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Introduction

Hurwitz theory is a beautiful algebro-geometric theory that studies maps of
Riemann Surfaces. Despite being (relatively) unsophisticated, it is typically
unapproachable at the undergraduate level because it ties together several
branches of mathematics that are commonly treated separately. This book
intends to present Hurwitz theory to an undergraduate audience, paying special
attention to the connections between algebra, geometry and complex analy-
sis that it brings about. We illustrate this point by giving an overview of the
material in the book.

Hurwitz theory is the enumerative study of analytic functions between Rie-
mann Surfaces – complex compact manifolds of dimension one. A Hurwitz
number counts the number of such functions when the appropriate set of dis-
crete invariants is fixed. This has its origin in the 1800s in the work of Riemann,
who first had the insight that multi-valued inverses of complex analytic func-
tions can be naturally seen as functions defined on a domain which is locally,
but not globally, identifiable with the complex plane: i.e. a Riemann Surface.

Studying analytic functions defined on Riemann Surfaces leads to the geom-
etry of oriented topological surfaces, which Riemann Surfaces are. The local
behavior of functions reveals a high degree of structure: analytic functions are
ramified coverings; that is, coverings except at a discrete set of points where a
phenomenon called ramification occurs.

Ramified coverings naturally give rise to monodromy representations, which
are homomorphisms from the fundamental group of the punctured target sur-
face to a symmetric group. The ramification at the preimages of a point b in the
base is captured by the cycle type of the permutation associated with a small
loop winding around the point b.

The count of all such representations can be identified with a coefficient of
a specific product of vectors in the class algebra of the symmetric group: with
a vector space which has a basis indexed by conjugacy classes. Elements of

ix
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x Introduction

this basis are given by formal sums of all permutations in the same conjugacy
class. A commutative multiplication is then defined by extending the group
operation of the symmetric group by bilinearity.

The class algebra is known to be semisimple: it admits a basis with respect
to which multiplication is idempotent. Computing the product above in the
semisimple basis yields closed formulas for Hurwitz numbers in terms of
characters of the symmetric group.

To summarize, the count of analytic functions was translated to a geometric
count of topological covers, then to an algebraic count of group homomor-
phisms, and finally reduced to a representation theoretic computation.

In a different direction, Riemann Surfaces can be degenerated to nodal sur-
faces by shrinking loops. These nodal surfaces look like “smaller” Riemann
Surfaces glued at points, and so degeneration creates infinite families of recur-
sive relations among Hurwitz numbers. We conclude the book by showing
that when Hurwitz numbers are encoded as coefficients of a formal power
series (a generating function called the Hurwitz potential), some of these recur-
sions translate into partial differential equations that are solved by the Hurwitz
potential.

Whether this summary makes perfect sense or no sense at all depends
on the background of the reader. In any case, we hope that at least two
things are apparent: first, that keywords from several different undergraduate
courses have been used; and second, that no exceptionally sophisticated term
appeared.

This book arises from two experimental undergraduate courses that the first
author taught at Colorado State University in 2014 and 2015. The courses were
offered as a follow-up to classes in topology and differential geometry; a main
goal was to depart from the structure of a traditional course and offer the
students a mode of approaching the study of mathematics closer to that of a
researcher facing a new problem.

At a school like Colorado State University, most advanced math majors
have typically taken semester-long courses in some of the areas mentioned
in the above synopsis, and typically have not taken all those courses. There
is some analogy with the situation that mathematical researchers are in when
they tackle an open problem. First of all, translation and reformulation of a
problem is often a very important tool in mathematical research. Problems that
are too difficult when studied in a certain way may become approachable when
the point of view is changed. When mathematical researchers translate a ques-
tion in order to find ways to solve it, they are often taken into mathematical
areas out of their comfort zone. And they don’t have the opportunity to take
a semester-long course, or to read a whole book on each topic that they use,

, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316569252.001
Downloaded from https:/www.cambridge.org/core. University of Warwick, on 03 Feb 2017 at 02:02:04, subject to the Cambridge Core terms of use

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316569252.001
https:/www.cambridge.org/core


Introduction xi

but must be able efficiently to develop a working understanding of the aspects
needed for their problem.

This analogy informed the way we structured the narration of our story. We
have background chapters that introduce complex analysis, manifolds, the fun-
damental group, representation theory of the symmetric group and generating
functions in a skeletal way, touching only on content that we considered essen-
tial to our scope. Such background is not collected all together at the beginning,
but is introduced at the moment when it is needed in the story, which we believe
develops the exposition in a more organic way.

We made the choice of having exercises interspersed in the narration of
the book, serving as an integral part of the exposition, rather than collecting
exercises at the end of each section. The exercises are designed to develop
familiarity with the concepts introduced, which is necessary before using the
concepts in new ways. Exercises also appear in proofs, partly to avoid the
excessive proliferation of parts of proofs that consist mostly in bookkeep-
ing, but also to encourage the reader to be actively involved and test his/her
understanding.

This book can and should be used differently by different readers, but we
hope that, whether you are an instructor preparing a course, a student reading
this independently, or something in between, you find this book a helpful guide
through the first steps in this fascinating topic.

Although the main body of the text covers a lot of ground, this is really
only the beginning of the story in Hurwitz theory. By nature, Hurwitz theory
is interdisciplinary and is part of the basic toolkit in many areas of mathemat-
ics. In the appendices we offer a glimpse of what is beyond through a small
number of essays by guest writers: active researchers in various areas of math-
ematics who use Hurwitz theory in their work. The scope of the appendices
is to pique the reader’s interest; to leave them a bit dazed and confused, and
with the desire to continue learning – which is the constant state of mind of
any mathematician.

Acknowledgments

Thanks first and foremost to the students at Colorado State University who
served as “guinea pigs” for this experiment: Dean Bisogno, Christie Burris,
Tucker Manton, Will Piers, Rachel Popp, John Ramsey, David Reynolds, Kyle
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1

From Complex Analysis to Riemann Surfaces

This chapter makes a quick and targeted incursion into the world of complex
analysis, with the goal of presenting the ideas that historically led to the
development of the notion of a Riemann Surface.

Differentiability for a function of one complex variable imposes consider-
ably more structure than the analogous notion for functions of a real variable.
Somewhat strangely, many of the remarkable properties of complex differ-
entiable functions are natural consequences of a construction that somehow
“leaves” the complex world: complex functions can be integrated along real
paths, and the value of such integrals doesn’t change if the path is continuously
perturbed while fixing the endpoints.

This phenomenon leads to Cauchy’s formula, which expresses a complex
differentiable function as a path integral of yet another complex function.
While this may seem a slightly bizarre thing to do, Cauchy’s formula has
a number of remarkable consequences. In particular it gives a differentiable
expression for the local inverse to a complex differentiable function at a point
where the derivative does not vanish.

When a differentiable f function is not injective, obviously there does not
exist a global inverse function. However, at any point where f ′ doesn’t van-
ish, one has multiple local inverse functions (or historically one said that the
inverse of f is a multivalued function) and, further, there is a natural way to
view all these local inverses as part of a global function defined on a space
which, around any point, “looks like” the complex numbers but globally may
be different from C. Such spaces are examples of Riemann Surfaces.

In this chapter, which is meant to illustrate how the concept of Riemann
Surfaces was developed, we limit ourselves to exploring this picture for
the power functions w = zk and their inverses (the k-th root “functions”).
While this may seem unimpressive, Lemma 1.4.4 shows that the power func-
tions, up to appropriate changes of variables, describe the behavior of any

1
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2 From Complex Analysis to Riemann Surfaces

holomorphic function around a critical point – a point where the derivative
vanishes.

Complex analysis is a beautiful and rich subject, and there is no way that we
can do it justice in a handful of pages. We have made the choice of taking a path
through the subject that gives a working understanding of a small selection of
ideas that are important for the development of our story. We refer the reader
interested in further reading to any textbook in complex analysis; for example,
Conway (1978).

1.1 Differentiability

The definition of differentiability for functions of one complex variable is in
complete analogy with the real variable case.

Definition 1.1.1. A function f : C → C is differentiable or holomorphic at
a point z0 ∈ C if and only if the following limit exists:

lim|h|→0

f (z0 + h)− f (z0)

h
= L ∈ C. (1.1)

The complex number L is the value of the derivative of f at z0, denoted by
f ′(z0). A function f is differentiable on a domain U ⊆ C if it is differentiable
at every point u ∈ U .

Because the complex numbers are two-dimensional over the real numbers,
there are many ways for a complex variable h to approach 0. Hence, the exis-
tence of the above limit imposes greater structure on functions of a complex
variable. For instance, we have the following properties, which we prove in
Section 1.3:

1. If f : C → C is differentiable in a neighborhood U of z0, then it is infinitely
differentiable in U .

2. If f : C → C is differentiable at z0, then it is analytic, meaning that the
Taylor expansion of f at z0 always converges to f in a neighborhood of z0.

The statements above are not true for functions of a real variable, as
illustrated in the following exercise.

Exercise 1.1.1.

1. Construct a function f : R → R such that f ′(x) exists and is a continuous
but not differentiable function.
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1.1 Differentiability 3

2. Consider the function

g(x) =
{

0 if x ≤ 0

e−1/x2
if x > 0.

Show that g is infinitely differentiable at 0 and that all derivatives van-
ish: g(n)(0) = 0. This implies that the Taylor expansion of g centered
at 0 is identically 0 (and so the Taylor series does not converge to g in a
neighborhood of 0).

Writing complex numbers in Cartesian coordinates z = x+ iy for x, y ∈ R,
we may write a function f (z) as f (x, y) : R2 → C. Identifying also the
codomain of f with R2, one has f (x, y) = u(x, y) + iv(x, y) for functions
u, v : R2 → R. These are the real and imaginary parts, respectively, of f .

Exercise 1.1.2. Find the functions u(x, y) and v(x, y) associated with
f (z) = z2. Compute the derivative f ′(z) and find its real and imaginary parts.

Theorem 1.1.2 (Cauchy–Riemann Equations). Let f : C → C be a holomor-
phic function on an open subset U ⊂ C. Considering f = u + iv as a real
differentiable function on R2, then the following identities of partial derivatives
hold on U:

ux = vy, vx = −uy . (1.2)

Proof One may restrict the difference quotient (1.1) to real paths approaching
z0. If f is differentiable at z0 = x0 + iy0, the limit is f ′(z0) independently of
the choice of path. We consider a vertical and horizontal path approaching z0.

Letting h approach zero along a vertical path gives (note that here t ∈ R):

f ′(z0) = lim
t→0

u(x0, y0 + t)+ iv(x0, y0 + t)− (u(x0, y0)+ iv(x0, y0))

i t

= vy(x0, y0)− iuy(x0, y0). (1.3)

Similarly, letting h approach zero horizontally yields

f ′(z0) = lim
t→0

u(x0 + t, y0)+ iv(x0 + t, y0)− (u(x0, y0)+ iv(x0, y0))

t

= ux (x0, y0)+ ivx (x0, y0). (1.4)

Equating the real and imaginary parts from the two computations gives the
result.

The following corollary of the Cauchy–Riemann equations will be
extremely important in our story.
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4 From Complex Analysis to Riemann Surfaces

Corollary 1.1.3. Let f be a non-constant holomorphic function. As a function
from the real plane to itself, f is orientation-preserving.

Sketch of proof Intuitively, an orientation of the plane amounts to specify-
ing the notions of “clockwise” and “counterclockwise”. Formally, one defines
an orientation as an equivalence class of bases of R2, where two bases are
equivalent if the determinant of the change of basis matrix is positive. As a
consequence, a function f = u + iv : R2 → R2 is then said to be orientation-
preserving if, on an open dense set of the domain of definition, the determinant
of the Jacobian matrix

J ( f ) =
[

ux uy

vx vy

]

is positive. If f is complex differentiable, then the Cauchy–Riemann equations
imply

detJ ( f ) = uxvy − vxuy = u2
x + v2

x ≥ 0,

and since f is not constant the inequality is strict on a dense open set.

We conclude this section by stating without proof an important prop-
erty of holomorphic functions. A proof is found, for example, in Conway
(1978, Chapter IV, §7).

Theorem 1.1.4 (Open Mapping Theorem). A non-constant holomorphic func-
tion f is open: if U is an open subset of C, then so is f (U ).

1.2 Integration

Complex analytic functions can be integrated along paths in C (see Figure 1.1).
For a path γ : [a, b] → C define∫

γ

f (z)dz =
∫ b

a
f (γ (t))γ ′(t)dt. (1.5)

Example 1.2.1. We compute
∫
γ

1
z dz for γ , a circle of radius r centered at

zero. We have γ (t) = re2π i t and γ ′(t) = 2π ire2π i t for t ∈ [0, 1]. Then∫
γ

1

z
dz =

∫ 1

0

1

re2π i t
2π ire2π i t dt =

∫ 1

0
2π idt = [2π i t]t=1

t=0 = 2π i.
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1.2 Integration 5

Figure 1.1 Picture of a path in C

Exercise 1.2.1. Show that, for any integer n 
= −1, the integral
∫
γ

zndz = 0,
where γ is a circle of radius r centered at zero.

A remarkable property of complex path integrals is that they are invariant
under continuous deformations of the path. Intuitively, this means that we can
wiggle the circle γ in Example 1.2.1 to be any simple closed curve around the
point 0 and still obtain the same result.

We will formalize and discuss extensively the notion of continuous defor-
mation of paths (technically, homotopy) in Chapter 5. For now, if γ, η :
[a, b] → U ⊆ C are paths with the same endpoints (i.e. γ (a) = η(a) = za

and γ (b) = η(b) = zb), a continuous deformation of γ into η is a contin-
uous function H : [a, b] × [0, 1] → U ⊆ C satisfying H(s, 0) = γ (s)
and H(s, 1) = η(s). We also ask that for every t , H(a, t) = za and
H(b, t) = zb.

The idea is that at time t = 0 one has the path γ (s), and as time t flows
from 0 to 1, the path γ (s) continuously morphs into the path η(s) while both
endpoints stay fixed (see Figure 1.2).

Theorem 1.2.2. Suppose that γ, η : [a, b] → U ⊆ C are related by a con-
tinuous1 deformation of paths. Then for any holomorphic function f on U, we
have ∫

γ

f (z)dz =
∫
η

f (z)dz.

Proof For any t ∈ [0, 1] we integrate the function f (z) along the path
H(s, t), obtaining the function I nt (t) = ∫H(s,t) f (z)dz. Consider the deriva-
tive of I nt (t) with respect to t :

1 We note that our proof requires the stronger condition that H(s, t) has partial derivatives.
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6 From Complex Analysis to Riemann Surfaces

Figure 1.2 Schematic picture showing a homotopy of maps

d

dt
I nt (t) = d

dt

∫ b

a
f (H(s, t))

∂H

∂s
(s, t)ds

=
∫ b

a

(
f ′(H(s, t))

∂H

∂t
(s, t)

∂H

∂s
(s, t)+ f (H(s, t))

∂2 H

∂s∂t
(s, t)

)
ds

=
∫ b

a

d

ds

[
f (H(s, t))

∂H

∂t

]
ds = f (H(s, t))

∂H

∂t

∣∣∣∣
s=b

s=a
= 0,

since H(a, t) and H(b, t) are constant functions of t . Having derivative
identically equal to 0, I nt (t) is a constant function and∫

γ

f (z)dz = I nt (0) = I nt (1) =
∫
η

f (z)dz.

Corollary 1.2.3. Let U be a simply connected region of C and f a holo-
morphic function on U. For any closed path γ whose image is inside U,∮
γ

f (z)dz = 0.

Sketch of proof Let us recall that a path is said to be closed if its endpoints
coincide. (The little circle on the integral sign is not strictly necessary, but it
is a visual aid to emphasize that the integration is along a closed path.) The
definition of being simply connected is essentially that any closed path may be
continuously deformed to a constant path. The result now follows from The-
orem 1.2.2 since integrating any function along a constant path yields 0 as a
result.

Exercise 1.2.2. Let U be an open set in C and f a holomorphic function on
U � z0. For j = 1, 2, let γ j be a path parameterizing a circle centered at z0

of radius r j , oriented counterclockwise and completely contained in U . Show
that: ∮

γ1

f (z)dz =
∮
γ2

f (z)dz.
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1.3 Cauchy’s Integral Formula and Consequences 7

In other words, the value of the path integral is independent of the radius of the
circle.

1.3 Cauchy’s Integral Formula and Consequences

From the invariance of path integrals under deformation of paths, one obtains
a formula for a holomorphic function as a path integral.

Theorem 1.3.1 (Cauchy’s Integral Formula). Let γ be a small loop around
z ∈ C and f (w) a holomorphic function in a neighborhood U of γ . Then

f (z) = 1

2π i

∮
γ

f (w)

w − z
dw. (1.6)

A formal proof of formula (1.6) may be found in any complex analysis book;
for example, Conway (1978, Chapter IV, §5). Let us briefly consider how we
should think of this formula and why we should believe it. For any z ∈ U we
intend to describe the value of f (z) as a path integral: at this point we consider
z a fixed complex number and the variable of integration is denoted by w. From
Theorem 1.2.2 we may assume that γ bounds a small disk around z, and from
Exercise 1.2.2 we may let the radius of the disk shrink to 0 without altering
the result of integration. Then the function f (w) restricted to γ tends to the
(constant) complex number f (z), whereas the path integral of 1/(w − z) is
2π i , as seen in Example 1.2.1.

Remark 1.3.2. Cauchy’s integral formula may seem baffling at first: if the
goal is to understand the function f , why would one make any progress by
replacing it with an integral function, which is a more complicated object, and
furthermore an integral that involves f itself as a part of the integrand? The
answer is that (1.6) is not used to compute values of f , but to deduce properties
of f as a function by exploiting the nice formal properties of integrals. We now
illustrate this idea by showing some remarkable consequences of Cauchy’s
formula.

The first remarkable consequence of Cauchy’s integral formula is that any
holomorphic function can be expressed, in a neighborhood of any point z0, as a
power series centered at z0. In the string of equations that follows, we assume
at every step that we restrict the domain to an appropriate neighborhood of z0

as needed:
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8 From Complex Analysis to Riemann Surfaces

f (z) = 1

2π i

∮
γ

f (w)

w − z0 + z0 − z
dw = 1

2π i

∮
γ

f (w)

w − z0
· 1

1− z−z0
w−z0

dw

= 1

2π i

∮
γ

f (w)

w − z0

( ∞∑
n=0

(z − z0)
n

(w − z0)
n

)
dw

=
∞∑

n=0

(
1

2π i

∮
γ

f (w) dw

(w − z0)
n+1

)
(z − z0)

n . (1.7)

Formula (1.7) implies that a holomorphic function is analytic: it is infinitely
differentiable and the Taylor expansion about any point z0 converges to the
function in a neighborhood of z0. Finally, it provides integral formulas for all
derivatives of f :

f (n)(z) = n!
2π i

∮
γ

f (w) dw

(w − z)n+1
.

Definition 1.3.3. Given n, a positive integer, a complex function f has a pole
of order n at the point z0 ∈ C if (z − z0)

n f (z) is holomorphic at z0 but
(z − z0)

n−1 f (z) isn’t.

Exercise 1.3.1. Show that if f has a pole of order n at z0, then it admits a
Laurent expansion at z0; i.e. in a neighborhood of z0,

f (z) =
∞∑

k=−n

ak(z − z0)
k,

with a−n 
= 0.

Definition 1.3.4. Let f have a pole of order n at the point z0. Then the residue
of f at z0 is the k = −1 coefficient in the Laurent expansion of f at z0.

Exercise 1.3.2. Show that if f has a pole of order 1 at z0, then the residue of
f at z0 can be computed as the following limit:

Resz=z0 f (z) = lim
z→z0

(z − z0) f (z). (1.8)

Exercise 1.3.3 (Residue theorem). Let γ : [a, b] → U ⊆ C be a simple
closed path, bounding a region denoted W , containing the points z1, . . . , zm

(see Figure 1.3). Assume f is holomorphic on U � {z1, . . . , zm} and has polar
singularities at the points z j . Show that:∮

γ

f (z)dz = 2π i
m∑

j=1

Resz=z j f (z). (1.9)
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1.4 Inverse Functions 9

1.4 Inverse Functions

An important result for us is the Inverse Function Theorem, which says that a
holomorphic function admits a local inverse at any point where the derivative
is not zero.

Theorem 1.4.1 (Inverse Function Theorem). Let f : U → C be a holo-
morphic function and z0 ∈ U such that f ′(z0) 
= 0. Then there exists a
neighborhood V of f (z0) and a holomorphic function g : V → C such that
z0 ∈ g(V ) and for every z ∈ g(V ), g ◦ f (z) = z.

Proof Since f ′(z0) 
= 0 it is possible to restrict the domain of f to an open
neighborhood U ′ of z0 in such a way that f is injective and f ′ is never zero
on U ′ 2. Since non-constant holomorphic functions are open functions, there
exists a small ball Bδ centered at f (z0) with Bδ ⊆ f (U ′). Let γ be a path
parameterizing the boundary of Bδ . If we let V = Bδ and restrict f to f −1(V ),
we have a bijective function that admits a set theoretic inverse. We show that
such a function is holomorphic by providing an integral formula for it. For any
w ∈ V , define:

g(w) = 1

2π i

∮
γ

ζ f ′(ζ )
f (ζ )− w

dζ.

Let z ∈ g(V ) be such that w = f (z). The integrand of g(w) has a unique
pole of order 1 at ζ = z. Applying the Residue theorem:

g(w) = Resζ=z

(
ζ f ′(ζ ))
f (ζ )− w

)
= lim

ζ→z
(ζ − z)

ζ f ′(ζ )
f (ζ )− w

.

Since f (z) = w, limζ→z
ζ−z

f (ζ )−w
= 1

f ′(z) , giving g(w) = z.

Figure 1.3 Idea behind proof of the Residue theorem

2 For visual intuition, consider the analogous statement for a real-valued function.
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10 From Complex Analysis to Riemann Surfaces

Remark 1.4.2. The Inverse Function Theorem also holds for functions of
many variables. A holomorphic function F : Cn → Cn is locally invertible
at a point z0 (with a holomorphic local inverse around F(z0)) if and only if
det J (F)|z0 
= 0.

1.4.1 k-th Roots

Let k ≥ 1 be an integer and consider the function f : C → C defined by
w = f (z) = zk .

Exercise 1.4.1. Show that, for any w0 
= 0, the inverse image f −1(w0) has
precisely k elements. The only inverse image of 0 via f is 0.

The derivative f ′(z) = kzk−1 only vanishes at z = 0; by the Inverse Func-
tion Theorem, f is locally invertible at every z 
= 0. For any w0 
= 0 and z0

such that zk
0 = w0 there is a holomorphic function f −1

z0
defined in a neighbor-

hood U of w0 such that f −1
z0

(w0) = z0 and f ◦ f −1
z0

(w) = w for all w ∈ U .
Such a function is called a branch of the k-th root function z = w1/k near w0.

A natural question is: how much can the domain of definition of a given
branch of the k-th root be extended? Since f −1

z0
(w) provides a choice of a

distinguished root for every point of U , one could imagine picking a point close
to the boundary of U and repeating the procedure to “enlarge” the domain of
definition of f −1

z0
(w), perhaps eventually managing to “fill” all of C � 0 (see

Figure 1.4). That this is not possible is illustrated by the following exercise.

Exercise 1.4.2. Let z0 = 1 ∈ C identify a branch of z = w
1
k near w0 = 1.

Consider the path γ : [0, 1) → C given by γ (t) = e2π i t . What is

lim
t→1

f −1
z0

◦ γ (t)?

Figure 1.4 Domain and range of w = zk with branch of k-th root chosen
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1.4 Inverse Functions 11

Figure 1.5 A subset of C where it is impossible to “walk around the origin”

Exercise 1.4.2 shows that a branch of the k-th root may not be extended even
continuously to all of C�0: the issue is that if one follows a branch of the k-th
root along a closed path that winds around the origin, one eventually comes
back to a different branch of the k-th root. Hence a branch of the k-th root f −1

z0

may be extended (as a holomorphic function) to any domain U ⊂ (C � 0)
such that it is not possible to walk around the origin in U . Typical examples
of maximal domains of definitions consist of the complex plane minus a real
half-line stemming from the origin (see Figure 1.5).

Another important idea that Exercise 1.4.2 illustrates is that branches of the
k-th root should not be thought of as separate objects. One can move contin-
uously from one to another by “talking a walk around the origin”, and really
there is no particular notion of being on one branch or the next at any given
point.

Historically the k-th root was considered a multi-valued function, i.e. hav-
ing k distinct values of z for any given w 
= 0. Riemann introduced a shift in
point of view by insisting that we should focus on the graph of the k-th power
function:

�k = {(z, w) ∈ C2|w = zk}.
For any point x ∈ �k � (0, 0), w can be used as a coordinate for �k on a neigh-
borhood of x. Composing with the first projection one obtains a local branch
of the k-th root. The space �k � (0, 0), which captures all possible branches
of the k-th root without making any choice of domain restriction, is called the
Riemann Surface of the k-th root.

Example 1.4.3. Let us consider the punctured graph �2 � (0, 0) of the holo-
morphic function w = z2, which is the Riemann Surface of the inverse

function z = w
1
2 . As a topological space, �2 is homeomorphic to C � 0 (the

first projection is a homeomorphism). It will be useful, however, to think of it
as being obtained by endowing two copies of C � 0, which we call X+ and
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12 From Complex Analysis to Riemann Surfaces

X−, with a nonstandard topology, as illustrated in Figure 1.6. We note before-
hand that intuitively this topology amounts to having slit X− and X+ along
the positive real half-lines and reglued in the opposite way the resulting “loose
ends”.

Denote B+r (z) (respectively B−r (z)) a Euclidean open ball in X+ (respec-
tively X−) centered at z with radius r . Endow X+ ∪ X− with topology
generated by the following basis:

● Euclidean open balls in X+ or X− which do not intersect the half-line of
positive real numbers.

● For 0 < ε < x ∈ R,(
B+ε (x) ∩ {Im(z) ≥ 0}) ∪ (B−ε (x) ∩ {Im(z) < 0})

and (
B−ε (x) ∩ {Im(z) ≥ 0}) ∪ (B+ε (x) ∩ {Im(z) < 0}) .

● For 0 < r1, r2 ∈ R,

B−r1
(0) ∪ B+r2

(0).

Exercise 1.4.3. Using the above construction of �2 � (0, 0) = X+ ∪ X−,
understand how this space acts as a domain for the inverse map z = w1/2. For
example, follow the images w1/2 as you loop around the origin again and again
in X+ ∪ X−.

One should ignore the fact that the end result of this construction is yet again
just a copy of C � 0, and rather think of the fact that by “slitting and regluing”
two copies of C�0 you are constructing a new space which around every point
is indistinguishable from the complex numbers. Such a space is some kind of
“escalator” that allows you to connect the various branches of local inverses of
f around the critical point.

The reason for this alternative, and more complicated, point of view is that
the ideas of the construction can be applied in general to give a local model
for the inverse of any holomorphic function f in a neighborhood of a critical
point, i.e. a point where the derivative of f vanishes (this statement is made
precise in Lemma 1.4.4).

Exercise 1.4.4. Let g(w) be a holomorphic function from C to C; show that,
for any w0 such that g(w0) 
= 0, there exists a neighborhood of w0, and k
distinct choices (called branches) for a holomorphic map g̃ such that g̃k(w) =
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1.4 Inverse Functions 13

Figure 1.6 The Riemann Surface of the square root obtained by giving a non-
standard topology to two copies of C � (0, 0). The shaded areas represent open
sets in X− ∪ X+.

g(w). (When we don’t care particularly about which branch one may choose,
this function is (with abuse of notation) denoted by g(w)1/k or k

√
g(w).)

Lemma 1.4.4. Let w = f (z) be a holomorphic function and z0 ∈ C such that
the first k−1 derivatives of f (z) vanish at z0 but f (k)(z0) 
= 0. Then there exist
holomorphic changes of variable z̃(z), w̃(w) such that in the new variables f
becomes w̃ = z̃k .

Proof Consider the Taylor expansion of f around z0. By the hypothesis that
all derivatives of order less than k vanish, it must be that:

f (z)− f (z0) =
∞∑

n=k

an(z − z0)
n, (1.10)

and since f (k)(z0) 
= 0, it must be that ak 
= 0. The function g(z) =∑∞
n=k an(z − z0)

n−k is holomorphic and such that g(z0) 
= 0; therefore it
admits a branch of the k-th root around z0.

We now define z̃ = (z−z0)
k
√

g(z). This is naturally a holomorphic function,
and one can show that it is invertible at z0 (and hence a legitimate change of
variable) by showing that d

dz z̃|z0 
= 0. We leave this check as an exercise.
Finally, defining w̃ = w − f (z0), we note that (1.10) is expressed in the new
variables as w̃ = z̃k .
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2

Introduction to Manifolds

In Chapter 1 we created an honest domain for the multi-valued function z1/2

by “gluing together” open subsets of C. This construction generalizes to the
notion of a manifold: a space whose global geometry may be complicated, but
such that the local geometry around any point is familiar. An illustration to
have in mind is how the Earth can locally be represented on your flat computer
screen (i.e. an open set in R2) in Google Maps, but globally the Earth is –
spoiler alert! – roughly spherical.

Suppose you are Google-mapping your neighborhood with your house at
the center of your screen. We think of the map you are looking at as a function

ϕ : (a subset of the Earth)→ (your flat computer screen).

Such a function, which we will call a chart, gives coordinates to a little piece
of Earth simply by adopting, for that piece of Earth, the coordinates of your
computer screen.

Now imagine that your friend who lives down the street is also viewing a
map of your neighborhood, centered on his house. Your friend’s screen doesn’t
look exactly the same as yours, but there is a portion of your neighborhood
which is on both your screen and your friend’s screen. There is a natural
function

T :
(

the common portion of your
neighborhood on your screen

)
→
(

the common portion on your
friend’s screen

)

which identifies the points on the two screens that correspond to the same phys-
ical location. By using this function, you and your friend can piece together
your neighborhood and, for example, figure out how to get from a location that
appears on your screen but not on his to a location that appears on his screen
but not on yours.

14
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2.1 General Definition of a Manifold 15

The function T will be called a transition function. The role of transition
functions is to compare geometric information coming from different charts.

The key philosophical idea is, then, that we understand completely the
geometry of the Earth through the following information:

● a set of charts, the union of whose domains covers the Earth;
● transition functions that allow us to compare information among charts

whose domains overlap.

In the olden days before the internet, such information was collected in big
books, often called World Atlases, in which each page corresponds to a chart
and the transition functions are provided by the little strips on the boundary of
each page that are repeated in some other page.

2.1 General Definition of a Manifold

Now for a formal definition of a manifold. We invite the reader to refer to
Figure 2.1.

Definition 2.1.1. A topological space X is called a [smooth] manifold if and
only if the following conditions are satisfied.

ϕ

ϕ

Figure 2.1 A manifold X with charts and transition functions
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16 Introduction to Manifolds

1. X is a Hausdorff topological space;
2. For all x ∈ X there exists a neighborhood Ux ⊂ X of x and a

homeomorphism ϕx : Ux → Vx where Vx is an open set in [Rn];
3. For any Ux ,Uy such that Ux ∩Uy 
= ∅ the transition function

Ty,x : ϕy ◦ ϕ−1
x : ϕx (Ux ∩Uy)→ ϕy(Ux ∩Uy)

is [smooth].

Recall that a function �f = ( f1, f2, . . . , fn) : Rm → Rn is smooth, i.e.
f ∈ C∞, if each fi has continuous partial derivatives of all orders; in other
words, if all partial derivatives ∂k fi/∂xi1∂xi2 · · · ∂xik exist and are continuous.

Remark 2.1.2. We have placed (purely notational) brackets throughout Def-
inition 2.1.1 to indicate that there is a class of manifold for many different
“categories” relating to the real and complex numbers. For instance, one can
consider differentiable Ck-manifolds, or complex analytic manifolds. In the lat-
ter case, we have Vx ⊂ Cn and we ask transition functions to be holomorphic.
This will be our focus from Chapter 3 onward; however, smooth manifolds
lend themselves well to visualization and so are well-suited to an introduction.

Definition 2.1.3. The n in Rn (or Cn if considering complex analytic man-
ifolds) in part 2 of Definition 2.1.1 is called the dimension of X . The pair
(Ux , ϕx ) is called a local chart for X , and the function ϕx is called a local
coordinate function. A transition function compares different local coor-
dinates for the same points of X and is therefore also called a change of
coordinates. A collection A = {(Uα, ϕα)}α of local charts that covers X , such
that all transition functions are [smooth], is called an atlas.

The same topological space can be given the structure of a manifold in
different ways, i.e. can be given different atlases. However, some atlases deter-
mine the same manifold structure on the topological space; when this happens
we say the two atlases are compatible.

Definition 2.1.4. Two atlases A = {(Uα, ϕα)}α and B = {(Uβ, ϕβ)}β for a
topological space X are called compatible if their union A ∪ B is an atlas for
X ; in other words, if for all α, β such that Uα∩Uβ 
= ∅ the transition functions
ϕβ ◦ ϕ−1

α and ϕα ◦ ϕ−1
β are [smooth].

Exercise 2.1.1. Show that compatibility is an equivalence relation on the
collection of atlases for a topological space X .
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2.2 Basic Examples 17

An equivalence class of compatible atlases for X is called a [smooth
differentiable] structure on X .

2.2 Basic Examples

The most trivial example of a smooth manifold is Euclidean space itself. In
this case Rn can be covered by the one chart atlas (Rn, I d), and there are
no transition functions to worry about. Similarly, any open subset of Rn is a
smooth manifold.

Example 2.2.1. We give the unit circle S1 = {(x, y) ∈ R2|x2 + y2 = 1} with
topology induced by R2 the structure of a smooth manifold. Note that S1 is
Hausdorff since R2 is. We define an atlas (illustrated in Figure 2.2) consisting
of four charts with the following domains:

● U+
x = {(x, y) ∈ S1|x > 0}

● U−
x = {(x, y) ∈ S1|x < 0}

● U+
y = {(x, y) ∈ S1|y > 0}

● U−
y = {(x, y) ∈ S1|y < 0}.

We use projection to define our coordinate functions:

● ϕ±x = πy |U±
x
: U±

x → (−1, 1) ⊂ R sends (x, y) �→ y
● ϕ±y = πx |U±

y
: U±

y → (−1, 1) ⊂ R sends (x, y) �→ x .

Note that (ϕ+y )−1(x) = (x,
√

1− x2) is a continuous function on the interval
(−1, 1) and hence ϕ+y is a homeomorphism. Similarly, one can check that all
other local coordinate functions are homeomorphisms.

Consider the intersection U := U+
x ∩U+

y = {(x, y) ∈ S1|x, y > 0}; we have

ϕ+x (U ) = ϕ+y (U ) = (0, 1) ⊂ R. The transition function Tx+,y+ = ϕ+x ◦(ϕ+y )−1

sends x ∈ (0, 1) to

Figure 2.2 A circle with four charts
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18 Introduction to Manifolds

Tx+,y+ : x
(ϕ+y )−1

�−→ (x,
√

1− x2)
ϕ+x�−→
√

1− x2,

which is smooth on the domain (0, 1). Similar checks show that all other tran-
sition functions are smooth. Thus our atlas gives S1 the structure of a smooth
manifold.

Exercise 2.2.1. Another method of giving S1 a manifold structure is by
stereographic projection. Define the points N = (0, 1), S = (0,−1) and
corresponding subsets UN = S1 − N ,US = S1 − S. Define the chart
ϕN : UN → R by ϕN (x0, y0) = xN , where xN is the x-intercept of the unique
line through N and (x0, y0) in R2. Define ϕS by replacing N with S.

1. Find explicit formulas for ϕN (x0, y0), ϕS(x0, y0) in terms of x0 and y0.
2. Let xN ∈ R. Show that the x-coordinate of (ϕN )−1(xN ) is 2xN

x2
N+1

and that

the y-coordinate is the following:⎧⎪⎪⎨
⎪⎪⎩

√
1− (

2xN

x2
N+1

)2 if |xN | ≥ 1

−
√

1− (
2xN

x2
N+1

)2 if |xN | < 1.

3. Consider the transition function TS,N = ϕS ◦ (ϕN )−1.
(a) What are the domain and range of TS,N ?
(b) Compute TS,N in terms of xN . Hint: there will be two cases.
(c) Show that TS,N is a smooth function on its domain.
Note that the check for the smoothness of TN ,S is completely analogous.

4. Show that the atlas B given here using stereographic projection and the
atlas A defined in Example 2.2.1 are compatible. For any local chart ϕα

from A and any local chart ϕβ from B whose domains intersect, you should
compute ϕβ ◦ ϕ−1

α and ϕα ◦ ϕ−1
β and show that they are smooth functions

on their domains.

Exercise 2.2.2. The two atlases considered for S1 in Example 2.2.1 and
Exercise 2.2.1 generalize to give atlases for each Sn, n ≥ 1. In dimension
n, the atlas analogous to A has 2n + 2 charts and the one analogous to B still
has two charts. Understand these generalizations.

Example 2.2.2. Let the function f map M(m, n,R) = {m × n matrices with
real entries} to Rmn by fixing once and for all a bijection between the mn
positions in a matrix and the coordinates of Rmn and sending each entry to the
corresponding coordinate. For example, we have
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2.3 Projective Spaces 19

f :
(

1 2 3
4 5 6

)
∈M(2, 3,R) �−→ (1, 2, 3, 4, 5, 6) ∈ R6.

We induce a topology on M(m, n,R) by defining f to be a homeomorphism,
i.e. U ⊂ M(m, n,R) is open if and only if f (U ) is open in Rmn . Then the
one-chart atlas {M(m, n,R), f } gives M(m, n,R) the structure of a smooth
manifold.

Exercise 2.2.3. Show that any open set of a smooth manifold X is itself a
smooth manifold.

Example 2.2.3. The set GL(n,R) = {M ∈ M(n, n,R)|det(M) 
= 0} is a
smooth manifold since it is an open set of a smooth manifold.

2.3 Projective Spaces

Projective spaces are important and “historical” examples of manifolds; even
though the current formalization of the theory happened much later, ideas in
projective geometry date back to Pappus (290–350 AD). Renaissance painters
Leon Battista Alberti (1404–72) and Piero della Francesca (1410–92) wrote
mathematical treatises on planar projective geometry arising from their studies
of perspective drawing. The basic idea is the following: a painter represents
the three-dimensional world by projecting it onto a two-dimensional canvas.
All points that lie on the same line through the eye of the painter end up at the
same point on the canvas (see Figure 2.3).

Projective spaces capture and formalize this idea mathematically: they are
geometric objects whose points are in bijection with lines through the origin

Figure 2.3 Points in space lying on the same “line of sight” get drawn as one point
on the artist’s canvas
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20 Introduction to Manifolds

(the painter’s eye) in an ambient Euclidean space. Natural charts that define a
manifold structure are given by all possible canvases that the painter may place
in space (away from his/her eye) and project onto. We now define projective
space in three stages: first we describe the set of points, then the topology and
finally the manifold structure.

Definition 2.3.1 (Projective Space: Points). The set of points of Pn(R) is
defined to be naturally in bijection with either of the following sets:

1. lines 
 through the origin in Rn+1;
2. equivalence classes of n + 1-tuples of real numbers (X0, . . . , Xn) 
=

(0, . . . , 0) such that, for any λ ∈ R � {0},
(X0, . . . , Xn) ∼ (λX0, . . . , λXn).

Remark 2.3.2. For the reader familiar with coordinate-free linear algebra, it
is worth pointing out that, given an n + 1 dimensional R-vector space V , one
can define the projectivization of V (denoted P(V )), whose points correspond
to one-dimensional linear subspaces of V .

Exercise 2.3.1. Show that the two sets in Definition 2.3.1 are canonically in
bijection with each other, and either is put in bijection with the set in Remark
2.3.2 by choosing a basis for V . Therefore, any one of them can be taken as a
model for the points of Pn−1(R).

We can use n + 1-tuples of numbers to identify points of Pn(R), much like
coordinates in a vector space after choosing a basis. However, we require coor-
dinates for a point to be unique, and this is not the case here. The n + 1-tuples
(X0, . . . , Xn) are called homogeneous coordinates; given a point 
 ∈ Pn(R),
we denote it via the equivalence class of its homogeneous coordinates by the
notation


 = [X0 : X1 : . . . : Xn].

Exercise 2.3.2. Which of the points listed below represent the same point in
P1(R)? How many distinct points of P1(R) are listed? [1 : 1], [2 : −1/2], [0 :
1], [−1/4 : −1/4], [6 : −3/2], [−2 : −2]. As a side puzzle: why is [0 : 0] not
a legitimate homogeneous coordinate for any point in P1(R)?

Definition 2.3.3 (Projective Space: Topology). We give a topology to Pn(R)

by inducing it as the quotient topology via a surjective function. Consider the
natural projection function:
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2.3 Projective Spaces 21

π : Rn+1 � {�0} → Pn(R)

(X0, X1, . . . , Xn) �→ [X0 : X1 : . . . : Xn].

A set U ⊆ Pn(R) is defined to be open if and only if π−1(U ) is open in
Rn+1 � {�0}. In other words, we give Pn(R) the finest topology that makes π

continuous.

Exercise 2.3.3. In Definition 2.3.3 we realized Pn(R) as an identification/orbit
space: let R∗ = R � {0} act on Rn+1 by component-wise multiplication: λ ·
(X0, X1, . . . , Xn) = (λX0, λX1, . . . , λX N ). Then

Pn(R) =
(
Rn+1 � {�0}

)
/R∗.

We now present two alternative models for Pn(R) as an identification space,
and leave it as an exercise that they yield homeomorphic results.

Sphere quotient. Consider the n-dimensional unit sphere Sn ⊂ Rn+1. The
multiplicative cyclic group μ2 = {1,−1} acts on the sphere by

±1 · (X0, X1, . . . , Xn) = (±X0,±X1, . . . ,±Xn).

Then Pn(R) is the quotient space Sn/μ2.
Disk model. Consider the n-dimensional closed unit disk D

n ⊂ Rn , and
consider the antipodal equivalence relation on the points of its boundary:
x ∼ −x if and only if ||x|| = 1. Then Pn(R) is the identification space
D

n
/ ∼.

We point out that the sphere quotient and disk model for Pn(R) immediately
show that projective space is compact, and we make it an exercise to show it is
Haussdorf.

We now give real projective space the structure of a smooth manifold. In
order to avoid clouding the ideas with cumbersome notation, we treat explicitly
the case n = 1 and leave it to the reader to draw the natural generalizations.

We describe explicitly a two-chart atlas defining a smooth manifold structure
on P1(R).

Inside R2 with coordinates (X, Y ), identify the line {X = 1} with R by
using y = Y as a coordinate. Each non-vertical line intersects the line {X =
1} at a unique point, and this association determines our coordinate function.
Formally, we define

UX = P1(R) � {[0 : 1]} = {[X : Y ] ∈ P1(R)|X 
= 0}
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22 Introduction to Manifolds

and ϕX : UX → C by

ϕX ([X : Y ]) = Y/X = y

(note that X 
= 0 implies [X : Y ] = [1 : Y/X ]).
Similarly, we define a second chart using the line {Y = 1}, i.e.

UY = P1(R) � {[1 : 0]} = {[X : Y ] ∈ P1(R)|Y 
= 0}

and ϕY : UY → C

ϕY ([X : Y ]) = X/Y = x .

Exercise 2.3.4. Draw a picture illustrating the coordinate functions ϕX and
ϕY . Show that ϕX and ϕY are homeomorphisms.

We now consider transition functions. We have U := UX∩UY = {[X : Y ] ∈
P1(R)|X, Y 
= 0} and ϕX (U ) = ϕY (U ) = R � {0}. The transition function
Tx,y = ϕY ◦ (ϕX )

−1 sends y 
= 0 to

Tx,y : y
(ϕx )

−1

�−→ [1 : y] = [1/y : 1] ϕy�−→ 1/y

which is smooth on the domain R � {0}. Similarly Tx,y : x �→ 1/x is smooth,
and thus P1(R) is a smooth manifold.

Exercise 2.3.5. Convince yourself that P1(R) is homeomorphic to a circle.
Since P1(R) has dimension 1, it is called the projective line.

Remark 2.3.4. The charts UX and UY are often called coordinate affine
charts and the functions x and y affine coordinates. Since, in the case of
the projective line, any one affine chart captures all of the space except one
point, it is common to describe the space with just one affine coordinate, and
allow it to take the value ∞ to represent the missing point. Note, however,
that the notion of a point being at infinity depends on the choice of the affine
chart that is being used. When using UX with affine coordinate y, then y = ∞
corresponds to the point [0 : 1], whereas for UY the point x = ∞ is [1 : 0].

Exercise 2.3.6. Our choice of atlas for P1(R) is somewhat arbitrary (at least
mathematically). Show that any choice of two non-parallel lines not through
the origin gives an atlas compatible with our choice.
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2.4 Compact Surfaces 23

Exercise 2.3.7. Show that the following three charts form an atlas for the real
projective plane, P2(R):

UX = {X 
= 0}, ϕX ([X : Y : Z ]) = (Y/X, Z/X) (2.1)

UY = {Y 
= 0}, ϕY ([X : Y : Z ]) = (X/Y, Z/Y ) (2.2)

UZ = {Z 
= 0}, ϕZ ([X : Y : Z ]) = (X/Z , Y/Z). (2.3)

Generalize this construction to show that Pn(R) is a smooth manifold for any
positive integer n.

Giving the structure of a complex analytic manifold to the complex projec-
tive spaces Pn(C) might seem trickier, as one has to consider complex lines
through the origin in Cn+1, but the construction of the local charts and checks
of transition functions follow completely in analogy to the real case.

2.4 Compact Surfaces

This paragraph is an essential introduction to surfaces, the manifolds we really
care about in our story. We recall the theorem of classification of compact
surfaces, present the notion of an identification polygon representing a sur-
face and introduce Euler characteristic and orientability, the two fundamental
topological invariants for surfaces. The reader interested in a complete account
and rigorous proofs may consult any basic topology textbook; for example,
Armstrong (1983) and Munkres (1975).

Definition 2.4.1. A surface is a manifold of real dimension 2.

Trivial examples of surfaces are given by R2,C and any of their open
subsets. We are especially interested in connected, compact surfaces, i.e. sur-
faces that are connected and compact as topological spaces. In Section 2.2 we
showed that the two-dimensional sphere S2 is an example of a compact sur-
face, and in Section 2.3 we introduced the more exotic example P2(R). A third
example that may be familiar is the torus T , corresponding to the “glaze” of a
doughnut. A remarkable theorem in topology tells us that these three surfaces
may be used as building blocks to construct every other connected, compact
surface.

Definition 2.4.2. Given two connected surfaces S1 and S2, the connected sum
S1#S2 is the surface obtained by removing an open disk from each of the
surfaces and identifying the resulting boundaries via a homeomorphism.
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24 Introduction to Manifolds

Figure 2.4 The connected sum of two surfaces

The operation of connected sum is illustrated in Figure 2.4. Of course,
one must prove that this operation is well defined up to homeomorphism,
i.e. the result is independent of the choice of disks to remove and of the
homeomorphism used to identify the boundaries.

Exercise 2.4.1. Assuming that the operation of connected sum is well defined,
show that it gives the structure of an associative monoid with identity to the set
of homeomorphism classes of connected compact surfaces. Which surface is
the identity element?

The theorem of classification of compact surfaces states that, up to home-
omorphism, there is the sphere plus two countable classes of connected,
compact surfaces.

Theorem 2.4.3 (Classification of Compact Surfaces). Any connected, com-
pact surface is homeomorphic to exactly one surface in the following list. The
indices g,m take value among all positive integers:

● S2, the two-dimensional sphere;
● T #g = T # . . . #T , the connected sum of g tori;
● P2(R)#m = P2(R)# . . . #P2(R), the connected sum of m projective planes.

A complete proof of this theorem would be too large a detour from our path,
but the one-paragraph sketch goes as follows: to show that the above list is
exhaustive, one shows that any surface may be represented by an identifica-
tion polygon, and then show via an inductive procedure that all identification
polygons give surfaces in the above list. To show that no two distinct surfaces
in the above list are homeomorphic, one constructs two topological invariants,
orientability and Euler characteristic, and shows that they are a complete set of
invariants for the above list of surfaces, meaning that no two distinct elements
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2.4 Compact Surfaces 25

take the same value for both invariants. In the remaining part of this paragraph
we introduce these notions.

2.4.1 Identification Polygons

First for some abstract nonsense: we call a set A of n letters an alphabet, and
we call the set A ∪ A, consisting of repeating each letter a second time with a
bar above it, a doubled alphabet. Each pair a, ā, for a ∈ A, is called a pair of
twin letters.

Definition 2.4.4. An identification polygon with 2n sides is a word w con-
structed from a doubled n-letter alphabet such that, for each pair of twin letters,
w contains exactly two letters from that pair (repetitions allowed). In particular,
the word w must have exactly 2n letters.

Example 2.4.5. An alphabet of two letters consists of A = {a, b}. Then the
doubled alphabet is A ∪ A = {a, b, ā, b̄} and the twin pairs are {a, ā} and
{b, b̄}. Then the following are examples of identification polygons:

w1 = aābb̄ w2 = aabb̄ w3 = abāb̄ w4 = abab̄.

An identification polygon w gives rise to a compact surface as follows. Con-
sider a regular 2n-gon and label its sides, counterclockwise, so as to spell
the word w. Then, for every twin pair in the alphabet, identify the two sides
of the polygon labeled by that twin pair via a homeomorphism which preserves
the orientation of the boundary if the two letters are the same, and via a home-
omorphism which reverses the orientation of the boundary if both elements
in the twin pair appear in the labeling. Any surface S homeomorphic to the
surface thus obtained is said to be represented by the identification polygon w.

Example 2.4.6. The identification polygon w = aā gives a surface homeo-
morphic to the sphere S2, as shown in Figure 2.5. The polygon aa is precisely
the disk model for the real projective plane P2(R) (as in Section 2.3).

Exercise 2.4.2. Recognize the surfaces of the four identification polygons in
Example 2.4.5 as the sphere, the real projective plane, the torus and the Klein
bottle.

Identification polygons play very well with connected sums, as we explore
in the next exercise.
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26 Introduction to Manifolds

Figure 2.5 The identification polygon w = aā gives a sphere S2: the boundary of
w is like a “zipper”, and the identification process consists in “zipping it up”

Exercise 2.4.3. If S1, S2 are connected compact surfaces represented by the
polygons w1 and w2, then show that the surface S1#S2 is represented by the
polygon w1w2 (i.e. the concatenation of the two words). Note that we are
assuming that the two words use letters from different alphabets, A1 and A2.

If you are having fun with this whirlwind incursion into identification
polygons, you may want to challenge yourself with the following exercises.

Exercise 2.4.4. By appropriately manipulating identification polygons, show
the following homeomorphisms:

● Klein bottle ∼= P2(R)#P2(R)

● T #P2(R) ∼= P2(R)#P2(R)#P2(R).

Exercise 2.4.5. Show that any identification polygon gives a surface homeo-
morphic to one in the list appearing in Theorem 2.4.3.

2.4.2 Euler Characteristic and Orientability

The Euler characteristic of a surface is a number computed through an
auxiliary “good” graph on the surface.

Definition 2.4.7. A good graph on a surface S is a graph � on S such that:

1. S � � is homeomorphic to a disjoint union of open disks;
2. wherever two edges cross there is a vertex;
3. no edge ends without a vertex.

The Euler Characteristic of a surface S is a topological invariant which can
be defined/computed as:

χ(S) = |V�| − |E�| + |F�|,
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2.4 Compact Surfaces 27

where V�, E�, F� are the sets of vertices, edges and faces of a “good graph”.

The Euler characteristic is in fact independent of the choice of a good graph
on S, and is therefore a topological invariant.

Example 2.4.8. Any platonic solid can be thought of as a topological sphere
together with a good graph on it: vertices, edges and faces are simply those
of the platonic solid. For example, a tetrahedron has 4 vertices, 6 edges and 4
faces; a cube gives 8 vertices, 12 edges and 6 faces. The Euler characteristic of
the sphere is thus computed to be χ(S2) = 2.

Exercise 2.4.6. Show that if S is represented by an identification polygon w,
then the boundary of the polygon w is a good graph on S.

Exercise 2.4.7. If S1 and S2 are compact, connected surfaces:

χ(S1#S2) = χ(S1)+ χ(S2)− 2.

Exercise 2.4.8. Compute:

● χ(T #g) = 2− 2g;
● χ(P2(R)#m) = 2− m.

By using the standard representation of a compact surface as an identi-
fication polygon, one can deduce that the Euler characteristic of a compact
orientable surface of genus g is 2− 2g.

Orientability is a somewhat more sophisticated invariant.

Definition 2.4.9. A surface S is orientable if it admits an atlas such that all
transition functions are orientation-preserving (in the sense of Corollary 1.1.3).
Such an atlas is called a positive atlas for S.

The prototypical example of a non-orientable surface is the Möbius strip,
depicted in Figure 2.6. In fact, one can show that a surface is non-orientable if
and only if it contains an open subset homeomorphic to a Möbius strip.

Exercise 2.4.9. Show that for all m ≥ 1, P2(R)#m are non-orientable.

Fact: The sphere, the torus and all connected sums of tori are orientable
surfaces.
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28 Introduction to Manifolds

Figure 2.6 A Möbius strip

Exercise 2.4.10. Show that Euler characteristic and orientability are a com-
plete set of invariants for compact, connected surfaces.

2.5 Manifolds as Level Sets

A natural way to construct interesting manifolds as subsets of Euclidean space
is by considering level sets of functions. Given the function f (x, y) = x2+ y2,
the unit circle can be thought of as the level set f −1(1); in Example 2.2.1 we
showed that the circle is a manifold.

Let us now consider instead the function g(x, y) = xy. The level set g−1(1)
is a smooth hyperbola, which you may check is a one-dimensional smooth
manifold. But the level set g−1(0) consists of the union of the x and y axes,
which cannot be given the structure of a smooth manifold: no neighborhood of
the origin can be homeomorphic to an open set in R.

The answer to which level sets are well behaved lies in this classical theorem
from analysis.

Theorem 2.5.1 (The Implicit Function Theorem). Let F : Rn → Rm be a
smooth function, and x ∈ Rn such that the differential d F(x) is a surjective
linear function. Say F(x) = a. Then there exist:

● Vx ⊆ Rn, an open neighborhood of x;
● Ux ⊆ Rn−m an open set;
● fx : Ux → Rm a smooth function

such that

F−1(a) ∩ Vx = � f ,

where � f denotes the graph of f .

Proof The geometric idea for the proof of this theorem is illustrated in
Figure 2.7, which we invite the reader to refer to throughout the proof; to
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2.5 Manifolds as Level Sets 29

n n

m

n-m

Figure 2.7 Schematic picture of the geometry involved in the proof of the Implicit
Function Theorem

do things honestly we must alas use coordinates – let us bite the bullet and
do it.

Let F = (F1(x1, . . . , xn), . . . , Fm(x1, . . . , xn)), and consider the m × n
matrix of partial derivatives:

J =

⎡
⎢⎢⎣

∂F1
∂x1

(x) . . . ∂F1
∂xn

(x)
...

. . .
...

∂Fm
∂x1

(x) . . . ∂Fm
∂xn

(x)

⎤
⎥⎥⎦

The differential d F(x) is the linear function represented by the matrix J , and
therefore it is surjective if and only if n ≥ m and J has maximal rank m. We
assume without loss of generality that the rightmost m × m minor of J has
nonzero determinant.

We now consider an auxiliary function F̂ : Rn → Rn , specifically con-
structed so that it extends F and satisfies the hypotheses of the Inverse Function
Theorem (1.4.1):
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30 Introduction to Manifolds

F̂(x1, . . . , xn) = (x1, x2, . . . , xn−m, F1(x1, . . . , xn), . . . , Fm(x1, . . . , xn)).

The differential d F̂(x) is represented by the square matrix

Ĵ =

⎡
⎢⎢⎢⎢⎢⎣

I d 0

J

⎤
⎥⎥⎥⎥⎥⎦ ,

which has determinant equal to the last m × m minor of J , nonzero by
assumption.

By the Inverse Function Theorem, there exist neighborhoods Vx of x and
WF̂(x) of F̂(x) such that smooth local inverse function F̂−1 : WF̂(x) → Ux is
defined.

Let πn−m : Rn → Rn−m be the linear projection on the first n − m coor-
dinates and πm : Rn → Rm the projection on the last m coordinates. We
define

Ux = πn−m

(
WF̂(x) ∩ {xn−m+1 = a1} . . . ∩ {xn = am}

)
.

We finally define: fx : Ux → Rm by

fx(x1, . . . , xn−m) = πm(F̂−1(x1, . . . , xn−m, a1, . . . , am)).

Checking that Vx,Ux and fx verify the statement of the theorem is now a
matter of careful bookkeeping, and we leave it as an exercise for the reader.

Behind the technical smokescreen, what the Implicit Function Theorem says
is actually very natural: if at a point x ∈ Rn there are m coordinates such
that the determinant of the matrix of the corresponding partial derivatives is
nonzero, then locally around x you may choose the complementary n − m
coordinates to be local coordinates for the level set of F through x. The natural
projection to these coordinates gives a local chart for the level set around x.
With this in mind, the following result should seem very natural.

Definition 2.5.2. Let F : Rn → Rm be a smooth function. A point a ∈ Rm

is called a regular value for F , if for every x ∈ Rn such that F(x) = a, the
differential d F(x) is a surjective linear function.

Theorem 2.5.3. Let F : Rn → Rm be a smooth function and a ∈ Rm a
regular value for F. Then F−1(a) is a smooth manifold.
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2.5 Manifolds as Level Sets 31

Proof We begin by noting that F−1(a) is Hausdorff since it is a subset of Rn

with the induced subset topology.
Since a is a regular value for F , for any x in the level set of a, Theorem 2.5.1

applies: the pair (Ux, πn−m) gives a local chart for F−1(a) around x.
Now assume x and x′ are in the level set of a and Vx ∩ Vx′ ∩ F−1(a) 
= ∅.

Then the transition function Tx,x′ = ϕx ◦ ϕ−1
x′ = πn−m ◦ fx′ (restricted to the

appropriate domain of definition) is a composition of smooth functions and
hence it is smooth.

Exercise 2.5.1. Consider the function F : R3 → R defined by:

F(x, y, z) =
(

2−
√

x2 + y2

)2

+ z2.

Show that 1 is a regular value for F and hence F−1(1) is a smooth manifold.
It is in fact a familiar surface – try to recognize it.
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3

Riemann Surfaces

In Chapter 1 we saw that studying maximal domains of definition for complex
analytic functions naturally led us to look at geometric spaces which are locally
indistinguishable from C, but globally are different from C. In Chapter 2 we
saw that the notion of manifolds formalizes the idea of “spaces formed by
gluing together Euclidean spaces by identifying open sets”. We now revisit
the complex spaces studied in Chapter 1 as a particular class of manifolds,
called Riemann Surfaces. The name is given after the mathematician Bernhard
Riemann (1826–66), who introduced this point of view.

Definition 3.0.4. A Riemann Surface is a complex analytic manifold of
dimension 1.

In a few more words, “X is a Riemann Surface” means:

1. X is a Hausdorff, connected topological space;
2. For all x ∈ X there is a homeomorphism ϕx : Ux → Vx , where Ux is an

open neighborhood of x ∈ X and Vx is an open set in C;
3. For any Ux ,Uy such that Ux ∩Uy 
= ∅ the transition function

Ty,x := ϕy ◦ ϕ−1
x : ϕx (Ux ∩Uy)→ ϕy(Ux ∩Uy)

is holomorphic.

Remark 3.0.5. The choice of requiring connectedness in Definition 3.0.4 is
made purely for exposition convenience. One can define a disconnected Rie-
mann Surface simply by removing the connectedness assumption. When we
work with disconnected Riemann Surfaces in this book we will always qualify
them as such.

32
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3.1 Examples of Riemann Surfaces 33

ϕ

ϕ

Figure 3.1 A Riemann Surface with two local charts and transition functions

We saw in Corollary 1.1.3 that a holomorphic function preserves orientation
when thought of as a differentiable function from the (real) plane to itself.
Since all transition functions are holomorphic, any atlas is a positive atlas.
Therefore, topologically a Riemann Surface is an orientable surface.

The remainder of the chapter is dedicated to providing several examples
of Riemann Surfaces. We begin by revisiting the examples seen in Chapter 1
and several simple examples coming from complex analysis. We then move to
compact Riemann Surfaces, which are the heroes of this book.

3.1 Examples of Riemann Surfaces

3.1.1 The Riemann Surface of the Square Root

In Chapter 1, to create an honest domain for the function z1/2 we altered the
topology of two copies of C � 0, that we denoted X+ and X−: the resulting
(Hausdorff) topological space X can and should be thought of as having cut
and re-glued the two punctured complex planes along the positive real num-
bers (see Example 1.4.3 for details). We show that X is a Riemann Surface
by exhibiting an atlas with four local charts: we begin by defining the inverse
functions to the charts.
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34 Riemann Surfaces

Figure 3.2 Left: images ιi (Vi ) = Ui ⊂ X = X+ � X−/ ∼; Right: the atlas on
X provides instructions for “gluing” the sets Vi by identifying points using the
transition functions

Define V1 = V3 := C � R≥0, V2 = V4 := C � R≤0 , and consider the four
injective functions ιi : Vi → X :

ι1(z1) = z1 ∈ X+,

ι2(z2) =
{

z2 ∈ X+ if Im (z2) ≤ 0
z2 ∈ X− if Im (z2) > 0

,

ι3(z3) = z3 ∈ X−,

ι4(z4) =
{

z4 ∈ X− if Im (z4) ≤ 0
z4 ∈ X+ if Im (z4) > 0

. (3.1)

Call Ui the image ιi (Vi ) ⊂ X , and ϕi : Ui → Vi the inverse function of ιi .
See Figure 3.2.

Exercise 3.1.1. Prove that the sets Ui are open sets in X (you must use
the topology on X described in Example 1.4.3). Show that the collection
{Ui }i=1,...,4 covers X , and that the functions ϕi are homeomorphisms.

It remains to show that the transition functions are holomorphic. We
consider one transition function – all other checks are analogous.

The intersection U1 ∩U2 consists of all points in X+ whose imaginary part
is negative. The transition function T21 : ϕ1(U1∩U2) = {z ∈ V1|Im z < 0} →
ϕ2(U1 ∩U2) = {z ∈ V2|Im z < 0} maps z1 �→ z1 and thus gives the change of
coordinates z2 = z1, which is holomorphic. This completes the proof that X is
a Riemann Surface.
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3.1 Examples of Riemann Surfaces 35

Exercise 3.1.2. Exhibit the domains for z
1
n and log z as Riemann Surfaces.

Note that, as a set, log z = w ∈ C|ew = z.

Remark 3.1.1. We pause to note an alternative technique for constructing a
Riemann Surface. Namely, instead of assigning local charts to a topological
space X , one can start with a collection {Vα}α∈A of open sets in C together
with compatible transition functions tβα : Uα → Vβ , where Uα ⊆ Vα is an
open subset and tβα is a homeomorphism onto its image. The space X is then
constructed by gluing the sets Vα using the transition functions. Formally, X is
the identification space

X ∼=
∐

α∈A Vα

∼ ,

where ∼ is the equivalence relation generated by x ∼ tβα(x) for all x ∈ Vα

and all α ∈ A. See Miranda (1995, Section I.2) for more details.

3.1.2 Graphs of Complex Functions f (z)

A class of examples of Riemann Surfaces is given by graphs of continuous
complex functions. Let f (z) be a continuous function mapping C to C. The
graph of f is the set � f := {(z, f (z))|z ∈ C} ⊂ C × C given the subspace
topology. In Figure 3.3 we visualize all the relevant maps.

First we note that � f is Hausdorff since C×C is. The graph of f is naturally
given the structure of a Riemann Surface by an atlas with one chart, namely
all of � f ; the local coordinate function is the first projection map ϕ := π1|� f ,
which sends (z, f (z)) to z. To define a Riemann Surface structure, ϕ must be

Figure 3.3 Schematic picture of a graph � f

Figure 3.4 Diagram of functions for � f
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36 Riemann Surfaces

a homeomorphism onto its image (which is all of C). The map ϕ = π ◦ i is the
composition of i , the natural inclusion of � f into C×C, and π1, the projection
onto the first factor. Both i and π1 are continuous maps, and thus so is ϕ.

To show that ϕ−1 is continuous, we observe that ϕ−1 = I d × f : C →
C × C. Since the identity function and f are both continuous functions, it
follows that their product is continuous.

Given that there is only one chart, the holomorphicity of transition functions
is trivially satisfied. Thus � f is a Riemann Surface. Once we discuss maps
(and, in particular, isomorphisms) of Riemann Surfaces, we will see that all
graphs are isomorphic to the Riemann Surface X = C (Exercise 4.1.7).

3.1.3 Algebraic Curves

The complex analysis version of the Implicit Function Theorem (Theorem
2.5.1) implies that the inverse image of a regular value for an analytic func-
tion is a complex manifold. In particular, if f : Cn+1 → Cn is a holomorphic
function such that 0 ∈ Cn is a regular value for f , then f −1(0) is a complex
analytic manifold of dimension 1, i.e. a Riemann Surface.

When the holomorphic function f = ( f1, . . . , fn) is given by a collection
of n polynomials in n + 1 variables, the Riemann Surfaces arising as inverse
images of regular values are also called affine algebraic curves. We study in
detail the plane curve case, i.e. when n = 1. For an analogy, recall that over
the real numbers, the set {x2 + y2 − 1 = 0} is the unit circle: it lives in R2 and
is a manifold of real dimension 1.

Definition 3.1.2. For any p(x, y) ∈ C[x, y], the set V (p) :=
{(x, y)|p(x, y) = 0} ⊂ C2 is called an affine plane curve. We say that V (p) is
smooth if there is no (x0, y0) ∈ V (p) such that ∂p

∂x (x0, y0) = 0 = ∂p
∂y (x0, y0).

We now give a sketch of a proof that a smooth affine plane curve is a Rie-
mann Surface. The idea is that if V (p) is smooth, then locally it can be seen
as a graph, and these local expressions patch together well. To be precise, let
(x0, y0) ∈ V (p). Since V (p) is smooth, at least one of ∂p

∂x ,
∂p
∂y is nonzero at

(x0, y0). Say that ∂p
∂y (x0, y0) 
= 0. By the Implicit Function Theorem there is

a neighborhood U(x0,y0) ⊂ C2, a neighborhood Vx0 ⊂ C, and a holomorphic
function f (x) : Vx0 → C such that V (p) ∩ U(x0,y0) = {(x, f (x))|x ∈ Vx0},
the graph of f (see Figure 3.5).

We get a local chart on V (p) around (x0, y0) as in Section 3.1.2, by set-
ting ϕ(x0,y0) : V (p) ∩ U(x0,y0) → Vx0 to be projection to the first factor:
ϕ(x0,y0)(x, f (x)) = x .
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3.2 Compact Riemann Surfaces 37

ϕ

Figure 3.5 Local chart around (x0, y0) ∈ V (p) where ∂p
∂y (x0, y0) 
= 0

Finally, we show that transition functions are holomorphic. Assume
U(x0,y0) ∩ U(x1,y1) ∩ V (p) 
= ∅. If ϕ(x0,y0) and ϕ(x1,y1) are both projections
to the same axis, the transition function ϕ(x1,y1) ◦ ϕ−1

(x0,y0)
is just the identity

function restricted to the appropriate domain in C. Assume now that ϕ(x0,y0) is
projection onto the x-axis and that ϕ(x1,y1) is projection onto the y-axis. Then
the set U(x0,y0) ∩ U(x1,y1) ∩ V (p) is simultaneously on the graph of a holo-
morphic function f0(x) and of a holomorphic function f1(y). The transition
functions are then ϕ(x1,y1) ◦ ϕ−1

(x0,y0)
= f0(x) and ϕ(x0,y0) ◦ ϕ−1

(x1,y1)
= f1(y)

restricted to appropriate domains, which are holomorphic.

Exercise 3.1.3. Spell out the details of the above argument that a smooth affine
plane curve is a Riemann Surface.

3.2 Compact Riemann Surfaces

We turn our attention to compact Riemann Surfaces, which are the heroes of
our story. Compactness is a strong constraint on the geometry of surfaces, and
it is responsible for some of the rich structure of the theory of analytic functions
among Riemann Surfaces.

From a topological point of view, a compact Riemann Surface X is a com-
pact orientable surface. By the classification of compact surfaces theorem
(Theorem 2.4.3), it is homeomorphic to the connected sum of g tori. The inte-
ger g is called the genus of X : it can be thought of as the number of “handles”
that are attached to a sphere to obtain X .

We look at some examples of compact Riemann Surfaces, starting from the
Complex Projective Line, or Riemann Sphere.
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38 Riemann Surfaces

3.2.1 Complex Projective Line

In Chapter 2 we introduced P1(R) as a manifold whose points parameterize
lines through the origin in R2. Similarly, P1(C) is a manifold whose points
parameterize complex one-dimensional linear subspaces of C2. The construc-
tion is analogous to Section 2.3; here we present P1(C) as a Riemann Surface
by gluing together two copies of C.

Let U1 = U2 := C and define g : U1 � {0} → U2 � {0} by g(z) = 1/z. We
define P1(C) as the identification space

P1(C) := U1

⋃
g

U2 = U1
∐

U2

z ∼ g(z)
.

The idea is to have two copies of C standing side by side. Then, holding both
0s still, fold the copies towards each other, identifying each nonzero point to
the point on the other copy corresponding to its inverse.

Exercise 3.2.1. Show that, as a set, P1(C) is C plus a point. Prove that P1(C)

is a Hausdorff topological space. Prove that P1(C) is the one-point compacti-
fication of C, and therefore homeomorphic to a sphere. In complex analysis, it
is called the Riemann Sphere.

For i = 1, 2, we denote by [Ui ] the image of the set Ui after the identifica-
tion by g: note that [Ui ] is an open set in P1(C). Define the local coordinate
functions ϕi : [Ui ] → Ui by ϕi (p) = zi , where zi is the complex number in
Ui such that [zi ] = p. Both ϕ1 and ϕ2 are homeomorphisms.

We now consider transition functions; specifically, we consider T21. The
intersection [U1] ∩ [U2] = [U1 � {0}] = [U2 � {0}] and its image through ϕ1

is ϕ1([U1] ∩ [U2]) = C � {0}. This is the domain of T21 = ϕ2 ◦ ϕ−1
1 , and for

z1 
= 0 we have

z1
ϕ−1

1�−→ [z1] = [z2 = g(z1) = 1/z1] ϕ2�−→ z2 = 1/z1.

Since T21 has a pole only at z1 = 0, it is holomorphic on C � {0}. A symmet-
ric computation shows that T12 is holomorphic, and we have that P1(C) is a
Riemann Surface. Since P1(C) is homeomorphic to a sphere, its genus is 0.

Exercise 3.2.2. Here is an alternative way of showing that P1(C) is a compact
space. Consider a three-dimensional real sphere S3 ⊂ C2 as the locus of points
that are of distance 1 from the origin. Given any point p ∈ S3, there is a unique
complex line 
p through the origin and p. We therefore get a function:
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3.2 Compact Riemann Surfaces 39

H : S3 → P1(C)

p �→ 
p.

Check that H is a continuous and surjective function. Since S3 is compact
(closed and bounded) and the continuous image of a compact set is compact,
this proves that P1(C) is compact.

Check that for any point 
p ∈ P1(C), the inverse image H−1(
p) is a circle.
The map H , which realizes the three-dimensional sphere as a circle fibration
over a two-dimensional sphere, is famously known as the Hopf fibration.

Remark 3.2.1. In this section we saw that P1(C) is an example of a Riemann
Surface of genus 0. In fact, it is the only example. This follows from an impor-
tant theorem in algebraic geometry, the Riemann–Roch theorem (Miranda,
1995, page 185), which guarantees that a genus 0 compact Riemann Surface
admits a degree 1 meromorphic function. One then verifies that such a function
defines an isomorphism with P1(C).

Exercise 3.2.3. One can take U1 and U2 as before and glue them together
using g̃ : U1 � {0} → U2 � {0} where g̃(z) = z. Show that the resulting
topological space, X = U1 ∪g̃ U2, is not Hausdorff (and thus is not a Riemann
Surface!). It is often called the complex plane with doubled origin.

3.2.2 Complex Tori

Complex tori are examples of compact Riemann Surfaces of genus 1. In fact,
any compact Riemann Surface of genus 1 is isomorphic to a complex torus
(see Silverman and Tate (1992)).

Definition 3.2.2. Let τ1 and τ2 be two complex numbers which are linearly
independent over R (i.e. they don’t lie on the same real line through 0 in C).
The set of all integral linear combinations of τ1 and τ2

� = {nτ1 + mτ2|n,m ∈ Z} ⊂ C

is called a lattice of complex numbers.

We will see in Exercise 4.5.5 that we may assume that τ1 = 1 and Im (τ2) >

0, so we make the simplifying assumption that a lattice has the form � =
{n + mτ |n,m ∈ Z, τ ∈ H} ⊂ C. Here H is the upper half-plane H = {z ∈
C|Im (z) > 0}.

Consider the quotient space T = C/�, i.e. the identification space T =
C/ ∼ where z1 ∼ z2 if and only if z2 = z1 + w for some w ∈ �. The natural

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316569252.004
Downloaded from https:/www.cambridge.org/core. University of Exeter, on 03 Feb 2017 at 02:00:36, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316569252.004
https:/www.cambridge.org/core


40 Riemann Surfaces

Figure 3.6 Torus together with identification polygon and loops

projection map π : C → T given by π(z) = [z] induces a natural quotient
topology on T , i.e. V ⊂ T is open in T if and only if π−1(V ) is open in C.

Exercise 3.2.4. Denote by P the closed parallelogram with vertices 0, 1, τ, 1+
τ . Show that for any z ∈ C there is a z′ ∈ P with z ∼ z′. This shows that
π |P : P → T is onto, and hence we can restrict our attention to P in order to
understand the geometry of T .

By considering the residual identification of points in P (defined in Exercise
3.2.4) we see that T is topologically a torus. If z is in P but is not on the
boundary, then z is not equivalent to any other point of P . If z is on the line
segment through 0 and τ , then z ∼ z+ 1 ∈ P . Also, if z is on the line segment
through 0 and 1, then z ∼ z + τ ∈ P .

The topology of T is described by the identification polygon in Figure 3.6.

Exercise 3.2.5. Prove that π is an open map, i.e. that V open in C implies that
π(V ) is open in T .

We now endow T with a complex structure. Exercise 3.2.5 shows that if π
restricted to a subset V ⊂ C is one-to-one, then it is a homeomorphism onto
its image in T . In this case, (π |V )−1 is also a homeomorphism from the image
of π |V to V , and we may use (π |V )−1 as a chart of T .

Exercise 3.2.6. Find a real number r (depending on τ ) such that, for any z ∈
C, π restricted to Br (z), a ball of radius r centered at z, is a one-to-one map.

Given r as in Exercise 3.2.6 and z ∈ C, define

Uz := π(Br (z)) ⊂ T and ϕz := (π |Br (z))
−1.

We claim that the collection:

A = {(Uz, ϕz) |z ∈ C}
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3.2 Compact Riemann Surfaces 41

forms an atlas for T . Now A certainly gives a (highly redundant) cover of T by
open sets, and we have arranged for the maps ϕz to be homeomorphisms onto
their images. Assume that Uz1 ∩Uz2 
= ∅; for i = 1, 2, denote by (αi , βi ) the
unique pair of real numbers such that zi = αi + βiτ . We have that

T21(z) = ϕz2 ◦ ϕ−1
z1

(z) = z + k,

where k = (�α2� − �α1�)+ (�β2� − �β1�) τ is just a constant depending on z1

and z2. Therefore the transition function T21 is holomorphic. This proves that
A is an atlas and therefore T is a Riemann Surface.

3.2.3 Projective Curves

In section 3.1.3 we constructed Riemann Surfaces in the complex plane as
level sets for a regular value of a polynomial function. In a similar fashion we
wish to construct compact Riemann Surfaces as closed subsets of the complex
projective plane P2(C). The first obstacle arises from the fact that polynomials
in the homogeneous coordinates of the projective plane do not define functions
on P2(C).

Example 3.2.3. Consider the polynomial p(x, y, z) = x2 + y + z + 1. Note
that

p(1, 1, 1) = 4 
= 7 = p(2, 2, 2).

Since [1 : 1 : 1] = [2 : 2 : 2] are the same point in P2(C), p is attempting
to assign two different outputs to the same input, violating the definition of a
function.

Geometrically, the coordinates of any point belonging to a complex line 


through the origin in C3 can be chosen to represent the point corresponding to

 in P2(C); hence, for a polynomial in three variables, to give a well-defined
function on P2(C) one would need the polynomial to remain constant along
lines through the origin. Alas, the only polynomials that satisfy such a con-
dition are globally constant polynomials, which don’t make for particularly
exciting functions. . .

Recall, however, that in defining an affine plane curve we only care about
points where the polynomial vanishes. We therefore now seek polynomials in
three variables that vanish along lines through the origin in C3. Luckily there
is a large collection of such polynomials, giving us a rich set of examples of
compact Riemann Surfaces.
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42 Riemann Surfaces

Definition 3.2.4. A polynomial P ∈ C[X, Y, Z ] is said to be homogeneous
of degree d if any of the following equivalent conditions is satisfied:

1. Every monomial of P has degree d;
2. For every t ∈ C,

P(t X, tY, t Z) = td P(X, Y, Z);
3.

X
∂P

∂X
+ Y

∂P

∂Y
+ Z

∂P

∂Z
= d P

(here d P denotes the number d times the polynomial P).

Exercise 3.2.7. Show that conditions 1, 2 and 3 in Definition 3.2.4 are indeed
equivalent. Condition 3 is sometimes called Euler’s Identity.

Exercise 3.2.8. Show that if P ∈ C[X, Y, Z ] is a homogeneous polynomial,
then the set of points [X : Y : Z ] ∈ P2(C) where P vanishes is well defined.
We call this set the vanishing locus of P .

Definition 3.2.5. Given P ∈ C[X, Y, Z ], a homogeneous polynomial of
degree d, the set

V (P) := {[X : Y : Z ] ∈ P2(C)|P(X, Y, Z) = 0}
is called a plane projective curve of degree d . If{

(X, Y, Z) ∈ C3
∣∣∣∣∂P

∂X
= ∂P

∂Y
= ∂P

∂Z
= 0

}
⊆ {(0, 0, 0)}

then V (P) is said to be smooth.

Refer back to Figure 2.3 on page 19 to visualize what is going on. The
bottom of the figure consists of a cone in three-dimensional space and a slice
of the cone on a canvas. Notice that the cone is a two-dimensional object, but
the curve on the canvas is one-dimensional. The vanishing locus of P in C3, the
set {(x, y, z) ∈ C3|P(x, y, z) = 0}, is a cone, i.e. consists of (complex) lines
through the origin which together form an object of complex dimension 2. In
the vanishing locus of P in P2(C), i.e. V (P), each line in the cone represents
one point in P2(C) and the slice on the canvas represents the image of V (P)

through a local chart of P2(C). The image has now complex dimension one,
and is hence called a curve.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316569252.004
Downloaded from https:/www.cambridge.org/core. University of Exeter, on 03 Feb 2017 at 02:00:36, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316569252.004
https:/www.cambridge.org/core


3.2 Compact Riemann Surfaces 43

Proposition 3.2.6. A smooth projective plane curve V (P) is a compact
Riemann Surface.

Proof We first show that V (P) is compact by showing that V (P) is a closed
set in P2(C), which is a compact topological space. Consider the diagram

C3 � {(0, 0, 0)}
π

��

P �� C

P2(C)

,

where π is the natural projection function and P is the (continuous) func-
tion defined by the homogeneous polynomial P (i.e. P : (X, Y, Z) �→
P(X, Y, Z)). By definition, V (P) is a closed subset of P2(C) if π−1(V (P)) is
closed in C3 � (0, 0, 0). But

π−1(V (P)) = P−1(0)

is the inverse image of the closed set {0} ⊂ C, therefore it is closed.
To prove that V (P) is a Riemann Surface, it is sufficient to show that

its intersection with any of the coordinate open sets of P2(C) is a Riemann
Surface. Consider (without loss of generality) the chart

UZ = {[X : Y : Z ]|Z 
= 0} ⊆ P2(C)

with affine coordinates

(x, y) = ϕZ (X, Y, Z) = (X/Z , Y/Z).

The set ϕZ (V (P) ∩ UZ ) is equal to V (p), where p(x, y) := P(x, y, 1) is
called the dehomogenization of P with respect to Z . For any (x, y) ∈ C2

∂p

∂x
(x, y) = ∂P

∂X
(x, y, 1) (3.2)

∂p

∂y
(x, y) = ∂P

∂Y
(x, y, 1). (3.3)

We claim that there can be no (x̃, ỹ) ∈ C2 such that

p(x̃, ỹ) = ∂p

∂x
(x̃, ỹ) = ∂p

∂y
(x̃, ỹ) = 0. (3.4)

The claim implies that V (p) is a smooth affine plane curve and therefore a
Riemann Surface as in Section 3.1.3. Since the restriction of V (P) with any
affine chart is a Riemann Surface, so is V (P).
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44 Riemann Surfaces

To prove the claim, assume there is (x̃, ỹ) ∈ C2 satisfying the system of
equations in (3.4). By (3.2), (3.3), and the smoothness of V (P), it must be that

∂P

∂Z
(x̃, ỹ, 1) 
= 0.

But now Euler’s Identity gives us a contradiction, since

0 
= ∂P

∂X
(x̃, ỹ, 1)+ ∂P

∂Y
(x̃, ỹ, 1)+ ∂P

∂Z
(x̃, ỹ, 1) = d P(x̃, ỹ, 1) = 0.

Example 3.2.7 (Conics). Consider the homogeneous polynomial

P(X, Y, Z) = X2 + Y 2 − Z2.

We check that V (P) is a smooth projective plane curve of degree 2, also known
as a conic. Indeed,

∂P

∂X
= 2X,

∂P

∂Y
= 2Y,

∂P

∂Z
= −2Z

and (0, 0, 0) is the only point where all partial derivatives vanish simultane-
ously.

We observe that if we dehomogenize P with respect to Z (by defining
x = X/Z , y = Y/Z ), we recognize the equation of a circle, whereas if we
dehomogenize with respect to X or Y we obtain the equation of a hyperbola.
This has to do with the fact that affine plane conics are obtained as plane sec-
tions of a cone: before we identify all the points on a line through the origin,
the solutions of P(X, Y, Z) = X2+Y 2−Z2 = 0 in C3 give a cone, and slicing
it with different planes just amounts to restricting the projective curve V (P) to
different affine charts. (Imagine holding the cone at the bottom of Figure 2.3
steady, then moving the canvas to obtain different slices of the cone.) We will
see in Exercise 4.1.8 that all smooth conics are isomorphic to P1(C), and are
therefore Riemann Surfaces of genus 0.

Exercise 3.2.9. Consider an arbitrary homogeneous polynomial P ∈
C[X, Y, Z ] of degree 2. What are the conditions on the coefficients of P for
V (P) to be a smooth conic? When these conditions are not met, V (P) is called
a degenerate conic. Show that there are two distinct types of degenerate conic.

Exercise 3.2.10. Recall from linear algebra that a homogeneous polynomial
P ∈ C[X, Y, Z ] of degree 2 naturally defines a quadratic form which can be
represented in a unique way by a 3 × 3 symmetric matrix AP . What linear
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3.2 Compact Riemann Surfaces 45

algebraic conditions on AP correspond to V (P) being a smooth conic or each
of the two types of degenerate conics?

Exercise 3.2.11. A projectivity is a map ϕ : P2(C) → P2(C) defined by
ϕ([X : Y : Z ]) = [p1 : p2 : p3], where the pi s are three C-linearly inde-
pendent linear homogeneous polynomials in X, Y, Z (it can be thought of as
a “change of coordinates” in the projective plane). Two subsets of P2(C) are
called projectively equivalent if there exists a projectivity that sends one to the
other. Show that any two smooth complex conics are projectively equivalent.

Example 3.2.8 (Elliptic Curves). Consider a polynomial P of the form:

P(X, Y, Z) = Y 2 Z − (X − α1 Z)(X − α2 Z)(X − α3 Z),

where α1, α2, α3 are three distinct complex numbers. Note that the partial
derivative with respect to Y is ∂P/∂Y = 2Y Z , which is zero only if Z = 0
or Y = 0. We show that V (P) is a smooth projective curve by considering the
cases Z = 0,Y = 0 and finding in each case a non-vanishing partial derivative.

Case 1: If Z = 0, then the only point in P2(C) belonging to V (P) is [0 : 1 : 0].
But we have

∂P

∂Z
= Y 2 + Q(X, Z),

where Q(X, Z) is a homogeneous degree 2 polynomial in X and Z – and so
∂P/∂Z(0, 1, 0) = 1 
= 0.

Case 2: If Y = 0, then the points belonging to V (P) are [α1 : 0 : 1], [α2 : 0 :
1], and [α3 : 0 : 1]. For i = 1, 2, 3

∂P

∂X
(αi , 0, 1) 
= 0

follows from the facts that the αi are distinct. This proves that V (P) is a smooth
projective curve of degree 3, also known as an elliptic curve.

Elliptic curves are Riemann Surfaces of genus 1. The connection between
elliptic curves and complex tori is a very beautiful and classical story which
can be found, for example, in Silverman and Tate (1992).

One can generalize the notion of V (P) to that of a projective algebraic
variety: a subset of Pn(C) defined by the simultaneous vanishing of a collec-
tion of homogeneous polynomials. A projective algebraic variety of complex
dimension 1 is called a projective curve, and when it is smooth it is a compact
Riemann Surface.
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46 Riemann Surfaces

Generically, one needs n − 1 homogeneous polynomials in n + 1 variables
to cut out a one-dimensional set in Pn(C) (we make this precise in Exercise
3.2.12); however, there exist projective curves that cannot be “cut out” by the
“right” number of equations; we see the first example in Exercise 3.2.13.

Exercise 3.2.12. Let P1, . . . , Pn−1 be homogeneous polynomials in n + 1
variables, and define

V (P) = {[X0 : . . . : Xn]|P1(X0, . . . , Xn) = · · · = Pn−1(X0, . . . , Xn) = 0} ⊂ Pn(C).

Show that if, for every point X ∈ V (P), the matrix of partial derivatives⎡
⎢⎢⎣

∂P1
∂X0

(X) . . . ∂P1
∂Xn

(X)

... . . .
...

∂Pn−1
∂X0

(X) . . .
∂Pn−1
∂Xn

(X)

⎤
⎥⎥⎦

has maximal rank n − 1, then by the Implicit Function Theorem V (P) is a
compact Riemann Surface.

Exercise 3.2.13. Consider the function

ϕ : P1(C)→ P3(C)

defined in homogeneous coordinates by

ϕ([S : T ]) = [S3 : S2T : ST 2 : T 3].
You may check, or just believe for now, that ϕ is a map of complex manifolds
and that the image of ϕ is a Riemann Surface isomorphic to P1(C). We call the
image of ϕ the twisted cubic in P3(C).

Denoting [X : Y : Z : W ] the homogeneous coordinates of P3(C), consider
the polynomials

P1 = XW − Y Z (3.5)

P2 = X Z − Y 2 (3.6)

P3 = Y W − Z2. (3.7)

Show that the vanishing locus of P1, P2 and P3 is precisely the twisted cubic,
but that the vanishing locus of any two of the three polynomials is strictly
larger. The twisted cubic is the first example of a projective curve which is not
a complete intersection, i.e. which is not cut out by the expected number of
equations.
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4

Maps of Riemann Surfaces

In this chapter we develop and study the notion of functions between Riemann
Surfaces. Because Riemann Surfaces are locally identified with C, it is natural
to require maps of Riemann Surfaces locally to be identified with holomorphic
maps from C to C. Such an identification, called a local expression, requires
charts to be chosen both in the source and target space, and hence it is highly
non-unique. While this might seem like a bug, it is actually a feature of the the-
ory: at any point of the source, one may choose charts in such a way that the
local expression is a power function. Philosophically, this means that the com-
plex analytic notion of order of vanishing of a function at a point carries over
to functions of Riemann Surfaces. Because “vanishing” is now an ill-defined
notion (by changing coordinate chart in the target space, one may arrange the
local expression of the function to take any value one wants at any given point),
the name is changed to ramification index. In the case of a map of compact
Riemann Surfaces, there is a finite set of points where the ramification index
is strictly greater than 1, which allows a lot of information about a function of
Riemann Surfaces to be extracted from its local behavior. For example, a map
of Riemann Surfaces has generically a constant number of inverse images: this
number is then called the degree of the map. Perhaps the high-point of this
chapter is the Riemann–Hurwitz formula, which expresses a relation between
the genera, the ramification and the degree of a map of Riemann Surfaces: in
other words, these discrete invariants may not be chosen freely in order for a
function to exist.

We conclude the chapter by studying two interesting classes of examples:
maps from the projective line to itself, and maps of elliptic curves/complex tori.

4.1 Holomorphic Maps of Riemann Surfaces

Definition 4.1.1. Let X, Y be Riemann Surfaces and f : X → Y a set
function.

1. We say that f is holomorphic at x ∈ X if for every choice of charts
ϕx , ϕ f (x) the function ϕ f (x) ◦ f ◦ ϕ−1

x is holomorphic at x .

47
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48 Maps of Riemann Surfaces

2. If U ⊂ X is open, we say that f is holomorphic on U if f is holomorphic
at each x ∈ U .

3. If f is holomorphic on U = X we say that f is a holomorphic map.

The function F = ϕ f (x) ◦ f ◦ ϕ−1
x is called a local expression for f (see

Figure 4.1). From Definition 4.1.1 it would seem that in order to show that a
function f is a holomorphic map, one must check the local expression for all
possible combinations of local charts. However, Exercise 4.1.1 shows that it
suffices to find one local expression that works.

Exercise 4.1.1. Show that a map of Riemann Surfaces f : X → Y is holo-
morphic at x ∈ X if and only if there is a choice of charts ϕx , ϕ f (x) such that
ϕ f (x) ◦ f ◦ ϕ−1

x is holomorphic at x .

We begin with some trivial examples that we pose as exercises.

Exercise 4.1.2. Let X, Y be Riemann Surfaces and choose a point y0 ∈ Y .
Define the constant map c : X → Y by c(x) = y0 for all x ∈ X . Show that c
is a holomorphic map.

Exercise 4.1.3. Let X be a Riemann Surface. Define the identity map on X
as the function IX : X → X such that IX (x) = x for all x ∈ X . Prove that IX

is a holomorphic map.

Now for a more interesting example of a holomorphic function.

ϕ ϕ

ϕ ϕ

Figure 4.1 Schematic picture of a map of Riemann Surfaces with local expression
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4.1 Holomorphic Maps of Riemann Surfaces 49

Figure 4.2 We check that the map f is holomorphic by checking that two local
expressions, corresponding to charts that cover P1(C), are holomorphic. Note that
in our diagram we depict the inverses to the local coordinate functions, since the
coordinate functions are only defined on open subsets of P1(C)

Example 4.1.2. Refer to Figure 4.2 to keep track of how all ingredients of
this proof fit together. Recall from Exercise 3.2.1 that, as a set, P1(C) = C

plus a point. Identifying C with the image of the first affine chart ϕ1([U1]),
the additional point corresponds to the image of 0 in the second affine chart
U2. We denote this point by ∞ and thus have P1(C) = C ∪ {∞}. Using this
identification, define the function f : P1(C) → P1(C) by z �→ w = z2 and
∞ �→ ∞. We show that f is a holomorphic map.

The way we described the set function f is by giving a local expression for
it, using the chart U1 for both the source and target P1(C). We denoted by z
the corresponding local coordinate on the source and by w the local coordinate
on the target to avoid confusion. Then, since w = F(z) = z2 is a holomorphic
function on all of C, f is holomorphic on the image of U1.

All that is left to consider is whether f is holomorphic at∞. We consider the
local expression for f using the charts U2 whose image contains∞. We denote
by z̃ = 1/z the corresponding local coordinate for the source, and w̃ = 1/w
the coordinate on the target.

The local expression F̃ for f in these coordinates is obtained on the inter-
section of the charts by composing F(z) with the transition functions for the
local coordinates:

F̃(z̃) = w̃ = 1

w
= 1

z2
= z̃2.

Since the point ∞ corresponds to z̃ = w̃ = 0, and we have f (∞) = ∞
and F̃(0) = (0), the local expression F̃ extends on the whole chart, and is in
particular a holomorphic function at the point 0. This means that f is holomor-
phic at ∞ and completes the proof that f is a holomorphic function on all of
P1(C).

Exercise 4.1.4. Choose a, b, c ∈ C and consider the polynomial p(z) = (z −
a)(z − b)(z − c). Prove that the function f : P1(C) → P1(C) given by z �→
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50 Maps of Riemann Surfaces

p(z) and ∞ �→ ∞ is a holomorphic map, where we again identify P1(C) =
C ∪ {∞} as in Example 4.1.2.

Exercise 4.1.5. Consider an arbitrary rational function

f (z) = p(z)

q(z)
,

for p(z), q(z) ∈ C[z], two polynomials with distinct roots. You may extend it
to a function from P1(C) to P1(C) by defining:

● f (α) = ∞, for α any root of q(z);
● f (∞) = limz→∞ p(z)/q(z).

Prove that f is a holomorphic function on P1(C).

Definition 4.1.3. Two Riemann Surfaces X, Y are called isomorphic (or bi-
holomorphic) if there are holomorphic maps f : X → Y and g : Y → X
such that g ◦ f = IX and f ◦ g = IY . In this case, we write X ∼= Y and call
f and g isomorphisms (or bi-holomorphisms). An isomorphism h : X → X
from a Riemann Surface to itself is called an automorphism of X .

Exercise 4.1.6. Let X, Y be Riemann Surfaces. Show that X ∼= Y (from Def-
inition 4.1.3) if and only if there is a holomorphic map f : X → Y that is
one-to-one and onto, and such that f −1 is holomorphic.

Exercise 4.1.7. Let f : C → C be a holomorphic function and � f ⊂ C2 its
graph (as defined in Example 3.1.2). Show that � f ∼= C.

Exercise 4.1.8. In Exercise 3.2.11 you proved that any two smooth con-
ics in P2(C) are projectively equivalent; show that this implies that they are
isomorphic as Riemann Surfaces.

Prove that any smooth conic is isomorphic to P1(C) by choosing a particu-
lar conic for which you can exhibit an explicit isomorphism with the projective
line.

4.2 Local Structure of Maps

An important feature of holomorphic maps of Riemann Surfaces is that they
have many different local expressions near a point x ∈ X , depending on the
choice of charts and local coordinates around x and f (x); given a local coor-
dinate function ϕx , post-composing with any bi-holomorphism h of C results
in a new local coordinate function. For example, choosing h : z �→ e(π/4)i z
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4.2 Local Structure of Maps 51

rotates the coordinates by 45 degrees, or choosing h : z �→ z + (2+ i) results
in translated coordinates.

In fact, the map h doesn’t need to be bi-holomorphic on all of C; as long
as it is bi-holomorphic “near” the point ϕx (x), one can use h ◦ ϕx to get new
coordinates around x .

For any holomorphic map f there exist choices of local coordinates such
that the local expression of f around a given x ∈ X is very simple: specifically,
it is z �→ zk for some uniquely determined k ≥ 1. This fact has remarkably
deep implications in the theory of functions of Riemann Surfaces. We now
make this statement precise.

We say that a chart (Ux , ϕx ) for a Riemann Surface X is centered at x if
ϕx (x) = 0.

Theorem 4.2.1. Let f : X → Y be a non-constant holomorphic map of Rie-
mann Surfaces. For any x ∈ X there are charts centered at x, f (x), such that
the local expression of f using these charts is z �→ zk for some integer k ≥ 1.

Proof Start with any charts ϕ,ψ centered at x, f (x), yielding a local expres-
sion denoted by F := ψ ◦ f ◦ ϕ−1. Consider the Taylor expansion of F at 0
and let k be the smallest positive integer such that the coefficient of zk does not
vanish. Since F(0) = 0, k ≥ 1 and:

F(z) = zk

( ∞∑
n=0

ak+nzn

)
. (4.1)

Denote by G(z) = ak +ak+1z+· · · the second factor in (4.1). The function
G(z) is holomorphic at 0 and G(0) = ak 
= 0. Thus we may make a choice
of branch so that the map k

√
G(z) is well-defined and holomorphic around 0 =

ϕ(x).
Defining h(z) = z k

√
G(z), we have that F = hk . The function h is holo-

morphic in a neighborhood U of 0 = ϕ(x), h(0) = 0 and h′(0) 
= 0. The
Inverse Function Theorem implies that h is bi-holomorphic on a neighborhood
U ′ ⊂ U of ϕ(x), and therefore the composition ϕ̃ = h ◦ ϕ gives a local chart
for X centered at x .

The local coordinate z̃ coming from ϕ̃ is related to z via

z̃ = h(z).

The local expression for f around x is now obtained by changing coordi-
nates from z to z̃ in F :

F̃(z̃) = F(z(z̃)) = h(z)k = z̃k . (4.2)
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52 Maps of Riemann Surfaces

Figure 4.3 Altered charts to get local expression of zk

Figure 4.4 The ramification index is well-defined, i.e. independent of the choices
of local coordinates that realize it

The next exercise shows that the integer k we associated to a map f and a
point x ∈ X is unique.

Exercise 4.2.1. Let f : X → Y be a non-constant holomorphic map of Rie-
mann Surfaces, and x ∈ X . Suppose that f has two local expressions around
x of the form F(z) = zk and F̃(z̃) = z̃k̃ . Then k = k̃.

Hint: Let ϕ, ϕ̃, ψ, ψ̃ be charts giving the appropriate coordinate functions, as
illustrated in Figure 4.4. Observe that the change of coordinates near x must
be of the form z̃ = zα(z), where α(z) is holomorphic in a neighborhood of 0
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4.2 Local Structure of Maps 53

and α(0) 
= 0. Similarly (but note that we are going in the opposite direction),
w = w̃β(w̃) for a holomorphic function β with β(0) 
= 0. Write down the
Taylor expansions of α and β, and use the fact that F is obtained from F̃ via
the above changes of coordinates to obtain the statement of the exercise.

Definition 4.2.2. Let f : X → Y be a non-constant holomorphic map of
Riemann Surfaces. A picture is given in Figure 4.5.

● Given a point x ∈ X , the integer kx , such that there exists a local expression
centered at p of the form F(z) = zkx , is called the ramification index of f
at x .

● The quantity νx = kx − 1 is called the differential length of f at x .
● If a point x has ramification index kx = 1, then we say f is unramified at

x .
● A point x such that kx ≥ 2 is called a ramification point. The ramification

locus R is the subset of X consisting of all ramification points.
● If x is a ramification point, then f (x) ∈ Y is called a branch point. The

branch locus B is the subset of Y consisting of all branch points – i.e. the
image via f of the ramification locus.

Warning! The branch locus is the image of the ramification locus, but the
ramification locus is not necessarily the inverse image of the branch locus.
(Why not?)

Remark 4.2.3. The function f is unramified at x ∈ X (i.e. kx = 1) if and only
if for any local expression F of f around x (not necessarily centered at x) we
have F ′(ϕ(x)) 
= 0, i.e. f is locally invertible at x .

Figure 4.5 Schematic picture of the local structure of a holomorphic map of
Riemann Surfaces
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54 Maps of Riemann Surfaces

Exercise 4.2.2. Let f : X → Y be a non-constant holomorphic map of Rie-
mann Surfaces, and x0 ∈ X . Show that Remark 4.2.3 implies that there is a
neighborhood U0 of x0 such that the ramification index of any x ∈ U0 with
x 
= x0 is kx = 1.

As an immediate consequence of Exercise 4.2.2 we have the following
result.

Lemma 4.2.4. The ramification locus R is a discrete subset of X, i.e. there
exist open sets Ui ⊂ X such that each Ui contains exactly one x ∈ R.

A discrete subset of a compact topological space is finite; this is the con-
trapositive statement to “an infinite subset of a compact topological space has
a limit point”, which can be proven from the definition of compactness. As a
consequence we have the following lemma.

Lemma 4.2.5. If X is a compact Riemann Surface and f : X → Y is a non-
constant holomorphic map of Riemann Surfaces, then the ramification locus is
a finite set. Since the branch locus is the image of R via f , it follows that the
branch locus is also a finite set.

4.3 Maps of Compact Riemann Surfaces

From now on we restrict our attention to maps of compact Riemann Sur-
faces, where we also have some control over the global structure of the
map. An important class of such functions to keep in mind is the mero-
morphic functions on a compact Riemann Surface X , i.e. holomorphic maps
f : X → P1(C).

Theorem 4.3.1. Let f : X → Y be a holomorphic map of Riemann Surfaces
with X compact. If f is non-constant then it is onto.

Proof Assume that f is non-constant, and consider the image f (X) ⊆ Y : by
Liouville’s theorem it is an open set in Y (Conway, 1978, IV §7). On the other
hand, since X is compact and f continuous, f (X) is a compact subset of a
Hausdorff topological space and therefore it is closed (Armstrong, 1983, Sec-
tion 3.3, Theorem 3.6). Finally, since f (X) is an open, closed and nonempty
subset of a connected topological space, it follows that f (X) = Y .
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4.3 Maps of Compact Riemann Surfaces 55

The proof of Theorem 4.3.1 shows in particular that for f to be non-
constant, Y must be compact as well. This immediately yields the following
corollary.

Corollary 4.3.2. If X is a compact Riemann Surface, the only holomorphic
functions f : X → C are constant functions.

Let f : X → Y be a non-constant map of compact Riemann Surfaces, and
consider a point x in the fiber (this is just a slightly fancier name for inverse
image) f −1(y) of a point y ∈ Y . We know there exists a neighborhood Ux

and appropriate choices of local coordinates centered at x such that the local
expression F of f has form z �→ zkx . Since F−1(0) = 0, there are no other
preimages of y in Ux . This implies that the preimage set f −1(y) is discrete, and
since X is compact, then (as in Lemma 4.2.5) it is a finite set. The next result
shows that, outside of the branch locus, the size of the fibers of f, | f −1(y)|, is
constant.

Theorem 4.3.3. Let f : X → Y be a non-constant holomorphic map of com-
pact Riemann Surfaces. If y0, y1 ∈ Y are not in the branch locus of f , then
| f −1(y0)| = | f −1(y1)|.

Proof Call B the branch locus of f . Since B is finite, Y � B is a connected
topological space, and hence it cannot have a proper subset which is both open
and closed. Let y0 ∈ Y � B and set d := | f −1(y0)|.

The set A = {y ∈ Y � B|| f −1(y)| = d} is nonempty, since it contains y0.
We claim A is open in Y � B: for any y ∈ A, we show that y is an interior
point of A. Denote by x1, . . . , xd the inverse images of y, and by Ux1, . . . ,Uxd

pairwise disjoint charts around each inverse image such that f admits local
expression F(z) = z on each chart. We defer to Exercise 4.3.1 to show that
one may choose

Vy ⊆ f (Ux1) ∩ . . . ∩ f (Uxd ), (4.3)

a connected open neighborhood of y, homeomorphic to a disc, such that the
inverse image f −1(Vy) consists of d connected components Ũxi (each con-
taining one of the xi and contained in Uxi ). Then f restricted to each Ũxi is
bijective onto Vy . This implies that every point of Vy has d inverse images, and
hence that y is an interior point for A.

Exercise 4.3.1. Show that a Vy as in (4.3) exists, by showing that otherwise
one may construct a sequence {ξn} of points of X such that ξn → ξ̄ , f (ξn)→ y
but f (ξ̄ ) 
= y, violating the continuity of f .
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56 Maps of Riemann Surfaces

Now consider Ac = {y ∈ Y � B|| f −1(y)| 
= d}: essentially with the same
argument, one shows that Ac is also open in Y � B. This in turn implies that A
is also closed.

Since A is a nonempty open and closed subset of a connected topological
space, A = Y � B.

Theorem 4.3.3 makes the following definition well-defined.

Definition 4.3.4. For f : X → Y a non-constant holomorphic map of com-
pact Riemann Surfaces, the degree of f is the cardinality of the fiber of any
point y not in the branch locus of f . If f is constant we say that it has degree
0.

Exercise 4.3.2. Let f : X → Y be a holomorphic map of compact Riemann
Surfaces of degree d > 0, y ∈ Y and f −1(y) = {x1, . . . , xn}. Prove that

n∑
i=1

kxi = d. (4.4)

Exercise 4.3.2 generalizes Theorem 4.3.3 to say that the cardinality of any
fiber of f is equal to the degree of f provided that points of X are weighted
by their ramification index. Disregarding these multiplicities, this characterizes
the branch locus of f as the set of points of Y that have strictly fewer than d
preimages.

Remark 4.3.5. Exercise 4.3.2 implies that for f , a meromorphic function on
X , the sum of the orders of zeroes of f equals the sum of the orders of poles
of f .

4.4 The Riemann–Hurwitz Formula

The Riemann–Hurwitz formula gives a relation among all discrete invariants
we have associated with a map of compact Riemann Surfaces.

Theorem 4.4.1 (Riemann–Hurwitz Formula). Let f : X → Y be a non-
constant, degree d, holomorphic map of compact Riemann Surfaces. Denote
by gX (respectively gY ) the genus of X (respectively Y ). Then

2gX − 2 = d(2gY − 2)+
∑
x∈X

νx , (4.5)

where νx = kx − 1 is the differential length of f at x.
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4.4 The Riemann–Hurwitz Formula 57

Since νx 
= 0 if and only if x is a ramification point, the summation in (4.5)
is a finite sum that may be equivalently indexed by points in the ramification
locus.

Proof Recall that the Euler Characteristic of a compact orientable surface of
genus g is 2−2g (Section 2.4.2). Thus, the Riemann–Hurwitz Formula asserts
that

χ(X) = dχ(Y )−
∑
x∈X

νx .

Given that we are comparing the Euler characteristics of X and Y , a natural
strategy is to choose a suitable good graph on Y and “lift” it to a good graph
on X which we use to compute χ(X).

Let �Y be a good graph on Y with B ⊆ V�Y : the branch locus of f is
contained in the vertex set of �Y . Define �X to be the “lift” of �Y via the map
f : the support of �X is f −1(�Y ) and the vertices, edges and faces of �X are
the connected components of the inverse images of vertices, edges and faces
of �Y . See Figure 4.6.

After Chapter 5 we will be able to prove the following facts (see Remark
5.3.8): �X is a good graph on X ; the inverse image of each edge (respectively
face) of �Y consists of d distinct edges (respectively faces) of �X .

For every vertex v of �Y , the number of vertices of �X mapping to v is
precisely the number of inverse images of v. By Exercise 4.3.2

| f −1(v)| = d −
∑

{x | f (x)=v}
νx ,

which implies that |V�X | = d|V�Y | −
∑

x∈X νx .
Computing χ(X) using �X gives:

χ(X) = |V�X | − |E�X | + |F�X |
= d|V�Y | −

∑
x∈X

νx − d|E�Y | + d|F�Y |

= dχ(Y )−
∑
x∈X

νx .

Example 4.4.2. Let f : P1(C) → P1(C) be a degree d holomorphic map.
Assume two points x1, x2 ∈ P1(C) have full ramification, i.e. kx1 = kx2 =
d; we use the Riemann–Hurwitz formula to show that there are no more
ramification points for f . Setting gX = gY = 0 in (4.5), we have
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58 Maps of Riemann Surfaces

Figure 4.6 Lifting the graph on Y

−2 = d(−2)+ (d − 1)+ (d − 1)+
∑

x 
=x1,x2

(kx − 1)

0 =
∑

x 
=x1,x2

νx .

Since differential lengths are nonnegative integers, each x 
= x1, x2 must have
νx = 0.

Exercise 4.4.1. Consider f : E → P1(C), with gE = 1. As in Example
4.4.2, assume there are two points x1, x2 ∈ E where f is fully ramified. How
many more ramification points can f have, and what ramification indices are
possible?

Exercise 4.4.2. Suppose that f : X → Y is a non-constant holomorphic map
of connected compact Riemann Surfaces. Prove that:

1.
∑

x∈X νx is even.
2. gX ≥ gY . A Riemann Surface X can never map (nontrivially) to a Riemann

Surface Y of higher genus.
3. If

∑
x∈X νx = 0 then gX = dgY − d + 1.

Exercise 4.4.3. For readers who are familiar with differential forms, here is an
alternative way to prove the Riemann Hurwitz formula:

1. Show that if ω is any meromorphic one form on a Riemann Surface X , then
the sum of the orders or zeroes of ω minus the sum of the orders of poles is
2gX − 2.
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4.5 Examples of Maps of Compact Riemann Surfaces 59

2. Choose a meromorphic one form ω on Y such that the zeroes and poles
of ω are disjoint from the branch locus of f , and pull it back via f . The
differential form f ∗(ω) is a meromorphic form on X . Prove that if x is a
ramification point for x , then f ∗(ω) has a zero of order νx at x .

3. Compute the sum of orders of zeroes minus the sum of order of
poles of f ∗(ω) in two different ways to obtain the Riemann–Hurwitz
formula.

4.5 Examples of Maps of Compact Riemann Surfaces

4.5.1 Maps from P1(C) to P1(C)

We have seen in Exercise 4.1.5 that, given any two polynomials p(z), q(z) ∈
C[z] with no common roots, the rational function f (z) = p(z)/q(z) defines a
holomorphic map f : P1(C) → P1(C), where we think of P1(C) as C ∪∞.
We now show that all holomorphic functions from the projective line to itself
are of this form.

Theorem 4.5.1. If f : P1(C) → P1(C) is a holomorphic map of Riemann
Surfaces, then f is a rational function: f = p(z)/q(z), with p(z), q(z) ∈
C[z].

Proof If f is a constant function then it is a rational function. Let f be a non-
constant holomorphic function and denote by z1, . . . , zn the inverse images
of 0 and by p1, . . . , pm the inverse images of ∞ via f . Define the rational
function

ϕ(z) =
∏n

i=1(z − zi )
kzi∏m

j=1(z − p j )
kp j

,

where the kzi and kp j are the ramification indices of f at those points – which
correspond to the orders of zeroes and poles of f in complex analysis. In the
expression of ϕ we adopt the notation (z −∞) = 1.

The function f (z)/ϕ(z) does not take value 0 or ∞, and is therefore a non-
surjective holomorphic function from P1(C) to itself. By Theorem 4.3.1 it is
constant.

Remark 4.5.2. If one prefers to describe points of P1(C) via their homo-
geneous coordinates, then a holomorphic function f : P1(C) → P1(C) is
given as f (X : Y ) = (p(X, Y ) : q(X, Y )), where p and q are homogeneous
polynomials in two variables of the same degree.
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60 Maps of Riemann Surfaces

Exercise 4.5.1. Show that the descriptions of holomorphic functions in Theo-
rem 4.5.1 and Remark 4.5.2 are equivalent.

We now consider which of these rational functions are automorphisms of
P1(C). Recall that an automorphism is a bijective function, so in particular it
must have exactly one zero and one pole, implying that the degrees of p(z) and
q(z) must be one.

Exercise 4.5.2. Let f : P1(C)→ P1(C) defined by f (z) = (az+b)/(cz+d)
for a, b, c, d ∈ C. Show that f is an automorphism if and only if ad−bc 
= 0.

In complex analysis these maps f with ad − bc 
= 0 are called Möbius
transformations.

Remark 4.5.3. Automorphisms of P1(C) can also be described using homo-
geneous coordinates for P1(C). This amounts to thinking of P1(C) = (C2 �

{�0})/C∗ as the space of one-dimensional linear subspaces of C2. It is natural
then to obtain an automorphism of P1(C) from a linear automorphism of C2,
i.e. an element M ∈ GL(2,C) where

GL(2,C) =
{(

a b
c d

)∣∣∣∣ a, b, c, d ∈ C with ad − bc 
= 0

}
.

Identifying a point (X : Y ) ∈ P1(C) with a column vector, the action is given
by matrix multiplication. Note that two matrices M1 and M2 yield the same
map on projective space if their entries differ by scaling by a nonzero constant.
The group of automorphisms of P1(C) is therefore naturally identified with
PGL(2,C), the projective general linear group.

Exercise 4.5.3. Prove that there is an isomorphism of groups between the
group of Möbius transformations, with operation composition of functions,
and PGL(2,C), with operation matrix multiplication.

4.5.2 Maps of Elliptic Curves

Consider an elliptic curve, i.e. a projective algebraic plane curve defined as
E = V (P), where P is a polynomial of the form:

P(X, Y, Z) = Y 2 Z − (X − a1 Z)(X − a2 Z)(X − a3 Z).

, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316569252.005
Downloaded from https:/www.cambridge.org/core. University of Warwick, on 03 Feb 2017 at 01:59:46, subject to the Cambridge Core terms of use

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316569252.005
https:/www.cambridge.org/core


4.5 Examples of Maps of Compact Riemann Surfaces 61

We have seen in Example 3.2.8 that E is a smooth curve (i.e. a Riemann Sur-
face) if and only if the ai s are distinct complex numbers. We now use the
Riemann Hurwitz formula to determine the genus of E .

Lemma 4.5.4. An elliptic curve is a Riemann Surface of genus 1.

Proof Consider the affine chart UZ = {Z 
= 0} ⊆ P2(C), with coordinates
(x, y) = ( X

Z , Y
Z ). The restriction of E to this chart is the affine curve EZ

determined by the equation y2 = (x − a1)(x − a2)(x − a3).
The vertical projection map π : (x, y) �→ x restricts to a holomorphic map

π : EZ → C. One can verify that for every point x of C except for the ai ’s,
π−1 consists of two points, i.e. the degree of π is equal to 2.

It is a consequence of the Riemann Existence Theorem (Theorem 6.2.2) that
π extends to a holomorphic map π̃ : E → P1(C) by (0 : 1 : 0) �→ ∞. The
result is a map of degree 2 of connected compact Riemann Surfaces.

The branch locus for π̃ is B = {a1, a2, a3, a4 = ∞}; denote r1, r2, r3, r4

as the corresponding ramification points. Since for a map of degree 2 the only
nontrivial ramification has differential length equal to 1, the Riemann–Hurwitz
formula reads:

2gE − 2 = 2(−2)+
∑

r1,r2,r3,r4

1, (4.6)

which gives gE = 1.

In section 3.2.2 we encountered Riemann Surfaces of genus 1: complex
tori. It is a beautiful and classical story (see, for example, Silverman and Tate
(1992)) that for any complex torus T , there is an equation which realizes T
as an elliptic curve E ∼= T , and vice versa that any elliptic curve is isomor-
phic to a complex torus. The rich and tight interplay between the algebraic
and complex analytic points of view is one of the interesting and fruitful fea-
tures of the theory of Riemann Surfaces. In the next two exercises we describe
maps among elliptic curves by taking the complex tori point of view, where
the description becomes simple.

Exercise 4.5.4. A non-constant holomorphic map between complex tori f̃ :
C/� → C/�′ is called an isogeny. An isogeny is defined by a holomorphic
map f : C → C which is well-defined when we mod out by the lattices, i.e.
such that for any z ∈ C and any l ∈ � we have f (z + l) = f (z)+ l ′ for some
l ′ ∈ �′.
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62 Maps of Riemann Surfaces

1. Use the Riemann–Hurwitz formula to show that any isogeny f is unrami-
fied.

2. Show that any isogeny is induced by a map f (z) = az where a ∈ C and
f (�) ⊂ �′.

3. Consider the isogeny f̃ : C/� → C/�′ induced by f (z) = z + 1, where
� = {n+m(1+ i)|n,m ∈ Z} and �′ = {n(1/2)+m(1/2+ i/2)|n,m ∈ Z}.
Find the degree of f̃ .

Exercise 4.5.5. Consider a lattice � generated by the vectors ρ1eiθ1 , ρ2eiθ2 ,
with 0 ≤ θ1 < θ2 < 2π . Denote by τ = ρ2

ρ1
ei(θ2−θ1) and by �′ the lattice

generated by the vectors 1 and τ . Prove that the complex tori C/� and C/�′
are isomorphic.
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5

Loops and Lifts

Let us begin this chapter with a somewhat facetious metaphor: given a degree
3 map of Riemann Surfaces f : X → Y with branch locus B, imagine Y � B is
the world you live in and the map f gives the vertical projection from the heav-
ens X � f −1(B). Chapter 4 tells us that an astronomer1, pointing the telescope
straight up into the sky, observes that the portion of heavens seen is always
three copies of what surrounds her. A first guess is that the heavens are then
exactly three copies of the Earth, but she suspects that there may be other pos-
sibilities, and devises the following experiment to test such theory. Standing at
a particular point on Earth she finds a way to “mark” a, b, c the three points in
the sky lying precisely above her head. Keeping her focus on the portion of sky
identified by a, she starts walking around while looking into the telescope. If
the heavens are indeed three copies of Earth, every time she comes back to the
original point, her gaze should return to a. So if she finds one particular walk
such that when she returns she is looking at b or c, this experiment will show
that the global geometry of the heavens is in fact different from three copies of
Earth.

This chapter is devoted to turning this silly metaphor into actual mathe-
matics. Our goal is to introduce the notion of coverings, i.e. pairs of spaces
whose local geometry is identical; the global geometries are then controlled
by the groups of loops of the two spaces. We begin by introducing the notion
of homotopy of functions, corresponding to the idea of “wiggling” one func-
tion into another. We define the fundamental group of a pointed topological
space as the group of homotopy equivalence classes of loops originating at the
base point of the topological space. We show that, given a covering, the fun-
damental group of the source space is naturally identified with a subgroup of

1 We assume our astronomer is female in honor of great astrophysicist Margerita Hack
(1922–2013), even though (as far as we know) she never lived inside a Riemann Surface.
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64 Loops and Lifts

the fundamental group of the target space, and that in fact there is a perfect
“dictionary” between coverings of a given (pointed) space and subgroups
of its fundamental group, known as the Galois Correspondence of Covering
Theory.

As with other background chapters in this book, our treatment of this
subject is somewhat skeletal and very much tuned to what we use in the
rest of the book. Any basic topology textbook (e.g. Armstrong (1983) and
Munkres (1975)), or the very friendly graduate textbook (Hatcher, 2002), may
be consulted by the reader who is seeking a more comprehensive treatment.

5.1 Homotopy

The notion of homotopy formalizes the idea of continuously altering (or
“wiggling”) maps of topological spaces. A picture is given in Figure 5.1.

The intuition is that a homotopy between two maps f and g is a one-hour-
long movie, which starts showing the map f , and ends with the map g.

Definition 5.1.1. Let f, g : X → Y be maps of topological spaces.

● A homotopy between f and g is a continuous function

H : X × [0, 1] → Y

such that H(x, 0) = f (x) and H(x, 1) = g(x) for all x ∈ X .
● If a homotopy H exists, we say that f and g are homotopic and write f ∼ g.
● Let A ⊆ X be such that f|A = g|A. A homotopy H between f and g is said

to be relative to A if, for every a ∈ A and for every t ∈ [0, 1], we have that
H(a, t) = f (a) = g(a).

Example 5.1.2. For any topological space X , any two continuous maps f, g :
X → Rn are homotopic. This can be seen by considering the straight-line
homotopy H : X × [0, 1] → Rn given by

H(x, t) = (1− t) f (x)+ tg(x).

Example 5.1.2 shows that the topology of Euclidean spaces allows any two
functions to be deformed into one another in the simplest possible way: by
just moving from any point of the form f (x) to the corresponding point g(x)
along the straight line segment joining the two points. For a different target, it
therefore seems reasonable that the failure to execute this strategy might be an
indication of some interesting geometric feature of the target space. The next
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5.1 Homotopy 65

Figure 5.1 Schematic picture of a homotopy of maps

example concerning homotopies of paths illustrates this point (a path in Y is a
continuous map γ : [0, 1] → Y ).

Example 5.1.3. Consider the functions f, g : [0, 1] → R2 � (0, 0) defined
by:

f (s) = (cos(2πs), sin(2πs)), g(s) = (1, 0).

Let A = {0, 1} consist of the endpoints of the segment. We prove that f and g
are not homotopic relative to A. We first observe that the naive attempt of using
the straight line homotopy fails because we have removed the point (0, 0) from
the target space, and this prevents the point (−1, 0) from moving in a straight
line until it reaches (1, 0). Intuitively, it seems reasonable that we can’t “pull
in” the unit circle to a constant loop without crossing the origin.

We now provide two formal proofs of this fact: we first go at it with as little
technology as possible, and notice that the proof is considerably more involved
than the statement seems to call for. Next, we call on complex analysis for help
and uncover a much slicker proof. With this we illustrate the philosophy that
learning mathematics that is more advanced than the problem at hand can be a
valuable asset.
Proof 1: bare hands. Draw a picture as you read this proof to follow the details.

Assume there exists H a homotopy relative to A between f and g

H : [0, 1] × [0, 1] → R2 � (0, 0).

Denote:

U+ := H−1({y > 0}) U− := H−1({y < 0}) K 0 := H−1({y = 0}).
We note that three sides of the square other than the {t = 0} side are contained
in K 0: H restricted to these sides is the constant map (1, 0). Since (0, 1/2) ×
{0} ⊆ U+ and (1/2, 1)×{0} ⊆ U−, there must exist a path γ in [0, 1]× [0, 1]
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66 Loops and Lifts

such that γ (0) = (1/2, 0), γ (1) belongs to one of the three sides mentioned
above, and Image(γ ) ⊆ K 0. Define

φ = H ◦ γ : [0, 1] → R � 0 ⊂ R2 � (0, 0).

We may think of φ as a function taking values in R since its image is
contained in the x-axis.

We have that φ(0) = −1 and φ(1) = 1; therefore, by the mean value theo-
rem, there must exist some value of t for which φ(t) = 0. But this contradicts
the assumption that (0, 0) does not belong to the image of H .
Proof 2: with complex analysis. Identify R2 with C and notice that f and g
define paths in the complex plane. Remember, in Theorem 1.2.2 we saw that
path integrals of holomorphic functions are invariant under (now we can say
the appropriate word!) endpoint-preserving homotopies of paths. Consider the
function 1/z, which is holomorphic on C � 0. In Example 1.2.1 we computed∫

f

1

z
dz = 2π i.

On the other hand, the path integral of any function along the constant path g
must be 0. It follows that f cannot be homotopic to g.

Exercise 5.1.1. Prove that the constant map π : S1 → S1 defined by π(x) =
[0] is not homotopic to I dS1 . You may think of S1 as the topological space
[0, 1]/0 ∼ 1 and use Example 5.1.3 to solve this exercise.

Exercise 5.1.2. Prove that any two continuous maps f, g : {pt} → X are
homotopic if and only if X is path-connected. Here {pt} is a topological space
with only one point.

Exercise 5.1.3. Show that homotopy defines an equivalence relation on the set
of maps from a topological space X to a topological space Y .

We use our newly defined notion of equivalence of continuous functions to
define a notion of equivalence of topological spaces that relaxes the notion of
homeomorphism.

Definition 5.1.4. Two topological spaces X, Y are called homotopy equiva-
lent (or simply homotopic) and denoted X ∼ Y , if there exist maps f : X →
Y and g : Y → X such that

g ◦ f ∼ I dX , f ◦ g ∼ I dY .
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5.2 The Fundamental Group 67

Figure 5.2 The cylinder, circle and punctured plane are homotopy equivalent

Example 5.1.5. A topological space which is homotopy equivalent to a point
is called contractible. We show that any Euclidean space is contractible: for
any value of n, Rn ∼ {pt}.

Consider the constant map π : Rn → {pt} and the inclusion ι : {pt} → Rn

given by ι(pt) = �0. We have π ◦ ι = I dpt , and ι ◦ π : Rn → Rn is the
constant function �0. The latter composition is homotopic to I dRn , for example
via a straight line homotopy as in Example 5.1.2.

Exercise 5.1.4. Show, using Figure 5.2 as a guide, that the cylinder, the punc-
tured plane and the circle are homotopy equivalent. Choose wisely how to give
coordinates to points of each of these spaces.

5.2 The Fundamental Group

The fundamental group is a topological invariant which, to a topological space
X , associates a group of equivalence classes of loops on X up to wiggling. In
this section we collect the basic definitions and highlight the features of this
theory that are important to us.

Definition 5.2.1. Let X be a topological space and x0 ∈ X . A loop in X
with base point x0 is a continuous map γ : [0, 1] → X such that γ (0) =
γ (1) = x0.

Two loops γ, δ with base point x0 are said to be homotopic with respect
to the base point (see Figure 5.3) if there exists a homotopy H : [0, 1] ×
[0, 1] → X between γ and δ such that for every t ∈ [0, 1] we have
H(0, t) = H(1, t) = x0.

Being homotopic with respect to the base point is an equivalence relation on
the set of loops based at x0. If γ and δ are equivalent loops, we write γ ∼ δ.
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68 Loops and Lifts

Figure 5.3 A homotopy with respect to a base point between two loops

It is important to stress that loops are functions to X , not subsets of X . If one
thinks of t as a time variable, a loop is a motion of a particle in X , not just its
trajectory. If you like to jog, you should think of a loop as your one-hour-long
morning run, not just as your running route. Given two loops γ1, γ2, intuitively
one can get a new loop by first “running around” γ1 and then “running around”
γ2. Since loops must have domain [0, 1] we are now forced to run twice as fast.
We formalize this idea into a binary operation on the set of based loops.

Definition 5.2.2. Given two loops γ1, γ2 in X with base point x0, we define
the loop γ1 ∗ γ2 in X with base point x0 as follows:

γ1 ∗ γ2(s) =
{

γ1(2s) if s ∈ [0, 1/2]
γ2(2s − 1) if s ∈ [1/2, 1].

Lemma 5.2.3. The operation of concatenation of loops ∗ from Definition 5.2.2
is compatible with homotopy equivalence of based loops: if γ1 ∼ δ1 and γ2 ∼
δ2, then

γ1 ∗ γ2 ∼ δ1 ∗ δ2.

Proof Let H1 be a homotopy between γ1 and δ1, and similarly for H2 between
γ2 and δ2, both with respect to the base point x0. Then we create a homotopy
H between γ1 ∗ γ2 and δ1 ∗ δ2 with respect to x0 by “placing H1 and H2 side
by side”. Specifically, we define H : [0, 1] × [0, 1] → X as follows (see
Figure 5.4):

H(s, t) =
{

H1(2s, t) if s ∈ [0, 1/2]
H2(2s − 1, t) if s ∈ [1/2, 1].

Theorem 5.2.4. Let X be a topological space and x0 ∈ X. Then the set of
equivalence classes of loops with basepoint x0 is a group under the binary
operation ∗.
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5.2 The Fundamental Group 69

Figure 5.4 Concatenating two homotopies

Proof Lemma 5.2.3 implies that ∗ induces an operation on the quotient set:
given two equivalence classes of based loops [γ1], [γ2],

[γ1] ∗ [γ2] := [γ1 ∗ γ2].
Having a well-defined binary operation, we must show that the group axioms
hold.

Associativity The equivalence:

(γ1 ∗ γ2) ∗ γ3 ∼ γ1 ∗ (γ2 ∗ γ3)

is given by the homotopy:

H(s, t) =
⎧⎨
⎩

γ1(
4s

t+1 ) if t ≥ 4s − 1
γ2(4s − (t + 1)) if 4s − 2 ≤ t ≤ 4s − 1
γ3(

4s−t−2
2−t ) if t ≤ 4s − 2.

(5.1)

Identity The identity element e with respect to ∗ is the (class of the) constant
loop εx0(s) = x0 for all s ∈ [0, 1]. The identity:

[εx0] ∗ [γ ] = [γ ]
is shown by the homotopy

H(s, t) =
{

γ ( 2s
t+1 ) if t ≥ 2s − 1

x0 if t ≤ 2s − 1.
(5.2)
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70 Loops and Lifts

Figure 5.5 Homotopy squares for two of the group axioms

Inverse Given an equivalence class [γ ], its inverse is [γ ]−1 = [γ−1], where
γ−1(s) = γ (1 − s). Note that γ−1 “walks backwards” along γ . To
show that

[γ−1] ∗ [γ ] = [εx0],
consider the homotopy

H(s, t) =
⎧⎨
⎩

γ (s) if s ≤ 1−t
2

γ ( 1−t
2 ) if 1−t

2 ≤ s ≤ t+1
2

γ−1(s) if t+1
2 ≤ s.

(5.3)

The homotopies in (5.2) and (5.3) are represented in Figure 5.5. We leave it
to Exercise 5.2.1 to finish the check that the identity and inverse axioms hold,
and hence to complete the proof of Theorem 5.2.4.

Exercise 5.2.1. Draw the homotopy representing (5.1) and write out explicit
homotopies to show the following:

1. [γ ] ∗ [εx0] = [γ ];
2. [γ ] ∗ [γ−1] = [εx0].

After Theorem 5.2.4, we can finally make the following definition.

Definition 5.2.5. Let X be a topological space and x0 ∈ X . The fundamental
group of X with base point x0, denoted π1(X, x0), is the group of equiva-
lence classes of loops based at x0, with operation induced by concatenation of
loops∗.

Given f : X → Y a continuous map, we now define a function π1( f )
between the fundamental groups:
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5.2 The Fundamental Group 71

π1( f ) : π1(X, x0) → π1(Y, f (x0))

[γ ] �→ [ f ◦ γ ]. (5.4)

Exercise 5.2.2. Let f : X → Y and g : Y → Z be continuous maps sending
x0 �→ y0 �→ z0. Prove that:

(A1) π1( f ) : π1(X, x0)→ π1(Y, y0) is a group homomorphism;
(A2) π1(I dX ) = I dπ1(X,x0);
(A3) π1(g ◦ f ) = π1(g) ◦ π1( f ).

Remark 5.2.6 (Aside on categories and functors). Category theory argues that
any field of mathematics consists of two ingredients: a collection of objects
that one is interested in studying, and a class of good functions that allow
one to relate different objects. We call a choice of these ingredients a cate-
gory. Thus group theory, for example, is the study of the category of groups
G, whose objects are groups and whose good functions are group homomor-
phisms. Topology is the study of the category T of topological spaces and
continuous functions. Then we may consider the variant PT , the category of
pointed topological spaces: objects are pairs (X, x0), where X is a topological
space and x0 ∈ X ; a good function f : (X, x0) → (Y, y0) is a continuous
function such that f (x0) = y0.

Taking this point of view, a natural question is what the notion of a good
function among categories should be. Rather than getting sidetracked with
abstract theory for too much longer (the reader interested in some details
may refer to Hilton and Stammbach (1997)), we say that a good function
of categories is called a functor and point out that the fundamental group
offers us the first example of this concept. The fundamental group functor
π1 : PT → G assigns a group to every pointed topological and a group
homomorphism between the corresponding groups to any function of pointed
topological spaces. Further, such assignment preserves the notion of identity
function ((A2) in Exercise 5.2.2) and respects composition of functions ((A3)
in Exercise 5.2.2).

The formal properties of a functor allow us to prove in a standard way that
the fundamental group is a topological invariant.

Proposition 5.2.7. Let (X, x0), (Y, y0) be homeomorphic pointed topological
spaces. Then π1(X, x0) ∼= π1(Y, y0).

Proof Note that (X, x0) is homeomorphic to (Y, y0) if and only if there are
continuous maps f : X → Y and g : Y → X such that
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72 Loops and Lifts

g ◦ f = I dX , f ◦ g = I dY , f (x0) = y0.

Applying π1 to the first identity and then using (A2) and (A3) gives

π1(g) ◦ π1( f ) = π1(g ◦ f ) = π1(I dX ) = I dπ1(X,x0). (5.5)

The second equality, f ◦ g = I dY , similarly yields π1( f ) ◦ π1(g) =
I dπ1(Y,y0). Thus π1( f ) and π1(g) are inverses of each other and π1(X, x0) ∼=
π1(Y, y0).

Remark 5.2.8. The information of a base point is often unnecessary if one
is only interested in the isomorphism class of fundamental groups. Precisely,
if X is path-connected and x0, x1 ∈ X , then π1(X, x0) ∼= π1(X, x1) (and
sometimes we just write π1(X)). The isomorphism is non-canonical, as it
relies on the choice of a path σ from x1 to x0. For any such σ , the function
�σ : π1(X, x0) → π1(X, x1) defined by [γ ] �→ [σ−1 ∗ γ ∗ σ ]2 is a group
isomorphism.

In fact, fundamental groups are very loose invariants. They are not only
constant in homeomorphism classes but also in homotopy classes.

Exercise 5.2.3. Suppose that X, Y are path-connected and f, g : X → Y are
continuous maps. Show that if f is homotopic to g, then π1( f ) = π1(g). Use
this fact to show that if X is homotopy equivalent to Y , then π1(X) ∼= π1(Y ).

5.2.1 Examples

Computing fundamental groups is typically a nontrivial task. There are a few
standard tools that one studies in a first course in topology which, used in
combination, allow us to compute the fundamental groups of most of the geo-
metric objects that we encounter in this book. We refer the reader interested in
a more in-depth treatment of the topic to Armstrong (1983), Munkres (1975)
and Hatcher (2002). In this section we present a collection of facts and exam-
ples, without proof but with some motivation, with the goal of developing a
working understanding of the theory sufficient for our goals.

Contractible Spaces. Since π1({pt}) = {e}, it follows that X contractible
implies π1(X) = {e}.

2 Here ∗ denotes the associative operation of concatenation of paths, which is defined
analogously to the operation of concatenation of loops.
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5.2 The Fundamental Group 73

Sphere. The sphere S2 is not contractible, but any loop on the sphere can
be “pulled in”, i.e. is homotopic3 to εx0 . Thus π1(S2) = {e}. Any path-
connected space X such that π1(X) = {e} is called simply connected.
For any n ≥ 2, the n-dimensional sphere Sn is simply connected.

Circle. Any loop on the circle S1 is homotopic to a loop that travels at
constant speed around the circle clockwise (or counterclockwise) an
integer number of times. Furthermore, each loop can be seen as multiple
iterations of a loop which travels around only once. Thus

π1(S
1) = Z,

or equivalently the free group on 1 generator, F1.
Flower graph. Take g circles, label a point on each one, and glue them

together at the chosen points. We call the resulting space a flower graph
(see the right-hand side of Figure 5.6). The loops on such a graph are
generated by the simple loops which go around each “petal” once, and
there are no relations between them. Thus, if the graph � has g petals,
then π1(�) = Fg , the free group on g generators.

Graphs. Let � be a connected graph. By contracting a spanning tree4 on �

we see that � is homotopy equivalent to a flower graph with a certain
number of petals, g (see Figure 5.6). The number g is the genus of the
graph and is given by the formula 1− g = χ(�) = V − E , where V is
the number of vertices of � and E the number of edges. Thus

π1(�) = Fg = FE−V+1. (5.6)

Figure 5.6 Contracting this spanning tree yields a flower graph with seven petals

3 This is not as trivial as it may seem: it is possible for a continuous loop to go through every
point of the sphere, and one has to show that such a loop is homotopic to a non-surjective
loop; the latter can then easily be retracted. One honest possibility for formally proving that
S2 is simply connected is to apply the Seifert–Van Kampen theorem.

4 A spanning tree for a graph � is a subgraph of � which contains all vertices of � and does not
contain any cycles.
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74 Loops and Lifts

Figure 5.7 A homotopy of loops on the torus. Try and picture how the loops in
the homotopy on the right-hand side look on the surface of the torus

Punctured Sphere. A sphere with one point removed is contractible, so
π1(S2 � {p}) = {e}. A sphere with two points removed is homotopy
equivalent to a circle, so π1(S2 � {p1, p2}) = F1. A sphere with n points
removed is homotopy equivalent to a flower graph with n − 1 petals, so

π1(S
2 � {p1, . . . , pn}) = Fn−1.

Torus. Let T be the torus defined as the identification space T = [0, 1] ×
[0, 1]/ ∼ where we identify (0, y) ∼ (1, y) and (x, 0) ∼ (x, 1). There
are two fundamental loops α, β, parameterizing the coordinate segments
on T , and they satisfy a relation: Figure 5.7 illustrates a homotopy
between the loops β ∗ α and α ∗ β. Thus

π1(T ) ∼= 〈a, b|aba−1b−1〉 ∼= Z⊕ Z.

Orientable Surfaces. A general surface Tg of genus g may be obtained as
an identification space by identifying appropriately pairs of sides of a
4g-gon, as in Section 2.4.1. Each of the sides of the polygon becomes a
loop after the identification, and a path parameterizing the boundary of
the polygon corresponds to a path that can be contracted to a constant
path through the interior of the polygon. This gives rise to the following
presentation for the fundamental group:

π1(Tg) ∼= 〈a1, b1, . . . ag, bg|a1b1a−1
1 b−1

1 . . . agbga−1
g b−1

g 〉. (5.7)

Exercise 5.2.4. Prove that the space obtained by removing n points from a
genus g orientable surface is homotopy equivalent to a flower graph with 2g+
n−1 petals. Show also that the fundamental group of such a punctured surface
can be presented in a way which is symmetric with respect to all the punctures:

π1(Tg � {p1, . . . , pn})
∼= 〈a1, b1, . . . ag, bg, r1, . . . , rn|a1b1a−1

1 b−1
1 . . . agbga−1

g b−1
g r1 . . . rn〉.

(5.8)
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5.3 Covering Spaces

Informally, a covering X → Y is a surjective map which is a local homeo-
morphism at every point. This means that for any y ∈ Y , the local geometry
around y is the same as the local geometry around each inverse image of y (see
Figure 5.8). An elementary example of a covering, also called a trivial cover,
is when X consists of a number of disjoint copies of Y and the map restricted
to each copy is just the identity function. However, there are more interesting
examples of coverings, and the global geometry of coverings of Y is tightly
connected to the fundamental group of Y .

Definition 5.3.1. A covering is a continuous, surjective map p : X → Y such
that for every y ∈ Y and each xi ∈ p−1(y) there exists a neighborhood Uy

of y whose inverse image p−1(Uy) consists of disjoint neighborhoods Vxi and
each restriction of p to Vxi is a homeomorphism p : Vxi → Uy .

For any covering p : X → Y and y ∈ Y we have that p−1(y) is a discrete
set. If X is connected and locally path-connected, the proof of Theorem 4.3.3
naturally generalizes to show that |p−1(y)| is the same for all y ∈ Y – in
this case we call |p−1(y)| the degree of p. In Chapter 4 we saw that maps of
compact Riemann Surfaces provide many examples of coverings.

Example 5.3.2. Let f : X → Y be a holomorphic map of compact Riemann
Surfaces with ramification locus R ⊂ X and branch locus B ⊂ Y . Then the
restriction f : (X � R)→ (Y � B) is a covering of finite degree.

Figure 5.8 Schematic picture of a covering
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76 Loops and Lifts

Example 5.3.3. Identify the circle S1 with the complex unit circle S1 = {z ∈
C||z| = 1}.

● The map p : S1 → S1 defined by p(z) = z4 is a covering of degree 4. One
similarly has a covering for each map p(z) = zd where d ∈ N.

● Define the map q : R → S1 by q(t) = e2π i t . Then q is a covering with each
set q−1(z) in bijection with Z.

Coverings and fundamental groups are intimately connected. We will show
that the natural map π1(p) : π1(X, x0) → π1(Y, y0 = p(x0)) is injective,
which allows us to think of π1(X, x0) as a subgroup of the fundamental group
of Y . Conversely, given any loop γ in Y based at y0, there always exists a
unique path γ̃ starting at x0 which projects to γ via p. It is important to notice
that γ̃ , which is called a lift of γ , need not be a loop, as it may end at a differ-
ent preimage of y0. In fact, one may think of (the image of) π1(X, x0) as the
subgroup of π1(Y, y0) consisting of loops which lift to loops.

Definition 5.3.4. Given a covering p : X → Y and a continuous function
α : B → Y , a lift of α is a continuous function α̃ : B → X such that
p ◦ α̃ = α.

When liftings exist, they are “almost” unique. We make this statement
precise in the following exercise.

Exercise 5.3.1. Given a covering p : X → Y , and two lifts α̃1, α̃2 of a con-
tinuous function α : B → Y , with B connected. Then either α̃1 = α̃2 or the
images of the two lifts are disjoint. Show that both situations may occur. Hint:
consider the subsets of B of points where the two lifts agree/don’t agree, and
show they are both open and closed.

Lemma 5.3.5 (Paths lift). Let p : X → Y be a covering. If α : [0, 1] → Y is
a path such that α(0) = y0 and x0 ∈ p−1(y0) ⊂ X, then there exists a unique
lift α̃ : [0, 1] → X such that α̃(0) = x0.

Sketch of Proof We build the lift piece by piece, as illustrated in Figure 5.9.
Choose a neighborhood Uy0 and corresponding Vx0 such that the restriction
p : Vx0 → Uy0 is a homeomorphism – in particular, the restriction has an
inverse, p−1

0 .
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5.3 Covering Spaces 77

Figure 5.9 Two steps of lifting a path

Suppose that for 0 < s < s1 we have α(s) ∈ Uy0 but α(s1) /∈ Uy0 . Then
for 0 < s < s1 define the lift α̃(s) = p−1

0 (α(s)). Define α̃(s1) = lims→s1 α̃(s)
and note that p(α̃(s1)) = α(s1).

Now repeat this process using x1 := α(s1) and y1 := α̃(s1) instead of x0, y0

to extend the lift to s2 > s1, and we may continue until we have a full lift
α̃ : [0, 1] → Y . (Note: the compactness of [0, 1] guarantees we can reach
s = 1 in a finite number of steps.)

Using a similar strategy, one shows that homotopies of paths also lift.

Lemma 5.3.6 (Homotopies of paths lift). Let p : X → Y be a covering and
H : [0, 1] × [0, 1] → Y a homotopy between the paths α, β : [0, 1] → Y ,
relative to the endpoints. Let y0 = α(0) = H(0, 0) and x0 ∈ p−1(y0) ⊂ X.
Then there exists a lifting H̃ : [0, 1]×[0, 1] → X of H such that H̃(0, 0) = x0.

Sketch of Proof Again, the lift is built in several steps. One may start by lift-
ing the path α = H|[0,1]×{0} as in Lemma 5.3.5. Note that at each step one
may actually lift H along a basic5 two-dimensional open set. Hence, when α

is lifted, one has obtained a lift of H along some strip [0, 1] × [0, t0). Note
that t0 > 0 is granted by the compactness of [0, 1], which allows us to lift α
in a finite number of steps. We also note that H̃(0, t0) is defined by continu-
ity. Now we may define α1 := H|[0,1]×{t0} and iterate the procedure until we
extend the domain of H̃ to all of [0, 1] × [0, 1]. (Here it is the compactness

5 An open set obtained as a product of two orthogonal open intervals. These are also called box
sets and form a natural base for the product topology.
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78 Loops and Lifts

of [0, 1] × [0, 1] which allows the process to terminate in a finite number of
steps.)

The next exercises explore some important consequence of Lemma 5.3.6.

Exercise 5.3.2. Let p : X → Y be a covering. If γ1, γ2 are homotopic loops
based at y0, and γ̃1, γ̃2 are lifts such that γ̃1(0) = γ̃2(0), then γ̃1(1) = γ̃2(1).

Exercise 5.3.3. Let p : X → Y be a covering and choose y0 ∈ Y and x0 ∈
p−1(y0) ⊂ X . Show that π1(p) : π1(X, x0)→ π1(Y, y0) is an injective group
homomorphism.

Using Lemma 5.3.5 and Lemma 5.3.6 one obtains the fundamental result
about lifting arbitrary maps, which we write in the language of pointed
topological spaces. Note that A ≤ B means A is a subgroup of B.

Proposition 5.3.7. Let p : (X, x0) → (Y, y0) be a covering and α :
(B, b0) → (Y, y0) a continuous function of path-connected, pointed topologi-
cal spaces. Then a lifting α̃ : (B, b0)→ (X, x0) exists if and only if:

π1(α) (π1(B, b0)) ≤ π1(p) (π1(X, x0)) . (5.9)

Sketch of Proof For any b ∈ B, we choose a path γ from b0 to b. The com-
position α ◦ γ is a path to X and its lifting γ̃ exists by Lemma 5.3.5. We
define

α̃(b) := γ̃ (1).

If the map α̃ is well defined, then it lifts α. To show that α̃ is well defined one
uses Lemma 5.3.6 and (5.9).

A simply connected covering q : (U, u0) → (Y, y0) is called a universal
cover of (Y, y0) (sometimes one uses the name “universal cover” just to denote
the topological space U ). It is a bit technical to show that a universal covering
always exists (see Hatcher (2002, Section 1.3)), but its uniqueness up to home-
omorphism is a consequence of Proposition 5.3.7, which grants that (U, u0)

satisfies the following universal property.
Let q : (U, u0) → (Y, y0) be a universal covering for (Y, y0). Given any
covering p : (X, x0) → (Y, y0), there exists a unique covering q̃ : (U, u0) →
(X, x0) which lifts q. As a consequence, (U, u0) admits a universal covering
map to any covering of (Y, y0).
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5.3 Covering Spaces 79

Exercise 5.3.4. Show that the above universal property holds, and that it
implies the uniqueness of the universal cover up to homeomorphism.

Exercise 5.3.5. Show that R is the universal cover of S1, R2 is the universal
cover for the torus, and S2 is the universal cover for P2(R).

We have seen that any covering of p : (X, x0)→ (Y, y0) naturally identifies
a subgroup of the fundamental group of (Y, y0) of “loops that lifts to loops”.
In fact, in a fashion similar to how one constructs the universal cover, one
may show that given any subgroup of π1(Y, y0) there exists a corresponding
covering space. The precise statement is known as the Galois correspondence
in covering theory.

Galois correspondence in covering theory.
The function[

p : (X, x0)→ (Y, y0)
] �→ [

G(p) := π1(p) (π1(X, x0)) ≤ π1(Y, y0)
]

is a bijection between the set of path-connected covers of (Y, y0) and the set of
subgroups of π1(Y, y0).

Such bijection respects the poset6 structure induced on the two sets by the
covering maps and by inclusion, respectively. What this means is illustrated in
the following diagram:

(X, x0)

p1

��

q

����
��

��
��

�

(Z , z0)

p2

�����
��
��
��

⇐⇒ G(p1) ≤ G(p2) ≤ π1(Y, y0).

(Y, y0)

Remark 5.3.8. We note that by the Galois correspondence a simply con-
nected topological space admits only trivial covers. We exploited this fact when
proving the Rieman–Hurwitz formula (4.5). Also, all covers of a circle are
described in Example 5.3.3. This fact will be used in the proof of the Riemann
Existence Theorem (Theorem 6.2.2).

Exercise 5.3.6. Describe all connected coverings of a torus.

6 Partially ordered set.
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6

Counting Maps

We now introduce the counting problem for maps of Riemann Surfaces: fixing
a compact Riemann Surface Y and a finite number of points b1, . . . , bn ∈ Y ,
how many maps to Y have a specified ramification behavior over the chosen
points, and are unramifed elsewhere?

Natural questions that arise are:

1. Is the number of such maps finite?
2. Does it depend on the Riemann Surface Y ?
3. Does it depend on the configuration of the points bi ?

As luck would have it, the answers are about as good as possible: the number
is always finite, it does depend only on the genus of Y ; it also depends on the
choice of ramification over the bi but not on the position of the points. We call
the answers to the question in the first paragraph Hurwitz numbers and we will
spend the rest of this book becoming well acquainted with them.

A key reason for the favorable answers to the above questions is that maps
of Riemann Surfaces are essentially “controlled by topology”. We saw in
Chapter 4 that maps of compact Riemann Surfaces are covering spaces away
from a finite number of points of ramification: in this section we call them ram-
ified covers. The Riemann Existence Theorem essentially says that any ramified
cover corresponds to a map of Riemann Surfaces, and allows us to immediately
witness that Hurwitz numbers are independent of the complex structure on Y
or on the configuration of the branch points.

In subsequent chapters we will count ramified covers by analyzing the
behavior of lifts of loops on Y . We conclude this chapter by looking at the sim-
plest example: when the cover has degree 2, a loop winding around a branch
point must lift to a path connecting the two inverse images of the base point.
This allows us to compute all hyperelliptic Hurwitz numbers, counting ramified
covers of degree 2 of P1(C).

80
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6.1 Hurwitz Numbers 81

6.1 Hurwitz Numbers

We begin this section by defining the notion of isomorphism and automor-
phims of a map of Riemann Surfaces.

Definition 6.1.1. Two holomorphic maps of Riemann Surfaces f : X → Y
and g : X̃ → Y are called isomorphic if there is an isomorphism of Rie-
mann Surfaces φ : X → X̃ such that f = g ◦ φ. An automorphism of
f : X → Y is an isomorphism ψ : X → X such that f = f ◦ ψ . The group
of automorphisms of f is denoted Aut( f ).

Note that if f and g are isomorphic maps via φ, then φ respects pre-images,
i.e. for any y ∈ Y the map φ gives a bijection φ : f −1(y)→ g−1(y).

Exercise 6.1.1. Consider the affine elliptic curve E1 = V (y2 − (x − a1)(x −
a2)(x − a3)) ⊂ C2 with the ai ∈ C distinct. The projection π : E1 → C

defined by (x, y) �→ x is a holomorphic map. Show that the map σ : E1 → E1

defined by (x, y) �→ (x,−y) gives a nontrivial automorphism of π .

We introduce a combinatorial notion which will be used to index an
important geometric (local) invariant of a map of Riemann Surfaces.

Definition 6.1.2. Let d > 0 be an integer. A partition of d is an unordered
tuple of positive integers λ = (k1, k2, . . .) such that

∑
ki = d. Since some of

the integers in the tuple may be the same, we can’t think of a partition as just
a set of integers. But imagine giving each part of λ a color, making sure that
repeated integers get colored differently: then λ is a set of colored integers.
This allows us to talk about the elements of a partition, or make sense of what
a function from a partition to itself is.

The sum d of the elements of λ is called the size of the partition and denoted
|λ|. The number of elements in λ is called the length of the partition and
denoted 
(λ).

An automorphism of a partition λ is a bijection φ : λ → λ such that,
for every i , the equality of integers φ(ki ) = ki holds. In simple terms one is
allowed to permute the repeated values of the partition.

Although partitions are unordered collections of positive integers, it is
customary to write them in non-increasing order.

Example 6.1.3. There are three distinct partitions of size 3: (3), (2, 1) and
(1, 1, 1). Their lengths are respectively one, two and three. The last partition is
the only one that admits nontrivial automorphisms. In fact, Aut(1, 1, 1) = S3.
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82 Counting Maps

Exercise 6.1.2. Write down all the partitions of 4, 5 and 6.

Definition 6.1.4. Let f : X → Y be a holomorphic map of Riemann Surfaces
of degree d, let y ∈ Y and let f −1(y) = {x1, . . . , xn}. Recall that for any xi ,
the map f admits a local expression of the form w = zkxi , with kxi a well-
defined positive integer called the ramification index of f at xi . We call the
set {kx1, . . . , kxn } the ramification profile of f at y. Note that the ramification
profile of f at y is a partition of d .

If the ramification profile of f at y is:

● (1, . . . , 1), then we say f is unramified over y;
● (2) or (2, 1, . . . , 1), then f has simple ramification over y;
● (d), where d is the degree of f , then f is fully ramified over y.

Example 6.1.5. For any d > 0, the holomorphic map p : P1(C) → P1(C)

given by the polynomial p(x) = xd is fully ramified over 0 and ∞, and
unramified over every other point of P1(C).

We are now ready to formally state the counting problem for maps of
Riemann Surfaces.

Definition 6.1.6 (Hurwitz number). Let Y be a connected, compact Riemann
Surface of genus g. Fix points b1, . . . , bn ∈ Y and let λ1, . . . , λn be partitions
of a positive integer d . We define the Hurwitz number as

H
h

d→g
(λ1, . . . , λn) =

∑
[ f ]

1

|Aut( f )| ; (6.1)

the sum in (6.1) runs over each isomorphism class of f : X → Y where

1. f is a holomorphic map of Riemann Surfaces;
2. X is connected, compact, and has genus h;
3. the branch locus of f is B = {b1, . . . , bn};
4. the ramification profile of f at bi is λi .

We call a map f satisfying 1–4 a Hurwitz cover for the discrete data
g, h, d, λ1, . . . , λn .

For Hurwitz covers to exist, the discrete data must satisfy the Riemann–
Hurwitz formula (4.5). We note that in this case

∑
x∈X

νx = nd −
n∑

i=1


(λi ). (6.2)
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6.1 Hurwitz Numbers 83

Example 6.1.7. Let Y = P1(C) and set b1 = 0, b2 = ∞. Choose d > 0 and
let λ1 = λ2 = (d). We compute

H
0

d→0
((d), (d)) = 1

d
. (6.3)

Example 6.1.5 shows that p(x) = xd gives a Hurwitz cover for this discrete
data. We show that any Hurwitz cover f : X → P1(C) is isomorphic to
p, so that p is the only map we need to consider for computing the Hurwitz
Number. Recall from Remark 3.2.1 that any Riemann Surface of genus 0 is
isomorphic to P1(C). Thus any Hurwitz cover is first of all a holomorphic map
f : P1(C)→ P1(C) and so f is a rational function (Remark 4.5.1).

Further, f has degree d and is ramified only at r1, r2 where f (r1) =
0, f (r2) = ∞, both with ramification index d . Assuming that neither r1 nor r2

is ∞, we have

f (x) = b
(x − r1)

d

(x − r2)d

for some 0 
= b ∈ C. To show that the map f is isomorphic to p, we must
construct an isomorphism of Riemann Surfaces φ : P1(C) → P1(C) such that
f = p ◦ φ. Thus φ is a Möbius transformation (see Exercise 4.5.2) which, in
particular, sends r1 �→ 0 and r2 �→ ∞, i.e. we have φ = a(x − r1)/(x − r2)

for some 0 
= a ∈ C.
The equation f = p ◦ φ is

b
(x − r1)

d

(x − r2)d
=
(

a
x − r1

x − r2

)d

which is satisfied by any choice of a = b1/d . (We leave the case that one of
r1, r2 is ∞ as an exercise.)

Thus f is isomorphic to p via φ, and we have only one isomorphism class
of good maps to consider to compute the Hurwitz number.

Exercise 6.1.3 computes that |Aut(p)| = d and concludes the proof of (6.3).

Exercise 6.1.3. Let p : P1(C) → P1(C) be the map given by p(x) = xd .
Show that

Aut(p) = {φ̃(x) = cx |c ∈ μd},

and that this group is naturally isomorphic to μd , the multiplicative cyclic
group of complex d-th roots of unity.
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84 Counting Maps

Sometimes it is useful to allow the source curves of the maps we count to
be disconnected. We call the corresponding count a disconnected Hurwitz
number and denote it by H•

h
d→g

(λ1, . . . , λn).

Before we move on too quickly, let us pause and ponder on the fact that
we have not defined the genus of a disconnected Riemann Surface. If you are
tempted to assume that the genus should be the sum of the genera of the con-
nected components, remember that there is another fundamental topological
invariant for surfaces, the Euler characteristic χ , which is naturally additive
under disjoint unions. For a connected, compact surface

χ = 2− 2g. (6.4)

At this point notice that if we declare the genus of a disjoint union to be the
sum of the genera of the connected components, we must then appropriately
modify (6.4). It is a better choice to declare (6.4) to be valid and use it to
define the genus of a disconnected surface. For example, if X = P1(C) �
P1(C), χ(X) = 2 + 2 and therefore solving (6.4) we obtain g(X) = −1.
The genus of a disconnected surface may be a negative integer! There are
many reasons why this is the right thing to do, but one that we can readily
appreciate is that with this definition the Riemann–Hurwitz formula remains
unchanged when the source curve is disconnected. We conclude this discus-
sion by unraveling the definition of genus of a disconnected curve into a purely
combinatorial one.

Definition 6.1.8. Let X be a compact, orientable surface with n connected
components of genera g1, . . . , gn . Then:

g(X) := g1 + . . .+ gn + 1− n.

Exercise 6.1.4. Check that using definition 6.1.8, (6.4) holds and the
Riemann–Hurwitz formula remains unchanged when the source curve is
disconnected.

6.2 Riemann’s Existence Theorem

In Chapters 4 and 5 we saw that holomorphic functions of compact Riemann
Surfaces are covering spaces away from a finite set of points. Conversely, we
now show that any topological cover of a punctured Riemann Surface gives
rise to a unique holomorphic map of compact Riemann Surfaces.
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6.2 Riemann’s Existence Theorem 85

Definition 6.2.1. A continuous function between compact topological sur-
faces p : X → Y is called a ramified cover if there is a finite set of points
B ⊂ Y such that:

● p−1(B) ⊂ X is finite;
● p : X � p−1(B)→ Y � B is a covering.

We may now concisely say that maps of Riemann Surfaces are ramified
covers. The following classical theorem establishes the converse statement.

Theorem 6.2.2 (Riemann’s Existence Theorem). Let Y be a compact Riemann
Surface and X◦ a topological surface. Assume that there are a finite number
of points b1, . . . , bn ∈ Y and a function f ◦ : X◦ → Y � {b1, . . . , bn} which
is a topological cover of finite degree. Then there exists a unique (up to iso-
morphism) compact Riemann Surface X which contains X◦ as a dense open
set (in fact X is X◦ plus a finite number of points) such that f ◦ extends to
f : X → Y , a holomorphic map of Riemann Surfaces.

Sketch of proof. The proof consists of two steps. The first is purely topologi-
cal, and it consists in completing X◦ to a compact surface and extending f ◦ to a
continuous function. The second step is endowing X with a complex structure
in such a way that f is a holomorphic function.

For the first step, consider one of the special points b1, . . . , bn ∈ Y . To avoid
unnecessary proliferation of indices, let us name the point we are considering
simply b. Consider a coordinate chart ϕ around b and let � := ϕ−1({|w| < 1});
notice that � is an open neighborhood of b homeomorphic to an open disk. The
function f ◦ : ( f ◦)−1(��b) → ��b is a covering of some finite degree d by
assumption. Let U ◦

1 , . . . ,U ◦
m denote the connected components of ( f ◦)−1(��

b). Since � � b is homotopy equivalent to a circle, its fundamental group is
Z; analogously to the case of the circle, connected finite covers of punctured
disks (such as the open sets U ◦

i ) are themselves homeomorphic to punctured
disks; further there exist positive integers k1, . . . , km and homeomorphisms
φ◦i : Ui → {0 < |z| < 1} ⊂ C such that ϕ ◦ f ◦ ◦ (φ◦i )−1 is the map w = zki .
For every i = 1, . . . ,m now add a point xi to X◦ in such a way that φ◦i extends
to a homeomorphism φi : Ui ∪ xi → {|z| < 1} ⊂ C, with φi (xi ) = 0.

After repeating this process for all of the special points b1, . . . , bn ∈ Y ,
we have added a finite number of points to X◦ to obtain a new topological
space X , which is clearly a surface: one only needs to show that it is locally
homeomorphic to a Euclidean open disk around the added points xi and the
homeomorphisms φi constructed above do precisely this. One may show that
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86 Counting Maps

X is compact by showing that every infinite subset of X must have a limit
point, which we leave as an exercise1. We also note that f ◦ extends natu-
rally to a continuous function on all of X by sending each new point xi to the
corresponding b ∈ Y .

Finally, we must show that X may be given a complex structure in such
a way that f is a holomorphic function. For every x ∈ X◦, one may
choose an open neighborhood Ux ⊂ X◦ such that f ◦|Ux

is a homeomor-
phism and f ◦(Ux ) is contained in some coordinate chart ϕx for Y . We then
define the coordinate chart for x to be the composition ϕx ◦ f ◦|Ux

. With this
choice, the local expression of f at x is the identity function and hence it is
holomorphic.

For each of the new points xi we use the homeomorphism φi as a local chart.
As was pointed out above, a local expression for f around xi is given by the
map w = zki , which is holomorphic. We leave it to the reader to check that the
charts just defined are compatible, and therefore define a complex structure of
X . We also leave it to the reader to verify that any other atlas on X for which
f is holomorphic is in fact equivalent to the one just constructed.

6.3 Hyperelliptic Covers

In this section we study maps of degree 2 to the projective line. We show that,
given any choice of an even number of points on P1(C), there exists “half a
map” of Riemann Surfaces of degree 2 having those points as the branch locus.

Definition 6.3.1. A Riemann Surface X is called hyperelliptic if it admits
a holomorphic map f to P1(C) of degree 2. Such a map f is called a
hyperelliptic cover.

Let f : X → P1(C) be a hyperelliptic cover, with X a hyperelliptic Rie-
mann Surface of genus g. Applying the Riemann–Hurwitz Formula to f gives∑

x∈X νx = 2g + 2.
Since the degree of f is 2, a point x ∈ X is a ramification point if and only

if kx = 2 (i.e. if νx = 1). Then
∑

x∈H νx = 2g + 2 implies that f has 2g + 2
distinct ramification points. It also follows that there are 2g+2 distinct branch
points in P1(C).

We therefore set out to understand the Hurwitz number H
g

2→0
((2)2g+2),

where the exponent after the partition is shorthand notation to mean that we

1 This is called limit point compactness, and it is equivalent to compactness for metrizable spaces.
Surfaces are metrizable by the Urysohn metrization theorem (Munkres, 1975, page 215).
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6.3 Hyperelliptic Covers 87

have 2g + 2 partitions equal to (2). We show first that this number is nonzero
by exhibiting explicitly a Hurwitz cover for this discrete data.

Let b1, . . . , b2g+2 be fixed, distinct points in P1(C), and we may assume
without loss of generality that they are all different from∞. Identify the affine
open P1(C)�∞with the x-axis in C2, and consider the affine curve X◦ defined
by the polynomial equation

y2 =
2g+2∏
i=1

(x − bi ). (6.5)

The projection map (x, y) → x restricts to a holomorphic function p◦ : X◦ →
C, which satisfies the hypothesis of the Riemann Existence Theorem. There-
fore it extends uniquely to a map p from a compact Riemann Surface X to
P1(C). Each of the points bi has only one inverse image for p, and all the bi

are branch points. Since we have an even number of bi s and the Riemann–
Hurwitz formula forces

∑
x∈X νx to be even, the point ∞ is not a branch point

for p. Hence the map p satisfies all the discrete data of our Hurwitz problem
and it is therefore a legitimate Hurwitz cover.

Next, we must compute Aut(p). Let φ : X → X be an automorphism of
p and let R ⊂ X be the ramification locus of f . If r ∈ R then we must have
φ(r) = r , i.e. φ must fix all ramification points.

If x ∈ X is not a ramification point, then φ may either fix x or switch it
with the other inverse image of p(x). One can argue that the subsets of X � R
consisting of points that are fixed/switched by φ are both open, hence one has
to be empty and the other all of X � R. This leaves only two options for φ:
either φ is the identity function, or it switches all non-ramification points in
X . The map ι : X → X defined as the restriction of the plane map (x, y) �→
(x,−y) is a holomorphic map which does just that. Hence |Aut(p)| = 2 and
the contribution to H

g
2→0

((2)2g+2) by p is 1/2.

In fact, p is the only (isomorphism class of) hyperelliptic Hurwitz cover. In
order to show this, we need to analyze how paths on P1(C) lift to a cover.

Lemma 6.3.2. Let f : X → P1(C) be a hyperelliptic Hurwitz cover, with
ramification locus R = {r1, . . . , r2g+2} ⊂ X and branch locus B = {b1 =
f (r1), . . . , b2g+2 = f (r2g+2)} ⊂ P1(C). Let y0 ∈ P1(C) � B and f −1(y0) =
{x1, x2}.
1. If γ is a simple loop based at y0 which separates P1(C) into two regions,

each containing an even number of branch points, then any lift of γ via f
is a loop.
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88 Counting Maps

Figure 6.1 Lifting a loop winding around a branch point

2. If γ is a simple loop based at y0 which separates P1(C) into two regions,
each containing an odd number of branch points, then any lift of γ via f is
an open path.

Proof Since the endpoint of a lift of a path γ from a given starting point
depends only on the homotopy class of γ (see Exercise 5.3.2), it suffices to
show that, for every i , a loop ρi that winds once around bi lifts to an open
path. A loop γ that encompasses several branch points is then homotopic to a
composition of the ρi s for the corresponding branch points, and therefore its
lift will close up or not according to the parity of the branch points circled.

Consider coordinate patches Ubi � bi , Vri � ri , such that the local expres-
sion for f is w = z2. Construct the loop ρi = α ∗ β ∗ α−1 as illustrated in
Figure 6.1: follow a path α from y0 to y1, where y1 ∈ Ubi is the point whose
local coordinate is w = 1. Then β is a loop based at y1, going around the point
bi along the circle |w| = 1. Finally follow α backwards to y0. Let us lift the
path ρi starting at x1: the endpoint of the lift of α is one of the two points with
local coordinate z = ±1: without loss of generality we may assume it is z = 1.
The lift of the loop β traces a semicircle and has endpoint z = −1. Finally, the
lift of α−1 starting from z = −1 has to be disjoint from the lift starting from
z = 1, and hence it must have endpoint x2.

We now show that p is the only map contributing to the Hurwitz number
H

g
2→0

((2)2g+2) by showing that there is a unique ramified cover of P1(C)

branched at a specified collection of points.

Lemma 6.3.3. Let B = {b1, . . . , b2g+2} ⊂ P1(C) be distinct points. There
exists a unique ramified cover of P1(C) of degree 2 with B as its branch locus.

Proof Refer to Figure 6.2 throughout this proof.
For i = 1, . . . , g + 1, let γi be a segment joining b2i−1 and b2i , and assume

the supports of all γi s are disjoint.
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6.3 Hyperelliptic Covers 89

Figure 6.2 The unique degree 2 ramified cover

Consider Y = P1(C) � ∪g+1
i=1 γi , and fix a point y0 ∈ Y . Note that Y is

homeomorphic to a sphere with g + 1 closed discs removed.
Any ramified double cover f : X → P1(C) branching at B should restrict

to an honest cover f : f −1(Y ) → Y . By construction, there are no loops in
Y based at y0 that encompass an odd number of branch points. Therefore all
loops in Y must lift to loops in f −1(Y ); this forces f −1(Y )→ Y to be a trivial
cover: f −1(Y ) ∼= Y+ ∪ Y− is homeomorphic to two disjoint copies of Y .

Finally, we observe that for each of the γi , f −1(γi ) is a circle with dis-
tinguished points r2i−1, r2i . The ramified cover X is then obtained uniquely
by gluing the boundaries of the removed discs to the circles as shown in
Figure 6.2.

Since we have shown that there is a unique genus g hyperelliptic Hurwitz
cover, we now understand all hyperelliptic Hurwitz numbers. Recalling that a
hyperelliptic cover admits one nontrivial automorphism, we have

H
g

2→0
((2)2g+2) = 1

2
.
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7

Counting Monodromy Representations

At the end of Chapter 6 we introduced an interesting approach to the study
of a hyperelliptic cover f : X → P1(C): by performing appropriate cuts on
both source and target Riemann Surfaces, we reduced the space upstairs to
be just two disjoint copies of the space downstairs. We then reconstructed X
by observing that there is a unique (orientation-preserving) way to reglue the
two copies along their boundaries in a way compatible with the existence of a
global map f .

In this chapter we wish to generalize this idea to what might be called the
Ikea approach to covers. Suppose you ordered online your favorite cover of
Riemann Surfaces f : X → Y . For the sake of saving on shipping costs, the
warehouse would like to cut Y along appropriate segments in such a way that
it could be flattened to a topological disk P . If the branch locus B of f is
contained in the cuts, then cutting X along the inverse image of the cuts in Y
produces d disjoint identical copies of P , which with Scandinavian precision
would be labeled P1, . . . , Pd . What you will get in the mail is an envelope
containing these d+1 disks and, hopefully, a manual of assembly instructions.

A way to provide assembly instructions is to specify, for every loop on Y ,
its lifts to X . For example, suppose that a loop ρ exits P at a point x and
re-enters it at another point y (think of P as some kind of Pac-Man screen
governed by the geometry of Y ). Suppose you are also told that when you lift
ρ starting from the polygon P1 you end up in polygon P3. This information
tells you that you should glue the points x and y together; and that you should
glue the point corresponding to x in P1 to the point corresponding to y in P3.
It’s easy to imagine that if you know such information for every possible loop,
you could eventually glue back all sides of P to reconstruct Y and all sides of
the various Pi s to obtain X . While at first this seems like a daunting amount
of information to control, because the endpoints of lifts of loops are invariant
under homotopy, all such information is contained in a group homomorphism
� : π1(Y � B, y0)→ Sd , called the monodromy representation of the cover f .

90
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7.1 From Maps to Monodromy 91

In this chapter we become familiar with monodromy representations. We
develop a very tight dictionary between ramified covers and monodromy repre-
sentations, which allows us to translate the Hurwitz problem of counting maps
of Riemann Surfaces into a group theoretic problem of counting appropriate
monodromy representations. This translation is extremely helpful. For exam-
ple, because fundamental groups of punctured surfaces are finitely generated
and Sd is a finite group, we see immediately that the answer to the Hurwitz
counting problem is always a finite number.

7.1 From Maps to Monodromy

Let f : X → Y be a degree d holomorphic map of connected Riemann Sur-
faces with branch locus B = {b1, . . . , bn} ⊂ Y . Choose a y0 /∈ B and consider
a loop γ : [0, 1] → Y � B based at y0 as shown in Figure 7.1. Choosing a
preimage x ∈ f −1(y0), γ lifts to a path γ̃x in X starting at x . Since γ (1) = y0,
the endpoint of γ̃x is a preimage of y0 (possibly different from x). We can thus
associate to γ a function

σγ : f −1(y0)→ f −1(y0)

defined by σγ (x) = γ̃x (1).

Exercise 7.1.1. Show that the function σγ is a bijection.

Figure 7.1 Lifting a generic loop
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92 Counting Monodromy Representations

Exercise 7.1.1 shows that the loop γ yields a permutation σγ of the preim-
ages of y0. We may write σγ as an element of the symmetric group Sd by
labeling the d preimages of y0 with the numbers 1, 2, . . . , d (see Figure 7.2).

Definition 7.1.1. A y0-labeled map is a pair ( f, L), where f : X → Y is
a degree d map of Riemann Surfaces and L : f −1(y0) → {1, . . . , d} is a
bijection. Note that this forces y0 to not be a branch point for f . Then L is
called a labeling of the inverse images of y0.

An isomorphism of y0-labeled maps ( f1, L1), ( f2, L2) consists of an
isomorphism of Riemann Surfaces φ : X1 → X2 such that

f2 ◦ φ = f1 L2 ◦ φ = L1.

Remark 7.1.2. Choosing a labeling of the inverse images of f −1(y0) to asso-
ciate a permutation of numbers to σγ is an analogous procedure to choosing a
basis in a vector space to assign coordinates to a given vector. The following
exercise should then be reminiscent of the linear algebra concept of “changing
basis”.

Exercise 7.1.2. Show that the two elements σ1, σ2 ∈ Sd associated to σγ

through two distinct labelings of f −1(y0) are conjugate to each other, i.e.

Figure 7.2 Covering map with lifted paths giving the permutation (123)(45) of
the labeled preimages
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7.1 From Maps to Monodromy 93

there exists ω ∈ Sd such that σ2 = ωσ1ω
−1. Describe the relation between

the permutation ω and the two labelings of f −1(y0).

Example 7.1.3. Let f : C → C be defined by f (x) = x4. Choose y0 = 1
and consider the loop γ (t) = exp(2π ti). The inverse image of 1 is f −1(1) =
{1, i,−1,−i}, and the lifts of γ

γ̃1(t) = exp
(π

2
ti
)
, γ̃i (t) = exp

(π
2
(ti + 1)

)

γ̃−1(t) = exp
(π

2
(ti + 2)

)
, γ̃−i (t) = exp

(π
2
(ti + 3)

)
,

give rise to the permutation

σγ : 1 �→ i �→ −1 �→ −i �→ 1.

For k = 1, . . . , 4, choosing the labeling i k ↔ k then gives the cycle σγ =
(1234) ∈ Sd .

By Exercise 5.3.2, the permutation σγ only depends on the homotopy class
of the loop γ ; the permutation associated to the concatenation of two loops is
the composition of the associated permutations:

σγ ∗η = ση ◦ σγ . (7.1)

Remark 7.1.4. Remember that multiplication in Sd is composition of func-
tions; we emphasize this in (7.1) by using the symbol ◦. We adopt the common
convention to drop the symbol and to write a product of permutations from
right to left.

Thus a y0-labeled map ( f : X → Y, L) gives a group homomorphism

� : π1(Y � B, y0)→ Sd

defined by � : γ �→ σγ . These group homomorphisms, called monodromy
representations, play a central role in our story; we now wish to encode data
about the ramification profile over each of the branch points: to do so, we begin
by recalling a basic notion about the symmetric group Sd .

Definition 7.1.5. A permutation whose cycle decomposition consists of dis-
joint cycles of length {l1, . . . , lk} is said to have cycle type {l1, . . . , lk}.

For example, the permutation (12)(45)(368) ∈ S8 has cycle type {3, 2, 2, 1}.
The length-one cycle (7) is omitted from the cycle notation for the permutation,
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94 Counting Monodromy Representations

but it is remembered in the cycle type. This way, the cycle type of a permutation
in Sd is always a partition of d .

Exercise 7.1.3.

1. Show that if τ = (a1, a2, . . . , an) ∈ Sd is a cycle, then for any σ ∈ Sd we
have στσ−1 = (σ (a1), σ (a2), . . . , σ (an)).

2. Show that two permutations in Sd are conjugate if and only if they have the
same cycle type. (This shows that conjugacy classes in Sd may be indexed
by partitions of d .)

Let us go back to a y0-labeled map f : X → Y yielding the group homo-
morphism �. If f has ramification profile λ = {k1, . . . , kl} at a branch point
b ∈ Y and ρ is the class of a simple loop winding once around b, then the
permutation �(ρ) = σρ ∈ Sd has cycle type λ: For j = 1, . . . , l, let r j

be an inverse image of b and choose local charts around r j and b in such
a way that the local expression for f is w = zk j . Note ρ ∼ α ∗ β ∗ α−1,
with β a simple parameterization of {|w| = 1} and α a path connecting y0 to
the point with local coordinate w = 1. Then, as in Example 7.1.3, σρ cycli-
cally permutes the k j roots of unity {zk j = 1}. Since this happens around
each of the ramification points above b, σρ consists of l disjoint cycles each of
length k j .

Definition 7.1.6 (Monodromy Representation). Let Y be a connected Rie-
mann Surface of genus g let and y0, b1, . . . , bn ∈ Y . Let λ1, . . . , λn be
partitions of a positive integer d .

A monodromy representation of type (g, d, λ1, . . . , λn) is a group homo-
morphism � : π1(Y � {b1, . . . , bn}, y0)→ Sd such that, if ρk is the homotopy
class of a small loop around bk , the permutation �(ρk) has cycle type λk .

If in addition the subgroup Im� ≤ Sd acts transitively on the set
{1, 2, . . . , d}, we say � is a connected monodromy representation.

Remark 7.1.7. Notice that a monodromy representation is a purely topolog-
ical construction: it doesn’t know about the complex structure on Y or on the
position of the punctures b1, . . . , bn .

Hence we have seen that a degree d y0-labeled map of Riemann Surfaces
f : X → Y such that the ramification profile at each branch point is given by
λi gives rise to a monodromy representation � of type (gY , d, λ1, . . . , λn).
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7.1 From Maps to Monodromy 95

Exercise 7.1.4. Show that two isomorphic y0-labeled maps give rise to the
same monodromy representation:

( f1, L1) ∼= ( f2, L2) =⇒ �1 = �2.

Example 7.1.8. We describe monodromy representations for Y = P1(C).
Choose a finite subset B = {b1, . . . , bn} ⊂ P1(C). The punctured sphere
P1(C)� B is homotopic a point with n−1 loops attached to it (see Figure 7.3).

The fundamental group of this space is the free group Fn−1 with n − 1
generators ρ1, . . . , ρn−1, representing loops that wind around each of the
first n − 1 branch points. Thus, for a chosen d, a group homomorphism
� : π1(P

1(C) � B, y0) → Sd is given by a choice of images �(ρk) ∈ Sd

with no restrictions.
A more symmetric presentation of the fundamental group of a punctured

sphere chooses small loops going around all of the branch points as generators,
and realizes π1(P

1(C)�B, y0) as a quotient of Fn by the relation ρ1 . . . ρn = e.
This corresponds to the geometric fact that the loop ρ1∗· · ·∗ρn is homotopic to
a loop around all the bk , which can then contract to a point along the opposite
side of the sphere. Thus a monodromy representation is given by a choice of
n-elements in Sd subject to the relation �(ρn) ◦ · · · ◦�(ρ1) = e ∈ Sd .

The following exercises explain the terminology “connected monodromy
representation”.

Exercise 7.1.5. Let Y = P1(C) and X be two disjoint copies of P1(C).
Define f : X → Y where both copies of P1(C) in X map to Y via x3. Set
y0 = 1. Label the preimages f −1(y0) and show that the associated monodromy
representation is not a connected monodromy representation.

Exercise 7.1.6. Let f : X → Y be a degree d holomorphic map of Riemann
Surfaces. Show that, for any choice of base point y0 and of labelings of

Figure 7.3 Punctured sphere and rose graph
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96 Counting Monodromy Representations

f −1(y0), the corresponding monodromy representation � is connected if and
only if X is a connected Riemann Surface.

7.2 From Monodromy to Maps

In this section we show how a monodromy representation can be used to
construct a topological cover of a punctured Riemann Surface; then by Rie-
mann’s Existence Theorem this cover can be completed to a holomorphic map
of Riemann Surfaces.

The idea to have in mind is the following: given a map of Riemann Sur-
faces, one may choose an appropriate open dense subset of the base curve,
over which the map is a trivial covering. The source curve may then be
reconstructed by appropriately gluing together the boundaries of the various
disconnected pieces. The monodromy representation associated to f gives
“assembly instructions” to do just that. We first illustrate this procedure in a
concrete example.

Example 7.2.1. Let Y = P1(C) and choose y0, b1, b2, b3 ∈ P1(C) as in Fig-
ure 7.4. Let ρk be a small loop around bk and define a (connected) monodromy
representation � : π1(Y � {b1, b2, b3}, y0)→ S3 by

ρ1 �→ (123), ρ2 �→ (13), ρ3 �→ (12).

Choose a point p ∈ P1(C) and draw segments from p to each of the bk . Then
Y �{b1, b2, b3} is homeomorphic to the identification polygon P in Figure 7.4.

To construct a cover whose associated monodromy is �, we take three
copies of the polygon P (which we label P1, P2, P3) mapping to P via
the identity function. We use the permutations �(ρk) to indicate how these
polygons should be glued to each other. Refer to Figure 7.5 for this discussion.

Figure 7.4 Sliced P1(C) and homeomorphic identification polygon
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7.2 From Monodromy to Maps 97

Figure 7.5 Sliced P1(C) and the lift of ρ1, one of the three fundamental loops
ρ1, ρ2, ρ3 generating π1(P

1(C) � {b1, b2, b3})

Label y1, y2, y3 the points which correspond to y0 in each respective
polygon Pk and consider lifting the loop ρ1 starting at y1. The lift exits P1

through the top-left side, and in order to have �(ρ1) : 1 �→ 2 the lift must enter
P2 on the bottom-left side and end at y2. This gives us the “gluing instruction”
of identifying the top-left side of P1 with the bottom-left side of P2.

Lifting ρ1 again starting at y2 yields a path which ends at y3 (since �(ρ1):
2 �→ 3) and gives a similar identification of sides for P2 and P3. Lifting ρ1

once more, starting at y3, brings us back to y1 and gives an identification of
sides between P3 and P1.

We repeat this process with the loops ρ2, ρ3 and obtain pairwise identifi-
cations of all sides of P1 ∪ P2 ∪ P3. We leave it as an exercise that such
a (disconnected) identification polygon corresponds to a sphere with five
punctures.

We have obtained a topological cover π◦ : X◦ := (∪Pk/ ∼) → Y �

{b1, b2, b3} and by Riemann’s Existence Theorem (Theorem 6.2.2) there is a
unique map of compact Riemann Surfaces π : X → Y which extends π◦.

We now generalize this construction to show that any monodromy represen-
tation comes from a labeled map of Riemann Surfaces.

Theorem 7.2.2. Given a monodromy representation � of type (g, d, λ1, . . .,
λn), for any Riemann Surface Y of genus g, and B = {b1, . . . , bn} ∈ Y there
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98 Counting Monodromy Representations

exists a y0-labeled map of Riemann Surfaces covering Y with branch locus B,
whose associated monodromy representation is �. Such a map is unique up to
isomorphism of y0-labeled maps.

Proof Construct a graph � on Y as follows: represent Y as an identification
polygon of type α1β1ᾱ1β̄1 · · ·αgβgᾱgβ̄g; � consists of the boundary of the
polygon together with n segments s j from one of the vertices of the polygon
to each of the branch points. By “opening up” each of the s j one may view �

as the boundary of the identification polygon

P := s1s̄1 · · · sns̄nα1β1ᾱ1β̄1 · · ·αgβgᾱgβ̄g, (7.2)

which shows in particular that Y � � is homeomorphic to a disc. This
construction is illustrated in Figure 7.6.

Consider d copies of the polygon P denoted P1, . . . , Pd , each mapping to
P via the identity function. The inverse images of y0 are denoted y1, . . . , yd .
The sides of the polygon Pk are denoted by αi,k, βi,k, s j,k .

Figure 7.6 Identification polygon for a torus with two branch points, and gener-
ators of the fundamental group of the punctured surface. Note that the loops α

and β are essentially the same as the sides of the identification polygon labeled
correspondingly. To make this statement true on the nose, we should draw a path
connecting y0 to a vertex of the polygon and conjugate the side of the polygon
with it, so as to make the side of the polygon a loop based at y0. We don’t draw
such a path to avoid cluttering the picture.
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7.2 From Monodromy to Maps 99

We now construct a topological surface and a ramified cover to Y by giving
appropriate identifications to the sides of P1, . . . , Pd . The necessary informa-
tion is contained in the monodromy representation �. The fundamental group
π1(Y � B, y0) is generated by loops αi , βi , ρ j : the αi and βi loops parameter-
ize the sides of P labeled correspondingly. The loop ρi winds around the i-th
branch point.

Observe that the loop ρi “exits” the polygon P at the side denoted si and
“re-enters” at s̄i . The loop αi (respectively βi ) exits at the side labeled βi

(respectively ᾱi ) and re-enters at β̄i (respectively αi ).
When ρ j is lifted starting at yk , it exits the polygon Pk at s j,k and enters the

polygon labeled by the image of k in the permutation �(ρ j ). Therefore we are
given the identification of the sides

s j,k ∼ s̄ j,�(ρ j )(k).

Proceeding similarly with the lifts of the α and β loops, we construct a
(disconnected) identification polygon

P1 ∪ P2 ∪ . . . ∪ Pd /∼
where, for i = 1, . . . , g, j = 1, . . . , n, k = 1, . . . , d the identifications ∼ are
given by:

s j,k ∼ s̄ j,�(ρ j )(k),

ᾱi,k ∼ αi,�(βi )(k),

βi,k ∼ β̄i,�(αi )(k).

(7.3)

The map I d1∪ . . .∪ I dd descends to the quotient to define a function which is,
by construction, a ramified cover of Y branched at B. By Riemann’s Existence
Theorem there is a unique complex structure on X that makes f differentiable.

Now assume that f : X → Y is a y0 labeled map of Riemann Surfaces
which also gives rise to the monodromy representation �. The restriction of
f to X � f −1(�) is a covering of a simply connected set, and hence it is
homeomorphic to d disjoint discs, with f restricting on each of them to a
homeomorphism with Y � �.

Define a map ϕ : X � f −1(�) → P1 ∪ P2 ∪ . . . ∪ Pd as follows: if x is in
the connected component of X � f −1(�) containing the point marked i , then
ϕ(x) is defined to be the point f (x) in the polygon Pi . The map so defined is
a homeomorphism between X � f −1(�) and the union of the interiors of the
polygons Pi . The fact that f gives the monodromy representation � implies
that ϕ extends to a homeomorphism ϕ which yields the isomorphism of y0

labeled maps:
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ϕ : X

f
���

��
��

��
�

��∼= P1 ∪ P2 ∪ . . . ∪ Pd /∼

I d1∪...∪I dd
�����

���
���

���
�

Y .

(7.4)

7.3 Monodromy Representations and Hurwitz Numbers

Let Y be a Riemann Surface of genus g. In Sections 7.1 and 7.2 we constructed
inverse bijections between the following two sets:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Isomorphism classes of ( f : X → Y, L)

y0-labeled maps of Riemann Surfaces,
X a connected Riemann Surface,
f branches over B = {b1, . . . , bn}

with ramification profile λi over bi

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
↔

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

� : π1(Y � B, y0)→ Sd

connected monodromy
representations of type

(g, d, λ1, . . . , λn)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7.5)
The set on the left-hand side of (7.5) is almost what we want to count.

Theorem 7.3.1 gives the precise relationship between Hurwitz numbers and
connected monodromy representations.

Theorem 7.3.1. Let M be the set of connected monodromy representations of
type (g, d, λ1, . . . , λn). Then

H
h

d→g
(λ1, . . . , λn) = |M |

d!
where h is determined by the Riemann–Hurwitz Formula.

Proof To prove Theorem 7.3.1, we must count the number of distinct iso-
morphism classes of y0-labeled maps for a given Hurwitz cover f . Given a
map f : X → Y and a smooth point y0 ∈ Y , there are d! ways to label the
preimages f −1(y0).

An automorphism of f produces an isomorphism of y0-labeled maps, where
the map f is held constant but the labeling changes. Specifically, if L is a label-
ing of the elements of f −1(y0) and ϕ ∈ Aut( f ), then we define the associated
labeling ϕ •L := L ◦ϕ−1, and we have that ( f, L) ∼= ( f, ϕ •L). Exercise 7.3.2
shows that this is a free left group action of Aut( f ) on the set of labelings of
f −1(y0). Hence the number of isomorphism classes of y0-labeled maps for the
given map f , which is also the number of distinct monodromy representations
arising from f by different labelings of f −1(y0), is
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7.3 Monodromy Representations and Hurwitz Numbers 101

m f = d!/|Aut( f )|.

Finally, we have

H
h

d→g
(λ1, . . . , λn) =

∑
[ f ]

1

|Aut( f )| =
∑
[ f ]

m f

d! =
1

d!
∑
[ f ]

m f = 1

d! |M |.
(7.6)

Exercise 7.3.1. Use Theorem 7.3.1 to compute Hd
0→0((d), (d)) for d > 0.

Compare your answer with Example 6.1.7.

Exercise 7.3.2. Let f : X → Y be a degree d map of connected Riemann
Surfaces, and choose y0 ∈ Y a smooth point.

1. Show that the action ϕ • L = L ◦ ϕ−1 for ϕ ∈ Aut( f ) and L : f −1(y0) →
{1, 2, . . . , d} a labeling is a left group action on the set of labelings for the
map f .

2. Show that the action is free, i.e. that ϕ • L = L implies ϕ = IX , the identity
map.

The following exercise is meant to demonstrate in a concrete example the
relationship between automorphisms, labelings and monodromy representa-
tions that we just exploited in general in the proof of Theorem 7.3.1.

Exercise 7.3.3. Consider the map p : P1(C) → P1(C) given by p(x) = x3,
and choose y0 = 1. Label the preimages of y0 in all possible ways. Observe
that only two distinct monodromy representations are produced by these label-
ings. Note that Aut(p) = μ3 acts freely on the set of labelings and the
orbit of this action are precisely the labelings that yield the same monodromy
representation.

The transitivity requirement in the definition of connected monodromy
representations insures that the associated Riemann Surface constructed is
connected. By not requiring the monodromy representations to be con-
nected, we obtain a theorem analogous to Theorem 7.3.1 relating monodromy
representations to disconnected Hurwitz covers.

Theorem 7.3.2. Let M• be the set of (not necessarily connected) monodromy
representations of type (g, d, λ1, . . . , λn). Then we have
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102 Counting Monodromy Representations

H•
h

d→g
(λ1, . . . , λn) = |M•|

d! . (7.7)

We know from Exercise 5.2.4 that the fundamental group of a genus g sur-
face with n punctures can be presented with 2g + n generators. Since Sd is a
finite group, the set of monodromy representations of type (g, d, λ1, . . . , λn)

is a (proper) subset of the set (Sd)
2g+n , corresponding to all possible choices

for the images of the generators. Hence we have this immediate corollary of
Theorems 7.3.1 and 7.3.2.

Corollary 7.3.3. For every integer g, positive integer d and λ1, . . . , λn par-
titions of d, the Hurwtiz numbers H

h
d→g

(λ1, . . . , λn) and H•
h

d→g
(λ1, . . . , λn)

are finite.

7.4 Examples and Computations

Theorems 7.3.1 and 7.3.2 allow us to compute many Hurwitz numbers that are
out of reach when only considering the geometric definition.

Example 7.4.1 (Hyperelliptic Hurwitz Numbers). We begin by revisiting the
computation of hyperelliptic Hurwitz numbers. Recall from Section 6.3 that

H
g

2→0
((2)2g+2) = H•

g
2→0

((2)2g+2) = 1

2
. (7.8)

We observe that, since we have at least one point with full ramification, all
Hurwitz covers are connected. Correspondingly, monodromy representations
� : π1(Y � B, y0)→ S2 are always connected.

Recalling that π1(Y � B, y0) can be presented by 2g + 2 generators ρi

subject to the relation ρ1 · · · ρ2g+2 = e, a monodromy representation of type
(g = 0, d = 2, (2)2g+2) consists of the choice of 2g + 2 transpositions in S2

such that their product is the identity. There is only one 2-cycle in S2 and its
even power is the identity, thus there is exactly one monodromy representation
of type (0, 2, (2)2g+2). Dividing by 2!, we obtain (7.8).

Example 7.4.2. We compute H
0

3→0
((3), (2, 1)2). Note that the ramification

index (3) implies that the image of any monodromy representation � must
contain a three-cycle and so acts transitively on {1, 2, 3}. Thus all monodromy
representations in question are connected.

Any monodromy representation must have ρ1 �→ (123) or (132), ρ2 �→
(12) or (13) or (23), and �(ρ3) uniquely determined as �(ρ3) = �(ρ1)

−1 ◦
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7.4 Examples and Computations 103

�(ρ2)
−1. For any choice of a three-cycle and a transposition, their product

gives an odd element in S3, and hence automatically a transposition. Thus there
are exactly 2 · 3 · 1 = 6 choices for the images of the ρi . Dividing by 3!, we
obtain H

0
3→0,3

((3), (2, 1)2) = 1.

The fact that transpositions are the only odd elements in S3 is extremely
convenient for the computation of degree 3 Hurwitz numbers with at least one
(and hence at least two) simple branch points: letting the simple branch points
be the last, one may choose freely images for all ρi s except the last, which is
then automatically determined as a transposition. Let us witness in the follow-
ing exercise how things get (a little) more complicated when the cycle type of
the (image of the) last generator is not uniquely determined.

Exercise 7.4.1. Compute H
0

3→0
((3), (2, 1)2) again, but this time leave the

image of ρ1 until last, letting it be determined by the choice of the two-cycles.

Example 7.4.3. We now compute our first example where there is a difference
between connected and disconnected Hurwitz numbers:

H•
0

3→0
((2, 1)4) = 9

2
H

0
3→0

((2, 1)4) = 4. (7.9)

To count monodromy representation � : π1(Y � {b1, . . . , b4}) → S3, we
may choose freely any three transpositions for the images of ρ1, ρ2, ρ3; then
the image of ρ4 is uniquely determined and a two-cycle. This gives 3 · 3 · 3 · 1
choices, and dividing by 3! we obtain 9/2.

Not all of these monodromy representations � are connected – it is possible
to have the image of � not act transitively on {1, 2, 3}. This happens precisely
when each of ρ1, . . . , ρ4 is sent to the same transposition (this gives a valid
homomorphism since the fourth power of a transposition is the identity). Thus
there are three disconnected monodromy representations, and subtracting them
off gives (33 − 3)/3! = 4.

The difference of 1/2 between the connected and disconnected Hurwitz
numbers comes from the disconnected cover consisting of an elliptic curve
mapping to the line (i.e. P1(C)) as a double cover and a line mapping
isomorphically.

Exercise 7.4.2. In this exercise we complete the computation of base genus 0
Hurwitz numbers in degree 3. For m > 0, n > 0 prove that:

H•
h

3→0
((3)m, (2, 1)2n) = H

h
3→0

((3)m, (2, 1)2n) = 2m−132n−2, (7.10)
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104 Counting Monodromy Representations

with h = m + n − 2.
The case when all ramification is simple requires us to study separately the

connected and disconnected cases:

H•
h

3→0
((2, 1)2n) = 32n−2

2
H

h
3→0

((2, 1)2n) = 32n−2

2
− 1

2
. (7.11)

The most delicate case is when all ramification is of type (3). In this case prove
that:

H•
h

3→0
((3)m) = H

h
3→0

((3)m) = 1

9
(2m−1 + (−1)m). (7.12)

Even when the discrete data satisfies the Riemann–Hurwitz formula, it is
possible that there are no Hurwitz covers for that data. Remarkably, finding
necessary and sufficient conditions for a Hurwitz number to be nonzero is
an open problem, known as the Hurwitz existence problem (see a discussion,
for example, in Caporaso (2014, Section 2.2)). The simplest example of this
phenomenon is illustrated in this exercise.

Exercise 7.4.3. Compute the following Hurwitz number:

H
0

4→0
((3), (2, 2)2) = 0.

We conclude this section with some examples of Hurwitz numbers for a base
curve of genus higher than 0.

Example 7.4.4. Let us compute H•
1

d→1
(∅). Hurwitz covers for this discrete

data are unramified, and have a complex torus T as domain. The fundamental
group π1(T, y0) ∼= Z⊕Z may be presented with two generators, α, β, subject
to the relation αβα−1β−1 = e, i.e. 〈α, β|αβα−1β−1 = e〉.

Hence any homomorphism � : π1(T ) → Sd is determined by a choice of
�(α),�(β) ∈ Sd (call these images σ1, σ2 respectively) such that σ1σ2σ

−1
1

σ−1
2 = e, i.e. σ1σ2 = σ2σ1. Thus, after σ1 is chosen, σ2 must be chosen from

the centralizer of σ1. Recall that the centralizer of an element g ∈ G is the
subgroup ξ(g) = {h ∈ G|hg = gh} of all elements which commute with g.

The number of monodromy representations of type (1, d,∅) may
be expressed as

∑
σ1∈Sd

|ξ(σ1)|. Theorem 7.3.1 yields H•
1

d→1
(∅) =

(1/d!)∑σ1∈Sd
|ξ(σ1)|. The Orbit-Stabilizer Theorem (applied to a group G

acting on itself by conjugation) implies |G| = |ξ(g)||Cg| for any g ∈ G and
where Cg is the conjugacy class of g. In this case this gives d! = |ξ(σ1)||Cσ1 |
for any σ1 ∈ Sd , and hence
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7.4 Examples and Computations 105

H•
1

d→1
(∅) = 1

d!
∑
σ1∈Sd

d!
|Cσ1 |

=
∑
σ1∈Sd

1

|Cσ1 |
= c, (7.13)

where c is the number of conjugacy classes in Sd .

Exercise 7.4.4. Let λ = (λ
k1
1 , λ

k2
2 , . . . , λ

kn
n ) be a partition of d. The exponents

in the notation mean that the integer λ1 is repeated k1 times in the partition,
etc. . . for example, λ = (3, 3, 3, 3, 2, 1, 1, 1) = (34, 2, 13). Prove that if σ is a
permutation of cycle type λ, then

|ξ(σ )| =
n∏

i=1

λ
ki
i (ki !).

Example 7.4.5. We restrict our attention to degree 2 and compute connected
and disconnected Hurwitz numbers for unramified covers of a genus g curve.
In this case the Riemann–Hurwitz formula determines the genus of the cover
curve to be 2g − 1.

We begin with the disconnected case. The fundamental group of a genus g
surface is presented with 2g generators {αi , βi }i=1,...,g subject to the relation
that the product of commutators

∏g
i=1[αi , βi ] is trivial.

A monodromy representation of type (g, 2,∅) consists of an arbitrary
choice of 2g elements of S2: since S2 is abelian, the relation on the genera-
tors of the fundamental group imposes no restriction on the choices of images
of the generators. This yields 22g monodromy representations, and

H•
2g−1

2→g
(∅) = 22g−1. (7.14)

There is only one monodromy representation that gives rise to a discon-
nected cover: when all generators are sent to the identity element we obtain a
trivial double cover of the base curve. Hence we have

H
2g−1

2→g
(∅) = 22g − 1

2
. (7.15)

We leave it as an exercise to introduce ramification conditions for degree 2
covers and compute the general Hurwitz number of degree 2.

Exercise 7.4.5. Compute all Hurwitz numbers of degree 2.
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106 Counting Monodromy Representations

Figure 7.7 Degeneration of a cover to a nodal cover. Source and target degenerate
simultaneously and the ramification orders on both sides of the node match.

7.5 Degeneration Formulas

Hurwitz numbers exhibit interesting recursive structure, i.e. a general Hurwitz
number may be expressed (typically via combinatorially involved formulas) in
terms of Hurwitz numbers where some of the discrete data (genus, degree or
number of partitions) is smaller.

To get an intuition as to why that may be the case, look at Figure 7.7; on
the left-hand side we have drawn a Hurwitz cover and identified a loop on the
base curve and its inverse image on the cover. We shrink simultaneously all
such loops to obtain a cover of a nodal curve by a nodal curve. We have not
discussed singular curves much in this book, but, as the picture suggests, a
cover of the curve Y1 ∪ Y2 consists of a pair of covers (X1 → Y1, X2 → Y2)

subject to the condition that the ramification profile over the points that get
glued together must be equal. Observe that the genera of X1 and X2 are strictly
less than the genus of X , and that, even with the addition of the point that gets
glued, the number of branch points on Y1 and Y2 is less than it was on Y . It then
seems that one should be able to express the total number of Hurwitz covers
of X as a sum of products of Hurwitz covers of Y1 and Y2: this is exactly what
the degeneration formulas do.

Theorem 7.5.1 (Degeneration Formulas). For ν  d a partition of d, denote
|ξ(ν)| the order of the centralizer of any permutation in Sd of cycle type ν.
Then the following formulas hold for all Hurwitz data.

1. Base curve of genus 0: reducing branch points

H•
g

d→0
(λ1, . . . , λs, μ1, . . . , μt )

=
∑
ν d

|ξ(ν)|H•
g1

d→0
(λ1, . . . , λs, ν)H

•
g2

d→0
(ν, μ1, . . . , μt );
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7.5 Degeneration Formulas 107

g1 and g2 are determined by the Riemann–Hurwitz formula and they
satisfy the condition g1 + g2 + 
(ν)− 1 = g.

2. Reducing the genus of a higher genus base curve

H•
h

d→g
(λ1, . . . , λs) =

∑
ν d

|ξ(ν)|H•
h−
(ν)

d→g−1
(ν, ν, λ1, . . . , λs).

Remarks 7.5.2.

1. One may obtain many different degeneration formulas depending on the
genus of the base curve and on the choice of the loop to shrink. We choose
to write and highlight only two types, to keep the exposition cleaner. These
will be sufficient for the reconstruction theorem (Theorem 7.5.3) we intend
to prove.

2. A direct geometric proof of the degeneration formulas is quite complicated,
as several Hurwitz covers degenerate to the same nodal cover. However,
keeping track of this phenomenon becomes relatively simple when we
describe covers via their monodromy representations.

3. There are degeneration formulas expressing connected Hurwitz numbers in
terms of connected Hurwitz numbers, but they are more complicated: note
that when you degenerate a connected cover X to a nodal cover X1∪X2, X1

or X2 may be disconnected even if their union is connected. Then to express
such a contribution in terms of connected Hurwitz numbers, one has to keep
track of the Hurwitz data on each individual connected component of the
degenerated cover.

Proof By Theorem 7.3.2 we have

d!H•
g

d→0
(λ1, . . . , λs, μ1, . . . , μt ) = |M |, (7.16)

where M is the set of monodromy representations of appropriate type. An ele-
ment in M consists of a tuple of permutations (σ1, . . . , σs, σ̃1, . . . , σ̃t ), such
that the permutation σi has cycle type λi , the permutation σ̃ j has cycle type
μ j , and the product of all permutations is the identity. Consider the set:

Q := Nλ,ν × Nν,μ

where an element of Nλ,ν is a tuple (σ1, . . . , σs, π1) where σi has cycle type
λi , π1 has cycle type ν, and the product of all permutations is the identity.
Similarly an element of Nν,μ is a tuple (π2, σ̃1, . . . , σ̃t ), with π2 of cycle type
ν, σ̃ j has cycle type μ j and the product of all permutation equals the identity.

Let P ⊆ Q denote the subset of Q where π1 = π−1
2 .
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108 Counting Monodromy Representations

Exercise 7.5.1. The cardinality of the set P is

|P| =
∑
ν d

1

|Cν | |Nλ,ν ||Nν,μ|, (7.17)

where Cν denotes the conjugacy class of permutations of cycle type ν.

Given an element (σ1, . . . , σs, σ̃1, . . . , σ̃t ) ∈ M , we can produce the ele-
ment (σ1, . . . , σs,

(∏
σi
)−1

), (
∏

σi , σ̃1, . . . , σ̃t ) ∈ P . Conversely, to the pair
of tuples (σ1, . . . , σs, π1), (π

−1
1 , σ̃1, . . . , σ̃t ) ∈ P we can assign (σ1, . . . , σs ,

σ̃1, . . . , σ̃t ) ∈ M . The two functions just constructed are inverses of each other,
which shows that the cardinalities of P and M are equal. Combining this fact
with (7.16) and (7.17), we obtain

d!H•
g

d→0
(λ1, . . . , λs, μ1, . . . , μt )

=
∑
ν d

1

|Cν |d!H
•
g1

d→0
(λ1, . . . , λs, ν)d!H•

g2
d→0

(ν, μ1, . . . , μt ).

The first degeneration formula follows by using the identity |Cν ||ξ(ν)| = d!.
The second formula is proven similarly. Denote M the set of monodromy

representations computing H•
h

d→g
(λ1, . . . , λs). Denote by Nν the set of mon-

odromy representations for H•
h−
(ν)

d→g−1
(ν, ν, λ1, . . . , λs). The set M and all

the sets Nν are identified with sets of tuples of permutations satisfying the
relation coming from the standard presentation of the fundamental group of a
punctured surface seen in (5.8) (only remember to write the relation from right
to left because now we are multiplying permutations).

There is a natural function

M →
⋃
ν d

Nν,

defined by

(α1, β1, . . . , αg, βg, σ1, . . . , σs)

�→ (α1, β1, . . . , αg−1, βg−1, (α
−1
g βgαg), β

−1
g , σ1, . . . , σs). (7.18)

Let us turn our attention to what is actually happening here. Observe that
both the fundamental group of a genus g surface with n punctures and the fun-
damental group of a genus g − 1 surface with n + 2 punctures have 2g + n
generators. There are generators corresponding to the sides of an identifica-
tion polygon for the surface, which we call genus generators, and puncture
generators winding around each of the punctures.
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7.5 Degeneration Formulas 109

In the fundamental groups on either side of (7.18) we are exchanging two
genus generators with two puncture generators. If the image of the two genus
generators to be eliminated are αg and βg , we assign to the new puncture gen-
erators images (α−1

g βgαg) and β−1
g . This way before and after, the relation

imposed from the presentation of the fundamental groups is the same:

σs . . . σ1β
−1
g α−1

g βgαg . . . β−1
1 α−1

1 β1α1 = e.

We finally note that the images of the two new puncture generators are con-
jugate to each other; hence, for any tuple in M its image must be in one of
the Nν .

The function (7.18) is surjective: given a tuple (. . . , βg−1, π1, π2, σ1 . . .) ∈
Nν , its inverse image consists of tuples where βg = π−1

2 , and αg satisfies the
equation

α−1
g π−1

2 αg = π1.

Since π1 and π2 are in the same conjugacy class, the equation has precisely
|ξ(ν)| solutions.

Now we can count the cardinality of M by adding the cardinality of all
inverse images via (7.18), to obtain

|M | =
∑
ν d

|ξ(ν)||Nν |.

The second degeneration formula follows by replacing |M | and the |Nν | with
the corresponding Hurwitz numbers (times d!, that cancels).

The degeneration formulas imply the following interesting reconstruction
theorem.

Theorem 7.5.3. All (disconnected) degree d Hurwitz numbers are determined
in terms of Hurwitz numbers of the form H•

h
d→0

(λ1, λ2, λ3), i.e. where the genus

of the base curve is 0 and there are only three ramification conditions imposed.

Proof Start with a general Hurwitz number H•
h

d→g
(λ1, . . . , λs). By applying

g times the second degeneration formula, this number will be written as a
(monstrous) sum of Hurwitz numbers where the genus of the base curve is 0
and now there are s + 2g ramification conditions.

Now consider a loop around two of the branch points and apply the first
degeneration formula: the Hurwitz number will then be written in terms of
products of one Hurwitz number with exactly three branch points and another
with s + 2g − 1 branch points. Iterating this procedure s + 2g − 4 more
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110 Counting Monodromy Representations

times, we obtain an expression for our original Hurwitz number in terms of
a (monstrous) sum of (monstrous) products of genus 0, three-pointed Hurwitz
numbers.

Exercise 7.5.2. Compute the Hurwitz number H
2

2→1
((2), (2)) = 2 using the

degeneration formulas.
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8

Representation Theory of Sd

One could argue that representation theory is a branch of mathematics devoted
to translating group theory into linear algebra. Informally, a representation of
an abstract group G is a homomorphism from G to a group of matrices. The
name comes from the fact that the above group of matrices is a concrete repre-
sentative for the isomorphism class of G. Then matrices correspond to linear
transformations of vector spaces, and therefore G may be viewed as a collec-
tion of transformations of Euclidean space. If you have ever thought of a cyclic
group of order n as the group of rotations in the plane that preserve a regular n-
gon centered at the origin, you have actually thought about a representation of
the cyclic group! Historically, this is actually how groups were born: in Felix
Klein’s 1884 Lectures on the Icosahedron (Klein, 1956), one may see many
concepts of modern group theory arising via the study of groups of symmetries
of shapes, i.e. groups of linear transformations of two- or three-dimensional
space which preserve a given shape.

Since then, representation theory has evolved into a vast, far-reaching and
quite sophisticated area of mathematics. Here we wish to give an essential
introduction to some of the ideas that are important in our next translation of
the Hurwitz problem. Our goal is to come as efficiently as possible to under-
stand the class algebra of the symmetric group Sd . For this reason we choose
to make most of our exposition specific to the symmetric group Sd , and state
without proof many facts where we feel the proof would not be especially rel-
evant to our Hurwitz story. The reader interested in finding proofs and filling
in more details may consult Dummit and Foote (2004, Chapter 18) or Fulton
and Harris (1991, Part 1).

8.1 The Group Ring and the Group Algebra

A natural step in trying to convert group theory into linear algebra information
is to construct a vector space that “knows a lot” about the group. We construct

111
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112 Representation Theory of Sd

a ring that encodes the group operation as its multiplication, and then enlarge
coefficients to also have a vector space structure.

Definition 8.1.1. The group ring of the symmetric group Sd , denoted Z[Sd ],
as a set, consists of all formal Z-linear combinations of elements of Sd :

Z[Sd ] =
⎧⎨
⎩
∑
σ∈Sd

aσ σ |aσ ∈ C

⎫⎬
⎭ .

Addition is formal:∑
σ∈Sd

aσ σ +
∑
σ∈Sd

bσ σ =
∑
σ∈Sd

(aσ + bσ )σ.

Multiplication for elements of the form σ is defined to be the multiplication
of Sd , and is extended to arbitrary linear combination by requiring it to be
bilinear.

Since Sd is not an abelian group, Z[Sd ] is not a commutative ring.

Example 8.1.2. For G = S3, x = 3(12)+ 5(123) and y = 4(13)− 6(123) =
4(13)+ (−6)(123) are elements of Z[S3]. We have

x + y = 3(12)+ 4(13)+ (5− 6)(123) = 3(12)+ 4(13)− (123)

and

x · y = (3(12)+ 5(123))(4(13)− 6(123)) (8.1)

= 12(12)(13)− 18(12)(123)+ 20(123)(13)− 30(123)(123) (8.2)

= 12(132)− 18(23)+ 20(23)− 30(132) (8.3)

= 2(23)− 18(132). (8.4)

Example 8.1.2 illustrates that carrying out the product of elements of Z[Sd ]
happens in two steps: first one uses bilinearity to go from a product of sums to
a sum of products of permutations (8.2); then one uses the group operation to
reduce each of the products to just one permutation (8.3).

We call the expression in (8.2) the formal expansion of a product of ele-
ments of Z[Sd ], and call each of the terms in the sum an ordered monomial in
the formal expansion. Order matters since multiplication is not commutative.

Definition 8.1.3. We denote by C[Sd ] the set of formal linear combinations of
group elements where the coefficients aσ are complex numbers. Together with
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8.2 Representations 113

addition and multiplication defined as above, there is a natural way to multiply
elements of C[Sd ] by scalars t ∈ C:

t

⎛
⎝∑

σ∈Sd

aσ σ

⎞
⎠ =

∑
σ∈Sd

(taσ )σ,

which also gives C[Sd ] the structure of a vector space, with a natural basis
given by σ ∈ Sd . A set with operations that make it simultaneously a ring and
a vector space is called an algebra, and C[Sd ] is called the group algebra
of Sd .

8.2 Representations

We define representations in three equivalent ways – and encourage the reader
to become familiar with all points of view, as each has its own advantages.

Definition 8.2.1. A (finite-dimensional, complex) representation ρ of Sd is,
equivalently:

(group action) a finite-dimensional vector space Vρ together with a linear
action of Sd , i.e. a map

“dot” : Sd × Vρ → Vρ

such that, for every σ, σ1, σ2 ∈ Sd , v,w ∈ Vρ , λ ∈ C:

1.e · v = v;
2.σ2 · (σ1 · v) = (σ2σ1) · v;
3.σ · (v + w) = σ · v + σ · w;
4.σ · λv = λσ · v.

(module) A finitely generated module over the group ring C[Sd ], i.e. a
finitely generated abelian group Mρ together with a scalar multiplica-
tion � : C[Sd ]×Mρ → Mρ which distributes with respect to the algebra
and group operations (see Dummit and Foote (2004, Chapter 10) for an
explicit spelling out of the module axioms).

(homomorphism) A group homomorphism

�ρ : Sd → GL(n,C).

Exercise 8.2.1. Show that the three definitions are in fact equivalent.
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114 Representation Theory of Sd

Exercise 8.2.2. In mathematics, we follow the philosophy that for a class
of mathematical objects with certain structure and properties (e.g. operations
satisfying axioms), the “desirable” functions are those which respect all of the
structure and properties used to define the objects. Functions that pass this
test are then called morphisms, and invertible morphisms are called isomor-
phisms. Develop the appropriate notions of morphism and isomorphism for
representations.

The dimension of Vρ (or the rank of Mρ , or the n in GL(n,C)) is called the
dimension of the representation ρ.

A subrepresentation ρ′ ≤ ρ is an invariant subspace (or a C[Sd ] sub-
module) Uρ′ of Vρ . The 0 vector and Vρ itself are trivial examples of
subrepresentations of ρ. A representation ρ that does not contain any nontrivial
subrepresentation is called irreducible.

Example 8.2.2. The one-dimensional vector space C can be made into a
representation by letting Sd act trivially:

σ · z = z,

for all σ ∈ Sd , v ∈ V . This is called the trivial representation of Sd

and denoted ρ1. The trivial representation is irreducible simply because a
one-dimensional vector space does not have any proper subspace except {0}.

Example 8.2.3. The group action on C:

σ · z =
{

z if σ is an even permutation
−z if σ is an odd permutation

gives another one-dimensional (hence irreducible) representation of Sd , called
the sign representation, denoted ρ−1.

Example 8.2.4. Consider a d-dimensional vector space V with basis
{e1, . . . , ed}. Define a group action of Sd on V by extending by linearity the
following action on the bases vectors:

σ · ei = eσ(i).

This is called a permutation representation. We see that it is not an irreducible
representation by noting that the linear span of the vector e1 + . . . + ed is
invariant under the action of Sd (and hence it gives a proper subrepresentation
isomorphic to the trivial representation).
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8.2 Representations 115

Exercise 8.2.3. Refer to the module axioms from Dummit and Foote (2004,
Section 10.1) and prove that the group ring itself is in a natural way a
module over itself. As such, it is a representation of Sd called the regular
representation.

An important feature of the regular representation is that it contains all
irreducible representations of Sd : we make this statement precise in the next
paragraph.

Exercise 8.2.4. Given two representations ρ1 and ρ2, one can form the direct
sum representation ρ1⊕ρ2 by considering the direct sum of the corresponding
vector spaces Vρ1 ⊕ Vρ2 with the natural extension of the action. Describe the
matrix �ρ1⊕ρ2(σ ) in terms of �ρ1(σ ) and �ρ2(σ ).

We recall a few fundamental facts about representations (Fulton and Harris,
1991):

1. Any finite-dimensional representation of Sd decomposes uniquely (up to
the order of the factors) as a direct sum of irreducible representations;

2. The number of irreducible representations of Sd equals the number of con-
jugacy classes of Sd , which in turn are naturally indexed by partitions of the
integer d;

3. Denote by ρ an irreducible representation of Sd , and Vρ the correspond-
ing vector space, and understand a sum over the index ρ to mean to sum
over all irreducible representations of Sd . Then the regular representation
decomposes as

C[Sd ] ∼=
⊕
ρ

V⊕ dim ρ
ρ . (8.5)

By equating the dimensions on either side of (8.5), we obtain

d! =
∑
ρ

(dim ρ)2. (8.6)

Example 8.2.5. We describe all irreducible representations of S3. By point
2 above, there are three irreducible representations. We already know two of
them: the trivial and the sign representations. It then follows from (8.6) that
the last irreducible representation must be two-dimensional. This is called the
standard representation and denoted by ρS . One way to construct the standard
representation is to consider the quotient vector space of the three-dimensional
permutation representation of S3 by the invariant line 〈e1+e2+e3〉, and notice
that the permutation action naturally descends, since we are quotienting by a
trivial representation.
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116 Representation Theory of Sd

Exercise 8.2.5. Convince yourself that the standard representation is
irreducible by showing that it does not admit either the trivial or the sign
representation as a subrepresentation. In Section 8.3 we see a much more
efficient way to prove the irreducibility of ρS .

8.3 Characters

Characters should be thought as “coordinates” for representations. They allow
us to describe representations via a finite list of numbers which play well with
many algebraic constructions in representation theory. We devote this section
to making this statement more precise and recalling some basic notions and
properties of characters.

Definition 8.3.1. Let ρ be a representation of Sd . The character of ρ is the
function

χρ : Sd → C

defined as

χρ(σ ) := trace(�ρ(σ )).

The trace of a matrix is a coefficient of the characteristic polynomial of the
associated linear transformation, and therefore it is invariant under conjugation
(see Axler (1997, Chapters 9 and 10) for details).

This fact has two very important consequences:

1. The character of a representation does not depend on the choice of a basis
for Vρ (which gives rise to the matrices �ρ(σ));

2. Characters are constant along conjugacy classes; functions with this prop-
erty are called class functions.

A key fact about characters is that two complex representations of Sd are
isomorphic if and only if they have the same character function1 (Fulton and
Harris, 1991). Therefore we can use characters to identify representations.

Exercise 8.3.1. Prove the following useful properties of characters:

1. For any representation ρ,

χρ(e) = dim ρ. (8.7)

1 It is always true that isomorphic representations have the same characters. The converse
statement requires us to be working over a field of characteristic 0.
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8.3 Characters 117

Table 8.1 The character tables of S3 and S4

S3 Ce C(2,1) C(3)

ρ1 1 1 1

ρ−1 1 −1 1

ρS 2 0 1

S4 Ce C(2,1,1) C(2,2) C(3,1) C(4)

ρ1 1 1 1 1 1

ρ−1 1 −1 1 1 −1

ρ2 2 0 2 −1 0

ρ3a 3 −1 −1 0 1

ρ3b 3 1 −1 0 −1

2. For any ρ1, ρ2,

χρ1⊕ρ2 = χρ1 + χρ2 . (8.8)

Exercise 8.3.2. Compute the character of the standard representation of S3

as follows. First compute the character of the permutation representation ρP

by explicitly constructing the relevant matrices. Then use (8.8) together with
the fact that the permutation representation decomposes as ρP ∼= ρ1 ⊕ ρS .
In addition, use the characters χρ1, χρ−1 , χρS and (8.8) to show that ρS is
irreducible.

Remark 8.3.2. Because the matrices �ρ(σ) have finite order, it follows that
characters take value in algebraic integers (sums of complex roots of unity).
In the case of the symmetric group, characters are actually integer-valued
functions.

We recall one final fact in our whirlwind tour of character theory. There
is a complex inner product on the vector space of class functions, defined as
follows:

〈α, β〉 = 1

d!
∑
σ∈Sd

α(σ)β(σ ). (8.9)

Characters of irreducible representations form an orthonormal basis for the
vector space of class functions:

〈
χρ1 , χρ2

〉 = { 1 ρ1 ∼= ρ2

0 ρ1 
∼= ρ2
(8.10)

for ρ1 and ρ2 irreducible.

Exercise 8.3.3. Check the orthonormality of the characters of the irreducible
representations of S3 and S4. The characters are collected in Table 8.1.
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118 Representation Theory of Sd

8.4 The Class Algebra

We now introduce a commutative subalgebra of C[Sd ], which plays a promi-
nent role in our story.

Definition 8.4.1. The class algebra of Sd is the center of the group ring,

ZC[Sd ] = {x ∈ C[Sd ]|yx = xy for all y ∈ C[Sd ]}.

Exercise 8.4.1. For λ  d (a partition of the positive integer d), denote by
Cλ ∈ C[Sd ] the sum of all elements of cycle type λ.

1. Show that Cλ consists of the sum of all permutations in a particular
conjugacy class;

2. Prove that for any λ, Cλ ∈ ZC[Sd ];
3. Show that the Cλs form a basis for ZC[Sd ] as a vector space:

ZC[Sd ] =
⊕
λ d

〈Cλ〉C.

Hint: For x ∈ ZC[Sd ] we have σ xσ−1 = x for any σ ∈ Sd ⊂ C[Sd ]. Now
consider the sum ∑

σ∈Sd

σ xσ−1.

We denote the conjugacy class of the identity element and the corresponding
element in the class algebra by Ce = C(1,...,1) = e.

The conjugacy class basis is a natural basis for ZC[Sd ]. However, there is
another basis, naturally indexed by the irreducible representations of Sd , that
has a very nice multiplicative structure.

Theorem 8.4.2 (Maschke). The class algebra ZC[Sd ] is a semisimple alge-
bra, i.e. there is a basis {eρ1, . . . , eρn } (where the ρi s are all irreducible
representations of Sd) of idempotent elements. This means:

eρi · eρ j =
{

eρi if eρi = eρ j

0 otherwise.
(8.11)

Furthermore, the following changes of basis formulas hold

eρ = dim ρ

d!
∑
λ

χρ(λ)Cλ Cλ = |Cλ|
∑
ρ

χρ(λ)

dim ρ
eρ (8.12)

where the summation index λ denotes all partitions λ of d, and the summation
index ρ denotes all irreducible representations of Sd .
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8.4 The Class Algebra 119

Example 8.4.3. The class algebra ZC[S3] is a three-dimensional vector space,
with basis

Ce = e

C(2,1) = (12)+ (13)+ (23)

C(3) = (123)+ (132).

The multiplication table of ZC[S3] is (generated bilinearly from)

Ce C(2,1) C(3)

Ce Ce C(2,1) C(3)

C(2,1) C(2,1) 3(Ce + C(3)) 2C(2,1)

C(3) C(3) 2C(2,1) 2Ce + C(3).

We denote the vectors of the semisimple basis for ZC[Sd ] by e1, e−1 and eS

(instead of eρ1 , etc.). The changes of basis from Theorem 8.4.2 are:

e1 = 1
6 (Ce + C(2,1) + C(3))

e−1 = 1
6 (Ce − C(2,1) + C(3))

eS = 1
3 (2Ce − C(3))

Ce = e1 + e−1 + eS

C(2,1) = 3e1 − 3e−1

C(3) = 2e1 + 2e−1 − eS .

(8.13)

Exercise 8.4.2. Compute the change of basis between the semisimple and the
conjugacy classes bases in the class algebra of the symmetric group S4. Refer
to Table 8.1 for the characters of S4.
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9

Hurwitz Numbers and Z(Sd)

In this chapter we make yet another translation of the Hurwitz problem: when
the fundamental group of a punctured surface is presented by a finite set of
generators, then a monodromy representation is equivalent to a choice of ele-
ments in Sd : the images of each generator via the monodromy representation.
Each such element is required to belong to a specified conjugacy class, and the
totality of the elements must satisfy the relations coming from the presentation
of the fundamental group. The number of monodromy representations, which
becomes the number of all possible choices of such elements, can then be
viewed as a particular coefficient of a product of elements in the class algebra
ZC[Sd ].

We then exploit the fact that the class algebra of the symmetric group is
semisimple (Theorem 8.4.2), i.e. it has a basis that makes multiplication idem-
potent: writing vectors in the semisimple basis makes a product of vectors
into products of the coefficients of each individual basis vector. This allows
us to write down closed formulas for arbitrary Hurwitz numbers, in terms of
the coefficients of the change of basis, i.e. characters of the symmetric group.
The 2006 Fields medalist Andrei Okounkov attributed these formulas to Burn-
side – as they appear as an exercise in his book Theory of Groups of Finite
Order (Burnside, 1955). The Burnside formulas justify the slogan that Hurwitz
theory is equivalent to character theory of Sd .

9.1 Genus 0

We begin our study by setting the genus of the base curve to be 0. In this case
the fundamental group of a punctured sphere is a free group, and a monodromy
representation is obtained by choosing elements in Sd that belong to specified
conjugacy classes (Example 7.1.8). A concise way to express all such possible
choices is given in the following proposition.

120
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9.1 Genus 0 121

Proposition 9.1.1. Let λ1, . . . , λn be partitions of the integer d and for every
i denote by Cλi ∈ ZC[Sd ] the basis element associated to the correspond-
ing conjugacy class, i.e. the sum of all elements in Sd of cycle type λi . A
disconnected, genus 0 Hurwitz number is given by

H•
h

d→0
(λ1, . . . , λn) = 1

d! [Ce]Cλn . . .Cλ2Cλ1 ,

where [Ce]Cλn . . .Cλ2Cλ1 denotes the coefficient of Ce = {e} after writing
the product Cλn . . .Cλ2Cλ1 as a linear combination of the basis elements
Cλ ∈ ZC[Sd ]. Note that the genus h of the cover curve is determined by the
Riemann–Hurwitz Formula.

We give an example demonstrating this notation, then carry out the proof.

Example 9.1.2. In ZC[S3] we have

C(3)C(3) = ((123)+ (132))((123)+ (132)) (9.1)

= (123)(132)+ (132)(123)+ (132)(132)+ (123)(123) (9.2)

= 2e + (123)+ (132) = 2Ce + C(3). (9.3)

Thus [Ce]C(3)C(3) = 2.

Proof of Proposition 9.1.1 We show that the number M of monodromy
representations of type (0, d, λ1, . . . , λn) is equal to [Ce]Cλn . . .Cλ2Cλ1 .
Proposition 9.1.1 then follows from Theorem 7.3.1.

The fundamental group of P1(C) � {b1, . . . , bn} is a free group in n − 1
generators, but it is conveniently presented in a more symmetric way as:

π1

(
P1(C) � {b1, . . . , bn}

) ∼= 〈ρ1, . . . , ρn|ρ1ρ2 · · · ρn〉,
where ρi is a symbol for the corresponding small loop around bi . A mon-
odromy representation � of type (0, d, λ1, . . . , λn) is given by a choice of
σ1, . . . , σn ∈ Sd (the images via � of the small loops ρi ) such that each σi has
cycle type λi , and such that σnσn−1 · · · σ1 = e.

Write down each Cλi as the formal sum of the group elements in the cor-
responding conjugacy class, and formally expand the product Cλn . . .Cλ2Cλ1

(without actually multiplying any of the group elements – as in (9.2)). Each
n-tuple σ1, . . . , σn giving a monodromy representation appears uniquely as an
ordered monomial in such expansion. Conversely, an ordered monomial in the
expansion of Cλn . . .Cλ2Cλ1 corresponds to a monodromy representation if the
product of the corresponding group elements gives the identity.
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122 Hurwitz Numbers and Z(Sd)

There is therefore a natural bijection between monodromy representations
of type (0, d, λ1, . . . , λn) and terms in the formal expansion of Cλn . . .Cλ2Cλ1

whose product is the identity. This precisely means that the number of
monodromy representations equals the coefficient of Ce in the product
Cλn . . .Cλ2Cλ1 .

Example 9.1.3. The Hurwitz number H
0

3→0
((3), (3)) = (1/3!)[Ce]C(3) · C(3)

with the product computed in ZC[S3]. The coefficient [Ce]C(3) · C(3) is com-
puted in Example 9.1.2 as 2, and hence H

0
3→0

((3), (3)) = 2/6 = 1/3. (This
is our third time computing this Hurwitz number! Take a walk down memory
lane with Example 6.1.7 and Exercise 7.3.1.)

9.2 Genus and Commutators

We now give a formula for higher-genus Hurwitz numbers as a product of ele-
ments in the class algebra ZC[Sd ]. The key idea here is that in the “standard”
presentation of the fundamental group of a punctured positive genus surface,
there are additional generators corresponding to loops winding around the han-
dles, and the product of all generators now must satisfy a relation which con-
tains products of commutators. Before we discuss how to translate all of this in
the language of the class algebra, we observe a simple but illustrative example.

Example 9.2.1. The Hurwitz number H•
1

d→1
(∅) was computed in Example

7.4.4 as the number of irreducible representations, or of conjugacy classes, of
Sd . Here we give an alternative formula:

H•
1

d→1
(∅) = 1

d! [Ce]
∑
λ d

|ξ(λ)|C2
λ, (9.4)

where |ξ(λ)| is the size of the centralizer of any permutation in the conjugacy
class indexed by λ.

To each monodromy representation contributing to H•
1

d→1
we associate an

ordered monomial in the formal expansion of (9.4) as follows. A monodromy
representation � of type (1, d,∅) corresponds to a choice of σ1, σ2 ∈ Sd

such that σ−1
2 σ−1

1 σ2σ1 = e. We may think of all possible such choices as
picking first an element σ1 ∈ Sd , then picking a σ2 that gives rise to a conjugate
element σ̂1 = σ−1

2 σ−1
1 σ2 such that σ̂1σ1 = e. Any pair σ̂1σ1 identifies an

ordered monomial in the formal expansion of
∑

λ d C2
λ (see Example 8.1.2).

The assignment � �→ σ̂1σ1 defines a function κ from the set of monodromy
representations of type (1, d,∅) to the set of ordered monomials in the formal
expansion of 9.4.
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9.2 Genus and Commutators 123

Exercise 9.2.1.

1. Show that the image of κ consists precisely of the ordered monomials
whose product returns the identity element.

2. Prove that two permutations σ2 and σ ′2 give rise to the same σ̂1 if and only
if σ−1

2 σ ′2 ∈ ξ(σ1). Conclude that for any σ̂1σ1 ∈ C2
λ in the image of κ , the

cardinality of the inverse image κ−1(σ̂1σ1) is |ξ(λ)|.

Formula (9.4) follows from computing the cardinality M of the set of
monodromy representations as

M =
∑

σ̂1σ1∈I m(κ)

|κ−1(σ̂1σ1)| =
∑
λ d

|ξ(λ)|
(
[Ce]C2

λ

)
.

Example 9.2.1 is perhaps an overcomplicated way of computing a simple
Hurwitz number, but it allowed us to introduce an important character in our
story, which we now formally define.

Definition 9.2.2. For a fixed positive integer d we define

K :=
∑
λ d

|ξ(λ)|C2
λ ∈ ZC[Sd ]. (9.5)

The (Gothic) letter “k” is chosen from the German word kommutator: recall
that the commutator of two elements σ1, σ2 ∈ Sd is [σ1, σ2] = σ−1

2 σ−1
1 σ2σ1.

One should think of K as a way to express the sum of all commutators in
Sd as an element in the class algebra ZC[Sd ]. Exercise 9.2.2 provides the
information needed to make this statement precise.

Exercise 9.2.2. Denote by X the set of ordered monomials in the formal
expansion of the quadratic expression

∑
λ d C2

λ. Consider the function1

κ : Sd × Sd → X

defined by κ(σ1, σ2) = (σ−1
2 σ−1

1 σ2)σ1. Show that κ is a surjective function
and for every σ̂1σ1 ∈ X , |κ−1(σ̂1σ1)| = |ξ(σ1)|.

We are now ready to express a general (disconnected) Hurwitz number as a
multiplication problem in the class algebra.

1 Note that the function κ defined in Example 9.2.1 is the restriction of the κ defined here to the
permutation pairs arising from monodromy representations.
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124 Hurwitz Numbers and Z(Sd)

Proposition 9.2.3. Let λ1, . . . , λn be partitions of the positive integer d. We
have the formula

H•
h

d→g
(λ1, . . . , λn) = 1

d! [Ce]KgCλn . . .Cλ2Cλ1, (9.6)

where the genus h of the cover curve is determined by the Riemann–Hurwitz
formula.

Proof Recall from (5.7) that the fundamental group of a genus g surface with
n punctures may be presented as:

π1
(
Cg � {b1, . . . , bn}

)
= 〈ρ1, . . . , ρn, α1, β1, . . . , αg, βg|ρ1 . . . ρn[α1, β1] . . . [αg, βg]〉,

where ρi is a small loop around bi , α j and β j are the two independent loops
around the j-th handle, and the square brackets denote commutators.

A monodromy representation of type (g, d, λ1, . . . , λn) is then given by a
choice of σ1, . . . , σn, μ1, . . . , μg, ν1, . . . , νg ∈ Sd such that each σi has cycle
type λi , and [μg, νg] · · · [μ1, ν1]σnσn−1 · · · σ1 = e.

Given a (2g + n)-tuple σ1, . . . , σn, μ1, ν1, . . . , μg, νg corresponding to a
monodromy representation, one may write the ordered monomial

μ̂gμg · · · μ̂1μ1σnσn−1 · · · σ1, (9.7)

where μ̂i = ν−1
i μ−1

i νi .
Monomials as in equation (9.7) appear in the formal expansion of the

product
(∑

λ d C2
λ

)g
Cλn . . .Cλ2Cλ1 precisely as those terms where the prod-

uct of the group elements gives the identity. Each such monomial arises
from

∏g
i=1 |ξ(μi )| distinct monodromy representations. Recalling that K =∑

λ d |ξ(λ)|C2
λ, we see that the number of monodromy representations of type

(g, d, λ1, . . . , λn) corresponds to the coefficient of the identity in the product
KgCλn . . .Cλ2Cλ1 , which concludes the proof of Proposition 9.2.3

9.3 Burnside Formula

Computing Hurwitz numbers is a multiplication problem in the class algebra
of the symmetric group, and the conjugacy class basis {Cλ} is well suited to
encode the ramification profiles imposed over the branch points.

Theorem 8.4.2 shows that ZC[Sd ] is a semisimple algebra with a semisim-
ple basis naturally indexed by irreducible representations. By changing basis
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9.3 Burnside Formula 125

we obtain a closed formula for Hurwitz numbers in terms of characters of the
irreducible representations of Sd .

Theorem 9.3.1 (Burnside Character Formula). Fix a positive integer d and
m partitions λi  d. Denote by ρ an irreducible representation of Sd , and
understand a summation over the index ρ to be ranging over all irreducible
representations. Then

H•
h

d→g
(λ1, . . . , λm) =

∑
ρ

(
dim ρ

d!
)2−2g m∏

j=1

|Cλ j |χρ(λ j )

dim ρ
. (9.8)

Remark 9.3.2. At first glance it might not be apparent why (9.8) represents an
improvement over (9.6). Arguably, it is not: in mathematics, when we trans-
late a problem we often just “shift” the complexity of the problem around.
In formula (9.6) we have simple inputs (the conjugacy class basis vectors for
ZC[Sd ]), but we are multiplying vectors in a very high-dimensional algebra.
In formula (9.8), the inputs are more sophisticated (the characters of represen-
tations of Sd ), but the multiplication is now an ordinary multiplication of real
numbers. In other words, we have shifted the complexity from the operation to
the inputs.

Proof of Theorem 9.3.1 We first consider the element K ∈ ZC[Sd ] and
express it in terms of the semisimple basis. Using the change of basis formulas
from Theorem 8.4.2, we have

K =
∑
λ

|ξ(λ)|C2
λ (9.9)

=
∑
λ

|ξ(λ)|
(∑

ρ

|Cλ|χρ(λ)

dim ρ
eρ

)2

(9.10)

=
∑
λ

|ξ(λ)|
∑
ρ

( |Cλ|χρ(λ)

dim ρ

)2

eρ (9.11)

=
∑
ρ

d!
(dim ρ)2

(∑
λ

|Cλ|χρ(λ)
2

)
eρ (9.12)

=
∑
ρ

d!
(dim ρ)2

⎛
⎝∑

σ∈Sd

χρ(σ )
2

⎞
⎠ eρ (9.13)

=
∑
ρ

(
d!

dim ρ

)2

eρ. (9.14)
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126 Hurwitz Numbers and Z(Sd)

In this string of equations we have applied the change of basis (9.10) and the
orthonormality of the vectors eρ (9.11). Then we switched order of summation
and used the identity |Cλ||ξ(λ)| = d! to obtain (9.12), expressed the second
summation as a sum over all elements of Sd (9.13), and finally recognized the
second summation as the inner product of χρ with itself (9.14).

Next we consider the product

Cλm · · ·Cλ1 =
(∑

ρ

|Cλm |χρ(λm)

dim ρ
eρ

)
· · ·
(∑

ρ

|Cλ1 |χρ(λ1)

dim ρ
eρ

)

=
∑
ρ

m∏
j=1

( |Cλ j |χρ(λ j )

dim ρ

)
eρ. (9.15)

Above, we see the magic of expressing a product of vectors in a semisimple
basis: just multiply together the coefficients of each basis vector.

Incorporating (9.14) and (9.15) in formula (9.6)

H•
h

d→g
(λ1, . . . , λn) = 1

d! [Ce]KgCλn . . .Cλ2Cλ1

= 1

d! [Ce]
∑
ρ

(
d!

dim ρ

)2g m∏
j=1

( |Cλ j |χρ(λ j )

dim ρ

)
eρ. (9.16)

We apply the inverse change of basis (back to the conjugacy class basis), and
extract the coefficient of Ce. Recall from Theorem 8.4.2 that

eρ = dim ρ

d! χρ(e)Ce + . . . (9.17)

We observe that χρ(e) = dim ρ; we finally obtain (9.8) by plugging (9.17) into
(9.16).

Example 9.3.3. Let us revisit the steps of the proof of Theorem 9.3.1 through
the computation of H

1
3→0

((3), (2, 1)4). In this case the condition of a point
with full ramification forces all covers to be connected, so H = H•. Refer
to Table 8.1 for the character table of S3 and the transformations from the
conjugacy class basis to the representation basis. We have

H
1

3→0
((3), (2, 1)4) = 1

6
[Ce]C(3)C

4
(2,1)

= 1

6
[Ce](2 · 34e1 + 2 · (−3)4e−1)

= 1

6

(
2 · 34

6
+ 2 · 34

6

)
= 9.
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9.3 Burnside Formula 127

Exercise 9.3.1. Compute the following Hurwitz numbers using the formula
from Theorem 9.3.1:

1. H
2

3→0
((3), (2, 1)6);

2. H
5

3→0
((3)4, (2, 1)6);

3. H•
0

3→0
((2, 1)4).

Now compute the general degree 3 disconnected Hurwitz number:

H•
3g−2+a+b

3→g
((3)a(2, 1)2b).
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10

The Hurwitz Potential

We conclude our foray into Hurwitz theory by introducing some mathemat-
ical machinery which is useful to “organize things”. Admittedly, there are
lots of Hurwitz numbers. . . as in, infinitely many! But we have seen that they
are not just some random collection of numbers unrelated to each other: we
saw in Theorem 7.5.3 that they are all determined by base curve genus 0,
three-branch-point Hurwitz numbers via recursive formulas.

It is sometimes convenient to consider infinite sets of numbers with some
kind of recursive structure as coefficients of a power series, which is called
a generating function. When the encoding is appropriate, operations on
generating functions correspond to recursions on the collection of numbers.

We begin by introducing the notion of generating functions through some
simple examples, which include the mind-boggling statement that there are
“e” isomorphism classes of finite sets if, when we count them, we divide by the
order of automorphism groups. Once we are warmed up, we introduce the Hur-
witz potential, one ginormous power series that contains all Hurwitz numbers
as coefficients of its monomials. We then derive two interesting applications
of this point of view. The first is that the relationship between connected and
disconnected Hurwitz numbers is controlled by one simple functional equation
relating the connected and disconnected Hurwitz potentials. The second is that
all (infinitely many!) recursions coming from a specific type of degeneration
formula are encoded in a unique differential operator, called the cut-and-join
operator, which vanishes when applied to the Hurwitz potential.

10.1 Generating Functions

The book (Wilf, 2006) introduces generating functions with this sentence:

“A generating function is a clothesline on which we hang up a sequence of
numbers for display.”

128
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10.1 Generating Functions 129

Behind the humorous character of this statement lies the philosophy that
encoding sequences of numbers as coefficients of power series is a convenient
way to encode and manipulate combinatorial information. Let us make some
precise definitions.

Definition 10.1.1. Given a sequence of numbers A = {an}n∈Z≥0 , the ordinary
generating function for A is the formal power series:

(x) =
∑

n∈Z≥0

anxn . (10.1)

The exponential generating function for A is defined to be

(x) =
∑

n∈Z≥0

an

n! x
n . (10.2)

If either of the above power series converges in a neighborhood of x = 0,
then we also refer to the analytic function that the power series converges to as
the generating function for A.

Example 10.1.2. If A = {1}n∈Z≥0 is the constant sequence, then the ordinary
and exponential generating functions for A are

(x) = 1

1− x
(x) = ex . (10.3)

Now, suppose that you don’t know that A is the constant sequence, but you
are rather told the recursive information that a0 = 1 and for every nonnegative
integer n, an = an+1. (I know, it must be a really bad day if you don’t recognize
a constant sequence from this information, but bear with us for the sake of
exposition. . . ) We may use this recursive information to prove the equations in
(10.3) as follows.

We denote by [xn] the coefficient of xn in the function (which by Def-
inition 10.1.1 is an , and we want to consider as an unknown) for every
nonnegative integer n. The coefficient an+1 can be viewed as the coefficient
of xn for the function x . Therefore, for every n ≥ 0, the recursion an = an+1

translates to the following equality of coefficients:

[xn] = [xn]
x
. (10.4)

We would like to remove the [xn] from (10.4) and thus replace infinitely
many numerical equations with one functional equation. We must use cau-
tion, though, as the function x has a “pole” at 0, while doesn’t. We can fix
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130 The Hurwitz Potential

this issue “by hand”, i.e. by subtracting off the polar part from the right-hand
side of (10.4) to obtain an honest functional equation satisfied by :

=
x
− 1

x
. (10.5)

It is now immediate to solve (10.5) for and obtain (10.3).
For the exponential generating function, we have that for every n ≥ 0,

[xn]d
dx

= an+1

n! = an

n! = [xn] ,

and hence satisfies the ordinary differential equation ′ = with boundary
condition (0) = 1. Recalling that first-order ODEs have unique solutions
once the value of a point is specified, this uniquely determines (x) = ex .

Example 10.1.2 shows that a recursive relation among elements of a
sequence can be turned into a functional or differential equation involving
the corresponding generating functions. Whether the ordinary or exponential
generating function encoding is more desirable often depends on the prob-
lem at hand. Sometimes in enumerative geometry the natural encoding is
dictated to us from the geometric problem, as the next (also silly) example
illustrates.

Example 10.1.3. We want to describe the generating function for the sequence
counting isomorphism classes of finite sets of cardinality n. Isomorphisms of
sets are just bijective functions, and any two sets of cardinality n can be put in
bijection (that is essentially the definition of having cardinality n), so it looks
like we are again just talking about the constant sequence. However we have
already encountered in this book that enumerative geometers like to divide by
the symmetries (i.e. the order of the automorphism group) of the geometric
objects considered. A set of order n has Sn as its automorphism group: there-
fore the exponential generating function for the constant sequence is morally
the best way to encode the counting of finite sets.

As a consequence, if you ask an enumerative geometer for the total number
of finite sets, the answer will of course be:

∞∑
n=0

1

n! = e.

Sometimes we want to encode sets of numbers that depend on more than
one index, and we do so by introducing a formal variable into the generating
function for each index. We illustrate this philosophy with a simple example.
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10.1 Generating Functions 131

Example 10.1.4. Our counting problem is: {ak,n} = number of subsets of
order k of a set of cardinality n. We introduce a formal variable q to keep
track of the cardinality of the ambient set, and a variable x to keep track of the
cardinality of the subset, and define

(x, q) =
∑

n,k≥0

an,k xk qn

n! . (10.6)

Note that we mixed things up a bit and chose to use exponential encoding
for the variable q and ordinary encoding for x , for no particular reason other
than to show that we can. We explore this generating function in the next two
exercises.

Exercise 10.1.1. Show that each of the following equalities holds:

(x, q) =
∑
n≥0

(x + 1)nqn

n! = e(x+1)q . (10.7)

Hint: combine the fact from combinatorics that an,k = (n
k

)
with Newton’s

binomial theorem.

Exercise 10.1.2. Show that setting x = 1 in (10.6) recovers the exponential
generating function encoding the total number of subsets of a set of order n.

Example 10.1.4 and Exercise 10.1.2 illustrate a general philosophy: intro-
ducing new variables amounts to refining the combinatorial information,
whereas specializing variables amounts to forgetting part of the structure.

Exercise 10.1.3. Let p0 = 1 and pn denote the number of partitions of the
positive integer n; define the generating function for this sequence to be:

(x) :=
∞∑

n=0

pnxn = 1+ x + 2x2 + 3x3 + 5x4 + 7x5 + . . . (10.8)

Prove that

(x) =
∞∏

k=1

1

(1− xk)
. (10.9)

We now introduce the generating function for Hurwitz numbers, which
is what we are ultimately interested in. We begin by introducing a small
shorthand notation for Hurwitz numbers.
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132 The Hurwitz Potential

Definition 10.1.5. For a positive integer r , we define

Hr

h
d→g

(λ1, . . . , λm) := H
h

d→g
(λ1, . . . , λm, (2, 1, . . . , 1)r ).

In other words, we add r branch points corresponding to simple ramification
to the ramification data.

The philosophy behind Definition 10.1.5 is that, besides the branch points
with ramification profile specified by the partitions λi , we wish to allow some
additional ramification, which we require to be generic.

Definition 10.1.6. The genus g Hurwitz Potential is a generating function for
Hurwitz numbers counting covers of curves of genus g. We present it here with
as many variables as possible. In almost all applications one makes a choice of
the appropriate variables to maintain:

g
(pi, j , u, z, q) :=

∑
Hr

h
d→g

(λ1, . . . , λm) p1,λ1 . . . pm,λm

ur

r ! z1−hqd ,

(10.10)
where:

● For a partition λ = (l1, . . . , lk) the notation pi,λ is defined to mean:

pi,λ =
l∏

j=1

pi,l j ,

where the variables pi, j index ramification profiles. The first index i keeps
track of the branch point; the second gives one part of the partition denoting
the ramification profile. Both i and j vary among all positive integers.

● u is a variable for the newly introduced additional simple ramification. The
exponential encoding may seem a bit mysterious at this point, but we will
soon see that it is very convenient.

● z indexes the genus of the cover curve (more precisely, it indexes 1/2 the
Euler characteristic, which is additive under disjoint unions).

● q keeps track of degree.

The total Hurwitz potential is defined to be the sum over all genera of the
genus g potentials:

:=
∞∑

g=0
g
. (10.11)

Similarly one can define disconnected Hurwitz potentials
•
g
,

•
, encod-

ing disconnected Hurwitz numbers. Note that in the disconnected case the
genus h of the cover curve ranges over all integers (see Definition 6.1.8).
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10.2 Connected Hurwitz Numbers 133

Example 10.1.7. Hurwitz numbers do not depend on the ordering of the parti-
tions specifying the ramification profiles, or equivalently on the labeling of the
branch points.

However, in the Hurwitz potentials, the order is remembered. Thus a partic-
ular Hurwitz number appears as the coefficient of several different monomials.
For example, the Hurwitz number H6

3→0,3((3)
2, (1, 1, 1)) appears in

0
as

the coefficient of the monomials:

p1,3 p2,3 p3
3,1

u6

6! z−4q3,

p1,3 p3
2,1 p3,3

u6

6! z−4q3,

and

p3
1,1 p2,3 p3,3

u6

6! z−4q3.

Example 10.1.8. Setting u and all the p variables equal to 0, we obtain a

generating function for étale (i.e. unramified) covers of Riemann Surfaces:

(z, q) = (pi, j = 0, u = 0, z, q) =
∞∑

d=1

∞∑
g=0

H0

dg−d+1
d→g

(∅)zd(1−g)qd

= q
z2

z − 1
+ 3

2
q2 z4

(z2 − 1)(z2 − 4)
+ . . . (10.12)

Note that, because of the negative exponent used for the variable encoding
the genus, the enumerative information is encoded in the coefficients of the
Taylor/Laurent expansions of the above rational functions in z at z = ∞.

Exercise 10.1.4. Verify that the degree 1 and 2 terms of the étale Hurwitz

potential are given by the two summands in the last equation of (10.12).
Refer to Example 7.4.5 for degree 2 étale Hurwitz numbers.

10.2 Connected Hurwitz Numbers

We first restrict our attention to connected unramified covers of genus 0 curves:

we denote the generating function for such covers 0. The Riemann–Hurwitz
formula tells us that the only possible unramified map to P1(C) is a degree 1
map from P1(C) itself. There is only one isomorphism class of such a map,
and any map in the class has only the trivial automorphism. Hence
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134 The Hurwitz Potential

0(z, q) = zq. (10.13)

Now allow the source curve to be possibly disconnected. For every degree d,
there exists an unramified cover of P1(C) of degree d: it consists of d distinct
copies of P1(C) (a genus 1− d curve), each mapping down isomorphically to
the base curve. There is one such map up to isomorphism and it has Sd as its
automorphism group (since the d connected components of the source curve
can be arbitrarily permuted). We therefore obtain

•
0(z, q) =

∞∑
d=1

1

d! z
dqd = ezq − 1. (10.14)

Thus, up to the constant term, the disconnected potential is the exponential of
the connected potential. This is in fact a general phenomenon.

Theorem 10.2.1. The connected and disconnected genus g Hurwitz potentials
are related by exponentiation:

1+ •
g
= e g . (10.15)

Proof The strategy of proof is to compare the coefficients of each individual
monomial in (10.15). A monomial consists of fixing all discrete data for the
Hurwitz problem. Once all the data are fixed, the disconnected Hurwitz number
counts covers that can be organized as a sum over the discrete data for each
of their connected components. For each of the summands, the contribution
to the disconnected Hurwitz number consists of the product of the connected
Hurwitz numbers divided by factorials corresponding to permuting connected
components with identical discrete data. We now make this intuition precise.
Unfortunately, the price to pay is having to set up some cumbersome notation.

We first observe that the q0 coefficient (i.e. the constant term) of equation
(10.15) is correct, since [q0] •

g
= 0.

Let d = (h, d, r, {λ1, . . . , λm}) denote the combinatorial data needed to
identify a Hurwitz number for a base curve of genus g. We denote by Hd

(respectively H•
d ) the Hurwitz number (respectively disconnected Hurwitz

number) corresponding to such data. The Hurwitz number Hd (respectively
H•

d ) times the exponential encoding factor 1
r ! gives the coefficient of the

monomial

mon(d) := p1,λ1 . . . pm,λm ur z1−hqd
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10.2 Connected Hurwitz Numbers 135

in
g

(respectively
•
g
). If d1 = (h1, d1, r1, {λ1, . . . , λm}) and d2 =

(h2, d2, r2, {μ1, . . . , μn}), we define

d1+d2 := (h1+h2−1, d1+d2, r1+r2, {λ1, . . . , λm, μ1, . . . , μn}). (10.16)

Note that

mon(d1 + d2) = mon(d1)mon(d2),

which in particular shows that the addition operation we defined is associative.
By �d = (d

l1
1 , . . . , d

lk
k ) denote a tuple where dn

i indicates the entry di

is repeated n times. Such a tuple indexes a particular type of disconnected
Hurwitz covers, as represented in Figure 10.1. Each of the parts of �d gives
the Hurwitz data for a connected component of the cover. We denote by
L :=∑k

j=1 l j the total number of connected components of the source curve,

and |�d| =∑k
i=1 lidi , where addition is defined in (10.16).

If you haven’t keeled over yet, you may take a breath of relief now: we are
done setting up notation!

Fix a monomial mon(d) and consider its coefficient in
•
g
: as we mentioned

earlier, it is H•
d/r !. The disconnected Hurwitz numbers count covers that can

be grouped in terms of the Hurwitz data of each connected component; hence
we may express

Figure 10.1 The contribution to a disconnected Hurwitz number by covers with a
given number of components each supporting a ramification data. One first takes
the product of connected Hurwitz numbers. If some components support identical
data, one must divide by the appropriate factorial to account for overcounting and
automorphisms.
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136 The Hurwitz Potential

H•
d =

∑
|�d|=d

Cont (�d), (10.17)

where Cont (�d) denotes the automorphism-weighted number of disconnected
covers of type �d. If �d = (d

l1
1 , . . . , d

lk
k ) as above, then we have

Cont (�d) =
(

r

r1, . . . , rL

)
1

l1! · · · lk !
k∏

j=1

(
Hd j

)l j , (10.18)

where

● the quotient by the l j !s accounts for isomorphism and automorphisms of
disconnected covers corresponding to permuting the connected components
with equal data;

● the multinomial coefficient accounts for all possible ways that the r
additional simple ramifications can distribute themselves on the various
connected components of the disconnected source curve.

Recapping what we have done so far, we have expressed a coefficient of the
disconnected Hurwitz potential as follows:

[mon(d)] •
g
=
∑
|�d|=d

1

r !
(

r

r1, . . . , rL

)
1

l1! · · · lk !
k∏

j=1

(
Hd j

)l j . (10.19)

Now we look at the coefficient of mon(s) in the Taylor expansion of e g .
Again it can be written as a sum over |�d| = d, since addition of d′s corresponds
to multiplication of the corresponding monomials. Carefully keeping track of
the factorials in the Taylor expansion of a multivariable exponential function,
one gets

[mon(d)]e g =
∑
|�d|=d

1

r1! · · · rL !
1

L!
(

L

l1, . . . , lk

) k∏
j=1

(
Hd j

)l j , (10.20)

which is equal to (10.19).

Example 10.2.2. We observe (10.15) for the coefficients of the monomial
u4zq3:

H•,4
0→0,3

u4

4! zq3 = H4
0→0,3

u4

4! zq3 + 1

2!2
(

H4
1→0,2

u4

4! q
2
)(

H0
0→0,1zq

)
.

(10.21)
In equation (10.21) all Hurwitz numbers don’t have any λ, and to lighten nota-
tion we dropped the (∅) from our usual notation. Equation (10.21) expresses
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10.3 Cut-and-Join 137

the number of degree 3, possibly disconnected covers of P1(C) by a rational
curve, with four points of simple ramification as the sum of two terms: one
corresponding to connected covers, the other to covers consisting of a disjoint
union of a genus 1 curve mapping with degree 2 and a rational curve mapping
isomorphically to P1(C).

Exercise 10.2.1. Check that equation (10.21) is correct by evaluating the
appropriate Hurwitz numbers.

Exercise 10.2.2. Compute the disconnected Hurwitz number H•,4
−1→0,4 = 5 in

two ways: first using the Burnside formula (refer to Table 8.1 for the character
table of S4); then by observing that, since the genus h of the cover curve is
negative, the covers must necessarily be disconnected. Hence, for any Hurwitz
cover for this data, each connected component maps with degree less than or
equal to 3. The corresponding connected Hurwitz numbers are therefore acces-
sible by counting the appropriate monodromy representations. Finally organize
the count of the disconnected Hurwitz number as the appropriate sum of the
contributions coming from each type of disconnected cover.

Of what monomial is H•,4
−1→0,4/4! the coefficient in

•
? Check that

equation (10.15) holds for the coefficients of this monomial.

10.3 Cut-and-Join

The name cut-and-join refers to a set of recursive relations among Hurwitz
numbers, obtained by analyzing what happens to the cycle type of a fixed
permutation in the symmetric group Sd when composed with any simple
transposition. From a geometric point of view, this is a special case of the
degeneration formulas (Section 7.5), which amounts to shrinking a loop sur-
rounding two branch points, one of which is given an arbitrary ramification
profile condition, the other a simple ramification condition. Infinitely many
recursions are efficiently encoded in one partial differential equation which the
Hurwitz potential satisfies. This showcases the power of the generating func-
tion language to handle a large amount of combinatorial complexity, provided
that the recursive structure is well tuned to the generating function encoding.

We begin this discussion by stating the elementary group theoretic fact
underlying the cut-and-join recursions.

Fact 10.3.1. Let σ ∈ Sd be a fixed element of cycle type λ = (n1, . . . , n
),
written as a composition of disjoint cycles as σ = c
 . . . c1. Let τ = (i j) ∈ Sd
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138 The Hurwitz Potential

Figure 10.2 Diagrammatic illustration of cut-and-join: how a cycle is affected by
multiplication with a transposition

vary among all transpositions. The cycle types of the composite elements τσ

are described below.

cut. if i, j belong to the same cycle (say c
), then this cycle gets “cut in
two”: τσ has cycle type λ′ = (n1, . . . , n
−1,m′,m′′), with m′ + m′′ =
n
. If m′ 
= m′′, there are n
 transpositions giving rise to an element of
cycle type λ′. If m′ = m′′ = n
/2, then there are n
/2.

join. if i, j belong to different cycles (say c
−1 and c
), then these cycles are
“joined”: τσ has cycle type λ′ = (n1, . . . , n
−1+n
). There are n
−1n


transpositions giving rise to an element of cycle type λ′.

Example 10.3.2. Let d = 4. There are six transpositions in S4. Pick σ =
(12)(34) of cycle type (2, 2): there are two transpositions ((12) and (34))
that “cut” σ to give rise to a transposition (cycle type (2, 1, 1)) and 2 · 2
transpositions ((13), (14), (23), (24)) that “join” σ into a four-cycle.

For readers allergic to notation, Figure 10.2 presents a diagrammatic
summary of the above discussion.

Exercise 10.3.1. Prove Fact 10.3.1.

We now apply Fact 10.3.1 in the context of Hurwitz numbers. We focus our
attention on one particular branch point b on the base curve: the cut-and-join
analysis describes what happens when we shrink a loop surrounding b and a
branch point corresponding to a simple ramification.

The cut-and-join recursion involves Hurwitz numbers where the only part of
the branching that is varying is the profile of the point b. In order to lighten our
notation, we restrict our attention to a generating function for Hurwitz numbers
with only one point of non-generic ramification.

Definition 10.3.3. Setting to zero all the variables pi, j with i ≥ 2 in the dis-

connected Hurwitz potential
•
g

and dropping the subscript 1 from the set of
p-variables remaining gives the potential
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10.3 Cut-and-Join 139

Figure 10.3 The geometric interpretation of the cut-and-join recursion as a degen-
eration formula. A loop surrounding b0 and x0 is shrunk. The type of degenerate
covers occurring have a new ramification profile λ′ which is obtained from λ by
either cutting a cycle or joining two cycles. The cut-and-join recursion expresses
this degeneration formula where the very simple Hurwitz numbers corresponding
to the right-hand side of the degenerate cover are computed explicitly and hence
don’t appear in the formula.

•
g(p j , u, z, q) :=

∑
H•,r

h→g,d(λ) pλ

ur

r ! z1−hqd , (10.22)

encoding Hurwitz numbers with only one special branch point. Such Hurwitz
numbers are sometimes called simple Hurwitz numbers, and hence we call
this generating function the simple Hurwitz potential.

The cut-and-join analysis translates to the following statement.

Theorem 10.3.4. The disconnected simple Hurwitz potential
•
g is annihi-

lated by the cut-and-join differential operator:

∂

∂u
−
⎛
⎝1

2

∑
i, j≥1

i j pi+ j z
∂2

∂ pi∂ p j
+ (i + j)pi p j

∂

∂ pi+ j

⎞
⎠ . (10.23)

Proof First we observe that the statement of the theorem means that
•

satisfies the following PDE:
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140 The Hurwitz Potential

∂

∂u

• = 1

2

∑
i, j≥1

i j pi+ j z
∂2

∂ pi∂ p j

• + (i + j)pi p j
∂

∂ pi+ j

•
. (10.24)

We analyze the coefficient of an arbitrary monomial in equation (10.24), and
essentially we will recognize that it is a special case of a degeneration formula:
the coefficient on the left-hand side corresponds to the Hurwitz number before
the loop is shrunk; the coefficients on the right-hand side consist of the degen-
erate covers – the first term in the summation corresponds to covers where a
cycle is cut into two cycles; the second, where two cycles are joined. Refer to
Figure 10.3 for an illustration. As in the case of the degeneration formulas, the
proof is cleaner with the algebraic language of monodromy representations.

Consider the monomial pλ
ur

r ! z
1−hqd for arbitrary values of λ, r, h and d.

The coefficient of this monomial on the left-hand side of (10.24) is the Hurwitz
number H•,r+1

h→g,d(λ), which is 1/d! times the number of elements in the set of
monodromy representations

Mr+1
λ

=

⎧⎪⎨
⎪⎩(σ, τ0, τ1, . . . , τr , α1, β1, . . . , αg, βg)

∣∣∣∣∣∣∣
• σ ∈ Cλ,

• τi are simple transpositions,
• [αg, βg] . . . [α1, β1]τr . . . τ0σ = e

⎫⎪⎬
⎪⎭ .

Now let �′ denote the set of partitions λ′ " d that are obtained from λ by
either adding two parts of λ or splitting one of the entries of λ into two parts.
For each λ′ ∈ �′ define the set Mr

λ′ analogously (but note that there are now
only r transpositions). Consider the natural function:

� : Mr+1
λ →

∐
λ′∈�′

Mr
λ′ ,

defined by

�(σ, τ0, τ1, . . . , τr , α1, β1, . . . , αg, βg) = (τ0σ, τ1, . . . , τr , α1, β1, . . . , αg, βg).

We now write the cardinality of Mr+1
λ as the sum of the cardinalities of the

inverse images via � of each of the Mr
λ′ :

|Mr+1
λ | =

∑
λ′∈�

|�−1(Mr
λ′)|. (10.25)

Each of the terms on the right-hand side of (10.25) is computed making use of
Fact 10.3.1. We must treat three cases separately: to slow ourselves down, we
break the first case into a series of exercises.

Case 1: λ is obtained from λ′ by adding two of the entries of λ′: one of size i
and one of size j .
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10.3 Cut-and-Join 141

Exercise 10.3.2. Making use of Fact 10.3.1 shows that for any element x ∈
Mr

λ′ , the cardinality of the inverse image �−1(x) is equal to i jni n j , where ni

is the number of parts equal to i in λ′, n j the number of parts equal to j in λ′.

Exercise 10.3.3. Observe that the cardinality of Mr
λ′ is equal to

d!H•,r
h−1→g,d(λ

′).

By Exercises 10.3.2 and 10.3.3 we have the following equation:

|�−1(Mr
λ′)| = d!i jni n j H•,r

h−1→g,d(λ
′). (10.26)

Exercise 10.3.4. Show that the quantity i jni n j H•,r
h−1→g,d(λ

′) is the coefficient

of the monomial pλ
ur

r ! z
1−hqd in the expression

i j pi+ j z
∂2

∂ pi∂ p j

•
g.

We now consider the other two cases from Fact 10.3.1 and carry out similar
analyses.

Case 2: λ is obtained from λ′ by splitting a part of λ′, say of size i+ j into one
part of size i and one of size j , with i 
= j .

By Fact 10.3.1, for any element x ∈ Mr
λ′ , the cardinality of the inverse image

�−1(x) is equal to i + j times the number ni+ j of parts equal to i + j in λ′.
The cardinality of Mr

λ′ is equal to d!H•,r
h→g,d(λ

′) , hence

|�−1(Mr
λ′)| = d!(i + j)ni+ j H•,r

h→g,d(λ
′). (10.27)

The quantity (i + j)ni+ j H•,r
h→g,d(λ

′) is the coefficient of the monomial

pλ
ur

r ! z
1−hqd in the expression

(i + j)pi p j
∂

∂ pi+ j

•
g.

Case 3: a part of size 2i in λ′ is split into two parts of equal size i .
In this case we must divide the RHS of (10.27) by 2, and correspondingly the

term 1/2(i+ i)ni+i H•,r
h→g,d(λ

′) is the coefficient of the monomial pλ
ur

r ! z
1−hqd

in the expression

1

2
(i + i)pi pi

∂

∂ pi+i

•
g.

By substituting (10.26), (10.27) in (10.25) and dividing the resulting equa-
tion by d!, we obtain the equality of the coefficients of the monomial
pλ

ur

r ! z
1−hqd in equation (10.24): we only must notice that reorganizing the

sum over λ′ ∈ � as a sum over all possible i, j , we must divide by 1/2 to
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142 The Hurwitz Potential

account for the overcounting arising from switching the roles of i and j and
for the factor of 1/2 that appears when i = j .

Exercise 10.3.5. Write down the coefficient of the monomial p3
u4

4! z
0q3 in the

cut-and-join equation (10.24), and verify that the equation holds by computing
directly the Hurwitz numbers involved.

The disconnected setting lends itself most naturally to formulate the cut
and join recursions: return to Figure 10.3, and observe that even if the orig-
inal cover X → Y is connected, after shrinking the loop the cover X̃ → Ỹ
may be disconnected. However, when a cycle is cut, it is cut in exactly two
parts. Consequently, a connected cover can be disconnected in at most two
components.

One can therefore obtain a connected cut-and-join operator by adding one
term corresponding to when the cut cycle disconnects the original cover. The
connected cut-and-join analysis appears in Goulden and Jackson (1999). Here
we state it and leave the proof as a grand finale exercise for our readers!

Theorem 10.3.5. The connected simple Hurwitz potential g is annihilated
by the connected cut-and-join operator:

∂

∂u
−
⎛
⎝1

2

∑
i, j1

i j pi+ j

(
z

∂2

∂ pi∂ p j
+ ∂

∂ pi

∂

∂ p j

)
+ (i + j)pi p j

∂

∂ pi+ j

⎞
⎠ .

(10.28)

Exercise 10.3.6. Prove Theorem 10.3.5.
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Appendix A

Hurwitz Theory in Positive Characteristic

Rachel Pries

A.1 Introduction

The focus of this book is on compact Riemann Surfaces, or algebraic curves
defined over the complex numbers C. There is also a beautiful story about alge-
braic curves defined over other fields, like the field of rational numbers Q or a
finite field like Z/p where p is a prime number. In this chapter, we will give
a glimpse of some interesting developments for algebraic curves defined over
fields similar to the latter type, which are called fields of positive characteris-
tic. In particular, we will show that the Riemann–Hurwitz formula needs to be
adjusted for maps between curves in positive characteristic and that the affine
line is no longer simply connected in positive characteristic.

The plan is to replace C by an algebraically closed field k of character-
istic p and then study algebraic curves over k. But first we need to ask
whether this is a valuable thing to do. One objection is that it seems as though
we will lose much of the motivation for studying complex curves, such as
understanding doubly-periodic complex valued functions or solving differen-
tial equations with applications to physics. An answer to this is that there are
new applications involving cryptography and error-correcting codes for which
algebraic curves in positive characteristic are highly useful. These include
elliptic and hyperelliptic curve cryptography and Reed–Solomon and Goppa
error-correcting codes, which were used by the Voyager II space mission to
send pictures back to Earth.

A second objection is that it is disconcerting to work in positive charac-
teristic (at first) because no pictures can be drawn. A lot of intuition about
the genus and fundamental group of a Riemann Surface is gained by drawing
loops. New theory is needed to make sense of the definitions of these objects
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in positive characteristic. This is true, and yet there is a strong payoff; some
people would argue that these new definitions are better for studying compact
Riemann Surfaces as well, because they illuminate more of the structure.

More generally, algebraic curves in positive characteristic control some of
the geometry of complex curves. Studying an algebraic equation only from
the perspective of the complex numbers is a lot like studying an iceberg only
from above water, or studying a cubic polynomial only using its one real root.
In fact, there are proofs of several theorems about complex curves which rely
on information about curves in positive characteristic. This note contains a
glimpse of the new phenomena and open questions about curves in positive
characteristic.

A.2 Algebraic Curves in Positive Characteristic

In practice, working in positive characteristic means that all coefficients will be
computed using modular arithmetic. We pick a prime number p and consider
equivalence classes of numbers modulo p. This means that p acts like 0 mod-
ulo p and, more generally, a ≡ b mod p if and only if p divides b−a. The set
Z/p of equivalence classes of integers modulo p is a commutative ring, and it
is a field since every nonzero element has an inverse. For example, if p = 5,
then 2 · 3 = 6 ≡ 1 mod 5 and so 2−1 ≡ 3 mod 5. One quick warning is that
the exponents in equations do not reduce modulo p. For example, 25 = 32 ≡
2 mod 5 which does not equal 20 = 1 mod 5. In fact, Fermat’s Little Theorem
says that every a ∈ Z/p is a root of the polynomial x p − x modulo p.

There is one property about C that is crucially important – it is algebraically
closed, or, equivalently, every non-constant polynomial has a complex root.
The complex number i which is a root of x2 + 1 plays a key role for Riemann
Surfaces. When p = 5 (or, more generally, when p ≡ 1 mod 4), there is still
a root of x2 + 1 modulo p; the number 2 acts like i algebraically because
22 = 4 ≡ −1 mod 5. Therefore we make the convention that when we write
i for a field k which is not C, we really mean a root of the polynomial x2 + 1
in k. However, it is inconvenient that there is no root of x2 − 2 modulo 5. To
remedy this, we add

√
2 ≡ √−3 to our field, and consider the larger field of

size 25 called F25 = {a0 + a1
√

2 | a0, a1 ∈ Z/5}.
Without worrying about the consequences, we add the roots of all non-

constant polynomials in Z/p[x] to make an algebraically closed field of
characteristic p, which we call k. This can be made more concrete for anyone
who has learned about finite fields by thinking of k as the union (or direct limit)
of the finite fields Fpn for all natural numbers n.
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A.3 Smooth Algebraic Curves 145

A.3 Smooth Algebraic Curves

An algebraic curve is an algebraic variety of dimension 1. The projective line
P1

k and the affine line A1
k = P1

k−∞ (like Definition 2.3.1 and Remark 2.3.4) are
two examples of algebraic curves defined over k. Other simple algebraic curves
are affine plane curves like in Definition 3.1.2, which can be described as the
set of points (x, y) ∈ k2 satisfying a (non-degenerate) polynomial relation
F(x, y) ∈ k[x, y].

In this chapter, we focus on the affine plane curve X◦
p,t defined over k given

by the affine equation Fp,t (x, y) = 0, where

Fp,t (x, y) = x p − x − yt (A.1)

for a natural number t such that p does not divide t . Curves of this type are
called Artin–Schreier curves and they play an important role in understanding
new phenomena about maps of curves in positive characteristic.

Exercise A.3.1.

1. Show that X◦
p,t is smooth using Definition 3.1.2.

2. Show that the map φp,t : X◦
p,t → A1

k given by (x, y) �→ x is ramified only
at the p points where y = 0, in which case it has ramification index t. (For
example, when p = 5 and t = 4, then φ5,4 is ramified when y = 0 and
x ∈ {0,±1,±i} = {0, 1, 2, 3, 4}.)

3. Show that the map ψp,t : X◦
p,t → A1

k given by (x, y) �→ y is not ramified
anywhere.

4. Show that ψp,t has Galois group isomorphic to Z/p. (Hint: the automor-
phism τ(x) = x + 1, τ(y) = y respects the equation x p − x − yt since
(x + 1)p ≡ x p + 1 mod p.)

There is a unique smooth compact algebraic curve X p,t defined over k which
contains X◦

p,t as a dense open affine subset. There is one point P∞ in X p,t

which is not in X◦
p,t . In practice, it is not easy to find an equation for X p,t

since the homogenization of Fp,t is usually not smooth at P∞, but here are
two examples.

Exercise A.3.2.

1. Show that the homogenization of X◦
p,t in P2

k is smooth at the point [0 : 1 : 0]
only when t = p − 1 or t = p + 1. (Hint: break the problem into the cases
t > p and t < p.)
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146 Appendix A

2. If t = ap − 1, consider the change of variables y = 1/y and x = x ya.
Show that the equation for Fp,t can be rewritten as

F p,t = x p − x ya(p−1) − y,

and show that this affine curve is smooth at the point (x, y) = (0, 0).

A.4 The Genus and the Riemann–Hurwitz Formula

In positive characteristic, it does not make sense to define the genus of an alge-
braic curve as the number of its “holes”. Instead, the genus is defined using
differentials. Differentials are used frequently in complex analysis, where
many results are proven by integrating differentials along paths and loops. A
lot of the behavior of a differential is determined by its poles.

Definition A.4.1. Let X be a smooth compact algebraic curve over k. The set
of differentials on X having no poles is called �(X). The genus g of X is the
dimension of �(X) as a vector space over k.

To gain some intuition about this definition, let’s look at the example of a
hyperelliptic curve X with affine equation y2 = f (x) where f (x) has degree
R and no multiple roots. (Unlike Section 6.3, we take R to be odd so that there
is a unique point P∞ at infinity, which is also a ramification point of the double
cover of the projective line.) Then R = 2g+ 1. An example of a differential is

ωi = xi−1dx

y
.

Lemma A.4.2. Let i ≥ 1. On the hyperelliptic curve X : y2 = f (x) with
deg( f (x)) = 2g + 1, the differential ωi has no poles. The set of differentials

ω1 = dx

y
, ω2 = xdx

y
, . . . , ωg = xg−1dx

y

is a basis for �(X).

Proof Here are some of the key steps in the proof. The first step is to show that
�(X) can be spanned by differentials of the form xi dx/y. The reason is that
every differential ω can be uniquely written in the form g1(x)dx + g2(x)dx/y
where g1, g2 are rational functions of x . Then g1(x) must be zero if ω has no
pole.
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A.4 The Genus and the Riemann–Hurwitz Formula 147

The next step is to show that ωi has no poles if and only if 1 ≤ i ≤ g. To
see this, we can suppose that 0 is a root of f (x). For 1 ≤ j ≤ 2 j + 1, let
Pj = (b j , 0) denote the ramification points of X other than P∞. The function
x has a double zero at P1 = (0, 0) and a pole of order 2 at P∞. The function
y has a zero of order 1 at each point Pj and (by Remark 4.3.4) a pole of
order 2g + 1 at P∞. Note that dx = 2ydy/ f ′(x) and f ′(x) is nonzero at Pj

since f (x) has no multiple roots. This shows that the differential dx has a
zero of order 1 at each point Pj and (by Exercise 4.4.2 in Chapter 4) a pole of
order 3 at P∞.

The conclusion from this is that the differential ωi has a zero of order
2(i − 1) at P1 and a zero of order 2(g − i) at P∞. In particular, ωi has
no poles if 1 ≤ i ≤ g. Finally, the set {ω1, . . . , ωg} is linearly inde-
pendent since the orders of the zero at P∞ of these differentials are all
different.

Here is an example about the genus of the Artin–Schreier curves from the
previous section.

Proposition A.4.3. Suppose p � t . The curve X p,t with affine equation x p −
x = yt has genus (p − 1)(t − 1)/2.

Is this formula believable? Let’s look at the map φp,t : X p,t → P1 taking
(x, y) → x which has degree t . When t = 1, then it makes sense that X p,1

has genus 0 because φp,1 is an isomorphism. (Another way to see that X p,1 is
rational is that the function field k(x)[y]/(x p − x − y) is isomorphic to k(x).)
When t = 2 (and p is odd), then φp,2 has degree 2 so X p,2 is hyperelliptic.
The genus is g = (p−1)/2 because the polynomial f (x) = x p− x has degree
R = p.

One way to verify Proposition A.4.3 is to answer the following question.

Exercise A.4.1. Show that the following set of differentials is a basis for
�(X p,t ) and that it has cardinality (p − 1)(t − 1)/2:

{ybxr dy | r ≥ 0, b ≥ 0, bp + r t ≤ (p − 1)(t − 1)− 2}.

Another way to verify Proposition A.4.3 is to use the Riemann–Hurwitz
formula. By Exercise A.3.1, the cover φp,t is ramified at the points when y =
0, each with ramification index t . There are p points like this because, by
Fermat’s Little Theorem, the roots of x p − x modulo p are the numbers x ∈
Z/p. In addition, φp,t is ramified at P∞. This can be checked explicitly when
t = ap− 1 using the other affine chart found in Section A.3. It can be checked
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more theoretically for all t by thinking about the monodromy representation
from Chapter 7. At each of the p+1 ramification points, the differential length
is t − 1. Applying the Riemann–Hurwitz formula from Chapter 4 shows that
2g−2 = t (−2)+(p+1)(t−1), which gives the formula in Proposition A.4.3.

Let’s see what happens for the cover ψp,t : X p,t → P1
k taking (x, y) to y. In

this case, the degree is p and only the point P∞ is ramified, with ramification
index p. Applying the Riemann–Hurwitz formula from Chapter 4 would give
that 2g− 2 = p(−2)+ (p− 1), which is clearly wrong since the genus cannot
be negative.

The Riemann–Hurwitz formula as stated in Chapter 4 cannot be applied to a
map of curves over k when the characteristic p divides the ramification index
at a ramification point. The reason is that the differential length turns out to be
greater (or even much greater) than the ramification index.

Theorem A.4.4. (Wild Riemann–Hurwitz Formula). Suppose f : X → Y is
a non-constant separable Galois cover of smooth projective curves over k. Let
ex denote the ramification index of f at a point x ∈ X.

1. Then

2gX − 2 = deg( f )(2gY − 2)+
∑
x∈X

Dx ,

where the differential length Dx at x is nonzero if and only if ex > 1.
2. If p does not divide ex , then Dx = ex − 1.
3. If p = ex , then there is a prime-to-p natural number tx , called the

ramification jump, such that Dx = (p − 1)(tx + 1).
4. More generally, if p divides ex , then there is a ramification filtration of the

inertia group I at x which is a descending sequence of subgroups Ii of I
and Dx =∑∞

i=0(|Ii | − 1).

Let’s try to give a final proof of Proposition A.4.3 using the wild Riemann–
Hurwitz formula applied to the cover ψp,t : X p,t → P1

k with equation x p−x =
yt . The only ramification point is the point x = P∞ and the ramification index
is ex = p. By Theorem A.4.4(3), the differential length equals (tx + 1)(p −
1). To get the correct formula, we need to show that the ramification jump tx
equals t .

Now we run into the problem that we can’t verify this since we haven’t
defined the ramification jump. To define it precisely would take too long for
this note, but here is the basic idea. The cover ψp,t with equation x p − x = yt

has a Galois automorphism τ(x) = x + 1. At the point P∞, we can find a uni-
formizer function π , which vanishes with order 1 at P∞, and so the valuation

, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316569252.012
Downloaded from https:/www.cambridge.org/core. University of Warwick, on 03 Feb 2017 at 01:49:58, subject to the Cambridge Core terms of use

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316569252.012
https:/www.cambridge.org/core


A.5 The Affine Line Is Not Simply Connected Over k 149

val(π) is 1 in the local ring of the curve at P∞. Then the ramification jump is
defined to be tP∞ = val(τ (π)− π)− 1.

Exercise A.4.2. Let t = ap−1. From Exercise A.3.2(2), remember the change
of variables y = 1/y and x = x ya which let us rewrite the equation for Fp,t

as F p,t = x p − x ya(p−1) − y. The point P∞ is the point (x, y) = (0, 0).

1. Check that a uniformizer at P∞ is π = x .
2. Check that τ(π)− π = ya .
3. Check that val(ya) = ap and that tP∞ = ap − 1 = t .

A.5 The Affine Line Is Not Simply Connected Over k

The complex plane is simply connected; every loop in C can be retracted
to a point and so is homotopy equivalent to the identity. This means that
the fundamental group of C is trivial. Using Section 5.3, this is equivalent
to saying that there are no unramified covers of C having degree greater
than 1. (Such a cover would also give a cover of the projective line ramified
only above ∞, which would contradict the Riemann–Hurwitz formula from
Chapter 4.)

All of the facts in the previous paragraph are false in positive characteristic.
The analogue of the complex plane in positive characteristic is the affine line
A1

k . By Exercise A.3.1(3), the map ψp,t : X◦
p,t → A1 given by (x, y) �→ y is

not ramified anywhere.
The fundamental group of the affine line is defined as the inverse limit of the

Galois groups of all the unramified Galois covers of the affine line. Its degree
p quotients correspond to Z/p-Galois unramified covers of the affine line,
which in turn are described by Artin–Schreier extensions of the form x p −
x = f (y) where f (y) is a polynomial. By studying Artin–Schreier curves,
we can see that the fundamental group π1(A1

k) of the affine line over k is
nontrivial, and also that it is truly huge (an infinitely generated profinite group).
This is because the degree p quotients of the fundamental group are indexed
both by the discrete invariant of the degree of f (y) and by the parameters
of the coefficients of f (y). By Abhyankar’s Conjecture (proven by Harbater
and Raynaud), it is known that every finite group generated by elements of p-
power order is a quotient of π1(A1

k), but there is currently no conjecture about
the structure of π1(A1

k).
Here are some good references if you would like to learn more about these

topics: Hirschfeld, Korchmáros, and Torres (2008) and Stichtenoth (2009).
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Appendix B

Tropical Hurwitz Numbers

Hannah Markwig and Dhruv Ranganathan

B.1 Tropical Geometry: Where Does It Come From?

At its heart, algebraic geometry can be viewed as the study of the geometry
of solutions to systems of polynomial equations. For the moment, let us work
with polynomials in n variables over a field k, so our variety X is affine, and
it naturally lives in kn . When k has a norm, such as C with its usual Euclidean
norm, one can look at the coordinate-wise sizes of the points of X . Concretely,
for any point (x1, . . . , xn) ∈ X ⊂ kn , consider(|x1|, . . . , |xn|) ∈ Rn

≥0.
The variety X may now be studied in two steps: (1) study all possible sizes

of solutions in Rn
≥0 and (2) study all the solutions that have a fixed size.

One might wonder why the set of coordinate-wise sizes has any reasonable
structure whatsoever, and why studying it is at all useful. After all, we have
just replaced an algebraic object with something that is quite non-algebraic:
inequalities are built into the very definition of a norm. In fact, that such objects
have a nice structure is not immediately clear, and this set of sizes of solutions
must be modified slightly before the structure is visible. Fix a real number b, a
base for a logarithm, and study the map

τb : Cn → (R � {−∞})n,
(z1, . . . , zn) �→ (logb |z1|, . . . , logb |zn|).

The image of X under τb is known as the amoeba of X . Define the trop-
icalization of X to be trop(X) = limb→0 τb(X). This brings us to the first
remarkable property of the tropicalization.

Theorem B.1.1. Let X be a connected subvariety of Cn of complex dimension
d. The tropicalization of X is a polyhedral complex of real dimension equal
to d.

151
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Figure B.1 A punctured genus 1 curve and its tropicalization

A polyhedral complex is an object glued from polyhedra in a nice fashion.
The tropicalization has a nice combinatorial and piecewise-linear structure,
while also remembering at least one important piece of information about the
variety X : its dimension. In particular, an algebraic curve in Cn gives rise to
a graph, such as the picture in Figure B.1. The industry of tropical geome-
try is largely about determining exactly what is remembered in this process,
and exploiting the simplicity of tropicalizations to understand properties and
invariants of X itself. For further details on this perspective on the subject, see
for instance (Gathmann, 2006; Maclagan and Sturmfels, 2015).

B.2 Axiomatic Tropical Geometry

While tropical techniques are often used to study classical objects, tropical
geometric objects have a rich and complicated geometry of their own. Another
point of view on the subject is to study the geometry of polynomial functions
on the real numbers where the operations of addition and multiplications are
redefined. Precisely, the max-plus semifield is (R ∪ {−∞},⊕,$), where

a ⊕ b := max{a, b} and a $ b := a + b.

The additive identity element in this semifield is −∞, the multiplicative iden-
tity is 0 and there are no additive inverses. A tropical polynomial

⊕n
i=0 ai$x$i

(where the notation x$i stands for the i-th power of x , taken with respect to the
tropical multiplication, i.e. x$i := x $ . . .$ x) is a piecewise linear function
max{ai + i · x}. The same holds true for multivariate polynomials. Recall how
polynomials over C are used to define algebraic curves, i.e. Riemann Surfaces
that come embedded into C2 (Definition 3.1.2). A tropical polynomial simi-
larly gives a tropical curve embedded in (R ∪ {−∞})2, defined as the corner
locus of the tropical polynomial, or the locus where the corresponding func-
tion fails to be locally linear. Embedded tropical curves are piecewise linear
graphs satisfying a so-called balancing condition. As is the case for Riemann

, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316569252.013
Downloaded from https:/www.cambridge.org/core. University of Warwick, on 03 Feb 2017 at 01:49:22, subject to the Cambridge Core terms of use

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316569252.013
https:/www.cambridge.org/core
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Surfaces, it is often easier to study tropical curves and their covers without a
particular choice of embedding, and we will swiftly switch to this viewpoint
here. To learn more about embedded tropical curves, Richter-Gebert, Sturmfels
and Theobald (2003), Gathmann (2006) and Maclagan and Sturmfels (2015)
are excellent starting points.

In this chapter, we axiomatically introduce the tropical analogue of the dou-
ble Hurwitz problem – covers of P1(C) with ramification profiles μ over 0,
ν over ∞, and only simple ramification otherwise. While tropical covers can
be defined in more general settings (Bertrand, Brugallé and Mikhalkin, 2014;
Cavalieri, Markwig and Ranganathan, in press), the double Hurwitz case is
particularly well suited to the context of this book. Using the monodromy data
of the cover, one obtains a correspondence theorem, which equates a weighted
count of tropical covers with the solution to the given Hurwitz problem. This
allows one to use tropical techniques to study algebraic properties of Hurwitz
numbers. We conclude with a discussion of how this axiomatic definition arises
directly from algebraic geometry via a process known as degeneration.

B.3 Tropical Covers

We now introduce tropical covers of the tropical line. Just as the projective
line is formed from the affine line by adding a single point, the tropical model
of P1(C) is formed from R � {∞} by adding a single point: that is, P1

trop :=
R � {±∞}.

An (abstract, explicit) tropical curve is a connected metric graph � satis-
fying the following properties. A vertex is called a leaf if it is one-valent and an
(inner) vertex otherwise. An edge e is called an end and has length l(e) = ∞
if it is adjacent to a leaf; otherwise it is called a bounded edge and has a length
l(e) ∈ R. The valence val(V ) of each (inner) vertex is at least 3.

The genus of the tropical curve � is defined to be the genus of the underlying
graph �, which is (see (5.6))

g(�) = E − V + 1.

Here, E and V are the numbers of edges and vertices of �, respectively.
Next we define the notion of a good map of tropical curves.

Definition B.3.1. A tropical cover of R∪ {±∞} is a tuple (�, f ), where � is
a tropical curve and f : � → R ∪ {±∞} is a continuous map satisfying:

● f sends only one-valent vertices to {±∞}. We refer to the ends adjacent
to vertices mapping to −∞ as left ends, and to the ones whose adjacent
vertices map to +∞ as right ends.
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● If we orient the edges of � according to the order of the images of their
vertices in R ∪ {±∞} and consider f restricted to an edge e as a map from
the interval [0, l(e)] to its image (where we identify the left endpoint of e
with 0 and the right endpoint with l(e) and use x for a coordinate on the
segment), f is integer affine linear, which means:

f (x) = f (0)+ w(e)x,

with f (0) ∈ R and w(e) ∈ N. The stretching factor w(e) is referred to as
the weight of an edge e.

● At each vertex, the balancing condition holds: the sum of the weights of
the incoming edges equals the sum of the weights of the outgoing edges.

The balancing condition implies a well-defined notion of degree, namely
the weighted number of preimages of a generically chosen point in R.

Example B.3.2. Figure B.2 shows a tropical cover of genus 1 and degree 4.
The numbers appearing next to edges are the weights. We do not specify edge
lengths in the picture, since they are implicitly given by their image interval
and the weight.

Two covers f : � → R ∪ {±∞} and f ′ : �′ → R ∪ {±∞} are called iso-
morphic if there is an isomorphism ϕ of the underlying abstract tropical curves
(i.e. a homeomorphism respecting the edge lengths) satisfying f ′ ◦ ϕ = f .

Remark B.3.3. Assume f : � → R ∪ {±∞} is a cover such that � has
only one-valent and three-valent vertices, and such that the images of the
three-valent vertices are distinct. Then the only automorphisms arise due to
wieners and balanced forks as in (Cavalieri, Johnson and Markwig, 2010,

Figure B.2 A tropical cover contributing to Htrop

1
4→0

((4), (2, 2)) as in Definition

B.3.4

Figure B.3 Local pictures of a wiener and a balanced fork
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Lemma 4.2); see Figure B.3. The automorphism group of such a cover thus
has size |Aut( f )| = 2W+B , where W denotes the number of wieners and B
denotes the number of balanced forks.

We are now ready to define tropical double Hurwitz numbers:

Definition B.3.4. Fix two partitions μ and ν of an integer d ≥ 1 and a genus
g, such that r := 2g − 2 + 
(μ) + 
(ν) > 0. Fix r pairwise distinct points
p1, . . . , pr in R. The tropical Hurwitz number Htrop

g
d→0

(μ, ν) is defined as

the weighted number Htrop

g
d→0

(μ, ν) = ∑
f m( f ) of tropical degree d covers

f : � → R ∪ {±∞} where

● � is a tropical curve of genus g;
● the tuple of weights of left ends is μ and the tuple of weights of right ends

is ν;
● the preimage f −1(pi ) contains a vertex of �.

The multiplicity m( f ) with which a cover f : � → R ∪ {±∞} contributes to
Htrop

g
d→0

(μ, ν) is defined as

m( f ) = 1

|Aut( f )| ·
∏

e

w(e),

where the product goes over all bounded edges e of �.

Keeping track of the Euler characteristic of � and applying the tropical ver-
sion of the Riemann–Hurwitz formula, one can show that � has only trivalent
inner vertices, and that there are r > 0 such vertices. By Remark B.3.3, the
factor 1

|Aut( f )| then equals 1
2B+W , where W denotes the number of wieners

and B the number of balanced forks. The definition of m( f ) is motivated
by tropical intersection theory of tropical moduli spaces of covers (Cavalieri,
Johnson and Markwig, 2010). It is straightforward to see that the definition
does not depend on the choice of the points p1, . . . , pr ; for simplicity we
always assume p1 = 0, . . . , pr = r − 1, as in the cover in Figure B.2. With
this convention fixed, the combinatorial type of the source curve (i.e. the tropi-
cal curve without the data of the metric) together with the weights of all edges
define the data of a tropical cover.

Example B.3.5. Figure B.4 demonstrates the tropical count of Htrop

1
4→0

((4),

(2,2)). Besides the cover appearing in Figure B.2 which contributes 6 =
1
2 · 1 · 3 · 4, the three depicted covers contribute 4, 3 and 1 respectively, leading
to a total of Htrop

1
4→0

((4), (2, 2)) = 14.
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Figure B.4 The covers contributing to Htrop

1
4→0

((4), (2, 2)), in addition to the one

depicted in Figure B.2

B.4 Tropical Covers as Shadows – Movies of Monodromy
Representations

Why are tropical covers shadows of holomorphic maps between Riemann Sur-
faces? Here, we explain this by taking a detour via the symmetric group, in
terms of monodromy representations as in Definition 7.1.6. More generally,
tropical covers can be viewed as a graphical organization of the degeneration
formulas in Theorem 7.5.1. The main consequence of the interpretation of trop-
ical covers as shadows of holomorphic maps is the fact that tropical and usual
Hurwitz numbers agree:

Theorem B.4.1 (Correspondence Theorem, [Cavalieri, Johnson and Markwig,
2010]) . Fix two partitions μ and ν of an integer d ≥ 1 and a genus g such
that 0 < r = 2g − 2 + 
(μ) + 
(ν). Then the Hurwitz number H

g
d→0

(μ, ν)

from Definitions 6.1.6 (resp. 10.1.5) agrees with the tropical Hurwitz number
Htrop

g
d→0

(μ, ν) from Definition B.3.4.

By Theorem 7.3.1, the Hurwitz number H
g

d→0
(μ, ν) equals the number of

monodromy representations of the appropriate type times 1
d! . To prove Theo-

rem B.4.1, one has to show that each monodromy representation gives rise to
a tropical cover, and that 1

d! times the number of monodromy representations
giving rise to the tropical cover f : � → R ∪ {±∞} equals the multiplic-
ity m( f ) with which f contributes to Htrop

g
d→0

(μ, ν). To give more details, we

demonstrate how a monodromy representation gives rise to a tropical cover.
The claim about the multiplicity follows after a careful analysis of the cut-and-
join relations in this case (see Fact 10.3.1). The connectedness condition for a
monodromy representation translates to the connectedness of the source of the
tropical cover.

Recall that the relevant connected monodromy representations of covers of
P1(C) are tuples (σ1, τ1, . . . , τr , σ2) of elements of Sd such that the subgroup
generated by the σi and τi acts transitively on {1, . . . , d}, such that σ1 has
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cycle type μ, τi is a transposition for all i , σ2 has cycle type ν and the product
σ2 ◦ τr ◦ . . . ◦ τ1 ◦ σ1 = e (see Example 7.1.8 and Theorem 7.3.1).

Given a monodromy representation (σ1, τ1, . . . , τr , σ2), the associated trop-
ical cover can simply be viewed as a movie depicting the cycle types of σ1,
τ1 ◦ σ1, τ2 ◦ τ1 ◦ σ1, . . . , τr ◦ . . . ◦ τ1 ◦ σ1 = σ−1

2 ; these cycle types are
represented by a collection of appropriately weighted edges over the intervals
(−∞, 0], [0, 1], [1, 2], . . . , [r−2, r−1], [r−1,∞) ⊂ R. The real line can be
interpreted as the time of our movie: the way it is divided into intervals divides
the movie in time sections, each corresponding to one permutation from the
list above. By Fact 10.3.1, the multiplication with a transposition either cuts an
edge of weight m into two edges of weights m1 and m2, such that m = m1+m2

or joins two edges of weights m1 and m2 to one edge of weight m = m1+m2.
If we connect the weighted edges we draw above each interval accordingly,
we thus obtain (the combinatorial type of) a tropical cover – the balancing
condition is satisfied.

Example B.4.2. The tuple ((1234), (12), (12), (13), (12)(34)) contributes to
the Hurwitz number Htrop

1
4→0

((4), (2, 2)): the subgroup generated by these ele-

ments clearly acts transitively on {1, . . . , 4}, the cycle types are as required,
and the product of all the entries is e ∈ S4. To depict our movie for this mon-
odromy representation, we draw an edge of weight 4 over (−∞, 0] (represent-
ing the permutation (1234)), dividing into two edges of weights 1 and 3 over
[0, 1] (representing the permutation (12)◦ (1234) = (1)(234)), joining back to
an edge of weight 4 over [1, 2] (again representing (1234)) and finally divid-
ing into two edges of weight 2 each over [2,∞) (representing (13) ◦ (1234) =
(12)(34)). In other words, we draw the tropical cover from Figure B.2.

The correspondence theorem opens up the possibility to study Hurwitz
numbers in terms of tropical covers.

This point of view was very useful in exploring the structure of double
Hurwitz numbers: Goulden, Jackson and Vakil (2005), observed that dou-
ble Hurwitz numbers H

g
d→0

(μ, ν) are piecewise polynomial functions of the

entries of the partitions μ and ν.
Some interesting properties of such functions were proved using tropical

covers and the correspondence theorem in Cavalieri, Johnson and Markwig
(2011).

B.5 Bending and Breaking

In the last section, we defined tropical covers in analogy with algebraic covers,
then used representation theory to deduce their relationship to the geometric
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objects that we started with. In this final section, we make a direct connection
between algebraic and tropical curves, and scratch the surface of a beautiful
theory of degenerations.

B.5.1 Breaking Curves: Degenerations

We have seen that Riemann Surfaces can be cut out by homogeneous polyno-
mial equations with coefficients in C, but one could just as easily work with
polynomial equations whose coefficients lie in the ring C[t] – polynomials in
many variables, whose coefficients are polynomials in one variable. The reader
may wish to think of t as being a “time index”, though one might find the idea
of complex- and negative-valued time revolting. For each time index t , one
obtains a single Riemann Surface as before. Degeneration is what that hap-
pens at special values of t , when one Riemann Surface breaks into multiple
Riemann Surfaces, glued together; see Figure B.5.

Consider the polynomial ft = xy − t z2. For each time index t0 that is
nonzero, the vanishing locus of ft0 in P2(C) is a smooth conic curve, i.e. it
is isomorphic to P1. However, when t = 0, you can check that the vanishing
locus of f0 is the union of two coordinate axes. We denote Xt the collection of
all solutions of the polynomial ft for all possible values of t . For each specific
value of t the solution to ft = 0 is a Riemann Surface which we denote Xt . We
call Xt a family of Riemann Surfaces1 and Xt the fiber of the family at time t .

For a slightly more complicated example, consider the family Xt defined
by the polynomial gt = t · (x3 + y3 + z3) − xyz. For each time index t
that is nonzero, this produces a smooth curve Xt in the complex projective
plane, having genus 1. However, X0 is the union of three lines. Notice the
following phenomenon: the special member of this family was broken into
multiple pieces, but each piece was geometrically simpler. This is the prin-
ciple of degeneration techniques: one attempts to extract information about a

Figure B.5 A degeneration of a genus 4 curve into three pieces

1 There are certain niceness conditions that one must place on such a family to avoid
pathologies, but we ignore this for our discussion.
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curve by first breaking it into many simpler pieces. However, as a conservation
of complexity law, the simpler the pieces, the more complex their interaction.
In a moment, we will see a concrete manifestation of this.

B.5.2 Dual Graphs and Degenerations

Suppose one has a family of Riemann Surfaces Xt , as above. Suppose that
for t 
= 0, Xt is a Riemann Surface, and suppose that X0 is a nodal Riemann
Surface. Informally, nodal means that X0 is a finite collection of Riemann Sur-
faces, glued to each other at points, such that no three meet at a single point.
We now define a graph � associated to Xt , which we call the dual graph of
the family: declare the set of vertices to be the set of irreducible components
of the nodal curve X0 (the various smooth “pieces” of the nodal Riemann Sur-
face). For each point at which two such pieces meet, place an edge between
the corresponding vertices.

Let us denote the pieces of X0 as C1, . . . ,Cr . Then we have the formula, for
any t0 
= 0,

g(X0) =
r∑

i=1

g(Ci )+ g(�),

where g(�) denotes the genus of the graph �. This is an illustration of the
conservation of complexity principle above. When the pieces of X0 are the
simplest possible, i.e. each piece is a sphere, then g(Ci ) = 0 and g(�) = g.
The number g(�) measures how far the graph � is from being a tree, and we
see that, for such degenerations, all the complexity has been transferred to the
graph. There is an interesting special case: the surface X0 consists only of
spheres, where each sphere is glued to other spheres at exactly three points. By
applying an appropriate Möbius transformation to each sphere, one can always
move these three gluing points to 0, 1 and ∞. In this case, something amazing
has happened: the tropical object � completely determines the classical object
X0. We call this a maximal degeneration.

Even in the nicest cases, the dual graph alone forgets a lot of information:
in general there are distinct nodal curves that have the same dual graph. Or,
there can exist two families Xt and Yt such that X0 and Y0 coincide, but at
other time indices, the families are different. It is useful to work with graphs
that have a little more information. To do this, we add lengths to the edges of
the graph, turning it into a metric graph.

Let us choose an edge e and focus our attention locally on the node of X0,
corresponding to e. Using the local equations that cut out Xt one can measure
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how fast2 this node forms. For instance, contrast the family of curves given by
xy = t2z2 with the one given by xy = t z2. Near t = 0, the first node forms
twice as fast as the second. This process can be made precise to give lengths to
each edge in the graph.

This process produces, from each family of degenerating Riemann Surfaces,
a tropical curve. One can build maps between families of algebraic curves, just
as one builds maps between the curves themselves. When the degenerations
are chosen to be a maximal degeneration, all the complexity of the family of
covers is transferred to the complexity of graphs, and one obtains a geometric
manifestation of the tropical covers in the previous section. This gives us a
geometric link between families of Hurwitz covers of Riemann Surfaces and
tropical covers.
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Appendix C

Hurwitz Spaces

Paul Johnson

As a topological space, the surface of genus g is unique – that is, if X and Y
are two genus g surfaces, there is a homeomorphism f : X → Y . However,
if we give X and Y complex structures and think about them as Riemann Sur-
faces, they no longer have to be “the same” – we can’t necessarily turn the
homeomorphism f into a biholomorphic map.

Understanding the different ways we can view a genus g topological surface
as a Riemann Surface is a fundamental (if vague) question in geometry. It
turns out that for g = 0 there is a unique way to put a complex structure on a
sphere – this is why it makes sense to talk about the Riemann Sphere. However,
for g > 0, there are infinitely many distinct complex structures. Thus, counting
the number of complex structures is not an interesting problem, and we need a
more precise meaning of what it means to “understand” them. The answer lies
in the concept of a moduli space.

C.1 Moduli Spaces

A moduli space M is, first of all, a topological space. What makes a moduli
space more than just a topological space is that the underlying set of points is
naturally in bijection with some interesting geometric objects. A bit more pre-
cisely, each point of M corresponds to an isomorphism class of some object
we want to study, and the intuitive idea is that two points in M are “close”
to each other if the corresponding isomorphism classes of geometric objects
are “close” to one another. Let us now look at some examples to refine our
understanding.

Example C.1.1 (Projective space CPn). In Definition 2.3.1, Pn(R) was
introduced as the set of lines in Rn+1 through the origin. Another way of saying

161
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162 Appendix C

this is that Pn is “the moduli space of lines through the origin in Rn+1”. Each
point of the moduli space corresponds to a line, and moving continuously from
a point to a nearby point amounts to continuously wiggling the corresponding
lines.

Example C.1.2 (Moduli space of curves Mg). Similarly, we have the moduli
space of genus g curves Mg . Each point in Mg corresponds to an isomor-
phism class of genus g Riemann Surfaces. That is, we can view any genus g
Riemann Surface Xg as a point of Mg . Two Riemann Surfaces Xg and Yg

represent the same point of Mg if they are isomorphic (Definition 4.1.3). The
topology on Mg is complicated to describe formally, but satisfies some intu-
itive properties. For instance, if X is given by the vanishing of a homogeneous
polynomial P(X,Y, Z), then changing the coefficients of P by a little bit will
result in a new Riemann Surface Y that we think of as “near” X .

Example C.1.3 (Moduli space of elliptic curves M1). An elliptic curve is
another name for a Riemann Surface of genus 1, which were discussed in Sec-
tion 3.2.2. There, we were told that every genus 1 curve could be represented
as a complex torus C/�, and furthermore that we could take the lattice � to
be generated by the vectors 1 and τ .

This description of genus 1 Riemann Surfaces gives us a way to understand
the topology on M1. To find the curves “close” to a given curve X , realize X
as C/〈1, τ 〉 and then change the complex number τ slightly.

This suggests that M1 is a particularly nice topological space – each neigh-
borhood of a point seems to be isomorphic to C, and so M1 looks like a
Riemann Surface itself!

This winds up being not quite correct, because some lattices, and hence
some genus 1 curves, have extra symmetries. Consider the “square” lattice,
where τ = i : this lattice has an extra symmetry of rotation by ninety degrees.
If we deform this lattice slightly to a new lattice �ε by changing τ to (1+ ε)i ,
our torus is rectangular, with the imaginary side slightly longer than the other
real side. Similarly, if we shrink τ slightly to (1 − δ)i , we get a rectangular
lattice �δ , but now the real direction is longer than the imaginary.

But rotating and scaling the lattice doesn’t change the resulting Riemann
Surface, and so these should really be the same Riemann Surface. More pre-
cisely, consider the map from C to C given by multiplication by (1− δ)i . This
sends the generator 1 of �ε to (1−δ)i , a generator of �δ . It sends the generator
(1+ ε)i of �ε to −(1+ ε)(1− δ). We would like this to be a generator of �δ ,
namely−1, and some algebra shows that if δ = ε/(1+ ε), this in fact the case.
Thus, we see that multiplication by (1 − δ)i gives a biholomorphism between
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C.2 Hurwitz Spaces 163

the Riemann Surfaces C/�ε and C/�δ , and so these two points represent the
same point of M1.

Geometrically, it can be thought that the point on the moduli space that
corresponds to the square lattice has 180 degrees around it, instead of 360, like
a point at the edge of a piece of paper. The two edges of the piece of paper
have been identified together to make a cone point.

Our vague question about “understanding” the complex structures on a
genus g surface is now less vague – we want to “understand” the space Mg .
That may still sound vague, but now it is clear how to pose precise questions –
anything we can ask about topological spaces, we can ask about Mg . In partic-
ular: Is Mg a manifold? If so, what dimension does it have? Is Mg connected?
What is π1(Mg)? Hurwitz theory arose as a means of answering some of these
questions.

C.2 Hurwitz Spaces

Hurwitz spaces are moduli spaces of ramified covers. To define the Hurwitz
number H

h
d→g

(λ1, . . . , λn), it was necessary to fix distinct points of ramifica-

tion b1, . . . , bn ∈ Y in order to get finitely many covers. Hurwitz spaces are
what we get if we allow the points bi to move.

Definition C.2.1. Fix a Riemann Surface Y of genus g, integers d and h, and n
partitions λ1, . . . , λn of d. The Hurwitz space H

h
d→Y

(λ1, . . . , λn) is the set of
all Hurwitz covers of Y , as in Definition 6.1.6 of the Hurwitz numbers, except
that now (b1, . . . , bn) ∈ Y is any set of n distinct points in Y .

We have described the underlying set of a Hurwitz space. What about the
topology? Once we fix the bi s, there are only finitely many covers. So intu-
itively, deforming a cover slightly amounts to moving the bi s slightly. If we
don’t move the bi s too far, we can keep each permutation in the monodromy
representation the same and still have a Hurwitz cover.

An exciting feature of moduli spaces: since points of a moduli space corre-
spond to geometric objects, one can describe functions between moduli spaces
by describing corresponding operations on the geometric objects themselves.
We can see an example of this using projective spaces: assigning to each line
through the origin in R3 its vertical projection onto the xy-plane defines a
function from (an open set of) P2(R) to P1(R). When a map between moduli
spaces is defined by forgetting some of the geometric structure of the objects
in the first moduli space (such as the map just described, where we forgot
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all information about the vertical component in the direction of lines), it is
commonly called a forgetful map.

Back to our Hurwitz spaces, one of the reasons H
h

d→Y
(λ1, . . . , λn) is so

useful is because it has two natural forgetful maps to other spaces.
The branch map. There is a map br that forgets everything but the branch
points. More formally, let

�Y ⊂ Y n = {(b1, . . . , bn)|bi = b j for some i, j}
so that D(Y, n) = Y n \�Y is the moduli space of n distinct points on Y . Then

br : H
h

d→Y
(λ1, . . . , λn)→ D(Y, n)

sends a Hurwitz cover to its set b1, . . . , bn of branch points.
The source map. The map s that forgets the “cover of Y ” part and just
remembers the source curve X :

s : H
h

d→Y
(λ1, . . . , λn)→Mg.

The space Mg is a complicated but important space, while the space
D(Y, n) is a rather simple space. If we understand the map br , that will let
us understand the Hurwitz space, and then if we understand the map s we can
transfer this to information about Mg .

Theorem C.2.2. The map br : H
h

d→Y
(λ1, . . . , λn) → D(Y, n) is a covering

map.

Proof We give only the main idea. The idea behind br being a local home-
omorphism is that the only way to deform a Hurwitz cover is by deforming
the points of ramification bi ; but this is exactly deforming a point in D(Y, n).
To show the covering property at a point (b1, . . . , bn), take contractible open
neighborhoods Ui around bi that are pairwise disjoint; then U1 × · · · × Un is
an open set in D(Y, n) whose inverse image consists of homeomorphic disjoint
open sets above.

Note that the degree of this covering map is the Hurwitz number
H

h
d→g

(λ1, . . . , λn), where g is the genus of Y .

C.3 Applications of Hurwitz Spaces

Applications of Hurwitz spaces typically involve all or mostly simple ramifi-
cation. In particular, we will use Hd,r as shorthand for the Hurwitz space of
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degree d covers of CP1, with r points of simple ramification. By the Riemann–
Hurwitz formula, we see that X has genus r/2+ 1− d. Alternatively, if we fix
g, then r = 2g − 2+ 2d.

C.3.1 The Dimension of Mg

The first application of Hurwitz spaces was Riemann’s calculation of the
dimension of Mg in the middle of the nineteenth century.

Theorem C.3.1. dimC Mg = 3g − 3.

Proof We do not give a complete proof, but merely sketch how the theorem
uses Hurwitz spaces.

First, observe that D(P1(C), r) is a manifold with complex dimension r : a
point in D(P1(C), r) consists of a configuration of r points (b1, . . . , br ) on
P1(C). Each of the bi s can move independently from all others in P1(C), a
one-dimensional manifold; hence you have r degrees of freedom in moving
around D(P1(C), r). Since br is a covering map, then Hd,r is also a manifold
of complex dimension r . Thus, if we could show that s : Hd,r → Mg was
surjective, and could find the dimension of a generic fiber Fs of s, then we
would know the dimension of Mg:

dimMg = r − dim(Fs). (C.1)

This is exactly the argument Riemann made.
Proofs for either of these facts require more algebraic geometry than we

can reproduce here. It turns out that s is surjective whenever d > 2g. In this
case the generic fiber of s has dimension 2d − g + 1. Since the dimension
of Hd,r is r = 2g − 2 + 2d, we see by (C.1) the dimension of Mg must be
(2g − 2+ 2d)− (2d − g + 1) = 3g − 3.

If you are paying attention, you should be upset with this result – you have
been told that there is a unique complex structure on the sphere, but if we plug
in g = 0 the theorem, we get −3. Similarly, the discussion of genus 1 curves
suggests that dimM1 = 1, while Riemann’s result tells us that the dimension
should be 0.

We were imprecise in stating Theorem C.3.1. Riemann Surfaces of genus
0 and 1, which have Euler characteristic 2 and 0, respectively, have very dif-
ferent behavior from Riemann Surfaces of genus at least 2 when the Euler
characteristic is negative.
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As an example, it is a result of Hurwitz that Riemann Surfaces of genus at
least 2 have finite automorphism groups. This is not true for genus 0 and genus
1 surfaces. In Remark 4.5.3, you were told that the group of mobius transfor-
mations PGL(2,C), which has complex dimension 3, acts as automorphisms
on CP1. Similarly, any genus 1 curve is C/�, and since C is a group under
addition and � is a subgroup, C/� is a group and acts on itself by translations.
Thus C/� has automorphism group of dimension 1.

The correct general statement is that dimMg − dim Aut(Cg) = 3g − 3 for
any g.

C.3.2 The Moduli Space of Curves Is Connected

Another application of Hurwitz spaces, due first to Klein at the end of the
nineteenth century, is to show that Mg is connected. As before, we use the
forgetful maps. We know that s : Hd,r → Mg is surjective for d large, and
the surjective image of a connected space is connected. Thus, it is enough to
show that Hd,r is connected for d large.

To do this, we use the fact that br : Hd,r → D(P1(C), r) is a covering
map. It is clear that D(P1(C), r) is a connected space (if it’s not clear, con-
vince yourself that this just amounts to being able to move continuously one
configuration of r points to any other configuration), so to show that Hd,r is
connected it is enough to pick one point b = (b1, . . . , br ) ∈ D(P1(C), r) in
the base space, and show that all the points br−1(b) lie in the same component.
But since br is a covering map, checking this is the same as checking whether
the fundamental group of D(P1(C), r) acts transitively on br−1(b). (Note that
the argument is the same as in Exercise 7.1.6, even if the base space is not a
Riemann Surface.)

There is something amusing and potentially confusing going on here.
Since in br−1(b) we have fixed the ramification points, the set br−1(b)
consists of usual Hurwitz covers. Thus, each point of br−1(b) corresponds
to a monodromy representation. However, we now have a different group
π1(D(P1(C), r)) acting on these monodromy representations, and this action
is also called monodromy. The group π1(D(P1(C), r)) is called a surface braid
group and it is well understood. In particular, it has an explicit presentation,
where generators are given by moving two consecutive ramification points bi

and bi+1 in a circle around each other until they come back to their original
positions. Spend a moment and meditate on why we just described a loop in
D(P1(C), r).

The action of these generators on the monodromy representations
corresponding to Hurwitz covers can be explicitly written out (this is not hard –
try it!), and be seen to act transitively (this is more taxing).
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C.3.3 ELSV Formula

To end, we briefly mention an exciting application of Hurwitz numbers.
The ELSV formula, from the end of the twentieth century, and named
for its discovers, Ekedhal, Lando, Shapiro and Vainshtein, gives a formula
for certain integrals over the moduli space of curves in terms of Hurwitz
numbers. The integrals involved are fundamentally important but relatively
intractable, while we have seen that Hurwitz numbers are combinatorial and
computable. This connection is a key step in Okounkov and Pandharipande’s
proof of Witten’s conjecture, which states that generating functions for a
family of integrals over the moduli spaces of curves satisfy the same sys-
tems of differential equations that model the propagation of waves in shallow
water.

The ELSV formula has several other applications and it is responsible for
much of the current interest in Hurwitz numbers.

C.3.4 Further Reading

A friendly but precise introduction to the concept of moduli space is con-
tained in Chapter 0 of Kock and Vainsencher (2007). Riemann’s argument for
the dimension of the moduli space of curves is reviewed with more detail in
Vakil’s expository paper (Vakil, 2008). Klein’s original argument for the con-
nectedness of the moduli space of curves is found in Klein (1963). The ELSV
formula appears first in Ekedahl et al. (2001). Okounkov and Pandharipande’s
proof of the Witten conjecture is in Okounkov and Pandharipande (2009). For
a friendly graduate-level textbook on the moduli spaces of curves, Harris and
Morrison (1998) is always a good read.
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Appendix D

Does Physics Have Anything to Say About
Hurwitz Numbers?

Vincent Bouchard

What? Physics? Why would physics have anything to do with Hurwitz
numbers? Interesting question, isn’t it?

Well, it turns out that physics – in particular, string theory – does indeed have
much to say about Hurwitz numbers, and enumerative geometry in general.
In this appendix I will try to explain why physics has deep connections with
enumerative invariants such as Hurwitz numbers. I will not be precise; nor will
I state explicit results or theorems (in fact, there is not a single equation in
this appendix!). Rather, my goal is simply to convey some of the fascinating
ideas behind the connection between string theory and enumerative geometry.
Hopefully, by the end of the appendix, you will find these relations interesting
enough to delve into the literature, where you can find precise conjectures and
theorems!

D.1 Physical Mathematics

For many physicists, mathematics is seen as a tool: a language for building
models of nature. However, in the last forty years or so, a fascinating new
research area has flourished: using physics as a tool to further our understand-
ing of mathematics. To some pure mathematicians, this statement may sound
like an abomination. But let me try to convince you that physics indeed has
much more to say about mathematics itself than one may expect.

While this interconnection between physics and mathematics is certainly
not new (historically, physics and mathematics have always been intimately
related), it has been very successful in recent years. So successful that it has
been given its own name: Physical Mathematics (Moore, 2014). In the par-
ticular case where the corner of physics studied is string theory, it is also

169
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sometimes called String-Math1. The idea is simple but far-reaching: use the
complex structural properties of physical theories to discover new connections
between different areas of mathematics.

One of the most useful tools that physicists have at their disposal is physical
dualities. Roughly speaking, physicists are interested in constructing math-
ematical models that explain the universe (and provide predictions that can
be tested in experiments, following the scientific method). But sometimes, it
happens that more than one mathematical model provides the same observ-
able quantities (or, at least, observables that are in a one-to-one relationship,
and/or perhaps only in some appropriate limit). When this is the case, from
a physics standpoint both models are valid physical descriptions. We say that
these models are dual.

But dualities have an unforeseen consequence. Dual physical models may be
constructed using completely different mathematical structures. For instance,
a given physical model may be formulated in the language of algebraic geom-
etry, while a dual model may involve objects in number theory or topology.
Then, the physical duality “implies” a connection between certain objects (the
observables) defined in a priori disconnected areas of mathematics! And more
often than not, these connections are rather unexpected, and would have been
difficult to guess by mathematicians without prior knowledge of the physical
duality.

As it turns out, such connections are often very useful, beyond simply relat-
ing different areas of mathematics. It may happen that some quantities that are
difficult to calculate in one model become easy to compute in the dual model;
or that certain quantities in one model, when grouped together in a certain
way, must satisfy startling mathematical properties, because of their interpre-
tation in the dual model. Countless examples of stunning new mathematical
results have been obtained in recent years by exploiting physical dualities in
mathematics.

The drawback, however, from a mathematical viewpoint, is that physical
dualities are usually not rigorously proved. Thus, generally speaking, physical
dualities give rise to conjectures, but rarely do they actually produce theorems
right away. Once the conjecture is out, it may take years for mathematicians to
actually prove (or disprove!) it.

But this is precisely the main use of physical dualities in mathematics: as a
bottomless pool of (often far-reaching) ideas and conjectures for mathemati-
cians. After all, in mathematics, our goal is to prove theorems, but first and

1 String-Math is an annual series of international conferences that started in 2011 at the
University of Pennsylvania, bringing together mathematicians and physicists working on
mathematical ideas related to string theory.
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foremost we must come up with good ideas for statements that we want to
prove. Physical dualities are an endless source of ideas to play with.

D.2 Hurwitz Numbers and String Theory

You are probably thinking, sure, this is all good, but what does it have to do
with Hurwitz numbers? So keeping physical mathematics in mind, let me now
switch gears and try to explain a connection between Hurwitz numbers and
physics.

D.2.1 String Theory

One of the fundamental questions in theoretical physics is whether there exists
a unified mathematical model for quantum physics and gravity. On the one
hand, quantum field theory provides a successful mathematical model for the
three basic fundamental interactions underlying the Standard Model of par-
ticle physics. On the other hand, Einstein’s general relativity describes the
gravitational interaction with impressive accuracy. One attempt at unifying
these two theories is to apply the methods of quantum field theory to general
relativity, but it turns out that gravity is “non-renormalizable”, which basi-
cally means that this naive approach fails at high energies. Something else
is at play.

Perhaps the most promising attempt at unifying quantum physics and gravity
(simultaneously providing a quantum theory of gravity) is string theory. The
fundamental idea behind string theory is fairly simple.

In ordinary particle physics, we model fundamental particles mathemati-
cally as points: that is, 0-dimensional objects, moving in space. Moreover, we
usually combine the three dimensions of space and the time dimension into a
single four-dimensional entity (or manifold, mathematically), known as space-
time. Thus, a point moving in space traces a real line in spacetime, which we
call the worldline of a particle. Naively, particle physics may be understood as
a theory of real lines in a four-dimensional manifold.

String theory postulates that fundamental particles are not points, but rather
one-dimensional extended objects: strings. If the length of the strings is very
small, those would be indistinguishable from point-like particles at the energies
reached in current experiments. There are two types of strings: loops (closed
strings) and line segments (open strings). Each type moves in space, and as
such traces real surfaces in spacetime. String theory may then be understood
as a theory of real surfaces in a manifold.
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With this being said, it would be naive to think that we can delve into the
details of string theory in a short appendix. Let me instead focus on a few
salient properties of string theory.

First, there are different flavors of string theory. It turns out that many of
these distinct string models are related by physical dualities, known as string
dualities. As such, going back to the discussion above, string theory is a perfect
playground for physical mathematics!

Second, in the models of string theory that are most promising for describ-
ing our universe, it appears that spacetime is 10-dimensional. It is usually
modeled as the Cartesian product of 4-dimensional Minkowski spacetime and
a 6-dimensional compact Riemannian manifold (the so-called “extra dimen-
sions”). Roughly speaking, topological and geometrical properties of this
6-dimensional compact manifold dictate the low-energy physics that results
from the string model in our observable Minkowski spacetime.

But mathematically, string theory is very complicated. In fact, much remains
to be discovered about the fundamental mathematical structure underlying
string theory. Nevertheless, one could try to apply the ideas of physical math-
ematics to string dualities to conjecture new connections in mathematics. To
this end, it is often more successful to play with “toy models” of string the-
ory instead of the more realistic string models. These toy models are still
interesting physically – they compute certain sectors of the fully-fledged
string models – but more importantly for us, they generally lie on strong and
well-established mathematical foundations.

D.2.2 Topological String Theory

One such simplified version of string theory is called closed A-model topo-
logical string theory. In this model, 10-dimensional spacetime is replaced by
a compact 6-real-dimensional manifold X , which is assumed to be Kähler. In
this case, the string theory becomes a theory of holomorphic curves in X . In
fact, this is not quite precise; rather, the theory is really a theory of holomorphic
(stable) maps from Riemann Surfaces to the target space X . The observables
of the theory only depend on the Kähler structure of X , and not on its complex
structure. In fact, they have a very precise definition: they correspond math-
ematically to generating functions for certain rational numbers that somehow
“count” pseudoholomorphic curves in X . More precisely, these rational num-
bers are obtained by taking integrals of certain cohomology classes over the
moduli space of stable maps from compact Riemann Surfaces with a certain
number of marked points to X . They are called Gromov–Witten invariants of
X , and play a fundamental role in enumerative geometry.
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A-model topological string theory can also be generalized to include open
strings. The theory then becomes a theory of holomorphic (stable) maps from
bordered Riemann Surfaces (Riemann Surfaces with boundaries) to X ; the
boundaries of the Riemann Surfaces must map to a fixed Lagrangian submani-
fold2 L ⊂ X , called a brane. For particular choices of (X, L), such as X being
a toric Calabi–Yau manifold (or orbifold) and L belonging to a particular class
of Lagrangian submanifolds with topology R2 × S1, known as toric branes,
open A-model topological string theory can be defined rigorously mathemati-
cally, via a procedure called localization (Katz and Liu, 2002). The observables
then generate so-called open Gromov–Witten invariants of (X, L).

There is also another version of topological string theory: the B-model. It is
also a theory of maps from Riemann Surfaces to a 6-real-dimensional manifold
Y , but it is much simpler. In fact, the observables of the theory only depend on
the complex structure Y and not on its Kähler structure.

A particularly striking example of a string duality, then, is the relation
between the A-model and the B-model. This duality, known as mirror sym-
metry, states that the A-model on a target space X is dual to the B-model on
a different target space Y . The duality somehow “identifies” – in a highly
nontrivial way – the Kähler structure of X with the complex structure of its
mirror manifold Y (Hori et al., 2003). A remarkable consequence of mir-
ror symmetry is that generating functions of Gromov–Witten invariants of X
can be rewritten in terms of classical (and much simpler to evaluate) inte-
grals on the mirror side. That’s a particularly compelling example of physical
mathematics at play!

D.2.3 The Connection with Hurwitz Numbers

But you are probably still wondering: what does any of this have to do with
Hurwitz numbers?

At least we are getting closer. On the one hand, what we now know is that
A-model topological string theory is, mathematically, a theory of maps from
Riemann Surfaces to a target space X . On the other hand, Hurwitz numbers
involve ramified coverings from Riemann Surfaces to the complex projective
line P1. Both problems involve maps from Riemann Surfaces to a target space.
Could they be related?

It turns out that they are indeed related, and in many different ways.
Here I will only highlight one of the connections between string theory,

2 A Lagrangian submanifold is a submanifold whose dimension is half of X and over which the
restriction of the Kähler form vanishes.
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Gromov–Witten invariants and Hurwitz numbers, but there are many other very
interesting relations.

We have seen that open A-model topological string theory can be defined
rigorously mathematically for target spaces (X, L) with X a toric Calabi–Yau
manifold or orbifold and L a toric brane, giving rise to open Gromov–Witten
invariants. In fact, to be more precise, it turns out that open Gromov–Witten
invariants depend on one more piece of data: an integer f ∈ Z called the
framing of the brane L ⊂ X . The framing dependence arises in the application
of the localization procedure to define open Gromov–Witten invariants.

The simplest example of a toric Calabi–Yau threefold is X = C3. Generat-
ing functions for open Gromov–Witten invariants can be calculated explicitly
in this setup, and it turns out that they are intimately related to simple Hurwitz
numbers counting ramified coverings of P1 with arbitrary ramification over
∞ ∈ P1 and simple ramification elsewhere. Indeed, perhaps miraculously, it
turns out that if we take the f → ∞ limit of the open Gromov–Witten gen-
erating functions for C3, we obtain precisely generating functions for simple
Hurwitz numbers (Bouchard and Mariño, 2008; Caporaso et al., 2007)!

The most direct proof of this connection involves a rewriting of both open
Gromov–Witten invariants and simple Hurwitz numbers. On the one hand, as
is explained in Appendix C, simple Hurwitz numbers can be rewritten in terms
of Hodge integrals: that is, integrals over the moduli space of curves with
marked points – this is called the ELSV formula (Ekedahl et al., 2001). On
the other hand, open Gromov–Witten invariants of C3 can also be rewritten in
terms of integrals over the moduli space of curves with marked points, albeit
more complicated integrals. This is known as the topological vertex formalism
(Aganagic et al., 2005; Li et al., 2009; Maulik et al., 2011). With these refor-
mulations established, one can calculate explicitly the f → ∞ limit to prove
the connection between these enumerative invariants (Bouchard and Mariño,
2008).

A direct consequence of establishing a connection between Hurwitz num-
bers and Gromov–Witten invariants is that we can now take advantage of string
dualities to study mathematical properties of Hurwitz numbers. Mirror sym-
metry, in particular, leads to unexpected new results in Hurwitz theory. For
instance, it has been conjectured (Bouchard et al., 2009; Mariño, 2008) (and
proved very recently in Eynard and Orantin (2012) and Fang, Melissa Liu and
Zong (2013)) that for the open A-model on (X, L) with X a toric Calabi–Yau
manifold or orbifold and L a toric brane, the mirror B-model has a very simple
and explicit formulation in terms of a topological recursion that originated in
the context of matrix models (Chekhov, Eynard and Orantin, 2006; Eynard and
Orantin, 2007). The recursive description is formulated in terms of complex
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analysis of a complex curve, the spectral curve, that somehow encapsulates
the geometric data characterizing X and L . In other words, all open Gromov–
Witten invariants of (X, L) can be reconstructed from simple complex analysis
of the spectral curve. Quite remarkable.

But then, by evaluating appropriately the f → ∞ limit on the mirror B-
model side, it follows that generating functions of simple Hurwitz numbers
must also satisfy a topological recursion for a specific spectral curve! The spec-
tral curve can be calculated explicitly via the f → ∞ limit, and it turns out
that the spectral curve corresponding to simple Hurwitz numbers is the Lam-
bert curve x = ye−y – so called because of its similarity to the Lambert W
function, related to the enumeration of trees in combinatorics, that satisfies
z = W (z)eW (z). What we just found is that all simple Hurwitz numbers can
be reconstructed in a very explicit way, via a topological recursion, from the
Lambert curve (Bouchard and Mariño, 2008)!

To be fair, physical mathematics only produces a conjecture that all simple
Hurwitz numbers can be reconstructed recursively from the Lambert curve. But
by now several proofs have been formulated, independently from the string
theory interpretation. Perhaps the most direct approach involves the ELSV
formula and the topological vertex formalism; in this context, what can be
shown is that the cut-and-join equation satisfied by simple Hurwitz numbers
(Goulden and Jackson, 1997) can be recast into the topological recursion for
the Lambert curve (Eynard, Mulase and Safnuk, 2011). But the connection is
highly nontrivial. Alternative proofs have been obtained by rewriting gener-
ating functions of simple Hurwitz numbers as matrix integrals (Borot et al.,
2011), or by exploiting the polynomiality property of simple Hurwitz numbers
(Dunin-Barkowski et al., 2015a).

It should be noted that this relation between Hurwitz numbers and string the-
ory can be generalized beyond simple Hurwitz numbers, for instance to double
Hurwitz numbers counting ramified coverings of P1 with arbitrary ramification
over 0,∞ ∈ P1 and simple ramification elsewhere. On the one hand, a formula
analogous to the ELSV formula exists for double Hurwitz numbers, but the
Hodge integrals must be replaced by Hurwitz–Hodge integrals over the mod-
uli space of stables maps from twisted Riemann Surfaces with marked points
to the classifying spaces BZa (Johnson, Pandharipande and Tseng, 2011). On
the other hand, one can consider the open A-model on the toric orbifolds
X = [

C3/Za
]
. Open Gromov–Witten invariants can then also be rewritten

in terms of Hurwitz–Hodge integrals (Brini and Cavalieri, 2011; Ross, 2011;
Ross and Zong, 2013). It can be shown that the two theories are again related
via the f →∞ limit (Bouchard et al., 2014).
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176 Appendix D

Mirror symmetry applied to the orbifolds X = [C3/Za
]

then implies that a
certain class of double Hurwitz numbers (so-called orbifold Hurwitz numbers)
can also be obtained via the topological recursion, but with spectral curve now
given by xa = ye−ay . A proof of this statement can be obtained along sim-
ilar lines as for simple Hurwitz numbers, using the reformulations in terms
of Hurwitz–Hodge integrals and the cut-and-join equation for double Hurwitz
numbers (Bouchard et al., 2014; Do, Leigh and Norbury, 2012). Alternatively,
the connection can also be proven using quasi-polynomiality (Cavalieri, John-
son and Markwig, 2010) of double Hurwitz numbers (Dunin-Barkowski et al.,
2015b).

It is possible to generalize this connection to include all double Hurwitz
numbers. However, it is unclear how to proceed for more general Hurwitz
numbers. This is certainly an interesting avenue to investigate further!

It should finally be mentioned that the connection between Hurwitz numbers
and string theory gives rise to many other fascinating results. One of them is the
existence of a “quantum curve” for Hurwitz numbers (Bouchard et al., 2014;
Mulase, Shadrin and Spitz, 2013). Unfortunately, limited space prevents me
from elaborating further on these interesting developments, but if you find the
notion of “quantum curves” intriguing you are certainly encouraged to delve
deeper into the accompanying literature!

D.2.4 Physical Mathematics and Enumerative Geometry

Physical mathematics is a relatively new area of research, but it has already
led to far-reaching new results in various areas of mathematics. String the-
ory in particular is an exciting playground for physical mathematics, due to
the ubiquitous presence of string dualities. Mirror symmetry is an example of
such duality with striking implications for enumerative invariants. In this short
appendix I could only touch very superficially upon the subject. But I hope that
I have managed to convey the excitement surrounding physical mathematics
and its application to enumerative geometry and Hurwitz theory in particular.
There are undoubtedly many more fascinating new results to come!
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affine algebraic curve, 36
affine coordinates, 22
affine plane curve, 36

smooth, 36
algebra, 113

semisimple, 118
amoeba, 151
Artin–Schreier curves, 145, 147
atlas, 16

compatible, 16
positive, 27, 33

automorphism
of a partition, 81
of maps of Riemann surfaces, 81
of Riemann surfaces, 50

balanced forks, 154
balancing condition, 154
base point, 67, 70, 72
basis

orthonormal, 117
branch, 10
branch point, 53
branch map, 164
Burnside character formula, 125

category, 71
Cauchy–Riemann equation, 3
Cauchy’s integral formula, 7
centralizer, 104
change of variables, 13
change of coordinates, see transition function
class algebra of Sd , 118
class functions, 116
Classification of Compact Surfaces, 24

commutator, 123
complete intersection, 46
complex plane with doubled origin, 39
conic, 44, 50

degenerate, 44
connected sum, 23
contractible space, 67, 72
coordinate affine charts, 22
Correspondence theorem, 156
cover, 75

degree of, 75
hyperelliptic, 86, 146
of a nodal curve, 106
ramified, 85
trivial, 75
universal, 78

covering, see cover
cycle type, 93, 138

degeneration formulas, 106, 137, 156
degree of a tropical cover, see also cover,

degree; holomorphic map, degree, 154
double Hurwitz problem, 153
differential form, 58, 146
dual models, 170

elliptic curve, 45, 60, 81, 162
Euler Characteristic, 26
Euler’s Identity, 42

family of Riemann Surfaces, 158
dual graph of, 159
fiber of, 158

formal expansion, 112
ordered monomial in, 112
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function
analytic, 2
differentiable, 2
holomorphic, 2

at x , 47
on U , 48

multi-valued, 11
orientation-preserving, 4
rational, 50, 59
smooth, 16

functor, 71
fundamental group, 70, 76

of the affine line, 149

Galois correspondence in covering theory, 79
generating function

exponential, 129
ordinary, 129

genus, 37, 61, 84, 146, 153
graph (vertices and edges), 73

flower, 73, 74
good, 26

graph (of a function), 35, 50
group algebra, 113
group ring, 112

holomorphic map of Riemann surfaces, 48
branch locus of, 53
degree of, 56
differential length of, 53
ramification locus of, 53
ramification profile of, 82
unramified, 82

homogenous coordinates, 20
homogenous polynomial, 42
homotopy, 64

relative to A, 64
with respect to a base point, 67

homotopic, see homotopy
homotopy equivalence, 66
homotopic, see homotopy equivalence
Hopf fibration, 39
Hurwitz number, 82

disconnected, 84, 101, 103, 109, 123, 134
double, 157
genus 0, 121
hyperelliptic, 89, 102
simple, 139
tropical, 155

Hurwitz cover, 82
Hurwitz existence problem, 104

Hurwitz potential
genus g, 132
simple, 139
total, 132

Hurwitz space, 163
hyperelliptic curve, see Riemann surface,

hyperelliptic

identification polygon, 25
represented by, 25

identity map, 48
Implicit Function theorem, 28
Inverse Function theorem, 9
isogeny, 61
isomorphism

of maps of Riemann surfaces, 81
of representations, 114
of Riemann surfaces, 50
of tropical covers, 154
isomorphism of y0-labeled maps, 92

labeling of the inverse images of y0, 92
Laurent expansion at z0, 8
lattice, 39, 62
lift of a covering, 76
local coordinate function, 16, 50
local expression, 48
loop, 67

manifold, 15
dimension of, 16
local chart for, 16

centered at x , 51
max-plus semifield, 152
maximal degeneration, 159
mirror symmetry, 173
moduli space, 161

of curves, 162
of elliptic curves, 162

Möbius strip, 27
Möbius transformations, 60
monodromy representation, 93, 94

connected, 94, 95

Open Mapping Theorem, 4

partition, 81
length of, 81
size of, 81

path, 4
continuous deformation of, see also

homotopy, 5
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plane projective curve, 42
smooth, 42

pole of order n, 8
projective algebraic variety, 45
projective curve, 45
projective general linear group, 60
projective line, 22, 49, 59, 82, 83, 95, 96, 101
projective plane (real), 23
projective space

manifold structure, 21
points, 20
topology, 20

sphere quotient, 21
disk model, 21

as a moduli space, 161
projectively equivalent, 45
projectivity, 45
projectivization of V , 20

ramification
full, 82
index, 53
point, 53
profile, 82
simple, 82

regular value, 30
representation, 113

character of, 116
dimension of, 114
direct sum of, 115
irreducible, 114
isomorphism of, 114
morphism of, 114
permutation, 114
regular, 115
sign, 114
standard, 115
trivial, 114

residue of f at z0, 8
Residue theorem, 8
Riemann–Hurwitz formula, 56

Wild, 148
Riemann–Roch theorem, 39
Riemann sphere, see also projective line,

sphere, 38

Riemann surface, 32
alternative construction, 35
bi-holomorphic, see Riemann surface,

isomorphic
compact, 37
disconnected, 32
hyperelliptic, 86
isomorphic, 50
of the k-th root, 11
of the square root, 33

Riemann’s Existence theorem, 85

source map, 164
sphere, see also Riemann sphere, projective

line, 73
punctured, 73

subrepresentation, 114
surface, 23

orientable, 27, 33, 74
stereographic projection, 18

topological space
pointed, 71

torus, 23, 61, 74, 79
transition function, 16
tropical curve, 153

bounded edge of, 153
end of, 153
leaf of, 153

tropical cover, 153
left end of, 153
right end of, 153

tropicalization, 151
twisted cubic, 46

unit circle, 17, 65, 73, 76, 79

valence, 153
vanishing locus, 42

weight, 154
wieners, 154

y0-labeled map, 92
isomorphism of, 92
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