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Preface

Number theory begins with the integers

Z= {...,-3,-2,-1,0,1,2,3,...}

and their natural operations:

addition and multiplication.

Functions f : Z" -i Z formed using only addition and multiplication are
polynomial functions; so a system of polynomial equations

fj(Xi,X2,...,X.)=0, 1<j<m., (*)

to be solved in integers XI, ... , Xf1 E Z reflects the innermost structure
of the fundamental operations, addition and multiplication, performed on
the most fundamental of mathematical objects, the integers. Systems of
polynomial equations (*) are called Diophantine equations after Diophan-
tus (Ocb rrroc) of Alexandria, ca. A.D. 100, whose Arithmetica contains
numerous solved problems of this type.

From a geometric perspective, the complex solutions to a system of
equations such as (*) form an algebraic variety. Algebraic geometry, the
study of algebraic varieties, also has a long and honorable history, although
not quite as venerable as that of number theory. During the course of the
20`h century it became clear that the deep and powerful concepts and meth-
ods of algebraic geometry are ideal for the study of Diophantine equations.
This led Serge Lang in 1961 to coin the phrase "Diophantine Geometry"
for the title of a book in which he sought to exploit the most powerful
techniques of algebraic geometry to study Diophantine equations in their
most general setting.

Later in the century, the field of algebraic geometry itself was reformu-
lated by the Grothendieck school in such a way that one might plausibly
argue that number theory, or at least the theory of Diophantine equations,
is simply the special case of algebraic geometry over the spectrum of a
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Dedekind domain! This view of number theory, sometimes dubbed "arith-
metic geometry," has enjoyed considerable success, but to fully understand
and exploit its power requires a substantial background in Grothendieck-
style algebraic geometry, with the material in a book such as Hartshorne [1]
providing a bare beginning.

In this volume we study Diophantine equations using tools from al-
gebraic number theory and "classical" algebraic geometry. Our goal is to
prove four of the fundamental finiteness theorems in Diophantine geometry:

* Mordell-Weil Theorem
The group of rational points on an abelian variety is finitely generated.

* Roth's Theorem
An algebraic number has finitely many approximations of order 2 + e.

* Siegel's Theorem
An affine curve of genus g > 1 has finitely many integral points.

* Faltings' Theorem
A curve of genus g > 2 has finitely many rational points.

We have chosen to avoid the use of scheme-theoretic language and con-
cepts in our main development and in our proofs, so as to make the results
more easily accessible, but we do include a substantial amount of supple-
mentary material of a more advanced nature, usually without proof. We
have also included a lengthy introduction to algebraic geometry in Part A,
since our experience is that the real conundrum for students attempting to
study Diophantine geometry is how to acquire a sufficient grasp of algebraic
geometry without first spending years on purely geometric study.

The last decade of the 20th century saw explosive progress in the study
of Diophantine geometry, but each major advance serves to highlight just
how little we know and how much is left to discover and to prove. It is our
hope that this book will help you, the reader, to appreciate some of the
deep and elegant Diophantine results currently known and will inspire you
to add to our knowledge of this beautiful subject.

Acknowledgments
The writing of this book has occupied the better part of a decade, and each
author has taught several courses based on the material contained herein. It
is thus impossible at this late date for us to accurately catalog the numerous
colleagues, students, and friends who have looked at various drafts and
offered suggestions, corrections, and helpful criticisms, but to all of you
we offer our gratitude and acknowledge our great debt. We would like in
particular to thank Herve Billard, Florian Breuer, Antoine Chambert-Loir,
Laurent Denis, Teresa de Diego, Martine Girard, Paul Lockhart, Sandra
Marcello, Andrea Surroca, and Siman Wong for their assistance. We also
want to express our appreciation to the many people from whom we learned



Preface ix

this subject, including (but certainly not limited to) Serge Lang, Jean-
Pierre Serre, Lucien Szpiro, and John Tate.

In writing this volume we have consulted a great many sources. We
have tried to provide citations for major theorems, but many results that
are now considered "standard" have been presented as such. In any case,
we claim no originality for any of the unlabeled material in this book and
apologize in advance to anyone who feels slighted. Sources that we found
especially useful include Bombieri [1], Lang [6], Schmidt [1], and Serre [3].
We would also like to thank Professor Bombieri for his permission to include
a lengthy quotation from his article [1] in Section E.3.

Finally, and most importantly, we want to thank our wives and our
offspring for their love and support and for providing all of those won-
derful distractions that help to remind us that there is more to life than
mathematics.

Marc Hindry
Joseph H. Silverman
January 1, 2000



Contents

Preface
Acknowledgments

Contents
Detailed Contents for Part A
Introduction

PART A

The Geometry of Curves and Abelian Varieties
A.1 Algebraic Varieties
A.2 Divisors
A.3 Linear Systems
A.4 Algebraic Curves
A.5 Abelian Varieties over C
A.6 Jacobians over C
A.7 Abelian Varieties over Arbitrary Fields
A.8 Jacobians over Arbitrary Fields
A.9 Schemes

PART B

Height Functions
B.1 Absolute Values
B.2 Heights on Projective Space
B.3 Heights on Varieties
B.4 Canonical Height Functions
B.5 Canonical Heights on Abelian Varieties
B.6 Counting Rational Points on Varieties
B.7 Heights and Polynomials
B.8 Local Height Functions
B.9 Canonical Local Heights on Abelian Varieties
B.10 Introduction to Arakelov Theory

Exercises



Contents xi

PART C

Rational Points on Abelian Varieties 257

C.1 The Weak Mordell-Weil Theorem 260
C.2 The Kernel of Reduction Modulo p 267
C.3 Appendix: Finiteness Theorems in Algebraic Number Theory 273
C.4 Appendix: The Selmer and Tate-Shafarevich Groups 279
C.5 Appendix: Galois Cohomology and Homogeneous Spaces 283

Exercises 290

PART D

Diophantine Approximation and Integral Points on Curves 299

D.1 Two Elementary Results on Diophantine Approximation 300
D.2 Roth's Theorem 304
D.3 Preliminary Results 307
D.4 Construction of the Auxiliary Polynomial 316
D.5 The Index Is Large 323
D.6 The Index Is Small (Roth's Lemma) 329
D.7 Completion of the Proof of Roth's Theorem 341
D.8 Application: The Unit Equation U + V = 1 345
D.9 Application: Integer Points on Curves 353

Exercises 361

PART E

Rational Points on Curves of Genus at Least 2 367

E.1 Vojta's Geometric Inequality and Faltings' Theorem 369
E.2 Pinning Down Some Height Functions 373
E.3 An Outline of the Proof of Vojta's Inequality 379
E.4 An Upper Bound for hn(z, w) 381
E.5 A Lower Bound for hn(z,w) for Nonvanishing Sections 385
E.6 Constructing Sections of Small Height I:

Applying Riemann-Roch 389
E.7 Constructing Sections of Small Height II:

Applying Siegel's Lemma 393
E.8 Lower Bound for ho (z, w) at Admissible (ii, i2): Version I 401
E.9 Eisenstein's Estimate for the Derivatives of an Algebraic

Function 408
E.10 Lower Bound for ho (z, w) at Admissible (ii, i2): Version II 412
E.11 A Nonvanishing Derivative of Small Order 418
E.12 Completion of the Proof of Vojta's Inequality 421

Exercises 428



xii Contents

PART F

Further Results and Open Problems 433

F.1 Curves and Abelian Varieties 434
F.1.1 Rational Points on Subvarieties of Abelian Varieties 434
F.1.2 Application to Points of Bounded Degree on Curves 439

F.2 Discreteness of Algebraic Points 443
F.2.1 Bogomolov's Conjecture 444
F.2.2 The Height of a Variety 445

F.3 Height Bounds and Height Conjectures 451
F.4 The Search for Effectivity 456

F.4.1 Effective Computation of the Mordell-Weil Group A(k) 457
F.4.2 Effective Computation of Rational Points on Curves 465
F.4.3 Quantitative Bounds for Rational Points 472

F.5 Geometry Governs Arithmetic 474
F.5.1 Kodaira Dimension 475
F.5.2 The Bombieri-Lang Conjecture 479
F.5.3 Vojta's Conjecture 482
F.5.4 Varieties Whose Rational Points Are Dense 487
Exercises 497

References

List of Notation

Index

504

520

527



Contents xiii

PART A-DETAILED CONTENTS

The Geometry of Curves and Abelian Varieties 6

A.1 Algebraic Varieties 8

A.1.1 Affine and Projective Varieties 9

A.1.2 Algebraic Maps and Local Rings 15
A.1.3 Dimension 22
A.1.4 Tangent Spaces and Differentials 24

A.2 Divisors 34
A.2.1 Weil Divisors 34
A.2.2 Cartier Divisors 37
A.2.3 Intersection Numbers 44

A.3 Linear Systems 49
A.3.1 Linear Systems and Maps 49
A.3.2 Ampleness and the Enriques-Severi-Zariski Lemma 52

A.3.3 Line Bundles and Sheaves 56
A.4 Algebraic Curves 67

A.4.1 Birational Models of Curves 68
A.4.2 Genus of a Curve and the Riemann-Roch Theorem 70
A.4.3 Curves of Genus 0 74
A.4.4 Curves of Genus 1 76
A.4.5 Curves of Genus at Least 2 81

A.4.6 Algebraic Surfaces 84
A.5 Abelian Varieties over C 91

A.5.1 Complex Tori 93
A.5.2 Divisors, Theta Functions, and Riemann Forms 97
A.5.3 Riemann-Roch for Abelian Varieties 103

A.6 Jacobians over C 110

A.6.1 Abelian Integrals 110
A.6.2 Periods of Riemann Surfaces 111
A.6.3 The Jacobian of a Riemann Surface 113
A.6.4 Albanese Varieties 116

A.7 Abelian Varieties over Arbitrary Fields 119
A.7.1 Generalities 119
A.7.2 Divisors and the Theorem of the Cube 121

A.7.3 Dual Abelian Varieties and Poincar6 Divisors 128
A.8 Jacobians over Arbitrary Fields 134

A.8.1 Construction and Properties 134
A.8.2 The Divisor O 138
A.8.3 Appendix: Families of Subvarieties 142

A.9 Schemes 151

A.9.1 Varieties over Z 151

A.9.2 Analogies Between Number Fields and Function Fields 159
A.9.3 Minimal Model of a Curve 160
A.9.4 N6ron Model of an Abelian Variety 162





Introduction

Diophantine equations are systems of polynomial equations to be solved
in integers or rational numbers, and Diophantine geometry is the study of
Diophantine equations using ideas and techniques from algebraic geometry.
This is a very natural approach, since the basic objects studied in algebraic
geometry, namely algebraic varieties, are themselves defined by systems of
polynomial equations. The difference is that a (classical) algebraic geome-
ter studies solutions in complex numbers or in some other algebraically
closed field, while a number theorist studies solutions in a ring or field of
arithmetic interest.

The most obvious way to classify polynomial equations is by their
degrees, but whether one studies algebraic geometry or Diophantine equa-
tions, it soon becomes clear that such a classification is sadly lacking. For
example, the equations

Vi :y2=x5+x° and V2:y2=x5+x

appear similar, but Vi has infinitely many solutions in rational numbers x
and y, while V2 has only finitely many such solutions, and indeed has only
finitely many solutions with x and y chosen from any number field. One is
inexorably led to search for more intrinsic invariants. For curves such as Vi
and V2, the desired quantity is the genus; more generally, useful invariants
may be defined using, for example, sheaves of differentials. In any case,
one attempts to classify varieties geometrically according to various discrete
and/or continuous parameters, and to describe the parameter spaces, which
themselves often turn out to be varieties.

The geometric classification of curves (i.e., irreducible varieties of di-
mension 1) is extremely easy to describe. First, every curve is birational to
a unique nonsingular projective curve. Second, every such curve has asso-
ciated to it a nonnegative integer called its genus. Third, the isomorphism
classes of nonsingular projective curves of a given genus g form (in a certain
complicated, but well-defined, sense) a family of dimension max{3g - 3, g}.
The proof of these assertions is not difficult.

The arithmetic classification of curves is almost as easy to describe,
but many of the proofs lie very deep and will be our principal concern
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for much of this volume. To simplify matters, we will assume that the
curve C is projective and nonsingular of genus g, and that it has at least
one rational point. Then the fundamental Diophantine finiteness theorems
for curves can be summarized in the following short table.

Genus Points "at Infinity" Integer Solutions

g = 0 < 1 infinite set

g = 0 = 2 finitely generated group

g = 0 > 3 finite set

g = 1 = 0 finitely generated group

g = 1 > 1 finite set

g>2 >0 finite set

The Arithmetic Classification of Curves

(By convention, if a curve or equation has zero points at infinity, then its
integer solutions coincide with its solutions in rational numbers.) If we
introduce the Euler characteristic

X(C) = 2 - 2g - (# of points "at infinity"),

then the above results take the strikingly simple form

Euler Characteristic Integer Solutions

X(C) > 0 infinite set

X(C) = 0 finitely generated group

X(C) < 0 finite set

This innocuous little table includes major theorems associated with the
names Dirichlet, Mordell, Siegel, Well, and Faltings.

A fundamental lesson to be learned from the above table is that at
least for curves, and at least in a qualitative sense,

Geometry Determines Arithmetic
This, then, is the principal motivation and ultimate goal of Diophantine
geometry-to describe the solutions of systems of Diophantine equations in
terms of the geometric properties and invariants of the associated algebraic
varieties. For curves, this task has been largely completed at the qualitative
level, although there are many questions of a more refined nature that
remain unanswered. For surfaces and varieties of higher dimension, the
task is barely begun, and indeed in many cases the "right" conjectures
have only recently been or are yet to be formulated.
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Our study of Diophantine geometry begins in Part A with geometry.
We give an overview of the algebro-geometric material that will be used
in the rest of the book. This part discusses algebraic varieties, divisors,
linear systems, algebraic curves (and surfaces), abelian varieties, Jacobian
varieties, and schemes. Virtually all of this material, other than the section
on schemes, is used in our subsequent work, but this does not mean that
we recommend reading Part A in full before proceeding to the later parts
of the book. Instead, we suggest briefly looking over Part A to see what it
contains, and then jumping directly into the arithmetic material of Part B
and beyond. Then return to Part A to fill in the algebraic geometry as it
is needed in the later sections of the book.

The first arithmetic portion of the book, Part B, deals with the theory
of height functions. These are functions that on the one hand measure
the arithmetic complexity of a point on a variety, and on the other hand
satisfy nice geometric transformation laws. Briefly, the theory of height
functions is a tool that transforms geometric facts into number theoretic
facts. More precisely, it transforms a divisor relation into an arithmetic
complexity relation. These arithmetic relations are, in general, given only
up to undetermined bounded quantities, but on abelian varieties it is pos-
sible to pick out particular height functions, called canonical heights, for
which the arithmetic relations become exact. The material on heights and
canonical heights required in Parts C-E is covered in Sections B.1-B.6.
Section B.7 contains some useful lemmas used in subsequent sections, and
Sections B.8-B.10 describe further important topics, often without proof,
that are used only in Part F.

We then come to the Diophantine core of the book in Parts C, D,
and E. The first of these, Part C, contains a proof of the Mordell-Weil
theorem: The group of rational points on an abelian variety is finitely gen-
erated. It also includes in Sections C.4 and C.5 a discussion of Galois
cohomology and the Selmer and Tate-Shafarevich groups, which are used
for studying the refined properties of the Mordell-Weil group. Next, in
Part D, we give a proof of Roth's theorem: There are only finitely many
rational numbers that approximate a given algebraic number to order 2 + e.
We then use this fundamental theorem on Diophantine approximation and
the arithmetic-geometric relations provided by the theory of heights to
prove Siegel's theorem: A curve of genus g > 1 has only finitely many in-
teger points. Finally, in Part E we take up the question of curves of higher
genus and prove Mordell's 1922 conjecture (Faltings 11], 1983): A curve of
genus g > 2 has only finitely many rational points. The proof that we give
is based on Diophantine approximation techniques similar to those used in
the proof of Roth's theorem. This alternative proof of Faltings' theorem is
due to Vojta [1], with substantial simplifications by Bombieri [1].

The preceding material easily fills the present volume, but leaves un-
mentioned many important Diophantine results and an even larger number
of important Diophantine conjectures. As a means of introducing the reader
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to this additional material, we include in Part F an overview of further re-
sults and open problems. Topics covered include rational and algebraic
points on curves and abelian varieties, the discreteness of algebraic points
relative to the height metric, bounds for height functions (both proven and
conjectural), the search for effectivity in the Mordell-Weil theorem and in
Faltings' theorem, and a further discussion of how geometry governs arith-
metic, including deep conjectures of Batyrev, Bombieri, Lang, Manin, and
Vojta that provide much of the focus for current research in Diophantine
geometry.

Readers should be aware that even with the survey material included
in Part F, we have been forced to leave out or only touch upon many topics
that are relevant to the Diophantine problems studied in this volume. These
topics include:
(a) Baker's Method

Effectivity in Diophantine geometry is discussed in Part F, but at
present the only general effective theorems come from Baker's method
giving lower bounds for linear forms in logarithms. Since it would
be impossible to do justice to this vast subject without significantly
increasing the size of the present volume, we content ourselves with
quoting an exemplary result in (D.9.5).

(b) Arakelov Geometry
During the past fifteen years, Arakelov geometry has been one of the
main sources of inspiration both for developing the theory of Dio-
phantine geometry and for solving Diophantine problems. We give
a motivated introduction in Section B.10, but again even a complete
volume (such as Lang [7]) is hardly enough to do justice to the subject.

(c) Existence of Rational Points
Most of the principal theorems in this volume assert the finiteness of
the set of rational points on certain varieties or, failing that, give an
estimate for the number of rational points of bounded height. We thus
do not address the important problem of deciding whether a variety
possesses any rational points at all. The main tools for addressing
this important Diophantine problem are cohomological. We discuss
this question in Part C, but only for homogeneous spaces of abelian
varieties as it relates to the Mordell-Weil theorem.

(d) Function Fields
The celebrated analogies between number fields and function fields are
discussed in Section A.9. These form the starting point of Arakelov
theory. Indeed, the theory of heights and all of the main theorems
proven in this volume can be described in a common language over
both number fields and function fields, or more generally over finitely
generated fields, as is done in the seminal work of Lang [6]. We apolo-
gize for our lack of generality, but we note that there are often better
methods involving the use of derivations available in the function field
case that are unavailable when one is working over number fields.
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Prerequisites
The main prerequisite for reading this book is a solid understanding of
basic algebraic number theory, including such topics as rings of integers,
completions, ramification, ideal class groups, and unit groups. This mate-
rial is covered in any standard text such as Lang [9]. A second prerequisite
for understanding the main theorems in this book is a working knowledge
of algebraic geometry. In order to make this volume as self-contained as
possible, we have included an introduction to algebraic geometry in Part A;
but it is also a truism that when studying Diophantine problems, one can
never know too much algebraic geometry, so any previous exposure is sure
to be helpful.

References and Exercises
We have divided the book into six lettered parts, A-F, and each part is
divided into sections and subsections. Items in each section are numbered
consecutively, and cross-references are given in full, for example (A.8.2.2)
or (E. 10.3). Exercises appear at the end of each part, except for the lengthy
part A, which has exercises at the end of each section. Exercises are num-
bered consecutively and are fully referenced, so for example, Exercise A.4.6
is the sixth exercise in Section A.4, and Exercise E.5 is the fifth exercise in
Part E. Bibliographic references are given by the author's name followed
by a reference number in square brackets, for example Tate [3, Theorem 2].

This volume contains numerous exercises. The reader desiring to gain
a real understanding of the subject is urged to attempt as many as possible.
Some of these exercises are (special cases of) results that have appeared in
the literature. A list of comments and citations for the exercises will be
found at the end of the book. Exercises marked with a single asterisk are
somewhat more difficult, and two asterisks signal an unsolved problem.

Standard Notation
Throughout this book, we use the symbols

Z, Q, R, C, Fq, and Zp

to represent the integers, rational numbers, real numbers, complex num-
bers, field with q elements, and p-adic integers, respectively. Further, if R
is any ring, then R' denotes the group of invertible elements of R; and if A
is an abelian group, then or A[m] denotes the subgroup of A consisting
of all elements whose order divides m. A detailed list of notation will be
found at the end of the book.



PART A

The Geometry of Curves and
Abelian Varieties

The heavens rejoice in motion, why should I
Abjure my so much lov'd variety.

John Donne, Elegies

po Not Read
P ch'It%axt A

Now that we have your attention, let us explain why we would recom-
mend that you not read part of this book. Part A contains a summary
of the main results from algebraic geometry that will be needed in
our arithmetic investigations. If you begin your study of Diophantine
geometry by attempting to read all of Part A and doing all of the ex-
ercises, you are likely to feel overwhelmed by the geometry before you
reach any of the beautiful arithmetic results. So we suggest that you
begin by skimming Part A, possibly reading more closely any material
that covers gaps in your knowledge. Then as you read the rest of this
book, use Part A as a reference source for geometric facts as they are
needed. Having offered this warning and advice, we now begin our (far
from brief) survey of algebraic geometry.

A general principle suggests that before tackling a Diophantine problem, it
is necessary first to understand the underlying geometry. The initial part of
this book develops the geometry necessary to do arithmetic on curves, that
is, on algebraic varieties of dimension one. However, we cannot be content
to work only with varieties of dimension one. For example, we will want to
work with surfaces that are the product of two curves. More importantly,
many of the deeper properties of a curve are best analyzed by studying a
certain variety of higher dimension called the Jacobian of the curve. The
Jacobian of a curve is a group variety. It represents a kind of linearization
of the curve, that is, it is a space where we can add points on the curve to
one another. Jacobians are special instances of abelian varieties, and the
theory gains unity when developed in this generality.

After a brief survey of the basic concepts of algebraic geometry in a
preliminary section, we describe with a bit more detail divisors and linear
systems on varieties in the next two sections. In Section A.4 we give a
succinct account of the geometry of curves, centered on the notion of genus
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and the Riemann-Roch theorem. We then pursue the theory of Jacobians
and abelian varieties in the next four sections. These four sections form the
core of this geometric part. We develop first the theory of abelian varieties
and Jacobians analytically over C and then algebraically over an arbitrary
field, often giving two proofs or at least offering two different perspectives
on parallel results.

Ultimately, we want to study arithmetic, that is, points defined over
number fields. So the reader may be surprised that we devote so much
space to complex varieties. There are several reasons for this. The first
is historical. Algebraic geometry was originally developed (by Riemann
and others) as a part of complex function theory, and imitating history
often gives valuable insight into a subject. Secondly, there is the so-called
Lefschetz principle, which says that geometry over any algebraically closed
field of characteristic 0 is essentially the same as over G. This metaprinciple
is true because any field of characteristic 0 and finite (or countable) tran-
scendence degree over Q can be embedded into C, and virtually all objects
of an algebraic nature are defined over such fields. Further, Galois theory
provides a tool that often allows one to descend from the algebraic closure
of Q to a number field (see Proposition A.2.2.10 for a precise statement). A
third, equally compelling, reason to study complex varieties is the philoso-
phy of Arakelov, which casts the complex points of a variety as the "fiber
at infinity" that "compactifies" a model of the variety over Z. We will be
able to give only a brief introduction to these ideas and will not rely on
them for proofs, but their importance in the development of Diophantine
geometry (past and future) can hardly be overstated. Arakelov's philoso-
phy was utilized by Faltings in the original proof of Mordell's conjecture,
and the generalization of Arakelov's ideas to higher dimensions played a
very significant role in the second proof, found by Vojta.

However, working over C is clearly not sufficient for our needs. It
is important to know that constructions such as the Jacobian of a curve
can be done over the field of definition of the curve. Also, when studying
varieties defined over a number field, one is naturally led to specialize them
"mod p." This requires geometry in characteristic p. So we will also need
to employ the tools of abstract algebraic geometry.

It will not be possible for us to provide full proofs of all of the state-
ments in this part. Instead, we will state general theorems and definitions
of algebraic geometry and provide adequate references. We give more de-
tails on the specific applications to curves and abelian varieties, but even
here we have had to omit some important results due to lack of space and
time. We have tried to keep our baggage to a minimum, often at the risk
of appearing "old-fashioned."

Finally, a word of caution. Although the geometry we develop will suf-
fice to prove the Mordell-Weil theorem and Faltings' theorem (Mordell's
conjecture), there is little doubt that further progress is likely to require
the sophisticated apparatus of modern algebraic geometry. The language
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of schemes is essential both for its powerful technical versatility and for the
valuable insights it provides for arithmetic geometry. We give an introduc-
tion to this deep subject in a last section presented as a variation on the old
theme of "analogies between function fields and number fields." Especially,
we describe what is meant by a curve "over Z" and by an abelian variety
"over Z," and we explain what "reducing modulo p" means in this context.

General references on algebraic geometry include Hartshorne [1], Grif-
fiths-Harris [1], Shafarevich [1], and Mumford [4, 6]. There is a vast litera-
ture on curves; we mention Walker [1], Fulton [1], and at the other end of
the spectrum, Arbarelo-Cornalba-Griffiths-Harris [1]. Textbooks on Jaco-
bians and abelian varieties are rarer. Complex abelian varieties and theta
functions are nicely introduced in Swinnerton-Dyer [1], K. Murty [1], and
Lang [4], and thoroughly treated in Lange and Birkenhake [1]. The alge-
braic aspects may be found in Lang [3], Mumford [2], and Weil's original
books [2, 3]. The survey of Bost [1] provides an excellent presentation of
Jacobian varieties, and Mumford's lectures [3] give a pleasant account of
curves and their Jacobians. Jacobians are also treated in an analytical fash-
ion in Griffiths-Harris [1] and Gunning [1], while the algebraic construction
of Well is described in Serre [1]. Finally, we point out the excellent surveys
and bibliographies in the papers of Rosen [1] and Milne [1, 2].

A.1. Algebraic Varieties

This preliminary chapter is essentially a glossary and a herbarium. We
review the basic definitions of algebraic geometry and collect examples of
varieties and maps. It can safely be omitted by any reader with some
knowledge of algebraic geometry. Throughout we work with the following
notation:

k a perfect field.

k an algebraic closure of k.

Gk = Gal(k/k), the Galois group of k over k.

The reason for working in this generality is that we want to be able to
study fields k of arithmetic interest, such as Q, Qp, or F, but geometric
properties are best expressed over algebraically closed fields. As a naive
example, we might consider the equation x2 + y2 + 1 = 0 as giving a curve
defined over Q, yet this curve is an empty set in the sense that it has no
points with x and y in Q. Hence to "see" the curve, we must look at all
the points with coordinates in Q. The restriction to perfect fields is usually
not essential, but it is made to simplify our work. Especially, the notion of
"being defined over k" is unambiguous in this context (see Exercise A.1.13).
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A.M. Affine and Projective Varieties

We begin our review with affine n-space.

Definition. Affine n-space (over k), which we denote by An or An, is the
set

An = ((XI, ... , xn) I x= E k}.

The set of k-rational paints of An is the set

An(k) = {(x1, ... , xn) E An I xj E k}.

Remarks. (i) One may also characterize the set of k-rational points of An
as the set

An(k) _ {(x1,...,xn) E An I a(x,) = x; for all a E Gk}.

(ii) The notation An(k) is, in fact, that of a functor. The functor An
associates to each field k the set An(k).

Now let I be an ideal in k[X 1i ... , Xn] = k[XJ. We associate to I its
set of zeros,

Z(I)={xEAnIP(x)=0forallPEI}.
In some sense the primary goal of algebraic geometry is to understand the
spaces thus defined. Similarly, to each subset S of An we associate the
ideal of polynomials vanishing on S,

Is= (PEk[X]IP(x)=0forall xES}.
Definition. An affine algebraic set S is a set of the form S = Z(I) for
some ideal I in k[X]. The set S is said to be defined over k if its ideal Is
can be generated by polynomials in k[XJ.

For example, a point a = (a1, ... , an) is an algebraic set defined by
the ideal generated by the polynomials x1 - a,,. . -, xn - an, and obviously
it is defined over k if and only if each a; belongs to k.

Remarks. (i) The Hilbert basis theorem says that any ideal of polyno-
mials is generated by a finite number of polynomials. See, for example,
Atiyah-Macdonald [1, Theorem 7.5] or Lang [2, Section 6.2]. Thus alge-
braic sets can always be written as the common zeros of a finite collection
of polynomials.

(ii) If V is an algebraic set defined over k by some ideal I, then its set
of k-rational points is defined by

V(k)={xEAn(k)IP(x)=0forall P E I}
={xEVIa(x)=x forallaEGk}.

(iii) It is also convenient to define

Iv,k={PEk[X]IP(x)=0forallxEV}.
Note that we always have Ivk k[XJ C Ivk = Iv, and equality occurs
exactly when V is defined over k.
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Recall that for any ring R, the radical f of an ideal I C R is defined
to be

f ={aERIar El for some r> 1 }.
We now describe the correspondence between algebraic sets and polynomial
ideals.

Lemma A.1.1.1. (i) Let V be algebraic subsets of Ais. Then arbitrary
intersections ni Vi and finite unions VI U U V, are algebraic sets.

(ii) If S1 C S2 C A", then Is, D Isl.
(iii) If I1 C 12 C k[X], then Z(Ij) J Z(I2).
(iv) If V is an algebraic set, then Z(Iv) = V.
(v) If I is an ideal in k[X], then Iz(J) = f.

PROOF. Statement (i) is clear from the equalities ni vi = Z(Ei Iv,) and
V1 UV2 = Z(Iv, Iv2). The rest is easy except for (v), which is a consequence
of the next theorem.

Theorem A.1.1.2. (Hilbert's Nullstellensatz) Let I be an ideal of the
ring k[X1, ... , and let P be a polynomial vanishing at every point in
Z(I). Then there is an integer r > 1 such that pr E I.

PROOF. See Lang [2, Section 10.2] or Atiyah-Macdonald [1, Chapter 7,
Exercise 14]. It is, of course, essential to formulate the theorem over k.

0

Lemma A.1.1.1 says that there is a natural bijection between algebraic
sets and reduced ideals, that is, ideals that are equal to their own radical.
The first part of Lemma A.1.1.1 can be reformulated by saying that alge-
braic sets satisfy the axioms of the closed sets of a topology. Note that A^
and the empty set are algebraic sets, since

A' = Z({0}) and 0 = Z(k[X]).

Definition. The Zariski topology on A^ is the topology whose closed sets
are algebraic sets. The Zariski topology on an algebraic set S is the topology
induced by the inclusion S C An.

Definition. A nonempty subset Z of a topological space X is irreducible
if it cannot be written as the union of two proper closed subsets of Z (for
the induced topology).

Example. A" is irreducible for the Zariski topology. To see this, we
observe that the Zariski topology is highly non-Hausdorff. Indeed, any
nonempty open subset of A" is dense in A", and hence the intersection of
any two such open sets is always nonempty.

Definition. An affine variety is an irreducible algebraic subset (for the
Zariski topology) of some An.
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Lemma A.1.1.3. (i) An algebraic set V is irreducible if and only if its
ideal Iv is a prime ideal.
(ii) An algebraic set is a finite union of varieties. If we insist, as we

may, that none of the varieties be contained in another one, then this
decomposition is unique.

The varieties in the decomposition (ii) of an algebraic set are called the
irreducible components of the algebraic set.
PROOF. Easy. See Hartshorne [1, I.1.6]. 0

Example A.1.1.4. (Affine hypersurfaces) Let P E k[X1,... , Xn] be a
polynomial and let V = Z(P) be the algebraic set defined by P. Suppose
that P = Pl"' P,-- is the decomposition of P into irreducible factors,
and set V = Z(P;). Then the V's are the irreducible components of V.
Indeed, each V, is a variety, V = Ui=1 V,, and V, ¢ Vj for i 7k j.

The algebra of polynomials in n variables is naturally associated to
the affine space An. When we restrict polynomial functions to an affine
subvariety V, it is natural to identify any two polynomials that give the
same function on V. Thus we are led to the following definition:

Definition. Let V be an affine subvariety of An. The affine coordinate
ring of V is

k[V] = k[xl,...,xn]IIv

We will see in the next section that this algebra completely character-
izes the variety V.

Example A.1.1.5. (Products of affine varieties) We observe that there is
an obvious isomorphism/A"' x An = A,+" given by the map

((xl, ... , xm), (y1, ... , yn)) F (Xi,... , xm, yl) .... yn)

(Although "isomorphism" is not formally defined until the next section, the
meaning is clear here.) If V ti A' and W ti An are two affine varieties,
then we define their product V x W to be the affine variety whose ideal is
generated by IV and Iw inside k[xl,... , xm, yl, ... , yn]. It is not hard to
verify that

k[V x W] = k[V] ®k[W].

(See Hartshorne [1, I, Exercise 3.15]. This is still true with k in place of k,
provided that we keep the assumption that k is perfect.)

Since at least the work of Desargues it has been known that geometry
is easier if one adds "points at infinity" in order to make affine space "com-
plete." For example, one wants the following kinds of statements to be
true: Two distinct lines in the plane meet in one point, a line meets a conic
in two points (counted with multiplicities), etc. Clearly, these statements
are false in the affine plane A2, since parallel lines do not meet. In order
to make them true, we introduce projective space.
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Definition. Projective n-space Pn is the set of lines through the origin in
An+1. In symbols,

pn = { (xo, ... , xn) E An+1 I some xi # 01 = An+1 \ {0}
N N

where the equivalence relation - is defined by

,

(So,...,xn) N (Ye,...,Y.)

(xo, ... , xn) = A(Uo, ... , yn) for some A E k'.

If P E 1Pn is the point representing the equivalence class of the (n + 1)-
tuple ( S o , . . . , xn), the xi's are called homogeneous or projective coordinates
for the point P. The set of k-rational points of Pn, denoted by Pn(k), is the
set of lines through the origin in An+1 that are defined over k. This is the
set of points in Pn for which we can find some homogeneous coordinates in
An+1(k). Equivalently, these a r e the points (xo, ... , xn) with the property
that for any nonzero coordinate xj, all of the ratios xi/xj are in k.

The Galois group Gk acts on Pn by acting on the coordinates,

a(P) = (a(xo), ... , a(xn)) for P = (xo, ... , xn) E Pn and a C Gk.

Then one can show that (Exercise A.1.16)

Pn(k)={PEPnIa(P)=Pfor all aEGk}.

The field of definition of a point P = (xo, ... , xn) E Pn is the smallest
extension of k over which P is rational, namely,

k(P) := k(xo/xj, x1/xj, ... , xn/xj) for any j with xj j4 0.

Equivalently, k(P) is determined by the property

Gal(k/k(P)) = {a E Gk I a(P) = P}.

In order to define projective algebraic sets, we recall that a polynomial
ideal is homogeneous if it is generated by homogeneous polynomials, or,
alternatively, if the homogeneous components of any polynomial in the
ideal are again in the ideal. If P is a homogeneous polynomial, then

P(xo,... , xn) = 0 4=* P(Axo,... , Axn) = 0 for all A E k'.

We can thus define projective algebraic sets in a fashion entirely analogous
to our definition of affine algebraic sets, provided that we use homogeneous
polynomials and ideals.
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Definition. A projective algebraic set is the set of zeros in 1P" of a homo-
geneous ideal in k[xo,... , x, ]. The Zariski topology on P" is defined by
taking the projective algebraic sets to be the closed sets, and the Zariski
topology on an algebraic set is the topology induced from the Zariski topol-
ogy on 1P". A projective variety is a projective irreducible algebraic set. It
is said to be defined over k if its ideal can be generated by polynomials in
k[xo,...,x].

The correspondence between homogeneous ideals and projective alge-
braic sets is very similar to the affine one; the only difference is the existence
of an "irrelevant" ideal, namely the ideal 1 o generated b y x 0 , . . . , xn. No-
tice that ID defines the empty subset of P", and any homogeneous ideal
different from k[xo,... , xn] is contained in Io. Let us define a saturated
ideal as a homogeneous ideal I such that if xi f E I for all i = 0,. .. , n,
then f E I; clearly, the ideal of polynomials vanishing on a projective alge-
braic set is saturated. More precisely, the map I i Z(I) gives a bijection
between reduced saturated ideals and projective algebraic sets. Further,
a projective algebraic set Z is a projective variety if and only if IZ is a
(homogeneous) prime ideal in k[xo,... ,x].

Example A.1.1.6. A variety defined by linear forms

L1(xo,... , xn) = ... = Lr(xo, ... , xn) = 0

is called a linear subvariety of ]Pn. For example, a point with projective
coordinates (ao,... ,a,) is defined by the linear forms aixj - a3xi = 0. An
algebraic set defined by one nonzero homogeneous polynomial is called a
projective hypersurface. A linear hypersurface is called a hyperplane.

Just as with affine varieties, we look at the quotient of the polynomial
algebra by the homogeneous ideal of a projective variety.

Definition. The homogeneous coordinate ring of a projective variety V c
P" is the quotient

S(V) = k[xo,... , xn]1Iv.

Note that unlike the case of k[V] for affine varieties, the elements of S(V)
do not define functions on a projective variety V. An even more important
observation is that the homogeneous coordinate ring depends on the em-
bedding of V in P", it is not an intrinsic invariant of V (see Exercise A.1.4).

Let us explain now how to cover P" (or any projective variety) by affine
spaces and thereby recover the classical description of P" as the union of
affine space An together with a hyperplane at infinity.

Definition. Let (xo, ... , xn) be homogeneous coordinates on P". The
standard (affine) open subset Ui is the complement of the hyperplane de-
fined byxi=0.
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It is obvious that the open sets Ui cover IP", and it is easy to see that
the map

A n -p Ui, (al, ... , an) ! (ai, ... , ai-1, 1, ai+I, ... ) an),

is a homeomorphism with inverse

(x0, ... , xn) ~i (x0l xi, ... , xi-1 /xi)xi+1l xi, ... , xnl xi)-

Thus Ui is isomorphic to An, and since the hyperplane xi = 0 is isomorphic
to 1Pn-1, we obtain a description of IP" as the union of affine space with a
hyperplane at infinity. Repeating this process gives a cellular decomposi-
tion

pn=An U p,-1 = ... = An U An-1 U ... U A' U AD.

Example A.1.1.7. The completion of an affine variety to a projective va-
riety can be done very concretely by homogenizing the polynomials defining
it. Similarly, one can find an open affine subset of a projective variety by
dehomogenizing its defining polynomials.

For example, let U be the affine parabola defined by y - x2 = 0 in
A2. Then the homogeneous equation ZY - X2 = 0 defines a projective
variety V, and the map (X, Y, Z) -' (X/Z, Y/Z) defines an isomorphism
from V fl {Z # 0} to U. Similarly, the set V ft {X # 0} is isomorphic to the
affine hyperbola uv - 1 = 0 by the map (X, Y, Z) H- (Y/X, Z/X ). Notice
that the parabola has one point at infinity, while the hyperbola has two.

It is convenient to be able to speak of open subsets of varieties as
varieties themselves, so we enlarge our category a bit.

Definition. A quasi-projective algebraic set is an open subset of a pro-
jective algebraic set. A quasi-projective variety is an irreducible quasi-
projective algebraic set.

Notice that affine and projective varieties are quasi-projective, but
there are quasi-projective varieties that are neither affine nor projective.
For example, 1P2 {(0,0,1)} is quasi-projective, but it is neither affine nor
projective. On the other hand, any quasi-projective variety can be covered
by affine open subsets, because the complement of a hypersurface in An is
an affine variety. (See Hartshorne [1, 1.4.2 and Exercises 1.3.5, I.3.6]). This
suggests the following principle: Global properties are better studied in
the context of projective varieties, whereas local properties are most easily
verified on open affine sets.
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A.1.2. Algebraic Maps and Local Rings

Having defined algebraic varieties, we need to define maps between them.
For many reasons, we want to have a coordinate-free approach and to
consider varieties independent of any particular embedding in A' or 1P".
Roughly speaking, an algebraic map between varieties is a map that can
be defined by polynomials or rational functions. We start by defining the
functions on a variety X, that is, maps from X to A' = k.

Definition. Let X be a variety and x' a point on X. A function f : X -+ k
is regular at x' if there exists an open affine neighborhood U C X of x',
say U C A", and two polynomials P, Q E k[xi,... , x"] such that Q(x) j4 0
and f (x) = P(x)/Q(x) for all x E U. The function f is regular on X if it is
regular at every point of X. The ring of regular functions on X is denoted
by O(X)-

Note that if f is regular on X, it need not be true that there are
fixed polynomials P, Q such that f = P/Q at every point of X, although
this will be true for affine varieties (see Theorem A.1.2.1 below). The
definition of regularity is local, so it may be necessary to choose different
polynomials at different points. More precisely, if f is regular on X, then
one can write X as a finite union of affine open subsets Us, and one can
find polynomials Pi,Qi such that f(x) = Pi(x)/Qi(x) for all x E U.

We also note that the property of being regular is open. If f is regular
at x, then it is regular at every point in some neighborhood of x. This
suggests looking at the collection of functions that are regular at a given
point.

Definition. Let x be a point on a variety X. The local ring of X at x
is the ring of functions that are regular at x, where we identify two such
functions if they coincide on some open neighborhood of x. This ring is
denoted by Ox,x, or simply by Ox if no confusion is likely to arise.

More generally, we can define the ring of functions regular along a
subvariety of X.

Definition. Let X be a variety and Y C X a subvariety. The local ring of
X along Y, denoted by Oy,x, is the set of pairs (U, f), where U is an open
subset of X with U n Y # 0 and f E 0(U) is a regular function on U, and
where we identify two pairs (Ui, fl) = (U2, f2) if fl = f2 on Ul fl U2. The
ring Oy,x is a local ring, its unique maximal ideal being given by

Nly,x={f EOy,xIf(x)=0forall xEY}.

For example, O{x},x is just the local ring of X at x, while the local
ring Ox,x turns out to be a field.
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Definition. Let X be a variety. The function field of X, denoted by k(X),
is defined to be Ox,x, the local ring of X along X. In other words, k(X)
is the set of pairs (U, f), where U is an open subset of X and f is a regular
function on U, subject to the identification (U1, fl) = (U2, f2) if fl = f2
on U1 fl U2. (N.B. An element f of k(X) is not a function defined at every
point of X. Instead, f is a function that is defined at some point of X, and
hence is defined on a nonempty open set of points of X.)

It is easy to check that k(X) is a field that contains every local
ring Oy,x of X, and that for any subvariety Y C X, we have Oy,x/My,x
k(Y). The function fields of An and P' are both equal to k(x1,... , xn),
the field of rational functions in n indeterminates. If X is an affine hy-
persurface defined by an irreducible polynomial P(xl,... , xn) in which the
variable xn appears, then k(X) is an algebraic extension of k(x1,... , xn_ 1)
generated by any root a of the equation P(xl,... , xn_1, a) = 0. The local
ring of a point (a11. .. , an) E An is the ring of polynomials k[xl,... , xn]
localized at the ideal (xi - a,,. . - , xn - an). We are now ready to define
maps between varieties.

Definition. A map 0 : X -+ Y between varieties is a morphism if it is
continuous, and if for every open set U C Y and every regular function f
on U, the function f o 0 is regular on 4-1(U). A map is regular at a point
x if it is a morphism on some open neighborhood of x.

In a less intrinsic way, one can show that f is regular at x if there
is an affine neighborhood U C A' of x in X and an affine neighborhood
V C An of 4,(x) in Y such that 0 sends U into V and such that 0 can be
defined on U by n polynomials in m variables. That these definitions are
equivalent comes from the fact that a morphism of affine varieties is defined
globally by polynomials, as can be deduced readily from Theorem A.1.2.1
below. The word "morphism" is short for "morphism in the category of
algebraic varieties." Just as with rational functions, it is often convenient
to consider maps between varieties that are defined only on an open subset.
We therefore introduce one more definition.

Definition. A rational map from a variety X to a variety Y is a map
that is a morphism on some nonempty open subset of X. A rational map
0 : X -+ Y is said to be dominant if 4'(U) is dense in Y for some (and
consequently every) nonempty open set U C X on which it is a morphism.

A birational map is a rational map that has a rational inverse. Two
varieties are said to be birationally equivalent if there is a birational map
between them.

Remark. Let 0: X -+ Y be a rational map. Then there is a largest open
subset U on which ¢ is a morphism. This open subset is called the domain
of 4,.

We have defined morphisms and rational maps purely in terms of local
properties. We now examine their global behavior, distinguishing carefully
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between affine and projective varieties. Notice that almost by definition,
a morphism 0 : V -+ W of amine varieties induces a ring homomorphism
0' : k[W] k[V] defined by f i- f o ¢.

Theorem A.1.2.1. (i) Let V be an affine variety. Then O(V) = k[VJ.
(ii) Let V, W be affine varieties. The natural map

Mor(V, W) Homk-AIg(k[WJ, k[V)),

'-+ (f'-+foi),
is a b{iection. In fancy language, the association V - k[VJ is a contravari-
ant functor that induces an equivalence between the category of affine va-
rieties and the category of finitely generated integral k-algebras.

PROOF. Hartshorne [1, 1.3.2].

Thus an affine variety is completely determined by its ring of regular
functions. This stands in stark contrast to the next two results.

Lemma A.1.2.2. A regular function on a projective variety is constant.

PROOF. Hartshorne [1, I.3.4(a)].

Theorem A.1.2.3. The image of a projective variety by a morphism
is a projective variety. More generally, if X is a projective variety, the
projection X x Y-' Y is a closed map.

PROOF. This is essentially equivalent to the main theorem of elimination
theory; see Van der Waerden [1, vol. II, §80] or Shafarevich [1, 1.2 Theo-
rems 2, 3].

Notice that the image of an affine variety by a morphism need not
be an affine variety, so there is no analogue of Theorem A.1.2.3 for affine
varieties.

We now look at local rings and function fields. Recall that if p is a
prime ideal in a ring A, then the localized ring at p is

Ap-{6Ia,bEA,b¢p}.

If p is a homogeneous ideal in a graded ring A, the homogeneous localized
ring at pis

a
a, b E A, deg(a) = deg(b), b 19 p}A(p)

a

In both cases, the local ring is a subring of the ring of fractions of A, which
we denote by Frac(A). Of course, if A is a domain, then Frac(A) is a field.
For the general theory of localization, see, for example, Lang [2, 11.3) or
Matsumura [1, 1.1].
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Theorem A.1.2.4. (i) Let P be a point on an affine variety V, and let
MP be the ideal of functions in k[V] that vanish at P. Then

Op,v = k[V]MP and k(V) = Frac(k[V]).

(ii) Let P be a point on a projective variety V, and let MP be the ideal
generated by homogeneous polynomials vanishing at P. Then

OP,v = S[V](MP) and k(V) = S(V)((o)).

PROOF. (i) Hartshorne [1, I.3.2(c,d)].
(ii) Hartshorne [1, I.3.4(b,c)].

Notice that the elements of S[V](MP) may be viewed as functions on V
because they are of degree zero, which means that their value at a point is
independent of the choice of homogeneous coordinates for that point. Of
course, they need not be defined at every point of V.

Theorem A.1.2.5. Let f : V -, W be a rational map between two
varieties.

(i) If f is regular at P and Q = f (P), then the map

f* :OQ,W --+OP,v, f` : g'--' gof,

is a homomorphism of local rings. In particular, f * (3KQ) C Mp.
(ii) If f is dominant, then f* defines a field homomorphism k(W) -

k(V). Conversely, every such field homomorphism corresponds to a dom-
inant rational map. In other words, the association X -+ k(X) is a con-
travariant functor that induces an equivalence between the category of
varieties with dominant rational maps and the category of fields of finite
transcendence degree over k.
(iii) In particular, two varieties are birationally equivalent if and only if

their function fields are isomorphic.

PROOF. See Hartshorne [1, 1.4, Theorem 4].

We define one more type of map. These maps play a role in algebraic
geometry analogous to the role that covering maps play in topology.

Definition. Let 0 : V -+ W be a morphism of affine varieties, and use
the map ¢' : k[W] -p k[V] described in (A.1.2.1(ii)) to make k[V] into a
k[W]-module. The morphism ¢ is called finite if k[V] is a finitely generated
k[W]-module.

A morphism V -+ W between varieties is finite if for every affine
open subset U C W, the set (U) is affine and the map :-1(U) U
is finite.
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Notice that a map 0 between affine varieties is dominant if and only
if ¢` is injective, so we say that 0 is finite sui jective if it is finite and ¢' is
injective. It is true, but not obvious from the definition, that a finite map is
also finite in the intuitive sense. That is, if ¢ : V - W is a finite map, then
it is a closed map and all fibers r-1 (x) consist of a finite number of points.
Further, there is an integer d and a nonempty open U C O(V) such that
#¢-1(x) = d for all x E U. The degree d can be described algebraically as
the degree of the associated field extension, and we define this quantity to
be the degree of the finite map ¢,

deg(O) = [k(V) : O'k(W)].

Under further hypothesis, for example that W is smooth or normal (see
Section A.4 and Exercise A.1.15 for these notions), it is even true that for
all x E O(V) we have #0-1(x) < deg(O). However, this is not true in
general; see Exercise A.1.15 for an example.

This section has been somewhat barren of examples, so we offer the
following collection as a remedy. (See the exercises for more examples,
especially Exercises A.1.6, A.1.7, and A.1.8). All of these examples are
important tools for proving results in algebraic and arithmetic geometry.

Examples A.1.2.6. (a) (d-uple embedding) Let Mo(x),... , MN(x) be the
complete collection of monomials of degree d in the variables x0,. .. , x,,.
Note that N = ("n d) - 1. Then the map

?n ---, IPN ,

X --' (M0(x),...,MN(x)),

is called the d-uple embedding of IP". It is a morphism, and in fact it is
actually an embedding of IP" into IPN.
(b) (Segre maps) Let m, n > 1 be integers and let N = (n+ 1)(m+ 1) -1.
We define the Segue map S",," by the formula

Sn n, : lP" X IP'" _, IPN,
(x, y) - (xiyj) O<i<n ,

0<j<m

where we have written x = (no, ... , xn) E 1P" and y = (yo, ... , y,") E
)P'. The Segre maps are again morphisms and give embeddings of the
product P" x F' into lP v. This construction explicitly displays the product
of projective varieties as a projective variety.
(c) (Linear projections) Let L0,.. . , L,. be independent linear forms in the
variables (xo, ... , xn), and denote by Z the linear subvariety of 1P" defined
by Lo = = L, = 0. Then we can define a rational map by the formula

7r : IP" -a pr,
x --' (Lo(x),... , Lr(x))
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The domain of it clearly equals Pn Z. We call 7r the linear projection with
center Z.
(d) More generally, let P0,... , P,. E k[xo,... , x,,] be homogeneous polyno-
mials of degree d, and let Z be the algebraic subset of P" defined by the
equations Po = = Pr = 0. Then we can define a map

r" - Pr
x (PO(X),---,P,-(X))

which is again a rational map on P. Further, if the greatest common
divisor of the Pi's is 1, the domain of 0 is equal to P" Z. To see this, note
that since homogeneous polynomials of degree d are linear combinations
of monomials of degree d, it is easy to write 0 as the composition of the
d-uple embedding followed by a linear projection.

In examples (a)-(d) we wrote maps using only one chart. The next
example shows that sometimes more than one chart is necessary.
(e) Let C be the curve defined in 1P2 by the equation

ZY2 = X3 + AXZ2 + BZ3.

We define a rational map 0: C -, IP1 by setting O(X, Y, Z) = (X, Z). This
is the restriction to C of a linear projection. The map is clearly regular
except possibly at the point (X, Y, Z) = (0, 1, 0). But observe that we can
use the homogeneity of the coordinates and the equation for C to rewrite 46
as

O(X,Y, Z) = (X, Z) = (X3, ZX2) = (ZY2 - AXZ2 - BZ3, ZX2)

= (Y2 - AX Z - BZ2, X2),

where this calculation is valid at all points on the curve with XZ 0.
This formula shows that 0(0, 1, 0) = (1, 0), and that ¢ is well-defined in
a neighborhood of (0, 1, 0). Thus ' is a morphism from C to IP1. It is a
general fact that a rational map from a smooth curve to a projective variety
is always a morphism (see Theorem A.4.1.4 below).

The map 0 is clearly finite of degree 2. In fact, #0-1(P) = 2 except
for P = (1, 0) and the points P = (a, 1) with a3 + Aa + B = 0.
(f) (Blowup of a point) Consider the projective algebraic set defined by

Z ((x0, ... xn), (v0, ... , Y.-1)) E Pn X IPn-1 I xiNj - xji/i = 0

for all 0<i<n,0<j<n-1}.

One can check that Z is the closure in Pn x 1Pn-1 of the graph of the
linear projection with center at Po = (0,0, ... , 0,1). Let p : Z - 1P"
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and q : Z -+ P"-1 be the projections on the first and second factors,
respectively, and define a map

lp : 1P' --+ IP" X P' ', fb(xo, ... , xn) = ((x0' ... , xn), (x0, ... , xn-1))

Then it is easy to see that 0 is a rational map from IPn to Z that is defined
everywhere except at the point Po. Furthermore, ¢ and p are clearly inverse
to one another at every point where they are defined, so they are in fact
birational maps. We observe that p-1{P} consists of the single point O(P)
except when P = P0, in which case

p1{Po} = {Po} x pn-1.

The map p : Z --+ 1P" is called the blowup of the point Po on pn. It
has the effect of replacing the point Po with the projective space lPn-1,

while leaving all other points unchanged. In essence, the point P0 is being
replaced by the set of tangent directions through Po.

If P0 is a point on a projective variety V, the blowup of V at the point
P0 is defined as follows. First embed V into some PI so that the image of
Po is the point (0, ... , 0, 1). The inverse image of V by the map p : Z --+ 1Pn
consists of two pieces. One piece is p-1{Po} = {Po} X ]?n- 1, and we denote
the other piece by V. The map p' : V -+ V induced by p is called the
blowup of V at Po. It can be shown that this construction is independent
of the chosen embedding. Clearly, the map p' is an isomorphism from
V -, pi-1{Po} to V - {Po}, so in particular p' is a birational morphism.
For more about blowingup and some examples, see Hartshorne [1, I §4
and II §7].
(g) (Cremona transformation) The Cremona transformation from P2 to p2
is the rational map defined by

O(X,Y,Z) = (X-1,Y-1,Z-1) = (YZ,XZ,XY).

This is readily seen to be a birational involution (i.e., Ooo(P) = P wherever
it is defined), and the domain of ¢ is clearly the complement of the three
points P = (1, 0, 0), Q = (0, 1, 0), and R = (0, 0, 1). We also observe that 0
takes the line through P, Q and sends it to the point R, and similarly for the
lines through P, R and Q, R. Another, fancier, description of the Cremona
transformation is to say that it first blows up the three points P, Q, R, and

then it blows down the three lines PQ, PR, QR.
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A.1.3. Dimension

The notion of dimension is one of the most intuitive ideas in geometry,
and in fact, the theorems of this section are intuitively quite clear, even
if their proofs are not easy. Clearly, the dimension of a variety should be
a birational invariant, and hence it is natural to define it in terms of the
function field of the variety.

Definition. The dimension of a variety V defined over k is the transcen-
dence degree of its function field k(V) over k. The dimension of an algebraic
set is the maximum of the dimensions of its irreducible components.

Not surprisingly, both An and lP1 have dimension n. Similarly, the
dimension of a hypersurface in An or Pn (Examples A.1.1.4 and A.1.1.6) is
n - 1. In fact, a kind of converse is true.

Proposition A. 1.3.1. A variety V of dimension n - 1 is birational to a
hypersurface in An (or Pn).

PROOF. This follows at once from the structure of finitely generated fields.
Indeed, one can show that the field k(V) is a finite separable extension
of k(xl,... , xn_1), and so by the primitive element theorem, it is generated
by a single element. See Hartshorne [1, 1.4.9] for further details. 0

There is another definition of dimension, which relies on the Krull
dimension of a ring.

Definition. The height of a prime ideal p in a ring A is the supremum of all
n such that there exists a chain of distinct prime ideals po c C pn = p.
The Krull dimension of the ring A is the supremum of the heights of its
prime ideals.

The link between the Krull dimension and the geometric dimension is
provided by the following theorem.

Theorem A.1.3.2. (i) Let V be an affine algebraic set. Then
dim(V) = Krulldim(k[V]).

(ii) Let V be an affine variety and let p be a prime ideal in k[V]. Then
height(p) + Krulldim(k[V]/p) = Krulldim(k[V]).

(iii) Let W be a subvariety of V. Then
Krulldim(Ow,v) = dim(V) - dim(W).

PROOF. See Hartshorne [1, Theorem I.1.8.A and Exercise 3.13], Atiyah-
Macdonald [1, XI] or Matsumura [1, V.14].

0

In particular, we have the following useful corollary.
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Corollary A.1.3.3. Let V be a variety, and let W be a closed algebraic
subset of V. If W 36 V, then dim W < dim V (strict inequality).

To conform with the usual terminology, a variety of dimension one is
called a curve, and a variety of dimension two is called a surface. Of course,
if we are working over the field k = C, then a curve is also sometimes called
a Riemann surface. Hopefully, this will not cause too much confusion.

In order to compute the dimension of a variety, we need to know how
the dimension behaves for intersections of algebraic sets.

Proposition A.1.3.4. Let V be an affine variety of dimension P in A",
and let Z be a hypersurface in An. Then either V is contained in Z, or else
all of the components of V fl Z have dimension exactly I - 1. (Note that
V fl Z may consist of zero components!)

PROOF. See Shafarevich [1, 1.6, Theorem 4].

Theorem A.1.3.5. Let V and W be affine varieties in An of dimensions
l and m, respectively. Then every component of V fl W has dimension at
least £+m-n.

PROOF. The proof is by "reduction to the diagonal." First observe that
V f1W is isomorphic to the intersection in A2n of the diagonal A and V x W.
Next note that A is defined by n hyperplanes xi -yi = 0. So n applications
of Proposition A. 1.3.4 gives the theorem.

Theorem A.1.3.6. Let V and W be projective varieties in P" of dimen-
sions a and m, respectively. Then every component ofV f1W has dimension
at least a+m-n. Furthermore, ift+m-n > 0, then V flW is not empty.

PROOF. Let V be the closure in Ant1 of the inverse image of V under
the natural map A"+1 {0} -' P"+1. This is called the affine cone of V.
Similarly, let W be the afine cone of W. By the previous theorem, all
components of V fl W have dimension at least I + m - n + 1, and hence
the dimension of the corresponding projective variety V fl W is at least
t+m-n. Moreover, Vf1W contains the point 0 E Ant1, so if P+m-n > 0,
then V fl W will contain an affine line and V fl W will be nonempty.

Theorem A.1.3.7. Let f : X - Y be a srrective morphism of vari-
eties.

(i) dim (f {y}) > dim(X) - dim(Y) for all y E Y.
(ii) There is a nonempty open subset U C Y such that

dim(f-1{y}) = dim(X) - dim(Y) for all y E U.
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PROOF. See Shafarevich [1, 1.6, Theorem 7]. The statements are true even
with f -1 {y} replaced by any of its irreducible components.

Notice that the example of a blowup (Example A.1.2.6(f)) shows that
the dimension of the fibers of a morphism need not be constant. As a
special case of Theorem A.1.3.7, we note that if 0 : X -+ Y is a finite
surjective morphism, then dim(X) = dim(Y).

A.1.4. Tangent Spaces and Differentials

The purpose of this section is to define the classical differential calculus in
a purely algebraic manner so that we can apply concepts like smoothness,
tangent spaces, and differentials.

Let V be an affine variety defined by the equations
fl(Xi,...,xn) = ... = fm(xi,...,xn) = 0.

A natural way to define the tangent space to Vat the point P = (al, ... , an)
is by the equations

af, (P)(xi - ai) = 0 for 1 < j < m.

Of course, derivatives of polynomials can be defined formally over any
field, without recourse to any limiting process, by repeated application of
the familiar rules

WY (f +g) dX + dX
and dX (aXn) = anXn-'.

One should perhaps also quote Leibniz's rule
d

dX (fg) = fX + gdX
To see that the definition of the tangent space is intrinsic, that is, indepen-
dent of the particular defining equations for V, we give another definition,
which is valid for arbitrary varieties.

Definition. Let P be a point on a variety V. The tangent space to V at
P is the k-vector space

Tp(V) = Homk(MPV/N[2 v, k).
In other words, the tangent space is defined to be the dual of the vec-

tor space 1vtpv/MpV. We naturally call NCp y/MPy the cotangent space
to V at P. It is easy to see that the tangent and cotangent spaces are
k-vector spaces, since 0p,v/1v1p,v = k. It is also not hard to check that
this definition agrees with the naive definition; see, for example, Shafare-
vich [1, 11.1, Theorem 11 or Mumford [6, III.4]. We also note that the
tangent and cotangent spaces are defined at every point of V, not only
at the "nonsingular points." In fact, we will use the tangent space in the
definition of nonsingularity.
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Theorem A.1.4.1. Let V be a variety. Then dim(Tp(V)) > dim(V) for
all P E V. Furthermore, there exists a nonempty open subset U c V such
that dim(Tp(V)) = dim(V) for all P E U.

PROOF. See Hartshorne [1, 1.5, Proposition 2A and Theorem 3] or Sha-
farevich [1, 11.1, Theorem 3].

0

Definition. A point P on a variety V is singular if dim(Tp(V )) > dim(V),
and it is nonsingular (or smooth) if dim(Tp(V)) = dim(V). The variety V
is called nonsingular or smooth if all of its points are nonsingular.

We see from Theorem A.1.4.1 that a variety always has an open subset
of smooth points. The following criterion is frequently used to compute the
singular points of a variety.

Lemma A.1.4.2. (Jacobian criterion) Let V be an affine variety defined
by the equations

fl(XI,...,xn) =... = fm(xl,...,xn) = 0,

and let P = (a,,.. ., an) be a point on V. Then P is a smooth point if and
only if

Rank 1 8f (P)) 1<j<m = n - dim(V).
8xi

1<i<n

PROOF. See Hartshorne [1, 1.5] or Mumford [6, III.4, Corollary 1].

Consider a rational map f : V -+ W that is regular at P, and let
Q = f (P). We have seen that f induces a homomorphism of local rings,
f* OQ,w O p,v, and hence it induces a k-linear map

f' : Mq,w/M4,w -i Mp,vl1t'fP,v,

which we again denote by f*.

Definition. The tangent map df(P) : Tp(V) -+ TQ(W) is the transpose
of the map f*: MQ,w/Mq,w -+Mpv/MPv

Theorem A.1.4.3. Let V be a variety and let P E V be a smooth point.
Then the local ring O p v is a regular local ring.

PROOF. This is clear from the definitions and Theorem A.1.3.2(i), since
Opv is regular if the dimension of Nipv/M' V is equal to the Krull di-
mension of Op,v.
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Theorem A.1.4.4. Let 0 be a rational map from a smooth variety V to
a projective variety. Then

codimv (V ' dom(o)) > 2.

In other words, a rational map on a smooth variety is defined except pos-
sibly on a set of codimension at least 2.

PROOF. See Shafarevich [1,111.3, Theorem 3] or Silverman [2, IV.6.2.1].
0

We now discuss the theory of differential forms on a variety X. Prob-
ably the right language to use is that of sheaves, but for the moment we
will take a more concrete approach. The starting point is the differential
of a function f E k(X )`. For any point x E dom(f) we have a tangent
map d f (x) : T. (X) -+ T flxl (Al) = k, so df (x) is a linear form on T,, (X).
We note that the classical rules d(f + g) = df + dg and d(fg) = f dg + g d f
are valid. Thus we may view df as a map that associates to each point
x E dom(f) a linear form on T=(X) (i.e., a cotangent vector). We call
such a map an abstract differential form, but of course we need to impose
some sort of continuity condition as x varies. So we take all of the abstract
differential forms that can be built up out of the df's.

Definition. A regular differential 1-form on a variety X is an abstract
differential form w such that for all x E X there is a neighborhood U of
x and regular functions fi, gi E 0(U) such that w = F_fi dg; on U. We
denote the set of regular 1-forms on X by (1' [X]. It is clearly a k-vector
space, and in fact, it is an 0(X)-module.

Examples A.1.4.5.
(1) The space of regular differential 1-forms on affine space A' is

n
W[An]_®k[tl,. tn] A,

i=1

where t1, ... , to are affine coordinates for An. Indeed, k[An] = k[tl,... , tn],
and the differentials of polynomials clearly belong to and generate this
space.
(2) Let w be a regular differential 1-form on Pn. Then on any An C 1Pn,
it must have the shape w = 1 Pi(t)dti. However, if any of the Pi's are
nonzero, w will have poles along the hyperplane at infinity, so it will not
be regular. Therefore, Il' [1Pn] = 0.

So we see that global 1-forms behave quite differently from local ones.
We next want to write H1 [U] as a direct sum in a manner analogous to the
description for W[An] in A.1.4.5.
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Definition. Let x be a nonsingular point on a variety X of dimension n.
Functions--ti, . , t,a E 0x are called local parameters at x if the ti's are in
Mx and if they give a basis of Mx/Mz. The functions t1, ... , t give local
coordinates on X if ti := t1 - ti(x) give local parameters at all x in X.

Recall that MX/N[2 is dual to the tangent space, so local parameters
exist only a t nonsingular points. It is e a s y to see that t1, ... , t are local
parameters if and only if ni ker(dti(x)) = {0} in T=(X), and thus that
local parameters give local coordinates on a neighborhood of x. From
Nakayama's lemma one may deduce the following result.

Proposition A.1.4.6. Let x be a nonsingular point on X. Then there
exist local parameters t1i ... , to at x and a neighborhood U of x such that
W[U] = ® 10(U)dti.

PROOF. See Shafarevich [1, 111.4 Theorem 1].

So far, we have considered only the tangent vector spaces T, (X) and
their duals, but we may also construct their exterior powers A' TT(X)` and
copy the classical definition of differential forms of higher order. (Recall
that A' V is the space of r-linear skew-symmetric forms on the vector
space V.)

Definition. An abstract r-form w on a variety X assigns to each x E X a
linear map w(x) : AKTx(X) -+ k. A regular r-form w on X is an abstract
r-form such that for all x E X there is a neighborhood U containing x and
functions fi,gi...... i,. E 0(U) such that

w = Egi1,...,i,.dfi1 A ... A dfi,,.

We will let 1jr[U] denote the space of regular r-forms on U. It is clearly
an O(U)-module. The analogue of Proposition A.1.4.6 is true. If t1, ... , to
are local coordinates on U, then

clr[U] = ® 0(U)dtil A ... A dtir.
i, <... <i,,

For some examples of computation with differentials see Exercises A.1.10,
A.2.7, and A.4.2.(f) and Theorem A.4.2.6 and the remarks following it.

It is convenient to define a rational differential form to be a form that
is regular on an open subset, where we identity two differential forms if
they coincide on some open subset. The space of such forms is denoted
by Str(X) and is clearly a vector space of dimension (°) over k(X), where
n = dim(X).
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Definition. Let ¢ : X - Y be a morphism of smooth varieties. Then
there is a map 0' : S2'' [Y] -+ Ilt [X ] defined by the formula

n ... A d,f r) = F,(gi,,...,i, ° a,)d(f2, ° 0) n ... A d(It, o 0)

As usual, the spaces of differential forms are functorial and contravari-
ant, that is, (¢o,)' (w) = r(i' (w)). One of the features that makes spaces
of differential forms important is they can be used to define invariants of a
variety X.

Lemma A.1.4.7. Let 0: X --. Y be a dominant rational map between
smooth projective varieties. Then 0*(S r[Y]) C S ,,[X]. In other words, the
poles of 0 do not create any poles for the differential form c' (w). Hence if
¢ is a birational map, then fI'' [X ] and Q '[Y] are isomorphic.

PROOF. See Shafarevich [1, 111.5, Theorem 2].

For example, we will see that if X is a (smooth) projective variety of
dimension n, then g(X) := dim Stn [X ] is finite. This follows from Corol-
lary A.3.2.7 below, and in fact, every pr [X] is finite-dimensional. The
quantity g(X) is called the geometric genus of X. We will study it in detail
for curves in Section A.4.

We close this section with some material on algebraic groups.

Definition. An algebraic group defined over k is a variety G defined over k,
a point e E G(k), and morphisms m: G x G - G and i : G - G satisfying
the axioms of a group law:

(i) m(e, x) = m(x, e) = x.
(ii) m(i(x),x) = m(x,i(x)) = e.
(iii) m(m(x, y), z) = m(x, m(y, z)).

Remark. Sometimes this definition of algebraic group is relaxed to include
reducible sets with a group law. Then the irreducible components are
disjoint and form a finite group, which we denote by 4 (G). The connected
component of G containing e, denoted by G°, is then an algebraic group
in the above sense; we call it the identity component of G.

Using the definitions, one sees that for any g E G, the right and left
translation maps

R9: G -+ G, and L9: G --+ G,
h '--+ m(g, h), h --- m(h, g),

are isomorphisms. From this remark we deduce that algebraic groups are
smooth varieties. Indeed, if there were a singular point, then using the
translation maps and their tangent maps, we would deduce that all points
are singular, contradicting Theorem A.1.4.1. It is also easy to see that the
tangent map at the origin associated to the group operation m,

dm(e,e) : T(e,e)(G x G) = Te(G) x Te(G) -+ Te(G),

is just the addition of vectors in TC(G).
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Examples A.1.4.8. (a) The additive group Ga is the variety A' with the
group law being addition:

m : Ga x G. * Ga, m(x, y) = x + Y.

(b) The multiplicative group Gm is the variety A' {0} with the group law
being multiplication:

m : Gm X Gm -+ Gm, m(x, y) = xy.

(c) The general linear group GL(n) is the group of n x n invertible matrices
with the group law being matrix multiplication. Note that although GL(n)
is naturally defined as the quasi-projective variety

GL(n) = {(xij) E A
2

1 det(xij) 01,

it is actually an affine variety, since we can also define it as

CL(n) = {(xij,t) E Ant x A' I tdet(xij) = 1}.

It is known that every affine algebraic group is a subgroup of GL(n) for
some n. It is harder to give examples of algebraic groups that are not amine.
We will see in Section A.4 that smooth plane cubics are algebraic groups,
called elliptic curves. In fact, elliptic curves and their higher-dimensional
analogues, abelian varieties, will be one of our main objects of study in this
book.

Definition. An abelian variety is a projective variety that is also an alge-
braic group.

Although it is far from obvious from looking at the definition, it can be
shown that the group law on an abelian variety is necessarily commutative.
(See Lemma A.7.1.3). For perspective, we quote the following structure
theorem.

Theorem A.1.4.9. (Chevalley) Let G be an algebraic group defined
over k. There exists a maximal connected affine subgroup H of G. This
subgroup H is defined over k and is a normal subgroup of G. The quotient
of G by H has a natural structure as an abelian variety.

PROOF. See Rosenlicht [1, Theorem 16].

EXERCISES

A.1.1. (a) Let V be a variety that is both affine and projective. Prove that V
consists of a single point.
(b) Let V be a projective variety, let W be an affine variety, and let 0 :
V W be a regular map. Prove that 0 is constant.
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A.1.2. Let X and Y be projective varieties defined over a field k.
(a) If X (k) j4 0 and there is a k-morphism f : X -+ Y, prove that
Y(k) 54 0.
(b) If X and Y are k-birationally equivalent, prove that X (k) is dense in
X (for the Zariski topology) if and only if Y(k) is dense in Y.
(c) Prove that if X has a smooth k-rational point and if there exists a
rational map from X to Y defined over k, then Y(k) yI- 0. (Hint. Take
well-chosen hyperplane sections and use induction on the dimension to
reduce to the case that X is a curve.) Deduce that if X and Y are smooth
and k-birationally equivalent, then X(k) 54 0 if and only if Y(k) i4 0. (For
the necessity of the smoothness assumption, see the next exercise.)

A.1.3. (a) Show that the Cremona map (x, y, z) '-+ (x-1, y-1, z-1) on P2 gives
a birational isomorphism between the two curves C and C' defined by
x2 + y2 = az2 and y2z2 + x222 = ax2y2.
(b) Let a E k' and assume that char(k) 0 2. Verify that C is smooth
and that C' has three singular points, namely (0 : 0 : 1), (0 : 1 : 0), and
(1: 0: 0).
(c) Show that if k = Q, the set C(Q) is empty for some values of a (e.g.,
for a = 3). Conclude that the property of having a k-rational point is not
a birational property of (singular) varieties, even in dimension 1.

A.1.4. (a) Show that over an algebraically closed field, a smooth conic is isomor-
phic to the projective line. (Hint. See Section A.4.3 below.)
(b) Show that the rings k[X,Y] and k[Xo,X1,X2]/(Xo - X1X2) are not
isomorphic, and conclude that the homogeneous coordinate ring of a va-
riety V C P^ is not an invariant of V. In other words, the homogeneous
coordinate ring depends on the projective embedding. (Hint. Show that
the second ring is not a unique factorization domain.)

A.M. Let f : X -' Y be a morphism of affine varieties.
(a) Prove that f' is injective if and only if f is dominant (i.e., f (X) is
dense in Y).
(b) Prove that f' is surjective if and only if f is a closed embedding (i.e.,
f (X) is a closed subvariety of Y and f : X --+ f (X) is an isomorphism).
(c) Show that V = A2 _' {(0, 0)} is not an affine variety. (Hint. Show that
the injection of V into A2 induces an isomorphism between k[A2] and 0(V)
and use Theorem A.1.2.1 to derive a contradiction.)
(d) Show that the only regular functions on X = P2 {(1,0,0)} are the
constants. Deduce that X is neither affine nor projective.

A.1.6. Let R and Q be homogeneous polynomials of degree 2, and let V be the
smooth cubic surface in P3 defined by

xoQ(x2,x3) - x1R(x2, x3) = 0-

(a) Show that O(xo, ... , x3) = (xo, xi) defines a morphism from V to P1.
(b) Show the same for '(xo, ... , x3) = (x2, x3).
(c) Prove that the map 0 x Eli : V -. P' x P1 is a birational morphism.
(d) Prove that such a birational morphism exists for any smooth cubic
surface containing two skew lines. (In fact, two such lines always exist,
although they may be defined only over an extension of k.)
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A.1.7. (P obenius map) In this exercise we work with the finite fields Fp- con-
taining p' elements. Let V be a quasi-projective variety defined over Fpr,
and let F be the map F(xo,... , x") :_ (xo..... xn).
(a) Show that F maps V onto another quasi-projective variety V(P) defined
over Fr-.
(b) If V is projective (respectively affine), prove that Vipi is also projective
(respectively affine).
(c) Prove that F : V -* V (P) is a bijection on points, but that it is not an
isomorphism of varieties.
(d) Suppose that V is defined over Fp. Prove that V(p) = V and that

V(Fpr) = {x E V(Fp) I FT (x) = z}.

Here iterate of F.
A.1.8. (a) Show that the map f : (xo,xl) ,-+ (x3,xox2,x3) is a morphism from

F' to P2. Show that the image of f is a projective curve C and find its
equation. Is the map f : F' -+ C a bijection on points? Is it birational? Is
it an isomorphism?
(b) Answer the same questions for the map g : P' - P2 defined by the
formula g : (xo,xi) F (xo,xo(x1 - xo),xi(xi - xo))

A.1.9. (Resolution of the singularities of a map). Let f : X --+ Y be a ra-
tional map between varieties. Show that there exists a variety X with a
morphism f : X - Y and a birational morphism p : X -+ X such that
f = f op. Furthermore, show that we may impose the condition that
p : p ' (dom(f )) - dom(f) is an isomorphism. (Hint. Choose X equal
to the closure of the graph of f in X x Y, and take p and f to be the
projections onto X and Y.)

A.1.10. For each of the following varieties X, describe the space of regular r-
forms IflXJ for each 0 < r < dim X.
(a) X -A"
(b) X = P".
(c) X C P2 is the smooth projective cubic curve x3 + y3 + z3 = 0. (Hint.
Show that 52' [XJ is a vector space of dimension 1.)
(d) Let n be a third root of unity and define 46(x, y, z) = (x, qy, z). Check
that 0 is an automorphism of the curve in (c) and compute q1 (w) for any
1-form w.

A.1.11. (Grassmannian varieties) Consider V = A"+' as a vector space of di-
mension n + 1, and let PV = P" be its associated projective space. Let
Gras(k, PV) = Gras(k, n) be the set of all linear subspaces of dimension k
in PV = P", or equivalently, the set of vector subspaces of dimension k + 1
in A"+' We want to give Gras(k, n) the structure of a projective algebraic
variety.
(a) Let W be a subspace of V of dimension k + 1 and select a basis
WO, ... , wk. Then the (multi)vector wo A ... A wk is a nonzero element
of Ak+1 V and thus defines a point in P(Ak+' V). Show that the map thus
defined from Gras(k,FV) to P(nk+i V) is well-defined (i.e., independent
of choice of basis) and injective. Denote by X the image of this map in
P(Ak+1

V)
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(b) Let w E nk+l V, and show that the map 6(w) : v '- w A v from V
to nk+2 V has rank less than n - k if and only if w E X. Conclude that
X is a projective algebraic set and thus that we may endow Gras(k, n)
with the structure of an algebraic variety. (Hint. The entries of a matrix
describing 6(w) are linear forms, and X will be defined by the vanishing of
some minors of this matrix.)
(c) Recall that there is a natural (but unique only up to scalars) isomor-
phism between A k+1 V and n"-k V', where ' denotes the dual space. We
denote one such

`isomorphism
by w F -. w`. For w E nk+1 V we get a map

6'(w) : v' - v` A w` from V' to nn-k+l V.. Show that w is in X if and
only if 6'(w) has rank at most k + 1, and that the subspace W correspond-
ing to w is the orthogonal complement of ker 6'(w). That is, the transpose
maps °6(w) : nk+2 V' -. V* and '6'(w) : nn-k V -. V have orthogonal
images.
(d) Deduce from part (c) that w E P(nk+1 V) is in X if and only if

(°b(w)(x'),°6'(w)(x)) = 0 for all x' E nk+2 V', X E nn-k V.

Deduce that X is cut out by quadratic forms.
(e) Notice that Gras(0, n) = 1P" and Gras(n - 1, n) = PV' Pn. Show
that Gras(l, 3), the variety of lines in p3, is a quadric in e.
(f) Show that there is a transitive action of GL(n+l) on Gras(k, n) defined
by the map (f, W) - f (W). Deduce that Gras(k, n) is an irreducible
smooth variety of dimension (k + 1)(n - k). (Hint. To find the dimension,
compute the dimension of the fibers of the map f - f (W) for a fixed W.)
Remark. The embedding described in this exercise is classically called
the Plucker embedding, the coordinates on P(nk+1 V) are called Plucker
coordinates, and the quadratic forms of part (d) are called Plucker rela-
tions. It can be shown that the Plucker relations generate the ideal defining
Gras(k, n) inside P(nk+1 V).

A.1.12. Let x be a smooth point on X, and let u1, ... , un be local parameters.
Recall that this means that ui E Mx C Ox,x and u1, ... , un generate
Mx/My as a k-vector space.
(a) Show that for all regular functions f E Ox,x there is a unique polyno-
mial Sm of degree at most m such that f - Sm (ul, ... , u,) E MZ +1
(b) Show that S(f) := limSm exists in k[X1,...,Xn] and that the re-
sulting map S : Ox,x -a k[X1,... , Xn] is an injective ring homomorphism.
(Hint. Use the fact that n- M2 = {0}.)
(c) The ring k[Xl, ... , Xn ] has a natural topology given by the powers of
the ideal generated by X1,..., Xn, and with this topology, k[X 1, ... , Xn)
is complete. One can similarly endow Ox,x with the topology defined
by the powers ofM=. Show that S is continuous with dense image, and
conclude that if Ox,x denotes the completion of Ox,x, then S extends to
an isomorphism S : Ox,x - k[Xl, , Xn].

A.1.13. (a) Let k be a perfect field, and let X be an afline (or projective) variety
defined over k. Prove that the following three conditions are equivalent:

(i) X is the set of common zeros of polynomials with coefficients in k.



Exercises 33

(ii) The ideal defining X is generated by polynomials with coefficients
in k.
(iii) X is globally invariant under the action of Gal(k/k). That is, if

x E X (k) and a E Gal(k/k), then a(x) E X (k).
(b) Give an example to show that (a) need not be true over a nonperfect
field such as k = )Fo(T).

A.1.14. A variety is said to be complete or proper over k if every projection
X x Y Y is closed (i.e., the image of every closed subset is closed).
(a) Prove that projective varieties are complete.
(b) Show that a regular function f on a complete variety must be con-
stant (Hint. Consider the closed set {(x, t) E X x A' I f (x)t = 1} and its
projection to A'.)

A.1.15. A variety X is called normal at a point x if the local ring Ox,x is integrally
closed. The variety X is normal if it is normal at every point.
(a) Prove that a smooth variety is normal.
(b) If X is affine, show that X is normal if and only if k(XJ is integrally
closed. Assuming char(k) 76 2, use this to prove the normality of the affine
cone X in A3 given by the equation x2 + y2 - z2 = 0. (Notice that X is
not smooth.)
(c) Let X be an affine variety with coordinate ring R, and let R' be the
integral closure of R, so R' is a finitely generated k-algebra. (Prove this
yourself or see Zariski-Samuel [1, Chapter V, Theorem 9].) Thus R' corre-
sponds to a normal affine variety X', and there is a morphism v : X' --i X.
Show that v is a finite surjective birational morphism with the following
universal property: For any normal variety Z and any dominant morphism
0 : Z X, there is a unique morphism ¢' : Z X' such that of = v o ¢'.
Intuitively, X' is the "smallest" normal variety that maps onto X. (Hint.
The integral closure of 4'k[XJ sits inside k[Z] and is isomorphic to k[X'].)
The variety X' is called the normalization of X.
(d) Show that a curve is normal if and only it is smooth. Hence normal-
ization provides a method to resolve the singularities of a curve.

A.1.16. Let P E Il'". Prove that P has homogeneous coordinates (xo, ... x )
with all xi E k if and only if a(P) = P for all a E Gk. (Hint. You will need
to use Hilbert's theorem 90, H'(Gk, k') = 0.)

A.1.17. Let V be a closed subvariety of dimension r in P". Let lP" denote the
projective space dual to P" and identify points in P" with hyperplanes in
r. We set

Zv = {(x;Ho,...,Hr) E V X (P")' t1 [ x E Hon...nHr}.

Compute the dimension of Zv and conclude that the set

Yv ={(Ho,...,Hr) E (P")'+' I VnHOn...nHr A0}

is a hypersurface in (P")1}1. The multihomogeneous form Fv that defines
Yv is unique up to a scalar; it is called the Chow form of V. If V' is another
subvariety of the same dimension, show that Fv' is a scalar multiple of Fv
if and only if V = V'. (Hint: Use the dimension theorems).



34

A.2. Divisors

A. The Geometry of Curves and Abelian Varieties

A polynomial in one variable is determined up to a scalar by its roots,
counted with multiplicities. A polynomial in several variables is deter-
mined, again up to a scalar, by the hypersurfaces counted with multiplic-
ities on which it vanishes. Further, these hypersurfaces with their multi-
plicities correspond exactly to the decomposition of the polynomial into
irreducible factors. The theory of divisors is a device that generalizes this
idea to arbitrary varieties, where unique factorization no longer holds. We
will look at two ways of defining divisors. The first, due to Weil, is as
a sum of subvarieties of codimension one. The second, due to Cartier, is
as objects that are locally defined by one equation. Weil's definition is
more concrete and works well on normal varieties, but Cartier's definition
is frequently easier to work with and yields a better theory on nonnormal
varieties and more general schemes.

Throughout most of this section we work over an algebraically closed
field k. It will not be until we get to Proposition A.2.2.10 that we will
explain why everything we have done carries over to arbitrary perfect fields.
This proposition is easy, but it will be fundamental for our further work.

A.2.1. Weil Divisors

As indicated above, a Weil divisor is a sum of subvarieties of codimension
one.

Definition A.2.1.1. Let X be an algebraic variety. The group of Weil
divisors on X is the free abelian group generated by the closed subvarieties
of codimension one on X. It is denoted by Div(X).

In other words, a divisor is a finite formal sum of the form D = > ny Y,
where the ny's are integers and the Y's are codimension-one subvarieties
of X. For example, if X is a curve, then the Y's are points; if X is a
surface, then the Y's are (irreducible) curves; and so on.

The support of the divisor D = E nyY is the union of all those Y's
for which the multiplicity ny is nonzero. It is denoted by supp(D). The
divisor is said to be effective or positive if every ny > 0.

We recall that if Y is an irreducible divisor on X, then Oy,X is the
local ring of functions regular in a neighborhood of some point of Y.
In particular, if the variety X is nonsingular, or more generally if it is
nonsingular along Y, then Oy,X is a discrete valuation ring. We write
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ordy : Oy,X {O} Z for the normalized valuation on Oy,x, and we ex-
tend ordy to the fraction field k(X)' in the usual way. We refer the reader
to Fulton [1] for the definition of ordy in the general case. The following
lemma (see also Exercise A.2.3) summarizes its main properties.

Lemma A.2.1.2. The order function ordy : k(X)' -i Z described above
has the following properties:

(i) ordy(fg) = ordy(f) +ordy(g) for all f,g E k(X)'.
(ii) Fix f E k(X) *. There are only finitely many Y's with ordy (f) -A 0.

(iii) Let f E k(X)'. Then ordy(f) > 0 if and only if f E Oy x. Similarly,
ordy(f) = 0 if and only if f E OY,X.
(iv) Assume further that X is projective, and let f E k(X)*. Then the

following are equivalent:
(a) ordy (f) > 0 for all Y.
(b) ordy (f) = 0 for all Y.
(c) f E k'.

The properties of ordy described in Lemma A.2.1.2 allow us to define the
divisor of a function.

Definition. Let X be a variety, and let f E k(X )' be a rational function
on X. The divisor off is the divisor

div(f) = > ordy (f )Y E Div(X).
Y

A divisor is said to be principal if it is the divisor of a function. Two
divisors D and D' are said to be linearly equivalent, denoted by D - D',
if their difference is a principal divisor. For brevity, we also sometimes
write (f) for the divisor of f.

The divisor of zeros of f, denoted by (f )o, and the divisor of poles
of f, denoted by (f)., are defined by

(f)o = > ordy(f)Y and (f). _ -ordy(f)Y.
ordy(f)>O ordy(f)<O

Thus the divisor of a function is the difference of its zeros and its poles
(counted with the appropriate multiplicities).

Let us briefly comment on the origin of the term linear equivalence.
Suppose that D - D', say D' = D + div(f ). For each point (a, b) E
IP1, define a divisor D(a,b) := D + div(a + bf). The divisors D(0,b) are
parametrized by the points of the line IP', and clearly D(1,o) = D and
D(o,1) = D'. So there is a family of divisors, parametrized by the points of
a line, that deforms D to D'.

Definition. The divisor class group of X is the group of divisor classes
modulo linear equivalence. It is denoted by Cl(X). The linear equivalence
class of a divisor D will be denoted by Cl(D).
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As an important example, we can compute C1(1P").

Proposition A.2.1.3. Let deg(Z) denote the degree of an irreducible
hypersurface Z C P", and extend the function deg by linearity to the group
of divisors Div(P"). Then a divisor D E Div(P") is principal if and only if
it has degree 0, and the induced map

deg : Cl(P") Z

is an isomorphism.

PROOF. A hyperplane H C P" has degree deg(H) = 1, so the degree map
is surjective. We must show that its kernel consists of exactly the principal
divisors.

Let f E k(P")'. We can write f = P/Q with P,Q homogeneous
polynomials of degree d. We factor P and Q into irreducible factors asp = P1"' ... P,'." and Q = Qi' ... Q; , and we set Y = Z(Pi) and Zj =
Z(Qj). Thus the Y's and Zj's are irreducible hypersurfaces in P", and it is
clear from the definitions that div(f) = Er

1 m;Y; - E,8=1 njZj. Further,

r a

deg(div(f)) _ m; deg(Y) - > nj deg(Zj) = deg P - deg Q = 0,
:=1 j=1

which shows that principal divisors have degree zero.
Conversely, suppose that D is a divisor with deg(D) = 0. Then we

can write D as D =
1 mY; - E ?=1 n3Zj, where Em; deg(Y) _

nj deg(Zj). Let P; be an irreducible homogeneous polynomial defin-
ing Y;, and similarly let Qj define Zj, and set P = PI" ... P,'."" and
Q=QI Then

r r
deg P = m; deg(P;) = m; deg(Y;)

_ nj deg(Z3) = > nj deg(Q,) = deg Q.

Therefore, f = P/Q is in k(P"), and clearly div(f) = D, which proves that
every divisor of degree zero is principal.

Remark A.2.1.4. By the same method, one can show that

Cl (P"' X ... X P"*) =L''.

See Exercise A.2.1.
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Remark A.2.1.5. Consider the natural map k(X)' --+ Div(X) that takes
a function to its divisor. Lemma A.2.1.2(iv) says that if X is projective,
then the kernel of this map consists of only the constant functions. So on a
projective variety, the divisor class group fits into (and can be defined by)
the exact sequence

0 , k' -+ k(X)' d'°+ Div(X) -+ Cl(X) -+ 0.

This sequence is the analogue of the exact sequence relating the unit group
RK and the ideal class group ClK of a number field K,

0 ---+ RK -+ K' -+ {Fractional ideals} --+ ClK -+ 0.

If X is afiine and A = k[X] is integrally closed, the analogy can be pushed
even further, since then CI(X) = 0 if and only if A is a UFD, i.e., a unique
factorization domain. (See Exercise A.2.8).

A.2.2. Cartier Divisors

A subvariety of codimension one on a normal variety is defined locally as
the zeros and poles of a single function. The idea of a Cartier divisor is to
take this local property as the definition, subject to the condition that the
functions fit together properly.

Definition. A Cartier divisor on a variety X is an (equivalence class of)
collections of pairs (U,, fi)iEl satisfying the following conditions:

(i) The Ui's are open sets that cover X.
(ii) The fi's are nonzero rational functions fi E k(Ui)' = k(X)'.
(iii) fi fj-1 E 0(Ui n Uj )' (i.e., fi f.,71 has no poles or zeros on Ui fl Uj ).

Two collections {(Ui, fi) I i E I} and {(Vj,gj) I j E J} are considered to be
equivalent (define the same divisor) if figs 1 E 0(Ui nV3)' for all i E I and
j E J.

The sum of two Cartier divisors is

{(Ui,fi)IiEI}+{(Vj,gj)IjEJ}={(UinVj,figj)I(i,j)EIxJ}.

With this operation, the Cartier divisors form a group that we denote by
CaDiv(X). The support of a Cartier divisor is the set of zeros and poles
of the fi's. A Cartier divisor is said to be effective or positive if it can be
defined by a collection {(Ui, fi) I i E I} with every fi E 0(Ui). (That is, fi
has no poles on Ui.)
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Associated to a function f E k(X)* is its Cartier divisor, denoted by

div(f) = {(X, f)}.

Such a divisor is called a principal Cartier divisor. Two divisors are said to
be linearly equivalent if their difference is a principal divisor. The group of
Cartier divisor classes modulo linear equivalence is called the Picard group
of X and is denoted by Pic(X). (In many texts the Picard group is defined
as the group of line bundles or invertible sheaves on X. We will generally
be working with varieties, for which these two groups coincide.)

Remark. The reader with more knowledge of sheaf cohomology will rec-
ognize that a Cartier divisor is nothing more than a global section of the
quotient sheaf 9CX/OX. The principal divisors are those that come from
global sections of X*, and one can show that the group of Cartier divi-
sor classes Pic(X) is isomorphic to the cohomology group H'(X, OX). For
more details, see Hartshorne [1, II §6] and the introduction to Section A.3.3.

We now compare the two types of divisors. Let Y be an irreducible
subvariety of codimension 1 in X, and let D be a Cartier divisor defined by
{(U17f=) I i r= I}. We define the order of D along Y, denoted by ordy(D),
as follows. Select one of the open subsets U; such that U= n Y # 0 and
set ordy(D) = ordy(f;). It is easily seen that ordy(D) is independent of
the choice of (U;, f;), so we obtain a map from Cartier divisors to Well
divisors by sending D to E ordy (D)Y. Clearly, this map sends effective
Cartier divisors to effective Weil divisors and principal Cartier divisors to
principal Weil divisors, and hence it induces a map from Pic(X) to Cl(X).
In general, this map is neither surjective nor injective. For example, see
Fulton [2, Examples 2.1.2 and 2.1.3] or Hartshorne [1, 11.6.11.3]. However,
there are a number of important cases for which it is a bijection, including
the one described in the following theorem.

Theorem A.2.2.1. Let X be a smooth variety. Then the natural maps

CaDiv(X) ---i Div(X) and Pic(X) --- Cl(X)

are isomorphisms.

PROOF. See Hartshorne [1, 11.6.111. In fact, it suffices to assume that the
local rings of X are unique factorization domains.

In the sequel we will consider only Cartier divisors when the variety
in question might be singular, and we will freely identify Well and Cartier
divisors when we work with smooth varieties.

Example A.2.2.2. The Divisor Cut Out by a Hypersurface. Let X '- )Pn
be a projective variety, let Ix be its homogeneous ideal, and let F be a
homogeneous polynomial of degree d not in IX. Note that this means
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that F does not vanish identically on X. We want to associate to F a
divisor (F)x that corresponds to the intersection of X and the zero locus F.
To do this, we cover X by the affine open subsets Ui = X {x, = 0}, and
then (F)x is defined by the collection

(F)x = {(Ui, F/xd) 10< i< n}.

Notice that F/xd is a well-defined rational function on Ui, and that the
ratio (F/xd)(F/4)-1 = (xj /x,)d has no zeros or poles on Ui fl Uj, so these
functions patch together to give a Cartier divisor. Further, F/xd clearly
has no poles on Ui, so the divisor (F)x is effective. Finally, we observe that
if G is any other homogeneous polynomial of degree d not in Ix, then FIG
is a rational function on X and

(F)x - (G)x = div(F/G),

so (F)x and (G)x are linearly equivalent. In this way we obtain a natural
injection Z Pic(X) associated to the embedding X P.
Example A.2.2.3. The Canonical Divisor on a Smooth Variety. Let X
be a smooth variety of dimension n, and let w be a nonzero differential n-
form on X. We can construct a divisor associated to w as follows. On any
affine open subset U of X with local coordinates x1,.. . , xn we can write
w = fu dxl A Axn for some rational function fu E k(X). We then define
the divisor of w by the collection

div(w) = {(U,fu)}.

Taking different affine coordinates will give an equivalent collection, and
the Jacobian transformation formula for differential forms shows that the
pairs (U, fu) patch together to produce a well-defined divisor on X.

Any other nonzero differential n-form w' on X has the form w' = fw
for some rational function f E k(X)*. It follows that

div(w') = div(w) + div(f ),

so the divisor class associated to an n-form is independent of the chosen
form. This divisor class is called the canonical class of X. It is an extremely
important invariant of the variety X. By abuse of language, any divisor
in the canonical class is called a canonical divisor and is denoted by K.
We also observe that though we cannot speak of the value of a differential
form at some point, it makes sense to say that it vanishes at some point.

Example A.2.2.4. The Canonical Divisor on Projective Space. Let h be
the divisor class of a hyperplane in projective space P. Then the canonical
divisor on P" is given by Kp - -(n + 1)h. See Exercise A.2.4.
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In general, objects constructed in mathematics are useful only if they
have some functoriality properties. For this reason, we will attach to each
morphism (and even each rational map) between varieties a map between
their Picard groups. In this way the association X H Pic(X) will become
a contravariant functor.

Definition. Let g : X -i Y be a morphism of varieties, let D E CaDiv(Y)
be a Cartier divisor defined by {(Ui, fi) I i E I}, and assume that g(X)
is not contained in the support of D. Then the Cartier divisor g` (D) E
CaDiv(X) is the divisor defined by

9*(D) _{ (g-1(UU), fi o 9) I i E I}.

It is immediate from the definition that g'(D + E) = g*(D) + g'(E)
whenever they are defined, and that if g : X Y and f Y --+ Z are two
morphisms of varieties, then (f o g)* = g o It is also clear that

g* (div(f )) = div(f o 9),

provided that the rational function f E k(Y) gives a well-defined rational
function on g(X). However, unless f is a dominant map (i.e., unless the
image is dense), then f*(D) will not be well-defined for all D. The next
lemma allows us to move D in its linear equivalence class, and thereby to
define f ` on all of Pic(X).

Lemma A.2.2.5. Let f : X --+ Y be a morphism of varieties.
(i) Let D, D' E CaDiv(Y) be linearly equivalent divisors. If f (X) is not

contained in supp(D) U supp(D'), then f `(D) - f `(D').
(ii) (Moving lemma) For every Cartier divisor D E CaDiv(Y) there exists

another Cartier divisor D' E CaDiv(Y) satisfying

D - D' and f (X) supp(D').

PROOF. We are given that D' = D+div(g). If D is defined by {(UU, fi)},
then D' is defined by {(Ui, fig)}. Hence f*(D) and f*(D') are defined
respectively by {(f-1Ui,fi o f)} and {(f-1Ui,(fig) o f)}, which shows
that f- D' = f *D + div(g o f). This proves (i).

To prove the moving lemma, we again let D be defined by {(U1, fi)}.
For any fixed index j E I we define a divisor Dj by {(U1, fi f)- 1)}. Then
Dj = D - div(fj), so Dj - D, and clearly Uj n supp(Dj) = 0.

As an immediate consequence of Lemma A.2.2.5, we obtain the fol-
lowing result.
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Proposition A.2.2.6. Let f : X --+ Y be a morphism of varieties.
The map f * : CaDiv(Y) -+ CaDiv(X), which is well-defined only for
D such that f(X) ¢ supp(D), induces a (well-defined) homomorphism
f * : Pic(Y) -+ Pic(X).

Example A.2.2.7. (a) Let Od : ]P" --+ PN be the d-uple embedding
(A.1.2.6(a)). Using the isomorphism Pic(PN) = Z described in Proposi-
tion A.2.1.3, the map 4Pd : Pic(IPN) --+ Pic(P') is simply the multiplication-
by-d map Z -+ Z, z F-+ dz.
(b) Let S : IF X 1P" --+ PN be the Segre map (A.1.2.6(b)). Using the iso-
morphisms Pic(Pm X P") = Z2 and Pic(lPN) = Z from Proposition A.2.1.3
and the remark following it, the map S* : Pic(PN) -+ Pic(P' x lP") is the
diagonal map Z -+ Z2, z 1-+ (z, z).
(c) Let i : X '-+ Pn be an embedding of a projective variety X into projec-
tive space. Then the divisor (F)x on X cut out by a hypersurface Z(F)
(see A.2.2.2) is equal to i*(Z(F)).
(d) Let f E k(X) be a nonconstant function on a smooth curve X. Then f
defines a morphism f : X -+ P', and clearly

1* ((0) - (oo)) = div(f).

More generally, if X is any smooth variety and f E k(X) any nonconstant
function, then f extends to a rational map f : X -+ Pl that is well-
defined except possibly on a set of codimension at least 2. Hence we can
define 1* ((0) - (oo)), and again we find that it is equal to div(f ).

As an illustration of the general theory, we will compute the effect
of f* on the canonical class of a variety when f is a finite map. To do this,
we need to measure the ramification of f along a divisor.

Definition. Let f : X --+ Y be a finite map of smooth projective varieties,
let Z be an irreducible divisor on X, and let Z' = f (Z) be the image of Z
under f. Note that the dimension theorem (A.1.3.7) tells us that Z' is
an irreducible divisor on Y. Let sz be a generator of the maximal ideal
of OZ,X, and similarly let sz, be a generator of the maximal ideal of Oz,,y.
(That is, sz and sz' are local equations for Z and Z'.) The ramification
index off along Z is defined to be the integer

ez = ez(f) = ordz(sz, o f),

where we recall that ordz : Oz,X --+ Z is the valuation on Oz,X. Equiva-
lently, sz, of = usi for some function u E OZ,X. The map f is said to be
ramified along Z if ez(f) > 2.

We now investigate how the pullback of the canonical class on Y com-
pares with the canonical class on X.
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Proposition A.2.2.8. (Hurwitz formula) Let f : X Y be a finite map
between smooth projective varieties.

(i) The map f is ramified only along a finite number of irreducible divi-
sors.
(ii) If we assume further either that the characteristic of k is 0 or that the

characteristic of k does not divide any of the ramification indices, then we
have the formula

Kx ,., f*(Kv) +>(ez(f) - 1)Z.
Z

PROOF. The proof of the first assertion will follow from the proof of the
second one. We prove the formula (ii). Let n = dim(X) = dim(Y), and
choose an n-form w on Y. We will compare div (f' (w)) and f' (div(es)).
Let Z be an irreducible divisor on X, and let e = ez(f) be its ramification
index. Fix local coordinates yl,... , yn on Y so that t = y1 is a local
equation for Z' = f (Z) (this may require shrinking a little bit the open set
on which w e work). W e select local coordinates X I ,- .. , xn on X as follows:
s = x1 is a local equation for Z, and xi = yi o f for i = 2, ... , n. We write

w = t(x) dyl A ... A dyn and f' (w) = (0 o f) (dyl o f) A ... A (dyn o f )

We know that t o f = us` for some function u that does not have a zero
or a pole along Z, so we get dy1 o f = es'-Ids + sedu. Notice that the
hypothesis on the characteristic implies e # 0 in k, so e E k*. Hence we
obtain

f'(w) = 0 o fse-IU dx1 A ... A dxn with u' E Oz x.

We conclude that ordz (f' (w)) = ordz (f' (div(w))) + (ez -1). Now, both
ordz (f' (w)) and ordz (f' (div(es))) are zero except for a finite number of
divisors Z; this proves (i), and Hurwitz's formula follows by summing over
all divisors Z. 11

To each divisor D we associate the vector space of rational functions
whose poles are no worse than D. The precise definition is as follows.

Definition. Let D be a divisor on a variety X. The vector space L(D) is
defined to be the set of rational functions

L(D) = if E k(X )' I D + div(f) > 0} U {0}.

The dimension of L(D) as a k-vector space is denoted by P(D).
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To check that L(D) is a vector space, we use the fact that ordy is a
valuation. Thus if f, g E L(D), then for any irreducible divisor Y we have

ordy(f +g) > min{ordy(f),ordy(g)} > -ordy(D).

Summing over Y shows that f + g E L(D). It will be shown in the next
section that the dimension £(D) is finite when X is projective. We also
note the following elementary properties, whose proof we will leave to the
reader (see Exercise A.2.5).

Lemma A.2.2.9. Let X be a variety and let D, D' E Div(X).
(i) k c L(D) if and only if D > 0.

(ii) If D < D', then L(D) C L(D').
(iii) If D' = D + div(g), then the map f '-+ g f gives an isomorphism of k-

vector spaces L(D') -. L(D). In particular, the dimension £(D) depends
only on the class of D in Pic(X).

We close this section on divisors by explaining what happens when
the field k is not assumed to be algebraically closed. So for the rest of this
section we drop the assumption that k is algebraically closed and assume
for simplicity only that k is perfect. (If one needs to work with nonperfect
fields such as FQ(T), one should use the separable closure instead of the
algebraic closure in the following discussion.) We first need to explain what
it means for a divisor to be defined over k. We do this by using the action
of the Galois group Gk := Gal(k/k).

Definition. Let X be a variety defined over k. A divisor D is said to be
defined over k if it is invariant under the action of the Galois group Gk.

For example, a hypersurface X C P" that is defined over k is a di-
visor defined over k. Similarly, the principal divisor div(f) of a rational
function f E k(X) is defined over k.

If the divisor D is defined over k, we consider the k-vector space Lk(D)
defined by

Lk(D)={f Ek(X)JD+div(f)>0}.

The next proposition clarifies the connection between Lk(D) and L(D) _
Lk(D) and justifies the assertion that for questions concerning divisors, it
generally suffices to work over k.

Proposition A.2.2.10. Let k be a perfect field, let k be an algebraic
closure of k, let X be a variety defined over k, and let D be a divisor on X
defined over k.
(i) The k-vector space Lk(D) = L(D) has a basis of elements in k(X). In

other words, there is a natural identification Lk(D) ®k k = L(D), and in
particular, dim Lk(D) = dim L(D) = P(D).
(ii) Assume further that X is projective. If there exists a rational func-
tion f E k(X) with D = div(f), then there exists a rational function f E
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k(X) with D = div(f'). In other words, the natural map from Pic(X)k
to Pic(X) is injective.

PROOF. (i) It suffices to prove that every element of L(D) can be expressed
as a k-linear combination of elements of k(X). Let f E L(D), and let K/k
be a finite Galois extension such that f E LK(D). Further let al, ... , an
be a basis for K over k, and let Gal(K/k) = {al, ... , an}. It is a basic
fact of Galois theory that det(ai(aj)) j4 0; see, for example, Lang [2,
Chapter VIII, Corollary 5.4]. Define rational functions gi by

n

gi = E aj(aif), 1 < i < n.

j=1

It is easy to check that the gi's are Gal(K/k)-invariant, and thus are
in k(X). And the invertibility of the matrix (ai(a,)) shows that f (and in
fact, all of the aj f's) are in the k-span of 91, ,gn-
(ii) By assumption, D = div(f) for some f E k(X). We fix a finite Galois
extension K/k such that f E K(X). The fact that a(D) = D for all a E
Gal(K/k) means that div(a(f )/ f) = 0. It follows from Lemma A.2.1.4(iv)
that r(f)/f is constant, say a(f )/ f = a(a) E K. One easily verifies
that the map a -+ a(a) is a one-cocycle from Gal(K/k) to K*. Hilbert's
theorem 90 (Serre [1, Chapter 10, Proposition 2] or Exercise A.2.6) tells us
that it is a coboundary, so there is a b E K' such that a(a) = b a(b)-1
for all or E Gal(K/k). It follows that a(bf) = bf for all a E Gal(K/k),
so bf E k(X). Since we clearly have div(bf) = div(f) = D, this completes
the proof.

A.2.3. Intersection Numbers

A classical part of algebraic geometry called enumerative geometry is ded-
icated to counting the number of points (or curves, etc.) satisfying certain
properties. We will introduce one basic tool used in studying this kind
of problem. By the general theorems on dimensions (reviewed in Sec-
tion A.1.3) we expect that a collection of n hypersurfaces on a variety of
dimension n will intersect in a finite set of points. We would like to count
these points, including some sort of multiplicity to account for tangencies
and self-intersections. We begin by defining the intersection multiplicity
of n irreducible divisors D1,. .. , Dn at a point x E X under the assump-
tion that ni Di consists of discrete points.

Definition. Let X be a variety of dimension n, and let D1,. .. , D, E
Div(X) be irreducible divisors with the property that dim(fi Di) = 0.
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Choose local equations fl,..., fn for D1,.. -, D. in a neighborhood of a
point x E X. The (local) intersection index of Dl,..., Dn at x is

(D1,. .. , Dn)x = dimk (Ox,X/(f1, ... , fn))

One can check that this dimension is always finite and does not depend on
the selected local equations. Further, it is positive if and only if x E fi Di.
We define the intersection index (or number) of Dl,..., Dn to be

(D1i... , Dn) = (D1,..., Dn)x.
xEX

If the Di's intersect transversally, that is, if each (D1, ... , Dn)x is
either 0 or 1, then (D1,. .. , Dn) actually counts the number of points in
D1 n n Dn. We can easily extend this definition by linearity so as to
define the intersection number of any n divisors, as long as their intersection
consists only of points. To go further, we need the following invariance
property.

Lemma A.2.3.1. Let X be a normal projective variety and Dl,.. -, D, E
Div(X).
(i) There exist divisors Di, ... , D;, E Div(X) with the property that

Di - D'forall 1 < i < n and I n supp(D;) 0.

(ii) Let Di, ... , D;, be as in (i), and suppose that D1,.. . , Dn also sat-
isfy dim(fi supp(Di)) = 0. Then the intersection numbers are equal,

(D1,..., DO _ (D1,...,Dn)

PROOF. The first part can easily be proven in the same way as the moving
lemma A.2.2.5(ii). For the second part, see Shafarevich [1, IV.1, Theorem
2].

Lemma A.2.3.1 enables us to define the intersection number of any
n-uple of divisors.

nal projective variety of dimension n. For
choose divisors Di, ... , D;, E Div(X) as

for all 1 < i < n and dim(ni supp(D=)) = 0.
ex (or number) of Dl,..., Dn to be

Dn) _ (Di, ... , Dn).

ssures us that this number is independent of
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The following important theorem explains how intersection indices
transform under finite morphisms.

Theorem A.2.3.2. Let X and Y be normal projective varieties of dimen-
sion n, and let f : X - Y be a finite morphism. Let Dl,..., D E Div(Y).
Then

(f'Di,..., f*Dn)X = deg(f) - (D1,...,Dn)y.

PROOF. See Mumford [2,11.6) or Exercise A.2.10.

Finally, we define the degree of a subvariety with respect to a divisor.

Definition. Let X be a projective variety, let i : Z ti X be a subvariety
of dimension r, and let D E Div(X). The degree of Z with respect to D is
defined to be

degD(Z) = i` (D), ... , i* (D) z.
r times

When X = IP" and D = H is a hyperplane, the degree of Z with respect
to H is called the projective degree of Z. In this case, the degree is just the
number of points in the intersection of Z with a general linear subvariety of
codimension r. For example, the degree of a hypersurface with respect to
a hyperplane is the degree of the polynomial that defines the hypersurface.
Similarly, the degree of a point with respect to a hyperplane is one.

Remark. (i) The intersection numbers actually satisfy a much stronger
invariance property than that of Lemma A.2.3.1, although we will not
need to use this fact. They are invariant by algebraic deformation; that is,
the intersection number does not change if each divisor is changed to an
algebraically equivalent divisor. We recall that two divisors D1, D2 on X
are algebraically equivalent if there exists a connected algebraic set T, two
points t1it2 E T, and a divisor D on X x T such that D= = D[xx{t;}
for i = 1, 2. See, for example, Hartshorne [1, V, Exercise 1.7] or Griffiths-
Harris [1, pages 461-2].
(ii) Although the degree is defined with respect to any divisor, it is a useful
concept only when the divisor is ample (a notion introduced in the next
section). In this case the degree has a simple geometric interpretation; see
Exercise A.M.

EXERCISES

A.2.1. (a) Show that an (irreducible) hypersurface Y in P:= IP"' x . . . x P" is
defined by an (irreducible) multihomogeneous polynomial of multidegree
(dl,...,dr).
(b) Use linearity to define a map deg : Div(P) -* Zr and show that it
induces an isomorphism between Pic(P) and Z'.
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A.M. (a) Show that an automorphism f of P" must transform a hyperplane
into a hyperplane.
(b) Let H be a hyperplane in P. Using the action of f on L(H), con-
clude that all automorphisms of P" are linear. In other words, prove that
Aut(P") = PGL(n + 1).

A.2.3. Prove in detail Lemma A.2.1.2. For part (ii), first reduce to an affine
open subset U on which f is regular, and then show that ordy (f) > 0 if
and only if Y is contained in the closed subset of U defined by the ideal
f k[U] C k[U]. For part (iv) use the fact that the only regular functions
on a projective variety are constants.

A.2.4. Compute the canonical class of P". (Hint. Use the differential w
dxi A ... A dx,, where xi = X;/Xo, and show that div(w) = -(n + 1)Ho
for a certain hyperplane Ho.)

A.2.5. (a) Verify Lemma A.2.2.9, and prove that if D, D' are two divisors on a
variety X, then there is a well-defined map

,u: L(D) ® L(D') - L(D + D'), p : (f, f) '-' ff'.

Show that in general this map is neither surjective nor injective. (See
Exercise A.3.8 for more on the map ii.)
(b) Let X, Y be smooth varieties with canonical divisor classes Kx, Ky.
Prove that Kx x y = pi (Kx) + p2 (KY), where pi, p2 are the projections
from X x Y to X and Y. Use this to compute the canonical class on
P"1 x ... X P"'.

A.2.6. Prove Hilbert's theorem 90: Let K/k be a finite Galois extension and
let a : Gal(K/k) -t K' be a map such that a(ar) = a(a(r))a(a). Prove
that there exists a b E K' such that a(a) = bla(b). (Hint. Consider
b = )oEG (x/k) a(a)a(u), and show that u E K can be chosen so that

A.2.7. (a) Let X be a smooth hypersurface in P" defined by a homogeneous
polynomial F of degree d. Compute the canonical class Kx of X. (Hint.
Use the forms

dx1 Adxi+1 A...Adx"
wi:_ (_l)i

(8F/8x1)(1, x1, ... , x")

to compute the canonical class.)
(b) Generalize (a) to the case that X is a codimension r smooth com-
plete intersection of r hypersurfaces defined by polynomials F1 of degree
di. (Hint. For I a subset of cardinality r of [l, n], define

Ai(x) = det ((0F;/&ri)(1, xi, ... , x")) iEt1sj<r

and dij = dx 1 A n dii A n dx" with each dxi deleted when i E I; then
use the forms wj = dxr/Al(x) to show that Kx is di + + d,. - 1 - n
times a hyperplane section.)

A.2.8. Let X be a smooth affine variety, and let A = O(X) be its coordinate
ring. Show that Cl(X) = 0 if and only if A is a UFD.
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A.2.9. (a) Let p : X x A" -+ X be projection onto the first factor. Prove that
the map p' CI(X) - C1(X x A") is an isomorphism, and similarly with
Pic instead of Cl.
(b) Can you describe CI(X x P") or Pic(X x P")?

A.2.10. Let f : X - Y be a finite morphism of degree d between projective
varieties of dimension n. The purpose of this exercise is to furnish a proof
of the formula

f'Dn)x = d(DI,...,Dn)y

stated in Theorem A.2.3.2.
(a) Reduce to the case where the divisors D; are effective and n,-1 Di
is finite and avoids the ramification locus. (Use linearity, invariance of
intersection numbers, and the moving lemma.)
(b) Suppose that the differential Of. is injective for some x E X, assume
y = f (x), and let f',..., fn be local equations for D1,. .. , D" at y. Prove
that f, o f, ... , fn o f are local equations for f' Dl, ... , f ` Dn at x, and that

dimk(O /(fI of,...,fnof)) =dimk(O5/(f1,...,fn))

(c) Conclude the proof.

A.2.11. Recall the construction of the Grassmannian variety Gras(k, n) of linear
subspaces of dimension k in PV = P", and identify Gras(k,n) with the
image of its Plucker embedding into P(Ak+I V) (see Exercise A.1.11). Let
Z be a linear subspace of dimension n - k. Then Z corresponds to a
(multi)vector w E An-k

v
Ak+I V'; hence it gives a linear form on

P(A'+I V). Let U' be the affine subset defined by the nonvanishing of this
form, and let U = U' n Gras(k, n).
(a) Show that U is isomorphic to the affine space A(k+I)(n-k) and that
Gras(k,n) is covered by such open subsets. (Hint. Show that U can be
identified with Hom(V/Z, Z).) Notice that this gives another proof that
Gras(k, n) is smooth and irreducible of dimension (k + 1)(n - k).
(b) Show that Pic(Gras(k, n)) = Z, a generator being given by the class of
a hyperplane section H = Gras(k, n) U.
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A.3. Linear Systems

In this section we will describe a correspondence between morphisms to
projective space and families of effective divisors. The underlying idea is
quite simple. To each embedding X ti 1P" there corresponds its family
of hyperplane sections, that is, the intersection of the image of X with all
possible hyperplanes in P. In this section we reverse this construction.
For each family of effective divisors (a linear system) we will describe an
associated rational map to a projective space. It is natural to ask under
what conditions this map is a morphism or an embedding. This leads to
the notion of base points and ampleness. Finally, we introduce the pow-
erful language of sheaves and bundles, which are often more convenient
than divisors. We explain why Cartier divisor classes are the same as iso-
morphism classes of line bundles (or line sheaves) and provide a dictionary
for translating the various notions from one language to the other. In this
section, whenever the variety we work with is not smooth, the word divisor
means a Cartier divisor, since this notion is somewhat better behaved. For
simplicity, throughout this section we assume that the base field k is alge-
braically closed. (See Section A.2.2, especially Proposition A.2.2.10, for an
explanation of why this suffices for most applications.)

A.3.1. Linear Systems and Maps

Recall that to each divisor D on a variety X we have associated the vector
space

L(D) = {f E k(X) I D + div(f) > 0} U {0},

whose dimension is denoted by £(D). (Note that 0 is included in L(D) by
convention, or one could say that it is in L(D), because the zero function
vanishes to arbitrarily high order along every irreducible divisor.) The set
of effective divisors linearly equivalent to D is naturally parametrized by
the projective space

P(L(D)) (D)-1.

This parametrization is given by

P(L(D)) {D' I D' > 0 and D' - D}, f mod k' F-- D + div(f).

The following definition slightly generalizes this construction.

Definition. A linear system on a variety X is a set of effective divisors
all linearly equivalent to a fixed divisor D and parametrized by a linear
subvariety of P(L(D)) L. pt(D)-1. The dimension of the linear system is
the dimension of the linear subvariety. (Some authors use the synonym
linear series.)
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Example A.3.1.1. The set of effective divisors linearly equivalent to D
is a linear system called the complete linear system of D. It is denoted
by IDS.

Another way to define a linear system L is to say that it is a subset
of some SDI such that If E k(X)" I D + div(f) E L} U {0} is a k-vector
subspace of k(X).

Example A.3.1.2. Let D = 0 be the zero divisor on An. Then L(D) _
k[X1, ... , Xn], and IDI is the set of all hypersurfaces in An. Clearly, L(D)
and IDS are infinite-dimensional.

Example A.3.1.3. Let d be a positive integer, and let H be the hyper-
plane {xo = 0} in Div(1Pn). Then L(dH) = {F/xo F E k[xo,... , xn]d}, so
L(dH) has dimension N = ("nd). The linear system IdHI is the linear
system of all hypersurfaces of degree d in 1Pn; it has dimension N - 1.

These last two examples suggest that complete linear systems are likely
to be more useful on projective varieties than they are on a$ine varieties.
We will see below (A.3.2.7) that a linear system on a projective variety is
always finite dimensional.

Example A.3.1.4. Let X '-+ Pn be a projective variety, let Ix be the
homogeneous ideal of X, and let d be a positive integer. Each form F of
degree d not in Ix cuts out an effective divisor (F)x on X; see (A.2.2.2).
The collection of these divisors defines a linear system on X,

Lx(d) := {(F)x ] F E (k[xo,...,xn]/Ix)d -1 {0}}.

As we will see below, this linear system determines the embedding X '-+ 1Pn
up to a change of coordinates in 1Pn.

Example A.3.1.5. Let f : X -+ Y be a morphism and let L be a linear
system on Y such that f (X) is not contained in any D E L. Then the
set of effective divisors If* D I D E L} is a linear system on X. Under
some conditions we can even extend this to the case where f is only a
rational map. Suppose that f : X --+ Y is a dominant rational map and
that f is regular on U := X -, Z with codimx(Z) _> 2. If X is smooth,
this last condition is automatic. We then observe that (f l u)`D is a well-
defined divisor on U. Further, the inclusion U C X induces a natural map
Div(X) -+ Div(U), which must be a bijection because of the codimension
assumption. We may then define f `D E Div(X) as the unique divisor such
that (f* D) I u = (f I u) `D. In this way we can pull linear systems back using
rational maps.

We now describe the rational map associated to a finite-dimensional
linear system.



§A.3.1. Linear Systems and Maps 51

Definition. Let L be a linear system of dimension n parametrized by a
projective space ]P(V) C ]P(L(D)). Select a basis fo,... , In of V C L(D).
The rational map associated to L, denoted by OL, is the map

4L : X - pn,/
/

x '-- (fo(x), ... , fn(x))

Remarks. (i) The map 4'L is clearly defined outside of the poles of the
individual ft's and the set of common zeros of the f;'s

(ii) The map ¢L depends on the choice of the basis, so it is well-defined
only up to an automorphism of P. It can be defined canonically with
values in P(V).
(iii) If L is a linear system on X and Do is an effective divisor, then the

set {D+Do I D E L} is also a linear system, and clearly the map it defines
is the same as the map defined by L.

These remarks suggest the following definitions.

Definition. The set of base points of a linear system L is the intersection
of the supports of all divisors in L. We will say that a linear system is base
point free if this intersection is empty, and we will say that a divisor D is
base point free if the complete linear system IDS is base point free.

For a nonempty linear system L, it is easy to show that CAL is regular
outside of the base points of L (see Exercise A.3.5). However, the domain of
(bL need not be exactly the complement of the base points, simply because
for any effective divisor E, the linear system L' = E+L :_ {D+E I D E L}
defines the same rational map. This new linear system clearly has the
support of E among its base points.

Definition. The fixed component of a linear system L is the largest divisor
Do such that for all D E L, we have D > Do. If Do = 0, we say that the
linear system has no fixed component.

We can now formulate the correspondence between rational maps and
linear systems.

Theorem A.3.1.6. There is a natural bijection between:
(i) Linear systems L of dimension n without fixed components.

(ii) Morphisms 0 : X -* P" with image not contained in a hyperplane,
up to projective automorphism. (That is, we identify two rational maps

: X --+ P" if there is an automorphism a E PGL(n + 1) such that

PROOF. The proof is not difficult. For details, see Mumford [4, Theo-
rem 6.8] or Hartshorne [1, 11.7.1 and 11.7.8.1].

We close this section by giving some examples that illustrate the gen-
eral theory.
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Examples A.3.1.7. (a) Let i : X '- ' be a projective variety not con-
tained in any hyperplane. Notice that the linear system Lx(1) (A.3.1.4)
defines the embedding i. If L C LX(1), then the associated rational map
is the linear projection with center the intersection of the hyperplanes in
L. See Exercise A.3.1 for an analysis of the base points of this linear pro-
jection.
(b) More generally, the map associated to the linear system Lx (d) de-
scribed in Example A.3.1.4 is essentially the embedding i of X composed
with the d-uple embedding (A.1.2.6(a)). Precisely, consider the composi-
tion ('d o i : X --. F' --, PN. The ideal of X will contain homogeneous
forms of degree d when d is large, so the map associated to Lx (d) is the
same map, but with the image restricted to the smallest linear subvariety
containing $d o i(X).
(c) The Cremona transformation (A.1.2.6(g)) is defined by the linear sys-
tem of conics passing through the points (0, 0, 1), (0, 1, 0), and (1, 0, 0).

A.3.2. Ampleness and the Enriques-Severi-Zariski Lemma

In this section we describe methods for determining whether a linear system
provides an embedding.

Definition. A linear system L on a projective variety X is very ample if
the associated rational map *L : X -+ P' is an embedding, that is, 4L is a
morphism that maps X isomorphically onto its image cbL (X ). A divisor D
is said to be very ample if the complete linear system SDI is very ample. A
divisor D is said to be ample if some positive multiple of D is very ample.

Notice that very ample divisors are hyperplane sections for some em-
bedding. Also, the linear systems Lx (d) are clearly very ample. We will see
(A.3.2.5) that in some sense, up to composition with a d-uple embedding,
all embeddings are given by such a linear system. Recall that a morphism is
an embedding if it is injective and its tangent map at each point is injective.
This allows us to give the following criterion.

Theorem A.3.2.1. A linear system L on a variety X is very ample if
and only if it satisfies the following two conditions:

(i) (Separation of points) For any pair of points x, y E X there is a divisor
D E L such that x E D and y D.
(ii) (Separation of tangent vectors) For every nonzero tangent vector t E

Tx(X) there is a divisor D E L such that x E D and t Tx(D).

PROOF. See Hartshorne [1, II, Proposition 7.3 and Remark 7.8.2]. 0

For curves this translates easily into the following useful criterion.
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Corollary A.3.2.2. Let D be a divisor on a curve C.
(a) The divisor D is base point free if and only if for all P E C we have
I(D - P) = e(D) - 1.
(b) The divisor D is very ample if and only if for all points P, Q E C we
have e(D - P - Q) = e(D) - 2. (Note that we allow P = Q, which corre-
sponds to the separation of tangent vectors condition in Theorem A.3.2.I.)

PROOF. See Hartshorne [1, IV, Proposition 3.1] or Exercise A.3.2.

These criteria enable us to prove that the set of ample divisors gener-
ates the group of divisors, and thus also generates the Picard group.

Theorem A.3.2.3. Every divisor can be written as the difference of two
(very) ample divisors. More precisely, let D be an arbitrary divisor and let
H be a very ample divisor.

(i) There exists an m > 0 such that D + mH is base point free.
(ii) If D is base point free, then D + H is very ample.

PROOF. Clearly, we may assume that X -+ 1P" and that H is a hyper-
plane section. We first use the moving lemma (A.2.2.5) to find divisors
DI,... , Dr, all linearly equivalent to D, such that n l supp(Di) = 0. We
may write D; as an effective divisor minus a divisor > j mi jY j, where each
Yij is an irreducible subvariety of codimension 1 in X defined, say, by a set
of forms Fijk, and each mil is greater than 0. We select an integer

d>max{>m=jdegFiik}
j,k

and proceed to show that D + dH is base point free.
Let x E X, and choose some D; such that x V supp(D;). For each j

there is then an index kj with F+jk, (x) 76 0. Also, let L be any linear form
m;j degF,,k,, and definenot vanishing at x, let N =

(ll)Ld_N.G=Ftkj
j

Note that N < d. Further, G is a form of degree d, so (G)x - dH and
D; + (G)x - D + dH. On the other hand, we can compute

D,+(G)x>--E jYij+>mij(Fijk;)x+(d-N)(L)x>-0.
j j

Finally, we note that by construction, x V supp(D; + (G)x). This proves
that x is not a base point of D + dH, which completes the proof of (i).

We assume now that D is base point free and prove that D + H is very
ample by verifying the criteria of Theorem A.3.2.1. Let x and y be distinct
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points on X. Then we can find an effective divisor E, linearly equivalent to
D, with y V supp(E), and a hyperplane section Ho such that x E Ho but
y V Ho. Clearly, x E supp(E+Ho), whereas y V supp(E+Ho), which shows
that the linear system separates points. Next, let t E Tx (X) be a tangent
vector. Then we select an effective divisor E, linearly equivalent to D, such
that x V supp(E), and we take a hyperplane section Ho passing through
x but not containing the line generated by t. Then x E supp(E + Ho)
and t ¢ Tx(E + Ho), which shows that the linear system separates tangent
vectors. Hence the linear systems is very ample by Theorem A.3.2.1.

Remark. Theorem A.3.2.3 can be used to give the following presentation
of Pic(X). Define Emb(X) to be the free group generated by the embed-
dings of X into some P. To any embedding ¢ we associate the divisor class
c,p = 0'(H) E Pic(X). By linearity we obtain a map, which we still call c,
from Emb(X) to Pic(X). The previous theorem tells us that this map is a
surjection. Let H(X) be the kernel of the map Emb(X) -+ Pic(X). It is
clear that the following three sorts of elements are in H(X):

(i) Let a E PGL(n+ 1) and let 0: X -+ lP". Then cao, - co E H(X).
(ii) Let i : P" '-+ P'+1 be a linear injection and let 0 : X y P". Then

cjo0 - co E H(X)
(iii) Let 0 : X -+ IP" and 0 : X P' be embeddings, let S : P" x IPm

pN be the Segre embedding (A.1.2.6), let A : X -+ X x X be the diagonal
embedding, and define a map by the composition

pN.0®7b:X + X XX O"1 1P"xIP'" ----+

Then cog p - c s - cp E H(X).
It can be shown that H(X) is generated by these three types of ele-

ments.

We describe now the behavior of these notions under pullbacks.

Proposition A.3.2.4. (i) Let f : X -, Y be a morphism between two
projective varieties. If D is a base point free divisor on Y, then f'D is a
base point free divisor on X X.
(ii) Let f : X --+ Y be a finite morphism between two projective varieties.

If D is an ample divisor on Y, then f *D is an ample divisor on X.

PROOF. The first part is very easy, but the second part is deeper. See
Hartshorne (1, III, Exercise 5.7] for a proof.

Notice that the pullback of a very ample divisor by a finite morphism
need not be very ample. For example, consider the morphism 0 described
in (A.1.2.6(e)).

We now come to the proof that on a projective variety, the vector
space L(D) is finite-dimensional.
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Theorem A.3.2.5. (Enriques-Severi-Zarisld) Let X '- PI be a normal
projective variety. There exists an integer do = do(X) such that for all
integers d > do, the linear system Lx(d) is a complete linear system. In
other words, if D is an effective divisor on X that is linearly equivalent to d
times a hyperplane section, then there is a homogeneous polynomial F of
degree d such that D = (F)x.

PROOF. Let us denote by H a hyperplane section and suppose that D is an
effective divisor on X linearly equivalent to dH. Writing H, for the divisor
cut out by xi = 0 on X, we obtain functions fi such that div(fi) = D -
dHi. Since div(fi f 1) = div(x; dxi ), we get relations fi fi 1 = dxi
for certain constants a, # 0. Multiplying the f='s by some constant, we
may assume that all \i,j are equal to 1. Let A = k[xo,... , x"]/Ix be the
homogeneous coordinate ring of X, let Frac(A) be its fraction field, and let
Am denote the homogeneous piece of A of degree M. We observe that the
function F = fixd is independent of i and sits in Frac(A). Furthermore,
the function fi has no pole outside Hi; hence it lies in the integral closure
of the affine ring of X -, Hi, hence in the ring itself, since it is integrally
closed (the variety X is normal by hypothesis). So each fi has the shape
Ft/x; " for some homogeneous form F; of degree mi. So taking M large
enough, we see that xm-dF = xM fi = belongs to Am. We now
apply the following lemma from commutative algebra.

Lemma A.3.2.6. Let I be a homogeneous ideal in k[xo,... , x"], and let
A = k[xo,... , x"]/I. There exists an integer do = do(I) such that for all
d > do, all N > 0, and all F E Frac(A),

xpFxi F,...,xnFEAN+d=FEAd.

PROOF. See Mumford [4, Proposition 6.11 part 2].

Returning to the proof of Theorem A.3.2.5, we see that if our d is larger
than the do given by Lemma A.3.2.6, then F is in Ad and D is the divisor
cut out by (a representative of) F. This is the desired conclusion.

We now have all the tools to complete the promised proof of finiteness
of f(D) for projective varieties. This is a special case of much more general
finiteness results (see, for example, Hartshorne [1, Theorem 111.2]).

Corollary A.3.2.7. Let D be a divisor on a projective variety. Then
t(D) = dim L(D) is finite.

PROOF. We first assume that the projective variety X is normal. Clearly,
we may assume that t(D) > 1. This means that D is linearly equivalent to
an effective divisor. The dimension £(D) depends only on the linear equiva-
lence class of D, so we may take D to be effective. We also fix an embedding
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X -- 1P" and choose a homogeneous polynomial G E k[xo,... , that van-
ishes on the support of D, but not on all of X. We choose a G whose degree
is larger than the integer do(X) described in Theorem A.3.2.5. Replacing G
by some power G' to account for the multiplicities of the components of D,
we may assume that (G)x ? D. It follows that L(D) C L((G)x). But
from the previous theorem (A.3.2.5), we know that L((G)x) = Lx(d) is
of finite dimension. Hence the same is true of L(D). Now, if X is not
normal, consider its normalization v : X' X (see Exercise A.1.15); the
map v` provides an injection of L(D) into L(v*(D)), and the latter has
finite dimension by the previous argument. 0

A.3.3. Line Bundles and Sheaves

In this section we introduce the powerful and versatile language of sheaves
and (vector) bundles. These two objects are used throughout modern math-
ematics and already occur in the very definition of schemes. We give here
only the most basic definitions and explain how the previous two sections
can be reformulated in this terminology. This turns out to be more than
mere paraphrasing, since the use of sheaves and bundles simplifies con-
structions and proofs and provides valuable insights. The reader should
be aware that for the arithmetic applications contained in the subsequent
parts of this book we will need only the theory of 1-dimensional vector
bundles (i.e., line bundles).

Sheaves are devices to describe the local behavior of objects and to
describe how local information is glued together to form global objects. In
order to motivate the definition, we look at a familiar example from topol-
ogy. Consider the set of continuous functions from a topological space X
into another topological space Y. More generally, for any open subset
U C X we can look at the set of continuous functions U -+ Y, which we
denote by e(U) or C(U, Y). If V C U, then the restriction of a continu-
ous function to V is again continuous, and hence we get a restriction map
resv : C(U) -+ e(V). These maps have the following obvious compatibil-
ity: If W C V C U, then resµ, = resvv o resu. Next we observe that two
functions that agree locally are equal. That is, if we cover U by open sets,
U = 1 Ji Ui, and if two functions f, g EC(U) satisfy resg. (f) = resg1(g) for
all i, then f = g.

Conversely, if we know locally functions that "match on the overlap,"
then we can glue them together. In other words, suppose that we have
a covering U = (f i U; as above; suppose that we are given functions f; E
C(U1); and suppose that for all pairs of indices i, j we have resU;nu; (fi) _
resu,nU; (f=) Then there exists a function f EC(U) satisfying resU (f) _
fi.
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This example serves as a guide to the definition of a sheaf. We will
soon realize that, like Monsieur Jourdain, we have already used several
sheaves without knowing that we were doing so.

Definition. Let X be a topological space. A presheaf 3 on X consists of
the following data:

(i) For every open subset U in X, a set 3(U).
(ii) For all open subsets V C U C X, a map ru,v : 3(U) -+ 3(V)

satisfying

ru,u = id3(U) and ru,w = rv,w o ru,v.

In many cases we may think of the maps ru,v as restriction maps.
This is especially true if they happen to be injective. If the 3(U)'s have
some additional structure, for example if the 3(U)'s are groups, rings, or
modules over some ring, then we speak of a presheaf of groups, rings, or
modules.

Definition. A morphism of presheaves f : 31 -+ 32 is a collection of maps
f (U) : 31(U) - 32(U) such that for every V C U, the maps f (U) and
f (V) are compatible with restriction, r2 1o f (U) = f (V) orb,v. If the 3i's
are presheaves of groups (respectively rings, modules), then we insist that
the f (U)'s should be group (respectively ring, module) homomorphisms.

A presheaf on X attaches a set to each open subset of X, and also
assigns various restriction maps. A sheaf is a presheaf in which local data
determines global properties. In other words, if U = Ui U2 is an open
covering of U, then 3(U) should be completely determined by the T(Ui)'s,
the 3(Ui n U,)'s, and the various restriction maps connecting them. We
make this precise in the following definition.

Definition. Let X be a topological space. A sheaf T on X is a presheaf
with the property that for every open subset U C X and every open cov-
ering U = Ui Ui, the following two properties are true:
(1) Let x, y be elements of 3(U) such that ru,u, (x) = ru,u, (y) for all i.
Then x = y.
(2) Let xi E 3(Ui) be a collection of elements such that for every pair
of indices i,j, we have ru,,unuf(xi) = ruf,u,nuf(x3). Then there exists a
(unique) x E 3(U) such that ru,u, (x) = xi for all i.

These properties can be paraphrased as follows:
Elements are uniquely determined by their local behavior;
Compatible local data can be patched together (in a unique way) to
form a global element.

Examples A.3.3.1.
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(a) The fundamental example in classical algebraic geometry is the sheaf
of regular functions on a variety X equipped with the Zariski topology.
Thus OX is the sheaf defined by

OX(U) = {regular functions on U},

and ru,v is the natural restriction of a function from U to V. It is immediate
that OX is a sheaf of rings. This construction is so fundamental that from
the point of view of schemes (see Section A.9), a variety is a pair (X, Ox).
(b) The sheaf of invertible functions OX associates to an open set U the
set of regular functions without zeros on U. It is a sheaf of groups. Notice
that OX(U) is exactly the group of units in the ring OX(U), hence the
notation.
(c) On a variety X, the sheaf of rational functions Xx attaches to each
open set U the set of rational functions on U. It is a constant sheaf in the
sense that all of the maps ru,v are isomorphisms.
(d) The sheaf of differential r-forms Q on a variety X associates to an
open set U the set of regular r-differentials on U.
(e) Our motivating example, the presheaf of continuous functions on a
topological space, is a sheaf. Similarly, on a C' manifold X we can define
a sheaf of C°° functions by the rule

t?°°(U) = { f : U -+ R I f is a C°° function}.

In modern language, the different types of geometry (e.g., differential, an-
alytic, algebraic) are defined by attaching a certain type of structure sheaf
to a certain type of topological space.

There is an obvious way to form the direct sum and tensor product of
two sheaves of modules:

(3 (D 9)(U) = 3(U) ® 9(U) and (3 ® 5)(U) = 3(U) ® 9(U).

Next we consider what happens when we look at a sheaf in an infinites-
imal neighborhood of a point. This is the algebraic analogue of the germs
of functions used in analysis.

Definition. The stalk of a sheaf 3 at a point x E X, by 3x, is the direct
limit of the 3(U)'s over all open sets U containing x. Thus

32 = lim 3(U),
-EV

where the limit is taken with respect to the restriction maps ru,v. Intu-
itively, an element of the stalk 3x is an element s E 3(U) for some open
set containing x, where we identify s and s' E 3(U') if s and s' have the
same restriction to U fl U'.
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It is clear that the stalk of a sheaf of groups (respectively rings, mod-
ules) is a group (respectively ring, module). The elements of 32 are called
germs at x. If x E U, we get a map 3(U) -* 32. The image of s E 3(U) in
32 is called the germ of s at x.

Example. Let OX be the sheaf of regular functions on a variety X as
described in (A.3.3.1(a)). Then the stalk of Ox at x is just the local ring
02,X.

The stalks of a sheaf contain local information. The local-to-global
nature of sheaves is illustrated by the fact that many global properties of
sheaves can be checked on the stalks. For example, a morphism 31 - 32
of sheaves is an isomorphism if and only if all of the maps on the stalks,
3'1,2 .72,2, are isomorphisms. See Hartshorne [1, Chapter II, Proposition
1.11.

Definition. Let 3 be a sheaf on X. The set of global sections of 3 is the
set 3(X). This set is also frequently denoted by F(X, 3).

For example, if X is an affine variety with coordinate ring R = k[X],
then r(X, OX) = R and F(X, OX) = R'. However, if X is a projective
variety, then I'(X,Ox) = k and r(X,OX) = k".

Some of the most important sheaves in algebraic geometry have the
property that the sets 3(U) are naturally modules over the ring OX(U).
We formalize this idea in the following definition.

Definition. Let X be a variety. An OX-module is a sheaf 3 on X such
that:
(1) For every U C X, 3(U) is a module over the ring Ox(U).
(2) For every V C U C X, the map ru,v : 3(U) --+ 3(V) is a homomor-
phism of modules. In other words, if S1, S2 E 3(U) and fl, f2 E Ox(U),
then

ru,v(fist +f232) = ru,v(fi)ru,v(si) +rU,v(f2)rU,v(32)

Note that there are two different restriction maps rU,v here, one for 3 and
one for Ox.

For example, the sheaves Kx and fJr are clearly Ox-modules. Simi-
larly, the direct sum OX ® ® Ox = OX is an Ox-module called a free
Ox-module of rank r.

Definition. Let 3 be an Ox-module on X. We say that 3 is locally free
if each point in X has a neighborhood over which Y is free. The rank of
a locally free sheaf 3 is the integer r such that 3(U) = OX (U)r for all
sufficiently small open sets U. A locally free sheaf of rank 1 is called an
invertible sheaf (or sometimes a line sheaf).
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For example, when X is smooth, the sheaf of r-forms fl' is a locally
free sheaf. This is a reformulation of Proposition A.1.4.6. On the other
hand, the sheaf of rational functions XX is not locally free. The reason that
locally free sheaves of rank 1 are called "invertible" is because they are the
sheaves T for which there exists another sheaf 3' such that 3 ®3' t--- Ox.
(See Exercise A.3.13.) Thus the set of invertible sheaves naturally form
a group, using tensor product as the group law and Ox as the identity
element.

Remark. We now reinterpret the notion of a Cartier divisor by associating
an invertible sheaf to each Cartier divisor. Let D = {(Ui, fi) I i E I}
be a Cartier divisor. We define the sheaf ,CD to be the subsheaf of Xx
determined by the conditions

.CD(Ui) = 1 Ox(Ui) for all i E I.

This determines .CD, since the Ui's cover X. It is not hard to check that ,CD
is well-defined and is locally free of rank 1. It is also easy to see that up to
isomorphism, ,CD depends only on the linear equivalence class of D, and
that

'CD+D' _ CD ®CD'

The association Cl(D) '-4 Cr, thus defines a homomorphism from Pic(X)
to the group of invertible sheaves (modulo isomorphism), and one can show
that this map is in fact an isomorphism. See Hartshorne [1, Proposition
11.6.13) or Shafarevich [1, Theorem 3, Chapter VI.1.4].

It turns out that locally free sheaves (of finite rank) can also be de-
scribed by a more geometric object. The basic idea is that a locally free
sheaf on X corresponds to a family of vector spaces parametrized continu-
ously by the points of X.

Definition. A vector bundle of rank r over a variety X is a variety E and
a morphism p : E X with the following two properties:
(1) Each fiber Ex = p-1{x} is a vector space of dimension r.
(2) The fibration p is locally trivial. This means that for each point x E X
there is a neighborhood U containing x over which the fibration is trivial.
In other words, if we write EU = p-1(U), then there is an isomorphism ou
from EU to U x Ar such that the following diagram is commutative:

EU O-+ UxA'
P y /P1

U

Here pi is the projection on the first factor. The maps ¢U are called local
trivializations of E. A vector bundle of rank 1 is called a line bundle.
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We will also need the notion of morphisms between vector bundles.
They are morphisms of varieties that respect the bundle structure.

Definition. Let p : E -+ X and p' : E' -+ X' be vector bundles. A
morphism of vector bundles is a pair of morphisms f : E -+ E' and I :
X -+ X' such that fop = p' o f and such that for every x E X, the map
fZ : E_ -+ Ex is a linear transformation of vector spaces.

The trivial bundle of rank r over X is X x A' -+ X. The following
example of a nontrivial bundle is fundamental in (projective) algebraic
geometry.

Example A.3.3.2. Let V = An+l, and consider IP' to be the set of lines
of V through 0. Define a variety

E={(x,v)Ell xVIvlies ontheline x}.

Then projection onto the first factor, p : E -+ 1P", gives E the structure of a
line bundle. Indeed, the first condition is clear, and it is easy to check that
the fibration p trivializes above each standard affine open subset. Thus if
we let UU =1P"'. {X3 = 0}, then the trivialization is given explicitly by

1

(Ax '\X 1n
) /x3 x3 xj

We will develop tools below that can be easily used to show that E is not
trivial, that is, E is not isomorphic to pn x A'.

Example A.3.3.3. (Tangent bundle) Let X C An be an afline variety
with ideal Ix = (fl,. . , fin). We define a variety T(X) by

T(X)=((x,t)EXxA"
n

1(x)tt=0forall 1<j<m

and we let p : T (X) -+ X be projection onto the first factor. If X is smooth,
then T(X) is a vector bundle of rank equal to the dimension of X called
the tangent bundle of X. The bundle T (X) will be trivial over any open set
where some fixed minor of the Jacobian (Of;/ax,) does not vanish. This
construction can be generalized to arbitrary varieties by taking an affine
covering and then gluing the pieces together. For example, the tangent
bundle of an algebraic group is trivial (see Exercise A.3.12).

Definition. Let p : E --+ X be a vector bundle. A section of E is a
morphism s : X -+ E such that p o s = idx. Similarly, a rational section
of E is a rational maps : X --+ E such that p o s = idx.
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The set of sections to a vector bundle clearly form a vector space, which
we will denote by r'(X, E). If X is a projective variety, it is easy to see that
r'(X, X x A') = A', since a projective variety has no nonconstant regular
functions. On the other hand, if E is the line bundle of Example A.3.3.2,
then one can check that r("`, E) = {0}. The advantage of considering
rational sections is that a vector bundle always has nontrivial (i.e., nonzero)
rational sections.

The connection between locally free sheaves and vector bundles is now
easy to describe. Let p : E X be a vector bundle. We associate to each
open set U the vector space of sections r'(U, Eu). Notice that r'(U, EU)
is actually an Ox (U)-module (by the rule (f s) (x) = f (x)s(x)). It is easy
to check that the association U -- r'(U, Eu) defines a locally free sheaf
.CE whose rank is equal to the rank of the vector bundle E. In fact, the
association E -+ .CE is a bijection between (isomorphism classes of) vector
bundles of rank r and (isomorphism classes of) locally free sheaves of rank r.
See Hartshorne [1, II, Exercise 5.18] or Shafarevich [1, Theorem 2, VI.1.3].
For this reason we will use these notions interchangeably.

Next we describe how to construct bundles by gluing locally trivial
bundles. The basic observation is that a vector bundle E and local trivial-
izations cbu give isomorphisms

mu; , OujEu r u, - (Ui n Uj) x A -- Eu1nu,

I / P

UinUj

We thus obtain isomorphisms Ou, o 0U,1 : (Ui n Uj) x A' (Ui n Uj) x A''
that must be of the shape (x, v) (x, gji(x)v). Here gji is an r x r matrix
with entries in O(Ui n Uj). The gij's are called transition functions. The
following identities are immediate:

9ii = id and 9ij9jk = 9ik on Ui n Uj n Uk.

The set of gij's determines the vector bundle E. Conversely, any set of
gij satisfying these identities can be used to construct a vector bundle by
gluing together trivial bundles.

Using this construction, we can define the dual of a vector bundle E
to be the bundle k whose fibers are the dual vector spaces of the fibers of
E. Similarly, we define the tensor product of two bundles E and E' to be
the bundle E ® E' whose fibers are the tensor products of the fibers of E
and E'. We also define the pullback of a bundle p : E - X by a morphism
f : Y -+ X to be the fibered product

f'E=ExxY={(y,e)EYxEI f(y)=p(e)}.

Notice that if E and E' are line bundles, then k, E ® E', and f * E are also
line bundles.



§A.3.3. Line Bundles and Sheaves 63

We next describe how to associate a line bundle to a Cartier divisor.
A Cartier divisor on X is represented by a set of pairs {(U,, f,)},E j, where
the U;'s form a covering X and fff ' E 0(Ut n U;). We glue the trivial
line bundles U, x A' - U, via the isomorphisms

(U, n U;) x A' -- (U, n U;) x A', (x, A) (x, A(f,f; ')(x)).
This gives a line bundle on X. We further observe that replacing the f;'s
by f; f does not affect the construction, so the isomorphism class of the
resulting line bundle depends only on the linear equivalence class of D.

Notation. Let D be a Cartier divisor. The line bundle associated to D as
described above will be denoted by 0(D).

Theorem A.3.3.4. The association D '--+ 0(D) induces a functorial
isomorphism between the group of Cartier divisor classes and the group of
isomorphism classes of line bundles on X. More precisely,

0(D + D') = 0(D) ® 0(D') and 0(-D) = 0(D) .

Further, 0(f `D) = f'0(D) for any morphism f of varieties.

PROOF (sketch). One actually shows a little more. To each rational section
s of a line bundle E one can associate a divisor div(s) such that E =
0(div(s)). Further, the set of divisors obtained by varying s is the linear
equivalence class

{die(s) I s E r(X, O(D)) . 0) = D.
The functorial formulas then follow easily. See Shafarevich 11, Theorem 3,
VI.1.4] for more details. 0

We see that in this language, the space of sections t (X, 0(D)) is in
bijection with the functions in L(D). A linear system on X is thus given
by choosing a vector subspace of r(X, E) for some line bundle E on X.

Example A.3.3.5. It is classical (apres Serre) to denote by Op-. (1) or 0(1)
the line bundle associated to a hyperplane. It is easy to see that 0(1) is
the dual of the line bundle defined in Example A.3.3.2. The global sections
of 0(1) can be identified with linear forms,

I'(Pn,0(1))

We let 0(d) denote the line bundle obtained by tensoring 0(I) with itself d
times. The global sections of 0(d) are the homogeneous polynomials of
degree d,

I'(Swn, 0(d)) kXi' ...Xi".

Observe that there is a natural product on sections of line bundles. If
s E I'(X, E) and s' E 1'(X, E'), then (s ® s')(x) = s(x) ® s'(x) E E®®E_
defines a section of E ® E'. With this in mind, the following translation of
the Enriques-Severi-Zariski theorem (A.3.2.5) is immediate.
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Corollary A.3.3.8. Let X '- P" be a normal projective variety and let
D be a Izyperplane section. Then for all sufficiently large d, the restriction
map I'(P", O(d)) -+ I'(X, 0(dD)) is surjective. In other words, every sec-
tion (of a suitable power) of O(D) is given by homogeneous polynomials.

EXERCISES

A.3.1. Let X be a projective variety, and let L be a linear subsystem of Lx(l)
with associated map OL. Let B be the intersection of the hyperplanes in
L.
(a) Prove that ¢L is induced by the linear projection with center B.
(b) Describe the base locus of ¢L.

A.3.2. Let D be a divisor on a curve C. This exercise asks you to prove
(A.3.2.2).
(a) Let P E C. Prove that P(D) < t(D - P) + 1. Prove that t(D) = f(D -
P)+1 if and only if there is a function f in L(D) with ordp(f) = ordp(D).
(Hint. Use the injection L(D - P) L(D).)
(b) Prove that D is base point free if and only if t(D - P) = P(D) - I for
every point P E C.
(c) Prove that D is very ample if and only if the linear system ID - PI is
base point free for all P E C.
(d) Prove that D is very ample if and only if I(D - P - Q) = P(D) - 2 for
every pair of (not necessarily distinct) points P, Q E C.

A.3.3. Let L be a linear system of dimension 2 contained in the complete linear
system of divisors of degree 3 on P1. Show that the associated map 4L is
a morphism OL : P' - P2. Show that 4L maps PI birationally onto its
image eL(P1), but that the map is not an isomorphism. (Hint. Show that
the image has a singular point.)

A.3.4. (a) Show that up to (linear) automorphism, any rational map

f:pn___.I?-

is the composition of a d-uple embedding (A.1.2.6(a)), a linear projection
(A.1.2.6(c)), and a linear injection (xo, , x.) .-+ (X0'...' x., 0, ... , 0).
(b) If n > m, prove that there are no nonconstant morphisms from P" to
pm

(c) Prove that every morphism P'" -+ Pm is given by m + 1 homogeneous
polynomials (Po,... , Pm ), where P1..... Pm have no nontrivial common
zeros.

A.3.5. Let L be a linear system on a variety X, let BL be the set of base points
of L, and let ¢L be the associated map ¢L : X --. P". Prove that the
restriction of OL to X . BL is a morphism.
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A.3.6. (a) Let D be a very ample divisor on X, let 0 : X -+ F" be the associated
embedding, and let Y be a subvariety of X. Prove that the projective degree
of ¢(Y) is equal to the degree of Y with respect to D. In particular, the
projective degree of O(X) is the intersection number D" = (D, D,... , D).
(b) Let D be a divisor on X that is effective and ample, and let Y C X be
a subvariety of dimension at least one. Show that the intersection Y fl D
is nonempty.

A.3.7. Let X be a projective variety of dimension n.
(a) Show that if D is (very) ample and D' - D, then D' is also (very)
ample.
(b) Show that if D is ample, then (i) D' > 0. (ii) For every subvariety
Y C X, we have YD dim(") > 0.
(c) The Nakai-Moishezon criterion states that if a divisor has the positivity
properties described in part (b), then it is ample. Use the Nakai-Moishezon
criterion to show that if D is ample and if D' is algebraically equivalent
to D, then D' is ample. (For a further discussion of the Nakai-Moishezon
criterion, see Hartshorne [1, V, Theorem 1.10] for the case of surfaces and
Hartshorne [1, Appendix A, Theorem 5.1] for the general case.)
(d) Give an example where D is very ample and D' is algebraically equiva-
lent to D, but D' is not very ample (Hint. On a smooth curve, two divisors
are algebraically equivalent if and only if they have the same degree.)

A.3.8. (a) Let Li and L2 be two nonempty linear systems, and let L be the linear
system spanned by the two. Show that the sum map from Ll x L2 to L is
algebraic with finite fibers.
(b) Let D, and D2 be two divisors on a variety. Show that if [(D1) > 1
and E(D2) > 1, then 1(D1) + 1(D2) < £(Di + D2) + 1-
(c) If Dl and D2 are base point free, prove that £(D1 + D2) < 1(D,)1(D2).
(Hint. Use the morphisms OD; and the Segre map.)

A.3.9. Show that Cartier divisors on a variety X, as we have defined them, can
naturally be identified with global sections of the quotient sheaf Xz/Oz.
( Warning. If 9 is a subaheaf of .7, it is not true in general that the presheaf
U 3(U)/9(U) defines a sheaf. See Exercise A.3.15 below for the precise
definition of the quotient sheaf 3/9.)

A.3.10. Prove that Ox(U) = n=Eu O:,x (the intersection is over all points
x E U). This shows that one can reconstruct the sheaf Ox from knowledge
of the stalks (local rings). Prove also that one may reconstruct the function
field of X from the sheaf Ox by the formula k(X) = lim Ox (U) (the limit
is over all nonempty open sets U C X). U

A.3.11. Let D and E two very ample divisors on a variety X, let xo,... , x,"
(respectively yo, ... , yn) be a basis of t (X, 0(D)) (respectively a basis of
I'(X, 0(E))), and let d and e be positive integers.
(a) Let s be a section of 0(dD - eE). Prove that yi s is a section of 0(dD).
Deduce that if d is large enough, then there exist homogeneous polynomials
Pi of degree d in xo,... , x,,, such that y, s = Pi (xo, ... , x," ).
(b) Conversely, suppose that we are given polynomials P0,. .. , P", homo-
geneous of degree d such that yy Pi(xo, ... , x,,,) - yi Pi (X0'...' x,") = 0.
Show that these define a global section of 0(dD - eE) as in (a).
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A.3.12. Let G be an algebraic group, let T(G) be the tangent bundle of G as de-
scribed in (A.3.3.3), and let g E G. Consider the translation map R9(x) =
gx and its associated differential, which we denote by t9 : T0(G) -i T9(G).
Prove that the map

0: G x T.(G) T(G), (g,Y) - (g,t9(Y)),

is an isomorphism of vector bundles, and deduce that the tangent bun-
dle T(G) is trivial. Prove further that the vector bundle of differential
forms over C is also trivial.

A.3.13. Let X be a variety.
(a) Let T be a locally free sheaf of rank r on X, and let 3 be the dual of
T. Prove that T ®3 is isomorphic to to the free sheaf or".

. In particular,
if T is an invertible sheaf (i.e., r = 1), then T ® 9 Ox.
(b) If T is locally free and if there exists a sheaf T' such that T ®T' °-° Ox,
prove that T is of rank one.
(c) Let T be a sheaf on X, and let f : X -+ Y be a morphism of varieties.
Prove that the formula

um (U) =T(f-'(U))

defines a sheaf f.T on Y. If T is locally free (of rank r), is it necessarily
true that f.T is locally free (of rank r)?

A.3.14. Let p : E X be a vector bundle defined via an open covering U; and
transition functions 9;j.
(a) Give a description of the dual vector bundle of E in terms of an open
covering and transition functions. Give a similar description of f'E, where
f : Y X is a morphism of varieties.
(b) If E has rank r, prove that t ® E is a trivial bundle of rank r2.

A.3.15. (Kernel, image, and quotient of sheaves)
(a) Let 0 : T -' 9 be a morphism of sheaves. Prove that each of the maps

U' ker(¢(U) : T(U) -. 9(U)),
U '--- Image(4'(U) : T(U) - 9(U)),

U '-' 9(U)lcb(T(U)),

defines a presheaf on X, but that in general only the first one defines a
sheaf.
(b) It is possible to attach to every presheaf T a "smallest" sheaf T con-
taining T. One can describe 7 by universal mapping properties, but the
following description provides a concrete construction. We define 3(U)
to be the set of functions f : U -' UXEU T. such that for each x E U,
f (x) E Tx, and further such that there is a neighborhood V of x contained
in U and a g E T(V) such that for all y E V, the germ gv of g at y is equal
to f (y). _

Using this description, prove that T is a sheaf, that there is a natural
inclusion T T, and that T and 3 have the same stalk at every point of X.
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In particular, if F is already a sheaf, then 3 = T. (See (Hartshorne 1, 11.1.2)
for further details.)
(c) Continuing with the notation from (a), the image sheaf Image(O) is
the sheaf associated as in (b) to the presheaf U Image(¢(U)). Simi-
larly, the quotient (or cokernel) sheaf 9/0(7) is the sheaf associated to the
presheaf U i-+ 9(U)/gs(F(U)). As an example, see Exercise A.3.9 for an
interpretation of the quotient sheaf X /0x

A.4. Algebraic Curves

This section features algebraic curves, the heroes of this book. The most
naive examples are affine plane curves given by P(x, y) = 0. A first guess
would be that the higher the degree of the polynomial P, the more com-
plicated the curve. This is not quite true. There is a subtler invariant
called the genus, which is a much better measure of the complexity of the
curve. The genus, usually denoted by g, is a nonnegative integer. If the
curve C is projective and nonsingular and defined over C, then its genus is
the number of holes (or handles) in the Riemann surface C(C).

A curve is a variety of dimension one, so its field of rational func-
tions has transcendence degree one. It is natural to consider two curves
equivalent if they have isomorphic function fields, since there will then
be a birational isomorphism between them. We explain in Section A.4.1
that every curve is birational to a plane curve with only mild singulari-
ties, and that each equivalence class of curves contains exactly one smooth
projective curve. We then focus our attention on these smooth models
in Section A.4.2. The Riemann-Roch theorem is a basic tool that counts
the dimension of linear systems and embeddings. It provides a convenient
abstract definition of the genus and will be the basis of much of our subse-
quent work. We then display the basic trichotomy of curves, dividing our
study into curves of genus 0, curves of genus 1, and curves of genus greater
than or equal to 2. The curves of genus 0 are easy to analyze, at least
over an algebraically closed field, since such curves are isomorphic to IP'.
Curves of genus 1 are more interesting, and we will show that they can be
given the structure of an algebraic group (once a point has been selected
as origin). Finally, we will discuss briefly the geometry of curves of higher
genus. However, many of the deeper properties of curves of higher genus
are best understood in terms of their associated Jacobian variety. We will
discuss Jacobian varieties later, in Sections A.6 and A.8.

At the end of this section we include a very short subsection on al-
gebraic surfaces, mainly aimed at treating the example of the product of
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a curve with itself. This example will be vital in the proof of Mordell's
conjecture.

We close this introduction with a brief table that exhibits the geo-
metric and arithmetic trichotomies of curves. One of the most striking
paradigms of modem Diophantine geometry is that the underlying geom-
etry of a variety should determine the qualitative arithmetic properties of
the variety. This idea has been fully realized in the case of curves. It is the
goal of this book to explain and prove this realization as shown especially
in the last column of the following table.

The Trichotomy of Curves
C a smooth projective curve defined over a number field K

Algebraic Geometry Complex Geometry Arithmetic
genus canonical universal constant C(K)
g of C divisor cover curvature (if C(K) is

on C of C(C) on C(C) not empty)
= 0 -KC ample P, (C) rc > 0 1P1(K)

a finitely

= 1 Kc = 0 C x= 0 generated

2 KC ample {jzI < 1} rc < 0 finite

A.4.1. Birational Models of Curves

A curve C is a variety of dimension one, so its function field k(C) is of
transcendence degree one. It follows that k(C) is algebraic over any subfield
k(x) generated by a nonconstant function x E k(C). Hence we may write
k(C) = k(x, y), where x and y are nonconstant functions on C satisfying an
algebraic relation P(x, y) = 0. Let Co C A2 denote the affine plane curve
defined by P, and let C1 C 1P2 be the projective plane curve defined by the
homogenized polynomial ZdgPP(X/Z,Y/Z). Clearly, C is birational to
both Co and C1. Any curve birational to C is called a model of C (or of
the function field k(C)), so we can say that every curve has a plane affine
model and a plane projective model. It will soon be clear that these models
cannot always be smooth (see the remarks after Theorem A.4.2.6), so we
must allow singular points, but we should look for the mildest possible
singularities. The next definition describes one sort of mild singularity.

Definition. An ordinary singularity is a singularity whose tangent cone
is composed of distinct lines. The multiplicity of an ordinary singularity is
the number of lines in its tangent cone.

For example, the point P = (0, 0) is an ordinary singularity on the
curve defined by y2 = x3 + x2 (if char(k) 2), and more generally P is an
ordinary singularity on the curve y' = x^+1 + x" (if char(k) t n). On the
other hand, P = (0, 0) is not an ordinary singularity on the curve y2 = x3.
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Notice that the multiplicity of an ordinary singularity P is just the number
of distinct tangent directions at P. We have illustrated various singularities
in Figure A.1.

Y2 = x3 + x2 xy(x - y) = x5 + U5 y2 = x3
Node l Triple point Cusp

Ordinary and nonordinary singularities
Figure A.1

We now formally introduce some maps, already studied in (A.1.2.6(g)),
that can be used to transform a complicated plane curve into a simpler one.

Definition. A Cremona, or quadratic, transformation is a birational invo-
lution from P to P2 that, after a linear change of variables on the domain
and range, is defined by Q(X, Y, Z) = (YZ, XZ, XY).

Theorem A.4.1.1. An algebraic curve is birational to a plane projective
curve with only ordinary singularities. More precisely, any plane curve
can be transformed by a finite sequence of Cremona transformations into
a plane curve with only ordinary singularities.

PROOF. See Walker [1, III, Theorem 7.4] or Fulton [1, VII.4, Theorem 2].
One can, in fact, show that every curve is birational to a plane projective
curve with only nodes as singularities (these are points with two distinct
tangents), but this requires transformations more general than the Cre-
mona transformations (see Hartshorne [1, IV, Corollary 3.6 and Theorem
3.10] for a proof).

Theorem A.4.1.2. A rational map from a smooth curve to a projective
variety extends to a morphism defined on the whole curve.

PROOF. This is a special case of Theorem A.1.4.4.

Corollary A.4.1.3. A birational morphism between two smooth projec-
tive curves is an isomorphism.

PROOF. Clear from the previous theorem.

We can now state the main result of this section.
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Theorem A.4.1.4. Any algebraic curve is birational to a unique (up to
isomorphism) smooth projective curve.

PROOF. See Walker [1, VI, Theorem 6.91, Fulton [1, VII.5, Theorem 3]
or Hartshorne [1, I, Corollary 6.11). The uniqueness follows immediately
from Corollary A.4.1.3. Using more advanced commutative algebra, a quick
proof of the existence can be given by constructing the normalization of
the curve, which must be smooth. A more constructive or geometric proof
consists in repeatedly blowing up the singular points and showing that this
process eventually terminates. (See (A.1.2.6(f)) for the notion of blowing
up.) For example, an ordinary singularity can be resolved by a single
blowup (see Exercise A.4.1).

A.4.2. Genus of a Curve and the Rlemann-Roch Theorem

In view of Theorem A.4.1.4, we will concentrate on smooth projective
curves. A divisor on such a curve C is simply a finite formal sum D =
E npP, and we can define the degree of D to be deg(D) = > np We will
denote a canonical divisor on C by Kc. Finally, we recall that

L(D)={f Ek(C)I(f)+D>0}

is a vector space of finite dimension B(D). The Riemann-Roch theorem,
which allows us to compute this dimension in most cases, is of inestimable
value in the study of algebraic curves.

Theorem A.4.2.1. (Riemann-Roch theorem) Let C be a smooth pro-
jective curve. There exists an integer g > 0 such that for all divisors
D E Div(C),

£(D) - t(Kc - D) = deg(D) - g + 1.

PROOF. See Serre [1, 11.9, Theorbme 31, Lang [4, 1, Theorem 2.7], Hart-
shorne [1, IV, Theorem 1.3] or Fulton [1, VIII.6]. The "modem" proof is
often divided into two parts. The first is a duality theorem expressing the
left-hand side as an Euler-Poincare characteristic. The second part is to
calculate this Euler-Poincare characteristic.

The Riemann-Roch theorem is often stated and the proof given over
an algebraically closed field, but using Proposition A.2.2.10, we see that it
remains valid over any field of definition of C and D.
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Definition. The integer g is called the genus of the smooth projective
curve C. When C is not necessarily smooth or projective, its genus is
defined to be the genus of the smooth projective curve that is birational
to C (A.4.1.4).

It is tautological from this definition that the genus is a birational
invariant. We next deduce several important corollaries from the Riemann-
Roch theorem and devise various means of computing the genus of a curve.

Corollary A.4.2.2. Let C be a smooth projective curve of genus g. Then

P(Kc) =g and deg(Kc) =2g-2.

PROOF. We first apply the Riemann-Rock theorem to the divisor D = 0
to get 1 - Q(Kc) = -g + 1. Note that 8(0) = 1, since the only regular
functions on a projective variety are the constant functions. Next we apply
the theorem to D = Kc to get P(Kc) - 1 = deg(Kc) - g + 1.

We have seen that there are no regular differentials on 1P1, so P(Kc) _
0. It follows from (A.4.2.2) that IP1 has genus 0.

Corollary A.4.2.3. Let C be a smooth projective curve of genus g and
let D E Div(C).

(i) If deg(D) < 0, then f(D) = 0.
(ii) If deg(D) > 2g - 1, then 2(D) = deg(D) - g + 1.
(iii) (Clifford's theorem) If 2(D) # 0 and P(Kc - D) # 0, then we have

t(D) <
2

deg(D) + 1.

PROOF. If f E L(D) is a nonzero function, then D + (f) is effective, so
0 < deg(D + (f)) = deg(D). (Note that functions have degree 0.) Hence if
deg(D) < 0, then L(D) = {0}, so I(D) = 0. This proves (i), and then (ii)
follows from (i), (A.4.2.2), and the Riemann-Roch theorem.

To prove (iii), we observe that the linear systems IDI and IKc - DI are
nonempty and that the addition map IKc - DI x IDI -+ I KcI is finite-to-
one (Exercise A.3.8). Therefore, Q(Kc - D) - 1 + P(D) - 1 < P(Kc) - 1.
Combining this inequality with the Riemann-Roch theorem applied to D
yields the desired result.

Corollary A.4.2.4. Let C be a smooth projective curve of genus g and
let D E Div(C).

(i) If deg(D) > 2g, then D is base point free.
(ii) If deg(D) > 2g + 1, then D is very ample.
(iii) D is ample if and only if deg(D) > 0.

PROOF. From the general considerations of Section A.3, especially Corol-
lary A.3.2.2, we deduce that D is base point free if and only if P(D - P) =
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P(D) - 1 for all P E C. Similarly, we see that D is very ample if and
only iff(D-P-Q)=P(D)-2 for allP,QEC. Since f(Kc-E)=0
when deg(E) > 2g - 2, statements (i) and (ii) follow. Then (iii) is a simple
consequence of (ii) and the fact that t(D) = 0 when deg(D) < 0. 0

A geometric version of (A.4.2.4(iii)) states that if C is a curve and if
U C C is an open subset of C with U # C, then U is affine. Indeed, it is
true in general that the complement of an ample divisor is affine. We now
describe a useful formula that can frequently be used to compute the genus
of a curve.

Theorem A.4.2.5. (Riemann-Hurwitz formula) Let C be a curve of
genus g, let C' be a curve of genus g', and let f : C - C' be a finite
separable map of degree d > 1. For each point P E C, write ep for the
ramification index of f at P, and assume either that char(k) = 0 or else
that char(k) does not divide any of the ep's. Then

2g-2=d(2g' -2)+ 1: (ep-1).
PEC

PROOF. From our analysis of differential forms (see Proposition A.2.2.8),
we know that f'Kc- + EPEC(ep - 1)P is a canonical divisor KC on C.
Taking degrees and using Corollary A.4.2.2 twice gives

2g - 2 = deg(Kc) = deg(f'Kc, + > (ep - 1)P)
PEC

= ddeg(Kc') + E (eP - 1) = d(2g' - 2) + > (ep - 1).
PEC PEC

O
This formula gives a very convenient method to compute the genus

of a curve, provided that we know, for example, one morphism from the
curve to P'. It is also easy to deduce from it that the genus of a curve
(in characteristic zero) is the number of handles of the associated Riemann
surface. Another way to compute the genus is to write down the divisor
of a differential form and then apply Corollary A.4.2.2. We illustrate this
second method in the proof of the next theorem.

Theorem A.4.2.6. Let C be a smooth projective plane curve of degree
n. Then the genus g of C is given by the formula

g= (n-1)(n-2).
2

PROOF. We construct a (regular) differential form whose divisor has degree
n(n - 3). Then (A.4.2.2) implies that n(n - 3) = deg(Kc) = 2g - 2, which
gives the desired result.
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Let P(X, Y, Z) = 0 be the homogeneous equation giving the curve.
After a change of coordinates, we may assume that the line Z = 0 cuts the
curve in n distinct points Ql, ... , Qn, that none of these points lies on the
line Y = 0, and that the function v = Z/Y is a local parameter at each of
the Q;'s. In other words, ordQ, (v) = 1 for every i.

In the alhne coordinates (x, y) = (X/Z,Y/Z), the affine curve U =
C ', {Q1, ... , Qn} has equation P(x, y,1) = 0, and we may take (u, v) =
(X/Y, Z/Y) as coordinates near the Q;'s. We then define a differential
form

_ dx dy vn-3dv

Py(x,y,l) Px(x,y,1)
_

Px(u,l,v)
(The subscripts indicate partial differentiation.) The fact that C is smooth
means that P(x, y,1), Py (x, y,1), and Px (x, y,1) cannot all vanish, so w
has no poles on U. Further, either x or y is a local parameter at each
point in U, so w has no zeros on U, either. Thus div(w)u = 0. Finally,
the last expression for w shows that ordq, (w) = n - 3 for every i, so
div(w) = (n - 3) 1(Q;). In particular, deg(w) _ (n - 3)n, which com-
pletes the proof of the theorem.

0

Remarks. (i) Notice that the canonical divisor of a smooth plane curve of
degree n is n - 3 times a hyperplane section; hence the canonical divisor is
very ample if n > 4. This implies (see Theorem A.4.5.1 below) that smooth
plane curves of degree n > 4 are not hyperelliptic.

(ii) Continuing with the notation from the proof of Theorem A.4.2.6, the
form w;, = x`yjw is easily seen to be regular on U if i, j > 0. It is also not
hard to compute ordQ (w;j) at the points Ql, ... , Qn and verify that wij is
regular at these points if and only if i + j < n - 3. The set

{x'y3wIi,j>0, i+j <n-3}

thus consists of (n - 1)(n - 2)/2 regular differential forms, and they are
clearly linearly independent, so they provide a basis for the space I'(C,11c)
of regular differential forms on C.

(iii) Lines and conics in 1P2 have genus 0, and in fact any curve of genus 0
defined over any field k is isomorphic over k to such a curve. (See Theo-
rem A.4.3.1 for a precise statement.) Smooth cubics in P2 have genus 1,
and every curve of genus 1 defined over k that also possesses a k-rational
point is isomorphic to a plane cubic. (See Theorem A.4.4.1). On the other
hand, it is clear that not every curve can be isomorphic to a smooth plane
curve. In particular, the genus of a smooth plane curve is not arbitrary,
since it must have the form (n - 1)(n - 2)/2. For example, a curve of
genus 2, 4, 5, 7, 8 or 9 cannot have a smooth projective plane model.

When a plane curve has singularities, the formula for the genus must
be modified.
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Theorem A.4.2.7. Let C be a projective plane curve of degree n with
only ordinary singularities. Then its genus is given by the formula

9
(n - 1)(n - 2) mp(mp - 1)

2 PES
2

where S is the set of singular points and mp the multiplicity of C at P.

PROOF. See Walker [1, VI, Theorem 5.1] or Fulton [1 ,VIII.3, Proposi-
tion 51. The formula of the theorem still holds for curves with arbitrary
singularities, provided that we include in S the "infinitely near" points of a
nonordinary singularity. See Hartshorne [1, V.3, page 392] for the definition
of infinitely near points and a proof of the assertion.

A.4.3. Curves of Genus 0

Let C be a (smooth projective) curve of genus 0 defined over a field k.
Let Kc be a canonical divisor defined over k. Then -Kc is a divisor
of degree 2 (A.4.2.2), is defined over k, and is very ample (A.4.2.4(ii)).
The Faemann-Ftoch theorem tells us that the dimension of the associated
embedding is f(-Kc) = 3. Hence C can be embedded into P2 as a smooth
curve X of degree 2 (i.e., as a conic) defined over k.

If X (k) 54 0, we can do better. Indeed let Po E X (k). We can
identify P1 with the space of lines in P2 that go through P0 and use this
identification to define two maps as follows (see Figure A.2):

O:X-iP2, PH PPo ifP#Po,
{ tangent line to X at Po if P = Po.

10T, X, L -+ the point PL such that L fl x = {Po, PL}.

The parametrization of a conic containing a rational point
Figure A.2
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It is clear that these maps are (at least) rational maps whose compo-
sition is the identity. Now, either by an easy computation or by invoking
Corollary A.4.1.3 we see that they are isomorphisms. We have thus proven
most of the following result, and we leave the remaining easy bits for the
reader.

Theorem A.4.3.1. Let C be a smooth projective curve of genus 0 defined
over a field k.
(i) The curve C is isomorphic over k to a conic in 1P2.
(ii) The curve C is isomorphic over k to P1 if and only if it possesses a

k-rational point.

Notice in particular that over an algebraically closed field, all curves
of genus 0 are isomorphic to 1P1.

Definition. A curve is said to be rational if it is birational to the projective
line. ( Warning. Be sure you understand the two very different meanings of
the word "rational" in the phrase "let P be a rational point on the rational
curve C.")

Rational curves can be parametrized, and hence their set of rational
points can be entirely described. Theorem A.4.3.1 says that a smooth
projective curve is rational if it has genus 0 and possesses a rational point.
Over a number field the existence of a rational point can be determined by
the following important local-to-global criterion.

Theorem A.4.3.2. (Hasse principle) A conic defined over a number
field k has a k-rational point if and only if it has a rational point over all
completions of k.

PROOF. This is actually a special case of the Hasse principle, valid for all
quadratic forms. See, for example, Serre [2, W.3, Tht orbme 8].

We conclude by giving an easy geometric criterion for rationality.

Lemma A.4.3.3. Let C be a smooth projective curve. Then the follow-
ing are equivalent:

(i) C has genus 0.
(ii) There exists a point P E C such that f(P) = 2.
(iii) For every point P E C we have 2(P) = 2.

PROOF. Clearly, (iii) implies (ii), and applying (A.4.2.3(ii)) with g = 0
shows that (i) implies (iii). Finally, if (ii) holds, then the linear system
associated to the divisor P gives a morphism C -+ PL(P) = ]P1 of degree
one, which, since C and P1 are smooth curves, must be an isomorphism.
This proves that (ii) implies (i).



76 A. The Geometry of Curves and Abelian Varieties

A.4.4. Curves of Genus 1

There are many books dedicated to unveiling the rich arithmetic structure
of curves of genus 1. See, for example, Cassels [2], Knapp [1], Lang [5, 11],
Silverman [1, 2], and the survey articles of Cassels [1] and Tate [2]. In this
section we will be content to describe the group law on curves of genus 1,
thereby providing our first examples of abelian and Jacobian varieties.

Let C be a curve of genus 1 defined over a field k. We know from
(A.4.2.2) that any canonical divisor KC has deg(Kc) = 0 and B(KC) = 1.
Thus we can find an effective canonical divisor KC with degree 0, which
means that KC = 0. In other words, the zero divisor is a canonical divisor.
This means that there exists a regular differential form without zeros, a
fact that will be explained when we show that C is an algebraic group.

Let D be a nonzero effective divisor on C. The Riemann-Roch theorem
(with g = 1 and Kc = 0) tells us that f(D) = deg(D). Fix a point
Po E C(k), and for each n > 1, consider the vector space

L,, = L(n(Po)) whose dimension is dim Ln = n.

Notice that these vector spaces are nested, L1 C L2 C L3 C . Using
our knowledge of the dimension of each Ln, we can find two functions
x, y E k(C) such that

L1 = k, L2 = k e kx, L3 = k e kx a ky.

Notice that x has a pole of order 2 at Po, that y has a pole of order 3 at Po,
and that x and y have no other poles. Using x and y, we can fill out L4
and Ls,

L4=kekxED ky®kx2, L5=kED kxekyekx2ekxy.

Notice that the functions 1, x, y, x2, xy are linearly independent over k,
since they each have different-order poles at Po.

But when we look at L6, we find that there are 7 functions that can
be naturally constructed using x and y, namely

1, x, x2, x3, y, xy, y2 E L6.

The vector space L6 has dimension 6, so these functions satisfy a nontrivial
k-linear relation. This gives part of the next result.

Theorem A.4.4.1. Let C be a curve of genus 1 defined over a field k, and
let Po E C(k). Then there exist constants al, a2, a3, a4, as E k such that C
is isomorphic over k to the smooth plane cubic given by the equation

E : Y2Z + a1XYZ + a3YZ2 = X3 + a2X2Z + a4XZ2 + a6Z3.
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Under this isomorphism, the point Po is mapped to the inflection point
(X, Y, Z) = (0, 1, 0) E E.

If the characteristic of k is not 2 or 3, then by completing the square
in y and the cube in x, one can find for E a curve given by an equation of
the form

E:Y2Z=X3+AXZ2+BZ3, A,BEk.
For a curve given in this form, the nonsingularity of E is equivalent to the
non vanishing of the discriminant 4A3 + 27B2 # 0.

Definition. An elliptic curve is a pair (C, P0), where C is a (smooth pro-
jective) curve of genus 1 and Po is a point on C. The elliptic curve is
defined over k if the curve C is defined over k and also P0 E C(k). Thus
Theorem A.4.4.1 says that every elliptic curve is isomorphic to a smooth
plane cubic with P0 corresponding to an inflection point "at infinity." An
equation of the form

Y2Z + a1XYZ + a3YZ2 = X3 + a2X2Z + a4XZ2 + a6Z3

or

Y2Z = X 3 + AXZ2 + BZ3

is called a Weierstrass equation for E. Frequently, these equations are
written in affine coordinates (i.e., by setting Z = 1), where it is understood
that there is one additional point PD = (0, 1, 0) at infinity.

PROOF (of Theorem A.4.4.1). We know by Corollary A.4.2.4 that the lin-
ear system associated to the vector space L3 is a very ample linear system.
This means that the rational map

: C - p2, P --- (1, x(P), y(P)),

extends to an isomorphism between C and its image 44(C). In particu-
lar, 4'(C) is a smooth plane curve.

We have already observed above that x and y satisfy a relation of the
form

aye+bxy+cy=dx3+ex2+fx+g
for certain constants a, b, c, d, e, f, g E k, not all zero. Further, x (respec-
tively y) has a pole of order 2 (respectively 3) at P0. Thus only the y2
and x3 terms have poles of order 6, so either the coefficients a and d are
both nonzero, or they both vanish. But if a = d = 0, then every term has
a different-order pole at P0, so all of the other coefficients would have to
vanish. Hence ad 0. This allows us to replace (x, y) by (adx,ad2y) and
cancel a3d4, which gives an equation of the desired form.

Finally, if the characteristic of k is not 2 or 3, we can "complete the
cube and the square" by making the linear transformation

X,=X+4a2+a1Z Y,=Y+!IX+Q3 Z.
12 2 2
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This gives an equation Y'2Z' = X13 + AX'Z12 + BZ12. We leave for the
reader the easy task of verifying the nonsingularity condition.

The labeling of the ai coefficients of a Weierstrass equation is tradi-
tional and arises in the following way. Given any Weierstrass equation
for E, we can make a change of coordinates X' = u2X and Y' = u3Y to
obtain a new isomorphic equation for E. The ai's of the new equation are
then related to the old ai's by the formula a' = uiai. Thus the subscripts
reflect the weights of the ai's under change of coordinates.

For the remainder of this section we will assume that the characteristic
of k is not 2 or 3, and we will work with an elliptic curve given by the affine
Weierstrass equation

E:y2=x3+Ax+B.
However, everything we do can be formulated to carry over to the general
case; see Silverman [1, III and Appendix A].

We begin by defining an involution [-1] on E,

[-1] : E -p E, (x,y)'-' (x,-y).
Next we define a tangent and chord operation, which we will denote by
"+." Let P, Q E E. If P and Q are distinct, let L be the line through P
and Q, while if P = Q, let L be the tangent line to E at P. The line L
will meet E at a third point R, counting multiplicities, and then we set

P + Q = [-1]R.

(See Figure A.3.)

The next theorem justifies the notations P+Q and [-1]P by showing
that with these operations, the points of E become a group. Furthermore,
this group law is algebraic and intrinsic. That is, it is given by rational
functions and does not depend on the particular equation or embedding
of E. The group law depends only on the abstract curve E and the choice
of the point P0.

Theorem A.4.4.2. Let E be a smooth projective cubic given by a Weier-
strass equation

Y2Z=X3+AXZ2+BZ3.
Then the maps (P, Q) - P + Q and P - [-1]P defined above give E
the structure of a commutative algebraic group with identity element P° _
(0, 1, 0). Furthermore, the map

r,: E -- Pic°(E), P -+ divisor class of (P) - (Po),

is a group isomorphism.

PROOF. We start by explicitly computing the addition law, thereby veri-
fying that the map "+" from E x E to E is algebraic. Let P = (xl, yl)
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The addition law on a plane cubic curve E
Figure A.3

and Q = (X2, Y2) be two points of E distinct from the point at infinity. If
xl = x2 and yl = -y2, then P = [-1]Q, and P+Q is the point at infinity.
Otherwise, let y = Ax + µ be the equation of the line L through P and Q.
Thus

y1 - y2
A d

Y2x1 - Y1x2 if P Q=
X1 - x2

an p =
x1 - x2

# ,

3x2j + A
A d

_ -xi + Ax1 + 2B if P-
Zy1

anan
2y1

= Q.

To show that the two formulas for A patch together to give an algebraic
map on E x E, we observe that a straightforward computation using the
relation y2 = 2 + Axi + B gives

Ay1 - y2 _ xl + x1x2 + X22+A
X1 -x2 y1+112

Setting y1 = y2 gives the desired equality. (Note that we are assuming that
y1 54

The intersection of L and E consists of the points satisfying the equa-
tions

y2 = x3+Ax+B and y = Ax +µ.

Eliminating y leads to a cubic in x, and we know that this cubic has x1
and x2 as two of its roots. Thus

x3 - (ax + µ)2 + Ax + B = (x - xl)(x - x2)(x - x3) for some x3.
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Comparing coefficients, we find that xl + X2 + x3 = A2. This gives the
value of x3, and then substituting into y = Ax + p gives the value of y3.
This proves that the intersection of the line L and the curve E consists of
the three points (x1, y1), (x2i y2), and

(x3, y3) = (-XI - x2 + A2, -Axl - 1x2 + A3 +,U).

Finally, applying the involution [-1], we obtain the explicit addition for-
mula

(x1, y) + (X2, Y2) = (-x1 - X2 + A2, .fix1 + Ax2 - A3 - /b),

where A, µ E k(xl, y1, x2i y2) are the rational functions given above.
This formula shows that the addition law + : E X E --+ E is a rational

map, and our earlier remark shows that it is a morphism except possibly on
the set where x1- X2 = yl + Y2 = 0. But these are precisely the points that
are mapped by addition to the point at infinity. We omit the verification
that addition is again a morphism at these points (one needs to change
coordinates or use a translation argument; see Silverman [1, 111.3.6]). It
is easy to see that the law is symmetric (abelian), that P0 :_ (0, 1, 0) is
the identity element for the group, and that [-1] provides an inverse. This
justifies the notation.

It remains to show that addition on E is associative. This can be done
by a direct calculation, using the explicit formulas, but the calculation is
quite lengthy. We will avoid this by showing that the map rc is a bijection
and that rc(P + Q) = rc(P) + rc(Q), which clearly implies the rest of the
theorem. (N.B. The symbol + is being used here to represent two entirely
different operations. When we write rc(P + Q), the symbol + means the
addition law on the elliptic curve E, and so is given by the complicated,
case-by-case formulas described above. When we write c(P) + rc(Q), we
mean addition of divisor classes, which is a much easier operation.)

Suppose first that P, Q E E are distinct points with x(P) = rc(Q).
This means that there is a function f E k(C) with div(f) = (P) - (Q).
But then the map (f, 1) : E -+ IP1 has degree 1, hence is an isomorphism,
contradicting the fact that E has genus 1. This proves that c is injective.

Next let D E Div(E) be any divisor of degree 0. Then Riemann-Rosh
tells us that P(D + (Po)) = 1, so there is an effective divisor (necessarily of
degree 1) which is linearly equivalent to D + (Po). In other words, there is
a point P E E with (P) - D + (Po), and hence m(P) is equal to the divisor
class of D. This shows that rc is surjective.

It remains to show that rc satisfies rc(P + Q) = c(P) + rc(Q). Observe
that the addition law can be characterized by the rule

P + Q + R = Po if and only if P, Q, and R lie on a line.



§A.4.5. Curves of Genus at Least 2 81

But P0 is an inflection point, so the colinearity of P, Q, and R amounts to
saying that (P) + (Q) + (R) " 3(Po). In other words,

P + Q + R = P° if and only if r.(P) + lc(Q) + c(R) = 0.

Now everything is clear.

Elliptic curves provide our first example of abelian varieties. When we
define the Jacobian of a curve in Sections A.6 and A.8, we will rephrase
the last statement of Theorem A.4.4.2 by saying that an elliptic curve is
isomorphic to its own Jacobian. Note that it is quite remarkable that the
abstract group Pic°(E) turns out to have a natural structure as an algebraic
variety, just as it is remarkable that an abstract curve of genus 1 should
have a natural group structure.

Finally, we would remiss if we did not point out that deciding whether
a curve of genus 1 has any rational points can be a very difficult problem.
In particular, if the ground field is a number field, the analogue of Theo-
rem A.4.3.2 is false. There are curves C of genus 1 defined over a number
field k such that C(k) 0 0 for every completion k,, of k, yet C(k) = 0. A
famous example, due to Selmer, is the curve

C : 3X3 + 4Y3 + 5Z3 = 0.

(See Cassels [1, Appendix A], or Silverman [1, X.6.5], or Part C of this
book.)

A.4.5. Curves of Genus at Least 2

We have already seen examples of curves of genus 0 and 1; in fact, we
have seen all of them. It is considerably harder to describe all curves of
genus g > 2, so we start modestly by giving some examples of such curves.
One way to proceed is to try to describe a curve as a (finite) covering of
Pi, since every curve admits many such maps. We begin with the first
nontrivial case.

Definition. A curve of genus g > 2 is called a hyperelliptic curve if it is a
double covering of the projective line.

We will now describe these curves, where to simplify our discussion, we
will work over an algebraically closed field k with char(k) 2. The function
field of a hyperelliptic curve C is a quadratic extension of k(Pl), hence has
the shape k(x, y), where y2 = F(x) for some polynomial F(x) E k[x]. This
equation gives an afiine model for C. If the polynomial P has a double
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root, say a, then we can replace y by (x - a)y and cancel (x - a)2. So we
may assume that C is given by an affine equation

C : y2 = F(x) for some F(x) E k[x] with distinct roots.

(See Exercise A.4.2 for details on this and on what follows.) The affine
curve y2 = F(x) is smooth. We can obtain a complete smooth model for C
by gluing this piece to the affine curve given by the equation

v2 = F*(u) := udF(u-1),

where d = deg(F) if deg(F) is even, and d = deg(F) + 1 if deg(F)
is odd. The two affine pieces of C are glued together using the map
(u, v) = (x-1, yx-d/2)

We can use the the Riemann-Hurwitz formula (A.4.2.5) to calculate
the genus of C. Thus the map C -+ P1 has degree 2 and is ramified at d
points. (It is ramified at the points where F(x) = 0, and if the degree of F
is odd, it is also ramified at the point at infinity.) The ramification index
at each ramified point must be 2, so

2g - 2 = deg(C -4 IP1) (2g(lP1) - 2) + 1] (ep - 1) _ -4 + d,
PEC

and we thus find that g = (d/2) -1. In particular, C has genus 1 if and only
if F has degree 3 or 4. Notice also that there exist hyperelliptic curves of
every possible genus. (But you should be aware that many people use the
term "hyperelliptic curve" only in reference to curves of genus at least 2.)

Rather than creating C by gluing together two aflne curves, we can
instead use the functions x and y to embed C into P9+1 via the map

C . P9+1' p,-. (1,x(P),x(P)2,...,x(P)9,y(P))

Notice that the case deg(F) = 3 is just the embedding of an elliptic curve
into P2 described in (A.4.4.1).

We have already mentioned that curves of genus g > 2 are charac-
terized by the fact that their canonical divisors are ample. The following
theorem provides a further description of the canonical divisor.

Theorem A.4.5.1. Let C be a smooth projective curve of genus g.
(i) The canonical divisor Kc is base point free if and only if g > 1.

(ii) The canonical divisor Kc is ample if and only if g > 2.
(iii) The canonical divisor Kc is very ample if and only if g > 3 and the

curve is not hyperelliptic.
(iv) The bicanonical divisor 2Kc is very ample if and only if g > 3.
(v) The divisor 3Kc is very ample if and only if g > 2.

PROOF. If Kc is not base point free, then there is a point P E C with
2(Kc - P) = 1(Kc) = g. Hence 1(P) = e(Kc - P) + 2 - g = 2, and this
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implies by Lemma A.4.3.3 that C is rational. This gives (i). Next, we have
already seen that if C has genus 1, then Kc = 0. Riemann-Roch tells us
that deg(Kc) = g and that Kc is ample if and only if deg(Kc) > 0, which
proves (ii). For the remaining parts of the theorem we may assume that
g>2.

Next we observe that any curve of genus 2 is hyperelliptic. More pre-
cisely, if C has genus 2, then Riemann-Roch says that £(Kc) = deg(Kc) _
2, so the linear system IKcI gives a map of degree 2 from C to IP1.

Corollary A.3.2.2 tells us that KC is very ample if and only if for all
points P, Q E C, we have

P(Kc-P-Q)=P(Kc)-2=g-2.
On the other hand, the Riemann-Roch theorem says that

8(P+Q)-e(Kc-P-Q) =deg(P+Q)-g+l =3-g.
Combining these two equations, we find that

KC is very ample b f(P + Q) = 1 for all P, Q E C.
If C is hyperelliptic, say C -' P', then the inverse image of any point in 1P1
consists of two points P, Q that satisfy (P + Q) = 2. Thus KC is not very
ample on a hyperelliptic curve. Conversely, if KC is not ample, then there
are two points P, Q E C with £(P + Q) = 2, and hence the linear system
IP + QI defines a map of degree 2 from C to 1P1. This completes the proof
of (iii).

Next, if g > 3, then deg(2Kc) > 2g + 1, so Corollary A.4.2.4 says
that the divisor 2Kc is very ample. But if g = 2, then t(2KC) = 3, so
the linear system I2KCI maps C into 1P2, and we know that a plane curve
of genus 2 cannot be smooth. This proves (iv). Finally, if g > 2, then
deg(3Kc) > 2g + 1, so (A.4.2.4) tells us that the divisor 3KC is very
ample. 0

During the proof of the preceding theorem we showed that every curve
of genus 2 is hyperelliptic. More precisely, if C has genus 2, then the linear
system iKcI gives a map C -+ 1P1 of degree 2. This gives a good descrip-
tion of all curves of genus 2. On the other hand, one can show that a
"generic" curve of genus g > 3 is not hyperelliptic. For example, smooth
plane quartics have genus 3 (Theorem A.4.2.6) and are not hyperelliptic,
since a hyperplane section gives a canonical divisor (see Exercise A.4.3).
In a certain sense that we will not make precise, the set of all (isomor-
phism classes of) curves of genus g > 2 is parametrized by a variety 1931-,
of dimension 3g - 3, while the subset of hyperelliptic curves corresponds
to a subvariety of 9J19 of dimension 2g - 1. Notice that these dimensions
coincide for g = 2, in accordance with our observation that every curve of
genus 2 is hyperelliptic. For an informal discussion of these varieties, called
moduli spaces, see Mumford [3], and for a complete treatment see Mumford
and Fogarty [1].
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A.4.6. Algebraic Surfaces

This section is a very brief introduction to the geometry of smooth projec-
tive varieties of dimension two. Our main goal is to treat the case of the
product of a curve with itself.

On a surface, divisors are formal sums of irreducible curves. (Note
that the curves need not be smooth.) We can compute the intersection
index of two such curves, or even the self-intersection of a single curve.
The archetypical theorem of intersection theory is Bizout's theorem for
the projective plane.

Theorem A.4.6.1. (Bezout's theorem) Let C and D be curves on the
surface P defined by irreducible equations of degree m and n. Then the
intersection index of C and D is C.D = mn. In particular, if C # D, then
the number of points of intersection counted with multiplicities is mn.

PROOF. For a full proof, see Walker [1, IV.5, Theorem 4], Hartshorne [1, 1,
Corollary 7.8], Shafarevich [1, page 145] or Fulton [1, V.3]. We also observe
that using the properties of the intersection index stated in Lemma A.2.3.1,
the proof reduces to the case of two lines, where it is trivial. 0

There is a remarkable connection between the genus of a curve and its
self-intersection on a surface.

Theorem A.4.6.2. (Adjunction formula) Let S be a smooth projec-
tive surface, let KS be a canonical divisor on S, and let C be a smooth
irreducible curve of genus g on S. Then

C2 + C.KS = 2g - 2.

PROOF. See Hartshorne [1, V, Proposition 1.5] or Serre [1, IV.8, Lemme 2].
The formula is actually valid for a singular C, provided that we replace g
by the arithmetic genus (see Serre [l, IV.8, Proposition 5]). 0

Notice that (A.4.6.2) can be used to quickly rederive the formula for
the genus of a smooth plane curve. Thus let C C P2 be a smooth plane
curve of genus g and degree n, and let H C PI be a line. Then Kp2 = -3H,
and C - nH, so the adjunction formula gives

2g - 2 = C2 + C.Kp2 = (nH)2 + (nH).(-3H) = n2 - 3n.

(Note that H2 = 1, since any two lines are linearly equivalent, and two lines
intersect in a single point.) One can similarly use (A.4.6.2) to compute the
genus of curves lying on the quadric P' x P1; see Exercise A.4.4.

Just as for curves, one of the central results of the theory of surfaces
is the Riemann-Roch theorem.
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Theorem A.4.6.3. (Riemann-Roch for surfaces) Let S be a smooth
surface, and let KS be a canonical divisor on S. There exists an integer
pa(S) such that for any divisor D E Div(S),

e(D) - s(D) + e(KS - D) = 2 D.(D - Ks) + 1 + p, (S)

for some nonnegative integer s(D).

PR.ooF. See Hartshorne [1, V, Theorem 1.61 or Serre [1, IV.8, Proposi-
tion 4]. The integer pa(S) is the arithmetic genus of S, and the inte-
ger s(D) is historically called the superabundance. These quantities can
be interpreted in terms of the dimensions of certain cohomology groups.
For example, s(D) is the dimension of H1 (S, O(D)). 0

Examples A.4.6.3.1. (i) The projective plane p2 has arithmetic genus
Pa (1112) = 0.

(ii) Let C, and C2 be smooth projective curves of genus gl and g2 respec-
tively. Then the arithmetic genus of the product C, x C2 is

Pa(C1 X C2) = 9192 - 91 - 92

Remark A.4.6.3.2. The integer s(D) is often difficult to compute. When
the characteristic of the ground field is zero, a useful tool is Kodaira's
vanishing theorem, which states in our case that if D is ample, then
s(KX + D) = 0. The proof uses complex-analytic differential geometry
and therefore does not extend to characteristic p. Indeed, there are known
to be counterexamples in characteristic p.

Remark A.4.6.3.3. Let D be an ample divisor on a projective variety X.
If X is a curve of genus g and if m is large enough (m > (2g - 2)/ deg(D)
will suffice), then e(mD) = mdeg(D) = 1 - g. If X is a surface, one can
show that s(mD) = 0 for m sufficiently large, and hence

e(mD) =m2DiD -mD
2

x +l+p.

If X is an abelian variety, we will see (Theorem A.5.3.3) that

e(mD) = mdim(X)
Ddim(X)

dim(X)!

The general theorem of Riemann-Roch-Hirzebruch, combined with a van-
ishing theorem of Serre, shows that this remains approximately true in the
general case, and we have

/
e(mD) = mdm(X)

Ddim(x)
+ 0 1 mdim(X)-11

dim(X)! \\\ 1

We conclude this section by computing some interesting intersections
on the product of a curve with itself.
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Proposition A.4.6.4. Let C be a smooth projective curve of genus g,
fix a point Pa on C, and let S = C x C. Define divisors Dl, D2i A E Div(S)
by

D1=Cx{Po}, D2={Po}xC, A={(P,P)ESIPEC}.

Notice that A is the diagonal of C x C.
(i) Di = Da = 0.
(ii) D1.D2 = O.D1 = O.D2 = 1.

(iii) A2 = 2 - 2g.

PROOF. Part (i) follows by moving {P0} in its linear equivalence class so
that the resulting divisors no longer intersect. Part (ii) is immediate from
set theory, since the indicated pairs of divisors intersect transversally at
the single point (Po, Po) E S. Finally, to prove (iii), we apply the ad-
junction formula to A. As a curve, A is isomorphic to C, so its genus
is g. On the other hand, the canonical divisor of a product is given by
Ks = Kc x C + C x Kc (see Exercise A.2.5(b)). It follows from the ad-
junction formula (A.4.6.2) that

2g-2=A2+O.Ks=A2+A.(KcxC)+A.(CxKc)
=A2+2deg(Kc)=A2+4g-4.

Hence A2 = 2 - 2g.

EXERCISES

A.4.1. Let C be a curve, let P be a point on C, and let C' be the blowup of the
curve C at P.
(a) If P is a node, show that C' is smooth at the two points above P.
(b) More generally, suppose that P is an ordinary singularity with n dis-
tinct tangent directions. Prove that there are n distinct nonsingular points
on C' lying above P

A.4.2. (Hyperelliptic curves) Recall that a smooth projective curve C of genus
g > 2 is called hyperelliptic if there exists a double covering r : C - IP'.
Let C be a hyperelliptic curve defined over a field k with char(k) 54 2.
(a) Show that C has an affine model U given by an equation of the form
y2 = F(x), where F(x) is a polynomial with distinct roots.
(b) Let g = [(degF - 1)/2], and let F'(u) = u29+2F(u-'). Show that the
equation v2 = F' (u) also defines a smooth affine model U' of C.
(c) More precisely, show that there is an isomorphism

{(x,y)EUIxj40}-.{(u,v)EU'Iu00}, (x,y)-(x-',yx-9-')
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Prove that C is isomorphic to the curve obtained by using this map to
glue U and U' together.
(d) Let U and U' be as in (c), and define a map

0: U -. P'`', (x,Y)- (l,x,x2, ..,xg,Y)

Prove that q is an embedding. Prove that the Zariski closure of 4(U)
in P9+' is smooth, and hence that it is isomorphic to C.
(e) Prove that the map n : C P' is ramified at exactly 2g + 2 points,
and use the Riemann-Hurwitz formula to deduce that C has genus g. If
C is given by the affine model y2 = F(x) with 7r(x,y) = x, identify the
ramification points.
(f) Prove that the set {x'dx/y J j = 0,1, ... , g - 1) is a basis for the space
of regular differential forms on C.

A.4.3. (Curves of genus 3)
(a) Show that on a smooth quartic curve in P2, a hyperplane section is a
canonical divisor.
(b) If C is a smooth projective curve of genus 3, show that either C is
hyperelliptic or else the canonical linear system JKcj embeds C as a plane
quartic in P2. This gives a complete description of curves of genus 3.

A.4.4. Compute the genus of a smooth curve of bidegree (a,b) in P' x P', and
conclude that P' x P' contains smooth curves of every genus. (This is in
marked contrast to p2.)

A.4.b. (Curves of genus 4) Let C be a smooth projective curve of genus 4 that
is not hypereUiptic.
(a) Show that the canonical linear system IKcJ embeds C as a curve of
degree 6 in P3.
(b) Prove that C lies on a quadric surface Q = 0 in P3. (Hint. Compare
the dimension of L(2Kc) to the dimension of the space of homogeneous
polynomials of degree 2.)
(c) Prove that C also lies on an irreducible cubic surface F = 0.
(d) Conclude that C is the intersection of a quadric and a cubic.
(e) Conversely, prove that if a quadric surface and a cubic surface in P3
intersect in a smooth curve C, then C is a curve of genus 4 embedded via
its canonical linear system. In particular, C not hyperelliptic.

A.4.6. Let Q(x) E k[x] be a polynomial of degree d with distinct roots, let C
be a smooth projective curve with an affine model y" = Q(x), and assume
that char(k) is 0 or does not divide n. Prove that the genus g of C satisfies

2g-2=nd-n-d-gcd(n,d).

A.4.7. The purpose of this exercise is to prove the following theorem:
Theorem. (Belyi) Let C be a smooth projective curve
defined over C. Then C is defined over Q if and only if
there exists a finite map C -. P' ramified only above
the three points 10, 1, oo}.



88 A. The Geometry of Curves and Abelian Varieties

(a) Assume that C is defined over Q. In order to prove that there is a finite
map C - P1 ramified only over 0,1, oo, show that it suffices to prove the
following statement: Let S C P' (Q) be finite set of algebraic points. Then
there exists a finite map f : P' -+ P' such that every ramification point
off and every point in S gets mapped by f into {0, 1, oo}.
(b) Reduce the proof of the previous statement to the case where S C
P'(Q). (Hint. If (a, l) E S with [Q(a) : Q] = d # 1, let F be the minimal
polynomial of a and consider the map x '- F(x) from P' to P'. Show that
repeated application of this process will yield a map f' : P' -+ P1 that
sends S and its ramification points into P'(Q).)
(c) Let c E Q' and a, b E Z with a, b, a - b i4 0. Show that the map
x i-+ cx°(1 - x)b from P' to P' is ramified only at the four points 0, 1, oo,
and a/(a + b). Show that for an appropriate choice of c, the map sends
these four ramification points into {0, 1, oo}.
(d) Now use induction on the number of points in S C P' (Q) to finish the
proof of one direction of Belyi's theorem.
(e) Conversely, assuming that there is a finite map C - P' ramified only
above {0, 1, oo}, prove that C is defined over Q.

A.4.8. Let C be a smooth plane cubic curve defined over an algebraically closed
field k with char(k) j4 3. Let Po E C(k) be an inflection point, and use Po
as the identity element to give C a group structure. Prove that the points of
order 3 in the group C(k) are the other inflection points of C. Compute the
number of such points, and use your result to describe the group structure
of{PEC(k)13P=Po}.

A.4.9. Let C be a smooth cubic curve defined by aX3+bY3+cZ3+dXYZ = 0.
(a) Write down the condition on a, b, c, d for the curve to be smooth. (No-
tice in particular that the characteristic must be different from 3.)
(b) Let P = (x, y, z) E C, and let L be the tangent line to C at P. Then
L fl C consists of the point P with multiplicity 2 and a third point P.
Compute the coordinates of P explicitly in terms of the coefficients of C
and the coordinates of P.
(c) Assume now k = Q and that a, b, c, d are square-free integers with
a, b, c distinct. Let P = (x, y, z) E C(Q) be a point with x, y, z E Z
and gcd(x, y, z) = 1, and similarly write the point P described in (b)
as P = (x', y', z') with x', Y', z' E Z and gcd(x', y', z') = 1. Prove that
Ji y'z'I > JxyzJ. Conclude that C(Q) is either empty or infinite, and find
examples of both instances.

A.4.10. Let k be a field with char(k) qb 2,3, and let C be a smooth projective
cubic curve given by the affine equation y2 = x3 + Ax + B. Prove directly
that the space of regular differential forms on C has dimension I and that
dx/y is a basis.

A.4.11. Let f : C' -+ C be a nonconstant (hence finite) separable morphism
between smooth curves of genus g' and g, respectively.
(a) Prove that g' > g.
(b) Prove that g' = g if and only if one of the following is true: (i) g' _
g = 0. (ii) g = 1 and f is unramified. (iii) f is an isomorphism.
(c) Dropping the separability assumption, assume that C is defined over a
field of characteristic p > 0, and let F : C -+ C(P) be the Fhobenius map
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(see Exercise A.1.7). Then F is not an isomorphism (Exercise A.1.7(c)).
Prove that C and C(p) have the same genus.

A.4.12. Let C be a hyperelliptic curve of genus g > 2 defined over k.
(a) Prove that the canonical map cbxc gives a map from C onto a rational
curve Co of degree g -1 in P9- 1. Further, show that the map 0xc and the
rational curve Co can both be taken to be defined over k.
(b) If g is even, prove that Co has a k-rational point, and hence is isomor-
phic over k to iPl.
(c) Give an example of a curve C of genus 3 defined over Q such that C is
hyperelliptic over Q, but such that there does not exist a morphism C 1P1

of degree 2 defined over Q.
A.4.13. Let C be a smooth curve in P' of projective degree N not contained in

any hyperplane.
(a) Prove that we can choose projective coordinates xo, . . . , xn on P' such
that the following two conditions hold:

(i) Cfl{xi=x,=0}=0 forO<i<j<n.
(ii) k(xl/xo,xt/xi) = k(C) for 2 < i < j <- n.

(b) Prove that there is a polynomial Gi, E k[X, Yj of total degree less than
N2 such that G:,(xi/xo,xi/x,) = 0.

A.4.14. (Weierstrass points) Let C be a smooth projective curve of genus g. For
each point P E C, define a set of integers

G(P) = In > 11 t(nP) = t((n - 1)P)}.

(a) Show that

#G(P) = g and G(P) c 11, 2, ... , 2g - I}.

Further, show that N -, G(P) is a semigroup and that n E G(P) if and only
if there is a regular differential form w with ordp(w) = n - 1. (Hint. Use
the Riemann-Roch theorem.)
(b) Show that the following conditions on P are equivalent:

(i) G(P) 34 {1,2,...,g}.
(ii) t(gP) > 2 (i.e., there is a nonconstant function f on C with a

pole at P of order at most g and with no other poles).
(iii) There is a regular differential form rv on C with ordp(w) > g.

A point P satisfying these conditions is called a Weierstmas point Show
that a curve of genus 0 or 1 has no Weierstrass points.
(c) Define the Weierstrass weight of P to be

w(P)= 99-±1
2

nEC(P)

Prove the following properties of the Weierstrass weight.
(i) w(P) > 0.
(ii) w(P) > 0 if and only if P is a Weierstrass point.
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(iii) w(P) < g(g - 1)/2.
(Hint. Show that the largest possible w(P) is obtained when G(P) _
{1,3,...,2g - 1}.)
(d) Let x be a local coordinate and let wl , ... , wg be a basis of regular
differential 1-forms. Write each wi as wi = fi dx and consider the Wronakian
determinant

W(x) = det (&f.(x))
dxj-1 i<i,f<g

We define a differential form rv of weight g(g + 1)/2 on C (i.e., a global
section of 12®9(9+i)12) by the formula w = W(x)(dx)9(9+1)12. Show that c'
is independent (up to a scalar) of the choice of the local coordinate x and
differentials wi, ... , wg. Prove that the divisor of c is

div(es) = E W(P)P.
PEC

Deduce that there are only finitely many Weierstrass points on C.
(e) If C has genus g > 2, prove that

2g + 2 < #{Weierstrass points of C} < g3 - g.

Show that the lower bound is possible by proving that a hyperelliptic curve
has exactly 2g + 2 Weierstrass points. (Hint. They are the ramification
points of the double cover C - Pl.)

A.4.15. Let C be a smooth projective curve C of genus g, and let Aut(C) denote
the group of automorphisms of C.
(a) Prove that Aut(P') = PGL(2).
(b) Suppose now that g = 1, fix a point Po E C, and use Po as usual to
define a group law on C. For each point Q E C we can define a translation-
by-Q map

tq:C--+C, tq(P)=P+Q.

Prove that the map C - Aut(C), Q - tq, is an injective homomorphism.
Define a subgroup G = {a E Aut(C) I a(Po) = Po}, and define a map

10 : Aut(C) -. G by 0(a)(P) = a(P) - a(Po). Prove that the following
sequence is exact and that it can be split:

In other words, prove that Aut(C) is the semidirect product C X G via the
obvious action of G on C. Finally, prove that the group G is finite. (See
Exercise A.5.4 for a determination of G in case of characteristic 0.)
(c) Suppose now that g > 2. Prove that Aut(C) is finite. (Hint. Show, for
example, that an automorphism preserves the set of Weierstrass points.)
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A.4.16. (Weil's reciprocity law) Let C be a smooth curve and let D = EnpP E
Div(C). For f E k(C) such that the support of D and div(f) are disjoint,
we define

f(D) = fl f(P)"P
PEC

Let f, g E k(C) be functions whose divisors with disjoint supports. Prove
Weil's reciprocity formula

f(div(g)) = g(div(f))

using the following steps.
(a) Let 0 : Cl -i Cs be a covering of smooth curves. Prove that if f E
k(C1)' and D E Div(C2), then f(¢'D) = (O.f)(D). Similarly, prove that
if f E k(C2)' and D E Div(Ci), then f(4.D) = (O' f)(D).
(b) For the case C = P1, prove the reciprocity law by a direct computa-
tion.
(c) In the general case, use the morphism g : C - P' and part (a) to
reduce to the previous case.

A.S. Abelian Varieties over C

We begin by recalling that an abelian variety is an algebraic group that is
also a projective variety. With some knowledge of Lie groups, it is easily
seen that the set of complex points of such a variety forms a complex torus
(see Exercise A.5.1). That is, the complex points of an abelian variety are
isomorphic to C9/A for some lattice A. For example, the complex points
of an elliptic curve form a torus C/(Zw1 + Zw2). Note, however, that iso-
morphic means isomorphic as complex-analytic varieties. The isomorphism
will be given by holomorphic functions, not by rational functions.

In dimension 1, every complex torus is analytically isomorphic to an
abelian variety. It is a somewhat surprising fact that this is not true in
dimension greater than or equal to 2. One of the central theorems of
this chapter will be the following characterization describing exactly which
complex tori C9/A are abelian varieties, that is, which complex tori admit
a complex-analytic embedding into some projective space P"(C).

Theorem A.5.0.1. Let A be a lattice in C9. The complex torus C9/A is
an abelian variety if and only if there exists a positive definite Hermitian
form on C9 x C9 whose imaginary part takes integer values when restricted
to A x A.

In light of this statement, we introduce a definition.
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Definition. A Riemann form with respect to a lattice A is a Hermitian
form on C9 x C9 whose imaginary part takes integer values when restricted
to A x A. A Riemann form is called nondegenerate if it is positive definite.

Recall that a Hermitian form is a map

H: C9xC9-+C

that is linear with respect to the first set of variables and satisfies

H(z, w) = H(w, z).

Theorem A.5.0.1 says that a complex torus can be embedded into a pro-
jective space r if and only if it possesses a nondegenerate Riemann form.
This chapter is devoted to the proof of Theorem A.5.0.1. Another descrip-
tion of Riemann forms is given by the following easy lemma, whose proof
we will leave for the reader.

Lemma A.5.0.2. Let V be a complex vector space. There is a nat-
ural correspondence between Hermitian forms H : V x V -. C and real
bilinear alternating forms E : V x V R satisfying E(ix, iy) = E(x, y).
This correspondence matches a Hermitian form H with its imaginary part
E = Im(H), and it takes a bilinear alternating form E and attaches it to
the Hermitian form H(x, y) = E(ix, y) + iE(x, y).

Examples A.5.0.3. (a) All tori of dimension one are abelian varieties.
Indeed, let Zw1 + Zw2 be a lattice in C. We can define a nondegenerate
Riemann form on this lattice by the formula

H(z,w) = zw

Im(w1w2)*

(b) If the dimension of the lattice is greater than one, then there are
many tori that do not admit a nonzero Riemann form. For example, let
e1, e2, e3, e4 be vectors in C2 whose coordinates are all algebraically inde-
pendent over Q, and let A be the lattice that they span. Then the torus
C2/A is not an abelian variety.
(c) Let r be a g x g symmetric matrix whose imaginary part is positive
definite. Then H(z, w) = tz(Im r)-Iw defines a Riemann form with respect
to the lattice Z9+rV. Hence the torus C9/(V+,rZ9) is an abelian variety.
We will use this in the next section to show that the Jacobian variety of a
curve is an abelian variety.
(d) The following construction of abelian varieties with complex multipli-
cation (often abbreviated CM) is due to Shimura and Taniyama [1]. Let
KO be a totally real number field of degree g, let K be a totally imaginary
quadratic extension of K0, and let RK be the ring of integers of K. The
fact that K is totally imaginary means that the embeddings of K in C
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come in conjugate pairs. Let a1,... , a9 : K -+ C be a set of nonconjugate
embeddings. We use these embeddings to define a map

4 : K -, C9, x - (ai(x),...,a9(x)).

Then A = -t(RK) is a lattice in C9. We can construct a nondegenerate
Riemann form as follows. Choose an element l: E RK such that -e2 is a
totally positive element of Ko. Then

9

H(z, w) = 2 > Im(aj(1;))zjwj

defines a nondegenerate Riemann form on the torus C9/A. To see this, we
note that

ImH(1D(x),'P(y)) =Traced (Cy(x)y) E Z,

where y is the nontrivial element of the Galois group GK/K.-
We also observe that the endomorphism ring End(C9/A) naturally

contains RK, where the action is induced by multiplication,

a(z mod A) = (al (a)zl, ... , a9 (a)z9) mod A for a E RK, z E C9.

As specific examples we can take Ko = Q (f) and l; = i, or Ko =
Q(cos(27r/n)) and l; = 2isin(2ir/n).

A.5.1. Complex Tori

A complex torus T is a compact complex Lie group. In other words, T is a
complex manifold of the form V/A, where V is a complex vector space and
A C V is a lattice of rank 2 dim(V). We begin by studying the analytic
morphisms between two complex tori Tl and T2. By composing an arbitrary
morphism with a translation, it suffices to consider morphisms that send
the origin of Tl to the origin of T2.

Lemma A.5.1.1. Let Tl = Vi/Al and T2 = V2/A2 be complex tori, and
let

a:T1 -+T2

be a holomorphic map with a(O) = 0. Then a is a homomorphism that is
induced by a C-linear map a : Vi -+ V2 satisfying a(A1) C A2.

PROOF. A complex vector space is simply connected, so the composition
Vi -+ Tl + T2 lifts to a holomorphic map a : VI --+ V2. We necessarily
have a(A1) C A2, and a is uniquely determined if we further require that
a(0) = 0.
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T o see that a is a homomorphism, we write V 1 = c m and V2 = en,
and we choose coordinate functions zl,... , z,n for V1 and wl,... , w for V2.
Then for each 1 < i < n we can write

m

a (dwi) = Eaij (z)dzj.
i=1

The fact that a is holomorphic means that each of the aid (z)'s is a holomor-
phic function on V1 = Ctm. On the other hand, the periodicity of iy means
that the aid's descend to give functions on the compact space T1 = V1 /A.
The only holomorphic functions on a compact complex manifold are the
constant functions (maximum principle), so aid E C for all i, j. It follows
that iY is the linear map defined by the matrix (aij).

Remark A.5.1.2. If T1 = T2 = T, then "multiplication by an integer n"
gives an endomorphism of T, which we will denote by [n]T or [n]. In this
way we see that End(T) contains Z. Further, the kernel of multiplication-
by-n, which we denote by Tn or ker[n]T, is given by

ker[n]T = (1/n)A/A = (Z/nZ)2dimT

So the kernel of multiplication by n is a free Z/nZ-module of rank 2 dim T.
Let a : Tl -+ T2 be a holomorphic map as in (A.5.1.1). We observe that

the image a(Ti) is again a complex torus, and similarly that the connected
component of the kernel of a is a complex torus. It is also immediate that
a subtorus of an abelian variety and the homomorphic image of an abelian
variety are again abelian varieties.

Example A.5.1.3. Let T = C/(Z + Zr) be a complex torus of dimen-
sion one. Then End(T) = Z unless r generates a (necessarily imaginary)
quadratic extension of Q. If [Q(r) : Q] = 2, then r satisfies a relation of
the form

Are + Br + C = 0 with A, B, C E Z and gcd(A, B, C) = 1,

and we have End(T) = Z + ZAr.
More generally, let T1 = C/(Z+Zri) and T2 = C/(Z+Zr2) be complex

tori of dimension one. The group Hom(T1, T2) will be nontrivial if and only
if there are rational numbers a, b, c, d such that

art + b
r2 = crl + d

Query A.5.1.4. Let r be a symmetric g x g matrix with positive definite
imaginary part, and let T :_ C9/(Z9 + rZ9). When is it true that End(T)
is strictly larger than Z?
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Definition. Let G1 and G2 be two algebraic (or analytic) groups. A map
a E Hom(G1, G2) is called an isogeny if it is surjective, has finite kernel,
and dim Gl = dim G2. The cardinality of ker(a) is called the degree of a.
(N.B. This definition of the degree is appropriate only for separable maps.)

It is clear that if G2 is connected, then two of the defining proper-
ties of an isogeny imply the third. Our first examples of isogenies are
the multiplication-by-n maps (A.5.1.2). The next lemma says that every
isogeny between tori factors through a multiplication map.

Lemma A.5.1.5. Let T1 and T2 be complex tori, and let a : T1 -+ T2 be
an isogeny of degree d. There exists a unique isogeny a : T2 -* Tl such that
a o a = [d]T2 and a o a = [d]T,. The isogeny a is called the dual isogeny
to a.

PROOF. By definition, a is surjective, and the definition of its degree im-
plies that ker(a) C ker[d]T,. It follows that there is a unique & such that
a o a = [d]T,. But then

a o & o a(x) = a([d]T, (x)) = [d]T, (a(x)),

so we also obtain a o a = [d]T2.

Remark A.5.1.6. Let a : T1 -+ T2 be an isogeny of degree d as described
in (A.5.1.5), and let g = dim(T1). The multiplication map [d]T, has de-
gree d29, so we see that deg(a) = deg(a)29-1. Lemma A.5.1.5 shows that
the relation "T1 is isogenous to T2" is symmetric. We also observe that the
lemma can be proven with d equal to the exponent of ker(a), rather than
its cardinality, albeit with a different &.

The next theorem is the first that requires the torus to have the struc-
ture of an abelian variety. It is not valid for tori in general, since its proof
relies on the existence of a nondegenerate Riemann form.

Theorem A.5.1.7. (Poincare irreducibility theorem) Let A = V/A be
an abelian variety, and let B be an abelian subvariety of A. Then there
exists another abelian subvariety C such that B + C = A and B n C is
finite. In other words, the map

BxC-4A, (b, c) b+c,

is an isogeny.

PROOF. Let H be a nondegenerate Riemann form for A, and let E be its
imaginary part. The tangent space of A is naturally identified with V, and
we let Vl C V be the tangent space of B. We also set Al = V1 n A, so
B = V1/Al. Now consider the orthogonal complement of V1 with respect
to H,

V2={vE V I H(v, w) = 0 for all w E V1}.
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If w E V1, then also iw E V1, since Vl is a complex vector space. By
definition we have H(v, w) = E(v, -iw) + iE(v, w), so we can also write V2
as

V2={vE VIE(v,w)=0 for all WE V1}.

Now we look at

A2=An V2={XEAIE(x,y)=0 for all yEA1}.

The assumption that E is nondegenerate combined with the fact that Al
is a lattice in V1 means that A2 has rank

rank A2 = rank A - rank Al = 2 dims V2.

Hence A2 is a lattice in V2, and C = V2/A2 is an abelian subvariety of
A. Since V = V1 (D V2, we deduce that B + C = A and that B f1 C is
finite.

Definition. A torus is said to be simple if it does not contain any nontrivial
subtori.

A straightforward consequence of Poincare's irreducibility theorem is
the next result.

Corollary A.5.1.8. Any abelian variety A is isogenous to a product of
the form

A" x . . x

where the A1's are simple, pairwise nonisogenous abelian varieties.

PROOF. The proof is by induction on the dimension of A. An abelian
variety of dimension 1 is automatically simple. Suppose now that dim(A) =
d and that the theorem has been proven for lower dimensions. If A is simple,
we are done. Otherwise, Theorem A.5.1.7 tells us that A is isogenous to a
product B x C, and we can apply the induction hypothesis to both factors
to conclude the proof.

Remark A.5.1.9. Let A be a simple abelian variety. Then one can show
that its endomorphism ring End(A) is an order in a division algebra. It
follows that End(A') is the ring Mat(n, End(A)) of n x n matrices with co-
efficients in the ring End(A). Further, nonisogenous simple abelian varieties
admit no nontrivial maps from one to another. So if A = Ai' x x A;
with the A2's simple and pairwise nonisogenous as in Corollary A.5.1.8,
then End(A) = fj'_1Mat(ni,End(A1)). For more details and a precise
description of the possible division algebras, see Mumford [2, Section 19).
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A.5.2. Divisors, Theta Functions, and Riemann Forms

The projectivity of a variety is equivalent to the existence of an ample divi-
sor. Therefore, in order to prove Theorem A.5.0.1, we must study divisors
on tori. Such divisors are defined similarly to Cartier divisors, but with
analytic functions in place of rational functions. Let us denote by p the
projection p : V = C9 -+ V/A. Then a divisor on the torus V/A induces
a divisor p'D on V = C9, and this divisor must be invariant under trans-
lation by A. If one knows Cousin's theorem (which we will not use), one
knows that p'D must be a principal divisor; that is, p'D = div(f) for
some meromorphic function f. The invariance property of p*D implies a
functional equation of the form f (z + A) = exp(ga(z)) f (z). Conversely, a
function with such a functional equation defines a divisor on V/A. Liou-
ville's theorem implies that a A-periodic entire function must be constant,
so we cannot hope to construct any interesting functions using constant
ga's. This leads us to take the next simplest sort of functions, which mo-
tivates the following definition.

Definition. An entire function f on C9 is a theta function relative to the
lattice A if it satisfies a functional equation of the form

f(z + A) = exp(ga(z))f(z) for all A E A,

where ga is an affine function of z. That is, g : C9 - C has the property
that g(z + w) + g(O) = g(z) + g(w) for all z, w E C9.

The function exp(ga(z)) is sometimes called the automorphy factor of
the theta function.

Examples A.5.2.1. (a) (Weierstrass sigma function) Let A be a lattice
in C, let A' = A -, {0}, and define

a(z)=z[J (1-AZ)

exp
z + (Z)2)

XEA,

It is clear that a vanishes precisely on A with multiplicity 1, so div(cr) _
A. Hence a induces the divisor (0) on the elliptic curve C/A. Let us
verify that a is a theta function with respect to A. Taking the logarithmic
derivative yields the Weierstrass zeta function

((z) a(z) z+ z-A+a+A2
XEA'

Differentiating once more, we obtain the Weierstrass p-function

p(z) = -('(z) = - + 1 -T2
AEA'

(z )a z
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It is not hard to check that p is periodic relative to A. Then two integrations
of p(z + \) = p(z) gives first

((z+A) = ((z)+77(A), and then o(z+A) = o(z) exp(71(.1)z+a(A)).

Here 71(A) and a(A) are constants depending on A that are independent
of z. For further details on the Weierstrass o, (, and p functions, see, for
example, Lang [11], Silverman [1, Chapter VI], or Silverman 12, Chapter I].
(b) (Riemann's theta function) We consider as in Example A.5.0.3(c) a
lattice A = Z9 + TZ9 in C9, and we define

0(z) = 8(z, T) = E exp{7ri Snrm + 21ri Snz}.
mEZ9

Then 0 satisfies the functional equation

0(z+e+Tn) = 0(z) exp(-27ri Lz-7ri turn) for all z E C9 and 8, n E V.

Indeed, we need merely observe that

thTh+2th(z+B+Tn) = t(h+n)T(h+n)+2t(h+n)z+2thM-2tnz- tnTn
and translate the variable of summation in the series by n.

The following fundamental theorem justifies the introduction of these
quasi-periodic theta functions. It says that they can be used to represent
all divisors on complex tori.

Theorem A.5.2.2. (Poincare) Let D be an effective analytic divisor on
a complex torus T = V/A. Then there exists an entire theta function with
respect to A that represents that divisor.

PROOF. For the general case, we refer the reader to Lang [4, X, Theo-
rem 1.1] or Swinnerton-Dyer [1, II Theorem 18]. We merely note that if
T = C/A is of dimension one, the proof is easy using the sigma func-
tion (A.5.2.1(a)). For in this case a divisor has the form D = X:nPi.
So we choose ui E C such that Pi = u, mod A, and then the function
0(z) := JJ o(z - u,)^' is a theta function that induces the divisor D.

One might ask to what extent a divisor D determines a theta function.
The next lemma answers this question.

Lemma A.5.2.3. Let 0i and 02 be theta functions with respect to a
lattice A, and suppose that they define the same divisor. Then there ex-
ists a quadratic form Q, a linear form R, and a constant S such that
Bi(z)/02(z) = exp(Q(z) + R(z) + S).

PROOF. The function Bi(z)/02(z) is an entire nonvanishing function, so
we can write it as exp(f(z)) for some entire function f. Applying the
functional equations of 9 and 02, we find that

exp(f(z+A) - f(z)) =exp(L.(z)),



§A.5.2. Divisors, Theta Fhnctions, and Riemann Forms 99

where LA(z) is an afne function of z. It follows that f (z + A) - f (z) is
also affine in z. Therefore, all second-order derivatives of f are A-periodic
and entire, hence constant. This proves that f is a polynomial of degree at
most 2, so it can be written in the form f (z) = Q(z) + R(z) + S, with Q a
quadratic form, R a linear form, and S a constant. 0

Definition. A theta function of the form exp(Q(z) + R(z) + S), where Q
is a quadratic form, R is a linear form, and S is a constant, will be called
a trivial theta function.

We will now reverse the above procedure and associate to each theta
function a Riemann form. To ease notation, we set

e(z) = exp(27riz).

The functional equation of a theta function 0 with respect to the lattice A
can be written as

9(z + A) = O(z) e(L(z, A) + J(A)),

where L(z, A) is a linear function of z. We use this formula to expand
O(z + A + p)/6(z) in two ways, which yields the result

L(z, A + p) - L(z, µ) - L(z, A) - L(A, p) + J(A + p) - J(A) - J(µ) E Z
for all (z, A, µ) E C9 x A x A.

By continuity we further deduce that:
(1) L(z, A + u) = L(z, A) + L(z, A).
(2) J(A+,u) - J(A) - J(µ) _- L(A, µ) (mod Z).
(3) L(A, µ) __ L(µ, A) (mod Z).

From (1) we see that L(z, A) is Z-linear in A, so it can be extended
R-linearly in the second variable to give a map

In other words, L(z, w) is C-linear in z and R-linear in w. From (3) we
deduce that the form E(z, w) = L(z, w) - L(w, z) takes integral values on
A x A. But E is R-linear and V = A ®R, so we see that E is, in fact,
real-valued.

Next we observe that

E(iz, iw) - E(z, w) = L(iz, iw) - L(iw, iz) - L(z, w) + L(w, z)
= iL(z, iw) - iL(w, iz) + iL(iz, w) - iL(iw, a)

= i (E(z, iw) + E(iz, w)).

But E takes on only real values, so we must have E(iz, iw) = E(z, w). We
summarize this discussion in the next proposition.
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Proposition A.5.2.4. Let 9 be a theta function with respect to the
lattice A, and write the functional equation of 0 as

9(z + A) = 9(z) e(L(z, A) + J(A)).

Then the formulas

E(z, w) = L(z, w) - L(w, z) and H(z, w) = E(iz, w) + 1E(z, w)

define a Riemann form with respect to the lattice A. Further, H depends
only on the divisor of 0, and if we denote by HD the Riemann form associ-
ated to a divisor D, then we have the addition law HD+D' = HD + HD,.

PROOF. Only the last assertion remains to be proven, and it follows from
a straightforward computation.

The most important property of the R.iemann form associated to a
theta function is given by the next proposition.

Proposition A.5.2.5. (a) The Riemann form H associated to a theta
function is positive.
(b) Let W = kerH C V. Then the form H' induced by H on V/W is
positive definite. Let A' be the image of A in V/W. Then the function 0
is constant on cosets w + W, and it induces a theta function with respect
to the lattice A' whose associated Riemann form is H.

PROOF. We start by multiplying the given theta function by a trivial one
in order to obtain a nicer functional equation.

Lemma A.5.2.6. Let 9o be a theta function with respect to a lattice A,
and let H be its Riemann form. Then there exists a theta function 9 with
the same divisor (and Riemann form) such that

9(z + A) = exp (xH(z, A) + 2 H(A, A) + 2xiK(A)) 9(z),

where K : A -* R is a function satisfying the identity

e(K(A + p)) = e(K(A)) e(K(,u)) e (E(AJ1)).1

Furthermore, there is a constant C = C(9) such that the function 9 satisfies
the growth estimate

10(z)I <Cexp(2H(z,z)).
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PROOF. Let Q be a bilinear form. We are going to consider the func-
tion 81(z) = exp(Q(z,z))8o(z). If the function e(Lo(z,A) +Jo(A)) is the
automorphy factor of 80i then the automorphy factor of 01 will have the
form

e(L(z, A) + J(A)) with L(z, A) = Lo(z, A) + 2Q(z, A).

Notice that by varying the bilinear form Q, we are able to obtain all linear
forms L that satisfy L(z, w) - L(w, z) = E(z, w). Indeed, this condition is
necessary, and if it is satisfied, then L - Lo is symmetric. But since H is
Hermitian and E = Im H, we know that

2i H(z, w) - Zi H(z, w) = E(z, w).

Therefore, we may select Q such that L(z, w) = 2sH(z, w). This means
that if we set K1(A) = J(A) - IH(A,A), then the functional equation of
81 can be rewritten as

01(z + A) = exp (1rH(zA) + 17rH(A, A) + 27riK1(A) J 81(z).

Multiplying 01 by e(R(z)) with R linear will not change L and will re-
place K1(A) by K(A) = K1(A) + R(A). Now using relation (2) between J
and L = a H, we find that

K1(A +,a) - K1(A) - K1(µ) ° 2 E(.\, µ) (mod Z).

Hence we may assume that Im K1 is Z-linear and extend it to V by R-
linearity. Taking R(z) _ - Im K1(iz) - Im K, (z), we obtain a C-linear
function such that K(A) = K1(A) + R(A) is real. This gives the first part
of the lemma. To prove the second part, we merely need to observe that
the function

I8(z) l exp (- 2 H(z, z))

is A-periodic and continuous, hence bounded.

We return to the proof of Proposition A.5.2.5. Suppose that there
exists some vo E V with H(vo,vo) < 0. For every z E C we have the
estimate

8(zvo) <Cexp(2IzI2H(vo,vo))

from (A.5.2.6), so we see that 8(zvo) -+ 0 as z --+ no. From Liouville's
theorem we conclude that 8(zvo) = 0. But by continuity, the inequality
H(v, v) < 0 must remain true for all v in a small neighborhood of v0. This
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would imply that 9 vanishes identically. Hence the Riemann form H is
positive, which proves (a).

For (b), we note that if w E W, then

7r 7rH(z+w,z+w)) = Cexp (2H(z,z)) .I0(z+w)I < Cexp (2

Hence applying Liouville again, we see that 9(z + w) = 9(z), and the rest
of the proposition is just linear algebra.

Let 9 be a theta function with divisor D for a lattice A in V = C9.
We write L(9) for the vector space of all theta functions with the same
functional equation. We will see in the next section that L(9) is finite-
dimensional, so choosing a basis 90i ... , B for L(9), we get a holomorphic
map

OD : V/A -' lP"(C), z mod A i---4 (9o(z), ... , 0-(Z))

In order to state the next theorem, which clearly implies Theorem A.5.0.1,
we introduce the following ad hoc definition.

Definition. The divisor D on the torus V/A is very ample if the map OD
described above is an embedding. The divisor D is ample if some positive
multiple of D is very ample.

Notice that if we know, a priori, that V/A is an algebraic variety, then
this definition of ample coincides with the one given in Section A.3. To ease
notation, we may take the given theta function 0 to be 90. Then for every
f E L(D), the function 9(z) f (z) is entire and belongs to L(9). Conversely,
each f, = 9s/0 is an abelian function with D + (f;) > 0. Hence L(D)
and L(9) are isomorphic, and we may speak of the linear system associated
to a theta function.

Theorem A.5.2.7. Let D be an effective divisor on a torus. The Rie-
mann form attached to D is nondegenerate if and only if D is ample.

PROOF. If the Riemann form H attached to D is degenerate, then by
Proposition A.5.2.5, all of the theta functions in L(9) are constant on the
cosets w + ker H. It follows that the map OD : V/A -+ P" cannot be an
embedding.

Suppose now that H is nondegenerate. To prove that 0,,,D is an em-
bedding, we must construct theta functions 90, ... , 9 associated to mH
such that 9o, ... , 0, have no common zeros and separate tangent vectors.
This will be done in the next section using a theorem of Lefschetz and a
Riemann-Roch theorem for complex tori.
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A.5.3. Riemann-Roch for Abelian Varieties

The purpose of this section is to compute the dimension of the linear system
L(B) and to finish the proof that a divisor with a positive definite Riemann
form is ample. The computation of £(D) involves the determinant of the
associated alternating form. We recall how this quantity is computed.

Lemma A.5.3.1. (Frobenius) Let A be a free abelian group of rank 2g
(i.e., A = Z2g). Let E be a nondegenerate bilinear alternating form on A
with values in Z. There exist positive integers d1,. .. , d9 with di1di+1 and
a basis e1i...,e9,f1i...,f9 of A such that

E(ei, ej) = E(fi, fj) = 0 and E(ei, fi) _ di if i = j,
0 ifi # j.

The product d1... d9 is the square root of the determinant of E.

PROOF. We use induction on g. Note that the set {E(x, y) I x, y E A} is an
ideal of Z, so it is a principal ideal, generated by some positive integer d1 =
E(ej, f1). Applying the induction hypothesis to the orthogonal complement
of Ze1 + Zf1 in A finishes the proof.

Definition. Let E be a nondegenerate bilinear alternating form on A
Z29 with values in Z. A basis e1, ... , e9, f1, ... , f9 for A as in Lemma A.5.3.1
is called a F}obenius basis, and the di's are called the invariants of E.
Further, we define the Pfafian of E to be the quantity

Pf(E) = did2 d9 = det(E).

Our next task is to modify a given theta function to produce the
simplest possible functional equation.

Lemma A.5.3.2. Let 0 be a theta function with nondegenerate Riemann
form H on the lattice A C V = C9. Let {e1, ... , e9, f1i ..., f9} be a Frobe-
nius basis for the form E = Im H on A, and let d1, ... , d9 be the associated
invariants.
(a) The set{eii...,e9}isaC-basis of V.
(b) After multiplication by a suitable trivial theta function, the functional
equation of 0 takes the form

9(z + ei) = 9(z) and 8(z + fi) = 0(z) e(dizi + ci).

We use (a) to write z = E ziei.

PROOF. (a) Let W = Ref + + Re9 C V. Then E vanishes on W, so if
x, y E W and x + iy = 0, then iy E W and E(iy, y) = 0. This implies that
y=x=0, and hence thatV =W+iW.
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(b) The functional equation reads 0(z +.1) = B(z) e(L(z, A) + J(A)). But
for x, y E W, we know that L(x, y) - L(y, x) = E(x, y) = 0, so L is
symmetric on W x W. We define a bilinear form Q by requiring that
Q(ei,ei) = -1L(ei,ei), and we multiply 0 by e(Q(z,z)). The new theta
function will have an L satisfying

L(e,,ei)=0 and L(ei,fi)=L(fi,ei)+E(ei,fj) di ifi=j,
to ifi#j.

In other words, L(z, ei) = 0, and if we write z = > ziei, then L(z, fi) _
dizi. Finally, we know that

J(A + et) - J(A) - J(ei) = L(A, ej) = 0 (mod Z).

So if we let R be the linear form determined by R(ei) = -J(ei) and
multiply 0 by e(R(z)), we obtain a new function J such that J(ei) = 0.
The lemma is then proven with ci = J(fi).

Theorem A.5.3.3. (Riemann-R.och for abelian varieties) Let D be a
divisor on an abelian variety, let HD be the nondegenerate Riemann form
for D, let ED = ImHD, and let Pf(ED) be its Pfafan. Then P(D) _
Pf(ED).

PROOF. The proof is a simple consequence of the results proven above. We
may suppose that D is defined by a theta function 0 with functional equa-
tion as in Lemma A.5.3.2. Note that any theta function with the same func-
tional equation as 0 is will be periodic with respect to A = Zel + + Ze9.
Identifying A with Z9, we can expand 0 as a Fourier series,

0(z) = E a(m) e( Snz).
mEZ9

The second half of the functional equation gives a recursion formula for the
coefficients a(m), namely

a(m - diei) = a(m) e(4nfi - ci).

It is immediate that all of the a(m)'s are determined uniquely by the values
of a(m) for

mE{(ml,...,m9)EZ9I0<mi<di-l}.

This set has cardinality dl d9, which shows that £(D) < Pf(ED). In or-
der to show that we have equality, it remains only to show that each choice
of a(m)'s with m in this set leads, via the above recursion, to a Fourier
series that converges. This fact is an easy consequence of the following
lemma.
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Lemma A.5.3.4. With notation as above, set

Q(n,n) = -1L (1: nifi, E nifi)

Then the coefficients a(m) have the form

a (no + E nidie) = a(no) e(Q(n, n) + R(n)),

where R is linear and the imaginary part of Q is positive definite.

PROOF. We leave the first part as an exercise and just prove that Im Q > 0.
Let z E Rf1 + + Rf9. We write z = x + iy with x, y E Re, + + Reg.
Then L(z, z) = L(x, z) + iL(y, z), where L(x, z) = E(x, z) and L(y, z) _
E(y, z) are real. Hence we obtain

Im(-L(z, z)) = -L(y, z) = E(z, y) = E(x, y) + E(iy, y) = H(y, y) > 0,

as was to be shown.

We give two consequences that will be used in the proof of Theo-
rem A.5.3.6 below.

Corollary A.5.3.5. Let 90 be a theta function for the lattice A, and
assume that the form associated to 90 is nondegenerate.
(i) There exists a theta function in L(Oo) that is not a theta function for

any lattice strictly containing A.
(ii) Every 9 E L(Oo) depends on each of the variables z1, ... , z9.

PROOF. Suppose that A' D A with A' 34 A. The set of 9 E L(9o) that are
theta functions for A' form a subspace whose dimension is some Pfaffian
which strictly divides the Pfaffian of 90. But there are only countably many
lattices containing A, and a countable union of proper subspaces cannot fill
a (complex) vector space. This proves (i).

For (ii), we suppose that 89/8x1 = 0. Then L(z, A) does not depend
on z1; hence L(el, w) = 0 and E(iel, el) = H(el, el) = 0. This contradicts
the nondegeneracy.

Finally, we prove the fundamental embedding theorem of Lefschetz.

Theorem A.5.3.6. (Lefachetz) Let 9 be a theta function with divisor D
and nondegenerate Riemann form H.
(i) The divisor 2D is base point free.
(ii) The divisor 3D is very ample.

PROOF. Note that this gives a broad generalization of the corresponding
result on elliptic curves. The proof of (i) is easy and only requires D to
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be effective. To ease notation, we write 0(z) = 9(z - w). Notice that
0,,,(z)9_.(z) E L(02). If zo were a base point of 02, then we would have

Bw(zo)O-w(zo) = 0 for all w.

But this is impossible unless 0 = 0. Hence 2D is base point free.
Next we observe that for any u, v, the product is in L(03).

We are going to prove that these theta functions span a very ample linear
system. Let : C9/A -i PL(93) be the holomorphic map associated
to L(03). Using Corollary A.5.3.5, we may assume that 0 is not quasi-
periodic with respect to any lattice strictly larger than A.

We begin by showing that 1 is injective. Suppose that 4(x) = D(y).
Then for every u, v there is some a E C` such that

(0u0°9-u-v)(x) = a(9u9u9-u-,,)(y)

This implies that 9(x - u) = 9(y - u)g(u) for some nonvanishing entire
function g. But g must then be a trivial theta function and must satisfy
g(u + A) = e(L(x - y, A))g(u) for all A E A. One easily gets from this
that g(u) = g(0) e(-L(u, x - y)), and this in turn implies 9(z + (x - y)) =
9(z) e(-L(z, x - y) + c). Hence 9 is a theta function with respect to the
lattice A + Z(x - y). However, we know that A is the largest lattice for
which 9 is a theta function, so we have proven that x - y E A. This
completes the proof that is injective.

In order to prove that is an embedding, it remains to show that it
separates tangent directions. Suppose to the contrary that the differential
of 4) annihilates a tangent vector at some point w. We may assume that
9(w) ,-b 0, and after a change of coordinates we may assume that all of the
functions f = 9u9u9-u-u/93 satisfy of/azl(w) = 0. Let r = 9-1(0e/azl).
Taking the logarithmic derivative of f at to, we find that

r(w - u) + r(w - v) + r(w + u + v) -3r(w) =0.

This implies that r(u + w) = ao + a1u1 + + a9u9 is an amine function
of u, and then integrating with respect to u1 gives a new theta function 9'
such that

0(u + w) exp(-(a1/2)ui) = 0'(u2, ... , uy).

But the existence of this theta function contradicts Corollary A.5.3.5(ii).
This completes the proof that 4) is an embedding.
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EXERCISES

A.5.1. Let G C 1P"(C) be a complex projective variety with a group law given
by algebraic functions (i.e., G is a projective group variety). This exercise
sketches a proof that G is analytically isomorphic to a complex torus. In
particular, the compactness of G implies that the group law is abelian.
(a) For each g E G, consider the conjugation map 0(g) : G - G, 0(g)(h) _
ghg-1. Denote the differential of i(g) at the identity e by D(g) : Te(G) -*
Te(G). Using the maximum principle (from complex function theory), show
that D(g) is the identity map. Use this to deduce that 0(g) is also the
identity, and hence that G is abelian.
(b) Prove that the exponential map Te(G) -' G is surjective with discrete
kernel A. Use the fact that G is compact to conclude that rank A = 2 dim G,
and hence that G is isomorphic to a complex torus. (For basic properties
of the exponential map, see, for example, Bourbaki [1, Chapter III].)

A.5.2. Let 11 be a g x 2g matrix with coefficients in C. Prove that the existence
of a nondegenerate Riemann form on the torus A = Cg/f2Z2g is equivalent
to the existence of a nondegenerate alternating 2g x 2g matrix J with
coefficients in Z satisfying

t1J-' In = 0 and if2J-' Y2 > 0.

Here S > 0 means that the matrix S is symmetric and positive definite.
A.5.3. Use the previous exercise to construct a torus of dimension 2 that is not an

abelian surface. (Hint. Show that the existence of a Riemann form implies
that that coefficients of the matrix of periods satisfy nontrivial relations
over Z.)

A.5.4. Let E = C/A be a complex torus of dimension 1 (i.e., a complex elliptic
curve) and let

Aut(E, 0) = {analytic isomorphisms 4: E -+ E with 4(0) = 0}.

In other words, G is the group of analytic automorphisms of the group
variety E. Also, let p = e2x'J3 be a primitive cube root of unity. Prove
that

Z/6Z if E C/(Z + Zp),
Aut(E, 0) = tl Z/4Z if E C/(Z + Zi),

Z/2Z otherwise.

In particular, Aut(E, 0) is always finite. Do there exist abelian varieties of
dimension greater than 1 with infinite automorphism groups?

A.5.5. (Theorem of Appell-Humbert and the dual abelian variety) Let A = V/A
be a complex torus, and denote by NS(V/A) the group of Riemann forms
on V/A. Also, let S' = {z E C I JzJ = 1} be the circle group. We say that
a map X : A S' is a semicharacter for the Riemann form H if it satisfies
the functional equation

X(A + IA) = X(-\)X(µ) a (2 Im H(a, µ)) for all \,A E A.
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We also define a group

P(V/A) = {(H, X) H E NS(V/A) and x is a semicharacter for H}.

The group law on P(V/A) is (Hi, X1) (Hz, Xz) = (H1 + Hz, X1 X2).
(a) Show that Theorem A.5.2.2 and Lemma A.5.2.6 associate to each di-
visor D an element (HD,XD) E P(V/A). Check that this induces an iso-
morphism from Pic(V/A) to P(V/A).
(b) Show that under this isomorphism, the subgroup Pic°(V/A) contained
in Pic(V/A) is naturally identified with Hom(A, S').
(c) Let V = Homt(V,C) be the space of C-antilinear forms on V (i.e.,
l(zv) = For l E V and v E V, let (1, v) = Im(t(v)), and define
A = it E V I (l, A) E Z}. Prove that the map

f/ -+ Hom(A, S'), t i- + e((l, )),

is a surjective homomorphism with kernel A. Further, prove that A is a
lattice in V, and use the resulting isomorphism V/A Hom(A, S') to
deduce that Hom(A, S') has the structure of a complex torus.
(d) Show that if A = V/A is a complex abelian variety, then the torus
A = V/A described in (c) is also an abelian variety. It is called the dual
abelian variety and is isomorphic to Pic°(A).
(e) Let A be an abelian variety, and let D E Pic(A). For each a E A, let
to : A -+ A denote the translation map ta(X) = x + a. Define a map

40D : A -+ Pic(A), $D(a) = Cl(tQD - D).

Prove that OD has the following properties: (i) The image of $D lies in
Pic°(A) = A. (ii) The map 4D depends only on D mod Pic°(A). (iii) If
the associated Riemann form HD is positive definite (i.e., if D is ample),
then 4)D is an isogeny from A to A.

A.M. (Poincar6 divisor) In the previous exercise we associated to a complex
abelian variety A = V/A its dual abelian variety A = V/A. We now define
a pairing on V x V by

H : (V x V) x (V x V) -+ C, H((vl,ll), (vz,lz)) = lz(vl) +t1(vz).

(a) Prove that H is a Riemann form with respect to A x A and that X(A, t) =
e (2Im(L(A))) is a semicharacter for H. It follows from Exercise A.5.5
above that the pair (H, X) defines a divisor class P E Pic(A x A). The
divisor class P is called the Poincar divisor class.
(b) Let is : A - A x A be the map ia(a) = (a,a). Prove that 1 P is the
divisor class on A corresponding to a.
(c) Let io : A - A x A be the map io(a) = (0, a). Prove that ioP = 0.
(d) Prove that the Poincar6 divisor class P is uniquely characterized by
the two properties described in (b) and (c). (For further properties of the
Poincar6 divisor class, see Section A.7.)
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A.5.7. Let A = V/A and B = V/A' be two complex abelian varieties of di-
mensions g and h, respectively. By Lemma A.5.1.1, any homomorphism
a : A -. B lifts to a C-linear map a : V V' satisfying &(A) C A'. We
thus obtain two representations

pc : Hom(A, B) - Homc(V,V') and pc : Hom(A, B) Homz(A, A'),

called respectively the complex representation and the rational representa-
tion of Hom(A, B).
(a) Show that the two representations pc and pQ are related by

PQ®C"Pc®P::,

where p denotes the complex conjugate of p.
(b) For every integer m, prove that a maps A- into B,,,, where recall that
A. denotes the kernel of the multiplication-by-m map on A, and similarly
for B,,,. Take the inverse limit of the maps

a:Apr.-.Bp" asn -.oo

to obtain a homomorphism Zy - Z. (Hint. Recall that A,,, L (Z/rZ)29
and B,,, (Z/mZ)2h, and use the definition of the p-adic integers). Ten-
soring with Qp, we obtain a homomorphism pQ, : Q,29 -' Q. The repre-
sentation

pQ, : Hom(A, B) -+ HomQ,(Qp9, Qph)

is called the p-adic representation of Hom(A, B). Prove that

PQ ®Qp "' P14 -

(The importance of the p-adic representation is that it exists over any base
field of characteristic 0 p.)
(c) Let A = B and let a : A -' A be an isogeny. Prove that deg(a) _
det(pQ(a)).

A.5.8. Let A be a simple abelian variety (i.e., an abelian variety containing no
abelian subvarieties other than {0} and itself). Let D be a nonzero effective
divisor on A. Prove that D is ample. Show that the conclusion may be
false if A is not assumed to be simple.

A.5.9. Let 6(z) be Riemann's theta function as described in Example A.5.2.1.
Show that the associated normalized theta function (in the sense of Lemma
A.5.2.6) is 01(z) = 0(z)exp(z'z(Im-r)-'z), and that the corresponding
"K-function" is K(m + Tn) = Snn/2.
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A.6. Jacobians over C

In this section we will sketch the construction of the Jacobian of a com-
pact Riemann surface. The Jacobian will be a complex torus carrying a
nondegenerate Riemann form, that is, an abelian variety. The complex-
analytic theory in this section parallels the algebro-geometric theory that
we will develop in Section A.8. The Jacobian is one of the central tools
in studying curves and is the reason why abelian varieties enter into the
picture. Indeed, the theory of Jacobians plays an essential role in the proof
of Mordell's conjecture. Combining the theory of Jacobians with Theo-
rem A.5.0.1 from the previous section, we also get a proof that all compact
Riemann surfaces can be embedded into projective space.

This section is essentially historical and contains few proofs. There
are many sources for readers wishing to pursue this very beautiful subject,
for example Bost [1], Griffiths and Harris [1], Gunning [1], Lang [4], or the
original works of Abel, Jacobi, Riemann, and others.

A.6.1. Abelian Integrals

The theory of abelian varieties arose during the nineteenth century through
the attempt to compute or describe integrals of the form f R(t, P(t) )dt,
where R is a rational function and P is a polynomial. More generally,
one may consider integrals f R(t, s) dt, where s and t satisfy an algebraic
relation P(s, t) = 0. Such integrals eventually came to be called abelian
integrals.

As a first example, consider the integral u = fo 1/ 1 - t2 dt. Every
student of calculus knows that u = sin-' (x), so it is easier to look at the
inverse function to u. In other words, we consider the function S satisfying
x = S(u), and then we find that S is the sine function. In particular,
it has a period S(u + 27r) = S(u) and it satisfies a differential equation
S(u)2 + S'(u)2 = 1. More precisely, the map u -. (S(u), S'(u)) gives a
parametrization of the curve x2 + y2 = 1.

We are now going to consider the next nontrivial case. Let Q(t) be a
polynomial of degree 3 or 4 with distinct roots, and consider the integral
u = fa 1/ Q(t) dt. As before, we consider the inverse function, which we
will denote by x = f (u). The function f has two R-linearly independent
periods, and it satisfies the differential equation f'(u)2 = Q(f(u)). The
map u (f(u), f(u)) parametrizes the curve y2 = Q(x). This curve is
called an elliptic curve because integrals of this sort arise when one tries to
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compute the arc length of an ellipse. For a similar reason, such integrals are
called elliptic integmis, and the corresponding inverse functions are called
elliptic functions.

Notice that in both cases, the existence of periods for the inverse func-
tion comes from the multivaluedness of the integrals. Carrying on with
this analogy, we observe that the trigonometric functions satisfy an addi-
tion formula,

S(u + v) = S(u)S'(v) - S'(v)S(u),

and similarly an elliptic function f (u) as above will satisfy an addition
formula

f (u + v) = F(f (u), f'(u), f (v), f'(v))

for some rational function F. When Q(t) = t3 + At + B, we have explicitly
computed the rational function F, see (A.4.4).

An important discovery of Abel was that when one considers integrals
of the form u = for 1/ Q(t) dt with deg(Q) > 5, then one needs to use
additional variables. The number of required variables is the "genus" of the
integral. For example, suppose that Q has degree 5 or 6 and has distinct
roots. Then we define two functions, each depending on two variables, by

ul = JO

rx, 1

dt
xz 1

dt
Q(t)

+ f
Q(t)

,

u2
= JO

x, t
dt

x9 t
dt.

Q(t)
+ f

AM

Consider "inverse functions" fl and f2 satisfying x1 +x2 = fl(u1,u2) and
xlx2 = f2 (u1, u2). Then one can show that fl and f2 have four 1R-linearly
independent periods (in C2). Further, they satisfy an addition formula
in which each f;(ul + v1, u2 + v2) can be expressed as a rational function
of fl, f2, and their derivatives.

A.6.2. Periods of Riemann Surfaces

We now give the modern formulation of the material discussed in the pre-
vious section. Let X be a compact Riemann surface of genus g (i.e., a
smooth projective curve over C, as we will see). For any regular 1-form w
on X and any path -y on X, we can compute the integral f,, w.

Example A.6.2.1. Let P be a polynomial of degree 2g + 2 without mul-
tiple roots, and let X be the Riemann surface obtained by gluing the two
affine curves y2 = P(x) and v2 = P'(u) = u29+2P(u-1) using the map
(u, v) = (x-1, yx-1-9). The set {dx/y, xdx/y, ... , x9- ldx/y} is a basis of
regular differentials on X. (See Section A.4.5 and Exercise A.4.2 for further
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information about these hyperelliptic curves. Let w = dx/y, and let -y be
a path on X going from (a, P(a) to (b, P(b) . Then the line integral
f7 w on the Riemann surface X gives a precise meaning to the multivalued

integral f 1b 1/ P(t) dt. Of course, it is the choice of the path -y that has
eliminated the indeterminacy.

The dependence of the integral on the path is best formulated in terms
of homology. Let y1 i ... , ry2g be a basis of the homology H1 (X, Z) of X.
If -y and y' are two paths joining the points A and B, then -y followed by
the reverse of y' is a closed path, so it is homologous to > m,-t, for some
integers mi. It follows that for any regular 1-form we have

1, 29

Lw -
w=Emit+W.

Now let W1i ... , wg be a basis of the vector space of regular 1-forms,
and let Il be the g x 2g matrix with entries

Il
= (f') 1 <i <2g = Y W') 1<i<2g

1<j<g

We call !l a period matrix of X, and we let Lo be the Z-module generated by
the columns of 1l. (It will soon be apparent that Ln is a lattice.) Choosing
a different basis for the homology and the space of 1-forms will give another
period matrix SZ' = AS2M, where A E GL(g, C) and M E GL(2g, Z). The
following beautiful theorem was discovered by Riemann:

Theorem A.6.2.2. (Riemann's period relations) Let y1, ... , y2g be a
basis for the homology group H1(X,Z), chosen to satisfy the following
intersection property: For each 1 < i < g,

__ J1 ifj=i+g,
y' yj 0 otherwise.

(See Figure A.4 for the case of genus 2.) Then for any nonzero regular
1-forms w and w',

E (f", wJ 0.
k=1 7c+k 7k 7y+k

( 7e+k
WkW - e+k W / k W > 0.v-l

k=1

r proof may be found in Bost [1, 111. 1.21, Griffiths and Harris [1,
ang [4, IV.4], or Swinnerton-Dyer [1, I, Theorem 8].
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A curve of genus 2 with a homology basis
Figure A.4

If we decompose 12 = (121i122), where each of f1l and 122 is a g x g
matrix, then Riemann's relations can be written in matrix form as

521 n2= I2 n1 a n d - V 1 ( 1 T2 - n2 T1) > 0.

(We write M > 0 to indicate that a matrix M is positive definite. That
is, 'YMY > 0, with equality if and only if Y = 0.) We claim that H1 is
invertible. To see this, suppose that 9Z1Y = 0. Then

l2-Z
so Y = 0. Hence 521 is invertible.

We can thus change our basis of differential forms to transform 521 into
the identity matrix and 122 into the matrix r = Q-1102- In terms of the
new period matrix 12 = (I, r), Riemann's relations say that z is symmetric
and that its imaginary part Im(7-) is positive definite. The next result is
an easy consequence of these observations.

Corollary A.6.2.3. The column vectors of H generate a lattice Ln in-
side C9.

PROOF. Using the new basis, the lattice has the form Ln = Z9 + rZ9.

A.6.3. The Jacobian of a R.iemann Surface

O

We retain the setting and notation from the previous section.

Definition A.6.3.1. The Jacobian of a Riemann surface X is the complex
torus Jac(X) = C9/Ln, where La is the lattice generated by the columns
of the period matrix 52. (See Corollary A.6.2.3.)
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We next give a more intrinsic formulation. Let V* denote the dual
vector space of a complex vector space V, let H°(X,SlX) be the vector
space of regular differentials on X, and let Hl (X, Z) be the homology
group of X. We can identify H1(X,Z) as a lattice in H°(X,Sli )* via the
map

Hi(X,Z) -' H°(X,cl )*, 'Y - (
Then the Jacobian of X is equal to

Jac(X) = H°(X, Q' )'/HI (X, Z).

We now explicitly construct a Riemann form with respect to the lat-
tice Lo. We may assume the lattice to be normalized, Lo = Z9 + rV.
Then the form is easy to write down, namely H(z,w) = tzIm(7-)-lw. This
form is positive definite from Riemann's relations, and if k, e, m, n are vec-
tors with integer coordinates, then Im H(m + rrn, k + r) = tme - tnk is
an integer. Hence H is a Riemann form. It follows from Theorem A.5.0.1
that the Jacobian C9/LO is a projective variety. This implies that X is
also projective, since X can be embedded in its Jacobian. More precisely,
for each fixed basepoint a E X we define a holomorphic map(jbjb)

a : X -+ Jac(X) = C9/Ln, b -mod Lo.
The map 4'a is called the Jacobian embedding of X. (We will explain below
why it is an embedding when g > 1.)

We observe that up to translation, the map 4?a is independent of a.
Thus 4`2a'(b) = 4ia(b) - 45a(a'). So if we extend 4ba linearly to the divisor
group, then it will be completely independent of a on the the group of
divisors of degree zero. We denote this map by 4i,

4o: Div°(X) -+ Jac(X), E ni(bi) '--4 > ni' a(bi)

The importance of the map 4) comes from the following celebrated theorem.

Theorem A.6.3.2. (Abel-Jacobi) The map 4i : Div°(X) -p Jac(X) is
surjective, and its kernel is exactly the subgroup of principal divisors.

PROOF. See Griffiths and Harris [1, pages 232-237], Lang [4, IV.2.3], or
Bost [1, Corollary 11.3.5].

Corollary A.6.3.3. Assume that X has genus g > 1. Then the map
4?a : X -+ Jac(X) is an embedding.

PROOF. Using the theorem, we can identify Jac(X) with Pic°(X). If
4ia(x) = %(y), then (x) - (y), so x = y. (Otherwise, X would be a
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rational curve, contrary to assumption.) This shows that 4 ,,, is injective.
Further, we see directly from the definition that 4?Q(dzi) = wi, hence 4ia is
an embedding.

One consequence of (A.6.3.3) is that if X has genus one, then X is
isomorphic to its Jacobian. Further, a divisor Eni(PP) will be principal
if and only if E ni = 0 and >2 niPi = 0. Of course, we already know this
from the algebraic proof of Theorem A.4.4.2.

Suppose now that X has genus g > 2. Then the r-fold sum

Wr(X) = 'a(X)+...+4ia(X) = I xi ...,xr E X}

is a subvariety of Jac(X) of dimension min(r, g). In particular, e =
W9_ 1(X) is a divisor on J. Note that up to translation, A is independent
of the choice of basepoint a E X. It can be shown that the Riemann form
associated to this divisor is precisely the Riemann form we constructed. In
particular, the divisor 8 is ample, since the corresponding form is nonde-
generate (Theorem A.5.2.7). This is a consequence of the following more
precise result.

Theorem A.6.3.4. (Riemann) Let Ln = Z + rZ be the normalized
lattice of periods of a Riemann surface X. Then the Riemann theta func-
tion

0(z) = 0(z, r) = E exp(7ri Snrm + 27ri Snz)
mEZ9

has associated Riemann form

H(z,w) = tzlm(T)-1w.

The divisor associated to this Riemann form is a translate of 8.

PROOF. The first statement is essentially the computation of the functional
equation of 0 done in (A.5.2.1(b)). For the second statement, see Bost [l,
theorem 111.5.1], Griffiths and Harris [1, page 338], or Mumford [5, II,
Corollary 3.6].

Remark A.6.3.5. The importance of the Riemann form and its associated
divisor a comes from the fact that the curve X is characterized (up to
isomorphism) by the pair (Jac(X), e). For g = 2 this is immediate from
Theorem A.6.3.4, since in this case 0 itself is isomorphic to X. The general
case is called Torelli's theorem.
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A.6.4. Albanese Varieties

In this brief section we explain how the construction of the Jacobian extends
to varieties of higher dimension. Let X be a smooth projective variety, and
let H°(X,SlX) be the vector space of holomorphic 1-forms on X. Just as
for curves, we can embed the first homology group Hl (X, Z) into the dual
of H°(X, SlX) via the map

H, (X, Z) , H°(X, Wz)*, 7
7

The Albanese variety of X, denoted by Alb(X), is defined to be the torus

Alb(X) = H°(X, Qz)*/HI (X, Z)

It can be shown that HI(X,Z) is a lattice in H°(X,SZX)*, so Alb(X) is
indeed a torus, and in fact, it is an abelian variety (see Weil [5]). Further,
there is a map 0a : X --+ Alb(X) defined in exactly the same way as for
curves. This construction, although sometimes useful, is not as powerful
as the corresponding result for curves, because in general 4 a will not be
injective. More precisely, the map 4'a is the maximal map of X into an
abelian variety in the sense that any other map to an abelian variety will
factor through 7 . It follows that a smooth projective variety admits a
nonconstant map to an abelian variety if and only if it possesses a nonzero
regular 1-form. For example, a smooth hypersurface X C P" with n > 3
has Alb(X) = {0}.

EXERCISES

A.6.1. Let P(s,t) E C[s,t] be a polynomial such that the curve P(8, t) = 0
is a rational plane curve, and let R(s, t) E C(s, t) be a function on this
curve. Prove that the integral f R(s, t) dt can be transformed by a change
of variables into an integral f F(u) du for some F(u) E C(u). Note that
this last integral can be explicitly computed using standard techniques (i.e.,
partial fractions).

A.6.2. Consider the ellipse (x/a)2+(y/b)2 = 1 with a > b > 0, and let c2 = a2-b2
with c > 0. Show that the computation of the arc length of this ellipse leads
to the computation of an integral of the form

c2U2 + b
du.

J (1 - u2)(c2u2 + b2)

Show that the curve w2 = (1 - u2)(c2u2 + b2) is an elliptic curve except
when c = 0, that is, when the ellipse is a circle.
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A.6.3. Let fl be a period matrix and let J be the skew symmetric matrix whose
coefficients are the intersection indices yi yy . Prove that Riemann's period
relations can be written as

f2J-1 `f2 = 0 and vf2J-1 f`-2 > 0.

A.6.4. Let X be a Riemann surface.
(a) Show that the Jacobian embedding 0, : X Jac(X) induces an iso-
morphism between H°(X, W) and H°(Jac(X ), f21).
(b) Prove that 11°(Jac(X),il') is canonically isomorphic to the tangent
space at the origin, To(Jac(C)).

A.6.5. The purpose of this exercise is to develop a method to compute the period
matrix f2 = (I, r) of certain special curves. In particular, we will compute
the period matrix for the curve C : y2 = x6 - 1. We will need to assume
some nontrivial topological facts about Riemann surfaces; see, for example,
Lange and Birkenhake [1, Chapter 11, Section 7].
(a) Let ryi , ... , y2g be a basis of H1 (C, Z) as described in (A.6.2.2), and let
ml, ... , w9 be a basis of H°(C, Qc' ). Any automorphism f E Aut(C) acts
on differential forms and on homology. Let

`M = (a d) E Sp(2g, Z) and
c

U E Mat(g x g, C)

be respectively the matrices giving the actions of f on homology and on
differential forms. Prove that

r = (ar + b)(cr + d)-' and U = `(cr + d).

(b) Let = exp(21ri/6) be a primitive sixth root of unity. Consider the
curve C : y2 = xe - 1, the automorphism f (x, y) = (tx, -y), and the
differentials (wi,w) _ (dx/y, xdx/y). Prove that the corresponding trans-
formation matrix U' described in (a) is given by

U'=(0 2 ).

Deduce that -if and det(U) = -1.
(c) Topologically, C may be constructed as a two-sheeted covering of P'
ramified above the six points 1, i, ... , f 5. Thus it can be represented as
two sheets (i.e., two copies of the complex plane) glued along three cuts
("schnitten") joining these ramification points as illustrated in Figure A.5
(cf. Lange-Birkenhake [1, page 346]). The figure also shows four loops
yi , ... , y4 that form a basis for H1 (C, Z), where the dashed lines indicate
the parts of the paths lying on the lower sheet.
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The Riemann surface g2 = xe - 1 with cuts and loops
Figure A.5

Show that the transformation matrix of f described in (a) is given by

`M=
0

71110
0

(Hint. Compute intersections f(ys) rye.)

(d) Piece together the information gathered above to show that C has a
period matrix given by

_ (2i/vr3- i/vf3- 1 0`i/f 2i/f 0 1

(e) Let p = (-1 + i,/3-)/2, and let E be the elliptic curve E = C/(Z+ Zp).
Prove that Jac(C) is isogenous to the product E x E.
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A.7. Abelian Varieties over Arbitrary Fields

In this section we will give a purely algebraic description of the geome-
try of abelian varieties. In particular, we allow the field of definition to
have positive characteristic. Our main tools will be projective geometry
and the addition law, in particular the translation maps to : A -. A and
multiplication maps [n] : A -- A.

A.7.1. Generalities

We start by recalling that any algebraic group, such as an abelian variety,
is automatically smooth. This is true because it has at least one smooth
point, hence a smooth open subset U, and then the translation maps can
be used to cover the algebraic group with copies of U. On the other hand,
we have defined an abelian variety to be a projective algebraic group, and
it is not at all obvious from this definition that the group law must be
commutative. In order to prove this fact, we will need the following basic
lemma from projective geometry.

Lemma A.7.1.1. (Rigidity lemma) Let X be a projective variety, let Y
and Z be any varieties, and let f : X x Y - Z be a morphism. Suppose
that there is a point yo E Y such that f is constant on X x {yo}. Then f
is constant on every slice X x {y}.

If f is also constant on some slice {xo} x Y, then f is a constant
function on all of X x Y.

PROOF. The variety X is projective, and projective varieties are proper
(Hartshorne [1, Theorem 11.4.9]), so the projection map p : X x Y -. Y is
closed. Hence if U is an affine neighborhood of xo = f (x, yo), then the set
W = p(f-'(Z U)) is closed in Y. By the hypothesis, yo 0 W; hence
Y W is a dense open subset of Y. For any y ¢ W, the projective variety
f (X x {y}) is contained in the affine open set U, hence is reduced to a
point. This completes the proof of the first statement of the lemma, and
the second statement is clear. 0

Notice that the hypothesis that X is projective is crucial. For example,
the map A' xA' -+ A' given by (x, y) '- xy is constant on the slices A' x {0}
and {0} x A', but it is certainly not the constant map.

Corollary A.7.1.2. Let 0: A - B be a morphism between two abelian
varieties. Then 46 is the composition of a translation and a homomorphism.

PROOF. Let eA and eB be the identity elements of A and B, respectively.
Composing 0 with a translation, we may assume that 0(eA) = eB. Since we
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do not yet know that the group laws are commutative, we will temporarily
write them multiplicatively. Consider the map

f : A x A -+ B, f(x,y) = i(xyMx)-10(y)-1

It is clear that f ({eA} x A) = {eB} and f (A x {eA}) = {eB}, so the rigidity
lemma (A.7.1.1) says that f is a constant. Hence f (x, y) = f (eA, eA) = eB,
which means precisely that 0 is a homomorphism.

Notice that Corollary A.7.1.2 is analogous to Lemma A.5.1.1.

Lemma A.7.1.3. An abelian variety is a commutative algebraic group.

PROOF. Corollary A.7.1.2 tells us that the inversion morphism i : A -+ A,
i(x) = x'1, must be a homomorphism. Hence i(xy) = i(x)i(y), so A is
commutative. (See Exercise A.7.3 for another proof closer to the analytic
one.)

We now know that the group law on an abelian variety is commutative,
so we will henceforth write the group law additively.

Rational maps from varieties to group varieties have the following im-
portant property.

Lemma A.7.1.4. (Weil) A rational map from a smooth variety into an
algebraic group either extends to a morphism or is undefined on a set of
pure codimension one.

PROOF. See Weil [2, 3], Artin [1, Proposition 1.3], or Silverman [2, IV.6.2].
0

Corollary A.7.1.5. A rational map from a smooth variety into an
abelian variety extends to a morphism.

PROOF. Since an abelian variety is projective, the set of points where the
map is not defined has codimension at least two (Theorem A.1.4.4). Then
we can use Lemma A.7.1.4 to conclude that the map extends to a morphism.

0

For example, Corollary A.7.1.5 implies that a rational map from lP" to
an abelian variety is constant (see Exercise A.7.4). Corollary A.7.1.5 is a
powerful tool in analyzing maps to an abelian variety. It is complemented
by the next proposition, which describes maps from an abelian variety.

Proposition A.7.1.6. Let A be an abelian variety, and let f : A -i Y
be a morphism. Then there is an abelian subvariety B of A such that for
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any x E A, the connected component of f -'(f (x)) containing x is equal
to B + x.

PROOF. Let Cx be the connected component of f If (x) } containing x,
and let B = Co. We consider the map

0: AxC2-.Y, (a,u)' f(a+u).

We note that ¢({0} x Cx) is a point. The rigidity lemma (A.7.1.1) implies
that 0({a} x Cx) is a point for any a. Equivalently, f(a+C.) = f(a+x).
But a - x + C. is connected and contains a, so we see that a - x + Cx C Ca .
By symmetry, we must have equality. (Note that the rigidity lemma applies
to each irreducible component.) Putting a = 0 gives C. = x + B, so it
remains to show that B is a subgroup. If b E B, then C_b = -b + B,
so 0 E C_b. Hence C_b = B, or equivalently, -b + B C B, which shows
that B is a subgroup.

A.7.2. Divisors and the Theorem of the Cube

In this section we will study divisors on abelian varieties. Since abelian
varieties are smooth, we do not need to worry about distinguishing between
Cartier and Well divisors, so we will write Pic(A) for the divisor class group
of A and we will use - to denote linear equivalence. We are especially
interested in divisor relations that reflect the group structure, and we will
also want to derive a criterion for ampleness.

In order to state our first result, we need to define various projection-
summation maps. Thus for any subset I of { 1, 2, 3}, we define a map

sr:AxAxA-+A, 81(xl,x2ix3)=F, xi.
iE1

For example, 813(x1, x2, x3) = x1 +x3 and 32(Xi, X2, x3) = x2. We are now
ready for the following fundamental theorem.

Theorem A.7.2.1. (Theorem of the cube on abelian varieties) Let A
be an abelian variety. Then for every divisor D E Div(A), the following
divisor class relation holds in A x A x A:

s123D-s12D-s13D-s23D+sID+s;D+s3D-0.
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PROOF. To ease notation, we will let

cube(D) = 8123D - s12D - s13D - s23D + s1D + s*2D + s3D

_ - (-1)#'s (D)
IC{ 1,2,3}

be the divisor sum we are studying. We start by giving a proof when the
ground field is C. It is enough to prove the theorem for effective divisors D,
which means that D is the divisor of some theta function 0. We define a
function on A x A x A by

F (z1,z2,x3) =
0(Z1 + Z2 + Z3)0(zi)B(z2)0(z3)

B(Z1 + Z2)0(zi + Z3)0(Z2 + Z3)

It is clear that div(F) = cube(D). Further, using the functional equation
of the function 0, we find that the automorphy factor of F is trivial. In
other words, F is a meromorphic function on A x A x A whose divisor is
cube(D), so cube(D) - 0.

This proves the theorem over C, and so by the Lefschetz principle
over any field of characteristic zero. In the general case, we can deduce
Theorem A.7.2.1 from the following more general result, which also explains
the word "cube" in the name of the theorem.

Theorem A.7.2.2. (Theorem of the cube) Let X, Y, and Z be pro-
jective varieties, and let (xo, yo, zo) E X x Y x Z. Let D be a divisor on
X x Y x Z whose linear equivalence class becomes trivial when restricted
to each of the three slices

X x Y x {zo}, X x {yo} x Z, and {xo} x Y X Z.

Then D is linearly equivalent to zero on X x Y x Z.

PROOF. See Mumford [2, II.6]. 0

We now explain how Theorem A.7.2.2 can be used to prove Theo-
rem A.7.2.1. Let i be the injection

i:AxA-.AxAxA, i(x1ix2)=(xl,x2i0).

We apply Theorem A.7.2.2 with X = Y = Z = A and xo = yo = zo =
0. Theorem A.7.2.2 (and symmetry) say that it is enough to show that
i' (cube(D)) = 0 in Pic(A x A). To do this, we compute

8123 0 01, x2) = x1 + x2 = 812 o i(x1, x2),

823 O 01, x2) = X2 = 82 o 01, x2)

813 o i(x1, x2) = x1 = 81 0 i(x1, x2)+

83 0 i(xl, x2) = 0.
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Hence all of the terms in the sum

i'(cube(D)) = E (-1)#('}(sI o i)'(D)
Ic{1,2,3}

cancel. This completes the proof of Theorem A.7.2.2.

123

Let P23, P13, P12 be the projections from X x Y x Z onto Y x Z, X x Z,
and X x Y, respectively. Then the theorem of the cube can be rephrased
as saying that the map

Pic(Y X Z) X Pic(X X Z) X Pic(X X Y) Pic(X X Y X Z),
(C1, C2, C3) f--i P33C1 +P13C2 +P12C3,

is surjective, or in fancier language, that the functor Pic is quadratic. (See
Mumford [2, II.6] or Serre [3].) The theorem is not true with only two
factors. For example, let C be a curve of genus g > 1, and let D be the
divisor A - C x { P} - { P} x Con the product C x C. Then the restrictions
of D to the two slices {P} x C and C x {P} are trivial, but the restriction
of D to C x {Q} is (the class of) (Q) - (P), which is not trivial unless
P = Q or C is rational. The correct statement for two factors, which is
an intermediate step in the proof of the theorem of the cube, is called the
seesaw principle.

Lemma A.7.2.3. (Seesaw principle) Let X and Y be two varieties, let
c E Pic(X x Y), and define maps ix(y) = (x, y) and pl(x,y) = x.
(i) If is(c) = 0 in Pic(Y) for all x E X, then there exists a class c' E

Pic(X) such that c = p1 (c').
(ii) If furthermore c is trivial when restricted to some slice X x {yo}, then
c = 0 in Pic(X X Y).

PROOF. (Sketch) Let D be a divisor in the class c. For all x in some
open subset U of X, we have iz(D) = div(fy). Set 9(x, y) = fs(y) and
D' = D - (g). Then, possibly after shrinking U, we find that iy(D') = 0
for all x E U. Hence the support of D' is concentrated on (X . U) x Y,
and thus D' has the form D" x Y = pi D". The second statement is clear.

0

We deduce several important corollaries from the theorem of the cube.

Corollary A.7.2.4. Let A be an abelian variety, let V be an arbitrary
variety, and let f, g, h : V -. A be three morphisms from V to A. Then for
any divisor D E Div(A),

(f +g+h)`D-(f +g)`D-(f +h)`D-(h+g)'D+f'D+g'D+h'D - 0.
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Note that this is a linear equivalence on V x V x V, where for example the
map (f+h):V xV f(x)+h(z).
PROOF. Let cube(D) be the divisor described in Theorem A.7.2.1. Then
the divisor we are analyzing is the pullback of the divisor cube(D) by the
map(f,g,h):V xV xV -.AxAxA. But cube(D) '0 0 from (A.7.2. 1),
so we are done.

Corollary A.7.2.4 implies that for any divisor class c E Pic(A), the
map

Mor(V, A) x Mor(V, A) -. Pic(V x V), (f,9) - (f+g)'c- f'c-g'c,
is bilinear. The next corollary gives a quadratic property.

Corollary A.7.2.5. (Mumford's formula) Let D be a divisor on an
abelian variety A, and let [n] : A -. A be the multiplication-by-n map.
Then (n2+n)

[n]'(D) D+
(n2_n)

In particular,

n2D if D is symmetric ([-1]'D - D),
nD if D is antisymmetric ([-1]'D - -D).

PROOF. The formula is trivially true for n = -1, n = 0, and n = 1. Next
we apply Corollary A.7.2.4 with f = [n], g = [1] and h = [-1] to obtain

[n + 1]'D + [n - 1]'D - 2[n]'D - D + [-1]'D.

Now an easy induction, both upwards and downwards from n = 0, gives
the desired result. Or one can use the following elementary lemma.

Lemma A.7.2.6. Let G be an abelian group, and let f : Z -. G be a
map with the property that f (n + 1) - 2f (n) + f (n - 1) is constant. Then

f(n) = n22 nf(1)+ n22 nf(-1) (n2 - 1)f(0)

PROOF. Any quadratic function g(n) = an2 + bn + c has the property that
g(n + 1) - 2g(n) + g(n - 1) is constant. In particular, this is true of the
function g(n) =

i
(n2 + n) f (1) +

2
(n2 - n) f (-1) - (n2 - 1)f(0). On the

other hand, any function with this property is completely determined by
its values at n = -1, 0, 1. Since g(n) = f (n) for n = -1, 0, 1, it follows
that g(n) = f (n) for all n.

We now can give an algebraic proof that the kernel of multiplication
by n on an abelian variety of dimension g is isomorphic to (Z/nZ)29, pro-
vided that n is relatively prime to the characteristic of the base field. Notice
that this fact is obvious for complex tori.
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Theorem A.7.2.7. Let A be an abelian variety of dimension g over an
algebraically closed field k of characteristic p > 0.

(i) The multiplication-by-n map [n] : A -+ A is a degree n2g isogeny.
(ii) Assume either that p = 0 or that p f n. Then

A[n] = ker[n] = (Z/nZ)2g.

(iii) If p > 0, then A[pt] (Z/ptZ)' for some integer 0 < r < g.

PROOF. (i) The addition map p : A x A -+ A on the abelian variety A
induces a map µ.: To(A) x To(A) -+ To(A) on the tangent space of A x A
at (0, 0), and it is not hard to see that it. is simply the addition map on
the tangent space. It follows by induction that [n]. is multiplication by n
on the tangent space. If p = 0 or if p f n, then [n]. is an isomorphism on
To(A). Therefore, dim([n]A) = dim(A), which shows that [n] is surjective
and hence is an isogeny. If pin, then [n] is still an isogeny, but since we will
not need to use this fact, we will refer the reader to Mumford [2, 11.6, page
64] for the proof.

We will use the following lemma to compute the degree of [n].

Lemma A.7.2.8. Let A be an abelian variety of dimension g over an
algebraically closed field k of characteristic p > 0, and let : A --+ A be an
isogeny.
(a) Let Dl,... , Dg E Div(A). Then

(0`Di,...,O`Dg)A = deg(0)(D1,...,Dg)A.

(See Section A.2.3 for a general discussion of intersection indices.)
(b) If D E Div(A) is ample, then D9 = (D, D,.. . , D)A > 0.

PROOF. (a) This is a special case of Theorem A.2.3.2.
(b) Replacing D with a multiple, we may assume that D is very am-
ple and use it to define an embedding F : A -+ Pt. Since A has di-
mension g, we can choose hyperplanes Hl, ... , H. such that the intersec-
tion F(A) n Hl n . . . n Hg is finite, say consisting of N points. Then

D9=(F`Hi,...,F*Hg)>N>0.

We now resume the proof of Theorem A.7.2.7. Let D E Div(A) be
an ample symmetric divisor. (For example, let D' be very ample and take
D = D' + [-1]'D'.) Then

deg([n])Dg = ([n]*D)g (from Lemma A.7.2.8(a)),
= (n2D)9 (from Corollary A.7.2.5),
= n29Dg (by linearity of intersection index).

But we also know from Lemma A.7.2.8(b) that Dg > 0, so we conclude
that deg([n]) = n2g. This completes the proof of part (i) of (A.7.2.7).
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Suppose now that p = char(k) = 0 or that p $ n. Then the isogeny [n]
is separable, since its degree is prime to p, so its kernel has order equal to
the degree. In other words, #A[n] = nk Further, this formula is true for
every such integer n. The following elementary lemma implies that A[n]
(Z/nZ)29, which will complete the proof of part (ii) of (A.7.2.7). Finally,
since we will not need part (iii), we refer the reader to Mumford [2, 11.6,
page 64] for its proof.

Lemma. Let A be a finite abelian group of order n', and suppose that
for every integer m.I n' , the m-torsion subgroup A[m] satisfies #A[m]
Then A = (Z/nZ)r.

PROOF. For any integer d > 2, let C(d) denote a cyclic group of order d.
The structure theorem for finite abelian groups says that there are integers

that
First we observe that d, kills A, so nr = #A = #A[d,] = d;. Thus

d, = n. Next we note that d1 divides each d;, so C(d,)[d1] = C(dl),
and hence di = #A[d1] = di. Therefore, r = s. Now, for each i, let
ei = dr/d; = n/d;, so the e;'s are integers. Then

nr=#A=d1d2...dr=nr/(ele2...er)

It follows that el = = er = 1, so d; = n for all n. Hence A = C(n)r,
which completes the proof of the lemma.

Having studied the effect of multiplication-by-n on divisors, we next
describe the action of the translation maps.

Theorem A.7.2.9. (Theorem of the square) Let A be an abelian variety,
and for each a E A, let ta : A A be the translation-by-a map ta(x) _
x +a. Then

to+b(D) + D - tQ(D) + tb (D) for all D E Div(A) and a, 6 E A.

In other words, for any divisor class c E Pic(A), the map

4i, : A -+ Pic(A), a' -+ ta(c) - c,

is a group homomorphism.

PROOF. We just need to apply Corollary A.7.2.4 with the maps f (x) = x,
g(x) = a, and h(x) = b. o

In this section we have used the theorem of the cube as the cornerstone
of our theory, but we want to mention that it is also possible to start with
the theorem of the square and deduce the theorem of the cube (see Exer-
cise A.7.5). Notice that over C, the theorem of the square is an immediate
consequence of the fact that the automorphy factor of a theta function is
linear.
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Notation. For any divisor D E Div(A), we let

A --4 Pic(A), a -- class(tQ(D) - D),

be the homomorphism described in (A.7.2.9), and we let K(D) =

The group K(D) can be used to give an ampleness criterion for divisors
on abelian varieties.

Theorem A.7.2.10. Let D be an effective divisor on an abelian variety
A. Then the linear system 12DI is base-point free, and the following four
conditions are equivalent:

(i) D is ample.
(ii) The group K(D) _ {a E A I t.* (D) - D} is finite.

(iii) The stabilizer G(D) = {a E A I to (D) = D} is finite.
(iv) The morphism A --+ PL(2D) associated to 2D is a finite morphism.

PROOF. By the theorem of the square, t*xD + tyD - 2D, and clearly a
point y E A cannot be on every translate of D. Hence 2D is base-point
free.

Let f : A --+ PL(2D) be the morphism associated to 2D, and let
B(D) be the abelian subvariety attached to f by Proposition A.7.1.6. Then
f -I (f (a)) = B(D)+a for every a E A. In particular, f -1 (f (a)) is invariant
under translation by any point b E B(D). It follows that tb o f' = f' as
maps on divisors. In particular, if we take a hyperplane H in PL(2D) with
P H = 2D, then we find that

2D = f* (H) = tb o f* (H) = tb(2D) = 2tbD.

(N.B. This is an equality of divisors, not merely of divisor classes.) Hence
b E G(D), so we have proven that B(D) C G(D).
(ii) (iii) This is obvious from the trivial inclusion G(D) C K(D).
(iii) ; (iv) The map f is finite if and only if its fibers have dimension 0,
so if and only if B(D) is finite. Hence the inclusion B(D) C G(D) proven
above gives the desired result.
(iv) . (i) This is a special case of Proposition A.3.2.4(ii)
(i) ==*(iii) Let a E A be a point with a D, and let V = a+G(D) C A.
We claim that V fl D = 0. To see this, suppose that x E V n D. Then
x=a+g forsomegEG(D),andsoa=x-gED-g=D,sinceD
is invariant under translation by g. This contradicts the choice of a, so
we see that V n D = 0. But D is effective and ample by assumption, so
Exercise A.3.6(b) implies that dim(V) = 0. Therefore, G(D) is finite.
(iv) , (ii) Let b be in a connected component K(D)°. Then 4i2D o tb =
Lb o 02D for some Lb E PGL(t(2D)). The map b F4 Lb is from a projective
variety to an affine group, hence must be constant. We conclude that 4b2D
is constant on K(D)°, which therefore must be a point.
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A.7.3. Dual Abelian Varieties and Poincare Divisors

The main purpose of this section is to show that Pic(A) has a "connected
component" that is itself an abelian variety. We start by giving one de-
scription of this connected component.

Definition. Let A be an abelian variety. The group Pic°(A) is the group
of translation-invariant divisor classes,

Pic°(A) = {c E Pic(A) I tac = c for all a E A}.

Theorem A.7.3.1. Let A be an abelian variety, let c E Pic(A), and let

4?, : A ---i Pic(A), a i--+ tac - c,

be the homomorphism described in Theorem A. 7.2.9.
(a) The image of 4i,, lies in Pic°(A).
(b) If nc E Pic°(A) for some integer n 0, then c E Pic°(A).
(c) If the divisor class c is ample, then 41c : A -+ Pic°(A) is surjective and
has a finite kernel.

PROOF. (a) This is clear from the theorem of the square (A.7.2.9),

tb 4?,(a)) = tb (tQc - c) = ta+bC - tbC = taC - C.

(b) It is clear from the definition of 4)c that 4ic+e = 4ic + 4'c', so using (a)
and the definition of Pic°(A), we can say that there is an exact sequence

0 --i Pic°(A) --p Pic(A) --i Hom(A, Pic°(A)),
C --+ 4;c.

Now suppose that nc E Pic°(A). /Then for all a /E A we have

0 = 4'nc(a) = 4,c([nja)

But A is n-divisible (i.e., [n](A) = A), so 4ic is the zero map. Hence
c E Pic°(A).
(c) See Mumford [2, 11.8, Theorem 1] or Lang [3, IV.2, Theorem 4] . A
proof over C is sketched in Exercise A.5.5.

Remark. The Neron-Severi group of A, denoted by NS(A), is the quotient
group NS(A) = Pic(A)/Pic°(A). Theorem A.7.3.1(b) says that NS(A)
has no torsion. We also see that the map c -4 4ic induces an injective
homomorphism NS(A) -+ Hom(A, Pic°(A)).

The divisor classes in Pic°(A) can also be characterized as the anti-
symmetric or odd classes.
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Proposition A.7.3.2. Let c E Pic(A). The following are equivalent:
(i) [-1]`c = -c.

(ii) c E Pic°(A), or equivalently, K(c) = A.
(iii) 8120 - plc - Pzc = 0, where 812,P1,P2 : A x A -i A are the usual

maps, 812 (x,11) =.T + y, Pl (x, y) = x, and p2 (x, y) = y.

PROOF. To ease notation, we will write r = s12c - plc - plc. Also, for
any a E A, we let is : A --, A x A be the map ia(x) = (a,x). Notice that
812 oia(x) = ta(x), P1 oia(x) = a, and p2 oia(x) = x. Using these formulas,
we obtain the relation

iaC) = ia(812C - pic - plc) = tac - C.

(iii) (ii) We are given that I'c = 0, so tac - c = ia(I'c) = 0. Hence
c E Pic°(A).
(ii) (iii) We are given that tac - c = 0 for every a E A, so ia(I'c) = 0.
Further, r, is clearly trivial when restricted to A x {0}, so the seesaw
principle (A.7.2.3) implies that Fc = 0.
(ii) (i) Fix an ample symmetric divisor class co E Pic(A). Theo-
rem A.7.3.1(c) says that there is an a E A such that c = taco - co. We use
the theorem of the square (A.7.2.9) to calculate

[-1]`c = [-1]'taco - t*-.CO - co = -taco + co = -c-

(i) (ii) For an arbitrary c E Pic(A), we claim that c - [-1]'c is in
Pic°(A). To verify this, we compute

to (c - [-11`c) - (c - [-1]'c)
= tac - ac - C + [-1]*c since [-1] o to = t-a o [-1]
= (tac - c) - [-11`(t aC - C)
= (tac - c) - [-1]`(c - tac) theorem of the square (A.7.2.9)
= c' + [-1]`c' where c' = tac - c (Theorem A.7.3.1

says that c' E Pic°(A).)
= 0 from (ii) = (i).

Now suppose that [-1]`c = -c. Then by what we just proved, 2c =
c- [-1]'c E Pic°(A). It follows from Theorem A.7.3.1(b) that c E Pic°(A),
which completes the proof of the theorem.

We can give a similar characterization of symmetric or even classes.

Proposition A.7.3.3. Let c E Pic(A). The following are equivalent:
(i) [-1]*c = c.
(ii) 812c + d12c = 2pic + 2ppc, where 812, pi, p2 are as in (A.7.3.2) and

d12(x,y) = x - y.

PROOF. Let I'c = s12c + d12c - 2p1c - 2P2 c, and let j : A --+ A x A be the
map j(x) = (0, x). Then

812 0 j(x) = x, d12 0 j(x) = -X, P1 0 j(x) = 0, and p2 oj(x) = x,
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so we can compute

j'(rc) = j*(312c + d12c - 2pic - 2p2c) = c + [-1]'c - 0 - 2c = [-1]'c - c.

This implication is clear from the relation j*(rc) = [-1]'c - c.
(i) - (ii) Let ia(x) = (x, a) be as in the proof of Proposition A.7.3.2.
Then the theorem of the square (A.7.2.9) tells us that

ia(rc) = ia(s12C + d12C - 2pic - 2p2 c) = tac + t'ac - 2c = 0.

In other words, the divisor class r, is trivial on every slice A x {a}. Notice
that we have not yet used the assumption that [-1]'c = c. However, if we
make that assumption, then we get j'(rc) = 0 from above, so rc is also
trivial on the slice {0} x A. It follows from the seesaw principle (A.7.2.3)
that r, = 0.

Notice that Propositions A.7.3.2 and A.7.3.3 say that odd divisor
classes have a certain linear property and that even divisor classes have
a quadratic property.

We now come to the classical, yet astonishing, fact that Pic°(A) can be
given the structure of an abelian variety. We formalize the correspondence
in the following way.

Definition. An abelian variety A is called the dual abelian variety of A if
there exists a divisor class P on A x A such that the maps

A -+ Pic°(A), a i-- id(P),
and

A -+ Pic°(A), a +--+ ia(P),

are both bijections. (Here is : A -+ A x A is the map ia(a) = (a, a), and
iQ : A -+ A x A is the map ia(a) = (a, a).) The divisor class P is called the
Poincard divisor class.

Theorem A.7.3.4. The dual abelian variety A exists and together with
the Poincard class P E Pic(A x A) is unique up to isomorphism. Further,
the Poincard class P is even.

PRooF. We will give the proof below in the case that there is a divi-
sor class c E Pic(A) with K(c) = 0. In general, one chooses any am-
ple c. Then K(c) is finite (A.7.3.1), and one takes A to be the quotient
A/K(c). The Poincar6 class is constructed by showing that the divisor
class s12c - plc - plc on A x A descends to the quotient A x A. For fur-
ther details, see Mumford [2, II.8]. See also Exercise A.5.6 for a proof over
the complex numbers.

The map 4bc : A -+ Pic°(A) will induce an isogeny 4D. : A --+ A,
provided that its kernel K(c) is finite, or equivalently by (A.7.2.10), c is
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ample. Such an isogeny is called a polarization. It is said to be a principal
polarization if K(c) = {0}. Thus c gives a principal polarization if the
map 4?,: : A -+ A is an isomorphism. Not every abelian variety admits a
principal polarization, but we will see in the next section that Jacobian
varieties come naturally equipped with a principal polarization. If A does
admit a principal polarization, then A is its own dual and it is possible to
describe the Poincar6 divisor quite precisely.

Theorem A.7.3.5. Suppose that there exists a divisor class c E Pic(A)
such that K(c) = 0, where K(c) = {a E A I tic = c}. Then A is its own
dual, and

s12c - plc - plc E Pic(A x A)

is a Poincard divisor class.

PROOF. Let J' = s12c - pic - plc, and for each y E A, let iv : A -+ A x A
be the map iy(x) = (x, y). The divisor `P is clearly symmetric, so it suffices
to show that the map

A -+ Pic°(A), y '--> iyP,

is an isomorphism. Notice that

s12 o iy(x) = x + y = ty(x), pl o iy(x) = x, and p2 o iy(x) = y.

Using these, we can compute

iyP=iy* 0 82C-iy opic - iy0 p2c=tyc-c='c(y)

In other words, the map y t--+ i,T is equal to 4ic. But our assumption that
K(c) = 0 means that 4?, is an isomorphism (A.7.3.1(c)), so P is a Poincar6
divisor.

We close this section with a brief mention of how some of these con-
structions generalize to an arbitrary smooth projective variety V. One
can define Pic°(V) to be the subgroup of Pic(V) composed of divisor
classes algebraically equivalent to zero (see the remark at the end of Sec-
tion A.2.3). The group Pic°(V) can always be given the structure of an
abelian variety, which is called the Picard variety of V. The quotient
NS(V) = Pic(V)/Pic°(V) is called the Neron-Severi group of V and is a
finitely generated group. For example, if A is an abelian variety over C,
then NS(A) is the group of Riemann forms on A, and if C is a smooth
projective curve, then NS(C) = Z.

There is another abelian variety associated to V, called the Albanese
variety Alb(V). (See Section A.6.4 for a discussion of Alb(V) when V is
defined over C.) The Albanese variety is the maximal abelian variety into
which V maps. In other words, there is a map 7r : V --+ Alb(V) such that
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for every abelian variety B and every morphism f : V - B there is a
unique fo : Alb(V) -+ B such that f = fo o x. If V = A is an abelian
variety, it is clear that Alb(A) = A. If V is a curve, we will see in the
next section that the Albanese variety is the Jacobian, hence is isomorphic
to the Picard variety. In general, the connection between the Picard and
Albanese varieties is as described in the following result.

Proposition A.7.3.6. Let 7r : V - Alb(V) be the universal map from
V to its Albanese variety. Then the pullback map 7r' : Pic°(Alb(V)) -
Pic°(V) is an isomorphism. In particular, the Albanese and Picard varieties
are dual to each other.

PRooF. See Lang [3, Section IV.4 and VI.1, Theorem 1].

EXERCISES

A.7.1. Let D and E be divisors on an abelian variety, and let m be a nonzero
integer. Prove that K(mD) = [m] -'(K(D)) and K(D) flK(E) C K(E +
D).

A.7.2. Let A be a complex abelian variety of dimension g, and let D be an
ample divisor on A. Show that there exist integers d1..... d9 such that
K(D) L- (Z/d1Z)2 ® ... ® (Z/d9Z)2 and f(D) = di ... d9 = #K(D) Ex-
tend this to the case where A is defined over an arbitrary field of charac-
teristic zero.

A.7.3. This exercise provides an "analytic" proof that the group law on an abelian
variety is abelian.
(a) Let G be a projective algebraic group, and for each g E G define a
map ¢(g) : G -+ G by 0(g)(h) = ghg-'. The map 0(g) induces an endo-
morphism of the local ring O,!,c, and hence an endomorphism ¢k(g) of the
vector space 0.,G/Mkc for any integer k. Prove that ¢k(g) is the identity
map for all k. (Hint. A morphism from a projective variety to an affine
variety must be constant.)
(b) Use (a) to prove that 0(g) induces the identity map on Deduce
that 4'(g) itself is the identity, and hence that G is commutative.

A.7.4. The purpose of this exercise is to show that a rational map from P^ to
an abelian variety A is constant.
(a) Let G be an algebraic group, and assume that G can be embedded as a
dense open subset of a smooth projective variety X. Prove that any rational
map f : G - -+ A must be a homomorphism followed by a translation.
(Hint. By Corollary A.7.1.5, f is a morphism and the map (x, y) H f (xy) -
f (x) - f (y) extends to X x X --+ A. Use Lemma A.7.1.1 to finish the
proof.)
(b) Now let f : P" --+ A be a rational map. Prove that f is constant.
(Hint. Note that P" contains the group G;, and the group G;.)
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A.7.5. Show that the theorem of the cube (A.7.2.1) can be deduced directly
from the theorem of the square (A.7.2.9) and the seesaw principle (A.7.2.3).
Thus we could have used the theorem of the square as our starting point
to prove the basic divisor relations on abelian varieties.

A.7.6. In this exercise we sketch the proof of the following theorem of Lang. Let
X be a projective variety, let e E X be a point, and let m: X x X - X
be a morphism such that

m(e, x) = m(x, e) = x for all x E X.

Then X is an abelian variety. To ease notation, we write m(x, y) = xy.
(a) Consider the map ip : X x X -+ X x X defined by O(x, y) = (xy, y).
Show that iO''(e,e) _ {(e,e)}, and hence that 0 is onto (Hint. Use the
dimension theorems.)
(b) Show that there exists an irreducible component I' of the algebraic set
{(x, y) E X X X I xy = e} satisfying p2(r) = X. Show that r also satisfies
pi (r) = x.
(c) Now consider the map

0: I X X ---, X ((x, x), y) '-' x'(xy)
Prove that 0((z', x), y) = y. (Hint. Use the rigidity lemma.) Show also
that xx' = x 'x = e for all (x', x) E I'.
(d) Use the map

r x x x x - X, ((x', x), y, z) '-, x((xy)z),

to show that the law is associative. Conclude that (X, m) is an algebraic
group, and hence an abelian variety.

A.7.7. Let G be an algebraic group. For any (closed) subvariety V and any g E G
we let gV = {gx I x E V} be the translate of V, and we define the stabilizer
of V to be the set

Stabv = {g E G [ gV = V}.

Prove that Stabv is a (possibly reducible) algebraic subgroup of G.
A.7.8. (Weil pairing). Let A/k be an abelian variety, let m be a positive integer,

and let a E A[m] correspond to a divisor Din Pic°(A). (If char(k) = p > 0,
we also assume that p { m.)
(a) Show that there exist rational functions f,g E k(A) such that mD =
(f) and f(mx) = g(x)m.
(b) Let a E A[m]. Prove that the function g(x+a)g(x)-' is constant, that
its value depends only on a and a, and that the value lies in the set of m`h
roots of unity µm We will denote this value by e,,, (a, a).
(c) Show that e,,, is a perfect pairing em : A[m] x A[m] -+ pm.
(d) Let c E Pic(A) be an ample divisor defined over k, assume that m is
coprime with card(K(c)), and let I : A -+ Pic°(A) = A be the associated
polarization 4',,(a) = tac - c. Prove that the pairing

eqm : A[m] x A[m] -* µ,,,, ec,m(a,b) = e- (a, 'Vc (b)),

is a nondegenerate skew-symmetric pairing.
(e) Show that k(pm) C k(A[m]).
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A.7.9. Let A be an abelian variety, let D E Div(A), and define a map a(r, y) _
(x+y,x-y)
(a) Show that a is an isogeny from A x A to A x A. What is its degree?
(b) If D is symmetric, prove that

a'(D x A + A x D) - 2(D x A + A x D).

(c) If D is antisymmetric, prove that a' (D x A + A x D) - 2(D x A).
A.7.10. Let A be an abelian variety, and set Endc(A) = End(A) ® Q.

(a) Let a E End(A). Prove that a is an isogeny if and only if a E
EndQ(A)'.
(b) Suppose that A is simple. Prove that EndQ(A) is a skew field (i.e.,
EndQ(A) satisfies all of the axioms of a field except that its multiplication
may not be commutative).
(c) Again suppose that A is simple, let K = EndQ(A), and let B = A"'.
Prove that Eudo(B) = Mat(m x m, K).

A.B. Jacobians over Arbitrary Fields

In this section we develop the algebraic theory of Jacobians for smooth pro-
jective curves. The Jacobian of a curve C is an abelian variety that is nat-
urally isomorphic to Pic°(C). We sketch the construction in Section A.8.1,
the main results being given in Theorems A.8.1.1 and A.8.2.1. The con-
struction relies on some knowledge of families of varieties (Hilbert or Chow
spaces), which we briefly describe in an appendix. Readers desirous of
delving further into the matter should consult the survey of Milne [2] and
the delightful book of Mumford [3]. The book of Serre [1] also contains the
construction of Jacobians and generalized Jacobians.

A.8.1. Construction and Properties

A curve of genus 0 has Pic°(C) = 0, so we will concentrate on curves
of positive genus. Our first theorem describes the main properties of the
Jacobian of such curves.

Theorem A.8.1.1. Let C be a smooth projective curve of genus g > 1.
There exists an abelian variety Jac(C), called the Jacobian of C, and an
injection j : C ti Jac(C), called the Jacobian embedding of C, with the
following properties:

(i) Extend j linearly to divisors on C. Then j induces a group isomor-
phism between Pic°(C) and Jac(C).



§A.8.1. Construction and Properties

(ii) For each r > 0, define a subvariety Wr C Jac(C) by

Wr = j(C) + ... + j(C)
r copies

135

(By convention, Wo = {0}.) Then

dim(Wr) = min(r, g) and W9 = Jac(C).

In particular, dim(Jac(C)) = g.
(iii) Let 6 = Wg_1. Then 6 is an irreducible ample divisor on Jac(C).

Remarks. (i) It is clear that the curve C determines the pair (Jac(C), 6)
up to a natural isomorphism. The converse is called Torelli's theorem: Over
an algebraically closed field, the isomorphism class of the pair (Jac(C), 0)
determines the isomorphism class of the curve C. See Milne [2, Theo-
rem 12.1) for a further discussion.

(ii) Suppose that the curve C is defined over a field k. Then its Jacobian
variety Jac(C) is also defined over k. Unfortunately, it may not be possible
to define the injection j : C '-. Jac(C) over k. More precisely, the map j
is defined by choosing a divisor D of degree 1 and then setting

j : C ti Pic°(C) 25 Jac(C), j(P) = C1((P) - D).

In particular, if there is a point P° E C(k), then we can take D = (P°) to
get a map j that is defined over k. This will suffice for our proof of Faltings'
theorem (Mordell conjecture), since if C has no k-rational points, then it
is not difficult(!) to prove that C(k) is finite. We also note that once we
have identified Jac(C) and Pic°(C), then the embedding j is unique up to
translation.
(iii) There is, of course, a more intrinsic definition of the Jacobian as a

variety representing the functor Pic°. See Milne [2] for details and Exer-
cise A.8.3 for some functoriality properties.

The fundamental tool for the algebraic construction of the Jacobian
is the Riemann-Roch theorem for curves. We briefly sketch the first such
construction, which is due to Weil [2,3J. Consider the symmetric powers
of the curve C,

Symr C = (C X X C)/8r.

Here 8r denotes the symmetric group on r letters acting in the obvious way
on the product of r copies of C. (See Appendix A.8.3 for more details.)
We can identify Symr C with the set of effective divisors of degree r on C.

If Jac(C) exists, then there must be a birational morphism Symg C -
Jac(C), and hence one should be able to "see" the group law on Symg C. In
fact, the Riemann-Roch theorem tells us that if D is a divisor of degree g,
then t(D) > 1. Further, for "most" choices of D, there is an equality
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t(D) = 1. (See Lemma A.8.2.2 below for a precise statement.) So if we fix
an effective divisor Do E Sym9 C, then we can add two divisors D1, D2 E
Sym9 C by setting their sum equal to the divisor D3 E Sym9 C satisfying
D1 +D2 - D.3+ Do. Notice that the divisor D3 will be uniquely determined
if and only if f(D1 + D2 - Do) = 1. This will define a rational map
Sym9 C x Sym9 C -+ Sym9 C that satisfies the axioms of a commutative
group law, except for the minor drawback that since it is only a rational
map, it is not defined at all pairs of points.

Weil then proceeds to show that such a group law defined by ratio-
nal maps can be transformed into an honest group law. More precisely,
he shows in this situation that there exists an algebraic group G and a
birational isomorphism p : Sym9 C --+ G such that p(x ® y) = p(x) + p(y)
wherever it is defined. He then uses the valuative criterion of properness
to show that G is an abelian variety, and hence that p must be a morphism
(Corollary A.7.1.5).

We are going to present a similar construction due to Chow [1], which
is perhaps less natural, but is simpler technically. The idea is to consider
Sym' C for some large n (it suffices to take n > 2g - 1). Then the map
Sym" C -+ Jac(C) should be a fibration, and the Riemann-R.och theorem
implies that the fibers are projective spaces of dimension n - g. Now, all
points play the same role, so we will not need any birational transforma-
tions. We obtain Jac(C) directly as a projective variety that parametrizes
the 1P"-9's lying in Sym" C. We now give the details of this construc-
tion, modulo some general facts about varieties parametrizing families of
subvarieties that are discussed in Appendix A.8.3.
PROOF. (sketch of Theorem A.8.1.1) For simplicity we assume that C has a
k-rational point Po E C(k). We select an integer n large enough so that for
any divisor D of degree n we have P(D) = n - g + 1. (The Riemann-Roch
theorem (A.4.2.3) says that any n > 2g - 1 will suffice.) Now consider the
variety Sym" C, whose points we identify with effective divisors of degree n
on C. We set Do = n(Po). We will use De as a base point on Sym" C.

If D E Sym" C, then the linear system IDI has dimension n-g. Notice
that the elements of IDI are points of Sym" C, so IDI is a subset of Sym" C.
In fact, it is a subvariety. In other words, a linear system of degree n
corresponds to a subvariety of Sym" C that is isomorphic to 1P"-9. Let

J = {linear systems of degree n on C},

and let 7r be the map

a:Sym"C--+J, DF--MIDI.

At this point, J is just a set, but we do know that the fibers of 7r are
isomorphic to 1P"-9.

We can use our basepoint Do to define an addition map

m:JxJ --pJ, (IDII,ID21)'-'ID1+D2-Dol.
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This construction using families of linear systems is very natural, so it is
not hard to believe the following two facts (for further details, see Ap-
pendix A.8.3):

Fact 1. J is an algebraic set, and the map zr is an algebraic morphism.

Fact 2. The map m : J x J --' J is an algebraic morphism.

Since Sym" C is a projective variety and zr is surjective, Fact 1 implies
that J is a projective variety. Then the dimension theorem (A.1.3.7) and
our knowledge of the fibers of zr give us the dimension of J,

dim(J) = dim(Sym" C) - dim(P"-9) = n - (n - g) = g.

Next we show that m defines a group law on J. The formulas

m(IDI, IDoI) = m(IDoI, IDI) = IDI and m(IDI, I2Do - DI) = IDol

show that IDol is the identity element and that inverses exist. To check
associativity, we compute

m(m(ID1I, ID2I), ID3I) = m(ID1 + D2 - DoI, ID3I)

= ID1 + D2 + D3 - 2DoI

= m(ID1I, ID2 + D3 - DoI)

= m(ID1I,m(ID2I, ID3I))

Hence m defines a group law on J, so J is an abelian variety.
We can now define a map

j:C -+ J, P- I(P)+(n-1)(Po)I,

and we can extend j linearly to get a map

j : Pic°(C) - J, class(D) -- ID + DoI.

Now the following result completes the proof of the first part of Theo-
rem A.8.1.1.

Proposition A.8.1.2. The map j is an isomorphism from Pic°(C) to J.

PROOF. Let D be a divisor of degree n. Then j(D - Do) = IDI, so j is
surjective. Next suppose that j(D) = IDoI. This means that ID + DoI =
IDoI, and hence D is a principal divisor. Therefore, j is injective.

Next consider the set W, = j(C)+ +j(C). It is the image in J of the
projective variety C x - x C; hence W, is a projective variety of dimen-
sion at most r. Also, Wr+1 is clearly equal to W, + j(C) and contains W,.,
so either W,t1 = W, or else dim(W,+1) = dim(W,) + 1. (Note that all of
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the Wr's are irreducible.) But if there is some r with Wr+i = Wr, then
by induction we see that W, = Wr for all s > r. However, the surjectivity
of the map j : Pic°(C) -+ J (A.8.1.2) tells us that the union of the Wr's
fills up J, and we know from above that J has dimension g. It follows that
dim(Wr) = r for all r < g, and that dim(Wr) = g for all r > g.

This completes the proof of Theorem A.8.1.1 except for the assertion
that the divisor a is ample. We will leave this for the next section, where we
will show that K(e) = {0}, which implies ampleness by Theorem A.7.2.10.

0

A.8.2. The Divisor e

The addition law on the Jacobian J is closely related to the addition of
divisors on the curve C. Not surprisingly, this interplay leads to interesting
divisor relations when one pulls back the theta divisor A to C. Similarly,
one would expect an interesting divisor by pulling back the Poincare divisor
s120 - p7O - pie from J x J to C x C. The next theorem describes some
of these relations.

Theorem A.8.2.1. Let C be a curve of genus g, let P° E C(k), and let
J = Jac(C) = Pic°(C) be the Jacobian variety of C. Let j : C -+ J be the
Jacobian embedding that sends a point P to the divisor class of (P) - (Po),
and for any c E J, let jc(P) = j(P)+c. Further, let 0 = j(C) + + j(C)
be the theta divisor on J, and let 9- = [-1]`e.

(i) There is a point r. E J such that

E)- = tKe.

More precisely, let Kc be a canonical divisor on C. Then #c = j(KC).
(ii) With c as in (i), for any c E J we have

jc0 ^'g(Po)-c and jc0^'g(Po)-c+ic.

(iii) Let A C C x C be the diagonal. Then

(j x j)'(8 2O - p7O - pie) - -0 + (C X {Po}) + ({Po} x C).

PROOF. Formula (i) comes from the Riemann-Roch theorem. Let D be an
effective divisor of degree g -1, so j(D) E 0. The Riemann-Roch theorem
says that

Q(Kc - D) = deg(D) - g + I + P(D) = e(D) > 1,
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which means that Kc - D is linearly equivalent to an effective divisor E
of degree g - 1. Then j(Kc) - j(D) = j(E) E 9, and hence j(D) E
9- + j(Kc). This holds for all effective divisors D of degree g - 1, which
proves that 9 C 9- + j(Kc). Writing n = j(KK), this implies that
tR9 c 9-, and since they are both irreducible divisors, they must be
equal. This proves (i).

In order to prove (ii), we will make use of the following lemma.

Lemma A.8.2.2. (Weil) Let 0 < d < g be an integer. There is a
nonempty open subset U C Symd C such that e(D) = 1 for all D E U.
Equivalently, the map Symd C --+ J = Jac(C) is injective on the set U.
(By convention, we set Sym° C to be the set consisting of the divisor 0.)

PROOF. We first observe that if D' is any effective divisor with t(D') > 1,
then

{PECIe(D'-P)=e(D')-1}
is open and nonempty. This is true because if we fix a nonzero function
f E L(D'), then

L(D' - P) = L(D') f E L(D' - P)
div(f)+D'-P>0

P E supp(D') or f (P) = 0.

Hence { P E C I I (DI - P) = I(D)) is contained in the union of the support
of D' and the set of zeros of f, so it is finite. Now apply this with D' _
Kc - D for some effective divisor D E Symd C. We find that there is a
nonempty open set U C C such that

t(Kc-D)>1=t(Kc-(D+P))=e(Kc-D)-1 forallPEU.

Since it is trivially true that

e(Kc-D)=0=* t(Kc-(D+P)) =0 for all PEC,

we see by an easy induction on the degree of D that

{DESymdCIt(KC-D)=g-d}

is open. (Note that t(Kc) = g.) But Riemann-Roch says that this is
precisely the set of D such that e(D) = 1, which completes the proof of
Lemma A.8.2.2.

We now resume the proof of Theorem A.8.2.1(ii). Let U C Sym9 C
be a nonempty open set such that Sym9 C -+ J is injective on C and such
that every D = E(PA) E U is a sum of distinct points P. Lemma A.8.2.2
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tells us that such a set exists. Let c E -j(U). Then g(Po) - c is linearly
equivalent to exactly one effective divisor (Pi) + + (P9), and further,
the PT's are distinct.

Now suppose that P E C is any point in the support of j,*9-. Then

(P) - (Po) + c - -D + (g - 1)(Po)

for some effective divisor D of degree g - 1, so (P) + D '.. g(Po) - c. It
follows that (P) + D = (P1) + + (P9). (N.B. This is an equality of
divisors, not just a linear equivalence.) Therefore, the only points that
appear in jc*9- are Pi_.., P9, and since they are distinct, they appear
with multiplicity one. Hence jc*9- = (Pr) + + (P9) - g(Po) - c. This
proves the desired result for all c in an open subset U of J.

To prove that jc*9- - g(Po) - c for all c E J, we use the theorem of
the square (A.7.2.9). Thus for any a, b, c E J we have

to+b-c9 tae +tb9 -tce .

Further, j* o tc = jc , so we see that if the desired formula is true for a, b, c,
then it is also true for a + b - c. But it is easy to see that the map from

UxUxU -+J, (a,b,c) --+a+ b-c,

is onto. Indeed, the map (b, c) --+ b - c is already onto, since if x E J, then
(U - x) fl U # 0, and sox = v - u with u, v E U. This completes the proof
of the first part of (ii)

To obtain the second part of (ii), we combine the first part with (i).
Thus

jc*(t*

K.e ) = jc*-K9 - g(Po) - (c - x).

(iii) By the seesaw principle (A.7.2.3), it suffices to prove that the two
divisors are linearly equivalent on each slice {P} x C and C x {P}, and
by symmetry it suffices to use only the slices {P} x C. To ease notation,
we let b = s12e - p19 - pee, and we let i p : C -' C x C be the inclusion
ip(Q) = (P,Q)

It is clear that (for P # Po) we have

i',(-A+ (C X {Po}) + ({Po} X O) = -(P)+(PO)-

To compute i*(j x j)*b, we compute each term separately. Notice that

pi o (j x j) o ip = constant and P2 0 (j x j) o ip = j,

so we find that

i , ° U x A* ° Pi(e) ti 0, iP ° (j x j)* op (e) = j*() - g(Po) +,c.
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For the last linear equivalence we have used (ii) with c = 0.
Similarly,

(812 0 U x 9) 0 iP)(Q) = j(P) +9(Q) =7.i(P)(Q),

which gives

iP o (J x 3)* o si2(e) = i,(P)(e) ,,, g(Po) - j(P) + K,

where again we have used (ii). Combining these calculations gives

iP O U x .7)*(a) - iP 0 (j X j)* 0 si2(e) -';o U X j)* 0 Pi(e)
-ipo(7 x9)*oP2(e)
(g(Po) -,9(P) + K) - 0 - (g(Po) + K)

_ -j(P) - -(P) + (Po)

This completes the proof of Theorem A.8.2.1.

We now use Theorem A.8.2.1 to show that the theta divisor on a
Jacobian variety gives a principal polarization, and hence that Jacobian
varieties are self dual. If we identify J with j, then (A.7.3.5) says that

x126 - pie - pee E Div(J x J)

defines a Poincare divisor class. Thus Theorem A.8.2.1(iii) is really a de-
scription of the pullback of the Poincart class from J x j to C x C. Since J
is self-dual, we will generally work directly on J x J and avoid the formal-
ism of dual abelian varieties.

Corollary A.8.2.3. Let C be a curve of genus g > 1, let a be the theta
divisor on its Jacobian J, and let K(9) = {a E J I tae - e}.
(a) K(9) = {0}, so 9 gives a principal polarization

be:

(b) 9 is an ample divisor.
(c) Let P be a Poincar6 divisor on J x J. Then

(1 x 4be)`P - s129 - pig - p29.

PROOF. (a) Let a E K(9). Then tae - 0, so two applications of Theo-
rem A.8.2.1(ii) gives

g(Po) + K j*0 .. 7*(ta9) ,., jag,., g(Po) - a + rc.
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Hence a = 0. This proves that K(O) = 0, so by definition, 0 defines a
principal polarization. Theorem A.7.3.1 then implies that t e is an isomor-
phism.
(b) This is immediate from Theorem A.7.2.10, which says that a divisor D
is ample if and only if K(D) is finite.
(c) This is a restatement of Theorem A.7.3.5 and the fact that 0 defines
a principal polarization.

A.8.3. Appendix: Families of Subvarieties

We give here an introduction, via several examples, to a fundamental idea
in algebraic geometry. This idea says that sets of (isomorphism classes of)
varieties or maps between varieties are often themselves algebraic varieties.

One example we have already met is P", which can be described as
the set of lines through 0 in A"+i. Grassmann varieties (Exercise A.1.11)
generalize this example. A second example is the variety Sym' C. This
variety parametrizes effective divisors of degree n on C (i.e., unordered n-
tuples of points on C). Finally, and most importantly, we have the variety
of divisor classes of degree 0 on a curve C, which is precisely the Jacobian
variety Jac(C) that we have been studying in this section. We will discuss
Sym" C and Jac(C) further below.

There is a vast literature on the general problem of moduli spaces,
which are spaces that classify isomorphism classes of natural algebro-geo-
metric objects. For example, the set of isomorphism classes of curves of
genus g is a moduli space 1vt9, and the set of isomorphism classes of princi-
pally polarized abelian varieties of dimension g is a moduli space A9, and
both M9 and A. have natural structures as quasi-projective varieties. We
will not deal with these more difficult moduli problems, and we refer the
interested reader to Mumford-Fogarty [1] for further details.

First we explain how the quotient Sym" C = (C x x C)/S" can be
given the structure of a variety. More generally, we describe the quotient
of a variety by a finite group. We begin with a definition that describes
what properties a quotient variety should have.

Definition. Let G be an algebraic group acting algebraically on a variety
X (i.e., G is a subgroup of Aut(X)). A geometric quotient of X by C is a
variety Y and a morphism 7r : X --+ Y such that:
(1) The fibers of it are the orbits of the action of G. That is, for every
xEX,

Tr-' (ir(x)) = Gx = {ax I a E G}.
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(2) Let f : X -+ Z be a G-invariant morphism of varieties (i.e., &x) =
f (x) for all x E X and all a E G). Then there is a morphism g : Y -+ Z
such that f = g o ir.

It is clear that if the quotient of X by G exists, then it is unique up
to isomorphism. We denote the quotient, if it exists, by X/G.

The existence of such a quotient is far from automatic. One necessary
condition for the existence of the quotient is that all orbits be closed. For
example, the orbits of GL(n) acting on An are not all closed, so the quotient
does not exist in this case. As the following theorem indicates, the situation
is much simpler in the case of finite groups.

Theorem A.8.3.1. The geometric quotient of a variety by a finite group
exists.

PROOF. We start with an affine variety X and a finite group G C Aut(X)
and construct a morphism of affine varieties 7r : X -+ X/G. The funda-
mental result from algebra that we need is a famous theorem of Hilbert.

Proposition A.8.3.2. (Hilbert) Let A be an integral domain that is a
finitely generated k-algebra. Let G be a finite group that acts on A as a
k-algebra. Then the fixed subalgebra

AG ={a E A I a(a) =a for all aEGI

is again a finitely generated k-algebra.

PROOF. Let x1,... , x generate the k-algebra A, so A = k[xl,... ,

Consider the polynomials

P1(X) = fl (X - a(xi)) bijX3 E A[X].
uEG

The algebra B = k[b11,... , is a finitely generated k-algebra, hence is
Noetherian by the Hilbert basis theorem. Further, A is integral over B by
construction, and A is clearly finitely generated as a B-algebra, so A is
finitely generated as a B-module.

Note that every bij is in AG (i.e., bij is fixed by G), so AG is a B-
submodule of the finitely generated B-module A. Hence AG is itself a
finitely generated B-module, say AG = But + + Bu,,,. Then AG =
k[b1 i , .... u1, ... , um], which proves that AG is a finitely generated k-
algebra.

Now let X/k be an affine variety, and let A = k[X] = 0(X) be its ring
of regular functions. The finite group G C Aut(X) acts on A. Hilbert's
theorem (A.8.3.2) tells us that the ring AG is a finitely generated k-algebra.
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Using the fact that the category of affine varieties is fully equivalent to the
category of finitely generated integral k-algebras, we can find an affine vari-
ety Y/k with k[Y] = AG. Then the natural inclusion AG --+ A corresponds
to a morphism it : X --i Y. We claim that Y is a geometric quotient of X
by G.

By construction, 7r` is the inclusion of AG into A, so for any o E G we
have

(iroa)*=v'oir'=7r'.
Hence 7r o a = 7r, which implies that the orbits of G are contained in the
fibers of 7r.

Next let x, x' E X have different G-orbits. Since X is affine, we can
find a function F E k[X] that vanishes at x' but does not vanish at the
finitely many points in the orbit Gx of x. Then the function fOEG F(o (z))
is in AG, vanishes at x', and does not vanish at x. This implies that
Tr(x') # 7r(x), and hence that the fibers of 7r are exactly the orbits of G.

Finally, consider a G-invariant morphism f : X --+ Z. This induces
a homomorphism f' : k[Z] -+ k[X] = A whose image sits in AG, which
means that f' factors through Tr'. It follows that f factors through 7r. This
completes the proof of Theorem A.8.3.1 in the case that X is affine.

In general, if X is a quasi-projective variety, we cover X by G-invariant
open affine subvarieties X;, construct the quotients X;/G, and glue the quo-
tients together to obtain X/G. In order to obtain G-invariant affine open
subsets, we take any hyperplane section H and note that H' = U0EG a(H)
is again a hyperplane section (the sum of very ample divisors is again very
ample). Then X H' is affine and G-invariant, and by varying H we can
cover X with such sets. We leave the details for the reader.

An immediate application of Theorem A.8.3.1 is that the symmet-
ric product Sym' V of any variety is again a variety. Indeed, Sym" V is
the quotient of the product V" by the natural action of the symmetric
group on the n coordinates. We also mention that if C is a smooth curve,
then Sym" C will be a smooth variety. For example, one can show that
Sym' A' = An and Symn IP' -_ 1P". However, if dim(V) > 2, then Symn V
will generally have rather nasty singularities.

As a second application, we can combine (A.8.3.1) with Poincare's
irreducibility theorem (A.5.1.7) to construct the geometric quotient of an
abelian variety by an abelian subvariety. Let A be an abelian variety, and
let B C A be an abelian subvariety. Poincare's theorem says that there is
another abelian subvariety C C A such that the map

s:BxC A, (b, c) '--'b + c,

is an isogeny (i.e., s is surjective with finite kernel). Notice that A is equal
to the geometric quotient of B x C by the group ker(s). We also note that
B fl C = ker(s) via the map (b) H (b, -b), so B fl C is finite. Let Y be
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the geometric quotient of C by the finite group B rl C. Then the map
B x C -+ B x Y -* Y factorizes through A '' (B x C) / ker(s) -+ Y, and it
is easily checked that this provides a geometric quotient of A by B.

We now come to the main task of this section. Let C be a curve of
genus g > 1. The points of the variety Sym" C correspond to effective
divisors of degree n on C, and for any Do E Sym" C, the associated linear
system

IDoI={DE Sym"CID - Do}

is a subset (in fact, a subvariety) of Sym' C. We want to prove that the
set of linear systems J can be given the structure of an algebraic variety
so that the natural map

Sym"C-+J, Di--'IDI,

is a morphism. Of course, we also want to endow J with the structure of
an algebraic group. Our main tool is a variant of Lemma A.8.2.2, which
we state explicitly for clarity.

Lemma A.8.3.3. Let C be a curve of genus g > 1, and let D be an
effective divisor of degree n - g on C. There exists a nonempty open set
UD C Sym" C such that 8(D' - D) = 1 for all D' E UD. Further, as D
varies, the open sets UD cover Sym" C.

PROOF. See Milne [2, Proposition 4.2]. The proof is very similar to the
proof of Lemma A.8.2.2.

Theorem A.8.3.4. Let C be a curve of genus g > 1, and let n > 2g + 1
be an integer. Then there exists an abelian variety J and an identification

J one-to-one {linear systems IDI of degree n on C}

such that the natural map 7r: Sym" C -* J, D '--. IDI, is a morphism.

PROOF. (sketch) For each effective divisor A of degree n - g (i.e., A E
Sym"-9(C)), we define two sets:

Up={DE Sym"(C)Ii(D-A)=1},
VA =ID ESym9(C)ID+AEUU}.

Lemma A.8.3.3 says that Un is open in Sym"(C), and consideration of the
map

io : Sym9(C) --' Sym"(C), D'--D + A,
shows that Vo = io'(UA) is open in Sym9(C).

Let J be the set of linear systems of degree n on C, and consider the
map

fn : Sym9(C) J, D - ID + Al.
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We write JA for the image of fA. It is clear that 7r o iA = fA on VA, and
we claim that fA : VA JA is a bijection. Indeed, if fA(D) = ,&(D'),
then D + 0 - D' + A. But by the definition of V, and UA, we know that
D + A is the unique effective divisor containing A in its linear equivalence
class. Therefore, D + 0 = D' + A, and hence D = D'.

We use the bijection fA : VA - JA to endow JA with the structure of
the variety VA. We also note that if A' is another effective divisor of degree
n - g, then fA and fA' agree on VA n VA,, so we can glue the algebraic
structure on the JA's to give all of J the structure of an algebraic variety.

The next step is to show that the map x is a morphism. We will not
give the details and will just mention that this can be done by showing
that 7r is a fibration whose fibers are isomorphic to P"-9. More precisely,
we can cover Sym"(C) with open sets U, such that each U, is isomorphic to
V, x P"-9 for some open subset V,- C J and such that the map 7r : U, J
is equal to the composition

U;
V;xP"_g P' V CJ.

In order to describe the group law on J, we begin by observing that
the map C" x C'" -+ C"+- Sym"+." C is algebraic and clearly invari-
ant by S" X Sm, so it induces a morphism Sym" C x Sym"` C -_+ Sym"+." C.
The composition of this morphism with the projection Sym"+"` C J is
invariant by linear equivalence on both factors, so it factors through an
algebraic map J x J J. (See the remark below for quotients by equiv-
alence relations.) We will leave it to the reader to verify that this map is
precisely the group law on J. This concludes our sketch of the construction
of the Jacobian variety.

Remark. More generally, one defines the geometric quotient of an alge-
braic variety X by an equivalence relation ?t to be a variety Y and a
morphism 7r: X -+ Y satisfying:
(1) The fibers of ar are the equivalence classes of R. In other words, for
each x E X,

zr`'(ir(x)) = {i E X I X' -R x}.

(2) Let f : X -+ Z be an R-invariant morphism of varieties. Then there is
a morphism g: Y - Z such that f = g o 7r-

A necessary condition for the existence of the quotient is that equiva-
lence classes should be Zariski closed. Needless to say, it is a very difficult
problem in general to give sufficient conditions for the existence. Notice
that we have shown (or rather sketched) that the Jacobian variety J of C
is the geometric quotient of Sym" C by the linear equivalence relation on
effective divisors of degree n for any fixed n > 2g + 1.
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EXERCISES

A.8.1. Assume that the characteristic of k is not 2, and let e',. .. , e29+i E k be
distinct. Let C be the hyperelliptic curve defined by the equation y2 =
(x - el) (x - e29+1), where C includes the point oo at infinity.
(a) Write P, = (e;, 0) E C. Prove that

div(x - e;) = 2(P;) - 2(00),

div(y) = (P1) + .. + (P29+i) - (2g + 1)(oo).

(b) Let j : C -+ Pic°(C) = J be the embedding j(P) = CI((P) - (oo)).
Prove that j(Pj),..., j(P29+1) generate the 2-torsion subgroup of J.
(c) Describe all linear relations satisfied by 3(P1),...,j(P29+1), and use
your results to prove directly that J[2} °-° Z/22_9Z.

A.8.2. Let C be a smooth projective curve of genus g > 1, fix a divisor D E
Div(C) of degree n > 1, and use it to define a map

fD : C -+ Pic°(C) = J, P i--+ Cl(n(P) - D).

(a) Let 0 E Div(J) be a theta divisor on J. (Note that 8 is well-defined
only up to a translation.) Prove that

f; (E) + 8-) - 2nD + n2Kc,

where 8- = [-11*0 and Kc is a canonical divisor on C. In particular, this
divisor class is independent of the choice of 8.
(b) Let P = a12(8) - pi (8) - p2(0) be the Poincare divisor on J x J as
described in (A.7.3.5). Prove that

(fD x fD)'(P) - n(D x C) + n(C x D) - n2A.

(c) Take D = KC, and let 9 = 8 + 8-. Prove that

(fD X fD)*(98126 - (g+ 1)p1C - (g + 1)pz8) -89(9- 1)20.

Similarly, let d12 : J x J -+ J be the map d12(x, y) = x - y and prove that

(g - 1)(fD X fD)'(pi9 + p2A) ^ gd128 - 8g(g - 1)20.

A.8.3. (Functoriality of the Jacobian) Let it : C' -+ C be a morphism between
two smooth projective curves, and let J = Jac(C) and J' = Jac(C'). We
can use it and the identifications J = Pic°(C) and J' = Pic°(C') to define
morphisms 7r' : J -. J' and a.: J' --+ J as follows. The map ir' is given
by pullback on divisor classes, and the map it. is defined by the formula
a.(Cl(EniP1)) = Cl(Ensa(Pi)).
(a) Prove that it. is a well-defined homomorphism. (Hint. The map it
enables us to view k(C) as a finite extension of k(C). In particular, there
is a norm map N : k(C') -+ k(C). Prove that if > n;P; = div(f), then
En:v(Pj) = div(N(f)).)
(b) If p : C" -+ C' is another morphism, show that (7r o p) = p' o 7r' and
(r0 P). =it.0P
(c) Assume that it is nonconstant, hence surjective. Prove that it. is sur-
jective. Is 7r' always injective? Does ir' always have a finite kernel?
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A.8.4. Let k be a field with char(k) 96 2, and let a, b E k'. Consider the smooth
projective curve C containing an of ine piece U defined by the equation
y2 = (x2 - a2)(x2 - a-2)(x2 - b2)(x2 - b-2).
(a) Show that if (a2 -1)(b2 -1)(a2 - b2) j4 0, then U is smooth and C has
genus 3.
(b) Show that the three maps

01 C P2, 4'i(x,Y) = (x2,y),

462 : C ---+ P2, 02(x, y) = (x + x-', yx-2),
03 C _ P2, 03(x, y) = (x - x-', yx-2),

induce morphisms of degree two from C to three elliptic curves E1, E2, E3.
(c) Conclude that the Jacobian of C is isogenous to El x E2 x E3. (Hint.
Use the previous exercise to build a map between Jac(C) and El x E2 x E3,
and compute the tangent or cotangent map.)

A.8.5. Show that the Jacobian embedding j : C -. J = Jac(C) induces an iso-
morphism between regular differential 1-forms on J and regular differential
1-forms on C. (Notice that this is transparent from the analytic definition
if k = C, and it provides a bridge between the complex definition given in
Section A.6 and the algebraic definition given in the present section.)

A.8.6. Let C be a smooth projective curve of genus g. The curve C is called
hyperelliptic if there is a map f : C -+ P' of degree 2; it is called trigonal
if there is a such map of degree 3; and more generally, for any r < g, the
curve C is called r-gonal if there is a map of P' of degree r. The smallest
such r is sometimes called the gonality of the curve. Prove that the map
Sym'C -. J is injective if and only if the gonality of C is greater than r.

A.8.7. For any divisor class c E Pic(C) of degree 1, let

j : C -+ Pic°(C) = J, P ,--+ Cl((P) - c),

be the associated embedding, and let 9c = j,(C) + + be the
corresponding theta divisor. Prove that there exists a c such that the
divisor class of A. is symmetric (i.e., [-1]e - 9c). How many such c's
are there?

A.8.8. (a) Let C = P'. Prove that Sym"C = P". (Hint. Use symmetric polyno-
mials.)
(b) Let C be a curve of genus 1 (i.e., an elliptic curve). Prove that there
is a morphism Sym2 C - C whose fibers are all isomorphic to P'. In other
words, Sym2 C is a P'-bundle over C.
(c) Let C be a curve of genus 2. Prove that Sym2 C is isomorphic to the
Jacobian of C blown up at one point.

A.8.9. (Hyperelliptic Jacobians) This exercise describes the Jacobian variety
of a hyperelliptic curve. For further details, see Mumford [5, Volume 2,
Chapters 1,2].

Let C be a hyperelliptic curve consisting of an affine piece given by
the equation y2 = F(x) = (x - el) . . (x - %+I), together with a point oo
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at infinity. Let a denote the involution (x, y) ' (x, -y) on C. Use no to
embed C Jac(C), and let a be the corresponding theta divisor.
(a) Show that a function whose only pole is at no must have the shape
u(x) + yv(x) with %V E k[x]. Use this to show that if D = E'=1 Pi is a
divisor such that P1 # no and A 0 a(Pj) for i j4 j, then P(D) = 1. (Hint.
If f E L(D), then f fl(x - x(P;)) has poles only at oo.)
(b) For each integer r > 0, define a set of effective divisors of degree r by

Dr=(DP: P;96 ooandP;yl- a(Pi)forij}.
ll i=1 JJJ

Show that there is a natural identification of the set D9 with the set
Jac(C) N e.
(c) Show one can give an "explicit" set of equations for the affine variety
Jac(C)\e as follows. For any D = E(P) E D9, let UD(x) = fJ(x-x(P)).
Prove that there is a unique polynomial VD of degree at most g - 1 such
that y(Pi) = VD(x(P;)) for all 1 < i < g. (If P. appears with multiplicity m
in D, we impose the condition that VD (x) - F(x) should vanish to order m
at x = x(P1).) Frther, prove that there is a unique monic polynomial WD
of degree g + 1 such that

F(x) - VD(x)2 = UD (X) WD (X).
(')

Show that the coefficients of U, V, W, subject to the equation (s), realize
Dg as an affine subvariety in Ass+1
(d) Recall from Exercise A.8.1 that the points e, = Cl((e;, 0) - (coo)) gen-
erate the 2-torsion subgroup J[2] of J = Jac(C). Prove that

n (e + E) = 0 and that
eEJi2i

J= U ((J -'e) + e).
cEJi21

In other words, the translations of J e by 2-torsion points give a covering
of J by affine open sets.
(e) Prove that every divisor of degree zero is linearly equivalent to a unique
divisor D = E'=1(A) -r(oo) satisfying0 < r < g, P; 34 no, and P. j4 a(Pi)
for i # j. Show that this gives a stratification of J as a disjoint union

J= Dg U. .UDo.

Note that one can then describe the addition law as "take the sum of the
two divisors and use the recipe described above to reduce it to a divisor
lying in one of the Dr's."

A.8.10. (Generic group law on a hyperelliptic Jacobian). Show that the following
procedure generically defines the group law on the Jacobian of a hyperel-
liptic curve. That is, it defines the group law on an open subset of J x J.
We retain the notation from the previous exercise. Let

a = g 2 2 and b = 32
if g is even, a = g21 and b = 3g2 1 if g is odd.
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Let D = r_1 (Pi) - g(-) and D' = E9 1(P) -g(oo) be divisors, and let
Pi = (xi,yi) and P' = (x;,y,). Prove that there are unique polynomials A
and B, with A monic of degree a and B of degree at most b, such that

yiA(xi) = B(xi) and yi'A(xi) = B(xi) for all i = 1, ... , g.

Show that the function A(x)y + B(x) vanishes at the 3g points

a(PI),...,o(P9), o(r1), . . ., o(Ig), Q1, . . ., Q9,

where the Qi's have the property that D + D' - E9=1(Qi) - g(oo). Using
the identification from the previous problem, the divisor > (Qi) is thus the
sum of D and D' on J. Can you give a precise description of the open
subset of J x J for which this procedure is well-defined?

A.8.11. Let C be a smooth projective curve of genus g defined over the finite field
Fq and let J be its Jacobian. Call h = card(J(IFq)) the "class number,"
and let 6 be the smallest positive degree of a divisor rational over lFq (we
will see that 6 = 1). Define

an = card{D E Div(C)F, I D > 0 and deg(D) = n} and

Z(C/Fq,T) = Z(T) _ [1anT" E Z[TI.
n=0

(a) Start by showing that if 6 does not divide n, then an = 0; whereas if 6
divides n and n > 2g -1, then an = h(qn}1_9 -1)/(q -1). Show also that
for any divisor class c, we have card{D E c I D > 0} = (qe(c) -1)/(q - 1).
(b) Give an expression for Z(T) as a rational function of T.
(c) Let Irrc denote the set of effective ]Fq-irreducible divisors on C. Show
that

Z(C,T) = 11
(1 -

7,aesiDiyI

DEIrrC /

either as a formal product or as a convergent one if DTI < q-'.
(d) Verify that Z(C/lFgr, T) _ r=1 Z(C/1Fq, (T) and use this to show
that 6 = 1.
(e) Show that there exists a polynomial L(C/IFq,T) = L(T) E Z[T) such
that Z(T) = L(T)/(1 - T)(1 - qT). Show that Z(T) satisfies the following
functional equation:

Z(C/Fq,T) = qg-1T2g-2Z(1/qT).

(f) Show that there exist algebraic integers al, ... , a2g such that L(T) _
Il2g1(1 -aiT). Show that

2g

and h=fl(1-ai).

(This exercise is essentially due to F. K. Schmidt; a further property is the
so-called Riemann hypothesis for curves over finite fields: Tail = f; see
Hartshorne [1, Exercise V.1.10 and Appendix C).)
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A.9. Schemes

This chapter is merely an introduction to the rich gallery of arithmetic
schemes. We give an intrinsic meaning to the notion of good reduction and
examine the minimal model of a curve and the Ne ron model of an abelian
variety. Prerequisites for this chapter are more demanding: Most proofs in
the first two sections are not that hard, but it would take too much space
to fill in all the details, whereas proofs of the statements in Sections 3 and 4
are beyond the scope of this book.

A.9.1. Varieties over Z

The idea of a scheme-a theory due entirely to one man: Grothendieck-is
to abstract what we know of varieties in purely algebraic terms. A variety
is covered by affine open subvarieties U1, and to each such subvariety there
corresponds a ring R1 (a finitely generated integral k-algebra). The gluing
of these open subsets can be done via the sheaf 0 of regular functions, which
in particular satisfies O(U1) = R;. Points correspond to maximal ideals of
R=. The Zariski topology can be recovered, since a basis for the topology
is given by open subsets of the type Uf,; := U; -, {x I f (x) = 0}; and the
sheaf of regular functions is entirely characterized by O(Uf,;) = R,.[-!] and
by the restriction maps Pt,[-!) ] -p R,[1]

s
for f dividing g.

We begin with the definition of an affine scheme. A first natural gen-
eralization is to drop all restrictions on the ring R: It need not be integral
(it may even have nilpotent elements), nor contain a field, nor be finitely
generated. A subtler shift is the passage from maximal ideals to prime ide-
als; one motivation for this shift is simply that the inverse image of a prime
ideal is a prime ideal, whereas the same is not true for maximal ideals. For
example, consider the inclusion Z y Q; the ideal {0} is maximal in Q, but
not in Z.

Definition. Let R be a commutative ring. The spectrum of R, Spec(R), is
a pair consisting of a topological space (by abuse of notation, also denoted
by Spec(R)) and a sheaf 0. The topological space Spec(R) is the set of
prime ideals of R endowed with a topology whose closed sets are the sets
V(I) := {p E Spec(R)II C p} for any ideal I of R. The sheaf 0 is
characterized by 0 (Spec(R) -, V ((f ))) = R f for any element f E R, taken
with the obvious restriction maps.

The next proposition justifies part of this construction.
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Proposition A.9.1.1.
(a) The sheaf 0 = 0R is entirely characterized by its values on the principal
open subsets Uf := Spec(R) V((f)). In fact, one has

0(U) = lim 0(Uf).
U.'CU

(b) For p E Spec(R) the stalk of the sheaf 0 at p is (isomorphic to) the
local ring Rp.

A morphism of varieties was defined as a continuous function that
sends regular functions to regular functions. We generalize this notion in
the following way.

Definition.
(i) A ringed space is a pair (X, Ox) consisting of a topological space X

and a sheaf of rings Ox on X. It is a locally ringed space if for all x E X,
the stalk Ox is a local ring. The sheaf Ox is called the structure sheaf of
the ringed space.

(ii) A morphism of ringed spaces is a pair f, f : (X, OX) (Y, OY),
where f : X -* Y is continuous and f t : Oy f. Ox is a morphism of
sheaves over Y, i.e., a collection of maps ft(U) : Oy(U) --* OX(f-1(U))
such that ru,v o ft(U) = ft(V) o ru,v. It is a morphism of locally ringed
spaces if further for all x in X, the map ft induces a local ring homomor-
phism fT : Of(x) Ox (i.e., the inverse image of the maximal ideal is the
maximal ideal).

Examples of locally ringed spaces include algebraic varieties with their
sheaves of regular functions and differential (respectively analytic) varieties
with their sheaves of differentiable (respectively analytic) functions.

Clearly, (Spec(R), OR) is a locally ringed space. These locally ringed
spaces are taken as the building blocks to construct schemes.

Definition. A locally ringed space of the form (Spec(R), OR) is called an
affine scheme, where R may be any ring.

Morphisms between affine schemes are described completely analo-
gously to morphisms between affine varieties. A ring homomorphism
R - S induces a morphism of locally ringed spaces 0;1cb = (f, f
(Spec(S), Os) -> (Spec(R), OR) as follows:

If p is a prime ideal of B, set f (p) :_
If U9 := Spec(R) Z(g), then f-1(U9) = Spec(S) Z(4)(g)), and we
set ft(U9) : R9 - So(9) to be the natural map induced by 0 on the
local rings.

It is easily seen that this defines a morphism of locally ringed spaces. We
formally state the converse.
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Proposition A.9.1.2. Any morphism of affine schemes Spec(S) -+
Spec(R) has the form O'h for some ring homomorphism 0: R - S.

PROOF. See, for example, Hartshorne [1, Proposition 11.2.31- 0

Definition. A scheme is a locally ringed space (X, OX) that can be cov-
ered by open subsets U such that (U,Oxiu) is isomorphic to some affine
scheme (Spec(R), OR). A morphism of schemes is a morphism of locally
ringed spaces that are schemes. A scheme is called reduced if the rings of
the structure sheaf contain no nilpotent elements, irreducible if the associ-
ated topological space is irreducible, and integral if it is both reduced and
integral.

The philosophy of Grothendieck also suggests that one should always
look at relative situations. This means studying schemes over S, or S-
schemes, which are schemes X that come equipped with a morphism X -+
S. In this context, if f : X S and g : Y --' S are two S-schemes, then an
S-morphism is a morphism 0: X - Y satisfying f = goo. This generalizes
the notion of varieties and morphisms defined over k, which corresponds to
the case S = Spec(k). We also note that every scheme is a Spec(Z)-scheme,
because every ring R admits a (unique) homomorphism Z -+ R.

Examples. (a) To any affine variety X over an algebraically closed field k
we can associate a k-scheme, denoted by X", which is simply Spec(k[X]).
The closed points of X' (i.e., the maximal ideals of k[X]) correspond to
the points of the variety X and are called geometric points. However, X'
has many other (nonclosed) points, in fact, one for each irreducible closed
subvariety of X. Of particular interest is the ideal (0), which is dense in
X"`h and is called the generic point of X. Further, Proposition A.9.1.2
and Theorem A.1.2.1 say that morphisms between X and Y correspond
bijectively to k-morphisms from Xec' to Y"h, since they are both in natural
bijection with the k-algebra homomorphisms from k[Y] to k[X].

Having turned affine varieties into schemes, it is easy to extend the
construction to any quasi-projective variety X. We simply cover X by
affine open sets U=, form the affine schemes U; `h, and then glue the U ''s
together to form the scheme X° '.
(b) Of course, schemes are more general than varieties. If k is a field, the
scheme Spec(k) has only one point. But there are other rings with only
one prime ideal, for example Z/p"Z and k[X]/(X") (see Exercise A.9.9).
For example, the scheme X = Spec(Z/p"Z) has only one point, but it is
certainly not a variety. It is irreducible, but not reduced when n > 2.
Another interesting example is the spectrum of an integral local ring such
as

Z(P):={bEQ IbOpZ}
The scheme Spec(Z(p)) consists of two points, the generic point 77 corre-
sponding to the ideal (0) and a unique closed point p corresponding to the
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ideal pZ(p).
(c) A scheme of fundamental importance is the affine scheme Spec(Z). It
has one generic point rt, corresponding to the ideal {0}, and all of its other
points are closed and correspond to prime numbers,

Spec(Z) = { (0), 2Z, 3Z, ... , pZ, ... } .

The structure sheaf of Spec(Z) is easy to describe:

0 (Spec(Z) {p1Z,... , pkZ}) = Z
1

pl +
1

P2' +

1

Pk,

The function field of Spec(Z) (i.e., the stalk at n) is Q. Notice that since
every ring R has a canonical homomorphism Z -+ R, all schemes have a
canonical morphism to Spec(Z), so every scheme is a scheme over Spec(Z).

The last example shows that Spec(Z) bears a curious resemblance to an
algebraic curve. We can make this more precise by defining the dimension
of a scheme.

Definition. The dimension of an irreducible scheme X is the maximal
length n of a chain of distinct irreducible closed subsets Xo C Xl C . . . C
Xn = X. The dimension of a scheme is the maximal dimension of its
irreducible components.

Examples. (a) Clearly, dim Spec(R) = Krulldim(R), so the dimension of
a variety X is the same as the dimension of the scheme Xh.
(b) The scheme of integers satisfies dim Spec(Z) = 1, and more generally,

dim Spec(Z[Xi,... , Xn]) = n + 1.

(c) If R is a Dedekind domain, then Spec(R) is irreducible, reduced, and
has dimension 1.

In particular, we see that an algebraic curve and Spec(Z) are two
instances of integral schemes of dimension one! Similarly, the scheme
AZ := Spec(Z[X]), called the "affine line over Z", has dimension two and
is analogous to Ak := Spec(k[X, YJ), the "affine plane over the field k."

The theory of finite coverings can thus be phrased to encompass both
extensions of number fields and coverings of a curve. Field extensions
Q C K and k(C) C k(C') induce finite morphisms Spec(RK) -' Spec(Z)
and C' -+ C, and the cardinality of the fiber over a closed point is less
than or equal to [K : Q] or [k(C) : k(C')], respectively, with equality at
all but finitely many points. The points where equality fails to hold are
called ramification points. We will pursue these analogies further in the
next section.
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We now sketch a few salient areas where the language of schemes sheds
new light on old topics or suggests new concepts and techniques.
Algebra/Geometry Schemes enable mathematicians to precisely formu-
late algebraic constructions in a geometric fashion. For example, the fact
that k[X, Y] is not principal is transparent from the fact that it corre-
sponds to a variety of dimension two, which implies that the ideal of a
closed point cannot be principal. The same argument "explains" why Z[X]
is not principal, since it is also of dimension two. (See Exercise A.9.6 for
a description of the points of Spec(Z[X]).) Many other algebraic ideas
acquire a geometric flavor. Some examples are listed in the following table.

Algebra H Geometry
ring localization

quotient ring
integral closure
tensor product

restriction to open subset
closed subscheme
normalization
geometric product

Functor of Points If X is a variety defined over a field k, a point in X (k)
becomes, in the language of schemes, a morphism Spec(k) -+ X. It is
therefore natural to define a point in X with value in S to be a morphism
S --* X; in other words, we define X (S) := Mor(S, X). Note that S can be
the spectrum of a ring, or more generally any scheme! In fancy language,
the association S H X (S) defines a contravariant functor from the category
of schemes to the category of sets. A point x in a scheme defines a local ring
Ox, namely the stalk of the structure sheaf at x, hence a maximal ideal IV[x
and a residue field k(x) := Ox/9v[x. In fact, a morphism Spec(K) - X is
equivalent to the data of a point x e X and an injection of fields k(x) -+ K.
For example, one can interpret a closed k-point in a variety X as a Galois
conjugacy class of points in X(k).
Smoothness and Regularity A variety X is nonsingular at a point x if
and only if dim X = dimk(M./7v[y). Similarly, if x is a point of a scheme X,
then we have a local ring Ox (the stalk at x of the structure sheaf) and
hence a maximal ideal ?v[x and a residue field k(x). We define X to be
regular at x if dimX = dimk(x)M/1v[y). (The local ring is also said to be
regular in that case.) Notice that the point x is not assumed to be closed,
so this defines the notion of "X being nonsingular along the irreducible
subvariety Y := {x}."
Fibered Products Let f : Y - X and g : Z -+ X be morphisms of
schemes. A fibered product of Y and Z over X, denoted by Y x x Z, is
a scheme P with morphisms pi : P -+ Y and p2 : P --. Z such that
f o pi = g o p2 and satsifying the following universal property: For all
schemes P' with morphisms ql : P' -+ Y and q2 : P' --p Z there exists
a unique morphism 0 : P' -+ P such that ql = pl o 0 and q2 = P2 o 4).
Intuitively, at least at the level of closed points, P looks like the set of
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pairs (y, z) with f (y) = g(z). Notice that if X, Y, and Z are varieties,
then P need not be a variety; for example, it may be reducible. However,
within the category of schemes, fibered product do exist.

Proposition A.9.1.3. Let f : Y - X and g : Z -+ X be morphisms
of schemes. Then the fibered product Y xx Z exists and is unique up
to canonical isomorphism. Further, if X = Spec(R), Y = Spec(A), and
Z = Spec(B) are affine, then the fibered product is affine and can be
described as Y xX Z = Spec(A ®R B).

PROOF. See Hartshorne [1, Chapter II, Theorem 3.3).

An important special case of fibered products is extension of scalars.
Let X be a scheme over a ring R (i.e., X is a Spec(R)-scheme), and let
f : R -+ R' be a ring homomorphism. Then f induces a morphism f' :
Spec(R') -- Spec(R), and we extend scalars on X by forming the Spec(R')-
scheme X xsa.(R) Spec(R'). To save space, people frequently say that X
is an R-scheme, and write the extension as X X R R'.

Fibers of a Morphism Let f : X -+ Y be a morphism of schemes and
let y be a not necessarily closed point of Y. The point y corresponds to a
morphism Spec(k(y)) -* Y, and we define the fiber off over y to be the
scheme Xy := X xy Spec(k(y)). Notice that even if y is a geometric point
and if X and Y are varieties, then X. need not be irreducible or reduced,
so schemes furnish a natural language for discussing "multiple fibers." As
an example, consider the hypersurface X in A3 defined by the equation
x3 + ty2 + t = 0 and the morphism f : X - A' defined by the projection
(x, y, t) t-- t. The generic fiber of f is the curve with the same equation
over the field k(t). For every closed point a E A' except for a = 0, the fiber
X" is the elliptic curve given by the equation x3 + ay2 + a = 0. However,
the fiber over a = 0 is a triple line, X0 = Spec(k[x, y]/(x3)).

Families of Schemes A family of schemes is just the set of fibers of a
morphism of schemes f : X --+ Y. If Y is irreducible and q is its generic
point, we call X, := X xy Spec(k(Y)) the generic fiber of the family. The
fiber Xy over a closed point y E Y is called the special fiber at y. Notice
that these definitions encompass two apparently (or at least historically)
different ideas. First, if Y is an algebraic curve and X is a variety defined
over an algebraically closed field k, then a family is an "algebraic defor-
mation parametrized by a curve." The special fibers are defined over k,
and the generic fiber is defined over the function field k(Y). Second, if
Y = Spec(Z), we get a family of schemes, where each fiber is defined over
a field of different characteristic (the generic fiber being defined over Q).
Since we will be especially interested in families of schemes over curves (i.e.,
schemes over an algebraic curve or over Spec(Z)), we state a result deeper
than the ones previously quoted that describes a property of the fibers of
such a family.
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Proposition A.9.1.4. (Zariski's connectedness principle) Let f : X -+ S
be an irreducible family of projective schemes over an irreducible curve S
(i.e., a irreducible scheme of dimension 1). Then the generic fiber of f
is irreducible. Further, every special fiber of f is connected, and all but
finitely many of them are irreducible.

PROOF. See Hartshorne [1, Chapter III, Exercise 11.4]. 0

Models and Good Reduction We wish to reverse the above construc-
tion by starting with a variety X and creating a family of schemes whose
generic fiber is X. Let K be either a number field or the function field k(C)
of a smooth projective curve, and let X be a smooth projective variety de-
fined over K. Let S = Spec(RK) if K is a number field, and let S = C° "
if K is a function field. It is easy to see that there exists a scheme X -. R
that is projective (by which we mean that all fibers are projective varieties)
and whose generic fiber X, = X xs Spec(K) is isomorphic to X. Indeed,
fix an embedding i : X + P. We know that lF"K is the generic fiber of the
scheme PS -+ S (see Exercise A.9.7), so we may take X to be the Zariski
closure of i(X) inside 1PR. Of course, the X that we produce in this way
may have many "bad" special fibers (e.g., reducible and/or nonreduced).

Definition. Let K and S be as above, and let X be a variety over K. A
model for X over S is a scheme X - S whose generic fiber is isomorphic
to X.

For example, S is by construction a model for Spec(K). The scheme
1PZ is a model for 1 %1 over Spec(Z) (see Exercise A.9.7). Clearly, models
are not unique. One generally requires that a model have some further
properties. For example, one usually insists that the morphism x -s R
should be surjective and that each fiber should have the same dimension
(the construction we sketched gives this). If X is affine, we can proceed
very explicitly. Suppose that the ideal defining X in A" is generated by
the polynomials Pl,... , P,.. Clearing denominators, we may assume that
Pi E Z[T1, ... , T"]. Then Spec(Z[Ti,... , T"]/(Pi,... , P,.) gives a model for
X whose special fiber at p is the scheme over F,, defined by the equations
Pl = = Pr = 0 in AF1 p. This illustrates that taking special fibers of a
model makes precise the notion of "reducing a variety modulo p". Notice
that this notion is completely intrinsic once the model is chosen (but the
special fiber thus obtained may depend on the chosen model). Further, the
special fiber inherits a scheme structure, so we can speak of nonreduced
fibers, multiple fibers, etc.

If we are given a morphism f : X - Y defined over K and models
X -+ S and -+ S, it is natural to ask whether f extends to a morphism
f : X -+ '4 over S. If the generic fiber is dense in X, then there is at most
one such extension, but in general we get only a rational map. For example,
a linear morphism a : P' -+ P" over Q extends to a morphism i-z : IPZ -+ Fz'
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if and only if a: can be described by a matrix having integer coordinates
and determinant ±1. The following elementary result gives one reason why
projective models are good.

Lemma A.9.1.5. Let K and S be as above (i.e., S is regular of di-
mension 1). Let X be a variety over K, and let X -i S be a projective
model of X. Then every K-rational point Spec(K) - X of X extends to
a morphism (a section) S -+ X. In other words, there is a natural bijection
between X(K) and X(S).

PROOF. In the geometric case, the lemma follows from the fact that a
rational map from a smooth curve to a projective variety is a morphism.
A proof of the arithmetic case can be given along the same lines.

It is natural, given a model X - R of X/K, to say that X has good
reduction at x if the fiber xx is smooth. (Sometimes one adds additional
requirements, for example that some endomorphism o : X -+ X extends
to a : xx --+ xx.) To help explain the next definition, we observe that the
fiber X. is the same as the one obtained by first extending scalars to the
local ring 02, next forming X xs S. -+ S. = Spec(Ox), and then taking its
(unique) special fiber.

Definition. A smooth projective variety X/K has good reduction at x if
there exists a projective model of X over Ox whose special fiber is smooth.
If such a model does not exist, we say that X has bad reduction at x.

Proposition A.9.1.6. Let X be a smooth projective variety defined
over K.

(i) The variety X has good reduction at all but finitely many points.
(ii) Let T C S be the (finite) set of points where X has bad reduction.

Let ST = Spec(RK,T) in the number field case, and ST = C T in the
function field case. Then there exists a projective model of X over ST all
of whose fibers are smooth.

PROOF. (sketch) (a) Let X be the projective model built as in the previous
remarks. The smoothness of the algebraic variety X can be expressed by
the nonvanishing of certain minors Mi of certain matrices with entries in
K. If we let T' be the set of all points where the matrix entries have poles
together with the points where the minors vanish, then X. will be smooth
for every point s E S T'.
(b) We get from (a) a smooth scheme X' -+ ST, for some finite set T'
containing T. By hypothesis, for each t E T' ' T there is a smooth scheme
xt -+ St. Since all these schemes have isomorphic generic fibers, we may
glue them via these isomorphisms and obtain the required scheme.

For example, P"/Q has good reduction everywhere, whereas the pro-
jective quartic curve x3y + y3z + z3x = 0 has good reduction except at the
point (prime) p = 7.
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A.9.2. Analogies Between Number Fields and Function Fields

A one-dimensional afline integral regular scheme is either a smooth curve
C over a field k or an open subset of the spectrum of a Dedekind ring, e.g.,
the ring of integers of a number field. Analogies between these two objects
have fascinated many mathematicians.

Notice that in these cases the function field can be used to reconstruct
the "most complete" version of the underlying scheme. Thus if we start
with a field K containing an algebraically closed field k, there is a unique
(up to isomorphism) smooth projective curve over k having K as its func-
tion field. Similarly, if K is a finite extension of Q, the ring of integers RK
is the unique maximal order in K, and the associated scheme is Spec(RK).
We call these two situations the geometric case and the arithmetic case,
respectively.

It is thus reasonable to work at the level of the field K. Valuation
theory is the classical device that is used to describe the "points" of the
underlying scheme.

Definition. An absolute value of a field K is a map I
that:

(i) IxI>Oforallx, andlxl=0 if and only ifx=0.
(ii) Ixyl = IxI Iyl.
(iii) Ix + yi 5 IxI + IyI (triangle inequality).

If further we have the stronger inequality

Ix+yi<max(Ixl,IyI) forallx,yEK,

I : K R such

then the absolute value is called ultrametric or nonarchimedean.. Other-
wise, it is called archimedean. The absolute value IxI = 1 for all x 0 0 is
called the trivial absolute value.

Examples. (a) Let K be a number field. For each embedding a : K --. R
or C we get an absolute value Ixlo := la(x)l, which is clearly archimedean.
Notice that I Ia = I - Ia, so there are rl +r2 of this sort. For each nonzero
prime ideal p of RK we get an absolute value Ixlo := Np-Ord., (x), which is
clearly nonarchimedean.
(b) Let K = k(T) with k algebraically closed (for simplicity) and T an
indeterminate. For each point a E A' = k we can similarly build a nonar-
chimedean absolute value by the formula IFIa := e-°rd°(F). There is an-
other absolute value given by IFI00 := edeg(F), but notice that if we intro-
duce projective space and set 1P' = A' U {oo}, then this "extra" absolute
value is simply IFI00 := a-'rd (F) More generally, if K is the function
field of a smooth projective curve C over k, then each point a E C gives a
nonarchimedean absolute value IFI e-O`d,(F>
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Two absolute values I 11 and I 12 are said to be equivalent if there
is a real number .1 such that

I - 11 = I - Ii It is not hard to prove for
examples (a) and (b) above that every nontrivial absolute value on K is
equivalent to one of the listed absolute values (provided in case (b) that
it is trivial on k). We denote by MK the set of (equivalence classes of)
absolute values on K.

Theorem A.9.2.1. (Product rule) Let K be a number field or a function
field of dimension one, and for each v E MK, let v(x) := log IxI,,. Then

E v(x)=0 forallxEK'.
vEMK

(Some might call this the "sum rule," since it is really the logarithm of the
usual product rule.)

PROOF. For a number field this is the product formula (Theorem B.1.2),
and for a function field it follows from the fact that a principal divisor has
degree zero (see Section A.2). If the ground field is k = C, the function
field case can also be deduced from Cauchy's residue formula fc dF/F = 0.

0

For any (possibly singular and/or nonprojective) curve Co, it is pos-
sible to use the valuations of k(Co) to reconstruct a smooth projective
curve that is birational to Co. (See Hartshorne [1, Chapter 1.6], especially
Theorem 6.9, for details). From this point of view, there is an important
difference between the number field case and the function field case. Every
curve has a natural smooth compactification, but there does not seem to be
a natural compactification of Spec(Z). From the point of view of valuation
theory, we should add to Spec(Z) a point oo corresponding to the (unique)
archimedean absolute value of Q, just as Desargues added one point to the
affine line to form the projective line. (More generally, to Spec(RK) we
should add r1 + r2 points corresponding to the archimedean places of K.)
Unfortunately, such an object cannot be given the structure of a scheme.
Nevertheless, Arakelov has suggested a construction that enables one to
translate some (but not all) theorems from the geometric case to the arith-
metic case. For a brief introduction to these ideas, see Section B.10 and
the references given there.

A.9.3. Minimal Model of a Curve

Let V be a variety defined over a global field K, which we assume to be
either a number field or the function field of a smooth projective curve C
(over a field of constants k). We let S be the scheme Spec(RK) in the
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number field case and the curve C in the function field case. The generic
point of S can be identified with Spec(K). We would like to find in some
sense the best possible model V - S and hope that it will reflect some
interesting arithmetic features of the variety V. For example, if T is the
set of points of S where V has bad reduction, we will certainly require that
V x s ST -> ST be smooth (i.e., all fibers are smooth), where recall that
ST = S T. That this is possible is the content of Proposition A.9.1.6; but
it is not quite clear what to expect for the "bad" special fibers. A precise
formulation is known only for curves and abelian varieties. In this section
we describe the best models when V is a curve.

First of all, we would like the scheme V to be as smooth as possible; in
particular, it should be regular. The other condition we want comes from
the classical theory of minimal surfaces.

Definition. A projective model V --> S of V/K is said to be a relatively
minimal model if it is regular and if every birational morphism from V to
another regular model V is in fact an isomorphism. The model V is said to
be minimal if for any other regular model 7 there is a birational morphism
V' -- V.

In the geometric case, a classical result of Castelnuovo (see, for exam-
ple, Hartshorne [1, Chapter V, Theorem 5.7]) states that a smooth (reg-
ular) projective surface will be a relatively minimal model of its generic
fiber if and only if it contains no curves isomorphic to IF" having self-
intersection -1. The same result is true in the arithmetic case by the work
of Shafarevich [2]. The existence of a relatively minimal model for curves
(in the arithmetic case) is a difficult result due to Abhyankar (desingular-
ization) and Shafarevich (minimality). If g > 1, there is even a minimal
model. The uniqueness of the minimal model is immediate from the defi-
nition.

Theorem A.9.3.1. Let V be a curve of genus g > 1 over K. Then there
exists a unique (up to isomorphism) projective minimal model V - S ofV.

For example, if V - S has smooth fibers, it is automatically the
minimal model of its generic fiber. We thus see that a curve has good
reduction if and only if the special fiber of its minimal model is smooth.
If a curve has bad reduction, we can ask how bad the singularities of a
singular special fiber can be.

Definition. A curve V defined over a field K (number field or 1-dimen-
sional function field) has semistable reduction at p if the special fiber at p
of the minimal model of V is reduced and has only ordinary double points
as singularities.

Theorem A.9.3.2. Let V be a smooth projective curve defined over a
number field or function field K as above. There exists a finite extension
L/K such that V has semistable reduction at all places L.
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PROOF. See Artin-Winter [1].

One can even specify a field L with the property described in Theo-
rem A.9.3.2. For example, if K is a number field, then one may choose L
to be the extension generated by torsion points of order 15 of the Jacobian
of V. If K is a function field, it is enough that the Q-torsion points of the
Jacobian of V be rational for some prime t > 3 coprime to char(k).

For example, the projective elliptic curve y2z = x3 + tz3 has bad
reduction at t = 0, but the special fiber has a singularity that is a cusp, so
it is not semistable. However, over the field k(f ), it is isomorphic to the
curve y2z = x3 + z3, which has good reduction at t = 0.

A second example is the curve y2z = x3+tx2z+t3z3, which again has a
cusp at t = 0. Over the field k(, It), it is isomorphic to y2z = x3+x2z+tz3,
which has bad semistable reduction at t = 0. These two examples illus-
trate a general phenomenon. With a well-chosen base extension, unstable
(i.e., nonsemistable) reduction becomes either good or bad semistable. For
further examples, see Exercises A.9.1 to A.9.3.

A.9.4. Neron Model of an Abelian Variety

The construction of the Neron model of an abelian variety A/K follows a
different path from that used in constructing good models of curves. One
relaxes the properness condition and concentrates attention on the group
law. In full generality, we can even dispense with the group law and simply
work with morphisms, as in the following definition. We let K and S be
as in the previous section (K is a number field or 1-dimensional function
field, and S is a smooth scheme with generic fiber Spec(K)).

Definition. Let V/K be a variety. A scheme V -, S is a Neron model of
V/K if it is smooth over S and if for every smooth scheme X - S with
generic fiber X/K and every morphism f : X/K -+ V/K it is possible to
extend f to a morphism of schemes X -. V.

As usual, if a Neron model exists, it is unique up to unique isomor-
phism. The existence of a Neron model when V is an abelian variety is
proven in a remarkable paper of Neron [1].

Theorem A.9.4.1. Let A/K be an abelian variety. Then there exists a
Neron model A -+ S of A/K. Furthermore, A is a group scheme over S.

PROOF. See Neron [1] for the original proof. Simplifications and refor-
mulations in more modern language are given in Bosch-Lutkebohmert-
Raynaud [1] and Artin [1].
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The fact that the Neron model A is a group scheme is actually au-
tomatic from the definitions, since the addition map A x A -- A on the
generic fiber extends to a morphism A x R A - A. Notice that every point
P E A(K) (viewed as a morphism Spec(K) -+ A) extends to a morphism
(a section) from S to A, but that this need not be true for points in A(L)
for finite extensions L/K.

Example. An abelian scheme A - S (i.e., every fiber is an abelian vari-
ety) is the Neron model of its generic fiber.

If A - S is the Neron model of an abelian variety A/K, then the
special fiber Ap over p E S will be an abelian variety if and only if it is
projective, which is also equivalent to A having good reduction at p.

In general, the connected component of the fiber Ap is denoted by A.
It is an extension of an abelian variety (defined over kp) by a commutative
affine group. We recall that after a finite extension of the base field, any
commutative afiine group is isomorphic to a product of additive groups and
multiplicative groups G x G. Just as in the case of curves, taking an
extension of the base field often leads to "simpler" bad special fibers; in
this case it allows us to get rid of the additive groups.

Definition. An abelian variety A/K has semistable reduction at p if the
connected component of the special fiber Ap of the Neron model is an ex-
tension of an abelian variety by a torus T. It has split semistable reduction
if the torus is isomorphic to T = G,' over the residue field kp.

Theorem A.9.4.2. Let A be an abelian variety defined over a number
field or function field K as above. Then there exists a finite extension L/K
such that A has (split) semistable reduction at all places of L.

As in the case of curves, one can specify a field L. For number fields,
one may take L to be the field generated by the torsion points of order 15
on A. For function fields, it suffices that the 1-torsion of A be rational for
some prime f > 3 and coprime to char(k) (see Deschamps [1]).

It is natural to compare the minimal model of a curve V/K with the
Neron model of its Jacobian variety Jac(V). For curves of genus 1, this is
fairly easy.

Example A.9.4.3. Let E -. S be the minimal model of an elliptic curve
E/K (i.e., a curve of genus 1 equipped with a rational point Po E E(K)).
Let U be the open subscheme of smooth points of E. This means that U is
obtained by discarding the multiple components and the singular points of
the special fibers. Then U -' R is the Neron model of E/K. (See Artin [1]
or Silverman [2, Chapter IV].)

More concretely, suppose K = Q and let

f (x, y, z) = -y2z - alxyz - a3yz2 + x3 + a2x2z + a4xz2 + a6z 3 = 0
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be a minimal Weierstrass equation of an elliptic curve E/Q. We can define
E to be the projective scheme associated to the graded ring Z[x, y, z]/(f )
(see Exercises A.9.7 and A.9.10). The complement of the zero section
is the amine scheme Spec(Z[x, y]/(f (x, y, 1)). We refer to Silverman [1,
Chapter III] for the definition of the discriminant A and the fact that the
special fiber Ep := E x Fp is smooth if and only if A 0- 0 (mod p). If
A = 0 (mod p), then Ep has exactly one singular point. In general, the
scheme E will not be a minimal model for E/K, because it will not be
regular. However, if ordp(A) = 0 or 1 for every prime, then E is regular,
hence a minimal model for E/K, and in this case the Ndron model of E/K
is simply E with the one singular point removed from each of its bad special
fibers. In general, the scheme obtained by removing the singular points
from the bad fibers is only the connected component of the model.

For curves of higher genus, the relation between the minimal model
of the curve and the Ndron model of its Jacobian is considerably more
complicated. We mention only a few properties, where V/K is a smooth
projective curve of genus g > 1, A/K is the Jacobian variety of V, V - S
is the minimal model of V, and A -+ S is the Neron model of A.

(1) The curve V/K has semistable reduction if and only if its Jacobian
A/K has semistable reduction. If V/K has good reduction, then A/K also
has good reduction, but the converse is not true in general.
(2) The connected component of A is isomorphic to Pic°(V), the group of
invertible sheaves whose restriction is of degree zero on each component of
each fiber of V. If the special fiber of V has components V1,..., V, that are
birationally equivalent to the smooth projective curves V1, ... , V,, then the
abelian part of the special fiber of the Neron model of A is r 1i Jac(V').
(3) The group of components of A can be easily computed from the inter-
section matrix of the components of the fiber of V.

EXERCISES

A.9.1. Let ei be distinct algebraic integers in a number field k and let C be
the smooth hyperelliptic curve given by the amine equation y2 = P(x) =
fl(x - e;). Let S be the set of primes dividing 2A = 2(fl«i(ei - e,))2.
Prove that C has good reduction outside S. (Do not forget to check the
points "at infinity.")

A.9.2. Show that the curve y2 = xs - 1 acquires good reduction over some
extension of Q. More precisely, show that it has good reduction over the
field K = Q(i, i°2_, 1 - exp(27ri/5)). (Hint. Let u = Y2_ and set x =
u2X and y = 2Y + i. Show that the new equation has good reduction in
characteristic 2. Next let £ := exp(27ri/5) and a2 = (1 - t)5, set v = y/a
and u = (x - 1)/(1 - t), and show that the new equation has the form
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v2 = fl(u - E,) for certain E, E Z[C]. Use the previous exercise to conclude
that the curve has good reduction.)

A.9.3. Determine the primes of good and bad reduction over Q for the curves
y2 = xb - x and x4 + y4 = 1. Do they acquire good reduction everywhere
over some number field?

A.9.4. (a) Let x -. Spec(Z) be a projective scheme with generic fiber X/Q.
Prove that X(Spec(Z)) ? X(Q).
(b) Show that this need not be true for nonprojective schemes by comput-
ing Gm(Spec(Z)) and Gm(Q) and showing that they are not equal.

A.9.5. Prove the following generalization of Exercise A.1.9. Let f : X --+Y be a
rational map of S-schemes. Prove that there exists a scheme W with two
morphisms pi : W -+ X and p2 : W - V such that pi is a birational map
and f o p1 = p2. As an application prove that if f : X -+ Y is a morphism
between two varieties defined over Q, then there exist projective models x
and N over Spec(Z) such that f extends to a morphism f : X -+V.

A.9.6. (a) Show that there are three types of nonzero prime ideals in Z(XJ:
(i) ideals pZ[XJ generated by a prime number p; (ii) ideals P(X)Z(X] gen-
erated by a nonconstant irreducible polynomial P(X); (iii) ideals (p, P(X))
generated by a prime number p and a nonconstant polynomial P(X) whose
leading coefficient is prime to p and that is irreducible when reduced mod-
ulo p. (Hint. Begin by considering the intersection of the ideal with Z.)
(b) Which type(s) of ideals in (a) correspond to dosed points of Ay
Spec(Z[X])? More precisely, prove that an ideal of type (i) corresponds
to the generic point of AFp, an ideal of type (ii) corresponds to a Galois
conjugacy class of algebraic numbers, and an ideal of type (iii) corresponds
to a Galois conjugacy class of points in F.
(c) Try to give a similar description of points in A2 := Spec(Z[X, Y]).

A.9.7. (Construction of Proj of a graded ring) Let R :_ ®m>oR,,, be a graded
ring. That is, Ro is a ring, each R, is an Ro-module, and R. -R C Rm+n.
A special ideal in R is the ideal R+ := ®,,,>iRm. We define Proj(R) to be
the topological space whose underlying set of points is

Proj(R) := {homogeneous ideals p such that R+ SC p}.

For each ideal 3 C R we define a closed set

Z(J) := {p E Proj(R) 13 C p}

in Proj(R), and these closed sets define the Zariski topology on Proj(R).
For each f E R+ we also define an open set U(f) := Proj(R)'. Z((f)).
Then the structure sheaf 0 = OP,oj(R) on Proj(R) is characterized by its
values

0(U(f)) = R(f) = (elements of degree 0 in the local ring Rf).

(a) Prove that Proj(R) is a scheme covered by affine open subsets U(f).
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(b) Let X C P" be a projective variety, and let S(X) be its homogeneous
coordinate ring. Prove that Proj(S(X)) is isomorphic to the scheme asso-
ciated to the variety X.
(c) Prove that )Py" := Proj(Z[Xo, ... , X,]) is a scheme over Spec(Z) with
generic fiber isomorphic (as varieties over Q) to ]P"/Q, and and special fiber
over a prime p isomorphic (as varieties over Fp) to ? /Fp.
(d) More generally, for a ring R, define projective n-space over R to be
1PR := Proj(R[Xo,... , Show that PR can also be described as PZ xzR.
If R is integral with fraction field K, and if n is the generic point of Spec(R),
show that the generic fiber of PR - Spec(R) is P.

A.9.8. Give a description of the points of PP := Proj(Z[X, Y]) analogous to the
description of the points of Ay = Spec(k[X]) given in Exercise A.9.6.

A.9.9. Let X/k be a variety. Prove that the set of tangent vectors on X is
naturally isomorphic to the set of morphisms Spec(k[X]/(X2)) - X. What
do morphisms Spec(k[X]/(X'")) to X represent?

A.9.10. Let f (x, y) := y2+aixy+a3y-x3 -a2x2 -a4x-as be a polynomial with
at E Z and A 76 0. (For the definition of the discriminant A we refer to
Silverman [1, Chapter III].) Let F(X,Y, Z) := ZY2 + a1XYZ + a3YZ2 -
X3 - a2ZX2 - a4Z2X - a6Z3 be the corresponding homogeneous form.
Let X := Proj(Z[X, Y, Z]/(F)) and U := Spec(Z[x, y]/(f )).
(a) Prove that (X, Y, Z) _ (0, 1, 0) defines a section Spec(Z) - X, and
that the complement of the image of this section is U.
(b) Prove that the special fiber Xp above p E Spec(Z)) is smooth if p does
not divide A, and that otherwise the fiber has exactly one singular point.
(c) Prove that I is regular except possibly at the singular points on its
special fibers.
(d) If ordp(A) = 1, prove that x is regular even at the singular point of X.

A.9.11. (a) Show that the elliptic curve E defined by

F(X,Y,Z)=ZY2 +YZ2-X3+ZX2=0

has good reduction at all primes p i4 11, and that the only singular point
in characteristic 11 is P = (8,5, 1).
(b) Show that x := Proj(Z[X, Y, Z]/(F)) is a regular scheme and that
X {P} is the N6ron model of E over Z.
(c) Same questions with E' defined by

F(X, Y, Z) = ZY2 + YZ2 - X3 + XZ2 = 0,

where this time the only "bad" p is 13.

A.9.12. Let K:= Q(,/2-9-) and e:= (5 + 29)/2.
(a) Prove that e is a unit in RK = Z[61-
(b) Prove that the elliptic curve E defined by the affine equation

y2+xy+e2y=x3

has good reduction everywhere.
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A.9.13. Let S be the multiplicative subset of the ring R generated by the prime
ideals p', . . . , p,,,, and let Rs be the corresponding ring of fractions. The
inclusion R C Rs induces an inclusion of Spec(Rs) into Spec(R). Prove
that Spec(Rs) = Spec(R)' {pi,...,p,,,}.



PART B

Height Functions
It is the star to every wandering bark,
Whose worth's unknown, although his height be taken.

W. Shakespeare, Sonnet 116

One of the fundamental tools required for the study of rational and integral
points on an algebraic variety is a means of measuring the "size" of a point.
A good size function will have two important attributes. First, there should
be only a finite number of points of bounded size. Second, the size of a point
should reflect both the arithmetic nature of the point and the geometric
characteristics of the variety. The size functions that we will study in this
part are called height functions. Before starting the detailed development
of the theory of heights, we want to briefly amplify our description of the
two properties that a good height function will possess.

For concreteness, let k be a number field and let V/k be a smooth
projective variety defined over k, say with a fixed embedding V c 1P". A
height function corresponding to this situation will be a function

h : V (k) -+ [0, oo)

satisfying certain properties. The finiteness property we alluded to above
says that for any constant B, the set {P E V (k) I h(P) < B} is finite. This
property lies at the heart of many of the fundamental finiteness theorems
in Diophantine geometry. It is used, for example, to prove that the group
of rational points on an abelian variety is finitely generated (Mordell-Weil
theorem), that an affine curve of genus g > 1 has only finitely many integral
points (Siegel's theorem), and that a projective curve of genus g > 2 has
only finitely many rational points (Faltings' theorem). But height functions
are also useful when V(k) is not finite. In this case one can define the
counting function

N(V(k),B) = #{P E V(k) I h(P) < B}.

Knowledge about the counting function gives arithmetic information about
the variety V. For example, before Faltings' proof of the Mordell conjec-
ture, Mumford [1) had shown that if V/k is a curve of genus g > 2, then
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N(V(k), B) < clog B. This is in marked contrast to curves of genus 1,
which have a counting function satisfying c1B''/2 < N(V(k), B) < c2B''/2
for a certain integer r > 0. Vojta's proof of the Mordell conjecture is based
on an extension of Mumford's argument. As a warm-up for the proof of the
Mordell conjecture in Part D, we will give a proof of Mumford's theorem
in this part.

The second essential property of a height function is that it should re-
flect the underlying geometry of the variety. More precisely, it should pro-
vide a means for translating geometric information about the variety into
arithmetic information about the rational points on the variety. We will
begin by defining a height function for each projective embedding of V; and
then, using the relationship between projective embeddings and divisors,
we will obtain an (equivalence class) of height functions for each divisor
class on V. Now the geometry of V, as reflected in the structure of its
divisor class group, will give corresponding information about the rational
points on V. This construction, due to Andre Weil, is called the Height
Machine. It associates to each divisor class c E Cl(V) a height function
h, : V(k) --+ R, well-defined up to a bounded function on V(k).

Of particular importance is the case that the variety V has some special
geometric structure. For example, suppose that V = A is an abelian variety.
Then we can add points in A, so the height functions on A should interact
in some way with the addition law. Indeed, we will prove that for an
appropriate choice of c E Cl(V), the corresponding height function satisfies
a parallelogram law,

h.(P + Q) + hc(P - Q) = 2hc(P) + 2hc(Q) + 0(1) for all P, Q E A(k).

Here the bounded function 0(1) depends on the variety A, but is inde-
pendent of P and Q. It follows from the parallelogram law that, up to
a bounded function, the height h, is a quadratic form on A(k). In par-
ticular, hc(mP) = m2hJP) + O(m2). These geometric properties of the
height function on an abelian variety play a crucial role in the proof of the
Mordell-Weil theorem.

Weil's height machine associates a height function h. to each divi-
sor class c E Cl(V), but he is determined only up to a bounded function
on V(k). Neron and Tate showed how the group law on an abelian variety
can be used to choose a particular height function h, that has especially
nice properties. For example, the parallelogram law now holds without
that pesky 0(1),

hc(P + Q) + ih.(P - Q) = 2h,(P) + 2h,(Q) for all P, Q E A(k).

The quadratic form he on A(k) and its associated bilinear pairing then give
A(k) ®R the structure of a finite-dimensional Euclidean vector space. The
group A(k)/A(k)to. sits as a lattice inside this space, and one can then talk
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about angles between points, the volume of a fundamental domain, and all
of the other quantities attached to lattices in Euclidean vector spaces. All
of these quantities will have a tremendous arithmetic significance because
the Euclidean metric in this space is defined using the height function, and
the height function itself measures the arithmetic complexity of a point.
We will develop the theory of canonical heights in sections B.4 and B.5.

B.1. Absolute Values

Before we can define a size or height function on the rational points of an
algebraic variety, we must first have a means of measuring the size of an
algebraic number. The traditional way to describe the size of an algebraic
number is through the use of absolute values. In this section we will review
the theory of absolute values on number fields.

Recall that an absolute value on a field k is a real-valued function

I I:k-i[0,oo)
with the following three properties:

(1) IxI = 0 if and only if x = 0. (Nondegenerate)

(2) Ixyl = IxI - Iyl (Multiplicative)

(3) Is + yI 5 IxI + lyl. (Triangle inequality)

The absolute value is said to be nonarchimedean if it satisfies
(3') Ix + yI <_ max{ IxI, Iyi } (Ultrametric inequality)

We begin with the simplest number field, the field of rational num-
bers Q. There is an archimedean absolute value on Q defined by

Ixl,,o = max{x, -x}.

This is just the restriction to Q of the usual absolute value on R. Further,
for each prime number p there is a nonarchimedean (or p-adic) absolute
value defined as follows. For any nonzero rational number x E Q, let
ordp(x) be the unique integer such that x can be written in the form

x= p°idplxl
6

with a, b E Z and p{ ab.

(If x = 0, we set ordp(x) = oo by convention.) Then the p-adic absolute
value of x E Q is the quantity

IxIp=P ordp(x)

Intuitively, x is p-adically small if it is divisible by a large power of p. The
homomorphism

ordp (0, cc)

is called the p-adic valuation on Q.
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Notation. The set of standard absolute values on Q is the set MQ consist-
ing of the archimedean absolute value to and the p-adic absolute values
I In for every prime p.

The set of standard absolute values on a number field k is the set Mk
consisting of all absolute values on k whose restriction to Q is one of the
standard absolute values on Q. We write Mk' for the set of archimedean
absolute values in Mk, and similarly Mk denotes the set of nonarchimedean
absolute values on k.

To ease notation, we will frequently write the absolute value corre-
sponding to v E Mk as I 1v. We also define

v(x) = - log IxIv,

with the convention that v(O) = oo.
Let k'/k be an extension of number fields and let v E Mk, w E Mk, be

absolute values. We say that w divides v (or w lies over v) and write wlv
if the restriction of w to k is v. We say that v is p-adic if it lies over the
p-adic absolute value of Q.

The absolute values on Q satisfy the product rule

II for all xEQ,x54 O.
vEMQ

This is a simple reflection of the fact that Z has unique factorization. In
order to formulate and prove a corresponding result for number fields, we
will need to assign weights to the absolute values. For any absolute value
v E Mk, we write k for the completion of the field k with respect to v. For
example, let v E MQ. Then Q = R if v = oo is the archimedean absolute
value on Q, and Qv = Qp if v is the p-adic absolute value. We recall the
well-known formula relating the local and global degrees of an extension.

Proposition B.1.1. (Degree formula) Let k'/k be an extension of num-
ber fields, and let v E Mk be an absolute value on k. Then

[ku,:kv]=[k':k].
wEMk,, W Iv

PROOF. See any book on basic algebraic number theory, such as Lang [9, II,
Corollary 1 to Theorem 2] or Serre [1, I, Proposition 10 and II, Theorcme 1].

0

Definition. Let v E Mk be an absolute value on a number field k. The
local degree of v is the number

nv=[kv:QvJ,
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where Qv is the completion of Q at the restriction of v to Q. The normalized
absolute value associated to v is

llxlly = Ixly.

Proposition B.1.2. (Product formula) Let k be a number field and let
x E k*. Then

H llxlly = 1.
vEMk

PROOF. First we check the product formula over Q. Write x = f fl pen as
a product of primes. Then

II llxlly = Ixlo H l xl p = lxloo II p =1.
VEMQ p p

In order to prove the product formula in general, we use the following
decomposition formula. Let x E k, and let vo E MQ be an absolute value
on Q. Then

II llxlly = INk/Q(x)Iv0.
vEMk, vIvo

(See Lang [9, II, Corollary 2 to Theorem 2].) Using this formula, we com-
pute

fl llxlly = II II llxlly = II INk/Q(x)Ivo = 1,
vEMk VoEMQvEMk,vJvo voEMQ

where the last equality follows from the product formula over Q. 0

We next give an alternative description of the absolute values on a
number field k of degree n = [k : Q]. We begin with the archimedean
absolute values. It is a standard fact from field theory that k admits
exactly n distinct embeddings a : k ti C. Each such embedding can be
used to define an absolute value on k according to the rule

l xl o = la(x)loci,

where lzloy is the usual absolute value on R or C.
Recall that the embeddings a : k -+ C come in two flavors, the real

embeddings (i.e., a(k) C R) and the complex embeddings (i.e., a(k) la).
The complex embeddings come in pairs that differ by complex conjugation.
The usual notation is that there are rl real embeddings and r2 pairs of
complex embeddings, so n = rl + 2r2. It is clear that conjugate complex
embeddings give the same absolute value on k, since lzl = lzlx. One can
show that this is the only way in which two embeddings can give the same
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absolute value, and further that every archimedean absolute value arises in
this way.

Next let p be a prime ideal of k, say lying above the rational prime p.
Also let Rk be the ring of integers of k. There is a valuation ordp associated
top defined by the rule that ordp (x) is the exponent of p in the factorization
of the fractional ideal xRk. In other words, the valuations associated to
the prime ideals of k are surjective homomorphisms

ordp : k' --p Z characterized by xRk = Hpord^(x).
P

We are, of course, using the fundamental fact that Rk is a Dedekind domain,
and thus that its fractional ideals have a unique factorization into a product
of prime ideals.

We can use these p-adic valuations to define p-adic absolute values

on k. Let ep = ordp (p) be the ramification index of p over Q. Then we
define

IxIp = p ordv(x)/ep

Notice that the ep is needed to ensure that Iplp = p-1. Equivalently, we
can define

IIxIIp =
(Nk/Qp)_ordn(x),

where Nk/QP is the norm of the ideal p. Of course, we always understand
that ordp(0) = oo. We will also sometimes write

Vp(x) = -log IxIp

when we are feeling in an additive, rather than a multiplicative, mood.
We summarize the above discussion in the following proposition.

Proposition B.1.3. Let k/Q be a number field of degree n = [k: Q].
(a) Let

Pl,...,prl : k' R and T1,T1.... ,Tr2,Tr2 : k'-+ C

be the real and complex embeddings of k, respectively. Then there is a
bijection

00Mk , a-I Ia,

where 1x10 = Ia(x)loo is the absolute value described above.
(b) Let p be a prime, and let pRk = pi` per be the factorization of p in
the ring of integers of k. Then there is a bijection

{pl,p2, ,pr} {p-adic absolute values on k}, p r---. I - Ip,
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where Ixlp = p-ord°(x)/ep is the absolute value described above.

Notice that one consequence of Proposition B.1.3 is that a number
field k has one absolute value for each prime ideal, one absolute value for
each real embedding, and one absolute value for each pair of complex em-
beddings. The nonarchimedean absolute values Mk are those correspond-
ing to the prime ideals. The ring of integers of k can be characterized using
absolute values as

Rk={xEk I Ixlv<1for all vEMk}.

More generally, if S C Mk is any set of absolute values containing the
archimedean absolute values Mk, then the ring of S-integers of k is defined
to be

Rs={xEk I all vEMk,vVS}.
Thus with this terminology, Rk is the ring of Mk-integers of k.

B.2. Heights on Projective Space

There is a natural way to measure the size of a rational point P E P(Q).
Such a point can be written (almost uniquely) in the form

P = (xo, x1, ... , xn) with xo, xl, ... , xn E Z and gcd(xo, x1, ... , xn) = 1.

We define the height of P to be the quantity

H(P) = max{IxoI, IxiI,..., Ixnl}.

It is clear that for any B, the set

{PEP"(Q) I H(P) < B}

is finite, since there are only finitely many integers x E Z satisfying IxI < B.
This notion of height can be generalized to number fields in the fol-

lowing way.

Definition. Let k be a number field, and let P = (xo, xl,... , x,) E P"(k)
be a point whose homogeneous coordinates are chosen in k. The height
of P (relative to k) is the quantity

Hk(P) = fl max{IIxoIIv, IIx1IIv,..., IIxnIIu}.
vEMk

We also define

hk(P) = log Hk(P) = > -nv min{v(xo), v(x1), ... , v(xn) }.
vEMk

In order to distinguish between them, we call Hk the multiplicative height
and hk the logarithmic height.
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The product formula ensures that the height Hk(P) is well-defined,
independent of the choice of homogeneous coordinates for P. We verify
this and describe the dependence on k in the following lemma.

Lemma B.2.1. Let k be a number field and let P E Pn(k) be a point.
(a) The height Hk(P) is independent of the choice of homogeneous coor-
dinates for P.
(b) Hk(P)> 1 forallPE1P"(k).
(c) Let k' be a finite extension of k. Then

Hk'(P) = Hk(P)Ik':kl.

PROOF. (a) Write P = (xo, . . . , xn). Any other choice of coordinates for P
has the form (cxo, . . . , cxn) with c E k*. Using the product formula (B.1.2),
we find that

max{IIcxoIlv,...,IIanIIv}
vEMk

= (ii IIcIIi) ( H maX{IIxolIv,..., IlxnIIv})
vEMk vEMk

= [J maX{IIxoII...... IIxnIIv}
vEMk

(b) We can take homogeneous coordinates for P such that some coordinate
is equal to 1. Then it is clear from the definition that Hk(P) > 1.
(c) For this part we use the degree formula to compute

Hk,(P) = [I maX{IIxoIIw,...,IIxnIIw}
wE Mk,

= 1I H maX{IIxoIlw,..., IIxnIIw}
vEMk WE Mk,, W IV

11 lj
vEMk WE MA,,, WIV

Now n,,, = [kW : Q W] = [kW : k,lnv, so we get

11 II max{ IIxOIIv,... ,
IIxnIIv}Ik':ku]

vEMk wEMk', wIv

= H maX{IIxoIIv,...,IIxnIIv}Ik':k]

from (B.1.1)
vEMk

= Hk(P)Ik':k].

0
The transformation formula (B.2.1(c)) allows us to define a height

function that is independent of the field.
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Definition. The absolute (multiplicative) height on lP" is the function

H : lP(Q) --' [1,oo), H(P) = Hk(P)11[k:QI,

where k is any field with P E P'(k). The absolute (logarithmic) height
on 1P" is

h : P'(Q) -, [0,oo), h(P) = logH(P) = [k 1Q]hk(P).

Note that (B.2.1(c)) ensures that H(P) is well-defined independent of the
choice of the field k.

We also define the height of an element a E k to be the height of the
corresponding projective point (a, 1) E Pl(k). Thus

Hk(a)= II max{IIaIIv,1},
VEMk

and similarly for hk(a), H(a), and h(a).

Proposition B.2.2. The action of the Galois group on P"(0) leaves the
height invariant. In other words, let P E 1P"(Q) and let o E GQ. Then
H(cr(P)) = H(P).

PRooF. Let k/Q be a number field with P E pn(k). The automorphism u
of Q defines an isomorphism a : k =Z o(k), and it likewise identifies the
sets of absolute values on k and a(k). More precisely,

o : Mk =-+ M,(k), v ,--+ Q(v),

where for x E k and v E Mk, the absolute value v(v) E MQ(k) is defined
by Io(x) I0(v) = I xl v. It is also clear that o induces an isomorphism on the
completions, kv = o(k)a(v), so nv = no(v). This allows us to compute

HH(k)(o(P)) = II max{IIa(xi)l1w} = II
max{IQ(xi)Iw}n,

wEM,(k) wEMe(k)

rJ
max{IQ(xi)Io(v)}ne(o) = IT max{xil,}n°

vEMk vEMk
L J

= II max{Ilxilly} = Hk(P)
vEMk

We also have [k : Q] = [a(k) : Q], so taking [k : Q]lh roots gives the desired
result.

Recall that the field of definition of a point P = (xo, ... , xn) E 1P" (Q)
is the field

Q(P) = Q(xo/xj, xl/xj,... , xn/xj) for any j with xj 54 0.

The following finiteness theorem is of fundamental importance for the ap-
plication of height functions in Diophantine geometry.
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Theorem B.2.3. For any numbers B, D > 0, the set

{P E P- (0) I H(P) < B and [Q(P) : Q] < D}

is finite. In particular, for any fixed number field k, the set

{PEPn(k)IHk(P)<B}

is finite.
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PROOF. Choose homogeneous coordinates for P = (xo,... , x,) such that
some coordinate equals 1. Then for any absolute value v and any index i
we have

max{IIzOIIv,..., Ilxnlly} > max{Ilxilly, 1}.

Multiplying over all v and taking an appropriate root, we see that

H(P) > H(xi) for all0<i<n.

Further, it is clear that Q(P) D Q(xi). Hence it suffices to prove that for
each 1 < d < D, the set

{x E Q I H(x) < B and [Q(x) : Q] = d}

is finite.
Let x E Q have degree d and let k = Q(x). We write x1, ... , xd for

the conjugates of x over Q, and we let

d d

FF(T) = JJ(T - xj) = J:(-1)rsr(x)Td-r

j=1 r=o

be the minimal polynomial of x over Q. For any absolute value v E Mk,
we can estimate the size of the symmetric polynomial sr(x) by

Isr(x)Iy = I xi, ...xi,.
y

< c(v, r, d) max Ixi, xi,, IV (triangle inequality)

c(v,r,d) maX Ixily
1<i<d

Here c(v, r, d) = (d) < 2d if v is archimedean, and we can take c(v, r, d) = 1
if v is nonarchimedean.

It follows that

d

maX{Iso(x)Iy,...,Isd(x)Iv} <c(v,d)Ijmax{lxilv,1}d,
i=1
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where c(v, d) = 2d if v is archimedean, and c(v, d) = 1 otherwise. Now
we multiply this inequality over all v E Mk and take the [k : Q]th root to
obtain the estimate

d

H(so(x), ... , sd(x)) < 2d fl H(xi)d.
i=1

But the xi's are conjugates, so (B.2.2) tells us that all of the H(xi)'s are
equal. Hence

H(so(x),...,ad(x)) < 2dH(x)d2.

Now suppose that x is in the set

{xE0IH(x) <Band [Q(x):Q]=d}.

Then we have just proven that x is the root of a polynomial Fx(T) E Q[T]
whose coefficients so, ... , ad satisfy H(so,... , sd) <_ 2dBd2. But we saw
earlier that Pd(Q) has only finitely many points of bounded height, so
there are only finitely many possibilities for the polynomial F(T), and
hence only finitely many possibilities for x. This completes the proof of
Theorem B.2.3.

An immediate corollary of the finiteness property in Theorem B.2.3
is the following important result due to Kronecker. We will later prove a
generalization, see (B.4.3(a)).

Corollary B.2.3.1. (Kronecker's theorem) Let k be a number field, and
let P = E U" '(k). Fix any i with xi 34 0. Then H(P) = 1 if
and only if the ratio xj/xi is a root of unity or zero for every 0 < j < n.

PROOF. Without loss of generality, we may divide the coordinates of P
by xi and then reorder them, so we may assume that P = (1, x1, x2, ... ,
First suppose that every x3 is a root of unity. Then Ixj kv = 1 for every
absolute value on k, and hence H(P) = 1.

Next suppose that H(P) = 1. For each r = 1,2,..., let P'' =
(xo, ... , xn). It is clear from the definition of the height that H(Pr) =
H(P)'', so H(P'') = 1 for every r > 1. But P' E P"(k), so Theorem B.2.3
tells us that the sequence p, P2, p3.... contains only finitely many distinct
points. Choose integers s > r > 1 such that P' = P. This implies that
x = x? for each 1 < j < n (since we have dehomogenized with xo = 1).
Therefore, each xj is a root of unity or is zero.

The next two results give our first examples of the interplay between
geometry and arithmetic. The proof of Proposition B.2.4 is elementary,
while the proof of Theorem B.2.5 uses the Nullstellensatz and the triangle
inequality to translate the geometric assertion that a map is a morphism
into an arithmetic relationship between height functions.
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Proposition B.2.4. Let Sn,m be the Segre embedding described in Ex-
ample A.1.2.6(b),

Sn,m : P" X Pm -+ pN' (x, y) '-' (x0y0i x0y1 i ... ) xiyj, ... , xnym)

Let Hn, Hm, and HN be hyperplanes in P", 1Pm, and pN, respectively.

(a) SS,m(HN) - Hn x ]Pm + P' x Hm E Div(P" x Pm).

(b) h(Sn,m(x, y)) = h(x) + h(y) for all x E P"(Q) and Y E Pm((O).

(c) Let P" --, pN be the d-uple embedding described in Exam-
ple A.1.2.6(a). Then

h(4bd(x)) = dh(x) for all x E P"(Q).

PROOF. (a) Let (zo, ... , ZN) be homogeneous coordinates on pN, and fix
hyperplanes HN = {zo = 0}, Hn = {xo = 0}, and Hm = {yo = 0}. Then

SnmHN =Sn,m{zEPNlzo=O}
_{(x,y)EP"x1PmIxoyo=0}=HnxPn+P"xH,n.

(b) Let x E P(k) and y E Pm(k) for some number field k, and let z =
Sm,n (x, y). Then for any absolute value v E Mk we have

max Izlly = max Ixiyjly max
Ixily max Iyjly

0<I<N O<i<n O<i<n 0<j<m
O<j<m

Now raise to the ny/[k : Q] power, multiply over all v E Mk, and take
logarithms to obtain the desired result.
(c) The d-uple embedding is defined by '(x) = (Mo(x),... , MN(x)), where
the Mi(x) are all monomials of degree d in n + 1 variables. It is clear
that I Mi (x) I,, < maxi Ixi Iv, and since the particular monomials xo, ... , xn
appear in the list, we find that

max IMj(x)Iy = max Ixily
0<j<N O<i<n

Now raise to the n,,/[k : Q] power, multiply over all v E Mk, and take
logarithms to finish the proof. O

Theorem B.2.5. Let ¢ : P" --+ Pm be a rational map of degree d defined
over Q, so 0 is given by an (n + 1)-tuple 0 = (fo,... , fm) of homogeneous
polynomials of degree d. Let Z c P" be the subset of common zeros of
the fi's. Notice that 0 is defined on P"' Z.
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(a) We have

h(cb(P)) < dh(P) + 0(1) for all P E P- ((0) -, Z.

(b) Let X be a closed subvariety of Pn with the property that X n Z = 0.
(Thus 0 defines a morphism X - P.) Then

h(4(P)) = dh(P) + 0(1) for all P E X(Q).

We also record a special case that will be needed in the next section.

Corollary B.2.6. Let A : Pn -. P" be a linear map defined over Q. In
other words, A is given by m + 1 linear forms (Lo,..., Lm). Let Z C Pn
be the linear subspace where Lo,..., Lm simultaneously vanish, and let
X C Pn be a closed subvariety with X ft Z = 0. Then

h(A(P)) = h(P) + 0(1) for all P E X(Q).

Remark B.2.7. (i) The O(1)'s in Theorem B.2.5 depend on the map
but are independent of the point P.
(ii) It is possible to give an explicit formula for the 0(1)'s in terms of the
coefficients of ¢ and the equations defining X. More precisely, it is quite
easy to get an explicit upper bound h(0(P)) < dh(P) + cl (0) for (a) using
only the triangle inequality; see Exercise B.1. The corresponding lower
bound h(O(P)) > dh(P) - c2(0) is more difficult, even in the case that
Z = 0. See, for example, the effective Nullstellensatz proven by Masser
and Wiistholz [1].
(2) It is not true in general that h(O(P)) > dh(P) + 0(1) for all points
P E Pn (Q) -, Z. See Exercise B.2 for an example.

PROOF (of Theorem B.2.5 and Corollary B.2.6). Fix a field of definition k
for 0, so

0 = (fo, fl,. -., fm) with fo,... , fm E k[XO,... , Xn]d.

(That is, the fi's are homogeneous polynomials of degree d.) We write f;
explicitly as

f.(X) _ ai,.X°,
jeI=d

where e = (eo,... , en) is a multi-index, (el = eo + + en, and X1 =
Xo°Xl' Xn^. Notice that this sum has (nn d) terms, which is the number
of monomials of degree d in n + 1 variables.
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For any point P = (xo, ... , x,) with x) E k and any absolute value v E
Mk, we will write Ply = max{Ixjly}. Similarly, for any polynomial f =
EaeXe E k[X] we will let If Iv = max{IaeI}. We also set the convenient
notation r if v is archimedean,

eV (r) 1 if v is nonarchimedean.

With this notation, the triangle inequality can be written uniformly as

jai + a2 + + a,.Iv < ev(r) max{ Iai lv, ... , Iarly}.

Now consider any point P E Pn(Q). Extending k if necessary, we may
assume that P E IP" (k) and write P = (xo,... , xn) with xi E k. Then for
any v E Mk and any i we have

IM(P)Iv = ai,exe
[e[=d v

< ey
n +

n Ixo
... xn Iv)

ev

= CV

Cn

n J If, Iv I xi

Cn
n / IfiviPIV.

Now take the maximum over 0 < i < m, raise to the nv/[k : Q] power, and
multiply over all v E Mk. This gives

H(O(P)) S (n±d)H()H(P)d,

where we are writing H(O) for the quantity

H(Q) _ JI max{Ifolv,...,Ifmly}n"/[k:Q]vE

Mk

(That is, H(4) is the height of the point (ai,e) whose coordinates are the
coefficients of all of the fi's.) We have also made use of the identity

/ n n [k:Q]ev\r)v= rv = r
vEMk vEMk

which follows from the degree formula (B.1.1). Taking logarithms gives

h(O(P)) < dh(P) + h(O) + log
(n+ d),
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which completes the proof of (a).
(b) In order to get a complementary inequality, we need to use the fact
that we are choosing points P E X and that ¢ is a morphism on X. Let
pl,... , pr be homogeneous polynomials generating the ideal of X. Then
we know that p1, ... , pr, fo, ... , fm have no common zeros in P1. The
Nullstellensatz (Theorem A.1.1.2) tells us that the ideal they generate has
a radical equal to the ideal generated by Xo, X 1i ... , X,,. This means that
we can find polynomials gij, qij (which we may assume to be homogeneous)
and an exponent t > d such that

for0<j <n.

Notice that the gij's are homogeneous of degree t - d, since the fi's are
homogeneous of degree d. Extending k if necessary, we may also assume
that the gij's and gij's have coefficients in k. Now let P = (xo, ... , xn) E
X(k). The assumption that P E X implies that pi(P) = 0 for all i, so
when we evaluate the above formula at P we obtain

9oj(P)fo(P)+....+9mj(P)fm(P) =xj, 0 < j <n.

Hence

IPly=maxlxily

= m"I9oj (x)fo(x) + 91j (x)f1(x) + ... + gmj (x)fm (x) I v

< Ev(m+ 1)(m8x I9ij(x)Iv) (max Ifs(x)Iv)

l
< Ev(m + 1 [(t_d+n\ max I9ij Iv) IPIv-d] maxn J(i, (, if:x)Iv)

Now raise to the nv/[k : Q] power and multiply over all v E Mk. This
yields

H(P)t < cH(P)t-dH(i(P)),

where c is a certain constant depending on the fi's, the gij's, and t, but
independent of P. In other words, c depends only on 0 and X, so taking
logarithms gives the desired inequality

dh(P) < h(q(P)) + 0(1).

This completes the proof of Theorem B.2.5.
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B.3. Heights on Varieties

Let V be a projective variety defined over Q. If V is embedded in some P,
or more generally if we are given a morphism 4, : V - P", then we can
define a height function on V.

Definition. Let ¢ : V - P" be a morphism. The (absolute logarithmic)
height on V relative to 0 is the function

ho : V(c) -' [0, oo), hm(P) = h(4,(P)),

where h : P" (0) -+ (0, oo) is the height function on projective space defined
in the previous section.

We have seen (B.2.5) that if 0: Pn -+ P'" is any morphism of degree d,
then ho(P) = dh(P) + 0(1). The fact that 0 has degree d is equivalent
to the assertion that 4' H' - dH, where H and H' are hyperplanes in Pn
and P'", respectively. The following strengthening of (B.2.5) will be one of
the crucial ingredients in the construction of the height machine later in
this section.

Theorem B.3.1. Let V be a projective variety defined over (0, let
V -+ P" and 0 : V - P'" be morphisms, and let H and H' be hyperplanes
in P" and P'", respectively. Suppose that O *H and tk*H' are linearly
equivalent (i.e., 0 and 4, are associated to the same complete linear system).
Then

ho(P) = h,p(P) + 0(1) for all P E V ((O).

Here the 0(1) constant will depend on V, 0, and t/', but it is independent
of P.

PROOF. Let D E Div(V) be any positive divisor in the linear equivalence
class of ¢`H and O*H'. The morphisms 0 and t/.' are determined respec-
tively by certain subspaces V and V' in the vector space L(D) and choices
of bases for V and W. (See Section A.3.1.) In other words, if we choose a
basis ho,..., hN for L(D), then there are linear combinations

N

f;= aihj, 0<i<n,
i-o
N

g;=>2b=,hj, 0<i<m,
j=1

such that 0 and t/, are given by

0 = (fo,... , fn) and 0 = (go,.. - , gn)
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Here the a;j's and btj's are constants.
Let A = (ho,. .. , hN) : V -- pN be the morphism corresponding to

the complete linear system determined by D. Let A be the linear map
A : 1P^` - 1P" defined by the matrix (a;i), and similarly let B : pN -. p'"
be the linear map defined by (bt,). Then we have commutative diagrams

V IPN V - pN
IA r/i \ IB

1P" 1P"`

The vertical maps A and B are not morphisms on all of PN, but the fact
that ¢ and 0 are morphisms associated to the linear system L(D) implies
that A is defined at every point of the image A(V(Q)), and similarly for B.
Hence we can apply Corollary B.2.6 to conclude that

h(A(Q)) = h(Q) + 0(1) and h(B(Q)) = h(Q) + 0(1)
for all Q E A(V(Q)).

Writing Q = A(P) with P E V (O) and using the commutative diagrams
gives the desired result:

h(¢(P)) = h(A(A(P)) = h(A(P)) + 0(1)
= h(B(A(P))) + 0(1) = h(b(P)) + 0(1).

0
We are now ready to give Weil's construction that associates a height

function to every divisor. This theorem may be viewed as a machine that
converts geometric statements described in terms of divisor class relations
into arithmetic statements described by relations between height functions.

Theorem B.3.2. (Weil's Height Machine) Let k be a number field. For
every smooth projective variety V/k there exists a map

by : Div(V) -* {functions V(k) --. R}

with the following properties:
(a) (Normalization) Let H C P' be a hyperplane, and let h(P) be the
absolute logarithmic height on PI defined in Section B.2. Then

hp-,H(P) = h(P) + 0(1) for all P E lP"(k).

(b) (Functoriality) Let V W be a morphism and let D E Div(W).
Then

hw,D(cb(P)) + 0(1) for all P E V(k).
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(c) (Additivity) Let D, E E Div(V). Then
hV,D+E(P) = hV,D(P) + hV,E(P) +O(1) for all P E V(k).

(d) (Linear Equivalence) Let D, E E Div(V) with D linearly equivalent
to E. Then

hV,D(P) = hv,E(P) + 0(1) for all P E V(k).

(e) (Positivity) Let D E Div(V) be an effective divisor, and let B be the
base locus of the linear system SDI. Then

hv,D(P) > 0(1) for all P E (V B)(k).

(f) (Algebraic Equivalence) Let D, E E Div(V) with D ample and E alge-
braically equivalent to 0. Then

hV,E(P)
lim_ 0.

PEV(k) hV,D(P)
hv.D(P)--.oo

(See also Theorem B.5.9 for a stronger statement.)
(g) (Finiteness) Let D E Div(V) be ample. Then for every finite exten-
sion k'/k and every constant B, the set

{PEV(k')IhV,D(P) <B}
is finite.
(h) (Uniqueness) The height functions hV,D are determined, up to 0(1),
by normalization (a), functoriality (b) just for embeddings ¢ : V - 1P",
and additivity (c).
Remarks B.3.2.1. (i) If the variety V is not smooth, Weil's Height Ma-
chine (B.3.2) is still valid, provided that one works entirely with Cartier
divisors, rather than with Weil divisors. The proof of Theorem B.3.2 for
singular (projective) varieties goes through verbatim using the theory of
Cartier divisors as developed in Sections A.2 and A.3.

(ii) The "0(1)" constants that appear in the height machine (Theorem
B.3.2) depend on the varieties, divisors, and morphisms, but they are in-
dependent of the points on the varieties. In principle, it is possible to
construct all of the hV,D's explicitly and to give bounds for the O(1)'s in
terms of the coefficients of the defining equations of the V's, D's, and q's.
Thus the height machine is effective. However, it is often difficult in prac-
tice to bound the O(1)'s. And even when bounds are calculated, the results
are generally quite large, because explicit bounds usually depend on some
explicit rendition of the Nullstellensatz, and this in turn requires the use
of generalized resultants or elimination theory.
(iii) We have described the height machine for varieties defined over num-

ber fields. The same construction works more generally over any field with
a proper set of absolute values satisfying the product formula. For exam-
ple, there is a theory of heights over function fields. See Lang [6) for the
general formulation.
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PRooF. We construct the height machine in pieces. First, for every divisor
D E Div(V) whose linear system has no base points, we choose a morphism
OD : V -' Pn associated to D and define

hv,D(P) = h(gD(P)) for all P E V(k).

(That is, OD is a morphism such that ¢DH - D for any hyperplane H
in P".) Next, for every other divisor D E Div(V), we use (A.3.2.3) to
write D as a difference of divisors whose linear system has no base points,
say D = Dl - D2 (we could even require D1, D2 to be very ample divisors),
and then we define

hV,D(P) = hV,D, (P) - hV,D2 (P) for all P E V(k).

This gives us a height function hv,D for every divisor D on every variety V.
We begin by verifying that up to 0(1), the height function hVD associ-

ated to a base point free divisor D is independent of the morphism ¢D. So
let OD : V - IP'n be another morphism associated to D. This means that
qDH - D OI H', where H is a hyperplane in P" and H' is a hyperplane
in PI. Now Theorem B.3.1 tells us that

h(-OD(P)) = h(OD(P)) +O(1) for all P E V(k).

Hence for base point free divisors, we can use any associated morphism to
compute the height.

We next check additivity property (c) for base point free divisors,
which we then use to show that the height hV,D is well-defined up to 0(1),
independent of the decomposition D = D1 - D2.

Let then D and E be base point free divisors, and let ¢D : V 1Pn

and ¢E : V -+ PI be associated morphisms. Composing the product
OD X OE : V ' x 1P'n with the Segre embedding S,,,,,, (A.1.2.6(b)) gives
a morphism

OD 0'E : V _ pN' OD 0 E(P) = Sn,m(OD(P),4E(P))

The morphism OD 0 OE is associated to the divisor D + E, that is,

(OD®¢E)*H-D+E,
see (B.2.4(a)). We showed above that the height for a base point free
divisor can be computed using any associated morphism, so

hv,D+E(P) = h((OD 0 E)(P)) +O(1) for all P E V(k).

Now we can use (B.2.4(b)) to obtain

hV,D+E(P) = h((OD (9 bE)(P)) +O(1)

= h(S.,m(OD(P), OE (P))) + 0(1)

= h(cD(P)) + h(cE(P)) + 0(1) (from (B.2.4(b)))

= hv,D(P) + hv,E(P) + 0(1).
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This gives additivity for base point free divisors. Suppose now that we
have two decompositions

D=DI-D2=E1-E2

of a divisor D as the difference of base point divisors. Then D1 + E2 =
D2 + El, and hence

hV,D, +hv,E2 = hV,D,+E2 +0(1)
= hv,D2+E, + 0(1)
= hV,D2 + hV,E, + 0(1),

which implies that hV,D, - hV,D2 = hv,E1 - hV,E2 + 0(1).
It is now easy to check properties (a) and (b). Thus if H is a hyperplane

in lP", then the identity map P - P", P i-+ P, is associated to H. This
gives (a). To verify (b), we write D E Div(W) as a difference of base point
free divisors, D = D1 - D2i and let OD, and 0D2 be the corresponding
morphisms of W into projective space. Then O'D1 and q'D2 are base
point free, with associated morphisms ODI o 0 and 0D2 o 0, respectively.
Hence

hv,, .D = hV,m.D, - 0(1)
= hocD, oO- hoOD2 oO+0(1)
= hW,D, o ¢ - hW,D2 o O+ O(1)

= hw,D o ¢+O(1).

Next we check the additivity property (c), which we already know for
base point free divisors. Now let D and E be arbitrary divisors, and write
them as differences D = Dl - D2 and E = E1 - E2 of base point free (or
even very ample) divisors. Then Dl + El and D2 + E2 are base point free,
so we can compute

hV,D+E = hv,D1+E, - hV,D2+E2 +O(1)
= hV,D, + hV,EI - hV,D2 - hV,E2 + 0(1)

= hV,D + hV,E + 0(1).

This completes the proof of additivity (c).
We also note at this point that the normalization property (a), the

functoriality property (b) for embeddings to projective space, and the ad-
ditivity property (c) determine the height functions up to 0(1). The point
is that if D is very ample with associated embedding ¢D : V ti 1P", then (a)
and (b) imply that hV,D = h o OD + O(1). This determines the height func-
tion for very ample divisors. But any divisor D can be written as the
difference D1 - D2 of very ample divisors (A.3.2.3), so the additivity (c)
forces us to define hv,D = hV,D1 -hV,D2+0(1). This proves the uniqueness
property (h) of the height.
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Next suppose that D and E are linearly equivalent. Writing D =
Dl - D2 and E = El - E2 as the difference of base point free divisors as
usual, we have D1+E2 - D2+E1. This means that the morphisms OD,+Ez
and 'D,+E, are associated to the same linear system, so Theorem B.3.1
(or even Theorem B.2.5) tells us that

h(OD,+E2(P)) = h(OD2+E,(P)) +O(1) for all P E V(k).

Using this equality and additivity gives

hvD,+hv,E2 = hV,D,+E2+O(1) = hvD2+E,+O(1) = hvD,+hvE,+O(1).

Hence

hV,D = hvD, - hvD, + 0(1) = hvE, - hv,E2 + 0(1) = hv,E + 0(1),

which proves (d).
To prove positivity (e), we take D > 0 and write D = Dl - D2 as

a difference of base point free divisors as usual. Choose a basis fo, ... , fn
for L(D2). Then the fact that D is positive implies that

Dl+div(f,) =D+D2+div(f;) > 0,

so fo,..., fn are also in L(Dj). We extend this set to forma basis

f0, ... , fn, fn+l, .... fm E L(Di ).

These bases give us morphisms

OD, _ (f0, ... , fm) : V --* lP'n and OD2 = (f0, ... , fn) : V ' Pn

associated to Dl and D2. The functions fo,... , fn are regular at all points
not in the support of Dl, so for any P E V with P V supp(Di) we can
compute

hv,D(P) = hV,D, (P) - hv,D2 (P) + 0(1)

= h(4Dl (P)) - h(OD2(P)) + 0(1)
= h(fo(P),... , fm(P)) - h(fo(P), ... , fn(P)) + 0(1)
> 0(1).

The last line follows directly from the definition of the height, since the
fact that m > n clearly implies

VE

max vjjk0max {Ilft(P)Ily}.
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This gives the desired estimate for points not in the support of D1.
Now choose very ample divisors Ho, H1,. .. , H, on V with the property that
Ho n n H,. = 0 and H; + D is very ample. For example, use (A.3.2.3)
to find a very ample divisor H such that D + H is also very ample, take
an embedding V '-+ P' corresponding to H, and take the Hi's to be the
pullbacks of the coordinate hyperplanes in P. Now we apply our above
result to each of the decompositions D = (D + H;) - H, to deduce the
inequality hV,D > 0(1) for all points not in the support of D. Finally,
varying D in its linear system (DI, we obtain the positivity property (e) for
all points not lying in the base locus of ID!.

We will give a proof of the algebraic equivalence (f) using the fact
that if D is ample and E is algebraically equivalent to 0, then there is an
integer m > 0 such that mD + nE is base point free for all integers n. (See
Lang [6, Chapter 4, Lemma 3.2].) However, we will later (Theorem B.5.9)
prove a stronger result, using the theory of canonical heights and functorial
properties of the Picard and Albanese varieties.

The height associated to a base point free divisor is nonnegative by
construction (or by the positivity property (e) with empty base locus), so

hv,mD+nE(P) > O(1) for all P E V(k).

Using additivity (c), we obtain

mhv,D(P) + nhv,E(P) > -c for all P E V(k),

where the constant -c will depend on D, E, m, and n, but is independent
of P. This holds for all integers n, so we can rewrite using positive and
negative values for n. Thus for any n > 1 we obtain

m c hv,E(P) m c
n + nhvD(P)

>
hv,D(P)

>
n nhv,D(P)

for allPEV(k).

It is important to keep in mind that the constant c depends on n. We now
let hv,D(P) -+ oo. This destroys the c's and yields

m hv,E(P) hv > --> lim sup > lim inf ' E P m
n - hvD(P)-.oo hv,D(P) hv.D(P)--oo hv,D(P) n

These inequalities hold for all n > 1, so letting n - oo, we obtain the
desired result,

by E(P) -
lim = 0.

hv.D(P)-.oo hv,D(P)

This completes the proof of the algebraic equivalence property (f).
It remains to prove the finiteness property (g). Note that if we replace

the ample divisor D by a very ample multiple mD, then additivity (c)
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implies that hV,mD = mhv,D + 0(1); hence it suffices to prove (g) under
the assumption that D is very ample. Let ¢ : V --+ P be an embedding
associated to D, so cb'H = D. Then (a) and (b) imply that

hv,D 0 0 = 0(1) = hp-,H + 0(1) = h + 0(1),

so we are reduced to showing that 1P(k') has finitely many points of
bounded height. This follows from (B.2.3), which completes the proof
of (g), and with it the proof of Theorem B.3.2. 0

Remark B.3.3. We illustrate the use of the height machine by quickly re-
proving a special case of Theorem B.2.5. Let 0: 1P" --, Ftm be a morphism
of degree d, and let H and H,,, be hyperplanes in lP" and ]P"`, respectively.
The assumption that , has degree d means that cb'Hm - dH,,. For any
P E ]Pn ((?) we compute

h(¢(P)) = hp-,H- (-O(P)) + 0(1) from B.3.2(a)
= hp..,O. Hm (P) + 0(1) from B.3.2(b)
= hp..,dH, (P) + 0(1) from B.3.2(d) (note dHn)
= dhpn,H (P) + 0(1) from B.3.2(c)
= dh(P) + 0(1) from B.3.2(a) again.

As another illustration of the power of the height machine, we use
the divisor class relations from Section A.7.2 to derive some important
height formulas on abelian varieties. These formulas and the finiteness
result (B.3.2(g)) will provide half of the necessary tools for applying the
descent theorem (C.0.3) to abelian varieties. More precisely, the weak
Mordell-Weil theorem (C.0.2) says that the group A(k)/mA(k) is finite.
Then (B.3.2(g)) and (B.3.4(a,b)) will be used to deduce that the group A(k)
itself is finitely generated.

Corollary B.3.4. Let A/k be an abelian variety defined over a number
field, and let D E Div(A) be a divisor on A.
(a) Let m be an integer. Then for all P E A(k),

hA,D([m) P) = m22 mhA,D(P) +
m22

mhA,D(-P) + 0(1).

In particular, if D has a symmetric divisor class (i.e., [-1]'D - D), then

hA,D([m]P) = m2hA,D(P) + 0(1),

and if D has an antisymmetric divisor class (i.e., [-1]'D - -D), then

hA,D ([m]P) = mhA,D(P) + 0(1).

(Note that the 0(1)'s depend on A, D, and m.)
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(b) If D has a symmetric divisor class, then for all P, Q E A(k),

hA,D(P+ Q) + hA,D(P - Q) = 2hA,D(P) + 2hA,D(Q) + O(1).

(c) If D has an antisymmetric divisor class, then

hA,D(P + Q) = hA,D(P) + hA,D(Q) + O(1) for all P, Q E A(k).

191

PROOF. (a) Mumford's formula (A.7.2.5) tells us that

2 _
[m]'Dtim 2

mD+M2

2
m[-1]*D.

Using this and standard properties of heights (B.3.2(b),(d),(c)), we obtain
a corresponding height relation

hA,D([m]P) =
hA,(1/2)(m2+m)D+(1/2)(m2-m)1-11'D(P) + 0(1)

2 2 _
=

m

2
mhA,D(P) +

m
2

mhA O(1)

2 _M +m M2 m
= 2 hA,D(P) + 2 hA,D(-P) + O(1).

This proves the first part of (a). The other two parts are consequences
of the relation hA,D o [-1] = ±hA,D + 0(1), where the sign is positive
(respectively negative) if the divisor class of D is symmetric (respectively
antisymmetric).
(b) Consider the following four maps from A x A to A:

a(P, Q) = P + Q

a,6,7r1i7r2:AxA-,A,
6(P,Q)=P-Q

7T1(P,Q) = P

ir2(P,Q) = Q.

Proposition A.7.3.3 gives the divisor class relation

a* D + 6* D - 2ir D + 27r2 *D

on A x A. We use this divisor relation and standard properties of height
functions (B.3.2) to compute

hA,v D(P, Q) + hA,e D(P, Q) = 2hA,,ri D(P, Q) + 2hA,,r; DIP, Q)+O(1),

hA,D (a(P, Q)) + hA,D (6(P, Q)) = 2hA,D (7rl (P, Q))

+ 2hA,D (72 W, Q)) + 0(1),
hA,D(P + Q) + hA,D(P - Q) = 2hA,D(P) + 2hA,D(Q) + 0(1).
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(c) Let o, 7r1, 7r2 be as above. Then Proposition A.7.3.2 gives the formula

o D-7rtD+v2D.

Again we use (B.3.2) to translate this divisor relation into a height relation,

hA,T.D(P,Q) = hA,I,iD(P,Q)+hA,, D(P,Q)+0(1)
hA,D(o(P,Q)) = hA,D(7r1(P,Q)) +hA,D(ir2(P,Q)) +O(1),

hA,D(P + Q) = hA,D(P) + hA,D(Q) + 0(1).

The following result will be used in Part D to study integer points
on curves. The first part of (B.3.5) is an immediate consequence of the
algebraic equivalence property of the height machine (B.3.2(f)) and can
be strengthened by using Theorem B.5.9 below, but we will give a direct
proof, since algebraic equivalence on curves is much more elementary than
in the general case.

Proposition B.3.5. Let C/k be a smooth projective curve.
(a) Let D, E E Div(C) be divisors with deg(D) > 1. Then

hE(P) = deg Elim
PEc(k) hD(P) deg D

h0(P)-.00

(b) Let f, g E k(C) be rational functions on C with f nonconstant. Then

lim
h(g(P)) degg

PEC(k) h(f (P)) deg f
h (f (P)) --

PROOF. Let d = deg(D) and e = deg(E). For every integer n, both positive
and negative, consider the divisor

An = n(eD - dE) + D.

Notice that deg(D) > 1, so An is ample (A.4.2.4). The pos-
itivity property of the height machine (B.3.2e) implies that hA., (P) is
bounded below for all P E C(k). Or we can prove it directly as follows.
If A E Div(C) is any ample divisor, then mA is very ample for some m > 1,
say mA is associated to the map 0: C - PN. Then

hA(P) = -hmA(P) +O(1) _ _h()(P)) +O(1) > 0(1),

since the height on 1PN (k) is nonnegative.
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We now know that hA is bounded below on C(k), so using the addi-
tivity of the height, we find that

0(1) < hA..(P) = hn(eD-dE)+D(P) = n(ehD(P) - dhE(P)) + hD(P)
for all P E C(k).

Of course, we must not forget that the 0(1) may depend on D, E, and n,
so we will denote it by -rc(D, E, n). Rearranging our inequality, we find
that

-K(D, E, n) hE(P)e 1

+
f ll P E C k

dhD(P)
- n -

d hD(P) d
or a ( ).

This holds for positive and negative values of n, so taking both n and -n
with n > 1, we obtain the estimate

-k(D, E, n) 1 e hE(P) x(D, E, -n)
+

1

ndhD(P) nd - d hD(P) - ndhD(P) nd
for all P E C(k).

Now consider what happens as hD(P) -. oo. We find that

1
l

e - hE(P) < lim sup
d
a - hE(P) < 1

nd
-

hn(P)-
(P)-' hD(P) .

oo d hD(P) hD(P)-oo

These inequalities hold for all n > 1, so we can let n -4 oo to obtain

e hE(P) -
lim - 0.

ho(P)-.00 d hD(P)

This completes the proof of (a).
(b) This follows easily from (a). Write div(f) = D' - D and div(g) _
E' - E. Note that deg(f) = deg(D) and deg(g) = deg(E). Further, if we
consider f to be a map f : C -' 1P1, then D = f'(oo), so hD = ho of +O(1).
Similarly, hE = hog + 0(1). Now we use (a) to compute

lim h(g(P)) lm hE(P)+0(1) - degE - degg

h(f(P)) -ao h(f (P)) hD(P)-.oo hD(P) + O(1) deg D deg f

0
Up to a bounded function, the height hv,D associated to a divisor D

depends only on the divisor class of D. It is sometimes convenient to
reformulate the height machine (B.3.2) purely in terms of divisor classes or
line bundles.
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Theorem B.3.6. Let V be a projective variety defined over a number
field k. There is a unique homomorphism

by : Pic(V) -+ {functions V(k) -+ IR}
{ bounded functions V (k) -+ R}

with the property that if C E Pic(V) is very ample and Or_ : V P" is an
associated embedding, then

hv,r, = h o q5c + O(1).

The height functions hv,r, have the following additional properties:
(a) (Functoriality) Let q5 : V -+ W be a morphism of smooth varieties, and
let 1r E Pic(W). Then

hwc o0+O(1).

(b) (Positivity) Let B be the base locus of ,C E Pic(V), and assume that
B 0 V. Then

hv,c > O(1) on V N B.

(c) (Algebraic Equivalence) Let L,M E Pic(V) with L ample and M alge-
braically equivalent to zero. Then

lim hv,M(P) = 0.
PEV(k) hv,c (P)

hv,f, (P)-.oo

(See Theorem B.5.9 for a stronger statement.)

PROOF. All of this is a restatement, in terms of line bundles, of the height
machine (B.3.2). Note that the linear equivalence and additivity proper-
ties of (B.3.2) are included in the statement that the height mapping hv
is defined and is a homomorphism on Pic(V) and that we do not need a
smoothness hypotheses because Pic(V) is defined in terms of Cartier divi-
sors.

0
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B.4. Canonical Height Functions

The height machine (B.3.2) associates to each divisor D E Div(V) a height
function hD : V(k) --+ R. These height functions are well-defined and
satisfy various properties modulo 0(1). In some cases it is possible to
find a particular height function within its 0(1) equivalence class that has
particularly nice properties. This theory, which was developed by Neron
and Tate, will form the subject of this and the next section.

Theorem B.4.1. (heron, Tate) Let V/k be a smooth variety defined
over a number field, let D E Div(V), and let : V -+ V be a morphism.
Suppose that

O`D - aD

for some number a > 1. Then there is a unique function, called the canon-
ical height on V relative to 0 and D,

hV,m,D : V(k) -+ R,

with the following two properties:
(i) hV,O,D(P) = hv,D(P) + 0(1) for all P E V(k).
(ii) hv,,,D(O(P)) = ahvAD(P) for all P E V(k).

The canonical height depends only on the linear equivalence class of D.
Further, it can be computed as the limit

nhV,m,D(P) = lim hv,D(on(P)),
n-oo a

where on = 0 o g o ... o 0 is the n-fold iterate of q.

PROOF. Applying the height machine to the relation O *D - aD, we find
that there is a constant C such that

IhV,D(O(Q)) - ahvD(Q)I < C for all Q E V(k).

(N.B. C depends on V, D, ¢, and the choice of the height function hv,D.)
Now take any point P E V(k). We are going to prove that the sequence
a-nhv,D((tn(P)) converges by verifying that it is Cauchy. We take n > m
and compute

I a-nhV,D(On(P)) - a-mhVD(cm(P))I
n

= I E a-' (hv,D (O'(P)) - ahv,D (¢`-' (P)))
i=m+1

(telescoping sum)
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n

< E a-'IhV,D(¢1(P)) -ahv,D(Q,i-1(P))I
i=m+1

(triangle inequality)
n

a-'C (from above with Q = 4'-1P)
i=m+1

a-m _ a n
= C.a-1

This last quantity goes to 0 as n > m - oo, which proves that the sequence
is Cauchy, hence converges. So we can define hv,Q,D(P) to be the limit

hV,,,,D(P) = lim hvD(Qn(P)).nn-oo a

To verify property (i), we take m = 0 and let n --+ oo in the inequality
proven above. This gives

I hv,m,D(P) - hv,D(P)I < a
C
- 1'

which is an explicit form of the desired estimate. Property (ii) follows
directly from the definition of the canonical height as a limit, since once
we know that the limit exists we can compute

hV,O,D(0(P)) = rino 1 hV,D(On(O(p)))

= lim a
hv,D

(on+1(p))
n-oo an+1

= ahv,m,D(P)

Finally, in order to prove the uniqueness, suppose that h and h' are
two functions with properties (i) and (ii). Let g = h - h' be the difference.
Then (i) implies that g is bounded, say Ig(P)I S C' for all P E V(k). On
the other hand, (ii) says that g o 0 = ag, and iterating this relation gives
g o on = ang for all n > 1. Hence

Ig(P)I =
Ig(on(p)) I < C' -4 0.an an n-.oo

This proves that g(P) = 0 for all P, soh=h'.

To understand the condition that O* D be linearly equivalent to aD,
we observe that 0 induces a Z-linear map 0` : Pic(V) -+ Pic(V). Tensoring
with Ilt gives a linear transformation

0' : Pic(V) ® JR - Pic(V) ® JR
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of R-vector spaces. In order to apply the averaging process of Theo-
rem B.4.1 to construct a canonical height, we need a divisor class that
is an eigenvector for this linear transformation and that has an eigenvalue
strictly greater than 1. For example, any morphism 0 : IP" - P" of de-
gree n has the property that g'H - nH. Similarly, if D is a symmetric
divisor on an abelian variety A, then the multiplication map [n] : A -. A
satisfies [n]'D - n2D. We will discuss these examples further below. For
an example of canonical heights defined on certain K3 surfaces, see Silver-
man [6].

If the divisor D is ample, then the canonical height can be used to
prove various finiteness results. It is convenient to use some terminology
from the theory of dynamical systems.

Definition. Let S be a set, let ¢ : S - S be a function, and for each n > 1
let on : S --' S denote the ntn iterate of 0. An element P E S is called
periodic for 0 if O"(P) = P for some n > 1, and it is called preperiodic
for 0 if on (p) is periodic for some n > 1. Equivalently, P is preperiodic if
its forward orbit

Om (P) _ {P, 0(P), 2(P), 03(P), ...}

is finite.

Proposition B.4.2. Let 0: V - V be a morphism of a variety defined
over a number field k. Let D E Div(V) be an ample divisor such that
q'D - aD for some a > 1, and let hV,O,D be the associated canonical
height (B.4.1).
(a) Let P E V(k). Then hV, ,,D(P) > 0, and

4,0,D(P) = 0 e=* P is preperiodic for 0.

(b) (Northcott [3]) The set

{PEV(k)I Pispreperiodicform}

is finite.

PROOF. (a) The fact that D is ample means that we can choose a height
function hV,D with nonnegative values. It is then immediate from the
definition that hV,,,D is nonnegative.

Now let P E V(k). Replacing k by a finite extension, we may assume
that P E V (k) and that D and 0 are defined over k. Suppose first that P
is preperiodic for 0. Then the sequence (0"P)">1 repeats, so the sequence
of heights (hV,D(O"P))">1 is bounded. It follows that a-"hVD(o"P) -, 0

as n - oo, so Theorem B.4.1 says that hV,O,D(P) = 0.
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Conversely, suppose that hv,O,D(P) = 0. Then for any n > 1 we have

hv,D(cnP) = hvm,D(gnP) + 0(1) = anhv>m,D(P) + 0(1) = 0(1).

Note further that all of the points qnP are in V(k). Thus there is a
constant B such that

0+ (P) _ {P, 0(P), ¢2(P), ¢3(P), ...} C {Q E V(k) I hvD(Q) < B}.

But D is ample, so Theorem B.3.2(g) says that there are only finitely many
points in V(k) with bounded hv,D-height. Hence 0+(P) is finite, so P is
preperiodic for .

Remarks B.4.3. Two important cases to which we can apply Proposi-
tion B.4.2 are projective spaces and abelian varieties.
(a) Let ¢ : P" -- P" be a morphism of degree d > 2. Then 0`H - dH for
any hyperplane H E Div(P"). It follows from (B.4.2b) that the set

{P E Pt(k) [ P is preperiodic for 01

is finite. This result, which is due to Northcott [3], can also be proven
directly using Theorem B.2.5.

As a special case, consider the map O(x0,. .. , x,) = (x02'...' xn). It
is easy to see that the canonical height associated to ¢ is simply the usual
"noncanonical" height function on Pn. Further, a point is preperiodic for 0
if and only if all of the (defined) ratios xj/xi are roots of unity or zero.
Thus this special case of (B.4.2a) is Kronecker's theorem (B.2.3.1).
(b) Let A be an abelian variety, let D E Div(A) be an ample symmetric
divisor, and let [n] : A -' A be the multiplication-by-n map for some n > 2.
Then [n]*D " n 2 D from (A.7.2.5), so we can apply (B.4.2) to conclude
that A(k) has only finitely many points that are preperiodic for [n]. But
P E A is preperiodic for [n] if and only if there are integers i > j such that
[n`]P = [n3]P, so we see that the [n]-preperiodic points are precisely the
torsion points. Hence A(k)t,.. is finite. This global proof of the finiteness
of A(k)wr. may be compared with the local proof (see Theorem C.1.4 and
the remark following it). The local proof uses the fact that for all but
finitely many primes p, the prime-to-p torsion in A(k) injects when we
reduce modulo p, where p is the residue characteristic of p.
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B.5. Canonical Heights on Abelian Varieties

The construction of Neron and Tate (B.4.1) associates a canonical height
to any morphism 0 : V - V with an eigendivisor 0'D - aD having
eigenvalue a > 1. An important example is the case of an abelian variety A,
a symmetric divisor D, and a multiplication-by-m map [m] : A --+ A,
since Corollary A.7.2.5 tells us that [m]`D - m2D. It turns out that the
resulting canonical height is independent of the choice of m > 2 and has
many additional useful properties. In particular, it is a quadratic form
relative to the group law on A.

Similarly, if we choose an antisymmetric divisor Don A (i.e., D satisfies
[-1]'D - D), then (A.7.2.5) says that [m]'D - mD, so again we get a
canonical height. Finally, for any D we can write 2D as the sum of a
symmetric divisor and an antisymmetric divisor, so using linearity we get
a canonical height for any D.

We begin this section by describing the canonical heights associated
to symmetric divisors. These are the heights that are most often used in
Diophantine applications. Then at the end of the section we will develop the
theory of canonical heights for arbitrary divisors and use it to describe the
height pairing on an abelian variety and its dual. We conclude the section
by applying the theory of canonical heights to deduce a strong form of
the algebraic equivalence property (Theorem B.3.2(f)) for (not necessarily
abelian) varieties.

Theorem B.5.1. (heron, Tate) Let A/k be an abelian variety defined
over a number field, and let D E Div(A) be a divisor whose divisor class is
symmetric (i.e., [-1]*D - D). There is a height function

hA,D : A(k) R,

called the canonical height on A relative to D, with the following proper-
ties:

(a)

hA,D(P) = hA,D(P) + 0(1) for all P E A(k).

(b) For all integers m,

hA,D([m]P) = m2hA,D(P) for all P E A(k).

(c) (Parallelogram Law)

hA,D(P+Q)+hA,D(P-Q) = 2hA,D(P)+2hA,D(Q) for all P,Q E A(k).
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(d) The canonical height map hA,D : A(k) R is a quadratic form. The
associated pairing (. , )D : A(k) x A(k) , R defined by

(P,Q)D =
hA,D(P + Q) - hA,D(P) -hA,D(Q)

2

is bilinear and satisfies (P, P) = hA,D(P).
(e) (Uniqueness) The canonical height hA,D depends only on the divisor
class of the divisor D. It is uniquely determined by (a) and (b) for any one
integer m > 2.

PROOF. We take hA,D to be the canonical height on A with respect to the
doubling map [2] : A -+ A. Note that [2]*D - 4D from (A.7.2.5), so we
can apply Theorem B.4.1 to obtain

hA,D(P) = lim 1 hA,D([2n]P).
n-+oo 4n

Theorem B.4.1 tells us that hA,D = hA,D + 0(1) and hA,D o [2] = 4hA,D,
which gives (a) and also (b) for m = 2.

We could prove (b) by first proving (c) and then using induction, but
we will give a direct proof. Corollary B.3.4(a) tells us that hA,D([m]Q) =
m2hA,D(Q)+0(1). This holds for all Q E A(k), where the 0(1) is bounded
independently of Q. We replace Q by [2]1P, divide by 4', and let n -+ oo.
The result is

hA,D([m]P) = lim
1

hA,D([2nm]P)n-oo 4n

= lim (m2hA,D([2n]P) +O(1)) = m2hA,D(P).
n o0 4n

Notice how the limiting process eliminates the 0(1). Also note the crucial
use made of the fact that the maps [m] and [2n] commute with one another.
This completes the proof of (b).

For (c), use the relation

hA,D(P + Q) + hA,D(P - Q) = 2hA,D(P) + 2hA,D(Q) + 0(1)

from Corollary B.3.4(b). Note that the 0(1) is bounded independently of P
and Q. Thus we can replace P and Q by 2nP and 2nQ, divide by 4n, and
let n -i oo. The 0(1) disappears, and we are left with the parallelogram
law (c).

It is a standard fact that a function on an abelian group that satisfies
the parallelogram law is a quadratic form. We will recall the proof be-
low (B.5.2). This gives (d). Finally, the uniqueness statement (e) follows
from the uniqueness assertion in Theorem B.4.1, since hA,D is a canonical
height relative to every map [m]. 0
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The following elementary result was used in proving Theorem B.5.1.

Lemma B.5.2. Let A be an abelian group, and let h : A - R be a
function satisfying the parallelogram law,

h(P + Q) + h(P - Q) = 2h(P) + 2h(Q) for all P, Q E A.

Then h is a quadratic form on A.

PROOF. Putting P = Q = 0 into the parallelogram law gives h(0) = 0,
and then putting P = 0 gives h(-Q) = h(Q), so h is an even function. It
remains to check that h is quadratic. We apply the parallelogram law four
times (and use the evenness of h) to obtain

h(P + Q + R) + h(P + R - Q) - 2h(P + R) - 2h(Q) = 0,
h(P - R + Q) + h(P + R - Q) - 2h(P) - 2h(R - Q) = 0,
h(P - R + Q) + h(P + R + Q) - 2h(P + Q) - 2h(R) = 0,

2h(R + Q) + 2h(R - Q) - 4h(R) - 4h(Q) = 0.

The alternating sum of these four equations is the desired result.

If D is an ample symmetric divisor on A, then Proposition B.4.2 tells
us that hA,D(P) = 0 if and only if P is a torsion point. Thus hA,D is a
positive definite quadratic form on A(k)/(torsion). The next result says
that more is true.

Proposition B.5.3. Let A/k bean abelian variety defined over a number
field, and let D E Div(A) be an ample divisor with symmetric divisor
class.
(a) For all P E A(k), we have hA,D(P) > 0, with equality if and only if P
is a point of finite order.
(b) The associated canonical height function extends Ill-linearly to a posi-
tive definite quadratic form

hA,D:A(k)OR -*Ill.

In particular, if P1i ... , P,. E A(k) ® Ill are linearly independent, then the
height regulator

det ((P;, Pi) D)1<i,i <r

is strictly greater than 0.

Remark. As pointed out by Cassels, the fact that hA,D is a positive defi-
nite quadratic form on A(k)/(torsion) does not, by itself, imply that hA,D is
positive definite on A(k) OR. For example, consider the group A = Z+Zv
as a subgroup of R and the quadratic form on A defined by

q : A --+ R, q(x) = 1x12.



202 B. Height Functions

(That is, q (a + W-2) = a2 + 2b2 + 2abv .) It is clear that q is positive
definite on A, since f is irrational. However, it is equally clear that q is
not positive definite on A ® R = R ® R. For example, q (a + b r2) = 0 for
(a, b) = (f , -1). A closer analysis shows that the problem occurs because
the set of values q(A) is not a discrete subset of R; see Corollary B.5.4.1
below.

PROOF. (a) Let P E A(k). Proposition B.4.2(a) says that hA,D(P) > 0,
with equality if and only if P is preperiodic for (say) the multiplication-by-2
map. It is clear that such preperiodic points are torsion points. Conversely,
if P is a point of order n, then using Euler's formula 20(^) = 1 (mod n), we
see that [2`'(' )]P = P, so P is preperiodic.
(b) LetPEA(k)®R be a pointwithhA,D(P)=0. We canwritePasa
linear combination

P= a finite extension if necessary,
we may assume that each P, is in A(k).

Let V = RP, + RP2 + + RPr be the span of the Pi's in A(k) ®R,
and let A be the image of ZPl + ZP2 + + ZP, in V. Thus V is a finite-
dimensional real vector space, A is a finitely generated subgroup of V, and
V = A ® R, so A is a lattice in V. Further, (B.5.1(d)) tells us that the
canonical height hA,D induces a quadratic form on V. We will denote this
quadratic form by q : V --+ R.

Our first observation is that q is positive definite on the lattice A. This
follows from (a), since the kernel of A(k) -+ A(k) OR is precisely the torsion
subgroup of A(k). Thus hA,D induces a positive definite quadratic form on
the image of A(k) in A(k) ® R. In particular, it is positive definite on A.

We will next verify that for any constant B, the set

{AEAIq(A)<B)

is finite. To see this, let A be the image of some point Q E A(k). Then

q(A) < B = hA,D(Q) S B; hA,D(Q) S B + C,

since hA,D and hA,D differ by a bounded amount. Now we use the assump-
tion that D is ample to apply (B.3.2(g)) and conclude that

{Q E A(k) I hA,D(Q) < B + C}

is finite.
We now know that q is a positive definite quadratic form on the lat-

tice A and that there are only finitely many elements A E A with bounded
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q(A). The fact that q remains positive definite when extended to A ®R is
then a simple corollary of Minkowski's theorem on lattice points in symmet-
ric domains. For completeness, we give the proof of Minkowski's theorem,
followed by the application to quadratic forms, thereby completing the
proof of Theorem B.5.3.

Theorem B.5.4. (Minkowski) Let A be a lattice in RI, let F be a
fundamental domain for W/A, and let U C W be a symmetric convex set.
(That is, x E U implies -x E U, and x, y E U implies tx + (1 - t)y E U
for all 0 < t < 1.) If vol(U) > 2' vol(F), then U n A contains a nonzero
vector.

PROOF. Let W=
2

U={ 1 x I x E U}. Suppose that

(W + A) n (W + it) = 0 for all A, p E A with A .

Then
2r vol(U) = vol(W)

=vol(WnU(F+A))
/\ AEA

_ vol(W n (F +A))
AEA

=Evol((W-A)nF)

(*)

AEA

=vol(U(W-A)nFl from(*),
\\aEA //

< vol(F).

This contradicts the assumption that vol(U) > 2''vol(F), so we conclude
that (*) is false. Hence we can find distinct elements A, it E A and points
x, y E W such that x + A = y +,a. Then the symmetry and convexity of U
allows us to compute

0AA-p=y-xEW+W=2U+2UCU,

so U n A contains the nonzero vector A - It.

Corollary B.5.4.1. Let A be a free abelian group of finite rank. Let
q : A -- IIt be a quadratic form with the following two properties:

(i) For all A E A, q(A) > 0, with equality if and only if A = 0.
(ii) For all B, the set {A E A I q(A) < B} is finite.

Then q extends to a positive definite quadratic from on A ® R.

PROOF. Let V = A®R, and by abuse of notation let q : V -'1R also denote
the extension of q : A - JR to V. A standard result from linear algebra
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says that a real quadratic form on a real vector space can be diagonalized
with 0's, l's, and -l's on the diagonal. In other words, we can choose an
isomorphism V = W such that if x = ( X I ,-- . , xr) E V, then

q(x) = x1 + x2 + + xe - x8+1 - x8+2 - - xe+t

See, for example, Lang [2, Chapter 7, Sections 3,71 or van der Waerden [1,
Section 12.7]. The integers s and t are uniquely determined by q and satisfy
s + t < r = dim(V). Notice that q is positive definite on V if and only if
s=r.

Let
L=inf{q(.1)IAEA, A#0}.

The given properties (i) and (ii) of q ensure that L > 0. Now for each pair
of positive numbers 6, e > 0 we consider the set

U(6,E)= x=(xl,...,xr)Elltr

e t

E x; < b and E x;+; <_ E }
i=1 i=1

set U(6, E) is clearly convex and symmetric about the origin. Further,
the definition of L ensures that U(L/2, E) fl A = {0} for all E > 0. It
follows from Minkowski's theorem (B.5.4) that vol(U(L/2,E)) is bounded
asE - 00.

On the other hand, it is clear from the definition of U(6, e) that the
volume of U(L/2, e) is infinite if s + t < r, and that the volume grows
like et/2 as a oo ifs + t = r. Hence the boundedness of vol (U(L/2, E))
implies that s = r, which completes the proof that q is positive definite
on V. 0

We have now developed in some detail the theory of canonical heights
associated to symmetric divisor classes on an abelian variety. There is an
analogous theory for antisymmetric divisor classes, that is, divisors that
satisfy -D. The associated canonical heights turn out to be
linear rather than quadratic.

Theorem B.5.5. Let A/k be an abelian variety defined over a number
field, and let D E Div(A) be a divisor whose divisor class is antisymmetric
(i.e., [-1]`D - -D). There is a canonical height function

hA,D : A(k) IIt,

with the following properties:
(a) hA,D(P) = hA,D(P) + 0(1) for all P E A(k).
(b) hA,D(P + Q) = hA,D(P) + hA,D(Q) for all P, Q E A(k).
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Thus hA,D is a homomorphism from A(k) to R. Fhrther, the function hA,D
is uniquely determined by properties (a) and (b).

PROOF. The proof is almost the same as the proof of (B.5.1), so we merely
give a sketch. Corollary A.7.2.5 says that [m]'D - mD, so (B.4.1) says
that there is a canonical height hA,D with respect to (say) the map [2].
From (B.4.1), this height satisfies (a), and it can be computed as the limit

hA,D(P) = lim 2-nhA,D([2n]P).noo

To prove (b), we use the relation

hA,D(P + Q) = hA,D(P) + hA,D(Q) + 0(1) for all P, Q E A(k)

from (B.3.4(c)). Now replace P and Q by 2nP and 2nQ, divide by 2n, and
let n --+ oo to obtain (b). Finally, suppose that h and h' both satisfy (a)
and (b). Then the difference h-h' is a bounded homomorphism A(k) -+ R.
The image of this homomorphism is a bounded subgroup of R. But R has no
bounded subgroups other than {0}, so h = h'. This proves the uniqueness
and completes the proof of the theorem.

An arbitrary divisor can (almost) be written as the sum of a symmetric
and an antisymmetric divisor. So combining our Theorems B.5.1 and B.5.5,
we will be able to construct canonical heights for all divisors. In order to
state our result, it is helpful to recall the following definition.

Definition. Let A and B be abelian groups, and assume that B is uniquely
2-divisible. (That is, assume that the doubling map B B, b '-+ 2b, is an
isomorphism. For example, lR is uniquely 2-divisible.) A quadratic function
on A with values in B is a function h : A -* B satisfying

h(P+Q+R)-h(P+Q)-h(P+R)-h(Q+R)+h(P)+h(Q)+h(R)-h(0) = 0
for all P,Q,REA.

Equivalently, h : A - B is a quadratic function if the associated pairing

(.,-)h:AxA---*B, (1'Q)h=
h(P + Q) - h(P) - h(Q) + h(0)

2

is bilinear. We note that a quadratic function can be written uniquely as
the sum of a quadratic form, a linear form, and a constant; see Exercise B.9.

Theorem B.5.6. Let A/k be an abelian variety defined over a number
field, and let D E Div(A) be a divisor on A.
(a) There is a unique quadratic function

hA,D:A(k)--.R
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satisfying hA,D = hA,D + 0(1) and hA,D(0) = 0. It is called the canonical
height on A relative to D.
(b) The canonical height hA,D depends only on the divisor class of D.
(c) Let D, E E Div(A). Then hA,D+E = hA,D + hA,E
(d) Let B/k be another abelian variety, and let 0: B -+ A be a morphism.
Then

hB,q'D = hA,D o 0 - hA,D(0(0)).

(e) There is a unique quadratic form 4A,D : A(k) -, R and a unique linear
form eA,D : A(k) -, 1R such that

hA,D = 4A,D + 1A,D-

More precisely,

..

4A,D = I and PA,D = I
hA,D-[-1]'D.

Hence if D represents a symmetric divisor class a-1]'D - D), then hA,D =
4A,D; and if D represents an antisymmetric divisor class ([-l]'D - -D),
then hA,D = 2A,D.

PROOF. Define divisors D+ = D+[-1]'D and D- = D-[-1]'D. It is clear
that D+ is symmetric and D- is antisymmetric. Applying Theorem B.5.1
to the divisor D+, we obtain a quadratic form hA,D+ on A(k); and applying
Theorem B.5.5 to the divisor D-, we obtain a linear form hA,D- on A(k).
Define

hA,D : A(k) -, R, hA,D (hA,D+ + hA,D- ).

Then hA,D is certainly a quadratic function with hA,D(O) = 0, since it is a
sum of a linear form and a quadratic form. Further,

2hA,D = hA,D+ + hA,D-
= hA,D+ + hA,D- + 0(1)
= 0(1)
= 2hA,D + 0(1)

definition of hA,D
from (B.5.1) and (B.5.5)
definition of D+ and D-
additivity (B.3.2(c)).

This shows that hA,D has the desired properties, which proves the existence
part of (a).

Now suppose that hA D is another function satisfying the properties
in (a). Let f = hA,D - hA,D. Then f is a bounded quadratic function
f : A(k) -, R and satisfies f (0) = 0. In particular, the bilinear form

(P,Q)f=f(P+Q)-f(2)-f(Q)+f(0),
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associated to f is bounded. But (nP, nQ) f = n2(PQ)f, so the bilinear
form is identically 0. Thus f (P + Q) + f (0) = f (P) + f (Q). But this
implies that f (nP) - f (0) = n(f (P) - f (0)), so the boundedness of f
implies that f (P) = f (0) for all P. Since f (0) = 0, this proves that
hA,D = h'A,D, which completes the proof of uniqueness.

(b) If D' 'r D, then hA,D = hA,D' +0(1) from (B.3.2(d)). Thus hA,D' sat-
isfies the conditions in (a) for the divisor D, so by the uniqueness assertion
in (a), we have hA,D' = hA,D
(c) We have hA,D+E = hA,D + hA,E + 0(1) from (B.3.2(c)). Thus the
function hA,D + hA,E satisfies the conditions in (a) for the divisor D + E,
so by the uniqueness assertion in (a), we have hA,D + hA,E = hA,D+E
(d) To ease notation, let f = hA,D o ¢- hA,D(0(0)). Using (B.3.2(b)) and
properties of canonical heights, we see that

f = hA,D o 0 + O(1) = hA,,'D + O(1).

Next, it is clear that f (0) = 0. Finally, every morphism between abelian
varieties is the composition of a homomorphism and a translation (A.7.1.2),
so the fact that hA,D is a quadratic function implies the same for f. Thus f
has all of the properties to be hA,O-D, so by the uniqueness assertion in A,
it is equal to
(e) In (a) we have already written hA,D as the sum of the quadratic form
2hA,D+ and the linear form 2hA,D-. This gives the existence. We will
leave the proof of uniqueness to the reader. (More generally, any quadratic
function has a unique decomposition as a sum of a quadratic form, a linear
form, and a constant; see Exercise B.9.) The final statements in (e) are
then clear, since if D is symmetric, then D+ - 2D and D- - 0, while if D
is antisymmetric, then D+ '" 0 and D- 2D. 0

Remark 13.5.7. The first three parts of Theorem B.5.6 combine to say
that there is a homomorphism

Pic(A) -. {quadratic functions f : A(k) - R}

that sends a divisor class c to the canonical height hA,c. Here hA,c is
defined to be hA,D for any divisor D in the divisor class c. It is well-defined
independent of the choice of D by (B.5.6(b)).

We recall from Proposition A.7.3.2 that on an abelian variety, the
group of antisymmetric divisor classes is equal to the group Pic°(A) of
divisor classes that are algebraically equivalent to zero. Theorem B.5.6
implies that if c E Pic°(A), then the corresponding canonical height hA,c
is a homomorphism A(k) -4 R. We also recall that Pic°(A) is naturally
isomorphic to an abelian variety A, called the dual abelian variety of A,
and that there is a Poincare divisor class P on A x A determined by certain
functorial properties. (See Section A.7.3, especially Theorem A.7.3.4). The
following theorem expands on these observations.
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Theorem B.5.8. Define a canonical height pairing by the formula

[ , ]A : A(k) x Pic°(A) -' R, [P, c]A = hA,c(P)

(a) The canonical height pairing [ , ]A is bilinear, and its kernel on either
side consists of the elements of finite order.
(b) Let A be the dual abelian variety to A, and let T E A x A be the
Poincard divisor class. Then with the natural identification of A and
Pic°(A),

[P,CI A = hAXA,9(P,c) for all (P,c) E A x A.

PROOF. The pairing is well-defined from (B.5.6(a,b)). Divisor classes in
Pic°(A) are antisymmetric from (A.7.3.2), so (B.5.6(e)) implies that [P, CIA
is linear in P. Similarly, the linearity in c follows from (B.5.6(c)). This
proves that [ , ]A is a well-defined bilinear pairing.

For any Q E A, let tQ : A -+ A be the translation-by-Q map, tQ(P) _
P + Q. We also fix a symmetric ample divisor class l; E Pic(A), and we
recall from Theorem A.7.3.1 that the map

A -+ Pic°(A), Q - tV - t,
is surjective.

Now fix a point P E A(k), and suppose that [P, CIA = 0 for all c E
Pic°(A). Then [P, tQl; - CIA = 0 for all Q E A(k). Using the definition of
the pairing and standard properties of height functions, we find that

0 = [P, tQta- 1;]A

= hA,tQe_e(P) (definition of[-, ]A)

= hA,tQC(P) - hA,e(P) (linearity (B.5.6(c)))

= hA,e(tQ(P)) - hA,e(Q) - hA,e(P) (from (B.5.6(d)))

= hA,e(P+Q) - hA,e(Q) - hA,e(P) (definition of tQ).

This holds for all Q E A(k). In particular, we may take Q = P. Now
is symmetric by assumption, so (B.5.6(e)) says that hA,e(2P) = 4hA,e(P).
We conclude that hA,e(P) = 0. Now the assumption that l; is ample and
(B.5.3(a)) imply that P is a torsion point.

Similarly, fix a divisor class c E Pic°(A), and suppose that [P, CIA = 0
for all P E A(k). We know that c can be written in the form c = t4£ -
for some Q E A(k), and just as above we compute

0 = [P,c]A = [P, tQC - I A = hA,e(P+ Q) - hA,e(Q) - hA,e(P)-
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This time we set P = Q to get hA,C (Q) = 0, so Q is a torsion point. But
the map Q .--+ tQ£ - l; from A to Pic°(A) is a homomorphism (A.7.2.9), so
c = tQ£ - £ has finite order in Pic°(A).
(b) We identify the dual abelian variety A of A with Pic°(A), and for each
c E A, we define an inclusion

is:A-+AxA, P--+(P,c).

By the definition of the dual abelian variety and its Poincart divisor class P
(see Section A.7.3), we have i,*P = c. It follows from standard properties
of height functions, specifically (B.5.6(d)), that

[P, CIA = hA,c(P) = hA,ibp(P) = hAxA,P(ic(P)) - hAxA,P(iC(0))

= hAxA,Y(P, C) - hAxA,P(0, C).

Now consider the inclusion i° : A -+ A x A defined by i°(c) = (0, c).
The definition of the Poincar6 divisor class implies that 909 = 0, so

0 = hA,ioP(c) = hAxA,P(i0(C)) - h'AXA,11(20(0))

hAxA,P(O+C) - hAxA,P(0,0) = hAXA,,(O,C).

Combining this with the formula for [P, CIA proven above gives the desired
result.

We now apply the theory of canonical height and functorial properties
of Picard and Albanese varieties to strengthen the algebraic equivalence
property of Weil's Height Machine (Theorem B.3.2(f)).

Theorem B.5.9. Let k be a number field and V/k a smooth projective
variety. Let D, E E Div(V) be divisors with D ample and E algebraically
equivalent to 0. Then there is a constant c > 0 such that

hv,E(P) < c hv,E(P) + 1 for all P E V(k).

PROOF. Let A = Alb(V) be the Albanese variety of V, and let it : V -+ A
be the universal map from V to A. We recall from Proposition A.7.3.6 that
there exists a divisor El E Div(A), algebraically equivalent to 0 on A, such
that E = 7r' El.

Let D1 E Div(A) be any symmetric ample divisor on A. Since E1
is algebraically equivalent to 0, Theorem A.7.3.1(c) tells us that there is
a point a E A(k) such that E1 - taD1 - D1, where to : A -+ A is the
translation-by-a map.
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Now let P E V(k), and for notational convenience, let Q = 7r(P). We
compute

hv,E(P) = (P) + 0(1) since E = 7r`El
= hA,E, (Q) + 0(1) by functoriality (B.3.2(b))

= hA,E, (Q) + 0(1) by (B.5.5(a))

= hA,t;D, (Q) - hA,D, (Q) + 0(1) by (B.5.6(c))

= hA,D, (ta(Q)) - hA,D, (ta(0)) - hA,Di (Q) + 0(1)
by (B.5.6(d)) applied to to

= hA,D, (Q + a) - hA,D, (a) - hA,D, (Q) + 0(1)
= 2(Q, a) D, + 0(1) by definition (B.5.1(d))

2 hA,D, (Q)hAD, (a) + 0(1) by Cauchy-Schwarz.

Note that the last inequality follows by applying the Cauchy-Schwarz in-
equality to the positive definite quadratic form hA,D, and its associated
bilinear form ( , ')D,-

Similarly, we have

hA,D, (Q) = hA,D, (lr(P)) + O(1) by (B.5.1(a)) and Q = ir(P)
= hv,.A.D, (P) + 0(1) by functoriality (B.3.2(b))

< chv,D(P) + 0(1) for some c > 0, since D is ample.
Substituting this estimate into the previous one and adjusting the constants
gives the desired result. 0

B.6. Counting Rational Points on Varieties

The coarsest measure of the set of rational points on an algebraic variety is
whether the set is finite or infinite. Finiteness theorems are generally proven
by showing that the set of rational points is a set of bounded height. When
there are infinitely many rational points, heights can be used to define a
counting function whose asymptotic behavior often encodes deep arithmetic
information.

Definition. Let V/k be a projective variety defined over a number field k.
Fix a multiplicative height function Hv on V relative to some ample divi-
sor D. The counting function of V (k) is

N(V(k),T) = ##{P E V(k) I Hv(P) S T}.
If we need to specify the divisor D or even the particular height func-
tion Hv, we will use the notation N(V(k), D,T) or N(V(k), Hv,T). Sim-
ilarly, if U is an open subset of V, we define a counting function N (U(k), T)
for U(k) by only counting points in U.
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Generally, the goal is to describe the behavior of N (V (k), T) as T -+ oo
in terms of geometric invariants of the variety V and arithmetic invariants
of the field k. This goal has been most fully realized in the case of curves,
as described in the following result.

Theorem B.6.1. Let k be a number field, let C/k be a smooth curve of
genus g, and assume that C(k) is not empty. Then there are constants a
and b, which depend on C/k and on the height used in the counting func-
tion, such that

aTb ifg = 0 (a, b > 0),
N(C(k),T) - a(logT)b ifg = 1 (a > 0, b > 0),

Ia ifg>2.

PROOF. If g = 0, then C(k) = Pl(k). (Note we are assuming that C(k) #
0.) Later in this section we will give a much more precise description of
the counting function on projective space; see (B.6.2) below. Similarly,
if g = 1, then C is an abelian variety, and we will describe the counting
function on abelian varieties below (B.6.3). Finally, the assertion for genus
g > 2 is that C(k) is finite. This is Faltings' theorem (originally Mordell's
conjecture), which we will prove in Part E. As a warm-up, in this section we
will prove a weaker result of Mumford saying that the counting function of
a curve of genus g > 2 satisfies N (C(k), T) GG log log T; see (B.6.5).

Remark. The theorem is actually still valid for singular curves, since they
will have the same number of points as their normalization, up to 0(1).

It is possible to give a very precise description of the counting function
on projective space. For k = Q, this result is classical. The general case,
which is more complicated, is due to Schanuel.

Theorem B.6.2. (Schanuel [1]) Let k be a number field of degree d, let
n > 1 be an integer, and let N (P (k), T) be the counting function on 1P"
relative to the usual multiplicative height Hk. (Note that this is the height
relative to k, not the absolute height.) Then there is a constant a(k, n) > 0
such that

N(1P^(k),T) = a(k, n)T"+1 +
r O(T logT) if k = Q and n = 1,

0(7"+1-1/d) otherwise.

More precisely, the constant a(k, n) is equal to

hR/w 2n1(27r)''2
n+1

a(k,n) = (n+ 1)T1+r2-1,

Ck(n + 1)

)
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where
h = class number of k,
R = regulator of k,
w = number of roots of unity in k,
s;k = zeta function of k,
r, = number of real embeddings of k,
r2 = number of complex embeddings of k,

Dk = absolute value of the discriminant of k/Q.

PROOF. We will illustrate the proof by doing the case k = Q. See Schanuel
[1] or Lang [6, Chapter 3, Theorem 5.3] for the general case. We normalize
the homogeneous coordinates of points in P E P(Q) by writing

P = (xo,...,xn) with x0i...,x, E Z and gcd(xo,...,x,) = 1.

This determines the coordinates up to multiplication by ±1, so we will
need to divide our final count by 2. Note that with this normalization,
H(P) = max IxiI.

For any vector x = (xo, ... , x,,) E An+1(Z), let IxI = max Ixi I and
gcd(x) = gcd(xi). For integers d > 1, we define two counting functions,

M(T) =#{x E An+l(Z) x 0 0 and lxi < T},
M'(T,d) = #{X E Aiit,(Z) I gcd(x) = d and Ixl <T}.

From our discussion above, we have N (1P" (Q), T) = M' (T, 1).a
We observe that if x = (x0, ... , xn) is counted in M'(T, d), then x/d =

(xo/d,... , xn/d) will be counted in M' (T/d, 1); and conversely, if x is
counted in M'(T/d, 1), then dx will be counted in M*(T, d). This gives
the useful relation M'(T, d) = M'(T/d, 1). We also note that every point x
counted in M(T) has gcd(x) > 1, so x is counted in exactly one M'(T,d).
Combining these two remarks gives

M(T) = > M' (T, d) = > M' (T/d,1).
d>1 d>1

Note that the sum is finite, since M' (T/d, 1) = 0 if d > T. Applying
Mobius inversion, we find that

M'(T,1) p(d)M(T/d).
d>1

(See Apostol [1] for information about the Mobius function p and Mobius
inversion.)

But the counting function M(T) is easy to compute,

M(T) = (#{x E Z 1 IxI < T})"1 - 1 = (2[T] + 1)+'- 1,
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where [T] denotes the greatest integer in T. Note that we subtract 1 because
the point (0, 0, ... , 0) is not counted in M(T). In particular, M(T) = 0 for
0 < T < 1. We compute

M*(T,1) _ E p(d)M(T/d) (from above)
d>1

E µ(d)((2[T/d] + 1)n+1 _ 1)

1<d<T

E u(d)(2T/d+O(1))n+1

1<d<T

E a(d)((2T/d)n+1 + O(T/d)n)

1<d<T
= (2T)n+l > p(d)d-n-1

d>1

_ (2T)n+1 C-` p(d)d-n-1 + O (T" [2 d-")
.

d>>T l 1<dd<T

The first sum is the main term, since Ed>1 µ(d)d-n-1 is equal to 1/((n+l).

The second sum contributes to the error, since Ed>T d-n-i = O(T-n)

Finally, the third sum (in the big-O) also gives an error term, since

T" d-n _ I O(Tn) if n > 2,

1<d<T
O(TlogT) ifn=1.

Hence

N(F (Q), T) = 1M'(T,1) = C(n+1)Tn+1+O(Tn) (or O(T1ogT)).

This is exactly as stated in Theorem B.6.2, since for k = Q we have h = 1,
R=1,w=2,r1=1,r2=0,and DQ=1,so a(Q,n)=2n/t(Q(n+ 1).

0

Next we will give N6ron's description of the counting function of an
abelian variety. This result was one of the principal motivations for Neron's
construction of canonical height functions. As is often the case in mathe-
matics, tools developed to answer one fundamental question frequently find
applications in many other contexts.

Theorem B.6.3. (heron) Let k be a number field, let A/k be an abelian
variety, and let I' C rankA(k) be a finitely generated group of rank r.
There is a constant a > 0, depending on A/k, I', and the height used in
the counting function, such that

N(I',T) = a(logT)r"2 + O((IogT)(r-1)/2).
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PROOF. Let HA,D be the height used in the counting function N(r, T), let
hA,D = log HA,D be the corresponding logarithmic height, and let hA,D be
the associated canonical height. (See Theorem B.5.6 for basic properties of
the canonical height.) We know that hA,D = hA,D +O(1), so it will suffice
to prove that

N(r,hA,D,T) = aT'/2 + O(T(T-1)/2).

Let V = r ®IIt, and let A be the image of r in V. It suffices to
count points in A, since the torsion subgroup of A(k), and thus of 1', is
finite (B.4.3(b)). The canonical height can be written in the form hA,D =
q + e, where q is a positive definite quadratic form on V and f is a linear
form on V. (See (B.5.6(e)) for the decomposition and (B.5.3(b)) for the
positivity. Note that 24 is the canonical height on A relative to the ample
symmetric divisor D + [-1]`D.) Now, quadratic forms grow more rapidly
than linear forms, precisely, Itl = O(q1"2), so

hA,D(X) = 9(x) + O(q(x) 112) for all x E V.

It thus suffices to use q as our counting function, so we need to prove that

N(r, 9,T) = aT'/2 + O(T('-1)/2)

We can now omit all reference to heights and abelian varieties, since
the desired result is a consequence of the following elementary counting
lemma.

Lemma B.6.4. Let V - W be a real vector space, let q : V - R be a
positive definite quadratic form on V, and let A C V be a lattice. Then
there is a constant a = a(q, A) > 0 such that

#{.1 E A I q(A) < T} = aT'/2 + O(T(T-1)/2),

PROOF. This result is a special case of a general counting theorem for
lattice points in homogeneously expanding domains. We will be content to
prove the special case; see Lang [9, Chapter VI, Section 2] for the general
result.

Fix a fundamental domain F for A. For example, choose a basis
A1i ... , .\T for A and take

F={t1A1+...+t,ATI -2 <t{<2}.

For any A E A, we let Fa denote the translation of F by A. By definition,
V is equal to the disjoint union WEA F,,.
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Let IIxII = q(x) denote the norm on V associated to q, and define
balls (really ellipsoids)

B(T) = {x E V I IIxII < T}.

Let 1z be the usual measure on V = RI. Also let D = sup2EF IIxII We
claim that

B(T - D) C U FA C B(T + D).
AEA, IIAII<T

First, suppose that x E B(T - D). Since V is covered by the FA's, we
can find some A E A such that x E FA. This means there is a y E F such
that x = y + A, which allows us to compute

IIxII = IIx - yiI <_ IIxII+IIyII <- (T - D) + D = T.

(Note that we are using the fact that x E B(T - D) and that IIyII < D for
every y E F.) This proves that x E FA for some A E A satisfying IIxII < T,
which gives the left-hand inclusion.

Second, suppose that x E FA for some A E A satisfying IIxII < T. Then
x = y + A for some y E F, and hence

IIxII = IIy + All <- IIyII + IIAIM < D + T.

This gives the right-hand inclusion, which completes the proof of our claim.
We now take the measure of both sides and use the fact that the FA's

are disjoint for distinct A E A to get

µ(B(T - D)) < E µ(FA) < µ(B(T + D)).
AEA, IIAII<T

The measure µ is homogeneous and translation invariant, so in particular
,u(FA) = µ(F) and µ(B(T)) = p(B)Tr (where we write B = B(l) for the
unit ball). This gives

µ(B)(T - D)r < µ(F)#{,\ E A I IIxII < T} < p(B)(T + D)r.

Hence

#{A E AI IIxII <T} = µ(B)Tr+O(T''-').

Replacing IIxII with q(.1) and T with VT then gives the desired result,
with the explicit value a(q, A) = µ(B)/µ(F).

The final result we will prove in this section is Mumford's estimate for
the counting function of a curve C of genus g > 2. Assuming C(k) # 0, we
can embed C(k) into its Jacobian J(k). The Mordell-Weil theorem (C.0.1)
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says that J(k) is finitely generated, so Theorem B.6.3 tells us that the
counting function of J(k) looks like

N(J(k),T) = a(logT)''2 + 0((logT)

Since C(k) C J(k), we get an upper bound N(C(k),T)) <z (logT)''/2.
Prior to Faltings' proof of Mordell's conjecture, Mumford had shown that
the points of C(k) are widely dispersed in J(k). More precisely, he proved
that N(C(k),T)) << loglogT. With the tools we have assembled, the proof
of Mumford's estimate is not difficult, so we present it here. Despite the
fact that Mumford's theorem has been superseded by Faltings' work, the
proof is well worth studying, because Vojta and Bombieri use Mumford's
ideas as the starting point in proving that C(k) is actually finite.

Theorem B.6.5. (Mumford [1]) Let C/k be a curve of genus g > 2
defined over a number field. Then there is a constant c, depending on C/k
and the height function used for counting, such that

N(C(k),T) < cloglogT for all T > e`.

PROOF. Fix a basepoint Po E C(k) and use it to embed C in its Jacobian
in the standard way,

j : C J, P -- class ((P) - (Po)).

Later we will take Po E C(k), but for the first part of the proof we do not
need to make this assumption. We also let e = j(C) + + j(C) be the
theta divisor on J, we let A C C x C be the diagonal, and we define the
usual maps

P1,P2:CxC---pC,

812(X, Y) = x + y,

PI(x,y) = x,

P2(x,y)=y

The theta divisor 6 is ample (A.8.2.3(b)), and the same is true of the
symmetric divisor 0 + [-1]`9. The bilinear pairing

(. , )e : J(k) x J(k) --s. R,

(x, y)e =
hJ,s(x + y) - hJ,e(x) - hr,e(y)

2

depends only on the quadratic part of the canonical height (see B.5.6),
so (B.5.3) tells us that it induces a positive definite pairing on J(k) ® R.

Recall the fundamental divisor relation

(j x j)*(si29 - pi0 - p20) " -A +Pi(Po) +P2(Po)
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from Theorem A.8.2.1. We use this relation and basic properties of the
height machine to compute for any P, Q E C(k),

2(j(P),j(Q)) = h.r,e(j(P) +j(Q)) - hr,e(j(P)) - hae(j(Q))
= h.r,e(j(P) +j(Q)) - hr,e(j(P)) - hj,e(j(Q)) + 0(1)
= h.r,e (812 (j (P), j (Q)) )

- h.r,e (Pi (j (P), j (Q))) - hr,e (P2 (j (P), j (Q))) + 0(1)

= hjxJ,e12e(j(P),7(Q))

- hjxr,P;e(j(P),j(Q)) - hjxJ,p;e(j(P),j(Q)) + 0(1)
= hCxC,(jxj)'(, 2e-Pie-P;e)(P, Q) + 0(1)

= hcxc,-A+Pi(po)+P;(po)(P,Q) + 0(1)

= -hcxc,A(P, Q) + hc,(po) (Pi (P, Q))
+ hc,(po)(P2(P,Q)) + 0(1)

= -hcxc,A(P, Q) + hc,(po)(P) + hc,(po)(Q) + 0(1).

The divisor A is effective, so (B.3.2e) tells us that -hcxc,A(P,Q) is
bounded (above), provided that P 96 Q. We next need to relate hc,(po)
back to the canonical height on J. To do this, we will use the divisor
relation

j'e + j"e- - 2g(Po) + rc
provided by Theorem A.8.2.1, where e- = [-1]`e and r. E Div°(C) is a
certain divisor of degree 0. Using this formula and the height machine, we
compute

2ghc,(po)(P) + hc,,t(P) = hc,29(po)+K(P) + 0(1)

= (P) + 0(1)

= hj,e+e- (j(P)) + 0(1)
= hj,e+e- (j(P)) + 0(1)
= 2(j(P),j(P))e + 0(1).

Now, the divisor (Po) is an ample divisor on C, while K is a divisor
of degree 0. It follows from (B.3.5) that the ratio hc,K(P)/hC,(po)(P) goes
to 0, so for any e > 0 we have an estimate

lhc,K(P)I S ehc,(po)(P) +0(1) for all P E C(k).

Of course, the 0(1) now also depends on e. Substituting this in above, we
find that

2(j(P),j(P))e = 2ghc,(po)(P) + hc,K(P) + 0(1)

> (2g - e)hc,(po)(P) + 0(1).



218 B. Height Functions

We can rewrite this as

hc,(p0)(P) < 1 g E (j(P), j(P))e + 0(1) for all P E C(k),

where we have replaced a by a/(2g-e) to make the formula neater. Finally,
using this in our formula for (j(P), j(Q)) given above, we obtain

2(j(P),j(Q))e = -hcxc,a(P, Q) + hc,(po)(P) + hc,(pb)(Q) + 0(1)

< -hcxc,a(P,Q)+ 1

9

E(j(P),j(P))e

+ 1

9

E(j(Q),j(Q))e+0(1).

This estimate, which says that the points in j(C) are "widely spaced" in J,
is of sufficient importance to state as an independent proposition. Such
an estimate is called a gap principle, because it says that there is a gap
between solutions.

Proposition B.6.6. (Gap principle) Let C/k be a curve of genus g > 1,
let Po E C(k) be a fixed basepoint, let 0 E Div(C x C) be the diagonal, and
fix a height function hcxc,A. Use PO to define an embedding j : C ti J
of C into its Jacobian, and let e E Div(J) be the theta divisor. Let

( , -)q: J(k) x J(k) - lR

be the canonical height pairing attached to 0, and write

Ilxlle = (xx)e

for the associated norm. Fix a constant e > 0.
(a) There is a constant cl, depending on the above data, such that

(j(P),j(Q))e < 1 9E (IIj(P)II + IIj(Q)IIe) - hcxc,a(P, Q) + c,

for all P, Q E C(k).

If we restrict to points with P Q, then the hcxc,a(P, Q) term may be
omitted.
(b) There is a constant c2, depending on the above data, such that

C)
II?(P) -?(Q)II >- (1 - I+ El

(II?(P)IIe + IIj(Q)IIe) -C2

for all P, Q E C(k) with P # Q.
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PROOF. (a) Up to a change of notation, we have already proven the first
statement above. As for the second statement, we observe that A is an
effective divisor, so Theorem B.3.2(e) tells us that hcxc,, is bounded below
away from the base locus of the linear system JAI. In particular, -hcxc,,a
is bounded above for all points not lying on A. (We remark that since
A2 = 2 - 2g < 0, the linear system JAI consists only of A, so the base
locus is exactly A. This explains why the hcxc,o(P,Q) term is necessary
if P = Q.) This completes the proof of (a).
(b) To prove this part, we just use (a) and the identity

(x, We = IIxIIe + Ilvile - Ilx - vile
2

A little bit of algebra gives the desired result.

Remark. (i) We amplify our earlier remarks on why Proposition B.6.6 is
called a "gap principle." Abstractly, we have a real vector space V with
a Euclidean norm II . II and a subset S C V. (In the situation of (B.6.6),
V = J(k) (9 It, II II = II . lie, and S is the image of j(C(k)) in V.) We
are given positive constants a and Q such that

lix - vll2 >- a(IIxII2 + IIvIl2) -'6

for all x,y E S with x 0 y. Intuitively, this inequality means that if llxll
or Ilvll is large, then x and y cannot be too close to each other. Or thinking
about it another way, for each x E S, there is a ball around x of radius

a11x1l2 -,6 that contains no other points of S. The larger the value of IIxII+
the larger the ball, so the points of S are forced further and further apart.
When this intuition is quantified, it shows that the counting function

{xESIIlxll<T}

grows very slowly as a function of T. The details are given in Lemma B.6.7
below.
(ii) We observe that everything we have done is valid for g = 1. In

particular, the gap estimates in (B.6.6) hold for g = 1. However, when
g = 1, these estimates are trivially true and give no additional information.
This is especially true of (B.6.6(b)), which for g = 1 says that a nonnegative
number is larger than a nonpositive number!

We now have the following general setup. We have a set C(k) that we
are trying to count, and we have an embedding of C(k) into a group J(k)
on which we have a pairing (- , ). We further know that the points in C(k)
satisfy a gap condition as described in Proposition B.6.6. We now prove
an abstract counting lemma that shows that sets satisfying such a gap
condition are sparsely distributed.
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Lemma B.6.7. Let V be a finite-dimensional real vector space, let II
- II

be a Euclidean norm on V, let A be a lattice in V, and let S C A be a
subset of A. Suppose that there are constants a, b > 0 such that

IIx-y1I2>a(IIxll2+IIvii2)-b for all x, y E S with x j4 y.

Then there is a constant c > 0 such that

#{xESIIIxii <T} <clog(T) for allT>2.

Notice that Lemma B.6.4 says that

#{x E AI IIxII <T} -Td""('').

Thus the gap condition on S leads to an exponential decrease in the number
of points.
PROOF. For any numbers u > v, we let

S(u, v) _ {x E S I U < IIxII < v}.

Further, for any x E V and any r > 0, we let Bx (r) be the ball of radius r
centered at x,

Bx(r)={zEVIIIz-x112<r}.

Suppose now that u > b/a and that x, y E S(u, v) are distinct points.
Then the gap condition implies that

IIx - yuI2 > a(IIxii2 + Ilyli2) - b > 2au2 - b > au2.

In other words, the distance from x to y/is at least u f, and hence

Bx12uf)nBy 12uv)=0.

On the other hand, we clearly have

CB0(Ilxll+2uf) CB0(v+2u

since IIxII < v by

our/assumption

that x E S(u, V). It follows that the large
ball Bo (v +

i
uf) contains the disjoint union of the balls B2 (2 u'a as x

ranges over S(u, v), so we obtain a volume inequality

VolBo(v+2uf)>Vol
/(

U Bx(2uf)1
\xES(u,v)/ \/

> E Vol I Bx 1 2u /)) .

xES(u,v) \ \\
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But for any z E V, the volume of a ball of radius r is

Vol(B,(r)) = r" VoI(Bo(1)),

where n = dim V. Substituting this and canceling the volume of the unit
ball gives

and hence

Cv+2uf)n>#S(u,v)- (uvc)

#S(u, v) <(
u
2v

+ 1
)n.

Remember that we have proved this estimate only under the assump-
tion that u > b/a. To ease notation, we will let a = b/a, and we will
apply the estimate for S(u, v) with

u =aei and v = aei+l as i ranges over 0 < i < log(T/a).

This gives the bound

#S(a,T) = E #S(ae`,aei+')
0<i<Iog(T/a)

< 2- \f +i In < (l+loga) ( +lTn.
0<i<Iog(T/a) \

Further, the lattice A has only finitely many elements of bounded
norm, so #S(0, a) is clearly finite. Hence

#S(O, T) < #S(O, a) + #S(a, T) < cl log(T) + C2,

where the constants cl, c2 are independent of T. We can even omit the c2
if we assume that T > 2 and take a larger cl. This completes the proof of
Lemma B.6.7.

Mumford's Theorem B.6.5 is now an immediate consequence of the
gap principle (B.6.6) and the counting lemma (B.6.7).
PROOF (Mumford's theorem (B.6.5)). Our first observation is that we
can use any convenient height function in order to compute the counting
function N(C(k),T). To see this, let HD and HE be Weil heights on C
with respect to ample divisors D and E, respectively. The assumption
that D and E are ample implies that they have positive degrees (A.4.2.4),
and then (B.3.5) tells us that

log HD (P)

-
deg D

PEC(1) log HE(P) deg E
hD(P)-.00
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It follows that there are constants cl, c2 > 0 such that

N(C(k), HE, T) < clN(C(k), HD, T) - c2.

Hence if (B.6.5) is true for the counting function N(C(k), HD, T), then it
is also true for the counting function N(C(k),HE,T).

If C(k) is empty, there is nothing to prove. So we can assume that
there is at least one point Po E C(k), and we use Po to embed C in its
Jacobian, j : C - J, as usual. We let ( , )e and II ' lie be the canonical
height pairing and associated norm attached to the divisor 6 E Div(J). We
will compute N(C(k),T) using a height function associated to the divisor
2j"(9 + 9-). More precisely, we will count

N(C(k),T) = #{P E C(k) I IIj(P)IIe logT}.

(Notice that we have to put in log T, since N (C(k), T) is computed using
a multiplicative height, while II 'IIe is a logarithmic height.)

Let V = J(k) ® IR, let A be the image of J(k) in V, and let S be
the image of C(k) in V. We know from the Mordell-Weil theorem (C.0.1)
that V is a finite-dimensional vector space, and (B.5.3) tells us that the
norm II ' IIe on J(k) induces a Euclidean norm II II on V. Further, the
gap principle (B.6.6b) says that

IIx-YII2>- (1- 1+E1 (IIxII2+IIUII2)-c3 for allx,yESwith xry.
\ 9 )

We are assuming that the genus g of C is at least 2, so taking e = 1, we
2

find that

IIx - y1I2 >
a

(IIxII2 + IIvII2) - c3 for all x,yESwith x#y.

We are in exactly the situation to apply the counting lemma (B.6.7), which
gives the estimate

#{xESIIIxII <logT} <c4loglogT for all T>8.

Finally, we just need to observe that the kernel of the map J(k)
J(k) ® IR = V is exactly the torsion subgroup of J(k). In particular, this
map is finite-to-one, so the same is true of the map C(k) -+ S. Precisely,
we have

N(C(k),T) < #J(k)t. ' #{x E SIIIxII <_ logT}.

This estimate, combined with the earlier inequality, completes the proof of
Mumford's theorem (B.6.5).
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It is quite instructive to compare the orders of growth of the counting
function N(V(k),T) given by Theorems B.6.2, B.6.3, and B.6.5. At the
coarsest level, they say that N(V(k),T) grows polynomially for projective
space, logarithmically for abelian varieties, and at most like log log for
curves of genus at least 2. A slightly weaker way of stating these facts is
given by the following limits:

log logN(1P"(k) T),
h = 1 ( tim

l l T
, projec ve space)

og ogT..oo g

log log N (A(k), T)
= 1 ( b li i t ith A kT

moo log log log T
, a e an var e y w # ( ) = oo)

log log N W(k), T)
li 1 f C > 2m ssup

log log log log T
. (curve o genus g( ) )

The reason we have taken log log N(V (k), T) is that its order of growth
is independent of the choice of height function used for counting. (See
Exercise B.15.) Further, the use of log log has a smoothing effect. This
suggests that we consider the possible growth orders for the log log counting
function

log log N(V (k), T).

Projective spaces and abelian varieties give examples for which it grows like
log log T and log log log T, respectively. Notice that Mumford's theorem
gives only an upper bound for log log N (C(k), T ), and in fact this upper
bound is not sharp, since Faltings' theorem says that N(C(k),T) is actually
bounded independently of T. All of this leads to the following questions.

Question B.6.8. What are the possible behaviors for the counting func-
tion log log N (V (k), T) ? For example, let V/k be a projective variety, and
let U C V be a Zariski open subset. Is it true that the counting function
for U(k) must satisfy one of the following conditions?

log log N(U(k), T)
lim

log log T = (polynomial growth)
T-.oo g

Tim
log

llogog log logk),T T) = (logarithmic growth)

log log N(U(k), T) is bounded as T -+ no. (bounded growth)

Notice that if question (B.6.8) has an affirmative answer, then Mum-
ford's theorem (B.6.5) would imply the finiteness of C(k). It is possible
to formulate similar questions for S-integer points on amine varieties. See
Silverman [4] for further details.

The behavior of log log N (V (k), T) is an extremely coarse measure of
the distribution of rational points on V(k). At the other extreme, Batyrev
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and Manin have formulated very precise conjectures for the order of growth
of N(V(k), T) in certain cases. We give two examples here. See Section F.5
for a further discussion, and Batyrev and Manin [1] and Franke, Manin,
and Tschinkel [1] for additional information.

Conjecture B.6.9. (Batyrev-Manin [1]) Let V/k be a smooth projective
variety, and let Ky be a canonical divisor on V.
(a) Suppose that the anticanonical divisor -Ky is ample. Then there is
an integer t > 0 and a Zariski open subset U C V such that possibly after
replacing the field k by a finite extension, we have

N(U(k), H-Kv,T) - cT(logT)t as T -+ oo.

(Here H-Kv is the height relative to the field k, not the absolute height.)
(b) Suppose that some nonzero multiple of Ky is linearly equivalent to 0.
Then for every e > 0 there is a nonempty Zariski open subset U. C V such
that

N(UE(k),T) < T` for all sufficiently large T.

B.7. Heights and Polynomials

In this section we prove some elementary height estimates for polynomials
that will be used in Parts D and E. The reader may wish to skip this section
until it is needed.

The (affine) height of a polynomial is defined to be the height of its
coefficients taken as affine coordinates. Thus writing

f = a;xl' ... xn
,

the (absolute affine) height of f is

h(f) = h([1,...,aL.... ]tEl)

Alternatively, if we define the Gauss norm of a polynomial f with respect
to an absolute value v to be

If k = m8x jail,,,

then

Hk(f) = II max{1,IfIv"}
vE M,,

and
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h(f) =logH(f) = 1 nvlogmax{l,lfly}.
[k

Q]
VEMk

For example,

h(6x2 + 3xy + 12y) = h([1, 6, 3,12]) = log(12).

More generally, if T = (h, ... , f,.} is a collection of polynomials, then
we define the height of the collection to be

h(3) = mat{h(fl),..., h(fr)}.
Remark B.7.0. For some applications, it is more convenient to use the
(projective) height of a polynomial, which we define to be the height of its
coefficients taken as homogeneous coordinates. Thus

Hk(f) _ Ifly" and h(f) _ [k
Q]

> n. log If 1,,.
VEMk vEMk

The projective height of the above example is

h(6x2 + 3xy + 12y) = h([6,3,121) = h([2,1,41) = log(4).

We will mostly be using affme polynomial heights, and we will specify when
this is not the case.

Proposition B.7.1. Let k be a number field and F E k[xoi... , xn] a
homogeneous polynomial of degree d, say

F(x) = F(xo,... , x,,) _ aixi xi ... xn0 11

io+ +i =d

and let x = (x0i ... , xn) E kn+1
(a) Let v be an absolute value on k, extended in some way to k, and let
vv(F) = (n d) if v is archimedean and vv(F) = 1 otherwise. Then

IF(x)lv 5 lxilv)d

(b) h(F(x)) 5 dh(x) + h(F) + min{n log(n + d), (n + d) log 2}.

PROOF. (a) The desired estimate is immediate from the triangle inequality
applied to the sum F(x), once we observe that there are (nn d) terms in
the sum.
(b) Taking the logarithm of (a) and summing over all places of k gives (b).
We have also used the trivial estimate

(n+d) < min { (n+ d), 2n} . 0
Next we give some elementary estimates for the heights of sums and

products of polynomials.
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Proposition B.7.2. Let 3 = { fl,..., f,} be a collection of polynomials
in k[X1i ... , Xm], where k is a number field.
(a) Let deg fi be the total degree of fi. Then

r
h.(f1f2 ... fr) < >(h(fi) + (deg fi + m) log 2)

i=1

<r max{h(fi)+(degfi+m)log2}.
1<i<r

(This estimate will be slightly refined in Proposition B.7.4 below.)
(b)

r

h(f1 + f2 + ... + fr) < h(fi) + log r.
i=1

(c) Suppose that fl, ... , fr E RIX1 i ... , X,,,] have coefficients in the ring
of integers R of k. Then

h(fi + f2 + ... + .fr) < [k : Q]h(3") + log r.

(This estimate is useful when k is fixed and r is large.)

P1tooF. Let fi = >E aiEX E, where E = (E1,... , E,,,) runs over mrtuples
of nonnegative integers and X E = X El . . X,E". We then have

fl ... fr = j:( E ale, . arer XEJ
E e,+ +e,.=E

and hence for any v E Mk,

If,...frly=mEx ale,... are,

e Cl , v

Let N be an upper bound for the number of nonzero terms in the sums, and
as usual let N,, = I for v nonarchimedean and N,, = N for v archimedean.
We then have

I fl ... frt v < max(Nv max jai., . are.. i )E
r

< Nv ll max 11, Iatet
e,

Iv}

i=1

r

N,, J1 max{1,Ifily}.
i=1
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Raising to the nv/[k : Q] power and taking the product over all v then
gives

H(f1... fr) _ fj max { 1, lfi ... fr Iy /fk:Q }

vE Mk

I
r l nv/lk:Q1

< H {Nvflmax{l,lfily}}
VEMk l i=1 J

r
< N [J H(fi).

i=1

(Recall that EVEMk nv = [k : Q].) To find an admissible value for N, we
proceed as follows. We note that the number of r-tuples of nonnegative
integers with sum equal to Ei is (E' Er-1), so the number of terms we are
trying to estimate is smaller than

max
j f rEi + r - 1) < max fj (2E'+r

E
-1) < 2aes(fj... fr)+m(r-1)

1=11 ` Ei J E i=1

Hence we may choose

log N =log 2 (Edefi + m))

which completes the proof of (a).
(b) Keeping the same notation for the coefficients of the fi's, we have

fl +...+ fr = (a,e +...+are)X'.

Thus for any v E Mk,

lfl+...+frly =maxlale+...+arely

Writing r,, = 1 or r, = r for v nonarchimedean or archimedean as usual,
we get

r
max{l,Ifl++frIv} <r,,maxi 1,jai. l} <rvITmax{1,jai. I}

i,e e
i=1

Raising to the nv/[k : Q] power and taking the product over v then gives

r
H(f1 + ... + fr) r fl H(fi).

i=1
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(c) Since we are assuming that the fi's have algebraic integer coefficients,
the same will be true of f1 + + f,.. This implies that for any nonar-
chimedean v, we have

=max{1,If,Iv} = =max{1,IfIv} = 1.

This implies that only the archimedean places contribute to the height of
f1+...+fr,so

Hk(fl+...+fr)= [J max{1,if1+...+frlo }
vEMk

< (r.max{1IfiI})
vEMk

<r]k:Q] max max {1,Ifily"}]k:Q]

1 <i<r vE M,°

< r]k:Q) max Hk(fi)]k:Q]

1<i<r

(We are using here the fact that #M° < [k : Q].) Taking [k : Q]th roots
gives the desired result:

H(fi + ... + fr) < r malt H(fi)[k:Q]. 0

The next inequality will be used (among other places) in the proof of
Roth's theorem.

Proposition B.7.3. (Gelfand's inequality). T h i s proposition u s e s p r o -
j e c t i v e p o l y n o m i a l heights. Let d1,. .. , dr be integers, and let fl, ... , fr E
([X1 i ... , X.] be polynomials whose product satisfies degx, (f1 fr) < di
for each 1 < i < r. Then

r
h(fi) < h(f1 ... fr) + di + ... + dm.

i=1

Remark 7.3.1. As a first approach, if we use projective space to parame-
trize the set of polynomials of given degrees in m variables, then the map
that sends an r-tuple of polynomials (f1, ... , fr) to their product f1 fr
becomes a rational map

0: ]PM' x ... x PM- 4 PN .

This map may be described as the composition of a Segre embedding with
a linear projection whose center is disjoint from the image of the Segre
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embedding. (The fact that the center and the image are disjoint is because
the product of nonzero polynomials is again nonzero.) Then the height
machine (B.3.2) immediately gives the estimate

h(fl ... fr) = h(fl) + ... + h(fr) + O(1).

So the content of Gelfand's inequality is to give an explicit bound for the
0(1) term. We also note that a converse inequality of the form H(f) <
c(di,... , dm) jj 1 H(fi) can be easily established using only the triangle
inequality; cf. Proposition B.7.2.

PRooF. We start by recalling Gauss's lemma, which states in this context
that

If, frl v = Ih lv Ifrly for all nonarchimedean v.

The crux of the proof of Gelfand's inequality is the proof of an analogous
archimedean estimate,

i=1

valid for all polynomials f, fl, ... , fr E C[X1 i ... , X.J. Indeed, granting
(*) for a moment, we can compute

r r
fHk(fi) _ H 11 Ifily°
i=1 i=1vEMk

< II If1 .. frIv jj f,_In
vEMk vEMk

< e[k:Q](d1+...+d,n)Hk(f1 ... fr),

and then taking [k : Q]th roots gives Gelfand's inequality.
We will prove (*) by introducing a multiplicative norm and an L2-

norm on the space of polynomials and comparing them to the Gauss norm.
These norms, especially the Mahler measure, are interesting in their own
rights and have been much studied.

Definition. Let

I=[0,1], t = (i1, ... , Im), t = (ti, ... , tm), dt = dtl ... dtm,

and let e(t) = (exp(21riti),... , exp(27ritm)). For any complex polynomial

f = aiXi1 ... Xm E C[X1, ... , Xm],
i
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we define the Mahier measure off to be the quantity

B. Height Functions

M(f) = exp (flogj f (e(t)) I dt 1
m 11

and the L2-norm off to be the quantity

/
L2(f) = (fIf(e(tI2dt) 1/2 1/2.

The inequality we are attempting to prove will follow from a series of
comparisons between various norms. We start with the "easy" estimates.

Lemma B.7.3.1. Let f, g E C[X1, ... , X,,,] be polynomials, and suppose
that degx, (f) < d;. Then

(i) L2(f) 5 [(d1 + 1) ... (dn + 1)J1/2
If 1.

(ii) M(fg) = M(f)M(g)-
(iii) M(f) <L2(f).

PROOF. The first two formulas are straightforward. Indeed the number of
coefficients of f is bounded by (d1 + 1) ... 1), and hence

lail2 <

Now (i) follows by taking square roots. Next, formula (ii) is immediate
using the linearity of integration and the relationship between log and exp.

The third inequality deserves more explanation. We use Jensen's in-
equality, which states that if U is a set of measure 1 and if 0 is a convex
function, then

0 (fd) < f (o )d.
U

Applying this with U = I'", dµ = dt, 0 = exp, and ip(t) = 2log If (e(t)I,
we get

M(f)2 1- If(e(t))I2dt = L2(f)2,

and hence M(f) < L2 (f ).

Next we observe that for a polynomial in one variable

f =ao+a1X+...+adXd=ad(X -Q1)...(X -ad),

we have the formula

0

d

M(f) = Iadl Hmax{1,kail}.
i=1
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In particular, if a is an algebraic number and if we take f to be the minimal
polynomial of a, then this formula says that the height Hk(a) of a is equal
to the Mahler measure M(f) of its minimal polynomial. We also observe
that using the multiplicativity of M(f), this equality is equivalent to the
well-known formula (Exercise B.19)

1
1

log la - e2iatIdt = logmax{1, jai).

We now use the equality Hk(a) = M(f) to prove a key estimate for the
coefficients of a polynomial in terms of its Mahler measure.

Lemma B.7.3.2. For any polynomial f = do aiX' E C[X],

la31 < (d)M(f) < 2dM(.f)

More generally, let

j1f- ajh..... J,nXl ...Xm ECX1i...,Xm]
0<j, <d,

O<jm <dm

be a polynomial satisfying degX, f < dh. Then

(d1) ... (dm)M(f) < 2d,+...d-M(f)

ii im

PROOF. The proof is by induction on the number m of variables. For
m = 1 we factor f (X) = ad jj(X - a1). Then

lajl = ladl ah,...ahd-j1:5 ()IadIfImax{1lIaiI} _ ()M(f).

To assist in the induction, we set some notation. For any 1 < n < m,
we let

d,.+, d,,

fk1,...,k,, (Xn+1, ... , Xm) ak,,...,k,,,hm+1,...,h,,, Xn+11 ... Xm
=O h,,, =O

with the convention that fk...... k,,, = ak...... km in the case n = m. This
allows us to write

d,

f(X1,...,X,,) _ > fk,(X2,...,Xm)Xll, (*)i
k1=0

and more generally
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d
{

fk1..... kn-i (Xnr .... Xm) = Xm)Xnn (*)n
kn=0

From (*)1 and the previous lemma in one variable, we deduce that for all
x21... ,5mEC,

d 1 2lrit(x2r r xm (')exp() I < log l f (e ,fk1 z2r xm) I dt) .i
Now w e t a k e the logarithm of both sides, evaluate at (x2, ... ) xm) _
(e2arit2, .... e2,itn, ), and integrate over 0 < t2i ... , tm < 1 to obtain

togM(fkr) = log 21it2,. .. , e2,rit
l fk1 (e m) I dt2 dtm

Im-1

to
(di)

+ togIf(e21rit,,. ..,e21rit-) I dt1 dtmg
k1 Im

...

< log (k1) + log M(f ).

This gives the inequality M(fkl) < and more generally, starting
from formula (*)n and using the same argument, we get

M(fk1,...,k,) (k:)Mukl....,kn- )

This gives the bound lak1,...,kml < (km)M(fk,,_..,k,,_1) for the coefficients,
and now the claim follows by putting together these inequalities. 0

Let µ(f) denote the number of variables X1,... , Xm that genuinely
appear in f. Then using the trivial estimate

k) < 2d-1, valid for d > 1,

we obtain
Ifl <_

2d1+...+dm-µ(f)M(f)

We can now finish the proof of Gelfand's inequality (B.7.3). We let
dif = degxf fi and d., = degx, f, so

r rdj

_ >dij and µ(f) < E.U(fi)
i=1 i=1
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Then

IfiI ... Ifrl < fj (2dii+.+dim-p(fi)M(fi))
i=1

= 2d, +...+d--E, µ(fi) M(f
)

< 2d,+...+d,,,-µ(f) ((dl + 1) ... (dm + 1))112 If I

Now observe that

2d d -+1 < ed ford > 2 and for d = 0,

while if di = 1, then the Xi variable contributes to µ(f). This lets us
simplify the inequality to obtain

Ifil...Ifl < edI+...+d-Ifl,

which completes the proof of Proposition B.7.3.

The next result will be used in Part E, specifically in the proof of
Eisenstein's estimate in Section E.9.

Proposition B.7.4. Let k be a number field and v an absolute value
on k. We write deg f for the total degree of a polynomial f , and for any
integer N and absolute value v we set as usual

Nv = J I NI if v is a'chimedean,
.1 if v is nonarchimedean.

Let f, Ii, ... , f . E k[X1 i ... , be polynomials.
(a)

Infil <min(1(2degfi)v, 12v°5f,} x 1IIfily
i=1 v

s=2 i=2 )I i-1

Note that the bound for the ratio III fily/ n lfily does not depend on fl,
but only on f2i ... , f,.. This is often useful for induction arguments, where
one of the f.'s may have much larger degree than the others.

(b)

r
< rv max lf'ftv 1<i<rsIv

(c)
I - I < (degf)vifl0.

7 v
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(d) Let b = (b1, ... , bn) E kn, and write Ibly = max Ibily Then

f(b)Iv 5 min{(2deg f)v,2degf} . Iffy max{1,
Ibly}degf.

(e) Let b and IbIy be as in (d), and define a shifted polynomial fb(X) _
f(X +b) = f(X1+b1i...,Xn+bn). Then

IfbIv 5 2"1 f If Iy max{1, IbIv}degl

PROOF. For a polynomial f E k[X1i ... , Xn], we write

dl d
f (X) = L aeXe = L ... L a ,X" ... Xnen'

e e1=0 en=0

where e is the multi-index e = (e1 i ... , en) and d; = degx. f. We observe
that the number of nonzero monomials appearing in f satisfies

n

(# of nonzero ae's) < ji(d; + 1)
i=1

n n

<min{JJ2d', H(2degf)}
.i=1 i=1

=min{2degf, (2degf)n}.

Now write fl,..., fr as f; = E. aj,X1. Then

Hfi=U
> aieXe)i=1 i=1 e

a,e(1) ...
e(1) ...,e(')

E= r r ale(1) ...are(*) X
LEJ e(1)+...+e(' E

(1)

(2)

We fix a multi-index E = (E1,. .. , En) and look at the coefficient of XE
in (2):

1: a,e(,) ... are(r)

... a,e(,) ... are(,)
e^1>+...+e; >=En

(3)
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We want to estimate the number of nonzero terms in (3). Note that
since E is fixed, if we choose values for e(2), ... , e(' ), then there is at
most one value of ell) for which ale(1) aTe(r) is a term in (3). Hence
the number of nonzero terms in (3) is at most the number of ways to
choose e(2), ... ,e(r) such that a(2),. .. , are(r) are all nonzero. Applying (1)
to each of f2,..., fr, we estimate

r
r

r r
1

fi (# of nonzero aie's) < min S 11 2degfi, [J(2deg fi)n1 (4)
i=2 `i=2 i=2

To recapitulate, (4) gives an upper bound for the number of nonzero
terms in the inner sums E ale(,) are(,.) appearing in (2). So if we let

r r

N,, = min{ [J 2ve9 h, [J(2 deg fi)v },
i=2 i=2

then we have

r

In fi l = supl i ale(1) ... are(r) l
v E Ve(1)+...+e(.)=Ei=1

< N sup Iale(') ... are(r) I,,

from (4) and the triangle inequality
r

= N. [J sup laiely
i=1 e

r
= N. f Ifily.

i=1

(b) We retain the notation from the proof of (a). Thus

r r r

fi = E aieXe = E( r aie)Xe1
i=1 i=1 a e i=1

so
r r

= suplEaiel < supsuprylaieI,, = rvsup lfilyPil"
e i=1 v e i i

(c) Again writing f (X) = E. aeX e, every coefficient of O f /8XX has the
form snae for some positive integer m < deg f and some multi-index e.
Hence

of
< sup sup lmaely = (degf)vlfly.

OX, I. e m<deg f
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(d) Continuing with the same notation as above, we have

If(b)Iv = Iuaebel
e

dl d
=IE...Eaeblel...VWE n

e1=0
11

n n

F Ibjly'
j=1 a j=10<ej<dj
n n

jj(di + 1)v iii . fJ max{1, IbjIv}dj
j=1 j=1
n

jl(dj + 1)v IfvI max{1,
JbIv}deg f

j=1

Combining this with the elementary estimate

n n n

[1 (dj + 1) < min { f1 2d', f (2 deg f) } < min { 2deg f, (2 deg f) n }
j=1 j=1 j=1

completes the proof of (d).
(e) Again we write f = aeX a and compute

I fb(X )Iv = IEae(X+b)el
v

e

ICI

(C1)bel...tlXtl) ...
(E

\en/bn -LnXn
)

e
i1L=i0 Z in

E ...d (e,) ... (en)E
el,...,en =1 in{3=0

ij<ej<dj

x bll-i1 ...bn-in1Xi1...Xn/
v

= max
il,..
0<ij <dj

ae(e1) ... (e') W'il ...bn -ice
Zl in v

ij<ej<dj

Now, the number of terms in this last sum is at most

v

n n

fl(dj + 1) < 11 2dj = 2d;
j=1 j=1
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and similarly we can estimate the binomial coefficients by

Cell ... (enl < 2e'+...+e" < 2d'+...+d" = 2d
tl \inIJ - - -

237

(Of course, for nonarchimedean absolute values, the binomial coefficients
have absolute value less than or equal to 1.) Using these observations we
obtain the desired estimate

I fb(X)Iv < 22dmaxlaeIvmax{1,Ib1Iv}d, ...max{1, Ibny}4

<2MIf lvmax{1,Ibly}degf.

Remark B.7.5. One may easily convert the bounds of Proposition B.7.4
into bounds for heights. For example, (a) clearly implies (keeping the
notation from Proposition B.7.4)

H(11 ... fr) < min t ft(2 deg fi)n, 2des f2+...+deg fr l H(fl) ... H(fr),
,_a I

and inequality (e) implies

H(fb) <- 4degfH(f)H(b)degf

B.8. Local Height Functions

In this section and the next we will discuss, mainly without proof, the
decomposition of height functions hD into sums of local heights AD,,,, one
local height for each absolute value v of the field k. These decompositions
are often essential for understanding the finer structure of height functions,
but they will not be used in this book except at the very end (Part F), when
we discuss various further results and open problems.

Let D be a divisor on a (smooth) variety V defined over k. For notar
tional convenience, in this section we will write

VD = V -, suPP(D)

for the complement of the support of D. We would like to associate to each
place v E Mk a function

AD,V : VD(kv) 1(P
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so that the sum
E AD,v

vE Mk

is a Well height function hD for all points in VD(k). Further, the local
height functions should be additive in D; and if D is a prime divisor (i.e., D
is a irreducible subvariety of V of codimension 1), then AD,v should be
geometric in the following intuitive sense:

[Intuition] AD,,,(P) = - log(v-adic distance from P to D).

Thus as P gets v-adically close to D, the local height function becomes
(logarithmically) larger. For a fixed point P E V(k), we also want the
sum > AD,, (P) to exist without worrying about convergence problems,
so we will require that the local height AD,,,(P) vanish for all but finitely
many vEMk-

To make all of this precise, we set some definitions. We define an
Mk-constant to be a map

y : Mk --a 1R

with the property that yv = 0 for all but finitely many v E Mk. We say
that a real-valued function q5 on a subset Y of V(k) x Mk is Mk-bounded
if there is an Mk constant y such that

I0(P, v) I < y for all (P, v) E Y.

In particular, if P E V(k) is fixed, then ¢(P, v) = 0 for all but finitely
many v E Mk. When comparing functions, we will write for an Mk-
bounded function. Finally, we say that a subset Y of V (k) x Mk is affine
Mk-bounded if there is an afne open subset Vo C V with affine coordinates
xl, ... , xn such that Y C Vo x Mk and such that the function

Vo(k) x Mk R, P i --+ max I x;(P)I ,
1<i<n v

is Mk-bounded on Y; and we say the set Y is Mk-bounded if it is a finite
union of affine Mk-bounded sets.

For a given divisor D, we can think of AD as giving a family of func-
tions, one for each v E Mk. Equivalently, AD is a function on the disjoint
union

AD : II R,
vE Mk

where AD,,, is the restriction of AD to the set of v-adic points Notice
that there is a natural embedding of the set of ordered pairs

VD(k) x Mk

into the above disjoint union that takes an ordered pair (P, v) and identifies
it with the point P E We will make use of this identification without
further comment.
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Theorem B.8.1. (Local height machine) Let V/k be a smooth projective
variety. For each D E Div(V) it is possible to assign a function

AD : 11 VD(k) -i R,
vE Mk

called the local height function with respect to D, such that the following
properties hold:
(a) (Normalization) Let f E k(V)' be a rational function on V, and let
D = div(f) be the divisor of f. Then the difference

AD,v(P) - v(f(P))

is an Mk-bounded function on every Mk-bounded subset of VD(k) x Mk.
(b) (Additivity) For all D1, D2 E Div(V),

AD,+D,,v = AD,,,, + AD2,11 + Ov(1).

(c) (Functoriality) Let 0 : V -' W be a morphism of smooth varieties.
Then

AO- D,v = AD,v o 0 + Ov(1).

(d) (Positivity) Let D > 0 be an effective divisor. Then

AD,. > Ov(1).

(e) (Local/Global Property) Let D E Div(V), and let hD be a Weil height
attached to D. Then

hD(P) = E O(1) for all P E VD(k),
VEMk

where d = [kv : Qv]/[k : Q].

PROOF. Let D E Div(V). A candidate function for AD can be constructed
as follows. Choose effective divisors E1,. .. , En and F1,. .. , F,,, with the
following properties:

n m

n supp Ei = 0, n supp Fj = 0, and D + Ei - Fj for all i, j.
i=1 j=1

(It is always possible to find such divisors; see, for example, Lang [6, Chap-
ter 10, Lemma 3.4].) Choose rational functions fig satisfying

div(fij)=Fj-Ei-D.
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Then a candidate for AD is the function

AD,v(P) = Max min log I fij(P)I+,
1<j<m I<i<n

Note that the poles of fij are on Ei and D, and the zeros are on Fj and D,
so the fact that the Ei's (respectively the Fj's) have disjoint support means
that AD,v is well-defined off of the support of D. Further, if D is an effective
divisor, then we see that AD,,, (P) tends to 0o as P approaches D in the
v-adic topology. This justifies our earlier intuitive description of the local
height.

The key point now is to verify that the choice of divisors Ei, Fj and
functions fij affects only AD by an Mk-bounded function. We refer the
reader to Lang [6, Chapter 10] or Serre [3, Chapter 6.2) for the remainder
of the proof of Theorem B.8.1 and for many further properties of local
height functions.

Remark B.8.2. The normalization property (B.8.1(a)) is most often used
in the following way. Suppose that DI and D2 are linearly equivalent divi-
sors. Then DI = D2+div(f) for some rational function f, and (B.8.1(a,b))
implies that

AD,,v(P) = AD.,,, (P) + v(f (P)) + Ov(1)

Remark B.8.3. It is possible to choose the local height functions on V
consistently for field extensions. Thus for any finite extensions L/K/k and
any place v E MK, we have

AD,v(P) = 1 E [L,, : Kv]AD,m(P)+Ov(1)[L : K]
WEML, Wlv

for all PEVD (Ku).

Indeed, the construction of AD, as maxj mini log I fij Iv gives this property
immediately as soon as one knows that the construction is well-defined.

Example B.8.4. Let V = P' and let D be a hypersurface defined by a
homogeneous polynomial Q(xo,... , xn) of degree d. Then the function

AD ,,,(X) = log max I

xd

O<i<n Q(x0i...,xn)

is a local height function associated to the divisor D.
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B.9. Canonical Local Heights on Abelian Varieties

A Well height function hD associated to a divisor D is determined only up
to a bounded function, and the important functoriality property h'j. D =
hD o 0 + 0(1) holds only up to a bounded quantity. However, we have
seen in Sections B.4 and B.5 that in certain cases it is possible to pick out
particular Weil heights characterized by the property that functoriality
holds exactly for certain divisors D and maps ¢.

Similarly, the local height functions aD are determined only up to
Mk-bounded functions, but just as for the Weil heights, it is sometimes
possible to choose particular local height functions having particularly nice
transformation properties. Thus the following theorem is related to The-
orem B.8.1 in the same way that the canonical height theorem (B.4.1) is
related to Weil's height machine (Theorem B.3.2).

Theorem 9.1. (Canonical local heights) Let V/k be a smooth variety
defined over a number field, let D E Div(V), and let c : V -- V be a
morphism. Suppose that

4'D=aD+div(f)

for some number a > 1 and some rational function f E k(V)*. Then there
exists a local height function

AO,D : II VD(k,,) , R
vEMk

and an Mk-constant ry such that:
(i) .1O,D,,,(P) = AD,v(P) +Ov(1) for all P E VD(kv).

(u) 4D,v (0(P)) = ",0,D,,, (P) + v(f (P)) + 1'v for all P E VD (kv).
Fhrther, if we let hO,D be the canonical height function defined in Theo-
rem B.4.1 and let dv be as in (B.8.1(e)), then there is a constant c such
that

hO,D(P) = > dva,,D,v(P) + c for all P E VD(k).
VEMk

PROOF. See Call-Silverman [1, Theorem 2.1]. O

Remark 9.2. With appropriate definitions, it is possible to generalize
the theory of both global canonical heights (B.4.1) and local canonical
heights (B.9.1) to include the extended divisor group Div(V) ® R. This is
useful because the condition 4'D - aD may be true only for divisors in
this extended group. See Silverman [6] for an example of a canonical height
on a K3 surface V that uses an extended divisor D and a map 0: V --+ V
satisfying O'D - (7 + 4vr3)D.
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Just as in Section B.5, the general theory can be applied to the case
of abelian varieties and the multiplication by m maps, since we know that
[m]'D . m2D (respectively [m]*D - mD) if D is symmetric (respectively
antisymmetric).

Theorem 9.3. (Neron [2]) Let A/k be an abelian variety defined over a
number field. For each divisor D E Div(A) there is a local height function

aD : 11 AD(k) -+ lR,
VEMk

called the canonical local height on A ive to D, satisfying the following
conditions, where -Yl,-y2,. .. denote N ristants:

(a) AD,v = AD,v + Ov(1).
(b) AD1+D2,v = )'D,,v + )tD2,v +'Yl(V.
(c) If D = div(f), then AD,v = v o f v).

(d) If 0 : B - A is a homomorphisz abelian varieties, then 4.D,v =
AD,v00+73(v)
(e) Let Q E A(k) and let TrQ : A -4 A be the translation-by-Q map. Then
ATQD,v = AD,v 0TQ+'Y4(V).

(f) Let hD be the global canonical height function on A relative to D
(B.5.6), and let d be as in (B.8.1(e)). Then there is a constant c such that

hD(P) = > +c for allP E AD(k).
vEMk

PRooF. See Lang [6, Chapter 11].

Remark 9.4. There are explicit formulas, due to Neron and Tate, for the
canonical local heights on elliptic curves. See, for example, Silverman [2,
Chapter VI].

Remark 9.5. Tate (unpublished) has given rapidly convergent series for
the canonical local heights on elliptic curves over certain fields. These
series have been generalized by Silverman [7] for elliptic curves and Call-
Silverman [1] in general to give algorithms allowing the machine compu-
tation of canonical local and global heights reasonably efficiently, provided
that the morphism 0 is not too complicated.
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B.10. Introduction to Arakelov Theory

We pursue briefly in this section the analogies between number fields and
function fields. We first explain an explicit and geometric formulation of
height theory over function fields and explain why this can be useful for Dio-
phantine problems. We next show that this geometric formulation can be
translated to the number field setting by (1) using schemes over Dedekind
domains to extend varieties over number fields and (2) using complex an-
alytic constructions such as Hermitian metrics or Green functions. This
enables us to completely reformulate height theory (and proofs) in a more
synthetic or geometric fashion. In the pursuit of further analogies, we
are led to introduce special metrics, define extended divisors, etc., "h la
Arakelov." For additional material on Arakelov theory, see, for example,
Chinburg [1] or Lang [7].

We start with a smooth projective variety V defined over a function
field K = k(C), where C is a smooth projective curve over k. To simplify
our exposition, we will assume that k is algebraically closed. We can con-
struct a projective variety V over k with a morphism 7r : V -+ C such that
the generic fiber of Tr is isomorphic to V/K. We further assume that V is
sufficiently smooth so that Weil divisors and Cartier divisors are the same.
(For example, in characteristic 0 we could appeal to Hironaka's theorem
on the resolution of singularities and assume that V is smooth.) A point
P E V(K) induces a rational map C -+ V, and since C is smooth and V
is projective, P will extend to a section (i.e., to a morphism) P : C -+ V.
Any divisor D = E nyY on V extends to a divisor D on V by taking the
Zariski closure of each component and keeping the same multiplicities, say
D :_ E nyY. The divisor b is a Weil divisor, and hence is a Cartier
divisor by hypothesis. Now observe that P'(D) is well-defined as a divisor
class on the curve C, and even as a divisor if we add the hypothesis that
Pit supp(D). We now define a function hD,v on V(K) by the formula

hD,V(P) = hD(P) := degP'(D) for P E V(K).

Remark B.10.0. If P is a point defined over the algebraic closure of
K = k(C), say P E V (L) with L a finite extension of K, we can still define
its "height" as follows. Fix a smooth projective curve C' and a covering
f : C' - C such that L = k(C') and such that the map f induces the
inclusion K C L. The point P corresponds to a morphism P : C' --+ V as
above, and we can define

hD,v(P) = hD(P) :_ [L 1K] degP*(D).

One readily checks that this quantity is independent of the field L as long
as P E V (L). Generally, the extension of height functions from V(K)
to V(K) will be straightforward, so we will be content in this section to
restrict attention to points in V(K).



244 B. Height Functions

We now prove that our notation is consistent and that hD defines a
Well height associated to the divisor D. We do this in several lemmas,
where K will always denote a function field k(C) as above.

Lemma B.10.1. Let Q = (fo,... , f,) E 1P" (K), let Q be the associated
k-morphism Q : C 1P", and let H be a hyperplane (divisor class) in ]P".
Then

degQ'(H) _ omax (-ordp(fi)).
PEC - -

(Notice that the sum is nothing more than the height hK(Q) of the K-
rational point in 1P" for the usual collection of valuations on the function
field K.)

PROOF. Changing coordinates if necessary, we may assume that ()(C) ¢
Hi, where Hi is the hyperplane defined by xi = 0. Let Di := Q`(Hi). Then

Di - D3 = Q*(Hi) - Q'(Hi) = div(fi/fj)
and

and hence

ordp Di - ordp D3 = ordp fi - ordp fj,

inf(ordp Di) - ordp D3 = inf(ordp fi) - ordp fj.

But since the Di's are effective and the intersection of their supports is
empty, we see that infi(ordp Di) = 0. Hence

- inf(ordp fi) = ordp Di - ordp fj.

Now summing over P E C and using the fact that >p ordp(f3) = 0 gives
the desired result. 0

Next we observe that if Y C V is an irreducible hypersurface on V,
then its image a(Y) is either equal to all of C, or else it is equal to a single
point. We say that D is a vertical divisor if it maps all of the components
of D to points, and similarly we say that D is a horizontal divisor if it
maps all of its components surjectively onto C. Clearly, any divisor can be
written as the sum of a horizontal and a vertical divisor in a unique way.
We also note that vertical divisors are characterized by the property that
their restriction to the generic fiber of 7r is trivial.

Lemma B.10.2. Let F be a vertical divisor on V (with respect to 7r :

V -. C). Then the map

hF : V (K) -+ Z, P H deg P` (F),

takes finitely many values. In particular, hF is a bounded function.

PROOF. The proof is immediate once we note that if F is an irreducible
component of a fiber of 7r, then degP'(F) = 1 if the section P meets



§B.10. Introduction to Arakelov Theory 245

F, and deg P* (F) = 0 otherwise. (We also observe that the extension
hF : V (k) -+ Q of hF to k described in (B.10.0) is still a bounded function,
but it may take infinitely many values.)

We next use Lemma B. 10.2 to show that changing the model V modifies
the function hD by only a bounded amount (in fact, by a function that takes
finitely many values).

Lemma B.10.3. Let 7r : V --+ C and 7r' : V' -+ C be two models for
V/K. Then the difference hD,v - hD,v' is bounded on V(K).

PROOF. We can find a third model V" that will dominate the other two,
and hence we can reduce to the case where there is a birational morphism
f : V --+ V such that 7r = ir'of. If P E V(K) and P is the associated section
from C to V, then P = f o P is the section from C to V' corresponding
to P. (To see this, note that they coincide on a dense subset of C, hence
are identical.) Now let D be a divisor on V, let b be the Zariski closure
of D in V, and let D' be the Zariski closure of D in V. Then the divisor
F := f' (D') - D is trivial when restricted to the generic fiber, so F is a
vertical divisor. Hence

hD,V - hD,v, = deg P' (F)

is a bounded function by Lemma B.10.2.

We are now ready to show that the geometrically defined hD'S give
Weil heights for varieties defined over the function field K.

Theorem B.10.4. For every variety V/K, fix a model Tr : V --+ C, and
for every divisor D on V defined over K, define a function

hD,v=hD:V(K)-+Z, hD(P) = deg P*D

as above. Then:
(a) hD+D' = hD + hD'
(b) Let f E K(V)' and D = div(f). Then hD = 0(1).
(c) Let V/K and W/K be varieties, let 45: V - W be a K-morphism, and
let D be a divisor on W defined over K. Then hD o 0 = h,5.(D) + 0(1).
(d) Let D C P" be a hyperplane defined over K, and let h be the usual
Weil height on P"(K). Then hD = h + 0(1).
(e) If D is effective and P ¢ supp(D), then hD(P) > 0.
In other words, the association D i--+ hD from divisors to functions satisfies
the axioms of a Weil height machine (cf. Theorem B.3.2).

PROOF. Property (a) is immediate by additivity of vr* and deg. To prove
(b) we observe that f E K(V) will extend to a rational function f on V
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and that the restriction to the generic fiber of it of the two divisors div(f)
and (div(f)) are the same; hence their difference is a vertical divisor, say

F := div(f) - (div(f)).

It follows from (B.10.2) that the function

hd;V(f)(P) = degP'(div(f)) =degP'(div(f)) -degP'(F) _ -degP'(F)

is bounded. To prove (c) we use the fact that we can choose models 7r : V
C and ir' : W -+ C such that 0 extends to a morphism ¢ from V to .W (ssee
Exercises A.1.9 and A.9.5). Having done this, we see that '(D) -4'(D) is
trivial when restricted to the generic fiber of 7r; hence it is a vertical divisor
F. Again by (B.10.2) and additivity, we conclude that hD o 0 - ho' (D) is
bounded. Property (d) is just Lemma B.10.1 above. Finally, the effectivity
of D implies that D, and hence P* (D), is also effective. Therefore P' (D)
has positive degree, which gives (e). O

We now want to build an analogue of the above construction when
the function field is replaced by a number field. So we start with a number
field K and a smooth projective variety V/K. We can construct a projective
scheme it : V --+ Spec(RK) with generic fiber V/K, and the fact that V is
proper over Spec(RK) implies that any rational point P E V(K) gives a
section P : Spec(RK) -i V. Similarly, we can still define the closure of a
divisor D on V to be its Zariski closure b in V. If V is sufficiently smooth
(e.g., if it is regular as an abstract scheme), then P'(D) will give a well-
defined divisor class on Spec(RK), and indeed if the image of P does not
lie in the support of D, then we get a well-defined divisor

P*(D) _ 1]
vE MK

(Recall (B.1.3) that the set of nonarchimedean absolute values on K is nat-
urally identified with the set of prime ideals in RK, hence our identification
of MK with Spec(RK). We will also write p E Spec(RK) for the prime
ideal attached to the valuation v E MK.)

The question now is how to define the degree of P'(D). As is clear
from the function field construction, this degree should depend only on the
divisor class of D, but the fact that Spec(RK) is not "complete" means
that intersection points may "move out to infinity." (To understand this
analogy, try to construct a good intersection theory in the function field
case for a family V -. A', and you will see the difficulty.)

The solution to this dilemma is to complete Spec(RK) by allowing divi-
sors that are supported at every place of K, not just at the nonarchimedean
places. This leads to the following definition.



§B.10. Introduction to Arakelov Theory 247

Definition. A compactified (or Arakelov) divisor on Spec(RK) is a formal
sum

E :_ mv[v] with m.,, E I
Z if v E MK,
R ifvEMK.

vEMK

A principal compactified divisor is a divisor of the form

div(a) :_ ordv(a)[v] + -log
vEMK vEMK

for some a E K. The degree of a compactified divisor E _ my [v] is
defined to be

deg E :_ E my log Npv - > mv[K,, : R].
vEMK vEMK

Observe that the product formula (Theorem B.1.2) says exactly that the
degree of a principal compactified divisor is zero.

The idea now is to complete the divisor P`(D-) = >vEMK mv[v] by
adding to it a finite sum EvEMK mv(D, P) Iv] that takes account of the
places "at infinity." One approach is to use Green functions (also called
Ndron functions in this context). For our purposes a Green function at-
tached to a divisor D is simply a continuous function

G(D, ):VD(C)--+R
with a logarithmic pole along D. (Recall that VD := V supp(D).) This
last condition means that if U is an open subset of V and if f = 0 is a local
equation for D on U, then the function

G(D, P) + log If(P)I,

defined a priori only on UD(C), extends to a continuous function on U(C).
A variant of this point of view is furnished by the notion of a line

bundle equipped with a norm or a metric. Note that a line bundle L
on Spec(RK) is simply a rank-one projective RK-module. We create a
metrized line bundle by adding metrics to the archimedean completions
of L as explained in the following definition.

Definition. A metrized line bundle on Spec(RK) is a rank-one projective
RK-module L together with a collection of (nontrivial) norms {I 1 ,,},,EM;'
such that I - Iv is a norm on the Kv vector space Lv := L ® Kv that is
compatible with the norm on K.

The Arakelov degree of a metrized line bundle (L, I Iv) is defined by
picking any nonzero element f E L and setting

degAr(L, I Iv) := log #(L/IRK) - E [Kv : R] log IIIv.
vEMK

As usual, the product formula (B.1.2) tells us that the degree is independent
of the choice of I.
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Definition. Let V be a complex variety, and let p : L V be a line
bundle over V. A metric on Lisa collection of norms {I Ix}, one for each
x E V(C), such that I Ix is a norm on the C-vector space Lx and such
that the metrics vary continuously as x varies. This last statement means
that if U C V is an open subset of V and if

0:UxC-=+p 1(U)

is a trivialization of L over U, then the function

UxC -+ R, (x,c)- IO(x,c)Ix,

is continuous on U x C.
Let s : V -+ L be a section to the line bundle L. We define the norm

of s at the point x E V to be ls(x)lx. Thus the norm of a section s is a
continuous map

1s1:V-+R.

Now let V/K be an algebraic variety defined over a number field K. To
each archimedean place v E MK we associate a complex variety, denoted
by V,,, by extending scalars to K = C.

Definition. Let K be a number field, let V/K be a smooth projective
variety, let L be a line bundle on V defined over K, and let P E V(K)-
Choose a model V - Spec(RK) of V and an extension C of L to V. Also
choose metrics I Iv on L, one for each v E MW. Then the pullback
P*(C, I 1t,) is a metrized line bundle on Spec(RK), and the metrized height
(or degree) of P relative to these choices is

hv,r-,I I.,(P) =
[K1

Q]
degA, P*(f-, ' k)

A metrized height function (associated to L) is any function hL of the
form hv,r,,,.1 for any model V - Spec(RK) for V, any extension .G of L
to V, and any choice of metrics 1v on L.

To illustrate these abstract definitions, we will compute the metrized
height function associated to the line bundle 0(1) and the Fubini-Study
metric on F".

Example B.10.5. Let V = iP" and L = 0(1). We choose V = IPRK
and C = Ov(1). Let aoXo + + anXn be a global section to L. The
F'hbini-Study metric I IFS on L is defined by the formula

_ (ao
I(a9X0+...+anX")(P)IFS'- I( (P
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Then the associated metrized height function is

hv,c,l IFS (P) _ dv log max IX;(P) Ivo<s<n
vEMK

+ 2d log I E X;(P)1
vEMX s=0

where as usual, dv = [Kv : Q.]/[K : Q]. We leave the verification of this
formula as an exercise for the reader.

Notice that the Fubini-Study height in (B.10.5) differs by a bounded
amount from the usual Weil height on P. We will next show that in
general, the choice of model V and metrics I 1,, affects the metrized height

hv,r_,l I
by only a bounded amount. Following this, we will show that

metrized heights are Well heights, that is, they satisfy the properties of the
Well Height Machine (B.3.2).

Proposition B.10.6. Let V, C, 1v and V, IL', be be two extensions
with metrics of a variety V and a line bundle L on V as above. Then

hv,L,l IM(P) = hv',r-',I I;, (P) + 0(1) for P E V(K).

P1tooF. We consider first the case that V = V'. Let 10 0 be a section
to L. Since V(C) is compact, there exist constants C1, C2 > 0 such that
C1 < < C2 for all x E V(C). This shows that the archimedean
pieces of and hv,c',I.1, differ by a bounded amount.

Next, since .C' ® L-1 is trivial on the generic fiber of V, there exists
a vertical divisor E such that .C' = C ® O(E). The line bundle 0(E) is
trivial when restricted to the generic fiber; hence it may be equipped with
the trivial metric, and then the function

P F---+ degAr P' (0(E), Iv)

is bounded for P E V(K). This takes care of the nonarchimedean pieces,
which proves that hv,r,l.I and hv,f,',I.1, differ by a bounded amount.

Finally, we consider the effect of choosing different models V and V'.
We may suppose that there is a birational morphism f : V -+ V that is
the identity on the generic fiber. We then choose ,C' := and we take
as a metric on ,C' the pullback of the metric on L. If P E V(K), then the
corresponding sections

P: Spec(RK) -+ V and P : Spec(RK) --+ V

are linked by P = f o P. Therefore, P'.C = (f o P *V, so in this
case we get an equality hv,r,,1.1. (P) = hv',z,,I.1;, (P). O

Proposition B.10.6 says that any two metrized height functions for L
differ by a bounded amount. We now show that metrized height functions
are Well heights.
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Theorem B.10.7. Let K be a number field and V/K a variety as
above.
(a) Let L and L' be line bundles on V, and choose metrized heights hL
and hL' for L and L', respectively. Then hL + hL' is a metrized height
function associated to L ® L'.
(b) If L is the trivial bundle on V , then hL = 0 is a metrized height
function for L.
(c) Let ¢ : V - W be a K-morphism between projective varieties, let L
be a line bundle on W, and let hL be a metrized height function for L.
Then hL o 46 is a metrized height function for the line bundle O *L on V.
(d) The usual Weil height h on P" (K) is a metrized height on PI associated
to the line bundle 0(1).
(e) There is a metrized height hL for L such that hL(P) > 0 for all P not
in the base locus of L.

Remark B.10.8. By abuse of notation, people sometimes write Theo-
rem B.10.7 as:
(a) hL®L' = hL + hL'.
(b) ho=0.
(c) hLo0=h,.(L)
(d) ho(1) = h.
(e) hL > O off of the base locus of L.

Combining Proposition B.10.6 and Theorem B.10.7, we see that each of
these formulas holds up to 0(1) for any choices of metrized heights. How-
ever, in order to get equality, Theorem B.10.7 says that the metrized heights
must be carefully chosen.

PROOF (of Theorem B.10.7). (a) Fix a model for V, extensions 11 and ,C'
for L and L', and metrics on L and L', corresponding to the choice of
metrized heights hL and hL'. We take .C®.C' as our extension of L®L', and
we take Is®s%, = as our family of metrics on L®L'. Letting hL®L'
be the associated metrized height, the equality hL®L' = hL + hL' is then
clear from the definition of metrized height.
(b) The trivial metric on the trivial line bundle gives the zero function.
(c) Fix a model W for W, and extension t for L, and metrics I 1v on L
corresponding to the selected metrized height hL. Choose a model V for V
such that 0 extends to a morphism ¢ : V -' W. (To do this, first choose
any V. Then ¢ extends to a rational map, and we can blow up to resolve
the indeterminacy. See Hartshorne [1, 11.7.17.3].) We take `.C as a model
for O*L and the pullback metrics 1c*(s)I = JsL as metrics on O*L, and
then the equality h,. L = hL o 0 is clear.
(d) Fix generators Xo,... , X,, for the space of global sections of the line
bundle 0(1) on the scheme Pi. That is, Xo,... , X,, are homogeneous
coordinates on PZ, or equivalently, PZ = Proj Z[Xo,... , We define
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metrics on 0(1) by the condition that for each section s to 0(1) and each
point P E P (K),

Is(P)Iv = omin jum)(P)jv.
X'(P)#o

With this choice of metrics, it is not hard to verify that the metrized
height hp,o(1),I.I is the usual Weil height on P". For further details,
see Silverman [8, Proposition 7.2]. It is also instructive to compare with
the metrized height on 0(1) for a different choice of metrics as described
in (B.10.5).
(e) Take any model V for V, any extension L of L, and any set of metrics
I

Iv on L. Let s be any nonzero section to L, and lets be its (unique)
extension to L. We can use the section P's to P*L to compute

hv,r,,1 IM (P) = [K 1
Q]

log # (P',C/s(P)RK) - E d,1og 18(P)1,.
vE MX

The first term on the right-hand side is clearly nonnegative. Th deal with
the sum over archimedean places, we define

1131100 = sup Is(P)I0
vEMK ,

Note that 1181100 is finite, because V(C) is compact and the various norms
are continuous. Further, we need only a finite number of sections to define
the base locus of L, so we have proven that there is a constant c (depending
on all of our choices) such that

hv,r.i 1, (P) > -c for allP not in the base locus of L.

Hence if we replace the original metrics by the equivalent metrics IsI;
e-OIsly, we obtain a metrized height that is nonnegative off of the base
locus of L. O

EXERCISES

B.1. Let 0 : P" -+ P' be a rational map of degree d defined over Q. Write
0 = [0o,..., Om], where ¢i E Q[Xo, ... , X"] are homogeneous polynomials
of degree d. Let A be the N-tuple consisting of all of the coefficients of
all of the O,'s, where we will consider A to be a point in PN (0). Let
dom(0) C P"(Q) be the set on which 0 is defined. Prove that

h(cb(P)) < dh(P) + h(0) + log n + d)

for all P in the domain of 0.
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B.2. Let 0 : P2 - P2 be the rational map cb(X,Y,Z) = (X2,Y2,XZ). Notice
that 0 is defined except at the point (0, 0, 1).
(a) Let P E P2(Q) and choose homogeneous coordinates P = (x, y, z) with

x,y,z E Z and gcd(x,y,z) = 1. Prove that

h(O(P)) = logmax{Ix21, Iv21, IxzI} - log(gcd(x,y2)).

(b) Use (a) to show that there is no value of c such that the inequality
h(O(P)) > 2h(P) - c holds for all P.
(c) More generally, prove that the set

1J I P E P2(Q) and h(P) 54 0}
l h(P) 111

is dense in the interval [1, 2].
B.3. Let V/k be a smooth variety defined over a number field. Let D, E E Div(V)

be divisors with D ample. Prove that there are constants ci, c2, depending
on D and E, such that

lhv,E(P)I < c1hv,D(P) +c2 for all P E V(k).

B.4. For any algebraic point P E P"(Q), let dp be the degree over Q of the
field Q(P) generated by the coordinates of P, and let Dp be the absolute
discriminant of Q(P) over Q.
(a) Prove that

log Dp - log dp) .h(P) >- 2dp - 2 (1
Wp-

(b) Show that the inequality in (a) is essentially best possible by taking
P = [a'IP,11 for an appropriate integer a and large prime number p.

B.5. Let V/k be a variety defined over a number field, let 0, >G : V - V be
morphisms, and let D E Div(V) be a divisor. Suppose that ¢'D - aD
and )' D - /3D with a, i3 > 1.
(a) If 0 and 0 commute, prove that the associated canonical heights hv,m,D
and hv,,j,D are equal. That is, prove that

O01(i = e o 4 hv,m,D(P) = hv,,y,D(P) for all P E V(k).

(b) Give an example to show that if 0 and 4, do not commute, then the
associated canonical heights need not be equal. (Hint. Use (B.4.2).)
(c) Let V = P' and D = (oo). Prove that ¢ o 4' = P o ¢ if and only if
hv,m,D = hv, ,,D To what extent does this converse implication generalize
to other varieties?

B.6. Let a E Z be a nonzero square-free integer, and let 0: P' -. P' be the map
.O(x,y) = (2xy,x2 + ay2). Then 4, ' ( 0 , 1 ) = ( 0 , 1 ) + ( 1 , 0 ) ' - . 2 ( O , 1 ) , so there
is a canonical height associated to 0 and the divisor D = (0,1). Find an
explicit formula for this canonical height on P1 (Q). (Hint. This is one of
the few rational maps on P' for which it is possible to find a simple closed
formula for the iterates 0".)
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B.7. Let k be a number field and let Elk be an elliptic curve, say given by an
equation

E:Y2Z=X3+AXZ2+BZ3 with A, B E k, 4A3 + 27B 200.

Also, let x : E -V P' be the projection x : (X, Y, Z) P-4 (X, Z).
(a) For each integer m > 1, prove that there is a rational map 4m : P' , P'
of degree m2 such that the following diagram commutes:

E 1-1 E

P'
P'

(b) Let h--,(O) be the canonical height on E with respect to the divisor (0),
and let hpi,m,,, be the canonical height on P1 with respect to the map
and any divisor (po) on P'. Prove that

hE,(O)(P) = h3-,om(x(P)) for all P E E(k).

B.8. (a) Let q : R' --+ R be a quadratic form. Prove that there is a basis
{ei,...,e,.} for R' such that relative to this basis, q has the form

(Extei) = x? xa+i
i=' i=1 i=1

Prove that the integers a and t are uniquely determined by q. (This result
was used in the proof of Corollary B.5.4.1.)
(b) Let A be a lattice in R', let F be a fundamental domain for R'/A,
and let U C R' be a symmetric convex set. Prove that #(U n A) >
2-' vol(U)/ vol(F). (This generalizes Proposition B.5.4.)

B.9. Let A and B be abelian groups with B uniquely 2-divisible, let h : A -+ B
be a quadratic function, and let

A x A - B, (P, Q)h = 2 (h(P + Q) - h(P) - h(Q) + h(0)),

be the associated symmetric bilinear pairing.
(a) Prove that the map

q : A ---+ B, q(P) = 2 (h(P) + h(-P) - 2h(0)),

is a quadratic form on A and satisfies q(P) = (P, P)h.
(b) Prove that the map

e : A -+ B, e(P) = 2(h(P) - h(-P)),

is a linear form on A.
(c) Let q and a be as in (a) and (b), and let b = h(0). Prove that h =
q + e + b. Further, prove that this is the unique representation of h as the
sum of a quadratic form, a linear form, and a constant.
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B.10. Let V be a real vector space of dimension r, let q : V R be a positive
definite quadratic form on V, and let A C V be a lattice. Also, let A be
the first minimum of q on A, that is, A = min{q(x) I x E A, x 0 0}. Prove
that

#{xE Al q(x) <T} < (/75 +1)r.

(Hint. Find a value of N such that the given set maps injectively into
A/NA.)

B.11. Let V/k be a smooth variety of dimension at least 1 defined over a number
field k, and let D E Div(V). Prove that the following two statements are
equivalent:
(a) lhv,D(P)l is bounded for all P E V(k).
(b) D has finite order in Pic(V) (i.e., there is an integer n > 1 such that
nD is linearly equivalent to 0).

B.12. Let C/k be a curve of genus g > 2, let Kc be a canonical divisor on C,
and let f : C J = Jac(C) be the map defined by

f :C-+J, P- Cl((2g-2)(P)-Kc).

(Note that deg Kc = 2g - 2.)
(a) Prove that the map f is at most (2g - 2)2g-to-1.
(b) Let e E Div(J) be the theta divisor, let (- , )e be the canonical height
pairing attached to 0, and let II Ile be the associated norm. Prove that
for all P, Q E C(k) with P 34 Q,

llf(P) - f(Q)lle >_ (1- 9) (Iif(P)lle + IIf(Q)IIe)

(Hint. Use Exercise A.8.2(c).) Compare this with the gap principle (B.6.6).

B.13. This exercise gives an explicit version of Lemma B.6.7 that is often useful
for counting points on varieties. Let V be a real vector space of dimension n,
let II . II be a Euclidean metric on V, and let A be a lattice in V. Let S C A
be a subset of A, and suppose that there are constants a, b > 0 such that

IIx - v1I2 > a(IIXI12 + IIy1I2) - b

If T2 >- Tl > b/a, prove that

for all x, y E S with x 34 y.

#{xESIT1!5IIxII5T2}5, ,log2 T'2)(4 +1)n

(Hint. Use Exercise B.10.)
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B.14. Let V be a finite-dimensional real vector space, let ( , ) be a Euclidean
inner product on V, let II ' II be the associated norm, and let A be a lattice
of rank r in V.
(a) Prove that there exists a basis u1, u2, ... , u,. for A and an absolute
constant c1 > 0 such that

2

Ea2iluill2 for all as,...,ar E R.IlEa;uill > Cr

i=1 i=1

(b) The volume of a fundamental domain for A is equal to the square root
of the determinant det(A) = det((vi,vj)), j, where vi,...,vr is any basis
for A. Prove that there is an absolute constant cz > 0 such that the basis
in (a) also satisfies

det(A) < IIu11l ' IluzII IIt rII 5 ;z det(A).

(The left-hand inequality holds for any basis. It is called Hadamard's in-
equality.)

A basis satisfying (a) or (b) is sometimes called quasi-orthogonal, since
the angles between the basis elements cannot be extremely small.

B.15. Let V/k be a projective variety, let D and E be ample divisors on V,
and let HD and HE be Weil height functions associated to D and E, re-
spectively. Prove that the two counting functions N(V(k),HD,T) and
N(V(k), HE, T) have roughly the same order of growth by proving that

lim
log logN(V(k),HD,T) - 1

T-.eo log log N(V(k), HE, T)

B.16. Verify Manin's conjecture (B.6.9(a)) for the following varieties:
(a) Projective space V =1P".
(b) An abelian variety V = A.

B.17. Let V be a smooth variety defined over a number field k, and let f E k(V)'
be a rational function on V. Write the divisor of f as div(f) = >2 nDD,
where each D is an effective irreducible divisor. Prove that

v(f(x)) = EnDAD.v(x)+Ov(1).
D

This is a version of Weil's decomposition theorem.
B.18. Prove the formula for the height hx,c,, . I,, associated to the Fubini-Study

metric described in Example B.10.5. Show that this height differs by a
bounded amount from the usual height on P".

B.19. The purpose of this exercise is to compute the integral that appeared in
the proof of Proposition B.7.3, namely I(a) = fo logla - exp(2irit) I dt.
(a) Show that I(a) is well-defined for all a E C, that it is continuous as a
function of a, and that I(a) = I(IaI).
(b) Show that I(a) = I(a-1) + log IaI for all a E C'.
(c) If Ial > 1, integrate the function f (z) = log(z - a)/z around the unit
circle and apply the residue theorem (from complex analysis) to prove that
,(a) = log Ial.
(d) Conclude that 1(a) = logmax(1, Ial).
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B.20. Let a,, ... , ar be algebraic numbers. Prove the elementary height inequal-
ities

r r
H(al + ... + ar) < r fl H(as) and H(ai ... ar) < fl H(ai).

B.21. Proposition B.7.2 uses inhomogeneous heights for polynomials, while Gel-
fand's inequality (B.7.3) uses homogeneous heights.
(a) Show that Proposition B.7.2(b) is false if we use homogeneous heights
for the polynomials. (Hint. Take a polynomial whose coefficients have a
common factor.)
(b) Show that Gelfand's inequality (B.7.3) is false if we use inhomogeneous
heights for the polynomials. (Hint. What happens to the inequality if fl
and f2 are replaced with of, and a-' f2?)

B.22. Let P = {Pji;1 < i < n, 1 < j < r} be a collection of polynomials
in Q[Xl,... , X",] and set h(P) equal, as usual, to the height of the point
whose coordinates are all of the coefficients of all of the Pi3's.
(a) Prove that

h I Pit ... pr; < rh(P) + log n.

(b) Assume that r = n, and let A = det(Pji)i<i,,zr. Prove that
h (0) < r (h(P) + log r).

B.23. Let E be an effective divisor on a variety V, and let BE be its base
locus. The following two examples show that the restriction P f BE in
Theorem B.3.2(e) is necessary to obtain the inequality hvE(P) > 0(1).
(a) Let V C 1P" x P"-' be the blowup of 1P" at the point Po = (0, ... , 0,1)
described in Example A.1.2.6(f). Let p : V - P" be the blowing-up map,
let q : V -+ P"-' be the other projection, let E be the exceptional divisor,
and let M = q'(hyperplane yo = 0). Show that

p' (hyperplane xo = 0) = E + M,
and conclude that

hE=hop-hoq+O(1).
In other words, prove that

hE(P) = h(xo,...,x") - h(yo,...,y"_1) + O(1)

for all points P = ((xo, ... , x")(yo, , yn_ i )) E V (O). Conclude directly
(i.e., without using Theorem B.3.2(e)) that

hv.E(P) > 0(1) for all P ¢ E,

hv,E(P) = -h(yo,... ,y"_i) + O(1) for allpoints P E E.
In particular, observe that hE(P) is not bounded below for P E E.
(b) Let C be a smooth curve of genus g, and let A be the diagonal of the
product V = C x C. If g = 0 or g = 1, prove that

hv,n(P,Q) > 0(1) for all (P,Q) E V(O);
but if g > 2, prove that hv,o(P, P) is not bounded below.



PART C

Rational Points on Abelian Varieties
Progress has been much more
general than retrogression.

C. Darwin, The Descent of Man

Our principal goal here in Part C is to prove the Mordell-Weil theorem.

Theorem C.0.1. (Mordell-Weil) Let A be an abelian variety defined
over a number field k. Then the group A(k) of k-rational points of A is
finitely generated.

In the special case that the abelian variety is a cubic curve in the
projective plane, we may express the result in the pleasing form, "There
exists a finite set of rational points such that all rational points may be
obtained from them by the tangent and chord process" (as described in
(A.4.4)). This was Mordell's original formulation. Well, in his thesis, ex-
tended Mordell's theorem to arbitrary number fields and to abelian varieties
of higher dimension. More precisely, Well dealt with Jacobians of curves of
higher genus, since he had not yet developed the theory of abelian varieties.

Theorem C.0.1 can be generalized to fields finitely generated over
their prime field (see Lang [6, Chapter 6, Theorem 1]). Using elemen-
tary group theory and the structure of the kernel of multiplication by m
(Theorem A.7.2.7), we may rephrase Theorem C.0.1 by saying that there
are points Pi,..., Pr such that

A(k) = A(k)tore ® ZP1 ® e ZPr.

The integer r is called the rank of the abelian variety A/k, and A(k) is the
Mordell-Well group of A/k. Note that the torsion subgroup A(k)w is a
finite abelian group, so it can be written as

A(k)tora 5 (Z/miZ) ®... E) (Z/m.Z),

where ml, ... , m, are integers satisfying m; gym;+1 and s < 2 dim A.
In this introduction we will use height theory and a descent argu-

ment to show that the following "freak Mordell-Weil theorem" implies the
stronger version given above.
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Theorem C.0.2. ("Weak" Mordell-Weil) Let A be an abelian variety
defined over a number field k, let A(k) be the group of k-rational points
of A, and let m > 2 be an integer. Then the group A(k)/mA(k) is finite.

PROOF (that Theorem C.0.2 implies Theorem C.0.1). We select a symmet-
ric ample divisor on A and let h denote the associated Neron-Tate height
on A(k) (see Chapter B.5). Recall that h is a nonnegative quadratic form
on A(k) with the property that for all C > 0, the set

{x E A(k)Ih(x) < C}

is finite. The following lemma axiomatizes this situation and completes the
proof that (C.0.2) implies (C.0.1).

Lemma C.0.3. (Descent lemma) Let G be an abelian group equipped
with a quadratic form q : G -i R such that for all C, the set

{x E G I q(x) < C}

is finite. Assume further that for some integer m > 2, the group G/mG is
finite. Then G is finitely generated.

M o r e p r e c i s e l y , let gl, ... , g8 be a set of representatives for G/mG, and
let Co := maxi q(gi). Then G is generated by the finite set

{x E G I q(x) < Co}.

PROOF (of the descent lemma). We begin by observing that for all x in
G, we have q(x) > 0, since otherwise we would have infinitely many points
with q(x) negative. To ease notation, we may therefore safely put

Ixi q(x), co := max Igil, and S = {x E G I Ixi < co}.

We will prove that the finite set S generates G.
Let xo E G. If xo E S, we are done. Otherwise, Ixol > co, so we

consider the image of xo in G/mG and choose a coset representative gi
for xo. This means that x0 = gi + mxl for some xl E G. We use the
triangle inequality to compute

mix1I = Ixo - gil
< Ixol + Igil by the triangle inequality

< 21xol since Igil <_ co < Ixol.

Since m > 2 by assumption, we find that Ixil < Ixol.
If xl E S, then xo = gi + mxl is in the subgroup generated by S,

and we are done. Otherwise we can write xl = gi + mx2i and the same
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computation reveals that 1x21 < IxiI. Continuing in this fashion, we obtain
a sequence of elements xo, xl, x2, .. satisfying Ixo I > Ixi I > Ix21 >
and with the property that for each t, the initial element xo is a linear
combination of xt and g,.. . , g,. Since G has only finitely many elements
of bounded size, eventually the sequence terminates with an element that
is in S, which completes the proof that xo is a linear combination of the
elements of S. Therefore, S generates G. 0

Remark C.0.4. (a) The term "descent" comes from Fermat's famous de-
scente infinie. Indeed, the arguments are very similar. For example, Fer-
mat's proof that integral solutions to x2 - dy2 = 1 are generated by one
fundamental solution and his proof that the equation x4 + y4 = z2 has no
nontrivial integral solutions can be rewritten along the lines of the proof
of (C.0.3). (See Knapp [1, Chapter IV] for details.) Roughly speaking, one
builds a "smaller" solution from a given solution, and repeating the process
eventually yields either a contradiction or a set of generating solutions.
(b) There is an obvious (but tedious) effective process to find all points
of bounded height on an abelian variety. Hence if we could effectively
find coset representatives for A(k)/mA(k), we would be able to effectively
compute generators of the group A(k). Unfortunately, no such a process is
known today. (We will comment on this further later in this chapter, see
especially the remarks in Section 4).
(c) The proof of the weak Mordell-Weil theorem will give an effective
bound for the order of A(k)/mA(k), and hence will yield an effective bound
for the rank of A(k) (see Theorem C.1.9).
(d) It is not necessary to have a refined theory of heights in order to deduce
the full Mordell-Weil theorem from the weak Mordell-Weil theorem. It
suffices to have some fairly crude height inequalities. See Exercise C.1 for
details.
(e) It clearly suffices to prove Theorem C.0.1 with the field k replaced by
any finite extension of k, since a subgroup of a finitely generated group is
again finitely generated. This reduction to a larger field is not as straight-
forward for Theorem C.0.2, but we will give a proof below (Lemma C.1.1).

We conclude this introduction with an outline of the proof of the weak
Mordell-Weil theorem (C.0.2). Filling in the details of the proof will occupy
much of the rest of Part C.

Let L be the field obtained by adjoining to k the coordinates of the
point Q E A(k) satisfying mQ E A(k). Intuitively, these are the points
obtained by "dividing" the points in A(k) by m. Then a general argument
using Galois theory, which works over any field, shows that A(k)/mA(k) is
finite if and only if the field L is a finite extension of k.

If we assume, as we may, that all of the m-torsion points of A are k-
rational, then L/k will be an abelian extension of k of exponent m; that is,
Gal(L/k) is abelian and every element of Gal(L/k) has order dividing m.
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We now use the arithmetic fact that an abelian extension of exponent m
is a finite extension if and only if it is unramified outside a finite set of
primes. This can be proven using Kummer theory or Hermite's theorem.

This reduces the proof to studying the ramified primes in the exten-
sion L/k. We will show that L/k is unramified outside the places of bad
reduction of A and the places dividing m. This will follow from the crucial
fact that if A has good reduction at p, then reduction modulo p is injective
on torsion points of order prime to p, where p is the characteristic of p.
(See Theorem C.1.4, proven in Section C.2.)

Notice that this injectivity provides an effective and efficient way to
compute the torsion part of the Mordell-Weil group. The infinite part
of A(k) is much more difficult to compute. In fact, no algorithm (guar-
anteed to terminate) is known, although a reasonable one often works in
practice. In Section C.3 we review some background material and prove the
basic finiteness theorems of algebraic number theory. Section C.4 provides
further details on the descent argument. In that section we rephrase the
descent argument in terms of Galois cohomology and show explicitly how
the problem of making descent effective is tied into the failure of the Hasse
principle. Finally, in Section C.5 we give basic definitions and properties of
group cohomology. Also note that an explicit version of some of the com-
putations in this chapter are given for the Jacobian of hyperelliptic curves
in the series of exercises C.18 and C.19.

C.1. The Weak Mordell-Weil Theorem

Recall that the multiplication-by-m map [m] : A(k) -+ A(k) is surjective
with finite kernel, denoted by and that A,,, is isomorphic (as an ab-
stract group) to (Z/mZ)29. For each x E A(k), we select a point y E A(k)
satisfying [m](y) = x, and then for each o, E Gal(k/k) we consider the
point

a(y) - y E
Note that a (y) - y is in A,,,, since

['m](a(y) - y) = o([m]y) - [m]y = 0'(X) - x = 0.

We begin by using this construction to show that it suffices to prove The-
orem C.0.2 with k replaced by a finite extension.

Lemma C.1.1. For any finite extension k'/k, the kernel of the natural
map A(k)/mA(k) -+ A(k')/mA(k') is finite.

PROOF. Replacing k' by its Galois closure over k only makes the statement
of the lemma stronger, so we may assume that k'/k is Galois with group
C. The kernel of the map A(k)/mA(k) A(k')/mA(k') is

B := (A(k) fl mA(k'))/mA(k).
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For any element x (mod mA(k)) in B, we fix an element y E A(k') such
that [m](y) = x, and then we define a map

f, : G Am(k'), Ma) = if - Y.
The map f, is not a homomorphism in general, but in any case it is a map
from G to Am considered as sets. We have thus defined a map

B -+ SetMaps(G,Am), x fy.

Since G and Am are both finite sets, if we can show that this map is
injective, we will have shown that B is finite.

Suppose that fy = f=', and let y, y' be the points used to define fx, fx'.
Then

f. (a) = a(y) - y = a(y') - ti = f:, (a) for every o E G,

so a(y - y') = y - y' for every a E G. This implies that y - y' E A(k), so

x - x' = [m]y - [m]y' = [m](y - y') E mA(k).

This means that x and x' represent the same element in B, which com-
pletes the proof of Lemma C.1.1. (The ad hoc argument given here will
be rephrased in Section C.3 in terms of cohomology. In particular, the
map ff : G --' A,,, is a 1-cocycle, and it is well-defined as a cohomology
class.) 0

For the rest of this section, we will make the following assumptions:

A,,, is contained in A(k).
µ,,, (the mtb roots of unity) are contained in k.

(Actually, the former assumption implies the latter using Weil's pairing; see
Exercise A.7.8.) With these assumptions, we make the following definition.

Definition. For each x E A(k) and each a E Gal(k/k), choose some y E
A(k) satisfying [m](y) = x and define

t(a, x) := a(y) - Y.

We verify below (under our assumption Am C A(k)) that the value of t(a, x)
depends only on x, and not on the choice of y. The resulting map

t : Gal(k/k) x A(k) -> A,,,

is called the Kummer pairing on A. Notice the analogy with the classical
Kummer pairing,

Gal(k/k) x k* -jum, (a, a) --+ a(a)/a (where a= Va_).

The most important properties of the Kummer pairing t are given in
the following proposition.
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Proposition C.1.2. Assume A,,, C A(k).
(i) The function t(o, x) = o(y) -y described above is well-defined and gives
a bilinear map t : Gal(k/k) x A(k) 4 A,,,.
(ii) Let L be the extension of k obtained by adjoining to k the coordi-
nates of all points y E A(k) satisfying [m](y) E A(k). Then t induces a
nondegenerate pairing

t : Gal(L/k) x A(k)/mA(k) -4 Am.

In particular, A(k)/mA(k) is finite if and only if L is a finite extension
of k.

PROOF. We begin by checking that t(a, x) does not depend on the choice
of y. So suppose that [m](y') = [m](y) = x. Then y' - y E Am C A(k), so

(0,(y)-y)-(o(Y,)-y)o(y-y')-(y-y)=0.
Therefore, the value of t(o, x) depends only on a and x, so t is well-defined.

The verification of bilinearity is similarly straightforward. We start
with the first variable:

t(oo', x) = y°° - y = (y° - y)° + (y° - y)
= t(o, x)°' + t(o', x) = t(o, x) + t(o', x).

Note that the last equality is true because t(o, x) E A,,, C A(k), so t(o, x)
is invariant by Galois.

Next we compute

t(o, x +x') = (y+ y')° - (y+ F%) = (y° - y) + (y
° - y') = t(o, x) + t(a, x').

This completes the proof of the bilinearity of t.
Since A,,, has exponent m, the left kernel certainly contains mA(k).

Now suppose that x is in the left kernel. This means that a(y) = y for
all a E Gal(k/k), and hence that y E A(k) and x = [m](y) E mA(k).
Therefore, the left kernel is exactly mA(k).

Next we observe that an element a is in the right kernel if and only if
for every y E A(k) satisfying [m](y) E A(k) we have a(y) = y. From the
definition of L, this is equivalent to saying that o E Gal(k/L). Hence the
right kernel is Gal(k/L). Taking the quotient by the left and right kernels
gives a nondegenerate pairing as stated in the theorem.

We thus need to understand the ramification properties of field exten-
sions of the form k(y)/k, where [m](y) = x E A(k). Under our assumption
that A,,, C A(k), the extension k(y) depends only on x and is independent
of the choice of y, so to simplify notation we will denote such an extension
by k( x).
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Lemma C.1.3. Assume Am C A(k) and x E A(k). Then the extension
k(mx) is Galois over k, and its Galois group is canonically isomorphic to
a subgroup of A,,,.

PROOF. Fix a point y E A(k) with [m](y) = x. We have seen above that
the Galois conjugates of y differ by elements of A,,,, so the assumption
that A,,, C A(k) implies that all of the Galois conjugates of y are already
in k(y). Thus k(y) is Galois over k. Further, the map

Gal(k(y)/k) Am, a '---, t(o, x) = a(y) - y,

is a group homomorphism (C.1.2(i)), and it is injective, since o is deter-
mined by its action on y. Hence Gal(k(y)/k) is isomorphic to a subgroup
of A,,,.

Classical Kummer theory (see below) now tells us that k(mx) is ob-
tained by adjoining to k some mth-roots of elements of k. Up to now, we
have not used any special properties of the field k, but to go further, we
must use the arithmetic nature of k. We will need the following key result,
whose proof occupies the next section.

Theorem C.1.4. Let A be an abelian variety defined over a number field
k, let v be a finite place of k at which A has good reduction, let k be the
residue field of v, and let p be the characteristic of k. Then for any m > 1
with p $ m, the reduction map

A,.,, (k) A(k)

is injective. In other words, the reduction modulo v map is injective on the
prime-to-p torsion subgroup of A(k).

We observe that Theorem C.1.4 immediately implies that the torsion
part of A(k) is finite. Indeed, by choosing two places v and w of good
reduction and of different characteristics, we obtain an injection

A(k)tors `-+ A,(k,,) x Aw(kw),

and the latter is clearly a finite group. This observation is often the easiest
way to determine the torsion subgroup; see Exercises C.3, C.5, and C.6 for
some explicit computations.

Proposition C.1.5. Let m > 1 be an integer, and let S be the (finite) set
of places of k at which A has bad reduction, together with the places that
divide m. Then for all rational points x E A(k), the extension k(mx)/k is
unramified outside S.

Hence the field L described in (C.1.2(ii)) is unramified outside S.

PROOF. Note that the crucial fact being proven in this proposition is that
the set of possibly ramified places S can be chosen independently of the
choice of the point x E A(k).
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We choose a point y E A(k) satisfying [m]y = x as usual, and to ease
notation, we let k' = k(y) = k(mx). Let v be finite a place of k not in S,
and let to be any extension of v to V. We consider the reduction modulo to
map

A(k') Aw(kw)

If a E Gal(k'/k) is in the decomposition group of w, we get by reduction
an automorphism & in the Galois group Gal(kwof the residue fields,
and a is in the inertia group for to if and only if Q = 1

So suppose that a is in the inertia group for to. This means that &
acts trivially on k,,, so & acts trivially on A(kw), and hence &(y) = y.
But this implies that

t(a,y) =a(y)-y=&(U)-y=0

directly from the definition of the pairing t. Now Theorem C.1.4 tells us
that the m-torsion of A(k') injects into the reduction A(kw), so the fact
that the reduction t(a, y) is zero lets us conclude that

t(a, y) = 0.

In other words, a(y) = y, so a acts trivially on k', so a = 1. This proves
that the inertia group of to is trivial, which is equivalent to the assertion
that k'/k is unramified at to. Since v was an arbitrary finite place not in S,
and to was an arbitrary place of k' lying over v, this completes the proof
that k' is unramified outside of S.

It is now possible to quickly finish the proof of Theorem C.0.2 by
using Proposition C.1.5 and the following fundamental result from algebraic
number theory.

Proposition C.1.6. (Hermite) Let k be a number field, let d be a postive
integer, and let S be a finite set of places of k. Then there are only a finite
number of extensions of k of degree less than d and unramified outside S.

PROOF. This classical result is usually proven in two steps. First one
shows that the discriminant of such an extension is bounded, and then
that there exist only a finite number of extensions of a given degree and
discriminant. See Theorem C.3.2 below, or Serre [4, Proposition 7.13],
Samuel [1, Theoreme 3 Chapitre 4.3] or Lang [9, Theorem 5, V.41.

Remark C.1.6.1. We observe that it is possible to avoid the use of The-
orem C.1.4 by appealing to the more elementary Chevalley-Weil theorem.
This theorem states that if f : X Y is a finite unramified map, then
there is a finite set of places S such that for any rational point y E Y(k), the
field generated by f -1(y) is unramified outside of S. Hence the composi-
turn of the fields k(f -1(y)) is finite over k. (See Exercise C.7 or Lang [6,
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Theorem 8.1].) However, we want to be more precise and to give a bound
for the degree of the compositum L that we are considering. To do that,
we will dig deeper into the structure of abelian extensions of exponent m.
We know by Kummer theory (see Lang [2, VIII.8, Theorems 13 and 141,
for example) that an abelian extension of k of exponent m corresponds to
a subgroup B of k' containing (k`)m. The correspondence is given by

B i--+ k (VB--) and Lr (L*)mnk`.

We need to analyze ramification in such extensions.

Lemma C.1.7. Assume that k contains a primitive mth-th root of unity.
Let a E k`, let K := k( a_), and let v be a place of k not dividing m. Then
the extension K/k is unramified at v if and only if 0 (mod m).

PROOF. To ease notation, let w = f. An easy calculation shows that
the discriminant of w (equivalently the discriminant of the order Rk[w])
is equal to mmam-1 (see Exercise C.8), so the discriminant of K/k di-
vides mmam-1. Since 0 by assumption, this shows that if
ord, (a) = 0, then K/k is unramified at v. It remains to consider the case
that 0.

Suppose first that 0 (mod m), say mt. Let ir E k
be a uniformizer at v, i.e., 1, and consider the element a =
aw-mt Then K = k(Va-) = k( o) and 0, so from our
discussion above we conclude that K is unramified at v.

It remains to deal with the case that 0 (mod m). Let r =
and let p be the prime ideal of k corresponding to v. Then we can

write aRk = pr21 for some ideal 21 relatively prime to p. Suppose that the
ideal p splits in K as a product pRK = Ti' . T; of prime ideals. Then

aRK = ski`'

for an ideal 21' of RK relatively prime to all of the 'it's. The principal
ideal aRK is an mth power in K, since a = win, so we conclude that mires
for all 1 < i < s. Since m t r by assumption, it follows that every e; > 2,
and hence K/k is ramified over v.

Corollary C.1.8. Let k be a number field, m an integer, and S a finite
set of finite places of k. Assume that k contains a primitive mth-root of
unity, that S contains all places of k dividing m, and that the ring of S-
integers Rk,s is a principal ideal domain. (This last condition can always
be achieved by enlarging S.) Let K be the maximal extension of k such
that K/k is abelian of exponent m and is unramified outside S.
(a) The field K is equal to k((Rk,s)l/m). That is, K is the field obtained
by adjoining to k all of the mth roots of all of the elements of Rk,s.
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(b) The field K is a finite Galois extension of k with Galois group

Gal(K/k) (Z/mZ)'+''(s),

where r(S) is the rank of Rk,s. Further,

r(S) = rl +r2 - 1+ ISI,

where rl (respectively r2) is the number of real embeddings (respectively
pairs of conjugate complex embeddings) of k into C.

PROOF. (Compare with Lang [9, Theorem 1, Chapter XI.2]). Let

K'=k(m Rk,s

and let K be as in the statement of the theorem. Fmm Lemma C.1.7 we
see that K' C K. On the other hand, again using Lemma C.1.7, we know
that K is a compositum of extensions of the form k( /). We may further
assume that a is an algebraic integer and that ordv(a) _- 0 (mod m) for all
places v S, say ordv(a) = mrv for some integer r,,.

For v V S, let pv be the prime ideal of Rk,s corresponding to v, and
let 0 be a generator of the (automatically principal) ideal

It follows that the element a' := a[3_m is an S-integer and that ordv(a') =
0 for all v S. In other words, a' E Rk,s, and hence k( a-) C K'. Since
the compositum of these fields is equal to K, we obtain the other inclusion
K C K', and so K = K'.

The above description of K = K' makes it clear that K is generated
by taking the mth roots of a set of generators of the group

Rk,S/(Rk,S)',

and elementary Kummer theory tells us that Gal(K/k) is isomorphic to
this quotient group. Finally, Dirichlet's unit theorem (see Theorem C.3.3
below) says that Rk,s is the product of a finite cyclic group and a free group
of rank r(S), so our assumption that k contains an mth root of unity implies
that the quotient Rk,s/(Rk s)m is isomorphic to (Z/mZ)T(s)+i. This com-
pletes the description of Gal(K/k). We also note that the fact that Rk,S
becomes principal after enlarging S is an easy corollary of Theorem C.3.1
below.

We are now ready to prove our main result.
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Theorem C.1.9. Let A be an abelian variety of dimension g defined over
a number field k, and fix an integer m > 2. Suppose that the m-torsion
points of A are k-rational. Let S be a finite set of finite places of k that
contains all places dividing m and all places of bad reduction of A. Assume
further that the ring of S integers Rk,S is principal. Then

rank A(k) < 2g rank Rk,s = 2g(rl + r2 + ISO - 1),

where rl and r2 are as in (C.1.8).

PROOF. Let r(S) = rank(Rk,s). By combining the results of Proposi-
tion C.1.2(ii), Proposition C.1.5, and Corollary C.1.8, we get an injection

A(k)/mA(k) Horn (Gal(L/k), Am)

L' Hom ((Z/mZ)1+r(s), (Z/mZ)29) .

We are going to compare the number of elements in these finite groups.
Clearly,

#Hom ((Z/mZ)1+r(S), (Z/mZ)29) = m29(l+r(S))_

On the other hand, since Am C A(k) by assumption, and since #Am =
m2g, we have

#A(k)/mA(k) = m29+rankA(k)

This immediately gives the desired upper bound for rank A(k). 0

C.2. The Kernel of Reduction Modulo p

In this section we give a proof of Theorem C.1.4 using the theory of formal
groups. Other methods of proof are described in the exercises. Thus Exer-
cise C.9 uses Hensel's lemma to show that, at least if we assume that our
ring R is complete, the reduction map A,,, , A,,, is onto, and hence that
it is injective, because both finite groups have the same cardinality. Ex-
ercise C.10 describes a scheme-theoretic proof, which is perhaps the most
natural, but it demands considerably more in the way of prerequisites.

Our strategy in this section is to develop the rudiments of the theory of
formal groups and to show that the kernel of reduction may be identified
with the points of some formal group. Since it is easy to check that a
(commutative) formal group has no prime-to-p torsion, this immediately
gives the desired injectivity.

It is illuminating to observe that the analogous statement for the mul-
tiplicative group is both true and easy to verify. Thus let and t;' be
distinct roots of unity in R* of order prime to p, and let WI be a maximal
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ideal of R with residue characteristic p. Then and ' remain distinct when
reduced modulo Mi. A quick proof uses the fact that if i is a root of unity
of order n, then 1 - q is a unit except when n = pin, and even in the latter
case it is still a p-unit. Another proof proceeds by directly showing that
the only torsion in the kernel of reduction 1 + 01i is p-power torsion. (See
Proposition C.2.5 below). Similar elementary statements can be proven for
the group GL(n) (Exercise C.14).

The reader will notice a close analogy between the exact sequence

0 1 +Wl -+ Gm(R) - Gm(k)

and the exact sequence

0 -+ A1(k) -+ A(k) A(k)

that defines A,(k) = Al(R).
We start now the construction of the formal group associated to an

abelian variety A (or in fact any algebraic group) defined over a field k.
Further motivation for this definition will be given later. _

Let e be the identity element of the group A, and let Oe,A denote the
completion of the local ring Oe,A of A at e with respect to its maximal
ideal W e fix local parameters x1, ... , xg on A at e, which gives an
isomorphism

Oe,A k[xl,... , xg]

of the completed local ring with the ring of formal power series in g vari-
ables. (See Exercise A.1.12 or Shafarevich [1,11.2.2, Theorem 5].) The
isomorphism is induced by the injection

k[xl,... , xgl,

which associates to each function its Taylor expansion at e with respect to
the parameters x1i ... , xg.

Next we consider the product A x A, and for local parameters at the
point (e, e) E A x A we choose the functions yl,... , yg, z1, ... , zg, where

yi := xi O P1 and zi := xi o p2.

Just as above, this choice furnishes us with an isomorphism

O(e,e),AxA k[y1, ... , yge zl, .... zg'

for the completed local ring of A x A at the point (e, e).
Now consider the addition map

add:AxA -+A
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giving the group law on A. It induces a map of local rings

add' : Oe,A -' 0(,,,),A, A,
and hence via the above isomorphisms, a map

add'' . k[xl,...,x9[ - k F/1,...,y9,xl,...,z9[
of formal power series rings. To ease notation, we let

Fi := add`(xi),
so the Fi's should "look like" the coordinates of the group law on A. The
following lemma makes this precise. (Note that in the interest of conserving
variable names, we have relabeled the variables in the Fi's.)

Lemma C.2.1. Let Fl,..., F9 E [X1, ... , X9, Y1i ... , Y9] be the formal
power series associated to the group law on an abelian variety for a fixed
choice of local parameters at the origin as described above. Then the g-
tuple of formal power series F = (F1,..., F9) defines a commutative formal
group (of dimension g). That is, it satisfies the following conditions:
(1) F(X, Y) = X + Y + (terms of degree > 2) [infinitesimal group]

(2) F(X, F(Y, Z)) = F(F(X, Y), Z) [associativity]

(3) F(X, Y) = F(Y, X) [commutativity]

(4) F(X, 0) = X and F(0, Y) = Y [neutral element]

(5) There exists a unique g-tuple of formal series [inverse]
without constant term i(X) = (il(X),...,i9(X))
such that F(X,i(X)) = F(i(X), X) = 0.

PROOF. Intuitively, all these properties are infinitesimal translations of the
properties of the addition law on A. For example, the differential of the
addition map is given by (X, Y) ' X + Y, from which property (1) follows.
To obtain properties (2) and (3), we just use the formulas

add(add(x, y), z) = add(x, add(y, z)) and add(x, y) = add(y, x),

which say that A is an abelian group. Finally, it is relatively straightforward
to deduce properties (4) and (5) from properties (1), (2), and (3).

It is a rather simple matter to compute the formal groups of the ad-
ditive group G" and the multiplicative group G,,,, and even of the general
linear group GL(n). Thus

FG,(X,Y) = X +Y and FGm(X,Y) = X +Y+XY.
The formal group of GL(n), which is not commutative when n > 2, is given
by the coordinate functions

n

r' ii (X, Y) := Xij + Yi.7 + XihYhj.
h=1

By way of contrast, there is no such simple formula for the formal group
of an abelian variety, not even in dimension one (i.e., for an elliptic curve).
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Definition. A formal group is defined over the ring R if the coefficients of
its defining power series F all lie in the ring R.

Definition. Let F = (F1,. .. , F9) and G = (G1,. .. , G,,) be formal groups
defined over R. A homomorphism from F to G defined over R is an h-tuple
of formal series without constant terms f = (fl, ... , f,,) E R[X,,... , X9]
with the property that

G(f(X),f(Y)) =f(F(X,Y)).

The homomorphism f is an isomorphism over R if there exists a g-tuple
of f o r m a l series without constant terms f = (f i, ... , f y) E R[X,, ... , X,,]
such that f(f'(X)) = f'(f(X)) = X.

Notice that if F and G are two formal groups defined over a ring R, and
if R is a subring of a larger ring k (e.g., k could be a field), then F and G
may be isomorphic over k, but nonisomorphic over R. The next lemma
describes a simple, but extremely important, way to determine whether a
map between formal groups is an isomorphism.

Lemma C.2.2. Let f = (fl, ... , f9) E RIX1,... , X9] be a g-tuple of
formal series without constant terms, say

9

ft = > ftjX3 + (terms of degree > 2).
i=1

Form the matrix (ftj) whose entries are the coefficients of the linear terms
of the ft's. If det(ftj) is a unit in R, then there exists a g-tuple of power
series f = (fl', ... , f9) E R[X,,... , X9] without constant terms such that

f(f'(X)) = f'(f(X)) = X.

Conversely, if det(ftj) is not a unit in R, then no such power series exists.
The inverse power series f is often denoted by f -1.

PROOF. Easy (see Exercise C.11). 0

Let f = (fl, ... , f9) be as in the previous lemma and let F be a formal
group over R. Then it is trivial to verify that G := f -1(F(f (X), f (Y)))
defines a formal group isomorphic over R to F. If A is an abelian variety
defined over a field k, then the various formal groups (depending on the
choice of local parameters) associated to A are all isomorphic over k, since
the determinant of the change-of-variable matrix is a unit in k.

A natural and important example of a homomorphism of commutative
formal groups is provided by "multiplication-by-m," which is described
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inductively for all integers m by the following formulas. (Note that i(X) is
the inverse power series described in Lemma C.2.1.)

[-1](X) = i(X), [o](X) = 0, [1](X) = X,
[m](X) = F(X, [m - 1](X)), [m](X) = F(i(X), [m+ 1](X)).

Lemma C.2.3. Let F be a commutative formal group defined over R,
let m be an integer, and let [m] be the array of formal power series as
defined above.
(a) The array of power series [m] gives an endomorphism of the formal
group F defined over R.
(b) The endomorphism [m] is an isomorphism over R if and only if m is a
unit in R.

PROOF. The fact that [m] is an endomorphism follows from the associa-
tivity of F and induction on m. It is also immediate by induction that
[m](X) = mX + , so the matrix of linear coefficients for [m] is m times
the identity matrix. Since det(mI) = m9, it follows from Lemma C.2.2
that [m] has an inverse over R if and only if m is a unit in R.

The previous considerations were purely geometric. We now introduce
arithmetic by taking R to be a complete local valuation ring with maximal
ideal M, fraction field k = Frac(R), and residue field k = R/M.

Our first important observation is that if an abelian variety has good
reduction, then it is possible to select local parameters so that the associ-
ated formal group has coefficients in R. This proof uses the property that
for an abelian variety A defined over a number field, good reduction at
some prime includes the condition that addition also has good reduction,
i.e., that the addition map on A reduces to a morphism

add: AxA -.A.

Lemma C.2.4. Let R be a local ring as above, let A/k be an abelian
variety with good reduction at M, and let A/k denote the reduced abelian
variety. Let xl,... , x9 be local parameters on A at e with the property
that their reductions fl1 i ... , ff are local parameters on A at e. Let F be
the formal group of A with respect to the parameters x1,. .. , x9. Then
F; E R(X,,... , X9, Yl,... , Y9]; that is, the coefficients of the formal group
power series lie in the ring R.

PROOF. Applying the above construction to the local parameters fir i ... , a9
will yield power series Gi E k[X1, ... , X9, Yl,... , YYJ giving the group law
on A, and these power series must equal the reduction modulo M of the
power series F;. Hence the Fi's must have integral coefficients, i.e., coeffi-
cients in R.

0
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In general, a formal group does not define an actual group. A useful
intuition is that a formal group is a group law without any group elements!
However, although a formal group is merely a template for a group, if
we substitute values for its variables and if we can attach a reasonable
meaning to the resulting infinite series, then all of the group axioms will
automatically be true.

For example, suppose that R is a complete local ring with maximal
ideal M as above, and suppose that F is a formal group over R. Then
the series Fi (X, Y) will converge in R for any choice of X, Y E M9. (Note
that this means that X and Y are g-tuples of elements of M, not the gtn
power of elements of M.) In this way the formal group F defines a group
structure on M9.

Definition. Let F be a formal group of dimension g defined over a com-
plete local ring R with maximal ideal M. The group associated to FIR,
denoted by F(M), is the set of g-tuples M9 with the group law

M9 X M9 _ 4 M9 X +F. Y := F(X,Y).

Example C.2.4.1. The formal group associated to Ga is simply M with
its usual addition. The formal group associated to G, is isomorphic to the
set 1 + M with its usual multiplication.

Proposition C.2.5. Let R be a complete local ring with maximal ideal M
and residue characteristic p, and let F be a formal group over R. Then the
group F(M) has no prime-to-p torsion.

PROOF. Let m be an integer not divisible by p. Then m is a unit in R, so
Lemma C.2.3 tells us that the series [m] (X) = mX + has a formal inverse
[m]'1 = m-IX + with coefficients in R. Both series are convergent
when applied to elements in M9, and therefore multiplication by m is an
automorphism of the group F(M) (i.e., an isomorphism from F(M) to
itself). In particular, multiplication-by-m has trivial kernel, so F(M) has
no m-torsion. 0

Theorem C.2.6. Let R be a complete local ring with maximal ideal M,
fraction field k, and residue field k. Let A/k be an abelian variety having
good reduction at M, and let

A, (k) := ker{A(k)-`-d. A(k)}

be the kernel of reduction. Further, let F be the formal group of A as
described in Lemma C.2.4, so in particular, F is defined over R. Then
there is an isomorphism

F(M) ' AI (k).
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PROOF. We show that there are injective maps

F(M) -' AI(k) and AI(k) -+ F(M)

such that their composition is the identity, and such that the first map is
a homomorphism. These two facts then imply that both maps are isomor-
phisms.

Choose local coordinates xI, ... , xg for A at e as in Lemma C.2.4,
and let U be an open affine neighborhood of e on which the xi's give
coordinates. This means we can write the affine coordinate ring of U as
k[U] = k[xi,... , x,z] with xg+l, ... , x,, expressible as power series

xi = fi(x1,...,xg) E RfxI,...,xg].

We can make these choices so that the same formulas hold when we reduce
modulo M, that is,

In particular, the f,'s have coefficients in R.
Now the map given by the formula

(XI,...,X9) - (Xl,...,Xg,fg+l(XI...... Xg),...,fn(X1,...,Xg))

provides the first map F(M) --+ A1(k), and it is clear that this map is
injective. Further, it is clear from the definition of the formal group that
this map is a homomorphism.

Next consider the projection (xj, ... , x,,) '-+ (x1,.. . , xg) giving the
second map AI (k) -+ F(M). The fact that x1,... , xg are local parame-
ters on U imply that this map is injective, which completes the proof of
Theorem C.2.6.

We conclude this section by observing that Proposition C.2.5 and The-
orem C.2.6 provide us with the promised proof of Theorem C.1.4.

C.3. Appendix: Finiteness Theorems in Algebraic Number Theory

We give a short introduction to the geometry of numbers in order to prove
the following three basic finiteness results from algebraic number theory.

Theorem C.3.1. The group of ideal classes of a number field is finite.

Theorem C.3.2. (Hermite) The set of number fields (viewed as subfields
of C) with given discriminant is finite.

Theorem C.3.3. (Dirichlet unit theorem) Let k be a number field, let
r1 and r2 be respectively the number of its real and complex arcbimedean
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places of k, and let S be a finite set of nonarchimedean places of k. Then
the group of S-units

for all finite v S}

is a finitely generated group of rank

rank Rk,s=r(S)=ri+r2-1+#S.

Let us set some notation for the rest of this section.
n or nk the degree [k : QI of a number field k.
r1, r2 the number of real, resp. complex, places of k.

al, ... , ar, the distinct real embeddings k --. R.

ar,+1, ... , 0r,+r2, the distinct complex embeddings k --' C.
arl+1l ... , °rl+r2
A or Ok the absolute value of the discriminant of k/Q.

We will also use the fact that, if al, ... , an is a Z-basis of Rk, then

2
0 = det(ai(aj))

We begin by introducing the canonical embedding of k,

f XCr2,
vE Mk"

a(x) = (0'1 W, ... , arl+r2 (x))

We remind the reader that a discrete subgroup t of a real vector space E
of dimension n is isomorphic to Zr for some integers r < n, and that IF is
said to be a lattice if r = n. The volume of a lattice r is defined to be the
volume of any fundamental domain for r. If e1,.. . , en is a Z-basis for r,
then the volume of r is given by Idet(el,... , en) I .

Lemma C.3.4. The image of the ring of integers a(Rk) inside E,,. is a
lattice of volume 2-T2vrNk. The volume of the image a(I) of a nonzero
ideal I of Rk is 2-r2 v/N(I ).

PROOF. Let al, ... , an be a basis of Rk. Making a change of variables
from z, 2 to Re(z), lm(z) introduces a factor 2, so remembering that we
have

arl+j(ai) = Rearl+j(ai)+ N/---l lmor1+j(ai),

we see that the volume of the cube generated by the a(ai) is

I (2VT)-r' det(ai(aj)) I = 2 -r' Ok.
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The second claim is then clear, since a(1) has index N(I) inside a(Rk).

Corollary C.3.5. (Minkowski) There exists a constant cl > 0 such that
every nonzero ideal I of Rk contains a nonzero element a E I with norm
satisfying

INQ(a)I < cl ok - N(I).
Further, the constant c1 can be chosen to be cl = (4/1r)r2n!/nn.

PROOF. For any real number t > 0, consider the symmetric convex set

et = {(z) E Rr1 x C-
r, ri+r2 1

EIytl+2 E lzjl<t1.

i=1 i=r1+1

By homogeneity, it is clear that et has volume c0tn for some constant co
=independent of t, and a straightforward computation shows that co

2r' (7r/2)12 /n!. We choose t to satisfy

coin = 2n Volume (ay)) -

Then Minkowski's theorem (B.5.4) tells us that there exists a nonzero ele-
ment a E I satisfying a(a) E Lt. Using the arithmetic-geometric inequal-
ity, we can bound the norm of a as follows:

rl rZINQ(a)I

= Hk(a)I
X

Hior'+j(a)I'
i=1 j=1

ri r2
))n

< n lai(a)l +2
jarl+j(a)

i=1 j=1

ton since a(a) E Ct
nn

2n
Volume(a(I)) from our choice of t.

CO.nn

Now plugging in the value of c0 from above and the volume of a(I) from
Lemma C.3.4 gives the desired result.

Lemma C.3.6. The set of ideals of a given norm is finite.

PROOF. Let m > 1 be an integer. The quotient ring Rk/mRk is finite
(indeed, as an additive group it is isomorphic to (Z/mZ)n), so Rk/mRk
contains only a finite number of ideals. The ideals in Rk containing the
ideal mRk correspond to the ideals of Rk/mRk, so there are only finitely
many ideals in Rk containing mRk. Finally, we observe that if N(I) = m,
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then mRk C I. Therefore, there are only finitely many ideals in Rk of a
given norm.

Lemma C.3.7. Every ideal class of k contains an ideal of norm less than
cl %, where cl is as in (C.3.5).

PROOF. Let C be an ideal class, and let I' be an ideal of Rk in the inverse
ideal class C' = C-1. Corollary C.3.5 tells us that there exists a nonzero
element a' E I'satisfying INQ(a')I < c1vrNkN(I'). Then I:= a'I'-1 is an
ideal in the ideal class C, and we can bound its norm by

N(I) = INQ(a,)I N(I')-1 < clf.

This shows that every ideal class contains an ideal of norm at most cl N/A-.
0

Notice that Theorem C.3.1 is now an immediate consequence of Lem-
mas C.3.6 and C.3.7, since the lemmas imply that the finitely many ideals
of norm at most cl v 0 represent all of the ideal classes, and hence the ideal
class group is finite. We also remark that if the ideals Il, ... , Ih represent
the distinct ideal classes, and if S is the set of prime ideals dividing Il . . Ih,
then the ring Rk,S will be principal.

Lemma C.3.8. There exists an absolute constant c2 such that every
number field k/Q satisfies

[k : Q] < c2 log At.

PROOF. From the previous proof we extract the estimate

1< (4)n.VrA
?r nn

Using r2 < n/2 and nn/n! > (9/4)", we obtain after some calculation
that A > 1(37r/4)n. Taking logarithms gives the desired result.

PROOF (of Hermite's theorem (C.3.2)). Let k be a number field with given
discriminant Ak = A. Using the previous lemma (C.3.8), we may assume
that the degree n, and even its type (rl, r2), is fixed. Minkowski's theo-
rem (B.5.4) says that there is a T, depending only on rl, r2, and A, such
that there exists an element a E Rk satisfying:

(i) j a i

(n) { IaRe(a1(a))I < .1 and I Im(oj(a))I 5 T if r1
=

0.
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We now show that k = Q(a). First we note that

1 < INN(a)I < 11 Ialy < Ia1(a)l.
vEMb

It follows that al(a) is different from all of the other conjugates oi(a)
except (perhaps) from &I (a) if r1 = 0 and a1(a) is real. But in the latter
case,

I Im(a1(a))I > Iai(a)I - I Re(o1(a))I >

so a1(a) cannot be real. Hence o1(a) : oi(a) for all i > 2.
Now suppose that ai(a) = aj(a) for some i, j. Then the map ok =

010; I0j satisfies a1(a) = ok(a), so we have at = o1i and hence of = oj.
This proves that the images oi(a) for 1 < i < n are distinct, which implies
that [Q(a) : Q] > n, and hence that k = Q(a).

Now consider the coefficients of the minimal polynomial of a over
Z. These coefficients are symmetric functions in the oi(a)'s, and thus
their size is bounded by a function of r1 i r2, and A. (Remember that T
is chosen in terms of these three quantities.) Thus there are only finitely
many possibilities for the coefficients of the minimal polynomial of a, which
completes the proof that there are only finitely many fields with a given
discriminant. 0

We now introduce another lattice associated to a number field. Let S
be a finite set of nonarchimedean places of k with s = #S. We set

T=SUMr° and t=#T=r1+r2+s.
We define a map

k* ---, Rt, 'T - (log IIxIIv)vET'

and we denote by 1 the restriction of this map to Rk,s. (Recall that the
group of S-units Rk,s is the group of elements of k* such that lal,, = 1
for all v f T.) The map 4D is often called the regulator map (or the S-
regulator map if S is not empty). It is also sometimes called the logarithmic
embedding, although as the next result shows, 4) actually gives only an
embedding of Rk,s/µk (i.e., modulo torsion).

Lemma C.3.9. Let : Rk,s - Rt be the S-regulator map described
above.
(a) The kernel of 4D is µk, the group of roots of unity in k*.
(b) The image of is a discrete subgroup contained in the hyperplane
EVET Xv = 0.

PROOF. An element a of Rk s is in the kernel of if and only if lal,, = 1
for all places v E Mk. By Kronecker's theorem (B.2.3.1), this is equivalent
to saying that a is a root of unity, which proves (a).
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Next we observe that if 4)(a) is confined to a bounded set, then the
height of a is bounded, and so Theorem B.2.3 tells us that a may take
on only finitely many values. This shows that the image 4)(Rk,s) is dis-
crete. Finally, the product formula implies that every a E Rk,s, satis-
fies EVET log Hall- = 0, which proves that t(Rk s) lies in the hyperplane
EvET xv = 0. 0

Notice that Lemma C.3.9 and the basic fact that a discrete subgroup
of R" is free of rank at most n already tells us that

Rk s = {Lk X Zr (s) with r(S) < r1 + r2 - 1 + s.
This inequality is actually all that we need for our applications, but for the
sake of completeness we will prove that r(S) = r1 +r2-1+8 in the case that
S = 0. We leave the general case, which is proven similarly, as an exercise
for the reader. We also note that by definition, the regulator of the number
field k is the volume of the lattice O(Rk) in the (r1 + r2 - 1)-dimensional
hyperplane in which it lies.
PRooF (of Dirichlet's unit theorem (C.3.3) when S = 0) Choose any ele-
ment

u = (uv)vEMr E E. satisfying N(u) :_ 11 Iuvl"° = 1.
vEM-

Then multiplication by u is a linear transformation of E.. with determi-
nant of absolute value one. It follows that the lattice ua(Rk) has the
same volume as the lattice o (Rk), namely 2-rev (C.3.4). For any con-
stants tl, ... , tri+ra such that T := t1 trl trl+i try+rs is large enough,
Minkowski's theorem (B.5.4) gives a nonzero element a E Rk such that
the element x = uu(a) satisfies Ixvl < t for all v E Mk'. We deduce
that INQ(a)I = N(x) < T. By Lemma C.3.6, there exists a finite set
al, ... , aN E Rk such that all a E Rk with I NN(a) I < T may be writ-
ten a = aie for some 1 < i < N and e E R. We may therefore write
x = ua(aie), or equivalently, u = xa(ai 1)a(e-1). Taking the logarithms
of the absolute values, we obtain

log l'uvl=log Ixvl-log Iaily-log IeIV.
Note that every point in the hyperplane >vET xv = 0 in R"+''2 can be
represented by an element (log Iuvl)vEMr , while the elements

(log Ixvl -log lailv)vEMr

lie in a bounded set. (It is clear that the Ixv I's are bounded above, and their
product is bounded below, so they are also individually bounded below.)
This proves that the hyperplane is the union of translates of a bounded
set by elements of 4D(Rk). Therefore 4)(Rk) is a lattice (i.e., has maximal
rank). 11
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C.4. Appendix: The Selmer and Tate-Shafarevich Groups

We return to the proof of the weak Mordell-Weil theorem and analyze it in a
more abstract setting, using Galois cohomology. For the relevant definitions
and properties of H', cocycles, and coboundaries, see Section C.5 below.

Let G = Gk be the Galois group Gal(k/k), and let A be an abelian va-
riety defined over k. For each x E A(k), choose a point y E A(k) satisfying
my = x and define as before the map

t(.,y):G-'Am, ai-,ya - y.
We do not assume, as we did in Section C.1, that G acts trivially on Am,
so the formula of Proposition C.1.1 becomes

t(oo', y) = t(Q , y)° + t(a, Y).

In other words, the map or ,--, t(a, y) is a cocycle G --' Am.
Now suppose that we choose some other y' such that my' = x. Then

the point b := y' - y is in Am, and

t(o,b)-t(a,y)=(y°-y')-(y°-y)=(y'-y)°-(y -y)=b°-b.
Thus the difference t( - , y') - t( - , y') is a coboundary, so the cohomology
class of t( - , y) in Hl (G, Am) depends only on x, independent of the choice
of y. In other words, we get a well-defined map 6 : A(k) --' H' (G, Am).
The next proposition gives a slight generalization of this construction.

Proposition C.4.1. Let a : A--+ B bean isogeny of two abelian varieties
defined over k. Then the short exact sequence

0 , ker(a) -- A(k) -0'+ B(k) ---, 0

induces a long exact sequence of cohomology groups

0 -+ ker(a)(k) - A(k) ", B(k)
6, H' (G, ker(a)) H' (G, A(k)) H' (G, B(k)).

The connecting homomorphism 6 is defined as follows: Let x E B(k), and
select y c A(k) such that a(y) = x. Then define 6(x) to be the cohomology
class associated to the cocycle

6(x) : G -' ker(a), 6(x)(a) = y° - V.

The above long exact sequence gives rise to the following fundamental
short exact sequence,

0 -' B(k)/aA(k) 6+ H'(G,ker(a)) -' H'(G, A(k)) [a] -i 0,
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where H'(G,A(k))[a] denotes the kernel of the map a : H'(G,A(k)) -
H'(G, B(k)).

PROOF. The existence of the long exact sequence comes from basic prop-
erties of group cohomology, and the definition of b follows from the way
that the long exact sequence in group cohomology is constructed from a
short exact sequence of G-modules. The reader who is unfamiliar with this
material should consult Section C.5 and, for further details, a book such
as of Hilton-Stammbach [1]. 0

It would be nice to use the injection 6: B(k)/aA(k) -+ Hl (Gk, ker(a))
to prove directly the finiteness of B(k)/aA(k), but unfortunately the group
HI (Gk, ker(a)) may be infinite. For example, this is the case when k is a
number field. Thus we must somehow cut down the size of Hl (Gk, ker(a)).
One method to do this is via localization at primes.

Indeed, for each place v of k, let k be the completion of k at v and let
G := be the absolute Galois group of k,,. We may consider G
to be a subgroup of Gk, and hence we obtain restriction maps Hl (Gk, - ) -
H' (G,,, ). There is a local exact sequence analogous to the exact sequence
in Proposition C.3.1, and the global exact sequence maps to the local exact
sequence via restriction, yielding the following commutative diagram.

0 -- B(k)/aA(k) -L H'(Gk,ker(a)) --. H'(Gk,A(k))[aJ 0

I I I
0 - HI(G,,,ker(a)) - 0

Now observe that if x E B(k), then the restriction will be in the
kernel of the right-hand map. Turning this observation around, we see
that each place v gives us some information about the image of 6 in
Hl (Gk, ker(a)). This remark motivates the definition of the following two
groups. We will see later that these groups also admit a very interesting
arithmetic/geometric interpretation.

Definition. Let a : A -+ B be an isogeny of abelian varieties defined over
a number field k. The Selmer group of A with respect to a is the group

See(°) (A/k) := nker{H'(Gk,ker(a)) -,
V

The Tate-Shafarevich group of A is the group

III(A/k) := nker{H' (Gk, A(k)) -+ H' (G,,,
V

In both formulas, the product is taken over all places v of k.
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From the exact sequence of Proposition C.4.1 and these definitions,
we readily deduce the following important fundamental sequence:

0 B(k)/aA(k) -+ Seed°)(A/k) III(A/k)[a] , 0.

We claim that the Selmer group Set(") (A/k) is finite, which will certainly
also imply the finiteness of B(k)/aA(k) and III(A/k)[a]. We will prove the
finiteness of using a ramification argument very similar to the
one that we already used to prove the weak Mordell-Weil theorem.

Before proving the finiteness of the Selmer group, we give a geomet-
ric interpretation of the groups Se&i°l(A/k) and III(A/k). An element
of H' (Gk, A(k)) corresponds to a principal homogeneous space. (See the
next section for the definition, and especially Proposition C.5.3 for the cor-
respondence between cohomology classes and homogeneous spaces.) The
cohomology class is trivial if and only if the corresponding homogeneous
space has a rational point. Thus we see that the homogeneous spaces corre-
sponding to elements of the Selmer group Se&1 (A/k) possess for
every place v of k. Similarly, nontrivial elements of the Tate-Shafarevich
group IU(A/k) correspond to homogeneous spaces that have k rational
points for every place v, yet nevertheless have no k-rational points. It
is far from obvious that there can exist any such spaces for which the
Hasse principle fails. An example is given in Exercise C.15. (See Silver-
man [1, Chapter X, Proposition 6.5] for some additional examples.) The
existence of nontrivial elements of UI(A/k) accounts for the ineffectivity of
the Mordell-Weil theorem.

As we will now see, not only is the Selmer group Se&)(A/k) finite,
but it is also effectively computable (at least in principle). This is true
because the question of whether a given variety has rational points for every
completion k is computable in finite time by combining Hensel's lemma
(see Exercise C.9) with estimates for the number of points on varieties over
finite fields.

Thus the above exact sequence provides us with a finite collection
of principal homogeneous spaces, each of which has points for
all places v, and the only task remaining is to determine which of these
homogeneous spaces have at least one k-rational point. Unfortunately,
no algorithm is known that is guaranteed to determine whether or not a
specific homogeneous space possesses a k-rational point. This is true even
for curves of genus 1. (See, for example, the discussion in Tate [2].)

Showing that the Selmer group is finite amounts to proving the weak
Mordell-Weil theorem and is done by using essentially the same ramifica-
tion argument. First we must define what it means for a cohomology class
to be unramified.

Definition. Let v be a place of k, and let I C Gk be an inertia for v.
A cohomology class 0 E HI(Gk, M) is unramifted at v if its restriction to
Hl(I,,,M) is trivial. (Note that I,, is defined only up to conjugation, but
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the triviality or nontriviality of the restriction of 0 is independent of the
choice of I,,.)

Notation. Let M be a Gk-module, and let S be a finite set of places
of k. We denote by Hs' (Gk, M) the subgroup of H' (Gk, M) consisting of
cohomology classes that are unramified at all places not in S.

Proposition C.4.2. (a) Let M be a finite Gk-module, and let S be a
finite set of places of k. Then the group HS (Gk, M) of cohomology classes
unramified outside S is finite.
(b) Let a : A - B be an isogeny of abelian varieties over k, let S be a
finite set of places of k containing:

(i) all archimedean places of k;
(ii) all places of bad reduction of A and B (in fact, one can show

that A and B have bad reduction at exactly the same places);
(iii) all places dividing deg(a).

Then the Selmer group See(°)(A/k) is contained in HS(Gk,ker(a)). In
particular, the Selmer group if finite.

PR.ooF. (a) The fact that Gk acts continuously on the finite set M means
that it contains an open subgroup that acts trivially. Hence there is a
finite Galois extension K/k such that GK acts trivially on M. Now the
inflation-restriction sequence

0 --i Hl(GK/k,MGK/k) - H'(Gk,M) - Hl(GK,M)
shows that it suffices to prove the result for K. Thus replacing k by K, we
are reduced to the case that Gk acts trivially on M.

Let m be an exponent for the group M, that is, every element of M
is killed by m. Then elements of

Hl (Gk, M) = Hom(Gk, M)

correspond to finite abelian extensions of k whose Galois group has expo-
nent m; and elements of HS' (Gk, M) correspond to finite abelian exten-
sions of k of exponent m and unramified outside of S. Hence the finiteness
of HS' (Gk, M) follows from the fact, proven above as Corollary C.1.8, that
the maximal abelian extension of exponent m and unramified outside S is
finite.
(b) Let 0 E See(°)(A/k) and let v be a finite place not in S. Choose a
point y E A(k) such that 0(a) = a(y) - y for a E G,,. Now for a in the
inertia group I we compute the reduction modulo v:

a(y)-y=a(1!)-U=O.

But a(y) - y is a torsion point (it is in ker(a)), and by the conditions
on S, the place v is a finite place of good reduction not dividing deg(a),
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so Theorem C.1.4, proven in Section C.2, tells us that a(y) - y = 0. This
proves that 0(a) = 0 for all a E I, so 0 is unramified at v.

Notice that the bound for the rank of A(k) obtained in Theorem C.1.9
is actually a bound for the rn-rank of HS (Gk, Am). Thus the present de-
scent is a refinement of our earlier result. For further refinements of the de-
scent, see for example Mazur [1]. The proof of the weak Mordell-Weil the-
orem shows that for any integer n > 1, the n-torsion subgroup lII(A/k)[n]
is finite. Conjecturally, a far stronger result holds.

Conjecture C.4.3. Let A/k be an abelian variety defined over a number
field. Then III(A/k) is finite.

This conjecture is known to be true only for certain special elliptic
curves and abelian varieties related to modular curves. Indeed, until the
mid-1980s, it was not known to be true for even a single example! The
first cases proven were for certain complex multiplication elliptic curves by
Rubin [1] and certain modular elliptic curves by Kolyvagin [1].

C.5. Appendix: Galois Cohomology and Homogeneous Spaces

In order to motivate the technical definition of the cohomology group Hl,
we discuss first, informally, the following problem:

Classification of Twists. Let X0 be an an algebro-
geometric structure (an algebra, a variety, a quadratic
form, etc.) defined over a field k. Classify the set of
k-isomorphism classes of objects X defined over k with
the property that X is isomorphic to Xo over k. The
objects X are called twists of Xo over k.

For example, if Xo/k is a curve, then the twists of Xo are curves
defined over k that are isomorphic to Xo over k. A specific example is
provided by the plane cubic curves

Xa,b,c : ax3 + by3 + cz3 = 0

for a, b, c E k*. These curves are all twists of one another, since the change
of variables [x, y, z] '-. [x/a1/3, y/b1/3, z/c1/3] shows that they are all iso-
morphic (over k) to X1,,,1. However, it is a much more difficult question
to determine which of the XQ,b,c's are isomorphic over k, even for k = Q.

Returning now to the general case, let X be a twist of Xo, and fix a
k-isomorphism f : X -. Xo. Then for each a E G = Gal(k/k) we obtain
an automorphism of Xo via the composition

Xo f. X -. Xo.
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Thus we obtain a map

0: G - Aut(Xo), O(or) = f° o f-1

The map 0 is not a homomorphism. A simple calculation shows that it
satisfies the relation

0(0,T) = f°Tf-1 = f°T(fr)-1frf-1 = (f°f-1)TfTf-1 = O(a)70(7-)

The map is thus a sort of "twisted homomorphism," that is, a homomor-
phism twisted by the action of G. Such a map is also called a 1-cocycle
from G to Aut(Xo).

In most situations, the 1-cocycle 0 will have one other very important
property, namely there will exist a finite Galois extension K/k such that 0
is trivial on the subgroup Gal(k/K). This is true because typical algebro-
geometric objects and maps (such as varieties and rational maps between
them) are determined by a finite number of polynomials that have only
a finite number of coefficients. A 1-cocycle with this property is said to
be continuous, because it is continuous with respect to the Krull topology
on G and the discrete topology on Aut(Xo).

We also want to know to what extent the map 0 depends on the choice
of k-isomorphism f . Suppose that f, : X - Xo is another k-isomorphism,
and define similarly 01(0) := fi fl 1 Then

(hf-1)°O(a) _ (fff-1)°(f°f"1)
= fi f-1 = (fi fl 1)(fif-1) = 01(or)(f, f-1).

So if we let a := f1 f -1 E Aut(Xo), then 0 and 41 are related by the formula

a°¢(o) = 4)1(o)a for all o E G.

Thus a twist of X0 leads to a 1-cocycle 0 in the set

{46: G -+ Aut(Xo) I qS(ur) =

and the 1-cocycle 0 is well-defined up to the equivalence relation 0 01 if
there exists an a E Aut(Xo) such that a°¢(o) = 01(o)a.

Let H denote the set of equivalence classes of (continuous) 1-cocycles 4)
as above. We have just seen that each twist of X0 gives rise to a well-
defined element of H. Suppose now that X and X' are twists of Xo that
give the same element of H. This means that if we fix k-isomorphisms
f : X - Xo and f : X' -+ Xo, then there is an element a E Aut(Xo)
satisfying a°4)(o) = 4)'(o)a, where ¢(o) = f°f-1 and 4)'(o) = f"fi-1
Substituting and rearranging yields

(f'-1af)° = f'-1af for all o E G.
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In other words, the isomorphism f'-taf : X - X' is defined over k, so X
and X' are actually the same twist of X0. This completely formal argument
shows that the map from the set of twists of X0 to the set H is injective.

In order to show that this map is bijective, we must show that ev-
ery element of H corresponds to an actual twist of X0. This cannot be
proven formally, and indeed it requires using additional structural proper-
ties of X0. The basic idea is to take a 0 representing an element of H, use
it to construct an object Xo, and show that Xa is defined over k and is
k-isomorphic to Xo.

We illustrate this idea for a quasi-projective variety Xo/k. Let 0: G -.
Aut(Xo) be a continuous 1-cocycle representing an element of H. Choose
a finite Galois extension K/k such that ¢ is trivial on GK. This means
that ¢ factors through GK/k := Gal(K/k). We let GKIk act on X° xk K
by twisting the natural action via 0. Then the quotient (Xo x k K)/GK(k is
the desired object Xo, assuming of course that this quotient object exists in
the desired category. We will explain how to construct this quotient in the
case that Xo is affine; the general case then follows by a gluing argument.

So suppose that Xo/k is an affine variety, say X0 = Spec Ao. Thus A0
is a k-algebra, and we let A = A0 ®k K be the K-algebra obtained by
extending scalars from k to K. Note that automorphisms of Xo defined
over K are in one-to-one correspondence with K-algebra automorphisms
of A. In particular, each automorphism 0(a) E Aut(Xo) corresponds to a
K-algebra automorphism ¢(a)' : A -p A.

We define the ring A0 to be equal to A as an abstract ring, but we
twist the action of GK/k on A,, according to the following formula:

a E GK/k acts on a E A0 via

In this definition, denotes the action of or on a considered as an element
of Ao, while a° denotes the action of a on a considered as an element of A.

Now let B := Ac K!` be the subalgebra of A© fixed, via this action,
by every element of GK/k. One checks that B is an integral k-algebra,
and Hilbert's theorem (cf. Proposition 3.1, Section A.8) tells us that B
is finitely generated. Hence Xs, = Spec(B) is an affine k-variety. Since
B = A n K(Xo)'Kr} and K:9 k(Xo) = K(Xo), we see that B ®k K = A;
hence Xo is indeed isomorphic to Xo over K. Finally, one checks from the
definition that the K-isomorphism X -' Xo is associated to the 1-cocycle 0.

We hope that the previous discussion has sufficiently motivated the
following definitions.

Definition. Let G be a (finite or topological) group acting on another (not
necessarily abelian) group A. Denote the action of G on A by (a, a) H a°

The 0th cohomology group of G acting on A is the group

H°(G,A)=Ac= {aEAIa°= a for all aEGI
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of elements of A that are fixed by every element of G.
A map 0: G --+ A is called a 1-cocycle from G to A if it satisfies

,b(aT) = for all a,T E G.

Two 1-cocycles 4), 4)' are said to be cohomologous if there exists an a E A
such that

a°4)(a) = 01(o,)a for all a E G.

This is an equivalence relation, and the set of cohomology classes of 1-
cocycles is denoted by Hl (G, A) and is called the 1" cohomology set of G
acting on A. If C is a topological group, for example the Galois group of
an infinite extension, we will add the requirement that the cocycles should
be continuous when A is given the discrete topology. For example, if A is
finite, this amounts to requiring that each 1-cocycle factor through a finite
quotient group of G. (Note that different cocycles may factor through
different finite quotients.)

Example C.5.1. We can rephrase what we proved earlier in this section
as follows: Let Xo be a quasi-projective variety defined over k. Then there
is a natural bijection between the k-twists of Xo and the cohomology set
H1 (Gal(k/k), Aut(Xo)). (Recall that a k-twist of Xo is a k-isomorphism
class of varieties X/k such that X is k-isomorphic to Xo.)

The cohomology set H' (G, A) is an example of a pointed set because
it has a distinguished element 0, i.e., the trivial cocycle. If the group A is
abelian, then it turns out that the group law on A induces a well-defined
group law on H' (G, A), so in this situation H 1(G, A) becomes a cohomol-
ogy group, rather than merely a pointed set.

More precisely, if A is abelian, and if 0, 4)' : G ---* A are 1-cocycles, we
define their sum by

(0 + O')(a) _ 4)(a) + 4)'(a)

It is clear from the commutativity of A that 0+0' is again a cocycle, so the
set of cocycles forms a group, often denoted by Z' (G, A). We next define
the group of coboundaries, denoted by B1 (G, A), to be the set of maps of
the form

6(a)=a°-a,
where a is any element of A. One easily checks that the sum of two cobound-
aries is a coboundary and that every coboundary is a cocycle, so BI (G, A)
is a subgroup of Z' (G, A). The cohomology group H1 (G, A) is then the
quotient group

H1(G,A) = Z'(G,A)/B'(G,A).

The next proposition summarizes some of the basic properties of group
cohomology, at least for H° and Hl.
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Proposition C.5.2. Let G be a group, and let A and A' be groups on
which G acts.
(1) (Functoriality) Let f : A A' be a G-homomorphism, that is, a
homomorphism that commutes with the action of G. Then f induces a
natural map

H1(G, A) -' H' (G, A'), [0) If o O]

If A and A' are abelian, this map is a homomorphism.
Next let F : G' - G be a homomorphism. Then G' acts on A via F,

and this induces a natural map

H'(G,A) , H'(G',A), [01 - [Fo0J

If A is abelian, this map is a homomorphism.
(2) (Inflation-restriction sequence) Let H be a subgroup of G. Then the
map H' (G, A) H'(H, A) from (1) is called the restriction map. If
further H is a normal subgroup of G, then G/H acts on AH. In this case,
the projection map 7r : G -+ G/H and the inclusion AH A induce the
inflation map defined by the formula

H' (G/H, AH) -' H' (G, A),

The following sequence, called the inflation-restriction sequence, is exact:

0 -+ H'(G/H,AH) - H'(G,A) - H'(H,A).

(3) (Long exact sequence) Let

0,A ,B
be a short exact sequence, where f and g are G-homomorphisms. Then
there is a canonical long exact sequence

0 H°(G, A) H°(G, B) 2H°(G, C)

- H' (G, A) , H' (G, B) 9+ H' (G, C),

where recall that H°(G, A) = A', and similarly for B and C. The con-
necting homomorphism 6 is defined as follows: Let c E H°(G, C). Choose
some b E B such that g(b) = c. Then for any o E G, we have

g(b° - b) = g(b)° - g(b) = c° - c = 0 since c E CG.

Thus V - b is in ker(g) = Image(f), and the injectivity off means that
we obtain a well-defined element f (F - b) E A. The map

G A, ---, f -' (b° - b).
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is a cocycle representing the cohomology class of 6(c).
If A, B, and C are abelian, the long exact sequence gives rise to the

following useful short exact sequence:

0 - CG19(BG) b- H'(G,A) f' H'(G, B)[9] -+ 0.

We will not prove these basic facts about group cohomology. See, for
example, Atiyah-Wall [1], Serre 14, Chapitre VII, VIII], or Silverman ]1,
Appendix B].

Example C.5.2.1. (Kummer sequence) Let Gk = Gal(k/k) and let µ,,, c
k' be the group of mth-roots of unity. The short exact sequence of Gk-
modules

0 µ,n + k' m k' --+ 0
induces the long exact sequence

0- i.m(k)-'k' m-'k' -b H'(Gk,Am)---+H'(Gk,k').

Hilbert's theorem 90 says that the last group HI(Gk,k`) is trivial. (See
Section A.2, Exercise 6, or Serre [1, Chapter 10, Proposition 2] for a proof of
Hilbert's theorem 90.) This means that 6 is an isomorphism, the Kummer
isomorphism

6k./k.m H'(G,pm).

In particular, if A,,, C k', then G acts trivially on µ,,,, so k'/k*'
Hom(G, p,,,). Notice that the group Hom(G, pu,) classifies abelian exten-
sions of k of exponent m via the association f : G -+ A,,, goes to kti-(f)_
Further, the isomorphism 6 : k'/k*' -+ Hom(G, Jim) from above is given
by

6(a)(a) = a°/a, where a satisfies a' = a.

Hence if A,, C k' and if K/k is an abelian extension of k of exponent in,
then there always exists an element a E k such that K = k ( V a-).

We now restrict our attention to the case of an abelian variety A
defined over k. The group of automorphisms Aut(A) of A, considered as
an abstract group with no further structure, is nonabelian. Within Aut(A)
we can identify two important subgroups:

(i) The subgroup of translations, which we identify with A(k).
(ii) The subgroup of automorphisms that fix the identity element 0,

which we denote by Aut(A, 0).

It is not bard to show that Aut(A) is the semidirect product A(k) x
Aut(A, O) (cf. Exercise A.4.15). We remark that the group Aut(A, O) al-
ways contains at least the two elements [t1]. If A is an elliptic curve,
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then Aut(A, 0) is finite, but it may be infinite for higher-dimensional abelian
varieties.

The group H' (Gk, A(k)) appears naturally in the cohomological proof
of the Mordell-Weil theorem, which suggests that we should look at the
twists of A corresponding to the elements in this subset of Hl (Gk, Aut(A)).
It turns out these twists have a simple geometric description as homoge-
neous spaces.

Definition. Let A be an abelian variety defined over k. A principal ho-
mogeneous space of A/k is a variety X/k together with a simple transitive
action of A on X also defined over k.

In other words, there is a k-morphism

µ:X xA -'X
with the following properties:
(i) µ(x,0) = x for all x E X.

(ii) µ(x, a + b) = µ(µ(x, a), b) for all x E X and all a, b E A.
(iii) For all x E A, the map a' -. u(x, a) is an isomorphism A -. X (defined

over k(x)).
In particular, (iii) tells us that X is a twist of A, since it is isomorphic to A
over k. Further, it is clear that X is isomorphic to A over k if and only if
X(k) # 0. Thus if x E X(k), then the map in (iii) gives a k-isomorphism.
Conversely, if X is k-isomorphic to A, then this isomorphism maps the
point 0 E A(k) to a k-rational point of X.

Two homogeneous spaces (X, µ) and (X', µ') for A/k are isomorphic
(as homogeneous spaces) if there is a k-isomorphism i : X -. X' such that
the following diagram commutes:

XxA -µ- X
Iixi

11

X'xA " X'
In other words, the isomorphism i : X X' is required to commute with
the action of A on X and X'. Note that it is possible for a twist X/k
of A/k to have several nonisomorphic structures as a homogeneous space
of A. (See, e.g., Silverman [1, Exercise 10.4].)

The fact that the action µ is principal allows us to define a "subtraction
map" v : X x X A as follows: v(x, y) is the unique point of A/k satisfying

µ(y,v(x,y)) =x.
The existence and uniqueness of the point v(x, y) follows from property (iii).
An alternative definition of v is to fix any point xo E X, let 0 : A - X be
the isomorphism u(xo, - ) given by (iii), and then define v(x,y) = 0-1(x) -
8-1(y). We leave it to the reader to verify that v is a well-defined k-
morphism.
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Proposition C.5.3. There is a natural bijection between (k-isomorphism
classes of) principal homogeneous spaces of A/k and HI (Gk, A(k)). This
association is given as follows: Let X be a principal homogeneous space
of A/k, choose any point x E X, and let v : X x X A be the subtraction
map defined above. Then

[X ] '---+ [a ' *'W' x)].

PROOF. See Silverman [1, Theorem 3.6], where the proof given for ellip-
tic curves applies without change to abelian varieties. We also note that
choosing a different point in X merely changes the cocycle by a cobound-
ary. Thus if x' E X, then the difference of the cocycles corresponding to x
and x' is the coboundary

*,W), x') - v(a(x), x) = a(v(X , x)) - v(i , x).
11

Proposition C.5.3 tells us the somewhat surprising fact that the set of
principal homogeneous spaces of an abelian variety A has a natural group
structure. This group is called the Weil-Chdtelet group of A/k and is
denoted by WC(A/k). The group law on WC(A/k) can be (and historically
was first) defined geometrically. This geometric construction is described
in Exercise C.17.

EXERCISES

C. 1. Let C be an abelian group, let m > 2 an integer such that the quotient
C/mG is finite, and let x i , ... , x, E G be a complete set of eoset represen-
tatives for G/mG. Suppose that there are constants A, B, C, D > 0 with
A > B (depending on G, m, and xi, ... , x,) and a function h : C -. R with
the property that

h(mx) > A(h(x) - C) and h(x +x;) < Bh(x) + D

for all x E G and 1 < i < s. Prove that the set

1{x E C I h(x) :5
C+ D
A-B

generates the group C.
C.2. Let A and B be abelian varieties defined over a number field k, let v be a

place of k at which A and B both have good reduction, and let A. and B
denote the reductions. Show that

Hom(A, B) ---. Hom(A,,,

is injective. (Hint. Use Theorem C.1.4 to show that if 4 0 0, then cannot
vanish on all torsion points.)
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C.3. Give a bound, or even better compute exactly, the quantity card(Ato,(Q))
for the following elliptic curves A/Q:
(a)

y2 = x3
- 1.

(b) y2 = x3 - 4x.

(c) y2 = x3 + 4x.

(d) y2 + 17xy - 1208 = x3 - 60x2.
C.4. (Weil-style method of computing the cardinality of Jac(C)(F,)) Let C be

a curve of genus g defined over FD, and let J = Jac(C) be its Jacobian
variety. For each integer m > 1, let

N,,,(C) = card C(Fp') and Nm(J) = card J(Fpm ).

We know from Exercise A.8.11 that there exist algebraic integers ai such
that

Nm(C)=p"`+1-(ar+-+ag) forallm>1.

Furthermore, the polynomial P(T) := I1291(1 - a;T) has integer coef$-
cients and leading coefficient p9, and it satisfies P(T) = p9T2gP(1/pT).
Then

2gNJ (J)
= card J(Fn) = P(1) = I(1 - co.

i=1

Prove that the first g cardinalities N1(C), N2 (C), ... , Ng (C) for C deter-
mine the cardinality N1(J). In particular, prove that when g = 2,

N1(J) = (N1(C)2+N2(C)) -P.

Find a similar formula for g = 3. (Hint. Use Newton's formulas relating
elementary symmetric polynomials to sums of powers.)

C.5. Let A be the Jacobian of the curve y2 = x5 - x. Compute the torsion
subgroup At,,,(Q). (Hint. Use Exercise A.8.1 to determine the rational 2-
torsion points in A(Q). Then use the previous exercise and reduce modulo 3
and modulo 5 to prove that Ata..(Q) is generated by its 2-torsion and
possibly a single rational 3-torsion point. Finally, determine whether or
not there is such a 3-torsion point.)

C.6. Let p be an odd prime, let r and s be integers satisfying 0 < r, s, r + s < p,
and let C be the smooth projective curve birational to y' = x'(x - 1)'. In
this exercise you will prove that Jac(C)(Q)to, is isomorphic to either Z/2pZ
or Z/pZ.
(a) Show that the quasi-affine curve defined by

U={(x,y)EA21y°=x'(x-1)'andx(x-1)00}

is smooth, and hence that U is an open subset of C. Prove that the
complement C -, U = {Po, P1, P,,} consists of exactly three points, where
Po, P1, P,, are the points above (0, 0), (1, 0), and oo, respectively. Prove
that the genus g of C is equal to (p - 1)/2.
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(b) Show that

div(x) = p(Po) - p(P,),
div(x - 1) =p(Pi) -p(PP),

div(y) = r(Po) + s(Pi) - (r + s)(P,,,).

(c) Suppose that p does not divide q - 1. Prove that card(C(F9)) = q + 1.
Use Exercise C.4 to deduce that if 8 is a primitive root modulo p, then
card(Jac(C)(F4)) = e9 + 1.
(d) Prove that Jac(C)(Q)tor is isomorphic to either Z/2pZ or Z/pZ. (Hint.
Use Dirichlet's theorem on primes in arithmetic progressions, which says
that if gcd(a, b) = 1, then there are infinitely many primes of the form
an + b.)
(e) Prove that in fact Jac(C)(Q)tot L' Z/pZ except in the one case that
p = 7 and r3 = 83 = -(r + s)3 (mod 7). (This is more difficult. See
Gross-Rohrlich [1] for details).

C.7. In this exercise you will prove the Chevalley-Weil theorem.

Chevalley-Weil Theorem. Let m : X Y be an unramified covering
of normal projective varieties defined over a number field k. Then there
exists a finite extension K/k such that 0-' (Y(k)) C X (K).

Before beginning, we make a definition. An Mk-constant is a map

y: Mk-R
with the properties (i) y(v) > 0 for all v E Mk and (ii) -y(v) = 1 for all but
finitely many v E Mk. (Note that the Mk-constants defined in Section B.8
are the logarithms of these Mk-constants.)
(a) Let U be an affine variety with coordinate ring k[U] = k[ fl, ... , fm].
For each place v of k, let

U,,={XEU(k)Iv(f;(x))>0forall 1 <i<m}.

Informally, we say that U. is the set of v-integral points of U. (Of course,
U. depends on the choice of the f;'s.) Let g E k[U]*. Prove that there are
Mk-constants yi, y2, depending on U, g, and fl, ... , ft,t, such that

y1(v) < !g(x)J, < y2(v) for all v E Mk and all x E U,,.

(b) Let U/k and V/k be affine varieties, and let 0 : V -+ U be a mor-
phism with the property that k[V] is a free k[U] module of rank n, and
further suppose that there exists a basis g',...,g,, for k[V]/k[U] whose
discriminant is a unit in k[U], i.e.,

g,) E k[U]*.

Prove that there exist Mk-constants y3, y4, depending on all of the above
data, such that

y3(v) < IDisc(k(V-'(x))/k)] < y4(v) for allv E Mk and all x E Uo.
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(c) Now assume that U/k and V/k are normal affine varieties, and let
0: V -- U be an unramified covering. Let

U(Rk) := {x E U(k) I f; (x) E Rk for all 1 < i < m}

be the set of integral points of U. (Again, this set clearly depends on
the choice of coordinate functions fl,. . . , f, on U.) Prove that there is a
constant cl, depending on these data, such that

IDisc(k(O-'(x))/k)I < cl for all x E U(Rk).

(Hint. Cover U with affine open subsets to which you can apply part (b).)
(d) Finally, suppose that U/k and V/k are normal projective varieties,
and again let 46: V U be an unramified covering. Prove that there is a
constant c2, depending on k, U, V, and ¢, such that

IDisc(k(¢-'(x))/k)I < c2 for all x E U(k).

(Hint. Cover U with affine open subsets to which you can apply part (c).)
(e) Under the hypotheses of (c), prove that there is a finite extension K/k
such that ¢-'(U(Rk)) C V(K). Similarly, under the hypotheses of (d),
prove that there is a finite extension K/k such that 0-'(U(k)) C V(K).
(Hint. Use Hermits's theorem (C.3.2).)

C.8. Let k be a number field, and let K = k[i31 be a finite extension of k generated
by the algebraic integer p. Let F(X) E Rk [XJ be the minimal polynomial
of '0.
(a) Prove that the discriminant of the order Rk[QJ over Rk is equal to
±Nk (F'(R))
(b) Prove that the only primes that can ramify in the extension Klk are
the primes dividing Nk (F'(,O)).
(c) Let a E k be an algebraic integer. Prove that the extension k( mfa)/k
is unramified except possibly at primes dividing ma.

C.9. Hensel's lemma and an application to torsion points.
Let k be a p-adic field, i.e., the completion of a number field with respect
to a nonarchimedean place, let R be the ring of integers of k, and let r be
a uniformizer (a generator of the maximal ideal).
(a) Let P E R[XJ, and let xo E R be an element satisfying

P(xo) = 0 (mod 7r) and P'(xo) ; 0 (mod 7r).

Prove that there exists a unique x E R satisfying

P(x) = 0 and x = xo (mod 7r).

This result is the classical version of Hensel's lemma. (Hint. Construct x
as the limit of a sequence xo, xi, X2.... satisfying

P(xm) = 0 (mod 7r'"+1) and xm = xm-3 (mod 7r'))
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(b) Generalize part (a) a s follows. Let Pi, ... , P,. E RIX,, ..., X,1 be a
collection of polynomials, and let xo E R' be a point such that

Pi(xo)=...=P,(xo)-0(mod r),

and such that the matrix

( aP` (xo) (mod 1r)/ax;
1<J<a

has rank r. Prove that there exists a point x E R' satisfying

and x - xo (mod r).

(c) Let Y be a variety defined over k, and let k be the reduction (mod jr).
Let P E Y(R/r) be a nonsingular point of Y. Prove that there is a point
P E Y(k) whose reduction modulo r is equal to P. In particular, if Y(R/r)
contains a nonsingular point, then Y(k) is nonempty.
(d) Let A be an abelian variety defined over k with good reduction at r.
Let m be an integer not divisible by r, and assume that all of the m-
torsion of A is k-rational (i.e., A- C A(k)). Prove that the reduction map
A- -. A. is onto and, using Theorem A.7.2.7, conclude that A,,, A,,,.
(Note that Am denotes the m-torsion on A, not the reduction of the m-
torsion of A.)
(e) Use the results of this exercise to give another proof of Theorem C.1.4.

C.10. This exercise provides a scheme-theoretic proof of Theorem C.1.4. It
requires knowledge of some nontrivial scheme theory. Let m > 2, let A
be an abelian variety defined over a number field k, and let S be a finite
set of places of k containing all places of bad reduction of A and all places
dividing m.
(a) Show that there exists an abelian scheme A Spec(Rs) with generic
fiber A/k. That is, A is a group scheme over Spec(Rs) such that the
fiber over every closed point of Spec(Rs) is an abelian variety, and such
that the fiber over the generic point is A/k. Prove further that there is
a Spec(Rs)-morphism [ml : A A that induces multiplication-by-m on
every fiber.
(b) Let G be a subgroup of A[m1(k), and let v be a place of Rs. Prove
that the reduction map G - is injective. (Hint. Use the fact that
if B is an abelian variety of dimension g, and if m is relatively prime to the
characteristic of the base field, then B[m] (Z/mZ)29.)

C.11. Inversion of formal power series.
This exercise sketches a proof of Lemma C.2.2. Let R denote a commutative
ring.
(a) Let F(T) = aT + E R[Tj be a formal series with a E R. Prove
then there exists a unique formal power series G(T) E R[T] satisfying

C(T) = a-1T + - and F(G(T)) = G(F(T)) = T.
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istruct G as the limit of a sequence of polynomials Go, G1, .. .
(Gn(T))=-T (mod T"+1m 1and Gn+1(T)=G"(T) (mod Tn+1).

imilarity to Hensel's lemma (Exercise C.9).) J1

ze (a) to the several-variables setting. Let F = (F1,... , F,,,)
de of formal series in m variables, and write

r'i =ai1Ti +.. +aimTm+ E R(T,,...,Tm].

.t the Jacobian determinant det(ail) is in R'. Prove that
a unique m-tuple G = (Gl , ... , Gm) of formal series Gi E

"] with no constant terms such that for all 1 < i, j < m,

...,Gm(T)) =Ti and Gj(Fi(T),...,Fm(T)) =Ti

the following curves C/Q, let J = Jac(C) and find as accurate
you can for the Mordell-Weil rank of J.
y2 = x° - x. Find bounds for rank J(Q) and rank J(Q(i)).

irssns. use Theorem C.1.9 and show that rank J(Q(i)) = 2 rank J(Q).)
(b) Let C : y2 = xe -1, and let n = e2'""3 be a primitive cube root of unity.
Find bounds for rank J(Q) and rank J(Q(11)). (Hint. Use Theorem C.1.9
and show that rank J(Q(n)) = 2 rank J(Q).)
(c) Let C : y2 = x(x2 - 1)(x2 - 4). Find a bound for rank J(Q).

C.13. Let P(x) E Q[x] be a polynomial with simple roots, let p be a prime
number, and let K = Q(exp(21ri/p)). Let C be the smooth projective
curve birational to the affine curve y° = P(x), and let J = Jac(C). Prove
that rank(J(K)) = (p - 1) rank J(Q).

C.14. Let p be a prime number, let n > 1 be an integer, and let

p,, : GL(n, Z) --- GL(n, FD)

be the reduction modulo p map. Prove that ker(pp) is trivial if p > 3, and
consists of the elements of order 2 in GL(n, Z) when p = 2.

C.15. Let C/Q be the smooth projective curve birational to the affine curve
2y2 = x° - 17. This exercise sketches a proof that 0 0 for all
places v of Q, yet C(Q) = 0.
(a) Show that C has good reduction at all primes except 2 and 17, and
that C(F9) contains a nonsingular point for every prime p. Conclude that
C(Qp) i4 0 for all primes p. (Hint. Use Weil's estimate (Exercise C.4) to
get points modulo p, and then Hensel's lemma (Exercise C.9) to lift them
to p-adic points.)
(b) Check that C(R) # 0.
(c) Show that the two points at infinity on C are not rational over Q.
(d) Suppose that C(Q) contained a point. Prove that there would then
exist coprime integers a, b, c satisfying a4 - 17b4 = 2c2.
(e) Let a, b, c be as in (d). Prove that c is a square modulo 17. (Hint. For
odd p dividing c, use the fact that p is a square modulo 17 if and only if 17
is a square modulo p.) Conclude that 2 is a 4th power modulo 17. This
contradiction implies that C(Q) = 0.
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C.16. Let p be an odd prime, let r and a be integers satisfying 0 < r, a, r + a < p,
and let C = Cr,. be the smooth projective curve birational to vp = ur(1 -
u)' that was studied in Exercise C.6. Recall that C has one point Qo lying
over (0, 0) and one point Q. at infinity. Also let F be the Fermat curve
F: x"+yp=1.
(a) Let ¢ be the map

0: F C, (x,y) (xp,xrY8).

Show that 0 is a well-defined unramified Galois covering of degree p.
(b) Let ( = exp(2i7r/p), and define maps a(x, y) = ((x, y) and Q(x, y) _
(x, (y). Note that a, ,O E Aut(F). Let u > 1 be an integer satisfying ru
-a (mod p). Prove that a",3 generates the Galois group of the covering 0.
(c) Suppose that rs' = is (mod p). Prove that Cr,, is isomorphic to Cr,,,,.
(Hint. Write (r,, a') = k(r, s) + p(i, j) and consider the map (u, v)
(u, Vku`(1 - u)3.)
(d) Let D. be the divisor at infinity on F (i.e., the sum of the p points on
xp + yp = zp where z = 0). Prove that for any d > 1, the set of functions

{x'"y"I0<m, 0<n<p-1, 0<m+n<d}

is a basis of L(dD ).
(e) Let Pi, ... , Pd E F, and let y = au fl with d < u < p/d. Prove that a
divisor of the form

(>>('P))
d p-1

D= -dD
,_1 j=O

cannot be principal unless all the Pi's have one their coordinates equal to 0.
(Hint. Suppose that D = div(f) with f = E a,nnxr"yn. Use the invariance

of D by y to show that f o y = Ck f for some k, and deduce that f is a
monomial in x,y.)
(f) Let 17 = e2,'16 be a primitive 6th root of unity. Let P = and
P = (r7, r7), and verify that P, P E F.
(g) Let P, ,P be as in (f), and let Q = 46(P) and Q = ¢(P) be their images
in C. Assume that either 3p/4 < a < p - 4 or 3 < a < p/4 - 1. Prove
that the divisor class of (Q) + (Q) - is a point of infinite order in
Jac(C1,,)(Q). (Hint. If it were a torsion point, Exercise C.6 would say that
the divisor class of 2(Q) + 2(Q) - must be a multiple of the class of
(Qo) - Show that this is not possible.)
(g) Assume that 2 < a < p - 2 and that a -A (p - 1)/2. Suppose fur-
ther that Jac(C)(Q)wr °-' Z/pZ. (This is, in fact, true if p > 7.) Prove
that the divisor class of (Q) + (Q) - 2(Q,,,) is a point of infinite order in
Jac(Ci,,)(Q)
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C.17. Geometric Group Law on WC(A/k).
Let A be an abelian variety defined over a perfect field k, and let Y/k
and Y2/k be two principal homogeneous spaces for A/k. Denote the action
of A on Y, by

Y, x A - Y (y, a) y +a.

We also recall that for any yo E Y,(k), the map a ,-- yo + a is a k-
isomorphism A Y,.
(a) Prove that there exists a homogeneous space Y3/k for A/k and a k-
morphism f : Y x Y2 Y3 satisfying

f(y, + ai,y2 + a2) = f(y),y2) + al + a2

for all (y1,y2)EY1 xY2andall al,a2EA.

(b) Prove that Y3 is unique up to k-isomorphism of homogeneous spaces.
(c) Prove that Y3 represents the sum of Y and Y2 as elements of the
cohomology group H'(Gk,A(k)) (see Proposition C.5.3). In other words,
the map (f Yl], (Y)) ,-. 1Y31 on k-isomorphism classes of homogeneous spaces
coincides with the group law on H' (Gk, A(k)).

C.18. Let f (x) = fly i' (x - a,) E k[x] be a polynomial with distinct roots, and
let C be the hyperelliptic curve birational to y2 = f (x). Note that C has
a single point oc at infinity. Let P, = (a 0) for 1 < i < 2g + 1, and let

W = {P1, P2i..., P29-1, 001.

(The set W is the set of Weierstrass points of C.) Let

Div°v(C) = { D = >2 n, (Q,) E Div(C) deg(D) = 0 and Q, V W} .

In other words, Divow(C) is the set of divisors of degree 0 with support
disjoint from W. Finally, let J = Jac(C), let L = k[Tll(f (T)), and let
A =

(a) Define a map

4' : Divw(C) ---. A, >n,(Q,)'---' fJ(x(Q,) - T)".

Prove that if D, D' E Div°v(C) are linearly equivalent, then 4>(D) = 4>(D').
(Hint. Use Weil's reciprocity law, Exercise A.4.16.)
(b) Show that every divisor D E Div(C) of degree zero is linearly equivalent
to a divisor in Divow(C). Use this and (a) to show that $ induces a well-
defined homomorphism 4> : J(k) A.
(c) Prove that the kernel of 4? : J(k) -. A is equal to 2J(k).
(d) Prove that the image of 0 :.1(k) - A is contained in the kernel of the
norm map L'/L'2 -. k'/k'2.
(e) Assume now that k is a number field, and let S be a set of places con-
taining the places over 2 and the places of bad reduction of J. Let A(2, S)
denote the subgroup of elements of A = L'/L2 whose square roots gener-
ate extensions of k that are unramified outside S. Prove that the image of
4): J(k) -. A is contained in A(2, S).
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C.19. Let C be a smooth projective model of the curve y2 = x(x - 2)(x -
3) (x - 4)(x - 5) (x - 7) (x - 10). Use the previous exercise to show that the
points on Jac(C) corresponding to the divisor classes of (1,36) - (oo) and
(6,24) - (oo) are two independent points of infinite order. Conclude that
Jac(C)(Q) contains a subgroup isomorphic to (Z/2Z)6 X Z2. (In fact, one
can show that Jac(C)(Q) has rank exactly 2; see Schaefer 11).)



PART D

Diophantine Approximation and
Integral Points on Curves

He was a poet and hated the approximate.
R. M. Rilke, The Journal of My Other Self

The fundamental problem in the subject of Diophantine approximation is
the question of how closely an irrational number can be approximated by a
rational number. For example, if a E R is any given real number, we may
ask how closely can one approximate a by a rational number p/q E Q?
The obvious answer is that the difference (p/q) - aI can be made as small
as desired by an appropriate choice of p/q. This is nothing more than the
assertion that Q is dense in R. The problem is to show that if the difference
is small, then p and q must be large.

More precisely, let a E R be a given real number, and let e > 0 be a
given exponent. We ask whether or not the inequality

q-a <
qe

can have infinitely many solutions in rational numbers p/q E Q. For ex-
ample, a theorem of Dirichlet says that the inequality

P_ -a
q

1
< 2

9

always has infinitely many solutions, while a result of Liouville says that
if a is an algebraic number of degree d over Q, and if e > d, then the
inequality

Iq -aI qe
has only finitely many solutions. We will prove these elementary results of
Dirichiet and Liouville in Section D.1.

In general, the approximation exponent of a real number a E P is
defined to be the smallest number r(a) with the property that for any
exponent e > r(a), the inequality

q-a <qe



300 D. Diophantine Approximation and Integral Points on Curves

has only finitely many solutions in rational numbers p/q E Q. Thus Dirich-
let's theorem says that r(a) > 2 for every real number a, and Liouville's
theorem says that if a is an algebraic number of degree d, then r(a) < d.

The exponent in Liouville's theorem for algebraic numbers of degree d
has been successively improved by a number of mathematicians, as indi-
cated in the following brief table:

Liouville 1844 r(a) < d

Thue 1909 r(a) < Zd+ 1

Siegel 1921 r(a) < 2f
Gelfand, Dyson 1947 -r (a) < 2d

Roth 1955 r(a) = 2

Thus Roth's result can be stated in the following way:

Roth's Theorem. For every algebraic number a and
every e > 0, the inequality

E 1
q - a <_ qa+E+E

has only finitely many rational solutions p/q E Q.

Equivalently, for every e > 0 there exists a constant C = C(a, E) > 0 such
that for all p/q E Q,

p C(a,e)
q - a > q2+E

Roth's theorem has been extended in various ways, such as allowing sev-
eral (possibly nonarchimedean) absolute values and taking approximating
values from a number field K rather than from Q. Our main goal in
this chapter is to prove a general version of Roth's theorem. We will also
give two important Diophantine applications. We will show that the equa-
tion u + v = 1 has only finitely many solutions in S-units of a number
field, and we will prove Siegel's theorem, which says that an affine piece of
a curve of genus at least one has only finitely many S-integer points.

D.1. Two Elementary Results on Diophantine Approximation

In this section we prove two elementary results that illustrate some of the
techniques used in the study of Diophantine approximation. The first result
says that we can find rational numbers that are fairly close to a given real
number. It shows, in particular, that the exponent 2+e in Roth's theorem
is essentially best possible.
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Proposition D.1.1. (Dirichlet 1842) Let a E R with a V Q. Then there
are infinitely many rational numbers p/q E Q satisfying

P
- a

q

1
< 2

4

Remark D.I.I.I. The proof that we will give does not provide an efficient
method of constructing good approximations to a given real number. The
classical theory of continued fractions provides such a method (see Exer-
cise D.18). A classical result of Hurwitz says that the 1/q2 in Dirichlet's
estimate (D.1.1) may be replaced by 1//55g2, and that this is best possible.
For further information, see Exercise D.3 and the references cited there.

PROOF (of Proposition D.1.1). For any integer Q > 1, consider the set of
real numbers

{qa-[ga]Iq=0,1,...,Q},
where [t] means the greatest integer in t. Since a is irrational, this set
consist of Q + 1 distinct numbers in the interval between 0 and 1. If we
divide the unit interval into Q line segments of equal length, the pigeon-
hole principle tells us that one of the segments must contain two of the
numbers. In other words, the set contains two numbers whose distance
from one another is at most 1/Q, so we can find integers 0 < ql < q2 S Q
satisfying

(qia - [qia]) - (q2a - [q2a]) I < 1

A little algebra and the estimate 1 < Q2 - ql < Q gives

[q2a] - [qla] - a
g2-gi

< 1 <_

(q2 - qi)Q (q2 - qi)2.

Thus for each Q we obtain a rational approximation of a with the desired
property. Further, by increasing Q we can make the left-hand side as
close to 0 as we wish, which means that we obtain infinitely many distinct
rational approximations.

Dirichlet's theorem (Proposition D.1.1) tells us that we can always
approximate a by a rational number p/q to within 1/q2. The next result,
due to Liouville, gives an estimate in the other direction.

Proposition D.1.2. (Liouville 1844) Let a E Q be an algebraic number
of degree d = [Q(a) : Q] > 2. Fix a constant e > 0. Then there are only
finitely many rational numbers p/q E Q satisfying

9 -
al < qa+c (*)
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PROOF. Although the proof of Liouville's result is very elementary, it does
include many of the important features that will reappear in the proof of
Roth's theorem. To emphasize the similarity, we have broken the proof
into several steps. The reader might compare Steps I, II, III, and IV with
the material in Sections 4, 5, 6, and 7 of this chapter.
Step I: Construction of a Polynomial
The first step is to construct a polynomial that vanishes at a. An obvious
choice is to take the minimal polynomial of a over Q. Thus we let P(x) E
Z[x) be a polynomial of degree d with P(a) = 0.
Step II: The Polynomial Must Vanish at p/q
Suppose that p/q closely approximates a and that q is large. We want to
show that P(p/q) = 0.

First we use the fact that P(x) has degree d and has integer coefficients
to deduce that

PF N
q) qd

for some integer N E Z.

Next we use Taylor's theorem and the triangle inequality to give an
upper bound for P(p/q). We expand P(z) around x = a as

P(x)

dxi(a)(x-a)`.
a-1

Note that there is no constant term, since P(a) = 0, so if p/q satisfies the
inequality (*), then P(p/q) will be small. Explicitly, we get the estimate

Ilq

Iq-ald1ax1

1d'P
i! dxi (a)

= B(a)

P
- a

q

p - aI B(a)
q qd+`

i-1\

Here B(a) is a positive constant that depends only on a.
It follows that INI S B(a)/qe. But N is an integer, and there are no

integers strictly between 0 and 1. This proves:

If

4

satisfies (*) and q > B(a)1/e, then P (0 = 0.

Step III: The Polynomial Does Not Vanish at p/q
In this third step we need to verify that P(p/q) is not zero, which will
contradict the conclusion of Step II. In our case, the nonvanishing of P(p/q)
is trivial, since P(x) is the minimal polynomial of a over Q, so P(x) is
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irreducible in Q[x] and thus certainly cannot have any rational roots. Do
not be misled by the simplicity of this step. The theorems of Thue-Siegel-
Roth require the use of polynomials of more than one variable, and then
the nonvanishing step becomes the most difficult part of the proof.
Step IV: Completion of the Proof
We suppose that the inequality (*) has infinitely many solutions p/q E
Q and derive a contradiction. Under this hypothesis, we can choose a
solution pn/qn whose denominator satisfies qn > B(a)n/", where B(a) is
the constant described in Step II. Next we let P(x) be the polynomial
constructed in Step I. From Step II we see that P(pn/qn) = 0, while Step III
tells us that P(pl/qn) ,E 0. This contradiction tells us that (*) can have
only finitely many solutions. 0

Remark D.1.2.1. Liouville's estimate (D.1.2) says that an algebraic num-
ber cannot be too closely approximated by rational numbers. Liouville used
this result to prove the existence of transcendental numbers. (See Exer-
cise D.5.) However, the exponent d+e is too large for most applications to
Diophantine equations. For example, in order to prove that the equation

xd-2yd=m
has only finitely many solutions in integers X, y E Z, one needs Liouville's
estimate with an exponent of d - E. The improvements of Liouvile's result
given by Thue, Siegel, and Roth thus have profound Diophantine conse-
quences.

Remark D.1.2.2. As we have stated it, Liouville's result (D.1.2) gives an
exponent d + e. The same argument actually gives an effective constant
C(a) > 0 such that

p - a > C(a) for all P
Eq qd q

(See Exercise D.4.) We have elected to state Liouville's theorem with the
weaker exponent d + e in order to emphasize its relationship to the other
results in this chapter.

Remark D.1.2.3. Dirichlet's estimate (D.1.1) says that every irrational
number a can be approximated by rationals to within 1/q2. It is natural
to ask whether for algebraic numbers this is the best possible result. Thus
if a is an irrational algebraic number, does there exist a constant c(a) > 0
such that

P a > c()
for all P E Q?

q q2 q
Liouville's result (D.1.2) (see also remark D.1.2.2 above) says that this is
true if a is quadratic, but if a is an algebraic number of degree strictly
greater than 2, then it is conjectured to be false. However, there is not
a single such number (e.g., C2) for which it is known to be false. See
Exercise D.18 for further information.
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D.2. Roth's Theorem

Roth's theorem, as stated in the introduction to this chapter, asserts that
every algebraic number a has approximation exponent 2. That is, for
any e > 0, there are only finitely many rational number p/q satisfying

p

q

More generally, one might allow the approximating values to be taken from
a number field other than Q, and one might replace the single archimedean
absolute value with several absolute values. This leads to the following
general formulation of Roth's theorem, which we will prove in this chapter.

Theorem D.2.1. (Roth's theorem) Let K be a number field, let S C MK
be a finite set of absolute values on K, and assume that each absolute value
in S has been extended in some way to K. Let a E K and e > 0 be given.
Then there are only finitely many,3 E K satisfying the inequality

1

fl mini II/3 - all,,, l} < HK(Q)2+e
vE S

(*)

The numerous details required for the proof of Roth's theorem will oc-
cupy us for the next several sections. To assist the reader, we begin with a
brief overview of the proof, which proceeds by contradiction. For simplicity,
we will assume that S contains a single absolute value v. So we suppose that
there are infinitely many solutions,3 E K to the inequality (*). We choose
solutions a1, 02,. .., 0,,, to (*) with the property that HK (i31) is large, and
each HK(A+1) is much larger than HK (0,). Next we construct a polyno-
mial P(XI, ... , with integer coefficients that vanishes to high order at
the point (a, a, ... , a). Using the Taylor expansion of P around (a, ... , a)
and the fact that the /,'s are close to a, we see that 11 P(01, .. , /3,,,)I I is so
small that it must vanish, and the same is true of many of its derivatives.
In other words, P must vanish to fairly high order at (01.... ,,3,,,). Finally
we apply Roth's lemma, which says that P cannot vanish to high order
at (01,...,13,), to obtain the desired contradiction. Roth's lemma, which
is proven in Section D.6, is technically the most difficult part of the proof.

Before beginning the proof of Roth's theorem, we are going to make
two simplifications. The first is very elementary and says that it suffices
to prove Roth's theorem for algebraic integers. This will make some of our
later calculations easier.
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Reduction Lemma D.2.1.1. If Roth's theorem (D.2.1) is true for all
algebraic integers, then it is true for all algebraic numbers.

PROOF. Let a be an algebraic number, and suppose that Roth's theorem is
false for a. This means that there are infinitely many /3 E K satisfying the
inequality (*). The set S has only finitely many subsets, so possibly after
replacing S by one of its subsets, we may assume that there are infinitely
many Q E K such that

ITlli3-all. <_
1

H (Q)2+E'

vES K

Choose an integer D > 0 such that Da is an algebraic integer, and
let /3 E K be a solution to (*) with HK()3) > HK(D)1+6/e. It is clear from
the definition of the height that HK(D/3) < HK(D)HK(/3). Further,

[I IIDIIv <- fi max{llDll.,1} = HK(D).
vES vES

Hence

HK(D)J1 11D/3 - Dall,,< HK(,6)2+e
vES

_ HK(D) 1

HK(13)2+e/z ' HK(3)-/2

HK (D)
(HK(DQ)/HK(D))2+,/2 (HK(D)1+s/e)E'2

1

HK(D/3)2+e/2

Thus D/3 is a close approximation to Da in the sense that the inequality (*)
is true when a,6, a are replaced by Da, D/3, a/2. Hence the falsity of Roth's
theorem for a implies its falsity for the algebraic integer Da. This proves
that if Roth's theorem is true for algebraic integers, then it is true for all
algebraic numbers. 0

The next theorem closely resembles Roth's theorem, but it replaces
the condition that the product 11 11,6 - all,, be small with the condition
that each of the differences lla - all,, be small. This idea of reduction to
simultaneous approximation is due to Mahler [1], who was also the first
one to study Diophantine approximation for p-adic absolute values.

Theorem D.2.2. Let K be a number field, let S C MK be a finite set of
absolute values on K with each absolute value extended in some way to K.
Let a E K and e > 0 be given. Suppose that

S [0,1] is a function satisfying t;,, = 1.
VES
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Then there are only finitely many /3 E K with the property that

IIQ - ally C 1
Hx (Q)(2+E) .

for all v E S. (**)

It is fairly clear that Theorem D.2.1 implies Theorem D.2.2, but the
converse is a bit trickier.

Reduction Lemma D.2.2.1. Theorem D.2.1 is true if and only if The-
orem D.2.2 is true.

PttooF. Suppose first that Theorem D.2.1 is true. Let C : S [0, 1]

be a function as described in Theorem D.2.2, and suppose that /3 E K
satisfies (**). Multiplying the estimate (**) over v E S and using >v C. = 1
shows that ft satisfies the inequality (*), so Theorem D.2.1 tells us that
there are only finitely many Q's.

Next suppose that Theorem D.2.2 is true, and suppose that there are
infinitely many numbers B E K satisfying (*). We will derive a contra,
diction, which will prove the other implication. The idea is to construct
several functions f of the sort described in Theorem D.2.2 so that each /3
satisfies (**) for at least one of our e's.

Let s = #S. We consider the collection of maps

S-+[0,1] of the form {v= with a,EZ,a,, >0,andEa,=s.
vES

It is clear that there are only finitely many such maps. We will denote this
collection of maps by Z.

Now suppose that Q E K satisfies (*). We want to show that Q sat-
isfies (**) for one of the maps in Z. For each v E S, define a real number

0 by the formula

min{IIQ-all 11= 1
OT

Multiplying over v E S and comparing with (*), we see that EVES At,(/3) >
1,so

E[2sAT,(Q)] > >(2sJk,(Q) - 1) = 2s AT,(Q) - s > s.
vES vES VES

This implies that we can find integers with the property that

0 < b, 2s,\,, (fl) and 1: bVW) =,S.
vES

Then the function C : S -- [0,1) defined by C,, = is in the set Z.
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We have now proven that if i3 E K satisfies (*), then p satisfies (**) for
at least one of the functions f in Z. But by assumption, for any given l; there
are only finitely many /3's satisfying (**), and it is clear that Z contains
only finitely many functions. Therefore (*) has finitely many solutions.
This completes the proof that Theorem D.2.2 implies Theorem D.2.1.

0

D.3. Preliminary Results

In this section we will prove a number of preliminary results that will
be needed at various points during the proof of Roth's theorem. Other
than (D.3.6), none of these results is particularly difficult to prove, but
taken together they form a rather lengthy whole. So we urge the reader
to study only the definitions and statements of results for now, and then
proceed to the actual proof of Roth's theorem that begins in the next
section. To facilitate this procedure, we have collected the main results at
the beginning and relegated the proofs to the end of the section.

We will be working especially with polynomials having integer coef-
ficients, since ultimately all proofs in Diophantine approximation, from
Liouville's elementary result to Roth's theorem, depend on the fact that
there are no integers strictly between 0 and 1. We will be concerned with
both the size of the coefficients and the partial derivatives of these polyno-
mials, which prompts us to set the following notation.

Definition. Let P(X1, ... , X,,,) E RIX1 i ... , Xm] be a polynomial and
let (ii, ... , im) be an m-tuple of nonnegative integers. We define

JP1 = maximum absolute value of coefficients of P,

1 a'i+--+im

air ;mP_

The normalized partial derivative 8,t-..,_P is designed to cancel, as
much as possible, the common factors that appear in the coefficients when
we differentiate. This is the content of part (a) of the following elementary
lemma, while part (b) gives a bound for the coefficients of the derivative.

Lemma D.3.1. Let P(X1, ... , Xm) E Z[X1 i ... , X,,,) be a polynomial
with integer coefficients, and let = (i1, ... , i,,,) be an m-tuple of nonnegative
integers.
(a) a,....,,,,PEZ(XI.... ,Xm].
(b) If degx,, (P) < rh for each 1 < h < m, then

Iai,...i,,,Pl <
2r'+...+r-

Pl
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Remark D.3.1.1. Lemma D.3.1(b) gives one reason why we use ai,..,i,,,
instead of the more natural operator Di,...i,,, = ail+---+im/aXi1 ... X;,1
Both operators map the polynomial ring Z[X1 i ... , Xm] to itself. However,
if we use Di,...im, then Lemma D.3.1(b) would be replaced by the weaker
estimate

jDi1...imPI S (r1!)(r2!) ... (r.!)IPI.
Now r! is approximately (r/e)r by Sterling's formula. The reader may
check that the improvement from r! to 2' is vital in the estimates used in
the proof of Roth's theorem.

There are other reasons to prefer the a operators. Taylor's formula is
simpler,

P(X1i ... , Xm)
rl r-

E ... E C7i1...imP(a1i ... , a,n)(Xl - a1)t' ... (Xm - am)tm.
i1=1 im=1

Leibniz's formula for the derivative of a product is also nicer,

0..(P1(X)P2(X)...P.(X)) I&P1(X)...aj.P.(X),

as is Cauchy's bound that now reads Ia,aP(a)j < Mr-", where M =
maxlz-a1<r IP(z)I. We also point out that (even in characteristic p) we
have

(X - a)r divides P(X) e=* 8iP(a) = 0 for all i < r.
The only real advantage of the D operators is that they satisfy the relation
Dil i.m Djj+j1...im+jm, while the composition of 0 operators is
somewhat more complicated.

The key to proving Roth's theorem is estimating the order to which a
polynomial in many variables vanishes at certain points. It is thus impor-
tant to have a means of measuring this order of vanishing. Of course, by
allowing the degree of a polynomial to be high, we can force it to vanish
to high order, so it makes sense to look at some sort of weighted order of
vanishing. This idea serves to motivate the following definition.

Definition. Let k be any field, let P(X1i ... , Xm) E k[X1, ... , X,,,] be a
polynomial, let (al, ... , a,) E km be a point, and let r1,.. . , rm be positive
integers. The index o f P with respect to (a1, ... , am; rl, ... , rm), denoted
by Ind P, is the smallest value of

it i2 im
ri r2 Tm

such that

ail...im P(a11... , am) 76 0.

(If P is the zero polynomial, we set the index equal to oo.)
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We make two observations. First, Ind P > 0, with equality if and only
if P(al,... , a,,,) # 0. Second, for any nonzero polynomial of multidegree
less than or equal to (r1 , ... , r,), we have Ind P < m, with equality if and
only if

P(Xi,..., Xm) = c(X1 - al)r' ... (Xm - an)rm.

Remark. There is no connection a priori between the weights r, with
respect to which the index is computed and the degrees of P, but in practice
the index is always applied to polynomials P with degX, P < r,.

The following lemma gives some elementary properties satisfied by the
index. Notice that (b) and (c) say that the index is a discrete valuation
on the polynomial ring k[X 1i ... , X,,,], generalizing the usual "order of
vanishing" valuation on k[X].

Lemma D.3.2. Let P, P E k[X1i ... , X,,,] be polynomials, and fix inte-
gers Ti,. .. , r,,, and a point (a1, ... , a,,,) E km. The index with respect to
(a 1, ... , am; rl, ... , r,,,) has the following properties:

(a) Ind(8,,...,_ P) > Ind P - (r,it + + i") .

Tm
(b) Ind(P+P') _> min{Ind P, Ind P'}.
(c) Ind(PP) = Ind P + Ind P'.

The following important lemma is in essence nothing more than the
assertion that there are no integers strictly between 0 and 1. ('Ib see why,
consider what it says for K = Q, S = M,7, and a E Q a rational number
with jai < 1.)

Lemma D.3.3. (Liouville's inequality) Let K/Q be a number field,
let a E K' be a nonzero element of K, and let S C MK be any set of
absolute values on K. Then

min{Ijajj,,, l}
1

>_ NK(a)-
VES

If a is an algebraic integer of degree d over Q, then every element
in the ring Z[a] can be uniquely written as a Z-linear combination of the
basis elements 1, a, a2.... , a''. The next lemma tells us how large the
coefficients become when we write a power at as such a linear combination.

Lemma D.3.4. Let a be an algebraic integer of degree d over Q, and let

+adEZ[X]

be the minimal polynomial of a over Q. Then for every l > 0 we can write

ae = a, e) ad-1 + a(t) ad-y + ... + ad_ l a + ad1l
with integers
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ait) E Z satisfying I a;ell < (jQj + 1)t.

In order to create a polynomial P whose index is large at some point,
we will have to choose the coefficients of P such that many of its derivatives
are equal to 0 at that point. The next two lemmas, which are purely
combinatorial in nature, will help us determine the number of conditions
that the coefficients of P must satisfy. The first is very elementary; it
counts the number of monomials of degree r in m variables and has been
implicitly used in Parts A and B.

Lemma D.3.5. Let m > 1 and r > 0 be given integers. Then there are
exactly

Cr+m-1
r )

m-tuples of integers (i1i ... , i,,,) satisfying the conditions

ih>Oforall1<h<m, and

The next combinatorial lemma, which is somewhat more difficult to
prove, admits a probabilistic interpretation. If we "randomly" choose an m-
tuple with 0 < ih < rh, then we would expect each ih/rh
to be approximately equal to 2, and so we would expect Eih/rh to be
approximately m/2. Lemma D.3.6 quantifies this intuition by saying that
the probability of a random m-tuple (i1, ... , i,,,) satisfying

1 M ih 1

M -i < 2-E
h=1

rh

is at most eFor large values of m, this probability will be quite
small. This type of estimate is a version of Chebyshev's inequality in
probability theory. See Figure D.1 for an illustration with m = 2. It

-,inted out that the average value .1 is quite important,
ie that "explains" the 2 in Roth's theorem!

et rl,... , r,,, be positive integers and fix an 0 < E < 1.
lost

(r1 + 1) ... (rn, + 1) e-E2m/4

(i1,...,i,) in the range

< r1i 0 < i2 < r2, ..., 0 < im < r.
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12

11

Lattice points satisfying 2 I rl + r2 I < 2 - F
1 2 -

Figure D.1

that satisfy the condition

tl tm in
em.

r1 r,,, 2

This concludes the description of the preliminary results needed for
the proof of Roth's theorem. The remainder of this section is devoted to
the proofs of these results.
PROOF (of Lemma D.3.1). The elementary but crucial observation is

1 d'Xj _ Xti-i _ Xi-1
i! dXi i! - (i

where the combinatorial symbol

j j!
i i!(j - i)!

is an integer. If j < i, we define (s) to be zero as usual.
Write the polynomial P as

P(X1,...,Xm) _ ... P71,...JmX11 ...
J1=0 jm==0

Differentiating P, we obtain

r1 rm

ai,...i-P = E ... 0 Pj......
j1=0 j-=0

r1 r-
_ ... Pj1,...,

j1=0 j.,.=0

1 ai=Xj 1 ai-X-jm
m

i1! OXi1 (im! OXm

m (am Xi1-i:...Xjm-imJ JJ 1 m
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The combinatorial symbols are integers, so this proves part (a).
To prove (b), we use the binomial formula for (1 + 1)j to estimate

9 _ j
t

k=O
1C

Hence taking the maximum over all m-tuples (jl,..., j,,,) of integers satis-
fying

0<j1<r1i ... 0<7m5 ryn,

we find that

(ii)(irn)
I8i1...imPI maPj.

< maxIPj, ...,imI max2j'+...+jm = IPI.2ri+....Frm.

This completes the proof of (b).

PROOF (of Lemma D.3.2). To ease notation, we will write

a = (al.... , am)-

(a) Let Q = 8i,...i,,,P. Using the definition of the index, we can choose
an m-tuple (j,... , jm) such that 8j,...jmQ(a) # 0 and such that the index
of Q at (al, ...,am; r1 i ... , rm) is equal to jl /rl + - + ,gym/rm. Then

8j,.j-Q(a) 54 0 8i,+ji,...,im+jmP(a) 96 0
=1 +j1 +... + im +?m > IndP

r1 rm

IndQ= +..}.>IndP - xl +.+ a".
rl rm r1 rm

(b) Choose an m-tuple (j1, jm) such that 8j, ...jm (P + P) (a) 96 0 and
the index of P+P at..(a1, . , am; r1,. .. , rm) is equal to jl/rl+ +jm/rm.
Then either 8j,...jmP(a) # 0 or 8j,...jmP'(a) 0 (or both), which implies
that jl/r1 + + jm/rm is greater than or equal to at least one of Ind P
or Ind P. Hence

Ind(P+P') = 71 min{Ind P, Ind P'}.rl rm

(c) Using the product rule, we can write

8j1,...,jm(PP) = ... E C1,..... im(ai1...i-P)(8i;...i'P')
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for certain positive integers C1,..... 1m. (In fact, all of the C's are equal to 1;
see Exercise D.7 or the remarks on derivations.)

Choose a n m-tuple (j1, ... , jm) such that (PP') (a) 96 0 and
such that

Ind(PP') = 71 +...+ 9m at (a1i...,am;rl,...,rm).
r1 rm

Then there exist m-tuples (i1,. .. , im) and (ii, ... , Lm) with 0i1...i,,, P(a)
0 and P'(a) 0. Hence

Ind P < th and Ind P' < Y i!'h=1 rh h=1 rh

and adding these inequalities gives Ind P + Ind P' < Ind(PP').
To get the inequality in the other direction, we look at the set of m-

tuples (i1,. .. , im) satisfying

811._.1mP(a) 0 0 and
m .

Ind P = 1: th.
h=1 rh

We order these m-tuples lexicographically and choose the smallest one, call
it (11i ... , im). This means that if (i1,.. . , im) is another such m-tuple, then
there exists a k > 1 such that

ik=ik for all 1 <h<k,andik>i:k.

We similarly choose an m-tuple (:1, ... , im) for P', and we set

Then

a31...,m(PP')(a) = ' 1...i;, (a) 0,

since all of the other terms will be zero. Therefore,

Ind(PP') < 7h = ih + th = Ind P + Ind P.
h=1rh h=1 rh

This is the other inequality, which completes the proof that Ind(PP') =
Ind P + Ind P.

PROOF (of Lemma D.3.3). The product formula (B.1.2) says that

1, which implies that 1 = f
vEMK VEMK II IIv
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(This is where we use the fact that a is nonzero.) Using this, we compute

HK(a) =fl max{IIally,l} _ f Ilally-max{1, I- _alk,vEMx
r 11

max j 1'
Hally J min{ llllally} y min{lllkaly}

Taking reciprocals gives the desired result.

PROOF (of Lemma D.3.4). The proof is by induction on f. The assertion
is clearly true for 0 < t < d - 1, since for t in this range we can take all of
the a;t)'s to be either 0 or 1.

Assume now that the lemma is true for at. We compute

d
at+1 = a , at = a a(1)ad-i

i
i=1

d

= a(t)ad + a(t)ad+1-i

1 E
i=2

d d

= apt) -aad-i + E a;t)ad+1-i using Q(a) = 0
i=1 i=2

It follows that

and so

d
/_ 1 -alt)ai + a ?1 1 ad-', where we set 0.

a`t+1) _ -alt)ai + a,+

la(t+1) l < la(t) + Iaft) I < max { la(t) l la(t) I } - (lai I -1- 1)I 1 aiI ,+1 1 + 1+1

(M + 1)t - (IQI + 1) by the induction hypothesis

(IQI +
1)t+1

0
PROOF (of Lemma D.3.5). This can be proven by a straightforward in-
duction, but we will give a more illuminating counting argument. For any
given m-tuple we replace each integer ih by it, dots, making
sure to leave all of the commas in place. For example, we would represent
the m-tuple (3,2,0,4,0,0,3,0) (with m = 8 and r = 12) as follows:
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The key observation is that the total number of "dots" and "commas"
is r + m - 1 = 19. In other words, to form an m-tuple with it +- +i,,, = r,
we should start with a row of r + m - 1 "commas" and change r of them
into dots. Each choice of r commas to change will give us a unique m-tuple
with the desired properties. Hence the total number of m-tuples is the
number of ways of choosing r elements from an ordered set of r + m - I
objects.

PRooF (of Lemma D.3.6). Let I(m, e) be the set of m-tuples that we are
trying to count,

I(m,E)={(il,...,im)EZ"' 0<ih <rhforal I <h<m
m .

th m
and T < 2 - Em

h=1 h
Then

#I(m,E) _ 1

it - am lexp E 2(m2-Em-T -... r )1(i,....,i)EI(m,r)
since et>1forall t>0

r, r," E m i l 8,,,
exp,

i,=0 i,,,=o 1 m

since includes extra positive terms

=exp(_E2 2-T1-...-rm
f i=0 =0, ,,,

=eXp(-E2
)h

(i=O

\2 rh
We use the inequality

et < 1 + t + t2, valid for all Iti < 1,
to estimate one of the inner sums as

r E 1 2 r F 1 E2 1
i)21

F-exp (2 2 r)) + 2 (2 r) + 4 C2 r

r E 62)
E 62) t E2 i2={I1+4+16-(2+ 4+ 472i=O

E2 E2=(r+1)(1+48+12r)
z

<(r+1)C1+ 4) using r>1.
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(Although it may look complicated, the main point of this calculation is to
get an upper bound of the form 1 + ce2 with c < z . In particular, it would
not suffice to get a bound of the form 1 + cc.)

Substituting this estimate in above, we find that

#I(m,e) <exp(-) ((rhfl+l) (i+ 4 I )

h=1 \\

/ 2 2

< exp I - e )
m

fi I (rh + 1) exp ( 4 ) ) using 1+t< et
h=1 I

2

_ (r1+1)...(rm+1)exp (- 4
I .

D.4. Construction of the Auxiliary Polynomial

In this section we are going to construct a polynomial P(X1i ... , X,,,) with
reasonably small integer coefficients and the property that P vanishes to
high order at (a, a, ... , a). The way that we will build P is by solving a
system of linear equations with integer coefficients. Results that describe
integer solutions to systems of linear equations are often named after Siegel,
because he was the first to formalize this procedure.

Lemma D.4.1. (Siegel's lemma, first version) Let N > M be positive
integers, and let

a11T1 + + a1NTN = 0

aM1T1 + ... + aMNTN = 0

be a system of linear equations with integer coefficients not all zero. Then
there i s a solution (t1, ... , tN) to this s y s t e m o f equations with t1, ... , tN
integers, not all zero, and satisfying

M

lmaaxNIt,I: (N 1m
x IQ.ijI)N-M

1GjGN

Although the conclusion of this lemma looks a bit messy, it is really
saying something quite simple. The system of homogeneous linear equa-
tions has more variables than equations, so we know it has nontrivial so-
lutions. Since the coefficients are integers, there will be rational solutions;
and by clearing the denominators of the rational solutions, we can find
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integer solutions. So it is obvious that there are nonzero integer solutions.
The last part of the lemma then says that we can find some solution that
is not too large; precisely, we can find a solution whose size is bounded in
terms of the number of equations M, the number of variables N, and the
size of the coefficients a;j. This, too, is not surprising; so the real content of
the lemma is the precise form of the bound. We remark for future reference
that the bound has, up to a small negligible term, the shape

number of equations
log (max Itil) < (log height of the equations)

dimension of solutions

PROOF (of Siegel's lemma). For any vector t = (t1, ... , t v) E RN, we let

ItI = max It;I
1<i<N

be the largest of the absolute values of its coordinates. Similarly, we will
let A be the matrix

all ... alN
A=

aM1 aMN

and will write JAI = max Iatjl.
1 <i<M
1<j<N

So the statement of Siegel's lemma is that the equation At = 0 has a
solution t e ZN, t # 0, satisfying

ItI <
(NI AI)

M/cN A').

The idea of the proof is very simple. The number of integer vectors t in
Z'v of norm less than B is roughly BN, while the norm of At is less than
NIAIItI; hence the image vectors vary (roughly) among at most (IAIB)M
values. When BN is larger than (IAIB)M, the pigeonhole principle will
provide two integer vectors t1 # t2 of norm less than B with At, = Ate.
Then the difference t = t1 - t2 provides a solution to our linear system
having norm less than 2B. In order to get improved constants, we refine
the previous argument as follows.

For any real number a we set

a+ = max(a, 0) and a - = max(-a, 0),

so that a = a+ - a- and Ial = a+ + a-. We also define linear forms
Lj(t) =Fv1aj;ti and set

N N N

LJ = nJ, and Lj = LJ +Lj = Iaj;I.
t=1 i=1 i=1
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Assuming 0 < tt < B, we deduce that the jth coordinate L,(t) of At lies
in the interval

Taking B to be an integer, the number of integer vectors in the box
fM 1 [-L B, L BJ is equal to

M M

fl(L, B+Lt B+1) = H(LjB+1),
j=1 j=1

while the number of integer vectors t with 0 < t; < B is (B + 1)N. Hence
if we choose B to satisfy

M

(B + 1)N > fl(LjB + 1),
j=1

(*)

then the pigeonhole principle provides us with distinct integer vectors t1
and t2 such that Lj(t1) = Lj(t2) for all 1 < j < N. Then the vector
t = t1 - t2 is an integer solution of our linear system satisfying Itl < B.

To complete the proof of Siegel's lemma, it remains only to verify that
the value

Ir

B:= L(Nmax la=jI)
M/(N-M)

satisfies condition (*). For this value of B we have

B+ I > (Nmaxla;jI)M/(N-M)'

and hence

(B+1)N =(B+1)M(B+1)N-M > (B+1)M(Nmaxlajjl)M.

Now we observe that

Lj <Nmaxlaijl and 1 <Nmaxlaijl,
+ i.j

and hence

fi(L,B+1) ((B+ 1)NmaxlatjI)M < (B+ 1)N.
j=1

We will now apply the same sort of pigeonhole principle argument to
solve linear equations with algebraic coefficients. If the coefficients lie in a
number field of degree d, and if we have M equations in N unknowns, then
choosing a basis for the number fields allows us to translate the problem
into dM equations with coefficients in Q. Thus the relevant linear algebra
condition is now dM < N. The following proof is taken from a paper of
Anderson and Masser [11; for a slightly sharper estimate, see Exercise D.9
and the references listed there.
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Lemma D.4.2. (Siegel's lemma, second form) Let k be a number field
with d = [k : Q], let aij E k be elements not all zero, and let A :_
H(.... aij,...) be the height of the vector formed by the aij's. Assume
that dM < N. Then there exists a nonzero vector x E ZN such that

N

aijxi = 0 for all 1 < j < M, and max Ixi1 < (NA)dM/(N-dM)

1<i<N
i=1 - -

We begin by computing how many algebraic numbers are contained in
various boxes.

Claim. Let k be a number field of degree d, fix an element av E k for
each v E Mk, and let c = {cy}y be a multiplicative Mk-constant. That is,
cv > 1 for all v E Mk, and c = 1 for all but finitely many v E Mk (cf. the
additive Mk-constants defined in Section B.8.) Set C := fl, c,,. Then

card{x E k
I

Ix - avIv< cv for all v E Mk} < (2C1/d +
1)d.

PROOF (of Claim). Call T the set whose cardinality we are trying to bound.
Set

E = J k = lR" x C2,
vEM,-

and for a E k and e > 0, consider the box

B(a,e) = {x E E I Ix y -av(a)I <ec for all v E Mr°}.

We first observe that if a,/3 E T and if we take e = 1 2C-11d, then the
intersection B(a, e) fl B(/3, e) is empty. To verify this, suppose that x sits
in both boxes. If v is archimedean, then

Ia -,31,, = Iay(a) - ay(Q)I -< Ix - oy(a)I + Ix - av()3)I < 2ecv;

and if v is nonarchimedean, then

Ia - QIv <max{Ia-ay1,10-a.I} <c..

If follows that jI (a - 13Iv < (26)dC = 1, and then the product formula tells
us that a = /j.

Now the disjointedness of the B(a, e)'s for a E T implies that

Vol ( U B(a, e)) = card(?') Vol(B(O, e)) = card(T)e" Vol(B(0,1)).
aE7
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Next, if x E B(a, e) with a E 7, then

Ixv - Ixv - ov(a)l + la - (1 + e)cv.

These inequalities define a box with volume equal to (1 +e)d Vol(B(0, 1));
hence

d

card(7) < + (2Cl/d + 1
d

E 0
PROOF (of Lemma D.4.2). To ease notation, put b = dM/(N - dM) and
X = [(NA)6]. We apply the previous lemma with

__ J Li (X/2, ... , X/2) if v is archimedean,
av

0 otherwise;

_ NX max Iaijly/2 if v is archimedean,
c" - max Ia,j Iv otherwise.

We then compute the associated "constant"

C = (NX/2)dHmax la;ily < (NXA/2)d.
V

We conclude that the linear form Lj(xl,... , XN) takes at most (1 +NX A)d
values, and hence that L takes at most (1 + NX A)dM values. But X + 1 >
(NA)6, which implies that

(X+1)N = (X+l)N-dM(X+l)dM > (NA)dM(X+l)dM > (NAX+l)dM

The pigeonhole principle says that there are distinct N-tuples of integers
x' and x" satisfying L(x') = L(x"). Hence

L(x'-x")=0 and Ii -x"I<X<(NA)6

as required.

We are now ready to construct a polynomial P(XI, ... , X,,,) that van-
ishes to high order at (a, ... , a).

Proposition D.4.3. Let a be an algebraic integer of degree d over Q,
let e > 0 be a fixed constant, and let m be an integer satisfying

easm/4 > 2d. (4.2-i)

Let be given positive integers. Then there exists a polynomial

P(Xii...,Xm) E Z[XI,...,Xml



§D.4. Construction of the Auxiliary Polynomial 321

satisfying the following three conditions:
(i) P has degree at most ri, in the variable Xr,.

(ii) The index of P with respect to satisfies

Ind(P) > '(1 - e). (4.2-ii)

(iii) The largest coefficient of P satisfies

IPI < Brl+"'+rm, where B = B(a) depends only on a, (4.2-iii)

and we recall that IPI is the maximum of the absolute values of the coeffi-
cients of P.

Remark. Condition (4.2-i) essentially ensures that dM < N, or more
precisely, that dM/(N - dM) < 1. An admissible value for the constant
given by the proposition is B(a) = 4H(a) (see Remark D.4.4).

PROOF. We write the polynomial P as

rl rm

P(X1i ... , Xm) _ E ... E Xin
.it=0 jm=0

where the integers are still to be determined. Clearly, the number
of coefficients is

N= (r1+1)...(r,,,+1).

For any m-tuple (i1, ... , i,,,) we have

r1 ...
rm

Pit...im = p)1..... Jm Xl Xm
j,=0 jm=0 11 tm

Evaluating this identity at (a, ... , a) and using Lemma D.3.4 to express
powers of a as linear combinations of 1, a.... , ad-1, we find that

Pi1...i.., (a, ... , a)
r,

...
rm

j1=0 jm=0

(J1)(m)&i_it+...+i.._im_ Pill ...,)m
1

r1 r,,, d. Er l urn ra(31+.E d_ktmI:Pjl, ,j- k31
='

j
rl r

G L
l 7m

m \ \ ll

i \E1
1 ... tm I ak ph..... lm

1
a

k=l

_ '
j
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Hence will equal 0 if each of the quantities in braces
equals 0. In other words, we will have P:,...t,, (a, ... , a) = 0 if we choose
the to satisfy the d linear equations

rs r,,, / .
k 0,

h=o im=o
1<k<d.

In order to satisfy condition (ii), we need 0 for
all m-tuples (i1,. .. , i,R) satisfying

tl +... + L-- < m(1 - E) = m - Em.rt r,,, 2 2 2

According to (D.3.6), there are at most (r1 + 1) . (r,,, + 1)e_c2m14 such m-
tuples. Hence we can find a P that satisfies (ii) by choosing the pJ,,...,j_
to satisfy a system of M linear equations with integer coefficients, where

M < d- (ri + 1) ... (rm + 1)e-t2m(4 = dNe-c2m/4 < 2 N.

Note that the last inequality follows from the choice of m in equation (4.2-i).
We now have M linear equations for the N variables In or-

der to apply Siegel's lemma, we need to estimate the size of the coefficients
of these equations. We recall from (D.3.4) that the quantities a(1) sat-
isfy Ia(')I < (IQI + 1)1, where Q is the minimal polynomial for a over Q.
So we can estimate the coefficients of our linear equations by

1(ij) in k

< (21Q1 +
2)rs+...+r".

Now applying Siegel's lemma (D.4.1), we find that there is a polynomial P
satisfying (i) and (ii) whose coefficients pi,....,jm are bounded by

IQI +IP15 (N(2 /1

< N(2IQI + 2)r,+--.+r_

< 2rs+...}r-
(21Q1 +

2)ry+..

< B(a)r'+...+rm

,

since M<2N
+r.,,

where we could take B(a) = 41QI + 4, for example. Hence P also satis-
fies (iii), which completes the proof of Proposition D.4.3.

0
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Remark D.4.4. We outline an alternative proof of Proposition D.4.3 using
Lemma D.4.2 instead of Lemma D.4.1. Letting M denote the number of
equations with coefficients in Q(a) and N = (r1+1) (rm+1) the number
of unknowns, we get dM/(N - dM) < 1 and

H (.71) (2H(a))r'+ +rm
it im

Hence Lemma D.4.2 gives us a nonzero polynomial with the required de-
grees and coefficients bounded by

(rl + 1) ... (rm + 1) (2H(a))r'+---+r,o < (4H(a))r.+ +r,

which yields an admissible value B(a) = 4H(a).

D.5. The Index Is Large

In the last section we constructed a polynomial with "small" coefficients
that vanishes to high order at (a, ... , a). In this section we want to show
that if /31:... , Qm are close to a, then the polynomial will still vanish to
high order at (/31i ... , /3m).

We illustrate the basic idea using polynomials of one variable with /3 =
p/q E Q. Thus suppose that P(X) E Z[X] satisfies

deg P(X) = r, Ind(Q;r) P > 2' I PI < B(a)',

and suppose that p/q E Q satisfies jp/q - al < q-(2+e). The Taylor series
expansion of P around a is

r
P(X) _ E aiP(a)(X - a)' _ 8,P(a)(X - a)',

i=0 i>r/2

since the assumption that Ind(Q;r) P > 2 means that 81P(a) = 0 for all i <
r/2. Now substituting X = p/q yields

IaiP(a)I I P - a
i>r/2 q

Using (D.3.1) and JP{ < Br, we can estimate the derivatives by

JaiP(a)I < r IaiPj max{1,
1.1}r < 2' . B(a)r max{1, lal}r = lil(a)c,
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where the constant Cl (a) depends only on a. Hence

iP M q -
alr/2

< (2C1)r
(q) /2 =

(q1+`/2)r
<r.Ci

On the other hand, we know that the denominator of P(p/q) divides qr,
so if P does not vanish at p/q, then trivially I P(p/q)I > 1/qr. Hence

r

P M 34
0

qr < P \q/ < \qlC/Z/

which implies that q < (2C1)2/E. Turning this around, we can say that
if q is large, then P(p/q) = 0, so the index of P at (p/q; r) is strictly
positive. A similar argument, using 83P in place of P, would show that
if q is sufficiently large, then 8; P(p/q) = 0, or equivalently that the index
of P at (p/q; r) is fairly large.

The main result of this section generalizes this simple argument in a
number of ways, but the entire computation rests on two basic facts. First,
Taylor's formula and the triangle inequality imply that if P vanishes to a
high order at a and if /3 is very close to a, then P(,0) (and any derivative
of not too large an order) must be small. Second, Liouville's inequality
(as recorded in Lemma D.3.3) implies that P(/3), an algebraic number of
bounded height, cannot be too small unless it is zero. (Keep in mind that
this second fact is essentially nothing more than the observation that there
are no integers strictly between 0 and 1.)

Proposition D.5.1. Let 0 < b < 1 be a given constant, and let e satisfy

0<e<22'

Let a be an algebraic integer of degree d over Q, let m be an integer
satisfying

eEzm/4
> 2d, let rl, ... , rm be given positive integers, and use

Proposition D.4.3 to choose a polynomial P(Xj, ... , Xm) E Z[X1, ... , Xm]
satisfying properties (4.2-i), (4.2-ii), and (4.2-iii).

Let S C MK be a finite set of absolute values on K with each absolute
value extended in some way to k, and let

to : S -i [0,1] bea function satisfying Ec0=1.
VES

Suppose that 61 i ... , Nm E K have the property that

11/3h - all. < 1(2+6)E for all v E S and all 1 < h < m. (5.1-ii)
HK (oh)
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Suppose further that

f
1<max

LHK(Qh)"'I < 1<min {HK(Qh)rhtl+t
<m m

and that there is a constant C = C(a, b) such that

(5.1-iii)

C<H(,3h) for all 1<h<m. (5.1-iv)

Then the index of P with respect to 9mi r1,. .. , rm) satisfies

Ind P > Em.

Remark D.5.1.1. When we eventually get to the proof of Roth's theorem
in Section 7, the proof will proceed as follows. We will first assume that
there are infinitely many 3's that closely approximate a, that is, satisfying
the inequality (5.1-ii). Next we will choose a large m and good approxima-
tions such that each 9,, has height much larger than its prede-
cessor. It is only after choosing the oh's that we will choose the r,'s so as
to satisfy the estimate (5.1-iii). Finally, for this choice of rn and r1,... , r,,,,
we will take the auxiliary polynomial described in Proposition D.4.3 and
use it to prove Roth's theorem. The crucial observation here is that the r,'s
are chosen in terms of the hypothetical $h's, so it is important at every step
of the proof to keep track of any dependence on the r,'s.

As a first step toward the proof of Proposition D.5. 1, we state a lemma
controlling the height of derivatives of a polynomial at algebraic values.
Note that this result and its proof are very similar to Theorem B.2.5(a).

Lemma D.5.2. Let P E Z[X1, ... , X,,] with degx,, (P) < rh, and let
0 = (Q1, ... , 13m) be an m-tuple of algebraic numbers in a number field K.
Then for all rn-tuples of nonnegative integers j = (j l, ... , j,,,) we have

m

HK(a,P(Q)) < 4(r:+...+rm)JK:Q1HK(P) [I HK (0,)r,.
h=1

PROOF. Let (j1, ... , j,,,) be any m-tuple. To simplify notation, we will let

T(X1,..., Xm) =ai,--.i,,,P(X1,...,Xm).

Then Lemma D.3.1 tells us that 81,...,,T has integer coefficients that are
bounded by

Iae,...i,,,TJ = .ac,+j , ..... 4,,, +J... PI 5 2r'+-..+r,,,jpl
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We use the triangle inequality to find an upper bound for the height
of T ((31i ... , Qm ). Thus for any archimedean absolute value v E MK we
have

IT(Q1...... m)Iv
(r1 + 1) ... (rm + 1) ITI max{I)31Iv, 1}r' ... maxi IQmIv, 1}rm

number of terms max. coef.

< (4)r,+...+r,,, IPI max{ IQhly, l }r' ... maX{ IQmIv, 1 }rm

Similarly, if v E MK is nonarchimedean, we can use the nonarchimedean
triangle inequality and the fact that T has integer coefficients to obtain the
stronger bound

I T (Q1, ... , Qm)Iv < max{
101 1,." 1}r, ... max{ lQmly, 1}rm

As in the definition of the height, we raise these inequalities to the n,, power
(where ny = [K,, : Q,J) and multiply them together for all v E MK. This
yields the announced estimate

HK(T(01,...,Qm)) <
(4)(rl+...+rm)(K:QIHK(P)HK(Q1)r1...HK(Qm)rm

(Notice that since P has integer coefficients, HK(P) = IPIIK:QI.)

We now give an explicit version of the principle that if a polynomial
vanishes to a high order at (a, ... , a), and if (31.... , Q,,, are all good ap-
proximations to a, then the polynomial will be very small at (Ql, ... , (3,,,).

Lemma D.5.3. Let r1,... , r,,, be given positive integers, and let P be
a polynomial in Z[X1, ... , X,,,] such that degX,, (P) < rh. Let 0 = Ind P
denote the index ofP at (a, ... , a) with respect to r1,.. . , r,,,. Let 0 < 6 < 1
be a constant and choose 0 < Bo < 0.

Let S C MK be a finite set of absolute values on K with each absolute
value extended in some way to K, and let

t:: S --' [0,1] be a function satisfying E , = 1.
vES

Suppose that /31.... , .3,,,, E K have the property that

IIQh - all, < 1(2+B){" for all v E S and all l < h < m.
HK (Qh )

To ease notation, set D := min {HK(Qh)r^ }, and let j = (j1, ... , jm) be

any m-tuple satisfying L4 < 0o. Then
h=1 rh

H IaiP(Q1....,Qm)II,,
(4H(a))(K:11I(r,+...+r. )HK(P)D-(2+a)(e-9e)

vES
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PROOF. Let j = (j1,. .. , j,,,) be as in the statement, and let T = BjP. We
will use the Taylor expansion of T around (a, ... , a) and will need bounds
for the size of the Taylor coefficients. Thus if v E MK is an absolute value
on K extended in some way to K(a), we can estimate
by noting that it is a sum of at most

(r,+1)...(r,,,+1)

terms, each of which has magnitude at most

ITI max{Ialy, IPI (2max{laly,

This implies that

IBj,...imT(a,...,a)Iv <
(4max{Ialv,1})r,+...+rm

IPI

Next we observe that T vanishes to fairly high order at (a.... , a).
More precisely, we use Lemma D.3.2(a) to compute

m .

IndT = IndOj,.,.j,P > Ind P - E Lh > B - Bo.
h=1 rh

So if we write the Taylor expansion of T about (a, ... , a), then many of
the initial terms will be zero. Thus

T(X,,...,Xm)
r, r-

= E ... E ai,...i,T(a, ... , a)(X, - a)i' ... (Xm -a)'-.
im=0

Now put Xh = /3h and use the fact that 33h is close to a. This yields,
for each absolute value v E S,

I

rl rm
q qqIai,...imT(a,... , a)IvIQl - alvl ... lNm - alv

i,=0 i-=0

(r,+1)...(r,,,+1) max IBj,...imT(a,...,a)I
v

x

- IPl max

max IRl - alvi ...1/3m - aI

1

V / (2+6)fv1+...± 9-6o (HK(I3 )" ... HK( 3m)1m)
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We can estimate this last quantity as follows:

HK(Q1)t1 ... HK(Q,)`- = (HK(31)r1)1 ... (HK(Qm)r'°) > Do-oo

It follows from above that

ply
IT(Ql+...,$m)Iv D(6-oo)(2+6)Cv

Now raising to the n power, multiplying over all v E S, and using the fact
that EVES ny£y > EVES 6y = 1, we arrive at the desired estimate

4(rl+...+rm) [K:QI HK(p)11 IT($1, ... Qm)IIv D(0-0o)(2+6)
yES

11

PROOF (of Proposition D.5.1). Let j = (jl,... , j,,,) be an m-tuple satisfy-
ing Eh 1 jh/rh < em. We want to show that 8j P('31' 0. From
Lemma D.5.3 we get

HIl ai l'(QI ,

Q,n)Ily(4)(r,+...+r.n)[K:Ql HK (p)

,...
D(0-eo)(2+6)

vES

(`
B(a))(rl+...+r. )(K:QI

D('-' (1-e)-em)(2+6)

(where we have used properties (4.3-ii) and (4.3-iii) for the last inequality).
On the other hand, from Lemma D.5.2 we obtain

m

HK(87 P(,Cjl,...,)3m) < 4(r1+.-.+r,n)[K:QIHK(p)
fl HK(Qh)r"
h=1

< (4B(a))(r'+---+r,,,)[K"Q1Dm(1+c)

(where we used property (4.3-iii) and hypothesis (5.1-iii) for the last in-
equality). Now Liouville's inequality (D.3.3) implies that either the deriva-
tive ajP(131,... , 3m) is zero, or else

HIIa7P(Q1,...,Qm)IIv 1 HK(a3P(Q1,...,Qm))-1
vE S

So it suffices to show that our hypotheses contradict the latter.
Assuming 9 P(,31.... ,13m) 0 0, Liouville's inequality thus yields

Dm((1+6/2)(1-aE)-(1+e)) < (4B(a))2(r,+...+rm)[K:QJ.

Now, since we assumed 6 < 1 and c < 6/22, we get

(1 + 6/2)(1 - 3e) - (1 + E) < 6/2 - 11e/2 < 6/4,
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and hence

Max {HK(Qh)r"} < D1+E < )[xQl(1+E)/6

1<i<-

Selecting j such that rj = maxh 1 rh, we deduce that

HK(,3j) <_
(4B(a))s(x Ql(1+E)/6.

Choosing the constant C = C(a, 6) of hypothesis (5.1-iv) sufficiently large
(for example, C(a,6) = (4B(a))(8/6)+4/11) suffices), we obtain the desired
contradiction, which concludes the proof of Proposition D.5.1.

D.6. The Index Is Small (Roth's Lemma)

In the last section we showed that the polynomial P, which vanishes to
high order at (a, ... , a), also vanishes to fairly high order at (,Oh, ...
We now want to show that it is actually not possible for P to vanish to
high order at (,31,. .. , which will give a contradiction to the existence
of infinitely many close approximations to a.

For a polynomial of one variable, the idea is very simple. Suppose
that the polynomial P(X) E Z[X] has size bounded by JP1 < Br, and
let I denote the index of P with respect to (p/q; r) for some rational num-
ber p/q E Q. Then

P1 p I = 0 for all i/r < I, by definition of the index,
q

(X - p) rI I P(X)
\\ q

(qX - p)rj I P(X) Gauss's lemma

max{jpj,
jqI}rt < IPA < B' since qrl divides the leading

coefficient of P, and prI divides the constant term of P

Ind P = I < log B
log H(p/q)

Hence Ind P will be small if both H(p/q) and r are large. Notice that
one of the key steps is Gauss's lemma (see Lang [2, V, Corollary 6.2] or
Herstein [l, Theorem 3.10.1]), which asserts that if a polynomial with in-
teger coefficients factors in Q[X], then it factors in Z[X]. We will use a
related, but more precise, result (Gelfand's inequality (B.7.3)) in our proof
of Roth's lemma.
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Unfortunately, using a polynomial of one variable suffices to prove
only the elementary estimate of Liouville. And as soon as the polyno-
mial contains more than one variable, the simple divisibility argument
given above no longer works. Time [1] worked with a polynomial of the
form P(X, Y) = f (X) + 9(X )Y. As preparation for the proof of Roth's
lemma, we will briefly sketch Thue's idea, which is to eliminate the vari-
able Y and thereby reduce to the one-variable case.

Thus suppose that P(X, Y) = f (X) + g(X)Y has index I = Ind P
with respect to (,31, 0.2; r, l). This means that

ai,0P(/31,132) = aif (0i) + ai9(Ql)Q2 = 0 for all i/r < I.

We now consider the Wronskian determinant, which is the polynomial in
one variable defined by

W(X) = det f(X) g(X)
al.f (X) al9(X ) = f (X)al9(X) - 9(X )alf M.

Differentiating the Wronskian determinant k times, one easily checks that

akW = r, (aif . aj+l9 - aj+lf * (9ig).
i+j=k

On the other hand, we know from above that if i < rI and j + 1 < rI, then

0 = ai,oP(3l,02) _ &f()3i) + ai9(Ql)02
and

0 = aj+1,0P(/31,132) = aj+l f (Rl) + aj+29(132 ),a2

Eliminating ,32 from these two equations gives

ai f ((31)0j+lg(31) - aj+l f ()31)aig(,Ql) = 0 for all i < rI, j < rI - 1.

It follows that akW (/3l) = 0 for all k < rI -1, which means that the index
of W with respect to (0i; r) satisfies

Ind W > Ind P - 1
r

Now one can estimate the size of JW I and use the one-variable argument to
get an upper bound for Ind W, thereby obtaining an upper bound for Ind P;
this leads to an approximation exponent with value 1 + d/2.

The proof of the general case of Roth's lemma proceeds similarly
by induction on the number of variables. Thus starting with a polyno-
mial P(Xi,... , Xm) in m variables, we take a determinant of derivatives
to form a new polynomial W (X 1, ... , Xm) that factors as a product of
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the form V (X1i ... , Lemma D.3.2(c) tells us that Ind W =
Ind V + Ind U, and then applying the inductive hypotheses to U and V
gives the desired bound. Needless to say, the estimates needed to make
this induction work are very delicate, and this brief summary has omitted
a number of crucial details, which we now begin to fill in.

Let f 1(X ), ... , fn (X) E K (X) be rational functions of a single vari-
able. The classical Wronskian determinant of Ii (X ), ... , fn(X) is the func-
tion

W (fi, ... , fn) = det

fi 12 ..' f,

4!1 4!2 d n
dX dX dX

do-1f1 do-1f2 do-1fn

dXn-1 dXn-i dXn-i
It is a standard theorem that the functions.fl, .. , fn are linearly indepen-
dent over K if and only if W(f1i... , fn) # 0. We will need a version of
the Wronskian determinant that applies to polynomials of more than one
variable.

Definition. The order of a differential operator

8X 11 ... Xm

is the quantity order() = ii + - .. + i,n.
Of course, for arithmetic applications it is often better to use operators

of the form
1

ill ... iml 8Xi1 ... X;,;

Now let 01, ... , Ok E K(X) be rational functions over a field of character-
istic 0. A generalized Wronskian determinant of 01, ... , Ok is any determi-
nant of the form

det((Di0i)1<ij<k),

where the differential operators Di satisfy order(/. ) < i - 1.

For example, if m = 1, then up to constants the only nontrivial gen-
eralized Wronskian has Ai = d-i/dXi-i, so will be equal to a constant
multiple of the classical Wronskian determinant. The following lemma gen-
eralizes the older linear independence result.

Lemma D.6.1. Let 01, ... , ¢k E K(X,, ... , X,n) be rational functions
over a field of characteristic 0. Then h,.. . , ok are linearly indepen-
dent over K if and only if there exists a nonzero generalized Wronskian
of &1i,ok
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PROOF. W e will prove that if 01, ... , q5k are linearly independent, then
there exists a nonzero generalized Wronskian for them. This is the direction
that we will need for the proof of Roth's lemma. We leave the proof of the
converse as an exercise for the reader.

The proof is by induction on k, the number of functions. We suppose
that -01, ... , 4k are linearly independent. For k = 1, the only generalized
Wronskian determinant is a constant multiple of 0101 = 01, since the
operator Al has order zero. So for k = 1, Lemma D.6.1 just says that ¢i
is linearly independent over K if and only if 01 34 0.

Assume now that we know that the lemma is true for any set of k - 1
functions, and suppose that 01, ... , Ok are K-linearly independent. We
need to find a nonzero generalized Wronskian of 01, ... , 0k. We observe
that if A E K(X 1, ... , X,,,) is a nonzero function, then any generalized
Wronskian det(Di(AOj)) of AOl, ... , AOk is a K(Xj, ... , X,,,)-linear com-
bination of generalized Wronskians of 01,. .. , 0k. This is easily verified
using the product rule and the multilinearity of the determinant. So if
w e can show that some generalized Wronskian of 41, ... , ask is nonzero,
then it will follow that some generalized Wronskian of g,. .. , Ok is nonzero.
Taking \ = 1/01i we have reduced to the case that 01 = 1.

Let
V =KO1+K¢2+...+K4)k C K(X1i...,Xm)

be the K-linear span of 01,. - -, qSk. By assumption, we know that dim V =
k. In particular, ¢2 V K (i.e., 02 is not a constant function, since 01 = 1), so
after relabeling the variables, we may assume that the variable X1 appears
in 02. In other words, we may assume that

802
960.

ax1

Define a K-vector subspace of V by

=01, and lett=dim W.W= ¢EVI a
aX1

We observe that 01 E W and 02 V W, so 1 < t < k - 1. Now choose a
basis 'fit for W, and extend it to a basis tjk for V. By the
induction hypothesis, there are differential operators At, . . . , At satisfying

det(Ai tkj)1<i,j<t 710 and order(A;) < i - 1.

Next we claim that the functions a,Jit+l/OX1.... ftk/OXI are K-
linearly independent. This is true because is a K-basis
for the quotient space V/W, so

k k

E c;8 i =0==* E Cj1) EW=#, ct+1=...=ck=0.
i=t+1 i=t+1
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So we can apply the induction hypothesis again to find differential opera-
tors Ot+1, ... , k satisfying

det 1
M 3k 0 and order(i)<i-t-1.
8X1 t+1<i,j<k

We want to fit these two determinants together, so we define differen-
tial operators

0; if1<i<t,
Ai- Ai ift+1<i<k.

Note that order(Di) < i - 1 for all 1 < i < k. Further, and this is crucial,
we have

Ail/ij=08X1 =0 forall1<j<tandt+l<i<k.

This is true because ib E W for 1 < j < t. Hence we find that

4-t--+ +-k-tom

det(AjV)j)1<i,j<k = det

= det(i 1)1<i,j<t . det A. ft
aX

1
) t+l<i,j<k

34 0 from above.

This shows that 01, ... , ik have a nonzero generalized Wronskian. But
the functions and i/il,... , *k span the same K-vector space,
so tPj = Et ajeOl for some invertible matrix (ad,) with coefficients in K.
It follows that

0 # det(Di j) = det (ais) = det(ajt) det(Ai0t),
t

and so det(Dict) 0 0. This concludes the proof of Lemma D.6.1.

We are now ready to begin the proof of Roth's lemma, which says that
the polynomial P(X1, ... , constructed earlier does not vanish to high
order at (f31 i ... , (3m). Although the proof is fairly lengthy, the essential
idea is to use Wronskians to eliminate a variable and then perform an
induction on the number of variables.
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Proposition D.6.2. (Roth's lemma) Let m be a positive integer and
let P E Q[Xj, ... , X.] be a polynomial with algebraic coefficients and
degX, (P) < rh. Let /j = (3l, ... be an m-tuple of algebraic numbers.
Fix a real number 0 < 77 such that

rh+l 2'^-1<n foralll<h<m-1, (6.2-i)rh -
and

2m-i
rl 1 m {rh log H(3h)} > log H(P) + 2mr1. (6.2-ii)

Then the index of P with respect to rl,... , r,,,) satisfies

Ind P < 2m77.

Remark. In practice, n will be very small. (Indeed, if ri > 2, then the
conclusion of the proposition is trivial, since we always have Ind P < m.)
It follows from (6.2-i) that the degrees rl, r2, ... , r, are very rapidly de-
creasing, and then (6.2-ii) implies that the heights H(/31), ... , are
very rapidly increasing. It is useful to keep these two properties in mind.

PROOF (of Roth's lemma). The proof is by induction on m, the number
of variables. To ease notation, for the remainder of this section we will let
K be a number field containing all the /3t's and the coefficients of P. We
also let

d=[K:Q].

We also recall that the height of a polynomial is defined to be the height
of its coefficients (B.7). So for example, if a polynomial F has coefficients
in Z, then HK(F) = IFId.

We begin with the case m = 1. To ease notation, we write /3 = N1

and r = rl. Let E be the exact order of vanishing of P(X) at X = /3,
so P(X) = (X - 0)'Q(X) with Q(/3) # 0. Note that the index of P
at (/3; r) is then Ind P = f/r. Using Gelfand's inequality (B.7.3), we find
that

H(Q)rlndP = H(Q)' = H(X -,0)' < H(X - Q)`H(Q) <- H(P)e',

which implies

log H(P) + r
Ind P 5

rlogH((3)
n using hypothesis (6.2-ii).

This completes the proof of Roth's lemma for polynomials of one variable.
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Remark. This is slightly better than the stated result. We get an up-
per bound for the index equal to f1, instead of 2t7, and we needed only
rir log H(Q) > log H(P) + r instead of > log H(P) + 2r. Later we will
make use of this observation to slightly sharpen our estimates when using
induction with m = 1.

We now assume that Roth's lemma is true for polynomials with strictly
fewer than m variables, and we prove it for a polynomial P(X1i ... , Xm)
of m variables. We begin by writing P in the form

k

P(Xii...,Xm)
j=1

where the Oj's and t[)j's are polynomials with coefficients in Q. There
are many such ways to decompose P, and among them, we choose one
for which k is smallest. That is, we choose a decomposition (*) with the
smallest number of summands. Since one possible decomposition (probably
not minimal) is to take tP1 = 1, 02 = X,,,, '03 = Xn,, .Ok = Xm , we see
that

k<r,,,+1.

Claim D.6.2.1. The functions 01, ... , ¢k appearing in the minimal de-
composition (*) of P (described above) are Q-linearly independent. Simi-
larly, the functions t/)k are Q-linearly independent.

PROOF (of Claim). Suppose that the Oj's are linearly dependent, so there
is a nontrivial linear relation E cj Oj = 0. Relabeling if necessary, we may
assume that Ck 0 0. Then

k-1
Ok = -

CjC

0j,
j= k

and so
k k-1 k-1C k-1

P=E03V,j=E0jt)j-ECk0j03=EIpj
i=1 j=1 j=1 j=1

contradicting the minimality of k. This proves that 01, ... , !pk are linearly
independent, and the proof for 01, ... , t/)k is the same. This concludes the
proof of the claim.

Define a polynomial U (X,,,) by

1

U(Xm) de( det ( 1 j-1 tb(Xm))
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This is the (classical) Wronskian determinant of W1, ... ,1,'.k, so we know
from Lemma D.6.1 and the claim that U(Xm) 34 0. Similarly, Lemma D.6.1
and the independence of 01, ... , Ok imply that we can find differential op-
erators

0XI' ...Xg
with

5 i-1<k-1<r,r,
such that the generalized Wronskian determinant satisfies

V(X1,...,Xm_1) de =f det(A'0j)1<,,j<k 34 0.

We now define a polynomial W (X 1, ... , X,,) and use the fact that the
differential operators 0, involve only X1,..., X,,,-I to compute

1

W(X...... Xm) = det
\A'

C/^ 1 1) P(X1,... Xm)

r 1 k01i -=det (A ( 1 lEOr(X1,...,Xm-10r(Xm)
r=1 -

1 -1 r= det i i-or - r/,
r-1 1J - )! 8Xm 1<i,j<k

Wr= det(At0r)1<<.r<k det (_1
) - 1)1 aXj 1 l( rrz 1<j.r<k

(matrix multiplication!)

= V (X1, ... , Xm-1)U(Xm)
Thus the use of the Wronskian determinants allows us to create a poly-
nomial W that is closely related to P and that factors into two polyno-
mials each involving fewer variables than P. We also observe that W E
K[X1, ... , X,]. The remainder of the proof of Roth's lemma consists of
two basic steps.

(i} Use induction, more precisely Roth's lemma in 1 and in - 1 variables,
to get an upper bound for the indices of U and V, and use these values
to get an upper bound for the index of W.

[ii] Relate the index of W back to the index of P. More precisely, write a
lower bound for the index of W in terms of the index of P.
We have already remarked that we may assume 17:5 1. We also note

that since U and V use disjoint sets of variables, it is clear from the defi-
nition of height of a polynomial that

h(U) + h(V) = h(W).
In order to apply Roth's lemma to U and V (with I or m - 1 variables,
respectively), we need estimates for their degrees and heights.
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Claim D.6.2.2. The following estimates are valid:
(a) degx_(U) < kr,,, and degx,(V) < krj for all 1 < j < m - 1.
(b) h(U) + h(V) = h(W) < k(h(P) +2r1).

PROOF (of Claim). (a) Each determinant is of size k and the entries of V
(respectively U) have degree at most ri with respect to Xj (respectively at
most r,,, with respect to X,,,).
(b) The determinant is the sum of k! terms, each of which is a product of
k polynomials of degree at most r., with respect to X, and satisfying

H(4'8jP(X1i... , Xm)) < 2r,+...{rte H(P).

Thus using (B.7.2), we obtain a bound

h(W) < k (h(P) + (r1 + + rm) log 2) + log(k!).

Now

rl+...+r,R<rl(1+r1'+...+1lri-1) with rl'=q2- .

Since q < 1 and m > 2, we have tl' < d and rl + + rm < irl. On the
other hand,

logtkr. < log(k) < k - 1 < r,,, < Zrl,

and hence

h(W) < k (h(P) + (iog2+ 2 J rl I < k (h(P) + 2r1) .

We note for future reference that the constant 2 (in front of r1 in the
last inequality of the claim) could be replaced by the smaller constant
cl=3log2+21.424.

13

We now use induction to bound the index of U, V, and W.

Claim D.6.2.3. If Roth's lemma is true for polynomials in m - 1 or
fewer variables, then

Indo_.,_(U) < k,72'-' and Ind(B,,, .am-,.r,..... rm_,l(V) < 2k(m- 1)T12;

and hence the index of W with r e s p e c t to 0m; rl, , rm) satisfies

Ind W = Inda,,,,r, (U) +

< 2k(m - 1)n2 + "2--'.
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PROOF (of Claim D.6.2.3). We want to apply Roth's lemma to V, a poly-
nomial in m' = m - I variables, with r'i = kri and ri' = 772. We have
degXS (V) < r' from (D.6.2.2). We first check condition (6.2-i),

ri +
m

r7+1 2^`-1 = 17
12m'-1

ri

Next we check condition (6.2-li),

kd3h((3)) >
k7,-2m-1(h(P)

+ 2mr1) =
k7)'-2m

' (h(P) + 2mr1).

Now we observe that the inequality h(U) < k(h(P) + 2r1) implies that
k(h(P) + 2mr1) > h(U) + 2m'krli which completes the verification of
condition (6.2-ii). By induction we conclude that

Indir,,...,rm_,)(V) = kInd(r..... rm_1)(V) < k(2m'77) = 2k(m - 1)7]2.

We now want to apply Roth's lemma in one variable to U with if =
em-'

and r" = krm. We have degXm (U) < r'', from (D.6.2.2). Note that
condition (6.2-i) is empty when m = 1, so we only need to check condition
(6.2-ii), for which purpose we may use the improved version of Roth's
lemma in one variable. Thus

h(U) + r" < k(h(P) + cir1) + krm < k(h(P) + 2r1)

< 7)2m-'krmh((3m) = 7j'r"h((3m)

(where c1 = s log 2 + z 1.4242 and c1 +
7fm

1 < c1 + 4 < 2). We apply
Roth's lemma for a polynomial in one variable (which we already proved)
and conclude that

Ind(pm r,,,)(U) = klnd(pm,r..)(U) < k77' =
k7j2m-1.

This completes the proof of the claim.

The next step is to relate the index of W back to the index of P.
It is clear from the definition of W that if P vanishes to high order at a
point ((31i ... , (3m), then the same will be true of every entry in the matrix
defining W, and so the same will be true for W itself. We need to quantify
this observation, as in the following result.

Claim D.6.2.4. With notation as above, we have

r .Ind W > k min {Ind P, (IndP)2} - krm
m-1
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PROOF (of Claim D.6.2.4). We begin by estimating the index of a typical
entry in the matrix for W with respect to (Q1, ... , Nmi T1, , Tm):

Ind At ( 1-1 P
C

Ind P - Zl in-1 - i 1
from lemma D.3.2(a)

Ti Tm_1 Tm

> Ind P - Zi + + Zm-1 -j-1
since r1 -> r2-> from (6.2-iii)

Tm-1 rm

>_IndP- Tr" -j-1
Tm_1 rm

since order(i ) <i- 1 <k - 1 <Tm.

Now each entry in the jth column of the matrix defining W has the form
and W itself looks like

_ (product of k polynomials, one from
W

ki terms
each column of the matrix defining W)

The previous calculation gives a lower bound for the index of each of the
entries in the matrix defining W. Hence the index of W with respect
to (01, ... , Nmi rl, ... , Tm) satisfies

Ind W > min
(product of k polynomials of the form

11nd
k! terms in with j = 1, 2, ... k
sum for W

from Lemma D.3.2(b), which says
that Ind(E Fi) > min{Ind Fi}

k

> . min IndO;,..... im_,,?_1P from Lemma D.3.2(c), which

j=1 says that Ind(rj Fi) = E Ind Fi

(N.B. It is crucial here to have a sum over j = 1, ... , k, rather than just
taking k times the minimum index of all entries in the matrix for W. We
will indicate below why this is so important.)

Substituting in the lower bound obtained above for Ind 8i,..... i,,,_,,, -1P
in those cases where it is positive, we obtain

k

IadW > Emax{IndP- Tm -L--1, 0}
j=1 111 Tm-1 Tm

111111

k r l>Emax{IndP-L-1,01- kTm
7=1 111

Tm Tm-i
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Combining this with the upper bound for Ind W given in Claim D.6.2.2
gives the fundamental inequality

k
rr

max{IndP-7-1,0} <IndW+ kr"
111 T,n J rm_1j=1

It is clear that this inequality says that the index of P cannot be too
large. It suffices now to show that,

CInd P - 9
1

2

min {Ind P, (Ind p)2}.E rm

We consider two cases.

In this case we obtain

Case 1. IndP > k 1

rm

k (IfldP_) = k Ind P - (k2r
1)k

> 2 Ind P,
m m

where the last inequality follows from the assumption made in the case
under consideration, namely that Ind P > (k - 1)/r,,,.

Case 2. IndP < k-1
rm

Let N = [r,,, Ind P], so our assumption implies that N < k - 1. Then our
fundamental inequality becomes

N+1
(iflp_)

rm
j=

dP- N(N+1)
1 IN n)_ ( +

2r,,,

(md P - [r 2 Ind P]
f fi1 d iti f NN ) rom e n on o_ ( +

>(N+1). IndP

> r,,, IndP 2 IndP from definition of N

> 2 (Ind p)2 if we have k < rm.

There remains the possibility that k = r,,, + 1. In this case the quantity
we wish to estimate is

N+1

4(N):= (mdP-Irm1/ =(N+1)IndP- 2(k +1)).
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Notice that q(N) is a quadratic function of N. We now observe that

(k - 1) Ind P - 1 < N < (k - 1) Ind P,

while a straightforward computation gives

q((k - 1) Ind P - 1) = q((k - 1) Ind P) _
(k - 1)(Ind p)2 + Ind p

2
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Therefore, since Ind P < I (in the case we are considering), we find that

q(N) > (k - 1) (Ind P)2 + Ind p > k(Ind p)2
2 - 2

which completes the proof of Case 2 and thus of Claim D.6.2.4.

We can now easily finish the proof of Roth's lemma using the up-
per and lower bounds for Ind W furnished respectively by Claims D.6.2.3
and D.6.2.4. Since Ind P < m, we may use Claim D.6.2.4 to write

Ind W +
krm

> k min {Ind P, (Ind p)21 >
k(Ind p)2

rm-1 2 2m

while Claim D.6.2.3 implies that

Ind W +
kr-

< 2k(m - 1)772 +
k772m-' + kr'

rm-1 rm-1

< k (2(m - 1)772 + 2772--' ) < k(2772m).

We deduce that (Ind p)2 < 4772m2, and hence Ind P < 2m77.

Remark. We note that in both Cases 1 and 2, it was essential to consider
the sum E(j-1)/rm = (k-1)k/2rm, rather than merely > k/rm = k2/rm.
The point is that no matter how the constants are adjusted, having an extra
factor of 2 would destroy the argument in at least one of the cases.

D.7. Completion of the Proof of Roth's Theorem

We have now assembled all of the pieces needed to complete the proof
of Roth's Theorem (D.2.1), or more precisely, to prove Theorem D.2.2,
which we showed was equivalent to Roth's theorem. For the convenience
of the reader, we restate the result we will be proving in this section as
Theorem D.7.1, although note that we have used 6 in place of E.
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Theorem D.7.1. (= Roth's theorem D.2.2) Let K be a number field,
let S C MK be a finite set of absolute values on K with each absolute value
extended in some way to K. Let a E K and 6 > 0 be given. Suppose that

S -+ (0, 1] is a function satisfying SV = 1.
VES

Then there are only finitely many,3 E K with the property that

110 - ally <
HK(Q)(s+a)E

for all v E S.
1

PROOF. We assume that there are infinitely many solutions to (**) and
derive a contradiction. The basic strategy is as follows. We pick a large m
and take solutions 61,. . ., $,,, to (**) satisfying certain conditions (namely
m is large, 61 has large height, 02 has height much larger than /31, etc.). We
use Proposition D.4.3 to produce a polynomial P(X 1 i ... , X,) vanishing
to a high order at (a,... , a), we apply Proposition D.5.1 to show that the
index of the polynomial P at (131, ... , /3m; r1 t t rm) is greater than me,
and we use Proposition D.6.2 (Roth's lemma) to show that the index is
(strictly) less than me. This contradiction will show that (**) has only
finitely many solutions.

Since we will need to refer to the various conditions described in Propo-
sitions D.4.2, D.5.1, and D.6.2, we list them here in somewhat abbreviated
form. The constant B(a) is defined in Proposition D.4.3 and the constant
C(a, 6) in Proposition D.5.1:

(4.2-i) ee2m/4 > 2[Q(a) : Q1.

(4.2-ii) Ind(P) > j-(1 - E) with respect to (a_., a; r1, ... , r,,,).

(4.2-iii) IPI <
B(a)r'+...+r-.

(5.1-i) 0 < E < 22

(5 I-ii) 11R. -all _-
I

V
HK($h)12+6)E

(5.1-iii) D:= min {H(/3h)rh} < max {H([3h)rh } < Dl+e
1<h<m 1<h<m

(5.1-iv) H(3h) > C(a,6) for 1 < h < m.
(6.2-i) rh+1 < Wrh for 1 <h < m - 1.
(6.2-ii) log IPI + 2mr1 < w log D.

Assume now that there are infinitely many solutions to the inequal-
ity (**). Decreasing 6 only serves to make the theorem stronger, so we may
assume that 0 < 6 < 1. We are going to choose the quantities

E,M,Wt 01, ...,/3m,rI,...,rm,P(X1t...,Xm)
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in the listed order as follows:
(1)

(2)

(3)

Choose an E with 0 < e < 6/22. Then e satisfies (5.1-i); note also that
e<1/22<1.
Choose an integer m with e2m/4 > 2 [Q(a) : Q]. Then (4.2-i) is true.
We define w = w(m, E) = (e/4)2--', which implies

2w2_m+'

= E/2 < e.
Since by assumption (**) has infinitely many solutions in K, and
since K has only finitely many elements of bounded height, we can
find a solution Ql whose height satisfies

H(/31) > C(a, 6) and log H(/31) >
m (log B(a) + 2)

w
(4) We then choose successively /32,. .. , /3, to be solutions to (**) satisfy-

ing
HK(ah+i)" >_ Hx(3h)2 for all 1 < h < m.

Notice that since w < 1, we will have HK(3h) > HK(/31). In fact,
the sequence of HK(/3h)'s will be increasing, and hence (5.1-iv) will be
satisfied in view of the choice made in (3).
Choose an integer ri satisfying HK (/31)1" > Hx (Nm)2
We want to choose r2i -, r.. in such a way that all of the HK(/3h)''h's
are approximately equal. So we definer,,..., r.. to be the integers

rilogHx(Qi) rllogH(f3i)rh= I.
IogHK(ah) logH(ah)

Here ftl denotes the ceiling of t, that is, the smallest integer that is
greater than or equal to t. In order to check conditions (5.1-iii), we
compute

r1 log HK (/31)

< rh log HK (/3h) definition of rh and It] > t
ri log HK (/31) + log HK (/3h) definition of rh and [tj < t + 1

< rl log HK(/31) + log HK(/3m) since HK(/3h)'s increase from (4)
< (1 +e)rl logHK(131) from the choice of r1 in (5).

Exponentiating gives (5.1-iii). Finally, we can verify property (6.2-i)
as follows:

1rilogH(/3i1)
rh+i log H(,Qh+i)

from the choice of the rh's
rh

Ir''°3')llogH(ph)
<

(r'logH('3') +
(rlloH(/3i)\

logH(Qh+1) logH(/3h) )
log H(/3h) log H(,Qh)

log H(/3h+1) + ri log H(/3i )

< 2 + 2 = w from the choice made in (4) and (5).
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Hence rh+l 5 wrh, which verifies condition (6.2-i).
(7) Since m was chosen to verify (4.2-i), we can use Proposition D.4.3

to produce a polynomial P(X1, ... , X,,,) with degX, P < rh satisfy-
ing (4.2-ii) and (4.2-iii).

(8) We have verified above that our chosen quantities satisfy the four con-
ditions (5.1-i), (5.1-ii), (5.1-iii), and (5.1-iv). Hence we can apply
Proposition D.5.1 to conclude that

Ind P > ms with respect to (01, ... , Qm; ri, ... , Tm)

(9) We would like to apply Proposition D.6.2 (Roth's lemma). We have
verified condition (6.2-i) with rf--' = w, so it remains to check con-
dition (6.2-ii). We use the fact that

logD = min {rhlogH(/3h)} = rl logH(,31) and rl = max{rh}
1 <h <m h

to compute

log API + 2mr1 < (r1 + + r,,,) log B(a) + 2mr1
from (4.2-iii)

log D log D
m (log B(a) + 2)

since r1 > r2 >
log H(i31)

< w from the choice of Ql in (3).

This completes the verification of all of the conditions necessary to
apply Proposition D.6.2 with n = w2 "+' = e/4, so we conclude that

Ind P < 2mn = me/2 with respect to (Q1, ... , Qmi rl,... , rm)

We now observe that the lower and upper bounds for the index of P given
in (8) and (9) contradict each other. This completes the proof of The-
orem D.2.2 that (**) has only finitely many solutions. Then using the
reduction lemma (D.2.2.1), we conclude that Theorem D.2.1 (Roth's theo-
rem) is also true.

0

Remark D.7.2. The proof of Roth's theorem is not effective. This means
that for a given a, it does not provide a method that is guaranteed to find
all 3 E K satisfying the inequality

[Jmin {I1/8-all ,1}< I
vES

HK(fl)2+6-

Looking at the proof, it is easy to see why this happens. In order to arrive
at finiteness of solutions, we first assumed that there is a solution X31 whose
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height is very large. Note that we can specify how large it must be in terms
of quantities depending only on K, S, a, and 6. Then we assumed that
there is a second solution 32 whose height is much larger than that of 81,
namely HK(132) > HK(f31)21". Note that we cannot determine how large
02 needs to be until we find a X31. Similarly, the lower bound for the height
of 03 depends on the height of (3z, and so on. Therein lies the crux of the
problem. Suppose, for example, that there are actually no ,3's satisfying
the inequality. In principle, that would be wonderful; but in practice, we
would never be able to rigorously demonstrate that there are none! This is
the reason that Roth's theorem is ineffective. And until some new method
of proof becomes available, it is likely to remain so.

Although Roth's theorem is ineffective, it is possible to give explicit
bounds for the number of solutions. The reason this can be done is that
the $'s satisfy a gap principle, which means that their heights grow very
rapidly. (See Exercises D.12 and D.13.) Intuitively, this lets one bound the
maximum number of solutions between the unknown 3,'s without knowing
the values of the (possibly nonexistent) ,Qr's. The first result giving a
bound for the number of exceptions to Roth's theorem is due to Davenport
and Roth [1], and subsequent improvements have been made by Lewis and
Mahler [1], Mignotte [1], Bombieri and van der Poorten [1), Silverman [3),
and R. Gross [1}. The following is a typical result. We will not give the
proof, but see Exercises D.14 and D.15, as well as the cited references.

Theorem D.7.3. Let K, S, a, and 6 be as in the statement of Roth's
theorem. There are effective constants C1 and C2, depending only on the
numbers [K(a) : Ql and 6, such that there are at most 4°rd(S)C2 numbers
0 E K satisfying the simultaneous inequalities

HK((3) > max{HK(a),2}C' and minall,,1} < 1

HK (Q)2+6vES

D.8. Application: The Unit Equation U + V = 1

In this section we begin to reap the rewards for having taken the time to
prove Roth's theorem. As our first application, we will show that the two-
variable S-unit equation has only finitely many solutions. Then we will
use this result to prove that a hyperelliptic curve has only finitely many S-
integer points and that a rational function with at least three poles takes
on only finitely many S-integral values. In the next section we will use a
bit more machinery to extend this last result to algebraic curves of higher
genus.
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Theorem D.8.1. (Siegel, Mahler) Let K/Q be a number field, let S C
MK be a finite set of absolute values on K that includes all the archime-
dean absolute values, and let Rs be the ring of S-integers of K. Then
the S-unit equation

U + V = 1

has only finitely many solutions in S-units U, V E Rs.

Remark D.S.I.I. The original proof of Theorem D.8.1, in the case that
the ring RS is the ring of integers of K, is due to Siegel [1]. Subsequently
Mahler [1, 21 gave the generalization to p-adic absolute values. Both Siegel
and Mahler used their results as an intermediate step in proving that there
are only finitely many integral points on certain curves. The importance
of the unit equation as an object of study was pointed out by Lang [1],
who also generalized Siegel's and Mahler's finiteness theorems to finitely
generated fields.

Remark D.8.1.2. Using the fact that RS is a finitely generated group,
we can see why the theorem "should" be true. We are looking at the
group variety G,,, x and inside this group variety we are looking at
the intersection of the finitely generated group RS x RS and the proper
subvariety {U+V = 1}. It is thus unlikely that there should be very many
points of the group lying on the subvariety. The theorem asserts that there
are only finitely many such points.

To help the reader understand the ideas underlying the proof of The-
orem D.8.1, we now briefly sketch the argument. Suppose that there are
infinitely many solutions (U, V) E RS to the S-unit equation U + V = 1.
We want to use Roth's theorem to derive a contradiction. How can we
relate the solutions (U, V) of the unit equation to Diophantine approxima-
tion and Roth's theorem? The fact that U and V are S-units means that
there is some absolute value w E S for which I U I,,, and I V I,,, are large. We
then find that

U
V w

1

IVIW

is small, so U/V is a good approximation to 1. Of course, this naive
inequality does not contradict Roth's theorem. So we use the finite genera-
tion of RS to replace U and V by aXm and bYm for some large integer m.
Then we show that X/Y is almost as close tom -b/a as U/V is to 1, while
the height HK(X/Y) is approximately HK(U/V)1/'°. In other words, by
taking m°b-roots, we make the height much smaller without affecting the
approximating distance too much. Taking m large enough will then con-
tradict Roth's theorem.

PROOF (of Theorem D.8.1). Suppose that there are infinitely many solu-
tions (U, V) E RS to the S-unit equation U + V = 1. We will derive a
contradiction. Let s = #S be the number of absolute values in S, and fix a



§D.8. Application: The Unit Equation U + V = 1 347

"large" integer m. For example, m = 2s+ 1 will suffice. The unit group RS
is finitely generated, so the quotient group RS/R;"` is finite. Fix a set of
coset representatives A for RS/RS'". Then every element in RS can be
written uniquely as an element of A multiplied by an mth power, so we can
define a map

{(U,V)ERSxRsIU+V=l} -+ AxA,
(U, V) --i (a, b) with U/a, V/b E RS'".

By assumption, the set on the left is infinite, while A is finite. The
pigeonhole principle says that we can choose some a, b E A such that
there are infinitely many (U, V )'s that map to (a, b). Writing U/a = X'"
and V/b = Y'", this shows that there exists some a, b E A such that the
equation

aX "` + W"= 1

has infinitely many solutions X, Y E R. We will derive a contradiction by
showing that X/Y is too good an approximation to '" -b/a.

The set S contains only finitely many absolute values, so applying the
pigeonhole principle again, we can find an absolute value w E S such that
the equation aX' + bY' = 1 has infinitely many solutions (X, Y) with

IIYIIw = max{IIYIIv IV E S}

(i.e., the pigeons are the solutions (X, Y), the pigeonholes are the elements
of S, and we assign a pigeon (X, Y) to a pigeonhole by choosing the v in S
that maximizes IIYIIv)

To ease notation, we fix an mth-root a = m -b/a. Then

1 X'" b X'" ," X
aY-m

aY,,,-a - 11 Y -
SEY-

where the product is over all mth-roots of unity. Clearly, if Y has large
absolute value, then at least one of the factors X/Y - (a must be small.
We claim that only one of them can be very small.

To see this, let (, (' E p,,, be distinct mth-roots of unity and use the
triangle inequality to compute

Y (al + l Y - ('al > K'a - (alw > Cl.
w w

Here the constant C1 = C1 (K, S, m) can be chosen in terms of K, S, and m,
independently of X and Y. (In principle, Cx also depends on a and b. But a
and b are chosen from a set of coset representatives for RS/RS', so they
may be determined by S.) It follows that

IaYm lw =
l Y - Salty > (nin_(a).() m-1

CEiA-
(Ell- Y



348 D. Diophantine Approximation and Integral Points on Curves

since all but one of the terms in the product must be greater than C1 /2.
Hence

1 > C2 min
IlYllw (E(tm

X, -(a
w

where the constant C2 = C2 (K, S, m) depends on K, S, and m.
We invoke the pigeonhole principle one more time, again with pi-

geons (X, Y), but this time the pigeonholes are the mth-roots of unity.
We assign a pigeon (X, Y) to the pigeonhole C E Am that minimizes
II(X/Y) - Call.. Some pigeonhole, call it C, will have infinitely many pi-
geons. Hence there are infinitely many solutions X, Y E RS to the equa-
tion aX "` + bYtm = 1 satisfying

IlYllw > C2 11 Y - callw

This shows that X/Y is a good approodmation to £a. In order to apply
Roth's theorem, we must relate IlYllw to the height of X/Y.

The absolute value w was chosen to maximize IIYII,,. Since we also
have IIYII = 1 for all v 0 S, it follows that

IlYllw = max IlYllw >- (II IIYIiv)"8 = ( II IlYllw)1"' = HK(Y)11.
vES VEMK

Further, using elementary properties of height functions, namely

H(x + y) <_ 2H(x)H(y) and H(xy) < H(x)H(y)

(see Exercise B.20), and the fact that (X, Y) is a solution of aX °' + bY"' _
1, we compute

') =
HK

(XYM
HK

(aY1- a) < 2[x:Q,HK
HK \a/

< 2IK:Q)HK (Y"')HK(a1)HK \a/
Taking mth roots and using the fact that HK(Tm) = HK(T)'", we find
that there is a constant C3 = C3(K, S, m) such that

HK(X/Y) < C3HK(1/Y) = C3HK(Y).

Combining this with the bound for HK(Y) given above, we obtain

IlYllw > C4HK(X/Y)11',

where C4 =C4(K,S,m) =C31'
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We showed above that 1/IIYllw ? C2IIX/Y - Call,,, so using the esti-
mate for IIYIIw, we get

C5HK(X/y)m/s -
XY-a

w

with C5 = C5(K, S, m) = 1/C2C4 . Our assumption is that there are
infinitely many X, Y E RS satisfying this inequality. We now recall that we
chose m = 2s+1, so Roth's Theorem (D.2.1) tells us that this last inequality
has only finitely many solutions in K. This contradiction concludes the
proof of Theorem D.8.1. 0

Theorem D.8.1 says that the equation U + V = 1 has only finitely
many solutions U, V E Rs. The following quantitative version, whose proof
is beyond the scope of this book, gives a very strong upper bound for the
number of solutions. Notice that the bound depends only on the degree
of K over Q and on the number of places in S. It is independent of A, B,
and the particular places in S.

Theorem D.8.2. (Evertse [1]) Let K/Q be a number field, let S c MK
be a finite set of absolute values on K that includes all archimedean absolute
values, and let RS be the ring of S-integers of K. Then for any A, B E K*,
the S-unit equation

AU+BV=1
has at most 3.71K:Ql+2#s solutions in S-units U, V E Rs.

We will now give Siegel's proof that a hyperelliptic curve has only
finitely many integer points. Although this result will be superseded by
Theorem D.9.1 in the next section, the proof by reduction to the S-unit
equation is instructive. Further, the effective solution of the S-unit equa-
tion using linear forms in logarithms leads to effective bounds for the size
of integer points on hyperelliptic curves. The reader should note how the
proof uses the two fundamental finiteness theorems of algebraic number
theory, namely the finiteness of the ideal class group and the finite gener-
ation of the unit group (whose proofs were given in Part C, Section 3).

Theorem D.8.3. (Siegel) Let K/Q be a number field, let S c MK be a
finite set of absolute values on K that includes all the archimedean absolute
values, and let RS be the ring of S-integers of K. Let f (X) E K[X] be
a polynomial of degree at least 3 with distinct roots (in K). Then the
equation

Y2 = f(X) has only Finitely many solutions X, Y E RS.

PROOF. Note that the statement of the theorem becomes stronger if we
replace K by a finite extension or replace S by a larger set of absolute
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values. So we begin by taking an extension of K over which f (X) factors
as

f(X) = a(X -al)(X -an) with al,._a, C- K.

By assumption, n > 3 and the a,'s are all distinct.
Next we increase the size of S so that the following three conditions

are true.
(i) a E R'S and a, , ... , an E RS.

(ii) ai-a1 ERS for all i& j.
(iii) RS is a principal ideal domain.

Clearly, conditions (i) and (ii) only require us to add a finite number of
primes to S. The same is true of condition (iii), since in any case the ideal
class group of RS is finite, and it suffices to add to S one prime ideal from
each ideal class. (If you do not want to use Dirichlet's theorem on primes
in arithmetic progressions, just take one ideal a from each ideal class and
add to S all of the prime ideals dividing a; see, for example, Lemma C.3.7.)

For later use, we will also define a field L/K by

L=K(f I uERs).

It is vitally important to observe that L is a finite extension of K. This
is true because L is generated by the square roots of coset representatives
for RS/RS2, and we know that RS/RS2 is finite by Dirichlet's unit theorem.
We let T C ML be the set of places of L lying over S, and we write RT for
the ring of T-integers in L.

We now begin the proof of Theorem D.8.3. Suppose that X, Y E RS
is a solution to the equation y2 = f (X). We observe that if p is a prime
ideal in RS and if p divides X - a,, then for any j j4 i we have

X-a, =(X-a,)+(a;40 (modp).
(The fact that a, -aj 0 0 (mod p) follows from property (ii) above.) Hence
at most one of the X - a,'s can be divisible by p.

On the other hand, the product of the X - a,'s is equal to a-1Y2,
and a is a unit, so the highest power of p dividing the product must have
even exponent. It follows that every prime dividing the ideal (X - a,)Rs
must divide it to an even power. Therefore, there are ideals a, C RS such
that

(X - a,)RS = a? for all l < i < n.

Property (iii) says that RS is a principal ideal domain, so a, = Z,RS
for some Z. E RS. Hence there are units U, E RS such that X -a, = U, Z12.
To recapitulate, we have shown that

X-a,=UZ,2 for some U, ERS andZ,ERs.
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It is now apparent why we defined the field L, because in L the unit U.
becomes a square, say U, = V2. Thus we have

X-a,=VIZ?=W2 for some W,ERT,

where we have set W, = V,Z,. Taking the difference of two of these equa-
tions then gives

aJ-a,=W2-W =(W1-W,)(W,+W?).

But condition (ii) says that aa3 - a, is a unit in Rs, so we conclude that
both W, - WJ and W, + WJ are units,

IV,-WJ,W,+WJ ERT for all i96 j.

We now use the fact that f (X) has degree at least three to write down
the identity

WI - WZ
+

W2 - W3 =1.
WI-W3 WI-W2

(This is sometimes called Siegel's identity.) Each of the terms on the left-
hand side is a unit in RT, so Theorem D.8.1 tells us that each can take on
only finitely many values. Similarly, the identity

WI+W2+W3+W2-1
WI-W3 W3-WI

and Theorem D.8.1 tell us that each of the terms in this equation can take
on only finitely many values. It follows that there are only finitely many
possible values for the quantity

WI - W2 WI + W2 W12 - W2 _ 012 aI
WI - W3 WI - W3 (WI - W3)2 (WI W3)2.

Therefore, there are only finitely many possible values for WI - W3, so
finitely many for

1

2
(WI - W3) +11

a123

-
- IIIW3) _ 1

2 ((WI - W3) + (WI + W3)) = Wl'

and so finitely many for aI + W1 = X. Finally, for a given X, there are at
most two possible values for Y, which completes the proof that y2 = f(X)
has only finitely many solutions X, Y E Rs. 0

Using a similar argument, we investigate when a function on PI can
assume infinitely many integral values. The reader should compare this
result with Theorem D.9.1 in the next section, which deals with curves of
genus greater than zero.
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Theorem D.8.4. (Siegel) Let K/Q be a number field, let S C MK be a
finite set of absolute values on K that includes all the archimedean absolute
values, and let RS be the ring of S-integers of K. Let C/K be a curve of
genus zero, and let 0 E K(C) be a rational function on C with at least
three distinct poles (in C(K)). Then there are only finitely many rational
points T E C(K) satisfying 4(T) E Rs.

PROOF. If C(K) = 0, there is nothing to prove. So we may take C = ?I
and write Q = f (x, y)/g(x, y) using homogeneous polynomials f, g E Kjx, yj
of the same degree with no common roots (in P1 (K)). Taking a finite
extension of K and adding finitely many primes to S, we may assume that
the following conditions are true.

(i) f and g factor completely in K,

f = a(x-o1y)d' ... (x-amy)d_., g = b(x-31y)" ... (x-3ny)e".

(If 0 has a zero or pole at [l, 0], then one off or g may also have
a yd factor.)

(ii) a, b E RS and a,, ... , am, 01,. - . , $m E RS.
(iii) - ) 9 j

(iv) RS is a principal ideal domain.
Now suppose that T E P'(K) has the property that 0(T) E Rs. We

write T = [X, Y] with gcd(X,Y) = 1, which we can do because Rs is a
principal ideal domain. Note that for any i, j we have

and

(X - a,Y) - (X - 3jY) = (a, - 3j)Y

-3j (X - a,Y) + a, (X -,3,Y) = (a, - 0,)X.

We know from (iii) that a,-3j is a unit, and we have chosen X and Y to be
relatively prime. It follows that X - a,Y and X -3jY are relatively prime.
But f(X,Y) = Ij(X -a,Y)d' and 9(X, Y) = jj(X - 3jY)e., so f(X,Y)
and g(X, Y) are relatively prime in RS.

On the other hand, we are assuming that 0(T) = f (X, Y)/g(X, Y) is
in RS, which means that g(X, Y) divides f(X,Y). It follows that 9(X, Y)
is a unit, g(X, Y) E R's, and so each of the X - 3j Y's is in R5. We are
further assuming that g has at least three distinct roots, so we can consider
Siegel's identity

32-33 X-01Y 33-31 X-/3Y
32-31 X-33Y32-31 X-33Y

Both terms on the left-hand side are units, so Theorem D.8.1 tells us that
they can assume only finitely many values. Finally, if we fix a value for
(X - 0,Y)/(X -,33Y) =,y, we have (1 - -y)X = (31 - y33)Y, so we get
only one point

T=(X,Y)=(3,-733,1-7).
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(Note that this is a well-defined point, since 01 34 (33.) Hence there are
only finitely many T E P1(K) with O(T) E Rs. 0

D.9. Application: Integer Points on Curves

In this section we will give Siegel's proof that an affine curve of genus at
least 1 has only finitely many integer points. We begin by setting the
following notation, which will be in effect throughout this section.

K/Q a number field.

Rs the ring of S-integers in K for a finite set of places S.

a = #S, the number of places in S.
C/K a smooth projective curve of genus g defined over K.
f a nonconstant function f E K(C).

Siegel's Theorem D.9.1. Assume that C has genus g > 1. Then the
set

{PEC(K)I f(P)ERs}
is finite.

Before beginning the proof of Siegel's theorem, we make two quasi-
historical remarks.

Remark D.9.2.1. Our proof of Siegel's theorem (D.9.1) will use Roth's
theorem. In the 1920s, when he proved his theorem, Siegel had available
only the weaker result that an algebraic number a of degree d has approx-
imation exponent r(a) < 2v-, so his original proof was somewhat more
complicated. Further, he considered only archimedean absolute values, so
his ring Rs was the ring of integers of K.

Remark D.9.2.2. Theorem D.9.1 together with Theorem D.8.4 can be
reformulated as follows. Let U be an affine curve of genus g with s
points at infinity. In other words, if U is the normalization of U and C a
smooth projective curve that is birational to U, then C has genus g and
s = card(C - U). Then Theorems D.9.1 and D.8.4 say that

2g - 2 + s > 0 =,,, U(Rk,s) is finite.

Notice that the quantity 2 - 2g - a can be viewed as the Euler-Poincare
characteristic x(U) of U. Thus the negativity of the very coarse geometric
invariant X(U) implies a deep arithmetic finiteness property of U.

If g > 2, then Siegel's theorem is in some sense superseded by Faltings'
theorem (ne the Mordell conjecture), which asserts that the set C(K) itself
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is finite. In fact, Siegel's theorem for curves of genus 0 (with at least 3
points at infinity) or genus 1 (with at least 1 point at infinity) may also be
deduced from Faltings' theorem (see Exercise E.11). However, the proof
of Siegel's theorem is an instructive lesson in the use of geometry to prove
arithmetic results, so it well warrants inclusion here.

A curve of genus 1 is an abelian variety of dimension 1, so Siegel's
theorem says that an afine piece of an abelian variety of dimension 1 has
only finitely many S-integral points. Lang conjectured that the same should
be true for abelian varieties of arbitrary dimension, and Faltings used an
adaptation of Vojta's method to prove Lang's conjecture. See Part F and
especially Section F.5.3 for further comments.

We begin our proof of Siegel's theorem (D.9.1) with a version of Roth's
theorem for curves.

Proposition D.9.3. With notation as described at the beginning of this
section, we let e be the maximum order of the zeros off, we fix a constant
e > 0, and we choose a function t E K(C) that is defined and unramified at
all zeros and poles off . Then there exists a constant c = c(f, t, C, C, S) > 0
such that

v[J
min{ IIf (P) Ilv, 1) >_

HK t(P)) (2+c)se
for all P E C(K).

PROOF. Write the divisor of f as

div(f) = el (Ql) + e2(Q2) + ... + e,-(Q,) - E

for some effective divisor E > 0. Notice that Q1, ... , Q,. are the distinct
zeros of f and that e = max{ei}.

Suppose that the proposition is false. This means that there is a
sequence of points P1, P2, ... E C(K) such that

,lim HK (t(Pi))(2+E)se

fi min{ I l l (Pi) I1v,1 } = 0.
vES

We also observe that

II min{pf(Pi)IIv,1} > (min {Ilf(Pi)IIy, 1})',
VES

vES

so substituting this in and taking stb-roots gives

lim
HK(t(Ps))(2+e)e

min{Ilf(P,)Ilv, 1} = 0.ioo vES

The height HK(t(Pi)) goes to infinity, since C(K) has only finitely
many points of bounded height. Hence we can find an absolute value w E S



§D.9. Application: Integer Points on Curves 355

and a subsequence of the Pi's (which by abuse of notation we again denote
by P1, P2, ...) such that

lim
HK(t(Pi))i2+c)ell f(pi)Ilw

= 0.i- oo

In particular, Iif(A)Ilw -, 0, so eventually each Pi must be close to one of
the zeros off in the w-adic topology. Taking a subsequence of the Pi's, we
may assume that

Pi - Q in the w-adic topology
t-Co

for some fixed zero Qj of f .
The function t-t(Qj) is a uniformizer at Qj, and f vanishes to order ej

at Qj, so the function
(t - t(QA))-elf

has no zero or pole at Qj. This means that it is w-adically bounded in
a sufficiently small w-adic neighborhood of Qj. In particular, there are
constants cl,c2 > 0 such that

cl < II(t(Pi) - t(Qj))-'I f(Pi)I iw < c2 for all sufficiently large i.

It follows from above that

lim HK(t(Pi))(2+e)ell (t(Pi) - t(Qj))e) Ilw = 0.
i oo

But e is the largest of the ej's, so we find that/

ilrn HK(t(Pi))12+e)Ilt(Pi)-t(Qj)IIw=0.

This says that the rational numbers t(Pi),t(P2),... E K closely approxi-
mate the algebraic number t(Qj) E K. In fact, they approximate so closely
that they contradict Roth's theorem (D.2.1). This contradiction completes
the proof of Proposition D.9.3.

The next step is to show that the exponent se(2 + e) in Proposi-
tion D.9.3 can be replaced by any positive exponent, provided that we
assume that C has positive genus.

Proposition D.9.4. With notation as described at the beginning of this
section, choose a function t E K(C) that is defined and unramified at all
zeros and poles of f, and let p > 0 be a positive constant. Assume that C
has genus g > 1. Then there exists a constant c = c(f, t, C, p, S) > 0 such
that

min{ 11f (P) 1Iv,1 } > HK (t(P)) n for all P E C(K).
vES
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PROOF. We begin with a brief sketch of the ideas underlying the proof. We
know from (D.9.3) that the result is true for some exponent, specifically
p = e(f)s(2+e), where e(f) is the largest order of vanishing of f. The idea
of the proof is to find a covering 0 : C' -+ C such that there are rational
points P E C'(K) lifting the rational points P E C(K). Then

IIf(4)("))IL = Ilf(P)IIv.

On the other hand, for an appropriate function t' E K(C') we will find that

HK(t'(P,)) sHK(t(P))r/aeg(m)

If we apply (D.9.3) to C', f o 0, and t', we find that

11 min{IIf o 4)(P')IIv,1} for all P'EC'(K),
vES

so in terms of C we obtain

T-T 'n{ II f(P)n 1} >IDl
c for all P'EC'(K).

vES
v'

HK (t (P))e(fo )e(2+e)/aeg(0)

Now by taking the degree of 0 very large, we can make the exponent as
small as we like, provided that the orders of the zeros off o 0 are not much
greater than the orders of the zeros of f. A priori, it might happen that 46
is totally ramified at some zero Q of f, in which case

ordQ, (f o 0) = (deg 0) ordQ (f) (where 4)(Q') = Q).

This would vitiate the argument, so we have to prevent it from happening.
We will use the multiplication-by-m map on the Jacobian of C to find 0's
that are everywhere unramified, thereby ensuring that f o4) does not vanish
to higher order than f .

We are now ready to begin the proof of Proposition D.9.4. We will
suppose that the proposition is false and derive a contradiction. So we
suppose that there is a sequence of points Po, P1, P2, ... E C(K) such that

HK (t(PP))°[Jmini IIf(Pt)jjv,1} <c for alli=0,1,2,....
vES

We fix an embedding

j : C ' -+ J = Jac(C)

defined over K. For example, we could use j(P) = Cl(P - Po). Using
this embedding, we will treat C as a subvariety of J. We also fix a large
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integer m that will be specified later. (In fact, any integer m > 1 + 6e/p
will suffice.)

The weak Mordell-Weil theorem (C.0.2) says that the quotient group
J(K)/mJ(K) is finite, so replacing {P=}s>, with a subsequence, we may
assume that every P1 has the same image in J(K)/mJ(K), say

Pi=mP+R foralli=1,2,....

Here R E J(K) is some fixed rational point on J.
Consider the map

'F:J---iJ, x-mx+R.

Let C' be the curve C' = -t-1(C). Notice that the points P1 1 P2.... are
in C'(K). Further, the map 40 is unramified, so its restriction to C',

0:C'--pC,

is also unramified. By construction, we have a commutative square

C' `' i J

to to

C

where the vertical maps are unramified and j' is the natural inclusion of C'
in J. In particular, and this is the crucial attribute of this construction,
the fact that 0 is unramified implies that

ordp, (f o 0) = ordo(p) (f) for all points P E C'.

Hence e(f o 0) = e(f ), where as usual we are writing for the highest
order of vanishing of a function.

Let D E Div(J) be a very ample symmetric divisor on J. Then j'D is
very ample on C, and j'*D is very ample on C', so we can choose functions
t E K(C) and t' E K(C') associated to j*D and j'aD, respectively. This
means that the map t : C IP1 satisfies t`(oo) - j"D, and similarly for t',
so we obtain the height relations

h(t(P)) = +O(1) for all P E C(K),

h(t'(P')) = O(1) for all P'EC'(K).
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Next we do a height computation on J to compare hJ,Doj with hJ,DOj'.
For all P'EC'(K),

h(t(cb(P'))) = hc,j.D(¢(P')) +O(1) from above
= hJ,D(j(ct(P'))) +O(1) functoriality (B.3.2b)
= hJ,D(j(ct(P'))) +O(1) from (B.5.1a)

= hJ,D(4'(j'(P'))) +O(1) since j o 0= 4P o j'
= hJ,D([m](j'(P')) + R) + 0(1) definition of 4D

1 hJ,D([m](j'(P'))) - hJ,D(R) + O(1) see belowt

= 2zhJ,D(j'(P')) +O(1) from (B.5.1b)

(the 0(1) depends on R)

= 2
z

hJ,D(j'(P')) +O(m2) from (B.5.1a) again

= 2hc,j,-D(P') + O(m2) from (B.3.2b) again

= 22 h(t'(P')) + 0(mz) from above.

The inequality marked with a t is a special case of an elementary inequal-
ity that says that for any positive definite quadratic form and any real
number t > 0,

Vx + y) _ (1 - t-2)E(x) - (t2 - 1Wy) + E(t-1x + ty)
> (1 - t-z)e(x) - (t2 - 1)e(y)

We have merely used this estimate with t = f and C = hJ,D.
Exponentiating the above height inequality yields

HK (t(0(11)) > K11HK(t'(P'))'"21z for all P E C'(k).

We have written the constant as K,,, to emphasize that it depends on the
choice of m. So at some point we will have to fix a value for m that is
independent of the sequence of points Pi, P2.... E C'(K).

Combining all of the estimates derived above, we compute

c> HK(t(P1))' fi mini IIf(P;)II,,,1} by assumption
vE S

= HK(t(¢(P;)))° fi mini IIf(¢(P,''))jIy,1} since Pi = O(P,)
vES

> K,,,HK(t'(P))'"`2'2 [I from above
vES

i Pm2/2 ' HK W(M)
-(2+E)se(foO)

from (D.9.3) applied to C', f o 0, and t'.
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Now we use the crucial fact that 0 is unramified, so e(f o 0) = e(f) is
independent of m. This means that we have the inequality

c"
>

HK(t,(P,))Pm'I2-(2+e)9e(f) for all i=1,2,....

The constant c" depends on in, but it is independent of i. On the other
hand, the height HK(t'(P,')) goes to infinity as we let i --, oc, so the
exponent cannot be positive. Hence

pmt/2 < (2 + e)se(f ).

This holds for every m > 1, and the right-hand side is independent of m,
since we can take e = 1, for example. Therefore, p < 0. This contradicts
our original choice of p > 0, which completes the proof of Proposition D.9.4.

0

With Proposition D.9.4 at our disposal, the proof of Siegel's Theo-
rem D.9.1 is easy.

PROOF (of Siegel's theorem (D.9.1)). We assume that the set

{P E C(K) I f(P) E Rs}

is infinite and derive a contradiction. Fix a function t E K(C) that is
defined and unramified at all zeros and poles of f , and let p = deg f/2 deg t.
(Actually, any p satisfying 0 < p < deg f / deg t will do.) Our first step is
to apply Proposition D.9.4 to the function 11f. We find that there exists
a constant cl > 0 such that

min{I)(1/f)(P)Jk,,,1} > HK(t(P))P for all P E C(K).
vEs

A small amount of algebra then gives

HK (t(P))P > c1 J max{ 11f (P)II,;,1 } for all P E C(K).
vES

Next we observe that if f (P) E Rs, then I If (P) II
L

< 1 for all v V S,
so the height of f (P) is given by

HK(f(P)) = II max{If ITmax{IIf(P)II,,,I
vEAfK vES

Combining this with the previous inequality gives

HK(t(P))P > c1Hk (f(P)) for all P E C(K) with f(P) E Rs.
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Now we take logarithms and divide by the degree [K : Q] to obtain an
estimate in terms of logarithmic heights,

ph(t(P)) > h(f (P)) - C2 for all P E C(K) with f (P) E Rs.

Recall that we chose p to equal deg f/2degt, so dividing by h(t(P)) yields

deg f h(f (P)) - c2
for all P E C(K) with f (P) E Rs.2degt - h(t(P)) h(t(P))

Finally, we make use of (B.3.5), which says that

lira h(f (P)) -
deg f

PEC(K) h(t(P)) deg t
h(t(P))--

So if there were infinitely many points P E C(K) with f (P) E Rs, then
we could take a limit of such points with h(t(P)) -r oo, in which case our
inequality becomes

deg f > deg f
2 deg t - deg t

This contradiction shows that there are only finitely many points P E C(K)
with f (P) E Rs, which completes the proof of Siegel's theorem (D.9.1).

Remark D.9.5. The proof of Roth's theorem being ineffective, the proof
of Siegel's theorem that we have given is also ineffective. For many (but
not all) curves, Baker's theorem, which provides lower bounds for linear
forms of logarithms, can be used to make Siegel's theorem effective, as we
now briefly describe. For further details, see Baker [1] or Serre [3].

Building on the method pioneered by Baker, Feldman [1] has shown
that for all algebraic numbers a of degree d > 3, there exist two effectively
computable constants C = C(a) and e = e(a) > 0 such that for all rational
numbers p/q E Q,

a- q C
l > qd_c

Unfortunately, a is quite small.
Baker's theorem says the following. Let al, ... , am be algebraic num-

bers. Then there is an effectively computable constant c = c(al, ... , a,,,)
such that for all integers bl,... , b,,, with maxi Jb2 < B, either

ai' ... ab or Tail ... am ^' - l I > B

Note that the elementary Liouville inequality gives only

1 > exp(-dB),ai' an; - 1
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so Baker's theorem provides an exponential improvement.
Baker's result can be used to study the unit equation by choosing

a set of generators at, . , a,,, for the unit group and writing all units
in the form ai' amm . In this way Baker was able to prove effective
bounds for the solutions to the unit equation (D.8.1), and hence for any
Diophantine equation or problem that can be reduced to the solution of
the unit equation. This includes, for example, the problem of integral
solutions to the hyperelliptic equation Y2 = f(X) (cf. Theorem D.8.3), to
so-called superelliptic equations of the form Y" = f (X) (see Exercise D.6),
and to integral values of functions with at least three poles on curves of
genus 0 (cf. Theorem D.8.4). The method also leads to an effective bound
for the height of integral points on affine curves of genus 1, since these can
be reduced to integral solutions of hyperelliptic equations. However, the
method does not (at present) give an effective bound for integral points on
an affine curve of genus 2 or greater, even if the curve is hyperelliptic, since
integral points are not preserved by general birational transformations.

EXERCISES

D.1. (a) Prove that almost all real numbers (in the sense of measure theory)
have approximation exponent 2. That is, prove that for every e > 0, the
set

9 - 11 < q2+c has infinitely many solutions

4

E Q

is a set of Lebesgue measure zero.
(b) More generally, let F : N -. R be any real-valued function on the
positive integers with the property that the series q/F(q) converges.
Prove that the set

P
- a

q
<

F

(1q)
has infinitely many solutions

9

E Q

has measure zero.
Remark. Notice that Roth's theorem (D.2.1) says that the set in (a)

contains no algebraic numbers. Lang has conjectured that the same is true
for the set in (b). For example, this should be true for F(q) = g2(log q)'+.
for any e > 0; but it is still an open question, even for F(q) = g2(logq)c
with an arbitrarily large value of C.

D.2. (a) Prove that there are infinitely many rational numbers p/q E Q satisfying

p 1 + %A31 < 1

q

-
2 f5g2
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(b) For any constant rc > f, prove that there are only finitely many
rational numbers p/q E Q satisfying

p 1+f
q 2 < 12

aq

(c) If a is & real quadratic root of aX 2+bX +c = 0, set D := b2 -4ac; prove
that for all is > %,'D-, there are only finitely many rational numbers p/q E Q
satisfying

P - a
q

D.3. Let a E R with a f Q.
(a) Prove that there are infinitely many rational numbers p/q E Q satisfy-
ing

(The previous exercise shows that tir cannot in general be replaced by any
larger constant.)
(b) Let 9 = (1 + r5)/2, and suppose that a cannot be written in the
form (a/S + b)/(c/3 + d) with integers a, b, c, d satisfying ad - be = 1. Prove
that there are infinitely many rational numbers p/q E Q satisfying

P_ -a
q < r88g2

D.4. Let a E Q be an algebraic number of degree d = [Q(a) : Q] > 2. Prove
that there is a constant c(a) > 0 such that

P - a
q

> c(°)
for all rational numbers P E Q.qd q

Find an explicit value for c(a) in terms of the height of a.

D.5. Use Liouville's theorem (D.1.2) or the previous exercise to prove that the
number

Do

n=0

is transcendental over Q. (Note that the exponent is n factorial.)
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D.6. Let K be a number field and let Rs C K be the ring of S-integers of K for
some finite set of places S.
(a) Let F(x, y) E K [x, y] be a homogeneous polynomial of degree d >
3 with nonzero discriminant, and let c E K. Without quoting Siegel's
theorem (D.8.4 and D.9.1), use Roth's theorem directly to prove that the
equation

F(x, y) = c

has only finitely many solutions x, y E Rs. (Show that x/y closely approx-
imates a root of F(t, 1). An alternative method is to reduce the problem
to solving a certain collection of unit equations and apply Theorem D.8.1.)
Equations of this form were first treated by Thue [1] in 1909.
(b) Let f (x) E K[x] be a polynomial of degree at least 2 with distinct roots
(in k), and let n > 3 be an integer. Mimic the proof of Theorem D.8.3 to
prove that the equation y' = f (x) has only finitely many solutions x, y E
Rs.

D.7. (Leibniz's formula) Let P, P' E k[X 1, ... , X,,,] be polynomials with coef-
ficients in some ring k, and let be an m-tuple of nonnegative
integers. Prove that

ejl...jm(PP') _ > (8.,...:rP)(O
iJ+il=j1 im+i,n=jm

D.8. Prove the estimate

et<1+t+t2 for all Itl<1

used in the proof of Lemma D.3.6.

D.9. Siegel's Lemma (D.4.1) says that a system of linear equations with integer
coefficients has a solution of size at most (NI AI )M/(N-M). Prove that there
is a solution whose size is at most (vNI AI)M/(N-ar) Can you improve this
bound further?

D.10. (a) Let F E Z[X1, ... , X,.] and G E Z[Y1, ... , Y,] be polynomials that use
different sets of variables. Prove that I FGI =IFI - IGI, where recall that
IFI is the maximum absolute value of the coefficients of F.
(b) More generally, let K be a number field with ring of integers RK, and
let F E RK[Xi,...,X,.] and G E RK[Y1,...,Y8]. Prove that HK(FG) _
HK (F)HK (G).
(c) Give an example to show that (a) need not be true if we merely assume
that F and G have coefficients in Q.

D.11. Let 01, ... , Ok E K(X) be rational functions over a field of characteristic 0.
Suppose that there exists a nonzero generalized Wronskian of
Prove that 951, ... , ¢k are linearly independent over K. (Note that this is
precisely the part of Lemma D.6.1 that we left for you to do. Do not just
quote Lemma D.6.1.)
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D.12. Let a E Q, let e > 0, and let S(a,E) denote the set of solutions p/q E Q
to the inequality

1

Iq
q2+c

(a) If pi 1q, and p2/q2 are solutions in S(a,e) with q2 > qi, prove that
1 1+c

q2>_-q1

An inequality of this sort is called a gap principle, because it says that
there are large gaps between solutions.
(b) Prove that for all H2 > H1 > 21/`,

(p log H2
# { q

E S(a, e) I Hl < q < H21 <- 1o91+c log 2-1/°H1

D.13. Let K/Q be a number field; let S C MK be a finite set of absolute values
on K, each extended in some way to k; set card(S) = a; let a E K; and
let e > 0. Let C : S - [0,1] be a function satisfying 1, and
let S(K, S, a, E, t) be the set

{,3 1 for all vES
` HK(a)(2+c)e JJJ

whose finiteness is proven in Theorem D.2.2.
(a) Prove that if 01, 02 E S(K, S, a, E, £) satisfy HK (02) > HK ()91), then

HK()32) > 2-([K:Q]+8)HK(J31)1+c

This gap principle generalizes the previous exercise.

(b) Prove that for all constants H2 > H1 > 2(IK:Q]+s)/c

#{a E S(K,S,a,E,l:) : H1 < HK (0) < H2} < log,+c
log H2

log2-lo Q]+s)/LH1

D.14. Let K/Q be a number field; let S C MK be a finite set of absolute
values on K, each extended in some way to k; let or E k; and let e > 0.
Let S(K, S, a, E) be the set

S(K,S,a,e) = mi{[[a-a[I.,1} < 1{SEKI
vES

HK (a)2+c

considered in Theorem D.2.1, and for any function

l; : S --* [0,1] satisfying

let S(K, S, a, E, C) be the set

E1;,,=1,
vES

8(K,S,a,e,t:)={3EKlllO-ally< 1 for all vES}

I
HK (a) (2+c)(..

111

considered in Theorem D.2.2. Prove that

#S(K, S, a, E) < 4#S sup #S (K, S, a,
2

E, f) ,

where the supremum is over all £ : S - [0,1] with E.ES 1;,, = 1. (Notice
that this provides a quantitative proof of the reduction lemma (D.2.2.1),
which says that Theorem D.2.2 implies Theorem D.2.1.)
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D.15. Let K/Q be a number field; let S C MK be a finite set of absolute
values on K, each extended in some way to K; let a E K; and lets > 0.
Let 9(K, S, a, c) be the set

S(K,S,a,e)= 13EKI [Jmin{l]13-a]lv,1151I HK (8)2+e
vES

considered in Theorem D.2.1.
(a) Prove that there are constants C1 and C2, depending only on [K(a) : Q]
and e, such that

#{Q E S(K, S, a, c) I HK (Q) > max(HK (a), 2)c'} < 4#SC2.

(b) Find explicit expressions for C1 and C2 in terms of [K(a) : Q and s.
D.16. Let C/Q be a smooth projective curve of genus 1, and suppose that C(Q)

is an infinite set. Fix a nonconstant function f E Q(C), and for each point
P E C(Q), write

f(P)=6PEQ

as a fraction in lowest terms. Prove that

lira log ]aPI - 1.
PEC(Q),h(f(P))-.oo loglbpl -

Notice that this says that the numerator and the denominator of f (P) have
approximately the same number of digits. It greatly strengthens Siegel's
theorem (D.9.1), which in this situation would merely say that there are
finitely many P E C(Q) with bp = 1 (i.e., with f (P) E Z).

D.17. Generalize the previous exercise as follows. Let C/K be a smooth projec-
tive curve of genus I such that C(K) is an infinite set, and fix a nonconstant
function f E K(C). Also, let he be a height function on C with respect
to some fixed ample divisor, and let S be a finite set of places of K. Prove
that

rim
EVESIlogllf(P)Iivl

= 0.
PEC(K),hC(P)-oo hc(P)

D.18. Continued fractions. To ease notation, for ao E R and al, ... , an > 0 we
set

[aa, al,..., an] := ao +

al +

1

I

a2 + 1

an

To every real number x, we associate a sequence of integers an (with
a,,.. -, an > 0) and an auxiliary real sequence xn defined by

ao = [x], xo = x and Xn+1 = 1 , an+1 = Ixn+1],xn - an
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with the convention that the sequence terminates if xn is an integer (which
occurs only when x E Q). Further, define the nt1i convergent of z to be the
rational number

pn
[ao, ai, ... , an]-

qn

(a) Prove that x = [ao....,an-l,xn].
(b) Verify the following useful recursion formulas:

Pn+1 = an+Ipn + pn-1,

qn+l = an+lqn + qn-I,

gnpn-1 -Pgn-1 = (-1)n,
gnpn-2 - pngn-2 = (-1)n-Ian.

(c) Let x yE Q be an irrational number. Show that the convergents p,/q,
provide "good" approximations to x in the sense that

1 < x-p"
Qn (Qn + Qn+1) qn

Prove that they provide the "best" approximations to z in the sense that

qn x - P" f < min q a:
qn p/qE'i jq q

q<q.. I .

(d) (Lagrange) Show that the sequence an eventually becomes periodic if
and only if x is quadratic, i.e., x is the root of an irreducible quadratic
polynomial x2 + Ax + B E QIxj.
(e) Show that the following are equivalent:

(i) The sequence an is bounded.
(ii) There exists a constant C = C(x) such that x - 4 E C/q2 for

all rational numbers p/q.
It is suspected that an is unbounded for all algebraic numbers of degree at
least 3, but this is not known for be true for even a single such number!



PART E

Rational Points on Curves
of Genus at Least 2

L'arithmetique
Est une mecanique
Qui donne la colique
Aux cathotiques,
Le mal au cur
Aux enfants de chceurs,
Et le mat an nez
Aux cures.

Comptine du Bourbonnais

Let K/Q be a number field and C/K a curve of genus g defined over K.
If g = 0, then we have seen in Part A.4.3 that C " PL (over K), so the set
of K-rational points C(K) on C is either empty or equal to P' (K). If g = 1,
then C is an elliptic curve and has the structure of an abelian variety of
dimension 1. The Mordell-Weil theorem (C.0.1), proven for K = Q by
Mordell [1J in 1922 and in general by Weil [1] in 1928, says that if C(K)
is nonempty, then it is a finitely generated abelian group. In particular, if
g < 1, then it frequently happens that C(K) is an infinite set, and this will
always be true for C(L) for some finite extension L/K. In stark contrast
stands the following result, conjectured by Mordell [1J in his 1922 paper
and first proven by Faltings [1J in 1983.

Theorem E.0.1. (Faltings [I]) Let K be a number field, and let C/K
be a curve of genus g > 2. Then C(K) is finite.

Faltings' [1J proof of Theorem E.0.1 in 1983 used a variety of advanced
techniques from modern algebraic geometry, including tools such as mod-
uli schemes and stacks, semistable abelian schemes, and p-divisible groups.
Vojta [2] then came up with an entirely new proof of Faltings' theorem using
ideas whose origins lie in the classical theory of Diophantine approximation.
However, in order to obtain the precise estimates needed for the delicate
arguments involved, he made use of Arakelov arithmetic intersection theory
and the deep and technical Riemann-Roch theorem for arithmetic three-
folds proven by Gillet and Soup. Faltings [2] then simplified Vojta's proof
by eliminating the use of the Gillet-Soule theorem and proving a "product
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lemma" especially well suited to induction. This allowed Faltings to gener-
alize Vojta's result to prove a conjecture of Lang concerning rational and
integral points on subvarieties of abelian varieties (see Part F for further
comments). However, Faltings' proof, which uses arithmetic intersection
theory and heights defined via differential geometric considerations, is far
from elementary.

Bombieri [1] has combined Faltings' generalization with Vojta's origi-
nal proof and with other simplifications of his own to give a comparatively
elementary proof of the original Mordell conjecture. In addition to the
Mordell-Weil theorem (C.0.1) for the Jacobian of C, the tools used in
Bombieri's proof fall broadly into the following three areas:

(i) Geometric Tools
The Riemann-Roch theorem for surfaces, or more precisely, for the
product C x C of a curve with itself. The theory of curves, Jacobians,
and theta divisors. Aside from the necessity of keeping track of fields of
definition, this material dates from the nineteenth century. Especially
useful is Riemann's theorem describing the intersection of a curve with
a translation of the theta divisor. This material is surveyed in Part A.

(ii) Height Functions
Weil height functions associated to divisor classes. Canonical height
functions on abelian varieties and their associated quadratic forms.
The theory of height functions is, in essence, a tool for translat-
ing geometric information, in the form of relations between divisor
classes, into arithmetic information about points. The theory of what
are now known as Weil heights was developed during the 1940s and
50s (see, e.g., Weil [4] or Northcott [1, 2]), and canonical heights were
constructed by Neron [2] and Tate [unpublished] in the mid-1960s. We
should also mention Mumford's application [1] of canonical heights to
Mordell's conjecture in 1965, since several of Mumford's ideas play a
crucial role in Vojta's proof. We have covered this material in Part B.

(iii) Diophantine Approximation
The classical theory of Diophantine approximation asks how closely an
irrational quantity can be approximated by a rational quantity. Proofs
in this subject follow a basic pattern: (1) Construction of an auxiliary
function using Siegel's lemma. (2) An elementary upper bound, essen-
tially obtained from the triangle inequality. (3) A nonvanishing result,
such as Dyson's lemma or Roth's lemma. (4) A lower bound, obtained,
via the product formula, from the fact that 1 is the smallest positive
integer. We have discussed the theory of Diophantine approximation
in Part D.

All four of the Diophantine approximation steps appear in the
proof of Mordell's conjecture, and anyone familiar with the proof of
Roth's theorem in Part D will have no trouble picking out each step
as we go along. However, one new feature to observe is that rather
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than studying approximations to a point, we instead look at points
that approximate a certain carefully chosen curve representing a par-
ticular divisor class in C x C. We will use the R.iemann-Roch theorem
on C x C to tell us that the particular divisor class actually contains
a curve (i.e., the divisor class is effective).

In some sense, all of the tools needed for the proof of Mordell's conjecture
were available by 1965, when Mumford's paper [1] appeared. In the re-
mainder of this chapter we will present the proof of Mordell's conjecture
as given in Bombieri's paper [1]. The following material will be used in the
proof, and may thus be considered prerequisite for reading this part.

Part A, Sections 1-8.
Part B, Sections 1-5 and 7.
Part C, Sections 1-2.
Part D, Sections 1-7.

E.1. Vojta's Geometric Inequality and Faltings' Theorem

In this section we will describe an inequality due to Vojta and show how
it leads, via an elementary geometric argument, to a proof of Faltings'
theorem (E.0.1). Most of the remainder of this chapter will then be devoted
to proving Vojta's inequality.

We begin by setting a little notation, which will remain fixed through-
out.

K a number field.
C/K a smooth projective curve of genus g > 2 defined over K.

We will assume that C(K) is nonempty, since otherwise Theo-
rem E.0.1 is trivially true.

J/K the Jacobian variety of C.
0 the theta divisor on J. Recall (see Corollary A.8.2.3) that 0 is

an ample divisor on J.
the norm on J(K) associated to the canonical height relative
to 0. In other words, Jxi2 = hi,e(x). We recall (Proposi-
tion B.5.3) that I - I extends to a positive definite quadratic
form on the vector space J(K) 0 R.

( , ) the bilinear form on J(K) associated to the canonical height
relative to the divisor 0. In other words,

(x, y) =
2

(Ix + yI2 - Ixl2 _IyI2)
The inner product (- , ) extends to a Euclidean inner product
on the vector space J(K) ®R.

We choose a rational point in C(K) and use it to fix an embedding
(defined over K)

C'J.
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Having done this, we can talk about the norm Iz I and inner product (z, w)
for points z, w E C(K). We are now ready for Vojta's inequality, whose
innocuous statement belies its far-reaching consequence.

Theorem E.1.1. Vojta's Inequality. (Vojta [1], Bombieri [1]) With
notation as above, there are constants k1 = x(C) and k2 = k2(g) such that
if z, w E C(K) are two points satisfying

Izi > k1 and Iwi > k2Iz1, then (z, w) < 3IzI Iwi.

Before using Vojta's inequality to prove Faltings' theorem in full gen-
erality, let us look at a special (but still highly nontrivial) case. Suppose
that J(K) is generated by a single point xo of infinite order, so J(K) = Zxo.
Then C(K) consists of those multiples nx0 that happen to lie on C. To
prove that C(K) is finite, we must show that there are only finitely many n's
with nxo E C.

We give a proof by contradiction, so we suppose to the contrary that
infinitely many multiples of x0 lie on C. Replacing x0 by -xo if necessary,
we may assume that infinitely many positive multiples of x0 lie on C. In
particular, we can find some multiple nlxo E C satisfying n1 > k1/Ixol.
(Here k1 is the constant in Vojta's inequality. Note that Ixol > 0, since x0
is a nontorsion point.) Similarly, we can find a multiple n2xo E C satisfying
n2 > k2n1. This means that

Inlxol = n1lxol > k1 and In2xol = n2Inlxol > k21nlxol,

so we can apply Vojta's inequality with z = nlxo and w = n2xo to conclude
that

(nlxo,n2xo) < 3Inixol In2xo1

n1n2(xo,xo) <- 3n1n2IxoI2.

But (xo, xo) = Ixo I2 > 0 and n1, n2 > 1, so this is a contradiction, which
completes the proof in this special case that Vojta's inequality (E.1.1) im-
plies Faltings' theorem (E.0.1).

The proof of the general case is similar; we need merely deal with the
fact that J(K) may have rank greater than 1. The key is to understand
geometrically what Vojta's inequality says about the image of the set C(K)
in the Euclidean vector space J(K) ® R.

Proposition E.1.2. Let C/K be a curve of genus at least 2 defined
over a number field K. Then Vojta's inequality (E.1.1) implies Faltings'
theorem (E.0.1) that C(K) is finite.

PROOF. First we observe that the kernel of the map J(K) - J(K) ® R is
the torsion subgroup J(K)to,., which is finite (Theorem C.0.1). So in order
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to prove that C(K) is finite, it suffices to show that the image of C(K)
in J(K) ® R is finite. By abuse of notation, we will identify C(K) with its
image.

The bilinear form ( , ) makes J(K) ® R into a finite-dimensional
Euclidean space, so for any two points x, y E J(K) 0 R we can define the
"angle" 9(x, y) between x and y in the usual way,

cos 0(x, y) = Ixl'I I 0 < 0(x, y) < 7r.

For any point xo and any angle 90i we consider the cone with interior
angle 200 whose central axis is the ray from 0 through xo,

r.0i90 = {x E J(K) OR I O(x, xo) < 90 }.

For example, if J(K) has. rank 2, then one of these cones would look like
the sector illustrated in Figure E.1.

A Cone r 0 , 9 0 in J(K) ® R
Figure E.1

We are going to use Vojta's inequality to show that if 00 is small
enough, then every cone rs0,eo intersects C(K) in only finitely many points.
(For example, we will show this is true if Oo = it/12.) To see this, suppose
that we have a cone satisfying

#(r=o,eo n C(K)) = oo.
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Since J(K), and a fortiori C(K), contains only finitely many points of
bounded norm, we can find a z E rx0,90 fl C(K) with JzJ > al, and then
we can find a w E rz0,90 fl C(K) with JwJ > rc2Izi. Here r.1 and rc2 are the
constants appearing in Vojta's inequality (E.1.1). Then Vojta's inequality
tells us that

(z, w) <_ 1z1 Iwl,4

or equivalently,

cos 9(z, w) < 4

This estimate captures the essence of Vojta's inequality; it says that the
angle between the points z and w cannot be too small. For example, it
implies that

3 7r
O(z, w) > cos-1

>4 6

But by assumption, both z and w are in the cone r. ,eo, so the angle
between them is less than 280. We have thus shown that

#rz0,90 = oo implies 280 > O(z, w) > 6

This is equivalent to the statement that

r.,,n/12 n C(K) is finite for every x0 E J(K) ® R.

In order to complete the proof that C(K) is finite, we now need merely
observe that it is possible to cover J(K) ® R by finitely many cones of the
form rx0,,/12. If this is not immediately obvious, consider the intersection
of such cones with the unit sphere

S = {x E J(K) ® R I lxi = 11 C J(K) ® R.

Clearly,
S = U (rx,,r/12 n s),

'ES

since x E rx,,,/12. Further, each set rx,,,/12 n s is an open subset of S,
and we know that S is compact, from which it follows that S is covered
by finitely many of the r. ,,,/12 n S's (see the comments at the end of this
chapter and Exercise E.1 for a more effective argument). Since the is are
cones, we conclude that the same finite set of is will cover J(K) OR. This
completes the proof that Vojta's inequality implies that C(K) is finite.

0

We now take up the formidable task of proving Vojta's inequality (E.1.1).



§E.2. Pinning Down Some Height Functions 373

E.2. Pinning Down Some Height Functions

One of the failings of the theory of Weil heights is that they are defined only
up to 0(1), and the O(1)'s depend on the particular embeddings chosen
for each very ample divisor. Thus if D E Div(V) is a divisor and we want
to choose a particular height function hv,D, we need to make the following
choices:

[1] Choose very ample divisors D1 and D2 with D = D1 - D2. Generally
one does this by choosing a divisor E such that E and D + E are both
very ample, and then taking D1 = D + E and D2 = E.

[2] Choose embeddings 01 : V - P" and 02 : V -- 1P"` corresponding
respectively to D1 and D2-

(3) Set hv,D(P) = h(01(P)) - h(02(P)).

We could, a priori, decide to make these choices for every divisor on
every variety, thereby fixing a particular height function by D for each
divisor D on each variety V. Then the Height Machine works, but as
already noted, it works only up to bounded functions. For example, if we
fix our heights and if t/i : W -, V is a morphism, then the function

(hW,,y.D - hV,D o 0) : W(K) -' R

is bounded, but the bound depends not only on ib, but also on the partic-
ular height functions we have chosen for D and ,,b'D. In proving Vojta's
inequality (E.1.1) we will need to choose our height functions in a uniform
manner so as to be able to determine how the O(1)'s depend on certain
parameters.

Let us be a bit more precise. We will be using height functions on C x
C corresponding to Vojta divisors fI = ((d1, d2, d) depending on three
integer parameters dl, d2, d. What we are going to do is write the height
function hcxc,n as a linear combination

hCxC,n(d,,d2,d) = c1d1h1 + c2d2h2 + c3dh3i

where c1, c2, c3 are fixed constants and h1, h2, h3 are fixed height functions
corresponding to particular maps of C x C into projective space. The
crucial property to keep in mind is that the ci's and hi's do not depend
on d1, d2, d, so as we vary d1, d2, d, we have complete control over the
variation of the height hcxc,n(d,,d2,d). The reason we need this property is
that at the final step in the proof of Vojta's inequality, we will choose d1, d2,
and d to depend on the heights of the two points z, w E C(K), so it will be
vital that all of the 0(1) and ci constants floating around be independent
of d1i d2, d.

With this motivation, we are now going to set some notation and fix
some embeddings and height functions. We start by fixing a divisor A E
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Div(C) of degree 1. In order to link up with (A.8.2.1), we will take A to
satisfy the condition

(2g - 2)A' Xc, (5)

where X is the canonical divisor class on C. It is always possible to find
such an A, since the group J(K) is divisible. Of course, A need not be
defined over the base field K, but it will be defined over a finite extension
of K, and for the proof of Vojta's inequality we are always free to replace K
by a finite extension.

We use the divisor A to define an embedding

3A:C-+ J,

We further let
eA = SA(C) +9A(C) + ... +?A(C)

9-1 copies

be a theta divisor on J. (This is actually a translation of the theta divisors
considered in Section A.8.) The fact that we chose A to satisfy (5) implies
the following useful relations, which will simplify our later calculations.

Lemma E.2.1. With notation as above, we have:
(a) eA is a symmetric divisor, that is, eA = eA.
(b) jAeA - gA.
(c) Let 812,p1,P2 : J x J J be the summation and projection maps,
respectively, and let A E Div(C x C) be the diagonal divisor. Then

(jA x jA)4(3128A - p19A - p2eA) --A+ pA +p A.

PROOF. All of these relations for eA follow easily from our choice of A
satisfying (5), since the corresponding relations for a were proven in Theo-
rem A.8.2.1. Thus in the notation of Theorem A.8.2.1, we fix a point Po E C
and use it to define an embedding j : C --+ J via j(P) = Cl((P) - (Po)).
Notice that jA(x) = j(x) - j(A), and hence

eA =.1A(C)+...+3A(C)

=j(C)+...+j(C) - (9- 1)j(A) = e-j((9- 1)A).

Using this, (5), and (A.8.2.1(i)), we complete the proof of (a) by computing

(eA) = e +.l ((9 - 1)A) 9 - j(Xc) +j ((9 - 1)A)
^'0-j((9-1)A)=eA.
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Similarly, using (5) and (A.8.2.1(ii)), we find that

JAeA = jA (e - j((g - 1)A))
=j* (e-j((g-2)A))

g(Po) - j((g - 2)A) +j(xc)
g(Po) - (g - 2) (A - (Po)) + (Xc - (2g - 2) (Po))

= -(g--2)A+Xc
-gA.

This gives (b). Finally, (c) follows from a similar calculation using (5)
and (A.8.2.1(iii)), a task that we leave to the reader. 0

In order to ease notation, we will often drop the jA and just treat C as
a subvariety of J. Further, the canonical height hf on J will always refer
to the canonical height with respect to the divisor GA, and similarly for the
corresponding norm I IZ = hj,e and inner product ( , ). For example,
when we refer to the canonical height IIxII2 of a point x E C(K), we really
mean the canonical height hJ,eA of the point iA(x).

We also use A to give various embeddings into projective space. We
choose an integer N such that the divisor NA is very ample, and fix an
embedding

ONA : C --i ?n

corresponding to NA. (For example, Corollary A.4.2.4 implies that N =
2g + I is large enough.)

Remark.E.2.2. Since xo, .. , x" form a basis of the space of sections of
O(NA), it follows that ONA(C) is not contained in any hyperplane of P".
It will be convenient to choose the projective coordinates xo, ... , z such
that the following properties are satisfied:
(i) The intersection of pNA(C) with the codimension-2 subspaces xi =

x j = 0 is empty, and hence the projections (xo, ... , x j )

from ONA(C) to Pt all have degree N.
(ii) The projections (xo,... , x") - (xt, xj, xe) from ONA(C) to p2 are

birational, so that k(C) = k(xj/x;,ze/x,) and xe/z; is integral of
precise degree N over xj/x,.

In fact, "most" linear combinations of xo, ... , x will satisfy these proper-
ties (see Exercise E.10).

Next we look at divisors on C x C. For example, we have the "slices"
A x C and C x A, and the diagonal A. Since A is ample on C, it is clear
that the divisor (A x C) + (C x A) is ample on C x C, so if we choose a
sufficiently large integer M, then the divisor

B = (M + 1)(A x C) + (M + 1)(C x A) - A E Div(C x C)
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will be very ample by (A.3.2.3) (see Exercise E.12). Having chosen s, we
fix an embedding

OB: C X C ----+ P'

corresponding to a basis for the linear system L(B). We will use homoge-
neous coordinates [yo, ... , ym] on pm, and by abuse of notation, we will also
write yo,... , yn for the corresponding sections of 0(B). [More properly, y;
is a global section of Opm (1), and we should write /By, for the correspond-
ing section of 0(B).] Now we can fix a particular height function for the
divisor B by the formula

hcxc,B(z,w) = h(OB(Z,'+U)),

or equivalently in terms of coordinate functions,

hCxC,B = h([yoi...,ym])

Similarly, for any integer d > 1 we can use linearity to fix a height for the
divisor dB by setting

hcxc,dB = dhcxc,B
One other comment, of a geometric nature, is needed. It is clear that

any monomial in yo,... , y,n of degree d will be a global section of 0(dB).
What is also true is that if d is chosen sufficiently large (how large depends
on C and B), then the monomials of degree d in yo, ... , ym. generate the
space of global sections to 0(dB). In fancy language, this is a consequence
of the fact that for sufficiently large d, the duple embedding of a smooth
(or even just normal) variety is projectively normal. For a proof, see The-
orem A.3.2.5 or Mumford [4, Chapter 6, (6.10) Theorem, page 102], or
Hartshorne [1, Exercise 11.5.14]. The same arguments apply to a product
of projective varieties, for example to C x C -- lP" x P. When 61 and 62
are large enough the space of sections to 0(61 (NA x C) +62(C x NA)) is
generated by monomials of bidegree (61i 62) in [xo,... , xn; xo, , xn]

We next use two copies of ONA to create a product embedding,

ANA X xP".

W e will use bihomogeneous coordinates [x0, ... , xn; x , . .. , xn] on Pn x P".
Let 61 and 62 be (large) integers. If we compose ONA x cNA with the 61-
uple embedding of the first P" and the 62-uple embedding of the second P",
and then compose with the Segre embedding (Example A.1.2.6(b)), the
composition

C X C 4NAXNA P" X ]P"
(d,-uple)x(ds uple)

IP X IP $eg IP

is associated to the divisor

61(NA x C) + 62(C x NA).
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So for all positive integers 61 and 62, we can fix a height function for the
divisor 61(NA x C) + 62 (C x NA) by setting

hcxC,61(NAxC)+62(Cx NA) (z, w) = 61hC,NA(z) + b2hc,NA(w)

= 61h(ONA(z)) + 61h(-ONA(w))

In terms of coordinate functions, this becomes

hexC,61(NAxC)+62(CxNA) = 51h( [x0, , x,,]) + 62h(Ex0, ... , xnD

We also want to observe that if 61 and b2 are sufficiently large, then
every global section of 0 (61(NA x C)+62 (C x NA)) is the pullback to C x C
via 0 of a bihomogeneous polynomial of bidegree (61, 62) in the variables
x0i ... , xn, xp, .... xn. As above, this is a consequence of the fact that a
large d-uple embedding of a normal variety is projectively normal.

With these preliminaries out of the way, we are ready to define the
divisors and the height functions that will occupy most of our attention.
For any given integers d1, d2, and d, we define

Sl = Sl(d1 i d2, d) = (d1 - d) (A x C) + (d2 - d)(C x A) + dA E Div(C x C),

where A E Div(C) is the divisor of degree 1 fixed above and A is the
diagonal divisor. We say that Cl is a Vojta divisor if d1, d2, and d are
positive integers satisfying the inequalities

gd2 <did2 <g2d2. (6)

(The first inequality will guarantee that 11(di, d2, d) will be linearly equiv-
alent to an effective divisor, whereas the second inequality will ensure that
the associated N6ron-Tate quadratic form will not be positive definite.) We
will generally assume that (6) holds and that d1, d2, and d are all divisible
by the integer N that we fixed earlier. We then set

6, - d1 + Md and 62 - d2 + Md
N N

where M is as specified above. Finally, we will assume that d1, d2, and d
are chosen sufficiently large so that the global sections of 0(dB) are gen-
erated by monomials of degree d in 110,. .. , y7,, and so that the global
sections of 0 (61 (NA x C) + 62(C x NA)) are generated by monomials of
bidegree (61i 62) in xo,... , xn, xo, ... , xn.

The integers that we eventually choose will satisfy di > d > d2, so the
Vojta divisor itself is not positive, although we will see using Riemann-
Roch that it is linearly equivalent to a positive divisor. In any case, we
want to choose a height function on C x C corresponding to fl(d1 i d2, d) in
such a way that we can explicitly keep track of the dependence on d1, d2,
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and d. Using the height functions described above, this is easy. We just
write S1 as the difference

S1(d1i d2, d) = {61(NA x C) + 62(C x NA) } - dB

of very ample divisors. Then from above we see that we may take

hcxC,n(d,,dz,d)(z, w) = 61hC,NA(z) + b2hC,NA(w) - dhcxc,B(z, w) (7)

Alternatively, in terms of coordinates, this is just

hcxC,n(d,,d2,d) =61h([xo,...,Zn])+62h([x ...... xn]) -dh([yo,...,ym])
(8)

From now on, whenever we talk about the height on C x C relative to
a Vojta divisor cl(dl, d2i d), we will mean the particular height function
specified by either of the equivalent formulas (7) or (8).

We conclude this section with a short table of constants that will
appear frequently during the proof of Vojta's inequality. The reader is well
advised to refer to this table until he/she is thoroughly acquainted with
this notation.

7, e, v small positive constants

CI, C2.... constants that depend on C, A, and the choice of

various height functions
M an integer chosen large enough so that B is a very

ample divisor on C x C. This integer is fixed once
and for all at the start of the proof

N an integer chosen large enough so that NA is a very
ample divisor on C. This integer is fixed once and
for all at the start of the proof.

d1i d2, d large integers, divisible by N, assumed to satisfy
gd2 < dld2 < g2d2.

Eventually also assumed to satisfy the inequality
d1d2 - gd2 > 7d1d2,

as well as a certain condition depending on the rela-
tive size of the points z and w.

61,62 integers defined by

61 = dl + 8d
and 62 - d2 + sd

N N
Table E.1. Numbers appearing in the proof of Vojta's inequality
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E.3. An Outline of the Proof of Vojta's Inequality

In this section we will give Bombieri's discourse on the ideas underlying
the proof of Vojta's inequality (E.1.1). This lucid exposition is taken ver-
batim from Bombieri [1], Section VI; we thank Professor Bombieri for his
permission to include it here.

As early as 1965, Mumford showed that the height ho on
C x C could be expressed, up to bounded quantities, in terms of
the Neron-Tate heights on the Jacobian of C. It then follows that

h& (z, w) = (quadratic form) + (linear form) + 0(1)

by the quadratic nature of heights on abelian varieties. Since A is
an effective curve on C x C, the left-hand side of this equation is
bounded below by a constant. On the other hand, one sees directly
that the quadratic form in the right-hand side of this equation is
indefinite, if the genus g is at least 2. This puts strong restrictions
on the pair (z, w) because it means that z and w, considered as
points in the Mordell-Weil group of the Jacobian, can never by
nearly parallel with respect to the positive definite inner product
determined by the Neron pairing. A simple geometric argument
now shows that the heights of rational points on C, arranged in
increasing order, grow at least exponentially. This is in sharp con-
trast with the quadratic growth one encounters on elliptic curves,
and shows that rational points on curves of genus 2 or more are
much harder to come by.

The diagonal A = Q(1, 1, 1) is a Vojta divisor except for
the fact that the inequalities (6) characterizing a Vojta divisor
are not satisfied. However, it is easy to see that Mumford's
method applies generally to any divisor that is a linear combi-
nation of A x C, C x A, and A. Now the condition d1d2 < g2d2
simply expresses the fact that the associated quadratic form is
indefinite, and again we get a useful result if we can show that
the height is bounded below. As in Mumford, it suffices to have
an effective (i.e., positive) curve in the equivalence class of the
divisor, and now the other condition gd2 < d1d2 for a Vojta divi-
sor assures, by Riernann-Rock, that multiples of [l(d1, d2, d) have
effective representatives.

The advantage in this generalization of Mumford's result is
that now we have a two-parameter family of indefinite quadratic
forms at our disposal, instead of just one. Thus one is tempted,
given (z, w), to choose a quadratic form such that its value at (z, w)
is negative, which would yield a contradiction unless z and w have
bounded height.



380 E. Rational Points on Curves of Genus at Least 2

The new problem one faces here is the fact that the choice
of the quadratic form depends on the ratio of the heights of z
and w, and therefore we need not only that hn is bounded below,
but also that the lower bound has sufficiently good uniformity
with respect to the quadratic form. This is where arithmetic in-
tersection theory and arithmetic Riemann-Roch have been used:
arithmetic Riemann-Roch for finding a good effective represen-
tative for SE defined by equations with "small" coefficients, and
arithmetic intersection theory for precise control of the unwieldy
bounded terms arising in the elementary theory of heights.

As Vojta's paper [11 clearly shows, this idea is overly simple
and there is one more big obstacle to overcome. The argument
used in obtaining a lower bound for ho fails if the effective rep-
resentative for Tl goes through the point (z, w) we are studying.
By an appropriate use of derivations, one sees that this is not too
serious a difficulty unless the representative of the divisor 11 goes
through (z, w) with very high multiplicity. On the other hand,
this representative must be defined by equations with small coef-
ficients and there is very little room for moving away from (z, w),
so one cannot exclude a priori that this divisor has very high
multiplicity at (z, w).

This situation is reminiscent of the familiar difficulty in Dio-
phantine approximation and transcendence theory, namely the
nonvanishing at specific points of functions arising from auxiliary
constructions. In the classical case, various independent tech-
niques have been devised for this purpose: Roth's lemma, which
is arithmetic in nature, the algebro-geometric Dyson's lemma, and
the zero estimates of Masser and Wustholz.

Vojta, by proving a suitable generalization of Dyson's lemma,
shows that if d1d2 is sufficiently close to gd2, then any effective
representative for SZ(d1, d2, d) does not vanish too much at (z, w),
thereby completing the proof.

Faltings proceeds in a different way, using a new geometric
tool, the product theorem. He is able to show that the difficulty
with high multiplicity can be eliminated, except perhaps for a set
of "bad" points (z, w) that is contained in a product subvariety
of C x C. It should be noted that Faltings' result applies not
only to C x C, but in fact to a product of an arbitrary number
of varieties, thus providing a tool for handling higher-dimensional
varieties by induction on the dimension.

The proof of Vojta's inequality (Theorem 2.1) thus consists of the
following steps.

Step I: An Upper Bound for ho (Section E.4)
We apply Mumford's method to express the height hn relative to a Vojta
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divisor fI in terms of the canonical height bilinear form ( , ) on the Jaco-
bian J of C. This gives us a very explicit upper bound for the height.

Step 77: A Lower Bound for hn(z, w) (Sections E.5, E.8, E.10)
Given a positive divisor in the divisor class of St, we derive a lower bound
for the height hn(z, w) in terms of the "size" of an equation s = 0 defining
the positive divisor. To illustrate the general method, we first derive a
lower bound under the assumption that s(z, w) j4 0. Later we deal with
the general case and find a lower bound that also depends on the order of
vanishing of s at (z, w).

The remaining steps in the proof involve obtaining estimates for the
various terms appearing in the lower bound in Step II. Eventually we want
to show that the lower bound can essentially be replaced by 0, but there is
a fair amount of rather technical work involved in dealing with the many
terms that appear.

Step III: A Small Section (Sections E.6, E.7)
We use Siegel's lemma to produce a section for O(Sl) given by a homoge-
neous polynomial with reasonably small coefficients. In other words, we
find a "small" s to use in Step II.

Step IV: Estimating Derivatives (Section E.9)
In calculating the order of vanishing of s at (z, w), we are forced to diffe-
rentiate s, so we prove an estimate (essentially due to Eisenstein) for the
denominators of the derivatives of algebraic functions.

Step V: A Nonvanishing Derivative (Section E.11)
We use Roth's lemma (in fact, only the two-variable case is needed) to
show that the function s from Step II does not vanish to too high an order
at (z, w).

Combining the inequalities from Steps I-V, a little algebra will yield
Vojta's inequality (Section E.12).

E.4. An Upper Bound for hn(z,w)

In this section we begin the proof of Vojta's inequality. Using the forma-
lism of the Height Machine, we will give an upper bound for the height
hcxc,n(z,w) of two points z,w E C(K). However, it is essential to keep
track of the dependence of the error terms on dl, d2, d, so we will make use
of the formula (7) for ho in which that dependence is made explicit. The
underlying idea of the following proposition is due to Mumford (1].

Proposition E.4.1. There is a constant cl, depending on the choice of
various Weil height functions associated to the divisors A and B, such that
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for all positive integers dl, d2i d and all points z, w E C(k),

hcxc,o(d1,d2,d)(z,w) < 1 Iz12 + 9 IwI2 - 2d(z,w) + cl(dl + d2 + d).
9

N.B. The constant cl is independent of d1, d2, d.

PROOF. Let jA : C J and pl,p2, 312 : J x J -+ J be the maps described
in (E.2.1), and recall the definition (7)

hcxC,n(d1,d,,d) (z, w) = 61hC,NA(P1(z, w)) + 62hC,NA (p2(z, w))

- dhcxc,B(z, w),

where
B = MpiA+Mp2A+ (-A+piA+p*2A).

Applying the linearity and functoriality properties of the Height Ma-
chine (B.3.2) to the height functions hc,NA and hcxc,B, we find that

hC,NA = NhC,A + 0(1),
hcxc,B = MhC,A o P1 + MhC,A o p2 + hcxc,-A+pi A+p;A + 0(1).

Here the 0(1) depends on the choice of particular Weil height functions, but
it is clearly independent of d1, d2, d. Substituting into the above formula
for hcxc,o gives (note that 6i = (di + Md)/N)

hcxC,f1(d,,d2,d)(x,w) = dlhc,A(z) + d2hc,A(w)
- dhc x c,-A+p; A+p; A(z, w) + 0(d1 + d2 + d).

(9)

(Note that M is fixed, so it can be absorbed into the 0(1) constant.)
From (E.2.1(b)) we have jAeA - 9A, which gives the height relation

9 hr,eA o jA(W ) + 0(1)

1 hJ,e o MA(u) + 0(1)

IU12 + 0(1) for all u E C(k). (10)

Similarly, (E.2.1(c)) says that

(jA xjA)"(312eA -P1eA -P2eA) - -0+piA+PsA,
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which translates via the Height Machine into

hCxC,-A+Pi A+P; A(Z, w)

= hcxC,(jAxjA)'(a12eA-PieA-PseA)(z,w) + 0(1)

= hJ,eA(812(jA(z),iA(w))) - hJ,eA(P1(jA(z),jA(w)))

- hJ,OA (P2 (jA(z), jA(w))) + 0(1)

= hJ,e(jA(z) +jA(w)) - hJ,e (jA(z)) - hJ,e(jA(w)) + 0(1)
= Iz + w12 - IZI2 - IwI2 + 0(1)

= 2(x, w) + 0(1). (11)

Substituting (10) and (11) into (9) gives the desired result,

hcxc,sl(dl,d2,d) (z, w) =
d1

IzI2 +
d2

IwI2 - 2d(z, w) + O(d1 + d2 + d).
9 9

13

Before proceeding with the more difficult task of giving a lower bound
for h0, we briefly make some observations that will help to explain the
significance of Proposition E.4.1 and how it is related to Vojta's inequality.
First, if we set dl = d2 = d = 1, then SE = 11(1,1,1) is just the diagonal
divisor 0, so Proposition E.4.1 becomes

hcxc,z (z,w) < 9Iz12 + 1Iwi2 - 2(z,w) +O(1).

This should look familiar; it is a slightly strengthened version of Mumford's
gap principle (B.6.6(a)). (The reason we got a slightly stronger inequality
than (B.6.6) is because we chose a particularly nice embedding of C in J.)
In particular, since the diagonal is a positive (albeit immovable) divisor, we
know from (B.3.2(c)) that hcxc,n is bounded below for points not lying
on 0, which implies that

(z, w) < 29 (IzI2 + Iwi2) + 0(1) for all z, w E C(K), z # to. (12)

Notice that if g = 1, then (12) is trivially true by the Cauchy-Schwarz
inequality. But if g > 1, then (12) gives a nontrivial geometric constraint
on the set C(K) sitting inside the Euclidean vector space J(K) ® R. Wri-
ting (z, w) = IzI Iwi cos B(z, w) as in the proof of Proposition E.1.2, it is
easy to see what that constraint is roughly:

1
cosO(x, w) <_

29 ( IwII + IIzI )

Hence if z and to have approximately the same length, the right-hand side
will be strictly less than 1, so 9(z, w) will be bounded away from 0. In
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other words, Mumford's inequality (12) says that points in C(K) of ap-
proximately the same length must subtend an angle that is bounded away
from 0, and that bound is independent of the lengths. Using the argument
we gave in (E.1.2) (or see Section B.6, especially Lemma B.6.7), it is a
simple matter to deduce from this that the number of points in C(K) of
norm less than H grows no faster than O(log H). Since the number of
points in J(K) of norm less than H grows like a polynomial in H, we have
reproven Mumford's theorem (B.6.5), which says that rational points on C
are very sparsely distributed in J.

Suppose we try to apply Mumford's argument to a general Vojta divi-
sor [1 = 1(d1, d2i d). In the first place, we need I to be effective, since
we want h0 to be bounded below. As we will see later, the inequa-
lity d1 d2 > gd2 and the Riemann-Roch theorem for surfaces will tell us
that f2 is effective. If we take a particular effective divisor V in O(!l),
Proposition E.4.1 gives the inequality

-c2 < hcxc,v(z, w) < 9 Iz12 + 92 Iw12 - 2d(z, w) + O(d1 + d2 + d),

valid for (z, w) V V.

(Of course, c2 depends on V, so it depends on dl, d2, d, but let us ignore this
unpleasant fact for the moment.) A little algebra now gives the estimate

(z,w)<2g (alIzI2+ d2+1). (13)

Taking d1 = d2 = d retrieves Mumford's inequality, but we want to do
better, so we try to make the right-hand side as small as possible, keeping
in mind the constraint d1d2 > gd2.

Assuming that Izi and JwJ are reasonably large (which is okay, since
C(K) has only finitely many points of bounded height), we might choose
the integers dl, d2, and d to satisfy

d1 Iwl2, d 2 v IzI2,

Then (13) becomes (approximately)

d JzJ IwJ.

(z w) < + O IwI + izi
IzI 1w)

In particular, if Izi and Jwi are sufficiently large, then the error term is
small in comparison to the main term, and we obtain (for any e > 0)

(z, w) < (l + e) !z
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Finally, the assumption that g > 2 and an appropriate choice for a gives
the nontrivial bound

(z,w) < (1+e)Iz1 I <- 3IzI IwI,

which is exactly Vojta's inequality.
This "proof" was much too easy, so there must be a gap in our argu-

ment. In fact, there are two of them, both arising from the fact that we
started by choosing an effective divisor V in the divisor class of 11(d1, d2, d).
Having chosen V, we then asserted that the height function hcxc,v is
bounded below. The first problem is that although this function is indeed
bounded below, the 0(1) in the bound certainly depends on fixing par-
ticular local equations to define the divisor V. So we will need to choose
equations carefully with coefficients that are not too large. This is clearly
a situation where some variant of Siegel's lemma should be useful.

The second problem is more serious. We get a lower bound for hcxc,v
only for points (z, w) not lying on V. But as we have just seen, the partic-
ular Vojta divisor S1(d1, d2, d) that we choose depends on the points (z, w),
so it is at least conceivable that every effective divisor linearly equivalent
to our chosen f?(dl, d2, d) might contain (z, w). This problem is solved in
two steps. The first step is to allow (z, w) to lie on V and to find a lower
bound in terms of the multiplicity with which V goes through (z, w). The
second step, which is technically more difficult, is to apply some version of
Roth's lemma to show that this multiplicity is not too large; in fact, it is
so small that the correction term coming from the multiplicity contributes
only to the error term.

So now we have laid out the route leading to a lower bound for ho. In
the subsequent sections we will follow this road step by step to the desired
conclusion.

E.5. A Lower Bound for hn(z, w) for Nonvanishing Sections

At the end of the last section we talked about choosing an effective divisor
linearly equivalent to a Vojta divisor Q. This is the same as choosing a
global section s to the line bundle O(11), since ifs E HI (C X C,O(Sl)) is
such a section, then by definition the divisor div(s) is positive and linearly
equivalent to Ii. We are now going to describe these global sections more
explicitly.

Recall that the Vojta divisor H =1l(dl, d2, d) equals

11 = 61(NA x C) + 62(C x NA) - dB,
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where 61i 62, d are assumed to be large. As discussed earlier, every global
section sl to O(dB) is a homogeneous polynomial of degree d in the vari-
ables y = [yo__ , y,]. Further, ifs is a global section to O(d ), then ssl is
a global section to 0(61 (NA X C) +62(C x NA)), so ssl is a bihomogeneous
polynomial of bidegree (61, 62) in the variables

(X, X') = A',...,xnl)
Applying this with sl taken successively to be yo, yd'..., yd,,,, we find that
a global section s to O(11) determines a collection of functions

- (F,(x x'))Jc
i

(14)yids-
xe

where each F, is bihomogeneous of bidegree (61,62) and

F` F'
1d

- I onCxC,forall0<i,j<m. (15)

Conversely, given a set of bihomogeneous polynomials T = {F,(x,x')} of
bidegree (61, 62) satisfying (15), the description (14) defines a global section
to O(S1).

Let s be a global section of O(11). Then the height hn is bounded
below for all points (z, w) E C x C not lying on the positive divisor div(s);
or equivalently, it is bounded below at all points with s(z, w) # 0. Unfor-
tunately, the general theory of Well heights gives us only a lower bound
for hn that depends on S1, so the lower bound depends on d1i d2, d, and
on the collection of polynomials 3 that describe s. The next proposition
makes the lower bound explicit.

Proposition E.5.1. Lets be a global section to 0(11), and let 97= { F, }
be a collection of rational functions corresponding to s as above. Then for
all points (z, w) E C x C with s(z, w) t 0, we have

hCxc.n(d,.d,.d)(z, w) > -h(T) - n log((61 + n)(62 + n)).

[For notational convenience, we are writing h(T) = max h(F,), where the
height of a polynomial is the height of its coefficients.]

Remark. Unfortunately, Proposition E.5.1 is not strong enough to use for
the proof of Vojta's inequality, because we will not be able to guarantee the
existence of a sections that does not vanish at (z, w). So later we will need
to prove a stronger version in which we differentiate s until it eventually
does not vanish at (z, w). The reason we give a proof of (E.5.1) is that
it illustrates the general idea while keeping the technical complications to
a minimum. In the next section we will show that it is possible to find a
section s whose height h(T) is fairly small, so combined with (E.5.1) we will
deduce Vojta's inequality, provided that that particular s satisfies s(z, w) #
0. For the stronger version of Proposition E.5.1 for derivatives of sections,
see Propositions E.8.1 and E.10.1.
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PROOF (of Proposition E.5.1). By abuse of notation, we will write

x = 4)NA(x), 2 = ONA(w), Y = OB(x1w)-

Then using the particular Weil height we have associated to the Vojta
divisor S2, we have

he x c,n (z, w)
= bih(x) + 62h(x') - dh(y)

= b1 E max log Ixi Iv + b2 E msx log Ix'i, Iv - d E max log lyt Iv
v v v

( 6 1 i
V

+52 min logIii,Iv1+dEmaxloglyiIv)
i'v v

t i,i,
yd

V

Next we want to use our assumption that s(z, w) # 0. The standard
way to exploit the fact that an algebraic number is not zero is to use the
product formula, which after taking logarithms becomes

Elogls(z,w)I" = 0. (16)
V

Although it has been "jazzed up" a bit, the product formula in this context
is nothing more that the fact that a nonzero integer must have absolute
value at least 1. Subtracting (16) from our formula for hn(z,w) gives

I S(z6,
1

w)ydhCxC,f2(x,w = max mm log
62 lt 4 4 xi xi,

v

Now we use the fact that s(z, w) = FF(x, x')/yd and that each F; is biho-
mogeneous of bidegree (61,62) to obtain

hexc,o(z,w) = - maxminlog
v

t 9i

max min log
t i,i'

xilxi2

Fi (x, x')1 v

x x'
F;

xi ii"
v

(17)

Remember that we are trying to find a lower bound for hn(z,w). For
each absolute value v we want to choose j and j' to make

Ft
\?, X' Ft

\[xo'...,X; L?o,...,
J

x x 3, Xi x
X ill

x ,
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small. So for each v we define jv and jv to be the indices satisfying

and IX4,Iv=maxjxj,1v,
.7

j,

which implies that

and

Then the triangle inequality gives

min log
ja'

x x'Fi -, -
xj

xj,,

xid
< 1 for all j, j'.

V

X
x'-)< log F; -,

V
xjv x'jv

v

< log(vv(Fi) max coefficients of F1I ), (18)

where vv(Fe) equals 1 if v is nonarchimedean, and equals the largest possible
number of nonzero terms in Fs if v is archimedean. Since the number of
bihomogeneous monomials of bidegree (61, 62) in the variables xo, ... , xn,
X0...... xn 18

C61

n

nl
(62

n

nl
(61 + n)n(62 + n)n,

we have

vv(Fi) 5 (61 + n)n(62 + n)n if v is archimedean,
vv(Fi) = 1 if v is nonarchimedean.

Now take the maximum of (18) over all i and sum over all absolute
values v. Comparing with our lower bound (17) for ht1(z, w), we find that

hcxc,n(z,w) > -Emaxlog(vv(Fi)maxIcoefficients of Fily)_
i

V

= -Emaxlogjcoefficients of Fily - E loglvv(FF)I
i v

v v archimedean

> -h(3) - nlog((61 + n)(62 + n)).

This is exactly what we were aiming for, which completes the proof of
Proposition E.5.1. 0
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E.6. Constructing Sections of Small Height I:
Applying R.iemann-Roch

In this section and the following one we will construct a "small" global
section to 0 (1l(d1, d2, d)). By small we mean that it will be given by
homogeneous polynomials whose coefficients are reasonably small. The
main difficulty arises from the fact that we need to do the construction
uniformly with respect to d1, d2, d.

Recall that we have fixed embeddings

(cNAXcNA):CXC-'P XP and OB:CXC--+Py,

where we have used subscripts to indicate notation for the homogeneous
coordinates on the various projective spaces. Then a global section to the
sheaf 0 (fl(d1, d2, d)) consists of a collection of bihomogeneous polynomials

{F{(x,2)}0<i<m

of bidegree (61, 62) with the property that

Fi (x, x') _ F3 (x, x')

yd Cxc yj CxC
for all0<i,j <m.

We also remind the reader that 61, 82 are related to dl, d2, d by the formulas

dl+Md d2+Md
61 = N , 62 = N

Since ONA X ONA is an embedding, the function field of C x C is given
by

K(CxC)=K xl x2 -" xl x2 xn
X 'X09 ,x ,x,,x,, ,x'0 0 0 0 0

(This is a slight abuse of notation, since we really mean the restriction of
the functions x,/xo and x C, and we have implicitly used the
fact that ONA(C) is not contained in the hyperplane xo = 0.) Now, yi/yo
is a rational function on C x C, so we can write it as

yi __ Pi (x, x')
yo Qt(x,x')

for some bihomogeneous polynomials Pi, Qi E K[x, x']. Substituting above,
our task is as follows:
(i) Find bihomogeneous polynomials F0, ... , E K[x, x'] with bide-

gree (61, 62) and satisfying the conditions

(P,Q.)dFFIcxc = (PQj)dF' Icxc for all 0 < i, j < m. (19)
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(ii) Estimate the heights of the Ft's explicitly in terms of dl, d2, d.

This looks like a job for some variant of Siegel's lemma, since we can
write the Ft's as bihomogeneous polynomials in (x, x') and treat the coeffi-
cients as our unknowns. Then (19) puts a number of linear constraints on
those coefficients, and the general philosophy associated to Siegel's lemma
says that there should be a solution T = {F1} of height

h(T) K
dim of space of all {Ft}'s x h (coefficients of the) (20)

dim of space of solutions to (19) (linear constraints)

Since the Pt's and Qt's are fixed, independent of dl, d2, d, the height of
(PjQt)d satisfies h((P2Qt)d) K d. So the linear constraints have coefficients
whose height is bounded (more or less) by 0(d).

Notice that the space of all F(x, x')Icxc of bidegree (61i 62) is just the
space of global sections to the line bundle

0(61(NA x C) +62(C x NA)).

We can use the Riemann-Roch theorem to estimate the dimension of this
space and the dimension of the space of solutions to (19), as described in
the next lemma.

Lemma E.6.1. For all d1 and d2 larger than some constant depending
only on C, the following two estimates are true.

(a) £(fl(dl, d2, d)) ? did2 - gd2 - (g - 1)(dl + d2).

(b) 8(61(NA x C) + 62(C x NA)) = (N61 - g + 1)(N62 - g + 1).

PROOF. To ease notation, we shall write

Al=AxC and A2=CxA.

Thus the Vojta divisor is

St = D(dl, d2, d) _ (d1 - d)A1 + (d2 - d)A2 + d0.

We also observe that the canonical divisor of a product of varieties is ob-
tained by taking the sum of the pullback of the canonical divisors on each
variety (see Exercise A.2.5(b) or Hartshorne [1], Exercise 11.8.3). In par-
ticular,

Kcxc = (Kc x C) + (C x Kc).

We recall from (A.4.2.2) that Kc E Div(C) is a divisor of degree 2g-2, so in
terms of intersection computations, Kcxc behaves like (2g - 2)(A1 + A2).
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In order to calculate 122 and 12 Kcxc, we use the following inter-
section table for the divisors A1, A2, and A. This table is a summary of
Proposition A.4.6.4.

Al A2 A
Al 0 1 1

A2 1 0 1

A 1 1 2-2g
Now it is simply a matter of multiplying everything out to compute

2(122-Q Kcxc)= 2122-

dld2 - gd2 - (g - 1)(d1 + d2).
Further, the arithmetic genus of C x C is

Pa(CxC)=92-29;
see Example A.4.6.3.1 and Exercise E.S.

We now apply the R.iemann-Roch theorem (A.4.6.3) to the surface
C x C and the divisor 12 = 1Z(dl, d2i d) to obtain

£(St) - s(Q) +£(Kcxc -12) = 2n (0 - Kcxc) + 1 +pa(C x C)

= did2 - 9d2 - (g - 1)(di + d2) + (9 - 1)2.
The integer s(1Z) is nonnegative (since it is equal to the dimension of
the cohomology group HI (C x C, O(12))), so we will obtain something
slightly stronger than the desired estimate, provided that we can show
that £(Kcxc -12) = 0.

To do this, we observe that the divisor Al + A2 is ample on C x C,
and that

(Kcxc -12) (A1 + A2) = (4g - 4) - (d1 + d2)
is strictly negative, provided that d1 and d2 are sufficiently large. Hence
Kcxc -Cl cannot be linearly equivalent to an effective divisor, which shows
that £(Kcxc -12) = 0. This completes the proof of (a).
(b) We start with the intersection computation
1 N261b2-N(g-1)(b1+82).

Applying the Riemann-Roch theorem (A.4.6.3) to the divisor 61NA1 +
62NA2i we obtain

£(b1NA1 + b2NA2) - s(61NA1 + 82NA2) + £(Kcxc - 61NA1 - 62NA2)

= 1
- (61NAI +b2NA2) (61NA1 +b2NA2 - Kcxc)

+ 1 + pa (C X C)

=N26162-N(g-1)(bl+b2)+1+g2-g
_ (Nb1 -g+1)(Nb2 -g+ 1).
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Further, we see that

(Kcxc - 61NA1 + 62NA2) . (Al + A2) = 4g - 4 - (61N + 62N)

is negative for sufficiently large d1, d2, d, so just as in (a), we find that
e(Kcxc - 61NA1 - 62NA2) = 0. It remains to deal with the pesky "su-
perabundance" term s(61NA1 + 62NA2). More precisely, we will have
completed the proof of (b) once we show that the superabundance is 0.

The quickest way to show this is to invoke the powerful vanishing
theorem of Kodaira (Remark 4.6.3.2). (See Hartshorne [1], Remark 111.7.15
for the general statement). Kodaira's vanishing theorem tells us that if D
is an ample divisor on a surface X, then s(KX + D) = 0. In the present
instance

Kcxc - (2g - 2)A1 + (2g - 2)A2;
hence

61NA1 + 62NA2 = Kcxc + (61N + 2 - 2g)A1 + (62N + 2 - 2g)A2 .

ample if 6,N>29-2 and 62N>29-2

This proves that if 61N and 62N are sufficiently large, then

61 NA1 + 62NA2 = Kcxc + D

for an ample divisor D, so Kodaira's theorem gives us the desired conclusion
8(61NA1 + 62NA2) = 0. O

Remark E.6.2. Using a variant of the Enriques-Severi-Zariski lemma, it
is possible to show directly that the natural map

L(61NA) ® L(62NA) L(61NA1 + 62NA2)

is surjective for sufficiently large 61, 62. It follows that

1(61NA1 + 62NA2) = P(61NA)P(61NA) = (N61 - g + 1)(N62 - g + 1).

Using Lemma E.6.1 in the estimate (20), we find that there should be
a global section s to O(11(d1,d2,d)) given by a system of polynomials 3
satisfying

h(
(d1 + Md)(d2 + Md)

d,
d1d2 - gd2

at least provided that dl, d2, d are chosen sufficiently large. In the next
section we will make this plausibility argument precise. The main difficulty
that arises is that of translating (19) into an explicit set of linear equations
while maintaining sufficient control over both the number of variables and
the coefficients of those equations.
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E.7. Constructing Sections of Small Height II:
Applying Siegel's Lemma

In this section we combine the Riemann-Roch calculations from the pre-
vious section with some messy polynomial calculations and an application
of Siegel's lemma to produce a "small" global section to 0 (SZ(di,d2id)).

Proposition E.7.1. Let ry > 0 be given, and let dl, d2i d be large integers
satisfying

did2 - gd2 > -yd, d2.

Then there is a global section s to O(1(di, d2, d)) given by a system of
bihomogeneous polynomials 9 = (F0,. .. , F,,,) as described in Section E.5
such that

dl + d2

Here cl depends on C/K and the embeddings ONA and OB, but is inde-
pendent of dl, d2, and d.

PRooF. We begin by choosing a suitable affine coordinate system with
which to work. Consider the projection map

7r:C ONA Pn - Pi,
x F--' [xo,xij.

The embedding ONA corresponds to choosing a basis for the linear sys-
tem L(NA), so the map it : C Pi is a nonconstant rational map. (If it
were undefined or constant, then ¢NA(C) would lie in a hyperplane, con-
tradicting the linear independence of the functions used to define cNA.)
Further, since C is a smooth curve, it is automatically a morphism. It is
easy to compute the degree of 7r:

deg 7r = deg 7r* (a point in Pi )

= deg 4M (a hyperplane in P") = deg NA = N.

The third equality is true because ¢NA applied to any hyperplane in 1P"
gives a divisor linearly equivalent to NA.

Similarly, for each 2 < j < n we can project

7rj:C - P" -. P2,
x F--' [xo, xi, xjj

We use here the content of Remark E.2.2, which says that if the coordinates
(xo, ... , x") have been nicely chosen, then the image of -7rj is a (possibly
singular) curve in P2 of degree

deg7rj(C) = degTry(line in P2)

= deg ¢NA(hyperplane in Pn) = deg NA = N.
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Thus 7rj(C) is a curve of degree N in P2. If we restrict the projection

p2 -+ P1, [xo,xi,xj] `-' [x0,xi1,

to 7r, (C), we get a map of degree N from rrj (C) to ?1, and then the following
diagram commutes.

C -- Trj (C) c p2
a \ deg N / deg N

?I

It follows that the map 7r : C Trj (C) has degree 1, so irj (C) is birational
to C. In particular, the function field of C equals

K(C)=K(L' 1,x I forany2<j<n.xo c xo c

This suggests that we define affine coordinates on C by letting

X O

I<j<n.
C

Then K is the affine coordinate ring of

CAA=Cn{xo#0}.

The fact that Tj (C) is an irreducible curve of degree N in lip means
that it is the set of zeros of a homogeneous polynomial of degree N in the
variables xo, x1, xj. Without loss of generality, we may assume that this
polynomial has an xJ ' term. (If not, we need merely go back and use a
slightly modified basis for L(NA) to define the embedding ONA.) Dividing
the equation for 7rj(C) by cxo gives a relation of the form

.N-1

a, (COC'
:=o

where aj E K[li1J are polynomials satisfying

degc, aj(E1) < N - i.

(21)

It will be convenient later if the aj's have coefficients in the ring of inte-
gers R of K. We can ensure that this is true by again changing the em-
bedding cJNA. To be precise, if the original ONA was given by [xo,... , x,J,
let the new ONA be [xo, rxl,... , rx,], where r E K' is chosen to clear the
denominators of all of the coefficients of all of the aj's. Then (21) becomes

N-1
JN = aj E R[G1], degaij < N - i. (22)

i=o



§E.7. Constructing Sections of Small Height II: Applying Siegel's Lemma 395

We know that
1

C
deg

ir2(C)
deg N p1

Z - [1,f1(z),f2(z)]

It follows that

K(C) = K(C1,b) and K(C1)] = N.

In particular, 1, C2, C22... , C2 -1 form a basis for K(C) over K(e1). Simi-
larly, if we take two copies of this map,

C x C (i1,f,.Ez1.f1
p2 x PZ,

we find that
K(C x C) = e2, i, e2) (23)

Further, the set of functions

B={%2C23I0<i,j <N-1} (24)

is a basis for K(C x C) over
Next we use the embedding tB : C x C P corresponding to

the divisor B and pull back the coordinate functions on P"'. This gives
rational functions 03(y,/yo) on C x C, so (23) tells us that this function
is in K(t1i6Xj,C2). (We know that the image OB(C x C) does not lie in
the hyperplane yo = 0.) Thus

y, P.(C1,C2,Ci,C2)B yo Q.(C1,C2,Ci,C2)

for some polynomials P,, Q, E K[il, e2, C' j, C2], and since we are allowed
to multiply numerator and denominator by a common element of K', we
may clear denominators and assume that P,, Q, E RIC, i C2i C'1, 21 . It is
important to observe that the P,'s and Q,'s are independent of d1, d2,
and d.

Recall that we are looking for a collection of bihomogeneous polyno-
mials {F,} satisfying the condition (19), since such a collection of poly-
nomials corresponds to a global section to O(1l(d1, d2, d)). Dehomogeni-
zing (19), we can rewrite the necessary conditions in terms of our affine
coordinates f = (C1, ... , C.) and C' = (C..... C;1) as follows: A global sec-
tion to O(fl(d1, d2, d)) corresponds to a collection of functions F; (C, {') E
K(f, C'] of degree at most 6 in f and at most 62 in C', satisfying the con-
ditions

(PpQ,)dF, = (P,Qj)dFJ for all 0 < i, j 5 m. (25)
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In order to find a "small" solution to the system of equations (25), we
will look at the following three vector spaces of functions:

V1 IF E K(C x C) I F E i;'] has degree at most 61 in
and degree at most 62 in

V2 = Vi n

V3 = {(F0,...,F,,,) E V"`+1 I (p3Q,)dF, = (PQi)dFF
for all 0<i,j<rrt}.

Notice that if we rehomogenize f and C', then V1 is nothing more
than the space of global sections to 0 (61(NA x C) + 62(C x NA)), so from
Lemma E.6.1(b) we have

dim V1 = (N61 - g + 1)(N62 - g + 1).

Similarly, V2 contains the subspace of K(C x C) spanned by the monomials

C1C2C1

C2j

with 0 < j,j' <N - 1, 0<i+j<61, 0<i'+j'<62:

and from (24) we see that these monomials are K-linearly independent
in K(C x C) and span V2. It is an easy matter to count the number of
such monomials, which yields

dim V2=(N61-1N(N-3))(N62-1N(N-3)).2 2

Notice in particular that V2 is almost as large as V1.
Finally, we observe that the elements in V3 are exactly the global

sections of O(U(d1, d2, d)), so Lemma E.6.1 (a) gives

dim V3>d1d2-gd2-(g-1)(dt+d2).

Remember that we are looking in Vl i+' for a small element of V3. It
will be much easier to look for that element in 142 +t, rather than in Vi'"+t
since we have an explicit basis for V2. To see that V2+' is large enough,
we estimate

dim V3nV2+1 >dim V3-(dim Vj-+1 -dim V2 +1)
> {d1d2 - gd2 - (g - 1)(d1 + d2)}

- {(m + 1)(N61 - g + 1)(N62 - g + 1)}

+ {(m + 1) (N61 - 2N(N - 3)) (N62 - ZN(N - 3))}
> dldz -gd2 + O(d1 + d2)
> 7d1d2 + O(d1 + d2). (26)
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It remains to find explicit linear constraints on the elements of V2 +l that
guarantee that they lie in V3.

Applying (22) with j = 2 to both copies of C x C embedded in F' x P"
via ONA X 'NA, we find that

N-1 N-l
fi = a2j(fl)fz and f,N a2j(f')f2i. (27)

:moo 1=o

Now we consider two elements le, v E 'B, where B is our fixed basis (24) for
K(C x C) over K(f l,t;i). If we form the product µv, then we can use (27)
repeatedly to express µv as an R(f l , t; J-linear combination of elements of B.
In other words, for all µ, v c B we have

µv = E b,.va(fl, f),\ with E R(f 1,e ]. (28)
aEB

Next suppose that we are given a function

P(6,f2,61,f2) E R(fl,f2,fi,fij C K(C x C).

Using (27) and the fact that B is a basis, we can write such a P uniquely
as

P(f1,f2,fi,C2) = E PA(fl,CDA with pv E R(fl,C'J.
oEB

Similarly, any power Pd of P can be written uniquely as

P(fl,f2,fI,f2)d = Pµd(fl,fi)/1

NEB

(29)

with P,,d E R(fl,ffl. (30)

The following lemma gives an estimate for the height of the pd's explicitly
in terms of d.

Lemma E.7.2. Let P be as in (29) and define p j E R(f1, f i J by (30).
Let b,,,a be the polynomials defined in (28).
(a) For all d > 1 and all it EB,

Pv.d+l = Pad Pv bavp.
a.vEB

(b) There is a constant c2, depending only on K, N, the a2j's from (27),
and the from (28), such that for all d > 1,

max deg p,.d < c2d and max h(p,,d) < c2d.
µEB µEB
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N.B. The important point in this lemma is to keep track of the dependence.
on d.

PROOF (a) Pd+I = Pd , P

= (E Pr,dµ) (r, P,,v) from (29) and (30)
µEB vEB

(Pdp, bµ,.AA) from (28)
µ,vEB aEB

E (E Pµdpbµva)A.
aEB µ,vEB

Comparing this with
APd+I = Pa.d+I

aEB

gives (a), since the elements of B are linearly independent over K(t;,, £'j).
(b) Applying (a) repeatedly, we see that pu,d+l can be expressed as a sum

P,..d+l = Y- F, ... E P,\dPPvz...pvebaiviKbazwia,...bad,d-hd_,.

a,,v,EB A2,v2EB ad,v,EB

This shows immediately that

a,,,, < c3d,deg P,,.d+I <_ (d + 1) INmax deg p, + d ( max deg b
\\\ EB ///

which proves half of (b).
For the other half, we note that #B = N2, so we have expressed p,,.d+ I

as a sum of N2d terms, each of which has the form

(product of (d + 1) of the ps's) x (product of d of the b,,,,a's).

Applying Proposition B.7.2 then yields

h(Pm,d+I) 5 [K Q[ sup h ( fi P,, x 11 b,,,,A) + log N2d
d+I factors d factors

< [K : Q[ ((d + 1) supp {h(p,,) + degp + 1)
juE

+d > {h(b,,,,a)+degb,,,,a + l}) +2dlogN
µ,v. aE B

< c4(d + 1).

This completes the proof of Lemma E.7.2.
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We return now to our fixed collection of polynomials

Pi, Q, E R[C1,S2,S1,C2]-

We apply Lemma E.7.2 with P = P;Qj for each 0 < i, j < m, which allows
us to write

(PpQj)d = Pijµdl.t with Pijµd E R[£1, Ci] satisfying h(pijd) < c5d.
µEB

(31)
We can choose one constant c5 to work for all of the P,Qj's; note that c5
is independent of d.

Every element Fi in our space V2 can be written uniquely in the form

Fi = F, Uikk'vS1Slk'v E V2.
vE B

k,k'>O

(32)

Now, an (m + 1)-tuple (Fo, ... , F,,,) E V2-+' will lie in V3 if and only if it
satisfies the conditions

0=(PjQi)dFt-(P;Qj)dFj for all 0<i,j<m. (33)

Using (31) and (32) to expand (33), we find that (33) is equivalent to

kt ik'
0

v= PjiµdA bl
µE13 vEB

k,k'>O

tt kCI- ( Pijµd{L) ( uykk'vS1 1k'1/)
µEB vEB

k,k'>O

Sl Sl (Pjiµduikk'v - Pijµdujkk'v) bµvaA
µ,vEB aEB
k,k'>O

CCk i k'- bµva(['jiµd'uikk'v -Pijµd'ujkk'v)}
aEB µ,vEB

k,k'>O

(34)

Keep in mind that our goal is to find 'uikk'v coefficients such that (34) is
true for all 0 < i, j < m. So the uikk'v's are our variables, and (34) gives us
a system of linear constraints on these variables. Frther, our calculation
of the dimension of V3 fl Vm+1 tells us that (33), and hence also (34), has
a solution space of dimension at least ryd1d2 + O(d1 + d2).

Notice that the braced expression in the right-hand side of (34) is a
polynomial in 1;1 and CI only; it is free of £2's and s2's. Since the elements

from (28)
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of B are linearly independent over K(ei i C'), it follows that (34) is true for
all O i,j in if and only if

CkC,k bµva(Yjiµduikk'v - Pijµdujkk'v) = 0 (35)

µ,vES for all 0<i,j<mandAEB.k,k >0

The fact that (34) and (35) are equivalent is important, because (26) tells us
that the space of solutions to (34) has dimension at least ydld2+O(dl+d2),
so we deduce that

dim(space of solutions to (35)) > rydid2 + O(di + d2). (36)

On the other hand, the functions in (35) lie in the ring R[C1 i C'] c
K(C x C), and S1 and i are algebraically independent over K. In other
words, is just a polynomial ring, so (35) will be true if and only
if the coefficient of each distinct monomial CiCle is equal to zero. So
it remains to rewrite (35) as a sum of monomials and set the coefficients
equal to zero, thereby obtaining the linear constraints that theUikk'v's must
satisfy if our system T = (Fo,... , is to be a global section of 0(11).

We know that the and the Pijµd(C1, fi)'s are polynomials
whose degrees and heights satisfy

degbµva <_ c6i h(bµva) <_ c7, degPijµd < c8d, h(pijµd) 5 c9d.

(The first two inequalities are clear, since the bµva's do not depend on d,
while the second two inequalities are Lemma E.7.2(b).) Hence if we let

fkk'µvaijd(6,C1) = lClk'bµva(6,C1)Pijµd(C1,C1),

then

h(fkk'µvaijd) clod.

Now our system of linear constraints becomes

F, (fkk'µvajid(6, 1)uikk'v - fkk'µvaijd(C1XDujkk'v) = 0

µ,vES
k,k'>O for all 0 < i, j < m and A E B.

Setting the coefficient of each distinct monomial Clftlr equal to zero, we
see that the linear constraints on the uikk'v's have coefficients bounded
by clld. This estimate is what we have been aiming for.

In summary, we have shown the following:

(i) dim V3 n V2 +1 > 7d1d2 + O(d1 + d2).
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(ii) dim V2`1 < (m + 1)N26162 + O(d1 + d2 + d).
This follows from Lemma E.5.1(b), since V2 is contained in V1,
and Lemma E.5.1(b) gives such an upper bound for dim V1.

(iii) Elements of V3 n V2 +1 are precisely those (m + 1)-tuples of func-
tions 3 = (Fo, ... , F,,,), where each F, is given by (32) and the co-
efficients uikk' in (32) are constrained to satisfy a system of homo-
geneous linear equations whose coefficients have height bounded
by c11d.

[Aside: Note that (i) and (ii) certainly lie much deeper than (iii), since
they depend on the Riemann-Roch theorem. The proof of (iii) was long,
but essentially nothing more than an elementary calculation.)

Applying Siegel's lemma (Proposition D.4.2), we find that there is an
element

3 = (Fo,-..,Fm) E V3 n Vz+1

satisfying

dim
h(3) < C12

Va+1
h(coefficients of linear constraints)

v3 n v2 +1 )

(m + 1)N26162 + O(d1 + d2 + d)
_ C13 7d1d2 + O(d1 + d2)

' d.

Now using the definition 6; = (di+Md)/N and the assumption that d1, d2, d
are large and satisfy d1d2 > gd2, a little algebra yields the desired result,

h(3) < c14
d1

+ 42 + o(di + d2).

This completes the proof of Proposition E.7.1. 0

E.B. Lower Bound for ho(z, w) at Admissible (ii, i2): Version I

Recall that in Section E.5 we proved a lower bound for hn(z, w) of the form

hcxc,n(d,,d2,d) (z, w) > -h(3) - n log((61 + n)(62 + n)), (37)

where 3 = {Fi} is a collection of bihomogeneous polynomials describing
the global section s of 0(0). Further, we now know from Section E.7 that
there is such a section whose height is bounded by

h(3) < cis d1 + d2 + o(d1 + d2),
7
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so we can refine the lower bound (37) to

hCxC,fl(di,d2,d)(z+ w) > -c15d1+d2 +o(dl+d2)-nlog((bl+n)(62+n)).,y

This last lower bound, combined with the argument sketched at the end of
Section E.4, suffices to prove Vojta's inequality. So what is still left to do?

The one remaining problem is that (37) was proven only under the
additional assumption that the section s does not vanish at (z, w), and un-
fortunately in order to prove Vojta's inequality, we need to choose dl, d2, d
depending on z and w. How do we know that the corresponding section de-
scribed in Proposition E.7.1 does not vanish at (z, w)? The answer is that
we do not, it is quite likely that in fact s(z, w) is equal to 0. So taking our
cue from the classical Thue-Siegel-Roth proof, we start differentiating s
until we find some derivative that does not vanish at (z, w). We then redo
the entire argument to obtain an unconditional lower bound for hn(z,w).

The task we have before us divides naturally into three steps. In this
section we will assume that some derivative of s does not vanish at (z, w)
and derive a lower bound for hn(z, w) depending on the order of the deriva-
tive and the values of the derivatives of certain algebraic functions. In the
next section we will give an estimate for those derivatives that depends in
a very explicit way on the order of the derivative and on z and w. All of
these estimates are elementary, although notationally they are somewhat
intricate. Then, in Section E.10, we will show that it is not necessary to
differentiate a too many times in order to obtain a nonvanishing derivative.
In order to do this we will apply a two-variable version of Roth's lemma
that was essentially already used by Siegel.

We begin with some notation. We let C and (' be uniformizers at
the points z and w, respectively. Then any rational function on C x C
that is regular at (z, w) can be thought of as a function of ( and (', so
we can compute its partial derivatives with respect to r; and ('. We define
differential operators

a;-$1Cst'
Y. (38)

We will assume throughout that z and w satisfy

x3(z)#0 forall0<j<n,
(w) # 0 for all 0 < j' < n, (39)

y0(z,w) 34 0.

In other words, we are discarding a finite number of points of C where it
intersects certain hyperplanes for the embeddings cNA. Remember that
by construction, C is not contained in any of these hyperplanes. The last
condition is clearly satisfied, perhaps after changing the order of the y;'s.
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Let s be a global section of O(cl(dl, d2, d)) corresponding to a collection
of polynomials { F, } as usual. We define a rational function f E K(C x C)
by

\1Jd iX

f=x61 Ft( 20 00 0 ND

Here we are writing x/xD for the (n + 1)-tuple (1, xi /xo, ... , and
similarly for x'/x'. We are interested in studying some (hopefully small)0
derivative of f that does not vanish at (z, w). With this in mind, we make
the following definitions.

Definition. The index of the section s at the point (z, w) is

1

Ind(s) = min { 61 + b2 f il,i2 > 0 and 8i,c72f(z,w) 0 0 .

111 i

A pair (il,i2) is called admissible for s if

Ind(s) = bl + 2 and 8i; Yj.z f (z, w) y6 0.

Thus the index of s measures the smallest derivative of s that does
not vanish at (z, w), and an admissible pair gives a particular derivative
realizing this minimum. We start with a simple application of Leibniz's
rule.

Lemma E.8.1. With notation as above, let (il*, i;) bean admissible pair
for s. Let g be a rational function on C x C that is regular and nonvanishing
at (z, w). Then

Ug)
(ai;B;Zf) (z,w) - g

PROOF. Leibniz's rule for the derivative of a product says that

(fg) = 1: E (40)
u+v=i; a'+V'=i;

Note that the definition (38) of & and d' includes factorials that take care
of the usual combinatorial quantities appearing in Leibniz's formula.

When we evaluate (40) at (z, w), then the fact that (ii, i;) is an ad-
missible pair implies that every term in the sum vanishes except for the
term with (u, u') = (ii, i;). So (40) evaluated at (z, w) becomes

(ai, tX; (fg)) (z, w) _ (Oi; 0; f) (z, w) g(z, w),

which is exactly the desired result.

We are now ready to prove the main estimate of this section.
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Proposition E.8.2. Let s be a global section of (7 (1l(d1, d2, d)) given by
a collection of polynomials 3 = {F1}, and let (it,iz) be an admissible pair
for s. Then

hcxc,n(z, w) - (ii + i2 + 261 + 262 + 2n)
61 / \- max max min log I I aik

x
I (z)10<[<n j xj

v
i1+...+i61 k_

62

- max max min log
v i1+...+i63=i2 k=1 o-[<n j,

V

Cai ) (w)Xill V

PROOF. Recalling how we normalized the Well height hn in Section E.2
(see (8)), we have

hcxc,n(z, w) = 61h(ONA(z)) + 62h(ONA(w)) - dh(cB(z, w))

=61 Emaxloglxj(z)Jv+62Emaxloglx ,(w)Iv
V v

- dEmaxloglyi(z,w)I0
{

V

= - (61 E min logIxj (z) Iv 1 + 62 min loglx'j, (w) Iv
1

V v

+ d E max log Iyi(z, w) Iv)
V

max min logV

jJ'
C

yi (z,w)I . (41)
xj1zJ'62

v

Note that (41) holds for any choice of projective coordinates

46NA(z) = [x0(z),...,zn(z)], ONA(w) = [x0(w),...,xn(w)],
OB (z, w) = [y0 (z, w), ... , ym (z, w)],

since the product formula will cancel out the effect of multiplying the co-
ordinates by a nonzero scalar.

Next we want to use the fact that

aii aiz f (z, w) 54 0.

We remind the reader that the standard way to exploit the fact that an
algebraic number is not zero is to use the product formula, which after
taking logarithms becomes

E log Jai, a;, f (z, w) Iv = 0. (42)
V
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Subtracting (42) from our lower bound (41) gives

y"aii Y'2- f
i l>h )( 43)maxm n og l

61cxc,o(z,w)
V

t 6xi xi,
z, w (

v

It is more convenient to work with actual functions on C x C, rather
than homogeneous coordinates. Since we have assumed (39) that z and to
do not lie on the coordinate hyperplanes, the product formula gives

E log
v v

where xo(z), xo(w), and yo(z,w) are the same homogeneous coordinates
being used in (43). Adding (44) to (43) gives

hcxc,n(z,w) >
i ' (

(yilyo)d&; a:; f

(xi1xo)61(xj,1xo)/
(z, w) . (45)

V

We are going to use Lemma E.8.1 to rewrite the (v, i, j, j')tI term of
this sum. If we take

9= (yi/y0)d

(xi/x0)61 (xi,/x0)62

in Lemma E.8.1 and use the definition of f, btain

C (yi/yo)'Oq(Yi,f

/(xi/xo)61(xylxo)
(z'w) a`0`' (xi/xo)61(xi,/xo)/J (z' w)

x '

= x' \ (z, w).' 3 xi xi, f

Substituting this into (45) gives the comparatively neat lower bound

hcxc,n(z,w) > -1: maxmnlog
i i, i

V

x x'
I I (z, w)

s Xi x
4,

) J , (46)
v

and it remains only to estimate the size of the partial derivatives.
In order to keep the notation at a manageable level, we will first prove

the following lemma.

Lemma E.8.3. Let to, ... , fn E K(C) be rational functions that are
regular at z, and similarly let E K(C) be rational functions that
are regular at to. Let
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be a bihomogeneous polynomial of bidegree (61,62). Let C and (' be uni-
formizers at z and w, respectively, and let 8t and 0, be the differential
operators (38) defined above. Then for any absolute value v,

(z,w)Iv
< 2;,1+i2+261+263+2nIFI

bi

X max fl max..+ib:0<t<nti+.
k=1

63

X max fl maxtl+...+t'52=tz k_10<t<n III k e

Here 2 = 2 if v is archimedean, and 2L, = 1 otherwise; and IFI, is the
maximum of the absolute values of the coefficients of F.

PROOF. The number of monomials appearing in F is at most

f 61 + n)(62
n
+ n) < 261+62+2n

n

So using the triangle inequality gives

(z,w)I < 26,+62+2n IFIv

X +max6, 1(8t'(Co ...fit")) (z)

X max- I (Vi. (SOe ... cne^ )) (w) .

(47)
In order to estimate the last two expressions on the right-hand side

of (47), we look more generally at

1(a, (et ... e6))(Z)It,

for functions 91, ... , 96 E K(C) that are regular at z. Leibniz's rule gives

81(9 ...86) _ (ailel)... (ai6e6), (48)
i1+...+t6=I

where again we note that the definition (38) of 8 means that Leibniz's rule
holds without the combinatorial symbols. The sum contains at most

21

terms, so evaluating (48) at z and using the triangle inequality gives

6

(81(91...e6))(z)Iv <2v+6..max I(8tkek)(z)Iv (49)
k=1
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Now apply (49) to the expressions on the right-hand side of (47). For
example, taking I = ii, 6 = 61i and 81 06 = £oep . Cnn gives

[[ C

61

max_ (0,,(Col ...Snn))(z)Iv<2y+61 max I(aikek)(z)Iv'ep+...+en_61 k=1

where each 0k equals one of Co, ... , Cn. Thus

Cen
=61 10640 ... Sn )) (z)

61 (50)
< 2;,1+61 max max

O<t<n v
k=1

In a similar fashion we derive the upper bound

ep+
max =62

1 (ail, (COe ... £, en )/ (w)
V

62 (50')
< 2;'+62 max T7 max I (8i' e)(w)I

k1-11 O<t<n v

Substituting (50) and (50') into (47) and doing a little algebra completes
the proof of Lemma E.8.3. 0

We now resume the proof of Proposition E.8.2. Recall that we have
derived the lower bound (46), which we repeat here for the convenience of
the reader:

he x c,n (z, w) > - E max min log
v i.i

(oi;a;i xi ())
x

,
x

(z, w)
Till

. (46)

We apply Lemma E.8.3 with F = Fi, t = xt/xi, and C,' = x't/x'i,, which
yields

x x'8i.8.F i -(Xj x,
(z, w)

1 2 i,
:5 2iiv+i;+261+262+2nI Fi

lv

V

Si

x max 11 max
O<t<n

k=1
62

x max fi max
+162=12 k_1

O<t<n

x
8ik

a
(z)xi

V



408 E. Rational Points on Curves of Genus at Least 2

Finally, we substitute this into (46) to obtain

hcxc,n(z,w)>-(ii+i2+2b1+262+2n)log 2-h(3)
bi

l
iogI(a'`xi)(z)k=1

62

- min max L max log I I

a,k

- P) (w) ,

j, k_1 0<1<n

which is slightly stronger than the desired result. This completes the proof
of Proposition E.8.2. 0

E.9. Eisenstein's Estirnate for the Derivatives
of an Algebraic Function

In this section we will derive an upper bound for the quantities

(o)(z) I and
V

appearing in Proposition E.8.2. Recall that the function xt/xj is a rational
function on C via the embedding ONA : C '-+ Pn, and that 3, involves
differentiating with respect to a uniformizer C at z E C. An alternative
way to treat this situation is to consider the finite map C : C -+ P1. This
means that K(C) is a finite extension of K((), so any rational function C
on C satisfies a polynomial equation p(E, () = 0 of degree at most the
degree of K(C) over K(C). If further the partial derivative pE does not
vanish at z, then the implicit function theorem says that we can write f as
an analytic function of C in a neighborhood of z. Thus

(51)

i>0

where as usual we are writing si =
C es /

.
Suppose now that we are working over the complex numbers. A basic

result from complex analysis says that (51) converges for all ICI < p, where

p =limes Iai(z)I-1
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Further, the radius of convergence p satisfies p > 0. It follows that if we
replace p by a smaller p1 > 0, we get

I8jl (z) I < cpi ` for all i > 0, (52)

where the constant c is thrown in to take care of the first few ti's.
This is exactly the sort of estimate we need for Proposition E.8.2,

except that as usual we must keep track of the dependence on the various
quantities involved. The next proposition gives a proof of (52) with p1
given explicitly in terms of the polynomial p(C, ().

Proposition E.9.1. Let p(l;, () E K[C, C] be a polynomial of degree D,
and let a E K be a value such that p(a, 0) = 0 and such that the partial
derivative pp (a, 0) is nonzero. Let C = (z) be the algebraic function satis-
fying p(l;((), () = 0 and C(0) = a. Then for each absolute value on K, the
Taylor coefficients of this algebraic function satisfy

2i-1

Ia,c(0)Iv < (2D)v1' 1PI

/
max{1, jai, }2iD

(jpP (a, 0) I J

Here we are writing

pt = OPl'X

tpk = max 1coefcients of pI,,,

(2D)v = l
12DI if v is archimedean,
1 otherwise.

PROOF. We claim that for each i > 1 there is a polynomial q;(1, () such
that

+(p )2i-laC =0q _ (53).f. aR

To see this, we begin by differentiating p(C, ') = 0 to obtain

a
PC+PEaC_ =0. (54)

This gives (53) for i = 1 with q1 = pS. Next suppose that we know (53)
for i. Then differentiating (53) yields

(g1)eCt+(q=)t+(2i-1)(P()2:-2

(pees +P(C) a( +(Pe)21-1 a +, = 0. (55)

Now we use (53) (which is true for i by hypothesis) and (54) to elimi-
nate a'1;/8C' and tc from (55). Note that this is all right in a neighborhood
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of C = 0, since we have assumed that pt (a, 0) 0. Clearing denominators,
we find that

49i+1

-(gi)fp<pt + (gi)(Pp + (2i - 1)q, (-pEEp( +PE(PE) + (PE)2i+18S.+f = 0.

This proves by induction that (53) is valid for all i > 1, with the additional
information that the qi's are given by the recursive formula

q1 = p<,

qi+1 = -(gi)EP<PE + (gi)<Pf + (2i - 1)qi (-pEEp( + pp<pE).

We can easily use (56) to estimate the degrees of the qi's. Thus

degg1 =degp( <degp-1 =D-1,

and

(56)

deggi+l <_ max{deg((4i)EP(PE),deg((gi)(pC),deg(gipCCp(),deg(gipC(pC)}
<deggi+2D-3.

Applying this repeatedly gives

degq;<(2i-1)D-(3i-2)<(2i-1)(D-1). (57)

In a similar fashion we can estimate the height of the qi's using the ele-
mentary height estimates proven in Section B.7. Thus applying (B.7.4(b))
to the four terms in the recursion (56) gives

Iqi+i Iv

< 4v max{ I(gi)EP(PEI,,, I(qi)<PC2Iv, I(2i - 1)q+PEEP<I v, I(2i - 1)gipt<PEIv}.
(58)

(As usual, N is an abbreviation for INIv if v is archimedean, and N,, = 1
if v is nonarchimedean.)

Now we estimate each of the four quantities on the right-hand side
of (58). First,

I(gi)EP<PEIv < (2degP<)v(2degp()vI(gi)EIvIP(IvIPEIy from (B.7.4(a))

(2D - 2)v(deggi)vlgilvDvlPly from (B.7.4(c))

(2D - 2)v (2i - 1)v(D - 1)vDvlgilvIPIv

< 2vDvivlgilvlPlo

from (57)

Similarly,
2vDo=vlgilylPlV.
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Next,

I(2i - 1)q;PffpCIv

< (2i - 1)v(2degpCC)y(2degp(),2,IgiIvIPEEIvIPCIv from (B.7.4(a))

(2i - 1)v(2D - 4)2 &- 2)vlgly IPly from (B.7.4(c))

<

Finally, a similar calculation gives the same estimate for the fourth quantity
in (58),

I(2i - 1)giPtCPEIv 2uDvsvlgilvlPlV.

Using these last four inequalities, (58) becomes

Igi+llv 2vDvivlPlvlgily (59)

Applying (59) repeatedly and using Igil,, = IptIk < Dv[pI,, gives

Igily <- (2D)v(i-1)((i -1)!)vlPlv(i-l)lglly

< (2D)v((i - 1)!)vlPl2i-1. (60)

We are finally ready to estimate the size of the partial derivatives of £.
Evaluating (53) at ( = 0, we obtain

gi(a, 0)
pC(a,0)2i-1

(61)

(Note that C'(0) = a.) We can bound the numerator by calculating

Igi(a,0)I,, <_ (2deggi)vIgilvmax{1,IaIv}deg 4i from (B.7.4(d))

< (2(2i - 1)(D - 1))v(2D)vi((i - 1)!)v[Plvi-1 max{1, laly}c2i-1)(D-1)

from (57) and (60)
7i+4 7i+2 2i-1 2iD< 2v Dv max{1, Ialy}

< (2D)lli(1!) IPI2i-1 max 1, jai. 2iD
V \ v v { } (62)

For the last line we have used the fact that i > 1 and trivial estimates such
as i < 2i-1. Substituting (62) into (61) gives

2i-1

I8i£(0)Iv < (2D)vli
IPIv max{1, Iaiv}2iD, (63)

Ipe(a,0)Iv
l/

which completes the proof of Proposition E.9.1.
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Note that for almost all nonarchimedean places v we obtain the bound
IBie(0)Iv < 1; in other words, 8iC(O) is v-integral. It is worth noting
that when we use (B.7.4(a)) to estimate the four quantities in (58), it is
essential that the estimate I rl fjI v < c II I f3 Iv hold for a constant c that is
independent of the first polynomial fl. If this had not been true, then (59)
would have looked like Iqi+llv < ivlplvJgil,,, and so our upper bound (60)
for Iqi Iv would have involved (i - 1)!3. Since the i! in the definition of 8i is
able to cancel only one of these factorials, our final estimate (63) would have
been multiplied by (i!)v. This may not seem too terrible, since when we take
the logarithm of (63), the difference between having log(2D)11t i log D
and log i!2 i log i is only an additional factor of log i. However, this would
change the bound in Proposition E.10.1 (to be proven in the next section)
from

cns(ii Izl2 + i21wI2) + clr(ii + i2)
to

cis(i1IzI2 +i21wI2) +c17(ii log ii +:2logi2),

and the extra factor of log ii would eventually prevent us from proving
Vojta's inequality. This gives some indication of how delicately the various
estimates must fit together if the proof of Vojta's inequality is to succeed.

E.10. Lower Bound for hn (z, w) at Admissible (ii, i2): Version II

In Section E.8 we proved a lower bound for hn(z,w) in terms of an ad-
missible pair of indices (ii, i2). This lower bound depends on the partial
derivatives of certain algebraic functions on C. We are now going to use
Proposition E.9.1 to estimate those partial derivatives and prove the fol-
lowing improved lower bound for ho(z,w).

Proposition E.10.1. Let s be a global section of 0 (f l(d1, d2, d)) given
by a collection of polynomials T = {Fi}, and let (ii, i2) be an admissible
pair for s. There is a finite set of points Z C C(K) such that for all
points z, w EC(k) with z, w V Z,

he C,n(z, w) > cia(ii IzI2 +i2IwI2) - ci9(iI + i2 + 61 + b2 + 1).

PaooF. Recall (see Section E.7) that the projection map

it : C ON: lp^ -
X '--+ [20, xl],



§E.10. Lower Bound for hn(z,w) at Admissible (ii, i2): Version II 413

is a finite morphism of degree N. It follows that for any indices P, j, the
rational function xt/x, E K(C) is algebraic over K(xl/xo), and we would
like to estimate the degree of the corresponding algebraic relation.

To do this, we look at the composition of maps

]P3
-+t-jC t' Iel x P tg' IP2

x '-' ([xt,xj],[xo,x1]),
([a, b], [c, d}) '-' [ac,bd,bc,ad],

[x, Y, z, 'w] '-' [x,1/, z]

Now start with a line in P2 and pull it back step by step to C. Assuming
that 10 j and that (e, j) 54 (1,0), (0,1), the line in P2 pulls back to a
hyperplane in IP3, then to a pair of transversal lines in Ip1 x IP1. These, in
turn, pull back to two hyperplanes in P", which finally gives a divisor of
degree 2N on C. In conclusion, the map

C lxtxo,xixi,xixol
p2

embeds C as a curve of degree 2N in IP2, so there is a homogeneous poly-
nomial Gtr of degree 2N such that

Gti(xtxo,x,xl,x3xo) = 0 on C.

Dividing this by (xjxo)2N gives a polynomial relation

xt x,'gti , J = 0 on C,
xi X0,

where gtj is a polynomial of degree at most 2N with coefficients in K.
Taking a point z E C(K) as usual, we define shifted polynomials

Pt,(S,T) = 9tj (sT+ xEo (z)) .

From (B.7.4(e)) we have

IPtjIv = 19ti
2 deg 9ti j9tj Iv max { 1, I

xo
(z)CS, T +

xo
(z) )IV < Zv

V

Since there are only finitely many choices for 1j, and since each gtj has
degree at most 2N, we obtain

IPt; Iv <_ C20 (v) max l 1, I XO (z) I (ZN , (64)
l 1
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where the constant c20(v) satisfies c2o(v) > 1 for all v, and c2o(v) = 1 for
all but finitely many v. Constants of this sort are called (multiplicative)
MK-constants; see Section B.8 or Lang [6].

Now we apply Proposition 12.1 with

i = ik, S =
xt

, ( =
xl - 21

(z),

Note that for all but finitely many points of z E C, the function C will be
a uniformizer at z. Similarly, since the curve gtj = 0 in P is a (possibly
singular) model for C, there are only finitely many points of C at which
its partial derivative (9ej)( vanishes, where we are writing (gtj)( for the
partial derivative with respect to the first variable. So in the statement of
Proposition E.10.1, we take Z to be the finite set of points

- x x

and we assume throughout that z, w V Z. Using Proposition E.9.1, we
obtain the estimate

(8ik)
2ik-1 4ikN

(z) I <
(4N)"", (max

l1, I xj (z) I .

(65)
Next we take the minimum over 0 < j < n. Note that for any given

point z, there will be at least one index j such that

I L'xj (z)

P=Ptj,

u E C(K) : 1 - 1(u) is not a uniformizer at u, or
xo xo

lxe xl

/(9ej)(
C

x (u),
xo

(u) = 0 for some f j
j

Xj xo xo

a = (O) = xe (z), D = deg ptj < 2N.

<1
V

for all 0<8<n.

So taking the minimum of (65) and using min{ajbj} < max{aj} min{bj}
gives

min
0<j<n Lt

(Oik
(z)

xj
(4N)"", max ( IPtjIv

2ik-1
) (66)

o<j<n I(ptj)((a,0)IyV

Next we observe that there are only finitely many polynomials pej, so

I Pej I v <_ C21 (V)- (67)

Further, referring to the definition of pej in terms of gtj, we see that

(Pej)((a,0) = (9j)( (-(z), L, (z)) , (68)
Xj
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where as above we are writing (gtj)e for the partial derivative of gjj with
respect to its first variable. Substituting (67) and (68) into (66) gives

min (z)I < (4N)fhk max C21 (y)

O<j<n 2j v O<j<n 1(a, 4)E AL (Z), L(z))I
v

(69)
It is time to look back at Proposition E.8.2, which gives the lower

bound

hcxc,n(z,w) > -h(9)-(ii+i2+261+262+2n)-M(z,ii)-M'(w,ii). (70)

Here M(z, ii) is the "messy" expression

61

M(z,ii) _ max max min log
O<t<n j

v k=1
(aik L, ) (Z)2j

, (71)

V

and M'(w,iz) is defined similarly. Since M(z,ii) and M'(w,i2) appear
with negative signs, we need to find upper bounds. Using (69), we see that

M(z,ii) < max
V

2ik-1
61

C21(V)max log [(4N1ik
O<t,j<n

k=1 1(9j), az (z), xso(z) v
(72)

We estimate the inner logarithm in (72) using a sum of three terms

2ik-1

max log [(4N)h2 (C21 (y)

0<e,j<n I (9tj )t \ y (z)' o (z)) IV

< llik log(4N) + (2ik - 1) logc2l(v)
\ 1

+ (2ik - 1) E log+
I (9ej)t (x (z), xo (z) i

j<n / IVO<P ,

(73)
and bound each term separately. Here we are using the standard notation

log+ t = max{0, log t} fort E R, t > 0.

The first two terms in (73) are easy to estimate. Using the fact that
(4N) = 1 for nonarchimedean v and c21 (v) = 1 for all but finitely many v,
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we obtain

61

Emax L llik log(4N),,= llii log4N < c22ii, (74)
o

i1+...+i61=ii
k=1

61

max >(2ik - 1)log c21(v) = (2ii - 1)1:log c21(v) < c23ii.(75)
1

V k=1 v

It remains to bound the third term in (73). We begin by computing

61

Max L(2ik - 1) > log+
i1+...+i61 =ii

v k=1 o<t,j<n (9,0f (xi t (), xo (z))

_ (2ii - 1) E E log+
I (9tj)f (xt (z),

x1
(z) i

o<e,j<n v 2j xo V

V

_ (2ii - 1) E h 1 (9tj) (xt (z), xo (z)/ lo<e,j<n j
from the definition of height and the
fact that hh(a-1) = h(a) for a 0 0

< (2ii - 1) {deg((9ti))h(1
L (z)' x(z)'

11 \ (76)
o<e,j<n J 1

+ h((gtj)f) + 3log(3 + deg((gtj)f)) }

from (B.7.1(b)).

Since there are only finitely many gtj's, and since they do not depend on
the point z or the index ii, we have, using the elementary degree and height
estimates for the derivative of a polynomial (Proposition B.7.4),

deg(gtj)f < 2N-1 < C24 and h((gtj)t) < h(gtj)+logdeggej < c25.
(77)

To estimate the other term in (76), we use the fact that for any
point [ao, ... , an] E Pn,

h([.... aiaj,...[o<i<j<n) = 2h([ao,... , a.]).

(This is the 2-uple embedding Pn ti P(n2+3n)/z, and we apply the height
estimate for duple embedding (B.2.4c).) So for any indices t, j such
that aoaj 0, we have

h a1,1]) = h([aoat,alaj,aoajJ) < 2h([ao,...,a, ]).aj ao -



§E.10. Lower Bound for hn(z,w) at Admissible (ii, i2): Version II 417

Applying this to 4NA(z) = [xo(z), ... , X- W] gives

h (Lxl (z), xo (z), 1J /
2h ([xo(z),... , xn(z)]) = 2h(-ONA(z)) (78)

We need to relate this last quantity to the height 1z12. We already did
this in Section E.4, but we will briefly recall the details. The height 1z12
is defined by Iz12 = hJ,eA (jA(z)), where eA is the 6-divisor on J and
jA : C -p J is the embedding described in Section E.2. Lemma E.2.1(b)
says that we have the linear equivalence jAeA - gA, so the Height Machine
says that for all u E C(K),

IuI2 = hJ,eA (9A (u))

= hJ,eA (jA(u)) + 0(1)

= hcjAeA (u) + 0(1)
= 9hc,A(u) + 0(1)

= N hC,NA (U) + 0(1)

= 9 h(ONA(u)) + 0(1).

Taking u = z and substituting into (78) gives

h I [xt (z), xo (z),1J I < 2g IzI2 + c26.
j

Now we substitute (77) and (79) into (76), which gives the estimate

61

max >(2ik - 1) E log+
v k=1 0<l,j<n

:5 (2i - 1) E (C27Iz12 + C28)
0<l, j <n

< c29iiIzI2 + c30ii.

(91j)E (XjL, (z), xo (z))
V

(79)

(80)

We have now estimated each of the three inner logarithmic terms
in (72). More precisely, we substitute (73) into (72), break the result into
three sums, and estimate those three sums by using (74), (75), and (80).
This gives

M(z,ii) < c31iiIzI2 + C32ii. (81)

A similar calculation gives an analogous estimate for the other "messy"
expression M'(w,i2) appearing in the statement of Proposition E.8.2,

MI (W, i2) c33i2IwI2 + c34i2. (82)
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Substituting (81) and (82) into (70) and combining some of the terms gives
the desired result, which completes the proof of Proposition E.10.1.

Remark E.10.2. A careful analysis of the proof of Proposition E.10.1
shows that the constant c18 may be chosen to depend only on g. More
precisely, the computations (with slightly different notation) of de Diego
[1, Lemme 5.4] say that the value cls = 12n2N2/g is admissible.

E.11. A Nonvanishing Derivative of Small Order

Our aim in this section is to show that the small section s constructed in
Section E.7 has a small derivative that does not vanish at (z, w). In other
words, we will prove that s has a small admissible pair (ii, i2). We begin
with a nonvanishing result for ordinary polynomials.

Proposition E.11.1. (Two-variable Roth's lemma) Let P E Q[X1,X2]
be a nonzero polynomial of degree at most r1 in X1 and at most r2 in X2,
and let X31, k32 E Q. Suppose that 1 > w > 0 is a constant such that

r2 < wrl and h(P) + 4r1 < w min {r1h(,31), r2h(332)} .

Then there are indices i1,i2 > 0 such that

+tz

rl +r2 <4f and 8'3X1i3'=X2(31,,32)-A 0. (83)
1

Remark. It is actually a misnomer to call Proposition E.11.1 "Roth's
lemma," since versions were known to Siegel, Gelfand, and Dyson. Roth's
contribution was to prove the appropriate generalization of (E.11.1) to
the case of polynomials in more than two variables. But just as "Siegel's
lemma" is now often used to refer to any result in which one estimates the
size of solutions to a system of linear equations, we will use "Roth's lemma"
as a generic description of any nonvanishing result of the sort described in
Proposition E.11.1.

PROOF (of Proposition E.11.1). This is simply Roth's lemma (D.6.2) with
m = 2 (i.e., two variables) and w = r/2. This completes the proof of
Proposition E.11.1.

We now apply Roth's lemma to show that a small global section asso-
ciated to a Vojta divisor admits a small admissible pair.
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Proposition E.11.2. There is a constant c3s = c (C, ONA, OB) such
that the following is true. Let 0 < e, ^y < 1 be small constants, and suppose
that the integers d1, d2, d and the points z, w E C(K) satisfy the following
conditions:

e2d1 > d2 and min{d21wl2,diIz12} > 7£2 d1. (84)

Suppose further that d1d2 -gd2 > -yd1d2i and let s be a small global section
of 0(S1(d1,d2,d)) as described in Proposition E. 7. 1. Then there exists an
admissible pair (ii , i2) for s with

d+ d2 < 12Ne.
1

PROOF. We proved earlier (see equation (10) in Section E.4) that for any
point u E C(K), we have

hc.A(u) = 91u12 + 0(1). (85)

Next we recall the affine coordinate functions £, = (x;/xo) I C defined
in Section E.7. We will write (l;, t') for the analogous affine coordinates on
C x C. Then for any point u E C with x0(u) 4 0, we have

tt

n
/hc.NA(u) = h(ONA(u)) = h((1, 1(u) n(u)1) Eh(C,(u)),

1=1

where the last inequality follows from the definition of height. In particular,
for the given point z E C, there is some index j such that

h(e3(z)) >_ I hC,NA(z) =
N
n hc,A(z) + 0(1).

Reordering the coordinates, we may assume that j = 1. We similarly
reorder the £,'s to make i (w) have largest height. Combining this with (85)
above gives the estimates

h(e(w)) > 9Iw12+0(1). (86)

In order to apply Roth's lemma, we need to use the section s to con-
struct a polynomial. Recall that s is given by the collection of functions
T = {F,(x,x')/ya}. We consider the function field K(C x C) as a finite
extension of the field K(f1,C'i) and compute the norm

Q(SI,SI) = NormK(CXC)/K(t, ) (ih/y0)d.
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Note that Q is independent of i. Further, the function F,((, C') (y,/yo) -'
is regular on the locus of C x C where xox'0 54 0, so the function Q is a
regular function on Al x Al. In other words, Q is in the polynomial ring

From the definition of Q and the fact that F, has degree 61 in x and 62
in x', we see that

degCI(Q) < Nd1 and deg£2(Q) < Nd2. (87)

Next, since Q is the product of N2 terms, we have the estimate

h(Q) < N2h(3) from (B.7.2)
\

< N2 (c. d1 + d2
7

+ o(d, + d2) I from (E.7.1)

< c37 d, /ry since d1 > d2 by /assumption. (88)

We are going to apply Proposition E.11.1 with

P = Q, r1 = Ndi, r2 = Nd2, 01 = t, (z), 32 = C'(w), w = e2

There are several things to be checked.
First, we have r2 < wrl, since this is just a restatement of the given

condition d2 < ed,.
Second, we have

h(P) + 4r1 = h(Q) + 4Nd, < c3gdl/-y

from (88). On the other hand, we can estimate

urrlh(,1) _ E2Ndlh(£1(z))

> e2Nd1 (1±1z12 + O(1)) from (86)
n9

N2n9d,
(E21ZI2 + Q(1))

>_ c39d1/7 from (84).

So if the constant in (84) is chosen sufficiently large, then the inequality

h(P) + 4r, < wrlh($,)

will be true; and a similar calculation again using (84) gives the corre-
sponding inequality h(P) + 4r, < nrr2h(02)

We are now in a position to apply Proposition E.11.1 to the polyno-
mial Q, so we find indices i1,i2 satisfying

al
+

t2 < 4f and (81,2Q)(131,132) 96 0.r1 r2
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Using the definition of rr, r2, and w, the first condition becomes

dl + !2 < 4NE.

As for the second condition, it certainly implies that (il, i2) is an admissible
pair for s, because when we use the product rule to differentiate Q, at least
one of the terms in the resulting sum must be nonzero. This completes the
proof of Proposition E.11.2. 0

E.12. Completion of the Proof of Vojta's Inequality

We have now assembled all of the tools needed to prove Vojta's inequality
(Theorem E.1.1), which we restate here for the convenience of the reader.

Theorem E.12.1. (Vojta's inequality) There are two constants rci =
c(C) and rc2 = r.2 (g) such that if z, w E C(K) are two points satisfying

then

Iz( > rci and IwI > reslzl, (89)

(z,w) <_ 4JzI 1W1-

PROOF. We assume first that the constant K1 is chosen sufficiently large
so that the finite set Z C C described in Proposition E.10.1 contains no
points with Izl > rcl. Now suppose we are given two points z,w E C(K)
satisfying (89), where we will be specifying rcr and rc2 more precisely below.
The reader is urged to verify at each stage that it is possible to choose rcr
and rc2 independently of z J and Iwl.

Next we choose a large real number D and two small positive real
numbers 1 > e, v > 0. In particular, we will assume that D > Iw12.
Eventually we will let D -' oo, while we will choose values for e and v that
depend only on C. We now set dl, d2, and d to have the values

di=N 9+v , d2=N g+vD21, d=Nf D (90)
IZ1 Iwl J

I
Jzl IwJ J

and we consider the height of (z, w) relative to the Vojta divisor

i1= f1(dl, d2, d).

Note that our choice of dl, d2, d depends on the points z and w. The
reader thus finally sees why it was always necessary in our estimates to
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keep track of the dependence on dl, d2, and d. We are going to compare
upper and lower bounds for ho (z, w). These bounds depend on 1, and
since 1 depends on z and to via its dependence on d1, d2, d, we would end
up with nothing if we did not have firm control over how all estimates
depend on dl, d2, and d.

We begin with the lower bound provided by Proposition E.10.1, which
says that

ho(z, w) > -h(3) - cao(ii IzI2 +i2IwI2) - C41(iI + i2 + 61 + 62 + 1).

This is valid for all pairs (ii, i2) that are admissible for the global section s
to O(0), where 3 = {F2} is a set of polynomials corresponding to the
section s. Assuming rc1 > 1, we have IzI > 1 and IwI > 1, so adjusting the
constants accordingly and using the definition of 61 and 62i we obtain the
lower bound

ho (z, w) > -h(3) - C42 (ii IzI2 + i2IwI2) - ca3(d1 + d2 + d). (91)

Using our choice (90) for d1i d2, d and choosing K1 to satisfy K1 > E-112,
we obtain

g+v 2 g+v 1 ca4D
d1+d2+d <_ ND 2 + 2 + 2 < (92)

IzI IwI Z1 IwI K1

Substituting (92) into (91) gives the lower bound

hn(z, w) > -h(3) - cas (ii IzI2 + i2IwI2) - c46ED. (93)

Next we use Siegel's lemma (Proposition E.7.1) to find a "small" global
section s to O((1). In order to apply Proposition E.7.1 we need to verify
that

d1d2 - gd2 > -td, d2 (94)

for some positive constant -y that is independent of z and w. Using our
choice (90) of d1, d2, d, we estimate

d1d2 - gd2 9d2

d1d2 d1d2

>1-

=1-

D l2
g

l IzIM
D \ D \

)lz-1)(vg +vlwl2-1/
g 1 /

g+v 1 - Iz12 1
Iw12

D g+v D -g -+v
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Hence as long as we fix a v > 0 and take D sufficiently large, the in-
equality (94) will be true with (say) y = v/3g, and we can apply Proposi-
tion E.7.1. This means that we can find a section s given by a system of
polynomials .' = {Fj} satisfying

h(3') <_ c47
dl

+
d2

+ o(dl + d2).

Using y = v/3g and the estimates (92), we obtain

h(3) < c48(di + d2) < c4grD;

and substituting this into (93) gives us the lower bound

ho(z, w) > -cso(ii zl2 + i2IwI2) - c51eD. (95)

Next we want to use Proposition E.11.2 to choose a small admissible
pair (ii, i2). We need to verify the inequalities

E2di > d2 and min {d2IwI2, di IZI21 > .S5 di (96)

required by Proposition E.11.2. To check the first one, we use (90) to
compute

d2 N g+vD/IwI2 _ 2IzI2 2 2

d1 N( g + v D/IzI2 - 1) IwI2
- K2 -

provided that we pick k2 > fe-1. Next we observe that d1IzI2 and d2Iw12
have comparable orders of magnitude, since there are numbers 0 < 7)1,172 <
1 such that

d2IwI2 _ ( g+vD1 2 [ 19+ V] 2

d1IzI2
- L

Iwi2 J
" /

L Iz12 J Izi

1 -
r,2IwI2

1- 771IzI2- ( D g+v)/ ( D g+v
Thus, as soon as D is large enough, we obtain the estimate

1 < d2IwI2
< 2.2 - d1IzI2 -

Finally, the inequality in (96) will be true if we require c1 to satisfy
r.i > 2c52/(ye2), since we are given that IzI > kl.

We have now verified the conditions (96) needed to apply Proposi-
tion E.11.2, so we conclude that there is an admissible pair (ii,i2) for s
satisfying

tl
+

a2
< 4NE.

d1 d2-
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In particular,
ii < 4Ned1 and i2 < 4Ned2.

Substituting this into the lower bound (95) and absorbing the 4N into the
constant gives

hn(z,w) > -cs3e(dllz12+d21w12) -c54eD. (97)

Next we use (90) to estimate the quantities d1IzI2 and d2Iw12. Thus

dl Iz12 < N
9 -+v D

I Z I2 < C55D and d21w12 < N
9 + vD IwI2

< c56D.Iz12
IwI2

Substituting these into (97), we finally obtain the desired lower bound

hn(z,w) > -c57eD. (98)

We are going to compare this with the upper bound given by Propo-
sition E.4.1, which says that

hn(z, w) < 91 Iz12 + 9 Iw12 - 2d(z, w) + css(dl + d2 + d). (99)

Using (92), we can replace the d1 + d2 + d by c59eD, and then combining
the lower bound (98) with the upper bound (99) gives the inequality

gl Iz12 +

9
IwI2 - 2d(z, w) > -c60eD.

We next substitute the particular values (90) that we chose for d1, d2, d and
divide by N to1obtain

['i-] r 1+Iw122 [ zw IJ(z,w)>-c61eD.
(100)

Note that (100) is true for all sufficiently large D. In particular, we
can divide (100) by D and let D go to infinity. Noting that

1 [aD] =a for any real number a,limo
D

we obtain from (100) the inequality

2 g+v-2(z,w) >-c61e.
9 IzI IWI

A little bit of algebra then yields

\
(z, w) 5 g9 v + 2c61e I IzI IwI. (101)
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We are assuming that the genus satisfies g > 2, and so

1 < 1 <3f - 2 4

Hence if we choose v and a sufficiently small, then we will get

(z, w) <

4

(zI (WI,
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which is exactly Vojta's inequality. It is important to observe that we do not
need to let a --+ 0. (This would force K1, r12 -4 oo, and then the statement of
(E.12.1) would be vacuous.) The constant c61 appearing in (101) depends
only on C (and the fixed embeddings ONA and ¢B), so it is possible to
choose positive values for a and v that depend only on C, and that are
independent of z and w. This completes the proof of Vojta's inequality
(Theorem E.12.1), and in view of Proposition E.1.2, it also completes the
proof of Faltings' theorem (E.0.1). 11

Remark E.12.2. If the genus of C is large, then we can improve the con-
stant appearing in Vojta's inequality. Thus fix any constant 1 > e >
0. Then the proof given above (see (101)) shows that there are con-
stants K1, K2, depending only on C and e, such that if z, W E C(K) are
two points satisfying (z( > Kl and (w( > K2(z(, then

(z, w) < (1 + E 1 (z(lw(. (102)

Remark E.12.3. Vojta's inequality alone is sufficient to imply the finite-
ness of C(K). It is possible to give an effective upper bound for the number
of points in C(K) by combining Vojta's inequality with Mumford's gap
principle B.6.6(a). See Exercise E.9.

Remark E.12.4. A useful remark of Oesterle (unpublished) is that the
constant K2 in Vojta's inequality (E.12.1) may be chosen purely in terms
of the genus g of C (and on e, of course). In fact, de Diego [1] has shown
that K2 may even be chosen independent of g (cf. remark E.10.2). Although
this may seem to be a minor point, it is very useful for deriving uniform
upper bounds for the number of points in C(K).

We conclude Part E with some brief remarks concerning certain spe-
cial cases of Faltings' theorem (Mordell's conjecture) that can be proven by
more elementary means. We are especially interested in cases for which one
can effectively determine C(K). Note that the proof of Faltings' theorem
in this section might be called "semieffective," since it gives two effective
constants cl,eff and c2,eff, depending on C/K, with the property that the
height of points in C(K) is bounded by cl,eff with at most C2,eff exceptions.
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This sort of statement is typical of results proven using Diophantine ap-
proximation techniques. Balanced against this positive result is the fact
that at present, there is not a single curve C of genus g > 2 for which
C(K) can be effectively computed for all number fields K. Nevertheless,
in very special cases (i.e., for special curves and special number fields) one
can effectively determine the set of rational points. We list some instances
where this can be done, proceeding from trivial to less trivial cases.

In the following remarks, C/K is a curve of genus g > 2 defined over
a number field K as usual, and J is the Jacobian variety of C.

Remark E.12.5. If there exists a place v of K such that 0, then
clearly C(K) = 0. See Exercise E.13 for an example.

Remark E.12.6. If J(K) is finite, that is, J(K) = J(K)tor, then the set
C(K) can be effectively determined. Indeed, the torsion subgroup of J(K)
is always effectively computable and, after embedding C inside J, one can
compute C(K) as a subset of J(K). See Exercise E.14 for an example.

More generally, if there is a nontrivial quotient B of J such that B(K)
is finite, then one can look at the composition C ti J --> B. The resulting
map C(K) -+ B(K) is finite-to-one, and hence C(K) is finite and can often
be determined. See Exercise E.14 for an example. Note that this is the
starting point of Mazur's proof (Mazur [1]) that modular curves X1(N) of
positive genus have no noncuspidal rational points.

Remark E.12.7. If J(K) has small rank, precisely, if rank(J(K)) < g-1,
Chabauty [1] already in 1941 gave a p-adic argument showing that C(K) is
finite. Although far from obvious, Coleman [2] has shown that Chabauty's
proof can be refined to give a very strong effective bound for the number
of points in C(K). We record some special cases of Coleman's results.

Theorem E.12.7.1. (Coleman [2)) (i) Let C/Q be a.curve of genus 2
with good reduction at 2 or 3, and assume that rank J(Q) = 1. Then
#C(Q) < 12. If in addition four of the Weierstrass points of C are rational
and C has good reduction at 3, then #C(Q) < 6.
(ii) Let C/K be a curve of genus g > 2, let p > 2g be a prime, let p be an
unramified prime of K lying over p, and suppose that C has good reduction
at p. If rank J(K) < g, then #C(K) < Np + 2g 1) - 1.

In some cases Coleman's estimates are sufficiently sharp to allow the com-
plete determination of C(K). See Exercise E.15 for an example.

Remark E.12.8. Demjanenko [1] observed that if a curve C admits many
independent maps to a single elliptic curve, then C(K) is finite. Manin [5]
generalized this result and gave an important application to rational points
in towers of modular curves. We give the precise statement and sketch the
proof.
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Theorem E.12.8.1. (Demjanenko [1], Manin (51) Let C/K be a curve
of genus g f 2, let B/K be an abelian variety, and let C --+ B
be morphisms defined over K that are independent modulo constant mor-
phisms. Assume further that rank B(K) < r. Then C(K) is finite. Fur-
ther, it is possible to effectively bound the height of the points in C(K)
in terms of C, B, and the morphisms fl,..., fr. (See Exercise E.16 for an
example.)

PROOF. (sketch) Let Mor(C, B) denote the group of morphisms from C
to B. Note that Mor(C, B) contains a subgroup isomorphic to B, namely
the group of constant maps. Now fix an ample symmetric divisor D on B.
A basic geometric fact says that the function

Mor(C, B)/B -+ Z, f - deg(f'D),

is a positive quadratic form on the group Mor(C, B)/B. We denote by
( , , )deg the associated bilinear form on Mor(C, B)/B.

Next fix a divisor A of degree 1 on C. For any map f : C -+ B, the
divisor f'D is algebraically equivalent to deg(f'D)A, so Theorem B.3.2
(or Theorem B.5.9) tells us that

hD (f (x)) = deg(f'D).lim
zEC(K). hA(x)-..c.c hA(x)

Applying this with fi and f, + f, and taking appropriate linear combina-
tions, we obtain

lim (fi(x),fj(x))D = (fi,fi)deg,
rEC(K), hA(r)-. hA(x)

where ( , , ) D is the canonical height pairing on B with respect to the
divisor D. Now taking the determinant over I < i, j < r yields

det [((fs(x),fi(x))D)I<,.J<r,
xEi - hA(x)r

-deL [((fi,fi)drg)1<t.i<rl 0,

hA (x)-roc

where the positivity follows from the positive definiteness of the pairing
( , , )deg and the assumption that the maps C -+ B are inde-
pendent.

It follows that det [((fi(x), f)(x))D)I<i J<r] is positive, provided that
hA(x) is sufficiently large . It follows from Proposition B.5.3 that the maps
fl (x), ... , fr(x) are independent in B(K) ®R. We can rephrase this in a
somewhat more illuminating way by saying that the set

{x c C(K) I ft (x), ... , fr(x) are dependent in B(K) ®1(1}
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is a set of bounded height. We also note that it is possible to compute
an effective upper bound cuff, depending only on the choice of the height
functions hA and hD and the maps such that every point x in
this set satisfies hA(X) < C ff.

Now we restrict to rational points x E C(K), and we use the assump-
tion that rankB(K) < r. It follows that hA(X) < Cff, which completes the
proof that C(K) is an effectively determined finite set. 0

We remark that Silverman [11] has generalized the result (E.12.8.1)
of Demjanenko and Manin to the case of nonconstant families of abelian
varieties (see also Lang (6, Chapter 12]).

Theorem E.12.8.2. (Silverman [11]) Let C/K be a curve, let B --+ C
be a family of abelian varieties defined over K, and let B' be the constant
part of the family. (This means that almost every fiber is an abelian vari-
ety, and that B'/K is the "largest" constant abelian variety that embeds
B' x C '-+ B over C.) For each x E C(K), let

ax : Mor(C, B) - Bx(K), f - f (x),

be the specialization map. Then

{x E C(k) I ax : Mor(C, B)/B'(k) -. Bx(K)/Bi(K) is not injective}

is a set of bounded height. In particular, for all but finitely many x E C(k),
the specialization map ax is injective on Mork(C, B)/B'(k).

Remark E.12.9. These examples do not cover all special cases or special
methods for determining the rational points on curves. The most notable
case of determining C(K) via a highly indirect and difficult line of reasoning
is surely Wiles's proof (Wiles [1]) of Fermat's Last "Theorem."

EXERCISES

E.I. Let V be a Euclidean vector space with inner product ( , ). For each
point xo E V and each angle Oo, let r=0,90 be the cone

r=o,eo = {x E V I 9(x, xo) < 6o}.

Prove that there are points zi, ... , xn such that

n< 2+ 1 1
sin(4 cos-

1

(Bo))
and
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E.2. Let C/K be a smooth curve of genus g > 2 defined over a number field K,
and let J/K be the Jacobian of C.
(a) Use Vojta's inequality (E.1.1) to prove that there are constants tcl =
tct(C) and 'c2 = x2(C) such that for every extension field L/K,

#{x E C(L) I (x] > tcl} < #J(L)tors . tc2 I Ornnk J(L)

Note that cl and 'c2 depend on C, but should be independent of the ex-
tension field L.
(b) Use Mumford's gap principle (B.6.6) to show that the term #J(L)tor,
in (a) may be deleted.

E.3. (Liouville's inequality) Let S be any set of absolute values on a number
field K.
(a) Prove that for all a E K with a 54 0, one has the estimate

E log ]a I. >- -h([a,1]).
vES

(b) If K = Q and a = a/b, then describe the set S that one should choose
such that the inequality in (a) is an equality.

E.4. Let C be a curve of genus g > 2 and X a canonical divisor on C.
(a) Prove that there is a divisor A E Div(C) of degree 1 satisfying

(2g-2)A-X X.

(b) If in addition C is defined over a field K and C(K) is not empty, prove
that one can choose A such that the divisor class of A is defined over a
field L/K with [L : K] < (2g - 2)29, i.e., A° - A for all o E Gal(L/K). To
what extent can this upper bound for [L : K] be improved?

E.S. Let C, and C2 be smooth projective curves of genera gi and g2, respectively.
Recall that the arithmetic genus of a smooth projective surface S is defined
by the formula p. (S) = h2(S, Os) - hl(S, Os). Prove that the arithmetic
genus of the product C, x C2 is

P0(Cl xC2)=(9i-1)(92-1)-1.

E.6. Prove that the polynomial ring Kit,, F2] contains Nb- 2 N(N-3) monomials
of the form

Sf2 with0<j<N-1and0<i+j55.I

E.7. Let p(t, () = > p,,('C' and C = t(() be as in Proposition E.9.1. Leibniz's
formula says that

O,P = E E P+i(8to(t)(8tx ...(8t.a
.i to+.-.+tt=t

Using this formula, the triangle inequality, and induction, give another
proof of Proposition E.9.1 in the case that the absolute value v is nonar-
chimedean. (One can similarly prove a version of Proposition E.9.1 in the
case that v is archimedean, but the resulting estimate would be too weak
for our purposes.)
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E.8. (Gelfand's inequality) Let Pi, ... , Pn E Q[X1, ... , X,,,] be polynomials in
m variables with deg Pi < d,. Then

n

h(Pi ... Pn) > E h(PP) - m(di + ... + dn).
i=i

E.9. Let C/K be a curve of genus g > 2 defined over a number field K, and let
x, z E C(K).
(a) Mumford's gap principle says:

If x # z and ci < JxJ < [zJ < (3[x]

and Vojta's inequality says:

then cos(x,z) < A;

If c2 < Ix] and xIx] < JzI then cos(x,z) < A;

where ct, c2, /3, c, A are constants depending only on C/K, independent of x
and z. Let c3 = max{ci, c2}. Combining Mumford's and Vojta's estimates,
prove that there is a constant N(A) depending only on A such that

#{x E C(K) I [x] > c3} < N(A) I'1 +g- f .

(Hint. N(A) will be a bound for the number of cones necessary to cover
J(K) ®1R, where each cone r has the property that every x, y E r satisfies
cos(x, y) < A.)
(b) Use (a), Exercise E.1, and Exercise B.10 to give an upper bound for
#C(K).

E.10. As in the text, let A be a divisor of degree 1 on the projective curve C,
let N be a sufficiently large integer so that NA is very ample, and identify C
with its image ONA(C). Let xo,... , xn be a basis of sections of O(NA). Let
U = GL(n+ 1) be the variety of invertible matrices, and for B = (bid) E U,
write x; = '_obijxj.
(i) For B E U and distinct indices i -A j, let L, denote the linear subspace
{x; = xj = 0}. Prove that the set

{BEU I CnLs540forsomei54j}

is a proper Zariski subset of U.
(ii) Show that the set of B's such that k(C) 0 k(x /xi,x't/x;) is a proper
Zariski subset of U. (Hint. Use the primitive element theorem, which
says that if L/K is a finite separable extension and if L is generated by
ai,... , a,,,, then L = K(cial + + c,nan,) f o r all (ci, ... _c,,,) E A'n(K)
lying outside a proper Zariski closed subset of A. See, e.g., Lang [2, VII,
6, Theorem 14].)
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E.11. It is clear that if C has genus g > 2, then Siegel's theorem (D.9.1) as-
serting that C has finitely many integral points is superseded by Faltings'
theorem (E.0.1) saying that C has finitely many rational points. In this
exercise you will show that Faltings' theorem can also be used to deduce
finiteness of integral points on curves of genus 0 and 1 with an appropriate
number of points at infinity.
(i) Let C be a smooth projective curve of genus 1, and let U C C be an
affine subset of C with at least one point at infinity. Prove that there
exists a curve C' of genus g' > 2 and a covering f : C' C such that f is
unramified over U.
(ii) Assuming that the curves and maps in (i) are defined over a number
field K, and letting S be a finite set of places of K, apply the Chevalley-Weil
theorem (Exercise C.7) to prove that there exists a finite extension L/K
such that U(RK.S) c f (C'(L)). Deduce that U(RK,S) is a finite set.
(iii) Repeat parts (i) and (ii) under the assumption that C has genus 0
and U has at least three points at infinity.

E.12. Let C be a curve of genus g, and let A = (xO) be an effective divisor of
degree I on C. Find an explicit value of M such that the divisor

B:=(M+1)(AxC)+(M+1)(CxA)-0

is veryample on C x C. (Hint. Show that p' 8+p28+ s126 is base-point
free on J x J, and that 3p19 +3p2A is very ample on J x J. Deduce that
4p1A + 4p;8 + s129 is very ample on J x J, and hence its pullback to
C x C is very ample. Finally, show that the pullback has the form B and
compute the value of M.)

E.13. Let a 34 0 be an integer, let n > 2, and let C be the smooth plane curve
defined by X' + Y" + aZ" = 0.
(i) If a > 0 and n is even, prove that C(Q) = 0.
(ii) Let p be an odd prime such that pea and p" {' a, and suppose that
ord2(n) > ord2(p - 1), i.e., the highest power of 2 dividing p - 1 also
divides n. Prove that C(Q) = 0.
(Hint. Show that C(R) or C(Q,) is empty.)

E.14. Let C be the smooth projective curve with affine open subset U defined by
y2+ y = x5, let PO = (0, 0), let P, = (0, -1), and let P. denote the point at
infinity. Consider the Jacobian variety J of C and the natural embedding

C - J defined by mapping P to the divisor class of (P) - (P.).
(i) It turns out that rank J(Q) = 0. (You may try to prove this yourself,

or see Fadeev [11.) Assuming this, prove that J(Q) ?5 Z/5Z.
(ii) Prove that j(PI) = 4j(Po).
(iii) Prove that 2j(Po),3j(Po) 95 j(C).
(iv) Conclude that C(Q) = { Po, P1, P. }.

(v) Use this exercise to prove Fermat's Last Theorem for exponent
p = 5. (Hint. Use the fact that if A5 + D5 = B5 with D 54- 0, then
(x, y) = (AB/D2, A5/DS) E C(Q))
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E.15. Let C be the byperelliptic curve given by the affine equation

y2=x(x-9) (x2-1)(x2-18x+ 1).

Note that C has two point P. and P at infinity. It turns out that
the Jacobian variety of C satisfies rankJac(C)(Q) = 1. (You may try to
prove this yourself, or see Flynn [21.) Assuming this fact, use Coleman's
theorem (E.12.7.1) to prove that

C(Q) = { (0, 0), (1, 0), (-1, 0), (9, 0), P., P. } .

E.16. Let E/K be an elliptic curve with rankE(K) = 1, and fix a Weierstrass
equation y2 = x3+ax+b = P(x) for E/K. Let C/K be a smooth projective
model for the affrne curve given by the equations

y2-P(x)=0 and z2-P(x-d) =0,

where we assume that d E K is chosen such that P(X) and P(X - d) have
no common roots (this will be true for all but finitely many d's).

(i) Prove that C has genus 4.
(ii) Prove that there are two independent morphisms from C to E.

(iii) Use the argument of Demjanenko (E.12.8.1) to conclude that if
rank E(K) = 1, then C(K) is finite.



PART F

Further Results and Open Problems
You can never plan the future by the past.

Edmund Burke, Letter to the National Assembly

We hope you have enjoyed our journey through the more or less tamed
part of the world of Diophantine geometry. We now wish to take you on a
last ride featuring some results whose proofs could not be included and a
large number of open problems on the frontiers of knowledge. We describe
conjectures and questions to serve as guideposts for future explorations into
the relationships between arithmetic and geometry.

A simplified description of arithmetic geometry shows that it has de-
veloped along two paths, the Diophantine path and the modular path. The
former includes the use of heights and Diophantine approximation, while
the latter relates Diophantine problems to modular problems and relies
on group representation techniques. It seems futile to attempt to predict
which method will be most successful in the twenty-first century, the most
likely guess being that a blend of the two will prove to be fruitful.

The present book is based on Diophantine methods. The original proof
of Mordell's conjecture by Faltings (sketched below in Section F.4.2) is a
mixture of Diophantine arguments and Galois representation theory. The
subsequent proof of Vojta (with simplifications by Bombieri) described in
Part E is purely Diophantine. In this context the introduction by Arakelov
of an arithmetic intersection theory, imitating classical geometric intersec-
tion theory, has proven to be an invaluable insight, as advocated notably
by Szpiro.

In a parallel development, mathematicians have linked elementary
statements such as Fermat's last theorem and the abc conjecture to deep
problems in Galois or automorphic representation theory, leading to the
celebrated proof of the modularity conjecture and of Fermat's last theo-
rem.

Our plan is to discuss first the generalization of Mordell's conjecture
to higher-dimensional subvarieties of abelian varieties (Section F.1) and
then to study the topology induced on these by the N6ron-Tate norm
(Section F.2). These two sections contain reasonably complete results.
Next we consider conjectural upper and lower bounds for heights in various
situations, including the famous abc conjecture of Masser and Oesterle
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(Section F.3). In the next section (F.4) we turn to the quest for effectivity,
or more precisely, we explain why current methods give ineffective results.
We also consider the question of quantitative results, that is, explicit upper
bounds for the number of solutions to Diophantine problems. Finally, in the
last section (F.5) we describe several far-reaching conjectures that describe
the arithmetic properties of a variety in terms of its geometry. Here there
are few general proven results, but many examples on which one can test
conjectures.

We offer here a word of apology to those whose work is not quoted,
due either to our arbitrary choices, our lack of competence, or a lack of
space. By no means does this last part pretend to be a complete survey.
For a discussion of many other results and conjectures, we refer the reader
to Lang's volume of the Russian Encyclopedia (Lang [8]).

F.1. Curves and Abelian Varieties

Faltings' theorem (originally the Mordell conjecture) says that if X/k is a
curve of genus at least 2 defined over a number field, then X(k) is finite.
There are several natural ways in which this statement may be generalized.
For example, we might ask for which classes of varieties X/k is it true
that X(k) is finite. We will discuss this question later in Section F.4.2.
Alternatively, we can view a curve of genus at least 1 as a subvariety of its
Jacobian, so it is natural to study the Diophantine properties of higher-
dimensional subvarieties of abelian varieties. Since the group of rational
points of an abelian variety may be infinite, it is clear that if X/k is a
subvariety of an abelian subvariety A/k, and if X contains an abelian sub-
variety B/k of A (or even a k-rational translate B), then X (k) may be
infinite. Lang conjectured that this is the only possible case, namely that
X(k) is, up to a finite set, the union of the rational points on translates of
abelian subvarieties contained in X. Independently, Manin and Mumford
asked whether it were true that a curve inside its Jacobian contains only a
finite number of torsion points. Lang then proposed a very general conjec-
ture (now a theorem) encompassing both questions on rational points and
torsion points. We discuss this in the next section and then explain some
applications to points of bounded degree on curves.

F.M. Rational Points on Subvarieties of Abelian Varieties

In order to state the main result of this section, we need one definition.

Definition. An abelian group r is said to have finite rank if it contains
a free finitely generated subgroup r o C IF such that for every x E I' there
exists an integer n > 1 such that nx E I'o.
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The following conjecture of Lang (see Lang [1, 6,12]) contains and
generalizes both the Mordell and Manin-Mumford conjectures. It is now a
theorem.

Theorem F.1.1.1. (nee Lang's conjecture) Let A be an abelian variety
defined over C, let X be a closed subvariety of A, and let I' be a subgroup of
A(C) of finite rank. T h e n there e x i s t a finite number of points 71, ....7r E
I' and finite number of abelian subvarieties B1,. .. , Br of A such that 7, +
B;CXforallI<i<rand

X(C)nr= U 7,+(B,(C)n17).
1<t<r

in particular, if X does not contain any translate of a nontrivial abelian
subvariety of A, then X (C) n r is finite.

For example, let X be a curve of genus at least 2 defined over a number
field k, and (assuming X (k) j4 0) embed X into its Jacobian variety J. Tak-
ing I' = J(k), Theorem F.1.1.1 says that X(k) is finite, which is Faltings'
theorem. On the other hand, taking I' = J(C),0,,, we find that X(C) con-
tains only finitely many torsion points of J, which is the Manin-Mumford
conjecture. Thus Theorem F.1.1.1 provides a tremendous generalization of
both Faltings' theorem and the Manin-Mumford conjecture.

Although the statement of (F.1.1.1) involves varieties and points de-
fined over C, we can start by selecting a finitely generated subgroup r o c r
such that every element of r has a multiple in 170. If 71. ... . 7r generate I'o,
then it is clear that 71, ... , 7r and the varieties X and A are all defined over
a field K of finite type of Q. Further, the fact that every x E r satisfies
nx E Co for some n > I shows that every point in r is algebraic over K, so
is defined over K. A specialization argument then allows one to reduce to
the case that everything is defined over 0. Next, using Kummer-theoretic
arguments (see below for references), it is possible to reduce to the case
that F itself is finitely generated. This means that IF is a subgroup of A(k)
for a number field k, so the problem is reduced to showing that X(k) is
contained in a finite union of sets of the form 7 + B(k), where B is an
abelian subvariety of A (possibly B = 0), -y E A(k), and -y + B C X.
We now give a sketch of the proof of this case. The original proof is due
to Faltings (Faltings 12,3]); detailed surveys may be found in the volume
edited by Edixhoven and Evertse I1] and in the long paper of Vojta [4].

The proof follows the same pattern as the proof of Mordell's conjec-
ture, albeit with many additional technical difficulties. As in Vojta's or
Bombieri's proof, one constructs a line bundle with parameters, finds an
upper bound for the canonical height of the rational points with respect
to the chosen line bundle, and constructs a small section of the chosen line
bundle in order to obtain a lower bound for the height.

In the proof of Mordell's conjecture we chose a linear combination of

pig, pie, and T = siZ9 - pie - p;e
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(see Lemma E.2.1 for notation) and used its restriction to X x X. By
analogy, we select a symmetric ample line bundle .C on A with associated
Neron-Tate height hr.(x) = IIXI12 and consider linear combinations of the
following line bundles on A' (where just as in Roth's theorem, we will
need to use a sufficiently large value for m):

Cl = Pi.C..... L. = PL.C, and `.Pi) = (pi + pi )''C - p'.C. - p? G.

We will restrict these line bundles to Xm, or more generally, we will choose
subvarieties Xi of X and restict attention to X1 x x X,,,. It is conve-
nient to work with "bundles" in PicQ (i.e., Pic tensored by Q). Ampleness
still makes sense in this context, but we may speak of sections only for
suitable powers of the "bundle." The line bundle that is used for the proof
of (F.1.1.1) has the form

m-1 m

'C(-E, 81'. .. , 8m) _ > (8ipi - 8i+1Pi+1)',C - E S2p''
i=1 i=1

for certain rational numbers 81,... , s,,,. Since the si are only rational
numbers, siPi - s,p3 is not really a morphism, so (sipi - sjpj)`'C is defined
by noting that if the si's are integers, then

(siPi-sjPi)*f

The right-hand side is well-defined in Pic(Am)®Q even when Si E Q, which
gives meaning to the left-hand side.

Remark F.1.1.2.
(i) If X is a curve and m = 2, then we recover the line bundle used in

the proof of Mordell's conjecture: L(-E, 81, 82) = d1L1 + d2'C2 - d3P with
(1 - E), d2 = 82(1 - e) and d3 = 3182.d1 = s21 2

(ii) If X contains a nontrivial abelian subvariety of A, then ,C(-E, s) is
never ample on Xm (see Exercise F.1).

If m is large enough and e small enough, if X is not a translate of an
abelian subvariety, and if d is an integer chosen large enough and divisible
by the denominators of the si's, then one can show (see Exercise F.2) that

m
hO(Xm,'C(-E, 8)11d) C(E,m)dmdimX T(32dimX

i=1

Next, using basic properties of the Neron-Tate height (Theorem B.5.6), we
can compute the height of a point x = (xi,... , with respect to the line
bundle L(-E, s) as

m-1 m

h'.G(-e,e)(x) _ +illxi+1li2-2sisi+1(xi,xi+1

i=1
-E s llx,112.

i=1
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Hence if we fix any n > 0 small enough and if we assume that the x,'s lie
inside a small cone of A(k) (9 R, then we have

(X,'xi) > (1-v)Ilx=Il lixi11.

If we furthermore choose the s,'s to satisfy s, - sl[[xlll/Ilx+ll, then we get

5 -msillx1112(E-(n+1)q) 5 -'2 sillx1l12.

This gives the desired upper bound. In order to obtain a complemen-
tary lower bound, one proceeds as in the proof of Faltings' theorem by
constructing a small section of and trying to find a deriva-
tive of that section that does not vanish at the given point. The higher-
dimensional nonvanishing result needed was discovered by Faltings [2) (see
also Edixhoven-Evertse [11). We give here an explicit refinement worked
out by Evertse [2).

Theorem F.1.1.3. (Product theorem, Faltings [2)) Let m > 2, let n =
(nl,...,n,,,) and d = (dl,...,d,,,) be m-tuples of positive integers, let
6 > 0 and 0 < e < l be real numbers, and set M = nt + + n,,,. We
assume that these quantities satisfy

dh > (,,1.1M),1t

dh+l e

Let P = IP' x x P. Let F be a multihomogeneous polynomial of
degree d on P, and let

Z, = {x E IP I indd(F, x) > a}.

Suppose that Zo and Z,,+, have a common irreducible component Z.
Then there are subvarieties Z, C F"' such that Z factors as the product
Z=Z1x...XZ,,,.

Suppose further that F is defined over a field ko. Let

s = codimZ, and co = 2 (_')'M Mm2.
Ei=1

Then the Z,'s are defined over a finite extension k1 /ko whose degree satisfies

ms a
[ki:ko]

and the heights of the Z, .s satisfy

[k1 ko[ deg Zl ... deg Z,,, C
deg 7,

h(Z1)) < co (t d, + h(F) I .
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(See Section F.2.2 below for the definition of the height h(Z) of a variety.
Intuitively, h(Z) measures the height of the coefficients of the defining
equations of Z.)

The product theorem plays a role analogous to that played by Roth's
lemma in classical Diophantine approximation. Indeed, the product the-
orem can be used to prove Roth's theorem (see Evertse [21) and even
Schmidt's subspace theorem (F.5.3.4); see Faltings-Wiistholz [1]. The the-
orem can also be used on a product of projective varieties Xl x x X,,,
by using linear projections 1ri : X, l )d'°' XI This is similar to the argu-
ment in Part E, where we applied Roth's lemma to the product C x C by
projecting it on P' x V.

We will now suppose that we have points r1,.. . , x,,, with rapidly in-
creasing heights:

11X111 >_ Co, and Ilxi+ill/Ilxill >_ Co.

Since d,/dt+1 = a /s?+1 Ilx++1112/llx,ll2> we can then apply the product
theorem to the small section o' of L(-e,s) using weights di = ds?. The
conclusion is that there exist subvarieties Xi of X such that (x1,... , x,,,) E
X1 x x Xm and such that F vanishes on X1 x x X,,,. Since the degrees
and heights of the Xi's are controlled, we can use induction to finish the
proof of Theorem F.1.1.1.

We close this section with a short bibliography and some further com-
ments. The fundamental ideas of this section stem from Vojta's seminal
paper (Vojta [1]), which provided a new proof of Mordell's conjecture.
Vojta's methods are much closer to classical Diophantine approximation
techniques than the methods of Faltings' original proof, although Vojta
made extensive use of Arakelov theory. Faltings [2.31 substantially simpli-
fied Vojta's proof, as he puts it "avoiding all the difficult Arakelov theory,"
and moreover extended it to higher-dimensional varieties, the main new
tool being the product theorem. Earlier, Raynaud [1, 213] had proven the
generalized Manin-Mumford conjecture, that is, Lang's conjecture with
P = Ator. A different proof of the Manin-Mumford conjecture for curves
was given by Coleman [1] using p-adic abelian integrals. Coleman [2] also
observed that in very special cases, his theory, combined with an old ar-
gument of Chabauty, yields effective finiteness of rational points on curves
(see notes at the end of Part E). Another proof of the generalized Manin-
Mumford conjecture was proposed by Hindry [1], following a suggestion of
Serge Lang for curves and relying on a difficult result of Serre on Galois
representations associated to torsion points on abelian varieties. The same
paper also contains the reduction of the general Lang conjecture (subgroup
of finite rank in A(C)) to the fundamental case treated by Faltings (where
P is the Mordell-Weil group A(k), hence is finitely generated).
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Though in some sense the "arithmetic" case lies deeper, the function
field case is also of great interest, with extra difficulties in characteristic
p. In that case one is led to formulate a relative Lang conjecture, which
is also now a theorem. Manin [1] was the first to prove Mordell's conjec-
ture over function fields (in characteristic 0). Buium, in a series of papers
(Buium [1, 2,31), has given a new approach and generalized Manin's work to
higher-dimensional varieties. He also obtains bounds for the cardinality of
the intersection r n X that depends only on rank(F) and on the degree of a
polarization on A and of X (with respect to this polarization). Abramovic
and Voloch [1] have given a proof of a version of Lang's conjecture in
characteristic p under additional assumptions. Hrushovski [1] has found a
model-theoretic proof that covers both characteristic 0 and characteristic p.
The proof starts, roughly speaking, like Buium's theory, but then makes
heavy use of classification results in model theory by Hrushovski himself
and Zilber (see Bouscaren [1] for a detailed survey or Poizat's Bourbaki
talk, Poizat [1]). It came as a surprise to many number theorists that a
branch of mathematical logic could have such arithmetical applications.

Finally, the conjecture of Lang can also be formulated (and proved) for
subvarieties of semiabelian varieties, that is, extensions of abelian varieties
by tori. Hrushovski's methods work also for semiabelian varieties over
function fields of any characteristic. Vojta [2] has proven the analogue of
Faltings' theorem for semiabelian varieties over number fields by extending
his and Faltings' methods. The analogue of the reduction from subgroups of
finite rank to subgroups of finite type is due to McQuillan [1], extending the
methods of Hindry. The Manin-Mumford conjecture can even be extended
to subvarieties of any commutative algebraic group (Hindry [1]). We also
mention that the general case of subvarieties of G," was treated earlier by
Laurent [1], with partial cases treated even earlier by Liardet [1].

F.1.2. Application to Points of Bounded Degree on Curves

Let X be a curve of genus g defined over a number field k. If g > 2 and if
K/k is any fixed finite extension of k, then we know that X (K) is finite.
In this section we consider what happens when the field K is allowed to
vary. More precisely, we ask:

When is X (d) (k) U X (K) finite?
(K: k] <d

As the next result makes clear, the answer is closely connected to Lang's
conjecture (Theorem F.1.1.1).

Theorem F.1.2.1. Let X be a curve of genus g > 2, let d > 1 be
an integer, and let Wd(X) := X + + X C Jac(X). If X admits no
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morphisms X -+ P1 of degree less than or equal to d and if Wd(X) contains
no translates of abelian subvarieties of Jac(X), then the set

X(d)(k) U X(K)
[K:kl<d

is finite. In other words, X (k) contains only finitely many points defined
over fields of degree less than or equal to d.

Further, if either of the hypotheses is false, then there exists a finite
extension k' of k such that X(d) (k') is infinite.

PRooF. For simplicity we will assume that X(k) 0 and leave the reader
to fill in the details otherwise. This allows us to construct an embedding
j : X -. Jac(X) defined over k.

A point of degree r < d over k on X corresponds to a k-irreducible ef-
fective divisor of degree r, hence to a point in the r-fold symmetric product
Symr(X)(k). Fixing PO E X (k), we get an injection D +-+ D + (d - r)(Po)
from Symr(X)(k) into Symd(X)(k). In particular X(d)(k) is finite if and
only if Symd(X)(k) is finite.

Next consider the natural map

(Dd : Symd(X) -+Wd(X) C Jac(X), {x1i...,xd} i- i(x1)+... +j(xd)

The Abel-Jacobi theorem tells us that the map 'bd is injective if and only
if there is no linear system of degree at most d and dimension al least 1
on X. Such a linear system corresponds to a map of degree at most d to P'.
Thus under our hypotheses, Symd(X)(k) is finite if and only if Wd(X)(k)
is finite. Now Theorem F.1.1.1 tells us that Wd(X)(k) is finite, provided
that Wd(X) contains no abelian subvarieties. This completes the proof of
the main part of the theorem. The final remarks are clear from the proof.

0

In view of Theorem F.1.2.1, we would like to know when a curve X is
likely to admit a morphism of degree at most d to P1. From Section A.3, a
morphism of degree d to P1 corresponds to a linear system of dimension 1
and degree d. In the literature, such a linear system is called a ga. It
is customary to say that a curve is d-gonal if it admits a morphism of
degree d to V. Special cases include hyperelliptic curves (2-gonal) and
trigonal curves (3-gonal).

Theorem F.1.2.2. (Existence of morphisms to P') Let X be a curve of
genus g-

(i) If d > g/2 + 1, then there exists a nonconstant morphism X -+ lP1 of
degree less than or equal to d.
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(ii) If d < g/2 + 1 and X is "general" (see below for the definition), then
there are no nonconstant morphisms X --p P' of degree less than or equal
to d.

PROOF. (i) See Arbarelo-Clemens-Griffiths-Harris [1, Chapter 5, Exis-
tence Theorem 1.1, page 206].
(ii) See Arbarelo-Clemens-Griifiths-Harris [1, Dimension Theorem 1.5,
page 214].

The word "general" in the statement of (F.1.2.2ii) means the fol-
lowing. Isomorphism classes of curves of genus g are parametrized by a
quasi-projective moduli variety M9. Then there exist a countable number
Z1, Z2,. .. of proper Zariski closed subvarieties of M9 such that (F.1.2.2ii)
holds for all curves X whose isomorphism class [X] lies in M9 -"
This is satisfactory from the viewpoint of algebraic geometry, since the com-
plement of the countably many is a large set due to the uncountability
of C. However, it is much less satisfactory from an arithmetic viewpoint,
since it is conceivable (although unlikely) that the union of the could
contain M9((?). This possibility cannot be ruled out purely on the basis of
cardinality, since 0 is countable.

Since it is known that the general Jacobian is a simple abelian variety,
we obtain the following.

Corollary F.1.2.3. Let X be a general curve of genus g, let d < g/2+1,
and let k be any finitely generated field k over which X is defined. Then
X()(k).

It is harder to determine when Wd contains an abelian subvariety
of Jac(X), and this problem gives rise to some questions of geometric in-
terest. To start, we observe that it is easy to construct curves whose associ-
ated Wd's contain abelian varieties. For example, if f : X --> E is a map of
degree d from X to an elliptic curve, then f* : E -p Symd(X) , and hence E
sits inside Wd. More generally, a morphism f : X -. Y of degree d from X
to a curve Y of genus h > 1 induces a map f' : Symh(Y) - Symdh(X),
and this gives a copy of Jac(Y) inside Whd(X). Thus Whd(X) contains an
abelian variety of dimension h.

Extending this idea further, suppose that there are covering maps

f
Z

p deg(p) = e,

/ \
X Y

genus(Y) = h.

Then we get maps

Symh(Y) Symeh(Z)
Symeh(X),

where f, (Enii(xi)) = En;(f(xi)). The composition f, o p* induces a
finite map Jac(Y) -p Weh(X), so Weh(X) contains an abelian variety of
dimension h.
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Examples. (1) We construct curves X of genus g > 3 that are bielliptic,
that is, are double covers of an elliptic curve E. It is clear that if X is such
a curve, then W2(X) will contain a copy of E. Let E and X be the curves

E: y2 = P(x) =x3+ax+b, X : y4 = P(x) = x3+ax+b.

The map (x,y) (x, y2) is clearly a double cover X -. E, and it is easy
to check that X has genus 3.
(2) More generally, let Q(x) be a polynomial of degree m such that the
product P(x)Q(x) has no double roots, and let X be a smooth projective
curve birational to the curve in A3 given by the equations y2 = P(x) and
z2 = Q(x). Then (x, y, z) " (x, y) exhibits X as a double cover of E, and X
has genus m + 1. See Exercise F.3 for examples of curves of genus g whose
W2h contains an abelian subvariety of dimension it when 2h < g - 2.
(3) For an example in the positive direction, consider the curves X = X0(p)
that parametrize elliptic curves having a cyclic subgroup of order p. One
can show that if p > 61 and p 34 71, 79, 83, 89, 101, or 131, then X(2) (k) is
finite for every number field k. Further, all of the excluded p's correspond
to curves that have genus less than 2 or are hyperelliptic or are bielliptic.
See Frey (4), Hindry [3], and Harris-Silverman [1] for details.

We next quote two general results.

Theorem F.1.2.4. Let X be a curve of genus g.
(i) (Debarre-Fahlaoui [11) If d < g and if Wd(X) contains an abelian

variety A, then dimA < d/2.
(ii) (Fey [3]) If X is defined over a number field k and if X (d) (k) is infinite,

then there exists a morphism f : X P' defined over k of degree less than
or equal to 2d .

The examples given above show that (i) is sharp. The next result deals
with small values of d. (See also Harris-Silverman [1] and Hindry 13].)

Theorem F.1.2.5. (Abramovic-Harris (I]) Let X be a curve of genus g.
(i) If Sym2 X contains an elliptic curve, then X is bielliptic; and further,

if g > 4, then X is not hyperelliptic.
(ii) If W3 contains an elliptic curve E and g > 5, then there is a covering

f : X - E with deg(f) < 3; and further, if g > 8, then X is not trigonal.
(iii) If W4 contains an elliptic curve E and g > 8, then either there is a

covering X E of degree at most 4 or else there is a covering X - X' of
degree 2 with genus(X') = 2.
(iv) If W4 contains an abelan variety A of dimension 2 and g > 6, then

there is a covering X - X' of degree 2 with genus(X') = 2.

An interesting example is provided by the genus-3 curve y2 = x8 + 1,
which is both hyperelliptic and a double cover of the elliptic curve y2 =
x4 + 1. Another interesting example is the genus-7 curve y3 = x9 + 1, which
is both trigonal and a triple cover of the elliptic curve y3 = x3 + 1.
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Debarre and Fahlaoui [1] show that if W2h contains an h-dimensional
abelian variety and if h < g/3, then there is a covering X -+ X' of degree 2
with genus(X') = h. They also prove that if Wd contains an h-dimensional
abelian variety with d < g/6 (or d(d -1) + 2 < 2g) and h > d/4, then there
is a covering X -. X' of degree 2 or 3 with genus(X') = h.

For (smooth) plane curves there is the following nice result.

Theorem F.1.2.6. (Debarre-Klassen [1]) Let X be a smooth plane curve
of degree d, and thus of genus g = (d - 1)(d - 2) /2, defined over a number
field k.
(a) If d > 7, then X (d-2) (k) is finite.
(b) If d = 4, 5, or 6, then X(d-2) (k) is finite if X does not admit a mor-
phism X -. E of degree d - 2 to an elliptic curve E.

Notice that (F.1.2.6) is essentially optimal, since if Po E X(k) is any
rational point, then the lines defined over k and passing through P0 will
intersect X at points of degree at most d - 1, hence will lead to infinitely
many points in X(d-1)(k).

The restriction to d > 7 in (F.1.2.6a) is also necessary, since the Fermat
sextic X given by the equation xs + y6 = zs is clearly a cover of degree 4 of
the elliptic curve u3+v3 = w3, and hence W4(X) contains an elliptic curve.
Similarly, the Fermat quartic X given by the equation x4 + y4 = z4 is a
degree-two cover of the elliptic curve given (in affine form) by v4 +1 = u2,
and hence W2(X) contains an elliptic curve.

F.2. Discreteness of Algebraic Points

Once it is known (or conjectured) that certain sets of points of bounded
degree are finite, it is natural to consider Diophantine approximation ques-
tions as the size of the set is allowed to grow. For example, it is known
that there are only finitely many points of bounded degree and canonical
height on an abelian variety, and further that the points of height 0 are
precisely the torsion points. So we might ask:

Does there exist a sequence of nontorsion points
P1, P2,... E A(k) such that lim h(Pn) = 0?n-oo

The answer to this question is clearly yes. We simply take any nontorsion
point Pl E A(k), and then for each n > 1 we choose a point Pn E A(k)
satisfying [n]Pn = P1. Then

h(Pn) = n h(P1) - 0.

Bogomolov suggested that this should be essentially the only way to
get a positive answer to our question. In particular, he conjectured that
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if the P,,'s are required to lie on a curve X of genus at least 2, or more
generally on a subvariety X of A that does not contain a translate of an
abelian subvariety, then there cannot exist a sequence of distinct points
in X(k) whose height tends to 0. Notice that this strengthens Raynaud's
theorem [1, 2,3] (Manin-Mumford conjecture), since it implies in particular
that X cannot contain infinitely many torsion points.

This sort of question is closely connected with the arithmetic complex-
ity of the variety X. To make this idea precise, we need to define the height
of the variety X. We now discuss Bogomolov's conjecture, followed by a
brief introduction to the theory of heights of subvarieties and cycles.

F.2.1. Bogomolov's Conjecture

The following refinement of Raynaud's theorem (Manin-Mumford conjec-
ture) was conjectured by Bogomolov [1] and proven by Ullmo.

Theorem F.2.1.1. (Ullmo [1]) Let X Q be a curve of genus g > 2 sitting
in its Jacobian J, and let II - II = be the seminorm on J((Q) provided
by the Ndron-late height relative to an ample symmetric divisor on J.
Then the topology on X((O) induced by the seminorm II - II is discrete. In
other words, for every P E X (O) there exists an e > 0 such that the set

{QEX(O) I IIP - QII<e}

is finite.

Before Ullmo's proof of (F.2.1.1), special cases were known through
the work of Szpiro [4], Zhang [1], and Burnol [1]. A generalization to
subvarieties of higher dimension has also been proven. Before giving the
result, we need one definition. A torsion subvariety of an abelian variety A
is a subvariety of the form b + B, where b is a torsion point of A, and B is
an abelian subvariety of A. For example, a torsion point is automatically
a torsion subvariety, and if A is simple (i.e., has no nontrivial abelian
subvarieties), then these are the only torsion subvarieties of A.

Theorem F.2.1.2. (Ullmo-Zhang, Zhang [2]) Let X/Q be a subvariety
of an abelian variety A/Q, let Z be the union of all torsion subvarieties
of X, and let U := X -, Z. Let II - II = be the seminorm on A(()
provided by the Ndron-rate height relative to an ample symmetric divisor
on A. Then I[ II induces the discrete topology on U(Q). More precisely,
for all P E X (O) there exists an r > 0 such that the set

{QEU(O) I IIP - QII<e}

is finite.

We will not say anything about the proof of (F.2.1.2) except that it
relies heavily on Arakelovian methods and properties of equidistribution of
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points of small height proved by Szpiro-Ullmo-Zhang [1]. A second proof
was found by by David-Philippon [1], which is more elementary in the
sense that it does not use Arakelov theory.

The multiplicative analogue of (F.2.1.2), that is, the analogous result
for subvarieties of (Qs,,,)', is also known and was first proved by Zhang [3] as
an application of his arithmetical ampleness results. This analogue states
that if X is a subvariety of (G,,,)' and if U is the Zariski open subset
obtained by deleting torsion subvarieties from X, then the Well height in-
duces a discrete topology on U(k). A more elementary proof was given by
Schmidt [3] and then extended by Bombieri-Zannier [1]. The case of abelian
varieties with complex multiplication was settled by Bombieri-Zannier [2]
using a similar method. Bilu [1] later provided a proof of the equidistribu-
tion property of points of small heights, thus giving another approach to
the analogue of Bogomolov's conjecture.

It is tempting to try to merge Bogomolov and Lang conjectures into a
single result. This has been done by Poonen.

Theorem F.2.1.3. (Poonen [1]) Let A be an abelian variety defined over
a number field k, let F be a subgroup of finite rank in A(k), and for any
e > 0, define

rE := {y + z I y E r, z E A(k), and h(z) < e}.

Let X be a closed subvariety of A that is not equal to the translate of an
abelian subvariety of A. Then there exists an e > 0 (depending on A, X,
and r) such that X(k) n rE is not Zariski dense in X.

Poonen also shows how to extend (F.2.1.3) to semiabelian varieties,
provided that the analogue of Bogomolov's conjecture and equidistribution
of small points is true. The latter has now been proven for a group variety
isogenous to the product of an abelian variety by a linear torus (Chambert-
Loir [1]).

F.2.2. The Height of a Variety

The height of a point is a measure of its arithmetic complexity. A point
is simply a variety of dimension 0, so it is natural to look for a way to
measure the arithmetic complexity of higher-dimensional varieties. For
example, if X is a hypersurface of degree d in 1P", then X is defined by a
single homogeneous equation

F(x) to td= a:o...idxo ... yd = 0,

and F is uniquely determined by X up to multiplication by a nonzero
constant. It is then natural to define

h(X) = h(F) = h(a),



446 F. Further Results and Open Problems

where a is the point in projective space whose homogeneous coordinates
are the coefficients a;0.,.;, of F.

This construction may be generalized from hypersurfaces to arbitrary
subvarieties of IP" by using Chow forms. Recall (see Shafarevich [1, Chap-
ter 1.6.5] or Exercise A.1.17) that to each variety X of degree d and dimen-
sion r in P' there is associated a multihomogeneous form FX of multidegree
(d, ... , d) determined by the property that

FX(apol,...,an0);ao

if and only if X has a nonempty intersection with each of the r + 1 hyper-
planes

=0, 0 <i <r.

The form FX is the Chow form (also called the Cayley form) of X. We
then define the height of X by

h(X) = h(Fx);

that is, h(X) is the height of the point whose projective coordinates are
the coefficients of its Chow form FX. More generally, if X is a variety
and if D is a very ample divisor on X, we fix an associated embedding
OD : X -+ 1P" and define the height of a subvariety X C X relative to D
to be hD(X) := h(OD(X)). Of course, the value of hD(X) depends on the
embedding, but only up to the usual O(deg X).

An alternative to the use of Chow coordinates is the arithmetic inter-
section theory developed by Arakelov-Gillet-Soule. A conceptual insight
provided by this approach is the analogy between the projective degree of
a variety and its height. Thus if X/Q is a variety of dimension r and if r'
an (ample) line bundle on X, the projective degree of X with respect to C
is

degr, X = dego(X £

Now choose a projective model f X -. Spec(Z) for X over Spec(Z) and
extend C to a line bundle on X. Further, choose archimedean metrics
for the fibers of L over the archimedean places, and denote the resulting
metrized line bundle by Z. Then one can define an arithmetic intersection

take its pushdown via f, and compute the Arakelov degree to
define (following Faltings [2] and Bost-Gillet-Soul6 [1])

, (X) = degAr f. (xht

We also note that this height is sometimes normalized by dividing it by
the projective degree degz X. We refer the reader to Bost-Gillet-Soule [1]
and Gubler [1] for further developments on arithmetic intersection theory
and heights, such as an arithmetic Bdzout's theorem.
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We next introduce some additional ways of defining the height of a
curve or an abelian variety. We begin by formalizing the idea that the
collection of all curves of genus g fits into some sort of universal family, and
similarly for the collection of all (principally polarized) abelian varieties of
dimension g.

Definition. (Mumford) Let M be a collection of (isomorphism classes)
of algebraic varieties, possibly with some additional structure. For exam-
ple, M might be the collection of all of smooth projective curves of genus g,
or M might be the collection of all principally polarized abelian varieties
with a full level-N structure (see below).

(i) A coarse moduli space for Al is a variety M such that if f : X T is
a family of elements of M (i.e., each fiber X = f -t (t) is in M), then there
is a morphism CIA : 7' -# M with the property that

4z(s) = 4 (t) if and only if X, X t.

(ii) A fine moduli space for M is a variety M together with a universal
family T : U M such that if f : X T is a family of elements of M as
above, then there is a morphism 4? : T -* M such that X is the pullback
of U via 4) and with the property that

4'(s) = 4i(t) if and only if U$(4) Z5 'Umlcl.

It is rare for a fine moduli space to exist for a class of varieties without
the introduction of some additional structure. We illustrate this idea by
looking at principally polarized abelian varieties with full level-N structure.
This means that we classify triples (A, A, e), where A is an abelian variety, A
is a principal polarization of A, and E is a fixed isomorphism

E : (Z/NZ)29 -- A(N).

Two triples (A,,\, e) and (A', A', e') are isomorphic if there is an isomor-
phism of abelian varieties a : A -* A' such that a' (A') = A and e' = a o E.
Notice, for example, that every principally polarized abelian variety has a
nontrivial automorphism, namely (-11; but a principally polarized abelian
variety with full level-N structure has no nontrivial automorphisms (pro-
vided that N > 3).

There are a number of ways to add structure to the set of curves of
genus g. One method that works well is to add level structure to the
Jacobian of the curve. A second method that is sometimes used is to
specify the Weierstrass points or higher-order Weierstrass points, although
this works well only in characteristic 0.

It is a deep fact that a coarse moduli space exists for curves of genus g
or principally polarized abelian varieties of dimension g. These moduli
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spaces are denoted by M9 and A9, respectively. It is not hard to see that if
elements of M admit nontrivial automorphisms, then M cannot have a fine
moduli space, hence the need to add additional structure. Thus there do
not exist fine moduli spaces for curves of genus g or for principally polarized
abelian varieties of dimension g, but there do exist fine moduli spaces for
these classes of varieties with full level-N structure (N > 3). These fine
moduli spaces are denoted by M9,N and A9,N, respectively.

One can further show that M9,N and A9,N are quasi-projective, and
that they have natural compactifications M9,N and A9,N carrying natural
ample line bundles AM and AA, respectively. Thus another way to define
the height of a curve C or an abelian variety A is to set

h(C) = hAM([C]) and h(A) = h,\.([A])

using the Well heights associated to the line bundles AM and AA. Here [C]
denotes the point of Mg,N corresponding to the isomorphism class of C and
some choice of level-N structure on C, and similarly for [A]. We refer the
reader to Mumford-Fogarty [1] for more precise statements, constructions,
and properties of moduli spaces.

Parshin found an intrinsic way to define the height of an abelian variety
over function fields, and this was extended to number fields by Faltings (1]
and used in his proof of Mordell's conjecture. Let A be an abelian variety
of dimension g defined over a number field k, let A -+ Spec(Rk) be the
Neron model of A, let e : Spec(Rk) -* A be the zero section, and let SZ =
nAl

sr (Rk) be the bundle of relative g-differential forms on the scheme A.
The line bundle (invertible sheaf) WA := e* (11) on Spec(Rk) can be metrized
in a natural way as follows.

Note that when restricted to A(C), the bundle Sl of g-forms is equipped
with the norm

]]a]]2 = (27r)9 J(C ]a n a].

The pullback of this norm via e induces the desired metric on 11A We thus
have a metrized line bundle on Spec(Rk), and we can use the Arakelov
degree to define the Faltings height of A to be

hFalt(Alk) :_ [k 1Q] degnr(WA, ]] . ]1)

Let k' be a finite extension of k. If k'/k is unramified or if A/k is
semistable, then hF8Jt(A/k') = h1 (A/k). In general, one always has the
inequality hF.1t(A/k') < hFit(A/k). These heights have a number of useful
properties, for example,

and
hFaJt(A x B/k) = hFait(A/k) + hFlt(B/k)

hFalt(A/k) = hFjt(A/k)
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(Here A denotes the dual of A.) There is also a nice formula describing
how the Faltings height changes under isogeny. This formula plays a crucial
role in Faltings' proof of the Mordell conjecture (see Section F.3.2 below).
Another important result is a comparison theorem between the Faltings
height and a suitably chosen Well height h,\A on the moduli space A. of
abelian varieties. If A has everywhere semistable reduction, then

Ih t(A) - h.A ([A]) I << log hAA ([A])

In particular, there are only a finite number of (principally polarized)
abelian varieties with bounded height.

Yet another way to define the canonical height of an abelian variety is
to use the canonical embedding defined by Mumford [7J,

G-1
Srn = of a- : A --

This exhibits A as a subvariety of projective space, and one can then define
(for a fixed even m>4)

hTheta(A) = h(im(A))

Note that the right-hand side is the height (via Chow coordinates) of the
subvariety im(A) of EP'nR -1. This height can also be compared to the other
heights described above; see, for example, Bost-David [1].

Example F.2.2.1. Let Elk be an elliptic curve defined over a number
field, let AE/k be the minimal discriminant ideal of E/k, and let j(E) be
the j-invariant of E. (See Silverman [1] for basic definitions and formulas.)
Then the Faltings height of Elk satisfies

hF.Jt(E) >« max{h(j(E)), log N,k/QAE/k}

In particular, if Elk is semistable, then

hF,lt(E) = 12h(j(E)) + (logarithmic error term).

See Exercise F.5 and Silverman [9] for further information about the Falt-
ings height of an elliptic curve.

Most of the above heights are intrinsically defined only up to bounded
or constant functions. For example, the height of a projective variety X C

' via Chow coordinates is defined only up to O(deg(X)). Thus the height
of a variety will depend on the choice of coordinates or models or metrics.

For abelian varieties, we know that the the group structure allows us
to pick out a particularly good height for points, the canonical height. In a
similar way, it is possible to define a theory of canonical heights for higher-
dimensional subvarieties of abelian varieties. This is due to Philippon; see
also Zhang [1] for a construction in the framework of Arakelov theory.
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Lemma F.2.2.2. (Philippon [1]) Let D bean ample divisor on an abelian
variety A and let a be an endomorphism of A such that a`D - q(a)D.
For any subvariety X of A, let GX C A be the stabilizer of X. There is a
constant C = C(a, D) such that for all subvarieties X C A,

q(a)dim(X)+1

hD(aX) - I ker(a) n Gx I hD(X)
< C(a, D) deg a(X ).

This lemma is formulated in Philippon [1] for a symmetric divisor and
a = [n] (since then [n]` - n2D), but the proof goes through verbatim in
the more general case (see the remarks in David-Hindry [1]). It allows the
following definition.

Definition. (Canonical height of a subvariety of an abelian variety)
Let D be a symmetric divisor on an abelian variety A and let X be a
subvariety of A. The canonical height of X with respect to D is

hD(X) =
I ker[n] n Gx (

n2(dim(X)+1) hD \[n](X))

n-.oo n2 deg([n] (X))

It is possible to define canonical heights with respect to any divisor, but
this is a bit more involved, see the remark at the end of this section.

Theorem F.2.2.3. (Properties of canonical heights of subvarieties of
abelian varieties)
The canonical height hD depends only on the divisor class of D in Pic(A).
It further satisfies:

(i) hmD(X) =mdimX+lhD(X)
(ii) If t E A is a torsion point, then h(t + X) = h(X ).

(iii) Suppose that a E End(A) and that a`(D) - q(a)D. Then

and
hD(aX) =

q(a)dim(X)+1

hD(X)IkeranGXj

hD(a-1X) = q(a)c0dim(X)-1hD(X)

(iv) hD(X) = 0 if and only if X is a torsion subvariety (i.e., if and only if
X = a + B with a E Ator and B an abelian subvariety of A).

With the noteworthy exception of (iv), all of the properties in (F.2.2.3)
are rather formal once the construction of hD is achieved. Property (iv)
lies much deeper, being in fact equivalent to the generalized Bogomolov
conjecture stated in Section F.2 and proved by David-Philippon [1]. They
even prove a lower bound of the form h(X) > c (deg(X))

-'
with c = c(A, k)

deg(X)
hD([n](X))-
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and is = x(g). The case where A = En is a power of an elliptic curve was
settled earlier by Philippon [1, Part III).

No simple formula connects hD+D'(X) to hD(X) and hD'(X). In-
stead, for subvarieties of dimension r, there is an (r + 1)-multilinear map
that associates to each (r + 1)-tuple (Do,..., D,.) of symmetric divisors a
canonical height h(D0,._.,D,,)(X). This height is linear in each Di, and the
canonical height defined above is equal to

hD(X) = h(D,...,D)(X).

It is even possible to extend this to the case that s of the Di's are symmetric
and r + 1- s are antisymmetric. Then, by multilinearity, we obtain a map

Pic(A)''+1
meal-valued functions on the space of )

subvarieties X/( C A of dimension r J

Finally, hD can be defined for any divisor class by setting hD = h(D,...,D).
See Gubler [1] for an Arakelov-style construction and de Diego's thesis
(quoted in de Diego [1]) for a construction via Chow coordinates.

F.3. Height Bounds and Height Conjectures

A fruitful circle of ideas has been to try to link deep conjectures and re_
sults of Diophantine geometry to "elementary" statements such as the abc
conjecture and Szpiro's conjecture. In this section we will discuss some of
these conjectures and briefly indicate some of their consequences.

Definition. Let n j4 0 be an integer. The radical of n is the product

rad(n) = 11 p
pin

of the primes dividing n. More generally, if k is a number field and a c Rk
an integer of k, then rad(a), the radical of a, is the product over the prime
ideals dividing the ideal (a).

The abc-Conjecture F.3.1. (Masser-Oesterle) For all e > 0 there ex-
ists a constant Ce > 0 such that if a, b, c E Z are coprime integers satisfying
a+b+c=0, then

max{ Ial, Ibi, IcI} Ce
(rad(abc))1+E

(See the survey by Oesterle ]1] for a more complete discussion.)

This seemingly elementary conjecture has a tremendous number of
far-reaching consequences. For example, we will sketch below Elkies' proof
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that abc implies Faltings' theorem (Mordell's conjecture). Another inter-
esting consequence is (asymptotic) Fermat's last theorem. For suppose
that xP + yP + zP = 0 for nonzero coprime integers x, y, z. Without loss of
generality, we may assume that Ixl < lyl < Izl. Then the abc conjecture
implies that

Izlp = max{IxPI, lyPJ, IZPI}

< CE(rad(xpyPZ1))'+e < CeIXYZII+e <
Cclzl3(1+e).

Since necessarily Izi > 2, we find that p - 3(1 + e) < log2(CE), and hence
conclude that Fermat's equation has no nontrivial solutions if p is suffi-
ciently large.

An earlier conjecture of Szpiro is closely related to the abc conjecture.
In order to state Szpiro's conjecture, we recall a few definitions from the
theory of elliptic curves. We will just give the definitions over Q, and we
refer the reader to Silverman [1, III §1, VII §§1-2, VIII §8] and Silver-
man [2, IV §10] for the generalization to number fields. An elliptic curve
over Q has a Weierstrass equation

y2 +alxy+a3y = X 3 +a2x2+a4x+as

with a,,. - - , as E Z. The discriminant of this equation is a certain com-
plicated polynomial in the a;'s (see Silverman [1, §3.1]), and a minimal
Weierstrass equation for E/Q is one for which the the absolute value of
this discriminant is minimized. The minimal discriminant AE is the dis-
criminant of a minimal Weierstrass equation for E/Q. For primes pIDE,
the reduction E/Fp of the Weierstrass equation modulo p will be singular.
We say that E is semistable (or multiplicative) at p if the singularity is a
node, and we say that E is unstable (or additive) at p if the singularity is
a cusp. The conductor 3'E of E/Q is equal to

H p6°(E), where 6,(E) = j 1 if E is semistable at p,

pIne
2 if E is unstable at p and p > 5.

If E is unstable at p = 2 or 3, the definition of bp(E) is more complicated,
but in any case we always have 62(E) < 8 and 63(E) < 5.

For an elliptic curve E defined over a number field k, the minimal
discriminant AE/k and the conductor TE/k are integral ideals of k. The
upper bounds for the exponents 6a (E) for primes p dividing 2 and 3 depend
on the extent to which 2 and 3 are ramified in k. See Silverman [1, 2] cited
above for the relevant definitions, and Lockhart-Rosen-Silverman [1] and
Brumer-Kramer [1] for conductor bounds at small primes.

With these preliminaries, we can now state Szpiro's conjecture, and a
related conjecture of Frey.
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Conjecture F.3.2. Let k be a number field. For all e > 0, there is a
constant C = C(k, e) such that for all elliptic curves E/k:
(a) (Szpiro [3]) logIDE/kI 5 (6+e)log3E,k+C.
(b) (Frey [1,2]) hk(E) < (6 + e) log 3E/k + C.

It is not hard to show that Szpiro's conjecture, Frey's conjecture, and
the abc conjecture are all more or less equivalent (up to some adjustment
of the constants). See Exercise F.4 for some specific equivalences. We also
recall that if E is semistable, then the Faltings height hFwt(E) is equal (up
to a logarithmic term) to 12h(jE), so the conjecture can be reformulated
using hp lt. Finally, if E is defined over Q and if we let c4 and c6 be the
usual integers associated to a minimal Weierstrass equation for E, then a
combined version of Conjecture F.3.2(a) and Conjecture F.3.2(b) can be
stated using a naive height,

hnaive(E) :=
2

log max(c4, cg) < (6 + e) log 3E/Q + C.

Remark F.3.3. Szpiro has suggested a generalization of Conjecture F.3.2
to abelian varieties. The conductor of an abelian variety A/k of dimension g
is an ideal of the form 3A/k = fl p6" where the exponent by is nonzero
if and only if A has bad reduction at p. More precisely, it satisfies 0 <
by < g if A has good or semistable reduction at p, and 6p < 2g if p has
characteristic greater than 2g + 1. More complicated bounds are known
for primes of small characteristic. (See Brumer-Kramer [1] and Lockhart-
Rosen-Silverman [1] for definitions and details.) The generalized Szpiro
conjecture then asserts that there are constants cl and c2, depending only
on k and g, such that for all abelian varieties A/k of dimension g,

ht(A/k) c1 log Nk/Q (3A/k) + c2.

Notice that this gives a bound for ht(A/k) solely in terms of dim(A) and
the places of bad reduction. As we will see, an effective proof of this conjec-
ture would provide an effective proof of Faltings' theorem (i.e., an effective
bound for the height of rational of C(k) on curves of genus(C) > 2).

Another conjecture of Lang, which seems at first glance to be unrelated
to the above conjectures, postulates a uniform lower bound for the canon-
ical height of nontorsion points on elliptic curves. This was strengthened
and generalized to abelian varieties by Silverman.

Conjecture F.3.4. Fix a number field k.
(a) (Lang [5]) There is a constant c = c(k) > 0 such that for all elliptic
curves Elk and all nontorsion points P E E(k),

h(P) > ClogNk/QAE/k
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(b) (Silverman [5]) Let g > 1. There is a constant c = c(k, g) > 0 such that
for all abelian varieties A/k of dimension g, all ample divisors D E Divk(A),
and all points P E A(k) such that the set {nP I n E Z} is Zariski dense
in A,

I.(P) > ch(A).

(Note that the constant c will also depend on which notion of height is used
for h(A).)

Lang's conjecture (F.3.4) is known to be true for certain classes of
elliptic curves, for example those with integral j-invariant (Silver-man [5]).
More generally, let

-(E/k) log Nk/QAE/k
log Nk/QTE/k

be the Szpiro ratio of Elk. Then Hindry and Silverman [1] have proven that
there is a constant c = c([k : Q],a(E/k)) > 0 such that for all nontorsion
points P E E(k),

h(P) > cmax{h(jE),logNk/QAE/k)

Thus, since Szpiro's conjecture (F.3.2(a)) implies that u(Elk) is bounded,
we see that Szpiro's conjecture implies Lang's conjecture (F.3.4(a)). In
the higher-dimensional case, David [1] has proven a version of Conjec-
ture F.3.4(b) for those abelian varieties A/k whose height h(A) is bounded
by a multiple of a Siegel period. David's result applies to infinitely many
abelian varieties in each dimension.

An intriguing approach to the abc conjecture is through the theory
of modular curves. The modularity conjecture, proven by Wiles [1] for
semistable elliptic curves and ultimately extended to all elliptic curves E/Q
by Breuil-Conrad-Diamond-Taylor [1], says that every elliptic curve E/Q
admits a finite covering by a modular curve 4DE Xo(N) -4 E. Further,
the integer N is the conductor of E, and if 'rlE = dx/(2y + a1x + a3) is
the invariant differential on a minimal Weierstrass equation for E/Q and
fE(z) is the normalized weight-2 cusp form attached to E, then there is a
rational number cE e Q* such that

4)E(77E) =CEfE(z)dz.

The constant CE is not too significant; for example, if E is semistable and
has good reduction at 2, then IcEI = 1 (Abbes-Ullmo [1]).

Integrating 77E A i?E on E(C) and pulling back via (DE gives a formula
involving the Peterson norm of the modular form f,

IIfEII2 :=
i

J
fE(z) dz A f-, (z) dz.

2 Xo(NE)
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After some computation one obtains the formula

2 logdeg('@E) = hFajt(E/Q) + log IIfEII + log ICE I

(See, e.g., Silverman [1, §3].) It is easy to prove that IIfEII is bounded
below by an absolute constant, so an estimate for the degree of the modular
parametrization as in the following conjecture would suffice to prove a weak
version of the abc conjecture.

Conjecture F.3.5. (Modular parametrization conjecture) There is an
absolute constant d such that for all (modular) elliptic curves E/Q, there
is a finite covering'1E : Xo(N) --+ E with N equal to the conductor of E
and deg(OPE) < Nd.

It appears that the best possible exponent in Conjecture F.3.5 is d > 2,
so in order to deduce the full abc conjecture (i.e., with the constant 1 + e),
one would need a lower bound for IIfEII of the form IIfEII >> N1f2-E. It
is not clear whether such an estimate is true, but Mestre and Oesterle
(unpublished) have shown that if N is square-free (i.e., E semistable), then
IIfEII >> N1"a

The Function Field Setting
Given the undoubted depth of the abc conjecture (F.3.1) and Szpiro's con-
jecture (F.3.2) over number fields, it is surprising how it easy it is to prove
them over function fields. The statements and proofs have been discovered
and rediscovered by numerous mathematicians, and we will not try to un-
sort the history here. For an elementary proof of Szpiro's conjecture over
function fields due to Kodaira, see, for example, Hindry-Silverman [1, The-
orem 5.1]. Similarly, Lang's height lower bound conjecture (F.3.4) can be
proven unconditionally for function fields (Hindry-Silverman [1]), although
the proof is more difficult.

By way of contrast, Elkies [1] has shown that over number fields, the
abc conjecture implies Faltings' theorem (Mordell's conjecture). Elkies'
proof does not carry over to the function field setting, because he utilizes a
uniformization theorem of Belyi that does not have an appropriate function
field analogue. We will sketch Elkies' proof below (Section F.4.2).

We close this section with a very short geometric proof of the abc
conjecture for function fields shown to us by Bill Fulton. Before giving the
proof, we recall that the degree of a nonconstant rational function f on a
curve C is the degree of the associated finite map f : C - IP1. This is also
equal to the number of zeros of f, taken with multiplicity; more generally,
for any y E IP1, deg(f) = EPEE-' (7) ep(f). We also note that deg(f) is
equal to the height h(f) for the usual set of normalized valuations on the
function field of C, h(f) =deg(f) = EPEcmax{O,ordp(f)}.

Theorem F.3.6. (abc conjecture for function fields) Let k be an alge-
braically closed field and let C/k be a smooth projective curve of genus g.
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Let a, b E k(C) be nonconstant functions satisfying a+b = 1, and let S C C
be a set of points that includes all zeros and poles of a and b. Then

deg(a) < #S + 2g - 2.

PRooF. Let d = deg(a) = h(a). We apply the Riemann-Hurwitz formula
(Theorem A.4.2.5) to the finite map a : C -+ V. This yields

2g-2 = d(0-2)+ 1: (ep(a) - 1)
PEC

>-2d+ > (ep(a) - 1) + E (ep(a) - 1)
PEa-1(0) PEa-'(1)

+ E (eP(a) - 1)
PEa-' (oo)

_ -2d+ (d - #a-1(0)) + (d- #a 1(l)) + (d - #a-l(oo))

= d - (#a-1(0) + #a-1(1) + #a-l(oo))

= d - #(a-1(0) U a-1(1) U a-l(oo)).

We now observe that a-1(1) = b-1(0), so

a-1(0) U a-1(1) U a-l(oo) = a-1(0) U b-1(0) U a-l(oo) C S.

Hence
2g-2<d-#S,

which is the desired inequality.

F.4. The Search for Effectivity

Here is a brief list of the main results of Diophantine geometry that we
have proven in this book:

Mordell-Weil Theorem
The group of rational points on an abelian variety is finitely generated.
Roth's Theorem
There are only finitely many rational numbers a E K that approximate
a given irrational number /3 to within HK(a)-2+E
Siegel's Theorem
A curve of genus at least 1 has only finitely many S-integral points.
Faltings' Theorem
A curve of genus at least 2 has only finitely many rational points.
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All of these statements are purely qualitative; that is, they merely
assert that certain sets (of generators, numbers, or points) are finite. A
major challenge is to make these theorems effective,(`) which means to give
an effective procedure for computing all of the elements in the finite set.
This generally means giving an effective upper bound for the heights of the
elements in the set, since one knows that there are only a finite number
of points of bounded height, and in principle it is then possible to list
all of them and check which ones are actually in the set. None of these
theorems has been proven effectively, although effective versions of Siegel's
theorem are known for many classes of curves (e.g., for all elliptic curves)
via techniques from transcendence theory and linear forms in logarithms.
We also mention the related question of proving quantitative results, which
means giving an explicit upper bound for the number of elements in the
finite set. Quantitative versions of all of the above theorems are known.

F.4.1. Effective Computation of the Mordell-Weil Group A(k)

Let A/k be an abelian variety of dimension g over a number field k. The
Mordell-Weil group of A/k is a finitely generated group (C.0.1),

A(k) - A(k),ro ®Zrank A(k)

As we have seen in Theorem C.1.9, there is an effective upper bound for
the rank in terms of k, g, and the places of bad reduction of A, but there is
no effective procedure known for computing the rank exactly or for finding
a set of generators for A(k).

The torsion subgroup of A(k) is much easier to deal with, and it is
easy to give an effective algorithm to compute it. For example, if E/Q is
an elliptic curve given by a Weierstrass equation

y2=x3+Ax+B

with integral coefficients, then the Lutz-Nagell theorem says that every
torsion point P = (x, y) E E(Q)to,. has x, y E Z, and further, either y = 0
or else y2 divides 4A3 + 27B2. (See, e.g., Silverman [1, VIII.7.21.)

It is more difficult to give uniform bounds for the torsion subgroup, as
in the following result.

Theorem F.4.1.1. Let E bean elliptic curve defined over a number field
k. We write C,,, for a cyclic group of order m.

(`) Also bear in mind that Matyasevic's negative solution to Hilbert's tenth
problem says that not all Diophantine problems can be solved effectively. See
Matyasevic [1) and Davis-Matyasevic-Putnam-Robinson [1).
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(i) (Mazur [1]) Let k = Q. Then E(Q)to,. is isomorphic to C,,, with
1 <m< 10 orm=12, or to C2 xC2,,, with 1 <m<4.

(ii) (Kamienny [1], see also Kenku-Momose [1]) Suppose [k Q] = 2.
Then E(Q)tar. is isomorphic to C,,, with 1 < m < 16 or m = 18, or to

l<_m<6,ortooneofC3xC3iC4xC4,orC3xC6.
(iii) (Merel [1]) In general, for every d > 1 there is a constant Cd such

that for every number field k/Q with [k : Q] < d and every elliptic curve
E/k, we have #E(k)t.,. < Cd. In particular, for each d, there are only a
finite number of possible group structures for E(k)to,..

The proofs of all parts of Theorem F.4.1.1 are modular. For inte-
gers mlM, one studies the modular curve X1 (m, M) whose (noncuspidal)
points, denoted by Yl (m, M), classify isomorphism classes of pairs (E, 0),
where E is an elliptic curve and 0 is a map 0: C,,, x Cm ti E specifying a
subgroup of E of type (m, M). The curve Xi(m, M) is defined over %C,,,).
When m = 1, it is customary to write X1(M) for X1(1, M); this curve is
defined over Q.

An elliptic curve Elk with a pair of independent k-rational points
(P, Q) of orders m and M, respectively, corresponds to a point in the
set Yl (m, M) (k). Thus Theorem F.4.1.1 describes those m and M for
which Yl (m, M)(k) = 0. Note that the exceptional values in Mazur's theo-
rem (F.4.1.1(a)) correspond exactly to those X1(m, M)'s that are isomor-
phic to P1 over Q. All of the exceptions in Kamienny's theorem (F.4.1.1(b))
have a similar geometric interpretation. The curves X1(3, 3) and X1(3, 6)
are isomorphic to P1 over Q((3), the curve X1(4, 4) is isomorphic to 1P1 over
Q(i); the curves X1(11), X1(14), X1(15) and X1(2,10) are of genus 1 and
hence have infinitely many points over an infinity of quadratic fields; the
curves X1(13), X1(16), and X1(18) are of genus 2, hence hyperelliptic and
have infinitely many quadratic points.

A natural question raised by Theorem F.4.1.1 is whether an analogous
result might hold for abelian varieties of higher dimension. There is little
evidence today to suggest the correct answer, so we simply raise it as
a question. For some results, examples, and discussion, see Silverberg's
survey (Silverberg [1]) and the papers of Flynn [1] and Leprevost 11, 2].

Question F.4.1.2. Let g > 1 and let k be a number field. Does there
exist a constant Ck,g such that for all abelian varieties A/k of dimension g,
we have #A(k)w. < Ck,9? If this is true, is it further possible to choose
the constant depending only on g and the degree [k : Q]?

The rank of the Mordell-Weil group is much more mysterious and
much more difficult to compute. Indeed, no one has yet devised an effective
algorithm for computing the rank, or more generally for computing a set
of generators. We will describe an algorithm of Manin [4] whose validity
depends on a number of unproven conjectures of an analytic nature which
we now discuss.
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Recall that if we fix an ample symmetric divisor D on A, the canonical
height hD extends to a positive definite quadratic form on A(k) ® R. (See
Theorem B.5.3.) The associated bilinear form (. , )D is used to define the
regulator

RegD(A/k) = det((PP, P3)D)1<..<r,

where P1,. .. , Pr is a basis for Thus the inner product
(- , ) D gives A(k) ® JR = W' the structure of a Euclidean space, the image
of A(k) in this lit' is a lattice, and RegD(A/k) is the volume of a funda-
mental domain for the lattice.

Remark F.4.1.3. Rather than choosing a particular divisor D, we can
define a canonical regulator of A/k as follows. Let A be the dual abelian
variety to A, and choose a basis Pl, . . . , Pf for A(k). (Note that A and A
are isogenous, so they have the same rank.) Let P be a Poincare divisor on
A x A (see Section A.7.3), and let

(P, P')9 = h,(P, P') for (P, P') E A x A

be the canonical height on A x A with respect to P. Then the canonical
regulator of A/k is

Reg(A/k) := det ((Pt,Pi))t<c,j<TI-

Since hD(P) = (P,5D(P))y, and since 4D : A A is an isogeny if D is
ample, it is easy to show that

RegD(A/k) = [A(k) : OD(A(k))] Reg(A/k).

In particular, if D is a principal polarization, then RegD(A/k) = Reg(A/k).

As indicated above, we have a lattice A(k)/A(k)w,. sitting inside a
Euclidean space A(k) ® R = R' with inner product ( , )D. It is intu-
itively clear that we can bound the norm of some basis for the lattice if we
know both an upper bound for the lattice's covolume (i.e., the volume of
a fundamental domain) and a lower bound for the smallest nonzero vector
in the lattice. The following result of Hermite makes this intuition precise.

Proposition F.4.1.4. (Hermite) Let V be a real vector space of dimen-
sion r with Euclidean norm II II, let L C V be a lattice, and let Vol(L)
be the volume of a fundamental domain for L. Then there exists a basis
u1, ... u,. E L for L satisfying

Vol(L) < Jutil Ilu211 "' IIu,II < ! 3 l Vol(L). (*)
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Hence if the ui's are ordered in increasing length, then

]]ui
(4)r(r_1)/2(r_+1)

(Ilul11
J

-Vol(L)l (ri1for
1 < i r.

in particular, an upper bound for Vol(L) and a (nonzero) lower bound
for [[u[[ for nonzero vectors u e L gives an upper bound for the length of a
basis of L.

PROOF. The left-hand inequality in is easy; it merely says that the
volume of a parallelepiped is smaller than the product of its sides. For a
proof of the right-hand inequality, see Lang [6, Chapter 5, Corollary 7.8].

0

In order to apply Hermite's result (F.4.1.4) to the Mordell-Weil lattice,
we need a lower bound for hD(P) and an upper bound for RcgD(A/k). We
discussed lower bounds for hD(P) earlier; see (F.3.4). Here we will merely
add the observation that in principle, one can compute an effective lower
bound for hD(P) by checking all points of bounded Weil height hD(P) and
using an (effective) bound for the difference hD - ho.

Currently, there is no proven algorithm to compute an upper bound
for the regulator RegD(A/k), but a conjectural approach via zeta functions
and analytic techniques was initiated by Manias [4]. We will describe this
approach in some detail, but to avoid various technicalities we will treat
only the case that A is defined over Q.

Let A/Q be an abelian variety of dimension g. For each prime p,
choose a prime e p and define the Tate module of A to be the inverse
limit

T,(A) = lim A[f"]

relative to the maps A(cr+l] - A[L"]. Let Vt(A) = Tt(A) ®z, Qe. Then
Te(A) 25 Ze9 and Ve(A) Q. Further, there is a natural action of the
Galois group Gal(Q/Q) on these sets, which we denote by

pe : Gal(Q/Q) AutQ,(Vi(A)) CL(2g,Qt).

The map p, is the I-adic representation attached to A/Q.
For any prime p over p, we let Do and Ip denote respectively the

decomposition and inertia groups of p. (Up to conjugation, Dp and Ip are
independent of the choice of p; this ambiguity will not affect our discussion.)
Thus Dp = {a I a(p) = p}, and Ip is the kernel of the reduction map
Dp - Gal(Fp/Fp). This reduction map is surjective, and we let Frobp
denote an element of Dp that maps to the Frobenius a - ap. It is well-
defined up to an element of Ip (and up to conjugation).
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Let Vt(A)IP be the subspace of Vt(A) fixed by every element of Ip.
Then the action of FYobp on Ve(A)IP is well-defined up to conjugation, so
its characteristic polynomial

Qp(T) := det(1 - (pt(Frobp)IVe(A)IP)T)

is well-defined. The L-series of A/Q is the Dirichlet series given by the
product

o0

L(A/Q,s) = Eann-1 = HQP(p-1)-1.
n=1 p

We remark that if A has good reduction at p, then the action of Ip on Vt(A)
is trivial. Thus for all but finitely many primes p we have Ve(A)'P = Vt(A)
and degQp(T) = 2g. This follows easily from the fact (C.1.4) that if A has
good reduction at p, then the reduction map A[r] - A(lF.) is injective.
It is also known, but not at all obvious, that the polynomial Qp(T) is
independent of the choice of auxiliary prime a p.

If A has good reduction at p, then Weil's estimate says that Qp(T)
factors over C as Qp(T) = fl(1- aiT) with jail = fp-. (For elliptic curves,
this was originally proven by Hasse.) This immediately implies that the
product defining L(A/Q, s) converges for Re(s) > 2. Conjecturally, much
more is true.

Conjecture F.4.1.5.
(i) The L-series L(A/Q, s) has an analytic continuation to all s E C.

(ii) There is an integer N, called the conductor of A and divisible by
exactly the primes of bad reduction of A, such that if we set

A(A/Q, s) = N°/2((21r)- r(s))9L(A/Q, s),

then A satisfies the functional equation

A(A/Q, 2 - s) = EA(A/Q, s) for some e = ±1.

The number c is called the sign of the functional equation.

Conjecture F.4.1.5 is known for abelian varieties with complex multi-
plication (Shimura-Taniyama [1]) and for quotients of the Jacobian Jo(N)
of Xo(N) (Shimura [1]). In particular, Wiles [1] shows that every semistable
elliptic curve E/Q is such a quotient; hence Conjecture F.4.1.5 is true for
such curves. In a series of works by a number of mathematicians, Wiles's
theorem was extended to ever larger collections of curves, culminating in
the work of Breuil, Conrad, Diamond, Taylor [1] showing that it is true
for every elliptic curve E/Q, regardless of whether or not E has places of
additive reduction.

Assuming the validity of (F.4.1.5), we may ask for the behavior of
L(A/Q, s) near some special value of s, for example s = 1. The famous
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conjecture of Birch and Swinnerton-Dyer gives an answer. We first set some
notation. The real period of A is the integral S1 a = .14(R) 71A I of a Heron

differential 1IA (i.e., a differential normalized to have finite nonzero reduc-
tion on every fiber of the Heron model of A). For each prime p, let A°(Qp)
denote the subgroup of A(Qp) that reduces to the identity component of
the Heron model of A, and let cp be the index of A°(Qp) in A(Qp). In par-
ticular, cp = 1 for primes of good reduction, so c. = 1 for all but finitely
many primes. As usual, A is the dual abelian variety, and III(A/Qp) is the
Tate-Shafarevich group, which we assume to be finite (see Section C.4).

Conjecture F.4.1.6. (Birch and Swinnerton-Dyer) Assume that the
L-series L(A/Q, s) admits an analytic continuation to C.

(i) The order of vanishing of L(A/Q, s) at s = 1 is
ord L(A/Q, s) = rank A(Q).

(ii) Let r = rank A(Q). Then the leading coefficient of the Taylor expan-
sion of L(A/Q2, s) around s = 1 is

` L(A, s) _ nA CH cyl #f(A/Q) Reg(A/Q)L(A, 1) lim
A-.1 (s - 1)

p J #A(Q)to. #A(Q).

Birch and Swinnerton-Dyer originally formulated their conjecture for
elliptic curves over Q. It was then generalized by several people; the formu-
lation given here comes essentially from Tate's Bourbaki seminar (Tate [3]).
We also note that (F.4.1.5(ii)) and (F.4.1.6(i)) imply that the sign of the
functional equation E is equal to (-1)i-k A(Q), giving a comparatively easy
(conjectural) analytic way to decide the parity of the rank.

Remark F.4.1.7. The conjecture of Birch and Swinnerton-Dyer may be
viewed as an analogue of the classical formula for the residue of the Dede-
kind zeta function Ck(s) of a number field k/Q. Let Hk be the class group
of k, let Regk be the regulator of k, let Dk be the absolute value of the
discriminant of k, let r1 and rz be respectively the number of real and pairs
of complex conjugate embeddings of k, and let uk be the group of roots of
unity in k. Then

lim(S - 1)(k (S) =
211 (27r)r2 #Hk A k

#A k
(See, e.g., Lang [9], Theorem 5, Section VIII.2.) Comparing this formula to
Conjecture F.4.1.6 suggests the following associations, although the reader
is warned that the analogy is not perfect:

Number Field s--+ Abelian Variety

Rk A(k)

,uk = (Rk)t.
Regk

H

'---+

s--s
s--

A(k)to,.,

Reg(A/k)
III(A kk / )
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Remark F.4.1.8. If one assumes the analytic continuation and functional
equation for the L-series of an elliptic curve (i.e., for g = 1), then one
can prove that the series n 1 8 actually converges for Ref s) > s,
and in particular in a neighborhood of s = 1. More generally, the series
converges for Re(s) > (10g2 - 6g + 1)/2g(4g - 1). See Chandrasekharan-
Narasimhan [1] and Murty [ll.

As pointed out by Manin [4), Conjectures F.4.1.5 and F.4.1.6 may be
combined with analytic estimates to deduce information about the regula-
tor Reg(A/Q).

Theorem F.4.1.9. Let A/Q be an abelian variety of dimension g.
(i) Assume (F.4.1.5) that L(A/Q, s) has an analytic continuation and

satisfies a functional equation, and further assume that its conductor N is
at least 4. Let r = ordb=1 L(A/Q, s). Then

IL*(A,1)1 < 2rN1(log N)29.

(ii) Assume further that the Birch-Swinnerton-Dyer Conjecture (F.4.1.6)
is true. Then

Reg(A/Q) < #H1(A/Q) - Reg(A/Q)

2''N1/4(log N)29S1.41 #A(Q)tora #A(Q)t0 .

All of the quantities on the right-hand side of this inequality can be ef-
fectively bounded from above, thereby giving an effective upper bound for
Reg(A/Q), and hence via (F.4.1.4) for the height of a basis of A(Q) (subject
to the validity of Conjectures F.4.1.5 and F.4.1.6).

PROOF. The Hasse-Weil estimate says that the local factors used to define
the L-series factor as Qp(T) = n(1 - aiT) with lo:l = f. Writing
s = r + iT, this gives the upper bound

IQp(p-8)I < (1
-pJ-C)-2g.

If or > 2, we can multiply over p to obtain

29

IL(A1Q,s)I <_((or-
11

We also note that ((1+e)<1+1/£ for alle>0.
Let A(A/Q, s) = Ns12 ((27r)-er(s))g L(A/Q, s) be the normalized L-

series as in (F.4.1.5). Then the functional equation gives

I
AC2-£-irII=IA(2+£+

< (r (+) (27r)-i-E) Ni+1 (I + 1/£)2g.



464 F. Further Results and Open Problems

By the Phragmen-Lindelof principle, the same estimate is valid in the
vertical strip z - e < o < 2 + e. Applying Cauchy's inequality (to the
circle with center at 1 and radius 1 + e with e = 2/ log N), we get after
some calculation

L*(A 1) = (2x)9
A(r) (1) < (21r)9 maxIA(s)I < 2rN} 1ogN2s

r! (2
+e)r

0

Remark F.4.1.10. The assumption in (F.4.1.9) that the conductor N
satisfies N > 4 is not needed. Fontaine [1] has proven that if A/Q is an
abelian variety of dimension g, then its conductor satisfies N > 109. In
particular, for elliptic curves the smallest possible conductor is N = 11, a
fact first proven by Tate. There are three isomorphism classes of elliptic
curves of conductor 11, two of which are the classical modular curves Xo (11)
and X1(11). All three are isogenous to one another. Note that if E has
conductor 11, then A = E9 has conductor 119, so the lower bound of 109
is reasonably sharp.

Remark F.4.1.11. The Faltings height H(A) := exp(hjt(A)) is essen-
tially a complex period (Exercise F.6), so it may be compared to the real
period N. One finds that HA1 = H(A) detIm-r, where r is the point in
the Siegel upper half-plane determined by the period matrix of A. (See,
for example, the matrix lemma in Masser [1].) Hence

detlmrr < 1I ImrII9 << (logH(A))9 and cA1 K H(A)(logH(A))gs.

These calculations and Conjecture F.3.4 lead us to expect that the small-
est set of generators {P1, ... , Pr} for the free part of the Mordell-Weil
group A(Q) of a simple abelian variety will always satisfy

logH(A) << min h(P1) < max h(PP) «H(A)",
1<{<r 1<i<r

and further that both sides of this inequality are, in some cases, close to
the truth. The wide range of values provides, if not an explanation, at least
an illustration of the difficulty of computing the Mordell-Weil group.

Remark F.4.1.12. As we have seen (F.4.1.1), the torsion subgroup of an
elliptic curve is subject to a universal bound. In stark contrast, there is
the following folklore conjecture.

Conjecture F.4.1.13. There exist elliptic curves E/Q whose Mordell-
Weil rank rank E(Q) is arbitrarily large. More generally, for any g > 1 there
exist geometrically simple abelian varieties A/Q with rank A(Q) arbitrarily
large.

As of this writing, the record for an elliptic curve is rank E(Q) > 23 (Martin
and McMillen, June 1997).
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It is not difficult to prove an effective unconditional upper bound of the
form rank E(Q) « log N, where N denotes the conductor of E. If E(Q)tor.
is not empty, the stronger bound

rank E(Q) «
log N

log log N

can be proven unconditionally in a similar manner. If E(Q)tor. is empty,
Mestre [1] has shown that the stronger estimate is valid if one assumes
a number of standard conjectures, including (F.4.1.5), (F.4.1.6), and the
generalized Riemann hypothesis for L(E/Q, a).

F.4.2. Effective Computation of Rational Points on Curves

Let C/k be a curve of genus g > 2 defined over a number field k. Faltings'
theorem says that the set of rational points C(k) is finite. An effective
version of Faltings' theorem would provide an explicit upper bound B =
B(C, k) in terms of C and k such that

PEC(k)==: h(P)<B.

At present, effective bounds of this sort are not known. In this section we
will briefly discuss the following approaches to giving an effective proof of
Faltings' theorem:

The Naive Approach
A restatement of the problem in elementary terms.

The Mordell-Well Group Approach
Embed C in its Jacobian variety.

The Arakelov Theory Approach
Use Arakelov intersection theory on an arithmetic surface.

The Moduli Approach
Associate points in C(k) to points on a moduli space.

The abc Approach
Use the abc conjecture and uniformization.

The Small Point Approach
Use hypothetical small points in C(k).

The Naive Approach
An algebraic curve always has an affine plane model P(X,Y) = 0, with
at worst simple nodes as singularities. One then searches for a constant
B = B(P, k) such that any solution to P(x, y) = 0 with x, y E k satisfies
h(l,x,y) < B.
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The Mordell-Weil Group Approach
The canonical height 11x112 := Zho+e-(x) gives a Euclidean norm on
Jac(C)(k). We can also map C canonically to its Jacobian via the map

j : C -+ Jac(C), P +-+ Cl((2g - 2)P - Kc).

One then looks for a bound B = B(C, k) such that any point P E C(k)
satisfies 119 (P)11 < B.

This is essentially the method used in the Bombieri-Vojta proof de-
scribed in Part E. However, rather than producing a bound B that works
for all points, the proof in Part E gives only a pair of effective bounds
N = N(C, k) and B = B(C, k) such that there are at most N points in C(k)
satisfying h(P) > B. The reason for this lack of effectivity is rooted in the
very nature of Diophantine approximation proofs, wherein one postulates
the existence of a few large solutions and uses them to bound the size of all
remaining solutions. This means that the proof provides no way of checking
whether there are any large solutions at all. Notice that a similar remark
applies to the proof of Roth's theorem in Part D.

The Arakelov Theory Approach
The curve C/k is associated to an arithmetic surface 7r : e -+ Spec(Rk)
that comes equipped with a dualizing sheaf we/Rk. (This is essentially the
relative canonical sheaf of e over Rk.) Each point P E C(k) corresponds
to a section ap : Spec(Rk) -+ C of it. Let Ep = ap(Rk) denote the image,
and define the Arakelov height of P to be

1
[k : Q] SAr P`WC/Rk .hAr(1') = [k : Q] EP ``'e/Rk =

1
de

One looks for a bound B such that hA1(P) _< B for all P E C(k), where B
is given in terms of quantities such as the self-intersection we/R, We/Rk
or hF It(Jac(C)) or the set of places of bad reduction. A proof along these
lines would be aesthetically pleasing, due to the canonical nature of all of
the quantities involved.

The Moduli Approach
This is the method used by Faltings [1] (see also Szpiro [1,2,3]) in his
original proof of the Mordell conjecture. The idea is to associate to each
point P E C(k) another variety (in this case, a curve) Xp and then prove
that there are only finitely many such Xp's. The first step is the following
construction of Kodaira and Parshin.

Proposition F.4.2.1. (Kodaira-Parshin construction) Let C/k be a
curve of genus g > 2 defined over a number field. There exists a smooth
projective surface X with a fibration it : X -+ C whose fibers X p =
7r- 1 {P} are smooth curves of genus g'. The fibration has the following two
properties.



§F.4.2. Effective Computation of Rational Points on Curves 467

(i) The function P F- h t(Jac(Xp)) is a height function on C(Q) rela-
tive to an ample divisor.
(ii) There exists a finite set of places S of k such that Xp has good

reduction outside of S for every point P E C(k).

The Kodaira-Parshin construction can be made effective in the sense
that the set S in (ii) can be explicitly described in terms of the places of
bad reduction of C, and the height in (i) satisfies

IhFalt(Jac(Xp)) - CihAr(P)I <_ C2,

where cl is an explicit rational number and c2 is effective (although difficult
to compute). Hence all that we need to make Faltings' theorem effective is
an effective bound for hF.It(Jac(Xp)), and from (ii) it suffices to bound the
height of abelian varieties of dimension g' having good reduction outside S.
The fact that this set is finite was conjectured by Shafarevich and proven
by Faltings [1].

Let A(g, k, S) denote the set of abelian varieties of dimension g defined
over k and having good reduction outside S. Faltings proves that A(g, k, S)
is finite in two steps:

(Fl) The set A(g, k, S) contains only a finite number of isogeny classes.
(F2) Fix an abelian variety A/k. Then there are only finitely many (iso-

morphism classes of) abelian varieties defined over k and isogenous
to A.

The proof of (F2) by Faltings uses delicate arguments involving finite group
schemes and p-divisible groups. Faltings' proof has been refined by Ray-
naud to make it effective (see Raynaud's paper in Szpiro [2]).

To each isogeny a : A --+ B of degree d defined over k there is an ideal
bQ in Rk such that

h(B) = h(A) + 2logd - log IRk/b0I and 6"66 = dRk,

where & : B - A denotes the dual isogeny. This gives the inequality

h(A) - h(B) I < 2 log d.

Masser-Wnstholz [2,3] have shown by a totally different method based on
transcendence theory techniques that if B is isogenous to A, then there
exists an isogeny of degree d < rch(A)a, where x and A are explicitly given
functions of g = dim A and [k : Q]. This provides an effective proof of (F2)
with additional uniformity.

Bost [2] has given a simpler method of comparing the heights of abelian
varieties, thereby providing an easier proof of the finiteness of abelian va-
rieties with bounded Faltings height. For example, if (A, L) is a princi-
pally polarized abelian variety, Bost describes a normalized Chow height
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hnorm(A, L) such that hnorm(A, L) < hFwt(A) + 21og(27r). (See also Bost-
David [1]).

Thus to make Faltings' theorem effective, it suffices to give an effective
bound for the height of a representative abelian variety in each isogeny class
of abelian varieties with good reduction outside of S. In other words, give
an effective proof of (Fl). Unfortunately, no such proof is known today.
Faltings' proof of (Fl) is beautiful, but indirect. He first proves Tate's
conjecture that A and B are isogenous if and only if their Tate modules
T1(A) and TI(B) are isomorphic as Gal(k/k)-modules. He also proves that
the Tt(A) is semisimple. These results are obtained by an adaptation of
methods of Tate and Zarhin and rely on the proof of (F2).

The Z-adic representation

PA,e : Gal(k/k) -+ Auto, (Tt(A) ®zr Qe) GL(2g, Qt)

attached to A has a number of remarkable properties, including:
(i) For each place v of k, the characteristic polynomial of is

a polynomial with integer coefficients;
(ii) The roots of this characteristic polynomial (i.e., the eigenvalues of

PA,e(Frob )) all have absolute value qi,/a (Weil's theorem).
It follows that the trace of can take on only finitely many values.
Faltings then completes the proof with a wonderful lemma saying that a
semisimple representation p : Gal(k/k) - GL(2g, Qe) that is unramified
outside S is determined by a finite number of trace values (See
Faltings [1, Satz 5] or Szpiro [2, Tht oreme 1 on page 249].)

Thus the missing piece in making this proof of Faltings' theorem
effective is an effective bound B = B(g, k, S) with the property that
each isogeny class in A(g, k, S) contains an abelian variety A/k satisfy-
ing h(A) < B. Tate's conjecture, proven by Faltings [1], says that the
isogeny class of A is characterized by its L-series L(A/k, s). Further, if A
has good reduction outside S, then the conductor of A is bounded by a
constant depending only on g and the primes in S, which (at least conjec-
turally) provides further information about L(A/k, s). It is thus tempting
to ask whether it might be possible to relate the height h(A) to the L-series
L(A/k, s) (or some variant) and thereby bound the height in terms of the
conductor.

The abc Approach
The abc conjecture (F.3.1) is an elementary-sounding statement about
primes dividing coprime integers (a, b, c) satisfying a + b + c = 0. Elkies [1]
has explained how the abc conjecture and a uniformization theorem of Be-
lyi [1] can be used to give a short proof of the finiteness of C(k) for any
curve C/k of genus g > 2. Further, an effective proof of the abc conjecture
would yield an effective proof of Faltings' theorem. We will sketch the proof
for k = Q, but the arguments are valid for any number field.
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We begin by translating the abc conjecture into a form more suitable
for our purposes. For any rational number x E Q ' 10, 11, let

No(x) _flp, Ni(x) _[Jp, N. (x) _flp,
ordp(x)>0 ordp(x-1)>O ordy(x)<0

and set

N(x) = No(x)N1(x)NN(x) and H(x) = H(1,x).

Then an alternative statement of the abc conjecture says that for every
e > 0 there exists a C. > 0 such that

N(x)>CEH(x)1_E for all xEQN{0,1}.

(To see the equivalence, set x = -a/b.)
Next let C/Q be a curve of genus g > 2. Belyi's theorem [1] (see

also Exercise A.4.7) says that there is a finite map f : C -+ P1, say of
degree d, that is ramified only above the three points {0, 1, oo}. Letting
m :_ #(f-1{0,1,oo}), the Riemann-Hurwitz formula (Theorem A.4.2.5)
gives

-2d+ (d - #f-1(0)) + (d - #f-1(1)) + (d- #f-l(oo))
= d - m.

Later we will choose e < (2g - 2) /d, which will guarantee that m/d < 1- e.
Now we study points outside f-1{0, 1, oo}. Let

Do = (f)o = >ord4(f)(Q) and D'o = E(Q)
ordQ(f)>o ordQ(f)>o

In other words, Do is the divisor of zeros of f taken with multiplicities,
and Do is the same without multiplicities. In particular, d = deg(Do), and
we will write do = deg(Do). The divisor doDo - dDo has degree 0, so is
algebraically equivalent to 0 on C, and Do is ample, so Theorem B.5.9 and
a little algebra using the height machine (B.3.2) gives us the height relation

hDo = jLD,, + OI Da 1.

Let P E C(Q) with f (P) 54 0, on. A prime p will occur in the numer-
ator of the rational number f (P) if and only if it contributes to the height
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HDO(P), so we obtain an inequality No(f(P)) << HD.(P). Substituting
this into the above height relation gives the estimate

logNo(f(P)) < d hD0(P) +O( hD0(P))
d'
--d° h(f (P)) + O ( h(f (P)) ).

Repeating this argument using the divisors Dl = (f - 1)0 and Dr =
(l / f )o = (f). and the multiplicity-free degrees d= ## (f -1 { 1 }) and
d'., = ##(f -1{oo}) gives analogous inequalities

logNj(f(P)) < dlh(f(P)) +O( h(f(P)) ),

logNm(f(P)) < d h(f(P))+O( h(f(P))

Adding the three inequalities and noting that d + d'1 + d;o = m yields

logN(f(P)) < mh(f(P))+O( h(f(P))).

On the other hand, the abc conjecture tells us that for any E > 0 there is a
constant ce such that

logN(f(P)) > (1 - E)h(f(P)) -c£.

Hence there is a constant c'£, depending on cE and the above big-O con-
stant), such that

(1-E- d)h(f(P)) <cf.

In particular, if we choose e < (2g - 2)/d, then m/d < 1- c, and we obtain
a nontrivial upper bound for h(f (P)). Further, if the constant in the abc
conjecture could be made effective, then this proof would give an effective
bound for the height of points in C(Q).

The Small Point Approach
Another conjectural approach to an effective proof of Faltings' theorem,
more in the spirit of Arakelov geometry, was proposed by Szpiro [1, 2, 31.
It is based on the following conjecture that every curve has an algebraic
point of "small" height.

Conjecture F.4.2.2. (Szpiro's small points conjecture) Let g:> 2, let k
be a number field, and let S be a finite set of places of k. There exists a
constant B(k, g, S) with the following property.
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Let C/k be a curve of genus g with good reduction outside of S.
Then C contains an algebraic point P E C(k) whose Arakelov self-inter-
section is bounded by

- 1

[k(P) :
Q]

Ep2 <_ B(k, g, S).

Here Ep denotes the horizontal divisor associated to P on a minimal model
for C over Spec Rk(p).

Szpiro observes that Conjecture F.4.2.2 is true in the function field
case, where one may take B(k, g, S) = 2g - 2 + #S + 1. The fact that
a statement such as (F.4.2.2) implies a bound for the height of rational
points on curves follows from an analysis of the Kodaira-Parshin fibra-
tion (F.4.2.1) 7r : X - C, which yields an inequality

1 2EP < cl inf EQ2 + c2
[k(P) - Q] QEXp(k) [k(Q) : Q]

with absolute constants cl and c2. For a further discussion on effectivity
and the relationship with bounds for m,/R and associated quantities, we
refer the reader to Szpiro's original papers [1, 2, 3], Parshin [1], and Moret-
Bailly [1].

Finally, our discussion of effectivity for rational points on curves would
not be complete without the confession that even Siegel's theorem (D.9.1)
on integral points is not yet effective. More precisely, let C be a smooth
affine curve of genus g, let C be a smooth projective closure of C, and let
s = #(C C) be the number of points "at infinity" on C. Siegel's theorem
says that if 2g - 2 + a > 0, then the set of S-integral points C(Rk,S)
is finite. This theorem is effective when g = 0 (and s > 3) and when
g = 1 (and s > 1) thanks to Baker's theorem on lower bounds for linear
forms in logarithms. (See, e.g., Baker [1] or Serre [3].) There are many
other families of curves for which Siegel's theorem can be made effective by
similar techniques, including, for example, curves of the form Ym = P(X)
and Thue curves F(X, Y) = a for a homogeneous form F. Nevertheless,
despite the fact that we know that there are only finitely many rational
points on curves of genus g > 2, there is still no general effective proof for
the finiteness of integral points.
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F.4.3. Quantitative Bounds for Rational Points

In the last two sections we discussed effective bounds for generators of the
Mordell-Weil group and for rational points on curves. A related, but easier,
problem is to give an explicit upper bound for the number of elements in
these finite sets, without necessarily bounding the height of their elements.
Estimates of this nature are called quantitative bounds.

For example, we have already given the following quantitative version
of the Mordell-Weil theorem (C.1.9):

rank A(k) < 2g rank Rk,s = 2g(rl + r2 + #S - 1).

In this estimate, it is assumed that A[m] C A(k) for some m > 2 and that
Rk,S is a principal ideal domain, but in general it is not hard to replace k
and S by an explicit extension k'/k and an explicit expanded set S' having
these properties. In this way one obtains an upper bound for rank A(k)
solely in terms of g, k, and the primes of bad reduction of A.

Similarly, Roth's theorem, Siegel's theorem, and Faltings' theorem,
each of which asserts that a certain set S is finite, can be given quantitative
formulations of the following sort:

There are effective constants cl and c2 such that
8 ={xES1h(x) <cl}US' with #9' <c2.

The explicit form taken by the constants cl and c2 is naturally of interest.
To illustrate this type of result, we quote a quantitative version of Faltings'
theorem due de Diego. The proof is an adaptation of that given in Part E.
We also note that since it is possible to include all curves of genus g into a
huge algebraic family, Theorem F.4.3.1 in principle gives an explicit upper
bound for #C(k) for all curves C of genus g > 2.

Theorem F.4.3.1. (de Diego [1]) Let f : X --' T be a family of smooth
curves Xt := f-1{t} of genus g > 2. Fix a height function hT on the
base T, and for each t E T, let ht be the height function on Xt associated
to the pullback of the canonical height on Jac(Xt) with respect to A+ 6-.
Then there is an effectively computable constant c, depending on h and
f : X - T (but not on the number field k), such that for every t E T(k),

Xt(k) = {x E Xt(k) I ht(x) < chT(t)} U £t

with an exceptional set £t satisfying #£t < 72+ranlJac(Xt)(k).

In Theorem F.4.3.1, the size of the exceptional set is bounded in terms
of the rank of the Jacobian variety, but one might suspect that the excep-
tional set is not actually necessary. This would lead to the following precise
(effective) form of Faltings' theorem.
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Conjecture F.4.3.2. In the situation of Theorem F.4.3.1, it is possible
to choose the constant c in such a way that the exceptional set Et is empty.
In other words, there is a uniform upper bound ht(x) < chT(t) that holds
for all t E T(k) and all x E Xt(k).

In the opposite direction, one might ask for some sort of uniform bound
for the number of points of small height in Xt(k). One approach to doing
this is the following elementary remark (see Exercise B.10). Let A/k be
an abelian variety, let h be the canonical height on A with respect to an
ample symmetric divisor, let r = rank A(k), and let hmin be the minimum
value of h(P) for nontorsion points P E A(k). Then

#{x E A(k) I h(x) < B} < #A(k)tom (1
+ B/n )r

Thus one way to prove a good quantitative bound for a subset S of A(k) is to
find an upper bound B for the heights of elements in S that is proportional
to the lower bound hm;n of the heights of nontorsion points in A(k).

The following two conjectures illustrate ways in which one might hope
to uniformly bound the number of integral points on elliptic curves and the
number of rational points on curves of higher genus.

Conjecture F.4.3.3. Let k be a number field.
(i) (Lang [5]) There is a constant c = c(k) such that if E is a minimal

affine model of an elliptic curve over Rk and S is a finite set of places of k,
then

#E(Rk,S) < cl+rank E(k)+#S.

(ii) (Mazur) There is a constant c = c(k, g) such that if C is a curve of
genus g > 2 defined over k, then

#C(k) < c2+rankJac(C)(k)

Silverman [3] has shown that Lang's conjecture (F.4.3.3) would be
a consequence of Merel's theorem (F.4.1.1(iii)) and the conjectural lower
bound (F.3.4(a)) for the canonical height of nontorsion points on elliptic
curves. In particular, (F.4.3.3) is known to be true for elliptic curves with
a bounded number of primes dividing j(E) (Silverman [3]), and more gen-
erally for elliptic curves with bounded Szpiro ratio (Hindry-Silverman [1]).
Similarly, de Diego [1] shows that a universal bound for torsion on abelian
varieties and the conjectural height lower bound (F.3.4(b)) would suf-
fice to prove (F.4.3.3(ii)). Over function fields, the elliptic curve bound
#E(Rk,S) < c1+rank E(k)+#S is known (Hindry-Silverman [1]); and again
over function fields, Buium [3] has proven a bound for the number of ratio-
nal points C(k) on a curve of genus g > 2 in terms of g and rank Jac(C)(k).

The last quantitative type of estimate we discuss is surprising in its
strength.
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Question F.4.3.4. Let k be a number field and let g > 2 be an integer.
Does there exist a bound B(k, g) such that for all curves C/k of genus g,
we have

#C(k) < B(k,g)?

(One might even ask whether B can be chosen solely in terms of g and the
degree [k : QJ.)

Clearly, an affirmative answer to (F.4.3.4) would supersede conjec-
ture (F.4.4.3(ii)), but is there any reason to suspect that such a strong
uniform bound should be true? The answer is a conditional yes, based
on a fascinating conjecture of Bombieri and Lang. We will discuss the
Bombieri-Lang conjecture in more detail below (see Section F.5.2), but
briefly it asserts that the k-rational points on a variety of general type are
not Zariski dense. Although far from obvious, it can be shown that this
statement implies the uniform bound postulated in (F.4.3.4).

Theorem F.4.3.5. (Caporaso-Harris-Mazur [1]) Assume that the Bom-
bieri-Lang conjecture (F.5.2.1) is true. Then there is a constant B(k,g)
such that for all curves C/k of genus g, we have #C(k) < B(k, g).

We feel obliged to point out that although many mathematicians feel
that (F.4.3.5) is good evidence for the existence of the uniform bound
for #C(k), there are others who feel that (F.4.3.5) is primarily evidence
for the falsity of the Bombieri-Lang conjecture! We also note that (F.4.3.5)
can be extended to points of bounded degree on curves of genus g > 2 and
to integral points on elliptic curves; see Abramovic [1, 2] and Pacelli 11, 2].

F.S. Geometry Governs Arithmetic

Let X/k be a projective variety defined over a number field, say for con-
creteness defined as a subset of F' by a system of homogeneous polynomials

F1(X)=F2(X)=..._Fr(X)=0.

One of the ultimate goals of Diophantine geometry is to link the geometry
of X to its arithmetic. In other words, use algebro-geometric invariants of
the complex variety

X(C)={XEIP"(C)IF1 (X)=...=Fr(x)=0}

to describe properties of the arithmetic set

X(k)={XEP"(k)IFj(X)=...=Fr(x)=0},
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or more generally of X (k-) for finite extensions of k.
There is a highly developed classification theory for algebraic varieties,

and it is tempting to use this geometric theory of classification as the
basis of a corresponding Diophantine classification. We will begin with an
overview of the geometric classification, especially the notion of Kodaira
dimension of a variety. We will then describe several ways in which the
geometry of a variety (conjecturally) governs its arithmetic, including a
number of beautiful conjectures due to Bombieri, Lang, Vojta, Manin,
Batyrev, and others.

Remark. In addition to the algebro-geometric classification of varieties,
Lang has suggested that various analytic and differential geometric prop-
erties of a variety should influence its arithmetic. We will not have space
here to discuss Lang's fascinating conjectures, so we refer the reader to
Lang [13] for details.

F.5.1. Kodaira Dimension

Let X be a smooth projective variety. We consider the linear system IKx I
associated to a canonical divisor, and more generally the pluricanonical
linear systems JmKx I attached to multiples of Kx. Assuming that the
system is nonempty, we can look at the associated rational map

4imKx : X ---+ 1PN,

which is well-defined up to a linear change of coordinates of 1PN.

Definition. Let X be a smooth projective variety as above.
(i) The plurigenera of X are the numbers gm(X) defined by

gm = gm(X) = dimL(mKx) = P(mKx) = h°(X,wx).

(ii) The Kodaim dimension of X, denoted by ic(X), is the quantity

n(X) = max dim 4?mKx (X);

that is, ic(X) is the maximal dimension of the image of X under the pluri-
canonical maps 4imKx . If all of the gm's are zero, the Kodaira dimension
is set to x(X) = -1 by convention. (Some authors instead prefer to set
sc(X) = -oc in this situation.)

The plurigenera gm(X) and the Kodaira dimension ,c(X) are birational
invariants of X. This follows from Lemma A.1.4.7. It is clear that the
Kodaira dimension satisfies -1 < K(X) < dim(X).
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Examples 5.1.1.
(a) The canonical divisor on projective space is Kp.. = -(n+1)H, where H
is a hyperplane. Hence g,,, (1P") = 0 for all m > 1, and rc(1P) _ -1.
(b) Let X be a curve of genus g. (Notice that g = gl.)

Ifg = 0, then g,,,(X) = 0 for all m > 1 and c(X) = -1.
Ifg=1, then g,,,(X) = 1 for all m>1andre(X)=0.
Ifg > 2, then gl(X) = g, gm(X) = (2m - 1)(g - 1) form > 2,
and hence c(X) = 1.

(c) Let X be a smooth complete intersection of dimension n - r in P'", say
the intersection of r hypersurfaces of degrees dl, ... , d,.. Then Kx = (-n-
1 + dl + + d,.)H, where H is a hyperplane section (see Exercise A.2.7).
Hence

-1
rc(X) 0 ifn+1=d1+ +dr,

dim(X) ifn+1<dl+ +d,..
(d) Let X be a subvariety of an abelian variety A, and let Gx C A be its
stabilizer. Then (Ueno [1, pages 120-121))

c(X) = dim(X) - dim Gx.

(e) If Kx = 0, or more generally if some multiple of Kx is zero, then
c(X) = 0. This includes abelian varieties, K3 surfaces, Enriques surfaces,
and bielliptic surfaces.

The Kodaira dimension of various other varieties may be computed
using the next lemma.

Lemma F.5.1.2.
(i) Let f : X --+ Y be a dominant rational map. Then c(X) > rc(Y).

(ii) X x Y 1 if r(X) = -1 or n(Y) = -1,
(rc( ) { c(X) + c(Y) otherwise.
(iii) Let f : X - Y be an unramified finite covering. Then c(X) = ec(Y).

PROOF. (i) The fact that f is dominant means that composition with f
induces an injective map f' : L(mKy) ti L(mKx), so we obtain a com-
mutative diagram

X 'T!` P9- (X)

If
Y

mKy

where 7r a linear projection. Thus 7r o 4Dmxy o f, from which we
deduce that dim 4i,,,Ky (Y) < dim (X ).
(ii) Let p: X x Y --+ X and q: X x Y -+ Y be the projections. The
canonical divisor of the product is Kxxy = p`Kx + q*Ky, so it is clear
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that if ImKX I = 0 or JmKy I = 0, then also ImKX x Y I = 0. Otherwise, we
consider the associated maps, which fit into the commutative diagram

X X Y
0,,.KXX0mKy

1P'' X ?8

I4'mKXxY

V

Is

EEr8+r+8

where S is the Segre embedding and i is a linear embedding. The formula
rc(X x Y) = K(X) + K(Y) is clear from this diagram.
(iii) See litaka [1, Chapter 10, Theorem 10.91.

We now briefly discuss the cases r. = -1, rc > 0, and rc = dim(X).

Case A. c(X) = -1

Note that K(X) = -1 is equivalent to g,,,(X) = 0 for all m > 1. This will
certainly be the case if X is birational to Y x 1P1. More generally, a dominant
rational map 0: X' --. X induces an injection 4' : L(mKx) ti L(mKx,),
so gm(X) < g,,,(X'). In particular, if X is dominated by a variety X'
satisfying c(X) = -1, then necessarily c(X) = -1. This motivates the
following classical definition.

Definition. A variety X of dimension n is uniruled if there exists a variety
Y of dimension n - 1 and a dominant rational map f : Y x 1P1 --- X.

Proposition F.5.1.3. If X is uniruled, then K(X) = -1.

It is conjectured that the converse is true, that is, n(X) _ -1 is
equivalent to X being uniruled. This is known to be true if dim(X) < 3.
See Kollar [1] and Debarre [1].

The following provides an important class of varieties with Kodaira
dimension -1.

Definition. A Fano variety is a smooth projective variety X whose anti-
canonical divisor -KX is ample.

Projective spaces, Grassmannians, and more generally flag varieties
are examples of Fano varieties, as are smooth complete intersections of
type (dl,... , d,.) in 1P" with n + 1 > d1 + + d,.. (A flag variety is the
quotient of a semisimple group by a parabolic subgroup.) It should be noted
that the property of being a Fano variety is not birationally invariant. For
example, if X is the blowup of p2 at r points, then X is a Fano variety if
and only if r < 8 and the points are in sufficiently general position. (See
Manin [2] for a precise statement and proof.) Fano varieties are covered by
rational curves and are uniruled. In fact, one can say much more.
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Theorem F.5.1.4. (Mori [1]) Let X be a Fano variety. For every point
x E X there is a rational curve C such that x E C. Further, the curve C
may be chosen to satisfy deg C = -C.Kx < dim X + 1.

Case B. K(X) > 0

Consideration of the rational maps '1m K., : X --+ IP9" (_) 1 allows one to
prove the following result that is fundamental for the classification theory
of algebraic varieties.

Theorem F.5.1.5. Let X be a variety with n(X) > 0. Then there exists
a smooth projective variety Y of dimension K(X ), a projective variety X'
birational to X, and a surjective morphism X' Y whose generic fiber
has Kodaira dimension zero.

In Theorem F.5.1.5, it is not true in general that K(Y) = K(X), see,
for example, Exercise F.7.

Example F.5.1.6. If K(X) = dim(X) - 1, then the fibers of the map
X' - Y in (F.5.1.5) are curves of Kodaira dimension 0, hence are elliptic
curves. In particular, if X is a surface with n(X) = 1, then X is an elliptic
surface.

Case C. K(X) = dim(X)

In some sense it is true that the Kodaira dimension of "most" varieties
takes on the maximal value K(X) = dim(X). This prompts the following
definition.

Definition. A variety X is a variety of general type if K(X) = dim(X).

Example F.5.1.7. A smooth hypersurface in IP" of degree d > it + 1 is
of general type, as is a subvariety of an abelian variety having a finite
stabilizer. The term "general type" is classical and not very illuminating.
It comes originally from the classification of surfaces:

Kodaira dimension Types

K(X) _ -1 rational or ruled

K(X) = 0 abelian, bielliptic, K3, or Enriques

K(X) = 1 elliptic

K(X) = 2 general type (-the others")
Classification of Surfaces

The Kodaira-Parshin surfaces used by Faltings in his proof of the Mordell
conjecture are of general type (see Exercise F.8).
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F.5.2. The Bombieri-Lang Conjecture

The fundamental Diophantine condition conjecturally satisfied by varieties
of general type is the following.

Conjecture F.5.2.1. Let X be a variety of general type defined over a
number field k. Then X (k) is not Zariski dense in X.

We can make this conjecture even more precise by asserting that except
for finitely many points, the Zariski closure of X (k) in X stabilizes as k is
enlarged.

Conjecture F.5.2.2. (refined form) Let X be a variety of general type
defined over a number field k. Then there is a dense Zariski open subset U
of X such that for all number fields k'/k, the set U(k') is finite.

Bombieri posed Conjecture F.5.2.1 for surfaces of general type, and
Lang (independently) formulated the general conjecture in its refined form
(F.5.2.2). In fact, Lang even gave a conjectural description of the excep-
tional Zariski closed subset. Since we know that projective spaces and
abelian varieties may have dense sets of rational points, the exceptional
subset must include every image of such varieties. However, we can cover
F" with projective lines, and the projective line P' is the image of an elliptic
curve, so the following definition is reasonable.

Definition. Let X be a projective variety. The special subset SpX of X
is the Zariski closure of the union of all images of nontrivial rational maps
A - - + X, where A is an abelian variety.

This allows us to state the final form of the Bombieri-Lang conjecture.

Bombieri-Lang Conjecture F.5.2.3. (final form) Let X be a variety
defined over a number field k, and let U := X -, SpX. Then U(k) is finite
for every finite extension k'/k.

There are several other ways to formulate Conjecture F.5.2.3 and other
possible definitions for the special subset. For example, one may define SpX
to be the union of all subvarieties of X that are not of general type. It is
easy to see that if one takes this definition for SpX, then the original Con-
jecture F.5.2.1 is actually equivalent to the final form (F.5.2.3), provided
that the union of subvarieties not of general type inside a variety of general
type is a proper closed subset.

There is one further feature noticed by Serge Lang that is worth men-
tioning. He suggests that being of general type should be analogous to
being "pseudo-hyperbolic." More precisely, a variety X is said to be hy-
perbolic if there are no nonconstant holomorphic maps C X(C). Then
Lang conjectures that the following three conditions are equivalent:
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X(k) is finite for every number field k.
Every closed subvariety of X (including X itself) is of general type.
X is hyperbolic.

He conjectures a similar equivalence on Zariski open subsets, in which case
he add the prefix "pseudo" to each condition. See Lang [13] for further
details.

Remark 5.2.4. (a) The simplest unknown case of Conjecture F.5.2.1 is
a smooth surface of degree 5 in P3. For example, let X c P3 be the
hypersurface given by the equation

X0+X1+X2+X3=0.
It has not been proven that X(Q) consists of a finite number of points
beyond those lying on lines and elliptic curves. Note that X does contain
several lines, for example X0 + X1 = X2 + X3 = 0, so X (Q) is infinite.
(b) Let r = rank(SlX). If SlX :_ A' SIX' is ample, then the conjectures
predict that X(k) should be finite. Over function fields, this is known to
be true by the work of Noguchi [1]. Over number fields it is known only
under the additional hypothesis that 11' is generated by global sections,
in which case the proof reduces to Faltings' theorem on rational points on
subvarieties of abelian varieties. (See Moriwaki [11.)
(c) It is natural to ask the complementary question:

For which varieties X/k does there exist a finite exten-
sion k'/k such that X (k') is Zariski dense in X?

This question is still largely unexplored, although it seems reasonable to
expect that X has this property if its anticanonical divisor is effective. One
might perhaps be bolder and conjecture the same for varieties of Kodaira
dimension 0.

However, the answer to the question must depend on more than merely
the Kodaira dimension of X, as the following argument shows. Let X C
be an elliptic surface over a base curve C of genus at least 2. Then the
set X (k) is never Zariski dense. On the other hand, if X l?' is an
elliptic surface with an infinite group of sections over k', the set X(k') will
be Zariski dense. And in both cases, X may have Kodaira dimension 1.

From the previous sections, from (F.l.l.l) in particular, we see that
Conjecture F.5.2.3 holds for subvarieties of abelian varieties. Indeed, in
that case the special subset SpX is the union of translates of nontrivial
abelian subvarieties. Although this is essentially the only proved case, there
are other sorts of varieties that can reduced to this case. For example, a
Kodaira-Parshin surface S is a surface fibered over a curve S -' C such
that genus(C) > 2 and such that the fibers are curves of genus g' > 2.
Then S(k') is finite. Similarly, if the generic fiber is a curve of genus
g' > 2, then S(k) is not Zariski dense. (See Szpiro [21.)

The following proposition allows one to construct additional examples
from known examples.
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Proposition F.5.2.5. (i) Let X --+ Y be a dominant rational map be-
tween varieties of general type. If Conjecture F.5.2.1 is true for Y, then it
is true for X (and similarly for Conjecture F.5.2.3).
(ii) Let X -+ Y be a finite unramified morphism. Then X is of general

type if and only if Y is of general type. Hence Conjecture F.5.2.1 (respec-
tively F.5.2.3) is true for X if and only if it is true for Y.

PROOF. Statement (i) is trivial. The first statement of (ii) follows from
Lemma 4.1.1(iii), and the second follows from the Chevalley-Weil theorem
(Exercise C.7).

Remark F.5.2.6. Conjecturally, if X admits a dominant rational map to
a variety of general type, then X(k) is never Zariski dense. The follow-
ing example of Colliot-Thelene, Swinnerton-Dyer, and Skorobogatov [1]
(Corollary 3.2) shows that this condition is not necessary.

Let E be a curve of genus 1 with a fixed-point-free involution o : E
E. For example, E could be an elliptic curve and a translation by a 2-
torsion point. Let C be a hyperelliptic curve with hyperelliptic involution
j : C - C. Let X be the surface

X := (E x C)/(Q x j).

That is, X is the quotient of E x C by the identification (x, y) = (o(x), j(y)).
Then one can show that X has no dominant maps to a variety of general
type, yet for every number field k, the set X (k) is not Zariski dense in X.
Indeed, the latter property is clear, since (E x C)(k) is not Zariski dense by
Faltings' theorem (note that genus(C) > 2), so the same is true for X(k)
because the map E x C -+ X is an unramified finite cover.

One of the most surprising consequences of the Bombieri-Lang conjec-
ture, already mentioned earlier (F.4.3.5) and restated here, is the following
uniformity property for rational points on elliptic curves:

There is a universal upper bound B = B(g, k) such that
for every curve C/k of genus g > 2, we have #C(k) < B.

The proof, due to Caporaso, Harris, and Mazur [1], is based on the following
lemma, which is interesting in its own right.

Lemma F.5.2.7. Let f : X - S be a family of curves of genus g > 2,
and let X S := X x s X x... x s X be the n-fold fibered product of X over S.
Then for sufficiently large n, the variety XS dominates a variety of general
type (i.e., there exists a variety W of general type and a dominant rational
map Xs --+ W).

PROOF (that Lemma F.5.2.7 implies uniform boundedness (F.4.3.5)). We
apply the lemma to a "universal" family X -+ S containing all curves of
genus g. From the lemma, XS dominates a variety of general type. Thus,
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assuming the Bombieri-Lang conjecture (F.2.1.1), XS (k) is not Zariski
dense in X. Let U = U, be a nontrivial Zariski open subset of XS such
that U(k) = 0, define Sri : XS+1 --+ XS to be the projection that omits the
last factor, and set

Ui = iri(U,+i) and Zi=Xs -, U..

For geometric reasons, we have # (irk 11(x) fl Zi) < dj_1 for a constant
dj_1 independent of x. In particular, for all x E the curve irn -1-1(X)
has at most dn_1 points. Going down, we find that for 8 E Uo(k), the curve
X8 has at most maxi {di } points. Since dim(SNUo) < dim S, we can repeat
the argument on the components of S'. Uo, so we are done by downward
induction on the dimension of S. 0

Lemma F.5.2.7 and its application have been generalized by Abramovic
and Voloch [2] (see also Abramovic [1]). Abramovic proves in particular
that if f : X S is a family of smooth varieties of general type, then for n
sufficiently large, the fibered product XS := X x S X x . . . x s X dominates
a variety of general type.

F.5.3. Vojta's Conjecture

Inspired by Nevanlinna theory and analogies between theorems on value
distributions of meromorphic functions and results of Diophantine approx-
imation, Paul Vojta [3] formulated several far-reaching conjectures that
remain essentially untouched today. We begin with a brief overview of his
insights. Further details may be found in Vojta [3] and Lang [8].

Recall from Section B.8 that there are local height functions AD,,, such
that if D is a reduced effective divisor D, then intuitively

AD,-v(P) = - log(v-adic distance from P to D).

Further, the local heights are related to the global height hD via a sum
over places v of k,

hD(P) _ >2 d AD,,,(P) for all P supp(D).
V

;a's insights is that AD,,, is the arithmetic analogue of the prox-
ion in Nevanlinna theory. Indeed, if s is a section of a line
a projective variety X, and if we let D = div(s) and select a

on the line bundle, then the function P F-+ -logls(P)1. is a
at v.
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Let S be a finite set of places of a number field k. The following
quantities are counterparts of classical quantities used to study values of
meromorphic functions in Nevanlinna theory:

ms(D, P) = E dVAD,v(P) = E -dv log 18(P)Iv,
vES vES

NS(D, P) _ E dyAD,v(P) _ E -d log I8(P)Iv.
vOS vVS

Notice that by definition

hD(P) = Ns (D, P) + ms (D, P).

The global height function is the arithmetic analogue of the charac-
teristic function from classical Nevanlinna theory, and similarly ms(D, )

is the arithmetic analogue of the proximity function and Ns(D, ) is the
arithmetic analogue of the counting function.

Definition. If X/k is a projective variety, then the set of rational points
X (k) of X is a precisely defined set; but if R is a subring of k and U is
an affine open subset of X, then the set of integral points U(R) of U is
ambiguous, since it depends on choosing a particular collection of affine
coordinate functions x1,. .. , xn on U. Thus integrality is really a property
of a set of points P C X(k), rather than a property of individual points.
We say that P is a set of integral points of U if there exist affine coordi-
nates x1i ... , xn on U such that xi (P)ER for all 1 < i < n and all P E P.
Note that according to this definition, any finite set is automatically in-
tegral, so generally one studies whether or not there exist infinite integral
sets.

We can use Vojta's ideas to formulate a more general notion of inte-
grality. Thus let k be a number field, let R = RS be the ring of S-integers
of k, and let D = X'. U be the divisor at infinity. A subset P of U(k) will
be called S-integral if there is a constant c such that

ms (D, P) > hD(P) - c for all P E P.

Intuitively, the inequality ms(D, P) > hD(P)-c means that virtually all of
the v-adic closeness of P to D occurs for the places v in S. More generally,
we say that a subset P of U(k) is quasi-S-integral if there is are constants c
and e > 0 such that

ms (D, P) > EhD(P) - c for all PEP.
Example F.5.3.1. Let X = P' and DQ = (a), where a E k is an algebraic
number. The (arithmetic) defect of a is the quantity

6(a) = lira inf
ms(D,,,a)

aEP' (k), h(a)-.oo hD,(a)
Then one can show (Vojta [3]) that Roth's theorem is equivalent to the
inequality 6(a) < 2, which is a perfect analogue of the defect relation of
Nevanlinna theory.
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Based on this example and further analogies with higher-dimensional
results in Nevanlinna theory, Vojta formulated the following conjecture:

Conjecture F.5.3.2. (Vojta) Let S be a finite set of places of a number
field k. Let X/k be a smooth projective variety, let E be an ample divisor
on X, and let D be an effective reduced divisor on X having only normal
crossings. Then for every e > 0 there exists a proper closed subset Z =
Z(e, E, D, k, S) such that

ms(D, P) + hKX (P) < ehE(P) + O,(1) for all P E (X -, Z)(k).

Remark F.5.3.3.
(a) The set Z in Vojta's conjecture is called the exceptional subset. A
strengthened version of Vojta's conjecture says that there is a geometric ex-
ceptional set Zgeom = Zg,,.m(E, E, D) such that for all extension fields k'/k
and finite sets of places S' of k',

{PE(X Zgeom)(k') I

is a finite set. In other words, aside from a finite number of exceptional
points, the exceptional set may be chosen independently of the field k and
the set of places S.
(b) If X is a variety of general type, then Vojta's conjecture with D = 0,
E = KX, and e = z says that hKX(P) < 0(1) for P E (X Z)(k).
Since Kx is almost ample, this implies that X (k) is not Zariski dense
in X. Thus the Bombieri-Lang conjecture (F.5.2.1) is a special case of
Vojta's conjecture.
(c) Let X C IP" be a smooth projective variety with Kx = 0, for example
a K3 surface or an abelian variety, let U = X fl A" be an amine subvariety
of X, and let D = X -, U be the reduced divisor consisting of the "points
at infinity" on X. Notice that D is necessarily ample. Vojta's conjecture
(with E = D) says that ms(D,P) S ehD(P) + OE(1). It follows that
a quasi-S-integral subset of U(k) is contained in a proper Zariski closed
subset of X. In the case of abelian varieties, Faltings [2] has proven that
for an ample divisor D with normal crossings, we have ms(D, x) < eh(x)
outside a closed subset (hence everywhere by induction).
(d) Vojta's conjecture is known for curves. Thus for curves of genus 0
it is equivalent to Roth's theorem, and for curves of genus g > 2 it is a
consequence of Faltings' theorem. As for curves of genus 1, it is equivalent
to the results (D.8.3) and (D.8.4) used to prove Siegel's theorem.
(e) We note that the requirement in Vojta's conjecture that D have only
normal crossings is necessary, since it is easy to produce counterexamples
if this condition is dropped.

One other case in which Vojta's conjecture is known is the deep gen-
eralization of Roth's theorem proven by Wolfgang Schmidt in 1970.
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Subspace Theorem F.5.3.4. (Schmidt [2,4]) Let

Ll,...,Lm E Q[x1i...,xn]
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be linear forms in general position, i.e., such that any subset of at most
min{m, n} of the forms are linearly independent. Then there exist finitely
many proper linear subspaces T1, ... , T,. C Cn such that

r
{x E Zn I Ix[' ILl(x)...Lm(x)I < 1} C U Ti.

i=1

To see that Roth's theorem follows from (F.5.3.4), take m = n = 2,
L1(x, y) = x - ay, and L2(x,y) = y

Schmidt's subspace theorem has been generalized by Schlickewei [1] to
number fields and to include more than one absolute value. The appropriate
inequality for the general statement has the form

log max
xj < (n+1+e)h(x) for x E (IP" T) (k),

vES 7 1Li(xo,...,Xn)1,,

where T is a union of linear subspaces of P. If we now observe that KP.
is -(n + 1) times a hyperplane, so hKP = -(n + 1)h + 0(1), then this
inequality may be written in the form

.\D,v(x) + hKP (x) < eh(x) + 0(1),
vES

which is precisely Vojta's inequality. Thus Schmidt's theorem is a special
(highly nontrivial) case of Vojta's conjecture, with the addition that the
exceptional set Z is specified as a collection of linear subspaces. Note
that the "general position" requirement in Schmidt's subspace theorem is
exactly the "normal crossings" condition in Vojta's conjecture.

Remark F.5.3.5. Let Q(xo,... , x,,) be a homogeneous form of degree d
with d > n + 2, and let D be the divisor in X = IPn defined by Q = 0.
Assuming that D has only normal crossings, we see that Vojta's conjecture
predicts that for any integer b 0 0, the set

{xEZn+1IQ(x)=b}

lies in a proper Zariski closed subset of IP"(Q). Note that if Q = L1 L2 Ld
is the product of d linear forms in general position, then this follows im-
mediately from Schmidt's subspace theorem (F.5.3.4); but in general it is
still an open question. Indeed, it does not appear to be known whether the
integer solutions to the specific equation
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are Zariski dense in P3(Q).
This example also clearly shows the necessity of the normal crossing

condition. Thus if we take

d-1 Q(ixo,...,xn)=xo xn+Q(xo,...,xn_1),

then it is easy to see that the S-integral solutions to Q(x) = 1 will be
Zariski dense in 1P"(k), provided that the unit group RS is infinite. (Choose
xo E R's and xl,... , xn_1 E Rs arbitrarily and solve for See Exercise 9
or Vojta's original account (Vojta [31) for further examples.

A convenient reformulation of certain cases of Vojta's conjecture uses
the following generalization of the notion of a variety of general type.

Definition. A quasi-projective variety U is of log general type if it can be
written U = X -, D with X projective, D an effective divisor with normal
crossings, and KX + D almost ample on X.

Conjecture F.5.3.6. (Lang-Vojta) Let U/k be a variety of log general
type. Then any set of S-integral points on U is contained in a proper
Zariski closed subset.

Conjecture F.5.3.6 is true for curves by Siegel's theorem, since KX + D
is ample in exactly the following three situations: (i) g > 2; (ii) g = 1 and
deg D > 1; (iii) g = 0 and deg D > 3. More generally, (F.5.3.6) says that
there are finitely many integral points in an affine open subset of an abelian
variety, a result (as already mentioned) proven by Faltings [21.

Example F.5.3.7. Let Ag,N be the moduli space of principally polarized
abelian varieties of dimension g with level-N structure. For sufficiently
large values of N, the points in Ag,N(Rk,s) essentially correspond to iso-
morphism classes of principally polarized abelian varieties of dimension g
with level-N structure defined over k and having good reduction outside
of S. Faltings [1] has proven that this set is finite, a result originally conjec-
tured by Shafarevich. This amounts to showing that the set of S-integral
points with respect to the divisor D is finite, where D is the divisor at in-
finity D = Ag,N -, Ag,N on a "nice" compactification of the moduli space.
Faitings' result is compatible with Conjecture F.5.3.6 in the sense that it
is known that Ag,N is of log general type for sufficiently large N. A similar
remark applies to the moduli space Mg,N of curves of genus g with level-N
structure.

Vojta also proposes a conjecture involving all algebraic points on a
variety, not only the points rational over a particular field. In order to state
the general conjecture, we introduce the absolute logarithmic discriminant

dk(P)
[k(P1) Q]

logJDisc(k(P)/Q)J,
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and we generalize the definitions of ms(D, P) and Ns (D, P) to P E X (0)
using the extension of local heights to algebraic points described in (B.8.3),

AD v(P) =
1

[k(P) : k]
E [k(P)w :

wEMk(p), WIV

Conjecture F.5.3.8. (Vojta) Let S be a finite set of places of a number
field k. Let X/k be a smooth projective variety, let E be an ample divisor
on X, and let D be an effective reduced divisor on X having only normal
crossings. Then for every e > 0 and r > 1 there exists a proper closed
subset Z = Z(e, r, E, D, k, S) such that

ms(D, P) + hK,r (P) < dk(P) + ehE(P) + OE(1)

for all P E (X . Z)(k) satisfying [k(P) : k]:5 r.

A fascinating aspect of Vojta's conjectures (F.5.3.2) and (F.5.3.8) is
that they seem to contain virtually all Diophantine statements that are
currently proven or conjectured, by which we mean statements asserting
that certain arithmetically defined sets are "small". For example, Vojta's
conjectures imply the abc conjecture (see Exercise F.11). It should also
be emphasized that it was Vojta's philosophy of seeking analogies between
Nevanlinna theory and Diophantine approximation that led to his proof of
Mordell's conjecture (about eight years after Faltings' initial proof).

F.5.4. Varieties Whose Rational Points Are Dense

The previous sections have dealt principally with the question of when sets
of rational or integer points fail to be Zariski dense. In this final section
we will discuss the case that X (k) is Zariski dense in X and consider ways
to measure that density. For example, if Elk is an elliptic curve of infinite
rank, then E(k) is Zariski dense in E, but one feels that somehow it is "less
dense" than, say, 1P1(k) is in P1.

One way to measure the density is to fix a height H on X associated
to an ample divisor D and consider the behavior of the counting function

N(X/k, D, B) _ #{x E X (k) I H(x) < B} as B oo.

Notational Convention. It turns out that the asymptotic formulas for
counting functions take a simpler form if one uses the height with respect
to a particular field, rather than using the normalized height. So for the
remainder of this section we will fix a number field k and use the notation
H=Hk.
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Example F.5.4.1. Schanuel's theorem (B.6.2) (Schanuel 111) says that
there is a constant c = c(n, k) such that N(1Pn/k, D, B) - cBn+i, where D
is a hyperplane. Similarly, if A/k is an abelian variety with r = rank A(k),
then there is a constant c = c(A, k, D) such that

N(A/k, D, B) - c(log B)''/2

for any ample divisor D. This is Theorem B.6.3.

We begin with a geometric discussion about divisor classes. Recall
that a closed cone in a real vector space V is a subset C C V with the
property that x E e implies that tx E e for all real numbers t > 0. A cone
is said to be convex if x, y E e implies that x + y E e.

Definition. Let X be a variety and NS(X) its N6ron-Severi group. The
effective cone of X, denoted by NSeff(X), is the closed cone in NS(X) ®R
generated by the classes of effective divisors. The ample cone of X, denoted
by NS+(X), is the closed cone in NS(X) 0 IR generated by the classes of
ample divisors.

Clearly, NS+(X) C NSeff(X). We also observe that the property
Pic°(X) = 0 is equivalent to Alb(X) = 0 (i.e., X admits no nonconstant
maps to abelian varieties), in which case Pic(X) = NS(X). This occurs,
for example, for all Fano varieties, and more generally for any variety that
is covered by rational curves.

Definition. Let D be an ample divisor on a normal projective variety X.
The Nevanlinna invariant of D is the number

a(D) := inf{r E Q I KX + rD E NSeff(X)}.

For simplicity we will restrict attention to smooth varieties, but most
of what we say will apply to normal varieties. Further, we note that the
counting function on a singular variety is more or less equal to the counting
function on its normalization; see Exercise F.18.

Remark F.5.4.2.
(i) The invariant a(D) is usually defined in Nevanlinna theory as the

number

inf (p I q > 0 and pD + qKx is almost ample
q } .

The two definitions coincide if D is ample.
If Kx is not in NSeff(X), then a(D) is the real number such that

a(D)[D] E -[KX]+aNSeff(X), where 0NSeff(X) denotes the boundary of
the effective cone NSeff(X). It is expected that a(D) is always a rational
number. We also observe that the Nevanlinna invariant is implicitly present
in Vojta's conjecture.



§F.5.4. Varieties Whose Rational Points Are Dense 489

(ii) The Nevanlinna invariant has the following properties:
Let f : X -+ Y be a finite map. Then ax (f `D) $ ay (D), with
equality if f is unramified.
If D > D', then a(D) < a(D').
The Nevanlinna invariant is inverse linear: a(rm) = ma(D).
Additivity of the Nevanlinna invariant is more complicated. For
example, it is true that

1 1 1

a(D) + a(DI) a(D + D')'
and hence a(D + D') < max{a(D), a(D')}/2 (Exercise F.13).

Example F.5.4.3. We illustrate the preceding ideas by explicitly comput-
ing the relevant quantities for the variety X that is the blowup X -+ P2 of
the projective plane at a point. Let L be the pullback to X of a generic
line in p2, and let E be the exceptional divisor (i.e., the line on X that
replaces the blown-up point). Then one knows that Pic(X) = NS(X) is a
free group of rank 2 generated by L and E. Further, the canonical divisor
of X is given by Kx = -3L + E. A divisor D = aL - bE on X is ample if
and only if a > b > 0, while the (closed) effective cone is determined by the
condition a > max{0, b}. A short computation shows that the Nevanlinna
invariant of aL - bE is

a(aL-bE)=max{3 2 l
a'a-b 'll

and that the divisor aL - bE is proportional to KX if and only if a = 3b.
These results are illustrated in Figure F.1 below. Now let U C X be the
complement of E. Then it is also not difficult to show (see Exercise F.14
for a more general result) that

cBa(D) if D is not proportional to KX,N(U/k, D, B) _
cB

(D)
logB if D is proportional to Kx.

Let X/k be a smooth projective variety as usual, and let U C X be an
open subset (possibly U = X itself). Rather than studying the asymptotic
behavior of the counting function N(U/k, D, B), we can use ideas from
analytic number theory by introducing the height zeta function

Z(U/k, D; s) = ZD(s) = HD(x)
zEU(k)

Here we assume that D is ample and that the Weil height HD is chosen
to satisfy HD(x) > 1 for all x. (Alternatively, we could discard a finite
number of points from the sum.) The goal is to describe the analytic
behavior of ZD(S) in terms of the geometric properties of X, U, and D.

The zeta function ZD(s) is a (generalized) Dirichlet series, so it is
convergent on some half-plane Re(s) > b. By convention, we set b = -00
if ZD(s) is convergent on all of C, which will occur if U(k) is finite. The
abscissa of convergence of ZD(s) is the infimum over all b such that ZD(s)
converges on Re(s) > b.
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The ample cone, effective cone, and polyhedron a(D) = 1 for D = aL - bE
Figure F.1

Remark F.5.4.4. Intuitively, the zeta function ZD(s) should have a pole
of order t at its abscissa of convergence Q if and only if N(U/k, D, B)
cBa(log B)t-1. The following lemma makes this idea more precise.

Lemma F.5.4.5. Let S be a set, and let H : S -+ [1, oo) be a function
with the property that S has only finitely many elements with bounded H.
Define a counting function and a zeta function in the natural way,

N(S, H, B) _ #{x E S I H(x) < B} and Z(S, H; s) _ E H(x)
xES

Let a be the abscissa of convergence of Z(S, H; s).
(i) If there is a c > O such that

then

N(S, H, B) - cBa(Iog B)t-1 as B -+ oo, (*)

lim (s - a)tZ(S, H; s) = cr(t)a. (*s)aa+

(ii) Assume that the function Z(S, H; s) extends to a holomorphic func-
tion at all points on the line Ref s) = a, except for a pole at s = a. Then
(**) implies (*).

PROOF. See, for example, Tenenbaum [1, Theorems 2 and 15, Section 11.7].
0
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We observe that the abscissa of convergence of Z(S, H; s) is equal to
lim sup B-1 log N(S, H, B), provided that S is infinite; it is clearly equal
to -oo if S is finite.

There are few general results on the abscissa of convergence for the
height zeta function Z(U/k, D; s) of a variety. We will just quote the
following result.

Theorem F.5.4.6. Pila [11 Let X be a variety of dimension n and de-
gree d in iPN. Then for any e > 0 there is a constant c = c(n, d, e) such
that

N(X/Q, B) < cB"+J+E

(Note that c depends only on the dimension and degree of X.)

Although quite weak, Theorem F.5.4.6 is nontrivial if d > 1, since the
trivial estimate would be N(P"/Q, B) - c'Bn+i

We are now ready to formulate a fundamental conjecture for varieties
with a dense set of rational points. This conjecture relates the geometri-
cally defined Nevanlinna invariant to an arithmetically defined abscissa of
convergence.

Conjecture F.5.4.7. (Batyrev-Manin [11) Let X be smooth projective
variety, and let D be an ample divisor on X. For any Zariski open sub-
set of U, let /3(U/k, D) be the abscissa of convergence of the height zeta
function Z(U/k, D; s).

(i) For every e > 0 there exists a dense open subset U of X such that

/3(U/k, D) < a(D) + e.

(ii) Assume that Kx f NSeff, and hence that a(D) > 0 for every ample
divisor D. Then for all sufficiently large number fields k' and all sufficiently
small dense open subsets U C X, we have

/3(U/k', D) = a(D).

The Nevanlinna invariant a(D) and the height abscissa /3(U/k, D)
obey many of the same formal rules; see Exercise F.13.

Conjecture F.5.4.7 gives the most precise information for Fano vari-
eties, or more generally for varieties whose canonical divisor is not effective.
We will discuss these varieties further below. First we indicate briefly what
the conjecture says for other sorts of varieties.

For example, if KX is almost ample, then there is an effective divisor E
such that D = KX -E is ample, so a(D) = -1. It follows from (F.5.4.7(i))
that ,Q(U/k, D) < 0 on some open subset U of X, which means that U(k) is
finite. Hence the Batyrev-Manin conjecture (F.5.4.7) is equivalent to the
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Bombieri-Lang conjecture that rational points on varieties of general type
are not dense.

Another interesting class of examples are those for which the canon-
ical class Kx is trivial in NS(X) ® It Then o(D) = 0 for all ample D,
so (F.5.4.7(i)) says that for any c > 0 there is an open subset UE such that
N(Ue/k, D, B) < B. If X = A is an abelian variety, we know that this is
true in the more precise form

N(A/k, D, B) = c(log By/2 + 0 ((log B)('- 1)/2)

with r = rank A(k); see Theorem B.6.3.
Now consider the case of a K3 surface or an Enriques surface X. Then

the only curves on X with at least BE points of height HD(x) < B are
rational curves C satisfying C C. D < 2/e. Hence in this situation the
conjecture reduces to the following.

Conjecture F.5.4.8. (Batyrev-Manin) Let X/k be a K3 surface or an
Enriques surface. For any c > 0 and any ample divisor D on X, let Zr be
the (finite) union of rational curves C C X defined over k and satisfying
C.D < 2/E. Let UE = X -, Ze be the complement of Z,. Then

N(UE/k,D,B)<<B` asB-aoc.

Remarks F.5.4.9.
(a) There are no surfaces for which (F.5.4.8) is known to be true for all
number fields, but see Billard [11 for some partial results on K3 surfaces of
type (2,2,2) in 1P1 x P1 x P'. See also Silverman [61 for height estimates
on certain K3 surfaces in P2 x P2.
(b) Batyrev and Manin ventured a refinement of their conjecture, which in
the case of a Fano variety X (i.e., -KX ample) says that there is an open
subset U C X such that

N(U/k,-KX,B) B)r&rLk P`c(X/k)-1

Although this formula is correct in many cases, Batyrev and Tschinkel [1J
have given examples in which the exponent on the log B is incorrect. See
(F.5.4.10(i)) for details.
(c) The Batyrev-Manin conjecture (F.5.4.7) gives a geometric interpreta-
tion for the first pole of Z(U/k, D; s). We will briefly discuss below the
computation, in geometric terms, of the order of that pole.
(d) The necessity of taking an open subvariety in the Batyrev-Manin con-
jecture (F.5.4.7) and of augmenting the field in (F.5.4.7(ii)) is obvious. For
a classical example, let X be a smooth cubic surface in P2, so X is embed-
ded by -KX. Then a(-Kx) = 1, but X contains 27 lines, and if any of
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those lines is rational over k, then they will contain cB2 points of height
less than B. Thus it is certainly necessary to discard all of the k-rational
lines. Similarly, the example of a conic curve with no k-rational points
shows that it may be necessary to extend the ground field.
(e) Let X - Y be a finite unramified cover, and let D be an ample divisor
with a(D) = 0. Then it is not hard to show using the Chevalley-Weil
theorem (Exercise C.7) that the Batyrev-Manin conjecture (F.5.4.7) (for
all number fields) on X is equivalent to the conjecture on Y. See Morita-
Sato [1]. For example, this shows that (F.5.4.7) is true for bielliptic surfaces,
since they admit an unramified cover by an abelian surface. Similarly,
the conjecture for elliptic K3 surfaces is equivalent to the conjecture for
Enriques surfaces, since the former are unramified double covers of the
latter.
(f) For fibrations, there are a few partial results. Call [1] and Billard [2] give
estimates for elliptic surfaces, and Billard [3] proves the Batyrev-Mann
conjecture (F.5.4.7) for many (but not all) ample divisors on a rational
ruled surface.

A natural class of varieties on which to test the conjectures of this
section are Fano varieties. We refer the reader to Manin [2] and Manin-
Tsfasman [1] for a geometric discussion of Fano varieties. Of particular
interest are Fano surfaces, also called Del Pezzo surfaces. These surfaces
fit into 10 families, namely PZ blown up at r points in general position
with 0 < r < 8, plus the product P1 x P1. Similarly, Fano 3-folds fit into
104 families, and in general Fano varieties of dimension n lie in a finite
number of families (see Debarre [1]). We now describe some examples for
which it is known that

N(X/k, D, B) »« B°(log B)t-1

Fano Examples F.5.4.10.
(a) We start with an easy example that generalizes Schanuel's theorem.
Let

m m

X = fl P"' and D = > p, (djHj),
t.1 i=1

where H; is a hyperplane in P"{ and pi is the projection onto the ith factor
of X. Let t be the number of indices for which the quantity (ni + 1)/d; is
maximized, and let a be that maximal value of (ni + 1)/d;. Then one can
show (Exercise F.15) that

N(X, HD, B) - cB°(log B)t-1

(b) An old result of Birch [1] deals with a smooth complete intersec-
tion X/Q in P" defined by r homogeneous polynomials of degree d. If n
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is sufficiently large, specifically n > r(r + 1)(d - 1)2d-1, then Birch proves
that N(X/Q, L, B) - CB-+I-rd, where L is a hyperplane section. Since
Kx = -(n + 1 - rd)L, we see that X is a Fano variety and that Birch's
result becomes N(X/Q, -Kx, B) - cB. Birch also shows that c # 0 if
and only if 0 for all places v, thereby showing that X satisfies
the Hasse principle. The proof is via the circle method. Heath-Brown [l]
and Hooley [1, 2,31 have refined the method to prove the same estimate for
smooth cubic hypersurfaces in P" for n > 8. In the same vein, we mention
the estimate N(U/Q, L, B) »« B2(log B)5 proven by Vaughan and Woo-
ley [1] for an open subset of a certain singular cubic threefold in F6, and
work of Heath-Brown [2] on quadrics.
(c) Batyrev and Manin [1] show that if X is Fano and if (F.5.4.7(ii)) is
true for D = -Kx (i.e., if a(-Kx) = 3U,k'(-Kx)), then (F.5.4.7(i))
is true for for all ample divisors on X. In the case that X is 1P2 blown
up at r < 3 rational points, so rank Pic(X) = 1 + r, they prove the full
conjecture N(U, -Kx, B) - cB(log B)', where U is X with the exceptional
lines removed. For P2 blown up at 4 points, Manin and Tschinkel [1] prove
the weaker estimate

B(log B)3 << N(U, -Kx, B) << B(log B)6.

In particular, this implies that /3u(D) = a(D) for split Del Pezzo sur-
faces P2 blown up at r < 4 points.
(d) Manin [3] gives explicit estimates for N(U/k, D, B) for an open subset
of Pn blown up along a linear subspace P'n (with m < n - 2), generalizing
the estimates (F.5.4.3) for p2 blown up at a point. See Exercise F.14.
(e) Franke, Manin, and Tschinkel [1] prove one of the most general known
results, namely that the Batyrev-Manin conjecture (F.5.4.7), in its refined
form (F.5.4.9(b)), is true for homogeneous spaces. Precisely, let G be a
semisimple algebraic group, let P be a parabolic subgroup of G, and let X
be the quotient variety X = P\G. Then X is a projective variety (in fact,
it is a Fano variety). Assuming that X(k) # 0, they prove the

N(X/k, -Kx, B) - cB(log B)rank Pic(x)-1

Notice that there is no exceptional set. The essential ingredient in the
analytic proof is showing that for a suitable normalization of the height, the
zeta function Z(X/k, -Kx; s) is closely related to an Eisenstein-Langlands
L-series.
(f) The result of Franke, Manin, and Tschinkel [1] covers in particular the
case of Grassmannian varieties, and more generally flag varieties. These
were treated independently by Thunder [1, 2] using more elementary count-
ing techniques. Thunder gives explicit formulas for the constant c and ex-
plicit error estimates, both of which could in principle be derived via the
Eisenstein-Langlands L-series approach.
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(g) Batyrev and Tschinkel [2] prove the refined conjecture (F.5.4.9(b)) for
tonic varieties. These are smooth projective varieties X that contain an
open subset U isomorphic to a torus (i.e., U = G 'n over k) and with the
property that the group law U x U -* U extends to a morphism U x X - X.
In other words, there is an algebraic group action of U on X. Note that
multiples of the anticanonical bundle -Kx give embeddings only of U, not
necessarily embeddings of all of X. For example, (P1)' is a toric variety,
as is p2 blown up at 3 points.
(h) In a paper with a strongly allelic flavor, Peyre [1] pushes these ideas
further. He also defines an explicit constant e(X, -Kx) (depending on the
choice of height function H_KX) and conjectures that

N(U, -Kx, B) e(X, -Kx)B(log B)t-1.

Peyre verifies the value of e(X, -Kx) for the examples in his paper, for
Birch's examples (b), and for Thunder's examples (f). However, it ap-
pears that for tonic varieties Peyre's constant e(X, -Kx) requires an extra
factor that can be interpreted as the order of a Brauer group (see Batyrev-
Tschinkel 12]).
(i) As mentioned earlier, Batyrev and Tschinkel [1] have shown that the
refined conjecture (F.5.4.9(b)) is not true in general. Their counterexam-
ple is a threefold X of bidegree (1, 3) in P1 x P3. Ignoring some tech-
nical difficulties, the underlying idea is quite simple. The anticanonical
divisor is -Kx = 0(1,1), and Pic(X) has rank 2, since it is isomorphic
to Pic(P' x P). Hence the refined Batyrev-Manin conjecture predicts
N(U, -Kx, B) cB log B. But X is fibered by cubic surfaces Xt with
t E P1, and the restriction of -Kx to Xt is -Kx so these cubic surfaces
are expected to have B(log B)r(tl points, and frequently one finds that
r(t) > 2. Thus N(U, -Kx, B) >> cB(logB)2 for every open set U.

In all known examples, the geometrically defined Nevanlinna invari-
ant a(D) gives a geometric interpretation to the arithmetically defined
/3(U/k, D), which is the first pole of the height zeta function Z(U/k, D; 8).
A geometric way of computing the order of that pole is still an open ques-
tion. It is easy to see that /3(U/k, D) depends only on the linear equiva-
lence class of D (see Exercise F.17). For Fano varieties, the Neron-Seven
and Picard groups are the same. In general it is tempting to try to re-
late (3(U/k, D) to the way in which D interacts geometrically with all of
the algebraic cycles on X. This question is thoroughly discussed in the
volume of Peyre [2], which contains several insights and new results.

Remark F.5.4.11. We conclude this section (and this volume) by briefly
describing a few additional ways in which mathematicians study the dis-
tribution of rational points on varieties.
(a) Barry Mazur 12,31 has proposed studying the set of rational points by
comparing how it sits in X relative to the Zariski and the real topologies.
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For example, assuming that X (Q) is Zariski in X, Mazur asks whether the
real closure of X (Q) in X (R) is always a semialgebraic set. (A semialgebmic
set is a subset of X(R) defined by a finite number of polynomial equations
f (x) = 0 and a finite number of polynomial inequalities f (x) > 0.) For
example, if X is an abelian variety, then the closure of X (Q) in X (R)
will be a finite union of connected components of X(R). However, Colliot-
Th6l6ne, Swinnerton-Dyer, and Skorobogatov [1, Example 5.2] have given
a negative answer to Mazur's question. They show that if X is a smooth
projective model of the surface

y2 - x(4t4 + t2 -4) = z2 - (4t4 + t2 -4) (X2 + 4x - 1),

then X (Q) is Zariski dense in X, X (R) has two connected components C1
and C2, the set C1 n X (Q) is dense in C1, but the real closure of C2 n X (Q)
is a union of curves and points in C2.
(b) Suppose that X(k) is dense in X(k) for some completion k of k.
For example, we might take k = Q and k = R. Then we can embed X(k)
in X (k), choose a v-adic distance function d : X (k) -. [0, oo), and study
Diophantine approximation properties of X(k) within X(k). (For a defi-
nition and properties of v-adic distance functions, see Silverman [10].) For
example, one may take a point P E X(k) and a (decreasing) function f
and ask whether the set

{Q E X(k) I 4(P, Q) < f(H(Q))}

is finite or infinite. As a specific example, suppose that X/Q is a projective
variety of dimension n satisfying N(X/Q, D, B) « Ba. Then it is not hard
to show (Exercise F.12) that there exists a point Q E X(R) with the
property that

d(P, Q) >> H(P)-a/" for all P E X (Q).

Thus Q cannot be closely approximated by rational points.
(c) As already discussed in Section B.6, a very coarse measure of the dis-
tribution of rational points is given by the growth rate of the function

log log N(X/k, D, B),

where D is any ample divisor. In all known examples, this quantity satisfies
one of the following three conditions:

- log log B as B oo,
log log N(X/k, D, B) - log log log B as B oo,

is bounded as B oo.

One might ask whether these are the only possible growth rates. In par-
ticular, we leave the reader with the intriguing question of whether

N(X/k, D, B) <<log log B implies that X (k) is finite?
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EXERCISES

F.1. Let X be a subvariety of an abelian variety A, let C be an ample line
bundle on A, and define a line bundle L(-e, s) on X'n as in the original
proof of Faltings' theorem (see also Remark F.1.1.2). Suppose that X
contains a translate of a nontrivial abelian subvariety b + B C X. Prove
that C(-e,s) is not ample on Xm.. (Hint. Show that C(-e,a)-1 is ample
on B(s) :_ {(b1,...,bm) E Btm I sib, -si+lbi+1 = 0}.)

F.2. Let X be a subvariety of an abelian variety A whose stabilizer is trivial (but
note that X may contain a translate of an abelian subvariety). Let .C be an
ample line bundle on A, and let C(-e, a) be the line bundle on Xm used in
the proof of Faltings' theorem (see Exercise F.1 and Remark F.1.1.2). In
this exercise you will use the generalized Riemann-Roch theorem to prove
that there is a constant c > 0 such that for all sufficiently large integers m
and all sufficiently small e > 0,

m

h° (Xm,C(-e,s)®d) > jmdlmX [182dimX (*)

i=1

Let n be the dimension of X. For line bundles C1...... Cn on X, we
denote their intersection number by (.C1 . . .Cn), and we denote the self-
intersection of a line bundle C by (.Cn). As usual, we let h°(X,.C) denote
the dimension of the space of sections of C. For example, if G is ample
and d is sufficiently large, then one knows that

ho (X,.C®d)=

n
(f n) (I+o(1)).

(a) Let .C be a line bundle on a variety Y, and let H C Y be a hypersurface.
Prove that there is an exact sequence

0 - I'(Y,.C (9 0(-H)) F(Y,,C) -. I'(H,.CIH),

and hence that h°(Y,C ® 0(-H)) > h°(Y,L) - h°(H,GIH)
(b) Fix 6 > 0. Prove that .C(6, s) is ample, and hence that

h°(Xm,c(6,8)®d)
=dmn(.C(b6, mn)(1+0(1)).

(c) Let pi : Xm -+ X be the i`h projection, and let Hi be a smooth
hypersurface representing p, .C. Prove that

( +C C(6)-n-1\

h°(H,',C(6, s)®a) = dmn-1 p` , s
J (1 + o(1))(mn - 1)!

and that

h°(Xm,,C(-e, s)®d) > h°(Xm, r,(6, 8)®d)

-d(6+e) E s?h°(H1,C(6,s)).
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(d) Show that if m is sufficiently large and if s; > s;+1, then the map

Xm a +
(Si,.(21,...,xm) '. (81x1 -82x2,...,8m-Ixm-1 -8mXm),

is generically finite. Deduce that the sheaf M = (pit, (9 . . ®p+.,r-)la(Xm)
satisfies (.C(0, 8)m") = delt(a) (Mm") > 0.
(e) Again fix 6 > 0. Prove that the self-intersection number (.L(6, s)m")
is proportional to f i ` 18? dim X . Using the previous part, prove that it is
equal to c(6) fl 1 a? dl- X for some constant c(6) > 0.
(f) Combining (e) and (c), show that if e > 0 is sufficiently small (depend-
ing on X and m), then the desired inequality (s) is true.

F.3. Let P(X) and Q(X) be polynomials of degree deg(P) = 2g1 + 1 and
deg(Q) = 2g2 + 1 + e respectively, where e E 10, 11, and assume that
P(X)Q(X) has no double roots. Let C be the smooth projective curve
birational to the affine curve y2 - P(x) = z2 - Q(x) = 0. Prove that C has
genus 2(g1 + 92) + e, and show that W291 (C) contains an abelian variety
of dimension g1. (Hint. Consider the map from C to the curve with affine
equation y2 = P(x).)

F.4. (a) Let E/Q be an elliptic curve, let DE and NE be respectively the minimal
discriminant and conductor of E/Q, and write 17280E = c4 - ce as usual.
(See, e.g., Silverman 11, §111.1].) Apply the abc conjecture (F.3.1) to this
equality (suitably divided by a gcd) to prove that

max{IoEI, Ic4I, IccI} <
CcNE+c

Deduce that the abc conjecture implies Szpiro's conjecture (F.3.2(a)) and
Frey's conjecture (F.3.2(b)).
(b) Let a, b, and c be coprime integers satisfying

a + b + c = 0 and 24 divides abc.

Consider the elliptic curve

Ea,b,c : y2 = x(x - a)(x + b).

Prove that DE,,b.c = (2-dabc)2 and j(Ea.b,c) = 28(a2 + ab + b2)/(abc)2.
(c) Prove that Frey's conjecture (F.3.2(b)) implies that the abc conjec-
ture (F.3.1) is true. (Hint. Apply Frey's conjecture to the curve Ea,b,c
in (b).)
(d) Consider the elliptic the curve

EE,b,c : y2 = ' - 2(a - b)x2 + (a + b)2x.

Prove that E' ,b,, hasr discriminant 2sabc'. Verify that the map

Ea,b.c -y Ea,b,c, (x, y) '-' (y2/x2,-y(ab +x2)/x2),

is an isogeny of degree 2. Use these facts to show that Szpiro's conjec-
ture (F.3.2(a)) implies the abc conjecture with the weaker exponents +e.
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F.5. Let E/Q be an elliptic curve and let C4, cei jE, and DE be the usual quan-
tities associated to a minimal Weierstrass equation (Silverman [1, §III.31).
Fix a complex analytic isomorphism E(C) °-° C/(Z + rZ) with Im(r) > 0,
and let q = exp(2i7rr) and A(r) = (27r)-lzgfn° 1(1 - q')24.
(a) Prove that the Faltings height of E/Q is given by the formula

hFalt(E) = 12 (log0E - log [0(r) Im(r)s[) .

(b) Prove that there are constants Co, C1 > 0 such that for all semistable
elliptic curves E/Q,

12h(iE) - hFlt(E)I 5 Colog(1 +hu E)) +C1.

(c) Let hnaive(E) = 12 logmax(Ic I, c I) Prove that for all e > 0 there is
a constant Ce such that for all elliptic curves E/Q,

IhFalt(E) - hnaive(E)I < ehF i,(E) + CC.

F.6. Let A/Q be an abelian variety of dimension g, and let A/Z be a Neron
model for A/Q. Prove (or take as known) that there exists a differential g-
form 77 that generates W / spaiyi. (The form p is called a Neron differential
for A/Q.) Prove that

1 1/2

exp(hF,it(A/Q)) = JA(C) In n n[ f

F.7. Let X be a smooth surface of bidegree (d, 3) in iP' x P2.
(a) If d = 1, show that X is a rational elliptic surface with c(X) = -1.
(b) If d = 2, show that X is an elliptic K3 surface with rc(X) = 0.
(c) If d > 3, show that X is an elliptic surface with c(X) = 1. Further,
show that for all m > 1, its image 4'mKx (X) under the pluricanonical map
is a rational curve C with x(C) = -1 < rc(X).

F.8. Let X be a Kodaira-Parshin surface, that is, a surface fibered over a curve
of genus at least 2 such that all fibers have genus at least 2 Prove that
c(X) = 2. (Hint. Eliminate all of the other possibilities, namely, show
that X is neither rational nor ruled, neither elliptic nor abelian, neither a
K3 surface nor an Enriques surface.)

F.9. Let X = IF2, and let Dl, Dz, D3 be the divisors defined respectively by
x = 0, y = 0 and (x - y)z - (x + y)z = 0. Set D = Dl + Dz + D3.
Clearly, D is effective and reduced.
(a) Prove that D does not have normal crossings (at the point (0, 0,1)).
(b) For any unit e E Rk and any i, j E Z, let

P°j = (s',1, e' + 3 - 4(e' - 1)/(E' - 1)) E P2(k).

Prove that F is integral with respect to the divisor D. Conclude that
Vojta's conjecture (F.5.3.2), and more specifically (F.5.3.6), is false for D.
Thus the normal crossings requirement in Vojta's conjecture is needed.
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F.10. (a) Let X be a smooth projective variety, and let D be an effective normal
crossings divisor. Use Vojta's conjecture (F.5.3.2) to prove that outside
of a proper Zarisli closed subset, all S-integral points with respect to D
satisfy

hD(P) < ehE (P) + h_xx (P) + C_

(b) Let X be a projective variety such that mKx = 0 for some m > 1.
For example, X could be a K3 or an Enriques surface. Let D be an ample
effective divisor on X. Show that Vojta's conjecture (F.5.3.2) implies that
the set of S-integral points with respect to D is not Zariski dense in X.
(c) Repeat (b) when X is a cubic surface in P3 and D is the union of two
hyperplane sections.

F.11. Prove that the generalized Vojta conjecture (F.5.3.8) implies the abc con-
jecture (F.3.1). (Hint. If a+b+c= 0, then the point (a'INb'/x C1 IN) is
an algebraic point on the Fermat curve XN+yN +ZN = 0. Apply Vojta's
conjecture to this curve.)

F.12. Let X c F" be a smooth projective variety of dimension n defined over Q,
and assume that there is a constant a > 0 such that N(X(Q), H, B) < B.
In particular, X(Q) has a large number of rational points, so we can study
approximation of real points by rational points.
(a) Show that X(R) has dimension n as a real differentiable manifold. Take
any natural distance function on P(R) and use it to induce a distance
function d(x, y) on X (R). For any natural volume function on X (R), prove
that the volume of a "ball"

B(x, r) = {y E X(R) I d(x, y) < r}

satisfies Vol(B(x, r)) >< r".
(b) Construct a point x E X (R) such that

d(x,y) > H(y)-°1" for all x E X (Q).

(Hint. This is trivial if X (Q) is not dense in X (R), Otherwise, consider the
sets uH(,)<_BB(y,cB-°"") and use the fact that an (infinite) intersection
of a decreasing sequence of compact sets is not empty.)

F.M. Let D,D1,Dz be ample divisors on X, and let U be an open subset of
X. In this exercise we compare the formal properties of the Nevanlinna
invariant o(D) and the abscissa of convergence 3(U/k, D) of the height
zeta function Z(U/k, D; s). Since U/k is fixed, we will ease notation by
writing (3(D) for /3(U/k, D).
(a) Prove that ct(mD) = o(D)/m and $(mD) = Q(D)/m.
(b) If Di > Dz, prove that a(DI) < a(D2). If further

U n supp(Di - D2) = 0,
prove that 3(DI) 5,3(D2). Is this true without the condition on U?
(c) Prove the inequalities

a(D1 + D2) <
max(a(D2), o(D2))

Q(Di + D2) <
max(,3(D2),,3(D2))

Prove the slightly stronger estimate a(DI)' +a(D2)-' < o(Di + D2)-'.
(Hint. Use the characterization a(D)-'Kx + D E 8NS (X).) Is this
stronger inequality also true for Ou?
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F.14. Let 0 < m < n - 2, and let Lo be the linear subspace of Pn defined by the
equations xm+1 = ' ' ' = xn = 0, so Lo Let X be the blowup of Pn
along Lo. Explicitly, X is the variety

JX = {((x0, ...,xn), (ymtl,...,t/n)) E Pn X Pn-m-1
I xiyj - xjyi = 01,

where the equations are taken for all m + 1 < i, j < n. Let it : X Pn
be the natural projection, let L E Div(X) be the pullback of a hyperplane
by a, and let E = Lo x Pn-'n-i E Div(X) be the exceptional divisor of the
blowup.
(a) Show that 7r is an isomorphism from U = X N E to Pn Lo. Prove that
Pic(X) is a free group of rank 2, given explicitly by Pic(X) = Z[L] a Z[EJ.
Prove that Kx = -(n + 1)L + (n - m - 1)E, and that a divisor class
D = aL - bE is ample if and only if a > b > 0.
(b) Let a > b > 0. Prove that

a(aL-bE)=min{n+1 m+2
` a a - b

(c) Let P = ((xo, ... , xn), (ym+i, ... , yn)) E X(Q) with xi, yj E Z and
gcd(xo,...,x,,) = gcd(ym+1.... yn) = 1. Prove that

HL(P) = max Ixi l and H2L-E(P) = max Jxil max lyj I.
% i J

Deduce from this the formula HE(P) = maxi IxiI/maxj IyjI. (N.B. Since
multiplicative Weil height functions are defined only up to constant multi-
ples, what you are proving is that the given functions are particular Weil
height functions for the specified divisors.)
(d) Prove that the distribution of the rational points on the exceptional
divisor E is given by

i
B(m+1)/(a-b)

N(E/Q, aL - bE, B) >< B(m+1)/(a-b) log B

B(n-m)/b

if -+1 > n='n
a-b bifm+1 -n-ma-b - b

if <n='n.a-b b

(Hint. Show that the left-hand side is N((P'n X Pn-m-1)/Q O(a - b, b), B)
and use Exercise F.15 below.)
(e) Let P = ((xo, , xn), (ym+1, ... , yn)) E U(Q) be a point with integer
coordinates, and let d = gcd(xm+i , ... , Xn ). Set

N = max Ixi4 and M =
Max 'Y" = Max

Ix,I/d.
O<i<m m+1<j5n m+15j5Cn

Prove that HaL_bE(P) = max(N, dM)a-bM'. Use this formula to prove
that

B(m+2)/(a-b) if n-m-1 < an+1 ,

N(U/Q aL - bE B) »« B(n+l)/a log B if n-m-1 -- b
,, n+1 a,

B(n+1)/a if n-m-1 >n+1

When is N(U/Q, aL - bE, B) greater than, less than, or comparable to
N(E/Q, aL - bE, B)?
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F.15. (a) Let S) , ... , S,,, be sets, and let H, : S. - (I, oo) be functions that can
be used for counting as in Lemma F.5.4.5. Suppose that

N(S,, H,, B) :_ #{x E Si I Hi(x) < B} - c,B" (log B)6'

for each I < i < m. Define a function on the product by

H:S=S,
H(x3,...,x-) = H:(xi)...H-(x-).

Prove that the counting function for the product,

N(S, H, B) :_ #{x E S [ H(x) < B},

satisfies

N(S, H, B) _ cBn(1og B)°

witha=maxa; andb=-1+E(b,+I).
s with o,=n

(b) Let X = P"t x x P"^', and let it be the line bundle 0(d,, . , dm)
on X with dl , ... , d,,, positive integers. Apply (a) to determine the asymp-
totic behavior of N(X, L, B).

F.16. Let Fl , ... , F, E Z(,X0, , X.1 be homogeneous polynomials, and define

X(Z)=Ix EZ"+' I Fi(x)=...=F(x)}
M(B) = {x E X(Z) I maxIx,E < B},

N(B)={xEX(Z)Igcd(x)=IandmaxIx,I<B}.

Prove that

M(B) = >2 N(B/d) and N(B) = >2 p(d)M(B/d),
d<B d<8

where p is the Mobius function.
F.17. (a) Let S be a set, and let H, H' : S - R be two functions used for

counting as in Lemma P.5.4.5. Suppose that CIH(x) < H'(x) < C2H(x)
for all x E S. Prove that the corresponding counting functions satisfy

N(S, H, C, B) < N(S, H', B) < N(S, H, C2B).

(b) Let D and D' be linearly equivalent ample divisors on a variety X.
Use (a) to prove that

N(X/k, D, B) >Z B' (log B)6 iff N(X/k, D', B) >t B"(log B)°.

In particular, up to 2><C, the growth of the counting function N(X/k, D, B)
depends only the equivalence class of D and is independent of the choice
of a particular Well height Ho for D.
(c) In a similar vein, prove that the abscissa of convergence of the height
zeta function Z(X/k, D, a) depends only on the class of D in NS(X), i.e.,
it depends only on the algebraic equivalence class of D.
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F.18. This exercise shows that one may restrict to normal varieties when studying
counting functions on varieties. Let X be a singular variety and let v :
X' -+ X be its normalization. Let C be an ample line bundle on X, so
C' = v',G is ample on X'. Let Z be the locus of nonnormal points on X
and Z' = v-1(Z). Set U = X -, Z and U' = X' Z'. Prove that

#{y E U(k) I Ht(y) < B) = #{x' E U'(k) I Hr-,(x) < B}.

F.19. Try to prove or disprove some of the conjectures described in this book.
(Unfortunately, the authors do not know how to solve this exercise!)
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k an algebraic closure of k, 8
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k[V] affine coordinate ring of V, 11
P. projective n-space, 12
P"(k) set of k-rational points of P", 12
k(P) field of definition of the point P, 12
S(V) homogeneous coordinate ring of projective variety, 13
U. standard affine open subset of P", 14
O(X) ring of regular functions on the variety X, 15
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O: local ring of the point x on the variety X, 15
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My,x the maximal ideal of the local ring Oy,x, 15
k(X) function field of the variety X, 16
k(xl,...,xn) the field of rational functions in n indeterminates, 16
Ap localization at the prime ideal p, 17
A(5) homogeneous localization at the prime ideal p, 17
Frac(A) ring of fractions of the ring A, 17
MP ideal of functions vanishing at P, 18
deg(O) degree of the finite morphism 0, 19
4sd d-uple embedding P" - P'v, 19
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a linear projection P" -+ P', 19
TP(V) tangent space to the variety V at the point P, 24
J' induced map on cotangent space, 25
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space of rational differential r forms, 27
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right translation map, 28
left translation map, 28
additive group, 29
multiplicative group, 29
general linear group, 29
= Gras(k, n), Grassmannian variety, 31
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dual projective space, 33
group of Well divisors on X, 34
support of the divisor D, 34
normalized valuation on the local ring Oy,x, 35
the principal divisor of the function f, 35
the principal divisor of the function f, 35
linear equivalence of divisors, 35
divisor of zeros of f, 35
divisor of poles of f, 35
divisor class group of X, 35
the linear equivalence class of the divisor D, 35
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group of Cartier divisors on X, 37
the principal divisor of the function f, 38
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Picard group of X, 38
divisor on X of homogeneous polynomial F, 39
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linear system on attached to d times a hyperplane, 50
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52X sheaf of differential r-forms on X, 58
3 9 9 direct sum of sheaves, 58
3 ® tensor product of sheaves, 58
T. stalk of the sheaf 3 at the point x, 58
3(X) set of global sections of the sheaf 3, 59
r(X, 3) set of global sections of the sheaf 3, 59
.CD sheaf determined by the Cartier divisor D, 60
1'(X, E) the space of sections to the vector bundle E, 62
E the dual of the vector bundle E, 62
E ®E' tensor product of two vector bundles E and E', 62
f - E pullback of a vector bundle E by a morphism f , 62
0(D) the line bundle associated to the divisor D, 63
Or (1) the line bundle associated to a hyperplane, 63
0(1) the line bundle associated to a hyperplane, 63
0(d) the d-fold tensor product 0(1)1&d. 63
3 the sheaf associated to the presheaf 3, 67
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Image(O) the image sheaf of a sheaf morphism l : 3 - 9, 67
9/0(:Y) the quotient sheaf of a sheaf morphism 0 : 3 - 9, 67
deg(D) degree of a divisor on a curve, 70
Kc canonical divisor on a curve C, 70
[-1] inverse map on an elliptic curve, 78
+ addition law on an elliptic curve, 78
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Aut(C) automorphism group of a curve, 90
f (D) evaluation of a rational function at a divisor, 91
[nIr multiplication by n map, 94
ker[n]T kernel of multiplication by n, 94
T. kernel of multiplication by n, 94
e(z) equal to exp(2iriz), 99
HD Riemann form for divisor D on abelian variety, 100
L(8) vector space of theta functions, 102
OD complex torus map induced by theta functions, 102
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Aut(E, 0) group of analytic automorphisms fixing 0, 107
NS(V/A) group of Riemann forms on V/A, 107
rc complex representation of Hom(A, B), 109
rq rational representation of Hom(A, B), 109
rQ p-adic representation of Hom(A, B), 109
Q the period matrix of a Riemann surface, 112
Ln lattice generated by period matrix, 112
Jac(X) the Jacobian of the Riemann surface or curve X, 113
V' the dual of a vector space V, 114
.% Jacobian embedding of a Riemann surface, 114
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OD homomorphism from A to Pic(A), 127
K(X) the kernel of 'D : A -. Pic(A), 127
Pic°(A) the group of translation invariant divisor classes, 128
NS(A) Neron-Severi group of an abelian variety, 128
A the dual abelian variety of A, 130
P the Poincar6 divisor on A x A, 130
Stabv stabilizer of a subvariety of an algebraic group, 133
em the Weil pairing AlmJ x A[m] - µ,,,, 133
Jac(C) Jacobian variety of the curve C, 134
j the Jacobian embedding of a curve C Jac(C), 134
W, image of C' in the Jacobian of a curve, 134
E3 theta divisor W. -I on the Jacobian of a curve, 135
Symr C symmetric power of a curve, 135
S, symmetric group on r letters, 135
M9 moduli space of curves, 142
A9 moduli space of abelian varieties, 142
X/C the quotient variety of X by C, 143
Z(C/Fq, T) zeta function of a curve C over the finite field F,, 150
Spec(R) spectrum of the ring R, 151
V(I) closed subset of Spec(R) attached to an ideal 1, 151
Uf open subset of Spec(R) attached to f E R, 152
f ° morphism of structure sheaves in a ringed space, 152
X°`}` the scheme associated to the variety X, 153
Ai the affine line over Z, 154
X(S) S-valued points of a scheme X, 155
Y x x Z fibered product of Y and Z over X, 156
X the fiber of the scheme X over the point p E Y, 156
MK set of equivalence classes of absolute values on K, 160
v(x) the log absolute value log JxJ,,., 160
AP connected component of fiber of Nt ron model, 163
Proj(R) projective scheme attached to the graded ring R, 165
R+ special ideal of a graded ring, 165
PZ projective space over Z, 166

PR projective space over a ring R, 166
IxI archimedean absolute value, 170
ord9 the p-adic order of a rational number, 170
1xIp p-adic absolute value, 170
MC the set of standard absolute values on Q, 171
Mk the set of standard absolute values on k, 171
Mk the set of archimedean absolute values on k, 171
Mk the set of nonarchimedean absolute values on k, 171
k completion of k at the absolute value v, 171
n the local degree fk,.: QvJ, 171
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ordo valuation attached to the prime ideal p, 173
ey ramification index of a prime ideal, 173
[x[o p-adic absolute value associated to a prime ideal, 17-
vo(x) valuation - log zip associated to a prime ideal, 123
H(P) height of a point in P(Q), 174
Hk(P) relative height of a point in P"(k), 124
hk logarithmic height relative to k, 174
H absolute multiplicative height, 176
h absolute logarithmic height, 126
h,, height relative to a morphism ¢, 182
hV,D height on the variety V relative to the divisor D, 184
hV,#,D canonical height on V relative to 0 and D, 195
on the nth iterate of the map 0, 197
Om (P) forward orbit of the point P under the map 4', 197
hA.D canonical height on an abelian variety A, 199
hA,D canonical height on A associated to a divisor D, 245
iA,D the quadratic part of the canonical height, 206
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N(V(k),T) height counting function on a variety, 210
h(f) the height of a polynomial, 224
if [v Gauss norm of a polynomial, 224
h(T) height of a collection of polynomials, 225
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e(t) complex exponential (e2ittl , e2*,t2 , ... , e2"'t" ), 229
M(f) the Mahler measure of the polynomial f, 230
L2(f) the La norm of the polynomial f, 230
VD the complement of the support of the divisor D, 222

an Mk-bounded function, 238
AD,,, local height at v with respect to the divisor D, 229
a0,D canonical local height for 0 and D, 241
AD canonical local height on an abelian variety, 242
GD Green function attached to the divisor D, 247
degA.(L, [ Arakelov degree of a metrized line bundle, 247
I IFS the Fubini-Study metric, 248
A(k)t torsion subgroup of an abelian variety, 252
t(o, x) Kummer pairing Gal(k/k) x A(k) -- A,,,, 261
r(S) the rank of the group of S-units Rk,s, 266
add the addition map on an abelian variety, 268
[m] multiplication-by-m on a formal group, 271
F(M) the group associated to the formal group F, 272
Al (k) kernel of reduction on the abelian variety A, 272
Rk,s the group of S-units of the number field k, 274
rl number of real embeddings, 274
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Ok the absolute discriminant of a number field k, 274
4' the regulator map Rk,s R, 277
Self°i(A/k) Selmer group of A with respect to the isogeny a, 280
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III(A/k) Tate-Shafarevich group of A, 280
I. the inertia group of the place v, 281
H) (GA, M) group of cohomology classes unramified outside S, 282
H° (G, A) the 0th cohomology group of G acting on A, 285
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8,, ...;,,, P normalized partial derivative, 307
Ind P the index of P, 308
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order order of a differential operator, 331
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Ind(s) the index of the section s, 403
log+ t maximum of 0 and log t, 415
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Wd (X) the image of X + + X in Jac(X), 439
9d linear system of degree d and dimension r, 440
h(X) height of projective variety X via Chow form, 446
hD(X) height of X relative to D using Chow forms, 446
deg,c X the projective degree of X with respect to L, 446
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an ample line bundle on A9,N, 448
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the canonical regulator of A/k, 459
the Tate module of A, 460
the Tate module of A tensored with Q, 460
the t-adic representation of an abelian variety, 460
the L-series of the abelian variety A, 461
the Arakelov height of P, 466
abelian varieties with good reduction outside S, 467
the Z-adic representation attached to A, 46.8
rational map for pluricanonical divisor mKx, 475.
the mth plurigenus of variety X, 475
the Kodaira dimension of the variety X, 475
the special subset of the variety X, 479
arithmetic analogue of characteristic function, 483
arithmetic analogue of counting function, 483
the arithmetic defect of a, 483
geometric exceptional subset in Vojta conjecture, 484
absolute logarithmic discriminant of P, 486
counting function for k rational points on X, 482
cone of effective divisor classes, 488
cone of ample divisor classes, 488
Nevanlinna invariant of the divisor D, 488
the boundary of the effective cone, 488
height zeta function, 489



Index

abc conjecture, 451

implied by modular parametrization
conjecture, 455

implied by Vojta conjecture, 487, 500
implies Faltings theorem, 455, 468
implies Fermat's last theorem, 452
implies Mordell conjecture, 455, 46$
implies Szpiro conjecture, 490
over function field, 456.

Abel, N., 111
Abel-Jacobi theorem, 114, 440
Abelian function, 111

addition formula, Ill
Abelian group

finitely generated, 258, 290
of finite rank, 434
parallelogram law, 201
quadratic form, 201 203 2205, 253
quadratic function, 205
structure theorem for finite, 126
torsion, 126
2-divisible, 205

Abelian integral, 1111
genus, 111

Abelian scheme, 163. 294, 367
of dimension , 163

Abelian surface, 478
Abelian variety, 29, 91; See also El-

liptic curve, Jacobian variety
abelian subvariety, 121
addition map, 268
Albanese, 131 209
ample divisor, 125. 12Z
ample divisor on simple, 119
ampleness criterion, 12Z
analogous to number field, 462
angle between points, 371
antisymmetric divisor and height, 191
Appell-Humbert theorem, 107
automorphism group is semi-direct

product, 288
base-point free divisor, 145
Batyrev-Manin conjecture, 255
Birch-Swinnerton-Dyer conjecture,

462
bound for rank, 267, 422
canonical embedding, 449
canonical height, 199, 204, 205, 238

3368, 459; See also Canonical height
canonical height of subvariety, 450
canonical height pairing, 208
canonical local height, 242
canonical regulator, 459
commutativity of group law, 120, 132
comparison of height of, 449
complex multiplication, 92, 461
complex representation, 109

complex torus is, 91
conductor, 453, 461, 468
conductor > 109. 464
connecting homomorphism, 279
constant part, 428
counting function, 216, 223, 224, 492
counting points of bounded height, 473
degree of an endomorphism, 149
degree of dual isogeny, 95
discrete topology induced by height,

444
divisor algebraically equivalent to 0,

207
dual, 107. 128, 130. 201
dual exists and is unique, 130
dual isogeny, 95
effective divisor, 127
effective Mordell-Weil theorem, 457,

463
endomorphism ring, 96, 134
even divisor class, 129
Faltings height, 4448 499
Faltings height compared to period,

464
family, 428
finite rank subgroup, 435
finitely many of bounded height, 449
finitely many with good reduction out-

side S 4fi2
formal group, 269
formal group isomorphic to kernel of

reduction, 222
full level N structure, 447
good reduction outside S, 486
group associated to formal group, 272
group of Riemann forms, 102
height counting function, 213
height bounded by conductor, 453
height of isogenous, 461
height of point in moduli space, 448
height via canonical embedding, 449
height regulator, 459
Hermitian form, 91
image is abelian variety, 94
independent morphisms to, 427, 432
infinite automorphism group, 107
injectivity of isogenies under reduction,

290
injectivity of reduction on torsion, 263,

272,294
inside Wd, 441
integral points on, 353, 484, 486
intersection index on, 125
isogenous to a product of simple

abelian varieties, 96
isogenous to dual, 148
isogeny, 95, 134
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Abelian variety (continued)

isogeny class characterized by L-series,

468
kernel of multiplication, 125
kernel of reduction, 267
Kodaira dimension, 476
Kodaira dimension of subvariety, 476
Kummer pairing, 261, 279
Kummer sequence, 272
t-adic representation, 460, 468
Lefschetz embedding theorem, 105
level structure, 447
lower bound for canonical height, 454
L-series, 461
map from Pn is constant, 132
map from variety, 123
map induced by theta functions, 102
moduli space, 142. 447, 448. 486
Mordell-Weil group, 252
Mordell-Weil theorem, 257, 456
morphism is composition, 119
morphism to a variety, 121
multiplication map, 9,4 119, 124, 191,

2600

multiplication map and height, 190
Mumford's formula, 124, 181
Nbron differential, 462
Ndron model, 162, 499; See alsoN6ron

model
N6ron-Severi group, 128
no prime to p torsion in formal group,

272
number of points modulo p, 291
odd divisor class, 129
over Z_8
p-adic representation, 109

Picard variety is an, 131
Poincare divisor, 108, 130. 207 208

459
Poincare irreducibility theorem, 95,

144
polarization, 131
preperiodic point, 138
principal homogeneous space, 289
principal polarization, 131
principally polarized is own dual, 131
projection-summation map, 121
quotient by abelian subvariety, 144
rank, 257
rank unbounded?, 464
rational map from projective space,

120
rational representation, 109
real period, 462
reduction of formal group, 271
R.iemann form, 95
Riemann theta function, 98 1529
Riemann-Roch theorem, 1.04
Selmer group, See Selmer group
semistable, 163, 448
sign of functional equation, 461 462

Index

simple, 9_,6 109, 1 441
smoothness of, 119
special subset, 480
stabilizer of subvariety, 133
structure on Picard group, 130
subtorus is abelian variety, 94
subvariety, 434, 435
subvariety contains abelian variety, 497
subvariety of general type, 478
subvariety with trivial stabilizer, 492
symmetric divisor and height, 191
Szpiro conjecture, 453
tangent space, 125
Tate module, 460
Tate module of isogenous, 468
Tate-Shafarevich group, 462; See also

Tate-Shafarevich group
theorem of the cube, 121
theorem of the square, 126
theta function, 97, 122
theta function represents divisor, 98
torsion subgroup, 125. 252
torsion subgroup is finite, 198
torsion subgroup is uniformly

bounded?, 4M
torsion subvariety, 444, 450
translation invariant divisor class, 128
translation map, 108. 119
very ample divisor, 100
Vojta conjecture, 484
Well estimate, 461, 463
Weil pairing, 133

Abramovic, D., 439. 474, 482
Abscissa of convergence, 489

equal to Nevanlinna invariant, 491
independent of divisor, 502
inverse linear, 500
Nevanlinna invariant and, 500
properties of, 500

Absolute Galois group, 43
Absolute height, 1$3
Absolute logarithmic discriminant, 486
Absolute value, 159, 170, 173

archimedean, 159, IM
attached to a point, 159

attached to a prime ideal, 159
characterizes ring of integers, 174

completion at, 171
complex, 112
degree formula, 171, 227
dividing, 121
equivalent, 160
from embedding in C, 172
local degree, 171
lying over, 171
Mk-bounded function, 22M
Mk-constant, 238, 319, 414
nonarchimedean, 159, 170
of product of polynomials, 2
of sum of polynomials, 233
on a function field, 199
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Absolute value (continued)
on a number field, 159
p-adic, 170, 171, 171
product formula, 122
product rule, 160, 171
real, 172
set of (MK), 166
standard set of on k, 111
standard set of on Q, 111
triangle inequality, 159
trivial, 159
ultrametric, 159

Abstract differential form, 26
Addition formula,

abelian function, 111
elliptic, 111
trigonometric, 111

Addition on an elliptic curve, 78
Additive formal group, 269. 272
Additive group, 29
Additive reduction, 452
Additivity of local height, 239
Adjunction formula, 94
Admissible pair, 403, 404, 412, 419, 423
Affine n-space, 9

is a functor, 9
is irreducible, 11

set of k-rational points, 9

Zariski topology, U
Affine algebraic group, 29
Affine algebraic set, 9

defined over k, 9
Affine cone, 23
Affine coordinate ring, 11. 394
Affine curve

Euler-Poincare characteristic, 353
integer points on, 353

Affine function, 97
Affine height of a polynomial, 224
Affine hypersurface, U
Affine line, points of Ay,1, 165
Affine Mk-bounded, 2M
Affine model, 69
Affine open subset, 14
Affine scheme, 152

fibered product, 156
morphism, 152. 153

Affine space
differential forms on, 26
dimension of, 22
function field of, 16
linear system of zero, 50

Affine variety, 11
affine coordinate ring of, U
category of, 17
coordinate ring is UFD, 42
dimension of, 22
divisor class group zero, 47
finite morphism, 18
integer point counting function, 223

integral point, 292, 493

529

morphism induces ring homomor-
phism, 11

product of, U
sheaf of invertible functions, 59
sheaf of regular functions, 59

Albanese variety, 116, 131, 209
relation to Picard variety, 132

Algebra, finitely generated, 143
Algebraic curve, See Curve
Algebraic equivalence, 46, 207

height and, 185, 192, 194.2 , 427
Algebraic function

estimate for derivative, 408
Taylor series, 409

Algebraic geometry in characteristic p, 7
Algebraic group, 28

abelian variety, 91
affine, 29
commutative, 120 132
differential forms bundle is trivial, 66
elliptic curve, 78
group of components, 2R
identity component, 28
isogeny, 95
Manin-Mumford conjecture, 439
maximal connected affine subgroup, 29
projective, 29
smoothness of, 28, 119
stabilizer of subvariety, 133
structure theorem, 29
tangent bundle, 61
tangent bundle is trivial, 66
tangent map, 28, 66
translation map, 28, 66

Algebraic group action, 495
Algebraic integer, power of, 309
Algebraic number

defect, 493
height bounded by discriminant, 252
in a box, 319

Algebraic point

discrete topology induced by height,
444

of bounded height, 254
Algebraic set

affine, 9
dimension of, 22
intersections of, 10
irreducible, 11
irreducible components of, 11
is union of varieties, 11
k-rational points of, 10
projective, 13
quasi-projective, 14
union of, 1Q
Zariski topology, 1Q

Algebraic surface, See Surface
Almost ample canonical divisor, 491
Alternating bilinear form, 103

Frobeniua basis, 193
Pfaffran, 103
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Alternating form, invariants of, 143
Ample cone, 488

blowup of projective plane, 489
blowup of projective space, 541

Ample divisor, 52, 65, 102, 127
attached to nondegenerate Riemann

form, 102
criterion for, 52, 53
generate Picard group, 53, 186
height dominates, 252
Nakai-Moishezon criterion, 65
on a curve, 71, 375
on an abelian variety, 105. 125
on moduli space, 448
on simple abelian variety, 109

Ample linear system, criterion for, 52, 53
Analytic continuation of lrseries, 461
Analytic group, isogeny of, 95
Angle, canonical height, 371
Antisymmetric divisor

and height, 1.91
canonical height with respect to, 224

Appell-Humbert theorem, 107
Approximation exponent, 299

equals 2 for almost all numbers, 361
history of, 344
is >2,301

Arakelov degree, 247, 446
used to define height of abelian variety,

448
Arakelov divisor, 242

degree, 247
principal, 247

Arakelov height, 466
Arakelov intersection theory, 367, 380
Arakelov, S.J., 160
Arakelov self-intersection, 411
Arakelov theory, 7s 243. 438, 445, 466
Arc length, 116
Archimedean absolute value, 1.59

from embedding in C, 172
Archimedean valuation, Gauss lemma,

229
Arithmetic case, 159
Arithmetic defect, 483
Arithmetic genus

of a curve, 84
of a product, 85, 391, 429
of projective plane, 85
of a surface, 8,5 391

Arithmetic intersection, 446
Arithmetic intersection theory, 380
Arithmetic progression, primes in, 349
Arithmetic Riemann-Rock, 380
Arithmetic surface, 466
Arithmetic-geometric inequality, 275
Automorphism group

of abelian variety, 288
of a curve, 90
of a curve of genus > 2, 90
of an elliptic curve, -990 107

Index

finite, 107
infinite, 107
semi-direct product, 288

Automorphism
extension of, 15.7
of projective space, 47

Automorphy factor, 97 101, 122, 126
Auxiliary polynomial, 302, 316, 368

construction of, 320
index is large, 323, 324
index is small, 328
nonvanishing of, 302, 329 333
vanishing of, 302, 323, 324

Bad reduction, 158
Baker, A., 360, 471
Base locus, 64

height, 185. 256
Base point, 51
Base point free, 51
Base point free divisor, 55_3 71

on an abelian variety, 105
pullback, 54

Basis, small for a lattice, 459
Batyrev, V., 224, 491, 494, 495
Batyrev-Manin conjecture, 224, 491 492

abelian variety, 255
bielliptic surface, 493
counterexample to refined version, 495
elliptic K3 surface, 493
Enriques surface, 493
explicit leading coefficient, 495
Fhno variety, 224, 492, 493
fibrations, 493
finite unramified cover, 493
flag variety, 494
Grassmannian variety, 494
homogeneous spaces, 494
projective space, 255
rational ruled surface, 493
toric variety, 495

Belyi uniformization theorem, 87, 468
Bezout theorem, 84

arithmetic, 440
Bicanonical divisor, 92
Bielliptic curve, 442
Bielliptic surface, 478

Batyrev-Manin conjecture, 493
Kodaira dimension, 43.6

Bilinear form,
alternating, 103
associated to quadratic function, 253`
determinant, 103
F4obenius basis of alternating, 1.43
Pfaffian of alternating, 143

Bilinear pairing, canonical height, 244
Billard, H., 492, 49,g
Binary form, integer value of, 362
Binomial formula, 312
Birational equivalence, 16, 18
Birational involution, 21, 52, fig
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Birational map, 16
Birational morphism

between curves, 69
blowup is a, 21

Birch, B., 493
Birch-Swinnerton-Dyer conjecture, 462
Blowup, 70

height on, 256
is a birational morphism, 21
of a node, 86
of a point, 20. 21
of an ordinary singularity, 86
of projective space, 256

Blowup of P2
ample cone, 489
counting function, 489
effective cone, 489
Nevanlinna invariant, 489

Blowup of P^
ample cone, 501
counting function, 494. 5111
Nevanlinna invariant, 541

Bogomolov conjecture, 444
generalized, 444

Bogomolov, F., 443
Bombieri, E., 341368, 474
Bombieri-Lang conjecture, 474, 479 484

491
finite unramified morphism and, 481
over function fields, 480
rational map and, 481

Bost, J.-B., 462
Bounded height, 254

finitely many points of, 174. 177, 183
set of, 428

Box, number of algebraic numbers in,
319

Brauer group, 495
Breuil, C., 454, 461
Buium, A., 439
Bundle

line, 60
section, 61
tangent, 61 66
trivial, 61
vector, 64

Call, G., 493
Canonical class, 39

Hurwitz formula, 42
of a complete intersection, 4Z

of a hypersurface, 42
of a product of varieties, 41
of projective space, 39
on a curve, 374
on projective space, 47
under finite map, 42

Canonical divisor, 39, 84
almost ample, 491
ample anti-, 224 477
anti- is effective, 480

531

degree of, 71 390
finite order, 224 492 544
not effective, 491
of complete intersection, 476
of a curve, 6_8 70 Ti 138 254 429
of a curve of genus > 2 82
of a product, 390
of projective space, 39
pluri-, 475
trivial, 224 492

Canonical embedding of a number field,
274

Canonical height, 195. 199 204 205 228
368

angle between points, 371
antisymmetric divisor, 244
bilinear pairing, 200 216
cone, 371
elliptic curve, 253

for commuting morphisms, 252
induces discrete topology, 444
is quadratic form, 244
is sum of canonical local heights, 241.

242
linear, 204
linear form, 206
local, 241
lower bound for, 453, 455 473
of subvariety of abelian variety, 450
of torsion point is zero, 201
onAxA,208
on an abelian variety, 199, 204, 205
on a K3 surface, 1 77 241
pairing, 200 21fi
parallelogram law, 199
positive definite, 201. 369
quadratic form, 246
quadratic function, 245
regulator, 201. 459
symmetric divisor, 199
theta divisor, 254
zero implies preperiodic, 1.97
zero implies torsion, 20.1

Canonical local height, 241
explicit formula, 242
functorial properties, 241
isogeny property, 242
on abelian variety, 242
series for, 242
sums to global canonical height, 241,

242
translation property, 242

Canonical map on hyperelliptic curve, 89
Caporaso, L., 474, 481
Cartier divisor, 37

effective, 37
group of, 37
group of classes, 38
height and, 1$5
is global section of sheaf, 38, 65
line bundle associated to, 63
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Connected fiber, Liz
Connectedness principle, 132
Connecting homomorphism, 279, 282
Conrad, B., 454, 461
Constant, Mk-, 238 292 319, 413
Continued fraction, 301, 365

Lagrange theorem, 365
periodic, 3fh5
quadratic number, 36a

Continuous cocycle, 286
Continuous 1-cocycle, 284
Convergent to a real number, 365
Convex cone, 488
Convex function, 230
Coordinate ring

affine, Ll
depends on embedding, 311
of a projective variety, 13

Coordinate, change of, 430
Cotangent space, 24

map induced by rational map, 25
Counting function, 188 483. 497 490;

See also Height counting function
abelian variety, 224 492
blowup of projective plane P2, 489
blowup of projective space P°, 494

01
complete intersection, 493
cubic hypersurface, 494
cubic threefold, 494
curve, 216. 384
equivalent, 5112
gap principle, 219 220 254
growth rate log log, 2 255. 496
independent of height function, 5112
integer point, 223
Jacobian variety, 216
normal variety, 503
product, 5112
product of projective spaces, 493
projective space, 223
singular variety, 503

variety with trivial canonical divisor,
224. 492

Cousin's theorem, 97
Covering

finite, 154
ramified at 3 points, 87
universal, 68

Cremona transformation, 21 ,5, 52. 69
Cube, theorem of the, 121, 122
Cubic curve, 73, 26

inflection point, 88
tangent and chord process, 25Z

Cubic hypersurface, 494
Cubic surface, 30, 492, 5011

contains genus 4 curve, 82
Curvature, fib
Curve, 23 See also Riemann surface

affine, 353
affine coordinate ring, 394
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affine model, 68
ample divisor, 53 71, 325
ample divisor on product, 431
arithmetic genus of a product, 85
automorphism group, 90
base point free divisor, 53, 71
bielliptic, 442
birational morphism is isomorphism,

69
birational to plane curve, 69
birational to smooth curve, 70
blowup, 70. 86
bound for number of rational points,

429,430
canonical class, 374
canonical divisor, 68. 70 73. 138. 254,

424
conic, 24
construction of Jacobian variety, 145
counting function, 216. 384
counting points of bounded height, 473
curvature, 68
degree of a canonical divisor, 73 3911
degree of divisor, 211
degree of map to Jacobian, 25.4
degree N, 89
d-gonal, 440
diagonal in product, 216
differential 1-form on Jacobian, 148
discrete topology induced by height,

444
effective bound for integer points, 471
effective bound for rational points,

426, 427. 432
elliptic, See Elliptic curve
Faltings theorem, 456
family dominates general type variety,

481
finite cover, 154
finiteness of rational points, 362
gap principle, 218. 25C 383 425
general, 491
genus, 61 21. 84
genus zero, 73
genus one, 73 See also Elliptic curve
genus one isomorphic to Jacobian, 115
genus g > 2 81 362
genus two is hyperelliptic, 83
genus three, 87
genus four, 87
genus of finite cover, 88
genus of plane, Z2, 84
genus of singular, 74
gonality, L48
good reduction, 164, 426

everywhere, 144 165
outside S. 486

Hasse principle, 75
height, 192 217
height counting function, 211
height of point in moduli space, 448
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Curve (continued)
height relative to diagonal, 256
hyperelliptic, 73 8k 86 148 164, 431,

440, 481, 498
image of Xd in Jacobian, 43.4
integer point, 349, 333, 364 365
integer point on hyperelliptic, 349
Jacobian, See Jacobian variety
Jacobian embedding, 134
Kodaira dimension, 426
Lang integer point conjecture, 473

level structure, 447
map of low degree to P', 440
map to Jacobian, 254
minimal model, lfil
minimal model of Jacobian, 164
model for, 68
moduli space, 83 142 441, 447, 486
morphism to abelian variety, 427. 432
Mumford theorem, 216, 384
Ndron-Severi group, 131
normal iff smooth, 33
normalization, 70, 353
on a surface, 84
ordinary singularity, 68
over finite field, 156
over function field, 439
over Z, 8
plane, 443
plurigenera, 426
points of bounded degree om, 439
product of two, 84
product with itself, 86, 391
projective model, 69
pullback of Poincar6 divisor, 138, 246

374
pullback of theta divisor, 1388 246

374, 417
quantitative bound, 423
ramification point, 154
rational, 75
rational map extends, 2 l fig
rational point, 271 431
rational points are widely spaced, 218,

3l 425
relatively minimal model, 161
r-gonal, 148
Riemann hypothesis, 156
Riemann-Hurwitz formula, 72
Riemann-Roch, 70. 135 136, 138
Roth theorem on, 354 355
semistable reduction, 161 164
Siegel theorem, 456
small point conjecture, 470
smooth iff normal, 33
symmetric product, LW, 148

is a variety, 144
is smooth, 144

trichotomy of, 68
trigonal, 14$, 440

Index

uniform bound for number of rational
points, 425. 426, 432 474, 481

universal cover, fib
very ample divisor, 53 71 375
Vojta conjecture, 484
Weierstrass point, 89, 90, 297 426
Well reciprocity law, 91
zeta function, 1.56

Curve of genus at least two
automorphism group, 90
canonical divisor, 82

Curve of genus one, 76 See also Elliptic
curve

cubic model, Z6
discriminant, ZZ
effective bound for integer points, 30
with no rational points, 81

Curve of genus zero, 74
Cusp, 426, 452
Cusp form, 454

David, S., 454
Debarre, 0., 477
Decomposition group, 460
Decomposition theorem, 255
Dedeldnd domain, 123

dimension of Spec, 154
Dedekind zeta function, 462
De Diego, T., 425 472, 423
Defect, 483
Defect relation, analogue of Roth theo-

rem, 483
Defined over k, See Field of definition
Deformation, 1bfi
Degree

Arakelov, 247
canonical divisor, 71, 390
compactified divisor, 24Z
divisor on a curve, 70
dual isogeny, 95
endomorphism, 1n9
finite morphism, 12
formula, 171 222
hypersurface, 36. 46
isogeny, 95 1119
map from curve to Jacobian, 254
map to Pt of low, 440
metrized, 248
multiplication on an abelian variety,

125
number field degree bounded by dis-

criminant, 276
points of bounded, 439
projective, 46
subvariety, 46
with respect to a divisor, 46

Degree formula, 171 227
Del Pezzo surface, 493

split, 494
Demjanenko, V.A., 426, 432
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Derivative, 24
Eisenstein estimate, 408
height of, 234
Leibniz rule, 403, 406
product rule, 312 331 362
transformation of height, 325
valuation of, 234

Desargues, 12, 160
Descent lemma, 258, M
Descente infinie, 259
Determinant

height of, 256
multi-linearity, 331
of a lattice, 255
of an alternating bilinear form, 1X13
Wronskian, See Wronskian determi-

nant
d-gonalcurve, 440
Diagonal

divisor, 325
height with respect to, 256
on product of curves, 216
reduction to, 23
self-intersection, 86, 3,91

Diagonalization of quadratic form, 204
253

Diamond, F., 454, 461
Differentiable manifold, 5flfl
Differential equation

of elliptic function, X10
of sine, 1111

Differential form, 26, 27
abstract, 26
affine space, 26
algebraic group, 66
divisor of, 39
hyperelliptic curve, 87
induced map on, 28
locally free sheaf of, 611
Neron, 462, 499
projective space, 26
rational, 27
regular, 26, 27, 88
sheaf of, 58

Differential operator, 402
Leibniz rule, 403, 406
normalized, 331
order of, 331
Wronskian determinant, 331

Dimension
affine space, 22
affine variety, 22
formal group, 269
hypersurface, 22
intersection, 23
Krull, 22, 154
linear system, 49
projective space, 22
scheme, 154
space of differential forms, 2Z
subvariety, 22

535

subvariety of strictly smaller, 23
variety, 22
tangent space, 25

Dimension theorem, 1377
Diophantine approximation, 299, 368

almost all numbers have approxima-
tion exponent two, 361

auxiliary polynomial, 302 316 320
continued fraction, 301, 365
Dirichlet theorem, 300. 301
exponent, 299
gap principle, 344, 363
Gelfand-Dyson theorem, 34X1
index at nearby point, 326
Jacobian variety used for, 356
Liouville theorem, 300, 301, 362
reduction to simultaneous, 305, 341
Roth lemma, 333
Roth theorem, 300 305. 341

for curves, 354 355
Siegel theorem, 300.
Thue theorem, 300

Diophantine geometry
effective, 360, 452
qualitative, 457
quantitative, 457

Direct sum of sheaves, 58
Dirichlet theorem on Diophantine ap-

proximation, 300, 301
Dirichlet theorem on primes in arith-

metic progression, 292. 349
Dirichlet unit theorem, 206 204 350
Discrete subgroup, 224
Discrete valuation ring, 35
Discriminant, 77 292 402 482

absolute logarithmic, 486
bounded by conductor, 453
elliptic curve, 166, 952
finitely many number fields with fixed,

273
Kummer extension, 265
lower bound for height, 252
minimal, 452 498, 493
of an order, 293
of number field bounds degree, 276

Distance function
v-adic, 496
real, 500

Division algebra, 96

Divisor
algebraic equivalence, 4fi
algebraically equivalent are ample, 65
algebraically equivalent to zero, 207

209
ample, 52, 65 77 102 127, 325

criterion, 52, 53
generate Picard group, 53 186
on abelian variety, 1X15

antisymmetric, 209
height for, 191

Arakelov, 24Z
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Divisor (continued)
base point free, 51, 71

criterion, 53
on abelian variety, 145

bicanonical, 82
canonical, 39

height relative to, 105 245
Cartier, 37
compactified, 247
complete linear system of, 54
defined over k, 43
degree, 74
degree of a subvariety with respect to,

46
degree of compactified, 247
diagonal, 375
effective, 3,4 37, 49, 127

height for, 185, 217 219, 256
evaluated by a rational function, 91
group of Well, 34
height associated to, 184 373

horizontal, 244
irreducible, 35
line bundle associated to, 63
linear equivalence class of, 35
linearly equivalent, 35, 38

are ample, 65
local ring, 35
moving lemma, 41)
multiplicity, 34
Nakai-Moishezon criterion for ample-

ness, 65
Nevanlinna invariant, 488
normal crossings, 484 495 499
of a function, 33_5 38
of a hypersurface, 38
on a surface, 84
Poincar6, 108, 128
poles, 35
positive, 34, 37
principal, 35, 38
principal compactified, 247
pullback by a morphism, 40
pullback by multiplication map, 124,

191
represented by theta function, 98
self-intersection, 84
sheaf determined by, 60
slice, 375
space of rational functions with, 44 49
support, 34, 37
symmetric height for, 191
theta, 254
translation invariant, 128
translation map, 126
valuation attached to, 35
vertical, 244
very ample, 5,5561IM
Vojta, 373, 377
Well, 34
zeros, 35

Index

Divisor class group, 35
exact sequence for, 37
map from Picard group, 38
product, 48
product of projective spaces, 36
projective space, 36

Divisor class

canonical, 39
even, 123

odd, 123
of finite order, 254
pullback by a morphism, 41

Divisor group,
exact sequence for, 3Z
extended, 241
map from Cartier to Weil, 38
of a Riemann surface, 114

Domain
homogeneously expanding, 214
of a rational map, 16

Dominant morphism, 34
Dominant rational map, 16

induces field homomorphism, 18
Kodaira dimension of image, 476

Double point, 161
Dual abelian variety, 107 128 130 191

247
canonical height pairing, 248
exists, 134
is unique, 130
isogenous to, 1518
Poincar4 divisor, 148
polarization, 131

Dual isogeny, 95
degree of, 95

Dual projective space, 33
Dual sheaf, 66
Dual vector bundle, 62

tensor product, 66
transition function, 66

Duality, 70
Dualizing sheaf, 466
d-uple embedding, 19 41, 52, 66_4 376

height, 179
projectively normal, 376

Dynamical system, 197
Dyson lemma, 368, 384

Vojta generalization, 3111)

Effective cone, 488
blowup of projective plane, 482
canonical divisor not in, 491

Effective divisor, 34, 37, 49, 50, 127
height, 195 217 219 256
represented by theta function, 98

Effectivity, 457
Faltings theorem, 427 421 432 465
Mordell-Weil theorem, 457, 463
Siegel theorem, 360 457
unit equation, 360

Eisenstein estimate, 948
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Eisenstein-Langlands L-series, 934
Elimination theory, 11
Elkies, N., 468
Ellipse, arc length, 110, 116
Elliptic curve, 77 110. 166 481, 498,

499; See also Curve of genus 1
addition law, 78
additive, 452
automorphism group, 90, 101
canonical height, 253
canonical local height, 242
complex, 91, 94
complex multiplication, 99 283
complex points, 499
conductor, 452
conductor > 11, 464
cusp form of weight 2. 454
defined over k, 77
discriminant, 166 452
double cover, 442
everywhere good reduction, 1fi6
Faltings height, 49 499
Prey conjecture, 453
good reduction, 166
group law formulas, 79
high rank, 464
independent morphisms to, 432
inflection point, 88
integer point, 353, 431
invariant differential, 454
inverse on, Z8
is a group, Z8
isomorphic to Jacobian, 115
Lang height lower bound conjecture,

453,455 423
Lang integer point conjecture, 473
local height, 242
lower bound for canonical height, 453,

455
Lutz-Nagell theorem, 45Z
minimal model, 163
modular, 283
modular parametrization, 454, 455
Mordell-Weil theorem, 36Z
multiplicative, 452
over Q is modular, 461
Picard group, 78
point at infinity, 77
points of order 3 88
rank unbounded?, 464
rational points on, 81
regular, 166
regular differential from, 88
Riemann form, 92
Riemann-Roch theorem, 80
semistable reduction, 162 452
special fiber, 166
symmetric product, 148
Szpiro conjecture, 453
Szpiro ratio, 454
tangent and chord process, 251
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torsion subgroup, 452
is uniformly bounded, 457

translation map, 90
unstable, 452
upper bound for rank, 465
Weierstrass equation, 7 164, 452
Weierstrass p function, 97
Weierstrass o function, 97
Weierstrass ( function, 97
weight of Weierstrass coefficients, 78

Elliptic function, 1.10
addition formula, 111

Elliptic integral, 110
arc length of ellipse, 116

Elliptic surface, 478, 499
K3, 493
Kodaira dimension one, 478
rational, 499

Embedding
associated to very ample divisor, 373

closed, 30

d-uple, 19 4,1 52, 6 , 179
Lefschetz theorem, 105

Endomorphism ring, 134
of abelian variety, 96
of complex torus, 94
unit group, 134

Endomorphism degree, 149
Enriques surface, 478

Batyrev-Manin conjecture, 4922 493
integral points, 500
Kodaira dimension, 476

Enriques-Severi-Zariski Theorem, 55, 64.
392

Enumerative geometry, 44
Equivalence,

algebraic, 46
birational, 16
quotient by relation, 146

Equivalent absolute values, 160

Euclidean vector space

cone, 428
counting function of lattice, 2220. 254
gap principle, 219 220. 254

Euler formula, 202
Euler-Poincar5 characteristic, 70

of an affine curve, 35.3
Even divisor class, 129
Evertse, J.-H., 349
Exceptional divisor, height with respect

to, 256
Exceptional set, 484

empty, 494
Expanding domain, 214
Exponential map on a group variety, 117
Extension

of a morphism, 158
of scalars, 156

Fadeev, D., 431
Faltings, G., 367
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Fallings height of an abelian variety, 448
comparison with period, 464
comparison with Well height, 448
N4ron differential and, 499
of an elliptic curve, 4499. 499

Fallings isogeny theorem, 468
Fallings product lemma, 368, 380 In
Fallings theorem (Mordell conjecture),

168 211 367, 456, 480, 484
Arakelov theory approach, 466
effective, 487 431 432, 438 465
implied by abc, 455, 468
implies Siegel theorem, 333 431
integral points on abelian varieties,

484, 486
Lang conjecture, 435
model-theoretic proof, 439
moduli approach, 466
Mordell-Weil approach, 466
naive approach, 40
on abelian varieties with good reduc-

tion outside S, 486
original proof, 486.
over function field, 439
quantitative form, 472
semiabelan variety, 432
small point approach, 470
Vojta inequality implies, 3111

Family
of abelian varieties, 428
of schemes, 15f1

Fhno variety, 477, 493
Batyrev-Manin conjecture, 234 492
complete intersection, 477, 493
flag, 477
Grassmannian, 477
has rational curve through every point,

478
homogeneous space, 424
Picard group equal to N&ron-Severi

group, 488
projective space, 477
threefold, 493

Feld-an, I., 36
Fermat curve, 296
Fermat descente infinie, 259
Format quintic surface, 480
Fermat's last theorem, 428
for exponent p = 5 431

implied by abc, 452
Fiber

connected, 157
generic, 156
irreducible, 151
multiple, 156
of a scheme morphism, 156
special, 157. 158

Fibered product, 155

exists, 15fi

extension of scalars, 156
of affine schemes, 166

Index

of family of curves, 481
of family of general type varieties, 482

Field
absolute Galois group, 43
absolute value, 159
non-algebraically closed, 43
skew, 134

Field homomorphism, induces dominant
rational map, 16

Field of definition
of an algebraic set, 9

of a divisor, 43
of a point, 11176
of a projective variety, 13
of Jacobian variety, 1.35

Fine moduli space, 447
Finite abelian group structure theorem,

126
Finite cover, 154
Finite field

curve over a, 130
Frobenius map, 31, 89

Finite group scheme, 467
Finite map, See Finite morphism
Finite morphism, 18

canonical lass, 42
degree of, 19
has finite inverse image, 13
Hurwitz formula, 42
intersection index, 46
Kodaira dimension for unramified, 416
Nevanlinna invariant, 489
pullback of ample divisor, 54
ramification index, 41
ramified, 41
unramified, 481

Finite rank abelian group, 434
Finite surjective morphism, 1.9
Finitely generated

abdian group, 258
algebra, 133
field, unit equation over, 345
group, 290

of rational points, 257
of S-units, 274
of units, 366 369 350

module, 18
Finiteness of rational points on curves of

genus g > 2_ 367
First cobomology set, 286
First minimum, 254
Fixed component of a linear system, 51
Flag variety

Batyrev-Manin conjecture, 494
is Fano, 477

Flynn, E., 432
Fontaine, J: M., 464
Form, See Differential form, 27
Formal group

abelian variety, 269
additive, 269. 212
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Formal group (continued)
axioms for, 269
defined over a ring, 2711
dimension of, 269
general linear, 263
group associated to a, 222
homomorphism, 2711
isomorphic to kernel of reduction, 272
isomorphism, 2211
multiplication map, 271

is an isomorphism, 211
multiplicative, 269, 272
no prime top torsion, 212
reduction, 211

Formal power series, criterion for inver-
sion, 270 294

Forward orbit, 191
Fourier series, 144
Fraction field, 12

valuation on, 35
Fraction, continued, 301, 363
Franke, J., 494
Free sheaf, 59

locally, 58
rank of, 59

Frey conjecture, 453
equivalent to abc, 498

Frobenius basis, 1113
Frobenius map, 31, 89, 464

trace of, 468
Fubini-Study metric, 248 255
Full level N structure, 447
Fulton, W., 455
Function field, 16, 65. 439

abc conjecture, 456
absolute value, 159
analogous to number field, 159
height on, 185
isomorphism induces birational equiva-

lence, 18
of A", 1S1
of P", 16
of a hyperelliptic curve, 81
Szpiro conjecture, 455
transcendence degree of, 22
valuation on, 35
variety defined over, 243

Function
elliptic, 110
germ of a, 58
linearly independent iff Wronskian is

nonzero, 331, 363
Mk-bounded, 238
regular, 15

Functional equation
L-series, 461, 463
of a semicharacter, 147
of a theta function, 97, 100, 102

103
of zeta function of a curve, 151)
sign of, 461, 462
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Functor
affine n-space is a, 9
Jacobian, 135 142
of points, 155
Picard group is a, 40

Functoriality
of height, 184. 194
of local height, 239

Fundamental domain, 214
of a lattice, 255

Galois cohomology, 293, See also Group
cohomology

inflation-restriction sequence, 282
Kummer sequence, 288
restriction map, 280

Galois group, 43
action on P", 12
decomposition group, 40
Frobenius element, 454
inertia group, 281 464

Galois invariance of height, 176
Galois theory, 7
Gap principle, 218, 219, 222 254 344,

363, 383, 425
counting function, 23, 220 254
lattice, 220, 254
Mumford, 429, 430

Gauss lemma, 229 329
archimedean analogue, 229

Gauss norm
of a polynomial, 224
of product of polynomials, 233
of sum of polynomials, 233

Gelfand inequality, 228 256. 32_9 33_4
430

General curve, 441
General Jacobian is simple, 441
General linear group, 29 47 430
General linear group

kernel of reduction, 2268. 295
projective, 90

General type, 4 479, 481
family of dominates general type vari-

ety, 482
finite unramifiod morphism, 481
hypersurface, 418
Kodaira-Parshin fibration, 478
log, 486
surface of, 47_8
subvariety of abelian variety, 419

Generalized Wronskian determinant, 331
Generic fiber, 156
Generic point, 153
Genus, 67

arithmetic, 88 85, 381 428
curve on a surface, 84
curve, 71
finite covering of curves, 88
formula, 87 456, 469; See also Ftie-

mann-Hurwitz formula
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Genus (continued)
four, 82
geometric, 28
greater than one, 81
hyperelliptic curve, 82
is birational invariant, 71
of an integral, 111
one, 76
projective line, 71
Riemann surface, 67
Riemann-Hurwitz formula, Z2
singular curve, 74
smooth plane curve, 72, 84
three, 82
zero, 71, 74

Geometric case, 159
Geometric genus, 28
Geometric point, 153
Geometric quotient, 146

exists for finite groups, 143
Geometry of numbers, 2Z3
Geometry, enumerative, 44
Germ, 59
Global section, 59

admissible pair, 403, 404 412 419 423
index, 403
small, 389, 393 419 422

Gonality, 148
Good reduction, 158

abelian variety with outside S 467
curve with, 426
elliptic curve with, 1516
everywhere, 166
elliptic curve with, 166
projective space, 158

Graded ring, 165
Grassmannian variety, 31, 48, 142

Batyrev-Manin conjecture, 424
is Fano, 477
Picard group, 48
Plucker embedding, 2, 48

Green function, 247
Gross, R., 345
Grothendieck, A., 1 11. 153
Group

additive, 29
afllne, 22
algebraic, 28 66

action, 495
elliptic curve, 78
finite rank, 434
finitely generated, 258. 299
general linear, 29
multiplicative, 29
of cocycles, 286
of components, 28

of Jacobian variety, 169
of invertible sheaves, 60Group

cohomology, See also Galois coho-
mology

connecting homomorphism, 287

Index

functoriality, 282
inflation map, 287
inflation-restriction sequence, 282 28Z
long exact sequence, 282
restriction map, 280, 28Z

Group scheme
finite, 462
N6ron model, 163

Group variety
addition map, 268
compactness implies abelian, 107
conjugation map, 19I
exponential map, 107
projective is a torus, 107
unit equation in, 346

Hadamard's inequality, 255
Harris, J., 474, 481
Hasse principle, 75, 264

failure of, 281
for complete intersection, 424

Heath-Brown, D.R., 494
Height, 188 368

absolute, 176 183
additivity, 185
aflne of a polynomial, 224
algebraically equivalent divisors, 185.

192 194 217,422
ample divisor dominates, 252
analogous to characteristic function,

483
antisymmetric divisor, 191
Arakclov, 466
Arakelov degree defines a, 446
associated to divisor, 323
attached to a metrized line bundle, 248
bounded below by discriminant, 252
bounded if D has finite order, 254
canonical, 258: See also Canonical

height
of subvariety of abelian variety, 450

canonical local, 241
on abelian variety, 242

Chow form defines a, 446
commuting morphisms, 252
converts geometry to arithmetic, 184
counting function, See Height counting

function
discreteness of points with respect to,

443
divisor algebraically equivalent to zero,

249
d-uple embedding, 112
effective divisor, 185 217 219 256
extension field, 243
Faltings, 448 499
finitely many abelian varieties of

bounded,449
finitely many points of bounded, 174,

177 185
functoriality, 184 L94
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Height (continued)
Galois invariance, 17.6
geometric definition, 243, 245
global section of small, 389, 393 419,

422
induces discrete topology, 444
linearly equivalent divisors, 185
local, 237 239 482 482
logarithmic, 174 176 183
Mahler measure, 230
metrized, 248

is a Weil, 250
on projective space, 248 255

multiplication on abelian variety, 180
multiplicative, 174, lib
normalization, 184
of abelian variety

bounded by conductor, 453
as Arakelov degree, 448
using canonical embedding, 443
using moduli space, 448

of collection of polynomials, 225
of curve using moduli space, 448
of derivative, 234
of determinant, 2511
of isogenous abelian variety, 462
of point in moduli space, 448
of polynomial, 224 225, 33 4
of prime ideal, 22
of product, 256

of polynomials, 226 228, 233 430
of shifted polynomial, 234
of sum, 2511

of polynomials, 226, 233
of value of polynomial, 225. 234
of variety, 438 445

via its Arakelov degree, 446
via its Chow form, 446

on P^(Q), 174
on blowup, 256
on curve, 192 217
on variety over function field, 243.245
over function field, 185
parallelogram law, 169
points of bounded on abelian variety,

473
positivity, 185 1 44 217, 2L9, 2511
projective of a polynomial, 225
reflects geometry, 169
relative to k, 174

relative to a morphism. 183
root of unity, 128
Segre embedding and, 129
set of bounded, 428
sum of local heights, 239
symmetric divisor, 191
transformation properties

under derivative, 325
under linear map, 180
under morphism, 179 190, 251
under rational map, 179, 221 252

541

uniqueness, 185
vertical divisor is bounded, 244
well-defined, 175

Height counting function
canonical height, 214
on abelian variety, 213
on curve, 211
on projective space, 211

Height machine of Weil, 169 194 245
382

for line bundles, 134
on singular varieties. 185

Height regulator, 459
Height zeta function, 489, 491

abscissa of convergence, 489, 491, 500
abscissa of convergence independent of

divisor, 502
Hensel lemma, 281. 293
Hermite theorem, 459
Hermite theorem, 260 264, 223 276,

299,459
Hermitian form, 91, 92 See also Rio-

mann form
real bilinear alternating form, 92

Hilbert, D., 143
Hilbert basis theorem, 9 111 2811
Hilbert tenth problem, 457
Hilbert Theorem 90 33 44 42 288
Hilbert Nullstellensatz, 10
Hindry, M., 438. 454, 455. 473
Hironaka theorem, 243
Homogeneous coordinate ring, 13, 30
Homogeneous coordinates, 12
Homogeneous height, 2511

of a polynomial, 224
Homogeneous ideal, 13
Homogeneous localization, lI
Homogeneous polynomial. 13. 36

divisor of an, 38
integer value of, 362

Homogeneous space, 283
Batyrev-Manin conjecture, 494
geometric group law on WC(A/k), 22Z
nonzero example in 1I1, 295
principal, 289
representing element of Selmer group,

281
representing element of'lhte-Shafaro-

vich group, 281
Homogeneously expanding domain, 214
Homology, 116

of Riemann surface, 112
Homomorphism

of formal groups, 270
twisted, 284

Hooley, C., 494
Horizontal divisor, 244
Hrushovski, E., 439
Hurwitz formula, see Riemann-Hurwitz

formula
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Hurwitz theorem on Diophantine approx-
imation, 301, 365

Hyperbola, 14
Hyperbolic, 479
Hyperelliptic curve, 73. 88 86 111 14-8

440,481
affine model, $6
basis of regular differentials, 111

canonical map, 82
cover of, 498
differential from, 87
effective bound for integer points, 360
function field, 81
genus, 82
good reduction, 164
integer points on, 349
Jacobian, 147, 148, 142
of genus two, 83
point at infinity, 164
ramification points, 87
Weierstrass point, 90 297

Hyperplane, 13
local height with respect to, 240
section, 49

Hyperaurface
affine, U
canonical class of, 47
cubic, 424
degree of, 36, 46
dimension of, 22
divisor of a, 38
of general type, 478
projective, 13

Ideal,
contains element of bounded norm,

275
finitely many of fixed norm, 275
height, 22
homogeneous, 13
irrelevant, 13
prime, U
radical of, 10
saturated, 13
volume of, 274

Ideal class group, 37
finiteness of, 273 349
element contains ideal of bounded

norm, 276
Identity component, 28
Image sheaf, 66
Implicit function theorem, 4118
Index,308

at nearby point, 326
auxiliary polynomial has large, 323,

32A
auxiliary polynomial has small, 329
elementary properties, 309
intersection, 45
is a valuation, 309
of section, 403

Index

of Wronskian determinant, 330
of zero polynomial, 308
ramification, 72

Ineffectivity of Roth theorem, 344
Inertia group, 281 460
Infinite descent, 252
Infinitely near point, 74
Inflation map, 287
Inflation-restriction sequence, 282 287
Inflection point, 77
Inhomogeneous height, 256

of a polynomial, 225
Injectivity of specialization map, 428
Integer point, 292 48.3

binary form, 362
counting function, 223
effective bound for, 360 471
Langlconjecture, 473
on Q minus 3 points, 351
on curve, 353, 36_4, 365 456
on curve of genus one, 333, 431
on curve of genus zero, 353, 431
on hyperelliptic curve, 349
on moduli space, 486
on variety of log general type, 486
on variety with mKX = 0, 500
Thue equation, 362

Integral closure, 1.55
Integral scheme, 153
Integral

abelian, 110
elliptic, 110
genus, 111
p-adic, 438

Intersection
dimension of, 23
nonempty, 65
transversal, 45

Intersection index, 45 65
finite morphism, 46
invariance under algebraic equivalence,

46
invariance under linear equivalence, 45
local, 45
moving lemma, 45

Intersection number, See Intersection
index

Intersection theory
Arakelov, 387
arithmetic, 3811
Bezout's theorem, 84

Invariant differential on elliptic curve,
454

Invariants of an alternating form, 11)5
Inversion of formal power series, 270 294
Invertible functions, sheaf of, 58
Invertible sheaf, 59 See also Line bundle

determined by a divisor, 60
dual is inverse, 6fi
group of, 60

is isomorphic to Picard group, 60
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Irrational number, approximation by ra-
tional number, See Diophantine ap-
proximation

Irreducibility theorem, 95, L44
Irreducible algebraic set, 11

components of, 11
Irreducible divisor, 35

ramification index, 41
Irreducible fiber, 157
Irreducible scheme, 153.
Irreducible topological space, U
Irreducible affine n space, 11
Irrelevant ideal, 13
Isogeny, 95, 134

degree, 95, 199
degree of dual, 95
dual, 95
functoriality of canonical local height,

242
height of abelian variety after, 467
kernel, 95
reduction of, 290

Isomorphism
complex-analytic, 91
of formal groups, 270

Jacobian condition, for inversion of
power series, 270, 294

Jacobian criterion, 25
Jacobian variety, 143 134, 356, See

also Abelian variety, Albanese vari-
ety

Abel-Jacobi theorem, 114
abelian variety inside Wd, 441
angle between points, 371
canonical map of curve to, 254
connected component, 194
construction of, 136, 145
counting function, 216
differential 1-forms on curve, 148
discrete topology induced by height,

444
embedding of curve into, 114, 117
existence, 134
field of definition, 135
finite Mordell-Weil group, 426
general is simple, 441
good reduction, 164
group law on, 149
group of components, 164
image of Xd in, 439
intrinsic formulation, 11.4
is a functor, 13_, 147
is projective variety, 114
is self-dual, 141
minimal model, 144
Mordell-Weil group, 379
number of points modulo p, 291
of a hyperelliptic curve, 147-149
of curve of genus 1 115
over C, 110
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Poincar6 divisor, 1 141 216, 374
points of order two, 1.47
r-fold sum of curve in, 115
Riemann form, 114
semistable reduction, 164
tangent space, 117
theta divisor, 11 135, 138 216, 374,

417
determines curve, 115, 135

Torelli theorem, 135
W' subvariety, 1,'14

Jensen inequality, 230
j-invariant, 493

bounded by conductor, 453

K3 surface, 478
Batyrev-Manin conjecture, 492, 493
canonical height, 1 77. 241
elliptic, 493, 499
integral points, 500
Kodaira dimension, 476
Vojta conjecture, 484

Kamienny, S., 458
Kernel,

of an isogeny, 95
of multiplication, 99_4 125
of reduction, 267
sheaf, 66

Kodaira dimension, 475
n = -1, 477, 499
a = 0, 476, 480, 499

integral points on variety of, 500
Vojta conjecture, 484

IC = 1, 492
a=7,493
a= dim, 478
ra>_0,478
abelian variety, 476
bielliptic surface, 476
Enriques surface, 476
is birational invariant, 475
K3 surface, 476
of P", 476
of a complete intersection, 476
of a curve, 476
of a product, 476
of subvariety of abelian variety, 476
of a surface, 478
unramified finite map, 476

Kodaira vanishing theorem, 85, 392
Kodaira variety of image of rational

map, 476
Kodaira, K., 455, 466
Kodaira-Parshin fibration, 466, 471, 480,

499
of general type, 478

Kollar, J., 477
Kolyvagin, V.A., 283
Kronecker's theorem, 178 277
Krull dimension, 22, 154
Krull topology, 284
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Kummer extension
discriminant of, 265
ramification in, 265, 293

Kummer isomorphism, 288
Kummer pairing, 261, 279

properties of, 262
Kummer sequence, 288

for an abelian variety, 279
Kummer theory, 260 265 266 435

l-adic representation, 460, 469
characteristic polynomial, 468
eigenvalues, 468

Lagrange theorem on continued fray
tions, 365

Lang, S., 133. 345, 473, 474
Lang height lower bound conjecture, 453,

473
implied by Szpiro conjecture, 454
over function field, 455

Lang subvariety of abelian variety con-
jecture, 435

Lang hyperbolicity conjecture, 479
Lang integer point conjecture, 473
Lang-Vojta conjecture, 486
Lattice, 91, 93, 224

alternating form, 1113
counting points in, 22 220, 254, 310
determinant, 255
first minimum, 254
fundamental domain, 203, 214, 253,

255
gap principle, 220, 254
Hadamard's inequality, 255
Hermitian form, 92
Minkowski theorem, 203, 253
quadratic form, 203, 253
quasi-orthogonal basis, 255
Riemann form, 92
small basis for, 459
volume of, 2Z4

Laurent, M., 439
Lebesgue measure zero, 361
Lefschetz embedding theorem, 105
Lefschetz principle, 7, 122
Left translation, 28
Leibniz formula, 24, 308, 362, 403, 406,

429
Level structure, 447
Lewis, D.J., 345
Liardet, P., 439
Lie group, 91

compact, 93
Line, 73
Line bundle, 60- See also Invertible sheaf,

Vector bundle
admissible pair for section, 403, 404,

44, 419, 423
Cartier divisor of a, 63
dual, 62
height, 194

Index

hyperplane, 63
index of section, 403
metrized, 247, 248, 446
norm of section to metrized, 249
on projective space, 61
pullback, 62
section, 61
self-intersection, 497
tensor product, 62
transition function, 62

Line sheaf, See Invertible sheaf
Linear equations, Siegel lemma, 316 319

362
Linear equivalence, 35, 38

and height, 183
class, 35

intersection index invariant under, 45
pullback respects, 41)

Linear form, canonical height, 206
Linear forms in logarithms, 360, 471
Linear group, 29

general, 430
Linear projection, 19 52, 64, 229

with given center, 20
Linear series, See Linear system
Linear system, 42. 49

ampleness criterion, 52, 53
attached to a theta function, 102
base locus, 64
base point, 51
base point free, 51
complete, 0
dimension, 49
fixed component, 51
inducing a morphism, 51
infinite-dimensional, 51)
is finite dimensional, 55
map induced by linear projection, 64
of a hyperplane, 511
pullback by morphism, S1)
pullback by rational map, 50
rational map associated to, 51
very ample, 52

Linear variety, 13

Linearly independent if Wronskian is
nonzero, 331, 363

Liouville inequality, 309, 324, 328, 429
Liouville proof of existence of transcen-

dental numbers, 303, 362
Liouville theorem, 97 101 300 301 362
Local coordinates, 22
Local data, sheaf determined by, 5Z
Local degree, 171
Local height, 237, 482

additivity, 239
analogous to proximity function, 482
canonical, 241
canonical on abelian variety, 242
decomposition theorem, 255
explicit formula for canonical, 242
for extension field, 240
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Local height (continued)
functoriality, 232
intuitive definition, 2 482
machine, 239
normalization, 238
of algebraic point, 487
on P", 240
positivity, 238
series for, 242
sums to global height, 238

Local intersection index, 45
Local parameter, 27

exists only at nonsingular point, 27
Local ring

at a point, 15
completion of, 32
homomorphism induced by regular

map, 1d
integrally closed, 33

local parameter, 27
of a divisor, 35

regular, 155
regular at smooth point, 25
valuation on, 35

Local-to-global principle, 75
Local/global property of heights, 239,

241,242
Localization, 17
Locally free sheaf, 59; See also Vector

bundle
of differential forms, 60
of rank is See Invertible sheaf
pullback, 6¢
rank, 59
vector bundle associated to, 62

Locally ringed space, 1 22; See also
Scheme

morphism, 152
Locally trivial vector bundle, 62
Log general type, 486
Logarithmic discriminant, 486
Logarithmic embedding, See Regulator

map
Logarithmic height, 174, 183
Loglog counting function, 223, 255, 496
Long exact sequence of group cohomol-

ogy, 287
L-series

abelian variaty, 461
Birch-Swinnerton-Dyer conjecture,

462
Eisenstein-Langlands, 484
functional equation, 46
leading coefficient, 462
of abelian variety has analytic continu-

ation, 461
of abelian variety satisfies functional

equation, 461
order of vanishing, 4fi2
sign of functional equation, 461, 462

L2 norm of a polynomial, 230
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Lutz-Nagell theorem, 457

Mahler, K., 305, 345
Mahler measure, 230

bounds coefficients, 231
of polynomial of one variable, 230

Manifold, 500
Manin, Y., 224, 426, 439, 463, 491, 434
Manin-Batyrev conjecture, 224 491 492
Manin-Mumford conjecture, 435, 438,

444
for commutative algebraic group, 438

Map
finite, See Finite morphism
ramified, 41
regular, 16

Masser, D., 451 467
Masser-Oesterle conjecture, See abc con-

jecture
Masser-Wiistholz zero estimate, 380
Mathematical logic, 438
Maximum principle, 99.4 10Z
Mazur, B., 426. 458. 473, 474, 481, 49fi
McQuillan, M., 438
Measure, translation invariant, 215
Merel, L., 458
Merel theorem, 473
Mestre, J: F., 455, 40
Metric, Fubini-Study, 248 255
Metrized degree, 248
Metrized height, 248

is a Well height, 254
on projective space, 248 255
well-defined up to 0(1), 248

Metrized line bundle, 247, 248 446
Arakelov degree, 247

height associated to, 248

norm of section, 248
on projective space, 248 255

Mignotte, M., 345
Mild singularity, 68
Minimal discriminant, 452 498 429
Minimal model, 1-6-1

Castelnuovo criterion, 161
is unique, 161
of a curve, Al

of an elliptic curve, 163
Minimal polynomial, 309
Minkowski theorem, 203, 255-3 275, 276,

278
Mk-bounded, 238

affine set, 238
function, 238
set, 238

Mk-constant, 238, 292, 319, 414
Model

extension of point, 138
minimal, 161
of a variety, 157
of projective space, 157
relative minimal, 151
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Model theory, 439
Modular curve, 458, 461, 464

quadratic points on, 442
rational points on, 426

Modular elliptic curve, 283
Modular form, 454
Modular Jacobian, 461
Modularity conjecture, 454, 455, 461
Module, finitely generated, 18
Moduli scheme, 367
Moduli space, 83, 142. 447

ample line bundle on, 448
coarse, 447
compactification of, 448
fine, 447
integral point, 4486
of abelian varieties, 142
of curves, 142, 441

Mobius function, 502
Mobius inversion formula, 212
Monomial, number of, 310
Mordell conjecture, See Faltings theorem
Mordell, L.J., 257
Mordell-Weil group, 257, 379

bound for rank, 267. 472
canonical height cone, 311
finite, 425
rank unbounded?, 464
upper bound for rank, 40

Mordell-Weil theorem, 168, 169, 190,
216, 222, 257, 356, 367, 456

descent lemma, 25$
effective, 457, 463
weak, 190, 2,58

Mori, S., 478
Morphism, 16

canonical height and, 195, 241
Cremona transformation, 21, 52, 69
dominant, 30
examples of, 19
extending rational map, 158 165, 246
fiber, 156
finite, See Finite morphism
forward orbit of a point, 197
Frobenius, 31, 89
from curve to P', 440
generic fiber, 156
height for commuting, 25-2
induced by linear system, 51
induced map on differential forms, 28
induces map on Picard group, 41
of affine schemes, 152 153
of ringed spaces, 152
of schemes, 153
of schemes over S, 153
of tori, 93
of vector bundles, 61
periodic point, 191
preperiodic point, 197
presheaf, 52
pullback of a divisor, 40. 54

Index

pullback of a divisor class, 41
pullback of a linear system, 50
ramification index, 72
ramified, Al
sheaf, 57
special fiber, L%
transformation of height, 179 190 251

Moving lemma, 44_0 45
Multipicity of an ordinary singularity, 68
Multiple fiber, 156
Multiplication map, 260 356

and height, 199
degree of, 125
effect on divisors, 124, 1.91
on an abelian variety, 94
on a complex torus, 94
on a formal group, 271

Multiplicative formal group, 269. 272
Multiplicative group, 29

points on, 165
Multiplicative height, 114
Multiplicative reduction, 452
Mumford, D., 211
Mumford formula, 11 191
Mumford gap principle, 218. 393, 425,

429, 430
Mumford theorem, 216, 384

Nakai-Moishezon criterion, 65
Nakayama lemma, 27
N4ron, A., 195. 199, 213 242
N4ron differential, 462 499
Ndron function, 24Z
N4ron model, 162 499

abelian scheme, 163
connected component of fiber, 163
group of components, 164
is a group scheme, 163
is unique, 162
not invariant under base change, 163
of a variety, 162
of an abelian variety, 162
of dimension one, 163
of an elliptic curve, 163. 166
points on, 163
semistable reduction, 163
special fiber, 163

N4ron-Severi group, 128
ample cone, 488
effective cone, 48$
equal to Picard group, 488
is finitely generated, 131
of a curve, 131
of a variety, 1.31

N4ron-Tate height, See Canonical height
Nevanlinna invariant, 448

n(D) = 0, 492
abscissa of convergence and, 5110
blowup of projective plane, 489
blowup of projective space, 501
equal to abscissa of convergence, 491
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Nevanlinna invariant (continued)
finite map, 489
inverse linear, 489, 500
is rational?, 488
properties of, 489, 500
unramified map, 482

Nevanlinna theory, 482
characteristic function, 483
counting function, 483
defect relation, 483
preocimity function, 482, 483

Node, 452
blowup of, 86

Noguchi, J., 480
Non-algebraically closed field, 43
Nonarchimedean absolute value, 159
Nonclosed point, 153
Noncuspidal point, 426
Nondegenerate Riemann form, 92
Nonsingular point, 25

Jacobian criterion, 25
local parameter, 22

Nonsingular variety, 25,5 155
Nonvanishing theorem, 302, 329 333
Norm of section to metrized line bundle,

248
Normal crossings divisor, 4484, 4485 499

Nevanlinna invariant, 488
Normal point, 33
Normal projectivity, 376
Normal variety, 19, 33

complete linear system, 55
counting function, 503
image of I'(Pn, 0(d)), 64

Normalization, 33
of a curve, 70, 353
of a scheme, 155
of local height, 239

Normalized differential operator, 331
Normalized partial derivative, 307

bound for coefficients, 307
has integer coefficients, 307

Nullstellensatz, 10, 182, 185
effective, 180

Number field
absolute value, 159 170, 173
analogous to abelian variety, 4fi2
analogous to function field, 159
canonical embedding, 274
class group, 462
complex embedding, 172
degree bounded by log discriminant,

276
degree formula, 171, 227
Dirichlet unit theorem, 274
discriminant, 462
embedding in C, 172
finitely many ideals of fixed norm, 275
finitely many with fixed discriminant,

223
height of an element, 176

547

height relative to, 174
Hermite theorem, 273
ideal class contains ideal of bounded

norm, 276
ideal class group, 37
ideal class group is finite, 273 349
ideal contains element of bounded

norm, 275
local degree, 171
maximal extension of exponent m un-

ramified outside S, 265
product formula, 172
rank of group of S-units, 266
real embedding, 172
regulator, 278, 462
regulator map, 277
ring of integers, 174
ring of S-integers, 124
unit group, 37

is finitely generated, 274 349, 350
unramified outside S, 264
volume of an ideal, 274
volume of ring of integers, 274
zeta function, 462

Odd divisor class, 129
Oesterle, J., 425, 451, 455
One cocycle, 284. 286

continuous, 284
Orbit, forward, 197
Ordp, 170
Ordy, 35
Order

discriminant of, 293
of a differential operator, 331
of vanishing, 308

Ordinary double point, 161
Ordinary singularity, 68

blowup, 70, 86.
multiplicity of, 68

Pacelli, P., 474
p-adic absolute value, 171 173
p-adic representation, 109
p-adic valuation, 170 173
Pairing

canonical height, 200
Kummer, 261

Parabola, 14
Parabolic subgroup, 494
Parallelogram law, 169

implies quadratic form, 201
Parshin, A., 466
Partial derivative, normalized, 307
p-divisible group, 367, 467
Period matrix,

Jacobian variety, 113
of y2=x6 -1,117

Period relations, 112, 117
Periodic continued fraction, 365
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Periodic function,
elliptic, 119
sine, 110

Periodic point, 193.
finitely many, 197
has height zero, 197
on abelian variety, 198
on projective space, 198

Peterson norm, 454
Peyre, E., 495
Pfafflan, 103, 1.04
Philippon, P., 450
Phragme n-Lindelof principle, 464
Picard functor is quadratic, 123
Picard group, 338 See also N4ron-Severi

group
connected component, 128
divisible part, 128
equal to N&on-Severi group, 488
even divisor class, 129
generated by ample divisors, 53. IN
generators for, 54
has structure as abelian variety, 130,

131
is contravariant functor, 40
isomorphic to group of invertible

sheaves, 60
map induced by d-uple embedding, Al
map induced by a morphism, 41
map induced by Segre embedding, 41
map to canonical height, 207
map to divisor class group, 38
odd divisor class, 129
of a curve, 134
of an elliptic curve, 78
of curve of genus 0, 134
of Grassmannian variety, 48
of product of projective spaces, 46
relation to Albanese variety, 132
translation invariant divisor class, 128
translation map, 126

Pigeonhole principle, 301, 317, 388 320,
346

Pila, J., 491
Plane curve

every curve birational to, 69
genus, 72, 84
points of low degree, 443

Pluricanonical divisor, 475
Pluricanonical map, 499
Plurigenera, 415

are birational invariants, 475
of P", 476
of a curve, 476

Pliicker embedding, 32 48
Plucker relations, 32 48
Pliicker coordinates, 32, 48
Poincard, H. 98
Poincare divisor, 208

Poincar4 divisor, 108 128, 130. 207 459
is even, 130

Index

Jacobian variety, 1.41

pullback to curve, 138, 216, 374
Poincar4 irreducibility theorem, 95. 144
Point

absolute value attached to, 159

at infinity, 14. 77, 164
base, 51
blowup at a, 20
extension of, L58
field of definition, 12. 176
forward orbit, 192
functor of, 155
Galois conjugacy class of, 165
generic, 153
geometric, 153
infinitely near, 74
infinitesimal neighborhood, 58
local intersection at, 45
local parameter at, 27
local ring at, 15
map regular at, 16
metrized degree of, 248
metrized height of, 248
nonclosed, 153
nonsingular, 25
normal, 33
periodic, 197
preperiodic, 197
ramification, 154
rational, 75
regular function at, 15
separation of, 52
singular, 26
smooth, 25
stalk of a sheaf at, 58
Weierstrass, 89, 90
Weieratrass weight, 89

Point counting function, See Height
counting function

Pointed set, 286
Polarization, 131

principal, 131
Pole, divisor of, 35
Polynomial,

affine height, 224
auxiliary, 302, 316, 320
derivative of, 24
Gauss lemma, 229
Gauss norm, 224
height of, 224 225, 334

collection of, 225
product of, 226 228. 223 430
sum of, 226, 233
value, 225 234

homogeneous, 13, 36
homogeneous height, 256
index

at a point, 308

at nearby point, 326
is valuation on, 309

inhomogeneous height, 256
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Polynomial (continued)
L2 norm, 230
Mahler measure, 230

bounds coefficients, 231
nonvanishing lemma, 333
number of monomials, 310
projective height, 225
shifted, 234
symmetric, 113
valuation of derivative, 234
valuation of product, 229

Polynomial ring, index is valuation on,
309

Poonen, B., 445
Positive definite quadratic form, 92, 203,

253
Positive divisor, 34, 32
Positive Riemann form, 1%
Positivity of local height, 239
Power series, radius of convergence, 408
Preperiodic point, 133

finitely many, 197
has height zero, 197
on abelian variety, 198
on projective space, 198

Presheaf, 57, 65
morphism, 5Z
of groups, 5Z
of modules, 51
of rings, 57
sheaf attached to, 66

Prime ideal, 11
absolute value attached to, 150

height, 22
in Z[X], 155
ramification index, 113

Primes in arithmetic progression, 292,
349

Primitive element theorem, 22, 430
Principal divisor, 35, 38

Arakelov, 247
compactified, 241
has degree zero, 247
in projective space, 36

Principal homogeneous space, 289
Principal polarization, 131

theta divisor gives, 141
Principally polarized abelian variety,

moduli space, 447, 448, 486
Probability theory, 310
Product

ample divisor on, 431
arithmetic genus, 391, 429
canonical class of, 47
canonical divisor on, 390
counting function, 502
derivative of, 403, 446
divisor class group of, 48
fibered, 155
geometric, 155
height on, 256

549

Kodaira dimension of, 476
of affine varieties, 11
of curves, 256
of sheaves, 58
rigidity lemma, 119 120. 121
Segre map on a, 19, 41, 65
tensor, 155

Product formula, 172 175, 247, 313 387,
404

Product lemma, 36$
Product Rule, 160, 171, 312, 331, 362
Product theorem, 380, 437
Proj, 165

structure sheaf, 145
Zariski topology, 165

Projection
linear, 19, 64
of projective varieties is closed map, 12

Projection-summation map, 121
Projective algebraic group, 29
Projective algebraic set, 13

Projective coordinates, 12

Projective curve, See Curve, Riemann
surface

Projective degree, 46, 65
of a variety, 446

Projective general linear group, 90
Projective height of a polynomial, 225
Projective hypersurface, 13
Projective line

automorphism group, 90
covering, 81
has genus zero, 71
integer points on, 351

map from elliptic curve, 253
Picard group, 134
ramified cover, 87
rational points on, 367
symmetric product, 148

Projective model, 6$
Projective normality, 376
Projective plane

ample cone of blowup, 489
arithmetic genus, 85
Bezout's theorem, 84
counting function of blowup, 489
Cremona transformation, 21, 30, 52, 69
effective cone of blowup, 489
Nevanlinna invariant of blowup, 489
quartic curve, 81

Projective scheme, 153
points on, 165

Projective space, 12
absolute height on, 176
action of Galois group on, 12
ample cone of blowup, 591
automorphism, 4Z
Batyrev-Manin conjecture, 255
blowup, 256
blowup at a point, 20
canonical class, 39, 47
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Projective space (continued)
cellular decomposition, 14
change of coordinates, 434
counting function, 22.3

of blowup, 494, 541
of product, 542

covering by affines, 14
curve of degree N in, 89
degree of a hypersurface, 3fi
degree of a subvariety, 46
differential forms on, 26
dimension of, 22
divisor class group, 36
dual, 33
d-uple embedding of, 19, 41, 52, 64,

179
extension of automorphism, 152
field of definition of a point, 12
finitely many points of bounded

height, 174, 132
function field of, 16
fundamental line bundle, 61
has good reduction, 158
height counting function, 211
height over Q, 114
height relative to k, 174
homogeneous coordinates on, 12
hyperplane line bundle, 63
hypersurface of general type, 428
is Fano, 477
Kodaira dimension, 476
linear map and height, 180
linear projection on, 19
linear subvariety of, 13
linear system of a hyperplane, 50
local height on, 240
map to abelian variety is constant, 132
metrized line bundle, 248, 255
Nevanlinna invariant of blowup, 541
over Z, 1§6
over a ring, 166
Picard group of a product of, 46
plurigenera, 476
preperiodic point, 188
product, 493
rational map associated to a linear

system, 51
rational map is composition, 64
rational map to abelian variety is con-

stant, 120
rational points on, 12
relative height, 134
Schanuel theorem, 488
scheme model, 152
Segre embedding, 19, 41, 65

height, 114
standard affine open subset, 14
Zariski topology, 13

Projective variety, 13
albanese, 116
ample divisor, 52

Index

complete linear system, 55
coordinate ring, la

covering by aflnes, 14

degree, 65

field of definition, 13
group is a torus, 142
homogeneous coordinate ring, 13
homology, 116
image is projective, 17
image of r (p,, 0(d)), 64
LX(d) complete, 55
linear projection, 52
linear system, 64

is finite dimensional, 55
map to abelian variety, 123
product of is projective, 19. 41
projection is closed map, 12
regular function is constant, 17
rigidity lemma, 11 120, 121
seesaw principle, 123
sheaf of invertible functions, 52
sheaf of regular functions, 59
theorem of the cube, 122
very ample divisor, 52

Proper variety, 33
Properness, valuative criterion, 136
Proximity function, 482, 483
Pseudo-hyperbolic, 479
Pullback

of a divisor, 40
of a divisor class, 41

of ample divisor, 54
of basepoint free divisor, 54

of locally free sheaf, fib
of vector bundle, 62
respects linear equivalence, 40

Quadratic form, 203, 205, 253, 358
canonical height, 200 206
counting lattice points, 214
diagaonal, 204 253
first minimum in lattice, 254
parallelogram law, 201
positive definite, 203, 253

Quadratic function, 205, 253
canonical height, 205

Quadratic functor, 123
Quadratic number, continued fraction of,

365
Quadratic point on modular curve, 442
Quadratic transformation, See Cremona

transformation
Quadric surface contains genus four

curve, 82
Qualitative theorems, 457
Quantitative bound for rational points,

472
Quantitative theorems, 457
Quartic curve, 87
Quasi-orthogonal basis, 255, 459
Quasi-projective algebraic set, 14
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Quasi-projective variety, 14
Quasi-S-integral point, 483
Quintic surface, 480
Quotient sheaf, 65 66
Quotient variety, abelian, 144
Quotient

by an equivalence relation, 146
exists for finite groups, 143
geometric, 142. 146

Radical, 10.451
Radius of convergence, 408
Ramification

in a Kummer extension, 265 20
Ramification index, 41, 72, 123
Ramification point, 154
Ramified map, 41
Rank

bound for Mordell-Weil group, 267,
472

finite, 434
of an abelian variety, 252
of elliptic curves unbounded?, 464
of group of S-units, 266
of a locally free sheaf, 59
of a vector bundle, 60
upper bound, 465

Rational curve, 75
geometric criterion, 75
Hasse principle, 75

Rational differential form, 27
Rational elliptic surface, 493
Rational function

decomposition theorem, 255
divisor of, 35, 38
integer values of, 351
linearly independent iff Wronskian is

nonzero, 331, 363
sheaf of, 58
value at a divisor, 91

Rational map, 1.6
associated to a linear system, 51
defined off of codim two set, 26
domain of, 16
dominant, 16, 18
examples of, 19
extends to morphism, 69 1 55 246
from elliptic curve, 253
induced cotangent map, 25
induced map on differential forms, 28
is a morphism on curves, 20
Kodaira dimension of image, 476
of projective space, 64
on a smooth variety, 26
pullback of linear system, 54
resolution of singularities of, 31, 24.6
to abelian variety extends, 1211
to algebraic group extends, 12.0
transformation of height, 179 251. 252
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Rational number, approximation to ir-
rational number, See Diophantine
approximation

Rational point, 75
affine n-space, 3
approximation to v-adic point, 496
approximation to real point, 496. 544
bound for number on curve, 429, 434
counting function, 482
dense set of, 48Z
effective determination of, 426
gap principle, 218, 383 425
height counting function, 22 211
on curves of genus g > 2, 367
on modular curve, 42fi
on subvariety of abelian variety, 434,

435
on variety with trivial canonical divi-

sor, 2 44 492
projective space, 12
quantitative bound, 472, 473
real closure of, 496
uniform bound for number of, 425,

426 432
universal bound for, 474, 481
widely spaced, 218 383 425

Rational representation, 109
Rational ruled surface, Batyrev-Manin

conjecture, 493
Rational section, 61
Rational surface, 478
Raynaud, M., 46Z
Raynaud theorem, 435, 438, 444
Real closure of rational points, 496
Real embedding, 122
Real locus, 544
Real number

approximation by rational number, See
Diophantine approximation

continued fraction of, 365
Real period, 462
Real point, approximation by rational

point, 496, 544
Real topology, 496
Reciprocity law of Well, 91 297
Reduced scheme, 153
Reduction modulo p, 157
Reduction to simultaneous approxima-

tion, 305, 341
Reduction to the diagonal, 23
Reduction

bad, 15$
good, 158

Hensel's lemma, 294
injectivity of torsion, 263, 2 294
kernel of, 267
of formal group, 271
of general linear group, 268, 295
of isogeny, 234
of root of unity, 267

Regular differential form, 26, 27, 88
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Regular function, 15
along a subvariety, 15
at a point, 15
on projective variety is constant, 11
ring of, 1fi
sheaf of, 58, 59

Regular local ring, 155
Regular map, 16

induces homomorphism of local rings,
18

Regular scheme, 155
Regularity

definition is local, 15
is open condition, 15

Regulator, 278, 462
canonical, 459
canonical height, 201
height on abelian variety, 459

Regulator map, 272
image is discrete subgroup, 227
kernel of, 227

Relative height, 174
Relatively minimal model, 161

Castelnuovo criterion, 161
Representation

complex, 109
L-adic, 460
p-adic, 109
rational, 103
semi-simple unramified outside S, 468

Residue formula, 160
Residue theorem, 255
Resolution of singularities, 31 243 246
Restriction map, 57. 280, 287
Riemann, B., 115
Riemann form, 92, 95

attached to a theta function, 111Q
group of, 102
nondegenerate, 92

if divisor is ample, 1112
of Jacobian period lattice, 114
of theta divisor, 115
on a quotient, 100
positive, 190
semicharacter, 1OZ

Riemann hypothesis, 465
for curve over finite field, 150

Riemann period relations, 112, 111
Riemann surface, 23

Abel-Jacobi theorem, 114
basis of regular differentials, 111, L L2
divisor group, 114
genus, 62
homology, 112
hyperelliptic, Ill
is projective, L14
Jacobian variety, 110 143 114, LIZ
path integral, LL1
period relations, 132 LLZ
r-fold sum in Jacobian, L15

theta divisor, L15

Index

Riemann theorem, 368
Riemann theta function, 98, 109, 115
Riemann-Hurwitz formula, 72, 82, 87,

456,469
Riemann-Roch theorem, 1 70, 90, 83,

89, 135, 136 138, 384, 389, 390
arithmetic, 380
for abelian varieties, 104
for surfaces, 85, 368, 391
for threefolds, 367
generalized, 85 497
on curve of genus one, 76
on curve of genus zero, Z4

Riemann-Roch-Hirzebruch theorem, 85
Right translation, 28 66
Rigidity lemma, 119, 120, 121, 133
Ring,
graded, 165

homogeneous localization of, 12
integral closure, 155
Krull dimension, 22
localization of, 12
of fractions, 12
of integers, 124
spectrum, 151
tensor product, 155

Ring of integers,

characterized by absolute values, 124

of S-integers, 174

volume of, 274
Ringed space, 152

locally, 152
morphism of, L52

Root of unity, 128
kernel of regulator map, 222
reduction of, 267

Roth lemma, 333, 343, 368, 380, 381,
385,402

analogue of, 438
two variable, 418

Roth theorem, 3300, 304, 305, 341, 33
456, 466, 484

analogue of defect relation, 483
application to unit equation, 345
bound for number of solutions, 344,

345 364
for curves, 354, 355
gap principle, 344, 363
higher dimensional version, 485
is ineffective, 344
quantitative form, 472
reduction to algebraic integers, 305
simultaneous approximation version,

305, 341
sketch of proof, 304

Rubin, K., 283
Ruled surface, 477, 478
Ruled surface, Batyrev-Manin conjec-

ture, 493

Saturated ideal, 13
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Schanuel, S., 211
Schanuel theorem, 488, 493
Scheme, 151, 153

abelian, 163, 294
affine, 152
affine line over Z, 154
affine plane over k, 154
associated to a variety, 153
bad reduction, 158
connected fiber, 157
dimension, 154
extension of point, 158
extension of scalars, 156
family of, 156
fiber of morphism, 156
fibered product, 155

of affine, 156
finite cover, 154
finite group, 467
functor of points, 155
generic fiber, 156
generic point, 153
geometric point, 153
good reduction, 158
integral, 153
irreducible, 153
irreducible fiber, 157
model, 157
moduli, 367
morphism, 153

of affine, 152 153
normalization, 155
of dual numbers, 165
one-pointed, 153
over S, 1.53
over Z, 153, 154

point with value in S 155
points of Ay, 165
points on projective, 165
product, 155
Proj, 165
projective, 152
projective space, 166
rational map extends to morphism,

165 24fi
reduced, 153
reduction modulo p, 157
regular, 155
special fiber, 156
Spec(Z), 154
structure sheaf, 152
two-pointed, 153

Schlickewei, H 485
Schmidt, W., 485
Schmidt subspace theorem, 458 485
Section

admissible pair, 403, 404, 452 419, 423
global, 59
hyperplane, 49
index of, 403
norm of to metrized line bundle, 248

553

rational, fil
small, 389, 393, 419, 422
to a vector bundle, 61

Seesaw principle, 123, 129, 130, 133, 140
Segre embedding, 19, 41, 65, 179, 229,

376, 477
Self-intersection, 84

Arakelov, 471
of line bundle, 497
of the diagonal, 86, 391

Selmer group, 279, 280
elements represented by homogeneous

spaces, 281
is finite, 281

Semi-algebraic set, 496
Semi-simple representation unramified

outside S, 468
Semiabelian variety, 439
Semicharacter, 107
Semistable elliptic curve, 452
Semistable reduction, 161 163

abelian variety, 448
split, 163

Serre, J: P., 63

Serre vanishing theorem, 85
Set, pointed, 286
Shafarevich conjecture, 45T 48fi

Sheaf, 57
attached to a presheaf, 66
cohomology, 38, 65
cokernel, 66
determined by a divisor, fi0
direct sum, 58
dual, 6b
elements determined locally, 57
free, 59
germs at a point, 59
global section, 59
image, 66
isomorphism, 59
kernel, 66.
line, See Invertible sheaf
local data can be patched, 52
locally free, 59. 62
morphism, 57
of C°O functions, 58
of Ox-modules, 59
of continuous functions, 56, 58
of differential forms, 58

is locally free, 60
of groups, 57, 58
of invertible functions, 58
of modules, 57
of rational functions, 58

is not locally free, 60
of regular functions, 58, 59
of rings, 57, 58
on Spec(R), 152
pullback, 66
quotient, 65, fifi
restriction map, 57
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Sheaf (continued)

stalk, 58

structure, 152

tensor product, 58
with dual is trivial, 66

Sheaf cohomology, 38, 65
Shifted polynomial, 234
Shimura, G., 92, 461
Siegel, C.L., 345 349,3,51
Siegel lemma, 316, 319, 322, 3368, 381,

385, 390, 393, 401. 402, 418, 422
algebraic coefficients, 312
improved constant, 362
integer coefficients, 316, 362

Siegel theorem, 168, 353, 456, 484. 486
effective, 360, 457, 471
Faltings theorem implies, 353, 431
is ineffective, 360
quantitative form, 472
strengthened version, 364 365

Siegel upper half-plane, 464
Siegel identity, 350, 352
Sigma function, 97
Silverman conjecture, 454
Silverman, J.H. 428, 454, 455, 473
Simple abelian variety, 96, 441

ample divisor, 119
endomorphism ring, 96, 134

Simple Jacobian, 441
Simple torus, 96
Simultaneous approximation, reduction

to, 305, 341
Sine function, 110

addition formula, LU
Singular curve, genus of, 74
Singular point, 25
Singular variety, height counting func-

tion, 543
Singularity

blowup, 86
mild, 68
ordinary, 68. 86
resolution of, 243

S-integral point, 483
on variety of log general type, 486

Skew field, 134
Skorobogatov, A., 481, 496
Slice divisor, 375
Small point conjecture, 470
Smooth curve

birational morphism is isomorphism,
69

every curve birational to, 7Q
genus of plane curve, 72, 84
rational map extends to morphism, 69

Smooth point, 25
Jacobian criterion, 25
local ring at is regular, 25

Smooth variety, 19, 25
is normal, 33
rational map on, 26

Index

Special fiber, 156, 157 158
of an elliptic curve, 166
of Nbron model, 163

Special subset, 479
of abelian variety, 480

Specialization map, 428
Spectrum

Arakelov divisor, 247
compactified divisor, 212
completion of, 247
dimension of Spec(Z), 154
metrized line bundle, 241
of Z, 154
of a ring, 151
structure sheaf, 152

Split semistable reduction, 163
Square, theorem of the, 126
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of subvariety of abelian variety, 133,
476, 497

Stack, 367
Stalk, 58

isomorphism, 59
of structure sheaf of Spec(R), 152

Sterling's formula, 308
Structure sheaf, 152

of Proj, 163
of Spec(Z), 154

Subspace theorem, 438, 485
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degree of, 46
dimension of, 22
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local ring along a, 15
of codimension one, 34
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height of, 256
of sheaves, 58

S-unit equation, See Unit equation
S-unit group, rank of, 26¢
Superabundance, 85 391, 392
Superelliptic curve
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362
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Surface, 23

abelian, 478
adjunction formula, 84
algebraic, 84
arithmetic, 466
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classification of, 478
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of bidegree (d,3), 492
rational, 478, 4994
Riemann, 23, 67
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ruled, 478
self-intersection of a divisor, 84

self-intersection of the diagonal, 86,
391
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Surjective finite morphism, 19
Swinnerton-Dyer, P., 481, 496
Symmetric bilinear pairing, 253
Symmetric divisor
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Symmetric polynomial, 177
Symmetric product
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of a curve of genus two, 148
of an elliptic curve, 148
of projective line, 148

Szpiro, L., 470
Szpiro conjecture, 453
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implied by abc, 498
implies Lang height lower bound con-

jecture, 454
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over function field, 455
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Szpiro small point conjecture, 470
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Tangent bundle, 61, 66
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bound for coefficients, 449
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Torsion subgroup (continued)
of an abelian variety, 251

is finite, 198
Torsion

uniform bound for on abelian variety?,
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uniform bound for on elliptic curve,
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surjective, 12
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function field of, 16. 65
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special subset, 479
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tangent map, 25
tangent space, 24. 160
twist, 283
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Vojta, P., 367, 439, 482
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for K3 surface, 484, 500
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Vojta conjecture (continued)

for variety of Kodaira dimension r. =
0, 484
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implies abc, 487, 500
normal crossings necessary, 484, 486,

499
Vojta divisor, 373, 377, 421
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applied with rank J(K) = ), 370
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proof of, 421
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380
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356
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Weierstrass equation, 77 164, 452

regular differential form on, 88
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Weil, A., 120, 135. 169

Ph.D. thesis, 25Z
Weil decomposition theorem, 255
Weil divisor, 34

group of, 34
map from Cartier divisor, 38

Weil height machine, 184' 245 368 382
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metrized height is, 254

Weil pairing, 133, 261
Well reciprocity law, 91, 297
Weil theorem, 468
Weil-Chiitelet group, 290

geometric group law, 297
Widely spaced, 21,8 383 425
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