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1. Lectures 1-2: examples and tools

1.1. Motivation. Intersection theory had been developed in order to give a rig-
orous foundation for methods of enumerative geometry. Here is a typical question
considered in enumerative geometry.
How many lines in 3-space intersect 4 given lines in general position?
Here is Schubert’s solution. Choose 4 lines l1, l2, l3, l4, so that l1 and l2 lie in the

same plane, and so do l3 and l4. It is easy to check that in this case there are exactly
two lines intersecting all 4 lines, namely, the line passing through the intersection
points l1∩l2 and l3∩l4 and the intersection line of planes that contain l1, l2 and l3, l4.
Then by “conservation of number principle” the number of solutions in the general
case is also two (see Section 9 for more rigorous applications of the conservation of
number principle).
To solve problems in enumerative geometry, Schubert developed calculus of con-

ditions (the original German word for condition is “Bedingung”). It is now called
Schubert calculus. An example of condition is the condition that a line in 3-space
intersects a given line. Two conditions can be added and multiplied. For instance,
denote by σi the condition that a line intersects a given line li. Then σ1 + σ2 is the
condition that a line intersects either l1 or l2 , and σ1 ·σ2 is the condition that a line
intersects both l1 and l2. Then the above question can be reformulated as follows:
find the product σ1 · σ2 · σ3 · σ4 of four conditions.
We will discuss interpretation of Schubert calculus via intersection theory on

Grassmannians in Section 4.2. For instance, we will see that each condition σi

defines a hypersurface in the variety of lines in P3 (=Grassmannian G(2, 4) of planes
passing through the origin in C4), and σ1 · σ2 · σ3 · σ4 is the intersection index (or
the number of common points) of four hypersurfaces.
In general, problems of enumerative geometry can be rigourously solved using

intersection theory on suitable varieties. Here is another example.
How many smooth conics intersect 5 given conics in general position?
This problem was posed by Steiner. He also gave an incorrect answer: 7776

(=65). The first correct solution was found by Chasles. There are 3264 such conics.
A rigorous solution involves intersection theory on the space of complete conics and
will be discussed in Section 6.
Problems on the number of common zeroes of n polynomials f1,. . . , fn in n

variables can also be studied using intersection theory. For instance, the classical
Bézout theorem answers the following question.
How many solutions does a generic system f1 = . . . = fn = 0 have?
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The answer is deg f1 · . . . · deg fn and can be obtained using intersection theory
on Pn.
There are more general versions of Bézout theorem proved by Koushnirenko (see

Theorem 2.2), Bernstein and Khovanskii. They involve intersection theory on toric
varieties.

1.2. Goals. Let X be an algebraic variety over an algebraically closed field K,
and M and N two algebraic subvarieties in X of complementary dimensions (i.e.
dim M + dim N = dim X). In all our examples, X will be an affine or projective
variety over the field C of complex numbers.

Reminder. Recall that there is Zariski topology on the affine space Kn: a subset X ⊂ Kn

is closed if

X = {(x1, . . . , xn) ∈ Kn | f1(x1, . . . , xn) = . . . = fk(x1, . . . , xn) = 0},
where f1,. . . , fk ∈ K[x1, . . . , xn] are polynomials on Kn.

Exercise 1.1. Show that if K = C then a Zariski closed subset is closed with respect to
the usual topology on Cn. The converse is not true.

Recall that there is a bijective correspondence between affine varieties X ⊂ Kn and
prime ideals IX ⊂ K[x1, . . . , xn]. Namely, X = {x ∈ Kn | f(x) = 0 ∀f ∈ IX}. Similarly,
there is a bijective correspondence between projective varieties X ⊂ Pn and homogeneous
prime ideals

IX =

∞⊕
k=0

(
IX ∩K(k)[x0, x1, . . . , xn]

)
,

where K(k)[x0, x1, . . . , xn] denotes the space of homogeneous polynomials of degree k.
Note that the value of a homogeneous polynomial f at a point x ∈ Pn is not well-defined,

since x = (x0 : . . . : xn) = (λx0 : . . . : λxn) for any nonzero λ ∈ K. However, we can
say whether f vanishes at x or not. All homogeneous polynomials in IX are required to
vanish on X.

For more details on affine and projective varieties see [17].

Our first goal is to define the intersection index M · N of M and N . We will
assign to each pair (M,N) an integer number M ·N satisfying the “conservation of
number principle”, that is, if we move subvarieties M and N inside X then their
intersection index does not change. We will formulate this principle explicitly for
some interesting examples and see why it is useful.
Let us first consider a naive definition of the intersection index, namely, set M ·N

to be the number of points |M ∩N | in the intersection of M and N . The following
example illustrates what is wrong with this definition and how it can be improved.
Take an affine plane X = C2 with coordinates x and y, and let M = {f(x, y) = 0}

and N = {g(x, y) = 0} be two curves in X. Consider four cases. In the first
three cases, M is a fixed parabola and N is a line. Let us translate and rotate N
continuously and see how the number |M ∩N | changes.

(1) f = x2 − y, g = y − 2; then |M ∩N | = 2
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(2) f = x2− y, g = y; then |M ∩N | = 1 so the conservation of number principle
fails. However, the intersection point (0, 0) is a point of tangency of curves
M and N , so this point should be counted with multiplicity two.

(3) f = x2 − y, g = x; then |M ∩ N | = 1, because the other intersection point
went to infinity. So to preserve the intersection index we need to find a
way to count intersection points at infinity or consider only compact X. For
instance, if we take CP2 instead of C2 we recover the missing intersection
point. Indeed, the point (0:1:0) (in homogeneous coordinates (x : y : z))
satisfies both x = 0 and x2 − yz = 0 (homogenization of f)

(4) f = x2 − 1, g = x− 1; then |M ∩N | = ∞ since M ∩N = {x− 1 = 0} is a
line. However, if we rotate N a little bit we again get exactly two intersection
points.

Cases 2 and 4 suggest to replace the subvariety N with a family {Nt} of subva-
rieties parameterized by a parameter t so that |M ∩ Nt| is the same for generic t.
More precisely, t runs through points of an affine or projective variety T , and t is
generic if t belongs to a Zariski open and dense subset of T . We will give a definition
of the intersection index using this geometric approach whenever possible. In this
particular example, T is the variety of all lines in P2 (that is, also P2). A point t ∈ T
is generic if the corresponding line Nt is not tangent to M .

Exercise 1.2. Show that all lines tangent to M form an algebraic curve in T = P2.
Hence, the complement is Zariski open and dense.

There is also an algebraic definition of multiplicity of an intersection point p ∈
M ∩N . Take the local ring Op (the ring of all rational functions on C2 that do not
have a pole at p) and quotient it by the ideal (f, g). We get a finite-dimensional
complex space. The multiplicity of p is the dimension of Op/(f, g). For instance, in
case 3 we have

O(0,0)/(f, g) = C[[x, y]]/(x, x2 − y) = ⟨1⟩ = C,
so the multiplicity is one. This agrees with the fact that the intersection is transverse
at p = (0, 0). In case 3, we have

C[[x, y]]/(y, x2 − y) = ⟨1, x⟩ = C2,

so the multiplicity is two. The multiplicity rises because curves are tangent at the
origin.

Exercise 1.3. Let f = x2 − y and g = xy. Compute both geometrically and alge-
braically the multiplicity of the intersection point (0, 0).

1.3. Tools. A basic notion of intersection theory is the degree of a projective variety.
Let Xd ⊂ Pn be a subvariety of dimension d in a projective space. We say that a
subspace Pn−d of codimension d is generic with respect to X if it intersects X
transversally. Generic subspaces with respect to X always exist and form a Zariski
open dense set in the space of all subspaces. This follows from Bertini’s theorem,
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which is an algebro-geometric analog of Sard’s lemma (e.g. see [17, Section 2.6,
Theorem 2]).
The degree of X is the number of intersection points with a generic subspace:

degX = |X ∩ Pn−d|.
Note that an analogous definition makes sense for an affine subvariety in Ad ⊂ Pd,
since for almost all generic subspaces all intersection points X ∩ Pd−n lie in Ad.

Remark 1.4. Let H = X ∩ Pn−1 be a hyperplane section of X ⊂ Pn, that is, the
intersection of X with a hyperplane. Then degX can be thought of as the self-
intersection index of H. Indeed, all hyperplane sections form a family parameterized
by points of (Pn−1)∗ (=hyperplanes in Pn), and d generic hyperplane sections from
this family intersect transversally in degX points.

Here are examples when degree is easy to compute.

Example 1.5. (1) Hypersurface. Let X = {f = 0} be a zero set of a homoge-
neous polynomial f in Pk. Then degX = deg f .

(2) Veronese embedding of P1. Embed P1 into Pn by sending a point (x0 : x1)
to the collection (xd

0 : x
d−1
0 x1 : . . . : x

d
1) of all monomials of degree d in x0 and

x1. Let X ⊂ Pd be the image of P1 under this embedding. Then degX = d
by the Fundamental Theorem of Algebra.

(3) Veronese embedding of P2. Embed P2 to P5 by mapping a point (x0 :
x1 : x2) to the collection (x2

0 : x2
1 : x2

2 : x0x1 : x1x2 : x0x2) of all monomials
of degree 2 in x0, x1 and x2. Let X ⊂ P5 be the image of P2 under this
embedding. Then the degree of X is equal to the number of common zeroes
of two generic quadratic polynomials in P2, that is, deg(X) = 4 (two generic
conics intersect at 4 points).

The following theorem allows one to compute the degree of a projective variety
in many cases. Define the Hilbert function hX : N → N of a projective variety
X ⊂ Pn by setting hX(k) to be the number of linearly independent homogeneous
polynomials of degree k restricted to X. More formally,

hX(k) := dim
(
K(k)[x0, . . . , xn]/(IX ∩K(k)[x0, . . . , xn])

)
is the dimension of the k-th component of the homogeneous coordinate ringK[x0, . . . , xn]/IX

of X (here IX is the homogeneous ideal defining X).

Theorem 1.6 (Hilbert). The Hilbert function is asymptotically equal to a monomial
in k:

hX(k) ∼ akd for k ≫ 0,

where d = dimX and

a =
degX

d!
.

Sometimes, this theorem is used as a definition of the degree and dimension of X.
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Exercise 1.7. Verify Hilbert’s theorem for a hypersurface and for the Veronese
embeddings of Example 1.5.

Remark 1.8. We gave an abridged version of Hilbert’s theorem. More is true: hX(k)
not only grows as a polynomial but also coincides with a polynomial (called the
Hilbert polynomial of X) for large enough values of k.

2. Lectures 3-4: Kushnirenko’s theorem, divisors, Picard group

2.1. Application of Hilbert’s theorem to Kushnirenko’s theorem. Hilbert’s
theorem can be used to prove the following generalization of the Bézout theorem.
Instead of the degree of a polynomial we need a finer combinatorial-geometric in-
variant called Newton polytope.
First, recall few definitions. A Laurent polynomial in n variables x1,. . . , xn is

a finite linear combination of Laurent monomials xk1
1 xk2

2 . . . xkn
n where k1,. . . , kn

are (possibly negative) integers. Assign to each Laurent monomial xk1
1 xk2

2 . . . xkn
n its

exponent (k1, . . . , kn) that can be regarded as a point in the integral lattice Zn ⊂ Rn.
For a Laurent polynomial f , define its Newton polytope Pf ⊂ Rn as the convex hull
of all the exponents of the Laurent monomials occuring in f .

Example 2.1. Take n = 2. Consider the Laurent polynomial f = x1 + x2 + x−1
1 x−1

2 .
Its Newton polytope is the triangle with the vertices (1, 0), (0, 1) and (−1,−1).

Note that the values of Laurent polynomials are defined if x1, . . . , xn do not
vanish. So each Laurent polynomial is a regular function on the complex torus
(C∗)n = {(x1, . . . , xn) | xi ̸= 0} ⊂ Cn.

Theorem 2.2 (Kushnirenko’s theorem). Fix a polytope P ⊂ Rn with integral ver-
tices. Consider a generic collection of n Laurent polynomials whose Newton polytope
is P . Then the number of their common zeroes that lie inside (C∗)n is equal to n!
times the volume of P .

Consider an example for n = 2.

Example 2.3. Let P be the triangle with the vertices (0, 0), (n, 0) and (0, n). Its area
is equal to n2/2. A generic Laurent polynomial with the Newton polygon P is just
a generic usual polynomial in two variables (since there are no negative exponents)
of degree n. By homogenizing we get a generic polynomial on CP2. Note that
the common zeroes in CP2 of two such polynomials will all lie in (C∗)2 ⊂ CP2.
Thus we get a partial case of the Bezout theorem for the projective plane CP2 and
polynomials of equal degrees.

Kushnirenko’s theorem can be proved using intersection theory on toric varieties.
A toric variety of dimension n is an algebraic variety with an action of a complex
torus (C∗)n that has an open dense orbit (isomorphic to (C∗)n). In particular, a
projective toric variety can be viewed as a compactification of a complex torus.
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For every Newton polytope P , we now construct a projective toric variety XP

whose degree is given by Kushnirenko’s theorem. Let a1,. . . , aN be all integer
points inside and at the boundary of the polytope P . Define the embedding

φP : (C∗)n → PN−1; φP : x 7→ (xa1 : . . . : xaN ).

We use multiindex notation, that is, xa means xk1
1 . . . xkn for every a = (k1, . . . , kn) ∈

Zn. Define the variety XP as the Zariski closure of φ((C∗)n).

Exercise 2.4. Apply this construction to the triangle with the vertices (0, 0), (n, 0),
(0, n) and to the square with the vertices (0, 0), (n, 0), (0, n), (n, n). Show that
the resulting projective varieties are P2 and P1 × P1, respectively, embedded using
Veronese and Segre embeddings.

Example 2.5. Let P ⊂ R2 be the trapezium with the vertices (1, 0), (2, 0), (0, 1) and
(0, 2). There are 5 integer points in P : vertices and the point (1, 1). Hence,

φP : (C∗)2 → P4; φP : (x1, x2) 7→ (x1 : x
2
1 : x2 : x

2
2 : x1x2).

The variety XP coincides with the blow-up P̂2
O of the projective plane at the point

O = (1 : 0 : 0). Recall that P̂2
O can be defined as the subvariety of P2×P1 where the

second factor is identified with the variety of lines passing through O in P2. Namely,

P̂2
O := {(a, l) ∈ P2 × P1 | a ∈ l}.

Note that the natural projection

π : P̂2
O → P2; (a, l) 7→ a

is one to one unless a = O while π−1(O) ≃ P1 (the curve π−1(O) is called the
exceptional divisor).

Exercise 2.6. Consider the embedding

(C∗)2 ⊂ P̂2
O; (x1, x2) 7→ p−1(1 : x1 : x2).

Check that the Segre embedding P2 × P1 ↪→ P5 restricted to (C∗)2 ⊂ P̂2
O ⊂ P2 × P1

coinsides with the map φP up to a linear change of coordinates in P5.

It is easy to reformulate Kushnirenko’s theorem in terms of the toric variety XP .

Theorem 2.7 (Kushnirenko’s theorem). The degree of the projective toric variety
XP is equal to n! times the volume of P .

Applying Hilbert’s theorem to the variety XP , one can prove Kushnirenko’s the-
orem. The main steps of the proof are as follows.

Exercise 2.8. Show that hXP
(k) is equal to the number of integer points inside

and at the boundary of the polytope kP . In other words, the Hilbert function of the
projective toric variety XP coincides with the Ehrhart function of the polytope P .
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This exercise combined with an elementary convex-geometric fact stated below
allows one to relate the asymptotic behavior of the Hilbert function of XP to the
volume of P .

Exercise 2.9. Show that the number of integer points inside kP is asymptotically
equal to kn times the volume of P .

Similarly to the Bézout theoerem, Kushnirenko’s theorem can be extended to
Laurent polynomials with different Newton polytopes (Bernstein’s theorem). The
volume gets replaced by mixed volume (see [1]).

2.2. Divisors and line bundles. So far we defined the self-intersection index of a
hyperplane section (and even computed it in many cases using Hilbert’s theorem).
We used that hyperplane sections of a variety X that come from the same projective
embeddingXd ↪→ Pn form a big family of “equivalent” hypersurfaces (parameterized
by hyperplanes in Pn). Moreover, one can choose d transverse hyperplane sections
from this family. However, there are hypersurfaces that can not be realized as
hyperplane sections and, moreover, that do not have any “equivalent” transverse
hypersurfaces.

Example 2.10. Let X = P̂2
O be the blow-up of the projective plane at the point

O = (1 : 0 : 0), and E ⊂ X the exceptional divisor (see Example 2.5). Then there
are no complex curves in X that lie in a small neighborhood of E (with respect to a
Hermitian metric on X) and differ from E. Indeed, if there were such a curve then
it would intersect E in a finite number of points with nonnegative multiplicities.
This would imply that the self-intersection index of E is nonnegative. However, we
will soon see that E2 = −1.

This example indicates that apart from hypersurfaces we should consider more
general objects, namely, divisors (=formal linear combinations of hypersurfaces with
integer coefficients) together with a suitable equivalence relation. These notions arise
naturally in the context of line bundles. For more details on the connection between
line bundles and divisors see Section 3.1 and [7], Section Divisors and line bundles.

Definition 2.11. Let X be an algebraic variety. A Weil divisor D on X is a formal
finite linear combination ∑

i

kiHi,

where Hi is an irreducible algebraic hypersurface in X, and ki is an integer. The
hypersurface |D| = ∪iHi is called the support of D.

Let f be a rational function on X, and H ⊂ X a hypersurface locally defined by
the equation g = 0, where g is a regular function in the neighborhood of a point
x ∈ H. Define the order ordHf of f along the hypersurface H to be the maximal
integer k such that there is a decomposition f = gkh for some function h that is
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regular near x. It is easy to check that the order does not depend on the choice of
the point x ∈ H. Define the divisor (f) of the function f by the formula

(f) =
∑
H

ordHf,

where the sum is taken over hypersurfaces for which ordHf ̸= 0 (there are only
finitely many of them). Such divisors are called principal divisors.

Definition 2.12. A Weil divisor D on X is called Cartier divisor if it is locally
principal, i.e. there is a covering of X by subvarieties Uα such that D ∩ Uα is
principal on Uα.

Remark 2.13. If X is smooth, then every Weil divisor is Cartier. For non-smooth
varieties these two notions may be different. E.g. if X = {xy = z2} ⊂ C3 is a
cone, then the Weil divisor D = {x = z = 0} ⊂ X is not the divisor of any rational
function in the neighborhood of the origin (though 2D is).

Weil divisors form an abelian group, and Cartier divisors form a subgroup in
this group which includes the subgroup of principal divisors. Define the Picard
group Pic(X) of X as the quotient group of all divisors modulo principal divisors.
Two divisors are linearly (or rationally) equivalent if their difference is a principal
divisor, i.e. they represent the same class in the Picard group. One can notice that
definition of Cartier divisors is very similar to the definition of a line bundle over
X (see Definition 3.3 and Exercise 3.5). Comparing these definitions it is not hard
to show that Pic(X) is isomorphic to the group of isomorphism classes of all line
bundles on X (the operation is tensor product).

Example 2.14. (1) Let X be a compact smooth curve. Then a divisor D is a linear
combination of points in X:

D =
∑
ai∈X

kiai.

Define the degree degD of D as the sum
∑

i ki. The divisor of a function f on X is
the sum of all zeroes of f counted with multiplicities minus the sum of all poles of
f counted with their orders:

(f) =
∑

ai∈f−1(0)

(multaif)ai −
∑

bi∈f−1(∞)

(ordbif)bi.

Note that the degree of a principal divisor is always zero. This follows from Lemma
9.3.

• If X = P1 then every degree zero divisor is principal. Indeed, every point
a ∈ P1 is equivalent to any other point, because a − b is the divisor of a
fractional linear function (x− a)/(x− b). Hence, Pic(P1) is isomorphic to Z.
The isomorphism sends a divisor to the degree of the divisor.
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• If X = E is an elliptic curve, i.e. a curve of genus one (one can think of a
generic cubic plane curve). Then not all degree zero divisors are principal.
E.g. for any two distinct points a and b in E, the divisor a−b is not principal.
Indeed, if it were principal, i.e. a−b = (f) for some f : E → P1 then f would
be a one-to-one holomorphic map (this again follows from Lemma 9.3). But
elliptic curve is not homeomorphic to projective line since their genera are
different.

What is true for elliptic curve is that for every three points a, b and O
there exists a unique point c such that the divisor a+ b− c−O is principal
(it is easy to show this using that each elliptic curve is isomorphic to some
cubic plane curve in P2). This allows to define the addition on E by fixing O
(zero element) and putting a + b = c. This turns E into an Abelian group.
In fact, as a complex manifold E is isomorphic to C/Z2 for some integral
lattice Z2 ⊂ C, and this isomorphism is also a group isomorphism.

It follows that E is isomorphic to the subgroup Pic0(E) of degree zero
divisors. The isomorphism sends a ∈ E to the divisor a − O. Then Pic(E)
is isomorphic to E ⊕ Z.

(2) If X = Cn is an affine space, then every divisor is principal and Pic(Cn) =
0. This shows that the notion of Picard group is more suited for study of the
intersection indices on compact varieties. For instance, to study intersection indices
of hypersurfaces in Cn one can consider everything in the compactification CPn.
There are also other ways to define intersection theory on non-compact varieties, in
particular in Cn. We will discuss them later.
(3) IfX = Pn is a projective space then Pic(X) = Z. Indeed, ifD is a hypersurface

given by the equation {f = 0}, then it is linearly equivalent to the degree of f times
the class of hyperplane H = {x0 = 0} in Pn (since (D − deg f ·H) is the divisor of

the rational function f/xdeg f
0 ).

(4) LetX ⊂ Pn. Then all hyperplane sections ofX are linearly equivalent divisors.
Their class in the Picard group of X is called a divisor of hyperplane section.

Exercise 2.15. Show that a divisor of hyperplane section is Cartier.

Definition 2.16. A divisor on X is called very ample if it is linearly equivalent to
the divisor of hyperplane section for an embedding X ↪→ Pn.

Let d denote the dimension of a projective variety X. We now define a symmetric
d-linear map

(Pic(X))d → Z, (D1, . . . , Dd) → D1 · . . . ·Dd,

whose values yield the intersection indices of divisors on X. In particular, we want
D1 · . . . ·Dd be equal to |D1∩ . . .∩Dd| whenever D1, . . . , Dn are honest hypersurfaces
that intersect transversally. The classes of very ample divisors form a semigroup in
the Picard group of X (i.e. the sum of two very ample divisors is also very ample),
and this semigroup generates Pic(X) (see [7], Subsection 1.4, Corollary from Kodaira
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Embedding Theorem). Very ample divisors can be freely moved into transversal po-
sition, hence, we can define their intersection indices simply by counting intersection
points. Since any divisor is the difference of two very ample divisors we can extend
the definition of the intersection index by linearity to all divisors.
A useful fact from linear algebra is that any Z-valued symmetric d-linear map is

uniquely defined by the restriction to the diagonal {(D, . . . , D), D ∈ Pic(X)} (this
is usually formulated for vector spaces but is true for abelian groups as well). So
to compute the intersection index of any collection of divisors on X it is enough
to compute the self-intersection index of every divisor. Moreover, it is enough to
compute the self-intersection index of every very ample divisor on X (that is, the
degree of X in different projective embedding). Hence, these computations can be
in principle reduced to Hilbert’s theorem.

Example 2.17. (1) Projective spaces. Let H be the divisor of a hyperplane in
Pn. Then Hn = deg(Pn) = 1. For any D ∈ Pic(Pn) we have D = kH for
k ∈ Z, hence, Dn = kn by n-linearity of the intersection index. It is easy
to see that the unique symmetric n-linear form Zn → Z (polarization of kn)
in this case is (k1, . . . , kn) 7→ k1 · · · kn. Together with Example 2.14(3) this
proves Bézout theorem.

(2) Blow-up of the projective plane. Consider again the blow-up X = P̂2
O

and the exceptional divisor E ⊂ X (see Example 2.5). Let us compute E2.
Consider the function f = x1/x0 on P2. Then the composition fπ (where
π : X → P2 is the projection) is a function on X. It is easy to see that the
divisor of fπ is equal to E +H1 −H0, where H0 and H1 are the pull-backs
to X of the hyperplanes {x0 = 0} and {x1 = 0}, respectively (i.e. Hi is
an irreducible hypersurface in X such that p(Hi) = {xi = 0}). Hence, E is
linearly equivalent to H0 −H1. Then

E2 = E(H0 −H1) = −1

since E and H0 do not intersect and E and H1 intersect transversally at one
point. We see that the self-intersection index of a hypersurface might be
negative. In particular, it is impossible to find an honest curve E ′ ̸= E that
is linearly equivalent to E. We will necessarily have a negative component
as well.

(3) Product of projective spaces. It is easy to show that Pic(Pn × Pm) =
Z⊕Z, and the basis is given by the divisors of hyperplane section H1 and H2

corresponding to the projections of Pn×Pm onto the first and second factors,
respectively. A straightforward calculation gives that H i

1H
j
2 = 0 unless i = n

and j = m, and Hn
1H

m
2 = 1. In particular, we get that the self-intersection

index of the divisor D = dH1 + eH2 is equal to
(
m+n
n

)
dnem.

3. Lectures 5-7: vector bundles, Chow ring, Chern classes



11

3.1. Vector bundles. A connection between line bundles and divisors can be ex-
tended to a more general setting: with every vector bundle E on X one can associate
a collection of subvarieties in X (Chern classes) considered up to rational equiva-
lence.
Recall the definition of a vector bundle. A variety X×Cr is called a trivial vector

bundle of rank r. A variety E together with a projection π : E → X is called
a vector bundle of rank r over X if there exists a covering of X by subvarieties
Uα such that E is trivial over Uα. More precisely, there exists an isomorphism
fα : Uα × Cr ≃ π−1(Uα) such that π0 ◦ fα = π (where π0 : Uα × Cr → Uα is the
projection to the first factor) and the resulting transition maps

gαβ := f−1
β ◦ fα : (Uα ∩ Uβ)× Cr → π−1(Uα ∩ Uβ) → (Uα ∩ Uβ)× Cr

are linear on every vector space x × Cr, that is, gαβ(x) ∈ GLr(C). In particular,
if E is a line bundle (that is, r = 1), then E is encoded by a collection of rational
functions gαβ such that gαβ is regular and non-zero everywhere on Uα ∩ Uβ.
The usual operations on vector spaces (such as taking dual, tensor products,

quotients, symmetric powers) can be easily extended to the setting of vector bundles.

Example 3.1. Very important examples of line bundles are the tautological and
quotient tautological line bundles on the projective space Pn. The fiber of the
tautological line bundle O(−1) over a point x ∈ Pn is the line lx ⊂ Cn+1 represented
by x. The trivializing covering is given by standard affine charts Ui = {xi ̸= 0} ⊂ Pn

and the gluing functions gij :=
xj

xi
.

If we regard Pn as the variety of hyperplanes in (Cn+1)∗ then the same construction
yields the tautological bundle H of rank n embedded into the trivial bundle On+1 :=
Pn×Cn+1 of rank n+1. The tautological quotient line bundle O(1) is defined as the
quotient vector bundle On+1/H.

Two vector bundles π1 : E1 → X and π2 : E2 → X are isomorphic if there is an
isomorphism φ : E1 ≃ E2 such that π2 ◦ φ = π1.

Exercise 3.2. Show that O(1) ≃ O(−1)∗.

Definition 3.3. Let D be a Cartier divisor on X (see Definition 2.12). Define the
line bundle O(D) associated with D using the gluing functions gαβ := fα

fβ
.

Example 3.4. If X = Pn and D is a hyperplane, then O(D) ≃ O(1).

Exercise 3.5. Check that O(D) is well-defined and that O(D1) ≃ O(D2) if and
only if D1 and D2 are linearly equivalent.

Alternatively, vector bundles can be encoded by their sheaves of global sections.
A rational map s : X → E is called a section of E if π ◦ s = idX . If s is regular
everywhere on X then s is called a global section of E. The space of global sections
is denoted H0(X,O(E)). In particular, it is clear that a vector bundle of rank r is
trivial iff it has r global sections s1,. . . , sr such that s1(x),. . . , sr(x) form a basis in
x× Cr for all x ∈ X.
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Exercise 3.6. Find H0(Pn,O(k)), where O(k) := O(1)⊗k.

Chern classes of a vector bundle measure non-triviality of the bundle, and in many
important cases can be defined as degeneracy loci of global sections. Namely, assume
that E has is globally generated, that is, there exists a finite-dimensional subspace
Γ ⊂ H0(X,O(E)) such that at every point x ∈ X the sections in Γ span the vector
space π−1(x) ⊂ E. Let s1, . . . , sr ∈ Γ be a generic collection of sections. Define their
i-th degeneracy locus (for i = 1,. . . , r) as the subvariety of all points x ∈ X such
that the vectors s1(x), . . . , sr−i+1(x) are linearly dependent. In particular, if E = L
is a line bundle, then there is only one degeneracy locus, which is a hypersurface in
X. The class of this hypersurface in Pic(X) is called the first Chern class of L and is
denoted by c1(L). One can extend this definition of the first Chern class to all line
bundles (not necessarily globally generated) using rational sections and counting
multiplicities. Alternatively, one can use that c1(L1 ⊗ L2) = c1(L1) + c1(L2) and
extend the definition by linearity from very ample line bundles to all line bundles
(using again that any line bundle is the difference of two very ample line bundles).

Example 3.7. Let X = Pn and L = O(1). Then O(1) is globally generated by the
sections x0, x1,. . . , xn. Let s = a0x0 + . . . + anxn be a linear combination of these
sections. The first degeneracy loci of s is the hyperplane {a0x0+. . .+anxn = 0} ⊂ Pn.
Hence, c1(O(1)) is the class of a hyperplane section in Pic(Pn).

Exercise 3.8. Let D ∈ Pic(X) be a very ample Cartier divisor. Show that c1(O(D)) =
[D] where [D] ∈ Pic(X) is the class of D in the Picard group.

Put n = dim Γ. There is a useful map φΓ from X to the Grassmannian G(n−r, n)
of (n − r)-subspaces in Cn. Assign to each point x ∈ X the subspace φΓ(x) of all
sections from Γ that vanish at x. By construction of the map φΓ the vector bundle
E coincides with the pull-back of the tautological quotient vector bundle over the
Grassmannian G(n− r, n). Recall that the tautological quotient vector bundle over
G(n− d, n) is the quotient of two bundles. The first one is the trivial vector bundle
whose fibers are isomorphic to Γ, and the second is the tautological vector bundle
whose fiber at a point Λ ∈ G(N−d,N) is isomorphic to the corresponding subspace
Λ of dimension n− r in Γ. The map φΓ allows one to relate the Chern classes of E
with the Chern classes of the tautological quotient bundles on the Grassmannian.

Exercise 3.9. Let X = P1, E = O(n) and Γ = the space generated by all degree n
monomials in x0, x1. Show that φΓ coincides with the Veronese embedding P1 ↪→ Pn.

3.2. Chow rings. So far we only dealt with intersection indices of divisors. This
is a partial case of intersection product of subvarieties of arbitrary dimension (in
particular, their intersection is not necessarily a finite number of points). In order to
be able to move divisors we used linear equivalence relation which led us to the notion
of the Picard group. Below we use a similar equivalence relation on subvarieties of
arbitrary codimension in order to define the Chow group (that contains the Picard



13

group as a subgroup) and introduce the intersection product which turns the Chow
group into a ring. For more details see [4].
Let X be an algebraic variety of dimension d.

Definition 3.10. Subvarieties Z and Z ′ in X of codimension i are rationally equiv-
alent if there exists a subvariety W of codimension i− 1 such that W contains both
Z and Z ′ as rationally equivalent divisors.

Note that the rational equivalence is finer than the homological equivalence, i.e.
any two rationally equivalent subvarieties are also homologous (which is easy to
show using the definition of rational equivalence).
The i-th Chow group CH i(X) consists of all formal integral linear combinations

of subvarieties of codimension i in X quotiented by the rational equivalence relation.
In particular, the Chow group CH1(X) coincides with the Picard group of X.

Example 3.11. (1) Let X be the projective space CPn. Then CH i(X) = Z if 0 ≤
i ≤ n.
(2) Let X be an elliptic curve over C. Then CH1(X) = Pic(X) = X ⊕ Z, while

CH0 = Z.

Let Y and Z be two irreducible subvarieties in X of codimensions d1 and d2,
respectively. They define classes in CHd1(X) and CHd2(X). It is possible to define
the intersection product [Y ] · [Z] as a class in CHd1+d2(X) in such a way that

[Y ] · [Z] = [Y ∩ Z]

whenever Y and Z have transverse intersection. In what follows, we will always be
able to move Y and Z into transverse position using rational equivalence. The ring

CH∗(X) :=
d⊕

i=0

CH i(X)

is called the Chow ring of X. This ring is a graded commutative ring with 1 (namely,
1 = [X]), and the Picard group coincides with the degree one component of the Chow
ring. The highest degree component CHd(X) is generated by classes of points in
X, in particular, there is the degree homomorphism

deg : CHd[X] → Z, deg :
∑

ai[pi] 7→
∑

ai.

Note that the intersection product of divisors that we defined in Section 2.2 can be
defined by composing the degree homorphism with the d-linear map:

CH1(X)× . . .× CH1(X) → CHd; (D1, . . . , Dd) 7→ D1 · · ·Dd.

Chow ring is an important example of an oriented algebraic cohomology theory,
that is, a functor X → A∗(X) from varieties to graded commutative ring with 1
that satisfies the following properties:
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(1) Pull-back. For any morphism f : X → Y there exists a ring homomorphism
f ∗ : A∗(Y ) → A∗(X) (in particular, A∗(X) is an A∗(Y )-module under multiplication
by f ∗(A∗(Y )) ⊂ A∗(X)).
(2) Push-forward. For any projective morphism f : X → Y such that dim Y =

dim X + k there exists a homomorphism of A∗(Y )-modules f∗ : A
∗(Y ) → A∗+k(X).

These properties satisfy several axioms (see [16, Definition 1.1.2] for a full list).
When computing Chow rings and intersection products we will mostly use the fol-
lowing two axioms.
Projection formula. For any projective morphism f : X → Y and any α ∈

A∗(X) and β ∈ A∗(Y ) we have

f∗(α · f ∗(β)) = f∗(α) · β.

Projective bundle formula. Let E → X be a vector bundle of rank r over X.
Denote by Y = P(E∗) the variety of hyperplanes of E, or equivalently, of lines in
E∗ (fibers of the natural projection E → X are isomorphic to Pr−1). Consider the
tautological quotient line bundle OE(1) on Y whose restriction on each fiber of Y
over X coincides with OPr−1(1). Define ξ = s∗s∗(1Y ) ∈ A1(Y ) where s : Y → OE(1).
Then A∗(Y ) is a free A∗(X)-module with basis (1, ξ, . . . , ξr−1).
For Chow rings, these properties and axioms are verified in [4]. Note that pull-

backs and push-forwards for a morphism f : X → Y in this case can be defined by
taking preimages and images, respectively, of subvarieties in Y and in X, whenever
the subvarieties are in general position with respect to the morphism f .

Exercise 3.12. Let L → X be a line bundle on X, and s : X → L a global section,
such that s(X) is transverse to s0(X) (where s0 : X → L denotes a zero section).
Show that s∗0s∗(1X) = c1(L).

Remark 3.13. Note that the projective bundle formula gives a meaningful result for
Chow rings already in the simplest caseX = pt. In this case, Y = Pr−1, in particular,
CHr(Y ) = 0, hence, ξr = 0 by dimension reasons. The projective bundle formula
implies the ring isomorphism

CH∗(Pr−1) = Z[ξ]/(ξr).

The formal variable ξ under this isomorphism gets mapped to the class of a hyper-
plane section in Pn.

3.3. Chern classes. We now assign to every vector bundle π : E → X of rank
r the elements c1(E) ∈ CH1(X),. . . , cr(E) ∈ CHr(X) called the Chern classes of
E. It is convenient to encode the Chern classes by the single (non-homogeneous)
element

c(E) := 1 + c1(E) + . . .+ cr(E) ∈ CH∗(X)

called the total Chern class of X.
If E is globally generated, define ci(E) as the i-th degeneracy loci of r generic

global sections of E (see Section 3.1). In particular, the total Chern class of a trivial
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vector bundle is 1. To compute the Chern classes of non-globally generated bundles
it is often enough to use the Whitney sum formula.

Theorem 3.14 (Whitney sum formula). If 0 → E1 → E → E2 → 0 is a short
exact sequence of vector bundles on X, then c(E) = c(E1)c(E2).

Example 3.15. Let us compute the Chern classes of the bundle H on Pn from Ex-
ample 3.1. We have an exact sequence of vector bundles on P n:

0 → H → On+1 → O(1) → 0.

By Example 3.7, we have c(O(1)) = 1 + ξ, where ξ ∈ CH1(Pn) is the class of a
hyperplane. Hence, by the Whitney sum formula

c(H) =
1

(1 + ξ)
= 1− ξ + . . .+ (−1)n−1ξn−1.

We get that ci(H) = (−1)iξi.

Exercise 3.16. Find the Chern classes of the tautological bundle and quotient bun-
dle on the Grassmannian G(2, 4) in terms of Schubert cycles.

The Chern classes are functorial, that is, for any morphism f : Y → X we
have ci(f

∗E) = f ∗ci(E). In fact, Chern classes are uniquely characterized by four
properties: vanishing of cn(E) for n > r, functoriality, Whitney sum formula and
normalization (that is, c1(OPn)= class of a hyperplane).
Note that the Whitney sum formula can be used to make the projective bundle

formula more precise. Consider again the variety P(E∗) of hyperplanes in E, and
denote by p the natural projection p : Y → X. Denote by ξ = s∗s∗(1Y ) the first
Chern class of the tautological quotient line bundle OE(1) on Y .

Theorem 3.17 (Projective bundle formula via Chern classes). There is a ring
isomorphism:

CH∗(Y ) = CH∗(X)[ξ]/(
r∑

j=0

(−1)jcj(E)ξr−j).

The isomorphism identifies a polynomial b0+ b1ξ+ . . .+ br−1ξ
r−1 in CH∗(X)[ξ] with

the element p∗b0 + (p∗b1)ξ + . . .+ (p∗br−1)ξ
r−1 in CH∗(Y ).

Proof. The fact that CH∗(Y ) splits into the direct sum p∗CH∗(X)⊕ ξp∗CH∗(X)⊕
. . . ⊕ ξr−1p∗CH∗(X) follows from the projective bundle formula for Chow rings.
It remains to express ξr as a linear combination of 1,. . . , ξr−1 with coefficients in
CH∗(X).
Let us prove the relation

r∑
j=0

(−1)jcj(p
∗E)ξr−j = 0. (∗)
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Consider a short exact sequence of vector bundles on Y (generalizing an analogous
sequence on Pr−1):

0 → HE → p∗E → OE(1) → 0,

where HE is the tautological hyperplane bundle on Y . By the Whitney sum formula
we have that the total Chern class c(p∗E) is equal to the product c(HE)c(OE(1)).
Since c(OE(1)) = 1 + ξ we have c(p∗E) = c(HE)(1 + ξ). We now divide this

identity by (1 + ξ) (that is, multiply by
∑r+dimX−1

j=0 (−1)jξj) and get that c(HE) =

c(p∗E)(
∑r+dimX−1

j=0 (−1)jξj). In particular,

cr(HE) = (−1)r
r∑

j=0

(−1)jcj(p
∗E)ξr−j,

so the relation (∗) is equivalent to the vanishing of the r-th Chern class of the bundle
HE (which has rank r − 1). �

It is useful to define the Chern roots x1,. . . , xr of E as formal variables of degree
1 such that

ci(E) = si(x1, . . . , xr),

where si(x1, . . . , xr) =
∑

1≤k1<...<ki≤r xk1 · · · xkr is the i-th elementary symmetric
function. If E is split, that is, E = L1 ⊕ . . . ⊕ Lr is a direct sum of line bundles,
then xi = c1(Li). In particular, the total Chern class of the symmetric power SnE
is equal to ∏

1≤k1≤...≤kn≤r

(1 + xk1 + . . .+ xkn)

by the Whitney sum formula. Note that the right hand side is symmetric in x1,. . . ,
xr, that is, makes sense even if E is not split. Using the splitting principle one can
show that

c(SnE) =
∏

1≤k1≤...≤kn≤r

(1 + xk1 + . . .+ xkn)

for any vector bundle E.
Similarly, the splitting principle implies the relation between the Chern classes of

the dual vector bundles:

ci(E) = (−1)ici(E
∗).

4. Lecture 8: Chow rings of complete flag varieties and
Grassmannians, applications to enumerative geometry

We now apply projective bundle formula in order to describe Chow rings of special
varieties that are important for enumerative geometry.
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4.1. Flag varieties. The complete flag variety Fn is the variety of all complete flags
of subspaces in Cn:

Fn = {{0} = V 0 ⊂ V 1 ⊂ . . . ⊂ V n−1 ⊂ V n = Cn},
where dim V i = i. More generally, for any sequence m• = (m1, . . . ,mk) such that
0 < m1 < . . . < mk < n, the partial flag variety Fm• is the variety of all partial flags
of the form

{0} = V 0 ⊂ V m1 ⊂ . . . ⊂ V mk ⊂ V n = Cn.

Remark 4.1. If m• = (k), then Fm• = G(k, n) is the Grassmannian of k-dimensional
subspaces in an n-dimensional vector space.

Grassmannians and complete flag varieties are two extreme cases of partial flag
varieties. At first glance it might seem that Grassmannians are simpler but we shall
see soon that in some aspects complete flag varieties are easier to study.

Example 4.2. (1) For n = 2, the complete flag variety F2 = CP1 is the projective
line.
(2) For n = 3, a point in F3 is a pair (Λ,Π), where Λ is a line in C3 and Π is a

plane. The pair must satisfy incidence condition Λ ⊂ Π. Hence, we can describe F3

as the following incidence variety

F3 = {(Λ,Π) ∈ CP2 × CP2 | Λ ⊂ Π}.
Here we identified the set of all lines and the set of all planes in C3 with CP2. It is
easy to check that in homogeneous coordinates (x0 : x1 : x2) and (y0 : y1 : y3) the flag
variety in CP2 ×CP2 is given by the equation x0y0 + x1y1 + x2y2 = 0. In particular,
dim F3 = 3. Note that this is less than the dimension of the Grassmannian G(2, 4),
which is the smallest example of a Grassmannian different from a projective space.
The flag variety F3 will be our main example.
It is more convenient to represent the flag (Λ,Π) by its projectivization (P(Λ),P(Π)),

that is by the pair (a, l) where a is a point in P2 and l ⊂ P2 is a line.

So far we have not endowed the flag variety Fn with a structure of algebraic variety
or smooth manifold (except for F3, which we realized as a smooth hypersurface in
P2×P2). There are different approaches to define such a structure on Fn. We will use
the fact that Fn is a homogeneous space under the left action of the algebraic group
G = GLn(C). Each operator g ∈ GLn(C) takes a flag F = (V 1 ⊂ . . . ⊂ V n−1)
to the flag gF := (gV 1 ⊂ . . . ⊂ gV n−1). It is easy to check that this action
is transitive. Fix a basis e1,. . . , en in Cn, and denote by F 0 the standard flag
F 0 := (⟨e1⟩ ⊂ ⟨e1, e2⟩ ⊂ ⟨e1, e . . . , en−1⟩). The stabilizer of F 0 in G is the upper-
triangular subgroup B, which is a closed algebraic subgroup of G. Hence, the
quotient space G/B has a structure of a smooth algebraic variety. We now identify
Fn with G/B. It is easy to show that Fn is compact and has dimension n(n− 1)/2.

Definition 4.3. Let G be a complex reductive group, and B ⊂ G a Borel subgroup.
The variety X = G/B is called the generalized complete flag variety X = G/B.
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An alternative way to describe the generalized flag variety G/B as a smooth
manifold is to replace G with a maximal compact Lie subgroup K ⊂ G. Let T ⊂ K
be a maximal torus (so T is isomorphic to S1× . . .×S1). Then it is not hard to show
that G/B and K/T (regarded as real differentiable manifolds) are diffeomorphic.
This implies in particular that G/B is compact. For instance, in the case G =
GLn(C) we can take Un(C) as K and the diagonal subgroup of K as T . The
desired diffeomorphism then follows from the fact that every flag can be realized as
a standard flag for some unitary basis (by Gram-Schmidt orthogonalization process).

Remark 4.4 (K/T versus G/B). Some books and papers (e.g. on algebraic geometry
or algebraic groups) define the flag variety as G/B and think of it being an algebraic
variety, while others (e.g. on differential or symplectic geometry) rather use K/T
and regard it as a real analytic manifold. Note that some constructions allowed by
the latter approach can not be translated to algebro-geometric setting (working over
reals sometimes gives more freedom than working over complex numbers). Here is
one example.

Example 4.5. Recall that the Weyl group of K (which is the same as the Weyl group
of G) can be identified with N(T )/T , where N(T ) is the normalizer of the maximal
torus T , and hence acts on K/T as follows:

n · kT := (kn)T.

This action is smooth but not holomorphic.

Exercise 4.6. Show that if G = GL2(C), then the nontrivial element of N(T )/T ≃
S2 acts on F2 ≃ CP1 by complex conjugation z → z̄.

In our lectures we work in the algebro-geometric setting. So for us the flag variety
isG/B. Most of the results we will discuss are true for arbitrary generalized complete
flag varieties but some are only true for Fn. So we will distinguish between the flag
variety for GLn and the flag variety G/B for arbitrary reductive group G. The
former will be denoted by Fn and the latter by X.
We now describe the Chow ring ofX. First, note that the Chow ring CH∗(X)⊗ZQ

with rational coefficients is generated multiplicatively by the Picard group Pic(X).
Moreover, if X = Fn, this statement is already true over integers. Note that there
are plenty of tautological vector bundles and various their quotients on Fn. We will
be particularly interested in the line bundles L1,. . . , Ln defined by the condition
that the fiber of Li at the flag

{{0} = V 0 ⊂ V 1 ⊂ . . . ⊂ V n−1 ⊂ V n = Cn}

is equal to the quotient V i/V i−1.

Theorem 4.7 (Borel presentation). Let X = Fn. Then there is an isomorphism of
graded rings

CH∗(X) = Z[x1, . . . , xn]/S,
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where x1,. . . , xn have degree one, and S is the ideal generated by homogeneous
symmetric polynomials of positive degree. The isomorphism sends xi to c1(Li).
In particular, the Picard group of Fn is generated by the line bundles L1,. . . , Ln

with the single relation L1 ⊗ . . .⊗Ln = O.

Remark 4.8. One can show that the monomials xk1
1 . . . x

kn−1

n−1 for k1 ≤ n − 1, k2 ≤
n− 2,. . . , kn−1 ≤ 1 form a basis in Z[x1, . . . , xn]/S. In particular, it is easy to check
that xn = −x1 − . . .− xn−1 mod S and xn

i = 0 mod S.

Example 4.9. For n = 3, Theorem 4.7 gives

CH∗(F3) ≃ Z[x1, x2, x3]/(x1 + x2 + x3, x1x2 + x2x3 + x1x3, x1x2x3),

or if we use that x3 = −x1 − x2,

CH∗(F3) ≃ Z[x1, x2]/(x
2
1 + x1x2 + x2

2, x
3
1),

and a basis in CH∗(F3) consists of monomials 1, x1, x2, x
2
1, x1x2, x

2
1x2. In particular,

the dimensions bi := dim CH i(F3) of Chow groups are the following: b0 = b3 = 1,
b1 = b2 = 2.

Below we outline a proof of Theorem 4.7 based on the successive applications of
the projective bundle formula (see Theorem 3.17). For more details see the proof of
[15, Theorem 3.6.15].
Here is a crucial observation: Fn can be constructed from a point by successive

projective bundle constructions.

Example 4.10. (1) For n = 2, we have F2 = P(C2) ≃ CP1 for a trivial vector bundle
C2 of rank 2 over a point.
(2) For n = 3, define P1 = P(C3∗) for a trivial vector bundle C3 of rank 3 over

a point, that is, P1 is the variety of planes in C3. Then it is easy to check that
F3 = P(V∗), where V is the tautological rank two vector bundle over P1 defined as
follows. The points in P1 are planes in C3, and the fiber of V over such a point is
the corresponding plane in C3. (Note that for any rank two vector bundle V there
is a canonical isomorphism P(V ) ≃ P(V ∗) coming from the fact that lines in C2 are
the same as hyperplanes. However, it is not true that V is necessarily isomorphic
to V ∗.)

Similarly, for arbitrary n we define Pi for 0 ≤ i < n as the variety of partial flags
in Cn of the form (V n−i ⊂ V n−i+1 ⊂ . . . ⊂ V n−1). Then every Pi for i ≥ 1 is the
projective bundle over Pi−1, namely, Pi = Pi−1(V∗

n−i+1) is the variety of hyperplanes
in Vn−i+1. Since P0 = pt and Pn−1 = Fn, we get a sequence of projective fibrations

Fn → Pn−1 → . . . → P1 → pt.

Note that in the proof of [15, Theorem 3.6.15] the dual sequence of the partial
flag varieties is used (e.g. P1 becomes the variety of lines in Cn not hyperplanes).
However, our choice of Pi is more natural since it allows to extend the same proof to
arbitrary oriented cohomology theories such as algebraic cobordism (see [6, Theorem
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2.7] for more details). We can now apply the projective bundle formula (n−1) times.
Every time we recover the Chow ring of Pi from that of Pi−1 using the Chern classes
of Vn−i+1 and in the end get the Chow ring of Pn−1 = Fn.

Example 4.11. For n = 3, there are two steps. First, we get CH∗(P1) = Z[x1]/(x
3
1)

(since P1 ≃ P 3). Then we get CH∗(F3) = CH∗(P2)[x2]/(x
2
2−c1x2+c2) where c1 and

c2 are the Chern classes of V2. Applying results of Example 3.15 (since V2 = H on
P3) we get c1 = −x1 and c2 = x2

1. Thus we get exactly the presentation of Example
4.9 for CH∗(F3).

4.2. Grassmannians. Theorem 4.7 implies an analogous presentation for the Chow
ring of the Grassmannian G(k, n). Note that CH∗(G(k, n)) (for k ̸= 1, n − 1) is
not multiplicatively generated by Pic(G(k, n)) ≃ Z. This is why the multiplicative
structure of CH∗(Fn) has a more direct description than that of CH∗(G(k, n)).

Corollary 4.12. Let Z[x1, . . . , xn]
Sk×Sn−k ⊂ Z[x1, . . . , xn] denote the subring of poly-

nomials invariant under all permutations that preserve the partition of variables
x1, . . . , xn into two sets {x1, . . . , xk} and {xk+1, . . . , xn}. Then there is an isomor-
phism of graded rings

CH∗(G(k, n)) ≃ Z[x1, . . . , xn]
Sk×Sn−k/S.

Here deg xi = 1.
The isomorphism sends the i-th Chern class of the tautological and quotient tauto-

logical vector bundles on G(k, n) to si(x1, . . . , xk) and si(xk+1, . . . , xn), respectively.

In particular, CH∗(G(k, n)) is multiplicatevely generated by the Chern class of
the tautological bundle (or quotient tautological bundle). To prove this corollary
one can use the “forgetful” projection Fn → G(k, n) (a complete flag gets mapped
to its k-th subspace).

Example 4.13. For G(2, 4) we get

CH∗(G(2, 4)) = Z[x1, x2, x3, x4]
S2×S2/S =

= Z[x1 + x2, x1x2]/((x1 + x2)
3 − 2(x1 + x2)x1x2, (x1 + x2)

2x1x2 − x2
1x

2
2).

Put c1 := c1(τ) = x1 + x2 and c2 := c2(τ) = x1x2, where τ is the tautological vector
bundle on G(2, 4). Then c1 and c2 satisfy the identities

c31 = 2c1c2, c21c2 = c22.

Let us give a geometric description of the Chern classes of the quotient tautological
vector bundle τ̄ on the Grassmannian G(k, n). This bundle is globally generated.
Indeed, every vector v ∈ Cn defines a global section sv of τ̄ as follows:

sv(Λ) = (v mod Λ) ∈ Cn/Λ.

Here Λ denotes a point of G(k, n) as well as the corresponding k-space in Cn. If
v1,. . . , vn is a basis in Cn, then the corresponding global sections sv1 ,. . . , svn ob-
viously generate τ̄ . Hence, the i-th Chern class of τ̄ can be defined as the i-th
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degeneracy locus of sv1 ,. . . , svn (see Section 3.1). This is equivalent to the following
definition. Let V k ⊂ Cn denote the subspace spanned by v1,. . . , vn. Then

ci(τ̄) = {Λ ∈ G(k, n) | Λ ∩ V n−i+1 ̸= 0}.

This is one the Schubert cycles on G(k, n).

Reminder. Recall that every collection of integers d1, d2, . . . dk, such that 1 ≤ d1 < . . . <
dk ≤ n (that is, every Young diagram inscribed in the rectangle k × (n− k)), defines the
Schubert cell CV (d1, . . . , dk) as follows:

CV (d1, . . . , dk) = {Λ ∈ G(k, n) | dim(Λ ∩ V j) = i iff di ≤ j < di+1.}

Equivalently, the intersection dimensions dim(Λ ∩ V j) form the sequence

(0, . . . , 0︸ ︷︷ ︸
d1−1

, 1, . . . , 1︸ ︷︷ ︸
d2−d1

, . . . , k − 1, . . . , k − 1︸ ︷︷ ︸
dk−dk−1

, k, . . . , k︸ ︷︷ ︸
n−dk+1

).

Sometimes this sequence is used instead of the sequence d1,. . . , dk in order to label the
Schubert cell.

The Zariski closure of the Schubert cell is called the Schubert variety, and its class in
CH∗(G(k, n)) is called the Schubert cycle. The Schubert cell depends on the choice of a
complete flag F = (V 1 ⊂ . . . ⊂ V n−1), however, different choices of a flag yield different
GLn-translates of the same subvariety. In particular, the corresponding Schubert varieties
are rationally equivalent and give the same Schubert cycle.

Exercise 4.14. Show that ci(τ̄) is the Schubert cycle defined by the Schubert cell
CF (n− k − i+ 1, n− k + 2, n− k + 3, . . . , n).

Example 4.15. The Grassmannian G(2, 4) has 6 Schubert cells: CF (3, 4), CF (2, 4),
CF (1, 4), CF (2, 3), CF (1, 3), CF (1, 2). We have

c1(τ̄) = [CF (2, 4)], c2(τ̄) = [CF (1, 4)]

If we identify vector planes in C4 with projective lines in P3, then CF (2, 4) consists

of all lines that intersect a given line, and CF (1, 4) consists of all lines that pass
through a given point. In particular, the Schubert problem about 4 lines in P3

reduces to the computation of c1(τ̄)
4 in CH∗(G(2, 4)).

Note that the Chern classes of τ can be easily computed in terms of the Chern
classes of τ̄ by the Whitney sum formula applied to the short exact sequence

0 → τ → On → τ̄ → 0.

It is not hard to check that the ideal S of relations from Corollary 4.12 is generated
by the relations coming from this Whitney sum formula. In particular, Corollary
4.12 can be reformulated in more geometric terms as follows.

Corollary 4.16. There is an isomorphism of graded rings

CH∗(G(k, n)) ≃ Z[c1, . . . , ck; c̄1, . . . , c̄n−k]/I,
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where deg ci = deg c̄i = i, and I is the ideal generated by all homogeneous relations
in the identity

(1 + c1 + . . .+ ck)(1 + c̄1 + . . .+ c̄n−k) = 1.

The isomorphism sends c̄i to the Schubert cycle defined by the Schubert cell CV (n−
k − i+ 1, n− k + 2, . . . , n).

4.3. Enumerative geometry. We now formalize Schubert’s solution to the prob-
lem:
How many lines in P3 intersect 4 given lines in general position?
By Example 4.15 the answer is equal to the coefficient k in the identity c1(τ̄)

4 =
k[pt] in CH4(G(2, 4)). Let us compute k. By the Whitney sum formula applied to

0 → τ → On → τ̄ → 0.

we have c1(τ̄) = −c1(τ) and c1(τ̄)c1(τ) + c2(τ̄) = −c2(τ). Hence,

c21(τ̄) = c2(τ̄) + c2(τ). (∗∗)
Note that all terms in this identity have geometric meaning. Namely, c21(τ̄) is rep-
resented by the variety of lines that intersect two given lines in general position,
c2(τ̄) — by the variety of lines that pass through a given point, and c2(τ) = c2(τ

∗) —
by the variety of lines that are contained in a given plane.

Remark 4.17. In terms of Schubert’s conditions, identity (∗∗) says that
σ1 · σ2 = σa + σΠ,

where σi, σa, σΠ are the conditions that a line intersects a given line li, contains a
given point a, lies in a given plane Π, respectively. Note that if l1 and l2 are not
general position but intersect at exactly one point, then obviously σ1σ2 = σa + σΠ,
where a = l1 ∩ l2, and Π = l1+ l2 (that is, a line intersects both l1 and l2 iff it either
contains a or lies in Π). Identity (∗∗) implies that if lines l1 and l2 are in general
position (that is, do not intersect), then it is still true that σ1σ2 = σa + σΠ (where
a is now any point and Π is any plane) modulo a natural equivalence relation on
conditions (coming from the rational equivalence).
It turns out that Schubert’s idea of degenerating the intersection of Schubert

varieties so that it is still multiplicity-free but splits into smaller Schubert varieties
works for arbitrary Grassmannians (see [18]).

It is now easy to compute c1(τ̄)
4. By (∗∗) we have

c1(τ̄)
4 = (c2(τ̄) + c2(τ))

2 = c2(τ̄)
2 + 2c2(τ̄)c2(τ) + c2(τ)

2.

All terms on the right hand side of the second equality can be computed by simple
geometric arguments. For instance, c2(τ̄)

2 is represented by the variety of lines in P3

that pass through two distinct points, hence, c2(τ̄)
2 = [pt]. Similarly, c2(τ̄)c2(τ) = 0

and c2(τ)
2 = [pt]. Hence, c1(τ̄)

4 = 2[pt], and k = 2.
Here is another classical problem of enumerative geometry that reduces to a com-

putation in CH∗(G(2, 4)).
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How many lines lie on a smooth cubic surface in P3?
A smooth cubic surface is given by an equation f = 0, where f is a homogeneous

polynomial on P3 of degree 3. Note that f can be regarded as an element of the
dual space to the symmetric power S3(C4). In particular, f defines a global section
sf of the vector bundle S3τ ∗ on G(2, 4) as follows:

sf (Λ) = f |S3Λ.

Note that a line l = P(Λ) ⊂ P3 lies on the surface {f = 0} if and only if f vanishes
everywhere on S3Λ, or equivalently, the section sf vanishes at the point Λ ∈ G(2, 4).
Hence, c3(S

3τ ∗) = k[pt], where k is the number of lines on the surface {f = 0}.
Apply the formula for the Chern classes of symmetric powers (see Section 3.3):

c3(S
3τ ∗) = (3x1)(2x1 + x2)(x1 + 2x2)(3x2) = 9x1x2(2(x1 + x2)

2 + x1x2),

where x1 + x2 = c1(τ
∗) and x1x2 = c2(τ

∗). Hence,

c3(S
3τ ∗) = 9c2(τ

∗)2 + 18c1(τ
∗)2c2(τ

∗).

Using geometric meaning of c1(τ
∗) and c2(τ

∗), it is easy to check that c2(τ
∗)2 =

[pt] (since the number of lines that lie in two distinct planes is equal to one) and
c1(τ

∗)2c2(τ
∗) = [pt] (since the number of lines that intersect two given lines and lie

in a given plane is equal to one). We get c3(S
3τ ∗) = 27[pt], hence, k = 27.

An interesting generalization of this problem leads to the string theory and con-
cerns the number of rational curves of given degree that lie on a smooth quintic
threefold in P4 (see [8]).

Exercise 4.18. Compute the number of lines (=rational curves of degree one) on a
smooth quintic threefold in P4.

5. Lecture 9: topological applications, adjunction formula,
Bernstein theorem

Content: normal and tangent bundles, Euler class, adjunction formula [7], Chern
classes of Pn [7], Chern classes of toric varieties [3], Bernstein theorem for the Euler
characteristic of a complete intersection in (C∗)n [11], algebraically cellular varieties.

6. Lecture 10: Ring of conditions

Content: Kleiman’s transversality theorem [14], group and ring of conditions [2],
solution to the problem about 5 conics.

7. Lecture 11: Birationally invariant intersection theory

Intersection theory of Kaveh–Khovanskii [10], Newton–Okounkov convex bodies
[9], Hodge inequality via isoperimeteric inequality [9].
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8. Lecture 12: Intersection theory on spherical varieties

9. Appendix. Conservation of number principle and its applications

We will now consider several elementary examples in low dimension where the
conservation of number principle arises naturally. In each case, an appropriate
version of this principle will be formulated explicitly and then used to obtain some
enumerative results. In particular, we will find the number of zeroes of a polynomial
in one variable (Fundamental Theorem of Algebra), the genus of a generic plane
curve and the number of common zeroes of two polynomials in two variables (Bezout
Theorem).

9.1. Fundamental Theorem of Algebra. Let f be a complex polynomial of de-
gree n. The Fundamental Theorem of Algebra asserts that a generic f has n distinct
complex roots. We will call a polynomial generic if it does not have multiple roots
(i.e. all roots are simple). The space of all monic polynomials of degree n can
be identified with Cn (the polynomial xn + a1x

n−1 + . . . + an goes to the point
(a1, . . . , an)). Then it is easy to show that generic polynomials form a Zariski open
dense subset in Cn.
Remark. We will repeatedly use the notion of generic object. In each case, there
will be a family of objects parameterized by the points of an algebraic variety, and
generic objects will correspond to the points in some Zariski open dense subset of
this variety. In particular, almost any object in the family is generic. In each case
the subset of generic objects will be defined by an explicit condition (like the one
above) and it will be left as an exercise to check that all generic objects indeed form
a Zariski open dense subset.
To extend the Fundamental Theorem of Algebra to non-generic polynomials we

need the notion of the multiplicity of a root. There are two equivalent definitions.
Algebraic definition of multiplicity. A root a of f has multiplicity k iff

f(a) = f ′(a) = . . . = f (k−1)(a) = 0, andf (k)(a) ̸= 0.

Geometric definition of multiplicity. A root a of f has multiplicity k iff
there is a neighborhood of a (that does not contain other roots of f) such that all
generic polynomials close enough to f have exactly k roots in this neighborhood.
In the second definition one needs to check that all generic polynomials close

enough to a have the same number of roots in some neighborhood of a. This follows
easily from the Implicit Function Theorem.
Example. If f = xk, then 0 is a root of multiplicity k. To check this using

the geometric definition one can consider a generic polynomial xk − t, which has k
distinct roots for all t ̸= 0.
We will now prove the Fundamental Theorem of Algebra in the following form.

Theorem 9.1. Any complex polynomial f of degree n has exactly n complex roots
counted with multiplicities.
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Note that this theorem holds over any algebraically closed field and can be proved
in a purely algebraic way (by factoring out one root of f). However, the fact that C
is algebraically closed is analytic and its proof must use some geometric arguments.
First, we will show that all generic polynomials have the same number of roots.

Indeed, each generic polynomial has a neighborhood such that all polynomials in
this neighborhood are generic and have the same number of roots (this again follows
the Implicit Function Theorem). Note that this is also true over real numbers. The
crucial observation is that any two generic polynomials (identified with the points in
Cn) can be connected by a path avoiding all non-generic polynomials (this is exactly
what fails over real numbers). This follows from the simple but very important fact
stated below.

Lemma 9.2. Let X be an irreducible complex algebraic variety, and Y ⊂ X a
subvariety of codimension one. Then the complement X \ Y is connected.

Hence, we proved that all generic polynomials have the same number of roots. To
actually find this number we can consider a specific polynomial, say, x(x−1) · · · (x−
n+ 1), which obviously has n roots. The statement of the theorem for non-generic
polynomials follows easily from the geometric definition of multiplicity.
There is the following generalization of the Fundamental Theorem of Algebra,

which we will use in the sequel. Recall that a function f has pole of order k at a
point a if the function 1/f has zero of multiplicity k at the point a.

Lemma 9.3. Let C be a compact smooth curve over C, and f : C → CP1 a non-
constant meromorphic function on C. Then the number of zeroes of f counted with
multiplicities is equal to the number of poles of f counted with orders.

This lemma can also be proved using a conservation of number principle. Namely,
using the Implicit Function Theorem and Lemma 9.2 one can show that all non-
critical values of f have the same number of preimages.

9.2. Genus of plane curve. Let C be a curve in CP2 given as the zero set of a
homogeneous polynomial of degree d. We say that C is a generic plane curve of
degree d if C is smooth. Recall that topologically each compact smooth complex
curve is a 2-dimensional sphere with several handles. The number of handles is
called the genus of a curve. E.g. CP1 is homeomorphic to a sphere, so its genus is
zero. A curve of genus one is homeomorphic to a 2-dimensional tori (i.e. the direct
product of two circles).

Theorem 9.4. The genus of a generic plane curve of degree d is equal to

(d− 1)(d− 2)

2
.

In particular, generic conic has genus zero and generic cubic curve has genus one.
Note also that according to this theorem a generic plane curve can not have genus
two.
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To prove the theorem one can show that all generic curves of degree d are home-
omorphic and hence, have the same genus. Then it is enough to compute the genus
of the easiest possible generic curve. At first glance, there is no particularly easy
curve but one can do the following trick. Consider a non-generic curve which is just
the union of d lines, i.e. it is given by the equation l1 · . . . · ld = 0 for some linear
functions l1,. . . , ln. Topologically it looks like d spheres such that every two have
one common point. Then we can perturb a little bit the coefficients of the equation
l1 · . . . · ld = 0 so that the curve becomes generic. Then it is easy to check that each
common point of two spheres gets replaced by a tube. So the whole curve becomes
the union of d spheres such that every two are connected by a tube. The genus of

such curve is exactly (d−1)(d−2)
2

.

9.3. Bezout Theorem. Let f and g be two homogeneous polynomials on CP2.
We say that the pair (f, g) is generic if the intersection of the curves {f = 0} and
{g = 0} in CP2 is transverse.

Theorem 9.5. Two generic polynomials of degrees m and n on CP2 have exactly
mn common zeroes.

Again one shows that for all generic pairs of polynomials the number of common
zeroes is the same and then finds this number for, say, polynomials f(x, y) = x(x−
1) . . . (x−m+ 1) and g(x, y) = y(y − 1) . . . (y − n+ 1).
We now return to the definition of intersection indices in the case of two curves

M = {f = 0} and N = {g = 0} in CP2. Bezout Theorem tells us that if the
pair (f, g) is generic then the number of intersection points |M ∩ N | depends only
on the degrees of f and of g. Hence, it is natural to require that the intersection
index be preserved when we move each curve in the family of curves defined by the
equation of the same degree. This gives the following definition of the intersection
index. If the pair (f, g) is generic then put M ·N = |M ∩N |. Otherwise, we perturb
the coefficients of f and g so that they become generic and define M · N as the
number of intersection points of the perturbed curves. The Bezout Theorem is then
equivalent to the statement that the intersection index of M and N is always equal
to the product of degrees of f and g.
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