppose Z = ∗, the singleton set. Then, as ∗ is the terminal object in Set, both X
f−→∗ and

Y
g−→∗ are the unique functions taking everything to ∗. The pullback of such a diagram

would then be all pairs (x, y) such that both x and y are sent to ∗ under the (unique)
functions f and g—but there is no pair that does not satisfy this requirement. Thus, we
recover all pairs (x, y), making the pullback of such a diagram the entire set X× Y , the
usual binary Cartesian product.

• Now suppose Y = ∗, while Z is any set. A function ∗ g−→ Z just picks out an element z∈ Z.

Then, for any function X
f−→ Z, the pullback will be the subset of elements in X that are

sent to z by f , recovering the usual preimage (or fiber) of f over g construction.
• Now suppose that X and Y are subsets of Z, making f and g inclusions,

Y

X Z

g

f

In such a case, the pullback will consist of pairs (x, y) such that x and y are equal on
being included into Z. In other words, the pullback will consist of the elements x = y of
X that are also in Y (and vice versa)—and this is just the intersection X ∩ Y .

Example 63 Suppose we have a diagram of shape

• • • • · · ·
In a category C, the limit of such a diagram is called an inverse limit. It will comprise an
object together with morphisms from that object to each • such that each of the resulting
triangles commutes, and the universal property of the limit is satisfied.

Explicitly, supposing X1, X2, . . . are objects in C, then the inverse limit, denoted lim←−Xi,
of the diagram

X1 X2 X3 X4 · · ·f1 f2 f3

would amount to an object with maps into each of the Xi, making the resulting trian-
gles commute. In Set, for instance, this would be a subset lim←−Xi of the product

∏
i∈I Xi

containing all sequences (x1, x2, x3, . . . ) where the i-th factor is such that fi(xi+1) = xi.

lim←−Xi

X1 X2 X3 X4 · · ·f1 f2 f3

In Top and Group, among other categories, the inverse limit would also look just like this.
Note that in Set, if we have sets related by inclusion, so that X1⊇X2⊇X3⊇X4⊇ · · · , then
the inverse limit is just the intersection

⋂
i∈I

Xi.

Example 64 Suppose we have a diagram indexed by the category consisting of two objects
and two parallel nonidentity morphisms,
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• •
Of course, a diagram in C of this shape will just be a parallel pair of morphisms

X Y
g

f

living in the target category C. What is a cone over this diagram? Well, a cone with summit
C will consist of a pair of morphisms h : C→X and i : C→Y such that f ◦ h = i and g ◦ h = i,
which together just assert that f ◦ h = g ◦ h. In short, a cone over such a parallel pair of
arrows f , g can be represented by a single morphism h : C→X such that f ◦ h = g ◦ h. We
can then define E together with e : E→X, called the equalizer of f and g, as the universal
arrow with this same property, that is, f ◦ e = g ◦ e. To be more explicit, the universal prop-
erty in question asserts that given any h : C→X such that f ◦ h = g ◦ h, there exists a unique
k : C→E that factors the morphism h through e in the sense that e ◦ k = h, as summed up
in the diagram

C

E X Y .

k h

e

g

f

In Set, the equalizer of f , g is then a subset of elements of X for which the two given
functions coincide,

E = Eq(f , g) := {x∈X | f (x) = g(x)},

which set is accompanied by the natural inclusion e : Eq(f , g)→X into X.

In terms of graphs, since a graph can be defined using a pair of functions A V ,
s

t
where A stands for arrows and V for vertices, and where s just picks out the source vertex
of an arrow and t the target vertex, consider that for each graph G we can find its set of
length one loops via the equalizer construction Eq(G):

Eq(s, t) A V .e

t

s

Observe that the equalizer assignment is in fact functorial, thus incidentally furnishing us
with another example of a functor, since given a graph homomorphism G→G′, there will
be an induced function Eq(G)→Eq(G′).

Let us also take this opportunity to define the following notion, capturing when arrows
can be canceled on one side:

Definition 65 A morphism i : B→C in a category is called a monomorphism (or monic
morphism) provided for any A with parallel morphisms f , g as in

A B C,
f

g

i

i ◦ f = i ◦ g implies f = g.55

55. This is a categorical generalization of the set theoretic notion of an injective function.



Universal Constructions 99

Observe that an equalizer of two morphisms is automatically a monomorphism. To
emphasize that a particular morphism is a monomorphism, it is common to use the
decorated arrow � (or ↪→ when it is an inclusion).

Certain conditions can ensure that a given mapping is a monomorphism. One such con-
dition is that the mapping has something called a retraction, another useful notion we
record here (together with its dual notion of a section):

Definition 66 For mappings r, s in any category, r is said to be a retraction for s provided
r ◦ s is an identity mapping. In such a situation, s is said to be a section for r.

So if i is a morphism from X to Y , r is a retraction provided we have

X Y with r ◦ i = idX .
i

r

A given i may or may not have a retraction, and if there is such a map, there may in fact be
many retractions. Likewise, a given morphism need not have sections. However, if there is
at least one retraction r for a given i, then i will be a monomorphism.

Finally, observe also that any section will be a monomorphism. A section for a mapping
f might be thought of as a procedure that picks out an element from each of the fibers of f .
We will have more to say on this in subsequent chapters.

3.1.3 Examples of Colimits

Limits and colimits are dual notions, meaning that colimits in a category are just limits in
the opposite category, so by dualizing the above constructions (same definitions, but with
all arrows reversed), we can thus expect to get specific examples of colimits. These will
include: initial objects, coproducts (disjoint unions), pushouts, direct limits (denoted lim−→),
and coequalizers. We will focus on explicitly constructing just a few of these.

Example 67 First consider the coproduct. This is the colimit of the discrete diagram of
shape

• •
and is usually written

∐
, so that with a diagram with objects X(i) and X(j), the colimit of

such a diagram is written X(i)
∐

X(j). This binary case can be generalized to more objects,∐
i X(i). For some concrete examples of this construction, we have the following:

• In Set, the colimit of a discrete diagram consisting of sets X1, X2, . . . , is the disjoint
union

⊔
i∈I

Xi, where this construction comes with injective functions of each Xi into the

coproduct set X =
⊔
i∈I

Xi such that each element of X belongs to exactly one of the images

of the injections. If the sets being summed are pairwise disjoint, the disjoint union just
becomes the standard union

⋃
.

• In a poset P, the colimit of a discrete diagram (set of elements p1, p2, . . . ) is their
supremum (or least upper bound)

∨
i∈I

pi, where this construction also consists of the
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inequalities pi≤
∨
i∈I

pi.56 Guided by this, and considering the importance of order the-

ory as a microcosm for the more general categorical notions, one can see colimits as a
generalization of suprema or joins (just as limits generalize infima or meets).

Example 68 Dual to inverse limits are direct limits, where this is the colimit of a diagram
indexed by the ordinal category ω. In other words, for a diagram

X1 X2 X3 X4 · · ·
its colimit is the direct limit lim−→Xn, defining a diagram of shape ω + 1:

X1 X2 X3 X4 · · ·

lim−→Xi

The term “direct limit” is occasionally used to designate colimits of any shape.
Observe then that the colimit of a sequence of sets with the inclusions

X0 X1 X2 · · ·
recovers their union

⋃
n≥0

Xn.

Example 69 We have already met the construction called an equalizer, where this is the
limit of a diagram of shape

• •.
In a similar fashion, we can form the dual notion of a coequalizer by taking the colimit
of the diagram consisting of two objects X, Y and two parallel morphisms f , g : X→Y ,
which gives us something like the categorical generalization of taking a quotient by an
equivalence relation. More explicitly, a coequalizer is defined as an object Q (sometimes
denoted Coeq(f , g), wanting to stress the arrows it coequalizes) together with a morphism
q : Y→Q such that q ◦ f = q ◦ g, where the pair (Q, q) must moreover be universal in the
sense that given any other pair (Q′, q′) there exists a unique morphism u : Q→Q′ so that
u ◦ q = q′, as in the diagram

X Y Q

Q′.

g

f q

q′
u

In Set, the coequalizer of two functions f , g : X→Y is just the quotient of Y by the smallest
equivalence relation ∼ such that for all x∈X, f (x)∼ g(x).

56. In general, just as with the notion of greatest lower bounds, given a subset S⊆P of a poset, we say that p∈P
is an upper bound for S if for all s∈ S, s≤ p. The supremum sup(S) of S, provided it exists, is then an element
p such that (1) p is an upper bound for S and (2) if p′ if another upper bound for S, then p≤ p′. It is common
to write

∨
a∈A a for sup(A); we also use ∨, especially when considering the supremum of a pair of elements x

and y, written x∨ y, where this is referred to as the join of x and y. Incidentally, we can use this notion (together
with that of meets) to define an important entity we will meet throughout the book: a lattice is a poset for which
every pair of elements has a join and a meet. We will wait until chapter 7 to more formally introduce lattices and
explore them in greater depth.
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In the context of bouquets, the coequalizer of two inclusion morphisms of a vertex into
an object consisting of individual loops stationed at different vertices would be given by
an object that glued those loops together onto a single (the same) vertex—an example that
makes it evident how colimits can be seen as involving some sort of gluing.

Various categories—including graphs, reflexive graphs, discrete dynamical systems, the
category of elements (see below, definition 71)—support a construction that allows us to
count the connected components in that category. For concreteness, we stick for now with
the case of the category of graphs, Grph, and consider the “connected components” functor
Π0 : Grph→Set. This is actually obtained via the coequalizer construction:

A V Coeq(s, t).
s

t q

Coeq(s, t) is defined as V
/∼, where∼ is an equivalence relation on V , that is, s(x)∼ t(x) for

all x∈A, and where q is the quotient function q : V→V
/∼. This construction accordingly

acts to identify all arrows where the source of one arrow is equal to the target of the other.
In other words, all we are doing is picking out the connected components of the graph. This
assignment of the set of connected components of a graph can be shown to be functorial as
well. In a moment, we will see more of this construction in action.

Finally, let us also take the opportunity to define the dual of the notion of a monomor-
phism.

Definition 70 f : X→Y is said to be an epimorphism (or epi for short) if for all B, h, h′ :
Y→B,

X Y B
f h

h′

h ◦ f = h′ ◦ f implies h = h′.

Observe that every coequalizer is automatically an epimorphism, and that moreover
every retraction is automatically an epimorphism. For graphical emphasis, epimorphisms
are sometimes displayed using �.

Before moving on, let us now consider an alternative way to view things.

Definition 71 Let C be a category, and let F : C→Set be a (covariant) functor. Then the
category of elements of F, denoted

�
C

F (or just
�

F if the context is clear), is defined:

Ob
( �

F
)

= {(c, x) | c∈C, x∈F(c)}

Hom�
F
(
(c, x), (c′, x′)

)
= {f : c→ c′ | F(f )(x) = x′}.

Similarly for the contravariant case: for F : Cop→Set the category of elements of F,
denoted

�
Cop F (or just

�
F), is defined:

Ob
( �

F
)

= {(c, x) | c∈C, x∈F(c)}

Hom�
F
(
(c, x), (c′, x′)

)
= {f : c→ c′ | F(f )(x′) = x}.

Associated with these constructions are the functors πF :
�

F→C, called the projection
functors, sending each object (c, x)∈Ob(

�
F) to the object c∈Ob(C) or Ob(Cop), and each

morphism f : (c, x)→ (c′, x′) to the morphism f : c→ c′, that is, π(f , (c, x), (c′, x′)) = f .
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As a concrete instance of this, recall the vertex coloring functor nColor from example 37
(chapter 2). An object in the category of elements

�
nColor of this functor nColor will be a

graph together with a chosen n-coloring, that is, objects are n-colored graphs. A morphism
φ : G→G′ between a pair of n-colored graphs will be a graph homomorphism φ : G→G′

so that the induced function nColor(φ) : nColor(G′)→ nColor(G) takes the chosen color-
ing of G′ to the chosen coloring of G, that is, the graph homomorphism φ will preserve the
chosen colorings in the sense that each red vertex of G will be carried to a red vertex of G′.
In short, then,

�
nColor is the category of n-colored graphs and the color-preserving graph

homomorphisms between them.
For another example, recall the hom-functors, first introduced in example 42 (chapter

2). Objects in the category of elements of HomC(c, –) are the morphisms f : c→ d in C. A
morphism from f : c→ d to g : c→ e is then a morphism h : d→ e such that g = h ◦ f . h is
said to be a morphism under c because of the diagram attached to this condition:

c

d e

f g

h

This category is none other than the co-slice category of objects under the c∈C. Note
that the forgetful functor U : c/C→C sends an object f : c→ d to the codomain, and takes
a morphism (a commutative triangle) to the arrow opposite the object c, that is, to h in
the above instance. We could also construct the dual category of elements

�
HomC(–, c) in

terms of the slice category C/c over the object c∈C.57

The category of elements is rather significant because any universal property can be seen
as defining an initial or terminal object in this category. In particular, it turns out that for
any small functor58 F : C→Set, we have

colim F∼= Π0

( �
F
)
,

where Π0 operates by picking out the connected components and
�

F is the category of
elements of F. So, in other words, the set of connected components of the category of ele-
ments of a functor F, Π0(

�
F), is isomorphic to the colimit of F. Alternatively, in general,

we could just have said that a colimit is an initial object in the category
�

Cone(F, –), and
we note that the forgetful functor

�
Cone(F, –)→C will take a cone to its nadir.

To see this in action, recall the functor (diagram)

57. In this connection, we can mention the important result that for C small and P a presheaf on C, one can show
an equivalence of categories

SetCop
/P
 Set(

�
C

P)op
.

58. A functor or diagram is small if its indexing category is small.



Universal Constructions 103

(a, 1)

(a, 2) (d, 1)

(d, 2)

(d, 3)

(d, 4)

(b, 1)

(b, 2)

(c, 1)

(c, 2)

(c, 3)

(q, 1)

(q, 2)

(q, 3)

(r, 1)

(r, 2)

from example 36 (chapter 2). The various thicknesses or shadings in this picture can now
be explained. The picture above is in fact a representation of the category of elements of F.
The various thicknesses or shadings depict the result of taking its connected components.
By inspection, one can verify that this is just the set

{[(a, 1)], [(a, 2)], [(d, 3)], [(q, 1)], [(q, 2)]},

where each element is a representative of one of the components, which is in turn
isomorphic to a set of cardinality 5, entailing that colimJF∼= a set with 5 elements.

As for limits, we could also show that the limit of any small functor F : C→Set is
isomorphic to the set of functors C→ �

F that define a section to the canonical projection
π :

�
F→C. Alternatively, we can define the limit as a terminal object in the category

of elements of cones over F, that is, in
�

Cone(–, F). Note also that the forgetful functor�
Cone(–, F)→C will send a given cone to its summit.

3.1.4 Further Notions: (Co)Complete, (Co)Continuous

We have seen how both the limiting and the colimiting cones are universal in the sense
of acting as a kind of doorkeeper or special mediator for all other cones. Such universal
objects need not exist. However, we define a category C as complete if it admits limits
of all small diagrams valued in C, and as cocomplete if it admits all colimits of all small
diagrams valued in C.

We should also take the opportunity to supply the important definition:

Definition 72 A functor is (co)continuous if it preserves all small (co)limits,

where preservation is defined as follows: for any class of diagrams K : J→C valued in C, a
functor F : C→D is said to preserve limits if for any diagram K and limit cone over K, the
image of this cone under the action of the functor defines a limit cone over the (composite)
diagram F ◦K : J→D.59

59. Importantly, in chapter 6 on the Yoneda results, we will learn about representable functors, and how covariant
representable functors preserve all limits, taking limits in C to limits in Set; while contravariant representable
functors preserve all limits in Cop, taking colimits in C to limits in Set. We will learn about something called the
Yoneda embedding y : C ↪→ SetCop

, which preserves all limits that exist in C; and the dual embedding y : Cop ↪→
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Intuitively, this concept of a (co)continuous functor as a special sort of functor that
takes universal objects in the source category to universal objects in the target category
can be thought of as follows: whatever else the functor does to objects as it sends them
from one category to another, a (co)continuous functor will send the entity that acted as
a privileged mediator or doorkeeper ((co)limit) in relation to the rest of the objects of the
source category to an entity that plays the similar role of privileged mediator or doorkeeper
for its fellows in the target category. We could label this characterization of continuity via
the preservation of the roles of privileged mediators or doorkeepers/gatekeepers as katholic
continuity (after the Greek word katholou meaning “universal,” and perhaps also evoking
connections with katechon, sometimes identified in theological contexts with the figure of
the gatekeeper who indirectly enforces lawfulness by restraining chaos or lawlessness).

3.2 Philosophical Pass: Universality and Mediation

The katholic understanding of (co)continuity as a preservation of (co)limits is very impor-
tant for certain definitions of sheaves to follow. The pivotal notion of a (co)continuous
functor as a special sort of functor that takes universal objects in the source category to
universal objects in the target category, moreover enables us to regard continuity as a spe-
cial kind of passage or translation from one world of objects and relations to another world
of objects and relations—special in that, in passing between worlds, it takes care to pre-
serve the role of those that act as privileged or optimal mediators or gatekeepers for the rest
of the entities of their world. Finally, the universal constructions introduced in this chap-
ter seem to be of some philosophical interest in their own right in light of the particular
conception of universality that is ushered in.

Box 3.1

On Universality

One could argue that basic category theory is the study of universal properties. Within a cate-
gory, for some structure of a given kind, there may indeed be a family of such structures, that
is, a number of objects of the category related in such a way that they exhibit the structure in
question. A very natural question to ask, in the presence of a family of structures of the same
kind, is: Which is the optimal (most efficient) one? (And what does “optimal” here mean?) It is
here that universal properties come into play. Broadly, universality has been understood here
to mean that a certain gadget occupies a privileged position in relation to other gadgets of its
world that are of the same type, in that it serves as a special gatekeeper or go-between: “You
have to pass (factor) through me if you want to relate in this way to anything else of this type.”
If such universality is thus thought of in terms of a designated object’s privileged role as medi-
ator or gatekeeper for all other objects of the same type trying to relate or interact, katholic
continuity can moreover be understood as explaining how, in passing from one network of
objects and relations to another, those objects that occupy the position of mediators preserve
their roles within their respective networks; that is, in passing from one world to another, the
special mediator or gatekeeper in the one world is sent, or given a direct line, to the special
mediator or gatekeeper in the other world.

SetC that preserves limits in Cop. For our purposes, we can highlight that it will turn out that a sheaf is a special
sort of presheaf that preserves limits in this way.



Universal Constructions 105

It is curious that, long before category theory, a number of philosophers—such as Aristo-
tle, Hegel, and Charles Peirce—suggested, and attempted to think through, close connections
between universality, mediation, and continuity. Charles Peirce was perhaps the most insistent
on the connections between the general (universality) and mediation, brought together in his
notion of “thirdness,” one of his three “categories” (in his own sense of the word, having noth-
ing to do with category theory). Peirce was a systematic philosopher who developed a theory
of three main categories, first designed to help develop his theory of signs (semiotics) and clas-
sify the sciences and human knowledge, but gradually extended to be of grander and grander
scope. Peirce came to have rather ambitious aspirations for these categories, such that, as he
thought, they furnished a classification applicable to systems of all sorts, so that ultimately
all conceptions and phenomena—even elements of cosmology and physiology—at the most
fundamental level could be broken down in terms of these three general categories and their
interplay. As such, Peirce would come to admit that these three categories “are excessively
general ideas, so very uncommonly general that it is far from easy to get any but a vague
apprehension of their meaning” (Peirce 1997, 4.3). Roughly, we could describe these three
categories as follows:

• Firstness: being considered simply in itself, or independent of anything else, as a unit—
this involves immediacy and a kind of naive realism (insofar as it relates to perceivers and
knowers like us); the paradigm is brute quality “free of relations”;

• Secondness: being correlative to, dependent on, an effect or result of, in reaction with, or
limited by something else—this involves dyadic relations corresponding to some “brute
action” or finite process of reaction or resistance;

• Thirdness: involving mediation bringing something into relation to another. (See, for
instance, Peirce (1997, 6.32 [1891]).)

There is an element of givenness or sheer fact to phenomena that fall within the scope of either
Firstness and Secondness. Secondness is a dyadic relation that is irreducible to a single part.
Thirdness, for its part, is generally some ternary relation that (provided it is a “genuine Third”)
cannot be reduced to two terms, to two-part relations. (Peirce isolated two sorts of “degenerate
Thirds,” which could indeed be reduced to other categories; see, for instance, “A Guess at
the Riddle” [Peirce 1997, 1.3.3].) Peirce held that all other more complex relations could be
reduced ultimately to combinations of triads. While, again, the true scope of applicability of
the categories was meant to be extremely broad, in terms of Thirdness in particular, Peirce
would speak of a Third as “every kind of sign, representative, or deputy, everything which for
any purpose stands instead of something else, whatever is helpful, or mediates.” For Peirce,
in short, “Thirdness is nothing but the character of an object which embodies Betweenness or
Mediation in its simplest and most rudimentary form; and I use it as the name of that element
of the phenomenon which is predominant wherever Mediation is predominant” (Peirce 1997,
5.77 [1903]).

Here is an initial example, of a somewhat phenomenological flavor, that might help to start to
give some shape to these notions:

• Firstness: the visible light of the sun;
• Secondness: a child turning its eyes to the sun and the surprise and pain that is the event of

being hurt;
• Thirdness: a child watching someone else look at the sun and forming the judgment, “Oh,

that must have hurt!”
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As such an example is meant to suggest, the “theory of mind” and empathy involved in what is
described as Thirdness above is not reducible to Secondness—the child itself being painfully
affected by the light and the other person themself being painfully affected by the light. Taking
either of those individually, or even simply adding them together, cannot hope to account for
anything involved in the capacity for forming the empathic judgment.

An example often used by Peirce to better illustrate Thirdness and its distinction from
Secondness in particular is found in the act of giving:

Analyze for instance the relation involved in “A gives B to C.” Now what is giving? It
does not consist in A’s putting B away from him and C’s subsequently taking B up. It is
not necessary that any material transfer should take place. It consists in A’s making C the
possessor according to Law. There must be some kind of law before there can be any kind
of giving—be it but the law of the strongest. But now suppose that giving did consist merely
in A’s laying down the B which C subsequently picks up. That would be a degenerate form
of Thirdness in which the thirdness is externally appended. In A’s putting away B, there
is no thirdness. In C’s taking B, there is no thirdness. But if you say that these two acts
constitute a single operation by virtue of the identity of the B, you transcend the mere brute
fact. (Peirce 1997, 8.331 [Letter to Lady Welby])

As he would stress elsewhere,

[W]e cannot build up the fact that A presents C to B by any aggregate of dual relations
between A and B, B and C, and C and A. A may enrich B, B may receive C, and A may
part with C, and yet A need not necessarily give C to B. For that, it would be necessary
that these three dual relations should not only coexist, but be welded into one fact. (Peirce
1997, 1.3 [“A Guess at the Riddle”])

Still another related example might be found in that of a legal contract. Such a thing cannot be
accounted for just by the combination of two dyadic relations: the first being A’s signature on
document C and the second being B’s signature on document C. As Peirce would stress, the
nature of such a contract in fact lies in the intent and existence of the contract, which amounts
to certain conditional rules governing the future behavior of A and B (see Peirce 1997, 1.475
[ca. 1896]), where this is not reducible to the component dyads (signatures), but amounts to a
bringing together of these two dyads into a relationship binding for the future.

To stress another aspect of the difference between Second and Third, Peirce sometimes used
the example of a jurisdiction’s law enforcement. Here, an uninterpreted feeling of fear might
be First, and the law court’s injunctions and judgments would involve Thirdness. But once “I
feel the sheriff’s hand on my shoulder, I shall begin to have a sense of actuality” (Peirce 1997,
1.24 [1931–1958])—here we have Secondness. Whereas action confronting one with another
is Secondness, Thirdness is to be understood as involving rule-governed conduct, predictions
on future behavior, and habit-formation legislating over potential actions and interactions. As
such, the lawfulness of any phenomenon exhibiting Thirdness has a decidedly general flavor.

Peirce would come to think of Thirdness as present in any case of generality (universality).
Strictly speaking, both Firstness and Thirdness involve elements of generality, yet of a differ-
ent sort: Firstness involves a latent potentiality, a sort of vague generality, the generality of
qualitative immediacy and the indeterminacy involved in this. Peirce calls the generality of
Firstness negative generality. The generality of Thirdness, on the other hand, is one of neces-
sity, which is why Peirce made Thirdness the domain of law of nature or rule—this generality
of Thirdness is called positive generality.
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While there is a great deal more that could be said of all this, I will just also note that it is
curious that, for Peirce, the sort of generality of Thirdness was, fundamentally, “nothing but
a rudimentary form of true continuity,” forming a basis for the most demanding conception
of continuity, whose articulation he struggled with for most of his life. (See also Peirce’s
remark that continuity “represents Thirdness almost to perfection” [Peirce 1997, 1.337].
Zalamea [2012] has a number of fascinating discussions of Peirce’s evolving understanding
of continuity, which the reader is encouraged to consult.)

While, of course, there is no expectation or desire here of trying to map the categories of
Peirce’s classification onto the mathematics we have been developing, I think the connections
between generality (of which universality is an extreme form) and mediation, as intimated by
Peirce, provide an interesting perspective from which to view the category-theoretic formula-
tion of universality in terms of this special mediator or gatekeeper property. It is interesting,
as well, that in making this connection more exact, continuity (of the katholic sort) also
reemerges in a decisive way. At another level, I think it is also useful to consider how, for
a given category, it does often appear that the objects of a category are something like Firsts,
while the morphisms are plausibly something like Seconds—where there is even an element
of givenness to these (“these are just the objects, the units; and these are just how they happen
to relate or act on one another”). Universal constructions—limits and colimits—for their part,
do seem to fall into something like Thirdness: they cannot be reduced to a single object or
isolated morphism relating two objects, but would seem to essentially involve an act of medi-
ation relating or factoring any other morphisms or patterns to others within the category. And
it is with such constructions, perhaps more than anywhere else, that the “law-governedness”
of a category often emerges.

Altogether, with the category-theoretic notions of (co)limits, we are given a more precise
way of thinking about universality as a form of mediation—an optimal mediation. With the
category-theoretic notion of (co)continuous functors, built out of the material of such universal
constructions, we are given a more precise way of thinking about continuity in terms of a
process or transformation that preserves the special role played by those optimal mediators or
gatekeepers.





4 Topology: A First Pass at Space

In which we cover all the elements of general (point-set) topology needed for
sheaves on a topological space, introduce the relevant categories of interest, and
raise some questions (properly addressed in the appendix) regarding some of the
fundamental ingredients of topology.

The classical presentation of sheaves begins by looking at sheaves on topological spaces.
As we will explore in the final chapters of the book, there are powerful elaborations of
sheaves to more general settings than topological spaces. However, the right place to start
to introduce the sheaf notion is with sheaves on topological spaces. While a few important
topics of basic category theory remain to be covered, we already have the main category-
theoretic ingredients for defining sheaves in the context of topological spaces. In order to
take our first look at sheaves, then, all that remains is to cover the necessary elements of
general topology. That is the task of the present chapter. In the next chapter, we take a first
look at sheaves. Chapters 6 and 7 then return to two last important topics and ingredients
of basic category theory, matters worth exploring in their own right but also ones that will
allow us to significantly enrich the treatment of sheaves that will emerge in later chapters.

4.1 Motivation

The standard story told, when introducing point-set topology, presents the concepts of
topology as abstractions of features of metric spaces, specifically those nearest and dearest
to the heart of analysts: the Euclidean space Rk, especially R, the real line, and R2, the
plane. It is true that point-set topology has its roots in analysis, and while today we develop
these notions on their own terms, historically the staples of topology developed in order to
meet the needs of analysis, not as part of a separate subject. A metric space is basically just
a set of points and a relation on those points that acts as a certain quantitative measure of the
degree of closeness or nearness of pairs of points. Equipped with a notion of how far any
two points are, the decisive concerns of the analyst—such as continuity and approximation,
among others—can be easily characterized. But as far as continuity and approximation
(together with a number of other key notions of analysis) are concerned, one is never really
concerned with points per se, but rather with regions that include everything nearby a point
of interest. For now, think of these as regions of approximation.

In the general algebra of sets, we work with the set-theoretic operations of union, inter-
section, and complementation—the fundamental operations for relating and combining
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existing sets, allowing us to generate new ones from old. By attending to the behavior of
the regions of approximation in relation to one another, as we take their union and inter-
section, it can be observed that these objects—whatever their shape or whatever notion of
distance we use—always behave in a characteristic way: they are stable under intersection
and union, but in an asymmetrical fashion as concerns the finiteness of these operations.

The passage from metric spaces to topological spaces in general was largely aided by the
realization that if we get rid of the distance function that helps define a metric space and
gives us our very sense of nearness but retain the properties concerning how the pertinent
objects are stable under intersection and union (in an asymmetrical way with respect to
finiteness), not only can we recover the same metric notions, but we are left with a new and
more general notion that can capture a wide variety of further structures of interest.

Given a set, we can observe certain things about it, as far as its constituent parts are
concerned—for instance, we can look at its cardinality: How many elements are in it? But
we might care less about something like the number of parts and more about the relations
between the parts. In asking questions about the interrelations between the parts of a set,
we would appear to need an answer to the questions:

• What kind of parts do we allow?
• What sorts of relations between those parts are allowed?

As it turns out, in the more general setting, questions about what kind of objects we have
(e.g., how the regions of approximation are characterized) can be reduced to specifying
how they relate to one another. A topology fundamentally consists of a collection of sub-
sets of a set X, a certain structure endowing the constituent objects with some coherence,
meaning that it makes sense to determine when things are nearby or close together; this can
be articulated entirely in terms of how these subsets satisfy certain conditions, specifically
conditions on how the subsets relate to one another.

The standard story told to motivate general topological notions and arrive at the key
axioms of a topology proceeds by

1. observing certain features of approximating objects native to Euclidean space; then
2. abstracting from Euclidean space to metric spaces in general; then
3. abstracting again from metric spaces to certain properties of general open sets, using

these as the axioms determining a space in general.

The standard objects or parts we work with in topology are open and closed sets. The
canonical example of an open set, from standard metric space settings, is an open inter-
val or open disk—where this subset characteristically contains none of its boundary. The
canonical example of a closed set is a closed interval or closed disk, where this by contrast
contains all of its boundary. In general, when we take the intersection of two sets, say A and
B, denoted A∩B, we end up with the set that contains all elements of A that also belong to
B (or, equivalently, all elements of B that also belong to A). Suppose we are working with
some closed intervals. Clearly, the intersection of any closed intervals will itself be a closed
set, and this can be extended to arbitrarily many such closed sets. By contrast, if we start
with open intervals, notice how the intersection of any two open intervals will itself be an
open interval—yet this cannot be extended to an arbitrary number of open intervals. After
all, the intersection of an infinite number of shrinking open intervals centered on a point
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will just be the point itself—yet points are boundary-like objects and cannot be considered
open without things becoming rather degenerate. In a similar way, we can consider what
happens when we take unions of sets. Suppose we have open intervals. The union of any
number of open intervals will itself be an open interval. But if we start instead with closed
intervals, it is not the case that the union of an arbitrary number of closed intervals will be
closed—so, to ensure that we are left with another closed set after we deploy the operation
of union on closed sets, we must restrict the union to the finite case.

At bottom, these two dual conditions are what define a topology:

• for open sets: stability under finite intersection and arbitrary union;
• for closed sets: stability under arbitrary intersection and finite union.

Open and closed sets are related to one another in a particularly nice way, so in principle
it does not really matter which sorts of object we use. Rather, the essence of the topol-
ogy notion is the characteristic asymmetrical finiteness conditions on how subsets behave
when unioned and intersected. These conditions on the interrelations of subsets are what
ultimately constitute openness versus closedness, rather than any intrinsic property of some
“open” or “closed” entity in itself.

There are aspects of the standard story—where topological spaces are presented as a
natural generalization of conspicuous properties of especially familiar metric spaces—
that can appear compelling to newcomer and seasoned mathematician alike. However, the
confidence with which this story is typically told tends to leave unanswered—or, worse,
even obfuscate—a number of legitimate and lingering questions. These important (if some-
what more philosophical) questions are raised at the end of this chapter, but treatment of
them is relegated to the appendix, in order not to distract from the march onward toward
sheaves. The appendix is perhaps best read after chapter 7 on adjunctions—or, if the reader
is already familiar with such matters and is willing to postpone arriving at sheaves, after
the present chapter.

In addition to being vital to the first presentation of the sheaf concept, general topology
is one of the fundamental branches of modern mathematics, next only to set theory. The
concepts one meets in point-set topology provide us with a framework for expressing ideas
that extend to nearly all branches of mathematics. For these reasons, this chapter devotes
considerable time to developing the core notions of general topology (henceforth, in this
chapter, we’ll just say “topology”), and refers to the appendix for a firmer understanding
of the “essence” of topology by exploring potential answers to the three questions raised
at the end of this chapter.

The rest of this chapter is structured as follows. Section 4.2 first motivates and describes,
in a more informal fashion, via a dialogue, a number of the decisive concepts explored and
dealt with in general topology. Section 4.3 then explores these in a more formal and detailed
fashion, providing a self-contained account rooted in examples and worked-out exercises,
of all that is needed from topology for the purposes of sheaf theory. The Philosophical Pass
at the end of the chapter (section 4.4) raises three lingering questions about topological
matters, questions whose treatment is relegated to the appendix.

4.2 A Dialogue Introducing the Key Notions of Topology

Suppose you have in front of you a sheet of paper on which a blot of ink has been dropped:
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A bright but mischievous young student points to somewhere well within the ink blob,
announcing that the paper is black there. You agree. The student asks you,

“But how do you know that the point I pointed to is black?”

You take them to be asking,

“How do you know that the point (call it b) is within the region of the ink blob (call it R)?”

How will you answer them?
Perhaps you are feeling rather lazy at first, and you are not “on duty” at the moment, and

so you attempt to meet their queries with some reference to how one can “just see” that the
point in question has to be black, adding some tautological remark about the color black
while gesturing to the point. But the student is not deterred—sensing that some evasion is
happening, they grow even more eager to address the issue head on:

STUDENT: You said that I can observe that b is black (in R). But what exactly am I being
asked to observe? I have no problem agreeing that, whatever the black region R is, R is
itself black—this is trivial. But I wanted to know about b.

MATHEMATICIAN: Yes, well b is in R, as I said.

STUDENT: Yes, and as I said: How do you know that? You cannot say that I can observe b
itself—I cannot. It seems to me that whatever is given to observation will be extended. Plus,
in my geometry classes they say that points have no size, no extension. So even though we
use dots to represent points, isn’t this just an idealization, just like the mythical “instant”—
there is no such extended point, so there can be no features at the point; in particular, I can
observe no color there.
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MATHEMATICIAN: Interesting. And you seem to be suggesting that this would not just be
a limitation on your part: If it is assumed that points are not extended, but observables are
extended (in space or time or both, say), then you would be correct in asserting that points
would (at the very least) not be the primary bearers of spatial properties or relations—no
property, such as color, could be observed of, or primarily ascribed to, a point itself. No
matter how fine-grained an observation could get—no matter how much you could “zoom
in”—it could not zoom in exactly onto the point itself and directly observe a property of it.

STUDENT: Yes, that is basically what I was thinking.
MATHEMATICIAN: In that case, it seems like we have two options: (1) give up on saying

anything about points at all or (2) declare that whatever holds at a point really pertains to
what holds of some extended region or some non-point-like part of a space surrounding
the point, so of the nearby points (where perhaps we can then use what is nearby to say
something about our point).

With the second option, we might even initially relinquish the idea that there are zero-
sized points or instants—instead, we might take ourselves to be working with nonzero
or nondimensionless regions, while allowing that such regions could be made arbitrarily
small. The wager here is that, even though we are apparently relinquishing the idea of
points, we may be able to recover everything we might want to say about points via such
regions.

STUDENT: The first option seems silly. After all, we say things about points all the time,
and it seems unnecessarily pessimistic to prohibit ourselves from making claims about
points. And I was being sneaky before. I do see that some points of the paper are black and
others gray (the color of the paper). And I see that where I pointed earlier, at b in particular,
is clearly within R—I just want to know how to articulate in a less suspect or vague way
this word “clearly.”

MATHEMATICIAN: Indeed. And the second option seems sensible in its own right: after
all, we have been asking about how b relates to its environs.

This also gets at an important feature of the overall problem, one that relates to your
observations about points. In settings where mathematicians first clearly formulated the
notions needed to address our problem, along the lines of route 2, a primary concern
was with continuity and related matters. Strictly speaking, the sorts of things that can be
continuous—motions, velocities, and so on—cannot be seen as an intrinsic property of
some object like a point or instant. Motion, for instance, is something that involves a rela-
tionship between the state of an object at one instant and the state of that object at another
instant or collection of instants. In concerning ourselves with such things, and whether
or not they are continuous, we are concerning ourselves with something that ultimately
involves a relationship between multiple moments, instants, or points.
Before we get too carried away with any of this, though, I bet we can start to get a better

handle on your earlier questions by returning to this idea of “zooming in,” since I suspect
that we will find that, even if we cannot directly observe a property exactly at a point, there
is something we can use in this notion of zooming.

STUDENT: So we are thinking about having something like lenses or magnifying glasses,
each one of which gives us a distinct magnification?

MATHEMATICIAN: Yes, that works. Each lens’s distinct magnification could then just be
uniquely described by the radius of the resulting window of observation that we would
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get, upon looking through the lens. In that way, we can give each lens with a distinct
magnification its own name, depending on the radius of its window of observation.

STUDENT: Okay, so for a given point, we can center a lens on that point and take a look
at it with that lens. For instance, for our point b, a medium-sized lens might show us

while a lens that can zoom in further might instead show us

MATHEMATICIAN: That is the right idea. And what do these lenses tell you?

STUDENT: Well, so far, I’m not really sure they tell me anything. Not anything definitive,
at least. I would like to say that the second one is somehow “better” though.

MATHEMATICIAN: If it is better, as you say, you could try zooming in even further.

STUDENT: That is exactly what I was thinking. Suppose we end up with a small enough
region of observation such that all around us we see only black,

MATHEMATICIAN: It seems that, with this lens, we can now declare without hesitation
that b itself is black, that is, inside the ink blob, no?

STUDENT: I agree. And I don’t have to zoom in any further, right?

MATHEMATICIAN: Let’s give this a name.

Paradigm/Principle of Truth Continuity: an observable property will be true of a point whenever
it continues to be true in all better approximations.

STUDENT: And this would have worked just as well on, say, the point a, where this is
decidedly in the gray paper region. It seems that whenever, around a point a, there is a small
enough region of observation such that all around us we see only gray, we can likewise
declare without hesitation that a itself must be gray, that is, in the paper region.
It seems like I can use these lenses to tell when any point is black or not black.

MATHEMATICIAN: Hold on. Consider
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For a and b the concepts we are building would indeed suffice to tell us unequivocally.
Imagine zooming in further and further to b. Clearly we can zoom in close enough such
that “we only see black.” For a, similarly, we can zoom in to a small enough region around
a such that “we only see gray.” But what about c?

STUDENT: Well, as I zoom in further and further to c, if we are assuming that the region
R includes all its outer edges, so that c is exactly on the edge of R, there is evidently no
way of zooming in close enough that we are surrounded by only black. Likewise, there is
no way of zooming in close enough that we are only surrounded by only gray. However
small we make our zoomed-in region around c, we will see both black and not-black!

MATHEMATICIAN: Yes, exactly, and we can use such trouble cases to define a new
notion: that of the boundary.

STUDENT: Doesn’t that mean, by the way, that what we have been calling “lenses” are
being thought of as not including their boundary? After all, if they had included their
boundary, then there would be points within its observation window that we could zoom in
on with more and more refined lenses and yet for which we could never say unequivocally
whether or not they were black or not-black. It seems like this could further force us to
give up on your Paradigm of Truth Continuity, which seemed sensible enough to me.

MATHEMATICIAN: That is exactly right. Incidentally, what we have been attempting to
name with our “lenses”—or, really, the various windows of observation that result from
using such lenses—could instead be thought of in terms of what mathematicians would
call an open disk in a plane (or, if we had been restricting our attention to the real line, an
open interval).

STUDENT: Yes, I know about these. In R, we’re thinking about intervals of the form
(a, b) = {x∈R | a < x < b}:

And in terms of the plane R2, we are thinking of objects like the following:
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that is, the set of all the points within some fixed nonzero distance. For instance, with such
disks, we have all the points inside a circle with center p and radius δ > 0.

MATHEMATICIAN: That is right. Here, of course, we have been implicitly using a par-
ticular distance. In the plane, for instance, d(p, q) denotes the usual distance between two
points p = 〈a1, a2〉 and q = 〈b1, b2〉 in R2, that is,

d(p, q) =
√

(a1 – b1)2 + (a2 – b2)2

STUDENT: Okay, so it seems like we have been saying that, for a given region (say R), in
examining some point x, if we can find such a disk D of some radius δ > 0 around x such
that the disk itself D is contained in the region R, then we should be able to confidently
assert of the point x itself that it is “inside” R.

MATHEMATICIAN: Yes, you have effectively described here what mathematicians call an
interior point: for a subset A of R2, a point p∈A is an interior point of A precisely when p
belongs to some open disk Dp that is contained in A, that is, p∈Dp⊆A.

STUDENT: And is there a name for the inverse of the relation “x in an interior point of
A”?

MATHEMATICIAN: Yes, you were simultaneously describing the notion of a neighbor-
hood: for a point x∈R2, a subset N of R2 is a neighborhood of x precisely when it contains
an open disk that contains x, that is, p∈D⊆N.

STUDENT: Wait, that’s all great, but getting back to R and what we were talking about a
moment ago, how do these notions apply?

MATHEMATICIAN: Well, let’s look closer at c. If c is assumed to be on the boundary of
the region R, will we able able to form an open disk around it such that that open disk is
entirely contained in R?

STUDENT: No. Any open disk around c would have to include something that was not R.
So c cannot be an interior point of R.

MATHEMATICIAN: Exactly.
STUDENT: But b is surely an interior point—and a, for its part, may be an interior point

of the gray paper region (whatever we want to call that).
MATHEMATICIAN: That is right. Suppose, then, that each of the points of R is an interior

point. In this case, mathematicians would call R itself an open set.
STUDENT: It seems like this is all very wrapped up with the notion of boundary. For

instance, to say that R is open—so that every point of R is an interior point—seems to just
say that R does not include any of its boundary.
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MATHEMATICIAN: Right! You have hit on another formulation of this notion of open-
ness.

STUDENT: Okay, but when we move from the real line R to the plane R2, the same
notions seem to carry over without a problem. I was wondering: What happens as we
move to other spaces? And I have heard that there are still other notions of distance. What
happens then? Also, is there something special about disks?

MATHEMATICIAN: Great observations! The construction we have been using works for
any notion of nearness or distance, as long as we have specified what this is. The relevant
notion of nearness is specified by the underlying “metric.” So far, we have really just been
working with a particularly familiar metric, and the familiar space over which this reigns,
so we have not bothered to be explicit about this. But let’s correct that now.

Definition 73 A metric space (X, d) consists of X a nonempty set, the elements of which
are called “points,” and a function d : X×X→R≥0 called a metric or distance that asso-
ciates to any two points x, y∈X a point d(x, y) in such a way as to satisfy the following
properties for all x, y, z∈X:

1. 0≤ d(x, y) (or just d(x, x) = 0);
2. if d(x, y) = 0, then x = y;
3. d(x, y) = d(y, x);
4. d(x, y) + d(y, z)≥ d(x, z).

We can then use this notion of a metric to define a more general version of our open disks
(and open intervals) from before.

Definition 74 For (X, d) a metric space, with a∈X and r > 0, an open ball around a of
radius r is the set

Br(a) = {x∈X | d(x, a) < r}.

As you might have expected, these open balls can then be used to define the following:

Definition 75 For (X, d) a metric space, and x∈X, a subset A⊆X is called a neighborhood
of x if there exists an ε> 0 such that

Bε(x)⊆A,

that is, provided an open ball around x can be contained in A.

Finally,

Definition 76 For (X, d) a metric space, subset O⊆X is said to be open in (X, d) whenever
for every a∈O, there exists an ε> 0 such that

Bε(a)⊆O.

STUDENT: So what we have been calling lenses, and thinking of as “wiggle rooms,” in the
context of R2 with the usual sense of distance, are just particular instances of this general
notion of open balls, which is like the distance-agnostic definition of the same thing?

MATHEMATICIAN: Precisely. Now observe how as we have been thinking about open sets
thus far, in terms of in our real line R or plane, with the usual sense of distance between
points, we have been thinking that
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A set is open if whenever it contains a number a, it also contains all numbers “sufficiently close”
to a.

In other words, a subset A of R is open if for every a∈A, there exists a number ε> 0 such
that the open interval

(a – ε, a + ε)

is a subset of A, where of course the interval (a – ε, a + ε) just consists of all numbers within
(the usual) distance ε of a, that is,

{x∈R | |x – a| < ε}.

But the point is that we need not confine ourselves to the usual notion of what counts as
close—as long as there is a notion of distance, we can use that and the same objects will
be available to us. A set A is open if, for each point in the set, we can find a little “wiggle
room”—defined in terms of the prescribed distance—around the point, without having to
leave A.

STUDENT: And, on this more general account, we need not confine attention to discs or
open sets of a certain shape?

MATHEMATICIAN: That’s correct. They need not be (literal) balls or circles at all. Even in
the plane, especially as we introduce different metrics, open sets will include a variety of
things, like open discs D = {〈x, y〉 | (x – a1)2 + (y – a2)2 < δ2} = {q∈R2 | d(p, q) < δ}, open
half-planes {〈x, y〉 | y < a}, open rectangles, and so on.

The only thing we require, for a set to be open, is that it be a neighborhood of each of its
points.
Observe, though, that an open ball is itself an open set. And since each open ball is itself

an open set, it is routine to show that a set U is open precisely when it is a union of open
balls.

STUDENT: It seems like so much of this depends fundamentally on how we treat the
boundary. None of these so-called open sets includes their boundaries.

MATHEMATICIAN: Yes, as I mentioned before, this gets at an important alternative
characterization of open sets.

STUDENT: What if we had decided to treat boundaries differently?

MATHEMATICIAN: Great question. If we instead work with objects that include their
boundaries—think of the circle including its boundary, or an interval including its end
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points—we are exhibiting instances of the notion of a closed set. And we could just as well
have told this story using them!

STUDENT: Okay. Now we have a lot of words to describe when parts of a space equipped
with a notion of distance are “near,” which we can also use to home in on points. What’s
the big deal?

MATHEMATICIAN: Actually, we do not even need a notion of distance to develop such
ideas.

STUDENT: What?! Explain!

MATHEMATICIAN: So far, we have basically been assuming that we already understand
the underlying “space,” the points of which we were comparing for nearness, interiority,
and so on. But let us step back a bit.
Let us take these open set objects as our primitives and see what happens when we relate

them. The most obvious thing we can try, for any two open sets, is to take their union or
their intersection.
As for union, if we take two open disks and union them together, there is clearly no way of

introducing any boundary, so the result will itself be open. But we can go further than this:
we can union together any two open disks, and as we take the union of an arbitrary number
of open disks, still no boundary can be introduced, so the union of any open disks must
itself remain open. Moreover, trivial as it seems, notice the degenerate case as well: if we
take the empty union—the union of no open disks, which is still technically a union!—this
can only be the empty set ∅ itself. So this must also be open! Moreover, we can accordingly
describe a set as open precisely when it is a union of open balls.

When taking intersections, the result will include the parts of the space that all of them
have in common. First of all, notice the degenerate case here as well: if we take an empty
intersection—the intersection of no sets—the result will be the entire space! In our case of
the plane, this is all of R2, making the entire plane itself open.
Suppose we now take the intersection of two open disks:

Observe how, for a point p0 ∈D1 ∩D2 in the intersection of the two open disks D1

and D2—the ones that are pictured as overlapping—we will have that D(p1, p0) < δ1 and
d(p2, p0) < δ2. So if we just set r > 0 as

r = min{δ1 – d(p1, p0), δ2 – d(p2, p0)},
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and let
D = {q∈R2 | d(p0, q) <

1

2
r},

then clearly p0 ∈D⊆D1 ∩D2, making p0 an interior point of the intersection D1 ∩D2.
This shows that the intersection of any two open disks will also be open.

STUDENT: And, as we could do with unions of opens, if we intersect an arbitrary number
of open sets, then the result will be open?

MATHEMATICIAN: I was just about to speak to this. We cannot! This can easily be seen
by looking at open intervals of the real line (exactly the same sort of argument applies to
the plane).
Suppose, for some point x∈R, I tell you that I can supply you with a “magical lens” (call

it L∞)
∞⋂
n=1

(
x –

1

n
, x +

1

n

)
.

For concreteness, let’s just consider the point x = 0, so that this becomes
∞⋂
n=1

(
–1
n

,
1

n

)
.

As n gets larger, this is of course like zooming in closer and closer, giving smaller and
smaller windows of observation, around the point 0. As the windows of observation around
the point 0 are getting arbitrarily small, the only thing that can be found in every one of the
abstract lenses of the form

( –1
n , 1

n

)
is the point {0} itself. If this—the point {0} itself—was

allowed to be declared open as well, as you were suggesting, then we would have some
problems.
There is no such problem in the case of restricting ourselves to finite intersections, for any

finite intersection of open balls will be itself open.
STUDENT: I see. It does seem like it would be strange to countenance the idea that points

themselves would be open, as there is no “room” in a point at all, let alone wiggle room.
MATHEMATICIAN: Right.
STUDENT: So, I see that, focusing on the plane for concreteness: any union of open sets

will be open, and finite intersections of open sets will be open.
MATHEMATICIAN: Exactly. And recall the degenerate cases of union and intersection as

well, which informed us that the whole plane R2 and the empty set must also be open.
STUDENT: Sure. But what is the point of all this again? How does this answer my

question about how to develop the notion of open sets even without any notion of distance?
MATHEMATICIAN: Well, in order not to prejudice things, forget everything you know

about “open discs” and “open intervals” and all that.
STUDENT: I’ll try.
MATHEMATICIAN: Suppose only that we have some featureless objects—they are sets,

but for now don’t attribute any properties to them. To insist on this, let us just call such
things blahs. Here is the punch line. Suppose

arbitrary unions of blahs results in a blah; and
finite intersections of blahs results in a blah.

In precisely this case—needing nothing more, knowing nothing of distances—we agree to
call such blahs open sets.
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STUDENT: Fine. Of course our familiar open intervals and balls from before will be
accommodated by this definition. But so what?

MATHEMATICIAN: Well, two things are of importance to note. First, observe that we
have now given a definition that does not rely on any intrinsic properties of certain
special objects, but the objects in question are themselves entirely determined by the
sorts of relations they entertain (specifically with respect to the operations of union and
intersection).

STUDENT: Like recovering the space of the plane itself just by looking at how the
approximating lenses must relate to one another?

MATHEMATICIAN: That is a good way of thinking about it.
And this lends itself to the second point. In our earlier special cases of the real line and

plane, the open sets were characterized in terms of the distance function we were assuming.
And such metrics in fact induced the structure of the opens, according to which the two
conditions were met. One can appreciate this by considering, for instance, how our sketch
of a proof of the finite intersection property made constant use of the distance function.
As it turns out, despite the interest we have in Euclidean spaces, like the plane, there are

a number of interesting and conspicuous examples of structures of subsets of a given set
that meet the two defining conditions supplied above. And some of these have no notion of
distance at all. For such things, the structure of the open sets is not induced by any metric.
Mathematicians call any such structure of subsets of a set X that act as open sets, in the

sense that the two conditions above are met—even where there is no attendant notion of
distance—a topology, and the set X together with this topology forms what is called a
topological space.

STUDENT: So even though we began with a notion of distance as we formulated our
approximating lenses—which happened to be useful for telling us when things are near,
and so useful ultimately for formulating other things, presumably like a viable concept of
continuity—with this new and more general formulation, we see that the notion of distance
must be auxiliary even to the notion of continuity (even though we first learn to think about
it in terms of “sending nearby points to nearby points”).

MATHEMATICIAN: Yes. But there is a great deal more. Many topological spaces are mas-
sively important in their own right, as any student of any branch of mathematics must come
to appreciate.

STUDENT: Okay, I can believe that. But what if we had used closed sets instead of open
sets, that is, if we wanted to explicitly reason with boundaries?

MATHEMATICIAN: Good question. Earlier, I hinted that closed sets and closed set topolo-
gies can just be described in a dual fashion, and this will require that their general definition
be in terms of any subsets that respect

arbitrary intersections of closed sets results in a closed set; and
finite unions of closed sets results in a closed set.

STUDENT: I see. So, thinking in terms of boundaries, you could say

open set version: without introducing boundaries, an arbitrary number of boundaryless objects
can be joined together (without restriction), while only finite intersections of boundaryless objects
are permitted (otherwise boundaries can be introduced where there were none before).
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closed set version: without introducing boundarylessness, an arbitrary number of boundary-
containing objects can be intersected together (without restriction), while only finite unions of
boundary-containing objects are permitted (otherwise boundarylessness can be introduced where
there were none before).

MATHEMATICIAN: That is an interesting way to put things.
STUDENT: In dealing with a topological space, does it matter, then, whether we use open

sets or closed sets to describe it?
MATHEMATICIAN: Yes and no. We can convert—in a purely formal way—back and forth

between open and closed sets, appropriately dualizing the pairs of axioms as we do so,
and arriving at the alternative definitions. So while closed and open sets will in general
be different—and one must of course respect that difference—any topology that we can
describe in terms of open sets can be given an alternative closed set formulation.
On the other hand, this is hardly the end of the story. And there are some structures that

seem much more amenable to description in terms of one or the other. Moreover, some
mathematicians seem to act as if they believe that, for the most part, open sets might be
better or more natural to work with than closed—in part, perhaps because it can appear
more useful, in certain conspicuous contexts (such as when proving important theorems
of analysis and of familiar topological spaces), to have arbitrary unions of open sets being
open instead of having arbitrary intersections of closed sets being closed. It might in the
end have something to do with the nature of boundaries—but this is a more complicated
matter that we should postpone for the time being.

STUDENT: It does seem like all this is really about the structure of approximations and
the implications of certain decisions about how to treat boundaries. But it is okay with
me if we leave that aside for now. There is something else I have been wondering about
anyway, and the “dual” description in terms of closed sets only makes me wonder even
more.

MATHEMATICIAN: Shoot.
STUDENT: If all we need to formulate the notion of topologies and topological spaces—

in all the full glory of their generality—is a pair of axioms regarding behavior of the subsets
with respect to their union and intersection; and if topologies really are so integral to so
much of modern mathematics; can you help me better see why these governing axioms, as
opposed to some other axioms describing some other governing features of collections of
subsets, are the decisive ones?

MATHEMATICIAN: Well, recall how the open intervals and open discs of our familiar and
beloved spaces behaved. It was there that we first observed these features, and there that
so much of advanced inquiry into continuous phenomena using such approximating tools
first flourished.

STUDENT: Hmm. But I feel that this doesn’t really address my question.
MATHEMATICIAN: [Awkward silence]
STUDENT: For instance, in my physics class, we learned about light, how it behaves

in certain characteristic ways—for instance, as it moves from one medium to another, it
changes direction, and so on. Later, we learned that we had been regarding light as a wave,
and that this was part of a bigger story about waves in general and wavelike behavior.
While light exhibited wavelike behavior, we learned about other waves that were not light
waves and began to look at this in a more general way.
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Later, as our teacher was describing waves and considering some of the laws governing
the behavior of waves in general, one student asked the teacher to justify, or at least to
better clarify, the representation of such phenomena in terms of waves, the fully general
formulation of waves and why the defining wavelike behavior was the way it was.
If our teacher had simply appealed back to the example of light and how light’s behavior

can be observed as conforming to the general pattern of wavelike behavior, I would have
felt that this answer had failed to address what the student had been wondering.

MATHEMATICIAN: Hmm.
STUDENT: Open sets or closed sets, I still don’t see why these two properties—the ones

involving the asymmetry in the finiteness of the conditions on stability with respect to
unions and intersections—are the key defining features of such an important concept. It
does not seem that the fact that such features govern the usual objects of our familiar
Euclidean metric spaces offers much in the way of justification or clarification of these
axioms, especially as they are apparently governing for such a wide spectrum of structures,
well beyond the confines of our familiar plane.

MATHEMATICIAN: [Somewhat flustered] I see. Well, we may just have to come back to
this question. Before we take it up, let us take a closer and more structured look at all these,
and some further, notions of topology. Then, we may return to address your very legitimate
questions.60

4.3 Topology and Topological Spaces More Formally

As we have started to see, a topology on a set X is just a collection of subsets of X satisfying
certain properties. There are several equivalent definitions of the notion of a topology, but
the following is the one most commonly used:

Definition 77 Given a set X, a topology on X is a collection τ of subsets of X—that is, a
subset τ ⊆P(X) of the power set—that satisfies the following properties:

1. The empty set ∅ and X are in τ .
2. Any union of elements in τ is also in τ , that is, whenever {Ui}i∈I is a family (finite or

no) of subsets of X such that Ui ∈ τ for all i∈ I, then
⋃

i∈I Ui ∈ τ .
3. Any finite intersection of elements in τ is also in τ , that is, whenever U1, U2 ∈ τ , then

U1 ∩U2 ∈ τ (and this can be extended to the finite case).

Elements of the topology τ are called open sets, while a set is called closed if and only if
its complement is open.

A topological space is then just a pair (X, τ ), where X is a set equipped with τ a topology
on X.61

Observe that, strictly speaking, we do not actually need to write the first condition, in
the above definition. Regarding the redundancy of requiring ∅∈ τ : consider the second
axiom (stability under arbitrary union), and take the degenerate case of the empty family
of subsets, that is, I = ∅, so that

⋃
i∈∅ Ui, where this is just the set of all points x such

60. The interested reader will find these (and a few other) questions raised in the final section of this chapter, and
a dedicated treatment of them in the appendix.
61. When the context is clear, it is not uncommon to refer to a topological space by just its carrier set, X, a practice
we occasionally adopt.
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that x∈Ui for some i∈∅. But there are no such points x—thus, we already have that⋃
i∈∅ Ui = ∅, which amounts to ensuring that ∅ is in our collection.
As for X ∈ τ : consider intersections

⋂
i∈I Ui of subsets Ui⊆X, where these are again

indexed by the empty set I = ∅. The intersection of the empty family of subsets of X is
just the set of all x∈X such that x∈Ui for i∈∅—but every x satisfies this property, so⋂

i∈∅ Ui = X.
In short, then, a topology on a set X can be defined as a collection of subsets of X that is

stable under arbitrary unions and finite intersections.62

For open sets A, B, we might intuitively read the relationship A⊆B as “A approximates
B”—in other words, A is only a “partial specification” of what B specifies.

Example 78 The so-called usual (or standard) topology on Rn is the topology we get by
taking for open sets all possible unions of open balls. So, specializing for instance to the
real line R, this is given by the collection of intervals of the form (a, b) along with arbitrary
unions of such intervals.

Recall that an open ball is defined using d, the usual Euclidean metric, the notion of
distance we experience every day. Accordingly, this topology is also sometimes called the
Euclidean topology.

Example 79 The two examples described here represent extreme cases, and might seem
uninteresting at first but they are rather important nonetheless.

First, take the collection P(X) of all subsets of X. This forms a topology—called the
discrete topology—on X. In other words, with the discrete topology, every subset of X is
open.

Applied to X =R, the discrete topology can be associated with a particular metric (very
different from the usual Euclidean metric!), namely the discrete metric, defined thus:

d(x, y) :=

{
1 if x 
= y

0 if x = y .

For the second example, at the other extreme, consider the following. By the first property
in the definition of a topology, we know that a topology on X must contain both X and
∅. But notice that the set {∅, X}, on its own, already forms a topology on X, called the
indiscrete (or trivial) topology. In other words, with the indiscrete topology, the only sets
counted as open sets are X and ∅. In particular, observe that this entails that the entire set
X must be the only open set containing any point p∈X. In terms of the intuition, this latter
consequence means that all points of the space are smushed together in such a way that,
from the perspective of the topology, they cannot be distinguished.

Observe that the trivial topology on a set X will always be the topology with the least
possible number of open sets—after all, to be a topology at all, the empty set and the entire
set must be open, and the trivial topology just takes these as its only opens. By contrast, the
discrete topology on a set X is the topology that has the greatest possible number of open
sets—this is the topology that makes every subset open!

62. Instead of saying “stable,” it is common to say that it is closed under arbitrary union and finite intersection.
This terminology is entirely sensible, but it has nothing to do with “closed” in the topological sense, so in order
to avoid confusing the reader this terminology is generally avoided in this chapter.
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As the previous example already suggested, occasionally two topologies on the same set
will be comparable. Topologies need not be comparable, but when they are, the following
language is useful:

Definition 80 For two topologies τ and τ ′ on the same set, if τ ⊆ τ ′, we say that the
topology τ is coarser (smaller) than τ ′—or, what is the same, that the topology τ ′ is finer
(larger) than τ .

Here, to remember the terminology—where “coarse” means a smaller number of subsets
in the collection, and “finer” means a larger number of subsets in the collection—
topologists sometimes propose the following sort of analogy: think of some sort of grinder
breaking up the pieces of something, like coffee beans. If the grinder is set to “fine” grind,
then it will break things up into a great number of pieces; on the other hand, if one uses a
“coarse” setting, one will be left with a smaller number of pieces.

Exercise 1 Take X = {a, b, c, d, e}. Establish whether or not each of the following
collections of subsets of X forms a topology on X:

1. τ1 = {X, ∅, {a}, {a, b}, {a, c, d}, {a, b, c, d}}.
2. τ2 = {X, ∅, {a, b, c}, {a, b, d}, {a, b, c, d}}.

Solution

1. Yes, this is a topology, since it satisfies the three axioms of the definition, as you can
check manually.

2. No, this is not a topology, since {a, b, c} and {a, b, d} each belong to τ2, yet their
intersection does not, that is, {a, b, c}∩ {a, b, d} = {a, b} /∈ τ2, violating the third
axiom.

Exercise 2 Take X =Z, the set of integers. Then the collection C of all finite subsets of
the integers plus Z itself is not a topology. Why not?

Solution Well, in particular, the union of all finite subsets of Z not containing zero or any
negative numbers

{1}∪ {2}∪ · · · ∪ {n}∪ · · ·= {1, 2, . . . , n, . . . }

will not be finite (and so cannot be in the given collection), and it is also not all of Z.
Thus, while each of the members of the above union are in C, the union itself does not
belong to C. Thus, C does not satisfy axiom 2—the property of stability under arbitrary
union—disqualifying it from being a topology.

The dialogue in the previous section hinted that the notion of a topological space was
truly more general than that of a metric space. We speak of a space as metrizable if there is
a metric that induces the topology, that is, the topology can be regarded as coming from a
particular metric. If not, then it is said to be nonmetrizable. To show the topology notion to
be a proper generalization, we need only exhibit a space that is nonmetrizable. There are
in fact a great many nonmetrizable spaces!

Exercise 3 Take any set X that consists of more than one element. Take the indiscrete
topology on X. Is the resulting space metrizable?
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Solution It is not! For instance, take the set X = {1, 2} and let τ be the indiscrete topology
on X. We can show that τ is not induced by any metric one could put on X (and the same
would be true for any arbitrary set with two or more elements).

Suppose we had a metric d on X. We can set r = d(1, 2) > 0, from which we will have that
the open ball B(1, r) = {1}. Thus, in the topology induced by the metric d, the set {1} will
have to be open in X. Yet {1} is not open in the indiscrete topology!

On the other hand, if X had only one element, the space would be trivially metrizable.

Exercise 4 Find the smallest topological space that is neither trivial nor discrete.

Solution On a set with only one element X = {x}, there is only one topology it can admit,
namely {∅, {x}}—and here, the trivial and discrete topologies coincide.

So take a two-point set {0, 1}. Take for the collection of open sets

{∅, {1}, {0, 1}}.

This forms a topology, and one that is neither trivial nor discrete.
This particular space is rather special, and usually goes under the name of the Sierpiński

space S.

Example 81 Let X be the set R, but for open sets all possible unions of (what, in the usual
context of R, we typically think of as) “half-open” intervals of the form

[a, b)

for a, b∈X.
This forms a topology called the lower limit topology, yielding a space sometimes called

the Sorgenfrey line. Observe that this topology is finer, that is, has more open sets, than the
usual topology on R (generated by the open intervals as basis).

Notice that, with respect to the usual topology on R, with a < b, a, b∈R, these intervals
[a, b) are neither open nor closed! However, with respect to the Sorgenfrey space, they are
open (and closed!).

This example helps to reinforce an essential idea: openness (closedness) depends
entirely on the topology in question. We should not treat these notions as involving some
“inherent properties” of a particular set. A single set can carry many different topologies,
and strictly speaking it is important to remember that there is no such thing as an “open
set” in itself—only an open subset, that is, a set open in relation to some set. A given subset
U of a space X is (or is not) a subset open in (or open with respect to) X. In practice though,
which topological space we are working with will generally be obvious or clearly stated,
so we will often simply speak (somewhat misleadingly) of certain sets as being “open.”

Let us now investigate a little more closely a few other notions that arose in the dialogue
of the previous section.

Definition 82 For p a point in a topological space X, we say that a subset N⊆X is a
neighborhood of p if and only if N is a superset of an open set G that contains p, that is,

p∈G⊆N where G is an open set.
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Exercise 5 Suppose, on X = {a, b, c, d, e}, we have the following topology:

τ = {X, ∅, {a}, {a, b}, {a, c, d}, {a, b, c, d}, {a, b, e}}.

Supply all the neighborhoods of

1. the point e;
2. the point c.

Solution

1. What are the open sets that contain e? These are {a, b, e} and the entire set X. A
neighborhood of e is just any superset of an open set that contains e. Thus, we must
look for the supersets of {a, b, e} and X.

The supersets of {a, b, e} are {a, b, e}, {a, b, c, e}, {a, b, d, e}, and X, while the only
superset of X is of course X. Thus, the neighborhoods of e are given by

Ne = {{a, b, e}, {a, b, c, e}, {a, b, d, e}, X}.

2. What are the open sets that contain c? These are {a, c, d}, {a, b, c, d}, and X. Again,
supersets of these sets will give us the neighborhoods, that is,

Nc = {{a, c, d}, {a, b, c, d}, {a, c, d, e}, X}.

Instead of considering the relation

N is a neighborhood of point p,

we might look at things from the point’s perspective. Doing so gives us an inverse relation

p is an interior point of N.

We can accordingly define a point x of a subset U of a topological space X to be an interior
point for U if and only if U is a neighborhood of x. By taking the set of all interior points
of U—that is, taking the union of all open subsets of U—we get the interior of U, which
is denoted int(U).

Exercise 6 Take the topology from the previous exercise. Find the interior points of the
subset A = {a, b, c}⊆X.

Solution Since each of
a, b∈ {a, b}⊆A,

with {a, b} an open set that is contained in A, a and b are each interior points of A. What
about c? Well, c does not belong to any open set contained in A, and so it is not an interior
point of A. Thus, int(A) = {a, b}.

Observe that the interior of a set A is the union of all open subsets of A. Moreover, one
can show that

• int(A) is itself open;
• int(A) is the largest open subset of A; and
• A is open if and only if A = int(A).

The third fact is especially decisive. After all, a topology is just determined by those sets
declared open. Thus, the fact that a set will be open precisely when it is equal to its interior
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supplies us with an alternative way of construing a topology. It is important enough that
we set it apart:

Theorem 83 A subset U of a topological space X is open precisely when int(U) = U.

In this way, open set topologies can be determined by taking the interior, where there
will be certain conditions on how this must behave. Specifically, construing things in these
terms, we get an alternative (but ultimately equivalent) definition of a topological space.

Definition 84 A topological space is a pair (X, int), for X a nonempty set and int :P(X)→
P(X) an operation satisfying the four so-called Kuratowski axioms:

1. (i1) int(X) = X (it preserves the total space);
2. (i2) int(A)⊆A (it is intensive);
3. (i3) int(int(A)) = int(A) (it is idempotent);
4. (i4) int(A∩B) = int(A)∩ int(B) (it preserves binary intersections).

Observe that the family of open sets can then just be defined by setting τ = {A⊆X :
int(A) = A}. We will have much more to say about this operator throughout this chapter
and the appendix.

For now, though, let us continue to introduce further essential notions of basic topology.
In the elementary examples presented thus far, we could generally specify a topology by
simply explicitly describing the entire collection of open sets. But such a specification will
typically be unfeasible for many topologies you might meet out in the wild. In most cases
in practice, one instead specifies a smaller collection of subsets of X that then “generate”
the topology in question and so can be used to define that topology. And even when we
could explicitly specify the open sets of a topology, it is sometimes easier to understand,
and work with, a description in terms of the smaller collection. The following notion serves
such purposes.

Definition 85 For X a set, a basis for a topology on X is a collection B⊆P(X) of subsets
of X, called the basis elements, satisfying

1. (B “covers” X) for each x∈X, there is at least one basis element B∈B that contains
x—in other words, X =

⋃
{B : B∈B}; and

2. if x belongs to the intersection of two basis elements, that is, x∈A∩B where A, B∈B,
then there is at least one basis element C∈B such that x∈C⊆A∩B.

Then, the topology τ generated by the basis B is defined as the coarsest topology
containing B.

Another way of writing the first of the conditions placed on a basis of a topology τ on
a set X would be to say that every open set U ∈ τ is the union of members of B—so that,
in particular, X =

⋃
{B : B∈B}. In short, a basis specifies a topology by taking unions, that

is, starting with a basis on X, by adding to it all possible unions of basis elements, the
collection we end up with will be a topology on X. A basis for a topological space X is thus
just a collection Bof open subsets of X, such that every open subset of X is a union of sets
in B.

Note, though, that the expression for an open U as a union of basis elements is not
unique—a topological space can have several different bases. Thus, the terminology of
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“basis” here is not to be conflated with the use of the same term in linear algebra, for
instance, where the expression of a vector as a linear combination of basis vectors is indeed
unique.

Example 86 The basis that consists of the open intervals in R (or open discs in R2)
generates the usual topology on R (on R2).

For any metric space X, the open balls also form a basis for the induced topology on X.

Example 87 The collection of all the singletons (one-element subsets) of a set X is a basis
for the discrete topology on X: after all, they are all open in this topology, and an arbitrary
open set is the union of its singleton subsets.

Example 88 Let B= {[a, b)⊆R : a < b}. This forms a basis on R. The topology that it
generates is the lower limit topology on R, presented in example 81—resulting in the
topological space called the Sorgenfrey line.

Exercise 7 Let X = {a, b, c} and consider the collection B= {{a, b}, {b, c}}. Is B a basis
for a topology on X?

Solution No. While of course {a, b}∪ {b, c} = {a, b, c}, if B were a basis, then {a, b}
and {b, c} would each have to be open, and thus their intersection

{a, b}∩ {b, c} = {b}

would also be open. Yet {b} is not the union of any members of B.
Finally, given a topological space (X, τ ) and a basis Bon X, it is often convenient to use

the following to check whether B indeed generates τ :

Corollary 89 For (X, τ ) a topological space, and B a basis on X, B generates τ if and
only if

1. B⊆ τ ; and
2. for every open set U ∈ τ and every x∈U, there exists a B∈B such that x∈B⊆U.

Finally, it is worth mentioning that we do need not restrict the above notions only to
open sets—they apply just as well to closed sets, which we take up more explicitly in the
section to follow.

Exercise 8 What topology τ on the real line R is generated by the collection A of all
closed intervals [a, a + 1] of length 1?

Solution Consider any point p∈R. Then the closed intervals [p – 1, p] and [p, p + 1]
both belong to A. Thus, their intersection [p – 1, p]∩ [p, p + 1] = {p} must also belong to
the topology τ . Thus, all singleton sets {p} are open in this topology, giving us again the
discrete topology on R.

4.3.1 Closed Sets

In discussing topologies, we have confined ourselves thus far, as is common, to specifying
the open sets. But if we appropriately dualize things, we can arrive at an alternative descrip-
tion of things in terms of closed sets and closed set topologies. Fundamentally, open and
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closed set topologies are formally distinct only in how nonfinite collections of elements of
the topology are treated. Just building on what we already know of open sets,

Definition 90 A subset A of a topological space (X, τ ) is closed if and only if its
complement

X \ A

(also denoted Ac when the overall space is understood) is an open subset of (X, τ ), that is,
when Ac ∈ τ .

Example 91 Since X \ ∅= X and X \ X = ∅, both ∅ and X are always closed, in any topology.

Example 92 For the real number line R with the usual topology, the canonical closed
intervals [a, b] of real numbers

[a, b] = {x∈R | a≤ x≤ b}

give us closed sets. To see this, using the definition just presented, one need only recognize
that the complement

R \ [a, b] = (–∞, a)∪ (b,∞) = {x∈R | x < a or x > b}

is open. Yet this can be expressed as a union of open intervals, for example, (–∞, a) =⋃
n∈N

(a – n, a), and similarly for (b,∞).
Moreover, with such closed intervals, we can also take a = b, resulting in the closed inter-

val [a, a] or the single point {a}, making {a} itself a closed subset of R. Indeed, for most
topological spaces, it is typical to find that single points are closed subsets. In particular, in
R with the usual topology, each singleton set {a} is closed, for the complement of {a} is
the union of the two open sets (–∞, a) and (a,∞), which is open.

Similarly, the set Z of all integers is a closed subset of R—which fact can be seen by
acknowledging that the complement of Z is the union

⋃∞
n=–∞(n, n + 1) of the open subsets

of the form (n, n + 1), which is itself open in R.

Example 93 Given X = {a, b, c, d, e} with the topology

τ = {X, ∅, {a}, {c, d}, {a, c, d}, {b, c, d, e}},

the closed subsets of this topological space are given by the complements of the open
subsets of the space. Thus, for closed sets we have

∅, X, {b, c, d, e}, {a, b, e}, {b, e}, {a}.

As you can observe, there are subsets of X, like {b, c, d, e}, that are both open and closed;
while there are subsets, like {a, b}, that are neither open nor closed.

Example 94 Take X to be a discrete topological space, that is, one where every subset
of X is open. But then, every subset of X will also be closed, since its complement will
automatically be open. Thus, in a discrete space, all subsets of X are both open and closed.

Exercise 9 Given the set X = {a, b, c}, come up with a topological space that is not
discrete, where the closed sets and open sets are the same sets.

Solution Here is one:
τ = {X, ∅, {a, b}, {c}},
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which you can manually check has the stipulated properties.
The example that follows is an unusual one, meant only to suggest that things don’t

always behave as one might expect, especially in relation to distances.

Example 95 One might expect that closed sets that were disjoint would have to be some
distance apart. But we can describe two disjoint closed sets in the plane, that are at zero
distance apart.63 Let C1 = {〈x, r〉 | xy = 1} and C2 = {〈x, y〉 | y = 0} = the x axis. Then C1 ∩
C2 = ∅ (they are disjoint), and both are closed. Now, for any ε> 0, the points

(
2
ε , ε

2

)∈C1

and
(
2
ε , 0

)∈C2 are at distance 1
2ε< ε.

Because we have merely used the operation of complement to arrive at the correspond-
ing notions of closed sets, we should not be surprised that, by some elementary facts of
set theory, we can arrive at a “dual” definition of a topology in terms of closed sets. In
particular, first recall the following:

Lemma 96 (deMorgan’s Laws: taking complements turns intersections into unions and
unions into intersections) Let X be a set and (Ui)i∈I a collection of subsets of X. Then,

X \
(⋃

i∈I

Ui

)
=
⋂
i∈I

(X \ Ui)

and

X \
(⋂

i∈I

Ui

)
=
⋃
i∈I

(X \ Ui).

Given a topology built from open sets, then, by taking complements of open sets and
using deMorgan’s laws, we can define a topology in terms of closed sets, a closed set
topology.

Theorem 97 Take X a topological space. Then the collection of closed subsets of X will
have the following properties:

1. The empty set ∅ and X are closed sets.
2. The intersection of any number of closed sets is closed.
3. The union of any finite number of closed sets is closed.

Observe how unions became intersections and intersections unions, yielding alternate
finiteness conditions than what we had for open sets.

Exercise 10 It is fairly routine to check the statements made above, for instance that the
intersection of any number of closed sets is closed. For the condition on unions: you should
at least try to give an example of an infinite union of closed sets that is not closed, helping
you see why we must restrict to finite unions when dealing with closed sets.

Solution One such example is given by taking the union of all closed intervals of the
form

[
1
n , 1 – 1

n

]
. Observe that the infinite union equals (0, 1), which is surely not a closed

set.
Another example could be given by taking an infinite union of singleton sets

{
1
n

}
, which

you can check will not be closed.

63. This example was taken from Gelbaum and Olmsted 1962.
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With such a result, we can give an alternative definition of a topology, now in terms of
closed sets: namely as a set X together with a collection τ of closed subsets of X. Moreover,
because X \ (X \ U) = U, so that (τ c)c = τ , if you know what the closed sets are, you also
know what the open sets are (and conversely).

In certain cases, however, it may be more natural to check the dual topology axioms
using closed sets instead of open sets; and in some settings, it may simply be more natural
to work with, or define things in terms of, closed sets.

Example 98 In general, a subset A of a set X that is such that its complement in X is a
finite set is called a cofinite subset. For any set X, we can define a topology that takes for
its open sets the empty set and all cofinite subsets of X, that is,

τ = {A⊆X | A = ∅ or X \ A is finite}.

In this topology—called the cofinite topology—all finite sets are closed (and they, together
with all of X, are the only subsets that are closed). In other words, a subset Z⊆X is closed
in the cofinite topology if and only if it is finite or equal to X. And it is straightforward to
verify that

1. the empty set is finite, and X is equal to X;
2. an arbitrary intersection of finite sets is finite;
3. a finite union of finite sets is finite.

Accordingly, such a topology appears to have a more natural or direct description, and the
topology axioms are more easily verified, when we work with closed sets instead of open
sets.

This topology is rather interesting and does indeed show up a fair amount in the wild.
Moreover, it is the coarsest topology that satisfies the natural condition that singleton
sets are regarded as closed. Before moving on, let us explore a few other features of this
topology.

First of all, observe that the definition of a cofinite topology does not stipulate that every
topology on X that has X and the finite subsets of X as closed is automatically the cofinite
topology, as can be appreciated by considering that in the discrete topology on a set X,
the set X and all finite subsets of X will be closed (yet many—all!—other subsets of X are
closed as well). Rather, the definition says that X and the finite subsets of X have to be the
only closed sets.

Second, it is not the case that infinite subsets will necessarily be open sets, as the
following illustrates. Taking N the set of all positive integers, then of course sets such
as

{1}, {4, 6, 8}, {5, 6, 7, 8}

are finite and thus closed in the cofinite topology. Therefore, their complements

{2, 3, 4, 5, . . . }, {1, 3, 5, 7, 9, . . . }, {1, 2, 3, 4, 9, 10, . . . }

will be open sets in the cofinite topology. However, the set of even positive integers, for
instance, is not a closed set in this topology, since it is not finite. Thus, its complement, the
set of odd positive integers, is not an open set in this topology. In other words, while it is
true that all finite sets are closed in this topology, not all infinite sets will be open.
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Again reinforcing a point we made earlier, observe how a set such as {n | n≥ 12} is open
in the cofinite topology on N. However, this same set is not open in the indiscrete topology,
for instance. Similarly, the set of even natural numbers is open in the discrete topology on
the natural numbers, but it is not open in the cofinite topology. Again, it is easy to forget
that the notions of “open” and “closed” entirely depend on the topology—we should not
treat these notions as involving some “inherent properties” of a particular set.

Moreover, it is important to realize that, for a given topology, sets can be both open and
closed, neither open nor closed, open but not closed, or closed but not open. So one should
be sure to appreciate that we cannot prove that a set is open by proving that it is not closed.

As we did for open sets, we can define further notions corresponding to those we had
for open sets. For instance, while open sets had interior points, closed sets have limit (or
accumulation) points—which notion gives us another way of conceptualizing being closed.

Definition 99 We call a point x of a subset A of X a limit (or accumulation) point of A iff
every neighborhood of x contains at least one point of A different from x. In other words, a
point p∈X is a limit point of a subset A of X iff

G open, p∈G implies (G – {p})∩A 
= ∅.
Thus, to show that a point y is not a limit point of A, it is enough to find even just one open
set that contains y but no other point of A.

Example 100 Take the topological space (X, τ ), where X = {a, b, c, d, e} with the topology

τ = {X, ∅, {a}, {c, d}, {a, c, d}, {b, c, d, e}}.

Consider the set A = {a, b, c}. The points a and c are not limit points of A—for, the set {a}
is open in τ and contains no other point of A, and the set {c, d} is open in τ and contains c
but no other point of A. On the other hand, b, d, and e are each limit points of A. To show
that a point is a limit point of A, we just have to show that every open set containing that
point contains a point of A other than it. So, for example, b is a limit point of A, as the only
open sets containing b are X and {b, c, d, e}, each of which contains another element of A.
Notice, finally, that d and e are indeed limit points of A, even though they are not in A.

Example 101 If (X, τ ) is a discrete space, and A any subset of X, then A will have no limit
points. Observe that for each x∈X, the singleton {x} is an open set that contains no point
of A different from x.

Example 102 In R with the usual topology, every element in the interval [a, b] is a limit
point of [a, b].

Similar to what happened with open sets and their interior points, this notion of “limit
point” gives us a useful way of characterizing which sets are closed.

Corollary 103 A subset A of a topological space (X, τ ) is closed if and only if A contains
all of its limit points.

The set of limit points of a set A is sometimes called the derived set of A, denoted A
′
.

Using this notation, the above just says that a set A is closed if and only if A
′ ⊆A.
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Example 104 The set [a, b] is closed in R with the usual topology, since all the limit points
of [a, b] are in [a, b]. By contrast, the set [a, b) is not closed in R, since b is a limit point,
yet b /∈ [a, b).

Here is a strange and somewhat counterintuitive example.

Example 105 Suppose X is any set with more than one point. As we observed in example
79, if we let (X, d) be the metric space equipped with the discrete metric

d(x, y) :=

{
1 if x 
= y

0 if x = y,

this will induce the discrete topology on X. Now suppose x is any point of X, and let O
be the open ball (in this space), with center x and radius 1, while C is the closed ball with
center x and radius 1. Observe that we must then have that O = {x}, while C = X. But, as
the topology is necessarily discrete, cl(O) = O 
= B.

Altogether, this shows that we can produce a space for which we have open and closed
balls, O and C, each with the same center and same radius, such that C is not equal to the
closure of O!

In many other familiar spaces, such an example would be impossible.

Observe how on the real number line, there is a natural notion of “closeness.” For
instance, each point in the sequence

0.1, 0.01, 0.001, 0.0001, . . .

is closer to the point 0 than the previous point in the sequence. 0 is clearly a limit point of
this sequence, so an interval such as (0, 1] cannot be closed in R, since it does not contain
the limit point 0. However, in general topological spaces, we have seen that they need not
be accompanied by a distance function. Thus, we make use of the notion of “limit point”
that does not rely on distances. Yet even with this more general definition, we can still
ensure that, in cases such as the above, the point 0 will remain a limit point of (0, 1], as we
would have expected.

Just as, earlier, we were able to describe an interior operator int and use this to present
an alternative definition of a topology, there is a dual “closure” operator, cl, where for any
A⊆X, cl(A) is defined as the union of A and its limit points, that is,

cl(A) = A∪A
′
.

It should be apparent that cl(A) is itself a closed set. An important observation is that for
S, T nonempty subsets of a topological space (X, τ ), with S⊆ T , if p is a limit point of S, it
is straightforward to show that p must also be a limit point of the set T . But this means that
every closed set containing A must also contain A

′
. Thus, A∪A

′
= cl(A) must in fact be the

smallest closed set containing A—in particular, cl(A) will be the intersection of all closed
sets containing A. Altogether, a set A will then be closed (relative to a topology) precisely
when cl(A) = A. In this manner, we can begin to appreciate that closed set topologies can
be determined by closure operators, just as we were able to give an alternative definition
of an open set topology in terms of the interior operator.
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Exercise 11 Recall the definition of an interior operator. I have suggested that there is
an operator dual to the interior operator—and this is the closure operator. Referring back
to the four axioms governing the interior operator, introduced in definition 84, how might
you define the dual notion of a closure operator?

Solution Recalling that one can convert between open and closed sets by taking
complements, we arrive at the following definition:

Definition 106 A closure operator on a set X is a mapping cl :P(X)→P(X) that satisfies
the four so-called Kuratowski closure axioms, for all A, B⊆X:

1. (k1) cl(∅) = ∅ (it preserves the empty set);
2. (k2) A⊆ cl(A) (it is extensive);
3. (k3) cl(A) = cl(cl((A))) (it is idempotent);
4. (k4) cl(A∪B) = cl(A)∪ cl(B) (it preserves binary unions).

Moreover, a fact we alluded to earlier, that

• (k4′) A⊆B⇒ cl(A)⊆ cl(B),

is a consequence of the fourth axiom.

Exercise 12 Returning to example 93, where the closed sets were

∅, X, {b, c, d, e}, {a, b, e}, {b, e}, {a},

what is the closure of the sets {b}, the set {a, c}, and the set {b, d}?

Solution The closure cl(A) of any set A is the intersection of all closed supersets of A. To
find the closure of a particular set, we need only find all the closed sets containing that set
and then pick the smallest. Thus, in our present case, cl({b}) = {b, e}, while cl({a, c}) = X,
and cl({b, d}) = {b, c, d, e}.

Example 107 In any discrete space, as every set is closed (and open!), every set is equal
to its closure.

Exercise 13 Let S =
{
1, 1

2 , 1
3 , 1

4 , . . . , 1
n , . . .

}
. Show that S is not closed in the usual

topology on R.

Solution 0 is a limit point of S, but 0 /∈ S, so S cannot be closed. If, instead, we had
considered the same set, but now with 0 added, then it would of course be closed in R.

Note also that S is not open either. Check that you can see why.
As should be evident from some of the examples just considered, the closure of a set U

is in general bigger than U itself. As such, it is natural to want to consider what is in the
closure of a set without being in the set itself. This gives rise to an operator ∂, called the
boundary:

∂(U) := cl(U) \ U.

Note that for a set in a topology, we could also say that

∂(U) := cl(U) \ int(U)

or
∂(U) := cl(U)∩ cl(Uc),
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where this last formulation describes the boundary of a set U as consisting of those points
interior neither to U nor to its complement Uc (i.e., X \ U). As such, the intuition here is
that the boundary of a subset S⊆X consists of those points in X that are neither “fully in”
S nor “fully not in” S. We typically think of the boundary of a set as the exterior surface
or skin of a body. Yet the boundary of a set may be larger than the set itself—for example,
since it can be shown that the rationals Q are dense in R, ∂Q=R.

Another valuable way of defining the boundary of a subset S of a topological space X—
now seeing things from the perspective of points—is as consisting of the set of points p∈X
such that every neighborhood of p contains at least one point of S and at least one point
not of S. Here, such an element of the boundary of S is called a boundary point of S.

Example 108 Taking R with the usual topology,

∂((0, 3)) = ∂([0, 3)) = ∂((0, 3]) = ∂([0, 3]) = {0, 3},

just as one might have imagined.

While one might typically think of a boundary in the way the previous example supports,
or imagine the boundary in intuitive terms of the edges of a circle or figure in the plane,
boundaries can be strange, as the following example illustrates.

Example 109 One can construct three disjoint subsets of the plane, where these share a
common boundary. (In fact, this works for any finite number of disjoint regions.)64

A few other things are worth observing at this point. In general, a set U may have limit
points x where x /∈U, so ∂(U) may in general be nonempty. Moreover, the boundary of a
set is always closed, and a closed set will contain its own boundary. Altogether, the notion
of boundary gives us yet another characterization of a closed set.

Definition 110 A set is closed if and only if it contains all of its boundary points.

Note also that the closure of a set can thus be expressed as the union of the set with its
boundary,

cl(S) = S∪ ∂(S),

the smallest closed set that contains S.
The above characterization of closed sets in terms of boundary points moreover informs

us that a set is open if and only if it is disjoint from its boundary. Altogether, this character-
ization leaves us with a very useful way of thinking about closed versus open sets, one that
was already anticipated in the earlier dialogue: a set is closed iff it contains its boundary,
and thus open iff it is disjoint from its boundary.

At this point, the reader might be wondering: we have seen that we call a set closed if it
contains all its limit points, and we have just seen that we can also express a set as closed
if it contains all its boundary points—does this mean that these are two words for the same
thing? No! Limit points and boundary points are not reducible to one another. In particular,
a limit point can be a boundary point, but it need not be a boundary point, as a limit point
can also be an interior point (recall that a boundary point is not an interior point). One can

64. See Gelbaum and Olmsted (1962, 138) for a description of this, and a nice story to help with the
(counter)intuition.
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also appreciate the difference by considering the interval S = [0, 1] with the usual topology.
Here, each element of [0, 1] is in fact a limit point of S, while there are only two boundary
points—namely, 0 and 1.

Likewise, in general, a certain point may be a boundary point, yet not a limit point. For
instance, in R with the usual topology, the point 0 is a boundary point of the set {0}, but it
is not a limit point of that set. Note that there may also be points that are both a limit point
and a boundary, and points that are neither. However, again in general, it is often useful
to realize that a limit point of a set that is not an element of the set itself will always be a
boundary point.

In short, while a point p∈X is a limit point of a subset A of X iff every neighborhood
of p also contains a point of A other than p itself (which is something that can hold for
an interior point as well), a point p∈X is a boundary point of a subset A of X iff every
neighborhood of p contains at least one point of A and at least one point not of A. While
the notions are not the same, we can characterize closed sets in terms of either notion.

4.3.2 Covers

There is a final basic notion of topology, one that will be especially important for us in
the development of sheaves: that of a cover. A common thing to do in mathematics is to
approximate complicated objects or structures by means of simpler, more basic ones. The
topological notion of a cover is a powerful way of doing so, allowing us to shift from
a topological perspective to a more combinatoric perspective. Moreover, the notion of a
cover will play a key role in the definition of sheaf, so we close out the treatment of the
basic notions of general topology by devoting some attention to this notion.

A cover of a given subset S of a topological space X is any collection of subsets of
X whose union contains S. In other words, a cover for a set S is just a particular bunch of
(possibly overlapping) sets such that S is completely contained in that bunch of sets. Purely
in terms of set theory, a cover of a set X is thus just a family C⊆P(X) of subsets of X such
that X =

⋃
C. The set being covered can of course be the entire space itself X, in which

one speaks of a cover of the space. But more generally, we can just define a cover for any
subset of a space.

Definition 111 Let X be a topological space and S⊆X. Then an (open) cover of S is a
collection {Ui}i∈I of (open) subsets Ui whose union contains S, that is, S⊆⋃

i∈I Ui. Note
that if S = X, then this is just to require that⋃

i∈I

Ui = X.

If we are working with open sets, given an open set topology, we will often just speak of
an open cover, where this is exactly the same thing as a cover, except we specify that all the
members of our collection of sets doing the covering are themselves open sets. But observe
that this definition would work just as well for a closed cover, where this would just be a
collection {Ci}i∈I of closed subsets of X such that

⋃
i∈I Ci = X. Closed covers can be got

from open covers by taking the closure of each of the open subsets, which incidentally
makes it so that every point x∈X is in the interior of one of the closed subsets Ci (a further
stipulation sometimes placed on closed covers).
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Example 112 Consider R with the usual topology. Let

Un = (n, n + 2), where n∈Z.

Then the collection {Un}n∈Z forms an open cover of R—one where, incidentally, we will
have many overlaps.

Example 113 Again consider R. Let

Un = (–n, n), where n∈Z.

Then the collection {Un}n∈Z forms an open cover of R—a nested cover where we will have
many more overlaps than in the previous example, since each set contains all the preceding
ones.

Example 114 We can have a cover that has considerable redundancy. For instance, take
the set (0, 1) in R. This set has an open cover with the collection{(

0,
3

4

)
,
(
1

4
,
1

2

)
,
(
1

4
, 1
)}

.

Observe, though, that we do not need all these subsets. Already with the first and last
members of the cover we will have a cover of (0, 1), that is, with{(

0,
3

4

)
,
(
1

4
, 1
)}

.

In such case, we speak of the latter cover as a subcover.

As such examples can help one see, be sure to observe how, in general, a subcover
consists of fewer open sets, not smaller subsets.

Example 115 Take S =R. The family {Un} of open intervals

Un = (n – 1, n + 1), where n∈Z
forms an open cover of R that contains no nontrivial subcovers.

Example 116 Suppose our space is R and S = (0, 1). Then, the collection{(
–1,

1

2

)
,
(
0,

3

2

)}
is an open cover of S. This is an example of a finite cover, as it consists of only a finite
number of sets (in this case, just two).

Example 117 (Nonexample) A Cantor set is constructed by iteratively deleting the open
middle third from a set of line segments. For instance, one can first delete the open middle
third

(
1
3 , 2

3

)
from the interval [0, 1], giving us the two line segments

[
0, 1

3

]∪ [ 23 , 1
]
. One

then deletes the open middle third of each of those remaining segments, leaving us with[
0,

1

9

]
∪
[
2

9
,
1

3

]
∪
[
2

3
,
7

9

]
∪
[
8

9
, 1
]

.

One can continue indefinitely with this process. The Cantor ternary set then contains all
points of the interval [0, 1] that are not deleted at any step in this infinite process.

Such a set cannot cover [0, 1], and Cantor sets in general will fail to cover R.
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Exercise 14 Given X a topological space, is {X} an open cover of X?

Solution Yes, a rather trivial one, but it is indeed a cover—specifically, it is the coarsest
cover of the space. Obviously, this fact would apply to any open subset as well: namely,
for an open subset U of a space X, the coarsest cover of U is just the cover given by one
element {U}.

There are generally going to be many different ways to cover a given set, that is, there
may exist many open covers for subsets of a topological space. For instance, still working
with S = (0, 1), consider the following.

Example 118 Let Un =
(
– n
3 , n

3

)
. Then ⋃

n∈N

Un

clearly contains (0, 1), making it an open cover of S. But observe that the subcover that
contains only the first three sets U1, U2, U3 already covers (0, 1)—and so too would any
larger subcover of the original cover! This means that the original open cover has a finite
subcover that consists of only three open sets. As such, this makes the original cover a
rather inefficient one.

As it turns out, not every cover has a finite subcover, as one can see in a number of ways.
For instance, consider the set

S = (–∞, –1]∪ [1,∞).

Then S is a closed subset of R, as the complement of S is (–1, 1), which is an open set of
R. The collection

{(n – 1, n + 2) | n∈Z}

is an open cover of S. Yet it has no finite subcover.

Exercise 15 Take Un =
(
1
n , 1

)
, an open cover of (0, 1). Does this cover have a finite

subcover?

Solution It is straightforward to show that⋃
n∈N

(
1

n
, 1
)

= (0, 1).

However, we can also show that no finite collection of the {Un}n∈N can act as a cover of
(0, 1).

Those sets for which every cover has a finite subcover are rather special, and so are given
a special name, namely compact. Compactness is a very important topological property,
one that plays a central role in much of topology. Open covers are not terribly interesting
on their own, without further properties or without engaging more advanced constructions
or properties. It is generally fairly simple to find an open cover of a set. Properties like
compactness, by contrast, are less trivial because they involve saying something about
every open cover of a set. Metric spaces, for their part, are rather significant spaces, in part
because of the fact that they are paracompact—where this is a property that can be defined
in terms of open covers, and appears to account for certain of the “nicer” properties of such
spaces.
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One further notion concerning covers that will be especially useful to us in the subse-
quent story we tell of sheaves is that of refinement of covers. Subcovers are an example
of this, as every subcover of a cover will be a refinement of that cover. As we advance in
the development of ideas, and especially as we arrive at the sheaf notion, it will often be
natural to ask the question: If a certain property holds for some cover, for what other covers
can we expect it to hold?

As we already began to appreciate, there are potentially many different covers of a set.
When we formally introduce sheaves on topological spaces in the next chapter, we will
see that this sheaf notion effectively just combines the data of a functor (presheaf) with the
notion of a cover. In the definition of a sheaf, the sheaf axioms will be required to hold for
all covers. But we will also see that if F is a sheaf for some cover V, then it is a sheaf for
every cover that V refines. Since we will have to verify the sheaf axioms on spaces with
covers, whenever such spaces have a finest cover, verifying that the sheaf axioms hold on
such a space will amount to just checking it on the finest cover, since this will guarantee
it for all covers by the result we just mentioned. The following notion will thus be rather
useful in the formulation of such things.

Definition 119 Suppose we have two covers U and Vof a subset S. We say that Vrefines
(or is a refinement of) the cover U if for each V ∈ V there is a U ∈ U such that V ⊆U.

Exercise 16 Which covers, if any, are refinements of the trivial cover {U} of an open
subset U?

Solution This one should be easy. Without knowing anything else, you should have been
able to say that every cover of U will refine the trivial cover {U}.

We can note that the collection of all covers of a set U in fact forms a category Cov(U):
its objects are covers and its morphisms are supplied by the refinement relation, that is,
there is a unique morphism V→ Uwhenever V refines U.

There is a final notion related to covers and their refinements that we will occasionally
make use of: that of the nerve of a cover. The nerve of a cover gives us something like a
combinatorially friendly representation of the data of a cover, one where we can effectively
forget about points in the space and instead get a simplified “approximation” of the space
by working instead with a structure that represents the abstract relations between elements
of a cover. While the notion of a nerve can be useful for formulating the sheaf definition,
we postpone its formal definition, and further discussion, until chapter 9.

4.3.3 Category of Topological Spaces

So much of topology is driven by the need to study continuous functions. From an early
age, we become accustomed to the idea of a function and functional dependence, where
change in one variable quantity relates to change in another variable quantity, thus estab-
lishing a functional dependence between one variable (input) and another (output). Such
dependence can unfold in a number of general ways, of course, but we typically learn to
think of the property of continuity of functions in terms of

a big change in the output implies that there must have been a big change in the input.
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The standard ε-δ definition of continuity one learns in calculus is one way to get a better
handle on the implied question of “how big?” There, of course, we say that

a change in the output greater than ε implies a change in the input greater than δ,

or,

if the change in input is bounded by δ, then the change in output is bounded by ε.

More explicitly, a function f :R→R is defined as continuous provided for every x∈R and
every real number ε> 0, another δ > 0 can be found such that

|f (x) – f (y)| < ε for every x∈R with |x – y| < δ.

Regardless of which maximal error ε> 0 is required, the idea is that there is always an
interval around x—which is (x – δ, x + δ), with size δ > 0—where all approximated function
values f (y) deviate by less than ε from the function value f (x) being approximated.

In the context of the real line or plane, where we first learn these notions, we think about
it in terms of an implied metric, so that continuity involves something like a control prob-
lem: we can control the error f (x) to be lower than ε by keeping the error in the argument
sufficiently small, that is, smaller than δ > 0. If you are measuring some x, using it to com-
pute f (x) where f is a continuous function, this ε-δ criterion allows you to find the maximal
error δ in x (i.e., |y – x| < δ), which guarantees that the final error |f (y) – f (x)| will be smaller
than ε. Such a δ may be found only if small changes around the argument x also determine
small changes around the function value f (x). Thus, for functions continuous at x, we must
have

y≈ x =⇒ f (y)≈ f (x),

which just says that whenever y is sufficiently close to our point of interest x, then f (y)
will be approximately f (x). Such an idea can of course be described using the notion of an
ε-neighborhood: for every ε-neighborhood (f (x) – ε, f (x) + ε) around f (x), there is always
a δ-neighborhood (x – δ, x + δ) around x, whose function values are all mapped into the
ε-neighborhood.

As we ascend beyond the narrower context of Euclidean spaces, and even ultimately
beyond metric spaces, we get a more general treatment of the notion of continuity as well.

Definition 120 A function f : X→Y between two topological spaces X, Y , is continuous
iff f –1(U) is open in X for every subset U open in Y .

This shows how we can determine whether or not a function is continuous without using
any information about a metric. We need only know which subsets of X and Y are declared
open. Notice that we could just as well have defined continuity using closed sets, as f –1(Y \
A) = {x∈X | f (x) /∈A} = X \ f –1(A).

Now, one can easily verify that for any topological space X, the identity map idX : X→X
is continuous; that for any topological spaces X, Y , Z, and any continuous functions f : X→
Y and g : Y→Z, the composition

g ◦ f : X→Z

is itself continuous; and this composition will be associative.
Altogether, this informs us that topological spaces, together with continuous functions,

form a category, one we call Top. More explicitly, the category Top has topological spaces
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for objects, and continuous functions for morphisms. In more detail: we have seen that a
topological space is a pair (X, O(X))—usually abbreviated by the carrier set X—where X is
a set and O(X) are the open sets of the topology on X. Described in a more categorical way,
the morphisms here are just functions f : X→Y such that for every V ∈O(Y), the preimage
f –1(V) in the order of all subsets of X is in O(X), that is, so that there exists an arrow along
the top of the following square making the diagram commute (where the vertical arrows
are just inclusions):

O(Y) O(X)

P(Y) P(X).
f –1

In other words, a continuous map f : X→Y gives rise to a function f –1 : O(Y)→O(X)
that carries an open subset U⊆ Y to its preimage f –1(Y), open in X—recapitulating the
usual notion of continuity, as defined in general topology.

Notice how in the setup above, morphisms (X, O(X))→ (Y , O(Y)) in Top already include
a morphism between orders, just one that goes in the opposite direction O(Y)→O(X). In
other words, there is a functor O : Topop→Pos that takes a space X to its underlying poset
O(X) of open subsets.

Given a topological space X, the open sets O(X), ordered among themselves by
inclusions, forms a poset. As such, we can describe the following:

Definition 121 For a topological space X, the category of open subsets O(X) (or, if you
prefer, Open(X)) of X is the category that has

• for objects: open subsets U ↪→X of X; and
• for morphisms: inclusions V ↪→U of open subsets V , U⊆X.

Given a topological space, this category of open subsets of that space will prove to be
a category of great interest to us, as we can examine data assigned to a space in terms of
what it does to the open subsets.

When we think about covers in terms of O(X), the poset of open subsets of X, ordered
by inclusion, we are saying that an I-indexed family of open subsets Vi ↪→U covers U
provided the full diagram consisting of the sets Vi together with the inclusions of all their
pairwise intersections

Vi Vi ∩Vj Vj

has U for its colimit. Roughly, one can think of a covering of a given object U as some sort
of decomposition of that object into simpler ones, the resulting simpler pieces of which,
when taken altogether, can be used to recompose all of U. At the outset, it is reasonable
to just think of this in terms of specifying a collection of subregions that can be laid over
a given region in such a way that the entire region is thereby covered, where an entirely
obvious but still decisive observation is that such subregions making up the cover can
overlap one another. The naive image to keep in mind is that we have a region U that
we want to cover with some collection of pieces into which it may be regarded as being
decomposed. Suppose we have some V1⊆U and V2⊆U:
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Clearly, V1 and V2 collectively fail to cover U, yet we can observe that there is a subregion
where V1 and V2 overlap, which we call V1 ∩V2 and regard as specifying another “piece.”
Since V1 and V2 collectively cover more of U than either does individually, we should also
consider the larger region (the entire northern half of U) that results from joining V1 and
V2. We might continue in this manner, working our way up to a collection of subregions
of U that actually cover all of U. For instance, we might have another V3, laid on top of
the entire southern half of the region (and partly overlapping with each of V1 and V2), such
that the entire region U is now covered by the collection {V1, V2, V3}. Altogether, the data
of such a system of open sets, ordered by subset inclusion, will have the structure of a poset
(this means, in particular, that we can regard O(X) as a category). In our particular case,
this could be displayed by the diagram:

U

V1 ∪V2 V1 ∪V3 V2 ∪V3

V1 V2 V3

V1 ∩V2 V1 ∩V3 V2 ∩V3

V1 ∩V2 ∩V3

O(X)

revealing the components of the space, together with their relevant inclusion relationships
as members of a cover of the entire space.

Sheaves on a topological space can be described as particular presheaves on the open
subsets O(X), presheaves that satisfy a further property. What ultimately will distinguish
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presheaves and sheaves is that sheaves are a special kind of presheaf—one that is “sensitive
to” the information or structure of a cover.

In some sense, the sheaf notion is one that unfolds in an analogous fashion to something
we see in analysis and in the context of metric spaces. In such settings, one first learns how
to think about the continuity of a function f in terms of one that commutes with limits—
where the limits come from sequences of points {an}∞n=1 converging to a point a—in the

sense that lim
n→∞ f (an) = f

(
lim

n→∞ an

)
= f (a), and where f (a) is ultimately independent of the

sequence chosen to approximate a. At a much higher level of abstraction, the notion of a
sheaf almost seems to amount to a retelling of this story. We saw in the last chapter how
functors that commute with (the categorical version of) limits are said to be continuous.
Letting the relevant limits now come from open covers, on this general categorical version
a sheaf is fundamentally just a functor that commutes with limits—and, as such, we appear
to have described something like a purified version of the continuity we first came to know
in studying continuous functions on the real line and plane. The ingredients we will need
to develop this notion of a sheaf will just be that of a functor (presheaf) and the notion of a
cover of a space, so we have everything we need to jump right in.

4.4 Philosophical Pass: Open Questions

Box 4.1

Questions Concerning Elements of Topology

In the usual presentations of general topology, one notable oversight is that the characteristic
conditions constituting a topology are almost never justified or properly clarified. One is left
wondering why these conditions are so important, why they are what they are. Moreover, one
is told that open and closed sets are basically formally dual to one another—yet nearly all treat-
ments of topology go on to work almost exclusively with open sets, treating them as somehow
primitive or indirectly alluding to their specialness. Finally, in the standard accounts, the true
scope or activity of topology seems to be artificially limited, or misunderstood. In order to
help rectify these things, the appendix takes up and addresses the following questions:

1. Why are the axioms of a general topology what they are? The standard account
informs us that notions of general topology and the axioms of a topology itself arise
from an abstraction from Euclidean space to metric spaces, followed by a further abstrac-
tion of certain properties of the open sets as definitive for a topology. While the Euclidean
space motivation is easy enough to understand on its own, this often masks why the prop-
erties abstracted in the second step are the ones that survive the abstraction and come to
constitute a general topology, arguably one of the most powerful notions in all of mathe-
matics. One would like a clarification of these axioms and some account of why they are
what they are. If the notion of a topological space really is some sort of generalization
of features found in metric spaces, simply referring back to the example or instance of
particular metric spaces, and the appearance of such features therein, cannot do anything
to clarify why the axioms of a topology are what they are.

Suppose some concept X, defined by a collection of properties T , is a generalization
of concept Y , for which the same properties can be, and were first, observed to hold as
a matter of fact. As a generalization, this means in particular that Y is an instance of X,
yet concept X captures or describes phenomena or instantiations that are not Y . As such,
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an explanation or justification of why X is not only governed, but even characterized, by
properties T instead of others, cannot be given by appealing to the simple fact that such
properties can also be found governing instance Y .

2. Why opens? Nearly every modern text on general topology appears to give some sort of
precedence to open sets, treating them as the primitives, even while assuring us that we
could equally well have used closed sets, simply by appropriately dualizing the open set
account. The status quo perspective on such matters seems to have little problem equivo-
cating between taking open sets as primitive (presumably for some sensible, though never
forthcoming, reason), on the one hand, and assuring us that “it’s all the same, purely a
matter of convention whether we use opens or closed sets” (which seems at times to
involve a fundamental misunderstanding of what is and what is not entailed by such
formal duality).

This equivocation has historical roots. Historically, the first of the topological ideas to
arise, deeply rooted as they were in problems in analysis, was that of the limit point of a
set, used in formulating the notion of a closed set, which arose shortly thereafter. The very
first formulation of what is now universally called a topological space, given by Kura-
towski, is given in terms of the primitive operation of the closure of a set. Surprisingly,
at least given its current status, the idea of an open set emerged last, and mathemati-
cians appear to have been quite fine without it for longer than you might assume. (Moore
(2008) has some useful history on these matters—especially on how many prominent
mathematicians of the nineteenth century seem to have had little use for “open sets,” and
instead were initially, and for some time, apparently far more interested in defining and
working with boundary points, limit points, and closed sets. The Sierpińksi quote below
is taken from this paper.)

It was not until the 1920s that definitions of a topology in terms of open sets even
appeared. In his 1928 book Introduction to General Topology, Sierpiński paved the way
for taking the notion of “open set” to be primitive, offering an axiomatic definition in
terms of open sets that was close to the standard definition now given for a topological
space. In the preface he wrote:

The axiomatic development based on the concept of an open set (as a basic concept)
seemed to us simpler and more intuitive than other axiomatic treatments which will be
mentioned. (Sierpiński 1934, iii)

Later textbooks followed suit, usually with little more of substance than the fairly
unconvincing justification given above.
In short, we would like to know if there really are any mathematical—or even just more

persuasive philosophical—reasons for treating open sets as primitive, as somehow more
desirable to work with than their closed set counterparts. Or perhaps this is all confused
and we need to do things differently.

3. What is topology really about? The standard story lends itself to a not unreasonable
story about what we are doing when we are doing topology. While plausible on its own
terms, it does seem that topology is about something slightly different, and more general,
than the usual account would have us believe.





5 First Look at Sheaves

In which we meet sheaves, present a few intuition-building examples, and consider
the idea of a sheaf.

The notion of a presheaf, together with the notion of a cover of a topological space, sup-
plies us with all the ingredients needed to offer a first pass at the sheaf concept. A number
of the examples of presheaves already introduced—including, in particular, those falling
under the heading of restriction, such as the continuous functions, laws respected through-
out jurisdictions, and the company stockpile examples—are, in fact, sheaves. This chapter
turns, at long last, to a first presentation of sheaves, in the course of which will be seen a
number of intuition-building examples. The chapter ends with a more philosophical dis-
cussion of the idea of a sheaf. The full definition supplied in this chapter—of a sheaf in the
case of topological spaces—will be generalized in later chapters. As the book unfolds, we
will build up gradually toward more and more involved examples.

5.1 Sheaves: The Topological Definition

The definition of a sheaf that we will presently be concerned with—sheaves on topological
spaces—is a definition very much motivated by the action-as-restriction presheaf perspec-
tive. It may be thought of as involving a choice of data from each of the sets (as assigned
by the presheaf to each piece of a cover of the space), that moreover forms a locally com-
patible family (meaning that it respects the restriction mappings and the chosen data items
agree whenever two pieces of the covering overlap) and together induce or extend to a
unique choice over the entire space being covered.

Since our sheaf candidate will already be a presheaf, to determine whether or not a given
presheaf is a sheaf will just amount to testing for certain properties of a set-valued functor
F : O(X)op→Set. That we have a presheaf on O(X) means, first of all, that to every open
set U in O(X), we will have a set F(U), where this is the value of the functor F on U. For
reasons we will explore in more detail in chapter 8, we also sometimes call F(U) the set of
sections over U, and an element s in this F(U) a section over U.65 Moreover, corresponding

65. Strictly speaking, elements of F(U), that is, value assignments specified over U ⊆X, are called local sections
of the sheaf F over U, to distinguish them from elements of F(X), i.e., value assignments given over the entire
space, which are called global sections of F. More broadly, whenever local information, such as elements like
functions f and g given over certain domains, restricts to the same element in the intersection of their domains,
then such f and g are called sections. We will develop this approach in terms of sections in more detail in chapter
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to every inclusion of open sets V ↪→U of the space, that F is a presheaf means that we will

have a restriction F(U)
ρU

V−→F(V). Recall also how, given s∈F(U), it is common to denote
its restriction to V by s|V , that is, ρU

V : F(U)→F(V) takes s �→ s|V for each s∈F(U), where
we treat this like the usual restriction of a function. Observe that whenever we have three
nested open sets W ⊆V ⊆U, restriction will be transitive, that is, for s∈F(U), we have
(s|V )|W = s|W .

Altogether, with these two pieces of data,

U �→F(U), {V
⊆
↪−→U} �→ {F(U)→F(V) via s �→ s|V}

we are just reiterating that we have a functor from O(X)op to Set. Together with the notion
of a cover, we are now ready to define a sheaf.

Definition 122 (Definition of a sheaf ) Assume given X a topological space, with O(X) its
partial order category of open sets, and F : O(X)op→Set a presheaf. Then, given an open
set U⊆X and a collection {Ui}i∈I of open sets covering U =

⋃
i∈I Ui, we can define the

following sheaf condition:

• Given a family of sections s1, . . . , sn, where each si ∈F(Ui) is a value assignment
(section) over Ui, whenever we have that for all i, j,

si|Ui∩Uj = sj|Ui∩Uj ,

then there exists a unique value assignment (section) s∈F(U) such that s|Ui = si for all i.

Whenever there exists such a unique s∈F(U) for every such family, we say that F satisfies
the sheaf condition for the cover U =

⋃
i∈I Ui. The presheaf F is then a sheaf (full stop) on

the space whenever it satisfies this sheaf condition for every cover.

Let us break this definition down into four, more easily digestible, steps. Given a
presheaf on some space and a cover, the definition of a sheaf begins by making use of
what is sometimes called a matching family:

Definition 123 A matching family {si}i∈I of sections over {Ui}i∈I consists of a section si

in F(Ui) for each i—chosen from the entire set F(Ui) of all sections over Ui—such that for
every i, j, we have

si|Ui∩Uj = sj|Ui∩Uj .

In other words: given a data assignment si throughout or over region Ui and a data assign-
ment sj over region Uj, if there is agreement or consistency between the different data
assignments when these are restricted to the subregion where Ui and Uj overlap, then
together the data assignments si, sj give a matching family. As the definition requires that
it holds for every i, j, the idea is that we can build up larger matching families of sections
via such pairwise checks for agreement.

Digesting the definition of matching family is the first step in grasping the definition of
a sheaf. Next, the definition specifies what is sometimes called a gluing (or the existence

8; meanwhile, we may make use of the convenience of such language. For now, one thing to realize is that, for an
arbitrary presheaf on a space, the set of global sections of the presheaf on the overall space may be different from
the set of local sections given over all the open subsets; the “gluing” axiom (discussed below) is there precisely
to make sure that this difference disappears.
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condition). Given a matching family for our cover of the space U, we call a section over
U itself a gluing if, whenever this data assignment over all of U is restricted back down
to each of the subregions or pieces that make up the cover of the entire object, it is equal
to the original local data assigned to each subregion. The definition stipulates that such a
gluing s∈F(U) exists.

Not only does such a gluing exist, but to have a sheaf, we require that there is a unique-
ness condition. Specifically, there exists a unique section s∈F(U) such that s|Ui = si for all
i. In other words, if t, s∈F(U) are two sections of F(U) such that s|Ui = t|Ui for all i, that is,
they are equivalent along all their restrictions, then in fact s = t (i.e., they must be the same,
so we have at most one s with restrictions s|Ui = si).

With the notion of a matching family and that of a unique gluing, we can form the notion
of the sheaf condition, and the definition is basically complete. The idea is that if for every
matching family, there exists a unique gluing, then we say that the presheaf F satisfies the
sheaf condition. A presheaf will then be a sheaf whenever it satisfies this sheaf condition
for every cover. That is all—we have defined what a sheaf is!

Stepping back, we can accordingly break down the definition of a sheaf on a topological
space into a particular presheaf that moreover satisfies two conditions with respect to a
cover: (1) existence (or gluing); and (2) uniqueness (or locality).

Definition 124 (Definition of a sheaf (again)) Given a presheaf F : O(X)op→Set, an open
set U with open cover by {Ui}i∈I , and an I-indexed family si ∈F(Ui), then F is a sheaf
provided it satisfies both:

1. (Existence/gluing) If, for each i, there is a section si ∈F(Ui) satisfying that for each
pair Ui and Uj the restrictions of si and sj to the overlap Ui ∩Uj match (or are
“compatible”)—in the sense that

si(x) = sj(x)

for all x∈Ui ∩Uj and all i, j—then there exists a section s∈F(U) with restrictions
s|Ui = si for all i. (Here, such an s is then called the gluing, and the si are said to be
compatible.)

2. (Uniqueness/locality) If s, t∈F(U) are such that

s|Ui = t|Ui

for all i, then s = t. (In other words, there is at most one s with restrictions s|Ui = si.)

Together, these two axioms assert that compatible sections can be uniquely glued together.

If F and G are sheaves on a space X, then a morphism f : F→G will just be a natural
transformation between the underlying presheaves. This lets us define Sh(X) the category
of sheaves on X, which has sheaves for objects and natural transformations between them
for morphisms. There are in general far more presheaves on a space than there are sheaves
on the space. This category of sheaves on X will be a (full) subcategory of the category of
presheaves on X, giving the inclusion functor

ι : Sh(X)→ SetO(X)op
.
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5.1.1 A Sheaf as Restriction-Collation

Before launching into examples, let us briefly consider how the description of a sheaf (of
sets) on a topological space can be motivated by simple observations concerning func-
tions. We know that specifying a topology on a set X lets us define, in particular, which
functions are continuous, so that we can consider all the continuous functions from a space
X (or some open U⊆X) to the reals R. Whether or not a function f : U→R is continu-
ous is something that can be determined locally. But what exactly does this mean? This
fundamentally amounts to saying two things:66

1. Restriction (or Identity): If f : U→R is continuous, and V ⊆U is open, then restricting
f along V , that is, f |V : V→R, yields a continuous function as well.

2. Unique collatability (or Gluability): If U is covered by open sets Ui, and the functions
fi : Ui→R are continuous for all i∈ I, then there will be at most one continuous f :
U→R with restrictions f |Ui = fi for all i. Furthermore, this f will exist precisely when
the given fi match on all the overlaps Ui ∩Uj for all i, j, that is, fi(x) = fj(x) for all
x∈Ui ∩Uj.

One might accordingly think about the “localness” of a given function’s property (such
as continuity) as involving two sorts of compatibility conditions or constraints tending in
two different directions (the first “downward” and the second “upward”): (1) that which
requires that information specified over a larger set is compatible whenever restricted to
information over a smaller open set; (2) that which involves conditions on the assembly
or collation of matching information on smaller opens into information given over larger
open sets. One might also think of the first condition as the “localizing” part, and the second
condition as the “globalizing” part.

While continuous functions provide a particularly natural example of these sorts of
requirements, there is no need to restrict ourselves to continuous functions. Various prop-
erties such as differentiability, real analyticity, and other structures on a space X (including
involving things that are not even functions, but are function-like) are in fact determined
locally in the same sort of way. The underlying idea here is that certain functions (or
things that behave like functions), thought of as having some property P, are defined on
the open sets in such a way that one can check for this property in a neighborhood of
every point of the space—this is fundamentally what makes it local—and then each inclu-
sion V ⊆U of open sets in X will determine a function ρU

V : P(U)→P(V), for which we
just write t �→ t|V for each t∈P(U), treating it like the usual restriction of a function (which
restriction is, moreover, transitive). Altogether, this just says that we have defined a functor
P : O(X)op→Set; and saying that P is such a presheaf (functor) simply expresses the first
(restriction) condition given above. The second condition mentioned above, unique collata-
bility or gluability, can in turn be described category-theoretically in terms of an equalizer
diagram for a corresponding covering.67 Accordingly, the two requirements of restriction
and unique collatability supply the model for how to define a sheaf more generally—as
a functor for which the corresponding equalizer diagram, containing the information of
the open sets and the cover, is an equalizer for all coverings. This description ultimately

66. This perspective of restriction-collation is derived from Mac Lane and Moerdijk (1994).
67. We will see how this works below.
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enables the sheaf construction for a wide class of structures. But this motivation in terms
of certain properties of classes of functions being checked locally is a particularly useful
perspective to keep in mind as one thinks about the construction of sheaves in general.

Let us now dive right into some examples of sheaves. Over the course of the book,
we will provide a multitude of examples, ranging from the intuitive to the more compu-
tationally explicit and involved. With the next examples, we start with a couple of simple
sheaves, occasionally omitting some of the details, only to develop some initial intuition for
the sheaf concept and to leave the reader with a number of suggestive pictures and guid-
ing examples. In the sections and chapters that follow, more elaborate and complicated
examples are given.

5.2 Examples

Example 125 The presheaf of continuous real-valued functions on a topological space
X, first introduced in example 55 (chapter 2), is a sheaf, specifically a sheaf of real alge-
bras associating to each open U⊆X the algebra F(U) of real-valued continuous functions
defined there. Not only can we restrict functions down to any open subset, but we can also
glue together local assignments whenever they agree on overlapping regions, producing a
global assignment, that is, a consistent assignment over the entire region that will agree
with the local assignments when restricted back down to each subregion. Uniqueness in
this case is automatic from the fact that we are dealing with functions.

Overall, this process of the pairwise compatibility checks and the subsequent gluing is
nicely captured by an image of the following sort (where, for each piece, we just depict the
choice made from the overall set of all continuous functions over that region):
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Example 126 Let us revisit the example of the presheaf of laws being respected through-
out a jurisdiction (a geographic area over which some legal authority extends), again first
introduced in example 55. For X the entire world, to each jurisdiction U⊆X we assigned
the set R(U) of laws being respected throughout the region U. Is this presheaf R a sheaf?
Well, we can check: Given some law respected throughout U and another law respected
throughout W, do they amount to the same law on the subregion where U and W overlap?68

(If there is no overlap, then this is trivially satisfied.) Now repeat this check for each such
pair of overlapping regions.

For instance, on U there might be a law that stipulates “no construction near sources
of potable water,” while on W a law might stipulate “no construction in public parks.” If
it turns out that on the overlapping subregion U ∩W all public parks are near sources of
potable water (and vice versa), then the laws agree on that overlapping region, and thus can
be glued together to form a single law about construction that holds throughout the union
U ∪W of the two.

68. In fact, as we will see later on, we do not strictly need them to be exactly the same law—we just need there to
be a consistent system of translation between the sets of laws, that is, a set of isomorphisms translating between
each such pairs of sets of laws.
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This might seem like a rather harmless or trivial construction, but consider that the global
sections of such a sheaf R would tell you exactly those laws that are respected by everyone
throughout the planet. This would be a useful piece of information! (For instance, it might
reveal the sorts of shared values that are ultimately respected, in one form or another, by
every society.) The process of checking for agreement on overlapping regions is straight-
forward, but the resulting observations or data assignments one can now make concerning
the entire space, via the global sections, can be very powerful and far-reaching.

Incidentally, the alert reader might wonder whether we have any right to speak of such
a construction in terms of a presheaf and sheaf on open sets, since one might plausibly
question whether the underlying jurisdictions even form open sets. One might assume, for
instance, that states are in fact best thought of as closed sets with measure 0 overlaps; thus,
laws would not stitch together in nontrivial ways, as the probability of observing a violation
in that boundary territory is zero.

However, it can be argued that jurisdictions are indeed rightly thought of in terms of open
sets. To see this, consider the following rough line of reasoning: Suppose a car is speeding
across state lines, from state A into state B. Now suppose a cop from state A has a radar
gun—think open ball—homing in on the boundary itself. But no matter how much the
police department spends on refining its radar gun to arbitrary precision (error of ε), there
is no way for the cop to verify (via a measurement device of some nonzero error) that the
car clocked as speeding right on the boundary is in fact speeding, without also extending
its observation into state B. Legally, states have jurisdiction (power to prosecute) any crime
that occurs within that state, but not necessarily in another state. Moreover, the laws might
not even be the same across state lines—in particular, the speeding car might not in fact be
speeding in state B.

The moral is this: If a crime occurring in state A is to be prosecuted by that jurisdiction,
then state A needs to be able to witness/verify that the crime occurred within state A.
But if the boundary is to be included in state A itself, making state A a closed set, then any
attempt to verify the crime (with a neighborhood or approximation window centered on the
point on the boundary) will also require that state A assumes jurisdiction over happenings
in state B. But, by definition, a state does not have such jurisdiction. It seems that state A
should not be regarded as closed.

By contrast, it is entirely plausible to regard the extent of A’s jurisdiction as an open set.
In general, following the story developed in the appendix, we can interpret the interior of
a region U as the set of states in which properties concerning U are verifiable, so that open
sets are construed in terms of

sets U such that U is equal to int(U) = observations/propositions whose truth is equivalent to their
verifiability.

Moreover, whenever an observable property (such as speeding) can be verified as true, it is
verified by an open set (think a radar gun), and any more refined approximation must also
verify that property. This captures the idea of openness. Following the story developed in
the appendix, we can construe open sets in terms of a verificationist paradigm—and since
states have to verify crimes in order to prosecute and so have meaningful jurisdiction, it
makes sense to regard state jurisdictions in terms of open sets.
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Example 127 For the next example, we consider a satellite making passes over portions
of a region of earth, collecting data as it goes, or various satellites doing the same thing.
For concreteness, consider some specific portion of the earth, say Alaska, or the part of
Alaska where the Bering Glacier resides, as a topological space X. Then given an open
subset U⊆X, we can let S(U) denote the set of functions from U to C, where C might
be the set interval of wavelengths in the light spectrum, or some geo-referenced (perhaps
time-stamped) intensity-valued image data, or some other data corresponding to the data
feed of the satellites (or the processing thereof). This presheaf S is in fact a sheaf, since we
can indeed fuse together the different data given over the open sets of X, forming a larger
patched-together image of the glacier. For concreteness, assume we are given the following
selection of three satellite images of the Bering Glacier, chosen from among the (possibly
very large) sets of images assigned to each region:69

Each of the vi ∈ S(Ui) correspond to value assignments throughout or over certain subsets,
U1, U2, U3 of X, which together cover some subset U⊆X—say, the underlying region of
the earth corresponding to the Alaskan glacier. In terms of the data sitting over each of
these regions, as provided by each of the satellites in the form of individual images, we can
check that the restriction of the value assignment v1 to the underlying region U1 ∩U2 is
equal to the restriction of the value assignment v2 to the same subset U1 ∩U2, and so on,
all the way down to their common restriction to U1 ∩U2 ∩U3:

69. The images come from Landsat 8: https://earthobservatory.nasa.gov/IOTD/view.php?id=4710.

https://earthobservatory.nasa.gov/IOTD/view.php?id=4710.
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One can thus immediately see that the sheaf condition is met, and we can in fact patch
together the given local pieces or sections over the members of the open covering of U to
obtain a unique section specified over all of U = U1 ∪U2 ∪U3. In summary, we have the
following inclusion diagram (on the left) describing the underlying structure of the open
sets of the topology, paired with the sheaf diagram (on the right) with its corresponding
restriction maps (notice the change in direction):

U

U1 ∪U2 U1 ∪U3 U2 ∪U3

U1 U2 U3

U1 ∩U2 U1 ∩U3 U2 ∩U3

U1 ∩U2 ∩U3

S(U)

S(U1 ∪U2) S(U1 ∪U3) S(U2 ∪U3)

S(U1) S(U2) S(U3)

S(U1 ∩U2) S(U1 ∩U3) S(U2 ∩U3)

S(U1 ∩U2 ∩U3)

O(X)op Set
S

In terms of the given value assignments (actual images), the sheaf diagram on the right is
pictured below, where we can think of the restriction maps as performing a sort of cropping
operation, corresponding to a reduction in the size of the domain of the sensor, while the
gluing operation corresponds to gluing or collating the images together along their overlaps
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all the way up to the topmost image (which corresponds to the section or assignment over
all of U).

This mosaic example gives a particularly concrete illustration and motivation for another
definition of a sheaf, namely as a functor F : O(X)op→Set that preserves limits. Because
we use the opposite category for domain in defining the presheaf functor, this means that
colimits in the domain category of open sets get sent to limits in Set. In the partial order
(in fact, lattice) of open subsets of X, for an I-indexed family of open subsets Ui⊆U (in
the particular case described above, I = 3) that covers U—in the exact sense that the entire
diagram comprising the sets Ui and the inclusions of their pairwise intersections Ui ∩Uj

has U for its colimit—the contravariant functor S given above preserves this colimit in the
sense that it sends it to a limit in Set. Referring back to the universal characterization of
these notions introduced in chapter 3, with this example one can basically immediately see
that while all possible cocones will have to pass through the universal cocone given by U,
that is, U is initial among cocones; S(U), to which U is mapped by the functor, will be
terminal among its associated cones. More formally,



First Look at Sheaves 157

Definition 128 (Yet another definition of a sheaf on a topological space) Given a presheaf
F : O(X)op→Set from the poset of open sets of the space X to Set, and defining an I-
indexed family of open subsets Ui⊆U as a cover for U when the entire diagram consisting
of all the Ui together with the inclusions of their pairwise intersections Ui ∩Uj—that is,
Uj Ui ∩Uj Ui —has U for its colimit, then such a presheaf F is a sheaf (of

sets) provided it preserves these colimits, sending them to limits in Set.
This means, in effect, that for any open cover {Ui}i∈I of U (colimit), the following is an

equalizer diagram

F(U)
∏
i∈I

F(Ui)
∏
i,j∈I

F(Ui ∩Uj)
ρU

Ui

q

p

in Set (recall that an equalizer diagram is a limit diagram). Here, for t∈F(U), and letting
the equalizer map ρU

Ui
(i.e., F(Ui ↪→U)) be denoted by e, we will have that

e(t) = {t|Ui | i∈ I},

and for a family ti ∈F(Ui), we will have

p(ti) = {ti|(Ui∩Uj)}, q(ti) = {tj|(Ui∩Uj)},

the map p being ρUi
Ui∩Uj

(i.e., F(Ui ∩Uj ↪→Ui)) composed with the appropriate projection

map, while q is ρUj
Ui∩Uj

together with its projection map.

An arrow into a product is entirely determined by the components, namely its composi-
tion with the projections of the product. Thus, the maps e, p, and q of the equalizer diagram
above are precisely the unique maps making the “unfolded” diagrams below commute for
all i, j∈ I (where the vertical maps are the relevant projections of the products):

F(Ui) F(Ui ∩Uj)

F(U)
∏

i

F(Ui)
∏

i,j

F(Ui ∩Uj)

F(Uj) F(Ui ∩Uj).

ρ
Ui
Ui∩Uj

e p

q

ρ
Uj
Ui∩Uj

The utility of this alternate description is that it furnishes us with a completely categorical
description of the equalizer diagram, which means that the above definition of a sheaf will
work even when we replace Set with other suitable categories (specifically, those with all
small products). In other words, we might just as well have provided a definition of sheaves
F : O(X)op→D of D-objects on a space X; there are many prominent candidates for D in
this more general definition, some of which we will meet in later chapters, for example
giving rise to sheaves of abelian groups, vector spaces, rings, R-modules.

Before considering further examples, the reader should test their appreciation of the
sheaf definition by verifying the following.
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Theorem 129 If X is a topological space and F a sheaf (of sets) on X, then F(∅) will be a
singleton set {∗}.

Exercise 17 Verify this statement.

Solution Recall how the open set ∅ can be covered with the empty cover, that is, taking
the index I = ∅. Thus, the gluing property will ensure that F(∅) 
= ∅. The uniqueness property
guarantees that any two sections given over ∅ will agree, since any cover of ∅ will be by
empty sets. One can also appreciate this fact by considering how a product

∏
i over an

empty index set is just the singleton set {∗}—as such, the above equalizer diagram is just

F(∅) {∗} {∗},

from which we must have F(∅) = {∗}.
Here is another important result.

Example 130 Observe that on any topological space X, each of the open sets U of O(X)
will determine a hom-functor presheaf Hom(–, U), a fact that may be more readily appre-
ciated after chapter 6. This is defined, for each open set V , as {∗} = 1 (the singleton set) if
V ⊆U, and ∅ otherwise. Recall also, from definition 41, the notion of a subpresheaf (sub-
functor). Subfunctors are ordered by inclusion, and so form a partial order. We can further
define a subsheaf of a sheaf F as just a subpresheaf (subfunctor) of F that is also a sheaf.
More explicitly,

Definition 131 If F is a sheaf on X, then a subfunctor S⊆F is a subsheaf iff, for every
open set U, every element f ∈F(U), and every open covering U =

⋃
Ui, we have that f ∈

S(U) iff f |Ui ∈ S(Ui) for all i.

Now observe that the terminal object in the sheaf category Sh(X) will be given by YX =
Hom(–, X), called the terminal sheaf, denoted 1.

We can put these notions together to show that the open sets of a topological space are
fundamentally the same as the subsheaves of the terminal sheaf.

Proposition 132 Given any topological space X, we have an isomorphism (of orders)

O(X)∼= SubSh(X)(1).

Proof. There are a variety of more or less advanced ways of showing this, the others using
notions we have not yet introduced. Let’s instead show it in the most direct way.70

Suppose given any open set V ⊆X. We can define a functor SV on the open sets U by

SV (U) =

{
1 if U⊆V

∅ otherwise .

SV is itself a sheaf, and thus automatically gives a subsheaf of the terminal sheaf.
On the other hand, suppose given a subsheaf S of the terminal sheaf 1. Then, for each

object, S(U) will either be 1 or ∅. Being a functor, S(U) = 1 and W ⊆U implies that S(W) = 1

as well. Being a sheaf, and using the equalizer condition in the definition of sheaf, if {Ui}i∈I

is an open cover of U and S(Ui) = 1 for all i, then we must have S(U) = 1. So we can let V

70. This proof follows Mac Lane and Moerdijk (1994, II. 2).
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be the union of all the open sets U for which S(U) = 1, from which it will follow that for all
U, S(U) = 1 iff U⊆V . But this just says that S is equal to the functor SV defined a moment
ago.

Altogether, with V �→ SV we thus have a bijection. This is moreover order-preserving,
meaning that it is an isomorphism of orders (introduced properly in chapter 6).

Remark 133 This seemingly unassuming result in fact tells us something rather
significant—that the category of sheaves on a space X can be used to determine the topol-
ogy on X. Put otherwise, the decisive data of the poset of open subsets of a topological
space X can be recovered by just looking at all the sheaves on X. This is in part what
motivated the remarks of Grothendieck (cited in the Introduction) to the effect that sheaves
incorporate what is most essential about a space, and that the space can even be dropped
and replaced by the category of sheaves on the space (and we know how to “reconstitute”
the original space, as needed).

Example 134 Recall the functor nColor : SmpGrphop→Set, first introduced in example
37 (chapter 2). A graph is said to be connected if there is a path between every pair of
vertices. Clearly, if a graph is not connected, then we can just color each connected com-
ponent independently. As we are interested in coloring graphs with at most n colors, let us
restrict attention to connected graphs.

We are already familiar with the notion of a subgraph of a graph; ultimately, a subgraph
G′ of a graph G corresponds to an inclusion arrow G′ ↪→G in SmpGrph. Then, a cover of
a graph G is a family of subgraphs {Gi ↪→G | i∈ I} satisfying the condition that⋃

i∈I

Nodes(Gi) = Nodes(G) and
⋃
i∈I

Edges(Gi) = Edges(G).

In the case of (undirected) connected graphs, we can define a subgraph G′ of a graph G as
a graph such that Edges(G′)⊆Edges(G), and the further fact that Nodes(G′)⊆Nodes(G)
follows automatically since G′ is assumed to be connected. In this setting, to define a cover
of a graph G it thus suffices to specify a family of subgraphs {Gi ↪→G | i∈ I} satisfying
the condition that ⋃

i∈I

Edges(Gi) = Edges(G).

Using the subcategory SmpGrph↪→ having connected undirected graphs for objects and
just inclusion arrows for morphisms, and using the above notion of covers of a given
connected graph by subgraphs, we can in fact form a sheaf out of the presheaf nColor :
SmpGrphop

↪→→Set. To appreciate this, observe that if graph G has an n-coloring, then
clearly each of its subgraphs will have an n-coloring, so for any graph homomorphism
(inclusion) f : G′ ↪→G, nColor(f ) will be the function restricting the n-colorings of G to
G′.71

For concreteness, we exhibit this in the case of a 3-coloring of the complete graph K3

(together with its subgraphs, ordered in the natural way).72 We first display what this func-
tor assignment looks like over a particular subgraph of the graph K3, then we display the

71. Srinivas (1991) appears to be the first to have described such a sheaf.
72. A complete graph on n nodes is just a (special sort of connected) graph in which every pair of distinct vertices
is connected by a unique edge.
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full diagram conveying the sheaf over the space of subgraphs. The pictures are very explicit
and take care of all the details; by attending to the pictures, readers should be able to see
for themselves how there are actually two distinct 3-coloring sheaves here, each got by
selecting one of the two colorings (solutions) on all of K3 and then restricting that down
all the way through the inclusions.73

c2

c1

c3

c4

nColor(G)

G⊆K3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

3

The next two suggestive examples are more “for fun,” meant to emphasize or reinforce
certain aspects of the idea of a sheaf, with less focus on the more mechanical or technical
development of the construction.

73. The reader will note, however, that we do not represent all possible colorings, but only those colorings that
have already fixed the coloring of the vertex 1 as blue. The rest, however, display colorings that are ultimately
isomorphic to these two, reflecting the fact that of the six 3-colorings of K3, there are only two nonisomorphic
ones.
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Example 135 The twentieth century pianist Glenn Gould was one of the first to ardently
defend the merits of studio recording, and use of the tape splice in the creative process,
against those who held fast to the supposedly more “pure” tradition of the live concert
performance and who accordingly thought that the only purpose of the splice would be
to rectify performance mishaps or to alleviate the pressure of the “one-take” approach
demanded by the concert form.74

Gould challenged the view that the only legitimate continuity of a unified interpretation
could come from the one-takeness of traditional performance, proposing instead that the
performer’s newfound editorial control in the recording studio would bestow upon creators
an even more demanding ethic concerning matters of architecture and integrity of vision.
Gould defended the idea that new, explicit, and more demanding forms of continuity were
to be found in this montage-based approach: “splicing builds good lines, and it shouldn’t
much matter if one uses a splice every two seconds or none for an hour so long as the result
appears to be a coherent whole.” Just as one does not demand or expect that the filmmaker
shoot a film in one shot, Gould believed that one should not expect that the coherence or
continuity of an interpretation of a musical piece can be secured only by the inexorable
linearity of time and the single take—the musician has just as much a right to montage as
the filmmaker.

Gould went as far as to test, with a controlled experiment involving eighteen participants,
whether listeners (including laymen and recording experts) could detect the “in point” of
any splice in certain selections of recordings, each of which selection had drastically dif-
ferent splice densities (in some cases, none).75 What he found, in short, was that “the tape
does lie and nearly always gets away with it.” While originally (with analog magnetic tape
splicing) the tape splice involved careful (and literal) cutting of the physical tape with scis-
sors or a blade and (literal) gluing or taping of it to another section of tape (possibly from
an entirely different recording session)—whenever relevant qualities, such as tempo and
dynamics, of the two recordings could be made compatible enough on their overlapping
measures to permit a seamless joining—Gould foresaw the power inherent in the more
general idea of splicing and montage. He saw in this new approach the opportunity to pro-
vide a more analytically acute dissection of the minute connections ultimately defining the
coherence of a particular piece of music, encouraging the performer to display the archi-
tectural coherence of a piece of music less dogmatically than if they had to rely on the
“in-built continuity” alleged to belong to the one-take concert ideal—focusing instead on
breaking a score down into parts, recording many distinct takes of sections of the score,
and then splicing together the results of certain of those distinct performances whenever
they could be made compatible on their overlap (all with the aim of producing a single,
unified performance of the entire score). Gould’s insistence on the virtues of tape splicing
and montage in recording practice nicely captures something akin to the fundamental spirit
of the sheaf construction.76

74. A “splice” is an edit point representing the confluence or merging of distinct takes or inserts (i.e., the recorded
performance of a portion of a musical score).
75. The results can be found in his essay “The Grass Is always Greener in the Outtakes,” in Gould (1990, 357-367).
76. Incidentally, Gould’s closeness to the “sheaf philosophy” is evidenced in a number of aspects of his life, not
just his approach to his art; for instance, via his insistence on forever integrating as many disparate planes and
partial pieces of information as possible into a single coherent experience, like his alleged habit of simultaneously
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Moreover, while the one-take approach to recording and unifying the musical idea is
essentially deductive, reducing the individual (voice, line, note) to its participation in a
prefabricated idea of totality and relying on a dubious notion of some immediate conti-
nuity, montage/splicing (like the sheaf construction) is fundamentally inductive, allowing
the individual component materials of a work to create their own formal structure “from
the bottom up” via insistence on the transparent and explicit unfolding of the principles
by which the component parts can be patched together locally. According to Gould, it is
precisely through the initial discontinuity induced by the decomposition into parts and the
cutting process in montage/splicing that the task of making explicit the principle of their
reorganization/patching into a unified totality is allowed to emerge, and the unity of the
whole no longer regarded as something to be taken for granted. Just as in the sheaf con-
struction, this approach essentially involves both cutting (decomposition/discontinuity) of
the space (the score) and local patching or gluing (recomposition/continuity) of data or
happenings associated to that space (distinct partial recordings), gradually building up to a
unique data assignment over the entire space (recording of the entire score).

For a more concrete, if rough and simplistic, idea of how the splicing or montage
approach to recording might be seen as akin to the construction of a sheaf, consider a
score consisting of thirty-two measures. We might then consider that the “space” of the
score has been decomposed into three principal parts or pieces: (A) spanning from mea-
sure 1 to the end of measure 16; (B) spanning from the beginning of measure 8 until the
end of measure 24; and (C) spanning from the beginning of measure 16 until the final mea-
sure. Together, these portions collectively cover the entire thirty-two measure score, and
there are the obvious pairwise overlapping measures. We can now imagine that to each
section (A)–(C), there corresponds a (possibly very large) set of distinct recordings. If, for
some selection of individual recordings from each of the three regions (A)–(C), the select
recordings can be made to agree on their overlap—via some system of translation func-
tions, such as slowing down one partial recording to match the tempo of another partial
recording, adjusting the dynamics of chords bridging sections, and so on—then these can
be spliced together into a unique single recording of the entire work.

Example 136 Detectives collect certain information pertaining to a crime that purportedly
occurred in some area during a certain time interval. This information will most likely be
heterogeneous in nature, that is, they may have camera footage of some part of the scene,
some eyewitness testimony, some roughly time-stamped physical data, and so on. These

listening to all the conversations going on in a café. This mentality is perhaps most famously illustrated by
the various accounts of him purposely dividing his concentration across multiple channels in order to better
understand something. For instance, he claimed that he discovered he could best understand Schoenberg’s Opus
23 if he listened to it while simultaneously playing the news on the radio, and he mastered a demanding section of
a Beethoven sonata only after placing a radio and television next to the piano and turning them up as loud as they
would go as he worked through the passage. This embodies something like the sheaf philosophy: Integration and
coherence come about not through an enforced isolationism or homogeneity but precisely through immersion in
the dense texture that arises by decomposition into pieces, by careful choices made locally, and by the resulting
appreciation of the need to make explicit the most minute links between parts of a whole, as one gradually,
piece by piece, assembles a more global or unified perspective. In this connection, we could also mention one of
Gould’s descriptions of his famous “contrapuntal radio” programs from the seventies, in which he claimed to try
“to have situations arise cogently from within the framework of the program in which two or three voices could
be overlapped, in which they would be heard talking—simultaneously, but from different points of view—about
the same subject” (Payzant 2008).



164 Chapter 5

various pieces of data are all considered to be local in the sense that they are assumed to
concern (or be valid throughout) a delimited region of space-time, such as time-stamped
camera footage of one of the parking lot’s exits or an eyewitness testimony claiming to have
heard a scream coming from the southern end of the parking lot sometime between 8:00
p.m. and 8:30 p.m. The various pieces of information may very well agree or be compatible
with respect to what they say happened on the overlapping portion of their underlying
space-time regions (to which these pieces of information are attached); for example, an
eyewitness’s testimony with respect to a particular half-hour interval and location might be
checked against the camera feed concerning that same time interval and area. In general,
the various pieces of data over the same interval may corroborate one another or contradict
one another, either entirely or in some particular respect or with respect to some subregion
of their overlap. It is not always as simple as verifying whether or not they provide the
same information. It may happen, for instance, that the parking lot is constructed in such a
way that certain barriers acoustically account for why the witness heard the scream coming
from the southern end of the parking lot, when in fact it could only have come from the
western end (which is where the camera shows the victim in conflict during that time). It
is the job of the detective to find the appropriate “translation functions” making sense of
these at first (potentially) conflicting local pieces of data and then use these functions to
glue together, piece by piece, the data that can be made to locally cohere into a coherent
and self-consistent account of what occurred over the entire spatiotemporal interval in
question. In a rough sense, then, given a presheaf assigning information (such as camera
data or propositions) locally over some collection of space-time regions, the detective is
looking to build a sheaf over the entire space-time interval covered by all those regions.

This example also invites us to consider, in a very preliminary fashion, just one of the
many interesting features of a sheaf: namely, that in addition to the fact that a sheaf lets
us determine global unknowns or solutions from data given merely locally, whenever we
do indeed have a sheaf, say F, this may enable the prediction of missing or underspecified
data (or at least the specification of what data will be possible) with respect to some sub-
region, given some selection of data over another region.77 For instance, given some time
interval and some particular area, say, U = (8:00, 9:00) ⊆X = (7:00, 9:40) concerning the
parking lot in question, we might consider some subset A of all the data we have over that
interval, that is, F(U). Now consider another region V = (7:30, 8:30) ⊆X = (7:00, 9:40).
Diagrammatically, we thus have the following:

F(X) F(V)

A F(U)

ρX
U

ρX
V

i

We know that because we are dealing with sets, we can form the pullback or fiber product,
that is, A×F(U) F(X) := {(a, u, x) | i(a) = u = ρX

U(x)}:

77. The presentation of this observation in the next paragraph closely follows Spivak (2014, 429–430).
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(ρX
U)–1(A) F(X) F(V)

A F(U)

ρX
U

ρX
V

Then the image of the top composite (dashed) will yield a subset of F(V), which informs
us about the possible value assignments throughout V , given what we know to be the case
(namely A) throughout U. Moreover, we could further consider maps into A and continue
forming pullbacks; since the leftmost square will be a pullback iff the composite large
rectangle forms a pullback, we can paste together pullbacks and further refine or constrain
these predictions in a controlled way.

Example 137 Returning to the presheaf S : Top→Set of a company’s stockpile of prod-
ucts, we can describe a sheaf here. We might have described such a sheaf in terms of open
sets, but using closed sets instead lets us consider a sheaf built on a closed set topology,
and hint at some interesting nuances here, explored further in later chapters. While closed
set sheaves exhibit interesting differences compared to the usual open set sheaves—in par-
ticular, manifesting the paraconsistent logic of closed set topologies of their base space,
matters explored more in the appendix and parts of chapter 7—sheaves defined over the
closed sets of a closed topology can be defined in fundamentally the same way as we did
when using open sets of an open set topology.

If {[ti, ui] | i∈ I} covers the entire interval [t, u]—in our particular case, the interval
from December 1 until July 1, say with cover given by two-month intervals—it is prac-
tically immediate that if a product is present in the company’s stockpile throughout each
of the pieces [ti, ui] of the cover, then it will have to be present throughout all of [t, u];
and for any inclusion of intervals, S of that inclusion is the restriction function mapping
each product onto itself (any product found throughout the larger interval must clearly be
present throughout a subinterval). Global sections will then be given by those products that
are consistently present throughout the entire time period, such as product B, as depicted
below:
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This may not appear to be a very exciting sheaf, but its simplicity can be useful in helping
one achieve an initial working understanding of the difference between local sections that
can extend to global sections and local sections that are purely local and satisfy certain
local compatibility checks but that cannot be glued together into a global section. To see
this, suppose, for instance, we had instead selected the product C, which indeed appears
to be present throughout much of the overall time period. It is certainly present through-
out all of [Dec1, Apr1] = [Dec1, Feb1]∪ [Jan1, Mar1]∪ [Feb1, Apr1], and it is also present
[May1, Jun1]. As can be seen by inspection,

the persistence of the product C (witnessed, in particular, by the associated arrows)
throughout all of [Dec1, Apr1] is “proven” by the existence of local maps between all
the subintervals covering this region. However, some (non)maps are indicated with ques-
tion marks because there is not in fact any selection from the set of products given over
(for example) S([Mar1, May1] = {B, H} that could get mapped, under the prescribed action
of S, to C in S([Mar1, Apr1]). Since there is, however, a map from S([Mar1, Apr1]) to
S([Apr1]) that lands in C, the nonexistence of the previous map tells us, in particular, that
at some point in the period after Apr1 through May1, the product C ceased to be present in
the company’s stockpile of products. Additionally, as there is a map from S([May1, Jun1])
to S([May1]) sending C to itself, we know that the product C could have been removed
from the stockpile only in the period strictly between Apr1 and May1.

The point is that there is no way of gluing together the combined local sections of C
“on the left” (from Dec1 through Apr1) to the local section “on the right” (from May1
to Jun1). This gap in the presence of C in the stockpile at some point in the time period
between Apr1 and May1 is witnessed by the nonexistence of any maps at the presheaf
level involving C, that would have let us pass from one side to the other. This makes the
local section corresponding to the selection of C with its associated maps strictly local,
since they cannot assemble into a global section, that is, be glued together into a section
specified over all the diagram and covering the time period from December 1 until July 1.

Notice also how, among the strictly local sections, some sections can be “more local”
than others, in the sense of how, for instance, the product D is only present throughout
[Dec1, Feb1] and [Apr1, May1], as witnessed by the following restriction maps:
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And we are informed of its moments of disappearance precisely by the nonexistence of
certain (D-valued) maps.

A final nuance is worth noting before moving on: observe how, for instance, the product I
shows up in the set S([Mar1]) = {A, B, C, F, H, I, J}, indicating that it is present in the com-
pany’s stockpile throughout the instant [Mar1, Mar1] at midnight. One can also see that it
is in fact present throughout all of [Mar1, Apr1]. However, I is not present throughout
[Feb1, Mar1]. In general, viewing such sheaves “internally” (i.e., in terms of the contents
of the variable sets assigned to each piece of the covers), the sets can be thought of as being
described by their behavior on small intervals or neighborhoods. On any given interval, the
products present in the stockpile over that period either will or will not include I. However,
intervals containing [Mar1] will include a subinterval on the left, like [Feb1, Mar1], during
which I is not present and a subinterval on the right, like [Mar1, Apr1], during which it is
present. Thus, for such a closed set sheaf, the product I witnesses the failure of the law of
noncontradiction: over arbitrary intervals of a cover containing March 1 at 0:00, it is incor-
rect to say that the product I cannot be both present and not present. In terms of the closed
set topology of the base space, Mar1 acts as a boundary, and the algebra of closed sets in
general is that of a co-Heyting algebra, which model paraconsistent logics (as explored in
greater detail in the appendix and chapter 7). Paraconsistency is the blanket term for a log-
ical system where the principle of noncontradiction can fail without the theory becoming
trivial, that is, where a formula and its (paraconsistent) negation intersect at the boundary
of their extensions. In the sheaf construction, the base topology is of special importance—
for one thing, as we will see later in the book, the algebra of the base space topology can
be seen in terms of the algebra of the sheaf section structure. Thus, by considering sheaves
with respect to closed set topologies, we can introduce the valuable notion of boundary and
paraconsistent negations—something that does not exist for the associated open set sheaf
construction.78

78. Again, more extensive discussion of (co-)Heyting algebras, paraconsistency, the role of boundaries, and the
connections to sheaves, appears in the appendix and parts of chapters 7 and 10. James (1992, 1995) are also good
resources for closed set sheaves.
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5.3 Philosophical Pass: Sheaf as Local-Global Passage

Box 5.1

The Idea of a Sheaf as Local-Global Passage

A sheaf is not to be situated in either the local (restriction) or the global (collation) registers,
but rather is to be located in the passage forged between these two, in the translation system
or glue that mediates between the two registers. Conceptually, the transit from the local to the
global secured via the sheaf gluing (collatability) condition provides a deep but also precisely
controllable connection between continuity (via the emerging system of translation functions
guaranteeing coherence or compatibility between the local sections) and generality (global
sections). One could make the case that sheaves are best seen as what happens when topol-
ogy meets the category-theoretic notion of limit (which, as we saw, is bound up with both
universality and a generalized notion of continuity).

By separating something into parts, that is, by specifying information locally, considering
coverings of the relevant region, and enabling the decomposition or refinement of value
assignments into assignments over restricted parts of the overall region (restriction condi-
tion), we are presented with a problem, a problem that in a sense can first appear only with
such a downward movement towards greater refinement. Without having separated something
into parts, we may appear to have a sort of trivial or default cohesion of parts—where, with-
out being recognized in their separation, the parts yet remain implicit, and so the glue binding
them together or the rule allowing one to transit from one part to another in a controlled fash-
ion is simply not visible. However, having decomposed or discretized something into parts,
we are at once presented with this separation of parts and the problem of finding and making
explicit the glue that will serve to bind them together. A sheaf is a way of taking informa-
tion that is locally defined or assigned and decomposing those assignments in a controlled
fashion into assignments over smaller regions so as to draw out the specific manner of trans-
lating or gluing those particular assignments along their overlapping regions, and then using
this now explicit system of gluings to build up a unique and comprehensive value assignment
over the entire network of regions. In this sense, a sheaf equally involves both (1) controlled
decomposition (discreteness), and (2) the recomposition (continuity) of what is partial into
an architecture that makes explicit the special form of cooperation and harmony that exists
between the decomposed items, items that may have previously been detached or that may
have only appeared to stick together because we had not bothered to look closely enough.

Via the restriction/localization step, sheaf theory teaches us that we do not command a more
global or integrated vision by renouncing the local nature of information or distinct planes and
textures of reality or by glossing over the minute passages between things. Instead, it forces us
to first become masters of the smallest link and, precisely through that control of the passages
between the local parts, forge a coherent (collatable) vision of the largest scope.

Phenomenologically speaking, data or observations are frequently presented to us in “zones,”
fragmented or isolated in some way. These items can be thought of as various light-beams
(perhaps of specific hues or brightness) cast over (and covering only parts of) a vast land-
scape, some of which may overlap. Even if this data clearly emerges as evolving over some
region, it remains indexed or determined in some way by a particular zone or context. One
interpretation of this initial particularity would be to suggest that the very fact that certain
information initially presents itself in this local and bounded fashion is an indication that we
are dealing with various discrete approximations, presented piecemeal, to phenomena that
may in fact really be continuous. Whether or not that is the case, it is not difficult to accept
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that in its presentation to us in fragmented form, this step in the process is closely allied with
the discrete (in a very general sense of the word). For centuries, the modes of restoring con-
tinuity to such partial information have been more or less haphazard. A sheaf removes this
aspect of haphazardness. Significant is the at once progressive and necessary nature of the
sheaf concept: how by gradually (progressively) covering fragments of reality and then sys-
tematically gluing them together into unique global solutions (necessary), the construction of
sheaves encourages us to shift away from our standard ontologies or descriptions of reality
as anchored in some absolute toward a more “contrapuntal and synthetic” perspective capa-
ble of registering “relative universals.” (Zalamea (2013) contains an insightful discussion of
precisely this latter perspective on sheaves.)

With the sheaf construction, a global vision is not imposed on the local pieces, obliterating
the local nature of the presented information via some “sham” generalization, but emerges
progressively, step-by-step, through the unfolding of precise translation systems guarantee-
ing the compatibility of the various components. A sheaf does not attempt to suppress the
richness and polyphony of data in its particularity and relative autonomy, coercing a kind of
standardized agreement as so many past models of generality have done. A sheaf is like a
master composer who is not content to have her harmony prefabricated for her by habitual
associations or who does not wish to achieve harmony only at the expense of suppressing all
contrapuntal impulses and polyphony, imposing it from above, or restraining the local free-
dom of each voice to roam with some independence from the constraints that bind it in the
name of some prefabricated schema. Rather, the sheaf-like composer achieves harmony only
progressively, first by letting each component part unfold, in its relative autonomy, its own
laws, then by insisting on making explicit even the most minute links and transits between the
laws of movement of each of the parts, securing locally smooth passages for each transition,
and from the glue or constraints that emerge out of this process, begins to build up a larger
ensemble, step by step. It is not a compromise between the local and the global in the name of
some idealogical preference for the more global or the universal. Sheaves earn their place as
true mediators by virtue of their complete realization of the idea that—to paraphrase Hegel—
true mediation comes about only from preserving the extremes as such, and true universality
comes about only by sinking as deeply as possible into the particular.





6 There’s a Yoneda Lemma for That

In which we cover what is perhaps the most important idea in category theory—the
Yoneda results—by first focusing on what these results look like “in the miniature”
(in order theory), then covering representability, and finally moving into the results
in their full generality and reflecting on the associated “Yoneda philosophy.”

Before continuing to develop the story of sheaves, the next two chapters take a step back
to complete the account of category theoretic fundamentals. This chapter is devoted to
what is perhaps the most important idea in category theory, the Yoneda results. Chapter 7
turns to consideration of adjunctions, and is focused on developing these ideas through a
number of examples. In the coming sections of the present chapter, we will motivate the
main ideas through a simplified special case, its analogue for posets (in fancier language,
its “2-enriched” analogue). This motivation requires that one first understand enrichment,
the introduction of which also gives us a chance to refine our understanding of categories
in general.

6.1 First, Enrichment!

Not all categories were created equal. For instance, for certain categories, there may be a
natural way of combining elements of the category, that is, of making use of an operation
that takes two elements and “adds” or “multiplies” them together. Not all categories admit
such a thing. Those that do are called symmetric monoidal.

Definition 138 A symmetric monoidal structure on a category Vconsists of the following
data:

1. a bifunctor79 –⊗ – : V× V→ V, called the monoidal product;
2. a unit object I ∈Ob(V), called the monoidal unit,

subject to the following specified natural isomorphisms:

v⊗w∼=γ w⊗ v u⊗ (v⊗w)∼=α (u⊗ v)⊗w I⊗ v∼=λ v∼=ρ v⊗ I

that witness symmetry, associativity, and unit conditions on the monoidal product. There
are then standard “coherence conditions” that these natural transformations are expected
to obey.

79. A bifunctor is just a functor whose domain is the product of two categories.
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A category equipped with such a symmetric monoidal structure is then called a symmet-
ric monoidal category, denoted, for example, (V,⊗, I). A monoidal category is similarly
defined, except one leaves out the symmetry natural isomorphism displayed above on the
far left. If the natural isomorphisms involving associativity and the unit are replaced by
equalities, then the monoidal structure is said to be strict.

This is defined on categories in general, but an especially simple special case comes
from restricting the definition to preorders (as categories).

Definition 139 A symmetric monoidal structure on a preorder (X,≤) consists of

• an element I ∈X called the monoidal unit, and
• a function ⊗ : X×X→X, called the monoidal product.

These must further satisfy the following, for all x1, x2, y1, y2, x, y, z∈X, where we use infix
notation, that is, ⊗(x1, x2) is written x1⊗ x2:

• monotonicity: if x1≤ y1 and x2≤ y2, then x1⊗ x2≤ y1⊗ y2;
• unitality: I⊗ x = x and x⊗ I = x;
• associativity: (x⊗ y)⊗ z = x⊗ (y⊗ z);
• symmetry: x⊗ y = y⊗ x.

Then a preorder equipped with a symmetric monoidal structure, (X,≤, I,⊗), is called a
symmetric monoidal preorder.

Monoidal units may be given by, for example, 0, 1, false, true, {∗}, etc. Monoidal
“products” include the likes of ⊗, +, ∗,∧,∨,×, and so on.

Example 140 The simplest nontrivial preorder is 2 = {0
≤−→ 1}. Alternatively, you might

think of this as 2 = {false, true} with the single nontrivial arrow false≤ true. There are two
different symmetric monoidal structures on it. To consider one of these: let the monoidal
unit be true and the monoidal product be ∧ (AND), leaving us with a monoidal preorder
(2,≤, true,∧).80

Example 141 For a set S, the powerset P(S) of all subsets of S, equipped with the natural
order A≤B given by subset relation A⊆B, in fact has a symmetric monoidal structure on
it: (P(S),≤, S,∩) is a symmetric monoidal preorder.

In particular, taking S a two-element set, this is isomorphic to (A4,≤k, B,⊗), Belnap’s
four-valued “knowledge lattice” (or “approximation lattice”) A4 = ({⊥, t, f ,�},≤k), often
used by relevance and paraconsistent logicians, where the values are the various subsets
of {true, false} (i.e., {t, f }). Here, � (or sometimes B) is “both true and false”; ⊥ is “nei-
ther true nor false”; ⊗ is a “consensus” connective corresponding to meet; and (A4,≤k)
is the (complete) lattice corresponding to an ordering on epistemic states (“how much
information/knowledge”).

80. Fong and Spivak (2020) sensibly calls this Bool, but we will just stick with calling it 2, after its carrier
preorder. The reader who desires a more in-depth treatment of enrichment, or who is intrigued by any of these
matters, will surely enjoy the recent Fong and Spivak (2020). Readers with a higher tolerance for abstraction
might also find Kelly (2005) useful.
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This structure accordingly has four “truth values”: the classical ones (t and f ); a truth value
⊥ that intuitively captures the notion of a lack of information (“neither t nor f ”); and a
truth value � that can be deployed to represent contradictions or inconsistency (“both t
and f ”). The underlying partial order of the lattice has t and f as its intermediate truth val-
ues, ⊥ as the ≤k-minimal element, and � as the ≤k-maximal element. Overall, the partial
order ({⊥, t, f ,�},≤k) of the lattice is often regarded as serving to rank the “amount of
knowledge or information,” where≤ captures the notion of “approximates the information
in”—that is, if x≤k y, then y gives us at least as much information as x (possibly more). A
move up in the lattice represents an increase in the amount of information, with ⊗ taking
the uppermost element below both x and y.81

Example 142 Let [0,∞] be the set of nonnegative real quantities, together with∞. Con-
sider the preorder ([0,∞],≥), with the natural order ≥, for example, π≥ 0.8, 14.33≥ 11,
and of course ∞≥ x for all x∈ [0,∞]. There is a symmetric monoidal structure here,
with monoidal unit 0 and monoidal product + (where in particular x +∞=∞ for any
x∈ [0,∞]). After Fong and Spivak (2020), we can call this symmetric monoidal preorder
Cost := ([0,∞],≥, 0, +), since we think of the elements of [0,∞] as costs.

In the standard definitions of a category that we have seen thus far in this book, the hom-
sets are sets, that is, objects of the category Set. On this approach, with such categories, that
the hom-sets are specifically sets effectively means that the task or question of getting from
(or relating) one object to another has a set of approaches or answers or names. But what
if we generalized this story and let the hom-sets of a category come from some category
other than Set?

Symmetric monoidal categories are important, in large part, because of something we
can do with them: we can enrich an (arbitrary) category in them! What does that mean?
Fong and Spivak (2020) suggest a very nice intuitive way of thinking of this: Enriching
in, say, a monoidal preorder V= (V ,≤, I,⊗) just means “letting V structure the question
of the relations or paths between the objects of the underlying category.” In this general
context, enriching in different monoidal categories often recovers (while generalizing)
important entities in math. For instance, it emerges that categories “enriched in Cost,”
or Cost-categories, provide a powerful generalization of the notion of metric space.

Definition 143 Let V= (V ,≤, I,⊗) be a symmetric monoidal preorder. A V-category X

consists of

• specification of a set Ob(X), elements of which are objects,

81. For more on this lattice, see Belnap (1992).
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• for every two objects x, y, specification of an element X(x, y)∈V , called the hom-object,

and where these satisfy the two properties

• for every object x∈Ob(X), we have I≤X(x, x), and
• for every three objects x, y, z∈Ob(X), we have X(x, y)⊗X(y, z)≤X(x, z).

In this case, we call V the base of the enrichment for X, or just say X is enriched in V.

Example 144 What happens if we enrich in Cost = ([0,∞],≥, 0, +)? Following the
definition: a Cost-category X consists of

1. a collection Ob(X), and
2. for every x, y∈Ob(X) an element X(x, y)∈ [0,∞].

The idea here is that Ob(X) provides the “points,” while X(x, y)∈ [0,∞] plays the role of
supplying the “distances.” Still just following the definition, the properties of a category
enriched in Cost are given by:

• 0≥X(x, x) for all x∈Ob(X), and
• X(x, y) + X(y, z)≥X(x, z) for all x, y, z∈Ob(X).

Note that since X(x, x)∈ [0,∞], the property 0≥X(x, x) implies that X(x, x) = 0. So this
is in fact equivalent to the first condition d(x, x) = 0 describing a metric. And the second
condition here is clearly the usual triangle inequality! We have thus defined, with the notion
of a Cost-category, an extended (Lawvere) metric space.

Recall the usual definition of a metric space from definition 73 (chapter 4). If we instead
take a function d : X×X→ [0,∞] =R≥0 ∪ {∞}, then we have an extended metric space.
From the categorical viewpoint, the generalized construction of a Cost-category recov-
ers the notion of a metric space, while already suggesting that the usual definition’s
conditions

• (2) if d(x, y) = 0, then x = y;
• (3) d(x, y) = d(y, x)

are somehow not as natural or primitive as the other two conditions (triangle inequality and
that points are at “zero distance” from themselves). Indeed, there are contexts in which (2)
is not satisfied, yet we would still like to have a metric. Also, requiring (3) or symmetry
prevents us from regarding a number of constructions we would like to regard as metrics
as legitimate metrics, so relaxing this condition also seems desirable.

Example 145 Now take the symmetric monoidal preorder 2 = ({false, true},≤, true,∧).
Enriching in 2 recovers the notion of a preorder, since for any x, y∈P, with P a preorder,
there is either 0 (“false”) or 1 (“true”) arrow from x to y. Accordingly, the “homs” here will
be objects of 2, not Set. More formally, a 2-category82 consists of

• a specification of a set of objects
• for every x, y, an element X(x, y)∈ 2

where this data satisfies

82. Not to be confused with the notion of a 2-category, mentioned in remark 49 (chapter 2).



There’s a Yoneda Lemma for That 175

1. for every element x∈Ob(X), true
≤−→X(x, x), so X(x, x) = true

2. for every x, y, z, X(x, y)∧X(y, z)
≤−→X(x, z)

The first condition above just amounts to reflexivity and the second to transitivity, used
to define a preorder; understanding X(x, y) = true to just mean that x≤ y, clearly this just
recovers the notion of a preorder. Thus, the theory of 2-enriched categories just recovers
precisely the theory of ordered sets and the monotone maps between them.

Example 146 Returning to A4, we can understand t as “told True,” f as “told False,” ⊥ as
“told nothing” (i.e., neither told True nor told False), � as “both told True and told False.”
⊥ is at the bottom of the lattice as it gives no information at all, while � is at the top since
it gives “too much” (or inconsistent) information.

When we enrich in A4, the resulting A4-category Xwill describe, for any two objects x, y
of X, all the (true, false, null, inconsistent) information that has been received or inputed
(perhaps from several independent sources) about whether you can “get from” x to y.

Enriching in A4 implies that the issue of passing from x to y is structured by how much
information/knowledge we (or some system, like a computer, prepared to receive and rea-
son about inconsistent information) might have about the question. For instance, “I have
been told that ‘yes’ (‘no’) one can (cannot) pass from x to y”; or “I have been told both
that you can and that you cannot pass from x to y”; or “I have not been told anything about
whether or not you can pass from x to y.”

In the next few sections, we will make use of this notion of enrichment to build towards
a particularly simple presentation of the abstract Yoneda results.

6.2 Downsets and Yoneda in the Miniature

Given a poset P= (P,≤), we have seen how we can regard P as a category. The following
notion will be of use to us.

Definition 147 Let Pbe a poset, and A⊆P a subset. Then, we call the subset A a downset
if for each p∈A and q∈P, we have that p∈A and q≤ p implies that q∈A. Dually (i.e.,
reversing all the arrows), a subset U⊆P is an upper set (or up-set) provided: if p∈U and
p≤ q, then q∈U.

We can further define, for each element p∈P, the downset generated by p—called its
principal downset, denoted Dp (or just ↓ p)—as

↓ p := {q∈P | q≤ p}.

Dually, as one might expect, we can also define, for each point p, its principal upper set
Up (or just ↑ p) as

↑ p := {q∈P | p≤ q}.

For instance, consider the following poset P, built from P = {a, b, c, d}, and given by
a≤ c, b≤ c, b≤ d, and the obvious identity (reflexivity) x≤ x for all x∈P. The data of this
poset is perhaps more helpfully displayed in the picture:
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c d

a b

Exercise 18 Is {a, b, c} a downset? How about {a, b}? And {a, c, d}?

Solution Yes, {a, b, c} is a downset; same with {a, b}. But N = {a, c, d} is not a downset;
for, in particular d∈N, yet considering b∈P, since b≤ d, we should have that b∈N, in
order for N to be a downset. Yet b /∈N.

In general, we denote by D(P) the collection of all downsets of the poset P. Observe
that D(P) has a natural order on it—namely, U≤V provided U contained in V . Then,
(D(P),⊆) is itself an order under inclusion, one that we will sometimes just denote by
D(P), or Down(P) when we want to emphasize that we are regarding this order as a
category.83 This resulting poset consisting of the collection of all downsets of P, ordered
by inclusion, is sometimes called the downset completion.

The following diagram displays the information of all the downsets of our given P,
ordered by inclusion:

∅

{a, b, c} {a, b, d}

{a, b, c, d}

{a} {b}

{a, b} {b, d} =

↓ ∅

↓ c ↓ a ∪↓ d

↓ c ∪↓ d

↓ a ↓ b

↓ a ∪↓ b ↓ d

There are a couple of valuable general observations to note at this point, which can be illus-
trated via this particular example. The first observation will allow us to construe downsets
in terms of monotone maps (functors) from Pop to the order 2.

First, consider that any given element A of D(P) represents something like a “choice”
of elements from the underlying set P, with the further requirement that, as a downset,
whenever x∈A, then any y∈P such that y≤ x in P is also in A. But this requirement is the
same as saying that for any x, y such that y≤ x in P, if we have that “it is true that x∈A,”
then we must also have that “it is true that y∈A.” And this is just to say that

y≤ x implies φ(y)≥φ(x),

where φ is an antitone map from the order P to order 2; or, equivalently, it is a mono-
tone map from the opposite order Pop to 2. Such maps are themselves ordered under the
pointwise inclusion ordering. If we designate such a poset of monotone maps, ordered by

83. Dually, we write U(P) for the collection of all the upper sets of P; this also has a natural order on it—namely,
U ≤V provided U is contained in V , making (U(P),⊆) an order as well.
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inclusion, by 2Pop
or Monot(Pop, 2), then we can see that there is a map between the orders

D(P)→Monot(Pop, 2)

D �→φD,

where φD acts as the characteristic (or indicator) function, mapping to 1 on D and 0

elsewhere. In other words, given a downset D of P, we define φD : Pop→ 2 by setting
φD(x) = 1 precisely when x∈D (i.e., assigns it to the characteristic function of D). Con-
versely, given a monotone map in Monot(Pop, 2), we can send this to the inverse image
φ–1(1)∈ D(P), recovering a unique downset (you can verify for yourself that the subset
φ–1(1) is a downset). In order theory, in general, a map F : P→Q, where P and Q are
posets, is said to be an order-embedding provided

x≤ y in P iff F(x)≤F(y) in Q,

and then such an order-embedding yields an order-isomorphism between P and Q.
But since, in our case, A⊆B iff φA≤φB, altogether we have thus described an order-
embedding, giving us an order-isomorphism

D(P)∼= Monot(Pop, 2).

Notice how, included among the maps Pop→ 2 are those φp for any given element p∈P.
These send q �→ 1 iff p≤ q in P (or, equivalently, but perhaps more clearly, iff q≤ p in
Pop, which is our domain), for such a map generally acts as the indicator function of the
set of all x≤ y, that is, the principal downset ↓ y of y.

Observe that the principal downset ↓ p := {q∈P : q≤ p} is itself a downset (i.e., it will
belong to D(P)), for any p in our set P. (This follows from the transitivity of P.) The
principal downsets are actually rather special objects among the downsets. To see this,
consider again the diagram of the downsets of our particular P. You can see that every
object in D(P) is a principal downset or a union of principal downsets, and that the princi-
pal downsets ↓ x run through all x∈P. Observe also that for A⊆P, ↓A will be the smallest
downset that contains A, and moreover A =↓A iff A is a downset. We will return to these
facts, and make better sense of them, shortly.

For now, we need to realize that ↓ can actually be regarded as a monotone map from P

to D(P), which in our particular case may be pictured as

That this ↓ really just defines a monotone map—that is, x≤ y implies ↓ x⊆↓ y—is easy to
see in the general case as well. For, let x≤ y in P. We want ↓ x⊆↓ y in D(P). Take any
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x′ ∈↓ x. Then we must have that x′≤ x. By transitivity of the order, x′≤ x and the assumed
x≤ y yield x′≤ y. Thus, x′ ∈↓ y. Altogether, this shows that ↓ x⊆↓ y.

We have the other direction as well, namely ↓ x⊆↓ y in D(P) implies x≤ y in P. Alto-
gether, then, we actually have another order-embedding, embedding any poset into its
downset completion:

↓ (–) : P→ D(P) p �→↓ p.

This is all part of a much bigger story, so the main results are set aside for emphasis.

Proposition 148 (Yoneda lemma for posets) Given P a poset, x∈P, and A∈ D(P), then

x∈A iff ↓ x⊆A.

Proof. (⇒) Let x∈A. Then all y≤ x is also in A, as A is a downset, and in particular x∈↓ x.
Thus, ↓ x⊆A.

(⇐) Take y∈↓ x. But then y≤ x, and so y∈A since A is a downset.

Applying the Yoneda lemma to two principal downsets, we have that y≤ z iff for all x84

x≤ y⇒ x≤ z.

The most important corollary, or application, of the lemma is the following:

Proposition 149 (Yoneda embedding for posets) This ↓ defines an order-embedding
(embedding any poset into its downset completion):

↓ (–) : P→ D(P) p �→↓ p.

Proof. Let x≤ y. Then x∈↓ y (conversely, if x∈↓ y, clearly we must have x≤ y). Applying
the previous lemma (taking A =↓ y), x∈↓ y holds precisely when ↓ x⊆↓ y. On the other
hand, the converse holds as well, that is, ↓ x⊆↓ y implies x∈↓ y, which implies x≤ y.
Altogether then,

x≤ y iff (↓ x)⊆ (↓ y).

The Yoneda results thus assure us, in a slogan, that

To know everything “below” an element is just to know that element.

Let us start to generalize this story. Given a poset P, by considering P as a category,
we might have looked at presheaves Pop→Set. But since preorders are the same thing
as 2-enriched categories, supposing we want not sets for our hom-sets, but rather “truth
values,” it is natural instead to consider 2-enriched “presheaves” on P. Instead of arbitrary
set-valued data, then, such a 2-presheaf assigns to each x∈P a truth-value in 2; and this
will just recover the monotone maps (functors) Pop→ 2 (or, equivalently, an antitone map,
or contravariant functor (presheaf), from P to 2).

We saw how such a monotone map (from the opposite order) effectively acts as the
characteristic (or indicator) function φA of a downset A⊆P, forming part of the important

84. Readers familiar with real analysis may recognize in this the construction of Dedekind cuts!
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order-isomorphism
D(P)∼= Monot(Pop, 2).

We know, moreover, how to convert any poset into a category. Thus, renaming D(P) :=
Down(P) and Monot(Pop, 2) := Monot(Pop, 2) to emphasize that we are now dealing with
categories, the above actually describes

2-PreSh(P) := Monot(Pop, 2)∼= Down(P).

In the order setting, via the principal downsets, we were able to construct an embed-
ding P→Down(P). Similarly, but in much greater generality, we will see that there is
an embedding C→PreSh(C), taking a general category C to its category of presheaves.
Before defining the Yoneda lemma and embedding in the general case, we need to take a
step back for a moment and discuss representability.

To motivate this, consider that in a poset, regarded as a category, a principal downset on
an element p∈P is just all the arrows into p, where these amount to all elements that p
“looks down on” (or all elements that “look up to” p). This identification of “arrows into
p” and “elements below p” can be made, since a poset is precisely a category for which
there is at most one arrow q→ p for any p, q, allowing us to identify HomP(q, p) with the
element q. In other words,

HomP(–, p) =↓ p.

Before cashing in on the power of this statement, we will discuss the “representability”
operative here by considering a sort of miniaturized version of this phenomenon.

6.3 Representability Simplified

Consider a general map
T ×X→Y

that has a product for its domain (you can think of this as involving sets and functions
for now). We cannot typically expect to be able to reduce this to a specification of what
is happening on T and X separately, as the interaction of the two factors of the product is
essentially involved in supplying the values of the mapping itself. Thus, in considering a
map that has for domain a product (all three objects different, for the most general case),

T ×X
f−→ Y ,

we can ask (nontrivial) questions about the relations between any of the separate objects
involved in the product and the codomain object.

Observe that if we use the terminal object 1 to pick out “points” of X, via 1
x−→X, any

such point will give rise, via f , to the map fx

T ×X

T Y

f〈idT ,x〉

fx

where x is defined as the composite constant map T→ 1
x−→X. Thus,

fx(t) = f (t, x)



180 Chapter 6

for all t. In this way, we are now regarding the map f as an X-parameterized family of
maps T→Y , one for each of the points of X. In this setting, one possible question would
be to consider, for a pair of sets T , Y , whether there is a set X large enough for its points
to supply, via the maps f (–, x), all maps T→Y . As a very simple illustration of this, in the
simple case of sets described by their cardinality (number of elements), if T is a set with
four elements and Y a set with three elements, then X would need to have

34 = 81

elements, for that is the number of maps T→Y .
This is in fact part of a much more general story—one that gets at representability—

than the above discussion might suggest. For, we do not need to restrict attention to sets
and their cardinal number properties or even make this a matter of size. For a function
g : T→Y , whenever there is at least one 1

x0−→X such that

g(–) = f (–, x0),

that is, for all t∈ T ,
g(t) = f (t, x0),

we say that g is representable by x0, or f -represented by x0. This might be seen as a toy
instance of the much more general notion of representable functors. Recall the hom-functor
HomC(–, c) (and its dual HomC(c, –)), where this may be given by

HomC(–, –) : Cop×C→Set.

For any categories C, D, E, an isomorphism can be demonstrated between

EC×D∼= (ED)C

,

allowing us to move freely between functors C×D→E and C→ED. Thus, if we fix one
of the variables of this HomC, then we get the important representable functors:

HomC(a, –) : C→Set

b �→HomC(a, b)

f : b→ c �→HomC(a, f ) : HomC(a, b)→HomC(a, c)

g �→ f ◦ g,

and

HomC(–, a) : Cop→Set

b �→HomC(b, a)

f : b→ c �→HomC(f , a) : HomC(c, a)→HomC(b, a)

h �→ h ◦ f .

But this is just to describe the Yoneda-embedding functors taking, for instance in the
contravariant case,

C→SetCop

x �→HomC(–, x).
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Functors (presheaves) of this form are then said to be representable. More formally,

Definition 150 For a locally small category C, we say that a functor F : C→Set is a
representable functor if there exists an object c∈C (sometimes called the representing
object) together with a natural isomorphism HomC(c, –)∼= F; or, equivalently, one speaks
of a representation for a (covariant) functor F as an object c∈C together with a specified
natural isomorphism HomC(c, –)∼= F.85

If F is a contravariant functor, then the desired natural isomorphism is given between
HomC(–, c)∼= F.

In the covariant case, the representable functor can be thought of, intuitively, as encoding
how a category “is seen” or “is acted on” by a certain object; in the contravariant case,
how the category “sees” or “acts on” the chosen object. For instance, in the category of
topological spaces Top, if we regard all the maps from 1 (the one-point space) to a space
X, this just produces the points of X, that is, “1 sees points.”86

It is worth lingering a bit with this notion of representability. It might be useful to men-
tion, moreover, that most functors (valued in Set) are not representable. If you were to
pick a functor randomly, the odds are it would not be representable. Thus, examples of
nonrepresentable functors abound; but perhaps a few concrete nonexamples are in order.

Example 151 The covariant powerset functor P : Set→Set is not representable. This
functor P is such that P(X) is just the power set of X, and for any function X→Y , the
map P(X)→P(Y) takes A⊆P(X) to the image under f , that is, to f (A).

To see that it is not representable, suppose we have a representing object X, that is,
X ∈ Set represents P. Then, in particular, we will need that

|HomSet(X, –)| = |P(–)|

for all sets, that is,
|HomSet(X, Y)| = |P(Y)|

for all Y ∈ Set. But then we can take Y = {∗}, a singleton set. For any nontrivial X, there can
be only one map to the singleton set, so |HomSet(X, Y)| = 1. Yet the powerset of a singleton
set is, of course, of cardinality 2. Thus

|HomSet(X, Y)| 
= |P(Y)|

for our given Y = {∗}. This contradiction tells us that there can be no such representing
object X in Set for the covariant powerset functor.

On the other hand, the contravariant powerset functor (presheaf) is representable!87

Specifically, P (contravariant now) is representable by the two-element set 2= {0, 1}, so
that for each set Y , we have the isomorphism

HomSet(Y , 2)∼= P(Y)

f �→ f –1({1}).

85. Ordinarily, one requires that the domain C of a representable functor be locally small so that the hom-functors
HomC(c, –) and HomC(–, c) are valued in the category of sets.
86. This example is lifted from Leinster (2014).
87. In general, it seems to be easier to find representables among contravariant functors.
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Effectively, this says that 2 is a set that contains a universal subset {1} that pulls back to
any other subset, via the characteristic function of that subset.

The great importance of representable functors is in part due to the fact that repre-
sentable functors can encode a universal property of its representing object. For instance,
a category C will have an initial object precisely when the constant functor ∗ : C→Set is
representable, that is, an object c∈C will be initial iff the hom-functor Yc is naturally iso-
morphic to the constant functor sending every object to the singleton set. Dually, an object
c∈C will be terminal iff the functor Yc is naturally isomorphic to the constant functor
∗ : Cop→Set. Put otherwise: an object c∈C is initial if, for all objects d∈C, there exists
a unique morphism c→ d; while an object c∈C is terminal if, for all objects d∈C, there
exists a unique morphism d→ c.

The absence of such universal properties can be used, as we effectively did in dealing
with the (covariant) powerset functor above, to show that a candidate nonrepresentable
functor is in fact not representable. The general idea here—which method you might use
to convince yourself of the nonrepresentability of the functors described in the coming
examples—is to (1) assume the functor is representable; (2) consider a possible “universal”
element for the functor; and then (3) produce a contradiction by showing that this element
cannot actually have the special universal property that it needs to have.

Recall that in Set, every one-element (singleton) set is a terminal object (a special object
with a special universality property). Thus, in our discussion of the covariant powerset
functor, another way of saying that

|HomSet(X, {∗})| 
= |P({∗})|

would accordingly have been to say that P does not preserve the terminal object.

Example 152 The (covariant) functor Group→Set that takes a group to its set of
subgroups is not representable.

Example 153 The (covariant) functor Rng→Set that takes a (nonunital) ring R to its set
of squares, that is, {r2 : r∈R}, is not representable.

It turns out that all universal properties themselves can be captured by the fact that
certain data defines an initial or terminal object in an appropriate category, specifically the
category of elements of the representable functor, a fact that can be rather useful (but that
we simply record, without proof, before giving examples).

Proposition 154 A covariant (contravariant) set-valued functor is representable iff its
category of elements has an initial (respectively, terminal) object.

Example 155 Applied to a poset P, consider P as a category. For an arbitrary element
p∈P, first check that the slice category P/p (also denoted (P↓ p))88 is just the principal
downset generated by p; dually, the co-slice category (p/P) (also denoted (p ↓P)) is the
principal upper set of p. Recall that we can construct the category of elements in terms

88. I hope this latter notation is not too confusing in this context, given that we are also talking about principal
downsets!
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of the slice category. Thus, a 2-presheaf (i.e., downset A⊆P) is representable iff it has a
greatest element.

Example 156 Recall the discussion of graph coloring and the functor nColor, first
described in example 37 (chapter 2). Recall also that a complete graph is just a graph
in which every pair of distinct vertices is connected by a unique edge. In graph theory,
by Kn we mean the complete graph on n nodes. In terms of graph colorings, it should be
obvious that this graph will be the graph with the fewest vertices and edges that needs at
least n colors to be colored. This fact actually gets at a universal property of the graph
Kn. Leaving the details to the reader, we indicate that the functor nColor is represented by
Kn. This basically says that if we want to know about the set nColor(G) of n-colorings of
a graph G, we can just look at the set of graph homomorphisms from G to the complete
graph Kn on n vertices. To appreciate this, notice how, given a morphism f : G→Kn, the
condition (by definition of being a graph homomorphism) that f (e) be in the edge-set of
Kn for any edge e in the edge-set of G will force f (x) 
= f (y) whenever x and y are adjacent,
recapturing the notion of an n-coloring of G.

Incidentally, the reader might wish to ponder which concept from graph theory is
captured by morphisms going in the other direction, that is, by homomorphisms f : Kn→G.

In a moment, we will see the most important category-theoretic result, which morally
shows how an object is defined completely by its functorial (relational) properties. But
as representability often seems to baffle the newcomer, the next (optional) section offers
an elaboration on the phenomenon of (non)representability. The reader eager to press on to
the main Yoneda results can skip ahead a few pages.

6.4 More on Representability, Fixed Points, and a Paradox

Above, when we were thinking of general morphisms T ×X→Y as a family of morphisms
T→Y parameterized or indexed by the elements of X—in which setting we were con-
sidering a sort of “miniature” version of representability—this was effectively to look at
arbitrary maps

f̂ : X→YT ,

which led to the question of when (and which) X can “parameterize” all the maps from
T itself to some Y . This is effectively the same as asking when such f̂ are surjective. In
particular, though, we can ask this for X = T , so that we are considering

f̂ : T→YT

or
f : T × T→Y ,

which are effectively “Y-valued” relations or predicates on T (or Y-attributes of type T).
Via the object (function) YT , Y-valued predicates can be thought of as “talking about” T .
A special circumstance would be where all the ways of “talking about itself” can be said
by T itself! This is captured by the surjectivity of the map, that is, when every element
f : T→Y of YT is representable in T . The next result concerns when this can occur.89

89. The interested reader may wish to consult Lawvere (2006) and Lawvere and Schanuel (2009) for more
extensive discussion of this and the following theorem.
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Theorem 157 (Lawvere’s Fixed-Point Theorem) If

f̂ : X→YX

is surjective (i.e., every g : X→Y is representable, in the above sense), then Y will have the
fixed-point property, that is, every endomap τ : Y→Y has at least one fixed point, where
this of course means some y∈ Y such that

τ (y) = y.

Proof. Consider p : X→Y , an arbitrary “predicate” (i.e., element of YX). Since any
endomap α : Y→Y just “shuffles around” the elements of Y , we can define p as the
composite of the diagonal map, the function f (got from f̂ via the standard exponential
conversion), and an endomap,

X×X Y

X Y .

f

αδ

p

By assumption, moreover, there will be an x∈X that represents p. Thus,

p(x) =α(f (δ(x))) =α(f (x, x)) =α(p(x)),

making p(x) a fixed point of α.

Notice that Y has the fixed-point property provided every endofunction on Y has a fixed
point. But any set with more than one element clearly has an endofunction on it that does
not have a fixed point (hint: the simplest example is a two-point set, where the points are
“true” and “false”; then, an endomap without fixed points is given by the familiar negation
map); thus, no set with more than one element will have the fixed-point property. In order
to appreciate the importance of the theorem in Set, we can present the theorem in another
light, namely via the contrapositive.

Theorem 158 (Cantor’s Theorem) If Y has at least one endomap τ that has no fixed points
(i.e., for all y∈ Y , τ (y) 
= y), then for every object X and for every

X
f̂−→ YX

f̂ is not surjective.
In other words, f̂ not being surjective means that for every attempt φ : X×X→Y to

parameterize maps X→Y by the points of X, there must be at least one map g : X→Y that
gets left out, that is, it is not representable by φ (meaning, does not occur as φ(–, x) for any
point x in X).

Proof. Again, define g as the composite of the diagonal map, the function f (got from f̂ via
the exponential conversion), and an endomap,

X×X Y

X Y .

f

αδ

g
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In other words,
g(x) =α(f (x, x)).

Then, for all x∈X,
g(–) 
= f (–, x)

as functions of one variable. For, if we did have g(–) = f (–, x0) for some x0 ∈X, then by
evaluation at x0,

f (x0, x0) = g(x0) =α(f (x0, x0)),

where the leftmost equality follows from g being representable, and the second equality is
by definition. But then, α has a fixed point. This is a contradiction.

Cantor’s famous result that there is no surjective map from a set to its powerset

X→ 2X

is a special case of the above.
It is best, though, to see how this special result is part of something more general. Given

our way of thinking about maps YX as providing a particular way (or name for how) X
“speaks about” or describes itself, the generalized version of the above can be regarded
as saying that, provided the truth-values or properties of X are nontrivial, there will be
no way that the elements of object X can “talk about” themselves (in the sense of talking
about their own truthfulness or their own properties). The result appeals to an observation
concerning the fundamental limitations in how an object X can address its own properties.
Many apparent paradoxes of the past seem to play off this. For instance, the Liar paradox
was an ancient way of exhibiting the trouble one can get into when natural languages
attempt to construct self-referential statements that speak about their own truthfulness—
if one permits this, it seems one must open the door to certain inconsistencies in natural
language. Russell’s famous paradox was basically a simplified version of something Cantor
himself already found, one that did not involve the notion of size: namely that if we take
T as the set of all sets, then by Cantor’s theorem, there is a set larger than T , namely the
powerset of T , yet T is assumed to contain all sets, so we are saying that T contains a subset
that is larger than itself. Gödel’s famous incompleteness results revealed limitations in
formal systems and provability statements within those systems. Brandenburger-Keisler’s
paradox (a sort of two-person or interactive version of Russell’s paradox) concerns the
description of a belief situation in which “Ann believes that Bob believes that Ann believes
that Bob believes something false about Ann.” The paradox is: does Ann believe that Bob
has a false belief about Ann? This suggests that not every description of beliefs can be
“represented.” There are a variety of other results90 that one could enumerate as further
examples of what are arguably all variations on the same theme:

Letting things address their own properties, without limitations, can lead to problems.

The phenomenon of (non)representability is really at the core of such problems. The fol-
lowing (apparently paradoxical) example is mostly meant to get the reader thinking more
about some of the subtleties in issues of representability.

90. See Yanofsky (2003) for more; Abramsky (2014) is also of interest, in this connection.
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Example 159 The issue underlying the following example sometimes goes under the name
of “Grelling’s paradox.”91 Consider the set of all English words. Some of these words
describe themselves, while others (most) do not. Adjectives, perhaps more than any other
type of word, are used to describe things. So let us restrict attention to the set of adjectives,
which we may denote Adj. Certain adjectives describe themselves, while others (most)
do not. Those that describe themselves are said to be autological (or homological). For
instance, the following adjectives are homological: “English” (is English!); “polysyllabic”
(is polysyllabic); “Hellenic” (is of Greek origin); “unhyphenated.” Those adjectives, by
contrast, that do not describe themselves are said to be heterological. For instance, the
following are heterological: “Spanish” (not a Spanish word!); “misspelled” (is spelled
correctly!); “long” (is hardly long); “monosyllabic”; “hyphenated.”

It seems plausible that all adjectives will be either homological or heterological. How-
ever, consider the adjective “heterological.” Is it heterological? Suppose it is not. Then,
it might naturally be assumed, it will be homological. So it describes itself. Thus “het-
erological” (which says that it does not describe itself) must be heterological after all. So
if “heterological” is not heterological, then it is heterological. On the other hand, then, we
suppose that the answer to the question is affirmative, that is, that “heterological” is hetero-
logical. Then “heterological,” being heterological, does not describe itself. But this implies
that it is not heterological after all—since “heterological” says that it is of the sort that does
not describe itself, and we just said that “heterological” does not describe itself, so it is not
described by the description “does not describe itself”!

We might formalize this seemingly paradoxical situation by first considering that we are
dealing with a function

f : Adj×Adj→ 2

defined on all adjectives a1, a2 by

f (a1, a2) =

{
1 if a2 describes a1
0 if a2 does not describe a1.

Then we know there is a predicate (a map Adj→ 2) that can be defined on Adj that is not
representable by any element of Adj. We get this by applying the fixed-point theorem, with
α the negation map ¬ : 2→ 2, setting α(0) = 1 and α(1) = 0. More explicitly, using the idea
from before,

Adj×Adj 2

Adj 2,

f

αδ

g

we know how to construct g as a (nonrepresentable) function naming a particular property
of adjectives, namely as the characteristic function of a subset of adjectives that cannot
be described by any adjectives. In particular, the adjective “heterological” will be in this
subset. In terms of the above, that g is such a characteristic function just says that we must
have that

g(–) 
= f (–, a)

91. Yanofsky (2003) has a very nice discussion of this and a number of other such “paradoxes.”
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for all adjectives a, since if there were an adjective a0 that satisfied g(–) = f (–, a0),
evaluating at a0 would give

f (a0, a0) = g(a0) =α(f (a0, a0)),

the first equality from the (assumed) representability of g and the second by definition of
g. But this is certainly false, due to the nature of the map α.

Observe that the hypothetical

f (a0, a0) = g(a0) =α(f (a0, a0)),

which yields a contradiction (whether we choose f (a0, a0) = 1, when “a0 describes itself,”
or f (a0, a0) = 0, when “a0 does not describe itself”), makes precise exactly the “paradox”
described at the beginning.

Altogether, it is perhaps more telling to consider such a situation in terms of the non-
representability of the g given above, where this just means that the property of “not
being described by” an adjective (which applies to “heterological” in particular) is not
representable, for there is no adjective that might represent itself via f .

6.5 Yoneda in the General

Let us now make good use of the notions of representability and the model of the Yoneda
results for posets. In the special case of posets, we saw that we can identify a principal
downset ↓ p with a representable functor HomP(–, p). For any element p∈P, there will be
a representable 2-presheaf (think: it is represented by p)

φp : Pop→ 2

that takes q �→ 1 iff p≤ q. In this way, the representable presheaves act as the “characteristic
maps” of the principal downsets of P, and the 2-enriched version of the Yoneda embed-
ding taking each p �→φp is the same as the inclusion of the elements of the poset into its
downsets (which is, in turn, the same as considering the 2-enriched presheaves on P)

P ↪→Down(P)� 2-PreSh(P).

The Yoneda results in the case of categories more generally, that is, in the Set-enriched
setting, are effectively a far-reaching generalization of this idea, and supply perhaps the
most important and well-utilized results in category theory.

Proposition 160 (Yoneda lemma) For any functor F : C→Set, where C is a locally small
category, and for any object c∈C, the natural transformations Yc⇒F are in bijection with
elements of the set F(c), that is,92

Nat(Yc, F)∼= F(c). (6.1)

Moreover, this correspondence is natural in both F and c. In the contravariant case, that is,
for F : Cop→Set, things are as above, except we have

Nat(Yc, F)∼= F(c). (6.2)

92. Recall that by Yc we just mean HomC(c, –), while Yc is used for HomC(–, c).
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We are not going to prove this (it is a good exercise to actually attempt to prove this your-
self!), but instead will unpack it and then discuss its significance at a more general level.
We will confine attention to the contravariant version in what follows (but dual statements
can be made for the covariant version).

The idea is that for a fixed category C, given an object c∈C and a (contravariant) func-
tor F : Cop→Set, we know that the object c gives rise to another special (representable)
functor Yc : Cop→Set. A very natural question to ask, then, is about the maps Yc⇒F,

Cop Set.

Yc

F

?

The functors we are comparing both live in SetCop
, so the collection of maps from Yc to F

are just the natural transformations that belong to HomSetCop (Yc, F). But what is this set?
Notice that from the input data F and c we were given (“given an object c and a functor
F”), we could have also constructed the set F(c), by simply applying F on the given object
c. The Yoneda lemma just assures us that these two sets are the same! Moreover, all the
generality of natural transformations is encoded in the particular case of identity maps
(used in the proof of the lemma).

The “naturality” in F mentioned in the lemma just means that, given any υ : F→G, the
following diagram commutes:93

Hom(Yc, F) F(c)

Hom(Yc, G) G(c).

∼=

Hom(Yc,υ) υc

∼=
On the other hand, naturality in c means that, given any h : c→ c′, the following diagram
commutes:

Hom(Yc, F) F(c)

Hom(Yc′ , F) F(c′).

∼=

Hom(Yh,F)

∼=

F(h)

The most significant application of the Yoneda lemma is given by the Yoneda embedding,
which tells us that any (locally small) C will be isomorphic to the full subcategory of SetCop

spanned by the contravariant representable functors, while Cop will be isomorphic to the
full subcategory of SetC spanned by the covariant representable functors. We have seen that
for each c∈C, we have the covariant functor Yc going from C to Set and the contravariant
functor Yc going from Cop to Set. If we let this functor vary over all the objects of C,
the resulting functors can be gathered together into the (for example, covariant) functor
Y• : Cop→Hom(C, Set). Dually, we have the contravariant functor Yc going from Cop to

93. Note: all the “Homs” are Hom
SetCop .
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Set, and collecting these functors together as we let c vary will give a functor Y• : C→
Hom(Cop, Set).94

Definition 161 The Yoneda embedding of C, a locally small category, supplies functors

C SetCop
Cop SetC

c Hom(–, c) c Hom(c, –)

d Hom(–, d) d Hom(d, –)

y y

f f

defining full and faithful embeddings.95

The Yoneda embedding y gives us a representation of C in a category of set-valued func-
tors and natural transformations. An important consequence of the embedding is that any
pair of isomorphic objects a∼= b in C are representably isomorphic, that is, Ya∼= Yb. The
Yoneda lemma supplies the converse, namely if either the (co- or contravariant) functors
represented by a and b are naturally isomorphic, then a and b will be isomorphic; so in
particular, if a and b represent the same functor, then a∼= b. In many cases, it will be easier
or more revealing to give such an arrow Ya→Yb or Ya→Yb than to supply a→ b, for the
category SetCop

in general has more structure than does C—namely, it is complete, cocom-
plete, and “Cartesian closed” (basically, any morphism defined on a product of two objects
can be identified with a morphism defined on one of the factors). Thus we can use the
more advanced tools and universal properties (like the existence of limits) that come with
the presheaf category, and be sure that an arrow of the form Ya→Yb, for instance, comes
from a unique a→ b even if C on its own may not allow the advanced constructions. Anal-
ogously, representing a rational number in terms of downward (upward) closed sets under
the standard ordering results in a Dedekind cut, and altogether this embeds the rationals
into the reals, allowing for solutions to more equations. Passing from a category C to its
presheaf category can also be regarded as adjoining colimits (think generalized sums) to
C, and doing so in the most “free” way.96 In general, in passing to the presheaf category,
many nonrepresentable presheaves will show up as well. However, the representables have
a very special role to play.

Before concluding our discussion of these matters, let us record a final result. We have
seen how an object is defined completely by its functorial (relational) properties. The

94. It is not unusual to rename these functors, as we do in the following definition, with a lowercase (bold) y in
both cases, leaving the appropriate variance to context.
95. In general, a functor F : C→D induces, for every pair of objects c, c′ in C, a function on the hom-sets—that is,
Fc,c′ : HomC(c, c′)→HomD(F(c), F(c′)). The functor F is called faithful provided this function Fc,c′ is injective
for every c, c′ in C, and called full provided Fc,c′ is surjective for every c, c′ in C. A full and faithful functor is
thus bijective on hom-sets. An embedding in the categorical sense is a faithful functor that is also injective on
objects (up to isomorphism)—that is, if F(c)∼= F(c′), then c∼= c′. An embedding in this sense reveals the domain
category to be a subcategory of the codomain category. A full and faithful functor that is injective on objects thus
gives us a full embedding, identifying the domain category as a full subcategory of the codomain category. The
proof of the main result can be found in any text on category theory.
96. This is a powerful and general idea, but the reader who desires a more concrete way of thinking about the
previous statement, might consider the unions (colimits) that showed up in the downset poset, after we embedded
P into D(P), where these were not present in P itself.
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next proposition tells us that even if a functorial definition does not correspond to an
object—that is, if the particular functor is not representable—it is still “built out of” the
representables (in particular, it is the colimit of a diagram of representables).

Proposition 162 Every object P in the presheaf category SetCop
(i.e., every contravariant

functor on C) is a colimit of a diagram of representable objects, in a canonical way, that is,

P∼= colim
(�

P πP−→C
y−→ SetCop

)
,

where π is the projection functor and y is the Yoneda embedding.

This proposition states that given a functor P : Cop→Set, there will be a canonical way
of constructing an indexing category J and a corresponding diagram A : J→C of shape J

such that P is isomorphic to the colimit of A composed with the Yoneda embedding. The
indexing category that serves to prove the proposition is the category of elements of P.97

Specializing to posets gives another way to think about this: taking joins (unions) of
downsets is the same thing as taking colimits in Down(P) regarded as a category; so
any element in Down(P) can be regarded as the colimit (join) of representable functors
(principal downsets).

6.6 Philosophical Pass: Yoneda and Relationality

Occasionally, an idea is powerful enough that it seems, almost effortlessly, to transcend
its local and native context of application and speak articulately to many other contexts.
The idea underlying the Yoneda results is like this. In the most general sense, it might be
regarded as saying something like

To understand an object it suffices to understand all its relationships with other things.

Or, to say it in another way,

If you want to know whether two objects A and B are the same, just look at whether all the ways
of probing A with other things (or, dually, probing other things with A) is the same as all the ways
of probing B with other things (or, dually, probing other things with B).

The previous two slogans are an attempt to convey what is sometimes called the “Yoneda
philosophy.” It tells us, fundamentally, that if you want to understand what something is,
there’s no need to chase after some “object in itself ”; instead, just consider all the ways
the (candidate) object transforms, perturbs, and constrains other things (or, dually, all the
ways it is transformed, perturbed, and constrained by others)—this will tell you what it is!

This idea that an object is determined by its totality of behaviors in relation to other
entities capable of affecting it (or being affected by it), in addition to appealing to many
of our intuitions, is an idea that one can find versions of throughout a number of different

97. A proof of this fact can be found in Riehl (2016). That every presheaf is a colimit of representable presheaves
is closely related to another construction, namely the Cauchy completion (or Karoubi envelope) of a category, in
which the fact that representable presheaves are continuous in a precise sense is exploited. The main idea here
is that while we have the powerful Yoneda (full and faithful) embedding sending a category C to the category of
presheaves SetCop

, in general, a category C cannot be recovered from SetCop
, so a natural question to ask is how

or to what extent, given SetCop
, it can be said to determine C. Basically, if a category C (or Cop) can be shown

to be Cauchy complete, then not only can it be recovered (up to equivalence) from the presheaf category (or
covariant functor category of variable sets SetC), but it can be shown to generate the original presheaf (variable
set) category.
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contexts, for instance in the seventeenth-century philosopher Spinoza’s idea that what a
body is (its “essence”) is inseparable from all the ways that the body can affect (causally
influence) and be affected (causally influenced) by other bodies. In this general approach,
what an object is can be entirely encapsulated by regarding all at once (generically) all of
its interrelations or possible interactions with the other objects of its world. In the covariant
case, we do this by regarding its ways of affecting other things; dually, in the contravariant
case, by its particular ways of being affected by the other objects that inhabit its world. To
use another metaphor: if you want to understand if two “destination points” are the same,
just inspect whether, ranging over all the addresses with which they can communicate, the
networks of routes connecting them to the addresses are the same. For a given object c, the
representable functor just captures, all at once, the most generic and universal picture of
that object, supplying a placeholder for each of the possible attributes of that object (and,
following Spivak [2014], then Yoneda’s lemma can be thought of as saying that to specify
an actual object of type c, it suffices to fill in all the placeholders for every attribute found
in the generic thing of type c).

If one regards HomC(–, A)(U) = HomC(U, A) as telling us about “A viewed from the
perspective of U,” then the fact (from the Yoneda embedding) that

HomC(–, A)∼= HomC(–, B) iff A∼= B iff HomC(B, –)∼= HomC(A, –)

can be glossed as saying that two objects A and B will be the same precisely when they
“look the same” from all perspectives U.98 This paradigm seems especially natural in many
contexts, beyond mathematics. It seems especially appropriate to an adequate description
of learning, wherein an object comes to be known and recognized through probing it with
other things, varying the perspectives on it. For instance, suppose you are tasked with hav-
ing a robot learn how to identify objects that it has never been exposed to before, without
relying on much training data or manual supervision, with the aim of having it come away
with an ability to correctly discriminate between (what you naively take to be) different
objects and readily recognize other instances of objects of the same type in other contexts.

You might place the robot in a room with a number of other objects, say, a ceramic
cup, some red rubber balls, a steel cable, a small plant, a plastic bottle filled with water, a
worm, and a thermostat. If the robot cannot interact with the objects in any way, and the
observable interactions and changes that would unfold without its intervention are rather
uneventful or slow to unfold, it is not clear how the robot could learn anything at all. On
the other hand, suppose you have enabled the robot to inspect, manipulate, or otherwise
instigate or probe the objects in a number of ways, and observe the outcomes. At first,
these action attempts might be more or less randomized. The robot might simply locally
perform simple action sequences or gestures such as

Grasp, Release, Put, Pull, Push, Rotate, Twist, Throw, Squeeze, Bend, Stack, See, Hear, Locate.

98. It is not uncommon to hear such interpretations, namely that we can retrieve the object itself via all the
“perspectives on it.” In case there are any unscrupulous listeners ready to confuse this with a kind of relativism, the
relationism of Yoneda has nothing to do with this. Thankfully, such misunderstandings can be blocked by Yoneda
itself. For the (untenable) relativist interpretation would need to assume, among other questionable assumptions,
that there is an object (namely of the type “human being”) that can represent any functor whatsoever, that thereby
itself mediates all possible exchanges between objects. But Yoneda tells us no such thing.
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It may grasp a rubber ball, twist the plastic water bottle, attempt to bend the steel cable,
see something move (without its having performed any other action that might explain this
motion) or hear it wriggling. Such actions can provide the robot with much information
about the objects populating the room, and sometimes even the mere successful imple-
mentation of a certain isolated action can confirm additional information, such as about
the location (“within reach radius”) of an object-candidate that is engaged by Grasp. And
once the robot has a decent working sense of some possible object-candidates, it can use
one to probe others and learn even more. It may Push on a number of objects, with little to
no effect, and then push on (what we know to be) the thermostat, altering the room’s tem-
perature, on which change it may observe different effects throughout the room (e.g., the
water evaporates, the plant withers, the worm moves more, other things remain unchanged
in certain relevant respects). In this way, our robot goes around the room and probes “pos-
sible object” regions in different ways, and observes the effects of these variations, giving
them their own name. Via such probings of the objects of the room, and composite action-
sequences, such as Grasp, then Release, then Hear, it seems that our robot will have a
chance at learning “what is what.”

Later, if we take our robot and place it in a new room, one that has in it just (what we
know to be) a red balloon and a (similarly shaped) blue rubber ball; and if, in the previous
room, all that the robot came to know of (what we know to be) the red rubber ball was
the visual information (gathered through See) of its color and shape; then it may assume
that the red balloon is the object it knew as the rubber ball (which will go under the name
of a mapping from some Ai to color data), while it may assume the blue rubber ball is
some entirely new thing. On the other hand, if our robot had probed the red rubber ball
in more ways—say, having subjected it to Bounce, Twist, Throw, Hear, Grasp—you can
be sure that it would take much less for it to come to recognize that the blue rubber ball
was something like the object it knew in the previous room, while the red balloon was
something very different.

The idea of Yoneda is that we can be assured that if the robot wants to learn whether
some object A is the same thing as object B, it will suffice for it learn whether

HomC(–, A)∼= HomC(–, B)

or, dually,
HomC(B, –)∼= HomC(A, –).

In terms of the discussion above, this means having the robot explore whether

all the ways of probing A with objects of its environment amount to the same as all the ways of
probing B with objects of its environment.

This is a fascinating idea, philosophically, and one that we think has much in its favor
even beyond the narrower context of mathematics. In Japanese, the word for human being,
ningen, is made up of two characters, the first of which means something like a human or
person, while the second is a representation of the doors of a gate and means something like
“betweenness,” so that the literal meaning of the word “human” is “the relation between
persons.” This—rather than the narrative of atomistic individualism, that often ignores or
glosses over the immense load of relational constraints and determinations that come with
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differential obligations, pressures, and opportunities—seems more attuned to the Yoneda
way of thinking.

The fundamental intuition behind the Yoneda philosophy, then, is that to know or access
an object it suffices to know or access how it can be transformed by different objects, or
how other objects transform into it. More exactly, Yoneda tells us that if there is a natural
way of passing an object c’s vision of its world (or how it is seen by its world) on to a
functor F on that same category, then to recover this vision it suffices to ask F how it acts
on c. While, mathematically speaking, the usefulness of the lemma often boils down to the
fact that we are able to reduce the computation of natural transformations (which can be
unwieldy) to the simple evaluation of a (set-valued) functor on an object, in a sense the full
philosophical significance of the lemma points in the other direction. Given a category and
an object in that category, rather than regard the object “on its own” (moreover, treating
the entire category in a detached manner, as delimiting the outer boundaries of our consid-
eration), via Yoneda we can regard that object as entirely characterized by its perspective
or action on its world (or its world’s perspective or action on it), and moreover place the
category in which it lives in the wider category of all presheaves or sets varying over that
category. Via Yoneda, we can perform this sort of passage from the detached consideration
of a given object to the consideration of all its interrelations with the other objects of its
world for every object of a given category. In doing so, we can think of ourselves as tak-
ing an entire category C that previously was itself being regarded in a detached manner,
and placing it in the more “continuous” (in a loose sense) context of the category of all
the presheaves over C. The category of presheaves over C into which C is embedded not
only has certain desirable properties that the original category may lack, like possessing
all categorical limits, but it can be understood (in both intuitive and in various technical
ways) as providing the continuous counterpart to the detached consideration of the original
category.





7 Adjunctions

In which we use detailed examples and constructions from a variety of areas to
illustrate the last of the really fundamental notions in category theory—that of
adjunctions, or adjoint functors—and explore their key features.

In chapter 2, we saw how the notion of an isomorphism of categories—using a pair of
functors F : C→D and G : D→C inverse to each other in the sense that G ◦F = idC and
F ◦G = idD—was too restrictive to be useful, and that a far better category-theoretic notion
of “sameness” of categories was supplied by the notion of an equivalence of categories,
using natural transformations to relax the equalities and leave us with functors inverse “up
to natural isomorphism,” in the sense that G ◦F∼= idC and F ◦G∼= idD. The notion of an
adjunction, or adjoint functors, is in a sense a further step in generalization, weakening
the notion of an equivalence of categories, so that we are interested less in a relation (of
sameness) between two categories and more in a relation between specific functors moving
between those categories. Another perspective would be to say that adjunctions represent
something like a further broadening of the notion of inverse, involving unique “reversal
attempts” that supply the “closest thing” to inverses and capture important relations that
exist even when inverses in the strict sense do not.

Like so many other important notions in category theory, these arise in an especially
simple form in the special context of orders, so that adjoint relations between orders allow
one to display the features of adjointness in a particularly accessible form. Adjoint functors
between orders first appeared under the name of Galois connections. The next few exam-
ples will illustrate and motivate, via explicit examples in the context of orders, some of the
many fundamental general features and properties of adjunctions.

7.1 Adjunctions through Morphology

Example 163 Suppose you receive a dark photocopy of some text, where the pen or
marker appears to be bleeding:
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With the help of your favorite programming language, you might perform what the image
processing community would call an “erosion” of the image. After doing this (perhaps a
few times), you would be left with something like

As one can see, erosion effectively acts to make thicker lines skinnier and detects, or
enhances, the holes inside the letter A.

Suppose, instead, that you attempted a dual operation, called “dilation,” the effect of
which is to thicken the image, so that lightly drawn figures are presented as if written with
a thicker pen, and holes are (gradually) filled. In the case of dilating the original image,
you would be left with something like

Now suppose that, for instance, after eroding the image you received, certain things have
become harder to read. You decide that you would like to undo what you have done, per-
haps because you have lost some important information. It seems sensible to hope you
might undo it, and get back to the original image, by dilating the result of your erosion.
But, in general, erosion and dilation do not admit inverses—in particular, they are not one
another’s inverse—and there is no operation that would recover the exact original image
from a dilated (or eroded) image. If an image is eroded and then dilated (or conversely),
the resulting image will not be the original image. These operations discard information,
so perhaps it is not so surprising that one would not get back to the original by “undoing”
an erosion, for instance, by dilating the result.

However, in the failed search for an inverse to each operation, you will very quickly
alight on something new, the basic properties of which appear to be useful and interesting
in their own right. Erosion and dilation, while not inverses of each other, do seem to be
related in a rather special way. In particular, eroding after we have dilated an image yields
a very different result than dilating after eroding, even though neither composite gives back
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the original image. However, for an arbitrary image I, you will notice that it is “bounded” in
both directions, in the sense of containing the result of one of the two composite operations
while being contained by the result of the other, that is,

Dilating after eroding I ⊆ I ⊆ Eroding after dilating I.

If we erode an image and then dilate the eroded image (making use of the same “structuring
element” through both operations, on which more below), we arrive at a subset of the
original image, in a process sometimes called opening the image by the image processing
community. For instance, if we start with the following image

then opening it yields

Opening an image will leave an image that is generally smaller than the original, as it
removes noise and protrusions and other small objects from an image, while preserving the
shape and size of the more substantial objects in the image. On the other hand, dilating an
image and then eroding the dilated image (with the same structuring element throughout)—
sometimes called closing the image—leaves one with an image that is generally larger than
the original. Starting with the following image

closing it will get rid of small holes, fill gaps in contours, smooth sections of contours, and
fuse thin gulfs or breaks between figures. The result of closing the above yields
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However, you may quickly learn that opening (or closing) an image twice leaves one with
the same image as opening (or closing) it once. In other words, opening and closing are
idempotent operations.

Altogether, the two basic operations of dilation and erosion are not quite inverses of one
another, yet, as may already be evident from the discussion of the ways their idempotent
composites “bound” the original above and below, they are nevertheless related in a special
way, and are, in a sense, the “closest thing” to inverses (when these do not exist). We will
explore that notion more closely and formally now.

Mathematical morphology is a field that deals with the processing of binary, gray-level,
and other signals, and has proven useful in image processing. The majority of its tools are
built on the two fundamental operators of dilation and erosion, and combinations thereof. It
has a variety of applications involving image processing and feature extraction and recog-
nition, including applications in x-ray angiography, biometrics, text restoration, among
others.99

A fundamental idea, in this setting, is that of “probing” an image with a basic, predefined
shape and then examining how this fixed shape relates to the shapes comprising the image.
One calls the probe the structuring element, which is itself a subset of the space, so that,
for example, in the simple case of binary images, such a structuring element is itself just
a binary image; these are, moreover, taken to have a defined origin. For instance, in the
digital space E =Z2 (imagine a grid of squares), one might take for structuring element a
3× 3 square, that is, the set

{(–1, –1), (–1, 0), (–1, 1), (0, –1), (0, 0), (0, 1), (1, –1), (1, 0), (1, 1)},

or perhaps a 3× 1 rectangle with a designated central square, or a diamond or disk-shaped
element, and so on. Going back to our earlier example of the blurry binary image letter A,
we may take 0s to represent background and 1 for foreground, so that you basically have
something like:

0 0 0 0 1 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 0 1 0 0 0
0 0 1 1 0 1 1 0 0
0 0 1 1 1 1 1 0 0
0 1 1 1 0 0 1 1 0
0 1 1 0 0 0 1 1 0
1 1 0 0 0 0 0 1 1

Then, we might take for structuring element B⊆E a “diamond” (with origin boxed off)
0 1 0

1 1 1

0 1 0

99. For classic introductions to mathematical morphology and filtering, see Serra (1986) and Serra and Vincent
(1992).
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In the simple case of our running example of a binary image in a bounded region, we took
the structuring element B, placing B’s origin at each pixel of our image X as we scan over
all of X, and compute at each pixel the dilation and erosion by taking the maximum or
minimum value, respectively, of all pixels within the “window” or neighborhood covered
by the structuring element (so that, e.g., in the case of dilation, a pixel is set to 1 if any of
its neighboring pixels has the value 1).

More specifically, assuming we have fixed an origin in E, to each point p of E there will
correspond the translation map that takes the origin to p; such a map will then take B in
particular onto Bp, the translate of B by p. In general, translation by p is a map E→E that
takes x to x + p; thus, it takes any subset X of E to its translate by p,

Xp = {x + p | x∈X}.

For a structuring element B, then, we can consider all its translates Bp. Given a subset
(image) X of E, we can examine how the translates Bp of a given structuring element B
interact with X. In the simple case of Boolean images (as subsets of a Euclidean or digital
space), we carry out this examination via two operations:

X⊕B = {x + b | x∈X, b∈B} =
⋃
x∈X

Bx =
⋃
b∈B

Xb,

called Minkowski addition, and its dual,

X"B = {p∈E | Bp⊆X} =
⋂
b∈b

X–b.

The former transformation (taking X into X⊕B) is in fact what gives us a dilation, the
basic property of which is that it distributes over union, while the latter (taking X into
X"B) is an erosion, the basic property of which is that it distributes over intersection. In
the simple set-theoretical binary image case, dilations coincide with Minkowski addition;
yet erosion of an image is the intersection of all translations by the points –b. In short,

Dilation of X by B is computed as the union of translations of X by the elements of B,

while

Erosion of Y by B is the intersection of translations of Y by the reflected elements of B.

While we will see that we can give more general definitions of these operations, the par-
ticular behaviors of these operations in fact already follow from a general relationship
underlying these operations.

Proposition 164 For every subset X, Y , B of our space E, where B is any structuring
element, we have

X⊕B⊆ Y iff X⊆ Y "B.

Proof. (⇒) Suppose X⊕B⊆ Y and let z∈X and b∈B. Then z + b∈X⊕B, and thus z +
b⊆ Y . And z + b⊆ Y for any b∈B implies that z∈ Y "B.
(⇐) Suppose X⊆ Y "B and let z∈X⊕B. Then there exists x∈X and b∈B such that
z = x + b. But x∈X and X⊆ Y "B entails that x∈ Y "B. Thus, for every b′ ∈ Y , we have
x + b′ ∈ Y , and in particular, b∈B, so x + b∈ Y . But z = x + b, so z∈ Y .
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Before discussing the significance of this more generally, it is worth noting that there is
no need to restrict attention, as we have thus far, to consideration of dilation and erosion
in the simple case of Boolean images in digital space. We can also define the dilation and
erosion of a function by a structuring element (itself regarded as a structuring function).
For instance, given a function f : E→ T from a space E to a set T of, for instance, gray-
levels (i.e., a complete lattice that comes from a subset of R=R∪ {–∞, +∞}), and given a
point p∈E, the translate of f by p is the function fp whose graph is obtained by translating
the graph {(x, f (x)) | x∈E} by p in the first coordinate, that is, {(x + p, f (x)) | x∈E}, so that
for all y∈E, we have

fp(y) = f (y – p).

This defines the translation of a function by a point. Of course, if we extend this to the
translation by a pair (p, t), we get that for all y∈E,

f(p,t)(y) = f (y – p) + t.

This approach allows us to define Minkowski addition and the dual operation for two func-
tions E→T . Where f plays the role of a (gray-level) image, and b is the functional analogue
of a structuring element (i.e., a structuring function), for all p∈E, these operations will take
on values

(f ⊕ b)(p) = sup
y∈E

(f (y) + b(p – y))

and
(f " b)(p) = inf

y∈E
(f (y) – b(y – p)).

Then the operator δg : TE→TE taking f �→ f ⊕ g is dilation by g, and εg : TE→TE tak-
ing f �→ f " g is erosion by g. In a low-dimensional case, using a portion of a disk for
structuring function, these operators might do something like:100

When we use a “flat structuring” element instead, such as that represented by a line, things
are simplified even further, and we are effectively applying max and min filters, that is, for
dilation

(f ⊕ g)(x) = sup
y∈E,x–y∈B

f (y) = sup
y∈Bx

f (y)

and for erosion
(f " g)(x) = inf

y∈E,x–y∈B
f (y) = inf

y∈B̆x

f (y),

where B̆ is the transpose or symmetrical of B, that is, {–b | b∈B}. Erosion by a flat structur-
ing function acts to shrink peaks and flatten valleys, while dilation acts in a dual fashion,

100. This image (and the one on the following page) is taken, with slight modifications, from Hlavac (2020).
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flattening or rounding peaks and accentuating valleys. Taking, for instance, some price
data, we might then have something like

Whether in its functional treatment, or in terms of the special relation X⊕B⊆ Y iff
X⊆ Y "B, the relation between dilation and erosion is part of a much more general and
powerful story, exemplifying the notion of a Galois connection, itself an instance of the
more general notion of an adjunction. We first supply the relevant definitions, and then
further explore some of the powerful abstract features of this notion through the particular
case of the operations of dilation and erosion.

Definition 165 Let P= (P,≤P) be a preordered set, and Q= (Q,≤Q) another preorder.
Suppose we have a pair of monotone maps F : P→Q and G : Q→P,

P Q
F

G

such that for all p∈P and q∈Q, we have the two-way rule

F(p)≤Q q
p≤P G(q)

where the bar indicates “iff.” If such a condition obtains, the pair (F, G) is said to form a
monotone Galois connection between P and Q.

When such a connection obtains, we also say that F is the left (or lower) adjoint and G the
right (or upper) adjoint of the pair, and write (for reasons we will see in a moment) F #G
to indicate the relation.

Such a situation can be expressed in terms of the behavior of certain special arrows
associated to each object of P and Q. In particular, let p be an object of P, and set q = F(p).
Then

F(p)≤F(p)
p≤G(F(p))

,

where the top is the identity arrow on F(p) in Q, indicating reflexivity (which holds in any
order). If we use θ to designate the bijection that realizes the “iff” situation, then θ(idF(p))
is a special arrow of Q, called the unit of p, where this arrow enjoys a certain universality
property. There is a corresponding dual notion of a counit. In short, for each p∈P, we
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call the unit an element p≤GF(p) that is least among all x with p≤G(x); dually, for each
q∈Q, the counit is an element FG(q)≤ q that is greatest among all y with F(y)≤ q. It can
be shown that, given order-preserving maps F : P→Q and G : Q→P, it is in fact equivalent
to say (1) F #G and (2) p≤GF(p) and FG(q)≤ q.

Changing the variance of the functors involved gives us a slightly different notion.

Definition 166 Let P= (P,≤P) and Q= (Q,≤Q) be orders. Suppose we have a pair of
antitone (order-reversing) maps F : P→Q and G : Q→P,

P Q
F

G

such that for all p∈P and q∈Q, we have the two-way rule

q≤Q F(p)
p≤P G(q)

.

If such a condition obtains, the pair (F, G) is said to form an antitone Galois connection
between P and Q.

We have seen many times now how any order P can be regarded as a category by taking

x≤P y iff there exists an arrow x→ y.

And in this setting, we further know that covariant functors between such categories are just
monotone (order-preserving) functions, and that contravariant functors are antitone (order-
reversing) functions. Thus, it is entirely natural to attempt to regard Galois connections in
a more general, categorical guise. Doing so gives us the notion of an adjunction, which
can accordingly be seen as a straightforward categorical generalization of the notion of a
(monotone) Galois connection.

Definition 167 An adjunction is a pair of functors F : C→D and G : D→C such that there
is an isomorphism

HomD(F(c), d)∼= HomC(c, G(d)),

for all c∈C, d∈D, which is moreover natural in both variables. When this obtains, we say
F is left adjoint to G, or equivalently G is right adjoint to F, denoted F #G.101

In saying that the isomorphism is “natural in both variables,” we mean that for any
morphisms with domain and codomain as below, the square on the left commutes (in D)
iff the square on the right commutes (in C):

F(c) d c G(d)

⇐⇒

F(c′) d′ c′ G(d′).

F(h)

f �

k h

f �

G(k)

g� g�

101. Sometimes the morphisms F(c)
f�−→ d and c

f�−→G(d) of the bijection given above are said to be adjunct or
transposes of each other.
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As one might expect, by considering functors of different variance, corresponding to
antitone Galois connections, there is another notion, namely that of mutually right adjoints
(and further, mutually left adjoints).

Definition 168 Given a pair of functors F : Cop→D and G : Dop→C, if there exists a
natural isomorphism

HomD(F(c), d)∼= HomC(G(d), c),

then we say that F and G are mutually left adjoint. Given the same functors, if there exists
a natural isomorphism

HomD(d, F(c))∼= HomC(c, G(d)),

then we say that F and G are mutually right adjoint.

Observe that an antitone Galois connection just names a mutual right adjoint situation
between preorders (posets). Still following the example of the Galois connection definition,
we can also recover the notions of the unit and counit of an adjunction.

Definition 169 Given an adjunction F #G, there is a natural transformation

η : idC⇒GF,

called the unit of the adjunction. Its component

ηc : c→GF(c)

at c is the transpose of the identity morphism idF(c).
Dually, there is a natural transformation μ : FG⇒ idD, called the counit of the adjunc-

tion, with component
μd : FG(d)→ d

at d defined as the transpose of the identity morphism idG(d).

Any adjunction comes with a unit and a counit. In fact, conversely, given opposing func-
tors F : C→D and G : D→C, supposing they are equipped with natural transformations
η : idC⇒GF and μ : FG⇒ idD satisfying a pair of conditions, then this data can be used to
exhibit F and G as adjoint functors. In other words, we can use the natural transformations
exemplifying the counit and unit maps, together with some conditions on these, to actually
define an adjunction.

Definition 170 (Adjunction, again) An adjunction consists of a pair of functors F : C→D

and G : D→C, equipped with further natural transformations η : idC⇒GF and μ : FG⇒
idD satisfying what are sometimes called the triangle identities:

F FGF G GFG

F G.
idF

Fη

μF
idG

ηG

Gμ



204 Chapter 7

Then, the isomorphism HomD(F(c), d)∼= HomC(c, G(d)) realizing F and G as an adjoint
pair, will exist precisely where there exists a pair of natural transformations, as above,
satisfying the triangle identities.

Let us now return to the dilation and erosion of images and breathe some life into these
ideas. The special relation that related Minkowski addition to its dual did not really depend
on the particular form given to it in the translation-invariant case of a binary image, but
exemplifies a more general notion of dilation and erosion on an arbitrary complete lattice,
using the operations of supremum and infimum, where we have the adjunction

dilate # erode.

To see how this works, we can first observe that both operations, dilation and erosion,
are order-preserving (monotone), in the sense that X⊆ Y implies X⊕ Z⊆ Y ⊕ Z and also
X" Z⊆ Y " Z. Moreover, while the order of an image intersection (union) and a dilation
(erosion) cannot be interchanged freely, the dilation of the union of two images is indeed
equal to the union of the dilations of the images, so the order can be interchanged; likewise,
erosion of the intersection of two images yields the intersection of their erosions.

In dealing with the pair (dilate, erode), there is no need to be restricted to the poset of
subsets of a digital space. There are clearly many choices for the underlying object space,
where the images in question are held to reside. It is common to consider P(E) the space
of all subsets of E (where E is the d-dimensional Euclidean space Rd or the digital space
Zd). But we might also consider Conv(E) the space of all convex subsets of E; or PE the
space of “image functions” from E a discrete space to P a pixel lattice; or the space (T3)E

of RGB color images (where RGB colors are triples (r, g, b) of numerical values, T3 the
lattice of RGB colors under componentwise order, and an RGB image is a function E→T3

taking each point p∈E to a triple (r(p), g(p), b(p)) representing the RGB coloration of p);
and so on. The takeaway, though, is that despite the differences in these underlying spaces,
all such spaces form complete lattices (where this means that the underlying poset has all
joins and meets). So if we consider a complete lattice L, with the order ≤, supremum∨

, infimum
∧

, least element 0, and greatest element I, such a lattice can be thought of
as our “image lattice,” corresponding to a particular set of images we are working with.
Traditionally, one then defines dilations and erosions as follows.

Definition 171 Let L and M denote complete lattices. For δ :L→M and ε :M→L, we
say that

• δ is a dilation provided for every S⊆L,

δ
(∨

S
)

=
∨
X∈S

δ(X).

• ε is an erosion provided for every T ⊆M,

ε
(∧

T
)

=
∧
Y∈T

ε(Y).

Note that this also applies in the case of S, T empty, in which case a dilation is held to
preserve 0, while an erosion preserves I.



Adjunctions 205

Our dilate-erode pair is actually an antitone Galois connection, where M=Lop, which
just means that for all S, T in L

T ≤op δ(S)
S≤ ε(T)

,

which is, of course, the same as

T ≥ δ(S)
S≤ ε(T)

or, equivalently,

δ(S)≤ T
S≤ ε(T)

,

where the order here is now the same, that given on L, above and below the line. Thus,
we have recovered the usual notion of an adjunction with δ :L→L order-preserving
and ε :L→L order-preserving! Dilations and erosions are then precisely just the order-
preserving (monotone) transformations on a complete lattice that moreover commute with
the supremum and infimum, respectively.102

Morphological operators are thereby given a unified treatment in the general framework
of an adjoint pair on complete lattices. A number of well-established properties concerning
the interaction of these operators then fall out immediately from the general framework of
adjunctions. Conversely, we can illustrate such general facts via the present operators on
images.

Suppose we have an adjunction δ # ε on a complete lattice L.103 Then a number of
morphologically significant facts come “for free” as corollaries of general categorical truths
about an adjoint pair. Even the fact that δ is a dilation and ε is an erosion in the first place
can be derived from the existence of this special adjoint relationship. In what follows, we
explore some of these general truths through the lens of some notable particular truths
about dilations and erosions.

7.1.1 Uniqueness of Adjoints

Proposition 172 To each dilation δ there corresponds a unique erosion ε, namely

ε(X) =
∨

{S∈L | δ(S)≤X},

and to each erosion ε there corresponds a unique dilation,

δ(X)
∧

{S∈L | ε(S)≥X}.

102. Note that, if we were to regard the pair as comprising an antitone Galois connection, then we would be
saying that the operators exchanged suprema and infima, in the sense that, for example, δ

(∨
i xi

)
=
∧

δ(xi).
103. Looking ahead to what will have to be true of such functors, they have been given the names δ and ε,
suggesting dilations and erosions; however, at this point, we do not yet require or assume anything about the
maps δ and ε, except that they form an adjoint pair moving between L and itself.
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This ultimately derives from a general result that assures us that, like inverses, adjoints
are unique (well, actually “unique up to unique isomorphism,” but we can ignore this in
our special case):

Proposition 173 Adjoint maps are unique.

In the case of orders, with order-preserving maps between them, this just means

1. if F1 and F2 are left adjoints of G, then F1 = F2;
2. if G1 and G2 are right adjoints of F, then G1 = G2.

Proof. (We focus on the simple case of orders, and prove (1); (2) follows by duality) From
the adjointness assumptions, we have both

F1(p)≤ q
p≤G(q)

and
p≤G(q)
F2(p)≤ q

,

so immediately we have that F1(p)≤ q iff F2(p)≤ q. Set q = F1(p), making F1(p)≤ q triv-
ially true, forcing F2(p)≤F1(p) to be true as well. Similarly, set q = F2(p) and use the
trivial truth F2(p)≤F2(p) to force F1(p)≤F2(p). In a poset, this entails that F1(p) = F2(p),
p arbitrary.

The adjunction then gives rise to the formulas

G(q) =
∨

{p | F(p)≤ q}

and
F(p) =

∧
{q | p≤G(q)},

which displays the uniqueness of the adjoints, and so explains the unique erosion (dilation)
corresponding to each dilation (erosion), as written above.

In general, a given map may or may not have a left (or right) adjoint; the map may have
one without the other, neither, or both (where these may be the same or different). But if it
does have a left (or right) adjoint, we can be confident that, even though they are not quite
inverses, the adjoint is unique up to isomorphism.

Adjoint functors also interact in particularly interesting and useful ways with the limit
and colimit constructions, a connection we now explore.

7.1.2 Limit and Colimit Preservation

Proposition 174 δ is a dilation and ε is an erosion, and both are order-preserving.

This follows immediately from a very important category-theoretic result, namely that

Proposition 175 Right adjoints preserve limits (RAPL); left adjoints preserve colimits
(LAPC).104

104. Terminologically, recall that a general functor that is limit-preserving is said to be a continuous functor,
while a colimit-preserving functor is a cocontinuous functor. Another related concept we will make use of later in
the book is the following: a functor is said to be left exact if it preserves finite limits, and right exact if it preserves
finite colimits. Speaking of (co)limits, it is worthwhile noting that entities exhibiting universality, like colimits
and limits, can themselves be phrased entirely in terms of adjoint functors. Then, one of the advantages of this
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Instead of proving this in the general case, we will show how it obtains in our special
case of maps between orders, in which setting limits are infima (meets) and colimits are
suprema (joins).

Proposition 176 RAPL and LAPC in the special case of orders:

1. If f : Q→P has a right adjoint (i.e., is a left adjoint), then it preserves the suprema
that exist in Q.

2. If g : P→Q has a left adjoint (i.e., is a right adjoint), then it preserves the infima that
exist in P.

Proof. (Of (1), since (2) follows by duality) Assume S = {qi}i∈I is a family of elements of
Q with a supremum

∨
S in Q. Claim: f (

∨
S) is the supremum in P of the family {f (qi)}i∈I ,

that is,
f
(∨

S
)

=
∨

f (S).

But f
(∨

S
)≤ p iff

∨
S≤ g(p) (since, by assumption, f has a right adjoint, call it g). And

this latter inequality holds iff for all qi ∈ S, we have qi≤ g(p). But then we can again use
the assumed adjoint relation f # g, and see that this latter inequality will hold iff f (qi)≤ p
for all qi ∈ S, and this in turn will hold iff for all t∈ f (S), we have t≤ a. In sum, then, we
have that f

(∨
i qi

)≤ p if and only if
∨

i f (qi)≤ p, or that f preserves any suprema that exist
in Q.

But a dilation (erosion) was just defined as an order-preserving map that commutes with
colimits (limits). So δ being a left adjoint suffices to tell us that δ must be a dilation (the
dual situation holding for an erosion).

7.1.3 Adjoints Compose

Proposition 177 Given two dilations δ :L→M, δ′ :M→N and two erosions ε :M→
L, ε′ :N→M such that δ # ε and δ′ # ε′, then their composition forms an adjunction δ′ ◦
δ # ε ◦ ε′.

This exemplifies a general result in category theory, namely:

Proposition 178 Left (right) adjoints are closed under composition, that is, given the
adjunctions

C D E,
F

G

F′

⊥
G′
⊥

the composite F′ ◦F is left adjoint to the composite G ◦G′:

C E.

F′◦F

G◦G′
⊥

In this way, arbitrarily long strings of adjoints can be produced.

adjunction perspective is that the (co)limit of every J-shaped diagram in C can be defined all at once, rather than
just taking the (co)limit of a particular J-shaped diagram X : J→C. We will exhibit the relevant adjunction in the
final section of this chapter.
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Moreover, another fact from morphology follows from the facts that adjoints compose
(and using LAPC and RAPL), namely that for dilations and erosions on the same complete
lattice, if δj # εj forms an adjoint pair for every j∈ J, then

(∨
j δj,

∧
j εj

)
is an adjunction.

7.1.4 Units and Counits

The “opening” operator bounds an image on the left, while its “closing” bounds it on the
right, that is,

Proposition 179

δε≤ id≤ εδ.

This is immediate from the unit natural transformation, id≤ εδ, and counit δε≤ id.

7.1.5 Fixed Point Formulae

Proposition 180 δεδ = δ and εδε= ε.

The unit and counit maps, satisfying the triangle identities, give the following general
“fixed point formulae” result underlying the above:

Proposition 181 If P and Q are posets and F : P→Q and G : Q→P form a (monotone)
Galois connection (adjunction), with F #G, then the following fixed point formulae will
hold for F and G:

FGF = F and GFG = G.

Proof. The triangle identities give F(p)≤FGF(p)≤F(p) for all p∈P, so F = FGF. The
second formula follows similarly.

7.1.6 Returning to Main Discussion

In the last two items, we saw how the unit and counit maps determine two important
endomaps, namely δ ◦ ε (“opening”) and ε ◦ δ (“closing”). The presence of unit and counit
further give us the fixed point formulae, which translates to the morphologically significant
fact,

δεδ = δ and εδε= ε.

This “stability” property of openings and closings means, in terms of the interpretation of
such operations as filters, that they effectively “complete their task” (unlike many other
filters, where repeated applications can involve further modifications of the image, with
no guarantee of the outcome after a finite number of iterations). In general, the above
fixed point formula further entails, in particular, that εδ and δε are each idempotent. Thus,
altogether, the composite monotone map εδ, for its part, has the properties that

• p≤ εδ(p), and
• εδεδ(p) = εδ(p).

But this is exactly to say that εδ is a closure operator, in the following general sense.
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Definition 182 A closure operator on a poset P (typically some poset of subobjects, for
example, the powerset poset)105 is an endomap K : P→P such that

1. for each p≤ p′ ∈P, K(p)≤K(p′) (monotonicity);
2. for each p∈P, p≤K(p) (extensivity);
3. for each p∈P, K(K(p)) = K(p) (idempotence).

There is an important dual notion to closure, called the kernel operator (or dual clo-
sure), where this is an endomap that, like K, arises from a Galois connection, and is both
monotone and idempotent, yet satisfies the dual of the extensivity property.

Definition 183 A kernel operator (or dual closure) is an endomap L satisfying

1. for each p≤ p′ ∈P, L(p)≤ L(p′) (monotonicity);
2. for each p∈P, L(p)≤ p (contractivity);
3. for each p∈P, L(L(p)) = L(p) (idempotence).

In short, these notions are all part of a much more general story, namely that for a
Galois connection or adjunction on posets such as δ # ε as above, the composite ε ◦ δ will
automatically be monotone, extensive, and idempotent, that is, a closure operator on the
underlying poset (or lattice) P; dually, δ ◦ ε will be monotone, contracting, and idempotent,
that is, a kernel operator on Q.

Before leaving this example, we will explore a few last notions via morphology. We will
let the induced kernel operator—which is precisely what the morphology community calls
by the name “opening”—be denoted φ= δε, while κ= εδ will denote the induced closure
(or “closing” operator, to be consistent with the mathematical morphology literature). In
the binary case, opening and closing are typically defined, respectively, as

XoB = (X"B)⊕B =
⋃

{Bp | p∈E, Bp⊆X}

X•B = (X⊕B)"B.

Morphological closing is just dilation (by some B) followed by erosion of the result by
B, while morphological opening is the erosion (by some B) followed by dilation of the
resulting image by B. Closing acts to fill out narrow holes. In terms of translations with
the structuring element, the opening of an image A by B is the complement of the union
of all translations of B that fall outside (do not overlap) A. As extensive (i.e., larger than
the identity mapping), closings of an image are generally “larger” than the original image.
Opening, for its part, acts to remove noise, narrow connections between regions, and parts
of objects, generally attenuating peaks and other small protrusions or components. If you
have a note where the writing appears to be growing tiny roots from its edges, opening
effectively acts to remove these outer leaks at the boundary, rounding the edges. In terms
of translations with the structuring element, the opening of A by B is the union of all
translations of B that fit completely within A. As antiextensive (contracting), openings of
an image are generally “smaller” than the original.

105. “Subobjects” are formally introduced in chapter 11. For now, you can just think of them as categorical
generalizations of the notion of a subset.
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Exercise 19 Composing dilations and erosions, we found the composite operations of
opening (φ= δε) and closing (κ= εδ), which were moreover idempotent. Further compos-
ing openings and closings with one another (e.g., κ ◦φ), how many more distinct operations
can we produce? Describe, in terms of their effect on images, at least one of these “image
filters.” Finally, consider how the composite operators must be related to one another.

Solution By (alternately) composing openings φ(= δε) and closings κ(= εδ), we can
obtain four new filters in total, each four of which are idempotent.

1. closing-after-opening: κφ
2. opening-after-closing: φκ
3. opening-after-closing-after-opening: φκφ
4. closing-after-opening-after-closing: κφκ.

You can easily convince yourself that no other nontrivial operator can be obtained by fur-
ther composition with any combination of φs and κs. Any attempt to produce further new
operations by pre- or postcomposing the above four with κ or φ will just reduce back to
one of those four, by the idempotence of these operators (together with the idempotence of
κ and φ themselves).

These composites are used in the course of various image processing tasks, such as
“smoothing” an image or performing image segmentation. An example of κφ is given by
the following:106

In terms of the relations between these four (together with the original opening and closing
operators as well), it is easy to show that

φ≤φκφ≤ { κφ
φκ }≤κφκ≤κ,

and moreover φκφ will be the greatest filter smaller than φκ∧κφ, while κφκ will be the
smallest filter greater than φκ∨κφ.

7.2 Adjunctions through Modalities

We can get an even better handle on adjunctions by looking at further applications of
such notions, specifically some applications involving modalities. At least since Aristotle’s
attempt to understand certain statements containing the words “necessary” and “possi-
ble,” philosophers and logicians have been interested in the logic of different operators

106. This image is taken from Bobick (2014).
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describing different ways of being true. Modal logic began as the study of necessary and
possible truths, but over the course of at least the last 100 years it has been recognized that
modalities abound in both natural and formal languages. These days modal logic is more
commonly regarded as the much broader study of a variety of constructions that modify the
truth conditions of statements (which includes, most notably, statements concerning knowl-
edge, belief, ethics, temporal happenings, how computer programs behave).107 Moreover,
one can construe modal operators in terms of adjunctions—and, in this way, modalities can
be shown to arise in a number of other more unexpected settings. In particular, there are in
fact a number of close connections between erosion and dilation, and the modal operators
� of necessity and � of possibility, respectively.

After a brief subsection devoted to establishing some background on the more traditional
logical treatment of modalities, the subsequent four subsections realize all these ideas in
four different settings: (1) in connection with the treatment of negation, (2) in the Qua

category, (3) in graphs, and (4) in topology.

7.2.1 Some Background on Modalities

The reader is likely already familiar with classical propositional logic (PL). Classical PL is
ultimately built from propositional variables p, q, r, . . . , where these are variables (repre-
senting propositions) that can be assigned a truth value, and certain symbols called logical
connectives, where this includes ¬ (“not”), ∧ (“and”), ∨ (“or”),→ (“implies”),↔ (“if and
only if”). The connectives enable compound propositions or formulas to be constructed
from simpler propositional variables, and in such a way that the truth-value of the com-
pound formula is defined as a function of the truth values of the simpler propositions.
We define a formula by specifying that it is any expression constructed according to the
following rules:

1. every propositional variable is a formula;
2. given any formulas φ and ψ already constructed, the expressions ¬φ (negation), the

conjunction φ∧ψ, the disjunction φ∨ψ, the implication φ→ψ (“φ implies ψ”), and
the biconditional φ↔ψ (“φ if and only if ψ”) are formulas.

Because one can combine simple propositions into compound ones in many ways, addi-
tional symbols like parentheses are needed to avoid ambiguities. In classical PL, an
interpretation of a formula is a functional assignment of truth-values to its constituent vari-
ables. It is of course possible that a formula will have different truth-values under different
interpretations—but a formula is said to be valid if it is true under every interpretation.

Intuitionistic PL is defined by the following axiom schemata (meaning one can substitute
arbitrary formulae, obtaining instances of the axioms):

1. φ→ (ψ→φ)
2. (φ→ (ψ→ ρ))→ ((φ→ψ)→ (φ→ ρ))
3. (φ∧ψ)→φ

4. (φ∧ψ)→ψ

5. φ→ (ψ→ (φ∧ψ))

107. For a nice history of formal approaches to modal logic, see Goldblatt (2003).
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6. φ→ (φ∨ψ)
7. ψ→ (φ∨ψ)
8. (φ→ ρ)→ ((ψ→ ρ)→ (φ∨ψ)→ ρ))
9. (φ→ψ)→ ((φ→¬ψ)→¬φ)

together with one inference rule (modus ponens)

φ φ→ψ

ψ

where this means that if φ and φ→ψ are derivable from the axioms, then so too is ψ.
We then use the axioms of the system, together with the inference rule, to produce proofs

or derivations—where a proof is just a finite sequence of formulas, usually displayed ver-
tically, such that each line of the proof is either an axiom instance of or is inferable from
earlier lines using the inference rule.

When we add to this list of axioms a tenth axiom,

φ∨¬φ,

the law of excluded middle (or ¬¬φ→φ), we get classical PL.
In general, an axiom system is said to be sound if every formula that is derivable from

the axiom system is valid. An axiom system is said to be complete if every valid formula
can be derived from this axiom system. The ten axioms we gave above supply one of the
sound and complete axiom systems for classical PL.

One can then “upgrade” PL by augmenting it with quantifiers “for all” (∀) and “there
exists/there is at least one” (∃), where the role of these operators is of course to tell us of
how many a proposition is true. The resulting logic—predicate logic—supplies us with a
way of proving the validity of a number of perfectly valid arguments that are simply invalid
when symbolized in the somewhat limited notation of PL. For instance, the venerated
syllogism

1. All humans are mortal
2. Socrates is a human
∴ Socrates is mortal

can only be symbolized in PL in a manner that makes it invalid—for instance, as

1. φ
2. ψ
∴ ρ.

Yet, of course, the syllogism ultimately represents a valid argument, and by augmenting PL
with quantifiers, we can show this. PL, and its extension to predicate or quantifier logic (by
adding the quantifiers ∀ and ∃), is of course rather useful in the formalization and analysis
of many arguments. However, in the same way that the syllogism above could not be shown
valid without a way of reasoning with quantifications of statements, there are further valid
arguments that cannot be shown to be valid using just propositional (or predicate) logic.
Take, for instance, the following argument:

If a new course on sheaves is to be offered next year, then proposal submissions must be made
to the department before September. If proposal submissions are to be made to the department
before September, then a departmental meeting must be had. A month’s notice must be given if a
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departmental meeting is to be had. But it is already August. Because it is not possible to give a
month’s notice, it follows that it is not possible to offer a new course on sheaves next year.

Surely we would like to be able to show that such an argument is valid. But in order to show
that such an argument is indeed valid, we need a way of reasoning with what is expressed
by these various ways of qualifying how a proposition is true—in particular, capturing the
notions of must and possible used above. The idea of reasoning with such qualifications of
“ways of being true”—where these are called modalities, the most conspicuous and exten-
sively studied of which have been “it is necessarily the case that. . . ” and “it is possibly
the case that. . . ”—has been studied by philosophers for millennia, since at least the time
of Aristotle, and reasoning with such qualifications was extensively discussed and debated
in the Middle Ages. Roughly, a modality is just a phrase or concept that is applied to a
given statement (φ) to create a new statement, where this latter statement now makes an
assertion of the mode of truth of φ—where or how φ is true, when φ is true, under which
circumstances φ may be true.

As mentioned, modal logic began as the study of necessary and possible truths. But even
confining our attention to logicians, these days modal logic is more commonly regarded
as the much broader study of a variety of constructions that modify the truth conditions
of statements. Here is a partial sample of some prominent modalities considered by modal
logicians:

• epistemic logic: it is known (to agent X) that
• doxastic logic: it is believed that
• deontic logic: it is obligatory that
• dynamic logic: after the program/computation terminates, the program enables that
• metalogic/provability logic: it is provable that
• tense logic: at all future times it is true that

In the formal analysis of modalities a key feature to emerge was that many modal operators
came in dual pairs, similar to how the universal quantifier ∀ and the existential quantifier ∃
are dual and so interdefinable using negation

∀x(. . . x . . . ) :=¬∃x¬(. . . x . . . )

or
∃x(. . . x . . . ) :=¬∀x¬(. . . x . . . ).

In a similar fashion, necessity (symbolized using �) acts as a sort of universal counterpart
to the notion of possibility (symbolized using �), which plays the role of its existential
dual, in the sense that

� :=¬�¬
� :=¬�¬,

reflecting the idea that to hold that “it is necessarily the case that . . . ” is equivalent to
maintaining that “it is not possible that it is not the case that . . . .” As these operators are
given different readings, and put to different use, key dualities are captured—for instance,

• “it is obligatory that. . . ” vs. “it is permissible that. . . ”;
• “at all future times it is true that. . . ” vs. “at some future time it is true that. . . ”;
• “it is provable that. . . ” vs. “it is consistent (not provable that it is not the case) that. . . .”
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Realizing such matters as a case of an adjoint relationship allows us to connect the story of
modalities and such dualities to an even broader class of structures, beyond the confines of
logic. The next four sections offer a glimpse into some of those further connections.

7.2.2 On What Is Not

Since at least the time of one of the first Western philosophical texts, attributed to Par-
menides (around 500 BCE), the nature of negation has been on people’s minds. This
includes a number of issues, such as the following:

• Would a complete description of what is need to include any description of what is not?
In other words, what is the “ontological status” of the negated entities or negative states
of affairs?108

• When is the negation of a negation (negated entity) the identity (the original entity)?

One might further motivate such concerns as follows. One might try to argue that, philo-
sophically, holes, shadows, fissures, boundaries—and other such “negative” or derivative
entities—seem somehow less real or fundamental than (or at least not to be on the same
footing as) the “positive” objects that produce or surround or support them. At the very
least, this sort of observation seems to have some validity in that it does seem somehow
more difficult to supply identity criteria for holes, for instance, compared to ordinary mate-
rial objects (for holes appear to be made of nothing), or even to speak of what holes are
(what are the parts of a hole?).

Today, we are most accustomed to thinking of negation as a linguistic or logical operator
on a language, where the operation leads from an expression to the contradictory expres-
sion. Typically, the expression in question is a proposition or a part of a proposition. But
we might attempt to regard negation, more broadly, as an operation that can also take place
on larger wholes, on entire structures or theories. Moreover, one might argue that, however
one approached it, the “right” understanding (and description) of negation would need to
capture, above all, the relation or dependence between what (the structure) is being negated
and the result of this operation of negation.

Such a perspective on negation is arguably exemplified in the facts that (1) negation is
a contravariant functor on a particular category (to itself) and (2) this functor has special
relations to itself, in that it is adjoint—in fact, self-adjoint. This perspective, developed
formally in the following discussion, might even suggest, informally, that one think of the
action of certain contravariant functors as a generalized sort of negation of structures. To
develop these ideas, let us first recall some notions.

In general, regarding a poset as a category, recall that the colimit recovers the notion of
supremum, while limit recovers that of infimum. In the case of the (co)limit over a diagram
consisting of just two objects, we get the (co)product: the coproduct of objects x and y is
the join (least upper bound) x∨ y, and the product is the meet (greatest lower bound) x∧ y.

108. One position, in this context, might articulate the view that everything is what it is—as the individual thing
it is—only on account of how it is not some other things, and accordingly try to take very seriously the idea that
“all determination arises from a negation” (to paraphrase the old principle omnis determinatio est negatio, “every
determination is a negation”). An opposing position might argue that negations always just describe privations,
and a complete and accurate description of reality would not need to involve mention of any “negative entities.”
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Definition 184 A poset P is called a join-semilattice if each two-element subset {x, y}⊆P
has a join, denoted x∨ y. A poset P is called a meet-semilattice if each two-element subset
{x, y}⊆P has a meet, denoted x∧ y.

Definition 185 A poset is a lattice if it is both a join- and a meet-semilattice.

By induction, the binary case of joins and meets of a lattice can be extended so that every
nonempty finite subset of a lattice has a join and a meet. In general, supposing we have P

a poset, then for all x, y∈P,

x =
∧

{x, y} ⇐⇒ x≤ y ⇐⇒ y =
∨

{x, y}.

For such a poset P, for all y∈P, we can define the following:

Definition 186 (A top as empty meet; bottom as empty join.)

1. y is the empty meet, that is, y =
∧ ∅, iff it is a top (greatest) element; and

2. y is the empty join, that is, y =
∨ ∅, iff it is a bottom (least) element.

Note that empty meets and joins need not exist. We could have two minimal elements,
for instance, but no least element. A least element would have to be less than everything.
An empty meet (top) is often written as � or 1 while an empty join (bottom) is written as
⊥ or 0.

If a lattice Lhas a greatest element (top) 1 and a least element (bottom) 0, which further
satisfy that

0≤ x≤ 1 for every x∈L,

then we call the lattice a bounded lattice. Category-theoretically, this makes 0 and 1 the
(unique) initial and terminal objects of the lattice, considered as a category. Thus, alto-
gether, a lattice with 0 and 1 is a poset that, regarded as a category, has all finite limits and
all finite colimits.

Posets are not guaranteed to have anything except the order ≤. Lattices, on the other
hand, have all finite meets and joins. Further properties of lattices may obtain—for
instance, distributive lattices obey an additional distributive law that brings them closer
to logic.

Definition 187 A distributive lattice L is a lattice in which the identity

x∧ (y∨ z) = (x∧ y)∨ (x∧ z)

holds for all x, y, z. This identity gives the dual distributive law

x∨ (y∧ z) = (x∨ y)∧ (x∨ z).

We can also define the following notions:

Definition 188 For L a bounded lattice, with least element 0 and greatest element 1, we
define a complement for an element x of the lattice as an element a∈ L such that x∧ a = 0

and x∨ a = 1.

If a lattice is distributive, then a complement a, provided it exists, will be unique. In
general, when it exists, the unique complement a of an element x is denoted by a =¬x,
meant to evoke a lattice-theoretic analogue of logical negation. This lets us define the
following:
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Definition 189 A Boolean algebra is a distributive lattice with 0 and 1 for which every
element x has a complement ¬x.

Heyting algebras are examples of a still more general notion, namely of distributive
lattices for which some members may lack complements. More explicitly,

Definition 190 A Heyting algebra H is a poset with all finite products and coproducts,
and that is moreover Cartesian closed. Another way of describing such an H is as a
distributive lattice with a least element 0 and a greatest element 1, expanded with an “impli-
cation” operation⇒, meaning that for any two elements p, q of the lattice, there exists an
exponential qp, usually written

p⇒ q.

This operation is characterized by an adjunction, specifically

r≤ (p⇒ q) iff r∧ p≤ q.

In other words,⇒ is a binary operation on a lattice with a least element, such that for any
two elements p, q of the lattice, max{r | r∧ p≤ q} exists (where this latter set contains an
element greater than or equal to every one of its elements, and such a least upper bound for
all those elements r where r∧ p≤ q is what is denoted by p⇒ q).109

In the general case, in any Heyting algebra, we can define the “negation” of an element
p as

¬p := (p⇒ 0).

Heyting algebras serve as models for intuitionistic propositional calculus—in which set-
ting, variables are regarded as propositions, ∧ as “and,” ∨ as “or,” and⇒ as implication—
and in that connection, it is sensible to think of “not p” as effectively saying that “p implies
false.”

Note, moreover, how on account of the way⇒ is defined, we can rewrite this as

q≤¬p iff q∧ p = 0,

revealing ¬p to be the join of all those q whose meet with p in the lattice is 0, the least
element. In any Heyting algebra H, we will have not just that

p≤¬¬p,

but also that
p≤ q implies ¬q≤¬p.

But this reveals how negation is just a contravariant functor from the Heyting algebra to
itself! More explicitly,

Proposition 191 ¬ is a functor ¬ : H→Hop (and also ¬ : Hop→H). This functor is,
moreover, adjoint to itself, since p≤¬q iff q≤¬p.

Let us spell out this self-adjointness more explicitly. The first inequality, p≤¬¬p, is imme-
diate from q≤¬p iff q∧ p = 0, using the further fact that, for any Heyting algebra, p∧¬p =

109. Another way to think of this p⇒ q is in the setting of the propositional calculus, where it is the weakest
condition needed for the inference rule of modus ponens to hold, that is, to enforce that from p⇒ q and p we can
infer q.
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0 (this follows from the adjunctive definition of⇒ together with the definition of negation
as ¬p = (p⇒ 0)). For the second, suppose p≤ q in H. Then, p∧¬q≤ q∧¬q and the right-
hand side of this inequality is 0. So p∧¬q =¬q∧ p = 0, and so by q≤¬p iff q∧ p = 0, we
have that ¬q≤¬p. Incidentally, this moreover shows that

¬p =¬¬¬p

which we might call the “1= 3” fact. This is a result of the contravariant functoriality
of ¬ and that p≤¬¬p. For, suppose p≤¬¬p. Then, by the contravariant functoriality
inequality, we also have that ¬¬¬p≤¬p. And since p≤¬¬p holds for all p in H, it
holds in particular for ¬p. Thus, ¬p≤¬¬¬p, giving the other side of the equality, and
so, altogether, 1= 3.

That ¬, as a functor H→Hop and also Hop→H, is adjoint to itself means that for all
p∈H and q∈Hop(= H), we have the two-way rule

¬p≤op q
p≤¬q

or

¬p≥ q
p≤¬q,

where the top (holding in Hop) holds if and only if the bottom (holding in H) does. For
another way of seeing the truth of the fact that for all x∈H, x≤¬¬x, notice that as an
adjoint, letting q =¬p, we must have

¬p≥¬p
p≤¬¬p,

and since the top is always true, the bottom must be as well.
An adjoint is a kind of generalized inverse, and as such, an adjunction describes a kind

of relaxation or weakening of the notion of equivalence. In the present situation, asking
when it is in fact the case that p =¬¬p (when the “do nothing” functor is equal to apply-
ing the negation functor twice) is like asking when the above adjunction happens to be an
equivalence. If the relations ≤ are replaced by =, then we get isomorphisms. This distinc-
tion captures the following well-known relation between Heyting algebras and Boolean
algebras:

Proposition 192 A Heyting algebra H is Boolean (i.e., ¬¬x = x for all x∈H) if and only
if the above adjunction is an equivalence.

This is a stricter requirement, and in general we need not have x =¬¬x. This requirement
is something one might not always want to impose, and this is in fact one of the merits or
utilities of working with the more general Heyting algebras. For any topological space X,
the set O(X) of open sets of X forms a Heyting algebra; for instance, the opens in the real
line accordingly form a Heyting algebra, but one that is not Boolean, since the complement
of an open set is not necessarily open.
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We could go on to dualize things and describe a dual notion, namely that of co-Heyting
algebras, which support a corresponding but different notion of negation. The utility of
considering such things can be motivated with another problem related to natural language.
In many natural languages, for instance in English, one often has recourse to forms of
negation that do not seem to be captured by, or behave as, the single negation operator
of classical logic. Suppose someone is described to you as “not honest,” after they act
in a particular way in a particular situation. This is not necessarily to say that they are
“dishonest.” In natural language, we can deny that a person is honest in at least two distinct
ways: (1) by asserting that someone is not honest (negating the predicable “to be honest”);
or (2) by asserting that they are dishonest (negating the adjective “honest”). It is easy to
appreciate, intuitively, how the second (“dishonest”) is a stronger form of negation than the
first (“not honest”). Moreover, suppose your friend Abe is someone you would be willing
to describe as “not dishonest.” This does not seem to convey the same thing as describing
Abe as “honest.” Finally, while we expect it to be the case that Abe is either honest or not
honest, it seems plausible to assert, as well, that he is neither honest nor dishonest. We
would like to know how to capture these observations more formally, and describe formal
relations between the different forms of negation, as applied to natural language. The story
that follows begins to address this.

A little more generally, compare the sentence

It is false that not p,

with the sentence

It is not false that p.

These sentences clearly do not say the same thing. The first indicates the necessity of p,
while the second indicates its possibility. We can make sense of this in the context of a par-
ticular algebra called a bi-Heyting algebra, by interpreting the “it is false” in such sentences
as the Heyting negation and the “not” as the corresponding “co-Heyting” negation. This
setting will also allow us to define modal operators in terms of pairings of both negations.

Definition 193 A co-Heyting algebra is a poset whose dual is a Heyting algebra.
Unpacking this, we can equivalently observe that a co-Heyting algebra will be a bounded

lattice expanded with a binary operation � such that for every p, q, r, we have the
adjunction rule

(p� q)≤ r iff p≤ q∨ r.

In other words, p� q =
∧

{r | p≤ q∨ r}.

A corresponding unary negation operation ∼ can then be defined by

∼ p := (1� p).

It follows that we have the following adjunction rule for this “negation” ∼:

∼ p≤ q
1= p∨ q
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Similar to how we have p∧¬p = 0 in a Heyting algebra (though not necessarily p∨¬p = 1),
notice how in a co-Heyting algebra we will have

p∨∼ p = 1.

Likewise, similar to how the negation ¬ is order-reversing and satisfies x≤¬¬x in a Heyt-
ing algebra, in a co-Heyting algebra the negation ∼ is also order-reversing and it satisfies
∼∼ x≤ x. Moreover, just as in a Heyting algebra p∨¬p is not necessarily the top (true),
so in a co-Heyting algebra p∧∼ p is not necessarily the bottom (false). In particular, then,
in a co-Heyting algebra, we can thus define the generally nontrivial notion of the boundary
of p, as

∂p := p∧∼ p.

Incidentally, this recovers, in purely algebraic terms, the spatial and geometric notion
of boundary, thus suggesting certain deep connections between logic and geometry and
the study of space (connections explored in greater detail in the appendix). Bi-Heyting
algebras—a bounded distributive lattice that is both a Heyting and a co-Heyting algebra—
can accordingly be deployed to shed further light into some of these deep connections
between logic and geometry.

We can work in the context of a bi-Heyting algebra and combine these negations to form
our modal operators. In particular, we will let

�p :=∼¬p,

read as “possibly p.” This begins to suggest how we might formalize the fact that, for
instance, John not being dishonest does not let us conclude, in general, that John is honest,
but rather only that he is possibly honest. Similarly, we will let

�p :=¬∼ p,

read as “necessarily p.”
Given such definitions, we can show that

Proposition 194 We have the adjunction �#�.

Proof. To show that �#�, we need only verify some equivalences, each of which more
or less follows automatically from definitions. By definition, � =∼¬ and � =¬∼, so the
adjunction just says that ∼¬#¬∼. But

∼¬p≤ q

just says that
1≤¬p∨ q

which is of course equivalent to
1≤ q∨¬p,

which itself is just to say that
∼ q≤¬p.

Using this last inequality, and the definition of ¬, we have

∼ q∧ p≤ 0
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or, equivalently,
p∧∼ q≤ 0.

This last line can be written
p≤ (∼ q⇒ 0),

which is the same as saying that
p≤¬∼ q.

Altogether, this string of equivalences shows that

∼¬p≤ q iff p≤¬∼ q,

which is precisely what is needed to show that ∼¬#¬∼ (or �#�).

Working in a bi-Heyting algebra and using the above definitions of � and �, we can
moreover consider repeated applications of these operators. As a matter of simplifying
computations involving repeated applications of the operators, we will define �0 = �0 = id,
and

�n+1 :=¬∼�n, �n+1 :=∼¬�n,

where �n is of course just the result of iterating (n times) the composition of ¬∼, and �n

by iterating (n times) the composition of∼¬. �n and �n are clearly both order-preserving,
for all n, as is evident from the double fact that, in a Heyting algebra, ¬ is order-reversing
and satisfies p≤¬¬p for all p, and that, in a co-Heyting algebra, ∼ is order-reversing and
∼∼ p≤ p. Moreover, we have

1. �n+1≤�n≤ id≤�n≤�n+1 for all n; and
2. �n #�n for all n.

Proof. 1. First, we know that, for any p in the bi-Heyting algebra, we have that ¬p≤∼ p.
From this, taking p =∼ p, we have that

¬∼ p≤∼∼ p,

and since ∼∼ p≤ p, this gives that
¬∼ p≤ p.

Moreover, p≤¬¬p, and, using ¬p≤∼ p again, applied now to p =¬p, we get that

¬¬p≤∼¬p.

Altogether, this gives that
¬∼ p≤ p≤∼¬p.

By definition, then, this reads as

�p≤ id(p)≤�p,

and further iterating this, letting p = �np, and then �np, gives the main result.

Proof. 2. We want that �n #�n for all n. But since adjoints compose, this follows from
the preceding result, by iterating.
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In a bi-Heyting algebra where countable suprema and infimi exist satisfying

b≤∧
n an

b≤ an for all n
and ∨

n an≤ b
an≤ b for all n,

we can further define

Definition 195

�p :=
∧

n

�np,

�p :=
∨

n

�np.

Then, for a bi-Heyting algebra that has countable suprema and infima satisfying the
above rules, the modal operators � and � are such that �p will be the largest comple-
mented x such that x≤ p, and �p will be the smallest complemented x such that p≤ x. This
moreover realizes the fact that � and � are both order-preserving and that �p≤ p≤�p.

More generally, for any bounded distributive lattice and operators � and � defined just
as above, the same properties will hold of � and �. In particular, it can be shown that
�#�, and thus

1. �≤ id ≤�,
2. �� = �, �� = �,
3. id ≤��,
4. ��≤ id,
5. �(φ∧�ψ) = �φ∧�ψ.

7.2.3 Adjoint Modalities in the Qua Category

Example 196 For another realization of some of the ideas explored in the previous section,
recall the interpretation functor on the qua category Qua from example 38 (chapter 2).110

Applying all this to the particular subcategory A from earlier, an interpretation amounts to
a set X together with a set of predicates of X, where by “predicate of X” is just meant a
family {φA}A∈Ob(A) of subsets of X with the functorial property

if x∈φA( i.e., x∈A φ) and A′→A∈A, then x∈φA′ .

And since A was just the comma or slice category a scf ↓CN, so that all aspects are

of the form a scf qua B , an interpretation of A just associates to every aspect the
same set X. Notice that we can collect together such families of predicates (as subfunctors
of X) into the set P(X) of all predicates of X. These predicates in fact form a bounded
distributive lattice with two negations—in fact, a bi-Heyting algebra—as

(P(X),≤,∨,∧, 1, 0,¬,∼),

110. Again, this material on the qua category is ultimately derived from Reyes et al. (1999); the reader who
desires to pursue these matters further than the discussion here can find many more interesting details in that
paper.
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where there is the natural ordering

φ≤ψ iff ∀A∈A, ∀x∈X, x∈A φ⇒ x∈A ψ.

Also, as expected, we have

x∈A (φ∨ψ) iff x∈A φ or x∈A ψ

and
x∈A (φ∧ψ) iff x∈A φ and x∈A ψ.

0 (or⊥) is the predicate “false,” the bottom element of the order, while 1 (or�) is the pred-
icate “true,” the top element of the order. Given a predicate φ, we define two negations, ¬φ
and ∼φ, which are in fact two new predicates (i.e., have the requisite functorial property):

x∈A ¬φ iff ∀A′→A∈A x /∈A′ φ

and
x∈A∼φ iff ∃A→A′ ∈A x /∈A′ φ.

Applied to the predicate “honest,” for instance, we have the natural reading: “¬ honest” as
“dishonest,” and “∼ honest” as “not honest.”

As we saw in our earlier discussion of these same negations, we have the following
adjunctions for our negations (which hold for arbitrary properties φ,ψ):

ψ≤¬φ
ψ ∧φ= 0,
∼φ≤ψ

1=ψ ∨φ.
Notice also that for every property φ, it is a consequence of the above that φ∧¬φ= 0 and
φ∨∼φ= 1. However, φ∧∼φ need not be 0, and similarly, φ∨¬φ is not necessarily 1.

Applying all this, suppose we return to modeling a discussion and decision regarding
your friend Abe’s honesty. We can assume the aspects considered relevant to Abe’s honesty
have been agreed upon, and likewise, agreement has been achieved on his honesty under
each of the relevant aspects, that is, for every aspect A∈A, we assume it is known whether
Abe∈A honest or Abe /∈A honest. If Abe fails to be honest under every subaspect of one
of the aspects, say F = family man, then we would say that “Abe is dishonest” under that
aspect, that is, qua family man. By contrast, we would say that “Abe is not honest” under
the aspect F precisely when he fails to be honest with respect to one of the superaspects
of F. The ultimate judgment regarding Abe’s honesty is then obtained by restricting to
the global aspect, G (or “qua scf”), where this means that Abe is “honest,” “not honest,” or
“dishonest” precisely when Abe∈G honest, Abe∈G∼ honest, Abe∈G ¬honest, respectively.
In more detail,

Abe∈G honest iff ∀A Abe ∈A honest, that is, “Abe is honest iff Abe is honest under any aspect.”

Abe∈G∼ honest iff ∃A Abe /∈A honest, that is, “Abe is not honest iff Abe fails to be honest under at
least one of the aspects.”

Abe∈G ¬honest iff ∀A Abe /∈A honest, that is, “Abe is dishonest iff Abe fails to be honest under
every one of the aspects.”
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If Abe is honest, then he cannot be dishonest (and conversely), that is, φ∧¬φ= 0. However,
that φ∨¬φ is not necessarily 1 means, of course, that it is not always the case that Abe is
either honest or dishonest. One scenario in which this might occur would be where Abe is
honest under the aspect S (Abe is honest qua student) but fails to be honest in all the other
aspects. This reveals how the negation is not, in general, Boolean. Yet we can note that ∼
is Boolean globally. This means that for the “global aspect,” we will have that Abe is either
honest or not honest, but not both, that is, honest∨∼ honest = 1 and honest∧∼ honest = 0.
However, it may occur that Abe is both honest and not honest under the very same aspect
(as long as this is not the global aspect).

Thus, notice that even though Abe is “not honest” under a particular aspect precisely
when he is not honest under every aspect, for all aspects other than the global one, there
is a difference between “not honest” under an aspect and failing to be honest under that
aspect, for the former has the functoriality property: if Abe is not honest under aspect A,
then he is not honest under any subaspect A′→A. Failing to be honest under a given aspect,
by contrast, is simply the absence of Abe’s honesty under that aspect. Absence of honesty
under an aspect is not functorial, so there may be an absence of Abe’s honesty under an
aspect and the presence of Abe’s honesty under another.

Suppose Abe is not dishonest under an aspect. What can we conclude from this? Not
that Abe is honest; rather, only that he is possibly honest. Abe is not dishonest under a
given aspect precisely when he is honest under at least one aspect, as the following string
of equivalences reveal:

Abe∈A∼¬honest
∃A→A′ Abe /∈A′¬honest

∃A→A′∃A′′→A′ Abe∈A′′honest
∃A′ Abe∈A′honest

Restricting to the global level A = G, gives
Abe∈∼¬h
∃A′Abe∈A′ h,

or “Abe is not dishonest iff Abe is honest under at least one aspect.” Since this works for
any predicate, this suggests we define our modal operator

�φ :=∼¬φ,

read as “possibly φ.”
Similarly, we can calculate

Abe∈A¬∼honest
∀A′→A Abe /∈A′∼honest

∀A′→A∃A′→A′′ Abe∈A′′honest
∀A′ Abe∈A′honest.

Again, letting A = G the global aspect, this becomes
Abe∈¬∼ honest

Abe∈ honest,
that is, Abe is necessarily honest under a given aspect iff he is honest under every aspect.
In other words, x∈A �φ iff for all aspects A′, x∈A′ φ iff x∈G φ. This suggests we define a
further modal operator,

�φ := ¬∼φ,
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read as “necessarily φ.” Observe that �φ and �φ, defined thus, are clearly themselves
predicates of X. Moreover, they are themselves adjoint, �#�, and as such satisfy the
(in)equalities we isolated at the end of section 7.2.2.

7.2.4 Adjoint Modalities in Graphs

Example 197 The modalities discussed in the last few sections are particularly well illus-
trated and tangible in the context of graphs and their subgraphs. If we have a directed
multigraph G, the lattice of subgraphs of G constitutes a bi-Heyting algebra,111 where a
subgraph X of G is a directed multigraph (i.e., consisting of a subset X0 of the vertices of G
and a subset X1 of the edges of G) such that every edge in X1 has both its source and target
in the vertex set X0. It is clear that we can take unions and intersections of subgraphs, but
what it means to take “complements” is not as evident. The set-theoretical complement Xc

of a subgraph X will not work, since in general it will not even be a graph, as we might
wind up with edges whose source or target is missing in the set Xc. There are two obvious
ways to address the insufficiencies with this complement operation, though: we can either
discard such problem edges or, on the other hand, we can retain them and “complete” them
by adding their sources and targets in the underlying graph. The first option in fact gives
rise to our Heyting negation ¬X, and the second to the co-Heyting ∼X.

It is instructive to see these notions “at work” and to make explicit computations with
them. So observe that given the graph G together with its subgraph Y , as displayed below,
then for ∼ Y we will have

Running this again, we compute ∼∼ Y (which is, importantly, not identical to Y!),

111. This is actually a special case of something that will be discussed further in chapter 10, namely that any
presheaf topos is bi-Heyting. We know that the category of (multi)graphs can be represented as SetCop

for C the
index category of two objects and two nontrivial morphisms between those objects; moreover, it can be shown
that the lattice of “subobjects” of any object of a bi-Heyting topos is itself a (complete) bi-Heyting algebra.
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Readers can also verify for themselves that for such a G and Y , ¬Y 
=∼ Y .112

Let us now look closely at an example that computes modalities in graphs. Suppose we
have the following graph G, and the subgraph X of G, as follows:

Then, for ¬X we will get the largest subgraph disjoint from X:

112. In general, though, a bi-Heyting algebra for which the two sorts of negation or complementation collapse—
that is, ¬x =∼ x for all x—will necessarily be a Boolean algebra.
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∼X, for its part, is here different from ¬X, and yields the smallest subgraph whose union
with X gives all of G:

Incidentally, notice that the boundary of X, ∂X =∼X ∧X, is not the empty subgraph (which
functions as 0), but is the sole vertex b. Intuitively, it makes sense to think of the vertex b
as the “boundary” of X, since it liaisons between the “inside” of X and the “outside,” as
there is an arrow, namely β coming in to X from the outside of X via the target b.

Let us now compute �1X, that is, ∼¬X:
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To compute �2X, we must first compute ¬�1X

and then ∼¬�1X, that is, �2X,

Running this one more time, we first get ¬�2X,
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and then ∼ of this, that is, ∼¬�2X = �3X,

At this point, something interesting happens. If we run ¬ on �3X, we get
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and then∼ of the above, which gives us �4X, is revealed to be the same as �3X. Thus, this
iterative operation stabilizes at �3 = �4, and we have that �X = �3X, having captured, in a
subgraph, all those elements of the graph G that can be reached from X through some path,
which is clearly something of a picture of the possibility of X (or, perhaps more accurately
stated, of what is possible for X). This illustrates a more general feature as well, namely
that every arrow or vertex that is connected to X via some path will end up in �X after
a finite number of steps. In general, applying the operator �n to the subgraph should be
thought of as capturing those elements connected with X within n paths. Notice also that
taking ¬ of �3 is the same as taking ∼ of �3. As such, �X has no boundary (and no
edge going out of it), as ∂�X = �X∧∼�X is the empty subgraph. In general, in the land
of graphs, taking the boundary of a subgraph X yields the subgraph whose elements are
connected to the outside of X.

We can perform similar computations, in reverse order, to compute �X, which will sup-
ply us with a subgraph whose elements are those that are not connected to the outside.
First, we compute ¬ of ∼X, to get ¬∼X = �1X,

Then, taking ∼ of this, we get ∼�1X, and stripping away one more layer, by taking ¬ of
the result, we end up with ¬∼�1X = �2X:
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and we have stability, as any further iterations �2+nX will just reduce back to �2X. Notice
that what is left, �X, just consists of those elements of X that are not connected to the
outside (of X in G), which seems to align with some intuitions we have about the notion of
“necessity” for X.

Altogether then, and for a general graph, �X supplies the elements of the ambient graph
G that can be reached from X via some path, while �X has those elements in X not con-
nected, via any path, to the outside. Note, finally, that both the subgraphs �X and �X are
complemented sums of connected components.

Exercise 20 Consider the following graph G of routes, with subgraph X corresponding
to some region of the northeast (including the nodes Boston, New York, and Long Island,
together with the indicated routes between them):

Compute �X, �X, and ∂X. Then consider, via this example, how the boundary operator ∂
interacts with the modal operators.

Solution First, notice that

and
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Things stabilize here, with �1 = �. �X includes those parts of X that have no connection
to the outside of X. The meaning of �X = { Long Island } is this: if one is in X and ends up
in Long Island, one will never get out of X—having arrived there, one is necessarily in X.

What about �X, or “possibly” X?
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Taking ∼ of ¬�2X just returns �2X, so we achieve stability at �3 = �2, and so �2X gives
us �X, a picture of the “possibility” of X. Intuitively, this makes sense, as �X supplies
those parts of G that can be connected, directly or indirectly, with some part of X. For
instance, then, even though San Diego is not directly reachable from any city in X or any
city reachable by X, anyone in San Diego can get to Chicago, and Chicago is reachable
from X. In other words, a person from X might meet someone from San Diego in Chicago
or Seattle—and so, for someone from X, San Diego may form part of their picture of reality.
Dallas and Austin, by contrast, are inaccessible to X—given the graph above, someone
from anywhere in X could never meet anyone from Dallas or Austin.

Finally, consider ∂X =∼X ∧X. As one can see, this will give the “vertices” Boston and
New York. Intuitively, this makes sense, as these cities are those parts of X that mediate
between the “inside” of X (as parts of X) and the “‘outside” in G. Seeing how the boundary
operator ∂ interacts with the modal operators can further solidify the intuitiveness of the
reading of � as “possibility” and � as “necessity,” even in contexts like that of graphs. As
one can easily verify,

∂�X =∼�X ∧�X = �X

which confirms the intuition that the boundary of what is necessarily X—that is, those parts
of X that have no connection to the outside of X—is just trivially �X itself. Also,

∂�X =∼�X ∧�X = ∅
or, more accurately, the empty subgraph. Intuitively, this realizes the idea that the “world”
of what is not possible for X has empty overlap with what’s possible for X.

7.2.5 Adjoint Modalities in Topology

Example 198 Recall from chapter 4 (and see the appendix for) the extended discussion
of open and closed sets of a topology, and the associated operations of taking the interior
and closure. If we let O(X) denote the open sets, and C (X) the closed sets, of some space
X, then int can be regarded as an inclusion-preserving map from C (X) to O(X), and cl as
an inclusion-preserving map from O(X) to C (X). Building on the work of chapter 4 and
the appendix, we can leave it to the reader to verify that these maps satisfy that, for any U
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open and A closed,
cl(U)⊆A

iff
U⊆ int(A).

This situation in fact just describes, in category theoretic terms, that cl is left adjoint to int

O(X) C (X).
cl

int

⊥

Moreover, suppose given the region R

There are two ways of negating (taking the complement of) a part R of a space, where
we may assume we initially know nothing of whether or not R includes its boundary.
Namely:

1. do not include the boundary, that is, take ¬R;
2. do include the boundary, that is, take ∼R.

The second operation acts as the closure of the complement. By carrying out these
operations again on the results, we can in particular get

1. ∼¬R (closure of R), or �R;
2. ¬∼R (interior of R), or �R.
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This starts to hint at some of the profound connections between the modal operators � and
�, on the one hand, and the topological operators int and cl, on the other—connections
explored in the appendix. The more general story in terms of the adjointness of both
pairs further allows us to exhibit and unify otherwise seemingly arbitrary results from each
special area. The following displays one such case.

In modal logic, a modality is any sequence of zero or more monadic operators that
involves ¬, �, and �. Iterated modalities include more than one such operator. One is
sometimes asked to prove that the logic S4 has (up to equivalence) exactly fourteen modal-
ities, specifically: (1) id; (2) �; (3) �; (4) ��; (5) ��; (6) ���; (7) ���; together with
the negations of each (i.e., adding ¬ to each), making for fourteen in total. In the affirma-
tive case (unnegated), the seven modalities are related by implication as displayed in the
following diagram (where the arrow should be read “implies”):

�α

���α

α ��α ��α

���α

�α

In the context of topology, one can verify that

cl2 = cl, ((–)c)c = id, int = (cl((–)c))c, int2 = int, int((–)c) = (cl(–))c, cl((–)c) = (int(–))c,
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and there is the following diagram relating the closure and interior operators, and
combinations thereof,

cl(A)

cl(int(cl(A)))

A cl(int(A)) int(cl(A))

int(cl(int(A)))

int(A)

Taking complements gives a dual diagram. Similarly, by negating each of the modalities in
the first diagram of modalities, and accordingly reversing the order of implication, we can
display the other seven modalities and their mutual relations:

¬�α

¬���α

¬α ¬��α ¬��α

¬���α

¬�α

This can be compared to the diagram governing the topological operators, where ¬
becomes complement (–)c, and � is replaced with int and � with cl.

In topology, there is a somewhat mysterious result—called Kuratowski’s 14-set
theorem—which says that in a topological space, fourteen is the maximum possible num-
ber of distinct sets that can be generated from a fixed set by taking closures, interiors,
and complements (or just by taking interiors and complements, or closures and comple-
ments). The above treatment of these matters, together with the connections explored in the
appendix, gives a unified framework for understanding why this, and the fourteen modali-
ties results, should be true, and begins to suggest how they form part of a single story. As
it turns out, while this number fourteen is generally a maximum, a topological space X will
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actually contain fourteen such sets when it is “sufficiently rich,” in particular when it con-
tains a copy of the Euclidean line—which fact has close connections to the fact (explored
in the appendix) that the logic S4 models the Euclidean line.113

7.3 Some Additional Adjunctions and Final Thoughts

More examples of important adjunctions will arise organically throughout the book, and
the facts learned in this chapter will be put to use. At this point, there are a number of
more advanced category-theoretic results and constructions that we could pursue. But
with a good working understanding of categories, functors, natural transformations, and
adjunctions—built on a number of carefully selected examples and applications—the
reader is already well equipped to delve deeper into sheaves.

For now, this chapter ends by sketching a few more examples, the last two of which
are left deliberately somewhat vague, while being correct “in spirit” (and, in fact, they can
be developed to be formally correct). These are meant to provide what I hope are some
engaging examples of adjunctions, while encouraging more fastidious readers to work out
the unspecified details on their own. The chapter ends with a brief Philosophical Pass.

Example 199 Recall how every (directed) graph gives rise to a category and how every
category is itself a directed graph with some extra data concerning composition. There is
in fact a “free-forgetful” adjunction F #U here

Cat Grph.
U

F

The functor F gives the free category on a graph first mentioned in example 34 (chapter
2), which takes vertices for its objects, edges for its morphisms, adds identity arrows at
each vertex, and lets the set of morphisms between two vertices be the set of all finite
paths between the two. The functor U, for its part, just assigns to a category its underlying
graph—it does this by forgetting all the data and structure of the category except for the
objects (sent to vertices) and morphisms (sent to edges), leaving out any information or
conditions pertaining to identities and composition, as these things are not native to graphs.

Example 200 Universal concepts like colimits and limits, initial objects and terminal
objects, can be phrased entirely in terms of adjoint functors. As mentioned already, one
of the advantages of this adjunction perspective is that the (co)limit of every J-shaped dia-
gram in C can be defined all at once, rather than just taking the (co)limit of a particular
J-shaped diagram X : J→C.

Recall the notion of diagrams of shape J and the constant diagram functor Δ : C→CJ,
which sends each object c∈C to the associated constant functor, defined as the composite
functor c ◦ t : J→C, where t : J→ 1 is the unique functor to the terminal category and c is
the object represented by the functor c : 1→C. Then, given an object X of CJ, we want
an object of C. Indeed, it turns out that a category C admits all limits of diagrams indexed
by a small category J iff the constant diagram functor Δ admits a right adjoint, and that C

admits all colimits of diagrams indexed by J iff Δ admits a left adjoint:

113. For more on Kuratowski’s 14-set theorem, see Sherman (2004). For more on the connections between the
notions of modal logic and features of topology, see the appendix.
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CJ C.

colim

lim

Δ

⊥

⊥

Example 201 There is a connection between how the world appears to an agent and
what that agent believes to hold of their world. But “appears” and “believes” are not quite
inverses of one another. Instead, we might conjecture that

appearance# belief,

in the sense that there is an adjunction (in a slogan, “belief as the right adjoint of
appearance”)

Aα(m)≤m′

m≤Bα(m′)
realizing, effectively, how all that appears to an agent to hold at, or given, state m entails
state m′ if and only if whenever m holds in the “real world,” this entails that all that the
agent believes to hold on the assumption that m′ holds does in fact hold. Thus, in general,
Bα(m) would stand for agent α’s belief at m and will consist of those propositions that
agent α believes to hold whenever m holds.

Example 202 Both small-scale and large-scale projects, such as those in research or
development, require resources. Resource allocation (through grants, investment funding,
contracts, etc.) requires a detailed plan (for how those resources are to be spent), especially
as the project increases in scale. If Rsrc is a category consisting of relevant resources, so
that objects are resources (e.g., for simplicity, different-sized checks or bags of money) and
morphisms are given by a natural relation between those resources (e.g., ≤ in the case of a
uniform money-valuation of the different resource objects), and if ProjPlan is a category
consisting of project tasks, given some natural ordering (e.g., by order of priority in the
carrying out of the plan), then we might consider the functor

V : Rsrc→ProjPlan

that maps a resource r to the collection of plans pi that are viable given that resource, and
the functor

N : ProjPlan→Rsrc

taking a project task p to all those resources that are necessary to complete the task (which,
depending on how Rsrc is structured, say in a simple case of “costs,” might just amount to
returning an interval bounded by the least cost for which the task could be carried out, and
including all other more ample amounts).

We would probably not expect V and N to construct strict inverses to one another, for
we do not expect that, for any given resource r, a list of necessary resources for those plans
that are deemed viable given r would be equal to r. Though we might expect that, among
the resources, r≤NV(r). Similarly, we would not expect that, for a given project task p,
the result of applying N to p and then V to N(p), would always equal the same task p. Yet
we would expect VN(p)≤ p in ProjPlan. This suggests that we have an adjunction,

Rsrc ProjPlan.
V

N
⊥
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At this point, having seen a variety of examples and explored some of the basic facts of
the general theory of adjoint functors (e.g., adjoints are unique up to unique natural iso-
morphism, adjunctions can be composed, and so on), readers should feel more comfortable
with the idea of adjunctions. This simple concept—fundamentally consisting of an oppos-
ing pair of functors with a special relationship to one another—is incredibly powerful and
useful. Adjoint functors really are ubiquitous throughout mathematics,114 and the exam-
ples considered in this chapter are but a very small fraction of panoply of adjunctions that
interest mathematicians. Adjoints generally tell us very important things. For instance, if a
given functor has a left adjoint, then (being a right adjoint of the adjoint pair) it will com-
mute with limits (i.e., it is continuous); if it has a right adjoint, then (being a left adjoint of
the pair) it commutes with colimits (i.e., it is cocontinuous). Moreover, we know that the
left (or right) adjoint to a functor, provided it exists, will be unique up to natural isomor-
phism. But adjoint functors need not exist. Given a functor, it need not admit an adjoint.
Readers who may very well appreciate the utility and interest of adjoint functors might
still be wondering: how do we find such things and how can we know if they even exist? In
searching for adjoint pairs, it can often be useful to keep in mind those general situations
where adjoints do exist—for instance, how when dealing with categories that consist of
algebras (groups, vectors, etc.), forgetful functors will have left adjoints—and consider if
they apply. More abstractly, we can use some of the general results to help us with the
question. In particular, if your given functor T can be shown not to preserve either limits
or colimits (i.e., not to be continuous or cocontinuous), then it cannot be either the left or
right adjoint of an adjoint functor pair. In other words, (co)continuity gives us a necessary
condition for a functor to have a left (right) adjoint. What about sufficient conditions? As
it turns out, it can be shown that a functor T : A→S admits a left adjoint iff for each s∈ S

the comma category s ↓T has an initial object, which effectively means that the problem
of finding a left adjoint to a continuous functor can be treated as a problem of finding
an initial object in the associated comma category given for each object of S.115 There
are additional conditions—supplied by the so-called “adjoint functor theorems”—that will
apply in certain contexts and give sufficient conditions for an adjoint to exist.

In later chapters—especially chapter 11—we will explore important adjunctions in
greater depth, in the course of which we will see how, in situations where we can inter-
pret constructions in terms of presheaf (or sheaf) categories, there will automatically be
certain pairs of adjoint functors.

7.4 Philosophical Pass: The Idea of Adjointness

Box 7.1

The Idea of Adjointness

114. See Mac Lane’s oft-cited slogan, “Adjoint functors arise everywhere” (Mac Lane 1998).
115. For a proof and discussion of this, as well as the other adjoint functor theorems referred to in the following
sentence, see Riehl (2016, Lemma 4.6.1 and Epilogue).
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Adjoint functors are perhaps the most decisive concept in category theory. In addition to being
found all over mathematics, adjoint functors frequently arise from constructions that have a
certain universal property, where the constituent functors of an adjoint pair give the “most
efficient” solution to a problem. To put it another way: many constructions with universal
properties can be translated into statements of adjointness.

Beyond the connections to universal properties, adjunctions exhibit what category theory is
really all about. To somewhat overstate the point: categories are not what is important. And the
purpose of category theory is not to categorize, if that means what it usually means—creating
an inventory of sorts that we can consult to ensure that things are put where they belong.
What is important—the reason why we care about categories in nearly all cases—is supplied
by the functors between them and the relations between those functors. Many mathematical
structures will have all sorts of important relations to other structures, relations that cannot be
reduced to questions of whether the underlying structures they are relating are the “same” (in
the sense of isomorphism or equivalence). As just the right formal substitute for the stricter
notion of inverse, adjoint functors supply a powerful tool that can capture relations too subtle
for the blunt instrument of inverses (which really only “care” about whether the underlying
structures are the same).

Conceptually, the role adjunctions play in the theory of category theory is not dissimilar to
what can be seen in the philosophical idea—developed in very different contexts by a variety
of different thinkers, each with their own different aims and terminology—of dialectics. Pro-
ponents of dialectics essentially start out by maintaining that—very abstractly speaking—any
notion or model of the “space of concepts” as a sort of static inventory of individual concepts,
each set off on its own and capable of “determining itself,” is not to be taken at face value.
Unpacking an individual concept by using certain abstract transformations or determinations
that lead it to be rearticulated against the backdrop of a concept other than it, then doing the
same for the latter concept, pushing it into the setting of the former—these transformations
will help to extract previously unarticulated antagonisms in the concepts and uncover ways
the original concepts were not as capable of “determining themselves” as they first appeared.
Finally, combining the two determinations into a sort of conceptual “unity,” gives a new and
more dynamic understanding of the original concepts, each revealed in some fashion as being
what it is by the way it achieves this unity of distinct determinations in relation to a con-
cept other than it. Using this very schematic idea, one might think of adjunctions as similarly
yielding generalized (conceptual) “unities,” where this weakened notion is meant to name the
“closest thing” to an equivalence.

Philosophers (like Hegel) who are most associated with the development of a concept of
dialectics were largely concerned with one particular determination—namely, negation. To
the extent that we could compare the heuristic supplied by the concept of dialectics and the
precise notion of adjunction, we might thus say such philosophers were largely bound by
consideration of (proto)adjunctions involving the negation functor and categories in relation
to their “opposing” categories. But these situations form a very small, and extreme, slice of the
sorts of adjoint relations we can find. In this way, one might say that the notion of adjunction
is not just a way of making precise the imprecise idea of dialectics but also a way of releasing
it from its arbitrary restriction to involving only functors of the “negation” type.

In short, you could think of the notion of an adjunction as representing something like the
wedding of the category-theoretic notion of universality with (a much improved version
of) the conceptual notion of a dialectic or back-and-forth between self-determination and
determination-by-another. In chapter 11, we will return to this idea and exhibit adjoint triples
that make the connections with the notion of dialectics more precise.



8 Sheaves Revisited

In which we return to sheaves, first taking a closer look at three historically signifi-
cant examples, using these to further unpack important general features of sheaves,
then considering when and why we can fail to have a sheaf, and finally looking at
a result concerning the relationship between presheaves and sheaves when dealing
with orders.

This chapter returns to sheaves. We first take a closer look at three examples that were
historically rather significant in the early development of sheaf theory—sheaves in the
context of manifolds, analytic continuation, and “cross sections” of a bundle. In the course
of developing these examples, we take the opportunity to dwell further on important fea-
tures of sheaves. We then include a section dedicated to what is not a sheaf, or when and
why we can fail to have a sheaf. Finally, we look at an important result concerning the
relationship between presheaves and sheaves in the case of working with orders.

8.1 Three Historically Significant Examples

Example 203 Euclidean space, the space of classical geometry, is comparatively “well
behaved.” In many areas of geometry and physics, one has to deal with fairly complicated
structures, and it is desirable to have a description of these things in terms of simpler
properties found in Euclidean space. This is where the concept of a manifold comes in.
Manifolds are, roughly, topological spaces that look locally like Rn, where local here
means that every point of a manifold will have an open neighborhood that admits a one-to-
one map onto an open set of Rn. You can think of a manifold as a space that is “curved” in
certain ways, but such that locally—in a small enough neighborhood of any of its points—it
“looks like” a part of the usual Euclidean space. In other words, even if globally a manifold
does not look like a Euclidean space, locally it will resemble Euclidean space near each of
its points.

Manifolds may be regarded as being seamlessly glued together from various different
patches, so that overlapping patches form “sheets” that make up the entire space. One of the
principal reasons for moving to manifolds is that there are a number of useful instruments
available to us in the context of Rn—such as those of integral and differential calculus—
that it is desirable to import to the study of other (more complicated) spaces. Sometimes
we have a topological space on which we would like to employ the instruments of calculus,
for example, and we find that such spaces are locally like open subsets of the Euclidean
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space Rn even while they do not provide coordinates valid everywhere. The basic idea
with manifolds is that we can cope with such spaces by transferring the instruments that
are available in Rn to small open sets and then patching those sets together, in a sense
“recovering” important aspects of the original topological space, while taking advantage
of the usual tools.

In chapter 5 (5.1.1), we discussed how functions of various sorts—such as continuous,
infinitely differentiable, real analytic, holomorphic functions—are not only all continuous,
but the condition for each continuous function to belong to its given class is in fact a local
condition, meaning that the question of it having a property is in fact equivalent to it having
that property in the neighborhood of every point in its domain of definition. In general,
when piecing together a manifold, one must just consider what the local structure is that
needs to be preserved from one piece to another. In short, manifolds and the functions on
them are distinguished by being constructed by the pasting together of pieces that have a
particular “nice” property locally.

All of this—the issue of locality and the notion of gluing or patching together local
patches—should suggest that sheaves are perhaps lurking somewhere in the background.
Indeed, sheaves arise in a particularly natural way in the context of manifolds, and were
accordingly pivotal in the early historical development of sheaves.

Formally, a manifold is defined as follows:

Definition 204 An n-dimensional topological manifold M is a second countable (its topol-
ogy has a countable base) Hausdorff space116 such that each point q∈M has an open
neighborhood U homeomorphic to an open set W ⊆Rn, that is, for each point in q∈M,
there is an open neighborhood of this point such that there exists a map φ from this
open neighborhood into Rn, which must further satisfy: (1) φ is invertible (i.e., we have
φ–1 :φ(U)→U); (2) φ is continuous; (3) φ–1 is continuous.117

If the reader has never worked with manifolds, this definition may be difficult to parse at
first. If the reader is intimidated by this definition, it is fine to just think of a sphere or the
surface of a globe, or a finite cylinder.

The homeomorphism φ : U→W(⊆Rn) given in the definition is usually called the chart
map for the cover (on which more below). This map, together with the open set U, gives the
pair (U,φ), called a chart for M. Note that φ is just a map φ(q) = (φ1(q),φ2(q), . . . ,φn(q))
(with n entries), where each φj is just a map φj : U→R for j = 1, 2, . . . , n. In other words,
the result is n many real numbers, x1, . . . , xn, the result of n component maps acting on
the point. These component maps are called the coordinate maps, and provide the local
coordinates.

All we require is that, for every point of the manifold, there exists a chart that contains
the point. The globe cannot be represented by any one single flat map, so in using flat maps
or charts to navigate the Earth’s surface, one must collect many (occasionally overlapping)
charts together into an atlas. Similarly, in general it is not possible to describe a manifold
via one chart alone. But the whole manifold may be covered by a collection of charts. A

116. A Hausdorff space is one in which distinct points are contained in disjoint open neighborhoods.
117. In other words, a homeomorphism is a continuous function between topological spaces that has a continuous
inverse; as such, a homeomorphism is what an isomorphism looks like within the category of topological spaces.
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collection of charts {(Ui,φi) | i∈ I} is called an atlas of the manifold M if M =
⋃

i∈I Ui.
More formally,

Definition 205 An atlas for a manifold M is an indexed set {φi : Ui→Wi} of charts such
that together all the domains Ui cover M.

As an example of this, the torus (3-D) is a 2-D manifold, since it can be covered by charts
to R2. Something like a cross, or branching lines, on the other hand, does not yield a
manifold, for at the branch points it is not possible to find an invertible continuous map on
an open neighborhood of those points.

The proper understanding of manifolds is nicely suggested by the case of the two-
sphere manifold S2, in which context we can provide an atlas consisting of two charts
via stereographic projection. Of course, this sphere can be described as the subset
{(x, y, z) | x2 + y2 + z2 = 1} in R3. But we can also describe it intrinsically, meaning with-
out reference to the ambient space R3, in terms of the points via some parameterization.
It is not possible to cover the sphere with a single chart, since the sphere is a compact
space, and the image of a compact space under a continuous map is compact, while Rn is
noncompact—so there cannot be a homeomorphism between Sn and Rn.118 However, it is
possible to cover the sphere by two charts, as will be seen.

In order to develop this further, we will first need to review the relevant notions involved
in stereographic projection. The basic idea is that we want to “picture” the sphere as a
plane by projecting it onto the plane. We could do this by first isolating the south pole of the
sphere, S = [0, 0, –1]. To parameterize the sphere we consider a point in the equatorial plane
given by z = 0, namely P = [r, s, 0], and then draw a line from the south pole through this
point. Such a line will intersect the sphere somewhere, say Q, and the resulting line from S
to Q will be unique and will intersect the plane in exactly one point. We can describe this
line in vector form as Q = [0, 0, –1] +λ(S – P) = [0, 0, –1] +λ(r, s, 1) (where round brackets
denote a vector and square brackets a point). This is of course equal to a point [λr,λs,λ –
1]. We are looking for what values of λ land us on the sphere, that is, whenever

(λr)2 + (λs)2 + (λ – 1)2 = 1

⇐⇒ λ2(r2 + s2 + 1) – 2λ= 0

⇐⇒ λ= 0 or λ=
2

(1+ r2 + s2)
.

Substituting the nontrivial value of λ in to our equation for Q, we get the point where the
line from S to P meets the sphere

Q =
[ 2r
1+ r2 + s2

,
2s

1+ r2 + s2
,
1 – r2 – s2

1+ r2 + s2

]
and where for every value r, s, we get a point on the sphere, and every point on the sphere,
with one exception, is obtained in this way. The sole exception that prevents this from

118. This argument is not quite complete, as is. A chart is a homeomorphism onto an open subset of Rn, which
need not be Rn itself. Thus, one must use the fact that compact subsets of Euclidean space are closed and bounded.
In sum, this means that any chart that is defined on the entire sphere is a homeomorphism to both a closed and
open subset of Rn, which by the properties of connectedness and nonemptiness must be Rn itself.
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giving a bijection is obviously the point S = [0, 0, –1], corresponding to the line tangent to
the south pole.

In other words, then, for every point on the plane (i.e., every r, s from [r, s, 0]), there
is an associated point on the sphere (with the exception of S = [0, 0, –1]). We thus have
a map φ–1

s :R2→ S2 – {S}, the inverse projection map, or the rational parameterization
of the sphere. We will denote the sphere with the south pole removed S2 – {S} by Us.
But now note that S, P, and [x, y, z] all belong to the same line. Thus, [r, s, 0] =λ[x, y, z] +
(1 –λ)[0, 0, –1], which gives that λ= 1

z+1 , and thus that r = x
1+z , s = y

1+z . This is in fact the
projection map, φs : Us→R2. On all the points for which they are defined, this map and the
inverse map are clearly continuous; thus we have homeomorphisms. This moreover means
that we have produced a coordinate chart for Us. We can do exactly the same sort of thing
starting with the north pole, with the expected result that all points are covered except for
a sole exception, the north pole itself. Similar to before, we can let Un denote S2 – {N}.
Then we have another homeomorphism pair, φ–1

n :R2→Un and φn : Un→R2.
Note that together, Us and Un provide a cover of S2, and that together with their respec-

tive charts, they give us an atlas for all of S2. Moreover, on the intersection Un ∩Us (=
S2 – {S, N}, i.e., the sphere without its poles), we have that φi(Un ∩Us) =R2 – {(0, 0)}.
The idea is that we can obtain all of S2 by taking these two homeomorphic copies of
R2—namely Us and Un, or rather φs(Us)∼= Ws⊆R2 and φn(Un)∼= Wn⊆R2—and pasting
together the φs(Us ∩Un)∼= Wsn⊆Ws to φn(Us ∩Un)∼= Wns

∼= Wn via appropriate transition
functions (discussed below). It is straightforward to define the transition function between
the two projections which enables such gluing. In this way, we will have thus constructed
the atlas {(Us,φs), (Un,φn)}, and an atlas determines M = S2 as a topological space.

Stepping back, a little more generally now, assume given two charts (Ui,φi) and (Uj,φj).
The general idea here is captured in something like the following figure:
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Two charts φi and φj of an atlas might overlap on the set Ui ∩Uj. But then by composition

of φi with the inclusion Ui ∩Uj⊆Ui→Wi, we get a homeomorphism φij : Ui ∩Uj
∼=−→Wij

that goes from the overlap to an open set Wij⊆Wi⊆Rn. However, while a point in the
intersection is mapped to one set of coordinates via φi, it is in general mapped to another
set of coordinates in φj. Accordingly, φj gives an in principle different homeomorphism

φji : Ui ∩Uj
∼=−→Wji from the intersection to a different open set Wji⊆Wj⊆Rn. In the above

figure, the dotted regions on the bottom left and right figures in Rn represent φij(Ui ∩Uj)∼=
Wij and φji(Ui ∩Uj)∼= Wji, respectively. Notice that, as homeomorphisms, these are not just
maps, but maps with inverses.

The question then is: how do we translate or transition between the two homeomor-
phisms on the overlap? We are looking for a map ψij : Wij→Wji, a rule that enables us to get
from a point in one set of coordinates to that same point in terms of the other coordinates.
In our example of the manifold S2, such a transition rule is evident and easy to construct
explicitly. To find this more generally, notice that the map φij is invertible (it describes a
homeomorphism). So we can take a point q∈φij(Ui ∩Uj)⊆Rn and apply the inverse map
to it to get back to the manifold. We then apply φji, landing us back in Rn, but this time
with the coordinates specified by φj. In other words, we have constructed the composite
map (φji ◦φ–1

ij )(q), producing coordinates of q in the other chart, and we can of course do
this for any such q in the overlapping region. Thus we are really mapping one open set of
Rn to another, and doing so homeomorphically (the composite of homeomorphisms is a
homeomorphism).

With such a chart transition map we thus have the following:

Ui ∩Uj

φij(Ui ∩Uj) φji(Ui ∩Uj)

φij φji

φji◦φ–1
ij

where, as in the following, the two bottom objects are contained in Rn.
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This transition map ψij gives us our desired change of coordinates, a map from an open part
of Rn to another open part of Rn. Since we already had continuous inverses φ–1

i and φ–1
j ,

the transition map comprising the restricted maps is guaranteed to be continuous. Note
also that in changing coordinates, from the “perspective” of p∈Ui ∩Uj (think of this as
the “real world”), this p “does not care” what coordinates it is in, or that you have changed
coordinates.

The really important point here is that in general the chart transition maps contain the
instructions for how to glue together the various charts of an atlas. In other words, with
these maps, you have all the global information you need. In the case of our example with
S2, there were only two charts that needed gluing. But in the general case, the conditions
detailed above hold for all i, j in some index set I, ultimately allowing an entire manifold M
to be covered. This process of obtaining the entire manifold by taking all the Wi⊆Rn and
pasting the φi(Ui ∩Uj)∼= Wij⊆Wi to φj(Ui ∩Uj)∼= Wji⊆Wj by the transition functions can
be formally described with the following coequalizer diagram:∐

i,j

Ui ∩Uj

∐
i

Ui M
β

α γ

Here
∐

i denotes the coproduct in the category Top, which is the disjoint union; γ takes
each x∈Ui and sends it to the same point x∈M; the maps α takes each point xij in the
intersection Ui ∩Uj to the same xij in Ui, while β takes each point xij in the intersection Ui ∩
Uj to the same xij in Uj. M is the coequalizer of these maps α and β in the category Top.
Given how consideration of locally defined functions over open sets ordered by inclusion
reverses the direction of the arrows, and given the definition of a sheaf in terms of an
equalizer diagram, the close connection to sheaves should be apparent.

Returning to S2 again, a further important feature of all this is that we can now test a
function on S2 for certain properties, like continuity or differentiability, by trying it on each
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of the two parts (each of the two charts) separately. Moreover, a function will be contin-
uous on U⊆M when its composite with φ–1 is continuous on W ⊆Rn. Via the following
important direct image sheaf construction, we will be able to appreciate how the chart will
determine a particular sheaf of continuous functions on U.

Definition 206 If f : X→Y is a continuous map of spaces, then each sheaf F on X yields a
sheaf f∗F on Y defined, for V open in Y , by (f∗F)(V) = F(f –1(V)). In other words, since f is
continuous, it induces an order-preserving map, f –1. Composition with f –1 then gives f∗F
defined as the composite functor

O(Y)op f –1

−−→O(X)op F−→Set

This sheaf is usually called the direct image of F under f .119

Notice that the map f∗ is in fact a functor

f∗ : Sh(X)→Sh(Y)

and that (f ◦ g)∗ = f∗g∗, which means that by defining Sh(f ) = f∗, we have that Sh becomes
a functor on the category of all (small) topological spaces. And, in particular, if f : X→Y
is a homeomorphism, then f∗ gives an isomorphism of categories between sheaves on X
and sheaves on Y .120

Returning to our example, then, our chart (U,φ) will in fact determine a particular sheaf
CU of continuous functions on U, specifically as the direct image CU = (φ–1)∗CW . The
coordinate projections Rn→R, composed with φ after being restricted to W, give us the
local coordinates for the chart φ, that is, the n-coordinate functions x1, . . . , xn : U→R.
Going the other way, these coordinate functions determine the chart as the continuous map
U→Rn with components xi : U→R, the map to Rn being restricted to its image W ⊆Rn.

We now make a key general observation, one that can be applied to our present situation.
Consider how if we let U be an open set in a general space X, then any sheaf F on X, when
restricted to open subsets of U, clearly gives us a sheaf F|U on U. And so, in this way,
U �→Sh(U) and V ⊆U �→ (F|U �→F|V ) defines a contravariant functor on O(X). Moreover,
since the notion of a sheaf is “local,” this suggests that this functor itself might be a sheaf.

Theorem 207 If X =
⋃

Wk is an open covering of the space X, and if, for each k, Fk is a
sheaf of sets on Wk such that

Fk |(Wk∩Wl) = Fl|(Wk∩Wl)

for all indices k and l, then there will exist a sheaf F on X, unique up to isomorphism, with
isomorphisms F|Wk

∼= Fk for all indices k, which match on the equation shown above.121

119. This direct image sheaf is also sometimes called the pushforward of a sheaf.
120. As you might expect, a continuous map of spaces f will induce another functor going in the other direction
on the associated categories of sheaves. Performing the reverse operation yields the inverse image sheaf f ∗, or
the pullback of a sheaf along a map. Pushforwards and pullbacks are especially useful in providing us with a
canonical way to register the effects of changing base spaces. We look more closely at these two functors in later
chapters.
121. A proof of this can be found in Mac Lane and Moerdijk (1994). Instead of going through this, we note,
following Serre, that more generally we could replace the equality in the above theorem with isomorphisms
of sheaves, showing that sheaves are in fact collatable up to isomorphism. Explicitly (since this is actually the
version that most concerns us in the present case): If X again has an open cover with the Wk , and if, for each index



248 Chapter 8

Many sheaves can be built up in this way from the local pieces Fk.
It is basically immediate from this theorem how we can produce the sheaf of contin-

uous functions on S2, or the sheaf of differentiable functions on S2, and so on, and thus
ultimately sheaves of smooth structures on S2.

An important point that emerges in this discussion of sheaves on manifolds is that in the
standard definition of sheaf the reader might be misled into thinking that what we need on
overlapping regions is equality “on the nose”; but this is not quite right. In fact, all that is
actually needed in patching together different information on the same overlapping region
is just a consistent translation system that can take us from one data piece to the other and
back—that is, we need a set of isomorphisms allowing us to translate between them, not
simple equality. This system of translations typically leads to what is called descent data,
and can be thought of, intuitively, as providing some sort of generalized matching.

Before moving on, it is worth noting that the “meaning” of the manifold only really
emerges once we have glued together the charts according to these transition maps. The
idea is to study manifolds by “pushing them down” onto the charts in Rn with their transi-
tions, thus allowing us to work with far simpler maps from some portion of Rn to another.
Often it is desirable to define properties, like continuity or differentiability, of a “real-world
object” (a map from R to M) by judging suitable conditions on a chart representative of
that real-world object. Say we start with a path or curve γ :R→M in a manifold. We then
take an open set U enclosing it, yielding a map γ :R→U. We can now push down the
real-world curve (γ, in bold) to a chart via some chart map φ, to get its image in Rn:

R U

φ(U)⊆Rn

γ

φ

But then, of course, instead of looking at the curve in the real world, we can focus just on
the map φ ◦ γ:

R U

φ(U)⊆Rn,

γ

φ◦γ φ

which represents the original curve as some curve in Rn down in the chart. If we want to
know about the continuity of the real-world curve, we instead look at continuity in this
chart representative of it; but one should not confuse this chart representative for the real

k, Fk is a sheaf on Wk , so for all j and k

θjk : Fj |(Wj∩Wk) ∼= Fk |(Wj∩Wk)

is an isomorphism of sheaves, and for each i, j, k we have

θik = θjk ◦ θij

whenever this is defined; then it can be shown, in the same way as the less general case, that there will exist a
sheaf F (unique up to isomorphism) on X and isomorphisms φk : F|Wk →Fk (unique up to isomorphism) such
that

φj = θijφi

when this is defined.
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world (for instance, one cannot define differentiability on the real-world trajectory given
by γ), or forget that φ could be ill-defined. In order to overcome this latter issue, and ensure
that the chart is not arbitrary, we make sure that a given property (e.g., continuity) does not
change under change to another chart. Formally, what we mean is:

ψ(U)

R U

φ(U)⊆Rn.

γ

φ◦γ

ψ◦γ

φ

ψ

Then if we know, for instance, that φ ◦ γ is continuous, we also want to know if we can
say the same for ψ ◦ γ. But this arrow is given by another path around the diagram, in
particular,

ψ ◦ γ =ψ ◦ (φ–1 ◦φ) ◦ γ = (ψ ◦φ–1) ◦φ ◦ γ.

But we know that (ψ ◦φ–1) is continuous, and we know that φ ◦ γ is continuous, and the
composition of continuous functions is continuous. So ψ ◦ γ must be continuous as well.
The map φ ◦ γ is thus well defined and continuous, and since the downward map φ is
continuous, we can show that we can “lift” continuity up to γ. But notice that if we had
said that φ ◦ γ was differentiable, on the other hand, that does not automatically guarantee
that ψ ◦ γ is differentiable. Everything depends, then, on the nature of the transition map.122

We can be more general. Two charts (U,φ) and (V ,ψ) of a topological manifold are
said to be blank-compatible if either U ∩V = ∅ or whenever U ∩V 
= ∅, we have that the
following transition maps

ψ ◦φ–1 :φ(U ∩V)→ψ(U ∩V)

φ ◦ψ–1 :ψ(U ∩V)→φ(U ∩V)

have the blank property. We then take a restriction of the maximal atlas to get an atlas
Ablank, and say that this atlas is a blank-compatible atlas as long as any two charts in Ablank

are blank-compatible. A blank-manifold is then a triple (M, O , Ablank).
Of course, blank could be, for instance, the property of differentiability. But it can be

many other things as well. For instance, it could represent: C0 (trivially, because every
atlas is a C0 atlas), C1 (i.e., differentiable once, the result of which is continuous), Ck

(i.e., k-times continuously differentiable), C∞ (i.e., continuously differentiable arbitrarily
many times), Cω (i.e., real analytic, meaning there exists a [multi-dimensional] Taylor
expansion), C∞ (i.e., complex differentiable, meaning that each continuous map from Rn

to Rn satisfies the Cauchy-Riemann equations—this gives a complex manifold). In this
list, our atlases are becoming more and more restrictive, as we place stronger and stronger
conditions on the transition functions. A well-known theorem informs us that as long as
k≥ 1, any Ck-atlas ACk of a topological manifold will contain a C∞-atlas. There are some
topological manifolds where you simply cannot remove a chart or charts in such a way that

122. In terms of differentiability, the transition map might preserve continuity but introduce an edge, preventing
differentiability. But if we just “rip out” all those charts in our atlas that are only continuous, but not differentiable,
then we get a restricted atlas where all the transition functions are differentiable.
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all that remains is still an atlas and has continuously differentiable transition functions.
However, what the theorem tells us is that whenever you can achieve that the transition
functions are at least once continuously differentiable for an atlas, you can be sure that
by removing more and more charts you will eventually have a C∞-atlas. This guarantees
that we may always, without loss of generality, consider C∞-manifolds, which are called
smooth manifolds (“always” meaning as long as we guarantee C1).

In terms of the general picture given above, we will be able to use the homeomorphism
φi to transfer smoothness on Wi⊆Rn to smoothness on Ui⊆M, giving us the sheaf Ck

i of
all smooth functions on the open subsets of Ui. Then the smoothness expected to hold of
the transition functions guarantees that the sheaves Ck

i and Ck
j will agree when restricted

to the overlap Ui ∩Uj. Thus, via the result from theorem 207, we know that these sheaves
Ck

i themselves can be collated, yielding the sheaf Ck of all smooth functions on opens
of M. Moreover, this sheaf provides an instance of the general notion of a subsheaf, the
description of which in a sense nicely exhibits the local character of a sheaf. Our particular
sheaf will be a subsheaf of the sheaf of continuous functions; obviously, being a sheaf,
its restriction to each of the Ui gives a sheaf Ck

i . This is just to say that each smooth
manifold supports what is sometimes called a structure sheaf, namely the sheaf Ck of
smooth functions. This is, importantly, not just a sheaf of sets, but a sheaf of R-algebras, a
sheaf of rings.

For the Euclidean n-space X =Rn, more generally, there are a number of examples of
sheaves, which then give rise to a number of subsheaves. For U open in Rn, we let Ck(U)
be the set of all f : U→R having continuous partial derivatives of all orders up to (and
including) order k. This gives a functor Ck : O(X)op→Set with values in Set (or in ModR),
which in fact yields a sheaf. Notice that each Ck will be a sheaf on Rn, leading to a nested
sequence of subsheaves on Rn:

C∞⊆ · · · ⊆Ck⊆Ck–1⊆ · · · ⊆C1⊆C0 = C.

There are other constructions found in the theory of manifolds that in fact lead to sheaves,
for instance, via the notion of a tangent bundle for a smooth (C∞) manifold M. The story is
pretty similar for various types of manifolds. But perhaps the most important, historically,
involves complex analytic manifolds, covered in the next example (after a brief interlude).

Box 8.1

Philosophical Pass: Manifolds and Sheaves

The construction of a manifold, as presented in the previous example, supplies us with further
philosophical motivation for the relationist perspective, introduced in earlier chapters (espe-
cially chapter 6). The inability to describe the two-sphere in a single coordinate chart provides
us with another example of the need for multiple perspectives and their fusion.

As we saw, we have objects that are locally like domains in Euclidean space, where the clas-
sical devices of calculus are available to us. Using such objects, we can transfer such devices
to small open sets and then patch them together, piece by piece—the sheaf notion can be seen
as the tool used in this patching. One of the main virtues of the sheaf notion is that it enables
us to deal, in a systematic way, with objects that may not have a global definition but are
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only locally defined. In this way, via the need for multiple perspectives and their subsequent
patching, the sheaf notion emerges as an important part of the relationist approach.

8.1.1 Returning to the Examples

Example 208 Historically, the idea of a sheaf largely stems from problems surrounding the
analytic continuation of functions (together with the development of Riemann surfaces).
Analytic continuation involves the attempts to extend the given domains of definition of
functions to larger domains. Recall the following notion from analysis:

Definition 209 A function f : U→C, where U is open in Cn, is analytic (or holomorphic)
if it is described by a convergent power series in a neighborhood of each point p∈U.

Another way of saying this is that a function is analytic precisely when its Taylor series
about a point, say x0, converges to the function in some neighborhood for every x0 in its
domain, that is, locally it is given by a convergent power series.

Now, let V be an open subset of Cn, and for each open subset U⊆V , let AV (U) be the
set of all analytic functions on U. Then AV will in fact give us a sheaf (specifically, of
C-algebras).

Let us explore the connection between analytic continuation and sheaves more closely.
We begin with a pair (D, f ), where D⊆C is a domain and f : D→C is analytic. We say
that another such pair (D1, f1) is a direct analytic continuation or an analytic extension of
(D, f ) if D∩D1 
= ∅ and f |D∩D1

= f1|D∩D1
. As one should now expect, this gives us a gluing

condition. In such a case, we then define

g : D∪D1→C

by
g|D = f , g|D1

= f1.

Analyticity is locally defined, so we can observe that g must be analytic, and we say that g
is obtained by gluing f and f1. One of the interesting notions here is that f may be defined
very differently than how f1 is defined. In general, an analytic function could be given by a
power series, by a formula, or by an integral. The main question that presents itself in this
setting is then: what is the largest open set to which a function can be extended, and can
we describe such an extended function in some way?

What follows is a simple, concrete illustration of these ideas. Take

D = {z : |z|< 1}

and f (z) = 1+ z + z2 + z3 + · · · , the geometric series. Then f (z) is a power series, centered at
z. The radius of convergence is the unit disk, that is, inside this disk the function always
represents an analytic function (if you write out the Taylor expansion at zero, you will get
back this power series). Now consider

D1 =C \ {1}

and f1 = 1
1–z . This is a (reciprocal of a) polynomial, and so as long as the denominator does

not vanish, it will be analytic everywhere, that is, an entire function. But writing out the
Taylor expansion of this function at zero gives exactly the same thing as for f , and in fact
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(D1, f1) is an analytic continuation of f . We can now observe that while f lived only strictly
inside the unit disk, f1 (to which f is equal!) lives everywhere except at points on the unit
circle. The function thus extends to all the complex plane (except for the points on the
unit circle)! The moral of the story is that just because the power series representation lives
only in a certain region does not mean that the analytic function that it represents lives only
there. It is worth noting, however, that analytic extension is not always possible.

Now, the gluing condition stated above already suggests the close connection with
sheaves. We also have the required uniqueness. If (D1, f1) and (D1, f2) are two analytic
extensions of (D, f ), defined on the same domain D1, then f1 = f2. Note that it is immediate
from the fact that both f1 and f2 are analytic extensions of f that if you take f1|D∩D1 , this is
equal to f |D∩D1

which is in turn equal to f2|D∩D1
. To check that the two analytic functions

are equal on a domain (specifically the restricted domain in this case), all you have to do
is find one convergent sequence in the domain that converges to a point in the domain, and
verify that for each point of the sequence the two analytic functions take the same value.

So far, we mentioned only a direct analytic extension from one domain to another, but
we can extend this idea from a pair of domains to any finite number of domains. The idea is
that you do not insist that they all intersect—only that there is an ordering such that every
member intersects with the next. More formally: suppose we have pairs (Dα, fα), where
the Dα are open connected domains and the fα : Dα→C are analytic, as well as a total
ordering of the indexing set consisting of the {α}. For simplicity, let A be finite, that is,
A = {α1 <α2 < · · ·<αm}. Now, for all i, let Dαi ∩Dαi+1 
= ∅ and

fαi |Dαi∩Dαi+1
= fαi+1 |Dαi∩Dαi+1

.

In other words, you just have a chain of direct analytic continuations. In this case, we say
that (Dαm , fαm ) is the (indirect) analytic continuation of (Dα1

, fα1
). This process of gener-

ating a chain of direct analytic continuations—that is, interlocking or overlapping regions
of extension of various locally defined functions whereby the domain of that function is
extended step by step—might be pictured in the following way (where to each Dαi is of
course attached a function fαi ):

Now, something interesting can happen in such situations. We can have a chain of analytic
continuations such that it happens that the final domain is the same as the first domain, but
the function we get will be completely different. What is in fact happening in this case is
that these functions are two so-called branches of an analytic function. (So this process of
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analytic continuations helps you find all possible branches of an analytic function.) Note
also that this process is only nontrivial and useful if there are singularities. If the function
were already entire, there would be nothing to extend.

Stepping back a bit, and recalling the previous example: smooth and complex analytic
manifolds are particular examples of what are called ringed spaces, where a ringed space X
is a topological space equipped with a fixed sheaf of rings, in which setting such a sheaf is
referred to as the structure sheaf. In addition to leading to the notion of a Riemann surface,
the consideration of analytic functions of one complex variable leads to the notion of a
bundle. The next example provides a closer inspection of this notion, and covers a few
notable abstract results that emerge in that context.

Example 210 In the previous example, we mentioned that the consideration of holomor-
phic functions of one complex variable can lead to the notion of a bundle. In what follows,
we introduce the concept of a bundle, a notion that in a sense can be thought of as captur-
ing the underlying set-theoretic structure of the sheaf idea. We will begin by considering a
bundle of sets (over the discrete base space I).

Suppose we start with a coproduct
∐

Yi of sets, that is, the disjoint union
⊔
i∈I

Yi or⋃
i Yi× {i}, where the additional factor {i} enforces disjointness. Then a bundle is the

entire structure depicted in the following figure:

Base space: I

p

•i

Yi

•j

Yj

•k

Yk

•l

Yl

•m

Ym

p–1(I)∼= Y
Stalk space: Germs

at m

Stalk/Fiber over m:
p–1({m}) = {y : p(y) = m}

Let us unpack this figure a bit, and clarify some of the terminology. Yi is called the stalk,
or fiber, over i. The map p : Y→ I is distinguished by the fact that if y∈ Y , then there exists
precisely one Yi such that y∈ Yi, in which case we set p(y) = i. This just means that every
member of the Yi gets sent to i. Thus, the stalk or fiber Yi can be got as the inverse image
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under the projection map p of {i}:

p–1({i}) = {y | p(y) = i} = Yi.

A stalk over some i∈ I can also be seen as consisting of a collection of germs, where
the germs at i are just the members of Yi, represented by dots in the above picture. For
simplicity, focusing on just a part of I, namely U = {j, k, l}, suppose we have

where, of course, each element of the space “above” is mapped via p to the element of
I directly below it—for example, p(j1) = p(j2) = p(j3) = j, p(l1) = p(l2) = l, and so on. Then
the fiber or stalk over l, for instance, is of course just {l1, l2}, while the fiber over j is just
{j1, j2, j3}, and so on. Referring back to the main picture, the set Y = {y | y∈ Yi for some i}
consisting of all the elements in any fiber over I, is then called the stalk space (or l’espace
étalé) of the bundle. And the entire structure is then called a bundle (of sets) over the base
space I.

This bundle construction is possible whenever there are functions. More specifically,
given p : Y→ I an arbitrary function from a set Y to I, we can define the bundle of sets over
I with stalk space Y by first defining Yi as the preimage p–1({i}) for each i∈ I, and then
taking

{p–1({i}) | i∈ I} = {Yi | i∈ I}.

But then it should be obvious that a bundle of sets over I is basically just a function with
codomain I, and so equivalent to set-valued functors defined on I, where I is a discrete
category. In other words, this is nothing other than the slice (comma) category (Set ↓ I) of
functions with codomain I, though it is also common to denote the category of bundles
over I by Bn(I). The reason for discussing such things is that a sheaf can be defined as a
bundle with some extra topological structure. We first redefine a bundle in a topological
context as follows:

Definition 211 For any topological space X, a bundle over X is a topological space Y
equipped with a continuous map p : Y→X.

As we did a moment ago, you can continue to imagine Y as “sitting above” X, and the map
p as projecting the points of Y onto their “shadows” p(y)∈X. The bundle is all of this—that
is, a triple (Y , p, X), where Y is the total space, X the base space, and p the projection map.

Notice from the definition that this is just to say that (topological) bundles are the objects
of the slice category (Top ↓X), where an arrow f : p→ p′ is a continuous (in fact, open) map
f : Y→Y ′ such that p′ ◦ f = p, where p′ is a map from Y ′ to X. The close connection between
the resulting category (Top ↓X) (or sometimes just Top(X)) and the category of sheaves
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over X will emerge in what follows. It will turn out that every sheaf can be regarded as
arising from a bundle; and, conversely, every sheaf gives rise to a bundle. To approach this
important connection, we first introduce another important notion:

Definition 212 A cross-section (or just section) of a bundle p : Y→X is a continuous map
s : X→Y such that p ◦ s = idX .

In general, a section s for a map p can be regarded as a procedure that at once picks out an
element from each of the fibers of p. In terms of the earlier case, where we were dealing
with a set bundle over a discrete space, we can depict one such (cross) section s1 as follows:

Then another section s2 might be given by

Still more evocatively, we might picture a particular section with something like
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where the ribbon connecting the individual selections from each fiber is meant to anticipate
the gluing process for the same sheaf, that is, where the various individual selections are
glued together (via the topology of Y) to create a section of a larger open set (the entire rib-
bon representing a global section). Altogether, we think of a bundle as the indexed family
of fibers p–1(x), one per point x∈X, glued together by the topology of Y .

8.1.2 Bundles to (Pre)Sheaves

A little more generally now, suppose we have a bundle (Y , p, X). If we consider some open
subset U of the base space X for the bundle p : Y→X, then p clearly restricts to a map
pU : p–1(U)→U, and this map will itself yield a bundle (now over U). Then, the following
diagram, with horizontal arrows as inclusions, will be a pullback in Top, the “best” way of
completing two given morphisms into a commutative square:

p–1(U) Y

U X.

pU p

i

s

But this lets us define a cross-section (section) s of this bundle pU: namely, a section of
the bundle p over U is a continuous map s : U→Y such that the composite p ◦ s is equal to
the inclusion i : U→X, that is, p ◦ s = idU .123 In the case of discrete spaces—where every

123. Note that it may very well happen that a map admits a locally defined section over a subset U ⊆X, but not a
global section (i.e., a section over all of X).
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subset is open, making p automatically continuous—things are especially easy to present.
For instance, suppose we have p on U = {j, k, l} as earlier

Then a section will of course just map each point of U to a point in Y that sits directly
above it. For instance, one section s1 for such a p over U will be given by

while another s2 might be given by

Observe that there would be a total of thirty-six distinct sections over U = {j, k, l}, given
such a map p. Similarly, for more general spaces, here is a picture of sections over an open
U⊆X
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Collecting the sections together lets us define

Γp(U) = {s | s : U→Y and p ◦ s = i : U⊆X}

the set of all cross-sections over U. But now observe that whenever V ⊆U, we will have
the induced (restriction) operation Γp(U)→Γp(V), restricting a function to a subset of its
domain. Via this assignment on objects (open sets) U, and the induced restriction operation,
altogether this just tells us that Γp(–) defines a presheaf

Γp : O(X)op→Set.

On objects U, Γp(U) supplies all the sections over U, and a given element s∈Γp(U) will
just be a choice of an element from each fiber over U. On arrows, the presheaf Γp acts
by restriction (for every subset inclusion V ⊆U). Given an inclusion V ⊆U, and given a
section s over U, we just restrict this to what s does on V ,

Γp(U)→Γp(V)

s �→ s|V .

It should be clear that, given a function s on U, one can test locally whether or not s
amounts to a section. But this locality suggests something more: namely that Γp is not just
a presheaf, but in fact forms a sheaf on X, called the sheaf of cross-sections (or sheaf of
sections) of the bundle p.

To see that Γp is in fact a sheaf, not just a presheaf, we need to see that it satisfies the
sheaf condition for every cover. Let us explore how this works for the particularly simple
case of the discrete sets we have been working with. Suppose given the sets U1 = {j, k} and
U2 = {k, l}, so that, together, we have a covering of the set U = U1 ∪U2 = {j, k, l}. We have
a presheaf Γp and a cover. We can then define a matching family for the cover: this will, of
course, just be a section t1 given over U1, such as
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and a section t2 over U2, such as

where these agree on the overlapping set U1 ∩U2 = {k}, as these particular sections t1 and
t2 do (since they both map k to k3). Pairs of sections that match on the overlap, such as t1
and t2, can then be glued together to yield a single section t∈Γp(U1 ∪U2) over the entire
set U = U1 ∪U2:
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Moreover, observe how this section t is such that t|U1 = t1 and t|U2 = t2. In this way, we can
build up sections over a space by gluing together sections given over local parts.

This example suggests how we can build a sheaf from the presheaf Γp. This is a general
procedure: proceeding in fundamentally the same way as above, every bundle over X will
give rise to a sheaf on X. Moreover, we know that in the category of bundles Bn(X) on
X, given (objects) bundles p : Y→X and p′ : Y ′→X, a morphism p→ p′ from the first to
the second is just a continuous map f : Y→Y ′ making the triangle p′ ◦ f = p commute. But
each such map p→ p′ of bundles over X (or maps in the slice category) will induce a map
Γp→Γp′ of (pre)sheaves on X, just as one would expect (a morphism of presheaves). This
means we actually have a functor Γ going from the category of bundles on X to presheaves
on X:

Γ : Bn(X)→SetO(X)op
.

Actually, this really gives a functor from bundles to sheaves, a fact we will highlight in a
moment. Earlier, though, we mentioned that we could also move in the other direction—
that is, that every sheaf is in fact a sheaf of sections of a suitable bundle. The next section
is devoted to seeing how every (pre)sheaf on X can be regarded as a (pre)sheaf of sections
of some bundle.

8.1.3 (Pre)Sheaves to Bundles

Suppose we start with a presheaf

P : O(X)op→Set.

We want to use P to construct a bundle over X. We will want to construct a collection of
sets, indexed by the points x∈X, take a union of these sets, and then place a topology on
this, leaving us with a space from which we can then define a map down to X. This will
give us our bundle.

To see how to construct the relevant sets in our desired collection, first observe that the
presheaf P acts on open sets, so it does not yet give us sets for the points of X. This is
where the notion of a germ comes in. The full demonstration that every sheaf is a sheaf
of cross-sections of a suitable bundle relies heavily on this idea of a germ of a function.
Earlier, with our base space discrete, we thought of germs as basically elements of a set.
But the more general idea of germs is that functions that agree in a neighborhood of the
given “germ point” are to be treated as equivalent. Two continuous functions f and g are
said to have the same germ at a point x provided they agree in an open neighborhood of
x. Intuitively, this language of “germs” at a point x can be thought of as naming what data
(such functions) look like under a microscrope zeroing in on x. Notice that

(germx f = germxg)⇒ (f (x) = g(x)),

that is,

if two functions have the same germ at a point, they must have the same value at that point,

but the converse does not necessarily hold, that is,

just because two functions have the same value at a point does not mean that they will agree near
or around that point (that is, are locally equal).
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This notion is suggested by the following picture of the functions y = x2, y = |x|, y = x, and
y = –x2:

All of the functions above have the same value at zero, but only y = x2 and y = –x2 agree
in a small neighborhood around 0—so of the four, only those two will have the same
germ at zero. Two functions provide the same germ precisely when they become equal
when we restrict down to some neighborhood of x. This explains why we suggested the
germ of a function can accordingly be thought of as what you get when you focus your
microscrope and increasingly magnify the point x. Relating this to the example involving
analytic continuation, two holomorphic functions h, k : U→C are similarly said to have
the same germ at a point a∈U if their power series expansions around a are the same,
which is to say that h and k agree on some neighborhood of a.

Now suppose given a presheaf P : O(X)op→Set on a space X, a point x, two open neigh-
borhoods U and V of x, and two elements s∈P(U) and t∈P(V). Then we can define the
following notion:

Definition 213 s∈P(U) and t∈P(V) have the same germ at x provided there exists some
open set W ⊆U ∩V containing x and s and t agree with respect to this set, that is,

s|W = t|W ∈P(W).

The relation of “having the same germ” at a point is in fact an equivalence relation, and
we call the equivalence class of any one such section s the germ of s at x, denoted germxs
or [s]x, if we can forget about the neighborhood on which it is defined. Suppose, then, we
denote by

Px = {germxs | s∈P(U), x∈U, U open in X},

the set of all germs at x. By taking all such functions that have the same germ (at a point)
and identifying them, we just get back the stalk Px of all germs at x. In a sense, the notion
of a “stalk” Px of a sheaf P is a generalization of the germ of a function, informing us about
the properties of a sheaf near a point x. Recall that the presheaf P does not yield sets for
the points of X, but rather for the open sets U of X. We will want to narrow in on smaller
and smaller open neighborhoods U′⊆U of a point x. But in looking at smaller and smaller
neighborhoods U′⊆U of a point x, it will not suffice to take any single neighborhood,
since a smaller one can always be taken. So we need to take some sort of limit, putting
some universal property in play. If U′⊆U, we know that we will have the induced presheaf
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restriction map P(U)→P(U′). As we range over all the neighborhoods of x, then, we will
want to take the colimit of all the sets P(U). Accordingly, the set Px of all germs at x is the
stalk of P at x, where the stalk is defined—over all open U⊆X that contain the given point
x—as the colimit (or direct limit)

Px = lim−→
U�x

P(U).

An element of the stalk Px will then be given by a germ of sections at x, that is, a section
over a neighborhood of x, where two such sections will be regarded as equivalent provided
their restrictions agree on a smaller neighborhood.

More explicitly, considering the restriction of the functor P along the open neighbor-
hoods of x, the functions germx : P(U)→Px just takes a section s∈P(U) defined on an
open neighborhood U of x to its germ at x, generalizing the usual notion of a germ (of
functions), where the set Px of all germs at x is the colimit, with germx the colimiting cone,
of the functor P restricted to open neighborhoods of x.

Now, we also have that any morphism h : P→Q of presheaves (i.e., any natural trans-
formation of functors) will induce at each point x∈X a unique function hx : Px→Qx such
that the following diagram commutes for any open set U with x∈U:

P(U) Q(U)

Px Qx.

hU

germx germx

hx

But then notice that the assignments P �→Px, h �→ hx altogether just describe a functor
SetO(X)op→Set, a functor you can think of as taking the germ at x.

Now that we have our sets Px of germs, we can range over the x∈X and further combine
the various sets Px of all germs in the disjoint union (which we will call ΛP) over x∈X:

ΛP =
∐

x

Px = {all germxs | x∈X, s∈P(U)}.

Using this ΛP, a disjoint union, there will be a unique projection function

π :ΛP→X

that projects each germxs down the point x where it is taken. With such a map π and the set
ΛP, observe how we are making progress toward a description of a presheaf P as a bundle
over X. However, it remains to put a topology on ΛP, in order to speak about the continuity
of π, and so to finish the construction. We can use the equivalence classes of sections—that
is, germs—to form a basis for the relevant topology.

Notice that each s∈P(U) determines a function from U to ΛP taking all x∈U to the
germxs, a function that is in fact a section of π, in the sense that π ◦ s = idU . In this manner,
each element s of the original presheaf can be replaced by an actual function to the set ΛP

of germs, in the following way: for any open set U⊆X, s∈P(U), and x∈U, the element
s∈P(U) defines a section s : U→ΛP mapping x to germxs∈Px, the germ of s at x. But
then the collection

{s(U) | U open in X, s∈P(U)}
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of subsets of ΛP in fact forms a basis for a topology on ΛP. For a basis for the topology,
we first take open sets around each point in ΛP. Recall that a point in ΛP is just a germ,
specifically a point q∈ΛP will lie in some set Px for some x, making it the germ at x of
some function s∈P(U), where U is an open neighborhood of the point x. We thus get our
base of open sets for ΛP by taking all the image sets s(U)⊆ΛP. Then an open set of ΛP

will be a union of such sections s.
With such a topology, ΛP becomes a topological space, and π :ΛP→X (and also every

function s) will be continuous (in fact, a homeomorphism). For any element s∈P(U),
moreover, the function s : U→ΛP will be a continuous section of ΛP, where a section v
of the space ΛP is continuous precisely when every point x∈X has a neighborhood U
such that v = s on U for some s∈P(U). To see this, let s∈P(U) and t∈P(V), and let these
determine the sections s and t, respectively, that agree at some point x∈U ∩V . Then, by
the definition of a germ, we know that the set of all points y∈U ∩V with s(y) = t(y) will be
an open set W ⊆U ∩V with s|W = t|W . Thus, each s will be continuous.

Moreover, if h : P→Q is a natural transformation between presheaves, the disjoint
union of the functions hx : Px→Qx yields a map ΛP→ΛQ of bundles, that is moreover
continuous. Therefore, altogether, we have described a functor

Λ : SetO(X)op→Bn(X)

P �→ΛP

from presheaves to bundles.
We have thus sketched how we can turn presheaves into bundles. In the prior section, we

saw how to turn bundles into (pre)sheaves. In the next section, we come to the important
takeaway of all this, which involves what happens when we relate and then compose these
functors.

8.1.4 The Bundle-Presheaf Adjunction

Theorem 214 For any space X, the bundle functor (assigning to each presheaf P the bundle
of germs of P)

Λ : SetO(X)op→Bn(X)

is left adjoint to the sections functor (assigning to each bundle p : Y→X the sheaf of all
sections of Y)

Γ : Bn(X)→SetO(X)op
.

Recall that whenever you have an adjoint pair, with left adjoint L : C→D and right adjoint
R : D→C, this comes with a unit map

η : id⇒RL

and a counit
ε : LR⇒ id.

That Λ#Γ thus means that we will have unit and counit natural transformations

ηP : P→ΓΛ(P),

for P a presheaf, and
εY :ΛΓ(Y)→Y ,



264 Chapter 8

for Y a bundle.

We will not give a proper proof of this here,124 but instead focus on these unit and
counit maps. Consider for a given presheaf P on X the sheaf ΓΛP of sections of the bundle
ΛP→X, formed by first running the “take the germ” functor Λ and then following this with
the “sections” functor Γ. For each open subset U of X, there will be a function ηU : P(U)→
ΓΛP(U), taking s∈P(U) to s, and where restriction of s to the opens of U will agree with
η, thus informing us that we have in fact just described a natural transformation

η : P→Γ ◦ΛP.

The next result is one of the main punch lines of all this.

Theorem 215 If the presheaf P is a sheaf, then the η shown above will be an isomorphism
P∼= ΓΛP—that is, every sheaf is a sheaf of sections.

Proof. Suppose we have a presheaf P : O(X)op→Set. We know that for each open subset
U of X, the function ηU : P(U)→ΓΛP(U), takes s∈P(U) to s, where, recall,

s : U→ΛP, s(x) = germxs, x∈U.

To show that ηU is an isomorphism, let us first show that it is injective, that is, that

if s = t, then s = t,

for s, t∈P(U). But s = t just means that the germ of s and the germ of t agree on all points
of U—that is, germxs = germxt for each point x∈U. Thus, for each x, there will moreover
be an open set Vx⊆U such that s|Vx = t|Vx . But notice that the Vx supply a cover of U, which
means that in

P(U)→
∏

x

P(Vx)

the elements s and t will have the same image. But then, supposing P is in fact a sheaf, we
know that there can be at most one such element (i.e., s = t), which shows ηU injective.

To finish the proof, one must then show that r : U→ΛP an arbitrary section of the bun-
dle of germs over an open U⊆X is in the image of η, altogether showing that η is an
isomorphism. Details are left to the reader.125

We can say even more about this special map η. Given a presheaf P, a sheaf F, and
θ : P→F any morphism of presheaves, then there will be a unique map σ :ΓΛP→F of
sheaves making

P ΓΛP

F

η

θ
σ

commute (i.e., σ ◦ η = θ). Another way of saying this is that the morphism η is universal
from P to sheaves.126

124. A proof can be found in Mac Lane and Moerdijk (1994, II.6).
125. A proof can be found in Mac Lane and Moerdijk (1994, II.5).
126. See Mac Lane and Moerdijk (1994, II.5) for further details. All of this is in Grothendieck for the first time.
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This important composite functor

ΓΛ : SetO(X)op→Sh(X) (8.1)

is known as the associated sheaf functor, or the sheafification functor. The previous remark
about the universality of η further entails that this sheafification functor ΓΛ is in fact a left
adjoint to the (full subcategory) inclusion functor

Sh(X)→SetO(X)op
.

It is common to suggest that one think of ΓΛ as taking each presheaf P to the “best
approximation” ΓΛP of P by a sheaf.127

Returning to the main theorem: constructing sheaves in this way as sheaves of cross-
sections of a bundle suggests the further idea that a sheaf F on X can be replaced by the
corresponding bundle p :ΛF→X. But in constructing the topology on ΛP, we mentioned
that every function s : U→ΛP will not only be continuous, but will actually be a local
homeomorphism. This basically means that each point of ΛP will have an open neighbor-
hood that is mapped via p homeomorphically onto an open subset of X. This leads to the
following definition:

Definition 216 A bundle p : E→X is said to be étalé (or étalé over X) when p is a local
homeomorphism, where this means that to each e∈E, there is an open set V , with e∈V ⊆
E, such that p(V) is open in X and p|V is a homeomorphism (bicontinuous isomorphism)
V→ p(V).

When we have the étalé space given by taking E =ΛP, this can be imagined as a space
spread out over X, where its open sets “look like” the opens down in X. If we now let
Etale(X), the category of étalé bundles over X, denote the (full) subcategory of the category
Bn(X) of bundles over X, then we actually have the following powerful result:

Proposition 217 The adjoint functors Λ and Γ from before

SetO(X)op
Bn(X).

Λ

Γ
⊥

restrict—by restricting these functors to the subcategories Sh(X) and Etale(X)—to an
equivalence Sh(X)�Etale(X), that is,

SetO(X)op
Bn(X)

Sh(X) Etale(X).

Λ

Γ
⊥

ι
Λ0

ι

Γ0

⊥

And while the sheafification functor ΓΛ is left adjoint to the inclusion of sheaves into
presheaves, Λ0Γ0 is right adjoint to the inclusion of étalé bundles into bundles.

The idea is that just as we saw how P is a sheaf precisely when ηP is an isomorphism,
it can be shown that a bundle (Y , p, X) is étalé precisely when the counit morphism εY

is an isomorphism. The proof of the proposition above basically follows from general
categorical reasoning regarding how the adjunction at the top restricts to consideration

127. We will see more of this functor in subsequent chapters.
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of subcategories. One could also use the equivalence of categories between Sh(X) and
Etale(X) to imply the fact we discussed earlier, namely that every sheaf can be viewed as
a sheaf of cross-sections.128

8.1.5 Takeaways

In the last section, we described the basic adjunction involving presheaves and bundles.
Just as sheaves are a special sort of “nice” presheaf, étalé bundles are a special sort of
“nice” bundle. That there is an equivalence of the subcategories of sheaves (of sets) on a
space X and the category of étalé bundles is like saying that “to be a nice presheaf is the
same thing as being a nice bundle.” One of the advantages of this perspective—allowing us
to regard sheaves as étalé spaces (and the converse)—is that certain constructions may be
simpler to define in one of the two settings. For example, pullbacks are very easily defined
in the context of local homeomorphisms, so the pullback sheaf is more easily defined in
this setting (conversely, the direct image sheaf is simpler to define in the context of sheaves
seen as a set-valued functor).

The relationships explored in the previous section also allow us to take three equiva-
lent ways of viewing morphisms between sheaves. Specifically, a morphism h : F→G of
sheaves F, G can be described (equivalently) in terms of: (1) just a natural transformation
h : F→G of functors; (2) a continuous map h :ΛF→ΛG of bundles over X; and (3) as a
family hx : Fx→Gx of functions on the fibers over each x∈X such that, for each open set
U and each s∈F(U), the function x �→ hx(s(x)) is a continuous U→ΛG.

The point of view given by the equivalence of (1) and (3) in particular—namely of sheaf
maps h : F→G in terms of stalk maps hx : Fx→Gx—can be rather useful, for it allows
many facts about sheaves to be checked “at the level of stalks,” something that cannot
be done in general for presheaves (which also reflects, conceptually, the local nature of
sheaves). But the more general definition of sheaves in terms of functors satisfying certain
properties is arguably superior in that it allows us to consider many nontopological cases
where there is no notion of an étalé space. Thus, while it is valuable to see the important
close conceptual (and historical) connection between sheaves and étalé bundles, we will
usually just insist on the more general approach, where a morphism F→G of sheaves will
just be a natural transformation of functors, so that with Sh(X) we will just think of the
category that has for objects all sheaves F (in this case, of sets) on X, and for morphisms
the natural transformations between them.

Thus far, we have confined our attention to sheaves F on a topological space X.
For such sheaves on spaces, we have been exploring basically two important candidate
descriptions:

1. the restriction-collation description, and
2. the section description.

The first description was motivated by structures, such as classes of functions with certain
“nice” properties (like continuity), that are defined locally on a space. The previous exam-
ple introduced and developed the importance of the second of these two perspectives. The

128. We refer the reader to Mac Lane and Moerdijk (1994, II.5–6) for more details about the equivalence of these
categories. The reader should note, however, that throughout Mac Lane and Moerdijk (1994), the authors write
étale, when they mean étalé (the former being something else entirely).
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idea here was that we took a sheaf to be some sort of principled way of assigning to each
point x of the underlying space a set Px consisting of all the germs at x of the functions
being considered (where these germs were just equivalence classes identifying sets that
look locally the same in neighborhoods of x), after which these sets Px then get patched
together by a topology to form a space (or bundle) projected onto X (a suitable function
for this sheaf then being a cross-section of the projection of this bundle). According to this
perspective, the sheaf P can ultimately be thought of as a set Px that varies with the points
x of the space.

After learning a new concept and seeing some descriptions and preliminary examples, it
is important to think a bit about when and how this can go wrong (and acquire a store of
nonexamples). We thus take the opportunity to consider what is not a sheaf—that is, when
and why a construction fails to satisfy the sheaf conditions. After that, this chapter ends
with a brief but important discussion of a general result allowing us to blur the distinction
between presheaves and sheaves in the special case of posets.

8.2 What Is Not a Sheaf?

Even when structures are determined locally, sometimes local properties alone do not suf-
fice to determine global properties. In such cases, we will not have a sheaf. A common
example given to illustrate this is the set B(U) of all bounded functions on U to R—this
will give a presheaf (functor) on U, but not a sheaf. The reason for this is that while the
collation of functions that are bounded does indeed define a unique function on U, such a
function may be unbounded. Presheaves are meant to carry local information, so they can
fail to behave when the local information fails to transfer to global information, as bound-
edness does. Regarding the two sheaf conditions presented in definition 124 (chapter 5),
notice how this construction satisfies the uniqueness condition, while the gluing condition
is where the problem arises. This is somewhat typical—of the two defining conditions, the
gluing condition is the one that seems to fail most often in practice.

Exercise 21 Make sense of the previous sentences by giving an example of a collection
of bounded functions on subintervals whose collation is not bounded.

If a structure is not even determined locally, specifically in the sense that it does not
even obey the first (restriction) condition, then it certainly cannot be a sheaf. An intuitive
example of this might be given by the game of ScrabbleTM, where one thinks of this as
follows: the 15× 15 board with its squares labeled in some sensible way (with x and y
coordinates of a tessellation, so that (1, 1) would indicate the leftmost top corner square),
may be regarded as a topological space, with a notion of covers. Then one might attempt
to regard the assignment of sets of legal (English) word-forming letter combinations to
subsets of the grid of squares (satisfying a further constraint capturing how words are to be
read down and to the right) as a functor. However, while each inclusion of “opens” in the
underlying grid of squares would have to induce a function restricting the word-forming
letters assigned over a bigger region of the board to the word-forming letter assignments
over a subregion, in general not every subword of a word is a word, so it is not clear
how to make this work. Even if we agreed to treat individual letters as (legal) words, it
is evident that the inclusions of open subsets will sometimes determine a “restriction” to
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a particular part of a word that does indeed form a word (now a different word), but on
other occasions such a process will not result in a word at all. For instance, confining our
attention for simplicity to a small 3× 3 region of the board, and displaying a portion of the
opens ordered by inclusion

we might then regard a particular selection of possible letter assignments as follows

Here, with such an assignment, even though the letter assignments over the entire 3× 3

portion result in valid words (in every possible three-letter combination, e.g., “beg,” “bet,”
“era,” “gap,” “tap”), some of whose parts even themselves form words (like “be” in “beg”),
it is not clear what to do with the (failed) restriction from the word “beg” down to “eg,”
which is not a word.

Even when we do have a presheaf, in general a presheaf can itself fail to be a sheaf in
two (fundamentally independent) ways:

• Nonlocality: If a presheaf has a section s∈F(U) that cannot be constructed from
sections over smaller open sets in U—via a cover, for instance—then F fails to be a
sheaf.

• Inconsistency: If a presheaf has a pair of sections s 
= t∈F(U) such that when restricted
to every smaller open set they define the same section, then F fails to be a sheaf. In other
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words, informally, the presheaf has local sections that “ought to” patch together to give
a unique global section, but do not.

It is often thought that the second sort of failure is somehow easier to understand. But that
does not mean that there are not examples of the first sort of failure. A standard illustration
of nonlocality is given by the following example. Consider X the topological space consist-
ing of two points p, q, endowed with the discrete topology (i.e., every set is open). Then X
consists of the open sets {p, q}, {p}, {q}, ∅, ordered by inclusion. We can form the constant
presheaf P on X which assigns a set (or abelian group) to each of the four open sets and
the identity map to each of the nine restriction maps (five plus the four trivial self-maps).
For concreteness, let this presheaf assign Z to each of the sets.

{p, q}

{p} {q}

∅

P({p, q}) =Z

P({p}) =Z P({q}) =Z

P(∅) =Z

id id

id id

id

O(X)op Set
P

This presheaf P does indeed satisfy the gluing axiom. However, it fails to satisfy the local-
ity/identity axiom, specifically with respect to the assignment on the empty set. The empty
set is covered by the empty family of sets; but clearly any two local sections of P are equal
when restricted to their common intersection in the empty family. If the locality axiom
were satisfied, then any two sections of P over the empty set would be equal—however,
this need not be true.

Another example of nonlocality is given by the following: take an open set X⊆Cn, and
for open U⊆X, let

S(U) := {f : U→C | f is holomorphic}.

We then define the restriction maps by stipulating that for V �U, we set the restriction ρU
V =

0, and set ρU
U = id. This S is a presheaf but it is not a sheaf precisely because it obviously

has a section in S(U) that cannot be built from sections over smaller open sets in U (for
which f must be the 0 map).

To illustrate the second type of failure, inconsistency, consider again the constant
presheaf P from before. We construct a new presheaf G over the same X with the same
discrete topology, which is just like P except that we now let G(∅) = {∗}, where {∗} is a
one-element set (the terminal object). We retain Z as our value assignment for the remain-
ing nonempty sets. Now, however, for each inclusion of opens that has the empty set for
domain, G will assign the unique map 0; otherwise, it just assigns the identity map as
before.
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{p, q}

{p} {q}

∅

G({p, q}) =Z

G({p}) =Z G({q}) =Z

G(∅) = {∗}

id id

0 0

0

O(X)op Set
G

This presheaf G satisfies the locality/identity axiom, but now it fails to be a sheaf on
account of not satisfying the gluing axiom. Let us unpack this. The entire set X = {p, q}
is covered by {p} and {q}, which individual sets obviously have empty intersection. By
definition, the sections on {p} and {q} will just be an element of Z, that is, an integer. By
selecting a section m (an integer) for our section over {p} and n (another integer) for our
section over {q}, such that m 
= n, we can easily see this violation. m and n must restrict to
the same element over ∅ on account of the action of the trivial 0 restriction map; but then,
if the gluing axiom were satisfied, because m and n restrict to the same element over their
(trivial) intersection, we would need the existence of a unique section s over the union of
the two sets (i.e., in G({p, q})), which moreover restricts back to m on {p} and to n on {q}.
But the restriction maps from G({p, q}) along {p} and {q}, being the identity map in both
cases, forces that s = m and s = n, from which m = n, contradicting the assumption that the
sections (integers) m and n were different.

Before moving on, we take the opportunity to briefly mention a common issue that may
arise in the construction of sheaves in practice (construed as sheaves of sections), but one
that is somewhat distinct from the failures of the previous two sorts. It concerns a situation
where we may in fact be dealing with a sheaf, but given certain selections from the stalks
or local sections, we may find that we simply cannot extend those assignments to produce
a global section, since no matter what we assign to the remaining open set(s), we will
run into inconsistency with respect to the other sections. This may simply be a problem
with failing to select the “right” elements from the sets of possible values assigned to each
underlying open. In the next chapter, we will see a number of explicit instances of this.

Finally, let us briefly look at a particularly interesting example (due to Goguen 1992) of
a presheaf that is not a sheaf, for reasons distinct from the two discussed above.

Example 218 Taking our indexing (domain) category to be some base for some data
assignment or observations, where this base is a poset, then the particular base consisting
of intervals of natural numbers beginning with an “initial time” 0—where the various inter-
vals beginning from 0 may represent periods of continuous observation of the system—can
be described as

I0(ω) = {∅, {0}, {0, 1}, {0, 1, 2}, . . . }∪ {ω},

with ω representing the domain for observations or data assignment over an infinite time.
Using such a base, we might consider a “fair scheduler” F for events a, b—that is, if a
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occurs, then at some point b must occur, and vice versa. More formally, this means

F(ω) = (a+b+ + b+a+)ω ,

that is, we have a concatenation of strings where the components consist of some number of
as followed by some number of bs or some number of bs followed by some number of as,
on to infinity. For each natural number n, we will have that F({0, 1, . . . , n – 1}) = {a, b}n,
which is just to say that we might have any combination of as and bs (including all as or
all bs) for some finite interval. The point, however, is that while F is indeed a presheaf,
if we had that F was a sheaf, then the sheaf condition would imply that F(ω) = {a, b}ω ,
that is, that in the limit any combination is also possible. However, this contradicts the
definition of F as a fair scheduler. Thus, it is not a sheaf. On the other hand, if we require
the indexing set to be finite, then this F does satisfy the finite sheaf and gluing conditions.
This (non)example is interesting because it suggests that interesting phenomena can appear
“at infinity” that do not show up in the finite approximations.

Returning to more general considerations, as the section on bundles already sug-
gested, there is a standard procedure for completing a presheaf to make it a sheaf. Since
there are two fundamental ways a presheaf can fail to be a sheaf, this process—dubbed
“sheafification”—can be roughly thought of as doing one of two things: (1) discarding
those extra sections that make the presheaf fail to satisfy the locality condition; (2) adding
those missing sections which, had they been present, would allow the local sections to glue
together into a unique global section, satisfying the gluability condition. In other words,
with respect to the second of these two, we are adding functions to the global set that
restrict to compatible functions on each of the opens, and then, recursively, we continue
adding the restrictions of the newly generated global functions. We have already seen what
this sheafification abstractly looks like in the setting of bundles. In chapter 10, we will look
more closely at the process whereby an arbitrary presheaf can be turned into a sheaf of the
same type.

For now, let us just sketch how the sheaf G from a moment ago would be sheafified. Basi-
cally, this involves expanding G({p, q}) to Z⊕Z, thus defining a new sheaf H, then letting
the restriction maps be the appropriate projection maps πi :Z⊕Z→Z, thereby defining
H({p}) = image(π1) =Z and H({q}) = image(π2) =Z. Everything else can be defined just
as it was for G. The resulting functor H now satisfies the gluability condition and so is a
sheaf, usually called the constant sheaf on X valued in Z.

8.3 Presheaves and Sheaves in Order Theory

As so often when working with categories, things are greatly simplified when dealing with
orders. As we started to really appreciate in chapter 6, highly abstract results and concepts
in category theory can have a particularly friendly showing when specialized to orders.
Sometimes, posets are especially nice to us, in that important general distinctions (such as
that between presheaves and sheaves) can be “collapsed” when dealing with posets. This
in turn can sometimes make the more general distinction easier to grasp.

Before concluding this chapter, we will thus briefly cover a highly useful result that
relates presheaves and sheaves on a poset (regarded as a category):
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Proposition 219 Presheaves on a poset are equivalent to sheaves over that poset, once the
latter has been equipped with a suitable topology (the “Alexandrov topology”).

We will just sketch how this works. First recall from definition 147 (chapter 6) the notion
of a downset (and its dual, an upper set). Recall also how we defined principal downsets,
denoted Dp (or just ↓ p): these were sets of the form

↓ p := {q∈P | q≤ p},

for p∈P (and dually for the principal upper sets). It is fairly straightforward to show
how the principal downsets can generate a topology, called the Alexandrov topology (or,
sometimes, lower Alexandrov topology, to distinguish it from the topology generated by
the principal upper sets).129 While the poset just supplies us with “points” p from the
underlying set, the topology generated by the principal down (upper) sets supplies us with
a way of looking at points now in terms of “opens” (the language a topological sheaf will
understand). Recall that any downset can be written as the union of principal downsets
(taking unions of downsets is the same as taking colimits of representables in the poset
category of downsets), so using the principal down (upper) sets as a basis, we can form the
collection of all downsets of a poset P, denoted by D(P), and this will define a topology
on P, where we take D(P) as our open sets O(P). As D(P) is stable or closed under
arbitrary intersections, the “closed sets” (i.e., the upper sets of P) will be stable under
arbitrary unions. But this means that the upper sets also forms a topology, usually called the
upper Alexandrov topology. Thus, dual to our downsets, we denote by U(P) the collection
of all upper sets of P, and this will yield another topology on P.

With these notions in hand, it can be shown that for P a poset, it’s essentially the same
to look at presheaves on P as it is to look at sheaves on D(P), while (dually) copresheaves
(variable sets) on P are essentially the same as sheaves on U(P).

Theorem 220

SetP
op � Sh(D(P)),

and
SetP� Sh(U(P)).

In other words, this tells us (in the first case) that, given a presheaf defined on a poset P,
it can already be regarded as a sheaf when P is equipped with the natural Alexandrov
topology (induced by the downset construction). Instead of going through a full proof of
this, we will sketch one way of looking at why this is true. Because of the example to
follow, we will also focus on SetP� Sh(U(P)).130

Recall the very close relationship between ↓ p and p established by the downset embed-
ding (which specialized the Yoneda embedding); and we just saw that the principal
downsets of P can be used to form a topology. There is a similar result for upper sets,
where p≤ p′ iff ↑ p′⊆↑ p (note the reversal of order); likewise, we just mentioned that

129. This can be described as a functor from Pre to Top.
130. What follows is largely derived from Goldblatt (2006). On the whole, there are many hand-wavy “proofs”
that functors from posets are equivalent to sheaves on the upper set topology—something that can fundamentally
be derived from the folk theorem that sheaves are determined by their values on a basis. However, it can be
difficult to track down a proper proof of this. Curry (2019) includes a proof that, once appropriately dualized,
yields the desired result.
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this construction gives another natural (upper Alexandrov) topology on P, the basis of
which is given by the principal upper sets ↑ p. Suppose, now, that you have a (variable
set or copresheaf) functor F∗ ∈ SetP. Then F∗ can be seen as just a collection {F∗

p }p∈P of
indexed sets—where F∗

p is the image of F∗(p)—equipped with the maps F∗
pp′ : F∗

p →F∗
p′

whenever p≤ p′. We can take this functor to a sheaf F on the topology supplied by the
upper sets U(P), by defining F on a basis of the Alexandrov topology and setting

F(↑ p) = F∗
p ,

where of course ↑ p∈ U(P). Another way of thinking of this situation is that, given a
functor F∗ : P→Set, via the inclusion functor

ι : P→ U(P)op,

we would like to produce a sheaf on U(P)

P Set

U (P)op

ι

F∗

?

The most concise categorical way of accomplishing all this would be to use what is called
Kan extensions, specifically the right Kan extension of F∗ along ι, denoted RanιF∗, to
assign data to the opens in our poset “in a nice way” such that it is a sheaf, and declare that
when this happens, then F∗ itself can be seen as a sheaf. But instead, let’s just describe
things in more elementary terms. The idea is that, having set F∗

p = F(↑ p), notice that
whenever p≤ p′, we will have ↑ p′⊆↑ p, so the map

F∗
pp′ : F(↑ p)→F(↑ p′)

can be seen as the image of the inclusion ↑ p′ ↪→↑ p under the action of the (contravariant)
functor F. Note how the inclusion ι reverses the order, and then the underlying presheaf
action of F reverses order once more. Now, for each V ∈ U(P), the set {↑ p | p∈V} will
be a cover of V , and so we can use

F(V) = lim←−
p∈V

F(↑ p) = lim←−
p∈V

F∗
p

to define F(V) from the collection {F∗
p }p∈V (using the universal limiting cone for the rel-

evant diagram formed from the various F∗
p , F∗

p′ , . . . ). Going further, provided U⊆V , we
will have {F∗

p }p∈U ⊆ {F∗
p }p∈V . The universal cone F(V) for the diagram formed from the

{F∗
p }p∈V will also be a cone for the diagram built out of the {F∗

p }p∈U , thereby inducing a
unique arrow F(V)→F(U), which we can use as our sheaf map FV

U . This gives a rough
sketch of how to think of (one direction of) this process.

Altogether, the main result informs us that we can pass freely from a sheaf over the
topology U(P) induced on P and a “plain” copresheaf (variable set) on that original P.
By taking Pop instead—and recognizing that the upper sets of Pop are the same as the
downsets of P—we also have that we can move between a sheaf over the natural lower
Alexandrov topology (given by D(P)) and a plain presheaf on P.

Of course, in the general case of categories that are not posets, things are not always
so “nice” and presheaves are not automatically going to yield a sheaf in this straightfor-
ward way. In making a presheaf a sheaf in the general case, we are in a sense demanding
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that it “awaken to” the features of the underlying topology; specifically, in trying to find
the sheaves among some presheaves, we want to restrict attention to those presheaves that
are sensitive to the structure supplied by the cover. The above result that lets us blur the
distinction between presheaves and sheaves, when P is a poset now equipped with its
natural Alexandrov topology, in a sense tells us that presheaves in this setting are “auto-
matically sensitive” to the structure of covers—and thus, a presheaf on a poset can already
be regarded as a sheaf (with respect to its Alexandrov topology). The next chapter will
make good use of this result. This chapter ends with a brief look at an example involving a
different sort of poset where this result is of some utility.

Example 221 Let’s start by defining a (time)frame as a structure T= (T ,≤) consisting of
a nonempty set T of “times” (instants, events) on which the relation ≤ forms a reflexive
and transitive order—that is, T is a preorder.131 At the outset, we do not insist that a
(time)frame be a partial order (i.e., that ≤ be antisymmetric as well), so the equivalence
relation defined on T by t≈ s iff t≤ s and s≤ t will be nontrivial in general. We could call
the ≈-equivalence classes the clusters of T, ordered by setting t̂≤ ŝ iff t≤ s, where t̂ is the
cluster containing t. The resulting order is an antisymmetric one, enabling us to regard the
(time)frame as a poset of clusters. Finally, a frame is said to be directed provided any two
elements have an upper bound, that is, for all t, s∈ T , ∃v∈ T such that t≤ v and s≤ v.

In section 7.2 and the appendix, we discuss some features of modalities and propo-
sitional modal logic. Propositional modal logic consists of sentences constructed from
proposition letters p, q, r, . . . , the usual Boolean connectives, and the modal operator �
(which is typically interpreted, in the context of tense logics which we are about to use,
as “it will always be”). The Greek philosopher Diodorus of Megara is often thought to
have held that the modalities “necessity” and “possibility” were best definable in terms of
time. For instance, Diodorus held that the necessary should be understood as that which
is (now) and will always be the case. One might then define �—interpreted as “it will (at
some time) be”—as ¬�¬. In terms of contemporary modal logics, while it is common for
tense logics to regard time as an irreflexive ordering (so that “at all future times” does not
include the present moment), Diodorus’s approach suggests a temporal interpretation of �
that uses reflexive orderings instead, and we can apply this to nonlinear time structures.
The reflexivity of ≤ in our time frame will give � the Diodorean intepretation of “is (now)
and always will be.”

As Goldblatt (1980) first showed, one can develop a Diodorean logic of n-dimensional
(for n≥ 2) Minkowskian special-relativistic spacetime and show that this is exactly the
modal logic S4.2. In more detail, if x = 〈x1, . . . , xn〉 is an n-tuple of real numbers, then let

μ(x) = x21 + · · · x2n–1 – x2n .

Then, for n≥ 2, n-dimensional spacetime is the frame

Tn = (Rn,≤),

131. The following example is derived from Goldblatt (1980, 1992).
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with Rn the set of all real n-tuples, and the order≤ defined, for all x and y in Rn, as follows:

x≤ y iff μ(y – x)≤ 0 and xn≤ yn

iff
n–1∑
i=1

(yi – xi)2≤ (yn – xn)2 and xn≤ yn.

The frame Tn is partially-ordered and directed. Then the usual Minkowski spacetime
of special relativity is given by T4, for which a point will represent a spatial location
〈x1, x2, x3〉 at time x4. In this case, the interpretation of x≤ y is that a signal may be sent
from event x to event y at a speed at most that of the speed of light, entailing that y comes
after, or is in the causal future of, x. In other words, the (reflexive) relation is given by “can
reach with a lightspeed-or-slower signal.” For simplicity, we can look at the frame T2, and
easily visualize the future cone {z | x≤ z} for a point x = 〈x1, x2〉, where the future cone
contains all points on or above the directed rays of slopes ±1 beginning from x (using a
coordinate system for which speed of light is one unit of distance per time unit).

One can observe that the future cones of any two points will eventually intersect, which
entails that the underlying order is directed, in the sense that for any two locations x, y,
there is a third that is in the future of both x and y. This directedness forces the Diodorean
interpretation of � to validate the S4.2 axiom schema ��φ→��φ, where S4.2 just arises
by adding that axiom schema to the usual axioms of S4.132 Goldblatt (1980) shows that
each of the frames Tn has the logic S4.2 for its Diodorean modal logic, regardless of
spatial dimensions.

Now, following Goldblatt, we may also call T ′⊆ T future-closed under ≤ provided
whenever t∈ T ′ and t≤ s, then also s∈ T ′. Note that this is just to say that T ′ is an upper set!
In this case, T′ = (T ′,≤) will be a subframe of T, and by the transitivity of≤, for each t the
set {s | t≤ s} will supply the basis. We can use T+ to denote the ordered collection of all

132. See the appendix for more on these logics and their defining axioms.
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future-closed subsets of T.133 But as T+ constitutes an (Alexandrov) topology—namely,
it is just U(T)—we can use the exact correspondence

SetT� Sh(T+)

to move freely between sheaves on T+ and the usual, more direct “variable set” perspective
on T.

133. We could also define, as usual, a T-valuation as a function V :Φ→T+, where Φ is the set of atomic
formulae, with typical member p. A valuation sends each propositional variable p to a future-closed subset V(p)⊆
T , interpreted as the set of times at which p is “true.” We also have that t ∈V(�φ) iff t ≤ s implies s∈V(φ),
allowing the valuation to be extended to all propositions (using the usual connectives). A model based on T is
then defined as a pair M= (T, V), where V is a T-valuation. Moreover, when T′ is a subframe of T, for any
proposition φ, φ is valid on the frame T (i.e., φ is true in every model based on T) only if φ is valid on T′.



9 Cellular Sheaf Cohomology through Examples

In which we start to look at some more involved and computationally explicit exam-
ples, working up toward an extended introduction to cellular sheaf cohomology and
giving a brief glimpse into the theory of cosheaves.

Roughly, if sheaves represent local data—or, more precisely, represent how to properly
ensure that what is locally the case everywhere is in fact globally the case—sheaf cohomol-
ogy can be thought of as a tool for systematically measuring and relating obstructions to
such passages from the local to the global. In particular, sheaf cohomology in low degrees
gives an explicit measure of the failure of local data to patch. Moreover, in sheaf the-
ory more generally, one could argue (as does Grothendieck, for instance) that individual
sheaves are only of secondary importance—the real power of sheaf theory emerges from
the use of constructions involving various sheaves, linked together via sheaf morphisms.
The exposition of cellular sheaf cohomology that follows will allow us to begin to appre-
ciate such a perspective. There is a more general theory of sheaf cohomology in terms of
homological algebra and derived categories, but the focus here will be on the simpler case
of cellular sheaf cohomology, leaving the reader to explore the more general theory on
their own.

As motivation for the general idea of cohomology, let us briefly consider impossible
objects. Consider the “Penrose tribar,” first devised by Roger Penrose:

Focusing one’s eye on any sufficiently small pieces of this depicted figure—for instance,
regarding the tribar as being assembled from three L-shaped pieces—suggests that the
drawing is the projection of a visually viable spatial object. In other words, breaking it
up into possible pieces, such a 2-D picture suggests an object that is locally consistent.
However, while it may initially seem plausible that the pieces of the tribar may assem-
ble together into the closed triangle depicted above, the local depth data cannot in fact
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be consistently merged, and there is no plausible interpretation of the entire perspectival
drawing as a projection of a viable spatial object that respects standard visual expecta-
tions. The 3-D object that the drawing of the Penrose tribar would depict is not a possible
object in ordinary Euclidean space—hence, the Penrose tribar is sometimes referred to as
an “impossible object.” In other words, globally such an object is inconsistent; but locally
(i.e., as one considers any small enough region of the drawing), there is no such impossibil-
ity in what the depiction represents. To adopt another way of seeing the same issue: there
is a property—the impossibility of such an object—that ceases to be valid locally, that is,
is nonlocal.

Similarly, consider the “Penrose staircase,” a 2-D depiction of a staircase where the
stairs take four 90-degree turns as they descend in a continuous loop, something that is
impossible in ordinary 3-D Euclidean space:

Visually, it is to be understood that we might have a number of local snapshots of four
individual sides or corners of the staircase, where we would like to patch these together
into a viable 3-D globally consistent staircase. Each part of the structure is viable as
a representation of a directed flight of stairs. However, any attempt to merge all these
partial representations must fail—as the steps are continually descending in a clockwise
direction—and so the representation must be of an object that, globally, is inconsistent.
Since the implied heights will not all match up, this inconsistency thus presents an obstruc-
tion to any such attempted patching. In short, (1) you have a number of local pictures,
that is, snapshots of the individual sides of the staircase; which (2) you would like to
patch together into a globally consistent object (the full staircase); yet (3) there exists an
obstruction to step (2), as what one expects for the heights does not match.

With such impossible figures, we are fundamentally being presented with an impossi-
bility of patching locally consistent data into a consistent whole. Locally, such impossible
figures look entirely possible, but globally, they are not. Cohomology can help track such
obstructions. A decisive feature of cohomology is that it is fundamentally nonlocal. Such
impossible objects can help build some intuition for (sheaf) cohomology, for the “impos-
sibility” of any correct 3-D representation can be captured by an element of cohomology.
The obstruction described in the third step above shows up in the form of a nonzero element
of some cohomology group.134

134. Penrose (1992) uses cohomology to make more precise the fact that such figures are impossible globally,
while being viable when viewed locally. Example 231 below covers the main ideas of that paper.
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One of the main tools in sheaf theory is sheaf cohomology, which can be seen as a
generalization of some classical cohomology theories (de Rham cohomology and Čech
cohomology). In a rough sense, sheaf cohomology is fundamentally an invariant that quan-
tifies and tracks obstructions to extensions of local sections of a sheaf to global sections.
The so-called first cohomology of a sheaf will accordingly capture the set of things that
locally appear just like sections, yet globally may not come from a section.

To begin to tell this story—focusing ultimately on the case of cellular sheaf
cohomology—let us first build up some necessary background.

9.1 Simplices and Their Sheaves

Of the many ways to represent a topological space, a particularly computationally friendly
way is to perform a triangulation with entities called simplices, decomposing the space
into simple pieces (thought of as being glued together) whose common intersections or
boundaries are lower-dimensional pieces of the same kind. With simplices come certain
simplicial maps that, moreover, approximate continuous maps. In this way, simplices play
a role in bridging the gap between continuous figures and their discrete representation
and approximation via decompositions of spaces into discrete parts. More than that, as we
will see, they allow us to develop profound connections between algebra and geometry.
Simplices are powerful and easy-to-use devices for understanding qualitative features of
data collections, and in general they can be thought to represent n-ary relations between n
vertices.

Basically, we use collections of simplices—for now, just think of points, line segments,
generalized triangles, or tetrahedra generalized to arbitrary dimensions—to build up what
are called simplicial complexes. Given a simplex σ, it is common to refer to a (nonempty)
simplex τ whose vertices are a subset of the vertices of σ as a face of σ. A (geometrical)
simplicial complex K is a collection of simplices such that (1) every face of a simplex
of K is in K, and (2) the intersection of any two simplices of K is a face of each of them.
Roughly, then, one can think of a simplicial complex K as comprising generalized triangles
of various dimensions, glued together along common faces. This is really part of a more
general story involving cell complexes (including cubical complexes, multigraphs, etc.),
where one can roughly think of a cell complex as a collection of closed disks of various
dimensions which are moreover glued together along their boundaries. But we will instead
focus on the more computationally tractable combinatorial counterpart to the already sim-
plified notion of a simplex: that of abstract simplicial complexes (ASC). Here, we reencode
the information of a simplicial complex via the more computationally friendly notion of
an ASC, where this is basically just a collection of finite subsets of vertices (elements),
closed under the operation of taking subsets. This captures in a purely combinatorial way
the geometrical notion of simplicial complex.135

Definition 222 An abstract simplicial complex K = (A, K) is a set A equipped with a col-
lection of ordered finite nonempty subsets K⊆P(A) that contains all singletons and that is

135. What has been lost is how the simplex is embedded in, say, Euclidean space; however, this specification
retains all the data needed to reconstruct the complex up to homeomorphism.
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closed under taking subsets (sublists), that is, every nonempty subset of a set in K is also
in K. In other words, we must have

• for each x∈A, the singleton {x}∈K; and
• if σ ∈K and τ ⊆σ, then τ ∈K.

Terminologically, each member of K is called a simplex (or, looking ahead, cell), and
given a τ ⊆σ we say that τ is a face of σ. A simplex with n + 1 elements is called an
n-dimensional simplex of K. (But, as one would expect, a 0-face is usually just called a
vertex, and a 1-face an edge.) If all the simplices of an ASC K are of dimension n or less,
K is said to be an n-dimensional simplicial complex, that is, the dimension of an ASC is
the maximal dimension of its constituent simplices. A simplicial map f : K→K′ from an
ASC K (defined on a set A) to an ASC K′ (defined on the set B) is a function f : A→B with
the property that for any σ of K, the image f (σ) is an element of K′.136

Altogether, this data in fact lets us define the category SCpx that has (abstract) simplicial
complexes as objects and simplicial maps as morphisms.

To check understanding, notice that a 1-D simplicial complex essentially recovers the
notion of a simple graph.

ASCs are particularly easy to describe, but one might worry that certain topologically
valuable information gets lost in encoding things in this simplified, set-theoretical fash-
ion. We will ultimately be interested in certain topological information, so it makes sense
to construct for a given ASC K a geometrical realization |K| of K, allowing K to be
realized (basically, “pictured”) as some (generalized) triangles glued together in suitable
ways, living in a subspace of Rn. For every simplicial complex K, there in fact exists a
unique (up to simplicial isomorphism) geometric realization |K|, so we will not bother
to distinguish between ASCs and their geometric realizations.137 Such a realization bet-
ter explains why we think of objects (sets) in an ASC K as faces or simplexes, since via
the realization, three-element sets correspond to filled-in triangles, two-element sets to
edges, singletons to vertices. For instance, given a set A = {a, b, c} for which we have an
ASC K = {{a, b}, {b, c}, {a, c}, {a}, {b}, {c}}, then its realization |K| will be the (hollow)
triangle (with a natural orientation). Drawing such pictures yields the usual geometrical
notion of a simplicial complex, obtained by gluing together the standard simplices along
the boundaries; the usual approach then employs these n-simplices to probe a topological
space via continuous maps into the space.138

In more detail, observe that an oriented 0-simplex thus corresponds to a signed (+, –)
point P, while an oriented 1-simplex is a directed line segment P1P2 connecting the points
P1 and P2, where we assume that we are traveling in the direction from P1 to P2, that is,
P1P2 
= P2P1 (however, P1P2 = –P2P1). An oriented 2-simplex will be a triangular region
P1P2P3, with a prescribed order of movement around the triangle. An oriented 3-simplex
is given by an ordered sequence P1P2P3P4 of four vertices of a solid tetrahedron. Similar

136. Simplicial maps between simplicial complexes are the natural equivalent of continuous maps between
topological spaces.
137. Ensuring the uniqueness of this is precisely the reason for considering ordered sets (lists) in the definition of
an ASC, instead of just unordered sets.
138. More details on these matters can be found in Ghrist (2014) or Hatcher (2002).
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definitions hold for n > 3. By gluing together various simplices along their boundaries, we
get simplicial complexes such as the following:

a

d

c

b

ef z

While it is perhaps useful to visualize things in this way, and while this perspective can be
important for connections to other concepts, the alert reader might have observed that given
the way ASCs were defined, they should already come with a natural topology, letting us
bypass the geometric realization, and associate to each ASC a particular topological space.
This will be useful to us in the construction of sheaves on such spaces toward which we
are building.

To see this, first observe that ASCs come with a canonical partial order on faces, given
by the face subset inclusion (or attachment) relation between vertices, edges, and higher-
dimensional faces. We can use this fact to define the face (or cell) category, where this has
for objects the elements of K, a cell complex, and (setwise) inclusions of one element/cell
of X into another for its morphisms; if a and b are two faces in a complex X with a⊆ b
and |a|≤ |b|, we will write a� b and say that a is attached to b.139 We will then identify a
complex with its face poset, writing the incidence relation a� b. Building on the graphical
construction of a complex, the attachments between the faces or cells of a complex can
then be displayed in attachment diagrams, where the links represent attachments going
from lower- to higher-dimensional cells (and where any additional attachments that arise
as compositions of attachments are left implicit). Observe that the attachment diagram of
a graphical complex is itself just a set partially ordered via the attachment relations, that
is, it is a poset. The data of this face relation poset can be displayed with a Hasse diagram.
Assume we have the following simplicial complex K, which we imagine has been realized
thus:140

139. Note that technically to make the following construction work we need to use the more general notion of cell
complexes, the full definition of which can be found in Curry (2014, chap.4); but since ultimately the realization
|K| of an ASC K on a finite set, which is the sort of thing we will be dealing with in our example, can be shown
to be a cell complex, and simplicial maps f : K →K′ induce a cellular map |f | : |K|→ |K′ |, we will not worry too
much about the distinction.
140. Note that the rightmost simplex (abcd) is not meant to depict a hollow tetrahedron; each of the four com-
ponent triangles are to be thought of as lying in the plane. We have simply spaced it this way to make the sheaf
diagrams we build on top of this in a moment a little more readable.
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a

d

c

b

ef

We can form the diagram of the face-subset relations, where the edges and higher faces are
given the natural names (and are assumed to be ordered lexicographically):

cde

ab ac ad bc bd cd ce de ef

a b c d e f

∅
But it is more revealing to display this in the form of an attachment diagram, as follows:

a

d

c

b

ef

abad

cd bcde cde

ef ce

bd

ac

It is this face/cell incidence poset that we are regarding as a category, FK . In other words,
to a simplicial complex we can associate a category, which is just the face-incidence poset
viewed as a category. We can then put the Alexandrov topology on this poset of face-
relations. Then, given this Alexandrov topology on a poset, the usual topological notions
(such as interiors, boundaries, and closures) can be easily understood in terms of the poset
itself.
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The basic idea is this: pick a simplex; then look at all the other simplices that include that
one as a face (i.e., higher-dimensional simplices adjacent to it); then regard such “upper
sets” as the open sets. The sets of the form ↑ x = {y∈P | x≤ y}—that is, the principal
upper sets—form a basis for the topology. We can also define the closure of x by x = {y∈
P | y≤ x}; and, provided the poset P is finite, a basis of closed sets is given by these x.141

In the cellular context, for σ a cell of a cell complex, the analogue of the principal
upper set construction is called the open star of σ, where this is denoted st(σ) and consists
of the set of cells τ such that σ� τ—that is, it captures all the higher-dimensional cells
containing that cell. Then, in terms of the topology, st(σ) will be the smallest open set of
cells containing σ, or st(σ) =

⋃
x∈σ Ux, with Ux =↑ x. Taking all the stars and the union of all

the stars will give a topology for the complex/simplex—this is the Alexandrov topology.
Every intersection of opens in the Alexandrov topology on a poset P is open. Thus, a star
over A⊆X is then defined to be the intersection of the collection of all open sets containing
A. The resulting collection of stars will be a basis for the Alexandrov topology. While stars
need not exist in general, in the Alexandrov topology on a poset, there will exist a star of
every subset. There is accordingly a dictionary between cellular complexes and Alexandrov
spaces, which can be seen by considering that for a cell complex, every cell Δσ has a star,
where this is a set consisting of all those cells Δτ such that Δσ ≤Δτ .

Note that with respect to the inclusions in the face relation poset FK , the contain-
ment relation for the open sets (stars) in the Alexandrov topology is order-reversing. In
other words, the Alexandrov construction will yield an order-reversing inclusion functor
P→O(P)op, just as we saw in chapter 8. More generally, we have effectively described
a contravariant functor Alxd : Pre→Top—one that, upon applying Alxd to Xop, yields a
space that has for open sets unions of simplices.

It turns out that a sheaf (of sets) over an ASC K can be defined as a covariant functor
from the face category FK of its associated face-relation poset to Set. More generally, given
a functor from a preorder or poset P to a category D, this functor can be used to produce
a sheaf on the Alexandrov topology (via a right Kan extension).142 With this construction,
the sheaf gluing axiom for any cover is automatically satisfied! In other words, given a
poset endowed with the Alexandrov topology, as anticipated in the last chapter, we do not
even need to distinguish between presheaves and sheaves.

The following definition follows Shepard (1985), who defined sheaves for more general
cell complexes, which are just a collection of closed disks of certain dimensionality that are
glued together along the boundaries. Via its realization |K|, an ASC K is just a cell complex,
so while the definition is more general, it can be applied to a simplicial complex (which is
what we will work with in the coming example). Just as with ASCs, since cell complexes
are built up from simple pieces (cells), the associated attachment diagram exhibiting the

141. A dual topology thus arises by considering, for a given simplex, all the other simplices that are attached to
(included in) it—these are the downsets, which also can serve as the opens of this topology. In the Alexandrov
topology, arbitrary intersections of opens are open and arbitrary unions of closed sets are closed; therefore, by
exchanging opens with closed sets, we can pass from any Alexandrov space to its dual topology.

The Alexandrov topology construction is really appropriate when the elements of the underlying poset P
represent finite pieces of information (i.e., are compact), something that is typical for many combinatorial and
computer science applications; however, if P includes infinite elements, then the “Scott topology” is called for
(see Vickers [1996, chap. 7] for details on this).
142. See Curry (2019) for details.
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relations between cells contains the information of the cell complex itself. Attending to
the face poset in particular, then, we will define a cellular sheaf, following Shepard, as a
covariant functor from the face category of a complex K to some other category D.143 For
concreteness, for the remainder we consider D = Vect.

Definition 223 A cellular sheaf (of vector spaces) F on a cell complex X is

• an assignment of a vector space F(σ) to each cell σ of X,144 together with
• a linear transformation

Fσ�τ : F(σ)→F(τ )

for each incident cell pair σ� τ .

These linear maps have to further satisfy the identity relation Fσ�σ = id and the usual
composition condition, namely

if ρ�σ� τ , then Fρ�τ = Fσ�τ ◦Fρ�σ .

The reader may be wondering if there is a typo in the direction of the maps described in
this definition of a cellular sheaf. A sheaf, after all, is a particular presheaf, so one would
have expected (order-reversing) restriction maps. But this is not a typo, and in fact goes
to the heart of the underlying construction. The reason for the seemingly “wrong” direc-
tion of the arrows—typically, sheaf restriction maps reverse the direction of the arrows,
while cosheaves preserve them—is explained (as correct) by a result we have already
encountered.

Recall that, in general, when dealing with a poset P, we can regard a sheaf on P—once
this has been equipped with the upper Alexandrov topology—as a plain old pre-cosheaf
(covariant functor) on P (which could, in turn, be regarded as a presheaf on Pop).145 But
the face category FX with which we identify a complex X is a poset. So, using our general
result146

Sh(U(P))�DP

letting us move freely between sheaves (valued in D) on the upper Alexandrov topology
placed on P and covariant D-valued functors (pre-cosheaves) on P, we know that we
can freely regard a plain old covariant functor P→D as a sheaf on U(P), that is, on
the upper Alexandrov topology on P. The inclusion taking a poset into its upper sets is
order-reversing, and the underlying functor of a sheaf (now on the upper sets) is itself order-
reversing—their composition, equivalent to the original covariant functor, is accordingly
covariant. This accounts for why the definition of a cellular sheaf seems to just contain
the data of a definition of a covariant functor—that is indeed all it says! Theorem 220,

143. While this, and the subsequent cellular sheaf cohomology, is original to Shepard, his thesis was never pub-
lished and fell into oblivion for some time. Part of the intent of Curry (2014) was to revive Shepard’s contribution,
while providing a more modern account, supplemented with missing details, demonstrating why cellular sheaves
are actually sheaves. The account here thus owes a great debt to Curry (2014), which the reader is encouraged to
consult for more extensive treatment of these matters.
144. This vector space F(σ) is then the stalk of F at (or over) σ.
145. Also recall that, taking Pop instead, sheaves on P—where this is equipped with the lower Alexandrov
topology (using that D(P)
 U(Pop))—are just presheaves on P.
146. Earlier, in chapter 8, we just described it in terms of set-valued functors; but in fact, the equivalences hold
for (pre)sheaves valued in a category D, provided that category is complete and cocomplete.
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discussed at the end of the last chapter, lets us conflate these two perspectives. In short, we
have the slogan:

cellular sheaves are covariant functors from the face category into some other category D.

In particular, a covariant functor from FX to Vec is already just a sheaf of vector spaces.
Dually, we could define:

Definition 224 A cellular cosheaf (of vector spaces) F̂ on a cell complex X is

• an assignment of a vector space F̂(σ) to each of the cells σ of X—this vector space F̂(σ)
is called the costalk of F̂ at (or over) σ—together with

• a linear transformation F̂σ�τ : F̂(τ )→ F̂(σ) for each incident cell pair σ� τ .

These maps—called the corestriction maps—have to further satisfy the identity relation
F̂σ�σ = id and the usual composition condition, namely

if ρ�σ� τ , then F̂ρ�τ = F̂ρ�σ ◦ F̂σ�τ .

In the extended example to follow, we focus on cellular sheaves; at the end of the chapter,
an example with cellular cosheaves is presented. Before turning to the example, let us also
highlight a few more explicit definitions of the corresponding cellular notions that are more
or less as you would expect for a sheaf.

Definition 225 For F a cellular sheaf on X, we define a global section x of F to be a choice
xσ ∈F(σ) for each cell σ of X, where this satisfies

xτ = Fσ�τxσ

for all σ� τ .

Fundamentally, the data of a cellular sheaf on a complex X amounts to a specification
of spaces of local sections on a cover of X (namely, the one given by open stars of cells).
Ultimately, we will be able to form the category of all sheaves Sh(X) over a fixed com-
plex X, adopting the only notion of morphisms that there could be, namely as the natural
transformations between the corresponding functors.147 Explicitly,

Definition 226 A morphism f : F→G of sheaves (or sheaf morphism) on a cell complex
X is an assignment of a linear map

fσ : F(σ)→G(σ)

to each cell σ of X, where for each attachment σ� τ , the usual (natural transformation)
compatibility condition holds, making the diagram

F(σ) G(σ)

F(τ ) G(τ )

F(σ�τ )

fσ

G(σ�τ )

fτ

commute.

147. In the next definition, we focus on the corresponding notion of morphism for sheaves of vector spaces; but
if we were to work with sheaves valued in some other category D, then we would require that the maps defined
below be the appropriate structure-preserving map (e.g., for sheaves of groups, just homomorphisms).
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A sheaf isomorphism, then, is also defined in the inevitable way, as a morphism where
each of the fσ is an isomorphism.148

In brief: if X is a cell (or simplicial) complex with the associated face poset category
FX , we identify the complex with its face category, and then a cellular sheaf is just a vec-
tor space-valued functor F : FX→Vect, while a cellular cosheaf is a vector space-valued
functor F : Fop

X →Vect. Thus, to avoid confusion, realize that in the above definitions of
cellular (co)sheaves, X was really short for FX , to which we associate the cell complex, so
that a cellular sheaf on X (per the definition) is really a sheaf on FX where this has been
equipped with the Alexandrov topology, which in turn is uniquely determined by a functor
FX→Vect (and this last functor is what the definition is describing).

In the example that follows, we illustrate these ideas in a concrete fashion by construct-
ing a cellular sheaf on a particular simplicial complex.

Example 227 Recall our simplicial complex X from before, which we imagine has been
realized thus:

a

d

c

b

ef

together with its associated attachment diagram displaying the poset of face relations (i.e.,
its face category FX):

a

d

c

b

ef

abad

cd bcde cde

ef ce

bd

ac

148. It is also easy to show that a morphism between sheaves of vector spaces, such as that given above, induces
a linear map between the spaces of global sections of the sheaves; moreover, isomorphic sheaves will have
isomorphic spaces of global sections.
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Let us see what a sheaf (of vector spaces) on X—or rather, on the corresponding face
attachment diagram FX—looks like. Well, we need to spell out all the data of the topology,
covers, and the sheaf conditions, right? No! Using the main theorem, it will suffice to just
describe a vector-valued covariant functor on this diagram—and this will already contain
all the data of a sheaf! This is one of the many instances where very abstract category-
theoretic results, which may be difficult to understand at first, can make our lives a lot
easier in practice.

Thus, following the definition of a cellular sheaf, for the values of the sheaf over cells,
this will just amount to the specification or assignment of values (spaces) to each of the
cells of the simplices, data that comes in the form of vectors, for example,

R2

R

R2

R3

R3R3

R2

R

R2 RR2 R

R2 R2

R
R2

But we need maps as well. The maps, for their part, may be thought of as representing
some sort of local constraints or as enforcing certain relations between the data. In general,
when the stalks F(σ) have structure—for instance, here they are vector spaces—then a
sheaf of that type (i.e., valued in the relevant category) is obtained when the restriction
maps preserve this structure. In other words, we should have a function (in our particular
case of vector space assignments, these will be given by a linear map) assigned to each
inclusion of faces in such a way that the diagram commutes, that is, the composition of
functions throughout the diagram is path independent. The following sheaf diagram nicely
displays all these ideas:
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R2

R

R2

R3

R3R3

R2

R

R2 RR2 R

R2 R2

R

R2

(
1 0
–1 2

)

(
1 0 1
0 –1 –1

)

( 0 –2 )

( 1 )

( 2 0 2 )

( 1 2 1 )

( 1 1 )

(
–1 –1
3 1

)

(
0.5
1

)
( –3 )

(
1 0
0 1

)

(
3 3
1 1

)
(
3
1

)

(
2 0 1
0 3 –1

)

(
1 –1
–1 2

)(
2 –3 2
1 0 7.5

)

( 1 –1 ) ( 2 1 )

( 1 0 )

(
2 0 2
1 –1 1

)(
0 1 1
1 –1 0

)

A sheaf is generated by its values specified on individual simplices of X, that is, by local
sections specified on the vertices. But a sheaf is not just this data. The restriction maps
of a sheaf are an essential part of the construction, as they encode how any local sections
can be extended into sections over a larger part of the diagram (ultimately throughout the
entire diagram), and so it is precisely via the restriction maps that it is made explicit how
the local sections can be glued together. The sheaf assignment given over all of X will
be specified by a collection of local sections that can be extended along all the restriction
maps to higher-dimensional faces. There may be some flexibility or freedom in the actual
data assignments over a vertex, but they are not entirely arbitrary, for the restriction maps
encode how local assignments—values specified on certain parts of the diagram—can be
extended to other parts of the diagram, and so the maps will constrain the assignments in
various ways.

If the reader would like to get a good working understanding of the important distinction
between a local section and a global section, it would be useful to closely consider what
happens in this concrete case when we assign, for instance, the value

(
1
0
–1

)
to the stalk

over the vertex e versus what happens when we assign, for instance, the value
(

–1
2
2

)
to the

same vertex. In the first case, one finds that we can “extend” or propagate this particular
selection along some of the arrows to those stalks highlighted in gray, but then there is a
problem, an obstruction to our continuing this process any further upward along the edges
of the diagram:
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R2

?

(
1
1

)

R3

(
1
0

–1

)(
1
1

–1

)

R2

R

(
–2
–4

)
R(

1
1

)
( 0 )

(
0
0

) (
0

–6.5
)

R

R2

(
1 0
–1 2

)

(
1 0 1
0 –1 –1

)

( 0 –2 )

( 1 )

( 2 0 2 )

( 1 2 1 )

( 1 1 )
(

–1 –1
3 1

)

(
0.5
1

)
( –3 )

(
1 0
0 1

)

(
3 3
1 1

)
(
3
1

)

(
2 0 1
0 3 –1

)

(
1 –1

–1 2

)(
2 –3 2
1 0 7.5

)

( 1 –1 ) ( 2 1 )

( 1 0 )

(
2 0 2
1 –1 1

)(
0 1 1
1 –1 0

)

Observe that there is simply no value that might be placed at the stalk over vertex d (hence
the “?”) that would allow us to continue with this extension process. If we assigned (–4)
to the stalk over d, this would indeed be consistent with the map

(
0.5
1

)
proceeding down

and to the right and landing in the stalk over cd, which would in turn land us, perfectly
consistently, in the stalk over cde with the value (0), as required by the other restriction
maps. However, by following what happens to that same assignment –4 under the action
of the map down and to the left via

(
3
1

)
, we see that we would get

(
–12
–4

)
, which, when

further mapped under ( 1 –1 ) would yield (–8). We thus cannot assign –4—or anything for
that matter—to the stalk over d, given our original assignment over e.

The original assignment at the stalk over e, then, is said to describe a strictly local
section, one that importantly cannot be extended globally, that is, over the entire complex.
By beginning with other values at the same (or, if one desires, another) vertex, the reader
can explore various other solutions that are merely local versus those that manage to be
global. In this way, the reader will not only discover that some local solutions or sections
are “more local” than others, but will discover other types of obstructions to the extension
of local sections. For instance, whereas with our test assignment above it turned out that
there was simply no value at all that could be assigned to the stalk over vertex d, while
maintaining consistency with the other stalk assignments required by the restriction maps,
another (less serious) issue one frequently encounters is that a specific assignment on one
stalk ends up requiring two different assignments at some stalk.149

149. We might here take the opportunity to mention that in a variety of applications of sheaves, including beyond
sheaves of vector spaces on complexes, it is possible that exact equality of assignments will be unattainable or
the least valuable thing to consider. There are a few ways to develop machinery to accommodate this, but it is
beyond the scope of this book to cover them in detail. Instead, for one particularly friendly approach, the reader
is referred to the work of Michael Robinson, who has proposed to deal with this situation via formalizing a
“consistency structure” with a corresponding notion of distance between assignments (say, with the structure of
a pseudo-metric space). Moreover, the notion of pseudosections can be developed, and Robinson has shown that
in fact pseudosections are already sections, just with respect to a different sheaf; for instance, pseudosections of a
sheaf over an ASC X are veritable sections of another sheaf over the barycentric subdivision of X. See Robinson
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In contrast to the above failures, one observes that by seeding the stalk over vertex e with
the value

(
–1
2
2

)
, we encounter no such obstruction to the extension of this assignment to a

consistent assignment of values over the entire diagram, thus yielding what is appropriately
called a global section. A global section is just a selection of value assignments from each
of the stalks over all the cells that is consistent with all the restriction maps of the diagram:

(
3
1

)

(–2)

(
–1.5
2.5

)

(
1
–1
2

)

( –1
2
2

)(
2
3
–1

)

(
3
–1

)

( 1 )

(
–1
–2

) ( 1 )(
–6
–2

)
( –4 )

(
2

–1
) (

–4
6.5

)

( 6 )

(
3
1

)

(
1 0

–1 2

)

(
1 0 1
0 –1 –1

)

( 0 –2 )

( 1 )

( 2 0 2 )

( 1 2 1 )

( 1 1 )
(

–1 –1
3 1

)

(
0.5
1

)
( –3 )

(
1 0
0 1

)

(
3 3
1 1

)
(
3
1

)

(
2 0 1
0 3 –1

)

(
1 –1
–1 2

)(
2 –3 2
1 0 7.5

)

( 1 –1 ) ( 2 1 )

( 1 0 )

(
2 0 2
1 –1 1

)(
0 1 1
1 –1 0

)

From various examples presented in the last chapter, regarding sheaves of sections, it
should already be clear that some local sections of a sheaf (of sets) will not extend to
global sections. As we just saw, in the cellular sheaf of vector spaces, the same sort of
thing occurs—that is, sections can remain strictly local, when they cannot be defined across
all the faces of the simplex or when they conflict with the constraints of the restriction
maps. There might be interesting local solutions among the variable sets of solutions to a
local problem, but only those solutions that can be consistently propagated along the entire
diagram, respecting the sheaf restriction maps, will provide us with a global section or
solution.

9.1.1 Sheaf Morphisms and Some Operations on Sheaves

Earlier, in discussing the definition of cellular sheaves, we mentioned the category Sh(X)
of all cellular sheaves on a fixed cellular space X, where we observed that the morphisms of
this category are, inevitably, just natural transformations between the functors defining the
cellular sheaves. But suppose we no longer fix the cellular space, so that we are considering

(2015, 2016b) and Praggastis (2016) for more details. Pushing this a little further, we could analyze data using
the consistency radius of the sheaf, that is, the maximum distance between the value in a stalk and the values
propagated along the restriction maps. By imposing such a consistency structure on the sheaf, this could tell
you “how far” a particular data instance was from conforming to the consistency requirements stipulated by the
structure encoded by the entire sheaf. In other words, given a particular data assignment, it could be used to inform
how to find the closest global section (where “closest,” of course, would be given by, say, the pseudometric placed
on the assignments). See Robinson (2018).
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cellular sheaves on (possibly) different spaces. We would like to extend the notion of a
morphism of cellular sheaves to provide maps between sheaves on different spaces. Of
course, we could consider a morphism between sheaves on a fixed space X as a special
case of this approach, but we have really been heading towards the more general case of a
sheaf morphism involving different spaces.

Definition 228 A sheaf morphism s : F→G from a sheaf F over a space Y to a sheaf G
over the space X consists of the following data:

• a cellular map f : X→Y ,
• a collection of (linear) maps lσ : F(f (σ))→G(σ) such that for each attachment map σ�
τ in X, the following diagram commutes:

F(f (σ)) G(x)

F(f (τ )) G(τ ).

F(f (σ)�f (τ ))

lσ

G(σ�τ )

lτ

In other words, a sheaf morphism takes data in the stalks over two sheaves and relates them
through linear maps in such a way that the resulting diagram commutes.

The reader may observe how this in fact makes use of the pullback sheaf notion, first
mentioned in chapter 8, where for a map f : X→Y , and a sheaf F on Y , the pullback f ∗F
will be a sheaf on X defined by (f ∗F)(γ) = F(f (γ)) and (f ∗F)(σ� τ ) = F(f (σ)� f (τ )).

Such notions (and others, such as the pushforward sheaf) are clearly useful for switching
base spaces. Sheaf morphisms can also be composed, under certain conditions, leading to
sequences of sheaves, linked together by sheaf morphisms. Certain sequences will even
exhibit special algebraic properties, like exactness, which will have significance in a num-
ber of applications. We take up these matters in the next section, after a brief discussion of
a few further operations on sheaves.

We have seen a few constructions—such as that of subsheaves, pullback sheaves, and
pushforward sheaves—where old sheaves are used to generate new ones. Here is a very
brief look at just a few other important things one can do to or with sheaves, to generate
new sheaves; specifically, we focus on indicating a few of the algebraic operations one can
perform on sheaves. These notions can be defined in greater generality, but we will stick to
the cellular context.

Definition 229 For F and G, two sheaves of vector spaces on a cell complex X, we can
define F⊕G, their direct sum, in the natural way:

(F⊕G)(γ) = F(γ)⊕G(γ)

and
(F⊕G)(σ� τ )(v, w) = (F(σ� τ )v, G(σ� τ )w)

for v∈F(γ) and w∈G(γ).

In a similar fashion, we could define F⊗G, the tensor product of two sheaves F, G,
in the expected way; but there is a subtlety here when we try to think of this in terms of
sheaves, and we will not be making use of this, so instead we will just indicate an example
of a direct sum of sheaves.
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Example 230 Consider a network, that is, a 1-D cell complex with oriented edges. Ghrist
(2014) provides some nice applications of cellular sheaves over such networks, called flow
sheaves, where these represent the flow of a commodity (as in supply chains or various
information or transportation of goods moving through networks). The underlying graph
supports certain viable flow values, and one of the purposes of the sheaf is to encode these
feasibility conditions or constraints. Basically a sheaf on such a network will supply some
algebraic structure encoding a particular collection of logical, numerical, stochastic, or
other constraints on the “flows” or transport of commodities through a network. One of
the advantages of using sheaves, in this setting, is that we can easily generalize beyond
numerical constraints on a network to other (perhaps noisy or logical) constraints.

Here is a very rough sketch of how this works.150 A flow (or flow sheaf ) on a network
X is an assignment of coefficients (e.g., in Z or N) to each edge of X, in such a way
that a particular “conservation” condition is met (namely the sum of the incoming edge
flow values equals the sum of the outgoing edge values, except at the special “external”
vertex, where they are not conserved). Each such value can be imagined as representing
an amount of a commodity or resource in transit at a location of the underlying graph.
Restrictions F(v� e) are then projections onto components. The direct sum of two flow
sheaves F⊕G could then be used to represent the transportation of two different resources
being transported along the same given network. In other words, the sum (F⊕G) would
represent the number of both sorts of resources, so (F⊕G)(e) =N2 would represent the
number of F-items and G-items being carried along the edge e.

9.2 Sheaf Cohomology

The impatient reader might well be wondering at this point: “Okay, I understand what a
sheaf is already! But what good is all this?” One glib answer, following Hubbard, might
be that “without cohomology theory, they aren’t good for much”!151 While this seems too
pessimistic—after all, even if all sheaves on their own did was organize a wealth of par-
ticular and highly disparate constructions involving local data into a powerfully general
framework, this would be immensely valuable—it is a perspective that gets at something
important. If sheaves represent local data—or, more precisely, represent how to properly
ensure that what is locally the case everywhere is in fact, more than that, globally the
case—sheaf cohomology is a device that lets us extract global information from local data
and systematically explore, represent, and relate obstructions to the extension of the local
to the global. In this way, sheaf cohomology can cope with situations where the local-to-
global passage breaks down; and this is of immense value, since we would like to be able
to handle and talk about structures that somehow fall short of assembling into sheaves.
Moreover, as we mentioned at the outset of the chapter, we would like to appreciate a
fact that Grothendieck insisted on, namely that individual sheaves are only of secondary
importance—the real power of sheaf theory emerging from the use of constructions involv-
ing various sheaves, linked together via sheaf morphisms. Sheaf cohomology will allow us
to glimpse this.

150. The reader who desires a less rough sketch of these notions is invited to look at Ghrist (2014).
151. See Hubbard (2006, 383).
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In line with our categorical approach thus far, in our presentation sheaf cohomology will
emerge as a functor, specifically as one with domain the category of sheaves (together with
their sheaf morphisms) and codomain the category of vector spaces. The cellular sheaves
that we will continue to work with, together with their cohomology, have the nice property
that it is just as easy to compute with them as to compute the usual cellular cohomology of
a cell complex, something one can learn about in more elementary contexts. Sheaf coho-
mology is particularly important to understand, though, so we do not assume that the reader
already knows or recalls all they need to know about the basic notions of (co)homology.
Over the next few pages, we accordingly build up to sheaf cohomology by first reviewing
the basic notions of (co)homology with respect to ordinary simplices.152

9.2.1 Primer on (Co)Homology

Given oriented simplices (or cell complexes), as described above, a very natural thing is
to look at the boundary of a given n-simplex. As one might expect, the boundary of a 1-
simplex P1P2 is simply the vertices of the edge; however, we must now carefully attend to
the issue of orientation. Taking the boundary, an operation denoted by ∂, is more precisely
defined as taking the formal “difference” between the endpoint and the initial point, that
is, ∂1(P1P2) = P2 – P1. Similarly, the boundary of a 2-simplex P1P2P3 is given by

∂2(P1P2P3) = P2P3 – P1P3 + P1P2.

This in fact corresponds to traveling around what we intuitively think of as the boundary of
a triangle in the direction indicated by the orientation arrow. The boundary of a 3-simplex
is then defined as

∂3(P1P2P3P4) = P2P3P4 – P1P2P3 + P1P2P4 – P1P2P3.

The pattern should be clear, allowing us to define the boundary operator ∂n more generally
for n > 3:

∂k(σ) =
k∑

i=0

(–1)i(v0, . . . , v̂i, . . . , vk),

where the oriented simplex (v0, . . . , v̂i, . . . , vk) is the i-th face of σ obtained by deleting its
i-th vertex. Notice that each individual summand (i.e., the positive terms) of the boundary
of a simplex is just a face of the simplex.

We can associate some groups to a given complex X. The group Cn(X) of oriented n-
chains of X is defined to be the free abelian group generated by the oriented n-simplices
of X. Every element of Cn(X) is a finite sum Σimiσi, where the σi are n-simplices of X and
mi ∈Z. Then the addition of chains is carried out by algebraically combining the coeffi-
cients of each occurrence in the chains of a given simplex. For instance, considering the
surface of a tetrahedron S (oriented in an obvious way), the elements of C2(S) will look like
m1P2P3P4 + m2P1P3P4 + m3P1P2P4 + m4P1P2P3, while an element of C1(S) will look
like m1P1P2 + m2P1P3 + m3P1P4 + m4P2P3 + m5P2P4 + m6P3P4.

152. Though, again, technically we ought to be working with the more general cell complexes and their cellular
maps.
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Now observe that if σ is an n-simplex, then applying the boundary operator to σ will land
us inside the group of (n – 1)-chains, that is, ∂n(σ)∈Cn–1(X).153 Moreover, since Cn(X) is
a free abelian group—thus enabling us to describe a homomorphism of such a group by
specifying its values on generators—it is clear that ∂n describes a boundary homomorphism
mapping Cn(X) into Cn–1(X). In other words,

∂n

(∑
i

miσi

)
=
∑

i

mi∂n(σi).

For instance,

∂1(3P1P2 – 4P1P3 + 5P2P4) = 3∂1(P1P2) – 4∂1(P1P3) + 5∂1(P2P4)

= 3(P2 – P1) – 4(P3 – P1) + 5(P4 – P2)

= P1 – 2P2 – 4P3 + 5P4.

But since we have a homomorphism, we are naturally drawn to look at two things: the
kernel and the image. The kernel of ∂n will consist of those n-chains with boundary
zero, and so the elements of the kernel are just n-cycles. We sometimes denote the ker-
nel of ∂n, the group of n-cycles, by Zn(X). So for instance, if q = P1P2 + P2P3 + P3P1,
then ∂1(q) = (P2 – P1) + (P3 – P2) + (P1 – P3) = 0. Note that this q corresponds to a cycle
around the triangle with vertices P1, P2, P3 (oriented in the obvious way). Furthermore, we
can consider the image under ∂n, namely the group of (n – 1)-boundaries, which consists
of those (n – 1)-chains that are boundaries of n-chains. We sometimes denote this group
Bn–1(X).

Homomorphisms compose and it is a well-known fact that the composite homomor-
phism ∂n–1∂n taking Cn(X) into Cn–2(X) takes everything into zero, that is, for each
c∈Cn(X), we have that ∂n–1(∂n(c)) = 0, or ∂2 = 0. A corollary of this is that Bn(X) is a
subgroup of Zn(X), allowing us to form the quotient or factor group Zn(X)/Bn(X) which
we denote Hn(X) and call the n-dimensional homology group of X. While perhaps obvi-
ous, it is important to realize that this quotient simply puts an equivalence relation on Zn

with respect to Bn, that is, ω∼σ ⇐⇒ ω –σ ∈Bn, and so is technically represented as some
coset.

The important thing to realize now is that we can form the sequence of chain groups
linked together by such boundary homomorphisms, a sequence we call the chain complex:

· · · Cn+1 Cn Cn–1 · · ·∂n+2 ∂n+1 ∂n ∂n–1

Moreover, if C = 〈C, ∂〉 is the previous (in principle doubly infinite) sequence of abelian
groups together with the collection of homomorphisms satisfying the condition that each
map descends by one dimension and that ∂2 = 0, then we can extend all the above reasoning
to the sequences themselves and immediately see that under these conditions the image
under ∂k will be a subgroup of the kernel of ∂k–1. In brief, we can define the kernel Zk(C)
of ∂k as the group of k-cycles, the image Bk(C) = ∂k+1[Ck+1] as the group of k-boundaries,
and then the factor group Hk(C) = Zk(C)/Bk(C) = ker ∂k/image ∂k+1 as the k-th homology
group of C. In other words, Hk gives all the vectors that are annihilated in stage k that were
not already present in stage k + 1. If for all k in a sequence we have that the image under ∂k

153. For the record, if we define C–1(X) = {0}, the trivial group of one element, then ∂0(σ)∈C–1(X).
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is equal to the kernel of ∂k–1, then we have what is called an exact sequence. While exact
sequences are chain complexes, the converse is not true, since a chain complex need only
satisfy that the image (of the prior map) is contained in the kernel (of the subsequent map).
The important thing to realize here is that homology just measures the difference between
the image and the kernel maps.

For simplicial complexes X and Y , a map f from X to Y induces a mapping (i.e., homo-
morphism) of homology groups Hk(X) into Hk(Y). This arises if we consider that for certain
triangulations of X and Y , the map f will give rise to a homomorphism fk of Ck(X) into
Ck(Y), which moreover commutes with ∂k, that is, ∂kfk = fk–1∂k.

We can dualize this entire account to get an account of cohomology, and we do so briefly
now since it will be important for what follows. Consider a simplicial complex X. For
an oriented n-simplex σ of X, we can define the coboundary δn(σ) of σ as the (n + 1)-
chain summing up all the (n + 1)-simplices τ that have σ as a face. In other words, we
are summing those τ that have σ as a summand of ∂n+1(τ ). For instance, if we let X be
the simplicial complex consisting of the solid tetrahedron, then δ2(P3P2P4) = P1P3P2P4,
while δ1(P3P2) = P1P3P2 + P4P3P2.

We can also define the group Cn(X) of n-cochains as the same as the group Cn(X).
However, the coboundary maps δn go the other way from the boundary maps, that is, we
have δn : Cn→Cn+1, defined by

δn
(∑

i

miσi

)
=
∑

i

miδ
n(σi).

We can then build up sequences of cochain groups into cochain complexes, just as one
would expect. Cochain complexes in general can be thought of as looking at how objects
are related to larger superstructures instead of to smaller substructures (as was the case for
chain complexes). Just as before, we could show that δδ = 0, that is, that δn+1(δn(c)) = 0 for
each c∈Cn(X). Moreover, we can define the group Zn(X) of n-cocycles of X as the kernel
of the coboundary homomorphism δn, the group Bn of n-coboundaries of Cn(X) as the
image of δn–1, that is, δn–1[Cn–1(X)]; and since we have that δδ = 0, again Bn(X) will be a
subgroup of Zn(X). This last fact allows us to define the n-dimensional cohomology group
Hn(X) of X as Zn(X)/Bn(X), that is, the kernel of the map “going out” mod the image of the
map “coming in.” A cocycle that is not a coboundary is topologically informative—and
this difference gives rise to a “nontrivial” cohomology group (or nontrivial cocycle).

Example 231 Let us look a little closer at these ideas through the lens of the Penrose
tribar, introduced at the beginning of the chapter. Let Q be the region of the plane on which
the tribar is drawn. We can consider Q as being pasted together from three pieces, as in:154

154. This image, and the next, are modified from Phillips (2021). The exposition that follows is derived from
Penrose (1992) and Phillips (2021).
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The three pieces overlap and we can imagine having chosen points in each of the three
overlapping regions—for example, A in the overlap between piece 1 and piece 2; B in the
overlap between piece 2 and piece 3; and C in the overlap between piece 1 and piece 3.
Then imagine “pulling apart” the tribar into these components, and relabeling the points
appropriately, so that A1 in piece 1 and A2 in piece 2 both correspond to A, points B2, B3

correspond to B, and C1, C3 correspond to C, as in:

We take the tribar to be patched together from the overlapping smaller drawings, where
each of these three components is taken to be a perspective drawing of a corresponding
object in space. Observe how such a perspective drawing—representing 3-D space in the
plane—implies that certain of the points are meant to be further from or closer to the eye
E of a viewer than other points. For instance, letting d(E, A1) denote the implied distance
from a viewer E to point A1 in space, this may differ from d(E, A2)—in accordance with
conventions of perspective where, say, the corner of piece 2 is implied as closer than the
corner of piece 1, forcing A1 to be further from the eye than A2. Thus, we can consider the
ratio

d12 =
d(E, A1)
d(E, A2)

,

which describes piece 1’s implied distance in relation to that of piece 2. Similarly, we can
let d13 = d(E,C1)

d(E,C3) and d23 = d(E,B2)
d(E,B3) . Of course, the other ratios d21, d31, and d32 would then

be defined by just taking the reciprocal, for example, d21 = 1
d12

. Observe that these values
dij do not depend on the chosen points—since any two points in the relevant pieces would
yield the same value for the ratio.

While the drawing of each piece is a consistent rendering of a 3-D structure, there is
some “ambiguity” in any interpretation of the perspective drawing of the spatial objects:
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the distance of the object depicted, in relation to the viewer’s eye, is not known. The implied
object could be three times as big and three times further away and appear the same as the
original. This perceived distance can accordingly be tracked with positive real numbers in
R+, and we can use the factors λ to track how the perceived distances change, for example,
if the perceived distance of piece 1 is changed by a factor of λ then d12 and d13 will have
to be multiplied by λ, and d21 and d31 divided by λ. Clearly, if the hypothetical tribar
(or any other drawing of a figure) could indeed be consistently realized in 3-D space—
that is, if the pieces 1, 2, and 3 could indeed be fused into a viable 3-D object—then we
would expect that we could effectively rescale each of the three pieces by factors λ1,λ2,λ3

until they came together into one consistent structure. And their “coming together into one
consistent structure” would be captured by rescalings that make each of the dij = 1. In other
words, we would be able to find three positive real numbers such that (λi/λj)dij = 1 for each
different i, j, or (what is the same)

d12 =
λ2

λ1
, d13 =

λ3

λ1
, d23 =

λ3

λ2
.

On the other hand, if no such factors λ1,λ2,λ3 exist, then the hypothetical object would
be impossible to realize in 3-D space.

This situation, and the decisive impossibility, can be codified in the language of coho-
mology, specifically attending to the first cohomology group. First, let us consider some
terminology. Here, a collection {dij} will be a cocycle. If it respects the equations shown
above, then the cocycle is a coboundary. Two cocycles are regarded as equivalent if
they can be converted to one another using a rescaling factor λ, that is, when we shift
the distance from which object Qi is being viewed by replacing the pair (dij, dik) with
(λdij,λdik) for some positive real number λ. Under such an equivalence, we are left
with the elements of the cohomology group H1(Q,R+), the quotient group of 1-cocycles
modulo 1-coboundaries. The trivial “unit” element of H1(Q,R+) is thus given by the
coboundaries—so, checking whether the figure depicted in Q is an impossible figure
amounts to checking whether the element of H1(Q,R+) is the unit.

More explicitly, our object Q is the union of n = 3 subsets—given by the three parts
Q1, Q2, Q3—where, technically, each of the Qi is topologically a solid ball, as are the
intersections Qij = Qi ∩Qj. With our setup, a 0-dimensional cochain (taking values in R+)
assigns a number λi ∈R+ to each of the Qi. A 1-dimensional cochain assigns a number
(say, aij) to each of the Qij, where aji = 1/aij, allowing us to take account of orientation
and treat Qij and Qji as different (even though they correspond to the same set). A two-
dimensional cochain would assign a number to each threefold intersection—yet, in this
example, there are no such intersections. Supposing some collection of λi is our 0-cochain,
its coboundary δλ just assigns to each Qij the number λj/λi. If Q had threefold intersections,
then the coboundary of the 1-cochain {aij} would be the 2-cochain δa that assigns the
number δaijk = aijajk/aik to Qijk. Observe that we would have δδ = 1, which 1 is the unit in
the group R+ of coefficients.

As before, a cochain with coboundary equal to 1 (the unit) is called a cocycle. Of course,
if there happen to be no cochains in the next higher dimension—as is the case with 1-
cochains of the tribar—then every cochain is automatically a cocyle. A cocycle that is not
a coboundary is said to be “nontrivial”—and it is these cocycles that are of interest.
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In particular, if a drawing is of an impossible object, then decomposing it into possible
pieces, selecting points in the intersections of those pieces, and defining the numbers dij

will yield a nontrivial cocycle, that is, one that is not a coboundary. In looking at the
first cohomology group of Q, H1(Q,R+), we would ordinarily really be working with the
cohomology of the cover U= {Q1, Q2, Q3, Q12, Q13, Q23}—however, since each of these
elements of the cover is topologically equivalent to a solid ball, we are able to work directly
with Q.

In this construction, there is an implied evaluation map ε that takes a 1-cochain d to
the product d12d23d31, which will be an element of R+. A 1-cochain d will then be a
coboundary iff ε(d) = 1. To see this, observe that if there were a 0-chain λ= {λ1,λ2,λ3}
with d = δλ (i.e., such that dij = λj

λi
), then all the factors of λ in the product d12d23d31 would

cancel; conversely, if d12d23d31 = 1, then one could just define λ1 = 1,λ2 = d12,λ3 = d13

and then get d = δλ. It would remain to check that d23 = λ3

λ2
, but since ε(d) = 1, this would

be d13/d12 = 1/(d31d12) = d23.
Considering the tribar, then, we would just calculate

ε(d) =
d(E, A1)
d(E, A2)

d(E, B2)
d(E, B3)

d(E, C3)
d(E, C1)

.

Considering pairs of the three pieces, and adopting a counterclockwise orientation (starting
at A), observe that ordinary perspective implies A1 is further from the eye than A2—making
the first factor d(E,A1)

d(E,A2) greater than 1. B2 and B3, for their part, are viewed as being the same
distance away, making the factor d(E,B2)

d(E,B3) = 1. Finally, C3 is regarded as further from the eye
than C1, making the last factor d(E,C3)

d(E,C1) greater than 1. Altogether, we have one factor equal
to 1 and the other two factors greater than 1—thus, whatever their particular values, their
product ε(d) 
= 1. In other words, there is no way of rescaling the distances of the pieces
to make them all fit together to assemble into the tribar. This impossibility is codified by
the nontriviality of the above cocycle d, that is, by the nontriviality of the first cohomology
group H1.

(Co)chain complexes can be thought of as representing a cell complex within the context
of linear algebra, expressing the action of taking the boundary of a cell in terms of a linear
transformation. If we put this latter approach together with the development of ASCs from
before, we get what is usually called simplicial (co)homology. We can thus start with some
arbitrary ASC X or its realization and turn it into a chain complex (for instance). This
then allows us to compute its homology. Note that what we are doing here is moving via
functors from Top (after having placed the appropriate topology on X) to the category of
chain complexes Chn, finally landing in the category Vect. The idea here is that we can use
the algebraic properties exhibited by the composite of functors H• to view the topological
properties of the original ASC. Initially, the Ck and their maps may be vector spaces over
some field like F2 (the field of two elements, 0 and 1), and so the simplicial homology of
X, denoted H•(X;F2) will take coefficients in F2 (“on” or “off”). But we could also let
(co)homology take coefficients elsewhere—for instance, as we saw a moment ago, in R
or R+ (thereby describing simplices’ intensities, say, as opposed to the simple “on-off” of
F2). Eventually, the idea here is to abstract further and let (co)homology take sheaves as
coefficients.
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When we start computing simplicial homology, we must choose and fix an ordering
on the list of vertices in each simplex. We use coefficients other than F2, like R, and the
boundary maps will be used to track orientation.155 In brief, for an arbitrary simplicial
complex X, Ck(X) will be a vector space whose dimension is the number of k-simplices
of X, that is, the vector space whose basis (each row as one of the k-simplices, with some
coefficients) is the list (given some fixed ordering) of k-simplices of X. The boundary
maps ∂k : Ck(X)→Ck–1(X) go down in dimension, from the chain space built of the k-
dimensional simplices to the chain space built of the k – 1 simplices. In other words, the
map acts on the ordered set [v0, . . . , vk] and should be a linear map. Indeed it takes some
linear combination of k-simplices and returns some linear combination of (k – 1)-simplices.

As a very simple example illustrating these ideas, consider the following ASC X =
{[v0], [v1], [v0v1]}, realized geometrically as

[v0v1]
→v0 v1

Then the chain complex associated to this is given by

C2 C1 C0 C–1

0 R R2 0.

∂2 ∂1 ∂0

∂2
∂1=

(
–1
1

)
∂0

By inspection, one can see that H2(X) (and all higher homology groups) must be zero (the
trivial group). Moreover, the kernel of the ∂1 map is trivial, and the image of ∂2 (a 1× 0

matrix map) is zero, so H1(X) must be zero. As for H0, on the other hand, by inspection
we observe that the kernel of ∂0 is everything, that is, R2. The image of ∂1 is spanned by
the ∂1 =

(
–1
1

)
matrix. Taking the quotient, then, we see that the dimension of H0 must be 1.

Strictly speaking, H0 is a coset, and has a vector space that is isomorphic to a single copy of
R. Thinking of it in terms of its coset representation, parameterized by one free parameter,
one can think of this as identifying the two points on account of the fact that they happen
to be connected via an edge. As H0 effectively represents the connected components, this
should make good sense. Since the dimension of H1(X) can be thought of as picking out
the number of cycles in the graph (i.e, among the vertices and edges) that are not filled in
by two-dimensional simplices, it should also be intuitively clear that H1 ought to be trivial
in this example. If we had found an H1 not equal to zero, say for another simplex, this
might be indicating that the simplices all fit together in some fashion but that they cannot
be glued together into one big construct, on account of some kind of obstruction or “hole.”
The dimension of Hk(X) is usually referred to as k-cycles, and for nontrivial values this can
be thought of as picking out (k + 1)-dimensional “voids” or holes.156

155. Really, though, we would like to generalize beyond field coefficients, say to Z coefficients, making each
Ck a Z-module. In this case, the chains will record finite collections of simplices with some orientation and
multiplicity. We then move to a chain complex over an R-module, where R is a ring, the boundary maps being
module homomorphisms. Then we have a sufficiently general definition: a chain complex C = (C•, ∂) is any
sequence of R-modules Ck with homomorphisms ∂k : Ck →Ck–1 satisfying ∂k ◦ ∂k+1 = 0.
156. We could further develop this story in a number of directions, for instance going on to define the Betti
numbers, which indicate various levels of obstructions, stringing them together as k varies; but we leave the
curious reader to pursue these matters on their own.
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We now return to simplicial or cellular maps.157 Just as X can be unfolded into a chain
complex C•(X), cellular maps f : X→Y between cell complexes X and Y can be unfolded
to yield a sequence f• of homomorphisms Ck(X)→Ck(Y). Since f is continuous, it induces
a chain map f• that “plays nicely” with the boundary maps of C•(X) and C•(Y), meaning
that the following diagram is made to commute:

· · · Cn+1(X) Cn(X) Cn–1(X) · · ·

· · · Cn+1(Y) Cn(Y) Cn–1(Y) · · · .

∂

f•

∂

f•

∂

f•

∂′ ∂′ ∂′

Since the squares in this diagram commute, meaning the chain map respects the bound-
ary operator, we have that f will act not just on chains but on cycles and boundaries as
well, which entails that it induces the homomorphism H(f ) : H•(X)→H•(Y) on homol-
ogy. We are dealing with functors! In particular, the functoriality of homology means that
the induced homomorphisms will reflect, algebraically, the underlying properties of con-
tinuous maps between spaces. Chain maps, in respecting the boundary operators, send
neighbors to neighbors, and thus capture an essential feature of the underlying continuous
maps. Via such functors, we can build up big “quiver” diagrams with composable maps
between chain complexes, that is, between one complex representation and the next.

Overall, the idea is that homology should algebraically capture changes that happen
to the underlying complex structure. Homology proceeds by first replacing topologi-
cal spaces with complexes of algebraic objects. It then takes a hierarchically ordered
sequence of these parts “chained together,” that is, a chain complex, as input and returns
the global features. Then other topological concepts—like continuous functions and
homeomorphisms—have analogues at the level of chain complexes. Cohomology, for its
part, is just the homology of the cochain complex.

In terms of the big picture, then, homology can be seen as a way of translating topolog-
ical problems into algebraic ones. Specifically, it will (in the general approach) translate
a topological problem into a problem about modules over commutative rings; but when
we can take coefficients in a field, this actually amounts to a translation of the topological
problem into one of linear algebra. And this is one of the principal motivations! Linear
algebra is generally much simpler than topology, in part because of how dimension can
classify finite-dimensional vector spaces (thus the centrality of “dimension formula” that
relates the kernel of a linear transformation to its image). The “long exact sequences” we
started to look at are basically fancy versions of the dimension formula. In the context of
sheaf theory, we can develop powerful ways of building long exact sequences of cohomol-
ogy spaces from short exact sequences of sheaves, where such sequences can already tell
us a lot on their own.

9.2.2 Cohomology with Sheaves

We now proceed, at last, to the construction of the cochain complex for a sheaf F, where
each Ck will comprise the stalks, stacked together, over the k-simplices, and the coboundary
maps (denoted with δk) are built by gluing together a bunch of restriction maps. Once we

157. We ignore more sophisticated issues here, like maps between different dimensions.
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have a sheaf, the tactic for computing all sections at once is to build a chain complex (where
we go up in dimension, so that really we have a cochain complex) and examine its zero-th
homology. The difference between the (co)homology of spaces and sheaf (co)homology
mostly just has to do with the fact that with sheaves we are again looking at functions on a
space, but the range of these functions is allowed to vary, that is, we will have a collection
of possible outputs, where the output space of the functions can change as we move around
the domain space.

The basic idea here can be nicely explained as follows.158 Suppose we have a simplicial
complex, say, for simplicity

v1 v2

with the attachment diagram (displayed on top) and the corresponding data of the sheaf
(below):

v1 v2e

F(v1) F(v2)F(e)
F(v1 � e) F(v2 � e)

.

Now suppose that s is a global section of this sheaf. Then obviously we must have

F(v1 � e)s(v1) = s(e) = F(v2 � e)s(v2),

where F(vi � e) is the restriction map, s(v1) is a section belonging to F(v1), and s(v2) is a
section belonging to F(v2). But now we need only observe that this equation in fact holds
in a vector space, which means that we can rewrite it F(v1 � e)s(v1) – F(v2 � e)s(v2) = 0,
or in matrix form: (

+F(v1�e)

∣∣∣–F(v2�e)

)(
s(v1)
s(v2)

)
= 0.

Note that these F(vi � e) entries are just the restriction maps, so in the context of sheaves
of vector spaces, they will in general be (potentially large) matrices the entries of which
will be given by the linear (restriction) maps.159

Extending this reasoning to arbitrary simplicial complexes (which we assume comes
with a listing of vertices in a particular order, say lexicographic for concreteness), we can
observe that computing the space of global sections of a sheaf is equivalent to computing
the kernel of a particular matrix. Moreover, the matrix(

+F(v1�e)

∣∣∣–F(v2�e)

)
generalizes into the coboundary map

δk : Ck(X; F)→Ck+1(X; F),

158. The next two paragraphs closely follow Robinson (2014).
159. Note that, in the context of the (co)homology groups defined earlier in terms of equivalence relations and
cosets, saying that the difference of the two restriction maps is equal to their value along the edge (i.e., s(e)), is
effectively the same as saying that their difference can be regarded as zero.
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which takes an assignment s on the k-faces to another assignment δk(s) whose value at a
(k + 1)-face b is

(δk(s))(b) =
∑

all k-faces a of X

[b : a]F(a� b)s(a),

where [b : a] is defined to be 0 if a (a k-simplex) is not a face of b (a (k + 1)-simplex) and
(–1)n if you have to delete the n-th vertex of b to get back a.160 This makes sense since
a and b must differ by one dimension, so either a is not a face of b, or a is a face of b,
in which case they will differ by exactly one vertex (i.e., one need only delete one of the
vertices of b to get a). The sign mechanism tied to the deleted vertex allows us to track and
respect the chosen orientation given to the complex.

The matrix kernel construction enables us to extend this approach to higher dimensions
and over simplices that are arbitrarily larger. Then we can show that we have a cellular
cochain complex for a sheaf F on some simplicial complex X. To form the cochain spaces
Ck(X; F), we just collect the stalks over vertices (the domain) and edges (the codomain)
together via direct sum, so that an element of Ck(X; F) comes from the stalk at each k-
simplex:

Ck(X; F) =
⊕

F(a),

where a is a k-simplex. Moreover, the coboundary map δk : Ck(X; F)→Ck+1(X; F) is
defined as the block matrix where for row i and column j, the (i, j)-th entry is given by
[bi : aj]F(aj � bi), where the [bi : aj] term is either 0, +1, or –1, depending on the relative
orientation of aj and bi, assuming one is a face of the other. Carrying on in this way, we
have defined the cellular cochain complex:

· · · Ck–1(X; F) Ck(X; F) Ck+1(X; F) · · · .δk–2 δk–1 δk δk+1

Using the cellular sheaf cohomology group definition,

Hk(X; F) = ker δk/image δk–1,

we will recover all the cochains that are consistent in dimension k (kernel part) but that
did not yet show up in dimension k – 1 (image part). Notice that H0(X; F) = ker δ0, that is,
the zero-th cohomology classes, will be those assignments s that are global sections of the
sheaf F. For k > 0, the nontrivial elements of Hk will represent some calculable obstruction
to globally consistent fusions. For instance, the appearance of nontrivial cohomology in
H1 supplies an explicit measure of the failure of local data to patch.161

All of this is perhaps better illustrated with our running example.

Example 232 We reproduce our running example below for convenience:

160. We start counting at 0.
161. In this vein, we saw how Penrose (1992) displayed the global impossibility of the locally realistic figure of
his tribar in terms of a nontrivial element of first cohomology—that is, the first cohomology group H1(Q,R+) of
some region of the plane on which the drawing of the impossible figure is made, with coefficients in R+. But that
example could have also been presented, in fundamentally the same way, by taking coefficient values in the sheaf
of positive functions (under pointwise multiplication). For a number of interesting examples and discussion of
further aspects of sheaf cohomology, see Curry (2014) and Robinson (2014).
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R2

R

R2

R3

R3R3

R2

R

R2 RR2 R

R2 R2

R

R2

(
1 0
–1 2

)

(
1 0 1
0 –1 –1

)

( 0 –2 )

( 1 )

( 2 0 2 )

( 1 2 1 )

( 1 1 )

(
–1 –1
3 1

)

(
0.5
1

)
( –3 )

(
1 0
0 1

)

(
3 3
1 1

)
(
3
1

)

(
2 0 1
0 3 –1

)

(
1 –1
–1 2

)(
2 –3 2
1 0 7.5

)

( 1 –1 ) ( 2 1 )

( 1 0 )

(
2 0 2
1 –1 1

)(
0 1 1
1 –1 0

)

For such a sheaf F over our given complex X, we have the following:

H0(X; F) H1(X; F) H2(X; F) H3(X; F)

R2⊕R3⊕R2⊕ R2⊕R2⊕R⊕R⊕
R⊕R3⊕R3 R⊕R2⊕R2⊕R2⊕R2 R 0

⎛⎜⎝
s(a)
s(b)
s(c)
s(d)
s(e)
s(f )

⎞⎟⎠
⎛⎜⎜⎜⎜⎜⎝

s(ab)
s(ac)
s(ad)
s(bc)
s(bd)
s(cd)
s(ce)
s(de)
s(ef )

⎞⎟⎟⎟⎟⎟⎠ ( s(cde) ) 0

δ0 δ1 δ2

δ0 δ1 δ2

δ0 δ1 δ2

and where δ0 is given by
a b c d e f

↓ ↓ ↓ ↓ ↓ ↓⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[ab] → –F(a� ab) F(b� ab) 0 0 0 0

[ac] → –F(a� ac) 0 F(c� ac) 0 0 0

[ad] → –F(a� ad) 0 0 F(d� ad) 0 0

[bc] → 0 –F(b� bc) F(c� bc) 0 0 0

[bd] → 0 –F(b� bd) 0 F(d� bc) 0 0

[cd] → 0 0 –F(c� cd) F(d� cd) 0 0

[ce] → 0 0 –F(c� ce) 0 F(e� ce) 0

[de] → 0 0 0 –F(d� de) F(e� de) 0

[ef] → 0 0 0 0 –F(e� ef ) F(f� ef )

and δ1 by

[ab] [ac] [ad] [bc] [bd] [cd] [ce] [de] [ef ]
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓[ ]

[cde] → 0 0 0 0 0 F(cd� cde) –F(ce� cde) F(de� cde) 0
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and δ2 is trivial. Computing the cohomologies here will require doing some linear algebra
and row reduction, which is left to the reader. Observe that in general by adding in more
higher-dimensional consistency checks—that is, filling in data corresponding to the “miss-
ing” higher-dimensional simplices of the underlying simplex—we would be able to reduce
the kernel of δ1, and thus get closer to reducing the nontrivial H1.

It is worth emphasizing a more general truth, namely that the space of global sections
of a sheaf F on a cell complex X will be isomorphic to H0(X; F). Moreover, this Hk (i.e.,
cohomology with sheaves as coefficients) is a functor, which means that when we have
sheaf morphisms between sheaves, they will induce linear maps between their cohomology
spaces, allowing us to extend things still further. Ultimately, it is also worth noting that
while we have been focused on cellular sheaves, general sheaf cohomology can be shown
to be isomorphic to cellular sheaf cohomology, so this sort of example is really part of a
much more general story. And the vector space version of homological algebra we have
used in order to provide a concrete example—while useful for many applications and for
building intuition—does not display the full power of these notions. Ultimately one would
like to (and could) retell the story using rings, modules, and other categories.

Via cohomology, global (in)compatibilities between pieces of local data can display
global qualitative features of the data structure. At a very high level, the general idea of all
this is suggested by the following figure, illustrating how we get a comparatively simple
algebraic representation of features of spaces:
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9.3 Philosophical Pass: Sheaf Cohomology

Box 9.1

Philosophical Pass: Sheaf Cohomology

If the sheaf compatibility conditions require controlled transitions from one local descrip-
tion to another, enabling progressive patching of information over overlapping regions until
a unique value assignment emerges over the entire region—something that is captured by the
vanishing of the group H0 (yielding our global sections)—higher (nonvanishing) cohomology
groups basically detect and measure (in an algebraic fashion) obstructions to such local patch-
ing and consistency relations among various dimensional subsystems. In other words, it can
be thought of as measuring (for some cover) how many incompatible (purely local) systems
we would have to “discard” in order to be left with only the compatible systems. In this way,
sheaf cohomology moreover allows us to examine the relationship between information valid
globally and the underlying topology of the space.

A proper discussion of the possible invariants that emerge in cohomology, especially as we
ascend in dimension, would require a much longer and more detailed discussion. Instead, here
are some very general reflections on the idea of sheaf cohomology. Referencing the high-level
figure on the previous page, in forming sheaves (middle level) over the discrete approxima-
tions of spaces via their triangulations (bottom level), a more “continuous” perspective is
recaptured. However, the nonvanishing cohomology groups (top level) give an algebraic (more
“discrete”) representation of something like the resistance of certain information (assigned to
a part of a space) to integration into a more global system. In short, if the collation condi-
tion in the sheaf construction aligns them with continuity in the sense that it ensures smooth
passage from the local to the global, cohomology with sheaves is something like its discrete
counterpart providing us an algebraic measure of when such local-global passages might be
blocked. In this respect, sheaf cohomology could intuitively be thought of as capturing—in a
dialectic between the continuous and discrete—the nonglobalizability or nonextendibility of
a given information structure in relation to other overlapping structures. Both in its algebraic
representation and in this general interpretation, then, the nonvanishing cohomology groups,
like H1, might be thought of as giving us a picture of just how nonintegrated a system of infor-
mation over a space may be. On the other hand, vanishing cohomology groups indicate the
mutual compatibility or globalizability of local information systems (since they tell us about
the global sections). In this way, sheaf cohomology emerges as a tool for representing (alge-
braically) what might be thought of as the degree of generality (or lack thereof) of a given
system of locally specified data or interlocking ways of assigning information to a space.

Some years before the invention of sheaf theory, Charles Peirce argued that “continuity is
shown by the logic of relations to be nothing but a higher type of that which we know as
generality. It is relational generality” (Peirce 1997, 6.190). Such a suggestive, if somewhat
cryptic, remark provokes us to take a closer look at the connections between generality and
continuity that emerge in the context of sheaves. We know that a sheaf enables a collection
of local sections to be patched together uniquely given that they agree (or that there exists a
translation system for making them agree) on the intersections. Consider the satellite image
mosaic sheaf introduced in example 127 (chapter 5). Recall the way in which the sheaf (col-
lation/gluing) condition ensures a systematic passage from local sections (images of parts of
the glacier) to a unique global section (the image of the entire glacier). Where the localizing
step of the sheaf construction might be thought of as analytic, decomposing an object into
a multitude of individual parts (local), the gluing steps are synthetic in restoring systematic
relations between those parts and thereby securing a unique assignment over the entire space
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(global). The global sections of such a sheaf should not be thought of as a single (topmost)
image but rather as the entire network of component parts welded together via certain com-
patibility relations or constraints. In this connection, generality can be understood in terms of
the systematic passage from the local to the global, a passage that is strictly relational in that
the action of the component restriction maps is precisely an enforcing of certain relations or
mutual constraints between the local sections (that are then built up, along the lines of these
relations, into a global section), and these are an ineliminable part of the construction.

9.4 A Glimpse into Cosheaves

In the cellular case, we can easily talk about sheaf homology by just reversing the direction
of the arrows, technically producing a cosheaf (with its “corestriction” maps). Simply by
observing that the vector space dual of every corestriction map in a cosheaf produces a
sheaf over the poset, we arrive at homology for a cosheaf. More explicitly, this reversal
gives us a cosheaf F̂ of vector spaces on a complex, as in definition 224. As with a sheaf, a
cosheaf can come to serve as a system of coefficients for homology that varies as the space
varies. However, the globality of the cosheaf sections will be found in the top dimension
(unlike how the global sections were built up from the vertices in the case of cellular
sheaves).

More generally, following Curry (2014), we can define a pre-cosheaf as one might
expect:

Definition 233 A pre-cosheaf is a functor F̂ : O(X)→D.162 Whenever V ⊆U, the co-
restriction (or extension) map for the pre-cosheaf is written as rV

U : F̂(V)→ F̂(U).

To construct a cosheaf, we again need the notion of open cover, and a cosheaf will
merge the notion of covers with that of data (given by the pre-cosheaf). We can think of an
open cover here in terms of a function from the “nerve” construction, which basically acts
on covers to produce the ASC consisting only of those finite subsets of the cover whose
intersection is nonempty. More formally, if we suppose U = {Ui} is an open cover of U,
then we can take the nerve of the cover to yield an ASC N(U ), which will have for elements
the subsets I = {i0, . . . , in} for which it holds that UI = Ui0 ∩ · · · ∩Uin 
= ∅. N(U ) is then
the category with objects the finite subsets I where UI 
= ∅, and unique arrows from I to J
whenever J⊆ I. Finite intersections of opens are open, so we get the functors ιU : N(U )→
O(X) and ιop

U : N(U )op→O(X)op. In general, as the colimit of a cover N(U )→O(X) is the
union U =

⋃
i Ui, the data we associate to U ought to be expressible as the colimit of data

assigned to the nerve. With this expectation in mind, we arrive at the following definition:

Definition 234 F̂ is a cosheaf on U if the unique map from the colimit of F̂ ◦ ιU to F̂(U),
supplied by

F̂[U ] := lim−→
I∈N(U )

F̂(UI)→ F̂(U),

is in fact an isomorphism. Then F̂ is a cosheaf, period, if for every open set U and every
open cover U of U, the map F̂[U ]→ F̂(U) is an isomorphism.

162. Looking ahead to the cosheaf conditions, technically we ought to insist that D be not just any category, but
rather a category with enough (co)limits.
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For simplicity, suppose D = Set and take a cover U = {U1, U2} of U by just two open
sets. The sheaf condition would of course stipulate that for two functions or sections
s1 ∈F(U1), s2 ∈F(U2) to give an element in U = U1 ∪U2, the sections must agree on the
overlap U1 ∩U2. This constraint serves to pick out the consistent choices of elements over
the local sections that can then be glued together into a section over the larger set. With
a similar setup—that is, D = Set and U = U1 ∪U2—the cosheaf condition requires not that
we find consistent choices, but rather that we use quotient objects. We do indeed still form
the union of the two sections, but in the process we identify those elements that would be
double-counted on account of coming from the intersection. Formally,

F̂(U)∼= ( ∐
i=1,2

F̂(Ui)
)
/∼,

where s1∼ s2 iff there exists an s12 (a section over the intersection) such that s1 = rU12
U1

(s12)
and s2 = rU12

U2
(s12). This makes sense, since in accordance with duality, we would expect

that the equalizer definition of the sheaf condition would be converted, in passing to
cosheaves, into an underlying coequalizer diagram.

A sheaf is constructed in such a way that the values of its sections on larger sets
in the Alexandrov topology will determine values on smaller sets. A cosheaf basically
reverses this dependence. While so far we have seen many examples of sheaves in contexts
where it makes sense to perform restrictions of assignments of data from larger spaces to
data over smaller spaces, building up global assignments from the “bottom up” via local
pieces, cosheaves may roughly be thought of as instead proceeding “top down,” involving
extensions of data given over smaller spaces to larger spaces.163 While in some sense the
paradigmatic example of a sheaf was given by the restriction of continuous functions, the
paradigmatic example of a cosheaf might be given by the cosheaf of compactly supported
continuous functions where, instead of restricting along inclusions, we extend by zero (in
the other direction). Ghrist (2014, chap. 9) gives one nice way of appreciating the duality
between sheaves and cosheaves, in terms of an application to sensing problems: in this
setting, a sheaf fundamentally amounts to sensing (the global sections of the sheaf yielding
the sensorium), while a cosheaf arises in terms of what the sensors allow one to infer (the
global sections of the cosheaf being supplied by constraint satisfactions that are consistent
with sensing).

Importantly, while in the cellular context the difference between sheaf and cosheaf
is somewhat immaterial, simply a matter of which direction makes the most sense for
the framing of the problem, things can be far more subtle in the context of sheaves and
cosheaves over opens sets for a continuous domain. In insisting on the more general func-
torial perspective, allowing us to make use of duality, one might suspect that the differences
between sheaves and cosheaves are merely formal and not worth discussing. For instance,
a sheaf is a particular functor that commutes with limits in open covers. As one might
expect, a cosheaf is a functor that preserves colimits in open covers. However, in more

163. In the context of simplices, because of the reversal of direction involved in the topology given on the face
relation construction, such extensions will go from higher-dimensional simplices to lower.
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general contexts than the cellular one, especially with open sets coming from a continuous
domain, the differences can reflect much more than a preference for direction of arrows.164

The next example explores a particularly fascinating connection between sheaves and
cosheaves in the context of probabilities and Bayes nets.

Example 235 Imagine we are given a set of random variables X0, X1, . . . , Xn.165 We can
consider the set P(X0, X1, . . . , Xn) of all joint probability distributions over these random
variables, that is, the nonnegative measures or generalized functions with unit integral.
Now, there is a very natural map, one that will be familiar to anyone with some exposure
to probability theory:

P(X0, X1, . . . , Xn)→P(X0, X1, . . . , Xn–1).

This map is accomplished via marginalization, that is, we have

f (X0, X1, . . . , Xn–1) =
�

f (X0, X1, . . . , Xn)dXn,

and where there are similar maps for marginalizing out the other random variables. The
important point is that this in fact yields a cosheaf on the complete n-simplex. We elaborate
on this with an example.

Assume given the random variables X0 = W, X1 = S, X2 = R (the reason for renaming
these random variables thus will be clear in a moment). Then the space of probability
measures P(W, S, R) is a function from the Cartesian product of the random variables to the
(nonnegative) reals such that the integral is zero. Now, we can perform the marginalization
operation, for instance, marginalizing out the R by integrating along R, yielding a map
P(W, S, R)→P(W, S). We can do this for each of the random variables, and continue down
in dimension until we reach the measurable functions over a single random variable. In
other words, we have:

P(W, S, R)

P(S, R) P(W, R) P(W, S)

P(R) P(S) P(W)

which in fact represents the attachment diagram of a complete 2-simplex,

W

SR

164. For instance, when working with the Alexandrov topology on a poset (or when working with locally finite
topological spaces), we can ignore the distinction between pre(co)sheaves and (co)sheaves; however, while
for general topological spaces, there is a sheafification functor that allows us to pass from a presheaf to the
unique smallest sheaf consistent with the given presheaf, there is no analogous cosheafification functor for gen-
eral topological spaces. For much more on cosheaves, and a number of interesting connections and differences
with sheaves, we again refer the reader to Curry (2014). Together with Robinson (2016a), Curry contains more
details on some of the dualities in the sheaf-cosheaf perspective, as well as instances of asymmetry (when certain
constructions are natural for sheaves but not for cosheaves).
165. The idea for this example was inspired by Robinson (2016a).



Cellular Sheaf Cohomology through Examples 309

The commutative diagram, together with the appropriate marginalization maps, gives a
cosheaf on this ASC.

Now, the reader may have already wondered about maps going the other way, namely:

P(X0, X1, . . . , Xn–1)→P(X0, X1, . . . , Xn),

an operation that is parameterized by functions C

P(X0, X1, . . . , Xn) = C(X0, X1, . . . , Xn) f (X0, X1, . . . , Xn–1),

where usually one writes the arguments to C as follows

C(Xn|X0, X1, . . . , Xn–1).

The reader may recognize that we are just describing conditional probabilities and Bayes’s
rule. The key observation is that such conditional probability maps yield a sheaf over a
portion of the n-simplex.

The reader may be familiar with the construction of a Bayes net, given by a directed
acyclic graph (with an induced topology) together with local conditional probabilities.
A Bayes net encodes joint distributions and does so as a product of local conditional
distributions, that is,

P(X1, X2, . . . , Xn) =
n∏

i=1

P(Xi| parents(Xi)).

For the sake of concreteness, we consider the following very simple example of a Bayes
net, the standard one given in most introductions to the device, involving probabilities
of “grass being wet” given that it rained, for instance, or that the sprinkler was running,
illustrated with some sample probability assignments:

The perhaps surprising result is that the content of this Bayes net is in fact entirely captured
by the paired sheaf-cosheaf construction given below, where the marginalization cosheaf
is given by the entire diagram (arrows going down the page), while the paired condi-
tional probability sheaf is given in bold (going up the page) over a part of the underlying
attachment diagram.
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⎛
⎜⎜⎜⎜⎜⎜⎜⎝

P(w,s,r)
P(w,s,¬r)
P(w,¬s,r)

P(w,¬s,¬r)
P(¬w,s,r)

P(¬w,s,¬r)
P(¬w,¬s,r)

P(¬w,¬s,¬r)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎝

P(w,s,r)+P(¬w,s,r)
P(w,s,¬r)+P(¬w,s,¬r)
P(w,¬s,r)+P(¬w,¬s,r)

P(w,¬s,¬r)+P(¬w,¬s,¬r)

⎞
⎟⎠

⎛
⎜⎝

P(w,s,r)+P(w,¬s,r)
P(w,s,¬r)+P(w,¬s,¬r)
P(¬w,s,r)+P(¬w,¬s,r)

P(¬w,s,¬r)+P(¬w,¬s,¬r)

⎞
⎟⎠

⎛
⎜⎝

P(w,s,r)+P(w,s,¬r)
P(w,¬s,r)+P(w,¬s,¬r)
P(¬w,s,r)+P(¬w,s,¬r)

P(¬w,¬s,r)+P(¬w,¬s,¬r)

⎞
⎟⎠

( P(w,s,r)+P(w,¬s,r)+P(¬w,s,r)+P(¬w,¬s,r)
P(w,s,¬r)+P(w,¬s,¬r)+P(¬w,s,¬r)+P(¬w,¬s,¬r)

) ( P(w,s,r)+P(w,s,¬r)+P(w,¬s,r)+P(w,¬s,¬r)
P(¬w,s,r)+P(¬w,s,¬r)+P(¬w,¬s,r)+P(¬w,¬s,¬r)

)

( P(w,s,r)+P(¬w,s,r)+P(w,s,¬r)+P(¬w,s,¬r)
P(w,¬s,r)+P(¬w,¬s,r)+P(w,¬s,¬r)+P(¬w,¬s,¬r)

)

( 1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

)( 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

)

( 1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1

)

(
1 0 1 0
0 1 0 1

)

P(W |S,R)

(
1 0 1 0
0 1 0 1

) (
1 1 0 0
0 0 1 1

)

P(S|W,R)

(
1 1 0 0
0 0 1 1

)
P(S|R)

P(W |R)

The paired sheaf-cosheaf construction contains all the data of a Bayes net; and, in fact, a
solution to the Bayes net is just a global section that is a section for both the sheaf and the
cosheaf !

Before ending this chapter and moving into discussion of toposes, we take the opportu-
nity to make an important but frequently overlooked observation. Consider the (co)sheaf
construction above. Now, consider that relatively small Bayes nets, say, one with only eight
or nine nodes, are already rather simple compared to those that will be of use in practice.
One might thus be suspicious of just how complicated the corresponding (co)sheaf might
look for even only slightly more involved examples, not to mention the issue of storing the
relevant sections for such sheaves. This indeed seems to be a real issue. One might also sus-
pect that computing the sheaf cohomology (and global sections) on “monster” (extremely
large) sheaves would be extremely difficult. As the discussion of this Bayes net sheaf-
cosheaf construction suggests, most real-life (co)sheaves one would meet in practice may
very well turn out to be monsters in the sense of being so large as to cause difficulties in
storage, representation, or computation—difficulties we have simply avoided by confining
our attention to more modest constructions. This is an issue that deserves to be recognized
and pondered.166

166. For some ways to reduce the difficulty, in one setting, see Smith (2014, 527–533); see Curry (2014, 64–66)
for some ways to think about preprocessing the input data so as to deal with the “too many sections” problem. The
reader may also find Curry, Ghrist, and Nanda (2015) highly relevant, as this shows how you can “collapse” the
data structure if your restriction maps are nice enough. Thanks to Michael Robinson (personal correspondence)
for pointing me in the direction of this paper and observing the connection.
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In which we turn to various powerful generalizations of the sheaf notion, moving
beyond the topological case to consider sheaves on a site (Grothendieck toposes).

The chapter begins by exploring Grothendieck topologies, moving beyond the usual topo-
logical notion of a cover to a more general categorical setting. Using the resulting notion
of a site—a category together with a choice of Grothendieck topology—the chapter then
introduces the notion of a Grothendieck topos in terms of sheaves on a site. The rest of the
chapter is devoted to developing a particular angle on such sheaves when specialized to
posets, and to considering further examples. The chapter concludes by dwelling with the
idea of such Grothendieck toposes and looking ahead to the even more general notion of
elementary toposes, via a Lawvere-Tierney topology.

10.1 Revisiting Covers: Toward General Sheaves

Sheaf theory emerged as the investigation of the global consequences of properties that are
defined locally; and in the classical definition of a sheaf, this notion of local ultimately
derives from the underlying topology. In the classical definition of a sheaf on a topolog-
ical space X, sheaves were basically an association of information to the open sets of X,
satisfying a gluing axiom specified in terms of a pointwise covering—where, of course, by
“pointwise covering” we mean that for U⊆X, we have that open subsets {Ui}i∈I cover U
iff

⋃
i Ui = U, where every point that is in U comes from some Ui.

In the appendix, we consider some matters addressing why, in the usual topological def-
inition of sheaves, open sets are always emphasized; but, as mentioned there, sheaves were
historically defined over closed sets before they were defined over open sets. Considera-
tions of this sort—regarding the objects used to define topologies—is one way to prompt
a more careful consideration of questions surrounding covers. The objects of study in gen-
eral (point-set) topology are collections of open sets that are stable (closed) under arbitrary
union and finite intersection, where such collections are used above all to study continuity,
especially those properties of spaces which are invariant under continuous deformation. In
short, as we have seen, a topology is basically a structure that enables us to define objects
locally and then look at how these objects are continuously transformed into one another.
However, while it has a good deal of power for its simplicity, general topology is not use-
ful for all purposes. For one thing, many interesting structures simply do not fit into this
framework or satisfy the relevant axioms. For instance, attempting to treat all the substrings
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of a string as open sets would not work, since such a collection will not be stable under
union. But it seems sensible to think of the substrings {“Groth”, “thend”, “ndieck”} as
being some sort of covering of the string “Grothendieck,” since we can join together the
substrings along the overlapping parts (“th” and “nd”) to yield the original string.

While general topology is, despite the name, perhaps insufficiently general, it remains
one of the cornerstones of modern mathematics because of the immense utility and wide
applicability of many of its notions and the prevalence of situations where topological intu-
itions come in handy. There are contexts in mathematics where some form of topological
intuition appears relevant or useful, yet where no description of the situation in terms of a
space (or any other common ways, e.g., in terms of “locales”) can be given.

Moreover, from the perspective of the association of information to the open sets of a
topological space, we know that the definition of a presheaf, for its part, has a straightfor-
ward generalization beyond the topological case to the use of an arbitrary (small) category
C. These sorts of considerations naturally lead one to wonder whether the concept of a
sheaf—presented thus far in terms of topological covers—can also be extended beyond the
usual topological settings, admitting a definition on more general “topologies.” As you can
imagine, given this preamble, the answer is yes!

Grothendieck was responsible for a more general notion of a “topology” on a category,
one that can now be defined for any category and which we will be able to use to extend
the sheaf notion. This notion largely arose from a desire to study entities—in particular,
from algebraic geometry, arising in the study of cohomology theories—that appeared to
exhibit properties that looked like those of a sheaf, yet where the underlying categories
involved were not the lattice of open sets of a topological space. The cohomology theory is
built on a structure that seems like a space, insofar as it comes with some cover-like struc-
ture, yet which has features that cannot be found in topology. Grothendieck gave the right
description of such contexts, using categories equipped with a general notion of coverings,
allowing for a more unified account.

To begin to appreciate how this works, first notice that the open neighborhoods of a
topological space are really just topological maps U �X that are monic (cancellable on
the left).167 Grothendieck was led to think that perhaps, in place of the neighborhoods U
in a topological space X, we could use more general maps into X, where these are not
necessarily monic. In this manner, the old-style pointwise covers by open sets, mentioned
in the beginning of this section, would come to be replaced with a “covering” by a family of
maps that simply satisfies certain conditions or axioms. Using this to consider an arbitrary
category, the points of the usual pointwise covering approach will then vanish, leaving only
some abstract “open sets,” related no longer by inclusion arrows but by arbitrary arrows.
The “topology” making the objects behave like the usual open sets is then entirely captured
by the specification of the generalized covering in terms of abstract conditions on such
families of maps.

A Grothendieck topology can initially be thought of—where, really, we are currently
describing what is called a pretopology—as a rule for specifying when certain objects of a
category “ought to” cover another object of the category, but purifying (by axiomatizing)

167. Recall that monic maps, or monomorphisms, are the category-theoretic generalization of the notion of
injective maps from sets; see definition 65 (chapter 3).
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the usual topological notion of an open cover. As such, we are basically putting a structure
on a category that allows its components to be decomposed, demanding that the objects
“behave like” the open sets of a topological space, except that rather than looking at inter-
sections, we can look at pullbacks, and unions don’t even have to come into play. While this
is already a powerful generalization, we can actually go further, dropping the assumption
that our category has pullbacks. The Grothendieck topology that emerges will effectively
tell us about when abstract morphisms act as one might hope any cover would, formalizing
the notion of being locally the case, without confining us to the notions or assumptions
from the usual topological setting. A major difference between this new “topology” and
the old notion of open covers from general topology is that our “open sets” (now objects in
a category) need not be stable under union (i.e., coproducts need not exist in the category),
nor even under intersection (i.e., pullbacks need not exist).168

Via this wider notion of a Grothendieck topology—where, instead of the usual inclu-
sion relation between open sets, we can consider arbitrary arrows in a category—we can
make use of many topological intuitions and devices in situations where there does not
appear to be any topology (in the traditional sense) at play. That—and not just generality
for its own sake!—is part of what is behind the real power of all this. The fundamental
takeaway here is that there is no need to restrict ourselves to topological spaces to do sheaf
theory: as long as the category gives information similar to open covers (which similarity
is formalized with the notion of a Grothendieck topology), we can generalize the construc-
tions involved in creating a sheaf beyond the category of open sets of a topological space.
Using Grothendieck topologies, we develop a more powerful notion of a sheaf defined on
a (small) category, disposing of the condition that the base be formed of open sets and the
lattice formed by inclusions arrows between these sets.169

Before diving into the relevant definitions and constructions, here’s a last way of thinking
of all this. Suppose you have an (arbitrary) presheaf. You may want to say that if you know
the value of that presheaf on some family of objects Xi—let’s not assume anything else of
those objects—then that “ought to” be enough to tell you the value of the presheaf on some
X (not necessarily a space), which we would thus like to think of as being “covered” by
the family Xi. In other words, you want to know which families of arrows into X are such
that the presheaf data valued locally on that family extends to presheaf data on X along
those arrows. But your domain category might not be topological at all, and so the objects
might not present as “open sets” in the strict sense. By developing the notions discussed
above, we will be able to address these needs. The important notion of a site will emerge
as a category together with a choice of Grothendieck topology—using this, we will be able
to define the all-important notion of a Grothendieck topos in terms of sheaves on a site.

168. While Grothendieck’s use of the term “topology” for his own notion is entirely sensible, we should empha-
size that it is not literally a topology in the usual sense. A Grothendieck topology, strictly speaking, has nothing
to do with—or, rather, does not rely on—open sets or closed sets in the usual topological sense (i.e., as treated in
chapter 4).
169. Sheaf theory cast in terms of this notion of Grothendieck topologies was first described in Artin,
Grothendieck, and Verdier (1972, SGA 4 Exposé I–IV).



314 Chapter 10

10.2 Grothendieck Toposes

10.2.1 Grothendieck Topologies: First Pass

The first way of commonly approaching this new sort of “covering” is by considering how
the construction can be accomplished in any category C assumed to have pullbacks. We
will use the ingredients about to be introduced to define what is technically a pretopology.
As the name suggests, one can think of it as “on the way toward” the still more general
notion toward which we are building.

For each object c of C, let’s start by considering a set S of indexed families of morphisms
to c, that is,

S = {fi : ci→ c | i∈ I}.

If you think of an arrow into c as a “perspective” on c, taking such an S is like bunching
together a number of perspectives on, or ways of seeing, c. The poet Wallace Stevens has
a poem “Thirteen Ways of Looking at a Blackbird,” which consists of thirteen short parts,
each of which present a distinct “perspective” on a blackbird. For intuition, S is the poem
which comprises thirteen (so index set I = 13) ways of looking at c = blackbird. Suppose
next that for each object c of C we assign a collection

K(c) = {S, S′, S′′, . . . }

consisting of a selection of certain of the families of morphisms (each of the same form
as S). On the “perspective” way of seeing things, this is like selecting certain “poems”
about our blackbird—as if to say, “I am interested in these particular families of ways of
seeing c.” But suppose we make you abide by a rule: you can only make such a selection
provided it meets certain (three) conditions. Provided it does meet those conditions, then
your collection K(c) is allowed, and we agree to call it a covering and the families in it
covering families (or covers of c). Such a K(c) then makes up our “(pre)topology.”

Definition 236 Let C be a category that has pullbacks. Then a Grothendieck pretopology
(or basis (for a Grothendieck topology)) on C is a function K that assigns to each c∈
Ob(C) a collection K(c) of families of morphisms into c, as above, where this satisfies
three conditions:

1. Whenever an arrow f : c′
∼=−→ c in C is an isomorphism, then the family {f : c′

∼=−→ c}
consisting of just that arrow is in the collection K(c).170

2. If {fi : ci→ c} is a covering family (i.e., is in K(c)) and g : b→ c is any morphism in C,
then the family of pullbacks {π2 : ci×c b→ b}i∈I exists and is a covering family (i.e.,
is in K(b)).171

3. If {fi : ci→ c} is a covering family (i.e., is in K(c)) and for each i we also have a
family {gij : bij→ ci}j∈Ji that is a covering family (i.e. is in K(ci)), then the family of
composites {fi ◦ gij : bij→ ci→ c}i∈I,j∈Ji is also a covering family (i.e., is in K(c)).172

170. Think of this as the “solipsist” stipulation: if you’re going to collect different “poems” about c, you can only
do so as long as you agree to “let c tell her own story from her own perspective (or from the perspective of anyone
who essentially shares her perspective).”
171. Attempt to finish the analogy for yourself (this is an important one!): Given a “poem” with a bunch of
perspectives on c, and then given another isolated perspective on c (from the vantage of some b), . . . .
172. Try formulating for yourself the right analogy here as well.
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To formulate what it means to have a sheaf for the coverings comprising such a pretopol-
ogy, we can actually rehash the classical (topological) definition of a sheaf. We just have to
make one change. Recall from the definition of a sheaf on a topological space the stipula-
tion that for each open cover {Ui}i∈I of some U, every family of elements {xi ∈P(Ui)}i∈I

matching on the intersections Ui ∩Uj for all i and j can be glued together into a unique
element x∈P(U). The same sort of thing works for a definition using covering families of
an object c; all we need to do is replace intersection ci ∩ cj by the pullback ci×c cj, that is,

ci×c cj cj

ci c.

hij

vij fj

fi

Now, to define a sheaf, we need a presheaf to work with. But we can of course just use a
functor P : Cop→Set, where we only assume of C that it has pullbacks. Then, applying P
to the diagrams in C of the above sort, we would get associated diagrams living in Set:

P(ci×c cj) P(cj)

P(ci) P(c).

P(hij)

P(vij)

P(fi)

P(fj)

We then just follow the lead given by the topological definition. The matching or gluing
condition for a sheaf will thus read: if {xi ∈P(ci)}i∈I is a family of elements that match, in
the sense that P(vij)(xi) = P(hij)(xj) for all i, j, then that family determines a unique element
x∈P(c) such that

P(fi)(x) = xi

for all i∈ I. And this is equivalent to requiring that the arrow e is an equalizer

P(c)
∏

i

P(ci)
∏

i,j

P(ci×c cj),
e

where e(x) = (P(fi)(x))i∈I , for every covering family {ci
fi−→ c}i∈I .

Assuming a category C has pullbacks, we will thus have a way of talking about sheaves
on it! No topology (in the usual sense) needed!

The definition of pretopologies via covering families just sketched requires that pull-
backs exist in the underlying category. We can just as well provide a more general definition
that does not rely on their existence, and this is done not just for the sake of giving the most
general definition but also because there are certain categories of interest that do not have
pullbacks. This generalization is typically accomplished by replacing the indexed families
S of morphisms into an object with the sieves they generate, a construction the reader is in
fact already familiar with (under another name). By using sieves, we will see that we can
dispense (in principle) with the assumption that C has pullbacks.

But in fact, without yet getting into sieves, we can point out that the three conditions
given above are not created equal: it is really the second condition in the definition that is
most decisive, as far as sheaves are concerned. Following Johnstone (2002), we might thus
isolate the second condition and define the following notion.
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Definition 237 Let C be a category. Then a coverage on C is a function T that assigns
to each c∈Ob(C) a collection T(c) of families of morphisms {fi : ci→ c}i∈I into c (these
are called T-covering families, or just covering families, when T is understood), where this
satisfies:

• If {fi : ci→ c}i∈I is a covering family and g : b→ c is any morphism with codomain c,
then there exists a covering family {hj : bj→ b}j∈J such that each composite g ◦ hj factors
through some fi, in the sense that

bj b

ci c.
k

hj

g

fi

Remark 238 The traditional way of defining a Grothendieck topology, as we shall see,
is to use three conditions (similar to those found in the definition of a Grothendieck
pretopology—see definition 236). But, really, the second condition in 236 is decisive for
the introduction of the sheaf notion, while the other conditions (usually called “saturation
conditions” or “closure properties”) are conditions that are often met in practice (and so,
typically assumed), yet fundamentally do not affect the sheaf notion. In particular, the col-
lection of families of morphisms for which a given functor satisfies the associated sheaf
axiom will typically have a number of closure properties (essentially encoded by the notion
of a sieve), which are thus commonly added in the definition itself.

However, following Johnstone (2002), one can take the approach of isolating this essen-
tial condition and giving the definition of a coverage, as in 237, and then reserving the name
Grothendieck coverage for a coverage that also satisfies the two other saturation condi-
tions (where a Grothendieck coverage is the same thing as what is traditionally called, and
that we will call, a Grothendieck topology).173 Grothendieck himself originally considered
coverages that also obey the additional saturation conditions.

Finally, observe that a Grothendieck pretopology differs from the above in that it
assumes the category C has pullbacks and replaces the condition in the definition 237
by the stronger condition:

If {fi : ci → c} is a covering family and g : b→ c is any morphism with codomain c, then the family
of pullbacks {π2 : ci ×c b→ b}i∈I exists and is a covering family.

This condition is satisfied in many examples; however, strictly speaking, it is not needed
for defining sheaves—the more general condition given in 237 will be enough.

Using this notion of coverage, we can already define the notion of a site, and then define
sheaves for this, just as one would expect.

Definition 239 A site will mean a pair (C, T) consisting of a category C equipped with a
coverage T . (A small site is a site for which the underlying category is small.)

Definition 240 For C a category, a functor F : Cop→Set is said to satisfy the sheaf axiom
for a family of morphisms {fi : ci→ c}i∈I if, whenever we have a family of elements si ∈

173. Johnstone 2002 renamed things to avoid the “emotional baggage” associated with the language of a
“topology.”
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F(ci) that are compatible—in the sense that whenever g : b→ ci and h : b→ cj satisfy fi ◦ g =
fj ◦ h (for any i, j, not necessarily distinct), we have F(g)(si) = F(h)(sj)—then there exists a
unique s∈F(c) such that F(fi)(s) = si for each i∈ I.174

Then, given T a coverage on C, F is said to be a T-sheaf provided it satisfies the sheaf
axiom for every T-covering family.

Again, the collection of all families of morphisms for which a functor satisfies the sheaf
axiom, as above, will generally have some further “closure properties.” On account of this,
it is typical to add such conditions to the single condition defining a coverage, obtaining an
expanded definition. We will now expand on the covering families approach via the notion
of a sieve, which will lead to the original (and common) definition of a Grothendieck topol-
ogy. Moreover, as we will see—and as the name “pretopology (or basis for a Grothendieck
topology)” suggests—a pretopology on a category can ultimately be used to generate a
Grothendieck topology (though different pretopologies may generate the same topology).

10.2.2 Sieves

Definition 241 A sieve S on an object c of C is a family of morphisms in C, all of which
have codomain c, that satisfies

f ∈ S implies f ◦ g∈ S,

whenever such a composition makes sense.

In other words, a sieve S on c is a collection of arrows with codomain c, where this is
“closed under composition on the right” (or “closed under precomposition”). A generic
picture of a sieve might look something like:

· · · · · ·

a′ a′′ b′ b′′ d′

a b d

c

In the ordinary sense of the term, a sieve is of course a device used to strain, sift or sort
some material, filtering out undesired pieces from a larger input. In a similar fashion, if we
start with all arrows into c, a sieve (in our sense) on c is thus a collection of arrows that
sifts or filters certain arrows from that set of all arrows into c: if there is an arrow b→ c
going through to c, then whenever there is an arrow b′→ b, the arrow b′→ c “finds its
way” through to c as well. In slogan form (explaining the term “sieve”):

If b goes through the sieve, then so too does anything “smaller than” b.

174. By the way, notice how the definition simplifies in the case where C has pullbacks: specifically, one need
only check the compatibility of si and sj on the pullback of fi along fj, instead of on arbitrary pairs of functions
(g, h), as stipulated by this more general definition.
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This defining condition of a sieve being closed under pre-composition is sometimes called
a “saturation condition.” Moreover, given a collection of morphisms landing in c, it can
always be saturated in this way, leaving us with a sieve on c.

Here is another important saturation feature of the notion of a sieve. The definition
implies that a sieve S is such that for any b→ c in S, any path to b followed by the path
from b to c will itself be a path in S. In particular, then, if S is a sieve on c and h : b→ c is
any arrow to c, we will have that

h∗(S) = {g | codom(g) = b and h ◦ g∈ S}

is a sieve on b. This is another closure or saturation condition, in that it says that sieves are
“closed under pulling back.” It is straightforward to show that h∗(S) is itself a sieve.

This is a powerful notion that makes sense in any category. But to get a better handle
on this notion, it may again help to specialize to posets. Recall that a downset is a subset
D⊆P for which, for all x∈D and for all y∈P, if y≤ x, then y∈D. Moreover, recall that
for each element p of the poset, the downset generated by p—its principal downset—is

↓ p := {q∈P | q≤ p}.

Applying the definition of a sieve in the context of posets, we can thus say that a subset
S⊆P will be a sieve on p if q≤ p for each q∈ S and r∈ S if r≤ q for some q. In other
words, a subset S⊆P is a sieve on p provided S belongs to D(↓ p), the collection of all
downsets of the principal downset ↓ p. Moreover, in a poset, regarded as a category, recall
that there is an arrow q→ p precisely when q≤ p, and there is at most one arrow from q
to p. Accordingly, in such a setting, we can identify the underlying families of morphisms
S = {fi : ci→ c}i∈I , consisting of arrows into c closed under precomposition, with a family
of elements {ci | ci≤ c for all i∈ I} that is downward closed.

In a moment, we will use this formulation for posets to present the main definitions in
terms of posets. But let us first make a few other, more general observations. On account
of the intimate connection between principal downsets and representable functors—as
explored in chapter 6—it should come as no surprise to the reader that, in the more general
case, each sieve S on an object c can be identified with a subpresheaf S⊆HomC(–, c) := Yc

of the representable functor (at least in settings where C is locally small).

Proposition 242 A sieve S on an object c of a category C can be exhibited as a subfunctor
of the representable hom-functor Yc := HomC(–, c), via the following specification:

b �−→ {f ∈HomC(b, c) | f ∈ S}

(a
g−→ b) �−→ g∗, such that g∗ : f �→ f ◦ g.

In other words, given a sieve S on c, defining Q(b) = {f | f : b→ c and f ∈ S}⊆HomC(b, c)
will produce a functor Q : Cop→Sets that is a subfunctor of Yc. Conversely, via the Yoneda
embedding y : C→SetCop

taking an object c∈C to Yc, we can further consider that if we
have a subfunctor Q⊆ Yc, then the set

S = {f | for some object b, f : b→ c and f ∈Q(b)}

will form a sieve on c.
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Altogether, since we can pass from S to Q and from Q to S in reciprocal fashion, this
informs us of the fact that:

sieve on c = subfunctor of Yc.

This already gives us a more category-theoretic way of formulating the notion of a sieve,
as compared to the definition that takes a sieve to be some set of arrows satisfying certain
constraints. A third characterization of sieves is also in this more category-theoretic spirit.

Proposition 243 A sieve S = {ci
fi−→ c | i∈ I} on an object c of a category C can be seen

as a subcategory of the slice (comma) category C/c, where the objects are just the arrows

ci
fi−→ c of S, and the morphisms are given by arrows u making triangles of the following

form commute:

ci cj

c

u

fi fj

In short, a sieve has three (equivalent) characterizations:

• as a set of arrows into some object (where these arrows satisfy a condition of closure
under composition on the right);

• as a subfunctor of the representable hom-functor;
• as a subcategory of the slice category.

Before putting this notion of a sieve to work, let us make a simple observation that will
allow us to define one other notion that will be of use to us. Observe that a sieve on some
object clearly does not need to include all the arrows into that object. However, taking all
arrows into an object will indeed amount to a sieve, and we reserve a special name for such
a sieve.

Definition 244 For an object c of C, the set

Mc = {f | codomain(f ) = c}

of all arrows into c will be a sieve, one that (for reasons that should be clear) is called the
maximal sieve on c.

Observe that, specialized to posets, the maximal sieve on p∈P is just given by taking
↓ p, the principal downset itself.

Finally, relating this back to the earlier discussions using families of morphisms into c:
observe that any family {fi : ci→ c}i∈I generates a sieve on c, by taking all those morphisms
with codomain c which factor through at least one of the fi. And it is straightforward to
demonstrate that given a family {fi : ci→ c}i∈I of morphisms of C and F a presheaf on C,
F satisfies the sheaf axiom for {fi : ci→ c}i∈I iff it satisfies the sheaf axiom for the sieve
generated by that family.

10.2.3 Grothendieck Topologies and Sites Defined

Equipped with the notion of a sieve, we are now in a position to define the following
concept of a Grothendieck topology.
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Definition 245 A Grothendieck topology (or Grothendieck coverage) on a category C is a
function J that assigns to each object c of C a collection J(c) of sieves on c, in such a way
that

1. identity cover (or maximality axiom): the maximal sieve Mc is in J(c);
2. stability under change of base (or stability axiom): if S∈ J(c) and h : b→ c is any

morphism with codomain c, then h∗(S) is in J(b);175

3. local character condition (or transitivity axiom): if S∈ J(c) and R is another sieve on
c such that, for each f in S (e.g., f : b→ c), the sieve f ∗(R) is in J(b), then R belongs to
J(c).

At first glance, this might seem unmotivated or difficult to parse. But observe that the
conditions on a Grothendieck topology are rather intuitive: (1) is just an inclusion of rep-
resentable functors as covers; (2) is really a disguised way of insisting that J itself be
functorial (a presheaf); and (3) requires that things are transitive.

Terminologically, if S∈ J(c), we say that S is a covering sieve, or that S covers c (or,
sometimes, for explicitness, that S is a J-cover of c). We will also say that a sieve S on
c covers an arrow f : b→ c if f ∗(S) covers b. In other words, S covers c iff S covers the
identity arrow on c. In these terms, the three axioms for a Grothendieck topology given
above can equivalently be formulated in terms of a relation between the sieves and the
arrows of the category (this is called the arrow form of the definition in Mac Lane and
Moerdijk 1994):

• (1a) identity: if S is a sieve on c and f is in S, then S covers f ; informally, this says that
any “open set” covers itself, or (in terms of sets) that any set is covered by all its possible
subsets.

• (2a) stability: if S covers an arrow f : b→ c, it also covers the composition f ◦ g, for any
arrow g : a→ b; informally, this says that coverings “pull back.”

• (3a) transitivity: if S covers an arrow f : b→ c and R is a sieve on c which covers all
arrows of S, then R covers f ; informally, this ensures that a cover of a cover will be a
cover.

A further feature that one might wish to impose on such covering sieves in fact already
follows from the three main axioms (in either form): namely, that any two covers have a
common refinement, that is, J(c) is closed under finite intersections. Explicitly, we mean

• (4) if R, S∈ J(c), then R∩ S∈ J(c),

or in arrow form:

• (4a) if R and S both cover g : b→ c, then R∩ S covers g.

Equipped with the notion of a Grothendieck topology, we can define the following:

Definition 246 A site will mean a pair (C, J) consisting of a category C equipped with a
Grothendieck topology J.176

175. Observe that, in the presence of the other two conditions, this essentially amounts to a simplification of the
coverage condition in definition 237.
176. In such contexts, C is typically assumed to be small.
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Both because it offers a more immediately accessible version of the above definition and
because we will make particular use of this specialized version in what follows, let us also
give a version of the definition specialized to posets.

Definition 247 (Grothendieck topology specialized to posets) A Grothendieck topology J
on a poset P is a map

p �→ J(p)

assigning to each element p∈P a collection J(p) of sieves on p—where, as indicated
above, S⊆P is a sieve on p provided q≤ p for each q∈ S and if r≤ q for some q∈ S, then
also r∈ S—that satisfies the following conditions:

1. the maximal sieve ↓ p is an element of J(p);
2. if S∈ J(p) and q≤ p, then S∩↓ q∈ J(q);
3. if S∈ J(p) and R is a sieve on p such that R∩↓ q∈ J(q) for each q∈ S, then also R∈

J(p).177

Earlier it was mentioned that the new definition of a Grothendieck topology in terms of
sieves, as in definition 245, has some advantages, including the advantage of allowing us
to dispense with the assumption that the underlying category C has pullbacks. Even if the
individual morphisms in C cannot be pulled back, a sieve can always be pulled back along
a morphism of C—definition 245(2) tells us how this should go. This is ultimately the
case because each sieve on an object c of the category can be identified with a subpresheaf
of the representable hom-functor Yc, and the presheaf category SetCop

in which this lives
itself has pullbacks. Being able to identify sieves with subpresheaves of the representable
hom-functor Yc will be especially useful to us in defining sheaves for such topologies built
from covering sieves. Another reason for the new definition in terms of sieves is that—
referring back to the notion of a Grothendieck pretopology—two different pretopologies
may yield the exact same sheaves, so there was a lingering imprecision in the definition
of a Grothendieck pretopology. It is partly in order to overcome this imprecision that we
move from focusing on covering families to covering sieves.

On the other hand, in practice, it is often the case that covering families are easier to
specify and work with than the sieves that they generate; especially when the underlying
category C has pullbacks, it also appears to be simpler to work with the generating covering
families, at least when assessing whether or not a particular functor is a sheaf.

Before coming back to some of these niceties, let us look at some examples of
Grothendieck topologies. There will generally be a number of Grothendieck topologies that
could be attached to a category. The next two examples represent two important extremes.

177. With this, it becomes especially evident that J in fact must be a functor Pop → Set, once we define J(q
≤−→

p)(S) = S∩↓ q for each S∈ J(p). If we have r ≤ q≤ p in P and S∈ J(p), then

J(r
≤−→ p)(S) = S∩↓ r = (S∩↓ q)∩↓ r = J(r

≤−→ q)J(q
≤−→ p)(S).

Defining things in this way, the stability axiom ((2) above) then just expresses that J ∈PreSh(P). However,

observe that, in general, as a functor, J itself is not a sheaf—for, given a cover {ci
fi−→ c}i∈I of c and a compatible

family of covers {xi ∈ J(ci)}i∈I , there may in fact be a number of covers of c that extend this latter family.
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Example 248 The minimal topology—also going under the names trivial, indiscrete, or
coarse topology—Jind on a category C is the one in which the only sieve covering an
object c is the maximal sieve Mc. In other words, we are declaring that only sieves of the
form 245(1)—that is, HomC(–, c)—are covering sieves. In particular, when dealing with P

a poset, since we know that representable functors are the principal downsets, the indiscrete
Grothendieck topology on P is just given by taking the principal downsets, that is,

Jind(p) = {↓ p}.

This topology is the coarsest (smallest) of all topologies that can be put on C.

Example 249 The maximal topology—also discrete topology—on C is such that every
sieve is declared a covering sieve. Specialized to P a poset, the discrete Grothendieck
topology on Pwill be given by

Jdis(p) = D(↓ p).

This is clearly the finest (biggest) topology on C. In practice, this topology can sometimes
lead to rather nonintuitive covers. As the names suggest, the maximal and the minimal
topologies provide the two extremes on the spectrum of possible topologies.

Example 250 As is commonly known in differential geometry, the category Man of
smooth manifolds and their smooth maps does not have all pullbacks—in particular, pull-
backs of manifolds are not generally manifolds. (It has a number of other deficiencies, from
a categorical perspective.) In general, one needs to impose some structure on the maps in
order to ensure the existence of pullbacks.

But if we take for covering families the families of “open embeddings” {fα : Uα ↪→
M}α∈A such that the family of open sets {fα(Uα)}α∈A is an open cover of M, this gives
us a Grothendieck topology on Man—and using such a site, one can observe that the
representable functors are sheaves.

The notion of a Grothendieck topology and its covering sieves is sometimes said to be a
vast generalization of the usual notions of a topological space and its covers.178 For this to
be a valid perspective, we should at the very least be able to check that the latter notion is
indeed captured, as a particular case, by the former.

Example 251 By viewing the lattice (poset) O(X) of open subsets of a topological space
X as a category, a sieve on U is just a family S = {Ui}i∈I of open subsets of U satisfying the
condition that W ⊆V ∈ S implies that W ∈ S. One then says that S covers U provided U is
contained in the union of the open sets of S. The usual topological notion of a cover is thus
recovered by taking as our Grothendieck topology that specified by

JO(X)(U) =
{

S∈ D(↓U)
∣∣ ⋃

S = U
}

,

where, as before, D(↓U) is the collection of all the downsets of ↓U. You can verify that
the standard open cover definition in fact satisfies the axioms for a Grothendieck topology,

178. This is not exactly the right way to think about it, since it is not at all a straightforward abstraction from the
topological notions. But, as the next example shows, it does indeed embrace the usual topological notions.
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and that the above Grothendieck topology corresponds to the usual topological notion of
an open cover.179

In greater generality, given a complete Heyting algebra H (that is, a Heyting algebra
with arbitrary joins

∨
and meets)—or a frame, introduced below—we can define the

Grothendieck topology JH by taking

{ci}i∈I ∈ JH(c) iff
∨
i∈I

ci = c.

This is sometimes called the canonical topology on H.

Example 252 (The dense topology) The dense topology Jdense—also called the double-
negation topology, for reasons we will see shortly—can be defined for an arbitrary category
C in terms of collections of sieves Jdense(c) of the form:

S∈ Jdense(c) iff for any f : b→ c there exists a g : a→ b such that f ◦ g∈ S.

It is useful to look at this in the special case when we are dealing with a poset P. In general,
for a poset P, a subset D⊆P is said to be dense if, for every p∈P, there is a q≤ p with
q∈D. The subset D⊆ {q∈P | q≤ p} is then said to be dense below p if for every p′≤ p,
there exists a q≤ p′ with q∈D. Observe that since D⊆ {q∈P | q≤ p}, D is already a
sieve. If D is dense below p, we can call it a dense sieve (on p). The collection of dense
sieves will supply us with a topology Jdense on a poset by taking

Jdense(p) = {D | q≤ p for all q∈D, and D is a sieve dense below p}.

Observe that another way of saying this is

Jdense(p) = {D∈ D(↓ p) | ↓ p⊆↑D},

that is, Jdense(p) will consist of a selection of sets D from the collection of all downsets of
the principal downset ↓ p, in such a way that the principal downset itself is contained by
↑D = {x∈P | x≥ d for some d∈D} =

⋃
d∈D ↑ d, the upper set generated by such D.

It may be helpful to prove that, defined thus, such objects indeed supply us with a
Grothendieck topology.

Exercise 22 Prove that such dense sieves form a Grothendieck topology.

Solution

Proof. We need to check the three requirements:

1. the maximal sieve (principal downset) ↓ p is an element of J(p);
2. if S∈ J(p) and q≤ p, then S∩↓ q∈ J(q) (stability);
3. if S∈ J(p) and R is any sieve on p such that R∩↓ q∈ J(q) for each q∈ S, then also

R∈ J(p) (transitivity).

179. However, there is a subtlety here. As we know, in the usual context of a topological space, an open cover of
U is typically described as a family {Ui | i∈ I} of open subsets of U whose union

⋃
i Ui is equal to U. Note that

such a family is not necessarily a sieve. However, it does generate a sieve, via taking the collection of all those
open V ⊆U where V ⊆Ui for some Ui. This motivates a more careful consideration of the notion of generating
a covering sieve, something that can be described in the more general context of an arbitrary category (with or
without pullbacks), via a basis for a Grothendieck topology. See below and Mac Lane and Moerdijk (1994, III.2)
for details.
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Requirement 1 is basically immediate: certainly ↓ p itself is (trivially) in the collection of
downsets of ↓ p, and ↓ p⊆↑ (↓ p). Thus, ↓ p∈ Jdense(p).
Requirement 2: let D∈ Jdense(p) and consider q≤ p. But ↓ p⊆↑D (since D∈ Jdense(p)),
so if r∈↓ q, we will have that r∈↓ p; hence, there will have to be an s∈D with r≤ s.
But then s∈D∩↓ q, as q≥ r, from which we must have ↓ q⊆↑ (D∩↓ q), which means
D∩↓ q∈ Jdense(q).
Requirement 3: let D∈ Jdense(p) and E∈ D(↓ p) so that E∩↓ q∈ Jdense(q) for q∈D. Thus,
↓ p⊆↑D and ↓ q⊆↑ (E∩↓ q) for q∈D. If we now consider r∈↓ p, we can show that r∈↑E
as follows: ↓ p⊆↑D, so there exists a q∈D with q≤ r; we also have that ↓ q⊆↑ (E∩↓ q);
thus, there exists an s∈ (E∩↓ q) with s≤ q, which means that r∈↑E, with s≤ q≤ r. This
shows that E∈ Jdense(p).

For concreteness, consider the following poset

z y

x

w

Its associated downset completion poset D(P) is then

∅

{x, y, z}

{w, x, y, z}

{x} {y}

{x, z} {x, y}

Jdense is then given on the objects of P as follows:

Jdense(x) = {{x}}

Jdense(y) = {{y}}

Jdense(z) = {{x}, {x, z}}

Jdense(w) = {{x, y}, {x, y, z}, {w, x, y, z}}.

Consider, for instance, why {x, z} does not belong to Jdense(w). While both x and z are
below w, D = {x, z} is not a sieve dense below w. In particular, given that y is an element in
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the poset below w, we know that if {x, z} were dense below w, then there must exist some
element q∈ {x, z} that gets below y in the poset. But there is no such element, except for y
itself, which is not in {x, z}.

Intuitively, one can picture how these four Jdense assignments of dense below downsets
altogether supply the pieces of something that acts to “cover” the poset,

An important special case of the dense topology is the following.

Example 253 (The atomic topology) The atomic topology Jatom is specified by saying
that S∈ Jatom(c) whenever the sieve S is nonempty. Then axiom (2) in the definition of a
Grothendieck topology will be satisfied if we make the assumption (sometimes called the
right Ore condition)180 that any two morphisms f : d→ c and g : e→ c, both with codomain
c, can be completed to a commutative square

• d

e c.

f

g

Specialized to posets, again, the atomic topology on P can be defined only when P is
downward directed, where in general a (nonempty) N⊆P is downward directed if for
every x, y∈N there exists a lower bound z∈N.181 In such a case, the atomic topology is
defined by taking

Jatom(p) = D(↓ p) \ {∅}.

To get a slightly better handle on this, consider the following poset that is not downwards
directed, for which the stability axiom for the candidate Jatom would then fail:182

180. Actually, it turns out that we do not even need this assumption to define the atomic topology—we can just
define it as the smallest Grothendieck topology that contains all the nonempty sieves, that is, as the intersection
of all Grothendieck topologies with the property that all nonempty sieves cover. See Caramello (2012) for details.
181. In other words, the existence of (finite) meets will suffice to guarantee that a poset is downward directed.
182. This example is derived from Lindenhovius (2014), a nice resource for Grothendieck topologies applied to
posets and examples of sheaves on the resulting sites.
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c

a b

Here, ↓ a∈ Jatom(c), and as b≤ c, we ought to have that ↓ a∩↓ b∈ Jatom(c), that is, that
∅∈ Jatom(c). But if it is really the atomic topology, this cannot be.

Conversely, if a poset is downward directed, then one can verify that the stability axiom
will necessarily hold.

If a poset P is downward directed, the dense topology is nothing other than the atomic
topology (which is why we referred to it as a “special case” of the dense topology). To
see this, assume P is downward directed, and let S be a nonempty sieve on an element p.
Then, as S∈ D(↓ p), there is an x≤ p. Now let q∈↓ p. By downward directedness, there
exists an r≤ q, r≤ x, from which we have that r∈ S, and so q∈↑ S—altogether implying
that S∈ Jdense(p). Going the other way: supposing S∈ Jdense(p), we must have p∈↓ p⊆↑ S;
but this can be the case only if S 
= ∅. Thus, S∈ Jatom(p).

A few other examples of Grothendieck topologies will be given throughout this chapter.
But with the notion of Grothendieck topology, and thus a site, we are already in a position
to define a sheaf in greater generality.

10.2.4 Sheaves on a Site

Sheaves on a site can be defined in a very similar way to sheaves on a topological space,
according to the “compatible families of sections can be uniquely patched together” model.
Suppose we have a site (C, J), and of course, a presheaf is simply a functor P : Cop→Set.
Let S be a (J-covering) sieve of c∈C. We first define the following notions:

Definition 254 A matching family (or compatible family) for S of elements of P is a func-
tion that assigns to each arrow f of S an element xf ∈P(dom(f )) in such a way that given
any arrow g∈C with cod(g) = dom(f ), we have

P(g)(xf ) = xf◦g.

Observe that this makes sense, as f ◦ g will automatically be an element of S, by virtue of
the fact that S is a sieve.

Recall the alternate formulation of a sieve S = {ci
fi−→ c | i∈ I} on an object c of a category

C from proposition 243, in terms of a subcategory of the slice category C/c, where the
objects are just the arrows fi of S, and the morphisms are given by arrows u making triangles
of the following form commute:

ci cj

c.

u

fi fj

In these terms, a matching family of elements of the presheaf P with respect to the sieve S
would then be defined as a collection of elements {si ∈P(ci) | i∈ I}, one for each arrow of
the sieve S, such that for any arrow u : ci→ cj in S for which the above triangle commutes,
the function F(u) sends sj onto si.
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Finally, note that since a covering sieve S of c can be construed as a subfunctor of the
representable functor Yc, when we insist on seeing the sieve S in this way, then a matching
family {xf }f∈S is just a natural transformation

x : S→P

f �→ xf ,

where the assignment of f to xf is the component of the natural transformation at dom(f )∈
C. If we want to emphasize this perspective, where a matching family of a presheaf P with
respect to a sieve S is regarded as a natural transformation S→P, we will sometimes denote
the collection of matching families of P with respect to S by Nat(S, F) or Match(S, F).

Definition 255 An amalgamation for a matching family {xf }f∈S for S, with S a sieve on c,
is a unique element x∈P(c) such that

P(f )(x) = xf for all f ∈ S.

Making use of both of these notions—matching families and amalgamations—lets us
define when a presheaf is a sheaf with respect to a site.

Definition 256 P is a sheaf (with respect to J)—or J-sheaf —iff each matching family
{xf }f∈S with respect to any J-covering sieve S∈ J(c) of any object c in C has a unique
amalgamation.

In terms of diagrams, a presheaf P will be a sheaf if the diagram

P(c)
∏
f∈S

P(dom(f ))
∏

f ,g∈S,cod(g)=dom(f )

P(dom(g))e
p

q

is an equalizer for each object c∈C and each cover S∈ J(c). Here, e is the map that takes
x∈P(c) to {P(f )(x)}f∈S, while the products range over all composable pairs f , g with f ∈ S
(thus also f ◦ g∈ S), so that p({xf }f∈S)f ,g = xf◦g and q({xf }f∈S)f ,g = P(g)(xf ).

Using the fact that a sieve S on c is the same thing as a subfunctor of Yc, we get another
way of presenting the definition. We just saw how a matching family taking f �→ xf for f ∈ S
is the same thing as specifying a natural transformation S→P. Thus, that the matching
family {xf }f∈S has a unique amalgamation is equivalent to requiring that S→P can be
uniquely extended as in

S P

Yc.

φ

And thus, a presheaf P is a sheaf iff, for every covering sieve S of c, any natural transfor-
mation φ : S→P has a unique extension to a morphism Yc→P, in the sense that given the
diagram

S P

Yc,

φ

there is always exactly one extension of this to the following commutative diagram:
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S P

Yc.

φ

But what does this mean? This is just to say that P is a sheaf precisely when for every
covering sieve S on c (where this S is regarded as a functor), the inclusion iS : S ↪→Yc

induces an isomorphism
Nat(Yc, P)

∼=←→Nat(S, P).

But since the natural transformations are morphisms in the presheaf category, by the
Yoneda lemma this Nat(Yc, P) := HomPreSh(C)(Yc, P) is the same as P(c). Moreover,
Nat(S, P) are just the matching families of P with respect to S. Thus, the above just says
that a presheaf P on C is a J-sheaf iff the map

κS : P(c)→Match(S, P)

x �→ x ◦ iS

is bijective for any object c∈C and any covering sieve S∈ J(c).

Definition 257 (Alternate definition of sheaf on a site) A sheaf on a site (C, J) is a presheaf
P : Cop→Set such that for every object c of C and every covering sieve S∈ J(c), each
morphism S→P in SetCop

has exactly one extension to a morphism Yc→P.

Covering sieves can be generated by covering families, and we saw already, in definition
236, how such covering families are used to define the notion of a basis (pretopology) of
a Grothendieck topology.183 Moreover, in terms of a coverage, the Grothendieck topology
generated by a coverage will be the smallest collection of sieves containing it which also
happens to be closed under the maximal and transitivity conditions (1 and 3 in the defini-
tions). In section 10.2.1, we then saw how to provide a definition of a sheaf in terms of a
basis K. We used the notions of a matching family and an amalgamation, now with respect
to a basis K; let’s gather these definitions together again.

Definition 258 Given a presheaf P, a basis (pretopology) K, and a family of morphisms
R = {fi : ci→ c | i∈ I}∈K(c), we call a family of elements {xi ∈P(ci)}i∈I a matching family
for R iff

P(π1)(xi) = P(π2)(xj) ∀i, j∈ I,

where π1 : ci×c cj→ ci and π2 : ci×c cj→ cj are the projections from the pullback, as in

ci×c cj cj

ci c.

π1

π2

fj

fi

183. We can also define a basis (pretopology) even when C does not have pullbacks. To do so, replace the second
condition in 236 with the condition from the definition of coverage (definition 237).
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Definition 259 Given a matching family {si}i∈I for R = {fi : ci→ c}i∈I ∈K(c), we define
an amalgamation for that matching family as an element s∈P(c) such that

P(fi)(s) = si ∀i∈ I.

A sheaf is then defined as it was in section 10.2.1. But now note that given a basis
(pretopology) K, this will generate a Grothendieck topology J by taking

S∈ J(c) iff ∃R∈K(c) s.t. R⊆ S.

Often, in practice, it is more convenient to verify the sheaf condition for the sieve gener-
ated by a covering family in terms of the covering family itself (and the associated sheaf
definition).

Proposition 260 (Sheaf with respect to a basis) Given a site (C, J), a presheaf P on C

will be a sheaf for J iff for any family of morphisms R = {fi : ci→ c}i∈I ∈K(c) in the basis
(pretopology) K, any matching family {xi}i∈I has a unique amalgamation.

In the particular cases where C has pullbacks, things are simplified and the above propo-
sition can be expressed by saying that a presheaf P on a category C is a sheaf for J iff for
any family of morphisms R = {fi : ci→ c}i∈I ∈K(c) in the basis, the diagram

P(c)
∏

i

P(ci)
∏

i,j

P(ci×c cj),
e

is an equalizer.
Moreover, using a coverage and appealing to the definition 240, if a presheaf P satisfies

the sheaf condition with respect to a coverage, then it satisfies the sheaf condition with
respect to the Grothendieck topology generated by it.184

If this is your first time seeing these definitions (and even if it isn’t!), they probably
remain very abstract. We will try to get a better handle on things by first specializing things
to posets, and then considering how these definitions look in the case of the corresponding
definition of 2-enriched J-sheaves on a poset. But, before doing this, it is worth observing
that when working with a site consisting of the atomic topology (defined in example 253),
sheaves can be given an especially simple description:

Proposition 261 A presheaf P is a sheaf for the atomic topology on C iff for any morphism
f : b→ c and any y∈P(b), if P(a

g−→ b)(y) = P(a h−→ b)(y) for all diagrams

a b c
g

h

f

with f ◦ g = f ◦ h, then y = P(b
f−→ c)(x) for a unique x∈P(c).185

10.2.5 Simpler Version with Posets

As we have said many times now, by regarding a poset P as a category, there will be an
arrow (and at most one arrow) q→ p precisely when q≤ p, and we can identify indexed
families S of arrows into p with a collection of elements “below” p in the poset. Then,

184. For further discussion of some subtleties here, having to do with bases (pretopologies) and the like, we refer
the reader to Johnstone (2002, C.2.1).
185. A proof of this fact can be found in Mac Lane and Moerdijk (1994, 127).
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taking a poset P with J a Grothendieck topology, and F : Pop→Set a presheaf, we can
define the following:

Definition 262 Let p∈P and S∈ J(p). Then a matching family for the cover S is a family
{xq | q∈ S}∈∏q∈S F(q) such that

F(r≤ q)(xq) = xr

for each r, q∈ S with r≤ q.

Definition 263 An element x∈F(p) for which we have

F(q≤ p)(x) = xq

for each q∈ S will be called an amalgamation.

Using the previous definitions, we can then define a J-sheaf as follows.

Definition 264 (J-sheaf for posets) F will be a J-sheaf provided for each p∈P, each
S∈ J(p), and each matching family {xq}q∈S there is a unique amalgamation x∈F(p).

It will help to see some examples, working with particular Grothendieck topologies.

Example 265 Take for J the indiscrete (minimal) topology on P:

Jind(p) = {↓ p}.

Suppose we have a presheaf F ∈ SetP
op

and let p∈P. But with Jind as our topology, we
know that, for each p, there is only one cover of p, namely that given by the principal
downset ↓ p itself. Now, suppose that we have a matching family {xq}q∈↓p for ↓ p. Then,
since in particular p itself is in ↓ p, we must have

F(q≤ p)(xp) = xq.

But this just means that xp is an amalgamation of the matching family. In fact, it must be
unique as well. For, suppose x∈F(p) were another amalgamation. Then, by definition, we
would need in particular to have

x = F(p≤ p)(x) = xp.

Thus, our amalgamation xp is unique.

In the previous example of a sheaf, notice how we have basically just described what it
is to be a presheaf. The more or less trivial nature of the previous example—where it seems
that being a sheaf with respect to the given topology is the same as being a presheaf on the
original poset—is not an accident. In fact, it reflects a general result, one that also calls
back to earlier special results about being able to treat presheaves on a poset as the same
thing as sheaves on the poset (once it has been equipped with an appropriate topology).
Namely, with the site (P, Jind), where Jind is the indiscrete topology, sheaves are the same
thing as presheaves—that is, we have that Sh(P, Jind) is precisely SetP

op
.

Example 266 Suppose P is downward directed, and take the atomic topology Jatom on it.
The reader should convince themselves that the sheaves on such a site are constant (up to
isomorphism), essentially recovering what it is to be a set—that is, that Sh(P, Jatom)� Set.
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The next, more extended, example will give us an opportunity to present a new angle on
how to think about sheaves. In building to this construction, which will be developed over
the course of the next few pages, we will need to appeal to the following general facts, and
some new definitions.

Proposition 267 Let {Ji | i∈ I} be a set of Grothendieck topologies on C. Then

1.
⋂

i∈I Ji is a topology and is the infimum of the Ji;
2. there exists a topology

∨
i∈I Ji which is the supremum of the Ji.186

The Grothendieck topologies on C are partially ordered by inclusion. Focusing on a
poset category in particular, the set of Grothendieck topologies on a poset P can be par-
tially ordered (pointwise) as follows: for any two Grothendieck topologies J, K on P,
we define J≤K provided J(p)⊆K(p) for all p∈P. Then, the poset of Grothendieck
topologies on a poset in fact forms a complete lattice, with the infimum

∧
i∈I Ji of each

collection {Ji}i∈I of Grothendieck topologies on P just given by pointwise intersection
(
∧

i∈I Ji)(p) =
⋂

i∈I Ji(p).
Returning to the more general account,

Proposition 268 For any presheaf F, there will exist a unique largest topology JM for
which F is a sheaf.187

Putting this last proposition together with proposition 267 (1), we can deduce that there
is a unique largest topology for which each of a given class of presheaves is a sheaf. One
class of presheaves that are naturally of special interest is the representable functors. This
result allows to ask about the largest topology for which, in particular, all the representable
functors are sheaves. Such a topology is called the canonical topology.

Definition 269 For a category C, we know that the Yoneda embedding provides us, for
each object c of C, with the functor Yc = HomC(–, c). We define the canonical topology to
be the finest (largest) Grothendieck topology such that every presheaf of the form Yc is a
sheaf—that is, where all the representable functors are sheaves.188

Definition 270 We call a Grothendieck topology J subcanonical whenever every repre-
sentable presheaf is itself a sheaf (with respect to J), that is, if Yc is a J-sheaf for each
c∈C. In particular, then, subcanonical topologies are in general smaller (coarser) than
the canonical topology (hence the name), which is the finest (largest) of the subcanonical
topologies.

In addition to supplying us with further examples of Grothendieck topologies, we are
discussing such matters in order to build toward a particular construction and result, the

186. This is lemma 0.34 in Johnstone (2014). This proof of the first item is immediate by definition; and for the
second item, one just applies the first result to the set of upper bounds for the Ji.
187. This is lemma 0.35 in Johnstone (2014); a proof of this can also be found in Johnstone (2014).
188. It is important to realize that the canonical topology is not the indiscrete topology, even though representable
functors are involved in the determination of both. Recall that the indiscrete topology was the one for which the
only sieves covering an object c∈C are things of the form HomC(–, c); moreover, for this topology, sheaves were
the same as presheaves. The canonical topology, by contrast, is the largest of the topologies requiring that all
representable functors be sheaves. This means, in particular, that this may involve other functors as well—just
that all the representable ones are sheaves.
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full force of which may not become fully evident for a few pages. Recall from chapter 6,
section 6.5, how the 2-enriched presheaves (2-presheaves, for short) on a poset P emerged
the same thing as the poset (D(P),⊆) := Down(P) formed from the collection D(P) of
all downsets of P, ordered by inclusion, that is,

Down(P)∼= 2-PreSh(P),

a fact discussed in the context of the 2-enriched version of the Yoneda-embedding

P 2-PreSh(P)∼= Down(P).
y=↓

This so-called downset completion of P is not just a poset, but a lattice (where the meet
is just set intersection and the join is union). As it turns out, Down(P) is not just a lattice,
but it is a special one, where finite meets distribute over arbitrary joins (it is what is called
a “frame”).

Definition 271 A frame is a complete lattice in which finite meets distribute over arbitrary
joins, that is, in which the following distributivity law

a∧ (∨
i∈I

bi
)

=
∨
i∈I

(a∧ bi)

holds, where I is an arbitrary indexing set, and a, bi are elements of the lattice.
Maps between frames are given by frame homomorphisms, where these are functions f

that both preserves all joins (including the empty join 0 or “bottom”), that is,

f

(∨
i∈I

bi

)
=
∨
i∈I

f (bi)

for any {bi} in the lattice, and preserves binary (finite) meets (including the empty meet 1
or “top”), that is,

f (a∧ b) = f (a)∧ f (b), f (�) =� (10.1)

for any a, b in the lattice.
Frames together with their frame homomorphisms assemble into a category, Frm.

While frames are rather general entities, observe that every topology X (in the usual
sense of topology discussed in chapter 4) forms a frame, in the sense that the lattice of
open sets O(X) is a complete lattice which moreover satisfies the distributivity law, with
∧ becoming set-theoretic intersection and

∨
the union.189 Moreover, it can be shown that

every frame is in fact a (complete) Heyting algebra—that is, that a complete lattice satisfies
the distributivity law above iff it is a Heyting algebra—and object-wise they are identical;
the distinction between them has to do only with the relevant homomorphisms, as a frame
homomorphism is not necessarily a Heyting algebra homomorphism (one that preserves
the Heyting arrow). Thus, while “frame” and “complete Heyting algebra” mean the same
thing when considering objects (i.e., frames, cHas), they become distinct, and must be
treated as such, when we involve the morphisms.

Now recall that a meet-semilattice is a poset in which all finite (hence also empty)
meets (greatest lower bounds) exist. A homomorphism f between meet-semilattices S, T

189. More explicitly, one can show that the law holds in O(X) by using the fact that it holds in the Boolean algebra
P(X), and then considering that the inclusion O(X)→P(X) preserves finite meets and all joins.
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is just a map that preserves all finite (including empty) meets (see equation 10.1). This
data assembles into a category, Meet, the category of meet-semilattices. One can observe
that the homomorphisms serving as the morphisms of this category will automatically be
monotone; yet observe also that in general the converse need not hold—a monotone map
between meet-semilattices need not be a homomorphism in this category (i.e., need not
preserve all finite meets). Definitionally, a meet-semilattice that has all joins, and where
these are distributive, is nothing other than a frame.

Before relating Meet and Frm, and discussing the point of all this, let us record another
important definition that will be of some use to us.

Definition 272 Let P be a meet-semilattice. A family {bi}i∈I of elements in P is said to
be join distributive (or have a distributive join) if

• its join
∨

i∈I bi exists in P, and
• for every a∈P,

a∧
(∨

i∈I

bi

)
=
∨
i∈I

(a∧ bi)

for I an arbitrary indexing set.190

Then, a map f : P→Q between two meet-semilattices is said to preserve distributive joins
provided whenever {bi}i∈I is join distributive in P, then {f (bi)}i∈I is join distributive in Q,
and

f

(∨
i∈I

bi

)
=
∨
i∈I

f (bi).

Again, one can observe that morphisms that preserve distributive joins in the above
sense are automatically monotone. If we take as our morphisms those that preserve dis-
tributive joins (and also finite meets), we get the category Meet∨dist, which of course forms
a subcategory of Meet.

Join distributivity might seem like a natural condition, but distributive lattices are in fact
rather special—and, historically, it is curious to note that it was originally believed, quite
wrongly, that every lattice was distributive. Here is a simple example of a lattice that does
not have this property, so that you have something more concrete to hang on to as we press
forward with abstractions.

Example 273 The finite lattice depicted below is not distributive:

190. In case it helps, for finite joins, note that this just reduces to the usual

a∧ (b∨ d) = (a∧ b)∨ (a∧ d).
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Proof. Observe that r∧ (p∨ q) = r. However, (r∧ p)∨ (r∧ q) =⊥ (the bottom of the
lattice). Thus,

r∧ (p∨ q) 
= (r∧ p)∨ (r∧ q),

making the lattice fail to distributive over joins.

Now, as a frame is a lattice with a certain structure—so that, in particular, it is a meet-
semilattice (and a join-semilattice, for that matter)—by forgetting about the join-structure
of a frame, we should just recover the data of a meet-semilattice. Doing so just describes a
forgetful functor

U : Frm→Meet

that lets us view each frame as a meet-semilattice and each frame morphism as a meet-
semilattice morphism. Frm is of course also a subcategory—but not a full one—of the
category Meet of meet-semilattices. But Frm in fact forms a full subcategory of Meet∨dist

(by just taking those of the meet-semilattices that are frames). As we go forward, unpacking
what is going on here, we will need the following general category-theoretic notion:

Definition 274 A (full) subcategory C of a category D is said to be a reflective subcategory
when its inclusion C→D has a left adjoint L : D→C, called the reflector. The unit of the
adjunction has components rD : D→L(D) for D∈D, where these are called the reflections.

The reflector left adjoint to the inclusion typically acts as a sort of “completion” operator.
In the frame theory literature, one can find the result that Frm is a reflective subcategory
of Meet.191 Effectively, this informs us that for every meet-semilattice S there exists a
frame FS together with an embedding iS : S ↪→FS in Meet—meaning that iS is an injection
that, being a map in Meet, moreover preserves finite meets—where this has the universal
property that for any other frame H and any other morphism g : S→H in Meet there will
exist a unique morphism g : FS→H in Frm that extends g along iS, in the sense that g ◦ iS =
g.

S H

FS

g

iS
g

Now, given U the forgetful functor, we would expect there to be an associated “free func-
tor” going in the other direction, left adjoint to U. This functor is in fact given by the
embedding that takes each element s of a meet-semilattice to its principal downset ↓ s,
altogether taking meet-semilattices to the downset frame. As was already seen in chapter
6, the embedding ↓ (–) : P→Down(P) is monotone, and the construction can be carried
out for any poset P. With this embedding, arbitrary infima are preserved (just as the anal-
ogous Yoneda embedding will in general preserve all limits that exist in C) and finite
suprema (joins) are preserved. While this obtains for any poset, when P= S happens to
be a meet-semilattice, this same embedding will yield a meet-semilattice morphism. To
appreciate this, first observe that, trivially, ↓ (�) = S, the top of D(S). Moreover, taking any
a, b∈ S, for each x∈ S we will have x∈↓ (a∧ b) iff x≤ a∧ b iff x≤ a and x≤ b iff x∈↓ (a)

191. See, for instance, Johnstone (1986).
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and ↓ (b) iff x∈↓ (a)∩↓ (b)—which shows that ↓ (a∧ b) =↓ (a)∩↓ (b). In fact, the embed-
ding ↓ (–) gives us precisely the universal “frame completion,” as described in the previous
paragraph.

While the embedding ↓ (–) : P→Down(P) must preserve all meets that exist in P, it
need not preserve arbitrary suprema. To appreciate this latter failure, it suffices to consider
the poset of natural numbers (together with {∞}) under the natural ordering. Moreover,
when P again happens to be a meet-semilattice, the embedding will not yield a morphism
of Meet∨dist—for, if P has distributive joins, these are not necessarily going to be pre-
served by ↓ (–). In the usual setting of frame theory, this problem is addressed by construing
Frm as a full reflective subcategory of Meet∨dis, which effectively informs us how for
every meet-semilattice (i.e., poset for which all finite meets exist) S, there will exist a uni-
versal frame completion in Meet∨dist involving iS : S ↪→FS, where FS is a frame and the
map iS is an injection that both preserves finite meets and also preserves any distributive
joins that exist in S.

The idea here is to proceed by using an equivalence relation on the frame Down(P)
to generate a quotient, denoted Down∨dist(P), whose elements are all those downsets that
are in fact closed under the taking of distributive joins; then the same construction of the
universal frame completion in an appropriate category can be exhibited as a situation where
the embedding P ↪→Down(P) factors through Down∨dist(P), as in

P Down(P)

Down∨dist(P).

y=↓

More explicitly, given a meet-semilattice P, we entertain the following binary relation R on
Down(P): if {bj}j∈J is a family with distributive join in P, then

⋃
j ↓ bj will be regarded as

R-related to ↓ (
∨

j bj). Then the congruence (equivalence relation on the frame) generated
by R can be used to get a quotient of Down(P), denoted Down∨dist(P), the elements of
which are those downsets closed under distributive joins. In other words, whenever {bi}i∈I

is a family with distributive join in P, the elements bi of which are in D∈Down∨dist(P),
then

∨
i bi will also be in D. This congruence allows us to give the universal frame com-

pletion in the category of meet-semilattices (with join-distributive-preserving maps) as a
factorization of the embedding P ↪→Down(P) through Down∨dist(P).

So we consider just those downsets that are closed under distributive joins by forming
the congruence on Down(P); and as a quotient, this situation in fact assembles into a
Galois connection (or adjunction)

Down∨dist(P) Down(P).⊥

The surjection here is left adjoint to the embedding, so it the preserves suprema/joins (as
well as finite meets, in fact), by the LAPC result of proposition 175; while the embedding,
as a right adjoint, preserves infima/meets, by RAPL.

Now we come to the purpose of all this. Just as 2-presheaves on a poset P are essen-
tially the same as the downsets in Down(P), we can show that the 2-sheaves on the
so-called canonical topology (the largest topology for which all representable presheaves
are sheaves) recover precisely those of the downsets that are closed under distributive joins.
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Thus, the quotient frame Down∨dist(P) ↪→Down(P) exhibited above emerges as a special
case of the more general Sh(P, J) ↪→PreSh(P), and the factorization sketched above will
be seen as a special case of a more general process of sheafification of presheaves on a
meet-semilattice.

That the downset embedding does not necessarily preserve distributive joins that exist
in P can accordingly be seen as a special case of a more general matter. In general, we
know that the Yoneda embedding y will preserve all limits that exist in C. However—and
this is the relevant point—y need not behave as well with respect to colimits. To address
this, the idea is that one could attempt to restrict the codomain of the embedding, the
presheaf category PreSh(C), by requiring that (at least certain) colimits that happen to
exist in C get preserved in moving to PreSh(C). The category PreSh(C) in fact has many
nice properties—so the aim of such a restriction of the codomain, then, would ultimately
be to describe something that, while treating colimits in the desired fashion, did not restrict
so much as to give up any of those nice properties of PreSh(C).

By making use of the notions of Grothendieck topologies and sheaves on a site, we can
make better sense of the underlying situation. In very broad strokes, the idea is this: for
each Grothendieck topology J on C, we can consider the sheaves Sh(C, J) on the site, and
the resulting inclusion functor

Sh(C, J) ↪→PreSh(C)

in fact admits a left adjoint which moreover preserves finite limits. As a left adjoint, it will
automatically preserve all colimits. By bringing the Yoneda embedding C→PreSh(C)
into this setup, we can consider the subcanonical topologies (where all representable
presheaves are sheaves), and form the “corestriction” of the Yoneda embedding to an
embedding C→Sh(C, J), exhibiting the category C as a subcategory of the category of
sheaves on the site (C, J). By taking the finest topology for which all the representable
presheaves are sheaves—that is, using the canonical topology for our J—we will be left
with a universal sort of solution to the underlying problem: we will have the smallest cat-
egory Sh(C, J) into which the category C may be embedded using a corestriction of the
Yoneda embedding. Altogether, this can be thought of as a powerful generalization of the
story just sketched of frames and “frame completions”—and such a generalization not only
gives us a nice and concrete way of thinking about sheaves in terms of properties of lat-
tices (like distributivity), but it will also allow us to put to work some earlier definitions
from the context of 2-enriched category theory and to provide an explicit description of an
additional Grothendieck topology. It will be worth the reader’s while to grasp the particular
connection at the heart of this generalization. But we need a few more definitions first.192

In what follows, we will take P to be a poset with finite and empty meets, i.e., a meet-
semilattice. We view this as a category in the usual way: regard the underlying poset as
a category P, and then stipulate that it has finite limits (and a terminal object). We now

192. In his insightful paper, Isar Stubbe covers the main ideas behind the observations of the last few para-
graphs and those that follow on the next few pages (see Stubbe 2005). The main observation concerning how the
“frame completion” situation discussed above can be seen as a special case of the more general sheafification of
presheaves on a poset equipped with the canonical Grothendieck topology (involving some sort of covers that
dealt with distributivity) was something I had stumbled on independently, but Stubbe’s paper is a very nice and
thorough presentation of the core relevant facts, and includes an explicit description of the canonical topology in
question, so the account that follows leans on that paper and refers the reader there for further details.
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describe the particular Grothendieck topology J on P that will be the most relevant for
our purposes, that is, the topology according to which the resulting 2-sheaves on P paired
with the topology J will emerge as nothing other than those downsets of P that are closed
under distributive joins.

Definition 275 We define the Grothendieck topology J∨dist by regarding this as a function
assigning to each p∈P the collection of distributive covers of p in P, where this means
what you might expect, namely

J∨dist(p) = {{pi}i∈I | {pi} is a family in P that has p as its distributive join}.

Note that a family {pi}i∈I in P has distributive join provided (1) its join
∨

i pi exists, and
(2) for every q≤∨

i pi in P,
q =

∨
i

(q∧ pi).

In other words, for such a topology,
∨

i pi = p∈P and ∀q∈P, the (join-)distributivity law

q∧
(∨

i

pi

)
=
∨

i

(q∧ pi)

holds.193

Since we have been specializing matters to posets (lattices), where the relevant maps are
ultimately maps between posets, the idea is now to reconstrue the sheaf definition in its
2-enriched version, in which setting it becomes rather straightforward to discern what a
sheaf is, namely the presheaves that are “J-continuous.”

Definition 276 (2-enriched sheaf ) A 2-sheaf on a site (P, J) is a presheaf φ : Pop→ 2 for
which for every p∈P and every {pi}i∈I ∈ J(p), if φ(pi) = 1 for all i∈ I, then φ(p) = 1.

The poset of 2-sheaves is then denoted 2-Sh(P, J); this is a subposet of 2-PreSh(P).
In the isomorphism 2-PreSh(P)∼= Down(P) first introduced in chapter 6, the isomor-

phism takes any φ∈ 2-PreSh(P) to φ–1(1)∈Down(P); and, given a downset D of P, one
defines φD : Pop→ 2 by setting φD(x) = 1 precisely when x∈D. For any element p∈P,
there will be a representable 2-presheaf

φp : Pop→ 2

that makes q �→ 1 iff p≤ q. In this way, the representable presheaves act as the “character-
istic maps” of the principal downsets of P, and the Yoneda embedding taking each p �→φp

is essentially the same as the inclusion of the elements of the poset into its downsets. The
above 2-enriched sheaf definition just tells us that φ (a 2-presheaf) is a sheaf if whenever
φ sends every element in a cover to “true” (i.e., 1), then it sends the element covered by
those elements to “true” as well. This gives us a particularly easy way of thinking about a
sheaf as involving a gluing together of its local assignments.

In general, as indicated earlier, for a category C and for every Grothendieck topology
J, the inclusion functor Sh(C, J) ↪→PreSh(C) from the sheaves on the site (C, J) to the

193. Once we allow that joins exist, notice that this is effectively the stability condition (condition 2) in the general
definition of a Grothendieck topology. The other conditions making J∨dist count as a Grothendieck topology are
evident.
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presheaves on C has a left adjoint that preserves finite limits. Since a topology is subcanon-
ical when all representable presheaves are sheaves, that a given topology J is subcanonical
amounts to stipulating that the Yoneda embedding y : C→PreSh(C) can be “co-restricted”
to an embedding C→Sh(C, J) revealing C as a subcategory of Sh(C, J). Now, with a
subcanonical topology J, a meet-semilattice (or poset) P can be embedded in the poset
2-Sh(P, J) by simply sending p∈P to φp ∈ 2-Sh(P, J), making this embedding a “core-
striction” of the Yoneda embedding. It is straightforward to see that the topology J∨dist will
be subcanonical, and that the following result obtains:

Proposition 277 2-Sh(P, J∨dist)∼= Down∨dist(P).

Thus, in taking

P PreSh(P)

Sh(P, J∨dist)

y

s i#

to 2-enriched category theory, we have

P 2-PreSh(P) Down(P)

2-Sh(P, J∨dist) Down∨dist(P),

y=↓ ∼=

s i
∼=

# #

and the desired frame completion is just given by this corestriction P ↪→ 2-Sh(P, J∨dist),
which acts to sheafify the 2-presheaves along the topology of distributive covers on P.
This map will preserve not just all meets but all distributive joins that exist in P.

The category Sh(P, J∨dist) is in fact the smallest corestriction of the Yoneda embedding
for which P can still be considered a subcategory. This can be seen by showing that the
topology J∨dist is the finest (largest) of the subcanonical topologies on P, in turn demon-
strating universality in the frame completion. The overall idea here is that the larger the
topology, in general, the fewer sheaves there will be on the associated site—after all, the
larger the topology, the more covers there are for which one must verify the sheaf condi-
tion is met, and so the more chances for there to be a failure to meet the condition! Since
we know that, in general, the canonical topology gives us the largest of the subcanoni-
cal topologies, if our topology J∨dist can be shown to be the canonical topology on P, in
considering the sheaves on the resulting site, we will be left with the universal solution—
in the sense of the least (smallest) category Sh(P, J) in which P can be embedded via
“corestricting” the Yoneda embedding.

Proposition 278 J∨dist is the finest subcanonical topology on P, making it the canonical
topology.

Proof. J∨dist is subcanonical. Let J′ be another subcanonical topology on P. But if
{pi}i∈I ∈ J′(p), then we must have that the join exists and p =

∨
i pi, since if {pi}i∈I ∈ J′(x),

then pi≤ p for all pi, making p an upper bound for its covering family; and if p were not
the least upper bound, then there would have to exist a q < p∈P such that pi≤ q for all pi,
but since J′ is subcanonical, the representable φq is a sheaf, and this entails that φq(p) = 1

(as φq(pi) = 1 for all pi and φq is a sheaf), yet this contradicts the assumption that q < p.



Sheaves on a Site 339

The join of such a covering family is, moreover, necessarily distributive. Thus, J′(p)⊆
J∨dist(p) for every p. By definition, this makes J∨dist finer than any other subcanonical
topology.194

This topology of distributive covers J∨dist on a meet-semilattice P (qua category), as the
canonical Grothendieck topology, is in fact the canonical Grothendieck topology even for
more general sheaves, landing in Set (as opposed to 2-enriched sheaves).195

We leave it to the reader to continue to ponder the impacts of thinking about sheaves
and sheafification in terms of the topology of distributive covers and maps that preserve all
distributive joins. Working with particularly simple lattices should help to uncover some
of the significance of this special way of thinking about the more general result, and the
process of obtaining a sheaf as one that engages distributivity—or, rather, as one of adding
in all the joins, while keeping the meets, and then demanding that distributive joins are
preserved.

10.2.6 Grothendieck Toposes

Returning to a more general approach, the sheaves on a site (C, J) form a category, where
the maps are the natural transformations (between presheaves). As such, this category of
J-sheaves, which we denote as Sh(C, J), forms a full subcategory of the presheaf category

Sh(C, J)�SetsCop
.

Definition 279 A Grothendieck topos is a category which is equivalent to the category
Sh(C, J) of sheaves on some site (C, J)—that is, a category E is a Grothendieck topos if
there exists a site (C, J) such that E is equivalent to Sh(C, J).

On account of this, Grothendieck toposes also sometimes go under the name sheaf toposes.
Let us first look at some (mostly) trivial examples.

Example 280 In the previous section, in example 265, we already saw how if we take the
site consisting of a category C with the indiscrete (trivial) topology Jind, then Jind-sheaves
are the same thing as presheaves on C. Thus, Sh(C, Jind) reduces to the presheaf category
SetCop

. In particular, then, for any (small) category C, by taking J as the indiscrete topology,
any category of the form SetCop

—that is, any presheaf category—will be a Grothendieck
topos. This gives us a large stock of examples.

Example 281 Specializing the previous example, one can verify that Set1op
= Set is a

Grothendieck topos, equivalent to the category of sheaves on the terminal category 1.
To see this more explicitly, we can specialize this to the one-point topological space

1 = {∗} with its unique topology, the topology in which all subsets are open. Observe
that for the space 1—or just the category with one object and one morphism, the iden-
tity morphism—there are just two opens, ∅ and {∗} itself. For any sheaf F ∈ Sh(1), being
a sheaf requires that for the empty set, which is covered by the empty collection of sub-
sets, the only matching family for the empty cover of ∅ is the trivial empty tuple, that is,
F(∅) = {()}; but then the only information supplied by the sheaf F is the set F({∗}). As

194. Our proof of this mimics Stubbe (2005).
195. This is the substance of theorem 1 in Stubbe (2005); a proof can be found there.
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such, a set may be regarded as a sheaf on a point. Set = Sh({∗}) accordingly plays the role
of a point in topos theory, and is thus referred to as the punctual topos.

Example 282 For a topological space X, the Grothendieck topos Sh(O(X), JO(X)) of
sheaves on the site (O(X), JO(X)) (as defined in example 251) is the same as the usual
category Sh(X) of sheaves on X.

Example 283 Recall the Sierpiński space S, first introduced in exercise 4 (chapter 4). This
was formed from a two-point set {0, 1}, with the collection of open sets given by taking
just one open point, that is, {∅, {1}, {0, 1}}. This open set category can accordingly be
displayed by

∅→ {1}→ {0, 1}.

A presheaf P on such an open set category just amounts to the specification of

P({0, 1})→P({1})→P(∅),
that is, three sets together with two functions between them. But recall from theorem 129
(chapter 5) that when P is a sheaf, we must have that P(∅)∼= {1}, that is, that P(∅) is
a set with just one element. This means that the category of sheaves on the Sierpiński
space reduces to the data of two sets F({0, 1}), F({1}) and one function F({0, 1})→F({1})
between them, where {0, 1} is the whole space and {1} is the sole open singleton. In other
words, the objects (sheaves) of this category are just functions between sets, and the mor-
phisms are necessarily natural transformations between such objects (sheaves). Altogether,
this informs us that the category of sheaves on the Sierpiński space S is nothing other than
the arrow category Set→ of Set.196 Sh(S) is accordingly a Grothendieck topos, called the
Sierpiński topos.

A Grothendieck topos has certain desirable properties—in particular, it is complete and
cocomplete. To appreciate this, it suffices to realize that given a site (C, J), the presheaf
category SetCop

is complete and cocomplete; one computes limits and colimits pointwise.
One can show that if a category is complete and cocomplete, then so too is the reflective
subcategory. Sh(C, J) is a (full) reflective subcategory of the presheaf category SetCop

, and
hence inherits all limits and colimits. Such properties can help us rule out certain categories
as being Grothendieck toposes.

Example 284 FinSet is not a Grothendieck topos. In fact, various toposes arising from
finite sets—like FinSetCop

(with C a fixed finite category)—will not count as one either,
since they lack infinite colimits.197

Before moving on to some more explicit and exciting examples, we will take the oppor-
tunity to look more closely at the important adjoint “sheaf functor” associated to the
inclusion of presheaves into sheaves on a site—a functor that sends each presheaf P to
the sheaf that most closely “approximates” it, and exhibits the sheaf topos as a reflective
subcategory.

196. See definition 20 (chapter 1) for the definition of the arrow category.
197. There are also prominent non-Grothendieck toposes that are treated in topos-theoretical approaches to
nonstandard analysis. How can something be a topos but not a Grothendieck topos? We will look at that shortly.
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10.2.7 The Plus Construction

In the previous two sections, we have repeatedly appealed to the fact that the inclusion
functor

ι : Sh(C, J)�SetsCop
,

taking J-sheaves to their underlying presheaves, admits a left adjoint

a : SetCop→Sh(C, J),

which sends an arbitrary presheaf to a sheaf. This a is called the associated sheaf functor.
In other words, we will have

HomSh(C,J)(a(P), F)∼= HomPreSh(C)(P, ι(F)).

To show such an adjunction, what do we need? Well, first of all we would of course need
to show that such a functor indeed exists, and then show that it is indeed left adjoint to
the stated inclusion. While this adjunction is of some importance in its own right—and
we return to it in the next chapter—this section will be mainly devoted to constructing the
functor in question. Such a functor is valuable in that it effectively generalizes, to sites,
the functor ΓΛ introduced in equation 8.1, and gives us a canonical way of upgrading a
presheaf to a sheaf.

The process involved in constructing the functor a in question is carried out in two main
steps, the first of which involves converting a presheaf into a separated presheaf, using
something called the plus construction, denoted (–)+. The plus construction turns out to be
a functor (–)+ : SetCop→SetCop

in its own right, but we will also show that for any presheaf
P, applying this functor to get P+ will leave us with a presheaf that is moreover separated,
that is,

PreSh(C)
(–)+

−−→SepPreSh(C).

While a separated presheaf is not yet necessarily a sheaf, it gets us “one step closer” to a
sheaf. As it turns out, it can be shown that P+ is in fact a sheaf provided P is already sepa-
rated. Thus, for any presheaf (including those that are not already separated), by applying
the plus construction to the presheaf twice—this is the second of the two main steps—we
will be sure to end up with a sheaf, since regardless of whether or not P was itself sepa-
rated, P+ will be separated and applying the plus construction again to this P+ will leave us
with a sheaf. This composite ((–)+)+ indeed gives us the desired sheafification left adjoint
functor a

PreSh(C) SepPreSh(C) Sh(C, J).
(–)+

a

(–)+

But what does an explicit description of this plus construction look like? The first thing to
realize is this process takes an arbitrary presheaf and ultimately tells us something about
how it behaves with respect to covering sieves, so we will need to bring covering sieves
into the mix. The relevant functor can be defined in a number of (equivalent) ways, but
fundamentally one can think of this construction as taking a presheaf and replacing its ele-
ments by covering sieves that are themselves equipped with matching families, adjoining
unique amalgamations (gluings) to every matching family.
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Given P a presheaf on a category C, for each object c∈C, we will define

P+(c) = lim−→
S∈Cov(c)op

Match(S, P),

where the colimit is taken over all covering sieves of c, ordered by reverse inclusion, and
where Match(S, P) is the set of matching families for the cover S of c. Let us unpack this.

First of all, observe that the covering sieves of c form a poset, with the natural order
inherited from the inclusion order on sieves: S≤ S′ iff S(d)⊆ S′(d) for all d→ c. But we
know that we can also regard covering sieves as subfunctors of the representable functor
Yc = Hom(–, c), and so it is also natural to consider the poset of covering sieves ordered by
reverse inclusion (refinement). This category of all covering sieves of c ordered by reverse
inclusion (J(c),⊆op) will be denoted Cov(c)op, where an inclusion S⊆ S′ of covering sieves
for c is a morphism S′→ S in the category Cov(c)op. Moreover, we know from the induced
condition (4) of definition 245 that the intersection of any two covering sieves on an object
will be a covering sieve on that object—that is, any two covering sieves have a common
refinement. In terms of Cov(c)op, the way of highlighting this refinement property is to say
that Cov(c)op is filtered.

Definition 285 A category J is filtered (or directed) if

• it is not empty;
• for every pair of objects j, j′ ∈ J, there exists an object k and two morphisms f : j→ k and

f ′ : j′→ k in J; and
• for every two parallel arrows u, v : i→ j in J, there exists an object k and an arrow w : j→

k such that w ◦ u = w ◦ v.

This is a generalization of the notion of a (upward) directed poset, from order theory, where
that means a poset that is inhabited (nonempty) and for which every finite subset has an
upper bound.

A filtered colimit is a colimit of a functor F : J→C, where J is a filtered category. And in
particular, a colimit over a filtered poset P is the same as the colimit over a cofinal subset
Q of that poset, where this means that for every element p∈P, there exists an element
q∈Q with p≤ q.

Proposition 286 Cov(c)op is filtered.

Proof. To see this, observe:

• Yc is always a covering sieve, so J(c) is nonempty.
• We are using the reverse order, so the requirement amounts to saying that any two

covering sieves must have a common refinement, which we know is the case.
• Again reversing the arrows in the requirement, and using pullbacks, one can easily see

that this is also true.

Thus, P+(c) will be a filtered colimit, which matters as we are taking a colimit over (finer
and finer) covering sieves.

Now suppose R = {ci
fi−→ c | i∈ I} is a covering sieve of c, for an object c∈C. We know

that a sieve can be regarded as a functor, specifically a subfunctor iR : R ↪→HomC(–, c) of
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the representable functor on c, which is in turn an object of PreSh(C). In other words, we
have a functor

ic : Cov(c)op �PreSh(C)

taking our covering sieve R into the presheaf category. But this inclusion in fact induces a
map of natural transformations, for any presheaf F,

Nat(HomC(–, c), F)→Nat(R, F). (10.2)

By the Yoneda lemma, each morphism in Nat(HomC(–, c), F) just corresponds to an ele-
ment x∈F(c). How about the other side? What is a natural transformation σ : R⇒F? Well,
it will just amount to a matching family of elements {xi ∈F(ci) | i∈ I}! We can appreciate
this by simply unpacking the definition of a natural transformation. As such, σ : R⇒F will
take each arrow fi : ci→ c of the sieve R to an element σci (fi)∈F(ci). Moreover, for any
commutative triangle in the sieve,

ci cj

c

u

fi fj

we will have that σci takes fi �→ xi ∈F(ci), σcj takes fj �→ xj ∈F(cj), and F(u) takes xj �→ xi.
And this just informs us—viewing the sieve in terms of its slice category description—that
each morphism from R to F amounts to a matching family of elements on R. Moreover, we
know that F will be a sheaf precisely when the map in equation 10.2 is an isomorphism.

Altogether, we have a composite functor

Cov(c)op PreSh(C) Set,ic

Nat(–,F)◦ic

Nat(–,F)

where this takes a covering sieve R to the set of natural transformations from R to F, where
each such morphism is the same as a matching family of elements for R. For f ∈R, this
functor will then map f �→ xf , where xf is a component of the natural transformation R→F
at dom(f )∈C.

Now, given a presheaf P, P+(c) will be exactly the colimit of the composite functor just
described. Given an R∈Cov(c), we will designate the associated morphism of the colimit
by

xP
R : Nat(R, P)→P+(c).

Recall that one way of reading the sheaf condition on a presheaf P is as saying: correspond-
ing to each matching family {xf ∈P(dom(f ))}f∈R for the sieve R on c, there is a unique
element x∈P(c) such that xf = P(f )(x) for all f ∈R. In this way, we can start to appreciate
that this composite functor gives us a presheaf that sends a covering sieve R ↪→Hom(–, c)
to the set Nat(R, P)—or, alternatively, to the set Match(R, P) of matching families for P on
R. The difference between this presheaf and the original P(c) can be seen as supplying us
with a measure of the degree to which P fails to obey the sheaf conditions at c.

Now, any morphism f : c′→ c will induce (by pulling back) a functor Cov(c)→Cov(c′).
How does this work? Suppose given a morphism f : c′→ c in C. Then each sieve R on c
determines, by pulling back,



344 Chapter 10

Rf Hom(–, c′)

R Hom(–, c),

fR Hom(–,f )

a sieve on c′, where we are here denoting the sieve f ∗(R) by Rf := {g | f ◦ g∈R}. And we
can take

Nat(Rf , P) Nat(Hom(–, c′), P)

Nat(R, P) Nat(Hom(–, c), P),

Nat(fR,P)

which is the same (using the Yoneda lemma) as

Nat(Rf , P) P(c′)

Nat(R, P) P(c).

Nat(fR,P)

Altogether, we have a functor

Cov(c)→Cov(c′)

R �→Rf ,

and this induces a unique morphism P+(c)→P+(c′), from which we can deduce the
functoriality of P+.

Let us see how this works in more detail. Given a morphism f : c′→ c in C as above, as
we range through the R in Cov(c), the induced morphisms

Nat(R, P) Nat(Rf , P) P+(c′)
Nat(fR,P)

xP
Rf
◦Nat(fR,P)

xP
Rf

actually form a co-cone on the diagram defining P+(c), that is, on

Nat(R, P) Nat(Rf , P) P+(c).
Nat(fR,P)

xP
R

xP
Rf

But by definition, P+(c) is the colimit, and so it is the universal co-cone:

Nat(R, P) Nat(Rf , P)

P+(c)

P+(c′)

Nat(fR,P)

xP
Rf
◦Nat(fR,P)

xP
R

xP
Rf

xP
Rf

P+(f )
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And this supplies us with a unique morphism P+(f ) : P+(c)→P+(c′) making the diagram
commute, in the sense that it satisfies

P+(f ) ◦ xP
R = xP

Rf
◦Nat(fR, P).

But then the functoriality of P+ is basically immediate from this uniqueness condition in
the definition of P+(f ). In particular, given another morphism g : c′′→ c′ of C, we can see
that

P+(f ◦ g) ◦ xP
R = xP

Rf◦g
◦Nat((f ◦ g)R, P)

= xP
(Rf )g
◦Nat(gR, P) ◦Nat(fR, P)

= P+(g) ◦ xP
Rf
◦Nat(fR, P)

= P+(g) ◦P+(f ) ◦ xP
R.

But, using the uniqueness condition in the definition of P+(f ◦ g) inherited from the
universality of the colimit construction, this just tells us that

P+(f ◦ g) = P+(g) ◦P+(f )

whenever cod(g) = dom(f ). It is also evident that P+(idc) = idP+(c). Altogether, this tells us
that the P+ we defined is in fact itself a presheaf (functor).

Before going forward, let us reconsider the description of P+(c) once again. Suppose
we have two covers R, S∈Cov(c). Since finite intersections of elements of Cov(c) are
in Cov(c), and since for any two covers we have a common refinement Q⊆R∩ S, with
Q∈Cov(c), the induced maps S→Q and R→Q in our relevant category Cov(c)op

R

S Q

allow us to form the pullback diagram

S∩R R

S Q.

In terms of presheaves, the diagram of covering sieves then becomes

Match(R, P)

Match(S, P) Match(Q, P),

the colimit of which is then the pushout (the categorical dual of the pullback)

Match(S, P)
∐

Match(Q,P)

Match(R, P) Match(R, P)

Match(S, P) Match(Q, P).
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And this Match(S, P)
∐

Match(Q,P)
Match(R, P)∼= Match(S∩R, P) just amounts to equivalence

classes of matching families. Specifically, two matching families will belong to the same
equivalence class if their restriction along a common refinement agrees. In other words,
P+(c) consists of equivalence classes [{xf }f∈S]—where, as you would expect, the {xf }f∈S

are such that xf ∈P(c′) and for any g : c′′→ c′, we have P(g)(xf ) = xf◦g. On this setup, two
families, (S, {xf }f∈S) and (S′, {yh}h∈S′ ), are then taken to be equivalent—(S, {xf }f∈S)∼
(S′, {yh}h∈S′ )—precisely when there is a common refinement Q⊆ S∩ S′ on which the
restrictions of {xf }f∈S and {yh}h∈S′ agree, that is, where xi = yi for every i∈Q.

Now, given a morphism l : c′→ c in C, there will then be an induced restriction map
P+(c)→P+(c′) between the presheaves, given by

P+(c)→P+(c′)

[{xf }f∈S] �→P+(l)([{xf }f∈S]) = [{xl◦f̂ }f̂∈l∗(S)].

One can verify that this map preserves equivalence classes and is well defined. It is also
straightforward to check the functor conditions, ensuring that this P+ is itself a presheaf
(functor).

Altogether, we have seen (in more than one way) how the construction of the presheaf
P+ works, and that it is a presheaf.

10.2.7.1 (–)+ is a functor as well We can actually show that (–)+ : PreSh(C)→
PreSh(C), the process we used to construct the presheaf P+ from a presheaf P, is itself
functorial. To see this, let us first define the functor. Again observe that a natural transfor-
mation α : F⇒G between two presheaves F, G will induce a natural transformation

Nat(–, F) ◦ ic⇒Nat(–, G) ◦ ic,

which will supply us with a unique factorization

α+
c : F+(c)→G+(c)

between the colimits, making is so that for each covering sieve R, we have

α+
c ◦ xF

R = xG
R ◦Nat(R,α).

We can show that α+ is natural as follows. If we have f : c′→ c in C, then using the
definition of a colimit, we need only establish that

G+(f ) ◦α+
c ◦ xF

R =α+
c′ ◦F+(f ) ◦ xF

R

for each R∈Cov(c). But the left-hand side of this equation

= G+(f ) ◦ xG
R ◦Nat(R,α)

= xG
Rf
◦Nat(fR, G) ◦Nat(R,α)

= xG
Rf
◦Nat(Rf ,α) ◦Nat(fR, F)

=α+
c′ ◦ xF

Rf
◦Nat(fR, F)

=α+
c′ ◦F+(f ) ◦ xF

R ,

as desired.
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Having defined (–)+, we can show that it is functorial. Given another natural transfor-
mation β : G⇒H, one can show—in effectively the same way as we showed P+ to be
functorial, using the uniqueness condition in the definition of (–)+ applied to the composite
β ◦α—that (β ◦α)+

c =β+
c ◦α+

c . We can also construct the natural transformation

η : id⇒ (–)+,

by constructing, for each presheaf F, a natural transformation ηF : F⇒F+. On objects c∈
C, set

ηc
F : F(c)→F+(c)

s �→ xF
Yc

(̂s),

where ŝ : Yc⇒F is just the natural transformation associated to F (using the Yoneda
lemma). In particular, given c′ ∈C,

ŝc′ : Hom(c′, c)→F(c′)

f �→F(f )(s),

which completes the definition of ηc
F. Finally, one can show that ηF and η are natural (which

we leave to the reader),198 altogether leaving us with a functor (–)+.

10.2.7.2 When is P+ a sheaf? The point of all this, we suggested, was to generate a
sheaf! Running the plus construction on an arbitrary presheaf P, will P+ be a sheaf ? Well,
not always! But it does get us “closer” to having a sheaf, in a precise sense to be unpacked.
Observe how if P+ were a sheaf, we could show that for any matching family there exists
an amalgamation, where this amalgamation is moreover unique. Thus, if something fails
to give us a sheaf, what may have gone wrong is that there may not be an amalgamation
for a matching family, or there may be “too many.”

The important sense in which a presheaf may be “closer” to being a sheaf is that it is
separated, where fundamentally a separated presheaf is one that satisfies the uniqueness
part of the sheaf amalgamation condition but not necessarily the existence part. Referring
back to the equalizer diagram defining a sheaf in definition 256, for a general presheaf P,
if P fails to be a sheaf, it will thus fail to be an equalizer for the diagram

P(c)
∏
f∈S

P(dom(f ))
∏

f ,g∈S,cod(g)=dom(f )

P(dom(g)).e
p

q

Since P+ may fail to be a sheaf, it can thus fail to be an equalizer. However—and this is the
point!—even if it fails to be a sheaf, we will see that P+ will always be separated, where
this can be captured more formally by saying that the map e above must still be injective.

Definition 287 A presheaf F is separated for Q∈Cov(c) if

F(c)→
∏
f∈Q

F(dom(f ))

is injective, that is, if a section of F is entirely determined by its restrictions along the
elements of a cover. F is separated (period) if it is separated for every covering sieve Q.

198. See, for instance, Borceux (1994) for details.
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Observe how, in terms of the map in equation 10.2, we could have said that a presheaf
P is separated if HomSetCop (Yc, P)→HomSetCop (S, P) is a monomorphism for each covering
sieve.

Thus, a presheaf is separated if a matching family can have at most one amalgama-
tion. Before proving the main result, let us first appreciate, with an example, how the plus
construction does not always leave us with a sheaf.

Example 288 Recall, from chapter 8, section 8.2, the constant presheaf P on X a topo-
logical space consisting of two elements, endowed with the discrete topology (i.e., every
set is open). In other words, we have a presheaf P on X that assigns any set (or abelian
group) with more than one element to each of the four open sets and the identity map
to each of the nine restriction maps (five plus the four trivial self-maps), for example,
P({0, 1}) = P({0}) = P({1}) = P(∅) =Z. Observe that this presheaf is not only not a sheaf
but in particular it is not separated (precisely for the empty cover of the empty set).

What is P+? I claim that it is

P+({0, 1}) =Z

P+({0}) =Z P+({1}) =Z

P+(∅) = {∗}.

id id

0 0

0

Observe what has changed. While we have P+(U) =Z whenever U 
= ∅, this construction
forces P+(∅) = {∗}, the terminal object. This is because, for the empty cover, there is exactly
one matching family.

At this point, we should make two observations: First, observe that P+ is still not yet a
sheaf. For, let U1 = {0} and U2 = {1} be the disjoint opens of X. Together, {U1, U2} covers
X. But then s1 ∈P+(U1) and s2 ∈P+(U2) will both have, for their restriction to P+(∅), the
unique element of P+(∅) = {∗}. But this means that {s1, s2} is actually now a matching
family for the cover {U1, U2} of U1 ∪U2 = {0, 1}. Yet, as we saw in chapter 8, section 8.2,
if s1 and s2 are taken to be different elements of Z, they cannot have an amalgamation in P+.
This brings us to the second observation: Notice how, in running this plus construction, we
may introduce matching families—and thus, families that ought to have amalgamations—
that were not there in the original presheaf P (and so we need not have amalgamations for
them).

Again, the plus construction does not necessarily leave us with a sheaf, but it does take
us in the right direction, as running this (–)+ once gets us “halfway” toward a sheaf—in the
precise sense that it leaves us with a separated presheaf. Here is the main result:

Proposition 289 Given P an arbitrary presheaf, P+ is always a separated presheaf.
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Proof. To show that P+ is separated, it will suffice to show that the map e in

F(c) e−→
∏
h∈Q

F(dom(h))

is injective. In particular, consider two elements {xf }f∈S and {yg}g∈R in P+(c) for which
P+(h)({xf }f∈S) = P+(h)({yg}g∈R) for all collections of morphisms h : c′→ c in Q, with Q a
cover of c. One must then show that the matching families {xf }f∈S and {yg}g∈R are in fact
the same. The proof is left to the reader.

Thus, the plus construction takes an arbitrary presheaf and will make it a separated
presheaf. But what happens if the presheaf on which we run the plus construction is already
separated? In that case, running the plus construction will actually leave us with a sheaf!

Proposition 290 If a presheaf P is already separated, then P+ will be a sheaf.

Proof. Again left to the reader.

But by putting these last two results together, we have that for any presheaf F, (F+)+ will
be a sheaf! In other words, we can functorially upgrade any presheaf on a site to a sheaf
by just two applications of the plus construction! While sometimes one can get away with
just running it once, in order to take an arbitrary presheaf (separated or not) to a sheaf, it
will always suffice to apply it just twice.

Using the double application of the plus functor as our definition of the sheaf functor a,
we can now prove the following:

Theorem 291 a is left adjoint to the inclusion functor,

Sh(C, J) PreSh(C).ι

a

⊥

Proof. The adjunction amounts to saying that to any map P→ ι(F) there will correspond a
unique map a(P)→F. But consider the natural transformation η : P→P+. On components
c∈C, this is defined as

ηc : Pc→P+(c)

x �→ ηc(x) = {P(f )(x) | f ∈Mc},

using Mc the maximal sieve. As we know, applying η twice gives us a map from P to
(P+)+ = a(P). We would like to show that any map from P to a sheaf F will factor uniquely
through the map P

η◦η−−→ a(P), in the sense that

P P+ (P+)+

F.

η η

But the same map η is being applied twice, so it would be enough to show that for

P P+

F

η

β
α
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there is a unique map α making the diagram commute.
Take an element {xf }f∈R ∈P(c) for a cover R of c. Then, for a map g : c′→ c in R, we

will have that ηc′ (xg) = {P(h)(xg) | h∈Mc′}. But since {xf }f∈R is a matching family, we will
have P(g)({xf }f∈R) = {xg◦f ′ | f ′ ∈ g∗(R)}. As g∈R, g∗(R) will be equal to the maximal sieve
Mc′ , giving ηc′ (xg) = P(g)({xf }f∈R), which will hold for all g∈R.

Now, if there indeed existed the map α, as desired, it would preserve the above equality,
in the sense that there would exist a unique α({xf }f∈R)∈F(c) satisfying

F(g)(α({xf }f∈R)) =α([P(g)({xf }f∈R)]) =α(ηc′ (xg)) =β(xg)

for all g∈R. Since F is a sheaf and {β(xg) | g∈R} is a matching family, there will exist
such a unique element α({xf }f∈R)∈F(c) satisfying the above equation.

Thus, given a map P→ ι(F), this will uniquely determine a map h : a(P)→F making

P ιa(P)

ι(F)

η◦η

ι(h)

commute, and telling us that η ◦ η is in fact the unit of the adjunction.

As a is a left adjoint, by LAPC, a preserves colimits—thus, all small colimits will exist
in Sh(C, J), since they exist in PreSh(C). In effect, we thus ensure that the “nice” features
of the presheaf category (topos) carry over to our sheaf topos. In fact, we could show
that the functor (–)+ also preserves finite limits of presheaves; using this, and running (–)+

twice, it further follows that a : PreSh(C)→Sh(C, J) preserves finite limits as well. These
facts will become important in the next chapter.

Example 292 Let us return to example 288. What if we run (–)+ once more, on P+ itself?
Then we should have

P+(P+({0, 1})) =Z⊕Z

P+(P+({0})) =Z P+(P+({1})) =Z

P+(P+(∅)) = {∗}

π1 π2

0 0

0

which is indeed a sheaf.
For a related example, again taking X the discrete topological space on a two-element

set, readers should convince themselves that for any set-valued presheaf P on X, P+(X) will
be equal to the pullback of
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P({1})

P({0}) P(∅).
ρ1
∅

ρ0
∅

For instance, suppose the presheaf P has been given by P(X) = ∅ and P({1}) = P({0}) =
P(∅) = A, where A is some set with (at least) two elements and where the restriction maps
ρ{1}
∅ and ρ{0}

∅ are both the identity map. In other words, we have

{0, 1}

{0} {1}

∅

P({0, 1}) = ∅

P({0}) = A P({1}) = A

P(∅) = A

! !

id id

!

O(X)op Set.
P

This is, of course, not a sheaf. To figure out how P+ is determined, let us first consider what
the plus construction does over the whole space X. As mentioned above, P+(X) should be
the pullback of

P({1}) = A

P({0}) = A P(∅) = A

ρ1
∅= id

ρ0
∅= id

which set is canonically isomorphic to A itself. Thus, P+(X) = A. What about for the rest of
the opens? P+ will not change anything for the two nontrivial open subsets of X. However,
as in the earlier example with abelian groups, P+(∅) will be forced to be {∗}, the terminal
object in Set, that is, a singleton set. This is again on account of the fact that ∅ is covered
by the empty cover; and for the empty cover (a covering by no sets at all), there is exactly
one matching family, and so any two sections of F(∅) will agree on this cover. In more
detail, recall how products over the empty index set reduce to {∗}, so the relevant equalizer
diagram for this cover forces F+(∅) = {∗}.

Altogether, then, this leaves us with
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P+({0, 1}) = A

P+({0}) = A P+({1}) = A

P+(∅) = {∗}.

0 0

0

Again, P+ is not yet a sheaf. But if we run (–)+ once more, on P+ itself, then P++(X) is again
the same as the pullback, now of

P+({1}) = A

P+({0}) = A P(∅) = {∗}.

0

0

With this P++, we will indeed have a sheaf.
Altogether, observe how, in general, P, P+, and P+(P+) may all be different—and given

a presheaf we may truly need to run the plus construction twice to end up with a sheaf. On
the other hand, for certain presheaves, it will suffice to run the plus construction once, as
the following example demonstrates.

Example 293 Recall the presheaf B of all bounded continuous functions on a topological
space, for instance,

B(U) := {bounded continuous functions U→R},

defined on X =R. This is clearly a presheaf, with the usual restriction maps. Moreover, it
is separated. However, as you were asked to contemplate in chapter 8, section 8.2, this is
not a sheaf. For, consider the open cover of R given by {Un = (–n, n)}n∈N. And take the
identity function fn(x) = x. This will give us a sequence of functions, bounded on each Un,
that moreover agree on intersections—that is, a matching family. However, the only possi-
ble amalgamation of {fn} to all of X =R is f (x) = x, which is unbounded. Hence, we have
a matching family with no amalgamation. The moral here was that even if we have a col-
lection of bounded functions whose domain of definition cover all of R and which are well
behaved on intersections, we cannot be sure that we will have a function that is bounded
and defined on all of R, when these are glued together. There are many functions that are
locally bounded yet not globally bounded—hence, you cannot expect to be able to glue
together locally bounded pieces, since such a gluing might leave you with an unbounded
function.

If there is some matching family that does not have an amalgamation, the plus construc-
tion effectively adds it. One can turn this presheaf B of all bounded continuous functions
into a sheaf—specifically, the sheaf of all continuous functions—with just one application
of the plus construction to B. One way to appreciate this is to first realize that there is a map
B+(U)→C(U), since each matching family of bounded functions fi : Ui→R on a cover Ui
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of U can be joined to supply a unique continuous function f : U→R, and equivalent match-
ing families will yield the same function f . Going the other way, C(U)→B+(U), every
continuous function f : U→R can be got from a matching family of bounded functions
fn : Un→R, where Un = {x∈U : |f (x)| < n}, and fn is the restriction of f to such Un.

10.3 A Few More Examples

Let us now take a break from the more abstract results and look at a few more examples of
sheaves, some of which have the added benefit of exhibiting the utility of the more general
notion of Grothendieck topologies.

Example 294 Recall from the n-coloring graph discussions how, in the case of the cat-
egory of undirected, connected graphs, we can define a subgraph G of a graph H as a
graph such that Edges(G)⊆Edges(H), and in that context, to define a cover of a graph G
it sufficed to specify a family of subgraphs {Gi ↪→G | i∈ I} satisfying the condition that⋃

i∈I

Edges(Gi) = Edges(G).

The present example will also work with such notions and the implied site on the category
of undirected, connected graphs.199

The well-known chess “n-queens problem” presents the task of finding configurations of
n queens on an n× n chessboard that satisfy the condition that none of them can attack one
another, where two queens can attack each other, or are in conflict, in the usual chess sense
(i.e., if they are placed on the same row, column or diagonal). We can encode this data by
working over the subgraphs of the complete graph Kn with n nodes. Each node i, 1≤ i≤ n,
is assigned a variable qi, corresponding to a placement of a queen in the i-th column. In the
concrete case of n = 4, we then have the set

F = {F(q1), F(q2), F(q3), F(q4)},

where the F(qi) are valued in the set {1, 2, 3, 4}, each of the values ui ∈F(qi) correspond-
ing to the row where the queen in the i-th column has been placed. Initially, we can
think of value assignments such as (1, 2, 4, 3) in terms of subgraphs ordered by inclusion.
For instance, for this last assignment, we take (1, 0, 0, 0) to correspond to a chosen node
(labeled 1); (1, 2, 0, 0) for the chosen node together with the edge from 1 to the node labeled
2; (1, 2, 4, 0) for the chosen node 1 and its edge to 2 together with additional edges from 2

to the node labeled 4 (and then from 4 to 1); and then (1, 2, 4, 3) for the complete graph K4.
What a given ordered set of numbers represents then is a given configuration of queens,

where such assignments correspond to a particular subgraph of the complete graph. For
instance, the selection of 1 in the “stalk” over q1 would represent the placement of a queen
in the first row of the first column—or, in terms of the underlying subgraphs, the assign-
ment of data to the specified node labeled 1 in a subgraph. Then, for instance, if 2 were
selected in the stalk over q3, yielding (1, 0, 2, 0), this would correspond to a configuration
with a queen in the first row of the first column and another queen in the second row of the
third column. But since ultimately exactly one queen will be placed in each column (up
to 4 in our current case), we can restrict our attention to the subgraphs corresponding to

199. The idea for this example, and many of the details of its presentation, comes from Srinivas (1993).
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sequences that proceed stepwise from q1 through q4. At the i-th step, we add a queen to the
i-th column, ensuring that it does not attack any of the i – 1 queens that have already been
placed. In other words, in constructing the sheaf over such subgraphs ordered by inclusion,
we first consider the restricted set

{cij | (qi 
= qj)∧ (|qi – qj| 
= |i – j|) ∀i, j∈ {1, 2, 3, 4}, i 
= j}

which exhibits the set of constraints describing the problem (ruling out configurations such
as (1, 2, 4, 3)). In the case of selecting 1 in the stalk at q1, then, the constraint demands that
for such a selection, only 3 or 4 could be selected in the stalk at q2. In turn, in the case of
selecting 3, this could be extended no further; while in the case of selecting 4, we could
extend one more step, assigning the value 2 to the stalk at q3—however, such an assignment
could not then be extended over the complete graph K4, for the constraint prohibits any
further assignment to q4.200 On the other hand, one of the (two possible) global sections is
given by selecting 2 at the stalk at q1, then 4 at q2, 1 at q3, and 3 at q4. Since the selection
of an integer 1, . . . , 4 over the nodes of the subgraphs of K4 stands for a queen placement
that respects the constraint, we might represent the data of such an assignment thus:

40Z0Z
3Z0Z0
2QZ0Z
1Z0Z0

a b c d

2

40L0Z
3Z0Z0
2QZ0Z
1Z0Z0

a b c d

2

4

40L0Z
3Z0ZQ
2QZ0Z
1Z0L0

a b c d

2

4

1

3

40L0Z
3Z0Z0
2QZ0Z
1Z0L0

a b c d

2

4

1

In constructing a sheaf, we make use of the constraint and consider only a subset of the
possible sequences of qi, so that, for instance, (1, 1, 0, 0), (1, 2, 0, 0) are not allowed. More
explicitly, a site for the sheaf is built on the poset of subgraphs of the complete graph
Kn on n nodes, using the covering introduced at the outset. A configuration of queens

200. Recalling the discussion from chapter 9, such assignments could thus be seen to represent (strictly) local
sections.
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corresponding to a given graph G is then just a function that assigns to each node in G a
position on an n× n board. In other words, we let Sub(Kn) be the poset of subgraphs of Kn,
N(G) and E(G) the nodes and edges of a given (sub)graph G, and Chessboard the set of
all pairs 〈x, y〉, where x and y range between 1 and n. But since we are not interested in all
possible (arbitrary) configurations of queens, we can use valid(c, e) a predicate describing
the special situations in which the positions in a given configuration (specified by a map c)
of a pair of queens connected by the edge e do not present a conflict. In this way, we can
ultimately define a contravariant functor

Config : Sub(Kn)op→Set

that assigns the set of valid configurations of queens to each subgraph, where a valid con-
figuration is one in which none of the queens conflict along any of the edges of the given
subgraph. In a little more detail, the functor acts to assign to each subgraph of the com-
plete graph the set of all pairwise compatible (along each component edge) arrangements of
queens on the chessboard. It is easy to see how the functor acts contravariantly with respect
to inclusions of subgraphs, and the sheaf conditions are met, for the covering components
will in each case intersect in at least one node, and at such nodes the queen represented
there will automatically prevent conflicts with subconfigurations.

Continuing to confine our attention to n = 4, we display the configuration data of the
n-queen sheaf, where the thick arrows trace out the two “global sections” (which, as we
should expect, give the two solutions to the n-queen problem when n = 4), and the two
grayed-out paths highlight two of the local sections which cannot be extended to global
sections:
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{

40ZQZ
3L0Z0
20Z0L
1ZQZ0

a b c d
,

40L0Z
3Z0ZQ
2QZ0Z
1Z0L0

a b c d
}

{

40ZQZ
3L0Z0
20Z0Z
1ZQZ0

a b c d
,

4QZ0Z
3Z0L0
20Z0Z
1ZQZ0

a b c d
} {

40L0Z
3Z0Z0
20ZQZ
1L0Z0

a b c d
,

40L0Z
3Z0Z0
2QZ0Z
1Z0L0

a b c d
}

{

40Z0Z
3ZQZ0
20Z0Z
1L0Z0

a b c d
,

40Z0Z
3L0Z0
20Z0Z
1ZQZ0

a b c d
} {

40L0Z
3Z0Z0
20Z0Z
1L0Z0

a b c d
,

4QZ0Z
3Z0Z0
20Z0Z
1ZQZ0

a b c d
} {

40L0Z
3Z0Z0
2QZ0Z
1Z0Z0

a b c d
,

4QZ0Z
3Z0Z0
20L0Z
1Z0Z0

a b c d
}

40Z0Z
3Z0Z0
20Z0Z
1L0Z0

a b c d

40Z0Z
3Z0Z0
2QZ0Z
1Z0Z0

a b c d

40Z0Z
3L0Z0
20Z0Z
1Z0Z0

a b c d

4QZ0Z
3Z0Z0
20Z0Z
1Z0Z0

a b c d

40Z0Z
3Z0Z0
20Z0Z
1Z0Z0

a b c d

?

?

The full sheaf diagram is fairly straightforward and is left to the reader.

Example 295 Self-similar groups show up in a number of areas and are of particular use
in modeling various phenomena involving some self-similarity, for example, certain “self-
similar” melodies in musical composition. For self-similar groups (such as the well-known
Basilica group, presented below) acting on a set (or infinite rooted binary tree, etc.), and
given some subset of that set, we can form an interesting general construction called the
Schreier graph, which is basically a generalization of a Cayley graph, but whose geometry
can be much more interesting than that found in a Cayley graph. Cayley graphs are like
“pictures” of a group, the geometric counterpart to an otherwise deeply algebraic entity (a
group).201 Similarly, Schreier graphs display, in a picture, how the cosets of a subgroup of
G act in relation to the overall group G, specifically how the cosets “tile” the overall group.
For this reason, Schreier would first refer to his graphs as Nebengruppenbilder, basically
“coset pictures.”

In abstract algebra, one often strives to obtain, for a given group G, a characterization
of its subgroups (together with their properties). In terms of the associated geometrical
approach, such tasks amount to finding characterizations of a given group G’s Schreier
graphs (together with their properties). In constructing the Schreier graphs with various
actual self-similar groups in particular, one quickly observes that, in passing from the graph
on one fixed level to the graph on the next level, some copying, rotating, and gluing are

201. More formally, a Cayley graph is a group G that has been geometrically realized as a G-torsor, where the
latter is a space that G acts on transitively and freely.
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involved; one moreover observes that yet another layer of self-similarity and restriction
emerges in this passages of levels. These sorts of things lead one to wonder whether there
is a sheaf lurking here.

One can indeed construct a sheaf here, however there are some difficulties and the con-
struction requires some cleverness, specifically in the construction of the covering sieves
for the objects of the category associated to the graphs to which Schreier graphs are to be
assigned. First, we will better motivate and describe the basic objects, Schreier graphs.

Let us begin by considering a very familiar sort of object, an infinite rooted binary tree
T (part of which is displayed):

root

0

00

000 001

01

010 011

1

10

100 101

11

110 111

An automorphism of T is a bijective map from the nodes to the nodes which preserves
adjacencies, that is, if the nodes are joined by an edge, then the nodes they are mapped
to under the map are again joined by an edge.202 If a and b are automorphisms of T , the
notation ab means first apply the a transformation, then b. Now, since automorphisms are
by definition bijective maps, they have inverses. The inverse of an automorphism x is an
automorphism y such that xy = e(= yx), where e is the identity/unit map. Of course, if we let
G be a set of automorphisms of T together with their inverses, such that for each x, y∈G,
the products xy and yx are also in G, then we obtain a group. We can guarantee this closure
under multiplication by taking a set of automorphisms, say a and b, together with their
inverses (which for the moment, we assume, for simplicity, are just a and b themselves),
and then let G be the set of all finite products of these automorphisms. We then say that
G is generated by the set {a, b}, and a and b are called the generators. Whenever a group
is generated by a finite set of elements, in this case automorphisms, we call it a finitely
generated group.

We could also define automorphisms via rules, for instance, for w an arbirary binary
string, we might have:

a(0w) = 1.e(w), a(1w) = 0.e(w);

b(0w) = 0.e(w), b(1w) = 1.a(w),

where e(w) means apply the identity map (“do nothing”) to the suffixed string w. Products
of a and b can also be expressed with rules, for example, ba(0w) = a(0.e(w)) = 1.ee(w).
Observe that in the above rules, the rules for a uses only e while the rules for b uses a and
e. In other words, the set {a, b, e} of automorphisms is described by a set of self-referential
or self-similar rules.

202. The definition is far more general and works for any graph Γ, but we confine our attention to binary trees
like T .
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Definition 296 Let G be a group of automorphisms of T .203 Then G is called a self-similar
group if for each g∈G, each x∈ {0, 1}, and each binary string w, there is a y∈ {0, 1} and
an h∈G such that

g(xw) = y.h(w)

Another particularly suggestive way of describing automorphisms of T is via automata.
For instance, the automaton for the {a, b, e} group from above looks like:

a b

e

1/1

1/0 0/0

0/0

1/1

0/1

The idea then is that if we feed, for instance, the string 10110 in to the automaton, starting
at b, then b will send 10110 along to a, keeping the 1 in the first position the same; then
a will switch the second letter 0 to 1 and send the new string along to e; e in turn will
preserve the subsequent three letters as they were, ultimately spitting out the string 11110.

Now, in general, whenever we have a group G generated by a finite set G , acting on a set
X, and given M some subset of X, there is a Schreier graph. For concreteness, in illustrating
this notion, we confine our attention to X being the nodes of a tree T , M the set of nodes
at some fixed level k of T , and G as a self-similar group acting on T . Roughly, the idea is
that for each element of the subset M of T , we first draw a node labeled by this element.
We then connect the nodes mi, mj with a directed edge assigned some label s∈G whenever
mj = smi. This graph is obviously connected if for any two nodes in M there is some group
element (which need not be a single generator, but might be some combination or finite
product of generators from G ) which carries us from mi to mj. In this case, we say that G
acts transitively on M.

In more generality, given a group G with generating set G , and any subgroup H, the
set of left cosets G/H is a set on which G will act transitively, which entails that we can
construct Schreier graphs for G acting on G/H. This will result in a graph Γ whose vertex
set is G/H and in which two cosets Hg and Hg′ are connected with a directed edge labelled
with a generator a∈G iff Hga = Hg′. In the special case where H is the trivial subgroup,
the Schreier graph coincides with the usual Cayley graph. If G is a self-similar group acting
transitively on each level of T , let H be the subgroup of G containing all those elements
which fix a node at level k. Then the Schreier graph for G acting on this G/H will be the
graph for G acting on T when M is held to be the set of nodes at level k. More formally, a
Schreier graph is a (connected and rooted) 2n-regular (each of whose vertices has degree
2n) graph Γ the edges of which are colored (using n different colors), and where for each
vertex there is exactly one incoming and one outgoing edge of a given color attached to it.

203. This definition could be extended to groups of more general automorphisms, in particular to rooted n-ary
trees or graphs.
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We give a concrete illustration of this with the so-called Basilica group B. Let B be the
group finitely generated by the set of automorphisms consisting of a, b, and e, acting on
the rooted binary tree T . These generators are described by the following self-similar rules:

a(0w) = 1.b(w), a(1w) = 0.e(w);

b(0w) = 0.a(w), b(1w) = 1.e(w).

The automaton encoding these rules is given below:

a b

e

0/0

0/1

1/0 1/1

0/0

1/1

We know then that given the group B acting on the set of nodes of T an infinite rooted
binary tree, we can look at the subset M⊆ T where M is the set of nodes at some fixed
level k. For concreteness, let us consider k≤ 5. Then, for each element of M, we will draw
a node. If mi = smj for some s∈B (where B is the generating set of the group acting on
M), that is, if from any node we can get to any other node via some (combination of)
action in the group, we say that B acts transitively on M or that the induced Schreier graph
is connected at each level k. Concretely, for our Basilica group B acting on T , and M as
just described, we have:

1 0

a

a

b b

k = 1. To get the next level, duplicate, flip, and glue along dashed arrow

11 01 00 10

a

a
b b

b a

a
b

k = 2. To get back to level 1, reconnect the duplicates along dashed arrows
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k = 3. To get back to level 2, reconnect the duplicates along dashed arrows

k = 4
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k = 5

The sorts of manipulations involved here prompt the notion that such Schreier structures
over a graph might form a sheaf. However, while assigning Schreier graphs to the sub-
graphs of a given graph (or 1-simplicial complex), endowed with discrete topology (every
subset open), describes a presheaf, it does not give us a sheaf. Yet, by using the more gen-
eral notion of a Grothendieck topology, we can in fact describe things so as to produce a
sheaf on an appropriate site. We will sketch how this works.204

Before developing this, we mention a few important features of Schreier graphs. Schreier
graphs are graphs provisioned with a distinguished base point—the root. Moreover,
Schreier graphs are regular, that is, each vertex has the same degree. For finite generat-
ing sets, the degree of vertices in a Schreier graph is always even. Since the action of G
on G/H is transitive, Schreier graphs are connected. Furthermore, the quotient map con-
struction p : G→G/H that takes the cosets of H and collapses them will induce a covering
of Schreier graphs p : G→Γ. Finally, if we denote by L(G) the lattice of subgroups of G,
and by Λ(G) the corresponding space of Schreier graphs of G, we can observe that the
space L(G) is a lattice ordered by inclusion, while Λ(G) is a lattice ordered by coverings.
This latter claim means that Γ≤Δ if there exists a covering map p :Γ→Δ that takes the
root of Γ to the root of Δ. Then, the map f : L(G)→Λ(G) that sends a subgroup H≤G
to its Schreier graph is a lattice isomorphism sending an ordered pair H≤H′ to the cov-
ering map p :Γ→Γ′, where Γ and Γ′ are the Schreier graphs of H and H′. The inverse
map f –1 :Λ(G)→L(G) just takes Γ a Schreier graph of G to the subgroup H, which is the
stabilizer of Γ under the action of G (i.e., the set of elements of G which fix the root of Γ).

204. I discovered a construction of a Schreier graph sheaf in an earlier draft of this book, but later discovered Can-
nizzo (2014) had done something similar. Moreover, I subsequently found an error in my own earlier approach,
so the following account, including many details, largely derives from Cannizzo (2014).
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In short, a Schreier graph is a connected and rooted 2n-regular graph Γ whose edges are
labeled by the generators of a group—we can think of the edges as coming in n different
“colors,” after assigning a color to each of the generators in the generating set G and
painting the edges of Γ accordingly—and that is such that, for each vertex of Γ, there is
exactly one incoming and one outgoing edge of a given color attached to it.205 A Schreier
structure Σ on Γ, a 2n-regular rooted graph, is just a labeling of its edges by the generators
of the free group Fn = 〈a1, . . . , an〉, whereby Γ is made into a Schreier graph. In other
words, a Schreier structure is just a map

Σ : E0(Γ)→A,

where E0(Γ) specifies a choice of orientation attached to each edge (x, y)∈Γ, and where
for each x∈Γ and each 1≤ i≤ n, there is, attached to x, exactly one incoming edge labeled
with ai (from A) and one outgoing edge labeled with ai. Finally, we can define the space
of Schreier graphs Λ(G) of a given (finitely generated) group G by defining Λr(G) as the
set of isomorphism classes of r-neighborhoods (defined below) centered at the roots of the
Schreier graphs in Λ(G), and then setting Λ(G) = lim←−Λr(G). We can, moreover, identify the
space of Schreier graphs Λ(G) and the lattice of subgroups L(G) of G.

It has been known for some time that every 2n-regular graph admits a Schreier struc-
ture. Suppose we have Γ some 2n-regular graph. We then want to describe the space of
Schreier structures Schr(Γ) over Γ. We can show that the association of Schreier structures
to subgraphs of a given graph Γ supplies the data of a presheaf. However, by assigning the
Schreier graphs to the subgraphs of a graph endowed with the discrete topology (in which
every subset is open), or realized as a simplicial complex, one cannot make this a sheaf.

Suppose you place the discrete topology on a graph Γ, that is, the natural metric
topology. Consider the graph Γ

v0v1 v1v2
v0 v1 v2

The two edges (v0v1) and (v1v2) together form an open cover of the entire graph G. Their
intersection is the sole vertex v1. We can then assign a Schreier structure to the edge (v0v1)
by first directing the edge from v0 to v1 and then labeling this with a generator a; similarly,
we can assign a Schreier structure to the edge (v1v2) by first directing the edge from v2 to
v1 and then also labeling this with the generator a, so that the assignments are to

v0v1
→

v1v2
←v0 v1 v2

On the overlap v1 = (v0v1)∩ (v1v2), the assigned Schreier structures trivially agree. How-
ever, the sheaf gluing axiom then requires that there exists a gluing s∈Λ(Γ) such that its
restriction to each edge equals a. But both edges are directed towards v1 and have the same
label, so the gluing condition cannot be satisfied and we do not have a sheaf.

But by reworking what it means for a family of subsets of a graph to serve as an open
cover, specifically using a Grothendieck topology, we can arrive at a viable description of
a sheaf of Schreier structures on such graphs. We begin by considering only sets that are

205. Technically, this graph will then be a Schreier graph of the free group generated by the group’s generating
set, or its Cayley graph.
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r-neighborhoods, where this means sets U⊆Γ of the form

U = {x∈Γ | ρ(K, x)≤ r},

where K is an arbitrary subset of Γ and ρ the standard metric on graphs. We say then that
a subset K⊆U of an r-neighborhood U⊆Γ in a graph Γ is an r-basis of U provided the
r-neighborhood of K (inside of Γ) is equal to U. This lets us define a cover as follows:

Definition 297 Let Γ be a graph with the usual graph metric. A system of r-neighborhoods
{Ui}i∈I is said to be a cover of Γ provided there exist bases Ki⊆Ui covering Γ is the
ordinary sense, that is, ⋃

i∈I

Ki =Γ.

While the open sets of covers thus defined will overlap in a nice way, rectifying our
previous problem, allowing the assignment of Schreier structures to sets to be a sheaf, there
is an issue in that the defined collection of r-neighborhoods is not actually a topology, since
it is not closed under intersections. This is where the fully abstract notion of a Grothendieck
topology comes to the rescue. This will, in turn, enable us to define a proper sheaf of
Schreier structures on a graph.

For Γ a graph, we proceed by defining a category CΓ associated to Γ, that has

• objects: the 1-neighborhoods in Γ; and
• morphisms: inclusions.

Let us now define a Grothendieck topology J1 on CΓ thus: for U an object of CΓ, we
let J1(U), the collection of covering sieves of U, be the collection of all sets of inclu-
sions {Ui ↪→U}i∈I subject to the requirement that each Ui is a 2-neighborhood and that
the system {Ui}i∈I covers U in the sense of the definition above (taking r = 2). With the
resulting Grothendieck topology, the functor assigning to a given 1-neighborhood U the
set of Schreier structures over U of Γ is in fact a sheaf.

Theorem 298 Let Γ be a graph and let (CΓ, J) be its associated site. Then the contravari-
ant functor Schr : CΓ→Set that assigns to a 1-neighborhood U in CΓ the set of Schreier
structures Schr(U) over U is in fact a sheaf.206

Proof. The assignment of Schreier structures to a given graph is a contravariant assign-
ment, so the functor Schr is a presheaf. Take U an object, that is, a 1-neighborhood, in
C(Γ), and S∈ J(U) a covering sieve that consists of inclusions {Ui ↪→U}i∈I . We can check
that it is a sheaf by verifying the two usual sheaf conditions.

First, uniqueness: suppose Σ,Σ′ ∈ Schr(U) are two Schreier structures on U such that
their restrictions to Ui agree for all i∈ I. Suppose, moreover, that Σ 
=Σ′. This inequality
means that there will have to exist an edge (xy)⊆U that has different labels in Σ and Σ′.
The definition of covering sieves stipulates that the point x belongs to the basis of some Ui,
and since Ui is a neighborhood of this basis, it must also contain the point y and thus also
the edge (x, y) connecting them. But this is a contradiction, so we get that, provided there
are such gluings, there can only be one.

206. This theorem, and its proof, follows Cannizzo (2014) very closely.
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Second, gluing: suppose that {Σi ∈ Schr(Ui)}i∈I is a system of Schreier structures with
the property that, for all i, j∈ I, the restrictions of Σi and Σj to the fibered product Ui×U Uj

agree. Take an arbitrary x∈U. If the set of all edges incident with x (called star(x)) is
contained in the 1-basis of one of the Ui, then the Schreier structure of this star(x) that
comes from the Σi can be extended to the entire neighborhood U. On the other hand, if x
lies on the boundary of the 1-basis Ki of some Ui, making star(x) contain a point y not in
Ki, then this point y will have to be contained in the 1-basis Kj of some Uj. Such an edge
(x, y) will then belong to the fibered product Ui×U Uj, and this fibered product is itself a
1-neighborhood.207 Thus, a Schreier structure can be extended to all of U.

Fundamentally, the theorem says that the functor assigning Schreier structures to sub-
graphs of a given graph can be regarded as a sheaf, provided the subgraph is furnished with
an r-neighborhood structure, and provided one then defines an appropriate Grothendieck
topology.

The next two constructions are left to the reader.

Example 299 In general, for a topological group G equipped with the prodiscrete
topology, the category of continuous G-sets or Cont(G)—having for objects the contin-
uous actions of G on discrete sets and for morphisms the equivariant maps—forms a
Grothendieck topos; this category is in fact equivalent to the topos of sheaves Sh(C, JAt),
where C consists of the (nonempty) transitive actions of Cont(G) and JAt is the atomic
topology on this subcategory.

A cellular automaton (CA) is a sort of machine that takes in some input and produces
some output.208 They are excellent devices for modeling complex behaviors with minimal
building blocks. A CA consists, roughly, of the following data:

• An alphabet A: the set of symbols we allow, for example, {0, 1}, {blue, orange, white},
and so on; individual elements of this alphabet set are called states or colors.

• A group G, called the universe, typically displayed in the form of an ordered grid of
cells (i.e., tessellation with some basic shape, e.g., squares); elements of the universe are
called cells.

• A notion of neighborhood, for example, the eight cells immediately surrounding a given
cell in a 2-D tessellation with squares;

• A local transition function or rule that provides instructions for moving from one assign-
ment of elements of the alphabet to the lattice of cells to another; these instructions for
producing the output state of a given cell are given in terms of the input states of a finite
number of a cell’s neighboring cells, which might include the cell itself.

We consider AG, the set consisting of all maps from the universe G to the alphabet set A:

AG =
∏
g∈G

A = {x : G→A}.

207. For U ↪→W and V ↪→W two morphisms in CΓ, the fibered product U ×W V is specifically the 1-
neighborhood of the intersection of the maximal bases of U and of V , that is, U1(Umax ∩Vmax). See Cannizzo
(2014) for details.
208. Much of the basic background theory concerning CA’s can be found in Ceccherini-Silberstein and Coor-
naert (2010), a book that would serve as an excellent reference for anyone desiring to learn more about cellular
automata.
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Elements of this set AG are called configurations. In other words, a configuration is a way
of attaching an element of the alphabet to each member of the underlying group (i.e., to
each cell in the universe), where each cell is assigned one state at a time. Informally, a
configuration is a specific coloring of all the cells of the universe. There is a natural action
of the group on the set of configurations, called the shift action. In brief, a CA is a self-
mapping of the set of configurations given by a system of local rules which commutes with
this shift action. Since G acts continuously on the set AG (equipped with the prodiscrete
topology)209 it would appear that we are dealing with the category of continuous G-sets,
Cont(G), whose objects are the continuous actions of G on the discrete sets and whose
arrows are the equivariant maps between them; one could then construct a Grothendieck
topos here by constructing a site out of the open subgroups and using the atomic topology
on the full subcategory of Cont(G) that consists of the nonempty transitive actions. We
leave readers to explore this on their own.

Example 300 For those who know about combinatorial game theory, try to construct a
sheaf out of data of the thermographs of games.210

10.4 Philosophical Pass: The Idea of Toposes

Box 10.1

The Idea of Toposes

This chapter offered a first look at Grothendieck toposes, where these are categories equiva-
lent to a category of sheaves on some site; moreover, every Grothendieck topos can be shown
to arise in this way. When Grothendieck first introduced the essential concepts, it was in
order to be able to treat cohomology within algebraic geometry—in this manner, toposes
were able to play an important role in problems with a more arithmetic bent. But ultimately,
this powerful concept of a Grothendieck topos allows us to deal with situations or theories
wherein seemingly topological notions would appear to be useful or relevant, but where the
ordinary topological spaces are not present. Grothendieck toposes accordingly allow us to
study a variety of “space-like” situations, to regard space as something ubiquitous throughout
mathematics, and even to have a unified framework we can use to study arithmetic and geom-
etry. As Grothendieck stressed (see promenade 13 of Grothendieck 1986 in particular), the
concept of a Grothendieck topos in a sense joins together the continuous and structures that
would appear to be thoroughly algebraic and discrete.

From one perspective, the story of Grothendieck toposes can be seen as a decisive step in the
story of the metamorphosis of the concept of space. The associated notion of a Grothendieck
topology in terms of systems of covers is an important purification of what is arguably funda-
mental to the spatiality of a space—and the more general notion allows us to capture this even
in situations quite distant from literal topological spaces. The essence of what is “spatial”

209. The prodiscrete topology is where AG has the product topology, each factor A of AG given the discrete
topology (all subsets of A open).
210. See Siegel (2013), Berlekamp (1982), Berlekamp and Wolfe (2012), or Guy, Conway, and Berlekamp (1982)
for details on combinatorial game theory and the notion of “temperature” and thermographs; the reader can also
visualize some of these ideas, and perform some computations that would be too difficult to do by hand, with the
open-source program CGSuite.
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about space is arguably to be found wherever there is a structure where localization makes
sense. Grothendieck topologies, and the sites built out of them, allow us to speak about this.
When we can define something on covers and check agreement on intersections of such cov-
ers, it makes sense to speak of localization. And, fundamentally, the idea of covering sieves
is one that enables us to examine the relations between the local and global features of some
system of objects. When we can uniquely glue data assigned to covers, we can talk about
sheaves on such a system. By considering all the sheaves on a site—and so a Grothendieck
topos—we are recapturing structures that behave like sheaves on a topological space, even
in situations where there may not be a literal topological space (and so, where there was not
already a notion of what sorts of assignments of data to that space are “sheaf-like”).

In this framework, the characteristic relations between local and global features of some sys-
tem of objects emerge as more fundamental than any sort of points; the concept of a site
accordingly starts to tease out, in a particularly powerful fashion, this idea that one can exam-
ine something spatial, and things defined on such a space, without looking at its points. The
focus shifts away from points and behavior on points to how a localization or covering system
can be made to define a “variable structure” that varies over that system of covers.

The usual (point-set) notion of a topology was ultimately designed to capture and understand
two things: locally defined phenomena and continuous transformations. If Grothendieck’s
notion of a site, built out of a transformed notion of a topology, supplies us with a more
general notion of a local system, consideration of the sheaves on a site provides some sort of
continuous or continuously variable perspective on a category that may in principle be quite
“nontopological.” The notion of geometric morphisms between toposes, which we cover in the
next chapter, further extends the generalized notion of continuous transformations. With the
notion of a Grothendieck topos, we ultimately have a framework in which the (discrete) com-
binatorial diagrammatic approach (via categories) is paired harmoniously with (continuous)
concepts native to topological spaces.

Furthermore, the introduction of Grothendieck toposes can also be seen as motivated from
observations that a number of important properties of topological spaces themselves can be
reformulated as certain invariant properties of their associated category of sheaves. In certain
cases, as we have already seen, a topological space X can even be recovered from its associ-
ated category of sheaves Sh(X); and regarding a topological space in terms of its associated
category of sheaves has various merits (since the latter has a rather rich categorical structure,
as we will better appreciate in the next chapter).

It is often observed how attempting to obtain a topos appropriate for a particular sort of math
by constructing the domain of variation (via a site), and then considering the category of
sheaves over that site, gives rise to the perspective of variable set theory, wherein the standard
constant universe of sets is replaced by something like a universe of continuously variable
sets. As Johnstone (2014, xvii) claims, this is in fact the very essence of the topos-theoretic
view of things:

it consists in the rejection of the idea that there is a fixed universe of “constant” sets within
which mathematics can and should be developed, and the recognition that the notion of
“variable structure” may be more conveniently handled within a universe of continuously
variable sets than by the method, traditional since the rise of abstract set theory, of con-
sidering separately a domain of variation (i.e., a topological space) and a succession of
constant structures attached to the points of this domain. In the words of Lawvere, “Every
notion of constancy is relative, being derived perceptually or conceptually as a limiting
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case of variation, and the undisputed value of such notions in clarifying variation is always
limited by that origin.”

When dealing with an ordinary topological space X, the variable set (indexed by the opens of
X) just yields a sheaf of sets on X. Instead of using a topological space X, we can insist on the
perspective of X as a parameter space, yielding the category of variable sets with parameters
in X. In this way, the space withdraws into the background, providing the form of variability or
cohesion for the objects in the foreground. (This perspective ultimately leads to variable topo-
logical algebra, which has deep connections with arithmetic.) By enforcing different axioms
over and above those specified by topos theory in general (on which more below), one can
obtain different “universes” of variable sets within which to do certain kinds of math.

Grothendieck toposes can also be seen as unifying in their ability to house disparate mathemat-
ical constructions, useful not only for studying relationships between different mathematical
theories, but also for transferring information and ideas across different situations. (Read-
ers are encouraged to consult the work of Olivia Caramello, who has developed the idea of
Grothendieck toposes as “bridges” for unifying different theories and transferring information
between them.) There can also be a number of different relevant sites for a given Grothendieck
topos, which sometimes appears to amount to letting us look at the same theory or situation
in different ways.

The definition of a Grothendieck topos can be applied to any category of sheaves associated
to a site, and in particular we saw that this notion of topos encompasses any presheaf (or
variable set) category SetCop

(just set J as the minimal topology). In particular, we looked at
Set1op

= Set. But the notion of a Grothendieck topos in fact depends on the assumed model of
set theory, and this suggests the need for even greater generality. Lawvere and Tierney first
introduced the notion of an elementary topos in part to provide a characterization of categories
that resemble Grothendieck toposes from one perspective, but that can be defined strictly by
elementary axioms that are independent of set theory. In the next chapter, we develop the
story, pursuing some of these further generalizations and giving some examples that put the
underlying ideas to work.





11 Elementary Toposes

In which we explore the even more general notion of elementary toposes and con-
sider what sheaves look like in this setting, after which we take up the topic of
morphisms of toposes, including an extended section, full of concrete examples,
that gives a glimpse into the theory of cohesive toposes.

Lawvere and Tierney introduced the definition of an elementary topos largely in order
to characterize structures that behave like sets—and, in particular, those categories that
apparently behave as Grothendieck toposes do—but that can be described by elementary
axioms independent of set theory. The following definition is the one typically presented.

Definition 301 An elementary topos is a category E that

1. has all finite limits—equivalently, has pullbacks and a terminal object;
2. is Cartesian closed—that is, for each object X there is a functor, called the exponential

(–)X : E →E , that is right adjoint to the functor (–)×X; and
3. has a subobject classifier satisfying certain conditions.

A category that satisfies the first two conditions is a Cartesian closed category—that is, it
has finite products and exponentials for each pair of objects—and the significance of such
categories had been appreciated before the definition of an elementary topos.211 However,

211. To give some small glimpse into the importance of Cartesian closed categories, consider that Man (which
lacked finite inverse limits, as we already saw, since pullbacks of manifolds were not always manifolds) is not
Cartesian closed either—since in particular it lacks exponentials, as the space of smooth (C∞) maps between
two smooth manifolds is not in general a manifold. In short, this means that in general for manifolds A and B
and C, there is no equivalence between A×B→C and B→CA. The significance of this is very nicely explained
by Lawvere (2011), who notes that in addition to presenting some serious foundational problems for calculus of
variations, this failure can be interpreted, physically, as saying that if we treat A as all possible states of time,
B as some physical body, and C as some space, then the motion described by A×B→C will not in general
be equivalent to the assignment of a body to its path through the space, given by B→CA. However, even if it
were cartesian closed, Man would still lack the resources for dealing with infinitesimal objects or structures.
Incidentally, observations of these sorts of deficiencies have led to attempts to rectify such deficiencies (due
to Lawvere) by constructing a category of spaces Space—sometimes called smooth worlds or smooth toposes,
with objects smooth spaces—which extends or enlarges the usual category of manifolds in various ways so as
to overcome the above-mentioned deficiencies. In brief, the construction usually proceeds by first embedding
Man in the category of “formal varieties” L, or “loci,” a category that does have finite inverse limits and also
contains infinitesimal spaces; then, since in general one still cannot construct function spaces in the new category
L, one next endows L with a specific Grothendieck topology J, after which the resulting smooth topos Sh(L, J)
of sheaves on L allows for function spaces with certain desirable properties to be constructed. One can then use
the smooth category Space, which is in fact a topos, where each object has a differentiable structure and each
morphism a derivative (and where calculus reduces to exact algebraic calculations with infinitesimals), to do
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the introduction of the concept of a subobject classifier was the real conceptual advance
that made possible the development of topos theory along elementary lines, for a topos
may also be defined as a Cartesian closed category with a subobject classifier. In what
immediately follows, we focus predominantly on constructing and familiarizing ourselves
with the third object in this definition—the subobject classifier.212

11.1 The Subobject Classifier

We begin by recalling that since in category theory everything can be specified in terms of
arrows, we do not need to consider traditional “elements” of objects. However, there is a
corresponding category-theoretic notion of an element.

Definition 302 For A an object in C, we call an arrow in C with codomain A an element
(or generalized element or variable element) of A.

The domain of such an arrow is accordingly sometimes called the stage of definition (or
domain of variation) of that element. For example, for an arrow f : B→A, the object B
is regarded as a stage or as the domain of variation in order to indicate that A is being
defined over B or that it is where A is being viewed from. We can then vary the domain of
variation, considering different stages of A. The identity arrow, idA : A→A, for its part, is
called the generic element of A. Elements defined over a category’s terminal object—that
is, generalized elements 1C→A—are special, and in the simple case of Set recover the
usual (set theoretic) notion of elements of the set A.

Definition 303 If the category has a terminal object, which we will denote with 1C (or
just 1), we can use this to define the notion of a global element or point as an arrow 1→A
of A—that is, one that does not depend on any particular domain of reference or stage of
variation.

By contrast, given an arrow B→A, if B is not isomorphic to the terminal object, such an
arrow is sometimes called the local element of A (at stage B).213

Even if a category has a terminal object, while some objects may have global elements,
others may not. And in general, not all elements (in the above sense) of a given object have
to be global: while the global elements of an object can be thought of as corresponding to
the set-theoretic notion of points, in general there will exist elements of an object that are
not points, which in part explains why one insists on the “domain of variation” perspective.

We will make some use of this perspective in what follows, in the development of the
subobject notion, where a subobject of an object A will basically emerge as an equiva-
lence class of certain morphisms (monomorphisms) with codomain A. First, recall that
a monomorphism is the category-theoretic generalization of the notion of injective maps
from sets, where it requires that whenever we have

differential geometry. In this category, analysis is called smooth infinitesimal analysis (SIA). See Bell (2008) for
a brief and very accessible introduction to SIA; Moerdijk and Reyes (1991) and Kock (2006) are the standard
references in this field (if the reader wishes to pursue these matters in more depth).
212. Detailed treatments of the three defining features of an elementary topos can be found in any standard text
on topos theory, such as Johnstone (2014) or Mac Lane and Moerdijk (1994).
213. This language of “global (local) element” ultimately derives from sheaf theory, where the global elements
of a sheaf on a space X are the global sections, defined on the entire space.
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C B A
f1

f2

i

so that i ◦ f1 = i ◦ f2, then we have f1 = f2. In this case, we call such a morphism i : B→A a
monomorphism (or monic arrow). In logical notation:

∀C∀f1, f2 : C→B (i ◦ f1 = i ◦ f2)⇒ f1 = f2.

In the case of sets, this “for all” reduces to C being the terminal object 1 (a singleton set
{∗}) in Set and the above recovers the notion of an injective function. Moreover, in Set

an arrow x : 1→B into B just corresponds to an element (in the usual sense) of the set B,
and we can use such elements to examine whether two parallel arrows f , g are equal, by
just checking that f (x) = g(x) for every global element x of the domain. But in a number
of other toposes, it need not be the case that such diagrams (of parallel arrows) commute
iff they commute for every global element of the domain. The need to construe things in
a more general way is part of what motivates the definition of generalized elements in the
first place, but speaking of elements suggests that we still expect that operating with a topos
will be something like operating with sets.

The notion of a monic arrow is really a way of saying that the arrow preserves dis-
tinctness in the sense that it keeps items that are seen as distinct in the domain, distinct
in the codomain. It moreover allows us to define the notion of a part in a rather general
way. The idea is that we can think of a map i with codomain A, where i is moreover a
monomorphism, as supplying us with a part of A.

We make use of such morphisms in the following:

Definition 304 Two monomorphisms f and g satisfying

C

B A

∼= g

f

are equivalent, denoted f ∼ g. Then we can define the equivalence class of f , denoted
[f ] = {g | f ∼ g}.

Definition 305 A subobject of an object A is defined to be an equivalence class of
monomorphisms with codomain A modulo the relation that identifies monomorphisms into
A whenever one factors through the other (in the sense of definition 304). Then the class of
subobjects of an object A will be

Sub(A) := {[f ] | codom(f ) = A and f is monic}.

There is a partial order on Sub(A), using the inclusion ordering [f ]⊆ [g] (also just written
f ⊆ g), giving us the poset (Sub(A),⊆) of subobjects of the object A. In fact, for each object
A in a topos, the poset Sub(A) of subobjects of A forms a lattice.

As you might imagine, relying on the notion of monic arrows as supplying us with
parts, in the category Set subobjects of a set X correspond precisely to the subsets of X—
in this way, the notion of a subobject may be seen as a categorical generalization of the
notion of a subset from set theory. But let’s sit with this connection for a moment. Observe
how, in the category Set, we generally think of arrows X→ {0, 1} into the truth-value set
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{0, 1} as predicates for X, or as properties of generalized elements of X. Moreover, we
know that we can identify the subsets S of a given set X with their characteristic functions
χS : X→ {0, 1} into the truth-value set {0, 1}, and picking out 1 from the truth-value set
amounts to a function � : {∗}→ {0, 1}. With such data, we in fact have a diagram

S {∗}

X {0, 1},

!

i �

χS

where i : S ↪→X is the inclusion arrow and ! : S→ {∗} the unique arrow to the terminal
object {∗} of Set. This diagram is in fact a pullback square, since pulling � back along
χS just yields the inverse image set {x | χS(x) = 1}, which is the same as S. This situation
serves as motivation for the following more general notion.

Definition 306 Suppose C has finite limits (so, in particular, a terminal object 1C). A
subobject classifier (or a generalized truth-value object) is an object Ω in C together with
a monomorphism (called the truth arrow) � : 1C→Ω, such that for every object A∈C

and every monomorphism m : B�A, there exists a unique morphism χB =χm =χ(m) : A→
Ω—called the characteristic (or classifying) arrow of the monic m (or of the subobject B
of A)—making the diagram

B 1C

A Ω

m

!

�

χm

form a pullback square.
We often denote the composite arrow (�◦!) by �B : B→Ω.

In Set, we already mentioned how Ω= {0, 1},�(∗) = 1, and the morphism χ is the char-
acteristic map of S in X, that is, χ(y) = 1 if y∈ S and χ(y) = 0 if y /∈ S. The object ΩX of
arrows X→Ω can be identified with the set of subsets of X, and the global elements 1→X
just correspond to the actual elements of X.

It is straightforward to show that, in a general category with finite limits, a subobject
classifier, when it exists, is unique up to isomorphism. Moreover, given E a topos, and
two objects A, B of E , by Cartesian closedness the global elements of BA (i.e., the arrows
1→BA) correspond bijectively with 1×A→B (i.e., with the arrows A→B). Thus, in par-
ticular, for E a topos, and given an object A∈E , the global elements of ΩA will correspond
bijectively with the subobjects of A.

Proposition 307 In a topos E , given an object A∈E , we have

Sub(A)∼= HomE (A,Ω).

Proof. By the fact that, in a topos, global elements of BA correspond bijectively with the
arrows A→B, the global elements of ΩA correspond bijectively with the arrows χ : A→Ω.
The pullback of χ with the subobject classifier � : 1→Ω will yield a subobject m : S�A.
By the definition of a subobject classifier, this correspondence is bijective.
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We are going to want to see how these notions apply in the setting of presheaves. In short,
since the category SetCop

has functors as objects, we might expect the subobjects will be
defined in terms of subfunctors. A subfunctor F of a functor G : Cop→Set amounts to an
inclusion F→G that is in fact a monic map in the presheaf category SetCop

, meaning that
each subfunctor is indeed a subobject—moreover, all subobjects are supplied by subfunc-
tors. In such a setting, we would thus be looking to isolate a functor Ω that can be treated
as a subfunctor classifier. Since a subobject was just defined as a class of equivalent monic
arrows sharing the same codomain, a subobject classifier in the presheaf category, should
there be such a thing, ought to classify, in particular, the subobjects (subpresheaves) of each
representable presheaf. The proposition above, together with the Yoneda lemma, implies
that if the presheaf category has a subobject classifier Ω : Cop→Set, it should satisfy

Sub(HomC(–, a))∼= HomSetCop (HomC(–, a),Ω)≡Nat(HomC(–, a),Ω)∼= Ω(a)

for every a∈Ob(C). In this way, we can see that the subobject classifier Ω is defined on
objects Ω(a) by taking subfunctors of the representable functor HomC(–, a).

With such a description, the attentive reader may be reminded of the notion of a
sieve. We already saw that there is a natural bijection between sieves over a given
stage and the subfunctors of the Yoneda functor of that stage, suggesting that Ω(a) =
{S | S is a subfunctor of Hom(–, a)}. Thus,

set of all sieves on a∼= Sub(Hom(–, a))∼= Nat(Hom(–, a),Ω)∼= Ω(a).

If we let sieves(a) denote the collection of all sieves on an object a of a category C, the
presheaf Ω : Cop→Set is thus defined by Ω(a) = sieves(a). For any arrow f : b→ a, we
know that the action of Ω(f ) will be given by pulling back along Hom(–, a), that is, Ω(f ) =
f ∗, where f ∗ :Ω(a)→Ω(b) maps sieves S on a to sieves on b by S �→ {c

g−→ b | f ◦ g∈ S}, as
in

Ω(f )(S) S

Hom(–, b) Hom(–, a).
Hom(–,f )

To finish the identification of the subobject classifier here, we need the truth arrow
� : 1PreSh(C)→Ω, and thus the terminal object. But the terminal presheaf 1 is defined
by 1(a) = {∗} for each a∈C, and the truth arrow � : 1�Ω will come from the maxi-
mal sieves, that is, by taking �a(∗) = Hom(–, a) = Ma (i.e., the maximal sieve, or set of all
arrows into a). Then, considering a subfunctor R�F, it is fairly straightforward to con-
struct a characteristic mapping χ : F→Ω for R, and then show this to be unique. The fully
detailed construction of the corresponding characteristic arrows and the verification that
the pair (Ω,�) really does give a subobject classifier for the presheaf category is routine
and can be found in many places in the literature. It can also be shown that the presheaf
category SetCop

has finite limits and exponentials, which, together with the fact that this
category has a subobject classifier, suffice to show that SetCop

meets the requirements for
being an elementary topos. Instead of going through the details of this, let us now turn to
make some observations regarding the subobject classifier for the presheaf category, and
then consider these matters in more detail via an example.
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Remark 308 Recall the result from proposition 132 (chapter 5), letting us recover the
poset of open sets of a topological space X from the category Sh(X) of sheaves on X,
specifically by attending to the subobjects of the terminal sheaf 1. We now have another
way of appreciating why this is the case. As any object will have a unique arrow to the
terminal object, an object S of a topos E will be a subobject of the terminal object 1 exactly
when the unique arrow S→ 1 is in fact monic. Those U for which U→ 1 is monic can be
called open in E , giving us subobjects of 1, and if we let E = Sh(X) for a topological space
X, such “open sheaves” just correspond to the usual open subsets of X.

Let us make another observation. The generalized elements of an object A that belong
to B at all stages may be regarded as those whose characteristic arrows have truth-value
1 throughout, or which is assigned the maximal sieve at each stage, while those elements
of A that do not belong to B at any stage should have truth-value 0, where the value 0 is
given by the empty sieve at each stage. Of course, in the category Set, that is the end of
the story: we have Ω= {0, 1}, and subobjects of a set X correspond bijectively to subsets
U of that set, where the subsets can be identified with their characteristic functions χU :
X→ {0, 1}, indicating that every element of a set either belongs to another set or does not.
But in considering sets varying on categories other than the terminal category—that is,
considering presheaves over an arbitrary category—those elements of A that belong to B
at some stage will in general be captured by partial or intermediate truth-values, and in
general Ω will not reduce to two truth-values.

The correspondence between sieves and subfunctors of Ω effectively allows us to pro-
vide an assignment of generalized truth-values to every sieve. In this way, sieves enable
us to probe when an element or subobject “becomes a part of” another object, rather than
just say whether or not it belongs, connecting up with the movement beyond classical log-
ics with two truth-values. Whenever there are more than just the maximal (“true”) and
the empty (“false”) sieves on an object, we will have the ability to deal with nonglobal
elements, determining at which stage an element or subobject “falls into” an object. In
general, in considering presheaves that vary on a category, elements of a presheaf set can
be regarded as belonging to a subset to a certain degree, or at some stage. Different sieves
in the classifier set Ω will correspond to different degrees of belonging, a partial value
representing the fact that perhaps an assertion holds at one stage but not at an earlier stage.

Let us look a little closer at this way of seeing the subobject classifier concept via a
particular instance, examining the structure of the topos Set[3]op

.

Example 309 Consider Set[3]op
, with the linear order category [3] (we might also call it

4):214

0 1 2 3.
f0,1

f0,3

f0,2

id0

f1,2

f1,3

id1

f2,3

id2 id3

214. This example is essentially from Spivak (2014, 416).
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In the spirit of the preceding discussion, we would like to understand each of the objects
of this category by looking at the set of arrows coming into that object, or equivalently,
by understanding the sieves. For instance, focusing on the object 2, we can consider the
hom-functor Hom(–, 2) = Y2. But this functor is defined, on objects, simply by plugging
in the objects of the category and looking at the resulting set of arrows, that is, we have
Hom(0, 2) = {f0,2}, Hom(1, 2) = {f1,2}, Hom(2, 2) = {id2}, and Hom(3, 2) = ∅. Joining these
together into the set {{id2}, {f1,2}, {f0,2}}∈ SetCop

, we have an explicit construction of Y2.
But observe that such a set is in fact none other than the maximal sieve on 2. Note,

moreover, that the functor Y2 supports the subfunctor construction. Indeed, there are four
subfunctors of Y2:

Y2⊇∅= “none”

Y2⊇ Y2
∼= {{id2}, {f1,2}, {f0,2}} = “all”

Y2⊇ Y2 \ (Y2(2))∼= {{f1,2}, {f0,2}} = “back1”

Y2⊇ Y2 \ (Y2(1))∼= {f0,2} = “back2”

We can perform the same sort of analysis for the other three objects of [3]:

Data
Object/Stage (n) Sieves Subfunctors ΩC(n) Truth-values

3

∅ �∅	 0

{f0,3} Back3 1
8

{{f1,3}, {f0,3}} Back2 1
4

{{f2,3}, {f1,3}, {f0,3}} Back1 1
2

{{id3}, {f2,3}, {f1,3}, {f0,3}} All ∼= Y3 1

2
∅ �∅	 0

{f0,2} Back2 1
4

{{f1,2}, {f0,2}} Back1 1
2

{{id2}, {f1,2}, {f0,2}} All ∼= Y2 1

1
∅ �∅	 0

{f0,1} Back1 1
2

{{id1}, {f0,1}} All ∼= Y1 1

0
∅ �∅	 0

{id0} All ∼= Y0 1

Because of how the terminal object of SetCop
is defined, the morphism 1→Ω[3] will pick

out the functor corresponding to the maximal sieve from each row. In terms of truth-values
and the contravariant Ω functor, the general idea could be pictured thus:
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0

Ω(0)

1

0

1

Ω(1)

1

1
2

0

2

Ω(2)

1

1
2
1
4

0

3.

Ω(3)

1
1
2
1
4
1
8

0

We see that under the action of Ω (regarded as a functor), the degrees of truth are reduced
as we move backwards to earlier stages. On the other hand, one might interpret this to
mean that as time goes on, the notion of truth obtains more “shades” or nuances.

Now that we have ΩC ∈Ob(SetCop
), given any other functor X : Cop→Set, we know

that the subfunctors of X will be in bijective correspondence with the morphisms X→ΩC.
Suppose given the following instance X : [3]op→Set:

02 12 22 32

03 23

The portion of the graph in bold corresponds to a particular subfunctor A⊆X. This sub-
functor in fact is just a natural transformation χ(A) : X→Ω[3]. For example, χ(A)(3) sends
32 ∈X(3) to back1 ∈Ω(3), but sends 31 to none; while χ(A)(1) sends 11 ∈X(1) to none
∈Ω(1), and sends 12 to all. As for the sieve {f0,3}, which only belongs to Ω at stage 3, this
can be thought of as capturing the element of the set A which only finally falls into some
other subset at the zero-th stage, meaning that it takes three stages for it to arrive in the
given subset—thus it could be thought of as taking on a truth-value of 1

23 .

There is of course no reason to restrict ourselves to linear categories like the C = [3]

given above. We can consider poset categories or more complicated categories, and the
concept of sieves and truth-values will apply just as one would expect.
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11.2 Examples of Elementary Toposes

What follows are some notable examples of elementary toposes, where only a very
abridged sketch is given in most cases. In subsequent sections, we will look at particular
toposes in more detail.

Example 310 Set is an elementary topos (and an important one at that, since proper-
ties found there largely motivate the three requirements in the definition of an elementary
topos). It has finite limits and given any two sets X and Y , we can always form the set
YX , where this is just the set of functions from X to Y—and this set will enjoy the univer-
sal property that the bijection HomSet(Z, YX)∼= HomSet(Z×X, Y) will be natural (in both Y
and Z), thus giving rise to an adjunction between (the left adjoint functor) –×X : Set→Set

and (right adjoint) (–)X : Set→Set. Moreover, as already discussed, Ω= {0, 1}, and ΩX can
be shown to be isomorphic to the set P(X) of subsets of X, the subobject classifier being
defined as we saw.

Example 311 The category SetCop
of presheaves on a small category C is an elementary

topos.215 If C is a small category, we know that the category of presheaves on C is com-
plete. As for exponentials: supposing we have two presheaves F, G, the Yoneda lemma
demands that the exponential GF is defined as

GF(c)∼= Nat(Hom(–, c), GF)∼= Nat(Hom(–, c)×F, G)

for every object c∈C. By taking the right-hand side as a definition, we still have to verify
that the adjunction

Hom(H, GF)∼= Hom(H×F, G)

holds for all presheaves H, not just the representable ones. However, by proposition 162
we know that we can express any presheaf as a colimit of representable functors, colim Yc.
Thus, given a third functor H, and writing it as a colimit of representable functors,

Hom(H, GF)∼= Hom(colim(Hom(–, ci)), GF)
∼= lim Hom(Hom(–, ci), GF) by hom-functor transforms colimits into limits
∼= lim GF(ci) by the Yoneda lemma
∼= lim Hom(Hom(–, ci)×F, G) by definition of GF

∼= Hom(colim (Hom(–, ci)×F), G)
∼= Hom((colim Hom(–, ci))×F, G) as (–)×F preserves colimits in Set

∼= Hom(H×F, G).

In the previous section, we saw a sketch of how the subobject classifier Ω looks for a
presheaf category, where for c∈C, we will have Ω(c) = {S | S is a subfunctor of Yc}.

The terminal presheaf 1 is defined as we have already seen, namely by 1(c) = {∗}
precisely when c∈C, and the monic map � : 1�Ω is given by �c(∗) = Yc.

215. Henceforth, I will stop adding “elementary”; topos will mean “elementary topos.” Going forward, if
Grothendieck topos is ever meant, this will be explicitly indicated.
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Because of the powerful fact that so many categories of interest can be constructed as
a presheaf category, this last example will supply us with a large store of examples. We
will explore a few of them in more detail in coming sections, but for now note that all the
presheaf categories introduced so far will thus fit into this mold. To take one more or less
at random, the category of G-sets (for a fixed group G), as nothing other than the category
of presheaves on (the categorified version of G) G, is a topos.

Example 312 The category FinSet of finite sets is a topos.
If X, Y are finite sets, then YX will be finite; moreover, Ω= {0, 1} is finite, and a finite

limit of finite sets is finite as well. Thus, the topos structure of the category of sets
effectively carries over to the category of finite sets.

But notice that the category of finite sets lacks infinite products. There are precisely
two morphisms from the terminal 1 to Ω, so if Ω×Ω× · · · were to exist, with the α

factors infinite, then there would be precisely 2α morphisms from 1 to Ω×Ω× · · · . But
the assumption was that Ω×Ω× · · · will be a finite set, so this cannot be. Incidentally,
this helps account for why we said in example 284 (chapter 10) that the topos of finite sets
is not a Grothendieck topos.

Similarly, the category of finite presheaves on a finite category is a topos (but, again, not
a Grothendieck topos, due to a lack of completeness). By a finite presheaf on C finite, we
of course just mean a functor Cop→FinSet that is valued in the category of finite sets.216

Example 313 Let us call the (large) category consisting of the ordinal numbers, partially
ordered in the natural way, On.217 Then SetOn is not a topos, since in particular any rep-
resentable functor will have a nonsmall class of subfunctors, so it cannot have a subobject
classifier. SetOnop

, by contrast, is a topos. Note that in SetOnop
there will still be a proper

class of subfunctors of the terminal constant functor (with value 1)—thus, it is not locally
small, as there will be a proper class of morphisms 1→Ω.

Incidentally, readers who know about surreal numbers (a construction that includes both
the real numbers and the infinite ordinal numbers) might wish to consider how this all
unfolds using (the appropriate category of) such numbers.218

Example 314 The category Ring of rings has rings (with identity) for objects and ring
homomorphisms (preserving the identity) for morphisms.219 This category is both com-
plete and cocomplete, with the zero (trivial) ring 0 for terminal object. However, there are
no nontrivial morphisms in Ring out of 0, that is, from the terminal object to any nonzero

216. The constructions basically work as they do for general presheaf toposes, provided C itself is finite. In
general, when C is an infinite category, one will run into difficulties in trying to use the usual presheaf topos
constructions for finite presheaves. An interesting exception to this is with the category of finite G-sets (on an
arbitrary group G), which is a topos, even without imposing a finiteness condition on G.
217. This differs from the category of finite ordinals, or the category of natural numbers, by generalizing to
numbers of possibly infinite magnitudes.
218. For the proper class No of surreal numbers, built on top of a broader combinatorial theory of games, see
Conway (2000). Joyal (1977) later gave a category theoretic description of the situation, defining a category of
games where objects are sets of games, morphisms are given by winning strategies (for the “Left” player playing
second in a particular game), the identity morphism is the “copycat” strategy, and composites are a little more
complex to describe. See Joyal (1977) and Cockett, Cruttwell, and Saff (2010) for more details.
219. This category differs from Rng, the category of rings (without unit) for objects and ring homomorphisms
for morphisms.
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ring. This is enough to show that even though this category has a terminal object, it cannot
have a subobject classifier. Thus, Ring is not a topos.

We have seen a few examples of toposes that are not Grothendieck toposes. However, it
can be shown that a Grothendieck topos Sh(C, J) is always a topos.

Example 315 Every Grothendieck topos (sheaf on a site) is an example of a topos.
In the last chapter, we saw how the inclusion functor i : Sh(C, J)→PreSh(C) has a left

adjoint a, which preserves finite limits and (small) colimits. In fact, a Grothendieck topos
is complete since PreSh(C) is complete, and limits in Sh(C, J) are computed as in the
presheaf category. As such, it actually has all (small) limits, which are preserved by the
inclusion functor i; (small) limits are computed pointwise and the terminal object 1Sh(C,J)

of Sh(C, J) is the functor t : Cop→Set that sends each object c∈C to the singleton set {∗}.
Moreover, since PreSh(C) is cocomplete, so too is Sh(C, J), where colimits in Sh(C, J) are
got by applying the associated sheaf functor a to the colimits in the presheaf category.

Sh(C, J) also has exponentials, where these are formed just as in the presheaf topos
PreSh(C). Moreover, it can be shown that if G is a sheaf for a topology J on C, then for
any presheaf F the presheaf GF will itself be a sheaf.

Finally, the category Sh(C, J) has a subobject classifier. One way of describing the sub-
objects is as follows: given a sieve S on c, we say that S is J-closed provided, for any arrow
f : c′→ c, the pullback f ∗(S) being in J(c′) implies that f ∈ S. Then, we define Ω : Cop→Set

on objects c∈C as the set of all J-closed sieves on c, and on morphisms by the pullback
f ∗(–) by a sieve. Then, the arrow� : 1Sh(C,J)→Ω is defined by�(∗)(c) = the maximal sieve
on c, and this is a subobject classifier. The classifying arrow χF′ : F→Ω of a subobject
F′⊆F in Sh(C, J) is then given by

χF′ (c)(x) = {f : c′→ c | F(f )(x)∈F′(c′)}

for any c∈C and x∈F(c).220

So while every Grothendieck topos is an elementary topos, the converse is not neces-
sarily true: an elementary topos need not be a Grothendieck topos. Elementary toposes
accordingly supply a proper generalization of Grothendieck toposes. Some of these non-
Grothendieck toposes are of particular use or relevance in logic, particularly in the study
of higher-order intuitionistic type theory. In practice, one important general difference
between the two notions seems to be that the presence of sites in Grothendieck toposes
provides a setting where one can more readily rely on or make use of geometric intuitions.
In the next section, we explore a little more about elementary toposes, consider some trans-
lations of the relevant notions back to the realm of Grothendieck toposes, and then look
closely at a particular example.

11.3 Lawvere-Tierney Topologies and Their Sheaves

Constructing a Grothendieck topos can generally be thought of as breaking down into two
steps:

220. The reader can consult Mac Lane and Moerdijk (1994, III.6–7) for further details on how a Grothendieck
topos satisfies the properties of an elementary topos.
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1. given Set and some (small) category C, we pass to the category SetCop
of presheaves

on C; then
2. we pass to the category Sh(C, J) of sheaves for a particular Grothendieck topology J.

Via the notion of an elementary topos, we are essentially able to replace Set in step (1)
by any topos E . The purpose of the notions introduced in the present section, in particular
that of a Lawvere-Tierney topology, is to similarly generalize the second step, ultimately
enabling us to provide an even more general account of sheaves. We can moreover translate
between earlier notions: in particular, a Grothendieck topology J on a category C can
be shown to correspond to a Lawvere-Tierney topology (or local operator), defined as an
invariant in the context of the topos SetCop

.
To motivate this, suppose we are working in the context of a topological space. Suppose

S is any collection of open sets Ui of the space X. Then, consider the collection of all the
open sets covered by the Ui, and denote this for now by a generic symbol 
(S). But then 

of the entire space X should of course be everything, as taking the collection of all the open
sets covered by the entire space should of course return the entire space itself. Moreover,
we would expect that this operation of taking such collections will be idempotent, in the
sense that 
(
(S)) =
(S). What about intersections? It is also reasonable to expect that

(S∩ S′)⊆
(S)∩
(S′)—and, whenever both S and S′ are sieves, this would become an
equality.

But what if the collection S is in fact a sieve on an open set U⊆X? In that case, 
(S) will
also be a sieve and S will just be an element in Ω(U), where Ω is the subobject classifier for
the topos E = SetO(X)op

of presheaves on a topological space X. But altogether, this amounts
to saying that the 
 just described is essentially an endomap 
 :Ω→Ω satisfying certain
equations, where the map itself effectively specifies what each sieve covers. This line of
reasoning can serve as motivation for the following definition for toposes more generally
(where we now denote the abstract operator 
 by j).

Definition 316 Let E be a topos, and let Ω together with the arrow � : 1→Ω be its sub-
object classifier. A Lawvere-Tierney topology (or sometimes local operator) on E is a map
j :Ω→Ω in E such that the following three properties are satisfied:

1. j ◦�=�, that is,

1 Ω

Ω

�

�
j

2. j ◦ j = j, that is,

Ω Ω

Ω

j

j
j

3. j ◦∧=∧◦ (j× j), that is,221

221. The ∧ :Ω×Ω→Ω here is just the meet operation (in the internal Heyting algebra formed by Ω). With ≤
the internal partial order on Ω, note that the first condition could also be expressed by saying idΩ ≤ j.
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Ω×Ω Ω

Ω×Ω Ω.

∧

j×j j

∧

One then sometimes refers to the pair Ej = (E , j) as an elementary site.
It may help to think of j in a different way. We can effectively transfer the alge-

braic structure supplied by j and ∧ on the special object Ω to a corresponding functorial
structure on hom-sets, via the fact that in any topos, given an object E, we will have
Sub(E)∼= Hom(E,Ω). Moreover, for each object E in a topos, it can be shown that the
poset Sub(E) of subobjects of E forms a lattice (actually, it is a Heyting algebra!). In this
way, j can equivalently be displayed as a particular closure operator on the Heyting algebra
of subobjects.

Definition 317 A closure operator on a topos E will be an operator on the subobjects
A�E of each object E of E

(–) : SubE (E)→SubE (E)

A �→A

natural in E. It can be shown that j is a Lawvere-Tierney topology if and only if this operator
has, for all A, B∈ Sub(E), the following (“universal closure operator”) properties

1. A⊆A,
2. A = A,
3. A∩B = A∩B.222

The converse is also true: an operator defined on all of Sub(E), natural in E, with those
three properties—that is, a closure operator on the subobjects of each object of E —always
arises from a unique Lawvere-Tierney topology j.

The last two equalities are basically direct translations of the last two conditions on a
Lawvere-Tierney topology. For the first, the operator j determines a closure operator on the
subobjects A�E of each object E by

Hom(E,Ω) Sub(E)(A

Hom(E,Ω) Sub(E)(A.

Hom(id,j)

∼=

∼=

This means that, given a subobject s : A�E with the classifier χs : E→Ω, then, referring
to the diagram (with both squares formed by pullbacks along the truth arrow �),

222. Another condition would be that closure commutes with pullback along morphisms of E , in the sense that
given f : Y →X and a subobject X′ �X (the closure of which is denoted X′ �X), we will have f ∗(X′)∼= f ∗(X′)
as subobjects of Y .
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A 1

A 1

E E Ω Ω,

s �

s �

χs

j

the composition j ◦χs defines another subobject s : A�E, the one we call the j-closure A,
such that s is a subobject of s. Conversely, a closure operator (–) on a topos will give a
unique topology j via the following pullback diagram:

1 1

Ω Ω.

�
j

This description can be used to translate back and forth between the statement j(�) =�
and the property A⊆A. Because of this equivalence between the two perspectives, we can
freely refer to Lawvere-Tierney topologies in terms of universal closure operators.

Observe how, from property (3) of definition 317, and since A⊆B iff A∧B = A, we can
further obtain that A⊆B implies A⊆B, which informs us that such an operator is also a
closure operator in the earlier sense of definition 182—where this meant an operator that
was monotone, extensive, and idempotent.223 Recall also how we have seen that the modal-
ities of modal logic could be described as closure operators on the poset of propositions
(with their truth-valuations). But this, together with the fact that the subobject Ω can be
interpreted as a collection of generalized “truth-values,” suggests that we may regard j as a
kind of modal operator! Let us roughly sketch the idea.

In the usual setting of topological spaces, when we say that a property holds locally at
a point x of a space X, we mean that it holds at all points “nearby,” or throughout some
neighborhood V of x. Another way of saying this is that a property holds locally for an
object U provided it can be covered by open sets that all have the property as well. A
natural suggestion, due ultimately to Lawvere, is thus to regard j as a sort of modal operator
that says “it is locally the case that.”

For E∈E , observe that we can view a morphism p : E→Ω as a predicate, where in
particular if E = 1, then the elements p : 1→Ω may be seen as propositions. We will also
have a function p(U) : E(U)→Ω(U) for any object U. For any object E∈E , there will be
a poset formed out of the predicates p, q : E→Ω on E, where p≤ q provided p implies q.
In this way, we might then read the three conditions of definition 316 as saying

1. if p is true, then p is locally true;
2. p locally is locally true iff p is locally true;

223. However, a universal closure operator in the above sense should not be confused with the notion of a Kura-
towski closure on the lattice of all subsets of a topological space. In particular, note that Kuratowskian closure
always commutes with finite unions, but in general not with intersections. On the other hand, a universal closure
operator commutes with intersections, but does not typically commute with unions. As such, while such a clo-
sure operator in a sense combines various of the properties of the interior and closure operators from standard
topological spaces, the reader should be careful to note that the closure operators discussed here are distinct from
“closed subsets” from topological spaces.
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3. p∧ q is locally true iff p and q are each locally true.

In this way, the modality j can be seen as generalizing what it means to be local to the
setting of toposes.224

Example 318 Recall the particular downset completion poset of the poset discussed in
example 252:

∅

{x, y, z}

{w, x, y, z}

{x} {y}

{x, z} {x, y}

j will range over the elements of this downset poset Down(P). A particular Lawvere-
Tierney topology may then be given by

j(∅) = ∅
j({x}) = {x, z}

j({y}) = {y}

j({x, y}) = {w, x, y, z}

j({x, z}) = {x, z}

j({x, y, z}) = {w, x, y, z}

j({w, x, y, z}) = {w, x, y, z}.

You can verify that this constitutes a Lawvere-Tierney topology on the poset of downsets.

Stepping back, the reader should by now fully appreciate that to define sheaves, what is
really important is what gets “covered” and how the data of the sheaf behaves with respect
to (what formally acts as) covers. With Grothendieck toposes, when defining a sheaf, we
did so in terms of coverages or coverings by sieves. Ultimately, our new “topology” j will
similarly track such information, functioning to specify what each sieve covers, but now
in the more general setting of elementary toposes. Accordingly, this notion of a Lawvere-
Tierney topology will enable us to define (more general) sheaves for any topos. We can

224. An interesting question we leave to the reader: following this idea of j being regarded as a modal operator
of sorts, since (following the ideas explored in chapter 7) we are used to modal operators coming in dual pairs,
what (if anything) might the dual pair of “it is locally valid” be? For more details on j as a modal operator, see
Goldblatt (2006, chap.14).
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already appreciate the greater generality of this notion, though, by considering the fol-
lowing proposition concerning how Lawvere-Tierney topologies include the Grothendieck
topologies.

Proposition 319 Each Grothendieck topology J on a small category C determines a
Lawvere-Tierney topology j on the corresponding presheaf topos SetCop

.

Without giving a proper proof of this fact, the idea here is this: remember that the sub-
object classifier Ω for SetCop

is the functor that takes an object c to the collection of sieves
on c in C, and the action of morphisms of C on Ω is by “pulling back,” in the sense that for
f : c′→ c, we take

f ∗ :Ω(c)→Ω(c′), f ∗(S) = {g | f ◦ g∈ S}.

Recall also that a Grothendieck topology J is just an assignment, for each object c, of a
collection of sieves that are “covering” and, as such, meet certain properties. A subobject
J ↪→Ω is thus just a selection from the collection of sieves, which is moreover closed under
pullback. Given a Grothendieck topology J, we accordingly define j :Ω→Ω by taking

jc(S) = {g | S covers g : d→ c}

= {g | g∗(S)∈ J(domg)}.

Skimming over the details of how this works in the general case, let us look at our run-
ning example and see how to convert from a particular Grothendieck topology on P to a
Lawvere-Tierney topology on the associated presheaf topos.

Example 320 Recall the dense (Grothendieck) topology on P from example 252:

Jdense(x) = {{x}}

Jdense(y) = {{y}}

Jdense(z) = {{x}, {x, z}}

Jdense(w) = {{x, y}, {x, y, z}, {w, x, y, z}}.

This induces a particular Lawvere-Tierney topology on the associated downset completion
Down(P). In particular, let us look at j({x}). Consider that ↓ x∩ {x} = {x}∈ Jdense({x})
and also ↓ z∩ {x} = {x}∈ Jdense({z}); yet for no other p do we have ↓ p∩ {x}∈ Jdense(p).
Accordingly, we take j({x}) = {x, z}. Similarly for the other elements. Altogether, the Jdense

Grothendieck topology on P induces a corresponding Lawvere-Tierney topology j given
by that already described in example 318.

The general result informs us, incidentally, that any Grothendieck topology J can be
given a description in terms of a closure operator.225

In fact, for presheaf toposes, we can go the other way as well, recovering a Grothendieck
topology on C from a Lawvere-Tierney topology on SetCop

. In other words, it can be
shown that every Lawvere-Tierney topology j on a presheaf topos arises (as above) from a
Grothendieck topology.226

225. For further discussion of the explicit description of this, see Mac Lane and Moerdijk (1994).
226. Though, for more general toposes, there can be other Lawvere-Tierney topologies.
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Proposition 321 If C is a small category, then the Grothendieck topologies J on C

correspond precisely to Lawvere-Tierney topologies on the presheaf topos SetCop
.

Again skimming over the details of a proof of this fact, any Lawvere-Tierney topology
j :Ω→Ω on the presheaf topos classifies the subobject J ↪→Ω by taking S∈ J(c) iff jc(S) =
Mc, the maximal sieve. Such a J can be shown to be a Grothendieck topology.227

In particular, given a poset P and a Lawvere-Tierney topology j on D(P), the family

{J(p) | J(p) = {↓ p∩X | p∈ j(X) and p∈P}}

will form a Grothendieck topology. Again, let’s look at how this works in our running
example.

Example 322 Suppose given the Lawvere-Tierney topology (on the poset of downsets)
from example 318. Then, for instance, J(z) will be computed as follows:

J(z) = {↓ z∩ {x}, ↓ z∩ {x, z}, ↓ z∩ {x, y}, ↓ z∩ {x, y, z}, ↓ z∩ {w, x, y, z}}

= {{x, z}∩ {x}, {x, z}∩ {x, z}, {x, z}∩ {x, y}, {x, z}∩ {x, y, z}, {x, z}∩ {w, x, y, z}}

= {{x}, {x, z}}.

We can similarly compute the rest of J(p) for all p∈P.

The following extended example gives us a chance to delve into some of these ideas in
more depth, illustrating how Lawvere-Tierney topologies work more explicitly, in the con-
text of graphs. This example will moreover help motivate the still more general definition
of a sheaf with respect to a Lawvere-Tierney topology toward which we are building.

Example 323 Recall that if we take

G:= V A
s

t

for our indexing category, then presheaves on G recover directed graphs (or quivers), so
that we have the equivalence of SetG

op
and the category Quiv. As a presheaf category (on

G, a small category), we know that SetG
op

will have the requisite properties of a topos:
(1) it has finite limits (terminal object 1 and pullbacks); (2) it has exponentials (i.e., the
functor –×X has a right adjoint for each X); (3) it has a “truth-values” object Ω which
classifies subobjects. While the first two properties of a topos are more or less standard
constructions, the third can again use some explanation, and it will be instructive to see
how this works in the particular case of graphs. This will further allow us to construct
various explicit Lawvere-Tierney topologies.

The first thing to recall is the fact that since every object of a presheaf topos is built by
gluing a suitable set of representables, and the representable functors provide us with a set
of generators for the topos (since two arrows differ iff they differ over some representable),
we can build the classifier Ω by considering subobjects of the representables. Moreover, we
know that the subobject classifier in a presheaf topos PreSh(C) is the presheaf that sends

227. See Mac Lane and Moerdijk (1994, V.4) for a proof of this fact—which, together with proposition 319, lets
us verify that j �→ J and J �→ j are inverse, proving the main result.
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each object c∈C to the set of sieves on it,

Ω : c �→ {sieves(c)},

and the sieves on c may equivalently be regarded as the set of subobjects of the repre-
sentable presheaf Yc. The classifier morphism � : 1→Ω is then the natural transformation
that selects, for each object c∈C, the maximal sieve. Accordingly, the first step is to
address the question: What are the representable functors?

In general, we know that there is one representable Yc = HomC(–, c) functor for each
object c of C, where this of course associates to c the set of all morphisms into c (and the
definition on arrows supplied by composition). So in our present case, the representable
functors giving us the “generic figures” that can be found in directed graphs will be

HomG(–, V) and HomG(–, A),

which you might think of as supplying us with the “generic vertex” and “generic arrow”
(and that is all we need to consider, as the only two objects of G are V and A). Now we
need only range over the objects of G, plugging them in to the above hom-sets, seeing what
pops out. Let’s do this first for HomG(–, V):

HomG(V , V) = {idV} = {V}

HomG(A, V) = ∅
So the representable HomG(–, V) will just consist of a single vertex or node (with no
arrows)—where this can be thought of as the generic vertex. This will clearly have just
two subobjects: V , for the vertex itself; and 0V , for the empty vertex. These two subobjects
will ultimately give us the two vertices of Ω, seen as a directed graph in its own right, that
is, Ω(V) = {V , 0V}. These two subobjects of

HomG(–, V) = •

are clearly ordered among themselves, in the sense that

0V = ≤ •V = V

Now for the representable HomG(–, A), we get

HomG(V , A) = {s, t}

HomG(A, A) = {idA} = {A}.

This tells us that s and t furnish us with two vertices, and idA (denoted A) for a single arrow.
Altogether, the representable HomG(–, A) can then be pictured as

•s •t
A

Conceptually, that the representable associated to V is given by a single vertex, while the
representable associated to A is given by a single arrow, tells us that arbitrary figures built
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from such an indexing category will be a matter of building with directed arrows between
vertices—and that’s as it should be, since we are dealing with directed graphs!

The representable HomG(–, A), for its part, will have five subobjects (natural names
given on the right):

= 0A,

•s =�s,

•t =�t

•s •t = pA

•s •t = A

These will supply Ω with its arrow set, that is, Ω(A). These subgraphs of HomG(–, A) are
again clearly ordered by inclusion, an order that assembles into the Hasse diagram

A

pA

�s �t

0A.

As Ω is itself a presheaf, the last thing to do, before assembling all this into Ω, is spell out
how the right action works. As 0A is the empty graph, we must have that 0As = 0V and 0At =
0V . Moreover, As = At = V and likewise pAt = pAs = V . Finally, �ss = V and �st = 0V (as t
sends the only vertex of HomG(–, V) into �t, not �s), and similarly �tt = V and �ts = 0V .
Altogether, this data of Ω is supplied by the graph

Ω := •0V •V

0A

�t

pA

A

�s

The terminal graph 1 is just a single vertex together with a single loop. Clearly the truth
classifier arrow (graph homomorphism) � : 1→Ω will then send the (only) vertex of 1 to
V and the only arrow of 1 to A.

Now, suppose we are given a graph G and a subgraph u : H ↪→G. How does the
classifying map χu : G→Ω work?
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H 1

G Ω

u

!

�

χu

First off, on vertices: χu will map vertices of G that are not in H to 0V , while vertices of G
that are in H are mapped to •= V . In other words, for vertices, the situation is simple: given
a subgraph of a graph G, either a vertex of the graph G is or is not to be found in a certain
subgraph. Ω has precisely two vertices to “represent” such a binary choice on vertices.

On arrows: if an arrow is in H, it will get mapped to A; if not, then the situation is more
involved. In particular, there are a few alternatives:

• arrows whose source and target are not in H get mapped by χu to 0A;
• arrows that have just their source (but not target) in H, get mapped by χu to �s;
• arrows whose target (but not source) is in H, get mapped by χu to �t; while
• arrows that have both their source and target in H get mapped by χu to pA.

These four cases—plus the first taking an arrow that is indeed in the subgraph H to A—give
us the five total possibilities, which five maps are represented by the five arrow-objects of
Ω. In this way, the “classification” with arrows emerges as more refined or complicated
than it is for vertices. In the end, the underlying idea here is that we are using Ω to tell
us, for each part of a graph G, how much of it happens to be in a subgraph H. That there
are more classifying maps for arrows than there are for vertices informs as that, as far as
graphs are concerned, vertices are a comparatively simpler sort of structure than arrows.

In thinking of Ω as the “object of truth-values” for its topos, a natural question is how
logical operators on such truth-values are to be defined, enabling us to reason within the
topos. We can define the conjunction operator ∧ :Ω×Ω→Ω as the characteristic map of
the subobject 〈�,�〉 : 1→Ω×Ω, and the negation operator ¬ :Ω→Ω as the characteristic
map of ⊥ : 1→Ω. On vertices, since these have only two truth-values (0V and V), ∧ and ¬
behave just as you would expect—that is, just as they do in Set. However, on arrows, ∧ acts
as meet with respect to the order on the arrows of Ω, for instance, pA ∧ t = t, s∧ t = 0A; while
¬ takes ¬0A = A and ¬A = 0A, but also ¬pA = 0A (which means basically that this operator
acts to ignore whether or not an arrow was in a subgraph, as long as both its source and
target were in the subgraph).

Using these notions, we can take the complement of a subgraph H ↪→G by taking the
subobject ¬H of G classified by ¬◦χu, and this will be the same as taking all the vertices
of G that are not in H, together with all the arrows in G between those particular G-vertices.
Note that this is the same as what we discussed back in example 197 (chapter 7), where
¬X was treated as the largest subgraph disjoint from X. More explicitly, and in the general
case of presheaf toposes,

Definition 324 For any subobject A�E in SetCop
and any object c in C,

(¬A)(c) = {x | x∈E(c) and for all f : b→ c, A(f )(x) /∈A(b)}.

It is clear that, in general, ¬A∨A = E need not hold.
Returning back to the special case of graphs: suppose we apply ¬ again to the result,

yielding ¬¬H. This will be the same as adding to H all the arrows of G that have their
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source and target in H. More explicitly, and again in general,

(¬¬A)(c) = {x | x∈E(c) and ∀f : b→ c, ∃g : a→ b such that A(g)(A(f )(x))∈A(a)}.

This composite map ¬◦¬ acting on subobjects in fact forms an example of a Lawvere-
Tierney topology on a topos, specifically the double negation topology ¬¬ :Ω→Ω. As
such, the map ¬¬ acts as a closure operator. In our particular case of subgraphs H ↪→G,
this amounts to adding to the arrow set of H all the arrows of G between those vertices that
are in H. Thus, ¬¬H will add to H all the arrows of G that have source and target in H.228

In terms of other Lawvere-Tierney topologies that exist for our graphs, in addition to
the double negation topology just described, there are also always two trivial topologies
available, namely that given by the identity on Ω and that given by

Ω 1

1 Ω

!

!

�

χ!

the composite diagonal map �◦! :Ω→Ω. Finally, there is one last, nontrivial, topology on
Quiv, specified as follows. First, note that condition (1) on a topology, that is, preservation
of truth, requires specifically that j(V) = V and j(A) = A. Considering the other objects, if
we then set j(0V ) to 0V , we would just recover either the identity topology or the double
negation topology (after making suitably constrained choices for the rest of the object
assignments). On the other hand, if j(0V ) = V , then setting j(0A) = A generates the other
trivial topology j =�◦!. Therefore, we will instead set j(0A) = pA; then condition (3) on a
Lawvere-Tierney topology implies that j(�s) = j(�t) = pA, since j(�s)∧ j(�t) = j(�s ∧�t) =
j(0A) = pA. Thus, altogether we have the following assignment:

j(V) = V = j(0V ),

j(A) = A, j(0A) = pA = j(�s) = j(�t) = j(pA).

This assignment describes a nontrivial topology distinct from the ¬¬ topology. It is some-
times called the closed topology on the global element pA, defined as (–∨ pA). In total,
there are four topologies or local operators for the Ω we have been describing for quivers.

Let us now take the opportunity to introduce some important terminology. This is
entirely general, but we will continue to refer to quivers to keep things concrete.

Definition 325 Let u : H ↪→G be a subobject (subgraph), with characteristic map χu : G→
Ω. Then, given a topology j, we call the subobject H classified by j ◦χu (“composition with
j”) the closure of H in G (with respect to the topology j).

We also say that H is dense provided its closure is equal to G, that is, H = G.

For instance, the closure with respect to the closed topology above adds to a subgraph
H of G all the vertices of the graph. Composition of a characteristic map with the closed
topology j adds all the nodes of G to the subgraph H. The dense subobjects (with respect
to the closed topology) of G are those subgraphs that include all the arrows of G (and

228. In this connection, it turns out that for a presheaf topos SetCop
, the double negation (Lawvere-Tierney)

topology coincides with the dense (Grothendieck) topology we explored in chapter 10. An illuminating proof of
this general fact can be found in Mac Lane and Moerdijk (1994, 273). This ¬¬ topology is rather important, and
we return briefly to it below.
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note that there is a minimal such dense subobject, namely that given by the arrow set of
G itself). This should be evident since composition of the characteristic map with j does
not add arrows to H—since besides A itself, no arrow of Ω is sent to A by j. In short: to be
dense with respect to this closed topology, a subgraph H needs to already include precisely
all the arrows of G.

What about the ¬¬-topology? Here, closure amounts to adding to a subgraph H all the
arrows of G that have source and target in H; this should also make some sense, since the
characteristic map sends arrows to pA and then ¬¬ must take the arrow pA to A. The dense
subobjects of G are given by the subgraphs that include all the vertices of G (and there is a
minimal such dense subobject, given by the vertex set of G itself). As before, to be dense,
a subgraph H must include precisely all the vertices of G.

We have almost arrived at the point of being able to define a general sheaf for such
topologies. One last set of definitions is needed.

Definition 326 An object X of a topos E with topology j is called j-separated (or just
separated, when j is understood) provided for every object Y , every j-dense subobject u :
S ↪→Y , and every morphism f : S→X, there exists at most one g : Y→X “factoring” f
through u:

S

Y X,

u
f

g

that is, making the above diagram commute.
We will then call an object j-complete (or just complete, j understood) provided such a

unique factorization always exists.

Equipped with these notions, we can at last offer a rather succinct and general definition of
a sheaf with respect to a (Lawvere-Tierney) topology, that is, for an elementary site.

Definition 327 (Definition of j-sheaf ) A j-sheaf is an object F of a topos E that is both
j-separated and j-complete.

To unpack this a little: we could have also said that F is a sheaf provided, given a map from
a dense subobject of E into F, as in

A F

E,

dense

this can be uniquely extended to a map on all of E, as in

A F

E.

dense
!

F is thus a j-sheaf provided for every dense monomorphism m : A�E, composition with
m induces the isomorphism HomE (E, F)

∼=−→HomE (A, F).
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In terms of this map, we could also have defined an object G as separated if for
each dense A�E, HomE (E, G)→HomE (A, G) is a monomorphism (so that the extension
above need not exist, but will be unique if it does).

We use Shj(E ) to denote the (full) subcategory (of E ) consisting of j-sheaves of E , and
Sepj(E ) for the (full) subcategory consisting of the separated objects.

Given the correspondence between Grothendieck topologies on a category C and
Lawvere-Tierney topologies on the associated presheaf topos SetCop

, presented in propo-
sition 321, the following result illustrating how all this relates to the earlier notions
of Grothendieck toposes may have been expected. Given C a small category and j a
Lawvere-Tierney topology on the presheaf topos SetCop

, we can form the corresponding
Grothendieck topology J on C (as indicated by 321), and with such a setup, we have the
following result:

Proposition 328 A presheaf P∈ SetCop
will be a sheaf (in the sense of definition 327) for

the Lawvere-Tierney topology j iff P is a J-sheaf (in the sense of definition 256).229

Thus, the definition of a sheaf for a Grothendieck topology J emerges as a special case of
the elementary axiomatic approach to sheaves for a Lawvere-Tierney topology. While this
sort of result helps reinforce the importance of the presheaf category construction, there
are toposes that are not Grothendieck toposes (as we have seen), so the Lawvere-Tierney
notions are accordingly a proper generalization of the Grothendieck notions.

Example 329 Before moving on, let us briefly look a little closer at this rather abstract
definition of a j-sheaf via our particular case of Quiv. For the closed topology, j-sheaves
will just be graphs with a single vertex, their topos being equivalent to Set. Here, the only
j-separated object (not also j-complete) is the empty graph.

With the ¬¬-topology, however, the story unfolds differently. The objects of Quiv that
are ¬¬-separated will be precisely the graphs without parallel arrows, that is, graphs
with at most one arrow between each pair of vertices; the ¬¬-complete graphs, for their
part, have at least one arrow between each pair of vertices, that is, they are the complete
graphs. Finally, then, ¬¬-sheaves are precisely the complete graphs equipped with self-
loops (which also forms a topos equivalent to Set), that is, a quiver or directed graph X is
such a sheaf precisely when there exists exactly one arrow between any pair of vertices. If
we denote the full subcategory of ¬¬-separated quivers by Sep¬¬(Quiv), and the further
full subcategory consisting of ¬¬-sheaves by Sh¬¬(Quiv), the category of sheaves here
forms a topos, and a Boolean one at that; however, note that Sep¬¬(Quiv) is not quite a
topos!230

In general, for any topos E, the topos of sheaves for the double-negation topology is
Boolean, where this means that the law of the excluded middle |=φ∨¬φ holds. The law
of the excluded middle does not hold in general in a topos; it may indeed hold for certain
individual formulas φ (and even for arbitrary individuals), without this allowing us to infer

229. See Mac Lane and Moerdijk (1994, V.4) for a proof.
230. In fact, it is what is called a quasitopos. Instead of having the ordinary subobject classifier of a topos, a
quasitopos has a classifer only for certain subobjects. Moreover, as one might anticipate given that the separated
objects are such a quasitopos, in general a quasitopos satisfies the uniqueness part of the sheaf axioms, but not the
existence part. nLab Authors (2017) has a nice discussion of some of the topos features of quivers that we have
been exploring, as well as the quasitopos subcategories mentioned above.
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that the corresponding universal generalization holds. Those toposes for which it does hold
are called “Boolean toposes.”231

11.3.1 A Glimpse into Topos Logic

Lawvere and Tierney first found that to each topos, one can associate operations that are
analogous to the usual logical operations of conjunction, disjunction, negation, implication,
and (universal and existential) quantification, defined in a topos E on its object of truth-
values Ω, where we think of the global elements 1→Ω as the truth-values, and where the
morphisms analogous to the usual logical operations satisfy categorical versions of the laws
of a Heyting algebra. Those morphisms induce operations on the collection HomE (1,Ω)
of truth-values, making it into a Heyting algebra. A topos can accordingly be regarded as
a category that “models” intuitionistic higher-order logic (or set theory).

Lawvere and Tierney’s elementary axiomatization, whereby we may reinterpret the
specification of formal covers in terms of what is fundamentally a modal operator on an
object of generalized truth-values, further suggests a number of fascinating connections to
logic, just a few of which are indicated very sketchily in this section (some taken up more
earnestly in the final section of this chapter). To better contextualize these remarks, notice
that, in particular, the subobject classifier object in any presheaf topos will support a bi-
Heyting algebra structure. This further implies that any such topos will support an infinite
hierarchy of intermediate modalities.232 Moreover, for any sheaf F on a site (C, J), the lat-
tice formed by all the subsheaves of F also forms a complete Heyting algebra. Another way
of thinking about this is that a cHa can be realized as a subobject lattice in a Grothendieck
topos.233 These sorts of facts, and many others that we have not explored, suggest that a
number of strong connections to logic should be lurking here.

One particular feature of interest is that the laws satisfied by the logical operations
admitted in a topos in general—and in particular the general logical laws satisfied by all
sheaves—correspond not to classical logic, but to intuitionistic logic.234 While we can pro-
vide a topos-theoretic interpretation of the logical connectives, there are a few subtleties.

231. A nice illustration of the interest in such a distinction can be found in the context of smooth infinitesimal
analysis (SIA), mentioned at the beginning of the chapter. SIA is essentially a topos-theoretic approach to analysis
based on a new construction of the continuum and infinitesimals via a “smooth real line” object R on which various
axioms are placed. For such an R, equipped with a notion of location and a relation “=” of identity or coincidence
of locations (i.e., a �= b is read as “a and b are distinguishable as locations or points”), it is not assumed that the
identity relation is decidable, where this means that for any a, b, either a = b or a �= b. In some models of SIA,
such as basic smooth infinitesimal analysis (BSIA), the law of excluded middle is positively refutable. However,
in most models of SIA more generally, the law of excluded middle will be true in the restricted sense, namely
whenever α is a closed sentence (having no free variables), then indeed α∨¬α will hold. As Bell notes: “Thus,
in smooth infinitesimal analysis, the law of excluded middle fails ‘just enough’ for variables so as to ensure that
all maps on R are continuous, but not so much as to affect the propositional logic of closed sentences” (Bell 2008,
106). This is rather interesting, since the so-called well-adapted models of SIA still do not allow us to go on to
infer from the fact that the law of excluded middle applies to arbitrary individuals/points that the corresponding
universal generalization—that is, for all x and for all y in R either x = y or x �= y—holds. Certain elements of R
simply cannot always be distinguished, though it does also contain points that can be distinguished; however, on
account of the existence of the former, as Bell notes, R cannot be thought of as the sum total of its elements.
232. See Reyes and Zolfaghari (1996) and Zalamea (2012).
233. See Mac Lane and Moerdijk (1994, III.8) for details on this.
234. This does not mean that all toposes have an internal logic than is nonclassical, as evidenced by the rather
conspicuous case of the topos E = Set; also, the topos of monoid actions is classical whenever M is a group.
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For instance, in order to fully incorporate set-theoretic constructions into the formal lan-
guage, we need to specify the topos semantics for symbols like ∈. In this same vein, recall
that in topos theory in general there will be a difference between x∈1 A and x∈c A. One
basic solution is to use intuitionistic type theory, where different types are provided by the
distinct objects of a topos.235 Complementing the Mitchell-Bénabou syntactic language,
Kripke-Joyal provide a well-known semantics for toposes, translating the logician’s “forc-
ing” statements about a topos E into ordinary or naive assertions about E . It turns out
that via this semantics, it can be seen that the general logical laws satisfied by all sheaves
coincide with those of intuitionistic logic—that is, where laws like the excluded middle,
φ∨¬φ, and the law of double negation, ¬¬φ→φ, fail.

The basic idea of the Kripke-Joyal semantics is roughly this: (1) an individual element b
(a constant) of a given type X is just understood as a morphism b : 1→X; (2) a k-argument
property P of type X1× · · · ×Xk is to be understood as a subobject P of X1× · · · ×Xk; (3)
a k-argument function f from X1× · · · ×Xk to Y is understood to be a morphism f from
X1× · · · ×Xk to Y; and (4) a term t(x1, . . . , xk) with free variables in the x1, . . . , xk (ranging
over the sorts X1× · · · ×Xk) is to be understood as a morphism from X1× · · · ×Xk to
some codomain object, enabling the interpretation of this morphism to be defined. In the
special case where the topos is the topos of presheaves SetCop

—that is, the category of
sheaves on C for the trivial (Grothendieck) topology—the semantics can be described more
evocatively, and in this context it can be shown that the logic of sheaves includes classical
logic as a special case. When applied to Grothendieck toposes, the Kripke-Joyal semantics
emerges as none other than a sheaf semantics. Moreover, all the forced formulas in all the
sheaves about a fixed space X will constitute a logic intermediate between intuitionistic
and classical, which depends exclusively on the topology of X. The intermediate logic
associated to a space X can be seen as a multivalued logic with values in the Heyting
algebra on X. It is possible to enhance the logic of sheaves, and thus the intuitionistic logic,
with new connectives (including modal operators) not expressible in terms of the usual
ones.

There are many fascinating connections to logic that we might naturally further explore
at this stage. But a proper development of the formal details would take further chapters of
their own. Instead, we will just highlight certain high-level features of this story, leaving
the reader to track down logical matters on their own.236 Philosophically, that intuitionistic
logic may be regarded as the “default” logic of sheaves in general can be seen as inviting
perspectives that better attune with more continuous logics adequate to extended things,
where whenever properties hold at a point of its domain of extension, they are expected to
hold nearby that point. In this setting, what emerges is a strong emphasis on neighborhood
relations over points or punctual properties, in which context classical logic can be seen as
a limit or extreme case in a much vaster universe of more “relaxed” logics.237

Related to this is the appreciation of the fact that points are simply ideal limits in a
more fundamental logic of neighborhoods. The intimate connection between intuitionistic
logic and sheaves thus provides another important perspective on the subtle connections

235. For details on the Mitchell-Bénabou internal language of a topos, see Mac Lane and Moerdijk (1994).
236. There is already plenty to work with in Mac Lane and Moerdijk (1994) and Goldblatt (2006).
237. Caicedo (1995) takes up some of the ideas vaguely alluded to in this paragraph.
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between continuity, generality, and the failure of the excluded middle, connections already
suggested many years ago by Charles Peirce in other contexts:

If we are to accept the common sense idea of continuity (after correcting its vagueness and fixing
it to mean something) we must either say that a continuous line contains no points or we must
say that the principle of excluded middle does not hold of these points. The principle of excluded
middle only applies to an individual (for it is not true that “Any man is wise” nor that “Any man is
not wise”). But places, being mere possibles without actual existence, are not individuals. Hence
a point or indivisible place really does not exist unless there actually be something there to mark
it, which, if there is, interrupts the continuity. (Peirce 1997, 6.168, marginal note)
The general might be defined as that to which the principle of excluded middle does not apply.
A triangle in general is not isosceles nor equilateral; nor is a triangle in general scalene. (Peirce
1997, 5.505)

Peirce’s intuition that what makes something general is ultimately due to the failure of
applicability of the law of the excluded middle, together with his repeated insistence that
“continuity” (in some very broad but demanding philosophico-mathematical sense) is ulti-
mately a form of generality, is sharpened in the close connection that emerges between
sheaf logic (as the continuous logic of local validity) and intuitionistic logic (in which the
law of the excluded middle is dropped).

11.4 Morphisms of Toposes

We have been exploring toposes—both elementary toposes and Grothendieck toposes—
and we have begun to see some of the power of these concepts. However, we have not yet
defined an appropriate notion of morphisms of toposes, so we have not really begun to tap
the full potential of the topos construction. In these final two sections, we look closely at
these notions and consider a few interesting examples.

11.4.1 Geometric Morphisms Defined

One might suspect that the notion of a morphism of toposes could be captured by a functor
that preserves finite limits, exponentials, and the subobject classifier. This indeed defines
a legitimate functor between toposes, namely a so-called logical functor. Such functors
can play an important role in the theory—in particular, from the perspective of an elemen-
tary topos as the syntactic category of a higher-order (intuitionistic) type theory. Logical
morphisms are those functors that preserve all the structure of the topos (that is, the finite
limits and colimits, exponentials and subobject classifier; also “inherited” structure like
the Heyting algebra structure of Ω, the validity of formulas, and so on). However, there
is another natural type of morphism to consider between toposes: geometric morphisms.
Viewed in a certain light, the notion of a geometric morphism can even be regarded as
the more pertinent of the two sorts of morphisms. In the context of the overall perspective
that regards toposes as “generalized spaces,” geometric morphisms can be regarded as the
corresponding “generalized continuous maps.” As such, this sort of morphism can initially
be thought of as preserving the geometric structure of toposes (compared to how logical
morphisms can be thought of as preserving the elementary logical structure).

Formally, the definition of geometric morphisms between toposes just uses the concept
of adjunctions and is rooted in the example of sheaves on topological spaces. We saw
earlier how a continuous function f : X→Y between topological spaces induces a pair of
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functors—the inverse image functor f ∗ and the direct image functor f∗. These are such that,
in fact, f ∗ # f∗

Sh(X) Sh(Y).
f∗

f∗

⊥

As a left adjoint, f ∗ clearly preserves (finite) colimits. But, actually, consideration of the
definition of the inverse image functor f ∗ reveals that f ∗, while not generally being a
logical morphism of toposes (preserving all structure), does also preserve finite limits
(pullbacks and the terminal object), that is, it is left exact.238 This particular situation—
where a morphism of toposes is not quite logical (preserving all structure), and yet, in
addition to preserving colimits (by virtue of being a left adjoint), certain (finite) limits are
preserved—motivates the following definition of a different sort of morphism.

Definition 330 A geometric morphism f : F →E between toposes consists of a pair of
functors f ∗ : E →F and f∗ : F →E such that f ∗ # f∗ and also f ∗ is left exact. Modeled on
the particular situation described above, f∗ is generally referred to as the direct image part
of f , and f ∗ the inverse image part of the geometric morphism.

If we have two geometric morphisms f , g : F →E , a natural transformation

F E

f

g

η

is given by a natural transformation f ∗⇒ g∗ between the inverse image parts (or equiv-
alently, by adjunction, we could define this in terms of a map g∗⇒ f∗ between direct
image parts). Toposes together with geometric morphisms and the natural transformations
between them forms a 2-category, where the objects are toposes, the 1-cells are the geo-
metric morphisms, and the 2-cells are natural transformations as specified above; but we
will not make much use of this formulation.

Finally, a geometric morphism f : F →E is said to be essential if the inverse image part
f ∗ also has a left adjoint (in addition to having a right adjoint in f∗, which it does have by
virtue of being a geometric morphism), usually denoted f!.

F E.

f∗

f!

f∗

⊥

⊥

Note that the exactness property of f ∗ will automatically be satisfied whenever there is
such a further left adjoint, since this makes f ∗ a right adjoint, and we know from RAPL
(proposition 175) that right adjoints preserve limits.239

238. A proper proof of this fact can be found in Borceux (1994).
239. Following Grothendieck, the asterisk notation is meant to suggest functors that exist for every f , while the
exclamation point is meant to suggest functors that exist only for special sorts of f . Moreover, for either of these,
the subscript position is meant to indicate functors having the same direction as f , while the superscript position
denotes functors going in the opposite direction of f .
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We first look at a number of important but rather abstract examples of this notion. In the
section that follows, we will look at some more concrete illustrations.

Example 331 We already saw, in motivating the definition of geometric morphisms, how
any continuous map f : X→Y of topological spaces induces a geometric morphism Sh(f ) :
Sh(X)→Sh(Y) between the sheaves on the spaces. The direct image Sh(f )∗ (or just f∗) is
given, for each sheaf F on X, by Sh(f )∗(F)(V) = F(f –1(V)) for each V ∈O(Y). The inverse
image Sh(f )∗ (or just f ∗), for its part, will act on étalé bundles over Y , sending such a
bundle p : E→Y to the étalé bundle over X (by “pulling back” p along f : X→Y).240

Example 332 Generalizing the previous example, any morphism of sites f : (C, J)→
(D, J′) induces a geometric morphism Sh(f ) : Sh(D, J′)→Sh(C, J), with direct image the
functor

– ◦ f op : Sh(D, J′)→Sh(C, J).

Example 333 Any functor F : C→D between small categories induces a geometric
morphism (actually, an essential geometric morphism) between the associated presheaf
categories

SetCop
SetDop

.

F∗

F!

F∗

⊥

⊥

If C and D are both categories with finite limits, and F : C→D is left exact, then in the
same diagram of adjoint functors, F! will also be left exact.

Example 334 For (C, J) a site, the inclusion functor ι of Sh(C, J) into SetCop
is the

direct image of a geometric morphism, with the inverse image given by the associated
sheafification functor

Sh(C, J) PreSh(C),ι

a

⊥

as described in theorem 291 (chapter 10).

Example 335 Another important example of a geometric morphism, one that we will
explore in greater detail in the coming section, is given by the pair (Δ,Γ)

SetCop
Set,

Γ

Δ
⊥

where Δ is the constant (or discrete) functor, and Γ is the points (or global sections)
functor.

In more detail: recall the constant presheaf functor Δ : Set→SetCop
that, in the above

case, will send each set S∈ Set to the constant S itself, and each arrow to the identity
morphism on that object, that is, (ΔS)(c) = S and (ΔS)(f ) = idS. We can then of course

240. Actually, with a fairly weak assumption on the space Y (namely, that the space is “sober”), via this construc-
tion we can actually show a bijection between the continuous maps from X to Y and the isomorphism classes of
geometric morphisms from the topos Sh(X) to the topos Sh(Y). See Johnstone (1986).
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consider morphisms between such a constant presheaf and some other presheaf, that is,

HomSetCop (ΔS, P).

But recall that a natural transformation ΔS→P will just be a cone from the set S to the
functor P. In more detail: if we consider an arbitrary presheaf P : Cop→Set and for c∈C,
the arrows (which are in fact natural transformations)

ΔS−→P,

we get that a typical arrow in SetCop
corresponding to these arrows is just a natural

transformation, that is, a family of arrows of C,

(ΔS)(c)
ξ(c)−−→P(c),

indexed by the various objects or nodes of C and such that

(ΔS)(c) P(c) c

(ΔS)(d) P(d) d

ξ(c)

(ΔS)(e) P(f ) f

ξ(d)

commutes for each such edge f : c→ d in C. But when we apply the functor Δ, this
commutative square collapses to the commutative triangle

P(c) c

S

P(d) d.

P(f ) f

ξ(c)

ξ(d)

The definition guarantees that whenever the indexing category has composable edges, the
corresponding composite triangles commute. The natural transformation ξ : S→P repre-
sented by the triangle gives a cone over P with summit vertex S. Recall also that the limit
of P is then defined in terms of a universal cone, where a cone α : L→P with vertex L
is universal with respect to P when for every cone S→P, there is a unique map g : S→L
making

S L

P(c) c

P(d) d

ξ(c)

ξ(d)

g

α(c)

α(d)

P(f ) f

commute. In such a case, one usually refers to the universal cone by just the vertex L =
lim←−P, and calls this the limit of P. Moreover, if every P has a limit in this sense, then the
functor Δ has a right adjoint given by the limit.
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Suppose, then, that there exists a functor Γ right adjoint to Δ, that is, such that Δ#Γ.
Then, provided it exists, for each S and P, there will be a natural isomorphism

HomSetCop (Δ(S), P)∼= HomSet(S,Γ(P)).

In particular, for S = 1, the terminal presheaf (using bold font here to disambiguate from
the terminal object 1 of Set), we would need

HomSetCop (1, P)∼= HomSet(S,Γ(P))

associating to each 1
ξ−→P in SetCop

an element ξ of Γ(P) in Set. But, on objects, this forces
the definition of Γ to be: Γ(P) = HomSet(1, P); it is also forced on morphisms. Namely, it
will be a function γ that assigns to each object c of C an element γc ∈P(c) in such a way
that γc|f = γd for f : d→ c holds for every f in C. This makes γ a natural transformation
γ : 1→P, where 1 is just the constant functor on Cop! By taking the set Γ(P) to consist of
all such γ for P, we have constructed the functor Γ : SetCop→Set. In this case, for reasons
that should be evident, such γ are called global sections or points, and Γ is the global
sections or points functor. (Moreover, Γ(P) is just the limit lim←−P.)

It is easy to verify that indeed, under such definitions, Δ#Γ. Let us sketch how we can
appreciate that Δ is, moreover, left exact. To do this, we need to show that Δ preserves
pullbacks and the terminal object. But given a pullback

S T

Q R

in Set, we need to show that

ΔS ΔT

ΔQ ΔR

is a pullback in SetCop
. But this is the same as showing that the diagram on objects is a

pullback in Set; and such a diagram reduces back to the original diagram, on account of
how Δ is defined. That Δ preserves the terminal object Δ1= 1 is basically immediate.

This sketch suffices to show that the pair (Δ,Γ) forms a geometric morphism.
In fact, we can show that this is really the only geometric morphism from SetCop

to
Set, revealing Set to be a sort of terminal object in the category of presheaf toposes with
geometric morphisms between them. Suppose we have an arbitrary geometric morphism
(p∗, p∗). Take S a set. Any set can be written S =

∐
s∈S{s}. As a left adjoint, p∗ preserves

colimits, so
p∗(S) = p∗ ∐

s∈S

{s}

and the entity on the right is isomorphic to p∗
∐

s∈S 1. As a geometric morphism, p∗ must
in particular preserve the terminal object, so∐

s∈S

p∗(1) =
∐
s∈S

1 =Δ(S).
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Thus, we have shown that p∗ is isomorphic to Δ. And since adjoints are unique, we must
likewise have that p∗∼= Γ.

In the next section, we will see some particular examples of this geometric morphism,
in the context of presheaf toposes that we are already familiar with. We will also see that
there is actually a further functor Π left adjoint to Δ, making (Δ,Γ) an essential geometric
morphism. In fact, (Δ,Γ) such that Π#Δ#Γ is a special case of example 333, taking D =
1. In this connection, it is moreover straightforward to show how from a functor F : C→D,
the induced diagram of geometric morphisms

SetCop
SetDop

Set

F∗

F!

Π

Γ

F∗
⊥
⊥

Γ

Π

Δ Δ

in fact commutes, where this means F∗ ◦Δ=Δ, Γ ◦F∗ =Γ, and Π ◦F! =Π, in effect
showing that the pair (F∗ ◦Δ,Γ ◦F∗) is itself a geometric morphism.241

Example 336 Recall from example 333 how, given a functor F : C→D between two small
categories, this functor gives rise to a diagram

SetCop
SetDop

.

F∗

F!

F∗

⊥

⊥

But as presheaf toposes, we can then ask whether and how the subobject objects Ω in these
presheaf toposes compare. In fact, the functors F! #F∗ #F∗ will induce a further diagram
of “internally adjoint” morphisms

F∗(ΩD) ΩC

γ

λ

δ

⊥

⊥

addressing this question.242

Moreover, we can then define two further operators �, � : F∗(ΩC)→F∗(ΩC) by

� = δ ◦λ, � = δ ◦ γ.

It can be shown that these satisfy that �#�, and

1. �≤ id ≤�,
2. �� = �, �� = �,

241. Reyes, Reyes, and Zolfaghari (2008) contains a demonstration and discussion of this.
242. See Reyes, Reyes, and Zolfaghari (2008, chap.14) for details on the definitions of the adjoints in question.
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revealing how we can construct modal operators within topos theory. Defined in this way,
it has been suggested that to get the theory of modalities off the ground one might start by
thinking of SetDop

as providing the background standard of constancy, taking SetCop
as the

locus of change and modal qualifications.243

11.5 Toward Cohesive Toposes

In physics and other fields like materials science and even architecture, one will occa-
sionally hear the tendency or force holding certain types of matter together referred to as
their cohesion. The study of the various properties or qualitative features of material bod-
ies, in their mutual interactions, reveals that bodies can have different sorts or amounts of
resilience, elasticity, brittleness, bounciness, stiffness, flappiness, twistability, capability of
creasing, “creep” (e.g., the distortion of a bow under prolonged loading; creep in textiles
is why the knees of pants get baggy), and so on.

In a different context, the philosopher Hegel sought to understand, in a very general
fashion, what makes determinate things determinate. In his “philosophy of nature,” this
amounted to inquiries into the main “general forms" describing the distinctive ways mate-
rial bodies in particular can be seen to become determinate. Among such general forms
was what Hegel called their cohesion. Hegel thought that, over and above the usual mecha-
nisms of dynamic forces of attraction and repulsion, gravitational attraction, and chemical
reactions, there are various ways that certain material bodies can be found to achieve deter-
minacy essentially by “holding together” in a distinctive way. Hegel accordingly sought to
advance a more refined concept of cohesion, as opposed to what he called “the common
understanding of cohesion,” which just refers to a particular snapshot of the “quantitative
strength of connection between the parts of a body.”244 For Hegel, cohesion is a more fun-
damental phenomenon, even more fundamental than shape or density of a body, in that
it does not even dictate any particular shape—and even if cohesiveness is fundamentally
about the relations between the parts of a spatially-extended body, this is not something
the analysis of which could be reduced to uniform geometrical considerations of the “mere
outer shape” of a body. While in certain instances, cohesion will involve how a body retains
a specific spatial configuration or shape, in general cohesiveness can be considered inde-
pendently of shape. On this approach, cohesiveness is something like the most general
form of a number of more particular processes and phenomena found throughout nature, all
involving some “inward determination” of a material body that reveals itself only in phys-
ical interactions with other material bodies, in which interactions one can find a distinctive
way of resisting being broken apart by forces of another body.

In exploring sheaves from various angles, and at various levels of generality, we have
in a sense been exploring various sophisticated modifications of our notions of space, and
making use of various “generalized spaces.” In the (pre)sheaf context, the domain category
from which we map our shapes of a certain figure has been seen to supply the form or
blueprint according to which certain parts of a certain type are to hold together. How do
the parts or points of any space hang together or cohere? Intuitively, certain toposes can

243. Details on this, and the perspective just mentioned, can be found in Reyes and Zawadowski (1993) and Reyes
and Zolfaghari (1991).
244. Georg Wilhelm Fredrich Hegel (1991, 241).
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appear to have a rather involved cohesiveness, while others (like Set) can appear to be
almost devoid of cohesiveness. Informally, what different “spatial” categories seem to have
in common is something like this feature of cohesiveness, which they may have in different
ways and to differing degrees. Certain maps between toposes may then function to reveal
comparisons in different degrees or types of cohesiveness.

The notion of a cohesive topos (or, sometimes, a category of cohesion)—first explored
by Lawvere—basically emerged in an attempt to axiomatize those intuitively “cohesive”
properties of a topos that would make it a setting in which some sort of generalized geom-
etry (wherein familiar notions of geometry resurface in subsumed form) could take place.
While this effort is still somewhat in its infancy, the reader may enjoy exploring some
of these otherwise advanced notions through a slew of examples. In terms of the formal-
ism, all one really needs to approach this is a good working sense of adjunctions and a
basic understanding of toposes. With this, some accessible motivating examples should be
enough to give the reader a small glimpse into this fascinating and admittedly somewhat
mysterious new area of research.

11.5.1 Foray into Cohesive Toposes

We have been using the word “geometry” a lot recently, while suggesting that we intend
this in a rather general way. But what sorts of things do we meet in our usual geometries?
Among other things, a very primitive notion is that of a point. Euclid, for instance, thought
it was so important that he included a definition of it as the very first sentence of the first
part of his Elements. In category theory, we see points in terms of the trivial terminal
category (single object and single morphism), and functors from such a category are used
to pick out the objects or “elements” of any category.

Suppose you have a certain topos M that supports some degree of cohesion or activity
(e.g., dynamical systems, i.e., a particular category of presheaves).245 Suppose you have
another topos K seemingly devoid of any internal cohesion and variation (e.g., the usual
category of sets). We can similarly define a point of M as a geometric morphism

K
p−→M.

This terminology is entirely sensible, especially if we regard M as some presheaf topos,
and Kas Set, for Set acts as a sort of terminal object in the category of presheaves. Recall
from the definition of a geometric morphism that such a p is then really a pair p = (p∗, p∗)

Set SetCop

p∗

p∗

⊥

with p∗ # p∗ and p∗ left exact (i.e., preserving finite limits: preserving the terminal object
1 and pullbacks). Recall also that given two points p and q, a morphism from p to q will
just be given by a natural transformation p∗⇒ q∗ (and these will be bijective with those
transformations between q∗ and p∗). Thus, together with this notion of morphism, the
points of SetCop

actually form a category Pts(SetCop
).

245. The ideas discussed here began with Lawvere. See, for instance, the engaging papers Lawvere (1994a,
1994b, 1996).
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One can show that, for instance, Pts(Set) is just 1, while Pts(Grph) is just the diagram
with two vertices and the two nontrivial morphisms between them. One can also show that,
for instance, Pts(SetFinSetop

) is isomorphic to BoolAlg, the category of Boolean algebras.

Example 337 Let’s look closer at a rather simple example of this, namely Pts(Set) = 1.
Then

Set Set1op � Set.p∗

p∗

⊥

As a geometric morphism, p∗ must be exact. So we will have

p∗(A) = p∗
(∐

a∈A

1

)
=
∐
a∈A

p∗(1) =
∐
a∈A

1 = A.

But then the adjoint relation p∗ # p∗ entails that p∗ = id = p∗, thus showing that the points
of Set are just 1 itself.

Moreover, since we saw in the previous section that (Δ,Γ) was the only geometric mor-
phism from Set to the presheaf category on C, the above just tells us that for Set1op � Set,
Δ= id =Γ.

For concreteness, let us look at how Δ and Γ work in more particular cases.
Suppose you have the bouquet X

This is, of course, an object in SetB
op

(which is the same as Bouq). What is ΓX? This will be
the set whose elements are given by the loops of X, that is, Γ(X) = {α,β, γ, δ, ε, ζ, η, θ, ι}.
If we had instead taken Y a trivial sort of bouquet, consisting of just vertices and no loops,
then Γ(Y) would just be the empty set. What about Δ? This functor goes from Set to
SetB

op �Bouq, so we have to consider how it acts on sets. Suppose S is a four-element set.
Δ preserves the terminal object and colimits, so Δ(1+ 1+ 1+ 1) =Δ(1) +Δ(1) +Δ(1) +
Δ(1) = 1 + 1 + 1 + 1, with 1 the terminal object of bouquets (the trivial bouquet). But this
means that Δ(S) should just be the bouquet that consists of four vertices, each with a single
loop. The adjunction (Δ,Γ) then tells us that it will be the same to look at the functions
from a set S to ΓX as it will be to look at the bouquet homomorphisms between Δ(S) and
a bouquet X.

If we instead took Grph or SetG
op

, Δ will take a set to the graph with as many directed
loops (arrows with source and target the same) as there are elements in the set, while Γ will
take a graph to the set having for elements the directed loops of the graph.

Example 338 Recall our earlier discussion of the qua category from examples 38 (chapter
2) and 196 (chapter 7). There, an interpretation X of (A, P) was just an object of the
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presheaf topos SetAop
together with a set of subobjects that correspond to the predicates in

P. One can see that the “global aspect” G is just the terminal object of A and we obtain
the restriction of the functor X to this aspect G by applying the global sections functor Γ
of the geometric morphism given by the pair (Δ,Γ):

SetAop
Set.

Γ

Δ

⊥

Because A has a terminal object, it follows that ΓΔ= id, and that Δ is full and faithful.
Moreover, since an interpretation assigns the same set to all the aspects, in the above light,
this is just to say that the interpretation X is a constant presheaf. Putting these two things
together, we can see that every morphism between two constant presheaves (different inter-
pretations) will be a constant morphism. The functor Γ above basically forgets the aspects
of X, returning just Γ(X) = X(G) or the set of individuals (of the relevant kind). Moreover,
for a predicate φ of X, the functor Γ, acting on φ, returns just a set-theoretic predicate, or
subset, of Γ(X), where this corresponds to the restriction of φ to the level of the global
aspect. Altogether, interpretations X appear as constant objects in the presheaf topos SetAop

or as sets of individuals living in Set. These basically amount to two different points of
view on X, where the constant objects of SetAop

have a rich structure, while the logic of
Set is Boolean. The global judgment is carried out in Set, on the right of the above dia-
gram, where Boolean logic is the rule. On the left, we have the richer logic supplied by the
category that interprets the qua subcategory A.246

We have been exploring a little of the presheaf topos SetAop
, for which every object

X in this topos has a bi-Heyting structure. We also saw earlier how to interpret possibil-
ity and necessity operators in this context. But the logic of global judgments occurs in
the Boolean setting of Set. Γ acts to take an X to Set where the predicates of Γ(X) have
the structure (P(Γ(X)), 0, 1,∧,∨, c), where c =∼=¬ (c being the complement in Set), and
where necessity and possibility operators reduce to the identity. While Γ preserves the
action of 0, 1,∧,∨,∼, and �, it does not preserve ¬ or �. In particular, Γ¬ 
= c, yield-
ing a new operation Γ¬ on P(Γ(X)) which is not Boolean, and which acts as a kind of
strong negation. As for �: a predicate may hold under some aspect, without being true at
the global level. Thus, Γ� also supplies yet another new operation on P(Γ(X)). Both Γ¬
and Γ�, mirroring their corresponding operations in SetAop

, enrich the structure discussed,
to give (P(Γ(X)), 0, 1,∧,∨, c,Γ¬,Γ�), a structure that, Reyes and Zolfaghari (1996) has
suggested, provides a useful setting for global judgments in such situations. On the other
hand, the rich general setting of SetAop

further suggests how we might model the patching
together of local judgments regarding the applicability of certain predicates to a person qua
the different hats they wear, or roles they play in life.

More generally, one can think of the result of applying the constant functor Δ as pro-
ducing a subcategory of discrete spaces. In other words, Δ shows us, within the presheaf
category (characterized by some sort of cohesiveness), what a space of no cohesion looks
like. How do we be more formal about this?

246. The topos-theoretic features of this example are explored in further detail in Reyes and Zolfaghari (1996).
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Recall that if there is a further left adjoint to p∗, then we call the geometric morphism p
essential. The geometric morphism (Δ,Γ) will be essential provided there exists a further
functor Π such that Π#Δ#Γ. But for presheaf toposes, as we have been exploring, there
is precisely such a functor Π, sometimes called the connected components functor. For any
presheaf topos, we have

SetCop
Set.

Γ

Π

Δ

⊥

⊥

Recall that Γ was actually the limit of a functor. The above is in fact a restatement of a
rather elementary result which has Π= colim and Γ= lim. The definition of Π is forced
by the fact that, as a left adjoint, it must preserve colimits (the gluings). By considering
particular categories, such as the category of graphs, it is easy to see how Π just picks
out the connected components. In other contexts, this functor can also be thought of as
assigning to each object in the cohesive topos M the cardinal representing the number of
maps it supports into discrete sets.

We mentioned a moment ago that Δ in such a setup shows us what an extreme space of
no cohesion looks like. This suggests that perhaps there exists a further functor from K

back to M that—at the other extreme of the result of applying the discrete functor—would
yield a space of total (or infinite or trivial) cohesion. As it turns out, in certain cases, there
does indeed exist such a functor, where this is right adjoint to Γ, as in

SetCop
Set.

Π

Γ

Δ

B

⊥

⊥

⊥

In these settings, a functor such as B : K →M is sometimes called the chaotic or codis-
crete functor. The chaotic space produced by applying such a functor can be regarded as
so “extremely cohesive” that, in moving a point to any other point, one need not concern
oneself with the constraints put on the category by how the motion is parameterized (or the
cohesion determined).247 Following a suggestion of Lawvere, one might say that points in
a discrete space are distinct, but points in a chaotic space are indistinguishable provided
the chaotic spaces are connected.248

One can also show that if such a B exists, then the unit id→ΓΔ of the adjunction
Δ#Γ is an isomorphism, and the counit ΓB→ id of the adjunction Γ#B is also an
isomorphism.249

For concreteness, when B : Set→ rGrph, landing in the category of reflexive graphs,
B(S) will yield a vertex for each of the elements of S and for each pair (x, y) of elements of

247. It is a fact that the functor Γ has a right adjoint B iff every representable (or generic figure) has a point.
248. See Lawvere (1994a).
249. A proof can be found in Reyes, Reyes, and Zolfaghari (2008). This reference also discusses further important
consequences of this, namely the fact that the functor B will exist when the presheaf category satisfies a certain
condition (that every nonempty presheaf P has a point 1

p−→P).
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the set S, the functor will yield a unique arrow with source x and target y. In other words,
B(S) just describes the (directed) complete graph on the elements of the set S. In particular,
suppose we have the set S consisting of four elements, which we can represent as a bag
of four dots. Then B(S) will be the graph with two arrows between each pair of vertices
(one coming in and one going out), plus a single directed loop stationed at each of the four
vertices.

Thus, more generally—that is, for certain special toposes M and K —we can construct
the adjoint quadruple diagram:

M K .

Π

Γ

Δ

B

⊥

⊥

⊥

For an M where variation/dynamics is more relevant than cohesion, such as for the
presheaf topos of dynamical systems (evolutive sets), the same adjunctions are sometimes
called orbits# stationary points# equilibria# chaotic.

In the examination of such situations and what happens when we try to further compose
such adjunctions, Lawvere noticed some curious things, which we look at more closely in
the next example.

Example 339 Restricting our attention just to the adjoint functors Δ#Γ#B (defined as
in the preceding example), we note that we can consider maps from the composite ΔΓ(M)
to some M in M as well as maps from M to the composite BΓ(M), that is,

ΔΓ(M) M BΓ(M).

The space ΔΓ(M) on the left can be thought of as the closest approximation to M from the
left given only its cardinality (points), while the space BΓ(M) can similarly be thought of
as its approximation from the right. For each object in the domain of the points functor,
these maps provide an interval between which the object must lie, the endpoints being the
two opposite subcategories, an interval that is in some sense relative to what the specific
points functor does to the object on which it acts. Now, if we apply the points functor Γ
again, we get a sequence of isomorphisms (in K )

ΓΔΓ(M) Γ(M) ΓBΓ(M).
∼= ∼=

But this just says that even though the two composite maps are in general not isomor-
phisms in M , applying the points functor yields an isomorphism of cardinals (in K ).
The cardinal Γ(M) or points(M) associated to a given M is at once isomorphic to the car-
dinal associated to the space ΔΓ(M) and to the cardinal associated to the space BΓ(M).
However, in the case of ΔΓ(M), all the points will be distinct, while in BΓ(M) all points
will be indistinguishable. In other words, we may have a definite number of points; how-
ever, via the unifying isomorphism such points will be indistinguishable by any property.
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Lawvere (1994a) remarks how this curious situation appears to precisely capture the appar-
ent paradox (first isolated by Cantor) that in an abstract set, all elements are distinct yet
indistinguishable.250

The basic idea, then, is that M contains two opposed subcategories (the discrete and
codiscrete objects) that, though inherently rather distinct, are rendered identical through
the category K . In more detail, the “unity of opposites” is precisely expressed through

ΓΔ= idK =ΓB.

Lawvere interprets this “productive inconsistency” of having a definite number of points
without these points being distinguishable by any property, and the underlying “unity of
opposites,” in terms of Hegelian dialectics. The basic idea is captured by the following
diagram of natural transformations between the composite counit and unit functors:

opposite1 unity opposite2.

This situation is most clear in the particular case of the topos of reflexive graphs. In
this context, Lawvere (1996) observed that while the notions of discrete and codiscrete
are dual there, the full subcategories of discrete graphs and codiscrete graphs are each
equivalent to the category of sets, and moreover, both the discrete and codiscrete graphs
are identical when regarded in the category of all graphs. In such a situation, it seems
entirely natural for Lawvere to have spoken of such adjunction pairs as embodying Hegel’s
idea of the unity and identity of opposites. In the case of such configurations in general,
Lawvere speaks of adjoint cylinders, where the three functors involved are adjoint and
the two composites are isomorphic to the identity in K . Put otherwise: we have such an
adjoint triple where there are two parallel functors that are adjointly opposite in that they
are full and faithful, and moreover there exists a third functor that is left adjoint to one
of them and right adjoint to the other functor; as subcategories included in the ambient
category, they are opposite, but by neglecting the inclusions they are identical. In more
detail, in the particular case of graphs, the category of sets gets embedded in the category
of graphs through the action of the functor Δ (producing discrete graphs) and the action of
the functor B (producing codiscrete graphs). These notions are dual; however, the resulting
full subcategories of discrete graphs and codiscrete graphs are further equivalent to the
category of sets, thereby yielding the relevant identity. From the perspective of M , the
discrete and the codiscrete are united; looked at from the other end, K is identified with M

via inclusion of subcategories in two opposite ways. One might also think of this in terms
of Hegel’s discussion of quantity as the dynamic unity of the “moments” of discreteness
and continuity.251

To make these ideas a little more concrete, consider the following.252 If we set both M

and K as the poset of natural numbers N (viewed as a category),253 we can construct the
two parallel functors E, O :N→N, defined by E(n) := 2n, O(n) := 2n + 1, that is, the “even”

250. While there exist toposes with few connected objects such that for all K < measurable cardinal we have that
Δ(K) = B(K), in general these discrete and codiscrete maps are not equivalent.
251. See Georg Wilhelm Friedrich Hegel (2010, bk. 1, sec. II, chap. 1: “Quantity”).
252. This very simple, but pedagogically useful, example of the adjoint cylinder construction is inspired by
Lawvere (2000). The following exposition also follows nLab Authors (2018a, 2018b).
253. Technically such categories are not even toposes. The reader who cannot see why is invited to revisit the
earlier section introducing toposes and try to see what makes them not qualify as toposes.
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and “odd” functions. These functors obviously act to produce the two subcategories of N,
Neven and Nodd, which is another way of saying that both functors are full and faithful.
Such subcategories clearly are “opposed” to one another, at least in the sense that Neven 
=
Nodd; however, performing the same sort of simple composite applications as above, we
can produce the bijection Neven

∼=−→Nodd, through which they can be viewed as “identical.”
As subcategories, both can be seen to be united as the opposing parts of the containing
category N, in relation to which, by virtue of each being isomorphic to one another through
their isomorphic maps to N itself, they are rendered identical. There indeed exists a third
functor T :N→N that, together with E and O, will form the appropriate adjoint triple:

N N.T

E

O

⊥

⊥

By definition of adjunctions, and given that we are working with posets, E #T and T #O
just means that E(n)≤m iff n≤ T(m) and T(n)≤m iff n≤O(m). Moreover, as long as T
exists, we will further have that TE = id = TO, which just means in our particular case that
T(2n) = n and T(2n + 1) = n, which forces the following piecewise definition of T as

T(k) =

{
k
2 if k∈Neven
(k–1)
2 if k∈Nodd.

The idea here is that the adjoint triple E #T #O at the same time embraces the identity by
the natural isomorphism TE

∼=−→TO, the opposition by the induced adjunction ET #OT , and
the unity by the idempotent relations (E ◦T) ◦ (E ◦T) = E ◦T and (R ◦T) ◦ (R ◦T) = R ◦T .
In this way, the middle functor T can be thought of as simultaneously identifying, opposing,
and uniting E and O.

In the case of the category of presheaves on C, Δ yields the discrete presheaves on C

while B yields the codiscrete presheaves on C, and Γ is their common projection. With such
a setup, it is always the case that ΓΔ∼= id∼= ΓB. In the particular context of presheaves,
Lawvere takes the Hegelian notion of Aufhebung still further to yield a theory of dimen-
sion or “levels.”254 Roughly, a level is a functor from a given category into one that is
“smaller,” that moreover has both left and right adjoint sections which produce subcate-
gories that in themselves are identical (in the smaller category) but that include themselves
as subcategories in opposite ways (and which, moreover, give rise to the two composite
idempotent functors on the given “larger” category). More specifically, given an adjoint
cylinder situation between toposes, a level of a topos is defined as the inclusion of the
right adjoint in this setup. In Lawvere’s approach, again taking inspiration from Hegel, the
Aufhebung of a level will be the smallest level that acts to resolve the component opposites
(the opposing functors).255 It is not the case that such an “Aufhebung-like” level always

254. See Lawvere (2002).
255. For more details on this theory of levels, see Lawvere (1989, 1996), and Kennett et al. (2011). In the toposes
of simplicial sets, cubical sets, and reflexive globular sets—each definable in terms of presheaf categories—levels
coincide with the notion of dimension.
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exists for any given level, however in particular cases of special relevance to us (such as
presheaf toposes over graphic categories), it does exist.256

This discussion could easily be extended in a number of directions, leading to a more
thorough exposition of the notions and applications of cohesive toposes, in which context
further adjoint cylinders arise, including situations relating to infinitesimally generated
spaces; however, we leave curious readers to pursue these more advanced matters on their
own.257 For now, we content ourselves with observing that one sometimes finds further
adjoint cylinders embedded in between M and K via intermediate categories L that are
less “abstract” than Set but with a simpler sort of cohesion than M :

M L K .
Γ

Δ

B

⊥

⊥
Γ

Δ

B

⊥

⊥

Δ

B

The basic idea here is that various toposes such as M or L are contrasted with the extreme
case of K via geometric morphisms; but the diagram above suggests that we extend this
to consider intermediate toposes and chains of maps between such adjoint triples, with the
effect that the various determinations of cohesivity or variation in toposes themselves can
be compared.

11.5.2 Philosophical Pass: A New Dialectical Science?

Box 11.1

A New Dialectical Science?

An object that arises in a “spatial” category (a category with some cohesion or variation)
can be examined via levels, constructions that provide a precise formulation of the unity and
identity of opposites so characteristic of the (originally vaguely formulated) philosophical
concept of dialectics, making higher-order relations between general forms of cohesiveness
amenable to more exact solution. In the above exposition, we even saw how, from one per-
spective, the moments of discreteness (in the form of zero cohesion) and continuity (in the
form of total cohesion) could be unified. However, this was a rather extreme case. By consid-
ering intermediate cylinders and passages between adjoint triples (or quadruples) of various
toposes, we move beyond the case of relating a single category to the extreme case of dis-
creteness or constancy (as in K ). We can now examine sequences of intermediate categories
that are interlocked via cylinder maps of their own, opening onto a more refined dialectical
science of cohesion, by which ultimately one could systematically characterize and compare
the differing properties of cohesion and variation that emerge in certain universes or models

256. See Lawvere (2002) for details. Informally, “graphic categories” can just be thought of as certain simple
enough categories that allow for finite graphic display or presentation once one constructs their corresponding
presheaf category.
257. See, for instance, Lawvere (2007).
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for mathematical theories that treat of objects with some dynamics. Using such intermediate
adjoint cylinders, the quality of dimension or level in spaces can be compared. (See Lawvere
[1994b] for more details.)

At a fundamental or more philosophical level, it could be argued that what is going on here is
that the question of what is more variable, more cohesive—or how various models for certain
mathematical theories dealing with dynamical phenomena or settings of cohesiveness are dif-
ferently variable or cohesive—should involve functorial comparisons. The further suggestion
could be made that, in addition to examining such sequences of adjoint cylinders as shown
above, through the discovery and study of left-exact functors between two toposes (which
may not have adjoints) we should be able to make even more precise the notion of greater
or lesser discreteness (noncohesion or constancy) versus continuity (cohesion or variability).
In a sense, this latter suggestion is a natural extension of the perspective of the categorical
notion of continuity via (co)continuous functors (defined as preserving limits, and not just
those that are finite). Going somewhat further, we could perhaps make use of such functors
to begin to construct general metrics measuring something like “what it would cost” to make
an “almost-adjunction” an honest adjunction; another use of the resulting metric might be to
begin to more precisely analyze how far we are from the more extreme or trivial settings of
infinite cohesion (continuity) on the one hand and zero cohesion (discreteness) on the other.
This sort of approach should open onto a much richer terrain of dialectical subtleties, and it
has the potential to provide a powerful weapon in the ever-frustrating yet beguiling dialectic
of the continuous and the discrete at the heart of so much of mathematics and human thought.





A
Appendix (Revisiting Topology)

In which we continue the thread from chapter 4, introducing the reader to certain connec-
tions between (modal) logic and general topology, using this to tell one possible story that
can address the three questions raised at the end of chapter 4, and finally where we briefly
consider how this story might relate to the bigger story we have been telling, throughout the
book, about the rethinking of space.

Returning to the realm of general (point-set) topology: recall how, as we ascended in generality, leav-
ing the notion of distance behind, the resulting notions of the open (closed) sets of a topology really
just capture requirements on the interrelations of the subsets of a given set, requirements essen-
tially governing how new members of a collection of subsets can be built from old ones (through
intersection and union). In the usual treatment of these matters in general topology, the defining
axioms—stability under finite intersection and stability under arbitrary union—are often left some-
what inscrutable. The aim of this appendix is to begin to lift the veil on such matters by introducing
the reader to some notable connections with logic, and using this to tell a story that helps us get a
better handle on the “meaning” of the axioms.

To get a better sense of what we are doing here, briefly consider the history of aviation. Con-
sider how, for centuries, early aeronautical engineers attempted to build airplanes by looking to birds
and bats, mimicking their flapping wings, general shape, and way of flying. By closely observing
such creatures, they came to believe that the secret to manned flight was going to be found in
devising complex machines that closely mimicked the flapping-wing techniques of birds. On the
whole, these attempts failed, and airplanes achieving sustained flight were long deemed impossible.
As an improved understanding of the general principles of aerodynamics was gradually attained,
it would occur to people that the apparently essential feature of a bird’s wings—the flapping of
its wings—could be abandoned. Of course, by dropping this feature, and constructing fixed-wing
aircraft, sustained long-range load-carrying flight became possible. The rest is history.

Similarly, it was realized by early “explorers” in analysis that we can drop the apparently essential
notion of distance and retain a workable notion of open sets—in fact, achieving an even more power-
ful notion, capable of accommodating new constructions and broadening our treatment of continuity.
But just as a fixed wing is still a wing despite not flapping, the introduction of open sets that no longer
deploy a notion of distance—and the attendant general definition of continuity—raises a number of
questions concerning such a construction and its relation to the old approach. Following this idea,
the three questions we introduced in chapter 4 present themselves. To continue the analogy, such
questions remind us of how, despite all the advances in aerodynamics, there apparently remains little
agreement on what generates the aerodynamic force known as lift, that is, what keeps things in the
air!258 Likewise, there is a surprising lack of explicit awareness or agreement among mathematicians
regarding why the defining features of a (general) topology are what they are. Most mathematicians
will not hesitate to point to the metric space setting as motivation for the more general notion of a

258. See, for instance, Regis (2021).
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topology; and they will be able to point to instances exhibiting the power of the more general notion
and show off its utility in capturing nonmetrizable spaces; but it is rare to find any general story from
topologists about what is so special about the particular axioms used to define a topology: namely,
that the members of the collection should be stable under arbitrary union and under finite intersection.

The aim of what follows is to explore some aspects of an account, and connections to matters
beyond topology, that might help clarify why the decisive defining properties of a topology are what
they are. Exploration of this question will get at a number of related issues, such as why there is
this size asymmetry, what this may reveal about what general topology is about, and why open sets
typically seem to be preferred to closed sets (and whether this is even conceptually justifiable or just
a historical accident). Answers to these questions appear to have something to do with character-
izations and assumptions about the nature of continuity, but one can also argue that they extend to
deep connections with logic, models of observations, and the structure of verification, and what these
connections mean for the treatment of points and boundaries.

The appendix includes five sections. Section A.1 informally motivates the interpretation of general
topological notions in terms of certain logical notions and the nature of verification. Section A.2
makes precise the ideas of the preceding section, opening onto a presentation of modal logic and
grounding a deep connection between a certain modal logic and topology. Section A.3 steps back
and discusses the ideas behind such a connection, fleshing out some of the philosophical implications
both for how we see topology and how we think about certain modalities. In this section, we will also
unearth a potential response to the first of the three questions raised in the present chapter. Section
A.4 takes up the question of “why opens?” and offers some observations and conjectures concerning
the precedence given to them in the modern treatment of topology; we also take the opportunity
to discuss some potential (generally ignored) advantages of working with closed sets, especially in
relation to sheaves. The appendix concludes, in section A.5, with a return to the third question first
raised in the Philosophical Pass of chapter 4—What is general topology really about?—and briefly
relates such ideas to the broader conceptual advances (regarding space and “topologies”) we have
seen throughout this book.

A.1 Conceptual Motivation: Topology as Logic of Finite Observations

While deceptively obvious at first glance, it turns out to be a surprisingly deep observation that

topological reasoning is intimately bound up with reasoning with approximations (or under
conditions of error tolerance).

Let us spell this out a bit, using a common illustration.259 Suppose you are a traffic officer charged
with observing cases of speeding vehicles, and that you have radar guns—always with some fixed
error tolerance—for precisely this purpose. The radars clock speeds, so as long as a car is moving,
it is observable by a radar. In other words, we are imagining that there is some overall field of
observation,

10 20 30 40 50 60

the nonnegative real line, while various subsets of this represent possible, more specific observations,
which can be captured by our measuring devices. Your department has reserved a special name for the
portion of this field of observation involving speeds greater than 50 mph—these have the observable
property of speeding.

10 20 30 40 50 60

In other words, the property speeding can be thought of as being identified with (50,∞).
Now suppose a car is going 51 mph.

259. For instance, Moss and Parikh (1992) make use of this same metaphor of radars.
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10 20 30 40 50 60

51

“Clearly,” the car going 51 mph is speeding, as 51 “clearly” is in the interval (50,∞). But, as we
already insisted in the dialogue in chapter 4, everything depends on our account of what this “clearly”
actually involves. Let us first make a relevant observation. Surely, if 51 is indeed a case of speeding,
since such events are observable, we should be able to produce a verification (or piece of evidence)
that tells us unequivocally that what we are observing is indeed a case of speeding. As our radars
supply us with our windows of observation, perhaps certain of these can give us the verification we
are looking for. Let us consider various cases of such a possible verification.
Case 1: Suppose we witness 51 mph with a measuring device or radar with an error of ±2, which is
equivalent to adopting a somewhat restricted observational window of (49, 53).

49 50 51 52 53

Using such a radar as our measuring device meant to serve as verification of the property in question,
we get back only an equivocal answer about whether or not 51 ought to count as having that property:
it can really only tell you that there is both speeding and not speeding going on. As potential evidence,
the radar just tells us that the reading of the radar is 51. But we want to assert something stronger,
namely that “there is speeding.” After all, it may be that this radar shows 51 but the car is really
going 49.5 mph. Such a measurement device cannot serve as evidence verifying that 51 is a case of
speeding.
Case 2: Suppose our department gets more resources and allocates some of those to acquiring more
refined radars, with an error of just ±0.5 mph. Now, as we use such a radar and it shows 51, we have
that for the resulting observational window (50.5, 51.5),

50.5 51 51.5

there will only be speeding as far as the radar can see! Giving us a read-out of 51, such a radar
indeed serves as verification of speeding: for, directed at 51, it does not witness anything but cases
of speeding. After all, unlike in the previous case, when pointed at 51, there is nothing that this radar
can even see that is not speeding, so the entire radar cannot but verify that 51 really is speeding. In
a moment, we will more closely consider the general features of this device; but before doing so, let
us consider one last case.
Case 3: But why deal with such approximate regions? Why not just zoom in until we were at the
point itself, on the nose? Provided we allow that this is even something we could really do (instead
of an impossibility that would require our department had infinite resources), our resulting obser-
vational windows would then collapse down to the point itself, and by construction, operating with
this degenerate window of observation, there would be nothing around, nothing in the vicinity, that
could inform about how it related to its environs—in particular, whether or not 51 was in (50,∞).
Informally, to verify that you are in (or not in) some interval, such as (50,∞), you need to be able to
“look around”—that is, you need the presence of others (in or not in the interval in question) to help
inform you about where you are. If we really could find such an exact measuring device, it could not
tell us that 51 was speeding (or not), since there is nothing for it to see except the point itself—and,
remember, we are asking about evidence for 51 being in some interval (or having some observable
property). The basic idea here, in short, is that

verifiable knowledge of an actual location/speed belonging in a region of observation is deter-
mined by observing the relationship of the region to environments/neighborhoods of the actual
location/speed.

Moreover, as our discussion of the previous cases already suggested, if an observation made by a
measuring device of some s is to serve as evidence, or verify a property, then anything that can be said
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of s must hold not just of s, but also of any other s′ within the observational window of that device.
The present point is: a hypothetical exact radar would not constitute a verification of anything—for
it cannot speak to the relationship of what it purports to observe (the actual speed/point) with any
other observable.

Of the three cases presented above, only case 2 describes something that could verify that 51
constituted speeding (i.e., was in (50,∞)). Let us thus look at case 2 more closely. First, observe
that, while the radar with an error of ±0.5 mph worked just fine—in a way that the radar from case
1 (with an error of ±2 mph) did not—there is in fact nothing special about the number 0.5 mph. A
number of other radars would have served the same purpose: for instance, any radar of error smaller
than ±0.5 mph; in fact, so too would any radar with error ±1 – ε for any 0≤ ε < 1.

Now suppose you have an old radar R1 that can approximate the speed up to an error of ±1, so
that we can think of this radar as providing evidence of the actual case of 51 mph being a case of
speeding, on account of its observation of R1 := (50, 52). But suppose you have another newer more
expensive radar R2 that observes cars with an error of only ±0.5 mph, so that you can also supply
evidence of speeding in R2 := (50.5, 51.5). This refined instrument R2 will be able to prove its value
in being able to observe instances of speeding that the first radar R1 could not, for example, when
a car is clocked at 50.75 mph. In other words, the two radars do not verify exactly the same things.
However, there is an important asymmetrical relationship between what they can verify:

if R1 can verify an instance of speeding, then R2 can as well;

but

if R2 can verify an instance of speeding, R1 need not be capable of verifying it.

The latter fact describes how R2 is a better approximation (and so represents a possible increase
in knowledge). On the general way of looking at things that we have started to motivate, subsets
are regarded as the possible observations, so that “open sets” containing a point are effectively just
pieces of evidence qua observable properties concerning actual states (represented by a point or
definite speed). We can further regard the key relation between the various subsets of a space as
follows:

x∈V ⊆U says that V is a better approximation to x.

If you think of the open sets in terms of generalized rulers or measuring devices, the idea is that
smaller rulers V ⊆U give you more refined measurements. One might also begin to think of such
better approximation sets in terms of effort—the more refined the set, the more effort. The inter-
pretation in terms of effort is meant to represent an action—such as a measurement, computation,
or approximation—that in general may result in an increase in knowledge or what is knowable. If
one thinks of the open sets as involving possible observations, the idea is that for V ⊆U, V is a
more sophisticated or refined means of observing properties. As such, it will in principle “cost more
effort” compared to any cruder observation. If a radar is attempting to determine whether or not a
car is speeding in a 50 mph speed zone, but the accuracy of the radar is ±2, then a car going 51 mph
cannot be verified as speeding; on the other hand, supposing a more refined traffic radar has an accu-
racy of ±0.5 mph, then a car going 51 mph can be verified as speeding. The second, more refined
radar—and so the one that surely costs more effort to make—can detect a property, namely that of
“speeding,” which the first radar cannot. That it can detect properties that “fly under the radar” (pun
intended!) of cruder radars justifies our thinking of smaller sets in terms of “better approximations.”

However, note that whenever a given radar detects a property, any more refined or costly radar
must also detect that property. This last sentence gives a way of thinking about the key feature of
“openness,” and appeals to the key idea of the

Paradigm of Truth Continuity: an observable property will be true of a point whenever a
verification (approximation) can be supplied, such that this continues to be true in all better
approximations.
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Such truth would of course break down provided there was at least one more refined approximation
for which the property ceased to be true. On this interpretation that we are starting to suggest, there
is a very natural way of understanding the full force of the finite intersection and arbitrary union con-
ditions that define a topology. For reasons that will become apparent in a moment, we will describe
the paradigm above by saying

�φ is true at p∈U provided for all refinements V ⊆U of the observation U, φ is still true at p∈V .

For now, you might think of � in terms of supplying a sort of radar for some observable property—
the old radar guns used to have rectangular windows! The reader might want to contemplate on their
own some other sensible conditions one might expect to obtain for this �.

A.2 Explicit Connections to Modal Logic

Recall the discussion of modal logic from chapter 7.2. The first modern formal analysis of modalities
is typically attributed to the work of C. I. Lewis, beginning in 1912 and culminating in a paper in
1932.260 Lewis constructed a series of axiomatic systems of modal logic—called S1 through S5—
based on which of the axioms were held to legislate over the modalities. Lewis was first motivated
by concerns over what he took to be an eliding of an important difference in how implication was
understood by the algebraists and logicians of his time, on the one hand, and the ordinary meanings of
implication, on the other. He thought that these concerns could be met by using an impossibility (¬�)
operator to define a more appropriate notion of implication, and accordingly he came to introduce
systems taking as primitive the connectives negation, conjunction, and possibility (�).

Gödel would later261 advance this by initiating a simplified presentation of modal logics: here,
modal logic emerges as just an extension of propositional logic—the modal operator �, or �, is
added as an additional connective to propositional logic, together with additional axioms and rules
governing its behavior. In that very brief one-page article, Gödel happened to be concerned with for-
malizing assertions of provability, which he sought to capture by means of a propositional connective
B (for beweisbar), so that Bα was to be read as “α is provable” or “it is provable that α.” In that paper,
he revealed how to define a system given by the axioms and rules of the usual propositional logic
together with the following axioms governing his new operator B:

1. Bα→α

2. B(α→β)→ (Bα→Bβ)
3. Bα→BBα

together with the inference rule

from α, infer Bα.

Gödel then stated that this system is none other than what Lewis had described as the system S4, after
translating B to �. He also stated that the appropriate translation of the law of the excluded middle is
not derivable, making the further suggestion that the translation of any theorem of the intuitionistic
propositional calculus of Heyting is derivable in his system, and conjectured that the converse was
true as well. This is of some significance, as we shall see.

These days, it is common to follow Gödel’s general approach of presenting modal logic as an
extension of propositional logic. While the particular axioms and inference rules adopted do depend
on the context of use, or on which properties we expect our modal connectives to have, the main
axioms used in modal logic, built on top of a complete axiomatization of propositional logic together
with the rules of inference modus ponens, start by adjoining the basic necessitation inference rule

(Necessitation rule N) φ
�φ

,

260. See, for instance, Lewis (1912).
261. Gödel (1933).
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or φ��φ, where the turnstile symbol � here just tells us that whatever follows it represents either
an axiom or a formula that can be derived as a theorem. Thus, this just says that if φ can be inferred
(is provable) from no assumptions (beyond the axioms of logic), then φ is necessary in the modal
logic—that is, if φ is a theorem (just derivable from nonmodal good old-fashioned logic), then �φ is
also a theorem. This can also be construed as an axiom, in which case it reads

(N as an axiom) ��.

The weakest (or most minimal) modal logic that has proven to be useful is called K, which involves
an augmentation of propositional logic with � and the rule N, together with the further axiom

(Axiom K) �(φ→ψ)→ (�φ→�ψ).

The axiom systems of many other commonly used modal logics are extensions of K: by adding
further axioms, we get other well-known modal systems. K on its own assumes very little, and so
within K we cannot even prove that “if �φ is true, then φ is true.” To address this, we could add the
further axiom

(Axiom T) �φ→φ,

an axiom that indeed holds in most modal logics.262 Other elementary axioms are

(Axiom 4) �φ→��φ,

sometimes called the “Positive Introspection” axiom, and

(Axiom B) φ→��φ

(Axiom D) �φ→�φ

(Axiom 5) �φ→��φ.

Various axioms, when conjoined, allow us to formulate other axioms, which are occasionally useful
enough to be given their own name. For instance, K with the rule N can be shown to entail

(Axiom R) �(φ∧ψ)↔ (�φ∧�ψ).

Variously combining certain of these axioms yields distinct axiom systems corresponding to some
notable modal logics (the usual names are given on the left):

• K := N + K

• T := N + K + T

• S4 := N + K + T + 4

• S5 := N + K + T + 5 (or N + K + T + 4 + B).

Observe that K through S5 form a nested hierarchy of systems, ultimately built on top of the minimal
necessitation rule. Modal logics for which the necessitation rule holds—or which assume axiom N—
are called normal modal logics. This nested hierarchy thus describes how the main normal modal
logics relate. There are further, less commonly used normal modal logics, intermediate to those
above, such as

• D := N + K + D

• K4 := N + K + 4

• B := N + K + T + B

• D4 := N + K + D + 4.

Calling this a “hierarchy” makes sense, as some of these logics are sublogics of others; for instance,
K4 is a sublogic of S4 in the sense that all formulas valid in K4 are also valid in S4.

262. Anticipating, one could think of this as the “truthfulness of verification” principle.
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Both for reasons internal to modal logic and for reasons we shall appreciate in a moment, the
logic S4 is of special interest. An equivalent axiomatization—one that will prove to be even more
revealing—of S4 can be given as follows:

Definition 340 The modal logic S4 is defined as the logic for which the following axioms hold:

• � (Axiom N)
• �φ→φ (Axiom T)
• �φ→��φ (Axiom 4)
• �(φ∧ψ)↔ (�φ∧�ψ) (Axiom R)

and where modus ponens
φ→ψ φ

ψ

and monotonicity
φ→ψ

�φ→�ψ

are the only rules of inference.
There is also the following derivable theorem, which is often of use:

�φ∨�ψ↔�(�φ∨�ψ) (or).

While S4 is typically presented via K, N, T and 4, it is easy to show that Monotonicity and R

entail K; likewise, N and K can be shown to entail Monotonicity and R. Observe also that 4 together
with T in fact gives us �φ↔��φ.

While these axioms are of some interest in their own right, we can already anticipate where we
are going with all this by making a purely formal observation, involving nothing more than pattern
matching. Recall that we can express a topology, and its open sets, in terms of an interior operator.
Have another look at the axioms of S4 given in definition 340. Now recall the Kuratowski axioms
governing the interior operator, reproduced here for convenience:

• (i1) int(X) = X (it preserves the total space);
• (i2) int(A)⊆A (it is intensive);
• (i3) int(int(A)) = int(A) (it is idempotent);
• (i4) int(A∩B) = int(A)∩ int(B) (it preserves binary intersections).

This striking, apparently purely formal, similarity suggests that the logical connective � might be
some sort of interior operator, and that there may be some close connections between the modal
logic S4 and topology. Indeed, S4, while having evolved for rather distinct purposes and in different
contexts, turns out to be ordinary topology in disguise! Viewed from the other direction, this intimate
connection with modal logic and features of certain logics and their interpretations can help us shed
light on the defining axioms of a topology.

S4 as the Logic of Topological Spaces

The modern study of propositional logic largely got its start in the nineteenth century as algebra—
in the tradition of Boole, who initiated a revolutionary conceptual shift, by combining algebra with
logic. Boole had revolutionized logic, and began the project of the mathematization of logic, by
applying notions and methods from symbolic algebra to the treatment of logical arguments, while
simultaneously revolutionizing algebra by freeing it from its narrow application to arithmetic. By
the time Lewis’s work on modal logic systems appeared, many advances in the study of algebras
had been made, and it wasn’t long before modal systems were seen in an algebraic light. One of
the overriding morals of the work of the logician Tarski—who proved a major result concerning the
relation between S4 and topology—involves the insight that the conditions defining a topology (in
terms of conditions on open sets, or in terms of an interior operator) are at bottom algebraic.
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A prominent class of examples of Boolean algebras can be obtained, in general, as follows: let X
be any nonempty set and P(X) the collection of all subsets of X. Then, for subsets A and B of X, if
we define ¬A as the set-theoretic complement of A (in X), A∨B as the union of A and B, and A∧B
as the intersection of A and B, the set P(X) becomes a Boolean algebra—an algebra of sets. In this
spirit, after some maneuvering involving taking equivalence classes (identifying expressions that are
logically equivalent), the set of all propositions of the propositional logic forms a nontrivial Boolean
algebra.

Actually, a topological space itself can be represented as the Boolean algebra of all subsets of
the space—in this setting, the interior operator is construed as an operator on the algebra, where it
takes elements (subsets) of the algebra to other elements of the algebra. As such, a topological space
can be represented as a particular algebra equipped with a particular operator—and, in this light, the
Kuratowski axioms emerge as nothing other than algebraic equations. More explicitly, the equations
will stipulate that the interior of the top element of the algebra is equal to the top element; the interior
of any element is less than or equal to that element; the interior of the meet of two elements is equal
to the meet of the interiors; and the interior of the interior of any element is equal to the interior of
that element. In symbols,

• (i1∗) I() =;
• (i2∗) I(a)≤ a;
• (i3∗) I(I(a)) = I(a);
• (i4∗) I(a∧ b) = I(a)∧ I(b).

If we substitute � for I in the above equations, we can immediately see that we will just recover
the logic S4; alternatively, substituting I for � in the S4 axioms, we should recover the algebraic
version of the topological interior axioms governing a topological space. It is intriguing that axioms
first formulated to model reasoning with propositions under situations of governed by dual modalities
like “possibility” and “necessity,” after a very natural translation, end up recapitulating the very same
axioms that mathematicians had been using to describe a space.

This connection further motivates the development of a topological semantics for modal logic.
Here is one way of starting to see how this goes. Ordinary propositional calculus can be regarded
as basically set theory in disguise. If we assume we start with some set X, we might attempt to
translate a logical proposition of our propositional logic into a statement about sets by assigning
atomic (noncompound) propositions to subsets of X, regarding ∧ as ∩, ∨ as ∪,  as X, ⊥ as ∅,
and ¬ as the complement (in X). A proposition would then be regarded as true precisely when its
translation always equals X, the entire set. Typically, when we think of a way of assigning truth to
the various propositions of our logic, we think of interpretation (or valuation) of a formula in terms
of extensions of a function from the propositional values into a “truth value” set {0, 1}. But really, an
interpretation could just be seen as an assignment of meaning to the symbols that make up a formula,
and the truth-values need not be confined to 0 (false) and 1 (true), but can just be some sets, where
these convey information concerning the proposition. Following this lead, we can instead interpret
propositions as being assigned to subsets of P(X), where these subsets effectively act to inform us
about where the proposition is true or holds. We then make the appropriate substitutions for Boolean
connectives as indicated, from which we can also express the implication → as ⊆, and ↔ as =.

Suppose we have a mapping v :Φ→P(X) that sends propositional variables to subsets of X, where
we think of this as a general “valuation” in the algebra of subsets of X, as indicated above. In this
way, for φ an arbitrary formula, we can let

v(φ) = {x∈X | φ is true at x}.

Then, if φ and ψ are propositional variables, with v(φ) = A and f (ψ) = B, where A, B are subsets of X,
by interpreting logical connectives as set operations, as indicated above, we can extend the function
v just as you might expect, so that every formula is mapped to a subset of X:

• v(¬φ) = X \ v(φ);
• v(φ∨ψ) = v(φ)∪ v(ψ);
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• v(φ∧ψ) = v(φ)∩ v(ψ);
• v(φ→ψ) = (X \ v(φ))∪ v(ψ).

Observe also that we must have v() = X. If a formula φ is mapped to the entire set X by all mappings
v, then we say that φ is valid in X. Moreover, observe that φ→ψ will be valid with respect to any
interpretation in X if and only if v(φ)⊆ v(ψ) for any mapping v that sends propositional variables to
subsets of X. This can be seen by noting that φ→ψ will be valid with respect to any interpretation
v in X if and only if v(φ→ψ) = v(¬φ∨ψ) = v(¬φ)∪ v(ψ) = (v(φ))c ∪ v(ψ) = X—and this will be true
precisely when v(φ)⊆ v(ψ), for any v.

So far, none of this is that interesting. The important bit comes with the treatment of the modal
operator, which is where the topological semantics really comes into force (and derives its name). We
have already anticipated how the logical connective � might plausibly be interpreted as follows: for
any mapping v that maps propositional variables to subsets of X and for any propositional variable
φ, we interpret � as stipulating

v(�φ) = int(v(φ)).

Supposing we have a space, then, the topological semantics proceeds as follows. We define a topo-
logical model on a topological space X. This is a pair (X, v), with v :Φ→P(X) a valuation that takes
values in the set of all subsets of X, as before. Here, we can define the truth of any formula φ at
a point x of a topological model M= (X, v) by induction—where, we use the notation M, x�φ to
mean “x semantically entails φ with respect to v” (or “φ is satisfied by v at x∈X”), and this is the
case provided x∈ v(φ). Where O is the set of open neighborhoods of x, we can then show, just as you
might expect, that:

• M, x�⊥;
• M, x�φ∧ψ iff x�φ and x�ψ;
• M, x�φ∨ψ iff x�φ or x�ψ;
• M, x� (φ→ψ) iff M�φ or M, x�ψ;
• M, x�¬φ iff ∃U ∈O s.t. ∀y∈U y�φ;
• M, x��φ iff ∃U ∈O s.t. (x∈U and ∀y∈U(M, y�φ)).

In this way, we can say how
v(�φ) = int(v(φ))

by noting that

x∈ v(�φ) iff

M, x��φ iff

∃U ∈ τ s.t.(x∈U and ∀y∈U(M, y�φ)) iff

∃U ∈ τ s.t.(x∈U and ∀y∈U(y∈ v(φ))) iff

∃U ∈ τ s.t. (x∈U and U ⊆ v(φ)) iff

x∈ int(v(φ)).

In other words, the formula �φ is true throughout the interior of the set of points where φ is true. In
the presence of such a model and associated semantics, we then say that a formula φ is satisfied by
(or in) the model provided it is true throughout the entire space (i.e., v(φ) = X), and that φ is valid in
the space X provided it is satisfied in every model defined over X.

Moreover, given the modal translation, we can in fact say that

• v(¬φ) = int(v(φ)c);
• v(φ→ψ) = int(v(φ)c ∪ v(ψ)).

Building on this, the axioms of S4, once interpreted topologically, simply restate the Kuratowski
conditions that a topological interior is expected to satisfy. Of course, the rule N just corresponds to
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the condition
int(X) = X.

And recalling that combining axiom K with the rule N gives us our alternative axiom R, it is easy to
see how this corresponds to the condition

int(A)∩ int(B) = int(A∩B).

Finally, axiom T just amounts to asserting that the interior of a region is a subset of that region,

int(A)⊆A,

while axiom 4 (added to axiom T) states that the interior of the interior of a region is just the interior
of that region,

int(A)⊆ int(int(A)).

That int is monotone in the sense that

A⊆B=⇒ int(A)⊆ int(B)

is represented by the fundamental inference rule

φ→ψ

�φ→�ψ
.

Exploiting the striking formal similarity between Gödel’s axioms for provability logic and Kura-
towski’s axioms for a topological space, McKinsey and Tarski proved that, under the above
interior-based interpretation, the topologically valid statements are exactly those provable in the the
modal system S4—that is, that S4 is the logic of topological spaces.263 More explicitly, we can
not only show that S4 is sound with respect to topological spaces in general, via the topological
semantics, but we can also show that it is complete. To begin to appreciate this, recall how both
propositional modal logic and topological spaces can be seen as algebras. In describing a valuation,
then, we could have described these valuations without assuming anything about being given a topo-
logical space. Instead, given a set X, v is just a map from propositions to P(X). Now, we can consider
some mapping

i :P(X)→C,

where C = i(P(X))⊆P(X). In other words, with the map i we are considering a choice of some
collection of subsets of X.

In relation to our valuation and what to do about the valuation of �φ, we can then say that v(�φ) =
i(v(φ)). But what should i be? Here is the fascinating result. Given any set X, we can show that any
interpretation of � in X that happens to satisfy precisely the axioms of S4 will be such that the image
of this interpretation forms a topology on X. S4 is sound with respect to any interpretation in any
topological space; moreover, S4 can be shown to be complete over all topological spaces—in other
words, if a formula is valid in every topological space, then it will be derivable from the logic S4.
Supposing the map i makes S4 sound, we can show that the set C = i(P(X)) is a topology on X and
that it is one only on the condition that it satisfies the axioms and rules of S4!

In short, let us now ask the following question: Is the set C = i(P(X)) a topology for X? What
conditions—axioms and rules—must i satisfy to guarantee that i(P(X)) is a topology on X? As it
turns out, the set C = i(P(X)) is indeed a topology, and is one precisely when it satisfies all the axioms
of the modal logic S4 (where no proper sublogic of S4 can guarantee that C is a topology). The
following table shows how the particular modal axioms transfer over to topological conditions – in
particular, a checkmark means that the collection C does have the property in question, while an ×
means that C does not have that property, when governed by the particular modal axioms of that row.

263. See McKinsey and Tarski (1944).
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If we drop any of the axioms of S4, we can see that C will not necessarily be a topology—in other

Modal
axioms

Topological axioms
X ∈C ∅∈C X1, X2 ∈C⇒ (X1 ∩X2)∈C {Xi}i∈I ⊆C⇒⋃

i∈I Xi ∈C
(finite intersection) (arbitrary union)

L� + N × × ×
L� + N, T, 4 × ×
L� + N, K × ×
L� + N, K, 4 × ×
L� + N, K, T ×
L� + N, K, 4, T

words, no proper sublogic of S4 can guarantee that C is a topology.264 By observing the table, we
can even decipher which axioms of modal logic must correspond to, or are responsible for, which of
the axioms of topological spaces.

• N just stipulates that the whole space is open, that is, that X ∈C;
• T with N gives that ∅∈C;
• R (equivalently, N and K) is just the stability under finite intersection condition; and
• or (derived from N, K, 4, and T together) is the condition that open sets are stable under finite

unions (which can be extended to arbitrary unions by using an infinitary extension of the modal
language).

McKinsey and Tarski further showed that S4 is sound and complete with respect to particular
spaces—namely, the logic of any dense-in-itself metrizable space.265 This result implies, in par-
ticular, that S4 is the logic of the real line R (endowed with the usual topology), the rationals Q, the
Cantor space, or any Euclidean space. This basically shows how S4 fundamentally characterizes any
dense-in-itself metric space, in particular the spaces we are most familiar with—thereby solidifying
the spatial core of modal logic.

Altogether, soundness of S4 for a given topological space is more or less had for free, where
soundness just means that if something is provable, then it is valid, that is,

�S4 φ implies �X φ.

For its part, the completeness of S4 for a given topological space X is trickier. Completeness of S4
for a space X asserts that every validity in X is provable within S4, that is,

�X φ implies �S4 φ.

The equivalent contrapositive of this claim of completeness can be more helpful:

�S4 φ implies �X φ;

that is, if φ is not a theorem of S4, then it is not valid in X—which formulation effectively informs us
that checking for completeness, in this context, amounts to checking that space for a class of refuting
models. McKinsey and Tarski’s result concerning how S4 characterizes any dense-in-itself metric
space basically informs us that in any dense-in-itself metric space there will always be the resources
to refute all nontheorems of S4.

264. Xu (2016) has a nice discussion of these matters; the idea for the above table came from that work.
265. A space is dense-in-itself when every point is the limit of other points in the space. The most familiar spaces
of all—including any finite-dimensional Euclidean space—are such a space.
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Stepping back, observe that we can also define

v(�φ) = v(¬�¬φ) = (v(�¬φ))c = (int(v(¬φ)))c = (int((v(φ))c))c,

where this is just the closure of the set v(φ). Moreover, in general, we can construe the boundary as

∂(φ) = �φ∧�¬φ.

In the context of modal logics, the notion of boundary generally captures something like the
contingency of φ.

In connection with the topological semantics, we can also observe that for the law of excluded
middle φ∨¬φ to be valid in a topological space X, each closed set must also be open. A concrete
counterexample to the excluded middle being valid can be given by the Sierpiński space described
earlier, where {a} is closed and {b} is open, and where we define v(φ) = {b}. Then, a�v φ. But since
the only open neighborhood of a is the entire space {a, b}, which does indeed contain a point that sat-
isfies φ, we must have a�v ¬φ. Thus, a�v φ∨¬φ. This fundamentally gets at the deep connections
with Heyting algebras as models of intuitionistic propositional logic.

Altogether, by interpreting each φ as a subset A of a topological space X (so that each propositional
variable represents a region of the space, and so too does any formula), and making the appropriate
substitutions, we can see that the modal logic S4 axioms governing � reduplicate those of the topo-
logical interior operator. Going the other way, with the axioms of S4, we appear to have rediscovered
the algebraic version of Kuratowski’s axioms for a topological interior. This connection is not merely
formal, but lets us attempt a justification of the defining features of a topology.

One of the merits for the topologist of seeing S4 as the logic of topological spaces—or topology
in disguise—is to help ground an important verificationist interpretation, in which setting the axioms
of a topology appear to achieve some clarification. This is explored in the next section.

One of the merits of the topological semantics for the modal logician, for their part, is that it does
not validate

¬�φ→�¬�φ,

known by philosophers under the name “negative introspection” principle, which seems to require
that if one cannot verify something as true, then one must be able to verify that one cannot verify it
as true. Some have argued that a good notion of belief is captured by not knowing that you do not
know—so that one can define a belief operator

Bφ := ��φ.

In those terms, the principle of negative introspection effectively makes it impossible to have
incorrect beliefs, for one always knows whatever one believes that one knows. The principle is gen-
erally regarded as undesirable—especially applied in epistemic contexts, involving verifications and
knowledge—since it seems to say that one cannot believe one knows things that one does not actu-
ally know. Rational agents are constantly believing they know things that they do not in fact know,
so there are reasons for not wanting to enforce this principle. That the topological semantics does not
validate it is encouraging.

Finally, there are merits to this connection that go beyond any benefit to one side or the other. For
instance, in example 198 (chapter 7), we mentioned Kuratowski’s 14-set theorem, which says that
in a topological space, there can be no more than fourteen distinct sets that can be generated from a
fixed set by taking closures and complements (or using the interior, closure, and complements). Why
this should be true seems never to be explained—and one is left with the feeling that such a result
is extremely mysterious, if not entirely arbitrary. In modal logic textbooks, one finds sequences of
boxes and diamonds formed to get finite modalities—but, on account of certain logical equivalences,
sequences of modal operators can often be reduced. One is sometimes asked to show that in S4
in particular, up to equivalence, there are only fourteen modalities. Again, there is not usually an
explanation of why this should be the case. Authors in either camp rarely seem to acknowledge that
these results are two ways of looking at the same result.
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A.2.1 Models of Information

The results of McKinsey and Tarski laid the groundwork for further work into spatial logics. More-
over, the completeness results in particular drew the attention of epistemic logicians, leading certain
logicians to use the deep connection between modal logic and topology to reflect features of S4 as
an epistemic system back onto topology—where this led to an epistemic reevaluation of the interior
semantics, in the context of which topologies came to be seen as models for information. The idea
of regarding topological spaces as codifying information structures had itself been considered since
the 1930s, leading to the use of topological spaces as models for intuitionistic languages.266 Building
on this use of topological models for broad classes of intuitionistic languages, the interior semantics
sketched above has been seen as providing insight into evidential approaches to knowledge.

In the topological models for intuitionistic languages, as used in epistemic settings, elements of a
given open basis are taken to be “pieces of observable evidence,” while open sets of the topology are
generally treated as “observable properties” that can be verified based on the observable evidence.
Evidence as open sets can be grounded in thinking of a collection of observable evidence directly
obtainable by an agent—through things such as computation, approximation, measurement—as a
subbasis, so that the collection of observable evidence forms a basis for the topology. Furthermore,
taking open sets as pieces of evidence is further supported by how measuring devices used to compute
things like the speed of a car or height of a person are always approximating devices—in the sense
that they do not give exact values, but are defined by a definite range of error tolerance.267

On this view of things, points in a topological space X are seen as (partial) states of infor-
mation (about how things actually are).268 Taking increasingly accurate measurements with less
error-tolerant approximating devices gives rise to better and better approximations to the actual state.
Building on this, the meaning of the fundamental logical connective as a kind of interior can be devel-
oped in terms of the notion of verifiability.269 Open sets correspond to properties that are in principle
verifiable by the agent—in short, open sets are being construed in terms of meaningful propositions,
where these are just propositions whose truth is equivalent to their verifiability.

The general idea is that there are properties that are observable (directly) by an agent. These are
regarded as forming an open basis for a topology. Because open sets can be expressed as those sets
equal to their interior, we can see int of those properties as the set of states in which the properties
are verifiable, suggesting that we read � as follows:

�φ : = “it is verifiably true that φ.”

Another way to see � is as expressesing the notion of “continuous truth.”
Fundamentally, we are understanding “verification” here in such a way that

to verify something is to observe something that entails it,

where this is entirely in keeping with the earlier view of a neighborhood as a kind of proof or evi-
dence. Open neighborhoods U of an “actual state” x act as sound or truthful evidence. An actual
state x is then in the interior of φ if and only if there exists a sound piece of evidence U that justifies
φ. If an open U is included in a set representing a proposition φ, then we can say the proposition
φ is entailed or justified by the evidence U. That agent knows φ (to be true) if they have a correct
justification for it, where this is based on a sound piece of evidence justifying it.

As Bezhanishvili and Holliday (2019) puts it, given any set U of states of information,

U is verifiable, relative to one’s current information state, iff it is possible to achieve such
verification of U after a finite amount of time, starting from the current information state.

266. See, for instance, Troelstra and Dalen (1988) for discussion.
267. See Baltag et al. (2019) for further elaboration on this.
268. See Dalen (2002) and Scott (1968).
269. This way of looking at things is nicely summarized in Bezhanishvili and Holliday (2019). One can find
further variations of this overall idea in developments by computer scientists, for instance in domain theory (see
Abramsky 1987, Vickers 1996) and work in formal epistemology.
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Seen in this light, the features of the logic of verifiability, or the process of finite observation, can
begin to shed some light on why the conditions of a topology are what they are. By taking the
family of observable propositions as a basis, the features of the modal operator generate what we
can think of as a “structure of verifiability”—and these just recapitulate, in another guise, the core
defining properties of a topology. Moreover, this interpretation comes with a natural dual notion
whereby closed sets can be expressed in terms of falsifiable properties: whenever a property is false,
it is falsified by a sound piece of evidence. Finally, on this picture, the set of boundary points will
correspond to those properties that are neither verifiable nor falsifiable.270

A.3 The Idea of All This

Making use of the approach sketched above, and taking advantage of the intimate connection between
the interior and the modal operator �, we can attempt something like a justification of the axioms of
the interior operator, that is, of the defining features of a topology.271

First of all, by taking int(U) to be the set of states in which U is verifiable, it is evident that
int(U)⊆U. Next, if it is possible to perform any finite sequence of possible verifications in a finite
amount of time, then the int operator ought to distribute over finite intersections—where this effec-
tively just means that observations can be refined in a finitary way. This is something like a continuity
condition on our verifications. By contrast, we are not assuming that it is possible to perform an
infinite sequence of verifications in a finite amount of time. Put otherwise, while observations can
indeed be refined in a finitary manner—such that each observation can be refined by another—we do
not assume that there generally exists a single and universal observation that could embrace all the
observations in one go (which corresponds to not assuming that int distributes over arbitrary inter-
sections). The “stability under finite intersections” condition then captures the idea of that agent’s
ability to conjoin only finitely many pieces of evidence into a single piece of evidence. An infinite
conjunction of such properties would require confirming or verifying all of them, something it is not
reasonable to assume is available to an agent capable of producing verifications. For the justification
of the last condition on the interior operator, we can assume that we are working with a model of
verification

according to which by verifying U, we are also verifying that one has verified U, which implies
that if it is possible to verify U, then it is also possible to verify that it is possible to verify U.
(Bezhanishvili and Holliday 2019)

270. In section A.1, we sometimes used the language of “effort.” Technically, modeling effort involves some
extension of the semantics just sketched. If, following Moss and Parikh (1992), we let (X, O) be a “subset space,”
where X is a nonempty set of states and O is a collection of subsets of X (not necessarily forming a topology,
though topologies provide a particular case of this construction), then again elements of O are = possible obser-
vations or possible observation sets. Formulas are interpreted not just with respect to the actual state, but with
respect to pairs of the form (x, U), where x∈U ∈O , and x represents the way the actual state of affairs happens to
be. The neighborhood U with x∈U ∈O is interpreted as a truthful observation that can be made about the actual
state x. Moss and Parikh give a subset space semantics as follows: given a pair (x, U), the modality � quantifies
over all subsets of U in O(X) that include the actual state x, while another modality K (acting as a “knowledge”
modality) quantifies over the elements of U. In other words, we have a logic that formalizes reasoning about sets
and points: � quantifies over the sets, while K quantifies in the sets. In this setup, (x, U)) is called a neighborhood
situation if U is a neighborhood of x, that is, x∈U ∈O . If at (x, U) φ is known, this is to be interpreted as saying
that we can move from the given reference point x to any other point y in the given neighborhood situation (x, U).
Similarly, using the � modality, we can shrink the neighborhood around a given reference point. In this manner,
knowledge (via K) is interpreted locally in a given truthful observation set U. Effort (via �), for its part, is inter-
preted as neighborhood-refinement, where “more effort” corresponds to a smaller neighborhood, and a smaller
neighborhood corresponds to a more refined truthful observation—and so, a possible increase in knowledge. The
smaller the observation set is, the more informative whatever information we have, and the more effort we will
have spent to obtain this. See Moss and Parikh (1992) for more details.
271. The main ideas of the next paragraph are covered in Bezhanishvili and Holliday (2019), which has a valuable
discussion of these, and related, matters.
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In other words, int(U)⊆ int(int(U)). These conditions taken together further imply things about
disjunctions. Observe that an arbitrary disjunction (a union) of opens-as-properties gets verified by
confirming any one of them and thus also requires only a finite amount of evidence.

Regarding the asymmetry in the finiteness conditions on how verification distributes over union
and intersection, there is a closely related tradition of computer scientists who have taken to describ-
ing the key properties of a topology in terms of a key computational or logical idea, namely
that

open sets are analogous to semidecidable properties.272

The idea here is that the notion of (semi)decidability may help understand the axiomatic stability
properties that characterize a topology—where, computationally speaking, an observable property of
a data type is taken to correspond to a semidecision procedure.

In its native setting, one attributes the property of semidecidability to a theory or logical system.
A theory is said to be semidecidable provided there is an effective method which, given an arbitrary
formula, will always tell correctly when the formula is in the theory, but acts differently when the
formula is not in the theory: in that case, it may give either a negative answer or no answer at
all. A logical system, for its part, is regarded as semidecidable if there is an effective method for
generating theorems (and only theorems) such that every theorem will eventually be generated—yet,
in a semidecidable system there may be no effective procedure for checking that a formula is not
a theorem. Applied to our present setting: this concept would help describe how, if something is
observably true of a set, this can be decided by some evidence or verification; but if it is false, the
same procedure may “run forever” and not have the means of verifying that it is not true of the set.

To better see what is going on here, referring back to our informal discussion in A.1, consider
the following proposition or assertion: “The car is speeding.” Affirmations and refutations of such
propositions can be carried out by means of what can actually be observed, and an observation must
be made in finite time (i.e., after a finite number of steps), in particular by supplying a piece of
evidence. Whenever the car is unmistakably speeding, so that it is definitely true, such a proposition
can be affirmed. Whenever the car is unmistakably not speeding, so that it is definitely false, it can be
refuted. But in an important way, the real crux of the matter boils down to how all the other borderline
cases are handled. The two extremes can help reveal what is going on here. Vickers (1996) describes
how

An assertion is affirmative (or affirmably true) iff it is true precisely in the circumstances when it
can be affirmed.

Then,

if we declare that for all border cases the assertion is false, then by “true” we will mean “affirmably
true.”

In other words—on the affirmative interpretation—any sets corresponding to true are treated as open
sets.

We can also speak of refutative assertions as follows:

An assertion is refutative iff it is false precisely in the circumstances when it can be refuted.

Then,

if we declare that for all border cases the assertion is true, then by “true” we will mean
“irrefutable” (in the sense of being not falsifiable).

In other words – on the refutative interpretation – sets corresponding to true are treated as closed
sets.

272. This suggestion apparently first appeared in Smyth (1983); it is discussed in Vickers (1996), which inspired
the next few pages.
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Let us declare the sets for which we can make affirmations or refute the assertion open – since they
do not include any boundary. Asserting “The car is speeding” means the car is definitely speeding,
while refuting it means it is definitely not speeding.

Suppose, for instance, we can agree that the car really is speeding, where speeding means any
speed strictly greater than 50 mph. As suggested in A.1, this affirmation might be tested by using
finer and finer “radar guns.” Then we can affirm the assertion—such an observation can be made—
since if the speed is indeed greater than 50 mph, you will eventually discover this, provided only that
you use a radar or measuring device with a granularity finer than ±1.

As Vickers stresses, working with the affirmative interpretation, we can surely affirm φ∨ψ either
by affirming φ or by affirming ψ. This extends to further disjunctions, even to the point where we have
an entire family of infinitely many assertions {φi}—the infinite disjunction

∨
i φi can be affirmed

by just affirming any individual φi. In short, any disjunction, even an infinite one, of affirmative
assertions is still affirmative—we need affirm only one!

We can affirm φ∧ψ by affirming both φ and ψ. This extends to any finite conjunction. But to
affirm an infinite conjunction

∧
i∈I φi, we must affirm every single one and that will require an infi-

nite amount of work. Thus, we can only say: any finite conjunction of affirmative assertions is still
affirmative.

Under different circumstances, it may be that the car is decidedly not speeding – in that instance,
the assertion is definitely false, and so can be refuted. To affirm “not φ” (¬φ), we will have to make
a finite observation evidencing that φ is definitely false (i.e., we refute φ).

Under the refutative interpretation, for its part, assertions correspond to falsifiable ones. And for
these, the following holds: For conjunctions, if φ is falsifiable and ψ is any statement (falsifiable or
not), then φ and ψ is falsifiable—it is falsifiable by any observation that falsifies φ. For disjunctions,
if you have two falsifiable statements φ,ψ, then φ∨ψ is falsifiable since you can demonstrate the
disjunction to be false merely by supplying two observations, the first falsifying φ and the second
falsifying ψ. But this does not extend to arbitrary disjunctions. This gives another way of seeing the
conditions on closed sets.

The logic of refutative assertions will be such that it is stable under arbitrary conjunctions and
finite disjunctions, while the logic of affirmative assertions will be stable under finite conjunctions
and arbitrary disjunctions. Whether we take up the logic of affirmative assertions or the logic of
refutative assertions, we capture the essence of a topology.

Finally—and this is the point!—suppose “The car is speeding” (φ) is false and, as it turns out,
the car is going exactly 50 mph. Then, on the affirmative interpretation (i.e., using opens), you will
never discover whether or not φ is true, regardless of how refined the radar used. We will never be
able to affirm that it is false. This borderline case helps reveal the key idea of thinking of all this in
terms of semidecidability: there is some test that you can perform such that, if φ is true, you will
eventually discover this, but if it is false, you may never discover this. On the refutative side of things
(i.e., using closed sets): if φ is false, you will eventually be able to falsify it, but if it is true, you may
never discover this.

Altogether, this accords with the reading

�φ := “It is not verifiably false that φ” (or, equivalently, “The hypothesis that φ cannot be
falsified”),

according to which � is a closure operator, and S⊆X is falsifiable if and only if cl(S)⊆ S—another
way of seeing that we can falsify a falsifiable proposition unless it happens to be true. Furthermore, a
boundary of a set S⊆X is just ∂(S) = cl(S) \ int(S), so that x is a boundary point of S precisely when
there is no true piece of evidence that supports neither S nor ¬S.

A.4 Why Opens?

In chapter 4, I mentioned that I would attempt to address the question of why, in spite of the historical
precedence given to closed sets, present-day topologists often seem to regard open sets as more
primitive. Building on previous discussions, here are some plausible reasons one could give for such
a preference:
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1. The epistemic-topological framework sketched above helps reveal how key axioms of a topology
appear to encode the notion of semidecidability, that is, the notion of a condition whose truth can
be verified in finite time (but whose falsehood cannot necessarily be verified in finite time). It
is sometimes suggested that this interpretation encodes the intuition from metric space settings
where verifying that a point is in an open ball can be done with finite-precision computations by
just producing an even smaller open ball in which it lies, yet where it is not necessarily possible
to do the same sort of thing for a closed ball (if the point lies on the boundary, that we cannot
make arbitrarily precise measurements in finite time becomes an issue).

In this same epistemic-topological framework, another more general reason could have to
do with the following. We can technically freely consider things either in terms of affirma-
tive propositions or refutative propositions and convert between them. Affirmative assertions,
though, for their part, do seem more primitive—or less derivative or parasitic—than their refuta-
tive counterparts. And affirmative assertions are the ones that correspond—in both intuitive and
precise ways—to open sets. This priority of the affirmably true might be further developed into
something like a proper defense of the priority of open sets.

2. Another reason I have heard for preferring open sets over closed sets is the apparent ease with
which certain formulations of continuity, and related results, can be given using open sets and
potentially infinite unions thereof—compared to using closed sets, where one must make restric-
tions to the finite case. Indeed, this can be related to sheaves as well. Over and above the
important historical connection between sheaves and local homeomorphisms, there is a viable
explanation for the general preference for working with open sets in that what has been called the
open pasting lemma—or the “local formulation of continuity” (as in Munkres 2015)—stipulates
that if X =∪iUi is a possibly infinite union of open sets with continuous sections si : Ui →E that
agree on their overlaps, then it follows that the (set-theoretically defined) section s : X →E will
be continuous as well. However, if closed sets are used here, then the gluing argument works
only for those covers that have finitely many closed sets.273 More generally, if it is really the case
that having arbitrary unions of open sets at one’s disposal (such that this is open) is somehow
more useful than having arbitrary intersections of closed sets (such that this is closed), then I
think that this sort of justification has some merits and deserves to be probed further. On the
other hand, to the extent that the results and formulations adduced as defense in fact really only
highlight a lack of human ingenuity, or some feature of the current practice of mathematics, pre-
venting us from finding the right formulation and obtaining the same results while using closed
sets, then this reason is less compelling.

3. A last reason I will list—which I have not seen developed before—is a little more compli-
cated and difficult to parse. Fundamentally, the idea is that the preference may be influenced by
differences in the underlying algebraic structures of open sets versus closed sets.

The lattice of open subsets of a topological space supplies us with an important and canonical
example of a Heyting algebra, while its dual—the lattice of closed subsets—supplies a canon-
ical example of a co-Heyting algebra. For a co-Heyting algebra (like that of closed subsets of
a space), we have seen that there is an induced operator ∼ that could be called paraconsistent
negation, some of whose properties were explored in chapter 7. The impact of this alterna-
tive negation operator can be initially appreciated by considering that cl(U)∩ cl(Uc), where
cl(Uc) :=∼U, will in general be nonempty. By defining such an alternative negation with ∼
(“non”), as the closure of the complement, we get a co-Heyting algebra of closed sets. In the
general setting of co-Heyting algebras, which model paraconsistent logics, inconsistent theories
are modeled as the ones that include the formulas that are true at the boundaries. As such, the
logic of closed set topologies can be seen as being paraconsistent or forming a paraconsistent
algebra, as a formula φ and its paraconsistent negation ∼φ may intersect at the boundary of
their extensions.

273. Curry (2014) makes this observation.



428 Appendix A

Recall that paraconsistency is the blanket term for a logical system where the principle of
noncontradiction may fail, that is, we can have α∧ not-α. In general, paraconsistent structures
are those for which theories that are true at boundary points include formulas and their negation;
a boundary of a theory T can be construed as those sequents that neither “fully follow from”
T nor “fully contradict” T . Note that, with a paraconsistent logic, this does not mean that all
contradictions are true—rather, that there are some contradictions that do not entail a trivial
theory. In general, the idea here is that the extension of the conjunction of some formulas and
their negations may not be the empty set. As such, viewed in semantic terms, there may exist
some states for which a formula and its negation are true. There are many different logical
structures that are used to represent paraconsistent logics, but co-Heyting algebras have been
seen as an especially natural choice.

The reason why closed set topologies form a paraconsistent structure has to do with the fact
that theories that are true at boundaries include formulas and their negation—in other words,
a formula α and its paraconsistent negation ∼α intersect at the boundary of their extensions.
In such settings, the boundary operator also plays a decisive and active role. In general, bound-
aries play an important role in supplying topological semantics for paraconsistent logics.274 As
Lawvere writes,

That the notion of boundary is just that of “logical contradiction” (within the realm of closed
sets) follows at once from the intuitive notion of motion: indeed, since the unit interval is
connected, any continuous path which is in A at time 0 and in ∼A at time 1 must at some
intermediate time be in both A and ∼A, i.e., must pass through the boundary of A. (Lawvere
1986, 10)

We have seen that sheaves fundamentally involve assignments of data to a base topology. In
the usual presentations of sheaves on topological spaces, it is standard practice to almost exclu-
sively work with open set topologies. But in the sheaf construction, the base topology is of
special importance. For one thing, the algebra of the base space topology can be seen in terms
of the algebra of the sheaf section structure. And historically at least, sheaves were defined over
closed sets before they were defined over open sets.275 By considering sheaves with respect to
closed set topologies, then, the sheaf morphisms ought to reflect this algebra—so, using closed
sets, we could have morphism algebras equipped with paraconsistent negations. Moreover, by
taking closed sets for our base topology, we could introduce into the sheaf construction the valu-
able notion of boundary—something that will not exist for the corresponding open set sheaf
construction. As William James has suggested, building on suggestions of Lawvere:276

One area in which this may work for us is the mathematics of physics where the boundaries
of a body are as important as the parts of a body inasmuch as physics concerns itself with the
interactions of bodies in a system. Lawvere in the introduction to Categories in Continuum
Physics, mentions the speculation that there is a role for a closed set sheaf in thermodynamics
as a functor from a category of parts of a body to a category of “abstract thermodynamical
state-and-process systems” (Lawvere 1986, 9). Lawvere recognises the particular properties
of closed set topologies that make them interesting to us, namely that as algebras they provide
us with a formalisation of what we call a paraconsistent negation. Sheaves are then of interest
to us in our project of developing paraconsistent logic in categories for the way in which they
transport algebras of a topology into the structure of a category of sheaves over that topology.
(James 1996, 127–128)

274. See Başkent (2013), Goodman (1981), and Mortensen (2000).
275. Historically, in 1946 Jean Leray first defined a sheaf as a way of assigning modules to closed sets in an
inclusion-reversing manner. For a historical account of the early development of the sheaf concept, the reader can
consult Fasanelli (1981).
276. The interested reader should also consult James (1992, 1995).
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There may indeed be considerable virtues to be had by giving more attention to closed sets,
especially in relation to sheaves, and the reader is urged to explore these further. For instance,
by looking at sheaves over closed sets, ultimately paraconsistency could be integrated into topos
theory. Moreover, we can mention that in any presheaf topos, the lattice of all subobjects of any
given object is an example of a co-Heyting algebra (as well as being a Heyting algebra).

All this is to make the following point: The co-Heyting operations are in general not pre-
served by substitution (inverse image) along maps—and this is as opposed to the Heyting “not”
(¬) and even the “possibility”-like operators given by Grothendieck topologies. I believe that
this—and subtleties having to do with how boundaries and continuity interact—may contribute
(albeit in the background, or beneath awareness) to the preference for working with open set
topologies. By encoding the notion of “having no boundary,” open sets are able to avoid some
of the subtleties associated with explicitly working with boundaries and the induced paraconsis-
tent structure supporting some inconsistency tolerance (which generally seems to require more
careful treatment). By comparison, there are close connections between Heyting algebras and
intuitionistic logic (which logic is particularly useful for representing a number of situations rel-
evant to the mathematical treatment of continuity). On account of these features of the algebraic
structures of open versus closed sets, we might propose the following:

topology in terms of open sets ≈ algebra of observables where the law of excluded middle
can fail but the law of noncontradiction holds in general;

topology in terms of closed sets ≈ algebra of observables where the law of noncontradiction
can fail but the law of excluded middle holds in general.

Finally, related to this issue of boundaries: a great deal of mathematics is concerned with conti-
nuity in its many different forms. Inquiring into the continuity of something, say some function
f defined on some region, at a point p, is to invite comparison of the behavior of f all around
p—yet, at boundaries, we cannot necessarily go around the point without leaving our area of
concern. This merely suggests one of the related ways in which one might expect to find, on
account of the general features of boundaries, that there is a more natural alignment of conti-
nuity with open, rather than closed, sets—as the former exclude all boundaries, while the latter
include them all.

A.5 What Is Topology Really About?

At least as far as general (point-set) topology goes, the story just told suggests that the essence
of topology can be seen as being closely connected to certain features of logic and the logic of
verification, specifically as this relates to the implications of how we formulate notions of negation
and our dealings with boundaries. Guided by such a story, a think a reasonable case can be made for
wanting to view

topology as a formal framework for studying reasoning about systems of parts of a whole in such
a way that the nondegeneracy of boundaries is respected.

In particular,

open set topology ≈ the structure of reasoning in the absence of boundaries (or with approxima-
tions),

while

closed set topology ≈ the structure of reasoning in the presence of boundaries.

Depending on whether we choose to admit boundaries or not, certain prices will have to be paid—
involving the tolerance of violations of a generalized “law of noncontradiction,” and how negations
must be treated. And it is arguably these prices that are truly determinative of the structure we call a
topology.
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However, what does all this have to do with the wider notions we have explored in this book—
from the familiar topologies to Grothendieck topologies to Lawvere-Tierney topologies? Already in
proposition 132 (chapter 5) we saw that we can effectively drop the open sets of a topological space
X and just look at the category of sheaves on X—this later category can then be used, by looking at
the subsheaves of the terminal sheaf, to recover the original data of the open sets. This suggests that,
in some sense, sheaves are the more essential of the two, even if at first it may appear as if the space
on which sheaves are built needs to be assumed by the sheaf construction. If that is indeed the case,
how can we reconcile everything we said about sheaves—their power, how to think about them, and
how to use them to think more deeply about space—with what this particular logical story seems to
suggest about the nature of topology and space? I leave that to the reader to ponder!
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