Intersection multiplicity

The purpose of intersection multiplicity is to generalise the notion of the multiplicity of a zero of a polynomial.

Definition. Let V be an irreducible affine variety and let $P \in V$. The local ring of V at P is $\mathcal{O}_{V,P} = \{\phi \in K(V) \mid \phi \text{ is defined at } P\}$. $\mathcal{O}_{V,P}$ consists of the rational functions which can be written as $\phi = f/g$ with $g(P) \neq 0$.

The function $\varepsilon_P: \mathcal{O}_{V,P} \to K$, $\phi \mapsto \phi(P)$ is a ring homomorphism. It is surjective, therefore its kernel $m_{V,P} = \{\phi \in \mathcal{O}_{V,P} \mid \phi(P) = 0\}$ is a maximal ideal. Moreover, any element of $\mathcal{O}_{V,P} \setminus m_{V,P}$ is invertible, so any proper ideal of $\mathcal{O}_{V,P}$ must be contained in $m_{V,P}$, therefore $m_{V,P}$ is the unique maximal ideal of $\mathcal{O}_{V,P}$.

Definition. Let $f, g \in K[x, y]$ and let $P \in \mathbb{A}^2$. The intersection multiplicity of f, g at P is $I_P(f, g) = \dim \mathcal{O}_{\mathbb{A}^2, P}/\langle f, g \rangle$.

If C and D are curves in \mathbb{A}^2 , then let $I(C) = \langle f \rangle$ and $I(D) = \langle g \rangle$, and the intersection multiplicity of C and D at P is $I_P(C, D) = I_P(f, g)$.

For homogeneous polynomials in K[X,Y,Z] or for curves C and D in \mathbb{P}^2 , their intersection multiplicity at $P \in \mathbb{P}^2$ is defined to be the intersection multiplicity of their dehomogenisations or of the corresponding affine curves in an affine piece containing P.

Properties. 1. $I_P(f,g)$ only depends on the ideal $\langle f,g\rangle \triangleleft \mathcal{O}_{\mathbb{A}^2,P}$.

- 2. $I_P(f,g)$ is finite if and only if f and g have no common factor vanishing at P.
- 3. $I_P(f,g) = 0$ if and only if $f(P) \neq 0$ or $g(P) \neq 0$.
- 4. $I_P(f,g) = 1$ if and only if neither f, nor g has a repeated factor vanishing at P, P is a non-singular point of the curves f = 0 and g = 0, and the tangent lines to these curves at P are distinct.
- 5. If neither f, nor g has a repeated factor vanishing at P, which is the case when calculating intersection multiplicities of curves, $1 < I_P(f,g) < \infty$ if and only if f(P) = g(P) = 0, and either at least one of the curves f = 0, g = 0 is singular at P or they are both non-singular and have the same tangent line at P.
- 6. $I_P(f_1f_2,g) = I_P(f_1,g) + I_P(f_2,g)$, this property can be used in combination with the previous ones to calculate $I_P(f,g)$.