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Foreword

“Algebraic geometry seems to have acquired the reputation of being
esoteric, exclusive, and very abstract, with adherents who are secretly
plotting to take over all the rest of mathematics. In one respect this
last point is accurate.”

—David Mumford in [119].

This book is intended for self-study or as a textbook for graduate students
or advanced undergraduates. It presupposes some basic knowledge of point-
set topology and a solid foundation in linear algebra. Otherwise, it develops
all of the commutative algebra, sheaf-theory and cohomology needed to un-
derstand the material. This is the kind of background students might have at
a school that emphasizes applied mathematics, or one where enrollment is not
sufficient to run separate courses in commutative algebra.

The first chapter is an introduction to the algebraic approach to solving a
classic geometric problem. It develops concepts that are useful and interesting
on their own, like the Sylvester matrix and resultants of polynomials. It con-
cludes with a discussion of how problems in robots and computer vision can
be framed in algebraic terms.

Chapter 2 on page 35 develops classical affine algebraic geometry, provid-
ing a foundation for scheme theory and projective geometry. it also develops
the theory of Gröbner bases and applications of them to the robotics problems
from the first chapter.

Chapter 3 on page 117 studies the local properties of affine varieties —
material that is relevant for projective varieties as well.

Chapter 4 on page 159 is an introduction to the language of schemes and
general varieties. It attempts motivate these concepts by showing that certain
natural operations on varieties can lead to objects that are schemes but not va-
rieties.

Chapter 5 on page 213 covers projective varieties, using material from chap-
ter 3 on open affines. In the section on Grassmanians, it has a complete treat-
ment of interior products.

In the section on intersection theory, it revisits the classical problem intro-
duced in chapter 1 and provides a modern treatment.

In chapter 6, the book culminates with two proofs of the Riemann-Roch
theorem. The first is classical (Brill-Noether) and reasonably straightforward
— introducing some elegant geometric concepts and results. The second proof
is the modern one using the heavy machinery of sheaf cohomology and Serre
Duality. Both are included because they give an instructor flexibility in ap-
proaching this subject. In particular, the sheaf cohomology of the second proof
gives students a good idea of how the subject is done today.

vii



Appendix A on page 327 develops almost all of the commutative algebra
needed to understand the rest of the book (specialized material is provided as
needed): students are only required to have an understanding of linear algebra
and the concept of a group. Students with some commutative algebra can skip
it and refer back to it as needed (page-references are used throughout the book
to facilitate this). It ends with a brief treatment of category theory.

Appendix B on page 475 is an introduction to sheaves, in preparation for
structure sheaves of schemes and general varieties. It also develops the theory
of vector-bundles over an affine variety.

Appendix C on page 487 develops the topological concept of vector bun-
dles.

Appendix D on page 499 develops basic concepts of homological algebra
and applies this to sheaves and rings. It culminates with a proof of the Serre
Duality theorem.

� Sections marked with a “dangerous bend” symbol are more advanced and may
be skipped on a first reading.

Answers to roughly half of the exercises are found at the end of the book.
Chapters 1 and 2 (with a sidelong glance at appendix A) may be suitable

for a semester of an undergraduate course. Appendix A has been used as the
text for the second semester of an abstract algebra course.

Chapters 3 and 4 (or even chapter 5, skipping chapter 4) could make up the
text for a second semester.

I am grateful to Patrick Clarke and Thomas Yu for many helpful and in-
teresting discussions. Their insights and comments have improved this book
considerably. I am also grateful to people at mathoverflow.net for their
comments. The list includes (but is not limited to): Matthew Emerton, Will
Swain, Nick Ramsey, and Angelo Vistoli.

I am indebted to Noel Robinson for pointing out a gap in the proof of corol-
lary 2.8.30 on page 110. Correcting it entailed adding the material on uniform
Krull dimension in section 2.8.2 on page 100.

I am also grateful to Matthias Ettrich and the many other developers of the
software, LYX — a free front end to LATEX that has the ease of use of a word
processor, with spell-checking, an excellent equation editor, and a thesaurus. I
have used this software for years and the current version is more polished and
bug-free than most commercial software.

LYX is available from http://www.lyx.org.
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CHAPTER 1

A classical result

Awake! for Morning in the Bowl of Night
Has flung the Stone that puts the Stars to Flight:
And Lo! the Hunter of the East has caught
The Sultan’s Turret in a Noose of Light.

—The Rubaiyat of Omar Khayyam, verse I

Algebraic geometry is a branch of mathematics that combines techniques
of abstract algebra with the language and the problems of geometry.

It has a long history, going back more than a thousand years. One early
(circa 1000 A.D.) notable achievement was Omar Khayyam’s1 proof that the
roots of a cubic equation could be found via the intersection of a parabola and
a circle (see [87]).

It occupies a central place in modern mathematics and has multiple con-
nections with fields like complex analysis, topology and number theory. Today,
algebraic geometry is applied to a diverse array of fields including theoretical
physics, control theory, cryptography (see section 6.2.2 on page 313), and alge-
braic coding theory — see [31]. Section 1.6 on page 27 describes an application
to robotics.

1.1. Bézout’s Theorem

We begin with a classical result that illustrates how algebraic geometry ap-
proaches geometric questions. It was stated (without proof) by Isaac Newton
in his proof of lemma 28 of volume 1 of his Principia Mathematica and was dis-
cussed by MacLaurin (see [105]) and Euler (see [44]) before Bézout’s published
proof in [16].

Étienne Bézout (1730–1783) was a French algebraist and geometer credited with
the invention of the determinant (in [14]).

Let’s examine graphs of polynomials and the points where they intersect.
Two linear curves — straight lines — intersect in a single point. A line and a
quadratic curve intersect in two points and figure 1.1.1 on page 2 shows the
intersections between

4x2 + y2 = 1
and

x2 + 4y2 = 1
at 4 points.

1The Omar Khayyam who wrote the famous poem, The Rubaiyat — see [47].

1



2 1. A CLASSICAL RESULT

FIGURE 1.1.1. A quadratic intersecting a quadratic

Figure 1.1.2 shows the intersection of the quadratic curve

3
5
(x− 2)2 + 25

(
y− 1

10

)2
= 1

with the cubic curve

y = x3 − 6 x2 + 11 x− 6

at 6 points.

FIGURE 1.1.2. Intersection of a quadratic and cubic

We arrive at the conjecture (that Newton, MacLaurin and Euler regarded
as self-evident):
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CONJECTURE 1.1.1. If f (x, y) is a polynomial of degree n and g(x, y) is a poly-
nomial of degree m, the curves defined by f = 0 and g = 0 intersect in m · n points.

As soon as we state this conjecture, some problems immediately become
clear:

(1) The set of points that satisfy x2 − y2 = 0 consists of the union of the
line y = x and the line y = −x. So, if f (x, y) = x2 − y2 and g(x, y) =
x− y then the intersection of the curves defined by them has an infinite
number of points, namely the entire line y = x.

(2) the parabola y = x2 + 1 does not intersect the line y = 0 at all.
(3) two parallel lines y = 2x + 1 and y = 2x + 3 do not intersect.

The first problem can be solved by requiring f and g to have no common factor.
In light of the second and third problem, one might be tempted to limit

our conjecture to giving an upper bound to the number of intersections. On the
other hand, the second problem can be easily solved by passing to the complex
numbers — where we get two intersections (±i, 0).

We can deal with the third problem too, but we need to address another
important geometric development.

1.2. The projective plane

Projective geometry extends euclidean geometry by adding “points at in-
finity” where parallel lines intersect. It arose in an effort to understand the
mathematical aspects of perspective — in effect, it is the geometry of the visual
world. It was also one of the first non-Euclidean geometries to be studied.

The early development of projective geometry in the 1600’s was along the
lines of Euclidean geometry, with axioms and theorems that analyzed intersec-
tions of lines and triangles — see [69].

The modern approach is quantitative, and projective geometry is used
heavily in computer graphics today — see [74]. A high-end graphics card
that allows one to play computer games is actually performing millions of
three-dimensional projective transformations per second.

When one looks at a scene (without binocular vision!) one sees along lines
of sight. All points along a line from the eye to the horizon are equivalent in that
they contribute one point to the two-dimensional image one sees.

DEFINITION 1.2.1. The real projective plane is the space of equivalence
classes

RP2 = {R3 \ (0, 0, 0)}/ ∼
where ∼ is the equivalence relation

(1.2.1) (x1, y1, z1) ∼ (x2, y2, z2)

if there exists a t 6= 0 such that x2 = t · x1, y2 = t · y1, z2 = t · z1. We denote
points of RP2 by so-called homogeneous coordinates: [x: y: z], where the colons
indicate that the ratios between the coordinates are the only things that are sig-
nificant.

REMARK. Homogeneous coordinates first appeared in the 1827
monograph, Der barycentrische Calcül, by Möbius (see [150]).
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August Ferdinand Möbius (1790–1868) was a German mathematician and as-
tronomer popularly known for his discovery of the Möbius strip (although he
made many other contributions to mathematics, including Möbius transforma-
tions, the Möbius function in combinatorics and the Möbius inversion formula).

In more generality we have

DEFINITION 1.2.2. The projective spaces

RPn = {Rn+1 \Origin}/ ∼
and

CPn = {Cn+1 \Origin}/ ∼
are sets of equivalence classes via an n + 1-dimensional version of
equation 1.2.1 on the preceding page where t is in R and C, respectively.

It is not hard to see that these projective spaces can be broken down into
unions of ordinary Euclidean space and other projective spaces:

PROPOSITION 1.2.3. We have inclusions

(x1, . . . , xn) 7→ [x1: · · · : xn: 1]
Rn ↪→ RPn

Cn ↪→ CPn

so a point [x1: · · · : xn+1] ∈ CPn with xn+1 6= 0 corresponds to the point(
x1

xn+1
, . . . ,

xn

xn+1

)
∈ Cn

We also have inclusions

[x1: · · · : xn] 7→ [x1: · · · : xn: 0]

RPn−1 ↪→ RPn

CPn−1 ↪→ CPn

and

RPn = Rn ∪RPn−1

CPn = Cn ∪CPn−1(1.2.2)

where the embedded copies of RPn−1 and CPn−1 are called the “spaces at infinity”.
Every point, [x1: · · · : xn+1], of CPn is either in the image of Cn (if xn+1 6= 0) or

in the image of CPn−1 (if xn+1 = 0).

REMARK. The reason for the term “space at infinity” is that the point

[x1: · · · : xn+1] ∈ CPn

with xn+1 6= 0 corresponds to the point(
x1

xn+1
, . . . ,

xn

xn+1

)
∈ Cn

and this point moves out to infinity as we let xn+1 → 0.
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PROOF. If [x1: · · · : xn+1] ∈ RPn is a point, then there are two mutually ex-
clusive possibilities: xn+1 = 0 or xn+1 6= 0.

Among points for which xn+1 = 0, we have
[x1: · · · : xn: 0] ∼ [x′1: · · · : x′n: 0] ∈ RPn if and only if
[x1: · · · : xn] ∼ [x′1: · · · : x′n] ∈ RPn−1. It follows that such points
are in the image of RPn−1 ↪→ RPn, as defined above.

Among points for which xn+1 6= 0, we have

[x1: · · · : xn: xn+1] ∼
[

x1

xn+1
: · · · : xn

xn+1
: 1
]
∈ RPn

so that such points are in the image of the map Rn ↪→ RPn, as defined above.
Since every point of RPn is in the image of RPn−1 ↪→ RPn or Rn ↪→ RPn, it

follows that RPn = Rn ∪RPn−1. The proof for CPn is similar. �

Returning to Bézout’s theorem, we need to understand algebraic curves in
projective spaces.

DEFINITION 1.2.4. A polynomial F(x1, . . . , xn) is homogeneous of degree k if

F(tx1, . . . , txn) = tkF(x1, . . . , xn)

for all t ∈ C.

REMARK 1.2.5. Note that the set of solutions of an equation

F(x1, . . . , xn+1) = 0

where F is homogeneous of any degree is naturally well-defined over CPn since
any multiple of a solution is also a solution.

PROPOSITION 1.2.6. There is a 1-1 correspondence between degree k polynomials
on Cn and homogeneous polynomials of degree k on Cn+1 that are not divisible by
xn+1. It sends the polynomial p(x1, . . . , xn) over Cn to the homogeneous polynomial

p̄(x1, . . . , xn+1) = xk
n+1 p

(
x1

xn+1
, . . . ,

xn

xn+1

)
over Cn+1, and sends the homogeneous polynomial p̄(x1, . . . , xn+1) to
p̄(x1, . . . , xn, 1).

PROOF. It is clear that p̄(x1, . . . , xn+1) is homogeneous of degree k:

p̄(tx1, . . . , txn+1) = tkxk
n+1 p

(
tx1

txn+1
, . . . ,

txn

txn+1

)
= tkxk

n+1 p
(

x1

xn+1
, . . . ,

xn

xn+1

)
= tk p̄(x1, . . . , xn+1)

Furthermore, since p(x1, . . . , xn) is of degree k, there is at least one monomial
of total degree k

xα1
1 · · · xαn

n

with ∑n
i=1 αi = k, which will give rise to

xk
n+1 ·

((
x1

xn+1

)α1

· · ·
(

xn

xn+1

)αn)
= xα1

1 · · · xαn
n
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so p̄(x1, . . . , xn+1) will have at least one monomial that does not contain a factor
of xn+1 and p̄(x1, . . . , xn+1) will not be a multiple of xn+1.

It is easy to see that if p(x1, . . . , xn) is a polynomial of degree k, converting
it to p̄(x1, . . . , xn+1) and then setting the final variable to 1 will regenerate it:

p̄(x1, . . . , xn, 1) = p(x1, . . . , xn)

Conversely, if we start with a homogeneous polynomial, g(x1, . . . , xn+1) of
degree k that is not divisible by xn+1, then the defining property of a homoge-
neous polynomial implies that

g(x1, . . . , xn+1) = xk
n+1g

(
x1

xn+1
, . . . ,

xn

xn+1
, 1
)

We claim that g(x1, . . . , xn, 1) is a polynomial of degree k. This follows from the
fact that the original g was not divisible by Xn+1 so there exists a monomial in
g of degree k that does not contain Xn+1. �

An equation for a line
x2 = ax1 + b

in C2 gives rise to an equation involving homogeneous coordinates, [x1: x2: x3],
in CP2

x2

x3
= a

x2

x3
+ b

or

(1.2.3) x2 = ax1 + bx3

It follows that lines in C2 extend uniquely to lines in CP2.
It is encouraging that:

PROPOSITION 1.2.7. Two distinct lines

x2 = a1x1 + b1x3

x2 = a2x1 + b2x3

in CP2 intersect in one point. If they are parallel with a1 = a2 = a then they intersect
at the point [x1: ax1: 0] at infinity.

REMARK. This matches what we experience in looking at a landscape: par-
allel lines always meet at the horizon, and their common slope determines
where they meet.

PROOF. If the lines are not parallel (i.e., a1 6= a2) then they intersect in
C2 ⊂ CP2 in the usual way. If a1 = a2 = a, we have 0 = (b1 − b2)x3 so x3 = 0.
We get a point of intersection [x1: ax1: 0] ∈ CP1 ⊂ CP2 — “at infinity”. �

To find the solutions of

F(x1, x2, x3) = 0

in CP2, proposition 1.2.3 on page 4 implies that we must consider two cases:
(1) [x1: x2: x3] ∈ C2 ⊂ CP2. We set x3 = 1 and solve F(x1, x2, 1) = 0.
(2) [x1: x2: x3] ∈ CP1 ⊂ CP2. In this case, we set x3 = 0 and solve

F(x1, x2, 0) = 0. This is a homogeneous polynomial in x1 and x2 and
solving it involves two cases again:
(a) F(x1, 1, 0) = 0
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FIGURE 1.2.1. Two circles

(b) F(x1, 0, 0) = 0. In this case, we only care whether a nonzero value
of x works because [x: 0: 0] = [1: 0: 0] defines a single point of CP2.

Here’s an example:
If we start with a “circle,” C, in C2 defined by

x2
1 + y2

2 − 1 = 0

we can extend it to a curve C̄ in CP2 by writing

x2
3

((
x1

x3

)2
+

(
x2

x3

)2
− 1

)
= 0

or
x2

1 + x2
2 = x2

3

The first case gives us back the original equation C ⊂ C2. The second case
(x3 = 0) gives us

(1.2.4) x2
1 + x2

2 = 0

The first sub-case, 2a on the facing page, gives us

x2
1 + 1 = 0

so we get x1 = ±i and x2 = 1. The second sub-case is

x2
1 + 0 = 0

which is unacceptable since at least one of the three variables x1, x2, x3 must be
nonzero.

So the curve C̄ ⊂ CP2 includes C and the two points at infinity [±i: 1: 0].

DEFINITION 1.2.8. A circle in CP2 is defined to be the extension to CP2 of a
curve in C2 defined by a equation

(x1 − a)2 + (x2 − b)2 = r2

for a, b, r ∈ C.

It is interesting that:

PROPOSITION 1.2.9. All circles in CP2 include the two points [±i: 1: 0].
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PROOF. Let
(x1 − a)2 + (x2 − b)2 = r2

be a circle in C2. This becomes

x2
3

((
x1

x3
− a
)2

+

(
x2

x3
− b
)2
− r2

)
= 0

or
(x1 − ax3)

2 + (x2 − bx3)
2 = r2x2

3

If we set x3 = 0, we get equation 1.2.4 on the previous page. �

This is encouraging because, a first glance, it would appear that the
circles in Figure 1.2.1 on the preceding page only intersect at two points.
Proposition 1.2.9 on the previous page shows that they actually intersect at
two other points as well, giving a total of four intersections as predicted by
Conjecture 1.1.1 on page 3.

LEMMA 1.2.10. Let F(x1, x2) be homogeneous of degree k. Then F factors into k
linear factors

F(x1, x2) =
k

∏
i=1

(αix1 − βix2)

with αi, βi ∈ C.

PROOF. The idea is that F is naturally defined over CP1 = C∪ [1: 0]. Let k0
be the highest power of x2 such that

F = xk0
2 G(x1, x2)

Then G will be homogeneous of degree k− k0 and

G(x1, x2) = xk−k0
2 G

(
x1

x2
, 1
)

and we solve

G
(

x1

x2
, 1
)
= g(z) = 0

in the usual way to get a factorization

g(z) =
k−k0

∏
i=1

(αiz− βi)

Now replace z by x1/x2 and multiply by xk−k0
2 to get the factorization

F(x1, x2) = xk0
2

k−k0

∏
i=1

(αix1 − βix2)

�
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EXERCISES.

1. Convert the equation

x2 + 3xy + 25 = 0

into an equation in CP2 and describe the point-set it defines.

2. Find points of intersection of the parabolas

y = x2 + 1

y = x2 + 2

in CP2.

3. Factor the homogeneous polynomial

x3 + 6x2y + 11xy2 + 6y3

4. Convert x2 + y2 + 9 = 0 to an equation in CP2 and describe the point-set
it defines.

5. If A is an (n + 1)× (n + 1) invertible matrix, show that

A: Cn+1 → Cn+1

on homogeneous coordinates, defines a continuous map

Ā: CPn → CPn

6. Why did the matrix in the previous problem have to be invertible?

7. Which (n + 1)× (n + 1) matrices

A: Cn+1 → Cn+1

have the property that the induced map

Ā: CPn → CPn

preserves Cn ⊂ CPn (as in proposition 1.2.3 on page 4).

8. Suppose A is the (n + 1)× (n + 1) matrix

A =


1 · · · 0 z1
...

. . .
...

...
0 · · · 1 zn
0 · · · 0 1


The induced map

Ā: CPn → CPn

preserves Cn ⊂ CPn. What effect does Ā have on Cn?
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1.3. The Sylvester Matrix

In order to pursue these ideas further, we need some more algebraic ma-
chinery.

We begin by trying to answer the question:
Given polynomials

f (x) = anxn + · · ·+ a0(1.3.1)
g(x) = bmxm + · · ·+ b0(1.3.2)

when do they have a common root?
An initial (but not very helpful) answer is provided by:

LEMMA 1.3.1. If f (x) is a nonzero degree n polynomial and g(x) is a nonzero
degree m polynomial, they have a common root if and only if there exist nonzero poly-
nomials r(x) of degree ≤ m− 1 and s(x) of degree ≤ n− 1 such that

(1.3.3) r(x) f (x) + s(x)g(x) = 0

REMARK. Note that the conditions on the degrees of r(x) and s(x) are im-
portant. Without them, we could just write

r(x) = g(x)
s(x) = − f (x)

and always satisfy equation 1.3.3.

PROOF. Suppose f (x), g(x) have a common root, α. Then we can set

r(x) = g(x)/(x− α)

s(x) = − f (x)/(x− α)

and satisfy equation 1.3.3.
On the other hand, if equation 1.3.3 is satisfied it follows that r(x) f (x) and

s(x)g(x) are degree t ≤ n + m− 1 polynomials that have the same t factors

x− α1, . . . , x− αt

since they cancel each other out. This set (of factors) of size t includes the n
factors of f (x) and the m factors of g(x). The pigeonhole principal implies that
at least 1 of these factors must be common to f (x) and g(x). And this common
factor implies the existence of a common root. �

Suppose

r(x) = um−1xm−1 + · · ·+ u0

s(x) = vn−1xn−1 + · · ·+ v0

Then

r(x) · f (x) =
n+m−1

∑
i=0

xici(1.3.4)

s(x) · g(x) =
n+m−1

∑
i=0

xidi
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where ci = ∑j+k=i ujak. We can compute the coefficients {ci} by matrix prod-
ucts

[um−1, . . . , u0]


an
0
...
0

 = cn+m−1

and

[um−1, . . . , u0]


an−1

an
0
...
0

 = cn+m−2

or, combining the two,

[um−1, . . . , u0]


an an−1
0 an
0 0
...

...
0 0

 = [cn+m−1, cn+m−2]

where the subscripts of ak increase from top to bottom and those of the uj in-
crease from left to right.

On the other end of the scale

[um−1, . . . , u0]


0
...
0
a0

 = c0

and

[um−1, . . . , u0]


0
...
0
a0
a1

 = c1

so we get

[um−1, . . . , u0]


0 0
...

...
0 0
a0 0
a1 a0

 = [c1, c0]

This suggests creating a matrix

M1 =


an an−1 · · · a0 0 · · · 0

0 an · · · a1
. . . · · · 0

...
. . . . . .

...
. . . . . .

...
0 · · · 0 an · · · a1 a0
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of m rows and n + m columns. The top row contains the coefficients of f (x)
followed by m− 1 zeros and each successive row is the one above shifted to the
right. We stop when a0 reaches the rightmost column. Then[

um−1 · · · u0
]

M1 =
[

cn+m−1 · · · c0
]
= [c]

so we get the coefficients of r(x) f (x). In like fashion, we can define a matrix
with n rows and n + m columns

M2 =


bm bm−1 · · · b0 0 · · · 0

0 bm · · · b1
. . . · · · 0

...
. . . . . .

...
. . . . . .

...
0 · · · 0 bm · · · b1 b0


whose top row is the coefficients of g(x) followed by n− 1 zeros and each suc-
cessive row is shifted one position to the right, with b0 on the right in the bottom
row. Then [

vn−1 · · · v0
]

M2 = [dn+m−1, . . . , d0] = [d]

— a vector of the coefficients of s(x)g(x). If we combine the two together, we
get an (n + m)× (n + m)-matrix

S =

[
M1
M2

]
with the property that

(1.3.5)
[

u v
]

S = [c + d]

— an n+m dimensional vector of the coefficients of r(x) f (x)+ s(x)g(x), where

u =
[

um−1 · · · u0
]

(1.3.6)

v =
[

vn−1 · · · v0
]

It follows that S reduces the question of the existence of a common root of
f (x) and g(x) to linear algebra: The equation

(1.3.7)
[

u v
]

S = [0]

has a nontrivial solution if and only if det(S) = 0.

DEFINITION 1.3.2. If

f (x) = anxn + · · ·+ a0

g(x) = bmxm + · · ·+ b0
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are two polynomials, their Sylvester Matrix is the (n + m)× (n + m)-matrix

S( f , g, x) =



an an−1 · · · a0 0 · · · 0

0 an · · · a1
. . . · · · 0

...
. . . . . .

...
. . . . . .

...
0 · · · 0 an · · · a1 a0

bm bm−1 · · · b0 0 · · · 0

0 bm · · · b1
. . . · · · 0

...
. . . . . .

...
. . . . . .

...
0 · · · 0 bm · · · b1 b0


and its determinant det(S( f , g, x)) = Res( f , g, x) is called the resultant of f and
g.

James Joseph Sylvester (1814–1897) was an English mathematician who made
important contributions to matrix theory, invariant theory, number theory and
other fields.

The reasoning above shows that:

PROPOSITION 1.3.3. The polynomials f (x) and g(x) have a common root if and
only if Res( f , g, x) = 0.

PROOF. Equations 1.3.2 on page 10 and 1.3.5 on the facing page imply
that the hypothesis of lemma 1.3.1 on page 10 is satisfied if and only if
det(S( f , g, x)) = 0. �

EXAMPLE. For instance, suppose

f (x) = x2 − 2x + 5

g(x) = x3 + x− 3

Then the Sylvester matrix is

M =


1 −2 5 0 0
0 1 −2 5 0
0 0 1 −2 5
1 0 1 −3 0
0 1 0 1 −3


and the resultant is 169, so these two polynomials have no common roots.

There are many interesting applications of the resultant. Suppose we are
given parametric equations for a curve

x =
f1(t)
g1(t)

y =
f2(t)
g2(t)

where fi and gi are polynomials, and want an implicit equation for that curve,
i.e. one of the form

F(x, y) = 0



14 1. A CLASSICAL RESULT

This is equivalent to finding x, y such that the polynomials

f1(t)− xg1(t) = 0
f2(t)− yg2(t) = 0

have a common root (in t). So the condition is

Res( f1(t)− xg1(t), f2(t)− yg2(t), t) = 0

This resultant will be a polynomial in x and y. We have eliminated the variable
t — in a direct generalization of Gaussian elimination — and the study of such
algebraic techniques is the basis of Elimination Theory — see section 2.3 on
page 45. This develops the theory of Gröbner Bases, which allow one to perform
arbitrarily many eliminations in a single step.

For example, let

x = t2

y = t2(t + 1)

Then the Sylvester matrix is

1 0 −x 0 0

0 1 0 −x 0

0 0 1 0 −x

1 1 0 −y 0

0 1 1 0 −y


and the resultant is

Res(t2 − x, t2(t + 1)− y, t) = −x3 + y2 − 2 yx + x2

and it is not hard to verify that

−x3 + y2 − 2 yx + x2 = 0

after plugging in the parametric equations for x and y.

EXERCISES.

1. Compute an implicit equation for the curve defined parametrically by

x = t/(1 + t2)

y = t2/(1− t)

2. Compute an implicit equation for the curve

x = t/(1− t2)

y = t/(1 + t2)

3. Compute an implicit equation for the curve

x = (1− t)/(1 + t)

y = t2/(1 + t2)
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4. Solve the equations

x2 + y2 = 1

x + 2y− y2 = 1

by computing a suitable resultant to eliminate y.

5. Find implicit equations for x, y, and z if

x = s + t
y = s2 − t2

z = 2s− 3t2

Hint: Compute resultants to eliminate s from every pair of equations and then
eliminate t from the resultants.

1.4. Application to Bézout’s Theorem

In this section, we will denote homogeneous coordinates of CP2 by [x: y: z].
We will apply the resultant to computing intersections in CP2. Suppose we

have two homogeneous polynomials

F(x, y, z)
G(x, y, z)

of degrees n and m, respectively, and we want to compute common zeros.
We regard these as polynomials in one variable with coefficients that are

polynomials in the others:

F(x, y, z) = an(x, y)zn + · · ·+ a0(x, y)(1.4.1)
G(x, y, z) = bm(x, y)zm + · · ·+ b0(x, y)(1.4.2)

If we set the resultant of these polynomials and to zero, we get conditions x
and y must satisfy for there to exist a value of z that makes the original polyno-
mials equal to zero.

The key step in the proof of Bézout’s Theorem is

THEOREM 1.4.1. The resultant of the polynomial F, in 1.4.1 and G, in 1.4.2 is a
homogeneous polynomial in x and y of degree nm (see definition 1.2.4 on page 5)

PROOF. If R(x, y) is this resultant, we will show that R(tx, ty) = tnmR(x, y)
for all t, which will prove the conclusion.
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Since F is homogeneous of degree n, the degree of ai(x, y) will be n − i.
Similar reasoning shows that the degree of bi(x, y) is m− i. It follows that

R(tx, ty) = det



an tan−1 · · · tna0 0 · · · 0

0 an · · · tn−1a1
. . . · · · 0

...
. . . . . .

...
. . . . . .

...
0 · · · 0 an · · · tn−1a1 tna0

bm tbm−1 · · · tmb0 0 · · · 0

0 bm tm−1b1
. . . · · · 0

...
. . . . . . . . . . . .

...
0 · · · 0 bm · · · tm−1b1 tmb0


Now do the following operations to the top and bottom halves of this matrix:

Multiply the second row by t, the third by t2 and the mth row (in the top
half) by tm−1 and the nth row (in the bottom half) by tn−1.

We get

tN+MR(tx, ty) =

det



an tan−1 · · · tna0 0 · · · 0

0 tan · · · tna1
. . . · · · 0

...
. . . . . .

...
. . . . . .

...
0 · · · 0 an · · · tn+m−2a1 tn+m−1a0

bm tbm−1 · · · tmb0 0 · · · 0

0 tbm
. . . tmb1

. . . · · · 0
...

. . . . . .
...

. . . . . .
...

0 · · · 0 tn−1bm · · · tm+n−2b1 tm+n−1b0


where

N = 1 + · · ·+ n− 1 = n(n− 1)/2
M = 1 + · · ·+ m− 1 = m(m− 1)/2

This new matrix is the same as the original Sylvester matrix with the second
column multiplied by t, the third by t2 and so on. It follows that

tN+MR(tx, ty) = tZR(x, y)

where

Z = 1 + · · ·+ n + m− 1 = (m + n)(m + n− 1)/2

We conclude that

R(tX, tY) = t
(m+n)(m+n−1)

2 − n(n−1)
2 −m(m−1)

2 R(x, y) = tnmR(x, y)

�
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COROLLARY 1.4.2. The resultant of the polynomial F in 1.4.1 on page 15 and G
in 1.4.2 on page 15 factors into nm linear factors

(1.4.3) Res(F, G, z) =
nm

∏
i=1

(αix− βiy)

PROOF. This follows immediately from theorem 1.4.1 on page 15 and
lemma 1.2.10 on page 8. �

Note that each of these factors defines the equation of a line through the
origin like y = αix/βi. These are lines from the origin to the intersections
between the two curves defined by equation 1.4.6 and 1.4.7.

If there is a nonzero value of z associated with a given factor (αix− βiy) then
the intersection point is (

x:
αix
βi

: z
)
=

(
x
z

:
αix
βiz

: 1
)

although it is usually easier to simply find where the line y = αix/βi intersects
both curves than to solve for z.

Here is an example:

EXAMPLE 1.4.3. We compute the intersections between the parabola

(1.4.4) y = x2 + 1

and the circle

(1.4.5) x2 + y2 = 4

We first translate these to formulas in CP2:

z2
(

y
z
−
( x

z

)2
− 1
)

= 0

yz− x2 − z2 = 0(1.4.6)

and

z2
(( x

z

)2
+
(y

z

)2
− 2
)

= 0

x2 + y2 − 4z2 = 0(1.4.7)

Now we regard equations 1.4.6 and 1.4.7 as polynomials in z whose coefficients
are polynomials in x and y. The Sylvester matrix is

−1 y −x2 0

0 −1 y −x2

−4 0 x2 + y2 0

0 −4 0 x2 + y2


and the resultant is

6 y2x2 − 3 y4 + 25 x4
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FIGURE 1.4.1. Intersection in example 1.4.3 on the preced-
ing page.

and we get the factorization (using a computer algebra system like Maple, Max-
ima or Sage):

25
(

x− 1
5

iy
√

3 + 2
√

21
)(

x +
1
5

iy
√

3 + 2
√

21
)

(
x− 1

5
y
√
−3 + 2

√
21
)(

x +
1
5

y
√
−3 + 2

√
21
)

Setting factors to 0 gives us lines through intersections between the
parabola and circle. For instance, setting the third factor to 0 gives:

x =
y
5

√
−3 + 2

√
21

and figure 1.4.1 shows the intersection of this line with the two curves.

To compute the point of intersection, we plug it into equation 1.4.4 on the
previous page and get

y =
3
2
+

1
6

√
21

y = −1
2
+

1
2

√
21

If we plug it into equation 1.4.5 on the preceding page, we get

y = −1
2
+

1
2

√
21

y =
1
2
− 1

2

√
21
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so the common value is y = − 1
2 + 1

2

√
21 and the corresponding x value is(

−1
2
+

1
2

√
21
)(

1
5

√
−3 + 2

√
21
)
= − 1

10

√
−3 + 2

√
21 +

1
10

√
42− 3

√
21

We have found one intersection point between the two curves:(
− 1

10

√
−3 + 2

√
21 +

1
10

√
42− 3

√
21,−1

2
+

1
2

√
21
)

and there are clearly three others.

Here’s another example:

EXAMPLE 1.4.4. The curves are

x2 + y2 = 4
xy = 1

Extended to CP2, these become

x2 + y2 − 4z2 = 0(1.4.8)

xy− z2 = 0

and the resultant is (
4 xy− x2 − y2

)2

with a factorization

(1.4.9) (x− (2 +
√

3)y)2(x− (2−
√

3)y)2

In this case, we get two factors of multiplicity 2. This represents the symmetry
in the graph: a line given by

x = (2 +
√

3)y

and representing a factor of the resultant, intersects the graph in two points

±
(√

2 +
√

3,
1√

2 +
√

3

)
— see figure 1.4.2 on the next page

Unfortunately, figure 1.4.2 raises a possible problem:

A linear factor of equation 1.4.3 might represent more than one
intersection. After all, the vanishing of the resultant means that
F and G in equations 1.4.1 and 1.4.2 have at least one common
root. They are polynomials of degree n and m, respectively,
and what is to prevent them from having many common roots?
Maybe the curves we are studying have more than mn intersec-
tions.
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FIGURE 1.4.2. A factor of multiplicity 2 in example 1.4.4 on
the preceding page.

FIGURE 1.4.3. Perturbation of figure 1.4.2

The key is that the factors in equation 1.4.3 represent lines from the origin to the
intersections. Suppose the intersections between the curves are

{(xi: yi: zi)}
and draw lines {`j} through each pair of points. Now displace both curves by
a small amount (u, v)

F(x− u, y− v, z) = 0
G(x− u, y− v, z) = 0

so that none of the {`j} passes through the origin. The number of intersections
will not change and every linear factor of equation 1.4.3 will represent a unique
intersection.
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FIGURE 1.4.4. Intersection of multiplicity 2

For instance, applying a displacement of (.2, .2) to the equations in 1.4.8
translates the intersections by this. The single line through two intersections
in figure 1.4.2 on the facing page splits into two lines, as in figure 1.4.3 on the
preceding page. The squared term in expression 1.4.9 on page 19 representing
this line splits into two distinct linear factors.

Since corollary 1.4.2 on page 16 implies that the resultant has n · m linear
factors, we conclude that:

PROPOSITION 1.4.5. The curves defined by equations 1.4.1 on page 15 and 1.4.2
have at most mn intersections in CP2.

Now we consider another potential problem in counting intersections.
Consider the equations

x2 + y2 = 4(1.4.10)

(x− 1)2 + y2 = 1

which give

x2 + y2 − 4z2 = 0

(x− z)2 + y2 − z2 = 0

in CP2 and have a resultant
−4 x2y2 − 4 y4

that factors as
−4y2(x2 + y2)

In this case, the factor x2 + y2 = 0 represents the two points at infinity that all
circles have — see proposition 1.2.9 on page 7. The only other intersection point
is (2, 0), which corresponds to the factor y2 of multiplicity two: setting y = 0 in
equations 1.4.10 forces x to be 2. Figure 1.4.4 shows that the circles are tangent
to each other at the point of intersection.
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We will perturb the equations in 1.4.10 on the preceding page slightly:

x2 + y2 − 4z2 = 0

(x− az)2 + y2 − z2 = 0

The resultant becomes

9 x4 + 18 x2y2 − 10 x4a2 − 4 x2y2a2

+ 9 y4 + 6 y4a2 + x4a4 + 2 x2a4y2 + y4a4

which we factor as

− (x2 + y2)
(

x
√

10 a2 − a4 − 9−
(

a2 + 3
)

y
)

(
x
√

10 a2 − a4 − 9 +
(

a2 + 3
)

y
)

Which gives us two lines of intersection

(1.4.11) y = ±
√

10 a2 − a4 − 9
a2 + 3

· x

that coalesce as a→ 1. It follows that the one point of intersection in figure 1.4.4
on the previous page is the result of two intersections merging. We call the result
an intersection of multiplicity two.

Consider a line joining the two intersections in equation 1.4.11. As the inter-
sections approach each other, this line becomes the tangent line to both curves
and the curves must be tangent to each other at this intersection of multiplicity
two.

Consequently, we call an intersection that splits into n intersections when
we perturb the equations slightly, an intersection of multiplicity n. This a di-
rect generalization of the concepts of roots of polynomials having a multiplicity
larger than 1: A root of the polynomial

p(x)

of multiplicity n defines an intersection of multiplicity n between the curve

y = p(x)

and the x-axis.
This definition is not particularly useful and we attempt to improve on it

by considering examples.
If we write the circles in the form

x =
√

4− y2

x = 1 +
√

1− y2

and expand them in Taylor series, we get, respectively,

x = 2− 1
4

y2 − 1
64

y4 + O
(

y6
)

x = 2− 1
2

y2 − 1
8

y4 + O
(

y6
)

The 2 as the constant term merely means the curves intersect at (2,0). The first
difference between the curves is in the y2-term.
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FIGURE 1.4.5. Intersection of multiplicity 3

Intersections can have higher multiplicities, as this example shows

5 x2 + 6 xy + 5 y2 + 6 y− 5 = 0

x2 + y2 − 1 = 0

If we map into CP2 and compute the resultant, we get −36y4 which implies
that all intersections occur at y = 0.

In the graph of these curves in figure 1.4.5 we only see two intersections at
y = 0. Since the curves are tangent at the intersection point on the left, it must
have multiplicity > 1.

We compute Taylor series expansions for x in terms of y:

x = −
√

1− y2

x = −3
5

y− 1
5

√
−16 y2 + 25− 30 y

and get

x = −1 +
1
2

y2 +
1
8

y4 + O
(

x6
)

x = −1 +
1
2

y2 +
3
10

y3 +
61
200

y4 +
333
1000

y5 + O
(

y6
)

and the difference between them is a multiple of y3. We will call this an inter-
section of multiplicity 3.

A rigorous definition of intersection multiplicity requires more algebraic
machinery than we have now, but we can informally define2

2Using the results of section 3.3.2 on page 132, it is possible to make this definition rigorous.
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FIGURE 1.4.6. Intersection of a union of curves

DEFINITION 1.4.6. Let

f (x, y) = 0
g(x, y) = 0

be two curves (with f and g polynomials) that intersect at a point p. After a
linear transformation, giving

f̄ (x, y) = 0
ḡ(x, y) = 0

assume that
(1) p is at the origin and
(2) neither the curve defined by f̄ (x, y) = 0 nor that defined by ḡ(x, y) = 0

is tangent to the y-axis.
We define the multiplicity of the intersection to be the degree of the lowest term
in the Taylor series for y as a function of x for f̄ that differs from a term in y as
a function of x for ḡ.

REMARK. There are many other ways we could informally define multi-
plicity. For instance, we can compute implicit derivatives

dny
dxn

at p for both curves and define the intersection multiplicity as 1+ the largest
value of n for which these derivatives agree.

This definition has the shortcoming that it does not take unions of curves
into account. For instance the curve defined by(

X2 + Y2 − 1
) (

X2 + 2Y2 − 1
)
= 0

is a union of a circle and an ellipse. We would expect intersection multiplicities
to add in this situation — see figure 1.4.6. We could augment definition 1.4.6 on
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page 23 by specifying that the curves

f (X, Y) = 0
g(X, Y) = 0

cannot be proper unions of other curves, but what exactly would that mean?
And how would we test that condition?

We need the algebraic machinery in appendix A on page 327 to answer
this and other questions. With that machinery under our belt, we will be able
to give a rigorous (and more abstract) definition of intersection multiplicity in
section 3.3.3 on page 137. We will finally give a rigorous proof of a generaliza-
tion of Bézout’s Theorem (or a modern version of it) in section 5.8 on page 267.

Despite our flawed notion of intersection multiplicity, we can finally give a
correct statement of Bézout’s Theorem:

THEOREM 1.4.7. Let f (x, y) and g(x, y) be polynomials of degree n and m, re-
spectively with no common factor. Then the curves

f (x, y) = 0
g(x, y) = 0

intersect in nm points in CP2, where intersections are counted with multiplicities.

REMARK. The first published proof (in [15], available in English translation
as [16]) is due to Bézout, but his version did not take multiplicities into account
so it was incorrect. In fact, since others had already stated the result without
proof, critics called Bézout’s Theorem “neither original nor correct”.

1.5. The Mystic Hexagram

In this section, we give a simple application of Bézout’s theorem.

Blaise Pascal (1623–1662) was a famous French mathematician, physicist, in-
ventor and philosopher who wrote his first mathematical treatise Essai pour les
coniques at the age of 16. At the age of 31, he abandoned science and studied
philosophy and theology.

Pascal’s Essai pour les coniques proved what Pascal called the Hexagrammum
Mysticum Theorem (“the Mystic Hexagram”). It is now simply called Pascal’s
Theorem.

It states:
If you inscribe a hexagon in any conic section, C, and extend
the three pairs of opposite sides until they intersect, the inter-
sections will lie on a line. See figure 1.5.1 on the following page.

Although Pascal’s original proof was lost, we can supply a proof using Bézout’s
theorem.

Suppose C is defined by the quadratic equation

C(X, Y) = 0

and we respectively label the six lines that form the hexagon, A1, B1, A2, B2, A3,
B3 (see figure 1.5.2 on the next page, where the A-lines are solid and the B-lines
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FIGURE 1.5.1. Hexagrammum Mysticum

FIGURE 1.5.2. Grouping the lines into two sets

are dotted). By an abuse of notation, we label the linear equations defining the
lines the same way

Ai(X, Y) = 0 and Bi(X, Y) = 0
for i = 1, 2, 3. Then A1 A2 A3 = 0 is a single cubic equation whose solutions
are the three A-lines given above and B1B2B3 = 0 defines the B-lines. Bézout’s
theorem implies that these two sets of lines intersect in 9 points3, 6 of which lie
on the conic section defined by C.

Construct the cubic equation

fλ(X, Y) = A1 A2 A3 + λB1B2B3

where λ is some parameter. No matter what we set λ to, the set of points defined
by

fλ(X, Y) = 0
will contain all nine of the intersections of the A-collection of lines with the
B-collection — and six of these will be in C.

Now select a value λ0 of λ that makes fλ vanish on a seventh point of C,
distinct from the other other six points. We have a cubic function, fλ0 , with a

3Intersections of Ai with Bj for i = 1, 2, 3 and j = 1, 2, 3.
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FIGURE 1.5.3. Another Pascal Line

zero-set that intersects the zero-set of a quadratic, C, in 7 points — which seems
to violate Bézout’s theorem. How is this possible?

The function fλ0(X, Y) must violate the hypothesis of Bézout’s theorem —
i.e., it must have a common factor with C(X, Y)! In other words,

fλ0(X, Y) = C(X, Y) · `(X, Y)

where `(X, Y) is a linear function — since C(X, Y) is quadratic and fλ0(X, Y) is
cubic. The zero-set of fλ0(X, Y) still contains all of the intersections of the two
sets of lines extending the sides of the hexagon. Since six of the intersection lie
in the conic section defined by C, the other three must lie in the set

`(X, Y) = 0

In particular, these three intersections lie on a line — called a Pascal Line.
Given 6 points on a conic section, there are 60 ways to connect them into

“hexagons” — i.e. connect them in such a way that each of the 6 points lies
in precisely two lines. Each of these “twisted hexagons” has its own Pascal
line. Figure 1.5.3 shows a different way of connecting the same six points as in
figures 1.5.1 on the preceding page and 1.5.2 on the facing page, and its (dotted)
Pascal line.

EXERCISES.

1. How does one get 60 possible hexagons in an ellipse?

2. Suppose the hexagon is regular — i.e. all sides are the same length and
opposite sides are parallel to each other. Where is the Pascal line in this case?

1.6. Robotics

In this section we develop a framework for applying projective spaces to
robotics. At this point, we do not have the necessary algebraic machinery to do
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FIGURE 1.6.1. A simple robot arm

much beyond setting up the equations. As we develop more of the theory, we
will revisit this subject. The excellent book, [101], is a good general reference.

The geometry of projective spaces is interesting and useful — even if we
are only concerned with Rn: Recall that if we want to represent rotation in R2

via an angle of θ in the counterclockwise direction, we can use a matrix[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
: R2 → R2

One interesting feature of projective spaces is that linear transformations can
represent displacement as well as rotation (compare with the solution to exer-
cise 8 on page 9). Regard R2 as a subspace of RP2 as in proposition 1.2.3 on
page 4, i.e. (x, y) 7→ (x: y: 1) ∈ RP2. The linear transformation

(1.6.1)

 cos(θ) − sin(θ) a
sin(θ) cos(θ) b

0 0 1

 : RP2 → RP2

sends  x
y
1

 ∈ R2 ⊂ RP2

to  x cos(θ)− y sin(θ) + a
x sin(θ) + y cos(θ) + b

1

 ∈ R2 ⊂ RP2

and represents

(1) rotation by θ (in a counterclockwise direction), followed by
(2) displacement by (a, b).

This feature of projective spaces is heavily used in computer graphics: creating
a scene in R3 is done by creating objects at the origin of R3 ⊂ RP3 and moving
them into position (and rotating them) via linear transformations in RP3.

Suppose we have a simple robot-arm with two links, as in figure 1.6.1.

If we assume that both links are of length `, suppose the second link were
attached to the origin rather than at the end of the second link.
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Then its endpoint would be at (see equation 1.6.1 on the preceding page) ` cos(φ)
` sin(φ)

1

 =

 cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

 1 0 `
0 1 0
0 0 1

 0
0
1


=

 cos(φ) − sin(φ) ` cos(φ)
sin(φ) cos(φ) ` sin(φ)

0 0 1

 0
0
1


In other words, the effect of moving from the origin to the end of the second

link (attached to the origin) is

(1) displacement by ` — so that (0, 0) is moved to (`, 0) = (`: 0: 1) ∈ RP2.
(2) rotation by φ

This is the effect of the second link on all of R2. If we want to compute the
effect of both links, insert the first link into the system — i.e. rigidly attach the
second link to the first, displace by `, and rotate by θ. The effect is equivalent
to multiplying by

M2 =

 cos(θ) − sin(θ) ` cos(θ)
sin(θ) cos(θ) ` sin(θ)

0 0 1


It is clear that we can compute the endpoint of any number of links in this
manner — always inserting new links at the origin and moving the rest of the
chain accordingly.

At this point, the reader might wonder

Where does algebra enter into all of this?

The point is that we do not have to deal with trigonometric functions until the
very last step. If a, b ∈ R are numbers with the property that

(1.6.2) a2 + b2 = 1

there is a unique angle θ with a = cos(θ) and b = sin(θ). This enables us to
replace the trigonometric functions by real numbers that satisfy equation 1.6.2
and derive purely algebraic equations for

(1) the set of points in R2 reachable by a robot-arm
(2) strategies for reaching those points (solving for explicit angles).

In the simple example above, let a1 = cos(θ), b1 = sin(θ), a2 = cos(φ), b2 =
sin(φ) so that our equations for the endpoint of the second link become x

y
1

 =

 a1 −b1 `a1
b1 a1 `b1
0 0 1

 `a2
`b2
1


=

 `a1a2 − `b2b1 + `a1
`b1a2 + `a1b2 + `b1

1
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FIGURE 1.6.2. A more complicated robot arm

It follows that the points (x, y) reachable by this link are are those for which the
system of equations

`a1a2 − `b2b1 + `a1 − x = 0
`b1a2 + `a1b2 + `b1 − y = 0

a2
1 + b2

1 − 1 = 0

a2
2 + b2

2 − 1 = 0(1.6.3)

has real solutions (for ai and bi). Given values for x and y, we can solve for
the set of configurations of the robot arm that will reach (x, y). Section 2.3 on
page 45 develops the ring-theory needed and example 2.3.18 on page 56 applies
this to the robot-arm.

We conclude this chapter with a more complicated robot-arm in
figure 1.6.2— somewhat like a Unimation Puma 5604.

It has:
(1) A base of height `1 and motor that rotates the whole assembly by φ1

— with 0 being the positive x-axis.
(2) An arm of length `2 that can be moved forward or backward by an an-

gle of θ1 — with 0 being straight forward (in the positive x-direction).
(3) A second arm of length `3 linked to the first by a link of angle θ2, with

0 being when the second arm is in the same direction as the first.
(4) A little “hand” of length `4 that can be inclined from the second arm

by an angle of θ3 and rotated perpendicular to that direction by an
angle φ2.

We do our computations in RP3, start with the “hand” and work our way back
to the base. The default position of the hand is on the origin and pointing in the
positive x-direction. It displaces the origin in the x-direction by `4, represented
by the matrix

D0 =


1 0 0 `4

0 1 0 0

0 0 1 0

0 0 0 1


4In 1985, this type of robot-arm was used to do brain-surgery! See [99].
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The angle φ2 rotates the hand in the yz-plane, and is therefore represented by
1 0 0 0
0 cos(φ2) − sin(φ2) 0
0 sin(φ2) cos(φ2) 0
0 0 0 1


or

Z1 =


1 0 0 0
0 a1 −b1 0
0 b1 a1 0
0 0 0 1


with a1 = cos(φ2) andb1 = sin(φ2). The “wrist” inclines the hand in the xz-
plane by an angle of θ3, given by the matrix

Z2 =


a2 0 −b2 0
0 1 0 0
b2 0 a2 0
0 0 0 1


with a2 = cos(θ3) and b2 = sin(θ3) and the composite is

Z2Z1D0 =


a2 −b2b1 −b2a1 a2`4

0 a1 −b1 0

b2 a2b1 a2a1 b2`4

0 0 0 1


The second arm displaces everything by `3 in the x-direction, giving

D1 =


1 0 0 `3

0 1 0 0

0 0 1 0

0 0 0 1


so

D1Z2Z1D0 =


a2 −b2b1 −b2a1 a2`4 + `3

0 a1 −b1 0

b2 a2b1 a2a1 b2`4

0 0 0 1


so and then inclines it by θ2 in the xz-plane, represented by

Z3 =


a3 0 −b3 0
0 1 0 0
b3 0 a3 0
0 0 0 1
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so that Z3D1Z2Z1D0 is
a3a2 − b3b2 (−a3b2 − b3a2) b1 (−a3b2 − b3a2) a1 (a3a2 − b3b2) `4 + a3`3

0 a1 −b1 0

b3a2 + a3b2 (a3a2 − b3b2) b1 (a3a2 − b3b2) a1 (b3a2 + a3b2) `4 + b3`3

0 0 0 1


Continuing in this fashion, we get a huge matrix, Z. To find the endpoint

of the robot-arm, multiply 
0
0
0
1


(representing the origin of R3 ⊂ RP3) by Z to get

(1.6.4)


x
y
z
1

 =


((a5a3 + b5b4b3) a2 + (−a5b3 + b5b4a3) b2) `4 + (a5a3 + b5b4b3) `3 + a5`2

((b5a3 − a5b4b3) a2 + (−b5b3 − a5b4a3) b2) `4 + (b5a3 − a5b4b3) `3 + b5`2

(a4b3a2 + a4a3b2) `4 + a4b3`3 + ` 1

1


where a3 = cos(θ2), b3 = sin(θ2), a4 = cos(θ1), b4 = sin(θ1) and a5 = cos(φ1),
b5 = sin(φ1). Note that a2

i + b2
i = 1 for i = 1, . . . , 5. We are also interested in

the angle that the hand makes (for instance, if we want to pick something up).
To find this, compute

(1.6.5) Z


1
0
0
1

− Z


0
0
0
1

 = Z


1
0
0
0

 =


(a5a3 + b5b4b3) a2 + (−a5b3 + b5b4a3) b2

(b5a3 − a5b4b3) a2 + (−b5b3 − a5b4a3) b2

a4b3a2 + a4a3b2

0


The numbers in the top three rows of this matrix are the direction-cosines of
the hand’s direction. We can ask what points the arm can reach with its hand
aimed in a particular direction. This question is answered in example 2.3.19 on
page 58.
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EXERCISES.

1. Find a linear transformation in RP3 that:
a. rotates R3 ⊂ RP3 by an angle of π/4 in the xy-plane,
b. displaces R3 by  1

2
1


c. then rotates by an angle of π/3 in the xz-plane.

2. In computer graphics, after a scene in RP3 has been constructed, it is
viewed — i.e., there is a “camera” that photographs the scene with proper per-
spective. Suppose this camera lies at the origin and is pointed in the positive z
direction. Describe the mapping that shows how the scene looks.

How do we handle the situation where the camera is not at the origin and
pointed in the z-direction?

3. Consider the spiral given by

x = cos(3t) + t
y = sin(3t)− t
z = t + 3

Compute the perspective image of this as viewed in a positive z-direction.





CHAPTER 2

Affine varieties

“Number, the boundary of things-become, was represented, not as
before, pictorially by a figure, but symbolically by an equation. ‘Ge-
ometry’ altered its meaning; the coordinate system as a picturing dis-
appeared and the point became an entirely abstract number-group.”
—Oswald Spengler, chapter 2 (The Meaning of Number), from The
Decline of the West ([151]).

2.1. Introduction

Algebraic geometry concerns itself with objects called algebraic varieties.
These are essentially solution-sets of systems of algebraic equations, like the
curves studied in chapter 1.

Although restricting our attention to algebraic varieties might seem lim-
iting, it has long been known that more general objects like compact smooth
manifolds are diffeomorphic to real varieties — see [121]1 and [161]. The paper
[2] even shows that many piecewise-linear manifolds, including ones with no
smooth structure are homeomorphic to real varieties.

We begin with algebraic sets, whose geometric properties are completely
characterized by a basic algebraic invariant called the coordinate ring. The main
objects of study — algebraic varieties — are the result of gluing together multi-
ple affine sets.

Throughout this discussion, k will denote a fixed algebraically closed field
(see definition A.2.26 on page 383). In classical algebraic geometry k = C.

In general, the reader should be familiar with the concepts of rings and
ideals — see section A.1 on page 327.

DEFINITION 2.1.1. An n-dimensional affine space, An = kn, regarded as a
space in which geometric objects can be defined. An algebraic set in kn is the set
of common zeros of some set S of polynomials in k[X1, . . . , Xm]:

V (S) = {(a1, . . . , an) ∈ An| f (a1, . . . , an) = 0 for all f (X1, . . . , Xn) ∈ S}
REMARK. It is not hard to see that if the set of polynomials is larger, the set

of common zeros will be smaller, i.e.,

S ⊂ S′ =⇒ V (S) ⊃ V
(
S′
)

If a is the ideal generated by the polynomials in S, we have V (a) = V (S)
so algebraic sets are described as V (a) for some ideal a ⊆ k[X1, . . . , Xm] (see
definition A.1.18 on page 334).

1Written by John Nash, the character of the film “A beautiful mind.”

35
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Recall that all ideals in k[X1, . . . , Xn] are finitely generated by theorem A.1.49
(the Hilbert Basis Theorem).

FIGURE 2.1.1. An elliptic curve

EXAMPLE. For instance, we have
(1) If S is a system of homogeneous linear equations, then V (S) is a sub-

space of An.
(2) If S consists of the single equation

Y2 = X3 + aX + b where 4a3 + 27b2 6= 0

then V (S) is an elliptic curve — studied in detail in section 6.2 on
page 305. The quantity, 4a3 + 27b2 is the discriminant (see defini-
tion A.1.54 on page 351) of the cubic polynomial Y2 = X3 + aX + b. Its
non-vanishing guarantees that the polynomial has no repeated roots
— see corollary A.1.55 on page 351. Figure 2.1.1 shows the elliptic
curve Y2 = X3 − 2X + 1. Elliptic curves over finite fields form the
basis of an important cryptographic system — see section 6.2.2 on
page 313.

(3) For the zero-ideal, V ((0)) = An.
(4) V ((1)) = ∅,
(5) The algebraic subsets of k = A1 itself are finite sets of points since

they are roots of polynomials.
(6) The special linear group, SL(n, k) ⊂ An2

— the group of n× n matrices
with determinant 1. This is an algebraic set because the determinant
is a polynomial of the matrix-elements — so that SL(n, k) is the set of
zeros of the polynomial, det(A)− 1 for A ∈ An2

. This is an example
of an algebraic group, an algebraic set that is also a group under a
multiplication-map that can be expressed as polynomial functions of
the coordinates.
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(7) If A is an n×m matrix whose entries are in k[X1, . . . , Xt] and r ≥ 0 is an
integer, then defineR(A, r), the rank-variety (also called a determinantal
variety),

R(A, r) =

{
At if r ≥ min(n, m)

p ∈ At such that rank(A(p)) ≤ r

This is an algebraic set because the statement that the rank of A is ≤ r
is the same as saying the determinants of all (r + 1) × (r + 1) sub-
matrices are 0.

Here are some basic properties of algebraic sets and the ideals that generate
them:

PROPOSITION 2.1.2. Let a, b ⊂ k[X1, . . . , Xn] be ideals. Then
(1) a ⊂ b =⇒ V (a) ⊃ V (b)
(2) V (ab) = V (a∩ b) = V (a) ∪ V (b)
(3) V (∑ ai) =

⋂ V (ai)

PROOF. For statement 2 note that

ab ⊂ a∩ b ⊂ a, b =⇒ V (a∩ b) ⊃ V (a) ∪ V (b)

For the reverse inclusions, let x /∈ V (a) ∪ V (b). Then there exist f ∈ a and
g ∈ b such that f (x) 6= 0 and g(x) 6= 0. Then f g(x) 6= 0 so x /∈ V (ab). �

It follows that the algebraic sets in An satisfy the axioms of the closed sets in
a topology.

DEFINITION 2.1.3. The Zariski topology on An has closed sets that are alge-
braic sets. Complements of algebraic sets will be called distinguished open sets.

REMARK. Oscar Zariski originally introduced this concept in [172].
This topology has some distinctive properties:
• every algebraic set is compact in this topology.
• algebraic maps (called regular maps) are continuous. The converse is

not necessarily true, though. See exercise 3 on page 45.

The Zariski topology is also extremely coarse i.e, has very “large” open sets.
To see this, recall that the closure, S̆ of a subset S ⊂ X of a space is the smallest
closed set that contains it — i.e., the intersection of all closed sets that contain
S.

Now suppose k = C and S ⊂ A1 = C is an arbitrarily line segment, as
in figure 2.1.2 on the following page. Then we claim that S̆ = C in the Zariski
topology.

Let I ⊂ C[X] be the ideal of all polynomials that vanish on S. Then the
closure of S is the set of points where the polynomials in I all vanish — i.e.,
V (I). But nonzero polynomials vanish on finite sets of points and S is infinite.
It follows that I = (0) i.e., the only polynomials that vanish on S are identically
zero. Since V ((0)) = C, we get that the closure of S is all of C, as is the closure
of any infinite set of points.
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FIGURE 2.1.2. Closure in the Zariski topology

DEFINITION 2.1.4. For a subset W ⊆ An, define

I(W) = { f ∈ k[X1, . . . , Xn]| f (P) = 0 for all P ∈W}
It is not hard to see that:

PROPOSITION 2.1.5. The set I(W) is an ideal in k[X1, . . . , Xn] with the proper-
ties:

(1) V ⊂W =⇒ I(V) ⊃ I(W)
(2) I(∅) = k[X1, . . . , Xn]; I(kn) = 0
(3) I(⋃Wi) =

⋂ I(Wi)
(4) The Zariski closure of a set X ⊂ An is exactly V (I(X)).

EXERCISES.

1. Show that the Zariski topology on A2 does not coincide with the
product-topology of A1 ×A1 (the Cartesian product).

2. If V ⊂ An is an algebraic set and p /∈ V is a point of An, show that any
line, `, through p intersects V in a finite number of points (if it intersects it at
all).

3. If
0→ M1 → M2 → M3 → 0

is a short exact sequence of modules over k[X1, . . . , Xn], show that

V (Ann(M2)) = V (Ann(M1)) ∪ V (Ann(M3))

(see definition A.1.71 on page 358 for Ann(∗)). This example has applica-
tions to the Hilbert polynomial in section 5.7.2 on page 260.

4. If V = V
(
(X2

1 + X2
2 − 1, X1 − 1)

)
, what is I(V)?

5. If V = V
(
(X2

1 + X2
2 + X2

3)
)
, determine I(V) when the characteristic of

k is 2.

6. Find the ideal a ⊂ k[X, Y] such that V (a) is the union of the coordinate-
axes.
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7. Find the ideal a ⊂ k[X, Y, Z] such that V (a) is the union of the three
coordinate-axes.

8. If V ⊂ A2 is defined by Y2 = X3, show that every element of k[V] can
be uniquely written in the form f (X) + g(X)Y.

2.2. Hilbert’s Nullstellensatz

2.2.1. The weak form. Hilbert’s Nullstellensatz (in English, “zero-locus the-
orem”) was a milestone in the development of algebraic geometry, making pre-
cise the connection between algebra and geometry.

David Hilbert (1862–1943) was one of the most influential mathematicians in
the 19th and early 20th centuries, having contributed to algebraic and differen-
tial geometry, physics, and many other fields.

The Nullstellensatz completely characterizes the correspondence between
algebra and geometry of affine varieties. It is usually split into two theorems,
called the weak and strong forms of the Nullstellensatz. Consider the question:

When do the equations

g(X1, . . . , Xn) = 0, g ∈ a

have a common zero (or are consistent)?
This is clearly impossible if there exist fi ∈ k[X1, . . . , Xn] such that ∑ figi = 1
— or 1 ∈ a, so a = k[X1, . . . , Xn]. The weak form of Hilbert’s Nullstellensatz
essentially says that this is the only way it is impossible. Our presentation uses
properties of integral extensions of rings (see section A.4.1 on page 403).

LEMMA 2.2.1. Let F be an infinite field and suppose f ∈ F[X1, . . . , Xn], n ≥ 2
is a polynomial of degree d > 0. Then there exist λ1, . . . , λn−1 ∈ F such that the
coefficient of Xd

n in

f (X1 + λ1Xn, . . . , Xn−1 + λn−1Xn, Xn)

is nonzero.

PROOF. If fd is the homogeneous component of f of degree d (i.e.,
the sum of all monomials of degree d), then the coefficient of Xd

n in
f (X1 + λ1Xn, . . . , Xn−1 + λn−1Xn, Xn) is fd(λ1, . . . , λn−1, 1). Since F is infinite,
there is a point (λ1, . . . , λn−1) ∈ Fn−1 for which fd(λ1, . . . , λn−1, 1) 6= 0 (a fact
that is easily established by induction on the number of variables). �

The following result is called the Noether Normalization Theorem or Lemma.
It was first stated by Emmy Noether in [125] and further developed in [126].

Besides helping us to prove the Nullstellensatz, it will be used in important
geometric results like theorem 2.5.12 on page 77.

THEOREM 2.2.2 (Noether Normalization). Let F be an infinite field and sup-
pose A = F[r1, . . . , rm] is a finitely generated F-algebra that is an integral domain with
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generators r1 . . . , rm. Then for some q ≤ m, there are algebraically independent ele-
ments y1, . . . , yq ∈ A such that the ring A is integral (see definition A.4.3 on page 404)
over the polynomial ring F[y1, . . . , yq].

REMARK. Recall that an F-algebra is a vector space over F that is also a
ring. The ri generate it as a ring (so the vector space’s dimension over F might
be > m).

PROOF. We prove this by induction on m. If the ri are algebraically in-
dependent, simply set yi = ri and we are done. If not, there is a nontrivial
polynomial f ∈ F[x1, . . . , xm], say of degree d such that

f (r1, . . . , rm) = 0

and lemma 2.2.1 on the preceding page that there a polynomial of the form

rd
m + g(r1, . . . , rm) = 0

If we regard this as a polynomial of rm with coefficients in F[r1, . . . , rm−1] we
get

rd
m +

d−1

∑
i=1

gi(r1, . . . , rm−1)ri
m = 0

which implies that rm is integral over F[r1, . . . , rm−1]. By the inductive hy-
pothesis, F[r1, . . . , rm−1] is integral over F[y1, . . . , yq], so statement 2 of proposi-
tion A.4.5 on page 405 implies that rm is integral over F[y1, . . . , yq] as well. �

We are now ready to prove:

THEOREM 2.2.3 (Hilbert’s Nullstellensatz (weak form)). The maximal ideals
of k[X1, . . . , Xn] are precisely the ideals

I(a1, . . . , an) = (X1 − a1, X2 − a2, . . . , Xn − an)

for all points
(a1, . . . , an) ∈ An

Consequently every proper ideal a ⊂ k[X1, . . . , Xn] has a 0 in An.

REMARK. See proposition A.1.19 on page 335 and lemma A.1.29 on
page 340 for a discussion of the properties of maximal ideals.

PROOF. Clearly

k[X1, . . . , Xn]/I(a1, . . . , an) = k

The projection

k[X1, . . . , Xn]→ k[X1, . . . , Xn]/I(a1, . . . , an) = k

is a homomorphism that evaluates polynomial functions at the point
(a1, . . . , an) ∈ An. Since the quotient is a field, the ideal I(a1, . . . , an) is
maximal (see lemma A.1.29 on page 340).

We must show that all maximal ideals are of this form, or equivalently, if

m ⊂ k[X1, . . . , Xn]

is any maximal ideal, the quotient field is k.
Suppose m is a maximal ideal and

K = k[X1, . . . Xn]/m
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is a field. If the transcendence degree of K over k is d, the Noether Normaliza-
tion Theorem 2.2.2 on page 39 implies that K is integral over

k[y1, . . . , yd]

where y1, . . . , yd are a transcendence basis. Proposition A.4.9 on page 406 im-
plies that k[y1, . . . , yd] must also be a field. The only way for this to happen is
for d = 0. So K must be an algebraic extension of k, which implies that it must
equal k because k is algebraically closed.

The final statement follows from the fact that every proper ideal is con-
tained in a maximal one, say I(a1, . . . , an) so its zero-set contains at least the
point (a1, . . . , an). �

2.2.2. The strong form. The strong form of the Nullstellensatz gives the
precise correspondence between ideals and algebraic sets. It implies the weak
form of the Nullstellensatz, but the two are usually considered separately.

Hilbert’s strong Nullstellensatz describes which ideals in k[X1, . . . , Xn] oc-
cur as I(P) when P is an algebraic set.

PROPOSITION 2.2.4. For any subset W ⊂ An, V (IW) is the smallest algebraic
subset of An containing W. In particular, V (IW) = W if W is algebraic.

REMARK. In fact, V (IW) is the Zariski closure of W.

PROOF. Let V = V (a) be an algebraic set containing W. Then a ⊂ I(W)
and V (a) ⊃ V (IW). �

THEOREM 2.2.5 (Hilbert’s Nullstellensatz). For any ideal a ∈ k[X1, . . . , Xn],
IV (a) =

√
a (see definition A.1.42 on page 344). In particular, IV (a) = a if a is

radical.

PROOF. If f n vanishes on V (a), then f vanishes on it too so that IV (a) ⊃√
a. For the reverse inclusion, we have to show that if h vanishes on V (a), then

hr ∈ a for some exponent r.
Suppose a = (g1, . . . , gm) and consider the system of m + 1 equations in

n + 1 variables, X1, . . . , Xm, Y:

gi(X1, . . . , Xn) = 0
1−Yh(X1, . . . , Xn) = 0

If (a1, . . . , an, b) satisfies the first m equations, then (a1, . . . , am) ∈ V(a).
Consequently h(a1, . . . , an) = 0 and the equations are inconsistent.

According to the weak Nullstellensatz (see theorem 2.2.3 on the facing
page), the ideal generated by the left sides of these equations generate the
whole ring k[X1, . . . , Xn, Y] and there exist fi ∈ k[X1, . . . , Xn, Y] such that

1 =
m

∑
i=1

figi + fm+1(1−Yh)

Now regard this equation as an identity in k(X1, . . . , Xn)[Y] — polynomials
in Y with coefficients in the field of fractions of k[X1, . . . , Xn]. After substituting
h−1 for Y, we get

1 =
m

∑
i=1

fi(X1, . . . , Xn, h−1)gi(X1, . . . Xn)



42 2. AFFINE VARIETIES

Clearly

f (X1, . . . , Xn, h−1) =
polynomial in X1, . . . , Xn

hNi

2.4.9for some Ni.
Let N be the largest of the Ni. On multiplying our equation by hN , we get

hN = ∑(polynomial in X1, . . . , Xn) · gi

so hN ∈ a. �

Hilbert’s Nullstellensatz precisely describes the correspondence between
algebra and geometry:

COROLLARY 2.2.6. The map a 7→ V (a) defines a 1-1 correspondence between
the set of radical ideals in k[X1, . . . , Xn] and the set of algebraic subsets of An.

PROOF. We know that IV (a) = a if a is a radical ideal and that V (IW) =
W if W is an algebraic set. It follows that V (∗) and I(∗) are inverse maps. �

COROLLARY 2.2.7. The radical of an ideal in k[X1, . . . , Xn] is equal to the inter-
section of the maximal ideals containing it.

REMARK. In general rings, the radical is the intersections of all prime ideals
that contain it (corollary 2.2.7). The statement given here is true for algebras
over algebraically closed fields.

PROOF. Let a ⊂ k[X1, . . . Xn] be an ideal. Because maximal ideals are radi-
cal, every maximal ideal containing a also contains

√
a, so

√
a ⊂

⋂
m⊃a

m

For each P = (a1, . . . , an) ∈ kn, mP = (X1 − a1, . . . , Xn − an) is a maximal
ideal in k[X1, . . . , Xn] and

f ∈ mP ⇔ f (P) = 0

so
mP ⊃ a⇔ P ∈ V(a)

If f ∈ mP for all P ∈ V (a), then f vanishes on V(a) so f ∈ IV (a) =
√
a.

It follows that √
a ⊃

⋂
P∈V(a)

mP

�

REMARK. This result allows us to directly translate between geometry and
algebra:

(1) “Since V (a) is the union of the points contained in it,
√
a is the intersec-

tion of the maximal ideals containing it.”
(2) Because V ((0)) = kn

I(kn) = IV ((0)) =
√

0 = 0

— only the zero polynomial vanishes on all of kn.
(3) The 1-1 correspondence is order-inverting so the maximal proper rad-

ical ideals correspond to the minimal nonempty algebraic sets.
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FIGURE 2.2.1. An intersection of multiplicity 2

(4) But the maximal proper radical ideals are the maximal ideals and the
minimal nonempty algebraic sets are one-point sets.

(5) Let W and W ′ be algebraic sets. Then W ∩W ′ is the largest algebraic
subset contained in W and W ′ — so I(W ∩W ′) must be the smallest
radical ideal containing both I(W) and I(W ′). It follows that

I(W ∩W ′) =
√
I(W) + I(W ′)

EXAMPLE 2.2.8. Let W = V
(
X2 −Y

)
and W ′ = V

(
X2 + Y

)
.

Then I(W ∩W ′) =
√
(X2, Y) = (X, Y) (assuming the characteristic of k is

6= 2).
So W ∩W ′ = {(0, 0)}.
When considered at the intersection of Y = X2 and Y = −X2 it has multi-

plicity 2 (see definition 1.4.6 on page 23) — see figure 2.2.1 and definition 1.4.6.

LEMMA 2.2.9. If V is an algebraic subset of An, then
(1) The points of V are closed in the Zariski topology (thus V is a T1-space).
(2) Every ascending chain of open subsets U1 ⊂ U2 ⊂ · · · of V eventually

becomes constant — hence every descending chain of closed sets eventually
becomes constant.

(3) Every open covering has a finite subcovering.

REMARK. Topological spaces satisfying Condition 2 above are called noe-
therian. This is equivalent to:

“Every nonempty set of closed subsets of V has a minimal ele-
ment.”

Spaces satisfying condition 3 are called compact (although the Bourbaki group
requires compact spaces to be Hausdorff, so they call such spaces quasicompact).

PROOF. Let {(a1, . . . , an)} be the algebraic set defined by the ideal (X1 −
a1, . . . , Xn − an).
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A sequence V1 ⊃ V2 ⊃ . . . gives rise to a sequence of radical ideals I(V1) ⊂
I(V2) ⊂ · · · which must eventually become constant by theorem A.1.49 on
page 346.

Let V =
⋃

i∈I Ui. If V 6= U1, there exists an i1 ∈ I such that U1 $ U1 ∪Ui1 .
If V 6= U1 ∪Ui1 , continue this process. By statement 2, this must stop in a finite
number of steps. �

DEFINITION 2.2.10. A function f : An → Am is a regular mapping if it is of
the form

f (X1, . . . Xn) =

 F1(X1, . . . , Xn)
...

Fm(X1, . . . , Xn)


for F1, . . . , Fm ∈ k[X1, . . . , Xn].

If V ⊂ An and W ⊂ Am are algebraic sets and f : An → Am is a regular
mapping such that

f (V) ⊂W
then we call f̄ = f |V: V →W a regular mapping from V to W.

Although the Zariski topology is very coarse — implying that it is difficult
for a map to be continuous in this topology — there is an important class of
continuous maps:

PROPOSITION 2.2.11. If f : V ⊂ An → W ⊂ Am is a regular map of algebraic
sets, then f is continuous in the Zariski topology.

PROOF. The map, f , is continuous if f−1(K) ⊂ An is a closed set whenever
K ⊂ Am is closed. Let

f (X1, . . . Xn) =

 F1(X1, . . . , Xn)
...

Fm(X1, . . . , Xn)


A closed set K ⊂ Am, in the Zariski topology, is defined by a finite set of equa-
tions

g1(X1, . . . , Xm) = 0
...

gt(X1, . . . , Xm) = 0

where the gi are polynomials. f−1(K) is defined by

g1(F1, . . . , Fm)(X1, . . . , Xn) = 0
...

gt(F1, . . . , Fm)(X1, . . . , Xn) = 0

which is a closed set in An. �
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EXERCISES.

1. Show that prime ideals are radical.

2. Show that the strong form of the Nullstellensatz implies the weak form.

3. Give an example of a map f : An → Am that is continuous in the Zariski
topology but not regular.

4. Suppose f =

 f1(X1, . . . , Xn)
...

fn(X1, . . . , Xn)

 : An → An is is a regular map and

Ai,j =
∂ fi
∂Xj

suppose that z = det Ai,j is never 0. Show that it must be a nonzero constant.
The Inverse function theorem in calculus implies that f has a smooth in-

verse in a neighborhood of every point.
Jacobi’s Conjecture states that such an f has an global inverse that is a regular

map.
The only cases that have been proved are when k = C and n = 2. It has

been shown that proving it for n = 3 would prove it for all n when k = C —
see [40] as a general reference.

5. Find the irreducible components of the algebraic set X2 − YZ = XZ −
Z = 0 in A3.

2.3. Computations in polynomial rings: Gröbner bases

2.3.1. Introduction. As the previous section makes clear, it is important to
be able to do calculations in polynomial rings. There is an extensive theory
of such calculations that involve computing a special basis for an ideal, called
a Gröbner basis. Gröbner bases were discovered by Bruno Buchberger (in his
thesis, [20]) and named after his teacher, Wolfgang Gröbner. He refined this
construction in subsequent papers — see [21, 22].

One key idea in the theory of Gröbner bases involves imposing an ordering
on the monomials in a polynomial ring:

DEFINITION 2.3.1. Define an ordering on the elements of Nn and
an induced ordering on the monomials of k[X1, . . . , Xn] defined by
α = (a1, . . . , an) � β = (b1, . . . , bn) implies that

∏ Xai
i �∏ Xbi

i
The ordering of Nn must satisfy the conditions:

(1) if α � β and γ ∈Nn, then α + γ � β + γ
(2) � is a well-ordering: every set of elements of Nn has a minimal element.

For any polynomial f ∈ k[X1, . . . , Xn], let LT( f ) denote its leading term in this
ordering — the polynomial’s highest-ordered monomial with its coefficient.
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REMARK. Condition 1 implies that the corresponding ordering of mono-
mials is preserved by multiplication by a monomial. Condition 2 implies that
there are no infinite descending sequences of monomials.

DEFINITION 2.3.2. Suppose an ordering has been chosen for the monomials
of k[X1, . . . , Xn]. If a ∈ k[X1, . . . , Xn] is an ideal, let LT(a) denote the ideal
generated by the leading terms of the polynomials in a.

(1) If a = ( f1, . . . , ft), then { f1, . . . , ft} is a Gröbner basis for a if

LT(a) = (LT( f1), . . . , LT( ft))

(2) A Gröbner basis { f1, . . . , ft} is minimal if the leading coefficient of each
fi is 1 and for each i

LT( fi) /∈ (LT( f1), . . . , LT( fi−1), LT( fi+1), . . . LT( ft))

(3) A Gröbner basis { f1, . . . , ft} is reduced if if the leading coefficient of
each fi is 1 and for each i and no monomial of fi is contained in

(LT( f1), . . . , LT( fi−1), LT( fi+1), . . . LT( ft))

REMARK. There are many different types of orderings that can be used
and a Gröbner basis with respect to one ordering will generally not be one with
respect to another.

DEFINITION 2.3.3. The two most common orderings used are:

(1) Lexicographic ordering. Let α = (a1, . . . , an), β = (b1, . . . , bn) ∈ Nn.
Then α > β ∈ Nn if, in the vector difference α− β ∈ Zn, the leftmost
nonzero entry is positive — and we define

∏ Xai
i �∏ Xbi

i

so
XY2 � Y3Z4

(2) Graded reverse lexicographic order. Here, monomials are first ordered
by total degree — i.e., the sum of the exponents. Ties are resolved lex-
icographically (in reverse — higher lexicographic order represents a
lower monomial).

REMARK. In Graded Reverse Lexicographic order, we get

X4Y4Z7 � X5Y5Z4

since the total degree is greater. As remarked above, Gröbner bases depend
on the ordering, �: different orderings give different bases and even different
numbers of basis elements.

Gröbner bases give an algorithmic procedure (detailed later) for deciding
whether a polynomial is contained in an ideal and whether two ideals are equal.

To describe Buchberger’s algorithm for finding a Gröbner (or standard) ba-
sis, we need something called the division algorithm. This is a generalization of
the usual division algorithm for polynomials of a single variable:
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ALGORITHM 2.3.4 (Division Algorithm). Let � be an ordering on the
monomials of k[X1, . . . , Xn] and let F = { f1, . . . , fk} be a set of polynomials. If
f ∈ k[X1, . . . , Xn] is some polynomial, the division algorithm computes polynomials
a1, . . . , as such that

(2.3.1) f = a1 f1 + · · ·+ ak fk + R

where R = 0 or no monomial in R is divisible by LT( fi) for any i.
In general, we will be more interested in the remainder, R, than the “quotients”

ai. We will use the notation
f →F R

to express the fact that the remainder has a certain value (“ f reduces to R”). The
algorithm is:

function DIVISION( f , f1, . . . , fk)
ai ← 0
r ← 0
g← f
while g 6= 0 do

Matched← False
for i = 1, . . . , k do

if LT( fi)|LT(g) then
h← LT(g)

LT( fi)

ai ← ai + h
g← g− f j · h
Matched← True . LT(g) was divisible by one of the LT( fi)
Break . Leave the for-loop and continue the While-loop

end if
end for
if not Matched then . LT(g) was not divisible by any of the LT( fi)

r ← r + LT(g) . so put it into the remainder
g← g− LT(g) . Subtract it from f

end if
end while
return f = a1 f1 + · · ·+ ak fk + r
. where the monomials of r are not divisible by the leading terms of any

of the fi
end function

REMARK. As is usual in describing algorithms, a ← b represents assign-
ment, i.e. “take the value in b and plug it into a” (the symbol ‘=’ merely states
that two quantities are equal). The symbol B denotes a comment — on how the
computation is proceeding.

It should be noted that:

PROPOSITION 2.3.5. The division algorithm terminates in a finite number of
steps and, in equation 2.3.1,

(2.3.2) LT( f ) � LT(ai fi)

for i = 1, . . . , k.
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PROOF. The algorithm requires a finite number of steps since f contains a
finite number of monomials and g — initially equal to f — loses one in each
iteration of the While-loop. The final statement follows from how the ai are
constructed — which implies that

LT(ai fi) 6= LT(aj f j)

for i 6= j, so no cancellation can occur among the leading terms in equation 2.3.1
on the preceding page. �

EXAMPLE 2.3.6. Let f = X2Y + XY2 + Y2, and let f1 = XY − 1 and f2 =
Y2 − 1.

Assume lexicographic ordering with X � Y. Then LT( f1)|LT( f ) and we
get

h ← X
a1 ← X
g ← g− X · (XY− 1)

= XY2 + Y2 + X

In the second iteration of the While-loop, LT( f1)|LT(g) and

h ← Y
a1 ← a1 + Y

= X + Y
g ← g−Y · (XY− 1)

= Y2 + X + Y

In the third iteration of the While-loop, we have LT( f1) - LT(g) and LT( f2) -
LT(g) so

r ← X
g ← g− X

= Y2 + Y

In the fourth iteration of the While-loop, we have LT( f1) - LT(g) but
LT( f2)|LT(g) so

h ← 1
a2 ← 1
g ← g− 1 · (Y2 − 1)

= Y + 1

Since neither Y nor 1 are divisible by the leading terms of the fi they are thrown
into the remainder and we get

f = (X + Y) · f1 + 1 · f2 + X + Y + 1

Note that our remainder depends on the order of the polynomials. If we set
f1 = Y2 − 1 and f2 = XY− 1 we get

f = (X + 1) · f1 + X · f2 + 2X + 1

It turns out that the remainder can vanish with one ordering and not another!
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With the Division Algorithm in hand, we can discuss some of the more
important properties of Gröbner bases:

PROPOSITION 2.3.7 (Division Property). Let � be an ordering of monomials
in k[X1, . . . , Xn] and let a = (g1, . . . , gk) ⊂ k[X1, . . . , Xn] be an ideal with G =
{g1, . . . , gk} a Gröbner basis. If f ∈ k[X1, . . . , Xn], then f ∈ a if and only if

f →G 0

PROOF. If f →G 0, then f ∈ a. Conversely, suppose f ∈ a and f →G R. If
R 6= 0 then

R = f −
t

∑
i=1

aigi

so that R ∈ a and LT(R) ∈ LT(a) (since G is a Gröbner basis). This contradicts
the fact that the leading term of R is not divisible by the leading terms of the
gi. �

This immediately implies that

COROLLARY 2.3.8. If a ⊂ k[X1, . . . , Xn] is an ideal and B is a minimal Gröbner
basis then a = (1) if and only if B = {1}.

PROOF. If 1 ∈ a, then
1→B 0

which can only happen if 1 ∈ B. Since B is minimal, B = {1}. �

2.3.2. Buchberger’s Algorithm. We begin by proving a property that
Gröbner bases have.

DEFINITION 2.3.9. If< is some ordering on the monomials of k[X1, . . . , Xn]
and a = ( f1, · · · , ft) is an ideal, let

(2.3.3) si,j =
LT( fi)

gcd(LT( fi), LT( f j))

and define the S-polynomial

Si,j = sj,i · fi − si,j · f j

REMARK. Note that LT(sj,i · fi) = LT(si,j · f j) so that they cancel out in Si,j.

Buchberger’s Theorem states that the S-polynomials give a criterion for a
basis being Gröbner. It quickly leads to an algorithm for computing Gröbner
bases.

THEOREM 2.3.10. Let F = { f1, . . . , ft} ∈ k[X1, . . . , Xn] be a set of polynomials
and let� be an ordering on the monomials of k[X1, . . . , Xn]. Then F is a Gröbner basis
of the ideal a = ( f1, . . . , ft) if and only if

Si,j →F 0

for every S-polynomial one can form from the polynomials in F.
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PROOF. If F is a Gröbner basis, then the division property (proposition 2.3.7
on the previous page) implies

Si,j →F 0
since Si,j ∈ a.

On the other hand, suppose all S-polynomials reduce to 0. Then there exist
expressions

(2.3.4) Si,j =
t

∑
`=1

a`i,j f`

for all 1 ≤ i < j ≤ t and 1 ≤ ` ≤ t such that

LT(Si,j) � LT(a`i,j fi)

LT(si,j f j) � LT(a`i,j fi)(2.3.5)

Suppose that F is not a Gröbner basis — i.e. LT(a) 6= (LT( f1), . . . , LT( ft)).
Then there exists an element f ∈ a with

(2.3.6) f =
t

∑
i=1

bi fi

such that LT( fi) - LT( f ) for all i = 1, . . . , t. The only way this can happen is
if the leading terms of two of the terms in equation 2.3.6 cancel. Suppose m is
the highest (in the ordering) monomial of {LT(bi fi)} for i = 1, . . . , t, suppose f
has been chosen to make m minimal, and so that m occurs a minimal number
of times.

Without loss of generality, suppose that b̄1LT( f1) = LT(b1 f1) and
b̄2LT( f2) = LT(b2 f2) are equal to m, up to multiplication by an element of k. If
we divide both of these by gcd(LT( f1), LT( f2)), we get

k1b̄1s1,2 = b̄2 · s2,1

where si,j is as in equation 2.3.3 on the previous page. Since the si,j have no
common factors, we conclude that s2,1|b̄1 or b̄1 = c · s2,1, for some monomial c,
so b̄1LT( f1) = c · s2,1 · LT( f1). Now form the quantity

f ′ = f − c

(
S1,2 −

t

∑
`=1

a`1,2 f`

)
(where S1,2 is as in definition 2.3.9 on the preceding page).

Our hypothesis (equation 2.3.4) implies that f ′ = f . On the other hand,
the term −c · s2,1 · f1 in −cS1,2 cancels out b̄1LT( f1) and the term +c · s1,2 · f2
combines with the term b2 f2 so that the number of occurrences of the monomial
m decreases by at least 1. Equation 2.3.5 on page 50 implies that the terms
{a`1,2 f`} cannot affect this outcome, so we have a contradiction to the fact that
m occurred a minimal number of times in f . We conclude that F must have
been a Gröbner basis. �

This result immediately leads to an algorithm for computing a Gröbner
basis:

ALGORITHM 2.3.11 (Buchberger’s Algorithm). Given a set of polynomials
F = { f1, . . . , ft} ∈ k[X1, . . . , Xn],
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(1) for each pair (i, j) with 1 ≤ i < j ≤ t, compute Si,j as in definition 2.3.9 on
page 49,

(2) compute Si,j →F hi,j, using the Division Algorithm ( 2.3.4 on page 47),
(3) if hi,j 6= 0, set

F = F ∪ {hi,j}
and return to step 1.

The algorithm terminates when all of the {hi,j} found in step 3 are 0.

REMARK. The Hilbert Basis theorem ( A.1.49 on page 346) implies that this
process will terminate in a finite number of steps (since we are appending gen-
erators of LT(a)).

To get a minimal Gröbner basis, simply throw away unnecessary elements.
To get a reduced basis, apply the Division Algorithm to each member of the
output of this algorithm with respect to the other members.

Unfortunately, Buchberger’s algorithm can have exponential
time-complexity — for graded-reverse lexicographic ordering — and
doubly-exponential (een

) complexity for lexicographic ordering (see [106]).
In practice it seems to have a reasonable running time. In special cases, we

have:
(1) For a system of linear polynomials, Buchberger’s Algorithm become

Gaussian Elimination for putting a matrix in upper triangular form.
(2) For polynomials over a single variable, it becomes Euclid’s algorithm

for finding the greatest common divisor for two polynomials
(see A.1.15 on page 332).

Here is an example:

EXAMPLE 2.3.12. Let f1 = XY +Y2 and f2 = X2 in k[X, Y] and we compute
a Gröbner basis using lexicographical ordering with

X � Y

We have LT( f1) = XY and LT( f2) = X2. Neither is a multiple of the other
and their greatest common divisor is X. Our first S-polynomial is

S1,2 =
LT( f2)

X
f1 −

LT( f1)

X
f2 = XY2

The remainder after applying the Division Algorithm is −Y3 so we set f3 = Y3.
We compute

S1,3 =
LT( f3)

Y
f1 −

LT( f1)

Y
f3 = Y4

S2,3 =
LT( f3)

1
f2 −

LT( f2)

1
f3 = 0

Since both of these are in the ideal generated by { f1, f2, f3}, we are done.

Gröbner bases have an interesting history. In 1899, Gordon gave a new
proof of the Hilbert Basis theorem2 (theorem A.1.49 on page 346) that demon-
strated the existence of a finite Gröbner basis (with lexicographic ordering) but
gave no algorithm for computing it. See [56].

2He felt that Hilbert’s proof was too abstract and gave a constructive proof.
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In 1920, Janet (see [81]) gave an algorithm for computing “involutive
bases” of linear systems of partial differential equations, that can be translated
into Buchberger’s algorithm in a certain case. Given a system of differential
equations that are linear combinations of products of partial derivatives of
ψ(x1, . . . , xn) (with constant coefficients), one can substitute

ψ = e∑ αixi

and get systems of polynomials in the αi whose solution leads to solutions of the
differential equations.

In 1950, Gröbner published a paper ([66]) that explored an algorithm for
computing Gröbner bases, but could not prove that it ever terminated. One of
Buchberger’s signal contributions were the introduction of S-polynomials and
theorem 2.3.10 on page 49.

Teo Mora (see [114, 115]) extended much of the theory of Gröbner bases to
some non-polynomial rings, including local rings and power series rings.

At this point, we can prove another interesting property of Gröbner bases,
when computed in a certain way:

PROPOSITION 2.3.13 (Elimination Property). Suppose {g1, . . . , gj} is a Gröb-
ner basis for the ideal a ∈ k[X1, . . . , Xn], computed using lexicographic ordering with

X1 � X2 � · · · � Xn

If 1 ≤ t ≤ n, then
a∩ k[Xt, . . . , Xn]

has a Gröbner basis that is

{g1, . . . , gj} ∩ k[Xt, . . . , Xn]

REMARK. It follows that we can use Gröbner bases to save ourselves the
trouble of doing multiple computations of the resultant.

PROOF. Suppose f ∈ a∩ k[Xt, . . . , Xn] and its expansion using the Division
Algorithm ( 2.3.4 on page 47) is

f = ∑ qi · gi

with LT(qi · gi) � LT( f ) for all i (see equation 2.3.2). Lexicographic ordering
implies that, if X1, . . . , Xt−1 occur anywhere in qi · gi then these variables will be
in the leading term of qi · gi and LT(qi · g1) � LT( f ) — a contradiction. It follows
that, for all i such that gi contains variables X1, . . . , Xt−1, the corresponding qi =
0. Since f is a linear combination of polynomials {g1, . . . , gj} ∩ k[Xt, . . . , Xn],
they generate a∩ k[Xt, . . . , Xn].

Since
Si,i′ →G′ 0

whenever gi, gi′ ∈ {g1, . . . , gj} ∩ k[Xt, . . . , Xn], theorem 2.3.10 on page 49 im-
plies that G′ = {g1, . . . , gj} ∩ k[Xt, . . . , Xn] is a Gröbner basis. �

We already know how to test membership of a polynomial in an ideal via the
Division Algorithm and proposition 2.3.7 on page 49. This algorithm also tells
us when one ideal is contained in another since ( f1, . . . , f j) ⊆ (g1, . . . , g`) if and
only if fi ∈ (g1, . . . , g`) for i = 1, . . . , j.

We can use Gröbner bases to compute intersections of ideals:
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PROPOSITION 2.3.14 (Intersections of ideals). Let
a = ( f1, . . . , f j), b = (g1, . . . , g`) be ideals in k[X1, . . . , Xn]. If we
introduce a new variable, T, and compute the Gröbner basis of

(T f1, . . . , T f j, (1− T)g1, . . . (1− T)g`)

using lexicographic ordering and ordering T higher than the other variables, the Gröb-
ner basis elements that do not contain T will be a Gröbner basis for a∩ b.

REMARK. If f , g ∈ k[X1, . . . , Xn], this allows us to compute the least com-
mon multiple, z, of f and g since

(z) = ( f ) ∩ (g)

and the greatest common divisor — even if we don’t know how to factor poly-
nomials! If n > 1, k[X1, . . . , Xn] is not a Euclidean domain.

PROOF. Let I ∈ k[T, X1, . . . , Xn] denote the big ideal defined above. We
claim that

I∩ k[X1, . . . , Xn] = a∩ b

Suppose f ∈ I∩ k[X1, . . . , Xn] . Then

f = ∑ aiT fi + ∑ bj(1− T)gj

= T
(
∑ ai fi −∑ bjgj

)
+ ∑ bjgj

so
∑ ai fi −∑ bjgj = 0

It follows that f = ∑ bjgj and that ∑ ai fi = ∑ bjgj so that f ∈ a ∩ b. The
conclusion now follows from the Elimination Property. �

We get a criterion for a polynomial to be in the radical of an ideal:

PROPOSITION 2.3.15. If a ∈ k[X1, . . . , Xn] is an ideal and f ∈ k[X1, . . . , Xn] is
a polynomial

f ∈
√
a

if and only if a Gröbner basis for

a+ (1− T · f ) ⊂ k[T, X1, . . . , Xn]

where T is a new indeterminate, contains 1.

PROOF. The proof of Hillbert’s Nullstellensatz (theorem 2.2.5 on page 41)
implies that f ∈ √a if and only if 1 ∈ a+ (1− T · f ). The conclusion follows
from corollary 2.3.8 on page 49. �

EXAMPLE 2.3.16. Let a = (Y − X2, Z2 − 2 XYZ + Y3) ⊂ k[X, Y, Z]. If f =
Z2−Y3 then the polynomials given are a Gröbner basis for a in the ordering by
graded reverse lexicographic (in Maple, specified as tdeg(X,Y,Z)).

f →a 2 Z2 − 2 XYZ

so f /∈ a. If we compute a Gröbner basis (with respect to any ordering) for

{Y− X2, Z2 − 2 XYZ + Y3, 1− T · f }
we get (1). It follows that f ∈ √a. In fact, we get

f 2 →a 0
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so f 2 ∈ a.

2.3.3. Mathematical software. All of the more commonly used systems
of mathematical software are able to compute Gröbner bases and implement
the Division Algorithm. Among commercial systems, Maple and Mathematica
have very nice user-interfaces. Free software that can do this includes Maxima
and Macaulay 2, and CoCoa . See [38] for much more information.

To use Macaulay 2, start it (in Unix-type systems) by typing M2 (the com-
mand is actually capitalized). The default output format is rather awful, so you
should change it by typing

compactMatrixForm = false
Now define a polynomial ring over Q

R = QQ[a..f,MonomialOrder=>Lex]
Note that ordering is also specified here. Now define an ideal:

i3 : I = ideal(a*b*c-d*e*f,a*c*e-b*d*f,
a*d*f-b*c*e)
o3 = ideal (a*b*c - d*e*f, a*c*e - b*d*f,
a*d*f - b*c*e)
o3 : Ideal of R

To get a Gröbner basis, type:
gens gb I
You need to make the window wide enough to contain the entire output

expression. Subscripted variables can be defined via
x_2=3
The ring above could have been defined via
R = QQ[x_1..x_6,MonomialOrder=>Lex]

In Maple the procedure is somewhat different: First, load the library via
’with(Groebner);’. The library PolynomialIdeals is also very useful.
Enter an ideal by simply enclosing its generators in square brackets. The com-
mand Basis computes a Gröbner basis:
Basis([a*b*c-d*e*f, a*c*e-b*d*f,
a*d*f-b*c*e], plex(a, b, c, d, e, f))

The output is nicely formatted.
The expression plex implies lexicographic ordering, and you must ex-

plicitly give the order of variables. For instance plex(a, b, c, d, e, f)
means

a � b � c � d � e � f
Maple also supports graded lexicographic ordering with the command

grlex(a,b,c,d,e,f) or graded reverse lexicographic order via
tdeg(a,b,c,d,e,f).

To reduce a polynomial using the Division Algorithm ( 2.3.4 on page 47),
the Maple command is

NormalForm(list_polys,basis,monomial_order) where the basis
need not be Gröbner. It returns a list of remainders of the polynomials in the
list.

Maxima has a package that computes Gröbner bases
using lexicographic ordering (at present, no other ordering
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is available). To load it, type load(grobner). The main
commands are poly_grobner(poly-list,var-list), and
poly_reduced_grobner(poly-list,var-list). For example:

poly_grobner([x^2+y^2,x^3-y^4],[x,y]); returns

(x2 + y2, x3 − y4, x4 + xy2, y6 + y4)

— the Gröbner basis with lexicographic order: x � y.
Another very powerful and free system is called Sage (it aims to “take over

the world” of computer algebra systems!). It is available for all common com-
puter systems and can even be used online (i.e., without installing it on your
computer) at http://www.sagemath.org/.

Here’s a small example:
The command:
R.<a,b,c,d> = PolynomialRing(QQ, 4, order=’lex’)

defines a polynomial ring, R, over Q with 4 indeterminates: a, b, c, and d. The
statement order=’lex’ defines lexicographic ordering on monomials. The
command:

I = ideal(a+b+c+d, a*b+a*d+b*c+c*d,
a*b*c+a*b*d+a*c*d+b*c*d, a*b*c*d-1);

defines an ideal in R. Now the command:
B = I.groebner_basis()

computes the Gröbner basis with respect to the given ordering. Just typing the
name B prints out the basis:

[a + b + c + d,
b^2 + 2*b*d + d^2, b*c - b*d + c^2*d^4 + c*d - 2*d^2,
b*d^4 - b + d^5 - d, c^3*d^2 + c^2*d^3 - c - d,
c^2*d^6 - c^2*d^2 - d^4 + 1]

We begin with some of the intersections in chapter 1 on page 1:

EXAMPLE 2.3.17. Consider the intersection in figure 1.4.5 on page 23 de-
fined by the equations

5X2 + 6XY + 5Y2 + 6Y− 5 = 0
X2 + Y2 − 1 = 0

The intersection is the algebraic set defined by the radical of the ideal

N = (5X2 + 6XY + 5Y2 + 6Y− 5, X2 + Y2 − 1) ⊂ k[X, Y]

If we compute a Gröbner basis for this using lexicographic ordering with X �
Y, we get

(2.3.7) N = (Y3, XY + Y, X2 + Y2 − 1)

(using the Maple command Basis(N, plex(X, Y))). Since Y3 ∈ N, we
must have Y ∈

√
N and
√
N = (Y, XY + Y, X2 + Y2 − 1)

= (Y, X2 − 1)
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so the coordinate ring of the intersection is

k[X, Y]
(X2 − 1, Y)

= k(Y,X−1) ⊕ k(Y,X+1)

a vector-space of two dimensions over k, implying two intersection-points. In
fact this even tells us where they are: Y = 0 and X = ±1.

It is interesting to compute the quotient

Q =
k[X, Y]

N

without taking the radical. If the images of X and Y in Q are x and y, respec-
tively, the Gröbner basis in equation 2.3.7 on page 55 implies

xy = −y because XY + Y ∈ N

x2 = 1− y2 because X2 + Y2 − 1 ∈ N

y3 = 0 because Y3 ∈ N

x3 = x− xy2 because x2 = 1− y2

= x + y2 because xy = −y

= 1 + x− x2 because y2 = 1− x2

so Q is a k-vector-space with basis {1, x, y, y2}. This suggests that Q counts
the intersections with multiplicities, giving 4 in all. This reasoning will be the
basis for our more sophisticated definition of intersection-multiplicity in sec-
tions 3.3.3 on page 137 and 5.8 on page 267.

Here’s an application of Gröbner bases to the robotics problem in section 1.6
on page 27:

EXAMPLE 2.3.18. We set the lengths of the robot arms to 1. The system of
equations 1.6.3 on page 30 gives rise to the ideal

r = (a1a2 − b1b2 + a1 − x, a2b1 + a1b2 + b1 − y, a1
2 + b1

2 − 1, a2
2 + b2

2 − 1)

in C[a1, a2, b1, b2]. If we set x = 1 and y = 1/2, the Gröbner basis of r (using the
command ‘Basis(r,plex(a1,b1,a2,b2))’ in Maple) is

(−55 + 64 b2
2, 8 a2 + 3, 16 b2 − 5 + 20 b1,−5− 4 b2 + 10 a1)

from which we deduce that a2 = −3/8 and b2 can be either +
√

55/8 in which
case

a1 = 1/2 +
√

55/20

b1 = 1/4−
√

55/10

or −
√

55/8 in which case

a1 = 1/2−
√

55/20

b1 = 1/4 +
√

55/10
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FIGURE 2.3.1. Reaching a point

It follows that there are precisely two settings that allow the robot arm in
figure 1.6.1 on page 28 to reach the point (1, 1/2). It is straightforward to com-
pute the angles involved in figure 1.6.1 on page 28: in the first case,

θ = −29.44710523◦

φ = 112.024312◦

as in figure 2.3.1 and in the second

θ = 82.57720759◦

φ = −112.024312◦

Another question we might ask is:
For what values of x are points on the line y = 1− 2x reachable?

In this case, we start with the ideal

r = (a1a2 − b1b2 + a1 − x, a2b1 + a1b2 + b1 + 2x− 1,

a1
2 + b1

2 − 1, a2
2 + b2

2 − 1)

and get the Gröbner basis (using the Maple command
‘Basis(r,plex(a1,b1,a2,b2,x))’

(−3 + 8 x + 6 x2 + 4 b2
2 − 40 x3 + 25 x4,−5 x2 + 1 + 4 x + 2 a2,

− 1 + 6 x− 13 x2 + 2 xb2 + 10 x3 + 2 b1 − 8 xb1 + 10 x2b1,

3 x− 2 b2 + 4 x2 + 4 xb2 − 5 x3 + 4 b1b2,

− 1 + 4 x− b2 − 5 x2 + 2 b1 − 5 xb1 + a1)

The first monomial

−3 + 8 x + 6 x2 + 4 b2
2 − 40 x3 + 25 x4

is significant: When all variables are real, 4b2
2 ≥ 0, which requires

−3 + 8 x + 6 x2 − 40 x3 + 25 x4 ≤ 0
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— since the basis elements are assumed to be set to 0. This only happens if

x ∈
[

2−
√

19
5

,
2 +
√

19
5

]

— so those are the only points on the line y = 1− 2x that the robot-arm can
reach.

We can also analyze the Puma-type robot-arm in figure 1.6.2 on page 30:

EXAMPLE 2.3.19. If we set `1 = `2 = 1, equation 1.6.4 on page 32 implies
that the endpoint of the robot-arm are solutions to the system

a5a4a3 − a5b4b3 + a5a4 − x = 0
b5a4a3 − b5b4b3 + b5a4 − y = 0

b4a3 + a4b3 + b4 − z = 0
a2

3 + b2
3 − 1 = 0

a2
4 + b2

4 − 1 = 0

a2
5 + b2

5 − 1 = 0(2.3.8)

If we want to know which points it can reach with the hand pointing in the
direction

 1/
√

3
1/
√

3
1/
√

3



use equation 1.6.5 on page 32 to get

(a5a4a3 − a5b4b3) a2 + (−a5a4b3 − a5b4a3) b2 − 1/
√

3 = 0

(b5a4a3 − b5b4b3) a2 + (−b5a4b3 − b5b4a3) b2 − 1/
√

3 = 0

(b4a3 + a4b3) a2 + (a4a3 − b4b3) b2 − 1/
√

3 = 0

a2
2 + b2

2 − 1 = 0(2.3.9)

We regard these terms (in equations 2.3.8 and 2.3.9 as generators of an ideal,
P. The variety V (P) ⊂ R10 is called the variety of the movement problem. Its
(real-valued) points correspond to possible configurations of the robot-arm.
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To understand V (P), we compute a Gröbner basis of P with lexicographic
ordering — giving the lowest weight to x, y, z — to get

(2.3.10) P = (4 y2x2 − 4 z2 + z4 + 2 z2x2 + 2 y2z2,

− 1 + 2 b5
2,−b5 + a5, 2 zb4 − z2 − 2 yx,

− 4 z + 4 yb4x + z3 − 2 xzy + 2 y2z + 2 x2z,

− 2− 2 yx + 2 b4
2 + y2 + x2,

a4 − b5y + b5x,

− b5yz + b5xz + b3 + 2 b5yb4,

2 + 2 a3 − 2 y2 − z2,

2 b5z
√

3−
√

3b5y−
√

3b5x− 2 b4
√

3b5 + 3 b2,

3 a2 − y
√

3− x
√

3− z
√

3 + b4
√

3)

It follows that a point (x, y, z) is reachable (with the hand oriented as stated)
only if it lies on the surface

4 y2x2 − 4 z2 + z4 + 2 z2x2 + 2 y2z2 = 0

Solving for z2 gives

(2.3.11) z2 = 2− y2 − x2 ±
√
(2− (x− y)2)(2− (x + y)2)

The fourth expression from the top in equation 2.3.10 is

−2− 2 yx + 2 b4
2 + y2 + x2 = 0

2b2
4 = 2− 2xy− x2 − y2

which implies that

2− (x− y)2 ≥ 0

and gives the additional constraint on (x, y, z):

(x− y)2 ≤ 2

It follows that 2− (x− y)2 ≥ 0 so that the square root in equation 2.3.11 is
only well-defined if 2− (x + y)2 ≥ 0 and we get an additional constraint on x
and y.

The requirement that z2 ≥ 0 implies that the only case worth considering
is

z2 = 2− y2 − x2 +
√
(2− (x− y)2)(2− (x + y)2)

and figure 2.3.2 on the following page shows the set of points that are reachable.
The Elimination Property of Gröbner bases is useful for algebraic compu-

tations:
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FIGURE 2.3.2. Points reachable by the second robot arm

EXAMPLE 2.3.20. Suppose we have a field F = Q[
√

2,
√

3] (see
lemma A.2.10 on page 373) and want to know the minimal polynomial
(see A.2.9 on page 372) of α =

√
2 +
√

3. We regard F as a quotient

F = Q[X, Y]/(X2 − 2, Y2 − 3)

Now form the ideal s = (X2 − 2, Y2 − 3, A− X−Y) ⊂ Q[X, Y, A] and eliminate
X and Y by taking a Gröbner basis using lexicographic ordering with

X � Y � A

The result is

(1− 10 A2 + A4,−11 A + A3 + 2 Y, 9 A− A3 + 2 X)

and we claim that the minimal polynomial of α is

α4 − 10α2 + 1 = 0

It is a polynomial that α satisfies and generates s ∩ k[A], which is a principal
ideal domain (see proposition A.2.4 on page 371), so any other polynomial that
α satisfies must be a multiple of it. Since the degree of this minimal polynomial
is the same as [F: Q] = 4 it follows that F = Q[α]. Indeed, the second and third
terms of the Gröbner basis imply that

√
2 =

α3 − 9α

2
√

3 = −α3 − 11α

2
so Q[α] = Q[

√
2,
√

3]. This is an example the Primitive Element Theorem
( A.2.21 on page 378).

Here’s a second example:
F = Q[21/3] and we want the minimal polynomial of

α =
1 + 21/3

1− 21/3
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We create the ideal b = (X3 − 2, (1− X)A− 1− X) (the second term is a poly-
nomial that α satisfies) and take a Gröbner basis to get

b = (3 + 3 A + 9 A2 + A3, 1− 8 A− A2 + 4 X)

so the minimal polynomial of α is

α3 + 9α2 + 3α + 3 = 0

The second term of the Gröbner basis implies that

21/3 =
α2 + 8α− 1

4
so that Q[21/3] = Q[α].

EXERCISES.

1. Compare this to the solution of exercise 7 on page 39. Let V be the union
of the 3 coordinate axes in A3. Find

I(V) = (Y, Z) ∩ (X, Y) ∩ (X, Y)

2. The point (1/2, 1/2, 1 +
√

2/2) lies on the “reachability surface” in ex-
ample 2.3.19 on page 58 that can be reached by the robot arm with its hand
pointed in the direction

1√
3

 1
1
1


Find the angles φ1, θ1, θ2, θ3 that accomplish this.

3. Find the reachability surface of the robot arm in example 2.3.19 on
page 58 when we require the “hand” to point in the direction 1

0
0


4. Find the least common multiple of the polynomials

−X3 − 2 YX2 − XY2 + 2 X

and
4− 4 X2 − 4 Y2 + X4 − 2 Y2X2 + Y4

in k[X, Y].

5. Consider the ideal a = (Y3, X−Y).
Is X + Y ∈ a?

6. If a = (Y3, X−Y), is X + Y ∈ √a? If so, what power of it is in a?

7. If a = (Y6,−3 Y5 + 5 XY4, X2 − 2 XY + Y2) is a Gröbner basis for an
ideal, what is the lowest power of X + Y that is contained in a?

8. If F = Q[21/2, 21/3] find the minimum polynomial of α = 21/2 + 21/3.
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2.4. The coordinate ring

Now we return to geometry! The coordinate ring is one of the central con-
cepts of algebraic geometry — particularly the theory of affine algebraic sets.
It is the ring of algebraic functions on an algebraic set. and it determines all
geometric properties.

DEFINITION 2.4.1. Let V ⊂ An be an algebraic set and let a = I(V). Then
the coordinate ring of V is defined by

k[V] = k[X1, . . . , Xn]/a

(where the Xi are indeterminates). It is the ring of polynomial functions of An

restricted to V (or the algebraic functions on V).

EXAMPLE 2.4.2. Let V ⊂ A2 be the hyperbola defined by XY = 1 or XY−
1 = 0. It is easily checked that

√
(XY− 1) = (XY − 1) so the defining ideal is

(XY− 1). The coordinate ring is

k[X, Y]/(XY− 1) = k[X, X−1]

the ring of so-called Laurent polynomials.

PROPOSITION 2.4.3. The coordinate ring, k[V], of an algebraic set, V, has the
following properties:

(1) The points of V are in a 1-1 correspondence with the maximal ideals of k[V].
(2) The closed sets of V are in a 1-1 correspondence with the radical ideals of

k[V].
(3) If f ∈ k[V] and p ∈ V with corresponding maximal ideal mp, then the

result of evaluating f at p is the same as the image of f under the canonical
projection

π: k[V]→ k[V]/mp = k
In other words, f (p) = π( f ).

PROOF. Let V ⊂ An be an algebraic set. If

π: k[X1, . . . , Xn]→ k[V]

is the canonical projection, and b ⊂ k[V] is an ideal, then lemma A.1.24 on
page 336 implies that

b 7→ π−1(b)

is a bijection from the set of ideals of k[V] to the set of ideals of k[X1, . . . , Xn] con-
taining a. Prime, and maximal ideals in k[V] correspond to prime, and maximal
ideals in k[X1, . . . , Xn] containing a. The fact that radical ideals are intersections
of maximal ideals (see corollary 2.2.7 on page 42) implies that this correspon-
dence respects radical ideals too.

If p = (a1, . . . , , an) ∈ V ⊂ An is a point, the maximal ideal of functions in
k[X1, . . . , Xn] that vanish at p is

P = (X1 − a1, . . . , Xn − an) ⊂ k[X1, . . . , Xn]

and this gives rise to the maximal ideal π(P) ⊂ k[V].
Clearly

V
(

π−1(b)
)
= V (b) ⊂ V
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so b 7→ V (b) is a bijection between the set of radical ideals in k[V] and the
algebraic sets contained within V.

To see that f (p) = π( f ), note that the corresponding statement is true in
k[X1, . . . , Xn], i.e., the image of f (X1, . . . , Xn) under the map

g: k[X1, . . . , Xn]→ k[X1, . . . , Xn]/P = k

is just f (a1 . . . , an).
Let h: k[X1, . . . , Xn] → k[X1, . . . , Xn]/a = k[V] be the canonical projection.

Then mp = h(P) and the diagram

k[X1, . . . , Xn]
h //

g
��

k[V]

π

��

k k

commutes by lemma A.1.25 on page 337. �

We can define the Zariski Topology on an algebraic set:
If V ⊂ An is an algebraic set, the topology induced on V by the Zariski

topology on An is given by:
• For each subset W ⊂ An, V (IW) is the closure in the Zariski topology

of An.
• There’s a 1-1 correspondence between the closed subsets of An and

the radical ideals of k[X1, . . . , Xn].
• The closed subsets of an algebraic set V correspond to the radical

ideals of k[X1, . . . , Xn] that contain I(V).

DEFINITION 2.4.4. If V ⊂ An is an algebraic set, for every h ∈ k[V], set

D(h) = {a ∈ V|h(a) 6= 0}
These are called the principal open sets of V.

REMARK. D(h) is empty only if h = 0.

We will often want to regard open sets as algebraic sets in their own right:

PROPOSITION 2.4.5. Let V ⊂ An be an affine algebraic set and let D(h) be a
principal open set. Then there is an algebraic set D ⊂ An+1 homeomorphic to D(h)
(with respect to the Zariski topology). Consequently, D(h), has the structure of an
affine algebraic set with coordinate ring

k[D(h)] = k[V]h

(see definition A.1.89 on page 368).

PROOF. If a = I(V), set

D = V (a, (hT − 1)) ⊂ An+1

This is an algebraic set on which the polynomial h cannot vanish — since it has
a multiplicative inverse. Projection onto the first n coordinates is a regular map
(therefore continuous in the Zariski topology)

D → D(h)
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that is 1-1 and onto. We claim it maps closed sets to closed sets in the Zariski
topology so that its inverse is also continuous. Let

g(X1, . . . , Xn, T) = 0

define a closed set in K ⊂ An+1. Its intersection with D will be the set defined
by

g(X1, . . . , Xn, h−1) =
p(X1, . . . , Xn)

q(X1, . . . , Xn)
= 0

so the image of K ∩ D in An will be the closed set defined by

p(X1, . . . , Xn) = 0

It follows that the projection is a homeomorphism.
The final statement about the coordinate ring of D(h) follows from

lemma A.1.90 on page 369. �

Here’s an example of a principal open set that is an algebraic group:

EXAMPLE 2.4.6. The general linear group, GL(n, k) ⊂ An2+1. This is the
group of n × n matrices with nonzero determinant. It is equal to D(det ∗) ⊂
An2

, where det ∗ is the algebraic function on An2
that computes the determi-

nant (regarding coordinates in An2
as entries of an n× n matrix). The coordi-

nate ring is given by

(2.4.1) k[GL(n, k)] =

k[A1,1, . . . , A1,n, A2,1, . . . , A2,n, . . . , An,1, . . . , An,n, T]
(T · det A− 1)

The fact that det A has a multiplicative inverse prevents it from ever being 0.

PROPOSITION 2.4.7. The principal open sets of an algebraic set form a basis for
the Zariski topology.

PROOF. Let K be a closed set in the Zariski topology so

I(K) = (x1, . . . , xn)

=
n

∑
i=1

(xi)

is a radical ideal. By the same reasoning as was used in remark 5 on page 43,
we have

K =
n⋂

i=1

V ((xi))

and

K̄ =
n⋃

i=1

V (xi) =
n⋃

i=1

D(xi)

�

PROPOSITION 2.4.8. Let V ∈ An and W ∈ Am be algebraic sets and let f : V →
W be a regular map. Then f induces a homomorphism

f ∗: k[W]→ k[V]

of coordinate rings (as k-algebras).
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PROOF. The fact that f is regular implies

f =

 F1
...

Fm


for F1, . . . , Fm ∈ k[Y1, . . . , Yn] and these polynomials induce a map

F∗: k[X1, . . . , Xm] → k[Y1, . . . , Yn]

g(X1, . . . , Xm) 7→ g(F1, . . . , Fm)

Since f (V) ⊂ W we must have F∗(I(W)) ⊂ I(V). But this means that F∗

induces a homomorphism of k-algebras

f ∗: k[X1, . . . , Xm]/I(W) = k[W]→ k[Y1, . . . , Yn]/I(V) = k[V]

�

EXAMPLE 2.4.9. Suppose V ⊂ A2 is the parabola y = x2. Then projection
to the x-axis

f : A2 → A1

(x, y) 7→ x

is a regular map. There is also a regular map g: A1 → V

g: A1 → A2

x 7→ (x, x2)

It is interesting that we have a converse to proposition 2.4.8 on the facing
page:

PROPOSITION 2.4.10. Let V ⊂ An and W ⊂ Am be algebraic sets. Any homo-
morphism of k-algebras

f : k[W]→ k[V]

induces a unique regular map
f̄ : V →W

REMARK. This and proposition 2.4.8 on the preceding page imply that the
coordinate ring is a contravariant functor (see definition A.5.7 on page 434)
from the category of algebraic sets to that of k-algebras.

PROOF. We have a diagram

k[X1, . . . , Xm]

��

k[Y1, . . . , Yn]

��

k[X1, . . . , Xm]/I(W) k[y1, . . . , yn]/I(V)

k[W]
f

// k[V]
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and we can map each Xi ∈ k[X1, . . . , Xm] to k[Y1, . . . , Yn] to make

(2.4.2) k[X1, . . . , Xm]

��

r // k[Y1, . . . , Yn]

��

k[X1, . . . , Xm]/I(W) k[Y1, . . . , Yn]/I(V)

k[W]
f

// k[V]

commute as a diagram of k-algebras. Suppose r(Xi) = gi(Y1, . . . , Yn). We claim
that

f̄ =

 g1
...

gm

 : An → Am

is the required regular map. If p = (k1, . . . , kn) ∈ V ⊂ An so

v(p) = 0

for any v ∈ I(V), then w( f (p)) = f (w)(p) = 0 for any w ∈ I(W) implying
that f̄ (V) ⊂W.

If we replace r in diagram 2.4.2 by a map r′ that still makes it commute, the
induced f̄ ′ will differ from f by elements of I(V) so

f̄ |V = f̄ ′|V
implying that the map f̄ : V →W is unique. �

DEFINITION 2.4.11. Let V ⊂ An and W ⊂ Am be algebraic sets. Then V
and W are said to be isomorphic if there exist regular maps

f : V → W
g: W → V

such that f ◦ g = 1: W →W and g ◦ F = 1: V → V.

REMARK. We may regard isomorphic algebraic sets as equivalent in every
way. Then example 2.4.9 shows that that parabola y = x2 ⊂ A2 is isomorphic
to A1.

We have proved:

COROLLARY 2.4.12. Algebraic sets V ⊂ An and W ⊂ Am are isomorphic if
and only if k[V] and k[W] are isomorphic as k-algebras.

REMARK. This proves the claim made earlier: the coordinate ring defines
all of the significant geometric properties of an algebraic set, including its iso-
morphism class. This is analogous to the Gelfand-Naimark theorem (in [52])
that locally compact Hausdorff spaces are determined up to homeomorphism by
their C∗-algebras of continuous functions that vanish at infinity. Also see sec-
tion 4.2.1 on page 165.

We can characterize the kinds of rings that can be coordinate rings of alge-
braic sets:
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DEFINITION 2.4.13. Given an algebraically closed field k, an affine k-algebra
is defined to be a finitely generated k-algebra that is reduced, i.e.

√
(0) = (0). If

A and B are affine k-algebras, the set of homomorphisms f : A→ B is denoted

homk−alg(A, B)

REMARK. The requirement that the ring be reduced is equivalent to saying
that it has no nilpotent elements. This is equivalent to saying that the intersec-
tion of its maximal ideals is 0 — see theorem A.1.46 on page 344.

If k is an algebraically closed field, Hilbert’s Nullstellensatz (theorem 2.2.5
on page 41) implies that affine k-algebras (see definition 2.4.13) are Jacobson
rings (see definition A.4.38 on page 420).

Dominating maps are, for most purposes, essentially surjective:

DEFINITION 2.4.14. A regular map f : V → W is said to be dominating if its
image is dense in W.

REMARK. Recall that a subset of a space, S ⊂ X, is dense if the closure of
S is all of X. Figure 2.1.2 on page 38 and the discussion surrounding it shows
how easy it is for a map to have a dense image in the Zariski topology.

LEMMA 2.4.15. A regular mapping f : V →W induces an injection

f ∗: k[W]→ k[V]

of coordinate rings if and only if it is dominating.

PROOF. If g ∈ k[W] and the image of f is dense, f (V) intersects all open
sets of W, including the open set, D(g). If g ∈ ker f ∗ then we must have D(g) =
∅, i.e. g = 0.

On the other hand, if f ∗ is injective, then g 6= 0 ∈ k[W] implies that f ∗(g) 6=
0 so f (V) ∩ D(g) 6= ∅. �

Now we study irreducible algebraic sets — the building blocks of algebraic
sets in general.

DEFINITION 2.4.16. A nonempty topological space is said to be irreducible
if it is not the union of two proper closed subsets.

Irreducible spaces have a number of interesting properties. For instance,
open sets in an irreducible space tend to be very “large”:

PROPOSITION 2.4.17. Let X be an irreducible space and let O1, . . . , Ok ⊂ X be
any finite collection of open sets. Then

(2.4.3)
k⋂

i=1

Oi 6= ∅

PROOF. Just take the complement of equation 2.4.3 to get
k⋃

i=1

Ōi = X

which contradicts the fact that X is irreducible. �

It is easy to characterize irreducible algebraic sets via the coordinate ring:
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PROPOSITION 2.4.18. An algebraic set W is irreducible if and only if I(W) is
prime. This happens if and only if k[W] is an integral domain.

PROOF. Suppose W is irreducible and f g ∈ I(W). At each point of W
either f is zero or g is zero so W ⊂ V ( f ) ∪ V (g). It follows that

W = (W ∩ V ( f )) ∪ (W ∩ V (g))

Since W is irreducible, we must have

W = W ∩ V ( f ) or W = W ∩ V (g)

so that either f or g are in I(W). Suppose I(W) is prime and W = V (a)∪V (b)
with a and b radical ideals. We must show that W = V (a) or V (b). Recall that
V (a)∪V (b) = V (a∩ b), and that a∩ b is radical. It follows that I(W) = a∩ b.

If W 6= V (a), then there exists an f ∈ a \ I(W). For all g ∈ b

f g ∈ a∩ b = I(W)

Because I(W) is prime, this implies that b ⊂ I(W) so W ⊂ V (b).
The final statement about k[V] being an integral domain follows from

lemma A.1.29 on page 340. �

DEFINITION 2.4.19. Let V be an algebraic set and let U ⊂ V be an open
subset. Then U is called an open affine of V if U has the structure of an affine
algebraic set and the inclusions

U ↪→ V
D(h) ↪→ U

are regular maps for all h such that D(h) ⊂ U.

REMARK. For instance any principal open set D(h) ⊂ V is an open affine,
as proposition 2.4.5 on page 63 shows.

Exercise 6 on page 90 shows that there exist open sets that are not affine.
There also exist open affines that are not principal — i.e., not of the form D(h)
for any regular function h (although they will be a union of such sets) — see
exercise 12 on page 90.

The Zariski topology on an algebraic set gives it some interesting proper-
ties:

DEFINITION 2.4.20. A topological space, X, is noetherian if every descend-
ing chain of closed sets

X ) X1 ) X2 ) · · · ) ∅

is finite.

REMARK. Clearly the topological spaces R and C (with their usual topolo-
gies) are far from being noetherian.

Under the Zariski topology, algebraic sets are noetherian:

PROPOSITION 2.4.21. Algebraic sets with the Zariski topology are noetherian.

PROOF. The descending chain condition on closed subspaces in
definition 2.4.20 is equivalent to the ascending chain condition on ideals in
definition A.1.47 on page 345. �
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All noetherian spaces can be decomposed into a union of irreducible sub-
spaces:

PROPOSITION 2.4.22. Let V be a noetherian topological space. Then V is a finite
union of irreducible closed subsets

V = V1 ∪ · · · ∪Vm

Moreover, if the decomposition is irredundant (no Vi is contained in any other), then
the Vi are uniquely determined, up to order.

PROOF. Suppose V cannot be written as a finite union of irreducible closed
subsets. Then, because V is noetherian, there will be a closed subset W of V
that is minimal among those that cannot be written in this way. Since W cannot
be irreducible, we have W = W1 ∪W2 with each Wi a proper closed subset of
W.

From the minimality of W, we conclude that the Wi can be written as finite
unions of irreducible close sets. This is a contradiction!

Suppose
V = V1 ∪ · · · ∪Vm = W1 ∪ · · · ∪Wt

are two irredundant decompositions. Then Vi =
⋃

j(Vi ∩Wj) and, because Vi is
irreducible Vi = Vi ∩Wj for some j. Consequently, there is some function

f : {1, . . . , m} → {1, . . . , t}
such that Vi ⊂W f (i).

Similar reasoning implies that there is a function

g: {1, . . . , t} → {1, . . . , m}
such that the composites f ◦ g and g ◦ f are the identities. �

Recall that corollary 2.2.7 on page 42 showed that a radical ideal is equal
to the intersection of all the maximal ideals containing it. Since an algebraic
set is noetherian, it has a unique decomposition into irreducible closed sets, by
proposition 2.4.22.

The correspondence between ideals and closed sets in corollary 2.2.6 on
page 42 implies this variation on corollary 2.2.7 on page 42:

COROLLARY 2.4.23. A radical ideal a ∈ k[X1, . . . , Xn] is a finite intersection of
prime ideals

a = p1 ∩ · · · ∩ pj

If there are no inclusions among the pi then the pi are uniquely determined.

PROOF. Write V (a) =
⋃

Vi (irreducible components) and set pi = I(Vi).
�

Recall that a topological space, X, is connected if the only sets that are both
open and closed are the empty set and X itself. Equivalently, X is connected if
and only if, whenever we have

(2.4.4) X = X1 ∪ X2

with X1, X2 both closed and nonempty, we also have

(2.4.5) X1 ∩ X2 6= ∅
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If X is an irreducible algebraic set, then equation 2.4.4 on the previous page
implies that X1 = X2 = X, so X is connected. The converse is not necessarily
true.

For instance, V (X1X2) is the union of the coordinate axes in A2, which is
connected but not irreducible.

We can translate equations 2.4.4 on the preceding page and 2.4.5 on the
previous page into statements about ideals in the coordinate ring:

An algebraic subset V of An is connected but not irreducible if
and only if there exist ideals a and b such that 3 on page 38
a∩ b = I(V) but a+ b 6= k[X1, . . . , Xn].

EXERCISES.

1. Suppose the characteristic of the field k is 6= 2 and V is an algebraic set
in A3 defined by the equations

X2 + Y2 + Z2 = 0

X2 −Y2 − Z2 + 1 = 0

Decompose V into its irreducible components.

2. Prove that the statements:
a. X is connected if and only if the only subsets of X that are open and

closed are ∅ and X,
b. X is connected if, whenever X = X1∪X2 with X1, X2 closed nonempty

subsets of X, then X1 ∩ X2 6= ∅.
are equivalent.

3. In an irreducible algebraic set, show that D(h1) ∩ D(h2) = D(h1h2).

4. Show that D( f ) ⊂ D(g) if and only if f n ∈ (g) for some n > 0.

5. Show that the map

v: GL(n, k) → GL(n, k)

A 7→ A−1

that sends a matrix to its inverse, is a regular map.

6. Suppose R is a ring that contains an infinite field with ideals I1, . . . ,In
and J such that

J ⊂
n⋃

i=1

Ii

Show that there exists an α such that J ⊂ Iα.
This is one case of the oddly-named Prime Avoidance lemma.

7. Suppose I1, . . . , In and J are ideals in a ring R such that

J ⊂
n⋃

i=1

Ii
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and all but two of the Ij are prime. Show that there exists an α such that J ⊂ Iα.
This is the second case of the Prime Avoidance lemma.

8. If a, b ⊂ R = k[X1, . . . , Xn] are two ideals and f ∈ R vanishes on V (a) \
V (b), show that, for any b ∈ b that there exists a power n such f · bn ∈ a.

9. Suppose a, b ⊂ R = k[X1, . . . , Xn] are two ideals and define the ideal3

(a: b∞) =
{

x ∈ R
∣∣∃n∈Z+ such that x · bn ⊂ a

}
— the saturation of a with respect to b. Show that

I (V (a) \ V (b)) = (a: b∞)

2.5. specm ∗
We are now in a position to define affine varieties — essentially affine alge-

braic sets with no preferred embedding in an affine space:

DEFINITION 2.5.1. If R is an affine k-algebra define the maximal spectrum,
specm R, of R to be the set of all proper maximal ideals of R. In addition, define

(1) for all r ∈ R, D(r) = {m ∈ specm R|r /∈ m},
(2) the topology on specm R for which the sets D(r), for all r ∈ R, form a

base.
(3) Given f ∈ R define f (m) to be the image of r under the canonical map

R→ R/m = k

the value of f at the point m ∈ specm R.

REMARK. The space specm ∗ has been largely supplanted by the space
Spec ∗ whose points are prime ideals of a ring (see definition 4.2.1 on page 161)
rather than maximal ideals. There are several reasons for this:

(1) the topology of Spec ∗ is equivalent to that of specm ∗
(2) Spec ∗ is a well-defined functor (see definition A.5.7 on page 434) of

rings, while specm ∗ is not, except in the restricted case of affine k-
algebras (proved in proposition 2.5.3 on the next page).

We use specm ∗ as a stepping stone to Spec ∗ because it is somewhat easier to
understand.

This gives an entirely “coordinate free” way of describing an affine alge-
braic set:

PROPOSITION 2.5.2. Let V ⊂ An be an algebraic set with coordinate ring k[V].
Then there exists a canonical homeomorphism

h: V → specm k[V]

of topological spaces.

3The proof that this is an ideal is left as an exercise to the reader.
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PROOF. Proposition 2.4.3 on page 62 implies that every point p ∈ V corre-
sponds to a unique maximal ideal mp ⊂ k[V] of functions that vanish at p. We
define h by

h(p) = mp ∈ specm k[V]

This is a one-to-one mapping and we claim that it is continuous. We must show
that h−1(D( f )) is open in V for all f ∈ k[V].

In specm k[V], D( f ) = {m ∈ specm k[V]| f /∈ m}, for f ∈ k[V]. Since
evaluating a function, f ∈ k[V] at a point p ∈ V coincides with its image under
the projection

πp: k[V]→ k[V]/mp = k
— see statement 3 in proposition 2.4.3 on page 62, it follows that

h−1(D( f )) = {p ∈ V|πp( f ) 6= 0}
= {p ∈ V| f (p) 6= 0}
= D( f ) ⊂ V as in definition 2.4.4 on page 63

A similar argument shows that h(D( f )), where D( f ) is as defined in defi-
nition 2.4.4 is precisely D( f ) as defined in 2.5.1. This implies that the inverse of
h is continuous. �

Our specm ∗ construction is functorial (see definition A.5.7 on page 434).
This means that it mimics the behavior of algebraic sets under regular maps:

PROPOSITION 2.5.3. Let α: A→ B be a homomorphism of affine k-algebras. Then
α induces a continuous map of topological spaces

ϕ: specm B→ specm A

with, for any maximal ideal n ⊂ B,

ϕ(n) = α−1(n) = m

a maximal ideal.

PROOF. Suppose α is a morphism of affine k-algebras. For any h ∈ A,
α(h) is invertible in Bα(h), so the homomorphism A → B → Bα(h) extends to a
homomorphism

g
hm 7→

α(g)
α(h)m : Ah → Bα(h)

For any maximal ideal n ∈ B, m = α−1(n) is maximal in A because A/m→
B/n = k is an injective map of k-algebras, which implies that A/m = k.

Thus α defines a map

ϕ: specm B→ specm A, ϕ(n) = α−1(n) = m

making the diagram

A α //

��

B

��

A/m B/n
commute.
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This implies that

f (ϕ(n)) = α( f )(n) i.e., f ◦ ϕ = α

for any f ∈ A, where f (m) (for m a maximal ideal) is the image of f under the
homomorphism

A→ A/m = k
Since ϕ−1D( f ) = D( f ◦ ϕ), it follows that

ϕ−1(D( f )) = D(α( f ))

so ϕ is continuous. �

We finally define:

DEFINITION 2.5.4. Let A be an affine k-algebra. Then the pair (A, specm A)
is called an affine variety.

We finally summarize everything in the following result:

THEOREM 2.5.5. The functor A 7→ specm A is a contravariant equivalence (see
definition A.5.13 on page 437) from the category of affine k-algebras to that of affine
varieties with quasi-inverse (V, specm k[V]) 7→ k[V]. For any affine k-algebras A
and B

Homk−alg(A, B) '−→ homVar(specm B, specm A)

For any affine varieties V and W

homVar(V, W)
'−→ Homk−alg(k[W], k[V])

REMARK. To state a result like this, we needed a formulation of algebraic
sets that did not require their being embedded in an affine space.

An affine algebraic set is just an affine variety equipped with an embedding
in an affine space. The following result implies that this is always possible:

LEMMA 2.5.6. Let (R, specm R) be an affine variety. Then there exists an em-
bedding

f : specm R→ An

for some n.

PROOF. Since R is finitely generated over k, we have

R = k[x1, . . . , xn]

and get a surjection

f : k[X1, . . . , , Xn] → R
Xi 7→ xi

(where the Xi are indeterminates) with a kernel, K. We claim that K is a radical
ideal. If not, let x ∈ k[X1, . . . , Xn] be an element with the property that xn ∈ K
but x /∈ K. In that case, f (x) ∈ R has the property that f (x)n = 0 but f (x) 6= 0,
contradicting the fact that R is a reduced ring.

If V = V (K), then Hilbert’s Nullstellensatz (see 2.2.5 on page 41) implies
that K = IV with coordinate ring

k[X1, . . . , Xn]/K = R
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Now map specm R to V via the inverse of the homeomorphism in proposi-
tion 2.5.2 on page 71. �

We can use theorem 2.5.5 on the preceding page to compute sets of regular
maps between affine varieties:

(1) Theorem 2.5.5 on the previous page implies that

homVar(V, A1) = Homk−alg(k[X], k[V]) = k[V]

so the regular maps V → A1 are just the regular functions on V.
(2) Define A0 to be the ringed space (V0,OV0) with V0 consisting of a

single point. Equivalently A0 = specm k. Then, for any affine variety

homVar(A
0, V) ' homk−alg(k[V], k) ' V

where the isomorphism

homk−alg(k[V], k) ' V

sends α ∈ homk−alg(k[V], k) to the point corresponding to the maxi-
mal ideal ker α.

(3) Consider t 7→ (t2, t3): A1 → A2. This is bijective onto its image

V: y2 = x3

but is not an isomorphism onto its image — the inverse map is not
regular. It suffices to show that t 7→ (t2, t3) doesn’t induce an iso-
morphism of rings of regular functions. We have k[A1] = k[T] and
k[V] = k[X, Y]/(Y2 − X3) = k[x, y], where X 7→ x, Y 7→ y.

The map on rings is

x 7→ T2, y 7→ T3, k[V]→ k[T]

which is injective, but its image is k[T2, T3] 6= k[T], the ring of polyno-
mials of degree > 1.

In fact, unlike k[T], k[x, y] is not integrally closed (see
definition A.4.10 on page 406):

(y/x)2 − x = 0
so (y/x) is integral over k[x, y] but y/x /∈ k[x, y] (it maps to T under
the inclusion k(x, y) ↪→ k(T)).

2.5.1. Fibers of regular maps. In algebraic geometry, inverse images of
points (and subvarieties) under regular maps are called fibers of those maps.

Although this might seem to be an odd term for inverse images, figure 2.5.1
on the next page shows some fibers of a version of the elliptic map

A2 → A1

(X, Y) 7→ Y2 − X3 − X

We can think of A2 as a union of an infinite number of these inverse images,
which look somewhat like fibers. Another reason for calling inverse images
fibers appears in section 4.3.3 on page 176 where fibered products are defined.
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FIGURE 2.5.1. Fibers of a regular map

It can be shown that fibers of maps occur as suitable fibered products — see
example 8 on page 178.

DEFINITION 2.5.7. If f : V →W is a regular map and X ⊂W is a subvariety,
we call f−1(X) the fiber of f over X.

One interesting feature of fibers over closed subvarieties is that they are
closed subvarieties themselves:

LEMMA 2.5.8. Let f : V → W is a regular map with induced homomorphism of
coordinate rings

f ∗: k[W]→ k[V]

and let X ⊂ W be a closed subvariety corresponding to the radical ideal x. Then
f−1(X) is the closed subvariety of V corresponding to the ideal√

f ∗(x) · k[V] ⊂ k[V]

The coordinate ring of the fiber is the quotient

k[V]√
f ∗(x) · k[V]

PROOF. The subvariety X is defined by the fact that the functions {gi} that
generate the ideal x vanish on it. The set f−1(X) is defined by the fact that the
composite of f with those functions vanish on f−1(X), i.e. that the functions
{ f ◦ gi} ∈ k[V] vanish on it. But these are precisely { f ∗(gi)} and the ideal
they generate is f ∗(x) · k[V]. Since this might not be a radical ideal, we take the
radical. �
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EXAMPLE 2.5.9. Suppose f : A1 → A2 is the map that sends X to (X̄, Ȳ) =
(X2, X3). The induced map of coordinate rings

k[X̄, Ȳ]
f ∗−→ k[X]

X̄ 7→ X2

Ȳ 7→ X3

The point (0, 0) ∈ A2 corresponds to the maximal ideal m0 = (X̄, Ȳ), and its
image under f ∗ is (X2, X3) = (X2) ⊂ k[X], which is not a radical ideal. After
taking the radical, we get (X), the maximal ideal corresponding to the point
0 ∈ A1, which is f−1(0, 0).

Consider f−1(2, 3). The maximal ideal is (X̄ − 2, Ȳ − 3) ⊂ k[X̄, Ȳ] and its
image under f ∗ is

(X2 − 2, X3 − 3) ⊂ k[X]

and it is not hard to see that the greatest common divisor of X2 − 2 and X3 − 3
is 1. The Euclidean algorithm implies that 1 ∈ (X2 − 2, X3 − 3). This shows
us what happens when we take the inverse image of a point that is not in the
image of f — we get an ideal that contains 1 and represents the empty set.

We conclude this section with an two important classes of morphisms of
affine varieties:

DEFINITION 2.5.10. A map f : V → W of affine varieties sets will be called
finite if the induced map

k[W]→ k[V]

is injective and k[V] is integral over k[W] ⊂ k[V] (see definition A.4.3 on
page 404).

REMARK. Proposition A.4.5 on page 405 implies that composites of finite
maps are finite.

In order to understand the geometric properties of finite maps, we need the
concept of Artinian ring, developed in section A.1.7 on page 365.

PROPOSITION 2.5.11. Let f : V →W be a finite map of irreducible affine varieties.
If f is dominating, then

(1) f is surjective, and
(2) if w ∈W is any point, f−1(w) is a finite set of points.

REMARK. A dominating finite map is almost an isomorphism: every point
in f−1(y) has a neighborhood that is mapped isomorphically to a neighborhood
of y.

For instance the map z 7→ z2 defines a finite map

f : V = C→ C = W

and f−1(w) has two points in it unless w = 0.

PROOF. The assumption that f is dominating implies that f ∗: k[W]→ k[V]
is injective. Suppose a ⊂ k[W] is a maximal ideal, representing a point, p,
of W. Then the image of a in k[V] is just a · k[V], representing f−1(p) — see
lemma 2.5.8 on the previous page and the surrounding discussion. If a · k[V] =
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k[V], then the inverse image of the point, p, is the empty set — so p is not in
the image of f . Nakayama’s Lemma A.1.78 on page 362 implies that this never
happens:

If a · k[V] = k[V], then Nakayama’s Lemma says that there exists an element
r ∈ k[W] ⊂ k[V] such that r ≡ 1 (mod a) and r · k[V] = 0. Since the rings in
question are integral domains, r = 0 and 0 ≡ 1 (mod a), or 1 ∈ a so that a also
represents the empty set.

To prove the second statement, note that the points in f−1(p) correspond
to the maximal ideals of k[V] that contain a · k[V], i.e. the maximal ideals of the
quotient

Q = k[V]/a · k[V]

(see lemma A.1.24 on page 336). Since k[V] is a finitely generated module over
k[W], Q will be a finitely generated module over the field, F = k[W]/a, i.e.
a finite-dimensional vector space. We claim that Q is Artinian (see defini-
tion A.1.81 on page 365): every descending sequence

(2.5.1) a1 ⊇ a2 ⊇ · · ·
of ideals in Q must become constant after a finite number of terms. This is
because each ideal is a sub-vector-space of Q and a proper subspace must be of
a lower dimension. In fact the dimension of Q over F is the maximum number
of distinct terms a sequence like 2.5.1 can have.

Statement 4 in lemma A.1.82 on page 365 implies that the number of maxi-
mal ideals in Q is finite. This completes the proof. �

Irreducible affine varieties have a number of interesting geometric proper-
ties that are not well defined for general affine varieties. For instance, they have
a constant dimension. They are also key to defining general algebraic varieties.

The Noether Normalization Theorem ( 2.2.2 on page 39) implies the re-
markable result:

THEOREM 2.5.12. If V is an irreducible affine variety and the field of fractions of
k[V] has transcendence degree n, then there exists a dominating finite map

f : V → An

REMARK. This is often called the geometric form of the Noether Normaliza-
tion Theorem.

PROOF. The Noether Normalization Theorem implies that k[V] is integral
over k[x1, . . . , xn] where x1, . . . , xn ∈ k[V] are algebraically independent. The
inclusion

k[x1, . . . , xn] ↪→ k[V]

induces f via proposition 2.4.10 on page 65. �

We conclude this section with the topic of flat morphisms:

DEFINITION 2.5.13. A ring-homomorphism f : R→ S will be called flat if it
makes S a flat module over R. A morphism f : V →W of affine varieties will be
called flat if the corresponding morphism f ∗: k[W] → k[V] of coordinate rings
is flat.
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FIGURE 2.5.2. Flat morphism

Flat morphisms of rings have an important algebraic property, called Going
Down:

PROPOSITION 2.5.14. Let f : R → S be a flat morphism of rings and let p1 ⊂
p ⊂ R be an inclusion of prime ideals. If q ⊂ S is a prime ideal such that f−1(q) = p,
then there exists an ideal q1 ⊂ q such that f−1(q1) = p1.

PROOF. Let q1 be a minimal prime ideal containing f (p1) · S — this exists
because the intersection of a descending chain of prime ideals is prime (see
exercise 10 on page 338). Exercise 22 on page 464 shows that

S
f (p1) · S

= S⊗R

(
R
p1

)
is a flat module over

R
p1

so there is no loss of generality if we assume that p1 = 0 and q1 is minimal. Then
exercise 29 on page 348 implies that all of the elements of q1 are zero-divisors.
On the other hand, R/p1 is an integral domain and non-zero divisors of R/p1
map to non-zero divisors of S/ f (p1) · S (by exercise 21 on page 464) so

im f̄ (R/p1) ∩ im q1 = 0

and f−1(q1) = 0 = p1. �

This has an interesting geometric interpretation:
If f : V → W is a flat morphism of affine varieties and V′ ⊂ V has the

property that f (V′) ⊂ W ′ ⊂ W are subvarieties, then there exists a subvariety
V′′ ⊃ V′ such that f (V′′) is dense in W ′ (i.e., f |V′′: V′′ → W ′ is effectively
surjective). See figure 2.5.2.
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EXERCISES.

1. Consider the regular map

f : A2 → A2

(X, Y) 7→ (X, XY)

Determine the induced map of coordinate rings and the fiber over the point
(a, b) ∈ A2.

2. Let H be the hyperbola XY = 1 in A2. Construct a surjective map

f : H → A1

with f−1(point) a finite set of points (as per theorem 2.5.12 on page 77). Repre-
sent the coordinate ring of V as a finitely-generated module over a polynomial
algebra.

3. Suppose M is a finitely generated module over R = k[X1, . . . , Xn] with a
prime filtration (see theorem A.1.75 on page 359)

0 = M0 ⊂ · · · ⊂ Mj = M

with
Mi+1

Mi
∼= R

pi
If Ann(M) ⊂ R is a radical ideal, show that

V = V (Ann(M)) =
j−1⋃
i=1

V (pi)

is a decomposition of V into its irreducible components. This gives a geometric
proof of the statement:

If k is a radical ideal, then the prime ideals in the prime filtration
of R/k are all distinct and uniquely determined by it.

This is not true in general (i.e., when k is not a radical ideal).

4. If f : V →W is a regular map and x ∈ k[W], what is k[ f−1(D(x))]?

2.5.2. Elimination theory. In this section, we consider the question
If V ⊂ An is an algebraic set and An → An−d is projection to
the last n− d coordinates, what can we say about the image of
V in An−d?

To answer this, we need

DEFINITION 2.5.15. Let a ⊂ k[X1, . . . , Xn] be an ideal. Its dth elimination
ideal, ad, is defined by

ad = a∩ k[Xd+1, . . . , Xn]

REMARK. In other words, ad “eliminates” the first d coordinates.

And the answer to the question posed above is
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PROPOSITION 2.5.16. If a ∈ k[X1, . . . , Xn] is a radical ideal generating an alge-
braic set V (a) ⊂ An and p: An → An−d is projection to the last n− d coordinates,
then

I(p(V (a))) = ad

in the notation of 2.1.4 on page 38.

REMARK. Note that this does not compute p(V (a)) — at best it computes
its Zariski closure, p(V (a)). For instance, the hyperbola

XY = 1

in A2 projects to A1 \ {0} in the Y-axis, but its elimination ideal is (XY − 1) ∩
k[Y] = (0), which defines the entire Y-axis.

PROOF. The projection
p: An → An−d

induces the map
p∗: k[Xd+1, . . . , Xn] ↪→ k[X1, . . . , Xn]

of coordinate rings and a function f ∈ k[Xd+1, . . . , Xn] vanishes on p(V (a))
if and only if f ◦ p vanishes on V (a). This, in turn, happens if and only if
p∗( f ) ∈ a. �

Computing elimination ideals is usually done using proposition 2.3.13 on
page 52, which states that, if a ⊂ k[X1, . . . , Xn] is an ideal and

G = {g1, . . . , gs}
is a Gröbner basis for a computed with respect to a lexicographical ordering of
monomials using X1 � X2 � · · · � Xn, then

G ∩ k[Xd+1, . . . , Xn]

is a Gröbner basis for ad.
In the example above, Maple computes the Gröbner basis of a with respect

to a lexicographical ordering of monomials with X � Y � Z as

a = (−Y2 + Z2 + 4 Z2Y2,−4 Z2Y + 2 Z2X + Y− Z,

− 2 ZY + ZX + YX,−X + Z + ZX2)

The only one of these four terms lacking the variable X is the first. The fact that
none of these terms only contains the variable Z implies that a2 = (0).

2.5.3. Rational functions. If V is an irreducible affine variety, its coordi-
nate ring k[V] is an integral domain by proposition 2.4.18 on page 68, so we can
form its field of fractions.

DEFINITION 2.5.17. Let V be an irreducible affine variety with coordinate
ring k[V]. If we form the field of fractions, k(V), we get an extension of the field
k: The field of rational functions on V.

Unlike regular functions, rational functions on an algebraic set V ⊂ An do
not generally extend in a simple way to all of An.
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PROPOSITION 2.5.18. Let V ⊂ An be an irreducible algebraic set with rational
function field k(V). If ϕ ∈ k(V) then there exist representations of

fi
gi
∈ k(An)

i = 1, . . . , k, with the property that
(1) for each i

fi
gi

is well-defined on an open set, Ui where gi 6= 0
(2) for each i, j

(2.5.2)
fi
gi
|Ui ∩Uj ∩V =

f j

gj
|Ui ∩Uj ∩V

The open sets Ui ∩V will be open affines as in definition 2.4.19 on page 68. The union
of all of these open affines is called the open set of regular points, R(ϕ), of ϕ.

PROOF. Equation 2.5.2 simply says that

figj − f jgi ∈ I(V)

The only thing to be proved is that the Ui ∩V are affine algebraic sets. This
follows from proposition 2.4.5 on page 63 and the fact that Ui ∩ V = D(ḡi), a
principal open set, where ḡi is the image of gi in k[V].

The open set R(ϕ) might not have an affine structure (unions of principal
open sets do not always have such a structure) but the intersection of the D(ḡi)
will have such a structure by proposition 2.4.5 on page 63. It will still be a dense
open set in V. �

Here is an example:

EXAMPLE 2.5.19. Suppose C is the unit circle with coordinate ring

k[C] = k[x, y] = k[X, Y]/(X2 + Y2 − 1)

where X 7→ x and Y 7→ y and consider the function ϕ ∈ k(C) represented by

f1

g1
=

1− x
y
∈ k(x, y)

on the open set U1 defined by y 6= 0. It would seem that this function fails to be
regular when y = 0 but we can find a second representative

1− x
y
· 1 + x

1 + x
=

1− x2

y(1 + x)
∼ y2

y(1 + x)
=

y
1 + x

=
f2

g2

valid on the open set U2, defined by 1 + x 6= 0. Here ∼ means “apply the
identities valid in k[C].” The set of regular points of this function is U1 ∪U2 ∩C,
or x 6= −1.

If we parametrize this circle by angle, figure 2.5.3 on the next page shows
that this function does blow up at the one point represented by θ = π or x =
−1.
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FIGURE 2.5.3. A rational function on a unit circle

Since the coordinate ring determines all geometric properties of an affine
variety, one might ask what its field of fractions determines. The following is a
partial answer:

LEMMA 2.5.20. Let V be an irreducible affine variety with open affine, U. Then
(1) the coordinate ring, k[U], is an integral domain.
(2) the homomorphism of coordinate rings

k[V]→ k[U]

induced by the inclusion U → V is injective.
(3) the induced map of rational function fields

k(V)→ k(U)

is an isomorphism.

PROOF. Since the D(h) form a basis for the Zariski topology of V, we will
have D(h) ⊂ U for some h. The coordinate ring of D(h) is k[V]h — see propo-
sition 2.4.5 on page 63. This is an integral domain since k[V] is, and we get a
sequence of maps

(2.5.3) k[V]→ k[U]→ k[D(h)] = k[V]h

We claim these are all inclusions. Suppose f ∈ k[V] maps to 0 in k[U] or k[D(h)].
Then f |U = 0 or f |D(h) = 0. This is impossible since the set of points where f
is nonzero is open (it is D( f )) and all open sets in V have nonempty intersection
— see proposition 2.4.17 on page 67.

We conclude that k[U] is an integral domain, since it is a subring of the
integral domain, k[V]h. The sequence of inclusions in equation 2.5.3 induces
inclusions of rational function fields

k(V)→ k(U)→ k(D(h))

and the conclusion follows from the fact that the field of fractions of k[V]h must
be the same as that of k[V] so k(D(h)) = k(V). �
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It is encouraging that a rational function that is regular everywhere is actu-
ally regular:

PROPOSITION 2.5.21. Suppose V is an irreducible affine variety and suppose
ϕ ∈ k(V) is regular everywhere on V. Then ϕ is in the image of k[V] under the
standard inclusion

k[V] ↪→ k(V)

PROOF. Embed V in An, making it an irreducible algebraic set (see
lemma 2.5.6 on page 73). Suppose we have a representation of ϕ as in
proposition 2.5.18 on page 81. Then, since ϕ is regular everywhere on V we
must have

I(V) +
k

∑
i=1

(gi)

has no common zero in An. Hilbert’s Nullstellensatz implies that

I(V) +
k

∑
i=1

(gi) = (1)

or there exist ui ∈ k[An] such that

1 = J +
k

∑
i=1

uigi

with J ∈ I(V). Reducing modulo I(V) gives

1 =
k

∑
i=1

ūi ḡi

where ūi ¯, gi ∈ k[V] denote images in k[V]. If we multiply both sides of this
equation by

ϕ =
f̄1

ḡ1
= · · · = f̄k

ḡk
(multiply the first term of the sum by the first representation of ϕ, and the
second by the second, and so on) we get

ϕ =
k

∑
i=1

ūi f̄i ∈ k[V]

�

We can also define a more general class of maps:

DEFINITION 2.5.22. If V ⊂ An is an irreducible algebraic set, a rational map
f : V → Am is one of the form

f =

 ϕ1
...

ϕm


with ϕ1, . . . , ϕm ∈ k(V). The set of points where all of the ϕi are regular is called
the regular set of the map, denoted R( f ). This is an open set that contains an
affine open set.

If W ∈ Am and f (V) ⊂W then f is called a rational map from V to W.
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REMARK. The set of regular points contains the open set that is the inter-
section of the open sets U(ϕi) defined in proposition 2.5.18 on page 81, so it is
an affine algebraic set.

EXAMPLE 2.5.23. For instance, let H be the hyperbola xy = 1 in A2. Then
the map

f : A1 → H
x 7→ (x, 1/x)

is rational where R( f ) = {x ∈ A1|x 6= 0}.
We also can classify algebraic sets in a coarser manner than isomorphism:

DEFINITION 2.5.24. Irreducible algebraic sets V and W are birationally equiv-
alent if there exist rational maps

f : V → W
g: W → V

such that f ◦ g|R = 1: W → W and g ◦ f |R′ = 1: V → V where R is the set of
points where f ◦ g is regular and R′ is the set of points where g ◦ f is regular.

EXAMPLE. Returning to example 2.5.23, we see that the hyperbola, H is
birationally equivalent to A1 — the inverse mapping is just the projection
(x, y) 7→ x. The two algebraic sets are not isomorphic, however, since their
coordinate rings are not isomorphic:

The coordinate ring of A1 is k[X] and that of H is k[T, T−1] — see ex-
ample 2.4.2 on page 62. The only units in k[X] are elements of k itself (de-
grees of polynomials add when you multiply them). Any homomorphism
f : k[T, T−1] → k[X] would, therefore, have to map T to an element of k forc-
ing f (k[T, T−1]) ⊂ k ⊂ k[X].

It follows that birational equivalence as a system of classifying algebraic
sets is strictly weaker than isomorphism.

PROPOSITION 2.5.25. Let f : V → W be a rational map of irreducible varieties
whose image is dense in W. Then f induces a homomorphism of fields over k

(2.5.4) f ∗: k(W)→ k(V)

Conversely, any such homomorphism is induced by a rational map whose image is
dense.

REMARK. See figure 2.1.2 on page 38 and the discussion surrounding it for
the significance of the image of a map being dense.

PROOF. By lemma 2.4.15 on page 67, the restriction of this to an open affine,
D(g) ⊂ V, where f is regular induces an injection

k[W]
( f |D(g))∗−−−−−→ k[D(g)] ⊂ k(V)

(see proposition 2.4.5 on page 63). This induces a homomorphism of fields of
fractions

k(W)→ k(V)
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Conversely, if
g: k(W) ↪→ k(V)

is a homomorphism of fields (and homomorphisms of fields are always injec-
tive), consider the composite

ḡ: k[W] ↪→ k(W) ↪→ k(V)

Let x1, . . . , xn be generators of k[W] as an algebra over k, and let their images be{
p1

q1
, . . . ,

pn

qn

}
∈ k(V)

with pi, qi ∈ k[V] for i = 1, . . . , n. It is not hard to see that{
p1

q1
, . . . ,

pn

qn

}
∈ k[U] ⊂ k(V)

(see proposition 2.4.5 on page 63) where

U =
n⋂

i=1

D(qi)

so we get an injective map
k[W] ↪→ k[U]

induced by a regular map
U →W

whose image is dense (since the map of coordinate rings was injective — see
lemma 2.4.15 on page 67). �

COROLLARY 2.5.26. Two irreducible affine varieties are birationally equivalent if
and only if their fields of rational functions are isomorphic.

The following result clarifies the relationship between isomorphism and
birational equivalence:

THEOREM 2.5.27. Two irreducible affine varieties, V and W are birationally
equivalent if and only if there exist open affine subsets A ⊂ V and B ⊂ W that
are isomorphic.

REMARK. This theorem is frequently stated using the wording “open sets
that are isomorphic”. Unfortunately, the term “isomorphic” is meaningless un-
less the open sets have some sort of structure. And exercise 6 on page 90 shows
that there are open sets that have no affine structure.

It won’t be possible to define isomorphisms of arbitrary open sets until we
define general (i.e., non-affine) algebraic varieties in section 4.6 on page 201. It
turns out that an arbitrary open set in an algebraic set (or even an algebraic
variety) is a general algebraic variety (see corollary 4.6.9 on page 203).

PROOF. Clearly, if these open affines exist and are isomorphic, then

k(A) ∼= k(V) ∼= k(W) ∼= k(B)

by lemma 2.5.20 on page 82.
Conversely, suppose f : k(V) → k(W) is an isomorphism with inverse

g: k(W)→ k(V).
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Suppose
k[V] = k[x1, . . . , xt]

where the xi ∈ k[V] generate it as a ring.
If

f (xi) =
ai
bi
∈ k(W)

then f (k[V]) ⊆ k[W]h where h = b1 · · · bk ∈ k[W]. If

k[W]h = k[y1, . . . , ys]

where the yi ∈ k[W]h are its generators, suppose

g(yi) =
ci
di
∈ k(V)

Then g(k[W]h) ⊂ k[V]`, where ` = d1 · · · ds ∈ k[V].
We claim that f (k[V]`) ⊂ k[W]h, since f is an inverse to g so g(`−1) ∈

k[W]h. Applying g to this inclusion gives

g ◦ f (k[V]`) = k[V]` ⊂ g(k[W]h)

— i.e., the reverse inclusion. We conclude that

g(k[W]h) = k[V]`

and f and g are inverse isomorphisms between k[V]` and k[W]h. So the prin-
cipal open sets D(`) ⊂ V and D(h) ⊂ W are isomorphic and the conclusion
follows. �

Here’s an application of birational equivalence:

DEFINITION 2.5.28. An affine variety will be called rational if it is bira-
tionally equivalent to an affine space.

One application of rationality is in computing certain indefinite integrals:

EXAMPLE 2.5.29. Suppose

f (x, y) = 0

defines y implicitly as a function of x and we want to compute an integral∫
g(x, y(x)) dx

where g(x, y) is a rational function.

Rationality of the curve f (x, y) = 0 implies that we can find a rational
parametrization

x(t) = ϕ1(t)
y(t) = ϕ2(t)

converting the integral into∫
g(ϕ1(t), ϕ2(t)) · ϕ′1(t) dt
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which can be computed using elementary functions. This process is called Eu-
ler Substitution. For instance, suppose we want to compute the integral∫ √x2 + x + 1

x + 1
dx

We rewrite this as the integral ∫ y
x + 1

dx

where
y2 = x2 + x + 1

The point (0, 1) is on this curve that this defines, so we set y− 1 = tx or y =
tx + 1 so get

t2x2 + 2tx + 1 = x2 + x + 1
which gives

x =
1− 2t
t2 − 1

(2.5.5)

y = tx + 1

=
−t2 + t− 1

t2 − 1
and our integral becomes

(2.5.6)
∫ −t2 + t− 1

t(t− 2)
· 2(−t2 + t− 1)

(t2 − 1)2 dt =

− 1/2 ln (t− 1)− 3
2(t + 1)

+ 1/2 ln (t + 1)

+ ln (t− 2)− ln (t) +
1

2(t− 1)

If we solve equation 2.5.5 for t we get

t =
−1±

√
x2 + x + 1
x

which we can plug into equation 2.5.6 to get our indefinite integral.

EXAMPLE 2.5.30. Consider the ellipse defined by

(2.5.7) x2 + xy + y2 = 1

We can find a parametrization by taking any rational point of the curve, like
(1, 0) and considering where the line of slope t passing through the curve inter-
sects it. See figure 2.5.4 on the next page

Set

(2.5.8) y = t(x− 1)

and substitute this into equation 2.5.7 to get

x2 + xt (x− 1) + t2 (x− 1)2 = 1
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FIGURE 2.5.4. Parametrization of an ellipse

FIGURE 2.5.5. Rationalization of the two-sphere

which we solve for x to get

x =
t2 − 1

t2 + t + 1
(2.5.9)

y = t(x− 1)

= − t (t + 2)
t2 + t + 1

This is a rational map from A1 to the curve. The inverse comes from how we
defined t in the first place

y = t(x− 1)

t =
y

x− 1

We can also parametrize the 2-sphere:
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EXAMPLE 2.5.31. To find an implicit equation for this, we rationally param-
etrize the unit sphere by setting

s = X/(1− Z)
t = Y/(1− Z)

and plugging into
X2 + Y2 + Z2 = 1

to get
s2(1− Z)2 + t2(1− Z)2 + Z2 = 1

which we can solve for Z to get

Z =
s2 + t2 − 1
s2 + t2 + 1

and

X = 2s/(1 + s2 + t2)

Y = 2t/(1 + s2 + t2)

Geometrically, this is depicted in figure 2.5.5 on the preceding page. It follows
that the 2-sphere, S2, is birationally equivalent to A2! This shows how coarse the
relation of birational equivalence is.

Theorem 2.5.27 on page 85 implies that an affine open set of S2 must be
isomorphic to one of A2. We show that the open set DZ−1(S2) = k[S2 \ (0, 0, 1)]
is isomorphic to the open set P = A2 \ S′, where S′ is the circle of radius i defined
by

1 + s2 + t2 = 0

The coordinate ring of P is

A = k[P] = k[S, T, W]/(W(1 + S2 + T2)− 1)

and that of DZ−1(S2) is

B = k[X, Y, Z, U]/(X2 + Y2 + Z2 − 1, U(1− Z)− 1)

(see definition 2.4.4 on page 63 and proposition 2.4.5 on page 63). The following
maps are easily verified to be isomorphisms:

f : A → B
S 7→ U · X
T 7→ U ·Y

W 7→ (1− Z)/2

and

g: B → A
X 7→ 2S ·W
Y 7→ 2T ·W
Z 7→ (S2 + T2 − 1) ·W
U 7→ (1 + S2 + T2)/2
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By corollary 2.5.26 on page 85, the fraction-fields of

k[X, Y, Z]/(X2 + Y2 + Z2 − 1]

and k[S, T] must be isomorphic.

Another interesting application of rationality is to number theory. Suppose we
want to know all of the rational solutions of the equation in example 2.5.30 on
page 87. Since any rational values for x and y give a rational value for t in
equation 2.5.8 on page 87 and rational values for t give rational values for x
and y, it follows that the rational solutions of equation 2.5.7 on page 87 are
precisely those given by equation 2.5.9 on page 88 with rational values of t.

EXERCISES.

5. If V is an irreducible affine variety and f ∈ k(V) is a rational function,
show that there exists an open set U ⊂ V where f is regular — i.e., f ∈ k[U].

6. Show that U = A2 \ {(0, 0)} = D(X) ∪ D(Y) ⊂ A2 is an open set that
is not affine.

7. Determine the rationality of :
a. The curve Y2 = X3.
b. The circle X2 + Y2 = 1
c. The curve Y2 = X3 + X2

8. At which points of the affine variety Y2 = X2 + X3 is the rational func-
tion Y

X defined?

9. Compute all rational solutions to the equation

x2 + y2 + z2 = 1

10. Why can’t we use the rationalization in example 2.5.30 on page 87 to
find solutions of

x2 + xy + y2 = 1
in the field F5?

11. If k is a field of characteristic 0, show that the polynomial XY + X2U +
Y2V ∈ k[X, Y, U, V] is irreducible.

12. Here is an example of an open affine that is not principal. The
author is indebted to Hailong Dao on the online discussion group,
http://mathoverflow.net for it.

Let V be the algebraic set with coordinate ring

R = k[x, y, u, v] = k[X, Y, U, V]/(XY + X2U + Y2V)

where the lowercase letters are the images of the corresponding uppercase in-
determinates and we know that the denominator is irreducible by exercise 11.
Suppose the field of fractions of R is F and consider the open set

D = D(x) ∪ D(y)
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By the same reasoning in the solution of exercise 6, we conclude that — if D is
affine

k[D] = Rx ∩ Ry

In exercise 6, we got k[D] = R, which led to a contradiction. In the present
case, set

f = −u
y

=
x + yv

x2

(by the identities that hold in R). This is clearly contained in Rx ∩ Ry \ R. Now
we also define

g = − v
x

=
y + xu

y2

which is also contained in Rx ∩ Ry \ R. An easy computation shows

x · f + y · g = 1 ∈ F

Why does this imply that D(x) ∪ D(y) is affine?

2.6. Applications to optimization theory

This is a brief sketch of material from the paper [33], which applies alge-
braic geometry to problems that arise from linear programming.

Recall that linear programming minimizes or maximizes a linear function
(called the objective function) over a polygonal region (called the feasible region)
defined by a finite number of inequalities. Basic calculus tells us that the ex-
trema will lie on the vertices of this feasible region. The traditional Simplex
Method involves “crawling” around the boundary of the polygon searching
for this extremum. While the simplex method is fairly efficient in general, it
has the flaw that the number of vertices to be checked is an exponential function
of the dimension of the polygon (for instance an n-cube has 2n vertices).

John von Neumann suggested the so called interior point method which was
perfected by Narendra Karmarkar(see [84]) in 1984. The idea here is that we
modify the objective function by making it nonlinear so that ordinary calculus
techniques work.

Suppose we have put our linear programming problem into normal form:
Maximize

(2.6.1) f (x) = cTx

subject to the conditions that

x ≥ 0
Ax = b(2.6.2)
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where

x =

 x1
...

xn

, c =

 c1
...

cn

, b =

 b1
...

bm


and A is an m × n matrix. In this problem, the feasible region is the set of
solutions to equation 2.6.2 on the preceding page and its boundary consists of
points where at least one of the xi = 0.

In interior point methods, we replace the linear objective function in equa-
tion 2.6.1 on the previous page by

(2.6.3) fλ(x) = ctx + λ ·
n

∑
i=1

ln(xi)

where λ > 0 is a real parameter. Note that this coincides with equation 2.6.1
on the preceding page when λ = 0. Over R, fλ(x) is strictly concave4 so it
has a unique maximum, x∗(λ), inside the feasible region. As we vary λ, x∗(λ)
traces out a curve in the feasible region, called the primal central path. Since
fλ(x)→ −∞ as x approaches the boundary of the feasible region, we constrain
the xi to be nonzero by setting

xi · si = λ

for i = 1, . . . n — recall how we forced a variable to be nonzero in example 2.4.6
on page 64. The variables si have a meaning in linear programming (they are
called slack variables) but we will not be concerned with them here.

Intuition suggests that x∗λ approaches a solution to the original linear pro-
gramming problem as λ → 0, and this is indeed the case — see [162]. To com-
pute x∗λ, we form the partial derivatives of fλ(x) in equation 2.6.3 with respect
to the xi and set them to 0 — as with conventional optimization.

DEFINITION 2.6.1. If we define the central sheet of the optimization problem,
L −1

A,c , to be the Zariski closure of{
1
u1

, . . . ,
1

un
∈ Cn|u1, . . . un ∈ Span(Ai, ∗, c) and 6= 0

}
Given this, Sturmfels et al, show that the Zariski closure of {x∗λ, λ ≥ 0} is

the intersection of L −1
A,c with the affine subspace defined by Ax = b and they

compute its defining ideal (using a Gröbner basis provided by [134]). The goal
of these computations is to estimate the total curvature of {x∗λ, λ ≥ 0}, giving
an estimate of the running time of the optimization problem. This involves
using Bézout’s Theorem, and the theory of divisors (presented in section 5.9 on
page 277). See [33] for more details.

2.7. Products

There are many ways we could define products of affine varieties. Sim-
ply taking the topological product of the underlying spaces is probably not the
correct one. For instance, using this definition of product would imply that

An ×Am 6= An+m

4This means that fλ(t · x1 + (1− t) · x2) > t · fλ(x1 + (1− t) · fλ(x2) for t ∈ (0, 1).
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(recall exercise 1 on page 38) in the Zariski topology. We have already seen the
category-theoretic concept of product — see definition A.5.1 on page 431. If Z
is the category-theoretic product of A and B, we get

hom(W, Z)↔ hom(W, A)× hom(W, B)
is a bijection. Since the underlying set of points of an affine variety, V, is
homVar(A

0, V), we claim that

(points of V ×W) = homVar(A
0, V ×W)

= homVar(A
0, V)× homVar(A

0, W)

= (points of V)× (points of W)

so the underlying set of points is a Cartesian product (although its topology is
different).

2.7.1. Tensor products and affine varieties. If A and B are k-algebras, we
can define the structure of a k-algebra on A⊗k B by defining

(a⊗ b) · (c⊗ d) = (a · c)⊗ (b · d)
PROPOSITION 2.7.1. If A = k[X1, . . . , Xn] and B = k[Y1, . . . , Ym], then there is

an isomorphism of k-algebras

A⊗k B
∼=−→ k[X1, . . . , Xn, Y1, . . . , Ym]

REMARK. So k[An]⊗k k[Am] = k[An+m].

PROOF. As vector-spaces A has a basis {mα(Xi)} of monomials in the Xi
and B has a basis {mβ(Yj} of monomials in the Yj. The set

{mα(Xi)⊗mβ(Yj)}
are a basis for A⊗k B (see exercise 15 on page 464) and this set is in a one-to-
one correspondence with monomials in the Xi and Yj. The isomorphism sends
mα(Xi)⊗mβ(Yj) to mα(Xi) ·mβ(Yj). �

COROLLARY 2.7.2. If A = k[X1, . . . , Xn]/a and B = k[Y1, . . . , Ym]/b, then
there is an isomorphism of k-algebras

A⊗k B
∼=−→ k[X1, . . . , Xn, Y1, . . . , Ym]/(a, b)

If A and B are affine k-algebras, so is A⊗k B.

PROOF. The tensor product of the projections (see proposition A.5.47)

p: k[X1, . . . , Xn] → A(2.7.1)
q: k[Y1, . . . , Ym] → B

gives a surjective homomorphism of rings

k[X1, . . . , Xn, Y1, . . . , Ym]→ A⊗k B

We claim that the kernel is

a · k[Y1, . . . , Ym] + k[X1, . . . , Xn] · b = (a, b)
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Certainly,
a · k[Y1, . . . , Ym] ⊂ ker p⊗ q

since p(a) = 0 so a⊗k k[Y1, . . . , Ym] maps to 0⊗k B = 0. The same reasoning
applies to the second term, so we conclude that

(a, b) ⊂ ker p⊗ q

Temporarily forget the ring structures here and regard all objects as vector
spaces. As vector spaces

k[X1, . . . , Xn] = A⊕ a

k[Y1, . . . , Ym] = B⊕ b

Proposition A.5.48 on page 455 implies, that, as vector spaces

k[X1, . . . , Xn]⊗k k[Y1, . . . , Ym] = A⊗k B
⊕A⊗k b

⊕a⊗k B
⊕a⊗k b

and the kernel of the projection to the subspace A⊗k B consists of

A⊗k b⊕ a⊗k B⊕ a⊗k b ⊂ (a, b)

The only thing needed now is to show that A ⊗k B is an affine k-algebra,
i.e., that it is reduced. Suppose x ∈ A⊗k B is nilpotent. Then

x =
t

∑
j=1

aj ⊗ bj

with the aj in A and the bj in B. We may assume the bj are all linearly indepen-
dent because, if

b1 =
t

∑
i=2

fibi

we could fold that into the tensor product

x =
t

∑
j=2

(aj + f ja1)⊗ bj

For every maximal ideal, m, of A we have a homomorphism

A→ A/m = k

inducing

A⊗k B → k⊗k B = B
aj ⊗ bj 7→ āj · bj

x 7→
t

∑
j=1

āj · bj

where āj ∈ k is the image of aj under the projection A→ A/m = k.
The image of x under this map is nilpotent, hence 0 since B is an affine k-

algebra. Since the {bj} are linearly independent, it follows that all of the āj = 0,
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and this is true for any maximal ideal of A. This implies that the aj are all 0
(they are regular functions that vanish at all points of a variety), so x = 0. �

PROPOSITION 2.7.3. Let A1, A2 be affine k-algebras. Then

A1 ⊗k A2

is a coproduct in the category Ak of affine k-algebras (see definition A.5.4 on page 433).

REMARK. The ring-structure is very important here. Tensor products are
neither products nor coproducts in the category of vector-spaces.

PROOF. Corollary 2.7.2 on page 93 implies that A1 ⊗k A2 is an affine k-
algebra. Recall that coproducts have canonical maps from their factors to them-
selves. We use the ring structure to define these:

A1 → A1 ⊗k A2

r1 7→ r1 ⊗ 1(2.7.2)

and

A2 → A1 ⊗k A2

r2 7→ 1⊗ r2(2.7.3)

Given homomorphisms of affine k-algebras f1: A1 → W and f2: A2 → W,
we can define

F: A1 ⊗k A2 → W
r1 ⊗ r2 7→ f1(r1) · f2(r2)

and this is the unique map that is compatible with f1, f2 and the maps in equa-
tions 2.7.2 and 2.7.3.

Since the coordinate ring and specm ∗ are inverse contravariant functors,
we define �

DEFINITION 2.7.4. If V and W are affine varieties, then

V ×W = specm(k[V]⊗k k[W])

REMARK. This construct will have the proper functorial properties of a
product, as discussed in definition A.5.1 on page 431. And it is reassuring that

An ×Am = An+m

due to proposition 2.7.1 on page 93.

LEMMA 2.7.5. Let V and W be irreducible affine varieties. Then V ×W is also
irreducible.

REMARK. This implies that, if A and B are affine k-algebras that are integral
domains, so is A⊗k B. Note that this algebraic fact is not true for arbitrary rings.
For instance

C⊗R C

is not an integral domain.
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PROOF. We will prove this by contradiction. Suppose V ×W = Z1 ∪ Z2.
For any point x ∈ X, the product x × Y is isomorphic to Y and, therefore,
irreducible.

Since

(2.7.4) x×Y = ((x×Y) ∩ Z1 ∪ ((x×Y) ∩ Z2)

it follows that x × Y ⊂ Z1 or x × Y ⊂ Z2. We claim that the set, Xy, of points
x ∈ X with the property that x× y ⊂ Z1 is closed. This is because it is given by

Xy × y = (X× y) ∩ Z1

which is an intersection of closed sets. Then the set

X1 =
⋂

y∈Y
Xy

is also closed since it is the intersection of closed sets. This set, X1, is the set of
x ∈ X such that

x×Y ⊂ Z1

In like fashion, we can define a closed set X2 and equation and the reasoning
after it implies that X = X1 ∪ X2. The irreducibility of X implies that X = X1
or X = X2 so X×Y = Z1 or Z2.

One type of product that will interest us is the product of a variety by itself
and the diagonal �

DEFINITION 2.7.6. Let V be an affine variety and let V × V be its product
with itself. The diagonal map

∆: V → V ×V

is the unique morphism that makes the diagrams

(2.7.5) V ×V

pi
��

V

∆
<<

V

commute, where pi: V × V → V with i = 1, 2, is projection onto the first and
second factors.

REMARK. This map is unique in the category-theoretic sense, where a map
to a product is determined by its composites with the maps to the factors. To
actually get an idea of what this maps does, it is necessary to compute the
induced map of coordinate rings.

It is a map that makes the diagrams

k[V]⊗k k[V]

∆∗

yy

k[V] k[V]

p∗i

OO

(gotten by reversing the arrows in the previous diagram) commute. Here
p∗i : k[V] → k[V]⊗k k[V] includes k[V] as k[V]⊗ 1 or 1⊗ k[V]. It is not hard to
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see that the only algebra-homomorphism compatible with these is

∆∗: k[V]⊗k k[V] → k[V]

v1 ⊗ v2 7→ v1 · v2

We will sometimes be interested in varieties equipped with extra structure.

DEFINITION 2.7.7. An affine variety, V, is called an algebraic group if it is
equipped with a point p, called the identity element, and regular maps

µ: V ×V → V

ι: V
∼=−→ V

such that:
(1) the diagram

V × {p}
µ

##
V

=
;;

=
##

V

{p} ×V
µ

;;

commutes, implying that {p} ∈ V acts as the identity element.
(2) µ ◦ (µ× 1) = µ ◦ (1× µ): V ×V ×V → V (associativity).
(3) if ∆: V → V ×V is the diagonal map, the diagram

V ×V 1×ι
// V ×V

µ

$$

V

∆
<<

∆
""

p ∈ V

V ×V
ι×1
// V ×V

µ

::

commutes, implying that ι: V → V maps each point to its multiplica-
tive inverse.

REMARK. The group, SL(n, k) ⊂ An2
defined in statement 6 on page 36 and

GL(n, k) ⊂ An2+1 defined in example 2.4.6 on page 64 are both examples of
algebraic groups. Their multiplication-maps are matrix-multiplication, hence
regular maps, and their inversion maps are proved to be regular in exercise 5
on page 70. These are affine algebraic groups.

We will study projective algebraic groups (called abelian varieties) in sec-
tion 6.2 on page 305.
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EXERCISES.

1. If W ⊂ V show that the diagonal map

∆: V → V ×V

induces an isomorphism

∆: W → ∆(W) ⊂ V ×V

2. If V is an algebraic group and a, b ∈ V are two points, show that there
exists an isomorphism of affine varieties

fa,b: V → V

such that fa,b(a) = b.

2.8. Dimension

2.8.1. Introduction. For centuries, concept of dimension has been used to
define the “size” of a geometric object or the number of independent parame-
ters needed to specify its points. In 1890, this simple notion of dimension was
complicated by Peano’s proof of the existence of a continuous surjective function

(2.8.1) f : [0, 1]→ [0, 1]× [0, 1]

The early 20th century saw an effort to give a rigorous topological definition of
dimension. The book [79] gives an excellent treatment of the topological theory
of dimension that developed.

In algebraic geometry, we can fall back on the number of parameters
needed to specify a point since it is hard to imagine a “space filling” curve
that is algebraic. This leads to a concept of dimension that is not always
compatible with the topological one. For instance, it is natural to regard Cn as
an n-dimensional affine variety over C, but its topological dimension is 2n.

If an affine variety is over a discrete field like Q̄, it is topologically zero-
dimensional, whereas we would like to think of An = Q̄n as n-dimensional.
Consequently, the dimension of an irreducible affine variety was generally de-
fined to be the transcendence degree of its rational function-field (see [93]).

Unfortunately, using transcendence degree of the function field over the
ground field has several drawbacks:

• It is undefined for reducible varieties
• It is undefined for rings that are not algebras over fields (which we

will consider in chapter 4).
Consequently, we will want follow a different course in defining dimension.
Consider the sequence of affine spaces

A0 ( A1 ( · · · ( An

each of which is an irreducible variety within the next. The fact that Ai+1 is an
irreducible implies that Ai ⊂ Ai+1 is not simply “smaller” but “thinner” — it
is defined via a smaller set of free parameters.
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We base our definition of dimension on this:

DEFINITION 2.8.1. If V is an affine variety, the dimension of V is defined to
be the largest n that occurs in a sequence

V0 ( V1 ( · · · ( Vn = V

where each term is an irreducible subset of the next.

It is immediately clear that

PROPOSITION 2.8.2. The dimension of an affine variety is the maximum of the
dimensions of its irreducible components.

We prove a few other seemingly-trivial properties of dimension:

PROPOSITION 2.8.3. If V is an irreducible algebraic set and Z is a proper irre-
ducible algebraic subset of V, then dim Z < dim V.

PROOF. Suppose dim V = n and dim Z = m ≥ n. Then Z has a chain of
irreducible subspaces

Z0 ( Z1 ( · · · ( Zm = Z
and this can be extended to

Z0 ( Z1 ( · · · ( Zm = Z ( V

which shows that m + 1 ≤ n. �

DEFINITION 2.8.4. Let W ⊂ V be an inclusion of irreducible affine varieties.
Then the codimension of W in V is defined to be

dim V − dim W

PROPOSITION 2.8.5. If V is a 0-dimensional irreducible affine variety, then V is
a single point.

PROOF. If V is not a point, it contains a point, p, so we have the following
sequence of irreducibles (at least)

p ( V

�

PROPOSITION 2.8.6. If f : V →W is a surjective regular map of irreducible affine
varieties, then dim V ≥ dim W.

REMARK. This shows that a Peano-type curve like that in equation 2.8.1 on
the preceding page is impossible in algebraic geometry.

PROOF. We do induction on dim V. If dim V = 0 then V and, therefore, W
must be a single point by proposition 2.8.5 so the result is true.

Assume the result true whenever the dimension of V is ≤ n− 1, suppose
the dimension of V is n, and dim V = m. Let

W0 ( W1 ( · · · ( Wm = W

be a maximal irreducible sequence in W and let

A = f−1(Wm−1)
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If

A =
k⋃

i=1

Zi

is a decomposition into irreducible components, then

Wm−1 =
k⋃

i=1

f (Zi)

Since Wm−1 is irreducible, it cannot be a union of proper irreducible subsets, so
there exists an α such that

Wm−1 = f (Zα)

The inductive hypothesis implies that

dim Zα ≥ dim Wm−1 = m− 1

and proposition 2.8.3 on the previous page implies that

dim V > dim Zα ≥ m− 1

so dim V ≥ dim W. �

2.8.2. The Krull dimension of a ring. In commutative algebra, we have
another definition of dimension:

DEFINITION 2.8.7. If R is a commutative ring, it is said to have Krull dimen-
sion dim R = d if the maximal length of a chain of distinct prime ideals

pd ) · · · ) p0

is d + 1. We define the Krull dimension of the trivial ring to be −1.
Given a prime ideal p ⊂ R, its height, ht(p) is defined as the maximum d

that occurs in a chain of prime ideals

p = pd ) · · · ) p0

REMARK. A field has Krull dimension 0 and a principal ideal domain or
discrete valuation ring has dimension 1.

Although the possibility of a ring having dimension −1 seems odd, it is
standard in inductive dimension theory for the empty set to have dimension
−1 — see [39] or [79].

Theorem A.1.85 on page 367 could be restated as
“A ring is Artinian if and only if it is noetherian of dimension
0.”

Wolfgang Krull (1899–1971) was a German mathematician who made great con-
tributions to commutative algebra. In 1938, he proposed the definition of di-
mension given above and proved that it coincides with transcendence degree
for polynomial rings over a field (see[96]). He was responsible for many other
notable results that can be applied to algebraic geometry, including the Krull
Principal Ideal Theorem ( 2.8.29 on page 108).

In general, we have

PROPOSITION 2.8.8. If R is a ring and p ⊂ R is a prime ideal, the inequality

ht(p) + dim R/p ≤ dim R
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REMARK. This is usually the best one can say unless R catenary — see def-
inition 2.8.17 on page 105.

PROOF. Lemma A.1.24 on page 336 implies that a sequence of distinct
prime ideals in R/p corresponds to a sequence of distinct prime ideals in R
that contain p. If we splice this together with the maximal sequence

p = pd ) · · · ) p0

we get an increasing sequence of prime ideals in R and the conclusion follows
from definition 2.8.7 on the facing page. �

PROPOSITION 2.8.9. The dimension of an affine variety, V, is equal to the Krull
dimension of its coordinate ring.

PROOF. This follows from proposition 2.4.18 on page 68, proposition 2.4.3
on page 62 and the fact that the correspondence

a↔ V (a)

between radical ideals and subvarieties is order-inverting. Any sequence of
irreducibles

V0 ( V1 ( · · · ( Vn = V
gives rise to a sequence of prime ideals

I(V0) ) I(V1) ) · · · ( I(Vn) = (0)

(in the notation of definition 2.1.4 on page 38) and vice-versa. �

The rest of this section will be devoted to proving that

dim k[X1, . . . , Xn] = n

and some related results.
The sequence of prime ideals

0 ⊂ (X1) ⊂ · · · ⊂ (X1, . . . , Xn)

shows that
dim k[X1, . . . , Xn] ≥ n

The reverse inequality is surprising difficult to prove. We will follow the short-
est and slickest treatment the author has ever seen in [32]. Coquand and Lom-
bardi’s ingenious argument shows that the Krull dimension of an integral do-
main is always bounded from above by the transcendence degree if its field of
fractions. It is also interesting in that it doesn’t require the rings in question to
be noetherian.

DEFINITION 2.8.10. Let R be a commutative ring and let x ∈ R be an ele-
ment. Define the boundary, R{x} of x to be the ring of fractions S−1

{x}R where

S{x} = {z ∈ R|n ∈ Z, n > 0, a ∈ R, z = xn(1 + ax)}
where n runs over all positive integers and a runs over all elements of R.

REMARK. Note that R{x} = 0 if x is invertible or nilpotent because 0 ∈ S{x}
in either of these cases (see proposition A.1.88 on page 368).

This construct has the interesting property that it lowers Krull dimension:
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THEOREM 2.8.11. Let R be a commutative ring and let ` be a nonnegative integer.
The following statements are equivalent:

(1) the Krull dimension of R is ≤ `.
(2) the Krull dimension of R{x} is ≤ `− 1 for all x ∈ R.

PROOF. This follows from:
Claim 1: If m is maximal, then m∩ S{x} 6= ∅.
If x ∈ m, this is immediate. Otherwise x is invertible modulo m so 1 + ax ∈

m for some a ∈ R.
Claim 2: If m ⊂ R is a maximal ideal and p ⊂ m is a prime ideal and x ∈ m \ p,

then S{x} ∩ p = ∅.
Since x /∈ p, the only way xk(1+ xy) ∈ p is for 1+ xy ∈ p ⊂ m. This implies

that 1 + xy ∈ m, and x ∈ m implies that 1 ∈ m, a contradiction.
The first claim shows that forming the boundary lowers Krull dimension

because the maximal ideals in R get killed off in R{x} (see corollary A.1.92 on
page 369). The second shows that forming it with respect to a suitable element
of R only kills the maximal ideals, so the Krull dimension is lowered by precisely
1. �

EXAMPLE 2.8.12. If R is a ring and, for any x ∈ R, we can find n > 0 and
a ∈ R such that

xn(1 + ax) = 0 ∈ S{x}
then R has dimension ≤ 0. In this case R{x} = 0, the trivial ring. Every element
that is not a zero-divisor is a unit.

If R is required to be an integral domain, then 1 + ax = 0 so x has a multi-
plicative inverse and R is a field.

The next example will be useful in characterizing Krull dimension:

EXAMPLE 2.8.13. If S−1R is a localized ring, then S−1R has Krull dimension
≤ 0 if and only if, for any s−1

0 x ∈ S−1R, there exists an n > 0 and an s−1
1 a ∈

S−1R such that

(s−1
0 x)n(1 + (s−1

1 a)(s−1
0 x)) = 0 ∈ S{s−1x}

or, equivalently
xn(s0s1 + ax) = 0 ∈ R

In other words, S−1R has Krull dimension ≤ 0 if and only if, for any x0 ∈ R,
there exists an n > 0 and an a0 ∈ R and an s ∈ S such that

xn
0 (s + a0x0) = 0 ∈ R

If we let s = xm
1 (1 + a1x1) ∈ S{x1}, theorem 2.8.11 implies: The ring, R, has

Krull dimension ≤ 1 if and only if for any x0, x1 ∈ R, there exist a0, a1 ∈ R and
exponents n, m > 0 such that

(2.8.2) xn
0 (xm

1 (1 + a1x1) + a0x0) = 0 ∈ R

THEOREM 2.8.14. Let ` > 0 be some integer and let R be a ring. Then R has
Krull dimension ≤ ` if and only if, for any x0, . . . , x` ∈ R, there exist positive integers
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n0, . . . , n` and elements a0, . . . , a` ∈ R such that

(2.8.3) xn0
0
(
· · · xn`

` (1 + a`x`) + a`−1x`−1) · · ·+ a0x0
)
=

xn0
0 · · · x

n`
` + a`xn0

0 · · · x
n`+1
` + a`−1xn0

0 · · · x
n`−1+1
`−1

+ · · ·+ a0xn0+1
0 = 0

REMARK. The equation on the top line is the result of replacing the unique
term equal to 1 in equation 2.8.2 on the preceding page, by an element of S{x2},
resulting in an equation with a unique term equal to 1, replacing that 1 with an
element of S{x3} and so on.

This and the following theorem may be called an equational characterization
of Krull dimension.

PROOF. The statement about Krull dimension follows by induction, using
theorem 2.8.11 on the facing page — induction that was begun by equation 2.8.2
on the preceding page.

The second statement about the form of the equation follows from the fact
that the leading monomial (with coefficient 1) corresponds to the unique 1 in
the top line of equation 2.8.3. An iteration of the construction multiplies this by
xni

i (1 + aixi) and leaves all other terms alone. �

THEOREM 2.8.15. Let k be a field and let R be an algebra over k. If all sequences
x0, . . . , x` ∈ R are algebraically dependent then R has Krull dimension ≤ `.

REMARK. If we want to drop the requirement that R be an algebra over k,
we must replace the statement by

“If all sequences x0, . . . , x` ∈ R are algebraically dependent via
a relation

Q(x0, . . . , , x`) = ∑ αn0···n`
xn0

0 · · · x
n`
`

whose lowest term (in lexicographic order in the exponents of
the xi) has a coefficient of 1, then R has Krull dimension ≤ `.”

PROOF. we will show that any algebraic dependence relation can be writ-
ten in the form of equation 2.8.3.

By the hypothesis, given any set of elements, x0, . . . , x`, there exists an
algebraic dependence relation, Q(x0, . . . , xk) = 0. Order the monomials,
αn0,...,n`

xn0
0 · · · x

n`
` , of Q lexicographically on the strings (n0, . . . , n`) and pick

the one of lowest degree, say
xm0

0 · · · x
mk
k

and make its coefficient 1 — this is the only place where we use the fact that k is
a field.

Set Q`+1 = Q− xm0
0 · · · x

m`
` and write

Q`+1 = xm0
0 · · · x

m`+1
` · a` + Q`

where Q` consists of all terms, t, of Q`+1 such that xm0
0 · · · x

mk+1
k - t and

a` =
Q`+1 −Q`

xm0
0 · · · x

mk+1
k
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We continue, writing

Qi+1 = xm0
0 · · · x

mi+1
i · ai + Qi

for i = 1, . . . , `, where Qi consists of terms, t, of Qi+1 such that xm0
0 · · · x

mi+1
i - t.

We have

Q = xm0
0 · · · x

m`
` + Q`+1

= xm0
0 · · · x

m`
` + xm0

0 · · · x
m`+1
` · a` + Q`

...
= xm0

0 · · · x
m`
` + xm0

0 · · · x
m`+1
` · a` + · · ·+ a0xm0+1

0

= 0

The conclusion follows from theorem 2.8.14 on page 102. �

At this point, it is reassuring to see that:

COROLLARY 2.8.16. If k be a field and R = k[X1, . . . , Xn] is the ring of polyno-
mials over k, then the Krull dimension of R is n. This implies that the dimension of An

is n.

REMARK. The second shortest proof of this appears in chapter 10 of [37].

PROOF. It is easy to construct a sequence of prime ideals of length n + 1:

0 ( (X1) ( (X1, X2) ( · · · ( (X1, . . . , Xn)

but this only proves that the Krull dimension of R is ≥ n. Theorem 2.8.15 on
the previous page shows that it is exactly n since the transcendence degree of
the field of fractions of R is n (see A.2.52 on page 393). Proposition 2.8.9 on
page 101 implies the conclusion. �

Examples of dimension:
• If V is a linear subspace of An (or the translate of such a subspace) it is

easy to see that k[V] is canonically isomorphic to k[Xi1 , . . . , Xid ] where
the xij are the “free” variables in the system of equations defining V
— so its Krull dimension coincides with the linear-algebra dimension.
• Consider the direct sum R = k[X] ⊕ k[Y1, Y2] consisting of all linear

combinations k1 p(X) + k2q(Y1, Y2) with multiplication defined so that
X · Yi = 0. This is an affine k-algebra but not an integral domain, so
it doesn’t have a field of fractions. We can compute its realization by
mapping

k[T1, T2, T3] → R
T1 7→ X
T2 7→ Y1

T3 7→ Y2

The kernel of this mapping is the ideal (XY1, XY2) so the realization of
R is the union

A1 ∪A2
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where they only share the point (0, 0, 0). The dimensions of the ir-
reducible components are different, so dimension is not necessarily
well-defined for varieties that are not irreducible.

�

In the sequel, we’ll need a refinement of this result. We begin by defining a partic-
ularly well-behaved type of ring:

DEFINITION 2.8.17. Let R be a ring of Krull dimension n. We say that the ring R is
catenary if any increasing sequence of primes

p0 ( p1 ( · · · ( pt ( R

that is maximal in the sense that no prime ideals can be inserted between successive
terms or added to either end must have t = n.

Here’s an example of a ring of a non-catenary ring:

EXAMPLE 2.8.18. It is an algebraic set that is the union of a line and a plane. The
line has coordinate ring k[X, Y, Z]/(X, Y) and the plane has R = k[X, Y, Z]/(Z). Their
union has coordinate ring k[X, Y, Z]/a where

a = (X, Y) ∩ (Z) = (XZ, YZ)

where the intersection can be computed via proposition 2.3.14 on page 53.
Note that (0) is not a prime ideal in R because it has zero-divisors. Note that (X)

and (Y) also fail to be prime ideals: they contain 0 and XZ = 0 = YZ in the quotient.
The only way to guarantee that

u · v ∈ f =⇒ u ∈ f or v ∈ f

is to include both X and Y or Z in f.
We get two ascending chains of prime ideals of different lengths:

(1) (X, Y) ( (X, Y, Z− 1) and
(2) (Z) ( (Y− 1, Z) ( (X− 1, Y− 1, Z)

Our coordinate rings of affine spaces have this property:

THEOREM 2.8.19. If k is an infinite field and n is a positive integer, then k[X1, . . . , Xn] is
catenary.

REMARK. In other words, all maximal sequences of prime ideals have exactly length
n, not only the longest such sequence.

PROOF. We will prove this by induction on n. If n = 1, proposition A.2.4 on
page 371 implies that k[X1] is a principal ideal domain, so the conclusion is clear.

If n > 1, theorem A.3.7 on page 397 and a simple induction imply that k[X1, . . . , Xn]
is a unique factorization domain. We claim that the minimal prime p1 = ( f ) for some
irreducible polynomial f . If

p1 = ( f1, . . . , fs)

the fi must be irreducible and each ( fi) ( p1.
If f is of degree d, apply the argument of lemma 2.2.1 on page 39 to change coor-

dinates so that the coefficient of Xd
n is a nonzero constant — which we can take as 1. It

follows that

(2.8.4) k[X1, . . . , Xn−1]→
k[X1, . . . , Xn]

( f )
is an integral extension of rings (see definition A.4.1 on page 403 and corollary A.4.6 on
page 405). Giver our ascending sequence of prime ideals

0 ( ( f ) = p1 ( · · · ( pt ( k[X1, . . . , Xn]



106 2. AFFINE VARIETIES

we factor out by ( f ) to get a sequence

0 ( p2
( f )

( · · · ( pt
( f )

( k[X1, . . . , Xn]

( f )

This preserves maximal sequences of prime ideals, by lemma A.1.24 on page 336. Our
sequence of length t + 1 becomes one of length t. Now we intersect it with

k[X1, . . . , Xn−1] ⊂
k[X1, . . . , Xn]

( f )

The sequence

· · · ⊂ pi
( f )
∩ k[X1, . . . , Xn−1] ⊂

pi+1
( f )
∩ k[X1, . . . , Xn−1] ⊂ · · ·

consists of prime ideals. Since the extension in equation 2.8.4 on the previous page is
integral, proposition A.4.8 on page 406 implies that

(2.8.5) · · · ( pi
( f )
∩ k[X1, . . . , Xn−1] (

pi+1
( f )
∩ k[X1, . . . , Xn−1] ( · · ·

for all i (i.e., that successive terms are distinct). The induction hypothesis implies that
the sequence in equation 2.8.5 is of length t = n and the conclusion follows. �

It turns out that certain quotients of these rings also have these nice properties:

COROLLARY 2.8.20. Let p ⊂ R be a prime ideal in a ring that is catenary. Then the
quotient, R/p, is also catenary.

If k is an infinite field and R is a finitely generated k-algebra that is an integral domain, then
R is catenary.

PROOF. The first statement follows immediately from lemma A.1.24 on page 336.
The second follows from the fact that

R =
k[X1, . . . , Xt]

p

for some prime ideal p ⊂ k[X1, . . . , Xt]. �

Compare this to proposition 2.8.8 on page 100

COROLLARY 2.8.21. If R is a catenary ring and p ⊂ R is a prime ideal

ht(p) + dim R/p = dim R

PROOF. We follow the same reasoning as in proposition 2.8.8 on page 100, except
that the maximal chain of ideals must have a length exactly equal to dim R. �

EXERCISES.

1. If R is a ring and S ⊂ R is a multiplicative set, show that

dim S−1R ≤ dim R

2. If R is a ring, show that

dim R = max
m

dim Rm

where m ⊂ R runs over all of the maximal ideals.
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2.8.3. Dimension and transcendence degree. The fact that the ring
k[X1, . . . , Xn] has Krull dimension n suggests a possible connection between
Krull dimension and the transcendence degree of the field of fractions. This,
indeed, turns out to be the case.

THEOREM 2.8.22. Suppose V is an irreducible affine variety such that k(V) has
transcendence degree n. Then the dimension of V is also n.

PROOF. The Noether normalization theorem ( 2.2.2 on page 39) implies that
there exists a finite map

f : V → An

which implies that dim V ≥ n (see proposition 2.8.6 on page 99). At this point
theorem 2.8.15 on page 103 implies that dim V ≤ n and the conclusion follows.

�

This immediately implies:

COROLLARY 2.8.23. If f : X → Y is a finite map or birational equivalence of
irreducible affine varieties, then dim X = dim Y.

PROOF. If f is a finite map, then k[X] is a finitely-generated module over
k[Y], and this implies that k(X) is a finite extension of k(Y), i.e. an algebraic ex-
tension (see proposition A.2.12 on page 374), so the fields have the same tran-
scendence degree. �

We have a partial converse:

PROPOSITION 2.8.24. Let f : X → Y be a morphism of irreducible affine varieties
such that f (X) ⊂ Y is dense. If dim X = dim Y, then

f ∗: k(Y) ↪→ k(X)

and k(X) is a finite extension of k(Y).

PROOF. Lemma 2.4.15 on page 67 implies that k[Y] → k[X] is injective so
we get an injection k(Y)→ k(X). The conclusion follows from the fact that k(X)
and k(Y) both have the same transcendence degree, so k(X) is an algebraic
extension of k(Y). We claim that this must be finite. Let x1, . . . xn ∈ k[X] be
generators of k[X] as an algebra over k. Then each of the xi is algebraic over
k[Y] within a finite extension of k[Y] so the set of all must be contained in a
finite extension. �

COROLLARY 2.8.25. Let Vand W be irreducible affine varieties of dimension n
and m, respectively. Then

dim V ×W = n + m

REMARK. We know that V ×W is irreducible by lemma 2.7.5 on page 95.

PROOF. The finite maps

f : V → An

g: W → Am

induce a surjective map

f × g: V ×W → An ×Am = An+m
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We claim that this is a finite map. This follows from the induced maps of coor-
dinate rings:

f ∗: k[An] → k[V]

g∗: k[Am] → k[W]

where k[V] is a finitely generated module over f ∗(k[An]) — say with generators
{e1, . . . , er} and k[W] is a finitely generated module over g∗(k[Am]) — with
generators { f1, . . . , ft}. We claim that

{ei ⊗ f j}
generate k[V]⊗k k[W] over k[An]⊗k k[Am] = k[An+m]. This follows from the
same reasoning as that used in exercise 15 on page 464 except that we cannot
make any claims of linear independence of the {ei⊗ f j}. The conclusion follows
from corollary 2.8.23 on the preceding page. �

We can use dimension to define the important concept of the degree of a
map:

DEFINITION 2.8.26. Under the hypotheses of proposition 2.8.24 on the pre-
vious page, above, the degree of the extension

f ∗: k(Y) ↪→ k(X)

is called the degree of the map, f .

REMARK. Finite maps satisfy all of the conditions listed above, so they have
degrees.

Here’s an example of degree of a map:

EXAMPLE 2.8.27. Consider the projection of a parabola y = x2 onto the y-
axis. Its image over C is the entire y-axis and the extension of fields is given
by

C(X2)→ C(X)

which is an extension of degree 2 (see exercise 2 on page 379). It follows that
this projection is of degree 2.

Note that the inverse image of most points in this example (i.e., points other
than the origin) consists of two points.

Now we consider affine varieties generated by single elements:

DEFINITION 2.8.28. The zero-set of a nonconstant polynomial f (x1, . . . , xn)
is called a hypersurface in An.

Now we will analyze the zero-set of an element, f ∈ k[V] of the coordinate
ring of an affine variety, V. The irreducible components of this set will be the
minimal primes that contain f . Intuition tells us that the components of the
set f = 0 will be one dimension lower than that of V. Krull’s Principal Ideal
Theorem (originally published in [91]) confirms this:

THEOREM 2.8.29 (Krull’s Principal Ideal Theorem). If R is a noetherian ring,
x ∈ R is a nonzero element that is not a unit, and p is a minimal prime such that
(x) ⊂ p,
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FIGURE 2.8.1. Minimal prime ideal containing (x)

(1) ht(p) = 0 if and only if x is a zero-divisor
(2) if x is not a zero-divisor ht(p) = 1,

REMARK. Exercise 29 on page 348 shows that prime ideals that are minimal
consist of zero-divisors — or are the ideal (0). This theorem considers what
happens when a prime ideal contains a non-zero divisor.

In [83], Kaplansky called this “probably the most important single theorem
in the theory of Noetherian rings.” Although it makes intuitive sense5, it is
surprisingly hard to prove.

PROOF. The proof is divided into two cases:
Statement 1: Suppose x is a zero divisor.

If x is nilpotent, then theorem A.1.46 on page 344 implies that

x ∈ N(R) =
⋂

all prime ideals

pi =
⋂

minimal prime ideals

pj

so a minimal prime ideal containing x is a minimal prime ideal (i.e.,
not simply a minimal prime containing x) — therefore of height zero.
Without loss of generality, we can form the quotient by the nilradical
— lemma A.1.24 on page 336 implies that this preserves the structure
of prime ideals. We assume that R is reduced.

If x is a (non-nilpotent) zero-divisor, then x · y = 0 for some y ∈ R
with y 6= 0. The nilradical of R is 0 (since R is reduced) and

0 =
⋂

all prime ideals

pi =
⋂

minimal prime ideals

pj

Since y 6= 0, there must exist a minimal prime p̄ with y /∈ p̄. Then
x · y = 0 ∈ p̄ implies that x ∈ p̄ so that p̄ has height 0.

Conversely, if ht(p) = 0, so that x is contained in a minimal prime
ideal, exercise 29 on page 348 shows that x is a zero-divisor.

Statement 2: Assume that x is not a zero-divisor and ht(p) > 0.
If p ⊂ R is a prime ideal, define p(n), the nth symbolic power of p to

be R ∩ (p · Rp)n or {x ∈ R|x · y ∈ pn, y /∈ p}.

5If p is a minimal prime containing x, it is hard to imagine it containing a smaller prime (other
than (0)).
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Suppose q ( p is another prime ideal with x /∈ q (if x ∈ q, it would
contradict the minimality of p). We will show that the ring Rq has
dimension 0 so ht(q) = 0 and ht(p) ≤ 1 — see figure 2.8.1 on page 109.
Without loss of generality, we may assume that p is maximal: if not,
simply form the localization Rp; this process will preserve all of the
ideals contained in p (see corollary A.1.92 on page 369).

Since p ⊂ R is maximal and the minimal prime ideal that con-
tains (x), we conclude that R/(x) is Artinian (see theorem A.1.85 on
page 367). It follows that the sequence

q(1) + (x) ⊃ q(2) + (x) ⊃ · · ·
becomes constant from some finite point on, i.e. q(n+1) + (x) = q(n) +

(x) or q(n) ⊂ q(n+1) + (x). If y ∈ q(n), then there exist a ∈ R and
q ∈ q(n+1) such that

(2.8.6) y = ax + q

Since q(n+1) ⊂ q(n), we have q ∈ q(n) and it follows that ax ∈ q(n).
Since x /∈ q, ax ∈ q(n) implies that a ∈ q(n). Equation 2.8.6 implies

that

(2.8.7) q(n) = (x) · q(n) + q(n+1)

At this point, Nakayama’s Lemma ( A.1.78 on page 362) applied to

q(n)

q(n+1)

(which is unchanged when multiplied by (x)) implies that

(2.8.8) q(n) = q(n+1)

which implies that (q · Rq)n+1 = (q · Rq)n. A second application
of Nakayama’s Lemma then implies that (q · Rq)n = 0. Since the
nilpotent elements are the intersection of all prime ideals (see theo-
rem A.1.46 on page 344), it follows that q · Rq does not properly con-
tain any other prime ideals. Since q · Rq is maximal, it follows that
dim Rq = 0, and ht(q) = 0 in R.

�

Krull’s Principal Ideal theorem immediately implies that

COROLLARY 2.8.30. Let V be an n-dimensional irreducible affine variety and let
f 6= 0 ∈ k[V] be a regular function that has a 0 on V. Then the zero-set

W = {x ∈ V| f (x) = 0}
is composed of irreducible components of dimension n− 1.

PROOF. Since V is irreducible its coordinate ring is an integral domain,
hence catenary, by corollary 2.8.20 on page 106. The irreducible components
of W correspond to the minimal primes, {pi} that contain ( f ), and these are of
height 1, by theorem 2.8.29 on page 108. Corollary 2.8.21 on page 106 implies
that the dimension of k[V]/pi is n− 1 for all i. �
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We also get a partial converse:

PROPOSITION 2.8.31. Let V be an irreducible variety such that k[V] is a unique
factorization domain (for example, V = Ad).

If W ⊂ V is a closed variety of dimension dim V − 1, then I(W) = ( f ) for some
f ∈ k[V].

PROOF. If Wi are the irreducible components of W, we have

I(W) =
⋂
I(Wi)

and if I(Wi) = ( fi), then I(W) = (∏ fi). It follows that it suffices to prove
the result for W irreducible. Since W 6= V, there is some polynomial, H, that
vanishes on it. Since it is irreducible, some irreducible factor, f , of H vanishes
on it as well. Let p = I(W). It is a prime ideal and is nonzero since otherwise
dim W = dim V.

It contains the irreducible factor, f , of H and ( f ) is prime (because k[V] is a
unique factorization domain). If ( f ) 6= p then

W = V (p) * V (( f )) * V

so

dim W < dimV (( f )) < dim V
which contradicts the hypothesis. �

We get a straightforward generalization:

PROPOSITION 2.8.32. Let V be an irreducible affine variety and let f1, . . . , ft ∈
k[V] be regular functions and let Wj be the zero-set of f1, . . . , f j. If

Wj ⊂ V

is nonempty, it is of codimension ≤ j.

We also get the corresponding algebraic statement:

THEOREM 2.8.33 (Krull’s Height Theorem). If R is a noetherian ring with el-
ements x1, . . . , xt ∈ R, and p is a minimal prime ideal containing (x1, . . . , xt) then
ht(p) ≤ t.

REMARK. Proposition 2.8.32 already proves this for R an affine k-algebra.

PROOF. We will do induction on t, using theorem 2.8.29 on page 108 as
the ground case. Without loss of generality, we may assume that p is maximal:
localizing with respect to p does not change the inclusion-relations between
ideals contained in p. It follows that

• im p ⊂ R′ = R/(x1, . . . , xt) is the only prime ideal of R′ so
• R′ is Artinian (see theorem A.1.85 on page 367) and im p = N(R′) is

nilpotent (by proposition A.1.84 on page 366).
So p is nilpotent modulo the ideal (x1, . . . , xt) — let q be a maximal prime with
q ⊂ p. We will show that q is minimal over an ideal with t − 1 generators
and the result will follow by induction. The hypothesis that p is minimal over
(x1, . . . , xt) implies that one of the xi /∈ q — say x1. Then p is minimal over
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q + (x1). The same reasoning as that used above to show that p is nilpotent
over (x1, . . . , xt) implies that the xi are nilpotent modulo q+ (x1) so that

xn
i = aix1 + yi

for i = 2, . . . , t with yi ∈ q. The fact that p is nilpotent modulo (x1, y2, . . . , yt)
and theorem 2.8.29 on page 108 implies that the height of the image of p in
R/(y2, . . . , yt) is ≤ 1. The definition of q implies that its height is 0 so q is
minimal over (y2, . . . , yn). This completes the induction. �

This simple generalization of theorem 2.8.29 on page 108 gives us an inter-
esting result involving intersections of varieties:

COROLLARY 2.8.34. Let V, W ⊂ An be irreducible algebraic sets. If V ∩W 6=
∅, then

dim(V ∩W) ≥ dim V + dim W − n

PROOF. This follows immediately from proposition 2.8.32 on the preceding
page and corollary 2.8.25 on page 107 on realizing

V ∩W ∼= (V ×W) ∩ ∆(An)

(see exercise 1 on page 98). The intersection with ∆(An) is equivalent to impos-
ing n equations

fi = Xi −Yi

where the Xi and the Yi are the coordinates in the two factors of An in An ×
An. �

EXAMPLE. Let F(X, Y) and G(X, Y) be nonconstant polynomials with no
common factor. Then V (F(X, Y)) ⊂ A2 has dimension 1 and

V (F(X, Y)) ∩ V ((G(X, Y))

has dimension zero — it is a finite set of points.

EXAMPLE 2.8.35. We can classify the irreducible closed subsets V of A2:
• If V has dimension 2, then it can’t be a proper subset of A2 (since A2

is irreducible and proper subsets must have a lower dimension).
• If V has dimension 1, then V 6= A2 so I(V) contains a nonzero poly-

nomial, hence a nonzero irreducible polynomial f . Then V ⊃ V ( f ) so
it must equal V ( f ).
• Finally, if dim V = 0, V is a point.
• We can list all of the prime ideals of k[X, Y]: They are: (0), ( f ) with f

irreducible, and (X− a, X− b) for {a, b} ∈ A2.

We can also say something about the dimension of fibers of maps:

COROLLARY 2.8.36. If f : V →W is a surjective regular map of irreducible affine
varieties

(1) dim F ≥ dim V−dim W for any component, F, of f−1(p), for any p ∈W,
(2) there exists an open set U ⊂ W such that dim f−1(p) = dim V − dim W

for p ∈ U.

REMARK. Exercise 1 on page 79 gives a degree-1 mapping f : A2 → A2

with dim F can be > 0 at some points.
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PROOF. The induced map

f ∗: k[W]→ k[V]

will be injective. Let g1 be a regular function on W with p in a component, W1,
of its zero-set. Likewise, let g2 be a regular function on W1 with p in a com-
ponent, W2, of its zero-set. In this fashion, we construct a chain of irreducible
subvarieties

W ) W1 ) · · · · ) Wm = p
and p is the only common zero of m regular functions g1, . . . , gm ∈ k[W] ⊂ k[V],
where the definition of dimension (definition 2.8.1 on page 99) implies that m ≤
dim W.

The subvariety f−1(p) is defined by

f ∗(g1) = · · · = f ∗(gm) = 0

Proposition 2.8.32 on page 111 implies that the dimension of this zero-set will
be ≥ dim V −m. The conclusion follows.

To prove the second statement, let k[W] = k[w1, . . . , ws] and
k[V] = k[v1, . . . , vt] so f induces an inclusion f ∗: k[W] → k[V] that induces an
extension k(W) → k(V). Assume, without loss of generality, that v1, . . . , vj is
algebraically independent over k(W), where j = dim V − dim W. If there is an
algebraic relation

Fβ(w1, . . . ws, v1, . . . , vt) = 0

is the set of all algebraic relations between the vi over k(W), we can regard these
as polynomials in the vi coefficients that are polynomials in the wα,. Let Jβ be
the zero-set of these coefficient-polynomials in Fβ. Then U = W \ ⋃β Jβ is an
open set and if p ∈ U, Fβ maps to the nonzero polynomial

F̄β(v1, . . . , vt) = 0

when evaluated at p (or under the map k[V] → k[V]/k[V] · mp, where mp ⊂
k[W] is the maximal ideal corresponding to p). The F̄β will be polynomials with
coefficients in k[W]/mp = k. Since the vi are algebraically dependent on the
v1, . . . , vj it follows that dim f−1(p) ≤ j. The conclusion follows from statement
1. �

The following result shows just how coarse birational equivalence is as an
equivalence relation. Every irreducible affine variety is birationally equivalent
to a hypersurface:

THEOREM 2.8.37. If k is of characteristic zero and V is an n-dimensional irre-
ducible affine variety, then there exists an irreducible hypersurface W ⊂ An+1 and a
birational equivalence

f : V →W

REMARK. In the next section, this result will be used to establish various
properties of the tangent space of a variety.

PROOF. Since V is n-dimensional, theorem A.2.52 on page 393 implies that

k(V) ∼= k(X1, . . . , Xn)[α1, . . . , αt]
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where the αi are algebraic over k(X1, . . . , Xn). The Primitive Element Theorem
( A.2.21 on page 378) implies that there exists a single element β that is algebraic
over k(X1, . . . , Xn) such that

k(V) ∼= k(X1, . . . , Xn)[β]

If we map

k(X1, . . . , Xn)[Xn+1] → k(X1, . . . , Xn)[β]

Xn+1 7→ β

the kernel is ( f ), where f ∈ k(X1, . . . , Xn)[Xn+1] is the minimal polynomial of
β and

k(V) ∼= k(X1, . . . , Xn)[Xn+1]/( f )
Note that f is a polynomial in Xn+1 whose coefficients are rational functions in
X1, . . . , Xn. Let g(X1, . . . , Xn+1) ∈ k[X1, . . . , Xn+1] be the result of clearing out
all of the denominators of the coefficients of f . Then

g(X1, . . . , Xn+1) = 0

defines a hypersurface, W, in An+1 with

k(W) ∼= k(X1, . . . , Xn)[Xn+1]/( f ) ∼= k(V)

so the conclusion follows from corollary 2.5.26 on page 85. �

COROLLARY 2.8.38. Let f : V → W be a rational map of algebraic sets, with V
irreducible. Then the set of points where f is not regular is a subvariety, Z ⊂ V, with
dim Z < dim V. Consequently, the set of points where f is regular is open.

Restricted to the open set, U, of regular points, f is a regular map and induces a
homomorphism

f ∗: k[V]→ k[U]

REMARK. Since open sets are dense, this means that f is regular “almost
everywhere.”

PROOF. If W ⊂ Am, the rational map, f , is given by

f =

 ϕi
...

ϕm

 : V → Am

with ϕi ∈ k(V), and the set of points where it is regular is just
m⋂

i=1

U(ϕi) = U

a nonempty open set, by proposition 2.4.17 on page 67. The complement Z =
V \ U is a closed set, hence (in the Zariski topology) a subvariety. Since V is
irreducible, Z must be of a strictly lower dimension, by proposition 2.8.3 on
page 99.

If we restrict f to U, proposition 2.5.21 on page 83 implies that this restric-
tion is regular and, therefore, induces a homomorphism of coordinate rings.

�
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EXERCISES.

3. Use theorem 2.8.29 on page 108 to prove:

LEMMA 2.8.39. Suppose A is a noetherian domain. Then A is a unique factoriza-
tion domain if and only if every prime of height 1 is principal.

4. If f : V → W is a dominating (see definition 2.4.14 on page 67) regular
map of affine varieties and U ⊂ V is a dense subset, show that f (U) ⊂ W is
dense.

5. Let f : V → W be a degree-d (see definition 2.8.26 on page 108) regular
map of irreducible affine varieties. If U ⊂ V is an open set, show that f (U)
contains a nonempty open set of W. Hint: use the norm-construction for a
finite field-extension (see definition A.2.22 on page 380).

6. If k is of characteristic 0, V ⊂ An with k[V] = k[X1, . . . , Xn]/A and
f : V → W is a surjective regular map of irreducible affine varieties of degree d
show that

k(V) = k(W)[α]

where

α =
n

∑
j=1

β jxj

with β j ∈ k, and xj is the image of Xj in k[W].

7. Under if the hypotheses of exercise 6, show that f factors as

V
ϕ−→ V̄ ⊂W ×A1 π−→ W

where ϕ is a birational equivalence and π: W ×A1 →W is the projection. This
is a relative version of theorem 2.8.37 on page 113.

8. Why do exercise 6 and 7 have the hypothesis that the characteristic of k
is 0?

9. Under the hypotheses of exercises 7 and 6, show that there exists a
nonempty open set W1 ⊂W such that f−1(w) has precisely d points for w ∈W1.





CHAPTER 3

Local properties of affine varieties

“The introduction of the digit 0 or the group concept was general non-
sense too, and mathematics was more or less stagnating for thousands
of years because nobody was around to take such childish steps...”

—Alexander Grothendieck, writing to Ronald Brown.

3.1. Introduction

The local properties of an affine variety are widely used in more general
settings. All algebraic varieties (and schemes, for that matter) are locally affine
and arguments of a local nature really only use the properties of affine varieties.

3.2. The coordinate ring at a point

We define a structure that determines the properties of an algebraic set in
the neighborhood of a point.

DEFINITION 3.2.1. Let V ⊂ An be an irreducible algebraic set with coor-
dinate ring k[V]. If p ∈ V is a point, then p corresponds to a maximal ideal,
mp ⊂ k[V] (see proposition 2.4.3 on page 62) and S = k[V] \mp is a multiplica-
tive set. Define

OV,p = S−1k[V]

to be the coordinate ring of V at the point p.

REMARK. Basically, OV,p ⊂ k(V) is the subring of the rational function
field generated by functions

f (xi)

g(xi)
∈ k(V)

such that g(p) 6= 0, i.e., with g(xi) /∈ mp.
Since we have inverted all elements not in mp, it follows that mp ⊂ k[V] ⊂

OV,p is the only maximal ideal in OV,p (see corollary A.1.92 on page 369) —
making OV,p a local ring (see definition A.1.23 on page 336).

In a manner of speaking, OV,p is the “coordinate ring of the intersection of
all open sets that contain p.” This is made more precise as follows:

PROPOSITION 3.2.2. Let V ⊂ An be an irreducible algebraic set with coordinate
ring k[V]. If p ∈ V, let {D(hi)} be the set of all principal open sets such that p ∈
D(hi). These are ordered by inclusion, and any inclusion

D(h) ⊂ D(j)

induces a restriction map

k[D(j)] = k[V]j → k[D(h)] = k[V]h

117
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and
OV,p = lim−→ k[D(hi)]

PROOF. This follows from corollary A.5.25 on page 444 and the fact that we
have inverted precisely the functions that do not vanish at p. �

It is not hard to see that

PROPOSITION 3.2.3. A regular map of affine varieties, f : V → W, induces a
homomorphism

fp:OW, f (p) → OV,p

for all points, p ∈ V. If f is an isomorphism, then so is fp for all p ∈ V.

What do we know about OV,p, algebraically? Well exercise 2 on page 106
implies that:

PROPOSITION 3.2.4. If V is an irreducible affine variety, then

dim V = max
p∈V

dimOV,p

To investigate other properties of OV,p, we need a partial converse to theo-
rem 2.8.33 on page 111:

COROLLARY 3.2.5. Any prime ideal p in a noetherian ring, R, that is of height t
is minimal over an ideal generated by t elements.

PROOF. We use induction over t: the ground case follows from
theorem 2.8.29 on page 108. If p is of height t, let

p0 ⊂ · · · ⊂ pt−1 ⊂ p

be a chain of prime ideals defining this fact. By induction, pt−1 is minimal over
(x1, . . . , xt−1) and we pick an element xt ∈ p \ pt−1 that is not contained in any
of the finite number of primes minimal over (x1, . . . , xt−1). This is possible by
prime avoidance — see exercises 6 on page 70 and 7 on page 70. �

In one case, we can characterize the dimension of a ring in terms of the
number of elements needed to generate an ideal:

THEOREM 3.2.6. Let R be a noetherian local ring with unique maximal ideal m.
Then the dimension of R is the minimum value of t such that there exist t elements
{x1, . . . , xt} ∈ R with mk ⊂ (x1, . . . , xt) for some value of k.

REMARK. The hypotheses are equivalent to saying that m is minimal over
(x1, . . . , xt):

(1) If m is minimal over (x1, . . . , xt) then the image of m in R/(x1, . . . , xt)
is its only prime ideal so it must be nilpotent (by theorem A.1.46 on
page 344 applied to

√
(0) and exercise 28 on page 348). This means

that mk ⊂ (x1, . . . , xt) for some value of k.
(2) On the other hand, if mk ⊂ (x1, . . . , xt) then the image, p(m), of m in

R/(x1, . . . , xt) is nilpotent, and theorem A.1.46 on page 344 implies
that p(m) must be a minimal prime. This implies that m is minimal
over (x1, . . . , xt).
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PROOF. If m is minimal over (x1, . . . , xt), then its height is ≤ t, by corol-
lary 2.8.33 on page 111. On the other hand, corollary 3.2.5 on the preceding
page implies that if the dimension of R is t, we can find elements x1, . . . , xt such
that m is minimal over (x1, . . . , xt). �

3.3. The tangent space

One nice thing about algebraic geometry is that it enables us to do calculus
in situations where the usual concepts of limits might not be well-defined.

For instance, we can simply define:

∂xn
i

∂xj
=

{
0 if i 6= j
nxn−1

i otherwise

We will use this to develop the important concept of the tangent space to a
variety at a point.

Since this is a local property of a variety, we may assume that our variety
is affine and even embedded in an affine space (i.e., making it into an algebraic
set). Afterward, we will give a “coordinate-free” construction.

DEFINITION 3.3.1. Let f ∈ k[X1, . . . , Xn] be a function defined over An. If
p = (α1, . . . , αn) ∈ An is a point, we define the differential of f at p to be the
linear function

dp f =
n

∑
i=1

(
∂ f
∂Xi

)
p
(Xi − αi)

where
(

∂ f
∂Xi

)
p

means “compute the derivative and then plug in the coordinates

of p” — so
(

∂ f
∂Xi

)
p
∈ k.

REMARK. If we were expanding f in a Taylor series centered at p, this
would be the linear term.

Now we give our first definition of the tangent space — identical to that
used in analytic geometry or vector calculus:

DEFINITION 3.3.2. Let V ⊂ An be an algebraic set with
I(V) = (F1, . . . , Ft) ⊂ k[X1, . . . , Xn] and let p ∈ V be a point. The tangent space
of V at p is the linear subspace, Tp, of An defined by the linear equations

dpF1 = 0
...(3.3.1)

dpFt = 0

These equations simply say that the tangent plane is perpendicular to the gra-
dients of the defining functions.

REMARK. If we think of the functions Fi ∈⊂ k[X1, . . . , Xn] as defining a
map

An → At
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FIGURE 3.3.1. Tangent space

with a Jacobian matrix

(3.3.2) J =

(
∂Fi
∂Xj

)
p

then equations 3.3.1 on the preceding page imply that the tangent space is the
kernel of this Jacobi map and

(3.3.3) dim Tp = t− rankJ

EXAMPLE 3.3.3. For instance, let V ⊂ A2 be defined by Y2 − X3 = 0. At
the point p = (1, 1), the derivatives are(

∂(Y2 − X3)

∂X

)
(1,1)

= −3(
∂(Y2 − X3)

∂Y

)
(1,1)

= 2

so the tangent space, Tp, at p is

−3(X− 1) + 2(Y− 1) = 0

as depicted in figure 3.3.1.

Note that the tangent space is 1-dimensional, as is V. The point (0, 0) ∈ V
is “suspicious looking” — the curve has a “crease” in it. If we compute the
tangent space at this point, we get(

∂(Y2 − X3)

∂X

)
(0,0)

= 0(
∂(Y2 − X3)

∂Y

)
(0,0)

= 0



3.3. THE TANGENT SPACE 121

and the equation for the tangent space is

0 · X + 0 ·Y = 0

so that all points of A2 satisfy it and the dimension of this tangent space is
2. The point (0, 0) is an example of a singular point — defined rigorously in
definition 3.3.11 on page 125.

PROPOSITION 3.3.4. If V ⊂ An is an affine algebraic set with a point p ∈ V,
the differential of a function g ∈ k[V] defines a linear form on the tangent space TV,p.

REMARK. A linear form on TV,p is an element of the dual vector space, T∗V,p.

PROOF. As defined above, the differential is a linear form. The only ques-
tion is whether it is well-defined on the tangent space: a function g ∈ k[V] must
be lifted up to k[X1, . . . , Xn] before it can be differentiated. Suppose G1, G2 ∈
k[X1, . . . , Xn] both map to g under the projection

k[X1, . . . , Xn]→ k[V]

Then G1 − G2 ∈ (F1, . . . , Fr) where V is defined by Fi = 0, i = 1, . . . , r. If

G1 − G2 =
r

∑
i=1

fi · Fi

the product-rule for differentiation gives

dp(G1 − G2) =
r

∑
i=1

dp fi · Fi + fi · dpFi

Since V is defined by Fi = 0, restricting this to V ⊂ An makes the first set of
terms vanish and gives

dp(G1 − G2) =
r

∑
i=1

fi · dpFi

Since the tangent plane is defined by dpFi = 0, we see that dp(G1 − G2) = 0,
there. It follows that all representatives of g in k[X1, . . . , Xn] give rise to the
same linear form on the tangent plane. �

In [171], Zariski developed a “coordinate free” description of the tangent
space in keeping with our coordinate free algebraic sets.

LEMMA 3.3.5. If m ⊂ k[V] is the unique maximal ideal of functions that vanish
at p ∈ V, then differentiation defines a surjective homomorphism

m→ T∗V,p

whose kernel is m2.

PROOF. We essentially prove the statement for An and show that this
makes it true for V.

Embed V in An (see lemma 2.5.6 on page 73) and, without loss of generality,
assume that p = (0, . . . , 0). Let

g: TV,p → An

be the corresponding embedding of TV,p. Let {e1, . . . , er} be a basis for TV,p and
extend it to a basis for all of An: {e1, . . . , en}.
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Also assume V = I(F) for an ideal

F = (F1, . . . , Fm) ⊂ k[X1, . . . , Xn]

in this basis. In addition, let {e1, . . . , en} be a dual basis for (An)∗ with
{e1, . . . , er} a basis of T∗V,p so

ei(ej) =

{
1 if i = j
0 otherwise

Let M = (X1, . . . , Xn) ⊂ k[X1, . . . , Xn], a maximal ideal by the Nullstellen-
satz (see theorem 2.2.3 on page 40). The composite

(3.3.4) k[X1, . . . , Xn]
π−→ k[X1, . . . , Xn]/F = k[V]

defines m in terms of M via

(3.3.5) m = ι ◦ π(M)

— see lemma A.1.29 on page 340 and proposition A.1.91 on page 369.
If

` =
r

∑
i=1

ciei

with ci ∈ k, is any linear functional on Tp, it extends to a linear functional on
An and the function

v(`) =
r

∑
i=1

ciXi ∈M

has the required differential. Its image under the maps in equation 3.3.4 is a
function in m whose differential is precisely `.

If g ∈ m has a differential in Tp that is 0, let g = π(G) where
G ∈ k[X1, . . . , Xn] vanishes at p (i.e., G ∈M) and has a differential on Tp that is
0. Since this differential vanishes on Tp, we have

dpG =
m

∑
j=1

λjdpFj

for some λi ∈ k. Let

Ḡ = G−
m

∑
j=1

λjFj ∈ k[X1, . . . , Xn]

defines the same element g ∈ k[V] and m ⊂ k[V] as G but its differential in An

vanishes at p. This means that its constant and linear terms vanish, so

Ḡ ∈M2

and equation 3.3.5 implies that g ∈ m2. �

Suppose R is a ring with a maximal deal m. Then

R ·m ⊂ m

R ·m2 ⊂ m2

so we may regard m and the quotient

m/m2
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as modules over R (see definition A.1.56 on page 352). Under this module-
structure, multiplying an element of

m/m2

by an element of m ⊂ R gives 0. Consequently, we can regard

m/m2

as a module over the field R/m = F — i.e., a vector space over F.
We have proved that

LEMMA 3.3.6. If R is a ring with maximal ideal m, then

m/m2

is naturally a vector-space over the field R/m.

We are finally ready to give Zariski’s coordinate-free definition of the tan-
gent space:

THEOREM 3.3.7. If V is an affine variety, p ∈ V is a point, and m ⊂ k[V] is the
maximal ideal of functions that vanish at p. Then there exists an isomorphism of vector
spaces over k

(mp/m2
p)
∗ ∼= (m/m2)∗ ∼= TV,p

where mp = m · OV,p.

REMARK. This is sometimes called the Zariski tangent space. We have im-
plicitly used the fact that k[V]/m = k. The isomorphism

(mp/m2
p)
∗ ∼= (m/m2)∗

implies that the tangent space is a local property of V.

PROOF. If m ⊂ k[V] is the maximal ideal of functions that vanish at p,
lemma 3.3.5 on page 121 implies that

(m/m2)∗ ∼= TV,p

To prove the second isomorphism note that there is a natural injection

m ↪→ mp

that induces an injection
m/m2 ↪→ mp/m2

p

We claim that this is an isomorphism of vector spaces. Elements of mp are of the
form

F/G
where F ∈ m and G /∈ m. Since m is maximal, there exists an H ∈ k[V] such that

G · H − 1 ∈ m

Now multiply this by F to get

F · G · H − F ∈ m2

(since F ∈ m). We have proved that (see definition A.1.87 on page 368)
F
G
∼ F · H

1
(mod m2)
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So every element of mp/m2
p is equivalent to one from m/m2. �

This result is extremely useful because it implies:

COROLLARY 3.3.8. Let f : V → W be a regular map of affine varieties and let
p ∈ V. Then f induces a natural homomorphism of tangent spaces

dp f : TV,p → TW, f (p)

If f is an isomorphism, then so is dp f .

PROOF. The map f induces a homomorphism of rings

g: k[W]→ k[V]

If m ⊂ k[V] is the maximal ideal corresponding to the point p, then

g−1(m) = n

is the maximal ideal in k[W] corresponding to f (p) and we get a natural homo-
morphism of vector spaces

n/n2 → m/m2

that induces a natural homomorphism of dual vector-spaces

TV,p = (m/m2)∗ → (n/n2)∗ = TW, f (p)

�

We can use theorem 3.3.7 on the preceding page to get a coordinate free
version of the differential:

LEMMA 3.3.9. Let V be an irreducible affine variety and let p be a point. If
f ∈ k[V] then f − f (p) ∈ m, where m is the maximal ideal of regular functions that
vanish at p and

dp f = im ( f − f (p)) ∈ m/m2

PROOF. The proof is very similar to that of lemma 3.3.5 on page 121: we
lift f to a function F ∈ k[X1, . . . , Xn] and note that the image of F− F(p) in

M/M2

consists of the linear terms of F — i.e., taking the quotient by M2 kills off the
quadratic and higher-degree terms. �

We can say something about the tangent spaces of varieties:

THEOREM 3.3.10. Let V be an n-dimensional irreducible affine variety. Then
there exists an open set UV ⊂ V such that

dim TV,p = n

for all points p ∈ UV .

REMARK. Since open sets in an irreducible variety are “large,” this means
the tangent spaces are n-dimensional “almost everywhere,” and the set
of points where the dimension is 6= n forms a subvariety of strictly lower
dimension.
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PROOF. First, suppose that V ⊂ An+1 is a hypersurface defined by

F(X1, . . . , Xn+1) = 0

for some F ∈ k[X1, . . . , Xn+1].
From definition 3.3.2 on page 119, the tangent space will be n-dimensional

wherever all of the partial derivatives

∂F
∂Xi
6= 0

so the open set

UV = V ∩
n+1⋂
i=1

D
(

∂F
∂Xi

)
has the required properties.

If V is not a hypersurface, there theorem 2.8.37 on page 113 implies the
existence of a birational equivalence

f : V →W

where W ⊂ An+1 is an irreducible hypersurface. Furthermore, theorem 2.5.27
on page 85 shows that there exists an affine open set R ⊂ V mapped isomor-
phically onto an open set in R′ ⊂W, so we define

UV = f−1(UW ∩ R′) ∩ R

and the conclusion follows from theorem 3.3.7 on page 123. �

We can now define simple and singular points of a variety:

DEFINITION 3.3.11. If V is an n-dimensional irreducible affine variety, a
point p ∈ Vis

(1) simple or smooth if the tangent space, TV,p, is n-dimensional
(2) singular otherwise.

If all points of V are simple, V is said to be smooth.

REMARK. We have seen that the set of singular points of an irreducible
variety form a subvariety of strictly lower dimension.

THEOREM 3.3.12 (Jacobi Criterion). Let V ⊂ An be an irreducible affine alge-
braic set with I(V) = (F1, . . . , Ft) ⊂ k[X1, . . . , Xn] and let p ∈ V be a point. Then
the point p is smooth if and only if the Jacobian, J (see equation 3.3.2 on page 120), of
the map  F1

...
Ft

 : An → At

evaluated at p, has rank n− dim V.

REMARK. We can use this to compute the dimension of V — it is n − r,
where r is the maximal rank of J as p runs over all of the points of V. Since the
set of singular points of a variety is “small”, we get a “statistical” algorithm for
computing the dimension of V:
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Plug random points of V into the variables of J and compute
the rank of the resulting matrix. There is a high probability that
this will equal the maximal rank, r.

In many cases, one can carry this out by plugging random points of An into J :
The maximal rank of J is the smallest number r such that R(J , r) = An and
we get a chain of algebraic sets (see example 7 on page 37):

R(J , 0) ⊂ · · · ⊂ R(J , r− 1) ⊂ R(J , r) = An

If V 6⊂ R(J , r− 1), then this r will be the maximal rank of J on V as well.

Jakob Steiner (1796–1863) was a Swiss mathematician who specialized in syn-
thetic geometry (geometry that uses axioms and logical reasoning rather than
analytic methods). Despite his hostility to analytic methods, he is responsible
for several interesting examples of surfaces in algebraic geometry — all attempts
to embed RP2 in R3. Twentieth-century topology has proved that no such em-
bedding is possible — see [112].

EXAMPLE 3.3.13. Steiner’s Cross-cap
Consider the mapping

f : A3 → A3

(X, Y, Z) 7→ (YZ, 2XY, X2 −Y2)

Note that this map sends diametrically opposite points to the same point. It
follows that the image of the unit sphere under this map is the same as that of
RP2. Figure 3.3.2 on the facing page shows that it is not an embedding of RP2

in R3.
Recall the rational parametrization of the two-sphere in example 2.5.31 on

page 88. Plugging it into f gives a parametric representation of Steiner’s cross-
cap

X = 2t(s2 + t2 − 1/(1 + s2 + t2)2

Y = 8st/(1 + s2 + t2)2

Z = 4(s2 − t2)/(1 + s2 + t2)2(3.3.6)

To get an implicit equation, use techniques like those in section 1.3 on
page 10 — eliminate s and t from equations 3.3.6. We can accomplish this by
either performing several resultant calculations or using Gröbner bases: form a
Gröbner basis for the ideal

z = (X(1 + s2 + t2)2 − 2t(s2 + t2 − 1),

Y(1 + s2 + t2)2 − 8st,

Z(1 + s2 + t2)2 − 4(s2 − t2))

with lexicographic ordering, and with s and t ordered higher than X, Y, and Z
(see proposition 2.3.13 on page 52). Only one term in this Gröbner basis does
not contain s or t. We set it to 0 to get our implicit equation:

F(X, Y, Z) = 4 X2
(

X2 + Y2 + Z2 + Z
)
+ Y2

(
Y2 + Z2 − 1

)
= 0
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FIGURE 3.3.2. Steiner’s crosscap

It is two-dimensional by corollary 2.8.30 on page 110. The Jacobian is

J =

 8 X
(
X2 + Y2 + Z2 + Z

)
+ 8 X3

8 X2Y + 2Y
(
Y2 + Z2 − 1

)
+ 2 Y3

4 X2(2 Z + 1) + 2 Y2Z


and smooth points are points where 3− rank(J ) = 2 or rank(J ) = 1. Singu-
lar points are where the rank is less than 1 or 0, i.e. points where all of these
derivatives vanish.

It is not hard to see that F and its derivatives vanish if X = Y = 0 so we get
a singular line. To see what else can happen, find a Gröbner basis for the terms
in J with lexicographic ordering: X � Y � Z. The first term in the basis is

−ZY−YZ2 + YZ3 + YZ4

If Y 6= 0 and Z 6= 0, we can divide by YZ to get

−1− Z + Z2 + Z3 = 0

which only has Z = ±1 as roots. If Z = −1, add Z + 1 to the original list of
terms in J and take another Gröbner basis. We get

(Z + 1, 2 X2 + Y2)

so we get Y = ±X
√
−2 as solutions. When we set Z = +1 and adjoin Z− 1 to

the terms in J and take a Gröbner basis, we get

(Z− 1, Y2, X)

so that the only singularities are
(1) X = Y = 0, Z arbitrary, and
(2) Z = −1, Y = ±X

√
−2.

It is possible to embed real projective space in higher dimensional affine spaces
— see section 5.2.4 on page 225.

The following result (from [55]) is useful in calculating ranks of matrices:



128 3. LOCAL PROPERTIES OF AFFINE VARIETIES

LEMMA 3.3.14. If A is an m× n matrix with A1,1 6= 0 define

di,j = det
[

A1,1 A1,j
Ai,1 Ai,j

]
for all i = 2, . . . m and j = 2, . . . , n. Then

rank(A) = 1 + rank

 d2,2 · · · d2,n
...

. . .
...

dm,2 · · · dm,n


REMARK. This suits our purposes somewhat better than Gaussian Elimi-

nation (the usual way of calculating rank) because it does not require division.

EXAMPLE 3.3.15. Let V ⊂ C4 be the complex variety defined by the equa-
tions

XY + YZ + ZW − 1 = 0
X + Y + Z + W − 2 = 0

with Jacobian

J =


Y 1

X + Z 1
Y + W 1

Z 1


To determine its rank, we can interchange its columns to get

1 Y
1 X + Z
1 Y + W
1 Z


Using lemma 3.3.14, we get

rank(J ) = 1 + rank

 X + Z−Y
W

Z−Y


This means that the rank of J is 2 unless X = W = 0 and Y = Z, when its rank
is 1. This defines a line that intersects V in the single point (0, 1, 1, 0). It follows
that V is two-dimensional and smooth everywhere except for the singular point
(0, 1, 1, 0).

We conclude this section with an important class of smooth varieties:

LEMMA 3.3.16. An algebraic group (see definition 2.7.7 on page 97) is smooth.

PROOF. Suppose that an algebraic group, V, has a singular point, s. Then
there exists an isomorphism

fs,a: V → V

mapping s into any other point, a ∈ V. It follows that all points of V are sin-
gular, by corollary 3.3.8 on page 124, which contradicts the fact that singular
points form a subvariety of lower dimension than V. �
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DEFINITION 3.3.17. Let f : V → W be a regular map of affine varieties and
let p ∈ V be a point. Then f is said to be étale at p if the induced map of tangent
spaces

TV,p → TW, f (p)

is an isomorphism.

REMARK. In differential geometry, étale maps are local isomorphisms, i.e. if
a map is étale at p then there exists a neighborhood p ∈ U that is mapped
isomorphically by f . The idea is that in a closeup of figure 3.3.1 on page 120,
we get a 1-1 mapping between V and its tangent space, as in figure 3.3.3

FIGURE 3.3.3. A neighborhood

This is a useful property of étale maps that unfortunately does not apply in
algebraic geometry. The problems is that open sets (=neighborhoods) are very
large. In this example, every open set that contains the point p includes both
branches of the function Y2 = X3.

This problem is solved by redefining the concept of neighborhood — re-
placing them with so-called étale neighborhoods. This is the basis of a deep
field of mathematics called étale cohomology (see [159] or [110]). Also see ap-
pendix D on page 499.

EXERCISES.

1. Determine the simple and singular points of the algebraic set

Y2 = X3 + X2 ⊂ A2

2. For what values of a ∈ C is the variety V ⊂ A4 defined by

X3 + Y3 + Z3 + W3 = a
X2 + Y2 + Z2 + W2 = 1(3.3.7)

smooth? What is its dimension in these cases?
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3. Steiner’s Roman surface (called this because he was in Rome at the time)
is defined to be the image of the unit sphere under the map

(3.3.8) (X, Y, Z) 7→ (YZ, XZ, XY)

This clearly maps diametrically opposite points to the same point, so the
image of the sphere is a representation of RP2. Find an implicit equation for
this surface and determine its singularities (see example 3.3.13 on page 126).

4. Show that the image of the unit-sphere under a slight modification of
the map in equation 3.3.8

f : R3 → R4

defined by
f (X, Y, Z) = (YZ, XZ, XY, Y2 − Z2)

is an embedded copy of RP2 in R4.

5. If W ⊂ A2 is a smooth variety defined by a single equation f (X, Y) = 0,
show that there exist functions r, s ∈ k[X, Y] such that

r · ∂ f
∂X

+ s · ∂ f
∂Y
≡ 1 (mod ( f (X, Y)))

3.3.1. Local parameters. We can use Zariski’s construction to develop a
“local coordinate system” on a variety:

DEFINITION 3.3.18. Let p ∈ V be a point in an irreducible affine variety
with corresponding maximal ideal m. Elements u1, . . . , ur ∈ m that map to
basis elements of m/m2 are called local parameters of V at p.

REMARK. What we call local parameters here are sometimes called local
uniformizing parameters or uniformizers.

Local parameters determine the local behavior of a variety to the extent that
every regular function can be expanded into a power series in local parameters.

EXAMPLE 3.3.19. Let V ⊂ A2 be defined by X2 + Y2 = 1. Then k[V] =
k[X, Y]/(X2 + Y2 − 1).

Let x and y be the images of X and Y, respectively, under the projection

k[X, Y]→ k[V]

At the point (0, 1) the maximal ideal m = (x, y− 1), and

(y− 1)2 = y2 − 2y + 1

= 1− x2 − 2y + 1
= 2(1− y) + x

so

y− 1 ≡ 1
2

(
x2 − (y− 1)2

)
∈ m2 ⊂ k[V]
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and m/m2 is one-dimensional over k, and x is a local parameter at the point
(0, 1).

A simple application of Nakayama’s lemma shows that

LEMMA 3.3.20. Let p ∈ V and m be as in definition 3.3.18 on the facing page. If
u = {u1, . . . , ur} ∈ m are local parameters, then the set u generates

mp = m · OV,p

as an ideal in OV,p.

REMARK. For instance, in example 3.3.19 on the preceding page, we have

y− 1 = − x2

y + 1

since functions that do not vanish at (0, 1) are invertible in OV,p.
Corollary 3.2.5 on page 118 shows that at least dim R generators are needed

to generate m.
At singular points, more generators are needed but theorem 3.2.6 on

page 118 still applies. For instance, let I = (X3 − Y2) ⊂ k[X, Y], let x and y
be the images of X and Y, respectively, in the quotient, and let V = V (I).
The point (0, 0) ∈ V is singular (see the example 3.3.3 on page 120) and the
maximal ideal m = (x, y) ⊂ R = k[X, Y]/(X3 − Y2) requires two generators,
namely x and y. On the other hand m2 ⊂ (x) and m3 ⊂ (y), since y2 = x3.

PROOF. We know that u generates
m

m2 =
mp

m2
p

Let N ⊂ OV,p be the OV,p-module generated by {u1, . . . , ur}. Then we have

m = N +m ·m
as OV,p-modules. If we form the quotient by N, we get

m

N
= m · m

N
as modules. Nakayama’s Lemma ( A.1.78 on page 362) implies that there exists
an element t ∈ OV,p such that

(3.3.9) t · m
N

= 0

and t ≡ 1 (mod m). Since m is maximal, this means t is invertible and equa-
tion 3.3.9 implies that m/N = 0. �

We can abstract out the property ofOV,p that corresponds to a simple point
of an affine variety:

DEFINITION 3.3.21. Let (R,m) be a d-dimensional local ring with maximal
ideal, m. The ring R is said to be regular if there exist elements x1, . . . , xd ∈ R
such that m = (x1, . . . , xd). A ring, R, is regular if Rm is regular for all maximal
ideals m ⊂ R.

REMARK. This definition was first proposed by Krull in [94].
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Suppose p ∈ V is a simple point of an irreducible affine variety and sup-
pose {u1, . . . , un} is a set of local parameters. Then the subvariety V(ui) is
n − 1-dimensional by 2.8.30 on page 110 and its tangent space is also n − 1-
dimensional (because ui is a basis element of the original n-dimensional tangent
space).

Simple induction using proposition 2.8.32 on page 111 shows that:

LEMMA 3.3.22. If p ∈ V is a simple point of an irreducible affine variety and
{u1, . . . , un} is a set of local parameters at p then

(1) p is a simple point in any of the subvarieties Ui = V(ui) ⊂ V given by
ui = 0

(2) the intersection

U(i1, . . . , it) =
t⋂

j=1

Uij

is of codimension t at p.

REMARK. That proposition shows that the codimension of U(i1, . . . , it) is
≤ t or that the dimension is ≥ dim V − t. But the dimension of the tangent
space is precisely dim V − t because the ui form a basis, and the dimension of a
variety is never greater than that of its tangent space.

Proposition 2.8.33 on page 111 shows that an ideal of height t in an affine
k-algebra is generated by ≥ t elements,

3.3.2. Power series expansions. We can use local parameters to give
power series expansions of local rings at a point. For instance, the local ring of
a simple point embeds within a ring of formal power series and inherits some
of its algebraic properties. This will give interesting geometric and algebraic
information.

To construct series-expansions, we need the concept of completion of a local
ring:

DEFINITION 3.3.23. Let R be a local ring with maximal ideal m. The com-
pletion of R, denoted R̂ is the inverse limit (see definition A.5.26)

R̂ = lim←− R/mn

REMARK. Elements of R̂ are infinite sequences

(a1, a2, . . . )

with an ∈ R/mn such that an ≡ an+1 (mod mn). Since addition and multipli-
cation is done element-wise, R̂ is a ring.

These completions can be huge because there is a 1-1 correspondence (not
a homomorphism!) between elements of R̂ and the set

∞

∏
n=0

mn

mn+1

(where m0 = R). This is because, given a sequence (a1, . . . , ad), there are
|md/md+1| possible choices for ad+1.
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For instance, let R = Z[1/3, 1/5, . . . ] ⊂ Q be the ring of all rational num-
bers whose denominators are odd. There is a unique maximal ideal

2 · R ⊂ R

and the completion

R̂ = Z(2)

the ring of 2-adic integers, which is uncountable since its cardinality is the same
as that of Z

ℵ0
2 .

There is an obvious ring-homomorphism

(3.3.10) g: R→ R̂

that sends an element r ∈ R to

(r mod m, r mod m2, . . . )

LEMMA 3.3.24. Let R be a local ring with maximal ideal m and inclusion into the
completion

g: R→ R̂

If R is noetherian (see definition A.1.47 on page 345) then g is an inclusion.

REMARK. Of course, coordinate rings and their localizations are always
noetherian.

This gives some insight into why R̂ is called the completion of R. Let 0 <
α < 1 be any number and define a bizarre metric on R: if r, s ∈ R and r ≡ s
(mod mn) but r 6≡ s (mod mn+1), define the distance between r and s to be αn.

With this metric (it is an exercise to see that it is a metric) we can define
Cauchy sequences and ask whether they converge to a limit. The answer is that
they do, in R̂ — whose relation to R is like that of R to Q.

PROOF. The kernel of g is

N =
∞⋂

n=1

mn

and, if R is noetherian, lemma A.1.79 on page 363 implies that this vanishes. �

The reader may wonder why we are so preoccupied with the completion
of a local ring (as interesting as that topic might be). The answer is:

THEOREM 3.3.25. Let p ∈ V be a point of an irreducible affine variety and let

{u1, . . . , ur}
be a set of local parameters at p. Then there exists a surjective map

f : k[[U1, . . . , Ur]] → ÔV,p

Ui 7→ ui

(where the Ui are indeterminates) that is an isomorphism whenever p is a simple point.
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REMARK. So, if p is simple, ÔV,p is our ring of power-series and the image
of an element under the inclusion

OV,p → ÔV,p

is its power-series expansion.
If p is singular, r > dim V, which is the transcendence degree of the field

k(V) ⊃ OV,p. It follows that there is an algebraic dependency between the {ui}
in k(V) which (after clearing denominators) leads to one in OV,p and ÔV,p,
giving us a nontrivial “Taylor series” equal to 0!

PROOF. To see that it is surjective, note that the ui generate mp so the set
of all monomials of degree n generates mn

p and the set of all sums of the first n
terms of power series in k[[u1, . . . , ur]] generates

OV,p

mn+1
p

It follows that we get a commutative diagram

k[[u1, . . . , ur]]
f
//

πn

��

ÔV,p

��

Sn // //
OV,p

mn+1
p

for all n, where πn: k[[u1, . . . , ur]] → Sn projects onto the sum of the first n
terms. The dotted arrow exists by the universal property of inverse limits (see
statement 2 in definition A.5.26 on page 444). It is easily seen to be surjective,
too.

� � We have to be a bit careful here: Z surjects to Z2n for all n but does not surject
to the (uncountable) inverse limit, Z(2). The key is that the power series ring

consists of infinite sequences of modules (generated by all monomials of a given degree),
each of which surjects to a corresponding k[V]p/mn+1

p .

If p is a simple point, we claim that f is also injective. Suppose some power
series p ∈ k[[U1, . . . , Un]] is in the kernel. This means that its lowest degree
term, say L of degree `, has the property that

L(u1, . . . , un) ∈ m`+1
x

Since L is a homogeneous polynomial in U1, . . . , Un, we can use lemma A.3.14
on page 402 to transform it into a Un-general polynomial (see definition A.3.10
on page 400):

L(U1, . . . , Un) =

αU`
n + G1(U1, . . . , Un−1)U`−1

n + · · ·+ G`(U1, . . . , Un−1)
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Since elements of m`
x can be written as homogeneous polynomials in the {ui}

of degree ` with coefficients in mx, we get

L(u1, . . . , un) =

αu`
n + G1(u1, . . . , un−1)u`−1

n + · · ·+ G`(u1, . . . , un−1)

= µu`
n + H1u`−1

n + · · ·+ H`

where µ ∈ mx and the Hi are homogeneous polynomials in u1, . . . , un−1. Sub-
traction gives us

(α− µ)u`
n ∈ (u1, . . . un−1)

and we claim that α− µ is a unit, since α /∈ mx. It follows that

u`
n ∈ (u1, . . . un−1)

which implies (by the strong Nullstellensatz) that

V (un) ⊃ V (u1) ∩ · · · ∩ V (un−1)

and
V (u1) ∩ · · · ∩ V (un−1) = V (u1) ∩ · · · ∩ V (un)

contradicting lemma 3.3.22 on page 132. �

Actually computing these power series expansions is simple in some cases.

EXAMPLE 3.3.26. Let V = V
(
X2 + Y2 − 1

)
and let p = (0, 1). Then k[V] =

k[X, Y]/(X2 + Y2 − 1) = k[x, y] where x and y are the images, respectively, of
X and Y. Continuing in the vein of example 3.3.19 on page 130

(y− 1)2 = y2 − 2y + 1

= 1− x2 − 2y + 1
= 2(1− y) + x

so

y− 1 ≡ x2

2
∈ m2 ⊂ k[V]

and we can plug this expression into itself to give

y = 1 +
1
2

x2 +
1
2
(y− 1)2

≡ 1 +
1
2

x2 (mod m2)

= 1 +
1
2

x2 +
1
2

(
1
2

(
x2 − (y− 1)2

))2

= 1 +
1
2

x2 +
1
8

x4 − 1
4

x2(y− 1)2 +
1
8
(y− 1)4

≡ 1 +
1
2

x2 +
1
8

x4 (mod m4)
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FIGURE 3.3.4. A connected, reducible variety

The reason this is legitimate is that the new terms added in each step are con-
tained in higher and higher powers of the maximal ideal m so this process con-
verges in ÔV,p = k[[X]] (but not in OV,p itself). We ultimately get the Taylor
series expansion for y =

√
1− x2.

We can deduce an interesting geometric fact from the embedding OV,p ⊂
k[[U1, . . . , Un]]:

LEMMA 3.3.27. If p ∈ V is a simple point in an affine variety, then p must be
contained in a single irreducible component of V.

PROOF. Consider the open set

X = V \
⋃

i
Vi

where the Vi are the irreducible components of V that do not contain p. Then

k[X] ⊂ OV,p ⊂ k[[U1, . . . , Un]]

by lemma 3.3.24 on page 133. Since k[[U1, . . . , Un]] is an integral domain, so is
k[[X]] which implies that X is irreducible (see proposition 2.4.18 on page 68).

�

This means that, in varieties that are connected but not irreducible, distinct
irreducible components meet at singular points:

EXAMPLE 3.3.28. Consider the variety V = V (XY) ⊂ A2. This the union
of the X and Y axes — see figure 3.3.4.

Its irreducible components are the X and Y axes and they meet at the origin,
which is the only singular point in V.

Lemma 3.3.27 also has interesting consequences for smooth varieties:

COROLLARY 3.3.29. A smooth variety is a disjoint union of its irreducible com-
ponents.
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REMARK. For instance, this is true of all algebraic groups, by lemma 3.3.16
on page 128.

EXERCISES.

6. If p ∈ V is a simple point of a variety V, show that OV,x (see defini-
tion 3.2.1 on page 117) is an integral domain.

7. If p ∈ V is a simple point of a variety V, R = OV,x, and u1, . . . , um are
local parameters at x (so the component of V containing x is m-dimensional),
show that

im ui+1 ∈
R

(u1, . . . , ui)

is a non-zero, non-zero-divisor for all i = 1, . . . m− 1.

8. If G is an algebraic group and G0 is the component of G containing the
identity element, show that G0 is a closed, normal subgroup of G and that the
quotient G/G0 is finite.

3.3.3. Intersection multiplicity of plane curves. We can give a rigorous
definition of intersection multiplicity promised in the first chapter. This is a
special case of a much more general construction in section 5.8.2 on page 269.

DEFINITION 3.3.30. If C1 and C2 are curves in A2 given by

f (X, Y) = 0
g(X, Y) = 0

that intersect at a point p, we define the intersection multiplicity
Ip( f , g) = Ip(C1, C2) as a function with the properties

(1) Ip( f , g) = Ip(g, f )
(2) Ip( f , g) is a nonnegative integer that is 0 if C1 ∩ C2 ∩ {p} = ∅
(3) Ip( f , g) is infinite if f and g have a common factor that vanishes at p.
(4) Ip(X, Y) = 1 where p = (0, 0).
(5) If `: A2 → A2 is an invertible affine linear map, then I`(p)( f ◦ `−1, g ◦

`−1) = Ip( f , g).
(6) Ip( f , g1 · g2) = Ip( f , g1) + Ip( f , g2)
(7) Ip( f + r · g, g) = Ip( f , g) where r(X, Y) ∈ k[X, Y] is any element.

REMARK. Most of these properties are intuitively clear, especially the first
four. The fifth states that multiplicity does not depend on location. The sixth
simply encodes the idea that Ip(C1, C2 ∪C′2) = Ip(C1, C2) + Ip(C1, C′2). The sev-
enth is a property that our naive definition of intersection multiplicities (defini-
tion 1.4.6 on page 23) had.
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Now we will give a rigorous method for computing Ip( f , g). It based on
the observation that, if I1 and I2 are ideals defining algebraic sets V1 and V2,
respectively, then V1 ∩ V2 is defined by

√
I1 + I2. In addition, example 2.3.17

on page 55 suggests that failing to take the radical counts intersections with the
proper multiplicities.

The one remaining consideration is that we do not want to count all of the
intersections — only those in the neighborhood of a given intersection-point.
This is solved by doing computations in the local coordinate ring at a point rather
than the complete coordinate ring.

LEMMA 3.3.31. If C1 and C2 are curves in A2 given by

f (X, Y) = 0
g(X, Y) = 0

then
Ip( f , g) = dimk Vp = OA2,p/( f , g)

where Vp is a vector-space over k.

PROOF. We go through the list of properties in definition 3.3.30 on the pre-
ceding page. Properties 1, 3, and 4 are fairly clear.

Property 5 follows from the fact that such affine linear maps induce isomor-
phisms of k[X, Y] and its localizations.

Property 2 follows from the fact that OA2,p is a local ring: if f or g are
nonzero at p they define units and the quotient Vp is a trivial ring, which we
regard as a vector-space of dimension 0.

Property 7 follows from the fact that, as ideals

( f , g) = ( f + r · g, g)

The only thing that remains to be proved is property 6. Define a homo-
morphism of vector-spaces (and rings, for that matter)

π:
OA2,p

( f , g1 · g2)
→
OA2,p

( f , g2)

that simply maps an element to its equivalence class modulo ( f , g2). This will
clearly be surjective. Now define a homomorphism of k-vector-spaces

ι:
OA2,p

( f , g1)
→

OA2,p

( f , g1 · g2)

that sends v ∈ OA2,p
( f ,g1)

to v · g2 ∈
O

A2,p
( f ,g1·g2)

. We claim that ι is injective. If ι(v) = 0,
then

v · g2 = a · f + b · g1 · g2

with a, b ∈ OA2,p. Let d ∈ k[X, Y] clear the denominators of a, b, v · g2 i.e. so
ad, bd, vg2d ∈ k[X, Y]. Then

v · g2 · d = a · f · d + b · g1 · g2 · d
d(v− bg1)g2 = a · f · d
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are equations in k[X, Y]. Since f - g2 and k[X, Y] is a unique factorization do-
main (see lemma A.3.2 on page 396), we must have

f |d(v− bg1)

so, in OA2,p
v = t · f + bg1

and v = 0 ∈ OA2,p
( f ,g1)

.
We claim the nullspace of π is exactly equal to the image of ι. Certainly,

the image of ι maps to 0 in
O

A2,p
( f ,g2)

. Suppose π(x) = 0 for x ∈ O
A2,p

( f ,g1·g2)
. Then

x = a · f + b · g2 so, modulo ( f , g1 · g2), x is equivalent to b · g2 = ι(b).
The conclusion follows from basic properties of vector-spaces, which imply

that
OA2,p

( f , g1 · g2)
∼=
OA2,p

( f , g1)
⊕
OA2,p

( f , g2)

so Ip( f , g1 · g2) = Ip( f , g1) + Ip( f , g2) as claimed. �

Now we will look at some examples of this construction:
For instance, if

f (X, Y) = Y− X2

g(X, Y) = X

the ideal (X, Y − X2) = (X, Y) ⊂ k[X, Y] and Vp = {1} · k so the intersection
multiplicity is 1. This is a simple intersection.

We will apply this definition to the examples in section 1.4 on page 15:
The curves in figure 1.4.4 on page 21 are given by

X2 + Y2 − 4 = 0
(X− 1)2 + Y2 − 1 = 0

and they intersect at (2, 0). We transform these equations to local parameters in
the neighborhood of this point by setting X = U + 2:

U2 + 4U + Y2 = 0
U2 + 2U + Y2 = 0

The ideal they generate is

I = (U2 + 4U + Y2, U2 + 2U + Y2) = (U, Y2)

so
OA2,(2,0)/I = {1, y} · k

so this intersection has multiplicity 2.
We return to example 2.3.17 on page 55:

EXAMPLE 3.3.32. We have the intersecting curves in figure 1.4.5 on page 23,
given by equations

5X2 + 6XY + Y2 + 6Y− 5 = 0
X2 + Y2 − 1 = 0
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that intersect at (±1, 0). We consider the point p− = (−1, 0) first and perform
a change of variables, moving this point to the origin. Setting X = U − 1 gives

5U2 − 10U + 6UY + 5Y2 = 0
U2 − 2U + Y2 = 0(3.3.11)

In OA2,p− , any expression of the form a + U or a + Y with a ∈ k are invertible.
The ideal T1 generated by the two expressions in equation 3.3.11 on page 140 is

T1 = (5U2 − 10U + 6UY + 5Y2, U2 − 2U + Y2)

= (Y3, UY, U2 − 2UY + Y2)

where the second line is a Gröbner basis (see definition 2.3.2 on page 46).
We can factor the third term as (U − 2)U + Y2 where U − 2 is a unit of

OA2,p, so we have a relation

U = −(U − 2)−1Y2

in the quotient. It follows that

OA2,p−
T1

= k · {1, Y, Y2}

a three-dimensional vector-space — and p− is an intersection of multiplicity 3.
Now we consider the point p+ = (1, 0). In this case, we set X = U + 1 and

get

5 U2 + 10 U + 6 YU + 12 Y + 5 Y2 = 0
U2 + 2 U + Y2 = 0(3.3.12)

which generate an ideal T2 ⊂ k[U, Y] with corresponding Gröbner basis

T2 = (Y3, YU + 2 Y, U2 + 2 U + Y2)

Since U + 2 is invertible in OA2,p+ , the second term gives

Y · (U + 2) = 0

in the quotient

Q =
OA2,p+

T2
so Y = 0 which implies that U = 0 so we get

Q = k · 1
a one-dimensional vector space, since p+ is a simple intersection.

�

3.3.4. Unique factorization in OV,p. We will spend the rest of this section show-
ing that, at a simple point, OV,p inherits another property from power series rings —
unique factorization. This results in lemma 3.3.39 on page 143 which will be applied in
section 5.9 on page 277.

Most of this material appeared previously in [118].

ASSUMPTION 3.3.33. Suppose that a noetherian local ring R is contained in a local ring
R̂ that is a unique factorization domain. Suppose that the maximal ideals m ⊂ R and m̂ ⊂ R̂
satisfy the conditions
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(1) m · R̂ = m̂
(2) (mn · R̂) ∩ R = mn for all n > 0
(3) for any r ∈ R̂ and any n > 0, there exists an rn ∈ R such that r− rn ∈ mn · R̂

PROPOSITION 3.3.34. Under the assumption in 3.3.33 on the preceding page, if a ⊂ R is
any ideal, then (a · R̂) ∩ R = a.

PROOF. It will suffice to prove that (a · R̂) ∩ R ⊂ a. Let a = (a1, . . . an) with the ai
in R and let x ∈ a · R̂. Then

x =
n

∑
i=1

gi · ai

with the gi ∈ R̂. Statement 3 implies the existence of gi,j ∈ R such that gi − gi,j ∈ mj · R̂.
If

xj =
n

∑
i=1

gi,j · ai

then xj ∈ a and we have

x ∈ a+mj · R̂
for all j. Statement 2 implies that intersecting this with R gives

x ∈ a+mj

for all j or

x ∈
∞⋂

j=1

(
a+mj

)
= a

by lemma A.1.79 on page 363. �

This immediately implies:

COROLLARY 3.3.35. Under the assumptions in 3.3.33 on the preceding page, if a, b ∈ R
and a|b ∈ R̂ then a|b ∈ R.

PROOF. This is an immediate consequence of the previous statement. If a|b ∈ R̂
then b ∈ (a) · R̂. Since

(
(a) · R̂

)
∩ R = (a), we get that b ∈ (a) or a|b ∈ R. �

The following result amplifies this a bit:

PROPOSITION 3.3.36. If x, y ∈ R have no common factors in R, then they have no common
factors in R̂.

PROOF. Let d = gcd(x, y) ∈ R̂ and let x = d · u and y = d · v so that u and v have
no common factors in R̂. Then xv− yu = 0. By arguments like those used above, we
can find un, vn ∈ R such that

u− un ∈ m · R̂
v− vn ∈ m · R̂

and

x(v− vn)− y(u− un) = yun − xvn ∈ (x, y)m · R̂
∈ (x, y)m

This implies that
yun − xvn = y ·mn − x · m̄n

with mn, m̄n ∈ mn, or
y(un + mn) = x(vn + m̄n)
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Since x and y are multiples of u and v by the same factor (d) in R̂, we get

(3.3.13) v(un + mn) = u(vn + m̄n)

Since u and v have no common factors, the fact that R̂ is a unique factorization domain
implies that

v|(vn + m̄n)

u|(un + mn)

for all n, or

vn + m̄n = q̄n · v
un + mn = qn · u

Pick a value of n such that u, v /∈ mn−1 · R̂ — such a value exists since
⋂∞

i=1 m
i · R̂ = (0).

Then vn + m̄n, un + mn /∈ mn−1 · R̂ either, which implies that q̄n, qn /∈ m · R̂. This means
they are both units and

(un + mn)|u(3.3.14)
(vn + m̄n)|v

and (un + mn)|x in R̂, which by step 2 means that (un + mn)|x in R.
Let x = h(un + mn). Equation 3.3.13 implies that y = h(vn + m̄n). Since x and y

have no common factors in R, h must be a unit.
In light of equations 3.3.14, we have

h =
x

un + mn
=

x
u
· u

un + mn
= d · q−1

n

so d = h · qn — a unit — which contradicts the assumption that d was a proper divisor
of x and y. �

We can finally state a result that shows that subrings sometimes inherit the unique
factorization property from the rings that contain them:

COROLLARY 3.3.37. Under the assumptions of 3.3.33 on page 140, if R̂ is a unique fac-
torization domain, then so is R.

PROOF. Suppose r, p, q ∈ R and r, p have no common divisors and r|pq. Then
proposition 3.3.36 on the previous page implies that r and p have no common divisors
in R̂ and r|q because R̂ is a unique factorization domain. It follows, from corollary 3.3.35
on the preceding page, that r|q in R so R is also a unique factorization domain, by
lemma A.3.1 on page 395. �

This leads to our main result:

THEOREM 3.3.38. Let p ∈ V be a simple point of an affine variety. Then the coordinate
ring at p, OV,p, is a unique factorization domain.

PROOF. Because p is simple, theorem 3.3.25 on page 133 tell us that
ÔV,p = k[[U1, . . . , Un]] where n is the dimension of the irreducible component of V
containing p and the Ui are local parameters (see definition (3.3.18) on page 130). The
power-series ring has unique factorization, by theorem A.3.16 on page 402 and we have
the inclusion

OV,p → ÔV,p = k[[U1, . . . , Un]]

The maximal ideal m ⊂ OV,p is (U1, . . . Un) and this is also the maximal ideal of
k[[U1, . . . , Un]]. Clearly, conditions 1 and 2 of 3.3.33 on page 140 are satisfied. It is also
not hard to see that condition 3 is met: if x ∈ k[[U1, . . . , Un]] then the set of terms of
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degree ≤ k define an element xk of OV,p such that x − xk ∈ mk+1. The conclusion
follows from corollary 3.3.37 on the preceding page. �

The following application will be very important in divisor-theory in section 5.9 on
page 277.

LEMMA 3.3.39. Let W ⊂ V be a codimension-1 irreducible subvariety of an algebraic
variety and let p ∈ W ⊂ V be a simple point. If U is an open set of simple points containing p,
then I(W ∩U) ⊂ k[U] is a prime ideal and there exists an element f ∈ OV,p such that

I(W ∩U) · OV,p = ( f )

REMARK. This result essentially says that, in the neighborhood of a simple point, a
codimension-1 subvariety is defined by a single equation.

If U is an open set of simple points containing p, it must be irreducible since the in-
tersection of any two distinct irreducible components is a singular point by lemma 3.3.27
on page 136. It follows that

k[U]→ OV,p

is an inclusion.

PROOF. As in proposition 2.8.31 on page 111, some element H ∈ k[U] vanishes on
W ∩ U. Since it is irreducible, some irreducible factor, f , of H vanishes on it as well.
Then the prime idea p = I(W ∩U). contains the irreducible factor, f , of H and ( f ) is
prime (because OV,p is a unique factorization domain). If ( f ) 6= p then

W = V (p) * V (( f )) * V

so
dim W < dimV (( f )) < dim V

which contradicts the hypothesis. �

3.4. Normal varieties and finite maps

3.4.1. Basic properties. We begin by defining a class of varieties that are
“almost smooth”:

DEFINITION 3.4.1. An affine variety, V, is said to be normal at a point p ∈ V
if the coordinate ring at that pointOV,p is a normal ring (see definition A.4.3 on
page 404), i.e., integrally closed in its field of fractions. The variety V is said to
be normal if it is normal at all of its points.

Since we are calling normal varieties “almost smooth,” it is reasonable to
expect:

LEMMA 3.4.2. Smooth varieties are normal.

PROOF. If V is smooth, theorem 3.3.38 on the facing page proves that its
coordinate ring at any point is a unique factorization domain, and proposi-
tion A.4.11 on page 406 implies that this coordinate ring is normal. �

In order understand some of the properties of normal varieties, we need

LEMMA 3.4.3. Let V be an irreducible normal variety and let W ⊂ V be a
codimension-1 subvariety. Then there exists an affine open set U ⊂ V with U ∩W 6=
∅ such that W̄ = W ∩U is defined in k[U] by a single equation — i.e., its defining
ideal is principal.
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PROOF. Suppose that W =
⋃m

j=1 Wi where the Wi are irreducible. Define
U1 = V \ ⋃m

j=2 Wj so that W ∩U1 = W1. Since k[U1] is a localization of k[V],
it is also normal by exercise 1 on page 411. Let p ⊂ k[U1] be the prime ideal
defining W1 and form the localization

k[U1]p = S−1k[U1]

where S = k[U1] \ p. Since W is n− 1-dimensional, the prime ideal p is minimal
by proposition 2.8.9 on page 101 (and the reasoning used in its proof). Then
k[U1]p is also normal, by exercise 1 on page 411 and it is a local domain with a
single nontrivial prime ideal, p · k[U1]p — see corollary A.1.92 on page 369.

It follows that the ring k[U1]p is a discrete valuation ring, by lemma A.4.54 on
page 425, and lemma A.4.53 on page 425 implies that there exists an element,
π ∈ k[U1]p, such that p · k[U1]p = (π).

If p = (x1, . . . , xt) ∈ k[U1], then xi = π · g−1
i ∈ k[U1]p for some gi /∈ p. If

π = f /g ∈ k[U1]p, where g /∈ p, simply define

U = U1 ∩ D(g) ∩
t⋂

j=1

D(gj)

and then the defining ideal of W ∩U will be (π) ∈ k[U] = k[U1](g1,...,gt ,g). �

Now we are ready to show precisely how normal varieties are “almost
smooth”

THEOREM 3.4.4. If V is an irreducible normal variety, the set of singular points
is of codimension ≥ 2.

REMARK. In other words, the set of singular points is small. Since a curve
is one-dimensional, a normal curve cannot have any singular points and must
be smooth.

PROOF. Suppose V is n-dimensional and let W ⊂ V be the set of singular
points. We will assume that W has an n− 1-dimensional component, W1, and
get a contradiction.

Let U be the open set in lemma 3.4.3 on the preceding page so that W̄ =
U ∩W has a defining ideal (π) ∈ k[U], so that

k[W̄] = k[U]/(π)

Let p ∈ W̄ be a nonsingular point (in W̄, not V). Then

OW̄,p = OV,p/(π)

Since p is nonsingular in W̄, lemma 3.3.20 on page 131 implies that the maximal
ideal ofOW̄,p is generated by uniformizing parameters (u1, . . . , un−1). Let ūi be
an element of OV,p that maps to ui under the projection

OV,p → OV,p/(π) = OW̄,p

Then (ū1, . . . , ūn−1, π) generates the maximal ideal of OV,p (see lemma A.1.24
on page 336) which contradicts the fact that p is singular in V. �

Although definition 3.4.1 on the previous page defines normality using lo-
cal criteria, there is a simple global definition:
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LEMMA 3.4.5. An irreducible affine variety, V, is normal if and only if the coor-
dinate ring, k[V], is normal.

PROOF. If k[V] is normal, then so are all of its localizations, OV,p for all
p ∈ V so definition 3.4.1 on page 143 is satisfied.

Suppose V is normal, and x ∈ k(V) is integral over k[V]. Then it is integral
over every OV,p and, therefore, contained in each OV,p since they are integrally
closed. But a rational function that is regular everywhere is in the image of

k[V]→ k(V)

by proposition 2.5.21 on page 83, so x ∈ k[V] and k[V] is normal. �

We are in a position to refine the results of section 2.8.3 on page 107:

LEMMA 3.4.6. If f : V →W is a finite degree-d map of irreducible affine varieties
and W is normal then f−1(p) contains ≤ d points for any p ∈W.

PROOF. The hypotheses imply that k[V] is an integral extension of k[W]
and [k(V): k(W)] = d. If p ∈ W is any point, let g ∈ k[V] take on distinct
values, vi ∈ k, for each point of pi ∈ f−1(p) — so the variety f−1(p) is be
defined by g(pi) = vi.

Let pg(X) be the minimal polynomial of g over k(W). Since g is integral over
k[W], this will be a monic polynomial whose coefficients all lie in k[W] ⊂ k(W)
(by definition A.4.1 on page 403). If we map this polynomial via

k[W]→ k[W]/mp = k

we get a polynomial over k with m distinct roots with m ≤ d, where mp is the
maximal ideal corresponding to p. Since pq(X) is a polynomial that vanishes
when g is plugged into it, the same is true of its image in k[X]. The fact that
it has m distinct roots, implies that the regular function, g, can take on only m
distinct values when restricted to f−1(p). It follows that the number of points in
f−1(p) = m ≤ d. �

DEFINITION 3.4.7. A degree-d finite mapping f : V → W is unramified at a
point p ∈W if f−1(p) consists of d points. Otherwise p is a ramification point.

We can show that finite maps are “mostly unramified” — over characteris-
tic 0, they are unramified on a dense set:

LEMMA 3.4.8. If f : V →W is a finite degree-d map of irreducible affine varieties
over k,

(1) the set of points where it is unramified is open, and
(2) if k is of characteristic 0, it is nonempty.

REMARK. The second statement’s proof is interesting because we essen-
tially “embed” V in W ×A1 in such a way that f becomes a projection to the
base1. Compare this with exercise 7 on page 115.

To prove statement 2, we could simply quote the solution to exercise 9 on
page 115. Instead, we will explore some of the consequences of f being finite.
These methods can actually be extended to prove quite a bit more. This is done
in exercises 2 on page 147 and 3.

1We actually embed an open set, V2, of V in W2 ×A1,where W2 ⊂W is an open set.
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PROOF. If f is unramified at point w ∈ W, then the polynomial pg(X) in
the proof of lemma 3.4.6 on the previous page has d distinct roots, hence its
discriminant, ∆, is 6= 0. We can regard this discriminant as a polynomial in
elements of k[W] — hence it is nonvanishing in a neighborhood of w. It follows
that the set of points where f is unramified is open.

If the characteristic of k is 0, the field extension f ∗k(W) ⊂ k(V) is separable,
so there exists a primitive element α such that

(3.4.1) k(V) = k(W)[α]

(see theorem A.2.21 on page 378). Without loss of generality, we can assume
α ∈ k[V]. Let pα(X) ∈ k(W)[X] be the minimal polynomial of α — it will be of
degree d and monic, with coefficients in k[W] (since α is integral over k[W]).

Since k has characteristic 0, the discriminant ∆ of pα(X) is not identically
0. If W1 ⊂ W is the open set where ∆ 6= 0, choose w ∈ W1, such that ∆(w) =
im ∆ ∈ k = k[W]/mw is nonzero, where mw is the maximal ideal corresponding
to w.

If V1 = f−1(W1), an open set, then k[V1] is a finite module over k[W1] (since
it is a localization), say

k[V1] = αk[W1] + β1k[W1] + · · ·+ βtk[W1]

where each of the βi are polynomials of α with coefficients in k(W), by equa-
tion 3.4.1. If W2 ⊂ W1 ⊂ W is the open set where the βi are regular, we get
k[W2] = S−1k[W1] where S is a suitable multiplicative set. If V2 = f−1(W2) ⊂
V, then k[V2] = S−1k[V1] and

(3.4.2) k[V2] = k[W2][α] = k[W2][X]/(pα(X))

(this is where the “embedding” happens — k[W2][X] is the coordinate ring of
W2 ×A1 and V2 is embedded into it). The ideal S−1mw ⊂ S−1k[W1] is still
maximal (corollary A.1.92 on page 369), so k[W2]/S−1mw = k.

The coordinate ring of f−1(w) is given by (see lemma 2.5.8 on page 75):

(3.4.3) k[ f−1(w)] =
k[W2][α]√
mw · k[V2]

=
k[W2][X]√

pα(X) · S−1mw

=

(
k[W2]

S−1mw

)
[X]/

√
( p̄α(X)) =

k[X]√
( p̄α(X))

= kd

where p̄α(X) is the image of pα(X) in k[X]. Since the image of ∆ is nonzero in

k[W1]/mw = k[W2]/S−1mw = k

it follows that p̄α(X) has d distinct roots and
√
( p̄α(X)) = ( p̄α(X)) (see exer-

cise 25 on page 348). This implies that f−1(w) has precisely d points. �
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EXERCISES.

1. Suppose f : V →W is a finite, degree-d map of irreducible affine varieties
over a field of characteristic 0. Show that there exists an open set U ⊂ W such
that f−1(p) consists of d points for any p ∈W.

2. What is the ring-structure of the ring kd in the proof of lemma 3.4.8 on
page 145?

3. Equation 3.4.2 on the facing page in the proof of lemma 3.4.8 on page 145
implies that

k[V2]mw
∼= k[W2]m2 [X]/(pα(X))

Show that this implies that

(3.4.4) k[V2]mw
∼=

d⊕
j=1

OW,w

so f ∗:OW,w
∼=−→ OV,vj is an isomorphism of local rings for j = 1, . . . , d, where

vj ∈ f−1(w).

3.4.2. Resolving singularities. Heisuke Hironaka is a Japanese
mathematician, born in 1931, who was awarded the Fields Medal in
1970 for his great contributions to algebraic geometry. In his two (long)
groundbreaking papers [76, 77], Hironaka proved (in characteristic zero2):

If V is a variety with singularities over characteristic 0, it is
possible to find a smooth variety, V̄, and a regular map

f : V̄ → V

that is a birational equivalence. This map, f , is said to resolve
the singularities of V.

Hironaka’s proof involves “blowing up” singularities — see section 5.5.3 on
page 242 — using a complex strategy that is beyond the scope of this book (the
survey [72] outlines the main ideas). Here, we will discuss a relatively simple
procedure for resolving many singularities (including some of the “largest”).

Now we can describe an algorithm for resolving many singularities of an
irreducible affine variety, V. We can replace it by a normal variety Vν that
comes equipped with a regular map

Vν → V

that is a birational equivalence.
The idea behind this construction is very simple:

2The result in characteristic p 6= 0 is still an open question.
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If k[V] is not normal, replace it by its normal closure, N, in k(V).
Now, build a variety, Vν, that has N as its coordinate ring and
we are done. The inclusion k[V] ↪→ N will induce a regular
map that is a birational equivalence because k[V] and N both
have the same field of fractions, k(V).

As always, “the devil is in the details:”
How do we know that N is an affine k-algebra?

The key to answering this question is:

LEMMA 3.4.9. For any integer n > 0 let Pn = k[X1, . . . , Xn] and let Fn be its
field of fractions, k(X1, . . . , Xn). If H is a finite extension of Fn and P̄ is the integral
closure of Pn in H, then P̄ is a finitely generated module over Pn.

REMARK. Corollary A.4.12 on page 407 tells us that Pn is integrally closed
in Fn.

PROOF. If H is a separable extension of Fn, then lemma A.4.20 on page 410
implies the result (because we know that Pn is noetherian, by lemma A.1.48 on
page 345). In the simple case, we are considering here (extensions of a polyno-
mial ring), there is a trick to get around the separability requirement.

Suppose H = Fn[α1, . . . , αt] is an inseparable extension of Pn and α1 has a
minimal polynomial

f (X) = g(Xpr
)

as in proposition A.2.18 on page 377, and suppose

g(X) = Xm + am−1Xm−1 + · · ·+ a0

Now define finite algebraic extensions

P̃ = Pn[X
1/pr

1 , . . . , X1/pr

n , a1/pr

m−1, . . . , a1/pr

0 ]

H̃ = H[X1/pr

1 , . . . , X1/pr

n , a1/pr

m−1, . . . , a1/pr

0 ]

and set
g̃(X) = Xm + a1/pr

m−1Xm−1 + ·+ a1/pr

0 ∈ P̃[X]

Then
g(Xpr

) = (g̃(X))pr

and H̃ is a separable extension of P̃. If U is the integral closure of P̃ in H̃, then
U is a finitely-generated module over P̃. Since P̃ is a finitely-generated mod-
ule over Pn (with generators {Xi1/pr

1 , . . . , Xim/pr

n , ajm−1/pr

m−1 , . . . , aj0/pr

0 } for iα, jβ =
1, . . . , pr), it follows that U is a finitely-generated module over Pn (see propo-
sition A.4.5 on page 405). Since P̄ is a submodule of U, it must be finitely-
generated over Pn (see lemma A.1.68 on page 356). �

THEOREM 3.4.10. If V is an irreducible affine variety, there exists a normal vari-
ety, Vν, called the normalization of V and a finite map

n(V): Vν → V

that is a birational equivalence. This construction is functorial (see definition A.5.7 on
page 434) in the sense that a dominating regular map of irreducible affine varieties

g: V1 → V2
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induces a map

gν: Vν
1 → Vν

2

that makes the diagram

Vν
1

gν

//

n(V1)

��

Vν
2

n(V2)

��

V1 g
// V2

commute. If W is any normal affine variety and

r: W → V

is a regular map, there exists a regular map r̄: W → Vν that makes the diagram

Vν

n(V)
��

W

r̄
>>

r
// V

commute.

PROOF. We cannot use lemma 3.4.9 on the preceding page directly to show
that the integral closure of k[V] is an affine k-algebra because k[V] is not a poly-
nomial algebra. On the other hand, the Noether Normalization theorem ( 2.2.2
on page 39) theorem implies the existence of a polynomial ring

Pd = k[X1, . . . , Xd] ⊂ k[V]

where d = dim V such that k[V] is a finitely-generated module over Pd. Using
the notation of lemma 3.4.9 on page 148, let H = k(V) — a finite algebraic
extension of k(X1, . . . , Xd). The normal closure, U, of Pd in k(V) is a finitely-
generated module over Pd.

If x ∈ k(V) is integral over k[V], it will also be integral over Pd by state-
ment 2 of proposition A.4.5 on page 405, hence will be contained in U. This
implies that U is equal to the normal closure of k[V] (compare exercise 3 on
page 411) and is a finitely-generated k-algebra, i.e. an affine k-algebra.

Now we use theorem 2.5.5 on page 73 to define Vν to be the irreducible
affine variety whose coordinate ring is U.

The inclusion k[V] ↪→ U induces the regular map

n(V): Vν → V

and this is a finite map and birational equivalence. The functorial properties
follow from similar properties of normal closures. �

Here are some examples of normalization:

EXAMPLE 3.4.11. We start with the singular curve, W ⊂ A2, defined
by Y2 = X3 — see figure 3.3.1 on page 120. with coordinate ring
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FIGURE 3.4.1. Normalization of a curve

k[W] = k[X, Y]/(Y2 − X3). To understand this coordinate ring, we map it to
the polynomial ring, k[T], via

k[W] → k[T]

X 7→ T2

Y 7→ T3

The image of this map is k[T2, T3], the set of polynomials whose linear term
vanishes. Now the element (Y/X) ∈ k(W) satisfies the equation(

Y
X

)2
− X = 0

in k(W) so it is integral over k[W]. It is not in k[W] because its image in k[T] is
T, which is not in the image of k[W]. If we adjoin this element to k[W] we get

k[W][(Y/X)] = k[W][
√

X]

and, in this new ring

X =
(√

X
)2

Y =
(√

X
)3

so this new ring is a polynomial ring on
√

X, or k[T]. This is normal, by A.4.12
on page 407 and is the normal closure of k[W] in k(W).

Geometrically, the normalization, Ŵ is A1. To understand the map

n(W): Ŵ →W
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note that the generator of Ŵ is Y/X which is the slope of a line through the
origin that intersects W. In addition, note that this slope intersects the line
X = 1 in a point whose Y-coordinate is equal to this slope. We arrive at a
description of n(W):

Identify Ŵ with the line X = 1. If p ∈ Ŵ is a point, draw a
line, `, though the origin to p. The image of p under n(W) is
the intersection of this line with W — see figure 3.4.1 on the
facing page.

EXERCISES.

4. It is possible to normalize a variety in a field that is an extension of its
field of fractions. If W is the cone Z2 = XY, show that the normalization of W
in the field k(W)(

√
X) is isomorphic to the affine plane A2 over coordinates U

and V, and that the normalization mapping has the form X = U2, Y = V2, and
Z = UV.

5. Show that the normalization of W = V
(
Y2 − X2(X + 1)

)
is the affine

line, with the projection defined by

X 7→ T2 − 1

Y 7→ T(T2 − 1)

6. How is the normalization of V ×W connected with the normalizations
of V and W?

3.5. Vector bundles on affine varieties

� We conclude this chapter by using the sheaf of regular functions on an affine va-
riety to prove a theorem of Serre (in [146]), classifying algebraic vector-bundles (see

appendix C on page 487) over affine varieties. Throughout this section V will denote an
irreducible affine variety and k will denote an algebraically closed field. Vector-bundles
on V will be assumed to be compatible with the sheaf of regular functions, OV .

DEFINITION 3.5.1. If M is a module over k[V], let M be the constant sheaf over V.
Then we can define a presheaf A(M) via

A(M)(U) = M⊗k[V] OV(U)

for any open subset U ⊂ V.

We should immediately note that

PROPOSITION 3.5.2. The presheaf in definition 3.5.1 above is actually a sheaf.

PROOF. This follows from the fact that tensor products commuted with direct limits
— see exercise 19 on page 464 and its solution. The completion of A(M) is defined by
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(see lemma B.2.3 on page 480)

A(M)(U) = lim−→ A(M)({Ui}) = M⊗k[V] lim−→ OV({Ui})
= M⊗k[V] OV(U)

as {Ui} ranges over all open covers of U. The lower equation follows from the fact that
the presheaf OV is already a sheaf. �

This construction is functorial:

PROPOSITION 3.5.3. Any homomorphism, f : M1 → M2, of modules over k[V] induces a
homomorphism of sheaves

A(M1)→ A(M2)

and an exact sequence
M1 → M2 → M3

induces an exact sequence
A(M1)→ A(M2)→ A(M3)

PROOF. The first statement is clear. If U ⊂ V is an open set, the second statement
follows from the fact that OV(U) = S−1k[V] for some multiplicative set S (of regular
functions that do not vanish on U) and the fact that S−1k[V] is a flat module over k[V]
(see lemma A.5.60 on page 461) so the diagram

M1 ⊗k[V] S−1k[V] // M2 ⊗k[V] S−1k[V] // M3 ⊗k[V] S−1k[V]

A(M1)(U) // A(M2)(U) // A(M3)(U)

commutes and its bottom row is exact. �

The universal property of modules of fractions (proposition A.5.24 on
page 444) implies a universal property of this construction:

PROPOSITION 3.5.4. If V = Spec R is an affine variety and F is a module over OV with
F (V) = M, an R-module, then there exists a unique morphism of modules over OV :

A(M)→ F

Now we define an important class of modules and sheaves:

DEFINITION 3.5.5. A module, M, over a ring is coherent if it is finitely generated
and, given any surjection

s: F → M
where F is a finitely generated free module, ker s is also finitely generated.

A module, M, over a sheaf, OV , is coherent if, for any open set U ⊂ V M(U) is
finitely generated and the kernel of any surjection

s:Om
V (U)→ M(U)

for some finite m > 0 is also finitely generated.

LEMMA 3.5.6. Let V be an affine variety with coordinate ring k[V] and sheaf of
regular functions OV .
(1) If M is a finitely generated module over k[V], then A(M) is a coherent module over
OV , and A(M)(V) = M.

(2) If S is a coherent module over OV and N = S(V), then N is finitely generated and
S = A(N).
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Consequently A(∗) induces an equivalence of categories between the category of finitely
generated modules over k[V] and coherent sheaves over OV . This equivalence sends the

subcategory of locally free modules over OV to projective modules over k[V].

REMARK. The significant property of coherent modules over sheaves is that
their global behavior determines their local behavior — which motivates the term

“coherent.” It is easy to come up with examples of “incoherent” sheaves:
Let p ∈ V be any point and let OX be the sheaf defined by

(3.5.1) OX(U) =

{
OV(U) if p /∈ U
0 otherwise

for every affine open set U ⊂ V. This is easily verified to be a nontrivial sheaf, but
OX(V) = 0, so it cannot possibly be coherent.

PROOF. If M is a finitely-generated module over a noetherian ring, R = OV(V) =
k[V], then there exists an exact sequence

Rm → Rn → M→ 0

which implies that the induced sequence

Om
V = A(Rm)→ On

V = A(Rn)→ A(M)→ 0

is exact (by proposition 3.5.3 on the facing page) so that A(M) is coherent.
If S is a coherent module over OV then we have an exact sequence

Om
V → On

V → S→ 0

Furthermore, restriction induces a homomorphism

N = S(V)→ S(U)

for any affine open set U ⊂ V that extends to a homomorphism

N ⊗k[V] OV(U)→ S(U)

which defines a homomorphism of sheaves

A(N)→ S

This is an isomorphism if S = On
V . The conclusion follows from the exactness of A(∗)

(proposition 3.5.3 on the preceding page) and the commutative diagram

A(Rm) //

∼=
��

A(Rn) //

∼=
��

A(N)

��

Om
V

// On
V

// S

The final statement regarding locally free sheaves follows from corollary A.5.57 on
page 459 and lemma A.5.63 on page 462. �

This precise correspondence between modules and their associated coherent
sheaves immediately implies a few basic properties of these sheaves:

LEMMA 3.5.7. Let V be an affine variety and let M be a finitely generated module over
k[V].

(1) If A(M)|D( f ) = 0 (or A(M)(D( f )) = 0), there exists an integer n > 0 such that
f n ·M = 0,

(2) If W ⊂ V is a subvariety defined by the ideal a ⊂ k[V] and A(M)|V \W = 0, there
exists an integer n > 0 such that an ·M = 0.
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PROOF. The first statement implies that M⊗k[V] k[V] f = M f = 0. If ∈ M is any ele-
ment, then there exists an nm > 0 such that f nm ·m = 0 (see definition A.1.87 on page 368
and the remark following it). Since M is finitely generated, it has a finite generating set
{mj} and we can take n to be the maximum of the {nmj}.

Let a = ( f1, . . . , ft) — a finite set because k[V] is noetherian. Then A(M)|D( fi) = 0
for i = 1, . . . , t since D( fi) ⊂ V \W (indeed V \W is the union of the D( fi)). It follows
that f ni

i ·M = 0. If we make n equal to t ·max( f1, . . . , ft) then an ·M = 0. �

Even if a module is not projective, a coherent sheaf is “approximately” free:

LEMMA 3.5.8. If F is a coherent sheaf on an irreducible affine variety, V, there exists an
open dense set W ⊂ V such that F |W is free.

PROOF. Since V is irreducible, any open set is dense. We assume R = k[V], an
integral domain. Since F is coherent, it is of the form A(M) for some R-module M. If
{xi} ∈ M is a maximal linearly independent set over R, let

M′ =
⊕

R · xi ⊂ M

It follows that M′ ⊂ M is free.
If {yj} ∈ M is a generating set, then the yj are linearly dependent on the {xi} and

there exists an rj ∈ R such that rj · yj ∈ M′. If s = ∏ rj,then M⊗R Rs = M′ ⊗R Rs, a free
Rs-module, so we can set W = D(s) ⊂ V and F |W is free. �

We are finally ready to state Serre’s theorem, from [146]:

THEOREM 3.5.9. If V is an irreducible affine variety, the functor Γ(∗, V) (see defini-
tion C.1.10 on page 491) defines an equivalence of categories between the category of vector-
bundles over V and that of projective modules over k[V]. The projective module associated to a
vector-bundle is its module of global sections.

REMARK. There are two mathematical theories that go by the name
“K-theory”: one is topological and studies vector bundles over spaces (see [5]),

and the other is algebraic and studies (among other things) projective modules over
a ring (see [111] or [141]). Serre’s theorem provides the “glue” that connects these
theories.

PROOF. This follows immediately from theorem C.2.7 on page 498 and lemma 3.5.6
on page 152. �

We immediately conclude:

COROLLARY 3.5.10. If ξ is a vector-bundle over an irreducible affine variety, V, then
there exists another vector-bundle, η, over V such that ξ ⊕ η is trivial. It follows that every
vector-bundle over V is a sub-bundle of a trivial vector-bundle.

PROOF. The space of sections, Γ(ξ, V) is a projective module, P, over k[V]. This
means that there exists a projective k[V]-module, Q, such that P⊕Q is free. Let η be the
vector-bundle over V with Γ(η, V) = Q. The conclusion follows from exercise 260 on
page 604. �

Pushing this subject further requires a bit more machinery than we have now.
We revisit vector bundles in section 4.5.3 on page 200.

We close with a remark that all vector-bundles over an affine space are trivial. Al-
though this is easy to prove topologically, Serre (in [146]) remarked on the difficulty in
proving that they were algebraically trivial. The problem was eventually independently
resolved by Quillen (in [136]) and Suslin (in [157]):
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THEOREM 3.5.11 (Quillen-Suslin). If A = k[X1, . . . , Xn] then all projective modules
over A are free.

Given the correspondence between projective modules and vector bundles, it is
common to regard general (i.e. non-projective) modules as generalizations of vector-
bundles. Lemma 3.5.8 on page 154 implies that these are vector bundles on a dense
subvariety that do not extend to the entire variety.

A smooth manifold, M, has a canonical vector bundle associated to it called its
tangent bundle. This is a vector bundle whose fiber at every point of M is the tangent
space (essentially defined as in section 3.3 on page 119).

Since a smooth affine variety is a smooth manifold, it also possesses a tangent bun-
dle and we would like to get an explicit description of it. The Serre correspondence
shows that this tangent bundle corresponds to a projective module over the coordinate
ring.

To compute this module, we need a “global” concept of derivative on an affine
variety in contrast to the “local” definition in section 3.3 on page 119. This turns out to
be the module of Kähler differentials in section A.4.2 on page 411.

Our main result is:

THEOREM 3.5.12. If k is a field of characteristic 0 and V is an smooth irreducible affine
variety over k, then Ωk[V]/k is a projective module over k[V] that defines the cotangent bundle
of V.

PROOF. Corollary A.4.32 on page 416 implies that

dim k(V)⊗k[V] Ωk[V]/k = n

— the dimension of V. If m ⊂ k[V] is any maximal ideal then proposition A.4.26 on
page 413 implies that

Ωk[V]m/k = k[V]m ⊗k[V] Ωk[V]/k

Corollary A.4.35 on page 418 implies that

m

m2 = k⊗k[V]m Ωk[V]m/k

= k⊗k[V]m ⊗
(

k[V]m ⊗k[V] Ωk[V]/k

)
= k⊗k[V] Ωk[V]/k

The fact that V is smooth implies that

dim
m

m2 = dim V = k(V)⊗k[V]m

(
k[V]m ⊗k[V] Ωk[V]/k

)
and lemma A.4.36 on page 419 implies that

k[V]m ⊗k[V] Ωk[V]/k

is a free module over k[V]m. Since m was an arbitrary maximal ideal, lemma A.5.63 on
page 462 implies that Ωk[V]/k is a projective module over k[V]. Since its localizations are
free modules with the same rank as

dim
m

m2

it corresponds to the cotangent bundle of V. �

We conclude this section by considering the functorial properties of vector-bundles
and coherent sheaves:
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DEFINITION 3.5.13. If f : V → W is a morphism of affine varieties and G is a coher-
ent module over OW , then

f ∗G = f−1G ⊗ f−1OW
OV

is a coherent module over OV called the pullback of G over f .

REMARK. See exercise 8 on page 482 for the definition of f−1G .

We have an interesting way to “define” A(M):

PROPOSITION 3.5.14. Let V be an affine variety with R = k[V] = OV(V) and let (•, R)
be the ringed space that consists of a single point. If M is a finitely-presented R-module, then M
defines a coherent sheaf over (•, R).

If f : (V,OV)→ (•, R) is the unique morphism of ringed spaces, then

A(M) = f ∗M

PROOF. If
Rn → Rm → M→ 0

then applying f ∗ to this gives

( f ∗R)n → ( f ∗R)m → f ∗M→ 0

since tensor products are right-exact and commute with direct sums — so that f ∗ has
the same property. Since f ∗R = OV , the conclusion follows.

This following result gives a clear idea of what pullbacks look like: �

COROLLARY 3.5.15. Let f : (X,OX) → (Y,OY) be a morphism of ringed spaces (see
definition B.3.1 on page 482) and let G = A(M) where M is a module over OY(Y) = R. Then

f ∗G = A(M⊗R S)

where S = OX(X).

PROOF. The diagram of sheaf-morphisms

(R,OY) //

f ∗

��

(•, R)

f ]

��

(S,OX) // (•, S)

commutes, so the conclusion follows from the fact that ( f ])(M) = M⊗R S. �

EXERCISES.

1. If V ⊂ A2 is the parabola, Y = X2, compute Ωk[V]/k.

2. If W ⊂ A2 is a smooth variety defined by a single equation f (X, Y) = 0,
then

∂ f
∂X
· dX +

∂ f
∂Y
· dY = 0

Show that the differential form

ω =
dX

∂ f /∂Y
= − dY

∂ f /∂X
∈ Ωk[W]/k

is regular, i.e. of the form

u(X, Y) · dX + v(X, Y) · dY
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3. If V ⊂ A2 is the affine variety defined by X2 + Y2 = 1 and k is a field of
characteristic 6= 2, determine Ωk[V]/k.





CHAPTER 4

Varieties and Schemes

“After Grothendieck’s great generalization of the field . . . what I my-
self had called abstract turned out to be a very, very concrete brand of
mathematics.”
— Oscar Zariski, quoted in The Unreal Life of Oscar Zariski, [131].

4.1. Introduction

This chapter will explore two related developments in algebraic geometry
in the 20th century: general algebraic varieties and the language of schemes.

Although the machinery of affine varieties is powerful, it has striking lim-
itations. For instance, the projective spaces from section 1.2 on page 3 are not
affine varieties (see example 4.4.8 on page 183). General varieties (or just va-
rieties) are the result of gluing affine varieties together via regular maps and
solve this problem. They were introduced by André Weil in 1946 in his book
[167].

This development is related to another, the gradual and halting evolution of
the subject to something much more general than algebraic varieties: schemes.
A scheme is a kind of “variety” whose “coordinate ring” is allowed to be an
arbitrary ring (rather than an affine k-algebra). This transition to the language
of schemes began in the late 19th century with the work of Kronecker.

In the 1880’s, Kronecker considered extending algebraic geometry to “vari-
eties” defined over arbitrarily commutative rings, envisioning a field of mathe-
matics that combined geometry, algebra and number theory (see [90]). His idea
was largely ignored at the time.

In the 1930’s, Krull and Noether proposed a similar generalization of alge-
braic geometry, but their ideas were widely rejected. Critics complained that
using arbitrary rings as coordinate rings was not “geometric” and did not de-
serve to be called algebraic geometry.

In the early 1960’s a kind of critical mass was achieved when Grothendiek
published a series of papers collectively called EGA — see [61, 62, 63, 64, 65]
— which gave a very elegant and well-thought-out framework for schemes.
Grothendiek and Serre subsequently published papers on the Riemann hypoth-
esis which involved “varieties” over non-algebraically closed fields.

EXAMPLE 4.1.1. Let k = F̄p, the algebraic closure of Fp, and consider xi 7→
xp

i : An → An. This is the Frobenius Map — see definition A.2.40 on page 388.
It is a bijection but it is not an isomorphism because the corresponding map on
rings

Xi 7→ Xp
i : k[X1, . . . , Xn]→ k[X1, . . . , Xn]

159
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is not surjective. Let k = F̄p, the algebraic closure of Fp, and let Fp be the
Frobenius map. Theorem A.2.42 on page 389 states that, for each m ≥ 1, there
is a unique subfield Fpm of k of degree m over Fp, and that its elements are the
fixed points of Fm

p . Therefore the fixed points of Fm
p are precisely the points of

Am with coordinates in Fpm .
Let f (x1, . . . , xn) be a polynomial with coefficients in Fpm , say

f = ∑ ci1,...,in xi1 · · · xin , ci1,...,in ∈ Fpm

If f (a1, . . . , an) = 0, then

0 = Fm
p

(
∑ ci1,...,in ai1

1 · · · ain
n

)
= ∑ ci1,...,inFm

p (a1)
i1 · · · Fm

p (an)
in

So f (Fm
p (a1), . . . ,Fm

p (an)) = 0. ThusFm
p maps V ( f ) into itself and its fixed

points are the solutions of
f (x1, . . . , xn) = 0

that lie in Fpm .
Examples like this were one of the motivations for defining schemes

over arbitrary rings (in this case, rings of polynomials over finite fields). The
Gelfand spectrum gives a another example of scheme theory’s power — see
section 4.2.1.

The objections to scheme-theory, then, could be phrased “where is the
geometry?” If arbitrarily rings can be “coordinate rings,” isn’t their study a
branch of algebra rather than geometry?

The answer to this is that there are natural geometric constructions involv-
ing affine varieties that produce results that are not affine varieties. The problem
is that their “coordinate rings” are not affine k-algebras — see section 4.3.4 on
page 178.

Even in classical constructions, like example 2.2.8 on page 43, there are
good reasons for allowing nilpotent elements in coordinate rings: for instance,
section 3.3.3 on page 137 shows that nilpotent elements in the coordinate ring at
a point correctly count intersection-multiplicities. Eliminating these elements
(by taking the radical of the defining ideal) actually loses geometric informa-
tion.

So, after a long and halting transition, scheme theory has finally become
the main language of algebraic geometry.

4.2. Affine schemes

An affine scheme is like an affine variety whose coordinate ring can be an
arbitrary ring. Affine varieties are, therefore, special cases of affine schemes (see
corollary 4.3.20 on page 174 for the precise relationship).

In moving from affine k-algebras to arbitrary rings we encounter several
problems.

(1) We seem to lose Hilbert’s Nullstellensatz.
(2) Proposition 2.5.3 on page 72 is no longer true: A homomorphism

f : R→ S of rings does not induce a well-defined map

Specm S→ Specm R
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because the inverse image of a maximal ideal in S is not necessarily
maximal. In fact, the most we can say of it is that it is a prime ideal.

We solve the second problem by defining:

DEFINITION 4.2.1. If R is a ring, define the ringed space V = Spec R the
spectrum of R to be the set of all proper prime ideals of R. In addition, define

(1) for all r ∈ R, D(r) = {p ∈ Spec R|r /∈ p},
(2) the topology on Spec R for which the sets D(r), for all r ∈ R, form a

base.
(3) the pair (R, Spec R) will be called an affine scheme.
(4) The dimension of (R, Spec R) is defined to be the Krull dimension (see

definition 2.8.7 on page 100) of R.
(5) Given two affine schemes V1 = (R1, Spec R1) and V2 = (R2, Spec R2)

the set of morphisms from V1 to V2 is denoted homScheme(V1, V2).
(6) If 0 denotes the trivial ring, Spec 0 = ∅.

REMARK. Compare this to that of specm ∗ in definition 2.5.1 on page 71.
It is interesting to compare Spec R and Specm R. The former has “more

points” — and points with some rather odd properties.

DEFINITION 4.2.2. Let R be a ring. A point p ∈ Spec R will be said to be
(1) closed if it is equal to its own closure. This means that p ⊂ R is a

maximal ideal, so it also corresponds to a point in Specm R ⊂ Spec R,
(2) a generic point of an irreducible subscheme, V ⊂ Spec R, if its closure is all

of V.
(3) a generic point if its closure is Spec R.

REMARK. For instance, if R is an integral domain, the ideal (0) is prime
and is a generic point for Spec R.

As exotic as it sounds, the notion of “generic points” in algebraic varieties
goes back to the 19th century. A generic point was one whose properties re-
flected those of an entire subvariety — and algebraic geometers in the early
1900’s identified these with prime ideals. Emmy Noether proposed making
this notion “official” by including generic points for every prime ideal of the
coordinate ring, but the idea was widely rejected.

The following definition allows us to recover a version of Hilbert’s Null-
stellensatz (see theorem 4.3.5 on page 168):

DEFINITION 4.2.3. Let R be a ring and let x ∈ R. The restriction of x to a
point p ∈ Spec R is defined to be the image of x under the projection

R→ R/p ↪→ F

where F is the field of fractions of R/p.

REMARK. In this setting, the ring R is the “coordinate ring” of Spec R, and
we think of its elements as regular functions.

In affine varieties, proposition 2.4.3 on page 62 shows that the value of a
function in the coordinate ring at a point with maximal ideal m is its image
under the projection

R→ R/m = k
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One difference between the present setting and affine varieties is that a “point”
in Spec R might be an entire irreducible subvariety. The word “restriction” is
still meaningful in this case, and the restriction of a function to an actual point
is the same as evaluating at that point.

Another complicating factor is that the result of restricting an element of
R to a point is an element of a field that varies, depending on the point — see
examples 4.2.6 and 4.2.8 on page 164.

Perhaps the most interesting consequence of this definition is

PROPOSITION 4.2.4. If r ∈ R is nilpotent, then the restriction of r to any point
of Spec R is 0.

REMARK. The classic identification of an element of the coordinate ring
and its values on points breaks down in scheme theory. In a scheme, there are
nonzero “functions” whose “value” on every point is 0.

PROOF. This is an immediate consequence of theorem A.1.46 on page 344
or, more simply, the fact that the only nilpotent element in a field is 0. �

Table 4.2.1 summarizes some differences between Spec R and Specm R. It
is not hard to see that Spec R and Specm R determine each other uniquely.

Specm ∗ Spec ∗ coordinate
ring

point closed point maximal ideal
irreducible
subvariety point prime ideal

generic point
of an irreducible

subvariety

prime ideal ⊂ other
prime ideals

evaluation
at a point

restriction
to a point

projection
to a quotient

TABLE 4.2.1. Comparison of Spec ∗ and Specm ∗

We can even define tangent spaces:

DEFINITION 4.2.5. Let A = Spec R be an affine scheme and let p ∈ A be a
point. Then Ap = S−1 A, where S = A \ p is a local ring with unique maximal
ideal p · Ap. Let F = Ap/p · Ap. Then

V =
p · Ap

p2 · Ap

is a vector space over the field F. Its dual is called the tangent space at the point
p.

If x ∈ A has the property that the restriction of x to p vanishes — i.e. if
x ∈ p then the differential of x at p, denoted dpx, is just the image of x in V.
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FIGURE 4.2.1. Spec Z with its generic point

EXAMPLE 4.2.6. If R = Z, the points of the space Spec Z correspond to the
prime ideals (p) ⊂ Z. All these points are closed. An integer n ∈ Z is a regular
function on Spec Z whose value at a point (p) is its reduction n mod p ∈ Zp.
The point defined by the ideal (0) is generic.

Since Z has Krull dimension 1, Spec Z is usually represented as a line —
see figure 4.2.1.

The open sets D(n) consist of Spec Z \ ⋃(pi) where the pi are the primes
that divide n.

The tangent space at the point p ∈ Z is just the quotient

(p)
(p2)

∼= Zp

Since it is a one-dimensional vector space, all points are simple points and
Spec Z is smooth. If a number is a multiple of p its differential at p is just its
value modulo p2, so the differential of 40 at the point (5) is 40 ≡ 15 (mod 25)
(see lemma 3.3.9 on page 124).

We will refine the definition of an affine scheme somewhat — using the
idea of relative schemes, proposed by Grothendiek:

DEFINITION 4.2.7. Let V = Spec R be an affine scheme. The category, AR of
affine schemes over R or V has

(1) objects V = (Spec S, φ) where

φ: Spec S→ Spec R

is a morphism, called the structure morphism of V,
(2) morphisms that preserve these maps. In other words a morphism,

f : (Spec R1, φ1)→ (Spec R2, φ2), fits into a commutative diagram

(4.2.1) Spec S1
f

//

φ1 !!

Spec S2

φ2}}

Spec R

Sometimes we will call these R-morphisms or V-morphisms to empha-
size that they are in the category of affine schemes over a fixed one.

The reader might wonder why we add this extra level of complexity.
First of all, it is not necessarily an extra level of complexity: Note that every

ring, R, comes equipped with a unique ring-homomorphism

Z→ R
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so every affine scheme has a canonical map

Spec R→ Spec Z

and is a scheme over Z, and every k-algebra, A, comes equipped with a homo-
morphism

k→ A

inducing a map
Spec A→ Spec k

In the case of varieties, relative schemes can even simplify matters consid-
erably by limiting the morphisms that can exist between schemes: rings have
many automorphisms and any such automorphism defines a nontrivial map
from a scheme to itself. We would like to rule out these maps that are really
only derived from maps of coefficient-rings. A diagram like 4.2.1 on the pre-
ceding page guarantees that the “coefficients” always map via the identity map.

It follows that affine varieties are in the category Ak and that all affine
schemes are in AZ. So relative schemes will be useful in integrating affine vari-
eties into our theory, as well as having other applications.

The following example is interesting because it interleaves geometry and
algebra:

EXAMPLE 4.2.8. Let R = Q[X], polynomials with rational coefficients. Then
Spec R is a scheme over Q (as well as one over Z). Since this is a polynomial ring
over a field, it is a principal ideal domain (see proposition A.2.4 on page 371)
so all prime ideals are maximal. The points of Spec Q[X] are all closed.

For each ideal of the form (X − a), where a ∈ Q, we get one point of
Spec Q[X], so Spec Q[X] has a copy of Q embedded in it. If p(X) ∈ Q[X] is
a polynomial, the result of restricting p(X) to the point defined by the ideal
(X− a) is just p(a) ∈ Q, as one might expect.

We also have irreducible polynomials of the form

X2 − 2

and ideals like (X2 − 2) ⊂ Q[X] define points in Spec Q[X]. Since

Q[X]/(X2 − 2) = Q[
√

2]

X 7→
√

2

the result of restricting p(X) to the point defined by (X2− 2) is p(
√

2) ∈ Q[
√

2].
So, the points of Spec Q[X] “live in their own universes.” It is not hard

to see that every finite extension of Q occurs as the “location of a point” of
Spec Q[X].

This corresponds to Kronecker’s idea that algebraic geometry is actually
done over algebraic extensions of a “ground field” that is either finite or the
rationals. For instance, if we have a system of algebraic equations with rational
coefficients and our base field is C, the significant points of the variety that these
algebraic equations define will actually lie in a finite extension of Q embedded
in C.

Here is another example:
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EXAMPLE 4.2.9. Let R be a ring and define

An
R = Spec R[X1, . . . , Xn]

the affine space with coefficients in R.

4.2.1. The Gelfand Spectrum. This is an example of the extraordinary
generality of the scheme approach. Essentially every compact Hausdorff space
(i.e., smooth manifold or polyhedron) can be regarded as an affine scheme —
and in a way that is geometrically relevant:

Two compact Hausdorff spaces are topologically equivalent if
and only if they are isomorphic as schemes.

DEFINITION 4.2.10. Let X be a compact Hausdorff space and let C(X) be
the ring of complex-valued continuous functions on X. We call Spec C(X) the
Gelfand spectrum of X.

REMARK. The Gelfand-Naimark Theorem implies that X is homeomorphic
to specm C(X) — see [52].

The original statement of the Gelfand-Naimark theorem is for
locally-compact Hausdorff spaces.

If p is a point of a compact Hausdorff space and mp ⊂ C(X) is the ideal of
functions that vanish at p, it is not hard to see that mp is often uncountably
generated (i.e., if X = S1, the unit circle). The structure of the quotient

mp

m2
p

— the tangent space at p — is subtle and little is known about it.

EXERCISES.

1. Let X be a compact Hausdorff space and let f ∈ C(X) be a real-valued
function that vanishes at p ∈ X, and is ≥ 0 everywhere on X. Show that the
derivative of f at p (i.e., its image in the tangent space of C(X) at p) is 0.

2. If M is the field of meromorphic functions (these are quotients of
analytic functions) on C, we can construct ΩM/C exactly as in section A.4.2 on
page 411. Show that, in this vector-space, d (ex) 6= ex · dx — and dx - d (ex)
even! This shows that Kähler differentials should not be confused with
calculus-differentials!

3. Consider the scheme Spec Z[X] over Z. Show that the function X ∈
Z[X] takes on every algebraic number at some point of Spec Z[X].

4. Let V = Spec R be an affine scheme and let x ∈ R be an element. Show
that the restriction of x to every point of V (as defined in definition 4.2.3 on
page 161) is nonzero if and only if x is a unit of R.

5. If r ∈ R is an element of a ring, show that

D(r) = ∅ ⊂ Spec R

if and only if r is nilpotent.
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6. If r, s ∈ R show that D(rs) ⊆ D(r).

7. If r, s ∈ R show that D(r) ∩ D(s) = D(rs) ⊂ Spec R.

8. If r ∈ R show that D(r) ⊂ Spec R is dense if and only if r is not a zero-
divisor.

9. If k is an algebraically closed field, characterize the points of
Spec k[X, Y](X,Y).

10. Describe the points of Spec R[X]. How would one draw this scheme?

11. Find a criterion for the set of closed points of an affine scheme to be
dense.

12. Give a criterion for Spec R to be irreducible.

13. If R is a noetherian ring, the associated points of Spec R are those corre-
sponding to associated primes of R, as in definition A.1.71 on page 358. Find the
associated points of Spec R where

R =
k[X, Y]
(XY, Y2)

14. Show that an element of a ring R is a zero-divisor if and only if its
restriction to some associated point of Spec R is 0.

4.3. Subschemes and ringed spaces

4.3.1. The sheaf of regular functions.

DEFINITION 4.3.1. Let R be a ring. For any ideal b ⊂ R we define the
subscheme defined by b via

V(b) = {p ∈ Spec R|b ⊂ p}
If R is an affine k-algebra and b is a radical ideal, we get a corresponding defi-
nition of the subvariety defined by b.

Corresponding to the homomorphism A→ A/b we get a regular map

Spec R/b→ Spec R

The image is V(b) and the map Spec R/b → V(b) is a homeomorphism (it
induces a one-to-one correspondence between ideals of R/b and ideals of R
that contain b — lemma A.1.24 on page 336). Thus every closed subset of Spec R
has a natural ringed space structure making it into an affine scheme.

DEFINITION 4.3.2. Let f : Spec R→ Spec S be a map of affine schemes. Then
f is called a closed immersion if it is a homeomorphism onto a closed subscheme
of Spec S. It is an open immersion if it is a homeomorphism onto an open sub-
scheme of Spec S.
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FIGURE 4.3.1. A nilpotent element

REMARK. It is important to note that this algebraic geometric term “im-
mersion” has a different meaning than the term “immersion” in other areas of
mathematics.

In differential geometry, an immersion is a map that is locally an embedding
(i.e., in a neighborhood of each point) but might not globally be one-to-one. For
instance, the figure eight is an immersion of a circle into a plane that intersects
itself.

What is called an immersion in algebraic geometry would be called an em-
bedding elsewhere.

The discussion following definition 4.3.1 on the facing page essentially
proved:

PROPOSITION 4.3.3. Let f : R→ S be a surjective homomorphism of rings. Then
the induced map

Spec f : Spec S→ Spec R
is a closed immersion.

PROOF. Since f is surjective, we have

S ∼= R
k

where k ⊂ R is the kernel of f . The closed set that is the image of Spec S is the
set of all prime ideals that contain k. �

EXAMPLE 4.3.4. Let k be an algebraically closed field and consider the map

f : k[X]→ k[X]/(Xn) = R

This induces a map
f ∗: Spec R→ Spec k[X] = A1

(where the affine line has been augmented with generic points). We claim that
R has a single maximal ideal, (X). If a ∈ k is nonzero, we have

X− a|Xn − an ∈ k[X]

so X − a is a unit in R. It follows that Spec R consists of a single point and
its image in A1 is the origin. This single point is “fat” (see figure 4.3.1) in the
following sense:

If we restrict a regular function on A1 to Spec R ⊂ A1 — map-
ping it to R via f — we not only get its value at X = 0, but we
get its first n− 1 derivatives.
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Nilpotent elements of a ring serve a vital purpose: they act as “infinitesimals”
or record “infinitesimal” information. Since evaluating an element (as in propo-
sition 4.2.4 on page 162) at a point kills nilpotent elements, evaluating discards
infinitesimals. This is somewhat like what happens in nonstandard analysis:

The derivative of a function d f /dx is the result of “standardiz-
ing” the quotient

f (x + dx)− f (x)
dx

— discarding infinitesimals.

Exercise 4 on page 165 is a bit like the "weak” version of Hilbert’s Nullstel-
lensatz. The following gives us the corresponding “strong” version (compare
this to theorem 2.2.5 on page 41):

THEOREM 4.3.5. Let R be a ring with an ideal b. If V(b) = ∅ then b = R.
If the image of x ∈ R in R/b has the property that its restriction to every point of

V(b) = Spec R/b is 0, then
xn ∈ b

for some integer n.

REMARK. It is striking that the proofs of this result and exercise 4 on
page 165 are considerably shorter and simpler than that of the original
Nullstellensatz. This shows some of the power of the scheme-theoretic
approach.

PROOF. If b has the property that V(b) = ∅, then b 6⊂ p for any p ∈ Spec R.
But every proper ideal is contained in a maximal ideal, which is prime (see
proposition A.1.19 on page 335) so b = R.

Suppose x̄ ∈ R/b is the image of x under the projection

R→ R/b

The statement that the restriction of x to every point of Spec R/b vanishes is
equivalent to saying that x̄ ∈ p for all prime ideals p ⊂ R/b. Theorem A.1.46
on page 344 implies that x̄ is nilpotent, i.e. that x̄n = 0 for some n. This is
equivalent to xn ∈ b. �

PROPOSITION 4.3.6. Let V = Spec R be an affine scheme and let f ∈ R be
nonzero.

Then
D( f ) = Spec R f

In particular, it is an affine scheme.

The map R → R f defines a homeomorphism Spec Rh f → Spec A and the
image is D(h).

REMARK. This and exercise 8 on page 166 imply that D( f ) ⊂ Spec R is
dense if and only if R ↪→ R f is injective.

PROOF. The space D( f ) is the set of prime ideals that do not contain f .
Corollary A.1.92 on page 369 implies that this is in a one-to-one correspondence
with the prime ideals of R f . It follows that the appropriate “coordinate ring” of
D( f ) is R f . �
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As we did earlier, in section 3.2 on page 117, we can define the coordinate
ring at a point:

DEFINITION 4.3.7. Let V = Spec R be an affine scheme and let p ⊂ R be a
prime ideal. Then the coordinate ring at the point represented by p is

Rp = S−1R

where S = R \ p.

REMARK. This is exactly like definition 3.2.1 on page 117, except that the
point in question might be generic — i.e. an irreducible subvariety. We used
this version of the “coordinate ring at a point” in the proof of lemma 3.4.3 on
page 143, showing that it is useful even in classical algebraic geometry.

Definition 4.2.3 on page 161 shows how to “evaluate” functions at points
of an affine scheme. In classical analysis, the set of points where a function
is nonzero is called its support. This notion is much more subtle in algebraic
geometry — inspired by the example of support of a section of a sheaf (see
definition B.1.6 on page 477):

DEFINITION 4.3.8. Let V = Spec R be an affine scheme, and let r ∈ R. Then
r defines a function on V and its support is defined to be the set of prime ideals
p ⊂ R with the property that the image of r under the localization map

R→ Rp

is nonzero.

REMARK. This is not equivalent to the definition in classical analysis: con-
sider the function X ∈ k[X] defined on the affine scheme A1 = Spec k[X]. Its
support in classical analysis is

A1 \ {0}
— i.e., where its value is nonzero — but its support in the definition above is
all of A1. The difference is due to the fact that Rp measures the behavior of a
function in an “infinitesimal neighborhood” of the point defined by p — called
the germ of f at p. The function X vanishes at 0, but is nonzero in arbitrarily
small neighborhoods of 0.

COROLLARY 4.3.9. If R is a ring, the topological space Spec R is quasicompact.

REMARK. “Quasicompact”=”every open covering has a finite sub-cover.”
Although this sounds identical to the definition of “compact” (without the
“quasi”), the Bourbaki people insist that compact spaces must be Hausdorff.

PROOF. Let
Spec R =

⋃
α∈S

D( fα)

be an open cover, where S is some set of indices. Then⋂
α∈S

V(( fα)) = ∅

so that
∑
α∈S

( fα) = R
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which means there is some equation

a1 fα1 + · · ·+ ak fαk = 1

and

Spec R =
k⋃

j=1

D( fαj)

�

This is somewhat complicated by the fact that restrictions of elements of R
to points live in different fields (as in example 4.2.6 on page 163).

LEMMA 4.3.10. Let R be a ring and let f , h ∈ R and suppose

D( f ) ⊂ D(h)

Then f n ∈ (h) for some n > 0.

PROOF. If D( f ) ⊂ D(h) then f /∈ p =⇒ h /∈ p for all primes p ∈ Spec R.
This is equivalent to saying that h ∈ p =⇒ f ∈ p for all p ∈ Spec R.

Lemma A.1.24 on page 336 implies that the image, f̄ , of f under the projec-
tion

R→ R/(h)
is contained in all prime ideals of R/(h). Theorem A.1.46 on page 344 implies
that f̄ is nilpotent, i.e. f̄ n = 0 for some n, which implies that f n ∈ (h). �

We can use this to define “restriction mappings”:

DEFINITION 4.3.11. Let R be a ring and let f , h ∈ R and suppose

t f ,h: D( f ) ↪→ D(h)

Let f n = a · h for some a ∈ R (guaranteed by lemma 4.3.10). We can define a
mapping

t∗f ,h: Rh → R f

that sends
r
hk 7→

r · ak

f nk

Now we must verify the consistency condition (statement 3 in
definition B.1.1 on page 475):

PROPOSITION 4.3.12. Suppose R is a ring and e, f , g, h ∈ R and D(e) ⊂ D( f )∩
D(g) and D( f ) ∪ D(g) ⊂ D(h). Then the diagram

A f

t∗e, f

��

Ah

t∗f ,h

CC

t∗g,h
��

t∗e,h
// Ae

Ag

t∗e,g

CC

commutes.
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PROOF. It suffices to show that the upper triangle commutes. The corre-
sponding statement about the lower triangle follows by symmetry.

We have

ek1 = a · f(4.3.1)

ek3 = c · h(4.3.2)

f `1 = d · h(4.3.3)

Suppose

u =
x
hk ∈ Ah

Then t∗f ,h(u) is

dkx
f `1k

and the image of that under t∗e, f is

dka`1kx
ek1`1k

and

t∗e,h(u) =
ckx
ekk3

These are equal in Ae if and only if

z = y(dka`1kx · ekk3 − ckx · ek1`1k)

vanishes for some y ∈ R. Equation 4.3.2 implies that ekk3 = ckhk and equa-
tions 4.3.1 and 4.3.3 implies that

ek1`1k = a`1k f `1k = a`1kdkhk

which gives
z = y(dka`1kx · ckhk − ckx · a`1kdkhk)

which vanishes with y = 1. �

We are now in a position to define a presheaf of regular functions on an
affine scheme:

DEFINITION 4.3.13. If V = Spec R is an affine scheme, define a presheafOV
by

OV(U) = lim←− R f︸ ︷︷ ︸
D( f )⊂U

for every open set U ⊂ V.

REMARK. Proposition 4.3.12 on the preceding page implies that it is a
presheaf.

PROPOSITION 4.3.14. The presheaf in definition 4.3.13 is actually a sheaf. Fur-
thermore

OV(D( f )) = R f

and OV(V) = R.
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REMARK. The proof amounts to pointing out that the definition of an in-
verse limit in this case is the same as that of a sheaf.

Henceforth, we will assume that Spec R is equipped with the sheaf defined
here and in definition 4.3.13 on the previous page and that it is naturally a locally
ringed space (see definition B.3.1 on page 482).

PROOF. The inverse limit is all possible sequences

(. . . , rα, . . . ) ∈ ∏
α∈R

Rα

where α ∈ R and rα ∈ Rα, compatible with the restriction-maps defined in
definition 4.3.11 on page 170. But this coincides with statement B.1.2 in defini-
tion B.1.1 on page 475.

The remaining statements follow from proposition A.5.32 on page 448. �

So all closed subsets and principal open subsets of affine schemes are again
affine schemes.

EXAMPLE 4.3.15. Suppose R is an integral domain and consider the “affine
space,” An

R = Spec R[X1, . . . , Xn]. Its sheaf of regular functions has the prop-
erty that

OAn
R
(D( f )) = R[X1, . . . , Xn] f ⊂ R(X1, . . . , Xn)

Since the D( f ) are a basis for the topology of An
R it follows that

OAn
R
(U) ⊂ R(X1, . . . , Xn)

for any open set U ⊂ An
R, and

OAn
R
(U1 ∪U2) = OAn

R
(U1) ∩OAn

R
(U2)

OAn
R
(U1 ∩U2) = OAn

R
(U1) +OAn

R
(U2)

as subrings of R(X1, . . . , Xn). The stalk over a point represented by a prime
ideal p ⊂ R[X1, . . . , Xn] is

OAn
R ,p = R[X1, . . . , Xn]p ⊂ R(X1, . . . , Xn)

This the “coordinate ring at a point” as in section 3.3.1 on page 130.
If R has zero-divisors, the situation becomes considerably more complex

because the localization maps fail to be injective.

Now we get a result analogous to 2.5.5 on page 73:

THEOREM 4.3.16. If R is the category of commutative rings, AZ is that of affine
schemes, and

m: AZ → R

is the functor that maps an affine scheme V to the ring OV(V), then m and
Spec ∗: R → AZ form a contravariant equivalence of categories.

REMARK. In light of this result, the reader might wonder why we bother
with the ringed space structure of Spec R — all of the algebraic and geometric
information is already contained in the ring R. The point is that later (in sec-
tion 4.4 on page 179), we will be concerned with general schemes where the
ringed space structure is vital to their definition.
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This sheaf is even necessary for defining affine schemes — if we want to
think of them as topological spaces. Consider the affine varieties Spec R and
Spec C. As topological spaces, they both consist of single points — implying
the existence of morphisms in both directions:

Spec R↔ Spec C

Although there exists a ring-homomorphism

R→ C

no map going the opposite direction exists. The sheaves of regular functions
allow us to recover the rings that define the schemes.

PROOF. This follows from definition 4.2.1 on page 161 and
proposition 4.3.14 on page 171. �

This gives us a criterion for ringed spaces to be affine varieties:

LEMMA 4.3.17. Let V ⊂ An be a ringed space with sheaf OV whose inclusion
into An is a map of ringed spaces. Then (V,OV) is an affine variety if and only
if OV(V) is an affine k-algebra and the canonical map V → specmOV(V) is an
isomorphism of ringed spaces.

REMARK. For instance A2 \ (0, 0) = D(x) ∪ D(y) has a coordinate ring of
k[X, Y]. It gives rise to a ringed space that is not affine: the realization of k[X, Y]
is A2 and the canonical map

A2 \ (0, 0)→ A2

is not an isomorphism. This example points out the limitations of affine vari-
eties and schemes:

Unions of affine varieties are not necessary affine varieties.
We will remedy this by defining general varieties (and schemes) in chapter 4 on
page 159.

PROOF. Let (V,OV) be an affine variety and let A = OV(V). For any p ∈ V
define mp = { f ∈ A| f (p) = 0}. Then mp is a maximal ideal in A, and it is
straightforward to verify that p 7→ mp is an isomorphism of ringed spaces.

Conversely, if OV(V) is an affine k-algebra, then specmOV(V) is an affine
variety — see definition 4.2.1 on page 161 and there is a canonical map

V → specmOV(V)

as in proposition 2.5.2 on page 71. If this map is an isomorphism of ringed
spaces, (V,OV) is an affine variety. �

We get a relative version of theorem 4.3.16 on the facing page if we define:

DEFINITION 4.3.18. If S is a commutative ring, the category RS of commu-
tative rings over S has

(1) objects that are commutative rings equipped with maps from S — i.e.,
an object is a pair (R, ϕ) where ϕ: S → R is a homomorphism of com-
mutative rings.
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(2) morphisms that preserve these maps, i.e. a morphism f : (R1, ϕ1) →
(R2, ϕ2) is a homomorphism of commutative rings, f : R1 → R2 that
makes the diagram

S

ϕ1

��

ϕ2

��

R1 f
// R2

commute.

REMARK. Since every commutative ring, R, comes equipped with a unique
map

Z→ R

it follows that the category of commutative rings is identical (i.e., isomorphic)
to RZ.

COROLLARY 4.3.19. If S is a commutative ring, the functors m and Spec ∗ de-
fined in theorem 4.3.16 are a contravariant equivalence of categories

AS → RS

REMARK. Compare this with theorem 2.5.5 on page 73.

PROOF. This is just the relative version of theorem 4.3.16 on page 172. �

We finally conclude that Spec ∗ is just as good as specm ∗ for defining affine
varieties:

COROLLARY 4.3.20. If k is an algebraically closed field, let A V k denote the cat-
egory of affine varieties over k and let A S k denote the category of affine schemes over
k where A ∈ A F k. Then there is an equivalence of categories

A V k → A S k

REMARK. This follows because both categories are equivalent to A F k, the
category of affine k-algebras. We can also define a direct equivalence:

• Map a scheme to the space of all of its closed points (corresponding to
maximal ideals), with the same topology.
• Map an affine variety, V, to the scheme Spec k[V].

EXERCISES.

1. Do an analysis of An
R like example 4.3.15 on page 172 in the case where

all of the zero-divisors of R are nilpotent elements.

2. Do an analysis of An
R like example 4.3.15 on page 172 in the case where

R = R1 ⊕ R2 and R1 and R2 are integral domains (where products of elements
in R1 and elements of R2 vanish).
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3. If R is an Artinian ring (see definition A.1.81 on page 365), show that
V = Spec R contains a finite number of points {p1, . . . , pn} and that

R ∼=
n

∏
j=1
OV,pi

4. If V = Spec R, show that OV = A(R), where A(∗) is defined in defini-
tion 3.5.1 on page 151.

5. If V = Spec R and p ⊂ R is a prime ideal representing a point p ∈ V,
show that the coordinate ring of V at p is nothing but the stalk of OV at p —
see definition B.1.1 on page 475. This shows that definition 4.3.8 on page 169 is
equivalent to definition B.1.6 on page 477.

6. Show that the support of a function (see definition 4.3.8 on page 169) is
closed.

4.3.2. Meromorphic functions. Now that we have defined the sheaf of
regular functions, we can try to define rational functions. Defining such ob-
jects is not as simple as “forming the field of fractions” of the ring of regular
functions. For one thing, some regular functions may be divisors of zero so that
defining inverses would not make sense. And in forming a sheaf, one must
define restriction-maps — some of which might carry a potentially invertible
function to a zero-divisor.

We will follow Kleiman’s treatment in [85]:

DEFINITION 4.3.21. If (X,OX) is a ringed space, the presheaf of meromorphic
functions, KX , is defined by

KX(U) = OX(U)[S(U)−1]

where:

(1) U ⊂ X is an open set,
(2) S(U) ⊂ OX(U) is the multiplicative set of elements whose restrictions

to the stalks OX,x are non-zero divisors for all x ∈ X.

The sheaf of meromorphic functions on X, denoted KX , is the completion of KX
(see lemma B.2.3 on page 480).

The sheaf of regular meromorphic functions,K∗X ⊂ KX is the sheaf of (abelian)
groups composed of the invertible elements of KX .

REMARK. The expressionOX(U)[S(U)−1] is just the ring of fractions — see
definition A.1.87 on page 368.

The term “meromorphic” is taken from complex analysis — meromorphic
functions are quotients of regular functions. We use it here (instead of “sheaf of
rational functions”) to emphasize the subtleties of this construction.

Of course, there are simple cases where no subtlety is needed:
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EXAMPLE 4.3.22. If A is an integral domain with field of fractions, F, and
V = Spec A, then

KV = F

the constant sheaf equal to F on every open set. In this case, we do not “need”
to use a sheaf at all — we can simply use the field of rational functions.

4.3.3. Fibered Products. Since Spec ∗ is a contravariant equivalence of cat-
egories (see theorem 2.5.5 on page 73 and corollary 4.3.19 on page 174), it con-
verts coproducts into products, so

DEFINITION 4.3.23. Let S be a commutative ring and let R1, R2 ∈ RS. Then
we define

(Spec R1)×S (Spec R2) = Spec(R1 ⊗S R2) ∈ AS

— see definition A.5.44 on page 453 for this version of tensor product.

REMARK. This is the categorical product (see definition A.5.1 on page 431)
in the category AS. This is also called the fibered product of Spec R1 and Spec R2
over Spec S.

It is the object in the category of affine schemes, A , (any object in AS is also
an object of A ) with the universal property that, for any morphisms

f : X → Spec A
g: X → Spec A

that make the diagram of solid arrows

(4.3.4) Spec A

%%

X

f
;;

g
##

// Spec A×S Spec B

p1

OO

p2

��

// Spec S

Spec B

99

commute, there exists a unique dotted arrow making the whole diagram com-
mute. It is probably easier to simply call it a product in the relative category AS
— in which case all of the maps to Spec S (and the commutative of the diagrams
that arise) are implied.

Note that

(Spec R1)×Z (Spec R2) = (Spec R1)× (Spec R2)

is just the ordinary product.

One interesting map in algebraic geometry is the diagonal map

DEFINITION 4.3.24. Let S be a ring and let R ∈ RS. The diagonal map

∆: Spec R→ Spec R×S Spec R
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is defined to be the unique map that makes the diagram

Spec R×S Spec R

pi

��

Spec R

∆
99

Spec R

commute, where the pi are projection to the first and second factors.

REMARK. If V is an affine variety, the diagonal map actually maps a point
x ∈ V to (x, x) ∈ V ×V.

LEMMA 4.3.25. If S is a ring and R ∈ RS, then the diagonal map

∆: Spec R→ Spec R×S Spec R

is a closed immersion.

REMARK. As usual, a similar result holds for affine varieties.
It is well-known that the diagonal map

∆: X → X× X

being closed is equivalent to X being Hausdorff — see [170], 13.7.

PROOF. The map of rings that induces the diagonal is the unique homo-
morphism

δ: R⊗S R→ R
that makes the diagrams

R⊗S R

δ

��

R

gi

@@

R
commute, where the gi are the inclusions of factors. The map defined by

δ(r1 ⊗ r2) 7→ r1 · r2

clearly fits the bill. Since this map is surjective, the conclusion follows from
proposition 4.3.3 on page 167 �

Although schemes and varieties are not Hausdorff, lemma 4.3.25 has the
interesting consequence

PROPOSITION 4.3.26. Let V and W be affine varieties and let

ϕ1, ϕ2: V →W

be two regular maps. Then the set of points x ∈ V where ϕ1(x) = ϕ2(x) is closed.

PROOF. Consider the diagram

W

∆

��

V
ϕ1×ϕ2

// W ×k W
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The set of points where the ϕi, i = 1, 2 agree is just (ϕ1 × ϕ2)
−1(∆(W)), which

is closed since ϕ1 × ϕ2 is continuous. �

4.3.4. Another motivation for the use of schemes. We conclude with a
motivation for allowing general rings to be “coordinate rings” of varieties — a
motivation for schemes.

Let W ⊂ A2 be the parabola Y = X2 with coordinate ring
k[W] = k[X, Y]/(Y − X2). Projection onto the Y-axis is modeled by the
ring-homomorphism

k[Y]→ k[X, Y]/(Y− X2)

And inclusion of the origin (0, 0) ↪→ Y− axis is modeled by

k[Y] → k
Y 7→ 0

It follows that the fibered product

W ×Y-axis (0, 0)

is modeled by
k[W]⊗k[Y] k = k[X]/(X2)

— which is certainly not an affine k-algebra since it has a nilpotent element.
So this is a natural geometric construction involving affine varieties that

leads one out of the category of affine varieties. One might argue that we should
simply take the radical of the ideal (X2) (as was done in the past) but this seems
a bit artificial, and it loses actual information: in some sense the intersection of
W with the X-axis is of multiplicity 2 (see definition 1.4.6 on page 23) and the
nilpotent element X ∈ k[X]/(X2) records this fact.

Compare this with example 2.2.8 on page 43: when we took the radical, we
lost the information that the intersection had multiplicity 2.

EXERCISES.

7. We know that Spec R is not Hausdorff, and lemma 4.3.25 on the previous
page proves that its diagonal map is a closed immersion. Yet, for any topological
space, X, the image of

∆: X → X× X
being closed implies that X is Hausdorff (see [170], 13.7). Isn’t this a contradic-
tion?

8. Suppose j: X′ ↪→ X is a closed immersion of affine schemes and suppose
f : Y → X is a morphism of affine schemes. Show that

Y×X X′ ∼= f−1(j(X′))

the fiber of X′.
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4.3.5. “Varieties” of affine schemes. Every one of the types of rings dis-
cussed in appendix A on page 327 gives rise to affine schemes with geometric
properties derived from the ring. These properties are, of course, not mutually
exclusive.

• If R is an integral domain, Spec R is called an integral scheme. Every
principal open set D( f ) ⊂ Spec R is dense in Spec R (see exercise 8 on
page 166) so the scheme is irreducible.
• If R is a reduced ring (i.e., it has no nonzero nilpotent elements) then

Spec R is a reduced scheme.
• If R is a normal domain (integrally closed in its field of fractions), then

Spec R is called a normal scheme.
• If R is a noetherian ring, Spec R is called a noetherian scheme. If r ∈ R is

any non zero-divisor,

H(r) = {prime ideals p ⊂ R|r ∈ p} ⊂ Spec R

is the hypersurface generated by r — the “solution set” of the “equa-
tion” r = 0. Theorem 2.8.29 on page 108 implies that all of the irre-
ducible components of H(r) are of codimension 1 in Spec R.
• If R is a Jacobson ring (see definition A.4.38 on page 420), Spec R is

called a Jacobson scheme. The fact that N(R) = J(R) (see proposi-
tion A.4.39 on page 420) implies that closed points are dense in Spec R
(also see exercise 92 on page 576). The fact that every quotient of R is
also Jacobson (corollary A.4.40 on page 421) implies that closed point
are dense in every closed subscheme of Spec R. This property is often
expressed by saying closed points are very dense in Spec R.

4.4. Schemes

Now we are ready to define general schemes — unions of affine schemes
along certain types of maps. A general algebraic variety is just a scheme that
is locally of the form Spec A where A is a finitely generated, reduced k-algebra
over an algebraically closed field, k.

DEFINITION 4.4.1. A scheme is a locally ringed space (V,OV) such that V
is quasicompact and every point of V has an open neighborhood U for which
(U,OV |U) is an affine scheme. A scheme, V, over another scheme, S, is just a
scheme equipped with a morphism

V → S

and such that morphisms are required to commute with it — as in defini-
tion 4.2.7 on page 163.

A prevariety over an algebraically closed field, k, is scheme over Spec k (i.e.,
over k) such that every point has an open neighborhood, U, with (U,OV |U)
finitely generated and reduced (i.e., OV(U) has no nilpotent elements).

REMARK. There has been a somewhat confusing evolution of the terminol-
ogy over the years. In the past, what we call a scheme here was once called a
prescheme and what was once called a scheme is now called a separated scheme
(see definition 4.6.1 on page 201).
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To make matters even more confusing, the old convention was kept for va-
rieties, so an object that is locally an affine variety is called a prevariety.

An open subset U of a scheme V such that (U,OV |U) is an affine scheme
is called an open affine or affine chart of V — this is just a restatement of defini-
tion 2.4.19 on page 68.

It is not hard to see that the open affines form a base for the topology of V.
Indeed, if W ⊂ V is an open affine, then principal open sets of W will also be
open affines of V.

DEFINITION 4.4.2. Let U be an open subset of a scheme (V,OV). The func-
tions in OV(U) are regular functions.

If {Ui} is a covering by open affines, f is regular if and only if f |U ∩Ui is
regular for all i. The points of V are the prime ideals of OV(U) for open affines
U ⊂ V. Evaluating a regular function at a point is defined in definition 4.2.3 on
page 161. Given a regular function, f , we can also consider its image inOV,x —
the stalk of OV (see definition B.1.1 on page 475) at the point, x ∈ V.

REMARK. Thus understanding the regular functions on open subsets of V
amounts to understanding the regular functions on the open affines of V and
how they fit together to form V.

If x ∈ V is a point of a scheme represented by a print ideal p ⊂ OV(U),
the stalk, OV,x is a local ring (R,m) whose quotient R/m is equal to the field
of fractions of OV(U)/p. The stalk, OV,x, contains more information than the
quotient since nilpotent elements still exist.

DEFINITION 4.4.3. Let (V,OV) and (W,OW) be schemes. A map ϕ: V →W
is regular if it is a morphism of locally ringed spaces.

REMARK. The local nature of sheaves immediately implies that:
If f : V →W is a continuous map and Wi is a covering of W by open affines,

such that Vi = f−1(Wi) is an open affine, then f is regular if and only if

f |Vi: Vi →Wi

is regular.
Now we can define the relative version of definition 4.4.1 on the preceding

page:

DEFINITION 4.4.4. If T is a scheme, ST the category of schemes over T has
objects V = (R, φ) where φ: R → T is a regular map called the structure map of
V and morphisms f : (R1, φ1)→ (R2, φ2) that make the diagram

R1
f
//

φ1
��

R2

φ2
��

T

commute.

4.4.1. Schemes obtained by patching. We can explicitly build prevarieties
and schemes by gluing together ringed spaces.



4.4. SCHEMES 181

COROLLARY 4.4.5. Let {Ui}, i = 1, . . . , n be a finite set of ringed spaces with
open sets {Vi,j ⊂ Ui} where j = 1, . . . , n and isomorphisms of ringed spaces

ϕi,j: Vi,j → Vj,i

such that
(1) ϕi,i = 1: Vi,i → Vi,i for all i = 1, . . . n,
(2) ϕj,i = ϕ−1

i,j for all i, j = 1, . . . n,
(3) if ϕ′i,j = ϕi,j|Vi,j ∩Vi,k: Vi,j ∩Vi,k → Vj,i is an isomorphism onto Vj,i ∩Vj,k ⊂

Vj,i for all i, j, k = 1, . . . , n and the diagrams

Vi,j ∩Vi,k

ϕ′i,j
//

ϕ′j,k
!!

Vj,i ∩Vj,k

ϕ′j,k

��

Vk,i ∩Vk,j

commute, for all i, j, k = 1, . . . n.
Then there exists a ringed space X with maps

vi: Ui → X

that are homeomorphisms onto open sets in X. If the Ui are prevarieties, then so is X.

PROOF. Let

X̄ =
n⋃

i=1

Ui

the disjoint union and define a relation on X̄ as follows
If p1 ∈ Vi,j ⊂ Ui and p2 ∈ Vj,i ⊂ Uj then p1 ∼ p2 if an only if ϕi,j(p1) = p2.

The conditions on the ϕi,j imply that this is an equivalence relation.
Now set X = X̄/ ∼ with canonical projection

p: X̄ → X

Define
vi: Ui → X

to be the composites

Ui ↪→ X̄
p−→ X

We define a set in U ⊂ X to be open if v−1
i (U) ⊂ Ui is open for all i. The

map p is a homeomorphism of ψi: Ui → Vi = p(Ui) and

X =
⋃

i
Vi

We define the sheaf of regular functions on X by setting, for any W ⊂ Vi,

OX(W) = OUi (ψ
−1
i (W))

If W is also a subset of some Vj with j 6= i this construction will replace OX(W)
with an isomorphic ring. This definesOX as a presheaf on open sets of the form
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W ⊂ Vi for some i. We extend it to a sheaf on all open sets by defining

OX(U) = lim←− OX(W)︸ ︷︷ ︸
W⊂U, such that
W⊂Vi for some i

for any open set U. �

EXAMPLE 4.4.6. If k is a field, consider the maps of rings

k[X]→ k[T, T−1]← k[Y]

where X 7→ T and Y 7→ T−1. This induces maps of affine varieties

U ← H → V

where H is the hyperbola in A2 defined by XY = 1 and U = V = A1. If we
glue the two copies of A1 together along H, we get a space containing U and V
glued via the map X 7→ Y−1 in U ∩V. Figure 4.4.1 on page 182 shows a kind of
crude image of what is going on. The space

S = U ∪U∩V V

is isomorphic to the one-dimensional projective space, P(A2), via the map

(x0: x1) 7→
{

x0
x1
∈ U if x1 6= 0

x1
x0
∈ V if x0 6= 0

Since x0 and x1 are never simultaneously 0 in kP1, every point of kP1 maps
to a point in S, and maps to points in U ∩V in a way compatible with the gluing
map.

FIGURE 4.4.1. Gluing affines, case 1

Regular functions in S are regular functions in U that extend to regular
functions in V. So

anXn + · · ·+ a0 ∈ k[X]

would map into
anY−n + · · ·+ a0 ∈ k(Y)

under the gluing map. This is only an element of k[Y] if n = 0, so the only
regular functions on S are constants — as in example 4.4.8 on the next page.
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FIGURE 4.4.2. Gluing affines, case 2

It is interesting to consider impact of a slight change in the gluing maps:

EXAMPLE 4.4.7. As in example 4.4.6 on the facing page, consider the maps
of rings

k[X]→ k[T, T−1]← k[Y]

where X 7→ T and Y 7→ T. This also induces maps of affine varieties

U ← H → V

where H is the hyperbola in A2 defined by XY = 1 and U = V = A1. If we
glue the two copies of A1 together along H, we get a space containing U and V
glued via the map X 7→ Y in U ∩V. Let D be the topological space that results
from this gluing.

Figure 4.4.2 shows the effect of this gluing process. In this case, the affines
were glued together via the identity map everywhere except at the origin. Since
H = A1 \ {0}, V is an object that looks like A1 except that it has two copies of
the origin. In this case, the ring of regular functions is simply k[X] = k[Y].

Recall projective spaces as defined in chapter 1. We will devise a scheme
version of them:

DEFINITION 4.4.8. Let R be a ring and define a scheme, RPn, over R by

RPn =
n⋃

i=0

An
R,i

where
An

R,i = An
R = Spec R [X0,i, . . . , Xi−1,i, Xi+1,i, . . . , Xn,i]

If Ui,j = An
R,i ∩An

R,j, then

(1) as a subset of An
R,i, its coordinate ring is

(4.4.1) R [X0,i, . . . , Xi−1,i, Xi+1,i, . . . , Xn,i]Xj,i

= R
[

X0,i, . . . , Xi−1,i, Xi+1,i, . . . , Xn,i, X−1
j,i

]
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(2) and, as a subset of An
R,j,

(4.4.2) R
[
X0,j, . . . , Xj−1,j, Xj+1,j, . . . , Xn,j

]
Xi,j

= R
[

X0,j, . . . , Xj−1,j, Xj+1,j, . . . , Xn,j, X−1
i,j

]
We identify these two rings via

Xi,j = X−1
j,i

Xk,j = Xk,i/Xj,i for 0 ≤ k ≤ n, k 6= i, j(4.4.3)

If R is a field like R or C, this corresponds to the usual definition (defini-
tion 1.2.2 on page 4) where we map a point

[x0: · · · : xn] ∈ CPn = P(Cn+1)

with xj 6= 0 via
xi/xj 7→ Xi,j for 0 ≤ i ≤ n, i 6= j

Equation 4.4.3 implies that these assignments are consistent on overlaps be-
tween the An

R,i.
The result of this gluing operation is a scheme, RPn, and the maps,

qi: R[X0,i, . . . , Xi−1,i, Xi+1,i, . . . , Xn,i](4.4.4)

↪→R[X0, . . . , Xn][X−1
i ]

defined on open sets, D(Xi) = Spec R[X0, . . . , Xn][X−1
i ] by

(4.4.5) Xj,i 7→ Xj · X−1
i

induce maps, pi = Spec qi, that patch together to define a regular map

(4.4.6) p: Spec R[X0, . . . , Xn]→ RPn

REMARK. If R = k, a field, then V = An+1 = Spec R[X0, . . . , Xn] is a vector-
space (at least if you ignore the subvarieties corresponding to non-maximal
prime ideals) and kPn = P(V) is a projective space. We will sometimes want
to use the notation P(V) to emphasize the fact that it is a functor of V (with
respect to injective morphisms of vector spaces).

Now we will examine the regular functions on RPn as defined above. The
image of each qi consists of rational functions a(Xi)/b(Xi) with the property
that

a(r0, . . . , rn)

b(r0, . . . , rn)
=

a(tr0, . . . , trn)

b(tr0, . . . , trn)

for any r0, . . . , rn ∈ R and any t 6= 0 ∈ R. This, of course, is compatible with the
classic idea (see definition 1.2.2 on page 4) that RPn is the quotient of An+1 =
Spec R[X0, . . . , Xn] by the equivalence relation

(r0, . . . , rn) ∼ (tr0, . . . , trn)

for all nonzero t ∈ R.

We have

PROPOSITION 4.4.9. All regular functions on RPn are elements of R (i.e., con-
stants).
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REMARK. This, incidentally, shows that RPn is not isomorphic to any affine
scheme.

The classical proof of this result shows that regular functions on RPn are
polynomials f (X0, . . . , Xn) with the property that

f (r0, . . . , rn) = f (t · r0, . . . , t · rn)

for all r0, . . . , rn, t ∈ R with t 6= 1 — so f must be a constant. In scheme theory,
the question arises

What do we mean by “ f (r0, . . . , rn)?”
If we mean, “evaluate f at a prime ideal (as in definition 4.2.3 on page 161)”
then a polynomial with nilpotent coefficients evaluates to 0, but still fails to be a
regular function on RPn.

PROOF. Consider the commutative diagram

(4.4.7) D(Xi)

pi

��

p P

��

An+1
R

p
��

An
i_�

��

RPn

where D(Xi) is the open set of An+1
R that maps to An

i ⊂ RPn and pi = Spec qi
where qi is defined in equation 4.4.5 on the facing page and p is defined in
equation 4.4.6 on the preceding page.

Let H be the ring of regular functions on RPn and let Ri be that of An
i (as

given in equations 4.4.1, 4.4.2 and 4.4.3 on the facing page). If ri is induced by
the inclusion An

i ↪→ RPn, then

ri: H → Ri

is injective for i = 0, . . . , n because An
i ∩An

j is dense in An
i and An

j for any i, j:
If the restriction of a regular function to any of the An

i vanishes, the function
must vanish.

Since the qi are also injective, we get

H =
n⋂

i=0

im qi ⊂ R[X0, . . . , Xn][X−1
0 , . . . , X−1

n ]

Functions in this intersection extend to all open sets D(Xi), hence to all of An+1
R ,

which means they must be in the image of

R[X0, . . . , Xn] ↪→ R[X0, . . . , Xn][X−1
0 , . . . , X−1

n ]

Equation 4.4.5 on the preceding page shows that the image of qi is polynomials
in Xj/Xi. The only such polynomials that can be in the image of R[X0, . . . , Xn]
are constants. �

We can also compute the sheaf of meromorphic functions:
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EXAMPLE 4.4.10. If R is an integral domain, KRPn (see definition 4.3.21 on
page 175) and K∗RPn are the constant sheaves given by

KRPn = F(X1, . . . , Xn)

K∗RPn = F(X1, . . . , Xn)
×

where F(X1, . . . , Xn) is a field and F(X1, . . . , Xn)
× = F(X1, . . . , Xn) \ {0} is an

abelian group (under multiplication) — see definition A.2.1 on page 370.
The simplest approach is to note that RPn is irreducible so that each open

set An
i ⊂ RPn is dense. In the notation of definition 4.4.8 on page 183, we have

KRPn(An
i ) = F (X0,i, . . . , Xi−1,i, Xi+1,i, . . . , Xn,i)

— since the stalks ORPn ,x are integral domains for all x ∈ RPn. It follows that
the extension to all of RPn is also a constant sheaf.

If we want to work this out in minute detail, note that the identifications
in equations 4.4.3 on page 184 give isomorphisms of fields — where X0, . . . , Xn
are homogeneous coordinates of RPn Now we complete this presheaf to form
a sheaf. Let

T ⊂ F(X0, . . . , Xn)

be the subfield of functions.
f (X0, . . . , Xn)

g(X0, . . . , Xn)
∈ F(X0, . . . , Xn)

where f and g are homogeneous of the same degree. Setting Xi,j = Xi/Xj
induces isomorphisms

T → F (X0,i, . . . , Xi−1,i, Xi+1,i, . . . , Xn,i)

for i = 0, . . . , n. It follows that the completion process (see lemma B.2.3 on
page 480) for the presheaf adds these functions to KRPn(RPn) and the sheaf is
given by

KRPn(RPn) = T ⊂ F(X0, . . . , Xn)

— the subfield generated by quotients of homogeneous polynomials of the
same degree (it is a simple exercise to see that these are closed under addition
and multiplication). The restriction maps

ri:KRPn(RPn)→ KRPn(An
i )

are all isomorphisms. It follows that KRPn is isomorphic to the constant sheaf
T.

�

The reader might wonder whether there is a version of the Spec-functor that de-
fines schemes like RPn in a compact form. This is indeed the case — the corresponding
functor is called Proj. To present it, we need a definition

DEFINITION 4.4.11. Given a graded ring, G, (see section A.4.5 on page 426 n > 0,
define the nth irrelevant ideal to be

G+
n =

∞⊕
j=n

Gj

Morphisms of graded rings are required to respect the grading.
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REMARK. If we give the polynomial algebra k[X0, . . . , Xt] a grading by setting the
grade of each of the Xi to 1, proposition A.4.60 on page 428 implies that kH [V] of any
projective variety, V, is graded.

Now we are ready to define the Proj-construction, introduced by Grothendiek in
section 5 of [62]:

DEFINITION 4.4.12. If R is a graded ring, then Proj R ⊂ Spec R whose points are
prime homogeneous ideals that do not contain R+

i for any i > 0. The topology of Proj R is
induced by that of Spec R. In other words, a basis for the open sets is

D(x) = {p ∈ Proj R|x /∈ p}
for all homogeneous x ∈ R.

REMARK. See theorem 5.1.4 on page 214 for some motivation for the condition that
ideals cannot contain R+

i for any i.

DEFINITION 4.4.13. If R is a graded ring, f ∈ R is a homogeneous element, and
r ∈ R is another homogeneous element, then R f is a graded ring where the degree of

r
f t ∈ R f

is defined to be deg r − t · deg f . Define R( f ) to be subring consisting of the degree-0
elements of R f .

With this in mind, we can prove that Proj R is a scheme:

PROPOSITION 4.4.14. If R is a graded ring and x ∈ R is a homogeneous element, then the
canonical maps

R→ Rx ← R(x)

induce a homeomorphism
D(x)→ Spec R(x)

It follows that Proj R is a scheme.

PROOF. The points of D(x) consist of graded primes that do not contain x, i.e. ho-
mogeneous primes of Rx. We define the mapping

D(x)→ Spec R(x)

by sending a prime ideal p of D(x) to (p · Rx) ∩ R(x) which is also a prime ideal repre-
senting a point of Spec R(x). We construct an inverse: If p ⊂ R(x) is an ideal, then p · Rx
is a homogeneous prime of Rx and (p · Rx) ∩ R(x) = p.

If u, v ∈ Rx, then u′ = udeg(x)/xdeg(u) and v′ = vdeg(x)/xdeg(v) will both be in R(x).
If u · v ∈ pRx then u′ · v′ ∈ p from which we conclude that u′ ∈ p or v′ ∈ p, leading to
the conclusion that udeg(x) ∈ p · Rx or vdeg(x) ∈ p · Rx. It follows that

√
p · Rx ⊂ Rx is

prime and √
p · Rx ∩ R(x) = p

So there is a 1-1 correspondence between points of D(x) and those of Spec R(x).
To see that this map is a homeomorphism, note that the image of the open set D(g)

is the open set D(gdeg(x)/xdeg(g)). The final statement follows from the fact that open
sets D(xi) cover Proj R so it has a cover by open affines. �

REMARK. If a ⊂ k[X0, . . . , Xn] is a homogeneous ideal with

R =
k[X0, . . . , Xn]

a

the maximal homogeneous ideals of Proj R correspond to geometric points of P(a).
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Like Spec R, Proj R has generic points for every irreducible subvariety.

DEFINITION 4.4.15. If R is a graded ring with homogeneous ideal a ⊂ R, P(a) =
{p ⊂ Proj R|a 6⊂ p} ⊂ Proj R is the subscheme defined by the ideal a. The projection
R→ R/a induces a homeomorphism

P(a)→ Proj(R/a)

REMARK. Compare this to the similar statement for Spec R in definition 4.3.1 on
page 166. It will turn out that all closed subschemes of Proj R arise in this way — see
corollary 5.3.19 on page 235.

EXERCISES.

1. Show that, if R is a ring, then

RPn = Proj R[X0, . . . , Xn]

as schemes, where each of the Xi are defined to have degree 1.

2. Show that Proj R = ∅ if and only if all elements of R+ are nilpotent.

4.4.2. “Varieties” of schemes. Many of the affine schemes in section 4.4.2
can be “globalized” to define types of general schemes. This is true if the prop-
erty in question is “local” — i.e. the local definition must remain valid for affine
schemes.

• If the open affines of V are reduced affine schemes, then V is said to be
reduced. This makes sense because the nilpotent elements of a ring, R,
inject into all of its localizations so Spec R is reduced if and only if all
of its open affines are reduced.
• If the open affines of V are normal affine schemes, then V is said to

be normal. This makes sense because normality is a local property
— see A.4.13 on page 407. The usual definition states that a scheme
(V,OV) is normal if every stalk, OV,x, of the structure-sheaf is a nor-
mal ring. .
• If the open affines of V are noetherian, V is said to be a noetherian

scheme.
• If the open affines of V are Jacobson (see page 179), V is called a Jacob-

son scheme. The set of closed points is dense in V and in every closed
subscheme.

Varieties are examples of reduced, noetherian schemes. On an irreducible noe-
therian scheme, if f is a global regular function that is not a constant, theo-
rem 2.8.29 on page 108 implies that the solution-set of the equation f = 0 is
a subscheme of codimension 1 (since its intersection with all open affines is of
codimension 1).
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4.4.3. Quasi-coherent sheaves. Now we will discuss subschemes of a
scheme following Grothendiek’s treatment in [61]. We need a weaker version
of the concept of coherent module (definition 3.5.5 on page 152):

DEFINITION 4.4.16. Let (V,OV) be a ringed space. A module, S, overOV is
quasi-coherent if there exists an cover V =

⋃
Uα by open affines such that there

is a right-exact sequence

(4.4.8) (OV |Uα)
mα → (OV |Uα)

nα → S|Uα → 0

for each Uα, where mα, nα are integers that may be infinite. It is said to be
coherent if the nα and mα are all finite.

REMARK. This extends the definition of coherent sheaf (see definition 3.5.5
on page 152) to non-affine varieties and schemes. It is not hard to see that the
sheaf of sections of a vector bundle over a scheme is coherent.

Quasi-coherence is like coherence that is only required to apply over open
sets and for which the finite-generation requirement is dropped.

As remarked earlier, lemma 3.5.6 on page 152 implies that coherent mod-
ules on affine schemes are of the form A(M) (see definition 3.5.1 on page 151)
for M = OV(V) so “global behavior determines local behavior”. With coher-
ence or quasi-coherence on general schemes, behavior over neighborhoods deter-
mines behavior on smaller neighborhoods.

The proof of lemma 3.5.6 on page 152 can easily be adapted to show that,
for a coherent or quasi-coherent module over OV and each α, S|Uα = A(Mα)
where Mα = S(Uα) is a module over the ring OV(Uα). The main distinction
between coherent and quasi-coherent modules is that coherent ones are finitely
generated.

The definition of pullbacks of coherent sheaves (see definition 3.5.13 on
page 156) easily generalizes to quasi-coherent sheaves on quasi-compact
schemes: simply pull back the restrictions to open affines.

The incoherent module in equation 3.5.1 on page 153 also fails to be quasi-
coherent.

LEMMA 4.4.17. Let V = Spec R be an affine scheme and let M be a quasi-
coherent module over OV . If s ∈ R, let D(s) be the open set (as in definition 4.2.1 on
page 161).

(1) If x ∈M (V) has the property that x|D(s) = pV
D(r)(x) = 0, then sn · x = 0

for some n (compare with lemma 3.5.7 on page 153).
(2) If x ∈ M (D(s)), then for some n ≥ 0, sn · x = pV

D(r)(y) = y|D(s) for
some y ∈M (V).

PROOF. Since V is affine, the D(s) form a basis for its topology and D(s) =
Spec Rs (see proposition 4.3.6 on page 168). It follows that there exists a finite
open cover of V by open affines D(si) and that

M |D(si) = A(Mi)

for some module Mi over Rsi . If x ∈M (V) then x gives rise to elements xi ∈ Mi
over D(si). If x|D(s) = 0, then the image of xi in D(s) ∩ D(si) = D(s · si) is 0.
But

Mi = M (D(si))→M (D(s · si)) = (Mi)s
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is just the localization map. If the image of xi in (Mi)s vanishes, then sni · x = 0
for some si (see the remark following definition A.1.87 on page 368). If we set
n = max({ni}). Then sn · xi = 0 for all i and sn · x restricts to 0 in all of the
D(si) — which makes it 0, by the separation-property of a sheaf.

If x ∈ M (D(s)), then x defines images in each M (D(s · si)) = (Mi)s. It
follows that there exists elements xi ∈ Mi whose image in (Mi)s coincides with
sni · x — set n = max({ni}). On every overlap D(si) ∩ D(sj) = D(si · sj) the
elements xi = sn · x must agree on D(s) so the differences xi − xi define an ele-
ment of M (D(si · si)) that vanishes on D(s)∩D(si)∩D(sj). The first statement
above (applied to the affine sheaf D(si) = Spec Rsi ) implies that there exists an
mi such that

smi (xi − xj) = 0

If we set m = max({mi}), we get that the sm · xi patch together to form a global
section — i.e. there exists a y ∈M (V) such that y|D(si) = sm · xi = sm+n · s. �

This immediately implies that, over affine schemes, quasi-coherent sheaves
are essentially coherent:

COROLLARY 4.4.18. Let F be a quasi-coherent sheaf over a scheme V = Spec R.
Then there exists an R-module M such that

F = A(M)

— see definition 3.5.1 on page 151. If R is noetherian and F (V) is finitely generated,
F is coherent.

PROOF. Set M = F (V) — then the universal property of the A(∗) con-
struction (proposition 3.5.4 on page 152, which also applies to affine schemes)
there exists a homomorphism

(4.4.9) u:A(M)→ F

As before, there exists a finite open cover {D(si)} of V with the property that

F |D(si) = A(Mi)

The second statement of lemma 4.4.17 on the previous page implies that Mi =
Msi , i.e. that any element x ∈ Mi has the property that sn

i · x ∈ M — so x =
m/sn

i and u|D(si) in 4.4.9 is an isomorphism. Since the D(si) cover V it follows
that u is an isomorphism. �

�

We also get a version of lemma 3.5.8 on page 154, regarding the behavior of coherent
sheaves:

LEMMA 4.4.19. If F is a coherent sheaf on an irreducible noetherian, reduced scheme, V,
there exists an open dense set W ⊂ V such that F |W is free.

PROOF. Since V is irreducible, every open set is dense. It suffices to prove the
statement for one of the open affines, so we may assume V = Spec R for some reduced
noetherian ring, R. At this point, the proof of lemma 3.5.8 on page 154 goes through
unchanged. �

Indeed, coherent sheaves are free except for proper subsets of the space where they
are defined:
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PROPOSITION 4.4.20. Let V be an irreducible noetherian reduced scheme. If F is a co-
herent sheaf over V then there exists a coherent sheaf, G such that Or

V ⊂ G for some r and a
homomorphism

g: F → G

such that the supports of the coherent sheaves, ker g and G /Or
V lie on closed proper subschemes

of V.

PROOF. Let W be as in lemma 4.4.19 on the preceding page and let

f : F |W → Or
V |W

be the isomorphism constructed there. Now we define G by

G (U) = ( f |U ∩W) ◦ pU
U∩WF (U) + pU

U∩WOr
V(U)

where pU
U∩W are the restriction maps of their respective sheaves (see definition B.1.1 on

page 475). Both summands are subgroups of Or
V(U ∩W) and we can define an action

of r ∈ OV(U) on x ∈ G (U) by pU
U∩W(r) · x Since both summands are finitely generated

modules over OV(U), the same is true of the sum. We define the map g: F → G by

g = ( f |U ∩W) ◦ pU
U∩W : F (U)→ G (U)

We claim that OV(U)r is a subsheaf of G (U). This follows from the fact that the
maps pU

U∩W are injective — which follows from the fact that OV(U) is an integral do-
main (because V is irreducible). Furthermore g|W is an isomorphism to Or

V |W so that
ker g|W = 0 and G /Or

V |W = 0 so their supports are on proper subschemes of V \W. �

4.4.4. Subschemes. Now we can define a closed subscheme of a scheme —
this is a direct generalization of definition 4.3.1 on page 166 with some added
complexity due to a scheme being patched together from affine schemes.

DEFINITION 4.4.21. Let (V,OV) be a scheme and let I ⊂ OV be a quasi-
coherent subsheaf of ideals. Suppose

V =
⋃

Uα

be an open cover such that each Uα is an open affine of V, and I|Uα satisfies an
equation like 4.4.8 on page 189. Then the closed subscheme, S, defined by I is the
union of the closed subschemes

Zα ⊂ Uα

defined by the ideals I(Uα) ⊂ OV(Uα) (see definition 4.3.1 on page 166) with
structure sheaf OS = OV/I.

REMARK. We have merely provided a global construct (ideal sheaf ) that
“localizes” to ideals over local coordinate rings. The sheaf conditions (see defi-
nition B.1.1 on page 475) ensure that the {Zα} all patch together properly.

It is reassuring that this is consistent with definition 4.3.1 on page 166:

PROPOSITION 4.4.22. If V ⊂ W = Spec R is a closed subscheme of an affine
scheme, then V = Spec S is affine and the canonical map

f : R→ S

is surjective.
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PROOF. If I ⊂ OW is a quasi-coherent ideal defining V, then
corollary 4.4.18 on page 190 implies that

I = A(J)

(see definition 3.5.1 on page 151) for an ideal J ⊂ R, V = W(J), and S =
R/J. �

Open subschemes are easier to define because open sets are “large”:
If (V,OV) is a scheme and U ⊂ V is an open set, then
(U,OV |U) is an open subscheme of (V,OV).

We come to general subschemes of a scheme:

DEFINITION. A sub-ringed space (Y,OY) of a scheme (X,OX) is a sub-
scheme if:

(1) It is locally closed in X,
(2) If U is the largest open set in X such that Y ⊂ U is closed (for instance,

U = X \ (Ȳ \ Y), where Ȳ is the closure of Y in X), then (Y,OY) is the
closed subscheme of (U,OX |U) defined by a quasi-coherent sheaf of
ideals I ⊂ OU = OX |U.

REMARK. Note that if Y is closed, U = X. Given a subscheme (Y,OY) of a
scheme (X,OX), we have a canonical inclusion j: Y ↪→ X and j∗(OX) = OX |Y.
This comes with a canonical map

j∗(OX)→ OX/I

which makes j a morphism of ringed spaces (see definition B.3.1 on page 482).
Note that our definition of subscheme is transitive: subschemes of sub-

schemes are subschemes.

Now that we know what a subscheme is, we can define immersions

DEFINITION 4.4.23. A morphism of schemes f : (V,OV) → (W,OW) is an
immersion if there exists a subscheme (X,OX) ⊂ (W,OW) and an isomorphism
g: (V,OV)→ (X,OX) that makes the diagram

(V,OV)
f
//

g
!!

(W,OW)

(X,OX)

j

OO

commute, where j: (X,OX)→ (W,OW) is the canonical inclusion.

REMARK. Again, we point out that this use of the word “immersion” is pe-
culiar to algebraic geometry. In differential geometry, this would be called an
embedding and the term “immersion” (which also exists in differential geome-
try) means something completely different.
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EXERCISES.

3. If (Y,OY) and (X,OX) are ringed spaces with Y ⊂ X, and there exists
an open cover

X =
⋃

Uα

such that (Y ∩Uα,OY|Y ∩Uα) is a closed subscheme of (U,OX |U), show that
(Y,OY) is a (closed) subscheme of (X,OX).

4. If R is an integral domain, compute the sheaf of regular functions on
RPn in a manner similar to that of example 4.3.15 on page 172.

5. If F is a quasi-coherent sheaf on a scheme, V, and U ⊂ V is an affine
open set, show that

i∗(F |U)

is also quasi-coherent, where i∗ is the direct image sheaf (see exercise 3 on
page 478).

6. Show that, if f : X → Y is a closed immersions of schemes and F is a
coherent sheaf on X, then f∗F is quasi-coherent on Y.

7. if X is a noetherian scheme, its Grothendiek group — denoted K(X) — is
defined to be the free abelian group generated by coherent sheaves F defined
on X subject to the relations

[F2] = [F1] + [F3]

whenever there exists a short exact sequence

0→ F1 → F2 → F3 → 0

Here [F ] denotes the element of K(X) defined by a coherent sheaf F .
Show that K(A1) = Z.

8. Let V = Spec R be an affine scheme and let W ⊂ V be a closed sub-
scheme defined by s = 0 for some s ∈ R. if M is a coherent sheaf on V whose
support lies in W show that there exists a filtration

0 ⊂M1 ⊂ · · · ⊂Mn = M

such that
Mi+1

Mi

is an OW-module for all i.
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4.5. Products

4.5.1. Construction by patching. Now we define products of general vari-
eties and schemes. Products of affine schemes were defined in section 4.3.3 on
page 176 and were expressed in terms of tensor products, in definition 4.3.23
on page 176. We would like to have a category-theoretic product like that for
affine schemes, but it is not obvious that such objects exist. Unfortunately, we
have no algebraic functor like the coordinate ring that faithfully models all of a
scheme’s behavior.

We will work with schemes over a fixed scheme, T — see definition 4.4.4
on page 180 — and follow Grothendiek’s original proof of the existence of
products of schemes in [61]. This involves a somewhat cumbersome process
of patching together products of open affines.

We first consider what properties a product would have if it existed.

LEMMA 4.5.1. Suppose T′ ⊂ T is a open affine subscheme and X and Y are
schemes over T′. Then

X×T′ Y = X×T Y
if they exist.

REMARK. Note that X and Y are also schemes over T. This clarifies the role
of T in the product: it “selects” acceptable morphisms to X and Y.

PROOF. There exist canonical maps

X α−→ T′ ↪→ T

Y
β−→ T′ ↪→ T

Suppose

f : A → X
g: A → Y

are T-morphisms, i.e., they make the diagram

A
f
//

g

��

X

��

Y // T

commute. Since the images of X and Y actually lie within T′ and T′ injects into
T, the diagram,

A
f
//

g

��

X

��

Y // T′

also commutes and f and g automatically become T′-morphisms as well. It fol-
lows that both products will have the same universal category-theoretic prop-
erties, so they will be isomorphic (if either of them exists). �
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Next, we show that the property of being a product is inherited by open
sets:

LEMMA 4.5.2. Suppose X and Y are schemes over T and suppose Z is a fibered
product. In other words suppose there exist T-morphisms

Z
p1−→ X

Z
p2−→ Y

and whenever there are T-morphisms

f : A → X
g: A → Y

that make the solid arrows in the diagram

A
f

��

g

����

X Zp1
oo

p2
// Y

commute, there exists a unique T-morphism A → Z represented by the dotted arrow,
that makes the whole diagram commute.

If U ⊂ A, and V ⊂ B are open sets, then

p−1
1 (U) ∩ p−1

2 (V) = U ×T V

PROOF. This is just a matter of verifying that p−1
1 (U) ∩ p−1

2 (V) has the
same universal property as U ×T V: Any object A with T-morphisms

u: A → U
v: A → V

will also have T-morphisms to X and Y by composing with the inclusions. Con-
sequently, A there will exist a unique T-morphism to Z and its image will lie in
p−1

1 (U) ∩ p−1
2 (V). �

Next, we prove a kind of converse: if a scheme “locally behaves” like a
product, then it is a product.

LEMMA 4.5.3. Let X, Y, Z be schemes over T, with T-morphisms

Z
p1−→ X

Z
p2−→ Y

and suppose

X =
⋃

i
Ui

Y =
⋃

j
Vj

are open covers. If
p−1

1 (Ui) ∩ p−1
2 (Vj) = Ui ×T Vj ⊂ Z
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for all i, j, then
Z = X×T Y

PROOF. Suppose we have T-morphisms

f : A → X
g: A → Y

that make the diagram

A
f

��

g

��

X Zp1
oo

p2
// Y

and set
Zi,j = p−1

1 (Ui) ∩ p−1
2 (Vj) ⊂ Z

Wi,j = f−1(Ui) ∩ g−1(Vj) ⊂ A

for all i, j. Then

A =
⋃
i,j

Wi,j

is an open covering with f (Wi,j) ⊂ Ui and g(Wi,j) ⊂ Vj. It follows that there
exists a unique T-morphism

ϕi,j: Wi,j → Ui ×T Vj = Zi,j = p−1
1 (Ui) ∩ p−1

2 (Vj)

that makes the diagram

Wi,j

f |Wi,j

~~

g|Wi,j

  

ϕi,j

��

Ui Zi,jp1|Zi,j

oo

p2|Zi,j

// Vj

commute.
We claim that the ϕi,j are compatible where the Wi,j overlap: If W ⊂ Wi,j ∩

Wi′ ,j′ is an open set, then lemma 4.5.2 on the preceding page implies that

Zi,j ∩ Zi′ ,j′ = (Ui ∩Ui′)×T (Vj ∩Vj′)

so that there exists a unique T-morphism

W → Zi,j ∩ Zi′ ,j′ ⊂ Z

Its uniqueness implies that it must coincide with the morphisms that result
from including W ⊂ Wi,j or W ⊂ Wi′ ,j′ and then mapping via ϕi,j or ϕi′ ,j′ ,
respectively.

It follows that the {ϕi,j} patch together to define a T-morphism

Φ: A→ Z
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that makes the diagram

A
f

��

g

��

Φ
��

X Zp1
oo

p2
// Y

commute. It is unique because its restriction to each of the Wi,j is unique. �

Now we are ready to actually construct products. We do this in two steps:

LEMMA 4.5.4. If T is an affine scheme and X, Y are schemes over T, then the
product

X×T Y

exists.

PROOF. Suppose

X =
⋃

i
Ui

Y =
⋃

j
Vj

are decompositions into unions of open affines. There are gluing maps con-
necting the Ui to each other and the Vj to each other in such a way that the
application of corollary 4.4.5 on page 181 would reconstruct X and Y. Further-
more, the Ui and Vj are affine schemes over T — they inherit this from X and
Y.

So we construct all of the products

Ui ×T Vj

and patch them together via corollary 4.4.5 on page 181. It is a tedious exercise
that all of the induced patching maps of products are compatible with each
other. The result is a scheme, Z, that satisfies the hypotheses of lemma 4.5.3 on
page 195 so that

Z = X×T Y

�

We are finally ready to present Grothendiek’s construction:

THEOREM 4.5.5. Let T be a scheme and let X and Y be schemes over T. Then the
(fibered) product

X×T Y

exists and has the universal property:
Given any morphisms of schemes over T

f : U → X
g: U → Y
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making the solid arrows in the diagram

(4.5.1) X

$$
U

f

::

g
$$

// X×T Y

p1

OO

p2

��

// T

Y

::

commute, there exists a unique dotted arrow making the whole diagram commute.

PROOF. If T is an affine scheme, we are done by the previous result. Con-
sequently, suppose that T is not affine.

Since X and Y are schemes over T, there exist canonical maps

X α−→ T

Y
β−→ T

If

T =
⋃

i
Ti

is a decomposition into open affines, set

Xi = α−1(Ti)

Yi = β−1(Ti)

and form the products

Xi ×Ti Yi

for all i, using lemma 4.5.4 on the preceding page. Lemma 4.5.1 on page 194
implies that

Xi ×Ti Yi = Xi ×T Yi

We finish the construction by gluing together all of the Xi ×T Yi via corol-
lary 4.4.5 on page 181. �

REMARK. The fiber over a point of a morphism of varieties over an alge-
braically closed field, k, is

V ×W Spec k

4.5.2. Fibers of maps revisited. Section 2.5.1 on page 74 studied fibers of
maps in a very limited setting. For instance, it did not consider fibers over open
sets or general subvarieties.

PROPOSITION 4.5.6. If j: U ↪→ V is the inclusion of any subscheme, and f : W →
V is a regular map, the fiber of f over U is the fibered product

f−1(U) = U ×V W
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PROOF. This is exactly like the solution to exercise 8 on page 178: We con-
sider the universal properties that f−1(U) and the fibered product share. If X
is any scheme and we have maps

a: X → U
b: X → W

that make a diagram like equation 4.5.1 on the preceding page commute, then
the image of b must map to U under f and im b ⊂ f−1(U). It follows that the
regular maps a and b induce a unique map X → f−1(U). This is the universal
property of the fibered product. �

Definition 4.3.23 on page 176 and the discussion following it implies that

COROLLARY 4.5.7. If Spec T ↪→ Spec S is the inclusion of a subscheme and
f : Spec R→ Spec S is a regular map then

f−1(Spec T) = Spec (T ⊗S R)

In analogy with lemma 2.5.8 on page 75, we have

LEMMA 4.5.8. Let f : Spec S → Spec R is a morphism of affine schemes and let
X ⊂ Spec R be a closed subscheme corresponding to the ideal x. Then f−1(X) is the
closed subscheme of Spec S corresponding to the ideal

f ∗(x) · S ⊂ S

and is the affine scheme

Z = Spec
(

S
f ∗(x) · S

)
REMARK. In many cases the geometric fiber, defined in section 4.6.4 on

page 209 is more geometrically relevant than this.

PROOF. Simply note that X is defined by ideal r, and its coordinate ring is
R/r, and

S⊗R

(
R
r

)
=

S
f ∗(r) · S

�

EXERCISES.

1. Compute the fibers of the maps:
a. Spec C→ Spec Z

b. Spec Z[X]→ Spec Z
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4.5.3. Vector-bundles revisited. We begin this section by asking the ques-
tion:

Is the total space of a vector-bundle over an affine scheme also
an affine scheme? And, if so, what is its coordinate ring?

The following result answers both questions:

THEOREM 4.5.9. Let ξ be a vector-bundle over an affine scheme V = Spec R
corresponding to the projective module, M, over R and let M∗ = homR(M, R) be the
dual (see definition A.5.64 on page 463). If the fibers of ξ are vector-spaces over the
field, k, assume that V is a scheme over k as well.

Then the total space of ξ is the affine scheme SpecS(M∗) — defined by the sym-
metric algebra, S(M∗) (see definition A.6.4 on page 466). The morphism

f : SpecS(M∗)→ Spec R

corresponding to the inclusion

R = S(M∗)0 ↪→ SM∗

is the projection from the total space to the base.

PROOF. Since V is a scheme over k, we have a homomorphism of rings
k → R making R an algebra over k. Assume the rank of ξ is t. A global section
of f : SpecS(M∗)→ Spec R corresponds (uniquely!) to an algebra homomorph-
ism

S(M∗)→ R

that splits the inclusion R → S(M∗). Proposition A.6.6 on page 467
shows that such homomorphisms are in a 1-1 correspondence with
module-homomorphisms

M∗ → R

— i.e., elements of homR(M∗, R) = M∗∗ = M. So — theorem 3.5.9 on page 154
implies that, if f is a vector-bundle it is isomorphic to ξ. So see that it is a vector-
bundle, we must show that its sheaf of sections is coherent — i.e., is of the form
A(M) (see proposition C.2.5 on page 496 and lemma 3.5.6 on page 152).

If {s1, . . . , st} ∈ R are a set elements, S ⊂ R is the multiplicative set gener-
ated by the si and

U =
t⋂

i=1

D(si) ⊂ Spec R

is an open set (see definition 4.2.1 on page 161 and proposition 4.3.6 on
page 168), then U = Spec S−1R and the fiber

f−1(U) = Spec(SM∗ ⊗R S−1R) = Spec(S(M∗ ⊗R S−1R))

(by proposition A.6.10 on page 469). As before, the module of sections of this is
in a 1-1 correspondence with homomorphisms

S(M∗ ⊗R S−1R)→ S−1R

i.e., elements of
homS−1R(M∗ ⊗R S−1R, S−1R)
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Consider the natural (see definition A.5.10 on page 436) map

M⊗R S−1R → homS−1R(M∗ ⊗R S−1R, S−1R)

m⊗ s−1 7→ (µ⊗ t−1 7→ µ(m) · s−1t−1)

for µ ∈ M∗ and s, t ∈ S. We claim that this is an isomorphism. To see that note
that:

(1) it is (trivially) true if M is free
(2) all of the constructions in this expression (i.e. homR and ⊗R) preserve

finite direct sums,
(3) projective modules are direct summands of free modules.

The conclusion follows. �

4.6. Varieties and separated schemes

One might think that, since schemes are the result of gluing together affine
schemes, they would automatically satisfy a separation condition like that in
lemma 4.3.25 on page 177. Unfortunately, there are clever ways (see exam-
ple 4.4.7 on page 183) to glues affines together to violate this condition, so we
must impose it independently.

General varieties and schemes are not determined by their coordinate rings,
as example 4.4.8 on page 183 shows. One needs the full structure of a ringed
space to define them.

DEFINITION 4.6.1. Let X be a scheme over another scheme, T. Then T is a
separated scheme if the diagonal map

∆: T → T ×Z T

is a closed immersion. If this is true, then X is a separated scheme over T if the
diagonal map

∆T : X → X×T X
is a closed immersion. If X is a prevariety and

∆k: X → X×k X

is a closed immersion, then X is called a variety.

EXAMPLE 4.6.2. Compare exercise 6 on page 90. The open subspace U =
A2 \ {(0, 0)} ⊂ A2 becomes a variety with the sheaf OA2 |U. It cannot be affine
since its coordinate ring is B = k[X, Y] and Specm B = A2 6= U.

The reader may wonder whether there exist algebraic ways of distinguish-
ing U in the example above and A2 using the sheaf of regular functions. The
answer is a resounding yes, but involves more advanced methods — see exam-
ple D.3.19 on page 535

EXAMPLE 4.6.3. In example 4.4.7 on page 183, define a function on V to be
regular if its restriction to each Vi is regular. This makes V into a prevariety but
not a variety. It fails the separation axiom because the two maps

fi: A1 = U, V ↪→ V

agree exactly on A1 \ {0} which is not closed in A1.
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The following example shows what can go wrong on a non-separated
scheme:

EXAMPLE 4.6.4. This is a two-dimensional version of example 4.4.7 on
page 183. Simply take two copies of A2 and identify them everywhere except
at the origin:

V = A2
1 ∪A2

2/ ∼
where ∼ identifies (x, y) ∈ A2

1 with (x, y) ∈ A2
2 unless (x, y) = (0, 0). This is

just A2 with a doubled origin: (0, 0)1, (0, 0)2. Then A2
1, A2

2 ⊂ V are affine open
sets since

A2
i = V \ (0, 0)3−i

but
A2

1 ∩A2
2 = A2 \ (0, 0)

which is open but not affine — see exercise 6 on page 90. Exercise 1 on page 205
shows that this never happens on a separated scheme.

One important consequence of separation properties is that the graph of a
regular map is closed:

DEFINITION 4.6.5. Let f : V → W be a morphism of schemes. Define the
graph of f , denoted Γ f to be the fiber (see section 4.5.2 on page 198) of ∆(W)
under the morphism

( f × id): V ×W →W ×W

REMARK. The graph, Γ f , is also the image of (1, f ): V → V ×W.

The continuity (in the Zarisky sense) of a regular map immediately implies:

PROPOSITION 4.6.6. If W is separated or a variety, then the graph of any mor-
phism f : V →W is a closed subset of V ×W.

Corollary 4.3.20 on page 174 characterizes affine varieties as types of affine
schemes. We can generalize this to general varieties. We need the definition:

DEFINITION 4.6.7. If (S,OS) is a scheme over an algebraically closed field
k, S is said to be locally

• of finite type, for each open affine (U,OS|U), the ring OS(U) is a
finitely generated k-algebra.
• reduced, for each open affine (U,OS|U), the ring OS(U) is a reduced

k-algebra.

The following result shows that varieties are simply a type of scheme:

THEOREM 4.6.8. Let Vk denote the category of varieties over an algebraically
closed field, k, and let RS k denote the category of locally reduced, separated schemes
over k that are locally of finite type. Then there is an equivalence of categories

Vk ↔ RS k

PROOF. Every variety is a scheme and every morphism of varieties defines
a unique morphism of schemes. To go in the other direction, simply map a
scheme in RS k to its subset of closed points: the result is a separated union
of affine varieties, hence a variety. Every morphism of schemes induces mor-
phisms of open affines which induce morphisms of open affine varieties, hence
it induces a morphism of varieties. �
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The following result addresses an issue raised earlier (in theorem 2.5.27 on
page 85):

COROLLARY 4.6.9. If U ⊂ V is an open set in an algebraic variety, then U is
also an algebraic variety.

PROOF. The open set, U, is a subscheme of V (see definition 4.4.4 on
page 192) that also satisfies all of the requirements in theorem 4.6.8 on the
facing page for being a variety. �

Theorem 2.5.27 on page 85, applied to open affines, implies that:

PROPOSITION 4.6.10. Two varieties X and Y are birationally equivalent if and
only if there exist dense open subsets U ⊂ X and V ⊂ Y that are isomorphic.

The local definition of normal variety definition 3.4.1 on page 143 imme-
diately extends to general varieties, in which case the normalization of affine
varieties in section 3.4.2 on page 147 also extends to general varieties:

THEOREM 4.6.11. If V is a variety, there exists a normal variety, Vν, called the
normalization of V and a finite map

n(V): Vν → V

that is a birational equivalence.

PROOF. Simply apply theorem 3.4.10 on page 148 to open affines. The func-
toriality of the construction implies that the normalizations patch together to
form a normal general variety. �

This normalization also has the universal property listed in theorem 3.4.10
on page 148:

THEOREM 4.6.12. If W is any normal variety and

r: W → V

is a regular map, there exists a unique regular map r̄: W → Vν that makes the diagram

Vν

n(V)

��

W

r̄

;;

r
// V

commute.

PROOF. Let V be covered by open affines {Uα}, such that f−1(Uα) is an
open affine of W (see definition 4.4.3 on page 180 and the remark following it).
The conclusion follows from the commutativity of the diagrams

Uν
α

n(Uα)

��

f−1(Uα)

r̄α

77

r| f−1(Uα)

// Uα
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Exercise 1 on the next page implies that Uα ∩ Uβ and f−1(Uα) ∩ f−1(Uβ) are
also affine and the properties of normalization in theorem 3.4.10 on page 148
imply that (Uα ∩Uβ)

ν = Uν
α ∩Uν

β. The uniqueness of the maps r̄α implies that

they patch together on the intersections f−1(Uα) ∩ f−1(Uβ) to define a global
map. �

4.6.1. Maps to affine schemes. We defined morphisms of schemes in def-
inition 4.4.3 on page 180, and can simplify this in the special case where the
target of the map is affine. Although the coordinate ring of a general variety
doesn’t determine its geometric properties, it does determine how it can map
to an affine variety:

PROPOSITION 4.6.13. For a scheme V and a ring, R, there is a canonical one-to-
one correspondence

homScheme(V, Spec R)←→ hom(R,OV(V))

REMARK. A corresponding result is true for varieties.

PROOF. Let (V,OV) be a scheme and let β: R → OV(V) be a homomorph-
ism. If p ∈ V is a point, let U ⊂ V be an open affine containing p. Then
restriction defines a homomorphism

OV(V)→ OV(U)

and composing this with β gives a homomorphism

R→ OV(U)

which defines a map
U → Spec R

The compatibility conditions of a sheaf imply that these maps patch together to
give a map

V → Spec R
Conversely, from a regular map ϕ: V → Spec R we get a homomorphism

fα 7→ f ◦ ϕ: R → OV(Uα) for any open affine Uα. The compatibility conditions
on overlaps of open affines imply that

OV(Uα)

''

R

fα
;;

fβ ""

OV(Uα ∩Uβ)

OV(Uβ)

77

commutes for all α, β. The sheaf condition 5 of definition B.1.1 on page 475
implies that every such family of maps { fα} are the restrictions of a map

R→ OV(V)

�

This allows us to define a universal affine version of a scheme:
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DEFINITION 4.6.14. Let (V,OV) be a scheme. The identity map
1:OV(V)→ OV(V) corresponds to a morphism

aV : V → SpecOV(V)

where we call SpecOV(V) the affine image of V.

Since every homomorphism of rings factors through the identity map, we
get

PROPOSITION 4.6.15. If f : (V,OV) → A is a morphism from a scheme to an
affine scheme, then there exists a map f ′: SpecOV(V)→ A that makes the diagram

SpecOV(V)

f ′
��

V

aV
99

f
// A

commute.

For instance:

EXAMPLE. The coordinate ring of the projective space, kPn, consists of con-
stants (see example 4.4.8 on page 183), so its affine image is Spec k, which is a
single (closed) point. This implies that morphisms f : kPn → V, where V is
affine, send kPn to a single point.

EXERCISES.

1. If S is a separated scheme with two affine open sets A1 and A2, show
that A1 ∩ A2 is also affine. This suggests what can go “wrong” in non-separated
schemes.

2. Give an example of a non-separated scheme N with two affine open sets
A1 and A2 such that A1 ∩ A2 is not affine.

�

4.6.2. Differential forms. In this section, we will explore a subject touched upon
in section A.4.2 on page 411, namely that of differentials on a variety. Proposition 3.3.4
on page 121 shows that, on an affine variety, the set of differentials is the dual to the
tangent space at a point. We will assume that all varieties are smooth. For a glimpse of
what happens in the singular case, see [149].

DEFINITION 4.6.16. If V is an irreducible smooth affine variety over a field of char-
acteristic 0, define the sheaf of 1-forms via:

Ω1
V = A(Ωk[V]/k)

Theorem 3.5.12 on page 155 implies that this is a locally free sheaf defining the
cotangent bundle of V.
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PROPOSITION 4.6.17. If V is an irreducible n-dimensional variety over a field of charac-
teristic 0, and p ∈ V is a simple point (see definition 3.3.11 on page 125), then there exists an
open affine U ⊂ V containing p such that

(1) Γ(U, Ω1
V) = Ω1

V(U) is a free module over k[U] = OV(U) of rank equal to n, and
equal to Ωk[U]/k,

(2) Ωt
V(U) = Λt Ω1

V(U) is a free module over k[U] of rank equal to (n
t).

REMARK. If {u1, . . . , un} is a system of parameters at p then

{dui1 ∧ · · · ∧ duit}

with 1 ≤ i1 < · · · < it ≤ n, will be a free basis for Ωt
U over k[U].

There is some variation in notation: some authors use Ωi[U] for what we would
call Ωi

V(U) or use the same notion for the sheaf and global sections interchangeably —
leading to some ambiguity. We will always use sheaf-notation.

PROOF. Since p is simple, it is contained in V \ S, where S is the closed subvariety
of singular points. Without loss of generality, we can assume V is smooth and Ω1

V(V) =
Ωk[V]/k represents its cotangent bundle, ξ (see theorem 3.5.12 on page 155). Let U ⊂ V
be an open affine with the property that ξ|U is trivial. Then Ωk[U]/k = Ω1

V(U) is free on
a basis of differentials of local parameters. It is not hard to see that

Ωt
V = Λt Ω1

V

so proposition A.6.9 on page 469 implies the second statement. �

We extend this to general varieties via

DEFINITION 4.6.18. If V is a smooth n-dimensional variety over a field of charac-
teristic 0, the sheaves Ωi

V can be defined, on open affines, by

Ω1
V |U = A(Ωk[U]/k)

Ωi
V |U = Λi Ω1

V |U
where Ωk[U]/k is the Kähler module (see definition A.4.22 on page 412) over k[U] =

OV(U).

REMARK. The functorial properties of Kähler modules implies that regular maps
induce homomorphisms of the sheaves Ω1

V . It is a combination of pullback and “differ-
entiation.”

By restricting to open affines, we can get a conormal (see lemma A.4.27 on page 414)
sequence of sheaves:

LEMMA 4.6.19. If V is a smooth variety and j: W ↪→ V is a closed irreducible subvariety
defined by a quasi-coherent sheaf of ideals I ⊂ OV , then the sequence

I /I 2 → j∗Ω1
V

ϕ−→ Ω1
W → 0

is exact. If W is also smooth, we get an exact sequence

(4.6.1) 0→ I /I 2 → j∗Ω1
V

ϕ−→ Ω1
W → 0

REMARK. Since I is a module overOV , it follows that I /I 2 is naturally a module
over OV/I = OW .
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PROOF. The top exact sequence is just the conormal exact sequence on open affines
— noting that j∗Ω1

V = j−1Ω1
V ⊗OV OW (see definition 3.5.13 on page 156). If W is smooth

and p ∈ W is a point, then proposition 4.6.17 on the preceding page implies that, in a
neighborhood, U, of p, ker ϕ locally free of rank dim V − dim W = r. It follows that
there exist elements x1, . . . , xr ∈ I (U) such that dx1, . . . , dxr generate ker ϕ. If I ′ ⊆ I
is the ideal sheaf on U generated by x1, . . . , xr and W ′ ⊇ W is the subvariety defined by
I ′, then

0→ I ′/(I ′)2 → Ω1
V ⊗OV OW ′

ϕ−→ Ω1
W ′ → 0

is exact by construction (at least on U). Since W ′ is defined by the vanishing of r equa-
tions, dim W ′ ≥ dim V − r = dim W (by theorem 2.8.29 on page 108). Considering the
stalks at any point q of W ′ ∩U, we get an exact sequence

0→ I ′/(I ′)2 = kr → Ω1
V ⊗OV OW ′ = kdim V ϕ−→ Ω1

W ′ = kdim W ′ → 0

which implies that dim W ′ = dim W, so that W ′ = W and I ′ = I . �

DEFINITION 4.6.20. If V is a smooth n-dimensional variety, Ω1
V is locally free of

rank n. This means that Λn Ω1
V = Ωn

V is locally free of rank 1 — i.e., an invertible sheaf
called the canonical sheaf , ωV , of V.

REMARK. The canonical sheaf will play an important part in the Riemann-Roch
theorem and its many generalizations.

We have the Adjunction Formula for smooth varieties:

THEOREM 4.6.21 (Adjunction Formula). If j: W ↪→ V is a closed codimension-r immer-
sion of smooth varieties and W is defined by the quasi-coherent ideal-sheaf, I ⊂ OV , then

ωW = j∗ωV ⊗OW

(
Λr (I /I 2)

)∨
where G ∨ = H om(G ,OW) is the dual sheaf — as defined in equation D.4.5 on page 546.

PROOF. The exact sequence in 4.6.1 on the preceding page, coupled with exercise 2
on page 498 implies that

ωW ⊗OW Λr (I /I 2) = j∗ωV

where Λr (I /I 2) is an invertible sheaf, or line-bundle (see definition C.1.3 on page 487
and theorem C.2.7 on page 498). The conclusion follows from the fact that

Λr (I /I 2)⊗OW

(
Λr (I /I 2)

)∨
= OW

so that
(
Λr (I /I 2)

)∨ cancels out the factor of Λr (I /I 2) — see exercise 4 on page 485.
�

4.6.3. Finite Maps. The concept of finite maps, defined for affine varieties
in definition 2.5.10 on page 76, can be extended to general varieties. To do this,
we must first show that finiteness of a morphism is a local property:

PROPOSITION 4.6.22. A morphism f : V → W of affine varieties is finite if and
only if every point p ∈ W has an affine open set U containing it, such that U′ =
f−1(U) is affine and f |U′: U′ → U is finite in the sense of 2.5.10 on page 76.

PROOF. Since sets of the form D(g) (see definition 2.4.4 on page 63) for
g ∈ k[W] form a base for its topology, it will suffice to prove the result for them.
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Let gi ∈ k[W], i = 1, . . . , t, be a set of elements such that (g1, . . . , gt) = k[W]
so that

W =
t⋃

i=1

D(gi)

— see corollary 2.4.7 on page 64. Then f−1(D(gi)) = D( f ∗gi)) and, by hypoth-
esis,

k[D(gi)] = k[W]gi =
ni⊕

j=1

ωi,j · k[D( f ∗gi))] =
ni⊕

j=1

ωi,j · k[V] f ∗gi

(see proposition 2.4.5 on page 63) where the ωi,j are generators of the finitely
generated module, k[D(gi)], over k[D( f ∗gi))].

We claim that the set {ωi,j} for i = 1, . . . , t and j = 1, . . . , ni generates k[V]
as a module over k[W]. If v ∈ k[V], then for each i = 1, . . . , t,

(4.6.2) v =
ni

∑
j=1

ωi,j ·
hi,j

gαi
i

Claim: The gαi
j generate the whole ring, k[W]. That is because

√
(gα1

1 , . . . , gαt
t ) =

(g1, . . . , gt) = k[W] and 1 ∈ √a if and only if 1 ∈ a for any ideal a ⊂ k[W].
It follows that we can find zi,j such that

1 =
t

∑
i=1

zi,j · gαi
i

Since

v = v · 1 = v ·
t

∑
i=1

zi,j · gαi
i

we plug this into equation 4.6.2 to get

v =
t

∑
i=1

zi,j · gαi
i ·
(

ni

∑
j=1

ωi,j ·
hi,j

gαi
i

)

=
t

∑
i=1

ni

∑
j=1

ωi,j · hi,jzi,j

�

In light of this result, we can simply define a finite map of general varieties
to satisfy the hypotheses of proposition 4.6.22 on the preceding page:

DEFINITION 4.6.23. A morphism f : V →W of varieties is finite if and only if
every point p ∈W has an affine open set U containing it, such that U′ = f−1(U)
is affine and f |U′: U′ → U is finite in the sense of 2.5.10 on page 76.

The local nature of finite maps and proposition 2.5.11 on page 76 imply:

PROPOSITION 4.6.24. Let f : V →W be a finite morphism of varieties. Then
(1) f is surjective
(2) if p ∈W, then f−1(p) consists of a finite number of points.
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4.6.4. S-valued points of a scheme. We will fix a scheme, S, throughout
this section.

DEFINITION 4.6.25. If V is a scheme over a scheme T, and S is another
scheme over T, then an S-valued point or S-rational point of V is a morphism

S→ V

of schemes over T. The set of S-valued points of V is denoted V(S).

REMARK. A point of an algebraic variety is a Spec k-valued point.
Suppose S = Spec R and

V = Spec
(

Q[X1, . . . , Xn]

( f1, . . . , ft)

)
Then an S-valued point of V is a morphism

Q[X1, . . . , Xn]

( f1, . . . , ft)
→ R

that extends to a morphism

h: Q→ Q[X1, . . . , Xn]→
Q[X1, . . . , Xn]

( f1, . . . , ft)
→ R

and represents a solution to the equations

f̄1(X1, . . . , Xn) = 0
...

f̄t(X1, . . . , Xn) = 0

in R. Here, f̄i is the result of mapping the coefficients of fi via the map h.
By abuse of notation, when S = Spec R, we often write V(Spec R) = V(R).

EXAMPLE 4.6.26. Consider the affine scheme over R, Spec R[X] — as in ex-
ercise 10 on page 166. Its Spec R-valued (or just R-valued) points correspond to
points of R. Its complex points (i.e., like the one corresponding to the principle
ideal (X2 + 1) ⊂ R[X] do not induce any R-valued points because there does
not exist a ring-homomorphism1

R[X]/(X2 + 1) = C→ R

Similar reasoning shows that, if V is any variety over Spec C (i.e., over C),
then V(R) = ∅: If Spec S is an open affine of V, an R-valued point would be a
ring-homomorphism

C→ S→ R

Here is another interesting example:

EXAMPLE 4.6.27. There is a field called real algebraic geometry that studies
varieties over the real numbers (see [17]). It fits into the current framework:
a real algebraic variety is the set of R-valued points of a scheme over R. The
results of Nash in [121] and Tognoli, in [161], imply that every compact smooth
manifold is the set of Spec R-valued points of a scheme over R.

1Homomorphisms of fields must be injective — the kernel is the only ideal in a field: (0).
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DEFINITION 4.6.28. If V is a scheme over a field, F, and F̄ is the algebraic
closure of F, then the Spec F̄-valued points are called the geometric points of V.

REMARK. Suppose V is a scheme over Q in the sense that each of its open
affines, {Aj}, is an affine scheme over Q of finite type. Then the set of geo-
metric points of V is just the algebraic variety (over the algebraic closure, Q̄)
defined using the same equations as the {Aj} and glued together. Any real va-
riety R has, as its set of geometric points, a complex variety R(Spec C) = R(C)
obtained by “complexifying” R.

We can extend the concept of geometric points:

DEFINITION 4.6.29. If g: V →W is a morphism of schemes over F, then the
geometric fiber of g is defined to be

V ×W Spec F̄

where F̄ is the algebraic closure of F.

REMARK. The notion of geometric fiber first appeared in [62]. In some
respects, it reflects the geometry better than the fiber as defined in section 4.5.2
on page 198. For instance, Spec R and Spec C are both single points so the fiber
over a point of the map

Spec C→ Spec R

is a single point, Spec C, by lemma 4.5.8 on page 199 or definition 4.5.6 on
page 198. The geometric fiber is

F = Spec (C⊗R C)

We determine the maximal ideals, m, of C⊗R C by realizing that the quotient
C⊗R C/m is a field. Consequently, we map C⊗R C to a field — essentially C

— and consider the kernels. Suppose we consider maps of the form

f : C⊗R C→ C

with f |1⊗C = 1: C→ C. All such maps will be of the form

f : C⊗R C → C

x⊗ y 7→ h(x) · y
where h: C → C is a morphism that fixes R ⊂ C, so h|R = f |1⊗R. It is easily
verified that there are two such homomorphisms: the identity map and complex-
conjugation. The kernels of these two versions of f will be two distinct maximal
ideals.

It follows that the geometric fiber has two closed points. This reflects the
notion that Spec C → Spec R is somehow collapsing two dimensions down to
one.

Another interesting angle on S-valued points of a scheme is that they allow
us to regard schemes as functors:

DEFINITION 4.6.30. Let V be a scheme and define the functor

hV : R → S

from the category of rings to that of sets via

hV(R) = homScheme(Spec R, V) = V(R)
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In greater generality, we can define a functor from the category of schemes to
that of sets in the same way:

hV(S) = homScheme(S, V) = V(S)

These h-functors represent schemes in a certain sense:

PROPOSITION 4.6.31. Let V and W be schemes. Then any morphism f : V →W
induces a natural transformation (see definition A.5.10 on page 436)

h f : hV → hW

and any natural transformation
t: hV → hW

is induced by a morphism ft: V →W.

REMARK. This is a special case of a general category-theoretic result called
the Yoneda Lemma — see [104].

PROOF. The first statement is clear: given a morphism f : V →W, any mor-
phism Spec R → V can be composed with f to give a morphism Spec R → W.
It is easy to verify that this defines a natural transformation.

To prove the second statement, we first consider the case where V is affine,
i.e. V = Spec S for some ring S. Then the identity map

1: V → V

defines an S-valued point of V and its image under the natural transformation,
t, defines an S-valued point of W, i.e., a morphism

g: Spec S = V →W

That t = hg, as defined above, follows from the properties of a natural transfor-
mation and is left to the reader as an exercise.

In the general case, we have a decomposition into open affines

V =
⋃
α

Spec Sα

and the affine case, above, provides morphisms

Spec Sα →W

that are compatible with each other (because t is a natural transformation —
see definition A.5.10 on page 436) so they induce a morphism

V →W

�

One motivation for considering the functors h∗ is how these sets of R-
valued points behave under products

LEMMA 4.6.32. If V, W are schemes over T and

Z = V ×T W

then
hZ(S) = hV(S)× hW(S)

(Cartesian product) for all schemes, S, over T.
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PROOF. This follows from the diagram in lemma 4.5.2 on page 195 that
defines the category-theoretic properties of a fibered product. Every pair of
morphisms over T

S
f−→ V

S −→
g

W

induces a unique morphism f × g: S → Z. Furthermore, given a morphism
F: S→ Z, the projections

Z → V
Z → W

define morphisms from S to V and W. �

EXERCISES.

3. Show that
Spec (Q(X)⊗Q C)

has a closed point for every transcendental number over Q.



CHAPTER 5

Projective varieties

“. . . to look upon affine geometry as well as metric geometry as special
cases of projective geometry. . . ”

—Felix Klein, Elementary Mathematics from an Advanced Standpoint
(see [86]).

5.1. Introduction

Projective varieties are solution-sets of algebraic equations in projective
space. We have already seen how big a part they played in classical algebraic
geometry with Bézout’s Theorem. In general, projective varieties are useful in
studying objects that are “compact in the usual sense”. Although all affine vari-
eties are compact in the Zariski topology, they are seldom compact in any more
conventional topology.

This is why Nash could only show that manifolds occurred as compact com-
ponents of a real affine variety in [121]. Tognoli’s trick moved the problem into
a real projective space and modeled a manifold with a real projective variety1

in [161].
Every projective space is a general variety (see example 4.4.8 on page 183),

so projective varieties are also general varieties or schemes. We could, conse-
quently, use the machinery developed in the previous chapters to study these
objects. Although we will do this to a large extent, it is often possible to give
“intrinsic” descriptions of projective varieties that are more succinct — i.e., via
homogeneous coordinates.

Suppose we have an algebraically closed field k and an n-dimensional
projective space kPn = P(An+1) — see definition 4.4.8 on page 183. If
f (X0, . . . , Xn) ∈ k[X0, . . . , Xn] is a polynomial of degree m in homogeneous
coordinates then

f (X0, . . . , Xn) = 0

defines an algebraic set, V, in P(An+1). The properties of homogeneous coor-
dinates imply that we must have

f (t · x0, . . . , t · xn) = 0

for [x0: · · · : xn] ∈ V and any nonzero t ∈ k. If we split f into its homogeneous
components we get

f (t · x0, . . . , t · xn) = f0 + t · f1 + t2 · f2 + · · ·+ tm · fm

1Strictly speaking, a real projective variety is the set of R-valued points of a projective scheme
over R.
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and, since k is infinite, each of these must vanish on V. Consequently, we can
restrict our attention to homogeneous polynomials.

As before, we define the Zariski topology on kPn:

DEFINITION 5.1.1. A set in kPn is said to be closed if it is the zero-set of
finitely many polynomials.

REMARK. This definition is compatible with the topology gotten by decom-
posing kPn into a union of open affines equipped with the conventional Zariski
topology. For instance

f (x0, . . . , xn) = 0
implies that on An

i ⊂ kPn (in the notation of definition 4.4.8 on page 183), we
get

f
(

x0

xi
, . . . , 1, . . . ,

xn

xi

)
= 0

The definition above is “more compact” than the one involving open
affines.

As before, zero-sets of polynomials are really zero-sets of ideals within
k[X0, . . . , Xn]:

DEFINITION 5.1.2. An ideal a ∈ k[X0, . . . , Xn] will be said to be homogeneous
if whenever a polynomial, f ∈ a, then every homogeneous component of f is
in a.

Given a homogeneous ideal a, we define P(a) ⊂ kPn to be the set of points

(a0: · · · : an) ∈ kPn

such that f (a0, . . . , an) = 0 for all f ∈ a.

REMARK. It is not hard to see that ideals are homogeneous if and only they
are generated by homogeneous polynomials.

Since at least one homogeneous coordinate must be nonzero, we have:

PROPOSITION 5.1.3. If the ideal i ∈ k[X0, . . . , Xn] is given by i = (X0, . . . , Xn),
then P(i) = ∅.

REMARK. This ideal is called the irrelevant ideal since it generates the empty
set.

Now we can state the projective form of the Nullstellensatz:

THEOREM 5.1.4. Let h ∈ k[X0, . . . , Xn] be a homogeneous ideal. Then h defines
the empty set in kPn if and only if

√
h contains the irrelevant ideal.

REMARK. The correspondence between ideals and projective varieties is
somewhat more complex than in the affine case. Exercises 8 on page 220, 9, and
10 clarify this relationship.

PROOF. Certainly, if
√

h = (X0, . . . , Xn), then Xki
i ∈ h for all i and suitable

ki > 0, so h defines the origin in An+1 and the empty set in kPn.
Conversely, suppose h defines the empty set in kPn. Then its intersection

with each of the open affines An
i , i = 0, . . . , n is also empty (see definition 4.4.8

on page 183). If

h = (F1(X0, . . . , Xn), . . . , Ft(X0, . . . , Xn))
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then, in An
i , this is the ideal

hi =

(
F1

(
X0

Xi
, . . . , 1, . . . ,

Xn

Xi

)
, . . . , Ft

(
X0

Xi
, . . . , 1, . . . ,

Xn

Xi

))
Since this defines the empty set, the regular Nullstellensatz (theorem 2.2.3 on
page 40) implies that

1 ∈ hi

or that there exist polynomials pj

(
X0
Xi

, . . . , Xn
Xi

)
such that

1 =
t

∑
j=1

pj

(
X0

Xi
, . . . ,

Xn

Xi

)
· Fj

(
X0

Xi
, . . . , 1, . . . ,

Xn

Xi

)
and after multiplying by a suitable power of Xi to clear denominators, we get

XNi
i =

t

∑
j=1

pi · Fj

Since this is true for any i,
√
h contains the irrelevant ideal. �

Since the tangent space is a local property of a variety,

DEFINITION 5.1.5. Let W ⊂ kPn be a projective variety and let p ∈ W be
contained in an open affine An

i ⊂ kPn. The tangent space of W at p is just the
tangent space of the affine variety W ∩An

i ⊂ An at p.

If V is a vector-space over k, every point, p, in P(V) represents a one-
dimensional subspace, `p, of V. Since the point p is gotten by collapsing this
subspace to a point, intuition suggests

LEMMA 5.1.6. If V is a vector-space and p ∈ P(V) corresponds to the line `p ⊂
V, then the tangent space of P(V) at p is V/`p. In particular, P(V) is smooth.

PROOF. Suppose p ∈ An
i , the coordinates of a point in V are given by

(x0, . . . , xn). Then the map

V \ {0} → P(V)

defines a map

V \ {xi = 0} f−→ An
i

(x0, . . . , xn) 7→
(

x0

xi
, . . . ,

xi−1

xi
,

xi+1

xi
, . . . ,

xn

xi

)
Let q ∈ V \ {0} map to p ∈ P(V). At q, the induced map of tangent spaces is
surjective and given by

dq f = (
(dx0) · xi(q)− x0(q) · (dxi)

x2
i (q)

, . . . ,
(dxn) · xi(q)− xn(q) · (dxi)

x2
i (q)

)
where xi(q) is just the coordinates of q ∈ V.

The kernel of this map is given by

(dxj) · xi(q)− xj(q) · (dxi) = 0
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Under the identification of the tangent space of V with V, dxj = xj for all j so
we get

xj · xi(q)− xi · xj(q) = 0

for all i, j. This implies that (x0, . . . xn) lies on the same line through the origin
as (x0(q), . . . , xn(q)) or (x0, . . . xn) ∈ `p. �

As we have seen, projective varieties cannot be studied in isolation: one
must have knowledge of associated affine varieties to understand them.

DEFINITION 5.1.7. Let a ∈ k[X0, . . . , Xn] be a homogeneous polynomial and
let P(a) ⊂ kPn = P(An+1) be the associated projective variety. Then the affine
variety, V (a) ⊂ An+1 is called the affine cone of P(a). The quotient ring

k[V (a)] =
k[X0, . . . , Xn]

a

— the coordinate ring of V (a) — is called the homogeneous coordinate ring of
P(a), and denoted kH [P(a)].

REMARK. The homogeneous coordinate ring is also frequently called the
projective coordinate ring.

Although the homogeneous coordinate ring of P(a) defines the regular
functions on the cone, these generally do not induce regular functions on P(a).
In fact, for many projective varieties, the only regular functions are constants
— see 5.5.16 on page 250. Nevertheless, the homogeneous coordinate ring of
P(a) contains a great deal of useful geometric information — see section 5.7 on
page 260.

It is possible for distinct homogeneous ideals a1, a2 ⊂ k[X0, . . . , Xn] to de-
termine the same projective variety since they determine distinct affine varieties
V (ai) ⊂ An+1 with the same image under the projection

An+1 → P(An+1) = kPn

— see exercises 7 on page 219 and 8 on page 220.

EXAMPLE 5.1.8. The affine cone has a line through the origin for each point
of P(a). For instance

(X2 + 2Y2 − Z2) ⊂ k[X, Y, Z]

defines an ellipse in kP2 = P(A3) and its affine cone is depicted in figure 5.1.1

The affine cone of a projective variety is important because it determines
many of the variety’s properties.

PROPOSITION 5.1.9. Let a ⊂ k[X0, . . . , Xn] be a homogeneous ideal. The projec-
tive variety P(a) ⊂ kPn is irreducible if and only if its affine cone V (a) ⊂ An+1 is
irreducible, which happens if and only if a is prime.

PROOF. Any decomposition of P(a) = P1 ∪ P2 induces a decomposition of
the affine cone and vice-versa. �

The affine cone also determines the tangent space:
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− 1− 1

− 0.5− 0.5− 1− 1

− 0.6− 0.6
− 0.4− 0.4

00− 0.2− 0.2

− 0.5− 0.5

00
0.20.2 0.50.5

0.40.4
0.60.6

00

11

0.50.5

11

FIGURE 5.1.1. Affine cone of an ellipse

LEMMA 5.1.10. Let a ∈ k[X0, . . . , Xn] determine a projective variety P(a) ⊂
kPn = P(An+1) with affine cone V (a) ⊂ An+1. If p ∈ P(a) is in the image of
q ∈ V (a) then

(1) `p ⊂ TV(a),p , where `p ⊂ An+1 is the one-dimensional subspace corre-
sponding to p ∈ P(An+1) and

(2) TP(a),p = TV(a),q/`p

REMARK. It follows that singular points in P(a) correspond to singular
lines in V (a). If V (a) has no such singular lines, then P(a) is smooth.

Note that V (a) will always have a singular point at the origin because the
ideal a is homogeneous. This point-singularity does not contribute to possible
singularities in P(a).

PROOF. The fact that p ∈ P(a) implies that `p ⊂ V (a), which implies that
it is in the tangent space. The second statement follows from the fact that the
equations defining the tangent space in P(a) are essentially the same as those
defining it in V (a), except for the projection

V =
n⋃

j=0

VjTAn+1,p → TP(An+1) = TAn+1,p/`p

�



218 5. PROJECTIVE VARIETIES

We can easily decompose projective varieties into a union of affines:

PROPOSITION 5.1.11. Let V ⊂ kPn be a projective variety. Then

V =
n⋃

j=0

Vj

with Vj = V∩An
j with j = 0, . . . , n is a decomposition into affines (see definition 4.4.8

on page 183).

PROOF. For every defining equation

f (X0, . . . , Xn) = 0

for V, Vj has a defining equation

f̄ (x1, . . . , xn) = f

(
X0

Xj
, . . . ,

Xj−1

Xj
, 1,

Xj+1

Xj
, . . . ,

Xn

Xj

)
= 0

which makes it an affine variety in An
j . Here

xi =


Xi−1

Xj
if i ≤ j

Xi
Xj

if i > j

are the coordinates of An
j ⊂ P(An+1). �

There is a standard way of converting an affine variety into a projective
one:

DEFINITION 5.1.12. Let V ⊂ An be an affine variety and embed An into
An+1, adding an additional coordinate X0. If

fi(X1, . . . , Xn) = 0

are the defining equations of V, for i = 1, . . . m, then

Xdeg fi
0 · fi

(
X1

X0
, . . . ,

Xn

X0

)
= 0

are homogeneous equations defining a projective variety V̄ ⊂ kPn called the
projective closure of V.

REMARK. We have already seen this in chapter 1 in proposition 1.2.6 on
page 5. Clearly V̄ ∩An

0 = V.

Recall the Proj defined in definition 4.4.12 on page 187. If R = k[X0, . . . , Xn],
the inclusion

Proj R ↪→ Spec R
is induced by the projection of the affine cone to a projective variety.

We can generalize our notion of projective variety:

DEFINITION 5.1.13. If Y is any scheme and P = Proj Z[X0, . . . , Xn], the
projective n-space over Y, denoted YPn, is defined to be the fibered product

P×Spec Z Y
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A morphism f : X → Y of schemes is said to be projective if it factors as

X ι−→ YPn → Y

where ι is a closed immersion and YPn → Y is the canonical projection.

EXERCISES.

1. Each point p ∈ kPn represents a line in An+1. Consider the subset of
kPn ×An+1 composed of pairs

(p, `p)

of points paired with the lines that they represent. This is called the tautological
line bundle, η, on kPn. Show that

η ⊕ τ = kPn ×An+1

a trivial bundle, where τ is the tangent bundle of kPn.

2. If V is a vector space over a field k, show that (as schemes)

P(V) = ProjSV

where the symmetric algebra, SV, is defined in A.6.4 on page 466 and elements
of V are defined to have degree 1.

3. If R is the graded ring k[X], where X has degree 1, list all of the points of
Proj R.

4. Show that the set of all cubic hypersurfaces in kP3 are parametrized by
a projective space. What is its dimension?

5. Show that the set of all smooth cubic hypersurfaces in kP3 are
parametrized by an open set in projective space.

6. Suppose V ⊂ Cn+1 is a complex analytic cone — i.e.

• V is defined by the vanishing of a finite number of complex analytic
functions (functions equal to their Taylor series expansions about 0 in
a small neighborhood of 0), and
• if (x0, . . . , xn) ∈ V then (tx0, . . . , txn) ∈ V for all t ∈ C

Show that V is defined by the vanishing of a finite number of homogeneous poly-
nomials. This is one step in the proof of Chow’s Theorem that a complex analytic
projective variety is actually algebraic.

7. Let R = k[X0, X1, X2] and let

a =
(

X0 · (X2
1 − X2

2), X1 · (X2
1 − X2

2), X2 · (X2
1 − X2

2)
)

b = (X2
1 − X2

2)

Show that P(a) = P(b).
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8. If a ⊂ k[X0, . . . , Xn] is a radical homogeneous ideal and f ∈ k[X0, . . . , Xn]
is an element such that f · it ⊂ a, where i = (X0, . . . , Xn) is the irrelevant ideal
and t is some integer, show that

P(a) = P(a+ ( f ))

which means that more than one radical ideal can define the same projective
variety.

9. If a ⊂ k[X0, . . . , Xn] is a radical homogeneous ideal and f ∈ k[X0, . . . , Xn]
is a homogeneous element that vanishes on P(a), show that Xni

i · f ∈ a for all i
and suitable values of ni.

10. Recall the definition of saturation of an ideal with respect to another in
exercise 9 on page 71. If i = (X0, . . . , Xn) is the irrelevant ideal and a, b ⊂
k[X0, . . . , Xn], are two ideals of R = k[X0, . . . , Xn], show that P(a) = P(b) if
and only if (a: i∞) = (b: i∞).

5.2. Grassmannians

5.2.1. Introduction. Grassmannians are an important class of projective
varieties that have many applications in algebraic geometry, topology
(see [112], [5], and [70]), and even genetics (see the survey [129]). Just as
projective spaces are sets of lines through the origin within a vector space
(see definition 1.2.2 on page 4), Grassmannians are spaces whose points are
d-dimensional subspaces of a vector space.

Hermann Grassmann (1809 – 1877) was a German mathematician, physicist
and linguist whose mathematical contributions were not recognized until he
was in his sixties. He is responsible for many modern concepts in linear al-
gebra including linear independence and exterior algebras (in his great work,
[58]). He generalized work of Julius Plücker and defined general Grassmann
Manifolds or Grassmannians.

5.2.2. Plücker coordinates. Throughout this section, we will use the P(V)-
notation for projective spaces, since the functorial properties of this construc-
tion will be important.

We will make extensive use of exterior algebras (see section A.6 on page 465,
which defined them and develops their basic properties).

DEFINITION 5.2.1. If V is an n-dimensional vector space with a basis

{e1, . . . , en}
and W is a subspace with basis

{b1, . . . , bk}
then

b1 ∧ · · · ∧ bk = ∑
i1<···<ik

ai1,...,ik ei1 ∧ · · · ∧ eik
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with ai1,...,ik ∈ F (by proposition A.6.9 on page 469). The coefficients, {ai1,...,ik},
are called the Plücker coordinates of W.

REMARK. Corollary A.6.15 on page 472 implies that changing the basis
of W multiplies all of the Plücker coordinates of W by the same nonzero
scalar. Corollary A.6.13 on page 470 implies that the Plücker coordinates of W
uniquely determine it.

Julius Plücker (1801 – 1868) was a German mathematician and physicist who
made many contributions to analytic geometry. His research on cathode rays
paved the way for the discovery of the electron and X-rays (see [107]).

It follows that

PROPOSITION 5.2.2. Plücker coordinates define a one-to-one correspondence be-
tween the k-dimensional subspaces of V and points of the projective space P(Λk V)
defined by decomposable elements of Λk V.

REMARK. Decomposable elements are defined in definition A.6.11 on
page 469.

PROOF. Corollary A.6.15 on page 472 implies that the Plücker coordinates
of a subspace determine a unique point of P(Λk V) corresponding to a decom-
posable element of Λk V. Corollary A.6.13 on page 470 implies that every such
decomposable element determines a unique subspace. �

Our next challenge will be to develop criteria for an element of Λk V to be
decomposable.

5.2.3. Interior products. Grassmann’s original treatment of decomposable
elements of an exterior algebra involved many tedious algebraic computations.
We will adopt a simpler approach, using a construction that goes by various
names including interior products, convolutions, and contractions.

Interior products were invented by Élie Cartan in his applications of exte-
rior calculus to differential geometry.

DEFINITION 5.2.3. Let V be a vector space and let V∗ be the dual vector
space of linear functions on V. Define the interior product

x: V∗ ⊗Λk V → Λk−1 V

for all k ≥ 1, inductively by

(1) If v ∈ F = Λ0 V, then uxv = 0.
(2) If k = 1, uxv = u(v) ∈ F = Λ0 V
(3) (u1 + u2)xv = u1xv + u2xv for all u1, u2 ∈ V∗ and v ∈ Λk V
(4) ux(v1 + v2) = uxv1 + uxv2 for all u ∈ V∗ and v1, v2 ∈ Λk V
(5) If a ∈ Λi V, b ∈ Λj V, then ux(a ∧ b) = (ux(a) ∧ b + (−1)ia ∧ (uxb)

We can extend this definition:

PROPOSITION 5.2.4. Let u1, u2 ∈ V∗. Then, for any k and any v ∈ Λk V we get

u1x(u2xv) = −u2x(u1xv)
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Consequently we can define

x: Λj V∗ ⊗Λk V → Λk−j V

by setting
(u1 ∧ · · · uj)xv = u1x(· · · (ujxv) · · · )

PROOF. Suppose
v = a ∧ b ∧ c

where a, b ∈ V and c ∈ Λk−2 V. Then

u1x(u2x(a ∧ b ∧ c) = u1x(u2(a)b ∧ c− u2(b) · a ∧ c)
= u1(b)u2(a) · c− u2(b)u1(a) · c
=

(
u1(b)u2(a)− u2(b)u1(a)

)
· c

and

u2x(u1x(a ∧ b ∧ c) = u2x(u1(a)b ∧ c− u1(b)a ∧ c)
= u2(b)u1(a) · c− u2(a)u1(b) · c
=

(
u2(b)u1(a)− u2(a)u1(b)

)
· c

�

The following result (and the proof of proposition 5.2.4 on the previous
page) illustrate the purpose of interior products — they “rip apart” exterior
products:

LEMMA 5.2.5. Let {e1, . . . , en} be a basis for V and let {e1, . . . , en} be a dual
basis for V∗ so

(5.2.1) ei(ej) =

{
0 if i 6= j
1 if i = j

Then

eix(ej1 ∧ · · · ∧ ejk ) ={
0 if i /∈ {j1, . . . , jk}
(−1)t−1ej1 ∧ · · · ejt−1 ∧ ejt+1 ∧ · · · ∧ ejk if i = jt

PROOF. This is a straightforward inductive application of rule 5 of defini-
tion 5.2.3 on the preceding page and equation 5.2.1. �

DEFINITION 5.2.6. If V is a vector space with subspace W, the inclusion
W ↪→ V induces an inclusion

Λk W ↪→ Λk V

for any k. If x ∈ Λk V then we say that W envelopes x if x ∈ Λk W.

LEMMA 5.2.7. If V is a vector space with subspace W, a nonzero element x ∈
Λk V is enveloped by W if and only if

yxx ∈W

for all y ∈ Λk−1 V∗.
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PROOF. Let {e1, . . . , et} be a basis for W and extend it to a basis {e1, . . . , en}
for all of V with a corresponding dual basis {e1, . . . , en} of V∗.

Let
x = ∑

i1<···<ik

ai1,...,ik ei1 ∧ · · · ∧ eik

Then x ∈ Λk W if and only if ai1,...,ik = 0 whenever ik > t. An inductive appli-
cation of lemma 5.2.5 on the facing page gives

ei1 ∧ · · · ∧ eik−1xx = ∑
j>ik−1

±ai1,...,jej

+ other terms

which is contained in W if and only if ai1,...,ik = 0 whenever ik > t. �

We can use this to determine the minimal subspace that envelopes an ele-
ment x ∈ Λk V:

LEMMA 5.2.8. If V is a vector space with dual V∗ and x ∈ Λk V is a nonzero
element, then the smallest subspace, Wx, of V that envelopes x is the set of

yxx ∈ V

as y runs over all elements of Λk−1 V∗.

This will be instrumental in determining when an element is reducible.

THEOREM 5.2.9. Let V be a vector space with dual V∗ and let x ∈ Λk V be a
nonzero element. Then x is reducible if and only if the minimal subspace of V that
envelopes x is k-dimensional. This happens if and only if

(5.2.2) (yxx) ∧ x = 0

for all y ∈ Λk−1 V∗.

REMARK. If x is not reducible, dim Wx > k.
In applying this test, it suffices to check it on basis elements of Λk−1 V∗

since equation 5.2.2 is linear in y,

PROOF. Let Wx denote the minimal subspace of V that envelopes x.
Suppose x = v1 ∧ · · · ∧ vk. Since x 6= 0 the set of vectors {v1, . . . , vk} must

be linearly independent by lemma A.6.12 on page 470. It follows that the Wx is
the span of v1, . . . , vk so it is k-dimensional.

We claim that Wx must have more than k dimensions if x is not decompos-
able. Suppose

x = v1 ∧ · · · ∧ vk + w1 ∧ · · · ∧ wk + other terms

At least one of the wi is not in the span of v1, . . . , vk, since otherwise

w1 ∧ · · · ∧ wk = c · v1 ∧ · · · ∧ vk

for some c ∈ F by corollary A.6.15 on page 472, so dim Wx ≥ k + 1.
If x = v1 ∧ · · · ∧ vk, then Wx is the subspace annihilated by x so equa-

tion 5.2.2 holds.
Suppose dim Wx = m > k and let {v1, . . . , vm} be a basis. There exists a set

{y1, . . . , ym} ∈ Λk−1 V such that vi = yixx.
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Since Wx envelopes x, we have

x = ∑
j1<···<jk

aj1,...,jk vj1 ∧ · · · ∧ vjk

where all of the {aj1,...,jk} are nonzero. Since m > k, at least one of these terms
must omit some subscript, say 1 ≤ ` ≤ m. Then

v` ∧ x = (y`xx) ∧ x =

∑
j1<···<jk

(−1)r−1aj1,...,jk vj1 ∧ · · · ∧ vjr−1 ∧ v` ∧ vjr ∧ · · · ∧ vjk ∧ vm

which is a linear combination of distinct basis elements of Λk+1 Wx (see propo-
sition A.6.9 on page 469) and, therefore, nonzero. �

Now we are ready to define Grassmann varieties:

DEFINITION 5.2.10. If V is an n-dimensional vector space with dual V∗ and
1 ≤ r ≤ n, the Grassmann variety

Gr(V) ⊂ P(Λr V)

is a projective variety defined by the ( n
r−1) homogeneous quadratic equations

(cixx) ∧ x = 0

where the {ci} are a basis for Λr−1 V∗. The points of Gr(V) are in a 1-1 corre-
spondence with the r-dimensional subspaces of V. If we are not interested in
emphasizing the vector space, V, we use the notation Gr,n for Gr(An).

REMARK. Grassmannians are a simple example of a moduli space — a topo-
logical space (or algebraic variety) whose points correspond to geometric ob-
jects (subspaces of an affine space, in this case). By introducing parameters on
a moduli space (Plücker coordinates, in this case) we can study properties of
geometric objects. Exercises 4 and 5 on page 219 and exercise 3 on page 239
give other examples of moduli spaces.

The ( n
r−1) equations are not necessarily all distinct. For instance, if r = 2,

and the characteristic of F is not 2, we get

cix(x ∧ x) = 2(cixx) ∧ x

so that
(cixx) ∧ x = 0

for all i, implies that
cix(x ∧ x) = 0

for all i, and lemma 5.2.5 on page 222 implies that

x ∧ x = 0

so we only get one equation. It follows that G2(V) is a hypersurface in P(Λ2 V).
Now we will look at some of these varieties. Suppose V is four-dimensional

with basis {e1, e2, e3, e4}. Then a typical element of Λ2 V is a linear combination

x = a1,2e1 ∧ e2 + a1,3e1 ∧ e3 + a1,4e1 ∧ e4(5.2.3)
+a2,3e2 ∧ e3 + a2,4e2 ∧ e4 + a3,4e3 ∧ e4
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and
x ∧ x = 2(a1,2a3,4 − a1,3a2,4 + a1,4a2,3)e1 ∧ e2 ∧ e3 ∧ e4

so the equation defining G2(V) is

(5.2.4) a1,2a3,4 − a1,3a2,4 + a1,4a2,3 = 0

in Plücker coordinates. The vector space Λ2 V is (4
2) = 6 dimensional so

P(Λ2 V) is 5 dimensional and the hypersurface defined by equation 5.2.4 is
4-dimensional, by corollary 2.8.30 on page 110.

If
v = b1e1 + b2e2 + b3e3 + b4e4

is a vector in V, we get

x ∧ v = (b1a2,3 − b2a1,3 + b3a1,2)e1 ∧ e2 ∧ e3(5.2.5)
+(b1a2,4 − b2a1,4 + b4a1,2)e1 ∧ e2 ∧ e4(5.2.6)
+(b1a3,4 − b3a1,4 + b4a1,3)e1 ∧ e3 ∧ e4

+(b2a3,4 − b3a2,4 + b4a2,3)e2 ∧ e3 ∧ e4

Given a set of Plücker coordinates, S = {a1,2, a1,3, a1,4, a2,3, a2,4, a3,4}, satisfy-
ing equation 5.2.4 on page 225, we can recover the subspace they represent by
setting

x ∧ v = 0

In light of equation 5.2.5, we get
a2,3 −a1,3 a1,2 0
a2,4 −a1,4 0 a1,2
a3,4 0 −a1,4 a1,3
0 a3,4 −a2,4 a2,3




b1
b2
b3
b4

 = 0

for the subspace that S represents.
Assuming none of the ai,j are zero, reducing this matrix to echelon form

(without doing divisions), and applying equation 5.2.4 five times gives:
a2,3 −a1,3 a1,2 0

0 a1,2 a3,4 −a1,2 a2,4 a1,2 a2,3

0 0 0 0

0 0 0 0




b1
b2
b3
b4

 = 0

which has a 2-dimensional solution.

�

5.2.4. Real Grassmannians as affine varieties. I am indebted to Thomas Yu for this
example. Consider the space Rn2

of n× n real matrices, A, satisfying:

(1) A2 = A
(2) AT = A

The first condition implies that A is a projection to a subspace and the second condition
implies that this subspace is uniquely determined. If we impose a third condition

Trace(A) = t
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for an integer 1 ≤ t < n, A becomes a projection to a t-dimensional subspace of Rn.
Since there is clearly a 1-1 correspondence between such subspaces and matrices satis-
fying these conditions, we get a representation of the Grassmannian Gt(R

n) as a (qua-
dratic) affine variety in Rn2

. In fact, the second condition implies that this is an embed-
ding in Rn(n+1)/2.

EXAMPLE 5.2.11. If n > 1, we can consider the projective space P(Rn+1) = RPn =
G1(R

n+1) in this context. This is the set of all (n + 1)× (n + 1) real matrices, A with

(1) A2 = A
(2) AT = A
(3) Trace(A) = 1

Since the image of the projection is one-dimensional, the row or column space is one-
dimensional and every column is a multiple of every other.

For instance, if n = 2, our A-matrices look like

A =

 A1,1 A1,2 A1,3
A1,2 A2,2 A2,3
A1,3 A2,3 A3,3


— we have already applied rule 2. Rules 1 and 3 give algebraic conditions on the ele-
ments of A that can be simplified by finding a Gröbner basis:

P = (−A2,2 + A2,3
2 + A2,2 A1,1 + A2,2

2,

− A1,1 + A1,3
2 + A1,1

2 + A2,2 A1,1,

A1,1 A1,2 + A1,2 A2,2 + A1,3 A2,3 − A1,2,

− A2,2 A1,3 + A1,2 A2,3,−A1,1 A2,3 + A1,2 A1,3,

− A2,2 A1,1 + A1,2
2, A1,1 + A2,2 + A3,3 − 1)

We can see what this matrix is like if, say A1,1 = 1/3 and A2,2 = 1/3 by adding terms
A1,1 − 1/2 and A2,2 − 1/3 to P and taking another Gröbner basis

P+ (A1,1, − 1/2, A2,2 − 1/3) = (3 A2,2 − 1, 2 A1,1 − 1,

18 A2,3
2 − 1, 12 A1,3

2 − 1,
−6 A1,3 A2,3 + A1,2, 6 A3,3 − 1)

from which we get the matrix

A =


1
2

1√
6

1√
12

1√
6

1
3

1√
18

1√
12

1√
18

1
6


The affine subspaces R2

i , i = 1, 2, 3, are the sets of matrices for which row and column i
are nonzero.

This discussion raises an interesting question:

Proposition 4.4.9 on page 184 show that the only regular functions
on projective space (which is a Grassmannian) are constants, yet affine
varieties have plenty of nonconstant regular functions. Isn’t this a con-
tradiction?

The answer comes from remembering how functions on a scheme are evaluated. Our
real projective space is actually the set of real points of RPn or RPn(R) ⊂ RPn (as in
definition 4.4.8 on page 183)
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Recall that regular functions on subspaces of RPn are defined as rational functions, f ,
whose denominators are nonvanishing on the subspace. The set of real points, RPn(R),
has plenty of these — for instance

X2 − X + 5
X2 + 1

This is not a regular function on RPn because the denominator gets evaluated in C (see
definition 4.2.3 on page 161) where it does vanish.

Consider the case where n = 1. The space RP1(R) is well known to be homeomor-
phic to S1, the unit circle. The map is given by

(5.2.7) (X0: X1) 7→
(

X2
0 − X2

1
X2

0 + X2
1

,
2X0X1

X2
0 + X2

1

)
so regular functions on S1 pull back to rational functions that are homogeneous of degree
0 on RP1(R). This is a birational equivalence that is nowhere singular (over real points).

Another way to think of this: over an algebraically closed field, a rational function
is everywhere nonsingular if and only if it is a polynomial. Over other non-closed fields,
this correspondence breaks down.

In real algebraic geometry, all projective varieties are also affine — see [17] for more
on this fascinating field.

EXERCISES.

1. If V is n-dimensional, show that the interior product

x: Λk V∗ ⊗F Λn V → Λn−k V

is an isomorphism for all 0 ≤ k ≤ n. This induces an isomorphism

Gk(V∗)→ Gn−k(V)

2. Find an inverse to the map in equation 5.2.7.

3. Show the set of hyperplanes in kPn is parametrized by a projective space.

4. Find a Grassmannian that parametrizes lines in kP3.

5.3. Invertible sheaves on projective varieties

This presents Serre’s (largely successful) efforts to extend his theory of
vector-bundles (or locally free sheaves) onto projective varieties. Of course
every projective variety is a union of affine ones, and vector bundles could
simply be described locally. The interesting aspect of this subject is that it
is possible to get a global description of locally free sheaves on projective
varieties, somewhat like that in section 3.5 on page 151. As one might expect,
the projective case is much more complicated.

We begin this section with Serre twists — line-bundles (see definition C.1.3
on page 487) defined by Serre in [146]:
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DEFINITION 5.3.1. Let k be a field and let

kPn =
n⋃

i=0

An
i

be the standard decomposition into open affines — where [X0: · · · : Xn] are the
homogeneous coordinates of kPn and An

i has Xi 6= 0. If m ∈ Z, define the
Serre twist, OkPm(m), to be the line bundle, ξ, defined by gluing together the
{An

i × k} via the transition functions

1× ϕj.i = 1×
(

Xi
Xj

)m

: An
i ∩An

j × k→ An
j ∩An

i × k

REMARK. The term Serre twist is usually applied to the invertible sheaf as-
sociated to this vector bundle — which is the reason for the notation, OV(m).

DEFINITION 5.3.2. The Serre-twist sheaf is defined over RPn by

OV(m)(An
i ) = ORPn(An

i )

and these are glued together via homomorphisms

OV(m)(An
i )|An

i ∩An
j → OV(m)(An

j )|An
j ∩An

i

f 7→ f · (Xi/Xj)
m

We will use ORPn(m) for both the line bundle and invertible sheaf when R is a
field.

REMARK. Again, the notation An
j ∩An

i represents the intersection regarded
as part of the An

j chart.
Serre defined these sheaves in his groundbreaking paper, [146]. Most of

our results regarding these sheaves also came from that paper.

Although the definition above describes the sheaf, it doesn’t quite compute
it:

PROPOSITION 5.3.3. If F = ORPn(d) for d ∈ Z, then
(1) the global evaluation is

ORPn(d)(RPn) = R[X0, . . . , Xn]d

— the free R-module generated by homogeneous monomials of degree d,
(2) over the open sets An

i1
∩ · · · ∩An

it , we have

ORPn(d)(An
i1 ∩ · · · ∩An

it) = R[X0, . . . , Xn][X−1
i1

, . . . , X−1
it

]d

— the free R-module generated by homogeneous monomials of degree d,
(where some of the X’s may have negative degree).

The restrictionsORPn(d)|An
i are coherent, soORPn(d) is quasi-coherent. If U1, U2 ⊂

RPn are open sets, then

ORPn(d)(U1) ↪→ ORPn(d)(U1 ∩U2 ∩An
0 ∩ · · · ∩An

n)

ORPn(d)(U2) ↪→ ORPn(d)(U1 ∩U2 ∩An
0 ∩ · · · ∩An

n)

and, as submodules of ORPn(d)(U1 ∩U2 ∩An
0 ∩ · · · ∩An

n)

ORPn(d)(U1 ∪U2) = ORPn(d)(U1) ∩ORPn(d)(U2)
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REMARK. This implies that the vector-bundle OkPn(d) has no global sec-
tion if d < 0.

It is not hard to see (by multiplication of gluing maps) that

(5.3.1) ORPn(r)⊗ORPn ORPn(s) = ORPn(r + s)

with ORPn(0) = ORPn as the unit so that the sheaves ORPn(d) form a group
under tensor-product that is isomorphic Z.

PROOF. To prove the first statement, note that an element ofORPn(d)(RPn)
is given by a set of functions gj on An

j that are compatible with the gluing map.
Define a homomorphism

R[X0, . . . , Xn]d → ORPn(d)(An
i )

f (X0, . . . , Xn) 7→ f /Xd
i

= f
(

X0

Xi
, . . . ,

Xi−1

Xi
, 1,

Xi+1

Xi
, . . . ,

Xn

Xi

)
This is clearly injective (if applied to all of the An

i ) and compatible with the
gluing functions in the remarks following definition 5.3.1 on the preceding
page. �

On the other hand, given polynomials {gi}, the condition that

gi

(
X0

Xi
, . . . ,

Xi−1

Xi
,

Xi+1

Xi
, . . . ,

Xn

Xi

)
·
(

Xi
Xj

)d

= gj

(
X0

Xj
, . . . ,

Xj−1

Xj
,

Xj+1

Xj
, . . . ,

Xn

Xj

)
implies that all of the {gi} are of degree d. If they are of degree d and satisfy this
gluing condition, they are in the image of some homogeneous f of degree d.

The second statement follows from the fact that ORPn(d)|An
i is isomorphic

to a free sheaf
ORPn(d)(An

i ) = R[x1, . . . , xn]

— i.e., no gluing is done. To get a form of this compatible with gluing maps,
define an isomorphism of free R-modules

R[x1, . . . , xn] → R[X0, . . . , Xn][X−1
i ]d

g(x1, . . . , xn) 7→ Xd
i · g

(
X0

Xi
, . . . ,

Xi−1

Xi
,

Xi+1

Xi
, . . . ,

Xn

Xi

)
We conclude that

ORPn(d)(An
i1 ∩ · · · ∩An

it) = R[x1, . . . , xn][x−1
i2
· · · x−1

it
]

= R[X0, . . . , Xn][X−1
i1

]d[X−1
i2

Xi1 , . . . , X−1
in Xi1 ]

= R[X0, . . . , Xn][X−1
i1

, . . . , X−1
it

]d

The remaining statements follow from the fact that every open set is dense in
RPn.

EXAMPLE 5.3.4. Proposition 5.3.3 on the facing page implies that the sheaf-
completion operation (lemma B.2.3 on page 480) is actually necessary in com-
puting a tensor product (in definition B.3.5 on page 484):



230 5. PROJECTIVE VARIETIES

The sheaf ORP1(1) has ORP1(1)(RP1) = R · X0 ⊕ R · X1. If we compute the
tensor-product

ORP1(1)⊗ORP1 ORP1(1)

treating both factors as presheaves, we get a presheaf P with

P(RP1) = R · X0 ⊗ X0 ⊕ R · X0 ⊗ X1 ⊕ R · X1 ⊗ X0 ⊕ R · X1 ⊗ X1 = R4

On the other hand — as sheaves

ORP1(1)⊗ORP1 ORP1(1) = ORP1(2)

and
ORP1(2)(RP1) = R · X2

0 ⊕ R · X0X1 ⊕ R · X2
1 = R3

This example shows that the presheaf, P, is not even separated — P(RP1)
contains distinct elements whose restrictions to every open affine are the same
(namely X0 ⊗ X1 and X1 ⊗ X0).

DEFINITION 5.3.5. If f : V → RPn is a closed immersion of a projective
scheme, the pullback

LV = f ∗(ORPn(1))

is called a very ample sheaf on V. It is often written OV(1).

REMARK. When a result mentions that a variety or scheme has a very am-
ple sheaf, this often merely says that there exists a closed immersion into a pro-
jective space.

The Serre twists play an important part in the theory of invertible sheaves
on a RPn:

DEFINITION 5.3.6. If (X,OX) is a ringed space, a sheaf F of OX modules
is said to be generated by global sections if there exist a set of indices, I fi ∈ F (X)
for i ∈ I, and a surjection ⊕

i∈I
OX → F

⊕si 7→ ∑ si · fi

REMARK. For instance, any sheaf of the form A(M) (see definition 3.5.1 on
page 151) is generated by global sections — just take a set of generators of M.

One way to characterize such sheaves is:

PROPOSITION 5.3.7. If (X,OX) is a ringed space, a sheaf F of OX modules is
generated by global sections if and only if there exists a set fi ∈ F (X) such that Fx is
generated by fi|x (as a module over OX,x) for all x ∈ X.

PROOF. This follows from the fact that a map of sheaves is surjective if and
only if it is surjective on stalks (see exercise 6 on page 482). �

We have an analogue of lemma 4.4.17 on page 189:

LEMMA 5.3.8. If F is a quasi-coherent sheaf on a quasi-compact scheme, X, L
is an invertible sheaf and f ∈ L (X), let X f be the open set where f is nonvanishing.
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(1) if s ∈ F (X) has the property that s|X f = 0, then there exists an integer n
such that

s · f n = 0 ∈ (F ⊗OX L n)(X)

(2) if {Ui} is an open affine cover of X such that each intersection Ui ∩ Uj is
quasi-compact and L |Ui is free, and s ∈ F (X f ), then there exists an integer
n such that

f n · s ∈ (F ⊗OX L n)(X f )

is the restriction of an element s′ ∈ (F ⊗OX L n)(X).

REMARK. Recall that “quasi-compact”=“every open covering has a finite
sub-cover.” In other word, when one must cover a portion of X, the number
of open sets required is always finite. Affine schemes are automatically quasi-
compact (see corollary 4.3.9 on page 169).

PROOF. The restriction of F to each of the Ui is coherent — see 4.4.18 on
page 190. The proof, here, follows an argument virtually identical to that used
in the proof of lemma 4.4.18 on page 190 with a little care to account for f being
in a sheaf. �

We have an immediate consequence

COROLLARY 5.3.9. If F is a finitely-generated coherent module over OV on a
scheme V and L = OV(1) is a very ample sheaf, then there exists an integer n > 0
such that

F ⊗OV OV(1)d

is generated by global sections for all d ≥ n.

PROOF. The existence of L implies the existence of a closed immersion

f : V ↪→ RPt

for some t. The open affines {At
i}, i = 0, . . . , t defines open affines of V, namely

Xi = f−1 ( f (V) ∩At
i
)

Proposition 5.3.3 on page 228 implies that the twist, ORPt(1), has global eval-
uations Xi ∈ ORPt(1)(RPt) and At

i is defined by the nonvanishing of Xi. It
follows that the open affine Vi is defined by the nonvanishing of a function
fi ∈ L (V) that maps to Xi. We have

F |Vi = A(Mi)

for a finitely generated module Mi overOV(Vi) (see definition 3.5.1 on page 151
and lemma 3.5.6 on page 152). Suppose {mi,j} is a finite set of generators of Mi.

Lemma 5.3.8 on the facing page implies that there exists ni,j such that f
ni,j
i ·

mi,j is the restriction of something in (F ⊗OV L ni,j)(V). If n is the maximum of
all of the {ni,j}, it has the required properties. �

In projective spaces, Serre twists play an important part:
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LEMMA 5.3.10. Let F be a coherent sheaf on RPn. Then there exists a surjective
map

t⊕
j=1

ORPn(d)→ F

for some value of t, and d. Moreover, d can be chosen arbitrarily small.

REMARK. Why is this interesting? Over an affine variety, A, we already
know that coherent sheaves are surjective images of Ot

A for some t (see defi-
nition 3.5.5 on page 152). Over a general variety or scheme, we can only say
something like this in open affines.

The present result is interesting because it says something like this is true
for projective spaces (even though they are not affine). Over a projective space,
one cannot simply use ORPt — one must be willing to use Serre twists.

PROOF. Corollary 5.3.9 on page 231 implies that

F ⊗ORPn ORPn(m)

is generated by global sections, say s1, . . . , st. Then there exists a surjective map

t⊕
j=1

ORPn → F ⊗ORPn ORPn(m)

⊕ri 7→ ∑ ri · si

of sheaves. If we take the tensor product with ORPn(−m) we get a surjection

t⊕
j=1

ORPn ⊗ORPn ORPn(−m)→ F ⊗ORPn ORPn(m)⊗ORPn ORPn(−m)

since ⊗ is right-exact (see proposition A.5.55 on page 458). It is not hard to see
that

t⊕
j=1

ORPn ⊗ORPn ORPn(−m) =
t⊕

j=1

ORPn(−m)

and

F ⊗ORPn ORPn(m)⊗ORPn ORPn(−m) = F ⊗ORPn ORPn(0) = F

(see equation 5.3.1 on page 229) so the conclusion follows. Since m can be arbi-
trarily large in corollary 5.3.9 on page 231, d = −m can be arbitrarily small. �

�

We consider a more abstract version of Serre-twists on schemes of the form Proj R
(see definition 4.4.12 on page 187) for a graded ring, R.

We begin with Serre’s generalization of his A(∗)-construction:

DEFINITION 5.3.11. Let M be a graded module over a graded ring, R, and let x ∈ R
be a homogeneous element. Then M(x) is defined to be the degree-0 elements of the
localization Mx.

REMARK. This is nothing but a module-version of definition 4.4.13 on page 187.
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DEFINITION 5.3.12. If M is a graded module over a graded ring, R, define A(M) to
be the sheaf over Proj R defined by

A(M)|D(x) = A(M(x))

where D(x) is the affine scheme, Spec R(x), in proposition 4.4.14 on page 187.

Now we can generalize the definition of OX given above:

DEFINITION 5.3.13. If R is a graded module and V = Proj R, then define

OV(n) = A(R(n))

for n an integer ≥ 0, where R(n) is the graded R-module

R(n) =
∞⊕

j=n
Rj

REMARK. These first appeared in [146]. It is not hard to see that OV = OV(0): on
the open set, Spec R(x), for any homogeneous x ∈ R we getOV(0)| Spec R(x) = A(R(x)),
which is the definition of OSpec R(x)

(see exercise 4 on page 175).

PROPOSITION 5.3.14. If R is a graded ring that is finitely-generated by R1 as an R0-
algebra and V = Proj R, then:

(1) OV(n) is an invertible sheaf (i.e., locally-free of rank 1).
(2) OV(n)⊗OV OV(m) = OV(n + m)

REMARK. The proof shows that for different values of n, the OV(n) mainly differ
from one another in their gluing maps — or how they behave on overlaps of open-sets.

Even if the hypotheses are not satisfied, there exists a homomorphism

OV(n)⊗OV OV(m)→ OV(n + m)

that may fail to be an isomorphism. It is induced by the homomorphism of modules

R(n)⊗ R(m)→ R(n + m)

given by multiplication.

PROOF. If x ∈ R1, then on the open affine

OV(n)|D(x) = A(R(n)(x))

Since x is of degree 1, multiplication by xn defines a homomorphism of R-modules

xn·: R→ R(n)

Since x is invertible in Rx, we get an isomorphism of Rx-modules

xn·: Rx → R(n)x

which preserves elements of degree 0. It follows thatOV(n)|D(x) is free of rank 1. Since
R is generated by elements of degree 1, these open sets cover V.

The remaining statement is also verified on each open set D(x), where x ∈ R1:

A(R(n)(x))⊗OV A(R(m)(x)) = A(R(n)(x) ⊗ R(x)R(m)(x)) = A(R(n + m)(x))

by the argument used above. �

The comparison of gluing maps implies the comforting conclusion that:

PROPOSITION 5.3.15. If S = R[X0, . . . , Xn] and V = Proj R, then the Serre twists,
OV(n) in definition 5.3.13 are isomorphic to those in definition 5.3.2 on page 228.
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PROOF. The proof that OV(n) is locally free of rank 1 show that, on the overlap
An

i ∩An
j , the gluing map is given by

S(Xi)
Xn

i ·−−→ S(n)(Xi ·Xj)

X−n
j−−→ S(Xj)

or
(

Xi/Xj

)n
. �

DEFINITION 5.3.16. If V = Proj R and F is a module over OV , then define the
graded module associated to F to be

Γ∗(F ) =
∞⊕

n=0

(
F ⊗OV OV(n)

)
(V)

REMARK. If u ∈
(
F ⊗OV OV(n)

)
(V) and x ∈ Rd determines an element of

OV(d)(V) then x · u is the image of u⊗ x under the mapping

F ⊗OV OV(n)⊗OV OV(d)→ F ⊗OV OV(n + d)

In some cases, the graded module recovers important information about the under-
lying ring:

PROPOSITION 5.3.17. If R = S[X0, . . . , Xn] and V = Proj R, then

Γ∗(OV) = R

PROOF. This immediately follows from propositions 5.3.15 on the preceding page
and 5.3.3 on page 228, which show that

OV(d)(V) = S[X0, . . . , Xn]d

the subgroup of degree-d monomials. The direct sum is all of R. �

PROPOSITION 5.3.18. If S is a graded ring with is finitely generated by S1 as an algebra
over S0, V = Proj S, and F is a quasi-coherent sheaf on V, then there is a natural isomorphism

β:A(Γ∗(F ))→ F

PROOF. We begin by defining β for a module over OV . If x ∈ S1 we define

A(Γ∗(F ))|D(x)→ F |D(x)

by specifying an S(x)-module-homomorphism

β̄: Γ∗(F )(x) → F (D(x))

Elements of Γ∗(F )(x) are of the form f /xn where f ∈
(
F ⊗OV OV(n)

)
(V) and x−n ∈

OV(−n)(D(x)), so

f /xn ∈
(
F ⊗OV OV(n)⊗OV OV(−n)

)
(D(x))→ F (D(x))

and this induces β|D(x).
Having defined β, we now need to show that it is an isomorphism for a quasi-coherent

sheaf. If F is quasi-coherent, this involves showing that

β̄: Γ∗(F )(x) → F (D(x))

is an isomorphism for x ∈ S1. Set L = OV(1) so OV(n) = L n — a sheaf that is
invertible and free on each open set D(xi) where the xi ∈ S1 generate S.

Statement 1 of lemma 5.3.8 implies that β̄ is injective, since any s ∈ F (V) with
s|D(xi) = 0 must have the property that s · xn

i = 0 ∈ (F ⊗OV L n)(V) for some n so s is
in the kernel of Γ∗(F )→ Γ∗(F )(xi).
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Statement 2 of lemma 5.3.8 shows that every f ∈ F (D(xi)) has the property that
xk

i · f ∈ (F ⊗OV L k)(D(xi)) is the restriction of s ∈ (F ⊗OV L k)(V) for some k. It
follows that f = s/xk

i ∈ (F ⊗OV L k)(V) · x−k
i ⊂ Γ∗(F )(x), making β̄ surjective. �

The Proj-construction allows us to describe all projective varieties and schemes in a
compact way:

COROLLARY 5.3.19. If W ⊂ V = RPn is a closed subscheme, then there exists a graded
ring S with S0 = R such that

W = Proj S

PROOF. According to definition 4.4.21 on page 191, there exists an quasi-coherent
ideal I ⊂ ORPn that defines W. Since Γ∗(OV) = R[X0, . . . , Xn] and I ⊂ OV , we get

Γ∗(I ) ⊂ Γ∗(OV) = R[X0, . . . , Xn]

is a graded ideal. The ideal, Γ∗(I ), determines a closed subscheme,

P(Γ∗(I )) = Proj(S) ⊂ V

(see definition 4.4.15 on page 188) with S = R[X0, . . . , Xn]/Γ∗(I ) whose sheaf of ideals
is A(Γ∗(I )) (see definition 5.3.13 on page 233). Proposition 5.3.18 on the preceding page
implies that A(Γ∗(I )) = I so that W = Proj S. �

EXAMPLE 5.3.20. Given a ring R and integers n and d, we can define the Grassman-
nian over R as

RGn,d = Proj R[X1, . . . , X(n
d)
]/P

where P is the homogeneous ideal of Plücker relations (see definition 5.2.10 on page 224).

EXERCISES.

1. Show that a separated presheaf, F , generated by global sections is ac-
tually a sheaf — so sheaves generated by global sections have this property in
common with flasque sheaves.

2. If L is a very ample sheaf on a variety V, show that there exists
f0, . . . , ft ∈ L (V), for some value of t, that define a closed immersion

V → kPt

x 7→ ( f0(x): · · · : ft(x))

This is often used as the definition of a very ample sheaf.

5.4. Regular and rational maps

5.4.1. Definitions. We could define them as we would for general vari-
eties:
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DEFINITION 5.4.1. Let V ⊂ kPn be a projective variety with standard de-
composition (as in proposition 5.1.11 on page 218) V =

⋃n
j=0 Vj. Then we define

a function
f : V → k

to be regular or rational if the f |Vi are, respectively, regular or rational for all
i = 0, . . . , n.

REMARK. This is just the definition of a regular function on a general vari-
ety — see 4.4.2 on page 180.

When we are mapping a projective variety to a projective space, we can get a
somewhat intrinsic definition:

PROPOSITION 5.4.2. Let V ⊂ kPn be a projective variety with standard decom-
position (as in proposition 5.1.11 on page 218) V =

⋃n
j=0 Vj. Then a regular map

f : V → kPm

is given by a sequence of regular functions

f = ( f0: · · · : fm)

that never simultaneously vanish on V. These, in turn, can be defined by a sequence of
homogeneous polynomials of the same degree (that never simultaneously vanish on V)

f = (F0(X0, . . . , Xn): · · · : Fm(X0, . . . , Xn))

where X0, . . . , Xn are homogeneous coordinates in kPn. Two such sequences of homo-
geneous polynomials

(F0(X0, . . . , Xn): · · · : Fm(X0, . . . , Xn))

(G0(X0, . . . , Xn): · · · : Gm(X0, . . . , Xn))

define the same regular map if and only if

FiGj = FjGi

for all i, j = 0, . . . , m.
Rational mappings

f : V → kPm

are defined by a sequence
f = ( f0: · · · : fm)

of rational functions, at least one of which is not identically zero on V. These, in turn,
can be defined by a sequence of homogeneous polynomials of the same degree such that
at least one polynomial does not identically vanish on V

f = (F0(X0, . . . , Xn): · · · : Fm(X0, . . . , Xn))

REMARK. Note that the definitions of regular and rational functions in
terms of homogeneous coordinates are very similar. Regular maps are essen-
tially rational maps that are regular at every point of V. The homogeneous
polynomials in a rational map may simultaneously vanish at some points of V
— they only have to satisfy the weaker condition that they are not all identically
zero.
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PROOF. The first statement is clear. The second follows by reasoning ex-
actly like that used in proposition 1.2.6 on page 5, applied to each of the Vi =
V ∩An

i . The third statement follows from the definition of homogeneous coor-
dinates. �

The following example shows that we can regard regular and rational func-
tions as corresponding maps:

EXAMPLE 5.4.3. We can regard a regular function on kPn as a regular map

kPn → kP1

whose image lies in A1
0 ⊂ kP1. This is given by a sequence of homogeneous

polynomials of the same degree

(F0(X0, . . . , Xn): F1(X0, . . . , Xn))

such that F1(X0, . . . , Xn) never vanishes on An+1. The Nullstellensatz tells us
that such a function must be a nonzero constant. Since both homogeneous poly-
nomials must be of the same degree, we conclude that F0(X0, . . . , Xn) is also a
constant, and the only regular functions on kPn are constants.

Any sequence
(F0(X0, . . . , Xn): F1(X0, . . . , Xn))

of homogeneous polynomials of the same degree (where at least one of them is
not identically 0) defines a rational map

P(An+1)→ P(A2)

This can be regarded as a rational map to A1
0 ⊂ P(A2) if F1 6= 0, in which case

the rational function is
F0(X0, . . . , Xn)

F1(X0, . . . , Xn)

We conclude that rational functions on P(An+1) are quotients of homogeneous
polynomials of the same degree.

DEFINITION 5.4.4. If V ⊂ kPn and W ⊂ kPm, then a regular (or rational)
map

f : V →W
is a regular (respectively, rational) map

f : V → kPm

whose image lies in W. The varieties V and W are isomorphic (respectively,
birationally equivalent) if there exist regular (rational) maps f : V →W g: W → V
such that f ◦ g = 1: W →W and g ◦ f = 1: V → V.

The following example will be very useful in the future:

EXAMPLE 5.4.5. Let V ⊂ kPn be the d-dimensional linear subspace defined
by linearly independent linear forms

L1 = · · · = Ln−d = 0

Then the projection
πV : kPn → kPn−d−1 = P(An−d)
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with center V is defined by

πV(x) = (L1: · · · : Ln−d)

is a rational map that is regular on kPn \V.

EXERCISES.

1. If L ⊂ P(An+1) is a hyperplane (i.e., a variety defined by a single linear
equation), show that P(An+1) \ L is affine.

5.4.2. The Veronese embedding. In this section, we discuss a very im-
portant class of regular maps named after the mathematician who discovered
them:

Giuseppe Veronese (1854–1917) was an Italian mathematician responsible for
much of what we know about projective and non-Archimidean geometry (see
[23] and [30]). He also did research on transfinite numbers and was a contem-
porary (rival?) of Georg Cantor.

We begin with an elementary fact:

PROPOSITION 5.4.6. If S is the set of degree-m monomials Xd0
0 · · ·Xdn

n , with all
of the di ≥ 0 and

d1 + · · ·+ dn = m
then the number of elements in S is (

n + m
n

)
PROOF. Consider sequences of m 1’s and n dividers, |,

(1, 1, 1, |, 1, 1, . . . , |, 1, 1)

The exponent of X0 is the number of 1’s before the first divider, and that of Xi
the number between the ith divider and the next. There is clearly a one-to-one
correspondence between the monomials and these sequences. �

Now let P(AN) be a projective space whose homogeneous coordinates cor-
respond to every possible monomial as defined above. We can denote these
coordinates by Yd0,...,dn . The mth Veronese map is a map

vn,m: kPn → P(AN) = kPN−1

defined by
Yd0,...,dn = Xd0

0 · · ·Xdn
n

This is regular because, among the monomials in S in proposition 5.4.6, we
have monomials Xm

i which do not all vanish because at least one of the Xi must
be nonzero.
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We can also define an inverse map. On the open affine AN−1 ⊂ kPN−1

with Ym,...,0 = Xm
0 6= 0, we map

(· · · : Ym,...,0: · · · : Ym−1,. . . 0, 1, 0, . . . 0︸ ︷︷ ︸
ith position

: · · · )

7→ (Xm
0 : · · · : Xm−1

0 Xi: · · · ) ∼ (X0: · · · : Xi: · · · )
This is clearly a regular map and an inverse to vn,m so the Veronese map is

an embedding (or closed immersion) of kPn in kPN−1.
The Veronese embedding has a number of interesting properties, including

its ability to map an arbitrary degree-m hypersurface in kPn like

∑
d0+···+dn=m

ad0,...,dn Xd0
0 · · ·Xdn

n = 0

into a hyperplane

∑
d0+···+dn=m

ad0,...,dn Yd0,...,dn = 0

in kPN−1. In other words, every hypersurface in kPn is isomorphic to the inter-
section of vn,m(kPn) with a suitable hyperplane in kPN−1.

EXERCISES.

2. If V = P(An+1) and W is the hypersurface P(F), where F(X0, . . . , Xn)
is homogeneous polynomial of degree d, show that

V \W

is an open affine.

3. Show that the set of degree-d hypersurfaces in kPn is parametrized by a
projective space.

4. Show that the set of degree-d hypersurfaces in kPn that contain a given
point is parametrized by a hyperplane in a projective space.

5.5. Products

5.5.1. Introduction. Although we know how to compute products of gen-
eral varieties (see section 4.5 on page 194) and could use those techniques to
compute products of projective varieties, it is natural to ask

(1) Is there a more intrinsic definition of products (i.e., one using homo-
geneous coordinates)?

(2) Is the product of projective varieties a projective variety?
Key to answering both questions lies in:
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5.5.2. The Segre Embedding. Since projective varieties are schemes, their
products are well-defined and can be explicitly constructed (see section 4.5 on
page 194). It is not obvious but true that a product of projective varieties is also
a projective variety. The Segre Embedding is the key to proving this.

Corrado Segre (1863 – 1924) was an Italian mathematician who was responsible
for many early developments in algebraic geometry — see [7].

If U and V are vector spaces over the field, k, consider the natural map

t: U ×V → U ⊗k V
u× v 7→ u⊗ v

where U ×V is the Cartesian product. The map t is not injective since, for any
c ∈ k×,

c · u⊗ c−1 · v
defines the same element as u⊗ v. If we pass to projective spaces, we get

s(U, V): P(U)×P(V)→ P(U ⊗V)

called the Segre map. The main result is:

THEOREM 5.5.1. The Segre map, defined above, is a closed immersion of projective
varieties, embedding the product P(U)×P(V) into P(U ⊗V).

REMARK. The word “product” here is in the categorical sense — i.e. a
product of varieties as defined in section 4.5 on page 194.

This result gives a functorial closed immersion

kPn × kPm → kP(n+1)(m+1)−1

PROOF. Let U = An+1 and V = Am+1. If u = (x0: · · · : xn) ∈ P(U) and
v = (y0: · · · : ym) ∈ P(V) then the image of u × v is (wi,j) ∈ P(U ⊗ V), with
i = 0, . . . , n and j = 0, . . . , m and where

(5.5.1) wi,j = xi · yj

These quantities satisfy the identities

(5.5.2) wi,jws,t = wi,swj,t

for all i, s = 0, . . . , n and j, t = 0, . . . , m. If s = t = 0, and w0,0 6= 0, equation 5.5.2
implies

wi,jw0,0 = wi,0w0,j

or
wi,j

w0,0
=

wi,0

w0,0
· w0,j

w0,0

so that, on A
(n+1)(m+1)
0,0 (i.e., where w0,0 6= 0) a set of quantities (wi,j) satisfying

equation 5.5.2 is of the form given in equation 5.5.1 if we define xi = wi,0 and
yj = w0,j/w0,0. This implies that the image of the Segre map is a projective
variety (i.e., defined by the equations 5.5.2).

If x0 6= 0 and y0 6= 0, we get w0,0 6= 0 so
xi
x0

=
wi,0

w0,0
and

yi
y0

=
w0,j

w0,0
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which implies that

s: An+1
0 ×Am+1

0 → im s ∩A
(n+1)(m+1)
0,0

is 1-1. This shows that the restriction to open affines of the Segre map is a map
to the product and an isomorphism. We conclude that the Segre map as a whole
is an isomorphism and a map to the product (see lemma 4.5.3 on page 195). �

This implies that:

COROLLARY 5.5.2. Subvarieties of kPn × kPm are defined by sets of equations

f j(X0, . . . , Xn, Y0, . . . , Ym) = 0

that are homogeneous in the Xi and the Yj.

REMARK. The degrees of homogeneity of the Xi’s can be different from that
of the Yj’s.

Since we can regard an affine variety as a subset of a projective variety (i.e.,
its projective closure — see definition 5.1.12 on page 218), we get

COROLLARY 5.5.3. Subvarieties of kPn ×Am are defined by sets of equations

(5.5.3) f j(X0, . . . , Xn, Y1, . . . , Ym) = 0

for j = 1, . . . , t, that are homogeneous in the Xi.

REMARK. If an fi is homogeneous in the Xj of degree d, it can be written

fi = ∑
|α|=d

Xα · gα(Y)

where α = (α0, . . . , αn), |α| = ∑n
t=0 αt, and Xα = Xα0

0 · · ·Xαn
n . The scheme they

define can be regarded as Proj R (see definition 4.4.12 on page 187), where

R =
k[X0, . . . , Xn, Y1, . . . , Ym]

( f1, . . . , ft)

and the Yi have degree 0 and the Xj have degree 1. The quotient is a graded
ring computed as in equation A.4.16 on page 427.

EXERCISES.

1. If V = P(X0X3 − X1X2) ⊂ kP3, (a quadric surface), show that

a. V = kP1 × kP1

b. V is birationally equivalent to kP2.
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FIGURE 5.5.1. Blowing up

5.5.3. “Blowing up”. We will discuss a construction that is widely used
in algebraic geometry (and is a key element of Hironaka’s remarkable papers
[76, 77]). The basic idea is that “singular varieties are the image of smooth
varieties under a suitable projection” or what Hauser ([72]) called “an almost
philosophical speculation:”

“Singular curves are the shadow of smooth curves in higher
dimensional space.”

For instance the singular curve V ⊂ A2 given by Y2 = X3 is the image of the
smooth curve W ⊂ A3 defined by X = Z3, Y = Z2 as in figure 5.5.1.

The new parameter, Z, that we introduced is equal to Y/X — defining a
line through the origin — i.e., a point of kP1. If we try to extend this “blow
up” to all of A2 (so A2 get blown up and V is “carried along”), the result is the
graph, ΓF, (see definition 4.6.5 on page 202) of a map

F: A2 \ (0, 0) → kP1

(X, Y) 7→ [X: Y]

— a closed subset of (A2 \ (0, 0))× kP1 (see proposition 4.6.6 on page 202). If
we regard it as a subset of A2 × kP1, the Zariski closure is a subvariety B ⊂
A2 × kP1 and projection onto the first factor is a map

f : B→ A2

since F(X, Y) = [X: Y], B is the subset of A2 × kP1 consisting of points
(X, Y, R: S) such that

S
R

=
Y
X

for X 6= 0 or
S · X = R ·Y

Since this equation is well-defined for all X, Y, we conclude that it defines B
completely. If p ∈ A2 is any point except the origin, f−1(p) is a single point.
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BB

FIGURE 5.5.2. Blowing up A2

In fact, f−1(A2 \ (0, 0) ⊂ B is isomorphic to A2 \ (0, 0) — which implies that f
is a birational equivalence (see theorem 2.8.23 on page 107). On the other hand
f−1((0, 0)) = kP1, so the point (0, 0) has been “blown up” to a whole copy of
kP1 — see figure 5.5.2. Since the top of the figure is identified with the bottom,
B looks like a Möbius strip.

On the chart (or open affine A1
0 ⊂ kP1), we set R = 1 and B ∩A2 ×A1

0 is
defined by the equation

S · X = Y
which defines a copy of A2 embedded in A2 ×A1

0. The subvariety f−1((0, 0))
is defined by the single equation X = 0. On the chart A1

1 ⊂ kP1, we have S = 1
and B ∩A2 ×A1

1 is defined by

X = R ·Y
and f−1((0, 0)) is defined by the single equation Y = 0.

We can easily generalize this:

DEFINITION 5.5.4. If S = { f1, . . . , ft} ⊂ k[X1, . . . , Xn] is a set of polynomi-
als and t ≥ 2, the blowup of An induced by S is the subvariety W ⊂ An × kPt−1

that is the Zariski-closure of the graph of

f : An \ V (( f1, . . . , ft)) → kPt−1

(X1, . . . , Xn) 7→ [ f1(X): · · · : ft(X)]

This comes with a canonical projection

σ: W → An

REMARK. If the fi are algebraically independent, W is the variety defined
by the equations

(5.5.4) fi(X) ·Yj = f j(X) ·Yi
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for i, j = 1, . . . , t, and where {Yi} are the homogeneous coordinates of kPt−1 —
or (as a scheme) Proj R with

(5.5.5) R =
k[X1, . . . , Xn, Y1, . . . , Yt]

({ fi(X) ·Yj − f j(X) ·Yi})
where the Yi have degree 1 and the Xj have degree 0. Since kP0 is a point, the
blowup of An by a principal ideal ( f ) is just An and the canonical projection is
the identity map2.

We will ultimately show that a blowup only depends on the ideal
( f1, . . . , ft). The first step is

PROPOSITION 5.5.5. Let { f1, . . . , ft} ⊂ k[X1, . . . , Xn] be a set of polynomials as
in definition 5.5.4 on the preceding page inducing the blowup

σ: W → An

If g ∈ ( f1, . . . , ft) = a and W ′ ⊂ An × kPt−1 with projection

σ′: W ′ → An

is the blow up induced by the expanded set { f1, . . . , ft, g}, there exist isomorphisms
ϕ: W → W ′ and ψ: W ′ → W with ψ ◦ ϕ = 1: W → W and ϕ ◦ ψ = 1: W ′ → W ′

that makes the diagram

(5.5.6) W
ϕ

,,

σ !!

W ′
ψ

ll

σ′}}

An

commute.

REMARK. When two blowups fit into a commutative diagram like 5.5.6 we
will say that they are equivalent.

PROOF. Since g ∈ ( f1, . . . , ft), we have an expression

g =
t

∑
i=1

ri fi

We define ϕ by

(X1, . . . , Xn)× [Y1: · · · : Yt] 7→ (X1, . . . , Xn)×
[

Y1: · · · : Yt:
t

∑
i=1

ri(X) ·Yi

]
This is a regular map that sends An × kPt−1 \ σ−1(V (a)) to
An × kPt \ σ′−1(V (a)) so it extends to a regular map of Zariski closures. The
inverse, ψ, is defined by

(X1, . . . , Xn)× [Y1: · · · : Yt: Yt+1] 7→ (X1, . . . , Xn)× [Y1: · · · : Yt]

and the composite ψ ◦ ϕ carries W to W and is the identity map. It is also not
hard to verify that ϕ ◦ ψ: W ′ →W ′ is the identity map. �

This immediately implies

2We could also say that the blowup by ( f ) is Proj k[X1, . . . , Xn, Y]/( f ·Y− f ·Y).
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COROLLARY 5.5.6. In the context of definition 5.5.4 on page 243, suppose
( f1, . . . , ft) = (g1, . . . , gs) ⊂ k[X1, . . . , Xn] are sets of polynomials that generate
the same ideal. If σ: W → An is the blowup of An with respect to { f1, . . . , ft}
and σ′: W ′ → An is that with respect to {g1, . . . , gs}, there exist isomorphisms
ϕ: W → W ′ and ψ: W ′ → W with ψ ◦ ϕ = 1: W → W and ϕ ◦ ψ = 1: W ′ → W ′

that makes diagram 5.5.6 on the preceding page commute.

PROOF. Inductively apply proposition 5.5.5 on the facing page to show that
W and W ′ are both equivalent to the blowup with respect to

{ f1, . . . , ft, g1, . . . , gs}
�

With this in mind, we can define

DEFINITION 5.5.7. If a ⊂ k[X1, . . . , Xn] = k[An] is an ideal, the blowup of
An induced by a, denoted Ba(An), is the blowup with respect to the ideal a.
This comes with a canonical map σ: Ba(An)→ An with the property that

σ|Ba(A
n) \ σ−1(V): Ba(A

n) \ σ−1(V)→ An \V

with V = V (a) is an isomorphism. The subvariety σ−1(V) ⊂ Ba(An) is called
the exceptional fiber of σ. The variety V (a) is called the center of the blowup.

REMARK. The exceptional fiber is exceptional because it is the only one that
is not a point. If a is a principal ideal, there is no exceptional fiber.

Blowups are often defined with respect to a subvariety V = V (a). It is
possible for distinct ideals with the same zero-set to give different blowups —
see exercise 3 on page 247, which shows that B(X1,X2)

(A2) 6= B(X2
1 ,X2)

(A2).
Since subschemes of An are in a 1-1 correspondence with their defining ideals, it
makes sense to write BV(A

n) if V is a subscheme of An.

The following result gives an interesting property of blowups3:

PROPOSITION 5.5.8. Suppose a = ( f1, . . . , ft) ⊂ k[X1, . . . , Xn] is not a princi-
pal ideal and E is the exceptional fiber of σ: Ba(An)→ An. Then

E ⊂ Ba(A
n) ⊂ An × kPt−1 =

t⋃
j=1

An ×At−1
j

On the ith open affine, E ∩ (An ×At−1
i ), is defined by the single equation:

fi = 0

It follows that E is n− 1-dimensional.

REMARK. Strictly speaking, the statement is true even if a is principal —
but is less interesting. In effect, the ideal a has been “blown up” into a set of
principal ideals — each “valid” on a different subspace of Ba(An).

This turns out to show that the exceptional fiber is something called a
Cartier divisor — see example 5.9.13 on page 283.

Since blow-ups are isomorphisms outside the exceptional fiber, they are
always birational equivalences.

3In a certain sense, it can be regarded as a defining property — see exercises 5 and 6 on
page 247.
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PROOF. Equations 5.5.4 on page 243 are valid on Ba(An) even if they do not
completely define it (see exercise 2 on the next page). On the chart An ×At

i ⊂
An× kPt−1, we have Yi = 1, which transforms equations 5.5.4 on page 243 into

fi(X) ·Yj = f j(X)

Consequently, fi(X) = 0 =⇒ f j(X) = 0 for all j on this chart and E ∩
(An ×At

i) is defined by the single equation fi = 0. It follows that E is n− 1-
dimensional (see corollary 2.8.30 on page 110). �

We can also blow up affine varieties (and schemes):

PROPOSITION 5.5.9. Suppose a ⊂ k[X1, . . . , Xn] and suppose V (a) ⊆ W ⊂
An, and σ: Ba(An) → An is the blowup. Then Ba(W) ⊂ Ba(An) is the Zariski-
closure of σ−1(W \ V (a) ⊂ Ba(An).

REMARK. Since the exceptional fiber is defined by a single equation on
each chart (proposition 5.5.8 on page 5.5.8), corollary 2.8.30 on page 110 implies
that its intersection with Ba(W) has codimension 1.

If W is an affine variety (or scheme) and a ⊂ k[W], we can embed W in an
affine space An so that a lifts to an ideal a′ ⊂ k[X1, . . . , Xn] and we can compute
Ba(W) = Ba′(W) ⊂ Ba′(A

n).
It’s a small step from this to blowing up portions of general varieties and

schemes: If W is an open affine of a general scheme, S, and a ⊂ OS(W), then
the fact that σ|Ba(W) \ Spec (OS(W)/a) is an isomorphism implies that we can
“glue” Ba(W) to the rest of S to produce Ba(S).

EXAMPLE 5.5.10. The Whitney Umbrella, W ⊂ A3, given by the equation
X2

1 + X2X2
3 = 0. Computing the Jacobian shows that the its singular set is the

X2-axis. Since the X2 axis is given by the equations X1 = 0 and X3 = 0, so we
can blow up A3 to get B(X1,X3)

(A3)

g: A3 → kP1

(X1, X3) 7→ [Y1: Y2]

As before, we get equations for B(X1,X3)
(A3)

X1 ·Y2 = X3 ·Y1 ⊂ A3 × kP1

and B(X1,X3)
(W) ⊂ B(X1,X3)

(A3) ⊂ A3 × kP1 is the Zariski closure of g−1(W \
X2-axis). Since g|g−1(A3 \ X2-axis) is an isomorphism and W is irreducible, it
follows that g−1(W \ X2-axis) is irreducible in g−1(A3 \ X2-axis). On the chart
with Y2 = 1, plug X1 = Y1X3 into the defining equation to get

(5.5.7) Y2
1 X2

3 + X2X2
3 = 0

or X2 +Y2
1 = 0, when X3 6= 0, so the Zariski-closure, B(X1,X3)

(W)∩ (A2×A1
2),

is given by

X2 + Y2
1 = 0

X1 −Y1X3 = 0
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It is easily verified that the Jacobian is of rank 2 everywhere so it is smooth. On
the chart with Y1 = 1, X3 = Y2X1 and we get

X2
1 + X2Y2

2 X2
1 = 0

or Y2
2 X2 + 1 = 0, when X1 6= 0, and B(X1,X3)

(W) ∩ (A2 ×A1
1) is given by

Y2X1 − X3 = 0
Y2

2 X2 + 1 = 0

and computation of the Jacobian shows that this has a singularity defined by
X1 = Y2 = 0. If E is the exceptional fiber, E ∩B(X1,X3

(W) is equal the parabola
X2 +Y2

1 = 0 on the first chart and the curve Y2
2 X2 + 1 = 0 on the second. These

curves intersect at the single point X1 = X3 = 0, Y1 = Y2 = 1, X2 = −1.

EXERCISES.

2. Why can’t we always use equations 5.5.4 on page 243 to compute the
result of blowing up?

3. Show that the blowup B(X2
1 ,X2)

(A2) has a singularity. This shows that
blowing-up can create singularities where none existed before.

4. Suppose a = ( f1, . . . , ft) ⊂ k[X1, . . . , Xn] = R and suppose that the fi
are algebraically independent. Show that, as a scheme,

Ba(A
n) = Proj

(
R⊕ a⊕ a2 ⊕ · · ·

)
where the summand R has degree 0, a has degree 1, and so on — i.e., we take
Proj of the Rees algebra of a ⊂ R described in example A.4.58 on page 427.
With a little more work (and keeping in mind the solution to exercise 2) one
can show that this formula for Ba(An) is always true.

5. Suppose f : V → W is a regular map of affine varieties with induced
homomorphism of coordinate rings f ∗: k[W] → k[V] and suppose b ⊂ k[W] is
an ideal. Show that there exists a unique map

g: B f ∗(b)(V)→ Bb(W)

that makes the diagram

B f ∗(b)(V)
g
//

σ1
��

Bb(W)

σ2
��

V
f

// W

commute, where σ1 and σ2 are the standard maps from blowups to bases.

6. Suppose f : V → W is a regular map of affine varieties with induced
homomorphism of coordinate rings f ∗: k[W] → k[V] and suppose b ⊂ k[W] is
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an ideal such that f ∗(b) ⊂ k[V] is principal. Show that there exists a unique
morphism

g: V → Bb(W)

that makes the diagram
Bb(W)

σ
��

V
f
//

g ;;

W

commute.

5.5.4. Projective elimination theory. This section is a projective version of
section 2.5.2 on page 79. In the projective case, we can accomplish considerably
more than in the affine case. For instance, we can compute the image of a va-
riety under the projection kPn ×Am → Am — rather than its Zariski closure.
This leads to several interesting and useful results that emphasize some unique
features of projective varieties.

DEFINITION 5.5.11. Let a ⊂ k[X0, . . . , Xn, Y1, . . . , Ym] be an ideal whose
generators are homogeneous in the Xi. Then the projective elimination ideal,
â ⊂ k[Y1, . . . , Ym] is defined by

â =
{

f ∈ k[Y1, . . . , Ym]
∣∣ f · Xej

j ∈ a
}

for each j = 0, . . . , n and some exponent ej ≥ 0.

REMARK. Compare this to the saturation-ideals in exercises 9 on page 71
and 10 on page 220.

That this actually defines an ideal is left to the reader as an exercise. Com-
pare this to the affine case, definition 2.5.15 on page 79. The exponents ej only

have to be “sufficiently large” — if f · Xej
j ∈ a then f · Xr

j ∈ a for any r ≥ ej.

This is a projective version of proposition 2.5.16 on page 80:

PROPOSITION 5.5.12. Let V (a) ⊂ kPn ×Am be a variety defined by an ideal
a ⊂ k[X0, . . . , Xn, Y1, . . . , Ym] that is homogeneous in the Xi and arbitrary in the Yj.
If W is the image of V (a) under the projection kPn ×Am → Am, then

W ⊂ V (â)

where V (â) ⊂ Am is the set of points where the polynomials in â vanish and â is
defined in 5.5.11.

REMARK. By abuse of notation, we use the notation V (a) to denote a vari-
ety in kPn ×Am.

PROOF. In other words, we are claiming that the polynomials in â all van-
ish on W. If Let (u1, . . . , um) ∈W be the image of a point

(t0, . . . tn, u1, . . . , um) ∈ V (a)
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and suppose some ti 6= 0 (there must be at least one). If g ∈ â, then Xei
i · g ∈ a

and tei
i · g(u1, . . . um) = 0. Since ti 6= 0, we conclude that g(u1, . . . um) = 0. �

The interesting thing about the projective case is that we can prove a con-
verse that completely characterizes the image of a variety:

THEOREM 5.5.13 (Projective elimination). Let V (a) ⊂ kPn×Am be a variety
defined by an ideal a ⊂ k[X0, . . . , Xn, Y1, . . . , Yn] that is homogeneous in the Xi and
arbitrary in the Yj — and assume k is algebraically closed. If W is the image of V (a)
under the projection kPn ×Am → Am, then

W = V (â)

where â is defined in 5.5.11 on the preceding page.

PROOF. It suffices to show that V(â) ⊂W. Suppose

a = ( f1, . . . , ft) ⊂ k[X0, . . . , Xn, Y1, . . . , Ym]

where the fi are homogeneous in the xi. Now suppose that u = (u1, . . . , um) ∈
V (a) but u /∈W. Then the equations

fi(X0, . . . , Xn, u) = 0

have no solution in kPn. The Projective Nullstellensatz (theorem 5.1.4 on
page 214) implies that

( f1(X, u), . . . , ft(X, u)) ⊃ (Xs
0, . . . , Xs

n) ⊂ k[X0, . . . , Xn]

for some value of s > 0. This means that all monomials in the Xs
i can be ex-

pressed in terms of the fi(X, u), and all monomials of total degree N = n · s can
be expressed in terms of the fi(X, u):

Xα =
t

∑
i=1

fi(X, u) · hi,α(X)

where α = (α0, . . . , αn) is a multi-index with |α| = ∑n
i=0 αi = N and the hi,α(X)

are homogeneous.
We can choose

gj = Xβ j · fij

for j = 1, . . . , (n+N
N ) so the gj(X, u) are a basis for all of the monomials of total

degree N. Since the gj(X, Y) are homogeneous in the Xi’s, we can write

gj = ∑
|α|=N

Xα pj,α(Y1, . . . , Ym)

where pj,α(Y1, . . . , Ym) is an (n+N
N )× (n+N

N ) matrix of polynomials in the Yj. Let

A(Y1, . . . , Ym) = det
(

pj,α(Y1, . . . , Ym)
)

Since when Yi = ui for i = 1, . . . , m, the gj are a basis for the monomials Xα

with |α| = N, we have

(5.5.8) A(u1, . . . , um) 6= 0
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On the other hand, Cramer’s Rule implies that, for some matrix dj,α

A(Y1, . . . , Ym) · Xα =
N

∑
j=1

gj(X, Y) · dj,α

for every multi-index α = (α0, . . . , αn) with |α| = N. This implies that

A(Y1, . . . , Ym) ∈ â

so A(u1, . . . , um) = 0 (by proposition 5.5.12 on page 248), which contradicts
equation 5.5.8 on the preceding page. �

COROLLARY 5.5.14. If V is a projective variety and W is a general variety, then
the projection

V ×W →W
maps closed sets in V ×W to closed sets in W.

REMARK. The remarkable property described here is called completeness.

PROOF. Since V is a projective variety, it suffices to prove this for V = kPn

— i.e. a closed set in V ×W will still be closed in kPn ×W ⊃ V ×W. Since
closed sets in W are characterized by their intersections with open affines, it
suffices to prove the result for W = Am.

It follows that we only need to prove the conclusion for

kPn ×Am → Am

This follows immediately from theorem 5.5.13 on the previous page. �

This leads to the remarkable result:

COROLLARY 5.5.15. The image of a projective variety under a regular map is
closed.

REMARK. This is very different from what happens with affine varieties.
For instance the image of

XY = 1 ⊂ A2

under the projection to the X-axis is A1 \ {0}, which is open.

This also implies that the general variety, A2 \ {(0, 0)}, is not projective
since its inclusion into A2 is open. We have already seen that it is not affine.

PROOF. Let
f : V →W

be a regular map of a projective variety to a general variety. Then the graph of
this map, Γ f (see definition 4.6.5 on page 202) is a closed subset of V ×W, by
proposition 4.6.6 on page 202. The image of Γ f under the projection

V ×W →W

is equal to f (V) and this is closed, by corollary 5.5.14. �

COROLLARY 5.5.16. Let V be an irreducible projective variety. Then the only
regular functions on V are constants.
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FIGURE 5.5.3. Shrinking an affine variety

PROOF. A regular function on V is a regular map

f : V → k = A1

and its image must be closed, by corollary 5.5.15 on the preceding page. A
closed subset of A1 consists of a finite set of points {k1, . . . , ks}. If s > 0, f−1(ki)
is a component of V. Since V is irreducible, we must have s = 1. �

A map from a product can be regarded as a set of maps indexed by points
of a factor:

DEFINITION 5.5.17. A regular map

f : X×Y → Z

defines a family of maps fy: X → Z for each y ∈ Y.

With this definition in place, we get a rather surprising result:

LEMMA 5.5.18. Suppose X is an irreducible projective variety and

f : X×Y → Z

is a family of maps for some varieties Y and Z, where Y is irreducible. If there exists a
point y0 ∈ Y with fy0(X) equal to a single point in Z, then fy(X) is a single point of
Z for all y ∈ Y.

REMARK. This is a kind of “rigidity” property of projective varieties: It is
impossible to “smoothly deform” a projective variety to a point. This is most
definitely not true of affine varieties. For instance, if V ⊂ An is any affine variety,
the family of maps

An ×A1 → An

{X1, . . . , Xn} ×Y → {X1 ·Y, . . . , Xn ·Y}
smoothly shrinks V to a point as Y → 0 — see figure 5.5.3.

PROOF. Let Γ f ⊂ X × Y × Z be the graph of f (see definition 4.6.5 on
page 202), and let Γ̄ be its image in Y× Z under the projection

X×Y× Z → Y× Z
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Corollary 5.5.14 on page 250 implies that Γ̄ ⊂ Y × Z is closed, hence a variety.
Consider the projection

g: Γ̄→ Y

to the first factor. The fiber of this map over a point y ∈ Y is g−1(y) = y× f (X×
y) so the map is surjective. Since f (X × y0) is a single point, proposition 5.6.4
on page 257 implies that dim Γ̄ = dim Y.

If x0 ∈ X is any point, the subvariety S = {(y × f (x0, y)|y ∈ Y} ⊂ Γ̄ is
isomorphic to Y (via g). Since they are of the same dimension and irreducible,
we conclude that S = Γ̄ = Y and that g is an isomorphism. This means that
g−1(y) = y× f (X× y) is a single point for every y ∈ Y. �

It is possible to compute the projective elimination ideal using Gröbner bases:

DEFINITION 5.5.19. If R is a commutative ring and a, b ⊂ R are ideals,
define the ideal quotient, (a: b) by

(a: b) = {r ∈ R|r · b ⊂ a}
PROPOSITION 5.5.20. If R is an integral domain, r 6= 0 ∈ R and a ⊂ R, and

a∩ (r) = (r · g1, . . . , r · gn) then

(a: (r)) = (g1, . . . , gn)

REMARK. This is why (a: (r)) is sometimes written

1
r
· a∩ (r)

PROOF. If s is a linear combination of the {gj}, then r · s ∈ a ∩ (r) ⊂ a so
that s ∈ (a: (r)).

Conversely, if s ∈ (a: (r)), then sr ∈ a. Since sr ∈ (r), it follows that
sr ∈ a∩ (r). If

sr =
n

∑
j=1

aj · r · gj

then

s =
n

∑
j=1

aj · gj

since R is an integral domain. �

It follows that

PROPOSITION 5.5.21. Let a ⊂ k[X0, . . . , Xn, Y1, . . . , Ym] be an ideal whose
generators are homogeneous in the Xi. Then the projective elimination ideal,
â ⊂ k[Y1, . . . , Ym], defined in 5.5.11 on page 248 is given by

â =

 n⋂
j=1

(a: (X
ej
j ))

 ∩ k[Y1, . . . , Ym]

for each j = 0, . . . , n and “sufficiently large” exponent ej ≥ 0.
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REMARK. This allows for a purely algorithmic computation of â
using Gröbner bases. “Sufficiently large” means large enough that

(a: (X
ej
j )) = (a: (X

ej+1
j )).

For instance, let

(5.5.9) a = (X2Y− XY2, X2Z2 − 2 ZXY−Y2) ⊂ k[X, Y, Z]

Then

(a: (Y)) = (a: (Y2)) = (Z2Y3 − 2 ZY3 −Y3,

Z2XY− 2 ZXY−Y2, XY2 −Y3, X2 − XY)

while
(a: (Y3)) = (Z2Y− 2 ZY−Y, X−Y)

and we “stabilize” at Y4:

(5.5.10) (a: (Y4)) = (a: (Y5)) = · · · = (Z2 − 2 Z− 1, X−Y)

Compare this to the concept of saturation of an ideal in exercise 10 on
page 220. The ideal â is a kind of saturation with respect to the X-variables
intersected with the subring of Y-variables.

PROOF. This is a straightforward consequence of definitions 5.5.11 on
page 248 and 5.5.19 on the preceding page. �

We conclude this section with an example:

EXAMPLE 5.5.22. Let W = V (a) ⊂ kP1 ×A1 be defined by the ideal in
equation 5.5.9. We have already computed (a: (Yt)) for “sufficiently large” t —
it is given by equation 5.5.10 on page 253. We compute (using proposition 5.5.20
on page 252, Gröbner bases, and proposition 2.3.14 on page 53)

(a: (X)) =
1
X
· a∩ (X)

= (−Y3 − 2ZY3 + Y3Z,

XY−Y2, Y2 − 2Y2Z + X2Z2)

If we cut to the chase and compute

(a: (X20)) =
1

X20 · a∩ (X20)

= (−Z2 − 2Z3 + Z4,

YZ2 − 2YZ−Y,
XZ2 − 2YZ−Y, XY−Y2)

Now we compute the intersection, to get

(a: (X20)) ∩ (a: (Y4)) = (−Z2 − 2 Z3 + Z4,

Z2Y− 2 ZY−Y, Z2X− 2 ZY−Y,
XY−Y2)
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Since this is a Gröbner basis for the intersection with lexicographic ordering
with

X � Y � Z

we have

â = (a: (X20)) ∩ (a: (Y4)) ∩ k[Z] = (−Z2 − 2 Z3 + Z4)

So the image of W in A1 under the projection kP1 ×A1 → A1 is the set of
points {0, 1±

√
2}.

Now we are ready for the main result — the final “rigidity” property of
projective varieties:

THEOREM 5.5.23. If F is a coherent sheaf over a projective variety V ⊂ kPn,
then F (V) is a finite-dimensional vector space over k.

PROOF. This follows immediately from the fact that F (V) = H0(V, F )
(corollary D.3.16 on page 533) and the cohomology of F is finitely generated,
by theorem D.3.22 on page 538. �

5.6. Noether Normalization

It is possible to prove a version of theorem 2.5.12 on page 77 for projec-
tive varieties. Definition 4.6.23 on page 208 shows what a finite map is in the
projective context. Corollary 5.5.15 on page 250 allows us to use a geometric
argument to prove the result.

We begin with:

PROPOSITION 5.6.1. Let V ⊂ kPn be a projective variety and let L ⊂ kPn be the
d-dimensional linear subspace defined by linearly independent linear forms

L1 = · · · = Ln−d = 0

such that V ∩ L = ∅. Then the projection (see example 5.4.5 on page 237)

πL: kPn → kPn−d−1 = P(An−d)

defined by
πL(x) = (L0: · · · : Ln−d−1)

is a finite map
πL: V → πL(V)

REMARK. The fiber over every point of kPn−d−1 is a d + 1-dimensional lin-
ear subspace of kPn. This can be seen by going to open affines or by simple
computation: if p ∈ kPn−d−1 is in the image of πL with homogeneous coordi-
nates (xi) then set

(5.6.1) Li = xi

where not all xi = 0. We can use the linear independence of the Li to get a set
of n− d− 1 linear forms equivalent to this.
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PROOF. Let X = (X0: · · · : Xn) be homogeneous coordinates of kPn. Since
the linear forms, Li, are linearly independent, there exists an n× n matrix, A,
that transforms Li into Xi — in other words, there exists an isomorphism

P(A): kPn → kPn

that transforms πL to projection onto the first n− d coordinates. The open affine

Ui = π−1
L (An−d−1

i ) ∩V

is given by Xi 6= 0, i.e. it is V ∩An
i . We claim that

πL: Ui → An−d−1
i ∩ πL(V)

is a finite map.

CLAIM 5.6.2. An arbitrary element, g ∈ k[Ui], satisfies a monic polynomial over
k[An−d−1

i ∩ πL(V)].

Proof of claim: We will begin by using g ∈ k[Ui] to construct a regular map

Πg: X → kPn−d

and will use that to prove the claim.
Since k[Ui] is a quotient of k[An

i ] , g is of the form

g
(

X0

Xi
, . . . ,

Xi−1

Xi
,

Xi+1

Xi
, . . . ,

Xn

X− i

)
=

Gi(X0, . . . , Xn)

Xm
i

where Gi is homogeneous of degree m. Define

Πg: X → kPn−d

by

(5.6.2) Zj =

{
Xm

j for j = 0, . . . , n− d− 1

Gi for j = n− d

where (Z0: · · · : Zn−d) are the homogeneous coordinates of kPn−d. This is a reg-
ular map and its image in kPn−d is closed by corollary 5.5.15 on page 250. Sup-
pose Πg(X) is given by homogeneous equations

F1 = · · · = Ft = 0

Since V was disjoint from L it follows, in the present context (i.e., after trans-
forming everything with P(A)) that

Z0 = · · · = Zn−d−1 = F0 = · · · = Ft = 0

have no common solution in kPn−d. The Projective Nullstellensatz
(theorem 5.1.4 on page 214) implies that

Zr
j ∈ (Z0, . . . , Zn−d−1, F0, . . . , Ft)

for all j = 0, . . . , n− d and some r > 0. In particular

Zr
n−d ∈ (Z0, . . . , Zn−d−1, F0, . . . , Ft)

which gives an equation

(5.6.3) Zr
n−d =

n−d−1

∑
j=0

Z
nj
j · hj(Z) +

t

∑
`=1

F` · w`(Z)
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for some polynomials hj, w`. Break the polynomial

Q(Z) = Zr
n−d −

n−d−1

∑
j=0

Z
nj
j · hj(Z)−

t

∑
`=1

F` · w`(Z)

into its homogeneous components

Q(Z) = Q0 + Q1 + · · ·
The rth component will look like

(5.6.4) Qr(Z) = Zr
n−d −

n−d−1

∑
j=0

Z
nj
j · h′j(Z)−

t

∑
`=1

F` · w′`(Z)

Since Q(Z) vanishes for all Z, by equation 5.6.3 on the previous page, the same
must be true of its homogeneous components, so equation 5.6.4 gives

Zr
n−d −

n−d−1

∑
j=0

Z
nj
j · h′j(Z)−

t

∑
`=1

F` · w′`(Z) = 0

Now we substitute equation 5.6.2 on the previous page into this to get

Gr
i −

n−d−1

∑
j=0

X
m·nj
j · h′j(Xm

∗ , Gi) −
t

∑
`=1

F`(Xm
∗ , Gi) · w′`(Xm

∗ , Gi) = 0

Dividing by Xr·m
i gives

gr −
n−d−1

∑
j=0

(Xj

Xi

)m·nj

· h′j
((

X∗
Xi

)m
, g
)

−
t

∑
`=1

F`

((
X∗
Xi

)m
, g
)
· w′`

((
X∗
Xi

)m
, g
)
= 0

or

gr −
r−1

∑
j=0

gjaj(x0, . . . , xi−1, 1, xi+1, . . . xn−d−1) = 0

where xj = Xj/Xi are the coordinates in An−d−1
i , and the aj are polynomials.

Claim 5.6.2 on the preceding page and the result are proved. �

Now we can prove a projective version of Noether Normalization:

COROLLARY 5.6.3. Let V ⊂ kPn be an irreducible projective variety. Then there
exists a dominating finite map

V → kPd

for some d.

REMARK. Corollary 5.5.15 on page 250 allows us to give a proof that is
considerably more geometric than that of the affine case (theorem 2.5.12 on
page 77).

Since finite maps preserve dimension, the number d in the statement is
equal to the dimension of V.
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PROOF. If V = kPn, we are done. Otherwise, there exists a point p ∈
kPn \V. A linear projection centered at this point

kPn → kPn−1

defines a finite map
πp: V → πp(V)

and πp(V) is a projective variety, by corollary 5.5.15 on page 250. Continue this
process until an image of V is equal to all of its containing projective space. �

Because dimension is a local property, most of the dimension-theoretic re-
sults for affine varieties carry over to projective ones:

PROPOSITION 5.6.4. Let V, W ⊂ kPn be projective varieties
(1) If F ∈ k[X0, . . . , Xn] is a form that does not vanish identically on V, then

the dimension of each component of V ∩ P((F)) is dim V − 1 (see defini-
tion 5.1.2 for the terminology P((F)).

(2) The intersection satisfies

dim(V ∩W) ≥ dim V + dim W − n

(3) If f : V →W is a surjective morphism and if p ∈W is a point,

dim F ≥ dim V − dim W

for any component, F, of f−1(p).

REMARK. Just apply corollary 2.8.30 on page 110, corollary 2.8.34 on
page 112 and corollary 2.8.36 on page 112, respectively, to open affines of V
and W.

Another variation of this is:

LEMMA 5.6.5. Let V ⊂ kPN be an m-dimensional variety. Then there exists m+
1 homogeneous polynomials f1 . . . , fm+1 ∈ k[X0, . . . , Xn] that do not simultaneously
vanish at any point of V.

PROOF. We prove this by induction on m. If m = −1 (the empty set), there
is nothing to prove. Now choose a point pi in each irreducible component of V
and a homogeneous polynomial f1, that does not vanish at any of these points.
The subvariety

f1 = 0
has m − 1 dimensional irreducible components (by proposition 5.6.4) and the
inductive hypothesis implies the conclusion. �

Statement 2 above leads to an interesting way of characterizing the dimen-
sion of a variety:

COROLLARY 5.6.6. Let V ⊂ kPn be an irreducible projective variety and suppose
j is the maximum dimension of a linear subspace, L, that is disjoint from V. Then
dim V = n− j− 1.

PROOF. A linear subspace of dimension j + 1 is defined by ≤ n − j − 1
linear forms. Proposition 5.6.4 implies that intersection of V with the linear
subspace of kPn defined by these forms is of dimension ≥ 0, i.e. is nonempty.

�



258 5. PROJECTIVE VARIETIES

Now we will consider the question:

If V is a projective variety of dimension d, what is the smallest
value of n such that there exists an isomorphic embedding of
V into kPn.

We begin with

LEMMA 5.6.7. If V is a smooth variety and f : V → W is a finite map, then f is
an isomorphic embedding if

(1) f−1(w) is a single point, for any w ∈W
(2) d f : TV,v → TW, f (v) is a isomorphic embedding of tangent spaces for every

v ∈ V.

REMARK. This intuitively clear result is surprisingly difficult to prove.

PROOF. Condition 1 above implies the existence of a map f−1: V̄ = f (V)→
V. We need to verify that it is algebraic and regular. We will prove this in a
neighborhood of every point. Let v ∈ V with f (v) = w and let A be an open
affine of V containing v with affine image B = f (A) ⊂ V̄.

Since the tangent space is dual to mv/m2
v (where mv ⊂ OV,v is the maximal

ideal of functions that vanish at v) the second condition is equivalent to saying
that

f ∗:
m f (v)

m2
w
→ mv

m2
v

is surjective for all v ∈ V. If m f (v) = (x1, . . . , xn) ⊂ OV,w, then f ∗(xi) + m2
v

generate mv/m2
v. If we define the module over OV,v

M =
mv

f ∗(mw) · OV,v

then M/mv · M = 0 or M = mv · M, and Nakayama’s Lemma ( A.1.78 on
page 362) implies that M = 0 and

(5.6.5) mv = f ∗(mw) · OV,v

We claim that OV,v is a finitely-generated module over f ∗(OW,w). Since we
already know that k[A] is a finitely-generated module over f ∗k[B] and OW,w is
a localization of k[B], it suffices to show that OV,v ⊂ ( f ∗(S))−1 k[A] where S is
a set of invertible elements of OW,w.

If x ∈ k[A] \mv, we claim that there exists an element b ∈ k[B] with b /∈ mw such
that f ∗(b) = xy with y ∈ k[A]. The set of points Z where x vanishes is a closed
subset of V, hence its image under f is closed by corollary 5.5.15 on page 250.
Since f is 1-1, w /∈ f (Z), and it follows that there is a function c ∈ k[B] with
c| f (Z) = 0 and c(w) 6= 0. So f ∗(c)|Z = 0 and f ∗(c)(x) 6= 0. The Strong
Nullstellensatz ( 2.2.5 on page 41) implies that f ∗(c)n ∈ (x) for some value of
n. If we set b = cn, f ∗(b) = xy as claimed.

We claim that OV,v = f ∗(OW,w). Consider the OW,w-module
M = OV,v/ f ∗(OW,w). Equation 5.6.5 implies that M/mw · M = 0 so
M = mW ·M and M = 0.
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If u1, . . . , ut ∈ k[A] are a basis for it as a k[B]-module, we can conclude that
ui ∈ OV,v = f ∗(OW,w). Let vi = ( f ∗)−1(ui) = ri/si, let h = ∏ si, and let

B′ = B \ B(h)
A′ = A \ A( f ∗(h))

where A( f ∗(h) and B(h) are the (closed) sets of points where f ∗(h) and h van-
ish, respectively. Then k[A′] = ∑ f ∗(k[B′] · ui and f induces an isomorphism
between A′ and B′. �

This and proposition 5.6.1 on page 254 immediately imply that:

COROLLARY 5.6.8. Let V ⊂ kPn be a variety and let p ∈ kPn \V. If every line
through p intersects V in at most one point and is not contained in the tangent space
of V at any point, then projection from p is an isomorphic embedding V → kPn−1.

We come to the main result:

THEOREM 5.6.9. An n-dimensional smooth projective variety is isomorphic to a
subvariety of kP2n+1.

REMARK. This is an algebraic analogue of the Whitney Embedding Theo-
rem which states that a compact n-manifold can be embedded into R2n.

PROOF. We will show that V ⊂ kPM is a smooth n-dimensional subvariety
and M > 2n + 1 then there exists a point p ∈ kPM satisfying the hypotheses
of corollary 5.6.8. Let U1 ⊂ kPM denote the set of points that violate its first
hypothesis — there are lines through points in U1 that intersect V in more than
one point. Let U2 ⊂ kPM denote the set of points that violate its second hy-
pothesis: lines through points in U2 lie in tangent spaces of V. These are both
subvarieties of kPM and we will estimate their dimensions.

Let Γ ⊂ kPM ×V ×V be the set of triples (a, b, c) that are collinear. The set
Γ is closed and projections to the factors give regular maps

f : Γ → kPm

g: Γ → V ×V

If (b, c) = g((a, b, c)) ∈ V × V with b 6= c, then g−1(b, c) is the set of points on
the line through b and c. It follows that dim g−1(b, c) = 1 and proposition 5.6.4
on page 257 implies that

dim Γ ≤ 2n + 1

Since f (Γ) = U1, we conclude that dim U1 ≤ 2n + 1.
To analyze U2 consider the set Γ′ ⊂ kPM ×V of point (a, b) where a ∈ TV,b

— the tangent space. We get projections

f : Γ′ → kPM

g: Γ′ → V

with dim g−1(b) = n, for any b ∈ V. Proposition 5.6.4 on page 257 implies that
dim Γ′ ≤ 2n and dim U2 = dim f (Γ′) ≤ 2n.

It follows that, if M > 2n + 1 then U1 ∪ U2 6= kPM and we can apply
corollary 5.6.8. �
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EXERCISES.

1. Suppose V = P((F1, . . . , Fn)) ∈ kPt is a one-dimensional smooth va-
riety. Show that there exists homogeneous forms G1, G2 ∈ k[X, Y, Z, W] such
that

k[X, Y, Z, W]

(G1, G2)
= kH [V]

2. Let fi ∈ k[X0, . . . , Xn], for i = 1, . . . , r be homogeneous polynomials of
the same degree that never simultaneously vanish when at least one of the Xi
is nonzero. Show that they define a finite map

F: kPn → im F ⊂ kPr−1

5.7. Graded ideals and modules

5.7.1. Introduction. In this section, we analyze the homogeneous coordi-
nate ring of a projective variety. As has been remarked before, the coordinate
ring of a projective variety does not determine its regular functions. Neverthe-
less its structure as a graded ring (see definition A.4.55 on page 426) contains a
great deal of geometric information about the variety.

5.7.2. Hilbert functions and polynomials. It is interesting that the number
of monomials in a graded ring as a function of their degree contains useful
geometric information.

We begin by defining:

DEFINITION 5.7.1. Let M be a graded module over a graded k-algebra.
Then the Hilbert function of M, hM(s) is a function

hM(S) = dim Ms

for all integral s ≥ 0, as a vector space over k.

REMARK. Naturally, this function can be defined for graded k-algebras too.

The following is clear:

PROPOSITION 5.7.2. Given a short exact sequence of graded modules

0→ M1 → M2 → M3 → 0

over a graded ring, R, we get

hM2(s) = hM1(s) + hM3(s)

This and equation A.4.17 on page 428 immediately implies:

COROLLARY 5.7.3. Let M be a graded module over a graded ring with prime
filtration

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mt = M
such that for each i

Mi+1

Mi
∼= R

pi
(`i)
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Then

(5.7.1) hM(s) =
t

∑
j=1

hR/pi(`i)
(s)

for all s ≥ 0 and

(5.7.2) P(Ann(M)) =
t⋃

j=1

P(Ann(R/pi(`i)))

PROOF. If
0→ M1 → M2 → M3 → 0

is a short exact sequence of modules, it is not hard to see that

hM2(s) = hM1(s) + hM3(s)

and exercise 3 on page 38 shows that

V (Ann(M2)) = V (Ann(M1)) ∪ V (Ann(M3))

which implies that

P(Ann(M2)) = P(Ann(M1)) ∪ P(Ann(M3))

and a simple induction proves the result. �

In [75], Hilbert proved the remarkable result that the Hilbert function of
a finitely generated graded module over a noetherian graded ring becomes a
polynomial, for s sufficiently large. This polynomial is called the Hilbert Polyno-
mial of M, denotedHM(s).

EXAMPLE 5.7.4. If G = k[X0, . . . , Xn] = kH [kPn], the number of monomials
of degree s is

hG(s) =
(

s + n
n

)
=

(s + 1) · · · (s + n)
n!

a polynomial of degree n (see proposition 5.4.6 on page 238). In this case, the
Hilbert function is a polynomial for all s ≥ 0.

Even a trivial example can be instructional:

EXAMPLE 5.7.5. If G is a finite-dimensional graded vector space over k,
then

hG(s) = 0

for s sufficiently large. For small values of s (< dim G), dim Gi can be assigned
at random. Above this range, dim Gi = 0, consistently. In this case, the Hilbert
polynomial is zero,.

Here’s an example with a quotient ring

EXAMPLE 5.7.6. Let G = k[X0, . . . , Xn] and let I = ( f ) where f is a homo-
geneous polynomial of degree d and suppose R = G/I. Then multiplication
by f defines an isomorphism

× f : Gt → It+d
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or Ir = Gr−d, for r ≥ d. Corollary 5.7.3 on page 260 (applied to a short exact
sequence) gives

hR(s) =

{
(s+n

n ) if s < d
hG(s)− hG(s− d) = (s+n

n )− (s+n−d
n ) if s ≥ d

In this case, we conclude that the Hilbert polynomial is

HR(s) =
(

s + n
n

)
−
(

s + n− d
n

)
for all s. Since (s+n

n ) and (s+n−d
n ) both have sn/n! as their leading term, HR(s)

is a degree-n− 1 polynomial. If n = 2, we get

HR(s) = ds +
3d− d2

2

The last two examples clarify the sense in which hR(s) is a polynomial for
“sufficiently large values of s.” For small values of s, the dimension of Gs may
be irregular but it “stabilizes” for s sufficiently large. The Hilbert polynomial is
the polynomial that hR(s) eventually becomes.

Corollary 5.7.3 on page 260 shows that, in order to compute Hilbert polyno-
mials of any module, it suffices to compute them for modules of the form R/p,
where p is a prime ideal. Example 5.7.6 on the preceding page easily generalizes
to a method for computing many Hilbert polynomials:

EXAMPLE 5.7.7. Suppose I = (g1, . . . , gm) ⊂ R = k[X0, . . . , Xn] is an ideal,
where the gi are monomials. If � is an ordering on monomials (see section 2.3
on page 45), we can compute

HR/I(s)
by induction on m. If m = 1, use the computation in example 5.7.6 on the
preceding page. Otherwise, let g1 be the highest ranked monomial in I and
write

I = (g1) + I′

where I′ is generated by < m monomials. We have an exact sequence

R(−d)
×g1−−→ R

I′
→ R

I
→ 0

where d is the degree of g1 and the kernel of ×g1 is

(I′: g1) = {g ∈ R|g · g1 ∈ I′}

=

(
g2

gcd(g1, g2)
, . . . ,

gm

gcd(gm, g1)

)
which is also generated by < m monomials4. We get an exact sequence

0→ R
(I′: g1)

(−d)→ R
I′
→ R

I
→ 0

and
HR/I(s) = HR/I′(s)−HR/(I′ :g1)

(s− d)

4Note that the greatest common divisor of two monomials is easy to compute.
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It follows that Hilbert polynomials are always alternating sums of suitable
binomial coefficients.

We give one last example:

EXAMPLE 5.7.8. Let p = (a0, . . . , an) ∈ kPn be a point with a0 6= 0. This lies
in An

0 and is given by
Xj

X0
=

aj

a0
so that the homogeneous coordinate ring is G = k[X0, . . . , Xn]/P, where P =
(a0 · Xi − aj · X0) for j = 1, . . . .n. It follows that a monomial

X j0
0 · · ·X

jn
n

is equivalent, modulo P, to
a1 · · · an

an
0
· X∑ ji

0

so hG(s) = HG(s) = 1, for all s ≥ 0.

In order to prove our main result, we will need:

LEMMA 5.7.9. Let f : Z → Z be a function with the property that ∆ f (n) =
f (n)− f (n− 1) ∈ Q[n] is a degree-d polynomial for n > n0 and leading coefficient
a ∈ Q. Then, for n > n0 + 1, f (n) ∈ Q[n] is a degree-(d + 1) polynomial function
with leading coefficient a/(d + 1).

PROOF. This follows quickly from calculus of finite differences — see [57].
If S is the Q-module of all functions f : Q→ Q, define two module homomorph-
isms:

(1) ∆: S→ S, (∆ f )(n) = f (n)− f (n− 1) and
(2) Σ: S→ S, (Σ f )(n) = ∑n

j=1 f (j)
It is not hard to see that

(5.7.3) ∆ ◦ Σ = 1: S→ S

and (Σ ◦ ∆ f )(n) = f (n)− f (0) so that they are (almost) inverses. Now define

Xd =

{
1 if d = 0
X(X− 1) · · · (X− d + 1) if d > 0

for d ≥ 0 — a kind of “power” of X called the falling factorial or Pochhammer
symbol5. A simple calculation shows that

∆Xd = dXd−1

for d > 0, and equation 5.7.3 implies that

ΣXd =
Xd+1

d + 1
for d ≥ 0. Now, given a degree-d polynomial p(X), we can write it as a linear
combination of the {X j} with the highest value of j being d (for instance, by
plugging it into the “finite difference Taylor series”). Then apply the Σ operator

5The standard notation for falling factorial is X(d) but we use Knuth’s notation to suggest
“raising X to a power.”
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to get a linear combination, q(X), of the {X j} with the highest value of j equal
to d + 1. This is a degree-d + 1 polynomial of X such that ∆q(X) = p(X). If
p(X) ∈ Z whenever X ∈ Z, the same is true of q(X).

If ∆ f (n) = p(n) for n > n0, then q(n) = f (n) + c for n > n0 + 1 for some
constant c. �

Note that the degree of the Hilbert polynomial is equal to the dimension of
kPn.

This is no coincidence and leads to our main result:

THEOREM 5.7.10. Let G be a finitely-generated graded module over the graded
k-algebra R = k[X0, . . . , Xn]. Then, for s sufficiently large, the Hilbert function hG(s)
is a polynomial,HG(s), and

degHG(s) = dimP(Ann(G))

If d = degHG(s) and cd is the leading coefficient ofHG(s), then cd · d! > 0 is an
integer.

REMARK. If V ⊂ kPn is a projective variety and G = kH [V], then the degree
of the Hilbert polynomial equals the dimension of V. Dimension can even be
defined this way. Exercise 3 on page 267 shows that the Hilbert polynomial
depends on V and not necessarily the ideal used to define it.

PROOF. Corollary 5.7.3 on page 260 implies that it suffices to prove the
result for G = R/p(`):

In equation 5.7.2 on page 261, the dimension is the maximum
of the dimensions of the right side and in equation 5.7.1 on
page 261 the degree is the maximum of the degrees that occur on
the right side (where leading terms of polynomials of the same
degree never cancel). So if the result is true for G = R/p(`), it is
true in general.

Since
HR/p(`)(s) = HR/p(s + `)

it suffices to prove the result for G = R/p, representing an irreducible projec-
tive variety. We do this by induction on the dimension of P(Ann(G)). When
P(Ann(G)) is zero-dimensional, it is a single point. Example 5.7.8 on page 263
shows that the Hilbert polynomial is equal to 1, establishing the ground case.

Now suppose p is a homogeneous prime ideal and suppose Xi /∈ p, and
G = R/p. If dimP(G) = d, then

dim (P(G) ∩ P((Xi))) = d− 1

by proposition 5.6.4 on page 257 and we get an exact sequence

0→ Xi · G → G → G/(Xi)→ 0

Since multiplication by Xi raises degree by 1, this is not a sequence of graded
modules. To get that, we need to shift grading

0→ Xi · G(−1)→ G → G/(Xi) = Q→ 0

Since Xi · G ∼= G, proposition 5.7.2 on page 260 gives

HG(s) = HQ(s) +HG(s− 1)
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or
HG(s)−HG(s− 1) = HQ(s)

where P(Ann(Q)) = P(G) ∩ P((Xi)). By induction, HQ(s) is a polynomial of
degree d − 1 with leading coefficient a/(d − 1)! and lemma 5.7.9 on page 263
implies that HG(s) is a polynomial of degree d with leading coefficient a/d!.
This proves the result. �

This gives a geometric proof of the following:

COROLLARY 5.7.11. Let I ⊂ R = k[X0, . . . , Xn] be an ideal. Then

degHR/I(s) = degHR/
√
I
(s)

PROOF. This follows immediately from theorem 5.7.10 on the preceding
page and the fact that

P(Ann(R/I)) = P(Ann(R/
√
I))

(see corollary 2.2.6 on page 42). �

There is a great deal of other information we can extract from the Hilbert
polynomial. The fact that we kept track of its leading coefficient hints that this
may be significant.

DEFINITION 5.7.12. Let V ⊂ kPn be a projective variety with homogeneous
coordinate ring R. Then we define the Hilbert polynomial of V via

HV(s) = HR(s)

and the degree of V, denoted deg V as

(degHV(s))! · c
where c is the leading coefficient ofHV(s).

REMARK. Although this use of the term “degree” is rather confusing (es-
pecially since it is computed using a Hilbert polynomial whose degree is com-
pletely different), it is standard. It is always a positive integer.

Roughly speaking, the degree of a variety is the number of times it inter-
sects “most” hyperplanes of complementary dimension. See proposition 5.8.8
on page 273 for a precise statement.

We need a little lemma:

LEMMA 5.7.13. Let p(X) ∈ k[X] be a polynomial with leading coefficient, c, of
degree n. Then the leading coefficient of

p(X)− p(X− d)

is n · d · c in degree n− 1.

PROOF. Just use the binomial theorem. �

Here are some examples of degrees of varieties:
(1) Example 5.7.4 on page 261 implies that deg kPn = 1 for any n.
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(2) Example 5.7.6 on page 261 implies if H ⊂ kPn is a hypersurface de-
fined by a degree-d homogeneous polynomial, its Hilbert polynomial
is (

s + n
n

)
−
(

s + n− d
n

)
=

d
(n− 1)!

sn−1 + · · ·
(by lemma 5.7.13 on the preceding page) so the degree of H is d. This
justifies the use of the word “degree” in definition 5.7.12 on page 265:
the degree of a hypersurface is equal to the degree of its defining poly-
nomial.

(3) Example 5.7.8 on page 263 shows that the degree of a point in kPn is
always 1.

One important property of degrees

LEMMA 5.7.14. Let V, W ⊂ kPn be projective varieties of the same dimension. If
dim(V ∩W) < dim V = dim W, then

deg(V ∪W) = deg V + deg W

PROOF. Let V and W be defined by homogeneous ideals v,w ⊂ R =
k[X0, . . . , Xn]. Then I(V ∪W) = v ∩ w and we claim that there exists an ex-
act sequence:

0→ R
v∩w

→ R
v
⊕ R

w
→ R

v+w
→ 0

The leftmost map is defined by
R

v∩w
→ R

v
⊕ R

w
r 7→ (r,−r)

If r ∈ R/(v ∩w) maps to 0 it must be contained in v and w, hence in v ∩w, so
it is 0 in R/(v∩w), and this map is well-defined.

The maps
R
v
→ R

v+w
R
w
→ R

v+w

are induced by inclusions of the ideals. If (r1, r2) ∈ R/v⊕ R/w maps to 0 in
R/(v+w) then r1 + r2 ∈ v+w, so r2 = −r1 (mod v+w). Since we may vary
r1 within v and r2 within w, we get r′1 ≡ r1 (mod v) and r′2 ≡ r2 (mod w) such
that r′2 = −r′1, which is in the image of r′1 ∈ R/v∩w.

We get

(5.7.4) HR/v∩w(s) +HR/(v+w)(s) = HR/v(s) +HR/w(s)

Corollary 5.7.11 on the preceding page implies that

degHR/(v+w)(s) = degHR/
√

(v+w)
(s)

= dim V ∩W < dim V = dim W

so HR/(v+w)(s) in equation 5.7.4 contributes nothing to the leading terms of the
other polynomials. It follows that the leading term of HR/v∩w(s) is the sum of
the leading terms ofHR/v(s) andHR/w(s), proving the result. �
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EXERCISES.

1. Use example 5.7.7 on page 262 to compute HR/I(s) where I = ( f , g) ⊂
k[X0, X1, X2, X3], where f and g are monomials of degrees d1 and d2, respec-
tively and gcd( f , g) = 1.

2. If a ⊂ k[X0, . . . , Xn] = R is a radical homogeneous ideal and f ∈
k[X0, . . . , Xn] is a homogeneous element such that f · it ⊂ a for some t (where
i = (X0, . . . , Xn) is the irrelevant ideal) show that

HR/a(s) = HR/(a+( f ))(s)

3. If a, b ⊂ k[X0, . . . , Xn] = R and P(a) = P(b) ⊂ kPn, show that

HR/a(s) = HR/b(s)

5.8. Bézout’s Theorem revisited

5.8.1. Preliminaries. Suppose V ⊂ kPn is a projective variety of dimen-
sion r and W ⊂ kPn is a hypersurface. If the associated homogeneous ideals
are I(V) = v and I(W) = w = (F) for some F ∈ k[X0, . . . , Xn], respectively,
then the homogeneous coordinate ring of V ∩W is given by

(5.8.1) R =
k[X0, . . . , Xn]√

v+w

Furthermore, the irreducible components of this intersection have coordinate
rings k[X0, . . . , Xn]/pi where the pi are the primes that occur in the prime filtra-
tion (see theorem A.1.75 on page 359) of R — see exercise 3 on page 79.

Unfortunately, it is not enough to determine the intersections as varieties
— chapter 1 shows that these intersections must be counted with multiplicities
in order to get a correct theorem.

Example 2.2.8 on page 43,lemma 3.3.31 on page 138, and example 4.3.4 on
page 167 suggest the correct course of action: in equation 5.8.1, refrain from
taking the radical. Instead, define

(5.8.2) R̂ =
k[X0, . . . , Xn]

v+w

This will generally not be a reduced ring but there will exist a canonical map

R̂→ R

induced by the inclusion v+w ↪→ √v+w.
We will have to study how the rings R̂ and R are related. At first glance,

we conclude:

LEMMA 5.8.1. Let I ⊂ A = k[X0, . . . , Xn] be an ideal. Then the canonical map

f : R̂ =
A
I
→ A√

I
= R
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induces a one-to-one correspondence between prime ideals

p̂↔ p

where p̂ ⊂ R̂, and p ⊂ R and f (p̂) = p. Furthermore, for every prime ideal p̂ ⊂ R̂,
there is a canonical isomorphism

R̂
p̂
∼= R

p

PROOF. First note that the kernel of f is the ideal, N, of all nilpotent el-
ements of R̂. Theorem A.1.46 on page 344 shows that N is equal to the in-
tersection of all of the prime ideals of R̂, hence contained in each of them.
Lemma A.1.24 on page 336 then implies the one-to-one correspondence stated
above. The final statement follows from lemma A.1.25

R̂
p̂
∼= R̂/N

p̂/N
∼= R

p

�

This allows us to give a geometric proof of the well-known result:

THEOREM 5.8.2. Let I ⊂ A = k[X0, . . . , Xn] be an ideal, let {p̂i1 , . . . , p̂ir}
denote the minimal primes that occur in the prime filtration of R̂ = A/R and let
{p1, . . . , ps} be the primes that occur in the prime filtration of R = A/

√
I. Then there

exists a surjective function g: {1, . . . , r} → {1, . . . , s} such that

f (p̂ij) = pg(j)

and
R̂
p̂ij

∼= R
pg(j)

REMARK. We know that the primes in a reduced ring’s prime filtration are
uniquely determined by the ring — see exercise 3 on page 79. When the ring is
not reduced, this result shows that at least the minimal primes are still uniquely
determined.

PROOF. Suppose {p̂1, . . . , p̂t} are all of the primes that occur in the prime
filtration of R̂, with t ≥ r. In addition, suppose that {p1, . . . , ps} are all the
primes that occur in the prime filtration of R. Corollary 5.7.3 on page 260 im-
plies that

P(I) =
t⋃

i=1

P(p̂i)

P(
√
I) =

s⋃
j=1

P(pj)

SinceP(I) = P(
√
I), these two unions of irreducible varieties must be the same

— where the second (of P(
√
I)) is irredundant (so pi 6⊂ pi for all i 6= j and all

are minimal).
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FIGURE 5.8.1. Minimal prime decomposition

We conclude that every irreducible component, P(pj), must occur in the
decomposition of P(I), above. Since the two have the same union, the first
may have

(1) multiple copies of the same irreducible component.
(2) irreducible components embedded in other irreducible components.

See figure 5.8.1 for examples of these cases. Since the components of maximal
dimension contain all other components, they must be the same in both cases
so we must have a correspondence

p̂ij ↔ pg(j)

and we define g(j) to be the value that makes f (p̂ij) = pg(j). Since R̂/p̂ij =

R/pg(j) (see lemma 5.8.1 on page 267), we have P(p̂ij) = P(pg(j)). In dia-
gram 5.8.1, g(1) = 1, g(i2) = g(i3) = g(i4) = 2 and g(5), g(6) are undefined
since p̂5 and p̂6 are not minimal. Components of maximal dimension correspond
to minimal prime ideals (see the proof of proposition 2.8.9 on page 101). �

5.8.2. Bézout’s Theorem. Now we are ready to prove a generalization of
Bézout’s Theorem as introduced in chapter 1. We will calculate the leading
term of a Hilbert polynomial of R̂ in equation 5.8.2 on page 267 in two different
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ways — a “global” way and a “local” way — and Bézout’s Theorem will assert
that these two results are equal. The glue that connects these approaches is
corollary 5.7.3 on page 260.

In what follows, V ⊂ kPn is a projective variety whose components are all
of dimension t and W ⊂ kPn is a hypersurface of degree d not contained in V.
Then V ∩W is a projective variety whose components are of dimension t − 1
(see proposition 5.6.4 on page 257).

We begin with the “global” computation:

LEMMA 5.8.3. Let V, W ⊂ kPn be projective varieties, where V is of dimension
t, W is a hypersurface not contained in V and defined by a homogeneous polynomial
F ∈ k[X0, . . . , Xn], and kH [V] = k[X0, . . . , Xn]/I. If

R̂ =
k[X0, . . . , Xn]

I+ (F)

then the leading term ofHR̂(s) is

E =
(deg V) · (deg W)

(t− 1)!

REMARK. Degrees, here, are in the sense of definition 5.7.12 on page 265.
Note that E · (t − 1)! is “like” the degree of V ∩W. It would be exactly

deg(V ∩W) if we computed it using the ring

k[X0, . . . , Xn]√
I+ (F)

rather than R̂.

PROOF. First note that

R̂ =
kH [V]

(F)

Suppose F is homogeneous of degree d. Then we have an exact sequence

0→ kH [V]
×F−→ kH [V]→ R̂→ 0

Since F raises degree by d, we must rewrite this as

0→ kH [V](−d) ×F−→ kH [V]→ R̂→ 0

to get a sequence of graded rings. Proposition 5.7.2 on page 260 implies that

HR̂(s) = HkH [V](s)−HkH [V](s− d)

Definition 5.7.12 on page 265 implies that the leading term of HkH [V](s) is
(deg V)/t!. If the leading term ofHR̂(s) is E, lemma 5.7.13 on page 265 implies
that

E = d · t · leading term ofHkH [V](s) = d · t · (deg V)/t!

= d · (deg V)/(t− 1)!

Example 2 on page 266 shows that d = deg W, and the conclusion follows. �
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Now we do the “local” computation: we add up the contributions of all
of the components of V ∩W. Since some components occur more than once
(as in the bottom half of diagram 5.8.1 on page 269), we have to multiply their
contribution by the number of times they occur:

DEFINITION 5.8.4. Let V, W ⊂ kPn be projective varieties, where W is a
hypersurface not contained in V and let {Z1, . . . , Zr} be the irreducible compo-
nents of V ∩W— defined by primes {p1, . . . , pr}, respectively. Suppose kH [V] =
k[X0, . . . , Xn]/I and W is a hypersurface not contained in V and defined by a
homogeneous polynomial F ∈ k[X0, . . . , Xn] and

R =
k[X0, . . . , Xn]√

I+ (F)

R̂ =
k[X0, . . . , Xn]

I+ (F)

Recall that there is a standard map f : R̂ → R. If {p̂1, . . . , p̂t} is the set of primes
that occur in the prime filtration of R̂, then, the intersection multiplicity

µ(V, W, pj) = µ(V, W, Zj)

is defined as the number of such p̂i with the property that f (p̂i) = pj.

REMARK. Diagram 5.8.1 on page 269 shows why these quantities can be
called multiplicities and

µ(V, W, p1) = 1
µ(V, W, p2) = 3

The primes that occur this way will all be of height 1.

Now we do the “local” computation of the leading term ofHR̂(s):

LEMMA 5.8.5. Let V, W ⊂ kPn be projective varieties, where W is a hypersurface
not contained in V. If

V ∩W = {Z1, . . . , Zr}
where the Zi are irreducible, then the leading term ofHR̂(s) is

(5.8.3) E =
r

∑
i=1

deg Zi
(t− 1)!

· µ(V, W, Zi)

PROOF. Let
0 = R0 ( R1 ( · · · ( Rn = R̂

be the prime filtration of R̂ and suppose {p̂1, . . . , p̂t} are the primes that occur
in it. Then corollary 5.7.3 on page 260 implies that

HR̂(s) =
t

∑
j=1
HR̂/p̂j(`j)

(s) =
t

∑
j=1
HR̂/p̂j

(s + `j)

If E is the leading term of HR̂(s) and ej is the leading term of HR̂/p̂j
(s + `j)

which is equal to the leading term ofHR̂/p̂j
(s), then

(5.8.4) E =
r

∑
j=1

eij
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where {p̂i1 , . . . , p̂ir} is the subset of minimal primes: They represent
components of maximal dimension and have Hilbert polynomials of
maximal degree (in the usual sense!). Lemma 5.8.1 on page 267 implies that
R̂/p̂ij = R/ f (p̂ij) = R/pg(j) = kH [Zg(j)], where g is the function defined in
theorem 5.8.2 on page 268.

Definition 5.7.12 on page 265 shows that eij = (deg Zg(j))/(t− 1)! and the
number of times a term equal to eij occurs in the sum in equation 5.8.4 on
page 271 is µ(V, W, Zg(j)), so we get equation 5.8.3 on page 271. Combining
this with lemma 5.8.3 on page 270 gives

E =
r

∑
i=1

deg Zi
(t− 1)!

· µ(V, W, Zi)

�

THEOREM 5.8.6 (Bézout’sTheorem). Let V, W ⊂ kPn be projective varieties,
where W is a hypersurface not contained in V. If

V ∩W = {Z1, . . . , Zr}
where the Zi are irreducible, then

(5.8.5) (deg V) · (deg W) =
r

∑
i=1

(deg Zi) · µ(V, W, Zi)

REMARK. In the case where V, W ⊂ kP2 are curves, the Zj are points and
of degree 1 (see statement 3 on page 266), so we get

(deg V) · (deg W) =
r

∑
i=1

µ(V, W, Zi)

Since V and W are both “hypersurfaces,” their degrees in the sense of defini-
tion 5.7.12 on page 265 are equal to the degrees of their defining polynomials
— so we get a rigorous proof of the classical Bézout theorem.

We have an enormous generalization of that classical result though: a the-
orem that is valid even when the intersections are not points.

It is interesting to consider what happens when W is not a hypersurface.
In [163, 164], Van der Waerden showed that the theorem fails in that case —
requiring a more complex definition of intersection multiplicity. See [167] for a
general statement.

PROOF. Just combine equation 5.8.3 on the preceding page with the con-
clusion of lemma 5.8.3 on page 270 and multiply by (t− 1)!. �

This proof shows what we would have to do if we wanted to dispense with
multiplicities and simply count intersections: we would have to compute the
leading term of the Hilbert polynomial of

k[X0, . . . , Xn]√
I+ (F)

rather than
k[X0, . . . , Xn]

I+ (F)
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Unfortunately, there is no obvious way to do this — certainly nothing as ele-
mentary as lemma 5.8.3 on page 270.

EXAMPLE 5.8.7. We will consider an example from chapter 1, depicted in
figure 1.4.5 on page 23:

a = (X2 + Y2 − 1, 5 X2 + 6 XY + 5 Y2 + 6 Y− 5) ⊂ k[X, Y]

This has a Gröbner basis of

a = (Y3, XY + Y, X2 + Y2 − 1)

which makes it clear that Y ∈ √a so
√
a ⊃ (Y, XY + Y, X2 + Y2 − 1)

= (Y, X2 + Y2 − 1) since XY + Y is a multiple of Y

= (Y, X2 − 1) since we can subtract multiples
of generators from other generators

so
√
a =

√
(Y, X2 − 1). Using Gröbner bases, we conclude that

X /∈
√
(Y, X2 − 1)

X2 /∈
√
(Y, X2 − 1)

XY ∈
√
(Y, X2 − 1)

so
√
a = (Y, XY, X2− 1). A Gröbner basis for (Y, XY, X2− 1) is (Y, X2− 1) and

the term XY is not needed.
Let

R =
k[X, Y]

(Y, X2 − 1)
= k⊕ k

R̂ =
k[X, Y]

(Y3, XY + Y, X2 + Y2 − 1)

If x, y ∈ R̂ are the images of X, Y ∈ k[X, Y] under the projection, example A.1.77
on page 360 works out the prime filtration of R̂ in great detail. It is

0 ( y2 · R̂ ( y · R̂ ( (x− 1) · R̂ ( R̂

where the prime p̂2 = (x + 1, y) occurs three times (representing the threefold
multiplicity of the intersection (−1, 0) in figure 1.4.5 on page 23) and the prime
p̂1 = (x− 1, y) occurs once.

We can get a geometric interpretation of degree of a variety (as defined
in 5.7.12 on page 265):

PROPOSITION 5.8.8. If V ⊂ kPn is a d-dimensional projective variety and H is
any n− d dimensional hyperplane not contained in V then

V ∩ H

consists of deg V points (counted with multiplicities).
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PROOF. The degree of H is 1 so theorem 5.8.6 on page 272 implies that

deg V =
r

∑
j=1

µ(V, H, Zj) · deg Zj

where V ∩ H = Z1 ∪ · · · ∪ Zr. If the Zj are not points, simply intersect their
union with a second hyperplane not contained in them. This lowers the dimen-
sions of the intersections by 1 and we get a sum

deg V =
r

∑
j=1

µ(V, H, Z′j) · deg Z′j

We continue this process until the intersections are points. �

The alert reader will have noticed a discrepancy between definition 5.8.4
on page 271 and lemma 3.3.31 on page 138: the first defines multiplicity as the
number of times a prime appears in a prime filtration and the second shows that
it is equal to the dimension of a vector space.

PROPOSITION 5.8.9. Under the assumptions and notation of definition 5.8.4 on
page 271, let p̂ be a minimal prime in a prime filtration of R̂. Then

R̂p̂

vector space of dimension µ(V, W, p) over the field

R̂
p̂ · R̂ =

R
p · R

where p = f (p̂) under the map f : R̂→ R.

REMARK. This is frequently stated as:
“The length of the module, R̂p̂, is µ(V, W, p).”

where the length of a module, M, is the largest value of n such that there exists
a filtration

0 = M0 ( M1 ( · · · ( Mn = M
If a module is a vector space, its length is equal to its dimension.

PROOF. Since p̂ · R̂ ⊂ R̂ is a maximal ideal, the quotient is a field. Now
suppose

0 = R0 ( R1 ( · · · ( Rn = R̂p̂

is a prime filtration of R̂p̂. Corollary A.5.62 on page 461 implies that the only
primes that will occur in this filtration will be ones equal to p̂. Each short exact
sequence

0→ Ri → Ri+1 →
R̂

p̂ · R̂ → 0

can be split (see exercise 39 on page 364) by mapping 1 ∈ R̂p̂/p̂ · R̂p̂ to any
element of Ri+1 that maps to it. It follows that

Ri+1 = Ri ⊕
R̂

p̂ · R̂
for all i, and a simple induction proves the result. �
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EXAMPLE 5.8.10. In example 5.8.7 on page 273, if we localize

R̂ =
k[X, Y]

(Y3, XY + Y, X2 + Y2 − 1)

by p̂2 = (x + 1, y), we invert x− 1 and y + 1. This is accomplished by defining
auxiliary variables Z, W and adding (X − 1)Z − 1 and (Y + 1)W − 1 to the
ideal’s generators. Now we take a Gröbner basis in lexicographic ordering that
eliminates Z and W as much as possible (i.e., it orders them above the other
variables — see proposition 2.3.13 on page 52). We get

(Y3,−Y2 + 2 + 2 X,−1 + Y−Y2 + W, 4 + 8 Z + Y2)

or, if S = 〈X− 1, Y + 1〉, then (assuming that the characteristic of k is 6= 2)

S−1R̂ =

k[X, Y, Z, W]

(Y3,−Y2 + 2 + 2 X, 4 + 8 Z + Y2,−1 + Y−Y2 + W)

=
k[X, Y, Z]

(Y3,−Y2 + 2 + 2 X, 4 + 8 Z + Y2)

=
k[X, Y]

(Y3,−Y2 + 2 + 2 X)

=
k[Y]
(Y3)

= k3

so the multiplicity of the intersection-point, (−1, 0), is 3 (as we knew).
If we localize at p̂1 = (x− 1, y). we invert X + 1 and Y + 1 in the same way

as before: add elements (X + 1)Z− 1 and (Y + 1)W − 1 to the ideal and form a
lexicographic Gröbner basis with the ordering {Z, W, X, Y} to get

(Y, X− 1, W − 1, 2 Z− 1)

so the quotient is

R̂p̂1 =
k[X, Y, Z, W]

(Y, X− 1, W − 1, 2 Z− 1)
=

k[Y]
(Y)

= k

if the characteristic of k is 6= 2.

Here is another example:

EXAMPLE 5.8.11. Let V = P((Y2Z− X3 + X2Z)) ⊂ kP2 and W = P((X−
Z)). Then (assuming the characteristic of k is 6= 3)

R̂ =
k[X, Y, Z]

(Y2Z− X3 + X2Z, X− Z)

The lexicographic Gröbner basis for the denominator is (YZ2,−Z + X) so we
get

R̂ =
k[X, Y, Z]

(YZ2,−Z + X)
=

k[Y, Z]
(YZ2)

The minimal prime ideals that contain (YZ2) are p1 = (Y) and p2 = (Z) and
we get

R̂p1 =
S−1

1 k(Z)[Y]
(Y)

= k(Z)
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where S1 consists of all polynomials in Y and Z that are not multiples of Y. The
quotient is a one-dimensional vector space over itself, so the multiplicity of this
intersection is 1.

Inverting p2 gives

R̂p2 =
S−1

2 k(Y)[Z]
(Z2)

= k(Y) · 1⊕ k(Y) · Z

where S2 is all polynomials in Y and Z that are not multiples of Z — giving a
two-dimensional vector space over k(Y). It follows that there are two intersec-
tions between V and W:

• (1: 0: 1), of multiplicity 1, and
• (0: 1: 0), of multiplicity 2.

5.8.3. Eigenvalues of tensors. In this section, we discuss an application of
Bézout’s theorem to computing the number of eigenvalues of a tensor following
the treatment in [25]. Tensors may be regarded as “higher dimensional matri-
ces” — i.e., matrices with more than two subscripts. They are very extensively
used in differential geometry (see [153]), the theory of relativity (see [113]), and
many other fields. For instance, the elasticity tensor in continuum mechanics is
a fourth order tensor — see [158].

DEFINITION 5.8.12. If A is an order-m tensor over Cn — i.e. A = (Ai1,...,im)
— and x ∈ Cn is a vector, define

(Axm−1)j =
n

∑
i2=1
· · ·

n

∑
im=1

Aj,i2,...,im xi2 · · · xim ∈ Cn

Then λ ∈ C is an eigenvalue of A with eigenvector x with x · x = 1, if

Axm−1 = λ · x
Two such pairs (x1, λ1) and (x2, λ2) will be considered equivalent if their exists
a c ∈ C such that λ2 = cm−2λ1 and x2 = cx1.

REMARK. Eigenvalues of tensors have applications to a number of areas —
see [103].

THEOREM 5.8.13. If A is an order-m tensor over Cn, then the number of equiva-
lence classes of eigenvalues (counted with multiplicities) is

(m− 1)n − 1
m− 2

=
n−1

∑
i=0

(m− 1)i

REMARK. When m = 2, A is an ordinary matrix and this count of eigenval-
ues is n. See [24] for many more details and complements to this.

PROOF. If µm−2 = λ, our equation for eigenvalues becomes

Axm−1 = µm−2x

which is a system of n homogeneous polynomials of degree m− 1 in the vari-
ables x1, . . . , xn, µ, i.e., n degree-m− 1 hypersurfaces in CPn. Bézout’s theorem
implies that the number of intersections is (m− 1)n. If we eliminate the trivial



5.9. DIVISORS 277

solution x = 0 (it violates our requirement that x · x = 1) we get (m− 1)n − 1
solutions.

Now we distinguish two cases:

(1) None of the eigenvalues is 0. Multiplying µ by e2πi·k/m−2 for
k = 0, . . . , m− 3 gives rise to the same value of µm−2, hence the same
solution. Consequently, the number of solutions is

(m− 1)n − 1
m− 2

(2) We have an eigenvalue equal to 0. If the solution has xi = di for i =
1, . . . , n (some set of constants) and µ = 0, we get

C[x1, . . . , xn, µ]

(µm−2 · x, {xi − di})
= Cm−2

so proposition 5.8.9 on page 274 implies that the multiplicity of this
solution is m− 2. It follows that this single solution contributes m− 2
to the total (m− 1)n − 1.

�

5.9. Divisors

5.9.1. Weil and Cartier divisors. We have seen how uninteresting the ring
of regular functions on a projective variety can be (corollary 5.5.16 on page 250).
The same is not true of rational functions, and we can deduce interesting rela-
tions between the rational functions on a variety and the geometry.

We start with particularly simple case. Suppose f (z) is a rational function
on C:

f (z) = A
(z− α1)

n1 · · · (z− αs)ns

(z− β1)m1 · · · (z− βt)mt

where A ∈ C. This function is completely characterized by:
(1) the constant A ∈ C,
(2) the αi ∈ C and the degrees, ni,
(3) the βi ∈ C and the degrees mj.

After a bit of thought, it seems reasonable to combine this data and say that the
β j occur with negative degrees, −mj, so that zeros and singularities are treated
the same way.

Now we take a step that seems rather bizarre at first: define a group, G,
whose generators are the points of C — its elements are finite “linear combina-
tions”

n1 · 〈α1〉+ · · ·+ nt · 〈αt〉
where α1, . . . , αt ∈ C are points, the 〈αi〉 are symbols representing those points,
and the ni are integers. Having taken this odd step, we can represent the func-
tion f above, by an element

(5.9.1) ( f ) =
s

∑
i=1

ni〈αi〉 −
t

∑
j=1

mj〈β j〉 ∈ G
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We would like to do something like this with rational functions on an alge-
braic variety:

DEFINITION 5.9.1. If V is an irreducible, normal, affine variety, a prime di-
visor on V is an irreducible codimension-1 subvariety. A divisor is a formal lin-
ear combination of prime divisors with integer coefficients. The (free abelian)
group of divisors on V is denoted Div(V). An effective divisor, E, is an integer
linear combination of prime divisors with nonnegative coefficients, written

E ≥ 0

If W ⊂ V is a codimension-1 irreducible subvariety, the divisor it represents is
denotes 〈W〉.

If f ∈ k(V) is a meromorphic function, as in equation 5.9.1 on the previous
page, we have

( f )0 =
s

∑
i=1

ni〈αi〉

( f )∞ =
t

∑
j=1

mj〈β j〉

( f ) = ( f )0 − ( f )∞

where ( f )0 is the zero-divisor of f and ( f )∞ is called its polar divisor.

REMARK. The term “divisor” for a subvariety seems odd but is justified (to
some extent) by the remarks following definition 5.9.3 on the facing page.

Definition 3.4.1 on page 143 defines normal varieties, and lemma 3.4.2 on
page 143 shows that all smooth varieties are normal.

What we have defined here is technically called a Weil divisor.

We would like to associate a divisor with a rational function on an affine
variety. On an irreducible affine variety, V, a rational function is a quotient of
regular functions

f =
u
v

, u, v ∈ k[V]

and corollary 2.8.30 on page 110 shows that:
(1) the zero set of u is a union of irreducible codimension-1 subvarieties

n⋃
i=1

Wi

and
(2) the zero-set of v is a union of irreducible codimension-1 subvarieties

m⋃
j=1

Zj

Consequently, we could represent f by an expression

(5.9.2)
n

∑
i=1

αi · 〈Wi〉 −
m

∑
j=1

β j · 〈Zj〉 ∈ Div(V)

We still need to define the coefficients, αi, β j ∈ Z in some reasonable way. The
following result shows how to do this:
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LEMMA 5.9.2. Let W ⊂ V be a codimension-1 irreducible subvariety of an n-
dimensional normal, irreducible, affine variety V. Then OV,W — the coordinate ring
at W— is a discrete valuation ring.

REMARK. Lemma A.4.53 on page 425 implies that there exists an element,
π ∈ OV,W , such that p · OV,W = (π) and all ideals are of the form (πt) for some
integer, t. Furthermore, OV,W has a discrete valuation

v:OV,W → Z

where v(x) is the highest power of π divides x.

PROOF. We have already essentially proved this in section 3.4.2 on
page 147. If p ⊂ k[V] is the prime ideal representing W, we have

OV,W = k[V]p

so that OV,W is also normal by exercise 1 on page 411. Since W is n − 1-
dimensional, the prime ideal p is minimal by proposition 2.8.9 on page 101 (and
the reasoning used in its proof). It follows that OV,W is a normal domain with
a single prime ideal, p · OV,W , and is a discrete valuation ring, by lemma A.4.54
on page 425. �

This motivates the definition:

DEFINITION 5.9.3. If p is a regular function on V that vanishes on a
codimension-1 subvariety, W, then the order of p at W, denoted ordW (p), is
defined to be the valuation of p in OV,W .

In equation 5.9.2 on the preceding page, set

αi = ordWi (u)
β j = ordZj (v)

The divisor of a rational function f , computed this way, is denoted

( f ) ∈ Div(V)

Elements of Div(V) of the form ( f ) for f ∈ KV are called principal divisors.
If

D =
n

∑
i=1

αi · 〈Wi〉 −
m

∑
j=1

β j · 〈Zj〉 ∈ Div(V)

is a divisor, the degree of D is

deg D =
n

∑
i=1

αi −
m

∑
j=1

β j ∈ Z

REMARK. If πi ∈ OV,Wi is the element that generates the only prime ideal,
then π

αi
i |u and π

αi+1
i - u. This justifies the terminology “divisor” for elements

of Div(V) — they actually divide the functions u and v.

One important question in the theory of divisors is:
How much freedom do we have in constructing rational func-
tions? Does every possible divisor correspond to a rational
function?

In other words, are all divisors principal? To study this question, we define:
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DEFINITION 5.9.4. Let V be an irreducible normal variety. The set of prin-
cipal divisors, P(V) ⊂ Div(V), is a subgroup and the quotient

Cl(V) =
Div(V)

P(V)

is called the divisor class group. Two divisors d1, d2 ∈ Div(V) will be said to be
linearly equivalent, denoted d1 ∼ d2, if they define the same element of Cl(V) —
i.e., if

d1 − d2 = ( f )
for some f ∈ k(V).

Let us consider some examples:

EXAMPLE 5.9.5. If V = An, then Cl(V) = 0 because one can construct
rational functions with arbitrary factors in the numerator and denominator:

f (X1, . . . , Xn)

g(X1, . . . , Xn)

The fact that Cl(An) = 0 implies that there are many rational functions on
An.

REMARK. This also happens if every prime divisor is principal: if

d = ∑ ni〈di〉 −mj〈ej〉
is an arbitrary divisor, where the 〈di〉, 〈ej〉 are principal and the coefficients are
positive, then there exist rational functions fi, gj with 〈di〉 = ( fi), 〈ej〉 = (gj) for
all i, j and

d =

∏ f ni
i

∏ g
mj
j


so d is principal.

EXAMPLE 5.9.6. If V = kPn, every possible divisor can be represented as a
“formal quotient”

d =
f (X1, . . . , Xn)

g(X1, . . . , Xn)

where f and g are arbitrary homogeneous polynomials, each representing
unions of hypersurfaces in kPn. Each such divisor has a degree equal to

deg f − deg g

and a divisor is principal (i.e., defines a rational function on kPn) if and only if
deg d = 0 — see example 5.4.3 on page 237. If two divisors,

d1 =
f1(X1, . . . , Xn)

g1(X1, . . . , Xn)

d2 =
f2(X1, . . . , Xn)

g2(X1, . . . , Xn)

have the same degree, then

d1 − d2 =

(
f1(X1, . . . , Xn)

g1(X1, . . . , Xn)
· g2(X1, . . . , Xn)

f2(X1, . . . , Xn)

)
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is principal. It follows that the element of Cl(kPn) that a divisor represents
is determined by its degree, so Cl(kPn) = Z, and kPn has “fewer” rational
functions than An.

This implies that:

EXAMPLE 5.9.7. If V = kPn, then Cl(V) is generated by a hyperplane (in
fact, any hyperplane), 〈H〉. If W = P(F) ⊂ kPn is a hypersurface, where F is a
homogeneous polynomial of degree d, then 〈W〉 = d · 〈H〉 ∈ Cl(V).

We can use Bézout’s theorem to get a partial generalization of what was
established in example 5.9.6 on the preceding page:

PROPOSITION 5.9.8. If V ⊂ kP2 is a smooth one-dimensional projective variety
(i.e., a curve) and x ∈ k(V) is a rational function, then deg(x) = 0.

REMARK. It follows that, on one-dimensional varieties, divisor-classes have
a well-defined degree — i.e., we get a homomorphism

deg: Cl(V)→ Z

It is not necessarily true that Cl(V) = Cl(kP1) = Z, though. For instance,
section 6.2 on page 305 discusses a class of smooth curves whose divisor class
groups are uncountable.

PROOF. Suppose V ⊂ kPt is of degree n and x = f /g, where f and g are
regular functions that extend to homogeneous polynomials F and G of degree m
on kPt. If p1, . . . , pt are the zeros of f , they are precisely points of V ∩W ⊂ kPt,
where W is the hypersurface defined by F = 0. Furthermore, the coefficients of
these points in the expression for the divisor are the intersection-multiplicities.
Bézout’s theorem (5.8.6 on page 272) implies that deg( f ) = n · m. A similar
argument implies that deg(g) = n ·m so

deg(x) = n ·m− n ·m = 0

�

We can generalize the computation in example 5.9.6 on the preceding page
to products of projective spaces:

EXAMPLE 5.9.9. If V = kP1 × · · · × kPnr , then corollary 5.5.2 on page 241
shows that a hypersurface, W ⊂ V is specified by a polynomial

f (X0,1 . . . , Xn1,1, . . . , X0,r, . . . , Xnr ,r)

that is homogeneous in each set of variables {X0,i, . . . , Xni ,i}— with distinct sets
possibly having different degrees. Let deg f{X0,i ,...,Xni ,i} denote the degree of the

ith set of homogeneous variables. A divisor is a “formal quotient”

f (X0,1 . . . , Xn1,1, . . . , X0,r, . . . , Xnr ,r)

g(X0,1 . . . , Xn1,1, . . . , X0,r, . . . , Xnr ,r)

and this defines a rational function on V if and only if
deg f{X0,i ,...,Xni ,i} = deg g{X0,i ,...,Xni ,i} for all i = 1, . . . , r. Reasoning like that used
in example 5.9.6 on the preceding page shows that

Cl(V) = Zr
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The divisor class group contains some interesting information about a va-
riety:

PROPOSITION 5.9.10. Let V be an irreducible normal affine variety. Then k[V]
is a unique factorization domain if and only Cl(V) = 0.

PROOF. Lemma 2.8.39 on page 115 shows that k[V] is factorial if and only if
all height 1 primes are principal. Prime divisors correspond to minimal nonzero
primes p ⊂ k[V]. Since k[V] is factorial, it is a domain and these primes contain
the minimal prime, (0) so they are of height 1. Since these are principal, it
follows that Cl(V) = 0. The converse is also clear. �

There are cases where computing the divisor class group is not difficult:

PROPOSITION 5.9.11. If V is an irreducible normal variety and W ⊂ V is a
proper closed subvariety with U = V \W, then:

(1) there is a surjective homomorphism

Cl(V)
r−→ Cl(U)

that sends ∑ ni · Pi to ∑ ni · (Pi ∩U), where we ignore the intersections
that are empty and the Pi are prime divisors,

(2) if W is of codimension ≥ 2, this homomorphism is an isomorphism.
(3) if W is irreducible of codimension 1, then there is an exact sequence

Z→ Cl(V)→ Cl(U)→ 0

where the kernel is the image of Z · 〈W〉.

PROOF. The intersections Pi ∩U are either prime divisors of U or empty, so
the map given is a homomorphism. It is surjective because every prime divisor
Q ⊂ U has a closure Q̄ ⊂ V with the property that

Q = Q̄ ∩U

The second statement follows from the fact that the divisor class group is only
influenced by subvarieties in codimension 1.

The third statement follows from the fact that W is a prime divisor and a
divisor is in the kernel of r if and only if its support is in W. �

Weil divisors, as in definition 5.9.1 on page 278 have the problem that they are
not well-behaved on varieties that are not normal. For instance, determining
the divisor of a function requires normality. It is possible to extend the defini-
tion of divisors to general varieties, giving so-called Cartier divisors. We begin
by looking at some of the properties of Weil divisors.

In a neighborhood of each point p ∈ V of a variety, a prime Weil divisor
is given by an equation f = 0 (given by the local parameter in lemma 3.4.3
on page 143, which extends to a small neighborhood of a point) where f is a
rational function — so that it is locally principal. Suppose we cover V by such
open sets, so that our divisor is given by fi = 0 on Ui

V =
⋃

Ui
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On the overlap Ui ∩Uj the divisors defined by fi = 0 and f j = 0 must coincide.
This will happen if and only if

fi
f j

is a regular function on Ui ∩Uj that is never zero there. We usually express this
by saying

fi
f j

and
f j

fi

are regular functions on Ui ∩Uj. This leads to the definition:

DEFINITION 5.9.12. If V is an irreducible variety, a Cartier divisor on V is
(1) a covering of V by open affines

V =
⋃

Ui

(2) a set of rational functions fi ∈ K∗V defined on Ui for all i that are not
identically 0 and with the property that

fi
f j

and
f j

fi

are both regular on the overlap Ui ∩Uj, for all pairs i, j.
(3) The product of two Cartier divisors {(Ui, fi} and {Vj, gj} is the divisor
{Ui ∩Vj, fi · gj}.

(4) If f ∈ k(V) is a globally defined rational function, it defines a Cartier
divisor via fi = f |Ui. This is called a principal divisor.

The group of Cartier divisors of V is denoted Cart(V).

REMARK. If V is normal, the argument above shows that every prime Weil
divisor gives rise to a Cartier divisor. This is extended to the group of divisors
by mapping the formal sum of Weil divisors to the product of the corresponding
Cartier divisors.

Condition 2 above implies that fi ∈ K∗V(Ui) for all i.

EXAMPLE 5.9.13. Recall the “blowing-up” operation in section 5.5.3 on
page 242. Proposition 5.5.8 on page 245 shows that the exceptional fiber is
actually a Cartier divisor — for instance, on the overlap (in the notation of
proposition 5.5.8 on page 245)(

E ∩An ×At−1
i

)
∩
(

E ∩An ×At−1
j

)
with i 6= j, we have Yi = Yj = 1 so that fi = f j, satisfying condition 2 of
definition 5.9.12 on page 283. This is why the exceptional fiber of a blowup is
often called its exceptional divisor.

PROPOSITION 5.9.14. If V is a normal variety and d = {Ui, fi} is a Cartier
divisor on V, then d induces a unique Weil divisor w.

PROOF. In a neighborhood of each point of Ui, define w to be
( fi) ∈ Div(V). Condition 2 in definition 5.9.12 on page 5.9.12 implies that fi
and f j will induce the same divisor on Ui ∩Uj. �
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The reader might notice similarities between the patching condition of a
Cartier divisor (statement 2 in definition 5.9.12 on page 283) and the transition
functions of a line bundle. This is no coincidence and implies

PROPOSITION 5.9.15. If V is a variety and P ⊂ Cart(V) is the subgroup of
principal divisors, there exists an exact sequence

(5.9.3) 0→ P→ Cart(V)
b−→ Pic(V)

(see definition C.1.13 on page 493).

REMARK. It follows that

Cart(V)

P
⊂ Pic(V)

PROOF. Given a Cartier divisor, { fi}, we can construct a line-bundle by
identifying Ui ×A1 with Uj ×A1 by the transition function ϕi,j = fi/ f j (on
Ui). It is also not hard to see that products of Cartier divisors map to tensor-
products of line-bundles (the transition functions are multiplied in each case).
Consequently, we get a homomorphism

(5.9.4) b: Cart(V)→ Pic(V)

whose kernel is precisely P ⊂ Cart(V). �

The map
b: Cart(V)→ Pic(V)

is often surjective. On normal varieties, this gives us a way to compute Picard
groups because this quotient is equal to Cl(V). For instance example 5.9.6 on
page 280 would imply that Pic(kPn) = Z.

To characterize when this happens, we need

DEFINITION 5.9.16. Let ξ be a line-bundle on a variety, V, with sheaf of
sections Sξ . If KV is the sheaf of meromorphic functions (see definition 4.3.21
on page 175) then

Sξ ⊗OV KV

is called the sheaf of meromorphic sections of ξ. There is a canonical inclusion

Sξ ↪→ Sξ ⊗OV KV

REMARK. Despite the verbiage involving sheaves, meromorphic sections
are fairly easy to describe:

Let {Uα} be an open cover of V such that ξ|Uα is trivial
(see definition C.1.3 on page 487), with transition functions
ϕα,β: Uα ∩ Uβ → k — functions that never vanish. A
meromorphic section of ξ is a set of meromorphic functions
{ fα ∈ K∗V(Uα)} such that

(5.9.5) fα · f−1
β = ϕα,β

or fα = ϕα,β · fβ (see proposition C.1.11 on page 492).
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So a “meromorphic section” is a set of meromorphic functions that mimic the
properties of a section. It is not a real section unless those functions are regular.
If KV(V) = F is a field, we can regard meromorphic sections as sections of the
line bundle over F given by ξ ⊗k F.

Equation 5.9.5 on the preceding page implies that the functions { fα} define
a Cartier divisor whose class (in Cart(V)/P) is uniquely determined by ξ. This
implies that:

PROPOSITION 5.9.17. The image of the map b in diagram 5.9.3 on the facing page
consists of line-bundles that have a meromorphic section.

Given the identification of line-bundles with invertible sheaves, we also
get:

PROPOSITION 5.9.18. If V is a variety and D = {(Ui, fi)} is a Cartier divisor
then the subsheaf generated by

D̄ = { f−1
i ⊂ KV(Ui)}

defines an invertible sheaf, s(D) ⊂ KC on V corresponding to the line-bundle b(D)
in 5.9.4 on the preceding page.

PROOF. The transition functions ϕα,β = fα · f−1
β in equation 5.9.5 on the

facing page are compatible with the definition above. �

COROLLARY 5.9.19. If V is a variety and D = {(Ui, fi)} is an effective Cartier
divisor defining a codimension-1 subvariety W ⊂ V then the ideal I defining W is
given by

I = s(−D)

PROOF. If D = {(Ui, fi)}, the sheaf s(−D) is just the subsheaf of KV gen-
erated by the functions fi · OV on Ui. This is clearly a quasi-coherent ideal in
OV that defines the subvariety W. �

Our main result characterizes the Picard group in terms of Cartier divisors:

THEOREM 5.9.20. If V is an irreducible projective variety, the map

b: Cart(V)→ Pic(V)

is surjective so that
Cart(V)

P
∼= Pic(V)

REMARK. This is a simplified version of proposition 21.3.4 of [65, p. 264]
— which proved the result in enormous generality (and showed that the irre-
ducibility of V is not a necessary condition). Our treatment follows that in [68].

PROOF. Let ξ be a line-bundle on V and pick an open cover {Uα} with the
property that ξ|Uα is trivial and with transition functions ϕα,β: Uα ∩Uβ → k. If
Uα is one such open set,

Sξ(Uα) = OV(Uα)

so
Sξ |Uα ⊗OV |Uα

KV |Uα = KV |Uα

— a constant sheaf of the meromorphic functions on Uα.
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CLAIM. Since Uα ⊂ V is dense, we claim that the sheaf of meromorphic
sections is globally a constant sheaf equal to the global meromorphic functions.

This follows by an argument due to Serre in [146]: Consider the maps to
the stalks fx:KV(U) → KV,x for x ∈ U (see B.1.1 on page 475) and suppose
c ∈ KV(U) is in the kernel of fx. Since KV,x = lim−→ KV(Û) as Û runs over all
open sets with x ∈ Û, it follows that exists a maximal open set U′ ⊂ U with
pU

U′(c) = 0. Since the sheaf is locally constant, U′ must also be closed. This
means it is empty since V is irreducible. So the maps KV(U) → KV,x are all
injective.

On the other hand, if c ∈ KV,x there exists a neighborhood U with c ∈
KV(U) and with KV |U a constant sheaf. Since V is irreducible, every other open
set U′ intersects U and U ∩U′ 6= ∅. Since KV |U′ is a constant sheaf, it follows
that c ∈ KV(U′) and c ∈ KV(V). So the mapsKV(U)→ KV,x are also surjective.

We get an isomorphism

Sξ(Uα)⊗OV(Uα) KV(Uα) = OV(Uα)⊗OV(Uα) KV(Uα) = KV(Uα)
∼=−→ KV(V)

for all α. If fα ∈ KV(Uα), for all α, are the inverse images of 1 ∈ KV(V) under
this map, then fα = ϕα,β · fβ so that the {( fα, Uα)} constitute a meromorphic
section of ξ. �

The following result is due to Serre, in [146]:

COROLLARY 5.9.21. If V = kPn, then Pic(V) = Z with the element n ∈
Pic(V) given by the Serre twist, OV(n) (see definition 5.3.1 on page 228).

REMARK. Serre’s original proof in [146] was constructive and direct.

PROOF. Example 5.9.6 on page 280, proposition 5.9.15 on page 284, and the-
orem 5.9.20 on the previous page imply that Pic(V) = Z. To see that Pic(V) is
generated by OV(1), note that proposition 5.3.3 on page 228 shows that OV(1)
has a section given by X0 (in homogeneous coordinates [X0: · · · : Xn]), which
defines a hyperplane (X0 = 0) in V. This generates Cl(V) and all other hy-
perplanes are equivalent to it (i.e. other sections include those defined by Xi,
which give hyperplanes Xi = 0, but these are linearly equivalent to the one
defined by X0 since they are multiples by rational functions, Xi/X0). �

Here’s an important example of a line-bundle on kP1:

EXAMPLE 5.9.22. Let V = kPn and define the “tautological line-bundle,” η,
on V as the subspace of kPn ×An+1 given by

[X0: · · · : Xn]× (tX0, . . . , tXn)

for all t ∈ k. Every point of kPn represents a line through the origin of An+1

and this line-bundle simply pairs a point with the line it represents (hence the
term “tautological”). On An

i we have

Xj = xj · Xi

where xj = Xj/Xi are the non-homogeneous coordinates, so the bundle is given
by

(x0, . . . , xi−1, 1, xi, . . . , xn)× (tx0 · Xi, . . . , tXi, . . . , txn · Xi)
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On the overlap An
i ∩An

j (coming from An
i ) we have

(x0, . . . , xi−1, 1, xi, . . . , xj−1, 1, xj . . . , xn)

× (x0 · Xi, . . . , Xi, . . . , Xi, . . . , xn · Xi)

and coming from An
j we have

(x0, . . . , xi−1, 1, xi, . . . , xj−1, 1, xj . . . , xn)

× (x0 · Xj, . . . , Xj, . . . , Xj, . . . , xn · Xj)

so the transition function is ϕj,i = Xj/Xi. This means that η = OV(−1) (see
definition 5.3.1 on page 228).

In general the Grassmannian, Gn,r (see definition 5.2.10 on page 224) has a
“tautological” r-plane bundle — a subspace of

ξ ⊂ Gn,r ×An

pairing a point of Gn,r with the r-dimensional subspace of An that the point
represents.

EXERCISES.

1. If V is a variety, recall its sheaf of meromorphic functions, KV and its
sheaf of regular meromorphic functions, K∗V — see section 4.3.2 on page 4.3.2.
If O∗V denotes the sheaf defined on affine open sets as the nonzero elements of
OV , show that

Cart(V) =

(K∗V
O∗V

)
(V)

— the quotient sheaf (see definition B.2.6 on page 481) evaluated on V, and that
a Cartier divisor is principal if it is in the image of K∗V(V).

2. Suppose V = CP1 with finite open set C1
0. Compute the divisor, ( f ), if:

a. f (x) = x
b. f (x) = (x− 1)/x
c. f (x) = 1/x2

d. f (x) = (x− 1)(x− 4)

3. Suppose V = kPn and W = P(F) is a smooth degree-d hypersurface
where F is a homogeneous polynomial of degree d. Show that Pic(V \W) =
Z/d ·Z, generated by OV(1)|V \W.

4. If x = f /g ∈ k(V), show that (x)0 ≡ (x)∞ ∈ Cl(V).

5. If V is a variety and W is a blow-up show that

Cl(W) ∼= Cl(V)⊕Z
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5.9.2. Divisors and rational maps. We can use divisors to analyze rational
maps. Although rational maps can have singularities, in some cases these can
be relatively “small”:

PROPOSITION 5.9.23. If V is a smooth variety and f : V → kPn is a rational
map, let

( fi) =
m

∑
j=1

ai,jCj = Di

where Cj are prime divisors and set

D = gcd({Di}) =
m

∑
j=1

min
i
(ai,j)Cj

Then the divisors D′i = Di − D have no common components and the map f is non-
regular at the points of

n⋂
i=0

suppD′i

which has codimension ≥ 2.

PROOF. In a neighborhood of any point p ∈ V, we have

fi =

(
m

∏
j=1

π
ai,j
j

)
ui ∈ OV,p

where the {πj} are local uniformizers (see definition 3.3.18 on page 130) and
the ui are units. SinceOV,p is a unique factorization domain (see theorem 3.3.38
on page 142), there exists a well-defined greatest common divisor, g, of the fi.

Since the target of f is a projective space,

( f0: · · · : fn) ∼ ( f0g−1: · · · : fng−1) ∈ kPn

so the map f is regular at point p if not all of the fig−1 are zero at p. The points
where they all vanish are precisely the intersection of the support of the divisors
D′i . �

This has the remarkable consequence that rational maps induce
homomorphisms of differential forms:

COROLLARY 5.9.24. If X and Y are smooth varieties with Yprojective, and
f : X → Y is a rational mapping such that f (X) ⊂ Y is dense, then f induces an
injection of sheaves

f ∗: Ωi
Y → Ωi

X

REMARK. Smoothness plays a vital role here: pullbacks of differential
forms on Y may have singularities, but proposition 5.9.23 implies that these
will be of codimension ≥ 2. Since these pullbacks are essentially functions
(multiplying differentials), and singularities of functions are codimension 1,
they must be regular.
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PROOF. Most of the proof has been outlined above. The rational map f will
be regular on X \ Z where Z is of codimension ≥ 2. If ω ∈ Ωi

Y, then f ∗(ω) is
regular on X \ Z. If V ⊂ Y is an open set with ω|V a linear combination of basic
differentials and U ⊂ f−1(V) is an open set in X, then

f ∗ω = ∑ gn1,...,ni dun1 ∧ · · · duni

where the gn1,...,ni are functions that are regular on U \ (U ∩ Z). Since U ∩ Z
is of codimension ≥ 2 and singularities of a function are codimension 1, we
conclude that the gn1,...,ni are regular on all of U.

Injectivity of f ∗ follows from the fact that the image of f is dense in Y. �

5.9.3. Linear spaces of divisors. We can use divisors to carry out a much
more “fine-grained” analysis of polynomials and rational functions by specify-
ing the maximum degree and the locations and types of zeros and singularities:

DEFINITION 5.9.25. If D ∈ Div(V) is a divisor defined on a variety, V, the
space of D, denoted L(D) is the set of meromorphic functions f ∈ k(V) such
that

( f ) + D ≥ 0
or, if D = ∑m

i=1 ni · Pi, then
ordPi ( f ) ≥ −ni

for all i = 1, . . . , n. The dimension of D, denoted `(D) is the dimension of this
vector-space.

REMARK. A polynomial of degree n has a singularity of order n at ∞, so
the space of n · 〈∞〉 is precisely the set of polynomials of degree ≤ n and `(n ·
〈∞〉) = n + 1.

The dimension of L(D) only depends on its class in Cl(V):

PROPOSITION 5.9.26. If V is a variety and D1 ≡ D2 ∈ Cl(V) are divisors, then
there is an isomorphism

ι:L(D2)→ L(D1)

PROOF. If D2 = D1 + (g), where g is a meromorphic function on V then

( f g) + D1 ≥ 0⇔ ( f ) + (g) + D1 ≥ 0

so f ∈ L(D2) if and only if f g ∈ L(D1). The isomorphism is multiplication by
g. �

In the case of plane curves, it is easy to draw conclusions about divisors:

PROPOSITION 5.9.27. If D1, D2 are divisors on a smooth curve, V then
(1) D1 ≤ D2 implies that L(D1) ⊆ L(D2) and `(D1) ≤ `(D2),
(2) if D1 ≤ D2, then dimk L(D2)/L(D1) ≤ deg D2 − deg D1,
(3) L(0) = k,
(4) if D ≥ 0, then `(D) ≤ deg D + 1,

REMARK. Since Cl(kP1) = Z, a divisor, D, is equivalent to deg(D) · 〈∞〉.
If D ≥ 0, it follows that

`(D) = deg D + 1
on kP1.
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PROOF. The first statement follows from the transitivity of an
order-relation: if ( f ) + D1 ≥ 0, then ( f ) + D2 ≥ ( f ) + D1 ≥ 0.

To see the second statement, consider L(D1 + P), where P is a prime divi-
sor. Let π be a uniformizing parameter of OV,P. If n is the coefficient of P in
D1, and f ∈ L(D1 + P), note that πn+1 · f ∈ OV,P since ordP ( f ) ≥ −n − 1.
Consequently, we can define a homomorphism

g:L(D1 + P) → k

f 7→ (πn+1 · f )(x)

— or, equivalently, the image of πn+1 · f under the projection

OV,P → OV,P/π · OV,P = k

The kernel of g is L(D1) so we conclude

dimk L(D1 + P)/L(D1) ≤ 1

with equality if L(D1) ( L(D1 + P). Statement 2 follows by induction after
writing D2 = D1 + P1 + · · ·+ Pt.

Statement 3 follows from the Nullstellensatz — f ∈ L(0) has no poles, so
it is a global regular function — a constant.

Statement 4 follows from statements 3 and 2, which imply that

dimL(D)/L(0) = `(D)− 1 ≤ deg D

The final statement follows from the fact that, if D = D1 − D2 with D1, D2 ≥ 0
then D ≤ D1 so

L(D) ⊂ L(D1)

�

EXAMPLE 5.9.28. Suppose V = kP1 for k = F̄3 and P1 = [1: 0], P2 = [1: 2],
� = [0: 1] . Then we have

D Generators of L(D) deg D `(D)

〈�〉 − 〈P1〉 X 0 1
2〈�〉 − 2〈P2〉 (X + 1)2 0 1
3〈�〉 − 2〈P2〉 (X + 1)2, X(X + 1)2 1 2
〈�〉 − 2〈P1〉 ∅ −1 0

LEMMA 5.9.29. Suppose D is a Cartier divisor on a irreducible, normal variety,
V over a field k, with associated line-bundle, ξ. Then there exists an isomorphism

L(D) −→ Γ(V, ξ) = Sξ(V)

The set of effective divisors linearly equivalent to D is P(Γ(V, ξ)). In addition,
L(D) is a finite-dimensional vector space over k.

PROOF. If f is any function on V and D is locally defined by meromorphic
functions fα on open affines Uα, then

{ f · fα}
defines a meromorphic section, m, of ξ (see definition 5.9.16 on page 284 and the
remark following it). If f ∈ L(D), then f · fα is a regular function for all α so m
is an actual section of ξ. Conversely, given an actual section s of ξ, the functions

(s|Uα) · f−1
α
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define a global meromorphic function g such that g ∈ L(D).
Every global section of ξ defines a meromorphic function f such that ( f ) +

D ≥ 0 so that ( f ) + D is an effective divisor linearly equivalent to D — and any
effective divisor linearly equivalent to D arises this way.

Suppose two sections, s and s′, of ξ give rise to the same divisor. This
implies that divisors of

(s|Uα) · f−1
α and (s′|Uα) · f−1

α

are identical. This means that

(s|Uα) · f−1
α ·

(
(s′|Uα) · f−1

α

)−1

are regular functions on the affine sets Uα that never vanish. The Nullstellensatz
implies that they are constants. The fact that these constants must agree on
overlaps implies that there is a “global” constant, c ∈ k, such that

s = c · s′

But this is precisely the condition that s and s′ define the same point in
P(Γ(V, ξ)).

The final statement follows from theorem 5.5.23 on page 254. �

The vector space `(D) can vanish under some circumstances:

COROLLARY 5.9.30. If D is a divisor on a smooth one-dimensional variety with
`(D) > 0, then deg D ≥ 0.

PROOF. If `(D) > 0, there exists a rational function f such that ( f )+D ≥ 0.
Since proposition 5.9.8 on page 281 shows that deg( f ) = 0, we have deg(D +
( f )) = deg D ≥ 0. �

EXERCISES.

6. Suppose V is a variety and D ∈ Div(V). If f ∈ L(D) show that f /∈
L(D− P) for all but a finite number of prime divisors, P.

5.9.4. Differential forms and divisors. In this section, we will study divi-
sors associated with differential forms (see section 4.6.2 on page 205).

This has an interesting consequence:

COROLLARY 5.9.31. If V is an irreducible smooth projective variety over a field
of characteristic 0, then

hi = dimk Ωi
V(V)

is finite for all i.
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REMARK. For a proof of this that doesn’t make use of sheaf-cohomology,
see [149].

The fact that the maps in a birational equivalence have dense images and
corollary 5.9.24 on page 288 imply that the {hi} are birational invariants of V.

PROOF. Since Ωi
V is clearly coherent (see definition 3.5.5 on page 152), the

conclusion follows from theorem 5.5.23 on page 254. �

We can also define the module of rational forms on V:

DEFINITION 5.9.32. If V is an irreducible variety, then the module of rational
forms, Ωt(V) is the set of equivalence classes of pairs (U, ω ∈ Ωt

U), where

(U1, ω1) ∼ (U2, ω2)

if ω1|U1 ∩U2 = ω2|U1 ∩U2.

REMARK. Note the subtle distinction in notation: Ωt
V verses Ωt(V): the

former is a locally-free sheaf and the latter is a vector space.

We can immediately conclude

COROLLARY 5.9.33. If V is an n-dimensional irreducible variety, then Ωt(V) is
a vector space over k(V) of dimension (n

t).

PROOF. If x ∈ Ωt(V), then there exists an open set U such that x ∈ Ωt
U and

is a linear combination of (n
t) basis elements:

x = ∑ fi1,...,it dui1 ∧ · · · ∧ duit

where the {uj} are local parameters in U. Since the { fi1,...,it} ⊂ k[U], they define
elements of k(X), as do the {uj}. �

5.9.5. The canonical divisor class. If V is an n-dimensional smooth irre-
ducible variety, then Ωn(V) is one-dimensional over k(V) — in other words

Ωn(V) = ω · k(V)

In an open affine, U1
ω = du1 ∧ · · · ∧ dun

where the ui are local parameters. If U2 is another open affine with local pa-
rameters {w1, . . . , wn} then, on U1 ∩ U2 there exists an invertible matrix, M
with entries in k[V] such that

w = M · u
where

w =

 w1
...

wn

 , u =

 u1
...

un


and lemma A.6.14 on page 471 implies that

dw1 ∧ · · · ∧ dwn = det M · du1 ∧ · · · ∧ dun

where det M is nonvanishing on U1 ∩U2. This implies that ω defines Cartier
divisors on V — and that they are all in the same class (i.e. they differ by globally
defined rational functions).



5.9. DIVISORS 293

DEFINITION 5.9.34. The divisor class, KV , described above is called the
canonical class of V.

REMARK. The canonical class encapsulates deep algebraic and topological
information about a projective variety.

PROPOSITION 5.9.35. Let V be a smooth n-dimensional projective variety and
let KV be the canonical class. If KV is represented by the rational differential form
ω · du1 ∧ · · · ∧ dun then

( f ) + KV ≥ 0
if and only if f ω · du1 ∧ · · · ∧ dun ∈ Ωn

V . It follows that

dimk Ωn
V(V) = `(KV)

In some cases, computing the canonical class can be straightforward:

EXAMPLE 5.9.36. If V = kP1, Cl(V) = Z so a divisor-class is completely
determined by its degree. If

kP1 = A1
0 ∪A1

1

let xi be the single coordinate of A1
i . Then Ωk[x0]/k = Ω1

A1
0
= k[x0] · dx0, so

Ω1(A1
0) = k(x0) · dx0. In gluing together A1

0 and A1
1, we identify x1 with x−1

0
so that dx0 becomes

dx0 = − 1
x2

1
· dx1

making the canonical class on kP1 the element −2 ∈ Z = Cl(kP1), or −2 · 〈p〉
where p ∈ kP1 is any point.

We will conclude this section with a more complex and instructive example
— a hypersurface. We will follow the treatment of this problem by Shafarevich
in [149]:

EXAMPLE 5.9.37. Let H ⊂ kPn be a smooth degree-s hypersurface defined
by

p(X0, . . . , Xn) = 0
where p is a degree-s homogeneous polynomial with
pi = p(X0, . . . , Xi−1, 1, Xi+1, . . . , Xn) defining Hi = H ∩An

i .
If we focus on H0, let xi = Xi/X0 and let Ut be the (open, affine) set of

points where ∂p0/∂xt = p0,xt 6= 0 on H0. The fact that H0 is smooth implies

H0 =
n⋃

j=1

Uj

— i.e., at least one of the derivatives is nonvanishing at each point. The n− 1-
dimensional tangent plane at a point is defined by

(5.9.6)
n

∑
t=1

p0,xt · dxt = 0

so that x1, . . . , xi−1, xi+1, . . . , xn is a set of local parameters on Ui — see 3.3.18
on page 130.
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We can define

ωi =
dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn

p0,xi

on Ui. If we take the ∧-product of

dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn

with equation 5.9.6 on the preceding page, we get

(−1)i−1 p0,xi · dx1 · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn

+ (−1)j−2 p0,xj dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn = 0

or

(−1)i−1 p0,xi · dx1 · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn

= (−1)j−1 p0,xj dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn

which implies that ωj = (−1)i−jωi so ωn is regular everywhere on H0 and
generates Ωn−1

H0
. By definition 5.9.32 on page 292, it defines a unique element of

Ωn−1(H).
Now we consider what the differential form ωn looks like on H1. Suppose

the coordinates of H1 are

yi =


X0

X1
=

1
x1

if i = 1

Xi
X1

=
xi
x1

if i > 1

This implies that

dx1 = −dy1

y2
1

and

dxi =
y1 · dyi − yi · dy1

y2
1

so

dx1 ∧ · · · ∧ dxn−1 = −dy1 ∧ · · · ∧ dyn−1

yn
1

which implies that

ωn = −dy1 ∧ · · · ∧ dyn−1

yn
1 · p0,xn

It remains to convert p0,xn to the y-coordinates. We have

p1 = ys
1 · p0

(
1
y1

, . . . ,
yn

y1

)
so

p1,yn =
∂p1

∂yn
= ys

1 ·
∂xn

∂yn
· p0,xn

(
1
y1

, . . . ,
yn

y1

)
= ys−1

1 · p0,xn(x1, . . . , xn)



5.9. DIVISORS 295

which gives the conversion

p0,xn(x1, . . . , xn) =
p1,yn

ys−1
1

We conclude that

ωn = −dy1 ∧ · · · ∧ dyn−1

yn−s+1
1 · p1,yn

∈ Ωn−1(H1)

which defines the Cartier divisor

− 1
yn−s+1

1 · p1,yn

We conclude that the canonical class of H is

KH = −(n− s + 1) · 〈Y〉
where Y is the hypersurface in H defined by y1 = 0.

If we had picked some other Hi to do these computations, we would have
gotten a similar result — and the resulting divisor would have differed from
−(n− s + 1) · 〈Y〉 by a rational function so the class would have been the same.

The upshot of this is that the canonical class is equivalent to

(5.9.7) KH = −(n− s + 1)〈L〉
where L is any linear function.

Now we will compute the dimension of L(KH), or `(KH). Suppose
f (x1, . . . , xn) is a degree-d polynomial on H0 defining the differential form

f ·ωn ∈ Ωn−1
H0

On H1, we get

f = f
(

1
y1

, . . . ,
yn

y1

)
= y−d

1 · yd
1 · f

(
1
y1

, . . . ,
yn

y1

)
=

f̄ (y1, . . . , yn)

yd
1

where f̄ (y1, . . . , yn) ∈ k[y1, . . . , yn] is a polynomial, which means that

f ·ωn = − f̄ (y1, . . . , yn)dy1 ∧ · · · ∧ dyn−1

yd+n−s+1
1 · p1,yn

This corresponds to the divisor

− f̄ (y1, . . . , yn)

yd+n−s+1
1 · p1,yn

and is effective if and only if d + n − s + 1 ≤ 0 or d ≤ s − n − 1. If m is the
dimension of H, then m = n− 1 and we have d ≤ s− m− 2. The set of such
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FIGURE 5.9.1. Topological genus 2

polynomials form a vector space of dimension

`(KH) =

0 if s−m− 2 < 0(
s− 1
m + 1

)
otherwise

— see proposition 5.4.6 on page 238. If m = 1 — the case of projective plane
curves studied in chapter 6.1 on the next page — we get

`(KH) =

(
s− 1

2

)
=

(s− 1)(s− 2)
2

DEFINITION 5.9.38. If V is an irreducible smooth projective variety, the
number pg(V) = `(KV) is called the geometric genus of V.

REMARK. We’ve just shown that the genus of a hypersurface of degree d in
kP2 is (d− 1)(d− 2)/2.

If k = C, our curve is topologically a two-dimensional surface and `(KV)
turns out to equal the topological genus of the curve — essentially the number
of handles one must sew onto a sphere to get the surface. See figure 5.9.1.
Proving this is beyond the scope of this book.

If k 6= C, V is not a surface and the topological genus is undefined.

The geometric genus is a birational invariant:

THEOREM 5.9.39. If X and Y are smooth, birationally equivalent projective vari-
eties, then

pg(X) = pg(Y)

REMARK. The computations in example 5.9.37 on page 293 implies that
there are an infinite number of birationally inequivalent hypersurfaces.

PROOF. This follows immediately from corollary 5.9.24 on page 288, the
fact that birational equivalences have dense images, and proposition 5.9.35 on
page 293. �



CHAPTER 6

Curves

“Everyone knows what a curve is, until he has studied enough math-
ematics to become confused through the countless number of possible
exceptions.”
—Felix Klein, quoted by Carl B. Boyer — Scientific American, “The In-
vention of Analytic Geometry”, 1949.

6.1. Basic properties

In this chapter, we will focus on smooth, one-dimensional projective vari-
eties or curves which, according to theorem 5.6.9 on page 259, naturally embed
in kP3. In fact, throughout most of this chapter, we will deal with a special type
of curve:

DEFINITION 6.1.1. A one-dimensional projective variety, V, is a projective
plane curve if it has an embedding in kP2.

REMARK. A projective plane curve is clearly defined by a single equation.

Despite their apparent simplicity, projective plane curves have a rich array
of properties — even in the case of elliptic curves (the subject of the next section).
To begin, we can try to write down exactly what the canonical class is:

PROPOSITION 6.1.2. If V ⊂ kP2 is a smooth projective plane curve of degree d
and H = P(G) ⊂ kP2 is a hyperplane that intersects V at points {p1, . . . , pt} with
multiplicities {m1, . . . , mt}, respectively, then

(1) ∑t
i=1 mi = d

(2) if D = ∑t
i=1 mi · 〈pi〉 then KV = (d− 3) · D

(3) deg KV = d · (d− 3) = 2g− 2, where g is the genus in definition 5.9.38 on
the facing page.

REMARK. If H intersects V in points {q1, . . . , qs} with multiplicities
{n1, . . . , ns}, respectively, then

(G) =
s

∑
j=1

nj · 〈pj〉

PROOF. The first statement follows from Bézout’s theorem ( 5.8.6 on
page 272). The second statement follows from equation 5.9.7 on page 295 and
the fact that all hyperplanes define equivalent divisors. The third statement
follows immediately from the first two (and simple arithmetic). �

One interesting consequence of curves being one-dimensional is:

297
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PROPOSITION 6.1.3. If f : V → W be a rational map of curves, then f is regular
at every nonsingular point of V.

PROOF. In a neighborhood of a nonsingular point of V, we can use propo-
sition 5.9.23 on page 288 to conclude that the sets of points where f fails to be
regular is of codimension ≥ 2, which in this case means it is empty. �

Despite our restriction to projective plane curves:

COROLLARY 6.1.4. All irreducible smooth curves are birationally equivalent to
projective plane curves. Furthermore, if V is a smooth curve and

f : V →W ⊂ kP2

is a birational equivalence, we can assume that f is regular everywhere.

REMARK. The plane curve, W, may have singularities, in which case the
inverse map will not be regular.

PROOF. This follows immediately from theorem 2.8.37 on page 113. If
V ⊂ kPn is a curve, and V0 is an open affine, then there exists a birational
equivalence

f : V0 →W ⊂ A2

It follows that an open subset of V is isomorphic to an open subset of the pro-
jective completion of W. �

COROLLARY 6.1.5. A birational equivalence between smooth curves is an iso-
morphism.

REMARK. Normally, birational equivalences are isomorphisms on the open
sets where they are regular (see theorem 2.5.27 on page 85). In the present
situation, this is everywhere.

This allows us to formulate a criterion for a smooth plane curve to be ratio-
nal (see definition 2.5.28 on page 86):

COROLLARY 6.1.6. If P is a smooth plane curve that is rational and f : P → P
is a birational equivalence that is not the identity map, then f has at most two fixed
points.

PROOF. In light of 6.1.5, it suffices to prove this for kP1. The map f will
have the form

f (x0: x1) = (p0(x0, x1): p1(x0: x1))

where p0 and p1 are homogeneous polynomials of the same degree. Since f
must be regular and one-to-one, it follows that the pi must be linear, so

f (x0: x1) = (a · x0 + b · x1: c · x0 + d · x1)

A point (x0: x1) ∈ kP1 is a fixed point of f if f (x0: x1) = (k · x0: k · x1) for a
nonzero k, or

a · x0 + b · x1 = k · x0

c · x0 + d · x1 = k · x1
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It follows that the allowable values of k are just the ≤ 2 nonzero eigenvalues of
the matrix [

a b
c d

]
and the fixed points are the corresponding eigenvectors. �

This allows us to prove:

PROPOSITION 6.1.7. An elliptic curve

y2 = x3 + Ax + B

in kP2 with 4A3 + 27B2 6= 0 is not rational.

PROOF. We extend this curve to kP2 by rewriting it in homogeneous coor-
dinates (

x2

x3

)2
=

(
x1

x3

)3
+ A

x1

x3
+ B

or
x2

2x3 = x3
1 + Ax1x2

3 + Bx3
3

If we set x3 = 0, we get x1 = 0 so x2 must be nonzero, giving a point at infinity,
(0: 1: 0). The map

f : (x1: x2: x3) 7→ (x1:−x2: x3)

is a birational equivalence from the elliptic curve to itself. The point at infinity
is clearly a fixed point of this map. In the finite part of the plane (x3 6= 0), the
fixed points are the points with x2 = 0, i. e., solutions of

x3
1 + Ax1x2

3 + Bx3
3 = 0

or (
x1

x3

)3
+ a

x1

x3
+ b = 0

Because 4A3 + 27B2 6= 0, there are three of these (see definition A.1.54 on
page 351 and the discussion following corollary A.1.55 on page 351). It fol-
lows that f has four fixed points. The conclusion follows from corollary 6.1.6 on
the facing page. �

We get another criterion for rationality:

LEMMA 6.1.8. Suppose V is a smooth projective curve and p1, p2 ∈ V are two
distinct points. If the divisor 〈p1〉 − 〈p2〉 is principal, then V is rational.

PROOF. Suppose f is the rational function whose divisor is 〈p1〉 − 〈p2〉.
Then we may regard f as a map

f : V → kP1

that sends p1 to 0 and p2 to the point at infinity and is regular at all points of V.
Since kP1 is irreducible and theorem 5.5.13 on page 249 implies that the image
of f is closed, f must be surjective. Since V and kP1 are both one-dimensional,
the induced extension of fields

(6.1.1) f ∗: k(kP1) ↪→ k(V)
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must be algebraic, hence a finite extension. Let OkP1,0 be the coordinate ring of
kP1 at 0 and let OV,p1 be the coordinate ring of V at p1. The map f ∗ defines an
inclusion

OkP1,0 ↪→ OV,p1

Let t be a local parameter at 0 ∈ kP1 and let s be a local parameter at p1 ∈ V
— these are localizations of the coordinate rings of open affines U ⊂ kP1 and
U′ ⊂ V. The fiber of f at 0 consists only of the point p1 (see lemma 2.5.8 on
page 75) so that

OV,p1

(t)
∼=
OkP1,0

(t)
∼= k

so it follows that OV,p1
∼= OkP1,0 and the field-extension in equation 6.1.1 on

the previous page is of degree 1, so f is a birational equivalence. �

Sometimes it is advantageous to focus on a set of prime divisors to the
exclusion of all others.

For instance:

PROPOSITION 6.1.9. Let V ⊂ kP2 be a smooth irreducible projective plane curve
and let {p1, . . . , pt} ∈ V be a finite collection of prime divisors (i.e., points). If
m1, . . . , mt is a sequence of integers, there exists a meromorphic function f ∈ k(V)
with the property that

ordpi ( f ) = mi

REMARK. It will most emphatically not be true that

( f ) =
t

∑
i=1

mi · 〈pi〉

In fact ( f ) will contain many more nonzero terms, but among the divisors
{p1, . . . , pt} it will have the required property.

PROOF. Let `i ⊂ kP2 be a line that passes through pi but not through any
pj for j 6= i: in homogeneous coordinates if pi = (xi, yi, zi) ∈ kP2, set

`i(x, y, z) = ai(x− xi) + bi(y− yi) + ci(z− zi)

for ai, bi, ci ∈ k. This is possible because k is infinite — in each `i we only have
to avoid a finite set of values of (ai, bi, ci). We can even ensure that `i is not
tangent to V at pi: if V is defined by F(x, y, z) = 0 we simply avoid values for
(ai, bi, ci) that make(

∂F
∂x

)
pi

· ai +

(
∂F
∂y

)
pi

· bi +

(
∂F
∂z

)
pi

· ci = 0

— a finite set of forbidden ratios ai/ci, bi/ci. Smoothness implies that at least
one derivative is nonzero at each point.

Now define:

f =
t

∏
i=1

(
`mi

i (x, y, z) · ¯̀−mi (x, y, z)
)

where ¯̀(x, y, z) is a linear function that does not pass through any of the pi. This
induces a meromorphic function on V with the required properties. �
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We will also need a kind of relative version of definition 5.9.25 on page 289:

DEFINITION 6.1.10. If V is a variety and S is a set of prime divisors of V
the relative space of this divisor with respect to S, denoted LS(D) is the set of
meromorphic functions f such that

ordP ( f ) ≥ −ordP (D)

for all P ∈ S. We define degS D to be the sum of the coefficients of the terms in
S.

REMARK. If the set S does not include any of the prime divisors of D, then
degS D = 0 — even if D is an effective divisor.

Note that, in general, LS(0) 6= k: the argument used in proposition 5.9.27
on page 289 no longer works because we limit our focus to prime divisors in S.

We can also prove relative versions of proposition 5.9.27 on page 289:

PROPOSITION 6.1.11. If D1 ≤ D2, then LS(D1) ⊆ LS(D2). If S is finite, then

dim
(
LS(D2)/LS(D1)

)
= degS(D2 − D1)

REMARK. Note that this is a “sharper” statement than the corresponding
one in proposition 5.9.27 on page 289: we have equality rather than an inequal-
ity.

PROOF. We prove this like the way we proved statement 2 in proposi-
tion 5.9.27 on page 289. We set D2 = D1 + P and define a homomorphism

ϕ:LS(D1 + P)→ k

whose kernel is LS(D1). We can use proposition 6.1.9 on the preceding page
to show that this map is always surjective: we can always find a meromorphic
function that has prescribed orders at the prime divisors in S. �

Max Noether (1844 – 1921) was a German mathematician who made contribu-
tions to algebraic geometry and the theory of algebraic functions. He was also
the father of the more famous Emmy Noether.

One of his Max Noether’s notable achievements was the oddly-named
“AF+BG Theorem:”

DEFINITION 6.1.12. Let p = A2
0 ∈ kP2 be a point and let V = P(F) ⊂

kP2 and W = P(G) ⊂ kP2 be projective plane curves that have no common
component with p ∈ V ∩W. If X = P(H) ⊂ kP2 is another curve, we say that
Noether’s Conditions are satisfied at p (with respect to F, G, and H) if

H(x, y, 1) ∈ (F(x, y, 1), G(x, y, 1)) ⊂ OkP2,p = OA2,p

REMARK. If p /∈ A2
0, we can substitute any of the other open affines (and

make slight changes to the other statements).
For instance, if the multiplicity of the intersection p ∈ V ∩W is 1, then

lemma 3.3.31 on page 138 implies that Noether’s conditions are satisfied at p.

Another case where Noether’s conditions are satisfied is given by:



302 6. CURVES

PROPOSITION 6.1.13. Let V = P(F) ⊂ kP2 be an irreducible smooth projective
plane curve let p ∈ V be a point, and suppose W = P(G) ⊂ kP2 and X = P(H) ⊂
kP2 are plane curves. Noether’s conditions are satisfied at the point p if

ordp (H) ≥ ordp (G)

PROOF. We need to show that im H ∈ im (F, G) ⊂ OA2
0,p. This is equiv-

alent to im H ∈ (G) ⊂ OV,p. Since OV,p is a discrete valuation ring (see
section A.4.4 on page 423) this is completely determined by the condition on
valuations given above. The conclusion follows. �

THEOREM 6.1.14 (Max Noether’s AF+BG theorem). Let V = P(F) ⊂ kP2

and W = P(G) ⊂ kP2 be projective plane curves that have no common component
and let X = P(H) ⊂ kP2 be another curve with deg H > deg F and deg H >
deg G. Then there exist forms A, B ∈ k[X, Y, Z] with

deg A = deg H − deg F
deg B = deg H − deg G

such that
H = AF + BG

if and only if Noether’s conditions are satisfied at all points in V ∩W.

REMARK. This is similar to Bézout’s lemma, A.1.11 on page 330. The spe-
cial features of the present result are that local properties imply a global one.

PROOF. If H = AF + BG then the same is true at all of the localizations of
k[X, Y, Z] so that Noether’s conditions will be satisfied at all points of kP2.

Conversely, suppose Noether’s conditions are satisfied at all points of V ∩
W. Without loss of generality, assume V ∩W = {p1, . . . , pt} ∈ A2

0 ⊂ kP2. If

R =
k[X, Y]

(F(X, Y, 1), G(X, Y, 1))

then Spec R consists of a finite number of points and R is an Artinian ring (see
section A.1.7 on page 365). The solution to exercise 3 on page 175 implies that

R ∼=
t

∏
j=1
OA2,pj

so that Noether’s conditions being satisfied at all of the points pj implies that

im H(X, Y, 1) = 0 ∈ R

or
(H(X, Y, 1)) ∈ (F(X, Y, 1), G(X, Y, 1)) ⊂ k[X, Y]

In other words, there exist polynomials, a(X, Y) and b(X, Y) such that

H(X, Y, 1) = a(X, Y) · F(X, Y, 1) + b(X, Y) · G(X, Y, 1)

Setting X = X̄/Z and Y = Ȳ/Z gives

H(X̄, Ȳ, Z) = Zra(X̄/Z, Ȳ/Z) · F(X̄, Ȳ, Z) + Zrb(X̄/Z, Ȳ/Z) · G(X̄, Ȳ, Z)

in k[X̄, Ȳ, Z], where r = deg H. The conclusion follows. �
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DEFINITION 6.1.15. Suppose V ⊂ kPn is a variety and W = P(F) ⊂ kPn

is a hypersurface sharing no components with V. If V ∩W = {Z1, . . . , Zt}, the
intersection-cycle is the expression

V •W =
t

∑
i=1

µi〈Zi〉 ∈ Div(V)

where µi = ordZi (F).

REMARK. Note that this divisor describes the intersection of V and W. It
is also the divisor of the function F on V because the intersections of W with V
occur at precisely the points where F vanishes on V.

Bézout’s Theorem implies that

deg(V •W) = (deg V) · (deg W)

where degrees on the right are as defined in 5.7.12 on page 265. Some other
properties of these intersection cycles are given by:

PROPOSITION 6.1.16. If V = P(F) ⊂ kP2, W = P(G) ⊂ kP2, X = P(H) ⊂
kP2 share no components then

(1) V • P(GH) = V • P(G) + V • P(H) = V •W + V • X
(2) V • P(G + AF) = V • P(G) = V •W

REMARK. The first property makes intuitive sense because
P(GH) = P(G) ∪ P(H).

PROOF. The first property follows from the definition of order as a discrete
valuation (see definition A.4.47 on page 423): ordp (GH) = ordp (G)+ordp (H).
The second follows from the fact that:

(1) On V = P(F), G + AF ≡ G so all of the points of V ∩W are points of
V ∩ P(G + AF),

(2) ordp (G + AF) = ordp (G) since order is computed in a localized co-
ordinate ring of V and AF vanishes identically there.

�

COROLLARY 6.1.17. Let V = P(F) ⊂ kP2 and W = P(G) ⊂ kP2 be curves
with no common component and which intersect in (deg V) · (deg W) distinct points
{pi}. If X = P(H) ⊂ kP2 is another curve with deg H > deg F and deg H >
deg G passing through all of the pi, then there exists a curve U = P(B) such that

V •U = V • X−V •W

REMARK. This is one of the main applications of the AF+BG theorem. It
allows one to perform subtle geometric manipulations — creating a curve that
intersects V only in points where W does not.

PROOF. Bézout’s theorem implies that the intersections of V and W,
counted with multiplicities, is (deg V) · (deg W). It follows that all of the
intersections must be of multiplicity 1, which means that Noether’s conditions
are satisfied (see the remark following definition 6.1.12 on page 301. Noether’s
AF+BG theorem ( 6.1.14 on the facing page) implies that

H = AF + BG
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Proposition 6.1.16 on the previous page implies that

V • X = V • P(AF + GB)
= V • P(GB)
= V •W + V • P(B)

and the conclusion follows. �

Another application of the AF+BG theorem is:

COROLLARY 6.1.18. Let V be a smooth curve and let D, D′ be effective divisors
of V with D ≡ D′ ∈ Cl(V). If G ∈ k[X, Y, Z] is a form defining W = P(G) ⊂ kP2

with (G) = D + A and A ≥ 0, then there exists a form G′ such that (G′) = D′ + A.

REMARK. Since D−D′ = ( f ) for some rational function f ∈ k(V), this just
says that we can modify a smooth curve, W, by an arbitrary rational function
to get another curve.

PROOF. As remarked above, D− D′ = ( f ), where

f =
H′

H

where H and H′ are forms of the same degree (see proposition 5.9.8 on
page 281). We get

D + H = D′ + H′

and

(GH) = D′ + (H′) + A ≥ (H′)

Proposition 6.1.13 on page 302 implies that Noether’s conditions are satisfied
for V, P(H′) and P(GH). The AF+BG theorem gives an expression

GH = ĀF + G′H′

where the degree of G′ is the same as that of G and

(GH) = (G′H′)
(G) + (H) = (G′) + (H′)

because AF vanishes identically on V. We conclude that

(G′) = D′ + A

as claimed. �
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EXERCISES.

1. Use corollary 6.1.17 on page 303 to prove the statement:
If V and W are cubic curves with

V •W =
9

∑
i=1

pi

(9 distinct points) and X is a quadratic curve with

V • X =
6

∑
i=1

pi

then the points p7, p8, p9 lie on a straight line.

2. Prove Pascal’s Mystic Hexagram (see section 1.5 on page 25).

3. Prove a “converse” of Pascal’s theorem:
If we have a hexagon and extend opposite sides until they intersect, and

these intersections lie on a straight line, then the vertices of the original hexagon
were on a quadratic curve (i.e. a conic section).

6.2. Elliptic curves

6.2.1. Divisors. In this section we will study a fixed elliptic curve, V given
by

(6.2.1) Y2 = s(X) = X3 + AX + B ⊂ kP2

and we will assume that the characteristic of the field k is not 2 or 3.
This section’s main result is a theorem ( 6.2.11 on page 312) of Jacobi and

Abel computing the structure of Cl0(E), for an elliptic curve, E, and defining a
group operation on it. The theory of elliptic curves is a very rich one — Andrew
Wiles’s proof of Fermat’s Last Theorem makes extensive use of them (see [169]).

We loosely follow the excellent surveys [29, 28]. Since our elliptic curve is
not rational, lemma 6.1.8 on page 299 implies that

〈p〉 − 〈p0〉 6= 0 ∈ Cl0(V)

where p 6= p0. If we fix a point p0 ∈ V, we get an injective map

fp0 : V ↪→ Cl0(V)

p 7→ 〈p〉 − 〈p0〉
This implies, for instance, that Cl0(V) and Pic(V) are quite large. To study this
map and its image, we need to analyze the coordinate ring of V:

PROPOSITION 6.2.1. Let k[x, y] = k[V] be the coordinate ring of the affine cone
of V — where x and y are the images of X and Y, respectively, under the projection

k[X, Y]→ k[X, Y]/(Y2 − s(X)) = k[V]
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Then every regular function f (x, y) can be uniquely written as

f (x, y) = g(x) + y · h(x)

Given such a representation, we define the conjugate of f (x, y) to be

f (x, y) = g(x)− y · h(x)

and the norm of f to be
N( f ) = f · f̄

The degree of a polynomial, f (x, y), is defined to be the degree of its norm, as a
polynomial in x.

REMARK. It is not hard to see that the map

k[X]→ k[V]

is an inclusion. The norm of f can be regarded as a polynomial in x alone
because it is equal to

g(x)2 − s(x) · h(x)2

It is easily verified that N( f1 · f2) = N( f1) · N( f2).
Multiplying a rational function

f (x, y)
g(x, y)

=
a(x) + y · b(x)
c(x) + y · d(x)

by ḡ(x, y)/ḡ(x, y) puts it into the form

r1(x) + y · r2(x)

where r1 and r2 are rational functions of x alone.
If f (x, y) = g(x) + y · h(x), then deg f = max(2 · deg a, 3 + 2 · deg h).

We will regard the point at ∞ as the identity element — or the point, p0 used
to define the correspondence between divisors and points in 6.2.11 on page 312.

We will use two coordinate-systems on V: coordinates (x, y) in the finite
portion of V and homogeneous coordinates (x1: x2: x3) on the whole of it. They
are related via

x = x1/x3

y = x2/x3

In homogeneous coordinates, the defining equation of V is

x2
2x3 = x3

1 + Ax1x2
3 + Bx3

3

DEFINITION 6.2.2. We distinguish three kinds of points on V:
(1) The point (0: 1: 0) at infinity, denoted �.
(2) The points ηi = (ωi: 0: 1) where ω1, ω2, ω3 are the three solutions of

X3 + AX + B = 0

These are called the points of degree 2.
(3) All of the rest — called generic points.

We need to analyze the behavior of rational functions at �:
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PROPOSITION 6.2.3. If

r =
f (x, y)
g(x, y)

is a rational function:
(1) r(�) = 0 if and only if deg g > deg f .
(2) if deg f = deg g, then r(�) is the quotient of the leading terms and is

nonzero.

PROOF. Suppose f = a(x) + y · b(x) and g = c(x) + y · d(x). The hypothe-
sis is that

max(2 · deg a, 3 + 2 · deg b) < max(2 · deg c, 3 + 2 · deg d)

This gives rise to four cases:
(1) The a and c terms dominate (i.e., determine degrees). Since 3 + 2 ·

deg b ≤ 2 · deg a, we conclude that deg b < deg a − 1 and similar
reasoning implies that deg d < deg c− 1. After substituting x = x1/x3
and y = x2/x3, we get

r = xdeg c−deg a
3

xdeg a
3 · [a(x1/x3) + (x2/x3)b(x1/x3)]

xdeg c
3 · [c(x1/x3) + (x2/x3)d(x1/x3)]

where the numerator and denominator are now homogeneous poly-
nomials in x1, x2, x3 (as in 1.2.6 on page 5). It follows that r(�) = 0,
and that this is the only way this can happen when the a and c terms
dominate.

If deg f = deg g, then the leading term of xdeg a
3 · a(x1/x3) will be

k1 · xdeg a
1 and the leading term of xdeg c

3 · c(x1/x3) will be k2 · xdeg c
1 , so

the value of r at � will be k1/k2 6= 0.
(2) The b and c terms dominate. In this case deg b ≥ deg a− 1 and deg d <

deg c− 1. We get

r = xdeg c−deg b−1
3

xdeg b+1
3 · [a(x1/x3) + (x2/x3)b(x1/x3)]

xdeg c
3 · [c(x1/x3) + (x2/x3)d(x1/x3)]

and the initial exponent of x3 is positive because 2 · deg c > 3 + 2 ·
deg b or deg c > deg b + 1.

The remaining cases are left as an exercise to the reader. In the case where
deg f = deg g is odd (so b and d dominate), the leading term of the numera-
tor is the leading term of xdeg b+1

3 · (x2/x3)b(x1/x3) = xdeg b
3 · x2 · b(x1/x3) =

k1x2xdeg b
1 and that of the denominator will be k2x2xdeg d

1 so the value of r at �
will, again, be k1/k2 6= 0. �

In order to understand divisors on V we must define local parameters or
uniformizers at each type of point, as in section 3.3.1 on page 130.

PROPOSITION 6.2.4. Local parameters on points of V are:
(1) At a generic point (a: b: 1), the function x− a serves as a local parameter.
(2) At a point of degree 2, the function y is a local parameter.
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(3) At the point �, the function x/y is a parameter. If p(x, y) is a polynomial
then

ord�

(
1

p(x, y)

)
= −deg p(x, y)

PROOF. Let r(x, y) be a rational function that vanishes at (a, b). Then
r(x, y) = f (x, y)/d(x, y) where f (x, y) = g(x) + yh(x) vanishes at the point
(a, b) and d does not. If f̄ also vanishes at this point, then the equations

g(a) + bh(a) = 0
g(a)− bh(a) = 0

(and the fact that the characteristic of k is 6= 2) implies that g(a) = h(a) = 0 so
x− a| f (x, y). If f̄ (a, b) 6= 0, we multiply f (x, y) by f̄ (x, y/ f̄ (x, y) to get

f (x, y) =
g(x)2 − s(x)h(x)2

f̄

The numerator is a polynomial in x that vanishes at x− a so, again, x− a| f (x, y).
It follows that x− a generates the ideal of rational functions that vanish at (a, b).

If r(x, y) vanishes at a point, ωi, of degree 2, and r(x, y) = f (x, y)/d(x, y)
then assume i = 1. Then

N( f )(ω1) = g(ω1)
2 = 0

so (X−ω1)|g(X) and f (x, y) satisfies

f (x, y) = a(x)(x−ω1) + yh(x)

=
a(x)(x−ω1)(x−ω2)(x−ω3) + yh(x)(x−ω2)(x−ω3)

(x−ω2)(x−ω3)

=
a(x)s(x) + yh(x)(x−ω2)(x−ω3)

(x−ω2)(x−ω3)

=
a(x)y2 + yh(x)(x−ω2)(x−ω3)

(x−ω2)(x−ω3)

= y · a(x)y + h(x)(x−ω2)(x−ω3)

(x−ω2)(x−ω3)

so y|r(x, y).
If r(x1: x2: x3) vanishes at the point (0: 1: 0) = � ∈ V, it is of the form

f (x, y)
d(x, y)

with deg d(x, y) − deg f (x, y) = k as in proposition 6.2.1 on page 305. Since
deg y = 3 and deg x = 2,

yk · f (x, y)
xk · g(x, y)

has a nonzero value at � and

r(x, y) =
(

x
y

)k
· yk · f (x, y)

xk · g(x, y)

�

Given these local parameters, we can compute divisors of functions:
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EXAMPLE 6.2.5. Consider the function x− a, where a ∈ V is a generic point.
Its coefficient at (a,±b) is clearly 1 and at a finite point whose x-coordinate is
not equal to a, it is 0. Since it has positive degree, its order at � (see defini-
tion 5.9.3 on page 279) will be negative — i.e., we must compute

ord�

(
1

x− a

)
Since x − a has degree 2 (via proposition 6.2.1 on page 305), it follows

ord� (1/(x− a)) = −2 and

(x− a) = 〈(a, b)〉+ 〈(a,−b)〉 − 2〈�〉 ∈ Cl(V)

The function y has order 1 at each of the points of degree 2 and, since y is
of degree 3, we get

(y) = 〈η1〉+ 〈η2〉+ 〈η3〉 − 3〈�〉
We will use our local parameters to geometrically describe the

group-operation on Cl0(V).

DEFINITION 6.2.6. A line on V is a linear function

`(x, y) = c1x + c2y + c3

in affine coordinates. We say that a line passes through a point (x, y) if `(x, y) = 0.

REMARK. Since an elliptic curve involves a polynomial of degree 3, Bé-
zout’s theorem ( 1.4.7 on page 25 or 5.8.6 on page 272) implies that a line can
pass through at most 3 points of the curve.

Computing the divisor of a line (as a rational function on V) has interesting
consequences. We begin with

PROPOSITION 6.2.7. If p1 = (a, b) ∈ V is any point not of degree 2 and p2 =
(a,−b), then there exists a line ` whose divisor is

(`) = 〈p1〉+ 〈p2〉 − 2〈�〉
If p = ηi for any i, then there exists a line ` with

(`) = 2〈p〉 − 2〈�〉
PROOF. If we set ` = x− a, the conclusion follows from example 6.2.5. In

the second case, without loss of generality assume that i = 1. We have x− ω1
and y = 0, and

x−ω1 =
(x−ω1)(x−ω2)(x−ω3)

(x−ω2)(x−ω3)
=

y2

(x−ω2)(x−ω3)

so y2|x−ω1 and ordη1 (x−ω1) = 2. In both cases, the order at � is −2. �

When a line is tangent to V at the point of intersection we get

PROPOSITION 6.2.8. If p1 = (a, b) ∈ V is a point that is not of degree 2, and for
which

3 a4 + 6 a2 A + 12 aB− A2 6= 0
there exists another point p2 ∈ V and a line `(x, y) such that

(`) = 2〈p1〉+ 〈p2〉 − 3〈�〉
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If

(6.2.2) 3 a4 + 6 a2 A + 12 aB− A2 = 0

(`) = 3〈p1〉 − 3〈�〉
PROOF. The general line through p1 is m(x − a) + y− b and we compute

m to make ` tangent to V. We differentiate equation 6.2.1 on page 305

2y
dy
dx

= 3x2 + A

or
dy
dx

=
3a2 + A

2b
= m

so we get

`(x, y) =
3a2 + A

2b
(x− a)− b + y

If we solve for y and plug into equation 6.2.1 on page 305 and simplify, we get

P(x) = −x3 + x2 A2 + 9a4 + 12a2B + 6a2 A
4(a3 + Aa + B)

− x
6a5 + 12a2B + 2a2 A

4(a3 + Aa + B)
+

A2a2 − 2a4 A + a6 − 8a3B
4(a3 + Aa + B)

The denominator is nonzero because p1 is not of degree 2. This is
twice-divisible by (x− a) because

P(x) = (x− a)2 ·
(
−x +

a4 − 2a2 A− 8aB + A2

4(a3 + Aa + B)

)
which gives the x-coordinate of p2 — the y-coordinate is computed by setting
`(x, y) = 0. The function `(x, y) has an order of 2 at p1 because

`(x, y) = `(x, y)
`(x, y)
`(x, y)

=
P(x)
`(x, y)

Equation 6.2.2 is the result of setting

a =
a4 − 2a2 A− 8aB + A2

4(a3 + Aa + B)

�

If we have three distinct points that sum to zero in the group defined by V,
we get:

PROPOSITION 6.2.9. If p1, p2, p3 ∈ V are three distinct points with

〈p1〉+ 〈p2〉+ 〈p3〉 − 3〈�〉 = 0 ∈ Cl0(V)

there exists a line `(x, y) with

(`) = 〈p1〉+ 〈p2〉+ 〈p3〉 − 3〈�〉
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PROOF. The fact that

〈p1〉+ 〈p2〉+ 〈p3〉 − 3〈�〉 = 0 ∈ Cl0(V)

implies that there exists a function, f , such that

( f ) = 〈p1〉+ 〈p2〉+ 〈p3〉 − 3〈�〉
and Bézout’s theorem implies that this function must be linear. �

Finally, we need to know that all elements of Cl0(V) are of the right form:

PROPOSITION 6.2.10. If x ∈ Cl0(V), there exists a unique point, p ∈ V such
that

x = 〈p〉 − 〈�〉
PROOF. We will begin by showing that the point p exists. Suppose

(6.2.3) x =
k

∑
i=1

ni〈pi〉 − n〈�〉

with ∑ ni = n.

CLAIM. 1. We can assume that all points of degree 2 have a coefficient of 1.

If pi is of degree 2 and ni is even, we can use proposition 6.2.8 on page 309
to eliminate it entirely — by adding a suitable multiple of 2〈pi〉 − 2〈�〉 to x. If
pi is of degree 2 and ni is odd, we can make ni = 1 in the same way. We can
assume that all points of degree 2 in equation 6.2.3 have coefficient +1.

CLAIM. 2. We can assume that the coefficients of all points in equation 6.2.3
are positive.

If a point pi has a negative coefficient, we can use proposition 6.2.8 on
page 309 to add copies of 〈pi〉 + 〈 p̄i〉 − 2〈�〉 to x (where, if pi = (a, b) then
p̄i = (a,−b)) to eventually make ni = 0.

CLAIM. 3. We can assume that all coefficients in equation 6.2.3 are 1, i.e.,

x =
k

∑
i=1
〈pi〉 − k〈�〉

Suppose that N is the maximum of the positive coefficients in x. If N > 1,
suppose, without loss of generality, N = n1. Since n1 > 1, we can use propo-
sition 6.2.8 on page 309 to subtract a multiple of 2〈p1〉+ 〈p′1〉 − 2〈�〉 to make
the coefficient of 〈p1〉 ≤ 1. This introduces a term −bn1/2c〈p′1〉, which we
can make positive by adding suitable copies of 〈p′1〉+ 〈 p̄′1〉 − 2〈�〉. This intro-
duces new elements bn1/2c〈 p̄′1〉, but the maximum of all positive coefficients
will have decreased. We can clearly do this until all coefficients are 1.

CLAIM. 4. We can assume k = 1 or x = 0.

If k > 2, we can reduce it by referring to proposition 6.2.9 on the facing
page and subtracting 〈p1〉+ 〈p2〉+ 〈p3〉 − 3〈�〉 to reduce it.

If k = 2 we can still reduce it by subtracting 〈p1〉+ 〈p2〉+ 〈p3〉 − 3〈�〉 to
get

x = −〈p3〉+ 〈�〉
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and then make the coefficient of 〈p3〉 positive via the steps outlined above. It
follows that

x = 〈p〉 − 〈�〉
If there was another point q with x = 〈q〉 − 〈�〉, we would have

〈p〉 − 〈q〉 = ( f )

for some rational function, f and lemma 6.1.8 on page 299 would imply that V
is rational, which is a contradiction. �

This allows us to conclude something remarkable about the divisors on an
elliptic curve:

THEOREM 6.2.11. If V is an elliptic curve, then there is a one-to-one correspon-
dence between the elements of Cl0(V) and the points of V given by

p ∈ V ↔ 〈p〉 − 〈�〉 ∈ Cl0(V)

REMARK. This implies that the points of V constitute an abelian group. This
is one of the first examples of an abelian variety:

DEFINITION 6.2.12. An algebraic group that is an irreducible projective va-
riety is called an abelian variety.

REMARK. Abelian varieties were first studied by Abel in connection with
his work on elliptic functions. There is an extensive theory of abelian varieties
— see [117] and [109].

Niels Abel, (1802–1829) was a brilliant Norwegian mathematician whose many
contributions to algebra include the proof of the nonexistence of a formula for
solving degree-5 polynomials and the theory of elliptic functions. Abel’s origi-
nal approach to the preceding theorem was wildly different from the one given
here — involving elliptic functions and elliptic integrals (see [1]).

Theorem 6.2.11, proposition 5.9.15 on page 284, and the fact that V is
smooth imply that V is a moduli space for isomorphism classes of line bundles
over V (compare with the discussion following definition 5.2.10 on page 224).

Propositions 6.2.7 on page 309, 6.2.9 on page 310, and 6.2.9 on page 310
define the group-structure of V and its relation to geometry.

COROLLARY 6.2.13. If p1, p2, p2 ∈ V are three points of V, then

p1 + p2 + p3 = 0

if and only if

(〈p1〉 − 〈�〉) + (〈p2〉 − 〈�〉) + (〈p3〉 − 〈�〉) = 0 ∈ Cl0(V)

which happens if and only if p1, p2, p3 lie on the same line, as in figure 6.2.1 on the
facing page. The additive inverse of (a, b) is (−a, b).

REMARK. Proposition 6.2.8 on page 309 considers degenerate cases where
two of the points coincide (and the line is tangent to V) or where all three points
coincide at inflection points of V.
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FIGURE 6.2.1. Three points that sum to zero

It is easy to check that this group-law makes V into an algebraic (abelian)
group whenever k is a field — we never required k to be algebraically closed.

When k = Q, Mordell proved that V is finitely generated in [116], answer-
ing a question posed by Poincaré in 1908. In 1929, André Weil generalized this
by proving that the group of any abelian variety over a number-field (i.e., a fi-
nite extension of Q) is finitely generated, in [166]. The general result is called
the Mordell-Weil theorem.

EXERCISES.

1. Explicitly write x − 1 (assuming 1 is not a root of the polynomial X3 +
AX + B) and y in terms of the local parameter x/y at �.

2. Why doesn’t proposition 6.2.7 on page 309 violate Bézout’s theorem?
After all, it involves a x− a that defines a line intersecting V in only two points.

3. Given points, (a1, b1), (a2, b2) ∈ V find an explicit formula for (a1, b1) +
(a2, b2) = (a3, b3).

4. Use lemma 5.5.18 on page 251 to show that the group-operation of an
abelian variety is commutative (making it “abelian” in two different senses!).

6.2.2. Elliptic curve cryptography. Elliptic curve cryptography was inde-
pendently discovered by Neal Koblitz (see [88]) and Victor Miller (in [108]) in
1985. It is a cryptographic system that uses elliptic curves over a finite field
— usually Fp or F2n and is based on the computational difficulty of deducing
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n ∈ Z, given v ∈ V and

(6.2.4) n · v =
n

∑
i=1

v ∈ V

for some very large value of n (the so-called discrete logarithm problem).
Although other discrete-logarithm systems are in use, ones based on elliptic
curves appear to offer greater security for a given value of n.

Suppose Joe Blow and Sally Slow want to communicate confidentially
across a channel that is easily monitored by others. The standard way to
do this is with an agreed-upon cryptosystem — involving well-known
algorithms. Secrecy is provided by coupling this system with a key known
only to Joe and Sally:

Message + Key→ Encrypted message

They could agree on a key beforehand, but this has the problem that it
might fall into the wrong hands or be deduced by a good cryptologist (after
analyzing many messages1). The most secure approach (therefore the one used
in practice) is to randomly generate a new key for each message. This raises
the obvious question: how do Joe and Sally exchange this key without it falling
into the wrong hands?

This is where elliptic curves come into play. Joe and Sally have an agreed-
upon elliptic curve, V, over Fp for some large (i.e. 100 digits or more) prime p
or over F2n for a large value of n, given by

Y2 = X3 + AX + B

and some fixed point v ∈ V. So they initially agree upon p, A, B, v (or 2n, A, B, v)
— and must assume that their adversaries know these parameters. Suppose the
order of the group, V, is N — we assume this is a very large number.

Joe picks a random large number, nJoe, from 1 to N − 1 and publicly sends
Sally KJoe = nJoe · v — where “multiplication” is done as in equation 6.2.4.
Similarly, Sally picks a random nSally and sends Joe KSally = nSally · v.

When Sally receives KJoe, she multiplies it by nSally to get

x = nSally · KJoe = nSallynJoe · v
Joe does a similar thing with KSally to get

x = nJoe · KSally = nSallynJoe · v
At the end of this exchange, Joe and Sally share a secret, x, that is unknown

to the world at large — even though the defining parameters were publicly
broadcast. They can pass secret messages to each other, using x as the key.

This subject has motivated a great deal of research into elliptic curves — for
instance, the two monographs [29] and [28] were sponsored by the US Institute
for Defense Analysis. There are published guidelines for “good” values for
the parameters p, A, B, v, and ones to avoid — see [27]. There are also efficient
algorithms for computing n · v for large values of n — see the exercises. For
more on this subject, see [13].

1The book [156] gives a vivid account of this happening in the Second World War.
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EXERCISES.

5. If n = 2k and x ∈ V is a point in an elliptic curve, describe a fast proce-
dure for computing n · x.

6. How can the procedure in the previous problem be used to compute n · x
for an arbitrary natural number n.

6.3. The Riemann-Roch Theorem

6.3.1. Introduction. The material in this section is true for arbitrary
smooth curves — not just projective plane curves.

Georg Friedrich Bernhard Riemann (1826–1866) was an influential German
mathematician who made contributions to many fields including analysis,
number theory and differential geometry. Riemann’s work in differential ge-
ometry provided the mathematical foundation for Einstein’s Theory of General
Relativity (see [113]).

The Riemann-Roch theorem has a long and complex history. In its original
form, it was a theorem about meromorphic functions on a Riemann surface.
Riemann proved a limited form of it known as Riemann’s Inequality in [138]
and Roch expanded on this to create an equation in [139].

In 1931, Friedrich Karl Schmidt proved a version for algebraic curves in
[144] over finite fields and applied this to number-theoretic problems. In [78],
Hirzebruch extended the Riemann-Roch theorem still further, developing a
topological version that led to many other powerful theorems including the
Atiyah-Singer Index theorem (see [130]).

In [46], Gerd Faltings proved a version of the Riemann-Roch theorem (and
Noether’s AF+BG theorem) for schemes over algebraic number fields (finite ex-
tensions of Q).

Today the phrase “Riemann-Roch” has evolved to become a generic term
for a vast array of results.

6.3.2. Riemann’s Inequality. In this section we will consider the original
result Riemann proved in 1857 (in [138]):

THEOREM 6.3.1 (Riemann’s Inequality). If V is an irreducible smooth projec-
tive curve, there exists an integer ξ(V) such that for any divisor, D

`(D) ≥ deg D + 1− ξ(V)

REMARK. This number, ξ(V), will turn out to be the genus of V (see defini-
tion 5.9.38 on page 296).

Riemann originally proved this inequality for meromorphic functions on
a Riemann surface — in which case, g was the topological genus. Such a sur-
face can be “flattened out” by 2g “cuts” to form a polygon in C with 4g sides.
Riemann reasoned that a meromorphic function on the surface is equivalent to
one on the 4g-sided polygon whose values agree across the cuts — i.e., ones that
satisfy 2g conditions.
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Using a construction called the Dirichlet Principle, Riemann was able to
construct g basic linearly independent regular functions and add functions of
the form 1/(z− a) to give d singularities. He reasoned that the resulting func-
tion is specified by g + d + 1 constants. Since it must satisfy 2g constraints
(when we glue the cuts together again), we get at least g + d + 1− 2g = d + 1−
g degrees of freedom.

Riemann’s use of the Dirichlet Principle was refuted by his student Emil
Prym in 1870, and it cast doubt on Riemann’s proof of the inequality and Roch’s
later enhancements to it. The first rigorous proof of the Riemann-Roch theorem
(and the first time it was called that) is due to Alexander Brill and Max Noether
in 1870 ([18]).

We follow the elementary and very concise treatment of the subject in Ful-
ton’s classic, [48].

We begin by proving it for a special type of divisor:

LEMMA 6.3.2. Suppose V is a smooth projective curve with field of meromorphic
functions k(V), suppose x ∈ k(V) and x /∈ k. If n = [k(V): k(x)] and D = (x)0 is
the divisor of the zeros of x, then

(1) D is an effective divisor and deg D = n.
(2) There exists a number τ such that `(r · D) ≥ rn− τ for all r ∈ Z.

PROOF. Effectiveness of D follows from its definition. If m = deg D, we
begin by showing that m ≤ n. If

D =
t

∑
i=1

npi · 〈pi〉

Let S = {〈p〉 ∈ Div(V)|np > 0}. Proposition 6.1.11 on page 301 implies that

dimLS(0)/LS(−D) = m

Let vi ∈ LS(0), i = 1, . . . , m be elements that map to a basis {v̄1, . . . , v̄m} of
LS(0)/LS(−D).

We claim that the vi are linearly independent over k(x). If not, there is an
equation

m

∑
i=1

fivi = 0

with not all fi ∈ k(x) equal to zero. After clearing denominators, we get an
equation

(6.3.1)
m

∑
i=1

givi = 0

where gi ∈ k[x]. If we write gi = λi + xhi where λi ∈ k and hi ∈ k[x], not all of
the λi are 0 (since we could multiply by x−n for suitable n to ensure this). We
get

m

∑
i=1

λivi = −x
m

∑
i=1

hivi ∈ LS(−D)

so the image of ∑m
i=1 givi in LS(0)/LS(−D) is ∑m

i=1 λi v̄i = 0, which contradicts
the assumption that v̄i are a basis.
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To prove the second statement (and complete the proof of the first),
we will explicitly construct linearly independent elements of L(r · D). Let
{w1, . . . , wn} ∈ k(V) be a basis for k(V) over k(x) — and regard k(X) as the
field of fractions of k[x−1]. Proposition A.2.12 on page 374 implies that each of
the wi satisfies a polynomial

wni
i + ai,ni−1wni−1

i + · · ·+ ai,0 = 0

with ai,j ∈ k(x) and the solution to exercise 2 on page 411 implies that, without
loss of generality, we can assume that the ai,j lie in k[x−1]. This implies that
ordP

(
ai,j
)
≥ 0 for all prime divisors P such that P /∈ S. We will use the wi to

construct elements of L(r · D).
Claim: If P /∈ S, then ordP (wi) ≥ 0, so the elements we construct will be effective

at prime divisors not in S.
If ordP (wi) < 0, we would have b = ordP

(
wni

i
)
< ordP

(
ai,jw

j
i

)
which, by

statement 4 of proposition A.4.48 on page 424 would imply that

ordP

(
wni

i + ai,ni−1wni−1
i + · · ·+ ai,0

)
= b

a contradiction.
It follows that, for some integer t > 0, (wi) + t · D ≥ 0 for i = 1, . . . , n. If

j = 0, . . . , r, then
wix−j ∈ L((r + t)D)

Since the wi are linearly independent and the {x−j} are linearly independent,
it follows that the set

{wix−j}
is linearly independent (see proposition A.2.7 on page 372). It follows that
`((r + t)D) ≥ n(r + 1). But

`((r + t) · D) = `(r · D) + dim
(L((r + t) · D)

L(r · D)

)
≤ `(r · D) + t ·m

by statement 2 of proposition 5.9.27 on page 289. We conclude that

`(r · D) ≥ n(r + 1)− t ·m = r · n− τ

Statement 4 of proposition 5.9.27 on page 289 implies that

L(r · D) ≤ r ·m + 1

so we get the inequality r · n− τ ≤ r ·m + 1 . Taking the limit as r → ∞ shows
that n ≤ m, which completes the proof of the first statement. �

Although divisors of the form D = (x)0 are specialized, we can show that
arbitrary divisors are related to them:

PROPOSITION 6.3.3. Let V be a smooth projective curve and let B ∈ Div(V) be
an arbitrary divisor. If x ∈ k(V) \ k is an arbitrary element such that [k(V): k(x)] <
∞ and D = (x)0, then there exists a divisor B′ ≡ B ∈ Cl(V) such that

B′ ≤ r · D
for all sufficiently large r.
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PROOF. If D = ∑ np〈p〉 and B = ∑ mp〈p〉, we will construct a meromor-
phic function f such that B′ = B− ( f ) and mp − ordp ( f ) ≤ r · np for all p ∈ V.
Let y = x−1 and set T = {p ∈ V|mp > 0, ordp (y) ≥ 0}. Set

f = ∏
p∈T

(y− y(p))mp

If p ∈ T (i.e. ordp (y) ≥ 0), then mp − ordp ( f ) ≤ 0, so the conclusion holds at
these points. If ordp (y) < 0, then the corresponding np > 0 so a sufficiently
large value of r will ensure the conclusion. �

Proof of theorem 6.3.1 on page 315:
We will show that there exists some integer ξ such that, for any divisor, D,

on V
`(D) ≥ deg d + 1− ξ

and later (when we prove Roch’s enhancement of the theorem) show that ξ is
the genus of V.

If s(D) = deg D + 1− `(D), we will show that there is an upper bound for
s(D) as D runs over all divisors and:

(1) If D = 0, statement 3 of proposition 5.9.27 on page 289 implies that
s(0) = 0, so ξ(V) ≥ 0 if it exists.

(2) Propositions 5.9.8 on page 281 and 5.9.26 on page 289 show that if
D1 ≡ D2 ∈ Cl(V) then s(D1) = s(D2).

(3) Statement 2 of proposition 5.9.27 on page 289 shows that D1 ≤ D2
implies that s(D2) ≤ s(D1).

(4) If x ∈ k(V) \ k and D = (x)0 as in lemma 6.3.2 on page 316, then s(r ·
D) ≤ τ + 1 for all r. If τ is the smallest value that works in lemma 6.3.2
on page 316, we can set ξ(V) = τ + 1. Since this must be a value taken
on by s(r · D) and since r · D ≤ (r + 1) · D, it follows that s(r · D) =
τ + 1 = ξ(V) for all sufficiently large values of r.

At this point, proposition 6.3.3 on the preceding page finishes the proof.

6.3.3. The full Riemann-Roch Theorem. In this section, we will state the
theorem in what is essentially its modern form.

Gustav Roch (1839 – 1866), a student of Riemann, was a German mathematician
who made important contributions to the theory of Riemann surfaces. What
promised to be a brilliant career was cut short by tuberculosis, when Roch was
26.

In [139], he enhanced the Riemann inequality to an equation:

THEOREM 6.3.4 (Riemann-Roch). If V is a smooth projective plane curve with
canonical class KV (see definition 5.9.34 on page 293) and D is any divisor, then

(6.3.2) `(D) = `(KV − D) + 1 + deg D− ξ(V)

REMARK. Setting D = 0 gives ξ(V) = `(KV), so it is actually the genus in
definition 5.9.38 on page 296.

The proof presented here follows that of Alexander Brill and Max Noether
in [18] — which only works for projective plane curves (since they were study-
ing Riemann surfaces).
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Because of statements 2 on the preceding page and 3 on the facing page, we
already know this theorem for D “sufficiently large:”

PROPOSITION 6.3.5. In the notation of theorem 6.3.4 on the preceding page and
statement 3 on the facing page, if D is a divisor with the property that

`(D) = deg D + 1− ξ(V)

and D′ ≥ D and D′′ is any divisor with D′′ ≡ D′ ∈ Cl(V), then

`(D′′) = deg D′′ + 1− ξ(V)

Statement 4 on the preceding page implies that:

PROPOSITION 6.3.6. If V is a smooth projective curve with field of meromorphic
functions k(V), and x ∈ k(V) \ k and D = (x)0 is the divisor of the zeros of x, then

`(r · (x)0) = deg(r · (x)0) + 1− ξ(V)

for r sufficiently large.

This allows us to refine our statement about a divisor being sufficiently
large:

COROLLARY 6.3.7. Under the hypotheses of theorem 6.3.4 on the facing page,
there exists an integer N such that any divisor D with deg D ≥ N satisfies

(6.3.3) `(D) = deg D + 1− ξ(V)

REMARK. If D is “large” then KV − D is “small” and `(KV − D) = 0. It
follows that `(KV − D) is a “correction factor” that only comes into play for
“small” divisors.

PROOF. Let r · (x)0 be a divisor that satisfies proposition 6.3.6 and set N =
deg(r · (x)0) + g. If deg D ≥ N, then

deg (D− r · (x)0) ≥ ξ(V)

and Riemann’s inequality ( 6.3.1 on page 315) implies that

`(D− r · (x)0) > 0

so there exists a meromorphic function f with

D− r · (x)0 + ( f ) ≥ 0

which implies that
D + ( f ) ≥ r · (x)0

and the conclusion follows from proposition 6.3.5. �

We can use this result to compute ξ(V):

PROPOSITION 6.3.8. If V = P(F) ⊂ kP2 is a smooth curve of degree d, then

ξ(V) =
(d− 1)(d− 2)

2
= g

— the geometric genus in definition 5.9.38 on page 296.

REMARK. Henceforth, we will dispense with the term ξ(V) and use the
genus.
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PROOF. Suppose, without loss of generality, that V intersects the line T =
P(Z) in d distinct points. We will explicitly construct `(n · (Z)) for large values
of n and compute ξ(V) as

ξ(V) = deg(n · (Z)) + 1− `(n · (Z))

First of all, deg(n · (Z)) = nd, and if Vn ⊂ k[X, Y, Z] is the vector space of
forms of degree n, we get

dim Vn =

(
n + 2

2

)
=

(n + 1)(n + 2)
2

— see proposition 5.4.6 on page 238. We can define a map

pn: Vn → L(n · (Z))(6.3.4)

F 7→ F
Zn

We claim that this is surjective. If f = R/S ∈ L(n · (Z)), where R and S are
forms of the same degree, then

(RZn) ≥ (S)

Proposition 6.1.13 on page 302 implies that Noether’s conditions are satisfied,
so theorem 6.1.14 on page 302 provides an expression

RZn = AS + BF

so f = R/S = A/Zn ∈ k(V). The kernel of pn in 6.3.4 consists of all multiplies
of F. We get an exact sequence

0→ Vn−d
×F−→ Vn

pn−→ L(n · (Z))→ 0

It follows that

`(n · (Z)) =

(
n + 2

2

)
−
(

n− d + 2
2

)
= nd− d(d− 3)

2
From which we conclude that

ξ(V) = nd + 1− `(n · (Z))

= 1 +
d(d− 3)

2

=
(d− 1)(d− 2)

2
�

It follows that we know the Riemann-Roch theorem for divisors of high de-
grees. To prove it in general, we must “work our way down” to lower degrees.
The key to this is

LEMMA 6.3.9 (Max Noether’s Reduction Lemma). Let V be a smooth projec-
tive curve with canonical class KV , let D be a divisor, and let 〈p〉 is a prime divisor
(point). If `(D) > 0 and `(KV − D− 〈p〉) 6= `(KV − D) then `(D + 〈p〉) = `(D).
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REMARK. We can regard this as the main structural property of KV that
makes theorem 6.3.4 on page 318 work.

PROOF. Using proposition 6.1.2 on page 297, set KV = (d− 3) · (Z) where
Z is the third homogeneous coordinate in kP2. We may assume L(KV − D) ⊂
L((d− 3) · (Z)).

If v ∈ L(KV − D) \ L(KV − D − 〈p〉), it follows that v ∈ L((d− 3) · (Z))
and

(Zd−3v) ≥ 0
so write

v =
G

Zd−3

where G is a function of degree d− 3. We conclude that

KV − D + (v) ≥ 0 which implies that

KV − D + (G)− (Zd−3) ≥ 0 and, since KV = (Zd−3), we get

−D + (G) ≥ 0

We conclude that (G) ≥ D or (G) = D + A where

(6.3.5) A � 〈p〉
since v /∈ L(KV − D− 〈p〉).

Let P(L) ⊂ kP2 be a line whose intersection with V consists of p and d− 1
other points, all distinct from p, so

(L) = 〈p〉+ B

and
(L · G) = D + A + 〈p〉+ B

where L · G is a form of degree d− 2.
If f ∈ L(D + 〈p〉), we must show that f ∈ L(D), let D′ = D + ( f ) so that

D ≡ D′. Corollary 6.1.18 on page 304 implies the existence of a smooth curve
P(H) of degree d− 2 such that

(H) = D′ + 〈p〉+ A + B

Then P(H) contains the d− 1 collinear points of B. Bézout’s Theorem implies
that P(H) contains P(L) as a component, so that H(p) = 0. Since 〈p〉 does not
appear in A + B (by 6.3.5 and by the construction of L), we get

D′ + 〈p〉 ≥ 〈p〉
— i.e. none of the terms in D′ cancel 〈p〉. It follows that D + ( f ) = D′ ≥ 0, so
f ∈ L(D). �

We are ready to prove theorem 6.3.4 on page 318.

PROOF. We consider several cases:
Case L(KV − D) = 0: In this case, we do induction on `(D):

(1) If `(D) = 0, applying the Riemann inequality to D and KV − D gives

g = deg D + 1
= deg(KV − D) + 1

and equation 6.3.2 on page 318 is satisfied.
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(2) If `(D) = 1, D ≥ 0 and statement 2 of proposition 5.9.27 on page 289
implies that g = `(KV) ≤ `(KV − D) + deg D. Proposition 6.1.2 on
page 297 so deg D ≥ g and Riemann’s inequality implies that

1 ≥ deg D + 1− g

or deg D ≤ g. It follows that deg D = g and equation 6.3.3 on page 319
is satisfied.

(3) If `(D) > 1, suppose the result is known for all smaller values of `(D)
and choose p ∈ V such that `(D− 〈p〉) = `(D)− 1 (see exercise 6 on
page 291). The contrapositive of Noether’s reduction lemma ( 6.3.9 on
page 320) implies that

`(KV − (D− 〈p〉)) = `((KV − D) = 0

so the inductive hypothesis implies that equation 6.3.3 on page 319 is
satisfied.

Case `(KV − D) > 0: If `(D) = 0, we can swap D and KV −D (i.e. KV − (KV −
D) = D) and use the case where `(KV − D) = 0 to prove the result.
Consequently, we assume `(D) > 0. Statement 2 of proposition 5.9.27
on page 289 implies that

deg D ≤ deg KV = 2g− 2

— see proposition 6.1.2 on page 297. If equation 6.3.2 on page 318 is
false, let D be chosen to be a divisor with maximal `(D) that violates it.
This exists, because if `(D) is large enough, `(KV −D) = 0 and we fall
back to the previous case. So D has the property that equation 6.3.2 on
page 318 is true for D + 〈p〉 for any p ∈ V. Select point p ∈ V with the
property that

`(KV − D− 〈p〉) = `(KV − D)− 1

(see exercise 6 on page 291). The Noether Reduction theorem ( 6.3.9
on page 320) implies that `(D + 〈p〉) = `(D). Since equation 6.3.2 on
page 318 is true for D + 〈p〉 we have

`(D) = `(D + 〈p〉) = deg(D + 〈p〉) + 1 + `(KV − D− 〈p〉)− g
= deg D + 1 + `(KV − D)− g

and the result is proved.

�

6.4. The modern approach to Riemann-Roch

In this section, we will prove the Riemann-Roch theorem by more modern
methods, using sheaf cohomology (see appendix D on page 499). This approach
is valid for arbitrary 1-dimensional projective varieties (i.e. they do not have
to be projective plane curves) — indeed, it generalizes to higher-dimensional
varieties and leads to a vast array of results.

The modern approach, developed by Serre in [145], is to surround the prob-
lem with the heavy machinery of Serre Duality — and gently squeeze.
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THEOREM 6.4.1 (Riemann-Roch). If V is a smooth projective curve with canon-
ical class KV (see definition 5.9.34 on page 293) and D is any divisor, then

(6.4.1) `(D) = `(KV − D) + 1 + deg D− ξ(V)

REMARK. This statement is essentially identical to that of theorem 6.3.4 on
page 318 except that we have omitted the word “plane”. It turns out that our
modern sheaf-cohomology tools do not require V to be embedded in kP2.

PROOF. We rewrite this as

`(D)− `(KV − D) = 1 + deg D− ξ(V)

where `(D) = dimk H0(V, s(D)) where s(D) is the invertible sheaf correspond-
ing to D in proposition 5.9.18 on page 285 (or line-bundle — see remark C.2.2
on page 494) — and `(KV −D) = dimk H0(V, ωV ⊗OV s(D)∨), where ωV is the
canonical sheaf of V (see definition 4.6.20 on page 207).

Serre Duality (corollary D.4.20 on page 553) implies that

H0(V, ωV ⊗OV s(D)∨) ∼= H1(V, s(D))∗

so that dimk H0(V, ωV ⊗OV s(D)∨) = dimk H1(V, s(D)) and our formula be-
comes

dimk H0(V, s(D))− dimk H1(V, s(D)) = 1 + deg D− ξ(V)

= χ(V, s(D))

where χ(V, s(D)) is the Euler Characteristic in definition D.3.23 on page 539.
If we set D = 0, we get 1− `(KV) = 1− ξ(V) so the formula is true, since

we have defined ξ(V) = `(KV). We will show that, if it is true for a divisor
D and p ∈ V is a point, then it must be true for D + 〈p〉. A simple induction
implies the full result.

If p ∈ V is a point, its structure sheaf, Op, is the skyscraper sheaf (see
example B.1.7 on page 478), kp, at the point p. If f is a function defining the
Cartier divisor of 〈p〉, then the defining ideal, I ⊂ OV , of p is given by s(−〈p〉)
— see 5.9.19 on page 285 — and we get an exact sequence

0→ I = s(−〈p〉)→ OV → kp → 0

If we take the tensor product of this with s(D + 〈p〉), we get

0→ s(D)→ s(D + 〈p〉)→ kp → 0

The sequence remains exact since s(D + 〈p〉) is a locally free sheaf of rank 1.
and s(D + 〈p〉)⊗OV kp = kp. Proposition D.3.24 on page 540 implies that

χ(V, s(D + 〈p〉)) = χ(V, s(D)) + χ(V, kp)

and H0(V, kp) = k, and H1(V, kp) = H1(p, k) = 0 by lemma D.3.18 on page 534
so

χ(V, s(D + 〈p〉)) = χ(V, s(D)) + 1

Since deg(D + 〈p〉) = deg D + 1 the Riemann-Roch formula remains true. �

We get a number of applications of the Riemann-Roch theorem.
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COROLLARY 6.4.2. If V is a smooth projective curve of genus g and D is a divisor
with deg D ≥ 2g− 1, then

`(D) = deg D + 1− g

PROOF. If deg D ≥ 2g − 1 then deg(KV − D) ≤ 2g − 1− deg D < 0 by
propositions 6.1.2 on page 297 and 5.9.27 on page 289. Corollary 5.9.30 on
page 291 implies that `(KV − D) = 0. �

This immediately leads to a kind of converse to corollary 5.9.30 on page 291
and allows us to classify curves of low genus:

COROLLARY 6.4.3. If V is a smooth curve of genus 0, then every divisor of degree
0 is of the form ( f ) for f ∈ k(V). Consequently, V is isomorphic to kP1.

PROOF. If D is a divisor of degree 0, corollary 6.4.2 implies that `(D) = 1.
Suppose p1 p2 ∈ V are two distinct points. Then the divisor 〈p1〉 − 〈p2〉 is of
degree 0, hence 〈p1〉 − 〈p2〉 = ( f ) for some f ∈ k(V). The conclusion follows
from lemma 6.1.8 on page 299. �

We can also conclude:

COROLLARY 6.4.4. If V is a smooth one-dimensional variety of genus 1, then V
is isomorphic to a cubic curve embedded in kP2.

REMARK. It follows that a smooth one-dimensional variety of genus 1 can
be defined by a single equation.

PROOF. The genus being 1 implies that, for any divisor D of degree > 0,
`(D) = deg D. If x ∈ V is any point, then we conclude that

`(3〈x〉) = 3

If f0, f1, f2 ∈ k(V) are a basis for L(3〈x〉), then we get a rational map

F = ( f0: f1: f2): V → kP2

Since V is smooth, proposition 6.1.3 on page 298 implies that this map is regular,
i.e., an embedding. If its image is W, then the divisor ( fi) can be regarded as
the inverse image of the hyperplane Hi = P(xi) ⊂ kP2. Since at least one of the
fi is of degree 3 ( f0, say), it follows that H0 ∩ F(V) is of degree 3 and Bézout’s
Theorem implies that F(V) is of degree 3 as well. �

Using sheaf-cohomology, one can give another common definition of
genus:

DEFINITION 6.4.5. Let V ⊂ kPn is a variety of dimension t, define the arith-
metic genus of V by

ga(V) = (−1)t(χ(V,OV)− 1)
where χ(V,OV) is the Euler characteristic in definition D.3.23 on page 539.

REMARK. If V is a projective curve, dimk H0(V,OV) = 1, and
dimk H1(V,OV) = pg by exercise 1 on the facing page so ga(V) = gp(V).
Although these genera agree for curves, they do not agree in general.
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EXERCISES.

1. Show that the geometric genus of a projective curve, V, over an alge-
braically closed field, k, is given by

pg(V) = dimk H1(V,OV)

This is closely related to the topological definition of genus.





APPENDIX A

Algebra

“L’algèbre n’est qu’une géométrie écrite; la géométrie n’est qu’une al-
gèbre figurée.” (Algebra is merely geometry in words; geometry is
merely algebra in pictures)

— Sophie Germain, [54]

A.1. Rings

In order to proceed further, we need a fair amount of algebraic machinery.
We begin with a mathematical structure that we first meet in elementary school:

DEFINITION A.1.1. A ring, R, is a nonempty set equipped with two binary
operations, denoted + and · such that, for all r1, r2, r2 ∈ R,

(1) (r1 + r2) + r3 = r1 + (r2 + r3)
(2) (r1 · r2) · r3 = r1 · (r2 · r3)
(3) r1 · (r2 + r3) = r1 · r2 + r1 · r3
(4) (r1 + r2) · r3 = r1 · r3 + r1 · r3
(5) there exists elements 0, 1 ∈ R such that r+ 0 = 0+ r = r and r · 1 = 1 · r

for all r ∈ R.
(6) For every r ∈ R, there exists an element s ∈ R such that r + s = 0.

The ring R will be called commutative if r1 · r2 = r2 · r1 for all r1, r2 ∈ R.

REMARK. In algebraic geometry we will deal with commutative rings ex-
clusively. By abuse of notation, we will also regard the set containing only the
number 0 as a ring with 0 + 0 = 0 = 0 · 0 — the trivial ring (the multiplicative
and additive identities are the same). When an operation is written with a ‘+’
sign it is implicitly assumed to be commutative.

We can classify elements of a ring by certain basic properties:

DEFINITION A.1.2. An element u ∈ R of a ring will be called a unit if there
exists another element v ∈ R such that u · v = v · u = 1. The set of units of a
ring, R, form a group, denoted R×. A ring for which every nonzero element is
a unit is called a field.

An element u ∈ R is called a zero-divisor if it is nonzero and if there exists a
nonzero element v ∈ R such that u · v = 0.

EXAMPLE. Perhaps the simplest example of a ring is the integers, Z. This is
simple in terms of familiarity to the reader but a detailed analysis of the integers
is a very deep field of mathematics in itself (number theory). Its only units are
±1, and it has no zero-divisors.

We can use the integers to construct:

327
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EXAMPLE. If m is an integer, the numbers modulo m, Zm is a ring under
addition and multiplication modulo m.

We also have polynomial rings:

DEFINITION A.1.3. If R is a ring, rings of polynomials R[X] is the ring of
formal polynomials where addition and multiplication are defined(

n

∑
i=1

aiXi

)
+

(
m

∑
i=1

biXi

)
=

max(n,m)

∑
i=1

(ai + bi)Xi

(
n

∑
i=1

aiXi

)(
m

∑
i=1

biXi

)
=

n+m

∑
i=1

(
∑

j+k=i
ajbk

)
Xi

with ai = 0 if i > n and bi = 0 if i > m.

EXAMPLE. Z[X] is the ring of polynomials with integer coefficients.

We can also define power-series ring

DEFINITION A.1.4. If R is a ring, the ring of power-series R[[X]] over R is the
ring of formal power series

∞

∑
i=1

aiXi

with addition and multiplication defined as for R[X].

REMARK. Note that these power-series are like infinite polynomials. If we
impose a metric on R the ring of power-series that converge with respect to that
metric can be very different from R[[X]].

CLAIM A.1.5. We can define a metric on R[[X]] that makes power-series
convergent in the usual sense.

Let p, q ∈ R[[X]] and define the distance between them by

d(p, q) =
(

1
2

)v(p−q)

where Xv(p−q)|(p− q) but Xv(p−q)+1 - (p− q), i.e. the function v(x) is equal to
the degree of the lowest-degree term of x. In this metric all formal power-series
series converge and we can define Cauchy-sequences, etc.

Power series rings can have very different properties than polynomial
rings. For instance

PROPOSITION A.1.6. In the ring R[[X]], any element

α =
∞

∑
k=0

akXk

where a0 ∈ R is a unit (see definition A.1.2 on the previous page) has a multiplicative
inverse.

REMARK. The inverse of α is
1
a0
− a1

a2
0

X +
a0a2 − a2

1
a3

0
X2 + · · ·
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PROOF. Suppose the inverse is
∞

∑
j=0

bjX j

and multiply α by this to get
∞

∑
n=0

cnXn

with

cn =
n

∑
j=0

ajbn−j

c0 = a0b0

b0 = a−1
0

In general, we get a recursive equation

bn = −a−1
0

n−1

∑
k=0

bkan−k

that computes bn for any n. �

We also have extension rings

DEFINITION A.1.7. Suppose we have an embedding of rings R ⊂ Ω and
α ∈ Ω is some element. Then R[α] ⊂ Ω is the subring of all possible polynomi-
als

n

∑
i=1

ciα
i

with ci ∈ R.

EXAMPLE. In the extension Q[
√

2], the fact that (
√

2)2 ∈ Q implies that all
elements of Q[

√
2] will actually be of the form a + b

√
2, with a, b ∈ Q.

Although not used much in algebraic geometry, non-commutative rings are
widespread:

EXAMPLE. Let M(R, n) be the set of n× n matrices with entries in a ring R.
Then M(R, n) is also a ring under matrix-addition and multiplication.

We conclude this section by focusing on the integers — and properties of
them that extend to some more general rings.

PROPOSITION A.1.8. Let n and d be positive integers. Then it is possible to write

n = q · d + r

where 0 ≤ r < d. If r = 0, we say that d|n — stated “d divides n”.

REMARK. So u ∈ R is a unit if and only if u|1.

The division algorithm mentioned above gives rise to the concept of great-
est common divisor in the integers (and some other rings):
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DEFINITION A.1.9. Let n and m be positive integers. The greatest common
divisor of n and m, denoted gcd(n, m), is the largest integer d such that d|n and
d|m.

There is a very fast algorithm for computing the greatest common divisor
due to Euclid — see [42, 43].

ALGORITHM A.1.10. Given positive integers n and m with n > m, use the
division algorithm to set

n = q0 ·m + r0

m = q1 · r0 + r1

r0 = q2 · r1 + r2

...
rk−2 = qk · rk−1 + rk

with m > r0 > r1 > · · · > rk. At some point rN = 0 and we claim that rN−1 =
gcd(n, m).

REMARK. Euclid’s original formulation was geometric, involving
line-segments. Given two line-segments of lengths r1 and r2, it found a real
number r such that

r1

r
,

r2

r
∈ Z

An ancient proof of the irrationality of
√

2 showed that this process never
terminates if one of the line-segments is of unit length and the other is the di-
agonal of a unit square.

PROOF. To see that this works, note that rN−1|rN−2 since rN = 0. A simple
induction shows that rN−1|ri for all i < N and rN−1|m and rN−1|n. Conse-
quently rN−1| gcd(m, n). On the other hand, another simple induction shows
that rN−1 is an integer linear combination of m and n so gcd(m, n)|rN−1, so
rN−1 ≥ gcd(m, n). To summarize:

(1) rn−1 is a divisor of n and m
(2) rN−1 ≥ gcd(m, n)

Since gcd(m, n) is the greatest common divisor, we must have rN−1 = gcd(m, n).
�

As trivial as proposition A.1.8 on the preceding page appears to be, it al-
lows us to prove Bézout’s Identity:

LEMMA A.1.11. Let n and m be positive integers. Then there exist integers u and
v such that

gcd(n, m) = u · n + v ·m
REMARK. Bézout proved this identity for polynomials — see [12]. How-

ever, this statement for integers can be found in the earlier work of Claude
Gaspard Bachet de Méziriac (1581–1638) — see [160].

PROOF. Let z be the smallest positive value taken on by the expression

(A.1.1) z = u · n + v ·m
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as u and v run over all possible integers. Clearly, gcd(n, m)|z since it divides
any possible linear combination of m and n. It follows that gcd(n, m) ≤ z.

We claim that z|n. If not, then proposition A.1.8 on page 329 implies that
n = q · z+ r, where 0 < r < z, or r = n− q · z. Plugging that into equation A.1.1
on the facing page gives

r = n− q · (u · n + v ·m)

= (1− q · u) · n− q · v ·m
which is a linear combination of n and m smaller than z — a contradiction. Sim-
ilar reasoning shows that z|m so z is a common divisor of m and n ≥ gcd(m, n)
so it must equal gcd(m, n). �

Recall that a prime number is an integer that is not divisible by any integer
other than 1 or (±)itself. The ring-theoretic analogue is an irreducible element.

Bézout’s Identity immediately implies:

PROPOSITION A.1.12. Let p be a prime number and let n and m be integers.
Then

p|m · n =⇒ p|m or p|n
PROOF. Suppose p - m. We will show that p|n. Since p is prime and p - m,

we have gcd(p, m) = 1. Lemma A.1.11 on the preceding page implies that there
exist integers u and v such that

1 = u ·m + v · p
Now multiply this by n to get

n = u ·mn + v · n · p
Since p divides each of the terms on the right, we get p|n. A similar argument
show that p - n =⇒ p|m. �

A simple induction shows that:

COROLLARY A.1.13. If p is a prime number, ki ∈ Z for i = 1, . . . , n and

p|
n

∏
i=1

ki

then p|k j for at least one value of 1 ≤ j ≤ n. If p and q are both primes and

q|pi

for some integer i ≥ 1, then p = q.

PROOF. We do induction on n. Proposition A.1.12 proves the result for
n = 2.

Suppose the result is known for n− 1 factors, and we have n factors. Write
n

∏
i=1

ki = k1 ·
(

n

∏
i=2

ki

)
Since

p|ki ·
(

n

∏
i=2

ki

)
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we either have p|k1 or

p|
n

∏
i=2

ki

The inductive hypothesis proves the result. If the k j are all copies of a prime,p,
we must have q|p, which only happens if q = p. �

This immediately implies the well-known result:

LEMMA A.1.14. Let n be a positive integer and let

n = pα1
1 · · · · · p

αk
k

= qβ1
1 · · · · · q

β`
`(A.1.2)

be factorizations into powers of distinct primes. Then k = ` and there is a reordering
of indices f : {1, . . . , k} → {1, . . . , k} such that qi = p f (i) and βi = α f (i) for all i from
1 to k.

PROOF. First of all, it is easy to see that a number can be factored into a
product of primes. We do induction on k. If k = 1 we have

pα1
1 = qβ1

1 · · · · · q
β`
`

Since q1|pα1
1 , corollary A.1.13 on the previous page implies that q1 = p1, β1 = α1

and that the primes qi 6= p1 cannot exist in the product. So ` = 1 and the
conclusion follows.

Assume the result for numbers with k − 1 distinct prime factors. Equa-
tion A.1.2 implies that

q1|pα1
1 · · · · · p

αk
k

and corollary A.1.13 on the previous page implies that q1|p
αj
j for some value of

j. It also implies that pj = q1 and αj = β1. We define f (1) = j and take the

quotient of n by qβ1
1 = p

αj
j to get a number with k − 1 distinct prime factors.

The inductive hypothesis implies the conclusion. �

The Extended Euclid algorithm explicitly calculates the factors that appear
in the Bézout Identity:

ALGORITHM A.1.15. Suppose n, m are positive integers with n > n and we
use Euclid’s algorithm ( A.1.10 on page 330) to compute gcd(n, m). Let qi, ri for
0 < i ≤ N (in the notation of A.1.10 on page 330) denote the quotients and remainders
used. Now define

x0 = 0
y0 = 1(A.1.3)
x1 = 1
y1 = −q1

and recursively define

xk = xk−2 − qkxk−1

yk = yk−2 − qkyk−1(A.1.4)
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for all 2 ≤ k ≤ N. Then
ri = xi · n + yi ·m

so that, in particular,

gcd(n, m) = xN−1 · n + yN−1 ·m
PROOF. If ri = xi · n + yi ·m then

rk = rk−2 − qkrk−1

= xk−2 · n + yk−2 ·m− qk(xk−1 · n + yk−1m)

= (xk−2 − qkxk−1) · n + (yk−2 − qkyk−1) ·m
This implies the inductive formula A.1.4 on the preceding page, and to get

the correct values for r1 and r2:

r1 = n−m · q1

r2 = m− r1 · q2

= m− q2 · (n−m · q1)

= −q2 · n + (1 + q1q2) ·m
we must set x0, x1, y0, y1 to the values in equation A.1.3 on the facing page. �

EXERCISES.

1. Show that additive and multiplicative inverses in rings are unique, i.e., if
r + s1 = r + s2 = 0 ∈ R, then s1 = s2.

2. What are the units of Z?

3. Find the units of Zm, where m > 1 is some integer.

4. Find the greatest common divisor of 123 and 27 and find integers a and
b such that

gcd(123, 27) = a · 123 + b · 27

5. If x > 0 is a rational number that is not an integer, show that xx is
irrational.

A.1.1. Homomorphisms and ideals. Now that we have defined rings, we
can define mappings of them:

DEFINITION A.1.16. Given two rings, R and S, a function f : R→ S is called
a homomorphism if, for all r1, r2 ∈ R:

(1) f (r1 + r2) = f (r1) + f (r2) ∈ S
(2) f (r1 · r2) = f (r1) · f (r2) ∈ S and f (1) = 1.
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The set of elements r ∈ R with the property that f (r) = 0 is called the kernel of
the homomorphism, or ker f . If the homomorphism is surjective and its kernel
vanishes, it is called an isomorphism. An isomorphism from a ring to itself is
called an automorphism.

PROPOSITION A.1.17. Let K be the kernel of a homomorphism f : R→ S of rings.
If k ∈ K and r ∈ R, then r · k, k · r ∈ K.

PROOF. The defining property of a homomorphism implies that f (r · k) =
f (r) · f (k) = f (r) · 0 = 0. �

We can abstract out the important property of kernels:

DEFINITION A.1.18. If R is a ring, an ideal I in R is a subring with the
property that, for all x ∈ I, r ∈ R, r · x, x · r ∈ I.

(1) An ideal, I ⊂ R is prime if a · b ∈ I implies that a ∈ I or b ∈ I (or
both).

(2) The ideal generated by α1, . . . , αn ∈ R, denoted (α1, . . . αn) ⊆ R, is the
set of all linear combinations

n

∑
k=1

rk · αk

where the ri run over all elements of R. The number 0 is an ideal, as
well as the whole ring.

(3) An ideal I ⊂ R is maximal if I ⊂ K, where K is an ideal, implies that
K = R. This is equivalent to saying that for any r ∈ R with r /∈ I,

I+ (r) = R

(4) An ideal generated by a single element of R is called a principal ideal.
(5) Given two ideals a and b, their product is the ideal generated by all

products {(a · b)|∀a ∈ a, b ∈ b}.
REMARK. Following a convention in algebraic geometry, we will usually

denote ideals by Fraktur letters.

Julius Wilhelm Richard Dedekind (1831 – 1916) was a German mathematician
who worked in abstract algebra, algebraic number theory and analysis (he gave
one of the first rigorous definitions of the real numbers). The concept of an ideal
originated in Dedekind’s research on Fermat’s last theorem — see [34].

EXAMPLE. We claim that the ideals of Z are just the sets

(2) = {. . . ,−4,−2, 0, 2, 4, 6, 8, . . . }
(3) = {. . . ,−6,−3, 0, 3, 6, 9, 12, . . . }

...
(n) = {n ·Z}

for various values of n. Proposition A.1.11 on page 330 shows that (n, m) =
(gcd(m, n)) and a simple induction shows that all ideals of are generated by a
single element. Note that the ideal (1) = Z. An ideal (n) ⊂ Z is prime if and
only if n is a prime number.
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Maximal ideals are prime:

PROPOSITION A.1.19. If R is a ring with maximal ideal I, then I is also prime.

PROOF. This is similar to the proof of proposition A.1.12 on page 331. Sup-
pose r, s ∈ R, r · s ∈ I but r /∈ I. Then I+ (r) = R so that there exists a t ∈ R
such that

a + t · r = 1
where a ∈ I. If we multiply this by s, we get

a · s + t · r · s = s

Since both terms on the left are in I, it follows that s ∈ I. �

Proposition A.1.17 on the preceding page shows that the kernel of a homo-
morphism is an ideal. The following is a converse to that:

PROPOSITION A.1.20. Let R be a ring and let I ⊂ R be an ideal. For all r1, r2 ∈
R define

r1 ≡ r2 (mod I)

if r1 − r2 ∈ I. Then ≡ is an equivalence relation. If we denote the set of equivalence-
classes by R/I, then the ring-operations of R induce corresponding operations on R/I
making it into a ring (called the quotient ring of R by I). The canonical map

R→ R/I

that sends an element to its equivalence class is a homomorphism with kernel I.

REMARK A.1.21. We can also think of the elements of R/I as disjoint sets
of elements of R, namely sets of the form

r + I

These are all of the elements of R equivalent to r ∈ R.

PROOF. It is not hard to see that

r1 ≡ r2 (mod I)

and
s1 ≡ s2 (mod I)

implies that
r1 + s1 ≡ r2 + s2 (mod I)

so that addition is well-defined in R/I. To see that multiplication is also well-
defined note that

r1s1 − r2s2 = (r1 − r2)s1 + r2(s1 − s2) ∈ I

due to the closure property in definition A.1.18 on the facing page. The final
statement follows from the fact that I is just the set of elements of R equivalent
to 0. �

EXAMPLE. Here are examples of quotient rings:
(1) For instance, Z/(n) = Zn, the integers modulo n, where Z/(1) is the

trivial ring.
(2) In the example given earlier, Q[X, Y]/(X) = Q[Y] and

Q[X, Y]/(X, Y) = Q.
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(3) We can think of the ring Q[
√

2] two ways: as an extension or as a
quotient

Q[X]/(X2 − 2)
There’s a homomorphism

Q[X] → Q[
√

2]

X 7→
√

2

whose kernel is exactly (X2 − 2). This induces an isomorphism
Q[X]/(X2 − 2) ∼= Q[

√
2].

Complementing the concept of kernel, we have the cokernel:

DEFINITION A.1.22. If f : R→ S is a homomorphism of rings and if f (R) ⊂
S is an ideal in S, the quotient

S
f (R)

is called the cokernel of f .

REMARK. Cokernels for homomorphisms of rings do not always exist be-
cause one cannot “divide” a ring by an arbitrary subring.

Here is an algebraic term motivated entirely by algebraic geometry (see def-
inition 3.2.1 on page 117):

DEFINITION A.1.23. A ring R is called a local ring if it has a unique maximal
ideal.

For instance, let R be the subring of Q of fractions
p
q

where q is an odd number. Then 2 · R ⊂ R is the only ideal not equal to all of R.
It follows that R is a local ring.

We could also have defined R by

R = Z[
1
3

,
1
5

, . . . ,
1
p

, . . . ]

where p runs over all odd primes.
Here is how the projection to a quotient ring affects ideals:

LEMMA A.1.24. Let R be a ring and let a ⊂ R be an ideal and let

p: R→ R/a

Then p induces a one-to-one correspondence between ideals of R/a and ideals b ⊂ R
that contain a. In addition,

• p(b) is prime or maximal in R/a if and only if b is prime or maximal in R
• p−1(c) is prime or maximal in R if and only if c is prime or maximal in R/a.

PROOF. Let b ⊂ R be an ideal containing a and let y ∈ R with p(y) = x ∈
R/a. Then x · p(b) = p(y · b) ⊂ p(b) so that p(b) ⊂ R/a is an ideal.

Suppose b is maximal in R. Then (x) + p(b) = p((y) + b) = p(R) = R/a
so p(b) is maximal in R/a.
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If b is prime, X1 · x2 ∈ p(b) implies that y1 · y2 ∈ b, where p(yi) = xi, and
either y1 ∈ b or y2 ∈ b, which implies that x1 ∈ p(b) or x2 ∈ b. This means that
p(b) ⊂ R/a is prime.

Now suppose c ⊂ R/a. Then a ⊂ p−1(a) (since a = p−1(0)). If x ∈ R,
then x · p−1(c) has the property that its image under p is equal to c, i.e., it is
contained in p−1(c). It follows that p−1(c) is an ideal of R.

Suppose c is maximal in R/a, and suppose that x ∈ R has the property that
x /∈ p−1(c). Then p(x) /∈ c and I = (x) + p−1(c) is an ideal of R that has the
property that p(I) = (p(x)) + c = R/a. So I = R and p−1(c) is maximal.

We leave the final statement that p−1 of a prime ideal is prime as an exer-
cise. �

We will also need to know the effect of multiple quotients:

LEMMA A.1.25. Let R be a ring with ideals a ⊂ b ⊂ R. Let
(1) f : R→ R/a,
(2) g: R→ R/b and
(3) h: R/a→ (R/a)/ f (b)

be projections to the quotients. Then (R/a)/ f (b) = R/b and the diagram

R
f
//

g
��

R/a

h
��

R/b (R/a)/ f (b)

commutes.

PROOF. Elements of R/a are equivalence classes of the equivalence relation

r1 ∼a r2 if r1 − r2 ∈ a

or sets of the form (see remark A.1.21 on page 335)

r + a ⊂ R

and elements of R/b are sets of the form

r + b ⊂ R

Elements of (R/a)/ f (b) are sets of the form

q + f (b)

where q ∈ R/a, or sets of the form

r + a+ b = r + b

This shows that (R/a)/ f (b) = R/b. The commutativity of the diagram follows
from the fact that the image of r ∈ R under the maps going down either side of
the diagram is the set r + b. �

For the next result, we will use Zorn’s Lemma, a classic result found in
[98, 173]:
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LEMMA A.1.26. If S is a partially-ordered set with the property that every in-
creasing sequence of elements

e1 ≺ e2 ≺ · · ·
has an upper bound, then S contains a maximal element.

If every decreasing sequence of elements

e1 � e2 � · · ·
has a lower bound, then S has a minimal element.

REMARK. In this context, “maximal” means “there is an element e ∈ S such
that there does not exist an element e′ ∈ S with e ≺ e′.”

Zorn’s lemma is equivalent to the axiom of choice in set theory.

PROPOSITION A.1.27. If I ⊂ R is an ideal in a ring with 1 /∈ I, then there exists
a maximal ideal M ⊂ R such that

I ⊂M

PROOF. The ideals of R that contain I can be ordered by inclusion. Every
ascending chain of such ideals has an upper bound, namely the union. Zorn’s
Lemma implies ( A.1.26) that there is a maximal such ideal. �

EXERCISES.

6. If x, y ∈ R are two elements with the property that (x, y) = R, show that
(xn, ym) = R for positive integers n, m.

7. Show that the converse of proposition A.1.6 on page 328 is also true: if

α =
∞

∑
i=0

aiXi ∈ R[[X]]

is a unit, so is a0.

8. If a and b are ideals in a ring, show that a · b ⊂ a∩ b.

9. Suppose a, b, p ⊂ R are ideals in a commutative ring. If p is a prime ideal
and

a · b ⊂ p

(for instance, if a∩ b ⊂ p) prove that either a ⊂ p or b ⊂ p

10. If
p1 ⊃ p2 ⊃ · · ·

is a decreasing sequence of prime ideals in a ring, show that

p =
⋂

pi

is also a prime ideal.

11. In the ring R = Q[X, Y], show that the ideal (X) is prime but not maxi-
mal.
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12. In the ring R = Q[
√

2], show that the map that leaves Q fixed and is
defined by

f : Q[
√

2] → Q[
√

2]√
2 7→ −

√
2

is an isomorphism of rings (so it is an automorphism of Q[
√

2]).

13. Show that the ring R = Q[
√

2] is a field by finding a multiplicative
inverse for any nonzero element.

14. Suppose R is a ring and J is the intersection of all maximal ideals of R,
i.e.

J =
⋂

m maximal in R

m

If r ∈ R has the property that r ≡ 1 (mod J), show that r is a unit (i.e., has a
multiplicative inverse).

15. If a1, . . . , an ⊂ R are distinct ideals with the property that ai + aj = R
for any i 6= j, show that

ai + ∏
j 6=i

aj = R

for any i where the product is take over all the integers 1, . . . , n except i.

16. If a1, . . . , an ⊂ R are distinct ideals with the property that ai + aj = R
for any i 6= j, and

a =
n⋂

i=1

ai

show that
R
a
=

n

∏
i=1

R
ai

This is a generalization of the Chinese Remainder Theorem in number theory.

A.1.2. Integral domains and Euclidean Rings. Now we are in a position
to define classes of rings with properties like those of the integers. An integral
domain is a ring without zero-divisors (see definition A.1.2 on page 327), and
a Euclidean ring is one in which a version of the division algorithm (proposi-
tion A.1.8 on page 329) applies.

DEFINITION A.1.28. Let R be a ring. Then R is an integral domain (or just a
domain) if, for all r1, r2 ∈ R, r1 · r2 = 0 implies that at least one of r1 or r2 is 0.

An element, x, of an integral domain is called irreducible if x = a · b implies
that x = u · a or x = u · b where u is some unit of the ring (see definition A.1.2
on page 327).

An element, x, is called prime if the principal ideal, (x), is prime (see defi-
nition A.1.18 on page 334).
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REMARK. For instance, Z is an integral domain but Z6 is not since 2 · 3 ≡ 0
(mod 6).

When we discussed the integers, we defined prime numbers as positive. In
a general ring, the concept of “> 0” is not well-defined so we have to define
irreducible elements “up to multiplication by a unit.” It is as if we regarded 2
and −2 as essentially the same prime.

LEMMA A.1.29. Let a ⊂ R be an ideal in a ring. Then:
(1) a is prime if and only if R/a is an integral domain.
(2) a is maximal if and only if R/a is a field.

PROOF. Let a, b ∈ R/a be the images of x, y ∈ R under the standard pro-
jection

R→ R/a

(see proposition A.1.20 on page 335) Then a · b = 0 ∈ R/a if and only if

x · y = 0 (mod a)

which is equivalent to saying that x · y ∈ a. If a is prime, x · y ∈ a implies that
x ∈ a or y ∈ a , which means that a = 0 or b = 0. Conversely, if a · b = 0 ∈ R/a
always implies a = 0 or b = 0, then x · y ∈ a would always imply that x ∈ a or
y ∈ a.

If a is maximal, then it is also prime (see proposition A.1.19 on page 335) so
we know that R/a is an integral domain. Suppose x ∈ R projects to a 6= 0 ∈
R/a. Since a 6= 0, we know that x /∈ a, and since a is maximal,

a+ (x) = R

so 1 ∈ a+ (x) and
y · x + z = 1

for some z ∈ a and y · x = 1 (mod a) so the image of y in R/a is a multiplicative
inverse of a.

The converse is left to the reader as an exercise. �

DEFINITION A.1.30. A Euclidean domain, R, is an integral domain that has
a function called the norm, N: R → N that measures the “size” of an element,
and such that a version of the division algorithm holds (see proposition A.1.8
on page 329):

Given elements a, b ∈ R with b - a , there exist elements q, r ∈ R
such that

a = b · q + r

with r 6= 0 and N(r) < N(b).

REMARK. The term “norm” has at least two unrelated meanings in com-
mutative algebra: the meaning above (which is like the degree of a polynomial)
and norms of field extensions in section A.2.3 on page 380.

EXAMPLE A.1.31. The ring of rational polynomials, Q[X] is a Euclidean
domain, where the norm is the degree of a polynomial. Any irreducible poly-
nomial generates a prime ideal.
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Many basic properties of the integers immediately carry over to Euclidean
rings — for instance, we have Bézout’s Identity (that he originally proved for
the Euclidean ring R[X]):

PROPOSITION A.1.32. If R is a Euclidean ring and a, b ∈ R, and we define the
greatest common divisor, gcd(a, b) of a and b to be the largest in terms of the norm,
then there exist elements u, v ∈ R such that

gcd(a, b) = u · a + v · b
If a and b have no common divisors (other than 1) then we can find u, v ∈ R such that

1 = u · a + v · b
PROOF. Exactly the same as the proof of lemma A.1.11 on page 330, but we

replace every occurrence of “minimal” with “nonzero elements with minimal
N(*)”. �

In fact, we can also prove this for a principal ideal domain:

PROPOSITION A.1.33. If R is a principal ideal domain, the concept of greatest
common divisor is well-defined and, for any two elements x, y ∈ R, there exist elements
u, v ∈ R such that

gcd(x, y) = u · x + v · y
PROOF. If x, y ∈ R, then the ideal (x, y) ⊂ R is generated by a single ele-

ment (g), i.e. (x, y) = (g). It follows that g|x and g|y — and g = u · x + v · y,
which implies that any common divisor of x and y must divide g. We define g
to be the greatest common divisor of x and y. �

In rings with greatest common divisor, we can prove:

COROLLARY A.1.34. Let R be a Euclidean domain or a principal ideal domain,
let r ∈ R be some element, and let

r = pα1
1 · · · · · p

αk
k

= qβ1
1 · · · · · q

β`
`

be factorizations into powers of irreducible elements. Then k = ` and there is a reorder-
ing of indices f : {1, . . . , k} → {1, . . . , k} such that qi = u f (i) · p f (i) for some units,
u f (i), and βi = α f (i) for all i from 1 to k.

PROOF. Simply repeat the proof of proposition A.1.12 on page 331. �

Note that all ideals of R are principal, i.e., generated by a single element.
We will be interested in general rings that share this property:

DEFINITION A.1.35. A principal ideal domain is an integral domain in which
all ideals are principal.

PROPOSITION A.1.36. All Euclidean domains are principal ideal domains.

PROOF. Let R be a Euclidean domain with norm N: R → Z and a ⊂ R be
an ideal. If a′ = a \ {0}, let x ∈ a′ be a minimal element in the sense that there
does not exist any element y ∈ a′ with N(y) < N(x). We claim that a = (x). If
y ∈ a is not a multiple of x, then we can divide y by x to get

y = x · q + r
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Because a is an ideal, x · q ∈ a. Since y ∈ a, it follows that r ∈ a′ and N(r) <
N(x), which contradicts the minimality of x. �

Another important class of rings are unique factorization domains:

DEFINITION A.1.37. A ring, R, is a unique factorization domain if it is a do-
main whose elements satisfy the conclusion of corollary A.1.34 on page 341, i.e.,
if factorization of elements into irreducibles is unique up to units.

REMARK A.1.38. Since Bézout’s identity was used to prove unique factor-
ization of integers (see proposition A.1.12 on page 331), it follows that any any
principal ideal domain has unique factorization.

We have already seen several examples of unique factorization domains:
the integers, polynomials over the rational numbers.

It is useful to give an example of a ring that is not a unique factorization
domain. It shows that such examples are fairly common:

EXAMPLE A.1.39. Consider the extension ring Z[
√
−5] ⊂ C. It is the set of

all numbers
a + b

√
−5

with a, b ∈ Z. These elements satisfy the multiplication law

(A.1.5) (a1 + b1
√
−5) · (a2 + b2

√
−5) = a1a2 − 5b1b2 + (a1b2 + a2b1)

√
−5

It is not hard to see that the map f : Z[
√
−5] → Z[

√
−5] that sends

√
−5 to

−
√
−5 is an automorphism (see definition A.1.16 on page 333) — just plug it

into equation A.1.5.
If x = a + b

√
−5 ∈ Z[

√
−5], then define

N(x) = x · f (x) = a2 + 5b2 ∈ Z

and
(1) N(x) = 0 if and only if x = 0.
(2) for all x, y ∈ Z[

√
−5],

N(x · y) = x · y · f (x · y) = x · y · f (x) · f (y) = N(x) · N(y)

since f is a homomorphism. This means that a|b ∈ Z[
√
−5] implies

that N(a)|N(b) ∈ Z.
Now note that N(2) = 4 and N(3) = 9. The only elements z = a + b

√
−5 with

N(z) ≤ 9 are 1±
√
−5. Both have N(z) = 6 which does not divide 4 or 9. It

follows that the four elements 2, 3, 1±
√
−5 ∈ Z[

√
−5] are irreducible — i.e.,

primes.
The formula

6 = 2 · 3 = (1−
√
−5) · (1 +

√
−5)

gives an example of non-unique factorization. So the ring Z[
√
−5] is not a

unique factorization domain. The function, N, is an example of a norm of a
field-extension, a topic covered in more detail in section A.2.3 on page 380.
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EXERCISES.

17. If F is a field, show that the equation xn = 1 in F has at most n solutions.

18. Let C[0, 1] be the ring of all real-valued continuous functions on the
unit interval, [0, 1]. If a ∈ [0, 1], let fa = { f ∈ C[0, 1]| f (a) = 0}. Show that
fa ⊂ C[0, 1] is a maximal ideal.

19. Find the greatest common divisor of

a(X) = X4 + 3X3 − 2X2 + X + 1

and
b(X) = X5 − X3 + X + 5

in Q[X].

20. Show that there exists integral domains with pairs of elements that
have no greatest common divisor. Hint: consider the subring R ⊂ Q[X] of
polynomials with no linear term — i.e., polynomials of the form

f (x) = a0 + a2X2 + · · ·

A.1.3. Radicals. We conclude this section by discussing radicals of an
ideal. We begin by defining multiplicative sets:

DEFINITION A.1.40. A multiplicative set, S, is a set of elements of a ring, R
that:

(1) contains 1
(2) is closed under multiplication.

Our main application of multiplicative sets will be in constructing rings
and modules of fractions in section A.1.8 on page 368. We need this concept
here, to prove A.1.46 on the following page.

EXAMPLE. For instance, if p ⊂ R is a prime ideal, then S = R \ p is a
multiplicative set.

We have a kind of converse to this:

PROPOSITION A.1.41. If S ⊂ R is a multiplicative set in a ring, then the maximal
ideal I ⊂ R with I∩ S = ∅ is prime.

REMARK. Such a maximal ideal always exists, by Zorn’s Lemma ( A.1.26
on page 338).

PROOF. Let I be such a maximal ideal and assume it is not prime. The
there exist a, b ∈ R such that ab ∈ I and a /∈ I and b /∈ I. Then (a + I) ∩ S 6= ∅
and (b + I) ∩ S 6= ∅. Let s1 ∈ (a + I) ∩ S and s2 ∈ (b + I) ∩ S. Then

s1s2 ∈ (a + I)(b + I) ⊂ ab + aI+ bI+ I2 ⊂ I

which is a contradiction. �
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DEFINITION A.1.42. If a is an ideal in a ring K, define the radical of a,
√
a

to be
{ f | f r ∈ a, for some r > 0}

PROPOSITION A.1.43. The radical of an ideal has the following properties
• √a is an ideal
•
√√

a =
√
a

PROOF. If a ∈ √a, then ar ∈ a so f rar = ( f a)r ∈ a so f a ∈ √a for all
f ∈ K. If a, b ∈ √a and ar, bs ∈ a. The binomial theorem expands (a + b)r+s to
a polynomial in which every term has a factor of ar or bs.

If ar ∈ √a then ars ∈ a. �

DEFINITION A.1.44. An ideal is called radical if it equals its own radical.
Equivalently, a is radical if and only if K/a is a reduced ring — a ring without

nonzero nilpotent elements. Since integral domains are reduced, prime ideals
(and maximal ideals) are radical.

It is not hard to see that intersections of radical ideals are radical. Since
f r(P) = ( f (P))r, f r vanishes wherever f vanishes. It follows that IV (a) ⊃√
a.We conclude this section with study of the nilpotent elements of a ring.

DEFINITION A.1.45. An element x ∈ R of a ring is called nilpotent if xk = 0
for some integer k. The set of all nilpotent elements of a ring forms an ideal,
N(R) =

√
(0), called the nilradical.

REMARK. We leave the proof that the set of all nilpotent element forms an
ideal as an exercise.

THEOREM A.1.46. If I ⊂ R is an ideal in a ring, then
√
I =

⋂
pi

where the intersection is taken over all prime ideals that contain I. Consequently,
N(R) is equal to the intersection of all prime ideals.

REMARK. Every ideal is contained in a maximal ideal (see
proposition A.1.27 on page 338) which is prime by proposition A.1.19 on
page 335, so there is always at least one prime in this intersection.

PROOF. Suppose x ∈
√
I and I ⊂ p where p is prime. Then xn = x · xn−1 ∈

I ⊂ p. If xn−1 /∈ p then x ∈ p. Otherwise, a simple downward induction on n
proves that x ∈ p. It follows that

√
I ⊆

⋂
pi

where we take the intersection over all prime ideals of R.
If x ∈ R \

√
I, we will construct a prime ideal that does not contain x. Note

that S = {xn, n = 1, . . . } is a multiplicative set. Proposition A.1.41 on the
preceding page show that the maximal ideal that does not intersect S is prime.

�

We can define a related concept:
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A.1.4. Noetherian rings. We fill our our menagerie of ring-types (see fig-
ure A.1.1 on the next page) with

DEFINITION A.1.47. A ring R is noetherian if all of its ideals are finitely
generated.

REMARK. This is a generalization of principal ideal domain. The term noe-
therian is in honor of the mathematician Emmy Noether (1882-1935) whose con-
tributions extend to many fields, including physics (see [122]).

The definition given above is equivalent to the statement:
All increasing sequences of ideals in R eventually become con-
stant, i.e., if

a1 ⊆ a2 ⊆ · · ·
then there exists a number n such that ai = ai+1 for all i ≥ n.
This is called the ascending chain condition or ACC.

The similar-looking descending chain condition leads to a class of rings called
Artinian rings — see definition A.1.81 on page 365.

The following result (due to Emmy Noether — see [124]) shows that noe-
therian rings are extremely common:

LEMMA A.1.48. If R is noetherian, then so is R[X].

PROOF. Recall that, for a polynomial

f (X) = akXk + · · ·+ a0

k is called the degree and ak is called the leading coefficients. If a ⊆ R[X] is an
ideal, let ci be the set of all leading coefficients of polynomials in a of degree
≤ i.

Then ci ⊆ R is an ideal and

c1 ⊆ c2 ⊆ · · · ⊆ ci ⊆ · · ·
Because R is noetherian, this sequence eventually becomes constant, say

cd = cd+1 = · · · . For each i ≤ d, let

ci = (ai,1, . . . , ai,n(i)) ⊂ R

and let fi,j ∈ a ⊂ R[X] be a polynomial whose leading coefficient is ai,j . If
f ∈ a, we will show by induction on the degree of f that it lies in the ideal
generated by the (finite) set of fi,j.

When f has degree 0, the result is clear. If f has degree s < d then

f = aXs + · · ·
with a ∈ cs, and

a =
n(s)

∑
j=1

bj · as,j

for some bj ∈ R, so

f −
n(s)

∑
j=1

bj · fs,j

is a polynomial of degree s− 1 and induction implies the conclusion.
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If f has degree s ≥ d, then

f = aXs + · · ·
with a ∈ cd. It follows that

a = ∑ bj · ad,j

for some bj ∈ R and that
f −∑

j
bj · fd,jXs−d

has degree < deg f , and so lies in the ideal generated by the { fi,j} (by induc-
tion). �

Some relations between classes of rings is illustrated in figure A.1.1.

Euclidean domain +3

��

Principal ideal domain

��ow
Unique factorization domain Noetherian domain

FIGURE A.1.1. Relations between classes of rings

THEOREM A.1.49 (Hilbert Basis Theorem). If R is noetherian, then so is
R[X1, . . . , Xn], i.e., every ideal is finitely generated.

REMARK. Technically this is Noether’s generalization of the Hilbert Basis
Theorem. Hilbert originally proved it for R a field.

PROOF. Since R is noetherian, and

R[X1, . . . , Xn] = R[X1, . . . , Xn−1][Xn]

the theorem follows by an easy induction from lemma A.1.48 on the preceding
page. �

�

A variation of this argument even shows that power-series rings are noetherian.

LEMMA A.1.50. If R is a noetherian ring, so is R[[X]].

REMARK. As above, a simple induction shows that

R[[X1, . . . , Xk]]

is noetherian for any finite k.

PROOF. Given a power series s ∈ R[[X]], let `(s) denote its lowest nonzero coeffi-
cient.

Let a ⊂ R[[X]] be an ideal whose elements are

v =
∞

∑
i=0

c(v)iXi

with c(V)i ∈ R. Define hn ⊂ R to be composed of the nth coefficients of elements of a
whose lower coefficients vanish, i.e.

hn = {c(v)n|v ∈ a, c(v)0 = · · · = c(v)n−1 = 0}
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We claim that the hn are all ideals of R (from the way elements of R[[X]] are multiplied).
Now set

Hn =
n⋃

i=0
hn

Then we get an ascending chain of ideals in R

H0 ⊂ · · ·
which must eventually become constant with some finitely generated ideal (since R is
noetherian)

Hm+1 = Hm = (r0, . . . , rt)

So the {ri} generate all of the coefficients of all elements of a. Each of the ri is the lowest
nonzero coefficient of some power series fi ∈ a. We claim that

a = ( f0, . . . , ft)

Given z = ∑∞
i=0 ciXi ∈ a, we must show that there exist power-series di = ∑∞

j=0 di,jX j

such that

(A.1.6) z = d1 f1 + · · ·+ dt ft

If s is the highest degree of the lowest nonzero term that occurs in the fi, we can subtract
R-linear combinations of the fi from z that will kill off all of its terms of degree ≤ s —
giving z1. This gives the constant terms of the di, i.e. {di,0}.

To cancel the lowest term of z1, we know that its coefficient, cs+1, is also a linear
combination of the ri. We must multiply suitable fi by X to reach it, thus defining the
d1,i. Subtracting this linear combination gives z2.

Continuing this indefinitely results in equation A.1.6. Despite the seeming “infinite
complexity” of z, we express it as a finite linear combination because we have infinite
series available to us as coefficients. �

We conclude this section with a result due to Emmy Noether:

LEMMA A.1.51. Let I ⊂ R be an ideal in a noetherian ring. Then:
(1) in the set of prime ideals p such that I ⊂ p, there is a minimal element
(2) the set of minimal prime ideals containing I is finite.

REMARK. Coupled with theorem A.1.46 on page 344, this implies that
√
I is equal

to the intersection of a finite number of prime ideals.

PROOF. The first statement follows from:
(1) every ideal is contained in a maximal ideal (see proposition A.1.27 on

page 338),
(2) maximal ideals are prime (see proposition A.1.19 on page 335) so every ideal

is contained in at least one prime ideal,
(3) the intersection of a decreasing sequence of prime ideals is prime (see exer-

cise 10 on page 338).
We prove the second statement by contradiction. Let I denote the set of ideals with an
infinite number of minimal primes that contain them. Every ascending chain of ideals
in I

I1 ⊂ I2 ⊂ · · ·
has an upper bound since the sequence stabilizes after a finite number of terms (this is
the only place where we use the noetherian property of R). Zorn’s Lemma ( A.1.26 on
page 338) implies that I has a maximal member, M.

Clearly, M is not prime because it would be the (one and only) minimal prime
containing it. It follows that
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(1) there exist a, b ∈ R such that a · b ∈M and a /∈M and b /∈M.
(2) if A = (a,M) and B = (b,M), then M ⊂ A, M ⊂ B, and A ·B ⊂M

If {pi} is the infinite set of minimal primes that contain I, exercise 9 on page 338 implies
that, for each i, A ⊂ pi or B ⊂ pi. It follows that A or B (or both) is contained in an
infinite number of the pi — without loss of generality, we will say it is A. Since M ( A,
it follows that A can only have a finite number of minimal primes containing it. This is
the contradiction. �

EXERCISES.

21. Show that every finite integral domain is a field.

22. Prove the statement following definition A.1.47 on page 345, i.e. that a
ring is noetherian if and only if every increasing sequence of ideals is eventually
constant.

23. Use the results of exercise 22 to show that any quotient of a noetherian
ring is noetherian.

24. Show that Q[X, Y] is not a Euclidean domain.

25. if R is a principal ideal domain and x = pn1
1 · · · p

nk
k is a factorization

into primes, show that √
(x) = (p1 · · · pk)

26. Find all the maximal ideals of Z[X].

27. Show that an element of R[[X1, . . . , Xn]] is a unit if and only if its con-
stant term is a unit in R.

28. If R is a noetherian ring, show that the nilradical is nilpotent, i.e. that
there exists a integer k > 0 such that N(R)k = 0.

29. Suppose p ⊂ R is a minimal prime ideal in a noetherian (commutative)
ring. Show that all of the elements of p are zero-divisors.

A.1.5. Polynomial rings and elementary symmetric functions. If R is a
commutative ring, consider the polynomial ring

P = R[X1, . . . , Xn]

The symmetric group, Sn, acts on this ring by permuting the variables. Each
such permutation of the variables defines an automorphism of P so the set of
elements

S = R[X1, . . . , Xn]
Sn

fixed by the action of Sn is a subring of P. It is interesting that the structure of
this subring is completely understood — and was in the time of Isaac Newton.



A.1. RINGS 349

The actual description of this subring will be important in the sequel and is
used in several areas of algebraic geometry.

In order to give this description, we will need to define the elementary
symmetric functions. The quickest (if not the simplest) way to describe them is
to consider a polynomial in the ring P[t] where t is a new indeterminate:

n

∏
i=1

(t− Xi) = q(t)(A.1.7)

= tn − σ1 · tn−1 + · · ·+ (−1)nσn

Since q(t) is unchanged when the Xi are permuted, the coefficients of q(t) must
be functions of the Xi that are also unchanged by permuting the Xi. They are

σ0(X1, . . . , Xn) = 1

σ1(X1, . . . , Xn) =
n

∑
i=1

Xi

σ2(X1, . . . , Xn) = ∑
1≤i<j≤n

XiXj

...

σn(X1, . . . , Xn) =
n

∏
i=1

Xi

where σi(X1, . . . , Xn) is (−1)i× the coefficient of tn−i.
If we consider the ring R[σ1, . . . , σn] of polynomials of the σi, it is clear that

R[σ1, . . . , σn] ⊂ R[X1, . . . , Xn]

and even that
R[σ1, . . . , σn] ⊂ R[X1, . . . , Xn]

Sn = S
since the σi are unchanged by permutations of the Xi. It is remarkable that:

THEOREM A.1.52. The subring of polynomials of

R[X1, . . . , Xn]

that are invariant under all permutations of the Xi is precisely the polynomial ring of
elementary symmetric functions, i.e.

R[σ1, . . . , σn] = R[X1, . . . , Xn]
Sn

PROOF. Let p(X1, . . . , Xn) ∈ R[X1, . . . , Xn]Sn . We will express this as a
polynomial of the elementary symmetric functions. Suppose

m = r · Xα1
1 · · ·Xαn

n

is a monomial of p, where r ∈ R. Since p is invariant under permutations of the
Xi, p also contains a ordered-monomial that is equivalent to m under the action
of Sn, where an ordered monomial is of the form

r · Xβ1
1 · · ·X

βn
n

where β1 ≥ β2 ≥ · · · ≥ βn where the βi’s are some permutation of the αi’s. We
may focus our attention entirely on ordered-monomials of this type, since every
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monomial will be equivalent to one of these. The (unique) ordered monomial
of σi(X1, . . . , Xn) is

(A.1.8) X1 · · ·Xi

Now we order the ordered-monomials of p(X1, . . . , Xn) lexicographically
by exponents, i.e. so

Xα1
1 · · ·Xαn

n � Xβ1 · · ·Xβn
n

if αj > β j and αi = βi, for i = 1 . . . j− 1.
The polynomial p will contain a unique maximal ordered-monomial, say

r · Xβ1
1 · · ·X

βn
n

and this agrees with the unique maximal ordered monomial of

(A.1.9) r · σβn
n · σβn−1−βn

n−1 · · · σβ1−β2
1

by equation A.1.8. It follows that the unique maximal ordered monomial of

p− r · σβn
n · σβn−1−βn

n−1 · · · σβ1−β2
1

is strictly ≺ r · Xβ1
1 · · ·X

βn
n . Since there are only a finite number of monomials

≺ r · Xβ1
1 · · ·X

βn
n , repeating this procedure over and over again must terminate

after a finite number of steps. The polynomial p is equal to the sum of the
symmetric polynomials we subtracted from p. �

The proof gives us an algorithm for computing the expression of symmetric
polynomials in terms of symmetric functions:

EXAMPLE. Consider
X2 + Y2 ∈ Q[X, Y]

The maximal ordered monomial of this is X2 — which corresponds to σ2
1 in

equation A.1.9. The difference is

X2 + Y2 − σ2
1 = X2 + Y2 − (X + Y)2

= −2XY

which is equal to −2σ2. So we get

X2 + Y2 = σ2
1 − 2σ2

An interesting consequence of formula A.1.7 on the preceding page and
theorem A.1.52 on the previous page is:

PROPOSITION A.1.53. Let Xn + an−1Xn−1 + · · · + a0 = p(X) ∈ Q[X] and
suppose q(X1, . . . , Xn) ∈ Q[X1, . . . , Xn] is invariant under permutations of the Xi.
If µ1, . . . , un ∈ C are the roots of p(X), then there exists a polynomial z(X1, . . . , Xn)
such that

q(µ1, . . . , µn) = z(a0, . . . , an−1)

PROOF. Theorem A.1.52 on the preceding page implies that
q(X1, . . . , Xn) = z(σ1, . . . , σn). Equation A.1.7 on the previous page shows that
σi(µ1, . . . , µn) = (−1)ian−i and the result follows. �

This has an interesting application in the definition of discriminants of
polynomials:
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DEFINITION A.1.54. Let p(x) ∈ Q[x] be of degree n with roots α1, . . . , αn ∈
C. The discriminant, D, of p(X) is defined to be

D = ∏
1≤i<j≤n

(αi − αj)
2

REMARK. The discriminant is nonzero if and only if p(X) has n distinct
roots (so it discriminates between roots).

Since the discriminant is unchanged by a permutation of the roots, propo-
sition A.1.53 on the facing page implies that

COROLLARY A.1.55. If

p(X) = Xn + an−1Xn−1 + · · ·+ a0

there is a polynomial function z(a0, . . . an−1) equal to the discriminant of p(X).

For instance, the discriminant of X2 + aX + b is

(α1 − α2)
2 = α2

1 − 2α1α2 + α2
2

= σ2
1 (α1, α2)− 4α1α2

= σ2
1 (α1, α2)− 4σ2(α1, α2)

= a2 − 4b

A lengthy calculation shows that the discriminant of X3 + aX2 + bX + c is

D = a2b2 − 4b3 − 4a3c− 27c2 + 18abc

EXERCISES.

30. Express X3 + Y3 + Z3 ∈ Q[X, Y, Z] in terms of elementary symmetric
functions.

31. Let p1, p2 ∈ Q[t] are monic polynomials with roots α1, . . . , αn ∈ C and
β1, . . . , βm ∈ C, respectively. Let

∆ = ∏(αi − β j)

with i running from 1 to n and j running from 1 to m. Show that ∆ is a poly-
nomial function of the coefficients of p1 and p2 — equal to the resultant of the
polynomials — see proposition 1.3.3 on page 13.

32. Another way of defining the discriminant involves using the Vander-
monde matrix. Given elements α1, . . . , αn, we define the corresponding Vander-
monde matrix as

V =


1 α1 α2

1 · · · αn−1
1

1 α2 α2
2 · · · αn−1

2
1 α3 α2

3 · · · αn−1
3

...
...

...
. . .

...
1 αn α2

n · · · αn−1
n
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Show that
det V = ∏

1≤i<j≤n
(αj − αi)

33. Suppose k is a field and

I ⊂ k[X1, . . . , Xn]

is an ideal. If f (X1, . . . , Xn) ∈ k[X1, . . . , Xn] is any polynomial, show that

k[X1, . . . , Xn]

I
∼= k[X1, . . . , Xn+1]

I+ (Xn+1 − f (X1, . . . , Xn))

In other words, show that a variable, like Xn+1, that can be expressed in terms
of the others is superfluous.

A.1.6. Modules. Modules are a kind of generalization of vector-spaces, or
“vector-spaces over a ring:”

DEFINITION A.1.56. If R is a commutative ring, a module over R is
(1) an abelian group, A,
(2) an action of R on A, i.e. a map

f : R× A→ A

such that
f (r, ∗): r× A→ A

is a homomorphism of abelian groups, for all r ∈ R, and

f (r1, f (r2, a)) = f (r1r2, a)

and
f (r1 + r2, a) = f (r1, a) + f (r2, a)

This action is usually written with a product-notation, i.e. f (r, a) = r · a (in
analogy with multiplication by scalars in a vector space).

If B ⊂ A is a subgroup with the property that r · B ⊂ B for all r ∈ R, then B
is called a submodule of A.

EXAMPLE. We can regard a ring, R, as a module over itself. Its submodules
are precisely its ideals.

If g: R → S is a homomorphism of rings, S naturally becomes a module
over R by defining r · s = g(r)s for all r ∈ R and s ∈ S.

EXAMPLE A.1.57. If R is a ring and Rn =
⊕n

i=1 R, then Rn is a module over
R with the action defined by multiplication in R. This is called the free module of
rank n over R. An n-dimensional vector space over a field k is a free module of
rank n over that field.

It is possible to come up with more “exotic” examples of modules:
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EXAMPLE A.1.58. Let V be an n-dimensional vector space over a field F
and let M be an n× n matrix over F. Then V is a module over the polynomial
ring k[X], where a polynomial, p(X) ∈ k[X] acts via

p(M): V → V

In other words, we plug M into p(X) to get a matrix and then act on V via that
matrix.

Note that a vector-subspace W ⊂ V is a submodule if and only if M(W) ⊂
W. It follows that the module-structure of V over k[X] depends strongly on the
matrix M.

DEFINITION A.1.59. Let M1 and M2 be modules over the same ring, R. A
homomorphism of modules is a map of their underlying abelian groups

f : M1 → M2

such that f (r · m) = r · f (m) for all m ∈ M and r ∈ R. The set of elements
m ∈ M1 with f (m) = 0 is called the kernel of f and denoted ker f . The set of
elements m ∈ M2 of the form f (n) for some n ∈ M1 is called the image of f and
denoted im f .

If ker f = 0, the homomorphism f is said to be injective. If im f = M2, the
homomorphism is said to be surjective. If f is both injective and surjective, it is
called an isomorphism.

REMARK. Note that, if f above is injective, we can regard M1 as a submod-
ule of M2. Isomorphic modules are algebraically equivalent.

The corresponding statements about abelian groups imply that

PROPOSITION A.1.60. Let M be a module over a ring R and let A and B be
submodules of M. Then:

(1) we can define the quotient M/A as the set of equivalence classes of the equiv-
alence relation

m1 ≡ m2 (mod A)

if m1 −m2 ∈ A, for all m1, m2 ∈ M. We can also define M/A as the set of
cosets {m + A} for m ∈ M.

(2) the map
p: M→ M/A

sending an element to its equivalence class, is a homomorphism of modules.
(3) the map p defines a 1-1 correspondence between submodules of M containing

A and submodules of M/A
(4) there is a canonical isomorphism

A + B
A

∼= B
A ∩ B

DEFINITION A.1.61. If f : M1 → M2 is a homomorphism of modules, the
quotient

M2

f (M1)

is called the cokernel of f .
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REMARK. Since one can form quotients of modules with respect to arbi-
trary submodules, cokernels always exist for module-homomorphisms.

DEFINITION A.1.62. A sequence of modules and homomorphisms (all over
the same ring)

· · · fn+1−−→ Mn+1
fn−→ Mn

fn−1−−→ Mn−1 → · · ·
is said to be exact if im fn+1 = ker fn for all n. An exact sequence with five terms
like

0→ A
f−→ B

g−→ C → 0
is called a short exact sequence.

REMARK. In the short exact sequence above, the kernel of f must be 0, so
A can be identified with a submodule of B, and the map g must be surjective
(since the kernel of the rightmost map is all of C).

The exactness of the (long) sequence above is equivalent to saying that the
short sequences

0→ im fn → Mn → im fn−1 → 0
are exact for all n.

Exact sequences are widely used in homological algebra and algebraic
topology, facilitating many types of computations.

DEFINITION A.1.63. If M is a module over a ring R, a set of elements S =
{m1, . . . } ∈ M will be called a generating set if every element m ∈ M can be
expressed in terms of the elements of S

m = ∑
mi∈S

ri ·mi

with the ri ∈ R.
A module is said to be finitely generated if it has a finite generating set.

EXAMPLE A.1.64. As in example A.1.58 on the preceding pageLet V be an
n–dimensional vector space over a field F and let M be the n× n permutation
matrix

M =


0 0 0 · · · 1
0 1 0 · · · 0

0 0 1
. . . 0

1 0 0 · · · 0


Then, as a module over k[X] (defined as in example A.1.58 on the previous
page), V has a single generator, namely

g =


1
0
...
0


This is because

Mg =


0
1
...
0
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and Mkg = gk, the kth basis element of V. So all of the basis-elements of V are
in the orbit of powers of M and of k[X].

It is interesting to consider what properties of vector-spaces carry over
to modules, or whether we can do a kind of “linear algebra” over a general
ring. This is a deep field of mathematics that includes several areas, such as
group-representations (see [49]), homological algebra (see [168]) and algebraic
K-theory (see [111]).

Even a simple question like
“Is a submodule of a finitely generated module finitely gener-
ated?”

can have a complex answer. For instance, let R = k[X1, . . . ] — a polynomial
ring over an infinite number of variables. It is finitely generated as a module
over itself (generated by 1). The submodule of polynomials with vanishing con-
stant term is not finitely generated since every polynomial has a finite number
of variables.

We need to find a class of modules that is better-behaved.

DEFINITION A.1.65. A module M over a ring R will be called noetherian if
all of its submodules are finitely generated — this is equivalent to saying that
all ascending chains of submodules of M

M1 ⊂ M2 ⊂ · · · ⊂ Mi ⊂ · · ·
becomes constant from some finite point on, i.e. Mt = Mt+i for all i > 0. A
module will be said to be Artinian if every descending chain of submodules

M1 ⊃ M2 ⊃ · · · ⊂ Mi ⊃ · · ·
becomes constant from some finite point on.

REMARK. A ring is noetherian if and only if it is noetherian as as a module
over itself.

PROPOSITION A.1.66. Let

0→ M1
f−→ M2

g−→ M3 → 0

be a short exact sequence (see definition A.1.62 on the facing page) of modules over a
ring. Then M2 is noetherian or Artinian if and only if M1 and M3 are both noetherian
or Artinian, respectively.

PROOF. We will prove this in the noetherian case; the Artinian case is al-
most identical. Clearly, if M2 is noetherian, M1 will inherit this property since
it is a submodule. Any increasing chain of submodules of M3 will lift to one
in M2, which becomes constant from some finite point on. It follows that M2
being noetherian implies that M1 and M3 are also noetherian.

Conversely, suppose that M1 and M3 are noetherian and

N1 ⊂ N2 ⊂ · · · ⊂ Ni ⊂ · · ·
is an increasing sequence of submodules of M2. Since M3 is noetherian, this
image of this sequence in M3 will become constant from some finite point on,
say k. Then

(A.1.10)
Ni

Ni ∩M1
=

Ni+1

Ni+1 ∩M1
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for i > k. Since M1 is noetherian, the sequence

Nj ∩M1 ⊂ Nj+1 ∩M2 ⊂ · · ·
will become constant from some finite point on — say j = t. Then, for i >
max(k, t), equation A.1.10 on the previous page and

Ni ∩M1 = Ni+1 ∩M1

imply that Ni = Ni+1. �

COROLLARY A.1.67. If R is a noetherian ring, then Rn is a noetherian module.

PROOF. This is a simple induction on n. If n = 1, R1 = R is noetherian
over itself since it is a noetherian ring. For n > 1 we use proposition A.1.66 on
the preceding page with the short exact sequence

0→ R
f−→ Rn+1 g−→ Rn → 0

where

g(r1, . . . , rn+1) = (r1, . . . , rn)

f (r) = (0, . . . 0, r)

where the image of f is the n + 1st entry in Rn+1. �

Now we can define a large class of well-behaved modules:

LEMMA A.1.68. If R is a noetherian ring, a module, M over R is noetherian if
and only if it is finitely generated.

PROOF. If M is noetherian it must be finitely generated (since its submod-
ules, including itself, are). Suppose M is finitely generated, say by generators
(a1, . . . , an). Then there exists a surjective homomorphism of modules

Rn f−→ M
(r1, . . . , rn) 7→ r1 · a1 + · · ·+ rn · an

This map fits into a short exact sequence

0→ ker f → Rn f−→ M→ 0

and proposition A.1.66 on the previous page and corollary A.1.67 imply the
conclusion. �

Although noetherian modules are somewhat “well-behaved,” they still are
more complex than vector-spaces. For instance, a subspace of a vector space of
dimension n must have dimension < n. The ring k[X, Y, Z] is a module over
itself with one generator: 1. On the other hand, the ideal (X, Y, Z) ⊂ k[X, Y, Z],
is a proper submodule that requires three generators.

The most “straightforward” modules are the free ones like Rn above. They
are closely related to projective modules:

DEFINITION A.1.69. If R is a ring and P is an R-module, then P is said to
be projective if it is a direct summand of a free module.
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REMARK. In other words, P is projective if there exists an R-module, Q,
such that P⊕Q = Rn for some n. All free modules are (trivially) projective but
not all projective modules are free. For instance, if R = Z6, note that Z2⊕Z3 =
Z6 as rings so Z2 and Z3 are projective modules that are not free.

Projective modules have an interesting property that is often (usually?)
used to define them:

PROPOSITION A.1.70. Let R be a ring and let P be a projective module over
R. If α: M → N is a surjective homomorphism of R-modules and β: P → N is any
homomorphism, then a homomorphism, γ: P→ M exists that makes the diagram

(A.1.11) P

β
��

γ

~~

M
α
// N

commute.

PROOF. Since P is projective, there exists a module Q such that P⊕Q = Rn

for some value of n. Consider the diagram

P⊕Q

β⊕1
��

M⊕Q
α⊕1
// N ⊕Q

and note that

P⊕Q = Rn =
n⊕

i=1

xi · R

where the xi ∈ Rn are its generators. Since α is surjective, α⊕ 1 will also be, and
we can choose yi ∈ M⊕ Q such that (α⊕ 1)(yi) = (β⊕ 1)(xi) for i = 1, . . . , n.
Then we can define a homomorphism

G: Rn → M⊕Q
xi 7→ yi

making the diagram
P⊕Q

G

yy
β⊕1
��

M⊕Q
α⊕1
// N ⊕Q

commute. Since (α⊕ 1)(Q) = Q, we can extend diagram this to a commutative
diagram

P⊕Q
G

yy
β⊕1
��

M⊕Q
α⊕1
//

p1
��

N ⊕Q
p2
��

M
α

// N
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where the pi are projections to the factors. If γ is the composite P ↪→ P⊕Q G−→
M⊕Q

p1−→ M, it will have the desired properties. �

Once we know a module is finitely generated, we can prove many other
interesting results. It is possible to represent modules over a noetherian ring in
terms of prime ideals of that ring.

DEFINITION A.1.71. Let m ∈ M be an element of a module over a ring, R.
Then the annihilator of m, denoted ann(m), is defined by

ann(m) =
{

r ∈ R
∣∣r ·m = 0

}
The annihilator of M is defined by

Ann(M) =
{

r ∈ R
∣∣∀m∈M r ·m = 0

}
=

⋂
m∈M

ann(m)

A prime ideal p ⊂ R is associated to M if it annihilates an element m ∈ M.
The set of associated primes is denoted Assoc(M).

REMARK. It is not hard to see that ann(m), Ann(M) ⊂ R are always ideals.
The following properties are also easy to verify:

(1) If m ∈ M then ann(m) = R if and only if m = 0.
(2) If m ∈ M and s ∈ R, then ann(m) ⊆ ann(s ·m).

It is not at all obvious that any associated primes exist, since Ann(M) is usually
not prime.

EXAMPLE A.1.72. Let R = C[X] and let A be an n × n matrix over C. If
V = Cn is a vector-space, we can make it a module over R by defining

X · v = Av

for all v ∈ V. We know that some element of R annihilates V because the
Cayley-Hamilton theorem states that A “satisfies” its characteristic polynomial,
i.e., χA(A) = 0. Because R is a principal ideal domain, the annihilator of V
is a principal ideal (p(X)) such that χA(X) ∈ (p(X)), i.e. p(X)|χA(X). The
polynomial, p(X), is called the minimal polynomial of A.

In general, the minimal polynomial of a matrix is not equal to its character-
istic polynomial. For instance, if A = 3 · I, where I is the identity matrix then
p(X) = X− 3 and χA(X) = (X− 3)n.

In studying the structure of ideals that annihilate elements of a module, we
begin with:

LEMMA A.1.73. Let M be a finitely generated module over a noetherian ring
R. If I ⊂ R is an ideal that is maximal among ideals of R of the form ann(m) for
m 6= 0 ∈ R, then I is prime.

REMARK. We will construct an ascending chain of ideals — the fact that R
is noetherian implies that this chain has a maximal element.

This shows that, for a finitely generated module over a noetherian ring, at
least one associated prime exists.
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PROOF. Suppose r, s ∈ R and rs ∈ I but s /∈ I. Then we will show that
r ∈ I. We have

rs ·m = 0

but s · m 6= 0. It follows that (r) + I annihilates sm ∈ M. Since I is maximal
among ideals that annihilate elements of M, we have (r) + I ⊆ I so r ∈ I. �

We go from this to show that many associated primes exist:

COROLLARY A.1.74. Let M be a finitely generated module over a noetherian
ring, R. If Z ⊂ R is the set of elements that annihilate nonzero elements of M, then

Z =
⋃

p∈Assoc(M)

p

PROOF. The definition of Assoc(M) implies that⋃
p∈Assoc(M)

p ⊂ Z

If x ∈ Z, then x ·m = 0 for m ∈ M, m 6= 0. The submodule R ·m ⊂ M has an
associated prime, p = ann(y · m), by lemma A.1.73 on page 358, which is also
an associated prime to M. Since x · m = 0, it follows that xy · m = 0 so that
x ∈ ann(y ·m) = p. �

Our main result classifying the structure of modules is

THEOREM A.1.75. Let M be a finitely generated module over a noetherian ring
R. Then there exist a finite filtration

0 = M0 ( M1 ( · · · ( Mn = M

such that each
Mi+1

Mi
∼= R

pi

for prime ideals pi ⊂ R.

REMARK. This sequence {Mi} is called the prime filtration of M, and the
primes {pi} that occur here are called the prime factors of M. Note that the {pi}
might not all be distinct — a given prime ideal may occur more than once (see
examples A.1.76 on the next page and A.1.77 on the following page).

The associated primes occur among the primes that appear in this decom-
position, so that Assoc(M) is finite (for finitely generated modules over a noe-
therian ring)

PROOF. Lemma A.1.73 on the preceding page states that the maximal ideal,
p, that annihilates an element m ∈ M is prime. Consider the submodule, M0,
generated by this m ∈ M, i.e., R ·m ⊂ M. We get a homomorphism of modules

R → R ·m
r 7→ r ·m

Since p is in the kernel, we get a homomorphism of R-modules

g: R/p→ R ·m
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Since p is maximal, any element in the kernel of g must lie in p, so
R
p
∼= R ·m = M1

Now, form the quotient M/M1 and carry out the same argument, forming a
submodule M′2 ⊂ M/M1 and its inverse image over the projection

M→ M/M1

is M2. We continue this process over and over until we get to 0. It must ter-
minate after a finite number of steps because M is finitely generated over a
noetherian ring (see definition A.1.65 on page 355). �

EXAMPLE. If M = Z60 is regarded as a module over Z, then a maximal
ideal is of the form (p) ⊂ Z for some prime p. For instance, (2) annihilates
M1 = 30 ·Z60 and M/M1 = Z30. The ideal (2) annihilates M2 = 15 ·Z30 and
we get M1/M2 = Z15. The ideal (3) annihilates 5 ·Z15 and we are done (the
final quotient is Z5). We can lift these modules up into M to get

0 ⊂ 30 ·Z60 ⊂ 15 ·Z60 ⊂ 5 ·Z60 ⊂ Z60

with prime factors, Z2, Z2, Z3 and Z5, respectively.

EXAMPLE A.1.76. Returning to example A.1.72 on page 358, let p ⊂ R be
a prime ideal that annihilates an element v ∈ V. Then p = (X − λ) and λ
must be an eigenvalue. The element, v, annihilated by p is the corresponding
eigenvector. A simple induction shows that all of the prime ideals we get in the
prime decomposition of V are of the form (X − λi) where the λi run through
the eigenvalues of A.

Here’s a much more detailed example:

EXAMPLE A.1.77. Let R = C[X, Y]/a where

(A.1.12) a = (Y3, XY + Y, X2 + Y2 − 1) ⊂ C[X, Y]

Lemma A.1.24 on page 336 implies that the prime ideals of R are images under
the projection

p: C[X, Y]→ C[X, Y]/a = R
of the prime ideals of C[X, Y] that contain a. We will skip ahead and use theo-
rem 2.2.3 on page 40 to conclude that the prime ideals of C[X, Y] are either of the
form ( f (X, Y)) for some irreducible polynomial, f , or of the form (X− α, Y− β)
for α, β ∈ C. We reject the possibility of a principal ideal because f (X, Y)|Y3 im-
plies that f (X, Y) = Y but that does not divide X2 + Y2 − 1.

If a ⊂ (X− α, Y− β), then equations like

p1(X, Y)(X− α) + q1(X, Y)(Y− β) = Y3

p2(X, Y)(X− α) + q2(X, Y)(Y− β) = XY + Y

p3(X, Y)(X− α) + q3(X, Y)(Y− β) = X2 + Y2 − 1

must hold, for some pi, qi ∈ k[X, Y]. The top equation forces β = 0 (i.e., set
X = α). This also satisfies the second equation since we can set p2 = 0 and
q2 = X + 1. The bottom equation becomes

p3(X, Y)(X− α) + q3(X, Y)Y = X2 + Y2 − 1
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We simplify this by setting q3 = Y and subtracting to get

p3(X, Y)(X− α) = X2 − 1 = (X− 1)(X + 1)

which implies that α = ±1. It follows that P1 = (X− 1, Y) and P2 = (X + 1, Y)
are the only two ideals of the form (X− α, Y− β) that contain a.

Let x, y ∈ R be the images of X and Y, respectively under the projection,
p above — they clearly generate R as a ring. Then the prime ideals of R are
p1 = (x − 1, y) and p2 = (x + 1, y). In addition, lemma A.1.25 on page 337
implies that

R
pi

=
C[X, Y]

Pi
= C

for i = 1, 2.
Now we will compute a prime filtration of R as a module over itself. Since

y2 · p2 = 0, we regard y2 ·R as a candidate for R1. Let us compute what happens
to {1, x, y} when we multiply by y2

y2 · 1 = y2

y2 · x = y · (−y) = −y2 because of the relation xy + y = 0
in equation A.1.12

y2 · y = 0 because of the relation y3 = 0
in equation A.1.12

It follows that y2 · R = C · y2 = C and we get an isomorphism

R1 = y2 · R =
R
p2

= C · y2

Following the proof of theorem A.1.75 on page 359, we form the quotient

(A.1.13) R′ =
R
R1

=
k[X, Y]

(Y3, Y2, XY + Y, X2 + Y2 − 1)

=
k[X, Y]

(Y2, XY + Y, X2 − 1)

— where we eliminated Y3 since (Y3) ⊂ (Y2) and eliminated the Y2 term from
X2 + Y2 − 1. Notice that p2 · y = 0. This suggests using y · R′ as our second
prime quotient. As before, we enumerate the effect of y· on the generators of
R′:

y · 1 = y

y · x = −y because of the relation xy + y = 0
in equation A.1.13

y · y = 0 because of the relation y2 = 0
in equation A.1.13

Again, we conclude that y · R′ = C, generated by y, and get

R
p
= y · R′ = C · y
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and we take the inverse image of y · R′ over the projection R → R/R1 = R′ to
get R2 = y · R and a partial prime filtration

0 ( y2 · R ( y · R
Continuing, we form the quotient again

(A.1.14) R′′ =
R′

C · y =
k[X, Y]

(Y2, Y, XY + Y, X2 − 1)
=

k[X, Y]
(Y, X2 − 1)

and notice that p2 · (x− 1) = 0. Computing (x− 1) · R′′ gives

(x− 1) · 1 = (x− 1)

(x− 1) · x = x2 − x = −(x− 1) because of the relation
x2 − 1 = 0 in equation A.1.14

(x− 1) · y = 0 because of the relation y = 0
in equation A.1.14

so (x− 1) · R′′ = C, generated by x− 1 and
R
p2

= (x− 1) · R′′ = C · (x− 1)

and this lifts to (x− 1) · R ⊂ R. In the final step, we get

R′′′ =
R′′

(x− 1) · R′′ =
k[X, Y]

(Y, X2 − 1, X− 1)
=

k[X, Y]
(Y, X− 1)

=
R
p1

(since (X2 − 1) ⊂ (X− 1)), so we get our complete prime filtration

0 ( y2 · R ( y · R ( (x− 1) · R ( R

The prime p2 occurs three times, and the last factor involves the prime p1.

Another interesting and useful result is called Nakayama’s Lemma — it has a
number of applications to algebraic geometry and other areas of algebra:

LEMMA A.1.78. Let M be a finitely-generated module over a commutative ring,
R. If a ⊂ R is an ideal with the property that

a ·M = M

then there exists an element r ∈ R such that r ≡ 1 (mod a) and

r ·M = 0

REMARK. This result is named after Tadashi Nakayama who introduced it
in [120]. Special cases of it had been discovered earlier by Krull, and Azumaya
had published the general case in [8] before Nakayama’s paper. The version for
noncommutative rings is called the Krull-Azumaya Theorem.

PROOF. Let m1 . . . , mk denote the generators of M over R so

M = R ·m1 + · · ·+ R ·mk

Since a ·M = M, we have

mi =
k

∑
j=1

Ai,jmj
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for some k× k matrix A = [Ai,j] with entries in a. Subtracting gives

n

∑
j=1

(δi,j − Ai,j)mj = 0

where δi,j is the (i, j)th entry of the identity matrix, or

δi,j =

{
1 if i = j
0 otherwise

or

(I − A)

 m1
...

mk

 = 0

Cramer’s Rule implies that

det(I − A)mi = Ci = 0

for all i, where Ci is the determinant of the matrix one gets by replacing the
ithcolumn by 0’s. So r ∈ R in the statement of the lemma is just det(I − A).

We claim that det(I − A) = 1 + a for some a ∈ a. The determinant of I − A
is what one gets from the characteristic polynomial pA(x) by setting x = 1.
Since the characteristic polynomial is monic, one term is equal to 1 and the
remaining terms are linear combinations of elements of a. �

Here’s a consequence of Nakayama’s lemma (a special case of the Krull
Intersection Theorem — see [95]):

LEMMA A.1.79. Let m ⊂ R be a maximal ideal of a noetherian ring, R or an
arbitrary ideal of a noetherian domain. Then

∞⋂
j=1

mj = (0)

PROOF. Call this infinite intersection b. Since R is noetherian, b is finitely
generated as a module over R. Since

m · b = b

Nakayama’s Lemma ( A.1.78 on the facing page) implies that b is annihilated
by an element x ∈ R such that x ≡ 1 (mod m) and such an element is a unit so
b = (0).

If R is an integral domain and m is an arbitrary ideal, x 6= 0 and x · b = 0
implies b = 0 since R has no zero-divisors. �

We also get a result for local rings:

COROLLARY A.1.80. Let R be a local ring (see definition A.1.23 on page 336)
with unique maximal ideal m ⊂ R. If M is an R-module with the property that

m ·M = M

then M = 0.
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PROOF. Nakayama’s lemma implies that there exists r ∈ R such that r ≡ 1
(mod m) and r · M = 0. Since R is a local ring, m is the only maximal ideal
and therefore equal to the intersection of all maximal ideals. Exercise 14 on
page 339 implies that this r is a unit, i.e., has a multiplicative inverse, s ∈ R.
Consequently

r ·M = 0 =⇒ s · r ·M = 0 =⇒ 1 ·M = 0

and the conclusion follows. �

EXERCISES.

34. If
0→ U → V →W → 0

is a short exact sequence of vector-spaces, show that

dim V = dim U + dim W

35. Prove this basic result in linear algebra:

A vector-space over an infinite field cannot be a finite union of
proper subspaces.

36. Give a counterexample to statement in exercise 35 if the field of defini-
tion is finite.

37. If P and M are R-modules, with P projective and

f : M→ P

is a surjective homomorphism, show that there exists a homomorphism g: P→
M such that f ◦ g = 1: P→ P.

38. If
0→ M1 → M2 → M3 → 0

is a short exact sequences of modules over a ring R, show that

Ann(M1) ·Ann(M3) ⊂ Ann(M2) ⊂ Ann(M1) ∩Ann(M3)

39. Let

0→ U
q−→ V

p−→W → 0

be a short exact sequence of modules, and suppose there exists a homomorph-
ism

h: W → V

such that p ◦ h = 1: W →W (such short exact sequences are said to be split and
h is called a splitting map). Show that there exists an isomorphism

V ∼= U ⊕W
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40. Let

0→ U
q−→ V

p−→ P→ 0
be a short exact sequence of modules, and suppose that P is a projective mod-
ule. Show that there exists an isomorphism

V ∼= U ⊕ P

�

A.1.7. Artinian rings. Artinian rings are an example of the effect of slightly chang-
ing the defining property of noetherian rings. It turns out (theorem A.1.85 on page 367)
that Artinian rings are noetherian rings with a special property.

DEFINITION A.1.81. A ring, R, will be called Artinian if every descending sequence
of ideals becomes constant from some finite point on — i.e., if

a1 ⊇ a2 ⊇ · · ·
is a descending chain of ideals, there exists an integer n such that ai = ai+1 for all i ≥ n.
A ring is Artinian if and only if it is an Artinian module over itself.

REMARK. Emil Artin (1898-1962) introduced these rings in the papers [4] and [3].
At first glance, this definition appears very similar to the definition of noetherian ring in
definition A.1.47 on page 345 (at least if you look at the remark following the definition).

For instance Z is noetherian but not Artinian since we have an infinite descending
sequence of ideals that does not become constant

(2) ⊃ (4) ⊃ · · · ⊃ (2k) ⊃ · · ·
Artinian rings have some unusual properties:

LEMMA A.1.82. If R is an Artinian ring:
(1) every quotient of R is Artinian
(2) if R is an integral domain, it is a field
(3) every prime ideal of R is maximal
(4) the number of maximal ideals in R is finite.

REMARK. Statement 3 implies that all Artinian rings are Jacobson rings.

PROOF. The first statement follows immediately from the definition of Artinian
ring and lemma A.1.24 on page 336.

To prove the second statement, suppose R is an integral domain and x 6= 0 ∈ R.
Then the descending chain of ideals

(x) ⊃ (x2) ⊂ · · · ⊃ (xn) ⊃ · · ·
must stabilize after a finite number of steps, so (xt) = (xt+1) and xt = r · xt+1 for some
r ∈ R, or xt − r · xt+1 = 0. Since R is an integral domain xt · (1− r · x) = 0 implies
1− r · x = 0 so r = x−1.

The third statement follows from the first two: if p ⊂ R is a prime ideal, then R/p
is an Artinian integral domain, hence a field. This implies that p is maximal.

Suppose we have an infinite set of distinct maximal ideals, {mi} and consider the
following descending sequence of ideals

m1 ⊃ m1 ·m2 ⊃ · · · ⊃ m1 · · ·mk ⊃ . . .
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The Artinian property implies that this becomes constant at some point, i.e.,

m1 · · ·mn ⊂ m1 · · ·mn+1 ⊂ mn+1

The fact that maximal ideals are prime (see proposition A.1.19 on page 335) and exer-
cise 9 on page 338 implies that either

m1 ⊂ mn+1

a contradiction, or
m2 · · ·mn ⊂ mn+1

In the latter case, a simple induction shows that one of the mi ⊂ mn+1, so a contradiction
cannot be avoided.

If R is an Artinian ring and �

We can completely characterize Artinian rings. The first step to doing this is:

LEMMA A.1.83. Let R be a ring in which there exists a finite product of maximal ideals
equal to zero, i.e.

m1 · · ·mk = 0

Then R is Artinian if and only if it is noetherian.

PROOF. We have a descending chain of ideals

R ⊃ m1 ⊃ m1m2 ⊃ · · · ⊃ m1 · · ·mk−1 ⊃ m1 · · ·mk = 0

Let for 1 ≤ i ≤ k, let Mi = m1 · · ·mi−1/m1 · · ·mi, a module over R/mi i.e., a vector
space over R/mi. Then Mi is Artinian if and only if it is noetherian — if and only if it is
finite-dimensional. The conclusion follows from induction on k, proposition A.1.66 on
page 355 and the short exact sequences

0→ m1 · · ·mi → m1 · · ·mi−1 → Mi → 0

�

PROPOSITION A.1.84. If R is an Artinian ring, the nilradical, N(R), is nilpotent, i.e.
there exists an integer k such that N(R)k = 0.

REMARK. We have already seen this for noetherian rings — see exercise 28 on
page 348.

PROOF. Since R is Artinian, the sequence of ideals

N(R) ⊃ N(R)2 ⊃ · · ·
becomes constant after a finite number of steps. Suppose n = N(R)k = N(R)k+1. We
claim that n = 0.

If not, consider the set, I of ideals, a, in R such that a · n 6= 0. Since all descending
sequences of such ideals have a lower bound (because R is Artinian), Zorn’s Lemma
( A.1.26 on page 338) implies that I has a minimal element, b. There exists an element
x ∈ b such that x · n 6= 0, and the minimality of b implies that b = (x). The fact that
n2 = n implies that (x · n) · n = x · n2 = x · n so x · n ⊂ (x). The minimality of b = (x)
implies that x · n = (x) so that there is an element y ∈ n such that

x · y = x = x · y2 = · · · = x · ym

Since y ∈ N(R), we have yn = 0 for some n > 0, which implies that x = 0, which in turn
contradicts the requirement that x · n 6= 0. This contradiction is the result of assuming
that n 6= 0. �

We are finally ready to characterize Artinian rings:
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THEOREM A.1.85. A ring is Artinian if and only if it is noetherian and all of its prime
ideals are maximal.

REMARK. The reader may wonder whether this contradicts our statement that Z is
not Artinian. After all, all of its prime ideals of the form (p) for a prime number p ∈ Z

are maximal. The one exception is (0) ⊂ (p) which is a prime ideal that is proper subset
of another prime ideal.

PROOF. If R is Artinian, then lemma A.1.82 on page 365 implies that all of its prime
ideals are maximal. Proposition A.1.84 on the facing page implies that N(R)k = 0 for
some k > 0 and the proof of A.1.46 on page 344 implies that

m1 ∩ · · · ∩mn ⊂ N(R)

where m1, . . . ,mn are the finite set of maximal ideals of R. Since

m1 · · ·mn ⊂ m1 ∩ · · · ∩mn

it follows that a finite product of maximal ideals is equal to 0. Lemma A.1.83 on the
facing page then implies that R is noetherian.

Conversely, if R is noetherian and all of its prime ideals are maximal, lemma A.1.51
on page 347 implies that the number of these will be finite. Since the nilradical is nilpo-
tent (see exercise 28 on page 348), the argument above implies that R is Artinian. �

Another interesting property of Artinian rings is:

THEOREM A.1.86. An Artinian ring decomposes (uniquely) into a product of finitely
many local Artinian rings.

PROOF. Let A be an Artinian ring with maximal ideals {m1, . . . ,mn}. Then

N(R) = m1 ∩ · · · ∩mn = m1 · · ·mn

Let k be a value for which N(R)k = 0 (this exists by proposition A.1.84 on the preceding
page). Then

(m1 · · ·mn)
k = mk

1 · · ·mk
n

and the Chinese Remainder Theorem (see exercise 16 on page 339) implies that

R =
R

(m1 · · ·mn)
k =

n

∏
i=1

R
mk

i

Each of the quotients R/mk
i has a unique maximal ideal, namely the image of mi so

it is a local ring.
Suppose we have an expression

A = A1 × · · · × At

where the Ai are Artinian local rings. Then every ideal, I ⊂ A is of the form

I = I1 × · · · × It

and the maximal ideals of A are of the form

mi = A1 × · · · ×Mi × · · · × At

where Mi ⊂ Ai is a maximal ideal. This implies that t = n — i.e., the number of factors
is uniquely determined by A. We also conclude that

mk
1 · · ·mk

n = Mk
1 × · · · ×Mk

n = 0

so that Mk
i = 0 for all i. We finally note that

R
mk

i
=

A1 × · · · × An

A1 × · · · × Ai−1 × 0× Ai+1 × · · · × An
= Ai
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so the decomposition is unique. �

A.1.8. Rings and modules of fractions. Given a multiplicative set, we can
define the corresponding ring of fractions:

DEFINITION A.1.87. Let M be a module over a ring, R, and let S ⊂ R be
a multiplicative set. Then the module S−1M consists of pairs (s, m) ∈ S× M,
usually written m/s, subject to the relation

m1

s1
≡ m2

s2

if u · (s2 ·m1 − s1 ·m2) = 0 for some u ∈ S and m1, m2 ∈ M. We make S−1M a
module by defining:

m1

s1
+

m2

s2
=

s2 ·m1 + s1 ·m2

s1 · s2

r · m1

s1
=

r ·m1

s1

for all m1, m2 ∈ M, s1, s2 ∈ S, and r ∈ R.
There exists a canonical homomorphism f : M → S−1M that sends m ∈ M

to m/1 ∈ S−1M.
If M = R as a module over itself, then S−1R is a ring with multiplication

defined by
r1

s1
· r2

s2
=

r1 · r2

s1 · s2

for all r1, r2 ∈ R and s1, s2 ∈ S.

REMARK. The kernel of the canonical map M→ S−1M consists of elements
of M that are annihilated by elements of S. If R is an integral domain, the map
R→ S−1R is injective.

This construction has a universal property described in proposition A.5.24
on page 444.

PROPOSITION A.1.88. If a multiplicative set S ⊂ R contains elements s1, s2 with
the property that s1s2 = 0, then S−1M = 0, for any R-module, M.

PROOF. Suppose m ∈ M. We claim that

m
1

=
0
1
∈ S−1M

In order for this to be true, we must have

s(m− 0) = 0

for some s ∈ S. But the fact that s1s2 = 0 implies that 0 ∈ S and we can just set

0(m− 0) = 0

�

DEFINITION A.1.89. Let R be a ring and let h ∈ R. Then Sh = {1, h, h2, . . . }
is a multiplicative subset of A and we define Rh = S−1

h R.
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REMARK. Every element of Rh can be written in the form a/hm and
a

hm =
b

hn ⇔ hJ(ahn − bhm) = 0

for some integer J ≥ 0.

LEMMA A.1.90. For any ring A and h ∈ A, the map

∑ aixi 7→∑
ai

hi

defines an isomorphism
A[X]/(1− hX)→ Ah

PROOF. If h = 0, both rings are zero, so assume h 6= 0. In the ring A′ =
A[X]/(1− hX), 1 = hX so h is a unit. Let α: A → B be a homomorphism of
rings that that α(h) is a unit in B.

The homomorphism

∑ aiXi 7→∑ α(ai)α(h)−i: A[X]→ B

factors through A′ because 1− hX 7→ 1− α(a)α(h)−1 = 0.
Because α(h) is a unit in B, this is the unique extension of α to A′. Therefore

A′ has the same universal property as Ah so the two are uniquely isomorphic.
When h|h′ so h′ = hg, there is a canonical homomorphism

a
b
7→ ag

h′
: Ah → Ah′

so the rings Ah form a direct system indexed by the set S. �

PROPOSITION A.1.91. Suppose A is a ring and S ⊂ A is a multiplicative set.
Then:

• If S ⊂ A and b ⊂ A is an ideal, then S−1b is an ideal in S−1 A.
• If b contains any element of S, then S−1b = S−1 A.

It follows that

COROLLARY A.1.92. The ideals in S−1 A are in a 1-1 correspondence with the
ideals of A that are disjoint from S.

DEFINITION A.1.93. If p ⊂ A is a prime ideal, then S = A \ p is a multi-
plicative set. Define Ap = S−1 A.

REMARK. Since any ideal b * p intersects S, it follows that S−1p is the
unique maximal ideal in S−1 A.

S−1 A is, therefore, a local ring (a ring with a unique maximal ideal). The
word “local” is motivated by geometry — see chapter 3 on page 117.

If a ring is not an integral domain, it has no field of fractions. Nevertheless
we can define a “closest approximation” to it

DEFINITION A.1.94. If R is a ring and S is the set of non-zero-divisors of R
then

Q(R) = S−1R
is called the total quotient ring of R.

REMARK. If R is an integral domain, Q(R) is just the field of fractions of R.
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EXERCISES.

41. Suppose R is a ring with a multiplicative set S and a · s = 0 for a ∈ R
and s ∈ S. Show that

a
1
= 0 ∈ S−1R

42. Use the results of exercise 22 on page 348 to show that if R is noetherian,
so is S−1R for any multiplicative set S.

43. If R and S are rings, show that Q(R× S) = Q(R)× Q(S). Here, R× S
is the ring of pairs (r, s) with pairwise addition and multiplication:

(r1, s1) + (r2, s2) = (r1 + r2, s1 + s2)

(r1, s1) · (r2, s2) = (r1 · r2, s1 · s2)

44. If R is a ring and M is an R-module, show that an element m ∈ M goes
to 0 in all localizations Ma, where a ⊂ R runs over the maximal ideals of R if
and only if m = 0.

45. If R is a ring and M is an R-module, show that Ma = 0 for all maximal
ideals a ⊂ R if and only if M = 0.

46. Suppose k is a field and R = k[[X]] is the ring of power-series in X (see
definition A.1.4 on page 328). If F = k((X)), the field of fractions of R, show
that every element of F can be written in the form

Xα · r
for some α ∈ Z and some r ∈ R.

A.2. Fields

A.2.1. Definitions.

DEFINITION A.2.1. A field is a commutative integral domain whose
nonzero elements have multiplicative inverses. If F is a field, the set of nonzero
elements is denoted F× and is an abelian group (under multiplication).

If we define m · 1 for m ∈ Z, m > 0 as the sum of m copies of 1, then the
smallest positive integral value of m such that m · 1 = 0 is called the characteristic
of the field. If m · 1 6= 0 for all values of m, the field is said to be of characteristic
0.

An inclusion of fields F ⊂ Ω is called an extension and often denoted

Ω

F

REMARK. It is not hard to see that all homomorphisms of fields must be
inclusions or isomorphisms. Consequently, extensions play a very large part in
field theory.
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DEFINITION A.2.2. If k ⊂ K is an extension of fields, then K is a vector
space over k. The dimension of K as a vector space is called the degree of the
extension, denoted [K: k].

PROPOSITION A.2.3. If it is not 0, the characteristic of a field must be a prime
number.

PROOF. Suppose 0 < m is the characteristic of a field, F, and m = a · b ∈ Z.
Then a, b 6= 0 ∈ F and a · b = 0 ∈ F, which contradicts the fact that a field is an
integral domain. �

PROPOSITION A.2.4. Let F be a field and let F[X] be the ring of polynomials over
F. Then F[X] is a principal ideal domain.

PROOF. It’s easy to see that F[X] is an integral domain. We claim that it is a
Euclidean domain as well — see definition A.1.30 on page 340. This is because
we can divide polynomials as we do integers: given two polynomials p(X),
q(X) we can write

p(X) = a(X)q(X) + r(X)

with a(X) as the quotient and r(X) as the remainder where
deg r(X) < deg q(X). So the conclusion follows from proposition A.1.36 on
page 341. �

DEFINITION A.2.5. If k is a field, an algebra over k is a vector space F over k
that has a multiplication-operation

F× F → F

that makes it a commutative ring. The identity element 1 ∈ F defines an inclu-
sion

k → F
x 7→ x · 1

REMARK. For instance the polynomials rings k[X1, . . . , Xn] are algebras
over k.

Strictly speaking, algebras over fields are not required to be commutative
or even associative. For instance, the quaternions and Cayley numbers are re-
garded as algebras over R. In our applications, algebras over a field will always
be commutative rings.

An immediate consequence of definition A.2.2 is:

PROPOSITION A.2.6. If F is a finite field, the number of elements in F must be
pn, where p is some prime number and n is a positive integer.

PROOF. The characteristic of F must be some prime, p, by
proposition A.2.3. It follows that Zp ⊂ F so F is a vector space over Zp. If
n = [F: Zp], is the dimension of that vector space, then F has pn elements. �

Examples of fields are easy to find:
• The familiar examples: Q, R, and C. They are fields of characteristic 0.
• If R is any integral domain and S = R \ {0}, then S is a multiplicative

set in the sense of definition A.1.40 on page 343 and S−1R is a field.
This is called the field of fractions of R.
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• If F is a field, the set of rational functions with coefficients in F, denoted
F(X), (with round rather than square brackets) is a field. This is the
field of fractions of the polynomial ring, F[X].
• If p is a prime, Zp is a field of characteristic p.

The following innocuous-looking result solved a great mystery of ancient
Greece:

PROPOSITION A.2.7. Let E ⊂ F and F ⊂ G be finite extensions of fields. Then

[G: E] = [G: F] · [F: E]

PROOF. Let {x1, . . . , xn} ∈ G be a basis for it over F and let {y1, . . . , ym} ∈
F be a basis for it over E. So every element of G can be expressed as a linear
combination of the xi

(A.2.1) g =
n

∑
i=1

fixi

with the fi ∈ F. Each of the fi is given by

(A.2.2) fi =
m

∑
j=1

ei,jyj

which means that
g = ∑

i=1,...,n
j=1,...,m

ei,jxiyj

which shows that the n · m elements {xi · yj} span G over F. To see that they
are linearly independent, set g = 0 in equation A.2.1 on page 372. The linear
independence of the xi implies that fi = 0, i = 1, . . . , n. These, and the linear
independence of the yj imply that ei,j = 0 for i = 1, . . . , n and j = 1, . . . , m
which proves the result. �

DEFINITION A.2.8. If k ⊂ K is an inclusion of fields, then α ∈ K is said to
be algebraic over k if it is a root of a polynomial with coefficients in k. If α ∈ K is
not algebraic, it is said to be transcendental.

The notation, k(α) ⊂ K, represents the field of rational functions of α.

REMARK. For instance, if we think of

Q ⊂ C

then
√

2 is algebraic over Q, but e is not.
In comparing k(α) with the ring k[α], it is not hard to see that:

(1) k(α) is the smallest subfield of K containing k and α.
(2) k(α) is the field of fractions of k[α].

PROPOSITION A.2.9. Let k ⊂ K be an inclusion of fields and let f : k[X] → K
be the unique homomorphism that sends X to α ∈ K. Then α is algebraic over k if
and only if ker f 6= 0, in which case ker f = (p(X)) and p(X) is called the minimal
polynomial of α.

The minimal polynomial is always irreducible.
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REMARK. The minimal polynomial is the lowest-degree polynomial such
that f (α) = 0. If g(X) is any polynomial with the property that g(α) = 0, then
f (X)|g(X). See example 2.3.20 on page 60 for techniques for computing it.

This result implies that α ∈ K is transcendental if and only if the homo-
morphism f is injective.

The numbers π and e are well-known to be transcendental — see [53].

PROOF. The kernel of f is just the polynomials that vanish when evaluated
at α. This kernel is a principal ideal because k[X] is a principal ideal domain —
see proposition A.2.4 on page 371.

If f (X) = p(X) · q(X) then

p(α)q(α) = 0

implies that p(α) = 0 or q(α) = 0. If p and q are of lower degree than f , it
would contradict the minimality of f (X). �

Consider
Q ⊂ C

and form the extension field
Q(
√

2)

which is the field of all possible rational functions

∑m
i=1 pi(

√
2)i

∑n
j=1 qj(

√
2)j

where the pi, qj ∈ Q — or the smallest subfield of C containing Q and
√

2.
Upon reflection, it becomes clear that we can always have n, m ≤ 1 since

(
√

2)2 ∈ Q, so every element of Q(
√

2) is really of the form

a + b
√

2
c + d

√
2

with a, b, c, d ∈ Q.
We can even clear out the denominator because

a + b
√

2
c + d

√
2

=
a + b

√
2

c + d
√

2
· c− d

√
d

c− d
√

2
=

ac− 2bd +
√

2(bc− ad)
c2 − 2d2

=
ac− 2bd
c2 − 2d2 +

bc− ad
c2 − 2d2

√
2

We have just proved that

Q(
√

2) = Q[
√

2]

This is no accident — it is true for all algebraic extensions:

LEMMA A.2.10. Let F ⊂ H be an extension of fields and suppose α ∈ H is
algebraic over F. Then

F(α) = F[α]

and [F(α): F] is equal to the degree of the minimal polynomial of α.
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PROOF. If α is algebraic over F, it has a minimal polynomial p(X) ∈ F[X]
(see definition A.2.9 on page 372) which is irreducible so the ideal (p(X)) is
prime. Since the ring F[X] is a principal ideal domain (see proposition A.1.36
on page 341) the ideal (p(X)) is also maximal and

F[α] = F[X]/(p(X))

is a field (see proposition A.1.29 on page 340), so it is equal to F(α). �

One famous problem the ancient Greek geometers puzzled over is that of
doubling the cube — using straightedge and compass constructions. In other
words, they wanted to construct 3

√
2 via their geometric techniques. It can be

shown that ancient Greek compass-and-straightedge techniques can construct
(1) all integers
(2) the square root of any number previously constructed (by drawing a

suitable circle).
(3) the sum, difference, product and quotient of any two numbers previ-

ously constructed.
Consequently, the numbers they constructed all lay in fields of the form

Fn = Q(
√

α1)(
√

α2) · · · (
√

αn)

where each αi is contained in the field to the left of it. Since the minimal polyno-
mial of

√
αi+1 is X2 − αi+1 ∈ Fi[X], lemma A.2.10 on the previous page implies

that [Fi+1: Fi] = 2 and proposition A.2.7 on page 372 implies that [Fn: Q] = 2n.
But [Q( 3

√
2): Q] = 3 and 3 - 2n for any n, so 3

√
2 /∈ Fn for any n.

So the problem of constructing 3
√

2 is literally unsolvable by ancient Greek
techniques.

EXERCISES.

1. Suppose F ⊂ H is a finite extension of fields and α ∈ H. If n is the degree
of the minimum polynomial of α, show that n|[H: F].

A.2.2. Algebraic extensions of fields.

DEFINITION A.2.11. An extension of fields, E ⊂ F, is said to be algebraic if
every element x ∈ F is algebraic over E. If an extension is not algebraic, it is
transcendental.

REMARK. For instance, Q ⊂ Q(
√

2) is algebraic and Q ⊂ R and F ⊂ F(X)
are transcendental extensions, where F is any field.

PROPOSITION A.2.12. If E ⊂ F is a finite field extension, then it is algebraic.

PROOF. Suppose [F: E] = n and let x ∈ F. Then the powers

{1, x, x2, . . . , xn}
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must be linearly dependent over E so we get a nontrivial algebraic equation

a1 + a1x + · · ·+ anxn = 0

with ai ∈ E. �

Extensions containing roots of polynomials always exist:

COROLLARY A.2.13. Let F be a field and let f (X) ∈ F[X] be a polynomial. Then
there exists an extension F ⊂ Ω such that Ω contains a root of f .

PROOF. Factor f as

f (X) = p1(X)α1 · · · pk(X)αk

where the pi(X) are irreducible. This can be done (and is even unique) by
corollary A.1.34 on page 341. As in the proof of A.2.10 on page 373, the quotient

E = F[X]/(p1(X))

is a field containing F.
The image, α, of X under the quotient-mapping

F[X]→ F[X]/(p1(X)) = E

has the property that p1(α) = f (α) = 0. �

COROLLARY A.2.14. Let F be a field and let f (X) ∈ F[X] be a polynomial. Then
there exists an extension F ⊂ Ω such that

f (X) =
deg( f )

∏
k=1

(X− αk) ∈ Ω[X]

REMARK. This extension, Ω, is called a splitting field for f (X). We can write

Ω = F[α1, . . . , αd]

where d = deg f .
The solution to exercise 8 on page 387 shows that these splitting fields are

unique up to isomorphism.

PROOF. This follows by an inductive application of corollary A.2.13. We
construct a field Ω1 that contains a root, α, of f (X). If f (X) splits into linear
factors in Ω1, we are done. Otherwise, factor f (X) as

f (X) = (X− α)k · g(X) ∈ Ω1[X]

where g(X) is relatively prime to X − α, and construct an extension Ω2 of Ω1
that contains a root of g(X). Eventually this process terminates with a field Ω
that contains all of the roots of f (X). �

Since a polynomial splits into linear factors in its splitting field, one might
expect the greatest common divisor of two polynomials to depend on the field
in which one computes it. It is interesting that this does not happen:

PROPOSITION A.2.15. Let F ⊂ Ω be an inclusion of fields and let f (X), g(X) ∈
F[X] be polynomials. Then

gF(X) = gcd( f (X), g(X)) ∈ F[X]

is also their greatest common divisor in Ω[X].
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REMARK. Since Ω could be the splitting field of f (X) and g(X), the greatest
common divisor of these polynomials (up to units) is

n

∏
i=1

(X− αi)

where the αi are all of the roots that f (X) and g(X) have in common. Somehow
this product always defines an element of F[X] (even though the αi are not in
F).

PROOF. Let us pass to a field K ⊃ Ω that is a splitting field for f and g.
Suppose f (X) and g(X) have the following common roots in K:

α1, . . . , αn

Then gF(X) also splits into linear factors and

(A.2.3) gF(X) =
t

∏
k=1

(X− αjk )

where {αj1 , . . . , αjt} is, possibly, a subset of {α1, . . . , αn} such that the product in
equation A.2.3 lies in F[X]. If this product lies in F[X], it is also in Ω[X], so the
greatest common divisor calculated in this larger field will have these factors,
at least. We conclude that

gF(X)|gΩ(X)

where gΩ(X) is the greatest common divisor calculated in Ω[X].
On the other hand, the Euclidean algorithm (proposition A.1.32 on

page 341) implies that there exist a(X), b(X) ∈ F[X] such that

a(X) · f (X) + b(X) · g(X) = gF(X)

so gΩ(X)|gF(X). �

There is an interesting result regarding repeated roots of a polynomial:

LEMMA A.2.16. Let F be a field with a splitting field Ω and let f (X) ∈ F[X] be
a polynomial. Then f (X) has a repeated root in Ω if and only if

f (X), f ′(X)

have a common root. This occurs if and only if Res( f , f ′, X) = 0 (in the notation of
definition 1.3.2 on page 12) which happens if and only if

gcd( f (X), f ′(X)) 6= 1

REMARK. This is interesting because the criteria, Res( f , f ′, X) = 0 or
gcd( f (X), f ′(X)) 6= 1, make no direct reference to Ω.

Note that, in characteristic p 6= 0, the derivative of Xp is 0.

PROOF. The first statement follows by the chain-rule and the
product-formula for derivatives. If

f (X) = (X− α)kg(X)

with α > 1, then

f ′(X) = k(X− α)k−1g(X) + (X− α)kg′(X)
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which will share a root with f (X) regardless of whether the characteristic of F
divides k (for instance, the characteristic of F (and, therefore, Ω) might be p and
k might be a multiple of p).

The second statement follows from proposition 1.3.3 on page 13 and the
statement about the greatest common divisor follows from proposition A.2.15
on page 375. �

This result tells us something important about irreducible polynomials:

LEMMA A.2.17. Let f (X) ∈ F[X] be an irreducible polynomial of degree n with
splitting field Ω, and suppose that F is of characteristic 0. Then, in the factorization

f (X) =
n

∏
i=1

(X− αi) ∈ Ω[X]

the αi are all distinct.

REMARK. This argument fails if the characteristic of F is p 6= 0. In this case,
we can have an irreducible polynomial, f (Xp), that has repeated roots.

PROOF. Since the characteristic of F is 0, and f (X) is not constant, f ′(X) 6=
0.

If f (X) had a repeated factor, we would have

gcd( f (X), f ′(X)) = p(X) 6= 1

with deg p(X) < deg f (X) since deg f ′(X) < deg f (X), which would contra-
dict the irreducibility of f (X). �

In characteristic p, it is possible to say exactly what may prevent an irre-
ducible polynomial from having distinct roots:

PROPOSITION A.2.18. Let F be a field of characteristic p and suppose f (X) ∈
F[X] is an irreducible nonconstant polynomial with repeated roots. Then there exists
an irreducible polynomial g(X) ∈ F[X] whose roots are all distinct such that

f (X) = g(Xpt
)

for some integer t > 0.

PROOF. If f (X) has repeated roots, then it has roots in common with f ′(X).
If f ′(X) 6= 0, the greatest common divisor of f (X) and f ′(X) would be a lower-
degree polynomial that divides f (X) — contradicting its irreducibility. It fol-
lows that f ′(X) = 0, which is only possible if all of the exponents in f (X) are
multiples of p (since p is a prime and the coefficients of f are relatively prime
to p). In this case,

g1(X) = f (X1/p)

is a well-defined polynomial that is still irreducible: any nontrivial factorization
of g1(X) implies one for f (X). If g′1(X) = 0, repeat this process. Since each
iteration lowers degree by a factor of p, after a finite number of steps we arrive
at an irreducible polynomial

gt(X) = g(X) = f (X1/pt
)

with g′(X) 6= 0. �
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DEFINITION A.2.19. Let F be a field and f (X) ∈ F[X] be a polynomial.
Then f (X) will be called separable if it factors into a product of distinct linear
factors in a splitting field.

If F ⊂ Ω is an inclusion of fields and α ∈ Ω is algebraic over F, then α will
be called a separable element if its minimal polynomial is separable. The field Ω
will be called a separable extension of F if every element of Ω is separable over F.

REMARK. “Separable” = roots are separated. The whole question of separa-
bility is moot unless the fields in question have characteristic p 6= 0.

DEFINITION A.2.20. A field F is said to be perfect if every finite extension of
F is separable.

REMARK. This is equivalent to saying that all irreducible polynomial have
distinct roots. Most of the fields that we have dealt with have been perfect.
Perfect fields include:

• Any field of characteristic 0 (lemma A.2.17 on the preceding page).
• Finite fields (theorem A.2.42 on page 389).
• Algebraically closed fields (definition A.2.26 on page 383).

It is interesting that algebraic extensions of fields can always be generated
by a single element:

THEOREM A.2.21. Let F ⊂ H be an extension of infinite fields and suppose
α1, . . . , αn ∈ H are algebraic over F. In addition, suppose α2, . . . , αn are separable over
F.

Then there exists an element β ∈ H such that

F[α1, . . . , αn] = F[β]

REMARK. The element β is called a primitive element and this result is often
called the primitive element theorem.

The condition that F and H be infinite is not necessary — see theorem A.2.46
on page 390 for what happens in the finite case.

PROOF. We will prove it for n = 2 — a simple induction proves the general
case. We will show that F[α, β] = F[γ]

Let α, β have minimal polynomials f (X), g(X) ∈ F[X], respectively and let
Ω ⊃ H be a splitting field for f (X) and g(X). Then f (X) and g(X) have roots

α = α1, . . . , αn

β = β1, . . . , βm

respectively, with the βi all distinct. For j 6= 1, the equation

αi + Xβ j = α1 + Xβ1 = α + Xβ

has exactly one solution

xi,j =
αi − α

β− β j

If we choose c ∈ F different from any of these elements (using the fact that F is
infinite), we get

αi + cβ j 6= α + cβ
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unless i = j = 1. We claim γ = α + cβ will satisfy the hypotheses of this
theorem.

The polynomials g(X) and h(X) = f (γ − cX) ∈ F[γ][X] have a β as a
common root:

g(β) = 0
h(β) = f (γ− cβ)

= f (α)
= 0

By the choice of c above, they will only have β as a common root because γ−
cβ j 6= αi for any i 6= 1 or j 6= 1. It follows that

gcd(g(X), h(X)) = X− β

Proposition A.2.15 on page 375 implies the greatest common divisor has its
coefficients in the field in which the polynomials have theirs, so

β ∈ F[γ]

On the other hand, we also have α = γ− cβ ∈ F[γ] so

F[α, β] = F[γ]

�

EXERCISES.

2. If F is a field, show that

F(Y) → F(X)

Y 7→ X2

makes F(X) algebraic extension of F(X) of degree 2.

3. If F = Q(21/3), express

1
22/3 − 21/3 + 1

as a polynomial in 21/3 (see lemma A.2.10 on page 373).

4. Find a primitive element for the field Q[
√

2,
√

3] over Q and find its
minimal polynomial.

5. Find the splitting field of X3 − 2 over Q.
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A.2.3. Norm and trace. The norm of a field element is an important concept
that we have seen before in example A.1.39 on page 342.

DEFINITION A.2.22. If F ⊂ H is a finite extension of fields, then H is a
finite-dimensional vector space over F with basis {x1, . . . , xn}where n = [H: F].
If α ∈ H, then

(1) mα = α · ∗: H → H, i.e. the matrix of the linear transformation of H (as
a vector-space over F) defined by multiplication by α, and with respect
to the basis {x1, . . . , xn},

(2) χα(X) = det(X · I −mα) ∈ F[X] is the characteristic polynomial of mα

and called the characteristic polynomial of α,
(3) NH/F(α) = det mα ∈ F is the determinant of mα, and is called the norm

of α.
(4) TH/F(α) = Tr(mα) ∈ F is the trace of the matrix mα (i.e. the sum of its

diagonal elements), and is called the trace of α.

REMARK. The terms are closely related

(A.2.4) χα(0) = (−1)nNH/F(α)

where n = [H: F]. To see this, just plug X = 0 into I · X − mα and take the
determinant. If the characteristic polynomial is of degree n, the trace is −an−1,
where an−1 is the coefficient of Xn−1.

For instance, suppose F = Q and H = Q[
√

2] with basis {1,
√

2}. Then the
effect of α = a + b

√
2 on this basis is

α · 1 = a + b
√

2
α ·
√

2 = 2b + a
√

2

so the matrix mα is

mα =

[
a 2b
b a

]
with characteristic polynomial

χα(X) = X2 − 2aX + a2 − 2b2

and norm
NH/F(α) = a2 − 2b2

and trace
TH/F(α) = 2a

The basic properties of matrices imply that

LEMMA A.2.23. Under the assumptions of definition A.2.22, we have
(1) the characteristic polynomial, norm, and trace of an element do not depend

on the basis used to compute them,
(2) NH/F(1) = 1
(3) for all α, β ∈ H, NH/F(α · β) = NH/F(α) · NH/F(β)
(4) for all α, β ∈ H, TH/F(α + β) = TH/F(α) + TH/F(β
(5) for all α ∈ H, NH/F(α) = 0 if and only if α = 0
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PROOF. In a splitting field for χα(X), the characteristic polynomial satisfies

χα(X) =
n

∏
j=1

(X− λj) = Xn + cn−1Xn−1 + · · ·+ c0

where the λj are the eigenvalues of mα, which do not depend on the basis. The
determinant is equal to (−1)nc0, so it is also independent of basis. The same is
true for the trace, since it is equal to −cn−1.

The second statement follows from the fact that m1 is the identity matrix.
The third statement follows from the basic properties of determinants: the

composite of α and β, as linear transformations, is mα ·mβ = mα·β, and

det(mα ·mβ) = det(mα) · det(mβ)

The fourth statement follows from the fact that

mα+β = mα + mβ

And the fifth follows from the third and the fact that any nonzero element
α ∈ H has a multiplicative inverse α−1 so that

NH/F(α) · NH/F(α
−1) = 1

�

We can also say something about the characteristic polynomial of an ele-
ment

PROPOSITION A.2.24. Under the assumptions of definition A.2.22 on the facing
page,

m∗: H → Mat(F, n)
is a homomorphism into the ring of n × n matrices with coefficients in F. It follows
that an element α ∈ H satisfies its characteristic polynomial, i.e.

χα(α) = 0

PROOF. We have already seen that mα ·mβ = mα·β and it is not hard to see
that mα+β = mα + mβ, which proves the first statement. The second follows
from the first and the Cayley-Hamilton theorem, which states that χα(mα) =
0. �

Clearly, if F ⊂ H is an extension of fields and α ∈ F, NH/F(α) = α[H:F].
Here’s another example of norms of field extensions:
Let F = Q and let H = Q[γ] where γ is a root of the polynomial

p(X) = X3 + X2 + X + 2

Eisenstein’s Criterion (see theorem A.3.8 on page 398) shows that p(X) is irre-
ducible over Q so we can construct Q[γ] as the quotient

Q[X]/(p(X))

and γ is the element that X maps to under the projection to the quotient. Our
basis for Q[γ] is {1, γ, γ2}, where γ3 = −2− γ− γ2, and

γ4 = −2γ− γ2 − γ3 = 2− γ
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A general element of this field is

α = a + bγ + cγ2

and the effect of this element on the basis is

α · 1 = a + bγ + cγ2

α · γ = aγ + bγ2 + cγ3

= −2c + (a− c)γ + (b− c)γ2

α · γ2 = aγ2 + bγ3 + cγ4

= 2(c− b)− (c + b)γ + (a− b)γ2

so we get the matrix

mα =

 a −2c 2(c− b)
b a− c −(c + b)
c b− c a− b


with determinant

NH/F(α) = a3 − a2b− ca2

+ 5 acb− 3 ac2 + ab2 + 2 cb2 − 2 b3 − 2 bc2 + 4 c3

and characteristic polynomial

χα(X) =

X3 − (3 a− b− c) X2 −
(

3 c2 − 5 cb− b2 − 3 a2 + 2 ca + 2 ab
)

X

− a3 + a2b + ca2 − 5 acb + 3 ac2 − ab2 − 2 cb2 + 2 b3 + 2 bc2 − 4 c3

and trace
TH/F(α) = 3a− b− c

Although an element of a field satisfies its characteristic polynomial, this
does not mean the characteristic polynomial is its minimal polynomial.

In fact:

LEMMA A.2.25. Let F ⊂ H be a finite field-extension and let α ∈ H have minimal
polynomial p(X) ∈ F[X]. Then

χα(X) = p(X)[H:F[α]]

PROOF. Let {xi} be a basis for H over F[α] and let {yj} be a basis for F[α]
over F. Then {xiyj} is a basis for H over F (see proposition A.2.7 on page 372).
The effect of α on this basis is to act on the {yj} and leave the {xi} fixed. This
means

mα =


A 0 · · · 0

0 A
. . .

...
...

. . . . . . 0
0 · · · 0 A


where A = mα computed in F[α], and this block-matrix has [H: f [α]] rows and
columns.
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In F[α], the characteristic polynomial is a polynomial that α satisfies, hence
is contained in the principal ideal (p(X)) ⊂ F[X] and is of the same degree as
p(X) so it is a multiple of p(X) by a unit u ∈ F. Since both polynomials are
monic, we must have u = 1.

The conclusion follows from the properties of a determinant of a block ma-
trix. �

EXERCISES.

6. If H = Q[21/3] compute the norm and characteristic polynomial of a
general element.

7. If H = Q[
√

2,
√

3] compute the norm and characteristic polynomial of a
general element.

A.2.4. Algebraically closed fields. These fields play an important part in
algebraic geometry.

DEFINITION A.2.26. A field Ω is said to be algebraically closed if any poly-
nomial p(X) ∈ Ω[X] can be factored into linear terms

p(X) = f0 ·
deg p

∏
k=1

(X− αk) ∈ Ω[X]

with f0 ∈ Ω.

REMARK. This is equivalent to saying that p(x) has deg p roots in Ω.

EXAMPLE. The Fundamental Theorem of Algebra implies that the field C

is algebraically closed.

DEFINITION A.2.27. Let F ⊂ Ω be an extension of fields. Then Ω is defined
to be an algebraic closure of F if

(1) Ω is algebraically closed.
(2) given any extension F ⊂ G with G algebraically closed, Ω is isomor-

phic to a subfield, Ω′ of G that contains F.

REMARK. The field of complex numbers is clearly the algebraic closure of
R.

If they exist, algebraic closures are essentially unique:

THEOREM A.2.28. Let F be a field and let Ω1 and Ω2 be algebraic closures of F.
Then there exists an isomorphism

f : Ω1 → Ω2

such that f |F = 1: F → F.



384 A. ALGEBRA

PROOF. Define a pair (E, τ) to consist of a subfield E ⊂ Ω1 such that F ⊂ E
and a monomorphism τ: E → Ω2, such that τ|F = 1. At least one such pair
exists because we can simply define E = F ↪→ Ω2.

Define (E1, τ1) ≺ (E2, τ2) if E1 ⊂ E2 and τ2|E1 = τ1. Then every chain

(E1, τ1) ≺ (E2, τ2) ≺ · · ·
has a maximal element, (E, τ): Simply define

E =
⋃

i
Ei

and define τ|Ei = τi. It follows, by Zorn’s lemma that we can find a maximal
element among all of the (E, τ). Call this (Ē, τ̄). We claim that Ē = Ω1. If not,
we could find a nontrivial algebraic extension Ē[α] with minimal polynomial
p(x) and extend τ̄ to a map

g: Ē[α] → Ω2

α 7→ β

where β ∈ Ω2 is a root of τ̄(p(x)). This is a contradiction. We also claim that
τ̄(Ω1) = Ω2 since its image will be an algebraically closed subfield of Ω2. �

It turns out that every field has an algebraic closure. We will fix a field F
and explicitly construct its algebraic closure using a construction due to Artin
(see [100]).

We need a lemma first:

LEMMA A.2.29. Let F be a field and let f1(X), . . . , fk(X) ∈ F[X] be polynomials.
Then there exists an extension F ⊂ Ω such that Ω contains a root of each of the fi(X).

PROOF. This follows from corollary A.2.13 on page 375 and induction. �

DEFINITION A.2.30. Let S denote the set of all monic, irreducible polyno-
mials in F[x] — this is infinite (just mimic Euclid’s proof that the number of
primes is infinite).

Form the polynomial ring F[{S f }] with an indeterminate, S f , for each f ∈ S
and form the ideal M = ({ f (S f )}) — generated by indeterminates represent-
ing monic irreducible polynomials plugged into those very polynomials.

PROPOSITION A.2.31. The ideal, M ⊂ F[{S f }], defined in A.2.30 is proper.

PROOF. We will show that 1 /∈M. Let

x =
n

∑
k=1

ak · fk(S fk
) ∈M

be some element, where fk ∈ S. We will set x = 1 and get a contradiction.
Let Ω denote an extension of F containing one root, αk, of each of the n

polynomials fk(S fk
). Now define a homomorphism

F[{S f }] → Ω

S fk
7→ αk(A.2.5)

S f ′ 7→ 0(A.2.6)

for k = 1, . . . , n, where f ′ /∈ { f1, . . . , fn}. This is clearly possible since the S fk
are all indeterminates. The equation x = 1 maps to 0 = 1, a contradiction. �
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REMARK. This argument is delicate: The existence of the mapping in equa-
tion A.2.5 on the facing page requires a separate indeterminate for each monic
irreducible polynomial.

THEOREM A.2.32. An algebraic closure, Ω, exists for F. If the cardinality of F is
infinite, then the cardinality of Ω is equal to that of F.

PROOF. Let M ⊂ F[{S f }] be as in proposition A.2.31 on the preceding
page. Since M is proper, proposition A.1.27 on page 338 implies that it is con-
tained in some maximal ideal M′. Define

Ω1 = F[{S f }]/M′

This will be a field, by lemma A.1.29 on page 340. This field will contain roots
of all monic irreducible polynomials in F[X]. If it is algebraically closed, we are
done. Otherwise, continue this construction to form a field Ω2 containing Ω1
and all roots of monic irreducible polynomials in Ω1[X].

We obtain a (possibly infinite) chain of fields

F ⊂ Ω1 ⊂ Ω2 ⊂ · · ·
If any of the Ωk are algebraically closed, then

Ωn = Ωk

for all n > k since the only monic irreducible polynomials in Ωk will be linear
ones.

Define

Ω =
∞⋃

i=1

Ωi

We claim that this is algebraically closed. Any polynomial f (X) ∈ Ω[X] is
actually contained in Ωk[X] for some value of k, and its roots will be contained
in Ωk+1.

The statement about cardinalities follows from the corresponding property
of each of the Ωi[{S f }]. �

EXAMPLE. The algebraic closure of R is C. The algebraic closure of Q is
called the algebraic numbers and written Q̄. It cannot equal C because it is count-
able, by theorem A.2.32. The structure of Q̄ is extremely complex and not well
understood.

The uniqueness of algebraic closures have some interesting consequences:

DEFINITION A.2.33. Let F be a field and let α ∈ F̄ be an element of the
algebraic closure of F. Then the minimal polynomial f (X) of α splits into linear
factors

f (X) =
deg f

∏
i=1

(X− αi)

with α1 = α. The {αi} are called the conjugates of α.

REMARK. The conjugates of α are uniquely determined by α because F̄ is
uniquely determined up to an isomorphism.

The characteristic polynomial of α in F[α] is the minimal polynomial (it is
of the same degree and α satisfies it) and the discussion following A.2.24 on



386 A. ALGEBRA

page 381 shows that the conjugates of α are just the eigenvalues of the matrix
mα in definition A.2.22 on page 380.

For instance, if z = a + bi ∈ C, then the minimal polynomial of z is its
characteristic polynomial over R (see A.2.22 on page 380), namely

X2 − 2aX + a2 + b2

and the other root of this polynomial is a− bi, the usual complex conjugate.
The conjugates of an algebraic element are related to its norm:

LEMMA A.2.34. Let F ⊂ H be a finite extension of fields and let α ∈ H. Then

NH/F(α) =

(
m

∏
j=1

αj

)[H:F[α]]

TH/F(α) = [H: F[α]] ·
m

∑
j=1

αj

where the {αj} run over the conjugates of α (with α = α1).

PROOF. Let the minimal polynomial of α be p(X) ∈ F[X], of degree m.
Then, in an algebraic closure of F

p(X) = Xm + cn−1Xm−1 + · · ·+ c0 =
m

∏
j=1

(X− αj)

from which it follows that

c0 = (−1)m
m

∏
j=1

αj

The conclusion follows from lemma A.2.25 on page 382 and equation A.2.4 on
page 380. The statement about the trace follows from the fact that the trace of a
matrix is the sum of its eigenvalues. �

Here is another interesting property of conjugates of an algebraic element:

LEMMA A.2.35. If F is a field and α ∈ F̄ is an element of the algebraic closure of
F, then there exists isomorphisms of fields

F[α] → F[α′]
f 7→ f for all f ∈ F
α 7→ α′

where α′ is any conjugate of α.

REMARK. To make this more precise: regard F[α] as a vector-space with
F-basis {1, α, α2, . . . , αn−1} (if the minimal polynomial of α is of degree n). Then
map vector-spaces F[α]→ F[α′] via the change of basis

αj 7→ (α′)j

for j = 0, . . . , n− 1. This lemma says that this defines a field-isomorphism.
This elementary result is the basis of a deep field of mathematics called

Galois Theory. See [142] for more on this.
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PROOF. Each conjugate of α satisfies the same minimal polynomial, p(X) ∈
F[X], as α and we have

F[α] = F[X]/(p(X)) = F[α′]

�

EXERCISES.

8. If F is a field and f (X) ∈ F[X] is a polynomial, show that any two
splitting fields, G1, G2 of f (X) are isomorphic via isomorphism

g: G1 → G2

whose restriction to F ⊂ G1 is the identity map. Consequently, we can speak of
the splitting field of f (X).

9. Compute the conjugates of an element γ = a + b 21/3 ∈ Q[21/3].

A.2.5. Finite fields. Finite fields can be completely classified — one of
those rare areas of mathematics that have an exhaustive solution.

We begin with a lemma:

LEMMA A.2.36. Let F be a ring or field of characteristic p. If α, β ∈ F then

(α + β)p = αp + βp

PROOF. This follows from the binomial theorem

(α + β)p =
p

∑
ik=1

p!
(p− k)! · k!

αkβp−k

so all terms except the first and the last have a factor of p in the numerator that
is not canceled by any factor in the denominator. �

We know, from proposition A.2.3 on page 371 that the characteristic of a
finite field is a prime p and proposition A.2.6 on page 371 implies that the size
of a finite field is pk for some k > 0.

We first show that finite fields of order pk exist for all primes p and all
integers k ≥ 1:

LEMMA A.2.37. Let gk(X) = Xpk −X ∈ Zp[X]. Then the roots of gk(X) in the
algebraic closure, Z̄p, of Zp form a field of order pk.

PROOF. First note that g′k(X) = −1 ∈ Zp[X] so it has no repeated roots, by
lemma A.2.16 on page 376 — meaning it has pk roots in Z̄p. Note that

(1) 0, 1 ∈ Z̄p are in the set of roots, and if α and β are two such roots then:
(a) α · β also satisfies gk(α · β) = 0 so the set of roots is closed under

multiplication,
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(b) (α + β)pk
= αpk

+ βpk
by lemma A.2.36 on the preceding page, so

gk(α + β) = 0 and the set of roots is closed under addition.
(2) multiplying all nonzero roots by a fixed root, α 6= 0, merely permutes

them because

α · β1 = α · β2 =⇒ β1 = β2

because Z̄p is an integral domain. So there exists a root γ such that
α · γ = 1.

It follows that the set of pk roots of gk(X) constitute a field. �

Now that we know fields of order pk exist, we prove that they are unique:

LEMMA A.2.38. Let F be any field of order pk and let α ∈ F be any element. Then

αpk − α = 0

It follows that F is isomorphic to the field of order pk constructed in lemma A.2.37 on
the previous page.

PROOF. This is just Lagrange’s theorem, applied to the multiplicative
group, F∗, of F. In other words, take the product of all nonzero elements of F

δ =
pk−1

∏
i=1

αi

and multiply each element by α to get

αpk−1 · δ =
pk−1

∏
i=1

α · αi

Since multiplication by α simply permutes the elements of F∗, we get

αpk−1 · δ = δ

or αpk−1 = 1. �

DEFINITION A.2.39. The unique field of order pk is denoted Fpk .

REMARK. So Fp = Zp. The notation GF(pk) (“Galois Field”) is sometimes
used for Fpk in honor of Galois who is responsible for all of the material in this
section.

Évariste Galois (1811–1832) first described finite fields in [50]. Galois is also re-
sponsible for much of what we know in the theory of equations (Galois Theory)
and field-theory: see [142].

DEFINITION A.2.40. The Frobenius map, Fp: Fpk → Fpk is defined to send
α ∈ Fpk to αp ∈ Fpk .

PROPOSITION A.2.41. The Frobenius map is an automorphism of finite fields.
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PROOF. By the definition, it clearly preserves multiplication.
If α, β ∈ Fpk note that F k

p(α) = αpk
= α because α is a root of Xpk − X ∈

Zp[X] in the algebraic closure of Zp, so Fp(α) = Fp(β) implies that F k
p(α) =

F k
p(β) = α = β. It follows that Fp is a injective. In addition,

Fp(α + β) = (α + β)p = αp + βp = Fp(α) +Fp(β)

by lemma A.2.36 on page 387, so it also preserves addition.
Since Fpk is finite, Fp must be 1− 1. �

Note that Fpk ⊂ Fp` if and only if k|`, since Fp` must be a vector-space
over Fpk and both are vector-spaces over Fp = Zp. With this in mind, we can
explicitly describe the algebraic closure of all finite fields of characteristic p:

THEOREM A.2.42. Let p be a prime number. Then the algebraic closure of all
finite fields of characteristic p is

F̄p =
∞⋃

k=1

Fpk!

The Frobenius map
Fp: F̄p → F̄p

is an automorphism and the finite field Fp` ⊂ Fp`! ⊂ F̄p is the set of elements of F̄p

fixed by F `
p (i.e. elements x ∈ F̄p such that F `

p(x) = x).

REMARK. Note that F̄p is an infinite field since it contains subfields of order
pk for all k. This implies:

All algebraically closed fields are infinite.

PROOF. If f (X) ∈ Fpk [X] is a polynomial, it splits into linear factors in
some finite extension, G, of Fpk , by corollary A.2.14 on page 375. It follows
that G is a finite field that contains Fpk — i.e. Fp` for some ` that is a multiple
of k. Consequently f (X) splits into linear factors in F̄p. It follows that F̄p is
algebraically closed and it is the smallest field containing all of the Fpk , so it
must be the algebraic closure of all of them.

Since the Frobenius map is an automorphism of all of the Fpk it must be an

automorphism of F̄p. The statement that F `
p(x) = x implies that x is a root of

Xp` −X = 0 so the final statement follows from lemma A.2.37 on page 387. �

It is interesting to look at the multiplicative group of a finite field — that is,
Fpk \ {0}, where the operation is multiplication. We need two lemmas:

DEFINITION A.2.43. If n is a positive integer then

φ(n)

is called the Euler phi-function. It is equal to the number of generators of Zn, or

φ(n) =

{
the number of integers 1≤d < n such that gcd(d, n) = 1 if n > 1, or
1 if n = 1
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REMARK. If n > 1, an element x, of Zn has a multiplicative inverse if
and only if gcd(x, n) = 1 (see lemma A.1.11 on page 330). It follows that the
multiplicative group Z×n has φ(n) elements. If n = 1, Z1 = (0), which has one
generator.

This function has a number of interesting number-theoretic properties, in-
cluding

LEMMA A.2.44. If n is a positive integer, then

(A.2.7) n = ∑
d|n

φ(d)

where the sum is taken over all positive divisors, d, of n.

PROOF. If d|n, let Φd ⊂ Zn be the set of generators of the unique cyclic
subgroup of order d (generated by n/d). Since every element of Zn generates
one of the Zd, it follows that Zn is the disjoint union of all of the Φd for all
divisors d|n. It follows that

|Zn| = n = ∑
d|n
|Φd| = ∑

d|n
φ(d)

�

LEMMA A.2.45. If G is a finite group of order n with the property that the equa-
tion xk = 1 has at most k solutions, then G is cyclic.

REMARK. In a non-cyclic group, the equations xk = 1 can have more than
k solutions. For instance, in the group Z3 ⊕Z3, the equation 3x = 0 (written
additively) has 9 solutions.

PROOF. If d|n and an element, x, of order d exists, then it generates a cyclic
subgroup (x) = {1, x, . . . , xd−1} — which has φ(d) distinct generators. The
hypothesis implies that all solutions to the equation xd = 1 are elements of (x).
It follows that all elements of order d are generators of (x) and that there are φ(d)
of them. For each d|n the set of elements of order d is either

• empty, if there are no elements of order d,
• nonempty with φ(d) members.

Equation A.2.7 implies that the number of elements of G is < n unless elements
of order d exist for all d|n — including n itself. An element of order n generates
G and implies it is cyclic. �

THEOREM A.2.46. If Fpn is a finite field, its multiplicative group, F×pn , is cyclic
of order pn − 1.

PROOF. If x ∈ F×pn , the solution to exercise 17 on page 343 implies that the
equation xn = 1 has, at most n solutions. The conclusion follows immediately
from lemma A.2.45. �

Among other things, this implies the Primitive Element Theorem (see theo-
rem A.2.21 on page 378) for finite fields.

The minimum polynomial of a generator of F×pn over Zp is called a primitive
polynomial and such polynomials are heavily used in cryptography (see [128]).
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A.2.6. Transcendental extensions. We will characterize transcendental ex-
tensions of fields and show that they have transcendence bases similar to the
way vector spaces have bases (see table A.2.1 on the following page). A great
deal of this material originated in the work of the German mathematician, Ernst
Steinitz (1871–1928) in his seminal paper, [155].

DEFINITION A.2.47. Consider an inclusion of fields F ⊂ Ω. Elements
α1, . . . , αm ∈ Ω will be called algebraically independent over F if the natural map

F[X1, . . . Xm] → Ω
Xi 7→ αi

is injective. If they aren’t independent, they are said to be algebraically dependent
over F.

REMARK. In other words, the α1, . . . , αm ∈ Ω are algebraically dependent
if there exists a polynomial f with coefficients in F such that

f (α1, . . . , αn) = 0

in Ω.
They are algebraically independent if any equation of the form

∑ ci1,...,im αi1
1 · · · αim

m = 0

implies that all of the {ci1,...,im} vanish. Note the similarity between this con-
dition and the definition of linear independence in linear algebra. As we will
see, this is not a coincidence, and the theory of transcendence bases is similar
to that of bases of vector spaces.

EXAMPLE.
(1) A single element α ∈ Ω is algebraically independent if it is transcen-

dental over F.
(2) The numbers π and e are probably algebraically independent over Q

but this has not been proved.
(3) An infinite set {αi} is independent over F if and only if every finite

subset is independent.
(4) If α1, . . . , αn are algebraically independent over F, then

F[X1, . . . , Xn] → F[α1, . . . , αn]

f (X1, . . . , Xn) 7→ f (α1, . . . , αn)

is injective, hence an isomorphism. This isomorphism extends to the
fields of fractions. In this case, F(α1, . . . , αn) is called a pure transcen-
dental extension of F.

(5) The Lindemann–Weierstrass theorem (see [53] and [11]) proves that if
α1, . . . , αn are algebraic numbers that are linearly independent over Q,
then eα1 , . . . , eαn are algebraically independent over Q.

We can characterize algebraic elements of a field extension:

LEMMA A.2.48. Let f ⊂ Ω be an extension of fields with γ ∈ Ω and let A ⊂ Ω
be some set of elements. The following conditions are equivalent:

(1) γ is algebraic over F(A).
(2) There exist β1, . . . , βt ∈ F(A) such that γt + β1γt−1 + · · ·+ βt = 0.
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(3) There exist β0, . . . , βt ∈ F[A] such that β0γt + β1γt−1 + · · ·+ βt = 0.
(4) There exists an f (X1, . . . , Xm, Y) ∈ F[X1, . . . , Xm, Y] and α1 · · · , αm ∈ A

such that f (α1, . . . , αm, Y) 6= 0 but f (α1, . . . , αm, γ) = 0.

PROOF. Clearly statement 1 =⇒ statement 2 =⇒ statement 3 =⇒
statement 1 — so those statements are equivalent.

Statement 4 =⇒ statement 3: Write f (X1, . . . , Xm, Y) as a polynomial in Y
with coefficients in F[X1, . . . , Xm], so

f (X1, . . . , Xm, Y) = ∑ fi(X1, . . . , Xm)Yi

Then statement 3 holds with βi = fi(α1, . . . , αm).
Statement 3 =⇒ statement 4: The βi in statement 3 can be expressed as

polynomials in a finite number of elements α1, . . . , αm ∈ A

βi = fi(α1, . . . , αm)

and we can use the polynomial

f (X1, . . . , Xm, Y) = ∑ fi(X1, . . . , Xm)Yi

in statement 4. �

When γ satisfies the conditions in the lemma, it is said to be algebraically
dependent on A over F.

Table A.2.1 illustrates the many similarities the theory of transcendence
bases has with linear algebra.

Linear algebra Transcendence
linearly independent algebraically independent

A ⊂ Span(B) A algebraically
dependent on B

basis transcendence basis
dimension transcendence degree

TABLE A.2.1. Analogy with linear algebra

Continuing our analogy with linear algebra, we have the following result,
which shows that we can swap out basis elements:

LEMMA A.2.49. EXCHANGE LEMMA:Let {α1, . . . , αt} be a subset of Ω. If β ∈
Ω is algebraically dependent on {α1, . . . , αt} but not on {α1, . . . , αt−1}, then αt is
algebraically dependent on {α1, . . . , αt−1, β}.

PROOF. Since β is algebraically dependent on {α1, . . . , αt}, there exists a
polynomial f (X1, . . . , Xi, Y) with coefficients in F such that

f (α1, . . . , αt, Y) 6= 0 f (α1 . . . , αt, β) = 0

Write f as a polynomial in Xt:

f (X1, . . . , Xt, Y) = ∑ zi(X1, . . . , Xt−1, Y)Xi
t

Because f (α1, . . . , αt, Y) 6= 0 at least one of the zi, say zi0(α1, . . . , αt−1, Y) is
not the zero polynomial.
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Because β is not algebraically dependent on {α1, . . . , αt−1}, it follows that
zi0(α1, . . . , αt−1, β) 6= 0. Therefore f (α1, . . . , αt−1, Xt, β) 6= 0.

But, because f (α1, . . . , αt−1, αt, β) = 0, it follows that αt is algebraically de-
pendent on {α1, . . . , αt−1, β}. �

LEMMA A.2.50. If C is algebraically dependent on B and B is algebraically de-
pendent on A, then C is algebraically dependent on A.

PROOF. If γ is algebraic over a field E that is algebraic over F, then γ is
algebraic over F. Apply this with E = F(A ∪ B) and F = F(A). �

Now we are ready to prove the main result

THEOREM A.2.51. Let F ⊂ Ω be an extension of fields, let A = {α1, . . . , αt}
and B = {β1, . . . , βm} be two subsets of Ω, and suppose

(1) A is algebraically independent over F.
(2) A is algebraically dependent on B over F.

Then t ≤ m.

PROOF. Let ` be the number of elements A and B have in common. If this
is t, the conclusion follows, so assume it is < t.

Write
B = {α1, . . . , α`, β`+1, . . . , βm}

Since α`+1 is algebraically dependent on B, but not on {α1, . . . , αt}, there
will be a β j with ` + 1 ≤ j ≤ m such that α`+1 is algebraically dependent on
{α1, . . . , α`, β`+1, . . . , β j} but not on {α1, . . . , α`, β`+1, . . . , β j−1}.

The Exchange lemma A.2.49 on the facing page shows that β j is
algebraically dependent on

B1 = B ∪ {α`+1} \ {β j}
So B is algebraically dependent on B1 and A is algebraically dependent on B1.
Now we have `+ 1 elements in common between A and B1.

If `+ 1 < t repeat this process, using the Exchange property to swap ele-
ments of A for elements of B. We will eventually get ` = t, and t ≤ m. �

THEOREM A.2.52. Let F ⊂ Ω be an inclusion of fields. Then there exists a
(possibly infinite) set of elements {α1, . . . , αk} ∈ Ω such that the set {α1, . . . , αk} is
algebraically independent over F, and Ω is an algebraic extension of F(α1, . . . , αk)

The number k is uniquely determined by Ω and is called the transcendence degree
of Ω over F.

PROOF. All chains
A1 ⊂ A2 ⊂ · · ·

of sets of algebraically independent elements have an upper bound, namely
their union. Zorn’s lemma ( A.1.26 on page 338) implies that there exists a
maximal set of algebraically independent elements. If this set is finite and

{α1, . . . , αs}
and

{β1, . . . , βt}
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are two maximal algebraically independent sets, theorem A.2.51 on the preced-
ing page implies that s ≤ t and t ≤ s so s = t. �

EXAMPLE. The Lindemann–Weierstrass theorem (see [53] and [11]) proves
that if α1, . . . , αn are algebraic numbers that are linearly independent over Q,
then Q(eα1 , . . . , eαn) has transcendence degree n over Q.

DEFINITION A.2.53. A transcendence basis for Ω over F is an algebraically
independent set A, such that Ω is algebraic over F(A).

If there is a finite set A ⊂ Ω such that Ω is algebraic over F(A), then Ω has
a finite transcendence basis over F. Furthermore, every transcendence basis of
Ω over F is finite and has the same number of elements.

EXAMPLE A.2.54. Let p1, . . . , pm be the elementary symmetric polynomials
in X1, . . . Xm.

CLAIM. The field F(X1, . . . , Xm) is algebraic over F(p1, . . . , pm).

Consider a polynomial f (X1, . . . , Xn) ∈ F(X1, . . . , Xm). Theorem A.1.52 on
page 349 shows that the product

∏
σ∈Sn

(T − f (Xσ(1), . . . , Xσ(n)))

over all permutations of the variables, is a polynomial with coefficients in
F(p1, . . . , pm).

It follows that the set {p1, . . . , pm} must contain a transcendence basis for
F(X1, . . . , Xm) over F.

Since the size of a transcendence basis is unique, the {p1, . . . , pm} must
be a transcendence basis and F(X1, . . . , Xm) must be an algebraic extension of
F(p1, . . . , pm).

Here’s an example from complex analysis:

EXAMPLE A.2.55. Let Ω be the field of meromorphic functions on a com-
pact complex manifold.

The only meromorphic functions on the Riemann sphere are the rational
functions in z. It follows that Ω is a pure transcendental extension of C of
transcendence degree 1.

EXERCISES.

10. Use the Lindemann–Weierstrass theorem to prove that π is transcen-
dental.

11. Show that the extension
C

Q

has an uncountable degree of transcendence.
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A.3. Unique factorization domains

A.3.1. Introduction. This section is one of the most complex in the chap-
ter on commutative algebra and most of it is flagged with a dangerous bend
symbol. We study the important question of when a ring has unique factor-
ization. Aside from any inherent interest, unique factorization has geometric
implications that will become apparent later.

A great deal of this material is due to Gauss in his groundbreaking [51], and
Weierstrass (in [165]) in his research on complex analysis in several variables.

Johann Carl Friedrich Gauss (1777 – 1855) was a German mathematician and
scientist who contributed to many fields, including number theory, analysis,
statistics (the normal distribution curve), differential geometry (he essentially
invented it), geophysics, electrostatics, astronomy, and optics.

We can characterize unique factorization domains by

LEMMA A.3.1. If R is a ring, the following three statements are equivalent
(1) R is a unique factorization domain
(2) For any r, p, q ∈ R such that

r|p · q
with r irreducible

r - p =⇒ r|q
(3) For any r, p, q ∈ R such that

r|p · q
and r and p have no common factors

r - p =⇒ r|q
(4) For any irreducible element r ∈ R, the principal ideal (r) ⊂ R is prime.

REMARK. The final statement describes the property of a unique factoriza-
tion domain most relevant to algebraic geometry.

Prime ideals play an important part in algebraic geometry (see proposi-
tion 2.4.18 on page 68), and statement 4 implies that they can have a particularly
simple structure.

PROOF. If statement 1 is true, then R is a unique factorization domain by
reasoning like that used in lemma A.1.14 on page A.1.14. Conversely, if R is a
unique factorization domain, then

p = u1

m

∏
i=1

pβi
i

q = u2

m

∏
i=1

pγi
i(A.3.1)

where u1, u2 ∈ R are units, the pi ∈ R are irreducible elements and the
αi, βi, γi ∈ Z are all ≥ 0. If r|p · q, then r must equal one of the pi, say pj and
αj + β j ≥ 1. Since r - p, we get αj = 0, which implies that β j ≥ 1 and this
proves the conclusion.
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Statement 3 implies statement 2. Conversely, if statement 2 is true, R is a
unique factorization domain and equation A.3.1 on the previous page holds as
well as

r = u0

m

∏
i=1

pαi
i

Since r has no common factors with p, αi > 0 implies that βi = 0, hence αi ≤ γi
for all i = 1, . . . , n. This implies that r|q.

To see statement 4, suppose a, b ∈ U and a · b ∈ (r) or ra · b. The previous
statement implies that r|a or r|b which means a ∈ (r) or b ∈ (r). The implication
clearly goes in the opposite direction too. �

One of the easiest results in this section is:

LEMMA A.3.2. If k is a field, then k[X] is a unique factorization domain.

PROOF. It is a Euclidean domain in the sense of definition A.1.30 on
page 340 so it is also a unique factorization domain by corollary A.1.34 on
page 341. �

Even though the ideals in a unique factorization might not all be principal,
we have:

PROPOSITION A.3.3. In a unique factorization domain, the concept of greatest
common divisor and least common multiple are well-defined.

REMARK. In general, we have no analogue of the Euclidean Algorithm, so
it may be impossible to have a formula like equation A.1.1 on page 330.

PROOF. If U is a unique factorization domain with elements x and y, then
they have factorizations, unique up to multiplication by units. Let {p1, . . . , pk}
be all of the irreducible factors that occur in their factorizations:

x = u
k

∏
i=1

pαi
i

y = u′
k

∏
i=1

pβi
i

Now we can define

gcd(x, y) =
k

∏
i=1

pmin(αi ,βi)
i

lcm(x, y) =
k

∏
i=1

pmax(αi ,βi)
i

�

A.3.2. Polynomial rings. Throughout the rest of this section, we fix a
unique factorization domain, U. We will show that U[X] is also a unique
factorization domain. We use a trick to prove this: embed U[X] in F[X], where
F is the field of fractions of U and uniquely factor elements there.

The proof involves several steps.
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DEFINITION A.3.4. A polynomial anXn + · · · + a0 ∈ U[X] will be called
primitive, if the greatest common divisor of its coefficients is 1.

Note that if f ∈ U[X] is a polynomial, we can write f = u · f ′ where u is
the greatest common divisor of the coefficients of f and f ′ is primitive.

The following result is called Gauss’s Lemma:

LEMMA A.3.5. If f , g ∈ U[X] are primitive polynomials, then so is f g.

REMARK. This and the following lemma were proved by Carl Friedrich
Gauss in his treatise [51].

PROOF. Suppose

f = anXn + · · ·+ a0

g = bmXm + · · ·+ b0

f g = cn+mXn+m + · · ·+ c0

If d ∈ U is irreducible, it suffices to prove that d does not divide all of the ci. Let
ai and bj be the first coefficients (i.e. with the lowest subscripts) not divisible by
d. We claim that ci+j is not divisible by d. Note that

ci+j = a0bi+j + · · ·+ ai−1bj+1︸ ︷︷ ︸
Group 1

+aibj + ai+1bj−1 + · · ·+ ai+jb0︸ ︷︷ ︸
Group 2

By construction, d divides all of the terms in Group 1 and Group 2. Since U is
a unique factorization domain, d|ci+1 if and only if d|aibj. But, the fact that U
is a unique factorization domain also implies that d|aibj if and only if d|ai or
d|bj. �

This leads to the following:

LEMMA A.3.6. Let f ∈ U[X] be primitive. Then f is irreducible in U[X] if and
only if it is irreducible in F[X], where F is the field of fractions of U.

PROOF. Suppose f is irreducible in U[X], and that f = gh ∈ F[X]. By
clearing denominators, we can assume

g = u−1
1 ḡ

h = u−1
2 h̄

where ḡ, h̄ are primitive polynomials of U[X], and u1, u2 ∈ U. We conclude that

u1u2 f = ḡh̄

where ḡh̄ is primitive by A.3.5. Since f is also primitive, the factor u1u2 ∈ U
must be a unit. Since f is irreducible in U[X], ḡ or h̄ must be a unit in U[X] and
also in F[X].

On the other hand, suppose f ∈ U[X] is irreducible in F[X] and assume
f = gh ∈ U[X]. Since f is irreducible in F[X], either g or h must be a unit in
F[X], i.e. a constant polynomial. If g is a constant polynomial then the formula
f = gh with f primitive implies that g ∈ R is a unit. �

We are finally ready to prove:

THEOREM A.3.7. If U be a unique factorization domain, then so is U[X].
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REMARK. This is interesting because U doesn’t have to be a euclidean do-
main or a principal ideal domain.

PROOF. We use a trick to prove this: embed U[X] in F[X], where F is the
field of fractions of U and uniquely factor elements there. Suppose r, f , g ∈
U[X] are polynomials and

(1) r is irreducible.
(2) r| f g

We will show that r| f or r|g and lemma A.3.1 on page 395 will show that U[x]
has unique factorization.

Lemma A.3.2 on page 396 implies that F[X] is a unique factorization do-
main because it is Euclidean.

Write

r = ur′

f = u1 f ′

g = u2g′

where u, u1, u2 ∈ U are, respectively, the greatest common divisors of the coef-
ficients of r, f , g and r′, f ′, g′ ∈ U[x] are primitive. Since r is irreducible, we can
assume u ∈ U is a unit (otherwise r = ur′ would be a nontrivial factorization
of r).

Lemma A.3.6 on the preceding page implies that r′ is irreducible in F[X] so,
in F[X], r′| f ′ or r′|g′ in F[x]. Without loss of generality, assume r′| f ′, so that

f ′ = a · r′

where a ∈ F[X]. We can write a = v−1a′, where v ∈ U and a′ ∈ U[X] is
primitive. We get

v · f ′ = a′ · r′

in U[X]. Since f ′ and a′ · r′ are both primitive (by lemma A.3.5 on the previous
page), v ∈ U must be a unit and we get r| f . �

REMARK. Actually finding factorizations in these rings can be challenging.
See chapter 2.3 on page 45.

To actually find a factorization of a polynomial, it is helpful to have a crite-
rion for irreducibility. The following is called Eisenstein’s Criterion:

THEOREM A.3.8. Let U be a unique factorization domain and let

f (X) = anXn + · · ·+ a0 ∈ U[X]

be a primitive polynomial and let p ∈ U be irreducible. If p|ai for 0 ≤ i ≤ n − 1,
p - an, and p2 - a0 then f (X) is irreducible in U[X].

REMARK. If F is the field of fractions of U, lemma A.3.6 on the previous
page shows that this criterion works for polynomials over F[X] too, after clear-
ing the denominators of the coefficients.

Eisenstein originally proved this for Z[X] but it works for any unique fac-
torization domain.
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PROOF. We will reason by contradiction. Suppose there exist polynomials

p(X) = bsXs + · · ·+ b0

q(X) = ctXt + · · ·+ c0

such that f (X) = p(X) · q(X) and s ≥ 1 and t ≥ 1. Since p2 - a0 we must have
p - b0 or p - c0. Assume that p|c0 and p - b0. Since f is primitive, not all the ci
are divisible by p. Suppose ck is the first that is not divisible by p. Then

ak = bkc0 + · · ·+ b0ck

By assumption, p|ak and p|ci for 0 ≤ i < k, which implies that p|b0ck and
this implies that p|b0, which is a contradiction. �

EXAMPLE. The polynomial X3 + 3X2 + 3X + 1 ∈ Q[X] is irreducible by
Eisenstein’s Criterion with respect to the prime p = 3.

In some cases, one must first transform the polynomial a bit to use Eisen-
stein’s Criterion. For instance, in the polynomial

f (X) = X2 + X + 1 ∈ Q[X]

there are no primes that divide any of the coefficients. After substituting X =
U + 1, f (X) becomes

g(U) = U2 + 3U + 3

which satisfies Eisenstein’s Criterion with respect to the prime p = 3. Since
X → U + 1 defines an isomorphism

Q[X]→ Q[U]

f (X) is irreducible if and only if g(U) is.

A.3.3. Power-series rings. Next, we tackle the question of unique factor-
ization in power series rings. This appears daunting at first glance because power
series seem to have “infinite complexity”. For instance, it is not true that when-
ever U is a unique factorization domain, U[[X]] is also — see [143].

It is gratifying to see that, in some cases, factorization is actually easier in
power series rings. The point is that factorizations are only well-defined up to
multiplication by a unit — and the power series ring k[[X]] (for k a field) has
many units: Proposition A.1.6 on page 328 shows that any power series

z =
∞

∑
n=0

cnXn

with c0 6= 0 is a unit. If the lowest nonzero coefficient in z is cr then our unique
factorization of z is

(A.3.2) Xr · (cr + cr+1X + · · · )
In other words, X is our “only prime” in k[[X]], and an arbitrary element of
k[[X]] is the product of a polynomial in X and a unit.

This will turn out to be true in general: the Weierstrass Preparation Theorem
will show that certain elements (every element can be transformed into one of
these — see lemma A.3.14 on page 402) of

k[[X1, . . . , Xn]]
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will equal units × polynomials in

k[[X1, . . . , Xn−1]][Xn]

i. e., polynomials in Xn with coefficients in k[[X1, . . . , Xn−1]]. Unique factoriza-
tion in k[[X1, . . . , Xn−1]] and k[[X1, . . . , Xn−1]][Xn] will imply it in k[[X1, . . . , Xn]]
(via lemma A.3.1 on page 395).

We will fix the following notation throughout the rest of this section:
Pn = k[[X1, . . . , Xn]], where k is a field.

�

We need to develop some properties of power-series rings.

PROPOSITION A.3.9. An element p ∈ Pn is a unit if and only if its constant term is
nonzero.

PROOF. Straightforward induction using proposition A.1.6 on page 328 and exer-
cise 7 on page 338. �

DEFINITION A.3.10. An element p(X1, . . . , Xn) ∈ Pn will be called Xn-general if
p(0, . . . , 0, Xn) 6= 0. If Xd

n|p(0, . . . , 0, Xn) and Xd+1
n - p(0, . . . , 0, Xn) for some integer

d > 0, we say that p is Xn-general of degree d.

REMARK. A power series is Xn-general if it has a term that only involves Xn. For
instance X1 + X2 is X2-general but X1X2 is not.

Next, we have a kind of division algorithm for power-series rings (even though
these rings are not Euclidean):

THEOREM A.3.11 (Weierstrass Division Theorem). Let p ∈ Pn be Xn-general power-
series of degree d that is not a unit of Pn. For every power series g ∈ Pn, there exists a power
series u ∈ Pn and a polynomial r ∈ Pn−1[Xn] of degree d− 1 such that

(A.3.3) g = u · p + r

The power-series u and polynomial r are uniquely determined.

REMARK. A shorter way to say this is that
Pn

(p)
= Pn−1 ⊕ Xn · Pn−1 ⊕ · · · ⊕ Xd−1

n Pn−1

or that it is a module over Pn−1 generated by {1, . . . , Xd−1
n }.

PROOF. We will explicitly construct u and r.
For every f ∈ Pn, let r( f ) equal the set of terms, T, such that Xd

n - T, and let h( f ) be
the factor of Xd

n in f − r( f ). Then

f = r( f ) + Xd
nh( f )

for all power series in Pn. So r( f ), h( f ) ∈ Pn and r( f ) is a polynomial in Pn−1[Xn] of
degree < d. Note that, regarding Pn as a vector space over k, both r(∗) and h(∗) are
linear maps.

CLAIM A.3.12. In addition, h(p) is a unit (since its constant term is the element of k
multiplying Xd

n, and r( f ) has no constant terms since f is not a unit.

We claim that equation A.3.3 is equivalent to

(A.3.4) h(g) = h(u · p)
for some u ∈ Pn. If equation A.3.3 on the facing page holds then h(g− u · p) = 0 and
equation A.3.4 on the preceding page is true. Conversely, if equation A.3.4 on page 400is
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true, then h(g − u · p) = 0 and g − u · p = r(q − u · p), a degree d − 1 polynomial in
Pn−1[Xn].

Since p = r(p) + Xd
n · h(p), equation A.3.4 on the facing page is equivalent to

(A.3.5) u · p = u · r(p) + Xd
n · u · h(p)

Since h(p) is a unit (see the claim above), it suffices to compute the power-series v =
u · h(p). Set

m = −r( f ) · h(p)−1

Then u · r(p) = −m · v and we can rewrite equation A.3.5 to the equivalent equation

(A.3.6) h(g) = −h(m · v) + v

or

(A.3.7) v = h(g) + s(v)

where, for any power series, f ∈ Pn, we have defined s( f ) = h(m · f ). Note that s is a
linear operation on power-series.

Let m = (X1, . . . , Xn−1) ⊂ Pn−1 be the maximal ideal. Note that r(p) ∈ m[Xn] ⊂
Pn−1[Xn] since it is not a unit (so it has vanishing constant term). This means that, if the
coefficients of f ∈ Pn = Pn−1[[Xn]] lie in mj, then the coefficients of s( f ) will lie in mj+1.

Now we plug equation A.3.7 into itself to get

v = h(g) + s(h(g) + s(v))

= h(g) + s(h(g)) + s2(v)

We can iterate this any number of times:

v =
t

∑
j=0

sj(h(g)) + st+1(v)

or

v−
t

∑
j=0

sj(h(g)) ∈ mt+1[[Xn]] ⊂ Pn−1[[Xn]]

Since lemma A.1.79 on page 363 implies that
∞⋂

j=1
mj = (0)

we claim that

v =
∞

∑
j=0

sj(h(g))

is the unique solution to our problem. It is easy to verify that it satisfies equation A.3.7.
Now all we have to do is set

u = v · h(p)−1

and r = r(q− u · p). �

The Weierstrass Preparation Theorem is a simple corollary:

THEOREM A.3.13 (Weierstrass Preparation Theorem). Let p ∈ Pn be Xn-general
power-series of degree d that is not a unit of Pn. Then there exists a unit q ∈ Pn and a monic
polynomial u ∈ Pn−1[Xn] of degree d such that

(A.3.8) p = u · w
and u and w are uniquely determined by p.
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REMARK. This is the general analogue of A.3.2 on page 399 for power-series of n
variables. Weierstrass originally proved it for convergent power series using the meth-
ods of complex analysis. It gives valuable information on the behavior of the zero-sets
of analytic functions of several complex variables (besides implying that the ring of such
functions has unique factorization).

Our proof of the Division Theorem is the “combinatorial” or “algebraic” form —
that does not use contour integrals.

The polynomial w ∈ Pn−1[Xn] is called the Weierstrass Polynomial of p.

Case 1. Apply the division theorem ( A.3.11 on page 400) to g = Xd
n. It gives u and r

such that
Xd

n = u · p + r
so we get

u · p = Xd
n − r = w ∈ Pn−1[Xn]

We claim that u must be a unit since the lowest Xn term in p is Xd
n. The only

way the product could contain Xd
n is for u to have a nonvanishing constant

term.
If A is an n× n invertible matrix whose entries are in k, then A induces an automorphism

A∗: Pn → Pn

p(X1, . . . , Xn) 7→ pA = p(A−1 · (X1, . . . , Xn))

The inverse is given by the inverse of A.

LEMMA A.3.14. Let p ∈ Pn be a power series that is not a unit. If the field k is infinite,
then there exists a matrix A such that pA is Xn-general.

PROOF. Let L be the leading term of p — this consists of the terms of lowest total
degree in the power series and will be a homogeneous polynomial in X1, . . . , Xn. Let

(k1, . . . , kn) ∈ kn

be a set of values on which L is nonvanishing. Such a set of values exists because we
can plug in 1 for all of the Xi except one, and the resulting polynomial of one variable
vanishes at a finite number of values. Since the field k is infinite, we can find a value
for the remaining variable that makes L 6= 0 vanish. Let A be an invertible matrix that
transforms this point

(k1, . . . , kn)

to (0, . . . , 0, 1). The conclusion follows. �

It is easy (and necessary) to generalize this a bit:

COROLLARY A.3.15. Let p1, . . . , pt ∈ Pn be a finite set of power series that are non-units.
Then there exists an invertible matrix A such that pA

1 , . . . , pA
t ∈ Pn are all Xn-regular.

PROOF. Simply apply lemma A.3.14 to the product p1 · · · pt. �

We are finally ready to prove the main result:

THEOREM A.3.16. If k is an infinite field, the ring Pn = k[[X1, . . . , Xn]] is a unique
factorization domain.

REMARK. The requirement that k be an infinite field is not really necessary but it
simplifies the proof of lemma A.3.14 — and k will be infinite in all of our applications of
this result.

Weierstrass originally proved this for k = C and Pn = C{X1, . . . , Xn}— the ring of
convergent power-series. This is essentially the ring of complex-analytic functions. See
[80].
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PROOF. We prove this by induction on n, the number of indeterminates. The result
is almost trivial for n = 1 — see A.3.2 on page 399.

Let p1 ∈ Pn be irreducible and suppose p1|p2 · p2 and p1 - p2. We will show that
this forces p1|p3. Use corollary A.3.15 on the facing page to transform p1, p2, p3 to Xn-
regular power series of degrees d1, d2, d3, respectively. Then the Weierstrass Preparation
Theorem (theorem A.3.13 at page 401) implies that

pA
1 = u1 · w1

pA
2 = u2 · w2

pA
3 = u3 · w3

where u1, u2, u3 ∈ Pn are units and w1, w2, w3 ∈ Pn−1[Xn] are the Weierstrass polyno-
mials of the pi. We claim that the polynomial w1 ∈ Pn−1[Xn] is irreducible. This is
because a nontrivial factorization of it would give a nontrivial factorization of p1, since
A induces an automorphism. Since Pn−1 is a unique factorization domain by induction
and Pn−1[Xn] is one by theorem A.3.7 on page 397, we must have

w1|w3

which implies that
pA

1 |pA
3

and
p1|p3

which means Pn is a unique factorization domain, by lemma A.3.1 on page 395. �

A.4. Further topics in ring theory

A.4.1. Integral extensions of rings. The theory of integral extensions of
rings is crucial to algebraic number theory and algebraic geometry. It considers
the question of “generalized integers:”

If Z ⊂ Q is the subring of integers, what subring, R ⊂ Q[
√

2],
is like its “ring of integers”?

In algebraic geometry, integral extensions are used to define the existence of
algebraic sets — see theorem 2.2.2 on page 39 and the concept of dimension, see
corollary 2.8.23 on page 107.

DEFINITION A.4.1. If A ⊂ K is the inclusion of an integral domain in a
field, x ∈ K will be called integral over A if it satisfies an equation

xj + a1xj−1 + · · ·+ ak = 0 ∈ A

with the ai ∈ A (i.e., is a root of a monic polynomial).

REMARK. For instance, consider Z ⊂ Q. The only integral elements over
Z are in Z itself.

In the case of Z ⊂ Q(i), we get integral elements n1 + n2 · i where n1, n2 ∈
Z — the ring of Gaussian Integers.

PROPOSITION A.4.2. Let R ⊂ S be integral domains. The following statements
are equivalent

(1) An element s ∈ S is integral over R
(2) R[s] is a finitely-generated R-module (see definition A.1.63 on page 354).
(3) s ∈ T for some subring of S with R ⊆ T ⊆ S and T is a finitely-generated

R-module.
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REMARK. Note that being finitely generated as a module is very different
from being finitely generated as a ring or field. For instance R[X] is finitely
generated as a ring over R but, as a module, it is

∞⊕
n=0

R · Xn

PROOF. 1 =⇒ 2. If s is integral over R, then

sn + an−1sn−1 + · · ·+ a0 = 0

with the ai ∈ R, so
sn = −an−1sn−1 − · · · − a0

This means that R[s] — the ring of polynomials in s will only have polynomials
of degree < n, so R[s] will be finitely generated as a module over R. Compare
this argument to that used in proposition A.2.12 on page 374.

2 =⇒ 3. Just set T = R[s].
3 =⇒ 1. Suppose that t1, . . . , tn ∈ T is a set of generators of T as an

R-module. Then

sti =
n

∑
j=1

Ai,jtj

for some n× n matrix A, so
n

∑
j=1

(δi,js− Ai,j)tj = 0

where

δi,j =

{
1 if i = j
0 otherwise

Cramer’s Rule implies that

det(sI − A)ti = Ci = 0

for all i, where Ci is the determinant of the matrix one gets by replacing the
ithcolumn by 0’s. It follows that s is a root of the monic polynomial

det(XI − A) = 0 ∈ R[X]

�

DEFINITION A.4.3. If R ⊆ S is an inclusion of integral domains and every
element of S is integral over R, then S will be said to be integral over R.

REMARK. It is not hard to see that this property is preserved in quotients. If
a ⊂ S is an ideal then S/a will be integral over R/a∩R because the monic poly-
nomials satisfied by every element of S over R will map to monic polynomials
in the quotients.

COROLLARY A.4.4. Let f : R → S be an integral extension of integral domains.
If a ⊂ R is a proper ideal, then so is a · S ⊂ S.

PROOF. We will prove the contrapositive: If a · S = S, then a = R. The
statement that a · S = S and Nakayama’s Lemma A.1.78 on page 362 imply that
there exists r ∈ R with r ≡ 1 (mod a) with r · S = 0. Since S is an integral
domain, we must have r = 0 to 0 ≡ 1 (mod a) or 1 ∈ a, so a = R. �
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PROPOSITION A.4.5. Suppose R ⊆ S are integral domains and let s, t ∈ S.
Then:

(1) If s and t are integral over R, so are t ± s and st. Consequently integral
elements over R form a ring.

(2) Let T be a commutative ring with S ⊆ T. If T is integral over S and S is
integral over R, then T is integral over R.

PROOF. If s and t are integral over R, let

R[s] = Rs1 + · · ·+ Rsk

R[t] = Rt1 + · · ·+ Rt`
as R-modules. Then

R[s, t] = Rs1 + · · ·+ Rsk(A.4.1)
+Rt1 + · · ·+ Rt`

+
k,`

∑
i=1,j=1

Rsitj

which contains s ± t and st and is still a finitely generated R-module. This
proves the first statement.

To prove the second statement, suppose t ∈ T satisfies the monic polyno-
mial

tk + sk−1tk−1 + · · ·+ s0 = 0
with si ∈ S, and S[t] is a finitely generated S-module. Since S is integral over
R, R[si] is a finitely-generated R-module, and so is

R′ = R[s0, . . . , sk−1]

— equation A.4.1 gives some ideal of how one could obtain a finite set of gen-
erators. The element t is also monic over R′, so R′[t] is a finitely-generated
R′-module and

R[s0, . . . , sk−1, t]
is a finitely-generated R-module. It follows that t is integral over R. �

This immediately implies:

COROLLARY A.4.6. If R ⊂ S is an inclusion of integral domains and α ∈ S is
integral over R, then R ⊂ R[α] is an integral extension of rings.

Prime ideals behave in an interesting way in an integral extension:

PROPOSITION A.4.7 (Lying Over and Going Up). Suppose R ⊂ S is an inte-
gral extension of rings. Given a prime ideal p ⊂ R, there exists a prime ideal q ⊂ S
with

R ∩ q = p

The ideal q may be chosen to contain an ideal q1that satisfies the condition R ∩
q1 ⊂ p.

REMARK. The first statement is called “lying over” since every prime p in
R has one in S “lying over it.” The second is called “going up” because it gives
a prime p that is “up” from q1.
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PROOF. First, factor out q1 and R ∩ q1 so that we may assume q1 = 0. We
need only prove that a prime q ⊂ R exists with R∩ q = p. Let M = R \ p, a mul-
tiplicatively closed set. If we replace R by Rp = R[M−1] (see definition A.1.93
on page 369), we may assume R is local with a unique maximal ideal p. Since
corollary A.4.4 on page 404 implies that p · S 6= S , any maximal ideal of S
containing p · S will have the desired properties. �

PROPOSITION A.4.8 (Incomparability Property). Let R ⊂ S be an integral
extension of rings and let p ⊂ q be two ideals of S. Then

p∩ R = q∩ R

implies that p = q.

PROOF. We prove this by contradiction. Let x ∈ q \ p. It is not hard to see
that R/R ∩ p ⊂ S/p is an integral extension (see the remark following defini-
tion A.4.3 on page 404). If x̄ is the image of x in S/p then x̄ must satisfy a monic
polynomial of minimal degree

x̄k + ck−1 x̄k−1 + · · ·+ c0 = 0

with the ci ∈ R/p.
Since x ∈ q, we conclude that c0 ∈ q/p. Since c0 ∈ R/p and p ∩ R = q ∩ R,

we conclude that c0 = 0 and the polynomial has no constant term.
Since R/p is an integral domain, we can factor off x̄ to get a polynomial of

lower degree that x̄ satisfies, a contradiction. �

Integral extensions of rings have interesting properties where fields are
concerned:

PROPOSITION A.4.9. If R and S are integral domains, and S is an integral ex-
tension of R, then S is a field if and only if R is a field.

PROOF. If R is a field, and s ∈ S is a nonzero element, then s ∈ R[s] is
a finitely generated module over R — i.e., a vector space. Since S is an inte-
gral domain, multiplication by s induces a linear transformation of R[s] whose
kernel is 0. This means it is an isomorphism and has an inverse.

Conversely, if S is a field and r ∈ R. Then r−1 ∈ S and it satisfies a monic
polynomial over r:

r−n + an−1r−(n−1) + · · ·+ a0 = 0

with the ai ∈ R. If we multiply this by rn−1, we get

r−1 + an−1 + · · ·+ a0rn−1 = 0

�

DEFINITION A.4.10. If K is a field containing an integral domain, R, the
ring of elements of K that are integral over R will be called the integral closure
of R in K. If K is the field of fractions of R and its integral closure is equal to R
itself, R will be called integrally closed or normal.

REMARK. Proposition A.4.5 on the preceding page shows that the set of all
integral elements over R form a ring — the integral closure of R.

PROPOSITION A.4.11. Every unique factorization domain is integrally closed.
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REMARK. This shows that Z is integrally closed in Q. It is possible for R
to be normal but not integrally closed in a field larger than its field of fractions.
For instance Z is integrally closed in Q but not in Q[

√
2].

PROOF. Let a/b be integral over A, with a, b ∈ A. If a/b /∈ A then there is
an irreducible element p that divides b but not a. As a/b is integral,

(a/b)n + a1(a/b)n−1 + · · ·+ an = 0, with ai ∈ A

Multiplying by bn gives

an + a1an−1b + · · ·+ anbn = 0

Now p divides every term of this equation except the first. This is a contra-
diction! �

A simple induction, using theorem A.3.7 on page 397 shows that

COROLLARY A.4.12. For any n > 0, the rings Z[X1, . . . , Xn], F[[X1, . . . , Xn]],
and F[X1, . . . , Xn], where F is any field, have unique factorization and are integrally
closed (see definition A.4.10 on the facing page) in their respective fields of fractions.

REMARK. In most of these examples, the rings are not Euclidean.

Normality of a ring is a “local” property:

PROPOSITION A.4.13. An integral domain, R, is normal if and only if its local-
izations, Rp, at all primes are normal.

PROOF. If R is normal and S ⊂ R is any multiplicative set, the solution to
exercise 1 on page 411 implies that the integral closure of S−1R is S−1R. The
converse follows from the fact that

(A.4.2) R =
⋂

all primes p⊂R

Rp ⊂ F

�

The following result gives a test for an element being integral over a ring

LEMMA A.4.14. Let R be an integral domain with field of fractions, F, let F ⊂ H
be a finite extension of fields, and let α ∈ H be integral over R. Then

(1) all conjugates of α (in the algebraic closure of H) are integral over R,
(2) all coefficients of the characteristic polynomial, χα(X) ∈ F[X], are integral

over R,
(3) the norm NH/F(α) ∈ F is integral over R.

REMARK. If R is normal, this implies that χα(X) ∈ R[X] and provides a
necessary and sufficient condition for α to be integral.

For instance, a + b
√

2 ∈ Q[
√

2] is integral over Z if and only if

χα(X) = X2 − 2aX + a2 − 2b2 ∈ Z[X]

This implies that all elements a + b
√

2 with a, b ∈ Z are integral over Z. Since
−2a ∈ Z, the only other possibility is for

a =
2n + 1

2
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Plugging this into
(2n + 1)2

4
− 2b2 = m ∈ Z

or

b2 =
(2n + 1)2 − 4m

8
which is never an integer much less a square, giving a contradiction.

PROOF. Let p(X) ∈ R[X] be a monic polynomial such that p(α) = 0. If α′

is any conjugate of α, then the isomorphism

F[α]→ F[α′]

that leaves F and R ⊂ F fixed implies that p(α′) = 0 as well. The statement
about the characteristic polynomial follows from the fact that its coefficients
are elementary symmetric functions of the conjugates of α (see equation A.1.7
on page 349), and the fact that the set of integral elements form a ring (see
proposition A.4.5 on page 405).

The final statement about the norm follows from lemma A.2.34 on page 386.
�

We conclude this section with a result on the behavior of integral closures
under algebraic field extensions. To prove it, we will need the concept of bilinear
form:

DEFINITION A.4.15. If V is a vector-space over a field, F, a bilinear form on
V is a function

b: V ×V → F

such that
(1) b(c · v1, v2) = b(v1, c · v2) = c · b(v1, v2) for all v1, v2 ∈ V and c ∈ F.
(2) b(v1 + w, v2) = b(v1, v2) + b(w, v2) for all v1, v2, w ∈ V.
(3) b(v1, w + v2) = b(v1, w) + b(v1, v2) for all v1, v2, w ∈ V.

A bilinear form, b(∗, ∗), is called symmetric if b(v1, v2) = b(v2, v1) for all
v1, , v2 ∈ V. If v = {v1, . . . , vn} is a basis for V, then the associated matrix of b is
M defined by

Mi,j = b(vi, vj)

A bilinear form, b(∗, ∗), is said to be degenerate if there exists a nonzero
vector v ∈ V such that b(v, w) = 0 for all w ∈W.

REMARK. If M is the associated matrix of b, then we can write b as

(A.4.3) b(u, v) = uT Mv

where u and v are vectors expanded in the basis used to compute M, and uT is
the transpose.

PROPOSITION A.4.16. Let V be a vector space over a field, F, equipped with a
bilinear form

b: V ×V → F

Then b is nondegenerate if and only if its associated matrix is invertible.
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PROOF. If M is invertible, then uT M 6= 0 if u 6= 0 and we can define v =
(uT M)T = MTu in which case

b(u, v) = ‖uT M‖2 6= 0

by equation A.4.3 on the preceding page. If M is not invertible, it sends some
nonzero vector u to 0 and

b(u, v) = 0

for all v ∈ V. �

We will be interested in nondegenerate bilinear forms because:

PROPOSITION A.4.17. Let V be a vector-space over a field F with basis
{u1, . . . , un} and suppose that

b: V ×V → F

is a nondegenerate bilinear form. Then there exists a dual basis {v1, . . . vn} of V such
that

b(ui, vj) =

{
1 if i = j
0 otherwise

PROOF. If M is the associated matrix (with respect to the u-basis), simply
define

v = M−1u

The conclusion follows from equation A.4.3 on the facing page. �

Now we introduce a special bilinear form significant in studying field ex-
tensions:

DEFINITION A.4.18. Let F ⊂ H be a finite extension of fields. Then define
the trace form of H over F via

bH/F(h1, h2) = TH/F(h1 · h2)

(see section A.2.3 on page 380 for information about TH/F).

REMARK. Lemma A.2.23 on page 380 implies that trace form is bilinear,
and it is easy to see that it is also symmetric.

It is interesting to consider what happens if the trace form is degenerate.
In this case, there exists h ∈ H such that bH/F(h, h′) = 0 for all h′ ∈ H, in
particular, when h′ = h−1. It follows that bH/F(h, h−1) = TH/F(1) = 0. But
lemma A.2.34 on page 386 implies that

TH/F(1) = [H: F] · 1 = 0 ∈ F

The only way this can happen is if F has finite characteristic, p, and p|[H: F].
This happens when H is an inseparable extension of F (see definition A.2.19 on
page 378).

LEMMA A.4.19. If F ⊂ H is a separable extension of fields, then the trace form,
bH/F, is nondegenerate.

REMARK. Note that “separable” implies “finite.”
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PROOF. Since the extension is separable, theorem A.2.21 on page 378 im-
plies that there exists a primitive element α ∈ H such that H = F[α]. If
[H: F] = n, then {1, α, . . . , αn−1} are a basis for H over F.

We have bH/F(α
i, αj) = TH/F(α

i+j) and the associated matrix to bH/F is
given by

Mi,j = TH/F(α
i−1 · αj−1) = TH/F(α

i+j−2)

Let H̄ be the algebraic closure of H and let α = α1, . . . , αn be the conjugates of
α in H̄(see definition A.2.33 on page 385). Lemma A.2.34 on page 386 implies
that

TH/F(α
j) =

n

∑
i=1

α
j
i

Let V be the Vandermonde matrix V(α1, . . . , αn) — see exercise 32 on page 351.
It is defined by

Vi,j = α
j−1
i

Now, note that

Mi,j =
n

∑
`=1

αi−1
` · αj−1

`

= (VTV)i,j

It follows that
det M = (det V)2 = ∏

1≤i<j≤n
(αj − αi)

2

which is nonzero since the αi are all distinct (because the field-extension was
separable). �

Now we can prove our main result regarding integral extensions:

LEMMA A.4.20. Suppose that A is integrally closed domain whose field of frac-
tions is F. Let F ⊂ H be a separable extension of fields of degree n, and let B be the
integral closure of A in H. Then there exists a basis {v1, . . . , vn} for H over F such
that

B ⊆ {v1, . . . , vn} · A
If A is noetherian, this implies that B is a finitely generated module over A.

REMARK. Roughly speaking, this says that a finite extension of fields in-
duces a finite extension of integrally closed rings.

PROOF. Let {u1, . . . , un} be a basis for H over F. Each of the ui satisfies an
algebraic equation

anun
i + · · ·+ a0 = 0

and multiplying by an−1
n gives us a monic polynomial in (anui) so it is integral

over A. It follows that anui ∈ B and — without loss of generality — we may
assume that the basis elements ui ∈ B.

This does not prove the result: we have only shown that every element of
H can be expressed in terms of B and F.

Let {v1, . . . , vn} be the dual basis defined by the trace form, via proposi-
tion A.4.17 on the preceding page. This exists because the trace form is nonde-
generate, by lemma A.4.19 on the previous page.
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If x ∈ B, let

(A.4.4) x =
n

∑
i=1

civi

where the ci ∈ F. Note that x · ui ∈ B since x and each of the ui are in B. We
claim that

bH/F(x, ui) = TH/F(x · ui) ∈ A

This is because x · ui satisfies a monic polynomial with coefficients in A — and
TH/F(x · ui) is the negative of the coefficient of Xn−1 (see definition A.2.22 on
page 380 and the remark following it). We use the properties of the dual basis
to conclude

TH/F(x · ui) = TH/F

((
n

∑
j=1

cjvj

)
· ui

)

=
n

∑
j=1

cj · TH/F(vj · ui)

= ci

So, in equation A.4.4, the ci were elements of A all along and the conclusion
follows. �

EXERCISES.

1. Let R ⊂ T be an inclusion of rings and let R̄ be its integral closure in T.
Show, for any multiplicative set S, that S−1R̄ is the integral closure of S−1R in
S−1T.

2. Suppose R is an integral domain with field of fractions F and H is a finite
extension of F. If x ∈ H show that there exists an element w ∈ R such that r · x
is integral over R.

3. Let R ⊂ T be an inclusion of rings with the property that T is a finitely-
generated module over R. Now let T ⊂ F where F is a field. Show that the
integral closure of T in F is the same as the integral closure of R in F.

�

A.4.2. The module of Kähler differentials. Given an algebra, A, over a field (or
even over a ring) we can define the module of Kähler differentials — a module over A.
In a manner of speaking, this module describes how one could define differentials over
the algebra. It has important geometric applications (see section 3.5 on page 151) and
gives criteria for elements of a field to be algebraically independent.

We begin with:
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DEFINITION A.4.21. Let R be an algebra over a field, k, and M be an R-module. A
map

f : R→ M

is called a derivation if

(1) it is a k-linear
(2) it satisfies the condition

f (r1 · r2) = r1 · f (r2) + r2 · f (r1)

The set of all derivations from R to M is denoted Derk(R, M).

Next, we need the concept of Kähler differentials:

DEFINITION A.4.22. If A is an algebra over a field, k, the module of Kähler differ-
entials, ΩA/k, is the A-module generated by symbols da for a ∈ A and subject to the
relations

(1) d(c · a) = c · da for all a ∈ A and c ∈ k,
(2) d(a1 + a2) = da1 + da2 for all a1, a2 ∈ A
(3) d(a1 · a2) = a1 · da2 + a2 · da1

REMARK. The module of Kähler differentials allows us to describe all of the deriva-
tions that can exist for an algebra.

Erich Kähler (1906–2001) was a German mathematician who contributed to
many different fields, including mathematical physics (the n-body problem),
algebraic and differential geometry, and the theory of differential equations.

DEFINITION A.4.23. If A is an algebra over a field, k, and the map

u: A → ΩA/k

defined by u(a) = da for all a ∈ A, is called the universal derivation of A.

This derivation is universal because:

PROPOSITION A.4.24. If f : A → M is a derivation, then there exists a unique homo-
morphism of A-modules

g: ΩA/k → M

that makes the diagram

(A.4.5) A u //

f ""

ΩA/k

g
��

M

commute.

REMARK. This result immediately implies that Derk(A, M) ∼= homA(ΩA/k, M).
This correspondence is functorial and even an isomorphism of functors

Derk(A, ∗) ∼= homA(ΩA/k, ∗)

PROOF. Since ΩA/k is generated by the symbols da, it suffices to define g on them.
The only way to do this that is compatible with f is to set g(da) = f (a). We must verify
that the relations in ΩA/k are satisfied in the image of g. This follows from condition 2
in definition A.4.21. �
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EXAMPLE A.4.25. If R = k[X1, . . . , Xn], we claim that

ΩR/k = R · dX1 ⊕ · · · ⊕ R · dXn

— the free module of rank n generated by the {dXi}. The way to see this is to note
that each of the partial derivatives {∂/∂Xi} is a derivation, ∂i: R → R — so it induces a
homomorphism

di: ΩR/k → R
We get a homomorphism of R-modules

(A.4.6)

 d1
...

dn

 : ΩR/k → Rn

This is clearly surjective and its kernel consists of constants (i.e., polynomials whose
derivatives are all 0). If c ∈ k and r ∈ R, we claim dc = 0 since

d(c · r) = c · dr because of rule 1 in definition A.4.22

= c · dr + r · dc because of rule 3 in definition A.4.22

so r · dc = 0 for all r ∈ R including 1. It follows that the kernel of the map in equa-
tion A.4.6 is 0.

If f ∈ k[X1, . . . , Xn] then

(A.4.7) d f =
∂ f

∂X1
· dX1 + · · ·+

∂ f
∂Xn

· dXn

The module of Kähler differentials determines a great deal of information about
a ring. If V is an irreducible affine variety, corollary A.4.32 on page 416 shows that
Ωk[V]/k determines the dimension of a V, and corollary A.4.35 on page 418 shows that it
determines the tangent space (technically, the cotangent space) at each point of V. Finally,
theorem 3.5.12 on page 155 proves that it defines the cotangent bundle, under the Serre
correspondence (theorem 3.5.9 on page 154).

In order to prove these statements, we need to develop some properties of Kähler
differentials. We begin by showing that they are well-behaved with respect to localiza-
tion:

PROPOSITION A.4.26. If R is a k-algebra and S ⊂ R is a multiplicative set, then there
exists a natural isomorphism

e: ΩS−1R/k → S−1ΩR/k = S−1R⊗R ΩR/k

defined by

e
(

d
( r

s

))
=

s · dr− r · ds
s2

REMARK. If K = k(X1, . . . , Xn), this and example A.4.25 imply that ΩK/k is a
vector-space of dimension n with basis dX1, . . . , dXn — just regard K as a localization
of the polynomial ring.

PROOF. The composite

R→ S−1R u−→ ΩS−1R/k

is a derivation (where u is the universal derivation for ΩS−1R/k), so it induces a unique
map

g: ΩR/k → ΩS−1R/k

which gives rise to a unique map

g⊗ 1: S−1R⊗R ΩR/k → ΩS−1R/k
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making the diagram

S−1R⊗R ΩR/k
g
// ΩS−1R/k

S−1R⊗R R

1⊗u1

OO

S−1R

u

OO

commute, where u1: R→ ΩR/k is the universal derivation.
To define the inverse of g, set

v
( r

s

)
=

s · dr− r · ds
s2 ∈ S−1ΩR/k

We must verify that this is well-defined. If (r/s) ∼ 0, then

s′ · r = 0

for some s′ ∈ S, so
r · ds′ + s′ · dr = 0

and

s′2 · v
( r

s

)
= s′2 · s · dr− r · ds

s2 =
s′2 · dr

s
= − s′ · r · ds′

s
= 0

so v(r/s) ∼ 0 in S−1ΩR/k. It is straightforward to verify that v is a derivation, so the
universal property of ΩS−1R/k implies the existence of a homomorphism

e: ΩS−1R/k → S−1ΩR/k

that makes the diagram

ΩS−1R/k
e // S−1ΩR/k

S−1R

u

OO

S−1R

v

OO

commute. �

To compute modules of Kähler differentials in general, we use the a special case of
the conormal exact sequence:

LEMMA A.4.27 (Conormal exact sequence). If f : R→ S is a surjective homomorphism
of algebras over a field k with kernel A, then the sequence

(A.4.8)
A

A2
d−→ S⊗R ΩR/k

t−→ ΩS/k → 0

is exact. Here d sends x ∈ A to 1⊗ u(x) ∈ S⊗R ΩR/k (where u: R → ΩR/k is the universal
derivation) and t sends s⊗ da ∈ S⊗R ΩR/k to s · d( f (a)) ∈ ΩS/k.

PROOF. Since ΩS/k is generated by elements d( f (a)), the map t is surjective and is
a homomorphism of S-modules when we equip S⊗R ΩR/k with the action of S coming
from the tensor product.

The map d is defined on A but is a map to

S⊗R ΩR/k =

(
R
A

)
⊗R ΩR/k =

ΩR/k
A ·ΩR/k

so its kernel contains A2 and it really defines a map from A/A2. The composite t ◦ d is
clearly 0. We show that

S⊗R ΩR/k
im d

∼= ΩS/k

by showing that they both have the same universal property (see proposition A.4.24 on
page 412).
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We define a derivation

z: S→ S⊗R ΩR/k
im d

by sending s ∈ S to 1⊗ dr where r ∈ R is any element with f (r) = s. If f (r1) = f (r2) = s,
then

1⊗ dr1 ≡ 1⊗ dr2 (mod im d)
so this is well-defined. This map is a derivation because of the identities in ΩR/k, and
proposition A.4.24 on page 412 implies the existence of a unique homomorphism

ΩS/k →
S⊗R ΩR/k

im d
and its composite with t is the identity map (since it is unique). On the other hand, any
derivation

α: S→ M
(where M is an S-module) induces a derivation

β = α ◦ f : R→ M

where the R-action on M is given by composition with f , and (by proposition A.4.24 on
page 412) a unique map

ΩR/k → M
and a unique map

S⊗R ΩR/k → S⊗R M = M
since M is an S-module. This clearly vanishes on im d so it defines a unique homomorph-
ism

S⊗R ΩR/k
im d

→ M

making the appropriate version of diagram A.4.5 on page 412 commute. The conclusion
follows. �

Lemma A.4.27 on the facing page also gives us a way to compute ΩS/k and explore
its properties:

COROLLARY A.4.28. If S = k[X1, . . . , Xn]/A and A = ( f1, . . . , fm), with projection
g: k[X1, . . . , Xn]→ S, define the Jacobian matrix by

Ji,j = g

(
∂ fi
∂Xj

)
for i = 1, . . . , m and j = 1, . . . , n (compare this with equation 3.3.2 on page 120). This defines a
module-homomorphism

J: Sm → Sn

that fits into an exact sequence

Sm J−→ Sn → ΩS/k → 0

REMARK. In other words, ΩS/k is the cokernel of the Jacobian map.

PROOF. This follows immediately from lemma A.4.27 on the facing page with R =
k[X1, . . . , Xn], ΩR/k = Rn (by example A.4.25 on page 413) so S⊗R ΩR/k = Sn. The def-
inition of the Jacobian map follows from the definition of the map, d, in equation A.4.8
on the facing page and equation A.4.7 on page 413. �

We will be concerned with the question of when the leftmost map in the cornormal
sequence is injective — and even split injective. In this case, the conormal sequence will
effectively compute ΩR/k.

It is often said that Kähler differentials “linearize” rings, converting tensor products
into direct sums:
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COROLLARY A.4.29. If A and B are be finitely generated k-algebras with R = A⊗k B,
then

ΩR/k = R⊗A ΩA/k ⊕ R⊗B ΩB/k

PROOF. First note that the result is true for A = k[X1, . . . , Xn] and
B = k[Y1, . . . , Ym] by example A.4.25 on page 413. Furthermore, if A = k[X1, . . . , Xn]/A
and B = k[Y1, . . . , Ym]/B, then

A⊗k B = k[X1, . . . , Xn, Y1, . . . , Ym]/A+B

(see corollary 2.7.2 on page 93). The conclusion follows from the fact that the Jacobians
satisfy

JA+B =

[
JA 0
0 JB

]
since ∂Xi/∂Yj = ∂Yk/∂X` = 0. �

We get an immediate corollary:

COROLLARY A.4.30. If A is a finitely generated k algebra, and R = A[X], then

ΩR/k = R⊗A ΩR/k ⊕ R · dX

PROOF. This follows immediately from corollary A.4.29 and R = A⊗k k[X]. �

The corollary above is used to show how Kähler differentials behave with respect
to finite extensions of fields:

COROLLARY A.4.31. Let F be a finitely generated field over k and let F ⊂ G be a finite
separable extension. Then

ΩG/k = G⊗F ΩF/k

REMARK. If F is a finite extension of k, this implies that ΩF/k = 0 (since Ωk/k = 0).
Separability is actually necessary here: Suppose k = Zp(X) and F = k(X1/p) =

k[Y]/(Yp − X), a finite inseparable extension. The conormal exact sequence is

(Yp − X)
∂/∂Y−−−→ F⊗k[Y] Ωk[Y]/k → ΩF/k → 0

The derivative of Yp − X vanishes identically and Ωk[Y]/k = k[Y] · dY, so that

ΩF/k = F⊗k[Y] Ωk[Y]/k = F · dY 6= 0

PROOF. Since G is a finite extension of F, it is algebraic and there exists an element
x ∈ G such that G = F[x]. Let q(X) ∈ F[X] be the minimal polynomial of x. Then
ΩF[X]/k = F[X]⊗F ΩF/k ⊕ F[X] · dX and

G⊗F[X] ΩF[X]/k = G⊗F ΩF/k ⊕ G · dX

so we get an exact sequence

(q)/(q2)→ G⊗F ΩF/k ⊕ G · dX → ΩG/k → 0

where the image of q(X) is q′(X) · dX (via the chain-rule, etc). Since the extension is
separable, q′(X) 6= 0 (see lemma A.2.16 on page 376) hence its image in G is invertible.
It follows that the image of dX in ΩG/k is 0. �

Now we can prove that the module of Kähler differentials determines the dimen-
sion of an affine k-algebra:

COROLLARY A.4.32. Let k be a field of characteristic 0 and let A be an affine k-algebra
that is an integral domain with field of fractions F. Then

dimF F⊗A ΩA/k = dim A

REMARK. Of course, dim A denotes the Krull dimension.
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PROOF. If n = dim A, the Noether Normalization Theorem ( 2.2.2 on page 39) im-
plies that A is an integral extension of a sub-ring B = k[X1, . . . , Xn]. Since A is a finitely
generated module over B, its field of fractions is one over G = k(X1, . . . , Xn), i.e. a fi-
nite extension. This is also separable1, by lemma A.2.17 on page 377. Example A.4.25 on
page 413 and proposition A.4.26 on page 413 imply that ΩG/k = Gn and corollary A.4.31
on the preceding page implies that

ΩF/k
∼= F⊗G ΩG/k = Fn

But proposition A.4.26 on page 413 implies that ΩF/k
∼= F⊗A ΩA/k and the conclusion

follows. �

To proceed further, we need the following rather odd lemma:

LEMMA A.4.33. Let f : A → B be a homomorphism of k-algebras and let g: A → B be a
homomorphism of abelian groups such that g(A)2 = 0. Then f + g: A→ B is a homomorphism
of k-algebras if and only if g is a derivation in the sense that

(A.4.9) g(a1 · a2) = f (a1) · g(a2) + g(a1) · f (a2)

PROOF. This follows by direct computation: if a1, a2 ∈ A, we get

( f + g)(a1 · a2) = ( f + g)(a1) · ( f + g)(a2)

f (a1) · f (a2) + g(a1 · a2) = ( f (a1) + g(a1)) · ( f (a2) + g(a2))

= f (a1) · f (a2) + f (a1) · g(a2)

+g(a1) · f (a2) + g(a1) · g(a2)

Subtracting f (a1) · f (a2) from both sides and plugging in g(a1) · g(a2) = 0 gives us
equation A.4.9. �

This lemma allows us to prove a sharper version of the conormal exact sequence:

THEOREM A.4.34. If f : A→ B is a surjective homomorphism of k-algebras with kernel K,
then the map d in the conormal sequence

(A.4.10)
K

K2
d−→ B⊗A ΩA/k

1⊗D f−−−→ ΩB/k → 0

is a split injection if and only if there exists a homomorphism

g: B→ A
K2

splitting the projection
A
K2 →

A
K

= B

REMARK. When A is a polynomial algebra, ΩA/k is a free module and this result
guarantees that ΩB/k is a direct summand of a free module — i.e., a projective module. If
B = k[V] and ΩB/k is projective, then ΩB/k represents a vector-bundle on V under the
Serre correspondence (theorem 3.5.9 on page 154).

PROOF. We begin by reducing to the case where K2 = 0. The conormal sequence
for A→ A/K2 is

K2 d−→ A/K2 ⊗A ΩA/k → Ω(A/K2)/k → 0
so

Ω(A/K2)/k
∼= ΩA/k

K2 ·ΩA/k + im d(K2)

1This is the only place where we use the hypothesis that the characteristic of k is 0.
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Since d is a derivation, d(a1a2) = a1d(a2) + a2d(a1), so d(K2) ⊂ K ·ΩA/k. It follows that

B⊗A ΩA/k

=
ΩA/k

K ·ΩA/k
=

ΩA/k
K2 ·ΩA/k + im d(K2) + K ·ΩA/k

= B⊗A Ω(A/K2)/k

so, without loss of generality, we can assume K2 = 0.
Now suppose d is split by a map σ: B⊗A ΩA/k → K. If γ = f ⊗ 1: ΩA/k = A⊗A

ΩA/k → B⊗A ΩA/k, then d is the restriction of γ ◦ u to K (recall that u: A→ ΩA/k is the
universal derivation) and we can define

δ = σ ◦ γ ◦ u: A→ K ⊂ A

— a k-linear derivation. Lemma A.4.33 on the previous page implies that

(1− δ): A→ A

is a homomorphism of k-algebras. If x ∈ K then δ(x) = σ ◦ γ ◦ u(x) = x, since σ splits
d = γ ◦ u . It follows that (1− δ)(x) = 0 and 1− δ induces a map

ξ: B→ A

inducing a map B→ A. Now f ◦ ξ = f ◦ (1− δ) = f , since f ◦ δ = 0 because the image
of δ lies in K. It follows that ξ splits f and that there exists a map Dξ splitting D f in
equation A.4.10 on the preceding page.

Conversely, suppose that τ: B→ A is a map splitting f : A→ B. If δ = 1− τ ◦ f : A→
A, then δ(A) ⊂ K and lemma A.4.33 on page 417 (and the fact that K2 = 0) shows
that δ is a derivation from A → K. The universal properties of ΩA/k implies that this
corresponds to a homomorphism of A-modules

δ′: ΩA/k → K

such that δ′ ◦ u = δ. The A-linearity of δ′ implies that δ′(K ·ΩA/k) = 0 so that δ′ induces
a homomorphism

δ′′: B⊗A ΩA/k → K

We claim that this splits d in equation A.4.10 on the previous page. If x ∈ K, then

δ′′ ◦ d(x) = δ′ ◦ u(x) = δ(x) = (1− τ ◦ f )(x) = x

The conclusion follows. �

The following result is interesting when R = k[V]m = OV,p:

COROLLARY A.4.35. If (R,m) is a local algebra over a field k with R/m = k, then the
natural map

m

m2 → k⊗R ΩR/k

is an isomorphism.

REMARK. Suppose A = k[V] for an irreducible affine variety, V. This result, com-
bined with corollary A.4.26 on page 413 implies that

k⊗Am
(Am ⊗A ΩA/k) = k⊗A ΩA/k =

m

m2

for all maximal ideals m ⊂ A. In the rightmost tensor product, k is an A-module via the
projection A → A/m = k. It follows that ΩA/k determines the cotangent spaces at all
points of V. This supports the notion that ΩA/k corresponds to the cotangent bundle of
V (if one exists).
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PROOF. Just apply lemma A.4.27 on page 414 to the exact sequence

0→ m→ R→ k→ 0

and use the fact that Ωk/k = 0. This implies that the map is surjective. Theorem A.4.34
on page 417 implies that this map is also injective (the fact that R is a k-algebra implies
the existence of a map k→ R that splits the projection to the quotient). �

LEMMA A.4.36. Let (R,m) be a noetherian local domain with field of fractions F, and let
k = R/m. If M is a finitely-generated R-module then

(A.4.11) dim F⊗R M = dim k⊗R M

if and only if M is free.

PROOF. The dimensions mentioned above are clearly equal if M is free. To see the
converse, let

Rn → M

be a surjective map with kernel K so we have a short exact sequence

0→ K → Rn → M→ 0

and the sequence
0→ K⊗R F → Fn → M⊗R F → 0

is also exact since F is flat over R (see lemma A.5.60 on page 461). In addition

(A.4.12) K⊗R k→ kn → M⊗R k→ 0

is also exact. Equation A.4.11 and counting dimensions imply that this second exact
sequence is also short exact (so that K ⊗R k → kn is injective). Since this is true for any
surjection Rn → M, choose n = dim k ⊗R M. Then f : Rn → M has the property that
f ⊗ 1: Rn ⊗R k→ M⊗R k is surjective so(

M
im f

)
⊗R k = 0

Nakayama’s lemma (corollary A.1.80 on page 363) implies that M/im f = 0, i.e., f is
surjective. The fact that equation A.4.12 is a short exact sequence implies that K⊗R k = 0
and Nakayama’s lemma tells us that K = 0. �

EXERCISES.

4. If k → K is an extension of fields of characteristic 0 and f1, . . . , fm ∈ K, show
that { f1, . . . , fm} are algebraically independent if and only if {d f1, . . . , d fm} ∈ ΩK/k are
linearly independent.

5. If F is the field of fractions of Q[[T]], show that dim ΩF/Q is uncountable, so
ΩQ[[T]]/Q is uncountably generated over Q.
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A.4.3. The Jacobson radical and Jacobson rings. In this section, we give a
very brief treatment of a construct similar to the nilradical.

DEFINITION A.4.37. If R is a commutative ring, the Jacobson radical, J(R),
of R is defined by

J(R) =
⋂

maximal m⊂R

m

— the intersection of all of the maximal ideals of R.

REMARK. Since the nilradical is the intersection of all prime ideals and
maximal ideals are prime, it is easy to see that

N(R) ⊂ J(R)

is always true.

DEFINITION A.4.38. A commutative ring, R, is called a Jacobson ring if for
any ideal I ⊂ R √

I =
⋂

I⊂m
m

where the intersection is taken over all maximal ideals containing I.

REMARK. The term Jacobson ring was coined by Krull in [97] in honor of
the notable American mathematician, Nathan Jacobson (1910–1999). Krull
used Jacobson rings to generalize Hilbert’s Nullstellensatz (theorem 2.2.5 on
page 41). Because of their relation to the Nullstellensatz, they are sometimes
called Hilbert rings or Jacobson-Hilbert rings.

Theorem A.1.46 on page 344 shows that
√
I is the intersection of all prime

ideals containing I. In a Jacobson ring, there are “enough” maximal ideals so
the corresponding statement is true for the primes that are maximal.

We can characterize Jacobson rings by how prime ideals behave:

PROPOSITION A.4.39. The following statements are equivalent
(1) R is a Jacobson ring
(2) every prime ideal p ⊂ R satisfies

(A.4.13) p =
⋂

p⊂m
m

where the intersections is taken over all maximal ideals containing p.
(3) J(R′) = 0 for every quotient, R′, of R that is an integral domain.

PROOF. If R is Jacobson, the statement is clearly true because prime ideals
are radical, so 1 =⇒ 2. Conversely, if I ⊂ R is any ideal, theorem A.1.46
on page 344 implies that

√
I is the intersection of all prime ideals that contain

I and equation A.4.13 implies that each of these is the intersection of all the
maximal ideals that contain it. It follows that the condition in definition A.4.38
on page 420 is satisfied, so 2 =⇒ 1. Statement 2 is equivalent to statement 2
because R′ = R/p for some prime ideal and lemma A.1.24 on page 336 implies
that the maximal ideals of R/p are in a one to one correspondence with the
maximal ideals of R containing p. �

This immediately implies:
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COROLLARY A.4.40. Every quotient of a Jacobson ring is Jacobson.

It is not hard to find examples of Jacobson rings:

PROPOSITION A.4.41. A principle ideal domain is a Jacobson ring if and only if
it has an infinite number of prime ideals.

REMARK. We immediately conclude that
(1) any field is a Jacobson ring,
(2) Z is a Jacobson ring,
(3) k[X] is a Jacobson ring, where k is any field. An argument like that

used in number theory implies that k[X] has an infinite number of
primes.

PROOF. We use the characterization of Jacobson rings in proposition A.4.39
on the facing page. Let R denote the ring in question — this is a unique factor-
ization domain (see remark A.1.38 on page 342). All of the prime ideals of R
are maximal except for (0). It follows that all prime ideals are equal to the in-
tersection of maximal ideals that contain them, with the possible exception of
(0).

If there are only a finite number of prime ideals, (x1), . . . , (xk) then

(x1) ∩ · · · ∩ (xk) = (x1 · · · xk) 6= (0)

so R fails to be Jacobson.
If there are an infinite number of prime ideals and x 6= 0 ∈ R is an arbitrary

element, then x factors as a finite product of primes. It follows that there exists
a prime not in this factorization so that x /∈ J(R) — since nonzero prime ideals
are maximal. It follows that the intersection of all maximal ideals that contain
(0) is (0) and the ring is Jacobson. �

It is well-known that Jacobson rings are polynomially-closed: if J is a Jacobson
ring, so is J[X]. To prove this, we need what is widely known as the Rabinowich
Trick (which first appeared in [137]):

LEMMA A.4.42. The following statements are equivalent:
(1) the ring R is Jacobson
(2) if p ⊂ R is any prime ideal and S = R/p has an element t ∈ S such that

S[t−1] is a field, then S is a field.

PROOF. If R is Jacobson, so is S. The prime ideals of S[t−1] are those of
S that do not contain t. Since S[t−1] is a field, it follows that t is contained in
every nonzero prime ideal. If any nonzero prime ideals existed in S, t would
be contained in them. Since R is Jacobson, so is S and J(R) = 0 (see proposi-
tion A.4.39 on page 420), so there cannot exist any nonzero prime ideals, and S
must be a field.

Conversely, suppose the hypotheses are satisfied and p ⊂ R is a prime ideal
with

p (
⋂

p⊂m
m

where the intersection is taken over all maximal ideals containing p. We will
derive a contradiction.
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If t ∈ ⋂
p⊂mm \ p , the set of prime ideals, q, with t /∈ q has a maximal

element (by Zorn’s Lemma — A.1.26 on page 338), Q. This ideal is not maximal
since t is contained in all maximal ideals, so R/Q is not a field. On the other
hand Q generates a maximal ideal of R[t−1] so

R[t−1]/Q · R[t−1] = (R/Q)[t−1]

(see lemma A.5.60 on page 461) is a field. The hypotheses imply that R/Q is
also a field — which is a contradiction. �

We need one more lemma to prove our main result:

LEMMA A.4.43. Let R be a Jacobson domain and let S be an algebra over R gen-
erated by a single element, i.e. S = R[α] and an integral domain. If there exists an
element t ∈ S such that S[t−1] is a field, then R and S are both fields, and S is a finite
extension of R.

PROOF. Let F be the field of fractions of R. We have S = R[X]/p where
p ⊂ R[X] is a prime ideal and X maps to α under projection to the quotient.
We claim that p 6= (0). Otherwise, there would exist an element t ∈ R[X]
that makes R[X][t−1] a field. Since R[X][t−1] = F[X][t−1], the fact that F[X] is
known to be Jacobson (by proposition A.4.41 on page 421) and lemma A.4.42
on the preceding page imply that F[X] is also a field, which is a contradiction.

Since p 6= 0, let p(X) ∈ p be any nonzero polynomial

pnXn + · · ·+ p0

that vanishes in S. In S[p−1
n ] we may divide by pn to get a monic polynomial

— showing that α is integral over R[p−1
n ] (see definition A.4.1 on page 403) so

corollary A.4.6 on page 405 implies that S[p−1
n ] is integral over R[p−1

n ].
Let

(A.4.14) cntn + · · ·+ c0 = 0

be a polynomial that t satisfies in S (factor off copies of t to guarantee that c0 6=
0). Now, invert pnc0 in R and S, so we get S[(pnc0)

−1] integral over R[(pnc0)
−1].

After doing this, we can divide equation A.4.14 by c0tn in S[(c0 pn)−1, t−1] to get
a monic polynomial for t−1

t−n +

(
c1

c0

)
t−(n−1) + · · ·+ cn

c0
= 0

It follows that S[(c0 pn)−1, t−1] is integral over R[(pnc0)
−1]. Since S[t−1]

is a field, so is S[(c0 pn)−1, t−1] (the same field) and proposition A.4.9 on
page 406 implies that R[(pnc0)

−1] is also a field. The fact that R is Jacobson,
and lemma A.4.42 on the preceding page implies that R is also a field. So
R = R[p−1

n ] and R[α] = S is integral over R. Proposition A.4.9 on page 406
applied a second time implies that S is also a field and the conclusion
follows. �

We are now ready to prove the main result:

THEOREM A.4.44. If R is a Jacobson ring, any finitely generated algebra over R
is also a Jacobson ring.
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REMARK. This result provides a huge number of Jacobson rings:
• Z[X1, . . . , Xn]
• all affine k-algebras (see definition 2.4.13 on page 67). Hilbert’s Null-

stellensatz (theorem 2.2.5 on page 41) already proved that affine k-
algebras were Jacobson rings. In fact, theorem A.4.44 is often regarded
as a generalization of the Nullstellensatz.

PROOF. We start with S = R[α]. The general case follows by a simple in-
duction. If p ⊂ S is a prime ideal, then S/p will be an integral domain and
the image of R in S/p will be a Jacobson domain. If there exists t ∈ S/p such
that (S/p) [t−1] is a field, lemma A.4.43 implies that S/p (and, for that mat-
ter R/R ∩ p) is also a field — satisfying the conditions of lemma A.4.43 on the
preceding page. It follows that S is Jacobson. �

It is also easy to find non-Jacobson rings:

EXAMPLE A.4.45. If t = 2 ·Z ⊂ Z, then Zt, is the ring2 of rational numbers
with odd denominators. This is a local ring with a unique maximal ideal, 2 ·
Z(2) so J(Zt) = 2 ·Zt but N(Zt) = 0, since it is an integral domain.

This example induces many more

EXAMPLE A.4.46. Let R = Zt[X1, . . . , Xn] be a polynomial ring over Zt

from example A.4.45 above. The maximal ideals of Q[X1, . . . , Xn] are of the
form (X1 − q1, . . . , Xn − qn). If we restrict the qi to be in Zt, we get ideals of R
that are no longer maximal because the quotient of R by them is Zt, which is
not a field. We can make these ideal maximal by adding one additional element.
The ideals

L(q1, . . . , qn) = (2, X1 − q1, . . . , Xn − qn)

are maximal because the quotient of R by them is Z2. The intersection of the
ideals L(q1, . . . , qn) contains (at least) (2) or 2 · R. Since R is an integral domain,
N(R) = 0 but (2) ⊂ J(R). So R is not Jacobson, either.

�

A.4.4. Discrete valuation rings. In this section we define a class of rings that is
important in algebraic geometry, especially in the theory of divisors in section 5.9 on
page 277. Their main property is that they have an especially simple ideal-structure.

Krull introduced them with the concept of valuation in his work on algebraic num-
ber theory in [92]. A valuation on a field is a function that can be used to define a metric
on this field. We have already seen an example of this in claim A.1.5 on page 328 — the
function v(x), there, is an example of a valuation.

DEFINITION A.4.47. Let F be a field and let F× ⊂ F denote the subset of nonzero
elements. A discrete valuation on F is a surjective function

v: F× → Z

with the properties:
(1) v(x · y) = v(x) + v(y) for all x, y ∈ F×

(2) v(x + y) ≥ min(v(x), v(y))

2We do not use the notation Z(2) because that would conflict with the notation for 2-adic
integers (see example A.5.30 on page 447).



424 A. ALGEBRA

REMARK. Statement 2 implies that v(1) = v(1 · 1) = v(1) + v(1) = 0. If 0 < α < 1
is some real number, it is not hard to see that

αv(∗): F× → [0, 1]

defines a metric on F, where we define the metric of 0 to be 0.

The definition of valuation easily implies the following properties:

PROPOSITION A.4.48. Let F be a field with valuation v: F× → Z. Then

(1) v(x−1) = −v(x) for all x ∈ F∗, since v(x · x−1) = v(1) = 0 = v(x) + v(x−1).
(2) v(−1) = 0, because v(1) = v((−1) · (−1)) = v(−1) + v(−1) if the characteristic

of F is 6= 2. If it is 2, then −1 = 1, so the statement still holds.
(3) v(−x) = v(x), because −x = x · (−1).
(4) if v(x) > v(y) then v(x + y) = v(y). Certainly, it must be ≥ v(y) but, if we write

y = x + y− x, we get v(y) ≥ min(v(x + y), v(x)).

It is easy to find examples of valuations:

EXAMPLE A.4.49. If F = Q and p ∈ Z is any prime then we can define the p-adic
valuation, vp, as follows:

For any q ∈ Q we have a unique representation

q = ∏ pni
i

where the pi are primes and ni ∈ Z are integers (which are negative if a prime only
occurs in the denominator of q). If p = pj, define

vp(q) = nj

It is well-known that the p-adic valuations constitute all of the discrete valuations
on Q — see [89].

If a field, F, has a valuation
v: F× → Z

proposition A.4.48 implies that the set of elements x ∈ F with v(x) ≥ 0 form a ring, i.e.,
are closed under addition and multiplication.

Other interesting examples are provided by power-series rings and variants

EXAMPLE A.4.50. If k is a field, R = k[[X]] is the ring power-series in X and F =
k((X)) is the field of fractions of R, exercise 46 on page 370 implies that every element
in F can be written uniquely in the form

f = Xα · r
with r ∈ R. It follows that F is a field with valuation given by v( f ) = α. The subring of
elements with a valuation ≥ 0 is precisely R ⊂ F.

There are valuations that are not discrete in the sense above:

EXAMPLE A.4.51. We can also define the field of Puiseux series, discovered by Isaac
Newton in 1676 ([123]) and rediscovered by Victor Puiseux ([135]) in 1850:

k{{X}} =
∞⋃

n=1
k((X1/n))

An argument analogous to that used in the power-series case implies that every element
of k{{X}} can be uniquely written in the form

f = Xq ·
(

a0 + a1X1/n + a2X2/n + · · ·
)

for some n ∈ Z, some q ∈ Q, and a0 6= 0 ∈ k. We can define the valuation of f to be q.
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REMARK. If k is algebraically closed and of characteristic 0, it turns out that k{{X}}
is the algebraic closure of k((X)). Newton sketched a proof in a letter he wrote in 1676.
See [127] for a short modern proof.

DEFINITION A.4.52. Let R be an integral domain with field of fractions F. Then R
is a discrete valuation ring if there exists a valuation

v: F× → Z

such that
R = {x ∈ F|v(x) ≥ 0}

This ring has an ideal
m = {x ∈ F|v(x) > 0}

The notation for a discrete valuation ring is (R,m).

REMARK. The properties of a valuation (in proposition A.4.48 on the facing page)
imply that m is an ideal and that all x ∈ R \ m are units, so m is the unique maximal
ideal, and R is a local ring.

For the p-adic valuation on Q, the corresponding discrete valuation ring is Rp ⊂ Q

of fractions whose denominator is relatively prime to p (when it is reduced to the lowest
form). The maximal ideal is p · Rp.

As mentioned above, discrete valuation rings have an extremely simple
ideal-structure:

LEMMA A.4.53. Let (R,m) be a discrete valuation ring defined by a valuation

v: F× → Z

on the field of fractions, F, of R. Then there exists an element r ∈ R such that m = (r) and all
ideals of R are of the form (rn) for n ∈ Z+.

PROOF. Suppose u ∈ R has v(u) = 0. Then v(u−1) = 0 also, so u is a unit. If I ⊂ R
is an ideal, let x ∈ I be the element with the smallest valuation. If y ∈ I, then x−1y ∈ F
has a valuation v(y) − v(x) ≥ 0 so x−1y ∈ R and y = x · x−1y and I = (x), and all
ideals are principal. It follows that m = (r) and v(r) = 1 (since the valuation-map is
surjective).

Suppose y ∈ R has the property that v(y) = n. Then r−ny has valuation 0 so it is a
unit and (y) = (rn). �

It is interesting to determine the properties a general ring must have to be a discrete
valuation ring:

LEMMA A.4.54. Let R be a noetherian local domain with maximal ideal m ∈ R and suppose
that this is the only prime ideal (other than the trivial prime ideal, (0)). Then R is a discrete
valuation ring if and only if it is integrally closed in its field of fractions.

PROOF. First, we show that a discrete valuation ring is integrally closed. If F is the
field of fractions of R and x/y ∈ F is integral over R, then

(x/y)n + an−1(x/y)n−1 + · · ·+ a0 = 0

with the ai ∈ R. If v(x) < v(y) then

v((x/y)n + an−1(x/y)n−1 + · · ·+ (x/y)a1) = v(−a0) ≥ 0

Proposition A.4.48 on the preceding page implies that

v((x/y)n + an−1(x/y)n−1 + · · ·+ (x/y)a1) = v((x/y)n) < 0

which is a contradiction. It follows that v(x) ≥ v(y) and x/y ∈ R.
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Now we work in the other direction: assume R satisfies the hypotheses (i.e., it is
a noetherian local domain with a unique prime ideal) and show that it is a discrete
valuation ring if it is integrally closed.

For every u ∈ m and v ∈ R \ (u) define3

(A.4.15) (u: v) = {r ∈ R|rv ∈ (u)}
This is easily verified to be an ideal and nonempty (since it contains u at least). Let (a: b)
be the maximal such ideal (with respect to inclusion). We claim that it is a prime ideal.
If xy ∈ (a: b), then xyb ∈ (a). Note that (a: yb) ⊇ (a: b). If x, y /∈ (a: b), then yb /∈ (a) and
x ∈ (a: yb) so (a: yb) ) (a: b), which contradicts the maximality of (a: b).

Since m is the only prime ideal of R, we have m = (a: b). We claim that m = (a/b)
(so b|a). Equation A.4.15 for (a: b) implies that (b/a) · (a: b) = (b/a) ·m ⊂ R.

If (b/a) · m 6= R then (b/a) · m must be an ideal of R, hence (b/a) · m ⊂ m. Since
R is noetherian, m must be a finitely generated R-module. Since (b/a) maps a finitely-
generated R-module to itself, proposition A.4.2 on page 403 implies that b/a is integral
over R, hence in R (because R is integrally closed). This is a contradiction (by the con-
dition above equation A.4.15), so we conclude that (b/a)m = R and m = R · (a/b) =
(a/b).

We claim that all ideals in R are principal. If not, there is a maximal non-principal
ideal I (because R is noetherian). We must have

I ⊂ m = (a/b)

Now consider
I ⊂ (b/a) · I ⊂ (b/a) ·m = R

If I = (b/a) · I, then by the reasoning above and proposition A.4.2 on page 403, we
conclude that (b/a) is integral over R, hence in R. This is the same contradiction as
before (with m) and we conclude that

I ( (b/a) · I
which implies that the ideal (b/a) · I is principal, say (b/a) · I = (x). Then we get
I = (x · a/b) which is a contradiction.

We conclude that all ideals are principal, and that R is a unique factorization domain
by remark A.1.38 on page 342. The element π = a/b that defines m must be irreducible
and a prime, so we can define a function

v: R \ {0} → Z

by setting v(x) to the highest power of π that divides x. This extends to a valuation

v: F× → Z

v(x/y) = v(x)− v(y)

and R is a discrete valuation ring. �

A.4.5. Graded rings and modules. A graded ring is a kind of ring subdivided into
distinct direct summands. These appear in the study of projective varieties and sheaf-
cohomology.

DEFINITION A.4.55. A ring, G, is called a graded ring over k if there exists a decom-
position

G = G0 ⊕ G1 ⊕ · · ·
such that Gi · Gj ⊂ Gi+j for all i, j ≥ 0. If I ⊂ G is an ideal, we say that I is a graded ideal
if

I = I0 ⊕ I1 ⊕ · · ·

3Compare this with the saturation of ideals defined in exercise 9 on page 71.
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where Ij = I ∩ Gj for all j ≥ 0. An ideal H ⊂ G is homogeneous if all of its generators
come from the same Gn for some n.

REMARK. Any ring, R, can be regarded as a graded ring, if we define R0 = R,
Ri = 0 for i > 0. A polynomial ring, k[X1, . . . , Xt] is naturally graded with gradation
given by the total degree of a monomial (where we have specified the degree of each of
the Xi):

k[X0, . . . , Xt] = k⊕ K1 ⊕ K2 ⊕ · · ·
where Kn is the vector space generated by all monomials of total degree n. For instance,
let G = k[X, Y] where X and Y are of degree 1 and let H = k[X, Y] where X is of degree
1 and Yis of degree 2. Then:

G0 = k
G1 = k · {X, Y}
G2 = k · {X2, XY, Y2}

...

and

H0 = k
H1 = k · X
H2 = k ·Y

...

so G and H are isomorphic as rings but not as graded rings.
Given graded algebras over a ring R, we can define the graded tensor product

DEFINITION A.4.56. If A, B are graded algebras over a (non-graded) ring, R, the
tensor product is the graded algebra A⊗R B defined by

(A⊗R B)n =
⊕

i+j=n
Ai ⊗R Bj

REMARK. This definition is consistent with the convention

(a⊗ b) · (c⊗ d) = (ac⊗ bd)

It is not hard to see that:

PROPOSITION A.4.57. If H ⊂ G is a homogeneous ideal of a graded ring G, it is not hard
to see that

(A.4.16)
G
H

=
∞⊕

i=0

Gi +H

H

is also a graded ring.

Here is a standard construction of a graded ring:

DEFINITION A.4.58. If a ⊂ R is an ideal in a ring, we can define a graded ring

Γ(a) = R⊕ a⊕ a2 ⊕ · · · = R[T · a] ⊂ R[T]

by giving R a degree of 0, and a a degree of 1 — or, equivalently, giving T a degree of 1.
This is called the Rees algebra of a.

We begin with
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DEFINITION A.4.59. If G is a graded ring (see definition A.4.55 on page 426), a
module, M, over G is a graded module if

M = M0 ⊕M1 ⊕ · · ·
with the property Gi ·Mj ⊂ Mi+j for all i, j ≥ 0.

If ` is an integer and M is a graded module over a graded ring, we define the `-twist
of M, denoted M(`) is defined by

M(`)i = Mi+`

REMARK. Although any k-algebra could be regarded as a graded algebra (put it all
in G0), some have a natural grading. For instance,

G = k[X0, . . . , Xn]

is naturally a graded ring by degrees of monomials, i.e., Gk consists of homogeneous
polynomials of degree k. This grading is geometrically significant.

It is not hard to see

PROPOSITION A.4.60. If I ⊂ G is a graded ideal in a graded algebra, the quotient

R =
G
I

is naturally a graded algebra with

(A.4.17) Rj =
Gj

Ij

for all j.

REMARK. Graded ideals are just graded submodules of G, regarding it as a graded
module over itself. In general, all of the results of section A.1.6 on page 352 have versions
for graded modules over graded algebras, given the following

LEMMA A.4.61. Let R = R0 ⊕ R1 ⊕ · · · be a graded ring and let M be a graded module
over R. If m ∈ M and p = ann(m) ⊂ R is prime, then p is homogeneous and p is the annihilator
of a homogeneous element of M.

PROOF. If r ∈ p, we have a unique expression r = ∑s
i=1 ri where ri is homogeneous

of degree di, with d1 < d2 < · · · < ds. We will prove that p is homogeneous by showing
that r ∈ p implies that all of the ri ∈ p. By induction on s, it suffices to show that r1 ∈ p.

Similarly, we have a unique expression m = ∑t
j=1 mj with mj homogeneous of de-

gree ei with e1 < · · · < et. We claim that r1 ·m1 = 0, since this is the term in r ·m = 0 of
lowest degree. This proves the result in the case where t = 1. Now suppose it has been
proved for all smaller values of t. The element

r1 ·m =
t

∑
j=2

r1 ·mj

is a sum of < t homogeneous components. Let q = ann(r1 ·m). By induction, we con-
clude that q is homogeneous if it is prime, and p ⊆ q. If p = q, we are done. Otherwise,
let g ∈ q \ p. Then g · r1 · m = 0 so gr1 ∈ ann(m) = p. Since p is prime and g /∈ p, we
conclude that r1 ∈ p, and p is homogeneous.

Now, since p is homogeneous, p ·mj = 0 for all j, so

p = ann(m) ⊃
t⋂

j=1
ann(mj) ⊃ p
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which implies that p =
⋂t

j=1 ann(mi) ⊃ ∏t
j=1 ann(mj). The fact that p is prime implies

that p ⊃ ann(mj) (see exercise 9 on page 338) for some j, which means that p = ann(mj).
�

With this in hand, we can easily generalize prime filtrations of modules to graded
modules:

LEMMA A.4.62. Let M be a graded module over a graded ring, R. Then there exists a finite
ascending chain of graded-submodules

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mt = M

with the property that for each i
Mi+1

Mi
∼= R

pi
(`i)

where pi ⊂ R is a homogeneous prime ideal and `i is an integer.

PROOF. The proof is exactly the same as that of theorem A.1.75 on page 359, except
that we use lemma A.4.61 on the facing page to guarantee that the ideals {pi} are all
homogeneous so that the quotients R/pi are now graded rings. The `i occur because the
natural grading of R/pi may be shifted in forming iterated quotients. �

We can also conclude something about other filtrations of modules:

DEFINITION A.4.63. If M is a module over a ring R and a ⊂ R is an ideal, a filtration

· · · ⊂ Mt ⊂ · · · ⊂ M0 = M

if called an a-filtration if a · Mn ⊆ Mn+1 for all n ≥ 0. It is called a stable a-filtration if
a ·Mn = Mn+1 for all n > n0.

REMARK. Note that these conditions only apply from some finite point on.

We can define a kind of module-analogue of the Rees algebra:

DEFINITION A.4.64. If M is a module over a ring, R, with a filtration

· · · ⊂ Mt ⊂ · · · ⊂ M0 = M

define the Rees module of this to be

Γ(M) = M0 ⊕M1 ⊕ · · ·
REMARK. If the filtration is an a-filtration for some ideal a ⊂ R then Γ(M) is natu-

rally a graded-module over Γ(a), since at ·Mn ⊆ Mn+t.

One of our main results is:

LEMMA A.4.65. If M is a finitely generated module over a ring R with an a-filtration

· · · ⊂ Mt ⊂ · · · ⊂ M0 = M

by finitely-generated submodules, for some ideal a ⊂ R, then Γ(M) is finitely generated over
Γ(a) if and only if this filtration is stable.

PROOF. If Γ(M) is finitely generated over Γ(a), then for some n

M0 ⊕ · · · ⊕Mn

generates all of Γ(M). Since the filtration is an a-filtration, we have ai ·Mn−i ⊆ Mn, so
we can really say that Mn generates

Mn ⊕Mn+1 ⊕ · · ·
and considerations of grading imply that Mn+i = ai ·Mn so the filtration is stable from
degree n on.
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Conversely, if the filtration is stable from degree n on, then Mn+i = ai ·Mn so that
Γ(M) generated by M0 ⊕ · · · ⊕Mn over Γ(a). �

The main result of this section is

THEOREM A.4.66 (Artin-Rees Theorem). Suppose R is a noetherian ring with ideal a ⊂
R. If N ⊂ M are finitely generated R-modules and M has a stable a-filtration

· · · ⊂ Mt ⊂ · · · ⊂ M0 = M

then the filtration
· · · ⊂ Mt ∩ N ⊂ · · · ⊂ M0 ∩ N = N

is also a stable a-filtration. In other words there exists an integer n such that(
ai ·Mn

)
∩ N = ai · (Mn ∩ N)

PROOF. Since R is noetherian, a is finitely generated and Γ(a) is a
finitely-generated R-algebra, hence noetherian. Since the filtration on M is stable,
Γ(M) is finitely-generated over Γ(a). It is not hard to see that, computed with respect
to the induced filtration, Γ(N) ⊂ Γ(M), which means that it is also finitely generated
(see lemma A.1.68 on page 356). The conclusion follows from lemma A.4.65 on the
preceding page). �

A.5. A glimpse of category theory

A.5.1. Introduction. Category theory is a field as general as set theory that
can be applied to many areas of mathematics. It is concerned with the patterns
of mappings between mathematical structures and the types of conclusions one
can draw from them.

Eilenberg and MacLane developed it with applications to algebraic topol-
ogy in mind, see [36]. Today, it has applications to many other fields, including
computer science — [133]

Once derided as “general nonsense,” it has gained acceptance over time.
Readers who want more than the “drive-by” offered here are invited to look at
MacLane’s classic, [104].

Here is an example of the kind of reasoning that category theory uses:
Suppose you want to define the product of two mathematical objects, A

and B. One way to proceed is to say that A × B has the following universal
property:

(1) There exist maps from A× B to A and B (projections to the factors).
(2) Given any maps f : Z → A and g: Z → B, there is a unique map

f × g: Z → A× B

compatible with the maps from Z to A, B.
This is more succinctly stated with commutative diagrams. In a diagram like

(A.5.1) U r //

t
��

V

s
��

W
b
// X

the arrows represent maps. We will say this diagram commutes if, whenever
one can reach a node along different paths, the composite maps one encounters
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are equal. For instance, the statement that diagram A.5.1 on the preceding page
commutes is equivalent to saying s ◦ r = b ◦ t.

DEFINITION A.5.1. We can define A× B by saying that,

(1) it has projection-maps p1: A× B→ A and p2: A× B→ B
(2) whenever we have a diagram with solid arrows

(A.5.2) A× B

p1

��

p2

��

A Z
f

oo
g
//

f×g

OO

B

where Z is an arbitrary “object” that maps to A and B — the dotted of
arrow exists, is unique, and makes the whole diagram commute.

In other words, we define A× B by a general structural property that does
not use the inner workings or A or B.

DEFINITION A.5.2. A category, C , is a collection of objects and morphisms,
which are maps between objects. These must satisfy the conditions:

(1) Given objects x, y ∈ C , homC (x, y) denotes the morphisms from x to
y. This may be an empty set.

(2) Given objects x, y, z ∈ C and morphisms f : x → y and g: y → z, the
composition g ◦ f : x → z is defined. In other words a dotted arrow
exists in the diagram

y

g

��
x

f

EE

g◦ f
// z

making it commute.
(3) Given objects x, y, z, w ∈ C and morphisms f : x → y,g: y → z, h: z →

w, composition is associative, i.e., h ◦ (g ◦ f ) = (h ◦ g) ◦ f : x → w. This
can be represented by a commutative diagram:

x

f

��

h◦(g◦ f )=(h◦g)◦ f
//

g◦ f

��

w

y g
//

h◦g

??

z

h

OO
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(4) Every object, x ∈ C , has an identity map 1x: x → x such that, for any
f : x → y, f ◦ 1x = 1y ◦ f = f : x → y. This is equivalent to saying that
the diagram

x

1x

��

f

��
x

f
//

f

��

y

1y

��
y

commutes.

After defining something so general, it is necessary to give many examples:
(1) The category, V , of vector-spaces and linear transformations (when

defining a category, one must specify the morphisms as well as the
objects). Given two vector spaces, V and W, the set of morphisms,
homV (V, W), is also a vector-space.

(2) The category, D , of vector-spaces where the only morphisms are iden-
tity maps from vector spaces to themselves. Categories in which the
only morphisms are identity maps are called discrete. Discrete cate-
gories are essentially sets of objects.

(3) The category, R, of rings where the morphisms are
ring-homomorphisms.

(4) The category, N , whose objects are positive integers and where the
morphisms

m→ n
are all possible n×m matrices of real numbers. Composition of mor-
phisms is just matrix-multiplication. This is an example of a category
in which the morphisms aren’t maps.

(5) The category, S , of sets with the morphisms functions mapping one
set to another.

(6) The category, T , of topological spaces where the morphisms are con-
tinuous maps.

(7) The category, MR of modules over a commutative ring, R. If
M, N ∈ MR, the set of morphisms, homMR(M, N) is usually written
homR(M, N).

DEFINITION A.5.3. A category, C , is called concrete if
(1) its objects are sets (possibly with additional structure)
(2) morphisms that are equal as set-mappings are equal in C .

REMARK. All of the examples given above except N are concrete.

We will also need the dual concept of coproduct. A coproduct of a set of objects
is essentially their union. So why not just call it the union? Well the categorical
definition below is essentially the same as that of the product, except that all of
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the arrows in definition A.5.1 on page 431 are reversed (hence, hardcore category-
theorists insist that it is the coproduct):

DEFINITION A.5.4. An object Z in a category is a coproduct of A and B if
(1) there exist maps i1: A→ Z, i2: B→ Z, and
(2) Any maps f1: A → W f2: B → W induce a unique map g: Z → W

making the diagram

W

A

f1

>>

i1
// Z

g

OO

B

f2

__

i2
oo

commute. If this is true, we write

Z = A ä B

REMARK. Note that the symbol for a coproduct is an inverted product-
symbol — which looks vaguely like a union-symbol. This is appropriate since
coproducts have the structural properties of a union. As before, the universal
property of coproducts imply that if they exist, they are unique.

Products map to their factors, and coproducts have maps from their factors.
In some cases, products and coproducts are the same.

EXAMPLE A.5.5. Products and coproducts depend strongly on the category
(and some categories do not even have these constructions):

(1) In the category of sets, the union is a coproduct. The Cartesian product
is the product, so coproducts and products are very different.

(2) In the category of modules over a ring, the direct sum is the coproduct
as well as the product.

(3) In the category of groups, the free product is the coproduct.

Category theory expresses the familiar concepts of monomorphism and
epimorphism in “arrow-theoretic” terms:

DEFINITION A.5.6. A morphism f : A→ B between objects of a category is:
(1) a monomorphism if, for any other object C and any two morphisms

g1, g2: C → A

f ◦ g1 = f ◦ g2 =⇒ g1 = g2

(2) an epimorphism if, for any other object C and any two morphisms
g1, g2: B→ C

g1 ◦ f = g1 ◦ f =⇒ g1 = g2
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EXERCISES.

1. If A and B are objects of a category C , show that, for any object W ∈ C

homC (W, A× B) = homC (W, A)× homC (W, B)

2. Prove the statement above that in the category of modules over a ring,
the product and coproduct of two modules V and W is V ⊕W. Is the same
thing true for infinite products and coproducts?

3. In a category C , if
f : A→ B

is a monomorphism, show that

homC (C, A)
homC (1, f )−−−−−−→ homC (C, B)

is a monomorphism in the category of sets.

4. If A b is the category of abelian groups, show that a map is a monomor-
phism if and only if it is injective (in the usual sense) and is an epimorphism if
and only if it is surjective.

A.5.2. Functors. A functor from one category to another is a kind of func-
tion of objects and morphisms.

DEFINITION A.5.7. Let C and D be categories. A functor

f : C → D

is a function from the objects of C to those of D — i.e., if x ∈ C then f (x) ∈ D
with the following additional property:

If h: x → y is a morphism in C , then f defines, either
• a morphism f (h): f (x) → f (y) in D — in which case f is called a

covariant functor or just a functor, or
• a morphism f (h): f (y) → f (x) in D — in which case f is called a

contravariant functor.
In addition f (1x) = 1 f (x) and f (j ◦ h) = f (j) ◦ f (h), if f is covariant or

f (j ◦ h) = f (h) ◦ f (j) is f is contravariant.

REMARK. Functors play an extremely important part in algebraic geome-
try, particularly contravariant ones.

Here are some examples:
(1) a functor f : S → S from the category of sets to itself. If x ∈ S ,

f (x) = 2x, the power-set or set of all subsets of x. If d: x → y is a
set-mapping and z ⊂ x is a subset, then d|z: z → y is a set-mapping
whose images is a subset of y. It follows that d induces a natural map

2d: 2x → 2y

and this is what we define f (d) to be.
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(2) We can define f : V → V to send a real vector-space, x ∈ V to its dual,
x∗ — the vector-space of all linear transformations η: x → R.

If m: x → y is a linear transformation, and µ: y → R is an element
of y∗, the composite η ◦ m: x → R is an element of x∗. We get a nat-
ural map m∗: y∗ → x∗ and we set f (m) = m∗. It follows that f is a
contravariant functor.

(3) If F is the category of finite dimensional vector spaces, it is well-
known that x∗∗ = x ∈ F , so the functor f defined in statement 2
above actually is a contravariant isomorphism of categories

f : F → F

(4) If G is the category of groups and R is that of commutative rings, we
can define a functor

gn: R → G

that sends a commutative ring r ∈ R to GLn(r), the group of n × n
matrices whose determinant is a unit of r. Since homomorphisms of
rings send units to units, it follows that any homomorphism of rings

h: r → s

induces a natural homomorphism of groups gn(h): GLn(r)→ GLn(s).
We can classify functors in various ways:

DEFINITION A.5.8. A functor f : C → D is:
(1) an isomorphism if it is a bijection of objects and morphisms,
(2) full if it is “surjective on morphisms” — i.e., every morphism

g: f (c1) → f (c2) ∈ D is of the form f (t) where t is a morphism
t: c1 → c2 (if f is covariant). In the contravariant case, reverse the
arrows in C or D (but not both).

(3) faithful if it is “injective on morphisms” — i.e., given morphisms
m1, m2: c1 → c2 f (m1) = f (m2) always implies that m1 = m2.

For instance, concrete categories are commonly defined as categories that
have a faithful functor to the category of sets.

Isomorphism of categories is too stringent a condition in practice. Equiva-
lence of categories is slightly weaker but very useful. To define it, we need:

DEFINITION A.5.9. Suppose C is a category and f : C → C is a functor such
that f (x) is isomorphic to x for all x ∈ C . A natural isomorphism

jx: x → f (x)

is an isomorphism defined for all objects x ∈ C with the property that, for any
morphism g: x → y the diagram

x
jx
//

g

��

f (x)

f (g)

��

y
jy
// f (y)

commutes.
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REMARK. The thing that makes an isomorphism natural is that it is defined
for all objects and in a way compatible with all maps between them. Prior to
the introduction of category theory, it was common to call certain maps natural
without giving any precise definition.

This is a special case of a natural transformation of functors:

DEFINITION A.5.10. If C , D are categories and f , g: C → D are functors, a
natural transformation

t: f → g
is a morphism

t(x): f (x)→ g(x)
defined for all x ∈ C , such that, for any morphism m: x → y the diagram

f (x)
t(x)

//

f (m)

��

g(x)

g(m)

��

f (y)
t(y)

// g(y)

commutes.

REMARK. In the notation of definition A.5.9 on the preceding page, a nat-
ural isomorphism is a natural transformation from the identity functor to f .

It is possible to form a category out of all of the functors between two cat-
egories. Natural transformations are the morphisms in this “category of func-
tors.”

Here’s an example of a natural isomorphism:

EXAMPLE A.5.11. If V is a vector-space, there is a morphism of vector-
spaces

V → V∗∗

that sends v ∈ V to the linear function, t ∈ V∗∗, on V∗ with t(r) = r(v) for
r ∈ V∗. It clearly commutes with all maps of vector-spaces. This is well-known
to be an isomorphism if V is finite-dimensional.

And here is one of a natural transformation:

EXAMPLE A.5.12. If V is a vector-space, define

f (V) = V ⊕V
g(V) = V

Now, for every vector-space, V, define

t(V): f (V)→ g(V)

to be the homomorphism that sends (v1, v2) ∈ V ⊕ V to v1 + v2 ∈ V. This is
easily verified to be a natural transformation.

In considering when two categories are “equivalent,” it turns out that re-
quiring them to be isomorphic is usually too restrictive. Instead, we require
them to be equivalent in the following sense:



A.5. A GLIMPSE OF CATEGORY THEORY 437

DEFINITION A.5.13. Given categories C and D , a pair of functors

f : C → D

g: D → C

define an equivalence of categories if there exist natural isomorphisms

jx: x → g ◦ f (x)

for all x ∈ C and
ky: y→ f ◦ g(x)

for all y ∈ D .

EXERCISES.

5. Let f be the functor defined in statement 2 on page 435 above and sup-
pose we have a morphism

m: V1 → V2

between vector spaces that is represented by a matrix, A. Describe the matrix-
representation of

f (m): V∗2 → V∗1

6. If F is the category of finite-dimensional vector-spaces, show that the
functor f defined in statement 2 on page 435 above is an equivalence of cate-
gories

f : F → F

Why isn’t it an isomorphism?

A.5.3. Adjoint functors. Adjoint functors are ones that complement each
other in a certain sense. They occur naturally in many settings — Daniel
Kan was the first to recognize these patterns (see [82]) and develop a general
concept.

As often happens in category theory, the definition is very cryptic without
several examples:

DEFINITION A.5.14. Given two categories, A and B, functors

f : A → B

g: B → A

are said to be adjoint if there exists a natural isomorphism

(A.5.3) homA (x, g(y)) = homB( f (x), y)

for all x ∈ A and y ∈ B. In this situation, f is called a left-adjoint to g and g is
called a right-adjoint to f . The collection, ( f , g, A , B) is called an adjunction.
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REMARK. Note that (with rare exceptions) f and g are not inverses of each
other.

Our terminology was taken from Hilbert space theory: U1 and U2 are ad-
joint operators if

〈U1x, y〉 = 〈x, U2y〉
in the Hilbert space, where 〈∗, ∗〉 is the inner product4. Kan was inspired by
this equation’s similarity (in appearance, not function!) to equation A.5.3 on
the previous page to name his constructs “adjoints”. Hilbert-space adjoints are
not adjoints in our sense except in certain odd settings (see [10]).

Here is an example of a common pattern — where one of the functors for-
gets extra structure an object has and regards it as something more primitive
(these are called forgetful functors):

EXAMPLE A.5.15. Let Vk be the category of vector-spaces over a field, k,
and let S be the category of sets. The functor

g: Vk → S

simply maps a vector space onto the set of its nonzero elements — it forgets the
extra structure a vector-space has. The functor

f : S → Vk

maps a set x ∈ S to
f (x) =

⊕
y∈x

k · x

— the vector-space with basis x. Any set-mapping t: x → f (V) extends uniquely
to a vector-space homomorphism

f (t): f (x)→ V

since a homomorphism of vector-spaces is determined by its effect on basis-
elements. On the other hand, any homomorphism of vector-spaces is a unique
map of their nonzero elements (regarded as sets) so we get a natural equality

homS (x, g(y) = homVk
( f (x), y)

for all y ∈ Vk and x ∈ S .

Here’s another example of adjoint functors where forgetful functors are not
involved:

EXAMPLE A.5.16. Suppose C is some category and assume that the cate-
gorical product (defined in A.5.1 on page 431) in C exists. Strictly speaking, it
is a functor

∏: C × C → C

where C × C is the category of pairs (x, y) for x, y ∈ C and morphisms are
defined in a similar way. Now consider the diagonal functor

(A.5.4) ∆: C → C × C

4In finite dimensions, U2 is the conjugate-transpose of U2.
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that sends every x ∈ C to (x, x) ∈ C × C . The definition of product, and
diagram A.5.2 on page 431 implies that every pair of morphisms

x → y
x → z

induces a unique morphism x → y ∏ z. Such pairs of morphisms are really
morphisms

∆x → (y, z) ∈ C × C

so we get an equivalence

homC×C (∆x, (y, z)) = homC (x, y ∏ z)

which implies that ∏ is a right-adjoint to ∆. In this case, the adjunction involves
a functor of two variables.

EXERCISES.

7. Example A.5.16 on the facing page shows that the diagonal functor

∆: C → C × C

in equation A.5.4 on the preceding page is a left-adjoint to the product functor

∏: C × C → C

Show that it is a right-adjoint to the coproduct functor (definition A.5.4 on
page 433), showing that a functor can be a left-adjoint to one functor and a
right-adjoint to another.

A.5.4. Limits. Limits in category theory are universal constructions some-
what like the union construction in the introduction. We will look at something
similar but more complex:

DEFINITION A.5.17. Suppose C is a category and I is a partially ordered
set of indices. Suppose {Xα}, for α ∈ I, is a sequence of objects of C . Whenever
α ≤ β suppose there is a morphism

fα,β: Xα → Xβ

and whenever α ≤ β ≤ γ the diagram

Xα

fα,β
//

fα,γ
  

Xβ

fβ,γ

��

Xγ

commutes. Then the direct limit, lim−→ Xα has
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(1) morphisms φα: Xα → lim−→ Xα that make the diagrams

(A.5.5) Xα

fα,β
//

φα
""

Xβ

φβ

��

lim−→ Xα

commute for all α, β ∈ I with α ≤ β.
(2) the universal property that whenever there is an object Z ∈ C and mor-

phisms hα: Xα → Z for all α ∈ I that make the diagrams

Xα

fα,β
//

hα
  

Xβ

hβ

��

Z

commute for all α ≤ β, then there exists a unique morphism u: lim−→ Xα →
Z that makes the diagrams

Xα
φα
//

hα

""

lim−→ Xα

u

��

Z

commute for all α ∈ I.

REMARK. To roughly summarize: whenever the X’s map to some object,
Z, in a way compatible with the fα,β’s, the direct limit also maps to Z.

Some authors require I to be a directed set, i.e., for any α, β ∈ I there exists
some γ ∈ I with α ≤ γ and β ≤ γ.

Suppose we have two objects K1 and K2 that satisfy all of the conditions
listed above. Then statement 2 above implies the existence of unique maps

K1
f−→ K2

K2
g−→ K1

The composites

K1
g◦ f−−→ K1

K2
f ◦g−−→ K2

are also unique maps satisfying all of the conditions in definition A.5.17 on the
preceding page. But the respective identity maps satisfy these conditions, so we
must have

g ◦ f = 1K1

f ◦ g = 1K2
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Note that the word “unique” is crucial to this discussion. Also note that
we have not promised that direct limits exist — only that if they exist, they are
unique (up to isomorphism). Whether they exist depends on the category.

Hardcore category-theorists prefer the term “filtered colimit” for direct
limit. It is also sometimes called the inductive limit. The term “direct limit”
seems to be favored by algebraists.

In the case where C is a concrete category (see definition A.5.3 on page 432)
we can explicitly construct the direct limit.

PROPOSITION A.5.18. Let C be a concrete category (see definition A.5.3 on
page 432) and assume the notation of definition A.5.17 on page 439. Then

(A.5.6) lim−→ Xα = ä
α∈I

Xα/∼

the coproduct (see definition A.5.4 on page 433) or union modulo an equivalence rela-
tion, ∼, defined by

xα ∼ xβ

for xα ∈ Xα, xβ ∈ Xβ if and only if there exists a γ ∈ I with α ≤ γ and β ≤ γ and

fα,γ(xα) = fβ,γ(xβ)

The maps φα: Xα → lim−→ Xα are the composites

(A.5.7) Xα →ä
α∈I

Xα →ä
α∈I

Xα/∼

REMARK. So the maps fα,β “glue together” the pieces, Xα, in the union.
Elements of the Xα are equivalent if they eventually get glued together.

Concrete categories include the category of rings, vector spaces, and sets.
Coproducts of sets are just their union. Coproducts of vector spaces are their
direct sum (see exercise 2 on page 434). Coproducts of rings are more compli-
cated (see proposition 2.7.3 on page 95) and so is the corresponding definition
of direct limit.

PROOF. Checking the commutativity of diagrams A.5.5 on the preceding
page is straightforward.

If we have morphisms hα: Xα → Z for all α ∈ I, the disjoint union also
maps to Z:

ä hα: ä
α

Xα → Z

and in a unique way compatible with the inclusions Xα ↪→ äα Xα. The commu-
tativity of the diagrams

Xα

fα,β
//

hα
  

Xβ

hβ

��

Z
implies that equivalent elements under ∼ will map to the same element of Z via⊔

hα, so that we get a well-defined map

u = ä hα/∼: ä
α

Xα/∼→ Z
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that is unique (because
⊔

hα was). Since our construction has the same universal
property as the direct limit, it must be isomorphic to it (in a unique way). �

The reader may still find the concept of direct limit hard to grasp. We claim
that direct limits are a kind of “generalized union,” something implied the fol-
lowing:

PROPOSITION A.5.19. Assuming the notation of definition A.5.17 on page 439
and that C is a concrete category, we have

(A.5.8) lim−→ Xα =
⋃
α∈I

φα(Xα)

If all of the maps fα,β are injective, then the maps φα: Xα → lim−→ Xα are also injective.

REMARK. If the fα,β are injective, the direct limit is literally a union of the
Xα.

If they are not injective, and C is a category of groups, rings, or vector-
spaces, the direct limit essentially divides out by the kernels of the fα,β — “forc-
ing them” to be injective — and then takes the union.

PROOF. Equation A.5.8 follows immediately from equations A.5.6
and A.5.7 on the previous page.

If all of the fα,β are injective, then the only way two elements x1, x2 ∈ Xα

can become equivalent is for x1 = x2 ∈ Xα. �

EXAMPLE A.5.20. Suppose I is the set of positive integers and i ≤ j is i|j.
Let

Rn = Z

[
1
n

]
Then

fn,m: Rn → Rm

when n|m, is defined to send
1
n
7→ k

m
where k = m/n. We claim that lim−→ Rn = Q. The maps fn,m are all injective and
each Rn ⊂ Q so

lim−→ Rn =
∞⋃

n=1

Rn ⊂ Q

Since every possible denominator occurs in some Rn this inclusion must actu-
ally be an equality.

DEFINITION A.5.21. In the notation of definition A.5.17 on page 439, a sub-
set I′ ⊂ I is said to be cofinal, if for every α ∈ I, there exists a β ∈ I′ such that
α ≤ β.

REMARK. Cofinal subsets are important because they determine colimits
and limits:
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PROPOSITION A.5.22. In the notation of definition A.5.17 on page 439, if I′ ⊂ I
is a cofinal subset then

lim−→ Xβ = lim−→ Xα

where α runs over I and β runs over I′.

REMARK. This is significant because direct limits are sometimes easier to
compute with cofinal subsets.

PROOF. This follows immediately from the universal properties: since all
Xβ map to lim−→ Xα, we get a unique map

lim−→ Xβ → lim−→ Xα

Since every α ∈ I is ≤ β for some β(α) ∈ I′, we get unique maps from all of the
Xα → Xβ(α) inducing a unique map to

lim−→ Xα → lim−→ Xβ

�

Recall the concept of rings of fractions in definition A.1.87 on page 368. We
can define this in terms of a universal property:

PROPOSITION A.5.23. In the category, R, of commutative rings the pair
(S−1 A, ι) has the universal property: every element of S maps to a unit in S−1 A, and
any other homomorphism f : A→ B with this property factors uniquely through ι:

A ι //

f
""

S−1 A

β

��

B

PROOF. If β exists

s
a
s
= a =⇒ β(s)β

( a
s

)
= β(a) = f (a)

so just define

β
( a

s

)
= f (a) f (s)−1

Now
a
s
=

b
t

=⇒ z(at− bs) = 0 for some z ∈ S

and this implies
f (a) f (t)− f (b) f (s) = 0

since f (z) is a unit. �

Modules of fractions also have a universal property:
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PROPOSITION A.5.24. If M is a module over a ring A with multiplicative set
S ⊂ A and N is a module over S−1 A then N is also a module over A via the standard
inclusion ι: A→ S−1 A. Any homomorphism

f : M→ N

over A extends uniquely to a homomorphism of S−1 A modules

f̄ : S−1M→ N

that makes the diagram

S−1M
f̄

// N

M

OO

f
// N

OO

where the vertical maps are homomorphisms of modules covering the map ι: A →
S−1 A.

PROOF. Left as an exercise to the reader. �

One bonus of this approach is the following (this is very similar to exam-
ple A.5.20 on page 442):

COROLLARY A.5.25. Suppose A is a commutative ring with a multiplicative set
S ⊂ A. Define an order on the elements of S via:

s1 ≤ s2 if there exists an element x ∈ R, such that s2 = x · s1.
Define maps fs,t: As → At for s, t ∈ S with t = x · s by

a
s
7→ a · x

t
Then

S−1 A = lim−→ As

REMARK. Recall the notation Ah in definition A.1.89 on page 368.
The proof below almost seems like “cheating” — we ignore algebraic sub-

tleties and give an “arrow-theoretic” argument. This was one of the early com-
plaints against category theory (and [36]).

The philosophy of category theory is that if one can prove something merely
by analyzing patterns of mappings, one should do so.

PROOF. The ring of fractions, S−1 A, and the direct limit, lim−→ As, have the
same universal property. �

If we reverse all of the arrows that occur in the diagrams of definition A.5.17
on page 439, we get another important construction — the inverse limit:

DEFINITION A.5.26. Suppose C is a category and I is a partially ordered
set of indices. Suppose {Xα}, for α ∈ I, is a sequence of objects of C . Whenever
α ≤ β suppose there is a morphism

fα,β: Xα ← Xβ
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and whenever α ≤ β ≤ γ the diagram

Xα Xβ

fα,β
oo

Xγ

fβ,γ

OO

fα,γ

``

commutes. Then the inverse limit, lim←− Xα has

(1) morphisms πα: Xα ← lim←− Xα that make the diagrams

(A.5.9) Xα Xβ

fα,β
oo

lim−→ Xα

πβ

OO

πα

bb

commute for all α, β ∈ I with α ≤ β.
(2) the universal property that whenever there is an object Z ∈ C and mor-

phisms hα: Xα ← Z for all α ∈ I that make the diagrams

Xα Xβ

fα,β
oo

Z

hβ

OO

hα

``

commute for all α ≤ β, then there exists a unique morphism u: lim←− Xα ←
Z that makes the diagrams

Xα lim−→ Xα
παoo

Z

u

OO

hα

bb

commute for all α ∈ I.

REMARK. So anything that maps to all of the X’s in a way compatible with
the maps fα,β also maps to the inverse limit.

Since the inverse limit has a universal property, it is unique up to isomor-
phism (if it exists at all!). Hardcore category-theorists prefer the term “limit”
for the inverse limit.

As with the direct limit, we have an explicit construction of the inverse limit
in categories of groups, rings, and vector-spaces:

PROPOSITION A.5.27. Let C be a category of groups, rings, or vector-spaces and
assume the notation of definition A.5.26 on the facing page. Then

lim←− Xα ⊂∏
α∈I

Xα
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is the subset of (possibly infinite) sequences

(. . . , xα, . . . )

where xα ∈ Xα for all α ∈ I, and with the property that, whenever α ≤ β, fα,β(xβ) =
xα.

The maps πβ: Xβ ← lim−→ Xα are the composites

lim←− Xα ↪→∏
α∈I

Xα → Xβ

where ∏α∈I Xα → Xβ is just projection to a factor.

REMARK. Whereas the direct limit glues together the X’s via the fα,β, the in-
verse limit selects infinite sequences compatible with the fα,β. If C is a category
of groups, rings, or vector-spaces, then fα,β will preserve this structure and the
inverse limit will also have it.

PROOF. We only have to verify that this construction has the same univer-
sal property as the inverse limit. If Z ∈ C and has maps hβ: Z → Xβ for all
β ∈ I, then we get a unique map

∏ hα: Z →∏
α∈I

Xα

—see the definition of product in diagram A.5.2 on page 431 and extend it to
an arbitrary number of factors. The commutativity of the diagrams

Xα Xβ

fα,β
oo

Z

hβ

OO

hα

``

implies that the image of ∏ hα will actually lie within lim←− Xα ⊂ ∏ Xα. This
verifies the universal property. �

As we noted earlier, direct limits are “generalized unions”. Under some
circumstances, inverse limits are like “generalized intersections:”

PROPOSITION A.5.28. Under the assumptions of proposition A.5.27, suppose the
fα,β: Xβ → Xα are injective for all α, β ∈ I. Then so is

πβ: lim←− Xα → Xβ

for all β ∈ I.
If there exists X ∈ C such that

Xα ⊂ X

for all α ∈ I and α ≤ β if and only if Xβ ⊂ Xα where fα,β: Xβ → Xα is the inclusion,
then

lim←− Xα =
⋂
α∈I

Xα
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PROOF. If all of the fα,β are injective, then a sequence

(. . . , xα, . . . )

is uniquely determined by its αth member: the βth element, xβ, to the right of xα

will be f−1
α,β (xα), and this is unique. It follows that the projection map

lim←− Xβ → Xα

is injective. Its image is the set of all xα ∈ Xα of the form fα,β(xβ) for all β with
α ≤ β.

Moving on to the second statement, we have proved that

lim←− Xα ⊂
⋂
α∈I

Xα

Equality follows from both objects having the same universal property. �

From the proof of proposition A.5.28 on the facing page, it is clear that
xβ = f−1

α,β (xα) (if it exists). If fα,β is not injective, all elements of f−1
α,β (xα) give

rise to new sequences from the β-position on. For instance:

PROPOSITION A.5.29. Under the assumptions of proposition A.5.27, suppose
that the set of indices, I, is the disjoint union of {Ij} — i.e. no α ∈ Ij is comparable
with any β ∈ Ik with j 6= k. Then

lim←− Xα︸ ︷︷ ︸
α∈I

= ∏
j

lim←− Xβ︸ ︷︷ ︸
β∈Ij

PROOF. Since the Ij are disjoint they have no influence over each other —
all sequences from Ij are paired with all sequences from Ik, j 6= k. �

It follows that lim←− Xα can be very large indeed:

EXAMPLE A.5.30. Let I be positive integers ordered in the usual way, let
p ∈ Z be a prime, and let Xn = Zpn for all n. The maps fn,m: Zpm → Zpn are
reduction modulo pn (where n ≤ m).

Then
Z(p) = lim←− Xn

is called the p-adic integers and its field of fractions is called the p-adic numbers,
Q(p). Reduction modulo pn (for all n) defines an injection

Z ↪→ Z(p)

and, like R, Z(p) is uncountable for all p. These rings were first described by Kurt
Hensel in 1897 (see [73]), with a definition wildly different from ours. Hensel
showed that one could define infinite series in Q(p) like that for ex with many
number-theoretic applications.

Technically, elements of Z(p) are “infinite series”

n0 + n1 · p + n2 · p2 + · · ·
such that 0 ≤ ni < p for all i. The image Z ⊂ Z(p) consists of the “series”
that terminate after a finite number of terms. Two such “series” are equal if
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all corresponding ni’s are equal. Define a metric on Z via the p-adic valuation
defined in A.4.49 on page 424

d(m1, m2) =

(
1
2

)vp(m1−m2)

so vp(m1 −m2) is the highest power of p such that

pk|(m1 −m2)

Then Z(p) is the completion of Z in this metric, and two elements, P, Q of Z(p)
are equal if and only if

lim
i→∞

d(Pi, Qi) = 0

where Pi and Qi are, respectively, the ith partial sums of P and Q.

Here’s another interesting example:

EXAMPLE A.5.31. Let A be a ring and let m = (X) ⊂ A[X] be an ideal.
Then

A[[X]] = lim←− A[X]/mn

On the other hand, if there is a top index in I, the inverse limit is well-
behaved:

PROPOSITION A.5.32. Under the assumptions of proposition A.5.27 on page 445,
suppose there exists γ ∈ I such that α ≤ γ for all α ∈ I. Then

lim←− Xα = Xγ

PROOF. We could do an algebraic analysis of this statement, but it is easier
to “cheat,” so our proof is: they both have the same universal property. �

EXERCISES.

8. Let C be a category and let C∞ be the category of infinite sequences

· · · → x2 → x1

of morphisms of objects of C . Then

lim←− ∗: C∞ → C

is a functor. Show that this is an adjoint of the functor

∆∞: C → C∞

x 7→ · · · 1−→ x 1−→ x

9. Suppose {Xα}, for α ∈ I, is a sequence of objects of a concrete category,
C . Whenever α ≤ β suppose there is a morphism

fα,β: Xα → Xβ
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and whenever α ≤ β ≤ γ the diagram

Xα

fα,β
//

fα,γ
  

Xβ

fβ,γ

��

Xγ

commutes. If x, y ∈ Xα map to the same element of lim−→ Xα, show that there
exists a β ≥ α such that fα,β(x) = fα,β(y).

A.5.5. Abelian categories. An abelian category is essentially one in which
morphisms of objects have kernels and cokernels. The standard example is the
category of modules over a commutative ring. The official definition is:

DEFINITION A.5.33. A category A is abelian if:
(1) it has products and coproducts of all pairs of objects,
(2) it has a zero object (which behaves like an identity for products and

coproducts),
(3) all morphisms have a kernel and cokernel:

(a) if A
f−→ B is a morphism, there exists a monomorphism K m−→ A

such that f ◦m = 0, and if C
g−→ A is any morphism with f ◦ g = 0,

there exists a unique morphism v: C → K such that

C
g
//

v
��

A

K

m

OO

commutes.
(b) if A

f−→ B is a morphism, there exists an epimorphism B e−→ E such
that e ◦ f = 0, and if g: B → D is any morphism with g ◦ f = 0,
then there exists a unique morphism v: E→ D such that

B
g
//

e
��

D

E

v

OO

(4) the set of morphisms between two objects, homA (A, B), has the struc-
ture of an abelian group for which composition is distributive over
sums.

If F: A → A ′ is a functor between abelian categories, F is said to be additive
if, whenever we have morphisms g1, g2: M→ N in A ,

F(g1 + g2) = F(g1) + F(g2): F(M)→ F(N)
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REMARK. Since kernels and cokernels are defined by universal properties,
they are unique up to isomorphism. Also note that the kernel and cokernel de-
fined here are “arrow-theoretic” versions of the more familiar algebraic concepts
— i.e., morphisms.

Examples of additive functors include M⊗Z ∗ and homA (M, ∗). The func-
tor F: A b → A b that sends an abelian group G to G ⊗Z G is an example of a
functor that is not additive (it is “quadratic”).

The concept of a projective module is well-defined for an abelian category

DEFINITION A.5.34. If A, B ∈ A are objects of an abelian category with
f : A → B an epimorphism (see definition A.5.6 on page 433), an object P is
projective if, for any morphism g: P→ B, there exists a morphism `: P→ A that
fits into a commutative diagram

A

f

��

P

`

??

g
// B

The category A will be said to have enough projectives if, for any object A there
exists a projective object P and an epimorphism P→ A.

REMARK. For instance, the category of modules over a ring always has
enough projectives because every module is the surjective image of a free mod-
ule.

If we reverse all of the arrows in A.5.34, we get a definition of injective
objects:

DEFINITION A.5.35. If A, B ∈ A are objects of an abelian category with
f : B → A a monomorphism (see definition A.5.6 on page 433), an object I is
injective if, any morphism g: B → I, there exists a morphism e: A → I that fits
into a commutative diagram

B
f
//

g

��

A

e
��

I
The category A will be said to have enough injectives if, for any object A there
exists an injective object I and a monomorphism A→ I.

REMARK. Homomorphisms into injective objects extend to other objects
containing them.

The categorical property of a product in definition A.5.1 on page 431 im-
plies that arbitrary products of injective objects are injective.

Over the category of modules, we have a criterion for injectivity:

PROPOSITION A.5.36 (Baer’s Criterion). If R is a commutative ring, an R-
module, I is injective if and only if every homomorphism J → I from an ideal J ⊂ R
extends to a homomorphism R→ I.



A.5. A GLIMPSE OF CATEGORY THEORY 451

REMARK. In other words, in the category of modules over a ring, injectivity
only has to be verified for ideals of the ring.

PROOF. The only-if part follows from the definition of injective modules.
Conversely, suppose A ⊂ B are R-modules and f : A→ I is a homomorph-

ism and we consider extensions to submodules B′ with

A ⊂ B′ ⊆ B

These extensions are partially ordered by inclusion. Zorn’s lemma ( A.1.26 on
page 338) implies that there is a maximal one, B′ say. If B′ 6= B, we will get a
contradiction. If b ∈ B \ B′ then J(b) = {r ∈ R|r · b ∈ B′} is an ideal of R and

J(b) ·b−→ B′
f−→ I defines a homomorphism into I. The hypotheses imply that

this extends to all of R, so b ∈ B′. �

Since all abelian groups are modules over Z and all ideals of Z are of the
form (m) for m ∈ Z, Baer’s Criterion implies that

PROPOSITION A.5.37. An abelian group, G, is injective if and only if it is divis-
ible — i.e. for any g ∈ G and any integer n there exists an element g′ ∈ G such that
g = n · g′.

Since quotients of divisible groups are divisible, we conclude:

PROPOSITION A.5.38. Any quotient of an injective object in A b is injective in
A b.

EXAMPLE A.5.39. In the category of abelian groups, A b, Q and Q/Z are
injective.

This allow us to conclude that the category of abelian groups has enough
injectives (see [9]):

PROPOSITION A.5.40. If A is an abelian group and

A =
F
K

where F is a free abelian group, then F⊗Z Q is injective and

A ↪→ F⊗Z Q

K
is an injective abelian group containing A so the category of abelian groups, A b, has
enough injectives.

It is interesting that this result immediately extends to the category of mod-
ules over an arbitrary ring (see [35]):

PROPOSITION A.5.41. If R is a ring and M is an R-module and I is an injective
abelian group, then

I(R) = homA b(R, I)
is an injective R-module — with R acting on the first factor via

(r′ · ϕ)(r) = ϕ(r′ · r)
for ϕ ∈ homA b(R, I). In addition, there exists an injective R-module N and an
inclusion

M ↪→ N
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so that the category of modules over R, MR, has enough injectives.

PROOF. Suppose A ⊂ B is an inclusion of R-modules and
g: A → homA b(R, I) is a homomorphism. We will show that this extends to B.
Define a natural map

ι: I(R) → I
f 7→ f (1)

The composite ι ◦ g: A → I, regarded as a map of abelian groups, extends
to ḡ: B→ I and we define

G: B → homA b(R, I)
b 7→ (r 7→ ḡ(r · b))

— a homomorphism of R-modules and the desired extension.
To prove the second statement, note the existence of a monomorphism

f : M → homA b(R, M)

m 7→ (r 7→ r ·m)

of R-modules. If we “forget” the module structure of M and regard it only as
an abelian group, there exists an injective abelian group and a morphism

g: M→ I

The composite

M
f−→ homA b(R, M)

homA b(1,g)−−−−−−−→ homA b(R, I)

is a monomorphism (see exercise 12). �

EXERCISES.

10. If A is an abelian group, show that hom(A, Q/Z) = 0 if and only if
A = 0.

11. Show that if we have a monomorphism

f : A→ B

where A is injective, there exists a map

g: B→ A

such that g ◦ f = 1: A→ A.

12. If A is an abelian category and

0→ A r−→ B s−→ C → 0

is an exact sequence — i.e., r = ker s and s = coker r, show that

0→ homA (D, A)
homA (1,r)−−−−−−→ homA (D, B)

homA (1,s)−−−−−−→ homA (D, C)

is exact.
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A.5.6. Tensor products. The standard example of an abelian category is
MR — the category of modules over a commutative ring, R.

There are various operations with modules that are most easily understood
in terms of category theory. The simplest is the direct sum

DEFINITION A.5.42. If M1, M2 ∈MR, the direct sum, M1⊕M2 ∈MR, is the
module of pairs

(m1, m2) ∈ M1 ⊕M2

with R acting via
r · (m1, m2) = (r ·m1, r ·m2)

for all r ∈ R, m1 ∈ M1 and m2 ∈ M2.

REMARK. This is just a straightforward generalization of the concept of
direct sum of vector-spaces — and the direct sum is a product and coproduct
in the category of R-modules.

For instance, the free module Rn is a direct sum

Rn = R⊕ · · · ⊕ R︸ ︷︷ ︸
n factors

The direct sum is a functor of two variables:

PROPOSITION A.5.43. If f1: M1 → N1 and f2: M2 → N2 are morphisms in
MR, then there is an induced morphism

f1 ⊕ f2: M1 ⊕M2 → N1 ⊕ N2

(m1, m2) 7→ ( f1(m1), f2(m2))

for all m1 ∈ M1 and m2 ∈ M2. In addition, ker( f1 ⊕ f2) = ker f1 ⊕ ker f2.

PROOF. The only thing that needs to be proved is the statement about the
kernels. Clearly ker f1⊕ ker f2 ⊂ ker( f1⊕ f2). If (m1, m2) maps to 0 in N1⊕N2,
we must have f1(m1) = f2(m2) = 0 so this proves ker( f1 ⊕ f2) ⊂ ker f1 ⊕
ker f2. �

The following concept also originated with linear algebra, but is more com-
plex than the direct sum. It is another functor of two variables:

DEFINITION A.5.44. If M1, M2 ∈ MR, then define the tensor product of M1
and M2 over R

M1 ⊗R M2

to be the free abelian group generated by symbols {m1 ⊗ m2} with m1 ∈ M1,
m2 ∈ M2 subject to the identities

(1) (r ·m1)⊗m2 = m1 ⊗ (r ·m2) = r · (m1 ⊗m2) for all r ∈ R, m1 ∈ M1,
m2 ∈ M2,

(2) (m1 + m′1)⊗m2 = m1 ⊗m2 + m′1 ⊗m2 for all m1, m′1 ∈ M1, m2 ∈ M2,
(3) m1 ⊗ (m2 + m′2) = m1 ⊗m2 + m1 ⊗m′2 for all m1 ∈ M1, m2, m′2 ∈ M2.

REMARK. Rule 1 implies that 0⊗m2 = m1 ⊗ 0 = 0. Here is another way to
define the tensor product:

Form the free abelian group Z[M1 × M2]. Its elements are formal linear
combinations of symbols [m×n] for all m ∈ M1 and n ∈ M2. Then M1⊗R M2 =
Z[M1 ×M2]/W, where W ⊂ Z[M1 ×M2] is the subgroup generated by
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(1) [r ·m1×m2]− [m1× (r ·m2)], [e ·m1×m2]− e · [m1×m2], for all e ∈ Z,
r ∈ R, m1 ∈ M1, and m2 ∈ M2

(2) [(m1 + m′1)×m2]− [m1 ×m2]− [m′1 ×m2], for all m1, m′1 ∈ M1, m2 ∈
M2,

(3) [m1 × (m2 + m′2)]− [m1 ⊗ m2]− [m1 ⊗ m′2] for all m1 ∈ M1, m2, m′2 ∈
M2.

The R-module structure is defined by setting r · [m1 × m2] = [r · m1 × m2]
for all r ∈ R, m1 ∈ M1, m2 ∈ M2

EXAMPLE A.5.45. If M ∈MR, then

R⊗R M
∼=−→ M

r⊗m 7→ r ·m
Clearly this map is surjective. If r⊗m is in the kernel, then r ·m = 0 ∈ M. In
this case, rule 1 on the preceding page in definition A.5.44 on the previous page
implies that

r · 1⊗m ∼ 1⊗ r ·m = 0

In the category-theoretic sense, M⊗R N is neither a product nor a coprod-
uct. It does have a universal property, though:

PROPOSITION A.5.46. Let M, N, and T be modules over a commutative ring, R,
and let

f : M× N → T
be a mapping with the property that

(1) f |m× N → T is an R-module-homomorphism for any m ∈ M
(2) f |M× n→ T is an R-module homomorphism for any n ∈ N
(3) f (r ·m, n) = f (m, r · n) for all m ∈ M,n ∈ N, and r ∈ R

Then there exists a unique map

g: M⊗R N → T

that makes the diagram

M× N c //

f
''

M⊗R N
g
��

T
commute, where c(m, n) = m⊗ n, for all m ∈ M and n ∈ N.

REMARK. Here M× N is simply a Cartesian product of sets. A map satis-
fying statements 1 and 2 above is said to be bilinear.

The canonical map
c: M× N → M⊗R N

is not surjective in general since M⊗R N consists of formal linear combinations of
symbols m⊗ n. Elements of M⊗R N in the image of c are called decomposable
tensors or elementary tensors. The paper [59] gives criteria for elements of M⊗R
N to be decomposable when R is a field.

This result implies that an decomposable tensor m⊗ n vanishes if and only
if every bilinear map

F: M× N → T
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sends m× n to 0.

PROOF. The only map Z[M× N]→ T compatible with f is

Z[M× N] → T
m× n 7→ f (m, n)

for all m ∈ M and n ∈ N. The defining relations for M⊗R N and the conditions
on the map f imply that this gives a well-defined map

M⊗ N → T
m⊗ n 7→ f (m, n)

for all m ∈ M and n ∈ N. Since any such map must lift to a map Z[M× N] →
T, this must be unique. �

Tensor-products are functors of two variables:

PROPOSITION A.5.47. Let f : V1 → V2 and g: W1 → W2 be homomorphisms of
vector-spaces. Then there is a natural map

f ⊗ g: V1 ⊗k W1 → V2 ⊗k W2

( f ⊗ g)(v⊗ w) = f (v)⊗ g(w)

REMARK. Exercise 16 on page 464 gives some idea of what the homo-
morphism f ⊗ g looks like.

Tensor products are distributive over direct sums, a property that allows us
to do many computations:

PROPOSITION A.5.48. Let M, N, T be modules over the commutative ring R.
Then there are standard isomorphisms

M⊗R (N ⊕ T) = M⊗R N ⊕M⊗R T

and
(M⊕ N)⊗R T = M⊗R T ⊕ N ⊗R T

PROOF. We will prove the first case: the second is similar. We could use
a detailed algebraic argument, but it is easier to “cheat” and use the universal
property of a tensor product.

We will show that, given any bilinear map z: M× (N⊕ T)→ Z, where Z is
an R-module, there exists a unique homomorphism d: M⊗R N ⊕M⊗R T → Z
making the diagram

(A.5.10) M× (N ⊕ T) b //

z
**

M⊗R N ⊕M⊗R T

d
��

Z

commute. Here, b is a bilinear map taking the place of the c map in A.5.46
on the preceding page. This will show that M ⊗R N ⊕ M ⊗R T has the same
universal property as M⊗R (N ⊕ T) so it must be isomorphic to it.

We begin by constructing a bilinear map b: M × (N ⊕ T) → M ⊗R N ⊕
M⊗R T via b(m, (n, t)) = (m⊗ n, m⊗ t) for all m ∈ M, n ∈ N, and t ∈ T. This
is easily verified to be bilinear:



456 A. ALGEBRA

(1) for any fixed m0 ∈ M, `(n, t) = b(m0, (n, t)) = (m0 ⊗ n, m0 ⊗ t) for all
n ∈ N and t ∈ T, defines an R-module homomorphism

`: N ⊕ T → M⊗R N ⊕M⊗R T

since the composites

N → m0 ⊗ N ⊂ M⊗R N
T → m0 ⊗ T ⊂ M⊗R T

are module-homomorphisms.
(2) a similar argument shows that for any fixed n0 ∈ N and t0 ∈ T, the

map `(m) = b(m, (n0, t0)), for all m ∈ M defines a module homo-
morphism

`: M→ M⊗R N ⊕M⊗R T
Now, suppose we have a bilinear map

z: M× (N ⊕ T)→ Z

We will show that there exists a unique map

d: M⊗R N ⊕M⊗R T → Z

that makes diagram A.5.10 on the preceding page commute.
We define d on the direct summands of M⊗R N ⊕M⊗R T:

(1) d1: M ⊗R N → Z must send m ⊗ n to z(m, (n, 0)) ∈ Z for all m ∈ M
and n ∈ N so we define d1(m⊗ n) = z(m, (n, 0)). The bilinearity of z
implies that d1|M ⊗ n0: M → Z is a module homomorphism for any
fixed n0 ∈ N and d1|m0⊗N: N → Z is also a module homomorphism.
It follows that d1 is a module homomorphism.

(2) We define d2: M⊗R T → Z by d2(m⊗ t) = z(m, (0, t)). This is the only
definition compatible with z and an argument like that used above
shows that it is a module-homomorphism.

We set
d = d1 + d2: M⊗R N ⊕M⊗R T → Z

This is a module-homomorphism that makes diagram A.5.10 on the previous
page commute. It is unique because it is uniquely determined on the two sum-
mands. �

COROLLARY A.5.49. If M ∈MR, R, then

M⊗R Rn = M⊕ · · · ⊕M︸ ︷︷ ︸
n times

and
Rn ⊗R Rm = Rn·m

PROOF. This follows from example A.5.45 on page 454, proposition A.5.48
on the previous page and induction on n. �

If R is an algebra over another ring S, we can define the structure of an R-
module on A⊗S B by f · (a⊗ b) = (r · a⊗ r · b), for r ∈ R. We can also define
an R-action on groups of homomorphisms:
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DEFINITION A.5.50. If M and N are R-modules, where R is an S-algebra,
then

homR(M, N)

denotes morphisms that are R-linear (i.e. morphisms of MR) and

homS(M, N)

are morphisms of MS, i.e. morphisms that are S-linear. Then we can equip
homS(M, N) with the structure of an R-module via the rule

If f ∈ homS(M, N) is such that f (m) = n, then (r · f )(m) =
f (r ·m).

We have important relations between homS and homR:

PROPOSITION A.5.51. If A, B, C ∈ MR, where R is an S-algebra, then there
exists a unique isomorphism

s: homR(A, homS(B, C))→ homR(A⊗S B, C)

REMARK. This is clearly natural with respect to all homomorphisms of A,
B, or C.

PROOF. We define the map by s(ϕ)(a⊗ b) = ϕ(a)(b). If s(ϕ) = 0, if is the
0-map for all b or a, so it vanishes in homR(A, homS(B, C)). It follows that s
is injective. If f ∈ homR(A ⊗S B, C) then f (a, ∗) for a fixed a ∈ A defines a
function B→ C which is S-linear. This implies that s is surjective. �

Suppose a ⊂ R is an ideal and M is a module over R. Then it is easy to see
that a ·M ⊂ M is a submodule and we have

PROPOSITION A.5.52. If M ∈MR and a ⊂ R is an ideal, there exists a natural
isomorphism:

q: M⊗R

(
R
a

)
→ M

a ·M
m⊗ r 7→ R ·m (mod a ·M)

PROOF. It is not hard to see that q is surjective. Consider the composite

M = M⊗R R
1⊗p−−→ M⊗R

(
R
a

)
where p: R → R/a is the projection. The surjectivity of q implies that ker 1⊗
p ⊂ a ·M. On the other hand, if x ∈ a, x ·m⊗ 1 ∼ m⊗ x · 1 = 0 ∈ M⊗R (R/a),
by rule 1 in definition A.5.44 on page 453. This shows that a · M ⊂ ker 1⊗ p
and that q is also injective. �

We can use tensor-products to convert modules over one ring into modules
over another:

PROPOSITION A.5.53. Let M be a module over a commutative ring R and let
f : R→ S be a homomorphism of rings. Then S is a module over R and

M⊗R S

is a module over S with S-action given by

t ·m⊗ s = m⊗ st
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for all s, t ∈ S and m ∈ M.

REMARK. This operation is called a change of base. If R ↪→ S is an inclu-
sion, it is called extension of scalars, the idea being that the action of R on M is
“extended” to the larger ring, S.

Recall the concept of a module of fractions, defined in section A.1.8 on
page 368.

PROPOSITION A.5.54. If M ∈MR and S ⊂ R is a multiplicative set, then

S−1M ∼= M⊗R (S−1R)

is a module over S−1R. If p ⊂ R is a prime ideal and S = R \ p, then S−1R = Rp and

Mp
∼= M⊗R Rp

and is a module over Rp.

REMARK. As defined in definition A.1.87 on page 368, S−1M is a module
over R. Proposition A.5.53 on the previous page shows that S−1M is also a
module over S−1R. If S−1R is the field of fractions, then S−1M is a vector space
over that field.

PROOF. The map
f : M⊗R (S−1R)→ S−1M

is defined by f (m ⊗ s−1r) = r · m/s for all m ∈ M, s ∈ S, and r ∈ R. If
r1/s1 ≡ r2/s2 ∈ S−1R, then u · (s2r1 − s1r2) = 0 for some u ∈ S, and

u · (s2r1 ·m− s1r2 ·m) = u · (s2r1 − s1r2) ·m = 0

so f is well-defined. The inverse map

g: S−1M→ M⊗R (S−1R)

is defined by g(m/s) = m⊗ s−1. If m1/s1 ≡ m2/s2 ∈ S−1M then

u · (s2 ·m1 − s1 ·m2) = 0

for some u ∈ S, or us2 ·m1 = us1 ·m2, so

us2 ·m1 ⊗ u−1s−1
1 s−1

2 = us1 ·m2 ⊗ u−1s−1
1 s−1

2

By rule 1 of definition A.5.44 on page 453, both sides of this equation are equal
to

us2 ·m1 ⊗ u−1s−1
1 s−1

2 = m1 ⊗ s−1
1

us1 ·m2 ⊗ u−1s−1
1 s−1

2 = m2 ⊗ s−1
2

It follows that g(m1/s1) = g(m2/s2), so g is well-defined and clearly the in-
verse of f . �

We also have another important property of localization
It is easy to verify that tensor products preserve surjectivity of maps:

PROPOSITION A.5.55. If M ∈ MR and f : N → T is a surjective morphism in
MR, then

1⊗ f : M⊗R N → M⊗R T
is also surjective.
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REMARK. If
0→ A→ B→ C → 0

is an exact sequence of modules and we take the tensor product of this with M,
the resulting sequence is exact on the right

M⊗R A→ M⊗R B→ M⊗R C → 0

and we say that the functor M ⊗R ∗ is right-exact. This sequence might not be
exact on the left — M⊗R A→ M⊗R B might not be an inclusion. For instance
if

f = ×2: Z→ Z

and M = Z2, then

f ⊗ 1 = 0: Z⊗Z Z2 = Z2 → Z⊗Z Z2 = Z2

PROOF. If ∑ mi ⊗ ti ∈ M ⊗R T then it is the image of ∑ mi ⊗ ni, where
f (ni) = ti. �

This leads to another consequence of Nakayama’s Lemma:

COROLLARY A.5.56. Let R be a noetherian local ring with maximal ideal m, let
M be a finitely generated R-module, and let

f : M→ M
m ·M = M⊗R

(
R
m

)
be the projection to the quotient.. If {m1, . . . mt} ∈ M are elements with the property
that { f (m1), . . . , f (mt)} generate M/m ·M, then {m1, . . . mt} generate M.

REMARK. Note that R/m is a field so that M/m ·M is a vector space.

PROOF. Let M′ ⊂ M be the submodule generated by {m1, . . . mt}. Then
M/M′ is a finitely generated R module with the property that(

M
M′

)
⊗R

(
R
m

)
= 0

which implies that

m ·
(

M
M′

)
=

(
M
M′

)
Corollary A.1.80 on page 363 implies that M/M′ = 0. �

We also get the interesting result

COROLLARY A.5.57. If R is a noetherian local ring with maximal ideal m, then
finitely generated projective modules over R are free.

PROOF. Let P be a projective module over R and let p1, . . . , pn ∈ P be a set
of elements with the property that their image in

P⊗R

(
R
m

)
=

P
m · P = V

generate the vector-space V. Corollary A.5.56 implies that p1, . . . , pn generate
P. If Rn is a free module on generators x1, . . . , xn, the homomorphism

f : Rn → P
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that sends xi to pi for i = 1, . . . , n is surjective. If K = ker f , we get a short exact
sequence

0→ K → Rn f−→ P→ 0
Since P is projective, this is split and we get an isomorphism

Rn ∼= K⊕ P

(see exercise 40 on page 365). Now take the tensor product with R/m to get

Rn ⊗R

(
R
m

)
∼= P⊗R

(
R
m

)
⊕ K⊗R

(
R
m

)
Since Rn ⊗R

(
R
m

)
and P ⊗R

(
R
m

)
are both n-dimensional vector-spaces over

R/m, it follows that

K⊗R

(
R
m

)
=

K
m · K = 0

This implies that K = m · K and corollary A.1.80 on page 363 implies that K = 0
and P = Rn. �

DEFINITION A.5.58. A module M ∈ MR will be called flat if the functor
M⊗R ∗ preserves injections as well as surjections. In other words, M is flat if,
whenever

N → T
is an injective homomorphism of R-modules, so is

M⊗R N → M⊗ T

REMARK. For instance, R is a flat module over itself, as example A.5.45 on
page 454 shows. In general, every free module, Rn, is flat over R, by proposi-
tion A.5.48 on page 455.

The term flat module first appeared in Serre’s paper, [148].

Flat modules are very useful because:

PROPOSITION A.5.59. Let R be a commutative ring and let A be a flat R-module.
If

· · · fn+1−−→ Mn+1
fn−→ Mn

fn−1−−→ Mn−1 → · · ·
is an exact sequence in MR, then so is

· · · 1⊗ fn+1−−−−→ A⊗R Mn+1
1⊗ fn−−−→ A⊗R Mn

1⊗ fn−1−−−−→ A⊗R Mn−1 → · · ·
PROOF. The exactness of the (long) sequence above is equivalent to saying

that the short sequences

0→ im fn → Mn → im fn−1 → 0

are exact (see definition A.1.62 on page 354) for all n. Since tensor products
preserve surjections (proposition A.5.55 on page 458), we know that im (1 ⊗
fn) = A⊗R (im fn) for all n (and this is for any module, A, not just a flat one).
The conclusion follows by the fact that flat modules preserve injections as well
as surjections (definition A.5.58). �

The following result describes a very important class of flat modules:
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LEMMA A.5.60. Let R be a commutative ring and let S be a multiplicative set.
Then S−1R is a flat module over R.

PROOF. If f : N → T is an injective homomorphism of R-modules, we will
show that

S−1R⊗R N → S−1R⊗R T
is also injective. We replace these tensor products by modules of fractions, us-
ing proposition A.5.54 on page 458, to get the equivalent map

S−1N → S−1T

Extend this to
N → S−1N → S−1T

An element n ∈ N maps to zero in S−1T if and only if s · n = 0 for some s ∈ S
(see definition A.1.87 on page 368). If this happens, n also maps to 0 in S−1N so
the map is injective. �

We know that free modules are flat by proposition A.5.48 on page 455. It
turns out that

PROPOSITION A.5.61. Projective modules are flat.

REMARK. Projective modules over Z have elements that are not multiples
of 2. On the other hand, lemma A.5.60 shows that Q is a flat module over Z

that cannot be projective since all of its elements are divisible by 2.

PROOF. Let P be a projective module over a ring R and let Q be another
(projective) module such that P⊕Q = Rn. If

f : M→ N

is an injective homomorphism, we know that

f ⊗ 1: M⊗R Rn → N ⊗R Rn

is also injective, and is equal to

f ⊗ 1: M⊗R (P⊕Q)→ N ⊗R (P⊕Q)

which is equal to

( f ⊗ 1P)⊕ ( f ⊗ 1Q): M⊗R P⊕M⊗R Q→ N ⊗R P⊕ N ⊗R Q

where 1P and 1Q are the identity maps of P and Q, respectively. Since ( f ⊗
1P)⊕ ( f ⊗ 1Q) is injective, proposition A.5.43 on page 453 implies that f ⊗ 1P
and f ⊗ 1Q must be injective too. �

It is interesting to see what forming modules of fractions does to prime
filtrations:

COROLLARY A.5.62. Let M be a module over a ring R and let S ⊂ R be a
multiplicative set. Let

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M

with
Mi+1

Mi
∼= R

pi
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for prime ideals pi ⊂ R, be the prime filtration of M. Then the prime filtration of
S−1R⊗R M is

0 = S−1R⊗R Mj0 ⊂ S−1R⊗R Mj1 ⊂ · · · ⊂ S−1R⊗R Mjt = S−1R⊗R M

where
S−1R⊗R Mji+1

S−1R⊗R Mji

∼= S−1R
pji · S−1R

where {pj0 , . . . , pjt} ⊆ {p0, . . . , pn} is the subset of prime ideals that do not contain
any elements of S.

PROOF. Since S−1R is flat over R, every short exact sequence

0→ R
pi
→ Mi → Mi+1 → 0

gives rise to

0→ S−1R⊗R

(
R
pi

)
→ S−1R⊗R Mi → S−1R⊗R Mi+1 → 0

and the short exact sequence

0→ S−1R⊗R pi → S−1R⊗R R→ S−1R⊗R

(
R
pi

)
→ 0

where S−1R⊗R pi = pi · S−1R and S−1R⊗R R = S−1R. If pi contains an element
of S, pi · S−1R = S−1R and the quotient

S−1R⊗R

(
R
pi

)
will be the trivial ring. It follows that those primes do not participate in the
prime filtration of S−1R⊗R M. �

We conclude this section with a converse to lemma A.5.60 on the previous
page:

LEMMA A.5.63. Let R be a noetherian ring and let A be a finitely-generated R-
module. Then Am is a free Rm-module for all maximal ideals m ⊂ R if and only if A
is projective.

REMARK. In other words, locally free modules are projective.

PROOF. Since A is finitely-generated, there exists a finitely-generated free
module, F, and a surjective homomorphism

f : F → A

inducing surjective homomorphisms

fm = 1⊗ f : Fm → Am

Since Am is free, there exist splitting maps

gm: Am → Fm
with fm ◦ gm = 1: Am → Am for all maximal ideals m ⊂ R. Since A is finitely-
generated, there exists an element sm ∈ R \m for each maximal ideal such that

sm · fm ◦ gm(A) ⊂ A ⊂ Am



A.5. A GLIMPSE OF CATEGORY THEORY 463

i.e., sm “clears the denominators” of fm ◦ gm(A). Let S denote the ideal gener-
ated by all of the sm. Since R is noetherian, S is generated by some finite set of
the sm

S = (sm1 , . . . , smt)

If S ( R, then it is contained in some maximal ideal, which contradicts the fact
that it contains an element not in every maximal ideal. We conclude that S = R
and that there exist elements {x1, . . . , xt} such that

t

∑
i=1

xi · smi = 1

If we define

g =
t

∑
i=1

xi · fmi ◦ gmi : A→ F

and f ◦ g = 1: A→ A, so A is a direct summand of F and is projective.
The only if part comes from corollary A.5.57 on page 459. �

We conclude this section with a generalization of the dual of a module:

DEFINITION A.5.64. If M is a module over a ring, R, define
M∗ = homR(M, R) — the dual of M. It is also a module over R (just let R act
on it by multiplying the values of homomorphisms).

REMARK. Clearly, R∗ = R since a homomorphism R→ R is determined by
its effect on 1 ∈ R. It is also not hard to see that the dual of a finitely generated
free module is free of the same rank. If F is a free module, the isomorphism
between F and F∗ is not natural.

There is a natural isomorphism

F → F∗∗

where we map x ∈ F to the homomorphism F∗ → R given by f (x) for f ∈ F∗.
This and the way hom behaves with direct sums implies that:

COROLLARY A.5.65. Let P be a finitely generated projective module over a com-
mutative ring R. Then P∗ is also a finitely generated projective module and

P = P∗∗

EXERCISES.

13. Suppose M is a module over a ring, R, and N ⊂ M is a submodule. If
A is a flat module over R, show that A⊗R N is a submodule of A⊗R M and

A⊗R M
A⊗R N

= A⊗R

(
M
N

)
14. If M, N, T are modules over a ring, R, show that there are natural iso-

morphisms

M⊗R (N ⊗R T) ∼= (M⊗R N)⊗R T
M⊗R N ∼= N ⊗R M
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15. Let V be a vector space over a field, k, with basis {e1, . . . , en} and let W
be a vector space with basis { f1, . . . , fn}. Show that

V ⊗k W

is n ·m dimensional, with basis

{ei ⊗ f j}
i = 1, . . . , n and j = 1, . . . , m.

Show that {ei ⊗ f j} are a basis for V ⊗k W even if they are infinite dimen-
sional.

16. Suppose k is a field and f : kn → km and g: ks → kt are given by m× n
and t× s matrices A and B, respectively. What is the matrix representing A⊗ B?

17. If a, b ⊂ R are two ideals in a commutative ring, show that

R
a
⊗R

R
b
=

R
a+ b

This implies that
Zn ⊗Z Zm = Zgcd(n,m)

18. If R is a ring and M is a flat R-module. Show that

a⊗R M = a ·M
for all ideals a ⊂ R.

19. Show that tensor products commute with direct limits, i.e. if

M0
f0−→ · · · fn−1−−→ Mn

fn−→ · · ·
is a direct system of modules over a ring R and N is an R-modules, show that(

lim−→ Mj

)
⊗R N = lim−→

(
Mj ⊗R N

)
20. If {Ai, ai}, {Bi, bi}, and {Ci, ci} are three systems of homomorphisms

of modules such that the diagram

0 // Ai+1
fi+1

// Bi+1
gi+1

// Ci+1 // 0

0 // Ai

ai

OO

fi

// Bi

bi

OO

gi
// Ci

ci

OO

// 0

commutes for all i and each row is exact, show that

0→ lim−→ Ai
lim−→ fi−−−→ lim−→ Bi

lim−→ gi−−−→ lim−→ Ci → 0

is an exact sequence.

21. Suppose f : R → S is a homomorphism of rings with the property that
S is a flat module over R. If α ∈ R is a non-zero-divisor, show that f (α) ∈ S is a
non-zero-divisor.

22. Suppose f : R → S is a homomorphism of rings and M is a flat module
over R. Show that M⊗R S is a flat module over S.
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23. Let MZ be the category of modules over Z (otherwise known as abelian
groups, A b), the set, homMZ

(A, B), is naturally a module over Z. For any
A, B, C ∈MZ, show that there exists a natural isomorphism

homMZ
(A⊗Z B, C) ∼= homMZ

(A, homMZ
(B, C))

so that the functors ∗ ⊗Z B and homMZ
(B, ∗) are adjoints.

24. Let M, N ∈MR and let S ⊂ R be a multiplicative set. Show that

S−1R⊗R (M⊗R N) = (S−1R⊗R M)⊗S−1R (S−1R⊗R N)

25. If M is a finitely generated projective module, show that M∗ is also a
finitely generated projective module.

A.6. Tensor Algebras and variants

In this section, we will discuss several algebras one can construct from
modules over a ring. The most general case is the tensor algebra, with the
symmetric and exterior algebras being quotients.

Historically, the first of these to appear were exterior algebras, described in
[58] by Hermann Grassmann. Grassmann developed exterior algebras in the
context of vector spaces — and many linear algebra constructs (like determi-
nants) have elegant formulations in terms of exterior algebras5.

Tensor algebras appeared later, in the context of category theory and are
more general than exterior algebras.

DEFINITION A.6.1. If R is a commutative ring and M is an R-module, de-
fine:

M⊗n = M⊗R · · · ⊗R M︸ ︷︷ ︸
n times

with M⊗0 = R and M⊗1 = M. Given this definition, we define the tensor algebra
over M:

T(M) = R⊕M⊕M⊗2 ⊕M⊗2 ⊕ · · ·
This is a (noncommutative) algebra over R by defining

(m1 ⊗ · · · ⊗ms) · (n1 ⊗ · · · ⊗ nt) = m1 ⊗ · · · ⊗ms ⊗ n1 ⊗ · · · ⊗ nt

and extending this to all of T(M) R-linearly.

REMARK. Tensor algebras are often called free algebras. Any module hom-
omorphism

f : M→ N

induces a unique algebra-homomorphism

T( f ): T(M)→ T(N)

5Often called Grassmann algebras
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Furthermore, if A is any algebra over R and g: M → A is a homomorphism of
R-modules, there exists a unique homomorphism of R-algebras

T(M)→ A

whose restriction to M = M⊗1 is g. If AR is the category of R-algebras and MR
that of R-modules, let

F: AR →MR

be the forgetful functor that maps an R-algebra to its underlying R-module
(forgetting that we can multiply elements of this module), we get a natural
isomorphism

(A.6.1) homAR(T(M), A) ∼= homR(M, FA)

making T(∗) and F adjoints (compare with example A.5.15 on page 438).
The tensor algebra is an example of a graded ring (see definition A.4.55 on

page 426) with
T(M)n = M⊗n

Corollary A.5.49 on page 456 immediately implies that

PROPOSITION A.6.2. If M is a free module of rank t (see example A.1.57 on
page 352) over a ring R, then Tn(M) is a free module of rank tn.

We also have:

PROPOSITION A.6.3. If M is any module over a commutative ring, R, and S ⊂ R
is any multiplicative set, then

T(S−1R⊗R M) = S−1R⊗R T(M)

PROOF. This follows immediately from the solution to exercise 24 on the
previous page. �

There are two important variants on tensor algebras that we need:

DEFINITION A.6.4. Let M be a module over a commutative ring, R, and let
s ⊂ T(M) be the (two-sided) ideal generated by elements

x⊗ y− y⊗ x

for all x, y ∈ M. The quotient, S(M) = T(M)/s, is called the symmetric algebra
on M.

REMARK. This is clearly a commutative ring. Since T(M) is not commuta-
tive, the ideal s must be two-sided — it is the sum

∑
x,y∈M

T(M) · (x⊗ y− y⊗ x) · T(M)

Symmetric algebras also have a defining universal property:

PROPOSITION A.6.5. Let CR denote the category of commutative algebras over
a (commutative) ring R and let MR denote the category of R-modules. There is a
forgetful functor

f : CR →MR
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that “forgets” the multiplication operation in an R-algebra (so it becomes a mere mod-
ule). The symmetric algebra is an adjoint to f in the sense that

homR(M, f (A) = homCR(SM, A)

PROOF. We already know that

(A.6.2) homAR(T(M), A) ∼= homR(M, FA)

If A is a commutative algebra, then the map

T(M)→ A

factors through SM:
T(M)→ SM→ A

�

It is not hard to see that

PROPOSITION A.6.6. If M is a free module of rank t over a commutative ring, R,
then

S(M) = R[X1, . . . , Xt]

PROOF. Suppose {e1, . . . , et} is a free basis for M. It is straightforward to
see that

e⊗n1
j1
⊗ · ⊗ e⊗n`

j`

with ∑ ni = n and j1 < · · · < j` is a free basis for Sn(M) — and these are in a
1-1 correspondence with monomials in the Xi of total degree n. �

The second variant of tensor algebras is called exterior algebras or Grass-
mann algebras in honor of Hermann Grassmann (since he first described them
in [58]). For our purposes, they are more interesting than symmetric algebras
and have more applications. Although Grassman originally defined them for
vector-spaces over fields, this definition can easily be extended to modules over
a commutative ring:

DEFINITION A.6.7. If M is a module over a commutative ring, R, the exterior
algebra over M is defined to be

Λ M = T(M)/a

where a is the two-sided ideal generated by elements {x ⊗ x} for all x ∈ M.
This is a graded ring with

Λn M = M⊗n/M⊗n ∩ a

The product-operation is written x ∧ y for x, y ∈ ∧M.

REMARK. If x, y ∈ M, then

(x + y) ∧ (x + y) = 0

because of how the ideal a is defined. The distributive laws implies that

(x + y) ∧ (x + y) = x ∧ x + x ∧ y + y ∧ x + y ∧ y
= x ∧ y + y ∧ x
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so x ∧ y = −y∧ x for elements of M. The level Λn M is generated by all expres-
sions of the form

x1 ∧ · · · ∧ xn

for x1, . . . , xn ∈ M .
Exterior algebras have applications to fields as varied as differential geom-

etry (see [152]), partial differential equations (see [19]) and physics (see [132])
— besides algebraic geometry. Grassmann’s original definition was axiomatic,
using axioms based on linearity, associativity, and anti-commutativity — and
only for vector-spaces.

We have some direct-sum relations:

PROPOSITION A.6.8. If M and N are modules over R then
(1) T(M⊕N) = T(M)⊗R T(N)⊗R T(M)⊗R · · · — as graded algebras (see

definition A.4.56 on page 427), i.e.,

T(M⊕ N)m =
⊕

∑∞
j=1(ij+nj)=m

T(M)i1 ⊗R T(N)n1 ⊗R · · ·

(2) S(M⊕ N) = S(M)⊗R S(N) — as graded algebras, so

S(M⊕ N)m =
⊕

i+j=m
S(M)i ⊗R S(N)j

(3) Λ (M⊕ N) ∼= Λ (M)⊗R Λ (N) — as graded algebras, so

Λm (M⊕ N) ∼=
⊕

i+j=m
Λi (M)⊗R Λj (N)

REMARK. Note that, in line 1 all but a finite number of the ij, nj must be 0.

PROOF. The first statement follows from the general properties of the ten-
sor product.

The second statement follows from the first and the fact that the commu-
tativity relations between T(M) and T(N) reduces the “infinite tensor prod-
uct” to T(M) ⊗R T(N). Imposing the commutativity relations within T(M)
and T(N) gives S(M)⊗R S(N).

The third statement follows by a similar argument except that we may have
to permute factors in an expression like n1 ∧m2 ∧ . . . ,∧mi so that all of the m-
factors occur to the left of the n-factors. This multiplies by ±1, so we get an
isomorphism. �

Here’s an example of computations in an exterior algebra:

EXAMPLE. Let M be a free module over R on a free basis {e1, e2, e3} and let
v = 2e1 + e2 − e3 and w = e1 − 3e2 + e3. Then

v ∧ w = (2e1 + e2 − e3) ∧ (e1 − 3e2 + e3)

= 2e1 ∧ (e1 − 3e2 + e3) + e2 ∧ (e1 − 3e2 + e3)

−e3 ∧ (e1 − 3e2 + e3)

= 2e1 ∧ e1 − 2e1 ∧ 3e2 + 2e1 ∧ e3

+e2 ∧ e1 − 3e2 ∧ e2 + e2 ∧ e3

−e3 ∧ e1 + 3e3 ∧ e2 − e3 ∧ e3
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Here, we have used the distributive rule several times. After applying the an-
nihilation and linearity conditions, we get

v ∧ w = −6e1 ∧ e2 + 2e1 ∧ e3 + e2 ∧ e1 + e2 ∧ e3

−e3 ∧ e1 + 3e3 ∧ e2

And after “standardizing” by replacing any ej ∧ ei by −ei ∧ ej whenever j > i,
we get

v ∧ w = −7e1 ∧ e2 + 3e1 ∧ e3 − 2e2 ∧ e3

Clearly, the set {e1 ∧ e2, e1 ∧ e3, e2 ∧ e3} forms a free basis for Λ2 V (any relation
between them would imply a relation between basis elements of T2(M)).

In general, we have:

PROPOSITION A.6.9. Let M be a free module over R with free basis {e1, . . . , en}.
Then Λk M has a free basis consisting of symbols

{ei1 ∧ · · · ∧ eik}
for all sequences 1 ≤ i1 < i2 < · · · < ik ≤ n. Consequently, the rank of Λk V is (n

k),
and

∧k V = 0 whenever k > n.

PROOF. By definition, Λk V consists of all sequences v1∧ · · · ∧ vk and, using
the linearity and distributivity properties, we can write these as linear combi-
nations of all length-k sequences of basis elements

{ej1 ∧ · · · ∧ ejk}
The annihilation property implies that any such sequence with two equal in-
dices will vanish. It also implies that we can arrange these indices in ascending
order (multiplying terms by −1 if necessary). �

Proposition A.6.3 on page 466 and the fact that S−1R is flat over R (see
lemma A.5.60 on page 461) imply that

PROPOSITION A.6.10. Let M be a module over a commutative ring, R, and let
S ⊂ R be a multiplicative set. Then∧

(S−1R⊗R M) = S−1R⊗R
∧

M

S(S−1R⊗R M) = S−1R⊗R S(M)

PROOF. The fact that S−1R is flat over R implies that

S−1R⊗R

(
T(M)

a

)
=

S−1R⊗R T(M)

S−1R⊗R a
=

T(S−1R⊗R M)

a′

where a′ is the form of a in T(S−1R⊗R M). It follows that
∧
(S−1R⊗R M) =

S−1R⊗R
∧

M. The proof for the symmetric algebra is entirely analogous. �

We will often be interested in certain elements of
∧

M with an especially
simple structure (particularly when we study Grassmannians):

DEFINITION A.6.11. If M is a module over a commutative ring, elements
of Λk M of the form

m1 ∧ · · · ∧mk

for mi ∈ M will be said to be decomposable.
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REMARK. An exterior algebra consists of formal linear combinations of de-
composable elements. If x ∈ Λk M is decomposable then

x ∧ x = (m1 ∧ · · · ∧mk) ∧ (m1 ∧ · · · ∧mk)

= 0

because of the annihilation condition. Suppose M is a free module on the free
basis {e1, e2, e3, e4} and

x = e1 ∧ e2 + e3 ∧ e4

Then
x ∧ x = 2e1 ∧ e2 ∧ e3 ∧ e4 6= 0

so this x is not decomposable.

For the rest of this section, we will assume that R is a field so that mod-
ules over R are vector-spaces. The following result is key to understanding the
geometric meaning of Λk V:

LEMMA A.6.12. Let v1, . . . , vk ∈ V be vectors in a vector space. Then, in Λk V,

v1 ∧ · · · ∧ vk = 0

if and only if the set {v1, . . . , vk} is linearly dependent.

PROOF. If they are linearly independent, they are part of a basis for V and
proposition A.6.9 on the previous page implies that their wedge-product is part
of a basis for Λk V, hence nonzero.

Suppose they are linearly dependent and, without loss of generality, sup-
pose

v1 =
k

∑
j=2

ajvj

Then

v1 ∧ · · · ∧ vk =
k

∑
j=2

ajvj ∧ v2 ∧ · · · ∧ vk

= 0

since each term in the sum on the right will have vj equal to one of the vectors
in v2 ∧ · · · ∧ vk. �

COROLLARY A.6.13. Let W ⊂ V be a k-dimensional subspace with basis
{w1, . . . , wk}. Then the element

w̄ = w1 ∧ · · · ∧ wk ∈ Λk V

determines W uniquely. In fact the kernel of the linear map

w̄ ∧ ∗: V → Λk+1 V

is precisely W.
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REMARK. This gives a kind of geometric interpretation of a wedge-product
like w1 ∧ · · · ∧wk: it represents a k-dimensional subspace of V, and Λk V is “all
formal linear combinations” of such subspaces.

In three dimensions, the cross-product is really a wedge-product in disguise,
i.e. v × w is the wedge-product, v ∧ w, that represents the plane spanned by
v and w. It “looks like” a vector because in R3 there is a 1-1 correspondence
between planes and normal vectors to those planes. This is a special case of
something called Hodge duality: if V is n-dimensional, a fixed element α 6= 0 ∈
Λn V defines an isomorphism

Λk V∗ → Λn−k V

where V∗ is the dual of V (see 2 on page 435) — also n-dimensional. See exer-
cise 1 on page 227.

PROOF. Lemma A.6.12 on the facing page implies that, for any v ∈ V, w̄ ∧
v = 0 if and only if the set of vectors {w1, . . . , wk, v} is linearly dependent.
Since the set {w1, . . . , wk} is linearly independent, it follows that w̄ ∧ v = 0 if
and only if v ∈W. �

We get a cool way to compute determinants:

LEMMA A.6.14. Suppose V is a vector space with basis {e1, . . . , en} and A is an
n× n matrix. If the columns of A are vectors {v1, . . . , vn} then

v1 ∧ · · · ∧ vn = det A · e1 ∧ · · · ∧ en

PROOF. We do induction on n. If n = 1, there is nothing to prove. Suppose
the result is true for (n − 1) × (n − 1) matrices and n − 1-dimensional vector
spaces, and we are computing

v1 ∧ · · · ∧ vn

Let v = ∑n
i=1 ai · ei and plug this into the formula. We get

v1 ∧ · · · ∧ vn =
n

∑
i=1

ai · ei ∧ v2 ∧ · · · ∧ vn

Consider the ith term of this, ai · ei ∧ v2 ∧ · · · ∧ vn. The vectors in v2 ∧ · · · ∧ vn
will also be linear combinations of the ej but the presence of ei in the wedge
product will annihilate all of their terms containing ei, i.e.

ai · ei ∧ v2 ∧ · · · ∧ vn = aiei ∧ v′2 ∧ · · · ∧ v′n

where v′j = vj − (its ith component). In other words, v′j will be a vector in an
(n − 1)-dimensional vector space that is the result of deleting ei from V. By
induction, we get

v′2 ∧ · · · ∧ v′n = det A(i,1) · e1 ∧ · · · ∧ ei−1 ∧ ei+1 ∧ · · · ∧ en

where A(i,1) is the sub-matrix of A one gets by deleting the first column and the
ith row — i.e., the ith minor (expanding the determinant using minors from the
first column). We get

ai · ei ∧ v2 ∧ · · · ∧ vn = ai det A(i,1)ei ∧ e1 ∧ · · · ∧ ei−1 ∧ ei+1 ∧ · · · ∧ en
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Shifting ei into its proper place multiplies this by (−1)i+1 so we get

ai · ei ∧ v2 ∧ · · · ∧ vn = (−1)i+1ai det A(i,1) · e1 ∧ · · · ∧ en

and

v1 ∧ · · · ∧ vn =

(
n

∑
i=1

(−1)i+1ai det A(i,1)

)
· e1 ∧ · · · ∧ en

= det A · e1 ∧ · · · ∧ en

�

COROLLARY A.6.15. Let V be an n-dimensional vector space with k-dimensional
subspace W, and suppose

{b1, . . . , bk}
is a basis for W. If

A: W →W
is a change of basis, to a basis

{c1, . . . , ck}
then

c1 ∧ · · · ∧ ck = det A · b1 ∧ · · · ∧ bk

PROOF. Extend the bases for W to bases for all of V, i.e.

{b1, . . . , bk, ek+1, . . . , en}
and

{c1, . . . , ck, ek+1, . . . , en}
The change of basis can be represented by an n× n matrix that is A extended
by the identity matrix, i. e.,

A′ =
[

A 0
0 I

]
Lemma A.6.14 on the previous page implies that

c1 ∧ · · · ∧ ck ∧ ek+1 ∧ · · · ∧ en

= det A′ · b1 ∧ · · · ∧ bk ∧ ek+1 ∧ · · · ∧ en

= det A · b1 ∧ · · · ∧ bk ∧ ek+1 ∧ · · · ∧ en

so
(c1 ∧ · · · ∧ ck − det A · b1 ∧ · · · ∧ bk) ∧ ek+1 ∧ · · · ∧ en = 0

The conclusion follows from lemma A.6.12 on page 470 since

x = c1 ∧ · · · ∧ ck − det A · b1 ∧ · · · ∧ bk

is not in the span of z = ek+1 ∧ · · · ∧ en so that x ∧ z = 0 implies x = 0. �
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EXERCISES.

1. If
0→ U

f−→ V
g−→W → 0

is an exact sequence of k-vector-spaces of dimensions, respectively, u, w, w,
show that

Λv V ∼= Λu U ⊗k Λw W
and if the diagram

0 // U1

a
��

f1
// V1

b
��

g1
// W1

c
��

// 0

0 // U2 f2

// V2 g2
// W2 // 0

commutes and columns that are isomorphisms, then the diagram

Λv V1

Λw b
��

∼= // Λu U1 ⊗k Λw W1

Λu a⊗kΛw c
��

Λv V2
∼= // Λu U2 ⊗k Λw W2

also commutes (so it is natural with respect to isomorphisms of exact
sequences).

2. If V is 3-dimensional with basis {e1, e2, e3}, compute

(2e1 + 3e2 − e3) ∧ (e1 − e2 + e3)

3. Compute the determinant of
0 0 2 0
1 0 0 1
0 3 0 0
2 0 0 −1


using exterior products.





APPENDIX B

Sheaves and ringed spaces

“Geometry is one and eternal shining in the mind of God. That share
in it accorded to men is one of the reasons that Man is the image of
God.”
—Johannes Kepler, Conversation with the Sidereal Messenger (an open
letter to Galileo Galilei), [140].

B.1. Sheaves

General algebraic varieties are the result of gluing together affine algebraic
varieties along regular maps.

One problem that arises in the general case is that the coordinate ring no
longer contains all the significant geometric information. For instance, the only
regular functions on projective spaces are constants — see example 4.4.8 on
page 183. On the other hand, a projective space is a union of affine subvari-
eties which have coordinate rings that express geometric properties.

We require more mathematical machinery, particularly a construct called
a sheaf . Sheaves are used in many areas of mathematics including differential
topology and complex function theory and topology.

Sheaf theory was used implicitly for years before the formal definition ap-
peared. In 1936, Eduard Čech introduced a topological construction called
nerves that are essentially special cases of sheaves. Others, like Steenrod and
Leray also used concepts similar to sheaves, usually in algebraic topology. The
first “official” definition appeared in [41].

The first person to apply sheaves to algebraic geometry (in [146]) was Serre.
Hirzebruch extended this to topological constructions in [78].

Born 1926, Jean-Pierre Serre is a French mathematician who has made remark-
able contributions to algebraic topology, algebraic geometry, group theory and
other fields.

We will use sheaves to associate “coordinate rings” to the open affines that
are glued together to form a variety.

DEFINITION B.1.1. Let V be a topological space and let C be a category of
sets with additional structure. Suppose that, for every open subset U ⊂ V we
have an object OV(U) ∈ C . Then OV is called a sheaf of objects of C if:

(1) If U′ is an open subset of U then there is a natural morphism (called
the restriction map) OV(U) → OV(U′). If x ∈ OV(U), we write the
restriction of x to U′ as x|U′.

(2) The restriction map OV(U)→ OV(U) is the identity map.

475
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(3) If U′ ⊂ U1 ∩U2 are open sets, then the diagram of restriction maps

OV(U1)
))

OV(U)
55

))
OV(U′)

OV(U)2

55

commutes.
(4) if U ⊂ V is an open set with an open cover U =

⋃
Ui and x, y ∈ OV(U)

have the property that x|Ui = y|Ui, then x = y.
(5) If xi ∈ OV(Ui) for all Ui in some open cover of U, and

xi|Ui ∩Uj = xj|Ui ∩Uj

for all i, j then there is an element x ∈ OV(U) such that xi = x|Ui.
If x ∈ V, the stalk of OV at x, denoted OV,x is the direct limit lim−→ OV(U) (see
definition A.5.17 on page 439) as U runs over all open sets with x ∈ U. The
direct limit of restriction-maps induces a canonical map

rx:OV(U)→ OV,x

for all x ∈ U.

REMARK. The term “category of sets with additional structure” is vague.
We will actually want to work with sheaves of rings or k-algebras, in which
case the “additional structure” is operations like addition and multiplication.

We will often be interested in sheaves of functions on V with restriction
maps that are restrictions of functions. In this case, conditions 1, 2, and 3 are
automatically satisfied and the definition becomes simpler.

Conditions 1 and 5 require that a x ∈ OV(U) if and only if each point
p ∈ U has a neighborhood Up such that x|UPp ∈ OV(Up). In other words, the
condition for x ∈ OV(U) is local.

Condition 5 implies that natural extensions of elements ofOV(Ui) are also in
OV(

⋃
i Ui). If OV doesn’t satisfy conditions 4 and 5, it is a presheaf. If a presheaf

satisfies condition 4, it is a separated presheaf .

We also have:

EXAMPLE. Recall that a function f : U → C, where U is open in Cn is analytic
if it is described by a convergent power series in a neighborhood of each point
P ∈ U. Let V be an open subset of Cn, and for each open subset U ⊂ V, let
AV(U) be the set of all analytic functions on U.

Then AV is a sheaf of C-algebras.

Here’s a very simple example:

DEFINITION B.1.2. Let V be a topological space and let A be an abelian
group. The constant sheaf A has the property that AV(U) is the group of contin-
uous maps U → A for all open sets U where A has the discrete topology (every
element of A is a distinct component).

REMARK. If U is connected, A(U) = A, and if U′ ⊂ U is an inclusion of
open sets with U′ connected, the induced map

AV(U)→ AV(U
′)
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is the identity map. If U is an open set that is the union of n disjoint components
then A(U) = An.

It is interesting to contrast definition B.1.2 on the preceding page with:

EXAMPLE B.1.3. Let V be a topological space and, for each open subset
U ⊂ V, let OV(U) be the set of all constant functions on U. Then OV is a
presheaf that is not a sheaf unless V is irreducible.

Condition 5 states that different constants on different irreducible compo-
nents must patch together to give a function in OV(V). Such a function would
not be a constant over all of V.

DEFINITION B.1.4. Given two sheavesO1 andO2 on a space X, a morphism
of sheaves is a system of morphisms

r(U):O1(U)→ O2(U)

for all open sets, U ⊂ V, that commute with all of the structure-morphisms in
definition B.1.1 on page 475.

Note: the reader may have seen material on sheaves that uses the notation

Γ(U,OX)

when U ⊂ X and OX is a sheaf on a space, X. This consists of sections of OX —
maps

s: U → OX

with the property that π ◦ s = 1: U → U, where π:OX → X is the map that
sendsOX,x to x for all x ∈ X. In section 3 of [146], Serre proves that the sections
of a sheaf of abelian groups forms a sheaf that is canonically isomorphic to the
original sheaf. In other words

Γ(U,OX) = OX(U)

so we will rarely use the Γ(∗, ∗)-notation. Sometimes this notation is useful
when we want to regard evaluation as a functor of a sheaf.

We will also need the concept of the support of a sheaf — basically where it
is nonvanishing:

DEFINITION B.1.5. If OX is a sheaf of abelian groups on a space X, the
support of OX , denoted SuppOX , is the set X \ Ū, where

Ū =
⋃

OX(U)=0

U

and the sets U are open.

We also have the related concept of the support of a section of a sheaf:

DEFINITION B.1.6. If OX is a sheaf of abelian groups on a space X and
f ∈ OX(U) is a section over an open set U ⊂ X, the support of f , denoted
Supp f , is the set of points x ∈ U with the property that

rx( f ) 6= 0 ∈ OX,x

— where rx is the restriction-map defined in B.1.1 on page 475.

Here is an extreme example of a sheaf — a kind of sheaf over a point
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EXAMPLE B.1.7. Given a space X, a point x ∈ X, and a module M, the
skyscraper sheaf at x, denoted ix(M) is defined by

ix(U) =

{
M if x ∈ U
0 otherwise

All restriction maps are the identity map or the zero map.

REMARK. The only nonvanishing stalk of a skyscraper sheaf is the one over
the point of definition, x. The support of this sheaf is the single point, x.

EXERCISES.

1. If F is a sheaf over a space X and U is any open set, show that the map

∏
x∈U

rx: F (U)→ ∏
x∈U

Fx

is injective.

2. Show that a morphism of sheaves is determined by its behavior on
stalks.

3. Suppose f : X → Y is a surjective continuous map of topological spaces
and let OX be a sheaf on X. Show that we can define a sheaf f∗OX on Y by
setting

f∗OX(U) = OX( f−1(U))

for every open set U ⊂ Y. This is called the direct image sheaf .

B.2. Presheaves verses sheaves

As mentioned above, a presheaf satisfies all of the conditions in defini-
tion B.1.1 on page 475 except for condition 5.

Here’s an example of a presheaf that is not a sheaf. It also illustrates how a
homomorphic image of a sheaf may fail to be a sheaf:

EXAMPLE B.2.1. Consider the sequence of morphisms of sheaves over C:

2πiZ→ AC

exp−−→ NC∗

where:
(1) 2πiZ is the constant sheaf equal to the abelian group 2πiZ ⊂ C.
(2) AC is the sheaf that associates to each open set U ⊂ C the C-algebra,
AC(U), of complex-analytic functions defined on it. This is an algebra
under addition.

(3) NC∗ is the sheaf of complex-analytic nowhere-zero functions on C∗ =
C \ {0}, which form an algebra over C∗ under multiplication.
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FIGURE B.2.1. Branch-cuts

(4) exp is the exponential function, which defines a map of sheaves be-
cause it sends sums into products.

It is well-known that e2πni = 1 so the image of the constant sheaf 2πiZ under
exp is the constant function 1 ∈ C∗.

The image of exp is a presheaf, EC∗ , that associates to each open set U ⊂ C

the set of functions e f (z) where f (z) is complex-analytic on U. We claim that
this is a presheaf that is not a sheaf.

In figure B.2.1, consider the open sets U1 = C \ L1 and U2 = C \ L2, where
• The line-segments, L1 and L2, are rays from the origin.
• On each of these sets, the image of exp = EC∗ has a function equal to

z.
• On the other hand, EC∗(C) does not have a global function equal to z

even though C∗ = U1 ∪U2.
This is because ln is only well-defined after one removes a branch-cut from

C∗.

There is a standard procedure for completing a presheaf to make it a sheaf:
just add functions to the global set that restrict to compatible functions on each
open set. We must also add restrictions of these new global functions to all of
the open sets.

DEFINITION B.2.2. Let OV be a presheaf on a space V. If U ⊂ V is open
and has an open covering, U =

⋃
i Ui, define a compatible family C({Ui}) to be a

sequence
xi ∈ OV(Ui)

with
xi|Ui ∩Uj = xj|Ui ∩Uj

for all i, j. A compatible family forms a set in a natural way and operations on
this set are preserved by restriction maps they will be well-defined on compat-
ible families.
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If U =
⋃

j Wi is a another open covering that is a refinement of {Ui}, there
is a natural restriction homomorphism

C({Ui})→ C({Wj})
LEMMA B.2.3. Let OV be a presheaf of groups on a topological space V. Define a

new presheaf OV on V as follows:

OV(U) = lim−→ C({Ui})
where the direct limit (see proposition A.5.18 on page 441) is taken over all open cover-
ings of U. Then OV is called the completion of OV and is a sheaf.

There is a canonical homomorphism of presheaves

f :OV → OV

REMARK. Applying this construction to the presheaf EC∗ in the example
above will result in the sheaf NC∗ . For instance, the open sets U1 and U2 will
have functions equal to z that will form a compatible family that is globally
equal to z.

According to Mumford ([119]):
F′ is “the best possible sheaf you can get from F”. It is easy
to imagine how to get it: first identify things which have the
same restrictions, and then add in all the things which can be
patched together.

Note that the direct limit identifies elements whose restriction of all open sets
are equal — guaranteeing that the result is separated.

PROOF. It is easy to see that OV will still satisfy conditions 1, 2 and 3 of
definition B.1.1 on page 475. Each ring OV(U) will contain all of the elements
of OV(U) plus any extras that arise from compatible families on open covers.
It follows that the result will be a sheaf. �

This process of converting a presheaf into a sheaf preserves stalks:

PROPOSITION B.2.4. Let F be a presheaf on a space X and let

f : F → F ′

be the canonical map to the completion. Then f induces isomorphisms

fx: Fx → F ′x
for all x ∈ X.

REMARK. One way to think of this is “the direct limit used to construct F ′

commutes with the direct limits used to construct the stalks.”

PROOF. If s ∈ Fx is in the kernel of fx, then there exists an open set U and
an element t ∈ F (U) with tx = s. Since fx(s) = 0 it follows that there exists
an open set U′ ⊂ U such that f (yt)|U′ = 0. Since F ′ is a direct limit over open
covers, there must exist an open set U′′ ⊂ U with t|U′′ = 0. But this implies
that s = 0 ∈ Fx.

To prove surjectivity, let s ∈ F ′x and note that there exists an open set U
and element t ∈ F ′(U) that gives rise to s in the inverse limit. Since F ′(U)
is a direct limit over open covers, there exists an open set U′ ⊂ U such that
t ∈ F (U′), from which we conclude that s ∈ im fx. �
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Since the homomorphic image of a sheaf is generally only a presheaf, we
make

DEFINITION B.2.5. In the category of sheaves, S , the image of a morphism
is the completion of its image as a presheaf.

We can define subsheaves and quotient sheaves:

DEFINITION B.2.6. Let f :O1 → O2 be an injective morphism of sheaves of
modules over a space X. We can define a presheaf over X by setting

Oq(U) =
O2(U)

O1(U)

for open sets U ⊂ V. The completion of this presheaf is called the quotient sheaf
and denoted O2/O1.

REMARK. Example B.2.1 on page 478 shows why we must take the com-
pletion. On open sets, U ⊂ C∗, that do not circle the origin

NC∗(U) =
AC(U)

2πiZ(U)
=
AC(U)

2πiZ
but the quotient, EC∗ , is not a sheaf since it does not include the function z. Its
completion is NC∗ .

In one case, we do not need to complete a presheaf

DEFINITION B.2.7. A sheaf X over a space X is flasque if every restriction
map

pU′
U : X (U′)→ X (U)

for U ⊂ U′, is surjective.

REMARK. Most of the sheaves we have dealt with before are not flasque —
indeed, the restriction maps have usually been injective.

Flasque sheaves are also called flabby sheaves.

Surjectivity of restriction maps implies that compatible families always ex-
tend to the entire space so:

PROPOSITION B.2.8. A flasque separated presheaf is a sheaf.

REMARK. This means we can define quotients of flasque sheaves in the
straightforward way — without considering whether they are sheaves.

EXERCISES.

1. If
0→ F → G →H → 0

is an exact sequence of sheaves where F and G are flasque, show that H is
also flasque, so that

0→ F (U)→ G (U)→H (U)→ 0

is exact for all open sets U.
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2. If F is a flasque sheaf on a space Y that is a closed subspace of a space
X with inclusion map

i: Y → X
show that i∗F is flasque on X.

3. Show that the category of presheaves is abelian (see definition A.5.33 on
page 449) but the category of sheaves is not.

4. Show that a homomorphism of sheaves of abelian groups f : F → G is
injective if and only if it induces an injection on all stalks.

5. Show that a homomorphism of sheaves of abelian groups f : F → G is
an isomorphism if and only if it induces an isomorphism on all stalks.

6. Show that a homomorphism of sheaves of abelian groups f : F → G on
a space X is surjective if and only if it induces a surjection on all stalks.

7. Show that a sequence of sheaves of abelian groups

0→ F → G →H → 0

over a space X is exact if and only if the induced sequence of stalks

0→ Fx → Gx →Hx → 0

is exact, for all x ∈ X.

8. If f : X → Y is a map of topological spaces and F is a sheaf on Y, show
that

f−1(F )(U) = lim−→ V⊃ f (U)F (V)

for open sets V ⊂ Y, defines a presheaf on X. The sheaf associated to this is
called the inverse image sheaf of F under f . If f is an open mapping (i.e., if it
sends open sets to open sets), then f−1(F )(U) = F ( f (U))).

9. If A is an abelian group, why isn’t the constant sheaf A flasque?

B.3. Ringed spaces

DEFINITION B.3.1. If V is a topological space and OV is a sheaf over V, the
pair (V,OV) is called a ringed space.

A morphism of ringed spaces ( f , f ]): V →W is
(1) a continuous map f : V →W of topological spaces
(2) for every open set U ⊂ W there is a ring-homomorphism

f ]U :OW(U) → OV( f−1U) compatible with restriction maps. In other
words, given open sets U1 ⊂ U2 ⊂W, the diagram

OW(U2)
f ]U2 //

��

OV( f−1(U2))

��

OW(U1)
f ]U1 // OV( f−1(U1))
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commutes.
The set of morphisms f : V →W is denoted hom (V, W).
A ringed space with the property that the stalk of each point (see defini-

tion B.1.1 on page 475) is a local ring (see definition A.1.23 on page 336) is called
a locally ringed space.

REMARK. For historical reasons, we often write Γ(U,OV) for OV(U) and
call its elements sections ofOV over U. Unfortunately both notations are in wide-
spread use.

It is not hard to see that the restriction of a sheaf to an open set is also a
sheaf on that open set.

EXAMPLE. A topological manifold of dimension n is a ringed space (V,OV)
such that V is Hausdorff and every point of V has an open neighborhood U for
which (U,OV |U) is isomorphic to the ringed space of continuous functions on
an open subset of Rn. This is slicker (or shorter) than the usual definition found
in [102].

A differential manifold of dimension n is a ringed space (V,OV) such that
V is Hausdorff and every point of V has an open neighborhood U for which
(U,OV |U) is isomorphic to the ringed space of smooth functions on an open
subset of Rn.

We will often be interested in local properties of sheaves:

DEFINITION B.3.2. Let (V,OV) be a ringed space and let p ∈ V be a point.
Consider pairs ( f , U) consisting of an open neighborhood U of p and an f ∈
OV(U).

Write ( f , U) v ( f ′, U′) if there exists an open set U′′ ⊂ U ∩U′ such that
f |U′′ = f ′|U′′.

This is an equivalence relation and an equivalence class of pairs is called a
germ of a function at p (relative to OV).

The germs of functions at p will be denoted OV,p or just Op — the stalk of
OV over p.

If OV,p is a local ring for all p ∈ V, then (V,OV) is called a locally ringed
space.

REMARK. It is not hard to see that

Op = lim−→OV(U)

— the direct limit (see proposition A.5.18 on page 441) over all open sets con-
taining p. In all interesting cases, this is a local ring with maximal ideal consist-
ing of functions that vanish at p.

EXAMPLE. Let OV be the sheaf of complex analytic functions on V = C.
These are functions that are equal to power series expansions at their nonsin-
gular points (points where they don’t “blow up” as 1/z does when z = 0).

A power series ∑n≥0 an(z− c)n is called convergent if it has a nonzero (but
arbitrarily small) radius of convergence. The set of all such power series is a
C-algebra.

This C-algebra (of convergent power series) is canonically isomorphic to
the C-algebra of germs of functions.
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DEFINITION B.3.3. If (X,OX) is a ringed space, a sheaf of modules, F over
OX , or a module over OX is a sheaf with the property that, for every open set
U ⊂ X, F (U) is a module overOX(U) such that the restriction map for V ⊂ U,

pU
V : F (U)→ F (V)

is compatible with module structures via the ring homomorphism OX(U) →
OX(V).

REMARK. Having defined our objects of study, we must define morphisms:

DEFINITION B.3.4. A morphism g: F → G of OX-modules is a
morphism of sheaves such that g(U): F (U) → G (U) is a homomorphism of
OX(U)-modules. The group of homomorphisms is denoted homOX (F , G ) or
homX(F , G ).

If U ⊂ X is an open set, then F |U is a module over OX |U and we can
define the sheaf-hom functor, H omX(F , G ) by

H omX(F , G )(U) = homU(F |U, G |U)

REMARK. Although H omX(F , G ) is only defined as a presheaf, the result
is actually a sheaf: If {Uα} is an open cover of X and fα: F |Uα → G |Uα is a set
of morphisms that agree on intersections, they define a morphism f : F → G
because F and G are sheaves.

We can define tensor products of modules over OX :

DEFINITION B.3.5. If (X,OX) is a ringed space and F and G are modules
over OX , the we define

F ⊗OX G

to be the completion (see lemma B.2.3 on page 480) of the presheaf, P, defined by

P(U) = F (U)⊗OX(U) G (U)

for every open set U ⊂ X.

REMARK. Example 5.3.4 on page 229 shows that the completion-step is
actually necessary.

DEFINITION B.3.6. If f (X,OX) → (Y,OY) is a morphism of ringed spaces
(as in definition B.3.1 on page 482) and F is aOX-module, then f∗F is naturally
a OX-module too. The maps f ](U):OY(U)→ OX( f−1(U)) equips f∗F with a
OY-module structure.

EXERCISES.

1. Suppose we want to define a sheaf of finitely generated k-algebras whose
stalks are local rings on a topological space V. In this case, show that defini-
tion B.1.1 on page 475 is equivalent to the following shorter definition (valid
for affine varieties):

DEFINITION B.3.7. If k is algebraically closed, and V is a topological space,
a sheaf of finitely generated k-algebras whose stalks are local rings on V assigns
a set OV(U) of functions U → k to each open set U ⊂ V such that:
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a. OV(U) contains the constant functions and is closed under addition
and multiplication,

b. if U′ ⊂ U is an open subset and f ∈ OV(U) then f |U′ ∈ OV(U′),
c. a function f : U → k is in OV(U) if f |Ui ∈ OV(Ui) for some open

covering {Ui} of U.

2. Let V be a topological space and let X (V) be the category of open sets
of V where the only morphisms allowed are inclusions of open sets. Show that
we can give the very short but barely comprehensible definition of a presheaf:

DEFINITION. A presheaf on V is a contravariant functor (see
definition A.5.7 on page 434)

X (V)→ C

3. If (X,OX) is a ringed space and F is a module overOX , show that there
exists a natural homomorphism of sheaves

F ⊗OX H om(F ,OX)→ OX

4. Under the conditions of exercise 3 above, assume that F is a locally-free
sheaf of rank 1. Show that the homomorphism

F ⊗OX H om(F ,OX)→ OX

is an isomorphism in this case.





APPENDIX C

Vector bundles

“. . . this miracle of analysis, this marvel of the world of ideas, an al-
most amphibian object between Being and Non-being that we call the
imaginary number. . . ”

—Gottfried Wilhelm Leibniz

C.1. Introduction

In this section, we will define an important topological concept closely re-
lated to sheaves. A vector bundle attaches a vector-space to every point of a
ringed space, V, in a way that looks like a product in a neighborhood of every
point.

Throughout, k will denote a fixed field and
(1) all vector-spaces will be over k
(2) all sheaves will have values in k

We begin with a definition:

DEFINITION C.1.1. If (X,OX) is a ringed space, U ⊂ X is an open set, then
a map f : U → An, is said to be compatible with OX if the composite

f : U → An pi−→ k

is in OX(U) for all 1 ≤ i ≤ n, where pi: An → A1 = k is projection to the ith

copy of A1 = k.

REMARK. For instance, if OX is the sheaf of continuous functions, then f
must be continuous to be compatible with it. If OX is the constant sheaf, then
the image of f must be a single point.

A map f : U → hom(An, Am) = An·m will be regarded as compatible with
OX if the corresponding map f : U → An·m is. Here, hom(An, Am) denotes the
set of m× n matrices with coefficients in k. The fact thatOX(U) is a ring implies
that:

PROPOSITION C.1.2. If (X,OX) is a ringed space, U ⊂ X is an open set, and
• f : U → An and
• g: U → hom(Am, Am)

are both compatible with OX , then so is the composite g ◦ f : U → Am.

Now we can define the main object of this section:

DEFINITION C.1.3. Let (X,OX) be a locally ringed space (see
definition B.3.2 on page 483). A vector bundle, ξ, over X is a topological space W
and a continuous map

ξ: W → X

487
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such that
(1) if x ∈ X is any point, ξ−1(x) = An for some n.
(2) there exists a covering

(C.1.1) X =
⋃
α

Uα

by open sets {Uα} (called a trivializing cover of ξ) and homeomor-
phisms (called charts)

ια: ξ−1(Uα)→ Uα ×An

that make the diagram

ξ−1(Uα)
ια //

p

��

Uα ×An

��

Uα Uα

commute, and such that ια|ξ−1(u): ξ−1(u) → u ×An is a linear iso-
morphism of vector spaces for all u ∈ Uα. If Uα and Uβ are two open
sets in equation C.1.1, the map ιβ ◦ ι−1

α |Uα ∩Uβ has the form

(C.1.2) ιβ ◦ ι−1
α |Uα ∩Uβ = (1× ϕβ,α): Uα ∩Uβ ×An → Uβ ∩Uα ×An

where ϕβ,α: Uα ∩Uβ → GL(k, n) is compatible with OX(Uα ∩Uβ) (see
definition C.1.1 on the previous page), called a transition function. It is
not hard to see that transition functions must satisfy the consistency
conditions

ϕγ.β ◦ ϕβ,α = ϕγ,α

ϕβ,α = ϕ−1
α,β(C.1.3)

on Uα ∩Uβ ∩Uγ.
The number n is called the rank of the vector bundle, and the map p is called its
projection.

A vector-bundle of rank 1 (i.e. n = 1) is called a line bundle. The space, W,
is called the total-space of the vector-bundle and X is called the base-space.

REMARK. The standard definition of vector-bundle makes no reference to
sheaves and simply requires maps ϕα,β and ψα,β to be continuous, smooth, or
algebraic. All of these special cases are covered by using the appropriate sheaf.

Note the notation (1× ϕβ,α): Uα ∩Uβ ×An → Uβ ∩Uα ×An where “Uα ∩
Uβ” means Uα ∩ Uβ ⊂ Uα — i.e. the intersection, regarded as part of the Uα

chart — and Uβ ∩Uα represents the same intersection regarded as part of the
Uβ chart.

The following is straightforward:

PROPOSITION C.1.4. If (X,OX) is a locally ringed space with an open cover

X =
⋃
α

Uα
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FIGURE C.1.1. A trivial line-bundle over a circle

and
ϕα,β: Uα ∩Uβ → GL(n, k)

are a set of functions satisfying the consistency conditions (equations C.1.3 on the fac-
ing page) and compatible with OX(Uα ∩ Uβ), we can construct a vector bundle by
forming the union and taking equivalence classes⋃

α

Uα ×An/ ∼
where ∼ is the equivalence relation defined on Uα ∩ Uβ that identifies
(u, v) ∼ (u, ϕβ,α(v)), where u ∈ Uα ∩Uβ, v ∈ An and (u, v) and (u, ϕβ,α(v)) are
regarded as elements of Uα ×An and Uβ ×An, respectively.

EXAMPLE C.1.5. The simplest example of a vector-bundle is a product

V ×An

This is called a trivial bundle — see figure C.1.1 for an example of a trivial bundle
over a circle. Its transition functions

ϕα,β: Uα ∩Uβ → GL(k, n)

can be regarded as sending every point u ∈ Uα ∩Uβ to the identity matrix.

Condition 2 in definition C.1.3 on page 487 means that every vector-bundle
is locally trivial.

EXAMPLE C.1.6. The vector-bundle (a Möbius strip!) in figure C.1.3 on the
next page can be constructed by decomposing the circle into a union of two
line-segments

S1 = U1 ∪U2

such that U1 ∩ U2 = W1 ∪W2, as in figure C.1.2 on the following page and
defining ϕ1,2 by

(C.1.4) ϕ1,2(u) =

{
×1 if u ∈W1

×− 1 if u ∈W2
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U

U

W W

1

1 2

2

FIGURE C.1.2. Constructing a vector bundle by patching

FIGURE C.1.3. A nontrivial line-bundle over a circle

We can also consider the set of vector-bundles over a fixed base space. They
form a category with morphisms defined by

DEFINITION C.1.7. Let B(X,OX) denote the category of vector-bundles
over the locally ringed space, (X,OX), where a morphism ξ1 → ξ2 is a map F

F: W1 → W2

that:
(1) makes the diagram

W1
F //

ξ1
��

W2

ξ2
��

X X

commute,
(2) with F|ξ−1

1 (v): ξ−1
1 (v) → ξ−1

2 (v) is a linear map of vector-spaces for
every v ∈ X, and

(3) if {Uα} is a trivializing cover of ξ1 with charts ια: ξ−1
1 (Uα)→ Uα×An,

{Vβ} is one for ξ2 with charts ι′β: ξ2(Vβ)→ Vβ ×Am then

ι′β ◦ F ◦ ι−1
α : Uα ∩Vβ ×An → Uα ∩Vβ ×Am
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is of the form ι′β ◦ F ◦ ι−1
α = (1 × ψα,β) and

ψα,β: Uα ∩ Vβ → hom(Am, Am) is compatible with
OV(Uα ∩Vβ).

REMARK. Figures C.1.1 on page 489 and C.1.3 on the facing page are two
line-bundles over the circle that turn out to not be isomorphic.

Up to isomorphism, vector-bundles are determined by their
transition-functions:

LEMMA C.1.8. Let ξ be a vector-bundle over (X,OX) with trivializing cover

X =
⋃
α

Uα

charts
ια: ξ−1(Uα)→ Uα ×An

and transition functions

ϕα,β: Uα ∩Uβ → GL(k, n)

If ξ ′ is the vector-bundle created by proposition C.1.4 on page 488 using these
transition-functions, there is an isomorphism

F: ξ → ξ ′

PROOF. Simply define

F|ξ−1(Uα) = ια: ξ−1(Uα)→ Uα ×An

�

PROPOSITION C.1.9. Let ξ: W → V be a vector-bundle over a space, V and let
U ⊂ V be a subspace. Then the fiber of f over U, ξ−1(U), has the structure of a
vector-bundle over U. This is called the restriction of W to U and is denoted ξ|U.

PROOF. Clearly, the fiber of E|U over each point of U will still be a vector
space and of the same dimension as the rank of E. Local triviality (condition 2
in definition C.1.3 on page 487 is also easy to verify. �

Having attached a vector-space to each point of a variety, we are interested
in defining vector-fields over the variety.

DEFINITION C.1.10. Let ξ: W → X be a rank-n vector-bundle over a ringed
space (X,OX) over a field k with trivializing open cover

X =
⋃
α

Uα

Then a global section of f is a morphism s: X → W such that ξ ◦ s = 1: X → X
and ια ◦ s = 1× σα|ξ−1(Uα): ξ−1(Uα)→ Uα ×An where

ια: ξ−1(Uα)→ Uα ×An

are the trivializing morphisms, and σα is compatible with OX for all α.

REMARK. All vector-bundles have at least one section: the 0-section,
s0: V →W, where s(v) = 0 ∈ ξ−1(v) for all points v ∈ V.

Since ξ−1(v) is a vector space over k for any point v ∈ V, the set of sections
forms a vector space over k:
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FIGURE C.1.4. A nontrivial bundle “unrolled”

(1) If s1, s2: V →W are sections of f , (s1 + s2): V →W is the section whose
value at a point v ∈ V is just s1(v) + s2(v) ∈ ξ−1(v),

(2) If s: V → W is a section of ξ and x ∈ k, (x · s): V → W is the section
with (x · gs)(v) = x · s(v) for all points v ∈ V.

The vector-space of sections of a vector-bundle, ξ, over V is denoted Γ(V, ξ). An
isomorphism of vector-bundles induces an isomorphism of their vector-spaces
of sections.

The vector-bundle in figure C.1.1 on page 489 has a section that is nonzero
everywhere — in fact, we can define s(v) = 1 ∈ ξ−1(v) = R1. The vector-
bundle in figure C.1.3 on page 490 does not, as becomes clear if we cut and
“unroll” it as in figure C.1.4 on page 492. Every section of this bundle must
vanish somewhere, which shows that the bundles in figures C.1.1 on page 489
and C.1.3 are not isomorphic.

PROPOSITION C.1.11. Let ξ be a vector-bundle of rank n on a ringed space X and
let {Uα} be a trivializing cover with trivializing functions

ια: ξ−1(Uα)→ Uα ×An

and transition functions ϕα,β: Uα ∩Uβ → Uβ ∩Uα. Then functions

sα: Uα → An

define sections ι−1
α ◦ (1× sα): ξ−1(Uα) → Uα that form a global section of ξ if and

only if sβ = ϕβ,α ◦ sα for all α and β.

PROOF. This follows immediately from the definitions of the various
terms. �

If U ⊂ V is a subvariety, restriction of maps defines a homomorphism

(C.1.5) Γ(V, ξ)→ Γ(U, ξ|U)

of vector-spaces.
Essentially any functorial operations we can perform on vector spaces ex-

tend to vector-bundles:

PROPOSITION C.1.12. The functors ⊕, ⊗, and ()∗ on vector-spaces extend to
functors of trivial vector bundles

ξ1 = X×An

ξ2 = X×Am

by defining ξ1 ⊕ ξ2 = X × (An ⊕Am), ξ1 ⊗ ξ2 = X × (An ⊗Am), ξ∗1 = X ×
(An)∗. These extend uniquely to arbitrary vector-bundles.
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PROOF. Suppose ξ1 is an arbitrary vector bundle over X of rank n and ξ2
is one of rank m. Then:

(1) Find a trivializing cover for both ξ1 and ξ2

X =
⋃
α

Uα

— for instance take the intersection of one for each.
(2) For ξ1 ⊕ ξ2, use proposition C.1.4 on page 488 to glue together

Uα ×An+m

by transition functions

ϕα,β ⊕ ϕ′α,β =

[
ϕα,β 0

0 ϕ′α,β

]
— where ϕα,β are the transition functions for ξ1 and ϕ′α,β are those for
ξ2.

(3) For ξ1 ⊗ ξ2 do the same thing with copies of

Uα ×Anm

with transition functions ϕα,β ⊗ ϕ′α,β — the Kronecker product (see ex-
ercise 16 on page 464) of the matrices representing ϕα,β and ϕ′α,β.

(4) For ξ∗1 , use transition functions ϕ∗α,β = ϕtr
β,α, where ϕtr

β,α is the trans-
pose of the matrix representing ϕβ,α. The subscripts α and β are in-
terchanged because ()∗ is a contravariant functor (see definition A.5.7
on page 434 and example 2 on page 435): A homomorphism of vector
spaces f : V1 → V2 induces a homomorphism f ∗: V∗2 → V∗1 .

It is left as an exercise to the reader to show that these define vector bundles. �

The following construction

DEFINITION C.1.13. Let X be a ringed space and let k be a field. The Picard
group of X, denoted Pic(X) is the group of isomorphism classes of line-bundles
on X with the operation ⊗. The trivial bundle is the identity element.

REMARK. The line-bundles form a group under this operation because ⊗
is associative on vector-spaces. If ξ is a vector-bundle over X with transition-
functions ϕα,β, we can construct another vector bundle, η, with transition func-
tions ϕ−1

α,β and ξ ⊗ η will be trivial.
Note that the Picard group depends on the field k as well as X.
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EXERCISES.

1. Show that a vector-bundle, ξ, over (X,OX) of rank n is trivial if and only
if it has n linearly independent sections — i.e. n sections {s1, . . . , sn} such that,
at every point p ∈ X, {s1(p), . . . , sn(p)} are linearly independent vectors.

2. If ξ ∈ Pic(X) is a line bundle on a space, X, show that ξ−1 is the line
bundle ξ∗, as in proposition C.1.12 on page 492. This gives a nice functorial
description of ξ−1.

3. If ξ is the line-bundle in example C.1.6 on page 489, show that ξ ⊗ ξ is a
trivial line bundle. If S1 is a circle and the field of definition for vector-bundles
is R, show that Pic(S1) = Z2.

4. Show that ⊕ is a coproduct (see definition A.5.4 on page 433) in the
category of vector-bundles over (X,OX).

5. Suppose
0→ E→ F → G → 0

is a short exact sequence of vector-bundles of rank e, f , g, respectively. Show
that there exists an isomorphism of line-bundles

Λ f F ∼= Λe E⊗Λg G

C.2. Vector-bundles and sheaves

This section makes extensive use of the material in appendix B on page 475.
The connection between vector-bundles and sheaves is given by:

DEFINITION C.2.1. Let ξ: W → X be a vector-bundle over a ringed space,
(X,OX). The section-sheaf , Sξ , is defined by

Sξ(U) = Γ(U, ξ)

for all open sets, U ⊂ X with restriction-maps defined by restriction as in equa-
tion C.1.5 on page 492.

REMARK C.2.2. If U ⊂ X is an open set with the property that ξ|U is trivial,
and p ∈ U is any point, then

ιU(Sξ,p) = p×An

where n is the rank of ξ and ιU : ξ−1(U)→ U×An is a chart — for instance, the
constant sections give us this. In this way, we can recover the vector-spaces from
the sheaf of sections.

Sheaves also have associated section-sheaves: Γ(U,OV). The sections of a
sheaf, OX , is a sheaf, Γ(∗,OX), that is canonically isomorphic to OX (proposi-
tion 3 in section 3 of [146]), rendering the notation Γ(∗,OX) superfluous. It
is still in wide use, so Γ(U,OX) should be regarded as completely synonymous
withOX(U). Occasionally, when discussing sheaf cohomology, there will be an
advantage to using the section-functor, Γ(U,OX) = OX(U).
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If the vector-bundle, ξ, is of rank one — i.e., a line-bundle — then the sheaf
Sξ is a sheaf of invertible functions and is called an invertible sheaf .

In order to understand this connection better, we need:

DEFINITION C.2.3. Let O1,O2 be two sheaves over a space, V, where O1 is
a sheaf of rings and O2 is a sheaf of abelian groups. The sheaf, O2, is a module
over O1, if there exist homomorphisms

mU :O1(U)⊗O2(U)→ O2(U)

of abelian groups for all open sets U ⊂ V defining O2(U) as a module over
O1(U). In addition, these module structure-maps must be compatible with
restriction-homomorphisms, i.e. for every inclusion of open sets U′ ⊂ U, the
diagram

O1(U)⊗O2(U)
mU //

rU,U′⊗sU,U′
��

O2(U)

sU,U′
��

O1(U′)⊗O2(U′) mU′
// O2(U′)

commutes, where rU,U′ :O1(U) → O1(U′) and sU,U′ :O2(U) → O2(U′) are the
restriction-homomorphisms of O1 and O2. respectively.

A homomorphism
g:O2 → O3

of modules overO1 is a homomorphism of modules g(U):O2(U)→ O3(U) for
all open sets U that is compatible with restriction-homomorphisms.

The sheaf, O2, is a free module over O1, if

O2 ∼=
n⊕

i=1

O1

for some integer n > 0, which is called the rank of the free module.
The sheaf, O2, is a locally free module over O1 if there exists an open cover

V =
⋃
α

Uα

such that O2(Uα) is a free module over O1(Uα) for all α.

REMARK. If O2 is locally free over O1 and V is connected, it is not hard to
see that the rank of O2(Uα) over O1(Uα) is the same for all Uα.

We can clearly extend operations on modules like⊕ and⊗ to modules over
a sheaf. The direct sum, ⊕, is clearly a coproduct in the category of modules
over a sheaf.

PROPOSITION C.2.4. If ξ: W → X is a rank-n vector-bundle over a ringed space,
(X,OX), then the sheaf of sections, Sξ module over OX that is free (of rank n) if ξ is
trivial. In general Γ(ξ) is locally free of rank n.

Any morphism of vector-bundles

F: ξ1 → ξ2

induces a homomorphism
SF: Sξ1 → Sξ2

of modules over OX .
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PROOF. It is not hard to see that Γ(ξ) is naturally a module over OX . If ξ is
trivial, then

W = X×An

and any section is of the form

s = (1× σ): X → X×An

where σ: X → An is compatible with OX . The composite of σ with the n pro-
jections An → A1 = k give rise to n elements of OX so

Sξ = On
X

In general, X has a trivializing cover

X =
⋃
α

Uα

with ξ|Uα a trivial bundle so that Γ(ξ)(Uα) = OX(Uα)n, making Γ(ξ) locally
free. �

It is interesting that the converse is also true:

PROPOSITION C.2.5. Let ξ1, ξ2 be two vector-bundles over a ringed space
(X,OX) of ranks n and m, respectively. Then any homomorphism of modules

g: Sξ1 → Sξ2

over OX induces a morphism of vector-bundles

ḡ: ξ1 → ξ2

such that g = Sḡ (in the notation of proposition C.2.4 on the preceding page).

PROOF. Let
X =

⋃
α

Uα

be a trivializing open cover (see equation C.1.1 on page 488) for both ξ1 and ξ2
(i.e., intersect trivializing covers for the two vector-bundles) and with sets of
transition-functions {ϕα,β} and {ϕ′α,β}, respectively. Then the map

ι′α ◦ g(Uα) ◦ ι−1
α |p: ια(Sξ1,p) = An → ι′α(Sξ2,p) = Am

is a linear homomorphism of vector spaces for any point p ∈ Uα — see re-
mark C.2.2 on page 494. It follows that g(Uα) can be regarded as defining a
map

(C.2.1) ι′α ◦ g(Uα) ◦ ι−1
α : Uα → hom(An, Am)

compatible with OX . We can define

ḡα = 1× (ι′α ◦ g(Uα) ◦ ι−1
α ): Uα ×An → Uα ×Am

We claim that the maps {ḡα} are compatible with the transition functions on
Uα ∩Uβ in the sense that the diagram

Uα ∩Uβ ×An ḡα
//

1×ϕα,β
��

Uα ∩Uβ ×Am

1×ϕ′α,β
��

Uα ∩Uβ ×An
ḡβ

// Uα ∩Uβ ×Am
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commutes. This follows from the fact that 1× ϕα,β = ιβ ◦ ι−1
α and 1× ϕ′α,β =

ι′β ◦ (ι′α)−1 (see equation C.1.2 in definition C.1.3 on page 487), so

(1× ϕ′α,β) ◦ ḡα = (1× ϕ′α,β) ◦ (1× ι′α ◦ g(Uα) ◦ ι−1
α )

= 1×
(

ι′β ◦ (ι′α)−1 ◦ ι′α ◦ g(Uα) ◦ ι−1
α

)
= 1×

(
ι′β ◦ g(Uα) ◦ ι−1

α

)
= 1×

(
ι′β ◦ g(Uα) ◦ ι−1

β ◦ ιβ ◦ ι−1
α

)
= (1× ι′β ◦ g(Uα) ◦ ι−1

β ) ◦ (1× ϕα,β)

= (1× ι′β ◦ g(Uβ) ◦ ι−1
β ) ◦ (1× ϕα,β) since g(Uα) = g(Uβ)

on Uα ∩Uβ

= ḡβ ◦ (1× ϕα,β)

It follows that the {ḡα} patch together to define a morphism ḡ: ξ1 → ξ2.
It is also not hard to see that the map of section-sheaves will coincide with

g: on Uα form the composite (ι′α)−1 ◦ ḡα ◦ ια and we recover g(Uα). �

The previous result implies that there is an equivalence of categories be-
tween the category of vector bundles over (X,OX) and that of modules over
OX that are section-sheaves of vector bundles. Our next step will be to identify
these:

PROPOSITION C.2.6. Let (X,OX) be a connected, locally ringed space with
mp ⊂ OX,p the unique maximal ideal and such that OX,p/mp = k for all points
p ∈ X. If M is a locally free module over OX of finite rank, then M is isomorphic to
the section-sheaf of a vector bundle over (X,OX).

PROOF. Since M is locally free, there is an open covering

X =
⋃
α

Uα

such that M(Uα) is free over OX(Uα). Since X is connected, the rank of M(Uα)
over OX(Uα) is the same for all α, say n > 0, and

Mp

mp ·Mp
= An

for all p ∈ X. The restriction-maps

pUα ,Uα∩Uβ
: M(Uα) = OX(Uα)

n → M(Uα ∩Uβ) = OX(Uα ∩Uβ)
n

pUβ ,Uα∩Uβ
: M(Uβ) = OX(Uβ)

n → M(Uα ∩Uβ) = OX(Uα ∩Uβ)
n

induce isomorphisms

fα(p):
M(Uα)p

mp ·M(Uα)p
= An → M(Uα ∩Uβ)p

mp ·M(Uα ∩Uβ)p
= An

fβ(p):
M(Uβ)p

mp ·M(Uα)p
= An → M(Uα ∩Uβ)p

mp ·M(Uα ∩Uβ)p
= An
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for any point p ∈ Uα ∩Uβ. If we define ϕα,β(p) = f−1
β (p) ◦ fα(p), we get maps

ϕα,β: Uα ∩Uβ → GL(k, n)

compatible with OX (since they are induced by restriction-maps of OX). It is
left as an exercise to the reader to verify that these satisfy all of the compatibility
conditions of transition functions (see equation C.1.3 on page 488). It follows
that we can glue the Uα ×An together as in proposition C.1.4 on page 488 to
get a vector-bundle, ξ, on X.

It is not hard to see that every element e ∈ M defines a section of ξ — its
value at a point p is its image in An = Mp/mp · Mp. Conversely, any section
of ξ defines sections of ξ|Uα = Uα ×An for all α that are compatible with
restriction-maps of M, so it defines an element of M. �

We summarize these results by:

THEOREM C.2.7. Let (X,OX) be a connected, locally ringed space with mp ⊂
OX,p the unique maximal ideal and such that OX,p/mp = k for all points p ∈ X.
Then the section-sheaf functor defines an equivalence of categories between the category
of vector-bundles over (X,OX) and that of locally-free modules over OX of finite rank.

EXERCISES.

1. If ξ1 and ξ2 are vector-bundles over (X,OX) show that

Sξ1⊕ξ2 = Sξ1 ⊕Sξ2

2. Suppose (X,OX) is a ringed space and

0→ E → F → G → 0

is a short exact sequence of locally free modules over OX of ranks e, f , g, re-
spectively. Show that there exists an isomorphism of invertible sheaves over
OX

Λ f F ∼= Λe E ⊗OX Λg G



APPENDIX D

Cohomology

“God exists since mathematics is consistent, and the Devil exists since
we cannot prove it.”
—André Weil, as quoted in [45].

D.1. Chain complexes and cohomology

Homology theory is one of the pillars of algebraic topology and a variant
called sheaf cohomology is widely used in algebraic geometry. The first step to
developing this theory involves defining cochain complexes — a purely alge-
braic construct that will be coupled to geometry later.

We will assume all objects here are in a fixed abelian category (see sec-
tion A.5.5 on page 449), A . For instance, they could be abelian groups or mod-
ules over any ring, or even certain types of sheaves.

We begin with the most basic construct:

DEFINITION D.1.1. A chain complex (Ci, ∂i) is a sequence of objects of A and
homomorphisms

· · · → Ci+1
∂i+1−−→ Ci

∂i−→ Ci−1 −→ · · ·
where, for all i, ∂i ◦ ∂i+1 = 0. A morphism of cochain complexes { fi}: (Ci, ∂i) →
(Di, ∂′i) (or chain-map) is a sequence of homomorphisms

fi: Ci → Di

such that the diagrams

(D.1.1) Ci
fi

//

∂i
��

Di

∂′i
��

Ci−1 fi−1

// Di−1

commute for all i. The maps, ∂i, are called the boundary maps or differentials
of the chain-complex. The category of chain-complexes with chain-maps as
morphisms is denoted C h.

REMARK. The condition ∂i−1 ◦ ∂i = 0 implies that im ∂i ⊆ ker ∂i−1. In alge-
braic topology, chain-complexes are geometrically defined objects that contain
a great deal of topological information.

Now we define a dual concept that is very similar:

499
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DEFINITION D.1.2. A cochain complex (Ci, δi) is a sequence of objects of A
and homomorphisms

· · · → Ci−1 δi−1−−→ Ci δi−→ Ci+1 → · · ·
where, for all i, δi+1 ◦ δi = 0. A morphism of cochain complexes { fi}: (Ci, δi) →
(Di, δ′i) (or chain-map) is a sequence of homomorphisms

fi: Ci → Di

such that the diagrams

(D.1.2) Ci+1 fi+1
// Di+1

Ci
fi

//

δi

OO

Di

δ′i

OO

commute for all i. The maps, δi, are called the coboundary maps or codifferentials
of the cochain-complex. The category of cochain-complexes with chain-maps
as morphisms is denoted Co.

REMARK. The superscripts are not exponents! At this point, the reader may
wonder what essential difference exists between chain complexes and cochain
complexes. The answer is “none!” We can define cochain-complexes as chain-
complexes with negative subscripts:

Ci = C−i

(or equivalently, defining chain-complexes as cochain-complexes with negative
superscripts). Anything we can prove for one is valid for the other under this
equivalence.

Historically, chain-complexes appeared first and were geometrically de-
fined. The generators of the Ci were i-dimensional building blocks for a topo-
logical space and the ∂i mapped one of these to its boundary. Cochain com-
plexes appeared later as sets of functions one could define on these building
blocks.

In actual applications (in the next section), this symmetry will break down
to some extent and they both will express complementary information. We will
give greater emphasis to cochain complexes because they are the ones that are
most significant in algebraic geometry.

The condition δi+1 ◦ δi = 0 implies that im δi ⊆ ker δi+1 for all i. With this
in mind, we can define

DEFINITION D.1.3. Given:
• a chain-complex, (Ci, ∂i), we can define its homology groups, Hi(C) via

Hi(C) =
ker ∂i

im ∂i+1

• a cochain complex (Ci, δi), we can define its associated cohomology
groups, Hi(C), via

Hi(C) =
ker δi

im δi−1
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REMARK. These will also be objects in the category A . If Hi(C) = 0, then
the original chain complex was an exact sequence. Such chain-complexes are
said to be exact or acyclic. A similar definition exists for cochain complexes.

Historically, Hi(C) measured the number of i-dimensional “holes” a topo-
logical space had (so an n-sphere has Hn = Z and Hi = 0 for 0 < i < n).

Note that the diagrams D.1.2 on the preceding page imply that chain maps
preserve images and kernels of the boundary or coboundary homomorphisms.
This implies that

PROPOSITION D.1.4. A chain map or morphism:
• of chain complexes { fi}: (Ci, ∂i) → (Di, ∂′i) induces homomorphisms of ho-

mology

f i
∗: Hi(C)→ Hi(D)

or
• of cochain-complexes { fi}: (Ci, δi) → (Di, δ′i) induces homomorphisms of

cohomology groups

f ∗i Hi(C)→ Hi(D)

Next, we consider a property of chain maps:

DEFINITION D.1.5. Two

• chain maps f , g: (C, ∂C) → (D, ∂D) of chain-complexes are said to be
chain-homotopic if there exists a set of homomorphisms

Φi: Ci → Di+1

for all i > 0 called a homotopy, such that

fi − gi = Φi−1 ◦ ∂C + ∂D ◦Φi

• chain maps f , g: (C, δC)→ (D, δD) of cochain-complexes are said to be
chain-homotopic if there exists a set of homomorphisms

Φi: Ci → Di−1

called a cohomotopy for all i > 0, such that

fi − gi = Φi+1 ◦ δC + δD ◦Φi

REMARK. Chain-homotopy clearly defines an equivalence relation on
chain-maps. Although the definition seems odd, the maps Φ arise naturally in
certain topological settings.

The main significance of chain-homotopy is that:

PROPOSITION D.1.6. If f , g: (C, δC) → (D, δD) are chain-homotopic chain-
maps of cochain complexes then

f ∗ = g∗: Hi(C)→ Hi(D)

REMARK. A corresponding result exists for chain-complexes, by “reversing
all the arrows.” The symmetry between chain and cochain complexes persists.
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PROOF. If x ∈ Hi(C), then there exists an element y ∈ ker(δC)i ⊂ Ci such
that x ≡ y (mod im (δC)i−1). If we evaluate ( f − g)(y), we get

( f − g)(y) = (Φ ◦ δC + δD ◦Φ) (y)

= δD ◦Φ(y) because y ∈ ker(δC)i

It follows that f (y) ≡ g(y) (mod im (δD)i) and f ∗(x) = g∗(x) ∈ Hi(D). �

We can also define an equivalence relation on cochain-complexes:

DEFINITION D.1.7. Two cochain-complexes (C, δC) and (D, δD) are chain-
homotopy equivalent if there exist chain maps

f : (C, δC) → (D, δD)

g: (D, δD) → (C, δC)

such that f ◦ g: (D, δD) → (D, δD) and g ◦ f : (C, δC) → (C, δC) are both chain-
homotopic to their respective identity maps.

REMARK. Clearly, homotopy equivalent cochain-complexes have isomor-
phic cohomology groups

Hi(C) ∼= Hi(D)

for all i. Chain-homotopy equivalence is a much sharper relationship than
simply having isomorphic cohomology groups. In a certain sense, (C, δC) and
(D, δD) may be regarded as equivalent in every important respect.

Our final topic in the basic algebra of chain-complexes is:

DEFINITION D.1.8. If (C, δC), (D, δD), and (E, δE) are cochain complexes,
an exact sequence

0→ (C, δC)
f−→ (D, δD)

g−→ (E, δE)→ 0

are chain-maps f , g such that

0→ Ci fi−→ Di gi−→ Ei → 0

are exact for all i.

REMARK. Exact sequences of cochain complexes arise in many natural set-
tings and can be used to compute cohomology because of the next result:

PROPOSITION D.1.9. An exact sequence

0→ (C, δC)
f−→ (D, δD)

g−→ (E, δE)→ 0

of cochain-complexes induces a homomorphism

c: Hi(E)→ Hi+1(C)

for all i, called the connecting map, that fits into a long exact sequence in cohomology:

· · · → Hi(C)
f ∗−→ Hi(D)

g∗−→ Hi(E) c−→ Hi+1(C)→ · · ·
Here f ∗ and g∗ are the induced maps and c: Hi(E) → Hi+1(C), called the con-

necting map is defined as
c = f−1 ◦ δD ◦ g−1

or in more detail by
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(1) If x ∈ Hi(E), then there exists y ∈ ker(δC)i such that x ≡ y
(mod im (δC)i−1).

(2) Since g: Di → Ei is surjective, there exists z ∈ Di with g(z) = y.
(3) Now take (δD)i(z) = w ∈ Di+1. Since y ∈ ker(δC)i and chain-maps

commute with coboundaries, w ∈ ker g.
(4) Since the sequence is exact, this w is in the image of (the injective map) f so

we may regard w ∈ Ci+1.
(5) This w ∈ ker(δC)i+1 because it is in the image of δC and its image in D is in

ker(δD)i+1 since (δD)i+1 ◦ (δD)i = 0.

REMARK. This will turn out to be very useful for computing cohomology
groups.

PROOF. The proof follows by analyzing the commutative diagram

...
...

...

0 // Ci+1

(δC)i+1

OO

f
// Di+1 g

//

(δD)i+1

OO

Ei+1

(δE)i+1

OO

// 0

0 // Ci

(δC)i

OO

f
// Di

(δD)i

OO

g
// Ei

(δE)i

OO

//

g−1

f−1
ks

0

0 // Ci−1

(δC)i−1

OO

f
// Di−1

(δD)i−1

OO

g
// Ei−1

(δE)i−1

OO

// 0

...

OO

...

OO

...

OO

in a visual process affectionately (or angrily!) called a “diagram chase”.
We show that c is well-defined: any two distinct lifts of y to Di will differ

by an element of Ci. Since the right square commutes, the final result will differ
by an element of (δC)

i, hence define the same element of Hi+1(C). If y, y′ both
represent the same x, they will differ by an element of (δC)i−1 and their lifts
to Di will differ by an element of (δD)i−1, which will be annihilated when we
plug it into (δD)i.

The proof of the remaining assertions (about the sequence being exact) fol-
lows by similar arguments and is left to the reader. �

If we define Ci = C−i and Hi(C) = H−i(C), we immediately get the corre-
sponding result for exact sequences of chain-complexes:

PROPOSITION D.1.10. Given a short exact sequence of chain-complexes

0→ (C, ∂C)
f−→ (D, ∂D)

g−→ (E, ∂E)→ 0

of chain-complexes, there exists a homomorphism

c: Hi(E)→ Hi−1(C)
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for all i, called the connecting map, that fits into a long exact sequence in cohomology:

· · · → Hi(C)
f ∗−→ Hi(D)

g∗−→ Hi(E) c−→ Hi−1(C)→ · · ·
We also need two more basic concepts:

DEFINITION D.1.11. Given a chain-map of cochain complexes

f : (C, δC)→ (D, δD)

the algebraic mapping cone of f is a cochain complex defined by

A( f )n = Cn+1 ⊕ Dn

with a differential

δn
A =

[
−δn+1

C 0
f n+1 δn

D

]
:
[

Cn+1

Dn

]
= A( f )n →

[
Cn+2

Dn+1

]
= A( f )n+1

and giving a short exact sequence of cochain complexes

(D.1.3) 0→ D → A( f )→ C[+1]→ 0

where C[+1] is C shifted upwards by one degree so C[+1]n = Cn+1 with
δn

C[+1] = −δn+1
C .

REMARK. It is left as an exercise to the reader to verify that δ2
A = 0. As the

name hints, this was originally an algebraic version of a geometric construction.
The short exact sequence in D.1.3 induces a long exact sequence in coho-

mology (proposition D.1.9 on page 502):

· · · → Hi(D)→ Hi(A( f ))→ Hi(C[+1])→ Hi+1(D)→ · · ·
with Hi(C[+1]) = Hi+1(C). Analysis of the connecting map Hi(C[+1]) →
Hi+1(D) shows that is is identical to the map in cohomology induced by f so
we can rewrite the long exact sequence as

(D.1.4) · · · → Hi(C)
f ∗−→ Hi(D)→ Hi(A( f ))

→ Hi+1(C)
f ∗−→ Hi+1(D)→ · · ·

D.1.1. “Topological” homology and cohomology. In this section, we will
give a crude and (very!) non-rigorous overview of how homology and coho-
mology were originally developed and what they “mean” — see [71] for rigor
and more details.

One way of studying topological spaces involved breaking them up into
a union of discrete pieces of every dimension, called simplices1, and a chain-
complex was constructed from these simplices. The boundary operator actu-
ally represented taking the boundary of n-dimensional simplices and express-
ing them as n− 1-dimensional simplices. Although the chain-complex one gets
from this construction is not unique (far from it!), it can be proved that its ho-
mology is.

In dimension 0, H0(X; C) = Ck where k is the number of components of X.
Higher dimensional homology encodes the number of d-dimensional “holes” a

1Simplices are essentially polyhedral pieces of Euclidean space. Singular homology and co-
homology involves mappings of simplices into a space.
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space has. For instance, if Sn is an n-sphere, then Hi(Sn; C) = 0 for 0 < i < n
and Hn(Sn; C) = C.

Cohomology originally studied the behavior of functions on a topologi-
cal space — Ci was the set of functions on i-dimensional simplices and the
coboundary operator δi: Ci → Ci+1 determined a function on i + 1-dimensional
simplices by taking its value on the boundary. For instance H0(X; C) is the set
of locally-constant functions on X. If X has k components, this is Ck.

In higher dimensions, Hi(X; C) measures the extent to which certain func-
tions on simplices are determined by their behavior on the on the boundaries
of those simplices. Roughly speaking, H1(R2; C) = 0 is equivalent to Green’s
Theorem in multivariate calculus, and H2(R3; C) = 0 is equivalent to the Di-
vergence Theorem.

EXERCISES.

1. If
0→ (C, δC)

f−→ (D, δD)
g−→ (E, δE)→ 0

is an exact sequence of cochain complexes, and two out of the three complexes
are acyclic, show that the third must be acyclic also.

2. If
0→ (C, δC)

f−→ (D, δD)
g−→ (E, δE)→ 0

is an exact sequence of cochain-complexes and D is acyclic, show that

Hi(E) ∼= Hi+1(C)

for all i.

3. Show that, if two chain-maps f , g: (C, δC) → (D, δD) are
chain-homotopic and F: A → A ′ is any additive functor (for instance,
homA (M, ∗) for any M ∈ A ), then the induced chain-maps

F( f ), F(G): (F(Ci), F(δC))→ (F(Di), F(δD))

are also chain-homotopic. It follows that, if (C, δC) and (D, δD) are chain-
homotopy equivalent, then (F(Ci), F(δC)) and (F(Di), F(δD)) also are.

4. Given a commutative diagram

0 // A

u
��

r // B

v
��

s // C

w
��

// 0

0 // A′
r′
// B′

s′
// C′ // 0

with exact rows, do a diagram-chase to show that, if u and w are isomorphisms,
then so is v. This is a watered-down version of what is called the 5-Lemma.
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D.1.2. Resolutions and Derived functors. Now we will consider special
types of chain- and cochain-complexes called resolutions. We will assume
that our abelian category, A , has enough projectives and injectives (see
definition A.5.35 on page 450). This is true for abelian groups and modules
over any ring, for instance.

Resolutions are used to compute constructs called derived functors. Roughly
speaking, given a functor F : A → B between abelian categories, the first de-
rived functor measures the extent to which F fails to be exact (i.e. map exact
sequences to exact sequence) — if it vanishes, then the functor is exact. The sec-
ond derived functor (again, roughly speaking) measures the extent to which the
first derived functor fails to be exact, and so on. See corollary D.1.20 on page 509
for a more precise statement.

In algebraic geometry, we will want to compute derived functors of the
global-sections functor of sheaves like the sheaf of regular functions (see sec-
tion D.3 on page 525 and the remarks following definition D.3.2 on page 526).

DEFINITION D.1.12. If M ∈ A is an object, a right resolution, I∗, of M is a
cochain-complex

I0
δ0−→ I1

δ1−→ · · ·
where there exists a monomorphism M→ I0 that makes the complex

0→ M→ I0
δ0−→ I1

δ1−→ · · ·
exact or acyclic. If all of the Ij are injective, this is called an injective resolution.

The injective dimension of an object, M ∈ A , denoted inj-dim M, is the
largest subscript of the shortest possible injective resolution of M — if M has a
finite injective resolution — or ∞.

REMARK. The definition immediately implies that

Hi(I∗) =

{
M if i = 0
0 otherwise

Since A has enough injectives, every object has some injective resolution:
(1) set I0 to some injective containing M and I1 to an injective object con-

taining I0/M.
(2) set Ij+1 to an injective object containing Ij/δj−1(Ij−1).

We also have projective resolutions — usually not that interesting in the cate-
gory of sheaves because it doesn’t have enough projectives:

DEFINITION D.1.13. If M ∈ A is an object, a (left) resolution, P∗, of M is a
chain-complex

· · · → P1 → P0 → 0
where there exists a epimorphism P0 → M that makes the chain complex

· · · → P1 → P0 → M→ 0

exact or acyclic. A resolution is called a projective resolution if all of the Pi
are projective objects. The projective dimension of an object, M ∈ A , denoted
proj-dim M is the largest subscript that occurs in a minimal projective resolu-
tion — if M has a finite projective resolution — or ∞.
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Injective resolutions are by no means unique although they have an inter-
esting property:

PROPOSITION D.1.14. Suppose M, N ∈ A are two objects with right resolutions
I∗ and J∗, respectively. If J∗ is an injective resolution, then any morphism

f : M→ N

induces a chain-map
f̂ : I∗ → J∗

Although f̂ is not unique, any two such induced chain-maps are chain-homotopic.

REMARK. This implies that injective resolutions are unique up to chain-
homotopy type.

A similar statement can be proved for projective resolutions (reverse all the
arrows!).

PROOF. We make extensive use of the property of injective modules de-
scribed in exercise 11 on page 452. In the diagram

I0 // J0

M
?�

OO

f
// N
?�

OO

it is clear that a portion of I0 maps to J0 (namely the portion in the image of M).
The injective property of J0 implies that this extends to all of I0. In a similar
fashion, we inductively construct the chain-map f̂ in all higher dimensions.

Suppose g1 and g2 are two chain-maps g1, g2: (I∗, δ) → (J∗, σ) that cover
the same map f : M → N. It follows that g = g1 − g2 is chain-map that covers
the zero map. We will show that it is homotopic to zero, i.e. there exists a map

Φi: Ii → Ji−1

such that

(D.1.5) gi = Φi+1 ◦ δi + σi−1 ◦Φi

Since M maps to 0, we have that g0: I0 → J0 maps the kernel of δ0 to 0, which
means that it maps im δ0 ⊂ I1 to J0. The injective property of J1 implies that
this extends to all of I1, giving

Φ1: I1 → J0

with g0 = Φ1 ◦ δ0. Suppose equation D.1.5 is true for degrees < t. In degree t,
consider

gt − σt−1 ◦Φt: It → Jt

(gt − σt−1 ◦Φt) ◦ δt−1 = gt ◦ δt−1 − σt−1 ◦Φt ◦ δt−1

= σt−1 ◦ gt−1 − σt−1 ◦Φt ◦ δt−1

= σt−1 ◦Φt ◦ δt−1 + σt−1 ◦ σi−2 ◦Φi−1

−σt−1 ◦Φt ◦ δt−1

= σt−1 ◦Φt ◦ δt−1 − σt−1 ◦Φt ◦ δt−1

= 0
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So (gt − σt−1 ◦ Φt)|im δt−1 = 0 which means that (gt − σt−1 ◦ Φt)| ker δt = 0.
The argument used above implies that gt − σt−1 ◦ Φt defines a map
Φt+1: It+1 → Jt such that

gt − σt−1 ◦Φt = Φt+1 ◦ δt

The conclusion follows. �

Reversing the arrows proves the chain-complex version

PROPOSITION D.1.15. Suppose M, N ∈ A are two objects with left resolutions
P∗ and Q∗, respectively. If P∗ is a projective resolution, then any morphism

f : M→ N

induces a chain-map
f̂ : P∗ → Q∗

Although f̂ is not unique, any two such induced chain-maps are chain-homotopic.

REMARK. This implies that projective resolutions are unique up to chain-
homotopy type.

We will be interested in functors F: A → A ′ to other abelian categories:

DEFINITION D.1.16. A functor F: A → A ′ is left-exact if an exact sequence

0→ A r−→ B s−→ C → 0

in A implies that the sequence

0→ F(A)
F(r)−−→ F(B)

F(s)−−→ F(C)

is exact.

REMARK. Exercise 12 on page 452 shows that homA (A, ∗) is left-exact.
The inclusion of the category of sheaves into that of presheaves is left exact.

Example B.2.1 on page 478 shows why it is not also right-exact.

Since injective resolutions are unique up to chain-homotopy type, the solu-
tion to exercise 3 on page 505 that the following constructs will be well-defined:

DEFINITION D.1.17. If F: A → A ′ is a left-exact functor and C ∈ A has an
injective resolution I0 → · · · , then the right derived functors of F are

RiF(C) = Hi(F(I∗)) ∈ A ′

for i ≥ 0.

REMARK. It is not hard to see that R0FC = C. The {RiF(C)} for i > 0
essentially measure how much F fails to be right-exact.

DEFINITION D.1.18. If M, N ∈ A and I∗ is an injective resolution of N, the
cohomology groups (in A b)

Exti
R(M, N) = Hi(homA (M, I))

depend only on M and N and are functorial.

To analyze the behavior of derived functors, we need the following result
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LEMMA D.1.19 (Injective Horseshoe Lemma). Suppose

0→ A r−→ B s−→ C → 0

is a short exact sequence in A and I∗ and J∗ are injective resolutions of A and C, re-
spectively. Then there exists an injective resolution W∗ of B fitting into a commutative
diagram

0 // A

εA
��

r // B

εB
��

s // C

εC
��

// 0

0 // I∗ u // W∗ v // J∗ // 0

where the bottom row is a short exact sequence of chain-complexes.

PROOF. Clearly, Wn = In ⊕ Jn for all n. The map εA: A → I0 shows that a
sub-object of B maps to I0. Injectivity implies that this map extends to all of B,
so we get ι: B→ I0 and can define

εB = ι⊕ εC ◦ s: B→ I0 ⊕ J0 = W0

We claim that this is injective: if b ∈ B maps to zero, it must map to zero in J0

so that s(b) = 0. This means that b ∈ im A which maps to I0 via the injective
map, εA.

Suppose this exact sequence of resolutions has been constructed up to de-
gree n so we have

0 // In/im δA

δn
A
��

r // Wn/im δB

f
��

s // Jn/im δC

δn
C
��

// 0

0 // In+1 u // Wn+1 v // Jn+1 // 0

where the vertical maps are inclusions. Now construct f exactly the way εB was
constructed above. �

This immediately implies that

COROLLARY D.1.20. If

0→ A r−→ B s−→ C → 0

is a short exact sequence in A , and F: A → A ′ is a left-exact additive functor, there
exists a natural long exact sequence

0→ F(A)→ F(B)→ F(C)→ R1F(A)→
· · · → RiF(A)→ RiF(B)→ RiF(C)→ Ri+1F(A)→ · · ·

REMARK. This long exact sequence is often useful for computing the
RiF(A). For instance, if R1F(A) = 0 then the sequence

0→ F(A)→ F(B)→ F(C)→ 0

is exact. If R1F(∗) is always 0, then F is an exact functor.
Here is an application:
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DEFINITION D.1.21. If F: A → A ′ is a left-exact additive functor, an object
M ∈ A is called F-acyclic if

RiF(M) = 0

for i > 0.

The long exact sequence in corollary D.1.20 on the previous page implies
that

COROLLARY D.1.22. Let F: A → A ′ be a left-exact additive functor, and let M
be injective or F-acyclic. Then

(1) If
0→ A→ M→ B→ 0

is a short exact sequence in A , then

RiF(A) ∼= Ri−1F(B)

for i > 1 and R1F(A) is coker F(M)→ R(B).
(2) if

0→ A→ M0 → · · · → Mn−1 → B→ 0

with the Mi injective or F-acyclic then

RiF(A) ∼= Ri−nR(B)

and RnF(A) is coker F(Mn−1)→ F(B).
(3) If

0→ A→ M0 → · · ·
is a resolution by F-acyclic objects, then RiF(A) = Hi(F(M)).

PROOF. To prove the first statement, note that the long exact sequence in
corollary D.1.20 on the preceding page reduces to

0→ F(A)→ F(M)→ F(B)→ R1F(A)→ 0

and
0→ RnF(B) δ−→ Rn+1F(A)→ 0

for all n > 0. The second statement follows from the first applied to short exact
sequences

0→ A→M0 → K1 → 0
0→ Ki →Mi → Ki+1 → 0

0→ Kn−1 →Mn−1 → B→ 0

and induction on n.
To prove the third statement, note that we can truncate the resolution by

F-acyclic objects at any point to get

0→ A→ M0 → · · · → Mn−1 → ker δn → 0

and

RnF(A) = coker F(δn−1): F(Mn−1)→ F(ker δn) = ker F(δn) = Hn(F(M))

where F(ker δn) = ker F(δn) is due to the left-exactness of F. �
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EXERCISES.

5. Show that Exti
R(A⊕ B, C) = Exti

R(A, C)⊕ Exti
R(B, C)

6. If N is an injective object of A , show that

Exti
R(M, N) = 0

for i > 0 and any object M ∈ A . Conclude that hom(∗, N) is an exact functor.

7. If A = MR, the category of modules over a commutative ring, R, show
that

Exti
R(R, M) = 0

for i > 0 and any R-module, M.

8. If A = MR, the category of modules over a commutative ring, R, and P
is any projective module over M, show that

Exti
R(P, M) = 0

for i > 0 and any R-module, M, so that homR(P, ∗) is an exact functor.

9. Suppose A = MR, M and N are R-modules, and

· · · → P1 → P0 → M→ 0

is a projective resolution (see definition D.1.13 on page 506). Show that

Exti
R(M, N) = Hi(homR(P∗, N))

so projective resolutions could be used to compute the Exti-groups.

10. Find an injective resolution for Z in A b.

11. If A = A b show that every abelian group, A, has an injective resolu-
tion that ends in degree 1 — i.e. is of the form

I0 → I1

so that Exti
( A, B) = 0 for A, B ∈ A b and i > 1.

12. If A ∈ A b is a finite abelian group, show that there is an (unnatural!)
isomorphism

A ∼= homA b(A, Q/Z)

and that Ext1
Z(A, Z) = A.

13. Suppose A = MR, the category of modules over a ring, R. If A and B
are R-modules, an extension of A by B is a short exact sequence

0→ B→ E→ A→ 0

where E is some module. Two such extensions are considered equivalent if they
fit into a commutative diagram

0 // B r // E1

v
��

s // A // 0

0 // B
r′
// E2

s′
// A // 0
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Exercise 4 on page 505 implies that v is an isomorphism. Regard an extension
as equivalent to 0 if it is split, i.e. of the form

0→ B→ B⊕ A→ A→ 0

Show that there is a 1-1 correspondence between equivalence-classes of ex-
tensions of A by B and the elements of Ext1

R(A, B). This is one reason for
the name “Ext∗” for the derived functors of homA (A, ∗). An extension (no
pun intended!) of this argument shows that Extn

R(A, B) can be regarded as
equivalence-classes of n-fold extensions.

D.1.3. δ-functors. In the course of analyzing cohomology groups, proofs
involving certain diagrams and exact sequences (like those in the proofs of
propositions D.1.25 on page 513 and D.1.26 on the next page) appear with mo-
notonous regularity. Since the proofs are essentially the same, we abstract out
the structural features that they have in common:

DEFINITION D.1.23. If A and B are abelian categories, a covariant δ-functor
from A to B is a sequence of additive functors

Fn: A → B

such that for every short exact sequence

0→ A→ B→ C → 0

in A , there exists a natural morphism

δn: FnC → Fn+1 A

for all n ≥ 0 that fits into a natural long exact sequence

0→ F0 A→ F0B→ F0C δ0
−→ F1 A→

· · · → Fn A→ FnB→ FnC δn
−→ Fn+1 A→ · · ·

A contravariant δ-functor is like a covariant one with all the arrows re-
versed

REMARK. Note the similarity to the behavior of H∗(X, ∗). This clearly de-
fines a cohomological δ-functor.

DEFINITION D.1.24. A δ-functor, F, is universal if, for any other δ-functor, G
(with the same variance!), any natural transformation (see definition A.5.10 on
page 436)

t: F0 A→ G0 A
for all A ∈ A , induces unique natural transformations tn: Fn A → Gn A for all
n > 0.

REMARK. It is not hard to see that two distinct universal δ-functors that are
naturally isomorphic in degree 0 (i.e. F0 A ∼= G0 A) must be isomorphic in all
degrees. This is the same “universal property” nonsense that served us so well
in section A.5 on page 430.
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Universal δ-functors are not hard to find:

PROPOSITION D.1.25. If F: A → B is a covariant δ-functor that has the prop-
erty that, for any A ∈ A , there exists a monomorphism g: A→ B such that Fng = 0,
n > 0 (g may depend on n and A), then F is universal.

PROOF. Given A ∈ A , let

0→ A
g−→ B→ C → 0

be a short exact sequence with F1g = 0. If G is any other δ-functor, we can
compare the long exact sequences

F0 A

t
��

// F0B

t
��

// F0C

t
��

δF // F1 A 0 //

t1
��

F1B

G0 A // G0B // G0C
δG // G1 A // G1B

and we can fill in the dotted arrow with the unique morphism that makes the
diagram commute: Since the upper row is exact δF is the cokernel of F0B →
F0C, following the definition of cokernel in definition A.5.33. Since the diagram

commutes, the composite F0B → F0C t−→ G1C → G1 A vanishes, so there exists
a unique morphism

F1 A→ G1 A

that makes the diagram commute. We prove the higher cases by induction on
n, where we choose a morphism gn+1: A → Bn+1 so that F(gn+1) is 0 in degree
n + 1

Fn A

tn
��

F(gn+1)
// FnBn+1

tn
��

// FnC

tn
��

δF // Fn+1 A 0 //

tn+1
��

Fn+1Bn+1

Gn A // GnBn+1 // GnC
δG // Gn+1 A // Gn+1Bn+1

Naturality of the ti (in the sense of definition A.5.10 on page 436) involves
a large diagram chase and is left to the reader. �

PROPOSITION D.1.26. If F: A → B is a contravariant δ-functor that has the
property that, for any A ∈ A , there exists an epimorphism g: P → A such that
Fng = 0, n > 0 (g may depend on n and A), then F is universal.

PROOF. The proof of this case is literally the same as the previous one ex-
cept that the induced maps run in the opposite direction. Let P → A be an
epimorphism with kernel K → P. Then we get

F0 A

t
��

// F0P

t
��

// F0K

t
��

δF // F1 A 0 //

t1
��

F1P

G0 A // G0P // G0K
δG // G1 A // G1P

The rest of the proof is similar. �
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D.2. Rings and modules

D.2.1. Ext∗ and Tor∗. Since the category of modules over a ring has enough
projectives (just map a suitable free module to a module) and enough injectives
(proposition A.5.41 on page 451), we can define homology and cohomology-
based functors.

We have seen the Exti-functors — derived functors of the homR-functor
(definition D.1.18 on page 508). We can also define derived functors of the ⊗-
functor — these are homology-type objects:

DEFINITION D.2.1. If M, N ∈MR are modules over a ring R and

P∗ → M→ 0

is a projective resolution of M, then

TorR
i (M, N) = Hi(P∗ ⊗R N)

REMARK. Although Exti
R(M, N) can be computed using an injective reso-

lution of N or a projective resolution (exercise 9 on page 511) of M, TorR
i (M, N)

requires a projective resolution of M2. It follows that this is undefined in a
category that does not have enough projectives (like that of sheaves).

Since TorR
∗ -is a homology-type functor we get

LEMMA D.2.2. If R is a ring and

0→ A u−→ B v−→ C → 0

is a short exact sequence of R-modules, then there is an induced long exact sequence

· · · → TorR
i (A, D)→ TorR

i (B, D)→ TorR
i (C, D)→ TorR

i−1(A, D)→ · · ·
· · · → TorR

1 (C, D)→ A⊗R D → B⊗R D → C⊗R D → 0

for any R-module D.

PROOF. A projective version of lemma D.1.19 on page 509 (just reverse all
of the arrows!) implies that we can get a commutative diagram with exact rows

0 // P∗
εA
��

r // Q∗
εB
��

s // W∗
εC
��

// 0

0 // A u // B v // C // 0

where the upper row is projective resolutions of the modules in the lower
row. The conclusion follows by taking the tensor product with D and invoking
proposition D.1.10 on page 503. �

Just as Exti is sensitive to projectivity or injectivity, Tori is sensitive to flat-
ness (see definition A.5.58 on page 460) of a module:

PROPOSITION D.2.3. If R is a ring, an R-module, M, is flat if and only if

TorR
1 (M, N) = 0

for all R-modules, N.

2Or of N — both produce the same result.
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REMARK. We know that all projective modules are flat (proposition A.5.61
on page 461), but the converse is not true: Q is a flat Z-module that is not
projective.

We also have a version of corollary D.1.22 on page 510

COROLLARY D.2.4. If R is a ring and

0→ K → F → A→ 0

is a short exact sequence of R-modules with F flat, then

TorR
i (A, D) = TorR

i−1(K, D)

for any R-module D. If

0→ Km → Fm → · · · → F0 → A→ 0

is an exact sequence with the Fi flat, then TorR
i (A, D) ∼= TorR

i−m−1(Km, D) for i ≥
m + 2 and any R-module D.

PROOF. Proposition D.2.3 on the preceding page implies that TorR
i (Fj, D) =

0, so the Fj are F-acyclic for the TorR
∗ -functor. At this point, the proof is the

same as that of corollary D.1.22 on page 510 except that we substitute the exact
sequence in lemma D.2.2 on the preceding page for the one used in that proof.

�

Along these lines, we also have

PROPOSITION D.2.5. If f : R → S is a flat morphism of rings (i.e., S is a flat
module over R) and M, N are R-modules, then

TorR
i (M, N)⊗R S = TorS

i (M⊗R S, N ⊗R S)

If R is noetherian and M is finitely generated then

Exti
R(M, N)⊗R S = Exti

S(M⊗R S, N ⊗R S)

PROOF. If
· · · → P1 → P0 → M→ 0

is a projective resolution of M, the flatness of S implies that

· · · → P1 ⊗R S→ P0 ⊗R S→ M⊗R S→ 0

is also exact, and is a projective resolution of M⊗R S over S. Now

TorR
i (M, N) = Hi(P∗ ⊗R S)

and

TorS
i (M⊗R S, N ⊗R S) = Hi(P∗ ⊗R S⊗S (N ⊗R S))

= Hi(P∗ ⊗R N ⊗R S)
= Hi(P∗ ⊗R N)⊗R S

— the last equality being due to the exactness of ∗ ⊗R S, so it commutes with
homology.
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To prove the statement about Exti
R note that the hypotheses imply that the

Pi can all be finitely generated free R-modules. If Pi = Rn, then

homS(Pi ⊗R S, N ⊗R S) =
n⊕

j=1

homS(S, N ⊗R S)

=
n⊕

j=1

N ⊗R S

=
n⊕

j=1

homR(R, N)⊗R S

= homR(Pi, N)⊗R S

so the conclusion follows by the same reasoning used above. �

PROPOSITION D.2.6. If R is a ring and let M is an R-module, the following two
statements are equivalent:

(1) proj-dim M ≤ n
(2) Extn+1

R (M, N) = 0 for all R-modules, N.

PROOF. It is clear that 1 =⇒ 2. Suppose statement 2 is true and let

· · · → Pn+1
f−→ Pn → · · · → P0 → M→ 0

is a projective resolution of M. Statement 2 implies that

· · · → homR(Pn, N)→ homR(Pn+1, N)→ homR(Pn+2, N)→ · · ·
is exact for all N. If we set N = im f , then f ∈ homR(Pn+1, N) and its image in
homR(Pn+2, N) is 0 because the exactness of the original resolution. It follows
that f ∈ homR(Pn+1, N) is in the image of some α ∈ homR(Pn, N) so that there
exists a homomorphism

α: Pn → im Pn+1

such that f ◦ α = f . The projective property of Pn implies that α lifts to a
map Pn → Pn+1 and Pn = im f ⊕ K where im f and K must both be projective
modules (where K = ker α). It follows that the resolution of M can be shortened
to

0→ K → · · · → P0 → M→ 0
�

PROPOSITION D.2.7. If R is a ring, an R-module, M, is injective if and only if

Ext1
R(R/a, M) = 0

for all ideals a ⊂ R.

PROOF. If M is injective, homR(∗, M) is exact and Ext1
R(N, M) = 0 for all

modules N. Conversely, if Ext1
R R/a, M) = 0, then the sequence

0→ homR(a, M)→ homR(R, M)→ homR(R/a, M)→ 0

is exact for all ideals a ⊂ R and the conclusion follows from Baer’s Criterion
(A.5.36). �
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Now we are ready to prove a sequence of results regarding rings and mod-
ules:

LEMMA D.2.8. If R is a ring and n ≥ 0 is an integer, then the following state-
ments are equivalent:

(1) proj-dim M ≤ n for all R-modules M
(2) proj-dim M ≤ n for all finitely generated R-modules M
(3) inj-dim M ≤ n for all R-modules M
(4) Extn+1

R (M, N) = 0 for all R-modules M and N.

PROOF. It is clear that 1 =⇒ 2. To see that 2 =⇒ 3 form an exact
sequence

0→ M→ I0 → · · · → In−1 → U → 0
with the Ij injective. The long exact sequence in corollary D.1.20 on page 509
and the fact that Exti

R(∗, Ij) = 0 implies that

Ext1
R(N, U) = Extn+1

R (N, M)

for any R-modules, N (use an induction like that in corollary D.1.22 on
page 510, statement 2). Now set N = R/a — a finitely generated R-module.
Then statement 2 above implies that

Extn+1
R (R/a, M) = 0 = Ext1

R(R/a, U)

for all ideals a ⊂ R. Proposition D.2.7 on the facing page implies that U is
injective so the injective dimension of M is ≤ n.

Clearly, 3 =⇒ 4 and proposition D.2.6 on the preceding page shows that
4 =⇒ 1. �

It follows that

sup
M∈MR

proj-dim M = sup
M∈MR

inj-dim M

We give this common value a name:

DEFINITION D.2.9. If R is a ring, the common value the global dimension
of R:

gl-dim R = sup
M∈MR

proj-dim M = sup
M∈MR

inj-dim M

REMARK. Note that this dimension might be ∞.
It might seem that we have a bewildering number of ways of defining the

“dimension” of a ring: Krull dimension and now a kind of homological dimen-
sion. These different concepts will turn out to agree with each other in the cases
that concern us (even though they are different in general).

In some cases, TorR
i can be used to compute dimension

PROPOSITION D.2.10. If (R,m) is a noetherian local ring (with maximal ideal
m) and M is a finitely generated R-module then

proj-dim M ≤ n⇐⇒ TorR
n+1(M, k) = 0

where k = R/m.
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PROOF. The implication =⇒ is clear. For the reverse implication, corol-
lary D.2.4 on page 515 allows us to reduce to the case where n = 0. So, if
TorR

1 (M, k) = 0 we will show that M is projective. If

f : M→ M⊗R k = M/m ·M
is the projection, corollary A.5.56 on page 459 implies that if S = {m1, . . . , mt}
have the property that { f (m1), . . . , f (mt)} generate M⊗R k then the set S gen-
erate M.

Let
0→ K → F

p−→ M→ 0

be a short exact sequence with F a free module of rank t with p sending the jth

basis element to mj in the set of generators of M. The map p is surjective and,
by construction,

p⊗ 1: F⊗R k→ M⊗R k

is an isomorphism. Since TorR
1 (M, k) = 0, the kernel of p⊗ 1 is K ⊗R k,which

must be 0. So K is an R-module with K/m ·K = 0 or K = m ·K. Corollary A.1.80
on page 363 implies that K = 0, so that M is a free module. �

LEMMA D.2.11. If R is a noetherian ring with a finitely generated R-module M,
then

(1) proj-dim M = supm proj-dim Mm, where m runs over all the maximal
ideals of R.

(2) proj-dim M ≤ n if and only if TorR
n+1(M, R/m) = 0 for all maximal ideals

m ⊂ R.

PROOF. Statement 1 follows from the second statement in
proposition D.2.5 on page 515, lemma D.2.8 on the preceding page, and
exercise 45 on page 370. �

LEMMA D.2.12. If R is a noetherian ring, the following statements are equivalent:
(1) gl-dim R ≤ n
(2) proj-dim M ≤ n for all finitely generated R-modules M.
(3) inj-dim M ≤ n for all finitely generated R-modules M.
(4) Extn+1

R (M, N) = 0 for all finitely generated R-modules M and N
(5) TorR

n+1(M, N) = 0 for all finitely generated R-modules M and N

PROOF. Lemma D.2.8 on the preceding page implies that statements 1 and
2 are equivalent and imply statements 3 and 5. Statement 3 implies state-
ment 4. Lemma D.2.11 shows that statement 5 implies statement 2 and propo-
sition D.2.6 on page 516 shows that statement 4 implies statement 2. �

In the case of a noetherian local ring, it is easy to characterize the global
dimension:

COROLLARY D.2.13. If (R,m) is a noetherian local ring with k = R/m, then

gl-dim R ≤ n⇐⇒ TorR
n+1(k, k)

so that gl-dim R = proj-dim k
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PROOF. The right implication is clear. If we assume that TorR
n+1(k, k) = 0

then proj-dim k ≤ n, by proposition D.2.10 on page 517. This implies that
TorR

n+1(M, k) = 0 for all R-modules M — in particular, finitely generated mod-
ules M. If M is finitely generated, then proposition D.2.10 on page 517 shows
that

TorR
n+1(M, k) = 0 =⇒ proj-dim M ≤ n

But, by lemma D.2.12 on the preceding page, this means that gl-dim R ≤ n. �

We need the following definition

DEFINITION D.2.14. If M is a module over a ring R, an element x ∈ R will
be called M-regular if

M x·−→ M
is injective and M/(x) · M 6= 0. An M-regular sequence {x1, . . . , xt} ⊂ R is a
sequence with the property that

(1) x1 is M-regular in M, and
(2) for all i, xi is M-regular in M/(x1, . . . , xi−1) ·M.

The maximum length of an M-regular sequence in a module is called its depth,
denoted depth M.

The depth of a module is related to its projective dimension:

LEMMA D.2.15. If (R,m) is a noetherian local ring with k = R/m, M is a finitely
generated R-module of projective dimension t, and x ∈ m is M-regular then

proj-dim (M/x ·M) = t + 1

REMARK. Note that an M-regular element of R must come from the max-
imal ideal m: if x ∈ R \ m, then the image of x in k is 6= 0. It follows that
(M/x ·M) ⊗R k = 0, and Nakayama’s Lemma ( A.1.80 on page 363) implies
that M/x ·M = 0.

PROOF. The sequence

0→ M x·−→ M→ M/x ·M→ 0

is exact, by the hypotheses. The long exact sequence of Tor-functors ( D.2.2 on
page 514) gives

TorR
n (M/x ·M, k) = 0

if n > t + 1. In degree t + 1, we get

0 = TorR
t+1(M, k)→ TorR

t+1(M/x ·M, k)→ TorR
t (M, k) x·−→ TorR

t (M, k)

The map x· on the right is zero because x ∈ m so that it annihilates k. It follows
that

TorR
t+1(M/x ·M, k) ∼= TorR

t (M, k) 6= 0

and lemma D.2.12 on the facing page implies the conclusion. �

We get the following interesting result that explains how a module can have
a projective dimension less than the global dimension of its ring:
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COROLLARY D.2.16. If (R,m) is a noetherian local ring with k = R/m, and M
is a finitely generated module, then

depth M + proj-dim M ≤ gl-dim R
depth R ≤ gl-dim R

REMARK. It will turn out that these inequalities are actually equations in
cases that interest us.

Cohen-Macaulay rings are particularly important in algebraic geometry:

DEFINITION D.2.17. A local noetherian ring, R, is called a local Cohen-
Macaulay ring if its depth (as a module over itself) is equal to its Krull dimension
(see 2.8.7 on page 100). A noetherian ring is called Cohen-Macaulay if all of its
localizations are local Cohen-Macaulay.

REMARK. If p ∈ V is a simple point of an algebraic variety, exercise 7 on
page 137 shows that OV,p is a local Cohen-Macaulay ring. Its local parameters
form an M-sequence.

D.2.2. Koszul complexes. We will define a particular type of cochain com-
plex that will have important geometric applications.

DEFINITION D.2.18. If R is a ring, A = (x1, . . . , xn) ⊂ R is an ideal, the
Koszul cochain complex C = K(x1, . . . , xn) is the cochain complex with

Ci = Λi F

for i = 0, . . . , n, where F =
⊕n

i=1 R · ei — the free R-module on a basis {ei} and
the differential

δ: Ci → Ci+1

is exterior multiplication (∑n
i=1 xi · ei) ∧ ∗.

REMARK. The self-annihilation properties of ∧-products immediately im-
ply that δ2 = 0. As usual, we follow the convention that Λ0 F = R.

This construction is clearly functorial with respect to homomorphisms that
preserve the sequence {xi}: if f : F → G is a homomorphism of free modules
that sends (x1, . . . , xn) ∈ Rn = F to (y1, . . . , yn) ∈ Rn = G, it induces a homo-
morphism

K( f ): K(x1, . . . , xn) = K(y1, . . . , yn)

We will frequently want to consider cochain complexes

M⊗R K(x1, . . . , xn)

where M is some R-module.

The Koszul complex K(x1, . . . , xn) is sensitive to the extent to which the xi
are independent of each other:

PROPOSITION D.2.19. If {x1, . . . , xn} ⊂ R is a set of elements, {y1, . . . , ym} ⊂
(x1, . . . , xm) — the ideal generated by the xi, and M is any R-module then

M⊗R K(x1, . . . , xn, y1, . . . , ym) = M⊗R K(x1, . . . , xn)⊗R Λ Rm
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so that

(D.2.1) Hn(M⊗R K(x1, . . . , xn, y1, . . . , ym)) =⊕
i+j=n

Hi(M⊗R K(x1, . . . , xn))⊗R Λj Rm

for all n ≥ 0. It follows that

Hn(M⊗R K(x1, . . . , xn, y1, . . . , ym)) = 0

if and only if
Hi(M⊗R K(x1, . . . , xn)) = 0

for all n−m ≤ i ≤ n.

PROOF. There is an isomorphism of free R-modules

α: Rn+m → Rn+m

(x1, . . . , xn, y1, . . . , ym) 7→ (x1, . . . , xn, 0, . . . , 0)

— if yi = ∑n
j=1 si,jxj then [

I 0
−S I

]
where the upper left block is an n× n identity matrix, the lower right block is
an m×m identity matrix and the lower left block is −S = −

[
si,j
]
.

The isomorphism α induces an isomorphism of Koszul complexes

M⊗R K(x1, . . . , xn, y1, . . . , ym) = M⊗R K(x1, . . . , xn, 0, . . . , 0)

As cochain modules (see proposition A.6.8 on page 468):

M⊗R K(x1, . . . , xn, 0, . . . , 0) = M⊗R K(x1, . . . , xn)⊗R Λ Rm

and, since the coboundaries on the right factor are 0, this is true as cochain-
complexes. It follows that

M⊗R K(x1, . . . , xn, 0, . . . , 0)n =
⊕

i+j=n
M⊗R K(x1, . . . , xn)

i ⊗R Λj Rm

and, since taking the tensor product with a free module is exact, we get equa-
tion D.2.1. �

It turns out that the Koszul complex has a simple algebraic interpretation
— it is essentially an iterated algebraic mapping cone (see definition D.1.11 on
page 504:

PROPOSITION D.2.20. If R is a ring, {x1, . . . , xt} ⊂ R is a set of elements,
xt+1 ∈ R is one additional element, and M is any R-module, then there exists a short
exact sequence of cochain-complexes

0→ K(x1, . . . , xt)[−1]
∧xt+1et+1−−−−−→ K(x1, . . . , xt+1)→ K(x1, . . . , xt)→ 0

It follows that we get a long exact sequence in cohomology

· · · → Hi−1(M⊗R K(x1, . . . , xt))→ Hi(M⊗R K(x1, . . . , xt+1))

→ Hi(M⊗R K(x1, . . . , xt))
xt+1·−−→ Hi(M⊗R K(x1, . . . , xt))

→ Hi+1(M⊗R K(x1, . . . , xt+1))→ · · ·
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where xt+1· represents multiplication by xt+1.

PROOF. It is not hard to see that

K(x1, . . . , xt+1)
n = K(x1, . . . , xt)

n ⊕K(x1, . . . , xt)
n−1 ∧ et+1

where the left summand is the set of terms that do not include a factor of et+1
and the right summand is the set of those that do.

Let δ =
(

∑t
j=1 xj · ej

)
∧ ∗ denote the coboundary of K(x1, . . . , xt) and δ′ =(

∑t+1
j=1 xj · ej

)
∧ ∗ that of K(x1, . . . , xt+1).

If v ∈ K(x1, . . . , xt)n−1, the fact that et+1 ∧ et+1 = 0 implies that(
t+1

∑
j=1

xj · ej

)
∧ (v ∧ et+1) = (δv) ∧ et+1

If w ∈ K(x1, . . . , xt)n(
t+1

∑
j=1

xj · ej

)
∧ w = δw + (−1)nxt+1 · (w ∧ et+1)

where the (−1)n comes from our need to permute the factor of et+1 with the n
factors in w. We get

δ′|K(x1, . . . , xt)
n−1 ∧ et+1 = δ ∧ 1

δ′|K(x1, . . . , xt)
n = δ + (−1)nxt+1 · et+1

It follows that we get an inclusion of cochain complexes

K(x1, . . . , xt)[−1]
∧et+1−−−→ K(x1, . . . , xt+1)

where K(x1, . . . , xt)[−1]n = K(x1, . . . , xt)n−1 that extends to a short exact se-
quence

(D.2.2) 0→ K(x1, . . . , xt)[−1]
∧et+1−−−→ K(x1, . . . , xt+1)→ K(x1, . . . , xt)→ 0

and this induces a long exact sequence in cohomology

· · · → Hi(K(x1, . . . , xt)[−1])→ Hi(K(x1, . . . , xt+1))

→ Hi(K(x1, . . . , xt))
c−→ Hi+1(K(x1, . . . , xt)[−1])→ · · ·

or (using the fact that Hi(K(x1, . . . , xt)[−1]) = Hi−1(K(x1, . . . , xt))

· · · → Hi−1(K(x1, . . . , xt))→ Hi(K(x1, . . . , xt+1))

→ Hi(K(x1, . . . , xt))
c−→ Hi(K(x1, . . . , xt))→ · · ·

where the connecting map c, is given by

c = (−1)ixt+1·: Hi(K(x1, . . . , xt)) −→ Hi(K(x1, . . . , xt))

— see proposition D.1.9 on page 502. We claim that the sequence

0→ M⊗R K(x1, . . . , xt)[−1]
∧et=1−−−→ M⊗R K(x1, . . . , xt+1)→ M⊗R K(x1, . . . , xt)→ 0
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is also short exact. This is because the exact sequence in D.2.2 on page 522 is a
split exact sequence of free modules (ignoring coboundaries). �

The Koszul complex is a powerful tool for studying the depth of a module
(see definition D.2.14 on page 519):

COROLLARY D.2.21. If R is a noetherian ring and M is a finitely generated R-
module with an M-sequence {x1, . . . , xt} ⊂ R then

Hi(M⊗K(x1, . . . , xt)) =

{
0 if i 6= t
M/(x1, . . . , xt)M 6= 0 if i = t

If I = (x1, . . . , xn) ⊂ R is an ideal, {x1, . . . , xt} is a maximal M-sequence of
elements in I and M 6= I ·M then

Hi(M⊗K(x1, . . . , xn)) =

{
0 if i < t
6= 0 if i = t

PROOF. We do induction on t. If t = 1, then M⊗R K(x1) is

0→ M
x1·−→ M→ 0

so H0(M ⊗R K(x1)) = 0 and H1(M ⊗R K(x1)) = M/x1 · M. If it has been
proved up to t− 1, we use proposition D.2.20 on page 521 to get a long exact
sequence

· · · → Hi−1(M⊗R K(x1, . . . , xt−1))→ Hi(M⊗R K(x1, . . . , xt))

→ Hi(M⊗R K(x1, . . . , xt−1))
xt ·−→ Hi(M⊗R K(x1, . . . , xt−1))

→ Hi+1(M⊗R K(x1, . . . , xt))→ · · ·
If i < t − 1 all of the Hi(M ⊗ K(x1, . . . , xt−1))-terms vanish, so the Hi(M ⊗R
K(x1, . . . , xt))-terms also vanish.

When i = t− 1, we get

0→ Ht−1(M⊗R K(x1, . . . , xt))

→ Ht−1(M⊗R K(x1, . . . , xt−1))
xt ·−→ Ht−1(M⊗R K(x1, . . . , xt−1))

→ Ht(M⊗R K(x1, . . . , xt))→ Ht(M⊗R K(x1, . . . , xt−1)) = 0

and Ht−1(M⊗R K(x1, . . . , xt)) must vanish because

Ht−1(M⊗R K(x1, . . . , xt−1)) = M/(x1, . . . , xt−1)M

and
xt ·M/(x1, . . . , xt−1)M

xt ·−→ M/(x1, . . . , xt−1)M
must be injective (see definition D.2.14 on page 519).

The second statement follows by continuing this induction. As before, we
conclude that Hi(M⊗K(x1, . . . , xn)) = 0 for i < t and the significant thing we
must prove is that

Ht(M⊗K(x1, . . . , xn)) 6= 0
If t is the length of a maximal M-sequence, then all of the elements of I annihi-
late some elements of N = M/(x1, . . . , xt)M (so they cannot be used to extend
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the M-sequence). If Z is the set of elements of R that annihilate elements of N
— so I ⊂ Z then corollary A.1.74 on page 359 implies that

I ⊂ Z =
⋃

p∈Assoc(N)

p

(see definition A.1.71 on page 358), a finite union by the remark following the-
orem A.1.75 on page 359. Prime avoidance (exercise 6 on page 70) implies that
I ⊂ pγ for some γ. This prime ideal annihilates a nonzero element, m ∈ M, so
that, in the long exact sequence (with j ≥ t)

· · · → Ht(M⊗R K(x1, . . . , xj))→ Ht(M⊗R K(x1, . . . , xj−1))
xj−→ Ht(M⊗R K(x1, . . . , xj−1))→ · · ·

the element m must be in the kernel of
xj−→, so Ht(M⊗R K(x1, . . . , xj)) 6= 0. �

It follows that Koszul complexes can be used to determine the depth of a
module:

THEOREM D.2.22. Let R be a noetherian ring with an ideal I = (x1, . . . , xn) ⊂
R and with a finitely generated R-module M. If t ≥ 0 has the property that

Hi(M⊗R K(x1, . . . , xn)) = 0

if i < t and
Ht(M⊗R K(x1, . . . , xn)) 6= 0

then every a maximal M-sequence of M taken from elements of the ideal I has length t.

PROOF. Suppose that {y1, . . . , ys} ⊂ I is a maximal M-sequence taken from
I. Then

Hi(M⊗R K(x1, . . . , xn, y1, . . . , ys)) =
⊕

u+v=i
Hu(M⊗R K(x1, . . . , xn))⊗R Λv Rs

so
Hi(M⊗R K(x1, . . . , xn, y1, . . . , ys)) = 0

if i < s and
Hs(M⊗R K(x1, . . . , xn, y1, . . . , ys)) 6= 0

and corollary D.2.21 on the preceding page implies that r = t. �

Now we have some interesting results regarding Cohen-Macaulay rings
(see definition D.2.17 on page 520):

PROPOSITION D.2.23. If (R,m) is a local Cohen-Macaulay ring, then its Krull
dimension is equal to its global dimension. If M is an R-module

(D.2.3) TorR
i (M, k) = Hn−i(M⊗R K(x1, . . . , xn))

for all i.

PROOF. Let R/m = k and let m = (x1, . . . , xn) — where {x1, . . . , xn} are a
regular sequence for R. Then corollary D.2.21 on the preceding page implies
that

Hi(K(x1, . . . , xn)) = 0
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for i 6= n and Hn(K(x1, . . . , xn)) = k. Since the K(x1, . . . , xn)i are all projective
modules (actually free modules), we can flip it “upside down” by defining

(D.2.4) Ci = K(x1, . . . , xn)
n−i

and

(D.2.5) Ci
∂i // Ci−1

K(x1, . . . , xn)n−i
δn−i
// K(x1, . . . , xn)n−i+1

and the new chain-complex, C is a projective resolution of k — which implies
the statement about TorR

i (M, k). It also follows that the gl-dim R ≤ n and corol-
lary D.2.16 on page 520 implies that it is equal to n. �

The following result is due to Auslander and Buchsbaum (see [6]):

COROLLARY D.2.24 (Auslander-Buchsbaum Formula). If (R,m) is a local
Cohen-Macaulay ring and M is an R-module, then

depth M + proj-dim M = gl-dim R

PROOF. The depth of M is the lowest value of d for which
Hi(M⊗R K(x1, . . . , xn)) 6= 0. But this means that

Extn−d
R (M, k) = Hn−d(C) 6= 0

so that proj-dim M ≥ n− d, and

depth M + proj-dim M ≥ gl-dim R

so corollary D.2.16 on page 520 implies the conclusion. �

D.3. Cohomology of sheaves

D.3.1. Basic construction. Given a sheaf on a ringed space, we can define
cochain-complexes from it whose cohomology gives vital information about
the sheaf. There are several ways to define cohomology of sheaves.

Most of the material in this section comes from Jean-Pierre Serre’s remark-
able paper [146], which invented this field and proved most of its interesting
results.

It will turn out that we can use flasque modules to compute cohomology of
sheaves — which is a good thing since the injectives in the category of sheaves
tend to be huge.

PROPOSITION D.3.1. If (X,OX) is a ringed space, and M is a module over OX
then there exists an injective, flasque module over OX and an inclusion

(D.3.1) M ↪→ F

It follows that the category of modules over OX has enough injectives.
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PROOF. If M is a module over OX , each stalk Mx is a module over OX,x
and we have

Mx ⊂ Jx

where Ix is an injective module over OX,x (see proposition A.5.41 on page 451).
Now define

F (U) = ∏
x∈U

Jx

for all open sets U ⊂ X. This is a product of the skyscraper sheaves ix(Jx) for
all x ∈ X — see example B.1.7 on page 478. The F (U) are all injective modules
because products of injectives are injective. This huge sheaf is clearly flasque
(by construction) and Fx = Jx for all x ∈ X.

If G is any module over OX , we have

(D.3.2) homOX (G , F ) = ∏
x∈X

homOX (G , ix(Jx)) = ∏
x∈X

homOX,x (Gx, Jx)

so that the injections Mx ⊂ Jx induce an injection of sheaves as in D.3.1 on the
previous page.

We claim that equation D.3.2 implies that F is an injective object, or that
homOX (∗, F ) is an exact functor (it is already left-exact, but we need to know
that it is also right-exact). This follows from:

(1) the functor that maps a sheaf to its stalks at any point is exact, since it
is a direct limit and direct-limits are exact (see exercise 20 on page 464).

(2) the functors homOX,x (Gx, Jx) are exact because Jx are injective mod-
ules.

The conclusion follows. �

With this in mind, we define

DEFINITION D.3.2. If (X,OX) is a ringed space and F is a module over
OX , then F has an injective resolution I ∗ and the cohomology groups

Hi(X, F ) = Hi(I ∗(X))

are well-defined.

REMARK. If we regard evaluating a sheaf on the whole space X as a functor
of the sheaf, these cohomology groups are the right derived functors of that.
They measure the extent to which an exact sequence of sheaves

0→ F → G →H → 0

fails to give an exact sequence

0→ F (X)→ G (X)→H (X)→ 0

— recall the discussion in section D.1.2 on page 506. In other words, they mea-
sure the extent to which the phenomena in example B.2.1 on page 478 happens.
This is subtly influenced by the geometry of X — in that example, the target
space was C \ {0} and that “hole” in the space gave rise to sheaf-cohomology
and the failure of the sequence of sheaves to be exact.

Unfortunately, the injective sheaves computed in proposition D.3.1 on the
preceding page are “monsters” and it is not clear how one would ever compute
sheaf-cohomology.
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Section D.3.2 will reduce this computation to resolutions by flasque
sheaves, and section D.3.15 on page 533 will further reduce it to sheaves on
open affines. At that point, sheaf-cohomology will be a practical tool.

D.3.2. Reduction to flasque sheaves. The interesting thing about flasque
sheaves is:

PROPOSITION D.3.3. If (X,OX) is a ringed space and F is a flasque sheaf over
OX then

Hi(X, F ) = 0
for i > 0.

REMARK. It follows from corollary D.1.22 on page 510 that we can use res-
olutions by flasque sheaves to compute sheaf-cohomology. These will turn out to
be much more tractable than injective sheaves.

PROOF. Construct a short exact sequence of sheaves

0→ F → G →H → 0

where G is a flasque injective sheaf constructed in proposition D.3.1 on
page 525. Exercise 1 on page 481 implies that H is also flasque.

Then Hi(X, G ) = 0 for i > 0 and we get a long exact sequence

0→ F (X)→ G (X)→H (X)→ H1(X, F )→ H1(X, G ) = 0

Since
0→ F (X)→ G (X)→H (X)→ 0

is exact, we conclude that H1(X, F ) = 0 for any flasque sheaf F . The rest of
the long exact sequence implies that

Hi(X, H ) ∼= Hi+1(X, F )

for all i ≥ 1, so we conclude that all higher cohomology groups also vanish. �

This has several interesting consequences:

COROLLARY D.3.4 (Grothendiek’s Theorem). If X is an irreducible space (see
definition 2.4.16 on page 67) and F is a constant sheaf, then

Hi(X, F ) = 0

for i > 0.

REMARK. Cohomology over constant sheaves (or cohomology with con-
stant coefficients) are vital invariants of a space in algebraic topology. This
result implies that the Zariski topology renders cohomology uninteresting and
somewhat useless for studying topological properties of schemes.

This motivates the development of étale cohomology — see [110].

PROOF. Since X is irreducible, open sets are connected and if F = A,
where A is an abelian group, it follows that F (U) = A for any open set A
(compare with exercise 9 on page 482). This implies that F is flasque. The
conclusion follows from proposition D.3.3. �

Another consequence is:
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COROLLARY D.3.5. Let X be a space with closed subspace j: Y ↪→ X. If F is a
sheaf of abelian groups on Y then

Hi(X, j∗F ) = Hi(Y, F )

for all i. Here, i∗F is the direct image sheaf (see exercise 3 on page 478).

PROOF. If
0→ F → I0 → · · ·

is a flasque resolution of F , then

0→ j∗F → j∗I0 → · · ·
is also a flasque resolution (see exercise 2 on page 482) and

j∗Ik(X) = Ik(Y)

for all k so the cohomology must be the same. �

D.3.3. Affine schemes. Now we will compute sheaf-cohomology over an
affine scheme. We need several algebraic results first.

The Artin-Rees Theorem ( A.4.66 on page 430) implies that:

THEOREM D.3.6 (Krull’s Theorem). Let R be a noetherian ring, let M ⊆ N be
finitely generated R-modules and let a be an ideal of R. For any integer n > 0, there
exists an integer n′ ≥ n such that

an ·M ⊇ M ∩ an′N

We will use this to show that flasque sheaves are very easy to find on an
affine scheme.

We need some algebraic results:

LEMMA D.3.7. Suppose I is an injective module over a noetherian ring, R, a ⊂ R
is an ideal and J ⊆ I is the submodule defined by

J = {x ∈ I|∃na
n · x = 0}

Then J is also an injective module.

PROOF. Using Baer’s Criterion (proposition A.5.36 on page 450) it suffices
to show that, for any ideal b ⊂ R, and any homomorphism

f : b→ J

there exists an extension of f to all of R. The definition of J implies that f (b) ·
an = f (b · an) = 0 for some n > 0. Krull’s Theorem ( D.3.6) implies that there
exists an n′ such that b · an ⊇ b ∩ an′ so f (b ∩ an′) = 0 and we conclude that f
factors through b/b∩ an′ and the diagram

R
p
// R/an′

g
%%

h

))b

f

55
?�

OO

// b/b∩ an′
?�

OO

// J // I
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commutes. Since I is injective, the map b/b ∩ an′ to I extends to h: R/an′ → I.
Since this image is annihilated by an′ , the image of h actually lies in J ⊂ I. The
composite g ◦ p: R→ J is the required extension of f . �

We also need:

LEMMA D.3.8. Let I be an injective module over a noetherian ring, R. If S ⊂ R
is a multiplicative set, then the natural map

θ: I → S−1 I

is surjective.

PROOF. We will prove this in the case where S consists of powers of a single
element, s ∈ R. Let ai be the ideal that annihilates si. Since R is noetherian, the
ascending chain

a1 ⊆ · · · ⊆ an = an+1 = · · ·
of ideals becomes constant from some point on. If x ∈ Is, we will show that
it is in the image of y ∈ I. The definition of localization implies that there
exists an element z ∈ I such that x = θ(z)/sm for some value of m. Define a
homomorphism

τ: (sn+m) → I
α · sn+m 7→ sn · z

This is possible since the annihilator, an+m of sn+m is the same as the annihilator,
an of sn. Since I is injective, τ extends to all of R. Let τ(1) = y so that sn+my =
snz. Then θ(w) = θ(y)/sm = x. �

The main result needed to compute the cohomology of sheaves over affine
schemes is:

COROLLARY D.3.9. If V = Spec R, where R is a noetherian ring, and I is any
injective module over R, then the sheaf A(I) is flasque.

REMARK. See definition 3.5.1 on page 151 for the notation A(I).
This result means that it is easy to find flasque sheaves on an affine scheme.

PROOF. We will do induction on chains of closed subschemes — R being
noetherian implies that there is a finite number of them.

The ground-case: If the support (see definition B.1.5 on page 477) of A(I) is
a single point, this sheaf is a skyscraper sheaf, hence flasque.

The induction step: We must show that, if the statement of D.3.9 (our result)
is true for all proper closed subsets of V it is also true for V. Suppose the support
of A(I) is Y ⊂ V, a fixed closed subset of V. If

SuppA(I) ( Y

then A(I) is flasque by induction. We consequently assume that

SuppA(I) = Y

We must show that, for every open set, U ⊂ V the restriction maps

A(I)(V)→ A(I)(U)
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are surjective (lemma D.3.8 on the previous page implies this for principal open
sets since I → I f is surjective). If Y ∩ U = ∅, there is nothing to prove.
Otherwise, there exists a principal open set D( f ) with D( f ) ∩ Y 6= ∅. Let
Z = V \ D( f ). We get a commutative diagram

A(I)(V) // A(I)(U) // A(I)(D( f ))

A(I)(V)Z
?�

OO

// A(I)(U)Z
?�

OO

where A(I)(V)Z and A(I)(U)Z are the submodules of elements whose support
is in Z, or the submodules whose restriction to D( f ) vanishes.

If x ∈ A(I)(U) then its image t ∈ A(I)(D( f ) lifts to an element T ∈
A(I)(V). We do not know whether T|U = x, but we do know that x − T|U
maps to 0 in A(I)(D( f ) so that x − T|U ∈ imA(I)(U)Z. The result will be
proved if we can show that A(I)(V)Z → A(I)(U)Z is surjective.

Note that i∗(A(I)|D( f )) = A(I f ), where i∗A(I)|D( f ) is the direct image
sheaf (see exercise 3 on page 478 and exercise 5 on page 193) of the restriction.
If F=kerA(I)→ i∗A(I)|D( f ), then F (U) = A(I)(U)Z for all open sets, U and
F is also quasi-coherent since it is a kernel of a morphism of quasi-coherent
sheaves, hence coherent, by corollary 4.4.18 on page 190.

It follows that F = A(J), where J = ker I → I f . Since J = {x ∈ I|∃n f n ·
x = 0} (see definition A.1.87 on page 368), lemma D.3.8 on the preceding page
implies that J is an injective module.

Since the support of A(J) lies on an proper closed subset of Y, the induc-
tive hypothesis implies that A(J) is flasque, whence A(J)(V) = A(I)(V)Z →
A(I)(U)Z is surjective. �

We arrive at our main result:

THEOREM D.3.10. If V = Spec R is an affine noetherian scheme and F is any
quasi-coherent sheaf, then

Hi(V, F ) =

{
F (V) if i = 0
0 otherwise

REMARK. This means that sheaf-cohomology as developed here is gener-
ally not interesting for affine schemes. It also implies that sheaf-cohomology
for more general varieties measures how the open affines fit together.

The use of flasque sheaves implies that this result is true in the category
of abelian sheaves (see . If we had only been concerned with the category of
quasi-coherent sheaves, we could have simply noted that A(I) is an injective
quasi-coherent sheaf and ignored the whole issue of flasque sheaves.

PROOF. First of all, F = A(M) for some module, M. Let

0→ M→ I0 → · · ·
be an injective resolution of M. Then

0→ A(M)→ A(I0)→ · · ·
is a flasque resolution of F . If we evaluate these sheaves on V, we recover the
original injective resolution of M, which is acyclic in positive degrees. �
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D.3.4. Čech cohomology. With theorem D.3.10 on the preceding page un-
der our belt, we are in a position to compute cohomology of general varieties
and schemes.

We begin by defining a variant on cohomology called Čech cohomology —
a “topological” cohomology, as described in section D.1.1 on page 504. This
form of cohomology does not require breaking a space into a union of poly-
hedra — making it suitable for studying certain types of topological spaces
(including the ones that occur in algebraic geometry). It was first described
by Eduard Čech in [26] (where he also gave the first description of the inverse
limit).

DEFINITION D.3.11. Let V be a scheme with a finite open cover U = {Ui},
i = 1, . . . , n, and sheaf F . Define Ui0,...,it = Ui0 ∩ · · · ∩Uit and

C(U , F )t = ∏
i0<···<it

F (Ui0,...,it)

and let
rj: F (Ui0,...,ij−1,ij+1,...it+1)→ F (Ui0,...,it+1)

be the restriction-maps. If

x = ∏
i0<···<it

xi0,...,it ∈ C(U , F )t

define
δt: C(U , F )t → C(U , F )t+1

via

δt(x)i0,...,it+1 =
t

∑
j=0

(−1)jrj(xi0,...,ij−1,ij+1,...it+1)

REMARK. It is not hard to verify that this defines a cochain complex — this
is left to the reader.

Since we have a cochain complex, we can define cohomology. Although
C(U , F ) depends on the open covering, note that if U ′ is a refinement of U , we
get a homomorphism

C(U , F )→ C(U ′, F )

induced by the restriction maps of F . With this in mind, define

DEFINITION D.3.12. If F is a sheaf on a scheme V with a finite open cover
{U}, define the Čech cohomology of F via

Ȟi(V, F ) = lim−→ Hi(U , F )

where the direct limit is taken over all finite open coverings of V.

REMARK. Eduard Čech defined this in [26] because he studied topological
spaces that did not lend themselves to being broken up into discrete pieces.
Although it is not identical to standard cohomology, the two agree in all cases
that will interest us. It will be more suitable to algebraic geometric computa-
tions than standard cohomology.
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It turns out that the direct limit is easier to compute than one might expect.
To see this, define the Čech resolution of F by

DEFINITION D.3.13. Let V be a scheme with a finite open cover U = {Ui},
i = 1, . . . , n, and sheaf F . The Čech resolution of F is defined as follows:

If Ui0,...,it = Ui0 ∩ · · · ∩Uit then

C (U , F )t = ∏
i0<···<it

i∗F |Ui0,...,it

where i∗F |Ui0,...,it is the direct image sheaf and let

rj: i∗F |Ui0,...,ij−1,ij+1,...it+1 → i∗|Ui0,...,it+1

be the restriction-maps. Define

δt: C (U , F )t → C (U , F )t+1

via

δt(x)i0,...,it+1 =
t

∑
j=0

(−1)jrj

REMARK. This is a cochain-complex of sheaves closely related to the Čech
complex of modules defined above by

C (U , F )(V) = C(U , F )

We must justify the term “resolution” above:

PROPOSITION D.3.14. The complex of sheaves constructed in definition D.3.13
is a resolution — i.e. acyclic.

PROOF. Exactness at the low end

F → C (U , F )0 δ0
−→ C (U , F )1

follows from the global sections property of a sheaf: the kernel of δ0 is a sheaf on
V constructed from sheaves on the Ui that agree on all of the overlaps Ui ∩Uj.
To prove acyclicity in higher degrees, it suffices to prove it on every stalk (see
exercise 7 on page 482).

If x ∈ V is an arbitrary point, we will construct a chain-homotopy (as in
definition D.1.5 on page 501)

C (U , F )n
x

Φ−→ C (U , F )n−1
x

such that δ ◦Φ + Φ ◦ δ = 1, so that the identity map induces the same map in
cohomology as the 0-map (see proposition D.1.6 on page 501) — which is only
possible if the cohomology vanishes.

If y ∈ C (U , F )n
x , fix an index, J, with x ∈ UJ . If necessary, let W ⊂ UJ be a

smaller open set such that y is the image of Y ∈ C (U , F )n(W) under the direct
limit that defines the stalk. This Y = Z(W), where Z ∈ C (U , F )n is a product
of sheaves over open sets. Now define

Φ′(Z)(Ui0,...,in−1) = Z(UJ,i0,...,in−1)
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and define Φ(y) to be the image of Φ′(Z)(W) in the stalk, C (U , F )n−1
x . This is

well-defined because UJ is one of the open sets in the open cover and

W ∩UJ,i0,...,in−1 = W ∩Ui0,...,in−1

We must verify that (δ ◦Φ + Φ ◦ δ) (y) = y:

Φ′(δ(Z)(Ui0,...,im)) = δZ(UJ,i0,...,im)

= Z(Ui0,...,im)

−
m

∑
j=0

(−1)jZ(UJ,i0,...,ij−1,ij+1,...,im)

= Z(Ui0,...,im)− δ(Φ′Z)

So, evaluating this on W and restricting to the stalk gives the required result.
�

Our main result is (see [146]):

THEOREM D.3.15. If V is a noetherian separated scheme and U = {Ui} is any
cover by open affines then

Hi(C(U , F )) = Hi(V, F )

for any quasi-coherent sheaf F .

REMARK. There is more to this bland statement than meets the eye. It as-
serts equality between two very different objects. On the left, we have an in-
termediate stage to computing Čech cohomology — a topologically defined
cohomology describing functions on a topological space. On the right, we have
the somewhat mysterious derived-functor cohomology expressing properties of
the global-sections functor Γ(V, F ) = F (V).

This statement also says that, in computing Ȟi(V, F ), we can stop right
here since the direct limit in definition D.3.12 on page 531 becomes constant as
soon as the U consists of open affines — and such coverings are cofinal in the
collection of all open covers (see definition A.5.21 and proposition A.5.22). We
conclude that

Ȟi(V, F ) = Hi(C(U , F )) = Hi(V, F )

PROOF. The fact that V is separated implies that any intersection of open
affines is also affine (see exercise 1 on page 205). It follows that all of the open
sets used in computing the Čech complex are affine. Now, simply compute the
Čech resolution for the open cover given. Theorem D.3.10 on page 530 implies
that it will be an F-acyclic resolution, where F is the global-section functor (see
from sheaves to modules with

F(G ) = Γ(V, G ) = G (V)

Corollary D.1.22 on page 510 implies the conclusion. �

COROLLARY D.3.16. If V is a separated noetherian affine scheme and F is any
quasi-coherent sheaf on V, then

H0(V, F ) = F (V)
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PROOF. Elements of H0 are sets elements xi ∈ F (Ui) and the conditions
δ({xi}) = 0 is just the requirement that

xi|Ui ∩Uj = xj|Ui ∩Uj

which is the condition that xi = x|Ui for some x ∈ F (V). �

This immediately implies interesting results:

COROLLARY D.3.17. If V is a separated noetherian affine scheme that can be
covered by n + 1 open affines, and F is any quasi-coherent sheaf on V, then

Hi(V, F ) = 0

for i > n.

REMARK. For i > n we do not have enough distinct open sets to construct
higher terms in the Čech complex, so the cohomology vanishes because the
Čech complex vanishes.

PROOF. This follows immediately from definition D.3.13 on page 532,
which shows that C (U , F )t = 0 for t > n. �

A variation on this result suggests a strong relationship between the di-
mension of a variety and the cohomology of sheaves on it (see [146]):

LEMMA D.3.18. If V ⊂ kPn is an m-dimensional projective variety and F is a
quasi-coherent sheaf on V, then

Hi(V, F ) = 0

for i > m.

PROOF. Corollary D.3.5 on page 528 implies that

Hi(kPn, j∗F ) = Hi(V, F )

where j: V ↪→ kPn is the inclusion. We will find a special type of open covering
of kPn that implies the result. Lemma 5.6.5 on page 257 implies the existence
of m + 1 homogeneous polynomials f1 . . . , fm+1 ∈ k[X0, . . . , Xn] that do not
simultaneously vanish on V and exercise 2 on page 239 implies that

(D.3.3) Di = kPn \ P(( fi))

i = 1, . . . , m + 1, open affines of kPn whose union contains V. We complete this
to a set of open affines for all of kPn. Let fm+1, . . . , fh be a set of homogeneous
polynomials that vanish on V but never simultaneously vanish on kPn \ V —
for instance a set of homogeneous generators of the ideal that defines V.

Applying equation D.3.3 to these gives an affine open covering

U = {Di}
for i = 1, . . . , h of kPn (where h ≥ n + 1) — and Dt ∩V = ∅ for t > m + 1. Now
theorem D.3.15 on the preceding page implies that

Hi(U , j∗F ) = Hi(kPn, j∗F ) = Hi(V, F )

and, in computing Hi(U , j∗F ), note that j∗F (Ui0,...,it) = 0 if any of the sub-
scripts is > m + 1 (by the way the Di were constructed). It follows that the
cohomology vanishes above degree m. �
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Now we can do some computations:

EXAMPLE D.3.19. Consider the example V = A2 \ {(0, 0} of a non-affine
variety in example 4.6.2 on page 201. We can cover V by two open affines D(X)
and D(Y), which means that

Hi(V, F ) = 0

for i > 1 (by corollary D.3.17 on the facing page). If we let F = OV , we get

C(U ,OV)
0 = k[D(X)]⊕ k[D(Y)]

= k[X, X−1, Y]⊕ k[X, Y, Y−1]

so the kernel of δ0 is

H0(V,OV) = k[X, Y] = OV(V)

the coordinate ring.
In degree 1,

C(U ,OV)
1 = k[X, X−1, Y, Y−1] = k[D(X) ∩ D(Y)]

and

δ0: k[X, X−1, Y]⊕ k[X, Y, Y−1] → k[X, X−1, Y, Y−1]

p(X, X−1, Y)⊕ q(X, Y, Y−1) 7→ p− q

We can think of k[X, X−1, Y, Y−1] as consisting of linear combinations of mono-
mials XiY j where i and j can be arbitrary integers. Monomials with i or j ≥ 0
lie in the image of δ0 so

H1(V,OV) =
∞⊕

i,j=1

k · X−iY−j

This distinguishes V from A2 since the cohomology of A2 vanishes in positive
degrees by theorem D.3.10 on page 530.

Another, more relevant example is:

EXAMPLE D.3.20. Let V = RP1 with open affines A1
0 and A1

1 and let F =

Ω1
V , regarded as a coherent sheaf — i.e. F (U) = Ω1

U (compare corollary 5.9.31
on page 291), so that Ω1

V = F (V). Then

F (A1
0) = R[X] · dX

F (A1
1) = R[Y] · dY

so
C(U , F )0 = R[X] · dX⊕ R[Y] · dY

One the overlap

F (A1
0 ∩A1

1) = R[X, X−1] · dX = C(U , F )1

with δ0 defined by

δ1( f (X) · dX⊕ g(Y) · dY) = f (X) · dX− g(1/X)

X2 · dX

=

(
f (X)− g(1/X)

X2

)
· dX
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since Y = 1/X when we glue the pieces together. The kernel of δ0 is clearly 0
so

H0(V, F ) = 0
confirming that there are no global differential forms on RP1. The cokernel
of δ1 is generated by monomials Xi, where i is either ≥ 0 (derived from the
f -term) or i ≤ −2 (derived from the g-term). It follows that

H1(V, F ) = R · X−1 ∼= R

Recall the Serre-twist sheaves on a projective space in definition 5.3.2 on
page 228. The isomorphism OkPn(r)⊗OkPn(s) = OkPn(r + s) induces a coho-
mology homomorphism

H0(kPn,OkPn(r))⊗ Hi(kPn,OkPn(s))→ Hi(kPn,OkPn(r + s))

— simply take the products of values on open-sets.
This example is relevant for many other results:

THEOREM D.3.21. If R is a noetherian ring and V = RPn, then
(1) H0(V,ORPn(d)) = R[X0, . . . , Xn]d — the free module of monomials of de-

gree d of rank (
d + n

n

)
so

∞⊕
d=0

H0(V,ORPn(d)) = R[X0, . . . , Xn]

(2) Hi(V,ORPn(d)) = 0 for 0 < i < n.

(3) Hn(V,ORPn(d)) =

{
0 if d > −n− 1
Rφ(d) otherwise

where φ(d) = ( −d
n+1).

(4) For m ∈ Z there is a perfect pairing

H0(V,ORPn(m))⊗ Hn(V,ORPn(−m− n− 1))→ Hn(V,ORPn(−n− 1)) = R

REMARK. “Perfect pairing” means that

H0(V,ORPn(d)) = homR(Hn(V,ORPn(−d− n− 1)), R)

the dual.

PROOF. We will use the open cover U = {An
i }, for i = 0, . . . , n. We will

follow a proof inspired by that in the Stacks Project, [154, Lemma 10.1, in co-
herent.pdf].

We proceed by noticing that there is considerably less to the
cochain-complex, C(U ,OkPn(d)), than meets the eye.

If R(n0, . . . , nt) = R[X0, . . . , Xn][X−1
n0

, . . . , X−1
nt ] then

C(U ,ORPn(d))q =
⊕

n0<···<nq

R(n0, . . . , nq)

and the coboundaries, δq, just map monomials, unchanged, into modules in
which more of the Xi are allowed to have negative exponents. If~e = (e0, . . . , eq)
and C(~e) is a cochain complex containing the single monomial

R · Xe0
0 · · ·Xen

n
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mapped around to the various R(n0, . . . , nt) (via ±the identity map), it follows
that

(D.3.4) C(U ,OkPn(d)) =
⊕
|~e|=d

C(~e)

where |~e| = e0 + · · · + et, a direct sum of very simple cochain-complexes.
Its cohomology will be the direct sum of the cohomology of these
cochain-complexes. Define NEG(~e) to the set of subscripts i for which ei < 0.
This determines which cochain modules can appear in C(~e):

C(~e)q =
⊕

n0<···<nq
NEG(~e)⊂{n0,...,nq}

R(n0, . . . nq)

If NEG(~e) = ∅, then C(~e) is a cochain-complex that simply maps a single
monomial, β = Xe0

0 · · ·Xen
n , throughout all of the R(n0, . . . , nq). It is not hard to

see that β ∈ ker δ0, so H0(C(~e)) = R. We will describe element of C(~e)q via a
function

c(i0, . . . , iq) ∈ R
where c(i0, . . . , iq) is the coefficient of the monomial β in R(n1, . . . , nq). Then

(δc)(i0, . . . , iq+1) =
q+1

∑
j=0

(−1)jc(i0, . . . , ij−1ij+1, . . . , iq+1)

describes the coboundaries.
Define the map

Φ: C(~e)q → C(~e)q−1

by Φ(c)(i0, . . . , iq) = c(0, i0, . . . , iq), if q > 0. Then

δΦ(c)(i0, . . . , iq) = δc(0, i0, . . . , iq)
= c(i0, . . . , iq)

−
q

∑
j=0

c(0, i0, . . . , ij−1, ij+1, . . . , iq)

= c(i0, . . . , iq)−Φδc(i0, . . . , iq)

so, δ ◦ Φ + Φ ◦ δ = 1 in positive degrees and the identity map of C(~e) of is
homotopic to the 0-map (see definition D.1.5 on page 501). It follows that C(~e)
has cohomology equal to R in degree 0 and 0 in all higher degrees. In degree 0,
the number of copies of R that can occur is equal to the number of monomials
with |~e| = d, which is what was listed.

If NEG(~e) = {0, . . . , n} then

C(~e)q =

{
R · Xe0

0 · · ·Xen
n if q = n

0 otherwise

Since this is the only cochain-module, its coboundary maps are 0 and its
cohomology is equal to it, so equation D.3.4 implies that

Hn(C(U ,ORPn(d))) =

{⊕
|~e|=d R · Xe0

0 · · ·Xen
n if d ≤ −n− 1

0 otherwise
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The number of possible summands is clearly ( −d
n+1), as stated.

Statement 2 slightly more complicated: If NEG(~e) 6= ∅ and NEG(~e) 6=
{0, . . . , n}, we claim that C(~e) is acyclic in all degrees. Pick a fixed subscript
J /∈ NEG(~e) and define

Φ: C(~e)q → C(~e)q−1

via
Φc(i0, . . . , iq) = (−1)αc(i0, . . . , J, . . . , iq)

where J occurs in the αth position. As before

δΦc(i0, . . . , iq) = (−1)αc(i0, . . . , J, . . . , iq)

= c(i0, . . . , iq)

+(−1)α
j−1

∑
j=0

(−1)jc(i0, . . . , ij−1, ij+1, . . . , J, . . . , iq)

−(−1)α
q

∑
j=J+1

(−1)jc(i0, . . . , J, . . . ij−1, ij+1, . . . , iq)

= c(i0, . . . , iq)−Φδc(i0, . . . , iq)

so δ ◦Φ + Φ ◦ δ = 1 on all summands of C(~e). It follows that the identity map
is chain-homotopic (see definition D.1.5 on page 501) to the 0-map and C(~e) is
acyclic in all degrees.

The final statement follows from the fact that the map

OkPn(r)⊗OkPn(s) = OkPn(r + s)

multiplies sections, i.e. monomials so the pairing is defined by

r1Xe0
0 · · ·Xen

n ⊗ r2X−e0−1
0 · · ·X−en−1

n = r1r2X−1
0 · · ·X−1

n

�

This puts us in a position to prove a number of interesting things.

THEOREM D.3.22. Let V be a projective scheme over a noetherian ring with a
very ample invertible sheaf OV(1). If F is a coherent sheaf over V, then

(1) for each i ≥ 0, Hi(V, F ) is finitely-generated,
(2) there exists an integer n0 such that, for all i > 0 and all n > n0,

Hi(V, F ⊗OV OV(1)n) = 0

REMARK. This shows that A2 \ (0, 0) in example D.3.19 on page 535 cannot
be a projective scheme because its cohomology is infinitely generated.

PROOF. We have a closed immersion

i: V → RPt

If F is coherent over V, then i∗F is coherent over RPt (see exercise 6 on
page 193) and

H j(V, F ) = H j(RPt, i∗F )
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— see corollary D.3.5 on page 528. It follows that, without loss of generality, we
can assume V = RPt. We can assume that there exists a surjection

m⊕
j=1

ORPt(d)→ F

for some d and m — see lemma 5.3.10 on page 232 so we get a short exact
sequence

0→ K →
m⊕

j=1

ORPt(d)→ F → 0

where K is also coherent. We get a long exact sequence in cohomology

· · · →
m⊕

j=1

H j(RPtORPt(d))→ H j(RPt, K )→ H j+1(RPt, F )→ · · ·

We prove the first statement by downward induction on j. If j > t then coho-
mology vanishes, by corollary D.3.17 on page 534, so the result is true. Since ,
the fact that Since H j+1(RPt, F ) is finitely generated by the inductive hypoth-
esis and H j(RPtORPt(d)) is finitely generated, by theorem D.3.21 on page 536
H j(RPt, K ) must a also be finitely generated (here, we’re using the fact that R
is noetherian).

A similar argument proves the second statement — here, we have the exact
sequence

0→ K ⊗ORPt ORPt(1)n →
m⊕

j=1

ORPt(d)⊗ORPt ORPt(1)n

→ F ⊗ORPt ORPt(1)n → 0

or

0→ K ⊗ORPt ORPt(n)→
m⊕

j=1

ORPt(d + n)→ F ⊗ORPt ORPt(n)→ 0

giving

· · · →
m⊕

j=1

H j(RPtORPt(d + n))→ H j(RPt, K ⊗ORPt ORPt(n))

→ H j+1(RPt, F ⊗ORPt ORPt(n))→ · · ·
In this case, H j+1(RPt, F ⊗ORPt ORPt(n)) is true by the inductive hypoth-

esis,
⊕m

j=1 H j(RPtORPt(d + n)) vanishes for a suitable choice of n by theo-
rem D.3.21 on page 536 so H j(RPt, K ⊗ORPt ORPt(n)) must vanish. �

This implies that the following makes sense (first defined in [146]):

DEFINITION D.3.23. Let V be a projective scheme over a field k with a very
ample invertible sheaf OV(1). If F is a coherent sheaf over V, then define

χ(V, F ) =
∞

∑
i=0

(−1)i dimk Hi(V, F )
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— the Euler characteristic of F on V.

We have the following result:

PROPOSITION D.3.24. If V is a projective scheme over a field k with a very ample
invertible sheaf OV(1) and

0→ F
f−→ G

g−→H → 0

is an exact sequence of coherent sheaves over V, then

χ(V, G ) = χ(V, F ) + χ(V, H )

PROOF. The short exact sequence of sheaves induces a long exact one in
cohomology

· · · → Hi(V, F )
f ∗i−→ Hi(V, G )

g∗i−→ Hi(V, H )
ci−→ Hi+1(V, F )→ · · ·

and

dimk Hi(V, F ) = dimk im ci−1 + dimk im f ∗i
dimk Hi(V, G ) = dimk im g∗i + dimk im f ∗i

dimk Hi(V, H ) = dimk im g∗i + dimk im ci

so

dimk Hi(V, G )− dimk Hi(V, F )− dimk Hi(V, H )

= −dimk im ci−1 − dimk im ci

which implies that
∞

∑
i=0

(−1)i
(

dimk Hi(V, G )− dimk Hi(V, F )− dimk Hi(V, H )
)
= 0

�

EXERCISES.

1. If V is a projective scheme over a noetherian ring, R, with a very ample
invertible sheaf OV(1) and

0→ F
f−→ G

g−→H → 0

is an exact sequence of coherent sheaves, show that there exists an integer n0
such that, for any integer n > n0, the induced sequence

0→ (F ⊗OV OV(1)n)(V)

→ (G ⊗OV OV(1)n)(V)→ (H ⊗OV OV(1)n)(V)→ 0

of R-modules is exact.
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D.4. Serre Duality

D.4.1. Preliminaries. We begin with some definitions

DEFINITION D.4.1. If (X,OX) is a ringed space with modules M and N
define

(1) Exti
OX

(M , N ) to be the right derived functor of homOX (M , N ) (as
defined in B.3.4 on page 484) — i.e., take an injective (or flasque) reso-
lution of N (see definition D.3.2 on page 526), apply homOX (M , ∗) to
it, and take cohomology

(2) Exti(M , N ) to be the right derived functor of H om(M , N ) (as de-
fined in B.3.4 on page 484). These are sheaves.

As mysterious as the functor H om(M , N ) seems, it is fairly straightfor-
ward over an affine scheme:

LEMMA D.4.2. Let X = Spec R for a ring R and let M and N be modules over
R. There exists a natural homomorphism

A(homR(M, N))→H om(A(M),A(N))

If M is finitely presented, this is an isomorphism.

PROOF. There exists a natural homomorphism

homR(M, N)→H om(A(M),A(N))(X)

that induces the map in question (see proposition 3.5.4 on page 152). If M = Rt

(i.e. is a free module) for a finite t, then A(M) = Ot
X , homR(M, N) = Nt, and

H om(A(M), N) = Nt

so the map is an isomorphism in this case.
If M is finitely presented, there exists a short exact sequence

Rn → Rm → M→ 0

inducing
On

X → Om
X → A(M)→ 0

and we get a commutative diagram

0 // A(homR(M, N))

i
��

// A(homR(Rm, N)) // A(homR(Rn, N))

0 // H om(A(M),A(N)) // H om(OX ,A(N)) // H om(OX ,A(N))

that implies that i is an isomorphism. �

PROPOSITION D.4.3. On V = RPt

H om(OV(n),OV(m)) ∼= OV(m− n) = OV(m)⊗OV OV(−n)

PROOF. The simplest way to see this is to restrict to the open affines At
i .

The restrictions are free sheaves of rank 1, so within a At
i , we simply have

hom(R, R) = R
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The only thing that matters at this point are the gluing maps: The gluing map
for OV(n) is

OV(n)(At
i)|At

i ∩At
j → OV(n)(At

j)|At
j ∩At

i

f 7→ f · (Xi/Xj)
n

and since hom is contravariant, the induced maps are applied in the reverse
order (i.e., with i and j interchanged in the upper line)

OV(n)(At
i)|At

j ∩At
i → OV(n)(At

j)|At
i ∩At

j

f 7→ f · (Xi/Xj)
n

or (interchanging i and j everywhere)

OV(n)(At
i)|At

i ∩At
j → OV(n)(At

j)|At
j ∩At

i

f 7→ f · (Xi/Xj)
−n

�

PROPOSITION D.4.4. If (X,OX) is a ringed space, and F and G are
OX-modules, then for any open set U ⊂ X there exists an isomorphism

Exti(F , G )|U ∼= Exti(F |U, G |U)

PROOF. If I is an injective sheaf on X, we claim that I |U is an injective
object of (U,OU). Let j: U → X be the inclusion and let F → G be an inclusion
of modules over U and suppose r: F → I |U is a map. Then we get an injection
j∗F → j∗G over X and a map r∗: j∗F → j∗(I |U) ↪→ I . Since I is injective,
the composite extends to a map j∗G → I . The claim follows by restricting to
U.

If I ∗ is an injective resolution of G , then I ∗|U is an injective resolution of
G |U, so we get a map

H om(F , I ∗)|U ∼= H om(F |U, I ∗|U)

which implies the result. �

We also have some results on Ext∗OX
:

PROPOSITION D.4.5. If (X,OX) is a ringed space, and

0→ F → G →H → 0

is a short exact sequence of coherent sheaves and L is a coherent sheaf, then we get
long exact sequences

0→ hom(H , L )→ hom(G , L )→ hom(F , L )

→ Ext1
OX

(H , L )→ Ext1
OX

(H , L )→ · · ·
and

(D.4.1) 0→H om(H , L )→H om(G , L )→H om(F , L )

→ Ext1(H , L )→ Ext1(H , L )→ · · ·
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PROOF. If I ∗ is an injective resolution of L , the functors hom(∗, I ∗) and
H om(∗, I ∗) are exact (see exercise 6 on page 511), so we get an exact se-
quence of chain-complexes and the conclusion follows from proposition D.1.9
on page 502. �

We also get:

PROPOSITION D.4.6. If F is a sheaf on a ringed space (X,OX) then

H om(OX , F ) = F

If P is a free sheaf of finite rank on X then

Exti(P , F ) = 0

for i > 0.

PROOF. The first statement follows from the fact that hom(R, M) = M for a
module, M, over a ring, R. Apply this to every F (U) as a module over OX(U)
to get the conclusion. Since H om(OX , ∗) is the identity functor, its derived
functors vanish. The final statement follows from the fact that the free sheaf in
question is a finite direct sum of copies of OX . �

PROPOSITION D.4.7. If (X,OX) is a ringed space with coherent sheaves P and
G , and P is locally free, then

Exti(P , G ) = 0

for i > 0.
It follows that H om(P , ∗) is an exact functor.

PROOF. Proposition D.4.4 on the facing page implies that

Exti(P , G )|U = Exti(P |U, G |U)

for open sets U ⊂ X. Since P is locally free, P |U is free for sufficiently small
open sets, U — so proposition D.4.6 implies that Exti(P , G )|U = 0. If x ∈
Exti(P , G )|V for some open set V, then there is a covering by open sets Ui
such that x|Ui = 0 for all i. The separation condition for a sheaf (statement 4 in
definition B.1.1 on page 475) implies that x = 0. �

Compare the following result to corollary D.1.22 on page 510:

COROLLARY D.4.8. Let (X,OX) is a ringed space with coherent sheaves F and
G ,

(1) If P0 is locally free and

0→ K1 →P0 → F → 0

is a short exact sequence, then

(D.4.2) Ext1(F , G ) =
H om(K1, G )

im H om(P0, G )

and Exti(F , G ) = Exti−1(K1, G ) for all i > 1.
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(2) If
0→ Kn →Pn−1 → · · · →P0 → F → 0

where the Pi are locally free, then

(D.4.3) Extn(F , G ) =
H om(Kn, G )

im H om(Pn−1, G )

PROOF. The first statement follows immediately from the exact
sequence, D.4.1 on page 542 and proposition D.4.7 on the previous page.

The second statement follows from induction on short exact sequences

0→ Ki →Pi−1 → Ki−1 → 0

�

This has an interesting consequence:

THEOREM D.4.9. Let (X,OX) be a ringed space with coherent sheaves F and G
and a resolution

· · · →P1 →P0 → F → 0

by locally free sheaves Pi. Then

Exti(F , G ) = Hi(H om(P∗, G ))

for all i ≥ 0.

PROOF. We use the notation of corollary D.4.8 on the preceding page. In
the short exact sequences there we have an exact sequence

· · · →Pi+1 →Pi → Ki → 0

inducing (because of the left-exactness of H om(∗, G ))

0→H om(Ki, G )→H om(Pi, G )→H om(Pi+1, G )

which implies that

H om(Ki, G ) = ker H om(Pi, G )→H om(Pi+1, G )

so the conclusion follows from equations D.4.2 on the previous page and D.4.3,
which imply that Let
(D.4.4)

Extn(F , G ) =
ker H om(Pi, G )→H om(Pi+1, G )

im H om(Pn−1, G )
= Hi(H om(P∗, G ))

�

It follows that the Exti(∗, ∗) have a relatively simple interpretation on an
affine variety:

COROLLARY D.4.10. If V = Spec R, where R is a noetherian ring and M and
N are finitely generated, then

A(Exti
OV

(M, N)) = Exti(A(M),A(N))
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PROOF. Find a resolution

· · · → F1 → F0 → M→ 0

where the Fi are free modules — so that A(Fi) will also be free. Since R is noe-
therian, we may assume the Fi are all finitely generated. Theorem D.4.9 on the
preceding page implies that

Exti(A(M),A(N)) = Hi(H om(A(F∗),A(N)))

= Hi(A(homR(F∗, N))

where the last equality is due to lemma D.4.2 on page 541. The fact that the
A(∗)-functor is exact (see proposition 3.5.3 on page 152) implies that

Hi(A(homR(F∗, N)) = A(Hi(homR(F∗, N)))

and exercise 9 on page 511 proves the result. �

We can characterize the somewhat mysterious Exti-functor in terms of its
behavior on stalks:

PROPOSITION D.4.11. If V is a noetherian scheme, F is a coherent sheaf on V,
G is any OV-module and p ∈ V is a point, then

Exti(F , G )p = Exti
OV,p

(Fp, Gp)

for any i ≥ 0.

PROOF. Since the statement is local, we may assume that V is affine. In this
case, F has a resolution by locally free sheaves

· · · → L1 → L0 → F → 0

that can be used to compute Exti(F , G ), by theorem D.4.9 on the preceding
page. Taking stalks gives a free resolution

· · · → L1,x → L0,x → Fx → 0

over OV,x. Since
H om(Li, G )x = homOV,x (Li,x, Gx)

the conclusion follows from the exactness of the stalk-functors (see exercise 7
on page 482). �

EXERCISES.

1. Show that, if F is a sheaf on a ringed space (X,OX) that

hom(OX , F ) = F (X)

2. Show that, on a ringed space (X,OX)

Exti
OX

(OX , G ) = Hi(X, G )

for all i.
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3. If (X,OX) is a ringed space and F is a locally free sheaf (see defini-
tion C.2.3 on page 495) of finite rank, define

(D.4.5) F∨ = H om(F ,OX)

and show that F∨∨ = F .
Show that, for any OX-module

H om(F , G ) ∼= F∨ ⊗OX G

4. If (X,OX) is a ringed space and A , B, and C are modules overOX show
that there are natural isomorphisms

hom(A , hom(B, C ))→ hom(A ⊗OX B, C )

and
H om(A , H om(B, C ))→H om(A ⊗OX B, C )

5. If F is locally free show that

H om(U ⊗OX F∨, W ) = H om(U , F ⊗OX W )

for any coherent sheaves U and W .

6. If V is a projective scheme over a noetherian ring and

F1 → F2 → · · · → Fn

is an exact sequence of coherent sheaves, show that there is an integer N such
that(

F1 ⊗OV OV(t)
)
(V)→

(
F2 ⊗OV OV(t)

)
(V)→ · · · →

(
Fn ⊗OV OV(t)

)
(V)

is exact for all t ≥ N.

D.4.2. Serre duality. Serre Duality (essentially corollary D.4.20 on
page 553) first appeared in Serre’s paper [145]. Serre later proved an analytic
version in [147] — using analysis of several complex variable. Grothendieck
vastly generalized Serre’s original result in [60] (to theorem D.4.19 on
page 551) and Hartshorne clarified and simplified it in [67]. Our treatment will
follow the latter two references and [68].

We begin with a limited form of the result for projective spaces:

THEOREM D.4.12 (Serre Duality for projective space). Let V = kPn over a
field k and let ωV be the canonical class (see definition 5.9.34 on page 293) computed
in example 5.9.37 on page 293 as OkPn(−n− 1). Then

(1) Hn(V, ωV) ∼= k. Fix an isomorphism.
(2) For any coherent sheaf F on V, the natural pairing

hom(F , ωV)× Hn(V, F )→ Hn(V, ωV) ∼= k

is a perfect pairing of finite dimensional vector spaces.
(3) for every i ≥ 0 there is a natural functorial isomorphism

Exti
OV

(F , ωV)
∼=−→ Hn−i(V, F )∗
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PROOF. The first statement follows from statement 3 in theorem D.3.21 on
page 536.

Any homomorphism f : F → ωV induces a natural homomorphism of co-
homology groups

Hi(V, F )→ Hi(V, ωV)

and this defines the map in statement 2. We will prove that it is a perfect pair-
ing (i.e., a map that implies an isomorphism of vector spaces hom(F , ωV) ∼=
Hn(V, F )∗).

If F = OV(d), proposition D.4.3 on page 541 implies that

H om(F , ωV) = OV(−n− d− 1) = ωV ⊗OV F

so corollary D.3.16 on page 533 implies that

hom(F , ωV) = H om(F , ωV)(V) = H0(V, ωV ⊗OV(−d))

So, in this case, statement 2 follows from statement 4 of theorem D.3.21 on
page 536.

To prove it for an arbitrary coherent sheaf, note that we have an exact se-
quence

R1 → R0 → F → 0
where Ri are direct sums of sheaves of the form OV(qi) (see lemma 5.3.10 on
page 232) — which are locally free by construction. chasing the commutative
diagram (with exact rows)

0 // hom(F , ωV) //

f
��

hom(R0, ωV)

∼=
��

// hom(R1, ωV)

∼=
��

0 // Hn(V, F )∗ // Hn(V, R0)
∗ // Hn(V, R1)

∗

implies that f is an isomorphism.
To prove the second statement, note that Exti

OV
(F , ωV) and Hn−i(V, F )∗

are both contravariant δ-functors of F (see definition D.1.23 on page 512). Since
every coherent sheaf is a quotient of a direct sum of OV(−d)’s for arbitrarily
large d (see lemma 5.3.10 on page 232), we get an epimorphism⊕

OV(−d)→ F → 0

and the induced maps

Exti
OV

(F , ωV) → Exti
OV

(
⊕
OV(−d), ωV)

Hn−i(V, F )∗ → Hn−i(V,
⊕
OV(−d))∗

vanish for all i > 0. Proposition D.1.26 on page 513 implies that Exti
OV

(F , ωV)

and Hn−i(V, F )∗ are universal δ-functors (see definition D.1.24 on page 512).
Since they agree for i = 0, they must be naturally isomorphic. �

To extend this to projective varieties, we need the concept:

DEFINITION D.4.13. If X is a projective scheme of dimension n over a field
k, a dualizing sheaf for X is a coherent sheaf ω◦X together with a trace morphism

t: Hn(X, ω◦X)→ k
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such that, for all coherent sheaves F on X the natural pairing

hom(F , ω◦X)× Hn(X, F )→ Hn(V, ω◦X)
t−→ k

gives an isomorphism

hom(F , ω◦X)→ Hn(X, F )∗

REMARK. Note that a dualizing sheaf is one that makes statement duality2
of theorem D.4.12 on page 546 work. To prove the general case, we will have
to find a dualizing sheaf and a way to make the induction in the last statement
work.

Now we will show that such sheaves exist for projective varieties. We need
some preliminary results first.

LEMMA D.4.14. If (X,OX) is a ringed space, P is a locally-free sheaf of finite
rank, I is an injective sheaf, then P ⊗OX I is also injective.

PROOF. Exercise 5 on page 546 implies that

H om(∗ ⊗OX P∨, I ) = H om(∗, P ⊗OX I )

so the conclusion follows from the fact that⊗P∨ is an exact functor (see propo-
sition D.4.6 on page 543) and H om(∗, I ) is exact. �

COROLLARY D.4.15. If (X,OX) is a ringed space, P is a locally-free sheaf of
finite rank, I is an injective sheaf, and R and S are modules over OX then

Exti
OX

(R ⊗OX P , S ) = Exti
OX

(R, S ⊗OX P∨)

where P∨ = H om(P ,OX) and

Exti(R ⊗OX P , S ) = Exti(R, S ⊗OX P∨) = Exti(R, S )⊗OX P∨

PROOF. Exercise 5 on page 546 implies the result for i = 0. Let I be an
injective module over OV such that there is a monomorphism

S → I

(see D.3.1 on page 525). The functors Exti
OX

(R ⊗OX P , ∗) and Exti
OX

(R, ∗ ⊗OX

P∨) are covariant δ-functors that agree for i = 0. Since the maps induced in
them by S → I both vanish (by lemma D.4.14), they are both universal by
proposition D.1.25 on page 513, hence isomorphic.

The final statement follows from the fact that ∗ ⊗OX P∨ is exact. �

Now we discuss relations between Exti(∗, ∗) and Exti
OX

(∗, ∗). If (X,OX) is
any ringed space, i = 0, and F and G are modules over OX , we know that

hom(F , G ) = H om(F , G )(X)

If X = Spec R is a noetherian affine scheme, corollary D.4.10 on page 544
shows that

Exti
OX

(F , G ) = Exti(F , G )(X)

for all i. On a projective scheme, we must use Serre-twists to get similar results:
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PROPOSITION D.4.16. If V is a projective scheme over a noetherian ring, R,
OV(1) is a very ample invertible sheaf, F and G are coherent sheaves over V, then
there exists an integer N > 0 depending on F , G and i such that for every n ≥ N

(D.4.6) Exti
OV

(F , G ⊗OV OV(1)n) ∼= Exti(F , G ⊗OV OV(n))(V)

for all i ≥ 0, where OV(n) = OV(1)n.

REMARK. The sheaf OV(n) = OV(1)n is a kind of Serre twist on V.

PROOF. We know that this is true for i = 0 (without any twisting). If
F = OV , then Exti

F (F , G ⊗OV OV(n)) = Hi(V, G ⊗OV OV(n)) (exercise 2)
and theorem D.3.22 on page 538 implies that this vanishes for sufficiently large
n. On the other hand, Exti(F , G ⊗OV OV(n)) vanishes for all n and i > 0, so
equation D.4.6 is true.

If F is locally free, then we apply corollary D.4.15 on the preceding page
with R = OV to get

Exti
OV

(OV ⊗OV F , G ⊗OV OV(n)) = Exti
OV

(OV , G ⊗OV OV(n)⊗OX F ∗)

= Hi(V, G ⊗OV OV(n)⊗OX F ∗)

which vanishes for n sufficiently large, and

Exti(OV ⊗OV F , G ⊗OV OV(n)) = Exti(OV , G ⊗OV OV(n)⊗OX F ∗)
= 0

so, again, equation D.4.6 holds (in that both sides are 0).
In the general case, let E be a locally free sheaf that fits into an exact se-

quence
0→ K → E → F → 0

— this exists by lemma 5.3.10 on page 232, and K is also coherent. We develop
the long exact sequences:

0→ hom(F , G ⊗OV OV(n))→ hom(E , G ⊗OV OV(n))

→ hom(K , G ⊗OV OV(n))→ Ext1
OV

(F , G ⊗OV OV(n))→ 0

— where Ext1
OV

(E , G ⊗OV OV(n)) = 0 by the argument given above, and we
get

Exti
OV

(K , G ⊗OV OV(n)) = Exti+1
OV

(F , G ⊗OV OV(n))

We also get a similar long exact sequence for H om and Exti. After taking ten-
sor products with OV(d) for some d, there evaluations on V become exact, by
exercise 6 on page 546. Comparing the two long exact sequences demonstrates
the conclusion. �

PROPOSITION D.4.17. If j: V ↪→ kPn is a closed variety of codimension r with a
very ample sheaf OV(1), then

Exti(OV , ωkPn) = 0

(evaluated on kPn) for all i < r.
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REMARK. Note that OV is naturally a module over OkPn via the surjective
morphism

j∗:OkPn → OV

and the same is true of any module over OV . As OkPn -modules, j∗F = F , for
any OV-module, F 3.

PROOF. We claim that E i = Exti(OV , ωkPn) = Exti(OV , ωkPn) is a coherent
sheaf on kPn for all i ≥ 0. This follows by restricting to open affines and apply-
ing lemma D.4.2 on page 541 and corollary D.4.10 on page 544. To show that
it vanishes, note that its tensor product with OkPn(d) is generated by global
sections (see definition 5.3.6 on page 230 and corollary 5.3.9 on page 231).

It suffices, then, to show that
(
E i ⊗OkPn OkPn(d)

)
(kPn) = 0 for d suffi-

ciently large. Corollary D.4.15 on page 548 implies that

Exti(OV , ωkPn)⊗OkPn OkPn(d) = Exti(OV , ωkPn ⊗OX OkPn(d))

and proposition D.4.16 on the preceding page implies that(
Exti(OV , ωkPn ⊗OX OkPn(d))

)
(kPn) = Exti

R(OV , ωkPn ⊗OkPn OkPn(d))

= Exti
R(OV ⊗OkPn OkPn(−d), ωkPn)

where R = OkPn . The projective case of Serre Duality ( D.4.12 on page 546)
implies that

Exti
R(OV ⊗OX OkPn(−d), ωkPn) = Hn−i(kPn,OV ⊗OkPn OkPn(−d))∗

= Hn−i(V,OV(−d))∗

which must vanish for n− i > n− r or i < r. (see lemma D.3.18 on page 534).
�

The sheaf Extr(OV , ωkPn) will turn out to be our dualizing sheaf:

LEMMA D.4.18. If j: V ↪→ kPn is a closed variety of codimension r with a very
ample sheaf OV(1) and ω◦V = Extr(OV , ωkPn), then for any OV-module F there
exists a functorial isomorphism

homOV (F , ω◦V) ∼= Extr
R(F , ωkPn)

where R = OkPn .
It follows that ω◦V = Extr(OV , ωkPn) is a dualizing sheaf for V, where the Exti is

computed over OkPn .

REMARK. Note that ω◦V = Extr(OV , ωkPn) has a natural OV-module struc-
ture due to the presence of OV in the left side of the Exti(∗, ∗).

PROOF. If 0→ ωkPn → A 0 → · · · is an injective resolution of ωkPn , then

Exti
R(F , ωkPn) = Hi(homkPn(F , A ∗))

where R = OkPn . Since F is an OV-module, any OkPn -homomorphism F →
A i factors through Bi = H omkPn(OV , A i), so

Exti
R(F , ωkPn) = Hi(homV(F , B∗))

3One important characteristic of sheaves that are modules over OV is that push-forwards are
unnecessary.
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We claim that each Bi is an injective OV-module. This follows from the fact
that

homV(F , Bi) = homkPn(F , A i)

so that homV(∗, Bi) is an exact functor.
Now, let us examine the cochain complex {B∗} of OV-modules. We have

Hi(B∗) = Hi(H omkPn(OV , A ∗)

= Exti(OV , ωkPn)

= 0 if i < r

The bottom equality follows from proposition D.4.17 on page 549. It follows
(since the B j are injective objects and, consequently, are direct summands of any
object that contains them) that

B∗ = B∗1 ⊕B∗2

where B∗1 runs from degree 0 to r and is acyclic in all degrees, and B∗2 begins in
degree r. It follows that ω◦V = ker Br

2 → Br+1
2 and that

Hr(homV(F , B∗2 ) = Extr
R(F , ωkPn)

= hom(F , ω◦V)

which proves the first statement. The final statement follows from the projec-
tive case of Serre Duality ( D.4.12 on page 546) which implies that

Extr
OV

(F , ωkPn) ∼= Hn−r(kPn, F )∗

= Hd(V, F )∗

where d = n− r = dim V. We get a functorial isomorphism

hom(F , ω◦V) ∼= Hd(V, F )∗

If we set F = ω◦V , then we have

hom(ω◦V , ω◦V) ∼= Hd(V, ω◦V)
∗

and the image of 1: ω◦V → ω◦V ∈ hom(ω◦V , ω◦V) is a trace map

t: Hd(V, ω◦V)→ k

�

Now we are in a position to prove the general duality theorem:

THEOREM D.4.19 (Serre Duality). Let V be an n-dimensional projective variety
with dualizing sheaf ω◦V and very ample sheaf OV(1). Then, for all coherent sheaves
F on V there are natural functorial homomorphisms

θi: Exti
OV

(F , ω◦V)→ Hn−i(V, F )∗

where θ0 is the isomorphism induced by the trace map and W∗ = homk(W, k) — the
vector-space dual. If V is smooth and all of its components have dimension n, these
maps are isomorphisms for all i ≥ 0.
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PROOF. Let OV(−t) = OV(1)−t — the pullback of OkPN (−t) under some
embedding

j: V ↪→ kPN

Lemma 5.3.10 on page 232 implies that there is a surjective map
m⊕

i=1

OkPN (−t)→ F

which induces a surjection

(D.4.7) E =
m⊕

i=1

OV(−t)→ F

Then corollary D.4.15 on page 548 implies that

Exti
OV

(E , ω◦V) = Exti
OV

(OV ⊗OV E , ω◦V)

= Exti
OV

(OV , E ∗ ⊗OV ω◦V)

=
m⊕

i=1

Hi(V, ω◦V ⊗OV OV(t))

and theorem D.3.22 on page 538 implies that this vanishes for i > 0 and t suf-
ficiently large. It follows that Exti

OV
(∗, ω◦V) is a contravariant delta-functor so

that the map θ0 induces all of the θi (see proposition D.1.26 on page 513).
To complete the proof, get a surjective map as in equation D.4.7, embed V

in kPN , and consider a point x ∈ V. Then E is locally free over OV so Ex has
depth n overOV,x and overOkPN ,x. SinceOkPN ,x is also a local Cohen-Macaulay
ring, the Auslander-Buchsbaum formula D.2.24 on page 525) implies that

proj-dim Ex = N − n

where this is calculated over OkPN ,x. It follows (from proposition D.4.11 on
page 545) that

Exti(E , ∗) = 0
for i > N − n. For t sufficiently large, proposition D.4.16 on page 549 implies
that

ExtN−i(E , ωkPN ⊗OkPn OkPn(t))(kPn) =

ExtN−i
OkPn

(E , ωkPN ⊗OkPn OkPn(t)) = 0

for i > n. The Projective case of Serre Duality ( D.4.12 on page 546) implies that

Hi(kPN , E ⊗OkPN OkPN (−d))

is dual to this, so

Hi(kPN , E ⊗OkPN OkPN (−d)) = Hi(V, E ⊗OV OV(−d)) = 0

for i < n (and sufficiently large d). It follows that, replacing E by E ′ = E ⊗OV
OV(−d) if necessary, we have F is the surjective image of the locally free E ′

with Hi(V, E ′) = 0 for i < n. Proposition D.1.26 on page 513 implies that

Hi(V, ∗)∗
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is a universal contravariant δ-functor like Exti
OV

(∗, ω◦V) and the natural isomor-
phism

θi: Exti
OV

(F , ω◦V)→ Hn−i(V, F )∗

for i = 0 induces natural isomorphisms for higher values of i. �

If the sheaf F is locally-free, we can say more:

COROLLARY D.4.20. If V is a projective variety over k all of whose components
have dimension n and F is a locally free sheaf of finite rank, then

Hi(V, F ) ∼= Hn−i(V, F∨ ⊗OV ω◦V)
∗

where F∨ = H om(F ,OV) and W∗ is the dual of W as a vector-space over k.

REMARK. This is often what people mean when they talk about the Serre
Duality theorem — since it is a variation of Serre’s original version in [145].

Since locally free sheaves correspond to vector-bundles, this result gives
useful information on the behavior of vector-bundles over a variety.

PROOF. Theorem D.4.19 on page 551 implies that

Extn−i
OV

(F , ω◦V) ∼= Hi(V, F )∗

We have
Extn−i
OV

(F , ω◦V) = Extn−i
OV

(OV ⊗OV F , ω◦V)

and corollary D.4.15 on page 548 implies that

Extn−i
OV

(OV ⊗OV F , ω◦V) = Extn−i
OV

(OV , F∨ ⊗OV ω◦V)

= Hn−i(V, F∨ ⊗OV ω◦V)

and the result follows from theorem D.3.22 on page 538, which shows that all
of the modules in question are finite-dimensional vector spaces over k. �

We conclude this chapter by computing the dualizing sheaf:

PROPOSITION D.4.21. Let j: V ↪→ kPN be a smooth n-dimensional variety de-
fined by the quasicoherent ideal-sheaf I ⊂ OkPN . Then the dualizing sheaf of V is
given by

ω◦V = ωkPN ⊗OkPN OV ⊗OV

(
Λr (I /I 2)

)∨
= j∗(ωkPN )⊗OV

(
Λr (I /I 2)

)∨
where r = N − n is the codimension of V. The Adjunction Formula (theorem 4.6.21
on page 207) implies that ω◦V = ωV , the canonical sheaf (as in definition 4.6.20 on
page 207).

PROOF. We have to compute Extr(OV , ωkPn) over kPN . Let U ⊂ kPN be an
open affine over which I can be generated by r elements f1, . . . , fr ∈ OkPN (U)
and let R = OkPN (U). If U is sufficiently small, we get

Extr(OV , ωkPN )|U = Extr(OV |U, ωkPn |U) = A(Exti
OkPN (U)(OV(U∩V), ωkPN (U)))

by proposition D.4.4 on page 542 and corollary D.4.10 on page 544.
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If x ∈ V ∩ U is a point with maximal ideal m. Since V has codimension
r and Rm is Cohen-Macaulay and f1, . . . , fr form a regular sequence for Rm. If
we “flip” the Koszul complex K( f1, . . . , , fr) (see D.2.4 on page 525 and D.2.5 on
page 525) we get a free resolution, C∗, of OV,x over Rm whose top-dimensional
chain modules look like

(D.4.8) Cr = Λ0 Rr
m = Rm

∂r=


· f1
...
· fr


−−−−−−−→ Cr−1 = Λ1 Rr

m =
r⊕

i=1

Rm

(see definition D.2.18 on page 520). Choosing a smaller neighborhood, if nec-
essary, we get a complex of sheaves giving a resolution of OV(U ∩ V) over
OkPN (U) whose top boundary operators have the form of D.4.8.

We get

Hr(H om(C∗, ωkPN |U) = coker ∂∗r : Rr → R = R/I (U) = OV(U)

so ω◦V ∼= ωkPN ⊗OkPN OV , by an unnatural isomorphism that depends on the
choice of f1, . . . , fr. A change of generators affects the entire Koszul complex: if

gi =
t

∑
j=1

ai,j f j

then, at the low end of the resolution, we have

· · · → Λr−1 Rr → Λr Rr → OV(U)→ 0

and the change of basis will have the effect of mapping OV(U) via

OV(U)
×det(ai,j)−−−−−→ OV(U)

Since we want the map of free resolutions to cover the identity map of OV(U),
we must multiply the entire resolution by det(ai,j)

−1 whenever the basis
changes.

We accomplish this by taking the tensor product C∗ ⊗OV

(
Λr (I /I 2)

)∨.
The quotient I /I 2 is a vector space of dimension r over OV and Λr (I /I 2)
— a locally free sheaf of rank 1 — gets multiplied by det(ai,j) when the basis

changes, so that
(
Λr (I /I 2)

)∨ gets multiplied by det(ai,j)
−1 (see exercise 2 on

page 494).
It follows that the sheaves A(Exti

OkPN (U)(OV(U ∩V), ωkPN (U))) will patch
together to form a global sheaf ω◦V . �



APPENDIX E

Solutions to Selected Exercises

Chapter 1, 1.2 Exercise 1 (p. 9) Just write

z2
(( x

z

)2
+ 3

x
z

y
z
+ 25

)
= 0

to get
x2 + 3xy + 25z2 = 0

In the first case, we set z = 1 and recover our original equation. The solution-set in
C2 is a kind of quadratic hyperbola:

To get the points at infinity, set z = 0 to get

x2 + 3xy = 0 = x(x + 3y)

which gives several other points:

(1) x = 0 and y 6= 0, which defines a single point in CP1, [0: 1: 0].
(2) x 6= 0 and x = −3y, which also defines a single point in CP2, [−3y: y: 0], or

[−3: 1: 0] = [3:−1: 0].

555
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Chapter 1, 1.2 Exercise 2 (p. 9) We convert them into equations defined over CP2

y− x2 − 1 = 0

y− x2 − 2 = 0

and

z2
(

y
z
−
( x

z

)2
− 1
)

= 0

z2
(

y
z
−
( x

z

)2
− 1
)

= 0

or

yz− x2 = z2

yz− x2 = 2z2

The parabolas do not intersect in C2 but if we go to the CP1 at infinity (by setting z = 0)
we get x = 0 with no condition on y. This defines the single point [0: y: 0] = [0: 1: 0] ∈
CP1.

Chapter 1, 1.2 Exercise 3 (p. 9) This function is not a multiple of y, so we set y = 1 to get
the polynomial

x3 + 6x2 + 11x + 6

which factors to

(x + 1)(x + 2)(x + 3)

giving the factorization

x3 + 6x2 + 11x + 6 =

y3
((

x
y
+ 1
)(

x
y
+ 2
)(

x
y
+ 3
))
= (x + y)(x + 2y)(x + 3y)

Chapter 1, 1.2 Exercise 4 (p. 9) We start by writing it as( x
z

)2
+
( y

z

)2
+ 9 = 0

and multiply by z2 to get

x2 + y2 + 9z2 = 0

This is a circle of radius 3i with two points at infinity (1:±i: 0).

Chapter 1, 1.2 Exercise 5 (p. 9) We only have to verify that if

(x0: · · · : xn) ∼ (y0: · · · : yn)

and  z0
...

zn

 = A

 x0
...

xn

 ,

 w0
...

wn

 = A

 y0
...

yn


then (z0: · · · : zn) ∼ (w0: · · · : wn). The equivalence above implies that there exists a
nonzero t ∈ C such that yj = t · xj for j = 0, . . . , n. But this implies that wj = t · zj
for j = 0, . . . , n.
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Chapter 1, 1.2 Exercise 6 (p. 9) If the matrix fails to be invertible, then there is a vector x0
...

xn

 6= 0

such that

A

 x0
...

xn

 = 0

so the map Ā ceases to be well-defined at the point (x0: · · · : xn).

Chapter 1, 1.2 Exercise 7 (p. 9) We need

A


x1
...

xn
1

 =


y1
...

yn
1


The 1 in the bottom of the right term only depends on the bottom row of A. We have

An+1,1x1 + · · ·+ An+1,nxn + An+1,n+1 = 1

Since the xi are arbitrary, we conclude that An+1,1 = · · · = An+1,n = 0 and An+1,n+1 =
1.

Chapter 1, 1.2 Exercise 8 (p. 9) It is the mapping
x1
...

xn
1

 7→


x1 + z1
...

xn + zn
1


so it essentially displaces everything in Cn ⊂ CPn by z1

...
zn


Chapter 1, 1.3 Exercise 1 (p. 14) The Sylvester matrix of t− x(1 + t2) and t2 − y(1− t) is

−x 1 −x 0

0 −x 1 −x

1 y −y 0

0 1 y −y


and the determinant is

Res(t − x(1 + t2), t2 − y(1 − t), t) = x2 + 2 yx2 + 2 y2x2 + yx − y2x − y

so the implicit equation is

x2 + 2 yx2 + 2 y2x2 + yx− y2x− y = 0
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Chapter 1, 1.3 Exercise 2 (p. 14) These parametric equations are equivalent to t− x(1−
t2) = 0 and t− y(1 + t2) = 0 with a Sylvester matrix of

x 1 −x 0

0 x 1 −x

−y 1 −y 0

0 −y 1 −y


and resultant of

r = 4 y2x2 − x2 + y2

so the implicit equation is r = 0.

Chapter 1, 1.3 Exercise 3 (p. 14) Our polynomials are 1− t− x(1+ t) = 0 and t2− y(1+
t2) = 0 with a Sylvester matrix of −1− x 1− x 0

0 −1− x 1− x

1− y 0 −y


giving the implicit equation

−2 y + 1− 2 x− 2 yx2 + x2 = 0

Chapter 1, 1.3 Exercise 4 (p. 15) The resultant in question is

x4 + 2 x3 + x2 − 4 x = x(x− 1)(x2 + 3x + 4)

It follows that x can have one of the 4 values{
0, 1,
−3± i

√
7

2

}
Each of these x-values turns out to correspond to a unique y-value. Our four solutions
are

(x, y) =

{
(0, 1) , (1, 0) ,

(
−3− i

√
7

2
,

3− i
√

7
2

)
,

(
−3 + i

√
7

2
,

3 + i
√

7
2

)}
Chapter 1, 1.3 Exercise 5 (p. 15) We get

Res(s + t− x, s2 − t2 − y, s) = −2xt + x2 − y

Res(s2 − t2 − y, 2s− 3t2 − z, s) = 9 t4 + 6 t2z− 4 t2 − 4 y + z2

Res(s + t− x, 2s− 3t2 − z, s) = −3 t2 − 2 t + 2 x− z

and

R = Res(−2xt + x2 − y,−3 t2 − 2 t + 2 x− z, t) =

− 3 x4 + 4 x3 + 6 x2y− 4 x2z + 4 yx− 3 y2

so the implicit equation is

3 x4 − 4 x3 − 6 x2y + 4 x2z− 4 yx + 3 y2 = 0

If we compute the resultant of 9 t4 + 6 t2z− 4 t2− 4 y + z2 and−2xt + x2− y we get

9 x8 − 36 x6y + 24 x6z− 16 x6 + 54 x4y2

− 48 x4yz− 32 x4y + 16 x4z2

− 36 x2y3 + 24 x2y2z− 16 x2y2 + 9 y4

which turns out to be a multiple of R.



E. SOLUTIONS TO SELECTED EXERCISES 559

Chapter 1, 1.5 Exercise 1 (p. 27) Given 6 points, the first line can start at any of them. Its
endpoint has 5 possibilities, and the line from there can go to 4 possible places. The
number of paths connecting the 6 points is, therefore, 6! = 720. A cyclic permutation
of the points gives the same hexagon, leaving 6!/6 = 120 possibilities. Furthermore,
traversing the lines in the opposite direction gives the same hexagon, so we are left with
120/2 = 60 possibilities.

Chapter 1, 1.5 Exercise 2 (p. 27) This is why we prove Pascal’s theorem in a projective
space, RP2 = R2 ∪RP1 (see proposition 1.2.3 on page 4). The one-dimensional projec-
tive space RP1 is the “line at infinity” of RP2 and is where the intersections lie.

Chapter 1, 1.6 Exercise 1 (p. 33) Rotation in by φ in the xy-plane is accomplished by

 cos(π/4) − sin(π/4) 0
sin(π/4) cos(π/4) 0

0 0 1

 =


√

2/2 −
√

2/2 0
√

2/2
√

2/2 0

0 0 1


or

R1 =


√

2/2 −
√

2/2 0 0
√

2/2
√

2/2 0 0

0 0 1 0

0 0 0 1


in RP3. The displacement is accomplished by the linear transformation

D1 =


1 0 0 1
0 1 0 2
0 0 1 1
0 0 0 1


and the composite is

D1R1 =


√

2/2 −
√

2/2 0 1
√

2/2
√

2/2 0 2

0 0 1 1

0 0 0 1


The second rotation (in the xz-plane) is done by

R2 =


cos (π/3) 0 − sin (π/3) 0

0 1 0 0

sin (π/3) 0 cos (π/3) 0

0 0 0 1



=


1/2 0 −

√
3/2 0

0 1 0 0
√

3/2 0 1/2 0

0 0 0 1
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and the composite of all three is

R2D1R1 =


√

2/4 −
√

2/4 −
√

3/2 (1−
√

3)/2
√

2/2
√

2/2 0 2
√

6/4 −
√

6/4 1/2 (1 +
√

3)/2

0 0 0 1


Chapter 1, 1.6 Exercise 2 (p. 33) The two-dimensional image of the scene is just the result
of projecting

R3 ⊂ RP3

onto RP2 given by 
x
y
z
1

 7→
 x

y
z

 ∈ RP2

In regular Cartesian coordinates, this is (x/z, y/z).
When the camera is not at the origin (pointing in the z-direction), we simply devise

a linear transformation, T, that moves it there (and in that direction) and apply it before
projecting onto RP2, so 

x
y
z
1

 7→
 Tx

Ty
Tz

 ∈ RP2

Chapter 1, 1.6 Exercise 3 (p. 33) Simply regard this curve as being in RP3 and project it
onto the plane z = 1, to get

x =
cos(3t) + t

t + 3

y =
sin(3t)− t

t + 3
Plotting this gives the image:

FIGURE E.0.1. Perspective in projective space



E. SOLUTIONS TO SELECTED EXERCISES 561

Chapter 2, 2.1 Exercise 1 (p. 38) The closed sets of A1 are:

(1) the empty set,
(2) all of A1,
(3) finite sets of point (roots of polynomials).

It follows that the closed sets in the product-topology on A1 ×A1 consist of

(1) all of A1 ×A1

(2) {finite set} ×A1

(3) A1 × {finite set}
(4) {finite set} × {finite set}

and the Zariski topology on A2 has many more closed sets, like the set of points that
satisfy

x2 + y2 = 1

or even the diagonal line
y = x

Chapter 2, 2.1 Exercise 2 (p. 38) Both V and ` are closed sets of An, so their intersection
is also a closed set and a closed subset of ` = A1. The only closed sets of ` (in the Zariski
topology) are:

(1) ∅
(2) `
(3) finite sets of points.

Since p ∈ ` and p /∈ V, case 2 is ruled out.

Chapter 2, 2.1 Exercise 3 (p. 38) This follows from exercise 38 on page 364, which shows
that

Ann(M1) ·Ann(M3) ⊂ Ann(M2) ⊂ Ann(M1) ∩Ann(M3)

and proposition 2.1.2 on page 37.

Chapter 2, 2.1 Exercise 4 (p. 38) We can simplify the ideal (X2
1 + X2

2 − 1, X1 − 1) consid-
erably. Since X2

1 − 1 = (X1 + 1)(X1 − 1), we subtract X1 + 1 times the second generator
from the first to get (X2

2 , X1 − 1). It follows that V consists of the single point (0, 1) and
I(V) = (X1 − 1, X2).

Chapter 2, 2.1 Exercise 5 (p. 38) In characteristic 2, (X1 + X2 + X3)
2 = X2

1 + X2
2 + X2

3 , so
V is the plane defined by

X1 + X2 + X3 = 0

and I(V) = (X1 + X2 + X3).

Chapter 2, 2.1 Exercise 6 (p. 38) This is XY, since XY = 0 implies X = 0 or Y = 0.

Chapter 2, 2.1 Exercise 7 (p. 38) If we use the results of the previous exercise, XY = 0
so V ((XY)) is the PXZ ∪ PYZ where PXZ denotes the XZ-plane and PYZ denotes the
YZ-plane. Similarly, V ((XZ)) = PXY ∪ PYZ so that

V ((XY, XZ)) = (PXZ ∪ PYZ) ∩ (PXY ∪ PYZ) = PYZ

Since V ((YZ)) = PXY ∪ PXZ, we get

V ((XY, XZ, YZ)) = (PXY ∪ PXZ) ∩ PYZ

= (PXY ∩ PYZ) ∪ (PXZ ∩ PYZ)

and each of these terms are equal to the union of the axes.

Chapter 2, 2.1 Exercise 8 (p. 39) In k[V] = k[X, Y]/(Y2−X3) the identity Y2 = X3 holds,
so every occurrence of Y2 can be replaced by X3.
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Chapter 2, 2.2 Exercise 1 (p. 45) Suppose that p ⊂ k[X1, . . . , Xn] is prime and suppose
that an ∈ p. If we write an = a · an−1, then the defining property of a prime ideal implies
that either a ∈ p or an−1 ∈ p. In the first case, the claim is proved. In the second case, we
do downward induction on n.

Chapter 2, 2.2 Exercise 2 (p. 45) Suppose a ⊂ k[X1, . . . , Xn] is a proper ideal. The strong
form of the Nullstellensatz says that IV (a) =

√
a.

We claim that if a 6= k[X1, . . . , Xn] then the same is true of
√
a. The statement that

1 ∈ √a, is equivalent to saying that 1n ∈ a for some n. But 1n = 1 so 1 ∈ √a implies
that 1 ∈ a.

Since
√
a 6=k[X1, . . . , Xn], we conclude that V(a) 6= ∅.

Chapter 2, 2.2 Exercise 3 (p. 45) Set n = m = 1. In this case, the Zarski-closed sets are
finite sets of points or the empty set or all of A1. The maps that swaps two points (like
1 and 2) but leaves all other points fixed is Zarski-continuous, but is clearly not regular.

Chapter 2, 2.2 Exercise 4 (p. 45) Since the determinant, z, can never vanish and since it is
a polynomial over X1, . . . , Xn, Hilbert’s Nullstellensatz implies that it must be a constant
(any nonconstant polynomial has a zero somewhere).

Chapter 2, 2.2 Exercise 5 (p. 45) The second equation implies that

XZ− Z = Z(X− 1) = 0

so X = 1 or Z = 0. Plugging each of these cases into the first equation gives:
Case 1:
If X = 1 then the first equation becomes YZ = 1 which generates a hyperbola.
Case 2:
If Z = 0 then the first equation becomes X = 0 and Y is unrestricted — i.e., we get

the Y-axis. So the two components are the
(1) hyperbola X = 1, YZ = 1 and
(2) the Y-axis.

Chapter 2, 2.3 Exercise 1 (p. 61) We use I(X) = (Y, Z), I(Y) = (X, Z) and I(Z) =
(X, Y). To compute the intersection, we can use the proposition 2.3.14 on page 53:

To compute I(X) ∩ I(Y), define the ideal

(TY, TZ, (1− T)X, (1− TZ) ⊂ k[Y, Z, T]

where T is a new variable, and compute the Gröbner basis of this ideal with the Maple
command
Basis([T*Y, T*Z, (1-T)*X, (1-T)*Z], plex(T,X, Y, Z))

We get
(Z, YX, TY,−X + XT)

Throwing away the terms with T gives

I(X) ∩ I(Y) = (Z, XY)

Now we repeat the process, computing

I(X) ∩ I(Y) ∩ I(Z) = (Z, XY) ∩ (X, Y)

by finding a Gröbner basis of

(TZ, TXY, (1− T)X, (1− T)Y)

that orders T higher than the others. The Maple command is
Basis([T*Z, T*X*Y, (1-T)*X, (1-T)*Y], plex(T, X, Y, Z))

The result is
(ZY, ZX, YX, TZ,−Y + TY,−X + XT)

Throwing away all terms containing T gives

I(X) ∩ I(Y) ∩ I(Z) = (XY, YZ, XZ)
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Chapter 2, 2.3 Exercise 2 (p. 61) We plug x = 1/2, y = 1/2, and z = 1 +
√

2/2 into the
ideal P in example 2.3.19 on page 58 to give

P′ = (−1 + 2 b5
2,−b5 + a5,−2−

√
2 + 2 b4 + b4

√
2,

− 1 + b4,−2 + 2 b4
2, a4, b3 + b5b4,−

√
2 + 2 a3,

√
3b5 +

√
3b5
√

2− 2 b4
√

3b5 + 3 b2,

3 a2 − 2
√

3− 1/2
√

2
√

3 + b4
√

3)

If we take a Gröbner basis of this, we get an even simpler representation

P′ = (−1 + 2 b5
2,−b5 + a5,−1 + b4, a4, b3 + b5,−

√
2 + 2 a3,

3 b2 +
(√

2
√

3−
√

3
)

b5, 6 a2 −
√

2
√

3− 2
√

3)

from which we conclude

a5 = b5 = ±1/
√

2
b4 = 1
a4 = 0
b3 = −b5

a3 = 1/
√

2

b2 = −b5(
√

6−
√

3)/3

a2 = (
√

6 + 2
√

3)/6

which gives two solutions:

(1) φ1 = 45◦, θ1 = 90◦, θ2 = 315◦, θ3 = 99.735◦

(2) φ1 = 225◦, θ1 = 90◦, θ2 = 45◦, θ3 = 80.264◦

Note that the two possible values of θ3 sum up to 180◦.

Chapter 2, 2.3 Exercise 3 (p. 61) We start with the same equations as before:

a5a4a3 − a5b4b3 + a5a4 − x = 0
b5a4a3 − b5b4b3 + b5a4 − y = 0

b4a3 + a4b3 + b4 − z = 0

a2
3 + b2

3 − 1 = 0

a2
4 + b2

4 − 1 = 0

a2
5 + b2

5 − 1 = 0(E.0.9)

And we plug in the new directions to get

(a5a4a3 − a5b4b3) a2 + (−a5a4b3 − a5b4a3) b2 − 1 = 0

(b5a4a3 − b5b4b3) a2 + (−b5a4b3 − b5b4a3) b2 = 0

(b4a3 + a4b3) a2 + (a4a3 − b4b3) b2 = 0

a2
2 + b2

2 − 1 = 0(E.0.10)
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The Gröbner basis with lexicographic ordering is

(y, b5, a5
2 − 1,

4 x2b4
2 − 4 x2 + 2 x2z2 − 4 x2zb4 + x4 + z4 − 4 z3b4 + 4 z2b4

2,

z2a5 − 2 za5b4 + x2a5 + 2 xa4,

− 4 xa5 + 4 zb4a4 − 2 z2a4 + 4 b4
2xa5 + z2a5x− 2 za5xb4 + x3a5,

a4
2 + b4

2 − 1,

2 b4a4 − za4 + b3 + xa5b4

− 2 + 4 b4
2 − 4 zb4 + z2 + 2 a3 + x2,

za5 − a5b4 + b2,−a5a4 − x + a2)

from which we conclude that y = 0 and a5 = ±1. The term next to the last implies that

x2 − 4zb4 + z2 + 4b2
4 = x2 + (z− 2b4)

2 = 2− 2a3

which means x and z lie on a circle of radius
√

2(1− a3) and center (0, 2b4). If we specify
that a3 = c, some constant and take a further Gröbner basis (not including c in the list of
variables), we get an additional relation between x and z (among other things):

(c− 1)z2 + (1 + c)x2 = 0

or

z = ±x
√

1 + c
1− c

so the reachability set is contained in this pair of lines in the xz-plane (and very small!).
The possible values of z are

b4c + b4 ±
√

1− b4
2 − c2 + b4

2c2

It is interesting that, although the set of points that can be reached is limited, there are
many ways to reach each of these points.

Chapter 2, 2.3 Exercise 4 (p. 61) We compute the intersection of the principal ideals gen-
erated by these polynomials and take their intersection, using the method of proposi-
tion 2.3.14 on page 53: we find a Gröbner basis of the ideal

(T(−X3 − 2 YX2 − XY2 + 2 X),

(1− T)(4− 4 X2 − 4 Y2 + X4 − 2 Y2X2 + Y4))

using a lexicographic ordering T � X � Y to get

Y4X− 2 X3Y2 + X5 − 4 XY2 − 4 X3 + 4 X,

X4 − 3 Y2X2 − 2 X2 + TY2X2 − 2 TX2 − 2 XY3

+ 4 XY + 2 XTY3 − 4 TXY + Y4T − 4 TY2 + 4 T,

− X3 − 2 YX2 − XY2 + 2 X + X3T + 2 YTX2 + XTY2 − 2 XT

Since the only term that does not contain T is the top one, it is the answer.

Chapter 2, 2.3 Exercise 5 (p. 61) No. The basis given for a is a Gröbner basis with lexico-
graphic ordering and

X + Y →a 2Y

so X + Y /∈ a.
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Chapter 2, 2.3 Exercise 6 (p. 61) Yes. If we compute Gröbner basis of a+ (1− T(X +Y))
(with respect to any ordering) we get (1). Using the NormalForm command in Maple
gives

(X + Y)2 →a 4Y2

(X + Y)3 →a 0

so (X + Y)3 ∈ a.
Chapter 2, 2.3 Exercise 7 (p. 61)

X + Y →a X + Y
(X + Y)2 →a 4XY

(X + Y)3 →a 12 XY2 − 4 Y3

(X + Y)4 →a 32 XY3 − 16 Y4

(X + Y)5 →a 0

so (X + Y)5 ∈ a.
Chapter 2, 2.3 Exercise 8 (p. 61) We find a Gröbner basis for a = (X2 − 2, Y3 − 2, A −
X−Y) with lexicographic order with

X � Y � A

to get

a = (−4− 24 A + 12 A2 − 6 A4 − 4 A3 + A6,

− 364 + 152 A− 156 A2 + 9 A4

− 160 A3 + 24 A5 + 310 Y,

364− 462 A + 156 A2 − 9 A4

+ 160 A3 − 24 A5 + 310 X)

so the minimal polynomial of α is

α6 − 6α4 − 4α3 + 12α2 − 24α− 4 = 0

Chapter 2, 2.4 Exercise 1 (p. 70) If we add the two equations, we get

2X2 = −1

so

X = ± i√
2

If we plug this into the second equation, we get

Y2 + Z2 =
1
2

so V consists of two disjoint circles.
Chapter 2, 2.4 Exercise 2 (p. 70) We will prove that the negations of these statements are
equivalent. If there exists a nonempty proper subset S ⊂ X that is both open and closed
then X \ S is a closed set and

X = S ∪ (X \ S)
is a decomposition with S ∩ (X \ S) = ∅.

Conversely, if there exists a decomposition

X = X1 ∪ X2

with X1, X2 nonempty closed sets and X1 ∩ X2 = ∅, then X \ X1 = X2, so X2 is open as
well as closed.
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Chapter 2, 2.4 Exercise 3 (p. 70) The product h1h2 ∈ k is nonzero if and only if both fac-
tors are nonzero.

Chapter 2, 2.4 Exercise 4 (p. 70) The inclusion D( f ) ⊂ D(g) is equivalent to saying
V (g) ⊂ V ( f ) which is equivalent to saying that IV ( f ) ⊂ IV (g). The conclusion
follows by the strong form of Hilbert’s Nullstellensatz.

Chapter 2, 2.4 Exercise 5 (p. 70) Cramer’s Rule states that

(A−1)i,j =
Âi,j

det A

where Âi,j is the i, jth cofactor of A — a polynomial function of the entries of A. In the
coordinate ring of GL(n, k) (see equation 2.4.1 on page 64), T · det A = 1 so our regular
map is given by

(A−1)i,j = T · Âi,j

which are polynomial functions.
Chapter 2, 2.4 Exercise 6 (p. 70) Suppose k is an infinite field with k ⊂ R. The key fact
here is that everything under discussion is a vector-space over k: all of the ideals and R
itself. The hypotheses imply that

J =
n⋃

i=1
(J∩ Ii)

with J ∩ Ii ⊂ J for all i. The conclusion follows from the fact (from linear algebra)
that a vector-space over an infinite field cannot be a finite union of proper subspaces (see
exercise 35 on page 364).

Chapter 2, 2.4 Exercise 7 (p. 70) We do induction on n. The case n = 1 is trivial. Now
suppose

J ⊂
n⋃

i=1
Ii

but J 6⊂ Iα for all α. We will get a contradiction. Without loss of generality, assume n
is minimal. Then, for each i, we can pick xi ∈ J \ ⋃j 6=i Ij. If n = 2, then x1 + x2 is not
contained in either I1 or I2 — if x1 + x2 ∈ I1, then x1 + x2 − x1 = x2 ∈ I1 and a similar
argument shows that x1 + x2 /∈ I2.

If n > 2, assume In is prime and consider

y = x1 · · · xn−1 + xn

If y ∈ ⋃n−1
j=1 Ij, then x1 · · · xn−1 ∈ Ij for j = 1, . . . , n − 1 so y − x1 · · · xn−1 = xn ∈⋃n−1

j=1 Ij, a contradiction.
If y ∈ In, then so is y− xn = x1 · · · xn−1 ∈ In. Since In is prime, one of the xi ∈ In

for some 1 ≤ i ≤ n− 1 — also a contradiction.
Chapter 2, 2.4 Exercise 8 (p. 71) Since

V (a) ∩ D(b) ⊂ V (a) \ V (b)

it follows that f vanishes on V (a) ∩ D(b) — whose coordinate ring is the localization,
k[V (a)]b = Rb/ab, (see proposition 2.4.5 on page 63), where

ab = a · Rb ⊂ Rb

is the image of a in the localization. It follows that f ∈ ab. If

a = (u1, . . . , ut)

then we get f = ∑t
j=1 ajuj/gni so that clearing denominators implies the conclusion.
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Chapter 2, 2.4 Exercise 9 (p. 71) Since R is noetherian, exercise 8 on page 71 shows that

I (V (a) \ V (b)) ⊂ (a: b∞)

Conversely, suppose x ∈ (a: b∞), p ∈ V (a) \ V (b), and x(p) 6= 0. Since p /∈ b, there
exists an element g ∈ b such that g(p) 6= 0. It follows that (x · gn) (p) 6= 0 for all n. But
this contradicts the facts that x · gn ∈ a for some n and p ∈ V (a).

Chapter 2, 2.5 Exercise 1 (p. 79) The induced map of coordinate rings is

k[X, Y] → k[X, Y]
X 7→ X
Y 7→ XY

So the maximal ideal (X − a, Y− b) maps to (X − a, XY− b). If a 6= 0 this is equivalent
to (

X− a, Y− b
a

)
corresponding to the point (a, b/a). If a = 0 and b = 0, we get the ideal (X, XY) = (X)
which corresponds to the entire Y-axis. If a = 0 and b 6= 0, we get (X, XY− b) = (−b) =
(1) corresponding to the empty set.

Chapter 2, 2.5 Exercise 2 (p. 79) The geometric approach is probably the simplest way to
proceed. The hyperbola in figure E.0.2 on the next page projects onto the line Y = −X.
We get a projection onto A1 by the map

(X, Y) 7→ Y− X

and the inverse image of a point U ∈ A1 consists of the solutions of

X− X−1 = U

or
X2 − XU − 1 = 0

which has ≤ 2 solutions for any U. This induces a map

k[U]→ k[X, Y]/(XY− 1) = k[T, T−1]

where the image of U is T − T−1. As a module over k[U], k[T, T−1] is

k[U] · 1⊕ k[U] · T

Chapter 2, 2.5 Exercise 3 (p. 79) This follows from exercise 3 on page 38 and a straight-
forward induction. Since the ideals, pi, are prime, proposition 2.4.18 on page 68 implies
that the V (pi) are irreducible.

Chapter 2, 2.5 Exercise 5 (p. 90) If f = p/q where p, q ∈ k[V], simply define U = D(q)
(see definition 2.4.4 on page 63 and proposition 2.4.5 on page 63).

Chapter 2, 2.5 Exercise 6 (p. 90) The set U is certainly open, but if it were affine, the maps

k[A2] → k[U]

k[U] → k[D(X)] = k[X, X−1, Y]

k[U] → k[D(Y)] = k[X, Y, Y−1]

would all be injective, by lemma 2.5.20 on page 82, so
k[U] = k[X, X−1, Y] ∩ k[X, Y, Y−1] ⊂ k(X, Y) which is precisely
k[X, Y] = k[A2]. So the inclusion

k[A2]→ k[U]
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FIGURE E.0.2. Hyperbola projected onto a line

must be an isomorphism — i.e., a 1-1 and onto mapping of spaces. But the inclusion

U ↪→ A2

is not onto.
Chapter 2, 2.5 Exercise 8 (p. 90) Certainly, it is well-defined if X 6= 0. We have

Y
X

=
Y
X
· Y

Y
=

Y2

XY
∼ X2 + X3

XY
=

X + X2

Y
which is well-defined if Y 6= 0.

Chapter 2, 2.5 Exercise 10 (p. 90) The problem is that the rationalization is defined over
C and its subfields. There is no homomorphism from one of these to F5. For instance,
plugging t = 1 into equation 2.5.9 on page 88 gives the point (4, 3) which does not
satisfy the equation:

42 + 4 · 3 + 32 ≡ 2 (mod 5)
Chapter 2, 2.5 Exercise 12 (p. 91) The identity

x · f + y · g = 1 ∈ F

implies that the ideal (x, y) corresponds to the empty set in R[ f , g]. If W is the algebraic
set whose coordinate ring is R[ f , g] ⊂ F, then the inclusions

R ↪→ R[ f , g] ↪→ k[D] = Rx ∩ Ry

induce maps

D →W
f−→ V

and f misses the origin, i.e. f (W) ⊂ D ⊂ V. We conclude that D = W and

R[ f , g] = Rx ∩ Ry = k[D]

We can describe R[ f , g] as an affine ring

k[X, Y, U, V, F, G]/(XY + X2U + Y2V, FY + U, GX + V)

Chapter 2, 2.7 Exercise 1 (p. 98) This follows immediately from diagram 2.7.5 on
page 96: ∆ is a regular map from W to ∆(W) and either projection p1 or p2 is an inverse
regular map.
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Chapter 2, 2.7 Exercise 2 (p. 98) If q ∈ V is any point, let rq = 1: V → {q} × V be the
identification. Now we simply define ga = µ ◦ (a× 1) ◦ ra: V → V, a regular map. This
is just left-multiplication by a. If we compose these types of maps, we get

ga ◦ ga′ (v) = µ ◦ (a× 1) ◦ ra ◦ µ ◦ (a′ × 1) ◦ ra′ (v)
= µ ◦ (1× µ)

(
{a} × {a′} × {v}

)
= µ ◦ (µ× 1)

(
{a} × {a′} × {v}

)
= µ

(
{µ(a, a′} × {v}

)
= gµ(a,a′)(v)

for any v ∈ V, so ga ◦ ga′ = gµ(a,a′) and the inverse to ga is precisely gι(a). Now we can
define

fa,b = gb ◦ gι(a) = gµ(b,ι(a)) = gba−1

Chapter 2, 2.8 Exercise 1 (p. 106) Any chain of prime ideals in S−1R gives rise to one in
R (see corollary A.1.92 on page 369).

Chapter 2, 2.8 Exercise 2 (p. 106) We know that dim Rm ≤ dim R. Suppose

pd ) · · · ) p0

is a maximal chain of prime ideals in R, where pd = m is maximal. Then corollary A.1.92
on page 369 shows that

pd · Rm ) · · · ) p0 · Rm

is also a chain of prime ideals, so that

dim Rm = dim R

Chapter 2, 2.8 Exercise 3 (p. 115) Suppose A is a unique factorization domain and p is a
prime ideal of height 1. If x ∈ p then x has a unique factorization

x = ∏ ani
i

where the ai ∈ A are irreducible. Since p is prime, we must have aj ∈ p for some j and
(aj) ⊂ p. Since aj is irreducible, lemma A.3.1 on page 395 implies that (aj) is prime.
Since p is of height 1, the only prime ideal properly contained within p is (0). Since
(aj) 6= (0), it follows that (aj) = p. So every height-1 prime ideal is principal.

Conversely, suppose every height-1 prime ideal is principal. If a ∈ A is an irre-
ducible element, let p be the smallest prime ideal such that (a) ⊂ p. Theorem 2.8.29
on page 108 implies that ht(p) = 1, so p = (b) for some b ∈ A and (a) ⊂ (b) implies
that b|a. But a is irreducible so b = u · a for some unit u ∈ A and (a) = (b). Then (a)
is a prime ideal and lemma A.3.1 on page 395 implies that A is a unique factorization
domain.

Chapter 2, 2.8 Exercise 4 (p. 115) Since the image of f is dense, the intersection f (V) ∩
W ′ 6= ∅ for any open set W ′ ⊂ W. Since U ⊂ V is dense and f is Zariski-continuous,
f−1(W ′) ∩U 6= ∅, which implies that f (U) ∩W ′ 6= ∅.

Chapter 2, 2.8 Exercise 5 (p. 115) The hypotheses imply that V and W have the same di-
mension and [k(V): k(W)] = d, so that the norm-map Nk(V)/k(W): k(V) → k(W) is well-
defined. If

Nk(V)/k(W)(x) = y = x ·
d

∏
j=1

xk ∈ k(W)

where the xj = pi/qi are the conjugates of x. Now y = p/q is regular in an open set
D(q) ⊂ W in which case U′′ = D(p) ∩ D(q) ⊂ D(q) is open. Since q = ∏d

j=2 qj and
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p = x ·∏d
j=1 pj, we have f−1(U′′) = D(p) ∩ D(q) where p, q are regarded as elements

of k[V] (see exercise 4 on page 79). It follows that

f−1(U′′) = U ∩
d⋂

j=2

(
D(pj) ∩ D(qj)

)
⊂ U

Chapter 2, 2.8 Exercise 6 (p. 115) Since the Xi generate k[V], their images, xi, generate
k(V) over k(W), i.e.

k(V) = k(W)(x1, . . . , xn)

The element α exists by the Primitive Element Theorem ( A.2.21 on page 378). That it has
the required form follows from the proof of theorem A.2.21 on page 378, which implies
that we can form linear combinations of the xj to get α as long as the field k is infinite.

Chapter 2, 2.8 Exercise 7 (p. 115) We have k(V) = k(W)[α] where α = ∑n
j=1 β jxj, so de-

fine

`: An → A1

(X1, . . . , Xn) 7→
n

∑
j=1

β jXj

and set
ϕ = ( f , `): V →W ×A1

Now define V̄ to be the Zariski closure of im ϕ. Pulling back rational functions on im ϕ
gives us k(V̄) = k(W)[α] = k(V) so ϕ: V → V̄ is a birational equivalence.

Chapter 2, 2.8 Exercise 8 (p. 115) That is so the extension k(W) ⊂ k(V) is separable —
required by theorem A.2.21 on page 378.

Chapter 2, 2.8 Exercise 9 (p. 115) Let pα(X) ∈ k(W)[X] be the minimum polynomial of
α from exercises 7 on page 115 and 6 on page 115 — this polynomial has degree d and
coefficients that are elements of k(W). Consider

V′ = V (pα(X)) ⊂W ×A1

We have V̄ ⊂ V′ and k(V′) → k(V̄) is an isomorphism, so that V′ is birationally equiv-
alent to V̄ and V — which means that it is an isomorphism on an open set U ⊂ V.
Let W ′ ⊂ W be the open set where pα(X) is a regular function — i.e., where the its
rational coefficients are regular (see exercise 5 on page 90). Let ∆ ∈ k[U] be the discrim-
inant of pα(X) (see corollary A.1.55 on page 351). Then ∆ is not identically zero and
D(∆) ∩W ′ ⊂ W ′ is an open set where ∆ 6= 0. By exercise 5 on page 115, f (U) contains
an open set W ′′ ⊂W.

It follows that W1 = D(∆)∩W ′ ∩W ′′ ⊂W is an open set for which f−1(w) contains
d distinct points whenever w ∈W1.

Chapter 3, 3.3 Exercise 1 (p. 129) This is easily found by differentiating Y2 − X2 − X3. It
has one singular point at the origin.

Chapter 3, 3.3 Exercise 2 (p. 129) We begin by computing the Jacobian

J =


3X2 2X
3Y2 2Y
3Z2 2Z
3W2 2W


The second equation in 3.3.7 on page 129 implies that at least one of the variables must
be nonzero. We assume that is X. If X 6= 0, we get (from lemma 3.3.14 on page 128)

rank(J ) = 1 + rank

 6X2Y− 6Y2X
6X2Z− 6Z2X

6X2W − 6YW2X
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The varietyR(J , 1) (where the rank of J is less than maximal) is given by 6X2Y− 6Y2X
6X2Z− 6Z2X

6X2W − 6YW2X

 = 0

or Y = Z = W = X. The second equation in 3.3.7 on page 129 then implies that

X = ±1
2

, Y = ±1
2

, Z = ±1
2

, W = ±1
2

and the quantity X3 + Y3 + Z3 + W3 in the first equation in 3.3.7 on page 129 takes on
the values

±1
2

, ±1
4

, 0

If a is not equal to any of these five values, the variety R(J , 1) will not intersect V, and
Vwill be smooth and two-dimensional.

Chapter 3, 3.3 Exercise 3 (p. 130) Use the parametric equation for the sphere in exam-
ple 2.5.31 on page 88 to get a rational parametrization of the Roman surface

X = 2t(s2 + t2 − 1)/(1 + s2 + t2)2

Y = 2s(s2 + t2 − 1)/(1 + s2 + t2)2

Z = 4st/(1 + s2 + t2)2

As in example 3.3.13 on page 126, we eliminate s and t from these equations to get
equations for X, Y, and Z. The simplest way to do this is to find a Gröbner basis for the
ideal

L = (X(1 + s2 + t2)2 − 2t(s2 + t2 − 1),

Y(1 + s2 + t2)2 − 2s(s2 + t2 − 1),

Z(1 + s2 + t2)2 − 4st)

lexicographically, ordering s and t higher than X, Y, and Z — for instance, issue the
Maple command Basis(L,plex(s,t,X,Y,Z). Setting the only term in the Gröbner
that does not contain s or t to zero gives the implicit equation

X2Y2 + Y2Z2 + X2Z2 − XYZ = 0

The Jacobian is

J =

 2 XY2 + 2 XZ2 −YZ
2 X2Y + 2 YZ2 − XZ
2 Y2Z + 2 X2Z− XY


and singularities occur when it is of rank 0, i.e., when all of its terms vanish.

We form a Gröbner basis of the terms of J to get

(−20 YZ4 + YZ2 + 64 YZ6,

−Y2Z2 + 16 Y2Z4,

44 YZ3 − 128 YZ5 − 3 YZ + 12 Y3Z,

32 YZ5 − 14 YZ3 + 3 XZ2,

− 4 Y2Z2 + YXZ, 28 YZ3 + 6 Y2X− 3 YZ− 64 YZ5,

2 Y2Z + 2 ZX2 −YX,

2 YX2 + 2 YZ2 − XZ)
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0.40.40.20.2

− 0.4− 0.4

− 0.4− 0.4

− 0.2− 0.2

00

YY

− 0.2− 0.2

00
ZZ

00

XX

− 0.2− 0.2

0.20.2

0.20.2

0.40.4

− 0.4− 0.4
0.40.4

FIGURE E.0.3. Steiner’s Roman surface

The term −Y2Z2 + 16 Y2Z4 implies that, if Y 6= 0 then either Z = 0 or Z = ±1/2. If we
set Z = 1/2 (by adjoining Z− 1/2 to the terms in J and take a Gröbner basis, we get

(2Z− 1, Y2, X−Y)

so Z = 1/2 implies X = Y = 0. In fact, we get the same result if Z is any nonzero
value. Since the equation for the Roman surface is symmetric in the three variables, we
conclude that the Roman surface has precisely three singular lines

(1) X = Y = 0, Z arbitrary
(2) X = Z = 0, Y arbitrary
(3) Y = Z = 0, X arbitrary

all of which meet at a triple point at the origin. This is clear from figure E.0.3.
Chapter 3, 3.3 Exercise 4 (p. 130) It is necessary and sufficient to show that

f (X, Y, Z) = f (X̄, Ȳ, Z̄)

if and only if
(X, Y, Z) = ±(X̄, Ȳ, Z̄)

We represent f (X, Y, Z) = f (X̄, Ȳ, Z̄) on the unit sphere by the ideal

(YZ− ȲZ̄, XZ− X̄Z̄, XY− X̄Ȳ,

Y2 − Z2 − Ȳ2 + Z̄2,

X2 + Y2 + Z2 − 1, X̄2 + Ȳ + Z̄− 1) ∈ R[X, Y, Z, X̄, Ȳ, Z̄]

If we compute a Gröbner basis via lexicographic ordering with X � Y � Z � X̄ � Ȳ �
Z̄, we get

(X̄2 + Ȳ + Z̄− 1, Z2 − Z̄2, YZ̄− ȲZ, YZ− ȲZ̄,

Y2 − Ȳ2, XZ̄− X̄Z, XȲ− X̄Y, XZ− X̄Z̄, XY− X̄Ȳ, X2 + Ȳ2 + Z̄2 − 1)
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The basis-elements Y2− Ȳ2 and Z2− Z̄2 imply that Y = ±Ȳ and Z = ±Z̄. If all variables
are nonzero, the facts that XY = X̄Ȳ and YZ = ȲZ̄ imply that

Y = Ȳ =⇒
{

X = X̄
Z = Z̄

and

Y = −Ȳ =⇒
{

X = −X̄
Z = −Z̄

Chapter 3, 3.3 Exercise 5 (p. 130) Since W is smooth, it has no singular points — so the
partial derivatives do not vanish on W. It follows that

W ∩ V
(

∂ f
∂X

,
∂ f
∂Y

)
= ∅

The weak form of Hilbert’s Nullstellensatz ( 2.2.3 on page 40) implies the conclusion.

Chapter 3, 3.3 Exercise 6 (p. 137) Corollary 3.3.29 on page 136 implies that x is contained
in a single irreducible component, V0, of V. It follows that OV,x = OV0,x, a localization
of k[V0] which is an integral domain (because V0 is irreducible).

Chapter 3, 3.3 Exercise 7 (p. 137) This follows from lemma 3.3.22 on page 132 and exer-
cise 6 on page 137 which show that

R
(u1, . . . , ui)

is an integral domain of dimension m − i. If the image of ui+1 in it were 0, then the
maximal ideal of R could have been generated by fewer than m elements, which is a
contradiction.

Chapter 3, 3.3 Exercise 8 (p. 137) Since G is smooth, by lemma 3.3.16 on page 128, it fol-
lows that the inversion map

ι: G → G
x 7→ x−1

must send G0 to a single component of G, since it is continuous. Since it sends the identity
element to itself, that single component must be G0. A similar argument shows that the
right-multiplication map (where a ∈ G0)

µa: G → G

must send G0 to itself (since a−1 ∈ G0). It follows that G0 ⊂ G is a subgroup.

Chapter 3, 3.4 Exercise 2 (p. 147) Since k is algebraically closed, p̄α(X) = ∏d
j=1(X − vj)

with all of the vj distinct (because the discriminant is 6= 0) so

k[X]

( p̄α(X))
∼=

d⊕
j=1

k[X]

X− vj
∼= kd

by the Chinese Remainder Theorem (see exercise 16 on page 339). Each summand k is
an embedded field and the product 1i · 1j = 0 for i 6= j, where 1j is the identity element
of the jth summand.

Chapter 3, 3.4 Exercise 4 (p. 151) We have

R = k[W] =
k[X, Y, Z]
(Z2 − XY)

= k[X, Y]⊕ Z · k[X, Y]
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and we can define an injective homomorphism of rings

f : R = k[X, Y]⊕ Z · k[X, Y]→ k[U, V]

X 7→ U2

Y 7→ V2

Z 7→ UV

Since U and V have minimal polynomials U2 − X and V2 − Y, it follows that they are
integral over R and corollary A.4.6 on page 405 implies that F: R→ k[U, V] is an integral
extension of rings. The homomorphism f also induces an inclusion of fraction-fields

f̄ : F = k(X, Y)[
√

XY]→ k(U, V)

It is not hard to see that

k[U, V] ⊂ k(X, Y)[
√

XY][
√

X] ⊂ k(U, V)

Since k[U, V] is integrally closed in k(U, V) (see corollary A.4.12 on page 407) it is cer-
tainly integrally closed in the smaller field F. It follows that k[U, V] is the integral closure
of R over k(W)[

√
X].

Chapter 3, 3.4 Exercise 5 (p. 151) The equations above define an injective homomorph-
ism of rings

f : k[W] =
k[X, Y]

(Y2 − X2(X + 1))
→ k[T]

Since T satisfies
T2 − 1− X = 0

it follows that T is integral over k[W] and that f defines an integral extension of rings. If
we pass to fraction-fields, we get

Y
X
7→ T

so that the induced map of fraction-fields is an isomorphism. The conclusion follows
from the fact that k[T] is integrally closed in k(T) (see corollary A.4.12 on page 407).

Chapter 3, 3.5 Exercise 1 (p. 156) All elements of Ωk[V]/k are of the form

f (X, Y) · dX + g(X, Y) · dY

for f , g ∈ k[V]. The relation dY = 2X · dX implies that we can eliminate dY from any
expression, so we get

Ωk[V]/k = k[V] · dX

This is a free module defining a trivial bundle — which makes sense since V is isomor-
phic to an affine line A1 (see example 2.4.9 on page 65).

Chapter 3, 3.5 Exercise 2 (p. 156) Since W is smooth, there exist (see exercise 5 on
page 130) functions r, s ∈ k[X, Y] such that

r · ∂ f
∂X

+ s · ∂ f
∂Y

= 1 (mod ( f (X, Y)))

Now multiply our formula

ω =
dX

∂ f /∂Y
= − dY

∂ f /∂X
∈ Ωk[W]/k

by this to get
ω = r · dX− s · dY
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Chapter 3, 3.5 Exercise 3 (p. 156) As before, we have

2X · dX + 2Y · dY = 0

so we have

ω =
dX
Y

= − dY
X

is regular — and the relation X2 + Y2 = 1 implies

ω = Y · dX− X · dY

so it is regular. We have

dX = Y ·ω
dY = −X ·ω

so

Ωk[V]/k = k[V] ·ω
Chapter 4, 4.2 Exercise 1 (p. 165) A function satisfying the properties of the exercise has
a global square root that is continuous. It follows that the image of f in

mp

m2
p

is zero.

Chapter 4, 4.2 Exercise 2 (p. 165) This immediately follows from the solution to exer-
cise 4 on page 419, which shows that dx and d (ex) are linearly independent in ΩM/C.

Chapter 4, 4.2 Exercise 3 (p. 165) If α ∈ C is an algebraic number, let p(X) be its
minimal polynomial over Q. After clearing denominators, we get a polynomial p̄(X)
(even a primitive polynomial — see definition A.3.4 on page 397). The principle ideal
( p̄(X)) ⊂ Z[X] is prime and defines a point with evaluation field the field of fractions
of Z[X]/( p̄(X)) and the function X restricts to α at this point.

Chapter 4, 4.2 Exercise 4 (p. 165) If x is a unit, it is a unit in every quotient of R, hence
its restriction is also a unit and nonzero. If x fails to be a unit, (x) 6= R so that it is
contained in a maximal ideal m ⊂ R (by proposition A.1.27 on page 338). It follows that
the restriction of x to the (closed) point of Spec R defined by m is 0.

Chapter 4, 4.2 Exercise 5 (p. 165) This follows immediately from definition 4.2.1 on
page 161 and theorem A.1.46 on page 344, which implies that the intersection of all
prime ideals in a ring is the set of nilpotent elements.

Chapter 4, 4.2 Exercise 6 (p. 165) This follows from the basic properties of an ideal. For
all prime ideals p ⊂ R, r ∈ p implies that (r) ⊂ p, which in turn implies that rs ∈ p.
Taking the contrapositive, we conclude that rs /∈ p implies that r /∈ p, which is the
conclusion.

Chapter 4, 4.2 Exercise 7 (p. 166) This follows from the special properties of a prime
ideal. The solution to exercise 6 on page 166 implies that D(rs) ⊆ D(r) ∩ D(s). To see
the reverse inclusion note that for all prime ideals p ⊂ R, rs ∈ p ⊂ R, implies that r ∈ p
or s ∈ p. It follows that p /∈ D(rs) implies that p /∈ D(r) or p /∈ D(s) or p /∈ D(r) ∩ D(s).
This implies that D(r) ∩ D(s) ⊆ D(rs).

Chapter 4, 4.2 Exercise 8 (p. 166) If r is not a zero-divisor, then rs 6= 0 for all s ∈ R so
D(r) ∩ D(s) = D(rs). Since rs is also not a zero-divisor, it is not nilpotent so D(rs) 6= ∅
and the conclusion follows. If r is a zero-divisor, then r · s = 0 for some s ∈ R so
D(r) ∩ D(s) = D(rs) = ∅, so D(r) fails to be dense.
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Chapter 4, 4.2 Exercise 9 (p. 166) The ring, k[X, Y](X,Y) has a unique maximal ideal (i.e.
it is a local ring) so it only has one closed point — given by the ideal (X, Y). All of
the other prime ideals of k[X, Y] have been classified in example 2.8.35 on page 112
beside (X− a, Y− b), they are principle ideals ( f (X, Y)) where f (X, Y) is an irreducible
polynomial. After localizing at (X, Y) the primes that survive are the ones that are a
subset of (X, Y): these are (X, Y) itself, and any principle ideal ( f (X, Y)) where f is
irreducible and of the form X · g1(X, Y) + Y · g2(X, Y). These will all be non-closed
points. The ideal (0) is the generic point.

Chapter 4, 4.2 Exercise 10 (p. 166) Since R[X] is a principle ideal domain, every prime
ideal is of the form (X − a), where a ∈ R or (aX2 + bX + c), where b2 − 4ac < 0. Every
one of these ideals is maximal, so all points are closed. The ideals of the form (X − a)
give rise to all of the points of R. Those of the form (aX2 + bX + c) give rise to complex-
conjugation pairs — so the points defined are in a 1-1 correspondence with the upper
half-plane in C.

Chapter 4, 4.2 Exercise 11 (p. 166) This is equivalent to requiring each nonempty open
set to contain a closed point. It suffices for every open set of the form D( f ) ⊂ Spec R,
where f is not nilpotent (see exercise 5), to have a closed point in it. This is equivalent to
saying that there exists a maximal ideal m ⊂ R such that f /∈ m. The contrapositive of
this is that the intersection of all maximal ideals consists of only the nilpotent elements
of R, i.e,

N(R) = J(R)

— see definition A.1.45 on page 344 and definition A.4.37 on page 420 (theorem A.1.46
on page 344 implies that N(R) is the intersection of all prime ideals, hence contained in
J(R)).

Chapter 4, 4.2 Exercise 12 (p. 166) Prime ideals of R correspond to irreducible
subschemes of Spec R with the smallest corresponding to the largest subschemes. It
follows that the irreducible components of Spec R correspond to minimal prime ideals
and Spec R is irreducible if and only if it has a single minimal prime ideal. If R is an
integral domain, its unique minimal prime ideal is (0) so Spec R is irreducible (as in
the theory of affine varieties). In scheme-theory it is possible for R to have nilpotent
elements and still be irreducible.

Chapter 4, 4.2 Exercise 13 (p. 166) They are the points corresponding to the images in R
of the prime ideals (Y) and (X, Y) — which annihilate Y. These prime ideals correspond
to the whole space and the origin, respectively. The ideal (X) is not prime since 0 ∈ (X)
and Y2 = 0.

Chapter 4, 4.2 Exercise 14 (p. 166) Vanishing at an associated point is equivalent to being
in an associated prime of R. The conclusion follows from corollary A.1.74 on page 359.

Chapter 4, 4.3 Exercise 1 (p. 174) In this case, the ring of fractions R(X1, . . . , Xn) does
not exist (it vanishes) but we can replace it with

R[X1, . . . , Xn]N

where N = N(R[X1, . . . , Xn]), the nilradical (see definition A.1.45 on page 344). Ev-
erything else in example 4.3.15 on page 172 goes through with this substitution. Theo-
rem A.1.46 on page 344 implies that the nilradical is contained in every prime ideal of
R[X1, . . . , Xn], so that

R[X1, . . . , Xn]p ⊂ R[X1, . . . , Xn]N

for all prime ideals p ⊂ R[X1, . . . , Xn].

Chapter 4, 4.3 Exercise 2 (p. 174) In this case,

R[X1, . . . , Xn] = R1[X1, . . . , Xn]⊕ R2[X1, . . . , Xn]
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and if f = f1 ⊕ f2 then

R[X1, . . . , Xn] f = R1[X1, . . . , Xn] f1
⊕ R2[X1, . . . , Xn] f2

It is not hard to see that the analysis of example 4.3.15 on page 172 goes through after
we substitute

R1(X1, . . . , Xn)⊕ R2(X1, . . . , Xn)

for R(X1, . . . , Xn).
Chapter 4, 4.3 Exercise 3 (p. 175) This follows from basic properties of Artinian rings,
described in section A.1.7 on page 365. They have a finite number of prime ideals, all of
which are maximal — see lemma A.1.82 on page 365. The last statement follows from
the proof of theorem A.1.86 on page 367, which shows that R has a unique decomposition

R =
n

∏
i=1

Ri

where Ri is an Artinian local ring. Uniqueness implies that Ri = OV,pi .
Chapter 4, 4.3 Exercise 4 (p. 175) This is essentially a tautology:

A(R)(U) = R⊗R OV(U) = OV(U)

Chapter 4, 4.3 Exercise 5 (p. 175) The coordinate ring at p is Rp = S−1R where S = R \ p.
This is also equal to

lim−→ Rx

as x runs over products of elements of S — see corollary A.5.25 on page 444. But this
second formulation is the definition of OV,p — see definition B.1.1 on page 475.

Chapter 4, 4.3 Exercise 6 (p. 175) If R is a ring and f ∈ R is a function with support
S ⊂ Spec R, we claim that C = Spec R \ S is open. If p ⊂ R defines a point of C then the
image of f in Rp is 0. But Rp = lim−→ Rx as x runs over all products of elements of R \ p
(see corollary A.5.25 on page 444). The definition of direct limit implies that there exists
a specific such x for which the image of f in Rx is zero. This implies that f |D(x) = 0 so
that every point of C has an open neighborhood that is also in C. It follows that C is open
and S is closed.

Chapter 4, 4.3 Exercise 7 (p. 178) No. Although our definition of product has the struc-
tural properties of a product (as in definition A.5.1 on page 431), it is not a Cartesian
product (except on the points of affine varieties) and its topology is not the product-
topology (see exercise 1 on page 38)

Chapter 4, 4.3 Exercise 8 (p. 178) There exists an inverse j̄: j(X′) → X′ such that j̄ ◦ j =
1: X′ → X′. The varieties Y ×X X′ and f−1(j(X′)) both have the same universal prop-
erties: Given any morphisms u: A → Y, v: A → X′ that makes the solid arrows in the
diagram

Y
f

%%
A

u
99

v
%%

// Y×X X′

p1

OO

p2
��

// X

X′
j

99

commute, there exists a unique dotted arrow that makes the whole thing commute. The
diagram implies that u(A) ⊂ f−1(j(X′)) ⊂ Y, so A also has a unique map to f−1(j(X′)).
In fact, the image of the projection p1: Y×X X′ → Y must lie within f−1(j(X′)).

On the other hand, there exists a morphism

f−1(j(X′))→ Y×X X′
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that makes the diagram

Y
f

%%
f−1(j(X′))

) 	

66

j̄
((

// Y×X X′

p1

OO

p2
��

// X

X′
j

99

commute and the composites of these morphism must be the identity maps.

Chapter 4, 4.4 Exercise 1 (p. 188) The scheme

Proj R[X0, . . . , Xn]

has a covering by open affines D(Xi), i = 0, . . . , n. Each of these is a copy of
An = Spec R[Y1, . . . , Yn] and proposition 4.4.14 on page 187 shows that, on the
overlaps, D(Xi) ∩ D(Xj), Yt = XtX−1

i on D(Xi) and Yt = XtX−1
j . It follows that the

gluing maps connecting the D(Xi) are compatible with those in definition 4.4.8 on
page 183.

Chapter 4, 4.4 Exercise 3 (p. 193) The hypotheses immediately imply that Y is locally
closed in X. Since Y is closed in each of the Uα, it is closed in their union — i.e., X.
We can patch together the quasi-coherent ideals Iα defining (Y ∩Uα,OY |Y ∩Uα) as a
closed subscheme of (U,OX |U) to get a global quasi-coherent sheaf, I defining (Y,OY)
as a subscheme of (X,OX).

Chapter 4, 4.4 Exercise 4 (p. 193) On each of the open affines, An
i , the sheaf is given by

the computations in example 4.3.15 on page 172. An argument like that used in the proof
of proposition 4.4.9 shows that

ORPn (An
i1
∪ · · · ∪An

it
) = R[Xj1 , . . . , Xjn−t+1 ]

where {j1, . . . , jn−t+1} = {0, . . . , n} \ {i1, . . . , it}
and

ORPn (An
i1
∩ · · · ∩An

it
) = R[X0, . . . , Xn][X−1

i1
, . . . , X−1

it
]

Chapter 4, 4.4 Exercise 5 (p. 193) Without loss of generality, we can assume V = Spec R,
in which case F = A(M) for some R-module (see definition 3.5.1 on page 151), M. We
have

(E.0.11) i∗(F |U)(U′) = F (U ∩U′)

where U′ ⊂ V is some open set.
Since U ⊂ V is an affine open set, then U = Spec S−1R for some multiplicative set

S ⊂ R and F |U = A(S−1 M). It is not hard to see that i∗(F |U) = A(S−1 M), where
S−1 M is regarded as a module over R, satisfies equation E.0.11 for any affine U′.

Chapter 4, 4.4 Exercise 6 (p. 193) Since f is a closed immersion, it induces a surjection

OY → OX

which implies surjective maps

OY(U)→ OX( f−1(U))

for all open affines of Y. if we choose an open cover {Ui} for Y such that F | f−1(Ui) =
A(Mi), where Mi is a module over OX( f−1(Ui)), then f∗(F )|Ui = A(Mi), where Mi is
now regarded as a module over OY(U) by composition with the surjection above. This
means that f∗F is coherent over Y.
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Chapter 4, 4.4 Exercise 7 (p. 193) We can use the correspondence between coherent
sheaves and modules over the coordinate ring R = k[X] in section C on page 487. An
exact sequence of coherent sheaves corresponds to an exact sequence of modules. The
Quillen-Suslin theorem ( 3.5.11 on page 155) shows that all modules over R are free and
uniquely defined by their rank. The exact sequence

0→ Rn → Rn+1 → R→ 0

shows that K(X) is generated by [R].

Chapter 4, 4.4 Exercise 8 (p. 193) Since R is noetherian and M is coherent, it follows that
M is finitely generated. Since its generators all vanish on D(s) (because the support is
limited to W), lemma 4.4.17 on page 189 implies that there exists an integer n such that
sn ·M = 0 — this is the same n as in the statement of the exercise. Now define

Mi = sn−i ·M
Chapter 4, 4.5 Exercise 1 (p. 199) (1) If (p) is a point of Spec Z with p 6= 0, we get

(p) ·C = C, so the fiber of (p) is the empty set. The fiber of the generic point
(0) is the one point of Spec C.

(2) The point (p) in Spec Z has a fiber in Z[X] consisting of the point (p) ·Z[X].
The fiber of the generic point of Spec Z is that of Spec Z[X].

Chapter 4, 4.6 Exercise 1 (p. 205) If S is separated, then the diagonal

∆: S→ S× S

sends closed sets to closed sets and

A1 ∩ A2 ∼= ∆(S) ∩ A1 × A2 ⊂ A1 × A2

Since A1 × A2 is an affine scheme and ∆(S) ∩ A1 × A2 ⊂ A1 × A2 is a closed subset,
lemma 4.4.22 on page 191 implies that it is also affine.

Chapter 4, 4.6 Exercise 2 (p. 205) Let N be the union of two copies of A1 with a “doubled
origin” — see example 4.4.7 on page 183. If A1 and A2 are these two copies of A1, then
A1 ∩ A2 = A1 \ {0}. This is affine but not open.

If N is a similar union of two copies of A2 with a doubled origin, then the cor-
responding A1 ∩ A2 = A2 \ {(0, 0)}, which is not even affine (see example D.3.19 on
page 535).

Chapter 4, 4.6 Exercise 3 (p. 212) We use the same type of argument as in the remark
following definition 4.6.29 on page 210. For every transcendental number α ∈ C, we can
define a morphism

fα: Q(X)⊗Q C → C

g(X)⊗ z 7→ g(α) · z
and the kernel will be a maximal ideal, mα, defining a closed point. If α is algebraic,
there exists a g(X) 6= 0 such that g(α) = 0 so the map fα is identically 0 (since Q(X) is a
field).

Chapter 5, 5.1 Exercise 1 (p. 219) This follows immediately from lemma 5.1.6 on
page 215, which implies that

τ = kPn ×An+1/η

Chapter 5, 5.1 Exercise 3 (p. 219) Nonzero homogeneous ideals of R are of the form R · Xn

for various values of n so they are all irrelevant. The only relevant homogeneous ideal
is (0), which means that Proj R has a single point.
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Chapter 5, 5.1 Exercise 5 (p. 219) The points in kP19 corresponding to singular hyper-
surfaces are those satisfying polynomial equations in coordinates (expressing the fact
that the tangent space is singular). They constitute a closed subvariety, ∆, of kP19 and
kP19 \ ∆ parametrizes the smooth hypersurfaces.

Chapter 5, 5.1 Exercise 6 (p. 219) Suppose V is defined by the vanishing of
complex-analytic functions { f0, . . . , ft}. If B ⊂ Cn+1 is a sufficiently small ball centered
at 0, then the f j are equal to their power-series on V ∩ B, so

f j =
∞

∑
i=0

fi,j

where fi,j is the homogeneous component of degree i — a polynomial — and

f j(tx0, . . . , txn) =
∞

∑
j=0

ti fi,j

It follows that the set of zeros of the { f j} is also the set of zeros of the { fi,j}. But the
Hilbert Basis Theorem ( A.1.49 on page 346) implies that the ideal generated by them is
generated by a finite set of homogeneous polynomials.

Chapter 5, 5.1 Exercise 7 (p. 219) Since at least one homogeneous coordinate must be
nonzero, it follows that X2

1 − X2
2 = 0 in P(a).

Chapter 5, 5.1 Exercise 9 (p. 220) The statement that f vanishes on P(a) is equivalent to
saying that

f

(
X0
Xj

, . . . ,
Xj−1

Xj
,

Xj+1

Xj
, . . . ,

Xn

Xj

)
vanishes on P(a) ∩An

j for all j. If a = (g1, . . . , gt), the Nullstellensatz implies that

f

(
X0
Xj

, . . . ,
Xj−1

Xj
,

Xj+1

Xj
, . . . ,

Xn

Xj

)
=

t

∑
i=1

ci · gi

(
X0
Xj

, . . . ,
Xj−1

Xj
,

Xj+1

Xj
, . . . ,

Xn

Xj

)
which implies the conclusion after multiplying by a suitable power of Xj.

Chapter 5, 5.1 Exercise 10 (p. 220) Exercise 8 on page 220 implies that
P(a) = P((a: i∞)), so (a: i∞) = (b: i∞) implies that P(a) = P(b). Conversely, if
P((a: i∞)) = P((b: i∞)), exercise 9 on page 220 implies that an element of k[X0, . . . , Xn]
that vanishes on P((a: i∞)) must be in (a: i∞) so that (b: i∞) ⊆ (a: i∞). Symmetry
implies that they are equal.

Chapter 5, 5.2 Exercise 1 (p. 227) Since Λn V = F · e1 ∧ · · · ∧ en ∼= F, we have

Λk V∗ ⊗F Λn V ∼= Λk V∗

Let {e1, . . . , en} be a basis for V and let {e1, . . . , en} be a dual basis for V∗.
Then an inductive application of lemma 5.2.5 on page 222 implies that

(ej1 ∧ · · · ∧ ejk )xe1 ∧ · · · ∧ en = ±ei1 ∧ · · · ∧ ein−k

where j1 < · · · < jk, and the set {i1, . . . , in−k} with i1 < · · · < in−k is the
set-difference {1, . . . , n} \ {j1, . . . , jk}. Since the map x sends basis elements of Λk V∗ to
±basis-elements of Λn−k V, it defines an isomorphism.

Chapter 5, 5.2 Exercise 2 (p. 227) If (x, y) is a point on S1 then

x =
X2

0 − X2
1

X2
0 + X2

1
, y =

2X0X1

X2
0 + X2

1



E. SOLUTIONS TO SELECTED EXERCISES 581

so

1− x =
2X2

1
X2

0 + X2
1

and
1− x

y
=

2X2
1

2X0X1
=

X1
X0

This is well-defined where y 6= 0 and, on S1, is equal to

1− x
y
· 1 + x

1 + x
=

1− x2

y(1 + x)
=

y
1 + x

otherwise — compare to example 2.5.19 on page 81. This function does blow up when
x → −1, but we can simply invert it to conclude that the inverse is given by:

(X0: X1) = g(x, y) =


(

1: 1−x
y

)
if y 6= 0

(1: 0) if y = 0, x 6= −1
(0: 1) if x = −1

is the proper inverse map.

Chapter 5, 5.2 Exercise 3 (p. 227) This set of hyperplanes is Gn−1,n ∼= G1,n ∼= kPn, by
exercise 1 on page 227. Alternatively, we could have reasoned that a hyperplane in kPn

is defined by an equation
n

∑
i=0

aiXi = 0

and two such equations define the same hyperplane if and only if their coefficients are
proportional — i.e., if they define the same point of kPn.

Chapter 5, 5.2 Exercise 4 (p. 227) A line in kP3 is a plane in A4, so it is parametrized by
G2,4.

Chapter 5, 5.3 Exercise 1 (p. 235) In the notation of definition 5.3.6 on page 230, there
exists a surjection of presheaves ⊕

i∈I
OX → F

which induces a surjection of stalks. That implies that the map to the completion of F⊕
i∈I
OX → F̂

is surjective as well (see exercise 6 on page 482). If x = ∑ si · fi ∈ F̂ , then this sum is
also well-defined in F so the inclusion of presheaves

F → F̂

must be surjective as well as injective.

Chapter 5, 5.3 Exercise 2 (p. 235) The existence of L implies the existence of a closed
immersion

f : V → kPt

for some value of t. Since L = f ∗OkPt (1), the standard elements Xi ∈ OkPt (kPt) (see
proposition 5.3.3 on page 228) pull back to functions fi that equal the values of the Xi on
the image of f . The conclusion follows.
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Chapter 5, 5.4 Exercise 1 (p. 238) Suppose L be defined by the equation ∑n
j=0 ajXj = 0.

Let M be an (n + 1)× (n + 1) invertible matrix with the property that

M ·

 a0
...

an

 =


1
0
...
0


Then M induces an isomorphism

P(M): P(An+1)→ P(An+1)

whose restriction to P(An+1) \ L is an isomorphism

P(M)|P(An+1) \ L: P(An+1) \ L→ P(An+1) \An+1
0 = An

Chapter 5, 5.4 Exercise 3 (p. 239) Compare to exercise 3 on page 227. If we map

vn,d: kPn → kPM

via the degree-d Veronese map, the hyperplanes in kPM correspond to hypersurfaces in
kPn. The dimension of this space is M = (n+d

n )− 1.

Chapter 5, 5.5 Exercise 1 (p. 241) The identity X0X3 − X1X2 = 0 is precisely the Segre
relations in equation 5.5.2 on page 240 for the map

kP1 × kP1 → kP3

with

w0,0 = X0

w1,1 = X3

w0,1 = X1

w1,0 = X2

To see that it is birationally equivalent to kP2, consider the open V ∩A3
0 defined by

X0 = 1. The intersection is V ((X3 − X1X2)) ⊂ A3 which is easily seen to be isomorphic
to A2. It follows that V has an open affine isomorphic to an open affine of kP2 so they are
birationally equivalent.

Chapter 5, 5.5 Exercise 2 (p. 247) The Zariski closure of a set S is the zero-set of all alge-
braic equations that vanish on S. If the fi satisfy an algebraic relation like

t

∑
i=1

ai(X) · fi = 0

we have to augment equations 5.5.4 on page 243 with

t

∑
i=1

ai(X) ·Yi = 0

Chapter 5, 5.5 Exercise 3 (p. 247) Since X2
1 and X2 are algebraically independent, we can

use equations 5.5.4 on page 243 to see that the blowup in question is given by

X2
1Y2 = X2Y1

where [Y1: Y2] are the homogeneous coordinates of kP1. If we consider the chart with
Y2 = 1, we get X2

1 = X2Y1 which has a Jacobian that vanishes at X1 = X2 = Y1 = 0.
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Chapter 5, 5.5 Exercise 4 (p. 247) This follows immediately from equation 5.5.5 on
page 244 — carefully compute the grades or levels of the graded ring

G =
k[X1, . . . , Xn, Y1, . . . , Yt]

({ fi(X) ·Yj − f j(X) ·Yi})
where the Xi have degree 0 and the Yi have degree 1. Clearly, G0 = R and

Gn =
∑1≤i1,...,<in≤t R ·Yi1 · · ·Yin

({ fi(X) ·Yj − f j(X) ·Yi})
and we define surjective homomorphisms

Gn → ∑
1≤i1,...,<in≤t

R · fi1 · · · fin = an regarded as degree n

Yi 7→ fi

which are also injective since the fi are algebraically independent.
If the fi are not independent, then the ideal ({ fi(X) · Yj − f j(X) · Yi}) must be aug-

mented with all of the relations they satisfy (as in the solution of exercise 2 on page 247),
so the corresponding map is still an isomorphism.

Chapter 5, 5.5 Exercise 5 (p. 247) Existence follows immediately from definitions 5.5.7 on
page 245 and 5.5.9 on page 246. Uniqueness follows from the fact the maps σ1 and σ2 are
isomorphisms away from the exceptional fiber.

Chapter 5, 5.5 Exercise 6 (p. 248) This follows from exercise 5 on page 247 and the fact
that B f ∗(b)(V) = V, since f ∗(b) is a principal ideal. This is a form of a “universal
property” that blowups have.

Chapter 5, 5.6 Exercise 1 (p. 260) Simply embed V in kP3 via theorem 5.6.9 on page 259.
Since it is of codimension 2, it is defined by two forms.

Chapter 5, 5.6 Exercise 2 (p. 260) Couple proposition 5.6.1 on page 254 with the
Veronese embedding (see section 5.4.2 on page 238).

Chapter 5, 5.7 Exercise 1 (p. 267) The answer is

HR/I(s) =

(
s + 3

3

)
−
(

s + 3− d1
3

)
−
(

s + 3− d2
3

)
+

(
s + 3− d1 − d2

3

)
= s · d1d2 −

d2
1d2 + d1d2

2
2

+ 2d1d2

Chapter 5, 5.7 Exercise 2 (p. 267) If deg f = r, then a = a+ ( f ) in degrees ≥ r + t so the
Hilbert functions agree in higher degrees and the Hilbert polynomials are the same.

Chapter 5, 5.7 Exercise 3 (p. 267) This follows from exercise 10 on page 220, which im-
plies that ā = b̄ and exercise 2 on page 267, which implies thatHR/a(s) = HR/ā(s).

Chapter 5, 5.9 Exercise 1 (p. 287) This follows from the definition of sheaves and their
quotients: for each open U ⊂ V, the quotient

K∗V(U)

O∗V(U)

is the sheaf of local Cartier divisors. Ones that fit together globally define Cartier divisors
— and elements of the quotient-sheaf(K∗V

O∗V

)
(V)

The ring K∗V(V) is globally defined rational functions, hence principal divisors.
Chapter 5, 5.9 Exercise 2 (p. 287) (1) If f (x) = x, then ord0 ( f ) = 1 and

ord f (∞) = −1 (i.e., it has a pole at ∞), so ( f ) = 〈0〉 − 〈∞〉.
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(2) In this case, ord1 ( f ) = 1 and ord0 ( f ) = −1 so ( f ) = 〈1〉 − 〈0〉.
(3) ord0 ( f ) = −2 and ord∞ ( f ) = 2, so ( f ) = 2 · 〈∞〉 − 2 · 〈0〉
(4) ( f ) = 〈1〉+ 〈4〉 − 2 · 〈∞〉

Chapter 5, 5.9 Exercise 3 (p. 287)

Chapter 5, 5.9 Exercise 4 (p. 287) This follows from the fact that (x) = (x)0 − (x)∞.

Chapter 5, 5.9 Exercise 5 (p. 287) The canonical projection

f : W → V

is an isomorphism outside the center of the blow-up. Since this center has codimension
≥ 2 the center contributes nothing to Cl(V). The exceptional fiber is a projective space,
which contributes the Z-summand.

Chapter 5, 5.9 Exercise 6 (p. 291) Since f ∈ L(D), we have

ordQ ( f ) ≥ −ordQ (D)

for all prime divisors, Q. If P is a prime divisor that does not appear in D (which is a
finite linear combination of prime divisors) and with the property that ordP ( f ) = 0,
then

ordP ( f ) = 0 � ordP (D− P) = 1

Chapter 6, 6.1 Exercise 1 (p. 305) According to corollary 6.1.17 on page 303, there exists
a curve L such that

V • L = V •W −V • X

Bézout’s Theorem implies that L must be a linear curve.

Chapter 6, 6.1 Exercise 2 (p. 305) Let `1, `2, `3 denote three non-adjacent sides of the
hexagon and m1, m2, m3 denote the other three. Then

F = `1 · `2 · `3

G = m1 ·m2 ·m3

are two cubic functions such that P(F) • P(G) = ∑9
i=1 pi. The conclusion follows im-

mediately from exercise 1 on page 305 above.

Chapter 6, 6.1 Exercise 3 (p. 305) Let `1, `2, `3 denote three non-adjacent sides of the
hexagon and m1, m2, m3 denote the other three. Then

F = `1 · `2 · `3

G = m1 ·m2 ·m3

are two cubic functions such that P(F) • P(G) = ∑9
i=1 pi. Suppose p7, p8, p9 are the

intersections of the extended sides of the hexagon. Since they lie on a line `, it follows
that P(F) • P(`) = p7 + p8 + p9. Corollary 6.1.17 on page 303 implies that there exists a
curve C = P(H) such that

P(F) • C = P(F) • P(G)−P(F) • P(`)
Bézout’s Theorem implies that C must be of degree 2.

Chapter 6, 6.2 Exercise 1 (p. 313) We compute the order of

1
x− 1

=
x3

x1 − x3

which vanishes at �. Multiply by y/x to get

y
x2 − x

=
x2x2

3
x2

1 − x1x3
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which still vanishes at �. Now do this a second time to get

y2

x3 − x2 =
x3 + ax + b

x3 − x2 =
x3

1 + ax1x2
3 + bx3

3
x3

1 − x2
1x3

which has a value of 1 at �. It follows that

1
x− 1

=

(
x
y

)2
· x3 + ax + b

x3 − x2

A similar argument shows that

1
y
=

(
x
y

)3
· x3 + ax + b

x3

Chapter 6, 6.2 Exercise 2 (p. 313) This is an example of where the strict correspondence
between linear functions and the lines they define breaks down to some extent.

The function x − a defines a line in the finite portion of V and the function “blows
up” as we approach �, so it has a valuation of −2. On the other hand, the line in kP2 it
defines is given by

x1 − ax3

in homogeneous coordinates and clearly vanishes at � = (0: 1: 0) so it passes through this
point, restoring our faith in Bézout’s theorem.

Chapter 6, 6.2 Exercise 3 (p. 313) We consider points of degree 2 first: η1 + η2 = η3.
If a1 = a2 and the points are distinct, then b1 = −b2 and the sum is 0. If the

points are the same, then the sum is 2 · (a1, b1) and that is given by the proof of 6.2.8 on
page 309:

a3 =
a4

1 − 2a2
1 A− 8a1B + A2

4(a3
1 + Aa1 + B)

b3 =
3a2

1 + A
2b1

(a3 − a1)− b1

If a1 6= a2, the line passing through (a1, b1) and (a2, b2) is given by

y = t · (x− a1) + b1

where

t =
b2 − b1
a2 − a1

To find the third intersection of this line with V, plug the equation for the line into that
for V to get

(t · (x− a1) + b1)
2 = x3 + Ax + B

t2(x− a1)
2 + 2t(x− a1)b1 + b2

1 = x3 + Ax + B

or
x3 + Ax + b− t2(x− a1)

2 − 2t(x− a1)b1 − b2
1 = 0

We divide this by x − a1 and ignore the remainder (since we know it evaluates to 0) to
get

x2 + a1x + a2
1 + A− t2(x− a1)− 2t

Now we divide by x− a2 (and throw out the remainder) to get

x + a1 + a2 − t2 = 0
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so

a3 = t2 − a1 − a2

y = t(a3 − a1) + b1

= t3 − 2a1t− a2t + b1

This is the negative of the answer so we negate y to get

b3 = t(2a1 + a2)− b1 − t3

Chapter 6, 6.2 Exercise 4 (p. 313) If A is an abelian variety, consider the conjugation-map

c: A× A → A
f × g 7→ f · g · f−1

This is a surjective regular map, therefore a family of maps in the sense of
definition 5.5.17 on page 251 with c1(A) = 1 (i.e., set g = 1). Lemma 5.5.18 on page 251
implies that cg(A) = 1 for all g ∈ A so A must be commutative.

Chapter 6, 6.2 Exercise 5 (p. 315) Simply double x, k times — using proposition 6.2.8 on
page 309.

Chapter 6, 6.2 Exercise 6 (p. 315) Write n as a sum of powers of 2 — i.e., consider its
binary representation:

n =
k

∑
j=1

2nj

Now it is easy to compute 2nj · x using the algorithm in the previous problem and then
add up the results using the solution to exercise 3 on page 313.

Chapter 6, 6.4 Exercise 1 (p. 325) This follows immediately from Serre Duality, which
says that

H1(V,OV) =
(

H0(V, KV ⊗OV O∨V
)∗

= H0(V, KV)
∗

Chapter A, A.1 Exercise 1 (p. 333) Just do this

s1 + (r + s1) = s1 + (r + s2)

= (s1 + r) + s1 = (s1 + r) + s2

= 0 + s1 = 0 + s2

= s1 = s2

Chapter A, A.1 Exercise 2 (p. 333) They are ±1.
Chapter A, A.1 Exercise 3 (p. 333) They are numbers k such that k · ` ≡ 1 (mod m) for
some ` such that 0 < ` < m, or

k · ` = 1 + n ·m
or

k · `− n ·m = 1
The proof of lemma A.1.11 on page 330 implies that the smallest positive value attained
by linear combinations of ` and m is their greatest common divisor — in this case, 1. It
follows that an integer 0 < k < m is a unit in Zm if and only if it is relatively prime to m.

Chapter A, A.1 Exercise 4 (p. 333) We compute 123 = 27q1 + r1 with

q1 = 4
r1 = 15

Now 27 = 15q2 + r2 with

q2 = 1
r2 = 12



E. SOLUTIONS TO SELECTED EXERCISES 587

In stage 3, 15 = 12q3 + r3 with

q3 = 1
r3 = 3

The process terminates at this point so gcd(27, 123) = 3. Now we apply A.1.15 on
page 332 to calculate a and b: x0 = 0 , y0 = 1, x1 = 1, y1 = −q1 = −4 and

x2 = x0 − q2x1 = −1
y2 = y0 − q2y1 = 5
x3 = x1 − q3x2 = 2
y3 = y1 − q3y2 = −9

So
3 = 2 · 123− 9 · 27

Chapter A, A.1 Exercise 5 (p. 333) This follows immediately from the fact that integers
uniquely factor into primes. Suppose

x =
a
b
=

∏ pαi
i

∏ q
β j

j

is an expression where the pi, qj are primes and no pi is equal to any qj. Suppose xx is
rational, i.e.

xx =
∏ rγk

k

∏ sδ`
`

where the rk and s` are also disjoint sets of primes. Then we get

xx =
( a

b

) a
b
=

∏ rγk
k

∏ sδ`
`

or
aa ·∏ sbδ`

` = ba ·∏ rbγk
k

or

∏ pa·αi
i ·∏ sbδ`

` = ∏ q
a·β j

j ·∏ rbγk
k

This is a contradiction because the set of primes {pi, s`} is disjoint from {qj, rk}.
Chapter A, A.1 Exercise 6 (p. 338) Since (x, y) = R it follows that there exist a, b ∈ R
such that

ax + by = 1

or ax = 1 in R/(b). This means that anxn = 1 in R/(b) so that (xn, y) = R. A similar
argument with the image of b in R/(a) implies the conclusion.

Chapter A, A.1 Exercise 7 (p. 338) Suppose α has a multiplicative inverse

β =
∞

∑
j=0

bjX j

Then the product is

α · β =
∞

∑
n=0

cnXn

where c0 = a0 · b0 = 1.
Chapter A, A.1 Exercise 9 (p. 338) If a 6⊂ p and b 6⊂ p then there exists x ∈ a with x /∈ p
and y ∈ b with y /∈ p. The product, xy, will be in a · b so xy ∈ p. This contradicts the
definition of a prime ideal (see definition A.1.18 on page 334).
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Chapter A, A.1 Exercise 10 (p. 338) Suppose x · y ∈ p but x /∈ p. Then there exists an
integer n such that, for i > n, x /∈ pi. The fact that pi is prime implies that y ∈ pi for
i > n, so y ∈ p.

Chapter A, A.1 Exercise 11 (p. 338) The ideal (X) consists of polynomials such that the
X-degree of every monomial is ≥ 1. If a(X) · b(X) ∈ (X), each monomial of a(X) · b(X)
must have X-degree ≥ 1. If a(X) and b(X) both contain a monomial of X-degree 0, the
product of those monomials will also have X-degree zero and a(X) · b(X) /∈ (X).

This ideal is not maximal because it is contained in the proper ideal (X, Y).
Chapter A, A.1 Exercise 12 (p. 339) This map clearly preserves addition. It remains to
show that f (x · y) = f (x) · f (y) for all x, y ∈ Q[

√
2]. If

x = a + b
√

2
y = c + d

√
2

are two elements, then
xy = ac + 2bd + (ad + bc)

√
2

and

f (x) = a− b
√

2

f (y) = c− d
√

2

so
f (x) · f (y) = ac + 2bd− (ad + bc)

√
2 = f (x · y)

Chapter A, A.1 Exercise 13 (p. 339) If

x = a + b
√

2
y = c + d

√
2

are two elements of Q[
√

2], then

xy = ac + 2bd + (ad + bc)
√

2

If we set c = a and d = −b, so y = a− b
√

2, then we get

xy = a2 − 2b2 ∈ Q

and the
√

2 term is zero. It follows that

(a + b
√

2)−1 =
a− b

√
2

a2 − 2b2

If a + b
√

2 6= 0, denominator is nonzero since
√

2 is irrational.
Chapter A, A.1 Exercise 14 (p. 339) If r is not a unit, (r) ⊂ R is a proper ideal and there
exists a maximal ideal m such that (r) ⊂ m. But r− 1 ∈ J ⊂ m (since J is the intersection
of all maximal ideals), so r and r− 1 are both contained in m. This implies that r− (r−
1) = 1 ∈ m, which contradicts the fact that m is a proper ideal of R.

Chapter A, A.1 Exercise 15 (p. 339) Without loss of generality assume i = 1 and write

R = (a1 + a2)(a1 + a3) · · · (a1 + an)

When carrying out the multiplication, all but one term in the product has a factor of a1,
hence is contained in a1 (by the defining property of an ideal — see definition A.1.18 on
page 334). The one exception is the term a1 + ∏n

j=2 aj — and this contains a1 and all of
the other terms. It follows that

R = (a1 + a2) · · · (a1 + an) ⊆ a1 +
n

∏
j=2

aj
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so

a1 +
n

∏
j=2

aj = R

Chapter A, A.1 Exercise 16 (p. 339) We get a natural map

(E.0.12) R→
n

∏
i=1

R
ai

that sends x ∈ R to (p1(x), . . . , pn(x)), where pi is the natural projection

pi: R→ R
ai

The kernel of the map in E.0.12 is clearly a. It only remains to show that this map is
surjective. Use the solution to exercise 15 on page 339 to conclude that

ai + ∏
j 6=i

aj = R

for all i. This means that, for each i, there is an element ui ∈ ai and vi ∈ ∏j 6=i aj such
that ui + vi = 1. It is not hard to see that

pi(vi) = 1
pj(vi) = 0

for any j 6= i. If

(x1, . . . , xn) ∈
n

∏
i=1

R
ai

is an arbitrary element, set

x =
n

∑
i=1

xivi

Then pi(x) = pi(vixi) = xi so the map is surjective.
Chapter A, A.1 Exercise 17 (p. 343) We work in the ring F[x]. Definition A.1.30 on
page 340 and example A.1.31 on page 340 implies that αn = 1 in F if and only if
x− α|(xn − 1). Each such x− α is an irreducible factor of xn − 1 and we get

xn − 1 = (x− α1)(x− α2) · · · (x− αk)p(x)

where p(x) is a product of the other irreducible factors. Corollary A.1.34 on page 341
implies that this factorization is unique, so k ≤ n.

Chapter A, A.1 Exercise 18 (p. 343) Two functions g1, g2 ∈ C[0, 1] map to the same ele-
ment of the quotient C[0, 1]/fa if and only if g1(a) = g2(a). It follows that C[0, 1]/fa ∼= R.
Since this is a field, lemma A.1.29 on page 340 implies that famust be maximal.

Chapter A, A.1 Exercise 19 (p. 343) We start by dividing the larger polynomial by the
smaller one to get

b(X) = q1(X) · a(X) + r1(X)

q1(X) = X− 3

r1(X) = 10X3 − 7X2 + 3X + 8

Now we compute

a(X) = q2(X) · r1(X) + r2(X)

q2(X) =
1

10
X2 − 7

100
X− 81

1000

r2(X) = − 1577
1000

X2 +
683

1000
X− 706

125
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Now we divide r1(X) by r2(X) to get

r1(X) = q3(X) · r2(X) + r3(X)

q3(X) =
10000
1577

X +
4209000
2486929

r3(X) =
93655000
2486929

X− 3877000
2486929

We finally divide r2(X) by r3(X) to get

r2(X) = q4(X)r3(X) + r4(X)

q4(X) = − 3921887033
93655000000

X +
8992165757259

548203689062500

r4(X) =
6220545559984
1096407378125

Since this is a unit of Q[X], it shows that a(X) and b(X) are relatively prime.
Chapter A, A.1 Exercise 20 (p. 343) The monomials X5 and X6 have no gcd. Their divi-
sors are 1, X2 , and X3 — none of which is divisible in R by the other two.

Chapter A, A.1 Exercise 21 (p. 348) This is just the pigeonhole Principle: Suppose R is
an integral domain with n elements and x ∈ R is nonzero. Multiply all of the nonzero
elements of R by x:

{x · y1, . . . , x · yn−1}
We claim that these products must all be distinct. If x · yi = x · yj then x · (yi − yj) = 0
and the only way this can happen in an integral domain is for yi = yj. It follows that 1
must be in this set of products, so 1 = x · yk for some k and yk = x−1.

Chapter A, A.1 Exercise 22 (p. 348) Suppose every increasing sequence of ideals is even-
tually constant and

a = (x1, . . . ) ⊂ R
is some ideal. Then we have the following increasing sequence of ideals

(x1) ⊂ (x1, x2) ⊂ · · · ⊂ a

and the ascending chain condition implies that, for some finite n,

(x1, . . . , xi) = (x1, . . . , xi+1)

for all i ≥ n. So a = (x1, . . . , xn) is finitely generated.
Conversely, suppose all ideals of R are finitely generated and

a1 ⊆ a2 ⊆ · · ·
is an ascending sequence of ideals in R. Then

a =
∞⋃

i=1
ai

is also an ideal in R and a = (x1, . . . , xn). Each of the xi must be contained in one of
the aji and all ideals in the sequence following it. If m = max(ji) then am = a and the
sequence becomes constant.

Chapter A, A.1 Exercise 23 (p. 348) This follows immediately from the Ascending Chain
Condition and lemma A.1.24 on page 336.

Chapter A, A.1 Exercise 24 (p. 348) The ring Q[X, Y] is certainly an integral domain. So
see that it is not Euclidean note that the two variables X and Y have no common divisors
other than 1.

If Q[X, Y] was a Euclidean ring, it would be possible to find polynomials a(X, Y)
and b(X, Y) such that

1 = a(X, Y) · X + b(X, Y) ·Y
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This is impossible since we could make the right side of the equation equal to 0 by setting
X = 0 and Y = 0, so we would get

1 = 0
It is interesting that Q[X, Y] has unique factorization — see Lemma A.3.2 on

page 396.
Chapter A, A.1 Exercise 25 (p. 348) If n = max(n1, . . . , nk) then (p1 · · · pk)

n ∈ (x) so that
(p1 · · · pk) ∈

√
(x).

Chapter A, A.1 Exercise 26 (p. 348) Suppose an ideal I contains polynomials
p(X), q(X). If these polynomials are relatively prime in Q[X] then there is a linear
combination

a(X)p(X) + b(X)q(X) = 1
in Q[X], and after clearing out the denominators, we get

n · a(X)p(X) + n · b(X)q(X) = n

so this ideal also contains an integer, n. If an ideal does not contain any integer then it is
not maximal.

The requirement that Z[X]/I is a field (see lemma A.1.29 on page 340) implies that
n is a prime, p. We can compute the quotient of Z[X]/I in two stages:

Form the quotient with respect to (p), forming

Zp[X]

and then taking the quotient by the image of the polynomials in I. Since Zp[X] is a
principal ideal domain, we can assume that the image of I in Zp[X] is a principal ideal
(q(X)). The quotient

Zp[X]/(q(X))

is a field if and only if q(X) is irreducible. It follows that our maximal ideals of Z[X] are
all of the form

(p, qp(X))

where p ∈ Z is a prime and qp(X) has an irreducible image in Zp[X]. Two such ideals

(p, ap(X)), (p, bp(X))

will be equal if and only if (ap(X)) = (bp(X)) ⊂ Zp[X].
Chapter A, A.1 Exercise 27 (p. 348) This follows by straightforward induction on n and
proposition A.1.6 on page 328.

Chapter A, A.1 Exercise 28 (p. 348) Since R is noetherian, N(R) = (x1, . . . , xn) for some
finite set of elements of N(R). Each of these elements must be nilpotent, i.e.

xαi
i = 0

for suitable values of αi. If α = max(α1, . . . , αn) then the Pigeonhole Principle implies
that

N(R)n·α = 0
Chapter A, A.1 Exercise 29 (p. 348) The localization, Rp, only has one prime ideal, p ·Rp,
and theorem A.1.46 on page 344 implies that all of the elements of p · Rp are nilpotent. If
x ∈ p, then x/1 ∈ p · Rp is nilpotent so that there exists an element, y ∈ R \ p such that
y · xn = 0 for some n.

Chapter A, A.1 Exercise 30 (p. 351) The presence of X3 implies that we should start with

σ3
1 = X3 + 3X2Y + 3X2Z + 3Y2Z + Y3 + Z3 + 6XYZ

so
X3 + Y3 + Z3 − σ3

1 = −3X2Y− 3X2Z− 3Y2Z− 6XYZ
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The highest ordered monomial is −3X2Y, which is the highest ordered monomial of
−3σ1σ2 (see equation A.1.9 on page 350). We get

X3 + Y3 + Z3 − σ3
1 + 3σ1σ2 = 3XYZ

= 3σ3

so
X3 + Y3 + Z3 = σ3

1 − 3σ1σ2 + 3σ3

Chapter A, A.1 Exercise 32 (p. 351) We use induction on n. If n = 2, the conclusion is
clear. Now we assume the conclusion for n, and we will prove it for n + 1. We have

Vn+1 =


1 α1 α2

1 · · · αn
1

1 α2 α2
2 · · · αn

2
1 α3 α2

3 · · · αn
3

...
...

...
. . .

...
1 αn+1 α2

n+1 · · · αn
n+1


and replace α1 by X. The determinant is a polynomial p(X) that vanishes if X =
α2, . . . , αn+1. It follows that

f (X) = C · (X− α2) · · · (X− αn+1)

where the coefficient of Xn is precisely C. Expanding the determinant of Vn+1 by mi-
nors in the first row shows that the coefficient of Xn, or C, is equal to the (−1)n× the
determinant of

V =


1 α1 α2

1 · · · αn−1
1

1 α2 α2
2 · · · αn−1

2
1 α3 α2

3 · · · αn−1
3

...
...

...
. . .

...
1 αn α2

n · · · αn−1
n


so

det Vn+1 = (−1)n det Vn ·
n+1

∏
j=2

(α1 − αj)

= det Vn ·
n+1

∏
j=2

(αj − α1)

= ∏
1≤i<j≤n+1

(αj − αi)

Chapter A, A.1 Exercise 33 (p. 352) The map

k[X1, . . . , Xn]

I
→ k[X1, . . . , Xn+1]

I+ (Xn+1 − f (X1, . . . , Xn))

Xi 7→ Xi

and the inverse is defined similarly, except that

Xn+1 7→ f (X1, . . . , Xn)

Chapter A, A.1 Exercise 34 (p. 364) This is basic linear algebra: U is the nullspace of the
linear map V →W and the image is all of W.

Chapter A, A.1 Exercise 35 (p. 364) Suppose V is a vector-space over an infinite field, k,
and

V =
n⋃

i=1
Vi
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where the Vi are proper subspaces. Without loss of generality, assume this decomposi-
tion is minimal (none of the Vi’s are contained in a union of the others).

If x ∈ V1 and y ∈ V \V1, then x + r · y ∈ V as r ∈ k runs over an (infinite) number
of nonzero values. The Pigeonhole Principle implies that there is a j such that

x + r · y ∈ Vj

for an infinite number of values of r. This means that there exist r1 6= r2 ∈ k with
x + r1 · y, x + r2 · y ∈ Vj which implies that (x + r1 · y)− (x + r2 · y) = (r1 − r2) · y ∈ Vj
so y ∈ Vj. We conclude that x ∈ Vj as well. Since x was an arbitrary element of V1, this
means that

V1 ⊂
n⋃

i=2
Vi

which contradicts the assumption that the original decomposition was minimal.
Chapter A, A.1 Exercise 36 (p. 364) A finite-dimensional vector-space over a finite field
has a finite number of elements, hence is the (finite) union of the one-dimensional sub-
spaces generated by these elements,

Chapter A, A.1 Exercise 37 (p. 364) Just apply proposition A.1.70 on page 357 to the di-
agram

P
g

{{
M

f
// P

Chapter A, A.1 Exercise 38 (p. 364) If x ∈ R annihilates M2, it annihilates any submod-
ule and quotient so

Ann(M2) ⊂ Ann(M1) ∩Ann(M3)

If x ∈ Ann(M1), y ∈ Ann(M3), and m ∈ M2, then y ·m ∈ M1, since its image in M3 is
zero. Then x · (y ·m)) = 0, so

Ann(M1) ·Ann(M3) ⊂ Ann(M2)

Chapter A, A.1 Exercise 39 (p. 364) We claim that the map

(q, h): U ⊕W → V

is an isomorphism. Suppose (u, v) maps to 0 in V, so q(u) = −h(v). If we map this via
p, we get p ◦ q(u) = −p ◦ h(v). Since p ◦ q = 0, we get p ◦ h(v) = 0 which implies that
v = 0 (since p ◦ h = 1). Since q is injective, this also implies that u = 0. So the map,
(q, h), is injective.

Suppose v ∈ V is any element and let z = v− h ◦ p(v). Then p(z) = p(v)− p ◦ h ◦
p(v) = p(v)− p(v) = 0. This implies that z = q(u) for some u ∈ U and

v = (q, h)(z, h(v))

so the map is also surjective.
Chapter A, A.1 Exercise 40 (p. 365) This follows immediately from exercises 37 on
page 364 and 39 on page 364.

Chapter A, A.1 Exercise 42 (p. 370) This follows immediately from the Ascending Chain
Condition (in exercise 22 on page 348) and corollary A.1.92 on page 369.

Chapter A, A.1 Exercise 44 (p. 370) Let ann(m) ⊂ R be the annihilator of m — an ideal.
Then m goes to 0 in Ma if and only if ann(m) 6⊂ a (see definition A.1.93 on page 369).
But proposition A.1.27 on page 338 shows that every ideal is contained in some maximal
ideal.

Chapter A, A.1 Exercise 45 (p. 370) This follows immediately from exercise 44 on
page 370.
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Chapter A, A.1 Exercise 46 (p. 370) The general element of F is of the form

f =
a0 + a1X + · · ·
b0 + b1X + · · ·

Suppose ai is the lowest indexed coefficient in the numerator that is nonzero and bj is
the corresponding one in the denominator. Then

f =
Xi(ai + ai+1X + · · · )
X j(bj + bj+1X + · · · ) = Xi−j ai + ai+1X + · · ·

bj + bj+1X + · · ·
where bj 6= 0 so that the denominator is a unit in R (see proposition A.1.6 on page 328).

Set α = i− j and r = (ai + ai+1X + · · · )
(

bj + bj+1X + · · ·
)−1

.

Chapter A, A.2 Exercise 1 (p. 374) Let p(X) ∈ F[X] be the minimum polynomial of α. Its
being of degree n implies that F[X]/(p(X)) = F[α] = F(α) is a degree-n extension of F.
The conclusion follows from proposition A.2.7 on page 372.

Chapter A, A.2 Exercise 2 (p. 379) We claim that F(X) = F(X2) · 1⊕ F(X2) · X as a vec-
tor space. If

u =
p(X)

q(X)

we can write
q(X) = a(X2) + X · b(X2)

— just separate the terms with odd powers of X from the others. Now, we get

u =
p(X)

q(X)
· a(X2)− X · b(X2)

a(X2)− X · b(X2)
=

p(X)(a(X2)− X · b(X2))

a(X2)2 − X2 · b(X2)2

Now, write the numerator as

p(X) = c(X2) + X · d(X2)

so we get

u =
R(Y)
S(Y)

+ X · T(Y)
S(Y)

where

S(Y) = a(Y)2 −Y · b(Y)2

R(Y) = c(Y)a(Y)−Y · b(Y)d(Y)
T(Y) = a(Y)d(Y)− c(Y)b(Y)

Chapter A, A.2 Exercise 3 (p. 379) The number 21/3 satisfies the equation

X3 − 2 = 0

and Eisenstein’s Criterion (theorem A.3.8 on page 398) shows that this is irreducible. It
follows that X3 − 2 is the minimal polynomial of 21/3.

Set Q(21/3) = Q[X]/(X3 − 2). We would like to find the multiplicative inverse of
the polynomial

X2 − X + 1
modulo X3 − 2. We can use the extended Euclidean algorithm (algorithm A.1.15 on
page 332) for this. Dividing X3− 2 by X2−X + 1 gives a quotient of q1(X) = X + 1 and
a remainder of −3. We’re done since

(X + 1) · (X2 − X + 1)− 1 · (X3 − 2) = 3

or
1
3
(X + 1) · (X2 − X + 1)− 1

3
· (X3 − 2) = 1
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so, modulo X3 − 2, we get 1
3 (X + 1) · (X2 − X + 1) = 1 which implies that

1
3
(21/3 + 1) =

1
22/3 − 21/3 + 1

∈ Q(21/3) = Q[21/3]

Chapter A, A.2 Exercise 4 (p. 379) Just follow the proof of theorem A.2.21 on page 378.
The minimal polynomials of

√
2 and

√
3 are, respectively, X2− 2 and X2− 3. Their roots

(i.e., the αi and β j in the proof) are

±
√

2,±
√

3

and the set of elements of Q we must avoid are
√

2√
3
∈ Q[

√
2,
√

3] \Q

Since this is not a rational number, it follows that we can pick any nonzero rational
number for our c. We pick c = 1 and γ =

√
2 +
√

3.
So

Q[
√

2,
√

3] = Q[
√

2 +
√

3]
To find the minimal polynomial, we refer to example 2.3.20 on page 60.

Chapter A, A.2 Exercise 5 (p. 379) One obvious root of X3 − 2 ∈ Q[X], is X = 21/3, so
we try the field extension

Q[21/3]

Since 21/3 is a root of X3 − 2, we get (X− 21/3)|(X3 − 2) with a quotient of

X2 + 21/3 · X + 22/3

and if we set X = Y · 21/3, this becomes

22/3 · (Y2 + Y + 1)

The roots of
Y2 + Y + 1 = 0

are

ω, ω2 =
−1±

√
−3

2
which are the cube-roots of 1 (other than 1 itself). So our splitting field is

Q[21/3, ω]

of degree 6 over Q.

Chapter A, A.2 Exercise 6 (p. 383) The minimal polynomial is X3 − 2 and we get a basis
of {1, 21/3, 22/3}. If γ = a + b21/3 + c22/3, then the effect of γ on the basis is given by

γ · 1 = a + b21/3 + c22/3

γ · 21/3 = 2c + a21/3 + b22/3

γ · 22/3 = 2b + 2c21/3 + a22/3

which gives a matrix

mγ =

 a 2c 2b
b a 2c
c b a


with a determinant

NH/F(γ) = a3 − 6 acb + 2 b3 + 4 c3

and characteristic polynomial

χγ(X) = X3 − 3 aX2 −
(

6 cb− 3 a2
)

X− a3 + 6 acb− 2 b3 − 4 c3
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Chapter A, A.2 Exercise 7 (p. 383) In this case, our basis for H over Q is {1,
√

2,
√

3,
√

6}.
If γ = a + b

√
2 + c

√
3 + d

√
6 is a general element, its effect on a basis is

γ · 1 = a + b
√

2 + c
√

3 + d
√

6

γ ·
√

2 = 2b + a
√

2 + 2d
√

3 + c
√

6

γ ·
√

3 = 3c + 3d
√

2 + a
√

3 + b
√

6

γ ·
√

6 = 6d + 3c
√

2 + 2b
√

3 + a
√

6

which gives a matrix

mγ =


a 2b 3c 6d
b a 3d 3c
c 2d a 2b
d c b a


with a determinant

NH/F(γ) = a4 − 4 a2b2 + 48 adbc− 12 d2a2 − 6 a2c2

+ 4 b4 − 24 d2b2 − 12 b2c2 + 9 c4 − 36 c2d2 + 36 d4

and characteristic polynomial

χH/F(γ) = X4 − 4 aX3 +
(
−12 d2 − 6 c2 − 4 b2 + 6 a2

)
X2

+
(
−48 dbc + 24 d2a + 12 ac2 + 8 ab2 − 4 a3

)
X

a4 − 4 a2b2 + 48 adbc− 12 d2a2 − 6 a2c2

+ 4 b4 − 24 d2b2 − 12 b2c2 + 9 c4 − 36 c2d2 + 36 d4

Chapter A, A.2 Exercise 8 (p. 387) Suppose

f (X) = Xn + an−1Xn−1 + · · ·+ a0

(after dividing by an if necessary) and embed F in its algebraic closure, F̄. We get

f (X) =
n

∏
j=1

(X− αj)

and the splitting field of f (X) is just

F[α1, . . . , αn] ⊂ F̄

which is unique in F̄. The conclusion follows from theorem A.2.28 on page 383.
Chapter A, A.2 Exercise 9 (p. 387) The characteristic polynomial of γ was computed in
the solution to 6 on page 383 (setting c = 0)

χγ(X) = X3 − 3 aX2 + 3 a2X− a3 − 2 b3

and this is also the minimal polynomial of γ. One factor of this must be X − γ, so we
take the quotient

X3 − 3 aX2 + 3 a2X− a3 − 2 b3

X− γ

= X2 + X(γ− 3a) + γ(γ− 3a) + 3a2

= X2 + (−2a + b 21/3)X + a2 − ab 21/3 + b2 22/3

The roots of this quadratic equation are the two conjugates of γ:

X = a + b

(
−1±

√
−3

2

)
21/3 = a + b21/3ω j
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where ω is a primitive cube root of 1 and j = 1, 2.

Chapter A, A.2 Exercise 10 (p. 394) Suppose π is algebraic. Then so is πi and eπi should
be transcendental, by the Lindemann–Weierstrass theorem. But eπi = −1, which is
algebraic. This is a contradiction.

Chapter A, A.2 Exercise 11 (p. 394) The algebraic closure of Q is the algebraic numbers,
Q̄, which is countable. If F is a countable field F(X) is also a countable field and a simple
induction shows that

F(X1, . . . , Xn)

is also countable for any n. If S = {X1, . . . } is a countable set of indeterminates, then

F(S) =
∞⋃

i=1
F(X1, . . . , Xi)

is also countable. It follows that an uncountable field like C must have an uncountable
degree of transcendence over Q.

Chapter A, A.4 Exercise 1 (p. 411) Suppose s−1x ∈ S−1T is integral over S−1R. Then it
satisfies an equation

(s−1x)n + an−1(s−1x)n−1 + · · ·+ a0 = 0

where the ai ∈ S−1R. Let s̄ ∈ S be able to clear the denominators of all of the ai.
Multiplying this equation by (ss̄)n gives

(s̄x)n + an−1ss̄(s̄x)n−1 + · · ·+ sn s̄a0 = 0

so s̄x ∈ R is integral over R, and (ss̄)−1(s̄x) = s−1x is integral over S−1R.

Chapter A, A.4 Exercise 2 (p. 411) Let

xn + an−1xn−1 + · · ·+ a0 = 0

be the minimal polynomial (see definition A.2.9 on page 372) of x with ai ∈ F. If s ∈ R
can clear the denominators of the ai, multiply this equation by sn to get

snxn + snan−1xn−1 + · · ·+ sna0 = (sx)n + an−1s(sx)n−1 + · · ·+ sna0

= 0

so sx is integral over R.

Chapter A, A.4 Exercise 3 (p. 411) Clearly, any element x ∈ F that is integral over R is
also integral over T. On the other hand, if x is integral over T, it is also integral over
R because of statement 2 of proposition A.4.5 on page 405 (the degree of the monic
polynomial over R will usually be higher than that over T). It follows that the integral
closures will be the same.

Chapter A, A.4 Exercise 4 (p. 419) If G ∈ K[Y1, . . . , Ym] has the property that
G( f1, . . . , fm) = 0, then we get a linear dependence(

∂G
∂Y1

)
Y1= f1

d f1 + · · ·+
(

∂G
∂Ym

)
Ym= fm

d fm = 0

We have not used the fact that the characteristic of k is 0 yet (and this condition is un-
necessary for this part of the proof).

Conversely, if { f1, . . . , fm} is algebraically independent, then there exists a transcen-
dence basis for K over k that includes { f1, . . . , fm} (apply lemma A.2.49 on page 392 m
times) so K is a finite extension of

L = k( f1, . . . , fm, X1, . . . )
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where X1, . . . is a (possibly infinite) set of indeterminates. It follows that (see the remark
following proposition A.4.26 on page 413):

ΩL/k = L · d f1 ⊕ · · · ⊕ L · d fm ⊕
⊕

i
L · dXi

Corollary A.4.31 on page 416 (this is where we use the characteristic of the fields being
0) implies that

ΩK/k = K · d f1 ⊕ · · · ⊕ k · d fm ⊕
⊕

i
K · dXi

so there exists a basis for ΩK/k in which the {d fi} are linearly independent.
Chapter A, A.4 Exercise 5 (p. 419) The field F is uncountable. Now, note that Q is count-
able, as is Q(X). In fact

Q(X1, . . . , Xn)

is countable for all n. It follows that

Q(X1, . . . ) =
∞⋃

n=1
Q(X1, . . . , Xn)

is countable. This means that F has an uncountable transcendence-degree over Q.
Chapter A, A.5 Exercise 1 (p. 433) This is literally a direct restatement of the definition
of a product: every pair of morphisms f ∈ homC (W, A) and g ∈ homC (W, B) induces
a unique morphism f × g ∈ homC (W, A× B) that makes the diagram A.5.2 on page 431
commute.

Chapter A, A.5 Exercise 3 (p. 434) Suppose g1, g2 ∈ homC (C, A) map to the same ele-
ment of homC (C, B), then f ◦ g1 = f ◦ g2: C → B, which implies (by the definition of
monomorphism) that g1 = g2.

Chapter A, A.5 Exercise 4 (p. 434) If

f : A→ B

has a kernel, the inclusion of distinct elements of A that differ by an element of the kernel
are distinct morphisms whose composite with f are the same. The other conclusion
follows by a similar argument.

Chapter A, A.5 Exercise 5 (p. 437) It is Atr, the transpose of A.
Chapter A, A.5 Exercise 6 (p. 437) It is an equivalence because of the natural isomor-
phism in example A.5.11 on page 436. It is not an isomorphism of categories because
the finite-dimensional vector-space V∗∗ is not identical to V. If V is infinite-dimensional,
it is not even isomorphic.

Chapter A, A.5 Exercise 7 (p. 439) Every pair of morphisms

y → x
z → x

— i.e., every morphism (y, z)→ ∆x — corresponds to a unique morphism

y ä z→ x

so we get an equivalence

homC×C ((y, z), ∆x) = homC (y ä z, x)

Chapter A, A.5 Exercise 8 (p. 448) Definition A.5.26 on page 444 implies that there is a
natural equivalence

homC∞ (∆∞x, y) = homC (x, lim←− y)
for all x ∈ C and y ∈ C∞.

Chapter A, A.5 Exercise 9 (p. 449) This follows immediately from the definition of the
equivalence relation ∼ in definition A.5.17 on page 439.
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Chapter A, A.5 Exercise 10 (p. 452) If a ∈ A is torsion-free then a 7→ x for any x 6= 0
defines a nonzero homomorphism. If a is of order n then a 7→ 1/n defines a nonzero
map.

Chapter A, A.5 Exercise 11 (p. 452) The sub-object im A ⊂ B maps to A in a straightfor-
ward way. The injective property of A implies that this extends to all of B.

Chapter A, A.5 Exercise 12 (p. 452) We already know that

0→ homA (D, A)
homA (1,r)−−−−−−→ homA (D, B)

is exact, by exercise 3 on page 434, so we must still show that

homA (D, A)
homA (1,r)−−−−−−→ homA (D, B)

homA (1,s)−−−−−−→ homA (D, C)

is exact. If f ∈ homA (D, B) maps to 0 in homA (D, C), then s ◦ f = 0. Since r = ker s,
we have a unique morphism D → A that makes

D
f
//

v
##

B

A

r

OO

commute. This is precisely the element of homA (D, A) that maps to f .
Chapter A, A.5 Exercise 13 (p. 463) If Q = M/N, we get a short exact sequence

0→ N → M→ Q→ 0

and the conclusion follows from the fact that the sequence

0→ A⊗R N → A⊗R M→ A⊗R Q→ 0

is also exact (because A is flat).
Chapter A, A.5 Exercise 14 (p. 463) In the top formula, multilinear maps

M× N × T → A

where A is an arbitrary R-module factor through M⊗R (N ⊗R T) and (M⊗R N)⊗R T
so the universal property of ⊗ implies that they are isomorphic.

To see the second equality, regard M⊗R N and N ⊗R M as quotients of Z[M× N]
by the ideal generated by the identities in definition A.5.44 on page 453 and noting that
this ideal is symmetric with respect to factors.

Chapter A, A.5 Exercise 15 (p. 464) Corollary A.5.49 on page 456 implies that

kn ⊗k km = kn·m

so the dimensions are as claimed.
If {ei} is a basis for V and { f j} is a basis for W then it is not hard to see that {ei⊗ f j},

i = 1, . . . , n, j = 1, . . . , m spans V ⊗k W — just use the identities in definition A.5.44 on
page 453 to express any v⊗w in terms of them. The fact that V⊗k W is n ·m-dimensional
shows that these elements must be linearly independent too.

To prove the final statement, we must show that the set {ei ⊗ f j} is linearly inde-
pendent even if there are an infinite number of basis elements. Suppose we have some
linear combination

(E.0.13)
n

∑
t=1

at(eit ⊗ fkt ) = 0

for at ∈ k. Since only a finite number of terms are involved, this equation really involves
finite-dimensional subspaces of V and W, namely the span of the {eit} in V and the span
of the { f jt} in W. We have already seen that the {eit ⊗ fkt} are linearly independent in
this case, so all of the at = 0 in equation E.0.13.
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Chapter A, A.5 Exercise 16 (p. 464) This is an ns×mt matrix called the Kronecker product
of A and B. If

A =

 a1,1 · · · a1,n
...

. . .
...

am,1 · · · am,n


Then

A⊗ B =

 a1,1B · · · a1,nB
...

. . .
...

am,1B · · · am,nB


Chapter A, A.5 Exercise 17 (p. 464) This follows immediately from proposition A.5.52
on page 457:

R
a
⊗R

R
b
=

(
R
a

)/
b ·
(

R
a

)
=

R
a+ b

Chapter A, A.5 Exercise 18 (p. 464) We always have a surjective natural map

a⊗R M → a ·M
a⊗m 7→ a ·m

If M is flat, this map is also injective since it is

a ↪→ R

⊗M.

Chapter A, A.5 Exercise 19 (p. 464) For each i, take the natural maps

zi: Mi → lim−→ Mj

Zi: Mi ⊗R N → lim−→
(

Mj ⊗R N
)

and form the tensor product of Mi with N to get

zi ⊗ 1: Mi ⊗R N →
(

lim−→ Mj

)
⊗R N

The universal property of direct limits implies the existence of a unique map

v: lim−→
(

Mj ⊗R N
)
→
(

lim−→ Mj

)
⊗R N

that makes the diagram

lim−→
(

Mj ⊗R N
)

v //
(

lim−→ Mj

)
⊗R N

Mi ⊗R N

Zi

OO

Mi ⊗R N

zi⊗1
OO

commute. If m⊗ n 6= 0 ∈
(

lim−→ Mj

)
⊗R N, then m is the image of some mi ∈ Mi and

m⊗ n = v ◦ Zi(mi ⊗ n). It follows that v is surjective.

If w ∈ lim−→
(

Mj ⊗R N
)

is in the kernel of v, then w = Zi(mi ⊗ n) for some i. the

commutativity of the diagram implies that (zi ⊗ 1)(mi ⊗ n) = zi(mi) ⊗ n = 0, which
implies that Zi(mi ⊗ n) = 0 — so v is injective.
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Chapter A, A.5 Exercise 20 (p. 464) The hypotheses imply that

0 // lim−→ Ai
lim−→ fi

// lim−→ Bi
lim−→ gi

// lim−→ Ci // 0

0 // Ai

āi

OO

fi

// Bi

b̄i

OO

gi
// Ci

c̄i

OO

// 0

commutes for all i, where we don’t know whether the top row is exact. If x ∈ lim−→ Ci,
then x is the image of some xi ∈ Ci. The commutativity of this diagram implies that x
is in the image of b̄i(g−1

i (xi)). It follows that lim−→ gi is surjective. If x ∈ lim−→ Bi such that
x ∈ ker lim−→ gi, then x = b̄i(xi) for some i and c̄i ◦ gi(xi) = 0. The definition of direct limit
implies that there exists N > i such that cN ◦ · · · ◦ ci(x) = 0, so bN ◦ · · · ◦ bi(xi) ∈ ker gN .
The exactness of the original sequences implies that bN ◦ · · · ◦ bi(xi) = fN(yN) and the
commutativity of the diagram above implies that āN(yN) = x. A similar argument
implies that the left end of the upper row is also exact.

Chapter A, A.5 Exercise 21 (p. 464) Consider the map g: (α) ↪→ R. This is an inclusion
and, since S is flat over R

(α)⊗R S
g⊗1−−→ R⊗R S = S

is also an inclusion. Since α is a non-zero-divisor in R, (α) ∼= R and the isomorphism
R→ R induced by the inclusion is multiplication by α. This implies that

S = R⊗R S
(×α)⊗1=× f (α)−−−−−−−−−→ R⊗R S = S

is also injective, which implies that f (α) ∈ S is a non-zero-divisor.

Chapter A, A.5 Exercise 22 (p. 464) Let

(E.0.14) 0→ U1 → U2 → U3 → 0

be a short exact sequence of modules over S. Since we can compose the action of S on
these modules with the homomorphism, f , it is also a short exact sequence of modules
over R. If we take the tensor product with M⊗R S, we get

0 // U1 ⊗S (M⊗R S) // U2 ⊗S (M⊗R S) // // U3 ⊗S (M⊗R S) // // 0

U1 ⊗R M U2 ⊗R M U3 ⊗R M

which is exact since equation E.0.14 is an exact sequence of R-modules.

Chapter A, A.5 Exercise 23 (p. 465)

Chapter A, A.5 Exercise 24 (p. 465) For any commutative ring U and any module A over
U, U ⊗U A = A. This (and the associativity of tensor products) implies that

(S−1R⊗R M)⊗S−1R (S−1R⊗R N) = (S−1R⊗R M)⊗S−1R S−1R⊗R N

= (S−1R⊗R M)⊗R N

= S−1R⊗R M⊗R N

= S−1R⊗R (M⊗R N)

Chapter A, A.5 Exercise 25 (p. 465) Since M is projective, it is a direct summand of a free
module, F, so F = M⊕ N for some other projective module, N. Then

F∗ = M∗ ⊕ N∗

Chapter A, A.6 Exercise 1 (p. 473) First of all, note that the map V →W is split, i.e. there
exists a left-inverse t: W → V so that g ◦ t = 1. Any two such splitting maps differ by a
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map from V to U. Now define 1− t ◦ g: W → ker g = im U or f−1 ◦ (1− t ◦ g): W → U.
We get an isomorphism

( f−1 ◦ (1− t ◦ g), g): W ∼= U ⊕V

Given a commutative diagram like the one in the statement of the problem, we can lift
a map t2: W2 → V2 to get a map t1: W1 → V2 so we get a natural isomorphism from Wi
to Ui ⊕Vi . The conclusion follows from proposition A.6.8 on page 468.

Chapter A, A.6 Exercise 2 (p. 473)
Chapter A, A.6 Exercise 3 (p. 473) Just compute

(e2 + 2e4) ∧ e3 ∧ e1 ∧ (e2 − e4) = −e2 ∧ e3 ∧ e1 ∧ e4

−2e4 ∧ e3 ∧ e1 ∧ e2

= −e1 ∧ e2 ∧ e3 ∧ e4

+2e1 ∧ e2 ∧ e3 ∧ e4

= e1 ∧ e2 ∧ e3 ∧ e4

so the determinant is 1.
Chapter B, B.1 Exercise 1 (p. 478) Suppose u, v ∈ F (U) map to the same element
∏x∈U sx ∈ ∏x∈U Fx. For each x there exists an open set Ux such that u|Ux = v|Ux,
since they become equal in the direct limit – see exercise 9 on page 448. Since the {Ux}
cover U, statement 4 in definition B.1.1 on page 475 implies the conclusion.

Chapter B, B.1 Exercise 2 (p. 478) Suppose f : F → G is a morphism of sheaves on a
space X, the diagram

F (U)� _
��

f
// G (U)� _
��

∏x∈U Fx // ∏x∈U Gx

implies the conclusion.

Chapter B, B.1 Exercise 3 (p. 478) The fact that f is continuous implies that f−1(U) is an
open set. All of the conditions in definition B.1.1 on page 475 are satisfied because they
are already satisfied for OX .

Chapter B, B.2 Exercise 1 (p. 481) This follows from the fact that a quotient of surjective
homomorphisms is surjective. The final statement is always true for an exact sequence
of presheaves (and is used to define an exact sequence). The only way it fails for an exact
sequence of sheaves is that H is usually a completion of G /F . For flasque sheaves, this
is unnecessary.

Chapter B, B.2 Exercise 2 (p. 482) This follows immediately from the definition of direct
image sheaf in exercise 3 on page 478. If

U2 ⊂ U1 ⊂ X

then i−1(U2) ⊂ i−1(U1) so the restriction map of sections will be surjective.
Chapter B, B.2 Exercise 3 (p. 482) It is straightforward to show that morphisms of
presheaves have kernels and cokernels. A morphism of sheaves has a well-defined
kernel but the cokernel might only be a presheaf, as example B.2.1 on page 478 shows.

Chapter B, B.2 Exercise 4 (p. 482) If f is injective, it induces an injection on all stalks, by
the solution to exercise 20 on page 464. The converse follows immediately from the
diagram

F (U)� _
��

f
// G (U)� _
��

∏x∈U Fx
� � // ∏x∈U Gx
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in the solution to exercise 1 on page 478.
Chapter B, B.2 Exercise 5 (p. 482) We already know that f is injective by exercise 4 on
page 482. If s ∈ G (U), for some open set U, then there exist tx ∈ Fx that map to sx.
Each x is contained in an open set Ux such that tx is the image of Tx ∈ F (Ux) and sx is
in the image of f (Tx). By shrinking Ux if necessary, we can assume f (Tx)|Ux = s|Ux.
The Ux form an open cover of U. Since we already know that f is injective, it follows that

Tx|Ux ∩Uy = Ty|Ux ∩Uy

Now the sheaf-condition (statement 5 in definition B.1.1 on page 475 implies that the Tx
patch together to form an element T ∈ F (U).

Chapter B, B.2 Exercise 6 (p. 482) If f is surjective, it induces a surjection on all stalks, by
the solution to exercise 20 on page 464. Conversely, suppose fx: Fx → Gx is surjective
for all x ∈ X. Let H ⊂ G be the image of f , regarded as a map of presheaves. Then
im f is the completion of H (via lemma B.2.3 on page 480) — see definition B.2.5 on
page 481).

Since the process of completion preserves stalks, we have isomorphisms

(im f )x → Gx

and the solution to exercise 5 on page 482 implies that G = im f .
Chapter B, B.2 Exercise 7 (p. 482) The fact that stalks are direct limits and direct limits
preserve exactness (see exercise 20 on page 464) implies that the corresponding sequence
of stalks is exact.

Exercises 4 on page 482 and 6 on page 482 prove exactness at the ends. We must
verify

F (U)
f−→ G (U)

g−→H (U)

is exact for open sets U ⊂ X. That g ◦ f = 0 follows from the diagram in the solution to
exercise 2 on page 478. If X = ker g, this is a sheaf and we have

im f ⊂ X

where the image of a sheaf-map is as in definition B.2.5 on page 481Since the sequences
of stalk-maps is exact, we have

(im f )x = Xx

for all x ∈ U. The conclusion follows from the solution to exercise 5 on page 482.
Chapter B, B.2 Exercise 8 (p. 482) The universal property of direct limits (see
definition A.5.17 on page 439) implies that f−1(F ) behaves well with respect to
restrictions and morphisms of sheaves.

Chapter B, B.2 Exercise 9 (p. 482) If U is an connected open set with subset U′ ⊂ U
where U′ is a union of disjoint open sets U′1 and U′2, then

A(U) = A
A(U′) = A⊕ A

and the restriction map
A(U)→ A(U′)

is not surjective.
Chapter B, B.3 Exercise 1 (p. 485) By restricting to the stalks at a point p, every element
x ∈ OV(U) gives rise to an element of OV(p). Since this is a local ring, the quotient by
its maximal ideal is an algebraic extension of k, hence k itself. We will call this the value
of x at p or x(p).

We can consequently regard elements of OV(U) as functions U → k and the restric-
tion maps as simple restrictions of functions. Conditions 1, 2, and 3 in definition B.1.1
on page 475 are automatically satisfied. We must require that OV(U) be closed under
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addition and multiplication, though (which was automatic in definition B.1.1 on page
475).

Chapter B, B.3 Exercise 3 (p. 485) Simply define a homomorphism of presheaves

F (U)⊗OX(U) H om(F ,OV)(U) = homOX(U)(F (U),OX(U))→ OX(U)

over open sets U ⊂ X by plugging F (U) into elements of homOX(U)(F (U),OX(U)).
This defines a homomorphism of presheaves which becomes a homomorphism of
sheaves after completion.

Chapter B, B.3 Exercise 4 (p. 485) Simply consider the effect of this map on stalks. We
get

OX,x ⊗OX,x hom(OX,x,OX.x) = OX.x

The conclusion follows from exercise 5 on page 482.

Chapter C, C.1 Exercise 1 (p. 493) If ξ is trivial, there exists an isomorphism

F: ξ → X×An

The vector bundle X×An has n linearly independent sections {t1, . . . , tn} defined by

ti(x) = x× ei

where

ei =



0
...
0
1
0
...
0


where the 1 occurs in the ith row. We can clearly define si = F−1 ◦ ti and get n linearly
independent sections of ξ.

Conversely, if p: ξ → X has n linearly independent sections {s1, . . . , sn}, and v ∈
p−1(x), then

v =

 α1(x)
...

αn(x)


in the basis formed by {s1(x), . . . , sn(x)} and the map, F: ξ → X ×An that sends v ∈
p−1(x) to x× (α1(x), . . . , αn(x)) ∈ X×An is clearly an isomorphism.

Chapter C, C.1 Exercise 2 (p. 493) In this case, the transition functions, ϕα,β are just
nonzero scalar functions so ϕtr

α,β = ϕα,β and the conclusion follows from the fact that

ϕβ,α = ϕ−1
α,β.

Chapter C, C.1 Exercise 3 (p. 494) The transition-function for ξ ⊗ ξ are ϕ2
1,2 = 1, where

ϕ1,2 is defined by equation C.1.4 on page 489. The only possible invariant for a vector
bundle over S1 is the number of times it “wraps around” S1. But all bundles that “wrap”
an odd number of times are isomorphic and all bundles that “wrap” an even number of
times are isomorphic to the trivial bundle.

Chapter C, C.1 Exercise 4 (p. 494) This follows from the fact that ⊕ is a coproduct in the
category of vector-spaces (after forming a trivializing cover for the vector-bundles in-
volved).
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Chapter C, C.1 Exercise 5 (p. 494) This follows immediately from exercise 1 on page 473,
which implies the conclusion for

0→ E|U → F|U → G|U → 0

with U is a trivializing cover. Naturality of the isomorphism in exercise 1 on page 473
implies that this commutes with transition functions and defines a global isomorphism
of vector bundles.

Chapter C, C.2 Exercise 1 (p. 498) We could work this out in detail by using trivializing
covers or we could “cheat” and use category theory: since ξ1 ⊕ ξ2 is a coproduct in the
category of vector-bundles, Sξ1⊕ξ2 has the same universal property as the coproduct in
the category of modules over OX , so it must equal Sξ1 ⊕Sξ2 .

Chapter C, C.2 Exercise 2 (p. 498) This follows immediately from theorem C.2.7 on
page 498 and exercise 5 on page 494.

Chapter D, D.1 Exercise 1 (p. 505) The cohomology groups of the third cochain complex
will appear in the long exact sequence in proposition D.1.9 on page 502 sandwiched
between the zero-groups of the other two.

Chapter D, D.1 Exercise 2 (p. 505) In the long exact sequence

· · · → Hi(C)
f ∗−→ Hi(D)

g∗−→ Hi(E) c−→ Hi+1(C)→ Hi+1(D)→ · · ·
we have Hi(D) = Hi+1(D) so the exact sequence reduces to

· · · → Hi(C)
f ∗−→ 0

g∗−→ Hi(E) c−→ Hi+1(C)→ 0→ · · ·
Chapter D, D.1 Exercise 3 (p. 505) If the chain-homotopy between f and g is Φ, simply
use F(Φ) as the chain-homotopy between F( f ) and F(g).

Chapter D, D.1 Exercise 4 (p. 505) If b ∈ B maps to 0 under v, then its image under s
must map to 0 under w. But w is an isomorphism so s(b) = 0. The exactness of the top
row implies that b = r(a) for some a ∈ A. If a 6= 0, then it maps to something nonzero
under u (since u is an isomorphism) and therefore to something nonzero under r′, which
gives a contradiction. It follows that b must have been 0 to start with. So v is injective.
Proof of surjectivity is left to the reader.

Chapter D, D.1 Exercise 5 (p. 511) This follows from the corresponding property of
hom.

Chapter D, D.1 Exercise 6 (p. 511) In this case N is its own injective resolution. And all
others are chain-homotopy equivalent to it, so they have the same cohomology.

Chapter D, D.1 Exercise 7 (p. 511) We can identity homMR (R, M) = homR(R, M) = M.
It follows that, applied to any resolution of M, we just recover the resolution.

Chapter D, D.1 Exercise 8 (p. 511) A projective module is a direct summand of a free
module, so we get

Exti
R(P⊕Q, M) = Exti

R(P, M) = Exti
R(Q, M) = Exti

R(F, M)

and Exti
R(F, M) = 0, by exercise 7 on page 511.

Chapter D, D.1 Exercise 9 (p. 511) The proof is very much like that of corollary D.1.22 on
page 510 except that you “reverse the arrows.”

Chapter D, D.1 Exercise 10 (p. 511) This is just

Q→ Q/Z

Chapter D, D.1 Exercise 11 (p. 511) This follows immediately from proposition A.5.38
on page 451.
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Chapter D, D.1 Exercise 12 (p. 511) First note that homA b(Z/n ·Z, Q/Z) = Z/n ·Z.
The conclusion follows from the finite direct sum

A =
⊕ Z

ni ·Z
so

homA b(A, Q/Z) = ∏
Z

ni ·Z
= A

since the product is finite.
The second statement follows from looking at the injective resolution of Z in exer-

cise 10 on page 511.
Chapter D, D.1 Exercise 13 (p. 512) Corollary D.1.20 on page 509 shows that an exten-
sion like that above induces a long exact sequence

0→ homA (A, B)→ homA (A, E)→ homA (A, A)
δ−→ Ext1

R(A, B)

We will associate the extension to δ(1) ∈ Ext1
( A, B), where 1 ∈ homA (A, A) is the

identity map. The fact that the long exact sequence is natural means that an equivalence
of extensions gives rise to a commutative diagram

homA (A, E1)

��

// homA (A, A)
δ // Ext1

( A, B)

homA (A, E2) // homA (A, A)
δ
// Ext1

( A, B)

so equivalent extensions give rise to the same element of Ext1
R(A, B).

Given x ∈ Ext1
R(A, B) and an injective resolution for B, I∗, represent x by a homo-

morphism x: A → I1 whose image lies in the kernel of δ1: I1 → I2. This means it is in
the image of I0 which is isomorphic to I0/B. We get a commutative diagram

0 // B r // E1
v ��

s // A
x��

// 0

0 // B
r′
// I0

s′
// I0/B // 0

inducing a diagram

homA (A, E1)

��

// homA (A, A)

homA (1,x)��

δ // Ext1
R(A, B) // Ext1

R(A, E1)

��

homA (A, I0) // homA (A, I0/B)
δ
// Ext1

R(A, B) // Ext1
R(A, I0)

Since Ext1
R(A, I0) = 0, it is clear that the identity map of A maps to x. The proof that

split exact sequences give 0 is left to the reader.
Chapter D, D.3 Exercise 1 (p. 540) This follows immediately from the second statement
of theorem D.3.22 on page 538: simply take n0 to be the maximum of the n0’s that come
from theorem D.3.22 on page 538 and recall the meaning of cohomology vanishing (see
the discussion in section D.1.2 on page 506 and the remarks following definition D.3.2
on page 526).

Chapter D, D.4 Exercise 1 (p. 545) This follows immediately from exercise D.4.6 on
page 543 and the fact that

H om(OX , F )(X) = hom(OX , F )

Chapter D, D.4 Exercise 2 (p. 545) This follows immediately from exercise 1 on page 545
— since hom(OX , F ) = F (X), the functors hom(OX , ∗) and e(∗) are the same (where
e is the functor defined by e(F ) = F (X)), they have the same derived functors.
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Chapter D, D.4 Exercise 3 (p. 546) We can define a map

F → F∨∨

by sending
F |U 7→ (g: F |U 7→ OV |U) 7→ g(F |U)

Since F is locally free its stalks are all free of the same rank, and the stalks of F ∗∗ will
have the property that

F ∗∗x = (Fx)
∗∗

which are isomorphisms if they are free modules of finite rank (or finite dimensional
vector spaces). The conclusion follows from exercise 5 on page 482. To prove the second
statement, note that there is a natural map

F ∗ ⊗OX G → H om(F , G )

f ⊗ g 7→ f · g
where f ∈ F∨ = H om(F ,OX) has its value in OX , which acts on g. If we restrict to
stalks, F ∗x is a free module and the restriction is an isomorphism. Again, the conclusion
follows from exercise 5 on page 482.

Chapter D, D.4 Exercise 4 (p. 546) Proposition A.5.51 on page 457 implies that, for R-
modules A, B, C

homR(A, homR(B, C)) = homR(A⊗R B, C)
Since this is a natural equality, it commutes with all restriction maps and defines an
isomorphism

hom(A , hom(B, C )) ∼= hom(A ⊗OX B, C )

of modules over OX . Applying this to all restrictions of the sheaves implies the second
isomorphism.

Chapter D, D.4 Exercise 5 (p. 546) This follows immediately from exercises 4 on
page 546 and 3 on page 546.

Chapter D, D.4 Exercise 6 (p. 546) Exactness of the original sequence simply means that

îm Fi = ker Fi+1 → Fi+2

for all i, where ∗̂ denote the completion-operation described in lemma B.2.3 on
page 480 when evaluated on any open set. The only thing that prevents the sequence
of global evaluations from being exact is this completion-operation. Since n is
finite, corollary 5.3.9 on page 231 implies that there exists an in integer d such that
Fi ⊗OV OV(t) is generated by global sections, for all i and all t ≥ d , Now exercise 1 on
page 235 implies that im Fi ⊗OV OV(t) is already a sheaf (no completion needed). The
conclusion follows.





Glossary

� The zero-element in an elliptic curve, regarded as an algebraic group.
See 6.2.12 on page 312.

A b The category of abelian groups.
diffeomorphic Two topological spaces, X and Y, are diffeomorphic if there exist

smooth maps f : X → Y and g: Y → X whose composites are the identity
maps of the two spaces. Note the similarity to homeomorphism.

An This is n-dimensional affine space. See chapter 2 on page 35.
V (a) The affine variety defined by an ideal. See definition 2.5.4 on page 73.
homeomorphic Two topological spaces, X and Y, are homeomorphic if there ex-

ist continuous maps f : X → Y and g: Y → X whose composites are the
identity maps of the two spaces.

Ann(M) The annihilator of a module. See definition A.1.71 on page 358.
ann(m) The annihilator of an element of a module. See definition A.1.71 on

page 358.
SM The symmetric algebra generated by a module. See definition A.6.4 on

page 466.
Assoc(R) The set of associated primes of a ring R. See definition A.1.71 on

page 358.
Ba(V) The blow-up of a variety via an ideal. See definition 5.5.7 on page 245.
C The field of complex numbers.
Cart(∗) The group of Cartier divisors on a variety. See 5.9.12 on page 283.
C h The category of chain-complexes. See definition D.1.1 on page 499.
Co The category of cochain-complexes. See definition D.1.2 on page 500.
Ȟ(V) The Čech cohomology of a variety. See definition D.3.12 on page 531.
coker f The cokernel of a homomorphism. See definition A.1.61 on page 353.
A If A is an object, A is the constant sheaf equal to A on every open set.
dense subset A subset S ⊂ X of a topological space is dense if, for any open set

U ⊂ X, S ∩U 6= ∅.
depth M The depth of a module. See definition D.2.14 on page 519.
Derk(R, M) The module of derivations. See definition A.4.21 on page 412.
Ωi

V The sheaf of regular differential forms of degree i. See proposition 4.6.17
on page 206.

Ωi(V) The vector space of rational differential forms of degree i. See defini-
tion 5.9.32 on page 292.

Cl(V) The group divisor-classes of a variety. See definition 5.9.4 on page 280.
Div(V) The group of Weil divisors of a variety. See definition 5.9.1 on page 278.
〈W〉 A codimension-1 subvariety, regarded as a divisor. See section 5.9 on

page 277.
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F∨ The dual of a sheaf of modules. See equation D.4.5 on page 546.
Exti

R(A, B) The Ext-functor — see section D.2.1 on page 514.
Exti(F , G ) The sheaf-version of the Ext-functor — see definition D.4.1 on

page 541.
Λi M The ith exterior power of a module, M. See definition A.6.7 on page 467.
Fpn The unique finite field of order pn, where p is a prime number. See

section A.2.5 on page 387.
xn The falling factorial or Pochhammer symbol, defined by xn = x(x −

1) · · · (x− n + 1) for n ≥ 1.
F̄p The algebraic closure of the field Fp. See theorem A.2.42 on page 389.
Fp The Frobenius homomorphism of a finite field of characteristic p. See

definition A.2.40 on page 388.
gl-dim R The global dimension of a ring. See definition D.2.9 on page 517.
Γ f The graph of a regular morphism of schemes or varieties. See 4.6.5 on

page 202.
Gn(V) The Grassmann variety whose points are n-dimensional subspaces of a

vector-space V. See definition 5.2.10 on page 224.
Gn,m This is just Gn(km) — i.e., we are not interested in the functorial prop-

erties of the vector-space.
ht(p) The height of a prime ideal in a ring. See definition 2.8.7 on page 100.
hR(n) The Hilbert function of a graded ring. See definition 5.7.1 on page 260.
HR(n) The Hilbert polynomial of a graded ring. For n sufficiently large

HR(n) = hR(n).
homk−alg(∗, ∗) Set of homomorphisms of affine k-algebras. See

definition 2.4.13 on page 67.
homScheme(∗, ∗) The set of morphisms between two schemes. See

definition 4.6.30 on page 210.
H om(A , B) The sheaf of homomorphisms between sheaves. See

definition B.3.4 on page 484.
I(X) The ideal of polynomials vanishing on a set of points. See

definition 2.1.4 on page 38.
inj-dim M The injective dimension of a module. See definition D.1.12 on

page 506.
J(R) The Jacobson radical of a ring. See definition A.4.37 on page 420.
kH [V] The homogeneous coordinate ring of a projective variety — see defini-

tion 5.1.7 on page 216.
k[[X]] Power series ring, defined in definition A.1.4 on page 328.
k{{X}} Field of Puiseux series, defined in example A.4.51 on page 424.
ΩR/k The module of Kaehler differentials. See definition A.4.22 on page 412.
K(x1, . . . , xn) The Koszul cochain complex associated to a sequence of

elements of a ring. See definition D.2.18 on page 520.
`(D) This is dimension of the space of a divisor, D. See definition 5.9.25 on

page 289.
L(D) This is the space of a divisor, D. See definition 5.9.25 on page 289.
`S(D) This is dimension of the relative space of a divisor, D. See

definition 6.1.10 on page 301.
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LS(D) This is the relative space of a divisor, D. See definition 6.1.10 on
page 301.

lim−→ An The direct limit of a sequence of objects and morphisms. See defini-
tion A.5.17 on page 439.

lim←− Rn The inverse limit of a sequence of objects and morphisms. See defini-
tion A.5.26 on page 444.

LT(∗) Leading monomial of a polynomial with respect to some ordering.
Used in computing Gröbner bases. See section 2.3 on page 45.

A( f ) The algebraic mapping cone of a chain-map, f . See definition D.1.11 on
page 504.

K∗X The sheaf of nonzero meromorphic functions. See definition 4.3.21 on
page 175

KX The sheaf of meromorphic functions on a ringed space. See defini-
tion 4.3.21 on page 175.

\ A difference between sets, so A \ B is the elements of A that are not
contained in B.

MR The category of modules over a ring, R. See statement 7 on page 432.
homC(A, B) The set of morphisms between objects of a category C. See defini-

tion A.5.2 on page 431.
homVar(A, B) The set of regular maps of algebraic varieties. See

definition 2.2.10 on page 44.
N(R) The nilradical of a ring. See definition A.1.45 on page 344.
ordW ( f ) The order of a function at a divisor. See definition 5.9.3 on page 279.
pg(X) The geometric genus of a variety. See definition 5.9.38 on page 296.
Pic(V) The Picard group of line-bundles on a variety. See definition C.1.13 on

page 493.
Proj R The Proj-construction. See definition 4.4.12 on page 187.
CPn Complex projective space. See definition 1.2.2 on page 4.
kPn Projective space over a field k.
proj-dim(M) The projective dimension of a module. See definition D.1.13 on

page 506.
P(V) Projective space derived from a vector space. This is essentially the

same as kPdim V , but we are concerned with the functorial properties
of V,

P(a) Closed subscheme of projective space defined by a homogeneous ideal,
a. See definitions 4.4.15 on page 188 and 5.1.7 on page 216.

RPn A scheme that is like a projective space over a ring R. See definition 4.4.8
on page 183.

RPn real projective space. See definition 1.2.2 on page 4.
ZPn This is just RPn with the ring equal to Z.
Q The field of rational numbers.
quasicompact A topological space with the property that every open cover has

a finite subcover. This is very similar to the definition of compact, but
the Bourbaki people require a compact space to be Hausdorff.

R The field of real numbers.
RiF Right derived functors of F. See definition D.1.17 on page 508.√∗ Radical of an ideal. See definition A.1.42 on page 344.
rank(A) Rank of a matrix, A.
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Γ(a) The Rees algebra of a ring with respect to an ideal. See definition A.4.58
on page 427.

Res( f , g) Resultant of two polynomials. See definition 1.3.2 on page 12.
s(D) The invertible sheaf associated with a Cartier divisor. See

proposition 5.9.18 on page 285.
OV(m) If V is a projective space and m is an integer, this denotes the Serre twist

of degree m — see definition 5.3.1 on page 228.
(a: b∞) The saturation of one ideal with respect to another. See exercise 9 on

page 71.
Sξ The sheaf of sections of a vector-bundle ξ. See definition C.2.1 on

page 494.
Γ(V, ξ) The sections of a vector bundle over a space V. See definition C.1.10

on page 491. Also occasionally used when ξ is a sheaf, in which case
Γ(V, ξ) = ξ(V)

A(M) The Serre functor associating a sheaf to a module over the ring of regu-
lar functions. See definition 3.5.1 on page 151.

OV The sheaf of regular functions on a variety or scheme. See section 4.3.1
on page 166.

Spec R The affine scheme defined by a ring R. See definition 4.2.1 on page 161.
specm A The maximum spectrum of a ring. See section 2.5 on page 71.
Supp F The support of a sheaf of modules. See definition B.1.5 on page 477.
TV,p The tangent space of a variety at a point. See definition 3.3.2 on

page 119.
Tori

R(A, B) The Tor-functor — see section D.2.1 on page 514.
Trace A The trace of a square matrix (the sum of its diagonal elements).
R× The group of units of a ring or field.
Z The ring of integers.
Z(p) p-adic numbers. See example A.5.30 on page 447.
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abelian category, 449
abelian variety, 312
acyclic cochain complex, 501
additive functor, 450
adjoint functors, 438
adjunction, 438
adjunction formula for smooth varieties,

205
AF+BG theorem, 302
affine k-algebra, 67
affine chart, 178
affine cone, 214
affine image of a scheme, 203
affine regular mapping, 44
affine scheme, 159
affine space, 35
affine variety, 71, 73

dimension, 99
algebra over a field, 371
algebraic closure

construction, 385
algebraic closure of a field, 383
algebraic element of a field, 372
algebraic extension of fields, 374
algebraic group, 64, 97
algebraic independence, 391
algebraic mapping cone, 504
algebraic numbers, 385
algebraic set, 35

dimension, 99
rational, 86
rational functions, 80

algebraically closed field, 383
annihilator of an element in a module, 358
arithmetic genus, 324
Emil Artin, 365
Artinian ring, 365
Artinian module, 355
ascending chain condition, 345
associated points of a scheme, 164
associated prime, 358
automorphism, 334

Bézout’s theorem, 25
Baer’s Criterion for injectivity, 451
base space (of a vector-bundle), 488
Étienne Bézout, 1, 330
Bézout’s Identity, 330
bilinear form, 408
bilinear map, 455
birational equivalence, 84
birational invariant, 290
blowup, 243
boundary of an element of a ring, 101
Bruno Buchberger, 45

canonical class, 291
canonical sheaf, 205
Élie Cartan, 219
Cartier divisor, 281
category, 431

concrete, 433
discrete, 432
equivalence, 437

category of schemes
relative, 178

catenary ring, 105
Čech cohomology, 531
Čech resolution of a sheaf, 532
center of a blowup, 243
central sheet of an optimization, 92
chain complex, 499
chain-homotopic chain-maps, 501
chain-homotopy equivalent, 502
chain-map, 499, 500
characteristic of a field, 370
characteristic polynomial in a finite

extension, 380
chart, 178
Chinese Remainder Theorem, 339
Chow’s Theorem, 217
closed immersion, 164
closed point, 159
closed subscheme, 189
closure of a set, 37
cochain complex, 500
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codimension, 99
cofinal subsequence, 443
Cohen-Macaulay ring, 520
coherent module, 152
cohomology groups, 500
cokernel of a homomorphism, 336, 353
commutative ring, 327
compact topological space, 43
complete varieties, 248
completion of a local ring, 132
completion of a sheaf, 479
concrete category, 433
conjugates of an algebraic element, 385
connected topological space, 69
conormal exact sequence, 414
constant sheaf, 476
contraction, 219
contravariant functor, 434
convolution, 219
coordinate ring, 62
coordinate ring at a point, 117, 167
coproduct in a category, 433
covariant functor, 434
cross-product as wedge-product, 471

decomposable elements of an exterior
algebra, 470

decomposable tensors, 455
Julius Wilhelm Richard Dedekind, 334
degenerate bilinear form, 408
degree of a divisor, 278
degree of a field extension, 371
degree of a map, 108
degree of projective variety, 263

geometric interpretation, 272
δ-functor, 512
dense subset, 67
depth of a module, 519
derivation, 412
derived functors, 506
determinantal variety, 37
diagonal map, 96, 174
differential of a function, 119
dimension

computation of, 125
definition, 99

dimension of a divisor, 287
dimension of a variety and Krull

dimension, 100
direct image sheaf, 478
direct limit, 440
direct sum, 453
directed set, 440
discrete category, 432
discrete logarithm problem, 314
discrete valuation, 424
discrete valuation ring, 425
discriminant

cubic polynomial, 351
quadratic polynomial, 351

discriminant of a polynomial, 350
distinguished open sets, 37
division algorithm, 46
divisor, 276

Cartier, 281
degree, 278
dimension, 287
space of, 287

divisor class group, 278
dominating map, 67
dual of a module, 464
dualizing sheaf, 547

effective divisor, 276
eigenvalue of a tensor, 274
Eisenstein’s irreducibility criterion, 398
elementary symmetric functions, 349
elimination ideal, 79
elliptic curve, 36
elliptic curve cryptography, 313
enough injectives, 451
enough projectives, 450
epimorphism

category theoretic definition, 434
equivalence of categories, 437
étale cohomology, 527
étale morphism, 129
Euclid Algorithm, 330
Euclid algorithm

extended, 332
Euclidean ring, 340

norm, 340
Euler

φ-function, 389
Euler characteristic of a sheaf, 540
Euler Substitution, 87
exact sequence, 354
exact sequence of cochain complexes, 502
exceptional divisor of a blowup, 282
exceptional fiber of a blowup, 243
Extended Euclid algorithm, 332
extension

degree, 371
extension of fields, 371
extension ring, 329
exterior algebra, 468

decomposable elements, 470

F -acyclic object, 510
faithful functor, 435
falling factorial, 261
family of maps, 249
fiber of a morphism, 75

dimension, 112
geometric, 208

fibered product, 174
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field, 370
algebraic closure, 383
algebraic extension, 374
algebraically closed, 383
characteristic, 370
extension, 371
of fractions of a ring, 372
perfect, 378
rational function, 372

field of fractions of a ring, 372
filtered colimit, 441
a-filtration, 429
finite fields, 387
finite map

general varieties, 206
finite mapping, 76
finite morphisms

varieties, 205
flabby sheaves, 481
flasque sheaf, 481
flat module, 461
flat morphism, 78

going down, 78
forgetful functors, 438
free module, 352

criterion, 419
free module over a sheaf, 495
Frobenius map, 388
full functor, 435
functor, 434

faithful, 435
full, 435
isomorphism, 435

Évariste Galois, 388
Galois Theory, 387
Johann Carl Friedrich Gauss, 395
Gauss’s Lemma, 397
Gaussian Integers, 403
gcd, 330
Gelfand spectrum, 163
Gelfand-Naimark theorem, 66
general linear group, 64
general variety, 199
generated by global sections, 228
generating set of a module, 354
generic point, 159
genus

arithmetic, 324
geometric, 294

geometric fiber of a morphism, 208
geometric genus of a variety, 294
geometric points of a scheme, 208
germ of a function, 167
germ of a function in a sheaf, 483
global dimension of a ring, 517
going down, 78
going up, 406

graded algebra, 427
graded ideal, 427
graded module, 428
graded module associated to a sheaf, 232
graded reverse lexicographic ordering, 46
graded ring, 466
graph of a morphism, 200
Hermann Grassmann, 218
Grassmann algebras, 468
Grassmann variety, 222
Grassmannian over a ring, 233
greatest common divisor, 330
Gröbner basis, 45

leading term, 45
Grothendiek group of a noetherian scheme,

191
Grothendiek’s Theorem, 527
group of units, 327

height of a prime ideal, 100
Kurt Hensel, 448
Hexagrammum Mysticum, 25
David Hilbert, 39
Hilbert Basis Theorem, 346
Hilbert function, 258
Hilbert Nullstellensatz

weak form, 39
Hilbert polynomial, 259
Hilbert rings, 420
Heisuke Hironaka, 147
Hironaka’s theorem, 147
Hodge duality, 471
homogeneous coordinate ring, 214
homogeneous coordinates, 3
homogeneous ideal, 212, 427
homogeneous polynomial, 5
homology groups, 500
homomorphism

kernel, 334
homomorphism of modules, 353
homomorphism of rings, 333
hypersurface, 108
hypersurface in a scheme, 177

ideal, 334
generated by a set of elements, 334
homogeneous, 212
maximal, 334
prime, 334
principal, 334
product, 334
radical, 344

ideal quotient, 250
immersion of schemes, 190
inductive limit, 441
injective dimension, 506
injective object, 451
injective resolution, 506
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integers, 327
unique factorization, 332

integral closure, 407
integral domain, 339
integral elements, 403
integral extension

going up, 406
lying over, 406

integral extension of rings, 404
integral scheme, 177
integrally closed ring, 407
interior product, 219
intersection multiplicity, 24, 137, 269
intersection-cycle, 303
inverse limit, 445
invertible sheaf, 495
irreducible element, 331, 339
irreducible space, 67
irrelevant ideal, 212
irrelevant ideal of a graded ring, 184
isomorphic

projective variety, 235
isomorphism, 334
isomorphism of algebraic sets, 66

Jacobi Criterion for algebraic independence,
420

Jacobi Criterion for smoothness, 125
Jacobi’s Conjecture, 45
Jacobson radical, 420
Jacobson ring, 67, 420
Jacobson scheme, 177, 186

K-theory, 154
Kähler differential, 412
Erich Kähler, 412
Narendra Karmarkar, 91
kernel of a homomorphism, 334
Koszul cochain complex, 520
Kronecker product, 600
Krull

Principal Ideal Theorem, 109
Wolfgang Krull, 100
Krull dimension, 100

equational characterization, 103
Krull-Azumaya Theorem, 362

Laurent polynomials, 62
left-adjoint, 438
left-exact functor, 508
length of a module, 272
lexicographic ordering, 46
Lindemann–Weierstrass theorem, 391, 394
line bundle, 488

meromorphic section, 282
tautological, 285

linearly equivalent divisors, 278
local parameters of a variety, 130

local ring, 336, 369
local uniformizing parameters, 130
localization at a prime, 369
locally free module over a sheaf, 495
locally free modules, 463
locally ringed space, 170, 483
lying over, 406

M-regular element, 519
M-regular sequence, 519
maximal ideal, 334
maximal spectrum of a ring, 71
meromorphic section of a line bundle, 282
Claude Gaspard Bachet de Méziriac, 330
minimal polynomial, 373
minimal polynomial of a matrix, 358
module

dual, 464
module over a ring, 352
moduli space, 222, 312
August Ferdinand Möbius, 4
monomial

graded reverse lexicographic ordering, 46
lexicographic ordering, 46

monomorphism
category theoretic definition, 434

Mordell-Weil theorem, 313
morphism of ringed spaces, 482
morphism of sheaves, 477
multiplicative set in a ring, 343

Nakayama’s Lemma, 362
natural isomorphism, 435
natural transformation, 436
Isaac Newton, 1
nilpotent element of a ring, 344
nilradical, 344
Emmy Noether, 345
Max Noether, 301
Noether Normalization Theorem, 39
Noether’s Conditions, 301
noetherian module, 355
noetherian ring, 345
noetherian scheme, 177, 186
noetherian topological space, 68
non-affine open set, 90
non-principal open affine, 90
non-unique factorization, 342
norm

Euclidean ring, 340
norm of a finite extension, 380
normal ring, 407
normal scheme, 177, 186
normal variety, 143
normality at a point, 143
Nullstellensatz

projective, 212
strong form, 41
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weak form, 39

open affine, 68
open set

not affine, 68
order of a function at a divisor, 277
ordering of monomials, 45

p-adic integers, 448
p-adic numbers, 448
p-adic valuation, 424
Blaise Pascal, 25
Pascal Line, 27
Pascal’s Theorem, 25
Peano curve, 98
perfect field, 378
φ-function, 389
Picard group, 493
PID, 341
Plücker coordinates, 219
Julius Plücker, 219
Pochhammer symbol, 261
polar divisor of a rational function, 276
polynomial

discriminant, 350
homogeneous, 5
primitive, 390, 397

polynomial ring, 328
polynomially-closed, 421
power-series ring, 328
presheaf, 476
prevariety, 177
primal central path, 92
Prime Avoidance, 70, 71
prime divisor, 276
prime element of a ring, 339
prime factors of a module, 359
prime filtration, 359
prime ideal, 334
primitive element, 378
primitive element theorem, 378
primitive polynomial, 390, 397
principal divisor, 277
principal ideal, 334
principal ideal domain, 341
Principal Ideal Theorem, Krull’s, 109
principal open sets, 63
product of ideals, 334
Proj, 185

subscheme defined by an ideal, 186
projection of projective spaces, 235
projective

morphism of schemes, 217
projective closure, 216
projective coordinate ring, 214
projective dimension, 506
projective elimination ideal, 246
projective module, 356

projective Nullstellensatz, 212
projective object, 450
projective plane curve, 297
projective resolution, 506
projective space, 182

over a scheme, 216
projective variety

rational function, 234
regular function, 234
regular map, 235

Puiseux series, 425
pullback of a sheaf, 155
Puma 560 robot arm, 30

quasi-coherent sheaf, 187
Quillen-Suslin theorem, 154
quotient ring, 335
quotient sheaf, 481

R-morphisms of schemes, 161
Rabinowich Trick, 421
radical of an ideal, 344
ramification point, 145
rank-variety, 37
ranks of matrices, computing, 127
rational algebraic set, 86
rational function field, 372
rational functions on an algebraic set, 80
rational map, 83
real algebraic geometry, 207
real projective plane, 3
reduced ring, 67
reduced scheme, 177, 186
Rees algebra of an ideal, 428
regular local ring, 131
regular map

fiber, 75
prevariety, 178

regular meromorphic functions, 173
regular set of a rational map, 83
resolution of singularities, 147
resultant, 13
Georg Friedrich Bernhard Riemann, 315
right derived functors, 508
right resolution, 506
right-adjoint, 438
right-exact functor, 459
ring, 327

Artinian, 365
catenary, 105
Cohen-Macaulay, 520
commutative, 327
discrete valuation, 425
Euclidean, 340
extension, 329
field of fractions, 372
homomorphism, 333
ideal, 334
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integral domain, 339
integrally closed, 407
irreducible element, 339
local, 336
maximal spectrum, 71
multiplicative set, 343
noetherian, 345
normal, 407
PID, 341
polynomial, 328
prime element, 339
principal ideal domain, 341
quotient, 335
reduced, 67
spectrum, 159
trivial, 327
UFD, 342
unit, 327

ring of fractions
universal property, 443

ringed space, 482
locally, 483

Gustav Roch, 318

S-rational point of a scheme, 207
S-valued point of a scheme, 207
S-polynomial, 49
saturation of an ideal, 71
scheme, 177

affine image, 203
functor, 208
hypersurface, 177
immersion, 190
integral, 177
Jacobson, 177, 186
locally of finite type, 200
locally reduced, 200
noetherian, 177, 186
normal, 177, 186
reduced, 177, 186
separated, 199
structure morphism, 161
subscheme, 190

section-sheaf, 494
Corrado Segre, 238
Segre embedding, 238
separable element of a field, 378
separable extension of fields, 378
separable polynomial, 378
separated presheaf, 476
separated scheme, 199
Jean-Pierre Serre, 475
Serre twist, 225
Serre-twist sheaf, 226
sheaf, 475

completion, 479
Euler characteristic, 540
flasque, 481

free module, 495
germ, 483
locally free module, 495
stalk, 476, 483
support, 477
tensor-product, 484
very ample, 228

sheaf of meromorphic functions, 173
sheaf of meromorphic sections, 282
sheaf of modules, 484
short exact sequence, 354
simple points, 125
Simplex Method, 91
singular points, 125
singularities

resolution, 147
skyscraper sheaf, 478
smooth varieties, 125
space of a divisor, 287
special linear group, 36
spectrum of a ring, 159
split short exact sequence, 364
splitting field, 375
stable a-filtration, 429
stalk of a sheaf, 476, 483
Jakob Steiner, 126
Steiner’s Cross-cap, 126
Steiner’s Roman surface, 130
structure map of a relative scheme, 178
structure morphism of a relative scheme,

161
submodule, 352
subscheme, 164

closed, 189
support of a sheaf, 477
James Joseph Sylvester, 13
Sylvester Matrix, 13
symmetric algebra, 467
symmetric bilinear form, 408

tangent bundle, 155
tangent space

affine scheme, 160
coordinate definition, 119

tangent space of a projective variety, 213
tautological line bundle, 217, 285
tensor algebra, 466
tensor product, 454
tensor-products of sheaves, 484
total quotient ring, 370
total space (of a vector-bundle), 488
trace form, 409
trace of a finite field extension, 380
transcendence basis, 394
transcendence degree, 393, 394
transcendental element of a field, 372
transcendental extension of fields, 374
trivial bundle, 489
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trivial ring, 327
trivializing cover, 488

UFD, 342
unique factorization domain, 342
unique factorization of integers, 332
unit, 327
units

group, 327
universal δ-functor, 512
universal derivation, 412
unramified, 145

V-morphisms of schemes, 161
valuation, 424
Vandermonde matrix, 351
variety

general, 199
variety of a movement problem, 58
vector bundle, 487

base space, 488
total space, 488
transition function, 488

Giuseppe Veronese, 236
Veronese map, 236
very ample sheaf, 228
very dense sets, 177

Weierstrass Division Theorem, 400
Weierstrass Preparation Theorem, 401
Weil divisor, 276
Whitney Umbrella, 244

Xn-general power series, 400

Yoneda Lemma, 209

Oscar Zariski, 37
Zariski closure, 37, 41
Zariski topology, 37

distinguished open sets, 37
0-section, 491
zero-divisor, 327
zero-divisor of a rational function, 276
Zorn’s Lemma, 337
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