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Preface 

There are several good recent textbooks on algebraic geometry at 
the graduate level, but not (to my knowledge) any designed for an 
undergraduate course. Humble notes are from a course given in two 
successive years in the 3rd year of the Warwick undergraduate math 
course, and are intended as a self-contained introductory textbook. 
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§0 1 

§0. Woffle 

This section is intended as a cultural introduction, and is not logically part of 
the course, so just skip through it. 

(0.1) A variety is (roughly) a locus defined by polynomial equations: 

V = { P e k n | fi(P) = 0 } c k n , 

where k is a field and f\e klX^,.. X n ] are polynomials; so for example, the plane 
curves C : (f(x, y) = 0) c R 2 or C 2 . 

y 2 = (x + l ) (x 2 + e) y 2 = (x + l ) x 2 y 2 = (x + l ) (x 2 - e) 

I want to study V; several questions present themselves: 

Number Theory. For example, i f k = <Q and V c <Qn, how can we tell i f V is 
nonempty, or find all its points if it is? A specific case is historically of some 
significance: how many solutions are there to 

x n + y n = 1, x, y e <Q, n > 3 ? 

Questions of this kind are generally known as Diophantine problems. 

Topology. If k is R or C (which it quite often is), what kind of topological 
space is V? For example, the connected components of the above cubics are 
obvious topological invariants. 
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Singularity theory. What kind of topological space is V near P € V; if 
f: V i - 4 V2 is a regular map between two varieties (for example, a polynomial map 
R2 —» R ) , what kind of topology and geometry does f have near P e V j ? 

(0.2) There are two possible approaches to studying varieties: 

Particular, Given specific polynomials fj, we can often understand the variety V 
by explicit tricks with the fj ; this is fun if the dimension n and the degrees of the 
fj are small, or the f j are specially nice, but things get progressively more 
complicated, and there rapidly comes a time when mere ingenuity with calculations 
doesn't tell you much about the problem. 

General. The study of properties of V leads at once to basic notions such as 
regular functions on V, nonsingularity and tangent planes, the dimension of a 
variety: the idea that curves such as the above cubics are 1-dimensional is familiar 
from elementary Cartesian geometry, and the pictures suggest at once what 
singularity should mean. 

Now a basic problem in giving an undergraduate algebraic geometry course is 
that an adequate treatment of the 'general' approach involves so many definitions 
that they fill the entire course and squeeze out all substance. Therefore one has to 
compromise, and my solution is to cover a small subset of the general theory, with 
constant reference to specific examples. These notes therefore contain only a 
fraction of the 'standard bookwork' which would form the compulsory core of a 
3-year undergraduate math course devoted entirely to algebraic geometry. On the 
other hand, I hope that each section contains some exercises and worked examples 
of substance. 

(0.3) The specific flavour of algebraic geometry comes from the use of only 
polynomial functions (together with rational functions); to explain this, if U c R2 
is an open interval, one can reasonably consider the following rings of functions on 
U: 

C°(U) = all continuous functions f: U —> R ; 

C°°(U) = all smooth functions (that is, differentiable to any order); 

CC 0(U) = all analytic functions (that is, convergent power series); 

R[X] = the polynomial ring, viewed as polynomial functions on U. 

There are of course inclusions R[X] c C®QJ) c C°°(U) c C°(U). 
These rings of functions correspond to some of the important categories of 
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geometry: cO(U) to the topological category, C°°(U) to the differentiable category 
(differentiate manifolds), C 0 0 to real analytic geometry, and IR[X] to algebraic 
geometry. The point I want to make here is that each of these inclusion signs 
represents an absolutely huge gap, and that this leads to the main characteristics of 
geometry in the different categories. Although it's not stressed very much in school 
and first year university calculus, any reasonable way of measuring C0(U) will 
reveal that the differentiable functions have measure 0 in the continuous functions 
(so if you pick a continuous function at random then with probability 1 it will be 
nowhere differentiable, like Brownian motion). The gap between C^OJ) and 
C°°(U) is exemplified by the behaviour of exp(-l /x 2 ) , the standard function 
which is differentiable infinitely often, but for which the Taylor series (at 0) does 
not converge to f; using this, you can easily build a C 0 0 'bump function' f: IR —» 
IR such that f(x) = 1 if Ixl < 0.9, and f(x) = 0 if |x| > 1: 

a C bump function 

In contrast, an analytic function on U extends (as a convergent power series) to an 
analytic function of a complex variable on a suitable domain in <C, so that (using 
results from complex analysis), if f e C ^ U ) vanishes on a real interval, it must 
vanish identically. This is a kind of 'rigidity' property which characterises analytic 
geometry as opposed to differential topology. 

(0.4) There are very few polynomial functions: the polynomial ring R[X] is just a 
countable-dimensional IR-vector space, whereas C^OJ) is already uncountable. 
Even allowing rational functions - that is, extending IRIX] to its field of fractions 
IR(X) - doesn't help much. (2.2) will provide an example of the characteristic 
rigidity of the algebraic category. The fact that it is possible to construct a geometry 
using only this set of functions is itself quite remarkable. Not surprisingly, there are 
difficulties involved in setting up this theory: 

Foundations via commutative algebra. Topology and differential topology can 
rely on the whole corpus of e-8 analysis taught in a series of 1st and 2nd year 
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undergraduate courses; to do algebraic geometry working only with polynomial 
rings, we need instead to study rings such as the polynomial ring klXj,.. X n ] and 
their ideals. In other words, we have to develop commutative algebra in place of 
calculus. The Nullstellensatz (§3 below) is a typical example of a statement having 
direct intuitive geometric content (essentially, 'different ideals of functions in 
k[Xj,.. X n ] define different varieties V c k n ') whose proof involves quite a 
lengthy digression through finiteness conditions in commutative algebra. 

Rational maps and functions. Another difficulty arising from the decision to work 
with polynomials is the necessity of introducing 'partially-defined functions'; 
because of the 'rigidity' hinted at above, we'll see that for some varieties (in fact for 
all projective varieties), there do not exist any nonconstant regular functions (see 
Ex. 5.1, Ex. 5.12 and the discussion in (8.10)). Rational functions (that is, 
'functions' of the form f = g/h, where g, h are polynomial functions) are not 
defined at points where the denominator vanishes. Although reprehensible, it is a 
firmly entrenched tradition among algebraic geometers to use 'rational function' and 
'rational map' to mean 'only partially-defined function (or map)'. So a rational map 
f: V j --» V2 is not a map at all; the broken arrow here is also becoming traditional. 
Students who disapprove are recommended to give up at once and take a reading 
course in Category Theory instead. 

This is not at all a frivolous difficulty. Even regular maps (= morphisms, 
these are genuine maps) have to be defined as rational maps which are regular at all 
points P € V (that is, well defined, the denominator can be chosen not to vanish at 
P). Closely related to this is the difficulty of giving a proper intrinsic definition of a 
variety: in this course (and in others like it, in my experience), affine varieties 
V c A n and quasiprojective varieties V c P n will be defined, but there will be no 
proper definition of Variety' without reference to an ambient space. Roughly 
speaking, a variety should be what you get if you glue together a number of affine 
varieties along isomorphic open subsets. But our present language, in which 
isomorphisms are themselves defined more or less explicitly in terms of rational 
functions, is just too cumbersome; the proper language for this glueing is sheaves, 
which are well treated in graduate textbooks. 

(0.5) So much for the drawbacks of the algebraic approach to geometry. Having 
said this, almost all the algebraic varieties of importance in the world today are 
quasiprojective, and we can have quite a lot of fun with varieties without worrying 
overmuch about the finer points of definition. 

The main advantages of algebraic geometry are that it is purely algebraically 
defined, and that it applies to any field, not just R or C; we can do geometry over 
fields of characteristic p. Don't say 'characteristic p - big deal, that's just the finite 
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fields'; to start with, very substantial parts of group theory are based on geometry 
over finite fields, as are large parts of combinatorics used in computer science. Next, 
there are lots of interesting fields of characteristic p other than finite ones. 
Moreover, at a deep level, the finite fields are present and working inside Q and €. 
Most of the deep results on arithmetic of varieties over <Q use a considerable 
amount of geometry over C or over the finite fields and their algebraic closures. 

This concludes the introduction; see the informal discussion in (2.15) and 
the final §8 for more general culture. 

(0.6) As to the structure of the book, Chapter I and Chapter III aim to indicate 
some worthwhile problems which can be studied by means of algebraic geometry. 
Chapter II is an introduction to the commutative algebra referred to in (0.4) and to 
the categorical framework of algebraic geometry; the student who is prone to 
headaches could perhaps take some of the proofs for granted here, since the material 
is standard, and the author is a professional algebraic geometer of the highest moral 
fibre. 

§8 contains odds and ends that may be of interest or of use to the student, but 
that don't fit in the main text: a little of the history and sociology of the modern 
subject, hints as to relations of the subject-matter with more advanced topics, 
technical footnotes, etc. 
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Prerequisites for this course: 
Algebra: Quadratic forms, easy properties of commutative rings and their ideals, 
principal ideal domains and unique factorisation. 
Galois Theory: Fields, polynomial rings, finite extensions, algebraic versus 
transcendental extensions, separability. 
Topology and geometry: Definition of topological space, projective space P n 

(but I'll go through it again in detail). 
Calculus in R n : Partial derivatives, implicit function theorem (but I'll remind you 
of what I need when we get there). 
Commutative algebra: Other experience with commutative rings is desirable, but 
not essential. 

Course relates to: 
Complex Function Theory. An algebraic curve over I is a 1-dimensional 
complex manifold, and regular functions on it are holomorphic, so that this course is 
closely related to complex function theory, even if the relation is not immediately 
apparent. 
Algebraic Number Theory. For example the relation with Ferrnat's Last Theorem. 
Catastrophe Theory. Catastrophes are singularities, and are essentially always 
given by polynomial functions, so that the analysis of the geometry of the 
singularities is pure algebraic geometry. 
Commutative Algebra. Algebraic geometry provides motivation for commutative 
algebra, and commutative algebra provides technical support for algebraic 
geometry, so that the two subjects enrich one another. 

Exercises to §0. 

0.1. (a) Show that for fixed values of (y, z), x is a repeated root of x̂  + xy + z « 0 

if and only if x = ~3z/2y and 4y 3 + 27z2 = 0; 

(b) there are 3 distinct roots if and only if 4y 3 + 27z2 < 0; 

(c) sketch the surface S: (x 3 + xy + z • 0) c IR 3 and its projection onto the (y, z)-

plane; 

(d) now open up any book or article on catastrophe theory and compare. 

0.2. Let f e MX, Yl and let C: (f - 0) c IR 2; say that P e C is isolated if there is 

an e > 0 such that C n B(P, e) - P. Show by example that C can have isolated points. 

Prove that if P e C is an isolated point then f: IR2—> IR must have a max or min at P, 
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and deduce that df/dx and df/dy vanish at P. This proves that an isolated point of a 

real curve is singular. 

0.3. Cubic curves: (i) Draw the graph of y - 4x^ + 6x 2 and its intersection with 

the horizontal lines y « t for integer values of t e [-1, 31; (ii) draw the cubic curves y 2 

= 4x3 + 6x2- t for the same values of t. 
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Books 

Most of the following are textbooks at a graduate level, and some are referred 
to in the text: 

W. Fulton, Algebraic curves, Springer. (This is the most down-to-earth and self-
contained of the graduate texts; Ch. 1 -6 are quite well suited to an undergraduate 
course, although the material is somewhat dry.) 
I.R. Shafarevich, Basic algebraic geometry, Springer. (A graduate text, but Ch. I , 
and §11.1 are quite suitable material.) 
P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley. (Gives the 
complex analytic point of view.) 
D. Mumford, Algebraic geometry I , Complex projective varieties, Springer. 
D. Mumford, Introduction to algebraic geometry, Harvard notes. (Not immediately 
very readable, but goes directly to the main points; many algebraic geometers of my 
generation learned their trade from these notes. Recently reissued as Springer LNM 
1358, and therefore no longer a little red book.) 
K. Kendig, Elementary algebraic geometry, Springer. (Treats the relation between 
algebraic geometry and complex analytic geometry.) 
R. Hartshorne, Algebraic geometry, Springer. (This is the professional's handbook, 
and covers much more advanced material; Ch. I is an undergraduate course in bare 
outline.) 
M. Berger, Geometry I and I I , Springer. (Some of the material of the sections on 
quadratic forms and quadric hypersurfaces in I I is especially relevant.) 
M.F. Atiyah and I.G. Macdonald, Commutative algebra, Addison-Wesley. (An 
invaluable textbook.) 
E. Kunz, Introduction to commutative algebra and algebraic geometry, Birkhauser. 
H. Matsumura, Commutative ring theory, Cambridge. (A more detailed text on 
commutative algebra.) 
D. Mumford, Curves and their Jacobians, Univ. of Michigan Press. (Colloquial 
lectures, going quite deep quite fast.) 
C H . Clemens, A scrapbook of complex curves, Plenum. (Lots of fun.). 
E. Brieskorn and H. Knorrer, Plane algebraic curves, Birkhauser. 
A. Beauville, Complex algebraic surfaces, LMS Lecture Notes, Cambridge. 
J. Kollar, The structure of algebraic threefolds: An introduction to Mori's program, 
Bull. Amer. Math. Soc. 17 (1987), 211 -273. (A nicely presented travel brochure to 
one active area of research. Mostly harmless.) 
J.G. Semple and L. Roth, Introduction to algebraic geometry, Oxford. (A 
marvellous old book, full of information, but almost entirely lacking in rigour.) 
J.L. Coolidge, Treatise on algebraic plane curves, Oxford and Dover. 
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Chapter I. Playing with plane curves 

§1. Plane conies 

I start by studying the geometry of conies as motivation for the projective 
plane P 2 . Projective geometry is usually mentioned in 2nd year undergraduate 
geometry courses, and I recall some of the salient features, with some emphasis on 
homogeneous coordinates, although I completely ignore the geometry of linear 
subspaces and the 'cross-ratio'. The most important aim for the student should be to 
grasp the way in which geometric ideas (for example, the idea that 'points at infinity' 
correspond to asymptotic directions of curves) are expressed in terms of 
coordinates. The interplay between the intuitive geometric picture (which tells you 
what you should be expecting), and the precise formulation in terms of coordinates 
(which allows you to cash in on your intuition) is a fascinating aspect of algebraic 
geometry. 

(1.1) Example of a parametrised curve. Pythagoras' Theorem says that, in the 
diagram 

so (3,4, 5) and (5,12,13), as every ancient Egyptian knew. How do you find all 
integer solutions? The equation is homogeneous, so that x = X/Z , y = Y / Z gives 
the circle C : ( x 2 + y 2 = i ) c R 2 , which can easily be seen to be parametrised as 

x = 2X/(X2 + 1), y = (X2 - 1)/(X2 + 1), where X = x / ( l - y); 

so this gives all solutions: 

X = 2£m, Y = E 2 - m 2 , Z = £ 2 + m 2 with £, m e 1 coprime, 

(or each divided by 2 if £, m are both odd). Note that the equation is 
homogeneous, so that if (X, Y, Z) is a solution, then so is (XX, XYy XT). 

X 
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Maybe the parametrisation was already familiar from school geometry, and in 
any case, it's easy to verify that it works. However, if I didn't know it already, I 
could have obtained it by an easy geometric argument, namely linear projection 
from a given point: 

P = (0,1) € C, and if X e <D is any value, then the line L% through P with slope 
-X meets C in a further point Qj^. This construction of a map by means of linear 
projection will appear many times in what follows. 

(1.2) Similar example. C: (2X 2 + Y 2 = 5Z 2 ) . The same method leads to the 
parametrisation R —» C given by 

2J5X 2X2 - 1 
x = y = 

1+2X 1+2X 

This allows us to understand all about points of C with coefficients in R, and 
there's no real difference from the previous example; what about <Q ? 

Proposition. I f (a, b, c) € <D satisfies 2a 2 + b 2 = 5c 2 then (a, b, c) = (0,0,0). 

Proof. Multiplying through by a common denominator and taking out a common 
factor if necessary, I can assume that a, b, c are integers, not all of which are 
divisible by 5; also if 5 I a and 5 I b then 25 I 5c2, so that 5 I c, which 
contradicts what I've just said. It is now easy to get a contradiction by considering 
the possible values of a and b mod 5: since any square is 0, 1 or 4 mod 5, 
clearly 2a 2 + b 2 is one of 0+1, 044, 2-fO, 2+1, 2+4, 8+0, 8+1 or 8+4 mod 5, 
none of which can be of the form 5c 2. Q.E.D. 

Note that this is a thoroughly arithmetic argument. 
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(1.3) Conies in R 2 . A conic in R 2 is a plane curve given by a quadratic equation 

q(x,y) = ax 2 + bxy + c y 2 + d x + ey + f = 0. 

Everyone has seen the classification of nondegenerate conies: 

(a) ellipse (b) parabola (c) hyperbola 

in addition, there are a number of peculiar cases: 
(d) single point given by x 2 + y 2 = 0; 
(e, f, g) empty set given by any of the 3 equations: (e) x 2 + y 2 = - 1 , (f) x 2 

= -1 or (g) 0 = 1 . These three equations are different, although they define the 
same locus of zeros in R 2 ; consider for example their complex solutions. 

(h) line x = 0; 
(i) line pair xy = 0; 
(j) parallel lines x(x - 1) = 0; 

(k) 'double line' x 2 = 0; 
you can choose for yourself whether you'll allow the final case: 

(1) whole plane given by 0 = 0. 

(1.4) Projective plane. The definition 'out of the blue': 

P 2 R = {lines of R 3 through origin } 

= { ratios X : Y : Z } 

= ( R 3 \ { 0 } ) / - , where (X, Y, Z) - (AX, XY, XL) if X e R \ {0}. 

(The sophisticated reader will have no difficulty in generalising from R 3 to 
an arbitrary vector space over a field, and in replacing work in a chosen coordinate 
system with intrinsic arguments.) 
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To represent a ratio X : Y : Z for which Z ± 0, I can set x = X/Z, y = 
Y/Z; this simplifies things, since the ratio corresponds to just two real numbers. In 
other words, the equivalence class of (X, Y, Z) under ~ has a unique 
representative (x, y, 1) with 3rd coordinate = 1 . Unfortunately, sometimes Z 
might be = 0, so that this way of choosing a representative of the equivalence class 
is then no good. This discussion means that P 2 R contains a copy of R2. A 
picture: 

V 1 
i (z = 1) 

z 3 

A -
in R 

N 

R 2 c, R3 \ {0} -> p 2 R by (x, y) (X, y, 1) 

the general line in R ^ through 0 is not contained in the plane (Z = 0), so that it 
meets (Z = 1) in exactly one point, which is a representative for that equivalence 
class. The lines in (Z = 0) never meet (Z = 1), so they correspond not to points of 
R 2 , but to asymptotic directions, or to pencils of parallel lines of R 2 ; so you can 
think of P 2 R as consisting of R 2 together with one 'point at infinity' for every 
pencil of parallel lines. From this point of view, you calculate in R 2 , try to guess 
what's going on at infinity by some kind of 'asymptotic' argument, then (if 
necessary), prove it in terms of homogeneous coordinates. The definition in terms of 
lines in R3 makes this respectable, since it treats all points of P 2 R on an equal 
footing. 

Groups of transformations are of central importance throughout geometry; 
properties of a geometric figure must be invariant under the appropriate kind of 
transformations before they are significant. An affinechange of coordinates in R 2 

is of the form T(x) = Ax + B , where x = (x, y) € R 2 , and A is a 2x2 invertible 
matrix, B a translation vector; i f A is orthogonal then the transformation T is 
Euclidean. As everyone knows, every nondegenerate conic can be reduced to one 
of the standard forms (a-c) above by a Euclidean transformation. It is an exercise 
to the reader to show that every conic can be reduced to one of the forms (a-1) by 
an affine transformation. 
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A projectivity, or projective transformation of P 2 JR is of the form 
T(X) = MX, where M is an invertible 3 x 3 matrix. It's easy to understand the 
effect of this transformation on the affine piece R 2 c P 2 R : as a partially defined 
map R 2 - - » R 2 , it is the fractional-linear transformation 

X X 
I—> (A 

.y. .y. 
where 

M = 

+ B)/(cx + dy + e), 

A ! B 
I 

L c d • e 

T is of course not defined when cx + dy + e = 0. Perhaps this looks rather 
unintuitive, but it really occurs in nature: two different photographs of the same 
(plane) object are obviously related by a projectivity; see for example [Berger, 4.7.4] 
for pictures. So a math graduate getting a job interpreting satellite photography 
(whether for the peaceful purposes of the Forestry Commission, or as part of the 
vast career prospects opened up by President Reagan's defence policy) will spend a 
good part of his or her time computing projectivities. 

Projective transformations are implicitly in use throughout these notes, 
usually in the form 'by a suitable choice of coordinates, I can assume ..'. 

(1.5) Equation of a conic. The inhomogeneous quadratic polynomial 

q(x, y) = ax^ + bxy + cy 2 + dx + ey + f 

corresponds to the homogeneous quadratic 

Q(X,Y,Z) = aX 2 + bXY + cY 2 + dXZ + eYZ + f Z 2 ; 

the correspondence is easy to understand as a recipe, or you can think of it as the 
bijection q <—» Q given by 

q(x, y) = Q(X/Z, Y/Z, 1) with x = X/Z, y = Y / Z 

and inversely, 

Q = Z 2 q(X/Z ,Y/Z) . 

A conic C c P 2 is the curve given by C: (Q(X, Y, Z) = 0), where Q is a 
homogeneous quadratic expression; note that the condition Q(X, Y, Z) = 0 is well 
defined on the equivalence class, since Q(XX) = A,2Q(X) for any X e R . As an 
exercise, check that the projective curve C meets the affine piece R 2 in the affine 
conic given by (q = 0). 
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'Line at infinity1 and asymptotic directions. Points of P 2 with Z = 0 
correspond to ratios (X : Y : 0). These points form the line at infinity', a copy of 
p i p = R u {oo} (since (X : Y) h-» X / Y defines a bijection P ^ R - » R U {OO}). 

A line in P 2 is by definition given by L: (aX + bY + cZ = 0), and 

In affine coordinates the same line is given by ax + by + c = 0, so that all lines with 
the same ratio a : b pass through the same point at infinity. This is called 'parallel 
lines meet at infinity'. 

Examples, (a) The hyperbola ( x 2 / a 2 - y 2 / b 2 = 1) in R 2 corresponds in P 2 R 
to C: (X 2 / a 2 - Y 2 / b 2 = Z 2 ) ; clearly this meets (Z = 0) in the two points 
(b, ±a, 0) e P 2 R , corresponding in the obvious way to the asymptotic lines of the 

Note that in the affine piece (X £ 0) of P 2 R , the affine coordinates are 
u = Y/X, v = Z/X, so that C becomes the ellipse ( u 2 / b 2 + v 2 = 1/a2). See 
Ex. 1.7 for an artistic interpretation. 

(b) The parabola (y = mx 2 ) in R 2 corresponds to C: (YZ = mX 2 ) in 
P 2JR; this now meets (Z = 0) at the single point (0, 1, 0). So in P 2 , the 'two 
branches of the parabola meet at infinity'; note that this is a statement with intuitive 
content (maybe you feel it's pretty implausible?), but is not a result you could arrive 
at just by contemplating within R 2 - maybe it's not even meaningful. 

(1.6) Classification of conies in P 2 Let k be any field of characteristic £ 2; 
recall two results from the linear algebra of quadratic forms: 

Proposition (A). There are natural bijections 

f homogeneous ̂  f quad, forms^ f symmetric bilineaA 

L passes through (X, Y, 0) aX + bY = 0. 

hyperbola. 

given in formulas by 
a b d 

aX 2 + 2bXY + c Y 2 + 2dXZ + 2eYZ + f Z 2 f b e e 

d e f 
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A quadratic form is nondegenerate if the corresponding bilinear form is 
nondegenerate, that is, its matrix is nonsingular. 

Theorem (B). Let V be a vector space over k and Q: V -» k a quadratic form; 
then there exists a basis of V such that 

Q = e j X 1 2 + e 2 x2 2 + .. e n x n

2 , 

with £j e k. 

(This is proved by Gram-Schmidt orthogonalisation, if that rings a bell.) 
Obviously, for A , e k \ { 0 } the substitution xjh->A,xj takes ej into X~\[. 

Corollary. In a suitable system of coordinates, any conic in P 2 [ R is one of the 
following: 

(a) nondegenerate conic, C: ( X 2 + Y 2 - Z 2 = 0); 

(p) empty set, given by ( X 2 + Y 2 + Z 2 = 0); 

(y) line pair, given by ( X 2 - Y 2 = 0); 

(8) one point (0,0,1), given by ( X 2 + Y 2 = 0); 

(e) double line, given by ( X 2 = 0). 

(Optionally you have the whole of P 2 R given by (0 = 0).) 

Proof. Any real number e is either 0, or ± a square, so that I only have to 
consider Q as in the theorem with ej = 0 or ± 1 . In addition, since I'm only 
interested in the locus (Q = 0), I'm allowed to multiply Q through by - 1 . This 
leads at once to the given list. Q.E.D. 

There are two points to make about this corollary: firstly, the list is quite a lot 
shorter than that in (1.3); for example, the 3 nondegenerate cases (ellipse, 
parabola, hyperbola) of (1.3) all correspond to case (a), and the 2 cases of 
intersecting and parallel line pairs are not distinguished in the projective case. 
Secondly, the derivation of the list from general algebraic principles is much 
simpler. 

(1.7) Parametrisation of a conic. Let C be a nondegenerate, nonempty conic of 
P 2 R . Then by Corollary 1.6, taking new coordinates (X+Z, Y, Z-X), C is 
projectively equivalent to the curve (XZ = Y 2 ) ; this is the curve parametrised by 
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< D : p l R > C c p 2 R , 

(U :V) h-> ( U 2 : U V : V 2 ) . 

Remarks 1. The inverse map *?: C —» P ^ R is given by (X:Y:Z) h-» (X:Y) = 
(Y:Z); here the left-hand ratio is defined if X £ 0, and the right-hand ratio if 
Z ^ 0. In terminology to be introduced later, <J> and *F are inverse isomorphisms 
of varieties. 
2. Throughout §§1-2, nonempty nondegenerate conies are tacitly assumed to be 
projectively equivalent to (XZ - Y 2 ) ; over a field of characteristic £ 2, this is 
justified in Ex. 1.5. (The reader interested in characteristic 2 should take this as the 
definition of a nondegenerate conic.) 

(1.8) Homogeneous form in 2 variables. Let F(U, V) be a nonzero 
homogeneous polynomial of degree d in U, V, with coefficients in a fixed field k; 
(I will follow tradition, and use the word form for 'homogeneous polynomial'): 

F(U,V) = a d U d + a d . 1 U d - 1 V + ..a iU ivd~i + ..a0vd 

F has an associated inhomogeneous polynomial in 1 variable, 

f(u) = adud + ad-4u d~l + .. am* + .. arj. 

Clearly for a e k, 

f(a) = 0 (u - a) | f(u) <=> (U - aV) | F(U, V) F(a, 1) = 0; 

so zeros of f correspond to zeros of F on p i away from the point (1,0), the 
'point a = oo'. What does it mean for F to have a zero at infinity? 

F(1,0) = 0 <=» ad = 0 <=> degf<d. 

Now define the multiplicity of a zero of F on P 1 to be 
(i) the multiplicity of f at the corresponding a 6 k; 

or (ii) d - deg f if (1,0) is the zero. 
So the multiplicity of zero of F at a point (a, 1) is the greatest power of (U - aV) 
dividing F, and at (1,0) it is the greatest power of V dividing F. 

Proposition. Let F(U, V) be a nonzero form of degree d in U, V. Then F has at 
most d zeros on p i ; furthermore, if k is algebraically closed, then F has exactly 
a zeros on provided these are counted with multiplicities as defined above. 
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Proof. Let 1 % be the multiplicity of the zero of F at (1,0); then by definition, 
d - moo is t n e degree of the inhomogeneous polynomial f, and the proposition 
reduces to the well-known fact that a polynomial in one variable has at most deg f 
roots. Q.E.D. 

Note that over an algebraically closed field, F will factorise as a product F = 
n A, j m i of linear forms X[ = (ajU+ bjV), and treated in this way, the point (1, 0) 
corresponds to the form X00 = VJ and is on the same footing as all other points. 

(1.9) Easy cases of Bezout's Theorem. B6zout's theorem says that if C and D 
are plane curves of degree deg C = m, deg D = n, then the number of points of 
intersection of C and D is mn, provided that (i) the field is algebraically closed; 
(ii) points of intersection are counted with the right multiplicities; (iii) we work in 
P 2 to take right account of intersections 'at infinity'. See for example [Fulton, 
p. 112] for a self-contained proof. In this section I am going to treat the case when 
one of the curves is a line or conic. 

Theorem. Let L c P \ be a line (respectively C c P \ a nondegenerate conic), 
and let D c p \ be a curve defined by D : (G (j(X, Y, Z) = 0), where G is a form 
of degree d in X, Y, Z. Assume that L £ D (respectively, C <£ D); then 

#{L n D} < d (respectively # { C n D } < 2d). 

In fact there is a natural definition of multiplicity of intersection such that the 
inequality still holds for 'number of points counted with multiplicities', and i f k is 
algebraically closed then equality holds. 

Proof. A line L c p \ is given by an equation X = 0, with X a linear form; for 
my purpose, it is convenient to give it parametrically as 

X = a(U,V), Y = b(U,V), Z = c(U,V), 

where a, b, c are linear forms in U, V. So for example, i f X = ocX + pY + yZ, and 
Y £ 0, then L can be given as 

X = U, Y = V, Z = -(oc/Y)U - (P/Y)V. 

Similarly, as explained in (1.7), a nondegenerate conic can be given parametrically 
as 

X = a(U,V), Y = b(U,V), Z = c(U,V), 
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where a, b, c are quadratic forms in U, V. This is because C is a projective 
transformation of (XZ = Y 2 ) , which is parametrically (X, Y, Z) = ( U 2 UV, V 2 ) , 
so C is given by 

"X" V 
Y = M UV 

Z .v 2 . 

where M is a nonsingular 3x3 matrix. 

/ 
parametrised 

line 

parametrised 
come 

Then the intersection of L (respectively C) with D is given by finding the values 
of the ratios (U : V) such that 

F(U,V) = Gd(a(U,V),b(U,V),c(U,V)) = 0. 

But F is a form of degree d (respectively 2d) in U, V, so the result follows by 
(1.8). 

(1,10) Corollary. If Pj,.. P5 € P 2

R are distinct points such that no 4 are 
collinear, then there exists at most one conic through Pj,.. P5. 

Proof. Suppose by contradiction that C\ and C2 are conies with C\ £ C2 such 
that 

C i n C 2 3 {P1-.P5}. 

Cj is nonempty, so that if it's nondegenerate, then by (1.7), it's projectively equi
valent to the parametrised curve 

q = { ( U 2 , U V , V 2 ) | ( U , V ) € P 1 } ; 
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by (1.9), c C2- Now if Q2 is the equation of C2, then Q2(U 2, UV, V 2 ) = 0 
for all (U, V) G p l , and an easy calculation (see Ex. 1.6) shows that Q2 is a 
multiple of (XZ - Y 2 ) ; this contradicts (4 £ C2. 

Now suppose C\ is degenerate; by (1.6) again, it's either a line pair or a 
line, and one sees easily that 

C I = L Q U L I , C2 = L 0 u L 2 , 

with L j , L2 distinct lines. Then C\ n C2 = LQ U (L\ n L2): 

thus 4 points out of Pj,.. P5 lie on LQ, a contradiction. Q.E.D. 

(1.11) Space of all conies. Let 

S2 = { quadratic forms on R ^ } = { 3 x 3 symmetric matrixes } a R6. 

If Q G S2, write Q = aX 2 + 2bXY + .. f Z 2 ; then for P 0 = (X 0 , Y 0 , ZQ) G P 2 R , 
consider the relation PQ G C : (Q = 0). This is of the form 

Q(X 0 ,Yo,Zo) = aXo 2 + 2 b X 0 Y 0 + . . fZo 2 = 0, 

and for fixed PQ, this is a linear equation in (a, b,.. f). So 

S2(Po) = { Q e S 2 l Q ( P 0 ) = 0 } * R 5 <=S 2 = R 6 

is a 5-dimensional hyperplane. For P^,.. P n G P 2 R , define similarly 

S 2(Pi,.. P n ) = { Q G S 2 I Q(Pi) = 0 for i = 1,.. n }; 

then there are n linear equations in the 6 coefficients (a, b,.. f) of Q. This gives 
the result: 

Proposition, dim S2(Pi». Pn) ^ 6 - n. 
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We can also expect that 'equality holds if P^.. P n are general enough'. More 
precisely: 

Corollary. If n<5 and no 4 ofPi , . .P n are collinear, then 

dimS2(Pi,..P n) = 6 - n . 

Proof. Corollary 1.10 implies that if n = 5, dim S2(Pi».. P5) ^ 1, which gives the 
corollary in this case. If n < 4, then I can add in points Pn+1».. P5 while 
preserving the condition that no 4 points are collinear, and since each point 
imposes at most one linear condition, this gives 

1 = dim S 2(Pi,.. P5) > dim S 2(Pl,.. P n ) - (5 - n). Q.E.D. 

Note that if 6 points P^,.. Pg e P^rp are given, they may or may not lie on 
a conic. 

(1.12) Intersection of two conies. As we have seen above, it will often happen that 
two conies meet in 4 points: 

conversely according to Corollary 1.11, given 4 points Pj,.. P4 e P 2 , under 
suitable conditions S2(Pl,.. P4) is a 2-dimensional vector space, so choosing a 
basis Qi ,Q2 for S2(Pi,..P4) gives 2 conies C i , C 2 such that C i n C 2 = 
{Pi,.. P4}. There are lots of possibilities for multiple intersections of nonsingular 
conies: 
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3P + Q 4P 

see Ex. 1.9 for suitable equations. 

(1.13) Degenerate conies in a pencil. 
Definition. A pencil of conies is a family of the form 

C(Jl,ji): ( M h + l i Q 2 = 0); 

each element is a plane curve, depending in a linear way on the parameters (A,, | i ) ; 
think of the ratio (X as a point of P1. 

Looking at the examples, one expects that for special values of (k : | i ) the 
conic C(\^ is degenerate. In fact, writing det(Q) for the determinant of the 
symmetric 3x3 matrix corresponding to the quadratic form Q, it is clear that 

c (Jl , \i) i s degenerate det(A,Qi + 11Q2) = 0. 
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Writing out Q\ and Q 2 as symmetric matrixes expresses this condition as 

"a b d" "a' b' d'" 

F(A.,»i) ---- det X b c e + \i b' c' e' 

.d e f. .d' e' f . 

Now notice that F(A,, ji) is a homogeneous cubic form in A,, (i. In turn I can apply 
(1.8) to F to deduce: 

Proposition. Suppose C ^ j i ) is a pencil of conies of P \ , with at least one non-
degenerate conic (so that F(X, JI) is not identically zero). Then the pencil has at 
most 3 degenerate conies. If k = R then the pencil has at least one degenerate 
conic. 

Proof. A cubic form has < 3 zeros. Also over R, it must have at least one zero. 

(1.14) Worked example. Let Pj,.. P4 be 4 points of P 2 |R such that no 3 are 
collinear; then the pencil of conies C(X^) through Pj,.. P4 has 3 degenerate 
elements, namely the line pairs L j 2 + L34» M3 + L 2 4, M 4 + L 2 3, where Ly is 
the line through P{, P j : 

Next, suppose that I start from the pencil of conies generated by Qi = Y 2 -f rY + 
sX -f t and Q2 = Y - X 2 and try to find the points Pj,.. P4 of intersection. 
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Y + rY + sX + t = 0 

This can be done as follows: (1) find the 3 ratios (k : | i ) for which C ( j ^ ) are 
degenerate conies. Using what has been said above, this just means that I have to 
find the 3 roots of the cubic 

F(ky \i) = det 

0 0 s/2 

0 1 r/2 

s/2 r/2 t 

- 1 0 0 

0 0 1/2 

0 1/2 0 

i ( s 2 X 3 + ( 4 t - r 2 ) X 2 f i - 2 r ^ 2 _ ^3). 

(2) Separate out 2 of the degenerate conies into pairs of lines (this involves solving 
2 quadratic equations). (3) The 4 points P[ are the points of intersection of the 
lines. 

This procedure gives a geometric interpretation of the reduction of the 
general quartic in Galois theory (see for example [van der Waerden, Algebra, 
Ch. 8, §64]): let k be a field, and f(X) = X 4 + r X 2 + sX +1 e klX] a quartic poly
nomial. Then the two parabolas C\ and C2 meet in the 4 points P\ = (aj, aj 2) for 
i = 1,.. 4, where the aj are the 4 roots of f. 

Then the line Ly = PjPj is given by 

Ly: (Y = (ai + aj)X-aiaj), 



24 §1 I. Playing with plane curves 

and the reducible conic L12 + L34 is given by 

Y 2 + (aja24-a3a4)Y 4-(ai+a2)(a34-a4)X2 + sX-f t = 0, 

that is, by Q\ - (ai4-a2)(a3+a4)Q2 = 0. Hence the 3 values of \i/X for which the 
conic XQi + 11Q2 breaks up as a line pair are 

-(ai4-a2)(a34-a4), -(ai4-a3)(a24-a4), -(ai+a4)(a24-a3). 

The cubic equation whose roots are these 3 quantities is called the auxilliary cubic 
associated with the quartic; it can be calculated using the theory of elementary 
symmetric functions; this is a fairly laborious procedure. On the other hand, the 
geometric method sketched above gives an elegant derivation of the auxilliary cubic 
which only involves evaluating a 3x3 determinant. 

The above treatment is taken from [M.Berger, 16.4.10 and 16.4.11.1]. 

Exercises to §1. 

1.1. Parametrise the conic C: (x 2 + y 2 = 5) by considering a variable line through 

(2,1) and hence find all rational solutions of x 2 + y 2 = 5. 

1.2. Let p be a prime; by experimenting with various p, guess a necessary and 

sufficient condition for x 2 + y 2 « p to have rational solutions; prove your guess (a hint 

is given after Ex. 1.9 below - bet you can't do it for yourself!). 

1.3. Prove the statement in (1.3), that an affine transformation can be used to put any 

conic of OR2 into one of the standard forms (a-1). (Hint: use a linear transformation 

xh->Ax to take the leading term ax 2 + bxy + cy 2 into one of ± x 2 ± y 2 or ± x 2 or 0; 

then complete the square in x and y to get rid of as much of the linear part as possible.) 

1.4. Make a detailed comparison of the affine conies in (1.3) with the projective conies 

in (1.6). 

1.5. Let k be any field of characteristic ^ 2, and V a 3~dimensional k~vector space; 

let Q: V k be a nondegenerate quadratic form on V. Show that if 0 t e \ € V 

satisfies Q(e j ) « 0 then V has a basis ej, e2, 63 such that Q(xjej + x 2^2 + x 3 e 3 ) m 

X1X3 + ax2 2. (Hint: work with the symmetric bilinear form q> associated to Q; since <p 

is nondegenerate, there is a vector 63 such that qKej, 63) « 1. Now find a suitable t^) 

Deduce that a nonempty, nondegenerate conic C c P2^ is projectively equivalent to 

(XZ» Y 2 ) . 

1.6. Let k be a field with at least 4 elements, and C: (XZ - Y 2 ) c p \ \ prove that if 

Q(X, Y, Z) is a quadratic form which vanishes on C then Q •- X,(XZ - Y 2 ) . (Hint: if 

you really can't do this for yourself, compare with the argument in the proof of Lemma 
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2.5.) 

1.7. In IR 3, consider the two planes A: (Z =1) and B: (X « 1); a line through 0 

meeting A in (x, y, 1) meets B in (1, y/x, 1/x). Consider the map 9: A B 

defined by (x, y) i—• (y' = y/x, z' = 1/x); what is the image under 9 of 

(i) the line ax = y + b; the pencil of parallel lines ax = y + b (fixed a and variable 

b); 

(ii) circles (x-1) 2 + y 2 = c for variable c (distinguish the 3 cases c> 1, c = 1 and 

c<l ) . 

Try to imagine the above as a perspective drawing by an artist sitting at 0 e IR 3 , on a 

plane (X = 1), of figures from die plane (Z • 1). Explain what happens to the points of 

the two planes where 9 and 9"* are undefined. 

1.8. Let P i , . . P4 be distinct points of P 2 with no 3 collinear. Prove that there is a 

unique coordinate system in which the 4 points are (1,0, 0), (0, 1, 0), (0, 0, 1) and 

(1,1,1). Find all conies passing through Pj , . . P5, where P5 = (a, b, c) is some other 

point, and use this to give another proof of Corollary 1.10 and Proposition 1.11. 

1.9. In (1.12) there is a list of possible ways in which two conies can intersect Write 

down equations showing that each possibility really occurs. Find all the singular conies in 

the corresponding pencils. (Hint: you will save yourself a lot of trouble by using 

symmetry and a well-chosen coordinate system.) 

Hint for 1.2: it is known from elementary number theory that -1 is a quadratic residue 

modulo p if and only if p = 2 or p a 1 mod 4. 

1.10. (Sylvester's determinant). Let k be an algebraically closed field, and suppose 

given a quadratic and cubic form in U, V as in (1.8): 

q(U,V) = a 0 U 2 + a ^ V + a 2 V 2 

c(U,V) = b 0 U 3 + b 1 U 2 V + b 2 U V 2 + b 3 V 3 . 

Prove that q and c have a common zero (rj: i ) e P 1 if and only if 

a 0 a t a 2 

a 0 a t a 2 

det a 0 a x a 2 * 0 

Dq b t b 2 D3 

b 0 bx r>2 b 3 

(Hint: Show that if q and c have a common root then the 5 elements 
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U2q, UVq, V2q, Uc and Vc 

do not span the 5-dimensional vector space of forms of degree 4, and are therefore 

linearly dependent. Conversely, use unique factorisation in the polynomial ring k[U, V] 

to say something about relations of the form Aq = Be with A and B forms in U, V, 

deg A =2, deg B « 1.) 

1.11. Generalise the result of Ex. 1.10 to two forms in U, V of any degrees n and m. 
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§2. Cubics and the group law 

(2.1) Examples of parametrised cubics. Some plane cubic curves can be 
parametrised, just as the conies: 
Nodal cubic. C : ( y 2 = x 3 + x 2 ) c R 2 is the image of the map cp: R* —> R 2 given 
by t h-» ( t 2 - 1, t 3 - t) (check it and see); 
Cuspidal cubic. C : (y 2 = x 3 ) c R 2 is the image of cp: R * —> R 2 given by 
th->(t 2, t 3 ) : 

Parametrised cubic curves 
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Think about the singularities of the image curve, and of the map cp. These examples 
will occur throughout the course, so spend some time playing with the equations; 
see Ex. 2.1-2. 

(2.2) The curve ( y 2 = x(x - l)(x - X)) has no rational parametrisation. 
Parametrised curves are nice; for example, if you're interested in Diophantine 

problems, you could hope for a rule giving all Q-valued points, as in (1.1). The 
parametrisation of (1.1) was of the form x = f(t), y = g(t), where f and g were 
rational functions, that is, quotients of two polynomials. 

Theorem. Let k be a field of characteristic 2, and let X e k with X £ 0,1; let 
f, g e k(t) be rational functions such that 

f 2 = g(g - D(g ~ X). (*) 

Then f, g e k. 

This is equivalent to saying that there does not exist any nonconstant map 
R l C : (y 2 = x(x - l)(x - X)) given by rational functions. This reflects a very 
strong 'rigidity' property of varieties. 

The proof of the theorem is arithmetic in the field k(t) using the fact that 
k(t) is the field of fractions of the UFD kit]. It's quite a long proof, so either be 
prepared to study it in detail, or skip it for now (GOTO 2.4). In Ex. 2.12, there is a 
very similar example of a nonexistence proof by arithmetic in <Q. 

Proof. Using the fact that kit] is a UFD, I write 

f = r/s with r, s e kit] and coprime, 

g = p/q with p, q e kit] and coprime. 

Clearing denominators, (*) becomes 

r 2 q 3 = s 2 p (p _ q)(p _ x.q). 

Then since r and s are coprime, the factor s2 on the right-hand side must divide 
q3, and in the same way, since p and q are coprime, the left-hand factor q3 must 
divide s2. Therefore, 

s2 | q3 and q3 | s2, so that s2 = aq3 with a e k 

(a is a unit of kit], therefore in k). 
Then 
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aq = (s/q) z is a square in kit]. 

Also, 

r 2 = ap(p - q)(p - A,q), 

so that by considering factorisation into primes, there exist nonzero constants 
b, c, d € k such that 

bp, c(p - q), d(p - Xq) 

are all squares in kit]. If I can prove that p, q are constants, then it follows from 
what's already been said that r, s are also, proving the theorem. To prove that p, q 
are constants, set K for the algebraic closure of k; then p, q € Kit] satisfy the 
conditions of the next lemma. 

(2.3) Lemma. Let K be an algebraically closed field, p, q e Kit] coprime 
elements, and assume that 4 distinct linear combinations (that is, Xp + p,q for 4 
distinct ratios (X : \i) e P ^ ) are squares in Kit]; then p, q e K. 

Proof (Fermat's method of 'infinite descent'). Both the hypotheses and conclusion 
of the lemma are not affected by replacing p, q by 

p' = ap + bq, q' = cp + dq, 

with a, b, c, d e K and ad - be £ 0. Hence I can assume that the 4 given squares 
are 

p, p - q, p - Xq, q. 

Then p = u 2 , q = v 2 , and u, v e Kit] are coprime, with 

max {deg u, deg v} < max {deg p, deg q}. 

Now by contradiction, suppose that max {deg p, deg q} > 0 and is minimal among 
all p, q satisfying the condition of the lemma. Then both of 

p - q = u 2 - v 2 = (u - v)(u + v) 

and 

p - = u 2 - Xv 2 = (u - n,v)(u + ILV) 

(where \i = jX) are squares in Kit], so that by coprimeness of u,v, I conclude that 
each of u - v, u + v, u - \iv, u + [Lv are squares. This contradicts the minimality of 
max {deg p, deg q}. Q.E.D. 
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(2.4) Linear systems. Write = {forms of degree d in (X, Y, Z ) } ; (recall that a 
form is just a homogeneous polynomial). Any element F e S<j can be written in a 
unique way as 

F = l a j j k X 1 ^ 

with ayk e k, and the sum taken over all i , j , k > 0 with i + j + k = d; this means 
of course that S<j is a k-vector space with basis 

Z ^ Y 

x* x^V x ^ V .. Y * 

and in particular, dim S d = ( d £ 2 ) . For Pj... P n e P 2 , let 

Sd(Pl- P n ) = { F 6 S d | F(Pj) - 0 for i - 1... n } c S d. 

Each of the conditions F(Pj) = 0, (or more precisely, F(Xj, Yj , Zj) = 0, where 
Pj = ( X j : Y j : Zj)) is one linear condition on F, so that S d(Pi,.. Pn) is a vector 

space of dimension > ( d £ 2 ) - n. 

(2.5) Lemma. Suppose that k is an infinite field, and let F e S d. 
(i) Let L c P 2

k be a line; i f F 2 0 on L, then F is divisible in 
k[X, Y, Z] by the equation of L. That is, F = HF' where H is the equation of L 
and F'€ S j - i -

(ii) Let C c P 2 ^ be a nonempty nondegenerate conic; if F s 0 on C, 
then F is divisible in k{X, Y, Z] by the equation of C. That is, F = QF' where Q 
is the equation of C and F' € S^2-

If you think this statement is obvious, congratulations on your intuition: you 
have just guessed a particular case of the Nullstellensatz. Now find your own proof 
(GOTO 2.6). 
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Proof, (i) By a change of coordinates, I can assume H = X. Then for any F e Sj, 
there exists a unique expression F = X-F'^^j + G(Y, Z): just gather together all the 
monomials involving X into the first summand, and what's left must be a 
polynomial in Y, Z only. Now F = 0 on L G = 0 on L G(Y, Z) = 0. 
The last step holds because of (1.8): i f G(Y, Z) ^ 0 then it has at most d zeros on 
P ^ , whereas if k is infinite, then so is P ^ . 

(ii) By a change of coordinates, Q = XZ - Y 2 . Now let me prove that for 
any F e Sj, |here exists a unique expression F = Q-F ' j ^ + A(X, Z) + YB(X, Z): 
if I just substitute (XZ - Q) for Y 2 wherever it occurs in F, what's left has 
degree < 1 in Y, and is therefore of the form A(X, Z) + YB(X, Z). Now as in 
(1.7), C is the parametrised conic given by X = U 2 , Y = UV, Z = V 2 , so that 

F = 0 on C «=» A(U 2 , V 2 ) + U V B ( U 2 , V 2 ) s O on C 

A ( U 2 , V 2 ) + U V B ( U 2 , V 2 ) = 0ek[U,V] A(X, Z) = B(X, Z) = 0. 

Here the last equality comes by considering separately the terms of even and odd 
degrees in the form A(U 2 , V 2 ) + UVB(U 2 , V 2 ) . Q.E.D. 

Ex. 2.2 gives similar cases of 'explicit' Nullstellensatz. 

Corollary. Let L: (H = 0) c P 2

k be a line (respectively C: (Q = 0) c P 2

k a 
nondegenerate conic); suppose that points Pj,.. P n e P 2

k are given, and consider 
Sd(Pi,..Pn) for some fixed d. Then 

(i) If Pi,. . P a e L, P a+1,.. P n t L and a > d, then 

Sd(Pl>"Pn) - H . S d - j O W . P n ) . 

(ii) If Pj , . .P a e C, P a+l>..Pn* c m i a>2d, then 

Sd(Pl>.-Pn) - Q-Sd-2(Pa+l-P n). 

Proof, (i) If F is homogeneous of degree d, and the curve D: (F = 0) meets L 
in points Pj,.. P a with a > d, then by (1.9), I must have L c D, so that by the 
lemma, F = HF'; now since P a + j , . . P n g L, obviously F' € Sj^iOPa+i,.. P n ) . 
(ii) is exactly the same. Q.E.D. 
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(2.6) Proposition. Let k bean infinite field, and Pi,. . Pg G distinct points; 
suppose that no 4 of P^,.. Pg are collinear, and no 7 of them lie on a non-
degenerate conic; then 

dimS 3(Pi,..Pg) = 2. 

Proof. For brevity, let me say that a set of points are conconic if they all lie on a 
nondegenerate conic. The proof of (2.6) breaks up into several cases. 
Main case. No 3 points are collinear, no 6 conconic. This is the 'general position' 
case. 

Suppose for a contradiction that dim S3(Pi„. Pg) ^ 3, and let P9, P^Q be 
distinct points on the line L = P1P2. Then 

dimS 3 (P 1 , . .P 1 0 ) > dimS 3 (Pi , . .Pg)-2 > 1, 

so that there exists 0 £ F e S3(Pi,.. P \ Q ) . By Corollary 2.5, F = HQ, with 
Q E S2(P3>.. Pg). Now I have a contradiction to the case assumption: if Q is non-
degenerate then the 6 points P3,.. Pg are conconic, whereas if Q is a line pair or 
a double line, then at least 3 of them are collinear. 

First degenerate case. Suppose P^ P 2 , P3 e L are collinear, and let L: (H = 0). 
Let P9 be a 4th point on the line L. Then by Corollary 2.5, 

S 3(P!,..P 9) = HS2(P4>.P8). 

Also, since no 4 of P4,.. Pg are collinear, by Corollary 1.11, dim S2(P4,.. Pg) 
= 1, and then dim S3(Pi,.. P9) = 1, which implies dim S3(Pi„. Pg) <2. 
Second degenerate case. Suppose P},.. P$ e C are conconic, with C: (Q = 0) a 
nondegenerate conic. Then choose P9 e C distinct from P^,..P6. By Corollary 2.5 
again, 

S 3(P 1,..P 9) = Q.S!(P7,Pg); 
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the line L = PyPg is unique, so that S3(Pj,.. P9) is the 1-dimensional space 
spanned by QL, andhenoe dim S3(Pi,.. Pg) < 2. Q.E.D. 

(2.7) Corollary. Let C^,C2 be two cubic curves whose intersection consists of 9 
distinct points, C i n C2 = (Pi,.. P9}. Then a cubic D through Pj,.. Pg also 
passes through P9. 

Proof. I f 4 of the points Pj,.. Pg were on a line L, then each of C\ and C2 
would meet L in > 4 points, and thus contain L, which contradicts the 
assumption on C j n C2. For exactly the same reason, no 7 of the points can be 
conconic. Therefore the assumptions of (2.6) are satisfied, so I can conclude that 

dimS3(Pi,..Pg) = 2; 

this means that the equations F^,F2 of C^,C2 form a basis of S3(Pi„.Pg), and 
hence D: (G = 0), where G = XF\ + p i ^ . Now F j , F2 vanish at P9, hence so 
does G. Q.E.D. 

(2.8) Group law on a plane cubic. Suppose k c C is a subfield of C, and 
F 6 klX, Y, Z] a cubic form defining a (nonempty) plane curve C: (F = 0) c P 2

k . 
Assume that F satisfies the following two conditions: 

(a) F is irreducible (so that C does not contain a line or conic); 
(b) for every point P e C, there exists a unique line L c P ^ such that P 

is a repeated zero of F |L . 
Note that geometrically, the condition in (b) is that C should be non-

singular, and the line L referred to is the tangent line L = TpC (see Ex. 2.3). This 
will be motivation for the general definition of nonsingularity and tangent spaces to 
a variety in §6. 

Fix any point O € C, and make the following construction: 

Construction, (i) For A e C, let A = 3rd point of intersection of C with the line 
OA; 

(ii) for A, B e C, write R = 3rd point of intersection of AB with C, and 

define A + B by A + B = R (see diagram below). 

Theorem. The above construction defines an Abelian group law on C, with O as 
zero (= neutral element). 

Proof. Associativity is the crunch here; I start the proof by first clearing up the easy 
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bits. 
(I) I have to prove that the addition and inverse operations are well defined. If 

P, Q e C are any two points, then either P £ Q, and the line L = PQ c P 2 ^ is 
uniquely determined, or P = Q, and then by the assumption (b), there is a unique 
line L c P ^ such that P is a repeated zero of F |L ; in either case, F | L is a cubic 
form in two variables, having 2 given k-valued zeros. It therefore splits as a 
product of 3 linear factors, and hence without exception, the 3rd residual point of 
intersection R is defined and has coordinates in k. Note that any of P = Q, P = R, 
Q = R, or P = Q = R are allowed; these correspond algebraically to F |L having 
multiple zeros, and geometrically to tangent and inflexion points. 

Cubic curve and its group law 
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(II) Verifying that the given point O is the neutral element is completely 

formal: since OAA are collinear, the construction of O + A consists of taking the 

line L = OA to get the 3rd point of intersection A, then the same line L = OA to 
get back to A. 

(III) I think I 'll leave A + B = B + A to the reader. 

(IV) To find the inverse, first define the point O as in (i) of the 
construction: let L be the line such that F |L has O as a repeated zero, and define 

0 to be the 3rd point of intersection of L with C; then it is easy to check that the 

3rd point of intersection of OA with C is the inverse of A for every A e C. 

(2.9) Now I give the proof of associativity for 'sufficiently general' points: suppose 

that A, B, C are 3 given points of C; then the construction of (A + B) + C = S 
uses 4 lines (see diagram above) 

h\ : ABR, L 2 : ROR, L 3 : CRS and L 4 : SOS. 

The construction of (B + C) + A = T uses 4 lines 

M^BCQ, M 2:QOQ, M 3 : A Q T and M 4 :TOT. 

1 want to prove S = T, and clearly for this, it is enough to prove S = T; to do this, 
consider the 2 cubics 

Dj[ = I 4 + M 2 + L3 and D 2 = M1+L2 + M3. 

Then by construction, 

C n D j = { A , B , C , 0 , R , R , Q , Q , S } , 
and 

C n D 2 = { A , B , C , 0 , R , R , Q , Q , T } . 

Now provided the 9 points A, B, C, O, R, R, Q, Q, S are all distinct, the two 
cubics C and T>\ satisfy the conditions of Corollary 2.7; therefore, D2 must pass 
through S, and the only way that this can happen is if S = T. 

There are several ways to complete the argument. The most thorough of these 
gives a genuine treatment of the intersection of two curves taking into account 
multiple intersections (roughly, in terms of 'ideals of intersection'), and the 
statement corresponding to Corollary 2.7 is Max Noether's Lemma (see [Fulton, 
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p. 120 and p. 124]). 

(2.10) I sketch one version of the argument 'by continuity', which uses the fact that 
k c C . Write C<£ c P 2 ^ for the complexified curve C, that is, the set of ratios 
(X : Y : Z) of complex numbers satisfying the same equation F(X, Y, Z) = 0. If the 
associative law holds for all A, B, C e Qrj, then obviously also for all points in C. 
Therefore, I can assume that k = C. 

The reader who cares about it will have no difficulty in finding proofs of the 
following two statements (see Ex. 2.8): 

Lemma, (i) A + B is a continuous function of A and B; 
(ii) for all A, B, C e C there exist A', B', C e C arbitrarily near to A, B, 

C such that the 9 points A', B', C, O, R, R, Q, Q, S constructed from them are all 

distinct. 

The addition law is a map cp: C x C -4 C given by (A, B ) H A + B . By (i), 
cp is continuous, and hence so are the two maps (sorry!) 

f = cpo(cpxidc) and g = cp o (idc x cp): C x C x C C 

given by (A, B, C ) H ( A + B ) + C and A + (B + C). Also, by (ii), the subset 
U c C x C x C consisting of triples (A, B, C) for which the 9 points of the 
construction are distinct is dense; by the above argument, f and g thus coincide on 
U, and since they are continuous, they coincide everywhere. Q.E.D. 

Remark. The continuity argument as it stands involves the topology of C, and is 
thus not purely algebraic. In fact the addition map cp is a morphism of varieties 
cp: C x C —» C, as will be proved later (see (4.14)), and the remainder of the 
argument can also be reformulated in this purely algebraic form: the subset of 
C x C x C for which the 9 points are distinct is a dense open set for the Zariski 
topology, and two morphisms which coincide on a dense open set coincide 
everywhere. (I hope that this remark can provide useful motivation for the rest of the 
course; if you find it confusing, just ignore it for the moment.) 

(2*11) Pascal's Theorem (the mystic hexagon). The diagram 
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F 

consists of a hexagon ABCDEF in P z

k with pairs of opposite sides extended 
until they meet in points P, Q, R. Assume that the nine points and the six lines of 
the diagram are all distinct; then 

ABCDEF areconconic PQR are collinear. 

This famous theorem is a rather similar application of (2.7), and is given just 
for fun; of course, other proofs are possible, see any text on geometry, for example 
[Berger, 16.2.10 and 16.8.3-5]. 

Proof. In the diagram, consider the two triples of lines 

Lf.PAF, L 2 :QDE, L 3 : RBC, 

and 

M i : PCD, M 2 :QAB, M 3:REF; 

let C i = L i + L 2 + L 3 and C 2 = M\ + M 2 + M 3 . Now I'm all set to apply (2.7), 
since clearly Cj and C 2 are two cubics such that 

C i n C 2 = { A , B , C , D , E , F , P , Q , R } . 

Suppose PQR are collinear, with L = PQR; let T be the conic through 
ABCDE (the existence and unicity of which is provided by Proposition 1.11). Then 
by construction, L + T is a cubic passing through the 8 points A, B, C, D, E, 
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P, Q, R, and by (2.7), it must contain F; by assumption, F g L, so that 
necessarily F e T, proving that the six points are conconic. 

Now conversely, suppose that ABCDEF are on a conic T, and let L = PQ; 
then L + T is a cubic passing through A, B, C, D, E, F, P, Q, so by (2.7) it must 
pass through R. Now R can't be on the conic T (since otherwise T is a line pair, 
and some of the 6 lines of the diagram must coincide), so R € L, that is, PQR are 
collinear. Q.E.D. 

(2.12) Inflexion, normal form. Every cubic in P 2 [p or P 2 ^ can be put in the 
normal form 

C: Y 2 Z = X 3 + aXZ 2 + bZ 3 , (**) 

or in the affine form 

y2 - X 3 + a x + b# 

Now consider the above curve C; where does it meet the line at infinity 
L: (Z = 0)? That's easy, just substitute Z = 0 in the defining polynomial F = 
- Y 2 Z + X 3 + aXZ 2 + bZ 3 to get F | L = X 3 ; this means that F | L has a triple zero 
at P = (0, 1, 0 ) . To see what this means geometrically, set Y = 1, to get the 
equation in affine coordinates (x, z) around ( 0 , 1 , 0 ) : 

z = x 3 + axz2 + bz 3. 

This curve is approximated to a high degree of accuracy by z = x 3 : 

the behaviour is described by saying that C has an inflexion point at (0, 1, 0) . 
More generally, an inflexion point P on a curve C is defined by the condition that 
there is a line L c p 2 ^ such that F | L has a zero of multiplicity > 3 at P (see 
Ex. 2.9; in fact necessarily L = TpC by (2.8, b), and the multiplicity = 3 by 
(1.9)). It is not hard to interpret this in terms of the derivatives and second 
derivatives of the defining equations: for example, i f the defining equation is 
y = f(x), then the condition for an inflexion point is simply d 2f/dx 2 ( P ) = 0; this 
corresponds in the diagram to the curve passing through a transition from being 
'concave downwards' to being 'concave upwards'. There is a general criterion for a 
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plane curve to have an inflexion point in terms of the Hessian, see for example 
[Fulton, p. 116] or Ex. 7.3, (iii). 

It can be shown (see Ex. 2.10) that conversely, i f a plane cubic C has an 
inflexion point, then its equation can be put in normal form (**) as above. 

(2.13) Simplified group law. The normal form (**) is extremely convenient for 
the group law: take the inflexion point O = (0, 1, 0) as the neutral element. Under 
these conditions, the group law becomes particularly nice, for the following reasons: 

(a) C = {O} u affine curve CQ: (y 2 = x 3 + ax + b); 
so it is legitimate to treat C as an affine curve, with occasional references to the 
single point O at infinity, the zero of the group law. 

(b) The lines through O, which are the main ingredient in part (i) of the 
construction of the group law in (2.8), are given projectively by X = XZ, and 
affinely by x = X; any such line meets C at points (X, ±V(X3 + aX, + b)), and at 

infinity. Hence if P = (x, y), then the point P constructed in (2.8, i) is (x, -y); 

thus Ph-> P is the natural symmetry (x, y) h-» (x, -y) of the curve CQ: 
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(c) The inverse of the group law (2.9, IV) is described in terms of O, the 
point constructed as the 3rd point of intersection of the unique line L such that F |L 
has O as a repeated zero; however, in our case, this line is the line at infinity 

L: (Z = 0), and L n C = 30, so that O = O, and the inverse of the group law then 

simplifies to - P = P. 
I can now restate the group law as a much simplified version of Theorem 2.8: 

Theorem. Let C be a cubic in the normal form (**); then there is a unique group 
law on C such that O = (0, 1, 0) is the neutral element, the inverse is given by 
(x, y) h-> (x, -y), and for all P, Q, R € C, 

P + Q + R = O <=» P, Q, R are collinear. 

Exercises to §2. 

2.1. Let C: ( y 2 « x 3 + x 2 ) c IR 2. Show that a variable line through (0,0) meets C at 

one further point, and hence deduce the parametrisation of C given in (2.1). Do the 

same for (y 2 - x )̂ and (x^ « y3 _ y4) 

2.2. Let <p: IR* —* DR2 be the map given by t h-* (t 2, t 3 ) ; prove directly that any 

polynomial f e MX, Y] vanishing on the image C * (p(lR*) is divisible by Y 2 - X^. 

(Hint: use the method of Lemma 2.5.) Determine what property of a field k will ensure 

that the result holds for <p: k - * k 2 given by the same formula. 

Do the same for th-* (t 2 - 1, t 3 - t). 

Z3. Let C: (f * 0) c k 2 and let P - (a, b) € C; assume that df/dx(P) + 0. Prove that 

the line L: (3f/ax(P)(X - a) + af/3y(P)(Y - b) » 0) is the tangent line to C at P, that 

is, the unique line L of k 2 for which f|L has a multiple root at P (this is worked out 

in detail in (6.1)). 

2.4. Let C: ( y 2 • x 3 +4x), with the simplified group law (2.13). Show that the tangent 

line to C at P « (2,4) passes through (0,0), and deduce that P is a point of order 4 

in the group law. 

2.5. Let C: ( y 2 » x̂  + ax + b) c DR2 be nonsingular, find all points of order 2 in the 

group law, and understand what group they form (there are two cases to consider). 

Now explain geometrically how you would set about finding all points of order 4 on 

C. 

2.6. Let C: ( y 2 • x 3 + ax + b) c IR 2 ; write a computer program to sketch part of C, 

and to calculate the group law. That is, it prompts you for the coordinates of 2 points A 

and B, then draws the lines and tells you the coordinates of A + B. (Use real variables.) 
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Z7. Let C: (y 2 = x 3 + ax + b) c k 2 ; if A = (xj , y^) and B = (x 2, y 2 ) , show how to 

give the coordinates of A + B as rational functions of xj, yj , X2, (Hint: if F(X) is 

a polynomial of degree 3 and you know 2 of the roots, you can find the 3rd by looking 

at just one coefficient of F. This is a question with a nonunique answer, since there are 

many correct expressions for the rational functions. One solution is given in (4.14).) 

2.8. By writing down the equation of the tangent line to C at A, find a formula for 2 A 

in the group law on C, and verify that it is the limit of a suitable formula for A + B as 

B tends to A. (Hint: use Ex. 2.7, and if necessary refer to (4.14).) 

Z9. Let x, z be coordinates on k 2 , and let f € klx, z]; write f as 

f « a + bx + cz + dx 2 + exz + fz 2 + ... 

Write down the conditions in terms of a, b, c,.. that must hold in order that 

(i) P = (0,0)€ C:(f = 0); 

(ii) the tangent line to C at P is (z = 0); 

(iii) P is an inflexion point of C with (z - 0) as the tangent line. 

(Recall from (2.12) that Pe C is an inflexion point if the tangent line L is defined, 

and f|L has at least a 3-fold zero at P.) 

Z10. Let C c IP 2 ^ be a plane cubic, and suppose that P € C is an inflexion point; 

prove that a change of coordinates in IP ^ can be used to bring C into the normal form 

( Y 2 Z - X 3 + a X 2 Z + bXZ 2 + cZ 3 ) . (Hint: take coordinates such that P - (0,1, 0) and 

the inflexion tangent is (Z * 0); then using the previous question, in local coordinates 

(x, z), Y will appear in a quadratic term Y 2 Z , and otherwise only linearly. Show then 

that you can get rid of the linear term in Y by completing the square.) 

2.11. (Group law on a cuspidal cubic.) Consider the curve C: (z • x 3 ) c k 2; C is the 

image of the bijective map <p: k—• C by t h-» (t, t 3 ) , so it inherits a group law from the 

additive group k. Prove that this is the unique group law on C such that (0, 0) is the 

neutral element and 

P + Q + R = 0 P, Q, R are collinear 

for P, Q, R € C. (Hint: you might find useful the identity 

det 

< 3 1 a a 

1 b b 3 

4 3 1 c c 

(a - b)(b - c)(c - a)(a + b + c).) 

In projective terms, C is the curve ( Y 2 Z « X 3 ) , our old friend with a cusp at the origin 

and an inflexion point at (0, 1, 0), and the point of the question is that the usual 

construction gives a group law on the complement of the singular point. 

Z12. (Due to Leonardo Pisano, known as Fibonacci, A.D.1220.) Prove that for 

u, v € Z, 

u 2 + v 2 and u 2 - v 2 both squares «> v * 0. 
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Hints (due to P. de Fermat, see J.W.S.Cassels, Journal of London Math Soc. 41 (1966), 

p. 207): 

Step 1. Reduce to solving 

x 2 » u 2 + v 2 , y 2 « u 2 - v 2 with x, y, u, v € Z pairwise coprime. (*) 

Step 2. Considerations mod 4 show that x, y, u are odd and v even. 

Step 3. The 4 pairs of factors on the l.-h.s. of the factorisations 

(x - u)(x + u) - v 2 

(u-y)(u + y) - v 2 (**) 

(x-y)(x + y) - 2v 2 

(2u - x - y)(2u + x + y) - (x - y ) 2 

have no common factors other than powers of 2. 

Step 4. Replacing y by -y if necessary, we can assume that 4 \ x - y. Now by 

considering the parity of factors on l.-h.s. of (**), prove that 

x - u • 2v J2, u - y • 2uj 2 , x - y • 2 x j 2 and 2u - x - y « 2 y j 2 

with u j , v j , xj, yj € Z. 

StepS. Show that uj, vj , xj, yj is another solution of (*) with vj < v, and deduce a 

contradiction by 'infinite descent'. 

Compare this argument with the proof of (2.2), which was easier only in that I didn't 

have to mess about with 2's. 
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Appendix to Chapter 1 
Curves and their genus 

(2.14) Topology of a nonsingular cubic. It is easy to see that a nonsingular plane 
cubic C: (y^ = x 3 + ax + b) c P^p has one of the two shapes 

That is, topologically, C is either one or two circles (including the single point at 
infinity, of course). To look at the same question over C, take the alternative 
normal form 

C: (y 2 = x(x - l)(x - X)) u {oo}; 

what is the topology of C c P2<c? The answer is a torus: 

The idea of the proof is to consider the map 

T T C - ^ C by (X,Y,Z)h-> ( X , Z ) , and OOH->(1,0); 

in affine coordinates this is (x, y) h-» x, so it's the 2- to- l map corresponding to 

the graph of y = ±V(x(x - l)(x - X)). Everyone knows that P 1 ^ is homeomorphic 

to S , the Riemann sphere ('stereographic projection'); consider the 'function' 

y(x) = ± V(x(x - l)(x - X) on P 1 ^ . This is 2-valued outside {0,1, X, oo}: 
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Now cut pl<r; along two paths 01 and Xoo; the double cover falls apart as 2 
pieces, so that the function y is single-valued on each sheet. So 

C * 

(the shading indicates how the two sheets match up under the glueing). To see 
what's going on, open up the slits: 

(2.15) Discussion of genus. A nonsingular projective curve C over C has got 
just one topological invariant, its genus g = g(C): 
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<4 g holes • 

For example, the affine curve C: ( y 2 = f2g+l00 = I l i ( x - aj)) c C 2 where f2g+l 
is a polynomial of degree 2g+1 in x with distinct roots aj, can be related to the 
Riemann surface of Vf exactly as in (2.13), and be viewed as a double cover of 
the Riemann sphere branched in the 2g+l points aj and in oo, and by the 
same argument, can be seen to have genus g. As another example, the genus of a 
nonsingular plane curve C<j c P 2 ^ of degree d is given by 

g = g(cd) = (V) . 

(2.16) Commercial break. Complex curves (= compact Riemann surfaces) appear 
across a whole spectrum of math problems, from Diophantine arithmetic through 
complex function theory and low dimensional topology to differential equations of 
math physics. So go out and buy a complex curve today. 

To a quite extraordinary degree, the properties of a curve are determined by 
its genus, and more particularly by the trichotomy g = 0, g = 1 or g > 2. Some of 
the more striking aspects of this are described in the table on the following page, and 
I give a brief discussion; this ought to be in the background culture of every 
mathematician. 

To give a partial answer to the Diophantine question mentioned in (1.1-2) 
and again in (2.1), it is known that a curve can be parametrised by rational 
functions if and only if g = 0; if I'm working over a fixed field, a curve of genus 0 
may have no k-valued points at all (for example, the conic in (1.2)), but if it has 
one point, it can be parametrised over k, so that its k-valued points are in bijection 
with Any curve of genus 1 is isomorphic to a cubic as in this section, and a 
group law is defined on the k-valued points (provided of course that there exists at 
least one - there's no such thing as the empty group); i f k is a number field (for 
example, k = <Q), the k-valued points form an Abelian group which is finitely 
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generated (the Mordell-Weil Theorem). Whereas a curve of genus g > 2 is now 
known to have only a finite set of k-valued points; this is a famous theorem proved 
by Faltings in 1983, and for which he received the Fields medal in 1986. Thus for 
example, for any n > 4, the Fermat curve x n + y n = 1 has at most a finite number 
of rational points. 

Over €, a curve C of genus 1 is topologically a torus, and has a group law, 
so that it is analytically of the form C a C/(Z © Z-x): 

X 1+X 

The isomorphism between this quotient and a plane curve C3 c Pzq> is given by a 
holomorphic map cp: C —> C3, that is, a kind of 'parametrisation' of C3; but 9 
cannot be in terms of rational functions (by (2.2)), and is oo-to-1; this is the 
theory of doubly periodic functions of a complex variable, which was one of the 
mainstays of 19th century analysis (Weierstrass p function, Riemann theta 
function). 

Another important thing to notice is that different periods x will usually lead 
to different curves; they're all homeomorphic to the standard torus x but as 
algebraic curves, or complex analytic curves, they're not isomorphic. The period x 
is a modulus, that is, a complex parameter which governs variation of the complex 
structure C on the fixed topological object x 

The student interested in more on curves should look at [D. Mumford, Curves 
and their Jacobians], the first part of which is fairly colloquial, or [Clemens]. 
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Chapter II. The category of affine varieties 

§3. Affine varieties and the Nullstellensatz 

Much of the first half of this section is pure commutative algebra; note that 
throughout these notes, ring means a commutative ring with a 1. Since this is not 
primarily a course in commutative algebra, I will hurry over several points. 

(3.1) Proposition-Definition. The following conditions on a ring A are 
equivalent. 

(i) Every ideal I c A is finitely generated; that is, for every ideal I c A, 
there exist f i , . . f^ G I such that I = (f i , . . f^). 

(ii) Every ascending chain 

h c . . i m c . 

of ideals of A terminates, that is the chain is eventually stationary, with IJSJ = I^j+l 
= .. (the ascending chain condition, or a.c.c). 

(iii) Every nonempty set of ideals of A has a maximal element. 
If they hold, A is a Noetherian ring. 

Proof. (i)=» (ii) Given \\ c .. I m c .. , set I = U Im- T h e n clearly I is still an 
ideal. If I = (fj , . . f^), then each fj is an element of some I m ( i ) for some m(i), so 
that taking m = max(m(i)) gives I = I m , and the chain stops at I m . 

(ii) (iii) is clear. (Actually, it uses the axiom of choice.) 
(iii) => (i) Let I be any ideal; write E = {J c 11 J is a f.g. ideal}. Then by 

(iii), Z has a maximal element, say JQ. But then JQ - I , because otherwise any 
f e I \ JQ gives an ideal JQ + Af which is still finitely generated, but strictly bigger 
than JQ. Q.E.D. 

As a thought experiment, prove that Z and k[Xl are Noetherian. 

(3.2) Proposition, (i) Suppose that A is Noetherian, and I c A an ideal; then the 
quotient ring B = A / I is Noetherian. 

(ii) Let A be a Noetherian integral domain, and A c K its field of 
fractions; let O ^ S c A be a subset, and set 
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B = A[S-1] = { a/b G K | a € A, and b = 1 or a product of elements of S }. 

Then B is again Noetherian. 

Proof. Exercise: in either case the ideals of B can be described in terms of certain 
ideals of A; see Ex. 3.4 for hints. 

(3.3) Theorem (Hilbert Basis Theorem). For a ring A, 

A Noetherian A[X] Noetherian. 

Proof. Let J c A[X] be any ideal; I prove that J is finitely generated. Define the 
ideal of leading terms of degree n in J to be 

J n = { a € A | 3 f = aX n + b n _ i X n - l + .. b 0 e J }. 

Then J n is an ideal of A and J n c J n + j (please provide your own proofs). Hence, 
using the a.c.c, there exists N such that 

J N = J N + I = • 

Now build a set of generators of J as follows: for i < N, let aji,.. ajm(j) be 
generators of J \ and, as in the definition of Jj, for each of the a^, let 
*ik - aikX* + . . € J be an element of degree i and leading term ay^ 

I claim that the set 

{ f f c l i - 0 , . . N,k = l , . .m( i )} 

just constructed generates J: for given g e J, suppose deg g = m. Then the 
leading term of g is bX 1 1 1 with be J m , so that by what I know about J m , lean 
write b = X cm'k am'k ( n e r e m ' = m ^ m < N, otherwise m' = N). Then consider 
gl = g - X ^ m ~ m ^ - X cm 'kfm'k : by construction the term of degree m is zero, so 
that deg gj < deg g - 1; by induction, I can therefore write out g as a combination 
of fifc, so that these generate J. Q.E.D. 

Corollary. If k is a field, then a finitely generated k-algebra is Noetherian. 

A finitely generated k-algebra is a ring of the form A = klaj,.. a n], so that 
A is generated as a ring by k and aj,.. an; clearly, every such ring is isomorphic 
to a quotient of the polynomial ring, A * klXj,. . X n ] / I . A field is Noetherian, and 
by induction on (3.3), klX^,.. X n ] is Noetherian; finally, passing to the quotient is 
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OK by (3.2, i). Q.E.D. 

(3.4) The correspondence V. k is any field, and A = klXj, . . X n ] . Following an 
almost universal idiosyncracy of algebraic geometersH I write A \ = k n for the 
n-dimensional affine space over k; given a polynomial f(Xj , . . X n ) e A and a 
point P = (aj,.. a n) e A \ , the element f(aj,.. a n) e k is thought of as 'evaluating 
the function f at P '. Define a correspondence 

{ ideals J c A } { subsets X c A \ } 
by 

j i — • V(J) = { P G A \ | f(P) = 0 for all f 6 J }. 

Definition. A subset X c A \ is an algebraic set i f X = V(I) for some I . (This 
is the same thing as a variety, but I want to reserve the word.) Notice that by 
Corollary 3.3, I is finitely generated. If I = (f j , . . f r) then clearly 

V(I) = { P € A \ | fi(P) = 0 for i = 1,.. r }, 

so that an algebraic set is just a locus of points satisfying a finite number of 
polynomial equations. 

If I = (0 is a principal ideal, then I usually write V(f) for V(I); this is of 
course the same thing as V: (f = 0) in the notation of §§1-2. 

(3.5) Proposition-Definition. The correspondence V satisfies the following 
formal properties: 

(i) V(0) = A \ ; V(A) = 0; 

(ii) I c J V ( I ) D V ( J ) ; 

(iii) V ( I 1 n I 2 ) = V ( I 1 ) u V ( I 2 ) ; 

Ov) V C l t e A l X ) = f W V d X ) -
Hence the algebraic subsets of A \ form the closed sets of a topology on A \ , 
the Zariski topology. 

The above properties are quite trivial, with the exception of the inclusion c 
in (iii). For this, suppose Pg V ( I j ) u V ( l 2 ) ; then there exist f € I j . g e I2 such 
that f(P) t 0, g(P) ± 0. So fg <= I i n I2, but fg(P) t 0, and therefore 
P « V(I i n I2). Q.E.D. 

^ A n is thought of as a variety, whereas k n is just a point set. Think of this as 
pure pedantry if you like; compare (4.6) below, as well as (8.3). 
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The Zariski topology on l \ \ induces a topology on any algebraic set 
X c A \ : the closed subsets of X are the algebraic subsets. 

It's important to notice that the Zariski topology on a variety is very weak, 
and is quite different from the familiar topology of metric spaces like R N . As an 
example, a Zariski closed subset of A ^ is either the whole of A ^ or is finite; 
see Ex. 3.12 for a description of the Zariski topology on A \ . If k = R or C 
then Zariski closed sets are also closed for the ordinary topology, since polynomial 
functions are continuous. In fact they're very special open or closed subsets: a non
empty Zariski open subset of R N is the complement of a subvariety, so auto
matically dense in R N . 

The Zariski topology may cause trouble to some students; since it is only 
being used as a language, and has almost no content, the difficulty is likely to be 
psychological rather than technical. 

(3.6) The correspondence I . As a kind of inverse to V there is a correspondence 

{ideals J c A } <J— { subsets X c A \ } 
by 

I(X) = { f e A | f(P) = 0 for all P e X } < - h X. 

That is, I takes a subset X to the ideal of functions vanishing on it. 

Proposition, (a) X c Y ^ I ( X ) 3 l ( Y ) ; 
(b) for any subset X c A n k , I have X c V(I(X)), with equality i f and only 

if X is an algebraic set; 
(c) for J c A, I have J c I(V(J)); the inclusion may well be strict. 

Proof, (a) is trivia}. The two inclusion signs in (b) and (c) are tautologous: if 
I(X) is defined as the set of functions vanishing at all points of X, then for any 
point of X, all the functions of I(X) vanish at it. And indeed conversely, i f not 
more so, just as I was about to say myself, Piglet. 

The remaining part of (b) is easy: if X = V(I(X)) then X is certainly an 
algebraic set, since it's of the form V(ideal). Conversely, if X = V(IQ) is an 
algebraic set, then I(X) contains at least IQ, so V(I(X)) c V(IQ) = X. 

There are two different ways in which the inclusion J c I(V(J)) in (c) may 
be strict. It's most important to understand these, since they lead directly to the 
correct statement of the Nullstellensatz. 
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Example 1. Suppose that the field k is not algebraically closed, and let f e k[X] 
be a nonconstant polynomial not having a root in k. Consider the ideal 
J = (Oc klX]. Then J ^ k[X], since 1 $ J. But 

V(J) = { P e A * k | f(P) = 0 } = 0. 

Therefore I(V(J)) = k[X] (since any function vanishes at all points of the empty 
set). 

So if your field is not algebraically closed, you may not get enough zeros. A 
rather similar example: in R 2 , the polynomial X 2 + Y 2 defines the single point 
P = (0, 0), so V ( X 2 + Y 2 ) = {P}. But then many more polynomials vanish on {P} 
than just the multiples of X 2 + Y 2 , and in fact I(P) = (X, Y). 

Example 2. For any f e ktXj,.. X n ] and a > 2, f a defines the same locus as f, 
that is f*(P) = 0 f(P) = 0. So V(f a ) = V(f), and f e I(V(f *)), but usually 
f g (f 3 ). The trouble here is already present in R 2 : in §1, mention was made of 
the 'double line' defined by X 2 = 0. The only meaning that can be attached to this is 
the line (X = 0) deemed to have multiplicity 2; but the point set itself doesn't 
understand that it's being deemed. 

(3.7) Irreducible algebraic set. An algebraic set X c A \ is irreducible if there 
does not exist a decomposition 

X = X j u X 2 with X i , X 2 ? X 

of X as a union of two strict algebraic subsets. For example, the algebraic subset 
V(xy) c A \ is the locus consisting of the two coordinate axes, and is obviously 
the union of V(x) and V(y), hence reducible. 

Proposition, (a) Let X c A \ be an algebraic set and I(X) the corresponding 
ideal; then 

X is irreducible <=> I(X) is prime. 

(b) Any algebraic set X has a (unique) expression 

X = X i u . . X r (*) 

with X\ irreducible and Xj £ Xj for i £ j . 
The Xj in (*) are the irreducible components of X. 

Proof, (a) In fact I prove that X is reducible <==» I(X) is not prime. 
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(=») Suppose X = X j U X 2 with X ^ , X 2 £ X algebraic subsets. Then 
X\ £ X means that there exists f j e I (Xi) \ I(X), and similarly X 2 5 X gives 
f2 € I(X2) \ I(X). Now the product f \ij vanishes at all points of X, and so 
fjf2 G I(X). Therefore I(X) is not prime. 

(«=) Suppose that I(X) is not prime; then there exist f j , f2 $ I(X) such that 
f l f 2 € I(X). Let I t = (I(X), f i ) and V ( I t ) = X i ; then X J J X is an algebraic 
subset; similarly, setting 12 = (I(X), f2) and V(i2) = X2 gives X 2 5 X . But 
X c X i u X 2 , since for all P e X, f if2(P) = 0 implies that either fj(P) = 0 or 
f2(P) = 0. 

(b) First of all, I establish the following proposition: the algebraic subsets of 
A \ satisfy the descending chain condition, that is, every chain 

X\ z>X2 =>.. X n z>.. 

eventually stops with Xjsi = X ^ + l = . This is because 

I ( X i ) c I ( X 2 ) c . . I ( X n ) c 

is an ascending chain of ideals of A, and this stops, giving X^[ = Xjsj+l = .. . 
Thus just as in (3.1), 

any nonempty set Z of algebraic subsets ^ 
of A \ has a minimal element. 

Now to prove (b), let Z be the set of algebraic subsets of A \ which do 
not have a decomposition (*). If Z = 0 then (b) is proved. On the other hand, if 
Z £ 0 then by (!), there must be a minimal element X € Z, and this leads speedily 
to one of two contradictions: if X is irreducible, then X g Z, a contradiction; i f X 
is reducible, then X = X j u X2, with X j , X2 S X, so that by minimality of X e 
Z, I get X j , X2 £ Z. So each of X j , X2 has a decomposition (*) as a union of 
irreducibles, and putting them together gives a decomposition for (*), so X $ Z. 
This contradiction proves Z = 0. This proves the existence part of (b). The 
uniqueness is an easy exercise, see Ex. 3.8. Q.E.D. 

The proof of (b) is a typical algebraist's proof: it's logically very neat, but 
almost completely hides the content: the real point is that i f X is not irreducible, 
then it breaks up as X = X j u X2, and then you ask the same thing about X\ and 
X2, and so on; eventually, you must get to irreducible algebraic sets, since 
otherwise you'd get an infinite descending chain. 

(3.8) I now want to state and prove the Nullstellensatz. There is an intrinsic 
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difficulty in any proof of the Nullstellensatz, and I choose to break it up into two 
segments. Firstly I state without proof an assertion in commutative algebra, which 
will be proved in (3.15) below (in fact parts of the proof will have strong geometric 
content). 

Hard Fact. Let k be a (infinite) field, and A = klaj,.. an] a finitely generated 
k-algebra. Then 

A is a field A is algebraic over k. 

Just to give a rough idea why this is true, notice that if t e A is trans
cendental over k, then kit] is a polynomial ring, so has infinitely many primes (by 
Euclid's argument). Hence the extension k c k(t) is not finitely generated as 
k-algebra: finitely many elements pj/qj e k(t) can have only finitely many primes 
among their denominators. 

(3.9) Definition. If I is an ideal of A, the radical of I is 

rad I = Vl = { f € A | f11 € I for some n }. 

rad I is an ideal, since f, g e rad I f n , g m € I for suitable n, m, and therefore 

(f + g) r = I ( a ) f a g r ~ a € I i f r > n+m-1. 

An ideal I is radical if I = rad I . 
Note that a prime ideal is radical. It's not hard to see that in a UFD like 

k [Xi , . .X n ] , a principal ideal I = (0 where f = 0 f i " 1 (factorisation into distinct 
prime factors), has rad I = (fred)» where f r e ( j = 11 f i-

(3.10) Nullstellensatz (Hilbert's zeros theorem). Let k be an algebraically closed 
field. 

(a) Every maximal ideal of the polynomial ring A = k[Xj,.. X n ] is of the 
form mp = (X\ - aj,.. X n - a n) for some point P = (aj,.. a n) e A \ ; that is, it's 
the ideal I(P) of all functions vanishing at P. 

(b) Let J c A be an ideal, J ± (1); then V(J) * 0. 
(c) For any J c A, 

I(V(J)) = rad J. 

The essential content of the theorem is (b), which says that if an ideal J is 
not the whole of klXj, . . X n ] , then it will have zeros in A \ . Note that (b) is 
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completely false if k is not algebraically closed, since if f e klX] is a nonconstant 
polynomial then it will not generate the whole of k[X] as an ideal, but V(f) = 
0 c A^k is perfectly possible. The name of the theorem (Nullstelle = zero of a 
polynomial + Satz - theorem) should help to remind you of the content (but stick to 
the German if you don't want to be considered an ignorant peasant). 

Corollary. The correspondences V and I 

{ ideals I c A } < V ' * > { subsets X c A \ } 

induce bijections [} [} 

{ radical ideals } < > { algebraic subsets } 

and U U 

{ prime ideals } < > { irreducible alg. subsets }. 

This holds because V(I(X)) = X for any algebraic set X by (3.6, b), and 
I(V(J)) = J for any radical ideal J by (c) above. 

Proof of NSS (assuming (3.8)). (a) Let m c k K j , . . X n ] be a maximal ideal; 
write K = k[Xi, . . X n ] / m , and (p for the composite of natural maps (p: k —> 
klXj,.. X n ] —> K. Then K is a field (since m is maximal), and it is finitely 
generated as k-algebra (since its generated by the images of the Xj). So by (3.8), 
cp: k —» K is an algebraic field extension. But k is algebraically closed, hence cp is 
an isomorphism. 

Now for each i , Xj e klXj, . . X n ] maps to some element b[ e K; so taking 
aj = (p-l(bj) gives X j - aj e Ker {klXj, . . X n ] —* K} = m. Hence there exist 
aj,.. a n 6 k such that (X\ - aj,.. X n - a n) c m. On the other hand, it's clear that 
the left-hand side is a maximal ideal, so (Xj - aj,.. X n - a n) = m. This proves (a). 

(a) (b) This is easy. If J £ A = klXj,. . X n ] then there exists a maximal 
ideal m of A such that J e m (the existence of m is easy to check, using the 
a.c.c). By (a), m is of the form m = (Xj - aj,.. X n - a n); then J e m just means 
that f(P) = 0 for all f e J, where P = (aj,.. a n). Therefore P e V(J). 

(b) ==» (c) This requires a cunning trick. Let J c klXj,.. X n ] be any ideal, 
and f € klXj,.. X n ] . Introduce another variable Y, and consider the new ideal 

Ji = ( J , f Y - l ) c k K i , . . X n f Y ] 

generated by J and fY - 1. Roughly speaking, V(Jj) is the variety consisting of 
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P e V(J) such that f(P) ± 0. More precisely, a point Q e VCJj) c A 1 1 * ^ is an 
(n + l)-tuple Q = (aj,.. an, b) such that 

gCaj,.. a n) = 0 for all g e J, that is, P = (aj,.. a n) e V(J), 
and 

f(P>b = 1, that is f(P) * 0 and b = f(P)" 1 . 

Now suppose that f(P) = 0 for all P e V(J); then clearly, from what I've 
just said, V(Jj) = 0. So I can use (b) to deduce that 1 e J j , that is, there exists an 
expression 

1 = I gifi + go(fY - 1) € k[Xi,.. X n , Y] (**) 

with f j e J, and go, gj e klXj, . . X n , Y]. 
Consider the way in which Y appears in the right-hand side of (**): apart 

from its explicit appearance in the second term, it can appear in each of the gj; 
suppose that Y N is the highest power of Y appearing in any of go, gj. If I then 
multiply through both sides of (**) by f N , I get a relation of the form 

f N = I Gi(X l f . . X n , fY)fi + G 0 ( X l f . . X n , fY)(fY - 1); (***) 

here Gj is just f N g j written out as a polynomial in X j , . . X n and (fY). 
(***) is just an equality of polynomials in klXj,. . X n , Y], so I can reduce it 

modulo (fY - 1) to get 

f N = I h i ( X i , . . X n ) f i € k [ X i , . . X n , Y ] / ( f Y - l ) ; 

both sides of the equation are elements of k[Xj,. . X n ] . Since the natural 
homomorphism klXj,.. X n ] Q klXj, . . X n , Y]/(fY - 1) is injective (it is just the 
inclusion of klXj,.. X n ] into klX^,.. X n ] [ f~ l ] , as a subring of its field of fractions), 
it follows that 

f N = I h i ( X l f . . X n ) f i € k K i , . . X n ] ; 

that is, f N e J for some N. Q.E.D. 

Remark. Several of the textbooks cut the argument short by just saying that (**) 
is an identity, so it remains true if we set Y = f ~ l . This is of course perfectly valid, 
but I have preferred to spell it out in detail. 

(3.11) Worked examples, (a) Hypersurfaces. The simplest example of a variety 
is the hypersurface V(f): (f = 0) c A \ . If k is algebraically closed, there is just 
the obvious correspondence between irreducible elements f e klX|„. X n ] and 
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irreducible hypersurfaces: it follows from the Nullstellensatz that two distinct 
irreducible polynomials f j , f 2 (not multiples of one another) define different 
hypersurfaces V(f\) and V(f 2 ) . This is not at all obvious (for example, it's false 
over R ) , although it can be proved without using the Nullstellensatz by 
elimination theory, a much more explicit method with a nice 19th century flavour; 
see Ex. 3.13. 

(b) Once past the hypersurfaces, most varieties are given by 'lots' of 
equations; contrary to intuition, it is usually the case that the ideal I(X) needs many 
generators, that is, many more than the codimension of X. I give an example of a 
curve C c A \ for which 1(C) needs 3 generators; assume that k is an infinite 
field. 

Consider first J = (uw - v 2 , u^ - vw). Then J is not prime, since 

J 3 w(uw - v 2 ) - v(u^ - vw) = u(w 2 - u 2v), 

but u, w 2 - u 2v $ J. Therefore 

V(J) = V(J, u) u V(J, w 2 - u 2v); 

obviously, V(J, u) is the line (u = v = 0). I claim that the other component 
C = V(J, w 2 - u 2v) is an irreducible curve; indeed, C is given by 

uw = v 2 , u^ = vw, w 2 = u 2 v. 

I claim that C c A 3 is the image of the map cp: A* —» C c A 3 given by t h-* 
t*, t 4 , t^: to see this, if u £ 0 then v, w ± 0. Set t = v/u, then t = w/v and 
t 2 = (v/u)(w/v) = w/u. Hence v = w 2 / u 2 = t 4 , u = v/(v/u) = t 4 / t = t 3 , and 
w = tv = t^. Now C is irreducible, since if C = X \ u X 2 with X[ c C, and 
fj(u, v, w) G I(Xj), then for all t, one of fj(t 3 , t 4 , t^) must vanish. Since a nonzero 
polynomial has at most a finite number of zeros, one of f\, f 2 must vanish 
identically, so f j G 1(C). 

This example is of a nice 'monomial' kind; in general it might be quite tricky 
to guess the irreducible components of a variety, and even more so to prove that 
they are irreducible. A similar example is given in Ex. 3.11. 

(3.12) Finite algebras. I now start on the proof of (3.8). Let A c B be rings. As 
usual, B is said to be finitely generated over A (or f.g. as A-algebra) if there 
exist finitely many elements bj,.. b n such that B = A[bi, . .b n ], so that B is 
generated as a ring by A and bj,.. b n . 

Contrast with the following definition: B is a finite A-algebra i f there exist 
finitely many elements bj,.. b n such that B = Abj + .. A b n , that is, B is finitely 
generated as A-module. The crucial distinction here is between generation as ring 
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(when you're allowed any polynomial expressions in the bj), and as module (the bj 
can only occur linearly). For example, klX] is a finitely generated k-algebra (it's 
generated by 1 element X), but is not a finite k-algebra (since it has infinite 
dimension as k-vector space). 

Proposition, (i) Let A c B c C be rings; then 

B a finite A-algebraand C a finite B-algebra 

=» C a finite A-algebra. 

(ii) If A c B is a finite A-algebra and x G B then x satisfies a monic 
equation over A, that is, there exists a relation 

x n + a n _ i x n ~ l + .. ao = 0 with aj e A 

(note that the leading coefficient is 1). 
(iii) Conversely, i f x satisfies a monic equation over A, then B = A[x] is 

a finite A-algebra. 

Proof, (i) and (iii) are easy exercises (compare similar results for field 
extensions). For (ii), I use a rather nonobvious 'determinant trick' (which I didn't 
think of for myself): suppose B = X Abj; for each i , xbj € B, so there exist 
constants ay e A such that 

xbi = Xj aybj. 

This can be written ? 

Xj (x8y - ay)bj = 0, 

where Sjj is the identity matrix. Now let M be the matrix with 

M i j = (x8y-aj j ) , 

and set A = det M. Then by standard linear algebra, (writing b for the column 
vector with entries (bj,.. bn) and M a ( *j for the adjoint matrix of M), 

Mb = 0, hence 0 = (M adj)Mb = Ab, 

and therefore Abj = 0 for all i . However, l g € B is a linear combination of the 
bj, so that A = A 1 B = 0, and I've won my relation: det (x8y - ay) = 0. This is 
obviously a monic relation for x with coefficients in A. Q.E.D. 
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(3.13) Noether normalisation. 
Theorem (Noether normalisation lemma). Let k be an infinite field, and 
A = klaj,.. an] a finitely generated k-algebra. Then there exist m < n and 
yi»- ym E A such that 

(0 yi»-ym are algebraically independent over k; 
and 

(ii) A is a finite k[yj,.. ym]-algebra. 

((i) means as usual that there are no nonzero polynomial relations holding between 
the y\; an algebraist's way of saying this is that the natural (surjective) map 
WYj,.. Y m ] - » k [y j , . . y m ] c A is injective.) 

It is being asserted that, as you might expect, the extension of rings can be 
built up by first throwing in algebraically independent elements, then 'making an 
algebraic extension'; however, the statement (ii) is far more precise than this, since 
it says that every element of A is not just algebraic over klyj,.. y m ] , but satisfies a 
monic equation over it. 

Proof. Let I be the kernel of the natural surjection, 

I = ker { k K i . . . X n ] - » k[ai,.. an] = A }. 

Suppose that 0 £ f € I ; the idea of the proof is to replace X j , . . X n _ i by certain 
X'i„ X ' n _ i so that f becomes a monic equation for a n over A' = kla'j,.. a ' n _ i l . 
So write 

a'i = a i - a i a n 

a ' n - l = a n - l -<Xn-l an 

(where the CCJ are elements of k to be specified later). Then 

0 = f(a'i +a ia n , . . a ' n _ i + a n _ i a n , a n). 

Claim. For suitable choice of aj , . . a n . j e k, the polynomial 

fOCi+aiXn. . . X ' n . i + a n . i X n f X n ) 

is monic in X n . 
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Using the claim, the theorem is proved by induction on n: if 1 = 0 then 
there's nothing to prove, since a ,̂.. a n are algebraically independent. Otherwise, 
pick 0 £ f e I , and let a\,.. cc n - l be a s * n the claim; then f gives a monic relation 
satisfied by a n with coefficients in A' = kla'i,.. a ' n ^j] c A. By the inductive 
assumption, there exist yj , . . y m e A' such that 

(1) Yl v ym are algebraically independent over k; 
(2) A' is a finite kly^,.. ym]-algebra. 

Then A = A'[a n] is finite over A' (by (3.12, iii)), so by (3.12, i), A is finite over 
klyj,.. y m ] , proving the theorem. 

It only remains to prove the claim. Let d = deg f, and write 

f = F d + G, 

with F j homogeneous of degree d, and deg G < d - 1. Then 

f ( X i f . . X n _ i , X n ) = fCX'i + cXiXn,. X ' n - l + a n _ i X n , X n ) 

- Fd(a i , . . a n _i , l ) X n

d + (stuff involving X n to power < d - l ) ; 

I'm now home provided that F^a j , . . a n _ j , 1) £ 0. Since F j is a nonzero 
polynomial, it's not hard to check that this is the case for 'almost all' values of 
04,.. a n _ i (the proof of this is discussed in Ex. 3.13). Q.E.D. 

(3.14) Remarks. (I) In fact, the proof of (3.13) shows that y j , . . y m can be 
chosen to be m general linear forms in aj,.. an. To understand the significance of 
(3.13), write I = ker {k[Xj,.. Xn]—> klaj,.. an] = A } , and assume for simplicity that 
I is prime. Consider V = V(I) c A \ ; let K: A \ —> B\mk be the linear projection 
defined by yj , . . y m , and p = n\y: V —» A 1 1 1 ^ . It can be seen that the conclusions 
(i) and (ii) of (3.13) imply that above every Pe A 0 1 ^ , p~*(P) is a finite non
empty set (see Ex. 3.16). 

(II) The proof of (3.13) has also a simple geometric interpretation: choosing 
n - 1 linear forms in the n variables X j , . . X n corresponds to making a linear 
projection n: A \ - 4 A 1 1 " ^ ; the fibres of K then form a (n - l)-dimensional 
family of parallel lines. Having chosen the polynomial f e I , it is not hard to see 
that f gives rise to a monic relation in the final X n i f and only if none of the 
parallel lines are asymptotes of the variety (f = 0); in terms of projective geometry, 
this means that the point at infinity (0, 04,.. a n - l » 1) e P n ~*k specifying the 
parallel projection does not belong to the projective closure of (f = 0). 

(III) The above proof of (3.13) does not work for a finite field (see 
Ex. 3.14). However, the theorem itself is true without any condition on k (see 
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[Mumford, Introduction, p. 4] or [Atiyah and Macdonald, (7.9)]). 

(3.15) Proof of (3.8). Let A = klaj,.. an] be a finitely generated k-algebra. 
Suppose y j , . . y m e A are as in (3.13), and write B = k[yj,.. y m ] . Then A is a 
finite B-algebra, and it is given that A is a field. If I knew that B is a field, it 
would follow at once that m = 0, so that A is a finite k-algebra, that is, a finite 
field extension of k, and (3.8) would be proved. Therefore it remains only to 
prove the following statement: 

Lemma. I f A is a field, and B c A a subring such that A is a finite B-algebra, 
then B is a field. 

Proof. For any O ^ b e B , the inverse b~ l e A exists in A. Now by (3.12, ii), 
the finiteness implies that b~l satisfies a monic equation over B, that is, there 
exists a relation 

b"*n + a n - 1 b"^ n "^ + .. ajb"*1 + aQ = 0, with aj € B; 

then multiplying through by b n ~ l , 

b " 1 = - ( a n _ ! + a n_ 2b + .. a g b ^ b e B . 

Therefore B is a field. This proves (3.8) and completes the proof of NSS. 

(3.16) For the purposes of arranging that everything goes through in characteristic 
p, it is useful to add a tiny precision. I'm only going to use this in one place in the 
sequel, so if you can't remember too much about separability from Galois theory, 
don't lose too much sleep over it (GOTO 3.17). 

Addendum. Under the conditions of (3.13), i f furthermore k is algebraically 
closed, and A is an integral domain with field of fractions K then y j , . . y m € A 
can be chosen as above so that (i) and (ii) hold, and in addition 

(iii) k(yj,.. y m ) c K is a separable extension. 

Proof. I f k is of characteristic 0, then every field extension is separable; suppose 
therefore that k has characteristic p. Since A is an integral domain, I is prime; 
hence if 1^0, it contains an irreducible element f. Now for each i , there is a 
dichotomy: either f is separable in Xj, or f e k[Xj,.. XjP,. .X n ]. 

Claim. If f is inseparable in each Xj , then f = gP for some g, contradicting the 
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irreducibility of f. 

The assumption is that f is of the form: 

f = F(XiP,.. X n P), with F€ k l X l v . X n ] . 

If this happens, let g € klXj, . . X n ] be the polynomial obtained by taking the pth 
root of each coefficient of F; then making repeated use of the standard identity 
(a + b)P = aP + bP in characteristic p, it is easy to see that f = gP. 

It follows that any irreducible f is separable in at least one of the Xj , say in 
X n . Then arguing exactly as above, 

fCX't+apCn,.. X V l + C t n - l X n , X n ) 

provides a monic, separable relation for a n over A' = kla'i,.. a ' n _j] . The result 
then follows by the same induction argument, using this time the fact that a 
composite of separable field extensions is separable. Q.E.D. 

(3.17) Reduction to a hypersurface. Recall the following result from Galois 
theory: 

Primitive element theorem. Let K be an infinite field, and K c L a finite 
separable field extension; then there exists x e L such that L = K(x). Moreover, if 
L is generated over K by elements zj , . . z^, the element x can be chosen to be a 
linear combination XJ(XJZJ. 

(This follows at once from the Fundamental Theorem of Galois theory: i f K c M is 
the normal closure of L over K then K c M is a finite Galois field extension, so 
that by the Fundamental Theorem there only exist finitely many intermediate field 
extensions between K and M. The intermediate subfields between K and L 
form a finite collection {Kj} of K-vector subspaces of L, so that I can choose 
x 6 L not belonging to any of these. If zj,.. z^ are given, not all belonging to any 
Kj, then x can be chosen as a K-linear combination of the zj. Then K(x) = L.) 

Corollary. Under the hypotheses of the Noether normalisation lemma (3.13), 
there exist y i„ . y m + i e A such that y j , . . y m satisfy the conclusion of (3.13), 
and in addition, the field of fractions K of A is generated over k by y i„ . y m + i . 

Proof. According to (3.16), I can arrange that K is a separable extension of 
k(yi,.. y m ) . If A = klx j , . . x n ] , then the x j certainly generate K as a field 
extension of k(yi,.. y m ) , so that a suitable linear combination y m + l of the X J 
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with coefficients in k(yi„. y m ) generates the field extension; clearing denomin
ators, y m + i can be taken as a linear combination of the x{ with coefficients in 
klyi,.. y m ] , hence as an element of A. Q.E.D. 

Algebraically, what I have proved is that the field extension k c K, while not 
necessarily purely transcendental, can be generated as a composite of a purely 
transcendental extension k c k(yj,.. y m ) = KQ followed by a primitive algebraic 
extension KQ C K = Ko(y m +i ) . In other words, K = k(yi„. y m + l ) , with only one 
algebraic dependence relation between the generators. The geometric significance of 
the result will become clear in (5.10). 

Exercises to §3. 

3.1. An integral domain A is a principal ideal domain if every ideal I of A is 

principal, that is of the form I = (a); show directly that the ideals in a PID satisfy the 

a.c.c. 

3.2. Show that an integral domain A is a UFD if and only if every ascending chain of 

principal ideals terminates, and every irreducible element of A is prime. 

3.3. (i) Prove Gauss's lemma: if A is a UFD and f, g € A[X] are polynomials with 

coefficients in A, then a prime element of A that is a common factor of the coefficients 

of the product fg is a common factor of the coefficients of f or g. 

(ii) It is proved in undergraduate algebra that if K is a field then K[X] is a UFD. 

Prove by induction on n that ktXj,.. X n ] is a UFD; for this you will need to compare 

factorisations in kKj,.. X n l with factorisations in k(Xj,.. X n _ i ) K n l , using Gauss's 

lemma to clear denominators. 

3.4. Prove Proposition 3.2, (ii): if A is an integral domain with field of fractions K, 

and if O ^ S c A is a subset, define 

B » A[S _ 1 ] = {a/b€ K I a € A, and b * 1 or a product of elements of S}; 

prove that an ideal I of B is completely determined by its intersection with A, and 

deduce that A Noetherian B Noetherian. 

3.5. Let J = (XY, XZ, YZ) c k[X, Y, Z); find V(J) c A 3 ; is it irreducible? Is it true 

that J = I(V(J))? Prove that J cannot be generated by 2 elements. Now let J' -

(XY, (X - Y)Z); find V(J'), and calculate rad J'. 

3.6. Let J = ( X 2 + Y 2 - 1, Y - 1); find f e I(V(J)) \ J. 

3.7. Let J = ( X 2 + Y 2 + Z 2 XY + XZ + YZ); identify V(J) and I(V(J)). 

3.8. Prove that the irreducible components of an algebraic set are unique (this was stated 

without proof in (3.7, b). That is, given two decompositions V - (Jiel Vj - UjeJ w j 

of V as a union of irreducibles, assumed to be irredundant (mat is, Vj <£ Vj» for i £ i'), 

prove that the Vj are just a renumbering of the Wj. 
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3.9. Let f = X 2 - Y 2 and g = X 3 + X Y 2 - Y 3 - X 2 Y - X 4- Y; find the irreducible 

components of V(f, g) c A 2 £ . 

3.10. If J = (uw - v 2 , w 3 - u 5 ) , show that V(J) has two irreducible components, one 

of which is the curve C of (3.11, b). 

Prove that the same curve C can be defined by two equations, uw • v 2 and u^ -

2u2vw + w 3 =0. The point here is that the second equation, restricted to the quadric 

cone (uw « v 2 ) is trying to be a square. 

3.11. Let f » v 2 - uw, g « u 4 - vw, h • w 2 - u 3v. Identify the variety V(f, g, h) c 

A 3 in the spirit of (3.11, b). Find out whether V(f, g), V(f, h) and V(g, h) have any 

other interesting components. 

3.12. (i) Prove that for any field k, an algebraic set in A ^ is either finite or the whole 

of A 1 j c . Deduce that the Zariski topology is the cofinite topology. 

(ii) Let k be any field, and f, g € k[X, Y] irreducible elements, not multiples of one 

another. Prove that V(f, g) is finite. (Hint: Write K = k(X); prove first that f, g have 

no common factors in the PID K[Y). Deduce that there exist p, q € K[Y] such that 

pf + qg = 1; now by clearing denominators in p, q, show that there exists h € k[X] and 

a, b e k(X, Y] such that h = af + bg. Hence conclude that there are only finitely many 

possible values of the X-coordinate of points of V(f, g).) 

(iii) Prove that any algebraic set V c A \ is a finite union of points and curves. 

3.13. (a) Let k be an infinite field and f € k[X^,.. X n l ; suppose that f is nonconstant, 

that is, f i k. Prove that V(f) t tK\. (Hint: suppose that f involves X n , and consider 

f " £aj(Xi , . . X n - l ) x r v now use induction on n.) 

(b) Now suppose that k is algebraically closed, and let f be as in (a). Suppose that f 

has degree m in X n , and let a m ( X j , . . X n _ j ) X n

m be the leading term; show that 

wherever a m t 0, there is a finite nonempty set of points of V(f) corresponding to 

every value of (Xj , . . X n _ j ) . Deduce in particular that if n>2 then V(f) is infinite. 

(c) Put together the results of (b) and of Ex. 3.12, (iii) to deduce that if the field k is 

algebraically closed, then distinct irreducible polynomials f € k[X, Y] define distinct 

hypersurfaces of A \ (compare (3.11, a)). 

(d) Generalise the result of (c) to A \ . 

3.14. Give an example to show that the proof of Noether normalisation given in (3.13) 

fails over a finite field k. (Hint: find a polynomial f(X, Y) for which F^cc, 1) - otf -

a, so that F d ( a , 1) = 0 for all a € k.) 

3.15. Let A be a ring and A c B a finite A-algebra. Prove that if m is a maximal 

ideal of A then mB t B. (Hint: by contradiction, suppose B » mB; if B « X Abj 

then for each i, bj = Xaybj with ajj € m. Now prove that 

A « det(5jj - ay) « 0, 

and conclude that lg € m, a contradiction. (See also [Atiyah and Macdonald, Prop. 2.4 

and Cor. 2.51.) 
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3.16. Let A - k[aj,.. an) be as in the statement of Noether normalisation (3.13), write 

I * ker {kKi , . . X n ] —• k[ai,.. an] = A}, and consider V » V(I) in A \ ; assume for 

simplicity that I is prime. 

Let Y j t . . Y m be general linear forms in Xj , . . X m , and write n: A \ —• A m k for 

the linear projection defined by Y j , . . Y m ; set p = 7T|y: V - * A 1 1 1^. Prove that (i) and 

(ii) of (3.13) imply that above every P e A * \ , p - 1 (P ) is a finite set, and nonempty if 

k is algebraically closed. (Hint: I contains a monic relation for each Xj over 

klY^,.. Y m ] ; the finiteness comes easily from this. For the nonemptiness, use Ex. 3.15 to 

show that for any P - (bj... t ^ ) € A m fc, the ideal Jp - I + (Yj - bj... Y m - b m ) ft 

klXj,.. X m ) . Then apply the nonemptiness assertion of the Nullstellensatz.) 



66 §4 

§4. Functions on varieties 

In this section I work over a fixed field k; from (4.8, II) onwards, k will be 
assumed to be algebraically closed. The reader who assumes throughout that k = C 
will not lose much, and may gain a psychological crutch. I sometimes omit mention 
of the field k to simplify notation. 

(4.1) Polynomial functions. Let V c A \ be an algebraic set, and I(V) its ideal. 
Then the quotient ring k(V] = klX^,.. X n l / I ( V ) is in a natural way a ring of 
functions on V. In more detail, define a polynomial function on V to be a map 
f: V -> k of the form P h F(P), with F e klX^,.. X n l ; this just means that f is 
the restriction of a map F: A n —> k defined by a polynomial. By definition of I(V), 
two elements F, G e klX^,.. X n l define the same function on V if and only if 

F(P) - G(P) = 0 for all P e V, 

that is, i f and only i f F - G € I(V). Thus I define the coordinate ring klV] by 

klV] = { f : V - » k | f is a polynomial function} a kpq,.. X nJ/I(V). 

This is the smallest ring of functions on V containing the coordinate functions Xj 
(together with k), so for once the traditional terminology is not too obscure. 

(4.2) klV] and algebraic subsets of V. An algebraic set X c A n is contained in 
V if and only if I(X) =>1(V). On the other hand, ideals of ldX},.. X n l containing 
I(V) are in obvious bijection with ideals of klXi, . . X n l / I ( V ) . (Think about this if 
it's not obvious to you: the ideal J with I(V) c J c k[Xj[,.. X n ] corresponds to 
J/I(V); and conversely, an ideal JQ of klXj, . . X n ] / I ( V ) corresponds to its inverse 
image in klXj, . . X n l . ) 

Hence the I and V correspondences 

{ideals I c klV] } { subsets X c V } 

by 
I i—» V(I) = { P € v | f ( P ) = 0 for all f € l } 

and 
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{ ideals J c klV] } <-L_ { subsets X c V } 
by 

I(X) = { f e klV] | f(P) = 0 for all Pe X } <-H X 

are defined as in §3, and have similar properties. In particular V has a Zariski 
topology, in which the closed sets are the algebraic subsets (this is of course the 
subspace topology of the Zariski topology of A n ) . 

Proposition. Let V c A n be an algebraic subset. The following conditions are 
equivalent: 

(i) V is irreducible; 
(ii) any two open subsets 0 £ U j , U2 V have U j n U2 £ 0\ 

(iii) any nonempty open subset U c V is dense. 

This is all quite trivial: V is irreducible means that V is not a union of two 
proper closed subsets; (ii) is just a restatement in terms of complements, since 

U ! O U 2 = 0 <=> V = ( V - U ! ) u ( V - U 2 ) . 

A subset of a topological space is dense if and only i f it meets every open, so that 
(iii) is just a restatement of (ii). 

(4.3) Polynomial maps. Let V c A n and W c A m be algebraic sets; write 
X j , . . X n and Y i , . . Y m for the coordinates on A n and A m respectively. 

Definition. A map f: V —> W is a polynomial map i f there exist m polynomials 
Fj, . . F m € k[Xi„. X n ] such that 

f(P) = (Fi(P),.. Fm(P)) € A m k for all P e V. 

This is an obvious generalisation of the above notion of a polynomial function. 

Claim. A map f: V —» W is a polynomial map if and only if for all j , the 
composite map fj = Yjof e klV]: 
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f m V • W c A k 

Y. (jth coordinate function). 

k 

This is clear: if f is given by Fj, . . F m , then the composite is just P h-> Fj(P), 
which is a polynomial function. Conversely, if fj e klV] for each j , then for any 
choice of Fj e klXj, . . X n ] such that fj = Fj mod I(V), I get a description of f as 
the polynomial map given by (Fj,.. F m ) . 

In view of this claim, the map f can be written f = (f j , . . f m ) . 
The composite of polynomial maps is defined in the obvious way: if V c A n , 

W c A m and U c A * are algebraic sets, and f: V —> W, g: W —> U are 
polynomial maps, then gof: V —» U is again a polynomial map; for if f is given by 
F i , . . F m e k [ X i , . . X n ] , and g by Gi,.. G£ e k[Yi„. Y m ] , then gof is given by 

Gl(Fi , . .F m ) , . . G£(F! , . .F m ) e k [ X l f . . X n l . 

Definition. A polynomial map f: V —> W between algebraic sets is an 
isomorphism if there exists a polynomial map g: W —> V such that fog = gof = id. 

Several examples of polynomial maps have already been given: the 
parametrisations R l — > C C ( R 2 by th-> (t 2 , t^) or ( t ^ - l . t ^ - t ) given in (2.1), 
and the map k - ^ C c A ^ by th-> (t^, t 4 , t^) discussed in (3.11, b) are clearly 
of this kind. Also, while discussing Noether normalisation, I had an algebraic set 
V c A \ , and considered the general projection p: V —> A 1 1 1 ^ defined by m 
'fairly general' linear forms Y j , . . Y m ; since the Y [ are linear forms in the 
coordinates Xj of A \ , this projection is a polynomial map. 

On the other hand the parametrisation of the circle given in (1.1) is given by 
rational functions (there's a term (k2 + 1) in the denominator); and the inverse map 
(X, Y) t = Y /X from either of the singular cubics C c IR 2 back to R 1 is also 
disqualified (or at least, doesn't qualify as written) for the same reason. 



Functions on varieties §4 69 

(4.4) Polynomial maps and klV]. 
Theorem. Let V c A \ and W c A ^ be algebraic sets as above. 

(I) A polynomial map f: V —» W induces a ring homomorphism 
f*: k [ W ] k [ V ] , defined by composition of functions; that is, if g e k[W] is a 
polynomial function then so is f*(g) = gof, and g H> gof defines a ring 
homomorphism, in fact a k-algebra homomorphism f *: k{W] —• k[Vj. (Note that it 
goes backwards.) 

(II) Conversely, any k-algebra homomorphism O: klW] —> k[V] is of the 
form <D = f * for a uniquely defined polynomial map f: V —> W. 

Thus (I) and (II) show that 

{ polynomial maps f: V —> W } — • { k-algebra horns. <D: k[W] —* klV] } 
by 

f i—> f* 

is a bijection. 
(Ill) If f: V —> W and g: W —» U are polynomial maps then the two ring 

homomorphisms (gof)* = f*og*: kfU]—• k[V] coincide. 

Proof. (I) By what I said in (4.3), f*(g) is a polynomial map V k, hence 
f*(g) 6 klV]. Obviously f*(a) = a for all a € k (since k is being considered as the 
constant functions on V, W). Finally the fact that f * is a ring homomorphism is 
formal, since both k[W] and klV] are rings of functions. (The ring structure is 
defined pointwise, so for ex<imple, for gj , g 2 e klW], the sum gj + g 2 is defined 
as the function on W such that (gi + g2)(P) - gl(P) + g 2(P) for all P e W; 
therefore f * ( g l + g2)(Q) = ( g l + g2)(f(Q)) = gi(f(Q)) + g 2(f(Q)) = f * g l ( Q ) + 
f*g2(Q). No-one's going to read this rubbish, are they?) 

(III) is just the fact that composition of maps is associative. 
(II) is a little more tricky to get right, although it's still content-free. For 

i = 1,.. m, let yj e k(W] be the ith coordinate function on W, so that 

WW] = k l y i , . . y m ] = k!Y l f . . Y m ] / I ( W ) . 

Now O: k[W] —> k[V] is given, so I can define fj e klV] by f j = <D(yj). 
Consider the map f: V -> A m

k defined by f(P) = f i(P),.. fm(P). This is a 
polynomial map since f j e k[V]. Furthermore, I claim that f takes V into W, that 
is, f(V) c W. Indeed, suppose that G e I(W) c k [ Y l v . Y m ] ; then 

G(y i , . .y m ) = OeklW], 
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where the left-hand side means that I substitute the ring elements yj into the poly
nomial expression G. Therefore, <E>(G(yi,.. y m ) ) = 0 e k[V]; but <I> is a 
k-algebra homomorphism, so that 

k[V]3 0 = * ( G ( y i , . . y m ) ) = G(*(yi),..4>(ym)) = G ( f l v . f m ) . 

The fj are functions on V, and G(fi,.. f m ) 6 MV) is by definition the function 
PH» G(fi(P),.. fm(P)). This proves that for P e V, and for every G € I(W), the 
coordinates (fi(P),.. fm(P)) of f(P) satisfy G(fi(P),.. fm(P)) = 0. Since W is the 
subset of A m k defined by the vanishing of G e I(W), it follows that f(P) e W. 
This proves that f given above is a polynomial map f: V —* W. To check that the 
two k-algebra homomorphisms f *, <J>: WW] —> k[V] coincide, it's enough to check 
that they agree on the generators, that is f*(y j) = <&(y\)\ a minute inspection of the 
construction of f (at the start of the proof of (II) above) will reveal that this is in 
fact the case. An exactly similar argument shows that the map f is uniquely 
determined by the condition f*(yj) = <I>(yj). Q.E.D. 

(4.5) Corollary. A polynomial map f: V W is an isomorphism if and only if 
f*: k[W]—> k[V] is an isomorphism. 

Example. Over an infinite field k, the polynomial map 

cp: A 1 ^ C: ( Y 2 = X 3 ) c A 2

k given by T H ( T 2 T 3 ) 

is not an isomorphism. For in this case, the homomorphism 

cp*:k[C] = MX, Y ] / ( Y 2 - X 3 ) -> k[T] 

is given by X H T 2 , Y H T 3 . The image of cp* is the k-algebra generated by 
T 2 T 3 , that is k [ T 2 T 3 ] 5 k[T]. (Please make sure you understand why T 2 T 3 

don't generate klT]; I can't help you on this.) 
Notice that cp is bijective, and so has a perfectly good inverse map 

C -> A ^ given by (X, Y) h-> 0 if X = Y = 0 and Y / X otherwise. So why 
isn't cp an isomorphism? The point is that C has fewer polynomial functions on it 
than A l ; in a sense you can see that for yourself, since k[A*] = k[T] has a 
polynomial function with nonzero derivative at 0. The gut feeling is that cp 
'squashes up the tangent vector at 0 

(4.6) Affine variety. Let k be a field; I want an affine variety to be an irreducible 
algebraic subset V c A \ , defined up to isomorphism. 

Theorem 4.4 tells us that the coordinate ring k(V] is an invariant of the 
isomorphism class of V. This allows me to give a definition of a variety making 
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less use of the ambient space A \ ; the reason for wanting to do this is rather 
obscure, and for practical purposes you will not miss much if you ignore it: 
subsequent references to an affine variety will always be taken in the sense given 
above (GOTO 4.7). 

Definition. An affine variety over a field k is a set V, together with a ring k{V] 
of k-valued functions f: V —> k such that 

(i) klV] is a finitely generated k-algebra, 
and 

(ii) for some choice x j , . . x n of generators of klV] over k, the map 

V -> A n

k 

by 

P h-> X 1(P),.. x n(P) 

embeds V as an irreducible algebraic set. 
(4.7) Function field. Let V be an affine variety; then the coordinate ring k[V] of 
V is an integral domain whose elements are k-valued functions of V. 
Definition. The function field k(V) of V is the field of fractions k(V) = 
Quot(klVl) of k[V]. An element f e k(V) is a rational function on V; note that 
f € k(V) is by definition a quotient f = g/h with g, h € k(V] and h £ 0. 

A priori f is not a function on V, because of the zeros of h; however, f is 
well defined at P e V whenever h(P) ± 0, so is at least a 'partially defined 
function'. I now introduce terminology to shore up this notion. 

Definition. Let f e k(V) and P e V; I say that f is regular at P, or that P is in 
the domain of definition of f i f there exists an expression f = g/h with 
g, h e k[V] and h(P) t 0. 

An important point to bear in mind is that usually k[V] will not be a UFD, 
so that f e k(V) may well have essentially different representations as f = g/h; 
see Ex. 4.9 for an example. 

Write 

dom f = { P e V | f i s regular at P } 

for the domain of definition of f, and 

©VJP = { f € k(V) | f is regular at P } = k[V][{ I r 1 1 h(P) * 0 }] . 

Then ©yjP c ^0?) is a subring, the local ring of V at P. 



72 §4 II. The category of affine varieties 

(4.8) Theorem. (I) domf is open and dense in the Zariski topology. 
Suppose that the field k is algebraically closed; then 

(II) domf = V feklV]; 
(that is polynomial function = regular rational function). Furthermore, for any 
h e k[V], let 

V h = V \ V ( h ) = { P e v | h ( P ) * 0 } ; 

then 
(III) d o m f 3 V n 4==> f € klVHh-1]. 

Proof. Define the ideal of denominators of f € k(V) by 

D f = { h e k[V] | hf € k[V] } c k[V] 

= { h € k[V] | 3 an expression f = g/h with g e k[V] } u { 0 } . 

From the first line, Df is obviously an ideal of klV]. Then formally, 

V \ d o m f = { P e V | h(P) = 0 forall h € D f } = V(D f), 

so that V \ dom f is an algebraic set of V; hence dom f = V \ V(Df) is the 
complement of a closed set, so open in the Zariski topology. It is obvious that dom f 
is nonempty, hence dense by Proposition 4.2. 

Now using (b) of the Nullstellensatz, 

domf = V V(D f) = 0 <=> 1 € D f , that is, f € k[V]. 

Finally, 

dom f => Vh h vanishes on V(Df), 

and using (c) of the Nullstellensatz, 

h n G Df for some n, that is, f = g / h n G k lVMr 1 ] . Q.E.D. 

(4.9) Rational maps. Let V be an affine variety. 

Definition. A rational map f: V A \ is a partially defined map given by 
rational functions f j , . . f n , that is, 

f(P) = f 1(P),..f n(P) forall PGfldomfi . 

By definition, dom f = f| dom fj; as before, F is said to be regular at P € V if 
and only i f P G dom f. A rational map V —> W between two affine varieties 
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V c A n and W c A m is defined to be a rational map f: V A m such that 
f(dom f ) c W . 

Two examples of rational maps were described at the end of (4.3). 

(4.10) Composition of rational maps. The composite gof of rational maps 
f: V W and g: W U may not be defined. This is a difficulty caused by the 
fact that a rational map is not a map: in a natural and obvious sense, the composite is 
a map defined on dom f n f~l(dom g); however, it can perfectly well happen that 
this is empty (see Ex. 4.10). 

Expressed algebraically, the same problem also occurs: suppose that f is 
given by f j , . . f m € k(V), so that 

f : V - -> W c A m 

by 
P H» fi(P),..fm(P) 

for P € f) dom f j ; any g e k{W] is of the form g = G mod I(W) for some 
G € klYj, . . Y m ] , and gof = G(fj,.. f m ) is well defined in k(V). So exactly as in 
(4.4), there is a k-algebra homomorphism 

f*: kIWl -+ k(V) 

corresponding to f. However, i f h € k{W] is in the kernel of f*, then no meaning 
can be attached to f*(g/h), so that f* cannot be extended to a field homomorphism 
k(W)->k(V). 

Definition. f : V - - » W is dominant i f f(dom f) is dense in W for the Zariski 
topology. 

Geometrically, this means that f "~l(dom g) c dom f is a dense open set for 
any rational map g: W--> U, so that gof is defined on a dense open set of V, so 
is a partially defined map V - -> U. 

Algebraically, 

f is dominant <=> f*: k[W] —> k(V) isinjective. 

For given g e klW], 

g e ker f* f(dom f) c V(g), 

that is, f* is not injective if and only if f(dom f) is contained in a strict algebraic 
subset of W. 

Clearly, the composite gof of rational maps f and g is defined provided 
that f is dominant: gof is the rational map whose components are f*(gi). Notice 
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that the domain of gof certainly contains f"l(dom g) n dom f, but may very well 
be larger (see Ex. 4.6). 

(4.11) Theorem. (I) A dominant rational map f : V - - * W defines a field homo
morphism f*:k(W)-*k(V). 

(II) Conversely, a k-homomorphism <t>: k(W) —» k(V) comes from a 
uniquely defined dominant rational map f: V - W. 

(Ill) If f and g are dominant then (gof)* = f*°g*. 
The proof requires only minor modifications to that of (4.4). 

(4.12) Morphisms from an open subset of an affine variety. Let V, W be affine 
varieties, and U c V an open subset. 

Definition. A morphism f: U —» W is a rational map f: V W such that 
U c dom f, so that f is regular at every P e U. 

If U j c V and U2 c W are opens, then a morphism f: Uj - 4 U2 is just a 
morphism f: U j -~> W such that f(Uj) c U2. An isomorphism is a morphism 
which has a two-sided inverse morphism. 

Note that if V, W are affine varieties, then by Theorem 4.8, (II), 

{morphisms f : V ~ > W } = { polynomial maps f : V ~ * W } ; 

the left-hand side of the equation consists of rational objects subject to regularity 
conditions, whereas the right-hand side is more directly in terms of polynomials. 

Example. The parametrisation of the cuspidal cubic A 1 —> C: ( Y 2 = X 3 ) of (2.1) 
induces an isomorphism A* \ {0} a C \{(0, 0)}; see Ex. 4.5 for details. 

(4.13) Standard open subsets. Let V be an affine variety. For f € k[V], write V f 
for the open set Vf = V \ V(f) = {P G V | f(P) £ 0}. The Vf are called standard 
open sets of V. 

Proposition. V f is isomorphic to an affine variety, and 

klVf] = k[V][f-l]. 

Proof. The idea is to consider the graph of the function f ~ l ; a similar trick was 
used for (b) ==» (c) in the proof of NSS (3.10). 
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Let J = I(V) c k ( X l v . X n ] , and choose F e k lXi , . . X n ] such that f = F 
mod I(V). Now define I = (J, YF - 1) c k[Xj f . . X n , Y], and let 

V(I) = W c A n + 1 . 

It is easy to check that the maps indicated in the diagram are inverse morphisms 
between W and Vf. The statement about the coordinate ring is contained in 
(4.8, III). Q.E.D. 

The standard open sets Vf are important because they form a basis for the 
Zariski topology of V: every open set U c V is a union of Vf 's (since every 
closed subset is of the form V(I) = fife I v ( 0 for some ideal). Thus the point of the 
result just proved is that every open set U c V is a union of open sets Vf which 
are affine varieties. 

(4.14) Worked example. In §2 I discussed the addition law (A, B) h-» A + B on 
a plane nonsingular (projective) cubic C c P 2 Let CQ: (y 2 = x 3 + ax + b) be a 
nonsingular affine cubic: 
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I show here that the addition law defines a rational map cp: Co x CQ--> CQ, and that 
cp is a morphism wherever it should be. Although I will not labour the point, this 
argument can be used to give another proof 'by continuity' of the associativity of the 
group law valid for any field (see the discussion in (2.10)). 

It is not difficult to see (compare Ex. 2.7) that if A = (x, y), B = (x\ y'), and 
x £ x' then setting u = (y - y')/(x - x'), the 3rd point of intersection is 
P = (x'\ y"), where 

x" = f(x,y,x' ,y') = u2- (x + x'), 

y" = g(x,y, x\ y') = u 3 + xu + y'. 

Since x" and y" are rational functions in the coordinates (x, y), (x\ y'), this 
shows that (p: Cg x Cg —> CQ is a rational map. From the given formula, cp is a 
morphism wherever x £ x', since then the denominator of u is nonzero. Now if 
x = x' and y = -y', then x" and y" should be infinity, corresponding to the fact 
that the line AB meets the projective curve C at the point at infinity O = (0,1, 0). 



Functions on varieties §4 77 

However, i f x = x' and y = y' £ 0 then the point P = (x", y") should be well 
defined. I claim that f, g are regular functions on CQ X CQ at such points: to see 
this, note that 

y2 = x 3 + ax + b and y ' 2 = x'3 + ax' + b, 

giving 

y2 y'2 = x 3 _ x '3 + a ( x _ x ' ) ; 

therefqlre as rational functions on CQ X CQ, there is an equality 

u = (y - y')/(x - x') = (x 2 + xx' + x ' 2 + a)/(y + y'). 

Looking at the denominator, it follows that u (hence also f and g) is regular 
whenever y £ -y'. 

The conclusion of the calculation is the following proposition: the addition 
law 9: CQ x Co —• Co is a morphism at ( A , B ) 6 CQ X C Q provided that 
A + B ^ O. 

Exercises to §4. 

4.1. Check that the statements of §4 up to and including (4.8,1) are valid for any field 

k; discover in particular what they mean for a finite field. Give a counter-example to 

(4.8, II) if k is not algebraically closed. 

4.2. <p: A 1 —> A 3 is the polynomial map given by X i-+ (X, X 2 , X 3 ) ; prove that the 

image of <p is an algebraic subset C c A 3 and that 9: A* —•» C is an isomorphism. 

Try to generalise. 

4.3. (Pn*. A 1 —* A 2 is the polynomial map given by X1-4 (X 2 , X n ) ; show that if n is 

even, the image of <pn is isomorphic to A*, and <pn is 2-to-l outside 0. And if n .is 

odd, show that <pn is bijective, and give a rational inverse of <pn. 

4.4. Prove that a morphism <p:X-* Y between two affine varieties is an isomorphism 

of X with a subvariety <p(X) c Y if and only if the induced map O: kfYl —• k[Xl is 

surjective. 

4.5. Let C: ( Y 2 = X 3 ) c A 2 ; then 

(a) the parametrisation f: A 1 —• C given by ( T 2 T 3 ) is a polynomial map; 

(b) f has a rational inverse g: C —• A* defined by (X, Y) i-+ Y / X ; 

(c) dom g = C \ {(0,0)}; 

(d) f and g give inverse isomorphisms A 1 \ {0} a C \ {(0,0)}. 

4.6. (i) Show that the domain of gof may be strictly larger than dom f n f " (̂dom g). 

(Hint: this may happen if g and f are inverse rational maps; try f and g as in 
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Ex. 4.5.) 

(ii) Most courses on calculus of several variables contain examples such as the 

function f(x, y) * xy/(x 2 + y 2 ) . Explain how come f is C 0 0 when restricted to any 

smooth curve through (0,0), but is not even continuous as a function of 2 variables. 

4.7. Let C: ( Y 2 * X 3 + X 2 ) c A 2 ; the familiar parametrisauon <p: A* —• C given by 

( T 2 - 1, T 3 - T) is a polynomial map, but is not an isomorphism (why not?). Find out 

whether the restriction cp': A* \ {1} —> C is an isomorphism: 

4.8. Let C: ( Y 3 - X 4 + X 3 ) c A 2 : show that (X, Y) i-> X / Y defines a rational map 
y: C - - * A*, and that its inverse is a polynomial map <p: A * —• C parametrising C. 
Prove that <p restricts to an isomorphism 

A 1 \ {3 pts.} * C \ {(0,0)}. 

4.9. Let V: (XT * YZ) c A 4 ; explain why k[V] is not a UFD. (It's not hard to get the 

idea, but rather harder to give a rigorous proof). If f • X / Y € k(V), find dom f, and 

prove that it is strictly bigger than the locus (Y « 0) c V. 

4.10. Let f: A* —• A 2 be given by Xh-» (X, 0), and let g: A 2 —• A* be the rational 

map given by (X, Y) h-> X / Y ; show that the composite gof is not defined anywhere. 

Determine what is the largest subset of the function field k(A*) on which g* is defined. 

4.11. Define and study the notion of product of two algebraic sets. More precisely, 

(i) if V c A n

k and W c A m

k are algebraic sets, prove that V x W c A n + m ^ is 

also; 

(ii) give examples to show that the Zariski topology on V x W is not the product 

topology of those on V and on W; 

(iii) prove that V, W irreducible «r> V x W irreducible; 

(iv) prove that if V * V and W * W then V x W * V x W\ 

4.12. (a) Prove that any f € k (A 2 ) which is not regular at the origin (0,0) also fails to 

be regular at points of a curve passing through (0,0). 

(b) Deduce that A 2 \ (0,0) is not affine. 

(Hints: For (a), use the fact that k(A 2 ) - k(X, Y) is the field of fractions of the UFD 

k[X,Yl, together with the result of Ex. 3.13, (b). For (b), assume that A 2 \ (0, 0) is 

affine, and determine its coordinate ring; then get a contradiction using Corollary 4.5.) 
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Chapter III. Applications 

§5. Projective and birational geometry 

The first part of §5 aims to generalise the content of §§3-4 to projective 
varieties; this is fairly mechanical, with just a few essential points. The remainder of 
the section is concerned with birational geometry, taking up the function field k(V) 
from the end of §4; this is material which fits equally well into the projective or 
affine context. 

(5.0) Why projective varieties? The cubic curve 

C: ( Y 2 Z = X 3 + aXZ 2 + bZ 3) c P 2 

is the union of two affine curves 

CQ: (y 2 = x 3 + ax + b) c A 2 (the piece (Z = 1) of C) 
and 

C\: {z\ = x i 3 + axz i 2 + bz i 3 ) c A 2 (thepiece (Y = 1)), 

glued together by the isomorphism 

C 0 \ ( y = 0) —> C i \ ( z i = 0) 
by 

(x,y) h-» ( x / y , l / y ) . 

As a much simpler example, P1 with homogeneous coordinates (X, Y) is 
the union of 2 copies of A* with coordinates XQ, y i respectively, glued together 
by the isomorphism 

A l \ ( x 0 = 0 ) - > A l \ ( y i = 0) 
by 

XQ h-> 1/XQ. 

The usual picture is 
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(the arrows <-» denote glueing). 
It's important to understand that these varieties are strictly bigger than any 

affine variety. In fact, with the natural notion of morphism (to be introduced 
shortly), it can be seen that there are no nonconstant morphisms P1 —> A n or C —> 
A n for any n (see Ex. 5.1 and Ex. 5.12, and the discussion in (8.10)). 

One solution to this problem is to define the notion of 'abstract variety' V as 
a union V = U Vj of affine varieties, modulo suitable glueing. By analogy with the 
definition of manifolds in topology, this is an attractive idea, but it leads to many 
more technical difficulties. Using projective varieties sidesteps these problems by 
working in the ready-made ambient space P n , so that (apart from a little messing 
about with homogeneous polynomials) they are not much harder to study than affine 
varieties. In fact, although this may not be clear at an elementary level, projective 
varieties to a quite remarkable extent provide a natural framework for studying 
varieties (this is briefly discussed from a more advanced point of view in (8.11)). 

(5.1) Graded rings and homogeneous ideals. 
Definition. A polynomial feklX() , . .X n ] is homogeneous of degree d if 

f - I % .. in

x0° •• x n l n w j t h % . . i n * 0 o n l y i f }0 + - jn = d -
Any f e k[XQ,..X n] has a unique expression f = fo + f i + .. fftf in which fj is 
homogeneous of degree d for each d = 0,1,.. N. 

Proposition. If f is homogeneous of degree d then 

f ( A X 0 - *-xn) = ^ df(X(),.. *n) f o r a 1 1 € k> 

if k is an infinite field then the converse also holds. 
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Proof. Try it and see. 

Definition. An ideal I c klXg,.- X n ] is homogeneous if for all f e I , the 
homogeneous decomposition f = fg + fj + .. fpj of f satisfies fj e I for all i . 

It is equivalent to say that I is generated by (finitely many) homogeneous 
polynomials. 

(5.2) The homogeneous V - I correspondences. Let P \ be the n-dimensional 
projective space over a field k, with XQ,.. X n as homogeneous coordinates. Then 
f e k[Xo,.. X n ] is not a function on P \ : by definition, P \ = k n + * \ { 0 } / - , 
where ~ is the equivalence relation given by (XQ,.. X n ) ~ (XXQ,.. A,Xn) for 
U k \ { 0 } ; f is a function on k n + l . Nevertheless, for P e P n , the condition 
f(P) = 0 is well defined provided that f is homogeneous: suppose P = (XQ: .. X n ) , 
so that (XQ,.. X n ) is a representative in k n + l \ {0} of the equivalence class of P. 
Then since f(XX) = Xdf(X), i f f(XQ,.. X n ) = 0 then also KXXQ,.. XXN) = 0, so 
that the condition f(P) = 0 is independent of the choice of representative. With this 
in mind, define as before correspondences 

{ homog. ideals J c k[XQ,.. X n ] } < v > 1 > { subsets X c P n

k } 

by 
V(J) = { P e P \ | f(P) = 0 Vhomogeneous fe]} 

and 
I(X) = { f e klX 0 , . . X n l I f(P) = 0 for all P e X } . 

As an exercise, check that you understand why I(X) is a homogeneous ideal. 
The correspondences V and I satisfy the same formal properties as the 

affine V and I correspondences introduced in §3 (for example V ( J i + J 2 ) = 
V(J\) n V(J2)). A subset of the form V(I) is an algebraic subset of P\, and as 
in the affine case, P \ has a Zariski topology in which the closed sets are the 
algebraic subsets. 

(5.3) Projective Nullstellensatz. As with the affine correspondences, it is 
purely formal that I(V(J)) 3 rad J for any ideal J, and that for an algebraic set, 
V(I(X)) = X. There's just one point where care is needed: the trivial ideal 
(1) = k[Xo,.. X n ] (the whole ring) defines the empty set in k n + l , hence also in 
P \ , which is as it should be; however, the ideal (XQ,..X n) defines {0} in k n + 1 , 
which also corresponds to the empty set in P \ . The ideal (XQ,.. X n ) is an 
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awkward (empty-set theoretical) exception to several statements in the theory, and is 
traditionally known as the 'irrelevant ideal'. 

The homogeneous version of the Nullstellensatz thus becomes 

Theorem. Assume that k is an algebraically closed field. Then 

(i) V(J) = 0 r a d j D ( X 0 , . X n ) ; 

(ii) if V(J) £ 0 then I(V(J)) = rad J. 

Corollary. I and V determine inverse bijections 

' homogeneous radical^ 
ideals J c k[xQ,.. x j \ 
with J £ k[xQ,.. x j J 

u 
'homogeneousprime ̂  
ideals J c k[xQ,.. x n] 

Lwith J £ k[x0,.. x n l j 

f algebraic subsets^ 

X c P n j 

u 

irreducible algebraic | 

subsets X c P1 n 

Proof. Let n: A n + 1 \ {0} —> P n be the map defining P n . For a homogeneous 
ideal J c klXg,.. X n ] , write (in temporary notation) V a(J) c A 1 1" 1" 1 for the affine 
algebraic set defined by J. Then since J is homogeneous, V a(J) has the property 

( a 0 , . a N ) G V*(J) ( X a 0 , . A a N ) G va(j), 

and V(J) = v a ( j ) \ { 0 } / ~ c P n . Hence 

V(J) = 0 V a ( J ) c { 0 ) r a d J 3 ( X 0 , . X n ) , 

where the last implication uses the affine Nullstellensatz. Also, i f V(J) £ 0 then 

f€l(V(J)) f€l(Va(J)) feradJ. Q.E.D. 

The affine subset V a(J) occurring above is called the affine cone over the 
projective algebraic subset V(J). 

(5.4) Rational functions on V. Let V c P \ be an irreducible algebraic set, and 
I(V) c k[Xo,.. X n l its ideal; there is no direct way of defining regular functions on 
V in terms of polynomials: an element F e klXrj,.. X n l gives a function on the 
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affine cone over V, but (by case d = 0 of Proposition 5.1) this will be constant on 
equivalence classes only if F is homogeneous of degree 0, that is, a constant. So 
from the start, I work with rational functions only: 

Definition. A rational function on V is a (partially defined) function f: V k 
given by f(P) = g(P)/h(P), where g, h e klXg,.. X n ] are homogeneous 
polynomials of the same degree d. 

Note here that provided h(P) £ 0, the quotient g(P)/h(P) is well defined, 
since 

g(XX)/h(XX) = Adg(X)A dh(X) = g(X)/h(X) for 0 £ X e k. 

Now obviously g/h and g'/h' define the same rational function on V if 
and only if h'g - g'h e I(V), so that the set of all rational functions is the field 

k(V) = { g/h | g, h e HXQ,. . X n ] homog. of same degree, h £ I ( V ) } / ~ , 

where ~ is the equivalence relation 

g / h - g ' / h ' h'g - g'h e I ( V ) . 

k(V) is the (rational) function field of V. 
The following definitions are just as in the affine case. For f e k(V) and 

P G V, say that f is regular at P if there exists an expression f = g/h, with g, h 
homogeneous polynomials of the same degree, such that h(P) £ 0. Write 

dom f = { P G V | f is regular at P } 

and 

<9y,p = { f e k(V) | f is regular at P } . 

Clearly, dom f c V is a dense Zariski open set in V (the proof is as in (4.8,1), 
and (9yjpck(V) is a subring. 

(5.5) Affine covering of a projective variety. Let V c P n be an irreducible 
algebraic set, and suppose for simplicity that V <£ (Xj = 0) for any i . We know 
that P n is covered by (n + 1) affine pieces A n(\y with affine (inhomogeneous) 
coordinates X o ( i ) , . . X i _ i ( i ) , X i + i ® . . X n

( i )

f where 

X j ( i ) = Xj /Xj for j * i . 

Write V(i) = V n A n ( j ) . Then V(j) c A n ( j ) is clearly an affine algebraic set, 
because 
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V ( 0 ) a P = ( l , x 1 ( ° \ . . x n

( 0 ) ) 

f ( l , x i ( 0 ) , . . x n

( 0 ) ) = 0 V homogeneous f e l ( V ) , 

which is a set of polynomial relations in the coordinates ( x ^ ° \ . . x n ^ ) of P. For 
clarity, I have taken i = 0 in the argument, and will continue to do so whenever 
convenient. The reader should remember that the same result applies to any of the 
other affine pieces V(\y The V(j) are called standard affine pieces of V. 

Proposition, (i) The correspondence V h-» V(Q) = V n A n (o) gives a bijection 

(irreducible algebraic 

subsets V c P n 

| j irreducible algebraic 
Vt f (X 0 = 0)V I s u b s e t s 

the inverse correspondence is given by taking closure in the Zariski topology. 
(ii) Write I h (V) c klXQ,.. X n ] for the homogeneous ideal of V c pn 

introduced in this section and I a(V(Q)) klXj, . . X n ] for the usual (as in §3) 
inhomogeneous ideal of V(o)cA n (Q); then I h ( V ) and Ia(V(Q)) are related as 
follows: 

I a = { f a x ^ . X ^ l f e l ^ V ) } , 
and 

lh(V) d = { X o ^ X i / X o ^ . X n / X o ) ! f e I a ( V ( 0 ) ) , with degf<d}, 

where the subscript in I h(V)<i denotes the piece of degree d. 
(iii) k(V)s*k(V(0)), and for f e k(V), the domain of f as a function on 

V(Q) is V(o)ndomf. 

Proof, (i) and (ii) are easy, (iii) If g, h e ICIXQ,.. X n l are homogeneous of 
degree d, and hg I ( V ) , then g/h€ k(V) restricted to V(Q) is the function 

g a X i / X r j , . X n / X o ) / h ( l f X!/Xo. . . X n / X 0 ) ; 

this defines a map k(V) -4 k(V(Q))> and it's easy to see what its inverse is. 

(5.6) Rational maps and morphisms. Rational maps between projective 
(or affine) varieties are defined using k(V): i f V c P n is an irreducible algebraic 
set, a rational map V —> A m is a (partially defined) map given by P H 
(fj(P),.. fm(P)), where f j , . . f m e k(V). A rational map V P m is defined by 
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Ph-> (f 0 (P): f i (P) : . . fm(P)) where f 0 , fi„. f m € k(V). Notice that if g € k(V) is 
a nonzero element, then gfg, gfj,.. g f m defines the same rational map. Therefore, 
(assuming that V does not map into the smaller projective space (XQ = 0)), it 
would be possible to assume throughout that fQ = 1. 

Clearly then, there is a bijection between the two sets 

{ rational maps f: V - -> A m c P™ } 
and 

{ rational maps f: V —> P m | f(V) t ( X 0 = 0 )} , 

since either kind of maps is given by m elements f j G k(V). 

Definition. A rational map f: V P m is regular at P 6 V if there exists an 
expression f = (fg, f j , . . f m ) such that 

(i) each of fQ,.. f m is regular at P; 
and 

(ii) at least one fj(P) £ 0. 

The second condition is required here in order that the ratio between the f j is 
defined at P. If f is regular at P (as before, this is also expressed P G dom f) 
then f: U —> A m ( i ) c P m is a morphism for a suitable open neighbourhood 
P G U c V: just take U = f | j dom (fj/fj) where f j(P) ± 0; then f is the morphism 

given by ffj/ftfj = 0 , 1 . . . nr 
If U c V is an open subset of a projective variety V then a morphism 

f: U —> W is a rational map f: V W such that dom f D U . So a morphism is 
just a rational map that is everywhere regular on U. 

(5.7) Examples. (I) Rational normal curve. This is a very easy example of an 

isomorphic embedding f: P1 C c P m which generalises the parametrised 
conic of (1.7), and which occurs throughout projective and algebraic geometry. 
Define 

f: p i p " 1 by (U : V) h + ( U m : UmAV :.. V m ) 

(writing down all monomials of degree m in U, V). Arguing step by step: 
(i) f is a rational map, since it's given by ( ( U / V ) m , ( U / V ) m - 1 , . . 1); 

(ii) f is a morphism wherever V £ 0 by the formula just written, and if 
V = 0 then U £ 0, so a similar trick with (V/U) works; 

(iii) the image of f is the set of points (XQ: .. X M ) G P m such that 
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that is, 
<Xo:Xi) = ( X i : x 2 ) ( X m - i i X m ) , 

X 0 X 2 = X i 2 X0X3 = X i X 2 , X Q X 4 = X 1 X 3 > etc. 

The equations can be written all together in the extremely convenient determinantal 
form 

rank 
*0 X l *2 " 'Xm-l 

X l ^ ^ " XfTl . 

< 1 

(the rank condition means exactly that all 2 x 2 minors vanish). These are 
homogeneous equations defining an algebraic set C c P m ; 

(iv) the inverse morphism g: C —> p i is not hard to find: just take a point 
of C into the common ratio (XQ : X j ) = .. ( X m _ i : X m ) e p i . As an exercise, 
find out for yourself what has to be checked, then check it all. 

(II) Linear projection, parametrising a quadric. The map n: P 3 - - > P 2 

given by (XQ, X J , X 2 , X3) h-> (Xj , X 2 , X3) is a rational map, and a morphism 
outside the point PQ = (1, 0, 0, 0). Let Q c P 3 be a quadric hypersurface with 
P e Q. Then every point P of P 2 corresponds to a line L of P 3 through P, 
and L should in general meet Q at PQ and a second point cp(P): for example, if 
Q: (X0X3 = X j X 2 ) , then 71|Q: Q - - » P 2 has the inverse map 

( p : p 2 . ^ Q giVenby ( X i , X 2 , X 3 ) K> ( X 1 X 2 / X 3 , X 1 , X 2 , X 3 ) . 

This is essentially the same idea as the parametrisation of the circle in (1.1). 
It is a rewarding exercise (see Ex. 5.2) to find dom n and dom 9, and to 

give a geometric interpretation of the singularities of n and 9. 
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/ 
Q c P 3 

(5.8) Birational maps. 
Definition. Let V and W be (affine or projective) varieties; then a rational map 
f: V W is birational (or is a birational equivalence) if it has a rational inverse, 
that is, if there exists a rational map g: W —> V such that fog = id\y and 
gof = idy. 

Proposition. The following 3 conditions on a rational map f: V W are 
equivalent: 

(i) f is a birational equivalence; 
(ii) f is dominant (see (4.10)), and f*: k(W)—» k(V) is an isomorphism; 

(iii) there exist open sets VQ <= V and WQ <= W such that f restricted to 
VQ is an isomorphism f : V Q — » W Q . 

Proof, f* is defined in the same way as for affine varieties, and (i) (ii) is as in 
(4.11). (iii) (i) is clear, since an isomorphism f: VQ —> WQ and its inverse 
g = f - 1 ; WQ—* VQ are by definition rational maps between V and W. 

The essential implication (i) (iii) is tricky, although content-free (GOTO 
(5.9) if you want to avoid a headache): by assumption (i), there are inverse rational 
maps f: V W and g: W V; now set V = dom f c V and 
(p = f|\r: V -» W, and similarly W = dom g c W and \|/ = g|\y': W -» V. In the 
diagram 
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all the arrows are morphisms, and id\y|\jr l y ' = ^ a s m o rphisms) follows from 
id\v = fog (as rational maps). Hence 

cp(y(P)) = p forall Pe y - l v \ 

Now set VQ = (p~l\)/~W', and W Q = V"^9"^W; then (p: V Q - * \ | / " W ' is a 
morphism by construction. However, y - l V c WQ, since P e y - t y ' implies that 
(p(\|/(P)) = P, so that P € y l q r l w ' = W Q . Therefore, 9: V Q - * WQ is a 
morphism, and similarly \|/: WQ —> VQ. Q.E.D. 

(5.9) Rational varieties. The notion of birational equivalence discussed in (5.8) is 
of key importance in algebraic geometry. Condition (iii) in the proposition says 
that the 'meat' of the varieties V and W is the same, although they may differ a bit 
around the edges; an example of the use of birational transformations is blowing up 
a singular variety to obtain a nonsingular one, see (6.12) below. An important 
particular case of Proposition 5.8 is the following result. 

Corollary. Given a variety V, the following two conditions are equivalent: 
(a) the function field k(V) is a purely transcendental extension of k, that 

is k(V)ssk(tj,.. t n ) for some n; 
(b) there exists a dense open set V Q C V which is isomorphic to a dense 

open subset UQ C A n . 

A variety satisfying these conditions is said to be rational. Condition (b) is 
a precise version of the statement that V can be parametrised by n independent 
variables. This notion has already appeared implicitly several times in these notes 
(for example, (1.1), (2.1), (3.11, b), (5.7, II)). A large proportion of the 
elementary applications of algebraic geometry to other branches of math are related 
one way or another to rational varieties. 

(5.10) Reduction to a hypersurface. An easy consequence of the discussion of 
Noether normalisation at the end of §3 is that every variety is birational to a 
hypersurface: firstly, since birational questions only depend on a dense open set, and 
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any open set contains a dense open subset isomorphic to an affine variety (by 
(4.13)), I only need to consider an affine variety V c A n . It was proved in (3.18) 
that there exist elements yj , . . y m + i e k[V] which generate the field extension 
k c k ( V ) , and such that y j , . . y m are algebraically independent, and y m + i is 
algebraic over k(yj,.. y m ) . These elements thus define a morphism V —> A m + 1 
which is a birational equivalence of V with a hypersurface V c A m + 1 . 

(5.11) Products. If V and W are two affine varieties then there is a natural sense 
in which V x W is again a variety: if V c A n and W c A m then V x W is the 
subset of A 0 + 1 1 1 given by 

{( (a i , . . a n ) ; (P i , . .p m ) ) | f (oc) = 0 V f G l ( V ) and g © = 0 V g e I(W)}. 

It's easy to check that V x W remains irreducible. Note however that the Zariski 
topology of the product is not the product of the Zariski topologies (see Ex. 5.10). 

The case of projective varieties is not so obvious; to be able to define 
products, we need to know that P n x P m is itself a projective variety. Notice that it 
is definitely not isomorphic to P n + m (see Ex. 5.2, ii). To do this, I use a 
construction rather similar in spirit to that of (5.7, I): make an embedding (the 
'Segre embedding') 

cp: pn x pm ~> S n > m c p N where N = (n + l)(m 4-1) - 1 

as follows: P N is the projective space with homogeneous coordinates 

( " ip i -O, . . n;j = 0,.. in
n's useful to think of the Uij as being set out in a matrix 

•• Uorn] 

nmj 

Then define (p by ((X 0 , . . X n ) , (Y 0 , . . Y m ) ) h-> (XiYj)j = ^ n ; j = 0 > m . This is 
obviously a well-defined morphism, and the image S n > m is easily seen to be the 
projective subvariety given by 

" uoo 

U10 
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rank U 10 " 

U. 
ran 

< 1, that is, det » 0 
V i , j = 0,..n 

V k, I = 0,.. m 

We get an inverse map S n m — » P " x P m as follows. For P e S n m there exists at 
least one pair ( i , j ) such that Ujj(P)jtO; fixing this ( i , j ) , send 

P H> ((U 0 j , . .U n j ) , (Uio, . .U i m ) ) € p n * p m 

Note that the choice of (i, j ) doesn't matter, since the matrix Ujj(P) has rank 1, 
and hence all its rows and all its columns are proportional. 

From this it is not hard to see that if V c P n and W c P m are projective 
varieties, then V x W c P n x P m a S n m c pN is again a projective variety (see 
Ex. 5.11). 

Exercises to §5. 

5.1. Prove that a regular function on P 1 is a constant. (Hint: use the notation of (5.0); 

suppose that f e k(P*) is regular at every point of P 1 . Apply (4.8, II) to the affine 

piece A*(0)» to show that f • D(XQ) € k[xQl; on the other affine piece A 1 ^ ) , 

f « p(l /yi) € k[y j]. Now, how can it happen that p( l /y i ) is a polynomial?) Deduce 

that there are no nonconstant morphisms P*—• A m for any m. 

5.2. The quadric surface in P^. (i) Show that the Segre embedding of P 1 x p l (as 

in (5.10)) gives an isomorphism of P* x P1 with the quadric 

S U - Q : ( X 0 X 3 - X 1 X 2 ) c p3. 

(ii) What are the images in Q of the two families of lines {p} x P* and P 1 x {p} 

in P* x p l ? Use this to find some disjoint lines in P 1 x p i , and conclude from this 

that P ^ p l ^ k P 2 . 

(The fact that a quadric surface has two rulings by straight lines has applications in 

civil engineering: if you're trying to build a curved surface out of concrete, it's an obvious 

advantage to be able to determine the shape of the surface by imposing linear constraints. 

See tM. Berger, 14.4.6-7 and 15.3.3] for a discussion and pictures.) 
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(iii) Show that there are two lines of Q passing through the point P = (1, 0, 0, 0), 

and that the complement U of these two lines is the image of A* x A* under the Segre 

embedding. 

(iv) Show that under the projection t c j q : Q —> P 2 (in the notation of (5.7, II)), U 

maps isomorphically to a copy of A 2 , and the two lines through P are mapped to 

points of P 2 . 

(v) In the notation of (5.7, II), find dom n and dom cp, and give a geometric 

interpretation of the singularities of K and (p. 

5.3. Which of the following expressions define rational maps <p: P n - - » P m between 

projective spaces of the appropriate dimensions (n, m « 1 or 2)1 In each case, 

determine dom <p, say if cp is birational, and if so describe the inverse map. 

(a) (x,y,z)H->(x,y); (b) (x, y) H > (X , y, 1); (c) (x, y) H + (X , y, 0); 

(d) (x, y, z) H + (1/x, 1/y, 1/z); (e) (x, y, z) Y-+ ((x 3 + y 3 ) / z 3 , y 2 / z 2 1); 

(0 (x, y, z) (x 2 + y 2 , y 2 , y 2 ) . 

5.4. The rational normal curve (see (5.7,1)) of degree 3 is the curve C c P 3 defined 

by the 3 quadrics C = Q i n Q 2 n Q 3 , where 

QX: (XZ = Y 2 ) , Q 2 : (XT = YZ), Q 3 : (YT = Z 2 ) ; 

this curve is also well known as the twisted cubic, where 'twisted' refers to the fact that it 

is not a plane curve. Check that for any two of the quadrics Qj, Qj, the intersection 

Qj n Qj = C u Ey, where Ey is a certain line. So this curve in 3-space is not the 

intersection of any 2 of the quadrics. 

5.5. Let Qj : (XZ = Y 2 ) and F: ( X T 2 - 2YZT + Z 3 - 0); prove that C = Q j n F is 

the twisted cubic curve of Ex. 5.4. (Hint: start by multiplying F by X; subtracting a 

suitable multiple of Qj , this becomes a perfect square). 

5.6. Let C c P 3 be an irreducible curve defined by C = n Q 2 , where 

Q :̂ (TX = qj), Q 2 : (TY - q 2), with q ,̂ q 2 quadratic forms in X, Y, Z. Show that the 
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projection n: P 3 P 2 defined by (X, Y, Z, T) h (X, Y, Z) restricts to an 

isomorphism of C with the plane curve D c P 2 given by Xq2«Yq^. 

5.7. Let 9: P* —• P* be an isomorphism; identify the graph of 9 as a subvariety of 

p l x P 1 * Q c P 3 . Now do the same if 9: P * —• P* is the 2-to-l map given by 

(X, Y)h->(X 2 ,Y 2 ) . 

5.8. Prove that any irreducible quadric Q c P n +1 is rational; that is, as in the picture of 

(5.7, II), show that if P e Q is a nonsingular point, then the linear projection of P n + 1 

to P n induces a birational map Q —• P n . 

5.9. For each of the following plane curves, write down the 3 standard affine pieces, 

and determine the intersection of the curve with the 3 coordinate axes: 

(a) y 2 z « x 3 + axz 2 + bz 3; (b) x 2 y 2 + x 2 z 2 + y 2 z 2 - 2xyz(x + y + z); 

(c) xz 3 - (x 2 + z 2 )y 2 . 

5.10. (i) Prove that the product of two irreducible algebraic sets is again irreducible 

(Hint: the subsets V x {w} are irreducible for w € W; given an expression V x W * 

U i u U2, consider the subsets W j « {w € W I V x {w} c Uj} for i - 1,2). 

(ii) Describe the closed sets of the topology on A 2 « A * x A * which is the product 

of the Zariski topologies on the two factors; now find a closed subset of the Zariski 

topology of A 2 not of this form. 

5.11. (a) If A n (Q) and A M (Q) are standard affine pieces of P n and P m 

respectively, verify that the Segre embedding of (5.11) maps A n (Q) x A m ( Q ) 

isomorphically to an affine piece of the variety S n m c P N , say S(Q) c A n , and that 

the N coordinates of A N restrict to X^,.. X n , Y^,.. Y m and the nm terms XjYj. 

(b) If V c P n and W c P m , prove that the product V x W is a projective 

subvariety of P n x P m » Sn;m c P N (Hint: the product of the affine pieces 

V(Q) x W(Q) c A N + M is a subvariety defined by polynomials as explained in (5.11); 

show that each of these is the restriction to A N + M * S(Q) of a homogeneous polynomial 

in the Uy). 

5.12. Let C be the cubic curve of (5.0); prove that any regular function f on C is 

constant. Proceed in the following steps: 

Step 1. Applying (4.8, II) to the affine piece C(rj). write f « p(x, y) € k[x, y]. 

Step 2. Subtracting a suitable multiple of the relation y 2 - x 3 - ax - b, assume that 

P(x, y) * qW + yr(x), with q, r € k[x]. 

Step 3. Applying (4.8,11) to the affine piece C ^ ) gives 

f - q(x 1 /z 1 )-f ( l / z ^ K x i / Z ! ) e k[C ( 0 0 ) ] , 

and hence there exists a polynomial S(x^.z^) such that 

q(x 1 /z 1 ) + ( l / z i M x i / z i ) - S (x 1 , z 1 ) ; 

Step 4. Gearing the denominator, and using the fact that WC^)] « k[x ,̂ zj]/g, where 

g • z \ - x j 3 - ax^zj 2 - bz j 3 , deduce a polynomial identity 
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Qm(M' z l ) + R m - l ( x l ' z l ) = S C x ^ z ^ z ^ + ACx^z^g 

in k[x| ( Z|] ( with Q m and R m _ i homogeneous of the indicated degrees. 

Step 5. Now if we write S = S + + S~ and A = A + + A~ for the decomposition into 

terms of even and odd degree, and note that g has only terms of odd degree, this identity 

splits into two: 

Qm 5 5 S + z ^ + A-g and R m - l = S ^ + A+g 

if m is even, and an analogous expression if m is odd. 

Step 6. Q m is homogeneous of degree m, and hence A~g has degree £ m; by 

considering the term of least degree in A"g, prove that Q m is divisible by zj . 

Similarly for R m _ i . By taking the minimum value of m in the identity of Step 4, 

deduce that q(x) has degree 0 and r(x) * 0. 

5.13. Veronese surface. Study the embedding <p: P 2 —• P^ g j v e n b y (x, Y, Z) h-» 

( X 2 , XY, XZ, Y 2 , YZ, Z 2 ) ; write down the equations defining the image S - (p(P2), 

and prove that <p is an isomorphism (by writing down the equations of the inverse 

morphism). Prove that the lines of P 2 go over into conies of P^, and that conies of 

P 2 go over into twisted quarries of P^ (see (5.7)). 

For any line £ c P 2 , write K(1) c P^ for the projective plane spanned by the conic 

cp(£). Prove that the union of tc(£) taken over all £ c P 2 is a cubic hypersurface 

I c p 5 . (Hint: as in (5.7) and (5.11), you can write the equations defining S in the 

form rank M < 1, where M is a symmetric 3x3 matrix with entries the 6 coordinates 

of P 5 ; then show that Z: (det M - 0). See [Semple and Roth, p. 128] for more 

details.) 
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§6. Tangent space and nonsingularity, dimension 

(6.1) Nonsingular points of a hypersurface. Suppose f e kiXj, . . X n ] is 
irreducible, f t k, and set V = V(f) c A n ; let P = (ai,.. a n) e V, and £ be a line 
through P. Since P€ V, obviously P is a root of f|£. 
Question: When is P a multiple root of f|£? 
Answer: If and only if I is contained in the affine linear subspace 

T P V : ( I j ^ ( P ) - ( X i - aj) = 0) c An, 

called the tangent space to V at P. 

To prove this, parametrise I as 

I: X j = aj + bjT, 

where P=s(aj,.. a n) and (b i„ .b n ) is the slope or direction vector of L Then f|£ 
= f ( , . . aj + bjT,..) = g(T) is a polynomial in T, and we know that (T = 0) is one 
root of g. Hence 

0 is a multiple root of g = °» 

that is, 

< - * ^ B I ^ ; ( P ) = 0 * C T P V -

Definition. P € V c A n is a nonsingular point of V if 9f/3Xj(P) £ 0 for some 
i ; otherwise P is a singular point, or a singularity of V. 
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Obviously TpV is an (n-1)-dimensional affine subspace of A n i f P is 
nonsingular, and TpV = A n if P e V is singular. 

(6.2) Remarks, (a) The derivatives 3f/9Xj(P) appearing above are formal 

algebraic operations (that is, d/dX\ takes X j n into nXj n~^); no calculus is 
involved. 

(b) Suppose k = R or C, and that 3f/3Xj(P) £ 0; for clarity let me take 
i = 1. Then the map p: A n - > A n defined by (Xi„. X n)h-» (f, X2,.. X n ) has non-
vanishing Jacobian determinant at P, so that by the inverse function theorem, there 
exists a neighbourhood P G U c A n such that p | j j : U p(U) c A n is a 
diffeomorphism of the neighbourhood U with an open set p(U) of A n (in the 
usual topology of R n or C n ); that is, p|u is bijective, and both p and p~l are 
differentiable functions of real or complex variables. In other words, (f, X2,.. X n ) 
form a new differentiable coordinate system on A n near P; this implies that a 
neighbourhood of P in V: (f = 0) is diffeomorphic to an open set in A n " l with 
coordinates (X2,.. X n ) . Thus near a nonsingular point P, V is a manifold with 
(X2, . .X n ) as local parameters. 

(6.3) Proposition. V n o n s i n g = {P e V IP is nonsingular} is a dense open set of V 
for the Zariski topology. 

Proof. The complement of V n o n s j n g is the set V s j n g of singular points, which is 
defined by df/dX[(P) = 0 forall i , that is 

V sing = V ( f , f - i , . . ^ ) c A " 

which is closed by definition of the Zariski topology. Since V is irreducible (by 
(3.11, a), to show that the open V n o n s i n g is dense, I only have to show it's non
empty (by Proposition 4.2); arguing by contradiction, suppose that it's empty, that 
is, suppose V = V(f) = V s j n g . Then each of the polynomials df/dX[ must vanish 
on V, therefore (by (3.11) once more) they must be divisible by f in k[Xi, . . X n ] ; 
but viewed as a polynomial in Xj , df/dX{ has degree strictly smaller than f, so 
that f divides df/dX[ implies that in fact df/dX{ = 0 as a polynomial. Over C, 
this is obviously only possible i f Xj does not appear in f, and i f this happens for 
all i then f = const. € C, which is excluded. Over a general field k, df/dX{ = 0 
is only possible i f f is an inseparable polynomial in Xj, that is, char k = p, and 
Xj only appears in f as the pth power XjP. If this happens for each i , then by the 
argument given in (3.16), f is a pth power in k K i , . . X n l ; this contradicts the fact 
that f is irreducible. Q.E.D. 
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(6.4) Tangent space. 
Definition. Let V c A n be a subvariety, with V a P = (aj,.. a n). For any 
f € k [X i , . .X n ] , write 

f P

( 1 ) = I i ^ ( P ) - ( X i - a i ) . 

This is an affine linear polynomial (that is, linear plus constant), the 'first order part' 
of f at P. Now define the tangent space to V at P by 

T P V = fl ( fp ( 1 ) = 0) c A n , 

where the intersection takes place over all f e I(V). 

(6.5) Proposition. The function V IM defined by P H dim TpV is an upper 
semicontinuous function (in the Zariski topology of V). In other words, for any 
integer r, the subset 

S(r) = { ? € V | d i m T P V > r } c V 

is closed. 

Proof. Let (f^,.. f m ) be a set of generators of I(V); it is easy to see that for any 
g e I(V), the linear part g p ^ of g is a linear combination of those of the f\f so 
that the definition of TpV simplifies to 

m 
TpV = f l ( f i P ( 1 ) = 0) c ' A n . 

i - 1 ' r 

Then by elementary linear algebra, 

P € S(r) the matrix ( ^ ( P ) ) i = i v . m , j = i v . n

 h a s r a n k - n " " r 

df-
every (n - r + 1) x (n - r + 1) minor of (-^-(P)); ; vanishes. 

Now each entry 9fj/9Xj(P) of the matrix is a polynomial function of P; thus each 
minor is a determinant of a matrix of polynomials, and so is itself a polynomial. 
Hence S(r) c V c A n is an algebraic subset. Q.E.D. 

(6.6) Corollary-Definition. There exists an integer r and a dense open subset 
V 0 c V such that 
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dim TpV = r for P <= V 0 , and dim TpV > r for all P e V. 

Define r to be the dimension of V, and write dim V = r; and say that P € V is 
nonsingular i f dim TpV = r, and singular i f dim TpV > r. A variety V is non-
singular i f it is nonsingular at each point P e V. 

Proof. Let r = min {dim TpV}, taken over all points P e V. Then clearly 

S(r-1) = 0, S(r) = V, and S(r + l ) $ : V ; 

therefore S(r) \ S(r + 1) = {P e V I dim TpV = r} is open and nonempty. Q.E.D. 

(6.7) It follows from Proposition 6.3 that i f V = V(f) c A n is a hypersurface 
defined by some nonconstant polynomial f, then dim V = n - 1. On the other 
hand, for a hypersurface, k[V] = klXj,. . X n ] / ( f ) , so that, assuming that f involves 
X j in a nontrivial way, the function field of V is of the form 

k(V) = k (X 2 , . .X n ) [X 1 ] / ( f ) , 

that is, it is built up from k by adjoining n - 1 algebraically independent elements, 
then making a primitive algebraic extension. 

Definition. I f k c K is a field extension, the transcendence degree of K over k 
is the maximum number of elements of K algebraically independent over k. It is 
denoted trdeg^K. 

The elementary theory of transcendence degree of a field extension K / k is 
formally quite similar to that of the dimension of a vector space: given a\>.. <xm 

e K, we know what it means for them to be algebraically independent over k (see 
(3.13)); they span the transcendental part of the extension if K/k(aj[,.. a m ) is 
algebraic; and they form a transcendence basis i f they are algebraically 
independent and span. Then it is an easy theorem that a transcendence basis is a 
maximal algebraically independent set, and a minimal spanning set, and that any two 
transcendence bases of K/k have the same number of elements (see Ex. 6.1). 

Thus for a hypersurface V c A n , dim V = n - 1 = tr degk k(V). The rest of 
this section is concerned with proving that the equality dim V = tr degk k(V) holds 
for all varieties, by reducing to the case of a hypersurface. The first thing to show is 
that for a point P e V of a variety, the tangent space TpV, which so far has been 
discussed in terms of a particular coordinate system in the ambient space A n , is in 
fact an intrinsic property of a ntfghbourhood of P e V. 

(6.8) Intrinsic nature of TpV. 
From now on, given P = (aj,.. a n) e V c A n , I take new coordinates X j ' = 
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Xj - aj to bring P to the origin, and thus assume that P = (0,.. 0). Then 
TpV c A n is a vector subspace of k n . 
Notation. Write mp = ideal of P in klV], and 

M P = ideal ( X i f . . X n ) c k I X i , . . X n ] . 

Then of course mp = Mp/I(V) c k[V]. 

Theorem. In the above notation, 
(a) there is a natural isomorphism of vector spaces 

(TpV)* = mp/mp 2 , 

where ( ) * denotes the dual of a vector space. 
(b) If f e klV] is such that f(P) ± 0, and Vf c V is the standard affine open 

as in (4.13), then the natural map 

Tp(Vf) -» TpV 

is an isomorphism. 

Proof of (a). Write (k n )* for the vector space of linear forms on k n ; this is the 
vector space with basis X j , . . X n . Since P = (0,.. 0), for any f e klXj, . . X n ] , the 

/linearpart f p ^ is naturally an element of (k n )*; define a map d:Mp—>(k n )* 
by taking f e Mp into df = fpW. 

Now d is surjective, since the Xj e Mp go into the natural basis of (k n )*; 
also kerd = M p 2 , since 

/ fpW = 0 <===> f starts with quadratic terms in X j , . . X n «=> f € M p 2 . 

Hence M p / M p 2 as (k n )*. This is statement (a) for the special case V = A n . In 
the general case, dual to the inclusion TpV c k n , there is a restriction map 
(kn)*—» (TpV)*, taking a linear form I on k n into its restriction to TpV; 
composing then defines a map 

D: M P - 4 (k n )*~>(T P V)* . 

The composite D is surjective since each factor is. I claim that the kernel of D is 
just M p 2 + I(V), so that 

mp/mp 2 = M p / ( M P

2 + I(V)) « (TpV)*, 

as required. To prove the claim, 
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f G ker D <=» f p ( 1 ) ( T P V = 0 

f p ( 1 ) = I i ajgijpW for some gj G I ( V ) 

(since TpV c k n is the vector subspace defined by (gp ( 1 ) = 0) for g G I ( V ) ) 

f - I i aigi e M p 2 for some gi 6 I ( V ) <=> f e M p 2 + I(V). Q.E.D. 

The proof of (b) of Theorem 6.8 is left to the reader (see Ex. 6.2). 

(6.9) Corollary. TpV only depends on a neighbourhood of P € V up to 
isomorphism. More precisely, i f P € VQ C V and Q G WQ C W are open subsets 
of affine varieties, and cp: VQ —• WQ an isomorphism taking P into Q, there is a 
natural isomorphism Tp VQ —• TQWQ; hence dim TpVg = dim T Q W Q . 

In particular, if V and W are birationally equivalent varieties then dim V = 
dimW. 

Proof. By passing to a smaller neighbourhood of P in V , I can assume V Q is 
isomorphic to an affine variety (Proposition 4.13). Then so is WQ, and (p induces 
an isomorphism klVg] s* k[W()] taking mp into m q . The final sentence holds 
because by (5.8), V and W contain dense open subsets which are isomorphic. 

(6.10) Theorem. For any variety V , dim V = tr deg k(V) . 

Proof. This is known if V is a hypersurface. On the other hand, every variety is 
birational to a hypersurface (by (5.10)), and both sides of the required relation are 
the same for birationally equivalent varieties. Q.E.D. 

(6.11) Nonsingularity and projective varieties. Although the above results were 
discussed in terms of affine varieties, the idea of nonsingularity and of dimension 
applies directly to any variety V : a point P G V is nonsingular if it is a nonsingular 
point of an affine open VQ V containing it; by Corollary 6.9, this notion does not 
depend on the choice of VQ. On the other hand, for a projective variety V c P n , it 
is sometimes useful to consider the tangent space to V at P as a projective 
subspace of P n . I give the definition for a hypersurface only: if V = V(f) is a 
hypersurface defined by a form (= homogeneous polynomial) f G klXg,.. X n ] of 
degree d, and V B P = (ag,.. a n), then I 3f/3Xj(P)-Xi = 0 is the equation of a 
hyperplane in P n which plays the role of the tangent plane to V at P. If 
P G A N ( 0 ) , then this projective hyperplane is the projective closure of the affine 
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tangent hyperplane to V(Q) at P, as can be checked easily using Euler's formula: 

X X\- = df if f G k[X(),.. X n ] is homogeneous of degree d. dXj 

Because of this formula, to find out whether a point P e P n is a singular point of 
V , we only have to check (n + 1) out of the (n + 2) conditions 

f(P) = 0, -J|(P) = 0 for i = 0,..n, 

so that for example, if the degree of f is not divisible by char k, 

J£-(P) = 0 for i = 0,.. n f(P) = 0, and P e V is a singularity. 
aXj 

(6.12) Worked example: blow-up. Let B = A 2 with coordinates (u, v), and 
a: B —» A 2 the map (u, v) h-> (x = u, y = uv); clearly, a is a birational morphism: 
it contracts the v-axis £ : (u = 0) to the origin 0 and is an isomorphism outside 
this exceptional set. Let's find out what happens under a to a curve C : (f = 0) 
c A 2 ; the question will only be of interest if C passes through 0. 

Clearly a "1(C) c B is the algebraic subset defined by (foa)(u, v) = 
f(u, uv) = 0; since 0 e C by assumption, it follows that £ : (u = 0) is contained in 
a~l(C), or equivalently, that u I f(u, uv). It's easy to see that the highest power u m 

of u dividing f(u, uv) is equal to the smallest degree m = a + b of the monomials 
x ayb occurring in f, that is, the multiplicity of f at 0; so a~ 1(C) decomposes as 
the union of the exceptional curve a~l(0) = £ (with multiplicity m), together with 
a new curve C\ defined by fj(u, v) = f(u, uv ) /u m . Consider the examples 

(a) f = ax - y + ..; or (b) f = y 2 - x 2 + ..; or (c) f = y 2 - x 3 , 

where .. denotes terms of higher degree. Clearly in (a) f has multiplicity 1, and 
fj = a - v + .. (where .. consists of terms divisible by u), so C j is again non-
singular, and meets £ transversally at (0, a); thus a replaces 0 e A 2 with the 
line £ whose points correspond to tangent directions at 0 (excluding (x = 0)). In 
(b) f\ = v 2 - 1 + .., so C\ has two nonsingular points (0, ±1) above 0 € C; thus 
the blow-up a 'separates the two branches' of the singular curve C. In (c) 
f\ = v 2 - u, so that C\ is nonsingular, but above 0 it is tangent to the contracted 
curve £. 

In either case (b) or (c), a replaces a singular curve C by a nonsingular 
one C\ birational to C (by introducing 'new coordinates' u = x, v = y/x). This is 
what is meant by a resolution of singularities. In the case of plane curves, a 
resolution can always be obtained by a chain of blow-ups (see Ex. 6.6 for examples, 
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and [Fulton, pp. 162-171] for more details), and the process of resolution gives 
detailed information about the singularities. A famous theorem of H. Hironaka 
guarantees the possibility of resolving singularities by blow-ups (in any dimension, 
over a field of characteristic zero). This is a crucial theoretical result that reduces the 
birational study of varieties to nonsingular ones; however, the actual process of 
resolution by blow-ups is in general extremely complicated, and does not 
necessarily contribute very much to the understanding of the singularities or 
varieties concerned. 

Exercises to §6. 

6.1. Let k c K be a field extension, and (u j , . . u r), (vj,.. v s ) two sets of elements of 

K; suppose that (uj,.. ur) are algebraically independent, and that (vj,.. v s ) span the 

extension k c K algebraically. Prove that r < s. (Hint: the inductive step consists of 

assuming that (uj,.. Uj, v j + j ,.. v s ) span K / k algebraically, and considering u j + j . ) 

Deduce that any two transcendence bases of K / k have the same number of elements. 

6.2. Prove Theorem 6.8, (b). (Hint: I (V f ) = (I(V), Yf - 1) c kDCj,.. X n , Y], so that if 

Q = (a},.. a n , b) e Vf, then T g V f c A n + * is defined by the equations for TpV c A n , 

together with one equation involving Y.) 

6.3. Determine all the singular points of the following curves in A 2 . 

(a) y 2 = x 3 - x; (b) y 2 = x 3 - 6x 2 + 9x; (c) x 2 y 2 + x 2 + y 2 + 2xy(x + y + 1) = 0; 

(d) x 2 = x 4 + y 4; (e) xy = x 6 + y 6 ; (f) x 3 « y 2 + x 4 + y 4; (g) x 2y + xy 2 = x 4 + V 4 . 

6.4. Find all the singular points of the surfaces in A 3 given by 

(a) x y 2 « z 2 ; (b) x 2 + y 2 = z 2 ; (c) xy + x 3 + y 3 = 0. 

(You will find it useful to sketch the real parts of the surfaces, to the limits of your 

ability; algebraic geometers usually can't draw.) 

6.5. Show that the hypersurface V ^ c P 1 1 defined by 

X 0

d + X i d + .. X n

d = 0 

is nonsingular (if chark does not divide d). 

6.6. (a) Let C n c A 2 be the curve given by fn: y 2 - x 2"+l and o: B —• A 2 be as in 

(6.12), with £ = o"1(0); show that a _ 1 ( C n ) decomposes as the union of £ together 

with a curve isomorphic to C n - 1 . Deduce that C n can be resolved by a chain of n 

blow-ups. 

(b) Show how to resolve the following curve singularities by making one or more 

blow-ups: (i) y 3 = x 4; (ii) y 3 =* x5; (iii) (y 2 - x 2 )(y 2 - x5) * x 8 

6.7. Prove that the intersection of a hypersurface V c A n (not a hyperplane) with the 

tangent hyperplane TpV is singular at P. 



102 §7 

§7. The 27 lines on a cubic surface 

In this section S c P 3 will be a nonsingular cubic surface, given by a 
homogeneous cubic f = f(X, Y, Z, T). Consider the lines £ of P 3 lying on S. 

(7.1) Consequences of nonsingularity. 
Proposition, (a) There exists at most 3 lines of S through any point P e S; if 
there are 2 or 3, they must be coplanar. The picture is: 

<: - #C 
(b) Every plane n c P 3 intersects S in one of the following: 

(i) an irreducible cubic; or (ii) a conic plus a line; or (iii) 3 distinct lines. 

Proof, (a) If £ c S then £ = Tp£ c TpS, so that all lines of S through P are 
contained in the plane TpS; there are at most 3 of them by (b). 

(b) I have to prove that a multiple line is impossible: if I I : (T = 0) and 
£: (Z = 0) c n , then to say that £ is a multiple line of S n f l means that f is of 
the form 

f = Z2.A(X, Y,Z,T) + TB(X,Y ,Z ,T) , 

with A a linear form, B a quadratic form. Then S: (f = 0) is singular at a point 
where Z = T = B = 0; this is a nonempty set, since it is the set of roots of B on the 
line £: (Z = T = 0). 

(7.2) Proposition. There exists at least one line £ on S. 

There are several approaches to proving this. A standard argument is by a 
dimension-count: lines of p3 are parametrised by a 4-dimensional variety, and for 
a line £ to lie on S imposes 4 conditions on £ (because the restriction of f to I 
is a cubic form, the 4 coefficients of which must vanish). A little work is needed to 
turn this into a rigorous proof, since a priori it shows only that the set of lines has 
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dimension > 0, and not that it is nonempty (see the highbrow notes (8.15) for a 
discussion of the traditional proof and the difficulties involved in it). 

It is also perfectly logical to assume the proposition (restrict attention only to 
cubic surfaces containing lines). I now explain how (7.2) can be proved by direct 
coordinate geometry and elimination. The proof occupies the next 3 pages, and 
divides up into 4 steps; you can skip it if you prefer (GOTO 7.3). 

Step 1 (Preliminary construction). For any point P e S, the intersection of S 
with the tangent plane TpS is a plane cubic C = S n TpS, which by Ex. 6.7 is 
singular at P. I assume that C is irreducible, since otherwise P is on a line of S, 
and I'm home; then C is a nodal or cuspidal cubic, and the coordinates (X, Y, Z, T) 
of P 3 can be chosen such that TpS: (T = 0), P = (0,0,1,0), and 

C: (XYZ = X 3 + Y 3 ) or ( X 2 Z = Y 3 ) . 

Whether C is nodal or cuspidal for given P e S depends on the matrix of 
second derivatives (or Hessian matrix) of f at P; this is discussed in more detail 
in Ex. 7.3, which proves (in characteristic £ 2) that the cuspidal case must occur 
for some point P e S. For simplicity, I prove (7.2) in the cuspidal case; in 
principle, the proof goes through in exactly the same way in the nodal case, but the 
elimination calculation gets much nastier (see Ex. 7.10). Thus assume that 

f = X 2 Z - Y 3 + gT, 

where g = g2(X, Y, Z, T) is a quadratic form; g(0, 0, 1, 0) £ 0 by nonsingularity 
of S at P, so I can assume that g(0,0,1,0) = 1. 

Step 2 (Statement of main claim). Consider the variable point P a = (1, a, a 3 , 0) 
of C c S. Any line of P 3 through P a meets the complementary plane 
IT. (X = 0) in a point Q = (0, Y, Z, T). I write out the equations for the line P a Q 
to be contained in S in terms of a and Q; expanding f(XPa + (iQ) in powers of 
X and | i gives 

P a Q c S A(Y,Z,T) = B(Y,Z,T) = C(Y,Z,T) = 0, 

where A, B and C are forms of degree 1, 2 and 3 in (Y, Z, T), whose 
coefficients involve a. 

Main claim. There exists a 'resultant' polynomial R27(«), which is monic of 
degree 27 in a, such that 

R(a) = 0 <=» A = B = C = 0 have a common zero (r|: £ : x) in P 2 . 
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This statement proves (7.2), since it implies that for every root a of R, 
there exists a point Q = (0 : J\ : £ : x) in IT for which the line P a Q is contained in 
S. The idea here is a standard elimination calculation based on Ex. 1.10; the rest of 
the proof is concerned with writing out A, B and C explicitly to prove the claim. 

Step 3 (Polar form). Define the polar of f to be the form in two sets of variables 
(X, Y, Z, T) and (X', Y\ Z\ T ) given by 

f ! (X ,Y ,Z ,T ; X' ,Y' ,Z ' ,T ' ) = ^ - x # + | ? ' Y # + ^ ' z # + ^ ' r -

It's clear from the definition of tangent space (see (6.4) and (6.10)) that for 
P = (X, Y, Z, T) e S and P £ Q = (X', Y \ Z\ T) € P 3 , 

fl(P;Q) = 0 the line PQ is tangent to S at P. 

Clearly 

f(XP + jiQ) = X3f(P) + X2j J L f 1 ( P ;Q) + Xji 2 fi(Q;P) + ji3f(Q) t 

so that for P £ Q e P 3 , the 4 conditions 

f(P) = fi(P;Q) = fi(Q;P) = f(Q) 

are the equations for the line £ = PQ to be contained in S: (f = 0). More 
geometrically, these say that £ is tangent to S at both P and Q, so that f|£ has 
double roots at both points, and then £ c S follows from Proposition 1.8. 

The polar of f = X 2 Z - Y 3 -f gT is 

f l = 2XZ-X' -3Y 2 -Y ' + X 2 -Z ' + g(X, Y,Z,T)-T' + Tg!. 

Here g\ = gi(X, Y, Z, T; X', Y\ Z\ T) is the polar form of g defined in the same 
way as above; since g is quadratic, g\ is a symmetric bilinear form such that 
g l (P,P) = 2g(P). 

Substituting P a = (1, a, a 3 ,0) and Q = (0, Y, Z, T) gives the equations for 
P a Q c S as A = B = C = 0, where 

A = Z - 3 a 2 Y - f g( l ,a ,a 3 ,0 )T, 

B = - 3 a Y 2 + g ! ( l , a , a 3 , 0 ; 0,Y,Z,T)T, 

C = ~ Y 3 - f g(0, Y,Z,T)T. 

Step 4 (Elimination calculation). I now eliminate Y, Z, T from the above 3 
equations, paying attention to the highest powers of a occurring. Note that since 



The 27 lines on a cubic surface §7 105 

g(0,0,1,0)= 1, it follows that 

g ( l , a , a 3 , 0 ) = a 6 + . . = a(6>, 

where .. denotes terms of lower degree in a; thus a(6) is monic of degree 6. 
Then A = 0 gives Z as a linear form in Y and T, 

Z = 3 a 2 Y - a(6>T. 

Substituting in B, and using the bilinearity of g\ gives 

B = - 3 a Y 2 + g l ( l , a , a 3 , 0 ; 0, Y, 3a 2 Y - a<6>T, T)T = bgY 2 + b\YT + b2T 2, 

where 

bo = -3a, b i = g i ( l , a , a 3 , 0 ; 0,1, 3a 2 ,0) = 6a 5 -f .., 

b2 = g i ( l , a , a 3 , 0 ; 0,0,-a«>),l) = -2a9 + . . . 

Similarly, substituting for Z in C, and expanding the quadratic form g gives 

C = - Y 3 + g(0, Y ,3a 2 Y-a( 6 )T ,T)T = c 0 Y 3 - f c i Y 2 T - f c 2 Y T 2 - f c 3 T 3 , 

where 

c 0 = - 1 , c i = g(0, l , 3 a 2 , 0 ) = 9a 4 + .., 

c 2 = g i ( 0 , l , 3 a 2 , 0 ; 0,0, -a(«, 1) = -6a8 + .., 

c 3 = g(0,0,-a(6), 1) = a 1 2 - f . . . 

Now by the result of Ex. 1.10, B' and C have a common zero (r| : x) if 
and only if 

det 

bQ bt b 2 

b Q b t b 2 

b Q ^ b 2 

co c l 
C0 C l C2 C3 

= 0. 

The determinant is a polynomial in a, and it's not hard to see that its leading term 
comes from taking the leading term in each entry of the determinant: 
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det 

•3a 6a5 - 2 a 9 

-3a 6a 5 - 2a 9 

-3a 6a 5 - 2 a 9 

- 1 9a 4 - 6 a 8 a 1 2 

- 1 9a 4 - 6 a 8 a 1 2 

= a 2 7-det 

-3 6 -2 
-3 6 -2 

-3 6 -2 
- 1 9 - 6 1 

- 1 9 - 6 1 

= a 27 

This completes the proof of the main claim. Q.E.D. 

(7.3) Proposition. Given a line I c S, there exist exactly 5 pairs (£j, l\) of lines 
of S meeting E, in such a way that 

(i) for i = 1,.. 5, t u t j U l \ ' iscoplanar, 

and (ii) for i £ j , (l[ u l[) n (£j u Ifi = 0. 

Proof (taken from [Beauville, p. 511). If n is a plane of P 3 containing I then 
n n S = £ -f conic, (since f|fj is divisible by the equation of £). This conic can 
either be singular or nonsingular: 

I have to prove that there are exactly 5 distinct planes r i j 3 I for which the 
singular case occurs. The fact stated as property (ii) that lines in different planes 
are disjoint will then follow from (7.1, a). 

Suppose that £: (Z = T = 0); then I can expand f out as 

f = A X 2 + BXY + C Y 2 + DX + EY + F, (*) 

where A, B, C, D, E, F € klZ, T], with A, B and C linear forms, D and E 
quadratic forms, and F a cubic form. If I consider this equation as a variable conic 
in X and Y, it is singular if and only i f 

A(Z,T) = 4ACF 4- BDE - A E 2 - B 2 F - C D 2 = 0. 
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(Here A is 4 times the usual determinant if char £ 2; in characteristic 2 the 
statement is an easy exercise.) 

To be more precise, any plane through £ is given by I I : (\iZ = XT); i f 
|X £ 0, I can assume |X = 1, so that Z = XT. Then in terms of the homogeneous 
coordinates (X, Y, T) on n, f | n = T-Q(X, Y, T), where 

Q = Aft , 1)X 2 4- B(X, 1)XY 4- C(Xy 1)Y 2 

4- Dft, 1)TX 4- E(K DTY 4- F(?t, 1)T2. 

Now A(Z, T) is a homogeneous quintic, so by (1.8), it has 5 roots counted with 
multiplicities. To prove the proposition, I have to show that it doesn't have multiple 
roots; this also is a consequence of the nonsingularity of S. 

Claim. A(Z, T) has only simple roots. 

Suppose (Z = 0) is a root of A, and let IT: (Z = 0) be the corresponding 
plane; I have to prove that A is not divisible by Z 2 . By the above picture, I l n S 
is a set of 3 lines, and according to whether they are concurrent, I can arrange the 
coordinates so that 

either (i) £: (T = 0), ly. (X = 0), l\\ (Y = 0), 

or (ii) £: (T = 0), £ j : (X = 0), £ t ' : (X = T). 

Hence, in case (i), f = XYT 4- Zg, with g quadratic, and in terms of the 
expression (*), this means that B = T 4- aZ, and Z I A, C, D, E, F. Therefore, 
modulo terms divisible by Z 2 , 

A • - T 2 F modZ 2 . 

In addition, the point P = (0, 0, 0, 1) € S, and nonsingularity at P means that F 
must contain the term Z T 2 with nonzero coefficient. In particular, Z 2 does not 
divide F. Therefore (Z = 0) is a simple root of A. 

Case (ii) is a similar calculation (see Ex. 7.1). 

(7.4) Corollary, (a) There exist two disjoint lines £, m c S. 
(b) S is rational (that is, birational to P 2 , see (5.9)). 

Proof, (a) By (7.3, ii), just take l\ and £2. 
(b) Consider two disjoint lines £, m c S, and define rational maps 

cp:S-->£xm and \ | f :£xm-->S 
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as follows. If P € P 3 \ (£ u m) then there exists a unique line n through P which 
meets both £ and m: 

Pen , and £ n n £ 0, m n n ^ 0. 

Set 3>(P) = (£ n n, m n n) e £ x m. This defines a morphism 

O: P 3 \ (£ u m) -> £ x m, 

whose fibre above (Q, R) e £ x m is the line QR of P 3 . Define (p :S- ->hm as 
the restriction to S of 3>. 

Conversely, for (Q, R) e £ x m, let n be the line n = QR in P 3 . By (7.3), 
there are only finitely many lines of S meeting £, so that for almost all values of 
(Q, R), n intersects S in 3 points {P, Q, R}, of which Q and R are the given 
points on £ and m. Thus define \|r. £ x m - - » S by (Q, R) h-> P; then y is a 
rational map, since the ratios of coordinates of P are rational functions of those of 
Q,R. 

Obviously 9 and \\f are mutual inverses. Q.E.D. 

(7.5) I want to find all the lines of S in terms of the configuration given by 
Proposition 7.3 of a line £ and 5 disjoint pairs (£|, £|'). Any other line n c S 
must meet exactly one of £j and l\ for i = 1,.. 5: this is because in P 3 , n meets 
the plane 11}, and Oj n S = £ u l\ u £j'; also, n cannot meet both £} and £j', 
since this would contradict (7.1, a). The key to sorting out the remaining lines is 
the following lemma, which tells us that n is uniquely determined by which of the 
l[ and l[ it meets. Let me say that a line n is a transversal of a line £ if £ n n £ 
0. 

Lemma. If £ i , . . £ 4 c P 3 are disjoint lines then 
either all 4 lines £j lie on a smooth quadric £j,.. £4 c Q c P 3 ; and then 

they have an infinite number of common transversals; 
or the 4 lines £j do not lie on any quadric £j,.. £4 <£ Q; and then they 

have either 1 or 2 common transversals. 

Proof. There exists a smooth quadric Q 3 £j, . . £3: several proofs of this are 
possible (see Ex. 7.2). 

Then in some choice of coordinates, Q: (XT - YZ), and Q has two families 
of lines, or generators: any transversal of £1,.. £3 must lie in Q, since it has 3 
points in Q. Now if £4 <£ Q, then £4 n Q = {1 or 2 points}, and the generators of 
the other family through these points are all the common transversals of £j,.. £4. 
Q.E.D. 
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(7.6) The 27 lines. Let i and m be two disjoint lines of S; as already observed, 
m meets exactly one out of each of the 5 pairs (Ej, E{') of lines meeting E. By 
renumbering the pairs, I assume that m meets l\ for i = 1,.. 5. Introduce the 
following notation for the lines meeting E or m: 

thus the 5 pairs of lines meeting m are (Ej, Ej") for i = 1,.. 5. By (7.3, ii) 
applied to m, for i £ j , the line If does not meet Ej. On the other hand, every 
line of S must meet one of E, Ej or Ej', hence Ej" meets Ej' for i £ j . 

Claim. (I) If n c S is any line other than these 17, then n meets exactly 3 out 
of the 5 lines Ej,.. E5. 

(II) Conversely, given any choice of 3 elements 0, j , k} c {1 , 2, 3, 4, 5}, 
there is a unique line Ey^ c S meeting Ej, Ej, E .̂ 

Proof. (I) Given four disjoint lines of S, it is clear that they do not all lie on a 
quadric Q, since otherwise Q c S , contradicting the irreducibility of S. 

If n meets > 4 of the l\ then by Lemma 7.5, n = E or m, which is a 
contradiction. If n meets < 2 of the l\ then it meets > 3 of the Ej', and so meets 
say either E2', E3', E4', E5' or t\, E3', E4', E5'; but by what was said above, E and 
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l\" are two common transversals of the 5 disjoint lines *2, *5' and l\> 
so that by Lemma 7.5 again, i f n meets > 4 of these then n = £ or £j" . This is 
the same contradiction. 

(II) There are 10 lines meeting l\ by (7.3), of which so far only 4 have 
been accounted for (namely, £, l\\ m and The six other lines must meet 

exactly 2 out of the 4 remaining lines £2,.. £5, and there are exactly 6 = ( 2 ) 

possible choices; so they must all occur. Q.E.D. 
This gives the lines of S as being 

{ £, m, £}, £|\ £|", £jjk }, 

and the number of them is 

1 + 1 + 5 + 5 + 5 + 10 = 27. 

(7.7) The configuration of lines. An alternative statement is that the lines of S 
are £, £j,.. £5, £5', and 16 other lines which meet an odd number of £i,..£5*. 

l\ meets l\ only 

fjjk meets £f,£j,£k only 

m meets all of £j,.. £5. 

In the notation I have introduced, it is easy to see that the incidence relation between 
the 27 lines of S is as follows: 

£ meets *i, . .*5,*l\ . .*5'; 

l\ meets £,m, l\\ \ and for 6 choices of (j, k} c {2,3,4,5}; 

£j ' meets £, £j, £j" (for 4 choices of j ± 1), 

and £ijk (for 4 choices of 0, j , k} c {2,3,4,5}); 

l\" meets m, l\y £j' (for 4 choices of j £ 1), 

and £yk (for 4 choices of { i , j , k} c {2,3,4,5}); 

£123 meets £1, £2>*3>*145>*245>*345>*4'MM'>*5"-

This combinatorial configuration has many different representations, some of them 
much more symmetric than that given here; see for example [Semple and Roth, 
pp. 122-128 and 151-152]. 
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Exercises to §7. 

7.1. Prove case (ii) of the claim in Proposition 7.3. (Hint: as in the given proof of case 

(i), f - X(X - T)T + Zg, so that A = T + aZ, D = - T 2 + Z£, where t is linear, so 

that Z l B, C, E , F, and Z does not divide D; also, the nonsingularity of S at 

(0,1, 0,0) implies that C - cZ, with c t 0. Now calculate A(Z, T) modulo Z 2 ) . 

7.2. Prove that given 3 disjoint lines £ j f . . £3 c p3 , there exists a nonsingular quadric 

Q £3. (Hint: take 3 points Pj, Pj', Pj" € £j on each of them, and show as in 

(1.11) or (2.4) that there is at least one quadric Q through them; it follows that each 

£j c Q. Now show that Q can't be singular: for example, what happens if Q is a pair of 

planes?) 

7.3. The Hessian. Let f = f(j(xQ... x n ) be a form of degree d in XQ , . . x n , defining a 

hypersurface V : (f = 0) c P n ; suppose for simplicity that the characteristic £ 2 and 

does not divide (d - 1). Write fx. * 3f/9xj and f x . x - (fif/dxfixj for the first and 

second derivatives of f. The Taylor expansion of f about a point P € P n is 

f - f(P) + f W(x) + f(2>(x) + . . , 

where f(D and f<2) are linear and quadratic forms: 

fW - Ifx.(P)-Xi and f( 2 ) - (1/2) X f x . x (P)oqxj. 

If P € V is singular then f(P) and f(D vanish at P, and the nature of V or of f 

near P is determined to second order by the quadratic form f( 2 ) . Similarly if P € V is 

nonsingular then the nature of f restricted to the hyperplane TpV (or of the singular 

hyperplane section V n T p V ) is determined by f( 2 ) . Define the Hessian matrix of f 

(w.r.t. coordinates XQ , . . x n ) by H(f) • H(f, x) = {fXiXjh,j» m(* ^ Hessian h(f) » 

h(f, x) to be the determinant h(f) • det H(f). 

(i) Let x\ = £ ayxj be a projective coordinate change with A • (ay) a nonsingular 

(n+l)x(n+l) matrix. If g(V) - f(Ax), prove that the Hessian matrix transforms as 

H(g, 20 - ( lA)H(f, x)A 

where 1 A is the transpose matrix; deduce that h(g, xD s (det A)2h(f, x). 

(ii) Consider an affine piece V ( i ) c A n

( i ) of V : (f - 0) as in (5.5). Let P e V ( i ) 

be a nonsingular point, and n - T p v ( i ) m e a f f i n e tangent plane; write <p for the 

restriction to n of the defining equation f / x j d of V ^ . Prove that the Taylor 

expansion of 9 at P starts with a nondegenerate quadratic form <p(2) (in (n-1) 

variables) if and only if h(f)(P) * 0. 

(Hint: Reduce to P * (1, 0,.. 0) and T p V i ^ - O ) using (i). Then <p(2) is the 

bottom right (n-1) x (n-1) block of the projective Hessian matrix H(f). Use f x.(P) » 0 

for i M and Euler's formula L f x x - x j ( d -D f x; t 0 s h o w ^ m e m a t r i x H tf) h a s 
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exactly one nonzero entry in the zeroth row and column. Compare [Fulton, p. 116].) 

(iii) Let C : ( f « 0 ) c P 2 be a nonsingular plane cubic curve; deduce from (ii) that 

P e C is an inflexion point if and only if H(f)(P) 5 8 0. B6zout's theorem implies that 

(f . H(f) = 0) c P 2 is nonempty (see (1.9) and [Fulton, p. 1121). 

(iv) Let S: (f * 0) c P 3 ^ a nonsingular cubic surface; for P € S prove that if P is 

not on a line of S then the intersection S n TpS is a cuspidal cubic if and only if 

H(f)(P) = 0. Deduce that cuspidal cubic sections exist, as required in Step 1 of the proof 

of (7.2). 

7.4. (i) Prove that if P € S is a singular point of a cubic surface then there is at least 

one line t c S through P (and 'in general' 6). 

(ii) If X c P 4 is a nonsingular cubic hypersurface (a cubic 3-fold) and P € X then 

there is at least one line t c X through P (and 'in general' 6). (Hint: write down the 

equation of X in coordinates with P • (1,0,.. 0).) 

7.5. Prove that the rational map <p: S I x m of Corollary 7.4, (b) is in fact a 

morphism; prove that it contracts 5 lines of S to points. 

7.6. Find all 27 lines of the diagonal (or 'Fermat') cubic surface 

S:(X 3 + Y 3 + Z 3 + T 3 - 0) c P 3 

in terms of planes such as (X • pY), where p 3 • 1. 

7.7. Let S c P 3 be the cubic surface given by S: (f • 0), where 

f(X,Y,Z,T) * Z X 2 + T Y 2 + ( Z - d 2 T ) ( Z - e 2 T ) ( Z - f 2 T ) , 

with d, e, f distinct nonzero elements of k, and I c S the line given by Z - T - 0. By 

considering as in (7.3) the variable plane through I, write down the equations of the 10 

lines of S meeting t. 

7.8 (suggested by R. Casdagli). Consider the cubic surface S(Q) C R 3 given in affine 

coordinates by 

x 2 + y 2 + z 2 - 2xyz • 1 + X 2 , (*) 

where X € R, X > 0 is a constant, (i) By rewriting (*) as 

( x - y z ) 2 - ( y 2 - l ) ( z 2 - l ) + X 2 , 

show that S(Q) has 4 tubes going off to infinity. On the other hand, the corresponding 

projective surface S c P 3 jp meets infinity in 3 lines X Y Z « 0. Use this to describe 

the topology of S. 

(ii) By considering (*) as the equation of a variable conic in the (x, y)-plane with 

parameter z, show that the four pairs of lines of S(Q) which meet (Z • 0) asymp

totically are given by z - u,, x » (u. ± X)y; z = -JI , x » (-u. ± X)y\ z « 1, x - y » ± \ ; 

and z « -1, x + y»±A,, where u 2 « 1 + A.2. Represent the surface S(Q) in R 3 and 

its 24 lines by computer graphics, or by making a plaster model. 

7.9. A case when all the lines are rational. Suppose char k ^ 2 and let S: (f » 0) be 

a nonsingular cubic surface, with 

f - A(X, YVT - B(X, Y)-Z + (terms of degree 2 2 in Z and T). 
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Then S: (f = 0) contains £: (Z - T = 0), and the tangent plane at P = (1, X, 0,0) is 
TpS: A(1,A.)T«B(1A)Z. 

(i) Use linear coordinate changes in (X ,Y) and (Z, T) to reduce A, B to A = 

X 2 + A Y 2 , B = XY (with A e k), and if A is a perfect square to A = X 2 , B = Y 2 

(ii) Suppose that S also contains the line m: (X = Y = 0), and for ease of notation 

that A = X 2 , B = Y 2 Let £j for i = 1,.. 5 be the 5 common transversals of £ and n, 

and write Pj =(1,^,0,0) = £ j n £ for the points of intersection of £ and £j. Prove 

that 

£J: (Y = ^ X , T = X{

2Z) for i = 1,.. 5, 

and that 

f = X 2 T - Y 2 Z + X ( o 5 Z 2 + o 3 Z T + O j T 2 ) - Y ( o 4 Z 2 + o 2 Z T + T 2 ) 

where a j , . . 05 are the elementary symmetric functions in A.5. 

(iii) Find the remaining lines on S. (Hint: £'j and £"j are contained in planes you 

already know. Arguing as in (7.6), it's not hard to show that every line meeting all 3 of 

h* l2> £3 i s 8 i v e n b y ( T 2 Z + T ) : x - ( T 3 Z + T 1 T ) : Y = a : (3 for some a : (3 e p i , 

where t j , . . T3 are the elementary symmetric functions in ^ j . . . X3.) 

7.10. This exercise is for the reader who likes big calculations, or has access to a 

computer algebra system. If a nonsingular cubic surface S has a nodal cubic curve C as 

a section, it's equation can be written as 

f = X Y Z - X 3 - Y 3 + Tg. 

Let P a • (a, a 2 , 1+ a 3 , 0) with a t 0, 00 be a variable point of C, and 

Q = (0, Y, Z, T). Then expanding out f(KPa + u.Q) in terms of the polar of f as in 

(7.2), Step 3, show that the line P a Q c S if and only if A - B * C = 0, where 

A - ( - 2 a 4 + a)Y + a 3 Z + g(a, a 2 , 1 + a 3 ,0 )T; 

B = a Y Z - 3 a 2 Y 2 + g^a, a 2 , 1+ a 3 , 0 ; 0, Y, Z, T)T; 

C - - Y 3 + g(0,Y,Z,T)T. 

Prove that there is a 'resultant' polynomial 1*27(00, which is monic in a of degree 27 

and with constant term 1, such that for a t 0, 

R(a) = 0 A = B = C = 0 have a common zero (rj: £ : x) in P 2 . 

(Hint: solve A * 0 for Z (this introduces a term a 3 in the denominator), substitute 

for Z in B and C to get a binary quadratic and cubic in Y, T, then use the Sylvester 

determinant to eliminate Y and T. What makes this case hard is that the determinant 

formed by the leading term in each entry vanishes. The reason for this is that A, B, C do 

have the trivial common solution Q - P a « (0,0,1,0) when a • 0 or 00. A priori, the 

determinant has terms in a 1^,.. a" 1 ^, and you have to calculate the first and last 4 

coefficients to prove that in fact it is +.. - 1-a"*2.) 
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§8. Final comments 

This final section is not for examination, but some of the topics may 
nevertheless be of interest to the student. 

History and sociology of the modern subject. 
(8.1) Introduction. Algebraic geometry has over the last thirty years or so enjoyed 
a position in math similar to that of math in the world at large, being respected and 
feared much more than understood. At the same time, the 'service' questions I am 
regularly asked by British colleagues or by Warwick graduate students are generally 
of an elementary kind: as a rule, they are either covered in this book or in [Atiyah 
and Macdonald]. What follows is a view of the recent development of the subject, 
attempting to explain this paradox. I make no pretence at objectivity. 

(8.2) Prehistory. Algebraic geometry developed in the 19th century from several 
different sources. Firstly, the geometric tradition itself: projective geometry (and 
descriptive geometry, of great interest to the military at the time of Napoleon), the 
study of curves and surfaces for their own sake, configuration geometry; then 
complex function theory, the view of a compact Riemann surface as an algebraic 
curve, and the purely algebraic reconstruction of it from its function field. On top of 
this, the deep analogy between algebraic curves and the ring of integers of a number 
field, and the need for a language in algebra and geometry for invariant theory, 
which played an important role in the development of abstract algebra at the start of 
the 20th century. 

The first decades of the 20th century saw a deep division. On the one hand, 
the geometric tradition of studying curves and surfaces, as pursued notably by the 
brilliant Italian school; alongside its own quite considerable achievements, this 
played a substantial motivating role in the development of topology and differential 
geometry, but became increasingly dependent on arguments 'by geometric intuition' 
that even the Maestri were unable to sustain rigorously. On the other hand, the 
newly emerging forces of commutative algebra were laying foundations and 
providing techniques of proof. An example of the difference between the two 
approaches was the argument between Chow and van der Waerden, who established 
rigorously the existence of an algebraic variety parametrising space curves of given 
degree and genus, and Severi, who had been making creative use of such parameter 
spaces all his working life, and who in his declining years bitterly resented the 
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intrusion of algebraists (non-Italians at that!) into his field, and most especially the 
implicit suggestion that the work of his own school lacked rigour. 

(8.3) Rigour, the first wave. Following the introduction of abstract algebra by 
Hilbert and Emmy Noether, rigorous foundations for algebraic geometry were laid 
in the 1920s and 1930s by van der Waerden, Zariski and Weil (van der 
Waerden's contribution is often suppressed, apparently because a number of 
mathematicians of the immediate post-war period, including some of the leading 
algebraic geometers, considered him a Nazi collaborator). 

A central plank of their program was to make algebraic geometry work over 
an arbitrary field. In this connection, a key foundational difficulty is that you can't 
just define a variety to be a point set: if you start life with a variety V c A \ over 
a given field k then V is not just a subset of k n ; you must also allow K-valued 
points of V for field extensions k c K (see (8.13, c) for a discussion). This is one 
reason for the notation A \ , to mean the k-valued points of a variety A n that 
one would like to think of as existing independently of the specified field k. 

The necessity of allowing the ground field to change throughout the argument 
added enormously to the technical and conceptual difficulties (to say nothing of the 
notation). However, by around 1950, Weil's system of foundations was accepted 
as the norm, to the extent that traditional geometers (such as Hodge and Pedoe) felt 
compelled to base their books on it, much to the detriment, I believe, of their 
readability. 

(8.4) The Grothendieck era. From around 1955 to 1970, algebraic geometry 
was dominated by Paris mathematicians, first Serre then more especially 
Grothendieck and his school. It is important not to underestimate the influence of 
Grothendieck's approach, especially now that it has to some extent gone out of 
fashion. This was a period in which tremendous conceptual and technical advances 
were made, and thanks to the systematic use of the notion of scheme (more general 
than a variety, see (8.12-14) below), algebraic geometry was able to absorb 
practically all the advances made in topology, homological algebra, number theory, 
etc., and even to play a dominant role in their development. Grothendieck himself 
retired from the scene around 1970 in his early forties, which must be counted a 
tragic waste (he initially left the IHES in a protest over military funding of 
science). As a practising algebraic geometer, one is keenly aware of the large blocks 
of powerful machinery developed during this period, many of which still remain to 
be written up in an approachable way. 

On the other hand, the Grothendieck personality cult had serious side effects: 
many people who had devoted a large part of their lives to mastering Weil 
foundations suffered rejection and humiliation, and to my knowledge only one or 
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two have adapted to the new language; a whole generation of students (mainly 
French) got themselves brainwashed into the foolish belief that a problem that can't 
be dressed up in high-powered abstract formalism is unworthy of study, and were 
thus excluded from the mathematician's natural development of starting with a 
small problem he or she can handle and exploring outwards from there. (I actually 
know of a thesis on the arithmetic of cubic surfaces that was initially not considered 
because 'the natural context for the construction is over a general locally Noetherian 
ringed topos'. This is not a joke.) Many students of the time could apparently not 
think of any higher ambition than itudier les EGAs. The study of category theory 
for its own sake (surely one of the most sterile of all intellectual pursuits) also dates 
from this time; Grothendieck himself can't necessarily be blamed for this, since his 
own use of categories was very successful in solving problems. 

The fashion has since swung the other way. At a recent conference in France 
I commented on the change in attitude, and got back the sarcastic answer 'but the 
twisted cubic is a very good example of a pro-representable functor'. I understand 
that some of the mathematicians now involved in administering French research 
money are individuals who suffered during this period of intellectual terrorism, and 
that applications for CNRS research projects are in consequence regularly dressed 
up to minimise their connection with algebraic geometry. 

Apart from a very small number of his own students who were able to take 
the pace and survive, the people who got most lasting benefit from Grothendieck's 
ideas, and who have propagated them most usefully, were influenced at a distance: 
the Harvard school (through Zariski, Mumford and M. Artin), the Moscow school 
of Shafarevich, perhaps also the Japanese school of commutative algebraists. 

(8.5) The big bang. History did not end in the early 1970s, nor has algebraic 
geometry been less subject to swings of fashion since then. During the 1970s, 
although a few big schools had their own special interests (Mumford and 
compactification of moduli spaces, Griffiths' schools of Hodge theory and algebraic 
curves, Deligne and 'weights' in the cohomology of varieties, Shafarevich and K3 
surfaces, Iitaka and his followers in the classification of higher dimensional 
varieties, and so on), it seems to me we all basically believed we were studying the 
same subject, and that algebraic geometry remained a monolithic block (and was in 
fact colonising adjacent areas of math). Perhaps the presence of just one or two 
experts who could handle the whole range of the subject made this possible. 

By the mid-1980s, this had changed, and algebraic geometry seems at 
present to be split up into a dozen or more schools having quite limited interaction: 
curves and Abelian varieties, algebraic surfaces and Donaldson theory, 3-folds and 
classification in higher dimensions, K theory and algebraic cycles, intersection 
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theory and enumerative geometry, general cohomology theories, Hodge theory, 
characteristic p, arithmetic algebraic geometry, singularity theory, differential 
equations of math physics, string theory, applications of computer algebra, etc. 

Additional footnotes and highbrow comments. 
This section mixes elementary and advanced topics; since it is partly a 'word 

to the wise' for university teachers using this as a textbook, or to guide advanced 
students into the pitfalls of the subject, some of the material may seem obscure. 

(8.6) Choice of topics. The topics and examples treated in this book have been 
chosen partly pragmatically on the basis of small degree and ease of computation. 
However, they also hint at the 'classification of varieties': the material on conies 
applies in a sense to every rational curve, and cubic surfaces are the most essential 
examples of del Pezzo rational surfaces. Cubic curves with their group law are 
examples of Abelian varieties; the fact (2.2) that a nonsingular cubic is not rational 
is the very first step in classification. The intersection of two plane conies in (1.12-
14) and the intersection of two quadrics of P \ referred to in Ex. 5.6 could also 
be fitted into a similar pattern, with the intersection of two quadrics in P \ 
providing another class of del Pezzo surfaces, and the family of lines on the 
intersection of two quadrics in P \ providing 2-dimensional Abelian varieties. 

The genus of a curve, and the division into 3 cases tabulated on p. 46 is 
classification in a nutshell. I would have liked to include more material on the genus 
of a curve, in particular how to calculate it in terms of topological Euler 
characteristic or of intersection numbers in algebraic geometry, essential five-finger 
exercises for young geometers. However, this would comfortably occupy a separate 
undergraduate lecture course, as would the complex analytic theory of elliptic 
curves. 

(8.7) Computation versus theory. Another point to make concerning the 
approach in these notes is that quite a lot of emphasis is given to cases that can be 
handled by explicit calculations. When general theory proves the existence of some 
construction, then doing it in terms of explicit coordinate expressions is a useful 
exercise that helps one to keep a grip on reality, and this is appropriate for an 
undergraduate textbook. This should not however be allowed to obscure the fact 
that the theory is really designed to handle the complicated cases, when explicit 
computations will often not tell us anything. 



118 §8 III. Applications 

(8.8) IR versus C. The reader with real interests may be disappointed that the 
treatment over IR in §§1-2 gave way in §3 to considerations over an arbitrary 
field k, promptly assumed to be algebraically closed. I advise this class of reader to 
persevere; there are plenty of relations between real and complex geometry, 
including some that will come as a surprise. Asking about the real points of a real 
variety is a very hard question, and something of a minority interest in algebraic 
geometry; in any case, knowing all about its complex points will usually be an 
essential prerequisite. Another direct relation between geometry over R and C is 
that an n-dimensional nonsingular complex variety is a 2n-dimensional real 
manifold - for example, algebraic surfaces are a principal source of constructions 
of smooth 4-manifolds. 

As well as these fairly obvious relations, there are more subtle ones, for 
example: (a) singularities of plane curves C c C ^ give rise to knots in by 
intersecting with the boundary of a small ball; and (b) the Penrose twistor 
construction views a 4-manifold (with a special kind of Riemannian metric) as the 
set of real-valued points of a 4-dimensional complex variety that parametrises 
rational curves on a complex 3-dimensional variety (thus the real 4-sphere S 4 

we live in can be identified as the real locus in the complex Grassmannian Gr(2, 4) 
of lines in P ^ ) 

(8.9) Regular functions and sheaves. The reader who has properly grasped the 
notion of rational function f e k(X) on a variety X and of regularity of f at 
P € X ((4.7) and (5.4)) already has a pretty good intuitive idea of the structure 
sheaf Gx> For an open set U c X, the set of regular functions U —> k 

0 X (U) = { f € k(X) | f is regular V P e U } = f ] p € y ^X,P 
is a subring of the field k(X). The sheaf Ox is just the family of rings #x(U) as 
U runs through the opens of X. Clearly, any element of the local ring #x,P ( s e e 

(4.7) and (5.4) for the definition) is regular in some neighbourhood U of P, so 
that #x,p = Uy B p ^x(U)- There's no more to it than that; there's a fixed pool of 
rational sections k(X), and sections of the sheaf over an open U are just rational 
sections with a regularity condition at every P e U. 

This language is adequate to describe any torsion-free sheaf on an irreducible 
variety with the Zariski topology. Of course, you need the full definition of sheaves 
if X is reducible, or if you want to handle more complicated sheaves, or to use the 
complex topology. 

(8.10) Globally defined regular functions. If X is a projective variety then the 
only rational functions f e k(X) that are regular at every P e X are the constants. 
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This is a general property of projective varieties, analogous to Liouville's theorem 
in functions of one complex variable; for a variety over C it comes from 
compactness and the maximum modulus principle (X c P n £ is compact in the 
complex topology, so the modulus of a global holomorphic function on X must 
take a maximum), but in algebraic geometry it is surprisingly hard to prove from 
scratch (see for example [Hartshorne, 1.3.4]; it is essentially a finiteness result, 
related to the finite dimensionality of coherent cohomology groups). 

(8.11) The surprising sufficiency of projective algebraic geometry. Weil's 
abstract definition of a variety (affine algebraic sets glued together along isomorphic 
open sets) was referred to briefly in (0.4), and is quite easy to handle in terms of 
sheaves. Given this, the idea of working only with varieties embedded in a fixed 
ambient space P ^ k seems at first sight unduly restrictive. I want to describe 
briefly the modern point of view on this question. 
(a) Polarisation and positivity. Firstly, varieties are usually considered up to 
isomorphism, so saying a variety X is projective means that X can be embedded 
in some pN, that is, is isomorphic to a closed subvariety X c p N as in (5.1-7). 
Quasiprojective means isomorphic to a locally closed subvariety of P^ , so an 
open dense subset of a projective variety; projectivity includes the property of 
completeness, that X cannot be embedded as a dense open set of any bigger 
variety. 

The choice of an actual embedding X c* p N (or of a very ample line bundle 
^x( l ) whose sections will be the homogeneous coordinates of P^ ) is often called 
a polarisation, and we write (X, #x( l ) ) to indicate that the choice has been made. 
In addition to completeness, a projective variety X c p N satisfies a key condition 
of 'positive degree': if V c X is a k-dimensional subvariety then V intersects a 
general linear subspace pN-k i n a positive finite number of points. Conversely, 
the Kleiman criterion says that some multiple of a line bundle on a complete variety 
X can be used to provide a projective embedding of X if its degree on every curve 
C c X is consistently greater than zero (that is, > e-(any reasonable measure 
of C)). This kind of positivity relates closely to the choice of a K&hler metric on a 
complex manifold (a Riemannian metric with the right kind of compatibility with 
the complex structure). So we understand projectivity as a kind of 'positive 
definiteness'. 
(b) Sufficiency. The surprising thing is the many problems of algebraic geometry 
having answers within the framework of projective varieties. The construction of 
Chow varieties mentioned in (8.2) is one such example; another is Mumford's 
work of the 1960s, in which he constructed Picard varieties and many moduli 
spaces as quasiprojective varieties (schemes). Mori theory (responsible for 
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important conceptual advances in classification of varieties related to rationality, see 
[Kolldr]) is the most recent example; here the ideas and techniques are inescapably 
projective in nature. 
(c) Insufficiency of abstract varieties. Curves and nonsingular surfaces are auto
matically quasiprojective; but abstract varieties that are not quasiprojective do exist 
(singular surfaces, or nonsingular varieties of dimension > 3). However, if you feel 
the need for these constructions, you will almost certainly also want Moishezon 
varieties (M. Artin's algebraic spaces), objects of algebraic geometry more general 
than abstract varieties, obtained by a somewhat more liberal interpretation of 
'glueing local pieces'. 

Theorems on abstract varieties are often proved by a reduction to the 
quasiprojective case, so whether the quasiprojective proof or the detail of the 
reduction process is more useful, interesting, essential or likely-to-lead-to-cheap-
publishable-work will depend on the particular problem and the individual student's 
interests and employment situation. It has recently been proved that a nonsingular 
abstract variety or Moishezon variety that is not quasiprojective necessarily contains 
a rational curve; however, the proof (due to J. Kolldr) is Mori-theoretic, so hardcore 
projective algebraic geometry. 

(8.12) Affine varieties and schemes. The coordinate ring klV] of an affine 
algebraic variety V over an algebraically closed field k (Definition 4.1) satisfies 
two conditions: (i) it is a finitely generated k-algebra; and (ii) it is an integral 
domain. A ring satisfying these two conditions is obviously of the form klV] for 
some variety V, and is called a geometric ring (or geometric k-algebra). 

There are two key theoretical results in Chapter I I ; one of these is Theorem 
4.4, which states precisely that V h-> k[V] = A is an equivalence of categories 
between affine algebraic varieties and the opposite of the category of geometric 
k-algebras (although I censored out all mention of categories as unsuitable for 
younger readers). The other is the Nullstellensatz (3.10), that prime ideals of klV] 
are in bijection with irreducible subvarieties of V; the points of V are in bijection 
with maximal ideals. 

Taken together, these results identify affine varieties V with the affine 
schemes corresponding to geometric rings (compare also Definition 4.6). 

The prime spectrum Spec A is defined for an arbitrary ring (commutative 
with a 1) as the set of prime ideals of A. It has a Zariski topology and a structure 
sheaf; this is the affine scheme corresponding to A (for details see [Mumford, 
Introduction, or Hartshorne, Ch. II]). There are several quite distinct ways in which 
affine schemes are more general than affine varieties; each of these is important, and 
I run through them briefly in (8.14). 

It's important to understand that for a geometric ring A » klV], the prime 
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spectrum Spec A contains exactly the same information as the variety V, and no 
more. The NSS tells us there's a plentiful supply of maximal ideals (m v for points 
v € V), and every other prime P of A is the intersection of maximal ideals over 
the points of an irreducible subvariety Y c V: 

P = 100 = f l v € Y

 m v; 
It's useful and (roughly speaking, at least) permissible to ignore the distinction 
between varieties and schemes, writing V = Spec A, v for m v , and imagining the 
prime P = I(Y) ('generic point') as a kind of laundry mark stitched everywhere 
dense into the fabric of the subvariety Y. 

(8.13) What fs the point? A majority of students will never need to know any 
more about scheme theory than what is contained in (8.9) and (8.12), beyond the 
warning that the expression generic point is used in several technical senses, often 
meaning something quite different from sufficiently general point. 

This section is intended for the reader who faces the task of working with the 
modern literature, and offers some comments on the various notions of point in 
scheme theory, potentially a major stumbling block for beginners, 
(a) Scheme-theoretic points of a variety. Suppose that k is a field (maybe not 
algebraically closed), I c klXj,. . X n ] an ideal and A = k{Xi, . .X n ] / I ; write 
V = V(I) c K n where k c K is a chosen algebraic closure. The points of Spec A 
are only a bit more complicated than for a geometric ring in (8.12). By an obvious 
extension of the NSS, a maximal ideal of A is determined by a point 
v = (ai„. a n ) e V c K n , that is, it's of the form 

m v = { f € A | f ( P ) = 0 } = ( x i - a i , . . x n - a n ) n A . 

It's easy to see that different points v e V c K n give rise to the same maximal 
ideal m v of A i f and only if they are conjugate over k in the sense of Galois 
theory (since A consists of polynomials with coefficients in k). So the maximal 
spectrum Specm A is just V 'up to conjugacy' (the orbit space of Gal K / k on 
V). Every other prime P of A corresponds as in (8.12) to an irreducible 
subvariety Y = V(P) c V (up to conjugacy over k); P e Spec A is the scheme-
theoretic generic point of Y, and is again to be thought of as a laundry mark on 
Y. The Zariski topology of Spec A is fixed up so that P is everywhere dense in 
Y. The maximal ideals of A are called closed points to distinguish them. If 
C : (f = 0) c A^(fj is an irreducible curve, it has just one scheme-theoretic generic 
point, corresponding to the ideal (0) of C[X, Y]/(f), whereas a surface S will 
have one generic point in each irreducible curve C c S as well as its own generic 
point dense in S. 

Scheme-theoretic points are crucial in writing down the definition of Spec A 
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as a set with a topology and a sheaf of rings (and are also important in commutative 
algebra, and in the treatment in algebraic geometry of notions like the 
neighbourhood of a generic point of an irreducible subvariety, see (8.14, i)); 
however, points of V c K n with values in the algebraic closure k c K correspond 
more to the geometric idea of a point, and are called geometric points. This is 
similar to the way that the Zariski topology of a variety V serves more as a vehicle 
for the structure sheaf 0 y than as a geometric object in its own right. 
(b) Field-valued points in scheme theory. If P is a prime ideal of A (so 
P G Spec A a point) the residue field at P is the field of fractions of the integral 
domain A/P , written k(P); it is an algebraic extension of the ground field k if 
and only if P is maximal. A point of V with coefficients in a field extension 
k c L (a point (aj,.. a n) e V(I) c L n ) clearly corresponds to a homomorphism 
A L (given by Xj h-» aj), with kernel a prime ideal P of A, or equivalently, to 
an embedding k(P)c>L. If P = m v is a maximal ideal, and L = K is the 
algebraic closure of k, it is the choice of the embedding A / m v = k(v) c+ K that 
determines the coordinates of the corresponding point of V c K n , or in other 
words, distinguishes this point from its Galois conjugates. These are the geometric 
points of V. 

For any extension k c L, the k-algebra homomorphism A —> L corre
sponding to an L-valued point of V can be dressed up to seem more reasonable. 
Recall first that a variety is more than a point set; even if it's only a single point, you 
have to say what field it's defined over. So 

SpecL = \r = p t L 

is the variety consisting of a single point defined over L. By the equivalence of 
categories (4.4), a morphism Spec L -» V (the inclusion of a point defined over 
L) should be the same thing as a k-algebra homomorphism A = k[V] —> L = 
k[ptLl. 

To summarise the relation between scheme-theoretic points and field-valued 
points: a point P e Spec A = V is a prime ideal of A, so corresponds to the 
quotient homomorphism A —> A/P c Quot (A/P) = k(P) to a field. If L is any 
field, a L-valued point of V is a homomorphism A —> L; a scheme-theoretic 
point P corresponds in a tautological way to a field-valued point, but with the field 
k(P) varying with P. If K is the algebraic closure of k then K-valued points of 
V c K n are just geometric points; a K-valued point v sits at a closed scheme-
theoretic point m v , with a specified inclusion A / m v = k(v) c> K. 
(c) Generic points in Weil foundations. I mentioned in (8.3) the peculiarity of 
points in Weil foundations: a variety V defined over a field k is allowed to have 
L-valued points for any field extension k c L. This clearly derives from number 
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theory, but it also has consequences in geometry. For example, if C is the circle 
x 2 + y2 _ j defined over k = <B, then 

Pn = (27C/(7c2 + l) t (7c2.1)/(7c2 + i ) ) 

is allowed as a C-valued point of C. Since n is transcendental over <Q, any 
polynomial f € Q[x, y] vanishing at is a multiple of x 2 + y 2 - 1; so P^ is a 
Q-generic point of C - it's not in any smaller subvariety of C defined over Q. In 
other words, the conjugates of P^ under Aut C (= "Gal (C/Q)") are dense in C. 
Since P^ is ©-generic, i f you prove a statement only involving polynomials over 
<Q about Pft, the same statement will be true for every point of C. 

In fact this idea is already covered by the notion of an L-valued point 
described in (b), and the geometric content of generic points can be seen most 
clearly in this language. For example, the field Q(7c) is just the purely 
transcendental extension, so Q(7c) a <Q(A,) and the morphism Spec Q(X) —> C is 
the rational parametrisation of C discussed in (1.1): roughly, you're allowed to 
substitute any 'sufficiently general' value for the transcendental or unknown n. 
More generally, a finitely generated extension k c L is the function field of a 
variety W over k; suppose that cp: Spec L —» V = Spec A is a point 
corresponding to a k-algebra homomorphism A—> L, having kernel P. Then cp 
extends to a rational map f: W V whose image is dense in the subvariety 
Y = V(P) c V, so cp or cp(Spec L) is a field-valued generic point of Y. 
(d) Points as morphisms in scheme theory. The discussion in (c) shows that an 
L-valued point of a variety V contains implicitly a rational map W V, where 
W is a variety birational to Spec L (that is, L = k(W)); a geometer could think of 
this as a family of points parametrised by W. 

More generally, for X a variety (or scheme) we are interested in, an 
S-valued point of X (where S is any scheme) can just be defined as a morphism 
S —> X. If X = V(I) c A \ is affine with coordinate ring k[X] and S = Spec A, 
then an S-valued point corresponds under (4.4) to a k-algebra homomorphism 
k[X3—>A, that is, to an n-tuple (aj,.. a n) of elements of A satisfying f(a) = 0 
for all f e I . 

In a highbrow sense, this is the final apotheosis of the notion of a variety: if a 
point of a variety X is just a morphism, then X itself is just the functor 

S h-> X(S) = { morphisms S -> X } 
on the category of schemes. (The fuss I made about the notation A \ in the 
footnote on p. 50 already reflect this.) Unlikely as it may seem, these metaphysical 
incantations are technically very useful, and varieties defined as functors are basic 
in the modern view of moduli spaces. Given a geometric construction that can 
'depend algebraically on parameters' (such as space curves of fixed degree and 
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genus), you can ask to endow the set of all possible constructions with the structure 
of an algebraic variety. Even better, you could ask for a family of constructions 
over a parameter space that is 'universal', or 'contains all possible constructions'; the 
parameter variety of this universal family can usually be defined most directly as a 
functor (you still have to prove that the variety exists). For example the Chow 
variety referred to in (8.2) represents the functor 

S h-» { families of curves parametrised by S }. 

(8.14) How schemes are more general than varieties. I now discuss in isolation 
3 ways in which affine schemes are more general than affine varieties; in cases of 
severe affliction, these complications may occur in combination with each other, 
with the global problems discussed in (8.11), or even in combination with new 
phenomena such as p-adic convergence or Arakelov Hermitian metrics. 
Considerations of space fortunately save me from having to say more on these 
fascinating topics. 
(i) Not restricted to finitely generated algebras. Suppose C c S is a curve on a 
nonsingular affine surface (over C, if you must). The ring 

0S,C = { f € k(S) I f = g/h with h * I c } c k(S) 
is the local ring of S at C; elements f e 0$ Q are regular on an open set of S 
containing a dense open subset of C. Divisibility theory in this ring is very 
splendid, and relates to the geometric idea of zeros and poles of a meromorphic 
function: C is locally defined by a single equation (y = 0) with y e IQ a local 
generator, and every nonzero element f e ®$Q is of the form f = yn-f(), where 
n 6 Z and fg is an invertible element of ©s,C- A ring with this property is called 
a discrete valuation ring (d.v.r.), in honour of the discrete valuation f h-» n, which 
counts the order of zero of f along C (n < 0 corresponds to poles); the element y 
is called a local parameter of Q . 

Now scheme theory allows us boldly to consider Spec #s,C as a geometric 
object, the topological space (•-) with only two points: a closed point, the maximal 
ideal (y) (= the generic point of C) and a nonclosed point, the zero ideal 0 (= the 
generic point of S). The advantage here is not so much technical: the easy 
commutative algebra of discrete valuation rings was of course used to prove results 
in algebraic geometry and complex function theory (for example, about ideals of 
functions, or about the local behaviour above C of a branched cover T —> S in 
terms of the field extension k(S) c k(T)) long before schemes were invented. More 
important, it gives us a precise geometric language, and a simple picture of the local 
algebra. 

The above is just one example, related to localisation, or the idea of 
'neighbourhood of a generic point of a subvariety', of benefits to ordinary geometry 
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from taking Spec of a ring more general than a finitely generated algebra over a 
field; a similar example is thinking of the generic point Spec k(W) of a variety W 
as the variety obtained as the intersection of all nonempty open sets of W 
(compare (8.13, c)), like the grin remaining after the Cheshire cat's face has 
disappeared. 
(ii) Nilpotents. The ring A can have nilpotent elements; for example 
A = k[x, y]/(y2 = 0) corresponds to the 'double line' 21 c A \ , to be thought of as 
an infinitesimal strip neighbourhood of the line. An element of A is of the form 
f(x) + efi(x) (with = 0), so it looks like a Taylor series expansion of a 
polynomial about £ truncated to first order. If you practise hard several times a 
day, you should be able to visualise this as a function on the double line 21. 

Nilpotents allow scheme theory to deal in Taylor series truncated to any 
order, so for example to deal with points of a variety by power series methods. They 
are crucial in the context of the moduli problems discussed at the end of (8.14, d): 
for example, they provide a precise language for handling first order infinitesimal 
deformations of a geometric construction (as a construction over the parameter 
space Spec (k[e]/(e2 = 0))), and viewing these as tangent vectors to the universal 
parameter variety. They also open up a whole range of phenomena for which there 
was no classical analogue, for example relations between inseparable field 
extensions and Lie algebras of vector fields on varieties in characteristic p. 
(iii) No base field. Let p be a prime number, and Z(p) c <Q the subring of 
rationals with no p in the denominator; Z(p) is another discrete valuation ring, 
with parameter p. It has a unique maximal ideal 0 ± p2(p), with residue field 
Z(p)/pZ(p)s Fp = Z/(p). If F e Z(p)[X, Y], then it makes sense to consider the 
curve C j : ( F = 0 ) c A 2 j , or alternatively to take the reduction f of F mod p, 
and to consider the curve Cpt (f = 0) c A % p . What kind of geometric object is it 
that contains both a curve over the complexes and a curve over a finite field? 
Whether you consider it to be truly geometric is a matter of opinion, but the scheme 
Spec Z(p)(X, Y]/(F) does exactly this. 

Again, this is technically not a new idea: reducing a curve mod p has been 
practised since the 18th century, and Weil foundations contained a whole theory of 
'specialisation' to deal with it. The advantage is a better conceptual picture of the 
curve Spec Z( p)(X, Y]/(F) over the d.v.r. Z ( p ) as a geometric object fibred over 
Spec (Z(p)) ('= (•-)'), with the two curve Qc and C p as generic and special 
fibres. 

In the same way, for F e Z[X, Y], the scheme Spec Z[X, Y]/(F) is a 
geometric object containing for every prime p the curve C p : (f p = 0) c A % p 

over F D , where f p is the reduction of F mod p, and at the same time the curve 
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C<£ : (F = 0) c A 2 £ , and is called an arithmetic surface; it contains quite a lot 
besides: in particular, for every point c e C<£ with algebraic numbers as 
coordinates, it contains a copy of Spec ®[c], hence essentially all the information 
about the ring of integers of the number field Q(c) of definition of c. 

However grotesquely implausible this object may seem at first sight (you can 
again get used to it if you practise), it is a key ingredient in modern number theory, 
and is the basic foundation on which the work of Arakelov and Faltings rests. 

(8.15) Proof of the existence of lines on a cubic surface. Every adult algebraic 
geometer knows the traditional proof of (7.2) by dimension-counting (see for 
example [Beauville, Complex algebraic surfaces, p. 50], or [Mumford, Algebraic 
geometry I , Complex projective varieties, p. 174]). I run through this before 
commenting on the difficulties. 

The set of lines of p3 is parametrised by the 4-dimensional Grassmannian 
Gr = Gr(2, 4), and cubic surfaces by the projective space S = P ^ of cubic forms 
in (X, Y, Z, T) (in fact N = 19). Write Z c G r x S for the incidence subvariety 

Z = { ( £ , X ) , £ G Gr ,Xe S | £ c X } . 
Since cubic forms vanishing on a given line £ form a pN-4^ j t j s e a S y t 0 deduce 
from the first projection Z—» Gr that Z is a rational N-dimensional variety. So 
the second projection p: Z —» S is a morphism between two N-dimensional 
varieties, and therefore 

(i) either the image p(Z) is an N-dimensional variety in S, and so 
contains a dense open of S, or every fibre of p has dimension > 1. 

(ii) Z is a projective variety, so that the image p(Z) is closed in S. 
Since cubic surfaces containing only finitely many lines do exist, the second 

possibility in (i) doesn't occur, so every sufficiently general cubic surface contains 
lines. Then (ii) ensures that p(Z) = S, and every cubic surface contains lines. 

This argument seems to me to be unsuitable for an undergraduate course for 
two reasons: statement (i) assumes results about the dimension of fibres, which 
however intuitively acceptable (especially to students in the last week of a course) 
are hard to do rigorously; whereas (ii) is the theorem that a projective variety is 
complete, that again requires proof (by elimination theory, compactness, or a full-
scale treatment of the valuative criterion for properness). 

To the best of my knowledge, my proof in (7.2) is new; the knowledgeable 
reader will of course see its relation to the other traditional argument by vector 
bundles: the Grassmannian Gr(2, 4) has a tautological rank 2 vector bundle E 
(consisting of linear forms on the lines of P^); restricting the equation f of a 
cubic surface to every line £ c p3 defines a section s(f) € S^E of the 3rd 
symmetric power of E. Finally, every section of S^E must have a zero, either by 
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ampleness of E or by a Chern class argument (that also gives the magic number 
27). 

Substitute for preface. 
(8.16) Acknowledgements and name-dropping. It would be futile to try to list all 
the mathematicians who have contributed to my education. I owe a great debt to 
both my formal supervisors Pierre Deligne and Peter Swinnerton-Dyer (before he 
became a successful politician and media personality); I probably learned most 
from the books of David Mumford, and my understanding (such as it is) of the 
Grothendieck legacy derives largely from Mumford and Deligne. My view of the 
world, both as a mathematician and as a human being, has been strongly influenced 
by Andrei Tyurin. 

My approach to what an undergraduate algebraic geometry course should be 
is partly based on a course designed around 1970 by Swinnerton-Dyer for the 
Cambridge tripos, and taught in subsequent years by him and Barry Tennison; my 
book is in some ways a direct descendant of this, and some of the exercises have 
been taken over verbatim from Tennison's example sheets. However, I have 
benefitted enormously from the freedom allowed under the Warwick course 
structure, especially the philosophy of teaching (explicitly stated by Christopher 
Zeeman) that research experience must serve as one's main guideline in deciding 
how and what to teach. 

The 'winking torus' appearing in (2.14- ) comes to me from Jim Eells, who 
informs me he learnt it from H. Hopf (and that it probably goes back to an older 
German tradition of mathematical art work). I must thank Caroline Series, Frans 
Oort, Paul Cohn, John Jones, Ulf Persson, David Fowler, an anonymous referee and 
David Tranah from C.U.P. for helpful comments on the preprint version of this 
book, and apologise i f on occasions I have either not been fully able to 
accommodate their suggestions, or preferred my own counsel. 

I am grateful to Martina Jaeger for a number of corrections to the first 
printing, and to Isao Wakabayashi for a detailed reading, which uncovered many 
inaccuracies. I thank especially R.J. Chapman and Bill Bruce for pointing out the 
most serious error of the first printing (I avoided mention of the Hessian at the start 
of (7.2) by appealing to a false statement left as an exercise). 
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affine curve 39,45,79 

affine piece of projective variety 13, 38, 79, 

83-84,92,111 
affine scheme 120 

affine space A \ 50, 53, 60, 64, 66, 69, 77, 

79, 89, 94,100, 115, 123 

affine variety 4, 50, 70-71, 72, 74,78, 120 

algebraic (sub-) set 50-55, 64, 66, 78, 81-

84 

algebraically closed field 52, 54, 55, 64, 71, 

77, 118, 120, 121, 122 

algebraically independent 59, 89, 97, 101 

asymptotic line 9, 12, 14, 60, 112 

B 
Bdzout's theorem 17-18, 33, 35-36, 112 

birational equivalence 87-89,99, 100-101, 

107-108, 123 

birational maps 87-89,91,92,99, 100-101 

blow-up 100-101 

C 
categories of geometry 2-4,46 

category theory 4, 116, 120,123-124 

characteristic p 4, 14, 16, 24, 28, 61-62, 

107, 125 

classification of varieties 43-47, 117 

complete variety 119 

complex analytic geometry 3, 36, 43-47, 

95, 118, 119 

complex function theory 6,45-47, 114, 118 

conic 9-21, 25, 30-33, 37-38, 45, 85, 93, 

106 

coordinate ring k[V] 66-72,73,74,75,120, 

123 

V - I correspondence 50-51, 52, 53, 54, 55, 
60, 63-64, 66-67, 81-82, 84, 120, 121 

cubic curve 1, 2, 7, 27-42, 43-44, 75-77, 

79, 92, 117 

cubic surface 6, 102-113, 116, 117, 126 ' 

cuspidal cubic 27, 41, 68, 74, 103, 112 

D 
denominator of a rational function 4, 68, 72, 

76-77, 78 

dense open set 36, 51, 67, 71, 72, 73, 88, 

95, 97, 99 

dimension 2, 57, 59, 60, 62, 64, 97, 99, 102, 

118, 126 

Diophantine problems 1, 9-10, 24, 28, 41-

42, 45-47, 125-126 

discrete valuation ring (d.v.r.) 124, 125 

discriminant 22, 23, 106-107 

domain of definition dom f 71-73, 77, 78, 

83-84, 85, 87, 91 

dominant 73-74,87 

E 
elimination theory 25-26, 57, 64, 104, 105-

106, 113 

empty set 0 0, 45, 52, 53, 55, 73, 82 

equivalence of categories V h-> k[V] 69, 

120, 122 

Euler's formula 100, 111 

F 
finite algebra 4, 57-58, 59, 60, 61, 64, 

finitely generated algebra 4, 49, 54, 57-59, 
71, 120, 124 

finitely generated ideal 48,49, 50, 81 

form 16-17, 22, 25, 30,99 

function field k(V) 62-63, 71, 73, 74, 78 

83, 85, 87, 88, 89,97, 99, 114, 123, 124 
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G 
generic point 121, 122-123, 124 
genus of a curve 43-47, 115 
group law on cubic 33-36,39-41,46,76 

H 
Hessian, 39,103, 111-112,127 
homogeneous ideal 80-81, 84 
homogeneous polynomial (= form) 16-17, 
22, 25,30, 80-81,99-100 
homogeneous V - I correspondences 81-82 
hypersurface 50, 56-57, 62-63, 64, 88-89, 
94-95, 99, 101 

I 

'infinite descent' 29,42 
inflexion 34, 38-39,41, 103,112 
intersection of plane curves 17, 33, 35-36, 
64 
intersection of two conies 20-25, 117 
intersection of two quadrics 91 -92, 117 
irreducible algebraic set 33, 52-53, 55, 57, 
63, 67,71,78, 82, 84,92,95 
irreducible hypersurface 56-57,64 
isomorphism 4, 68, 70, 74-75, 77, 78, 79, 
85, 87,90, 92, 93, 99 

J 
Jacobsonring 121 

jokes (not for exam) 51, 55, 69,91,116 

L 

linear system of plane curves 18-20,30-33 
linear projection 10, 60, 65, 68, 86, 92, 
107-108 
local ring 0 V ,p 7 1 > 83,118,124 
localisation AIS"1) 49,56,63,72,124 
M 
maximal ideal m P 54, 55, 64,120, 121,122 

military funding 13, 114, 115 
moduli 46,47, 116, 123, 125 
monomial curve 27, 57, 64 
morphism (= regular map) 4, 36, 74,76, 77, 
80, 85, 90, 93, 108, 112, 123 
multiple roots, multiplicities 16-17,34,35, 
38,40, 52, 94, 102, 107 

N 
nodal cubic 27,40, 68,78, 103,113 
Noether normalisation 59-63, 64 
Noetherian property of Zariski topology 53 
Noetherian ring 48-49,63 
nonsingular 2, 33, 92, 94-95, 97, 99, 101, 
102, 107, 111, 112, 113, 118, 124 
nonsingular cubic, see cubic curve 
normal form of cubic 38-40,41 
Nullstellensatz 4, 30, 54, 72, 81-82, 120-
121 

number theory, see Diophantine problems 

O 
open set, see dense open set or standard 
open set 
P 
parallelism 11,12,14,15,25,60 
parametrised curve 9-10,15-16,17-18,24, 
27-28, 31,40, 45, 47, 68,74,77-78, 85, 86, 
88, 123 
Pascal's mystic hexagon 36-37 
pencil of conies 20, 21-25 
point at infinity 9, 12, 13,14,16, 17, 38, 39, 
40,43,60, 76,112 
polar 104,113 
polynomial function 2, 3, 4, 51, 66-70, 72, 
96 
polynomial map 2,67-70,74,77,78 
prime ideal 52,55,60,61,120,122 
prime spectrum Spec A 120,121,124 
primitive element theorem 62 
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principal ideal domain (PID) 63 

product of varieties 78, 89, 92 

projective algebraic geometry 119-120 

projective change of coordinates 13, 41 

projective curve 13,24,44,75 

projective equivalence 13,15,18 

projective geometry 9, 11,79 

projective line P 1 16, 43, 79, 80, 85, 90 

projective plane P 2 9,11-20, 17, 25, 30-

33, 38, 47, 79, 86, 107 

projective space P 3 , P n 4, 6, 60, 80, 81, 

85, 86, 89,91,99-100, 102, 108 

projective variety 4, 13, 79-90, 119 

projective variety and nonsingularity 99-

100 

Q 
quadric surface 64, 86, 90-91, 91, 108, 109, 

111, 113 

quasiprojective variety 4, 119 

R 

radical rad I = Vl 54-55, 63, 81-82 

rational curve 45, 85, 91, 117, 120 

rational function 3, 4, 28, 45, 68, 71-72,76, 

78, 82-83, 118 
rational map 4, 28, 72-74, 76-78, 84-88, 
91,107-108,112, 123 

rational normal curve 85,91 

rational variety 45, 88, 107,115, 126 

real geometry 6-7,117 

regular function 2, 4, 71-72, 77, 78, 118, 

124 

regular function on a projective variety 80, 

82,83,90,92,118-119 
regular map (= morphism) 2, 4, 6, 71-72, 
74, 77, 78,85,90, 92,112 

resultant 25,64,103-106,113 

Riemann sphere 43 
Riemann surface 43,45,112 

roots of a form in two variables, see zero 

S 

Segre embedding 89 

separability 61-62,95, 125 

singular 2, 94, 95, 97, 100, 101, 102, 111, 

112 

singular conic 21 -22, 25, 106, 112 

singular cubic, see nodal or cuspidal cubic 
singular cubic surface 112 

singularity 2, 7, 28, 91, 94, 100-101, 111, 

118 

singularity theory 2, 6, 100-101, 117 

standard affine pieces V ( i ) 13, 38, 79, 83-

84, 92 

standard open set V f 55, 72, 74-75, 98 

T 

tangent space T p V 2, 33, 34, 40, 41, 94-

101, 102, 111, 125 

topology of a curve 43-45, 46 

topology, see Zariski topology 
transcendence degree trdeg^K 63,88,89, 

97, 101 

transversal of lines 108,110,113 

twisted cubic 85, 91,116 
U 
unique factorisation domain (UFD) 28, 54, 

63,71,78 

V 
variety 50, 57, 70-71, 80, 88, 89, 97, 99, 

102,115,118,119-124 

Veronese surface 93 

Z 
Zariski topology 36,50-51, 64, 67, 71, 73, 

75, 78, 81, 83, 84, 89, 92, 95, 118, 120, 

121-122 

zero of a form 16-17,22, 23,25, 31, 34,38, 

41,103, 107, 113 
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