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Preface

Algebraic geometry is an important subject in many fields of mathematics. Its modern
foundations are over 50 years old, formulated by Grothendieck and his co-authors, and
recorded in the iconic EGA and SGA volumes. It should therefore now be a classical
subject. Yet, algebraic geometry is still not easily accessible to the beginning student. No
single book seems to allow the student to learn all the basic concepts together with their
motivations and foundations. We hope, in the present text, to give an introductory approach
following such a philosophy, without unnecessarily limiting our attention to elementary
concepts only.

An amazing feature of algebraic geometry is how little it, at least initially, requires
in the way of prerequisites. Basic concepts of algebra, for example, a commutative ring,
suggest a geometric view: we want to think of a ring as a ring of functions, of the prime
ideals as the functions’ vanishing points. To make these visualizations, we do not need
analysis.

The role of analysis, however, is replaced by the theory of commutative rings, known
as commutative algebra, a deep subject in its own right. In addition, analysis and topology
eventually must reappear. Many concepts of algebraic geometry imitate the notions of
analysis and topology. We make an effort to introduce all the motivating concepts as they
arise, together with other basic notions of higher mathematics.

Perhaps the greatest excursion into another field occurs in the subject of cohomology.
This concept originated in algebraic topology, and to understand it properly, one must
include the topological, categorical, and analytical points of view. We dedicate an entire
chapter to the foundations of cohomology, and then another chapter to the various
manifestations of the idea of cohomology within the subject of algebraic geometry. Some
of these discussions touch on more advanced topics and suggest possible directions of
further reading.

Algebraic geometry is an involved subject, and we hope to help the reader get a good
start on it.

Ann Arbor, MI, USA Igor Kriz
Ann Arbor, MI, USA Sophie Kriz
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Introduction

Algebraic geometry introduces an appealing way of thinking about geometry solely based
on algebra, and its basic concepts can be introduced in an “elementary” fashion, without
assuming, for example, any familiarity with advanced calculus. Saying this, of course,
hides the fact that one must use a lot of abstraction early on. In addition, the algebra
involved, when treated in detail, is not always easy or elementary, and the development
of the theory often imitates concepts of topology and analysis. Without having seen those
concepts, the right intuition may be hard to form.

What is the right set of prerequisites, then, for studying this book? Roughly speaking,
we assume that the typical reader will have seen undergraduate analysis, algebra, and point
set topology. However, we try to review those subjects as they arise. We think that for many
concepts, their use in algebraic geometry serves as additional motivation, and vice versa.
This is why we hope to make this text as self-contained as possible. Somewhat special is
the role of category theory, an abstract language central to a modern treatment of algebraic
geometry, which is typically not a part of undergraduate curricula. For this reason, we
introduce the concepts of category theory in more detail.

The book is divided into six chapters. In Chap. 1, we focus on algebraic varieties over
the field of complex numbers C. In the first section, we introduce very quickly affine
and projective varieties and regular functions. Even at this early stage, we will get a first
glimpse of the concept of a sheaf. The notion of a category naturally arises from looking
at these structures, so we describe it next, along with basic strategies of how categories
are used in mathematics, and, in particular, how a category of the algebraic varieties we
introduced is formed. We then go on to describe a few other geometric notions, such as
rational maps of varieties (i.e., maps defined “generically”), as well as smooth maps and
dimension.

At this point, it becomes clear that for a deeper understanding of the concepts
introduced, and to be able to calculate with them, we need to revisit algebra. The type
of algebra needed is called commutative algebra. The aim of this book is to be completely
self-contained in commutative algebra; this means that essentially all necessary concepts
of commutative algebra are treated. This will not be possible without some forward
references (the structure of Chap. 1 being the first example) and without confining some
material to the Exercises (this does not occur in Chap. 1, however).
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The commutative algebra foundations of Chap. 1 are divided into two sections. In
Sect. 4, we deal with polynomials. We cover the basic properties of polynomial rings,
the basic algorithms (including finding a Gröbner basis), and the Nullstellensatz, which
we have used without proof in the very beginning. In Sect. 5, we begin our treatment
of commutative algebra more systematically, essentially with the goal of proving the
elementary facts about dimension and regular local rings. Much of this material will be
useful in subsequent chapters.

By the end of Chap. 1, the level of abstraction achieved in algebra has exceeded the
abstraction introduced in geometry. It becomes clear that the “patchwork” notion of
variety, as introduced, neither is satisfactory nor exhausts fully the possibilities of the
methods commutative algebra has to offer. Thus, it is time to introduce Grothendieck’s
concept of a scheme. This is done in Chap. 2. On this occasion, we need to strengthen
our foundations in category theory also. We need to discuss sheaves in more detail and
explore the methods of category theory in their full strength, introducing, for example,
limits, colimits, and adjoint functors. Abelian categories, axiomatizing the basic properties
of the category of abelian groups, also become a necessary notion. This is because abelian
sheaves are so intrinsically embedded in the foundations of schemes, and many of their
formal properties are contained in the fact that abelian sheaves form an abelian category.

In Chap. 2, we discuss the basic properties of the category of schemes, explore which
limits and colimits exist, and detail the basic construction methods of schemes. This
includes affine schemes (which form the opposite category of commutative rings), pro-
jective schemes, and gluing. Basic finiteness properties of schemes, such as quasicompact
and Noetherian schemes, and morphisms of finite type, as well as finite morphisms, are
also formulated.

Chapter 3 discusses more advanced, as well as more geometrical, properties of schemes.
We encounter some more striking examples of algebraic geometry modeling the concepts
of point set topology. In particular, we introduce separated morphisms of schemes, which
are an analogue of the concept of a Hausdorff space, and universally closed morphisms of
schemes, which are an analogue of the concept of a compact space. Schemes that are both
separated and universally closed are called proper.

We also introduce the concept of regular schemes and smooth morphisms of schemes,
thus generalizing the corresponding concepts introduced in Chap. 1 for varieties. And on
that occasion, it is now time to introduce a more abstract concept of varieties. Using these
concepts, we prove the classification theorem of curves over algebraically closed fields
with respect to birational equivalence. In the process, new commutative algebra is needed
as well. For example, we introduce the techniques of valuation rings and also give another
proof (more abstract and general) of the Nullstellensatz.

It also becomes apparent at this point that working over an algebraically closed field
when discussing varieties restricts the point of view unduly. We therefore discuss the
Galois group (a review of Galois theory is presented in the Exercises) and explain how
varieties over a perfect field can be viewed as varieties over the algebraic closure, with
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Galois group action. To be able to make these statements, we cover the basics of group
actions, and also profinite groups.

At this point, for the sake of an analogy, we make our first excursion into algebraic
topology, describing the fundamental group of a space, and also showing how, at the cost
of working profinitely, it can be unified with the Galois group in the concept of the étale
fundamental group of a scheme.

Finally, we briefly state the famous Weil conjectures on zeta functions of varieties over
finite fields (solved by Deligne, based on earlier work of Grothendieck and others) to
provide an illustration of the deep arithmetic information we encounter when leaving the
world of algebraically closed fields.

In Chap. 4, our pursuit of geometric concepts continues. We begin with the notion of
algebraic vector bundles and then move on to quasicoherent and coherent sheaves. Once
again, we need to revisit our foundations of sheaves, covering in more detail such topics as
sheaves of universal algebras, and abstract sheafification, as well as functors on categories
of sheaves associated with maps of the underlying spaces. We also discuss the zeroth
algebraic K-group.

Perhaps the largest part of the chapter is dedicated to divisors. We start with line
bundles and the Picard group, and then discuss Cartier divisors and finally Weil divisors
and divisibility. We also illustrate these concepts with many examples. In the process,
we discuss the first cohomology group of an abelian sheaf. Chapter 4 is concluded by a
treatment of very ample divisors, and blow-ups.

An important point needs to be made here. Many concrete computations are done using
Weil divisors on regular schemes. However, this requires yet another layer of foundations
from commutative algebra, for example, the Auslander-Buchsbaum theorem asserting that
a regular local ring is a unique factorization domain, or the theorem that a localization
of a regular ring is regular, or that a polynomial ring in one generator over a regular ring
is regular. This already came up in Chap. 3 and arises even much more strongly in the
context of divisors. Many texts hide the fact that none of this is rigorously proved without
the cohomological characterization of regular local rings, which does not fit neatly the
narrative of algebraic geometry in the most narrow sense. Because of the way the present
book is structured, we have a unique opportunity to prove all the necessary foundational
facts, but we postpone them to Chap. 5, where a general introduction to cohomology is
given.

The purpose of Chap. 5 then is to give an adequately broad introduction to cohomology.
This cannot be just cohomology of sheaves, which is perhaps the most native part in
algebraic geometry. As we already saw, we also need to discuss Ext groups of modules, to
fill a gap in our foundations. The fact is that cohomology and homology are really concepts
of algebraic topology, and it is impossible to give a good introduction without venturing
into that subject in some depth.

To motivate things, we start Chap. 5 with de Rham cohomology of manifolds, which
was not historically the first approach but is geometrically self-motivating, at the cost
of making a brief excursion into analytic geometry. We introduce manifolds using
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Grothendieck’s general approach to geometry using ringed spaces, thereby demonstrating
the fact that the scope of the method extends beyond schemes. Covering this concept has
the added benefit of distinguishing it from a purely algebraic de Rham cohomology, which
is covered (and then compared) in Chap. 6.

The real reason why analytical de Rham cohomology works is that it is an example of
sheaf cohomology. Sheaf cohomology and Ext are both derived functors. To understand
them properly, we give an introduction to derived categories in general and derived
categories of abelian categories in particular. After introducing these methods, we are in
position to prove the cohomological characterization of regular local rings.

As already mentioned, the origin of homology and cohomology is in algebraic topology.
To have a full picture (and computational tools), we briefly cover singular homology
and cohomology of topological spaces as well as CW-homology. We also introduce
spectral sequences and give some useful examples, in particular the Grothendieck and
Leray spectral sequences. We prove the coincidence between singular cohomology with
coefficients R and de Rham cohomology, thus proving the topological version of the de
Rham theorem.

The aim of Chap. 6 is to bring the discussion of cohomology closer to its applications
in algebraic geometry and to introduce some more advanced cohomological methods. We
begin by discussing the rich additional structure present on the de Rham cohomology of a
smooth projective variety over C (in its analytic topology). This is known as Hodge theory.
Then, we move on to constructing a purely algebraic analog of de Rham cohomology of a
variety over any field. In the process, we explore cohomology of schemes with coefficients
in quasicoherent sheaves. Using these methods, we then prove the results of Serre and
Grothendieck, comparing the algebraic and geometric versions of de Rham cohomology,
and prove the algebraic version of the de Rham theorem over C. We also explain why we
do not have a natural algebraic de Rham theorem over R.

While de Rham cohomology can be discussed over any field (or even ring), its good
properties deteriorate in positive characteristic. To begin with, we only get cohomology
groups that are modules over a finite field. We show how this can be remedied using the
tool of crystalline cohomology, which gives p-adic information for varieties over fields of
characteristic p. We also show how using étale cohomology, a technique based on étale
morphisms enabled by Grothendieck’s generalization of the concept of topology, lets us
obtain �-adic information for varieties over a field of characteristic p with � �= p. Finally,
we briefly introduce Voevodsky’s motivic cohomology that gives integral (i.e., Z-valued)
cohomological information for smooth schemes over any field.

In conclusion, we would like to say a few words about the exercises. In this book,
there are usually about 30–40 exercises per chapter. We found it more convenient to
group the exercises by chapter: they seemed easier to find and cross-reference than if
divided between the individual sections. The exercises are of several main types: There
are routine computational exercises, and exercises asking to fill in details of proofs. There
are also deeper larger-scale exercises on foundational topics that do not naturally fit into
the narrative of the text. This includes review topics (such as Galois theory), as well as new
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topics (such as the Auslander-Buchsbaum theorem or the Zariski Main Theorem). These
exercises contain detailed hints, basically describing the main stages of the proof of what is
claimed. The student is expected to follow the proof along and write it up, justifying every
step. Finally, there are exercises describing applications of the material covered. Again,
there are more or less routine applications (such as, say, the Riemann-Roch theorem for
curves or the cohomology of smooth hypersurfaces), as well as deeper applications, some
of which may not be ordinarily mentioned in this context (such as the lack of finite étale
morphisms over Spec(Z), the Quillen-Suslin theorem, or the Artin-Mumford birational
invariant for smooth projective varieties over C). This diversity of exercises is intentional.
Algebraic geometry is an indispensable and central part of many fields of mathematics.
This is the main reason mathematicians interested in many fields should study it.
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1Beginning Concepts

The purpose of this chapter is to give a quick introduction to algebraic varieties, which
will give us an idea of what algebraic geometry studies. In contrast with, say, differential
geometry, almost no prerequisites are needed to start with. In particular, no analysis is
required: All the foundations come from algebra. We begin this chapter by assuming the
key results from algebra as given, and define the first concepts of algebraic geometry in
Sect. 1. After that, some concepts from category theory and universal algebra will become
necessary, which are introduced in Sect. 2. In Sect. 3, some additional geometrical concepts
are introduced.

By that time, it will become clear that we should really explore the underlying algebraic
concepts in more detail. In Sect. 4, we introduce the main facts about polynomials of
several variables over a field, and treat some of the basic methods of computing with
polynomials. The reader should consult this section before attempting the calculational
exercises at the end of the chapter.

Section 5 delves deeper into abstract commutative algebra, which contains the algebraic
foundations of algebraic geometry. One of the goals of this section is to prove the main
theorems about dimension, which are very useful in working with algebraic varieties and
with the concepts introduced in subsequent chapters.

1 The Definition of Algebraic Varieties

1.1 Affine Algebraic Sets

The starting point of algebraic geometry is studying solutions of systems of polynomial
equations in several variables over a field. (A field is an algebraic structure with operations
of addition and multiplication which satisfy all the formal properties of the real numbers,
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2 1 Beginning Concepts

i.e. commutativity and associativity of both operations, the existence of 0 �= 1 with their
usual properties, distributivity, and the existence of an additive inverse—or minus sign—
as well as multiplicative inverses of non-zero elements). Systems of polynomial equations
in variables x1, . . . , xn can always be written in the form

p1(x1, . . . , xn) = 0,

. . .

pm(x1, . . . , xn) = 0.

(1.1.1)

where p1, . . . , pm are polynomials. Solutions of the Eqs. (1.1.1) are n-tuples of elements
(x1, . . . , xn) of the given field which satisfy the equations. Such n-tuples are also called
zeros of the polynomials p1, . . . , pn. Sets of zeros of sets of polynomials are called affine
algebraic sets.

The set of all polynomials in n variables over a field forms a commutative ring,
which means that it has operations of addition and multiplication satisfying all the
formal properties of integers, i.e. commutativity and associativity of both operations, the
existence of 0 and 1, distributivity, and the existence of an additive inverse. One defines
not necessarily commutative rings by dropping the assumption that multiplication be
commutative (we then must require that 1 be a left and right unit and that left and right
distributivities hold). In this book, by a ring, we shall mean a commutative ring, unless
specified otherwise.

Solutions of (1.1.1), or zeros of the polynomials p1, . . . , pm, are also zeros of all linear
combinations

a1p1 + · · · + ampm (1.1.2)

where a1, . . . , am are arbitrary polynomials.
The elements (1.1.2) form the ideal generated by p1, . . . , pm, which is denoted by

(p1, . . . , pm).

An ideal in a commutative ring is a subset which contains 0, is closed under +, and
multiples by elements of the ring. By the Hilbert basis theorem, which we prove in Sect. 4
(Theorem 4.2.1), the ring of polynomials in n variables over a field is Noetherian, which
means that every ideal is finitely generated (i.e. generated by finitely many elements).
Because of this, it is sufficient to consider systems of finitely many polynomial equations
(1.1.1).

Note that a commutative ring R is Noetherian if and only if it satisfies the ascending
chain condition (ACC) with respect to ideals. To satisfy the ACC with respect to subsets
of a certain kind means that there does not exist an infinite chain

I1 � I2 � · · · � In � . . . (1.1.3)
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of such sets. Thus, we claim that a ring R is Noetherian if and only if (1.1.3) does not occur
in R where In are ideals. To see this, if R is not Noetherian, it has an ideal I which is not
finitely generated, so having picked, by induction, elements r1 . . . , rn ∈ I , they cannot
generate I , so we can pick rn+1 ∈ I � (r1, . . . , rn). Thus, R fails the ACC for ideals. On
the other hand, if R fails the ACC for ideals, then we have ideals (1.1.3) in R. Assume, for
contradiction, that R is Noetherian. Let

I =
⋃

n

In.

Then the ideal is finitely generated, say, by elements r1, . . . , rk . Thus, there exists an n

such that r1, . . . , rk ∈ In, which implies In = I , which is a contradiction.

1.1.1 Complex Numbers
Zeros of polynomials behave better when we work in the field C of complex numbers than
in the field R of real numbers. The field C contains the number i which has the property

i2 = −1,

and more generally, a complex number can be uniquely written as a + bi where a, b are
real numbers. Addition and multiplication are then determined by the properties of a field.
Division is possible because (a + bi)(a − bi) = a2 + b2, and we can thus make the
denominator real.

Thus, the polynomial equation

x2 + 1 = 0

has solutions in C, namely i and−i, while it has no solution over the field of real numbers
R.

It turns out that more generally, every non-constant polynomial in one variable with
coefficients in C has at least one zero (we also say root). A field which satisfies this
property is called algebraically closed. The fact that C is algebraically closed is known
as the fundamental theorem of algebra. In the first three sections of this chapter, we will
assume from now on that we are working over the field C. More generally, in much of
what we say (excluding connections with analysis), we could work over any algebraically
closed field.

1.1.2 Nullstellensatz
The fact that a non-constant polynomial over C always has a root can be generalized to
several variables as follows: Let I be an ideal in the ring C[x1, . . . , xn] of polynomials in
n variables over C. Let X = Z(I) be the affine algebraic set which is the set of zeros of
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the ideal I . If I = (f1, . . . , fm), we also write

Z(f1, . . . , fm) = Z(I).

Let, on the other hand, I (X) be the ideal of all polynomials which are zero on X (i.e.
p(x1, . . . , xn) = 0 for every (x1, . . . , xn) ∈ X). Then

I (X) = √I (1.1.4)

where the right hand side of (1.1.4) is called the radical of I and consists of all polynomials
p for which pk ∈ I for some non-negative integer k. Equation (1.1.4) is called the
Nullstellensatz, and is due to Hilbert. In German, Nullstelle means zero, literally “zero
place,” a point at which a polynomial is zero. In English, as we already remarked, such a
point is called just a “zero,” which can be confusing.

As many facts in algebraic geometry, a proof of the Nullstellensatz requires certain
methods from algebra. The kind of algebra relevant to the foundations of algebraic
geometry is known as commutative algebra, to which we will keep returning throughout
this book. The Nullstellensatz will be restated and proved in Sect. 4.3 below.

1.2 Zariski Topology

1.2.1 Topology
Algebraic geometry builds fundamental concepts of geometry out of pure algebra (rings
and polynomials). A very basic concept of geometry is topology. A topology on a set X is
specified by open (and/or closed) sets. An open set containing a point x ∈ X is also called
an open neighborhood of x. A set X with a topology is called a topological space. An
open set is the same thing as a complement of a closed set, and vice versa, so it suffices to
specify either open sets or closed sets. Open sets in a topology are required to satisfy the
following properties (or axioms):

1. ∅,X are open.
2. A union of arbitrarily (possibly infinitely) many open sets is open.
3. An intersection of two (hence finitely many) open sets is open.

One can equivalently formulate the axioms for closed sets by swapping union and
intersection.

For any set S ⊆ X, we then have a smallest closed set (with respect to inclusion)
S containing S (namely, the intersection of all closed sets containing S). It is called the
closure of S. Symmetrically, the interior S◦ is the largest open set (i.e. the union of all
open sets) contained in S.



1 The Definition of Algebraic Varieties 5

1.2.2 Zariski and Analytic Topology
In algebraic geometry, the set of all n-tuples of complex numbers is called the affine
space A

n
C

. For the purposes of algebraic geometry, we consider the Zariski topology on
A

n
C

, in which closed sets are affine algebraic sets (see Sect. 1.1). Similarly, in the Zariski
topology on any affine algebraic set X, the closed sets are affine algebraic sets in A

n
C

which
are subsets of X. To verify the axioms of topology, one notes that for sets of n-variable
polynomials Si , we have

Z(
⋃

i

Si ) =
⋂

i

Z(Si)

and for sets of n-variable polynomials S, T , we have

Z({p · q | p ∈ S, q ∈ T }) = Z(S) ∪ Z(T ).

The Zariski topology is not the most typical kind of topology one considers outside of
algebraic geometry. In analysis, the key example of a topology is the analytic topology. In
the analytic topology on A

n
C
= Cn (or on Rn), a set U is open when with any point x ∈ U ,

the set U also contains all points of distance < ε for some ε > 0 (where ε can depend on
x). As the name suggests, the analytic topology is very important in mathematical analysis.

The Zariski topology has “far fewer” closed (and open) sets than the analytic topology.
For example, in Rn (or Cn), any open ball is open and any closed ball is closed in the
analytic topology. On the other hand, the only Zariski closed sets in A1

C
are itself and finite

subsets.
Still, we can use the analytic topology for intuition about the Zariski topology on

algebraic sets. For example, a single point is closed (in both analytic and Zariski topology),
and is not open, unless we are in A

0
C

.

1.3 Affine and Projective Varieties

1.3.1 Affine and Quasi-Affine Varieties
In a topological space X, a non-empty closed set Z is called irreducible if there do not
exist closed subsets Z1 �= Z, Z2 �= Z of Z such that Z = Z1 ∪ Z2 (i.e. Z is not a union
of two closed subsets other than itself). Z is called connected if it is not a union of two
disjoint closed subsets other than itself.

An affine variety is an affine algebraic set which is irreducible in the Zariski topology. A
quasi-affine variety is a Zariski open subset U of an affine variety X. (Caution: U is open
in X, not necessarily in A

n
C

.) For any topological space X and any subset S ⊆ X, we have
a topology on S where, by definition, open (resp. closed) sets in S are of the form V ∩ S

where V is an open (resp. closed) set in X. This topology is called the induced topology.
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The Zariski topology on an affine algebraic set is induced from the Zariski topology on
A

n
C

.
Recall that an ideal I ⊆ R in a ring R is called prime if I �= R and for x, y ∈ R,

xy ∈ I implies x ∈ I or y ∈ I . The ideal I is called maximal if I �= R and for every ideal
J ⊆ R with I ⊆ J , we have J = I or J = R. An ideal I ⊆ R is maximal if and only if
the quotient ring R/I (consisting of all cosets x + I , x ∈ R) is a field. Similarly, I ⊆ R is
prime if and only if R/I is an integral domain which means that it satisfies 0 �= 1 and has
no zero divisors (i.e. non-zero elements x, y such that xy = 0).

Any ideal I �= R is contained in a maximal ideal by a principle called Zorn’s lemma,
which states that any partially ordered set P (such as the set of ideals in a ring R ordered
with respect to inclusion) contains a maximal element (i.e. an element m ∈ P such that
a ∈ P and m ≤ a implies m = a), provided that for any subset L which is totally ordered
(i.e. a, b ∈ L implies a ≤ b or b ≤ a) there exists an element � ∈ P greater or equal than
all elements of L.

Now it is easy to see that an affine algebraic set X is irreducible (i.e. is an affine variety)
if and only if the ideal I (X) is prime. Indeed, if I (X) is not prime, then there exists
f, g /∈ I (X) such that fg ∈ I (X), so X is a union of the two closed subsets Z(f ) ∩ X,
Z(g)∩X neither of which is equal to X. On the other hand, if X = X1∪X2 where Xi �= X

are closed, then by definition, there are fi ∈ I (Xi) � I (X), while f1f2 ∈ I (X).
In particular, since polynomials over a field obviously form an integral domain, the 0

ideal is prime, and thus, the affine space A
n
C

is irreducible (and hence, an affine variety).

1.3.2 Projective and Quasi-Projective Varieties
The n-dimensional projective space Pn

C
is the set of ratios

[x0 : · · · : xn]

of complex numbers. In a ratio, the numbers x0, . . . , xn are not allowed to all be 0
(although some may be 0), and a ratio is considered the same if we multiply all the numbers
by the same non-zero number:

[x0 : · · · : xn] = [ax0 : · · · : axn]

with a �= 0 ∈ C.
A projective algebraic set is a set of zeros in P

n
C

of a set of homogeneous polynomials.
(A polynomial is homogeneous if all its monomials have the same degree, which is defined
as the sum of exponents of all its variables.) Projective algebraic sets are, by definition, the
closed sets in the Zariski topology on P

n
C

. Irreducible projective algebraic sets are called
projective varieties. A Zariski open subset (i.e. complement of a Zariski closed subset) in
a projective variety is called a quasi-projective variety.
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One can, for many practical purposes, define an algebraic variety as a quasi-affine or
quasi-projective variety. The necessity to always refer to an ambient affine or projective
space in such a definition, however, is unsatisfactory, and it is a part of what motivates
schemes. However, we must learn about varieties, and some other mathematics, first,
before discussing schemes.

1.4 Regular Functions on Different Types of Varieties

Regular functions is a common name for the type of functions on a variety which we study
in algebraic geometry. By a function, we mean a mapping into C.

1.4.1 Regular Functions on a Quasiaffine and Quasiprojective Variety
Let V be a quasiaffine variety (or, more generally, a Zariski open set in an affine algebraic
set). A regular function on V at a point p is a function

f : U → C

where U is a Zariski open set in V with p ∈ U such that

f (x) = g(x)

h(x)
(1.4.1)

where g(x), h(x) are polynomials, and h(x) �= 0 for all x ∈ U (here we write x for an
n-tuple: x = (x1, . . . , xn)).

A regular function on V is a function

f : V → C

which is regular at every point p ∈ V , i.e. for every p ∈ V , there exists a Zariski open
neighborhood U of p such that on U , f is of the form (1.4.1).

A regular function on a quasiprojective variety (or at a point of a quasiprojective
variety) is defined the same way as a regular function on a quasiaffine variety with the
exception that g(x), h(x) are homogeneous polynomials of equal degree (so that f (x) is
well defined on ratios). The definition also applies to Zariski open subsets of projective
algebraic sets.

Regular functions on an algebraic variety X form a commutative ring (i.e. we can add
and multiply them). This ring is denoted by C[X]. We will now compute the ring of regular
functions for varieties of certain kinds.
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1.4.2 Regular Functions onA
n
C

The ring of regular functions on the affine space is simply the ring of polynomials in n

variables:

C[An
C
] = C[x1, . . . , xn]. (1.4.2)

To see this, first note that since An
C

is irreducible, two polynomials f, g which coincide on
a non-empty Zariski open set U ⊆ A

n
C

coincide (since An
C
= (An

C
�U)∪Z(f −g)). Now

since C[x1, . . . , xn] has unique factorization (see Theorem 4.1.3 below), the same is true
for rational functions: Suppose on a non-empty Zariski open set U ⊆ A

n
C

,

g1

h1
= g2

h2

where gi, hi have greatest common divisor 1 for i = 1, 2, and hi are non-zero on U . Then

g1h2 = g2h1,

and hence there exists a u ∈ C× such that g1 = ug2, h1 = uh2.
Now let f be a regular function on A

n
C

. But by what we just observed, in Zariski open
neighborhoods of all points, we can write f = g/h with the same polynomials g, h which,
moreover, have greatest common divisor 1. However, if h /∈ C×, by the Nullstellensatz,
then, the set of zeros Z(h) of h would be non-empty, so at a point x ∈ Z(h), we would
have a contradiction. Thus, h ∈ C

×, and f is a polynomial.

1.4.3 Regular Functions on an Affine Variety
Regular functions on an affine variety (or, more generally, an affine algebraic set) X ⊆ A

n
C

are also polynomials in the sense that they do not have a denominator. More precisely, we
have

C[X] = C[x1, . . . , xn]/I (X) (1.4.3)

where I (X) is the ideal of all polynomials which are 0 at every point of X. Recall that the
division symbol in (1.4.3) denotes cosets, i.e. the elements of the ring (1.4.3) are cosets,
which are sets of the form

p + I (X) = {p + q | q ∈ I (X)}.

Recall that cosets are the algebraic device for setting the elements of I (X) equal to 0 in
the ring (1.4.3), which is what we want, since they are constantly zero as functions on X.

To see that (1.4.3) is the correct formula for the ring of regular functions on X, first note
that the right hand side of (1.4.3) maps injectively into the left hand side by the definition
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of the ideal I (X). To show that the map is onto, we need to show that if we cover X with
Zariski open sets Ui in A

n
C

and exhibit rational functions gi/hi where hi �= 0 on Ui , i ∈ S,
which such that gi/hi = gj /hj on Ui ∩ Uj ∩ X, then there exists a polynomial φ which
restricts to each gi/hi on Ui ∩ X. To this end, first note that we can assume that the set S

is finite. This is because by the Nullstellensatz,

1 ∈ I (X)+
∑

i∈S

I (An
C
� Ui),

and so the indexing set S can be made finite, since only finite sums of elements are allowed.
Suppose, then,

S = {1, . . . , n}.

Now also by the Nullstellensatz, there exist polynomials a1, . . . , an, q such that q ∈ I (X)

and

a1h1 + · · · + anhn + q = 1.

Then one verifies that the polynomial

φ = a1g1 + · · · + angn (1.4.4)

restricts to gi/hi on each of the Zariski open sets Ui ∩X (See Exercise 4.)

1.4.4 Regular Functions on the Complement of a Set of Zeros Z(f )
Let X be an affine variety and let f ∈ C[X]. Then the complement X � Z(f ) is a special
kind of quasiaffine variety. (We will see later that, in some sense, “it is still affine,” although
not according to our current definition.) We have

C[X � Z(f )] = C[X][f−1] = C[X][ 1

f
]. (1.4.5)

Note that it is alright to take the reciprocal of f , because X � Z(f ) does not contain any
zeros of f . This construction is a special case of localization S−1R = R[S−1] of a ring R

with respect to a subset 1 ∈ S ⊆ R closed under multiplication. On the set of “fractions”
r/s (i.e., formally, pairs (r, s)) with r ∈ R and s ∈ S, define an equivalence relation where
r1/s1 ∼ r2/s2 when there exists some t ∈ S such that r1s2t = r2s1t . The set of equivalence
classes is R[S−1]. In our case, we let S be the set of all f n, n ∈ N0. We can alternately
describe

R[f−1] = R[t]/(f t − 1).
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The proof of (1.4.5) is actually essentially the same as in Sect. 1.4.3, with the exception
that we have

a1h1 + · · · + anhn = f N

for some natural number N (which is true by the Nullstellensatz). We then put

φ = a1g1/f
N + · · · + angn/f

N .

1.4.5 Regular Functions on a Quasiaffine Variety
Let 0 �= f1, . . . , fm ∈ C[X] where X is an affine variety. Then

C[X � Z(f1, . . . fm)] = C[X][f−1
1 ] ∩ · · · ∩ C[X][f−1

m ]. (1.4.6)

Note that the intersection on the right hand side of (1.4.6) is formed in the field of rational
functions K(X), which is the field of fractions of the ring C[X]. The field of fractions
QR of an integral domain R is the localization with respect to the set of all non-zero
elements, which is closed under multiplication because R is an integral domain. Also,
the canonical map R → QR is injective, by cancellation. Conversely, a subring of a
field (more generally an integral domain) is obviously an integral domain. Thus, integral
domains are precisely those rings which are subrings of fields.

The reason C[X] is an integral domain is that X is irreducible. Now we have

X � Z(f1, . . . , fm) =
m⋃

i=1

X � Z(fi).

Thus, we can characterize a regular function on X � Z(f1, . . . , fm) by a collection of
regular functions on X � Z(fi) which coincide on intersections, but that is equivalent to
coinciding in K(X) since C[X], and hence also C[X][f−1

i ], are integral domains. Thus,
(1.4.6) follows.

1.4.6 Regular Functions on a Projective Variety
Essentially, the above discussion of rings of regular functions has an exact analogue on
quasiprojective varieties (or Zariski open subsets of projective algebraic sets), if we restrict
attention to homogeneous rational functions of degree 0. In particular, if X is a projective
variety (or, more generally, projective algebraic set), then C[X] consists of homogeneous
polynomials of degree 0, but those are always constant! Thus,

C[X] = C,

i.e. all regular functions on a projective variety are constant.
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1.5 Sheaves

The fact that there are “not enough” regular functions on some varieties X (such as
projective varieties) forces us to study regular functions on open subsets U of X, instead
of just on X. Let us state two basic properties of C[U ] as U varies over open subsets of X

which follow immediately from the definition:

1. Restriction: For V ⊆ U , we have a restriction map

C[U ] → C[V ]

(given by restriction of the domain of a regular function). The restriction is transitive
(i.e. for W ⊆ V ⊆ U , restriction from C[U ] to C[V ] and then to C[W ] is the same
thing as restricting to C[W ] directly). Also, the restriction from C[U ] to itself is just
the identity.

2. Gluing: If we have regular functions fi ∈ C[Ui] where Ui are open sets, such that fi

and fj restrict to the same regular function in C[Ui ∩ Uj ], then there exists a unique
regular function f ∈ C[⋃Ui ] which restricts to all the functions fi .

It is convenient to formalize this property. Suppose that for every open set U of
a topological space X, we are given a set F(U) which has the restriction and gluing
properties described above with C[U ] replaced by F(U). This data is then called a sheaf
(of sets) F , and the sets F(U) are called sets of sections. We will use sheaves heavily in
the next chapter when defining schemes. The sheaf

U → C[U ]

on an algebraic variety X (with the Zariski topology) is denoted by OX, and called the
structure sheaf of X.

2 Categories, and the Category of Algebraic Varieties

It is, however, important to note that the sets of sections of the structure sheaf are not just
sets: they are rings. To introduce the concept of a sheaf in proper generality, we need to
talk about categories.

2.1 Categories, Functors and Algebraic Structures

2.1.1 The Definition of a Category, and an Example: The Category of Sets
In a category C, we have a class of objects Obj(C) and a class of morphisms Mor(C),
satisfying certain axioms.
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Explaining the need to distinguish between sets and classes takes us on a brief detour
into set theory. It comes from the fact that the naive interpretation of the notation

{X | . . . } (2.1.1)

as “the set of all sets X such that . . . ” leads to a contradiction in

{X | X /∈ X} (2.1.2)

where neither X ∈ X nor X /∈ X are possible; because of that, we distinguish between
sets and classes and interpret (2.1.1) as “the class of all sets X such that . . . ,” and define a
set as a class which is an element of another class. Otherwise, it is called a proper class.
Note that then (2.1.2) is just an example of a proper class; in fact, it is the class of all sets.

The axioms of a category say that Obj(C) and Mor(C) satisfy all the formal properties
of the most basic example: the category Sets whose objects are sets and morphisms are
mappings of sets. Thus, we have two mappings

S, T : Mor(C) → Obj(C)

(called source and target, which in the category of sets are the domain and codomain
of a mapping). A morphism f ∈ Mor(C) with S(f ) = X, T (f ) = Y (where X,Y are
objects) is called a morphism from X to Y , and denoted by

f : X → Y

or

X
f

�� Y,

same as for mappings of sets. We have a mapping Obj(C) → Mor(C) called the identity
morphism

IdX : X → X

Also like for mappings, the structure of a category specifies, for two morphisms

f : X → Y, g : Y → Z,

the composition

g ◦ f : X → Z
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(note the reversal of order of f and g, motivated by mappings: when we apply mappings
to an element, we write g ◦ f (x) = g(f (x)), even though we apply f first).

Morphisms, however, may not always be mappings, (although in the category Sets, and
many other examples, they are), and so they cannot be, in the context of pure category
theory, applied to elements. So instead, we must define a category by axioms. These
axioms are simple: they say that the source and target of IdX are equal to X, and that
the composition of morphisms is associative

(h ◦ g) ◦ f = h ◦ (g ◦ f )

(when applicable) and unital, i.e. for f : X → Y ,

IdY ◦ f = f ◦ IdX = f.

Lastly, we require that the class C(X, Y ) of all morphisms f : X → Y be a set. We call
the category C small if the class Obj(C) is a set. (Then necessarily also Mor(C) is a set.)

To see that morphisms do not always have to be mappings, note that to every category
C, there is the opposite (sometimes also called dual) category COp which “turns around
the arrows”: Obj(COp) = Obj(C), Mor(COp) = Mor(C) and Id is C and COp are the
same, but S in COp is T in C and vice versa, and composition of morphisms α ◦ β in COp

is β ◦ α in C.

2.1.2 Categories of Algebraic Structures
One purpose of categories is to be able to discuss, and relate, mathematical structures of
the same kind. For example, all sets, all groups, all abelian groups, all rings, all topological
spaces, all algebraic varieties. (Recall that a group has one operation which is associative,
unital and has an inverse; an abelian group is a group which is also commutative.) So we
want a category whose objects are the given structures, i.e. the category of groups, rings,
etc. But what should the morphisms be?

Of course, we may be able to define the morphisms in a fairly arbitrary way, as long
as they satisfy the axioms of a category, which we learned in Sect. 2.1.1. For example, we
could define the only morphisms to be identities, but that would not be very useful for
understanding the given mathematical structure. This is why, usually, there is a standard
choice of morphisms of mathematical structures of a given kind, which are, vaguely
speaking, mappings which preserve the given structure. Making this precise requires
different techniques in different cases.

The case which is the easiest to handle are categories of algebraic structures. An
algebraic structure comes with operations (example: addition or multiplication). In
this case, the default choice of morphisms are homomorphisms of the given algebraic
structures, which means mappings which preserve the operations.
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For example, a homomorphism of groups f : G → H , written multiplicatively, is
required to satisfy

f (x · y) = f (x) · f (y).

(Philosophically, the unit and inverse are also operations, so we should include f (1) = 1
and f (x−1) = (f (x))−1, but in the case of groups, it follows from the axioms.) The
category of groups and homomorphisms is denoted by Grp, the category of abelian groups
and homomorphisms is denoted by Ab.

Analogously, a homomorphism of rings satisfies

f (x + y) = f (x)+ f (y),

and

f (xy) = f (x)f (y).

A non-zero ring is not a group with respect to multiplication (because one cannot divide
by 0), so we must also require

f (1) = 1,

since it does not follow automatically.
One must be careful not to confuse a homomorphism of rings with a homomorphism

of R-modules over a fixed ring R. (Recall that a module over a commutative ring R is an
abelian group M with an operation of taking multiples by elements r ∈ R which satisfies
distributivity from both sides, unitality and associativity; an example of an R-module is
R itself or more generally an ideal of R, which is the same thing as a submodule of the
R-module R.)

Thus, a homomorphism f : M → N of R-modules satisfies

f (x + y) = f (x)+ f (y),

f (rx) = rf (x) for r ∈ R.

Sometimes, the same algebraic object may be used for two different purposes. For
example, as already remarked, a ring R is a module over itself. In such cases, we must
be careful to specify which category we are working in.

2.1.3 Isomorphisms
The most important morphisms are isomorphisms. An isomorphism f : X → Y in a
category C is a morphism for which there exists an inverse with respect to composition,
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i.e. a morphism g : Y → X such that f ◦ g = IdY , g ◦ f = IdX. As expected, we then
write f−1 = g. If there exists an isomorphism between two objects of a category, they are
called isomorphic. To complicate things, there can exist isomorphisms between an object
and itself which may not be the identity. Such isomorphisms are called automorphisms. For
example, in the category of abelian groups, (not rings), there is a non-trivial automorphism
f : Z→ Z given by f (n) = −n. The automorphisms of a given object of a given category
form a group, called the automorphism group.

2.1.4 Functors and Natural Transformations
Let C, D be categories. A functor F : C → D consists of maps F = Obj(F ) :
Obj(C) → Obj(D), F = Mor(F ) : Mor(C) → Mor(D) which preserves identity,
source, target and composition: For X ∈ Obj(C), f, g ∈ Mor(C),

F(IdX) = IdF(X),

F (S(f )) = S(F (f )),

F (T (f )) = T (F (f )),

F (g ◦ f ) = F(g) ◦ F(f ).

when applicable.
A natural transformation η : F → G is a collection of morphisms

ηX : F(X) → G(X), X ∈ Obj(C),

such that for every morphism f : X → Y in C, we have a commutative diagram:

F(X)
ηX

��

F(f )

��

G(X)

G(f )

��
F(Y )

ηY
�� G(Y).

Commutativity means that the two compositions of arrows (i.e. morphisms) indicated in
the diagram are equal.

An equivalence of categories C,D is a pair of functors F : C → D and G : D → C

and natural isomorphisms (i.e. natural transformations which have inverses)

F ◦G ∼= IdD,

G ◦ F ∼= IdC.
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2.2 Categories: Topological Spaces and Algebraic Varieties

Not all mathematical objects are algebraic structures. In greater generality, we may need
to consider on a case by case basis what it means to “preserve the structure.” In this
subsection, we will discuss two examples, topological spaces and algebraic varieties.

2.2.1 The Category of Topological Spaces
Topological spaces are not really algebraic structures. Still, we have distinguished maps
f : X → Y which “preserve topology.” They are called continuous maps, defined by the
property that for each open set U ⊆ Y , the set f−1(U) ⊆ X is open. Here

f−1(U) = {x ∈ X | f (x) ∈ U}

is the inverse image of U . The category of topological spaces and continuous maps will
be denoted by T op.

Note that we now have learned three different meanings of the symbol f−1 which occur
in three different contexts: the reciprocal of f (inverse under multiplication), the inverse
under composition, and the inverse image. This is a classic example of an imperfection
of mathematical notation. Such inconsistencies occur for historical reasons, and cannot be
completely avoided.

Also for historical reasons, an isomorphism in the category of topological spaces and
continuous maps is called a homeomorphism (not to be confused with “homomorphism.”).

2.2.2 The Category of Algebraic Varieties
Recall that at this moment, our definition of an algebraic variety includes affine, quasi-
affine, projective and quasiprojective varieties, defined in Sects. 1.3.1 and 1.3.2. These are
the objects of the category of algebraic varieties. Following our general guiding principle,
morphisms of algebraic varieties f : X → Y are the mappings which preserve the
structure.

The structure consists of the Zariski topology, and regular functions. It is correct to
say that morphisms of varieties are those mappings which preserve topology and regular
functions.

In more detail, then, morphisms of algebraic varieties

f : X → Y

are maps which

1. are continuous with respect to the Zariski topology
2. have the property that if g : U → C is a regular function, then the composition

g ◦ f : f−1(U) → C,
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or, more precisely,

g ◦ f |f−1(U) : f−1(U) → C,

is a regular function. Note the inverse image in both formulas. The extra notation in the
second formula means the restriction of a function.

Note that in particular, by the second property, a morphism of varieties f : X → Y

specifies (we sometimes say: induces) a homomorphism of rings

C[f ] : C[Y ] → C[X].

In fact, both rings contain C (thought of as constant functions), and the homomorphism
C[f ] fixes C, i.e. satisfies

C[f ](λ) = λ for λ ∈ C.

Commutative rings R with a homomorphism of rings

A→ R

for some other commutative ring A are called (commutative) A-algebras. Therefore, C[f ]
is a homomorphism of C-algebras. In general, a homomorphism of A-algebras R → R′
is defined as a homomorphism of rings which commutes with the homomorphisms from
A to R, R′.

2.3 TheMorphisms into an Affine Variety

An easy but powerful theorem states that a morphism in the category of varieties

f : X → Y (2.3.1)

where Y is affine is characterized by the induced homomorphism of C-algebras

C[X] ← C[Y ] (2.3.2)

(note the reversal of the arrow, called contravariance).
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This means, in more detail, that for every homomorphism of rings (2.3.2), there exists
a unique morphism of varieties (2.3.1) which induces it, provided that Y is affine. In
particular:

The category of affine varieties over C and morphisms of varieties is equivalent to the
opposite category of the category of finitely generated C-algebras and homomorphisms of
C-algebras.

To see why (2.3.1) and (2.3.2) are equivalent for Y affine, note that the passage
from (2.3.1) to (2.3.2) is immediate from the definition. On the other hand, given a
homomorphism

C[x1, . . . , xn]/I (Y ) → C[X],

we can take the images of the generators x1, . . . , xn as coordinates of a mapping from X

to A
n
C

, which lands in Y . It is readily checked that this is a morphism of varieties, and that
both passages between (2.3.1) and (2.3.2) are inverse to each other (although note that in
our current setting, there are several cases for X to consider!).

Roughly speaking, we think of affine varieties as those which have “enough regular
functions.” From this point of view, they are the opposite of projective varieties: The
only algebraic variety which is both affine and projective is a single point (and in some
definitions, the empty set, but our definition of irreducibility excludes the empty set, so we
do not count it).

2.3.1 Quasiaffine Varieties which are not Isomorphic to Affine Varieties
The theorem described at the beginning of Sect. 2.3 can be useful in deciding which
varieties are isomorphic to affine varieties. For example, note that in A

n
C

,

{(0, . . . , 0)} = Z(x1, . . . , xn)

(Z denotes the set of zeros, see Sect. 1.1.2). By (1.4.6), (1.4.2), for n ≥ 2, we have

C[An
C
� {(0, . . . , 0)}] =

= C[x1, . . . , xn][x−1
1 ] ∩ · · · ∩ C[x1, . . . , xn][x−1

n ] =
= C[x1, . . . , xn] = C[An

C
]

Since we know that An
C

is affine, this means that

A
n
C
� {(0, . . . 0)}

is not affine for n ≥ 2: its inclusion into A
n
C

induces an isomorphism of rings of regular
function, but is not an isomorphism of varieties (it is not onto on points), so if both varieties
were isomorphic to affine varieties, it would contradict the theorem at the beginning of
Sect. 2.3).
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We will be able to generalize this observation later using the concept of dimension (see
Comment 4 at the end of Sect. 5.5).

2.3.2 Quasiaffine Varieties which are Isomorphic to Affine Varieties
Notice that Sect. 2.3.1 excludes the case n = 1, and in fact, A1

C
� {0} is isomorphic to an

affine variety. In fact, a more general statement is true.
Let X be an affine variety, and let 0 �= f ∈ C[X]. Then we claim that X � Z(f ) is

always isomorphic to an affine variety. To see this, write

C[An+1
C
] = C[x1, . . . , xn, y],

and in these variables, consider the affine variety

Y = Z(I (X) ∪ {f (x1, . . . , xn) · y − 1)})

(see Sect. 1.1.2 for I (X)). We claim that Y is isomorphic to X � Z(f ). Indeed, the
morphism of varieties

X � Z(f ) → Y

given by

(x1, . . . , xn) → (x1, . . . , xn,
1

f (x1, . . . , xn)
)

is inverse to the morphism

Y → X � Z(f )

given by

(x1, . . . , xn, y) → (x1, . . . , xn).

This construction in particular implies for any Zariski open set U ⊆ X in any variety X

and a point P ∈ U , there exists a Zariski open subset V ⊆ U which is affine in the broader
sense (i.e. isomorphic to an affine variety), such that P ∈ V . We say that any Zariski open
neighborhood of a point P contains an affine Zariski open neighborhood.

To see this, it suffices to consider the case of X quasiaffine, U = X (see Exercise 13).
Then X is the complement of a Zariski closed set in an affine variety Y , i.e.

X = Y � Z((f1, . . . , fm)).
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For a point P ∈ X, not all of the functions f1, . . . , fm can be zero on P . Let fi(P ) �= 0.
Then P ∈ Y � Z((fi)), which is affine in the broader sense by the above argument.

3 Rational Maps, SmoothMaps and Dimension

In this section, we will introduce more geometric concepts which are central in algebraic
geometry, and also motivate some of the algebra covered in the remaining section of this
chapter. Rational maps are an important alternative choice of morphisms in the category
of varieties, which are more general than the morphisms of varieties we introduced so far.
Smooth maps, on the other hand, are a more special kind of morphisms of varieties, which
capture algebraically the concept of non-singularity. We already hinted at the importance
of the algebraic concept of dimension, which we will introduce in this section as well.

3.1 Definition of a Rational Map

For two algebraic varieties X, Y , a rational map from X to Y is morphism of varieties

f : U → Y

where U is a non-empty Zariski open subset of X. The rational map f is considered equal
to a rational map

g : V → Y

if

f (x) = g(x) for all x ∈ U ∩ V.

Recall that (by irreducibility), a non-empty Zariski open set in a variety X is dense which
means that its complement does not contain any non-empty open set. This implies that for
non-empty Zariski open sets U,V ⊆ X, U ∩ V is non-empty and Zariski open.

A rational map f : X → Y is called dominant if for W ⊆ Y non-empty Zariski open,
the inverse image f−1(W) is non-empty (note that it is by definition open).

3.2 The Field of Rational Functions

For an affine variety X, the field K(X) of rational functions on X can be defined as the
field of fractions of the ring of regular functions C[X].
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Note that for a general variety X this definition does not work, since there may not
be enough regular functions on X. However, X always contains a non-empty open set U

which is affine in the broader sense (see Exercise 13). We may define K(X) as the field of
fractions of C[U ]. One easily proves that this is (functorially) independent of the choice
of the non-empty affine open subset U ⊆ X.

3.2.1 The Category of Varieties and Dominant Rational Maps
One can consider the category whose objects are varieties, and morphisms are dominant
rational maps. An isomorphism in this category is called a birational equivalence. A
variety is called rational if it is birationally equivalent to an affine (equivalently, projective)
space. Note also that any rational map of varieties that has an inverse as a rational map is
necessarily dominant. This means that if we consider the larger category of varieties and
all rational maps (not necessarily dominant), it has the same isomorphisms as the category
of varieties and rational dominant maps.

Additionally, one sees that mapping

X → K(X)

where X is a variety and K(X) is its field of rational functions gives rise to an equivalence
of categories between the category of varieties and rational dominant maps, and the
opposite of the category of fields containing C which are finitely generated (as fields) over
C, and homomorphisms of C-algebras (or, equivalently, homomorphisms of fields which
fix C). Such fields are sometimes known as function fields over C. Functoriality follows
from functoriality of the field of fractions with respect to injective homomorphisms of
integral domains.

To go the other way, select, for a function field K over C, elements x1, . . . xn which
generate K as a field containing C. This defines a map

h : C[x1, . . . , xn] → K.

Then send K to Z(I) where I is the kernel of h, i.e. the ideal of all polynomials p such
that p(h) = 0. This is an affine variety since the ideal I is prime (because the quotient by
I , which is the image of h, is an integral domain). By definition, homomorphisms of fields
give rise to rational maps, and the two constructions are inverse to each other.

In particular, a variety X is rational if and only if

K(X) ∼= C(x1, . . . , xn)

as C-agebras for some n. (Note: the right hand side means the field of rational functions
on An, i.e. the field of fractions of the ring of polynomialsC[x1, . . . , xn].) We also say that
the field K(X) is rational.
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It is generally a hard problem to decide if a variety (or equivalently a field) is rational.
For example, if D is the discriminant of the polynomial

xn + an−1x
n−1 + · · · + a0,

then it is not known in general whether the field

C(a1, . . . , an,
√

D)

is rational. It is known to be true for n ≤ 5.

3.3 Standard Smooth Homomorphisms of Commutative Rings

A homomorphism of commutative rings

f : A → B

is called standard smooth of dimension k ≥ 0 if f can be expressed as

A → A[x1, . . . , xn]/(f1, . . . , fm) ∼= B

where n = m+ k, the first homomorphism sends a ∈ A to a, and fi are polynomials such
that the ideal in

A[x1, . . . , xn]/(f1, . . . , fm)

generated by the determinants of the m×m submatrices of the Jacobi matrix

⎛

⎜⎝

∂f1
∂x1

. . .
∂f1
∂xn

. . . . . . . . .
∂fm

∂x1
. . .

∂fm

∂xn

⎞

⎟⎠

is A[x1, . . . , xn]/(f1, . . . , fm) (or, equivalently, contains 1). This is equivalent to saying
that the ideal in A[x1, . . . , xn] generated by the determinants and f1, . . . , fm contains 1.
If A is a field, this can be tested using Gröbner basis algorithm, which we will learn in the
next Section.

3.4 SmoothMorphisms of Varieties

A morphism of varieties f : X → Y is called smooth if for every point P ∈ X there exists
an affine open set U ⊆ X with P ∈ U and an affine open set V ⊆ Y such that f (U) ⊆ V
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(and hence, necessarily, f (P ) ∈ V ) and the induced homomorphism of rings

C[f ] : C[V ] → C[U ]

is standard smooth.

3.4.1 Smooth Varieties
A variety X is called smooth if the unique morphism of varieties

X → A
0
C

which sends every point of X to the single point of A0
C

is smooth.

3.5 Regular Rings and Dimension

In commutative algebra, the Krull dimension dim(R) of a commutative ring R is the
maximal number d such that there exist prime ideals

p0 � p1 � · · · � pd (3.5.1)

in R. If no such maximum exists, we say that the dimension is infinite: dim(R) = ∞. This
can actually occur even when R is Noetherian (see Exercise 38). For a given prime ideal
p in a Noetherian ring, the maximal d for which p = pd in a chain of the form (3.5.1) is
called the height of the prime ideal p.

A commutative ring R is called local if it has a unique maximal ideal m (recall that
being a maximal ideal means that m �= R and every ideal which contains m is either m or
R; equivalently, this means that R/m is a field). We will see in Sect. 5.3 that R being local
Noetherian guarantees that d exists (i.e. is finite).

Consider a commutative ring R and a prime ideal p ⊂ R. Then we may consider Rp,
the ring R localized at p, which means S−1R with S = R�p. Note that Rp is a local ring
whose maximal ideal is generated by p.

For a Noetherian local ring R with maximal ideal m, k = R/m is a field called the
residue field. Then m/m2 is a vector space over k of finite dimension (m2 is the ideal
generated by x · y with x, y ∈ m). We will show in Sect. 5.3 (Theorem 5.3.5) that we
always have

dim(R) ≤ dimk(m/m2).

We say that R is regular if equality arises, i.e. if

dim(R) = dimR/m(m/m2).
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For an arbitrary commutative ring R, we say that R is regular if it is Noetherian and if
Rp is regular for every prime ideal p. We will see later (Exercise 19 of Chap. 5) that it
suffices to verify this condition for maximal ideals (since the localization of a regular ring
is regular).

3.5.1 Smooth Varieties and Regular Rings
For a variety X, and a point P ∈ X, we consider the ring C[X]P of all regular functions
at the point P (i.e. defined on some open subset containing P ). If X is affine, then C[X]P
can be thought of as the ring C[X] localized at the ideal of all functions which are 0 at P .
(In more advanced algebraic geometry, as we shall see in the next chapter, this prime ideal
is considered to be the same thing as the point P .) If X is not affine, replace it by an open
affine neighborhood of P . In any event, C[X]P are local rings.

It is worth noting that for every point P in a variety as defined in this chapter,
dim(C[X]P ) is equal to dim(X), which is defined as the maximum d such that there
exist closed subvarieties

X0 � X1 � · · · � Xd. (3.5.2)

(We say that every variety is equidimensional; see Exercise 36.)
The main theorem of smooth varieties is that a variety X over C is smooth if and only

if all the rings C[X]P are regular. We shall postpone the proof of this theorem to Chap. 3,
Sect. 3.

4 Computing with Polynomials

By now, it is clear that we need more algebra to understand fully the geometric concepts
introduced so far. In this section, we will learn how to work with rings of polynomials in
several variables over a field. We will show that they have unique factorization, and that
they are Noetherian. We will also prove the Nullstellensatz. On the computational side,
we will discuss Gröbner bases. As applications, we will discuss algorithms for deciding
whether one ideal is contained in another ideal (or its radical). We will also give a criterion
for deciding whether a multivariable polynomial ideal is prime.

4.1 Divisibility of Polynomials

We begin with some very basic facts about divisibility.

4.1.1 Proposition (Chinese Remainder Theorem) Let I1, . . . , In be ideals in a commu-
tative ring R such that 1 ∈ Ii + Ij for all i �= j . Then I1 ∩ · · · ∩ In = I1 · · · · · In (the
product of ideals is the ideal generated by x1 · · · · · xn with xi ∈ Ii ) and the product of
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projections

R/(I1 ∩ · · · ∩ In) →
n∏

i=1

R/Ii (4.1.1)

is an isomorphism.

Proof It suffices to consider the case n = 2 (then we can use induction). For n = 2, we
always have I1I2 ⊆ I1∩I2. To show the opposite inequality, let 1 = a1+a2 where ai ∈ Ii .
Then for x ∈ I1 ∩ I2, x = xa1 + xa2 ∈ I1I2. Now (4.1.1) is always injective since an
element goes to 0 on the right hand side if and only if it is in every Ii . To show surjectivity
for n = 2, choosing x1, x2 ∈ R, the element x1a2 + x2a1 is congruent to xi modulo Ii for
i = 1, 2, which proves surjectivity. ��

An element u ∈ R of a commutative ring is called a unit if there exists another element
u−1 ∈ R such that uu−1 = 1. Let R be an integral domain. An irreducible element is
an element x ∈ R which is not zero or a unit such that yz = x implies that one of the
elements y, z is a unit. An integral domain R is called a unique factorization domain (or
UFD) if every element x ∈ R which is not 0 or a unit factors uniquely into irreducible
elements up to order and multiplication by units, i.e.

x = x1 . . . xn

where xi are irreducible, and whenever

x = y1 . . . ym

where yi are irreducible, we have m = n and there exists a permutation σ and units ui

such that

xi = uiyσ(i).

In a UFD, any set of elements S has a greatest common divisor (GCD) which is an element
x dividing all elements of S such that every other elements dividing all elements of S

divides x. The GCD is, of course, uniquely determined up to multiplication by a unit.
A particular type of example of a UFD is a principal ideal domain (or PID) which

means an integral domain whose every ideal is principal (i.e. generated by a single
element). In particular, then R is Noetherian, which guarantees that a decomposition into
irreducible elements exists. Then the principal ideal property guarantees that an irreducible
element a generates a prime ideal: if xy ∈ (a) and x /∈ (a), then (x, a) = (b) for some
element b, but b has to be a unit by irreducibility. Thus, y ∈ (yx, ya) ⊆ (a).
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A particular type of example of a PID is a Euclidean domain which means an integral
domain R on which there exists a function f : R � {0} → N0 such that for any a, b ∈
R � {0} there are elements c, r ∈ R such that a = bc+ r and r = 0 or f (r) < f (b). The
element r is called the remainder. In any ideal I ⊆ R, then, we can produce a sequence
of elements x1, x2, . . . where xi+1 is a non-zero remainder (if one exists) of dividing
some element y ∈ I by xi . Since f (x1) > f (x2) > . . . , the sequence must terminate
eventually, yielding a generator of I . Examples of Euclidean domains include Z and the
ring of polynomials in one variable k[x] where k is a field, where f is the absolute value
and degree of a polynomial, respectively.

Let R be a UFD. A non-zero polynomial f (x) ∈ R[x] is called primitive if the GCD of
its coefficients is 1.

4.1.2 Proposition (Gauss Lemma)

(1) Let R be a UFD and let f (x), g(x) ∈ R[x] be primitive polynomials. Then f (x)g(x)

is primitive.
(2) Let K be the field of fractions of R, and let g(x)h(x) ∈ R[x]where g(x), h(x) ∈ K[x].

Then there exists a u ∈ K � {0} such that ug(x), u−1h(x) ∈ R[x]. (In particular, an
irreducible polynomial in R[x] of degree ≥ 1 is also irreducible in K[x].)

Proof

(1) Let f (x) = amxm + · · · + a0, g(x) = bnx
n + · · · + b0 with am, bn �= 0, and let

f (x)g(x) = cm+nx
m+n + · · · + c0. Let the coefficients c0, . . . , cm+n all be divisible

by an irreducible element c. Consider the smallest i such that ai is not divisible by c,
and the smallest j such that bj is not divisible by c. Now the coefficient ci+j is a sum
of aibj , which is not divisible by c by unique factorization, and terms divisible by c.
Thus, ci+j is not divisible by c, which is a contradiction.

(2) Without loss of generality, g(x)h(x) is a primitive polynomial. Using common
denominators, we can find u, v ∈ K� {0} such that ug(x), vh(x) ∈ R[x] are primitive
polynomials. Then uvg(x)h(x) is a primitive polynomial, which implies that uv is a
unit in R. ��

4.1.3 Theorem If R is a UFD, then R[x] is a UFD. In particular, rings of the form
Z[x1, . . . , xn] and k[x1, . . . , xn] where k is a field are UFD’s.

Proof Let R be a UFD. Clearly, units in R[x] are precisely units in R. Suppose f (x) ∈
R[x] is non-zero, and not a unit, and suppose

f (x) = g1(x) . . . gm(x) = h1(x) . . . hn(x)
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where gi , hi are irreducible polynomials in R(x). Without loss of generality, there are
numbers 1 ≤ m ≤ m, 1 ≤ n ≤ n such that gi (resp. hi) is of degree ≥ 1 if and only if
i ≤ m (resp. i ≤ n). Now gi , i ≤ m, and hj , j ≤ n are primitive and, by Proposition 4.1.2,
also irreducible in K[x]. Thus, since K[x] is a UFD, m = n, and for some permutation σ

on {1, . . . ,m}, gi(x) = hσ(i)(x)ui for a unit ui in R. (The last statement follows from the
fact that the polynomials are primitive.) Thus, we can divide f by

∏

i≤m

gi(x),

and therefore without loss of generality assume m = n = 0. But then all the polynomials
gi, hi are of degree 0, and hence our statement follows from the fact that R is a UFD.

��

4.2 Gröbner Basis

We shall now prove that rings of polynomials over a Noetherian ring are Noetherian. In
the special case of multivariable polynomials over a field, we can be a lot more explicit,
with computational applications.

4.2.1 Theorem (Hilbert Basis Theorem) If a ring R is a Noetherian, then so is the ring
of polynomials R[x].

COMMENT In this context, the term “basis” refers to a set of generators of an ideal, no
linear independence is implied.

Proof Assume R is Noetherian. Let I ⊆ R[x] be an ideal. Then the top coefficients (i.e.
coefficients of the highest power of x) of all the polynomials f ∈ I form an ideal J ⊆ R

(since two nonzero polynomials of unequal degrees can be brought to the same degree by
multiplying the polynomial of lesser degree by a power of x). By assumption, then, the
ideal J is generated by the top coefficients of some polynomials f1, . . . , fn ∈ I .

Let d be the maximum of the degrees of the polynomials f1, . . . , fn. Then by
construction, for any polynomial g ∈ I of degree ≥ d , there exist a1, . . . an ∈ R,
m1 . . . , mn ∈ N0 such the top coefficients of g(x) and a1f1(x)xm1 + . . . anfn(x)xmn

coincide. By induction, then, there exists an R[x]-linear combination g0 of the polynomials
f1, . . . , fn such that g(x)− g0(x) is either 0 or is of degree < d .

Now consider for each fixed i ∈ N0 the ideal Ji ⊆ R of all the top coefficients of
all polynomials in I of degree i. Then each of these ideals Ji is finitely generated, so by
taking finitely many polynomials h1, . . . , h� in I of degrees i = 0, . . . , d − 1 whose top
coefficients are the generators of all the Ji’s, 0 ≤ i < d , we see that every polynomial in
I of degree < d is an R-linear combination of h1, . . . , h�. Thus, we are done. ��
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Next, we shall discuss the ring k[x1, . . . , xn] of polynomials in n variables over a field
k. Even though this ring is not a Euclidean domain for n > 1 (because it is not a PID—
think, for example, of the ideal (x1, . . . , xn)) there is a certain analog of the long division
algorithm which allows us decide, for example, whether a polynomial is an element of a
given ideal, or whether two ideals are the same.

By a monomial, we shall mean an expression of the form x
m1
1 . . . x

mn
n , i.e. equivalently,

the n-tuple a = (m1, . . . ,mn) ∈ N
n
0, which are sometimes referred to as multidegrees. For

what follows, we need to fix a monomial order. This means a total ordering≥ on n-tuples
of non-negative integers (i.e. for any two n-tuples a, b we have a ≥ b or b ≥ a) which
satisfies the descending chain condition (or DCC), i.e. any sequence a1 ≥ a2 ≥ . . . is
eventually constant. A totally ordered set satisfying the DCC is also sometimes called well-
ordered. In addition, we require that for multidegrees a, b, c, if a ≥ b, then a+ c ≥ b+ c.

Note that this implies that the multidegree (0, . . . , 0) is the smallest (since otherwise,
the DCC would be violated). This implies that when mi ≤ pi for all i = 1, . . . n, then
(m1, . . . ,mn) ≤ (p1, . . . , pn).

An example is the lexicographical order where

(m1, . . . ,mn) ≥ (p1, . . . , pn)

when either the two n-tuples are equal, or there exists an i such that mj = pj for j < i and
mi > pi . We indicate this lexicographical order by the symbol x1 > · · · > xn. Obviously,
we may order lexicographically by using the variables in a different order. Another
example of a monomial ordering orders, say, by total degree and uses a lexicographic
order to break ties.

Given a fixed monomial order and a non-zero polynomial f ∈ k[x1, . . . , xn], the
leading term L(f ) is the monomial of f which is the greatest in the given monomial order.
Its multidegree is called the multidegree of the polynomial f , and its coefficient is called
the leading coefficient. For convenience, put also L(0) = 0. Now if I ⊆ k[x1, . . . , xn]
is an ideal, the leading term ideal L(I) is the ideal generated by the leading terms of the
elements of I .

4.2.2 Definition A system of generators {f1, . . . , fm} of an ideal I ⊆ k[x1, . . . , xn] is
called a Gröbner basis if L(f1), . . . , L(fm) generate the ideal L(I).

If {f1, . . . , fm} is a Gröbner basis of I , then for any polynomial

g ∈ k[x1, . . . , xn],

we can find polynomials h1, . . . hm, r ∈ k[x1, . . . , xn] such that

g = h1f1 + . . . hmfm + r (4.2.1)
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and no monomial summand of r is in L(I). Moreover, the polynomial r is uniquely deter-
mined (and is called the remainder of g with respect to the Gröbner basis {f1, . . . , fm}).
To see this, let g be any polynomial. If no monomial summand of g is in L(I), then we
can put r := g. Otherwise, let d(g) be the highest multidegree of a monomial summand
of g which is in L(I). Then subtracting a certain linear combination of the fi ’s (with
polynomial coefficients) from g creates a polynomial g where d(g) < d(g). (In fact,
we just need to subtract a multiple of one of the fi ’s by a monomial and a coefficient.)
Because of the well-ordering property, this process must eventually terminate, yielding
the remainder. To prove uniqueness of the remainder, if there were two different possible
remainders r, s, then r−s ∈ I . However, by the definition of a remainder, L(r−s) /∈ L(I),
which is a contradiction.

Note that the definition of the remainder makes sense for any set of generators fi of
an ideal I , not necessarily a Gröbner basis, if we weaken the condition on the remainder
to say that none of its monomial terms is divisible by any of the L(fi)’s. The proof of
existence is the same, but uniqueness fails.

Our proof of the existence of a remainder with respect to a Gröbner basis is constructive.
In other words, it also gives a way of finding the remainder, and therefore, if we have a
Gröbner basis of an ideal I in k[x1, . . . , xn], we can determine for a given polynomial g

whether g ∈ I (since this happens if and only if its remainder is 0).
Therefore, the question becomes whether Gröbner bases exists, and if so, how to find

one. Suppose f, g ∈ k[x1, . . . , xn]. Let the multidegrees of f resp. g be (m1, . . . ,mn)

resp. (p1, . . . , pn) and let the leading coefficients of f , g be a, b, respectively. Denoting

qi = max(mi, pi),

f ∗ g = bx
q1−m1
1 . . . x

qn−mn
n f,

g ∗ f = ax
q1−p1
1 . . . x

qn−pn
n g,

put

S(f, g) := f ∗ g − g ∗ f.

(Basically, we multiply by constants and the smallest monomials to make the leading
terms cancel out—the multidegrees of the multiplier monomials are the smallest in the
coordinate-wise partial ordering, and hence also in our chosen monomial ordering.)

The Buchberger algorithm produces, for an ideal I ⊆ k[x1, . . . , xn] with a given finite
set of generators S0, an increasing (with respect to inclusion) sequence of finite sets

S0, S1, . . . , Sm
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of generators of I where Sm is a Gröbner basis. Given Si , we take a pair of polynomials
f, g ∈ Si , and find any remainder of S(f, g) by Si . If we find a 0 remainder for all pairs
f, g ∈ Si , we are done. Otherwise, if we find a non-zero remainder ri , we let Si+1 :=
Si ∪ {ri}.

The reason this works can be explained as follows: First, let us show that the algorithm
terminates. Suppose it does not, i.e. we produce an infinite sequence of remainders ri .
Then for any i < j ∈ N, L(ri) cannot divide L(rj ). But we can easily see that this
is impossible: In any infinite sequence of natural numbers, we can pick an infinite non-
decreasing subsequence. By iterating this selection, we can prove by induction on m ≤
n that there is an infinite subsequence of the multidegrees of the L(ri)’s whose first m

coordinates form non-decreasing sequences. For m = n, this is a contradiction with our
definition of a remainder.

Next, we need to prove that last term Sm of our sequence forms a Gröbner basis. Thus,
assume that some linear combination

f = h1r1 + · · · + hmrm

has a leading term which is not in (L(r1), . . . , L(rm)). Let α denote the highest of the
leading monomials L(h1r1), . . . , L(hmrm). We will proceed by induction on α. Certainly
α ≥ L(f ), but equality is ruled out by the assumption L(f ) /∈ (L(r1), . . . , L(rm)). Now
let, without loss of generality, i = 1, . . . , p be precisely the numbers for which L(hiri ) =
α. We will now proceed by induction on p. Note that p = 1 is actually impossible (since
then L(h1r1) would have nothing to cancel against). If p ≥ 2, then, there exists an i < p

such that L(hprp) = L(hiri ). This implies that L(hprp) is divisible by L(rp ∗ ri). Thus,
adding an appropriate multiple of S(ri , rp) decreases p (or else α). But we assumed that
S(ri , rp) is a linear combination of r1, . . . , rm (i.e., a 0 remainder can be achieved). Thus,
we are done by the induction hypothesis.

4.2.3 Definition A Gröbner basis {f1, . . . , fm} of an ideal I ⊆ k[x1, . . . , xn] is called
reduced if the leading coefficient of each fi is 1, and no monomial summand of any fi is
divisible by L(fj ) for any j �= i.

Clearly, a reduced Gröbner basis of any ideal I exists, since we can just multiply by
constants to make the leading coefficients 1, and then make the basis reduced by taking
remainders. However, it is useful to note that up to order, the reduced Gröbner basis is
also unique. To see this, first note that clearly, the leading monomials of the elements of a
reduced Gröbner basis of an ideal I must be exactly the minimal monomials in L(I) with
respect to the partial order given by comparing each coordinate of the multi-degree (i.e.
α = (m1, . . . ,mn) is less or equal than β = (p1, . . . , pn) if and only if mi ≤ pi for each
i). Now suppose we have two reduced Gröbner bases S, T and let f ∈ S, g ∈ T have the
same leading monomial. If f �= g, then L(f − g) is a monomial of f or g. Suppose it is a
monomial of f . But then, of course, f −g ∈ I , so there must be some element h ∈ S such
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that L(h) divides L(f − g) which is a monomial of f . This contradicts the assumption
that the Gröbner basis S is reduced.

Thus, reduced Gröbner bases can be used directly to check whether two ideals in
k[x1, . . . , xn] are the same, although note that given Gröbner bases of both ideals (not
necessarily reduced), we can also check both inclusions of the ideals by repeatedly finding
remainders of one basis with respect to the other.

Given an ideal I ⊆ k[x1, . . . , xn], consider its reduced Gröbner basis f1, . . . , fm

with respect to the lexicographic order x1 > · · · > xn, arranged in decreasing order
of multidegrees. Let mi be the smallest number p such that fp contains no variables
x1, . . . , xi−1. Then, using the division algorithm, we see that fmi , fmi+1, . . . , fm form
a reduced Gröbner basis of the ideal I ∩ k[xi, . . . , xn] with respect to the lexicographical
order xi > · · · > xn. This ideal is called the elimination ideal of the ideal I with
respect to the variables xi, . . . , xn. Elimination ideals are useful in solving systems of
algebraic equations, although we must be more careful than in the case of systems of linear
equations. This is because a projection of an algebraic set in A

n
k is not necessarily Zariski

closed. An elimination ideal only defines a closure of the projection. Thus, for example,
if the elimination ideal corresponding to the variable xn is (0), it means that there is no
constraint on the last variable in a solution of the system of equations fi = 0, but it does
not mean that any value of xn can be plugged in to get a solution (see Exercise 9).

Using elimination ideals, one can test if an ideal I ⊆ k[x1, . . . , xn] is prime. This is
based on the following

4.2.4 Proposition Let R be an integral domain and let I ⊂ R be an ideal. Suppose
a ∈ R � I , and suppose I = (a−1R) · I ⊂ a−1R is a prime ideal. Then I is prime if
and only if I ∩ R = I .

Proof Since I is assumed to be prime, I ∩R is prime. To prove the converse, let p, q ⊂ R

be prime ideals not containing a such that p = q (using the same notation as above). Then
for x ∈ p, by definition, amx ∈ q for some m, but then x ∈ q because q is prime and
a /∈ q . Thus, p ⊆ q , and by symmetry, p = q . Applying this to p = I , q = I ∩ R proves
the claim. ��

Now let R be an integral domain and let I ⊂ R[x] be an ideal, and assume that the
elimination ideal J = I ∩ R is prime (for otherwise we know that I is not prime). Then
S = R/J is an integral domain. Let F be its field of fractions. Let Ĩ be the ideal generated
in F [x] by I . Then Ĩ is principal since F [x] is a PID, and by multiplying by a common
denominator in S, we can represent the generator of Ĩ by an element h ∈ I . Note that
Ĩ �= (1), and thus, the degree of h is > 0. Further, if h ∈ F [x] is not irreducible, then
I is not prime. (Since then a non-zero R-multiple of h is a product of two polynomials
g1, g2 ∈ R[x] of lower degree, which are therefore not in I , while their product is.)

Thus, assume h ∈ F [x] is irreducible. Let a be the coefficient of h at the highest
power of x. Then in a−1R[x], a−1R · I = I is prime, since it is the pullback of the ideal
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(h) ⊂ a−1S[x], which is prime, since h ∈ a−1R[x] is irreducible. Thus, I is irreducible if
and only if I ∩ R[x] = I .

If R = k[x1, . . . , xn−1], then we can check inductively whether the elimination ideal
I ∩ R is prime and if it is, we can apply the above method by obtaining the reduced
Gröbner basis of the ideal J generated by I and at − 1 in k[x1, . . . , xn, t] with respect
to the lexicographical order t > xn > · · · > x1 and check whether the elimination ideal
J ∩ k[x1, . . . , xn] is equal to I . (For an example, see Exercise 20.)

4.3 Nullstellensatz

The Nullstellensatz used in Sect. 1 can be rephrased (and generalized) as follows:

4.3.1 Theorem A finitely generated algebra R over a field k satisfies a Nullstellensatz,
which means that for every ideal I , its radical

√
I = {x ∈ R | ∃n ∈ N xn ∈ I } is an

intersection of maximal ideals.

This is brought to the familiar context by the following

4.3.2 Proposition Suppose k is an algebraically closed field. Then every maximal ideal
I ⊂ k[x1, . . . , xn] is of the form

(x1 − a1, . . . , xn − an) (4.3.1)

for some a1, . . . , an ∈ k.

Proof We will show that any ideal I � k[x1, . . . , xn] is contained in an ideal of the
form (4.3.1). This is proved by induction on n. Suppose the statement is true with n ≥ 1
replaced by any lower number. (For n = 1, the assumption is vacuous.) Then there are two
possibilities:

Case 1: The ideal J = I ∩ k[xn] in k[xn] is non-zero. Then, since k[xn] is a PID, J =
(f ) is a principal ideal, and since k is algebraically closed, f factors into powers of linear
factors (xn− bi)

�i , i = 1, . . . ,m. By the Chinese Remainder Theorem, k[x1, . . . , xn]/I is
isomorphic to the product of the rings k[x1, . . . , xn]/(I + (xn − bi)

�i ). Then, for some i,
I+(xn−bi)

�i �= (1), but this implies I+(xn−bn) �= (1) (since an ideal whose radical is (1)

is itself (1)). Therefore, we can pass to the ring k[x1, . . . , xn]/(xn−bi) ∼= k[x1, . . . , xn−1]
and use the induction hypothesis.

Case 2: I ∩ k[xn] = (0). Therefore, if we set R = k(xn)[x1, . . . , xn−1] (recall that
k(x) denotes the field of rational functions in k in one variable), then I · R �= R. Now we
can apply the induction hypothesis to the ring of polynomials R = k(xn)[x1, . . . , xn−1]
where k(xn) denotes the algebraic closure of k(xn). Thus, the ideal I · R is contained in
an ideal of the form (x1 − b1, . . . , xn−1 − bn−1) for bi ∈ k(xn). Thus, each bi is the root
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of a polynomial with coefficients in k(xn). Now since k is algebraically closed, all of the
coefficient polynomials factor into linear factors, and there are only finitely many values of
xn ∈ k for which either the denominator or numerator of any of the coefficient polynomials
is 0. Since k is algebraically closed, it is infinite, and we can choose an element an ∈ k

which is different from any of those values. Plugging in xn = an, all the expressions for
bi give meaningful formulas for elements ai ∈ k. Then, the ideal I is contained in (4.3.1).

��

It follows from Theorem 4.3.1 and Proposition 4.3.2 that two affine algebraic sets over
an algebraically closed field k defined by ideals I, J coincide if and only if

√
I = √J . To

see this, first note that the set of polynomials p satisfying

p(x1, . . . , xn)− p(a1, . . . , an) ∈ (x1 − a1, . . . , xn − an)

is a subalgebra of k[x1, . . . , xn] since

p(x1, . . . xn)q(x1, . . . , xn)− p(a1, . . . an)q(a1, . . . , an) =
p(x1, . . . xn)(q(x1, . . . , xn)− q(a1, . . . , an))+
(p(x1, . . . xn)− p(a1, . . . , an))q(a1, . . . , an),

and thus is equal to k[x1, . . . , xn], since it contains x1, . . . , xn. This implies that

I ⊆ (x1 − a1, . . . , xn − an)

if and only if (a1, . . . , an) ∈ Z(I), which in turn implies our statement by Theorem 4.3.1
and Proposition 4.3.2.

Note that using Gröbner bases, for any field k (not necessarily algebraically closed),
this can be checked as follows: First, for an ideal I ⊆ k[x1, . . . , xn], f ∈

√
I occurs if and

only if

(k[x1, . . . , xn]/I)[f−1] = 0 (4.3.2)

(since both conditions are equivalent to f−1m = k[x1, . . . , xn][f−1] for every maximal
ideal I ⊆ m). Now (4.3.2) can be checked by considering the ideal generated by I and
f t − 1 in k[x1, . . . , xn], and checking whether its reduced Gröbner basis is {1}.

For two ideals I = (f1, . . . , fm), J = (g1, . . . , gm), we have
√

I = √J if and only if
all fi ∈

√
J and gj ∈

√
I , which can be checked using the above method. For an example,

see Exercise 3.
The reader may have noticed that we have not proved Theorem 4.3.1 yet. In fact, our

approach is to introduce some related facts first, which will be useful later. Theorem 4.3.1
will be proved at the end of this subsection.
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In a commutative ring R, the intersection Jac(R) of all maximal ideals is called the
Jacobson radical and the intersection Nil(R) of all prime ideals is called the nilradical.
Therefore, by definition, the Jacobson radical contains the nilradical.

4.3.3 Lemma The nilradical consists of all elements x ∈ R which are nilpotent (i.e.
satisfy xn = 0 for some n ∈ N). The Jacobson radical consists precisely of those elements
x ∈ R such that for all y ∈ R, 1+ xy is a unit.

Proof Clearly, a prime ideal contains all nilpotent elements. Thus, to prove the statement
about the nilradical, we need to show that if x ∈ R is not nilpotent, then there exists a
prime ideal p ⊂ R not containing x. Clearly, a union of a set of ideals linearly ordered by
inclusion and not containing a power of x is an ideal not containing a power of x. Thus, by
Zorn’s lemma, the set of all ideals not containing x has a maximal element I with respect
to inclusion. We claim that I is prime. If I is not prime, then we have some y, z ∈ R with
yz ∈ I and y, z /∈ I . But then either the ideal generated by I and y, or the ideal generated
by I and z, contains no power of x. For otherwise, xm ∈ ay + I , xn ∈ bz + I , and thus
xm+n ∈ (ay + I)(bz+ I) = I , which is a contradiction. Thus, we have a larger ideal than
I not containing a power of x, which is also a contradiction.

To prove the statement about the Jacobson radical, suppose x ∈ R is contained in every
maximal ideal, but for some y ∈ R, 1 + xy is not a unit. Then by Zorn’s lemma, 1 + xy

is contained in some maximal ideal, which then cannot contain x (for otherwise it would
contain 1)—a contradiction. If x /∈ m for a maximal ideal m, then since R/m is a field,
there exists a y ∈ R such that 1+ xy ∈ m, and hence is not a unit. ��

Let R ⊆ S be an inclusion of commutative rings. An element x ∈ S is said to be
integral over R if it is a root of a monic polynomial with coefficients in R, i.e. if

xn + a1x
n−1 + · · · + an = 0

with ai ∈ R. Clearly, then the subring R′ of S generated by R and x is a finitely generated
R-module (with generators 1, x, . . . , xn−1). The converse is also true: suppose some linear
combinations r1, . . . , rm of powers of x generate R′ as an R-module. Let n ∈ N be a
number greater than all the powers of x involved in any of the ri ’s. Then xn must be an
R-linear combination of r1, . . . , rm, which gives a monic polynomial with root x.

Now if y ∈ S is another element integral over R, then the subring R′′ ⊆ S is a finitely
generated R′-module, and hence a finitely generated R-module. If R is Noetherian, then
every submodule of R′′ is also finitely generated, and hence, in particular, x + y and xy

are integral elements over R. If R is not Noetherian, the same conclusion still holds, since
an element integral over a ring is also integral over some finitely generated subring.

Thus, the subset of S of elements integral over R is a subring of S, called the integral
closure of R in S. When the integral closure is equal to S, we say that S is an integral
extension of R.
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4.3.4 Lemma Let R ⊆ S be an integral extension where S is an integral domain. Then R

is a field if and only if S is a field.

Proof If R is a field and x ∈ S is integral, then the subring Rx of S generated by R and x

is an integral domain, and a quotient of R[x]. But R[x] is a PID, so every non-zero prime
ideal is maximal (see Exercise 24). But the ideal of polynomials with coefficients in R

which are 0 on x is prime since Rx is an integral domain, and is not 0, since x is integral.
Thus Rx is a field. Since a union of an increasing sequence of fields is a field, we are done
by Zorn’s lemma.

Suppose conversely S is a field. Suppose that 0 �= x ∈ R. Then x−1 ∈ S is integral over
R, i.e.

x−n + a1x
−n+1 + · · · + an = 0

for ai ∈ R. Thus, x−1 = −(a1 + · · · + anx
n−1) ∈ R. ��

4.3.5 Theorem (Noether’s Normalization Lemma) Let R be a finitely generated k-
algebra where k is a field. Then R is isomorphic to an integral extension of a polynomial
algebra k[x1, . . . , xm].

Proof Induction on the number of generators y1, . . . , yn of R. If n = 0, there is nothing
to prove. Otherwise, we may assume that there exists a non-zero polynomial f with
coefficients in k such that

f (y1, . . . , yn) = 0

(since otherwise we would also be done). Now let

zi = yi − yri
n , i = 1, . . . , n − 1

for some r1, . . . , rn−1 ∈ N. Then we have

f (z1 + yr1
n , . . . , zn−1 + y

rn−1
n , yn) = 0.

Thus, if d is the degree of the polynomial f , and ri > dri−1 for i = 1, . . . , n − 1
(where we set r0 = 1), then the highest powers of yn occurring when expanding the
y1, . . . , yn-monomials of f into sums of monomials in z1, . . . , zn−1, yn are all different.
Thus, the highest of those powers survives, and hence, yn is integral over the subalgebra
of R generated by z1, . . . , zn−1. Since R is generated by z1, . . . , zn−1, yn, we can use the
induction hypothesis. ��
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COMMENT Note that our argument actually proves a little bit more, namely that the
number m can be chosen to be equal to the cardinality of any maximal finite set of
algebraically independent elements of R.

4.3.6 Corollary Let k be a field. If R is a finitely generated k-algebra which is an integral
domain but not a field, and 0 �= f ∈ R, then f−1R is not a field.

Proof By Noether’s normalization lemma, R is an integral extension of a polynomial ring
k[x1, . . . , xn]. Since R is not a field, n ≥ 1 by Lemma 4.3.4. Now suppose f−1R is a
field. Then f is integral over k[x1, . . . , xn], so it is a root of a monic polynomial over
k[x1, . . . , xn]. Thus, f divides the constant term a ∈ k[x1, . . . , xn] of that polynomial,
and hence a−1R is a localization of the field f−1R, and thus is equal to it. But now
also a−1R is an integral extension of a−1k[x1, . . . , xn], which, by Lemma 4.3.4, is then
also a field. This, however, is clearly absurd, since there exists a non-zero polynomial
b ∈ k[x1, . . . , xn] which is not a factor of a power of a, and hence is not inverted in
a−1k[x1, . . . , xn]. (Let k be the algebraic closure of k. All algebraically closed fields are
infinite. Therefore, there exists an α ∈ k such that x1 − α is not an irreducible factor of
a ∈ k[x1, . . . , xn]. Let, for example, b ∈ k[x1] be the minimal polynomial of α.) ��

Proof of Theorem 4.3.1 Consider a finitely generated k-algebra. By taking the quotient
by I , we may assume without loss of generality that I = 0. Thus, it suffices to prove that
in a finitely generated k-algebra R, we have

Jac(R) = Nil(R). (4.3.3)

Since ⊇ is automatic, all we need to prove is that if an element f ∈ R is not nilpotent,
then there is a maximal ideal in R which does not contain it. Thus, let m ⊂ f−1R be a
maximal ideal (it can be 0). Now consider the ideal m ∩ R. We claim that this ideal in R

is maximal (and obviously, it does not contain f ). We know that the ideal R ∩ m in R is
prime. Suppose it is not maximal. Then R/(R ∩m) is a finitely generated k-algebra which
is an integral domain but not a field, and f−1(R/(R ∩m)) = (f−1R)/m is a field, which
contradicts Corollary 4.3.6. ��

5 Introduction to Commutative Algebra

Commutative algebra is the study of properties of commutative rings. As we already saw,
many of those properties have a geometric meaning. The kinds of rings we encountered
so far are mostly finitely generated algebras over a field (and their localizations), which is
a rather special type of a ring. We discussed many special properties of those rings in the
previous section.
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In this section, we will turn to methods valid for more general Noetherian rings,
including primary decomposition of ideals. We will use these methods to develop the
concept of dimension, and exhibit applications to varieties over fields. The greater
generality of the methods of commutative algebra, however, also motivates the idea of
developing algebraic geometry in the context of general rings. This leads to Grothendieck’s
concept of a scheme, which we will discuss in the next chapter.

5.1 Primary Decomposition

An ideal q in a ring R is called primary if q �= R, and whenever xy ∈ q , we have either
x ∈ q or yn ∈ q for some n ∈ N. This definition may seem unnatural at first, because
of its asymmetry. In particular, it is not the same thing as a power of a prime ideal (see
Exercises 27 and 28). It is, however, obviously true that for a primary ideal q , the radical
p = √q is prime. We often call q a p-primary ideal.

It turns out that the concept of a primary ideal behaves better than many similar notions.
Perhaps it could be motivated by noting that an ideal q is primary if and only if in the ring
R/q , every zero divisor x (which, recall, means a non-zero element x for which there is a
nonzero element y with xy = 0) is nilpotent (i.e. satisfies xn = 0 for some n ∈ N).

Note that this implies the following

5.1.1 Lemma If q is an ideal in a ring R such that m = √q is a maximal ideal, then q is
m-primary.

Proof Every element of the image m of m in R/q is, by assumption, nilpotent. Therefore
m = Nil(R/q) = Jac(R/q). Therefore, the ring R/q is local, and every element not in m

is a unit, and hence cannot be a zero divisor. Thus, every zero divisor in R/q is nilpotent,
as we needed to prove. ��

To further demonstrate the utility of primary ideals, consider the concept of decompo-
sition of ideals: A decomposition of an ideal I �= R in a ring R is an expression of the
form

I = J1 ∩ · · · ∩ Jn (5.1.1)

where J1, . . . , Jn �= R are ideals. An ideal I �= R is called indecomposable if it cannot be
expressed as I = J ∩K for ideals J,K � I . Recall that since a Noetherian ring satisfies
the ascending chain condition (ACC) with respect to ideals, there cannot be an infinite
sequence of ideals

I1 � I2 � I3 . . . . . . .
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Thus, in a Noetherian ring, an ideal always has a decomposition into indecomposable
ideals. Now we have the following

5.1.2 Lemma In a Noetherian ring R, an indecomposable ideal I is primary.

Proof Suppose xy ∈ I . Let, for n ∈ N, In = {z ∈ R | zyn ∈ I }. By the ACC, we must
have In = In+1 for some n. Now let J be the ideal generated by I and x, and K be the
ideal generated by I and yn. We claim that

J ∩K = I, (5.1.2)

which proves our assertion, since I is indecomposable. To prove (5.1.2), note that ⊇ is
obvious. To prove ⊆, let a ∈ J ∩ K . Then we have a + byn ∈ I , a + cx ∈ I for some
b, c ∈ R. Thus, byn − cx ∈ I , and hence byn+1 ∈ I , which, however, by our choice of n,
implies byn ∈ I , and hence a ∈ I . ��

Thus, in particular, in a Noetherian ring R, any ideal I �= R has a decomposition into
primary ideals. Uniqueness is more delicate. For example, even when I is a prime ideal,
nothing prevents us from throwing in a larger prime ideal into its primary decomposition.
On the other hand, Exercise 28 shows that the radicals of a decomposition of a given ideal
into primary ideals may in some cases necessarily contain two prime ideals one of which
is contained in another. (In fact, this always happens when the ideal is not primary, but has
a prime radical.)

Nevertheless, uniqueness statements can be made. For example, we have the following

5.1.3 Proposition The set of radicals {√J1, . . . ,
√

Jn} of a primary decomposition of I

which is minimal with respect to inclusion does not depend on the decomposition, and is
equal to the set of all prime ideals of the form

√
Ix where Ix = {y ∈ R | xy ∈ I }, for

x ∈ R.

Proof Consider any primary decomposition (5.1.1), and suppose that
√

Ix is a prime ideal
for some x ∈ R. Then

√
Ix is the intersection of the radicals of all the ideals {y | yx ∈

Ji}. Those radicals are either R (when x ∈ Ji) or else, by definition, are equal to
√

Ji .
Therefore, the (by assumption prime) ideal J = √Ix is equal to an intersection of finitely
many prime ideals, which means that it is equal to one of them (since otherwise each of
the primes would contain an element not contained in J , which therefore cannot contain
their product—a contradiction).

On the other hand, since the decomposition is minimal, there exists an x /∈ Ji which is
in the intersection of Jj with j �= i. Then Ix = {y ∈ R | xy ∈ Ji}, so

√
Ix = √Ji . ��
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5.2 Artinian Rings

A commutative ring R is called Artinian if its ideals satisfy the descending chain condition
(or DCC), i.e. if every sequence of ideals

I1 ⊇ I2 ⊇ . . .

in R is eventually constant. We will see that this is actually a very restrictive condition
(more so than the ACC for ideals).

5.2.1 Lemma An integral domain R which is Artinian is a field.

Proof Let 0 �= x ∈ R. Then by the DCC, (xn) = (xn+1) for some n ∈ N. Therefore, xn

is a multiple of xn+1, and since R is an integral domain, x is a unit. ��

Since a quotient of an Artinian ring is obviously Artinian, every prime ideal in an
Artinian ring R is maximal, and hence dim(R) = 0. Also, obviously, R satisfies (4.3.3).

5.2.2 Lemma The nilradical of an Artinian ring R is nilpotent, i.e. there exists a k ∈ N

such that Nil(R)k = 0.

Proof By the DCC, there is some k ∈ N such that a = Nil(R)k = Nil(R)k+1. We
will show that a = 0. Assume this is false. Note that then a · a �= 0, i.e. there exists an
element x ∈ a with x · a �= 0. By the DCC, we may further assume that if this is also
true with x replaced by xy for some y ∈ R, then (x) = (xy). But now if x · a �= 0, then
x · a · a = x · a �= 0, so indeed, there exists a y ∈ a such that xy · a �= 0. Thus, (x) = (xy),
and inductively, (x) = (xyn) for every n ∈ N. However, y is by assumption nilpotent, and
hence x = 0, which is a contradiction. ��

5.2.3 Proposition An Artinian ring R is a product of finitely many local Artinian rings.

(Note that since a product of finitely many Artinian rings is obviously Artinian, this is
an if and only if condition.)

Proof By Lemma 5.2.1, every prime ideal of R is maximal. Thus, Nil(R) is an
intersection of maximal ideals. By the DCC, it is an intersection of finitely many maximal
ideals:

Nil(R) = m1 ∩ · · · ∩mn.
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By the Chinese Remainder Theorem, Nil(R) = m1 · · · · ·mn. Hence, by Lemma 5.2.2, for
some k ∈ N, mk

1 · · · · ·mk
n = 0, and hence, by the Chinese Remainder Theorem again,

mk
1 ∩ · · · ∩mk

n = 0,

and

R ∼=
n∏

i=1

R/mk
i .

However, a ring of the form R/mk where m is a maximal ideal is always local, since the
image m of m is nilpotent in R/mk and hence, m = Nil(R/mk) = Jac(R/mk). ��

A module M �= 0 over a commutative ring R is called simple if every submodule
N ⊆ M is either equal to M or 0. A composition series of a module M is a sequence

M =M0 ⊃ M1 ⊃ · · · ⊃ M� = 0 (5.2.1)

where each Mi−1/Mi is simple. The number � is called the length of the composition
series. If a module M has a composition series of length � and N ⊆ M is a simple module,
then by considering the smallest i such that N ⊆ Mi in (5.2.1) and taking quotients Mj/N

for j ≥ i, we see that M/N has a composition series of length < �. Thus, we can find a
composition series of M starting with any chosen simple module N of length ≤ �. Thus,
by induction, we see that if a module has a composition series, then all composition series
have equal length, which is called the length of the module M and denoted by �(M). We
then also call M a module of finite length. Also, by the same argument, length is additive,
meaning that for any R-modules N ⊆ M of finite length,

�(M) = �(N)+ �(M/N) (5.2.2)

By (5.2.2), a module of finite length satisfies both the ACC and the DCC with respect to
submodules. In fact, the converse is also true (see Exercise 31 below).

If R is a local Artinian ring with maximal ideal m, then we already saw that mk = 0
for some k. Now R/m is a field, and mi/mi+1 is an R/m-vector space, which has to be
finite-dimensional by the DCC. Thus, R is of finite length, and hence is also Noetherian.
By Proposition 5.2.3, every Artinian ring is Noetherian.

5.2.4 Theorem A (commutative) ring is Artinian if and only if it is Noetherian of
dimension 0.
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Proof We have already seen that Artinian rings are Noetherian and have dimension 0.
Conversely, let R be a Noetherian ring of dimension 0. Let

0 = q1 ∩ · · · ∩ qn

where qi are primary. Let mi = √qi . Since dim(R) = 0, mi are maximal ideals. Since R

is Noetherian, there exists a k ∈ N such that for all i, mk
i ⊆ qi . By the Chinese Remainder

Theorem, then, R is isomorphic to the product of the rings Ri = R/mk
i . Now m

j
i /m

j+1
i

is an R/mi-vector space, which is finite-dimensional by the ACC. Thus, each of the rings
Ri is an Ri-module of finite length, and hence Ri is Artinian. Hence, R is Artinian. ��

5.3 Dimension

Let A be a Noetherian local ring with maximal ideal m and an m-primary ideal q with s

generators. We are interested in studying powers of the ideal q , but for inductive purposes,
a more general concept must be introduced. Let M be a finitely generated A-module. A
q-stable filtration on M is a sequence M of submodules

M = M0 ⊇ M1 ⊇M2 ⊇ M3 ⊇ . . .

such that

qMi ⊆ Mi+1 (5.3.1)

for all i ∈ N, and there exists a k such that equality arises for all i ≥ k. The key point
about q-stable filtrations is the following

5.3.1 Lemma (Artin-Rees Lemma) Let M be a finitely generated A-module with a q-
stable filtration M, and let N ⊆ M be a submodule. Then the submodules Ni = Mi ∩ N

form a q-stable filtration on N (denoted by M ∩N).

Proof Consider the ring

A∗ =
⊕

i∈N0

qi

(where we set q0 = A). The ring structure is by the product from qi and qj to qi+j . Then
the ring A∗ is a finitely generated A-algebra, and hence is Noetherian by the Hilbert basis
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theorem, and

M∗ =
⊕

i∈N0

Mi

is a finitely generated module (since the filtration on M is q-stable). Now consider the
submodules

N∗
k =

⊕

i≤k

(N ∩Mk) ⊕
⊕

j∈N
qj (N ∩Mk).

We have N∗
k ⊆ N∗

k+1, so by the ACC, equality arises for large enough k, which is what we
were trying to prove. ��

We are interested in measuring the growth of the A-modules M/Mk . Since the ring A/q

is Artinian, the finitely generated A/q-modules Mi/Mi+1 have finite length, and hence the
A-modules M/Mk have finite length. We put

χM
q (k) = �(M/Mk).

5.3.2 Proposition There exists a k0 ∈ N and a polynomial p(k) of degree ≤ s such that
χM

q (k) = p(k) for all k ≥ k0. (It is called the characteristic polynomial.)

Proof We form the Poincaré series

PM(t) =
∞∑

i=0

�(Mi/Mi+1)t
i .

Now by induction on the number s of generators of q , one can show that there exists a
polynomial g(t) such that

PM(t) = g(t)

(1− t)s
. (5.3.2)

Indeed, if q = 0, the statement is obvious. Let x be one of the generators of q , and consider
the map

M
x

�� M. (5.3.3)

Then the kernel K and the cokernel C of (5.3.3) are A-modules, but also A/(x)-modules.
If we let q, m be the images of the ideals q , m in R/(x), then m is maximal, q is m-primary,
and has a set of s − 1 generators. Additionally, K = K ∩M is a q-stable filtration (by
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Lemma 5.3.1). Also, we have a filtration C given by the images of the modules Mn/(x) in
M/(x). By the additivity of length, we have

PM(t)− PC(t) = t (PM(t)− PK(t)),

both being equal to the Poincaré series of the q-stable filtration by xMk−1 on xM . Now
the induction hypothesis can be applied to PC(t) and PK(t), thus proving the existence of
the expression (5.3.2).

Now using the expansion

1

(1− t)s
=
∑

n≥0

(−s

n

)
(−t)n =

∑

n≥0

(
n+ s − 1

s − 1

)
tn,

we see that there exists a polynomial h(n) of degree ≤ s − 1 such that the coefficient of
PM(t) at tn is equal to h(n) for n large enough. The polynomial h(n) is known as the
Hilbert polynomial. The statement of the Proposition follows. ��

5.3.3 Lemma Suppose M,M′ are q-stable filtrations on a finitely generated A-modules
M , and suppose that Q is an m-stable filtration on M (recall that q is an m-primary ideal).
Then

lim
k→∞

χM
q (k)

χM′
q (k)

= 1, (5.3.4)

0 < lim
k→∞

χM
q (k)

χQ
m (k)

< ∞. (5.3.5)

Proof Let k0 ∈ N be such that for k ≥ k0, we have Mk+1 = qMk and M ′
k+1 = qM ′

k

where M ′
k are the modules of the filtration M′. Then by definition, for every k ∈ N,

Mk ⊇ M ′
k+k0

,

M ′
k ⊇ Mk+k0 .

Thus,

χM
q (k) ≤ χM′

q (k + k0),

χM′
q (k) ≤ χM

q (k + k0).

Thus, (5.3.4) follows from the fact that χM
q and χM′

q are polynomials (by Proposi-
tion 5.3.2).
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Similarly, we have mr ⊆ q ⊆ m for some r ∈ N, so if we let simply Mk = qkM ,
Qk = mkM , we have

χQ
m (rk) ≥ χM

q (k) ≥ χM
m (k)

so again (5.3.5) follows from Proposition 5.3.2. ��

Now let R again be a local Noetherian ring with maximal ideal m. Denote by δ(R)

the minimum number d for which there exists an m-primary ideal q with d generators.
Denote by d(R) the degree of the polynomial χM

q (k) for an m-primary ideal q and a
stable q-filtration M (which is independent of the choice of q and M by Lemma 5.3.3).

5.3.4 Lemma Let R be a Noetherian local ring with maximal ideal m. Then for any ideal
I ⊆ m, we have

d(R/I) ≤ d(R).

Let x ∈ m be a regular element (i.e. not a divisor of 0). Then

d(R/(x)) ≤ d(R)− 1.

Proof The first statement is clear. For the second statement, let M = (Mk)k be an m-
stable filtration on the R-module R, and let M = (Mk/(x))k be the induced m-stable
filtration on R/(x) (which is also an m-stable filtration where m = m/(x) is the maximal
ideal in R/(x)). Then by additivity of length, we have

χM
m (k)− χM∩xR

m (k) = χM
m (k).

By Lemma 5.3.3, the two functions on the left hand side are polynomials in k of degree
d(R) with the same coefficient at kd . Thus, their difference is a polynomial of degree
≤ d − 1. But this degree is, by definition, d(R/(x)). ��

5.3.5 Theorem We have δ(R) = d(R) = dim(R).

Proof By Proposition 5.3.2, δ(R) ≥ d(R). Next, we will prove that dim(R) ≤ d(R)

(and hence, in particular, dim(R) is finite). For this purpose, we use induction on d(R).
Consider a chain of prime ideals p0 ⊂ · · · ⊂ pd in R. Now if we replace R by R/p0,
clearly, it will not increase d(R), and the projections of pi still form a chain of length
d . Thus, without loss of generality, p0 = 0, and in particular, R is an integral domain.
Now if d = 0, there is nothing to prove. Otherwise, let 0 �= x ∈ p1. By Lemma 5.3.4,
d(R/(x)) ≤ d(R)− 1, while the projections of p1, . . . pd form a chain of prime ideals of
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length d − 1 in R/(x). Thus, by the induction hypothesis, d − 1 ≤ d(R) − 1, and hence
d ≤ d(R).

Thus, it remains to prove that δ(R) ≤ dim(R) or in other words to construct an m-
primary ideal q with dim(R) generators. To this end, we will construct, by induction,
for i ≤ dim(R), an ideal (x1, . . . , xi) whose every prime (from its minimal primary
decomposition) has height ≥ i. Suppose this is done with i replaced by i − 1. Then let U

be the union of all primes of (x1, . . . , xi−1) of height i − 1. We claim that

U �= m. (5.3.6)

In fact, in general, when an ideal a is contained in a union of finitely many primes
p1, . . . , pk , it is contained in one of them. To see this, consider a counterexample with
smallest k. Then there exist elements x1, . . . , xk ∈ a where xj is not contained in xm for
m �= j . But then

k∑

j=1

x1 . . . xj−1xj+1 . . . xk ∈ a � (p1 ∪ · · · ∪ pk),

which is a contradiction.
Thus, (5.3.6) is proved. Now let xi ∈ m � U . Then every prime in a minimal primary

decomposition of (x1, . . . , xi) contains a prime of (x1, . . . , xi−1), and hence cannot have
height i − 1 since xi /∈ U .

Thus, the induction is complete. For i = dim(R), the ideal m must be a prime of
(x1, . . . , xi), for otherwise it would have height > i. ��

COMMENTS

1. When proving he inequality d(R) ≥ dim(R), we used induction, reducing, in each
step, to the case when R is an integral domain by factoring out the smallest prime ideal
in a chain. Because of this, the proof fails to produce an actual regular sequence of
length d = dim(R) (meaning a sequence (x1, . . . , xd) where xi is a non-zero divisor in
R/(x1, . . . , xi−1)). A Noetherian local ring R for which there exists a regular sequence
of elements of the maximal ideal of length dim(R) is called a Cohen-Macaulay ring.
See Exercise 32.

2. For R a Noetherian local ring with maximal ideal m, dim(R) = d , the generators
x1, . . . , xd of an m-primary ideal are called parameters.

3. By definition, for a field k, we have

d(k[x1, . . . , xn](x1,...,xn)) = n. (5.3.7)
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5.3.6 Corollary Let R be a Noetherian local ring and let x ∈ R be a regular element.
Then

dim(R/(x)) = dim(R)− 1.

Proof The inequality ≤ follows from Lemma 5.3.4. For the opposite inequality, let m be
the maximal ideal of R, let d = dim(R/(x)), and let x1, . . . , xd ∈ R modulo (x) generate
an m/(x)-primary ideal in R/(x). Then the ideal (x, x1, . . . , xd) ⊂ R is m-primary, thus
showing ≥. ��

5.3.7 Theorem Let R be a Noetherian ring. Let p be a prime ideal minimal (with respect
to inclusion) among those containing an ideal (x1, . . . , xr ). Then p has height ≤ r .

Proof In Rp, by minimality, Rpp must be the only radical of an ideal occurring in any
primary decomposition of (x1, . . . , xr ), and thus must be its radical. Thus, (x1, . . . , xr ) is
Rpp-primary, and hence has height ≤ r by Theorem 5.3.5. ��

COMMENT Theorem 5.3.7 is known as Krull’s Height Theorem. Note that if
(x1, . . . , xr) �= R, a minimal prime containing it exists by Zorn’s lemma. If r = 1,
this is equivalent to x = x1 not being a unit. For r = 1, if, additionally, x is not a zero
divisor, then we know that the height of p is exactly 1, since a prime of height 0 cannot
contain a non-zero divisor by Corollary 5.3.6 (in fact, only the inequality of Lemma 5.3.4
is needed). With these assumptions on x for r = 1, the theorem is known as Krull’s
Hauptidealsatz, which in German means “principal ideal theorem.”

5.3.8 Proposition Let k be a field and let R be a finitely generated k-algebra with a
maximal ideal m. Let x1, . . . , xd be parameters of the localization Rm. Then x1, . . . , xd

are algebraically independent over k (i.e. we do not have f (x1, . . . , xd) = 0 for any
non-zero polynomial with coefficients in k).

Proof Let n = (x1, . . . , xd). By assumption, n is m-primary. Thus, R/n is a local Artinian
ring. Let its length (as an R/n-module, or, equivalently, Rm-module), be �. Now let A be
the image of the polynomial ring k[x1, . . . , xd ] in Rm under the inclusion of the generators.
Denote by N the filtration of Rm by powers of n. Further, denote by q the maximal ideal of
A(x1,...,xd), and by Q the filtration of A(x1,...,xd) by powers of q . Then since homogeneous
polynomials in the xi’s of degree r generate nr/nr+1 as an R/n-module, we have

χN
n (k) ≤ � · χQ

q (k).
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However, if f (x1, . . . , xd) = 0 for a non-zero polynomial f over k, then the degree of the
right hand polynomial is less or equal to the dimension of

k[x1, . . . , xd ](x1,...,xd )/(f ),

which is ≤ d − 1 by Lemma 5.3.4. ��

5.4 Regular Local Rings

We will be using the following fact:

5.4.1 Lemma (Nakayama Lemma) Let I be an ideal in a commutative ring R, and let
M be a finitely generated R-module such that IM = M . Then there exists an element
r ∈ R such that r projects to 1 in R/I and rM = 0.

Proof Let x1, . . . , xn be a set of generators of M as an R-module. By assumption, there
exists an n× n matrix A with entries in I which acts by the identity on the column vector

⎛

⎜⎜⎝

x1
...

xn

⎞

⎟⎟⎠ .

Then r = det (Id − A) works (by the Cramer rule). ��

It implies the following

5.4.2 Proposition (Krull) Let R be a local Noetherian ring with maximal ideal m. Then

⋂

i∈N
mi = 0. (5.4.1)

Proof Denote the ideal (5.4.1) by I . It is finitely generated since R is Noetherian. We have
mI = I (⊆ is trivial, and ⊇ follows from the Artin-Rees Lemma applied to I ⊂ R), so
there exists a unit modulo m (hence a unit) annihilating I . Thus, I = 0. ��

Let R be a local ring with maximal ideal m and residue field k. Then we can form a
k-algebra

E0R =
⊕

i∈N0

mi/mi+1
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where for x ∈ mi/mi=1, y ∈ mj/mj+1, xy ∈ mi+j /mi+j+1 is given by the multiplication
in R.

5.4.3 Theorem Let R be a Noetherian local ring with maximal ideal m and residue field
k. Let x1, . . . , xd be a basis of the k-vector space m/m2. Then R is regular if and only if
the canonical mapping

φ : k[x1, . . . , xd ] → E0R

(sending xi → xi) is an isomorphism.

Proof If φ is an isomorphism, then, by definition, the number d(R) = d(E0R) defined in
the last section is equal to d , and thus, R is regular. Since, also by definition, φ is onto, if
R is regular, all we need to prove is that φ is injective. But if 0 �= f ∈ Ker(φ), then, since
k[x1, . . . , xd ] is an integral domain,

d(R) = d(E0R) ≤ d(k[x1, . . . , xd ]/(f )) = d − 1

by Corollary 5.3.6 and Theorem 5.3.5. Thus, R cannot be regular. ��

5.4.4 Corollary A regular local ring R is an integral domain.

Proof Let R be a regular local ring with maximal ideal m and residue field k. Let 0 �=
x, y ∈ R such that xy = 0. Let s, t ∈ N0 be the smallest numbers such that x ∈ ms ,
y ∈ mt . (Such numbers exist by Proposition 5.4.2.) Then by Theorem 5.4.3, xy has a non-
zero image in ms+t/ms+t+1, which is a contradiction. ��

5.5 Dimension of Affine Varieties

For an inclusion k ⊆ K of fields, the transcendence degree td(K/k) is the maximal
possible cardinality of a set of algebraically independent elements of K over k.

5.5.1 Theorem Let k be a field and let R be a finitely generated k-algebra which is
an integral domain. Then for any maximal ideal m of R, dim(Rm) is equal to the
transcendence degree d of the field of fractions K = QR over k.

Proof By Proposition 5.3.8, d = td(K/k) ≥ dim(Rm), since parameters are alge-
braically independent over k. To prove the converse, by clearing denominators, we can
assume that the elements x1, . . . , xd algebraically independent over k are in R. By
Noether’s normalization lemma, we may then assume that R is an integral extension of
A = k[x1, . . . , xd ].
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Let n = m∩A. We claim that n is a maximal ideal of A. To this end, note that the field
R/m is an integral extension of A/n. Since R/m is a field, A/n is a field by Lemma 4.3.4
and hence n is a maximal ideal in A. We will show that

dim(An) = dim(Rm). (5.5.1)

Suppose (5.5.1) is proved. Then if n = (x1 − a1, . . . xd − ad) for some a1, . . . ad ∈ k, we
are done by Comment 3 after Theorem 5.3.5. In general,

n ⊆ m = (x1 − a1, . . . , xd − ad) ⊂ E[x1, . . . , xd ]

for some finite extension E of k. Then we are done by using (5.5.1) again with R replaced
by E[x1, . . . , xd ].

To prove (5.5.1), note that the ring R/nkR is integral over A/nk, and hence is Artinian.
Since an Artinian ring is a product of its localizations at maximal ideals, the map

R/nkR → Rm/nkRm (5.5.2)

is onto, and nkRm is mRm-primary. Also, the ring Rn = (A � n)−1R is integral over
An, but it is also finitely generated as an An-algebra, and hence is finitely generated as an
An-module (say, on g generators).

Let M be the image of the finitely generated An-module Rn in Rm, and consider the
nAn-stable filtration M = (nkM) on M . Also consider the nRm-stable filtration P =
(nkRm) = ((nRm)k) on Rm. Since (5.5.2) is onto, we have

χP
nRm

(k) = χM
nAn

(k). (5.5.3)

Now since An ⊆ M is injective (since localization is injective in an integral domain), we
have

χ
M∩An

nAn
(k) ≤ χM

nAn
(k),

which, together with (5.5.2), implies dim(An) ≤ dim(Rm).
On the other hand,

χM
nAn

(k) ≤ gχ
M∩Rn

nAn
(k)

and thus dim(Rm) ≤ dim(An). ��

COMMENT

1. In (5.5.1), Rm is often not an integral extension of An. See Exercises 33 and 34.
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2. A Noetherian integral extension does not have to be finitely generated (for example,
the algebraic closure is an integral extension of a field). Also, an integral extension of
a Noetherian ring does not have to be Noetherian (consider, for example, the integral
closure of Z in C). Nevertheless, more general results on dimension of Noetherian
integral extensions of Noetherian rings, without assuming finiteness, hold (see the last
chapter of [2]).

3. Note that, in particular, we have shown that the number d does not depend on
the maximal set of algebraically independent elements chosen, i.e. that in a finitely
generated k-algebra R = k[x1, . . . , xn]/I which is an integral domain, all maximal
sets of elements algebraically independent over k have the same cardinality, equal to
the dimension. Thus, we can use elimination ideals to compute dimension: Suppose Ii

is the elimination ideal of I with respect to the variables xi, . . . , xn. Put In+1 = 0. Then
d is the cardinality of the set S of all i = 1, . . . , n such that Ii = Ii+1. This is because
by definition, no non-zero polynomial in the variables xi , i ∈ S with coefficients in k

is in I , so they are algebraically independent over k in R, while our proof of Noether’s
normalization lemma lets us construct a set of |S| variables over which all the other
generators (and hence all elements) of R are integral.

4. If X is an affine algebraic variety, then every affine subvariety not equal to X has
dimension ≤ dim(X) − 1. Additionally, if f is a regular function on X, then every
irreducible component (see Exercise 2) of the zero set of f has, by Corollary 5.3.6,
dimension dim(X) − 1. (Localize at a closed point contained in one irreducible
component, but not the others.) For a quasiaffine variety of the form X � S where
S is a Zariski closed subset, let S′ be the union of all irreducible components of S of
dimension dim(X) − 1 (see Exercise 2). Then we have C[X � S] = C[X � S′]. In
particular, if S′ �= S, X � S cannot be affine.

6 Exercises

1. The connected components of a topological space are maximal subsets which are
connected with respect to the induced topology. Prove that every topological space
is, as a set, a disjoint union of its connected components.

2. Prove that an affine algebraic set S can be uniquely expressed as a union of a finite set
of irreducible affine algebraic sets none of which is included in another. The elements
of this set are called irreducible components of S. [The key point is that there is no
infinite sequence of Zariski closed subsets of S strictly decreasing with respect to
inclusion.] How about projective algebraic sets?

3. Are the ideals

(x2 − y3, z2 − t3, xt), (x2 − y3, z2 − t3, yz) ⊆ C[x, y, z, t]

equal? Do they define the same affine algebraic set?
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4. Prove formula (1.4.4) in Sect. 1.4.3. [Multiply by hi .]
5. Let S be a projective algebraic set in P

n
C

and let I ⊆ C[x0, . . . , xn] be the ideal
generated by all homogeneous polynomials which are 0 on S. The affine algebraic set
of zeros in A

n+1
C

defined by the same set of polynomials is called the affine cone CS

on S. Prove that S is irreducible if and only if CS is irreducible (with respect to the
Zariski topology).

6. The Veronese embedding of degree d is a morphism of projective varieties φ : Pn
C
→

P
N
C

where the projective coordinates in the target are all the different monomials of
degree d in the projective coordinates of Pn

C
.

(a) Calculate the number N .
(b) Prove that the image of the Veronese embedding is a projective variety, and that φ

is an isomorphism of projective varieties.
7. Consider the algebraic set X in A

3
C

which is the set of zeros of the polynomial x2 −
(y2 + z2). Prove that X is an affine variety. Now consider the quasiaffine variety
Y = X � {(0, 0, 0)}. Compute the ring of regular functions C[Y ]. Is Y affine?

8. Prove that A1
C

and its open affine subvariety A
1
C
� {0} are birationally equivalent, but

not isomorphic as algebraic varieties.
9. Give an example of an ideal (f1, . . . , fm) in C[x, y] whose elimination ideal with

respect to the variable y is 0, but there exists a value b ∈ C such that there is no
solution to the system of equations fi = 0 with y = b.

10. Consider the affine algebraic sets S, T in 2-dimensional affine space over C given by
the polynomials x2−y3, x2−y3−y2, respectively. Prove that they are affine algebraic
varieties. Prove that they are both rational, but not isomorphic to an affine space.

11. Let X be the projective algebraic set in P
n
C

defined by the homogeneous polynomial
xd

0 + xd
1 + · · · + xd

n , where d ≥ 1. Prove that X is a smooth algebraic variety. What is
its dimension?

12. Let P be any point of the projective variety E discussed in Exercise 11, and let Y be
the quasi-projective variety given as the complement of P in E. Prove that Y is affine
(i.e. isomorphic to an affine variety).

13. Prove that the map φ : An
C
→ P

n
C

which sends an n-tuple (x1, . . . , xn) to the ratio
[1 : x1 : · · · : xn] is a morphism of algebraic varieties whose image is open. Conclude
that every quasiaffine variety is isomorphic to a quasiprojective variety, and that in
every quasiprojective variety, every point has an affine open neighborhood.

14. Prove that if Z ⊆ P
n
C

is a projective variety and φ is the map of Exercise 13, then
φ−1(Z) is an affine variety and the restriction φ−1(Z) → Z of φ is a morphism of
algebraic varieties.

15. Prove that if Z ⊆ A
n
C

is an affine variety, then its Zariski closure in P
n
C

is a projective
variety.

16. Prove that there exists a morphism of algebraic varieties

A
2
C
� {(0, 0)} → P

1
C
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which does not extend to a morphism of algebraic varieties

A
2
C
→ P

1
C
.

In particular, there exists a rational function on A2
C

which is not equal to an affine
coordinate on P

1
C

composed with a morphism of algebraic varieties A2
C
→ P

1
C

.
17. Prove that a morphism of algebraic varieties over C is continuous in the analytic

topology.
18. An affine quadric is the set of zeros of an irreducible degree 2 polynomial f

in A
n
C

. A projective quadric is the set of zeros of an irreducible homogeneous
degree 2 polynomial f in P

n
C

. A projective quadric is called non-degenerate when
the symmetric matrix formed by the coefficients of f (dividing mixed coefficients
by 2) is non-degenerate. (Note that the 2-multiple of this matrix is the matrix of
second partial derivatives of f at 0). For an affine quadric, introduce a new variable
z and make all monomials of f quadratic by multiplying them by the appropriate
powers of z. The affine quadric is called non-degenerate if the resulting matrix of
coefficients, including the new variable z, (with mixed coefficients again divided by 2)
is non-degenerate. For non-degenerate quadrics, applying linear changes of variables
in the projective case we can assume f = x2

0 + · · · + x2
n , and applying an affine

change of variables (linear transformations and shifts) in the affine case we can assume
f = x2

1 + · · ·+ x2
k + xk+1+ · · ·+ xn+ 1, n− 1 ≤ k ≤ n. This is proved by forming a

symmetric matrix of coefficients of the quadratic part (dividing mixed coefficients by
2), and then performing symmetric row and column operations; in the affine case, we
also form perfect squares, shift, and scale as needed.
(a) Prove that all non-degenerate affine and projective quadrics are smooth varieties.

Is this true for all affine and projective quadrics?
(b) Prove that an intersection of a projective quadric in P

n
C

with A
n
C

is an affine
quadric. Similarly for non-degenerate quadrics.

(c) Prove that the closure in P
n
C

of an affine quadric in A
n
C

is a projective quadric.
Similarly for non-degenerate quadrics.

(d) Prove that all (affine or projective) quadrics (over C) are rational.
(e) Prove that the non-degenerate affine quadric for k = n − 1 is isomorphic to the

affine space.
(f) Prove that the non-degenerate affine quadric for k = n is homeomorphic to an

affine space with the origin removed in the analytic topology, and conclude that it
is not isomorphic to the affine space as an algebraic variety.

19. (a) Let R be an integral domain and let p ⊂ R be a prime ideal. A monic polynomial

p(x) = xn + an−1x
n−1 + · · · + a0 ∈ R[x]

is called Eisenstein if ai ∈ p for all i < n, and a0 /∈ p2. Prove that an Eisenstein
polynomial is irreducible in R[x].
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(b) Prove that if R is a UFD and Q is its field of fractions, then an Eisenstein
polynomial is irreducible in Q[x].

20. Is the polynomial x2y3 + yx3 + xz ∈ C[x, y, z] irreducible? [Use the Gröbner basis
criterion.]

21. Prove that if R is a UFD, so is a−1R for any non-zero element a ∈ R.
22. Prove that any quotient R/I and localization S−1R of a Noetherian ring R is

Noetherian.
23. Prove that a finitely generated module over a Noetherian ring satisfies ACC with

respect to submodules. Conclude that a submodule of a finitely generated module
over a Noetherian ring is finitely generated.

24. Prove that in a PID, every nonzero prime ideal is maximal.
25. Is x + y + z ∈ √I where

I = (x2 − y2 − z2, xz2 + z3, xy + xz+ yz+ y2 + z2, y2z2)?

26. Give an example of a Noetherian ring R with Jac(R) �= Nil(R).
27. Show that in the ring R = C[x, y], for n > 1, the ideal (x, yn) is primary, but is not a

prime power.
28. Show that in the ring R = C[x, y]/(xy − z2), the ideal (x2, z2, xz) is a prime power,

but is not primary.
29. Prove that an intersection of finitely many p-primary ideals is p-primary.
30. Prove that in C[x, y], the ideal (x2, xy) has at least two different minimal primary

decompositions.
31. Prove that a module which satisfies both the ACC and DCC with respect to

submodules is of finite length.
32. Consider the Noetherian local ring R = (C[x, y]/(x2, xy))(x,y) with maximal ideal

m = (x, y).
(i) Calculate dim(R).

(ii) Prove that R is not Cohen-Macaulay.
33. Consider the integral extension Z ⊂ Z[i] = Z[x]/(x2 + 1).

(i) We have 5 = (2+ i)(2− i) ∈ Z[i]. Prove that (2+ i) and (2− i) are prime ideals
in Z[i].

(ii) Prove that (2+ i) ∩ Z = (5).
(iii) Prove that Z[i](2+i) is not an integral extension of Z(5).

34. Consider the rings R = C[x] ⊂ S = C[x, y]/(y2+y+x). Show that if m = (y) ⊂ S,
n = (x) ⊂ R then m is a maximal ideal, and m ∩ R = n. Prove that Sm is not an
integral extension of Rn.

35. (i) Prove that the ideal I = (xz− y2, yt − z2, xt − yz) ⊂ C[x, y, z, t] is prime.
(ii) Find the dimension of the affine variety of zeros of the ideal I .

36. Prove that the dimension of a local ring C[X]P at any point P of a variety over C
(in the sense of this chapter) is equal to its dimension in the sense of the maximum
number d for which closed subvarieties (3.5.2) exist. [To prove ≥, consider a point in
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X0. To prove≤, consider a point P ∈ X, and its open affine neighborhood U . Intersect
the prime ideals guaranteed by the Krull dimension of C[X]P with C[U ], and take the
closures of their zero sets in X.]

37. Let R be a regular local ring with maximal ideal m, and let I ⊂ R be an ideal such
that R/I is a regular (local) ring. Prove that there exists a minimal (with respect to
inclusion) set of generators x1, . . . , xd of m such that for some 0 ≤ c ≤ d , I =
(x1, . . . , xc). [First of all, I ⊆ m. Next, let dim(R/I) = e. Then e = dimR/m(m/(I+
m2)). Thus, we can choose generators x1, . . . , xc of I , c = d− e, which form a subset
of a basis of m/m2 over R/m. We obtain an onto homomorphism of regular local
rings R/(x1, . . . , xc) → R/I of the same dimension. This has to be an isomorphism,
since a regular local ring is an integral domain.]

38. (The Nagata Example) Consider the ring R = k[x1, x2, . . . ] of polynomials in
countably many variables with coefficients in a field k. Let 1 = n0 < n1 < . . .

be natural numbers. Consider the prime ideals pi = (xni , . . . , xni+1−1). Let S be the
multiplicative set which is the complement of the union of the pi ’s, i ≥ 0.
(a) Prove that an ideal in R contained in the union of the pi’s is contained in one fixed

pi .
(b) Prove that the ring S−1R is Noetherian.
(c) Prove that if

lim
i→∞(ni − ni−1) = ∞,

then for every n ∈ N, there exists a prime ideal in S−1R of height > n.
39. Let R be a commutative ring. The total ring of fraction QR is the ring S−1R where

S is the set of all non-zero divisors of R. Observe that the localization R → S−1R is
injective. Prove that if R is Noetherian and reduced (meaning that it has no non-zero
nilpotent elements), then the canonical homomorphism

QR →
∏

i

Q(R/pi)

is an isomorphism where pi are the minimal prime ideals of R. (Note that on the right
hand side, we have ordinary fields of fractions.) [Show that in any commutative ring,
every prime ideal contains a minimal prime ideal by Zorn’s lemma. Prove that for a
reduced Noetherian ring, the minimal primes form a primary decomposition of 0. In
particular, S is the complement of the union of minimal primes. Then observe that QR

is an Artinian ring.]
40. Prove that if R is an integral domain, then R is equal to the intersection of all the

subrings Rm of the field of fractions QR, where m are maximal ideals in R. [Let a be
an element of the intersection. Consider the ideal {x ∈ R | ax ∈ R}.]

41. A normal ring is a commutative ring R which is reduced and integrally closed in its
total ring of fractions. Prove that a reduced Noetherian ring is normal if and only if
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the canonical homomorphism

R →
∏

i

R/pi

is an isomorphism and each of the integral domains R/pi is normal (where
again pi are the minimal primes). [For necessity, note that each of the elements
(0, . . . , 0, 1, 0, . . . , 0) ∈ QR are idempotent, i.e. are roots of the monic polynomial
e2 − e.]

42. Prove that a reduced Noetherian normal local ring is an integral domain.
43. Let R be a reduced Noetherian ring. Prove that R is normal if and only if for every

maximal ideal m in R, the localization Rm is normal. [Use Exercises 40 and 41.]
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We have now seen the basic idea of what algebraic geometry aims to investigate, and also
some of the commutative algebra needed to prove its basic facts. However, it is clear that
the concept of a variety, as we introduced it in Chap. 1, is not satisfactory: It is based on
two examples, the affine and projective space, and their subobjects. This would be like
defining a topological space as a subset of Rn. For proper foundations, a general concept,
based on abstract axioms, is needed.

In algebraic geometry, this is why Grothendieck introduced the concept of a scheme.
The main purpose of this chapter is to introduce the definition of a scheme, and its
basic categorical properties. This will also give us some very basic tools for constructing
examples of schemes. We will conclude the chapter with by describing “finiteness”
properties of schemes and their morphisms, which will be necessary pieces of the language
we will use later.

1 Sheaves and Schemes

1.1 Sheaves Revisited

Recall that a sheaf of sets F can be defined on a topological space X. It assigns to every
open set U ⊆ X the set of sections F(U). The following properties are required:

1. Restriction: For V ⊆ U , we have a restriction map

F(U) → F(V ).
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The restriction is required to be transitive (i.e. for W ⊆ V ⊆ U , restriction from F(U)

to F(V ) and then to F(W) is the same thing as restricting to F(W) directly). Also, the
restriction from F(U) to itself is just the identity.

2. Gluing: If we have sections si ∈ F(Ui) where Ui are open sets, such that si and
sj restrict to the same section in F(Ui ∩ Uj), then there exists a unique section s ∈
F(
⋃

Ui) which restricts to all the functions si .

The stalk Fx of a sheaf F at a point x ∈ X is the set of equivalence classes of sections
in F(U) with x ∈ U where U is any open set containing x, where two sections s ∈ F(U),
t ∈ F(V ), are equivalent if they restrict to the same section in F(U ∩ V ).

We can also have sheaves of algebraic structures such as groups, abelian groups or rings
defined analogously except that F(U) are groups, abelian groups or rings, and restrictions
are homomorphisms.

A morphism of sheaves φ : F → G gives for an open set U a map (resp.
homomorphism of whatever algebraic structures we are considering)

φ(U) : F(U) → G(U)

such that φ of a restriction of a section s is the restriction of φ(s).
A morphism of sheaves φ : F → G induces, for every x ∈ X, a map (or

homomorphism of whatever algebraic structures we have) φx : Fx → Gx .
If f : X → Y is a continuous map and F is a sheaf on X, we have a sheaf f∗F

(sometimes called the pushforward) on Y where

f∗F(U) = F(f−1(U))

for every open set U ⊆ Y .

1.2 Ringed Spaces and Locally Ringed Spaces

Recall that, unless otherwise specified, by a ring, we mean a commutative ring. A ringed
space is a topological space X with a sheaf of rings OX (called the structure sheaf ). A
morphism of ringed spaces f : X → Y is a continuous map together with a morphism of
sheaves of rings

φ : OY → f∗OX. (1.2.1)

A locally ringed space is a ringed space where every stalk OX,x = (OX)x is a local ring.
(Recall that a local ring is a ring which has a unique maximal ideal; a maximal ideal of a
ring R is an ideal m �= R such that there exists no ideal I with m � I � R. Equivalently,
an ideal m is maximal if and only if R/m is a field.)
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A morphism of locally ringed spaces f : X → Y is a morphism of ringed spaces such
that for every point x ∈ X,

OY,f (x)

φf (x)

�� (f∗OX)f (x)
�� OX,x

is a morphism of local rings (where the second map is defined in the obvious way). Here
by a morphism of local rings φ : R → S where the maximal ideal of R is m and the
maximal ideal of S is n, we mean a homomorphism of rings such that φ−1(n) = m or,
equivalently, φ(m) ⊆ n (see Exercise 2); an example of a homomorphism between local
rings which is not a morphism of local rings is the inclusion Z(p) ⊂ Q, where Z(p) is Z
localized at the prime ideal (p) for p prime, or, in other words, the set of rational numbers
whose denominators are not divisible by p.)

Note that if X is a locally ringed space and U ⊆ X is an open set, then U with OU

equal to the restriction OX|U of the sheaf OX to U (given by OX|U(V ) = OX(V ) for
V ⊆ U open) is a locally ringed space. Let us call it the restriction of the locally ringed
space X to U .

1.3 Schemes

An affine scheme is a locally ringed space of the form

Spec(R) = {p | p is a prime ideal in R}.

The topology is the Zariski topology where closed sets are of the form

ZI = {p ∈ Spec(R) | I ⊆ p}

for an ideal I .
As in Chap. 1, we have ZI ·J = ZI ∪ ZJ and

Z∑ Ii
=
⋂

i

ZIi ,

thus showing that we have indeed defined a topology. Denote by

UI = Spec(R) � ZI

the complementary open set.
A distinguished open set is a set of the form U(r) for r ∈ R (i.e. UI where I is a principal

ideal). Every open set is a union of distinguished open sets. The structure sheaf OSpec(R)
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is uniquely determined by its sections on distinguished open sets by gluing. We have

OSpec(R)(U(r)) = r−1R (1.3.1)

(recall that r−1R is the set of equivalence classes of fractions s/rn, s ∈ R by the
equivalence relation s/rn ∼ t/rm when rn+kt = rm+ks for some k = 0, 1, 2, . . . ). It
is possible to use (1.3.1) as a definition. Some consistency checks are needed. We prefer,
however, a definition using actual functions; using our definition, we will prove (1.3.1) in
Sect. 2.2 below (see Lemma 2.2.2).

More concretely, recall that for a commutative ring R and a prime ideal p, the
localization Rp of R at p is the set of equivalence classes

{r/s | r, s ∈ R, s /∈ p}/ ∼

where

r1

s1
∼ r2

s2

when

r1s2u = r2s1u for some u /∈ p.

Then for any Zariski open set U ⊆ Spec(R), OSpec(R)(U) is defined to be to the ring
of all functions

f : U →
∐

p∈Spec(R)

Rp (1.3.2)

such for every p ∈ U , f (p) ∈ Rp, there exists an open subset V ⊆ U such that p ∈ V ,
and there exist g, h ∈ R where for every q ∈ V , we have h /∈ q and

f (q) = g

h
∈ Rq. (1.3.3)

(Note: in this notation, we use the same symbol for an element of R and its image in Rq .)
Using this definition, it is obvious that OSpec(R) is a sheaf.

A scheme is a locally ringed space X where for every x ∈ X, there exists an open
set U � x such that the restriction of the locally ringed space X to U is isomorphic
to an affine scheme as a locally ringed space. Morphisms of schemes are defined to be
morphisms of locally ringed spaces f : X → Y where X and Y are schemes. If we
have any category C and a class of objects S ⊆ C, the category with objects S and all
C-morphisms between them is called the full subcategory of C on S. The category of
schemes is a full subcategory of the category of locally ringed spaces. The category of
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affine schemes is, in turn, a full subcategory of the category of schemes on affine schemes.
It turns out (Theorem 2.2.3 below) that the category of affine schemes is equivalent to
the opposite category of the category of commutative rings and homomorphisms. The
equivalence is given by the functors Spec(R) and OX(X). (Note: for a sheaf F on X,
elements of F(X) are also referred to as global sections.)

Recall from Chap. 1 the general concept of localization. In the above discussion, we
encountered two cases of localization of a commutative ring R: r−1R and Rp for a prime
ideal p. The most general localization of a ring R is at a multiplicative set, which means
a subset S ⊂ R which is closed under multiplication (x, y ∈ S ⇒ x · y ∈ S), contains
1 and does not contain 0. The localization S−1R of the ring R at the set S is the set of
equivalence classes of the set

{ r
s
| r ∈ R, s ∈ S}

with respect to the equivalence relation ∼ where

r1

s1
∼ r2

s2

when

r1s2u = r2s1u

for some u ∈ S.
Localization has the following universal property: We have a canonical homomorphism

of rings i : R → S−1R which sends every element of S to a unit. For a homomorphism of
rings h : R → R′, there exists a homomorphism of rings h : S−1R → R′ with h = h ◦ i

if and only if h sends every element of S to a unit. Moreover, if h exists, it is unique.
Note that r−1R is the localization of R at the multiplicative set S = {rn | n =

0, 1, 2, . . . }, and, for a prime ideal p, Rp is localization at the multiplicative set S = R�p

(which is multiplicative because the ideal p is prime). More generally, for any set T of
prime ideals in a ring R, the complement

R �

⋃

p∈T

p

is a multiplicative set.

1.4 Category Theory Revisited: Adjoints, Limits and Colimits,
Universality

First note that for every category C, we have a functor

C(?, ?) : COp × C → Sets. (1.4.1)
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Recall that Sets is the category of sets and mappings. In (1.4.1), ?, as often, denotes
a variable which we do not want to name. For x, y ∈ Obj(C), C(x, y) is the set of
morphisms α : x → y in C. On morphisms, for f : x ′ → x and g : y → y ′ in C,
considering f as a morphism from x to x ′ in COp, we let

C(f, g)(α) = g ◦ α ◦ f.

Notice the contravariance in the first variable. We encounter this first in high school
algebra: to transform a graph of a function by transforming the x coordinate, we need
to apply the inverse transformation to the independent variable x. A functor COp → D to
another category D is called a contravariant functor from C to D. A functor C → D is
then sometimes called a covariant functor from C to D.

The functor (1.4.1), sometimes also referred to as the Hom-functor, is important
because it is used in the definition of adjoint functors. Let F : C → D, G : D → C

be functors. We say that F is left adjoint to G (equivalently, G is right adjoint to F ) if
there exists a natural bijection (i.e. isomorphism in Sets)

D(Fx, y) ∼= C(x,Gy). (1.4.2)

Any two left adjoint functors to the same functor are naturally isomorphic. Similarly for
right adjoints. Adjoints can be characterized by a universal property: A functor G : C →
D has a left adjoint if and only if for every object x of C, there exists an object yx ∈
Obj(D) and a morphism

αx : x → G(yx) (1.4.3)

(called the unit of adjunction) such that for every other morphism β : x → G(z), there
exists a unique morphism β̃ : yx → z in D such that the following diagram commutes:

x
αx

��

β ���
��

��
��

��
G(yx)

��
G(β̃)

G(z)

(1.4.4)

It is easy to see that we can then define F : C → D by putting F(x) = yx , and the
universal property lets us uniquely define F on morphisms. The unit of adjunction then
becomes a natural transformation. (And, of course, turning around the arrows, we can
characterize a functor which has a right adjoint by a co-unit of adjunction.)

From this point of view, for example, the free group F(S) on a set S is the left adjoint
to the forgetful functor U from the category Grp of groups and homomorphisms to Sets:
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the unit of adjunction is the inclusion of S as the set of free generators of F(S), and (1.4.4)
is the familiar universal property in this setting. Similarly, the free abelian group is the left
adjoint to the forgetful functor from the category Ab of abelian groups to Sets.

Similarly as for groups or abelian groups, this actually works in any category of
universal algebras and homomorphisms. A universal algebra has certain prescribed
operations (such as +, ·, (?)−1, 1, etc.) and relations among those operations which are
expressed as equations valid for all choices of input elements.

Examples of universal algebras include rings and abelian groups, but not fields, local
rings or integral domains: those structures include axioms which cannot be expressed
purely as equations on elements. For example, a field is a non-zero commutative ring
where every non-zero element has a multiplicative inverse: the condition of being non-
zero cannot be expressed by an equation.

For any category A of universal algebras and homomorphisms (i.e. mappings preserv-
ing the operations), the forgetful functor

U : A→ Sets

always has a left adjoint, the free A-algebra on a set. However, again, this does not apply
to fields, since they are not universal algebras: there is no such thing as a free field on a
set.

There are many other interesting examples of adjoint functors. For example, the
inclusion of the category of affine schemes into the category of schemes is right adjoint
to the functor Spec(OX(X)) (where X runs through all schemes). We will prove this in
Theorem 2.2.3 below.

One important case of adjoint functors is the definition of limits and colimits. It is good
to formalize diagrams in a category C as functors F : I → C where I is a small category
(this means that Obj(I) and Mor(I) are sets, not just classes; recall that sets are those
classes which are elements of other classes). For example, a diagram in a category C in
the shape

x

��
y �� z

v (1.4.5)

is formally a functor F : I → C where I is the category

·
������

��

��
·

���	����
�� ·
�	����

��

(1.4.6)
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and F takes the dots to x, y, z and the arrows to the arrows of (1.4.5). The loops in (1.4.6)
are identities, and go to identities in C by F (every category has an identity morphism on
every object). The diagram category CI has objects which are diagrams F : I → C; the
morphisms are natural transformations.

Now for an object x ∈ Obj(C), there is a constant diagram

Constx : I → C

which sends every object of I to x and every morphism of I to Idx . Obviously,

Const : C → CI (1.4.7)

is a functor where a morphism f : x → y in C is sent to the natural transformation

Constf : Constx → Consty

which is f on every object of I .
The right adjoint of (1.4.7), if one exists, is called the (categorical) limit, (also called

the inverse limit or projective limit) and denoted by either one of the symbols

lim, lim← .

The unit of adjunction is sometimes called the diagonal. The left adjoint of (1.4.7), if one
exists, is called the (categorical) colimit, (also called direct limit or inductive limit) and
denoted by either one of the symbols

colim, lim→ .

The counit of this adjunction is sometimes called the codiagonal.
So for example the limit u of the diagram (1.4.5) is commutative diagram

u ��

��

x

��
y �� z

(1.4.8)

which is universal in the sense that for any commutative diagram
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v

����
���

���
���

���
�

���
��
��
��
��
��
��
��

x

��
y �� z,

(1.4.9)

a unique dotted arrow combines (1.4.8) and (1.4.9) into a commutative diagram:

v

		 ����
���

���
���

���
�

���
��
��
��
��
��
��
��

u ��

��

x

��
y �� z.

This particular limit is called a pullback. A limit of a diagram with no arrows (except the
identities) is called the product and denoted by

∏
. A limit of a diagram of the form

x→→y (1.4.10)

is called an equalizer.
Dually, the colimit of a diagram with no arrows except the identities is called a

coproduct, denoted by
∐

. A colimit of the diagram (1.4.10) is called the coequalizer.
The colimit of the diagram (1.4.5) is actually just z, but the colimit of the dual diagram
(with arrows turned around) is called the pushout.

On a related note, a monomorphism in a category is a morphism f : X → Y such that
for any two morphisms g, h : Z → X, f ◦ g = f ◦ h implies g = h. Symmetrically, f is
an epimorphism if for any g, h : Y → Z, g ◦ f = h ◦ f implies g = h. Monomorphisms
and epimorphisms are designed to model injective and surjective maps in a category, but
the analogy is not always perfect (for example Z ⊂ Q is an epimorphism of commutative
rings—see Exercise 3).

It is possible to characterize monomorphisms by means of equalizers (when equalizers
exist): it is easy to see that f : x → y is a monomorphism if and only if for any two
morphisms g, h : z → x, the equalizer of g and h is the same as the equalizer of f ◦ g and
f ◦ h. There is a symmetrical characterization of epimorphisms in terms of coequalizers.
Thus, functors which preserve equalizers preserve monomorphisms and functors which
preserve coequalizers preserve epimorphisms.
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We should mention that a colimit or limit of an individual diagram can be defined even
if the category in question does not have all colimits (resp. limits), using the universal
property (1.4.3) or its dual. For example, the category of schemes does not have all limits
(or all colimits), but there are some important cases of limits and colimits of schemes.
Categories of universal algebras and homomorphisms always have limits and colimits.
The product in Sets is the Cartesian product (i.e., say, the product of a set X and a set Y

is the set of all pairs (x, y) where x ∈ X and y ∈ Y ), the coproduct in Sets is the disjoint
union.

There is an important connection between limits, colimits and adjoints: Left adjoints
preserve colimits and right adjoints preserve limits. This means that, for example, if G :
C → D is a right adjoint and in the diagram (1.4.8), u is the limit (pullback) of (1.4.5),
then G(u) is the limit of G applied to (1.4.5), i.e. of

G(x)

��
G(y) �� G(z)

(1.4.11)

(One can easily see this using the adjunction property and the universal property of the
limit.)

As previously mentioned, the forgetful functor

U : A→ Sets

where A is a category of universal algebras and homomorphisms always is a right adjoint,
and hence preserves limits, in particular products. This is why products of any kind of
universal algebras (such as groups, abelian groups or rings) are just Cartesian products on
the underlying sets. This is not true for coproducts (as, for example, a disjoint union of
groups would not be a group in an obvious way).

Since the category of affine schemes is equivalent to the category opposite to the
category of commutative rings (as we will show in Theorem 2.2.3), which is a category of
universal algebras, it has all limits and colimits. Since, further, the inclusion functor from
the category of affine schemes to the category of schemes is a right adjoint, it preserves
limits. This means that a limit of any diagram of affine schemes always exists in the
category of schemes, and is an affine scheme.

It is also worth considering the limit (if one exists) of the empty diagram (i.e. the
product of an empty set of factors). This is called the terminal object. Explicitly, there
is a unique morphism from any object to the terminal object. Dually, the initial object, if
one exists, is the colimit of the empty diagram, or the coproduct over an empty set. There
is a unique morphism from the initial object to any given object.

Universality is even more general than adjunction. For a category C and a functor

F : C → Sets,
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a universal element of F consists of an object u ∈ Obj(C) and an element a ∈ F(u)

such that for every object v ∈ Obj(C) and every element x ∈ F(v), there exists a unique
morphism f : u → v in C such that

F(f )(a) = x.

This can be used, for example, to characterize the tensor product. Let R be a commutative
ring, let M,N be R-modules. Let, for an R-module P , F(P) consist of all bilinear maps

f : M × N → P, (1.4.12)

which means that for every m ∈ M ,

fm : N → P

given by fm(n) = f (m, n) is a homomorphism of R-modules, and for every n ∈ N ,

nf : M → P

given by

nf (m) = f (m, n)

is a homomorphism of R-modules. Then F becomes a functor from R-modules to Sets
by noticing that composing a homomorphism of modules with a bilinear map produces a
bilinear map. The universal element of this functor F consist of the tensor product M⊗RN

and the universal bilinear map

M × N → M ⊗R N

which, by definition, sends

(m, n) → m⊗ n.

1.5 Abelian Categories: Abelian Sheaves

As we already observed, there is a unique morphism from the initial to the terminal object
(if they exist). A category is called based, or alternately a category with zero, if the initial
and terminal object exist, and the unique morphism o from the initial to the terminal object
is an isomorphism. The initial object (which is then also the terminal object) is then often
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denoted by 0. In a based category, a morphism f : X → Y is called zero if it factors
through 0:

X
f

��

		�
��

��
��

�
Y

0



��������

It is easy to see that there is precisely one zero morphism between any two objects of a
based category. In a based category, the equalizer of a morphism f with the zero morphism
is called the kernel of f and denoted by Ker(f ), and the coequalizer of a morphism f

with the zero morphism is called the cokernel of f and denoted by Coker(f ).
For example, in the category of abelian groups (or more generally R-modules over, say,

a commutative ring R), we have for f : A → B,

Ker(f ) = {x ∈ A | f (x) = 0},

Coker(f ) = B/Im(f )

where

Im(f ) = {f (x) | x ∈ A}

is the image of f .
In fact, more generally, a category is called abelian if it is a based category, has finite

limits and colimits (i.e. limits and colimits of diagrams on finitely many objects and
morphisms) and if every monomorphism is a kernel and every epimorphism is a cokernel.
The last condition is equivalent to requiring that if a morphism f : x → y satisfies
Ker(f ) = 0, then f is the kernel of the cokernel morphism g : y → Coker(f ), and
dually, if a morphism g : y → z satisfies Coker(g) = 0, then g is the cokernel of the
kernel morphism f : Ker(g) → y. (The advantage of rephrasing the condition this way
is that it refers only to finite limits and colimits.)

A category C is called preadditive if the set of C-morphisms X → Y is given the
structure of an abelian group, and composition is bilinear (i.e. becomes a homomorphism
of abelian groups upon fixing either coordinate). For a pre-additive category C, we denote
the abelian group of morphisms X → Y by HomC(X, Y ) (to distinguish it from the set
C(X, Y )). For pre-additive categories A, B, an additive functor F : A → B is a functor
which on morphisms gives a homomorphism of abelian groups

HomA(X, Y ) → HomB(F (X), F (Y )).
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A pre-additive category is called additive if it has finite products and coproducts and
the canonical morphism from the coproduct to the product

A� B → A

�

B

is an isomorphism. For this reason, the product (or coproduct) of two objects is sometimes
called the biproduct and denoted by ⊕. The biproduct is characterized up to canonical
isomorphism as an object C together with morphisms

A
i

�� C B,
j

��

A C
p

��
q

�� B

such that p ◦ i = IdA, q ◦ j = IdB , i ◦ p + j ◦ q = IdC . This is also true in
a pre-additive category provided that the object C exists (i.e. when C exists, it is then
automatically a biproduct—see Exercise 4). For this reason, an additive functor between
additive categories automatically preserves biproducts.

An abelian category is automatically additive. The proof of this fact is a part of
homological algebra. We will discuss it in the context of cohomology in Sect. 2.2 of
Chap. 5. However, we use additivity sooner, as abelian categories are an important tool
in the theory of schemes. For the time being, the reader can treat it as an additional axiom.

An abelian subcategory of an abelian category is a full subcategory with finite limits
and colimits whose inclusion preserves finite limits and colimits. (It is then automatically
an abelian category.) Note: a functor which preserves finite limits and colimits is also
called exact. A functor which preserves finite limits is called left exact and a functor which
preserves finite colimits is called right exact.

The category Ab of abelian groups (or, more generally, the category R-Mod of R-
modules for a fixed ring R), is an abelian category. Thus, again, a product and coproduct
of finitely many objects A1, . . . , An are both the Cartesian product, and n-tuples are added
one coordinate at a time:

(a1, . . . , an)+ (b1, . . . , bn) = (a1 + b1, . . . , an + bn).

Because of this, the product/coproduct of finitely many abelian groups (or R-modules) is
denoted by

A1 ⊕ · · · ⊕ An

and is again called the biproduct.
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While the product of infinitely many abelian groups (or R-modules) Ai , i ∈ I , is still
the Cartesian product, the coproduct, however, is given by the subset of systems (ai)i∈I

where for all but at most finitely many i’s, ai = 0. Because of that, the general product is
denoted by

∏

i∈I

Ai

and called the direct product while the general coproduct is denoted by

∑

i∈I

Ai or
⊕

i∈I

Ai.

and called the direct sum.
Abelian sheaves (i.e. sheaves of abelian groups) on a topological space X also form an

abelian category. In fact, the stalk

F → Fx

at a point x is left adjoint to pushforward via the inclusion

{x} → X.

The stalk is also an exact functor. A monomorphism of abelian sheaves is a morphism
which is a monomorphism on sections, which is equivalent to inducing monomorphisms
on stalks. An epimorphism of sheaves is a morphism which induces an epimorphism on
stalks (see Exercise 1).

We shall further elaborate on these points in Sect. 1 of Chap. 4 below.

2 Beginning Properties and Examples of Schemes

2.1 Connected, Irreducible, Reduced and Integral Schemes

Recall that a topological space is connected if it is not a union of two non-empty disjoint
open subsets. A scheme is connected if it is connected as a topological space.

Recall also that a topological space is irreducible if it is not a union of finitely many
closed subsets other than itself. A scheme is irreducible if it is irreducible as a topological
space.

A scheme X (or more generally a ringed space) is reduced if all the rings OX(U) for
U ⊆ X open are reduced: A ring is reduced if it has no nilpotent element. An element x

of a ring is nilpotent if x �= 0 and xn = 0 for some n ∈ {2, 3, . . . }.
A scheme is called integral if it is reduced and irreducible.
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2.2 Properties of Affine Schemes

It is now time to prove (1.3.1). Note that this statement is, in a way, analogous to the
statements of Sect. 1.3.2 of Chap. 1. There, the main tool was the Nullstellensatz. But we
do not have a Nullstellensatz for general rings. This is, in fact, the main reason why in
schemes, points are defined as prime ideals and not just maximal ideals! This is explained
by the following result:

2.2.1 Lemma Let I be an ideal in a commutative ring R. Then the radical
√

I is equal to
the intersection of all prime ideals containing I .

Proof Apply Lemma 4.3.3 of Chap. 1 to the ring R/I . ��

2.2.2 Lemma In an affine scheme Spec(R), the equality (1.3.1) holds.

Proof By definition of the structure sheaf of Spec(R) (i.e. the sheaf of regular functions),
we have a homomorphism of rings

r−1R → OSpec(R)(U(r)). (2.2.1)

We first prove that (2.2.1) is injective. This says that for 0 �= f ∈ r−1R, there exists a
prime ideal p ∈ U(r) such that f �= 0 ∈ Rp. To see this, let A be the annihilator of f

in r−1R, i.e. the ideal of all s ∈ R such that sf = 0. Then A �= r−1R, and hence there
exists a maximal ideal m in r−1R with f /∈ m. However, then m∩R is a prime ideal in R,
proving what we need.

Now we prove that (2.2.1) is onto. To this end, note that without loss of generality,
r = 1 (since we may replace R by r−1R). Therefore, we must show that if open sets Ui ,
i ∈ I , cover Spec(R), and there are elements gi, hi ∈ R with hi �= 0 on Ui (meaning in
Rp for all p ∈ Ui ) such that

gi/hi = gj /hj on Ui ∩ Uj (2.2.2)

then there is an f ∈ R such that f is equal to gi/hi on every Ui . First note that the
sets Ui may as well be distinguished, and Ui = Spec(R) � Z(hi). Next, we note that by
Lemma 2.2.1, there are some elements γi ∈ R whose powers are divisible by hi and whose
sum is 1 ∈ R. Thus, 1 is in fact a sum of finitely many such elements, and we may assume
I is finite, i.e., say, I = {1, . . . , n}.

Next, we note that gihj − gjhi is annihilated by some power of hihj by the injectivity
part of our statement, and hence, by replacing each hi by its power, we may assume

gihj = gjhi for all i, j = 1, . . . , n. (2.2.3)
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Next, by taking powers, we may assume γi = hi , i.e. there exist ai ∈ R such that

a1h1 + · · · + anhn = 1.

Then we claim that the function

f = a1g1 + · · · + angn

restricts to gi/hi on Ui . In effect, without loss of generality, i = 1. Then compute by
(2.2.3),

f h1 = a1g1h1 + a2g2h1 + · · · + angnh1 = a1g1h1 + a2g1h2 + · · · + ang1hn = g1.

��

2.2.3 Theorem The mapping

R → Spec(R) (2.2.4)

gives rise to a functor which defines an equivalence between the opposite of the category
of commutative rings and the category of affine schemes. Moreover, for a scheme X, the
functor

X → Spec(OX(X)) (2.2.5)

is a left adjoint to the inclusion functor from the category of affine schemes to the category
of schemes.

Proof By Lemma 2.2.2, an inverse functor to (2.2.4) is defined by

X → OX(X) (2.2.6)

for an affine scheme X. The two compositions of the functors thus defined are isomorphic
to the identity in an obvious way. However, we must prove that the isomorphisms are
natural. This follows on the side of commutative rings, but on the side of schemes, we
must prove that every morphism of schemes

f : Spec(R) → Spec(S)
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is induced by the homomorphism of rings h : S → R it specifies. The key point is to show
that for p ∈ Spec(R),

f (p) = h−1(p). (2.2.7)

To this end, we must remember that schemes form a full subcategory of locally ringed
spaces. Therefore, from the sheaf data, we obtain a diagram of the form

S
h

��

��

R

��
Sf (p)

�� Rp

where the vertical arrows are localizations. By universality of localization, the existence
of such a diagram implies f (p) ⊇ h−1(p). The requirement that the dotted arrow be a
morphism of local rings requires that this be an equality, thus proving (2.2.7). After this,
the fact that f coincides with the morphism induced by h on sheaf data follows from
Lemma 2.2.2.

To prove the adjunction, we must prove that for a general scheme X, specifying a
morphism of schemes

X → Spec(R) (2.2.8)

is naturally the same thing as specifying a homomorphism of rings

R → OX(X). (2.2.9)

It is obvious by definition that (2.2.8) specifies (2.2.9). In the other direction, suppose
we are given (2.2.9) and an affine open set U ⊆ X. Then we obtain by composition a
homomorphism of rings

R → OX(U),

and hence, by what we already proved, a morphism of schemes

Spec(U)→ Spec(R).

It is easy to see that these morphisms glue to give a morphism (2.2.8), and that these
constructions are inverse to each other. (In fact, we shall study this principle in more detail
in Sect. 2.5.) ��
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2.3 Open and Closed Subschemes

If F is a sheaf on a topological space X and j : U ⊆ X is the inclusion of an open set, then
the restriction F |U of the sheaf F to U is the sheaf on U defined by taking only the values
of F on open subsets of U . It is worth noting that j∗ is the right adjoint to restriction to an
open subset, but the restriction also has a left adjoint j!. If S is a sheaf of rings (or abelian
groups) on U , and V ⊆ X is an open subset, then

j!(S)(V ) =
{
S(V ) if V ⊆ U

0 otherwise.

The functor j! is called the extension by 0.
If X is a scheme and j : U ⊆ X is open, then U with the restriction of the structure

sheaf is called an open subscheme of X.
A closed immersion is a morphism of schemes f : Z → X which gives a

homeomorphism (see Sect. 2.2.1 of Chap. 1) from Z onto a closed subset of X with the
induced topology (this means that the open sets in Z are of the form U ∩Z where U is an
open set in X), such that the map of sheafs

φ : OX → f∗OZ

is a onto (which means it is onto on stalks).
Two closed immersions f : Z → X, f ′ : Z′ → X are called equivalent if there exists

an isomorphism of schemes which makes the following diagram commute:

Z

∼=

��

f

���
��

��
��

�

X

Z′.
f ′

���������

An equivalence class of closed immersions f : Z → X is called a closed subscheme of
X.

2.3.1 Theorem A closed subscheme Z of an affine scheme Spec(R) is always of the form
Spec(R/I) for some ideal I in R.

Before proving the Theorem, let us state the following
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2.3.2 Lemma Suppose an affine scheme Spec(S) is a closed subscheme of an affine
scheme Spec(R). Then the corresponding homomorphism of rings R → S is onto.

Proof A morphism φ of sheaves of abelian groups (i.e. abelian sheaves) is by definition
onto if and only if it is onto on stalks (see Exercise 1). But this implies that for every section
s there is an open cover Ui such that the restriction of s to each Ui is in the image of φ. This
implies that under our assumptions, for every s ∈ S, there are finitely many f1, . . . fn ∈ R

such that the ideal in R generated by f1, . . . , fn is R, i.e. there exist elements ai ∈ R with

a1f1 + · · · + anfn = 1,

and if we denote by ψ : R → S the homomorphism of rings realizing the closed
immersion Spec(S) ⊆ Spec(R), then s ∈ f−1

i s = ψ(ri) for some ri ∈ f−1
i R. By

replacing fi by its power, if necessary, we may assume without loss of generality that then

fis = ψ(ri)

for some ri ∈ R. Then

s = ψ(a1r1 + · · · + anrn).

��

Proof of Theorem 2.3.1. Z is covered by open affine subschemes Vi = Spec(Si). This
means that Vi = Ui ∩ Z where Vi are open subsets of Spec(R). Every Vi is covered by
distinguished open subsets Uj = Spec(f−1

j R), of which we may choose finitely many to
cover Vi , as in the proof of Lemma 2.2.2. Take all the Uj ’s together with an open cover
of Spec(R) � Z by distinguished open sets. Again, we can choose finitely many, as in
the proof of Lemma 2.2.2. Therefore, without loss of generality, we have a finite cover
U1, . . . , Un of Spec(R) such that every intersection Uj ∩ Z is an affine open set in Z.
(Note that if Uj ∩ Z ⊆ Vi , then Uj ∩ Z = Spec(f−1

j Si).)
Now this means that there exist finitely many elements fj ∈ OZ(Z) such that the

sets Uj ∩ Z = Z � Z(fj ) are affine and the ideal generated by the fj ’s in OZ(Z) is
OZ(Z). This implies that Z is affine (one shows that the unit of the adjunction morphism
Z → Spec(OZ(Z)) is an isomorphism). By Lemma 2.3.2, then, OZ(Z) is a factor ring of
R. ��
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2.4 Limits of Schemes

2.4.1 Theorem A diagram of schemes

X

f

��
Y

g

�� Z

(2.4.1)

has a limit denoted by X ×Z Y . (Recall that this limit is called a pullback.)

We will return to this statement at the end of the next subsection, after discussing some
preliminary facts.

Recall that the limit of a diagram

X Y

with no morphisms is called the product. In the category of sets, the product is the
Cartesian product

X × Y = {(x, y) | x ∈ X, y ∈ Y }.

The pullback of sets, i.e. the limit of a diagram of the form (2.4.1), is

X ×Z Y = {(x, y) | x ∈ X, y ∈ Y, f (x) = g(y)}.

We have a “forgetful” functor

U : Schemes → Sets

But the forgetful functor from schemes to sets does not preserve the pullback (or even the
product)!

Recall that the category of affine schemes is equivalent to the opposite category of the
category of commutative rings. Furthermore, the inclusion functor from affine schemes to
schemes is right adjoint to the functor

X → Spec(OX(X)).

So the inclusion functor from affine schemes to schemes preserves limits, and limits of
affine schemes are Spec of colimits of the corresponding commutative rings.



2 Beginning Properties and Examples of Schemes 77

The coproduct of commutative rings R, S is R ⊗ S = R ⊗Z S. (To see this, recall
that the operations in a ring R can be characterized as homomorphisms of abelian groups
prod : R ⊗Z R → R, unit : Z → R and that the associativity, commutativity and unit
axioms can be characterized as commutative diagrams: Associativity is

R ⊗ R ⊗ R
prod⊗Id

��

Id⊗prod

��

R ⊗ R

prod

��
R ⊗ R

prod

�� R,

commutativity is

R ⊗ R
T

��

prod 	
		

		
		

		
R ⊗ R

prod��














R,

where T switches the factors of the tensor product, the left unit is

R
∼=

�� Z⊗ R

η⊗Id

��
R ⊗ R

prod

�����������

and the right unit is analogous. The unit on R⊗S is 1⊗1, or, in the above notation, η⊗η,
and the product is

(R ⊗ S)⊗ (R ⊗ S)

Id⊗T⊗Id

��
R ⊗ R ⊗ S ⊗ S

prod⊗prod

��
R ⊗ S.
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So for homomorphisms of commutative rings R → Q, S → Q, the bilinearity test gives
a unique homomorphism of abelian groups R ⊗ S → Q, and one checks that it is a
homomorphism of commutative rings.)

So in the category of affine schemes (and hence schemes)

Spec(R)× Spec(S) = Spec(R ⊗ S). (2.4.2)

More generally, the pushout of a diagram of commutative rings of the form

S ��

��

R1

R2

is R1 ⊗S R2. Therefore, in the category of schemes,

Spec(R1)×Spec(S) Spec(R2) = Spec(R1 ⊗S R2).

Now contemplate the fact that this is completely different from the underlying sets.
For example, in (2.4.2), let R = Z[x], S = Z[y], so R ⊗ S = Z[x, y]. A prime ideal

in Z[x, y] can be for example a principal ideal generated by an irreducible polynomial
(because Z[x, y] is a unique factorization domain), for example, (x+ y). This has nothing
to do with a pair of prime ideals in Z[x] and Z[y].

More strangely still, recall that the characteristic of a field is the smallest positive
number p such that

1+ · · · + 1︸ ︷︷ ︸
p times

= 0;

it is always a prime number. If such a p does not exist, we say the characteristic is 0. If
E, F are two fields of different positive characteristics, then E ⊗ F = 0 because we are
forcing p · 1 = q · 1 = 0 for two different primes p, q . This means that in the category of
schemes,

Spec(E)× Spec(F ) = ∅.

(This is also true when the two fields have different characteristics, one of which is 0.)
In schemes, the terminal object is Spec(Z). This is because this is true in affine

schemes, since in commutative rings, the initial object is Z; the unique morphisms of
the open affine subschemes of a scheme into Spec(Z) are compatible. Recall that as a set,
Spec(Z) = {(0), (2), (3), (5), (7), (11), . . . }.
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2.5 Gluing of Schemes: Colimits

Let X be a scheme. Recall that an open subscheme of X is just an open subset U ⊆
X where the structure sheaf on U is the restriction of the structure sheaf on X (i.e. the
structure sheaf of X only applied to open subsets of U ). This is always a scheme because
an open subset of an affine scheme Spec(R) is always a union of affine open subsets of
the form Spec(f−1R) for some choices of f ∈ R.

When U and V are schemes and W is an open subscheme of U and W ′ is an open
subscheme of V and we have an isomorphism of schemes φ : W ∼= W ′ then we have a
pushout X of the diagram

W ��

��

U

V

where the horizontal arrow is the inclusion and the vertical arrow is the inclusion composed
with φ. As a set, X is the pushout of the sets U and V (disjoint union with the subsets
W , W ′ identified). A subset of X is open if its intersection with U is open in U and its
intersection with V is open in V . The ring of sections of the structure sheaf of X on subsets
of U or V are the rings of sections of the corresponding structure sheaves, and we can use
gluing property of the sheaf to figure out the ring of sections on any open set of X by
intersecting it with U , V , U ∩ V .

More generally, if Ui are schemes which have open subschemes Uij , i ∈ I , and we
have isomorphisms of schemes φij : Uij → Uji such that φii = IdUi and φij = φ−1

ji and
furthermore there is an isomorphism of schemes

φ̃ijk : Uij ∩ Uik → Uji ∩ Ujk

which is a restriction of φij such that the diagrams

Uij ∩ Uik

φ̃ijk

��

φ̃ikj

��

Uji ∩ Ujk

φ̃jki�����
���

���
�

Uki ∩ Ukj
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then there is a colimit X of the diagram of schemes

Ui

Uij

⊆




⊆◦φij 		�
��

��
��

�

...

Uj

...
...

whose underlying topological space is the corresponding colimit of topological spaces etc.
We say that X is glued from Ui , i ∈ I .

In particular, we have a disjoint union
∐

Xi of any set of schemes Xi whose underlying
topological space is the disjoint union of the topological spaces Xi .

One uses this construction to prove Theorem 2.4.1. One glues X ×Z Y from
Spec(R1)×Spec(S) Spec(R2) where Spec(R1), Spec(R2), Spec(S) are open affine subsets
of X, Y , Z where Spec(Ri) map to Spec(S) under the given maps. (See Exercise 21.)

One can show similarly that any finite diagram of schemes has a limit. (Actually, this
is formal. Any category which has pullbacks and a terminal object has finite limits—see
Exercise 22.) However, infinite diagrams of schemes may not have limits!

2.6 A Diagram of SchemesWhich Does Not Have a Limit

Recall the one-dimensional projective space P
1
C

. We will soon describe how to define
projective schemes in general. For now, we can describe P1

C
as a scheme as the colimit

(pushout) of the diagram

Spec(C[x, x−1])
f

��

g

��

Spec(C[x])

Spec(C[y])

(2.6.1)



2 Beginning Properties and Examples of Schemes 81

where f is given by x → x, and g is given by y → x−1. (Think of P1
C

as a complex line
with a point at ∞.)

2.6.1 Theorem Consider the diagram D:

P
1
C

���
��

��
��

��
��

��
��

��
�

...

P
1
C

�� Spec(C)

...

with countably many copies of P1
C

. Then there does not exist

lim← D (2.6.2)

in the category of schemes.

Proof Let A = Spec(C[x]), B = Spec(C[y]). Let D1 be the diagram

A

���
��

��
��

��
��

��
��

��
�

...

A �� Spec(C)

...



82 2 Schemes

and let D2 be the diagram

B

���
��

��
��

��
��

��
��

��
�

...

B �� Spec(C).

...

Then D1 and D2 are diagrams of affine schemes, so

lim← D1 = Spec(C[x1, x2, . . . ]), lim← D2 = Spec(C[y1, y2, . . . ]). (2.6.3)

But recall that any non-empty Zariski open subset of Spec(R) contains Spec(f−1R) for
some f ∈ R (not nilpotent), and any polynomial f can only contain finitely many of the
variables xi or yi . This means that open subsets of the limits (2.6.3) contain open sets of
the form

Ũ = U ×Spec(C) A×Spec(C) ×A×Spec(C) . . . ,

Ṽ = V ×Spec(C) B ×Spec(C) ×B ×Spec(C) . . . .

Now there are natural transformations from the diagrams Di , i = 1, 2 to D given by the
inclusions A ⊂ P1

C
, B ⊂ P1

C
, which induce morphisms

φ : lim← D1 → lim← D,

ψ : lim← D2 → lim← D.

This implies that φ−1(W) contains a set of the form Ũ and ψ−1(W) contains a set of the
form Ṽ as above. This implies that W must contain a set of the form

{P1} × · · · × {Pn−1} × P
1
C
× {Pn+1} × . . .
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for some closed points Pi ∈ P
1
C

. But this is impossible because there is no non-trivial
morphism of schemes from P1

C
to an affine scheme over Spec(C). (See, for example,

Exercise 27.) ��

2.7 Proj Schemes

In the beginning of the last example, we noted that we should define a scheme analogue of
projective varieties. This can be done very generally. In algebraic geometry, a graded ring
is a commutative ring R where, as abelian groups,

R =
⊕

n∈{0,1,2,... }
Rn.

(Here recall that
⊕

is the coproduct of abelian groups, i.e. the colimit of a diagram with
no arrows. It is like the Cartesian product

∏
, except we only allow elements which have

at most finitely many non-zero coordinates.) The elements of the abelian groups Rn are
called homogeneous elements of R of degree n. It is required that if z ∈ Rm, t ∈ Rn, then
zt ∈ Rm+n.

A typical example of a graded ring is the ring of polynomials

Z[x1, . . . , xk].

Then homogeneous elements of degree n are simply homogeneous polynomials in the
variables x1, . . . , xk of degree n. A homogeneous ideal I of a graded ring is an ideal
generated by homogeneous elements. Then R/I is also a graded ring where a coset x + I

for a homogeneous element x ∈ Rn is homogeneous of degree n.
A graded ring always has the ideal

R+ =
⊕

n>0

Rn.

This is called the augmentation ideal. Now for a graded ring R, we define the scheme
Proj (R). As a set, Proj (R) is the set of all homogeneous prime ideals in R which do not
contain R+. The Zariski topology on Proj (R) has closed sets

Z(I) = {p ∈ Proj (R) | I ⊆ p}

for homogeneous ideals I . Let UI = Proj (R) � Z(I).
We have distinguished open sets

U(f ) = Proj (R) � Z(f )
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for a homogeneous element f ∈ R (i.e. Proj (R) � Z(I) where I is a principal ideal).
Now one can define a structure sheaf on Proj (R) by requiring that

U(f ) = Spec((R(f ))0). (2.7.1)

where the subscript 0 on the right hand side means the subring of elements of degree 0.
Since the sets U(f ) form a basis of topology, one can define sections on any other open set
by gluing. (See Exercise 24.)

More concretely, for any Zariski open set U ⊆ Proj (R), OSpec(R)(U) is canonically
isomorphic to the ring of all functions

f : U →
∐

p∈Proj (R)

(Rp)0 (2.7.2)

such that f (p) ∈ (Rp)0 and every point p ∈ U is contained in an open subset V ⊆ U and
there exists an n and elements g, h ∈ Rn where for every q ∈ V , we have h /∈ q and

fq = g

h
∈ (Rq)0. (2.7.3)

(Note: Again, in this notation, we use the same symbol for an element of R and its image
in Rq . In (2.7.3), fq means the q’th coordinate of f in the product (2.7.2).)

Note that (2.7.1) also implies that this is a locally ringed space and that every point is
contained in an open subset isomorphic to an affine scheme. Thus, Proj (R) is a scheme.
In particular, for f ∈ R homogeneous, note that U(f ) ⊆ Proj (R) is isomorphic to an
affine scheme.

2.8 The Affine and Projective Space Over a Scheme: Projective
Schemes

When discussing varieties in Chap. 1, we used the affine space over C. It can be realized
in schemes as

A
n
C
= Spec(C[x1, . . . , xn]).

(Of course, considered as a scheme, An
C

has more points; in Chap. 1 we only considered
closed points.)

However, in schemes, the most universal affine space is over Z:

A
n
Z
= Spec(Z[x1, . . . , xn]).
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We have

C[x1, . . . , xn] = Z[x1, . . . , xn] ⊗C,

so we have

A
n
C
= A

n
Z
× Spec(C).

For a general scheme S, we then put

A
n
S = A

n
Z
× S.

This is important because the product comes with a projection

A
n
S = A

n
Z
× S → S.

(Of course, this is true of the categorical product in any category.) More generally, a
scheme X with a morphism

X → S

is called a scheme over S. So, An
S is an example of a scheme over S. Later, many concepts

for schemes will actually be defined for morphisms of schemes, i.e. for schemes over
another scheme. This is called the relative approach to concepts in algebraic geometry.

Another example of a scheme over S is the projective space over S. Again, we start
with the projective space over Z:

P
n
Z
= Proj (Z[x0, . . . , xn])

where Z[x0, . . . , xn] is considered to be a graded ring where x0, . . . , xn have degree 1.
Recall that the extra variable also came up when we treated the projective space over C as
a variety. In fact, if we see that

U(x0) = (x−1
0 Z[x0, . . . , xn])0

(the subscript means elements of degree 0). But note that

(x−1
0 Z[x0, . . . , xn])0 ∼= Z[x1, . . . xn]

where the isomorphism is

x0 → 1, xi → xi for i = 1, . . . , n.
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Thus, we see that in P
n
Z

,

U(x0)
∼= A

n
Z
.

Now we can define the n-dimensional projective space over a scheme S by

P
n
S = P

n
Z
× S.

It is customary to use the term projective scheme over S for a closed subscheme of Pn
S .

Note that from this point of view, the construction in Sect. 2.7 is simultaneously more,
and also less, general: For an arbitrary scheme S, Pn

S certainly may not be isomorphic
to Proj (R) for a graded ring R. On the other hand, Proj (R) may not, in general, be
isomorphic to a closed subset of Pn

Spec(R0)
.

It is true however that if a graded ring R is generated, as a ring, by finitely many
elements r0, . . . , rn ∈ R1, then Proj (R) is a closed subscheme of

P
n
Spec(R0)

= Proj (R0[x0, . . . , xn]),

by sending

xi → ri, i = 0, . . . , n.

Thus, in this case, Proj (R) is a projective scheme over Spec(R0).
It is not difficult to see that all the theory of varieties as discussed in Chap. 1 can be

completely described within the theory of schemes. It follows directly from Theorem 2.2.3
that the category of affine varieties as described in Chap. 1 is equivalent to the full
subcategory of the category of schemes over Spec(C) on closed integral subschemes of
the affine spaces A

n
Spec(C). As already noted, the affine scheme actually has more points

than the variety as considered in Chap. 1, because the points correspond to prime and not
just maximal ideals. In fact, maximal ideals correspond exactly to closed points. However,
in this case, all the information about the prime ideals can be recovered from the maximal
ideals by the Nullstellensatz. Similar observations also extend to the projective, quasi-
affine and quasi-projective varieties considered in Chap. 1. (See Exercise 27.)

3 Finiteness Properties of Schemes andMorphisms of Schemes

3.1 Quasicompactness

At this point, we must remind ourselves of the fact that in analysis, we usually do not study
the Zariski topology. A typical example of the topology we study in analysis is the analytic
topology on Rn (here by Rn, we mean simply the set of all n-tuples of real numbers). On
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R
n, we have a notion of distance

ρ((x1, . . . , xn), (y1, . . . , yn)) =
√

(x1 − y1)2 + · · · + (xn − yn)2.

A set U is open in the analytic topology when for every z ∈ U , there exists a δ > 0 where
for every t ∈ Rn with ρ(z, t) < δ, we have t ∈ U . (This means, with every point z, the set
U also contains all points near z.)

There is a notion of compactness of topological spaces, which is very important in the
analytic topology:

3.1.1 Definition A topological space X is compact if whenever

X =
⋃

i∈I

Ui

where Ui are open subsets of X, there exists a finite subset F ⊆ I such that

X =
⋃

i∈F

Ui.

In other words, we say that a topological space X is compact if every open cover of X

has a finite sub-cover.
Compactness captures a very specific and important property of certain spaces. For

example, in the analytic topology on R, one can show that a closed interval [a, b] is
compact, but an open interval (a, b) or a half-open interval [a, b) is not for a < b. Note
that in the analytic topology,R itself is homeomorphic to (0, 1), and hence is not compact,
even though it is, of course, embedded as a closed subset of, say, R2 with the induced
topology.

But now let us remember that the topology of schemes is different in that the Zariski
topology has “far fewer open sets” (the quotation marks signify that this statement is
imprecise, since even the sets of points are different in schemes from the points considered
in classical analysis). The notion of compactness behaves differently in spaces with “very
few open sets.” Because of this, some literature sources call the property of Definition 3.1.1
quasi-compactness, reserving the term compact for spaces which have “enough open sets”
in the sense that any two distinct points are separated by disjoint open sets. (This is called
the Hausdorff property; it will be studied in more detail in Sect. 1.1 of Chap. 3.) The term
quasi-compactness for the property of Definition 3.1.1 became established in algebraic
geometry, where the topology of most schemes is not Hausdorff.

Another point is that the category of schemes also has “far fewer morphisms” than
the category of spaces, so quasi-compactness of schemes is, in a sense, an even weaker
property than quasi-compactness in the category of all (not necessarily Hausdorff) spaces.
In schemes, the appropriate analog of quasi-compactness in the category of spaces
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is the concept of being universally closed, and the appropriate analog of compact
Hausdorff spaces are proper schemes. For a discussion of these concepts, see Sect. 2 of
Chap. 3. Quasi-compactness in the category of schemes is important, but has a different
significance, as illustrated by the following fact.

3.1.2 Theorem Every affine scheme X is quasi-compact.

Proof Roughly, this is due to the fact that a linear combination of a set of generators
is always a linear combination of a finite subset, which we already used in our proof of
Lemma 2.2.2 and also Theorem 2.3.1. Let us recast the argument in terms of the quasi-
compactness property we now introduced:

We have X = Spec(R) for some commutative ring R. Suppose

Spec(R) =
⋃

i∈I

Ui (3.1.1)

where Ui are Zariski open. But recall that every Zariski open set is a union of distinguished
open sets, which are sets of the form

U(f ) = Spec(R) � Z(f )

where

Z(f ) = {p ∈ Spec(R) | f ∈ p}.

Thus, we may assume that the sets Ui are distinguished,

Ui = U(fi), fi ∈ R.

Then (3.1.1) is equivalent to

∅ =
⋂

i∈I

Z(fi) = Z(fi | i ∈ I).

This means that the ideal (fi | i ∈ I) is not contained in any prime ideal. But every ideal,
other than R itself, is contained in a maximal ideal, which is prime. This means that

(fi | i ∈ I) = R,

which is equivalent to saying that 1 is a linear combination of the fi ’s. But only finitely
many fi ’s, say, for i ∈ F ⊆ I finite, are involved in this linear combination. This
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means that

∅ =
⋂

i∈F

Z(fi) = Z(fi | i ∈ F)

and hence

Spec(R) =
⋃

i∈F

Ui,

which is what we were trying to prove. ��

An example of a scheme which is not quasi-compact is

∐

i∈I

Spec(Z)

for any I infinite.

3.2 Noetherian Schemes

Let us recall that a (commutative) ring R is called Noetherian if every ideal I ⊆ R is
finitely generated. This means that there exist elements r1, . . . , rk ∈ R such that

I = (r1, . . . , rk).

(Recall that the right hand side consists of all linear combinations of the elements
r1, . . . , rk with coefficients in R.) Hilbert’s basis theorem tells us that if R is Noetherian,
then the ring R[x] of polynomials in one variable with coefficients in R is Noetherian
(Theorem 4.2.1 of Chap. 1). Therefore, the polynomial rings

Z[x1, . . . , xm]

or

F [x1, . . . , xm]

where F is a field are Noetherian. A polynomial ring over Z with infinitely many variables

Z[x1, x2, x3, . . . ]

is not Noetherian.
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The point of the notion of Noetherian rings is that it is a finiteness property which
is weaker than being finitely generated as a ring. Recall that a ring R is generated by
elements r1, . . . , rk if R is equal to the set of all polynomials with coefficients in Z in
the generators r1, . . . rk . This does not mean that R = Z[r1, . . . , rk], but it means that
R = Z[r1, . . . , rk]/I for some ideal I . Since the property of being Noetherian passes from
a ring to its factor rings, a finitely generated ring is always Noetherian, but not vice versa:
an example of a Noetherian ring which is not finitely generated is Q, or Z(p) (the set of all
rational numbers whose denominators are not divisible by p).

3.2.1 Definition A scheme X is Noetherian if X is a union of finitely many affine open
sets V1, . . . , Vn, Vi = Spec(Ri), where all the rings R1, . . . , Rn are Noetherian.

3.2.2 Lemma Every Noetherian scheme X is quasi-compact.

Proof Every affine scheme is quasicompact by Theorem 3.1.2. Let X = V1 ∪ · · · ∪ Vn

where V1, . . . , Vn are affine. Now let

X =
⋃

i∈I

Ui

for Ui open. Then Ui ∩ Vj is open in Vj and

V1 =⋃i∈I (Ui ∩ V1),
...

Vn =⋃i∈I (Ui ∩ Vn).

Since Vj is quasicompact, there exists a finite subset Fj ⊆ I such that

Vj =
⋃

i∈Fj

(Ui ∩ Vj).

Then, since Ui ⊇ Ui ∩ Vj ,

X =
⋃

i∈F1∪···∪Fn

Ui.

��

In fact, in the same way, one can prove the following

3.2.3 Corollary A scheme X is quasi-compact if and only if it is a union of finitely many
open affine subsets.
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Proof Exercise 28. ��

Maybe surprisingly, the following is harder:

3.2.4 Lemma An affine scheme X = Spec(R) is Noetherian if and only if the ring R is
Noetherian.

Proof If the ring R is Noetherian, then, by definition, the scheme X is Noetherian. Assume
conversely that X is a Noetherian scheme. Then X = V1 ∪ · · · ∪ Vn where Vi are open
subsets which are isomorphic to affine schemes. We are not a priori guaranteed that Vi are
distinguished open subset, i.e. that

Vi = Spec(f−1
i R), for some fi ∈ R. (3.2.1)

However, every open set is a union of distinguished open sets, and the open subsets Vj are
affine therefore quasi-compact, so we can make each of those unions finite. Note that if
Vi = Spec(Ri) then

Spec(f−1R) ∩ Vi = Spec(f−1Ri)

is also distinguished in Vi and hence f−1Ri is Noetherian. Therefore, (3.2.1) can be
assumed without loss of generality, after all. Now the fact that

Spec(R) =
n⋃

i=1

Vi

means, on the level of rings, that the ideal (f1, . . . , fn) in R is R itself, which means that

1 = a1f1 + · · · + anfn for some ai ∈ R. (3.2.2)

Now let I be an ideal in R. Since f−1
i R is Noetherian, the ideal f−1

i I in f−1
i R is finitely

generated, say, by elements ri,1, . . . , ri,ki . Since fi is invertible (has a reciprocal) in f−1
i R,

we may assume without loss of generality that ri,j ∈ R.
We claim that the ideal I is generated by the finitely many elements ri,j . Indeed, let

x ∈ I . Then, in f−1
i R, x is a linear combination of the elements ri,1, . . . , ri,ki . Note that

the coefficients may have denominators which are powers of fi . Therefore, after clearing
denominators, this is telling us that f

Ni

i x is a linear combination of ri,1, . . . , ri,ki in R.

But (f
Ni

i )−1R = f−1
i R, so we may replace fi by f

Ni

i . Thus, without loss of generality,
Ni = 1, i.e. in R we have

fix = bi,1ri,1 + · · · + bi,ki ri,ki , bi,j ∈ R.
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Then using (3.2.2),

x = a1f1x + · · · + anfnx =
n∑

i=1

ai(bi,1ri,1 + · · · + bi,ki ri,ki ),

which is a linear combination of the ri,j ’s with coefficients in R, as claimed. ��

Recall that a commutative ring R is Noetherian if and only if it satisfies the ascending
chain condition (ACC) with respect to ideals. Now by contravariance, an affine scheme X

is Noetherian if and only if it satisfies the descending chain condition (DCC) for closed
subschemes. By this we mean that there do not exist closed immersions

Z1 ← Z2 ← · · · ← Zn ← . . . (3.2.3)

of closed subschemes of X none of which are isomorphisms.

3.2.5 Lemma If a scheme X is Noetherian, then it satisfies the DCC for closed sub-
schemes.

Proof Suppose X is Noetherian. Then it is covered by finitely many open affine U1, . . . Uk

which are Noetherian, and hence satisfy the DCC with respect to closed subschemes. If
we had a chain of closed subschemes (3.2.3) in X, then at least for one Ui , Zn ∩ Ui

(interpreted as a pullback) would form an infinite chain of decreasing closed subschemes in
Ui , which is a contradiction. (Note carefully that some of the closed immersions Zn∩Ui ←
Zn+1 ∩ Ui can be isomorphisms, but for some i = 1, . . . , k, there will be infinitely many
non-isomorphisms among them.)

��

3.2.6 Lemma If X is a Noetherian scheme, then every open subscheme U ⊆ X and every
closed subscheme Z ⊆ X are Noetherian.

Proof Let X be covered by finitely many affine open Noetherian subschemes Ui . For a
closed subscheme Z, we can just cover Z by Ui ∩ Z (interpreted as a pullback), and use
Theorem 2.3.1.

For an open subscheme U ⊆ X, the subschemes U ∩ Ui are then covered by
distinguished open subsets Uij of Ui , which are Noetherian. However, Ui must then be
covered by finitely many Uij ’s, since otherwise ACC on open subsets of X would be
violated. This would imply a violation of DCC on closed subsets of X, and hence closed
subschemes of X (since with every closed subset we can associate a unique reduced
closed subscheme—Exercise 15). This would contradict Lemma 3.2.5. Thus, U ∩ Ui are
Noetherian, and hence so is U .

��
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3.3 Morphisms Locally of Finite Type andMorphisms of Finite Type

A morphism of schemes f : X → Y is called locally of finite type if Y is covered by open
affine subsets Ui = Spec(Ai), i ∈ I , such that for every i ∈ I , f−1(Ui) is covered by
open affine subsets Vi,j = Spec(Bi,j ), j ∈ Ji where the corresponding homomorphism of
rings Ai → Bi,j makes Bi,j a finitely generated Ai-algebra (this means that every element
of Bi,j can be expressed as a polynomial, with coefficients in Ai , of finitely many given
elements in Bij ). The morphism f is called of finite type if the sets Ji , i ∈ I , can be chosen
to be finite.

As already mentioned, when we have a morphism of schemes f : X → Y , we also
sometimes refer to X as a scheme over Y . If the morphism f is of finite type, we say that
the scheme X is of finite type over Y . A scheme is of finite type if it is of finite type over
Spec(Z). Similarly for locally finite type.

For example, the projection A
n
S → S for any scheme S is of finite type: without loss

of generality, S is affine, say, S = Spec(R). Then A
n
S = Spec(R[x1, . . . , xn]) which is

generated by the finitely many elements x1, . . . , xn.
Similarly, the projective space P

n
S → S is of finite type over S. Again, without loss

of generality, S = Spec(R) is affine. Then P
n
S is covered by the finitely many sets

Spec((x−1
i R[x0, . . . , xn])0). (Recall from Sect. 2.8 that the subscript 0 means the subring

of elements of degree 0.)
A closed subscheme of a scheme S (see Sect. 2.3) is always of finite type over S. Again,

without loss of generality, S = Spec(R) is affine. Then closed subschemes are of the form
Spec(R/I) for an ideal I . R/I is generated by the empty set as an algebra over R.

An open subscheme of a scheme S is always locally of finite type over S. Again,
without loss of generality, S = Spec(R) is affine. Then every open subset is a union
of distinguished open subsets Spec(f−1

i R). The ring f−1
i R is generated by the single

element

1

fi

= f−1
i

as an R-algebra.
An open affine subscheme U of an affine scheme S is of finite type over S. This is

because an affine scheme is quasi-compact, so when U is affine, we can find a finite
subcover of the cover of U by distinguished open sets in S.

The morphism from a disjoint union of infinitely many copies of a scheme Spec(Z) to
Spec(Z) is locally of finite type but not of finite type.

A composition of two morphisms locally of finite type is locally of finite type, and a
composition of two morphisms of finite type is of finite type. Therefore, for example, a
closed subscheme of an affine space over S is always of finite type over S.

The morphism of schemes

Spec(Q)→ Spec(Z)
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(given by the inclusion Z ⊆ Q) is not locally of finite type. This is because Z is a principal
ideal domain, which means that every ideal is principal, so every open set in Spec(Z) is
distinguished, of the form Spec(n−1Z). But Q is not generated by finitely many elements
as an algebra over n−1Z. This is because Q can have any nonzero integer as a denominator,
and there are infinitely many primes.

3.4 FiniteMorphisms

A morphism of schemes f : X → Y is called finite if for every Spec(R) ∼= U ⊆ Y

affine open, Spec(S) ∼= f−1(U) is affine (it is automatically open) and the corresponding
homomorphism of rings R → S makes S into a finitely generated R- module.

One can show that if X = Spec(S), Y = Spec(R), this is equivalent to the homomor-
phism of rings R → S making S a finitely generated R-module. (See Exercise 37.)

Note: this is a much stronger property than finite type. Essentially, we should think of
X “covering Y with finitely many sheets,” but that is a bit oversimplified. Let us give some
examples:

Consider the morphism

f : X = Spec(C[x])→ Spec(C[y]) = Y (3.4.1)

given by y = x2. Note that both X and Y are isomorphic to A1
C

. This is a morphism of
affine schemes. The corresponding homomorphism of rings is C[y] → C[x] which sends
y to x2. This makes C[x] a finitely generated module over C[y]where the generators are 1
and x: any polynomial over x can be grouped into a sum of monomials with even powers
of x, which is in C[x2], and odd powers of x, which is in x · C[x2]. So (3.4.1) is a finite
morphism of schemes.

Note that if we imagine A1
C

as a complex number line, then every element has two
square roots except 0. This means that the morphism f has “two sheets,” but they merge
to one sheet at 0. So this singularity does not spoil finiteness.

Now consider in A1
C

the distinguished set

A
1
C
� {0} = Spec(C[x])� Z(x).

The inclusion

Spec(x−1
C[x])→ Spec(C[x]) (3.4.2)

can be written as Spec of the inclusion of rings

C[x] ⊂ x−1
C[x].
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Note that the ring x−1C[x] is the ring of “finite Laurent series,” which means they are
linear combinations, with coefficients inC, of powers xn where n ∈ Z (i.e. negative powers
of x are allowed). Since there are infinitely many negative powers, this is not finitely
generated as a C[x]-module. So the morphism of schemes (3.4.2) is not finite.

Now consider the projection

A
2
C
→ A

1
C

(3.4.3)

to the first coordinate. This can be written as Spec of the inclusion of rings

C[x] → C[x, y].

If we put R = C[x], we can write C[x, y] = R[y], i.e. polynomials in the variable y with
coefficients in C[x]. Again, there are infinitely many powers of y, so this is not finitely
generated as a C[x]-module.

Finally, consider the morphism

P
1
C
→ Spec(C). (3.4.4)

This is not finite either, since Spec(C) only has one non-empty affine subset (itself), and
its inverse image is not finite!

Note that all the examples of morphisms of schemes given in this subsection, including
the ones which were not finite, are of finite type.

4 Exercises

1. (a) Prove that for two morphisms φ,ψ : F → G of sheaves of sets on a topological
space X, φ = ψ if and only if φ and ψ induce the same maps on stalks.

(b) Deduce that a morphism of sheaves of sets or abelian sheaves on X is an
epimorphism if and only if it is onto on stalks.

2. Let R be a local ring with maximal ideal m, and S be a local ring with maximal ideal
n. Let f : R → S be a homomorphism of rings. Prove that f−1(n) = m if and only if
f (m) ⊆ n. (Then we say that f is a morphism of local rings.)

3. Prove that a localization of commutative rings R → S−1R where S is a multiplicative
set is an epimorphism of rings.

4. Prove that in a pre-additive category, for objects A,B,C and morphisms

A
i

�� C B,
j

��

A C
p

��
q

�� B
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such that p ◦ i = IdA, q ◦ j = IdB , i ◦ p + j ◦ q = IdC , the object C is a biproduct
of the objects A and B.

5. Let R be the ring of all complex polynomials f in one variable such that f (0) = f (1).
Prove that R is a finitely generated C-algebra, and thus, Spec(R) is a scheme of finite
type over Spec(C). Give a presentation of the C-algebra R in terms of (finitely many)
generators and defining relations. Describe Spec(R) explicitly as a topological space.
[Look for an infinite, but good, basis of R as a C-vector space first.]

6. In the setup of Exercise 5, consider the morphism h : A1
Spec(C) → Spec(R) given by

the embedding of C-algebras R ⊂ C[x]. Prove that this morphism is a coequalizer of
the embeddings Spec(C) → A

1
Spec(C) given by the maps of rings x → 0 and x → 1

in the category of affine schemes.
7. Is the morphism h considered in Exercise 6 of finite type? Is it finite?
8. Let P ∈ Spec(R) be the image of the point Q1 = (x) (or, equivalently, Q2 = (x−1))

in A1
Spec(C). Prove that the homomorphism h restricts to an isomorphism of open affine

subschemes

h̃ : A1
Spec(C) � {Q1,Q2} → Spec(R) � {P }.

9. Let S be the ring of rational functions of the form f (x) = p(x)/(x − 2)n where p

is a polynomial, such that f (0) = f (1). Consider the morphism g : Spec(S) →
Spec(R) given by the inclusion of rings R ⊂ S. Prove that the image U of g is an
open subscheme of Spec(R), but that g : Spec(S) → U is not an isomorphism of
schemes. Is U affine?

10. Let Q3 = (x − 2) ⊂ C[x] and let

k : A1
Spec(C) � {Q3} → Spec(S)

be the morphism of affine schemes given by inclusion of rings. Let P ∈ Spec(S) =
k(P1) = k(P2) (see Exercise 8). Prove that k restricts to an isomorphism of schemes

k̃ : A1
Spec(C) � {Q1,Q2,Q3} → Spec(S) � {P }.

Now let X be the pushout of the diagram

A
1
Spec(C) � {Q1,Q2,Q3}

⊂
��

⊂◦̃k
��

A
1
Spec(C) � {Q1,Q2}

Spec(S)
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in the category of schemes (see Sect. 2.5). Then we have a pushout morphism φ :
X → Spec(R). Is φ an isomorphism of schemes? Is X affine?

11. Let R be the ring of pairs of polynomials (f, g) in one variable with coefficients in C

satisfying f (0) = g(0). Prove that R ∼= C[x, y]/(xy). Is Spec(R) a pushout of two
copies of the inclusion Spec(C) → A1

Spec(C) given by x → 0?
12. Consider the setup of Exercise 11. Consider the morphism

h : A1
Spec(C) → Spec(R)

given by the embedding of C-algebras R ⊂ C[x]. Is this morphism a coequalizer of
the embeddings Spec(C) → A1

Spec(C) given by the maps of rings x → 0 and x → 1
in the category of
(i) affine schemes

(ii) schemes?
[Investigate, again, what happens to the construction when you remove finitely

many closed points from the affine lines to be glued.]
13. Prove that for a non-empty scheme X, the following are equivalent:

(i) X is integral
(ii) OX(U) is an integral domain for all U ⊆ X non-empty open affine

(iii) OX(U) is an integral domain for all U ⊆ X open.
14. Let Y be a scheme. The category of schemes over Y has morphisms of schemes X →

Y as objects, and commutative diagrams

X1

���
��

��
��

�
�� X2

����
��
��
��

Y

as morphisms. Prove that the category of schemes over Y has finite limits.
15. Give an example of two non-isomorphic closed subschemes of the same scheme X

which have the same points. Prove that for a given closed subset S of a scheme X,
there exists a unique reduced closed subscheme of X whose set of points is S.

16. Consider a countable infinite coproduct X of copies of Spec(Z) in the category of
schemes.
(a) Is X (isomorphic to) an affine scheme?
(b) Is X of finite type over Spec(Z)?

17. (a) Prove that a scheme X is reduced if and only if the ring OX(U) is reduced for
every U open affine.

(b) Prove that a scheme X is reduced if and only if the stalks of the structure sheaf
OX are reduced rings.
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18. Is every reduced scheme which has only one point isomorphic to Spec(k) for some
field k?

19. Is the forgetful functor from the category of schemes to the category of topological
spaces (a) a right adjoint? (b) a left adjoint?

20. Do there exist non-empty schemes X,Y such that there is no morphism of schemes
X → Y or Y → X and the underlying space of the product of X and Y is the product
of the underlying spaces of X and Y ?

21. Using gluing, finish the proof that the category of schemes has pullbacks.
22. Prove that any category which has pullbacks and a terminal object has finite limits.
23. Prove that if f : X → Y is a closed immersion of schemes and g : Z → Y is any

morphism of schemes, then f ×Y Z : X ×Y Z → Z is a closed immersion.
24. Prove that for a graded ring R and homogeneous elements f ∈ Rm, g ∈ Rn,

((fg)−1R)0 ∼= (gm/f n)−1((f−1R)0)0.

Use this to fill in the details in the definition of Proj (R).
25. Let R be a commutative ring. The scheme

PR(a0, . . . , an)

defined as Proj (R[x0, . . . , xn]) where xi is homogeneous of degree ai ∈ N is called
a weighted projective space.
(a) Prove that the scheme PR(da0, da1, . . . , dan) is isomorphic to the scheme

PR(a0, a1, . . . , an) for any natural number d .
(b) Prove that PC(2, 3, 5) is not isomorphic to a projective space over C.

26. Prove that an integral closed subscheme of A1
Z

is either an integral closed subscheme
of the closed subscheme A1

Spec(Fp) ⊂ A
1
Z

(where Fp is the finite field with p elements)

or the closure of an integral closed subscheme of the subscheme A
1
Spec(Q) ⊂ A

1
Z

.

[Recall Sect. 4.2 of Chap. 1.] Is an analogous statement true with A1 replaced by P1?
27. Prove that the category of quasiprojective varieties over C considered in Chap. 1 is

equivalent to the full subcategory of the category of schemes X → Spec(C) over
Spec(C) where X is an open subscheme of an integral closed subscheme of Pn

Spec(C)

for some n ∈ N0.
28. Prove Corollary 3.2.3.
29. (The Segre embedding) Let σ : Pm

Z
× P

n
Z
→ P

N
Z

, N = (m + 1)(n + 1) − 1, be the
morphism of schemes where the projective coordinates of the target are xiyj where
x0, . . . , xm are the projective coordinates of P

m
Z

and y0, . . . , yn are the projective
coordinates of Pn

Z
. Prove that the image is a closed subscheme Z ⊂ P

N
Z

and that σ

restricts to an isomorphism of the source to Z. Conclude that a product over a scheme
S of two projective schemes over S is projective over S.
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30. Let f : Y → X be a morphism of schemes of finite type and let U ⊆ X be open.
Prove that the restriction f−1(U) → U is of finite type.

31. Let f : Y → X be a morphism of schemes of finite type and let Spec(R) ∼= U ⊆ X

be open affine. Prove that there exists a cover of f−1U by finitely many open affine
subsets Vi = Spec(Ri) such that Ri is a finitely generated R-algebra.

32. Find an example of a scheme X and an affine open subscheme U ⊂ X such that U

is not of finite type over X. [First, find an example of a closed subset Z of an affine
scheme Y such that φ : Y � Z ⊂ Y is not of finite type. Then, consider a pushout of
two copies of the morphism φ.]

33. Is a scheme of finite type over a Noetherian scheme always Noetherian?
34. Give an example of an affine scheme which satisfies the DCC with respect to closed

subsets but is not Noetherian.
35. Prove that if f : Y → X is a morphism of schemes and X has a cover by open

subschemes Ui such that each restriction f−1(Ui) → Ui is finite, then f is finite. [Let
R be a commutative ring, and let the unit ideal be (f1, . . . , fn). Let M be an R-module
such that f−1

i M is a finitely generated f−1
i R-module. Prove that then M is a finitely

generated R-module.]
36. Prove that every closed immersion is finite.
37. Prove that for a homomorphism of rings f : R → S, Spec(f ) : Spec(S) → Spec(R)

is finite if and only if f makes S a finitely generated R-module.
38. The dimension dim(X) of a scheme X is defined as the (possibly infinite) supremum

of n such that there exist irreducible closed subschemes

X0 � X1 � · · · � Xn ⊆ X

(where � means a closed subscheme where the sets of points are not equal). If
dim(X) < ∞ and Z ⊆ X is a closed irreducible subscheme, then codimension
codX(Z) of Z in X is defined as the supremum of numbers n such that there exist
irreducible closed subschemes

Z = Z0 � Z1 � · · · � Zn ⊆ X

(using the same interpretation of � as above). Let R = Z(p)[x] where p ∈ N is a
prime number.
(a) Prove dim(Spec(R)) = 2.
(b) Find f ∈ R such that (f ) ⊂ R is a maximal ideal and

dim(Spec(R/(f ))) = 0.
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(c) Prove that for any scheme X and an irreducible closed subscheme Z,

dim(Z)+ codX(Z) ≤ dim(X).

(d) Does equality always arise in (c)?
(Compare with the comments at the end of Sect. 5.5 of Chap. 1.)
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It is immediately apparent from the definition, and the basic examples we studied, that
the concept of a scheme is far more general than the concept of a variety as introduced in
Chap. 1, just as a topological space is much more general than a subset of Rn. What are
the properties of schemes we should study?

As it turns out, topology, and analysis, provide good starting points for answering
this question, and many of the scheme-theoretical properties we study are analogues of
concepts from topology. For example, in general topology, important kinds of spaces
include spaces which are Hausdorff and compact. We will review these properties here,
and introduce analogous concepts for schemes, i.e. separated, universally closed, and
proper schemes. In analysis, we have a concept of smoothness. We will also study
analogous concepts in algebraic geometry.

Developing scheme-theoretical analogues of topological concepts is not always techni-
cally straightforward. This is due to the fact that topologies on schemes have “far fewer”
open and closed sets than we are used to in analysis, and in addition, the category of
schemes has “far fewer” morphisms than the category of topological spaces. Because of
that, the definitions of concepts expressing the same geometrical idea, and the proofs, are
often quite different, and additional commutative algebra will be needed.

We will also revisit varieties, developing an abstract definition of a variety not relying
on having a familiar ambient space. We will give a better (more general) proof of
the Nullstellensatz, and a classification of 1-dimensional varieties (i.e. curves) over an
algebraically closed field up to birational equivalence.

Finally, we will begin exploring some basic features of doing algebraic geometry over
non-algebraically closed fields, and the role of group actions, specifically the action of
the Galois group. (A review of Galois theory is contained in our narrative and exercises.)
Continuing with the topological analogues, we will also mention the topological concept
of a fundamental group, and its algebraic analogue, the étale fundamental group. One of

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
I. Kriz, S. Kriz, Introduction to Algebraic Geometry,
https://doi.org/10.1007/978-3-030-62644-0_3

101

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62644-0_3&domain=pdf
https://doi.org/10.1007/978-3-030-62644-0_3


102 3 Properties of Schemes

the most striking examples of the use of Galois actions are the Weil conjectures proved
by P. Deligne based on the work of A. Grothendieck and others, which will be briefly
mentioned at the end of the chapter.

1 Separated Schemes andMorphisms

The concept of a separated scheme models in schemes a certain concept in topology.
The reader may wonder what this means: a scheme is, after all, a topological space. But
in mathematics (not just applied), concepts are defined to model phenomena we see. A
topologist will typically look at examples close to the analytic topology, i.e. Rn where the
basis of topology are open balls Bε(x), the set of all points y of distance < ε from x. (A
basis of topology is a set S of open sets such that every open set is a union of elements
of S—for example, the set of distinguished open set in an affine scheme is a basis of
the Zariski topology.) A topologist may also typically think of a subset X of Rn with the
induced topology which means that the sets considered open in X are precisely sets of the
form U∩X where U is open in Rn. (Note that we have also already considered the induced
topology when looking at open and closed subschemes, and even subvarieties.)

The point is, however, that a topologist will typically not (at least not primarily) think
about the Zariski topology, or the topology of a scheme. We have already noticed that the
notion of a compact space, while it makes sense in schemes (giving rise to the meaningful
notion of a quasicompact scheme), does not carry the same geometrical meaning as
topologists would expect from their examples. (We are yet to define the scheme-theoretical
concept which correctly models the topologist’s intuition of compactness.)

In this section, we will introduce another concept from topology which needs to be
modeled differently in schemes, and we will show how it is done. Let us define the
topological concept first.

1.1 Hausdorff and T1 Topological Spaces

A topological space X is called Hausdorff when for every two points x �= y ∈ X, there
exists an open set x ∈ U and an open set y ∈ V such that U ∩ V = ∅. The Hausdorff
property is also sometimes called T2. The space Rn with the analytic topology, and all its
subsets with the induced topology, are clearly Hausdorff: For two points x, y of distance
d > 0, let U = Bd/2(x), V = Bd/2(y). More generally, in a Hausdorff space, a subset
with the induced topology is Hausdorff.

It is also useful to say that a topological space X is T1 if every point x ∈ X is closed.
(This means, more precisely, that the one element set {x} is closed.) It is easy to see that
every Hausdorff space is T1: Let x ∈ X, and let for every y ∈ X with x �= y, Uy � y be
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an open set disjoint with some open set containing x, hence, in particular, not containing
x. Then

⋃

y �=x

Uy = X � {x}

is an open set, since it is a union of open sets.

Example Consider the pushout R̃ of the diagram

R� {0} ��

��

R

R

(1.1.1)

where both of the arrows are inclusions. The space R̃ can be thought of as a real line
where 0 is replaced by two of its copies 01 and 02. A subset U ⊆ R is open if and only if
U is open in both copies of R sitting in R̃: this means that the set U1 obtained from U by
omitting 02 (if present) and replacing 01 with 0, and also the set U2 obtained from U by
omitting 01 (if present) and replacing 02 with 0, are both open in R. We see than that the
space R̃ is T1, but is not Hausdorff: there are no disjoint open sets containing the points
01, 02, respectively.

The following example may seem more troubling:

1.1.1 Lemma The topology of a Noetherian scheme X is never T1 unless it is discrete, i.e.
such that every subset is open.

Proof Without loss of generality, we may assume that X = Spec(R) is affine. Addition-
ally, we may assume that R is reduced, which means it has no nonzero nilpotent elements,
since otherwise we may factor it by the nilradical (i.e. ideal generated by all the nilpotent
elements) without altering Spec. (Recall that the nilradical is the intersection of all prime
ideals.)

Now if all points of Spec(R) are closed, it means that all prime ideals of R are maximal,
and thus R is an Artinian ring. Now an Artinian ring is a product of finitely many local
Artinian rings by Proposition 5.2.3 of Chap. 1, and a reduced local Artinian ring is by
definition a field. Thus, Spec(R) is a finite discrete set. ��
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1.2 The Product of Topological Spaces: Reformulating the Hausdorff
Property

As often, to find an appropriate analogue of our concept in another context, we want to
phrase it as much as possible in the language of category theory. For this purpose, let
us examine a little more closely the categorical product of topological spaces. If X, Y

are topological spaces, recall that their categorical product is the limit of the diagram
consisting of X and Y and no arrows. One easily sees that as a set, this is the Cartesian
product X × Y = {(x, y) | x ∈ X, y ∈ Y } and that a basis of its topology is the set of sets

{U × V | U ⊆ X open, V ⊆ Y open}.

1.2.1 Lemma A topological space is Hausdorff if and only if the diagonal

�X = {(x, x) | x ∈ X} ⊆ X ×X

is a closed set.

Proof The diagonal being a closed set is equivalent to its complement

X ×X � �X (1.2.1)

being open. This is equivalent to any (x, y) in (1.2.1) being contained in an open subset of
(1.2.1) which belongs to a basis of topology, i.e. to a set U × V where U is open in X and
V is open in Y and

U × V ⊆ X ×X � �X. (1.2.2)

But (1.2.2) is equivalent to U ∩ V = ∅. ��

1.3 Separated Schemes andMorphisms

Now we are ready for the scheme-theoretical concept. Note that in any category with
products there is a diagonal morphism

� : X → X ×X (1.3.1)

where the right hand side is the categorical product. This is because the product is, after all,
a limit of a diagram with no arrows, so (1.3.1) is gotten from the two maps Id : X → X,
Id : X → X. Similarly, for a morphism f : X → Y in any category with pullbacks, we
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have a diagonal

�Y : X → X ×Y X (1.3.2)

1.3.1 Definition A scheme X is called separated if the image of the diagonal morphism
(1.3.1) in the category of schemes is a closed set. More generally, a morphism of schemes
f : X → Y is called separated if the image of the diagonal (1.3.2) is a closed set.

Of course, a scheme X is separated if and only if the unique morphism f : X →
Spec(Z) is separated. Note that this definition makes sense in spite of Lemma 1.1.1
because the topological space underlying a product of schemes is typically not the
categorical product of the underlying spaces. In fact, recall that it is not even true for
the underlying sets. For example, if E, F are fields of different characteristic, then
Spec(E)× Spec(F ) = ∅. But perhaps more to the point, while, say, in A

1
C

(considered as
a scheme), all Zariski open sets consist precisely of complements of finite sets of closed
points together with the point (0), in A

2
C
= A

1
C
× A

1
C

, we have a lot more Zariski open
sets (e.g., complements of curves).

1.3.2 Lemma Every affine scheme is separated.

Proof For an affine scheme Spec(R), the diagonal is Spec of the codiagonal in commu-
tative rings, which is the multiplication homomorphism

R ⊗ R → R.

Since this homomorphism is always onto, the diagonal is a closed subscheme. ��

We see from this proof that when a scheme or more generally a morphism of schemes
is separated, the inclusion (1.3.1) (resp. (1.3.2)) is in fact a closed immersion.

1.3.3 Lemma An open or closed subscheme of a separated scheme is separated.

Proof Let f : Y → X be a closed immersion. If X is separated, then the composition

Y
f

�� X
�

�� X ×X

is a closed immersion. If we can prove that

f × f : Y × Y → X ×X
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is injective on points, then the image of � : Y → Y × Y is the inverse image of (f ×
f )−1Im(� ◦ f ), which is a closed set in Y by continuity. To show injectivity on points,
it suffices to consider the case where X = Spec(R) is affine. Then, by Theorem 2.3.1 of
Chap. 2, Y = Spec(R/I) for some ideal I , so

Y × Y = Spec(R/I ⊗ R/I) = Spec((R ⊗ R)/(I ⊗ I)),

which injects into X ×X = Spec(R ⊗ R). Thus, we are done.
For an open subscheme Y ⊆ X, one first observes that by construction, Y × Y is

an open subscheme of X × X. Thus, it suffices to prove that the image of the diagonal
� : X → X × X, intersected with Y × Y , is contained in the image of the diagonal
� : Y → Y × Y (since it is then automatically equal). For this purpose, it suffices to
consider the case when X = Spec(R) is affine. Then we have

r−1R ⊗ s−1R = (R ⊗ R)[(r ⊗ 1)−1, (1⊗ s)−1],

so if the image of a point p ∈ Spec(R) in Spec(R⊗R), which is the prime ideal p⊗R+
R ⊗ p, is in

Spec(r−1R ⊗ s−1R) = Spec(r−1R)× Spec(s−1R)

where Spec(r−1R), Spec(s−1R) ⊆ Y , then r, s /∈ p, and thus

p ∈ Spec(R[r−1, s−1]) ⊆ Y,

which is what we are trying to prove. ��

1.3.4 Proposition If a scheme X is separated then an intersection of two affine open sets
in X is affine. (Recall that an intersection of two open sets is always open.)

Proof Let U,V ⊆ X be affine open. Then

U ∩ V ∼= (U × V ) ∩�X ⊆ X ×X

where �X is the diagonal. The open subscheme U × V ⊂ X × X is affine, and if X is
separated, by definition the set (U × V ) ∩ �X is closed in it. Now a closed subset Z(I)

in an affine scheme Spec(R) is affine: it is of the form Spec(R/I). (Although we don’t
need its full strength here, it may be worthwhile recalling Theorem 2.3.1 of Sect. 2.3 of
Chap. 2.) ��
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From the Proposition, we see that the pushout of the diagram of schemes

A
2
C
� Z(x, y) ��

��

A
2
C
= V

U = A2
C

(1.3.3)

where the arrows are inclusions is not separated. Obviously, Z(x, y) is the one point set
containing the point (0, 0) in A

2
C

. The sets U,V are affine open, but their intersection,
A2
C
� Z(x, y) is not affine. We saw this in the language of varieties in Sect. 2.3.1 of

Chap. 1, but this is sufficient by Exercise 27 of Chap. 2. (In fact, we will discuss varieties
in a greater generality in Sect. 4 below; see also Exercise 23.)

Of course, the example (1.3.3) produces a non-separated scheme when generalized to
any n: The pushout Xn of

A
n
C
� Z(x1, . . . , xn) ��

��

A
n
C
= V

U = An

is not separated for the same reason, even though for n = 1, the set A1 � Z(x) is
distinguished open, and therefore affine.

One can see that Xn is not separated directly as follows: Xn looks like A
n
C

with the
origin (0, . . . , 0) removed and replaced with two copies of itself. The product Xn×Xn then
has “two times two, i.e. four, copies of the origin,” but only two will be on the diagonal.
The remaining two “copies of the origin” will not be contained in a Zariski open set disjoint
with the diagonal, and therefore the diagonal is not closed.

We see that the concept of a separated scheme mimics the Hausdorff property well in
the context of schemes, even though it had to be defined differently because, again, the
examples we are interested in are so different from the usual examples in topology and
morphisms of schemes are not the same as morphisms of spaces.

2 Universally Closed Schemes andMorphisms

We already learned about compact topological spaces and Hausdorff topological spaces.
So far we have a scheme-theoretical analog of Hausdorff (which is separated), but not of
compact. The notion of a universally closed scheme, which we will study in this section,
is the scheme-theoretical analog of a compact space.
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2.1 More Facts About Compact and Hausdorff Spaces

To motivate what the definition of a universally closed scheme says, let us learn a few more
properties of compact and Hausdorff spaces. Recall that the induced topology on a subset
Z of a topological space X has open sets of the form U ∩ Z where U is an open set in X.

2.1.1 Theorem A subset Z of a Hausdorff space X which is compact with the induced
topology is closed.

Proof Let Z ⊆ X be compact (with the induced topology). Let x ∈ X � Z. It suffices to
show that there exists Ux � x open with Ux ∩ Z = ∅, for then

⋃

x /∈Z

Ux = X � Z.

To this end, let z ∈ Z. Then, since X is Hausdorff, there exists Ux,z � x open and Vx,z � z

open such that

Ux,z ∩ Vx,z = ∅.

The sets Vx,z, z ∈ Z form an open cover of Z. (Note: we should, technically, say that the
sets Vx,z∩Z form an open cover of Z, but this slight inaccuracy is common in topological
proofs.)

In any case, since Z is compact, this cover has a finite subcover,

Vx,z1 ∪ · · · ∪ Vx,zn ⊇ Z.

But then

x ∈ Ux := Ux,z1 ∩ · · · ∩Ux,zn

is open, and we have

Ux ∩ Z ⊆ Ux ∩ (Vx,z1 ∪ · · · ∪ Vx,zn) = ∅,

so we are done. ��

Let us list one important consequence. A map of topological spaces f : X → Y (not
necessarily continuous) is called closed if for every closed set Z ⊆ X, the direct image
f (Z) ⊆ Y is closed.
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2.1.2 Theorem Every continuous map of spaces f : X → Y where X is compact and Y

is Hausdorff is closed.

Proof First let us realize that every closed subset Z of a compact space X is compact
(with the induced topology). Indeed, if Ui, i ∈ I is a cover of Z by open sets in X, then
Ui, i ∈ I together with the set X � Z form a cover of X. Since X is compact, that cover
has a finite subcover. If this subcover contains the set X � Z, which is disjoint from Z,
delete it, and you have a finite subcover of the original cover Ui, i ∈ I of Z.

The next step is to realize that if f : X → Y is a continuous map, and Z ⊆ X is compact
(with the induced topology), then the direct image f (Z) is compact. Indeed, let Ui, i ∈ I

be an open cover of f (Z). This is equivalent to f−1(Ui), i ∈ I being an open cover of
Z. But since Z is compact, the latter cover has a finite subcover: f−1(U1), . . . f

−1(Un).
For the same reason, then, U1, . . . Un is a cover of f (Z).

Finally, let us prove that if f : X → Y is continuous where X is compact and Y is
Hausdorff, then f is closed: Let Z ⊆ X be closed. Then, as we saw, Z is compact with the
induced topology. Therefore, f (Z) ⊆ Y is compact. By Theorem 2.1.1, then, it is closed
since Y is Hausdorff. ��

2.1.3 Theorem A topological space X (not necessarily Hausdorff) is compact if and only
if for every topological space Y , the projection p : X × Y → Y is closed.

Proof Suppose X is compact, and let Z ⊆ X × Y be closed. Let y ∈ Y � p(Z). Then for
every x ∈ X, there exist open sets x ∈ Ux ⊆ X, y ∈ Vx ⊆ Y such that

(Ux × Vx) ∩ Z = ∅.

Since X is compact, there exists a finite subcover Ux1, . . . , Uxn of the open cover Ux, x ∈
X. Then

(
X ×

n⋂

i=1

Vxi

)
∩ Z = ∅,

so

n⋂

i=1

Vxi ∩ p(Z) = ∅.

To prove the converse, it is useful to recall the notion of an ordinal, which is a set α totally
ordered with respect to the relation ∈. This definition is due to von Neumann. Note that
transitivity of ∈ can be rephrased to say that every β ∈ α also satisfies β ⊆ α. Ordinals
are well-ordered by axioms of set theory, which also imply that every well-ordered set is
isomorphic, as a totally ordered set, to an ordinal. Zorn’s lemma can be used to prove that
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every set is bijective to an ordinal. The first ordinals are 0 = ∅, 1 = {0}, 2 = {0, 1}, . . . .
For every ordinal α, we have the ordinal β = α + 1, which is the set of all ordinals ≤ α.
We also write α = β− 1. Ordinals which cannot be expressed as α+ 1 for another ordinal
α are called limit ordinals.

Now if X is not compact, then there exists a limit ordinal α and open sets Uβ � X,
β < α such that Uβ ⊆ Uγ for β < γ < α, and

⋃

β<α

Uβ = X.

(To see this, let Uδ, δ < γ be an open cover which does not have a finite subcover. We
shall produce a decreasing sequence of ordinals γ = α0 > α1 > . . . where Uδ, δ < αn is
a cover of Xn = X �

⋃n
i=1 Uαi . Suppose this is done for a given n ≥ 0. Let γ < αn be

the smallest ordinal such that Uδ, δ < γ cover Xn. If γ = 0, we have a contradiction, if
γ > 0 is a limit ordinal, we are done. Otherwise, put γn+1 = γ − 1.)

Now on a totally ordered set T , we have the order topology where open sets are unions
of open intervals (a, b) = {c ∈ T | a < c < b} with a, b ∈ T � {−∞,∞}, where
−∞ (resp.∞) is a formally defined element smaller (resp. greater) than all elements of T .
(Note: these elements are introduced to avoid special cases in the definition when T has a
smallest resp. greatest element.)

Then let Y = α + 1, and let Z ⊂ X × Y be the complement of the open set

⋃

β<α

Uβ × (β, α].

We then see that p(Z) = α (considered as a set) which is not closed in α + 1. ��

2.2 Universally Closed Schemes andMorphisms

The concept of a universally closed scheme is analogous, in the category of schemes, to
the concept of a compact space. Theorem 2.1.3 then motivates the following

2.2.1 Definition A morphism of schemes f : X → Y of schemes is called universally
closed if for every morphism of schemes g : Y ′ → Y , the morphism f ′ in the pullback
diagram of schemes

X ×Y Y ′
f ′

��

��

Y ′

g

��
X

f

�� Y

(2.2.1)
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is closed (as a map of topological spaces). A scheme X is called universally closed if the
unique morphism of schemes X → Spec(Z) is universally closed. A scheme or morphism
of schemes is called proper if it is of finite type and both separated and universally closed.

Example The morphism f : A1
C
→ Spec(C) is not universally closed, since if we pull

it back via g = f , f ′ : A2
C
→ A

1
C

is the projection to one of the coordinates (i.e. Spec

of the inclusion of rings C[x] ⊂ C[x, y]). But in this projection, say, the image of the
“hyperbola” Z(xy − 1) is A1

C
� {0}, which is not Zariski closed in A

1
C

.

2.3 Specialization

We saw that it is easy to prove that a morphism of schemes is not universally closed (if
that is the case), since all we need is to find one example. But it is not so easy to prove
directly that a morphism of schemes is universally closed, since that involves checking all
morphisms of schemes g : Y ′ → Y . To make the concept useful, we therefore have to
develop other tools for checking that a morphism is universally closed.

An important tool is specialization. For an affine scheme Spec(R), we say that a point
q ∈ Spec(R) is a specialization of a point p ∈ Spec(R) (we write p � q) when these
prime ideals satisfy p ⊆ q . Note that this, of course, is equivalent to q belonging to the
Zariski closure of p, which is Z(p). Thus, we can define specialization in any scheme X

by writing p � q for p, q ∈ X when q is in the closure of p. Points in an affine scheme
are, of course, closed if and only if they are maximal ideals.

Generic Points As already noted, when considering affine varieties as schemes, we
include more points in the Zariski topology than just the closed points. We remarked in
Sect. 2.2 that the additional points are necessary in general schemes to have a usable analog
of the Nullstellensatz for arbitrary rings. But these non-closed points are also interesting
geometrically. For example, the affine space A

2
C

, considered as a scheme, contains the
point (x + y) (this is a prime ideal, since in a unique factorization domain, the principal
ideal generated by an irreducible element is prime). Of course (x+y) is not a closed point,
since it is contained, for example, in the maximal ideal (x, y) (which, in the language of
affine varieties, represents the origin), as well as, of course, in all the points (x+ a, x− a)

for a ∈ C (which, in the language of affine varieties, represents the point (−a, a)). The
way we think of the Zariski point (x + y) then is as a generic point of the affine variety
Z(x + y). More generally in an affine scheme Spec(R), a prime ideal p ∈ Spec(R)

is called the generic point of the closed set Z(p). The concepts of generic points and
specialization have no analog in the analytic topology.
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2.3.1 Lemma Let f : Spec(A) → Spec(B) be a morphism of affine schemes and let a
point p ∈ Spec(B) be in the Zariski closure of f (Spec(A)). Then there exists a point
p′ ∈ f (Spec(A)) which specializes to p.

Proof Without loss of generality, f (Spec(A)) is dense in Spec(B) (recall that a subset
S ⊂ X of a topological space X is dense when for all U ⊆ X nonempty, U ∩ S is
nonempty). This is because we may, if necessary, replace Spec(B) with the Zariski closure
of f (Spec(A)) in Spec(B), which is also affine. Without loss of generality, also, A and B

are reduced, since factoring out the nilradical does not change Spec.
Now recall that the category of affine schemes is equivalent to the opposite category of

the category of commutative rings, so f = Spec(h) for some homomorphism of rings

h : B → A,

which is injective because f (Spec(A)) is dense in Spec(B) (otherwise, f (Spec(A))

would be contained in Z(Ker(h))).
Now assume f (Spec(A)) is closed under specialization. Let p ∈ Spec(B). Let p′ ⊆ p

be any minimal prime ideal. To see that minimal prime ideals exist, for a totally ordered
set I , (i �= j ∈ I implies i < j or j < i), we have inclusions of prime ideals pi ⊆ pj

for all i < j ∈ I , then
⋂

i∈I pi is also prime. By Zorn’s lemma, this lets us conclude that
there is a minimal prime ideal (i.e. one that no other prime ideal is contained in it).

Now review localization of rings at ideals (Sect. 1.3 of Chap. 2). The localization Bp′ of
a reduced ring B at the minimal prime ideal p′ is a field. Actually, in general, for a prime
ideal q in a ring R, the prime ideals in Rq correspond bijectively to those prime ideals in R

which are contained in q . Thus, the ring Bp′ has only one prime ideal, which is therefore
the nilradical. Since the ring Bp′ is reduced, the nilradical is (0), and hence Bp′ is a field.

Now localization of rings preserves injective morphisms. Thus,

h⊗B Bp′ : Bp′ → A⊗B Bp′

is injective. Let q ′0 be any prime ideal in A⊗B Bp′ (which exists, since it is not the 0 ring).
We have

q ′0 ∩ Bp′ = (0)

since Bp′ is a field (and q ′o does not contain 1). Now let

φ : A→ A⊗B Bp′
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be the localization morphism, and let q ′ = φ−1(q ′0). Then taking Spec of the diagram of
rings

B ��

��

Bp′

��
A

φ

�� A⊗B Bp′ ,

we get a correspondence of prime ideals

p′ (0)
���

q ′
�

��

q ′0.
���
�

��

Thus, p′ ∈ f (Spec(A)), as required. ��

Example It is not true in general that every subset of Spec(B) which is closed under
specialization is closed, even though note that every subset is an image of a morphism
of schemes X → Spec(B) (as we may take X to be the disjoint union of all points of
Spec(B)). X may not, however, be an affine scheme. To give an example, consider

B =
∏

n=1,2,...

F2,

(where F2 is the field with two elements) and let

φ :
∐

n=1,2,...

Spec(F2) → Spec(B) (2.3.1)

be the morphism of schemes which sends the n’th point Spec(F2) to the maximal ideal
pi of B consisting of all sequences (a1, a2, . . . ), ai ∈ Z/2, such that an = 0. (That
morphism of schemes is Spec of the n’th projection from the product.) Then the image of
the morphism of schemes (2.3.1) is certainly closed under specialization, as every point of
its image is closed. The image of φ is also dense, since its closure is

Z(
⋂

i=1,2,...

pi) = Z(0) = Spec(B).
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However, there are closed points in Spec(B) which are not in the image of φ: For example,
let I be the ideal in B consisting of all sequences (a1, a2, . . . ) where for all but finitely
many n, an = 0. Let p be any maximal ideal containing I (which exists by Zorn’s lemma).
Then, clearly, for any given n, p contains elements which are not in pn, and hence is not
in the image of φ.

2.4 Valuation Rings

Let us now model the situation

p � q ∈ Spec(B) (2.4.1)

by morphisms of schemes. We know that p ⊆ q are prime ideals of B. Then B/p is an
integral domain (i.e. has no zero divisors), so it has a field of fractions

Q(B/p) = (Q/p)(0)

(i.e. its localization at the 0 ideal, which is prime). On the other hand, by Noether’s
theorem, ideals of B/p correspond bijectively to ideals of B which contain p, so we can
(using q also to denote the corresponding ideal in B/p) also consider the local ring

(B/p)q ,

and clearly, its fraction field is (B/p)(0) = Q(B/p). Thus, the situation (2.4.1) can be
modeled by a diagram of morphisms of affine schemes

Spec(K)

⊆
��

�� Spec(B)

Spec(R)

������������
(2.4.2)

where

K is a field of fractions of an integral domain R, which
is a local ring not equal to K .

(2.4.3)

But it turns out that the situation (2.4.3) is still too general, since there are too many local
rings which are integral domains (for example, all stalks of structure sheaves of integral
schemes). However, for the purposes of (2.4.1), we may make the situation (2.4.3) much
more manageable by the following trick.
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For a fixed field K , and rings R, R′ ⊆ K local subrings, we say that R′ dominates R

if R ⊆ R′, and the inclusion is a morphism of local rings (in other words, denoting the
maximal ideals of R,R′ by mR , mR′ , if mR′ ∩ R = mR). We will see that maximal local
rings with respect to the relation of domination can be characterized nicely.

2.4.1 Definition A partially ordered abelian group is an abelian group � together with a
partial ordering≤ such that for all x, y, z ∈ �,

x ≤ y ⇒ x + z ≤ y + z.

We say that � is a totally ordered abelian group if the ordering ≤ is a total ordering (i.e.
x ≤ y or y ≤ x for any two elements x, y). We say that a ring R as in (2.4.3) is a valuation
ring if there exists a totally ordered abelian group �, and a valuation

v : K× = K � {0} → �,

which means a function satisfying the following properties for all x, y, z ∈ K×:

1. v(x) ≥ 0 if and only if x ∈ R.
2. v(x · y) = v(x)+ v(y).
3. v(x + y) ≥ min(v(x), v(y)) (assuming x + y �= 0).

Example We say that a ring in the situation (2.4.3) is a discrete valuation ring if it satisfies
Definition 2.4.1 for � = Z. A typical example of a discrete valuation ring in Z(p). The
valuation

v : Q× → Z

is defined as follows: assuming a, b ∈ Z, gcd(a, b) = 1, b �= 0,

v(
a

b
) =

⎧
⎪⎨

⎪⎩

0 if p � a and p � b

n if pn | a, pn+1 � a, n > 0

−n if pn | b, pn+1 � b, n > 0.

In fact, more generally, a Noetherian ring R is called a Dedekind domain if it is an integral
domain, has Krull dimension 1, and is normal. (This means that R is integrally closed in
its field of fractions, i.e. that every root x ∈ QR of a monic polynomial with coefficients
in R satisfies x ∈ R.) Every unique factorization domain is normal (see Exercise 6),
although it, of course, does not have to be of dimension ≤ 1 (think about C[x, y]). On the
other hand, Dedekind domains do not have to be unique factorization domains. They have,
however, unique factorization of ideals (with respect to product), which is a basic starting
point of algebraic number theory. Unique factorization of ideals in Dedekind domains is
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fairly easy to prove directly. We will give a geometric proof in Sect. 2.3 of Chap. 4 below
using coherent sheaves of ideals. However, it is also possible to give a direct proof using
commutative algebra. (See Exercises 7, 8.) As a key step in proving unique factorization
of ideals for Dedekind domains, one proves the following result. For any ideal I in an
integral domain R with field of fractions K , define I−1 ⊆ K by

I−1 = {a ∈ K | aI ⊆ R}. (2.4.4)

2.4.2 Lemma

1. If p is the maximal ideal of a local integral domain A and p · p−1 = A, then p is
principal (and hence A is a discrete valuation ring).

2. For a prime ideal p in a Dedekind domain R, the localization Rp is a discrete valuation
ring.

Proof To prove 1, we use here Krull’s theorem which asserts that in a Noetherian integral
domain A, and I � A an ideal not equal to A,

∞⋂

n=1

In = {0}

(Proposition 5.4.2 of Chap. 1). Applying this to p, we see that p2 �= p. Let a ∈ p � p2.
Then ap−1 ⊆ A. We shall see that equality arises. If not, then ap−1 ⊆ p, which would
imply

aA = ap−1p ⊆ p2,

which is a contradiction with the choice of a. Thus, ap−1 = A, so

aA = ap−1p = p,

and so p = (a).
To prove 2, without loss of generality, p �= 0. Let A = Rp. By 1, it suffices to show

that

pp−1 = A. (2.4.5)

Of course, again, by definition we have pp−1 ⊆ A, so if (2.4.5) is false, then pp−1 = p,
which implies

p(p−1)n = p (2.4.6)
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for all n ∈ N. Since A is Noetherian, p is finitely generated as an ideal, so using these
generators, (2.4.6) can be used to write polynomial equations for all elements of p−1

with highest coefficient 1, and hence all elements of p−1 are integral over A, and hence
A = p−1 since A is normal. This is a contradiction, since a−1 ∈ p−1 � A. ��

At the moment, however, our interest in valuation rings comes from the following result.
Note that by Zorn’s lemma, every ring R in the situation (2.4.3) is dominated by a maximal
one.

2.4.3 Theorem Maximal elements of the set of local subrings of a field K with respect to
domination are precisely valuation rings.

Proof First, note that a subring R ⊆ K is a valuation ring if

for all x ∈ K, x ∈ R or x−1 ∈ R. (2.4.7)

The reason is that we then may let

� = K×/R×

for a ring R, R× denotes the group of units, i.e. invertible elements, of R, and let

v : K× → �

be the projection (although to conform with Definition 2.4.1, we would need to write �

additively). The ordering on � is

a ≤ b if there exist c ∈ R such that ac = b.

Now let R ⊆ K be a local ring with maximal ideal m, and let x ∈ K×, x /∈ R. Denote by
R[x] ⊆ K the subring of K generated by R and x. Also denote by m[x] the ideal in R[x]
generated by m. We claim that

m[x] �= R[x] or m[x−1] �= R[x−1]. (2.4.8)

Suppose the contrary, i.e. m[x] = R[x] and m[x−1] = R[x−1]. Then there exist ui, vj ∈ m

such that in K we have

u0 + u1x + · · · + umxm = 1, (2.4.9)

v0 + v1x
−1 + · · · + vnx

−n = 1. (2.4.10)
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Now assume m + n to be as small as possible. Without loss of generality, m ≥ n. Then
from (2.4.10),

(v0 − 1)xn + v1x
n−1 + · · · + vn = 0. (2.4.11)

Further, since R is a local ring, v0 − 1 is a unit in R. So multiplying (2.4.11) by

umxm−n

v0 − 1

and subtracting from (2.4.9), we can decrease m, which contradicts our assumption that
m+ n was as small as possible.

Now suppose a local ring R ⊆ K is maximal with respect to domination. We claim
that (2.4.7) occurs. Otherwise, let x ∈ K be such that x, x−1 /∈ R. Then we have
(2.4.8). Assume, without loss of generality, m[x] �= R[x]. But then R[x] dominates R,
contradicting maximality. Thus, f satisfies (2.4.7), and hence is a valuation ring. ��

2.5 Valuation Criteria for Universally Closed and Separated
Morphisms

Our main interest in valuation rings is a general principle where to test a property for
(2.4.1), we only need to test, in terms of morphisms of affine schemes, (2.4.2) in the case
when R is a valuation ring with field of fractions K . We are specifically interested in the
following

2.5.1 Theorem Let X be a scheme of finite type. Then X is universally closed if and only
if every diagram

Spec(K) ��

⊆
��

X

Spec(R)

��

(2.5.1)

where R is a valuation ring with field of fractions K can be completed with the dotted
arrow (existence). On the other hand, X is separated if every diagram (2.5.1) where R is a
valuation ring with field of fractions K can be completed with the dotted arrow in at most
one way (uniqueness).
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Remark An analogous statement holds for morphisms of schemes f : X → Y . The testing
diagram (2.5.1) then becomes

Spec(K) ��

⊆
��

X

f

��
Spec(R)

��

�� Y

(2.5.2)

(when Y is the terminal object Spec(Z), we do not have to write it). When X is Noetherian,
uniqueness of the dotted arrow for every testing diagram is equivalent to the morphism f

being separated, and when f is of finite type and X is quasicompact, the existence for every
testing diagram is equivalent to f being universally closed. While the exact assumptions
needed are subtle, for our purposes, they matter less than one may think. This is because
the main application we need is to prove that projective schemes are proper, and it suffices
to verify that for Pn

Z
.

Proof of the First Part of Theorem 2.5.1 We will prove that X satisfies the criterion of
being able to complete every diagram (2.5.1) if and only if it is universally closed.

For necessity, suppose we have a diagram (2.5.1) for a valuation ring R with field of
fractions K . Consider the product map

f : Spec(K)→ X × Spec(R).

Let Z be the closure of the image q ′ of (0) ⊂ K under f . Consider the projection

π : X × Spec(R) → Spec(R).

Since X is universally closed, we must have p ∈ π(Z) where p ∈ Spec(R) is the maximal
ideal in R. Thus, there must exist a point p′ ∈ Z such that π(p′) = p. Now we must have
p′ ∈ Spec(B ⊗ R) where Spec(B) ⊆ X is an open affine subscheme. In particular, we
must also have q ′ ∈ Spec(B) (since Spec(B) is an open subset and p′ is in the closure of
q ′). Thus, we obtain a homomorphism

h : B ⊗ R → K

and a prime ideal p′ ⊂ B ⊗ R such that the pullback of p′ to R is p. We claim that the
composition

h : B → B ⊗ R → K



120 3 Properties of Schemes

where the first homomorphism is the coproduct injection and the second is h lands in R.
Then we are done, since Spec(h) is a restriction of the testing map. Otherwise, there would
be an element x ∈ B with v(h(x)) < 0 (where v is the valuation on K corresponding to
R). Then

h((x ⊗ (h(x))−1)− 1) = 0,

and thus,

(x ⊗ (h(x))−1)− 1 ∈ p′.

On the other hand, by assumption, 1⊗ (h(x))−1 ∈ p′ and thus

x ⊗ (h(x))−1 ∈ p′.

Thus, 1 ∈ p′, which is a contradiction.
To prove sufficiency, we need to prove that for all schemes Y , the projection

π : X × Y → Y

is closed. Without loss of generality, Y = Spec(B) is affine. As spaces, we have

X = Spec(A1) ∪ . . . Spec(An)

because X is quasicompact, so the image of π is the image of the corresponding morphism
of schemes

Spec(A1 × · · · × An) = Spec(A1)� · · · � Spec(An) → Spec(B).

The source is an affine scheme, so by Lemma 2.3.1, it suffices to show that the image of π

is closed under specialization. Let, then, p ∈ π(X× Spec(B)), p � q . This means that p

is in the image of Spec(Ai)×Spec(B) = Spec(Ai⊗B) under π , and q ⊇ p. This means
that there exists a prime ideal

p′ ⊂ Ai ⊗ B

where ι−1(p′) = p where

ι : B → Ai ⊗ B



2 Universally Closed Schemes and Morphisms 121

is 1⊗?. Now denote by K the field of fractions of B/p, and by K ′ the field of fractions of
(Ai ⊗ B)/p′. Let

R = Bq.

Then we have a diagram

K ′

R
⊆

�� K.

⊆
��

Let R′ be a maximal local subring of K ′ dominating R. By the criterion of the diagram
(2.5.1), we can complete the diagram

Spec(K ′) ��

⊆
��

X

Spec(R′).

��

φ

where the top row has

(0) → p′.

On the other hand, the homomorphism ι induces a morphism of schemes

Spec(R′) → Spec(R).

Denote by ψ its composition with the canonical morphism

Spec(R) = Spec(Bq) → Spec(B).

Then we have a product morphism

(φ,ψ) : Spec(R′) → X × Y.

By definition, if q ′ is the maximal ideal in R′, then

(φ,ψ)(q ′) = q,
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so q is in the image of π , which we were trying to prove. ��

Example We will prove that the projective space P
n
Z

is proper. (It then follows that the
projection P

n
S → S is proper for any scheme S.) We will use Theorem 2.5.1. Let us recall

some of the concepts. We have

P
n
Z
= Proj (Z[x0, . . . , xn]).

Recall that Z[x0, . . . , xn] is a graded ring (which is why we may apply Proj ), where a
homogeneous element of degree k is a homogeneous polynomial of degree k. For example,
for n = 2, a homogeneous polynomial of degree 2 is

3x2
0 + 5x0x1. (2.5.3)

The distinguished affine open sets of Pn
Z

are then

Spec((z−1
Z[x0, . . . , xn])0)

where z is a homogeneous polynomial. For example,

Spec((x−1
i Z[x0, . . . , xn])0), i = 0, . . . , n,

are distinguished open affine sets. Recall that the subscript means homogeneous elements
of degree 0. For example,

Spec((x−1
1 Z[x0, x1, x2])0 � 3x2

0 + 5x0x1

x2
1

= 3

(
x0

x1

)2

+ 5

(
x0

x1

)
. (2.5.4)

Now we will prove that Pn
Z

is proper. Let us first prove that Pn
Z

is universally closed.
This means that for every scheme Y ′, the projection

p : Pn
Z
× Y ′ → Y ′ (2.5.5)

is closed, which in turn means that for every Z ⊆ P
n
Z
× Y ′ closed, p(Z) is closed.

This is a powerful statement. For example, recall that a closed subset of a scheme again
has the structure of a scheme, so we know that every p(Z) as above has the structure of a
scheme!

Now our strategy is not to prove that (2.5.5) is closed directly. Instead, we shall use
Theorem 2.5.1. This means that we need to prove that for a valuation ring R ⊆ K where
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K is the field of fractions of R, every diagram of the form

Spec(K)
f

��

⊆
��

P
n
Z

Spec(R)

��
(2.5.6)

can be completed. Denote the valuation of R by

v : K× → �

where � is a totally ordered abelian group. Note that Spec(K) has only one point. Assume
by induction that we have already proved that Pn−1

Z
is universally closed. (P0

Z
= Spec(Z)

is obviously universally closed, since for n = 0 the projection (2.5.5) is the identity). We
may then assume that f (Spec(K)) is not contained in the image of any of the maps

ιi : Pn−1
Z

→ P
n
Z
, i = 0, . . . , n

where ιi = Proj (hi) where

hi : Z[x0, . . . , xn] → Z[x0, . . . , x̂i , . . . , xn]

is the homomorphism of graded rings which sends xi → 0 (recall that the notation on the
right hand side means that the variable xi is omitted).

The complement of the images of all the ιi’s is a distinguished affine open set in P
n
Z

of
the form

Spec(((x0 . . . xn)
−1

Z[x0, . . . , xn])0),

so we have a morphism of schemes

Spec(K) → Spec(((x0 . . . xn)
−1

Z[x0, . . . , xn])0),

which is the Spec of a homomorphism of rings

φ : ((x0 . . . xn)
−1

Z[x0, . . . , xn])0 → K. (2.5.7)

Now the domain of (2.5.7) is generated as a ring by elements of the form

xi

xj
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(recall (2.5.4) as an example). Now choose i in such a way that the valuation

v(φ(
xi

x0
))

is the smallest among

v(φ(
x0

x0
)), . . . , v(φ(

xn

x0
)).

This means that for all j ∈ {0, . . . , n},

v(φ(
xj

xi

)) = v(φ(

xj

x0
xi

x0

)) = v(φ(
xj

x0
))− v(φ(

xj

x0
)) ≥ 0,

which means

φ(
xj

xi

) ∈ R ⊆ K,

so

φ((x−1
i Z[x0, . . . , xn])0) ⊆ R ⊆ K.

Taking Spec, we managed to complete the diagram

Spec(K)
f

��

⊆
��

Spec((x−1
i Z[x0, . . . , xn])0)

Spec(R)

��

which means we completed Diagram (2.5.6) also. Thus, we verified the assumptions of
Theorem 2.5.1, and hence we know that Pn

Z
is universally closed.

We shall now prove that Pn
Z

is separated. It then follows that for any scheme S, Pn
S is

separated over S, by Exercise 23 of Chap. 2. Thus, Pn
S is proper over S.

To see that Pn
Z

is separated, we need to show that the diagonal in P
n
Z
× P

n
Z

is closed.
Cover Pn

Z
= Proj [x0, . . . , xn] by the affine open subsets

Ui = Spec((x−1
i Z[x0, . . . , xn])0)

= Spec(Z[ x0
xi

, . . . ,
x̂i

xi
, . . . , xn

xi
]), i = 0, . . . , n.
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This notation is slightly imprecise, but it is true that

Ui
∼= A

n
Z
= Spec(Z[y0,i, . . . , ŷi,i , . . . , yn,i ])

where yj,i corresponds to xj

xi
. Similarly, we may then identify

Ui × Uj
∼=

Spec(Z[y0,i, . . . , ŷi,i , . . . , yn,i, z0,j , . . . , ẑj,j , . . . , zn,j ]).

We also know that the intersection of Ui × Uj with the diagonal is

Ui ∩ Uj = Spec(((xixj )
−1

Z[x0, . . . , xn])0).

In particular, this is also an affine scheme, and the inclusion

Ui ∩ Uj → Ui × Uj

is the Spec of the homomorphism of rings which sends

yk,i → xk

xi

, z�,j → x�

xj

.

The images generate the ring

((xixj )
−1

Z[x0, . . . , xn])0,

which is why Ui ∩ Uj is closed in Ui × Uj , and P
n
Z

is separated.

2.5.2 Lemma A closed subscheme Z of a universally closed scheme X is universally
closed. (Similarly for schemes over a fixed scheme S.)

Proof Consider the diagram

Z × Y ′ ��

��

Y ′

Id

��

X × Y ′ �� Y ′.

Clearly, all we need to prove is that the left vertical arrow is closed. To this end, it suffices
to consider the case when X and Y ′ are affine (although note that this may break the
assumption of X being universally closed, but we no longer need that assumption for what
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we are proving now). Thus, let X = Spec(R), Y ′ = Spec(R′). We have Z = Spec(R/I)

(by Theorem 2.3.1 of Chap. 2), so X × Y ′ = Spec(R ⊗ R′), Z × Y ′ = Spec(R/I ⊗ R′).
Now

(R/I) ⊗ R′ ∼= (R ⊗ R′)/(I),

so Z×Y ′ is a closed subset of X×Y ′, as claimed. The case over a scheme S is analogous.
��

We see therefore that a projective scheme over a scheme S is proper over S.
We saw that the part of Theorem 2.5.1 about separatedness is less important, since it is

easier to prove directly that a scheme is separated, but for completeness, we should include
an argument. For the necessity, see Exercise 13.

Proof of Sufficiency of the Separatedness Criterion of Theorem 2.5.1. Suppose X is a
Noetherian scheme and for every valuation ring R with field of fractions K and a morphism
of schemes f : Spec(K)→ X, the diagram

Spec(K)
f

��

⊆
��

X

Spec(R)

��

can be completed at most in one way.
Since X is Noetherian, so it is covered by finitely many Noetherian open affine

subschemes U1, . . . , Uk . By Lemma 3.2.6 of Chap. 2, the open subschemes Ui ∩ Uj are
also Noetherian and hence quasicompact. Now the diagonal morphism � : X → X × X

satisfies �−1(Ui × Uj) = Ui ∩ Uj where Ui × Uj cover X × X. Let p ∈ Ui × Uj be
in the closure of �(X). Then p is in the closure of �(Ui ∩ Uj ). However, since Ui ∩ Uj

is quasicompact, it is a union of finitely many affine open subsets, and thus there exists
an affine open subset V ⊆ Ui ∩ Uj such that p is in the closure of f (V ). Therefore, by
Lemma 2.3.1, p is a specialization of a point in f (V ).

Therefore, it suffices to show that the diagonal is closed under specialization. We may
test specialization by a diagram of the form

Spec(K)

��

f
�� X

�

��
Spec(R)

g
�� X ×X

(2.5.8)
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for a valuation ring R with field of fractions K . In a general category, the morphism g is
always given as g = (g1, g2) where gi : Spec(R) → X. By the uniqueness, however,

g1 = g2

and therefore Diagram (2.5.8) completes to

Spec(K)

��

f
�� X

�

��
Spec(R)

g
��

��
gi

X ×X,

thus showing that the diagonal is closed under specialization. ��

2.6 More Observations on Universally Closed and Separated
Morphisms

Note that in the case of the projective space, we in fact applied another criterion of being
separated, which is:

2.6.1 Proposition Let X be a scheme which is a union of open affine sets Ui = Spec(Ri),
i ∈ I . Then X is separated if and only if for all i, j ∈ I , Ui ∩ Uj = Spec(Ri,j ) is affine,
and the homomorphism of rings

Ri ⊗ Rj → Ri,j

corresponding to the diagonal inclusion Ui∩Uj ⊆ Ui×Uj is onto. (Similarly for schemes
over a scheme S, if we replace× by ×S .)

Proof See Exercise 14. ��

The following theorem is a scheme-theoretic analog of Theorem 2.1.2:

2.6.2 Theorem If f : X → Y is a morphism of schemes where X is universally closed
and Y is separated, then f is closed. (Similarly for schemes over a scheme S.)
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Proof Consider the pullback diagram

�
g

��

h

��

Y

�

��
X × Y

f×Id
�� Y × Y.

(2.6.1)

The scheme � is called the graph of the morphism f . (It is tempting to imagine that it
consists of pairs (x, y) ∈ X × Y where f (x) = y, but note that this is of course incorrect
in the category of schemes.) The morphism h is closed since we are assuming that � is
closed (note that Y is separated). Thus, the composition of h with the projection

p2 : X × Y → Y (2.6.2)

to the second factor is closed, since (2.6.2) is closed since X is universally closed. Now
we claim that we actually have a diagram

X
f

��

j∼=
��

Y

�

g



��������

(2.6.3)

To see (2.6.3), consider also the pullback diagram

X × Y
f×Id

��

p1

��

Y × Y

p1

��
X

f

�� Y.

(2.6.4)

Composition of pullback diagrams is a pullback diagram, and composing (2.6.1) with
(2.6.4) is therefore a pullback. Note, however, that this is the diagram

�
g

��

p1◦h
��

Y

Id

��
X

f

�� Y
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which implies (2.6.3) by the categorical uniqueness of pullback. It also shows that

p2 ◦ h ◦ j = f,

since (2.6.1) commutes, which implies g = p2 ◦ h. However, we just showed that the left
hand side is closed, so f is closed, as claimed. ��

2.6.3 Proposition A finite morphism of schemes f : X → Y is proper.

Proof We see right away that f is separated (since it is affine, i.e. the inverse image of
every affine open subset is affine).

We want to use the valuation criterion (Theorem 2.5.1) to see that f is universally
closed. However, a subtlety is that we cannot apply the result directly, since we did not
assume that X is quasicompact. This can be remedied as follows: first, one proves that a
pullback of a finite morphism is finite (Exercise 35 of Chap. 2). Therefore, it suffices to
show that a finite morphism is always closed. For this purpose, without loss of generality,
Y = Spec(A), and thus also X = Spec(B) are affine, and f is Spec of a homomorphism
of rings h : A → B which makes B into a finitely generated A-module. Now we can use
the valuation criterion.

Let R be a valuation ring with field of fractions K and valuation v. The testing diagram
is the Spec of

A ��

h

��

R

⊆
��

B
g

�� K.

(2.6.5)

Since the ring B is finitely generated as an A-module, all its elements are integral over A

and hence their images in K are integral over R. However, a valuation ring is integrally
closed in its field of fractions by maximality with respect to domination (see Exercise 10).
Thus, g(B) ⊆ R. ��

3 Regular Schemes and Smooth Morphisms

Algebraic geometry knows two basic concepts of ‘non-singularity’: regularity and smooth-
ness. There are some relationships between them, but they are not equivalent.

3.1 Regular Schemes

A scheme X is regular when for every point x ∈ X, the stalk OX,x is a regular local ring
and x has an open affine neighborhood U such that OX(U) is Noetherian. (We express this
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last condition by saying that X is locally Noetherian. Compare with Sect. 3.5 of Chap. 1.) It
is sufficient to verify the regularity condition for closed points x ∈ X, since if x is a closed
point which is a specialization of a point y (i.e. x is in the closure of y), then the ring
OX,y is a localization of the ring OX,x at the ideal corresponding to y, and a localization
of a regular local ring is regular. (This follows from the cohomological characterization of
regularity which we will prove in Sect. 2.6 of Chap. 5. See also Exercise 19 of Chap. 5.)

3.2 SmoothMorphisms

A separated morphism of schemes f : X → Y is called smooth when for every y ∈ Y there
exists an affine open set U ⊆ Y , y ∈ U ∼= Spec(A), such that f−1(U) is a union of open
affine subsets Vi

∼= Spec(Bi) where the homomorphism of rings A→ Bi associated with
f is standard smooth. (See Sect. 3.3 of Chap. 1.) If all of the homomorphisms A → Bi

are standard smooth of a constant dimension k, we say that that the morphism f is smooth
of dimension k. A smooth morphism of dimension 0 is also called an étale morphism.

Example

1. For any scheme X, the projection A
n
X → X is obviously smooth of dimension n, and

hence so is the projection P
n
X → X.

2. Now consider the scheme

X = Spec(R), R = C[x, y]/(x2 − y3 − y). (3.2.1)

We will show that the projection X → Spec(C) associated with the inclusion
homomorphism of rings C→ R is smooth. Indeed, the partial derivatives of x2−y3−y

by x and y are

2x, 3y2 − 1. (3.2.2)

Thus, we need to show that the ideal in R generated by (3.2.2) contains 1. This is
equivalent to showing that the ideal I in C[x, y] generated by

2x, 3y2 − 1, x2 − y3 − y

contains 1. For this, we have an algorithm (Gröbner basis). Specifically, since 2 is a
unit, I contains y3 + y, but it also contains 3y3 − 3y, so it contains 6y, and hence y,
and hence 1.

On this example, we see why smoothness is intrinsically a property of morphisms:
smooth schemes over Spec(Z) are, in fact, quite rare (although there are some, such as
the affine and projective space). See also Exercise 22.
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3. Let us consider the embedding of the scheme X from the last example into A
2
C
=

Spec(C[x, y]). Let us compose this with the embedding A2
C
→ P2

C
, and let us consider

the closure E of the image of X in P2
C
= Proj (C[x, y, z]). We will show that the

projection p : E → Spec(C) is also smooth. Since smoothness is a local property,
it suffices to consider the restriction of p to the affine sets Uxy = Spec(C[ x

z
,

y
z
]),

Uxz = Spec(C[ x
y
, z

y
]) and Uyz = Spec(C[ y

x
, z

x
]) of P2

C
. We already dealt with the set

Uxy by identifying it with A2
C

via z = 1. Thus, the ideal generator (3.2.1) becomes

x2

z2
− y3

z3
− y

z
,

which over Uxy ∩ Uxz can be written as

x2

y2 −
y

z
− z

y
.

We see that the intersection of the ideal generated by this element in C[ x
y
, z

y
,

y
z
] with

C[ x
y
, z

y
] is generated by

x2z

y3 −
z2

y2 − 1,

which, using the isomorphism with C[x, z] by setting y = 1, becomes

x2z− z2 − 1.

The partial derivatives are

2xz, x2 − z2.

These three elements generate the unit ideal in C[x, z], since they generate z2 + 1, and
also z3 − z2 − 1. Similarly, over C[y, z] ∼= C[ y

x
, z

x
], we obtain the ideal generated by

z− y3 − yz2,

with partial derivatives

1− 2yz, 3y2 − z2,

which again generate 1, since they generate 2y3 − z, z− 4y3, and hence z.
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The projective scheme E is an example of an elliptic curve. An elliptic curve over
a field k is a closed subscheme of E ⊂ P2

Spec(k) which is smooth over Spec(k), has a

point with residue field k and such that E ∩ A2
Spec(k) is isomorphic, over Spec(k), to

Spec(k[x, y]/(p(x, y))) where p(x, y) is a cubic polynomial.

3.3 SmoothMorphismsOver Regular Schemes

3.3.1 Theorem Let f : X → Y be a smooth morphism of schemes where Y is a regular
scheme. Then X is a regular scheme.

Proof Clearly, it suffices to consider the case when both X and Y are affine, i.e. a smooth
homomorphism of rings

h : A→ B

where A is regular. Let us assume that

B = A[x1, . . . , xm+n]/(p1, . . . , pm)

where the determinants of the m×m submatrices of the Jacobi matrix

(
∂pi

∂xj

)

i,j

generate the ideal B in B. We will proceed by induction on m. Assume the statement is
true with m replaced by m− 1 ≥ 0.

First, note that the tuples p1, . . . , p� for 1 ≤ � ≤ m satisfy the same condition, since the
m×m determinants obviously are in the ideal generated by the �×� determinants in the first
� rows. Next, we claim that p1, . . . , pm is a regular sequence in A[x1, . . . , xm+n]. (Recall
that a sequence of elements r1, . . . , rm in a commutative ring R is a regular sequence when
r� is a non-zero divisor in R/(r1, . . . , r�−1).)

To show that p1, . . . , pm form a regular sequence, we may assume by the induction
hypothesis that it is true with m replaced by m− 1. Assume, therefore, that

pm · r = a1p1 + · · · + am−1pm−1 ∈ A[x1, . . . , xm+n], (3.3.1)

r /∈ (p1, . . . , pm−1), ai ∈ A[x1, . . . , xm+n].

Since we know by the induction hypothesis that the ring

A[x1, . . . , xm+n]/(p1, . . . , pm−1)
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is regular, it cannot have nilpotent elements, so the image of r in that ring is not nilpotent,
and hence there exists a prime ideal

q ⊇ (p1, . . . , pm−1)

in A[x1, . . . , xm+n] such that r /∈ q . Computing from (3.3.1), we get

∂pm

∂xj

· r = a1
∂p1

∂xj

+ · · · + am−1
∂pm−1

∂xj

∈ A[x1, . . . , xm+n]/(p1, . . . , pm),

so localizing at q (so r becomes a unit), we see that the determinants of the m × m

submatrices of the Jacobi matrix are 0, and hence the ideal generated by them does
not contain 1, which is a contradiction. Thus, p1, . . . , pm are a regular sequence in
A[x1, . . . , xm+n]. Assume also without generality that 1 /∈ (p1, . . . , pm).

Next, since A is regular and hence Noetherian, the ring

A[x1, . . . , xm+n]

is regular. (This is actually a non-trivial statement. We will prove it using cohomological
methods in Chap. 5, Corollary 2.6.8.) Let q be its maximal ideal containing (p1, . . . , pm).
Let

K = A[x1, . . . , xm+n]/q

be the residue field. Consider the homomorphism of K-modules

φ : q/q2 → Km+n

given by

f → (
∂f

∂x1
, . . . ,

∂f

∂xm+n

).

Then the Jacobi matrix condition implies that the images of p1, . . . , pm under φ are K-
linearly independent, and hence p1, . . . , pm ∈ q/q2 are K-linearly independent. This
means that if we denote by q the ideal q/(p1, . . . , pm) in

A[x1, . . . , xm+n]/(p1, . . . , pm),
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we have

dimK(q/q2) = dimK(q/(q2 + (p1, . . . , pm)))

≤ dimK(q/q2)−m = (dimA[x1, . . . , xm+n]q)−m =
dim(A[x1, . . . , xm+n]/(p1, . . . , pm)q.

The last equality is because p1, . . . , pm is a regular sequence which, by assumption,
generates an ideal not containing 1.

��

Example Consider the morphism

f : A1
C
→ A

1
C

given by the homomorphism of rings

h : C[x] → C[y], x → y2.

We will show that this morphism is not smooth. Indeed, smooth morphisms are obviously
preserved by pullback of schemes, but pulling back to the closed subscheme {0} ∼=
Spec(C), we get the morphism of affine schemes which is Spec of

C→ C[y]/(y2),

which cannot be smooth, since the target is not a regular ring, while the source is.
On the other hand, if we restrict f to the distinguished open subset A1

C
�{0}, it becomes,

in fact, étale: It is then Spec of the homomorphism of rings

k : C[x] → C[y, y−1], x → y2.

We can represent the target as

C[x, y, z]/(x − y2, yz− 1).

The Jacobi matrix is

(
−2y 0

z y

)

so its determinant is −2y2, which is a unit.
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3.3.2 Theorem A regular scheme X of finite type and separated over Spec(k) for an
algebraically closed field k is smooth over Spec(k).

Proof Without loss of generality, X = Spec(R) is affine of dimension n, R =
k[x1, . . . , xn+m]/I . (Note: by Theorem 5.5.1 of Chap. 1, we have dim(R) = dim(Rp)

for all maximal ideals p ⊆ R.) Let

p = (x − a1, . . . , x − am+n)

be a closed point of Am+n
k which is in X. (It is of this form because k is algebraically

closed.) Again, consider the homomorphism of k-modules

θ : p/p2 → km+n

given by

θ(f ) =
(

∂f

∂x1
, . . . ,

∂f

∂xm+n

)

(a1,...,am+n)

.

Then the rank of the Jacobi matrix modulo p is just dimk(Im(θ)). However, θ is an
isomorphism since the vectors θ(xi − ai) clearly form the standard basis of km+n. Since
X is regular, we have

n = dimk(p/(I + p2)),

so the rank of the Jacobi matrix modulo p must be m. This implies that if we denote by
q the projection of the ideal p in R, then the determinants of the m × m submatrices of
the Jacobi matrix generate an ideal in Rq containing 1 ∈ Rq (since this can be detected
modulo q). However, this will then hold in some open neighborhood of q . ��

3.4 Étale Schemes Over a Field

Let k be a field. An algebraic extension of k is a field K ⊇ k such that every element of k is
a root of a non-zero polynomial with coefficients in k. The greatest common divisor of all
such polynomials for a given x is called the minimal polynomial of x over k. Clearly, the
minimal polynomial is irreducible in k[x]. If a field K ⊇ k is finite-dimensional as a vector
space over k, it is called a finite extension. A finite extension K ⊇ k is always algebraic. To
see this, note that for x ∈ K , the powers 1, x, x2, . . . cannot be linearly independent over
k. An extension K ⊇ k is called separable if the minimal polynomial of every x ∈ K over
k has only simple roots, i.e. roots of multiplicity 1 (i.e. no roots of multiplicity > 1). Recall
that this is equivalent to requiring that the greatest common divisor of the polynomial with



136 3 Properties of Schemes

its derivative is 1. A field k is called perfect if all its algebraic extensions are separable.
A separable (resp. algebraic) closure of a field k is a maximal separable (resp. algebraic)
extension of k. It is tempting to say that algebraic (hence separable) closures exist by
Zorn’s lemma, but this is a little delicate, since algebraic extensions of a given field form
a proper class. This can be circumvented by observing that elements algebraic over an
algebraic extension of a field k are algebraic over k. (Actually, we already observed this in
the greater generality of integral extensions in Chap. 1.) Thus, using the axiom of choice,
one may create a transfinite sequence of algebraic extensions of k, attaching, at each step,
a root of a polynomial over k which is not already in the extension (and taking unions at
limit ordinals). This procedure eventually terminates due to the fact that there is only a set
of polynomials with coefficients in k.

3.4.1 Theorem All fields of characteristic 0 and all finite fields are perfect.

In characteristic 0, this follows from the fact that the derivative of a non-constant
polynomial cannot be 0, so if the polynomial had multiple roots, then the gcd with its
derivative (which has lower degree) could not be a unit, which contradicts irreducibility.
For finite fields, one can see this pretty much because one knows all their algebraic
extensions; we will return to this topic in Sect. 5.7 below.

Let us list one more fact about separable extensions:

3.4.2 Theorem (The Primitive Element Theorem) Let F ⊆ E be a finite separable
field extension. Then E is generated, as a field extension of F or equivalently as an F -
algebra, by a single element (called a primitive element).

Proof If F is a finite field, then so is E, and hence its group of units E× = E � {0} is
cyclic, since otherwise, it would have zero divisors, which would be a contradiction. Thus,
we can just take the generator of E× as the primitive element.

Thus, assume F has infinitely many elements. By induction, it suffices to treat the case
when E is generated by two elements α, β. We claim that for all but finitely many elements
λ, the element γ = α + λβ is a primitive element. Let f be a minimal polynomial of α

over F , let h(x) = f (γ − λx), and let g be the minimal polynomial of β over F . The
polynomials g and h have the common root β. Suppose they have no other common root.
Then, since E is a separable extension of F , their gcd is of degree 1, and thus β (and hence
also α) is in the subfield of E generated by γ and hence, γ is a primitive element.

So suppose g, h have another common root β ′ in an algebraic closure F ⊃ E of F . But
this means that for some root α′ of f , we have

γ = λβ ′ + α′ = λβ + α
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and thus,

λ = α′ − α

β ′ − β
.

But this can only happen for finitely many values λ ∈ F . ��

To give an example of a field which is not perfect, let k = Fp(t) be the field of rational
functions in one variable t over the field Fp = Z/(p) with p elements. Now the ring Fp[t]
is a unique factorization domain, t is irreducible, and the polynomial xp − t is Eisenstein
(it is monic, and all coefficients except the top one are in the prime ideal (t), while the x0

coefficient is not in (t2)—see Exercise 19 of Chap. 1), so it is irreducible in Fp[t, x], and
hence it is irreducible over k[x] by the Gauss lemma. Therefore,

K = k[θ ]/(θp − t)

is a field. But then in K[x], we have

xp − t = (x − θ)p (3.4.1)

by the binomial theorem (since coefficients which are multiples of p are 0). We see that K

is not a separable extension of k and hence k is not perfect.
One can show that a separated morphism f : X → Spec(k) where k is a perfect field

is smooth if and only if X is regular and f is of locally finite type. We prove the following
related statement:

3.4.3 Proposition A morphism f : X → Spec(k) where k is a field is étale if and only
if X is a disjoint union of schemes of the form Spec(E) where E is a finite separable
extension of k.

Proof By the Primitive Element Theorem, a finite separable extension of a field k can
always be written in the form

E = k[x]/(p(x))

where p(x) is an irreducible polynomial such that

gcd(p(x), p′(x)) = 1.

Thus, by definition, Spec(E) is étale over Spec(k), an a disjoint union of such schemes is
étale over Spec(k), since being étale is a local property.
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Conversely, it suffices to consider the case of X affine (since then we will show that the
topology of X is discrete), and to characterize étale k-algebras

B = k[x1, . . . , xn]/(p1, . . . , pn) (3.4.2)

where the determinant of the Jacobi matrix is a unit. First, note that

dim(B) = 0,

since

dim(k[x1, . . . , xn]) = n

and p1, . . . , pn is a regular sequence (as already remarked). However, every Noetherian
ring of dimension 0 is Artinian, and has no nilpotent elements. By Proposition 5.2.3 of
Chap. 1, it is a product of finitely many fields.

Thus, it suffices to prove that a field extension E which is étale over k is finite and
separable. Finiteness is obvious, since a field extension which is not finite is not finitely
generated as a k-algebra, so by definition it cannot be smooth. Suppose E is not separable
over k. This means that there exists an element of E whose minimal polynomial p over k

has at least one multiple root α ∈ E. If E were smooth, then, denoting by ι : K → E the
inclusion,

ι⊗k E : E → E ⊗k E

would have to be smooth and hence, by Theorem 3.3.1, E ⊗k E would have to be regular.
But we see that this ring has nilpotent elements, since there exists a polynomial f ∈ E[x]
and a natural number n > 1 where f is not divisible by p, but f n is divisible by p (since
p has a root of multiplicity > 1 in E). ��

By comparison, it turns out that there are no non-trivial finite étale schemes over
Spec(Z). While this is a topic of number theory more than algebraic geometry, it is too
good to pass up. Additionally a minor variation of the method also gives a fact relevant in
the next chapter (finiteness of class groups of number fields). Because of this, a proof is
given in Exercises 17—22 below.

4 Abstract Varieties

4.1 The Definition of an Algebraic Variety

It is a good time now to give a general definition of an algebraic variety.
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4.1.1 Definition An abstract variety over a field k is an integral separated scheme of
finite type over Spec(k). An abstract variety is called complete if it is also proper over
Spec(k). An abstract variety is called affine, resp. projective if it is isomorphic to a closed
subscheme of An

Spec(k), P
n
Spec(k) for some n. An abstract variety is called quasiaffine, resp.

quasiprojective if it is isomorphic to an open subscheme of an affine resp. projective
variety over k.

From this point on, we will just say “variety,” or “algebraic variety,” instead of “abstract
variety.” Morphisms of varieties over k are morphisms of the underlying schemes over
Spec(k). We can define rational maps again as morphisms of varieties defined on a non-
empty open subset (again, two morphisms which coincide on the intersection of their
domains are considered to be the same rational map). A birational map is an isomorphism
in the category of varieties over k and rational maps. Two varieties between which there
exists a birational map are called birationally equivalent. Again, this is easily seen to
be equivalent to their fields of rational functions (i.e. fields of fractions of the rings of
sections of the structure sheaves over non-empty open affine subsets) being isomorphic as
k-algebras.

The dimension of a variety can be defined as the dimension of any open affine
subscheme. Therefore, the facts about dimension proved in Sect. 5.5 of Chap. 1 remain
valid in the present context. Varieties of dimensions 1, 2, 3 are called curves, surfaces and
threefolds.

An analog of the statement of Exercise 27 of Chap. 2 about recovering all information
from closed points only also holds for abstract varieties (see Exercise 23). For a variety X

over a field k, the subset of X consisting of all maximal ideals with the induced topology is
sometimes denoted by Xm, and the pullback of the structure sheaf OX is denoted by OXm .

When speaking of varieties over C, we also have an analytic topology on Xm obtained
as a pushout of the analytic topologies on affine open subsets. The set Xm with its analytic
topology is sometimes denoted by Xan. To make a distinction, the scheme-theoretical
topology on X or Xm is sometime referred to as the Zariski topology, even though strictly
speaking, the term “Zariski topology” should only apply to affine schemes.

4.2 A Classification of Smooth Curves

In this subsection, let k be an algebraically closed field. We will classify smooth curves
over the field k. Let K be a field extension of k of transcendence degree 1 finitely generated
as a field containing k (recall that the transcendence degree of K over k is the largest
number n—possibly infinity—such that there is an embedding k(x1, . . . , xn) ⊆ K). We
shall construct a canonical smooth projective curve CK over k with function field K . We
start with
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4.2.1 Lemma Let 0 �= h ∈ K . Then there are at most finitely many discrete valuation
rings R ⊂ K with field of fractions K such that k ⊂ R and h /∈ R.

Proof Since k is algebraically closed, h /∈ k. Since k is algebraically closed, h is
transcendental (which means not algebraic) over k, so k[h−1] ⊂ K . Let B be the integral
closure of k[h−1] in K . Then B is a Dedekind domain, since K is a finite field extension
of k(h) and the integral closure of a Dedekind domain in a finite extension of its field of
fractions is again a Dedekind domain. (It is normal by the comments on integral extensions
in Sect. 4.3 of Chap. 1, and its dimension is 1 by Theorem 5.5.1 of Chap. 1.) Moreover, K
is the field of fractions of B. Now let R be a discrete valuation ring with field of fractions
K such that h /∈ R. Let m be the maximal ideal of R. Then n = m ∩ B is a maximal ideal
of B and h−1 ∈ n. Additionally, R dominates Bn in the sense of Sect. 2.4. But Bn is also
a discrete valuation ring, so Bn = R by Theorem 2.4.3, so in particular R is determined
by n. On the other hand, since h−1 �= 0, Z(h−1) ⊂ Spec(B) is of dimension 0, and hence
can contain only finitely many points n. ��

Now construct the scheme CK as follows: The closed points are all the discrete
valuation rings with field of fractions K . There is one additional point, namely the generic
point. Non-empty open sets are defined to be complements of finite sets of closed points.
The structure sheaf OCK is defined by

OCK (U) =
⋂

R∈U

R.

If B is a Dedekind domain with field of fractions K then

B =
⋂

p∈SpecB

Bp. (4.2.1)

On the other hand, if R ∈ CK , and we choose an element x ∈ R of valuation 1, then again
the integral closure B of k[x] in K is a Dedekind domain, and the subset U ⊆ CK of all
R with B ⊆ R is open and by (4.2.1), isomorphic to Spec(B), so we see that CK is a
scheme. In fact, CK is clearly integral and is locally a smooth curve of dimension 1 over
k.

To show that CK is in fact a smooth curve, it remains to prove that CK is separated. To
prove this, we use the valuation criterion (Theorem 2.5.1). If k � R ⊆ L is a valuation
ring, then a morphism f : Spec(L) → CK over k can extend to Spec(R) for a valuation
ring with field of fractions L in at most one way: first of all, f factors through Spec(K),
thus giving an inclusion K ⊆ L, and if f extends to Spec(R), then the closed point
maps to a closed point p ∈ CK , which means that R ∩ K is the discrete valuation ring
corresponding to the point p. By definition, the point p is unique.
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It is also worth noting that all valuation rings R contained in K and containing k are, in
fact, discrete valuation rings. To this end, (assuming R �= k), we choose, again, a non-zero
element b ∈ R � k. Then let B be the integral closure of k[b] in K . We have B ⊂ R, and
also B is a Dedekind domain, since it is the integral closure of the Dedekind domain k[b]
in a finite extension of its field of fractions. So (assuming R �= K), we have a maximal
ideal m ⊂ B such that the maximal ideal n of R satisfies n∩B = m. But then R dominates
the ring Bm, which itself is a discrete valuation ring, and hence R = Bm.

To show that CK is projective, we first prove

4.2.2 Lemma Let C be a smooth curve over k and let U ⊆ C be a non-empty open set.
Then any morphism

f : U → X

to a projective scheme X over Spec(k) extends uniquely to C.

Proof The set C � U consists of finitely many points. Pick one such point p. Let K be
the field of rational functions on C. Then

Spec(K)
f

��

��

X

��
Spec(OC,p)

��
g

�� Spec(k)

is a testing diagram for the valuation criterion of X being proper. Now the maximal ideal
of OC,p maps to some open affine subset V ⊆ X, and we have V ∼= Spec(B) where
B is a finitely generated k-algebra. Therefore, g is Spec(h) for some homomorphism of
k-algebras

h : B → OC,p.

Thus, all h-images of generators of B are in some OC(W), p ∈ W ⊆ CK , and g extends
to W . Also, the extension is unique because OC(W) → K is an inclusion. Patching the
extensions for all points p ∈ C � U gives the desired extension to C. ��

4.2.3 Proposition For every field extension K of k of transcendental degree 1 finitely
generated as a field containing k, CK is a smooth projective curve.

Proof By definition, CK is quasicompact, so it is covered by finitely many open affine sets
U1, . . . , Un. Since Ui are affine of finite type over Spec(k), we have morphisms from Ui
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to an affine space over k, and hence to a projective space over k. By Lemma 4.2.2, these
maps extend to morphisms of schemes

fi : CK → P
ni

k .

Take the product

f =
∏

fi : CK →
∏

P
ni

k . (4.2.2)

Since a product of finitely many projective spaces is a projective variety by the Segre
embedding of a product of projective spaces into a projective space (given by all possible
products of projective coordinates, one of each of the projective spaces, see Exercise 29
of Chap. 2), it suffices to show that (4.2.2) is a closed immersion. The fact that the
homomorphisms on stalks are onto follows from the fact that it is true at each point p

after projecting to the factor corresponding to an open affine neighborhood of p.
Let Y be the closure of the image of f . Since the isomorphic f -image of Ui is dense in

Y , Y is a curve (although a priori, it may not be regular). However, every local ring OY,q

is dominated by a discrete valuation ring R with field of fractions K (take a localization of
its integral closure in K at a maximal ideal), so

R = OCK,R = OY,f (R)

and hence q = f (R) (this is because any two points of a projective variety are elements of
the same open affine set Spec(A)). If one of the local rings is contained in the other, one
maximal ideal must be contained in another, so they must be equal. Thus, f is onto.

But then it is also injective because different points of CK have different local rings. ��

4.2.4 Theorem Let k be an algebraically closed field. Then there are canonical equiva-
lences between the following categories:

1. Smooth projective curves over k and dominant morphisms (inverse image of a non-
empty open set is non-empty).

2. Smooth curves over k and dominant rational maps.
3. The opposite of the category of field extensions of transcendence degree 1 of k finitely

generated as fields containing k and homomorphisms of k-algebras.

Proof The functor from 1 to 2 is forgetful, from 2 to 3 is by taking the function field, and
from 3 to 1 by sending K to CK . The above discussion implies that compositions of these
functors are naturally isomorphic to identities where applicable. ��

4.2.5 Proposition Every dominant morphism f : X → Y of complete smooth curves
over an algebraically closed field k is finite.
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Proof By Theorem 4.2.4, we have an inclusion h : K ⊆ L of finitely generated fields of
transcendence degree 1 over k such that X = CL, Y = CK , and Spec(h) is the restriction
of f to the generic point. Let U ⊂ Y be an affine open set, U ∼= Spec(A), A ⊂ K . Then
f−1U ∼= Spec(B) where B is the integral closure of A in L. By Proposition 4.2.3, f is
proper, and hence is of finite type. Hence, B is a finitely generated A-algebra. But every
finitely generated A-algebra which is integral over A is a finitely generated A-module. ��

COMMENTS

1. The statement of Proposition 4.2.5 is also true for complete curves which are not
smooth, but the proof is harder. See Chap. 6, Sect. 4.2.3 and Exercise 19 of Chap. 6.

2. Regarding the last step of our proof, it is true more generally that for any normal integral
domain A with field of fractions K and a finite field extension L of K , the integral
closure of A in L is a finitely generated A-module. However, it is surprisingly tricky to
prove: the standard proof treats the case of L separable over K first and then reduces to
that case.

Now let again f : X → Y be a dominant morphism of complete smooth curves over
k algebraically closed. By Theorem 4.2.4 again, we can assume that X = CK , Y = CL,
K ⊆ L is a finite field extension. The degree of the morphism f is defined to be the degree
of the field extension:

deg(f ) = [L : K].

4.2.6 Theorem Let f : X → Y be a dominant morphism of complete smooth curves over
an algebraically closed field k, and let p be a closed point of Y . Then

deg(f ) =
∑

q∈f−1(p)

vq(t) (4.2.3)

where t ∈ OY,p is an element of valuation 1. (Note: the choice of an element of valuation 1
does not matter, since any two choices differ by multiplying by a unit. Since the morphism
f is finite by Proposition 4.2.5, its pullback to Z(p) is finite, and hence the sum has finitely
many terms.)

Proof Use the same notation as in the proof of Proposition 4.2.5, and assume p ∈ U .
Consider the multiplicative set S = A � p. Then B ′ = S−1B is a torsion free finite
extension of Ap of rank [L : K] = deg(f ). The elements q ∈ f−1(p) are in bijective
correspondence with the maximal ideals mq of B ′. By the Chinese remainder theorem
(Proposition 4.1.1 of Chap. 1),

B ′/tB ′ =
∏

q∈f−1(p)

B ′/(tB ′q ∩ B ′)
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(since
⋂

q∈f−1(p)(tB
′
q ∩ B ′) = tB ′) so we have

deg(f ) = dimk(B
′/tB ′) =

∑

q∈f−1(p)

dimk(B
′/(tB ′q ∩ B ′)) =

∑

q∈f−1(p)

vq(t).

(Note that B ′/tB ′ is a k-vector space because k ⊂ A.) ��

Example Let k be an algebraically closed field of characteristic 0. In Sect. 3.2 we proved
that the closure E in P2

k of

Spec(R), R = k[x, y]/(x2 − y3 − y) (4.2.4)

is smooth over k. All of our arguments would work if we replace R with

k[x, y]/(x2 − (y − a)(y − b)(y − c)) (4.2.5)

where a, b, c are different elements of k. Such curves E are called elliptic curves over
k. (Over a field which is not algebraically closed, the same definition of elliptic curve
holds if we allow, in place of (y − a)(y − b)(y − c), any cubic polynomial with different
roots in the algebraic closure. The definition actually works over fields of characteristic
�= 2, 3. The study of elliptic curves is a very important subject of mathematics. For more
information, we refer the reader to [23].) We will show that E is not a rational curve (i.e.
is not isomorphic to P1

k in the category of curves and rational maps). In fact, if E were
rational, by Theorem 4.2.4, it would be actually isomorphic to P

1
k as a scheme. Since

Spec(R) = E � Z(p) where p is the point [0 : 0 : 1], Spec(R) would have to be
isomorphic to A1, so R would have to be isomorphic to k[t]. But we will show that in fact,
R is not a unique factorization domain. To this end, note that R is integral over k[y]. In fact,
as a k[y]-module, it is free with basis 1 and x. Further, there is obviously an automorphism
of rings σ : R → R which sends 1 to 1 and x to−x. Put N(t) = t ·σ(t). Then N preserves
multiplication. If u ∈ R×, then N(u) ∈ k[y]×, so N(u) ∈ k×. But if u = p(y) + xq(y)

for polynomials p, q ∈ k[y], then

N(u) = p(y)2 − x2q(y)2 = p(y)2 − (y3 + y)q(y)2. (4.2.6)

We see that unless p(y) ∈ k, q(y) = 0, the top terms of the two summands on the right
hand side are in even resp. odd degrees, so they cannot match. Thus, R× = k×. Next, we
will show that y is irreducible. Note that N(y) = y2, so since N(u) ∈ k× only for u ∈ k×,
if y = uv ∈ R, we would have to have N(u) = ay, N(v) = y/a for some a ∈ k×. But
by (4.2.6) again, this is only possible when u ∈ k×. Similarly, we will show that x ∈ R is
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irreducible: We have N(x) = x2 = y3+y, so if x = uv then N(x) = N(u)N(v) so either
u or v must be in k[y], (otherwise the second terms of (4.2.6) would combine to too high
a degree). Say, u ∈ k[y]. Then v ∈ x · k[y], and so u ∈ k×, v ∈ x · k×.

Thus, x, y ∈ R are both different irreducible elements of R, and hence x2 = y3 + y

contradicts uniqueness of factorization. Thus, E is not rational. Again, this proof applies
to any elliptic curve over a field of characteristic �= 2, 3 (Exercise 26).

4.3 The Role of Closed Points

As already remarked, one feature of algebraic varieties is that all their scheme-theoretical
information can actually be derived from maximal ideals. This follows from the Null-
stellensatz (Corollary 4.3.1 of Chap. 4, see Exercise 23). One corollary is worth stating
explicitly.

By an open subvariety of an (abstract) variety X over a field k, we mean any open
subscheme. By a closed subvariety of a variety K over a field k, we mean a closed integral
subscheme (it is then automatically a variety).

4.3.1 Corollary Two subvarieties Y , Z, closed or open, of a variety X over a field k are
equal if and only if they contain the same closed points of X.

Proof First, we shall prove that Y , Z contain the same points as schemes. To this end,
without loss of generality, X = Spec(R), where R is a finitely generated algebra over k.
But then by the Nullstellensatz, a prime ideal (which is always a radical) is an intersection
of maximal ideals, so the points of Y and Z, considered as schemes, are equal. Now
by the definition of topology, this means that they are both open or closed subsets, and
hence, by our assumptions, open or closed subvarieties. If they are both open, then they
are determined by their set of points, so we are done. If they are both closed, we will
prove that for every affine open set U ⊆ X, U = Spec(R) where R is a finitely generated
algebra over k, there is a unique isomorphism of schemes over X

φU : Y ∩ U → Z ∩ U. (4.3.1)

By uniqueness, the isomorphisms (4.3.1) are then compatible with restriction, and thus,
their colimit in the category of schemes defines an isomorphism of schemes Y ∼= Z.

To see (4.3.1), recall from Theorem 2.3.1 of Chap. 2 that

Y ∩ U = Spec(R/I), Z ∩ U = Spec(R/J )

for some ideals I, J ⊆ R, which have to be radical, since Y,Z are reduced. Then, however,
I , J are intersections of maximal ideals, so by our assumption, they are equal. ��



146 3 Properties of Schemes

We see that the same argument also implies that for a variety X, two closed reduced
subschemes of X which contain the same closed points are equal. We shall see that if k is
not algebraically closed, closed points are not necessarily what we may think, however.

In the remainder of this section, we present a proof of a generalization of the
Nullstellensatz, which includes, for example, schemes of finite type. A ring R is called
a Jacobson ring if every prime ideal of R is an intersection of maximal ideals. Note that
this, in particular, implies that

Nil(R) = Jac(R). (4.3.2)

An integral domain R is called a Goldman ring if there exists a u ∈ R such that K = u−1R

is the field of fractions of R. Every field is obviously a Goldman ring. A discrete valuation
ring is also a Goldman ring (we can take u to be any element of valuation 1). Note that a
local ring which is an integral domain is Jacobson if and only if it is a field. In fact, we
have the following

4.3.2 Lemma A Goldman ring R is Jacobson if and only if R is a field.

Proof If R is a field, it is obviously Jacobson. Assume that R is not a field and it is
Goldman, i.e. u−1R = K where K is its field of fractions. Then every maximal ideal of R

contains u (thus showing that R is not Jacobson, since it is an integral domain, so (0) is a
prime ideal, and u �= 0). Indeed, suppose that m � R is a maximal ideal, and u /∈ m. Then
u is a unit in the localization Rm, so Rm = u−1Rm = K , contradicting our assumption
that R is not a field. ��

4.3.3 Lemma Let R be a commutative ring, u ∈ R, u /∈ Nil(R). Then there exists a
prime ideal p ⊂ R, u /∈ p, such that R/p is Goldman.

Proof Let m be a maximal ideal of u−1R. Put p = m∩R. Then p is prime. We claim that
R/p is Goldman. Indeed,

u−1(R/p) = (u−1R)/m,

which is, by assumption, a field. (Note that for every x ∈ m, there exists n ∈ N such that
unx ∈ p.) ��

4.3.4 Corollary The following are equivalent for a commutative ring R:

1. R is Jacobson.
2. All quotient Goldman rings of R are fields.
3. For every ideal I ⊆ R, the ring R/I is Jacobson.
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4. For every ideal I ⊆ R, the radical
√

I is equal to the intersection of all maximal ideals
containing I .

Proof By Lemma 4.3.3 applied to R/p for p ⊂ R prime, if x /∈ p then (since the
reduction x of x modulo p is not nilpotent), there exists a prime ideal q ⊇ p such that
x /∈ q and R/q is Goldman. Thus, (2) implies (1). On the other hand, if R/p is Goldman
but not a field, then by Lemma 4.3.2, p is not an intersection of maximal ideals. Thus,
(1) and (2) are equivalent. Now since (2) obviously passes on to quotient rings, it is also
equivalent to (3). Since we already observed that for a Jacobson ring R, we have (4.3.2),
(3) implies (4). If (4) holds, then, in particular, a prime ideal (which is its own radical) is
an intersection of maximal ideals, so we have (1). ��

4.3.5 Lemma If a finitely generated (commutative) algebra S over a commutative ring R

is a Goldman ring and the homomorphism

R → S

is injective, then R is a Goldman ring.

Proof Suppose S is Goldman generated by u1, . . . , un as a ring over R, and L = u−1S is
its field of fractions. Note that by assumption, R is an integral domain. Let K ⊆ L be the
field of fractions of R. Then L is finitely generated as a ring over K (by u1, . . . , un, u

−1),
so it is a finite extension of K , which means that every element of L is algebraic (i.e. roots
of nonzero polynomials) over K . Without loss of generality (by clearing denominators),
these polynomials have coefficients in R. Let a1, . . . , an, a be the top coefficients of
these polynomials. Consider the subring R1 ⊆ L generated by R and the elements
a−1

1 , . . . , a−1
n , a−1. Note that

R1 = (a1 · · · · · ana)−1R. (4.3.3)

Then the field L is an integral extension of the ring R1 (which means that every element
of L is integral, i.e. the root of a monic polynomial, i.e. polynomial with top coefficient 1),
over R1. But a ring R1 whose integral extension is a field L is itself a field by Lemma 4.3.4
of Chap. 1. Here is another proof: Let m be a maximal ideal of R1; then (R1)m is dominated
by a valuation ring V , but valuation rings are integrally closed (meaning normal, or
integrally closed in their fields of fraction, i.e. that any element of the field of fractions
integral over the ring is in the ring—see Exercise 10).

Thus, V = L, which implies m = 0, so R1 is a field. (Note: not necessarily L.) In any
case, (4.3.3) now shows that R is Goldman. ��

4.3.6 Theorem If R is a Jacobson ring, then R[x] is a Jacobson ring.
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Proof Let p ⊂ R[x] be a prime ideal such that R[x]/p is Goldman. Let

q = R ∩ p.

Then R[x]/p is finitely generated over R/q (by x) as an algebra, and the homomorphism

R/q → R[x]/p

is injective by the homomorphism theorem for commutative rings. By Lemma 4.3.5, R/q

is Goldman. Since R is a Jacobson ring, R/q is a field. Now the integral domain R[x]/p
is a quotient of the principal ideal domain R/q[x] by a prime ideal. Since R/q[x] itself is
certainly not Goldman, R[x]/p is its quotient by a nonzero prime ideal, but such an ideal
is maximal. Thus, R[x]/p is a field. ��

Proof of Theorem 4.3.1. Use Theorem 4.3.6 and Corollary 4.3.4. ��

5 The Galois Group and the Fundamental Group

In this section, we will explore an important role of group actions in algebraic geometry.
We will see how closed points of varieties over perfect fields can be understood as orbits
of the Galois group, which is another important philosophical point of algebraic geometry.
We will also discuss the analogy between the absolute Galois group of a perfect field
and the fundamental group of a topological space, and discuss a combination of both
concepts, namely the étale fundamental group. We will conclude the section by mentioning
a remarkable result of P. Deligne, A. Grothendieck and others on counting points of
varieties over finite fields.

5.1 Varieties Over Perfect Fields andG-Sets

Assume that k is a perfect but not necessarily algebraically closed field. Consider a closed
point m of the affine space An

k . Then m is a maximal ideal of k[x1, . . . , xn], so

K = k[x1, . . . , xn]/m (5.1.1)

is a field. It is called the residue field of m. Further, this field is a finite extension of k:
this is because it is contained in the splitting field E of the product p(x) of the minimal
polynomials of all its coordinates over the algebraic closure of k (see Proposition 4.3.2 of
Chap. 1). Thus, over the field E, the polynomial p(x) is a product of linear factors. Recall
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that a splitting field of a polynomial over k is the same thing as a Galois extension. So we
have

K ⊆ E,

and E is a Galois field over k, since we assumed that k is perfect and hence E is a separable
extension. Now consider the projection

π : An
E → A

n
k . (5.1.2)

We can say that π is Spec of the inclusion

k[x1, . . . , xn] ⊆ E[x1, . . . , xn].

But now note that the Galois group Gal(E/k) (the group of automorphisms of E which
leave every element of k fixed) permutes the closed points of An

E (it permutes all the points,
but let us restrict attention to closed points for now).

5.2 Some Details onG-Sets

Instead of permutes, we will say acts on. We say in general that a group G acts on a
set S (or that there is a G-action on S) when for every element g ∈ G, we are given a
permutation (i.e. a bijection) σg : S → S such that for all g, h ∈ G,

σgh = σg ◦ σh. (5.2.1)

There are several other notations we can use to express this. We may say that there is a
homomorphism of groups

σ : G → Perm(S)

where Perm(S) is the group of permutations on S (i.e. automorphisms of S in the category
of sets and mappings). Alternately, we may also write

g · x = σg(x),

and then require that for all g, h ∈ G,

g · (h · x) = (g · h) · x. (5.2.2)
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From this point of view, the set S is a universal algebra with an operation g·? for every
g ∈ G. Thus, sets with a G-action are also called G-sets. The category G-Sets of all
G-sets is then defined by letting morphisms of G-sets be maps

f : S → T

which satisfy for all g ∈ G, x ∈ S,

f (g · x) = g · f (x).

The study of G-sets is called G-equivariant mathematics.
Thus, the study of varieties over perfect fields k involves Gal(E/k)-equivariant

mathematics for every Galois extension E ⊇ k. Let us return to that context, and see what
else we need to learn about G-sets. By definition, the map (5.1.2) is Gal(E/k)-equivariant
on closed points, but of course, Gal(E/k) acts trivially on the target (i.e. leaves everything
fixed). This means that if two maximal points x, y ∈ A

n
E satisfy

g · x = y

for some g ∈ Gal(E/k), then we must have

π(x) = π(y).

This calls for a definition. For a G-set S and x ∈ S, the G-orbit (or simply orbit) of x is
the subset

OrbG(x) = {g · x | g ∈ G}.

The orbit is also a G-set, and the inclusion OrbG(S) ⊆ S is a morphism of G-sets. Thus,
we can get closed points of An

k as Gal(E/k)-orbits of An
E where E is any Galois extension

of k. We will still need to refine this somewhat, but for now, let us classify orbits up to
isomorphisms in the category of G-sets.

The key concept here is the concept of an isotropy group (also known as stabilizer) of
an element x ∈ S of a G-set S, defined as

IsoG(x) = {g ∈ G | g · x = x}.

It is also convenient to denote, for a subgroup H ⊆ G,

SH = {x ∈ S | H ⊆ IsoG(x)}.
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Thus, SH is the set of all elements x ∈ S such that for all h ∈ H , h · x = x. We call SH

the set of fixed points of S with respect to the subgroup H .
Recall that for a subgroup H ⊆ G, we may define left cosets

gH = {g · h | h ∈ H }

and right cosets

Hg = {h · g | h ∈ J }.

When the left cosets are the same as the right cosets, i.e. for all g ∈ G, Hg = gH , then
the subgroup H is called normal, we write H �G, and we can form the factor group G/H

which consists of all the cosets. We then define multiplication of cosets by

g1H · g2H = (g1 · g2)H

(in proving consistency of this definition, we use the fact that Hg2 = g2H ).
If H is not a normal subgroup of G, we still use the symbol

G/H = {gH | g ∈ G}

to denote the set of left cosets, which still form a G-set, using the formula

g1 · g2H = (g1 · g2)H

for g1, g2 ∈ G.
The isotropy group of an element of a G-set does not have to be a normal subgroup of

G.

5.2.1 Proposition For every element x of a G-set S, the orbit OrbG(x) is isomorphic to
G/IsoG(x) in the category of G-sets.

Proof Define a morphism of G-sets

φ : G/IsoG(x)→ OrbG(x)

by

g · IsoG(x) → g · x for g ∈ G. (5.2.3)
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To see that this is well defined, we need to prove that if

g1 · IsoG(x) = g2 · IsoG(x) (5.2.4)

then

g1 · x = g2 · x. (5.2.5)

We will prove that (5.2.4) is, in fact, equivalent to (5.2.5).
In general, for a subgroup H ⊆ G, g1 ·H = g2 ·H occurs if and only if g−1

1 · g2 ∈ H .
Thus, (5.2.4) occurs if and only if

g−1
1 · g2 ∈ IsoG(x),

which means

g−1
1 · g2 · x = x,

which is equivalent to (5.2.5). Thus, φ is well defined by (5.2.3) as a map of sets, but then
it clearly preserves the G-action, so φ is a morphism of G-sets. It is also clearly onto by
the definition of an orbit. The fact that (5.2.5) implies (5.2.4) proves that φ is injective.
Thus, it is an isomorphism of G-sets. ��

We say that the action of G on a set S is transitive or homogeneous when S is
isomorphic to a G-set of the form G/H . Clearly, this is the same thing as requiring that
for all x, y ∈ S there exists a g ∈ G such that g · x = y.

As any category of universal algebras, the category of G-sets has all limits and colimits.
The coproduct in the category of G-sets is the disjoint union (just as in the category of
sets), and we immediately see that every G-set is a disjoint union of orbits. In some sense,
then, we completely understand the category of G-sets if we know the morphisms between
orbits.

5.2.2 Theorem Let H,K be subgroups of G. Then the set

G-Sets(G/H,G/K)

of morphisms from G/H to G/K in the category of G-sets is bijective with the set G/KH

of fixed points of G/K with respect to the subgroup H , which is equal to the set of all
cosets gK such that

g−1Hg ⊆ K. (5.2.6)

(Here g−1Hg = {g−1xg | x ∈ H }.)
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COMMENTS Because of (5.2.6), G-set morphisms from G/H to G/K are sometimes
called subconjugacies from H to K . The full subcategory of the category of G-sets on
orbits is called the orbit category, and denoted by OrbG. At this point we are most
interested in observing that the isotropy groups of different elements of G/H may be
different. In fact, more precisely, the isotropy group of gH ∈ G/H is the subgroup
gHg−1 ⊆ G, which is known as a subgroup of G conjugate to H . The isotropy groups of
all elements of the orbit are the same if and only if all conjugate subgroups of H are equal
to H , which happens if and only if H �G is a normal subgroup.

Proof First notice that the condition (5.2.6) does not depend on the representative g of a
coset gK (since replacing g by kg turns (5.2.6) into an equivalent condition). Next, for all
h ∈ H ,

g−1hg ∈ K

is equivalent to

hg ∈ gK, (5.2.7)

and thus to

hgK = gK, (5.2.8)

which is the same as gK ∈ G/KH . Now let us study morphisms of G-sets

φ : G/H → G/K. (5.2.9)

Since G/H is an orbit, the morphism φ is clearly determined by

g = φ(1). (5.2.10)

Which choices of g are allowed in (5.2.10)? The requirement is that the isotropy group of
1 (which is H ) must be contained in the isotropy group of φ(1). This is precisely (5.2.8),
which we already proved is equivalent to (5.2.6).

Finally, note that replacing g by gk for k ∈ K in (5.2.10) produces the same morphism
φ and vice versa, thus defining the required bijection. ��

5.3 Closed Points as Galois Group Orbits

Now let us return to our closed point m of A
n
k with (5.1.1), and let us look at the set

π−1(m) of all points of An
E which map to m by (5.1.2). As already observed, π−1(m) is
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a Gal(E/k)-set. To be more specific, note that by definition, π−1(m) is the set of closed
points of the pullback

Spec(K)

��
A

n
E

�� An
k ,

which is

Spec(K ⊗k[x1,...,xn] E[x1, . . . , xn]),

which, in turn, is isomorphic to Spec of the ring

K ⊗k E. (5.3.1)

Now since K is a separable extension of k, it is, generated, as a k-algebra, by a single
element a.

Thus, by definition,

K ∼= k[x]/p(x)

where p is the minimal polynomial of a over k. Now over E, by assumption, p splits into
linear factors

p(x) = (x − a1) . . . (x − am)

where a1, . . . , am ∈ E are all different. Then

K ⊗k E ∼= E[x]/((x − a1) . . . (x − am)). (5.3.2)

But recall the Chinese remainder theorem which states that if any ideals I1, . . . , Im of a
ring have the property that Ii + Ij = R for any i �= j , then I1 ∩ · · · ∩ Im = I1 · · · · · Im and

R/(I1 ∩ · · · ∩ Im) = R/I1 × · · · × R/Im.

Thus, the right hand side of (5.3.2) is isomorphic to

m∏

i=1

E[x]/(x − ai) ∼=
m∏

i=1

E.
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The spectrum of this ring (which, recall, is π−1(m)), is

m∐

i=1

Spec(E),

which consists of m points. But how does Gal(E/k) act on those points? We know that
Gal(E/k) acts transitively on {a1, . . . , am}, so it is isomorphic, as a Gal(E/k)-set, to an
orbit by Proposition 5.2.1.

What is the isotropy group? By definition, the embedding K ⊆ E sends the generator
a ∈ K to one of the elements a1, . . . , am. Assume, without loss of generality, that it is
a1. Then the isotropy group is the subgroup of all elements g ∈ Gal(E/k) which satisfy
g(a1) = a1, which, by Galois theory (see Exercise 34), is Gal(E/K). Thus, we have
proved the following

5.3.1 Proposition If X is a variety over a perfect field k, then there is a canonical bijection
from the set of all closed points m of X whose residue field is contained in a given Galois
extension E of k to the set of orbits of Gal(E/k) acting on the set of closed points of

X ×Spec(k) Spec(E) (5.3.3)

with residue field E. Furthermore, if the residue field of m is K ⊆ E, then its isotropy
group in (5.3.3) with respect to the Gal(E/k)-action is Gal(E/K).

�

The word canonical is a philosophical, not a precise mathematical term. A mathemat-
ical object (not in the categorical sense) is called canonical if there is an obvious choice
for it. If a mapping is canonical, it is usually a natural transformation between functors,
but not conversely: there are important examples of natural transformations which are not
canonical in any reasonable sense (see, for example, the proof of Lemma 3.3.5 of Chap. 5).
On the other hand, a unique object of a given kind is always canonical, but a canonical
object does not have to be unique, as there may be more than one obvious choice (differing,
for example, by a sign). While not strictly speaking rigorous, the term canonical is often
useful in suggesting that a construction exists from a general principle, without having
to make unnatural choices on a case by case basis. There may be no reasonable way of
expressing this without presenting the explicit construction as a part of the statement of
the theorem, which may be awkward or even impossible for space reasons. The word
canonical often simply suggests that a reasonable uniform construction exists.

The statement of the proposition is awkward, and it would be good to simplify it. One
observation is that it is actually possible to omit the assumptions on the residue field. This
gives a more elegant but somewhat less precise statement (note that the hypothesis of k
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being perfect is omitted):

5.3.2 Proposition If X is a variety over a field k and E is a Galois extension of k, then
there is a canonical bijection from the set of closed points of X to the set of orbits of the
set of closed points of the scheme (5.3.3) with respect to the Gal(E/k)-action.

Proof Let E be the splitting field of a polynomial p(x) ∈ k[x]. Let K be a finite extension
of k. Then a closed point P of X with residue field K is represented by a morphism of
schemes

Spec(K)→ X

which induces an isomorphism of the residue field of X at P to K . Thus, it suffices to
study the closed points of

Spec(K)×Spec(k) Spec(E).

Denote by L the splitting field of p(x) ∈ K[x]. Then

Gal(L/K) ⊆ Gal(E/k).

Then the definition of a splitting field gives a diagram of K-algebras

L ��

Id ��	
		

		
		

		
	 K ⊗k E

��
L

(5.3.4)

(by sending the roots of p(x) to the same roots). The groups Gal(E/k) acts on the upper
right corner, the subgroup Gal(L/K) acts on L. If we denote

M =
∏

Gal(E/k)/Gal(L/K)

L, (5.3.5)

M is a commutative L-algebra (a product in the category of L-algebras), but as an L-
module, M is of course isomorphic to

M̃ =
⊕

Gal(E/k)/Gal(L/K)

L. (5.3.6)

The L-algebra (5.3.5) and the L-module (5.3.6) have a canonical Gal(E/k)-action which
extends the Gal(L/K)-action on L. Using this action, we obtain a diagram of L-modules
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with Gal(E/k)-action

M̃ ��

φ ��	
		

		
		

		
	

K ⊗k E

��
M

(5.3.7)

where the vertical map is a homomorphism of L-algebras. In fact, note that by Galois
theory (Exercise 34), as k-modules, both (5.3.5) and (5.3.6) become canonically identified
with

⊕

Gal(E/k)

k,

(by considering the images of 1), and the homomorphism of k-modules φ becomes
identified with Id again.

Thus, the vertical morphism (5.3.7) is onto. On the other hand, note that the dimensions
of its source and target as vector spaces over k are both

[K : k] · [E : k] = [E : k]
[L : K] [L : k]

(where [K : k] denotes the degree of a finite field extension, i.e. the dimension of K as a
vector space over k). Thus, the vertical morphism (5.3.4) is an isomorphism of rings

E ⊗k K ∼=
∏

Gal(E/k)/Gal(L/K)

L. (5.3.8)

Note that the map (5.3.8) is not equivariant, as the Galois action twists by the Gal(L/K)-
action on L. Nevertheless, we see that on the points of

Spec(E ⊗k K) ∼= Spec(
∏

Gal(E/k)/Gal(L/K)

L) ∼=
∐

Gal(E/k)/Gal(L/K)

Spec(L),

Gal(E/k) acts transitively, its orbit representing the point of Spec(K). ��

COMMENT The constructions M and M̃ are examples of a more general construction. In
any category C, for a group G, we have the category G-C of G-equivariant objects in C.
The objects consists of an object x of C and a homomorphism of groups

φ : G → Aut(x)
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where Aut(x) denotes the group of automorphisms of x (i.e. isomorphisms x → x).
Morphisms in G-C are morphisms f : x → y in C which respect the G-action, which
means for every g ∈ G, there is a commutative diagram

x

f

��

φ(g)
�� x

f

��
y

φ(g)

�� y.

Then for an inclusion of groups i : H ⊆ G, we have a “forgetful” functor

i∗ : G-C → H -C. (5.3.9)

Not always, but for many categories C, the functor i∗ has a left adjoint i� and a right adjoint
i∗ called the left and right Kan extension. If C is a category of universal algebras, the left
Kan extension i�X of an H -equivariant C-object X is the colimit (coequalizer) in C of the
diagram

∐

G×H

X→→
∐

G

X

where
∐

denotes the categorical coproduct, and the two arrows send x in the (g, h)’th
copy of X to h(x) in the g’th copy of X, and to x in the gh’th copy of X, respectively. The
G-action is defined by letting g ∈ G send x in the k’th copy of X (k ∈ G) into x in the
gk’th copy of X. (Note however that while expressing things in this way, the coproduct is
generally not the disjoint union.)

Dually, in a category C of universal algebras, the right Kan extension of an H -
equivariant C-object X is the limit (equalizer) of the diagram

∏

G

X→→
∏

G×H

X

where the two arrows send a |G|-tuple

∏

G

xg

to

∏

G×H

y(g,h)
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where y(g,h) = xgh and y(g,h) = h(x)g, respectively.
In the proof of Proposition 5.3.2, M was the left Kan extension with respect to the

inclusion

i : Gal(L/K) ⊆ Gal(E/k)

in the category of K-algebras, while M̃ was the left Kan extension in the category of K-
modules. As already remarked, writing L for the copies on the right hand side of (5.3.8)
is somewhat imprecise if we want to think Gal(E/k)-equivariantly: for the g’th copy, we
should write the subfield gL which is the image of L in E ⊗k K under g instead. Of
course, this field is by definition isomorphic to L, but not canonically, unless we know the
representative g of the corresponding left coset in Gal(E/k)/Gal(L/K).

5.4 The Absolute Galois Group: Profinite Groups

Finally, it seems natural to find a statement where E would be replaced by k, the algebraic
closure of k, (k is perfect), which is a minimal algebraically closed field containing k.
(An algebraic closure is unique up to noncanonical isomorphism.) If k is a finite extension
of k, we may use it as E, and the previous propositions apply. This arises for example
when k = R, E = R = C (which is algebraically closed by the fundamental theorem
of algebra). Thus, for a variety X over R, the closed points are orbits of the set of closed
points of X ×Spec(R) Spec(C) with respect to complex conjugation

a + ib → a − ib, a, b ∈ R,

which is the generator of Gal(C/R). The orbits are of the form Z/2 = (Z/2)/{e} (an
orbit G/{e} of any group is called the torsor), and (Z/2)/(Z/2). Obviously, the torsor of
Gal(C/R) has two elements, corresponding to two complex-conjugate points, while the
other type of orbit has a single element, corresponding to a point with residue field R.
Studying such points in detail is the subject of real algebraic geometry.

Example Consider the affine variety

Spec(R[x, y]/(x2 + y2 − 1) (5.4.1)

over R (the unit circle). We have, of course, the usual real points, for example
(
√

2/2,−√2/2). Written as a maximal ideal, this is the ideal of

R[x, y]/(x2 + y2 − 1) (5.4.2)
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generated by x −√2/2 and y −√2/2, i.e.

(x −√2/2, y +√2/2) ⊂ R[x, y]/(x2 + y2 − 1).

This is a maximal ideal (a closed point). Of course, there is a maximal ideal with the same
generators in

C[x, y]/(x2 + y2 − 1). (5.4.3)

It is a fixed point under the action of Gal(C/R) (i.e. a 1 element orbit).
On the other hand, there are of course closed points of

Spec(C[x, y]/(x2 + y2 − 1) (5.4.4)

which are not real: for example the point written in affine variety notation as (i,
√

2), i.e.
the maximal ideal

(x − i, y −√2) ⊂ C[x, y]/(x2 + y2 − 1).

The orbit of this ideal under the action of Gal(C/R) is

{(x − i, y −√2), (x + i, y −√2)}. (5.4.5)

By Proposition 5.3.2, this corresponds to a closed point of (5.4.1). Indeed, this closed point
is, in maximal ideal notation,

(x2 + 1, y −√2). (5.4.6)

(We find the ideal by taking any element of the orbit (5.4.5) and intersecting it with
R[x, y]/(x2 + y2 − 1).) Note that the point (5.4.6) does not have a “naive” notation as
a pair of elements of R. We can, however, still write it as a pair of points in A

1
R

.
Even that is not possible in general, however. Consider the point of (5.4.4) which is

given, in the affine variety notation, as the pair (3/4 + i/4, 3/4 − i/4). (Check that this
works.) This corresponds to the maximal ideal

(4x − 3− i, 4y − 3+ i) ⊂ C[x, y]/(x2 + y2 − 1). (5.4.7)

In general, we observe that finding the intersection of an ideal with (5.4.2) is not trivial (it
can be done by finding the Gröbner basis of the ideal

(4x − 3− i, 4x − 3+ i, x2 + y2 − 1, i2 + 1) ⊆ R[x, y, i]
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with respect to the order i > x > y). In the case of the ideal (5.4.7), however, it is still
elementary, since we can change the generators of R[x, y] to x − y, x + y, so the ideal is

(2x + 2y − 3, 2x − 2y − i).

Thus, we see that the corresponding point in (5.4.1) is

(2x + 2y − 3, 4(x − y)2 + 1).

Not a pair of points in A1
R

! This shows that for varieties over k which is not algebraically
closed, ?×Spec(k)? does not in general give the Cartesian product on sets of closed points.
(It is true however when k is algebraically closed, by considering the affine case and the
Nullstellensatz; see Exercise 36.)

Speaking of the Nullstellensatz, let us give an even more direct example of why “non-
naive” closed points come up. Consider the following affine variety over R:

Spec(R[x, y]/(x2 + y2 + 1)). (5.4.8)

Then there are no points with residue field R, since x2+y2+1 �= 0 for real numbers x, y.
By the Nullstellensatz, if there were no other closed points, (5.4.8) would be Spec(0),
which is clearly not the case, since the ideal (x2 + y2 + 1) does not contain 1. Following
the above method, we can produce, for example, the closed point

(x2 + 1, y)

with residue field C.
Note: in our definitions, Spec(0) is not a variety, since an irreducible space is required

to be non-empty. In any case, it brings up the necessity to show that the polynomials x2 +
y2 ± 1 are irreducible in R[x, y]. Note that they are irreducible in R(y)[x], (or C(y)[x]),
since they have no root in R(y). Note also that of course an irreducible polynomial can
become reducible when extending scalars from k to E, thus showing that (5.3.3) may not
always be a variety over E, although it is one in our case.

However, fields k for which the algebraic closure k is a finite extension of k are,
unfortunately, an exception to the rule, and are, in some sense, all analogous to the case
k = R (for example, in all such cases, Gal(k/k) ∼= Z/2). We must, therefore, develop
some technique for generalizing Galois theory to infinite (separable) algebraic extensions.
Note that by contravariance in Galois theory, if

k ⊆ K ⊆ L
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are Galois extensions, we have an onto homomorphism

Gal(L/k) �� �� Gal(K/k).

Thus, the groups Gal(?/k) form an inverse system of groups, which means a functor

Gal(?/k) : IOp → Groups (5.4.9)

where I is a directed partially ordered set, which means that for any a, b ∈ I there exists
an element c ∈ I with a ≤ c and b ≤ c. (Recall that a partially ordered set I can be
considered as a category where the morphism set I (a, b) is a one element set when a ≤ b

and is empty otherwise.) In the present case, the set I is the set of all finite extensions of
the field k ordered by inclusion.

We could define Gal(k/k) as the limit (meaning inverse limit) of the diagram (5.4.9),
but if we do this in the category of groups, it turns out to lose too much information. For
example, there can be finite orbits which do not factor through orbits of any Gal(L/k) for
a finite Galois extension L of k.

There are several solutions of this problem. For example, we could take a limit of
the diagram (5.4.9) in the category of topological groups which means a group object
in the category of topological spaces, or equivalently, a group with a topology where the
operations of multiplication and inverse are continuous, and we could restrict attention to
continuous group action (a set on which a topology is not specified is considered to have
the discrete topology which means that every subset is open).

This would actually produce the right answer in our present situation, but it is useful
to learn another formalism. A pro-finite group is defined to be an inverse system, i.e. a
functor

G : IOp → sf Groups (5.4.10)

where I is a directed set (which may vary) and sf Groups is the category of finite groups
and surjective homomorphisms. In particular, then, a finite group is a pro-finite group (we
can take, for example, I to be a one element set). Two pro-finite groups from (5.4.10) and

H : JOp → sf Groups

specify a functor

Hom(G,H) : I × JOp → Sets. (5.4.11)

The set of morphisms φ : G → H is defined to be the colimit of (5.4.11) in the I

coordinate, followed by the limit in the JOp-coordinate.
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This means that for every j ∈ J there exists an i(j) ∈ I such that for all i ≥ i(j), we
are given a homomorphism of groups

φi,j : Gi → Hj

such that the diagram

Gi′
φi′ ,j ′

��

��
��

Hj ′

��
��

Gi
φi,j

�� Hj

commutes whenever it is defined. (Note: there are several variants of the definition of
profinite groups, but they give equivalent categories.)

Now by an action of a pro-finite group (5.4.10) on a finite set S (i.e. a finite G-set), we
simply mean an action of some Gi , i ∈ I , on S. For i ≤ j , such an action is considered
equivalent to an action of Gj on S, j ≤ i, which factors through the surjection

Gj
�� �� Gi.

The concept of an orbit does not depend on the choice of i ∈ I , and there is an obvious
concept of an isotropy group, which is a pro-finite subgroup of G. We may also speak of
a finite G-set for the pro-finite group G. Any finite G-set is obviously a disjoint union of
orbits. We may also consider general (possibly infinite) G-sets for a profinite group G,
by which we mean possibly infinite disjoint unions of (finite) orbits. Note that an infinite
G-set may not be a Gi-set for a fixed i ∈ I , since i may vary over different orbits.

In this language, for any perfect field k, Gal(k/k) is a profinite group, defined as the
inverse system (5.4.9). It is sometimes denoted by Gal(k) and called the absolute Galois
group of the perfect field k. Then our previous discussion implies the following

5.4.1 Theorem Let X be a variety over a perfect field k. Then there is a canonical
bijective map from the set of closed points of X to the set of orbits of the set of closed
points of X ×Spec(k) Spec(k) with respect to the action of the pro-finite group Gal(k/k).

�
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5.5 The Fundamental Group of a Topological Space

There is a situation in topology which to some degree is analogous to Galois theory, namely
the fundamental group. Giving all the details here would take us too far afield, so the reader
is referred to [13] for further reading. However, the main point is important, as it is another
example of our continuing story of connections between topology and algebraic geometry.

Let X be a topological space and let x ∈ X be a point. A path is a continuous map
ω : [0, 1] → X where on the interval [0, 1], we consider the analytic topology. The
points ω(0) resp. ω(1) are called the beginning point resp. the end point of the path
ω. We also say that ω is a path from ω(0) to ω(1). A based homotopy between two
paths ω1, ω2 is a continuous map h : [0, 1]2 → X (where the domain has the analytic
topology) such that for all s ∈ [0, 1], h(s, 0) = ω1(s), h(s, 1) = ω2(s), and for all
t ∈ [0, 1], h(0, t) = h(0, 0) and h(1, t) = h(1, 0). Two paths are called based-homotopic
if there exists a based homotopy between them. This is an equivalence relation. (Thus,
in particular, based-homotopic paths have the same beginning points and the same end
points.) The equivalence class of a path ω with respect to based homotopy is often denoted
by [ω] (which is a generic notation for the equivalence classes of any equivalence relation).

Now for a topological space X, there is a groupoid (i.e. category whose every morphism
is an isomorphism) π1(X) called the fundamental groupoid whose objects are the points
of X, and morphisms x → y are based homotopy classes of paths with beginning point
x and end point y. For a path ω from x to y and a path η from y to z, we define the
π1(X)-composition ω ∗η (we use ∗ here to avoid confusion with composition of maps) by

ω ∗ η(s) =
{

ω(2s) if 0 ≤ s ≤ 1/2

η(2s − 1) if 1/2 ≤ s ≤ 1.

Clearly, the number 1/2 can be replaced by any number between 0 and 1 without altering
the definition of composition on based homotopy classes, which is the reason composition
in π1(X) is associative. The identity is the constant path from x to x and the inverse to a
class [ω] is the class [ω] where ω(s) = ω(1− s). (See Exercise 37.)

More generally, a homotopy between continuous maps of topological spaces f, g :
X → Y is a is a map h : X × [0, 1] → Y where for all x ∈ X, h(x, 0) = f (x) and
h(x, 1) = g(x). We write h : f � g, and also call f and g homotopic, and write f � g.
Homotopy of maps is then also an equivalence relation. A homotopy equivalence between
topological spaces X,Y is a pair of continuous maps f : X → Y, g : Y → X such that
g ◦f � IdX, f ◦g � IdY . We sometimes also say that f or g is a homotopy equivalence,
without mentioning the other map, which is called its homotopy inverse. Of course, there is
also a category whose objects are topological spaces and morphisms are homotopy classes
of maps. It is called the homotopy category. For the effect of continuous maps, homotopies
and homotopy equivalences on the fundamental groupoid, see Exercise 38.
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We may be more comfortable with groups than groupoids, so for x ∈ X, we consider
the group π1(X, x) of automorphisms of x in π1(X), and call it the fundamental group of
the space X at x ∈ X. In other words, π1(X, x) is the group of based homotopy classes of
paths with beginning point and end point x (which are also called loops at x). However,
the fundamental group has a somewhat weaker functoriality due to the role of the base
point: For x ∈ X and a continuous map f : X → Y , we get a canonical map π1(f ) :
π1(X, x)→ π1(Y, f (x)).

Our main interest in the fundamental group is its close connection with covering
spaces. A map f : Y → X is called a covering if for every x ∈ X, there exists an
open neighborhood U of x (called the fundamental neighborhood) such that we have a
commutative diagram

f−1(U)
∼=

��

f 	
		

		
		

		
U × S

p����
��
��
��
�

U

(5.5.1)

where S is a set with the discrete topology and p is the projection (thus, U × S is
homeomorphic to a disjoint union of copies of U ). We also sometimes say (somewhat
imprecisely) that Y is a covering space of X. We have

5.5.1 Lemma Let f : Y → X be a covering and let f (y) = x. Then for every path ω

in X with beginning point x (or based homotopy h between paths with beginning point
x), there exists a unique path ω̃ with beginning point y (resp. based homotopy h̃ between
paths with beginning points y) such that f ◦ ω̃ = ω (resp. f ◦ h̃ = h).

Proof Because [0, 1] is compact, we can break it up into intervals (resp. break [0, 1] ×
[0, 1] into squares) which are sent by ω (resp. h) to fundamental neighborhoods. Then
existence and uniqueness both follow from Diagram (5.5.1), using the connectedness of
the unit interval. ��

Note that Lemma 5.5.1 immediately implies that if f is a covering and f (y) = x,
then the map f : π1(Y, y) → π1(X, x) is injective. We can thus ask which subgroups
of the fundamental group have covering spaces corresponding to them. To this end, let us
assume that X is path-connected, which means that for any x, y ∈ X, there is a path from
x to y (for otherwise, the fundamental group cannot be expected to recover information
about all of X). To formulate our question more precisely, consider the category Covx(X)

whose objects are pairs (f, y) where f : Y → X is a covering with Y connected, and
f (y) = x, and morphisms (f : Y → X, y) → (g : Y ′ → X, y ′) are maps φ : Y → Y ′
such that g ◦ φ = f and φ(y) = y ′. (Note: morphisms of coverings of X are necessarily
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also coverings.) It turns out that our question has a good answer when X satisfies two
additional hypotheses: X is called locally path-connected if every point of X has an open
neighborhood which is path-connected; X is called semilocally simply connected (SLSC)
if every x ∈ X has an open neighborhood U such that the inclusion induces a 0 map
π1(U, x)→ π1(X, x). The fundamental result is the following

5.5.2 Theorem Let a topological space X be path-connected, locally path-connected and
SLSC, and let x ∈ X. Then the correspondence

(f : Y → X, y) → π1(Y, y)

defines an equivalence of categories between Covx(X) and the category of subgroups of
π1(X, x) and inclusions.

Proof Essentially, the covering spaces and their maps are constructed by lifting paths in
X with beginning point x, using Lemma 5.5.1. However, details are subtle (see [13]). ��

There is also a version of this theorem without assuming Y is connected, and without
referring to y ∈ Y . Let Cov(X) denote the category of all coverings f : Y → X and
morphisms over X.

5.5.3 Theorem Let a topological space X be path-connected, locally path-connected and
SLSC, and let x ∈ X. Then the correspondence

(f : Y → X) → f−1(x)

is an equivalence of categories from Cov(X) to π1(X, x)-Sets (i.e. sets with π1(X, x)-
action).

The proof is a formal consequence of Theorems 5.5.2 and 5.2.2. One is led to define
[ω]y, for [ω] ∈ π1(X, x) and y ∈ f−1(x), as the endpoint of the lift of the path ω to
Y with beginning point y, but because of the way we defined composition of paths, this
defines a right action. We can get a left action by replacing ω with ω.

5.6 From Coverings to the Fundamental Group: The Étale
Fundamental Group

For a path-connected locally path-connected topological space X, we may now ask how
much of the fundamental group π1(X, x) can be recovered from the category Cov(X). If
X is SLSC, by Theorem 5.5.2, there is a connected covering

f : X̃ → X, f (y) = x (5.6.1)
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where π1(X̃, y) = 0, and we may simply identify π1(X, x) as the automorphism group of
X̃ in the category Cov(X). The covering (5.6.1) is called a universal covering of X.

5.6.1 Regular Coverings
If X is path-connected and locally path-connected but not SLSC, the universal covering
does not exist (the condition is if and only if), but we may still have some non-trivial
coverings. A covering f : Y → X is called regular if the automorphism group of f in
Cov(X) acts transitively on f−1(x). When the universal covering exists, we know from
Theorems 5.5.2 and 5.5.3 that a connected covering f is regular if and only if for any
(equivalently, all) y ∈ f−1(x), π1(Y, y) is a normal subgroup of π1(X, x).

In general, however, for a connected covering f : Y → X, of finite degree (meaning
that f−1(x) is finite), it is possible to construct a diagram

Ỹ

f̃ 		�
��

��
��

�
�� Y

f

��
X

(5.6.2)

where Ỹ is a regular covering of finite degree. The construction goes as follows: The
category of coverings of X obviously has finite limits (which are the same as in the
category of topological spaces over X). Take the product F : Y ×X Y ×X · · · ×X Y → X

of n copies of f : Y → X, where n = |f−1(x)| is the degree. Then the covering F

has an action of the symmetric group �n by switching factors. Now clearly the restriction
� : Z → X of F where Z ⊆ Y ×X Y ×X · · ·×X Y is the subspace of n-tuples (y1, . . . , yn)

where the yi are all different is also a covering (since its complement, consisting of all n-
tuples in which at least two coordinates coincide, is a covering, while both complements
are closed and open). Furthermore, by construction, � is regular (since the required action
is just the action of the symmetric group by switching factors), although it may not be
connected. Let, then, f̃ be the restriction of � to one connected component.

Next, we may observe that a morphism h from (g : Z → X, z) to (f : Y → X, y) in
Covx(X) for regular coverings specifies, functorially, a homomorphism of groups

AutCov(X)(g) → AutCov(X)(f ). (5.6.3)

In effect, suppose that h(α(z)) = h(z) for some α ∈ AutCov(X)(g). Then h ◦ α = h (since
the set of all points t for which h(α(t)) = h(t) is an open and closed set in Z). Thus,
W = {α ∈ AutCov(X)(g) | h(α(z)) = h(z)} is a subgroup of AutCov(X)(g), and

f−1(x) ∼= AutCov(X)(g)/W. (5.6.4)
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To prove that the subgroup W is normal and that (5.6.3) is an onto homomorphism of
groups, consider an automorphism α of g and an automorphism β of f such that

h ◦ α(z) = β ◦ h(z).

Then the set of all t such that h ◦ α(t) = β ◦ h(t) is open and closed in Z, and thus is
equal to Z. This proves in particular that all automorphisms of Y lift to automorphisms
of Z. Since Y is regular, this is equivalent to W being a normal subgroup and (5.6.3) is
an onto homomorphism of finite groups, where Aut(f ) ∼= f−1(x) via the identification
which sends an automorphism β to β(y).

Indexing over the full subcategory Regx(X) of Covx(X) on based regular coverings
of (X, x) of finite degree, we thereby obtain a pro-finite group which we denote by
πCov

1 (X, x). We have a “homomorphism”

π1(X, x) → πCov
1 (X, x) (5.6.5)

by which we mean a compatible system of homomorphisms

π1(X, x)→ AutCov(X)(Y ) (5.6.6)

over based regular coverings of (X, x) of finite degree. Now (5.6.5) is a pro-finite
completion (i.e. isomorphism on the pro-finite group given by all finite group quotients)
when X is SLSC, but not in general. However, by the construction (5.6.4), for a covering
f : Y → X of finite index, we have

f−1(x) ∼= colim
Z∈Regx(X)

Cov(X)(Z, Y ), (5.6.7)

(where the map from the right to the left hand side is given by the image of the base point).
From this, we can deduce that the category of finite degree coverings of X is equivalent to
the category of finite πCov

1 (X, x)-sets.

5.6.2 The Étale Case
Now the method of Sect. 5.6.1 can be used to define the étale fundamental group of a
Noetherian scheme X. Just as earlier in this chapter, however, the analogy with topology
is not the most straightforward. We do not have any reasonable definition of a path in the
algebraic context. The role of finite coverings is played by finite étale morphisms, but it is
important to note that such maps are not actually coverings in the topological sense when
we use the Zariski topology (see Exercise 43). They play, nevertheless, the same role, and
also, over C, define coverings in the analytic topology (see Exercise 44). Note here that the
reason we must insist on assuming finiteness is that otherwise, even this analogy would be
broken, as the inclusion of an open subscheme is étale, but the inclusion of an open set in
a topological space is not in general a covering.
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The appropriate analog of the concept of a point is a geometric point of X, which
consists of a point x ∈ X together with a choice of a separable closure k(x) of the residue
field k(x) of x, i.e. a morphism

Spec(kx) → Spec(kx). (5.6.8)

The reason for this definition is to incorporate the Galois group of a field (Exercise 51).
Now for a Noetherian connected scheme X with a geometric point P , we can define the

category Covet
P (X) of based étale covers of X to have objects

Y

f

��
Spec(K)

P
��

�����������
X

(5.6.9)

where f is a finite étale morphism, Y is connected and morphisms given by morphisms of
schemes g : Y → Z which commute with all the arrows in sight. (The morphism g is then
automatically finite étale (see Exercise 47).)

Two variants of this construction are the category Covet (X) of finite étale schemes over
X, and the full subcategory Reget

P (X) on Galois coverings, which means based connected
finite étale morphisms f : Y → X where AutCovet(X)(f ) acts transitively on the set of
lifts (5.6.9) of the geometric point P .

Completely analogously as in Sect. 5.6.1, one proves that the finite groups
AutCovet(X)(f ) where f is in Reget

P (X) form a pro-finite group, which is called the
étale fundamental group of X at P and denoted by πet

1 (X, P ). Also analogously to
(5.6.7), the functor from Covet (X) to finite sets given by the set of lifts of P to the given
étale cover is naturally isomorphic to

colim
Z∈Reget

P (X)
Covet (X)(Z, Y )

and consequently the category Covet (X) is equivalent to the category of finite πet
1 (X, P )-

sets.
The foundational details on étale morphisms needed to carry out this analogy rigorously

are given in Exercises 45–48.

5.7 Finite Fields and theWeil Conjectures

Let us recall some facts about finite fields. A finite field has characteristic p > 0 where p

is a prime number, so it contains Fp = Z/p. This means that it is in particular a vector
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space over Fp, and as such is isomorphic to (Fp)n, which means that it has pn elements.
But any two finite fields with q = pn elements are isomorphic, since any such field Fq

is the splitting field of the polynomial xq − x, the roots being just all the elements of Fq .
Note that in characteristic p, the derivative of this polynomial is 1, so it has no multiple
roots. Thus, Fq is a Galois extension of Fp and furthermore, we have

Gal(Fq/Fp) ∼= Z/n

where the generator is the Frobenius

x → xp.

(Note that by the binomial theorem,

(x + y)p = xp +
(

p

1

)
xp−1y + · · · +

(
p

p − 1

)
xyp−1 + yp,

which is xp+yp in characteristic p, since all the other terms are divisible by p.) Thus, we
can conclude that the profinite group

Gal(Fq) = Gal(Fq/Fq)

is isomorphic to the profinite group

G : IOp → sf Groups

where I is the set of natural numbers with ordering given by

m  n when n is divisible by m,

and we have

Gn = Z/n

where when m  n, the homomorphism Gn → Gm is the surjective homomorphism
sending k + nZ → k +mZ. This profinite group is denoted by Ẑ.

It is worth also making a brief note about the actual limit of Z/n over IOp (which is
also sometimes denoted by Ẑ). The ring

Zp = lim← Z/pn
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(with respect to the unique surjective homomorphisms) is called the ring of p-adic
numbers. It is a discrete valuation ring, and its field of fractions Qp has many properties
analogous to the real numbers (although it is not an ordered field). Analysis can be done
over the field Qp, and this field is known as p-adic analysis. It is not difficult to compute
that in the category of groups (or abelian groups),

Ẑ = lim
IOp

Z/n =
∏

p prime

Zp.

This is a somewhat complicated abelian group, which further makes the case that Ẑ should
be considered in the category of pro-finite (abelian) groups.

Let us now mention the famous Weil conjectures, settled by P. Deligne in 1974 [5, 6],
based on previous work by Grothendieck and others. Let X be an n-dimensional smooth
projective variety over a finite field Fq (q = pk). Let

Ñm = Nm

m

where Nm is the number of “naive” points over Fqm , i.e. ratios in a projective space over
Fqm solving the equations defining X. Now there are deep relations between the numbers
Ñm. Most concisely, they can be expressed by forming the zeta function of X

ζ(X, s) = exp(

∞∑

n=1

ÑmT m), T = q−s (5.7.1)

where exp(x) = ex . The function (5.7.1) is defined for a complex number s whose real part
is sufficiently large (since then the numbers T m will go to 0 much faster than the numbers
Ñm go to ∞. Then the main part of the Weil conjectures states that in fact, ζ(X, s) is a
rational function of s (this was first proved by Dwork), and more specifically,

ζ(X, s) = P1(T )P3(T ) . . . P2n−1(T )

P0(T )P2(T ) . . . P2n(T )

where P0(T ), . . . , P2n(T ) are polynomials in T with integer coefficients such that for
some natural numbers βi and complex numbers αij , we have

P0(T ) = 1− T ,

P2n(T ) = 1− qnT ,

Pi(T ) =
βi∏

j=1

(1− αij T ), |αij | = |q|i/2.
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Giving a proof of the Weil conjectures is beyond the scope of this book. However, the
starting point of the proof (which was Grothendieck’s program, recorded in the SGA
volumes) is to push further the analogy between the étale and analytic topology, extending
it to cohomology (thus defining étale cohomology). We shall mention the construction and
some basic facts about étale cohomology in Sect. 4 of Chap. 6.

Much of modern algebraic number theory (including some of the most important
unsolved problems of mathematics) are phrased in terms of various variants of zeta
functions (also known as L-functions). Smooth projective varieties over finite fields are
more manageable than, say, over Q because the Galois group of finite fields is just Ẑ,
which is relatively easy. The Galois group of Q is unknown.

We saw that much additional discussion arises when we do algebraic geometry over
fields which are not algebraically closed, and that much of it is related to number theory.
Because of this, algebraic geometry over non-algebraically closed fields is also referred to
as arithmetic geometry.

6 Exercises

1. Is a finite limit of separated (resp. universally closed) schemes always separated (resp.
universally closed)?

2. Is the pushout of two copies of the standard inclusion A
n
C
→ P

n
C

in the category of
schemes universally closed?

3. A morphism of schemes f : X → Y is called quasi-compact if if Y is covered by
open affine subschemes Ui such that each f−1(Ui) is quasi-compact. Prove that if f

is a quasi-compact morphism, then f (X) is closed in Y if and only if it is closed under
specialization.

4. Is Spec(k) for a field k always proper?
5. Let f : X → Y , g : Y → Z be morphisms of schemes. Prove that if g ◦ f is

universally closed (resp. proper) then f is universally closed (resp. proper).
6. Prove that every unique factorization domain is normal. [Suppose r/s is the root of

a monic polynomial where gcd(r, s) = 1. Clearing denominators, we get that s is a
factor of rn for some n.]

7. Prove that in a Dedekind domain, any non-zero primary ideal I is a (finite) power
of a maximal ideal. [First note that primary ideals in a localization S−1R correspond
bijectively with primary ideals in R disjoint from S via the inverse maps given by
pushforward and intersection. Then localize at

√
I and use Lemma 2.4.2, 2.]

8. Prove that in a Dedekind domain, any non-zero ideal factors, uniquely up to order
of factors, as a product of maximal ideals. [Use primary ideal decomposition, and
Exercise 7. To replace intersection by product, use the Chinese Remainder Theorem.]

9. Prove that a valuation ring is Noetherian if and only if it is a discrete valuation ring.
10. Prove that every valuation ring is integrally closed (meaning normal, i.e. integrally

closed in its field of fractions).
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11. Prove that a discrete valuation ring is the same thing as a local Dedekind domain.
12. Let f : X → Y be a morphism of Noetherian schemes and suppose Y is covered by

open subsets Ui such that the restriction of f to f−1(Ui) → Ui is universally closed.
Prove that then f is universally closed.

13. Prove that if X is a separated scheme and R is a valuation ring with field of fractions K ,
then a diagram of the form (2.5.1) can be completed in at most one way. [Completing
the diagram in two different ways would give a morphism into X ×X which is in the
closure of the image of the diagonal.]

14. Prove Proposition 2.6.1. [Use the distributivity of finite products of schemes under
gluing of open affine subschemes.]

15. Prove that if X is a regular scheme and U ⊆ X is an open affine set, then OX(U) is a
Noetherian (and hence regular) ring.

16. (a) Prove that Spec(C[x, y, z]/(x2+y2+z2−1, xyz−1)) is a smooth affine scheme
over Spec(C).

(b) What happens if we replace C with F2 (the field with 2 elements)?
[You may want to substitute x = 1/yz, but then justify it rigorously.]

17. Prove Minkowski’s Theorem from the geometry of numbers: Let U ⊂ Rn be a convex
set of volume > 2n (using the standard volume, i.e. the unit cube has volume 1).
Assume further that for x ∈ U , we also have −x ∈ U . Then U ∩ (Zn � {0}) �= ∅.
[Prove first that there exist points x, y ∈ U such that x − y ∈ (2Z)n; otherwise,
consider U + z for different z ∈ (2Z)n are disjoint, which contradicts our assumption
on volume.]

18. Let K ⊃ Q be a finite extension of degree n (i.e. K is n-dimensional as a vector
space over Q). Then K is called a number field. Prove that the ring KR = K ⊗Q R

is isomorphic to a product of r copies of R and s copies of C for some numbers r, s

such that r + 2s = n. [r is the number of different embeddings of K into R, and s

is the number of different embeddings of K into C whose image is not in R. Observe
that every one of the s embeddings of the second kind can be composed with complex
conjugation, resulting in a different embedding.]

19. Recalling from Exercise 18 the decomposition of KR into a product of r copies of R
and s copies of C, let St be the set of all points x ∈ KR such that the absolute values of
the r + s coordinates of x add up to ≤ t . Using the inequality between the geometric
and arithmetic average, observe that the product of the absolute values of coordinates
of an element x ∈ St (called the norm of x and denoted by N(x)) is

≤
(

t

n

)n

.

20. Prove that the volume of St (considering the standard volume in Rr × Cs ∼= Rn) is

2rπs tn

n! .
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[It is possible to consider the volume of the unit ball in the postman’s metric in R
n,

and then “replace a product of s squares with a product of disks of an equal diameter.”]
21. Using the result of Exercise 17 and referring to the terminology of Exercise 18, prove

that if K is a number field (i.e. a finite extension of Q) and OK ⊂ K is the set of
elements integral over Z, then

vol(KR/OK) ≥ nn

n!
(π

4

)s

.

[By Exercise 17, if the volume of St is greater than 2nvol(KR/OK ), St contains a
non-zero point of OK . However, by Exercise 19, we must then have (t/n)n ≥ 1 (since
a non-zero integral point certainly cannot have a coordinate of absolute value < 1).
Putting these observations together gives the estimate.]

22. Noting that s ≤ n/2, observe that vol(KR/OK) > 1 if [K : Q] > 1. Additionally,
if p divides the integer vol(KR/OK), observe that OK/(p) has nilpotent elements.
Conclude that there is no finite étale morphism of schemes X → Spec(Z) where X is
not a finite disjoint union of copies of Spec(Z).

23. State and prove an appropriate analog of the statement of Exercise 27 of Chap. 2 for
abstract varieties as defined in this chapter.

24. Prove that every algebraic variety over a field k is birationally equivalent to a
hypersurface, i.e. a variety of the form

Spec(k[x1, . . . , xn]/f )

where f is an irreducible polynomial. [Use Noether’s normalization lemma and the
Primitive Element Theorem.]

25. Let X be a smooth variety over an algebraically closed field k, and let Y ⊆ X be
a closed subscheme which is also a smooth variety over k. Prove that every closed
point P ∈ Y , has an open neighborhood U in X together with a smooth morphism
f : U → A

c
k for some c ∈ N0 such that U ∩ Y = f−1(0). [Use Exercise 37 of

Chap. 1.]
26. Prove that no elliptic curve over a field k of characteristics �= 2, 3 is rational. [Without

loss of generality, k is algebraically closed.]
27. Prove that if C is a smooth curve over an algebraically closed field k, then every

rational function on C is equal to a composition of an affine coordinate on P
1
k with a

morphism of schemes C → P1
k . Is this true when C is not smooth? (Compare with

Exercise 16 of Chap. 1.) [In an affine open neighborhood of a closed point P on C,
a rational function is given as a ratio f/g where f , g are regular functions. Now we
can assume that f , g are non-zero on P , since OC,P is a unique factorization domain
(why?), and factoring out a greatest common factor is valid in an open neighborhood
of P .]
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28. Let f : K ⊆ E be an inclusion of function fields of curves over an algebraically
closed field k. Prove that there exists a finite subset Z ⊂ CK such that f restricted to
CE � f−1(Z) is étale.

29. Prove the Lüroth Theorem for algebraically closed fields: Let k be an algebraically
closed field and let E be a field with k � E ⊂ k(x). (Recall that k(x) is the field of
rational functions over k in one variable.) Then E is isomorphic to k(x) as a k-algebra.
[First prove that E is finitely generated as a field over k (and thus a function field of a
curve). To this end, note that it contains k(t) for some rational function t , and consider
a minimal polynomial of x over k(t). Next, consider the corresponding morphism of
varieties f : P1

k → CE . Now select a non-empty open subset U ⊂ CE on which f is
étale, and select two closed points P,Q ∈ f−1(U) such that f (P ) �= f (Q). Without
loss of generality, P = 0, Q = ∞. Let x be the corresponding affine coordinate on
P1 and let a be the constant term of the monic minimal polynomial of x over E. Prove
that E = k(a) by showing that the morphism CE → P1

k corresponding to a has degree
1.]

30. Describe the orbit category of the symmetric group �3 on 3 elements.
31. Describe the points of the affine scheme Spec(R[x, y]/(x2 + y2)).
32. Let R = S−1C[x1, . . . , xn] where S consists of all non-zero symmetric polynomials

in x1, . . . , xn. Describe the points of the scheme Spec(R).
33. Prove that any affine conic over R, i.e. scheme of the form Spec(R[x, y]/(f )) where

f is an irreducible polynomial of degree 2 with coefficients in R, is isomorphic to A1
R

,
A

1
R
� {0} or P1

R
� {P } where P is any point with residue field C. Is there a morphism

of schemes A1
R
→ Spec(R[x, y]/(x2 + y2 − 1) given by the formula

t → (
2t

t2 + 1
,
t2 − 1

t2 + 1
)?

34. (Galois Theory) Let E be a finite separable extension of a field F . The extension E

is called Galois if there exists a finite subgroup G of the group of automorphisms of
the field E such that F = EG (the superscript means fixed points). Recall that the
degree [E : F ] of the extension is the dimension of E as a vector space over F . By
the Primitive Element Theorem, E is generated as an F -algebra by a single element
α. Let f be its monic minimal polynomial. Then the degree of f is [E : F ]. Whether
E is a Galois extension of F or not, the Galois group Gal(E/F) of E over F is the
group of automorphisms of E which leave every element of F fixed.
(a) Prove that for any finite separable extension,

|Gal(E/F)| ≤ [E : F ].

[The group Gal(E/F) permutes the roots of f in the separable closure of F , and
no element other than the unit can leave any root fixed.]
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(b) Prove that the extension is Galois if and only if f is a product of linear factors in
E[x]. (Then we call E the splitting field of f .)

(c) Prove that for any finite subgroup H of the group of automorphisms of E, [E :
EH ] ≤ |H |. Thus, by (a), equality always arises, and a finite separable extension
is Galois if and only if |Gal(E/F)| = [E : F ]. [Let v1, . . . , vm be the basis of E

as a vector space over K = EH . Let h1, . . . , hn be the different elements of H .
Assume for contradiction that m > n. Consider the system of linear equations in
unknowns x1, . . . , xm ∈ E:

x1h1(v1)+ · · · + xmh1(vm) = 0

. . .

x1hn(v1)+ · · · + xmhn(vm) = 0.

Then there is a non-zero solution (x1, . . . , xm). Since one of the elements hi is
the identity, not all the elements xj can be in K . Consider a solution with the
fewest non-zero elements, i.e. with the largest k such that x1 = · · · = xk = 0,
and the remaining elements xj ’s are non-zero. Dividing by xk+1, we may assume
xk+1 = 1. Now let xq ∈ E � K . (Thus, necessarily, q > k + 1.) Then there is an
h ∈ H such that h(xq) �= xq . Further, (h(x1), . . . , h(xm)) is also a solution. Of
course, h(x1) = · · · = h(xk) = 0, h(xk+1) = 1. Subtracting both solutions, we
obtain a solution with fewer non-zero terms, which is a contradiction.]

(d) Prove that if E is a Galois extension of F , then H → EH is an isomorphism of the
partially ordered set of fields L with F ⊆ L ⊆ E and the opposite of the partially
ordered set of subgroups of Gal(E/F) (with both orderings by inclusion).

35. Prove the following version of Hilbert’s Theorem 90: Let a finite group G act on a ring
L[x1, . . . , xn] where L is a field so that the action restricts to a faithful action of G on
L (i.e. no element of G acts by the identity) and the action of any g ∈ G on the vector
(x1, . . . , xn)

T is given by left multiplication by a matrix A with entries in L. Then

Spec(L[x1, . . . , xn]G) ∼= A
n
LG

where the G-superscript means the ring of fixed points. [Let λ1, . . . , λm be a basis of
L over LG. By Galois theory (Exercise 34), G = {σ1, . . . , σm} has the same number
of elements and the matrix (σi(λj ))ij ∈ GLm(L) . Let V be the free E-vector space
on x1, . . . , xn. Then by what we just observed, any v ∈ V is an E-linear combination
of the fixed vectors

vj =
m∑

i=1

σi(λj v).

Pick an E-basis of V among the vectors in V G.]
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36. Prove that for algebraic varieties X,Y over an algebraically closed field k, the
canonical projection

(X ×Spec(k) Y )m → Xm × Ym

is a bijection. Is it a homeomorphism with respect to the induced topology of the
scheme topology? How about if we replace Xm, Ym with Xan, Yan (i.e. the analytic
topology) in the case k = C?

37. Prove in detail the unit and inverse property in π1(X) for a topological space X.
38. Describe how a continuous map of spaces f : X → Y defines a functor π1(f ) :

π1(X) → π1(Y ) and how a homotopy h : X × [0, 1] → Y between maps f, g :
X → Y defines a natural transformation (hence natural isomorphism) π1(f ) ∼= π1(g).
Conclude that a homotopy equivalence of spaces X, Y induces an equivalence of
categories between π1(X) and π1(Y ). In particular, if a space X is contractible, i.e.
homotopy equivalent to a point, then for every x ∈ X, π1(X, x) = 0.

39. Let S1 be the unit circle in C (with the topology induced by the analytic topology on
A1
C

). Prove that π1(S
1) ∼= Z. [Prove that the universal cover of S1 is the map R→ S1

given by t → e2πit .]
40. Let X be a smooth proper variety over C.

(a) Prove that a morphism h : Spec(K(An
C
)) → X over Spec(C) extends to a

morphism U → X where U ⊆ A
n
C

is an open subvariety whose complement has
codimension > 1 (meaning that all its irreducible components have codimension
> 1). [Follow the method of Lemma 4.2.2. Consider the set of all non-empty
open subvarieties of A

n
C

to which h extends. First show that it is non-empty.
Let U be its maximal element with respect to inclusion. Suppose an irreducible
component Z of its complement has codimension 1. Let P be its generic point.
Apply the valuation criterion of properness for X to the discrete valuation ring
OA

n
C
,P and use it to extend h to a larger open subvariety than U , thereby deriving

a contradiction.]
(b) Prove that for a rational smooth proper variety X overC, we have π1(Xan) = 0. [If

X is rational, it contains an open subvariety V isomorphic to an open subvariety of
A

n
C

. Now assume a closed path α represents a non-zero element of π1(Xan). Then
α is homotopic to a closed path in V . However, by (a), the embedding f : V → X

extends to an open subvariety U ⊆ A
n
C

whose complement has codimension > 1.
But then π1(Uan) = 0.

(The reader can treat these statements about the fundamental group as a black box.
For a deeper understanding, one needs the concept of a manifold from Sect. 1 of
Chap. 5. For a smooth variety X over C, Xan is a complex (and in particular real
smooth) manifold. Now the complement Z of an open subvariety is a union of finitely
many smooth submanifolds of codimension ≥ 2 (≥ 4 if Z is of codimension > 1).
Note that the irreducible components of Z many not be non-singular, but the subset
of points where a variety is singular, called the singular locus, is a proper Zariski
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closed subset, and thus, our statement can be proved by induction. Now a closed path
in a manifold can be made smooth by a homotopy, and using the technique of regular
value, a smooth path can be deformed by a smooth homotopy to a path which avoids
a finite union of submanifolds of (real) codimension > 1. Similar comments apply to
path homotopies and submanifolds of (real) codimension > 2. We briefly touch on
regular values in Sect. 3.6 of Chap. 5. For details, see [20].)]

41. Consider the variety X = Proj (C[x, y, z]/(x2z − y3 − y2z)) over C (prove that the
polynomial is irreducible). Prove that X is rational, while π1(Xan) �= 0. How is it
possible in view of Exercise 40 (b)? [Construct a morphism of varieties P1

C
→ X

which is bijective with the exception of identifying two points. Then find a copy of
S1 ⊂ Xan which is a retract (i.e. the inclusion has a left inverse).]

42. Calculate πet
1 (Spec(Z), P ) for any geometrical point P .

43. Consider the étale morphism Spec(x2) : A1
C
� {0} → A

1
C
� {0}. Prove that this is not

a covering in the Zariski topology.
44. Prove that for varieties over C, a finite étale morphism f : X → Y defines a finite

degree covering fan : Xan → Yan.
45. Prove that the category of finite étale morphisms over a scheme X has finite limits.
46. Prove that an étale morphism of Noetherian schemes is open (i.e. an image of an open

set is open). [First prove that locally, an étale morphism of Noetherian schemes is
given as Spec of a homomorphism of rings R → S where R, S are Noetherian rings,
and S is a finitely generated projective R-module; you may borrow Lemma 2.2.4 of
Chap. 4. Next, prove that if h : R → S is a homomorphism of rings which makes
S a finitely generated projective R-module, then Spec(h) sends a distinguished open
set to an open set; use the fact that for R-modules M ⊕ N = F and an ideal I ⊂ R,
IF ∩M = IM .]

47. Prove that if φ : X → Y and ψ : Y → Z are morphisms of schemes such that ψ ◦ φ

and ψ are étale, then φ is étale. [Reduce to the case of standard smooth of dimension
0, so writing schematically, φ is Spec of a map of R-algebras R[Y ]/G(Y ) →
R[X]/F (X) and Y = H(X) (where X,Y are tuples of variables and F,G,H are
tuples of functions). Then we have F ◦ H = G. Take total differentials and use the
chain rule to show that φ is standard smooth of dimension 0 over a point in Z, hence,
by Nakayama’s lemma, on local rings, and hence on open neighborhoods of any point.]

48. Using Exercises 45–47, complete the construction of the étale fundamental group as
outlined in Sect. 5.6.2 by mimicking the construction of Sect. 5.6.1.

49. Let p ∈ Z be a prime number. A number field K ⊆ Q is called unramified at p if
OK ·p is a prime ideal in OK ( recall that OK denotes the integral closure of Z in K).
Let S be a set of primes in Z. Prove that πet

1 (Spec(S−1Z), Spec(Q)) is the profinite
group formed by the groups Gal(K/Q) over all fields K unramified at all primes
p /∈ S.
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50. Let k be a field. Construct a monomorphism of profinite groups

Ẑ→ πet
1 (Spec(k[x, x−1]), Spec(k(x)))

where Ẑ is the profinite group given by all the finite quotients of Z.
51. Prove that the étale fundamental group πet

1 (Spec(k), Spec(k)) where k is a separable
closure of a field k is isomorphic to the pro-finite group Gal(k/k).

52. Calculate ζ(Pn
Fp

, s).
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An important concept in topology is a vector bundle, which is, roughly, a locally trivial
parametric family of vector spaces indexed by a topological space. It is possible to think
of a vector bundle as its total space with extra structure, or the sheaf of its sections.
Both points of view still exist in schemes, but the sheaf-theoretical point of view is
more fundamental, and reveals some additional features. In particular, taking kernels a
cokernels, one gets the abelian category of coherent sheaves. Coherent sheaves are more
general than algebraic vector bundles, including, for example, sheaves of ideals, which
correspond, for Noetherian schemes, to closed subschemes. A particularly important
application of sheaves of ideals is the theory of blow-ups, a construction which allows us,
for example, to replace a point with a subscheme of codimension 1, while not disturbing
(and, in fact, often even improving) smoothness.

Before getting to blow-ups, however, we will study line bundles, and the geometric
concepts of divisors, to which they correspond in good cases. As the name suggests,
divisors are important in the study of divisibility, allowing, for example, a very general
characterization of unique factorization domains. From another point of view, certain
divisors called very ample allow us to construct embeddings of varieties into projective
spaces, thus giving tools for showing that a given smooth complete variety is projective.
(It is, however, not true in general, as we will see in Exercise 34.)

Some new technical points will also arise. First, we will need to improve our
foundations of sheaf theory. While studying line bundles, we will also encounter first
cohomology groups, thus motivating the systematic study of cohomology in Chap. 5. We
will also need still more commutative algebra, in particular more theory of regular rings,
which, as it happens, will need to use the cohomological techniques of Chap. 5 for its
fundamental proofs.
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1 Sheaves of Modules

1.1 Presheaves and Sheaves Valued in a Category

Generally, for any category C, we can define presheaves valued in C (or briefly just
presheaves in C) on a topological space X as functors

F : (Open sets in X,⊆)Op → C. (1.1.1)

(A partially ordered set is a category where there is one morphism x → y when x ≤ y

and no morphism otherwise.) The functoriality incorporates the restriction axiom. Section
objects are the values of the functor F on objects, and restrictions are its values on
morphisms.

To define a sheaf F in C (or sheaf valued in C) on a topological space X, the category
C needs to have limits. The gluing axiom cannot be phrased by referring to individual
sections. The axiom says instead that given

U =
⋃

i∈I

Ui (1.1.2)

open in X, then F(U) is the limit (equalizer) of the diagram

∏

i∈I

F(Ui)→→
∏

j,k∈I

F(Uj ∩ Uk) (1.1.3)

where the two arrows are products of restrictions by setting i = j resp. i = k.
Morphisms of presheaves and sheaves on X are defined as natural transformations.

Explicitly, a morphism of sheaves

f : F → S

consists of morphisms in C

f (U) : F(U) → S(U)

and commutative diagrams in C

F(U)

��

f (U)
�� S(U)

��
F(V )

f (V )

�� S(V )

where the vertical arrows are restrictions.
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Assuming the category C has also directed colimits (meaning colimits over directed
partially ordered sets), we may define the stalk Px of a presheaf P at a point x ∈ X as the
colimit of P(U) over all open sets U � x (with respect to restriction).

Denote the category of presheaves in a category C on a topological space X by
pre-C-ShX, and the category of sheaves in a category C on X by C-ShX . Then by
definition, there is a forgetful functor

U : C-ShX → pre-C-ShX

given by taking a sheaf and considering it as a presheaf. (Because this is just an inclusion
functor, it is often omitted from the notation.) Given a certain assumption on the category
C, this functor has a left adjoint called sheafification and denoted by sh. For a presheaf P
and a sheaf F on X, we have a natural bijection

C-ShX(sh(P),F) ∼= pre-C-ShX(P, UF). (1.1.4)

The assumption on the category C which we will use is:

ASSUMPTION Directed colimits in the category C exist and commute with products and
equalizers.

Explicitly, this means that for any functor

Fs : Is → C, s ∈ S,

where Is are directed partially ordered sets, and S is any set, the canonical map

colim
(is )∈∏S Is

∏

s∈S

Fs(is) →
∏

s∈S

colim
i∈Is

Fs(i)

is an isomorphism, and for a directed partially ordered set I , two functors F,G : I → C

and two natural transformations h, k : F → G, the canonical map from the colimit over I

of the equalizers of the diagrams

F(i)→→G(i)

into the equalizer of

colim
i∈I

F (i)→→ colim
i∈I

G(i)

is an isomorphism.
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This assumption is true for example for any category of universal algebras.
The functor sh is obtained as follows: One first constructs an auxiliary functor L. For a

presheaf P in a category C on X and an open cover (Ui) of U , let

P((Ui)) = lim←

⎛

⎝
∏

i

P(Ui)→→
∏

j,k

P(Uj ∩ Uk)

⎞

⎠ .

Then

LP(U)

is the colimit of P(Ui) over all open covers, where arrows are given by refinement. (A
refinement of an open cover (Ui)i∈I is an open cover (Vj )j∈Ji where for each j ∈ J , there
exists an i ∈ I with Vj ⊆ Ui .)

A presheaf P on a topological space X is called separated if the canonical morphism

P(U) → P((Ui))

is a monomorphism (which means injective in the case of a category of universal algebras)
for every open cover (Ui) of every open set U ⊆ X.

1.1.1 Proposition

1. For every presheaf P on X, LP is a separated presheaf.
2. For every separated presheaf P on X, LP is a sheaf.
3. Consequently, one can put

sh = L ◦ L.

Proof 3 is clearly a consequence of 1 and 2. To prove 1, we note that given our
Assumption, a colimit of monomorphisms in C over a directed partially ordered set is
a monomorphism. Additionally, a colimit over a directed poset P (also called directed
colimit) is the same as the colimit over a cofinal subset Q, which means that for every
element x ∈ P there exists an element y ∈ Q with y ≤ x.

Now by taking intersections, refinements of a given open covering (Ui) of an open set
U ⊆ X are cofinal in the directed poset of coverings, which implies that the canonical
morphism

LPL(U) →
∏

i

LPL(Ui) (1.1.5)
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is a monomorphism. Thus,

LP(U) → LP((Ui))

through which (1.1.5) factors, is a monomorphism, as claimed.
To prove 2, let P be a separated presheaf and let (Ui) be an open cover of an open set

U . By 1, we need to prove that

LP(X) → LP((Ui)) (1.1.6)

is an isomorphism. By the Assumption, for an object Z ∈ C, a morphism

Z → LP((Ui)) (1.1.7)

for an open cover (Ui) of an open set U factors through a morphism

Z → P((Vij ))

for some open cover (Vij ) of (Ui). These morphisms further are compatible on intersec-
tions, so they give a morphism

Z → P((Vij )i,j ) → LP(U).

The fact that this morphism indeed factors through the chosen morphism (1.1.7) follows
from the assumption that P is separated. ��

Example (The Constant Sheaf) Let us work, say, in the category of abelian sheaves (i.e.
sheaves of abelian groups). (We could also work in sets, but we will need the case of
abelian groups later.) The constant sheaf A for an abelian group A is the sheafification
of the presheaf P where P(U) = A for every U ⊆ X open. Consider the space X =
{1, 2} with the discrete topology (i.e. where every subset is open), and let us construct the
constant sheaf Z. We start with the presheaf P where

P(∅) = P({1}) = P({2}) = P({1, 2}) = Z.

Then

(LP)(∅) = 0

(using the empty cover of ∅), and

(LP)({1}) = (LP)({2}) = (LP)({1, 2}) = Z.
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We see that this is not a sheaf (by considering the cover {1}, {2} of {1, 2}). Note that the
presheaf P violates the condition of being separated precisely on the empty cover of the
empty set. On the other hand,

(LLP)(∅) = 0,

(LLP)({1}) = (LLP)({2}) = Z,

(LLP)({1, 2}) = Z⊕ Z,

and we see that this is indeed a sheaf. Thus, we really need two steps. For a general
description of the constant sheaf, see Exercise 2.

1.1.2 An alternate characterization of sheafification
For sheaves of sets (or universal algebras), there is also an alternate characterization of
sh(P): shP(U) is the subset of

∏

x∈U

Px

consisting of all those systems (sx)x∈U where for all x ∈ U , there exists an open set
V ⊆ U such that x ∈ V and there is an sV ∈ P(V ) which maps to sx ∈ Px for every
x ∈ V by the canonical map (See Exercise 3.)

1.2 The Effect of ContinuousMaps on Sheaves

Let

f : X → Y

be a continuous map and let C be a category. Then as before, there is a functor

f∗ : C-ShX → C-ShY

where for a C-sheaf F on U ⊆ Y open, we put

(f∗F)(U) = F(f−1(U)).

This functor has a left adjoint, which is denoted by

f−1 : C-ShY → C-ShX
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and is defined as the sheafification sh(P) where

P(V ) = colim
f (V )⊆U

S(U).

These functors are sometimes referred to as the pushforward and pullback. To prove the
adjunction, since we used sheafification, which itself is a left adjoint, it suffices to prove
that with P as above,

pre-C-ShX(P,F) = C-ShY (S, f∗F).

By the universality of the colimit, this is the same thing as producing a morphism, natural
with respect to inclusions in the U and V variables,

S(U) → F(V ) (1.2.1)

for all U ⊆ Y open with f (V ) ⊆ U , which is the same thing as V ⊆ f−1(U). Thus,
in (1.2.1), we may as well restrict to the case V = f−1(U), which is the same thing as
producing a morphism of sheaves S → f∗F .

It is worth pointing out that the functor f−1 preserves stalks in the sense that (by
definition), we have for x ∈ X,

(f−1(F))c ∼= Ff (x). (1.2.2)

This is because a stalk is the same thing as pullback of the sheaf to a point. Because of that,
the functor f−1 is exact (see Exercises 1 and 4). However, it does not in general preserve
products (and hence, does not in general have a left adjoint). For example, let Y = R, let

jn : Un = (−1/n, 1/n) ⊂ R

and let

F =
∏

n∈N
(jn)!ZUn

(1.2.3)

(where ZU denotes the constant Z sheaf on U and j! denotes extension by 0 along an open
inclusion i; see Sect. 2.3 of Chap. 2). Let f : {0} → R be the inclusion. Then, identifying
abelian sheaves over a point with abelian groups, we have

f−1(F) = F0 =
⊕

n∈N
Z,
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while

∏

n∈N
f−1(j!ZUn

) =
∏

n∈N
Z.

Recall on the other hand that if j : U → Y is an inclusion of an open subset, then j! is a
left adjoint to j−1.

Note that the functor f∗, which is right adjoint to f−1, is therefore left exact, but is not
exact in general (for f : X → ∗ the projection to a one point set, f∗ can be identified with
the global sections functor—see Exercise 5). For f = i : Z → X an inclusion of a closed
subset, however, we have (i∗(F))x = Fx for x ∈ Z, and (i∗(F))x = 0 for x /∈ Z, and thus
i∗ is exact (see Exercise 6).

1.3 Sheaves of Modules

Let us define a category C whose objects are pairs (R,M) where R is a commutative ring
and M is an R-module. Morphisms (f, g) : (R,M) → (S,N) consist of a homomorphism
of rings f : R → S and a map g : M → N such that for all x, y ∈ M ,

g(x + y) = g(x)+ g(y)

(g is a homomorphism of abelian groups) and for all x ∈ M , r ∈ R,

g(rx) = f (r)g(x).

We see that the objects of C still behave the same way as universal algebras, with the
difference that instead of a set, we have a pair of sets, and each operation specifies whether
each input variable is in the first or the second set, and also which of the two sets the
output is in. Instead of two sets, we can have a system of sets Si indexed by i ∈ I for some
indexing set I , and again, each operation with n input variables specifies from what sets
Si1 , . . . Sin the inputs variables are, and in which set Si the output is in. Equations between
operations can be imposed when they make sense. A structure of this type is called a
multisorted universal algebra; in general, a homomorphism of multisorted algebras of the
same type (Si)i∈I → (Ti)i∈I consists of systems of maps

fi : Si → Ti, i ∈ I

which preserve the operations. Categories of multisorted universal algebras also satisfy the
Assumption of Sect. 1.1.

In summary, the category C of pairs (R,M) where R is a commutative ring and
M is an R-module is an example of a category of multisorted universal algebras and
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homomorphisms. A sheaf of modules on a topological space X is a sheaf in this category
C.

To be explicit, a sheaf of modules on X specifies for every open set U ⊆ X a
commutative ring R(U) and a R(U)-module M(U) where R is a sheaf of commutative
rings and M is a sheaf of abelian groups where, for an open subset V ⊆ U and sections
r ∈ R(U), m ∈M(U), we have

rm|V = r|V ·m|V .

We may then also say that M is a sheaf of modules over the sheaf of rings R.

1.4 The Effect of ContinuousMaps on Sheaves of Modules

By Sect. 1.2, for a continuous map

f : X → Y (1.4.1)

and a sheaf of modules M over a sheaf of commutative rings R on X, we have a sheaf of
modules f∗M over the sheaf of rings f∗R and similarly, for a sheaf of commutative rings
S on Y and a sheaf of S-modules N , we have a sheaf of f−1S-modules f−1N , and the
functor f−1 is left adjoint to the functor f∗.

Typically, however, our point of view is different, i.e. X and Y are ringed spaces and the
map f is a morphism of ringed spaces. (The case of a morphism of schemes is a special
case.) In the case of ringed spaces, the sheaves of commutative rings on X and Y are given,
and are denoted by OX, OY . A morphism of ringed spaces then comes with a morphism
of sheaves of rings

φ : OY → f∗OX. (1.4.2)

This means that for a sheaf of OX-modules M, f∗M is automatically a sheaf of OY -
modules, using its automatic structure of a sheaf of f∗OX-modules, and the morphism of
sheaves of rings (1.4.2).

The same does not hold for f−1, however: for a sheaf of OY -modules N , f−1N is a
sheaf of modules over f−1OY . From (1.4.2), using the adjunction, we get a morphism of
sheaves of rings

ψ : f−1OY → OX (1.4.3)

which goes “in the wrong direction.” However, we can “push forward” the sheaf f−1N
from f−1OY to OX using the morphism (1.4.3):
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Let

f ∗N = OX ⊗f−1OY
f−1N (1.4.4)

be the sheafification of the presheaf whose set of sections on an open set V ⊆ X is the
OX(V )-module

OX(V )⊗(f−1OY )(V ) (f−1N )(V ).

If we denote by OX-Mod the category of sheaves of OX-modules, then from this point of
view, the functor

f∗ : OX-Mod → OY -Mod

is right adjoint to

f ∗ : OY -Mod → OX-Mod.

In fact, reserving the symbol f ∗ for this situation is the historical reason why the left
adjoint of f∗ for sheaves of sets (or rings) is denoted by f−1.

Note that the sheafification of a sheaf of modules (R,M) where R is already a sheaf
of rings does not change R. We can phrase this to say that there is a sheafification functor
(left adjoint to the forgetful functor) from presheaves of modules to sheaves of modules
over a fixed sheaf of rings R.

1.5 Biproduct, Tensor Product andHom of Sheaves of Modules

Let X be a ringed space with structure sheaf OX and consider again the category OX-Mod

of OX-modules. Then we have functors

?⊕? : OX-Mod ×OX-Mod → OX-Mod,

?⊗OX
? : OX-Mod ×OX-Mod → OX-Mod,

HomOX
(?, ?) : (OX-Mod)Op ×OX-Mod → OX-Mod

called the biproduct, tensor product and Hom-functor of sheaves. The biproduct of
sheaves of OX-modules M, N is defined by

(M⊕N )(U) =M(U)⊕N (U)

for an open set U ⊆ X.
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Note that there is also a biproduct of sheaves of abelian groups (also sometimes called
abelian sheaves). In fact, it is easily seen that both sheaves of abelian groups on a given
topological space, and sheaves of modules on a given ringed space, form abelian categories
(see Sect. 1.4 of Chap. 2, and also Exercise 7). Also, both categories have all limits and all
colimits.

The Hom-functor of sheaves of modules is defined by setting, for an open set U ⊆ X,

(HomOX
(M,N ))(U) = HomOU

(M|U,N |U ), (1.5.1)

(recall that M|U denotes the restriction of the sheaf M to the open set U—see Exercise 8).
The tensor product is defined by letting M⊗OX

N be the sheafification of the presheaf of
OX-module P where for an open set U ⊆ X,

P(U) =M(U)⊗OX(U) N (U).

These functors satisfy all the usual properties of the biproduct, tensor product and Hom.
For example, the biproduct and tensor product are commutative, associative and unital
and the tensor product is distributive under the biproduct. Also, we have for sheaves of
OX-modules L,M,N ,

HomOX
(L⊗OX

M,N ) ∼= HomOX
(L,HomOX

(M,N )) (1.5.2)

(Exercise 9).

2 Quasicoherent and Coherent Sheaves

2.1 Invertible Sheaves, Picard Group, Locally Free Sheaves, Algebraic
Vector Bundles, Algebraic K-Theory

The sheaf OX is, of course, a sheaf of modules over itself, and it is the unit (neutral
element) with respect to ⊗OX

. We say that a sheaf of OX-modules L is invertible if there
exists a sheaf of OX-modules L−1 such that

L⊗OX
L−1 ∼= OX.

The set of isomorphism classes of invertible sheaves of OX-modules forms an abelian
group with respect to the operation⊗OX

, which is called the Picard group and denoted by
Pic(X). When X = Spec(R), we shall also write Pic(R) for the Picard group.
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A sheaf M of OX-modules is called locally free if for every point x ∈ X, there exists
an n and an open set U � x such that

M|U ∼= OU ⊕ · · · ⊕OU︸ ︷︷ ︸
n

.

(n can be infinite, in which case we mean the direct sum.) If n is always finite, we say
that M is a finite-dimensional locally free sheaf. If n is independent of U , we say that
M is a locally free sheaf of dimension n. (Dimension of a free module over a non-zero
commutative ring is well-defined, see Exercises 10, 11.)

An invertible sheaf is easily seen to be the same thing as a locally free sheaf of OX-
modules of dimension 1 (Exercise 12).

When X is a scheme, we also call a finite-dimensional locally free sheaf M on X an
algebraic vector bundle. This terminology is motivated as follows: Suppose X = Spec(R)

is an affine scheme. Then we can also think of the ring R as the sections (in the sense of
right inverses), in the category of schemes, of the projection

A
1
X → X. (2.1.1)

Indeed, since we are in the category of affine schemes, the projection (2.1.1) is the Spec

of the inclusion of constant polynomials

R → R[x]. (2.1.2)

The right inverses of (2.1.1) are then Spec of left inverses of (2.1.2), which are in bijective
correspondence with elements of R (by where we send x). Similarly, elements of the free
module Rn can be thought of as sections of the projection

A
n
X → X

in the category of schemes. From this point of view, we can think of an n-dimensional
algebraic vector bundle on a scheme X as a “twisted n-dimensional affine space over X.”
This can be made more precise as follows: On an affine open subset X ⊇ Vi

∼= Spec(Ri)

on which M is free of dimension n, (we may speak of a coordinate neighborhood), let

Ui = A
n
Vi

, (2.1.3)

subject to choosing an isomorphism

φi :M|Vi
∼= OUi ⊕ · · · ⊕OUi︸ ︷︷ ︸

n

. (2.1.4)
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Then, letting pi : Ui → Vi be the projection, let Uij = p−1
i (Vi ∩ Vj ). Then composing

(φj )|Vi∩Vj with (φi)
−1|Vi∩Vj , and letting

Uij = p−1
i (Vi ∩ Vj ) = A

n
Vi∩Vj

,

we obtain an isomorphism of schemes

φij : Uij → Uji

and the assumptions of Sect. 2.5 are satisfied. Therefore, we can define a scheme U as a
colimit of the schemes Ui . We have a projection

pM : UM → X. (2.1.5)

Then p−1
M(Vi) is (2.1.3), and the sheaf M is the sheaf of sections (right inverses) of

restrictions of the projection p to open subsets. It is possible to be more precise about the
conditions on the isomorphisms φij and also about equivalence of such data, and define
algebraic vector bundles in this way (see the Comment at the end of Sect. 3.1).

Since, as we already remarked, it is not difficult to show that invertible sheaves are the
same thing as locally free sheaves of modules of dimension 1, they are also referred to as
(algebraic) line bundles.

Example Perhaps the most well known example of a non-trivial line bundle is the Möbius
strip. Its algebraic version is a line bundle over the variety

X = Spec(R)

where

R = R[x, y]/(x2 + y2 − 1).

Then consider the open sets

U1 = X � {(x, y − 1)},

U2 = X � {(x, y + 1)}.

Note: one can of course think naively of the closed point (x, y − 1) resp. (x, y + 1) as
the points (0, 1) resp. (0,−1) in 2-dimensional affine space. It turns out that those are not
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principal ideals. Nevertheless, U1 and U2 are distinguished open sets, since one has

(y − 1) = (x, y − 1)2, (y + 1) = (x, y + 1)2,

so

U1 = U(y−1), U2 = U(y+1). (2.1.6)

Let, for V ⊆ X open,

L(V ) = {(s1, s2) ∈ OX(U1 ∩ V )×OX(U2 ∩ V ) |
s1|U1∩U2∩V = xs2|U1∩U2∩V }. (2.1.7)

This is obviously a sheaf of OX-modules. It is invertible, and in fact is inverse to itself: we
have

L⊗OX
L(V ) = {(s1, s2) ∈ OX(U1 ∩ V )×OX(U2 ∩ V ) |

s1|U1∩U2∩V = x2s2|U1∩U2∩V },
but this is isomorphic to OX, by noting that

x2 = (1− y)(1+ y)

and 1− y �= 0 on U1, while 1+ y �= 0 on U2. Therefore, we can define an isomorphism

L⊗OX
L(U)

∼=
�� OX(U)

by sending a pair of sections

(s1 ∈ OX(U1 ∩ V ), s2 ∈ OX(U2 ∩ V ))

where

s1|U1∩U2∩V = x2s2|U1∩U2∩V

to the section in s ∈ OX(V ) where

s|U1∩V = s1

1− y
,

s|U2∩V = s2 · (1+ y)

(which exists by the sheaf property).
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On the other hand, we can see in the usual way that the Möbius strip is non-trivial, i.e.
not isomorphic to OX. Indeed, let s = (s1, s2) ∈ L(X) be a global section, and consider
s1, s2 as “naive” functions from the unit circle to R. These functions are continuous in the
analytic topology, and additionally have same signs on the x > 0 semicircle, and opposite
signs on the x < 0 semicircle. Thus, it is not possible for both s1 and s2 to be non-zero on
all of their respective semicircles (because then they would not change signs). However,
if L were isomorphic to OX, then the image s ∈ L(X) of 1 ∈ OX(X) cannot be 0 at any
point of the circle. This is because if s(x0, y0) = 0, then in a Zariski open neighborhood
V of (x0, y0), s = g · t for some section t , and some linear function g (we can choose
g = x − x0 if y0 �= 0 or g = y− y0 if x0 �= 0). However, this contradicts the isomorphism
since g ∈ OX(V ) is not invertible.

Note that L does possess nonzero global sections, for example the pair

(x, 1) ∈ OX(U1)×OX(U2).

We therefore constructed a subgroup of Pic(X) isomorphic to Z/2. It turns out that in this
case, this is all of Pic(X), as we shall prove later in Sect. 3.4.

The set QX of isomorphism classes of locally free sheaves of modules of finite
dimension form a commutative monoid with respect to⊕ (which means that the operation
is commutative and associative and has a neutral element, but not necessarily an inverse).
In fact, with respect to the operations ⊕, ⊗OX

, it forms a commutative semiring, which
means an algebraic structure with two operations + and · which both are commutative
monoids, and · is distributive under+.

Now the forgetful functor from abelian groups to commutative monoids (or from
commutative rings to commutative semirings) has a left adjoint which is denoted by K . Its
construction resembles localization, but with respect to +: For a monoid M with respect
to an operation+, the Grothendieck group of M is

K(M) = {(m, n) | m,n ∈ M}/ ∼

where ∼ is the equivalence relation given by

(k, �) ∼ (m, n)

if

k + n+ u = �+m+ u for some u ∈ M.
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Returning to the commutative semiring QX of isomorphism classes of finite-dimensional
locally free sheaves on a ringed space X, if X is an affine Noetherian scheme (ie. X =
Spec(R) where R is a Noetherian ring), we denote

K(X) = K(QX).

This commutative ring is called the algebraic K-theory of X. For a general Noetherian
scheme X, a more technical definition of K(X) is needed. One possibility is to take the
free abelian group on all isomorphism classes of finite-dimensional locally free sheaves F
on X, and factor out by the subgroup generated by G−F−H whenever for some inclusion
F ⊆ G, H ∼= G/F .

More specifically, the group defined here is denoted by K0. Groups Ki for i > 0 (and
in some definitions also i < 0) can also be defined, but we shall not discuss them here. For
more information, see [24].

Example It turns out that in the above example, the Möbius strip is also a non-trivial
element of K(X) (Here X is an affine scheme, so we can use the simpler definiton of
K(X).). In fact, we will see later that one has K(X) ∼= Z/2 ⊕ Z where the second
summand is given by dimension (Comment 2 in Sect. 2.2 below and Exercise 21). Let
us show explicitly that, in the notation of the above example,

L⊕ L ∼= 2OX. (2.1.8)

To this end, we note that, by (2.1.6),

OX(U1) = (1− y)−1R, OX(U2) = (1+ y)−1R.

Thus, to show (2.1.8), it suffices to exhibit an invertible 2× 2 matrix A in OX(U1) and an
invertible 2× 2 matrix B in OX(U2) such that

A =
(

x 0

0 x

)
· B. (2.1.9)

We can put

A =
(

x 1− y

1− y −x

)
, (2.1.10)

B =
(

1 x
1+y

x
1+y

−1

)
.

(Note that det (A) = 2(y − 1), det (B) = −2/(y + 1), so we can find inverses by the
Cramer rule.)
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2.2 Quasicoherent and Coherent Sheaves of Modules

The geometric interpretation of algebraic vector bundles introduced in the last subsection
also works for morphisms. In other words, recalling (2.1.5), it is possible to interpret a
morphism

φ :M→ N

of locally free sheaves of modules on a scheme X as a morphism of schemes

Uφ : UM → UN

which makes a commutative diagram

UM
Uφ

��

pM ���
��

��
��

�
UN

pN����
��
��
��

X

and which is “linear on fibers.” By this last condition, we mean that for a coordinate
neighborhood for both bundles

V ∼= Spec(R),

p−1
M(V ) ∼= Spec(R[x1, . . . , xm]),

p−1
N (V ) ∼= Spec(R[y1, . . . , yn]),

the restriction of Uφ to p−1
M(V ) is Spec of a homomorphism of rings

h : R[y1, . . . , yn] → R[x1, . . . , xm]

where h(yj ) is a linear combination of the xi’s with coefficients in R.
Now, however, the sheaf-theoretical point of view reveals a side of the story which may

not immediately obvious from the geometrical picture, and which is particular to algebraic
geometry. Namely, what can happen when φ is not an isomorphism?

Example Consider the free sheaf of dimension 1 on X = A
1
C
= Spec(C[t]), i.e. M =

O
A

1
C

. Then all of X is a coordinate neighborhood, and from the above discussion,

x → tx
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defines a morphism

φ :M→M.

From the point of view of sheaves, on a Zariski open set U ⊆ X,

φ(U) :M(U) →M(U)

is defined as the multiplication by the restriction of t ∈ OX(X) = C[t]. What is the kernel
and cokernel of φ?

Geometrically, the morphism φ appears to be an “isomorphism on fibers except for the
fiber at 0, where it is trivial.”

Sheaf-theoretically, the kernel is a limit, so it can be calculated directly on sections
over open sets. We see however immediately that for a distinguished open set Uf =
Spec(f−1C[t]) for some polynomial f ∈ C[t], φ(Uf ) is the localization of an injective
map, and hence is injective. Since limits obviously preserve injective maps of abelian
groups (which, after all, are the same as monomorphisms), φ(U) is injective for any
Zariski open set U ⊆ X. Therefore, we have

Ker(φ) = 0.

On the other hand, Coker(φ) is the sheafification of the presheaf P where

P(U) = Coker(φ(U)).

For a distinguished open set Uf , f ∈ C[t], we then see that

P(Uf ) = f−1
C[t]/(t)

which is C when f is not divisible by t , and 0 otherwise. This, as it turns out, is already
a sheaf, since obviously its stalk at 0 ∈ X is C, while its stalk at any other point is 0. We
therefore see that

Coker(φ) = i∗OSpec(C)

where i is the inclusion of the closed point 0 (in other words, i is Spec of the projection
C[t] → C, t → 0). More generally, i∗ of a constant sheaf, where i is the inclusion of the
closure of a point, (i.e. in particular i∗ of any sheaf where i is the inclusion of a closed
point) is called a skyscraper sheaf.

This example motivates looking for the smallest (in a suitable sense) abelian subcat-
egory of the category of sheaves of modules on a ringed space X which contains all
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locally free sheaves. There is such a suitable category, called the category of quasicoherent
sheaves.

2.2.1 Lemma Let X = Spec(R) be an affine scheme and let M be an R-module. Then
the sheaf of OX-modules M ⊗R OX which is the sheafification of the presheaf P given by

P(U) = M ⊗R (OX(U)) (2.2.1)

satisfies

(M ⊗R OX)x = M ⊗OX,x (2.2.2)

for every point x ∈ X, and

(M ⊗R OX)(Ur) =M ⊗R (OX(Ur)) = M ⊗R (r−1R) (2.2.3)

for every r ∈ R. (The equalities in (2.2.2), (2.2.3) mean canonical isomorphisms.)
The functor

?⊗R OX : R-Mod → OX-Mod (2.2.4)

is left adjoint to the functor

?(X) : OX-Mod → R-Mod. (2.2.5)

COMMENT

1. It is not true that the adjunction (2.2.4), (2.2.5) would in general be an equivalence of
categories. For example, for r ∈ R which is not a unit and not a zero divisor, considering
the inclusion

j : Spec(r−1R) = Ur � X = Spec(R),

the sheaf

j!OUr

is obviously a non-zero sheaf of OX-modules, whose R-module of sections on X is 0.
Therefore, it cannot be in the image of (2.2.4).
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2. It is not in general true that the presheaf (2.2.1) is a sheaf. Let, for example,

R =
∏

n∈N0

Z,

and consider

ri = (0, . . . , 0, 1, 0, . . . )

where the 1 is in the i’th place. Then

r−1
i R ∼= Z,

(rirj )
−1R = 0,

so

Uri ∩Urj = ∅

for i �= j . Thus, putting

U =
⋃

i∈N0

Uri ,

and letting, for an abelian group A,

M = A⊗ R,

the map

P(U) → (M ⊗R OX)(U)

is the canonical inclusion

A⊗ R ⊆
∏

n∈N0

A,

which is not the equality for a general abelian group A.
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Proof of Lemma 2.2.1 First, (2.2.2) is formal by exactness of directed colimits. Thus, by
the characterization of sheafification, (M ⊗R OX)(U) is the subset of

∏

x∈U

M ⊗OX,x

which are locally of the form

M ⊗R (r−1R)

for suitable choices of r . Then the first isomorphism (2.2.3) is proved analogously as for
the structure sheaf (Exercise 14).

The last statement is essentially by definition. ��

2.2.2 Definition A quasicoherent sheaf on a scheme X is a sheaf M of OX-modules with
the property that X is covered by affine open sets Ui = Spec(Ri) such that for all i,

M|Ui
∼= Mi ⊗Ri OUi (2.2.6)

for some Ri-module Mi . A coherent sheaf on a Noetherian scheme X is a quasicoherent
sheaf M where the Ri -modules Mi of (2.2.6) can be chosen to be finitely generated.

Note that because of Comment 1 after Lemma 2.2.1, we know that not every sheaf of
modules on a scheme is quasicoherent. Definition 2.2.2 of quasicoherent sheaves can be
also applied to locally ringed spaces.

2.2.3 Lemma

1. A sheaf M of OX-modules over a scheme X is quasicoherent if and only if for every
affine open set U = Spec(R) in X,

M|U ∼= M ⊗R OU (2.2.7)

for a suitable R-module M . If X is Noetherian, then M is coherent if and only if
the modules M of (2.2.7) are finitely generated R-modules. In particular, the category
of quasicoherent sheaves on Spec(R) (resp. coherent sheaves on Spec(R) with R

Noetherian) is equivalent to the category of R-modules (resp. finitely generated R-
modules).

2. Quasicoherent sheaves on a scheme and coherent sheaves on a Noetherian scheme X

form abelian subcategories of the category of OX-modules.
3. The adjunction of Lemma 2.2.1 gives an equivalence of categories between the category

of quasicoherent sheaves on Spec(R) (resp. coherent sheaves on Spec(R) when R is
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Noetherian) and the category of R-modules (resp. finitely generated R-modules when
R is Noetherian).

4. If f : X → Y is a morphism of schemes, then f ∗ of a quasicoherent sheaf is
quasicoherent. If X is Noetherian, then f∗ of a quasicoherent sheaf is quasicoherent. If
both X and Y are Noetherian, then f ∗ of a coherent sheaf is coherent.

COMMENTS

1. It is obviously not true in general that f∗ of a coherent sheaf with X, Y Noetherian
would be coherent. For example, f could be the inclusion of a non-closed point.
However, it can be shown to be true when f is proper.

2. The definition of a coherent sheaf given in Definition 2.2.2 could be given for a scheme
X which is not Noetherian, but then coherent sheaves may not form an abelian category.
There are ways to fix that by changing the definition in the general case.

Proof of Lemma 2.2.3 1. Clearly, it suffices to consider the case of X = Spec(R) affine.
By (2.2.3) of Lemma 2.2.1, we may assume that Spec(R) is covered by finitely many
distinguished open sets Ufi , and there are f−1

i R-modules Mi such that

M|Ufi
=Mi ⊗f−1

i R
OUfi

.

Let

M =M(Spec(R)).

Then the counit of adjunction gives a morphism of sheaves of OSpec(R)-modules

M ⊗R OSpec(R) →M. (2.2.8)

We shall prove that (2.2.8) is an isomorphism. First, let

s ∈ g−1M = M ⊗R OSpec(R)(Ug).

By definition, then, there is an element t ∈ M such that the image of t in g−1M is gns.
Now assume that the restriction of s to each Ufig maps to 0 in M(Ufig) = g−1Mi . Thus,
by definition, for some m, the image of gmt is 0 in each Mi (and hence its restriction to
each Ufi is 0). Therefore, by the sheaf property of M,

gmt = 0 ∈ M =M(Spec(R)),

and hence s = 0.
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To show that (2.2.8) is onto, fix i and let si ∈ Mi . We need to show that for some
N >> 0, f N

i s is a restriction of a section in M(Spec(R)) = M . To this end, note that
first of all, by the sheaf property, there exist sections sj ∈ Mj such that

sj |Ufifj
= f m

i s

for some m, which can be assumed constant by taking the maximum over finitely many.
By the injectivity applied to f−1

i M, however, we also know that

f n
i sj |Ufj fk

= f n
i sk|Ufj fk

,

and again we may assume that n is constant by taking the maximum. Then let s be the
section on Spec(R) obtained by gluing the sections f n

i sj .
For 2, the main point is to check that quasicoherent sheaves have finite limits and

colimits, and that the inclusion functor of quasicoherent sheaves to sheaves of modules
is exact. To this end, it suffices to consider the case of X affine, and note that localization
is exact.

3 follows immediately from 1 and Lemma 2.2.1, as does the statement of 4 about f ∗
(since there we may assume without loss of generality that both X and Y are affine) and
the statement of 4 in case X and Y are affine. In the general case, we may assume that Y

is affine, and since X is Noetherian, that it is covered by finitely many affine open sets Ui

such that Ui ∩ Uj is covered by finitely many affine open sets Uijk . Then f∗(F) can be
written as the kernel of a morphism of the form

⊕

i

f∗(F |Ui ) →
⊕

i,j,k

f∗(F |Uijk ).

��

2.2.4 Lemma Over a commutative Noetherian ring R, finitely generated locally free
modules (i.e. algebraic vector bundles over Spec(R)) are the same thing as finitely
generated projective modules.

Proof Over a local ring, a finitely generated projective module is free. This is because over
a local ring, an m× n matrix which has a right inverse has a right inverse over the residue
field, and hence has an m × m submatrix with unit determinant. Thus, finitely generated
projective modules are locally free. (In fact, the assumption of being finitely generated is
not needed—see Lemma 2.6.3 of Chap. 5.)

On the other hand, if M is a finitely generated locally free module, we can think about
it as a coherent sheaf. In particular, there exists an epimorphism F → M where F is a free
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R-module. Now the induced homomorphism

HomR(M,F) → HomR(M,M) (2.2.9)

can be thought of as a morphism of coherent sheaves, which is an epimorphism on stalks
since M is locally free. On the other hand, epimorphisms of coherent sheaves are the same
as epimorphisms of sheaves, i.e. can be detected on stalks (by considering skyscraper
sheaves). Thus, (2.2.9) is an epimorphism of coherent sheaves and hence of R-modules,
and hence is onto. An element in the inverse image of Id : M → M shows that M is a
direct summand of F .

��

When the stalks of an algebraic vector bundle F all have the same dimension as free
modules over the stalk of the structure sheaf, we call this the rank of the vector bundle F .

2.2.5 Corollary For X = Spec(R), Pic(X) is canonically isomorphic to Pic(R),
which is the group of isomorphism classes of R-modules invertible with respect to ⊗R .
Additionally, if R is Noetherian, then K(X) is canonically isomorphic to K(R), which is
defined as the Grothendieck group of the commutative monoid of isomorphism classes of
finitely generated projective R-modules with respect to ⊕.

Proof The statement about the Picard group is an immediate consequence of 1 of
Lemma 2.2.3. For the statement about K-theory, one uses Lemma 2.2.4. ��

COMMENT

1. For a Noetherian scheme X, we define G(X) to be the free abelian group on coherent
sheaves modulo the subgroup generated by G −F −H whenever we have an inclusion
F ⊆ G such that H ∼= G/F . We have an obvious map

K(X) → G(X), (2.2.10)

and a theorem called dévissage states that for regular separated Noetherian schemes,
(2.2.10) is an isomorphism. (Recall that a scheme X is regular if it is locally Noetherian
and the stalks OX,x are regular local rings for all points x ∈ X; it suffices to show for
closed points, since localization of a regular local ring is regular.) We see analogously
to Corollary 2.2.5 that for X = Spec(R) with R Noetherian, G(X) is the factor of
the free abelian group on all isomorphism classes of finitely generated R-modules by
the subgroup generated by M − L − N whenever we have an inclusion L ⊆ M with
N ∼= M/L. For a proof of the dévissage theorem, see Exercises 21, 22 of Chap. 5.

2. We can now understand a little better the example in Sect. 2.1. The coordinate ring R of
the unit circle over R is a Dedekind domain. Recall that this means that it is Noetherian,
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normal and of dimension≤ 1. It is normal because it is regular. It is regular because it is
smooth over R. For a Dedekind domain R, invertible modules are (up to isomorphism)
precisely non-zero ideals. Ideals isomorphic to R as modules are precisely principal
ideals. Thus, Pic(R) for R a Dedekind domain is the ideal class group, which is the
factor of the commutative monoid of ideals by the submonoid of principal ideals (with
respect to ·). We will return to this point in Sect. 3.3.

In the Example of Sect. 2.1 (the Möbius band), consider the mapping

φ : L→ OX (2.2.11)

where in the notation of (2.1.7), L(V ) is mapped to OX(V ) by

φ : (s1, s2) → (s1, xs2)

(where we note that by the sheaf property, the pair of sections on the right hand side
specifies a section in OX(V ). We see then that the image of

φ(X) : L(X) → R = OX(X) (2.2.12)

contains the element x (which comes from the pair (x, 1)) and the element (1− y), which
comes from the pair (1 − y, x

1+y
)). Therefore, the image of (2.2.12) contains the ideal

I = (x, 1 − y) which is obviously maximal (since the quotient R/I is a field). Also,
(2.2.12) is obviously injective, since R is an integral domain. It is impossible, however, for
the image of (2.2.12) to be all of R, since we already proved that the line bundle L is not
isomorphic to OX. Therefore, we have proved that

L(X) ∼= (x, 1− y). (2.2.13)

We can then also see where the matrices A, B or (2.1.9) come from: in the language of
modules, we need to construct an isomorphism

2R ∼= 2(x, 1− y).

The isomorphism is given by the matrix A of (2.1.10) (identifying the image with I ⊂ R).
In terms of sections of the Möbius band on the unit circle, we see that x is 0 only on the
point (0,−1) while 1 − y = x

1+y
is 0 only on the point (0, 1). Thus, it makes sense to

choose the first basis element of the module of sections of the sum of two copies of the
Möbius band to have these two sections as its coordinates (since then the resulting section
of the sum is not zero anywhere). To get the second basis element, we then “rotate the first
basis element section by 90◦,” thus obtaining the matrix A of (2.1.10).
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It is also true that for a Dedekind domain R, we have in general an isomorphism

K(R) ∼= Pic(R)⊕ Z. (2.2.14)

where the second factor is dimension of the associated vector bundle (See Exercise 21.)
The isomorphism from the right side of (2.2.14) to the left is given by

(L, n) → (L+ n− 1).

The main point is that one checks that in K(R), which is a ring with respect to the tensor
product over R, for ideals L1, L2,

(L1 − 1) · (L2 − 1) = 0. (2.2.15)

The easiest way to see (2.2.15) intuitively may be to work in G(R). If L is an ideal, one
can represent 1 − L ∈ G(R) as the module R/L. In a Dedekind domain, an ideal can be
uniquely written as a product of powers of prime ideals (we will prove that in the next
Subsection), and by the Chinese remainder theorem, if

I = p
i1
1 · · · · · pin

n ,

then

R/I ∼= R/p
i1
1 ⊗ . . . R/pin

n . (2.2.16)

Consequently, for a non-zero ideal J ⊆ R,

J/I ∼= J/p
i1
1 ⊗ . . . J/pin

n . (2.2.17)

But

R/p
ij
j
∼= Rpj /p

ij
j
∼= J ⊗ Rpj /p

ij
j
∼= J/p

ij
j ,

(the second isomorphism is because Rp is a discrete valuation ring, hence a principal ideal
domain), so (2.2.16) is isomorphic to (2.2.17), which therefore implies (2.2.15).

2.3 Sheaves of Ideals

A sheaf of ideals on a scheme X is a sub-sheaf of OX-modules of OX (just as for a
commutative ring R, an ideal is a sub-R-module of R). Let X be a scheme and Y ⊆ X a
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closed subscheme. Then, as a part of the structure, we get a homomorphism of sheaves of
rings

φ : OX → i∗OY .

This makes i∗OY a sheaf of OX-modules. We call the sheaf of OX-ideals

Ker(φ)

the sheaf of ideals associated with the closed subscheme Y ⊆ X.

2.3.1 Proposition

1. The sheaf of ideals on X associated with a closed subscheme Y ⊆ X is quasicoherent,
and coherent if X is Noetherian.

2. Conversely, for any sheaf of ideals I on X which is quasicoherent, there exists a closed
subscheme Y ⊆ X such that I is isomorphic to the sheaf of ideals associated with Y .

Proof To prove 1, clearly it suffices to assume that X = Spec(R) is affine. Then a closed
subscheme is of the form Y = Spec(R/I) for some ideal I , and the corresponding sheaf
of ideals is

I ⊗R OX,

which is quasicoherent, and coherent if X is Noetherian.
2. By definition, for X = Spec(R) affine, a quasicoherent sheaf of ideals is of the

form I ⊗R OX where I is an ideal of R, so it is associated with the closed subscheme
Y = Spec(R/I).

Further, a closed subscheme is determined by its intersection with distinguished open
sets. Therefore, for a general scheme X, if Ui , Uj are two open affine subschemes of X,
and Yi , Yj are the closed subschemes associated with I|Ui , I|Uj , we have an isomorphism
Yi ∩ Uj

∼= Yj ∩ Ui . Thus, the closed subschemes Yi satisfy the gluing condition Sect. 2.5
of Chap. 2. Let Y be the scheme obtained by gluing the Yi ’s. By the colimit property of
gluing, then, we automatically obtain a morphism of schemes

Y ⊆ X. (2.3.1)

Further, Y ∩ Ui = Yi , so (2.3.1) is a closed immersion (since this can be verified locally).
For the same reason, the sheaf of ideals associated with the closed immersion (2.3.1) is
I. ��
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COMMENT Note that the statement of the Proposition logically implies that a quasicoher-
ent sheaf of ideals on a Noetherian scheme is coherent. Of course, we know more generally
that if X is a Noetherian scheme, then a quasicoherent sub-sheaf of modules of a coherent
sheaf is coherent. (Just as for a Noetherian commutative ring R, a submodule of a finitely
generated module is finitely generated.)

As an application of Proposition 2.3.1, we can give an easy proof of the following

2.3.2 Theorem Let R be a Dedekind domain. Then every non-zero ideal I ⊆ R factors,
uniquely up to order of terms, as

I = p
i1
1 · · · · · pin

n

where pi are prime ideals.

Proof Let p be a maximal ideal of R. In Rp, the ideal generated by I is principal by
Lemma 2.4.2 of Chap. 2. Consider the generator x. Since R is Noetherian, I is finitely
generated, so x generates the ideal generated by I in r−1R for some r /∈ p. Thinking
geometrically, the closed subscheme Z(I) of Spec(R) is discrete as a topological space,
and hence finite. Finite subschemes of Spec(R) are of the form

Z(p
i1
1 · · · · · pin

n )

where pi are prime ideals (it suffices to consider subschemes with a single point p, which
are also subschemes of Spec(Rp); however, the only ideals in a discrete valuation ring are
powers of the maximal ideal.)

Uniqueness follows from the bijective correspondence between ideals in R and closed
subschemes of Spec(R). ��

Example

1. Let us consider the example of Sect. 2.2. There, we had the closed subscheme
Spec(C)→ A

1
C

given by the homomorphism of rings

C[x] → C, x → 0,

and we saw that the associated sheaf of ideals is the coherent sheaf of ideals
corresponding to the ideal

(x) ⊂ C[x].
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2. In Comment 2 at the end of Sect. 2.2, we constructed an embedding (as sheaves, see
(2.2.11)) of the Möbius band L into OX where

X = Spec(R),R = R[x]/(x2 + y2 − 1).

Thus, we can view L as a sheaf of ideals on X, and in fact, we saw that this is a coherent
sheaf of ideals corresponding to the ideal

(x, 1− y) ⊂ R.

This is associated to the closed subscheme

Spec(R) ∼= Spec(R/(x, 1− y)) ⊂ X, (2.3.2)

which we can think of as the “inclusion of the point (0, 1).” What would happen if
we took the ideal (1 − y) instead of (x, 1 − y)? In this case, we would get the closed
subscheme

Spec(R[x]/(x2)) ∼= Spec(R/(1− y)) ⊂ X. (2.3.3)

We see that the closed subschemes (2.3.2) and (2.3.3) of X have the same points, but
(2.3.3) is not reduced.

What would happen if we use (x)? In that case, we get

Spec(R[y]/(1− y2))

= Spec(R[y]/(1− y))� Spec(R[y]/(1+ y)) ⊂ X

by the Chinese remainder theorem. This can be interpreted as the inclusion of the
disjoint union of the points (0, 1) and (0,−1) into X.

3. Looking at part 2 of this example, it is worth noting that we can get a different
subscheme of X if we pick a different embedding (2.2.11). In fact, choose any two
real numbers a, b such that

a2 + b2 = 1,

and assume for simplicity that

a, b �= 0.

It is easy to check that the only zeros of

ay + (1− b)x − a
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on the unit circle are (x, y) = (a, b) and (x, y) = (0, 1). Similarly, the only zeros of

ay − (1+ b)x + a

on the unit circle are (x, y) = (a, b) and (x, y) = (0,−1). One in fact checks that in
R,

a · (ay + (1− b)x − a) = x · (1− b) · ay − (1+ b)x + a

1+ y
,

(one only needs to match the coefficients), so

(s1, s2) = (a · (ay + (1− b)x − a), (1− b) · ay − (1+ b)x + a

1+ y
)

gives a global section of L which only vanishes at the point (x, y) = (a, b) of the unit
circle. Furthermore, we see that

(1− b) · ay − (1+ b)x + a

1+ y

must divide both x − a and y − b in (1+ y)−1R. More explicitly, realizing that

(b + 1)x + ay + a

vanishes precisely on the points (x, y) = (−a, b) and (x, y) = (0,−1) of the unit
circle, we see that

((b + 1)x + ay + a) · (ay − (1+ b)x + a) = (y − b) · (1+ y) · (2+ 2b)

(again, only the coefficient need to be checked). Similarly,

ay − (1− b)x + a

is only 0 on the points (x, y) = (a,−b) and (x, y) = (0,−1), so we get

(ay − (1− b)x + a)(ay − (1+ b)x + a) = −2a · (1+ y) · (x − a)

(again, only the coefficient need to be checked).

In any case, defining (2.2.11) by

(s1, s2) → s2(ay − (1+ b)x + a),
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(which is correct, since when proving that the square of L is isomorphic to OX, we proved
that for two global sections (s1, s2) and (t1, t2) of L, s2t2(1+y) ∈ R), the image of (2.2.12)
will be the ideal

(x − a, y − b),

which corresponds to the closed subscheme

Spec(R) → X

into the point (a, b).
Thus, the closed subscheme corresponding to a sheaf of ideals is not preserved by

isomorphisms of sheaves of ideals in the category of sheaves of modules. We shall learn
more about this phenomenon in the next Section.

2.4 Quasicoherent Sheaves onProj Schemes

Let a scheme X be of the form X = Proj (R) where R is a graded ring (see Sect. 2.7 of
Chap. 2). Let M be a graded module of R, which means that M is a graded abelian group,
i.e.

M =
⊕

n∈Z
Mn

and multiplication by elements of Rk raises degree by k:

Rk ⊗Mn → Mn+k.

(We say that an element of Rk defines a graded homomorphism of modules of degree k.)
Then M gives rise to a quasicoherent sheaf of modules

M =M ⊗R OX (2.4.1)

on X: for f ∈ Rk , on the open neighborhood Spec((f−1R)0), the module of sections of
M is

(f−1M)0 = (M ⊗R f−1R)0.

(Recall that the subscript 0 means taking the subgroup of elements of degree 0.) This
construction glues to give a sheaf of OX-modules.
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Of course, we have, by definition,

R = OX.

But now for a graded R-module M and � ∈ Z, we have another R-module M obtained by
shifting the degrees of M by �:

M(�)k = M�+k.

We define

OX(n) = R(n) ⊗R OX.

For any sheaf of OX-modules F , we denote

F(�) = F ⊗OX
OX(�).

The quasicoherent sheaf OX(1) is called the twisting sheaf of Serre.

2.4.1 Proposition If R is generated by R1 as an R0-algebra, then OX(1) is an invertible
sheaf, and

OX(k + �) = OX(k)⊗OX
OX(�) (2.4.2)

for all k, � ∈ Z.

Proof We have an obvious morphism from the right hand side of (2.4.2) to the left
hand side. Let elements ri ∈ R1, i ∈ I , generate R. This is actually equivalent to the
augmentation ideal being

(ri , i ∈ I),

which is in turn equivalent to the distinguished open sets Uri being a cover of X. Now at
the affine open set Uri , we obtain the sections of M by inverting ri and taking elements of
degree 0. In particular,

(OX(k))(Uri )

is identified with

(r−1
i R)k,
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which in turn can be thought of as the degree k elements of the direct limit of the diagram

R
ri

�� R
ri

�� R
ri

�� . . . ,

which clearly does not depend on k (in a way compatible with the morphism of (2.4.2)),
since ri has degree 1. Thus, (2.4.2) follows. This obviously implies invertibility. ��

Now assume that R is a graded ring generated by R1 as an R0-algebra. Then for a sheaf
M of OX-modules, we can define a graded R-module M∗(X) by

M∗(X)n =M(n)(X). (2.4.3)

2.4.2 Lemma If R is a graded ring generated by R1 as an R0-algebra,
X = Proj (R), then the functor (2.4.3) from sheaves of OX-modules to graded R-modules
is right adjoint to the functor (2.4.1) from graded R-modules to sheaves of OX-modules.

Proof Let M be a graded R-module, and let F be a sheaf of OX-modules. Suppose we
are given a homomorphism of graded R-modules

M → F∗(X). (2.4.4)

So for every n ∈ N0, we are given a homomorphism of R0-modules

Mn → F(n)(X)

compatibly with multiplication by R1. Then for every f ∈ R1, we obtain, by taking
colimits under multiplication by f , a homomorphism of R0-modules

(f−1M)0 → (f−1F(X))0 ∼= F(n)(Uf ).

Clearly, these are compatible to give a morphism of sheaves of OX-modules

M ⊗R OX → F . (2.4.5)

Conversely, given (2.4.5), we have

Mn → (M ⊗R OX)(n)(X) → F(n)(X) (2.4.6)

where the first morphism is obtained by taking, on Uf , the colimit homomorphism

Mn → (f−1M)n,
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which obviously are compatible to give the first homomorphism (2.4.6). The second
morphism is obtained by taking (2.4.5), twisting by n and taking global sections. It is
easily verified that the two correspondences between (2.4.4) and (2.4.5) and vice versa are
inverse to each other. ��

The functor (2.4.1), by definition, always produces a quasicoherent sheaf on X. It is
important to note however that unlike the affine case, we cannot expect the unit of the
adjunction of Lemma 2.4.2 to be an isomorphism in general, i.e. for an arbitrary graded R-
module M , the graded R-module of twisted global sections of the associated quasicoherent
sheaf M⊗R OX of OX-modules to be isomorphic to M . To see this, it suffices to note that
M ⊗R OX only depends on M≥N for any chosen N ∈ Z, so we could replace M by a
graded R-module which is the same in degrees ≥ N but 0 in degrees < N , and obtain the
same associated quasicoherent sheaf.

On the other hand, we have the following

2.4.3 Lemma Suppose R is a graded ring generated by R1 as an R0-algebra, and suppose
R1 is a finitely generated R0-module. Let X = Proj (R). Then the counit of the adjunction
of Lemma 2.4.2 is always an isomorphism, i.e. any quasicoherent sheaf of OX-modules is
isomorphic to the sheaf of OX-modules associated with its graded R-module of twisted
global sections.

Proof The role of assuming that R1 is finitely generated as an R0-module, say, by elements
f1, . . . fn, is that f1, . . . , fn generate the augmentation ideal, i.e. Ufi cover X, which is
a substitute for the fact in the affine case that an affine scheme is quasicompact. At this
point, we have, for every homogeneous element h ∈ R,

h = a1f1 + · · · + anfn,

ai ∈ R, and for a given h, we can replace the fi ’s by an arbitrary power, assuming we
are willing to replace h by a sufficiently high power. With this in mind, letting F be a
quasicoherent sheaf on X, we can show that the counit of adjunction of Lemma 2.4.2 is
onto on sections on Uh: for s ∈ F(Uh), multiplying by sufficiently high powers of h, we
can find sections of F(?)⊗ROX on Ufi which coincide with s on Uh∩Ufi . Multiplying by
sufficiently high powers of h and fi , those sections are compatible, and glue to produce an
element of F(N)(X) for some N >> 0, which maps onto s on Uh. One proves similarly
that the homomorphism is injective. ��

The following is essentially just a restatement:

2.4.4 Proposition Suppose R is a graded ring generated by R1 as an R0-algebra, and
suppose R1 is a finitely generated R0-module. Let F be a quasicoherent sheaf over
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X = Proj (R). Then there exists an onto map

⊕

i∈I

OX(ni) → F .

If F is coherent and X is Noetherian, the set I can be taken to be finite.

��
Using Lemma 2.4.3, if R is finitely generated by R1 over R0, we can identify the

category of quasicoherent sheaves on Proj (R) with a full subcategory of the category of
graded R-modules and morphisms preserving the degree of homogeneous elements (since,
by passing to twisted sections, a morphism of quasicoherent sheaves is always induced by
a homomorphism of graded modules). Additionally, the inclusion of the subcategory has a
left adjoint (i.e. is a right adjoint). Such a full subcategory is called a reflexive subcategory.
The left adjoint to the inclusion of a reflexive subcategory is called a reflection.

We have already encountered other examples of reflexive subcategories. For example,
the category of abelian groups is a reflexive subcategory of the category of groups,
the category of abelian sheaves on a topological space X is a reflexive subcategory of
the category of abelian presheaves on X, the category of affine schemes is a reflexive
subcategory of the category of schemes.

Example Let R = R0[x], so Proj (R) = P
0
Spec(R0)

= Spec(R0). Then the category of
quasicoherent sheaves on Proj (R) is identified, by Lemma 2.4.2, with the subcategory of
R0[x]-modules which have the structure of R0[x, x−1]-modules.

If R = R0[x, y], i.e. Proj (R) = P
1
Spec(R0)

, then the category of quasicoherent sheaves
on Proj (R) is identified with the full subcategory of graded R0[x, y]-modules M such
that the canonical morphism from M to the pullback

lim

⎛

⎜⎜⎜⎜⎜⎝

x−1M

��

y−1M �� (xy)−1M

⎞

⎟⎟⎟⎟⎟⎠
(2.4.7)

is an isomorphism. For a general graded R0[x, y]-module M , the reflection of M into the
full subcategory identified with quasicoherent sheaves on Proj (R) is given by (2.4.7).

For n > 1, a similar characterization of quasicoherent sheaves on P
n
Spec(R0)

=
Proj (R0[x0, . . . , xn]) also holds when we replace (2.4.7) by the diagram which contains
all the canonical arrows from all the modules x−1

i M to all the modules (xixj )
−1M , i �= j .

COMMENT We will see in Sect. 4.4.2 of Chap. 6 (proof of Theorem 4.4.3 and Exercise
25 of Chap. 6) that in general when R is generated over R0 by R1 which is a finitely
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generated R0-module, the reflexive subcategory of the category of graded R-modules
which correspond to quasicoherent sheaves is the full subcategory on those graded
modules M for which the local cohomology groups H 0

I (M) and H 1
I (M) vanish where

I is the augmentation ideal of R.

The following corollary of Lemma 2.4.3 is quite important:

2.4.5 Proposition

1. If Y is a closed subscheme of Pn
Spec(A) = Proj (A[x0, . . . , xn]), then there exists a

homogeneous ideal

I ⊆ A[x0, . . . , xn]

such that Y = Z(I).
2. A scheme over Spec(A) is projective if and only if it is isomorphic to Proj (R) where

R is a graded ring with R0 = A generated by R1 where R1 is a finitely generated
R0-module.

Proof To prove 1, consider the quasicoherent sheaf of ideals I associated with the closed
subscheme Y . Then I ⊆ OX, so I(m) ⊆ OX(m) since OX(m) is invertible, so we can
define the homogeneous ideal I in R by

Im = I(m)(X).

By Lemma 2.4.3, Y = Z(I).
Recall that a scheme X is projective over Spec(A) if it is isomorphic to a closed

subscheme of P
n
Spec(A). By part 1 of this proposition, this happens if and only if X is

isomorphic to Proj (A[x0, . . . , xn]/I) for some homogeneous ideal I . On the other hand,
A[x0, . . . , xn]/I is the general ring R described in our condition for 2.

��

3 Divisors

We saw from the examples in the last Section that an isomorphism of line bundles on
a scheme X can be tricky to construct from first principles. Divisors can be thought of
as geometric models of line bundles, (often with additional assumptions on X), where
isomorphism of bundles corresponds to more manifest concepts. We will give three
approaches each increasingly more concrete (and also more restrictive).
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3.1 First Cohomology

This approach works in general, for all schemes X, and continues the discussion of the
beginning of Sect. 2.1. A line bundle (i.e., an invertible sheaf of OX-modules) L on a
scheme X admits an open cover Ui , i ∈ I of X for which we have isomorphisms

φi : L|Ui

∼=
�� OX|Ui = OUi .

(3.1.1)

We have elements

hij ∈ OX(Ui ∩ Uj)
× (3.1.2)

(recall that R× is the group of units of a ring R) given by

hij = φi(Ui ∩ Uj) ◦ φ−1
j (Ui ∩ Uj). (3.1.3)

The elements hij may be referred to as transition functions. Of course, (3.1.3) implies that
for all i, j, k ∈ I ,

hij |Ui∩Uj∩Uk · hjk|Ui∩Uj∩Uk = hik|Ui∩Uj∩Uk , (3.1.4)

but the real point is that to specifyL up to isomorphism, it suffices to specify the open cover
Ui and the elements (3.1.3), together with the condition (3.1.4) (which may be referred to
as the cocycle condition).

It is useful here to note that since the group of units functor from commutative rings to
abelian groups preserves limits (it is in fact right adjoint to a functor called the group ring,
which is the free abelian group ZG with multiplication given by the multiplication in G),
the abelian presheaf O×X whose abelian group of sections on U is (OX(U))× is in fact a
sheaf. We will denote it by O×X .

The open cover (Ui)i∈I together with the elements (3.1.2) which satisfy the cocycle
condition (3.1.4) is called a (Čech) 1-cocycle with coefficients in O×X . Note that abstractly,
the definition would work for any abelian sheaf F (or even just a sheaf of groups) on an
arbitrary topological space X in place of O×X on a scheme X, so we can analogously speak
of Čech 1-cocycles with coefficients in F . Note that we think of O×X multiplicatively, while
an abelian sheaf will often be written additively, in which case · will become+, and 1 will
become 0.

Note that the cocycle condition (3.1.4) implies

hii = 1, hij = h−1
ji .
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On the Möbius band example, I was a two-element set, so there was only one transition
function between them, which is why the cocycle condition was not needed.

A line bundle L can be constructed from a Čech 1-cocycle

((Ui)i∈I , hij , i, j ∈ I) (3.1.5)

with coefficients in O×X in the same way as in the case of the Möbius band: For an open
set V ⊆ X, put

L(V ) = {(si ∈ OX(V ∩ Ui))i∈I |
(∀i, j ∈ I)si |Ui∩Uj∩V = hij |Ui∩Uj∩V · sj |Ui∩Uj∩V }. (3.1.6)

But when is the line bundle L given by (3.1.5) isomorphic to another line bundle M,
given by another Čech 1-cocycle

((Vj )j∈J , kij , i, j ∈ J )?

We see right away one awkward point: the open covers can be different. This can be dealt
with by observing that if the open cover (Vj )j∈J is a refinement of the open cover (Ui)i∈I

in the sense that for each j ∈ J , there exists an i ∈ I such that Vj ⊆ Ui , then a Čech 1-
cocycle defined using the covering (Ui) also specifies a Čech 1-cocycle defined using the
covering (Vj ). (Recall that this notion of refinement was also consider in Sect. 1.1 when
we constructed the sheafification—this is related.)

For two cocycles defined on open covers (Ui)i∈I , (Vj )j∈J , we can then replace both by
a cocycle defined on the common refinement

(Ui ∩ Vj )i∈I,j∈J .

Thus, it suffices to find conditions when a line bundle L defined by the 1-cocycle (3.1.5) is
isomorphic to a line bundle M defined by another 1-cocycle using the same open cover:

((Ui)i∈I , kij , i, j ∈ I).

In this case, we see that L and M will be isomorphic if and only if there exist

fi ∈ O×X(Ui), i ∈ I (3.1.7)

such that for all i, j ∈ I ,

fi |Ui∩Uj · hij = kij · fj |Ui∩Uj . (3.1.8)
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For then, we can, starting from a section (3.1.6), produce a section in M(V ) simply by
replacing each si by fi · si and vice versa. If, on the other hand, L and M are isomorphic,
then the functions fi must exist by looking at sections of each on Ui , and using the fact that
for any commutative ring R, any isomorphism of R-modules R → R is given precisely
by multiplication by an element of R×.

For an arbitrary abelian sheaf (or more generally sheaf of groups) F , this works
basically the same way except for the last part we need to argue that if the fj ’s exist
on a refinement (Vj ), then setting U(i,j) = Ui ∩ Vj , and denoting by f(i,j) the restrictions
of fj to U(i,j) and by h(i,j),(i′,j ′) the restrictions of hii′ to U(i,j) ∩ U(i′,j ′), we have

h(i,j),(i,j ′) = k(i,j),(i,j ′) = 1,

so

f(i,j)|U(i,j)∩U(i,j ′) = f(i,j ′)|U(i,j)∩U(i,j ′) ,

and the elements f(i,j) can therefore be glued by the sheaf property to give fi .
In any case, if (3.1.8) holds, the Čech 1-cocycles hij , kij are called cohomologous, and

the set of equivalence classes of cocycles with respect to the relation of cohomology is
denoted by

Ȟ 1(X,F) (3.1.9)

and called first Čech cohomology of X with coefficients in F . If F is an abelian sheaf, then
of course 1-cocycles with coefficients in F form an abelian group, and two 1-cocycles
(hij )i,j∈I , (kij )i,j∈I defined on the same open cover are cohomologous if and only if
(writing multiplicatively), (h−1

ij kij )i,j∈I is cohomologous to 1. It is worth writing explicitly
what it means that a 1-cocycle (kij )i,j∈I is cohomologous to 1: it means that there exists
fi ∈ F(Ui) such that

kij = fi |Ui∩Uj f
−1
j |Ui∩Uj . (3.1.10)

In this case, we say that that the 1-cocycle (kij )i,j∈I is a coboundary of (fi)i∈I , and write

(kij )i,j∈I = δ(fi)i∈I .

When F is an abelian sheaf, the set of all coboundaries forms an abelian subgroup of the
set of all cocycles, thus giving (3.1.9) the structure of an abelian group. We speak of the
first Čech cohomology group with coefficients in the abelian sheaf F .

Thus, we proved in particular the following
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3.1.1 Theorem For any scheme X, we have a canonical isomorphism

Pic(X) ∼= Ȟ 1(X,O×X). (3.1.11)

��

COMMENT It is customary to write H 1 instead of Ȟ 1 in (3.1.11). This is because there
is another definition of cohomology with coefficients in an abelian sheaf which coincides
with Čech cohomology in dimension 1. We shall study cohomology in more detail in
Chap. 5. In fact, in any abelian category A, recall that an exact sequence is a sequence of
morphisms (finite or infinite)

. . . Ak

fk
�� Ak−1

fk−1
�� Ak−2 �� . . .

such that

Ker(fk−1) = Im(fk)

whenever applicable. In particular, a short exact sequence is an exact sequence of the form

0 �� A
f

�� B
g

�� C �� 0.
(3.1.12)

This then just means that f is a monomorphism, g is an epimorphism and

Ker(g) = Im(f ).

If A is, say, the category of abelian groups or R-modules, this means that up to
isomorphism C ∼= B/A where f is the inclusion of A into B and g is the projection
from B to B/A.

Now for fixed objects A,C ∈ Obj(A), a short exact sequence (3.1.12) is called an
extension of C by A. We denote by

Ext1
A(C,A) (3.1.13)
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the set of isomorphism classes of all extensions (3.1.12). By an isomorphism of extensions,
we mean a diagram of the form

0 �� A

Id

��

�� B

∼=
��

�� C

Id

��

�� 0

0 �� A �� B ′ �� C �� 0.

One notes that (3.1.13) is actually an abelian group: Addition of two extensions is obtained
by adding them using ⊕, and then pushing forward via the codiagonal morphism

∇ : A⊕ A→ A,

i.e. making the following diagram so the left hand square is a pushout

0 �� A⊕ A

∇
��

�� B ⊕ B ′

��

�� C ⊕ C

Id

��

�� 0

0 �� A �� B0 �� C ⊕ C �� 0

and then puling back via the diagonal

� : C → C ⊕ C,

i.e. making the following diagram so the right hand square is a pullback

0 �� A

Id

��

�� B1

��

�� C

�

��

�� 0

0 �� A �� B0 �� C ⊕ C �� 0.

(Recall that⊕ in an abelian category is both the product and the coproduct; the codiagonal
of a coproduct is the morphism from the coproduct obtained by sending each copy of A to
A via the identity, and the diagonal of a product is again obtained by sending C by Id to
both copies of C.)
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The inverse of an extension (3.1.12) is obtained by reversing the sign of f or g. The
neutral element is the extension

0 �� A
f

�� A⊕ C
g

�� C �� 0 (3.1.14)

where f is a coproduct injection and g is a product projection. (3.1.14) is also called a
split short exact sequence.

(Note: one problem with this definition in an arbitrary abelian category is that we
haven’t shown that Ext1(C,A) is actually a set—it could be a proper class; but this will
not come up in the examples we are interested in.)

Now if X is a topological space, and F is an abelian sheaf on X, one defines

H 1(X,F) = Ext1
Ab-sh(X)(Z,F)

where Ab-sh(X) is the category of abelian sheaves on X and Z is the constant sheaf with
values in Z, i.e. f−1(Z) where f : X → ∗ is the unique continuous map to a point and
the sheaf Z on a point takes the value Z on the set containing the point, and the value 0 on
the empty set.

3.1.2 Theorem For any space X and any abelian sheaf F , we have a canonical
isomorphism

H 1(X,F) ∼= Ȟ 1(X,F). (3.1.15)

Proof Consider an extension

0 �� F
f

�� F̃
g

�� Z �� 0 (3.1.16)

of abelian sheaves on X. The stalk of Z at every point is Z, so we have a short exact
sequence

0 → Fx → F̃x → Z→ 0.

This means that there exists an open set V � x and an element s ∈ F̃(V ) such that
(g(V ))(s) represents

1 ∈ Zx = Z.

Note carefully that then (g(V ))(s) − 1 represents 0 in Zx = Z, so by definition there
exists an open set U , x ∈ U ⊆ V such that the restriction of (g(V ))(s) − 1 to U , which
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is (g(U))s|U − 1, is 0, so on U , there is a section in F̃(U) (namely s|U ) which maps to
1 ∈ Z(U) by g(U). (Note: All this is needed because Z(U) is actually not Z if U is not
connected.)

Thus, we have an open cover (Ui) of X together with sections si ∈ F̃(Ui) where
(g(Ui))(si) = 1. Then for any i, j , the image of

si |Ui∩Uj − sj |Ui∩Uj (3.1.17)

under g(Ui ∩Uj) is 1− 1 = 0, so (3.1.17) is the image, under f (Ui ∩Uj), of an element

hij ∈ F(Ui ∩ Uj),

which is a Čech 1-cocycle. This procedure can obviously be reversed to construct, from a
Čech 1-cocycle valued in F , an extension of abelian sheaves (3.1.16). This gives inverse
isomorphisms between the two sides of (3.1.15). (Note that this classification of extensions
of Z up to isomorphism is in fact analogous with our discussion on classification of line
bundles up to isomorphism.) ��

COMMENT An analogue of Theorem 3.1.1, along with its proof, also works essentially
unchanged for bundles of dimension n. In this case, we consider the sheaf Mn(OX) of
n × n matrices in OX. This is, of course, a sheaf of OX-modules (a sum of n2 copies of
OX), but matrices can be multiplied, and so Mn(OX) can also be considered as a sheaf
of (non-commutative) rings. Furthermore, the sheaf Mn(OX)× is denoted by GLn(OX).
(Recall that the group of units of the ring Mn(R) of n × n matrices over a commutative
ring R is denoted by GLn(R) and called a general linear group of R.)

In any case, essentially the same discussion as the proof of Theorem 3.1.1 leads to a
proof of the fact that the set of isomorphism classes of n-bundles on a scheme X is bijective
to the first Čech cohomology

Ȟ 1(X,GLn(OX)).

Note that in general this is not (i.e. does not have a canonical structure of) a group, since
GLn(OX) is a sheaf of groups, not of abelian groups.

3.2 Cartier Divisors

If X is an integral scheme, then it has a well-defined field of rational functions K(X)

(unrelated, despite the notation, to algebraic K-theory), which is the field of fractions
of OX(U) for every non-empty affine open set U ⊆ X. We have therefore a canonical
embedding

OX(U) ⊆ K(X),
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which passes to an embedding on units:

ιU : O×X(U) ⊆ K(X)×. (3.2.1)

For a line bundle L on X given by a cocycle

((Ui)i∈I , hij , i, j,∈ I),

therefore, if we choose a particular j0 ∈ I , we can define a section of the sheaf

K(X)×/O×X (3.2.2)

(recall that the underline means a constant sheaf) by gluing the sections

ιUi∩Uj0
(hi,j0) ∈ (K(X)×/O×X)(Ui). (3.2.3)

The cocycle condition assures that these sections glue to a global section. A global section
of the sheaf (3.2.2) is called a Cartier divisor on X.

Conversely, every Cartier divisor s gives rise to a line bundle: On some open cover
(Ui)i∈I , each s|Ui comes from a section of K(X)×(Ui), i.e. an element of si ∈ K(X)×.
We can then simply put

hij = si |Ui∩Uj · s−1
j |Ui∩Uj .

This correspondence between line bundles and Cartier divisors is obviously not bijective
(for example, when associating a Cartier divisor with a line bundle, we made a choice of
j0 ∈ I ). In fact, even more generally, we could have multiplied the Cartier divisor (3.2.3)
by any element of f ∈ K(X)×, i.e. a global section of

K(X)×. (3.2.4)

Such a Cartier divisor, i.e. one which is the projection of a section of (3.2.4), is denoted by
(f ), and called a principal Cartier divisor. We see by definition that two Cartier divisors
whose fraction is a principal Cartier divisor give rise to isomorphic line bundles. Such
Cartier divisors are called linearly equivalent.

Conversely, if two Cartier divisors s, t (i.e. global sections of (3.2.2)) give rise to
isomorphic line bundles, and on an open cover Ui , the isomorphism is given by

φi ∈ O×X(Ui),

then the image of φj0 in K(X)× defines a principal Cartier divisor which is the ratio of the
associated Cartier divisors. Thus, we proved
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3.2.1 Theorem For every integral scheme X, the factor group of the (abelian) group of
Cartier divisors by the subgroup of principal Cartier divisors is canonically isomorphic to
Pic(X).

��

Example Considering again the unit circle

X = Spec(R), R = R[x, y]/(x2 + y2 − 1),

and the Möbius band whose global sections are pairs of sections

(s1 ∈ (1− y)−1R, s2 ∈ (1+ y)−1R)

such that s1 = xs2, we find a corresponding Cartier divisor by gluing, say, the section
1 ∈ K(X)×/O×X(U(1+y)) with the section x ∈ K(X)×/O×X(U(1−y)). So this basically does
not give anything new, although from this point of view we see that there is nothing special
about the fact that x has a zero at the point (0,−1): Considering the rational function

f = ay − (1+ b)x + a

1+ y
∈ K(X)×,

(noting that the numerator has zeros at (0,−1) and (a, b)), we may take the linearly
equivalent Cartier divisor obtained by gluing

f ∈ K(X)×/O×X(U(1+y)

and

f x ∈ K(X)×/O×X(U(1−y),

which has “a zero at the point (a, b).” We will see this point more clearly in the next
section from the point of view of Weil divisors.

The concept of a Cartier divisor can be extended to an arbitrary scheme X by replacing
the sheaf K(X) by the sheaf K which is the sheafification of the presheaf P where P(U)

is the localization of OX(U) obtained by inverting the multiplicative set consisting of
all sections which are non-zero divisors in every local ring OX,x for x ∈ U . Since
sheafification preserves stalks, note that the natural morphism of sheaves

OX → K
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is injective. A Cartier divisor in this more general context is a section of K×/O×X , and a
principal Cartier divisor is one which is the projection of a section of K×. The (abelian)
group which is the factor of the group of Cartier divisors by the subgroup of principal
Cartier divisors is called the Cartier divisor class group and denoted by Ca-Cl(X). In this
case, an analogue of the above construction still gives an injective map

Ca-Cl(X)
⊆

�� Pic(X) (3.2.5)

The map (3.2.5) is constructed the same way as in the case of integral schemes: lift
generators si of sections of a Cartier divisor to K× locally, and then record the Čech
1-cocycle of their differences in OX, thus giving a cocycle for a line bundle. Moreover,
note that the inverses s−1

i represent this line bundle as a subsheaf of K. The map (3.2.5) is
also injective for the same reason: if two invertible subsheaves of K are isomorphic via an
abstract isomorphism of OX-modules, then this isomorphism, considered as a section of
K×, gives a principal Cartier divisor which is the ratio of the Cartier divisors corresponding
to the subsheaves.

We saw however that by construction, the image of (3.2.5) lands in the subgroup of
Pic(X) of line bundles generated by invertible subsheaves of K, which, as it turns out,
does not have to include all line bundles. Thus, the map (3.2.5) is not onto in general.

COMMENT For any topological space X, and any abelian sheaf F , one can write

Ȟ 0(X,F) = F(X) ∼= Hom(Z,F) = H 0(X,F).

(Here Hom denotes the abelian group of homomorphisms in the category of abelian
sheaves.) Then for any short exact sequence of abelian sheaves

0 → E → F → G → 0 (3.2.6)

on X, we obtain an exact sequence

0 �� H 0(X, E) �� H 0(X,F) �� H 0(X,G)

��

H 1(X,G) H 1(X,F)�� H 1(X, E).��

(3.2.7)

The vertical homomorphism (also referred to as the connecting map) can be constructed
by taking a morphism of sheaves

f : Z→ G



3 Divisors 227

to the extension which is the top row of the diagram

0 �� E

Id

��

�� Q

��

�� Z

f

��

�� 0

0 �� E �� F �� G �� 0

where the right square is a pullback in the category of abelian sheaves. The other mor-
phisms (3.2.7) all come by functoriality from the morphisms (3.2.6). It is a little tedious
but easy to show that the sequence (3.2.7) is indeed exact. In fact, higher cohomology
can be defined (analogously to our present definitions), and the exact sequence (3.2.7)
then continues analogously through the higher cohomology groups. This exact sequence
is then referred to as the long exact sequence in cohomology. We shall study it in detail in
Chap. 5 (Theorem 2.3.7).

The inclusion (3.2.5) then can be interpreted as the homomorphism in (3.2.7) from the
cokernel of the last arrow of the top row to the last term of the bottom row, where (3.2.6)
is the short exact sequence

0 → O×X → K× → K×/O×X → 0. (3.2.8)

In the case when X is an integral scheme, we have K = K(X) so K× = K(X)×, and
furthermore, since X is irreducible,

K(X)×(U) = K(X)× if U �= ∅
0 if U = ∅.

This means that the restriction maps of K(X)× are onto. A sheaf F whose restriction
maps are onto is called flasque. We will see in Chap. 5 that all higher cohomology (i.e. all
cohomology except possibly H 0) of a flasque sheaf is 0. It is easy to check directly that
for a flasque sheaf F ,

Ȟ 1(X,F) = 0. (3.2.9)

Consider a Čech 1-cocycle ((Ui)i∈I , hij ) in F . Without loss of generality, I is an ordinal
number. We will construct, by transfinite induction on i ∈ I , an si ∈ F(Ui) such that
(writing additively),

sj |Uj∩Uk − sk|Uj∩Uk = hjk for j, k ≤ i.
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Assume that sj has been constructed for all j < i. Then the sections

hij + sj |Ui∩Uj , j < i

glue (by the cocycle condition) to a section

s̃i ∈ F(Ui ∩ (
⋃

j<i

Uj )).

By F being flasque, this section is the restriction of a section

si ∈ F(Ui),

completing the induction hypothesis, and thus proving (3.2.9).
Returning to the case of F = K(X)× for an integral scheme X, considering the long

exact sequence (3.2.7) associated with the short exact sequence of sheaves (3.2.8), we have

H 1(X,K(X)×) = 0,

so we get an exact sequence

0 �� OX(X)× �� K(X)× �� (K(X)×/O×X)(X)

��
0 Pic(X),��

which is another way to express Theorem 3.2.1.

3.3 Weil Divisors

In the example of the Möbius band L, we were able to construct an isomorphism of L
with a coherent sheaf of ideals, thereby establishing a connection between L and a closed
subscheme. This is attractive, since closed subschemes are very geometric. We may ask
two questions: (1) Which closed subschemes do we encounter? (2) Does this work for
every line bundle?

Even before making precise definitions, note that the answer to 1 appears to be that
we encounter closed subschemes of codimension 1, since the closed subscheme, at least
locally, arises as the 0 locus of a regular function. Recall that in view of the example in
Exercise 38 of Chap. 2, “codimension 1” may not be the same thing as “dimension 1 lower
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than dim(X),” and we must therefore use the precise definition of codimension introduced
there.

To help answer question 2, let us consider another basic example:

Example Consider the scheme

X = P
n
Spec(k) = Proj (k[x0, . . . , xn])

for a field k. Then by Proposition 2.4.1,OX(1) is a line bundle. In fact, we have an injective
morphism of line bundles

xi : OX → OX(1)

for any i = 0, . . . , n, in fact, generating the vector space of global sections of OX(1),
which is

k[x0, . . . , xn]1 = kn+1.

On the other hand, the vector space of morphisms of line bundles

OX(1)→ OX

is isomorphic to the vector space of global sections of OX(−1), which is

k[x0, . . . , xn]−1 = 0.

In particular,OX(1) is not isomorphic, as a line bundle, to any sheaf of ideals, and therefore
cannot correspond to a closed subscheme of X (which would be the zero locus of the ideal).
On the other hand, OX(−1) is isomorphic to the sheaf of ideals (xi) for any i = 0, . . . , n,
and thus, there is an associated closed subscheme, namely any of the hyperplanes Z(xi).
Denoting the inclusion of the hyperplane by

i : Pn−1
k → P

n
k ,

we get, in fact, a short exact sequence of coherent sheaves

0 → OP
n
k
(−1)→ OP

n
k
→ i∗OP

n−1
k
→ 0 (3.3.1)

This example suggests that to get OX(1), we should take “the hyperplane Z(xi) with
coefficient−1” (to correspond to the inverse of OX(−1)).

Actually, the choice of sign is a matter of convention (although must remain consistent
throughout geometry), and as it turns out, the usual choice of signs is the opposite,
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assigning the + sign to the zero locus of a global section of a line bundle, and the sign
− to the subscheme corresponding to an isomorphic sheaf of ideals. So OX(1) will be
assigned the hyperplane Z(xi), and OX(−1) will be assigned its negative. In any case, this
discussion motivates the following definition.

3.3.1 Definition Suppose that X is a Noetherian integral separated scheme such that all of
the local rings OX,x (i.e. stalks of the structure sheaf) which are of dimension 1 are regular.
Then a prime Weil divisor on X is an integral closed subscheme Y of codimension 1 (i.e.
such that the local ring OX,y at the generic point y of Y has dimension 1, see Exercise 15).
A Weil divisor on X is an element of the free abelian group whose free generators are prime
Weil divisors. Thus, a Weil divisor can be viewed as a formal Z-valued linear combination
of prime Weil divisors. A divisor is called effective if all the coefficients of the linear
combination are non-negative.

COMMENT Note that the condition of Definition 3.3.1 is always satisfied when X is
an integral Noetherian separated scheme that is also normal, which implies that all its
local rings are normal integral domains. (Recall that a Noetherian normal local ring of
dimension 1 is always regular by Lemma 2.4.2, 2 of Chap. 3; see also Exercise 42 of
Chap. 1).

3.3.2 Lemma Let X be a scheme which satisfies the assumptions of Definition 3.3.1, and
let f ∈ K(X)× (where K(X) is the field of rational functions on X). Then there exists
only finitely many integral closed subschemes Y ⊂ X of codimension 1 such that

f /∈ O×X,y (3.3.2)

where y is the generic point of Y .

Proof Since X is Noetherian and therefore quasicompact, it suffices to assume that X =
Spec(R) is affine. Then

f = g

h

where g and h are non-zero regular functions. A point y where we have (3.3.2) must be in

Z(g) ∪ Z(h). (3.3.3)

Since X is Noetherian, (3.3.3) is a union of finitely many irreducible closed sets
Y1, . . . , Ym, Yi = Spec(R/yi) where yi is a prime ideal. Now suppose y ∈ Yi . Then
yi ⊆ y, which, since dim(Ry) = 1, means yi = y or yi = (0). The latter is impossible
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since g, h �= 0. Thus, there are only finitely many choices of y. Note that Y is the closure
of y, and hence is determined by y. ��

3.3.3 Definition Let f ∈ K(X)×, and let (3.3.2) where y is a generic point of a closed
subscheme of codimension 1. Then OX,y is a regular local ring of dimension 1, hence a
discrete valuation ring with valuation vy . Define

(f ) =
∑

y

vy(f ) · Y (3.3.4)

which, by Lemma 3.3.2, is a finite sum. We call (f ) the principal Weil divisor associated
with f . Again, two Weil divisors whose difference is a principal Weil divisor are called
linearly equivalent. Clearly, principal Weil divisors form a subgroup of the (abelian) group
of all Weil divisors on X. The factor group is denoted by Cl(X) and called the (Weil)
divisor class group of X.

COMMENT The theory of Weil divisors can, in fact, be extended beyond assuming that
the scheme X is regular in codimension 1, by using concepts of intersection theory,
namely the intersection of a Weil and a Cartier divisor. However, we shall not develop
this generalization here. (For information on intersection theory, see [7].)

The term “divisor” is motivated by the following fact.

3.3.4 Theorem A Noetherian integral domain R is a unique factorization domain if and
only if it is normal and satisfies

Cl(Spec(R)) = 0.

The proof of this theorem relies on some commutative algebra which we developed in
Chap. 1. Prime Weil divisors in Spec(R) are closed subschemes of the form R/p where p

is a prime ideal of height 1.

3.3.5 Lemma A Noetherian integral domain R is a unique factorization domain if and
only if every height 1 prime ideal in R is principal.

Proof Suppose R is a unique factorization domain and suppose p is a prime ideal of height
1. Let 0 �= x ∈ p, and let x = a1 · · · · · an be a factorization into irreducibles. Then there
exists an i such that ai ∈ p, so (ai) ⊆ p. However, (ai) must be prime by uniqueness of
factorization, and since p is height 1, (ai) = p.

Suppose, on the other hand, that every prime ideal p of R of height 1 is principal.
In a Noetherian ring, every element has a factorization into irreducibles. For uniqueness
of factorization, we need to prove that if x is irreducible, then (x) is prime. Let x
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be irreducible, and let p be a minimal prime containing x. Krull’s Hauptidealsatz (see
Theorem 5.3.7 of Chap. 1 and the subsequent Comment) says that in any Noetherian ring, a
minimal prime ideal containing an element which is neither a 0 divisor nor a unit has height
1. Thus, p has height 1. By assumption, then, p = (y) for some element y ∈ R. Therefore,
x ∈ (y), which means that y is a factor of x, and since x is irreducible, p = (y) = (x). ��

3.3.6 Lemma Let R be a normal Noetherian integral domain, and let K be its field of
fractions. Then R is equal to the intersection A ⊆ K of all localizations Rp over prime
ideals p of height 1.

Proof Obviously, R ⊆ A. Suppose then that x, a ∈ R and x is not divisible by a. Our job
is to show that

x

a
/∈ A. (3.3.5)

Consider the ideal

I = {z ∈ R | xz is a multiple of a}.

By assumption, I �= R. On the other hand, note that without loss of generality, we may
assume that I is prime. If not, we would have a multiple xzt of a where xz and xt are not
multiples of a. Thus, we could replace x by xz or xt and repeat this procedure until we get
a prime ideal. (The procedure would have to terminate after finitely many steps because R

is Noetherian.) Thus, assume I is prime. We will prove that in fact I is of height 1, which
proves (3.3.5), since

x

a
/∈ RI .

(Note that if x/a = u/b, then xb = au, so b ∈ I .) In fact, without loss of generality,
we may as well now assume that R is local with maximal ideal I , since we can replace R

by the localization RI . Recall now the definition (2.4.4) of Chap. 3. To prove that I is of
height 1, by part 1 of Lemma 2.4.2 of Chap. 3, it suffices to prove that

II−1 = R. (3.3.6)

Of course, again, II−1 ⊆ R, so if (3.3.6) fails, we must have

II−1 = I.

As in the proof of part 2 of Lemma 2.4.2 of Chap. 3, this implies that I (I−1)n = I and
hence all elements of I−1 are integral over R, which, since R is normal, implies I−1 = R.
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This is, however, a contradiction with (3.3.5), since

x

a
∈ I−1.

��

Proof of Theorem 3.3.4 By Lemma 3.3.5, all we need to prove is that for a normal
Noetherian integral domain R,

Cl(Spec(R)) = 0 (3.3.7)

if and only if every height 1 prime ideal in R is principal. Of course, height 1 prime ideals
in R correspond bijectively to prime Weil divisors in Spec(R), so we see right away that
if every height 1 prime ideal in R is principal, then (3.3.7) holds.

Suppose, conversely, that (3.3.7) holds. Then for every prime ideal p ⊂ R of height 1,
there exists an element f of the field of fractions K ⊇ R such that

vp(f ) = 1, vq(f ) = 0 for other height 1 prime ideals R.

By Lemma 3.3.6, however, we know that f ∈ R, since otherwise we would have vq(f ) <

0 for some height 1 prime ideal q . But on the other hand, if g ∈ p is any element, then

vq(
g

f
) ≥ 0

for all height 1 prime ideals q , so again by Lemma 3.3.6,

g

f
∈ R,

so p = (f ) and p is principal, thus proving (3.3.7). ��

Example Consider, say, on A
3
C
= Spec(C[x, y, z]), the Weil divisor

D = 5Z(x2 + y2 − 1)− 3Z(x − y − z).

Since C[x, y, z] is a unique factorization domain, we know that any divisor on A
3
C

must
be principal. It is, of course, easy to see directly that

D = (f )
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where

f = (x2 + y2 − 1)5

(x − y − z)3 .

Now assume a scheme X satisfies the assumptions of Definition 3.3.1. Then in
particular X is an integral scheme, so

Pic(X) ∼= Ca-Cl(X).

On the other hand, every Cartier divisor on X determines a Weil divisor: send a global
section f ∈ K(X)×/O×X(X) to

∑

Y

vy(f )Y (3.3.8)

where the sum is over all codimension 1 integral closed subschemes Y ⊂ X and y is
the generic point of Y . Note that the sum (3.3.8) is well-defined since multiplication
by a section of O×X on an open set containing the given generic point does not affect
the valuation. Note also that the sum (3.3.8) is finite because X is Noetherian (see
Lemma 3.3.2). Under this correspondence, principal Cartier divisors clearly go to principal
Weil divisors, so we obtain an inclusion

Ca-Cl(X) ⊆ Cl(X). (3.3.9)

On the other hand, by definition, any Weil divisor Z which comes from a Cartier divisor
clearly has the property that every point of X has an open neighborhood U such that the
restriction Z|U (defined by intersecting all codimension 1 integral subschemes Y with
U ) is principal. A Weil divisor with this property is called locally principal. Note that
principal Weil divisors are locally principal, so being locally principal is really a property
of an element of Cl(X). We can summarize this discussion in the following

3.3.7 Proposition There is a canonical embedding (3.3.9) whose image coincides with
the classes of locally principal Weil divisors.

��

Example Let X = Spec(R),R = k[x, y, z]/(z2 − xy) where k is a field of characteristic
not equal to 2 (a quadratic cone). Then X is normal. To show this, we need to show that R

is integrally closed in its field of fractions K . Because of the equation for z2, as an k[x, y]-
module, R is free with basis 1, z and similarly K is a free k(x, y)-module with basis 1, z.
Therefore, every element of R is integral over k[x, y]. Now if an element t = u + zv,
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u, v ∈ k(x, y), is integral over R, it is therefore also integral over k[x, y]. If t ∈ k(x, y),
we are done, since k[x, y] is normal. Otherwise, over k(x, y), t is a zero of the polynomial

(t − u)2 − xyv2 = t2 − 2tu+ (u2 − xyv2), (3.3.10)

and hence this must be the minimal polynomial of t over k(x, y). Hence, since t is integral
over k[x, y], (3.3.10) must be a factor of a polynomial in t with coefficients in k[x, y], and
hence by the Gauss lemma, its coefficients must be in k[x, y]. Thus, u ∈ k[x, y], and also

u2 − xyv2 ∈ k[x, y],

which implies xyv2 ∈ k[x, y]. Since x, y are relatively prime irreducibles in the unique
factorization domain k[x, y], we also have v ∈ k[x, y] and hence t ∈ R.

Then Z(y, z) ∼= Spec(k[x]) is the line y = z = 0 on the cone, hence an integral
subscheme of codimension 1. (Note that in the local ring R(y,z), x is invertible, so the
maximal ideal (y, z) ⊂ R(y,z) is principal, generated by z, and hence of height 1.) Thus,
Z(y, z) defines a Weil divisor on X. However, note that (y, z) is not a principal ideal
at R(x,y,z), since x, y, z are K-linearly independent in maximal ideal m/m2 (since the
polynomial z2 − xy is homogeneous of degree 2). Therefore, (y, z)/m2 has dimension 2
over k, and hence (y, z) is not a principal ideal in R(x,y,z), and hence cannot be locally
principal. This is an example of a Weil divisor which is not a Cartier divisor.

We see immediately that this is essentially the only difficulty that can happen: if X is
locally factorial, which means that X is integral, Noetherian, separated and all the local
rings OX,x are unique factorization domains (note that then automatically X is normal),
then every Weil divisor is principal in every local ring OX,x , and hence in some open
neighborhood of x, and hence it is locally principal. Thus, we have the following

3.3.8 Proposition For a locally factorial scheme, the inclusion (3.3.9) is an isomorphism.
This happens in particular if X is Noetherian regular separated, since all regular local
rings are unique factorization domains (See Exercise 18.)

��
Thus, for Noetherian regular integral separated schemes, the divisor class group and the

Picard group are isomorphic (Exercise 20).

3.3.9 Example: Divisors on Dedekind Domains
Suppose R is a Dedekind domain. Denote by �(R) the set of nonzero ideals on R. This is
a commutative monoid with respect to the product of ideals. We have a homomorphism of
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commutative monoids

�(R) → Cl(Spec(R)) (3.3.11)

by sending

p
i1
1 · · · · · pin

n → i1Z(p1)+ · · · + inZ(pn).

(Recall Theorem 2.3.2. Note that the operation is written multiplicatively in the source and
additively in the target.) We will show that (3.3.11) is, in fact, onto. This is the same as
showing that every Weil divisor on Spec(R) is linearly equivalent to an effective divisor.
It follows from the fact that the Weil divisor−Z(p) for a maximal ideal p � R is linearly
equivalent to (r)− Z(p) for any element r ∈ p, which is effective.

Thus, (3.3.11) is onto. Additionally, (3.3.11) clearly sends principal ideals to 0 (since
they are sent to the corresponding principal divisor). In fact, we see that if two ideals I, J

are sent to the same divisor class, there exist elements r, s ∈ R � {∅} such that

I · (s) = J · (r). (3.3.12)

Thus, if we denote the equivalence relation (3.3.12) by ∼ and call it equivalence of ideals,
then the set Cl(R) of equivalence classes �(R)/ ∼ is, by (3.3.11) bijective to

Cl(Spec(R)) ∼= Pic(R).

The bijection with Cl(Spec(R)) gives Cl(R) a structure of an abelian group, which is
called the ideal class group of R. The operation is, of course, still given by multiplication
of ideals. By Theorem 3.3.4, a Dedekind domain R is a unique factorization domain if
and only if Cl(R) = 0, which happens if and only if R is a principal ideal domain (which
means an integral domain in which every ideal is principal).

In number theory, a number field is a finite extension K of Q. The integral closure of
Z in K is then a Dedekind domain, which is denoted (somewhat conflictingly) by OK .
The ideal class groups Cl(OK) is not known in general, and is of major interest in number
theory. A major known result is that Cl(OK) is always finite (using the techniques built
up in the Exercises of Chap. 3, we are able to prove this, see Exercise 25). However, the
ideal class group of a general Dedekind domain can be any abelian group. (We will see
examples in Sect. 3.4 below where it is not finitely generated.)

Example Take for example quadratic fields which are of the form Q(
√

D) where D is a
square free integer, which means that it is not divisible by any n2 for an integer n > 1.
One has

Q(
√

D) = {a + b
√

D | a, b ∈ Q}.
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(We have

a + b
√

d

c + d
√

D
= (a + b

√
D)(c − d

√
D)

c2 −Dd2

where the denominator is non-zero because D is not a square.) To calculate O
Q(
√

D)
, note

that for b �= 0, the minimal polynomial of u = a + b
√

D, a, b ∈ Q, is

(u− a)2 − b2D = u2 − 2au+ (a2 − b2D),

so if u is integral over Z, then by Gauss’ lemma,

2a ∈ Z, a2 − b2D ∈ Z. (3.3.13)

If D is not congruent to 1 modulo 4, then we have to have a ∈ Z, and it then follows that
b ∈ Z because D is square free. If D ≡ 1 mod 4, then we can have either a, b ∈ Z or
a, b ∈ 1

2 + Z. Thus,

O
Q(
√

D) =
Z[1+

√
D

2 ] if D ≡ 1 mod 4

Z[√D] otherwise.

Even for quadratic fields Q(
√

D), the ideal class group Cl(O
Q(
√

D)
) (or even its order)

is not known in general. For D < 0 square free, it is known that Cl(O
Q(
√

D)) = 0 (i.e.
O

Q(
√

D) is a unique factorization domain, or equivalently prime ideal domain) for precisely
9 different values of D: −1,−2,−3,−7,−11,−19,−43,−67,−163. It is not known if
there are infinitely many D > 0 square free for which

Cl(O
Q(
√

D)) = 0,

although there appears to be a positive proportion of them.

Example Consider again the Dedekind domain

R = R[x, y]/(x2 + y2 − 1).

We know that the Weil divisor on Spec(R) corresponding to the Möbius band cannot be
principal (and hence, R cannot be a unique factorization domain). From the point of view
of the ideal class group, we already saw that the Möbius band, as an invertible sheaf, is
isomorphic to the non-principal ideal (x, 1 + y). Let us see it in another way using the
passage from Cartier to Weil divisors. We know that the Cartier divisor is x on U(1−y) and
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1 on U(1+y). Therefore, the Weil divisor will be some coefficient times Z(x, 1 + y). (We
also know that any other point of the circle with residue field R could be chosen instead.)
To calculate the coefficient from the point of view of valuations, we must work in the local
ring

R(x,1+y). (3.3.14)

The key observation is that in (3.3.14), 1−y is invertible, so the maximal ideal is generated
by x (since, again, (1+ y) = x2/(1− y)). Thus, x has valuation 1 and therefore the Weil
divisor of the Möbius band is 1 · Z(x, 1+ y).

3.4 Examples and Calculations

In this section, we will use our techniques to give examples of calculations of divisor class
groups and Picard groups.

Example Let k be a field, n > 0. Consider X = P
n
k = Proj (R), R = k[x0, . . . , xn],

which is a regular scheme. The Weil divisor associated with OX(1) is any hyperplane,
say, H = Z(x0), since OX(1) can be represented as a Cartier divisor by its global section
s = x0, which has vH (s) = 1, and vY (s) = 0 for any other integral subscheme Y �= H of
codimension 1. Now any codimension 1 integral subscheme of X corresponds to a height
1 homogeneous prime ideal I of R (by Proposition 2.4.5 part 1), which is principal. Let
I = (g) where g is a homogeneous irreducible polynomial of degree d . We see that the
prime Weil divisor Z(g) is linearly equivalent to d(H) by multiplying by the rational
function xd

0 /g. This defines a homomorphism of abelian groups

Z→ Pic(Pn
k)

which is onto. We can show that it is also injective by noting that a Weil divisor

a1Z(g1)+ · · · + amZ(gm) (3.4.1)

where gi are irreducible homogeneous polynomials of degrees di can only be principal if

a1d1 + · · · + andn = 0. (3.4.2)

This is because if (3.4.1) is the principal divisor associated with a rational function f on
P

n
k then we have f = g/h where g, h are homogeneous polynomials of equal degrees, so

if we factor g = g
k1
1 . . . g

km
m , h = h

�1
1 . . . h

�p
p , where gi are irreducible of degrees di and hi
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are irreducible of degree ei , we have

k1d1 + · · · + kmdm − �1e1 − · · · − �pep = 0,

which is (3.4.2). Thus, we used Weil divisors to prove that

Pic(Pn
k)
∼= Z.

3.4.1 Proposition Suppose X is a Noetherian integral separated scheme whose all local
rings of dimension 1 are regular. Let Z � X be a closed subset. Then intersecting with
U = X � Z defines an onto homomorphism

φ : Cl(X) → Cl(U).

Further, this is an isomorphism if Z is of codimension ≥ 2 (i.e. if all generic points of
irreducible components of Z are of height ≥ 2). If Z is irreducible of codimension 1, we
have an exact sequence

Z
ι

�� Cl(X)
φ

�� Cl(U) �� 0 (3.4.3)

where ι(1) = Z.

Proof The fact that φ is onto follows from the fact that the closure of a prime divisor in
U is a prime divisor in X. If Z is of codimension ≥ 2, the height 1 generic points (which
correspond to prime Weil divisors) are the same in X and U . Also, rational functions on U

are the same as on X. Thus, φ is an isomorphism. If Z is irreducible of codimension 1, then
it contains a unique height 1 point, namely the generic point of Z. Thus, the free abelian
group on prime Weil divisors of X has the same generators as the group of prime Weil
divisors on U , plus the additional generator Z. Noting again that the rational functions on
U and X are the same, and by factoring them out, we obtain exactly (3.4.3). (Note that ι

does not have to be injective because some multiple of Z can be a principal divisor.) ��

3.4.2 Proposition Suppose X is a Noetherian integral separated scheme whose every
local ring of height 1 is regular. Then the same holds for A1

X = X ×Spec(Z) Spec(Z[t]),
and we have a canonical isomorphism

φ : Cl(X)
∼=

�� Cl(A1
X). (3.4.4)

Proof Clearly, the condition we are studying is local, so to verify the condition, it suffices
to assume that X = Spec(R) is affine. The fact that if R is an integral domain, so is R[t],
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is trivial. If p is a prime ideal of R[t] of height 1, then q = p ∩ R has height ≤ 1 in R, so
Rq is regular, therefore so is Rq [t]. Thus, R[t]p = (Rq [t])p is regular (See Corollary 2.6.8
of Chap. 5.)

Returning to the case of a general scheme X satisfying our hypotheses, the isomorphism
φ of (3.4.4) is constructed by sending a prime Weil divisor Y ⊂ X to π−1(Y ) where
π : A1

X → X is the projection. Clearly, principal divisors are sent to principal divisors (for
a rational function f on X, the principal divisor (f ) is sent to (f ), considered as a rational
function on A1

X). In fact, we can show in the same way that φ is injective: Denote the field
of rational functions on X by K . Suppose f ∈ K(t) such that

(f ) ∈ Im(φ). (3.4.5)

If f /∈ K , then factor f = g/h where g, h ∈ K[t] are relatively prime. Then g, h are not
both constant, so at least one of them has a zero in the subset A1

Spec(K) of A1
X, which means

that (f ) has a non-zero coefficient at a height 1 point which projects to the generic point
of X, which contradicts the assumption (3.4.5). Thus, f ∈ K , and hence (f ) = φ((f )).
Thus, φ is injective.

To prove that φ is onto, consider an arbitrary divisor D on A
1
X, and consider the sum

D0 of all its terms which are divisors on A
1
Spec(K). Since K(t) is a principal ideal domain,

there exists a rational function f ∈ K(t) such that (f ) = D0 in A1
Spec(K). Therefore

D − (f ) is in the image of φ in A1
X. ��

Remark This statement (and proof) generalize to prove that the projection pM induces an
isomorphism

Cl(UM) ∼= Cl(X) (3.4.6)

for every locally free sheaf of modules M on X. (See (2.1.5) of Sect. 2.1 and Exercise 28.)

Example We can now finally put to rest the Möbius band example by calculating
completely Pic(X) where

X = Spec(R), R = R[x, y]/(x2 + y2 − 1).

Since X is regular (it is smooth over Spec(R)), we can use Weil divisors. This can be done
pretty much directly, but there is a nice way using Proposition 3.4.1: Let Z = Z(x, y−1).
Then, as remarked before,

X � Z = U(1−y)
∼= Spec((1− y)−1R).
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Now we have an isomorphism of rings

(1− y)−1R = (1− y)−1
R[x, y]/(x2 + y2 − 1) ∼= (1+ t2)−1

R[t] (3.4.7)

given by the Euler parametrization of the circle:

t = y + 1

x
, (note that t2 + 1 = 2

1− y
)

and conversely

x = 2t

t2 + 1
, y = t2 − 1

t2 + 1
, (note that 1− y = 2

t2 + 1
).

We have Cl(A1
R
) = 0 by Proposition 3.4.2, so by Proposition 3.4.1 (applied to Z =

Z(t2 + 1)), we have Cl(U(1−y)) = 0. Thus, by Proposition 3.4.1 again now applied to our
X and Z = Z(x, 1− y), We have an onto homomorphism

Z→ Cl(X) = Pic(X),

where 1 ∈ Z maps to (x, 1 − y). But we already saw that this element of Pic(X) is non-
trivial, represented by the Möbius band. We also saw that the second power of the Möbius
band is 0 ∈ Pic(X), so we have proved that

Pic(X) ∼= Z/2.

Example Let X = Spec(R) where

R = R[x, y, z]/(x2 + y2 + z2 − 1).

This ring has dimension 2, so it is not a Dedekind domain. It is, nevertheless, smooth
over R and hence regular, and it is a rational variety, i.e. its field of rational functions is
isomorphic to the field of rational functions on an affine space. The rational isomorphism is
given by the stereographic projection, i.e. projecting points on the sphere x2+y2+z2 = 1
onto the plane z = 0 using rays originating in the point (0, 0, 1). More specifically, the
stereographic projection is an isomorphism

(1− z)−1R ∼= (u2 + v2 + 1)−1
R[u, v] (3.4.8)

given by

u = 2x

1− z
, v = 2y

1− z
, (3.4.9)
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using the similarity between the triangle with vertices

(0, 0, 1), (0, 0,−1), (u, v,−1)

and the triangle with vertices

(x, y, z), (x, y,−1), (u, v,−1).

The inverse of the homomorphism (3.4.9) is

x = 2u

u2 + v2 + 1
, y = 2v

u2 + v2 + 1
, z = u2 + v2 − 1

u2 + v2 + 1
(3.4.10)

(discovered by computing u2 + v2 from (3.4.9), using x2 + y2 + z2 = 1 and canceling
1− z in the numerator and denominator, thus obtaining a fractional linear equation for z).

In any case, set U = X � Z where

Z = Z(1− z), (3.4.11)

and observe that Z is an integral closed subscheme, since it is isomorphic to

Spec(R[x, y]/(x2 + y2)),

and x2+ y2 is an irreducible polynomial over R. Now we have Cl(U) = 0 by (3.4.8), and
we can use the exact sequence (3.4.3) to construct an onto homomorphism

Z→ Cl(X) → 0. (3.4.12)

The generator goes again to the divisor 1 ·Z. This time, however, observe that this divisor
is principal by (3.4.11) (since (1 − z) is a principal ideal). Thus, the generator of Z in
(3.4.12) goes to 0, and we conclude that Cl(X) = 0, and hence R is a unique factorization
domain.

COMMENT Note that the stereographic projection works in any dimension. (The Euler
parametrization is the stereographic projection in dimension 1.) One can use this to prove
that for any n > 1,

Cl(Spec(R[x1, . . . , xn]/(x2
1 + · · · + x2

n − 1))) = 0. (3.4.13)

(Exercise 29.)
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Example (The Hyperboloid in One Sheet) Let k be a field of characteristic �= 2. Consider
the smooth affine scheme X = Spec(R) over Spec(k) given by

R = k[x, y, z]/(x2 + y2 − z2 − 1). (3.4.14)

Let Z = Z(1− y) ⊆ X. In R, we have

x2 − z2 = 1− y2,

so

(x − z)−1R ∼= v−1k[y, v]

where v = x − z. Thus, putting U = X � Z, we have

Cl(U) = 0.

However, Z is not irreducible. Rather, we see immediately that its irreducible components
are

Z1 = Z(1+ y, x − z), Z2 = Z(1− y, x − z).

We cannot therefore apply Proposition 3.4.1 as stated, but the same argument gives an onto
homomorphism

Z⊕ Z→ Cl(X) → 0 (3.4.15)

where

(a, b) → a · Z1 + b · Z2.

Observe that we can calculate the kernel of (3.4.15) as well: If

a · Z1 + b · Z2 = (f )

for a rational function f , then f must be an invertible regular function on U . But we saw
that U ∼= Spec(v−1k[y, v]), and we have

(v−1k[y, v])× ∼= Z⊕ k×
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where the k× comes from constant functions and the generator of the Z is v = x − z, and
we have

(x − z) = Z1 + Z2.

Therefore, we conclude that

Pic(X) = Cl(X) ∼= Z.

Note that for k ∼= R, the circle is isomorphic to the closed subscheme Z(z) of X, and
the generator of Pic(X) pulls back to the Möbius band. Note also that for k = C, the
hyperboloid in one sheet is isomorphic to

Spec(C[x, y, z]/(x2 + y2 + z2 − 1)).

In particular, in the previous example, if we replaced the field R with the field C, the Picard
group would be Z, not 0.

Remark Note that for a Noetherian separated integral scheme X whose local rings OX,x

of dimension 1 are regular, and a reduced closed subscheme Z of codimension 1, if we
denote by S the set of irreducible components of Z of codimension 1 in X, and by Z(S)

the free abelian group on S, the argument of the previous example gives an exact sequence

0 → O×X → O×U → Z(S) → Cl(X) → Cl(U) → 0, (3.4.16)

which is a generalization of Proposition 3.4.1.
It is tempting to try to compare (3.4.16) with the long exact sequence in cohomology

associated with a short exact sequence of sheaves (see the end of Sect. 3.2). But it is not
as straightforward as one may think. If we denote by j : U ⊆ X the inclusion, we have a
short exact sequence of sheaves

0 → O×X → j∗O×U → Z → 0 (3.4.17)

where Z is the sheaf of locally principal Weil divisors with non-zero coefficients only on
irreducible components of Z. (We speak of divisors with support on Z.) The long exact
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sequence (3.2.7) in cohomology associated with (3.4.17) is

0 �� O×X �� O×U �� Z(X) �� Pic(X)

��

H 1(X, j∗O×U)

��

H 1(X,Z).

(3.4.18)

It maps into the long exact sequence (3.4.16) (by which we mean there are morphisms
on corresponding terms which form commutative diagrams with the morphisms in the
sequences). In effect, the terms before Z(X) coincide, Z(X) is clearly a subgroup of the
group of all Weil divisors on X with support in Z, and Pic(X) ⊆ Cl(X) similarly. There
are mappings

Pic(X) → H 1(X, j∗O×U) → Pic(U) (3.4.19)

given by restriction of sheaves. Hence, the composition is given by restriction of line
bundles. This means that there is a canonical map of the long exact sequence (3.4.18)
to the long exact sequence (3.4.16). However, either of the maps (3.4.19) may fail to be
onto, as we shall see in the following two examples.

Example Let us revisit the cone X = Spec(R),

R = k[x, y, z]/(z2 − xy)

where k is a field of characteristic �= 2. We saw that the Weil divisor Z(y, z) on X is not
locally principal, and hence does not come from a Cartier divisor. On the other hand, the
principal divisor (y) is equal to 2 · Z(y, z), and we have

X � Z(y, z) = U(y)
∼= Spec(y−1k[y, z]),

so by Proposition 3.4.1,

Cl(X) ∼= Z/2.

On the other hand, Now consider the scheme

V = X � Z(x, y, z).
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Then V is a regular scheme, so by Proposition 3.4.1 (applied to Z(x, y, z) ⊂ X), we have

Pic(V ) = Cl(V ) = Cl(X) ∼= Z/2.

In this case, however, we can show that

H 1(X,Z) = 0. (3.4.20)

Therefore, the first map (3.4.19) is onto by the long exact sequence (3.4.18), and hence the
second map (3.4.19) is not onto (since the composition is not onto). Of course, we already
know that Pic(X) = 0 (since it is a subgroup of Cl(X) and is not equal to it).

To show (3.4.20), consider the short exact sequence

0 → Z → i∗ZZ(y,z) → F → 0 (3.4.21)

where i : Z(y, z) → X is the closed immersion (and recall that Z denotes the constant
sheaf). Then from the above discussion it follows that

F = ι∗ZZ(x,y,z)

where ι : Z(x, y, z) → X is again the closed immersion. Thus, the map in 0’th
cohomology induced by the second morphism (3.4.21) is Id : Z → Z, while i∗ZZ(y,z) is
flasque, so (3.4.20) is implied by the long exact sequence in cohomology associated with
the short exact sequence (3.4.21).

Example Consider X = Spec(R),

R = C[x, y, z]/(z2(1− z)2 + x2 − y2). (3.4.22)

One shows that R is normal by the same method as for the ring in the previous example
(which was treated in the previous subsection), by showing that it contains the integral
closure of C(y, z) in C(y, z)[x]/(z2(1− z)2 + x2 − y2). Let

Z = Z(z(1− z)− y, x), U = X � Z

and let j : U → X be the open immersion. It is easy to compute Cl(X) by the same
method as we used in the previous example (Exercise 30), but that is not what we are after.
Instead, we will focus on the sheaf Z . Denoting again by i : Z → X the closed immersion,
this time, one has a short exact sequence

0 → Z → i∗ZZ → (i0)∗ZZ(x,y,z)⊕ (i1)∗ZZ(x,y,z−1) → 0 (3.4.23)
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where i0 : Z(x, y, z) → X, i1 : Z(x, y, z − 1) → X again are the closed immersions.
Therefore, there is a non-zero element

α ∈ H 1(X,Z)

represented by a Čech cocycle defined on the open cover

U(z), U(z−1)

of X and the locally principal divisor

Z01 = Z(Z ∩ U(z) ∩ U(z−1))

on U(z) ∩ U(z−1). However,

U(z) ∩ U(z−1) = Spec(z−1(z− 1)−1C[x, y, z]/(z2(z− 1)2 + x2 − y2))

Spec(z−1(z − 1)−1u−1C[z, u])

(by substituting u = x − y), so Cl(U(z) ∩U(z−1)) = 0 and hence the divisor Z01 = (f ) is
principal. The function f then lifts the element α to H 1(X, j∗O×U), thus showing that the
first map (3.4.19) is not onto in this case.

Example Let X be a complete smooth curve over an algebraically closed field k. Define
the degree of a Weil divisor

∑
npZ(p) to be

∑
np. The degree of a principal divisor is

always 0: Consider a rational function f ∈ K(X)×. If f ∈ k×, the divisor is 0 and there
is nothing to prove. Otherwise, we can think of f as a dominant morphism f : X → P1.
Then by Theorem 4.2.6 of Chap. 3, considering the points 0,∞ ∈ P1

k ,

deg((f )) =
∑

q∈f−1(0)

vq (t)−
∑

q∈f−1(∞)

vq (t) = deg(f )− deg(f ) = 0.

Thus, we obtain an onto homomorphism

Cl(X)
deg

�� Z �� 0. (3.4.24)

We already know that it is an isomorphism for X = P1
k by the first example of this

subsection. We will next see an example where it is not an isomorphism. The kernel of
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(3.4.24) is usually denoted by Pic0(X). Thus, we will next give an example of a complete
smooth curve X for which Pic0(X) �= 0.

Example Let E be an elliptic curve, i.e. the complete smooth curve over an algebraically
closed field of characteristic 0 rationally equivalent to (4.2.4) in the example in Sect. 4.2
of Chap. 3. (Again, our arguments work equally well for (4.2.5).) In other words,

E = Proj (R), R = k[x, y, z]/(x2z− y3 − yz2).

By the previous example, degree gives an onto homomorphism (3.4.24) for X = E, but
now we will compute the kernel of deg.

We saw in the Example in Sect. 4.2 of Chap. 3 that E is not rational. This means that
for two closed points p �= q ∈ E,

Z(p)− Z(q) �= 0 ∈ Cl(E) = Pic(E). (3.4.25)

Indeed, if the Weil divisor Z(p) − Z(q) were principal, this would give a degree 1
morphism E → P1

k , which by definition would mean that E is rational. Thus, choosing a
point q0 (usually, one chooses q0 = [0 : 0 : 1]),

p → Z(p)− Z(q0)

gives an injective map

Em → Pic0(E). (3.4.26)

(Recall that Em is the set of closed points of E.) We will see that (3.4.26) is a bijection,
thus giving Em a structure of a group!

So all we need to show is that (3.4.26) is onto. Consider any line

ax + by + cz = 0 (3.4.27)

in P
2
k , and the associated rational function

ax + by + cz

z
(3.4.28)

on E. We will assume that a and b are not both 0, so we can think of (3.4.28) as a dominant
morphism E → P1

k . If the point q0 is not on the line (3.4.27) then (3.4.28) is of degree 3.
In this case, (3.4.27) has three zeros on E counting multiplicities, and Theorem 4.2.6 of
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Chap. 3 tells us that the principal divisor of (3.4.28) is of the form

Z(p1)+ Z(p2)+ Z(p3)− 3Z(q0) (3.4.29)

where p1, p2, p3 are three (not necessarily distinct) points of E, all distinct from q0. If the
line (3.4.27) contains q0 but is not equal to the line z = 0, then (3.4.28) is of degree 2 and
the principal divisor is of the form

Z(q1)+ Z(q2)− 2Z(q0). (3.4.30)

Note that we can choose q1 in (3.4.30). Thus, choosing q1 = p3 and subtracting from
(3.4.29), we get

Z(p1)+ Z(p2)− Z(q2)− Z(q0). (3.4.31)

We can add integral multiples of (3.4.29) and (3.4.30) to show that any Weil divisor on E of
degree 0 is equivalent to Z(p)−Z(q0) for some point p ∈ E, which proves our claim. To
see this, note that if a divisor D has non-zero coefficients at two different points �= q0, we
can make all such coefficients positive by adding multiples of the form (3.4.30), picking
lines (3.4.27) through points with negative coefficients and q0. If all of the coefficients at
points other than q0 are positive, we can subtract positive multiples of (3.4.31) where p1

and p2 are two of the points (note that they do not have to be distinct, if we want them to be
the same, pick a line tangent to E) to reduce the sum of coefficients. Repeat the reduction
until it is 1.

Note that thinking of the point q0 as 0, (3.4.31) can be thought of as a formula for a
group operation on Em itself, simply defining q3 the sum of p1 and p2. Similarly, (3.4.30)
makes q2 the additive inverse of q1. It is worth noting that if E is defined over a field k

which is not necessarily algebraically closed, one can show that the formulas given by
(3.4.30) and (3.4.31) produce a group law on E itself, not just its pullback to Spec(k).
More precisely, one proves that the composition E × E → E unit Spec(k) → E and
inverse E → E are morphisms of schemes, thus making an group scheme. A group scheme
which is also a variety is called an algebraic group. Thus, an elliptic curve is an algebraic
group projective over Spec(k).

Example The cusp curve E is the closure in P2
k (assume still k algebraically closed) of

Spec(R), R = k[x, y]/(x2 − y3).

It can be also written as

Proj (k[x, y, z]/(x2z − y3)).
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One sees easily that the OE,q∞ = Rq∞ is not normal for

q∞ = [0 : 0 : 1].

Therefore, Cl(E) is not defined, but E is an integral scheme, so we can use Cartier divisors
to work out Pic(E). One checks that U = E�Z(q∞) is smooth over k, in fact isomorphic
to A

1
k . To see this, note that Z(q∞) is the reduced closed subscheme associated with the

intersection of E with Z(x) in P2
k. Thus, U is simply the intersection of E with U(x) ⊂ P2

k ,
which is

Spec(S), S = k[y, z]/(z− y3).

Clearly, this scheme is isomorphic to A1
k .

Now every Cartier divisor is linearly equivalent to a Cartier divisor D which is 1 in
an open neighborhood of any chosen point q . (If in a neighborhood of q , the divisor is
equal to f ∈ K(X), simply divide it by f globally.) Choosing q = q∞, we see that
our Cartier divisor D which is invertible in an open neighborhood of q∞ then determines
and is determined by a Weil divisor on U . However, it does not follow that two linearly
equivalent divisors on U would necessarily come from linearly equivalent Cartier divisors
D on E. In fact, linear equivalence on U is sort of irrelevant (recall that Pic(A1

k) = 0),
and we have to work out the E-linear equivalence of Weil divisors on U (which we will
denote by ∼E) from other facts.

First, let us discuss degree. Note that since E is not a smooth curve over k, degree of
Cartier divisors on E has not been defined. However, note that we have a morphism

g : P1 → E

defined by extending the composition A1
k
∼= U ⊂ E to P1 by Lemma 4.2.2 of Chap. 3.

Then defining the E-degree of a Weil divisor
∑

niZ(pi) on U as
∑

ni , the degree of an
E-principal divisor (f ) we have

deg((f )) =
∑

q∈(f ◦g)−1(0)

vq(t)−
∑

q∈(f◦g)−1(∞)

vq(t) =

deg(f ◦ g)− deg(f ◦ g) = 0.

Next, note that for points p �= q ∈ Um,

Z(p) �E Z(q). (3.4.32)

To prove (3.4.32), assume that Z(p) and Z(q) are linearly equivalent on E. Then there
exists a dominant morphism f : E → P1 (where p → 0, q → ∞) which induces
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an isomorphism on fields of fractions. Localizing at q∞, this gives an embedding of
the discrete valuation ring O

P
1
k,f (q∞) to Rq∞ which induces an isomorphism on fields

of fractions. Since discrete valuation rings are maximal, we would have to have

O
P

1
k,f (q∞)

∼= Rq∞

which is impossible, since Rq∞ is not normal. This proves (3.4.32). On the other hand,
the discussion of lines (3.4.30) and corresponding rational functions (3.4.31) is precisely
the same as in the previous example, with the exception that we want to avoid any lines
containing the point q∞. This happens naturally, however, noting that any line through the
point q∞ contains at most one other point of E, with multiplicity 1. Thus, connecting two
points of Um (including the case of a point with itself) never creates a line which would
contain q∞.

It is also worth noting that the group law on U coincides with the ordinary group law
on A

1
k (addition). This is because the points (u, u3), (v, v3), (−u− v,−(u+ v)3) actually

lie on a straight line in the vector space k2.
The algebraic groupA1

k with respect to addition is called the additive group and denoted
by Ga (although the disadvantage of this notation is that it does not display k). In any case,
we proved that

Pic(E) ∼= Z⊕ (Ga)m.

Example The nodal curve E is the closure in P2
k (k algebraically closed of characteristic

�= 2) of

Spec(R), R = k[x, y]/(x2 − y3 − y2),

or

Proj (k[x, y, z]/(x2z− y3 − y2z)).

In this case, we factor the projective equation

x2z− y3 − y2z = 0

as

(x + y)(x − y)z = y3.
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It is convenient to substitute

u = x + y

2
, v = x − y

2
,

so then we have

4uvz = (u− v)3.

We see that a line in P
2
k which intersects E only in the point

q∞ = [0 : 0 : 1]
is Z(u). In the complement of this line, then, the equation becomes

4vz = (1− v)3.

We see that this is isomorphic to Spec(k[v, v−1]) ∼= A1
k � {0}. This is a group under

multiplication. In fact, it is an algebraic group, called the multiplicative group and denoted
by Gm. Thus, we have

Pic(E) ∼= Z⊕ (Gm)m,

(It is unfortunate that the two subscripts in the above formula have different meanings, the
first one indicating the multiplicative group, the second one closed points.)

To show that the group law is the same as in the multiplicative group, one checks that
the points

(r,
(1− r)3

4r
), (s,

(1− s)3

4s
), (1/rs,

(1− 1/rs)3

4/rs
),

r, s �= 0, lie on the same line in k2.

3.5 Very Ample Line Bundles

Let f : X → A be a morphism of schemes. One is often interested in determining if X

is a projective scheme over A. Recall that this means that X is isomorphic, over A, to a
closed subscheme of some P

n
A. More generally, X is called quasiprojective over A if X

is isomorphic, over A, to an open subscheme V of a closed subscheme of some P
n
A. The

composition

X ∼=
�� V

⊆

open
�� Z

⊆
closed

�� Pn
A (3.5.1)
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over A is then called an immersion

g : X → P
n
A. (3.5.2)

Recall, of course, that f is called a closed immersion if V is a closed subscheme of Pn
A, i.e.

if V = Z. This always happens when X is proper over A (by Theorem 2.6.2 of Chap. 2).
Denoting the composition (3.5.1) by g, we may study the line bundle

L = g∗OA(1). (3.5.3)

If a line bundle L on X comes from an immersion g via (3.5.3), we say that the line bundle
L is very ample.

Note of course that L may depend on the choice of the immersion g. For example,
on P

n
A itself, the line bundle OA(d) for any n ≥ 1 is very ample, corresponding to the

embedding

P
n
A → P

(n+d
d )−1

A

given by all the possible polynomials of degree d in the n+1 projective coordinates of Pn
A

(the Veronese embedding, see Exercise 6 of Chap. 1).
One is interested in criteria determining whether a given line bundle is very ample. We

start with a simpler question, namely when a line bundle can be expressed in the form
(3.5.3) for some (3.5.2), regardless of whether (3.5.2) is an immersion. We say that a line
bundle L is generated by global sections s0, . . . , sn ∈ L(X) if every section s ∈ L(U) is
an OX(U)-linear combination of s0|U, . . . , sn|U . The same definition clearly can be made
for any sheaf of modules L. It is obviously equivalent to requiring that the morphism of
sheaves of modules from the free sheaf of modules on a set of n + 1 elements to L given
by the sections s0, . . . , sn be onto.

3.5.1 Proposition A morphism (3.5.2) over A such that (3.5.3) holds exists if and only if
L is generated by n+ 1 global sections.

Proof We already commented in the beginning of Sect. 3.3 that OA(1) is generated by
n+ 1 global sections (the projective coordinates), so necessity follows.

By the same token, it also implies that the morphism (3.5.2) can be given by the ratio

[s0 : · · · : sn]. (3.5.4)

Note that while the si do not make good sense as coordinates, their ratios do. We have to
be careful, however, about the fact that some of the sections si can be 0. But X is covered
by open sets on each of which one of the si’s is non-zero (if all were zero simultaneously
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at a point, they would not generate the line bundle sections). Then dividing by this section
gives a well-defined morphism on that open set, and those morphisms are compatible. This
proves sufficiency. ��

Note that the assumption of Proposition 3.5.1 does not really depend on A, but then
again, neither does the conclusion: the statement says the same thing for A = Spec(Z).

Example We can now understand better why the Picard group of the hyperboloid in one
sheet H is Z: The line bundle, say, (x − z, 1− y) is generated by two global sections, and
hence defines a morphism g to P

1
k . Explicitly, it is defined by the ratio

[x − z : 1− y].

As in the proof above, when both coordinates are 0, we simply note that it is also equal to
the ratio

[1+ y : x + z].

The essential point is however that one now sees that the morphism g defines an
isomorphism

H ∼= UO
P

1
k
(1) (3.5.5)

(see (2.1.5)). To see (3.5.5), if we consider the morphism

f : H → A
2
k = Spec(k[u, v])

given by u = x − z, v = 1− y, then

f × g : H → A
2
k × P

1
k

is a closed immersion whose image is identified with UO
P1
k
(1). Therefore, its Picard group

is the same as the Picard group of P1
k (by the Remark under Proposition 3.4.2), which we

already saw is Z.

Now suppose we already have constructed a morphism of schemes of the form (3.5.2).
How can we tell whether it is an immersion? We will give one criterion now.

3.5.2 Proposition Let X be a projective scheme over an algebraically closed field k, let
L be a line bundle generated by global sections s0, . . . , sn and let

φ : X → P
n
k
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be the corresponding morphism of schemes given by Proposition 3.5.1. Denote by V ⊆
L(X) the k-vector space spanned by s0, . . . , sn.

Then φ is an immersion (hence a closed immersion) if and only if the following
conditions hold:

(1) V separates points, i.e. for every two closed points x �= y ∈ X, there exists an s ∈ V

such that s ∈ mxLx , s /∈ myLy where mx ⊂ OX,x denotes the maximal ideal.
(2) V separates tangent vectors, i.e. for every closed point x ∈ X the set of all v ∈

V ∩ mxLx generates mxLx/m2
xLx . (Here we identify a global section with its image

in the corresponding local ring.)
(3) φ∗OX is a coherent sheaf on P

n
k .

COMMENT As we already remarked, one can prove that condition (3) follows just from
X being proper over Spec(k), and hence over Pn

k , see Exercise 5 of Chap. 3).

Proof Necessity: If φ is a closed immersion, then by Proposition 2.3.1, the kernel of the
onto morphism of sheaves

OP
n
k
→ φ∗OX

is a quasicoherent (hence coherent, since P
n
k is a Noetherian scheme) sheaf of ideals I.

Therefore,

φ∗OX
∼= OP

n
k
/I,

which is a coherent sheaf. This proves (3). For (1) and (2), it suffices to consider the
case when X = P

n
k and φ is the identity. (Note: Here we use the fact that on local rings,

morphisms of schemes by definition induce morphisms of local rings on stalks, and for a
closed immersion, those morphisms are onto.) In the case φ = Id , condition (1) says that
in homogeneous coordinates [x0 : · · · : xn], for two different closed points of Pn

k , there
exists a linear function

a0x0 + · · · + anxn (3.5.6)

which is zero on one of them and not the other, which is obvious. (Note that since k

is algebraically closed, closed points can be represented by actual choices of ratios of
coordinates in k.) For condition (2), for a closed point P ∈ P

n
k , mPOP

n
k
(1) is precisely

generated by those linear functions (3.5.6) which vanish on P , which is what we need.
Sufficiency: Since X is proper over k, φ is a closed map on points. Condition (1) shows

that the morphism φ is injective on closed points and hence on points (since any point
is characterized by the set of closed points in its closure, as X is projective). Since φ is
continuous, closed and injective, it is a homeomorphism onto its image, which is a closed
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subset of Pn
k . Therefore, it suffices to show that φ induces onto homomorphisms on stalks.

By localization, it suffices to consider closed points. By our assumptions, this follows from
the following result. ��

3.5.3 Lemma Let f : (A,m) → (B, n) be a morphism of local Noetherian rings such
that f induces an isomorphism on residue fields, f (m) maps onto n/n2 and B is a finitely
generated A-module. Then f is onto.

Proof Let a be the ideal in B generated by f (m). Then by assumption, a ⊆ n, and its
projection to n/n2 is onto. Consider the B-module M = n/a. We have

a + n2 = n,

so n2 projects onto M , in other words, nM = M . Since n is the maximal ideal, by
Nakayama’s lemma, M = 0 and

a = n.

Now consider the finitely generated A-module Q = B/f (A). Then, since f (m) · B = n,
and n + f (A) = B by the assumption on residue fields, we conclude that mQ = Q, and
hence by Nakayama’s lemma, Q = 0 since m is the maximal ideal of A. ��

3.6 Blow-ups

We begin with generalizing the construction of the scheme Proj (S) over Spec(S0) for a
graded ring S to the situation when Spec(S0) is replaced by an arbitrary, not necessarily
affine, scheme X. Recall (Proposition 2.4.5) that Proj (S) is projective over Spec(S0)

when S is generated, as an S0-algebra, by S1, which in turn is a finitely generated S0-
module. We will be interested in generalizing this case.

Suppose we have a Noetherian scheme X, and coherent sheaves Sn on X, n ∈ N0, such
that

S0 = OX,

together with a commutative associative unital system of “multiplication” morphisms of
sheaves of OX-modules

μ : Sk ⊗OX
S� → Sk+�.
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We also assume that the iterated multiplication morphisms

S1 ⊗OX
· · · ⊗OX

S1 → Sn

are onto. Then we can define a scheme Proj (S) and a projection

πS : Proj (S) → X (3.6.1)

by letting, for an affine open subset U ⊆ X,

Proj (S|U) = Proj (
⊕

n∈N0

Sn(U)) (3.6.2)

and taking the colimit over U ⊂ X affine open. (In more detail, one sees that for U ⊆ X

affine open and V ⊆ U open, π−1
S|U (V ) is the colimit of Proj (S|W) over W ⊆ V affine

open, so we can use the technique of Sect. 2.5 of Chap. 2.)
Note that we have a line bundle

OProj (S)(1) (3.6.3)

obtained by gluing the line bundles

OProj (
⊕

n∈N0
Sn(U))(1)

for affine open subsets U ⊆ X.

3.6.1 Theorem Let X be a projective scheme over a Noetherian affine scheme Y , and let
S be as above. Then Proj (S) is projective over Y .

Proof Denote by f : X → P
n
Y the closed immersion over Y . Let

Ui = f−1(U(xi)).

Then Ui ⊆ X form an open cover of X. Let xi be a choice of homogeneous coordinates
for Pn, and let Ii be the sheaf of ideals defining the reduced closed subscheme Zi =
Proj (S) � π−1

S (Ui). Then the sheaf

f∗πS∗(OProj (S)(1)⊗OProj (S)
Ii ) (3.6.4)

is quasicoherent by Lemma 2.2.3.
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The sheaf

OProj (S)(1)|
π−1
S (Ui)

= (OProj (S)(1)⊗OProj (S)
Ii )|π−1

S (Ui)

is very ample by Proposition 2.4.5, in particular, it is generated by finitely many sections

ri1, . . . ri,ni . (3.6.5)

By adjunction, we can think of (3.6.5) as sections of (3.6.4) on U(xi), and hence by
Lemma 2.4.3, there exists an N ∈ N0 such that all

xN
i rij

extend to global sections tij on Proj (S) (See also Exercise 26.) Since

OProj (S)(1)⊗OProj (S)
Ii

is a subsheaf of OProj (S)(1), this means that the global sections tij generate

OProj (S)(1)⊗OProj (S)
π∗S(OX(N)). (3.6.6)

We claim in fact that (3.6.6) is very ample. Let

φ : Proj (S) → P
N
Y

be the morphism defined by the global sections tij and let xij be the corresponding
homogeneous coordinates on P

N
Y . Since we tensored with the sheaves of ideals Ii , we

know that for a fixed i,

φ−1(U(xi1,...,xi,ni
)) = π−1

S (Ui).

On the other hand, by construction, the restriction of φ to π−1
S (Ui) is an immersion of

π−1
S (Ui) into U(xi1,...,xi,ni

). This shows that φ is an immersion. ��

Now let again X be a Noetherian scheme. Suppose I = IZ is a quasicoherent (hence
coherent) sheaf of ideals in OX corresponding to a closed subscheme Z. Then putting

(SZ)n = In, (SZ)0 = OX, (3.6.7)

we call Proj (SZ) the blow-up of the scheme X at the closed subscheme Z. It is sometimes
also denoted by BlZ(X).
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To illustrate what the blow-up looks like, first note that of course, the restriction of πSZ

defines an isomorphism

π−1
SZ

(X � Z) → X � Z.

Next, note that for any morphism of schemes f : Y → X and a closed subscheme Z ⊆ X,
the quasicoherent sheaf of ideals If−1(Z) on Y defining the closed subscheme f−1(Z)

(defined as a pullback) is, by construction of the pullback of schemes, the image of f ∗(IZ)

in OY .

3.6.2 Proposition The sheaf of ideals I
π−1
SZ

(Z)
on Proj (SZ) is invertible. (The divisor

π−1
SZ

(Z) is called the exceptional divisor of the blow-up.)
Further, Proj (SZ) is universal in the sense that for every morphism of schemes f :

Y → X such that If−1(Z) is an invertible sheaf on Y factors uniquely through Proj (SZ),
i.e. there exists a unique morphism of schemes g completing the following diagram:

Y
g

��

f ���
��

��
��

��
� Proj (SZ)

πSZ

��
X.

(3.6.8)

Proof For both statements, we can assume that both X = Spec(A) and Y = Spec(B)

are affine (in case of the second statement, this is because of the uniqueness). Now in the
affine case, the first statement follows from Proposition 2.4.1 since

I
π−1
SZ

(Z)
= OProj (SZ)(1)

where SZ is the graded ring of global sections of SZ (i.e., its graded components are
powers of the ideal IZ defining Z).

For the second statement, let f = Spec(h) for a homomorphism of rings h : A → B

and let I be the ideal in A defining the closed subscheme Z. If the ideal J = I · B in
B defining f−1(Z) is an invertible B-module, without loss of generality, we may assume
that it is isomorphic to B as a B-module (by passing, if necessary, to another open cover).
Thus, we have J = (b) for some b ∈ B which is not a zero divisor. Further, we have a
canonical morphism over Spec(B)

Proj (
⊕

n∈N0

J n) → Proj (
⊕

n∈N0

In)×Spec(A) Spec(B),
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so for existence in the case of X affine, we may assume without loss of generality that
A = B and h is the identity. But the open set

U(b) ⊆ Proj (
⊕

n∈N0

J n)

is the Spec of

(b−1Proj (
⊕

n∈N0

J n))0 = B,

and thus the identical map from Spec(B) to U(b) satisfies our requirements.
For uniqueness in the affine case, to avoid confusion, for u ∈ In ⊆ A, denote by u(n)

its copy in the n’th summand In of

⊕

n∈N0

In.

By further localizing, we may then assume that g maps Spec(B) to a distinguished open
set

U(a(1)) = Spec((a(1)−1
⊕

n∈N0

In)0)

for some a ∈ I . Then, by assumption, h(a) = b · c for some c ∈ B. Thus, we have a
homomorphism of rings

h̃ : (a(1)−1
⊕

n∈N0

In)0 → B

extending h. By assumption, there exist c1, . . . , cn ∈ B and x1, . . . , xn ∈ I such that

c1h(x1)+ · · · + cnh(xn) = b.

We compute

h(a) · (c1h̃(a(1)−1x1(1))+ · · · + cnh̃(a(1)−1xn(1)))

= c1h̃(a(1)−1ax1(1))+ · · · + cnh̃(a(1)−1axn(1))

= c1h(x1)+ · · · + cnh(xn) = b.

Hence, h(a) is a factor of b, and hence is a non-zero divisor in B. But now for any x ∈ I ,

h(a)̃h(a(1)−1x(1)) = h̃(a(1)−1ax(1)) = h(x),
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which means that h̃(a(1)−1x(1)) ∈ B is uniquely determined. However, those elements
generate the ring

(a(1)−1
⊕

n∈N0

In)0.

��

Note that this immediately implies functoriality: if f : X → Y is a morphism of
Noetherian schemes and Z ⊆ Y a closed subscheme then we have a unique diagram

Proj (Sf−1(Z))
g

��

��

Proj (SZ)

��
X

f
�� Y

(3.6.9)

and moreover if f is a closed immersion, so is g. When f is a closed immersion, the
closed subscheme of Proj (SZ) associated with g is called the strict transform of X under
the blowing up morphism πSZ

.
In particular, when X is a quasiprojective variety over a field k and Z is a closed

subscheme, it follows from Theorem 3.6.1 that Proj (SZ) is a quasiprojective variety
over k and the morphism πSZ

is birational, projective and onto. (Note: the reason we
can generalize to X quasi-projective is the functoriality of the blow-up—we can always
pass to the closure of X.)

The main point of this discussion is that a converse also holds:

3.6.3 Theorem Let f : T → X be a birational projective onto morphism where X is a
quasiprojective variety over a field k. Then f is isomorphic to the blow-up projection πSZ

for some closed subscheme Z ⊆ X.

The proof of this theorem is technical and we omit it. It may be found in [11], Theorem
7.17.

4 Exercises

1. (Godement) Let C be a category satisfying the Assumption of Sect. 1.1, and let X be a
topological space. Let X0 be the set X with the discrete topology, and let f : X0 → X

be the identity. For a sheaf F on X valued in C, define

MF = f∗f−1F .
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This is a functor C-sh(X) → C-sh(X).
(a) Construct natural transformations Id → M and MM → M which are associative

and unital with respect to composition of functors. (This makes M a monad; In
general, a monad arises from composing a right adjoint with its corresponding left
adjoint.

(b) Using the Assumption, prove that a C-valued sheaf F is the equalizer of the
sheaves

MF→→MMF .

(c) Using (b), prove that under the Assumption, a morphism of C-valued sheaves
is an isomorphism if and only if it induces an isomorphism on stalks, and that

two morphisms of sheaves F→→G coincide if and only if they induce the same

morphisms on stalks.
2. Prove that for the constant sheaf A on a topological space X, for an open set U ⊆ X,

A(U) is the set of continuous functions U → A with the discrete topology on A (also
known as locally constant functions on U ).

3. Prove the alternate characterization of sheafification for universal algebras as
described in Sect. 1.1.2.

4. Prove that for a continuous map f : X → Y and for a category C satisfying our
Assumption, the functor f−1 : C-ShY → C-ShX preserves stalks and is left exact.
(Note that it also preserves colimits since it is a left adjoint.)

5. Give an example where the global section functor on abelian sheaves, (resp. sheaves
of sets), is not right exact.

6. Prove in detail that the pushforward functor of abelian sheaves (resp. sheaves of sets)
for a closed inclusion is right exact.

7. Prove that abelian sheaves on a space, as well as sheaves of modules over a ringed
space, form abelian categories.

8. Prove that formula (1.5.1) defines a sheaf.
9. Prove that the tensor product and Hom functor of sheaves of modules satisfy formula

(1.5.2).
10. Prove that if R is a non-zero commutative ring, then free R-modules on bases of

different cardinalities are not isomorphic. [If m is a maximal ideal of R and F is a free
R-module, then F/mF is a free R/m-module.]

11. Prove that if V is an infinite dimensional vector space over a field F , and R is the
(non-commutative) ring of endomorphisms of V (i.e. homomorphisms V → V ),
then the free left R-module on 1 generator is isomorphic to the free left R-module
on 2 generators. (Recall that a left R-module M has distributive associative unital
multiplication rm ∈ M for r ∈ R, m ∈ M .)

12. Prove that an invertible sheaf over a scheme X is the same thing as a locally free sheaf
of OX-modules of dimension 1.
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13. Suppose that we complexified the Möbius strip in the example of Sect. 2.1 by replacing
R with C in the definition of the ring R. Will the corresponding algebraic line bundle
be trivial? [Show that (x, y − 1) then is a principal ideal.]

14. Complete the proof of Lemma 2.2.1. [Model the proof on the proof of Lemma 2.2.2
of Chap. 2.]

15. Prove that the definition of codimension given in Definition 3.3.1 agrees with the
definition given in Exercise 38 of Chap. 2.

16. Recall that for a module M over a commutative ring R, we have the tensor algebra
(or free associative algebra) TRM which is a graded (usually non-commutative) ring
where (TRM)n is a tensor product over R of n copies of M .

The exterior algebra �RM is the quotient of the tensor algebra TRM by the
relations x2 = 0 for all x ∈ M . Thus, �RM is a graded non-commutative R-algebra,
where �n

RM = (�RM)n is generated by products x1 . . . xn (which is often written as
x1 ∧ · · · ∧ xn). In fact, the ring �RM is graded-commutative which means that for
x ∈ �m

RM , y ∈ �n
RM , we have

x ∧ y = (−1)mny ∧ x.

Prove that for a Noetherian ring R, there is a determinant homomorphism of abelian
groups

Det : K(R) → Pic(R)

which maps [M] to [�n
RM] for a locally free (i.e. projective) R-module M of

dimension n.
17. Let R be a regular local ring and f ∈ R a non-nilpotent element. Prove that

Pic(f−1R) = 0. [For an invertible f−1R-module L, L = f−1M where M is a
finitely generated R-module. You may borrow from Chap. 5, Sect. 2.6, and Exercise 21
of Chap. 5 the result that the homomorphism from K to G is an isomorphism for R

and f−1R. Thus, since KR = Z, [L] = n for some n ∈ Z. Now use the determinant
homomorphism of Exercise 16 to prove that [L] = 1 ∈ Pic(f−1R).]

18. Prove the Auslander-Buchsbaum Theorem which says that every regular local ring is
a UFD. [It suffices to prove that every height 1 prime p is principal. Use induction on
dimension. Let R be a regular local ring of dimension n and let p ⊂ R be a height
1 prime. Let x be one of the n generators of the maximal ideal of R. Without loss
of generality, x /∈ p. Then x−1R is regular of dimension < n. By the induction
hypothesis, the ideal x−1p ⊂ x−1R is locally free of dimension 1, and thus is
invertible. By Exercise 17, it is principal. Let x−1p = (f/xm) for some f ∈ R.
Now factor f = a1 . . . as where ai ∈ R are irreducible. Since p is prime, we have
ai ∈ p for some i. Since ai divides the generator of x−1p, which is prime, it generates
x−1p, and thus is prime in x−1R. We claim that ai ∈ R is prime (and hence, (ai) = p

since p is minimal). To prove that ai is prime, let ai | bc with b, c ∈ R. Since ai is



264 4 Sheaves of Modules

prime in x−1R, ai divides xnb or xnc in R for some n ∈ N0. Let, say, aiu = xnb,
u ∈ R. (Prove that x is prime by showing that the associated graded ring of R/(x) is
the symmetric algebra over R/m on m/(m2 + (x)).) But since by assumption x � ai ,
we have x | u, so choosing n minimal gives n = 0.]

19. Prove that every regular ring is normal. [Use Exercise 18, Exercise 43 of Chap. 1, and
Exercise 6 of Chap. 3.]

20. Prove that if X is a Noetherian regular integral separated scheme, then Pic(X) ∼=
Cl(X). [Prove that every Weil divisor is a Cartier divisor. Reduce to the affine case
and use Exercises 19, 18, and Exercise 43 of Chap. 1.]

21. Let R be a Dedekind domain.
(a) Let I, J ⊆ R be non-zero ideals which are relatively prime, meaning that their

prime factors are different. (See Exercise 8 of Chap. 3.) Then I ⊕ J ∼= R ⊕ IJ as
R-modules. [Use the short exact sequence

0 → I ∩ J → I ⊕ J → R → 0.

Prove that I ∩ J = IJ .]
(b) Let I ⊂ R be a non-zero ideal. Use the Chinese remainder theorem to prove

that there exists an element x ∈ I such that xRp = IRp for every prime p

containing I . Then (x) ⊆ I , so there exists an ideal J with IJ = (x). Prove that
I, J are relatively prime and that J ∼= I−1 as R-modules. Using (a), conclude that
I ⊕ I−1 ∼= R ⊕ R. In particular, ideals of R are projective modules.

(c) Let p be a non-zero prime in R, and let 0 < m ≤ n be integers. Using the
method of (b), prove that pn ⊕ p−m ∼= R ⊕ pn−m and hence, multiplying by pm,
pm ⊕ pn ∼= R ⊕ pm+n. Conclude from (a) and (c) that for any non-zero ideals
I1, . . . , In ⊆ R,

I1 ⊕ · · · ⊕ In
∼= (n− 1)R ⊕ I1 . . . In.

(d) Prove that every finitely generated projective R-module M is isomorphic to a
direct sum of finitely many ideals. [If M ⊆ Rn, proceed by induction on n, using
the short exact sequence

0 → M ∩ Rn−1 → M → I → 0

where I is the projection of M onto the last coordinate. Note that we have not used
the fact tat M is a direct summand, thus having proved that every submodule of
Rn is projective.]

(d) Recall the exterior algebra from Exercise 16. By considering �nM , �nN , prove
that when M ∼= N and M = (n − 1)R ⊕ I , N = (m − 1)R ⊕ J with non-zero
ideals I , J , then m = n and I ∼= J .



4 Exercises 265

(e) Conclude that every finitely generated projective R-module M is isomorphic to
Rn−1⊕ I for some ideal I where n ∈ N and the class of I in Pic(R) are uniquely
determined. Also conclude that K(R) ∼= Z⊕ Pic(R).

22. (Grothendieck) Prove that every algebraic vector bundle over P
1
k for a field k

isomorphic to a direct sum of bundles of the form O(�i), �i ∈ Z, where the numbers
�i are uniquely determined up to order. [(Proof by Hazewinkel and Martin) First note
that isomorphism classes of the bundles in question are bijective to equivalence classes
of square matrices A over k[x, x−1] with determinant xm for some m ∈ Z modulo the
relation A ∼ BAC whether B resp. C is an invertible matrix over k[x−1] resp. k[x].
We want to prove that each equivalence class is uniquely represented by a diagonal
matrix with diagonal entries xr1, . . . xrn , r1 ≥ · · · ≥ rn. To prove uniqueness, suppose
another diagonal matrix with r ′1 ≥ · · · ≥ r ′n is in the same class. By multiplying by
C−1 from the right and considering the formula for m×m submatrices of the product
of two n× n matrices, prove that r1 + · · · + rm ≥ r ′1 + · · · + r ′m for all m. Reversing
the roles of the matrices, equality arises, which implies the claim.

For existence, proceed by induction on n. Multiplying by xN with some N ∈
N0, we can assume that the entries of A are polynomials. By performing column
operations over k[x] to find gcd of the first row (which must be a power of x) and
using the induction hypothesis, show that each class contains a matrix of the form

⎛

⎜⎜⎜⎝

xk1 0 . . . 0

q2 xk2 . . . 0

. . . 0 . . . . . .

qn xkn

⎞

⎟⎟⎟⎠ .

Now if k1 is maximal possible (which exists since its degree is bounded by the degree
of det (A)), then it is≥ ki for all i. Indeed, suppose k1 < ki . Without loss of generality,
qi has no terms of degree ≤ k1. Thus, all terms of qi are divisible by xk1+1. Then
switching the first and i’th row and performing the Euclidean algorithm in the first
row using column operations again, we can increase k1—contradiction. Finish the
proof from this point.]

23. Generalize Exercise 21 of Chap. 3 to prove that for a number field K and a fractional
ideal I in K (i.e. a finitely generated OK -submodule of K), there exists an element
x ∈ I with

N(x) ≤ n!
nn

(
4

π

)s

vol(KR/I).

[The same method works.]
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24. Prove that for a number field K , every element of the ideal class group Cl(OK) is
represented by an ideal I ⊆ OK with

|OK/I | ≤ n!
nn

(
4

π

)s

vol(KR/OK).

[By Exercise 23, for any fractional ideal J , there is an element x ∈ J−1 of norm less
or equal to

N(x) ≤ n!
nn

(
4

π

)s

vol(KR/J−1).

Now take I = Jx and prove that Jx ⊆ OK . Use the fact that vol(KR/x−1J−1) =
vol(KR/OK)/|OK/Jx|.]

25. Prove that Cl(OK) is finite. [By Exercise 24, we have a natural number N such that
every element of Cl(OK) is represented by an ideal I ⊆ OK with OK ⊆ I ⊆ NOK .]

26. Let X be a quasicompact separated scheme. Let L be an invertible sheaf of OX-
modules, and let f be a section of L with zero set Z. Let F be a quasicoherent sheaf
on X and let s be a section of F on X � Z. Prove that there exists an n ∈ N such that
the section s ⊗ f n of L⊗n ⊗OX

F on X � Z extends to X. [Cover X by open affine
subsets on which L is trivial. Note that you need to tensor with another power of L to
glue the sections constructed. Pass again to an affine open cover, and use the definition
of localization.]

27. (Kleiman) Prove that if X is a regular separated scheme, and M is a coherent sheaf,
then there exists an epimorphism F → M where F is a locally free sheaf. [Without
loss of generality, X is connected. Let Ui be an affine open cover of X. Then X � Ui

is the zero set of a section of an invertible sheaf Li on X. Use Exercise 26.]
28. Suppose X is a Noetherian integral separated scheme whose every local ring of height

1 is regular. Let M be a locally free sheaf on X. Prove that then the same holds for the
corresponding scheme UM , and we have an isomorphism Cl(X) ∼= Cl(UM).

29. Prove formula (3.4.13).
30. Compute Cl(R) where R is the ring given by formula (3.4.22).
31. (a) Let n,N ∈ N, 1 ≤ n ≤ N . For a subset S ⊆ {1, . . . , N} of cardinality n,

let US = A
n(N−n)
Z

be identified with the space of S × {1, . . . , N})-matrices
with a unit S × S submatrix. Let US,T be the open subscheme of such matrices
whose (S× T )-submatrix MS,T is invertible (make that precise). Define a scheme
by gluing the US’s along the open subschemes US,T as in Sect. 2.5 of Chap. 2,
identifying US,T

∼= UT,S by switching implicit and explicit coordinates (write
down the precise formula). This is the Grassmannian Grn(N) = Grn(N)Z. For
any scheme X, Grn(N)X is the pullback to X, as usual.

(b) Construct an algebraic line bundle Det on Grn(N) by gluing the trivial line
bundles on US by the transition function det (MS,T ). Note that notation must be
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fixed to distinguish Det from its inverse. Prove that with the correct choice (which
can be derived from the case n = 1), the line bundle Det is very ample, and
conclude that Grn(N) is a projective scheme.

32. Define a function v : C(x, y)× → Z by letting, for a polynomial f (x, y), v(f ) be
the order of vanishing of φ(x) = f (x, ex) at x = 0, i.e. the maximum n such that
φ(0) = φ′(0) = · · · = φ(n−1)(0) = 0, and letting, for a rational function g/h where
g, h ∈ C[x, y], v(g/h) = v(g) − v(h).
(a) Prove that v is a well-defined discrete valuation on C(x, y). Let R be the

corresponding discrete valuation ring.
(b) Prove that there does not exist a prime Weil divisor on P

2
C

with generic point p

such that v = vp (where we identify C(x, y) with the field of rational functions
on P2

C
by letting x, y be two affine coordinates).

(c) Letting γ : Spec(C(x, y)) → P
2
C

be the inclusion of the generic point. Since P
2
C

is proper, we know that γ extends to a morphism of schemes Spec(R) → P2
C

.
What is the closure Y of the closed point of Spec(R)?

(d) Blow up Y and describe the extension of γ to Spec(R) → BlY (P2
C
). What

happens when we iterate this procedure of blowing up the closure of the image
of the closed point of Spec(R) infinitely many times, and take the limit?

33. Let f : Y → X be a morphism of Noetherian schemes. Let Z ⊆ X be a closed
subscheme and let g : BlZ(X) → X be the projection. Is it always true that

Bl(f×g)−1Z((BlZX)× Y ) ∼= Blf−1(Z)Y ?

34. (Hironaka’s example) Consider the images Y,Z of P1
C

in P
3
C

with coordinates [x : 0 :
y : 0] and [x2 : xy : y2 : 0] where x, y are the projective coordinates in P1. Then
the intersection Y ∩ Z consists of two closed points A,B with projective coordinates
[1 : 0 : 0 : 0] and [0 : 0 : 1 : 0].
(a) Consider the scheme U obtained by blowing up P

3
C
� {B} first at Y and then at

Z, and the scheme V obtained by blowing up P
3
C
� {A} first at Z and then at Y .

Then W = P
3
C
� {A,B} is an open subscheme of both U and V . Let X be the

scheme obtained as a pushout of U and V along W . Prove that X is a smooth
proper variety over C.

(b) Prove that the inverse image of the point A (resp. B) under the map X → P
3
C

consists of a union of two subvarieties A1, A2 (resp. B1, B2) isomorphic to
P1
C

where A1, B1 result from the first blow-up and A2, B2 from the second.
Additionally, observe that the inverse image of Y is a surface Ỹ containing the
subvarieties A1, A2, B2 and the inverse image of Z is the surface Z̃ containing the
subvarieties B1, B2, A2.

(c) Prove that in Ỹ , the (Weil) divisor (A1) + (A2) is equivalent to the divisor (B2)

(i.e. their difference is a principal divisor). and in Z̃, the divisor (B1) + (B2) is
equivalent to the divisor (A2).
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(d) Now suppose we have an embedding X → P
N
C

. Denote by a1, a2, b1, b2 the
degrees of the restrictions to A1, A2, B1, B2. Use (c) to prove that a1 + a2 = b2,
b1 + b2 = a2. Derive a contradiction.

35. The Wonderful Compactification I (DeConcini, Procesi, Fulton, MacPherson) We
shall describe here a special case of an important construction using blow-ups. Its
significance will become clearer in Chap. 6 (Exercise 15). Let k be an algebraically
closed field and let X = A

m
k . Let, for S ⊂ {1, . . . , n}, DS be the subvariety of Xn given

by the equations xi = xj with i, j ∈ S where xi, i = 1, . . . , n are the coordinates of a
point in Xn.

Perform a sequence of blow-ups to construct a variety X[n] along with projections
pn : X[n] → Xn and prime divisors �n

S ⊂ X[n] projecting to DS for S ⊆ {1, . . . , n},
|S| > 1. Put X[1] = X. Suppose X[n] has been constructed together with a projection
pn : X[n] → Xn. Construct a sequence of varieties X[n+ 1, i] together with divisors
�

n+1,i
S ⊂ X[n+ 1, i] for |S| > 1, i = n+ 1, n, . . . , 1, and

S ⊆ {1, . . . , n}

or

S ⊆ {1, . . . , n+ 1}, n+ 1 ∈ S and |S| > i,

and closed subvarieties �S ⊆ X[n+ 1, i] for |S| > 1 for

S ⊆ {1, . . . , n+ 1}, n+ 1 ∈ S, |S| ≤ i.

as follows: X[n+ 1, n+ 1] = X[n] ×X and let, for S ⊆ {1, . . . , n}, |S| > 1,

�
n+1,n+1
S = �n

S ×X.

For S = {i, n+ 1}, ∈ {1, . . . , n}, put

�
n+1,n+1
S = (pn × Id)−1(DS).

For S ⊆ {1, . . . , n}, |S| ≥ 2, put

�
n+1,n+1
S∪{n+1} = (�n

S ×X)×DS×X DS∪{n+1}.

Given X[n+ 1, i + 1], we put

X[n+ 1, i] = BlZ[i](X[n+ 1, i + 1])
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where Z[i] is the (as it turns out, disjoint) union of �
n+1,i+1
S where S ⊆ {1, . . . , n+1}

runs over all subsets of cardinality i+1 which contain n+1. Let �
n+1,i
S ⊂ X[n+1, i]

be the exceptional divisor of �S ⊂ X[n+1, i+1] for S ⊆ {1, . . . , n+1} of cardinality
i + 1 which contain n+ 1, and the strict transform of �

n+1,i+1
S ⊂ X[n+ 1, i + 1] for

all other applicable sets S. Let �n+1
S = �

n+1,1
S .

By an S-screen, where S ⊆ {1, . . . , n}, |S| > 1 we mean an unordered set of
at least two distinct closed points in X = A

m
k , which are labeled by disjoint non-

empty sets whose union is S. Two S-screens are considered the same when one can
be transformed to the other by a translation followed by a multiplication by a scalar
λ ∈ k×.

By an (n, i)-tree T , we mean an unordered collection of distinct closed points of
X decorated by non-empty disjoint subsets of {1, . . . , n} whose union is {1, . . . , n}
(without any identifications), together with a minimal collection of screens satisfying
the following conditions: For a subset S ⊆ {1, . . . , n}, if |S| > 1 and n /∈ S, or n ∈ S

and |S| > i and T contains (in the initial configuration or any of its screens) a point
with label S, then an S-screen is present. If n ∈ S and 2 < |S| ≤ i and a point with
label S is present, then an (S � {n})-screen is present.

Prove, by induction on n and i, the following statements:
(a) The closed points of X[n, i] can be bijectively identified with (n, i)-trees in such a

way that a point corresponding to an (n, i)-tree T is contained in �
n,i
S if and only

if one of the following conditions arises:
1. S ⊆ {1, . . . , n − 1} or n ∈ S ⊆ {1, . . . , n} and |S| > i, and T contains an

S-screen.
2. n ∈ S ⊆ {1, . . . , n}, 1 < |S| ≤ i, and T contains (possibly in one of its screens)

a point labeled by a subset S′ such that S ⊆ S′ and |S′| ≤ i.
(b) Prove that in X[n], a collection of subvarieties p−1

n (DSi ) for subsets Si of
{1, . . . , n} of cardinality > 1 has an empty intersection unless for all pairs i, j ,
Si, Sj are either disjoint or one contains the other.

36. Let S = C[x, y] and let R be the subring of S generated by x5, xy3, x2y, y5. Denote
by I the ideal (x5, xy3, x2y, y5) ⊂ R, let I be the associated sheaf of ideals on
Spec(R). Let J be sheaf of ideals on Spec(S) associated to the ideal (x, y).
(a) Prove that I is a maximal ideal in R, and that the ring RI is not regular.
(b) Prove that BlI(Spec(R)) is a smooth variety over Spec(C) (and hence regular).
(c) Does there exist a morphism of schemes BlJ (Spec(S)) → BlI(Spec(R))

over the morphism Spec(S) → Spec(R) coming from the inclusion of rings?
Reconcile your answer with universality of blow-ups.
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It is now time to study the subject of cohomology in detail. In Chap. 4, we already
encountered its special cases in degrees 0 and 1. This motivates understanding the general
machinery which lets us set up cohomology groups in any degree. Even more importantly,
a careful reader noticed that there are very important facts about regular rings (for example
the fact that a localization of a regular ring is regular) which we have not proved so far,
and deferred to when we can characterize regular rings cohomologically. For this, we will
certainly need cohomology in higher degrees. Without filling this gap, we would not even
be able to use Weil divisors to calculate Picard groups rigorously in general examples such
as those of Chap. 4. We will complete those proofs in the present chapter.

The two topics mentioned in the last paragraph (i.e. introducing higher sheaf cohomol-
ogy and characterizing regular rings cohomologically) already reveal sufficiently different
aspects of the idea of cohomology to necessitate a more comprehensive discussion. But
there is more. As many of the concepts we already discussed, cohomology originated in
topology, where it appears together with homology, which, from the topological point of
view, is even more fundamental. In analysis, a very direct approach to cohomology arises
from differential forms.

In this chapter, we will study all these facets of (co)homology. We will also introduce
the computational tool of spectral sequences. In Chap. 6, we will then see some powerful
applications and further methods our general treatment of cohomology leads to in algebraic
geometry.
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272 5 Introduction to Cohomology

1 De RhamCohomology in Analysis

With all the different aspects of cohomology, where should we start? Perhaps the most
elementary and geometrically intuitive topic is de Rham cohomology in differential
geometry. The concept of a differential form is very easily geometrically motivated by
the theory of integration.

Giving a brief introduction to differentiable manifolds, we will experience
‘Grothendieck’s approach to geometry,’ which we used to introduce schemes, in action in
a different field. Thus, we learn that this approach is more general. The reader may find
it fun to see differentiable manifolds treated in this light, which is not typical for analysis
textbooks. (For a more traditional approach, see [19].)

There is another benefit of describing manifolds from scratch: There is in fact an
analogue of the concept of de Rham cohomology in schemes, and in Chap. 6, Sect. 2,
we will see that sometimes they coincide. It is important to understand the subtle but
profound contextual difference of both definitions in order to appreciate the deep fact of
their agreement.

1.1 Smooth and ComplexManifolds

Smooth and complex manifolds can be defined in an analogous way as we defined
schemes in Sect. 1.3 of Chap. 2. In general, this approach is sometimes referred to as the
Grothendieck approach to geometry. On an open subset U ⊆ R

n in the analytic topology,
a function f : U → R is called smooth (in the sense of real analysis) if it is continuous
and has all higher partial derivatives, and all are continuous. Similarly, on an open subset
U ⊆ C

n in the analytic topology, a function f : U → C is called holomorphic if it
has the first complex partial derivatives on U . (Then it has also all higher complex partial
derivatives, and all are continuous. For an introduction to complex analysis in one variable,
we recommend [1].) Smooth functions on an open set U ⊆ R

n form a sheaf C∞U , and
holomorphic functions on an open subset U ⊆ Cn form a sheaf Oan

U , where restriction is
given by restriction of functions.

A smooth (resp. complex) manifold of dimension n can be defined as a locally ringed
space M such that for every x ∈ M , there exists an open neighborhood V which, with
the restriction of the structure sheaf on M , is isomorphic, as a locally ringed space, to
(U, C∞U ) for some open set U ⊆ R

n, (resp. (U,Oan
U ) for some open set U ⊆ C

n). We will
denote the structure sheaf on a smooth (resp. complex) manifold M by C∞M (resp. Oan

M ),
and similarly we denote by C∞V (resp. Oan

V ) its restriction to an open subset V . The global
sections of C∞M (resp. Oan

M ) will be denoted by C∞(M) (resp. Hol(M)). Their elements
will be called smooth (resp. holomorphic) functions on M .

We will also assume (as one usually does) that M is Hausdorff and the connected
components (i.e. maximal connected subsets) of M have countable bases of topology.
This is equivalent to M being Hausdorff and satisfying another property which will be
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also useful later, namely that M is paracompact. For an open cover (Ui) of a topological
space X, a refinement is an open cover (Vj ) such that for every j , there exists an i with
Vj ⊆ Ui . We say that a cover (Vj ) is locally finite if for every point x ∈ X, there exists an
open set U � x such that there are only finitely many j with Vj ∩ U �= ∅. A topological
space X is paracompact if every open cover of X has a locally finite refinement.

A smooth (resp. complex) manifold M of dimension n can also be called a real (resp.
complex) n-manifold. Of course, a complex n-manifold automatically has the structure of
a smooth 2n-manifold.

A morphism of smooth (resp. complex) manifolds is a morphism of locally ringed
spaces which are smooth (resp. complex) manifolds. Often, those morphisms are referred
to simply as smooth (resp. holomorphic) maps. An isomorphism of smooth manifolds is
called a diffeomorphism. An isomorphism of complex manifolds is called a holomorphic
diffeomorphism. When there exists a diffeomorphism (resp. holomorphic diffeomorphism)
between smooth (resp. complex) manifolds, we call them diffeomorphic (resp. holomor-
phically diffeomorphic).

Two comments are in order. First, in the definition of a smooth manifold, the open set U

can be equivalently replaced with R
n. This is because an open ball is diffeomorphic to Rn.

An analogous statement is not true however about the definition of a complex manifold,
since a bounded open disk in Cn is not holomorphically diffeomorphic to Cn (see [1]).
The second comment is that the words “locally” can be omitted from the definitions of
smooth and complex manifolds, because all points are closed, and therefore, morphisms
of ringed spaces between smooth or complex manifolds are automatically morphisms of
locally ringed spaces.

An atlas is an open cover (Vi) of a smooth (resp. complex) manifold M by sets (Vi, C∞Vi
)

(resp. (Vi,Oan
Vi

)) together with isomorphisms of ringed spaces hi : Vi → Ui into open
subsets of Rn (resp. Cn) with their respective structure sheaves. The sets Vi are called
charts and the isomorphisms hi are called coordinates. It is important to realize however
that the choice of an atlas is not unique. By gluing of sheaves, an atlas (Vi, hi) specifies a
smooth (resp. complex) manifold provided that hi ◦ h−1

j are smooth (resp. holomorphic)
on hj (Vi ∩ Vj ).

1.1.1 Example The n-sphere

Sn = {(x0, . . . , xn) ∈ R
n+1 |

∑
x2
i = 1}

is a smooth manifold. The atlas can be chosen as the sets

V2i = {(x0, . . . , xn) ∈ Sn | xi > 0},

V2i+1 = {(x0, . . . , xn) ∈ Sn | xi < 0}.
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One can then let h2i , h2i+1 be defined by

(x0, . . . , xn) → (x0, . . . , x̂i , . . . , xn)

(the hat means omitting the coordinate). The sphere S2 also has a structure of a complex
manifold because it is P

1
C

with the analytic topology (see the next example). Obviously,
odd-dimensional spheres cannot be complex manifolds, and it is also known that S4 is not
diffeomorphic to a complex manifold. In general, whether Sn is a complex manifold is still
an open problem. It is also interesting to note that for many higher n, there exist two or
more non-diffeomorphic smooth manifolds with the topology of Sn.

1.1.2 Example A smooth abstract variety V over C gives rise to a complex manifold. The
basic point is that locally, the closed points of V can be identified with the set of solutions
of a system of equations

f1(z1, . . . , zn) = 0
...

fm(z1, . . . , zn) = 0

(1.1.1)

where f1, . . . , fm are rational functions with denominators non-zero on some Zariski
(hence analytically) open set U ⊆ Cn. Additionally, n ≥ m and we require that the ideal
of OU (see formula (1.4.6) of Sect. 1.3.2 of Chap. 1) generated by determinants of m×m

submatrices M of the Jacobi matrix

⎛
⎜⎝

∂f1
∂z1

. . .
∂f1
∂zn

. . . . . . . . .
∂fm

∂z1
. . .

∂fm

∂zn

⎞
⎟⎠ (1.1.2)

contains 1 ∈ OU . But this means that at no point (z0
1, . . . , z

0
n) can all the m × m

determinants det (M) simultaneously be 0, since then their every linear combination with
coefficients in OU would be 0, which is not true for the constant 1 function. Suppose in a
neighborhood V of a point (z0

1, . . . , z
0
n) ∈ V , the determinant with columns i1 < · · · < im

is non-zero. Thus, we see from the implicit function theorem that the solutions of (1.1.1)
are the graph of a complex-differentiable function of the n−m variables zi , i �= ij , which
is a complex manifold. This manifold will be denoted by Van and referred to as V with the
analytic topology. (Note that Van is Hausdorff because by definition V is separated and
has a countable basis of topology because V is of finite type.)
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1.2 Differential Forms

Let M be a smooth manifold and let x ∈ M . A tangent vector of the manifold M at the
point x is defined to be a function

∂ : C∞(M) → R

which satisfies the following axioms:

∂c = 0 for c constant (1.2.1)

∂(f + g) = ∂f + ∂g (1.2.2)

∂(fg) = f (x)∂g + g(x)∂f. (1.2.3)

Clearly, tangent vectors to M at x form an R-vector space, which we will denote by T Mx

and call the tangent space to M at x.
For a smooth map (i.e. morphism) of smooth manifolds φ : M → N , and a point

x ∈ M , we clearly have a linear map

Dφx : T Mx → T Nφ(x)

given, for ∂ ∈ T Mx and f : N → R, by

(Dφx(∂))(f ) = ∂(f ◦ φ).

The linear map Dφx is called the total differential of the smooth map φ at the point x.

1.2.1 Lemma Suppose M is a smooth manifold, f ∈ C∞(M), and ∂ ∈ T Mx . If there
exists U ⊆ M open such that x ∈ U and f |U = 0, then ∂f = 0.

Proof There exists an open subset V ⊆ U with x ∈ V and a smooth function g : M → R

such that g|V = 0, g|M�U = 1. We have f = f · g. Thus,

∂f = ∂(f · g) = f (x)∂g + g(x)∂f = 0.

��

So, we have a canonical isomorphism (given by restriction) T Mx
∼= T Ux for any open

subset U containing x. In particular, we can choose U to be a chart, and it suffices to
understand tangent vectors at x on an open subset of Rn. For a vector v = (a1, . . . , an)

T ∈
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Rn (here the superscript ?T denotes the transposed, i.e. column, vector), clearly,

∂v = a1
∂

∂x1
+ · · · + an

∂

∂xn

(1.2.4)

is a tangent vector at x.

1.2.2 Lemma All tangent vectors to an open subset U ⊆ Rn are of the form (1.2.4).

Proof Without loss of generality, x = 0. It suffices to show that if for a tangent vector ∂ ,
we have

∂f = 0 (1.2.5)

for every linear function f , then we have (1.2.5) for every f ∈ C∞(U). Suppose then that
(1.2.5) holds for every linear function f . Let f ∈ C∞(U). Let a = f (0). Then

g = f − a

Df0

(more precisely the function defined by this formula on non-zero points, and as 1 at 0) is
smooth. Thus,

∂f = ∂g ·Df0 + ∂a = g(0)∂(Df0)+ ∂g ·Df0(0) = 0.

��

We have seen that if M = U is an open subset of Rn, then a basis of T Mx is

∂

∂x1
, . . . ,

∂

∂xn

. (1.2.6)

For an open set V ⊆ Rm and a map φ : U → V given by φ = (f1, . . . , fm), the matrix of
Dφx with respect to the basis (1.2.6) of T Ux and the basis

∂

∂y1
, . . . ,

∂

∂ym

of T Vφ(x) where y1, . . . , ym are the coordinates of Rm, is the Jacobi matrix (1.1.2).
Note that for x, y ∈ U , we have a canonical isomorphism T Ux

∼= T Uy . A vector field
on U is of the form

v = g1
∂

∂x1
+ . . . gn

∂

∂xn
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where gi ∈ C∞(U). Thus, more precisely, the space V ect (U) of vector fields on U is the
free C∞(U)-module on the basis (1.2.6).

It is important to note that the concept of a smooth vector field on an open subset of Rn

is independent of the choice of coordinates. This is the same thing as observing that for a
diffeomorphism φ : U → V to an open subset V ⊆ R

n, and a smooth vector field v on U ,
we obtain a smooth vector field φ∗(v) on V by the formula

y → Dφφ−1(y)(v(φ−1(y))). (1.2.7)

Since the formula (1.2.7) does not in an obvious way generalize to arbitrary smooth maps
φ, we do not have functoriality of vector fields with respect to general smooth maps.

Consider also the dual space T M∗
x = HomR(T Mx,R) to the vector space T Mx (called

the cotangent space). When U ⊆ Rn, we have a dual basis

dx1, . . . , dxn

to the basis (1.2.6). Note that these basis elements can indeed be identified with the total
differentials of the coordinate functions x1, . . . , xn. We also have the k-th exterior power
�kT M∗

x , which has basis

dxi1 ∧ · · · ∧ dxik , 1 ≤ i1 < · · · < ik ≤ n. (1.2.8)

We extend this notation by letting, for a permutation σ ,

dxiσ(1)
∧ · · · ∧ dxiσ(k)

be the multiple of (1.2.8) by the sign of σ , and letting any product

dxj1 ∧ · · · ∧ dxjk

be 0 if two of the ji’s coincide. Note that this is a special case of the exterior algebra
construction, which we saw in Exercise 16 of Chap. 4.

A differential k-form (briefly, k-form) on U is of the form

∑
gi1,...,ik dxi1 ∧ · · · ∧ dxik

where gi1,...,ik ∈ C∞(U). Thus, more precisely, the space �k(U) of k-forms on U is the
free C∞(U)-module on (1.2.8).

Observe that for an open set V ⊆ Rm, any smooth map φ : U → V , and a 1-form ω on
V , we get a 1-form φ∗(ω) on U by using, for x ∈ U and v ∈ T Mx , the formula

((φ∗(ω))(x))(v) = (ω(φ(x)))(Dφx(v)). (1.2.9)
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Thus, 1-forms are contravariantly functorial with respect to smooth maps of open sets
of Euclidean spaces. In particular, they are functorial in either direction with respect to
diffeomorphisms of open subsets of Rn, as are vector fields. A similar argument also
applies to k-forms.

Obviously, we have sheaves

V ectU ,�k
U

where V ectU (U) = V ect (U), �k
U(U) = �k(U). By gluing sheaves (using the

functoriality with respect to diffeomorphisms of open subsets of Rn), we therefore have
sheaves V ectM , �k

M on every smooth manifold M , and we also denote their global
sections by V ect (M), �k(M), respectively. The sections of those sheaves are called vector
fields (resp. k-forms) on M .

We have �0
M = C∞M , which is a sheaf of commutative rings. We see that �k

M are sheaves
of modules, and that

�1
M = HomC∞M (V ectM, C∞M ), �k

M = �k
C∞M �1

M.

(The definition of the exterior algebra extends to sheaves of modules in the obvious way.)
This is, in fact, a better definition of differential forms, since it is coordinate-free. We
additionally see that we have a product

∧ : �k
M ⊗C∞M ��

M → �k+�
M ,

making
⊕

k �k
M a sheaf of C∞M -algebras.

1.3 De Rham Cohomology

We begin with the following result:

1.3.1 Lemma Let M be a smooth manifold. Then there exists a unique homomorphism of
abelian sheaves

d : �k
M → �k+1

M

which satisfies the following axioms:

1. For a section f ∈ C∞(U), a point x ∈ U and a tangent vector v ∈ T Mx ,

〈dfx, v〉 = v(f ).
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2. For sections ω ∈ �k(U), η ∈ ��(U), we have

d(ω ∧ η) = (dω) ∧ η + (−1)kω ∧ dη.

3. We have

d ◦ d = 0.

COMMENT In Axiom 1, recall that a differential 1-form can be evaluated at a point x ∈ M

to produce an element of T M∗
x . The notation 〈?, ?〉 means the evaluation product between

an R-vector space and its dual.

Proof We prove uniqueness first. It suffices to prove for U ⊆ Rn open. Then by Axiom 1,
we have

〈
dfx,

∂

∂xi

〉
= ∂f

∂xi

∣∣∣∣
x

,

which implies

dfx =
n∑

i=1

∂f

∂xi

∣∣∣∣
x

· dxi.

From Axioms 2, 3, for a smooth function h : U → R, we must have

d(hdxi1 ∧ · · · ∧ dxik ) =
n∑

i=1

∂h

∂xi

· dxi ∧ dxi1 ∧ · · · ∧ dxik .

To prove existence, by the uniqueness, it suffices to consider the case of M = U ⊆ Rn

open. To prove 1, it suffices to consider

v = ∂

∂xi

,

in which case it is by definition. Axiom 2 follows from the Leibniz rule. Axiom 3 follows
from the commutation of partial derivatives:

∂2h

∂xi∂xj

= ∂2h

∂xj∂xi

.

��
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A chain complex is a sequence C of abelian groups (more generally, objects of an
abelian category) (Ck)k ∈ Z together with a homomorphism of abelian groups (called
differential) dk : Ck → Ck−1 such that dk−1 ◦ dk = 0. One then defines the k-th homology
of C by

Hk(C) = Ker(dk)/Im(dk+1).

For a chain complex, one often denotes Zk = Ker(dk) (resp. Bk = Im(dk+1)) and when
dealing with an abelian category where the concept of elements makes sense, calls its
elements cycles (resp. boundaries). We often write simply d for dk. A cochain complex is
a sequence C of abelian groups (Ck)k∈Z together with a differential d = dk : Ck → Ck+1

which satisfies dk+1 ◦ dk = 0. We define the k-th cohomology of C by

Hk(C) = Ker(dk)/Im(dk−1).

The symbols Zk , Bk , and concepts of cocycles and coboundaries for cochain complexes
are defined symmetrically to chain complexes.

Note that, in fact, a chain complex can be made into a cochain complex (and vice versa)
by putting

Ck = C−k. (1.3.1)

Chain complexes (hence also cochain complexes) form an abelian category with respect
to chain maps where for chain complexes C,D a chain map f : C → D consists of
homomorphisms fk : Ck → Dk together with a commutative diagram

Ck

fk
��

d

��

Dk

d

��
Ck−1

fk−1
�� Dk−1.

Cochain maps are defined analogously using the identification (1.3.1). Often, chain
complexes are given by defining Ck only for an interval of integers k. In that case, we
set the remaining groups Ck to 0. Similarly for cochain complexes. Homology (resp.
cohomology) is a functor from chain complexes and chain maps (resp. cochain complexes
and cochain maps) to abelian groups. Similar statements hold in any abelian category.
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1.3.2 Definition Let M be a smooth manifold. The de Rham cohomology Hk
DR(M) is

defined as the k-th cohomology of the cochain complex

�0(M)
d

�� �1(M)
d

�� . . .
d

�� �n(M),

which is called the de Rham complex and denoted by �∗(M). It also has an obvious
sheaf version, which we denote by �∗M (but note that it is not a cochain complex of C∞M -
modules).

COMMENT The definition of the differential immediately implies that for a smooth map
f : M → N ,

f ∗d = df ∗, (1.3.2)

and hence Hk
DR is a contravariant functor from the category of smooth manifolds to the

category of R-vector spaces.

1.3.3 The Difference Between Vector Fields and 1-Forms
We already noted that vector fields are functorial with respect to diffeomorphisms, while
1-forms are (contravariantly) functorial with respect to smooth maps. It turns out that the
two concepts really are quite different. In some sense, any two non-zero vector fields are
locally isomorphic, and we can use this to see that there cannot be any natural analogue of
the de Rham differential d which would involve vector fields.

1.3.4 Proposition Let U ⊆ Rn be open, and let a ∈ U . Consider a vector field

v(x) = f1(x)
∂

∂x1
+ · · · + fn(x)

∂

∂xn

on U with v(a) �= 0. Then there exits an open set V ⊆ U , a ∈ V , and a diffeomorphism

φ : V
∼=

�� W

with W ⊆ Rn open such that

φ∗v = ∂

∂y1

(where we write y1, . . . , yn for the coordinates in the target).

Proof Without loss of generality, a = 0, v(0) = ∂
∂x1

. Choose constants y2, . . . , yn with

(0, y2, . . . , yn)
T ∈ U . Consider the following differential equation for a function x =
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xy2,...,yn : R→ R
n:

x ′(t) = v(x(t)),

with initial condition

x(0) = (0, y2, . . . , yn)
T . (1.3.3)

We then know that in an open neighborhood of 0, there is a unique solution. Put

(x1, . . . , xn)
T = xy2,...,yn(y1).

Considering now all yi as variables, we have

Dx|(y1,...,yn)T (
∂

∂y1
) = x ′y2,...,yn

(y1) = v((x1, . . . , xn)
T ).

Also,

Dx|0 = Id.

Thus, by the inverse function theorem, the function defined by the formula (1.3.3) has an
inverse in an open neighborhood of 0, which can be taken as φ. ��

1.3.5 Example There does not exist any diffeomorphism φ : U → V of non-empty open
subsets of R2 with

φ∗(x2dx1) = dx1.

This is because we would have, by (1.3.2),

dφ∗(ω) = φ∗(dω),

and d(dx1) = 0, while d(x2dx1) = −dx1 ∧ dx2 �= 0, which is a contradiction.

1.4 The de Rham Complex of a ComplexManifold

The reader may wonder why we so far ignored the case of complex manifolds in our
discussion of differential forms. In the complex case, in fact, much more can be said,
and in some sense, the discussion gets us closer to the algebraic situation (see Sect. 1 of
Chap. 6 below). Let us start with the very basic facts here. If M is a complex manifold, it
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is advantageous to consider functions into C. We can put

C∞M,C = C∞M ⊗R C, �k
M,C = �k

M ⊗R C, V ectM,C = V ectM ⊗R C.

From the real point of view, �k
M,C is, of course, just a direct sum of two copies of �k

M , but
it is a sheaf of C-modules (in fact, of C∞M,C-modules). Similarly for V ectM,C.

Now it is advantageous to introduce different C∞U,C-bases of the C-vector spaces of
sections of these sheaves on open subsets of U ⊆ Cn. On C, letting the complex coordinate
be z = x + iy, we put

∂

∂z
= 1

2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z
= 1

2

(
∂

∂x
+ i

∂

∂y

)
.

These vectors are chosen in such a way that they are of the same length (with respect to
the usual dot product), one has

∂h(z)

∂z
= 0

for a holomorphic function h(z), and

∂z

∂z
= 1.

Similarly, a basis of T Uz ⊗R C for U an open subset of Cn is

∂

∂z1
, . . . ,

∂

∂zn

,
∂

∂z1
, . . . ,

∂

∂zn

,

and the dual basis is

dz1, . . . , dzn, dz1, . . . , dzn.

One lets �k,�(U ;C) be the set of all

∑

1≤i1<···<ik≤n
1≤j1<···<j�≤n

hi1,...,ik ;j1,...,j�
dzi1 ∧ · · · ∧ dzik ∧ dzj1 ∧ · · · ∧ dzj�
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where hi1,...,ik ;j1,...,j�
are smooth functions. Then one has

�n(U ;C) =
⊕

k+�=n

�k,�(U ;C),

and the summands are preserved by holomorphic diffeomorphisms (in fact, contravariantly
functorial with respect to holomorphic maps). Thus, one can speak of sheaves

�
k,�
M

for a complex manifold M , and one has

�n
M,C =

⊕

k+�=n

�
k,�
M .

Further, all these summands are contravariantly functorial with respect to holomorphic
maps. The global sections of these sheaves are denoted by �k,�(M), �n(M;C). The
differential on d : �n(M;C) → �n+1(M;C) is defined by tensoring the differential
on �∗(M) over R with C. The n’th cohomology of �n(M;C) is denoted by Hn

DR(M;C),
and called the n’th complex de Rham cohomology of the complex manifold M , or the n’th
de Rham cohomology of the complex manifold M with coefficients in C.

Similarly as in the case of smooth manifolds, we can define differentials

∂ : �k,�
M → �

k+1,�
M ,

∂ : �k,�
M → �

k,�+1
M

by defining them on open sets of Cn by

∂(hdzi1 ∧ · · · ∧ dzik ∧ dzj1 ∧ · · · ∧ dzj�)

=∑ ∂h
∂zi

dzi ∧ dzi1 ∧ · · · ∧ dzik ∧ dzj1 ∧ · · · ∧ dzj� ,

∂(hdzi1 ∧ · · · ∧ dzik ∧ dzj1 ∧ · · · ∧ dzj�)

=∑ ∂h
∂zi

dzi ∧ dzi1 ∧ · · · ∧ dzik ∧ dzj1 ∧ · · · ∧ dzj� .

We have

d = ∂ + ∂.

Again, these operators automatically pass to global sections, and are contravariantly
functorial with respect to holomorphic maps.
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This is an example of a more general construction which is also useful elsewhere. A
double chain complex is a system of abelian groups (or, more generally, the objects of an
abelian category) (Ck,�) together with homomorphisms

∂ : Ck,� → Ck−1,�, ∂ : Ck,� → Ck,�−1

such that we have

∂∂ + ∂∂ = 0, ∂∂ = ∂∂ = 0. (1.4.1)

A double chain map between double chain complexes C, D is a collection of homomor-
phisms Ck,� → Dk,� commuting with both differentials. Again, a double cochain complex
is defined as (Ck,�) where Ck,� = C−k,−� is a double chain complex. For a double
chain complex (Ck,�), we can obtain a chain complex |C| called its totalization (often,
the absolute value signs are omitted) by putting

|C|n =
⊕

k+�=n

Ck,�, d = ∂ + ∂.

This is a functor from the category of double chain complexes and double chain maps to
the category of chain complexes and chain maps. The C-valued de Rham complex of a
complex manifolds is thereby an example of a double chain complex, both on the level
of sheaves and global sections, and both are contravariantly functorial with respect to
holomorphic maps.

Another example of a double chain complex, which will be useful later, is the tensor
product of chain complexes C,D of abelian groups, where (C ⊗D)m,n = Cm ⊗Dn,

∂ = dC ⊗ Id,

and for x ⊗ y ∈ Cm ⊗Dn,

δ(x ⊗ y) = (−1)mx ⊗ dD(y).

This construction generalizes analogously to a tensor product in chain complexes C,D of
R-modules over a commutative ring R, which is denoted by C ⊗R D.

Note that by property (2) of Lemma 1.3.1, on a smooth manifold M ,

ω⊗ η → ω ∧ η

defines a cochain map

�∗(M)⊗R �∗(M) → �∗(M) (1.4.2)

(and similarly over C if M is a complex manifold).
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1.4.1 The Holomorphic de Rham Complex
On a complex manifold M , one also has the holomorphic de Rham complex �k

M,Hol (with

global sections �k
Hol(M)) which, in coordinates for open subsets of Cn, has sections

∑
hi1,...,ik dz1 ∧ · · · ∧ dzk

with hi1,...,ik holomorphic. It is again contravariantly functorial with respect to holomor-
phic maps both in the sheaf and global section versions. Note that one has

�k
M,Hol = Ker(∂ : �k,0

M → �
k,1
M ).

This concept brings us closer to the context of algebraic geometry in the sense that
holomorphic functions are a better approximation of regular functions on an algebraic
variety over C than smooth functions. Note however that the holomorphic de Rham
complex of a complex manifold of dimension n only goes up to degree n, while the de
Rham complex goes up to degree 2n. We will see that for example for P1

C
, the second de

Rham cohomology is in fact non-zero. Thus, the holomorphic de Rham complex, while it
may appear to be a more natural definition, does not have the same cohomology as the full
de Rham complex. We will be able understand these concepts better in Sect. 1 of Chap. 6,
after having gone through the prerequisites covered in the rest of this chapter.

2 Derived Categories and Sheaf Cohomology

We will now introduce some concepts which will ultimately help us understand how de
Rham cohomology relates to other types of cohomology. The most immediate connection
is with sheaf cohomology, which, in turn, is a special case of the more general concept of
derived functors. Derived functors occur on derived categories, which we introduce first.

We will study derived categories in general, then specialize to the case of derived
categories of abelian categories and derived functors on them, of which sheaf cohomology
is an example. To this end, we will also treat the foundations of abelian categories in more
detail.

We will conclude the present section by studying in more detail T or and Ext groups
over a commutative ring, and use them to obtain a cohomological criterion for regularity
of rings.

2.1 Derived Categories

Sheaf cohomology groups can be defined as groups of homomorphisms in certain derived
categories, and essentially the concept is as hard as the general case of the derived category
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of any abelian category. This is why we begin with a general discussion of derived
categories. In the beginning, even restricting to abelian categories is not needed.

Let C be a category and let E ⊆ Mor(C) be a class of morphisms which we will refer
to as equivalences, and denote by ∼. We will assume that E contains all isomorphisms,
and also the two out of three (briefly 2/3) property, which means that for morphisms
f : X → Y , g : Y → Z, if two out of the three morphisms f, g, g ◦ f are in E, so
is the third.

A derived category, if one exists, is a category DC = DEC together with a functor
� : C → DC which is the identity on objects, for every equivalence f ∈ E, �(f )

is an equivalence, and the functor � is universal with respect to that property. More
precisely, for every functor F : C → D which is the identity on objects such that
for every equivalence f ∈ E, F(f ) is an isomorphism, there exists a unique functor
DF : DC → D such that DF ◦ � = F , i.e. the following diagram of functors strictly
commutes:

C
F

��

�

��

D

DC.

��

DF

(2.1.1)

The universality implies that if a derived category exists, it is unique up to isomorphism
of categories which is the identity on objects (Exercise 6). Usually, the functors F we
consider are not actually identity on objects. This is why the following result is useful:

2.1.1 Lemma If F : C → D is any functor such that for f ∈ E, F(f ) is an isomorphism,
then there exists a functor DF : DC → D such that the diagram (2.1.1) commutes up to
natural isomorphism, i.e. there exists a natural isomorphism η : F → DF ◦�. Moreover,
DF is unique in the sense that for another such η′ : F → D′F ◦�, there exists a unique
natural isomorphism κ : DF → D′F such that (κ ◦�) ◦ η = η′.

Proof Up to equivalence of categories, we can always introduce new isomorphic objects.
Using that, we can assume that F is injective on objects. Now we can replace D with its
full subcategory on F(Obj (C)). ��

The reader may ask why the existence of a derived category is even in doubt, since it
appears to be analogous to factoring a universal algebra by a relation. However, arguing
along those lines directly would involve considering a class of proper classes, which we
do not allow. This can be remedied by introducing certain general assumptions. However,
often, the following more concrete construction, which has some specific advantages, is
available.
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We say that an object X ∈ Obj(C) is E-local if for all f : Y → Z, f ∈ E,

C(f,X) : C(Z,X) → C(Y,X)

is a bijection. We say that X is E-colocal if for all f : Y → Z, f ∈ E,

C(X, f ) : C(X, Y ) → C(X,Z)

is a bijection.
Let B be a class of local objects. We say that an object X has localization in B if there

exists an object X′ ∈ B and an equivalence

(γX : X → X′) ∈ E.

If B is a class of colocal objects, we say that an object X has colocalization in B if there
exists an object X′ ∈ B and an equivalence

(γX : X′ → X) ∈ E.

We say that a category C with the given class of equivalences E has localization in B (resp.
colocalization in B) if every object of B is local (resp. colocal) and every object of C has
localization in B (resp. colocalization in B). We say that the category C has localization
(resp. colocalization) when there exists a class of objects B such that C has localization
(resp. colocalization) in B.

2.1.2 Proposition If C has localization or colocalization in B, then a derived category
DC = DEC exists and is equivalent to the full subcategory of C on B.

Proof We will treat the case of localization (the case of colocalization then follows by
passing to opposite categories). The category D = DEC must have the same objects as C.
Choose for every object X ∈ Obj(C) a localization by B

γX : X → X′.

Define

D(X, Y ) = C(X′, Y ′).

This is automatically a category. The functor � must be the identity on objects, and on
morphisms is defined by letting, for f : X → Y , �(f ) be the morphism g obtained by
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completing the diagram

X

γX ∼
��

f
�� Y

γY∼
��

X′ ��
g

Y ′,

(2.1.2)

which can be done uniquely by the locality of Y ′. The uniqueness implies that � preserves
identity and composition.

To show that for f ∈ E, �(f ) is an isomorphism, consider the diagram (2.1.2) with
f ∈ E. Then g ∈ E by the 2/3 property. By locality of X′,

C(g,X′) : C(Y ′,X′) → C(X′,X′)

is now a bijection, so when h → IdX′ , g ◦ h = IdX′ . By the same argument, h has a right
inverse k, and we have

g = g ◦ h ◦ k = k.

For universality, let F : C → D′ be a functor which is Id on objects, such that for all
f ∈ E, F(f ) is an isomorphism. Let f ∈ D be represented by a morphism g : X′ → Y ′.
Then we may define DF(f ) ∈ D′(X, Y ) by

D(F)(f ) = F(γY )−1 ◦ F(g) ◦ F(γX).

To prove uniqueness, since F takes every γX to an isomorphism, it suffices to prove on
objects of B. But for objects X,Y of B, it follows from the fact that for f ∈ D(X, Y )

represented by g ∈ C(X′, Y ′), there exists a unique f ∈ C(X, Y ) completing the diagram
(2.1.2), by the locality of Y . ��

2.2 Properties of Abelian Categories

We shall now fill in some of the proofs of the properties of abelian categories which we
noted in Sect. 1.4 of Chap. 2. Recall that an abelian category is defined simply as a category
which has finite limits and colimits, has a zero object (i.e. the unique morphism from the
initial to the terminal object is an isomorphism), such that every epimorphism is a cokernel,
and every monomorphism is a kernel.
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2.2.1 Lemma In an abelian category, a morphism which is both an epimorphism and a
monomorphism is an isomorphism.

Proof An epimorphism f : A → B is, by definition, the cokernel of some morphism
g : C → A. But then, by definition, f ◦ g = f ◦ 0, so if f is a monomorphism, then
g = 0, and the cokernel of 0 is an isomorphism. ��

2.2.2 Lemma Suppose in an abelian category, f : A → C, g : C → B are morphisms.

(1) If f is a monomorphism and g is the cokernel of f , then f is the kernel of g.
(2) If g is an epimorphism and f is the kernel of g, then g is the cokernel of f .

Proof Clearly, the statements are symmetrical, so it suffices to prove (1). Let h : K → C

be the kernel of g. On the other hand, by assumption, f is a kernel of some morphism
k : C → D, and by the universality of cokernel, there exists a β : B → D such that
k = β ◦ g. By naturality of limits, we then get a morphism α : K → A such that
f ◦ α = h.

On the other hand, by universality of kernel, we also have a γ : A → K such that
h ◦ γ = f . Since both f and h are monomorphisms, α and γ must be inverse to each
other. (Note that in any category, equalizers are monomorphisms.) ��

2.2.3 Lemma In an abelian category, if Ker(f ) = 0 then f is a monomorphism. If
Coker(f ) = 0, then f is an epimorphism.

Proof Clearly, the statements are symmetrical, so it suffices to prove the first one. Suppose
in an abelian category, f : A → B and Ker(f ) = 0. Suppose g, h : C → A such that
f ◦ g = f ◦ h = φ : C → B. Let α : C′ → C � C be the kernel of the codiagonal
∇ : C � C → C. Then we have f ◦ (g � h) = φ ◦ ∇ and thus f ◦ (g � h) ◦ α = 0.
Thus, (g � h) ◦ α = 0 and thus, by Lemma 2.2.2, there exists a β : C → A such that
β ◦ ∇ = g � h, which we were trying to prove. ��

Note that by Lemmas 2.2.2, 2.2.3, the concept of a short exact sequence is unambigu-
ous: We can write

0 �� A
f

�� B
g

�� C �� 0

to mean that f is a monomorphism and g is its cokernel, or that g is an epimorphism, and
f is its kernel. Those two statements are equivalent. Also note that by Lemma 2.2.3, a
morphism whose kernel and cokernel are 0 is an isomorphism.
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2.2.4 Lemma In an abelian category, suppose we have a diagram

0 �� A ��

Id

��

C

f

��

�� B

Id

��

�� 0

0 �� A �� C′ �� B �� 0.

(2.2.1)

whose rows are exact. Then f is an isomorphism.

Proof One shows that both the kernel and cokernel of f are 0. This is left as an exercise.
(Exercise 7). ��

2.2.5 Lemma In an abelian category, the canonical morphism

A� B → A

�

B

is an isomorphism. (Thus, we have a biproduct, which is denoted by ⊕.)

Proof One observes that we have a short exact sequence

0 → A → A � B → B → 0 (2.2.2)

where the first morphism is the coproduct injection. To this end, the second morphism is
defined as the cokernel of the injection, and it is formal that the target is B. To show that the
injection is a monomorphism, note that it is right inverse to Id�0 : A�B → A�0 = A.

Now symmetrically, we get a short exact sequence

0 → A → A

�

B → B → 0, (2.2.3)

and a morphism from (2.2.2) to (2.2.3), thus resulting in a diagram of the form (2.2.1). ��

With a biproduct, we can add two morphisms f, g : A → B by forming the
composition

A
�

�� A⊕ A
f⊕g

�� B ⊕ B
∇

�� B.
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It remains to show how to subtract morphisms. To this end, we consider the diagram

0 �� C ��

Id

��

C ⊕ C

τ

��

�� C

Id

��

�� 0

0 �� C �� C ⊕ C �� C �� 0

where the horizontal morphisms are injections to the first coordinate and projections to the
second coordinate (and hence, the rows are exact), and τ is given by the matrix

(
Id Id

0 Id

)
.

Then by Lemma 2.2.4, τ is an isomorphism. We see then that its inverse matrix must be of
the form

(
Id −Id

0 Id

)
,

thereby providing a definition of −Id .
From this point on, it is not difficult to prove all “usual additive properties of the

category Ab of abelian groups” in any abelian category. The reader is referred to [3] for
further details.

2.3 The Derived Category of an Abelian Category

Let A be an abelian category. We will learn here how to construct the derived category
of the category A-Chain of chain complexes in A where the equivalences E are
quasiisomorphisms, i.e. chain maps which induce an isomorphism on homology. This is
sometimes referred to as the derived category DA of the abelian category A. We will also
consider full subcategories of DA on chain complexes C which are bounded below or
bounded above which means that there exists a constant N such that Cn = 0 for n < N

(resp. Cn = 0 for n > N). The notations A-Chain+, A-Chain−, DA+, DA− mean full
subcategories on bounded below (resp. bounded above) chain complexes.

We will work in chain complexes throughout this subsection. The statements proved
are, of course, automatically valid for cochain complexes, with “bounded below” and
“bounded above” interchanged.
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2.3.1 Projective and Injective Objects
An object P of an abelian categoryA is called projective if for every epimorphism A → B,
every morphism P → B factors through A:

P

�� ��
A �� B �� 0.

An abelian categoryA is said to have enough projectives if, for every object A, there exists
an epimorphism

P → A → 0.

Dually, an object Q is injective if for every monomorphism A → B, every morphism
A → Q factors through B:

0 �� A

��

�� B

��
Q.

An abelian category A is said to have enough injectives if for every object A there exists a
monomorphism

0 → A→ Q

with Q injective.

2.3.2 The Homotopy Category of Chain Complexes
A chain homotopy between two chain maps f : C → D in A-Chain is a sequence of
A-homomorphisms h = hn : Cn → Dn+1, n ∈ Z, such that

fn − gn = dhn + hn−1d.

Two chain maps are called chain homotopic if there exists a chain homotopy between
them. We write h : f � g, or just f � g. Clearly, this is an equivalence relation, and the
equivalence classes are called chain homotopy classes. The concept of chain homotopy is
compatible with composition, and thus, we have a category, called the homotopy category
of chain complexes hA-Chain whose objects are A-chain complexes, and morphisms are
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chain-homotopy classes of chain maps. An isomorphism of chain complexes C, D in hA-
Chain is called a chain homotopy equivalence. If a chain homotopy equivalence exists, the
chain complexes C,D are called chain homotopy equivalent and one writes C � D.

It is immediate that chain-homotopic chain maps induce the same homomorphisms in
homology, and thus the concept of a quasiisomorphism passes to the homotopy category.
We will also consider the full subcategories hA-Chain+, hA-Chain− on bounded below
(resp. bounded above) chain complexes.

2.3.3 Lemma If a derived category of an abelian category A exists, the functor � : A-
Chain→ DA factors through the canonical functor A-Chain→ hA-Chain.

Proof We consider the chain complex of abelian groups I where I0 = Z ⊕ Z, I1 = Z,
In = 0 for n �= 0, 1, and d : I1 → I0 is given by the matrix (1,−1)T . Considering an
object A of an abelian category as a chain complex which is A in degree 0 and 0 in other
degrees, we have quasiisomorphisms i1, i2 : Z→ I given by the matrices (1, 0)T , (0, 1)T

in degree 0 (and, of course, by 0 elsewhere), and a quasiisomorphism ε : I → Z given in
degree 0 by the matrix (1, 1) (and, again, necessarily by 0 elsewhere).

Now we have a well defined tensor product of an object of an abelian category with
a finitely generated abelian group. For a chain complex C in an abelian category A, it
follows from more general facts, but one can also verify directly that

C ⊗ i1, C ⊗ i2 : C → C ⊗ I (2.3.1)

are quasiisomorphisms (since cycles in C ⊗ I are spanned by c ⊗ αi where c ∈ Cn is a
cycle and α1, α2 are the generators of the of the two Z-summands of I0; Exercise 8.)

Now for chain maps f, g : C → D, consider the diagram

C

Id

����
��
��
��
�

∼
��

f

�
��

��
��

��

C C ⊗ I
ε

∼
�� ��

h

D

C

Id

�����������
∼

��

g

�����������

where the vertical arrows are C ⊗ i1, C ⊗ i2. One verifies that a chain homotopy between
f and g is equivalent to filling the dotted arrow in the diagram. Upon applying the functor
� into the derived category, ε becomes an isomorphism, so f = h ◦ ε−1 = g.

��
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Now the main result about derived categories of abelian categories is the following

2.3.4 Theorem 1. If an abelian category A has coproducts and enough projectives, then
hA-Chain has colocalization.

2. If an abelian category A has enough projectives, then hA-Chain+ has colocalization
by bounded below chain complexes of projective objects.

3. If an abelian category A has products and enough injectives, then hA-Chain has
localization.

4. If an abelian category A has enough injectives, then hA-Chain− has localization by
bounded above chain complexes of injective objects.

The derived categories of hA-Chain, hA-Chain+, hA-Chain− are usually denoted by
DA, DA+, DA− and called the derived category (resp. bounded below derived category,
resp. bounded above derived category) of the abelian category A.

2.3.5 Introduction to homological algebra
We shall now start developing the tools needed to prove Theorem 2.3.4. This will take
several sections. The proof of (1) and (2) will be finished in 2.3.11. The proof of (3) and
(4) will be done in Sect. 2.3.12, using some technical facts the proof of which will follow.

For an A-chain map f : C → D, the mapping cone is the totalization of the double
chain complex Cf where Cfn,0 = Dn, Cfn,1 = Cn and Cfn,p = 0 for p �= 0, 1, ∂

coincides with the differential on C, D and δ : Cfn,1 → Cfn,0 is (−1)nfn. As usual, one
omits the totalization signs. Then we get canonical chain maps i : D → Cf , j : Cf →
C[1] where for a chain complex Q, Q[n] denotes shift up by n, i.e. the chain complex
with Q[n]k = Qk−n. We see that from this point of view, the mapping cone construction
is self-dual up to a shift: we can call C[−1] the mapping co-cone. A special case of the
mapping cone is the cone CX = C(Id : X → X).

One also sees that we have a canonical chain map

Cf → D/Im(f ) (2.3.2)

and a short exact sequence of chain complexes

0 �� D
i

�� Cf
j

�� C[1] �� 0. (2.3.3)

It is interesting to note that if we denote by [C,D] the abelian group of chain-homotopy
classes of chain maps from C to D (i.e. morphisms in hA-Chain), then for any chain
complex X, we have an exact sequence

[Cf,X]
[i,X]

�� [D,X]
[f,X]

�� [C,X]. (2.3.4)
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The map i ◦ f is chain-homotopic to 0, which shows that the composition of the two maps
(2.3.4) is 0. On the other hand, Cf is isomorphic to the colimit of the diagram

C ��

C⊗i1
��

0

C ⊗ I

C

C⊗i2

��

f
�� D

and thus, a chain map D → X chain-homotopic to 0 when composed with f extends to
Cf .

It is also interesting to continue the procedure of taking mapping cones: Continuing to
denote by i : D → Cf the canonical map, using (2.3.3) and (2.3.2) applied to i instead of
f , we obtain a canonical map

Ci → C[1]

which one can check to be a chain-homotopy equivalence (i.e. an isomorphism in hA-
Chain). Repeating this also for the canonical monomorphism k : Cf → Ci, one obtains a
commutative diagram of the form

Ci

∼
��

�� Cj

∼
��

C
f

�� D
i

�� Cf
j

��

����������
C[1]

−f [1]
�� D[1].

(2.3.5)

Given the self-duality of the mapping cone (up to shift), one has analogous results upon
turning around arrows. Combining (2.3.4) and (2.3.5), one then gets the following

2.3.6 Theorem For any chain map f : C → D of A-chain complexes, we have canonical
long exact sequences

. . . �� [C[n+ 1],X] �� [Cf [n],X]
[i[n],X]

�� [D[n],X]
[f [n],X]

�� [C[n],X] �� . . .

(2.3.6)

. . . �� [X,C[n]]
[X,f [n]]

�� [X,D[n]]
[X,i[n]]

�� [X,Cf [n]] �� [X,C[n+ 1]] �� . . .

(2.3.7)

��
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Constructions of this type are often referred to as homological algebra. Perhaps the
best-known fact of homological algebra is the following

2.3.7 Theorem For a short exact sequence of chain complexes

0 �� C′
i

�� C
j

�� C′′ �� 0,

there is a long exact sequence

. . . �� HnC
′ Hni

�� HnC
Hnj

�� HnC
′′ �

�� Hn−1C
′ �� . . .

where � is functorial in the category of short exact complexes of chain complexes, and
double chain maps.

Proof To construct the morphism �, one observes that we also have a canonical chain
map

C′[1] → Cj (2.3.8)

using the chain map i to map C′n into (Cj)n,1, utilizing the fact that j ◦ i = 0. Now one
shows that (2.3.8) induces an isomorphism in homology. (This can be checked directly.)
Thus, � can be induced just by the canonical chain map C′′ → Cj . The rest of the proof,
which is just a series of applications of the properties of the kernel and image in abelian
categories, is left as an exercise (Exercise 9). ��

Another standard fact of homological algebra is the following statement often used in
conjunction with Theorem 2.3.7. Again, a proof follows by examining the properties of
the image and kernel in an abelian category (Exercise 10).

2.3.8 Lemma (The 5-Lemma) Consider a diagram in an abelian category

A′

a

��

�� B ′

b

��

�� C′

c

��

�� D′

d

��

�� E′

e

��
A �� B �� C �� D �� E.

Assume that a is an epimorphism, e is monomorphism, and b, d are isomorphisms. Then c

is an isomorphism.

��
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While Theorems 2.3.6 and 2.3.7 may seem similar, it is important to note that they
are different results for an arbitrary abelian category A. For example, (2.3.6), (2.3.7) are
long exact sequences of abelian groups, while in Theorem 2.3.7, we are dealing with exact
sequences in A. There is, nevertheless, also an approach to Theorem 2.3.7 along the lines
of Theorem 2.3.6, interpreting, for a finitely generated abelian group H and an object A

of an abelian category A, Hom(H,A) as an object of A.

2.3.9 Cell Chain Complexes
Now a cell A-chain complex C is of the form

C = colim C(m)

where C(−1) = 0 and for all m ∈ N0, C(m) is the mapping cone of a chain map

im : P(m) → C(m−1)

where P(m) is a chain complex of A-projective objects with 0 differential.
To prove that cell chain complexes are colocal, in view of the equivalence (2.3.8),

Theorem 2.3.7, and (2.3.7), it suffices to prove the following

2.3.10 Lemma If C, X are chain complexes in A where C is cell and Hm(X) = 0 for all
m ∈ Z, then

[C,X] = 0.

Proof Let f : C → X be a chain map. We shall produce, by induction, chain maps
CC(n) → X (recall that CY denotes the cone on a chain complex Y ) extending each other
as well as restrictions of the chain map f . Their colimit will then be a map CC → X

which is equivalent to the required homotopy. For n = −1, there is nothing to prove.
Assuming the homotopy has been constructed for a given n, let Q(n) be the pushout of the
diagram

C(n)
��

C(n)⊗i1

��

C(n+1)

CC(n)

Then restriction of the map f to C(n+1), together with the already constructed chain map
CC(n) → X produce a chain map

Q(n) → X.
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On the other hand, we have a canonical colimit chain map

Q(n) → CC(n+1)

and, in fact, we have a chain map gn : P(n+1)[1] → Q(n) and an isomorphism

CC(n+1)
∼= Cgn.

By Theorem 2.3.6, it suffices to prove that for a projective object P of A and an A-chain
complex X with 0 homology,

[P [m],X] = 0. (2.3.9)

But this is trivial: a chain map (2.3.9) is the same thing as a morphism P → Zm, and by
assumption, we have Bm = Zm. Then apply projectivity to the epimorphism Xm+1 →
Bm → 0.

��

2.3.11 Proof of (1) and (2) of Theorem 2.3.4
For (1), we just proved that cell objects are colocal. Now to prove colocalization, we need
to produce, for an arbitrary A-chain complex X, an equivalence γ : C → X where C is
cell. To this end, keeping in mind that A has enough projectives, and using the notation of
Sect. 2.3.9, simply select an epimorphism

P(0)[1] → H∗X

(one uses H∗X for the graded A-object (Hn(X))), and then inductively an epimorphism

P(m) → Ker(H∗C(m−1) → H∗X),

as inductively, we also produce chain maps C(m) → X. The fact that the colimit chain map
is an equivalence follows from commutation of homology with colimits of sequences.

For (2) of Theorem 2.3.4, we note that when X is bounded below, a better construction
is available. One notes that in fact, a bounded below chain complex of projective objects
is automatically cell. To construct the colocalization in hA-Chain+, consider first the case
when X = M is just an object. Then from the assumption that there are enough projectives,
we can produce a short exact sequence

0 → M1 → P0 → M → 0
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and, inductively, short exact sequences

0 → Mn+1 → Pn → Mn → 0.

Using the connecting maps, we then have produced an exact sequence

· · · → P2 → P1 → P0 → M → 0

or, equivalently, a chain complex

P = (· · · → P2 → P1 → P0)

and an equivalence P → M . The chain complex P is called a projective resolution of M .
Now when X is bounded below, assume, without loss of generality, that Xn = 0 for

n < 0. one can produce, inductively on n, a cell chain complex of projective objects C(n)

where (C(n))m is non-zero only for 0 ≤ m ≤ n and chain maps

γn : C(n) → X

which induce isomorphisms in homology in degrees 0 ≤ i ≤ n−1, and an epimorphism in
degree i = n. Such a chain map is sometimes called an n-equivalence. Then the mapping
cone Cγn has 0 homology in degrees < n + 1, and choosing an epimorphism Pn+1 →
Hn+1Cγn, we may interpret it as a chain map Pn+1[n + 1] → Cγn. Thus, we obtain a
chain map Pn+1[n] → C(n), and if we take C(n+1) to be its mapping cone, we may extend
the chain map γn to an (n + 1)-equivalence γn+1 : C(n+1) → X. Observe carefully that
restricting attention to this case, we do not need to require that A have arbitrary coproducts,
as long as it has enough projectives.

2.3.12 Proof of (3) and (4) of Theorem 2.3.4
It is tempting to say that the proof of these cases of Theorem 2.3.4 is the precise dual
of what we just did. This is, in fact, almost correct. The case (4) is, in fact, dual in this
fashion. Notably, we have a concept of an injective resolution of an object M , which is a
chain complex of the form

Q = (Q0 → Q−1 → Q−2 → . . . )

with Qn injective, and an isomorphism

M ∼= H0(Q),

while HiQ = 0 for i �= 0. Note that it is more natural in this case to think of Q as a
cochain complex.
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Now most of the proof of (3) is indeed a precise dual of (1). In particular, we have
a notion of a co-cell chain complex, which the reader is encouraged to write down as a
precise dual of the notion of a cell chain complex.

The one snag in this duality is that for a sequence

· · · → C(2) → C(1) → C(0)

of chain complexes, it is in general false that the canonical map

H∗ lim C(n) → lim H∗C(n)

would be an isomorphism. It is, however, true under certain special conditions (see
Proposition 2.3.14), which apply in the case of a localization by co-cell chain complexes
which is precisely dual to our construction of co-localization by cell chain complexes. The
relevant story is explained below.

Let · · · → A2 → A1 → A0 be a sequence of objects in an abelian category A. We say
that the sequence satisfies the Mittag-Leffler condition if for each n ∈ N0, the sequence of
images of Am in An, m ≥ n, is eventually constant in m.

Consider now a sequence of short exact sequences:

...
...

��

...

��

...

��

...

0 �� A2

��

�� B2

��

�� C2

��

�� 0

0 �� A1

��

�� B1

��

�� C1

��

�� 0

0 �� A0 �� B0 �� C0 �� 0

The key point is the following fact, which is an easy consequence of the properties of the
image (Exercise 11):

2.3.13 Lemma

1. If the sequence (An) satisfies the Mittag-Leffler condition, then the induced sequence

0 → lim An → lim Bn → lim Cn → 0

is exact. (Note: The first four terms are always exact.)
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2. If the sequences (An), (Cn) satisfy the Mittag-Leffler condition, so does the sequence
(Bn).

��
This has the following important consequence:

2.3.14 Proposition Let A be an abelian category with products. Let

· · · → 2C → 1C → 0C

be a sequence of A-chain complexes, and let C be its limit. If for each n ∈ Z, the sequences

· · · → 2Cn → 1Cn → 0Cn,

· · · → Hn(2C) → Hn(1C) → Hn(0C)

satisfy the Mittag-Leffler condition, then for each n ∈ Z, the canonical map

HnC → lim
k

Hn(kC)

is an isomorphism.

Proof Recall that in a chain complex C, one sometimes denotes Zn = Ker(d : Cn →
Cn−1) (resp. Bn = Im(d : Cn+1 → Cn)) and these the subobjects of cycles, resp.
boundaries. (Of course, speaking of elements does not in general make sense in an abelian
category.) We have short exact sequences

0 → Bn → Zn → Hn(C) → 0, (2.3.10)

0 → Zn → Cn → Bn−1 → 0. (2.3.11)

Now applying this to kC, (2.3.10) and (2.3.11) become sequences of short exact sequences
in the variable k. If the sequence (kCn) satisfies the Mittag-Leffler condition for each n,
so does the sequence (kBn) by properties of the image. Assuming also (kHnC) satisfies
the Mittag-Leffler condition, so does (kZn) by (2.3.10) and Lemma 2.3.13 (2). Thus, the
inverse limits of both sequences (2.3.10), (2.3.11) over C = kC are exact and since the
canonical morphism

Ker(lim d : lim kCn → lim kCn−1) → lim kZn

is an isomorphism by commutation of limits, our statement follows.
��
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2.3.15 Derived Functors
Let � : C → C′ be a functor where C, C′ are small categories. Let, for a category D,
Funct (C,D) denote the category of functors from C to D and natural transformations.
Then we have a “forgetful functor”

�∗ : Funct (C′,D) → Funct (C,D)

given by composition with �. This functor has a left (resp. right) adjoint �� (resp. �∗)
called the left (resp. right) Kan extension. The construction of Kan extensions is, in fact,
a direct generalization of their construction in the case of group actions in Sect. 5.2 of
Chap. 3 above.

For a functor F : C → D, L�F = LF = �∗F (resp. R�F = RF = ��F ) is called
the left (resp. right) derived functor of F along �. (Note the switch in terminology of
“left” and “right” between Kan extensions and derived functors; this is due to historical
reasons.) The unit and counit of adjunction now give canonical natural transformations

ε : �∗LF → F,

η : F → �∗RF,

and an object of C is called F -colocal (resp. F -local) (with respect to �) if ηX (resp. εX)
is an isomorphism.

Removing the assumption of smallness on the categories C, C′, the trouble is that
Funct (C,D), Funct (C′,D) now become illegal objects of set theory. Nevertheless, the
above definitions still can be written down as conditions on the specific functors and
objects, which are not guaranteed to exist, but are unique up to natural isomorphism if
they do. A functor for which a left (resp. right) derived functor exists is called left derivable
(resp. right derivable).

Concretely, we say that LF = L�F is a left derived functor of F along � if it is a
universal functor with a natural transformation ε : LF ◦� → F :

C

�
��

F

⇒ε ���
��

��
��

�

C′ ��
LF

D,

i.e. for any functor F ′ : C′ → D with a natural transformation ζ : F ′ ◦ � → F , there
exists a unique natural transformation κ : F ′ → LF such that

ζ = ε ◦ (κ ◦�).
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An object X ∈ Obj(C) is called F -colocal if εX is an isomorphism.
The concept of the right derived functor RF = R�F is dual, i.e. we have a natural

transformation

η : F → RF ◦�

such that for any functor F ′ : C′ → D with a natural transformation μ : F → F ′ ◦ �,
there is a unique natural transformation λ : RF → F ′ such that

μ = (λ ◦�) ◦ η.

An object X of C is called F -local with respect to � if ηX is an isomorphism.
Often the interesting case is when C′ = DC is the derived category and � : C →

DC is the universal functor. In that case, essentially from the definitions, we obtain the
following

2.3.16 Proposition Let � : C → DC be the universal functor where DC is the derived
category of C with respect to a class of equivalences E which includes all isomorphism,
and satisfies 2/3.

1. If C has localization by a class B of objects, then a right derived functor RF = R�F

exists and is given by RF(X) = F(X′) for X′ ∈ B with an equivalence γX : X → X′,
and

ηX = F(γX).

In particular, a local object is F -local.
2. If C has colocalization by a class of objects B, then a left derived functor LF = L�F

exists and is given by LF(X) = F(X′) for X′ ∈ B with an equivalence γX : X′ → X,
and

εX = F(γX).

In particular, a colocal object is F -colocal.

��

2.3.17 Proposition Suppose C is a category with a class of equivalences E containing all
isomorphisms and satisfying 2/3, and a derived category DC exists. Then for an object
X ∈ Obj(C), with respect to �, the functor C(?,X) : C → SetsOp is left derivable, and
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its left derived functor is C(�(?),�(X)), and the functor C(X, ?) : C → Sets is right
derivable, and its right derived functor is C(�(X),�(?)).

��

2.3.18 Derived Functors in an Abelian Category
Let us now consider the case when A, B are abelian categories, and F : A → B is an
additive functor. Then F canonically extends to a functor from hA-Chain to hB-Chain,
which is usually denoted also by F . If A has enough projectives (resp. injectives), it
follows from Proposition 2.3.16 that the functor F is automatically left- (resp. right-)
derivable with respect to the universal functor � from hA-Chain to its derived category.
The derived functors LF , RF are often referred to as the total left (resp. right) derived
functor. One also denotes LnF = Hn(LF) = L(Hn ◦ F), RnF = H−n(RF) =
R(H−n ◦F) and calls them the n’th left (resp. right) derived functor. For X,Y ∈ Obj(A),
one denotes by ExtnA(X, Y ) the value on X of the n-th right derived functor of

HomA(?, Y ) : AOp → Ab,

or equivalently the value on Y of the n-th right derived functor of

HomA(X, ?) : A→ Ab.

2.3.19 Proposition Let A be an abelian category. let

0 → M → N → P → 0 (2.3.12)

be a short exact sequence, and let F : A→ B be an additive functor where B is another
abelian category.

1. If A has enough projectives, then (2.3.12) gives rise to a long exact sequence of the
form

. . . LnFM → LnFN → LnFP → Ln−1FP → . . .

where for n < 0, we have LnF = 0. If F is right exact, then L0F ∼= F .
2. If A has enough injectives, then (2.3.12) gives rise to a long exact sequence of the form

. . . RnFM → RnFN → RnFP → Rn+1FM → . . .

where for n < 0, we have RnF = 0. If F is left exact, then R0F ∼= F .
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Proof We shall prove (1). If C is a projective resolution of M and D is a projective
resolution of N , then we have a morphism f : C → D which on homology induces
the first morphism (2.3.12). Then the sequence

C
f

�� D
i

�� Cf

induces (2.3.12) on homology, and consists of colocal objects. Applying the functor F

preserves mapping cones, so the exactness statement follows from Theorem 2.3.7. The
statement about L0 follows from the definition of right exactness: If

· · · → P1 → P0

is a projective resolution of M , then we have an induced exact sequence

FP1 → FP0 → FM → 0.

The proof of (2) is symmetrical.
��

2.3.20 Proposition Let A be an abelian category with enough injectives and let F : A→
B be an additive functor to another abelian category which is left exact. Then an object X

of A is F -local if and only if

RnF(X) = 0 for all n > 0.

An analogous result holds if we replace R with L, injectives with projectives and local
with colocal.

Proof Let Q be an injective resolution of X. Then we have the quasiisomorphism

ε : X → Q. (2.3.13)

Since F is left exact, however, R0Fε is an isomorphism. Now consider the diagram

FX

��

η
�� RFX

∼
��

FQ
∼

�� RFQ.
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By what we just said, the left vertical arrow is a quasiisomorphism if and only if RiFX = 0
for i > 0. Thus, our statement follows. ��

The following result is often useful in practical calculations:

2.3.21 Proposition

1. Let A be an abelian category with enough projectives, and let F : A → B be an
additive functor where B is another abelian category. Consider a double chain complex
of the form

C = ((Cm,n), ∂, δ)

for some k, � ∈ Z, Cm,n = 0 if m < k or n < �, and the chain complexes (Cm,∗, δ)
are F -colocal for each m ∈ Z. Then the totalization of the double chain complex C is
F -colocal. In particular, a bounded below chain complex of F -colocal objects of A is
F -colocal.

2. Let A be an abelian category with enough injectives, and let F : A→ B be an additive
functor where B is another abelian category. Consider a double chain complex of the
form

C = ((Cm,n), ∂, δ)

for some k, � ∈ Z, Cm,n = 0 if m > k or n > �, and the chain complexes (Cm,∗, δ) are
F -local for each m ∈ Z. Then the totalization of the double chain complex C is F -local.
In particular, a bounded above chain complex of F -local objects of A is F -local.

Proof The two proofs are completely symmetrical. We shall prove (1). First, if we also
assume there is a constant K such that Cm,n = 0 for m > K , then C can be obtained from
the chain complexes Cm,∗ by repeated application of mapping cones. Thus, to prove that
case, it suffices to show that if f : C → D is a chain map and C, D are F -local, then so
is Cf . To this end, by properties of the mapping cone, we may construct a diagram

C′

γC ∼
��

f ′
�� D′

γD ∼
��

i′
�� Cf ′

��
g

C
f

�� D
i

�� Cf

commutative up to chain homotopy (i.e. commutative in hA-Chain) where C′, D′ are cell.
Then Cf ′ is also cell. We are also assuming that F(γC), F(γD) are quasiisomorphisms.
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Since, by definition, F preserves chain homotopy and mapping cones, it suffices to prove
that g and F(g) are quasiisomorphisms. In view of Theorem 2.3.7, these statements follow
from the 5-lemma (Lemma 2.3.8).

Now to remove the assumption about the existence of K , note that we can form a double
chain complex KC where KCm,n = Cm,n for m ≤ K , and KCm,n = 0 for m > K . Then
we have a canonical double chain map KC → C which is an isomorphism in degrees
(m, n) with m ≤ K . In particular, upon totalization, we obtain an isomorphism in degrees
≤ K + �. Now by the proof of (2) of Theorem 2.3.4, we may choose γC : C′ → C,
γ

KC : KC′ → KC (omitting totalization signs) so that we have a chain map KC′ → C′
which is an isomorphism in degrees ≤ K + �. Then the same will be true after applying
F , and upon applying homology, we obtain an isomorphism in degrees < K + �. Thus,
FεC is an isomorphism in degrees < K + � which is arbitrarily large, thus proving our
statement.

��

2.4 Examples of Abelian Categories

2.4.1 Abelian Groups andModules
For a commutative ring R, the category R-Mod of R-modules (and homomorphisms) has
enough projectives, namely free R-modules: For any R-module M , we can take the free
R-module RM on M , and from the universal property (see Sect. 1.4 of Chap. 2) obtain an
epimorphism

RM → M.

For R = Z, then, we obtain the fact that the category Ab of abelian groups has enough
projectives. We will now see that these categories also have enough injectives.

2.4.2 Lemma

1. An abelian group Q is injective if and only if it is divisible which means that for every
x ∈ Q and n ∈ N there exists a y ∈ Q with ny = x.

2. For a commutative ring R, the category R-Mod has enough injectives.
3. For a topological space X, the category Ab-ShX of abelian sheaves on X (and more

generally R-Mod-ShX of sheaves of R-modules) has enough injectives.

Proof For (1), clearly, the divisibility condition tests injectivity for the monomorphism

n : Z→ Z,

and hence is necessary for injectivity.
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To prove that it is sufficient, we will use Zorn’s lemma.
Suppose an abelian group Q is divisible. Suppose we have an inclusion of abelian

groups

A ⊆ B

and a homomorphism F : A → Q. By Zorn’s lemma, there exists a maximal subgroup
C, with respect to inclusion, of B containing A such that h extends to C. If C = B, we
are done. Assume there exists an element x ∈ B � C. Let C′ = 〈C, x〉 be the subgroup of
B generated by C and x. If for all n ∈ N, nx /∈ C, then C′ ∼= C ⊕ Z, so clearly we can
extend f to C′ by using 0 on Z. Otherwise, let n ∈ N be minimal such that nx ∈ C. Then
C′ is the pushout of a diagram

Z

��

n
�� Z

C,

so f can be extended to C′ by the divisibility condition. In either case, we obtain a
contradiction with the maximality of C.

To prove (2), first consider the category Z-Mod= Ab. Let A be an abelian group. Then
for every x ∈ A, the cyclic subgroup of A embeds into either Z or Q/Z, and the embedding
extends to a homomorphism on A by injectivity. The product of these homomorphisms is
then injective, and a product of injective objects is injective.

Now for a commutative ring R, the right adjoint (right Kan extension)

A → HomZ(R,A)

to the forgetful functor from R-Mod to Ab preserves injectives (since it is a right adjoint,
and its left adjoint preserves monomorphisms), so the statement follows.

The statement (3) is proved similarly. We will only consider the case of Ab-ShX (the
general case is analogous). When X is discrete then Ab-ShX is just a product of copies
of the category Ab, so it has enough injectives. Let Xdisc be the set X with the discrete
topology and let f : Xdisc → X be the identity map. Then f is continuous, and for an
injective sheaf F on Xdisc, f∗F is injective, and clearly, by adjunction, every abelian sheaf
on X injects (i.e. admits a monomorphism) into such a sheaf. ��

2.4.3 Definition of T orR(M,N)

Let R be a commutative ring. Then ⊗R , considered as a functor in one variable, with the
other variable fixed, is right exact. The n’th left derived functor is denoted by T orR

n (?, ?).
This does not depend on which variable we take the derived functor in. Letting C,D
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be projective resolutions of R-modules M,N , this follows from the fact that we have a
diagram

C ⊗R N C ⊗R D
∼

��
∼

�� M ⊗R D,

(totalization understood), which in turn follows from the following

2.4.4 Lemma If C is a cell R-module, then C⊗R? preserves quasiisomorphisms.

Proof By Theorem 2.3.7, it suffices to prove that for a cell chain complex of R-modules
C and any chain complex of R-modules D with H∗D = 0 we have

H∗(C ⊗R D) = 0.

For C a graded free R-module with 0 differential, this follows from distributivity of ⊗R

under direct sums. A projective R-module is a direct sum of a free one, thus implying
the statement for projective chain complexes with 0 differential. Using Theorem 2.3.7 and
commutation of homology with colimits of sequences, the statement follows for a cell
chain complex C. ��

An important application of this fact is the following fact:

2.4.5 Theorem (Hilbert Syzygy Theorem) Let k be a field and let M be a finitely
generated graded R = k[x1, . . . , xn]-module (where each xi has degree 1). Then there
exists a free R-resolution

Fn → · · · → F1 → F0

of M where each Fi is a finitely generated R-module.

Proof We shall build inductively a graded free R-resolution of M

· · · → Fi+1 → Fi → · · · → F0

of M . Suppose we have defined a complex

Fi → · · · → F0

which has homology M in degree 0 and no homology in degrees 1, . . . , i − 1, such that
all Fj , j = 1, . . . , i are finitely generated graded R-modules, and the differentials are
graded homomorphisms. Then Ki = Ker(d : Fi → Fi−1) is a finitely generated graded
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R-module since R is Noetherian (Hilbert basis theorem). Let Si be a set of homogeneous
generators of Ki with the smallest possible number of elements, and let Ci+1 = RSi be
the free R-module on Si . Letting for s ∈ Si ,

ds =
∑

t∈Si−1

atst (2.4.1)

where ats ∈ R are homogeneous polynomials and the right hand side of (2.4.1) represents
s ∈ Fi , then none of the polynomials ats have degree 0 (since then Si−1 � {t} would be a
set of generators of Ki−1). Thus, we have di ⊗R k = 0 (where xi act by 0 on k). In other
words,

Fi ⊗R k ∼= T orR
i (M, k).

By Lemma 2.4.4, this is isomorphic to T orR
i (k,M). But as a free R-resolution of k, we

can take the tensor product, over k, of the complexes k[xi]
xi

�� k[xi] . Thus,

T orR
i (k,M) = 0 for i > n.

��

We shall discuss more results in this direction in Sect. 2.6 below.

2.5 Sheaf Cohomology

We now turn to sheaves.

2.5.1 Definition For an abelian sheaf F on a topological space X, we write

Hn(X,F) = ExtnAb-ShX
(Z,F) (2.5.1)

(where Z is the constant sheaf on X, i.e. π−1(Z) where π is the map from X to a point),
and call this the n’th cohomology group of X with coefficients in the sheaf F . By the
remarks in the last subsection, (2.5.1) is the same as the n’th derived functor of global
sections, as well as of the functor Ab-ShX(Z, ?), applied to the sheaf F .

From our point of view, this concept is then canonically extended to when F is replaced
by a chain complex C of sheaves on X, i.e. one writes

Hn(X,C) = RnHom(Z, C) (2.5.2)
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where the Hom is understood in the category of chain complexes of abelian sheaves on X

(or, equivalently in their homotopy category). All derived functors are considered with
respect to the canonical functor � into the derived category. The construction (2.5.2)
is often referred to as hypercohomology with coefficients in C. The corresponding total
derived functor can also be referred to as the hypercohomology complex.

2.5.2 Functoriality of Sheaf Cohomology
For a morphism of abelian sheaves φ : F → G on a space X, we obviously have an
induced homomorphism

φ∗ : Hn(X,F) → Hn(X,G). (2.5.3)

This makes cohomology with coefficients in a varying abelian sheaf into a covariant
functor in the sheaf.

For a continuous map f : X → Y between topological spaces and an abelian sheaf F
on Y , we also have a canonical homomorphism

f ∗ : Hn(Y,F) → Hn(X, f−1(F)). (2.5.4)

The reason is that if

I0 → I1 → . . .

is an injective resolution of F , then the cochain complex

f−1(I0) → f−1(I1) → . . . (2.5.5)

is exact except in degree 0 where it has cohomology f−1(F), by the fact that f−1 is an
exact functor. Thus, (2.5.5) is canonically quasiisomorphic to f−1(F) and hence has a
cochain map, unique up to chain homotopy, to an injective resolution of f−1(F) inducing
an isomorphism in 0’th cohomology.

The functor f∗ is in general only left exact, but there is a canonical homomorphism

Hm(Y, f∗(F))→ Hm(X,F) (2.5.6)

given as a composition of the canonical homomorphisms

Hm(Y, f∗(F)) → Hm(X, f−1f∗(F)) → Hm(X,F)

where the first arrow is (2.5.4), and the second arrow is induced by the counit of adjunction

f−1f∗(F) → F . (2.5.7)
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On stalks, one sees that when f is an inclusion of a subset with the induced topology,
(2.5.7) is, in fact, an isomorphism.

When f = i is the inclusion of a closed subset with the induced topology, then f∗
is exact, and also preserves injectives (since it is a right adjoint to a functor f−1 which
preserves monomorphisms). Letting I be an injective resolution of F , then f∗(I) is an
injective resolution of f∗(F), while f−1f∗(I) ∼= I. Thus, in this case, we conclude that
(2.5.6) is an isomorphism.

Similar comments apply to hypercohomology with coefficients in bounded above chain
complexes (indexed homologically).

2.5.3 Flasque and Soft Sheaves
It is advantageous to identify certain classes of sheaves which are local with respect to the
functor of taking global sections. Recall that an abelian sheaf F on a space X is called
flasque (or flabby) if for every open set U ⊆ X, the restriction

F(X) → F(U)

is an epimorphism. A sheaf F on X is called soft if for every closed set i : Z ⊆ X, the
canonical map

F(X) → (i∗F)(Z)

is an epimorphism. It is immediate that every flasque sheaf is soft.

2.5.4 Proposition

1. Flasque sheaves are �-local where � denotes the global section functor.
2. On paracompact Hausdorff spaces, soft sheaves are �-local.

(Both statements are understood with respect to the canonical functor � into the
derived category.)

The proof rests on the following two lemmas.

2.5.5 Lemma Suppose that

0 → F ′ → F → F ′′ → 0 (2.5.8)

is a short exact sequence of sheaves on a space X. If either F ′ is flasque or both F ′ is
soft and X is paracompact Hausdorff, then applying the global section functor to (2.5.8)
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produces a short exact sequence:

0 → F ′(X) → F(X) → F ′′(X) → 0. (2.5.9)

Proof The global sections functor is left exact, so it suffices to show that the last map
(2.5.9) is onto. Let s ∈ F ′′(X). First consider the case of F ′ flasque. Consider the partially
ordered set P of pairs (V , t) where V ⊆ X is open, and t ∈ F(V ) lifts the restriction of
s to V . Then by Zorn’s Lemma, P has a maximal element (V , t). We claim that V = X.
Otherwise, let x ∈ X � V . Then by the exactness of (2.5.8), the restriction of s to F ′′x
lifts to Fx . By definition, then, for some W � x open, the restriction s|W lifts to a section
q ∈ F(W). Now

tV∩W − qV∩W

maps to 0 in F ′′(V ∩W), and hence comes from F ′(V ∩W), which, since F ′ is flasque,
is a restriction of a global section r ∈ F ′(W). Thus,

t|V∩W = (q + r)|V∩W,

and thus t and q + r can be glued to a section of F(V ∪W) which lifts the restriction of
s, thus contradicting the maximality of (V , T ).

To adapt this proof to the soft case, by definition, for every x ∈ X, there exists an open
neighborhood Ux such that s|Ux lifts to F(Ux). In a paracompact Hausdorff space, we
may further select an open set Vx such that x ∈ Vx and the closure of Vx is contained in
Ux . Now since X is paracompact, the open cover (Vx)x∈X has a locally finite refinement
(Wi)i∈I . Then by local finiteness, for any J ⊆ I , the union of closures

⋃

j∈J

Wj

is closed. On the other hand, for each inclusion ιi : Wi → X, we have a lift of the
restriction of s to ι∗i (F ′′)(Wi) to ι∗i (F)(Wi). Thus, we can repeat the proof in the flasque
case if we let P be the set of pairs (J, t) where J ⊆ I and t is a lift of the restriction of s

to

ι∗F(
⋃

j∈J

Wj )

where ι :⋃j∈J Wj → X is the inclusion. ��
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2.5.6 Lemma Suppose we have an exact sequence of sheaves (2.5.8) on a space X.

1. If F ′, F are flasque, then F ′′ is flasque.
2. If X is paracompact Hausdorff and F ′, F are soft, then F ′′ is soft.

Proof We shall prove (1). Suppose F ′, F are flasque. Let i : U ⊆ X be open, and let
s ∈ F ′′(U). Clearly, the sheaf i∗F ′ is also flasque, so by (2.5.9) with X replaced by U ,
s lifts to a section t ∈ F(U). Since F is flasque, s is a restriction of a global section
of F . Projecting that global section to F ′′(X), we get the required global section whose
restriction to U is s.

Now (2) is completely analogous when upon replacing “open” by “closed.”
��

2.5.7 Proof of Proposition 2.5.4
We shall prove (1). By Proposition 2.3.20, it suffices to prove that

Hn(X,F) = 0 for n > 0. (2.5.10)

Since we have enough injectives, there is a short exact sequence

0 → F → Q→ F1 → 0

whereQ is injective, and hence flasque (since the property of being flasque is a special case
of the condition for injectivity with respect to the inclusion i!ZU → Z for an inclusion
of an open set i : U → X). Therefore, by Lemma 2.5.5, F1 is also flasque. Now by
Theorem 2.3.7, we have a long exact sequence

· · · → Hn(X,F) → Hn(X,Q)→ Hn(X,F1) → Hn+1(X,F) → . . . . (2.5.11)

Now since Q is injective, we have Hn(X,Q) = 0 for n > 0. On the other hand, the map

H 0(X,Q) → H 0(X,F1)

of (2.5.11) is an epimorphism by Lemma 2.5.5, and thus, by (2.5.11), H 1(X,F) = 0. On
the other hand, also by (2.5.11),

Hn(X,F) ∼= Hn−1(X,F1)

for n > 1, and thus, since F1 is also flasque, (2.5.10) follows by induction.
The case of (2) is now completely analogous. ��
We can now prove that de Rham cohomology is a special case of sheaf cohomology.
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2.5.8 Lemma (Poincaré Lemma) We have

H 0
DR(Rn) = R,

where the cycles are constant functions, and

Hi
DR(Rn) = 0

for i > 0.

Proof Induction on n. For n = 0, the result is obvious. Now consider the projection

π : Rn → R
n−1, (x1, . . . , xn) → (x1, . . . , xn−1)

and the inclusion

i : Rn−1 → R
n, (x1, . . . , xn−1) → (x1, . . . , xn−1, 0).

For the induction step, we define a chain homotopy h between the identity and i ◦ π on
�∗(Rn) given for 1 ≤ i1 < · · · < ik ≤ n by

h(gdxi1 ∧ · · · ∧ dxik ) =

(−1)k+1
(∫ xn

0
g(x1, . . . , xn−1, t)dt

)
dxi1 ∧ · · · ∧ dxik−1

(2.5.12)

when ik = n and

h(gdxi1 ∧ · · · ∧ dxik ) = 0

otherwise. ��

2.5.9 Corollary For a smooth manifold M , the cohomology of the chain complex �∗M in
the category of abelian sheaves on M is the constant sheaf R (concentrated in degree 0).

Proof Since we have a map R→ �0
M given by constant functions, it suffices to prove the

statement on the level of stalks at a point x ∈ M . To this end, without loss of generality,
M = Rn, x = 0. Apply the Poincaré Lemma to balls with center 0 and radius 1/m, and
pass to the colimit over m. ��
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2.5.10 Theorem Let M be a smooth manifold. Then we have a canonical natural
isomorphism

Hn
DR(M) ∼= Hn(M,R).

Proof It is proved in analysis (using a partition of unity) that the abelian sheaf C∞M , and
thus also the abelian sheaves �k

M are soft. Thus, by Corollary 2.5.9, the de Rham complex
�∗M is a resolution of R by soft sheaves, which are �-local (where � denotes global
sections) by Proposition 2.5.4. Thus, by Proposition 2.3.21, �∗M is �-local. The statement
follows by definition of �-locality. ��

We have, of course, an analogous statement for complex manifolds:

Hn
DR(M;C) ∼= Hn(M,C).

2.6 A Cohomological Criterion for Regular Local Rings

In this subsection, we will prove what is known as the Auslander-Buchsbaum-Serre
criterion of regularity. For a ring R, the global dimension is defined as the maximum
possible number d such that ExtdR(M,N) �= 0 for any R-modules M,N . If no such
maximum exists, we say that the global dimension is infinity: gl(R) = ∞. The supremum
of n such that ExtnR(M,N) �= 0 for a given module M is called the cohomological
dimension of M and denoted by cd(M) = cdR(M). (Again, the cohomological dimension
can be infinite.)

2.6.1 Theorem (Auslander-Buchsbaum-Serre) Let R be a local Noetherian ring. Then
gl(R) < ∞ if and only if R is regular, in which case we have gl(R) = dim(R).

To prove Theorem 2.6.1, we will need some observations from commutative as well
as homological algebra. First of all, we note that when defining global dimension,
equivalently, we can restrict to the case when the module M is finitely generated (or, for
that matter, cyclic, which means generated by one element). This is delicate, since it is not
true that cd(M) would be in general equal to the supremum of the numbers cd(N) with
N ⊆ M finitely generated. (See Exercise 14.) However, it follows from the next lemma
(since by Zorn’s lemma, we can choose Mα+1/Mα cyclic).

2.6.2 Lemma Let β be an ordinal number and let Mα ⊆ M , α ≤ β be submodules such
that M0 = 0, for a limit ordinal γ ≤ β,

Mγ =
⋃

α<γ

Mα
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and such that cd(Mα+1/Mα) ≤ d for all α < β. Then cd(M) ≤ d .

Proof Induction on d . For d = 0, since all the Mα+1/Mα’s have cohomological dimension
0, they are (by definition) projective, and thus, M is their direct sum. Therefore, M is
projective, and hence has cohomological dimension 0.

To prove the statement for a given d > 0, using Zorn’s lemma, we can construct free
modules Kα , α < β and an onto homomorphism of modules

h :
⊕

α<β

Kα → M

such that for all γ ≤ β,

h(
⊕

α<γ

Kα) =Mγ .

In particular, if we let N = Ker(h),

Nα = Ker(h) ∩ (
⊕

α<β

Kα),

using the long exact sequence in Ext , we have cd(Nα+1/Nα) ≤ d − 1. Thus, cd(N) ≤
d − 1 by the induction hypothesis, and thus, using the long exact sequence in Ext again,
cd(M) ≤ d . ��

2.6.3 Lemma Let R be a local ring. Then every projective R-module is free.

Proof Let F = P ⊕Q be R-modules where F is free. Our job is to prove that P is free.
Let F be the free R-module RS on a set S.

Step 1: For any x ∈ P , there exists a countable subset T ⊆ S such that x ∈ RT and

P = (P ∩ RT )+ (P ∩ R(S � T )). (2.6.1)

To see this, we produce a sequence of finite subsets Ti ⊆ S: Let T0 be a set of elements of
S whose linear combination is x. Given Ti , let Ti+1 ⊆ S be a set of elements containing
Ti , as well as elements of S whose linear combinations are the projections of all elements
of Ti to P . Then we may put T =⋃Ti .

Step 2: P is a direct sum of countably generated (automatically projective) R-modules.
To prove this, by Step 1, we can use Zorn’s lemma on the set of all pairs (T ,D) where
T ⊆ S is subset for which (2.6.1) holds, and D is a decomposition of P ∩ RT into a
direct sum of countably generated R-modules. (There is an obvious notion of “inclusion”
of decompositions.) The maximal element then has to have T = S, for otherwise we could
use Step 1 with S replaced by S � T .
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Step 3: Every element of P is contained in a finitely generated direct summand P ′ of
P which is a free R-module. To prove this, let us assume we have selected a basis S such
that

x =
n∑

i=1

aiei

with ai ∈ R, ei ∈ S, i = 1, . . . n. Let ei = yi + zi , yi ∈ P , zi ∈ Q such that n is the
smallest possible. Then we have

ai /∈ (aj | j �= i), (2.6.2)

for if

ai =
∑

j �=i

cj aj , cj ∈ R,

we could eliminate the basis element ei by replacing ej with ej + cj ei for j �= i,
contradicting the minimality of n.

Now let yi = ∑
bij ej + ti where ti ∈ S � {e1, . . . , en}. Then by projecting to P ,

ai = ∑
bij aj . Now (2.6.2) implies that the elements 1 − bii and bij , i �= j are not

units of R. Since R is local, bii are units, and thus the matrix (bij ) is invertible (since its
determinant is a unit). Thus, we can construct another basis of F by replacing e1, . . . en

with y1, . . . , yn, and put P ′ = R{y1, . . . , yn}.
Now to conclude the argument, by Step 2, without loss of generality, P is countably

generated with generators, say, x1, . . . , xn . . . . We will produce, by inductions, free
summands Fi of P on bases Si such that x1, . . . , xi ∈ Fi , and for i < j , Si ⊆ Sj . Suppose
Fi is given. Then apply Step 3 to P replaced with P/Fi , where x is the projection of xi+1.
Since xi are generators,

⋃
Si is a basis of P .

��

Let R be a Noetherian local ring with maximal ideal m and residue field k, and let M

be a finitely generated R-module. We saw that we have a projective resolution

. . .
d

�� Pn

d
�� Pn−1

d
�� . . .

d
�� P0

(2.6.3)

of M . By Lemma 2.6.3, Pn is a free R-module on a set Sn. The resolution (2.6.3) is called
minimal when dPn ⊆ mPn−1. Note that a minimal resolution always exists when M is a
finitely generated R-module. For this, it suffices to show that for any R-module M there is
an onto homomorphism of R-modules

FS → M (2.6.4)
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whose kernel is in mS and such that S is finite. However, to show that, it suffices to choose
S so that kS maps isomorphically to the k-module M/mM (since then the cokernel C of
(2.6.4) satisfies mC = C, and thus is 0 by Nakayama’s lemma).

Now we see that gl(R) is equal to the supremum of the lengths of minimal projective
resolutions of finitely generated R-modules M (where length is defined as the supremum
of d such that Pd �= 0). Indeed, if M has a minimal resolution of length d , then
obviously ExtnR(M,N) = 0 for n > d for any R-module N . On the other hand, however,
ExtdR(M, k) �= 0, since after Hom-ing a minimal resolution to k, the differentials (by
definition) become 0. This also shows that when calculating the cohomological dimension,
it suffices to specialize to N = k.

Next, we will need the following

2.6.4 Lemma (Serre) Let R be a local Noetherian ring and let the dimension of the k =
R/m-vector space m/m2 be n. Then

ExtnR(k, k) �= 0. (2.6.5)

Proof Consider the initial map of rings f : Z→ R. We distinguish two cases.
Case 1: f (f−1(m)) ⊆ m2. Let u1, . . . , un be lifts to R of generators of the k-vector

space m/m2. Then let A = Z[x1, . . . , xn]. There is a homomorphism of rings

A→ R

sending xi → ui . By universality, this induces a functor on derived categories DR → DA,
and thus we have a homomorphism of (non-commutative) rings

Ext∗R(k, k) → Ext∗A(k, k) (2.6.6)

(where multiplication is by composition), and the superscript ∗ means sum over all i ∈
N0. Additionally, considering the long exact sequence on ExtR(?, k) corresponding to the
short exact sequence of R-modules

0 → m/m2 → R/m2 → k → 0,

the image in Ext1
R(k, k) under the connecting map of the basis of HomR(m/m2, k) =

Homk(m/m2, k) dual to the k-basis x1, . . . , xn of m/m2 maps under (2.6.6) to elements
α1, . . . , αn of

Ext1
A(k, k) (2.6.7)
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which are given by images under the connecting map of the ExtA(?, k) long exact
sequence associated with the short exact sequence of A-modules

0 → k{x1, . . . , xn} → A/(x1, . . . , xn)
2 ⊗ k → k → 0

of homomorphisms of A-modules k{x1, . . . , xn} → k which is Idk tensored with the dual
basis of x1, . . . , xn. But ExtA is easy to compute. In particular,

α1 . . . αn �= 0 ∈ ExtnA(k, k) (2.6.8)

(see Exercise 17).
Case 2: f−1(m) = (p) where p ∈ Z is a prime number, whose image under f projects

to a non-trivial element u ∈ m/m2. In particular, k has characteristic p. Then choose a
k-basis u1, . . . , un of m/m2 such that u = un. Now let A = Z[x1, . . . , xn−1] → R map
xi → ui . Again, we have (2.6.6). Now consider the long exact sequence in ExtR(?, k)

associated with the short exact sequence of R-modules

0 → m/(m2, p) → R/(m2, p) → k → 0

Consider the images, under the connecting map, of homomorphisms of R-modules
m/(m2, p) → k which form a dual basis to the basis u1, . . . , un−1. Under (2.6.6), these
map to elements α1, . . . , αn−1 of (2.6.7) which are images under the connecting map of
the long exact sequence in ExtA(?, k) associated with the short exact sequence

0 → k{x1, . . . , xn−1} → A/(x1 . . . , xn−1)
2 ⊗ k → k → 0

of homomorphisms of A-modules k{x1, . . . , xn−1} → k which are Idk tensored with the
dual basis of x1, . . . , xn−1. Let, additionally, αn ∈ Ext1

A(k, k) be the image of the element
of Ext1

R(k, k) associated with the short exact sequence of R-modules

0 → k → R/(m2, p2, u1, . . . , un−1) → k → 0

(which, note, is a sum of copies of the short exact sequence of A-modules

0 → Z/p → Z/p2 → Z/p → 0

where x1, . . . , xn−1 act trivially). Again, ExtA is not mysterious, and we have (2.6.8).
(Exercise 17.)

��
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Now we have the following fact

2.6.5 Lemma Suppose R is a Noetherian local ring with maximal ideal m where every
element of m is a zero divisor. Then there exists a 0 �= z ∈ R such that zm = 0.

Proof Consider a minimal primary decomposition

(0) = J1 ∩ · · · ∩ Jn.

We claim that

m ⊆
n⋃

i=1

√
Ji. (2.6.9)

In fact, otherwise, we have a y ∈ m none of whose powers is contained in any of the Ji’s.
But by assumption, there is a 0 �= x ∈ R with xy = 0. Thus, since the Ji ’s are primary,
we have x ∈ Ji for all i = 1, . . . , n, and thus, x = 0.

Now (2.6.9) implies that m = √Ji for some i. By Proposition 5.1.3 of Chap. 1,

m = √{y ∈ R | xy = 0}

for some x ∈ R. This means that if m = (y1, . . . , ys), then there is an N such that yN
i x = 0

for all i = 1, . . . , s. Let z be a multiple of x by a maximal monomial in the yi’s which is
non-zero. ��

2.6.6 Lemma Let R be a Noetherian local ring with maximal ideal m such that every
element of m is a zero divisor. Let M be a finitely generated R-module such that cdR(M) ≥
1. Then cdR(M) =∞.

Proof Suppose that n = cdR(M) is finite. Considering a minimal projective resolution
(2.6.3) of M , we have P1 �= 0. Consider the exact sequence

0 �� Pn

d
�� Pn−1.

Then Pn, Pn−1 are free R-modules, and d(Pn) ⊆ mPn−1. If a ∈ Pn is one of the free
generators and z is as in Lemma 2.6.5, then d(az) = 0, which contradicts injectivity. ��

2.6.7 Proof of Theorem 2.6.1
Now suppose R is a Noetherian local ring with maximal ideal m and suppose x ∈ m

is a regular element (a non-zero divisor). Let M be finitely generated R-module with
cdR(M) ≥ 1 and with a minimal resolution (2.6.3). Then we have a short exact sequence
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of the form

0 → N → P0 → M → 0.

Now for any submodule of a free R-module Q ⊆ F , we have

T orR
1 (Q,R/(x)) = 0. (2.6.10)

Indeed, the long exact sequence in T or gives

0 → T orR
2 (F/Q,R/(x)) → T orR

1 (Q,R/(x)) → T orR
1 (F,R/(x))

where the first and last term are 0. Thus, tensoring the minimal resolution (2.6.3) with the
last term omitted with R/(x) over R, we obtain a minimal R/(x)-resolution

→ Pn/(x)→ · · · → P1/(x)

of N/(x), and thus,

cdR/(x)(N/(x)) = cdR(N)− 1. (2.6.11)

Proof of Theorem 2.6.1 Let m be the maximal ideal of R. Denote the residue field
k = R/m. By the argument we made in Sect. 2.6.7 and by Lemma 2.6.6, if M is finitely
generated R-module with cdR(M) = d < ∞, there must exist a regular sequence of
length d in m. This implies dim(R) ≥ d . However, if R is not a regular local ring, then,
by Lemma 2.6.4, there exists a finitely generated R-module M with cdR(M) > dim(R),
and thus, cdR(M) = ∞. Thus, R being regular is a necessary condition.

On the other hand, when R is regular local, then generators

x1, . . . , xdim(R)

of m form a regular sequence, and thus, by Sect. 2.6.7 again, for any finitely generated R-
module M , we have cdR(M) ≤ dim(R). On the other hand, using the long exact sequence
in Ext , by induction on i, ExtsR(R/(x1, . . . , xi), k), k) is 0 for s > i and k for s = i, so
cdR(k) = dim(R), which proves the last statement of the Theorem. ��

One important application of Theorem 2.6.1 is the following

2.6.8 Corollary Suppose R is a regular ring. Then the ring of polynomials R[x] is regular.

Proof Suppose R is regular. Now consider a prime ideal p ⊂ R[x]. Then q = p ∩ R is
prime in R, and thus, gl(Rq) = d < ∞. Thus, we have gl(Rq [x]) ≤ d + 1 (Exercise 15).
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Now putting q ′ = q · R[x], note that R[x]p is a localization of R[x]q ′ = Rq [x]. Since
localization preserves projective resolutions, gl(R[x]p) ≤ gl(Rq [x]) ≤ d + 1, and thus,
R[x]p is regular local. ��

3 Singular Homology and Cohomology

We still have not computed any actual cohomology groups of manifolds. While it is
possible to compute directly with de Rham cohomology, the story would not be complete if
we did not mention singular homology and cohomology, which are the main computational
tools for basic examples. It also allows computations with coefficients in Z rather than just
R, thus including torsion information. Therefore, this method is a refinement of de Rham
cohomology.

3.1 The Singular Chain and Cochain Complex

When discussing singular homology and cohomology, we will restrict attention to
Hausdorff spaces. The standard n-simplex is

�n = {(t0, . . . , tn) ∈ R
n+1 | ti ≥ 0,

∑
ti = 1}, (3.1.1)

with the induced topology fromRn+1. The coordinates (t0, . . . , tn) (the symbol [t0, . . . , tn]
is also used) are called barycentric coordinates. Actually, the inequalities ti ≥ 0 serve a
purely aesthetic purpose; if we removed them, we would obtain an equivalent theory. For
a topological space X, a singular n-simplex in X is a continuous mapping

σ : �n → X.

The set of all singular n-simplices in X is denoted by SnX. The abelian group CnX of
singular n-chains in X is the free abelian group on SnX:

CnX = ZSnX.

It is also useful to consider the category Pair of pairs of topological spaces, whose objects
are pairs of spaces (X, Y ) where Y ⊆ X has the induced topology, and morphisms f :
(X, Y ) → (X′, Y ′) are continuous maps f : X → X′ such that f (Y ) ⊆ Y ′. We can then
also define the abelian group of relative singular n-chains on a pair (X, Y ) by

Cn(X, Y ) = CnX/CnY.
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observe that this is also a free abelian group.
The point of introducing the standard simplex is that we have canonical maps

∂i : �n−1 → �n, i = 0, . . . n,

given by

(t0, . . . , tn−1) → (t0, . . . , ti−1, 0, ti , . . . , tn).

We therefore have

∂i ◦ ∂j = ∂j+1 ◦ ∂i for 0 ≤ i ≤ j ≤ n− 1. (3.1.2)

We define

d : CnX → Cn−1X

by setting, for a singular simplex σ on X,

d(σ) =
n∑

i=0

(−1)iσ ◦ ∂i . (3.1.3)

The relation (3.1.2) implies

0 = d ◦ d : CnX → Cn−2X,

(Exercise 26) and thus the system CX = C∗X = ((CnX), d) becomes a chain complex
called the singular chain complex of X. (As usual for chain complexes, when not defined,
i.e. here for n negative, we set CnX = 0.) Similarly on pairs, we have a chain complex
C(X, Y ) = C∗(X, Y ) = (Cn(X, Y ), d), called the relative singular chain complex of the
pair (X, Y ) and we have, in fact, a short exact sequence of chain complexes

0 → CY → CX → C(X, Y ) → 0. (3.1.4)

It is immediate that for a continuous map f : X → X′, we get a chain map Cf : CX →
CX′ by sending a singular n-simplex σ in X to f ◦ σ . Thus, we have functors C from
the category of topological spaces (resp. the category of pairs) to the category of chain
complexes. Composing with the homology functors Hn, we obtain functors

Hn : T op → Ab, Hn : Pair → Ab
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which are called the n’th singular homology and the n’th relative singular homology.
It is useful to generalize this somewhat. Let A be any abelian group, sometimes referred

to as the group of coefficients. Then we have a chain complex

C(X;A) = CX ⊗ A

where C(X;A)n = CnX ⊗ A and the differential is d ⊗ IdA, and a cochain complex

C∗(X;A) = Hom(CX,A)

where Hom(CX,A)n = Hom(CnX,A) and the differential

Hom(CnX,A)→ Hom(Cn+1X,A)

is

f → f ◦ d.

One defines C(X, Y ;A) = C∗(X, Y ;A) and C∗(X, Y ;A) analogously. The corresponding
(co)homology groups are referred to as singular homology and cohomology with coeffi-
cients in A:

Hn(X;A) = HnC(X;A), Hn(X, Y ;A) = HnC(X, Y ;A),

Hn(X;A) = HnC∗(X;A), Hn(X, Y ;A) = HnC∗(X, Y ;A).

As above, Hn(?;A) are functors from T op or Pair to Ab, Hn(?;A) are functors from
T opOp, PairOp to Ab. It is important to observe that for a pair (X, Y ), we still have short
exact sequences of (co)chain complexes

0 → C(Y ;A)→ C(X;A) → C(X, Y ;A)→ 0 (3.1.5)

0 → C∗(X, Y ;A)→ C∗(X;A) → C∗(Y ;A)→ 0, (3.1.6)

since the abelian groups CX, C(X, Y ) are free.

3.2 Eilenberg-Steenrod Axioms

Singular homology and cohomology satisfy certain properties which make them calcula-
ble. For example, Theorem 2.3.6 together with the short exact sequences (3.1.5), (3.1.6)
give long exact sequences of the form

· · · → Hn(Y ;A)→ Hn(X;A)→ Hn(X, Y ;A)→ Hn−1(Y ;A)→ . . . (3.2.1)
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and

· · · → Hn(X, Y ;A)→ Hn(X;A) → Hn(Y ;A)→ Hn+1(X, Y ;A)→ . . . .

(3.2.2)

This is referred to as the exactness axiom.
Another easy property is that if we denote by ∗ the one point topological space, then

we have

H0(∗;A) = H 0(∗;A) = A

and

Hn(∗;A) = Hn(∗;A) = 0

for n �= 0. This is called the dimension axiom. It follows immediately from the definitions.
Recall from Sect. 5.5 of Chap. 3 that a homotopy between continuous maps of topo-

logical spaces f, g : X → Y is a continuous map h : X × [0, 1] → Y (where [0, 1]
has the induced topology from the analytic topology on R) such that h(x, 0) = f (x),
h(x, 1) = g(x). Again, we write h : f � g, or just f � g, and say that f, g are
homotopic. Again, this is compatible with composition, so we have the homotopy category
of topological spaces hT op whose objects are topological spaces and morphisms are
homotopy classes of continuous maps. Similarly we form the homotopy category of pairs
hPair where a homotopy between two morphisms of pairs f, g : (X, Y ) → (Z, T ) is a
homotopy h : X× [0, 1] → Z such that for every t ∈ [0, 1] and every y ∈ Y , h(y, t) ∈ T .
We then have canonical functors

T op → hT op, Pair → hPair (3.2.3)

which are the identity on objects, and send a morphism to its homotopy class. An
isomorphism of topological spaces X, Y in hT op is called a homotopy equivalence. If
a homotopy equivalence exists, the spaces X,Y are called homotopy equivalent and one
writes X � Y . Similarly for pairs.

The homotopy axiom states that the functors Hn(?;A) and the contravariant functors
Hn(?;A) factor through the functors (3.2.3), or, in other words, that homotopic maps of
spaces or pairs induce the same map on homology or cohomology. The reader may be
reminded of the same fact about chain complexes in Sect. 2.3.2 above. However, the proof
for spaces is harder, since we have to find a way to pass from homotopy of spaces to chain
homotopy. To make our treatment self-contained, we include a proof in the next section.
More details can be found in [20].

The last Eilenberg-Steenrod axiom, which is also proved in the following subsection,
states that whenever we have a pair (X, Y ) and a subset Z ⊆ X whose closure is contained
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in the interior of Y

Z ⊆ Y ◦,

then, for the inclusion of pairs

i : (X � Z, Y � Z) → (X, Y ),

Hn(i;A) : Hn(X � Z, Y � Z;A)→ Hn(X, Y ;A)

and

Hn(i;A) : Hn(X, Y ;A)→ Hn(X � Z, Y � Z;A)

are isomorphisms. This is called the excision axiom.
In the process of the proof, one uses a lemma which is useful on its own. Let U =

(Zi)i∈I be a system of subsets of X. We can then form a variant CUX of the singular
chain complex where we only consider singular simplices whose image is in Zi for some
i ∈ I . By repeating the above construction, we then have also chain complexes CU (X;A).

3.2.1 Lemma Suppose that the interiors (Z◦i ) form an open cover of X. Then the
canonical chain map

CU (X;A) → C(X;A)

induces an isomorphism in homology (and hence is a chain-homotopy equivalence).

��

3.3 Proof of the Homotopy and Excision Axioms

The homotopy and excision axioms form the technical core of the singular homology
method, and for this reason, we include their proofs here, even though they really belong
to the field of algebraic topology. We shall only discuss the case of homology with
coefficients in Z. Homology with coefficients in a general abelian group and cohomology
can be treated analogously, or alternately, one can use universal coefficients, which we will
discuss in Sect. 3.5.

3.3.1 Theorem Two homotopic maps of pairs induce the same map in singular homology.
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We first prove the following partial result.

3.3.2 Lemma If X is a contractible space, then X → ∗ induces an isomorphism in
homology. (In particular, H0(X) = Z, Hn(X) = 0 for n > 0.)

Proof If X is contractible, we have a homotopy k : X × [0, 1] → X with k(x, 0) = x,
k(x, 1) = ∗ for some ∗ ∈ X (independent of x). Let a chain map ε : CX → CX (where
CX is the singular chain complex of X) be defined on a singular simplex σ : �n → X

by ε(σ ) = 0 for n > 0, and ε(σ ) = ∗ for n = 0 (identifying singular 0-simplices with
points). We shall exhibit a chain homotopy

h : IdCX � ε,

which implies the statement (by considering what ε induces on homology).
In effect, we may define, for σ : �n → X,

h(σ) : �n+1 → X

on barycentric coordinates by

[t0, . . . , tn+1] → k(σ [ t1

1− t0
, . . . ,

tn

1− t0
], t0)

for 0 ≤ t0 < 1, and

[0, . . . , 0, 1] → ∗.

One sees that

dh(σ) = σ −
n∑

i=0

(−1)ih(σ ◦ ∂i)

except for n = 0, where

dh(σ) = σ − ∗,

(identifying singular 0-simplices with points). Thus, h is the required chain homotopy.
��

3.3.3 Lemma Let ιt : X → X × [0, 1] be given by x → (x, t). Then there is a natural
chain homotopy h : C(ι0) � C(ι1). Naturality means that for a continuous map f : X →
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Y , the following diagram commutes:

Cn(X)
hn

��

f∗
��

Cn+1(X × [0, 1])
(f×[0,1])∗

��
Cn(Y )

hn
�� Cn+1(Y × [0, 1]).

(3.3.1)

Proof We shall construct hn simultaneously for all topological spaces X by induction on
n. For n = 0, choose an affine map ι : �1 → [0, 1] which sends (0, 1) → 0, (1, 0) → 1.
Then for a singular 0-simplex in X, which can be identified with a point x ∈ X, let

h(x) = constx × ι.

Now suppose hn−1 is defined and natural in the sense of (3.3.1) (with n replaced by n−1).
We will first define h(κn) where κn = Id : �n → �n. Then for any singular n-simplex
σ : �n → X for any topological space X, we have

σ = σ∗(κn).

Thus, to satisfy naturality (3.3.1), we can (and must) put

h(σ) = σ∗(h(κn)).

Now to construct λ = h(κn), we must solve the equation

dλ+ h(dκn) = (ι0)∗κn − (ι1)∗κn,

or

dλ = (ι0)∗κn − (ι1)∗κn − h(dκn). (3.3.2)

Let us verify that the right hand side of (3.3.2) is a cycle. We have

d((ι0)∗κn − (ι1)∗κn − h(dκn)) =
(ι0)∗dκn − (ι1)∗κn − dhdκn =
dhdκn − hddκn − dhdκn = 0,

(3.3.3)

as required. Now for n > 0, the right hand side of (3.3.2) being a cycle, it is also a
boundary, since �n × [0, 1] is contractible, and thus,

Hn(�
n × [0, 1]) = 0
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by Lemma 3.3.2. Thus, λ exists, and the induction step is complete.
��

COMMENTS

1. The method used in this proof is known as the method of acyclic models. In [20], a
general categorical version of this method is treated.

2. The above proof demonstrates the difference between “natural” and “canonical”: The
homotopy constructed is natural in the sense of (3.3.1), but is by no means canonical,
in that we have no preferred choice for the class λ in the induction step.

Now Theorem 3.3.1 follows from Lemma 3.3.3: A homotopy of pairs is a morphism
of pairs of the form k : (X1 × [0, 1],X2 × [0, 1]) → (Y1, Y2). The chain homotopy of
Lemma 3.3.3 gives a chain homotopy between the chain maps

(X1,X2) → (X1 × [0, 1],X2 × [0, 1])

given by

(x1, x2) → ((x1, t), (x2, t))

with t = 0, 1. Compose this with

k∗ : C((X1 × [0, 1],X2 × [0, 1]))→ C(Y1, Y2),

and take homology.
Next, we prove the excision axiom.

3.3.4 Theorem Let Z and Y be subsets of a topological space X such that the closure of
Z in X is contained in the interior of Y in X. Then the inclusion of pairs (X�Z, Y�Z)→
(X, Y ) induces an isomorphism on singular homology.

First, we shall show how to deduce the theorem from Lemma 3.2.1.

Proof of Theorem 3.3.4 Let U = {Y,X � Z}. We have a diagram of chain complexes
where the rows are induced by inclusions, and exact:

0 �� C(Y )

Id

��

�� CU (X)

⊆
��

�� C(X � Z, Y � Z)

⊆
��

�� 0

0 �� C(Y ) �� C(X) �� C(X, Y ) �� 0.
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Apply homology, and then use Lemma 3.2.1 and the 5-lemma. ��

The first step toward proving Lemma 3.2.1 is defining a natural barycentric subdivision
chain map

sd : CX → CX.

Let

α : {0, . . . , n} → {0, . . . , n} (3.3.4)

be a permutation. We will define a singular n-simplex

λα : �n → �n.

First define λId as the affine map which has

λId([1, 0, . . . , 0] = [ 1

n+ 1
,

1

n+ 1
, . . .

1

n+ 1
],

λId([0, 1, 0, . . . , 0] = [0,
1

n
,

1

n
, . . . ,

1

n
],

. . .

λId ([0, 0, . . . , 1] = [0, . . . , 0, 1],

Then define

λα([t0, . . . , tn]) = λId([tα−1(0), . . . , tα−1(n)]).

Finally, put, for a singular n-simplex σ : �n → X,

sd(σ ) =
∑

α

sign(α)σ ◦ λα (3.3.5)

where the sum is over all permutations (3.3.4). To see that sd is a chain map, taking the
0’th face on the right hand side of (3.3.5) is sd(dσ), the remaining terms cancel in pairs,
taking the (i − 1)’st resp. i’th face for two permutations σ , τ ◦ σ where τ is the 2-cycle
permutation (i − 1, i).

3.3.5 Lemma There exists a natural chain homotopy

h : sd � Id.
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Proof We use the method of acyclic models. We have sd0 = Id0, so we can put h0 = 0.
Now suppose that hn−1 is constructed. We shall construct

hn(κn)

where κn = Id : �n → �n. Then we can, again, represent any singular n-simplex
σ : �n → X as σ∗κn, and thus we can (and must) put

hn(σ ) = σ∗hn(κn).

To find λ = hn(κn), we have, again, the equation

dλ = sd(κn)− κn − hn−1(dκn).

We find that the right hand side is a cycle in CnX by a calculation identical to (3.3.3). Thus,
it is a boundary by Lemma 3.3.2. Thus, we can solve for λ, completing the induction step.

��

Proof of Lemma 3.2.1 Consider the short exact sequence of chain complexes

0 → CU (X) → C(X) → C(X)/CU (X) → 0.

By the long exact sequence in homology, it suffices to show that the last term has homology
0. A cycle in C(X)/CU (X) is represented by a chain c ∈ C(X) such that

d(c) ∈ CU (X). (3.3.6)

By the Lebesgue number theorem, however, there exists an n ∈ N such that sdn(c) ∈
CU (X). Now by Lemma 3.3.5 (and induction), there exists a chain homotopy

k : sdn � Id,

i.e.

dk(c)+ k(dc) = sdn(c)− c,

or

c + dk(c) = sdn(c)− k(dc).



334 5 Introduction to Cohomology

Observe that by (3.3.6), the right hand side is in CU (X). Thus,

c ∈ Im(d)+ CU (X),

or, in other words, c is a boundary in C(X)/CU (X), as required. ��

3.4 The Homology of Spheres

A good example of the use of the Eilenberg-Steenrod axioms is the proof of the following

3.4.1 Proposition For all k, n ∈ N0, we have

Hk(S
n;A) ∼= Hk(Sn;A).

This group is isomorphic to A⊕ A if k = n = 0, to A if k = n �= 0, and to 0 otherwise.

The proof goes a lot easier if we introduce reduced (co)homology H̃n(X). For a non-
empty space X, the map ε : X → ∗ has a right inverse. One denotes

H̃n(X;A) = Ker(Hn(ε;A) : Hn(X;A) → A),

H̃ n(X;A) = Coker(Hn(ε;A) : A → Hn(X;A)).

The existence of a right inverse to ε gives isomorphisms

H0(X;A) ∼= H̃0(X;A)⊕ A, H 0(X;A) ∼= H̃ 0(X;A)⊕ A,

and

Hn(X;A) ∼= H̃n(X;A), Hn(X;A) ∼= H̃ n(X;A) for n �= 0.

There is no reduced homology or cohomology of pairs, but the exactness axiom has a
reduced analogue

· · · → H̃n(Y ;A)→ H̃n(X;A)→ Hn(X, Y ;A)→ H̃n−1(Y ;A)→ . . . (3.4.1)

and

· · · → Hn(X, Y ;A)→ H̃ n(X;A) → H̃ n(Y ;A)→ Hn+1(X, Y ;A)→ . . . .

(3.4.2)
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This can be proved directly from the Eilenberg-Steenrod axioms, but it is easier to
introduce the reduced singular chain complex

C̃X = Ker(Cε : CX → C∗).

This is a chain complex of free abelian groups, so we can extend this to the case of
coefficients and cochains using ?⊗A, Hom(?, A), and then observe that for a pair (X, Y )

of non-empty spaces, we have short exact sequences of chain complexes

0 → C̃(Y ;A)→ C̃(X;A)→ C(X, Y ;A)→ 0

0 → C∗(X, Y ;A)→ C̃∗(X;A)→ C̃∗(Y ;A)→ 0.

Proof of Proposition 3.4.1 We prove the statement for homology with coefficients in Z.
The other cases are completely analogous. Observe that in terms of reduced homology,
the statement just says that H̃nS

k is isomorphic to Z for k = n, and is 0 otherwise. This
will be proved by induction on n. For n = 0, it follows directly from the dimension
axiom and the observation that homology takes disjoint unions to direct sums. (By the
way, cohomology takes disjoint unions to products.) Now for n > 0, consider Rn as a
subset of Rn+1 consisting of those points whose last coordinate is 0. Accordingly, Sn−1

becomes a subset of Sn of those points whose last coordinate is 0. Let also

Sn+ = {(x0, . . . , xn) ∈ Sn | xn ≥ 0}.

This space is homotopy equivalent to ∗ (we say contractible), and thus

H̃kS
n+ = 0

for all k. Now by the long exact sequence in reduced homology of the pair (Sn, Sn+), we
get

H̃k(S
n) ∼= Hk(S

n, Sn+).

Now denoting v = (0, . . . , 0, 1), by excision, we have

Hk(S
n, Sn+) ∼= Hk(S

n
� {v}, Sn+ � {v}).

On the other hand, the pair Sn � {v} is contractible, so by the long exact sequence in
reduced homology of the pair (Sn � {v}, Sn+ � {v}), we have

Hk(S
n
� {v}, Sn+ � {v}) ∼= H̃k−1(S

n+ � {v}).
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But the space Sn+� {v} is homotopy equivalent to Sn−1, so our statement follows from the
induction hypothesis. ��

3.5 Universal Coefficients and Künneth Theorem

Actually, homology or cohomology with any coefficients can be readily calculated from
the homology with coefficients in Z. More generally, let R be a principal ideal domain and
let C be a chain complex of R-modules. Then, recalling our notation Zn = Ker(d : Cn →
Cn−1), Bn = Im(d : Cn+1 → Cn), Hn = HnC = Zn/Bn, we have short exact sequences

0 → Bn → Zn → Hn → 0, (3.5.1)

0 → Zn → Cn → Bn−1 → 0. (3.5.2)

Since R is a PID, submodules of free modules are free, so in particular Bn and Zn are free
R-modules, and the chain complex

Hn : Bn → Zn

(with Zn set in degree 0 and Bn in degree 1) is a projective resolution of Hn. Also, the short
exact sequence (3.5.2) splits. Denoting by sn : Bn−1 → Cn the splitting, the isomorphisms

⊂ ⊕sn : Zn ⊕ Bn−1 → Cn

actually define an isomorphism of chain complexes

⊕

n∈Z
Hn[n] ∼= C. (3.5.3)

The isomorphism (3.5.3) then gives, for an R-module A, isomorphisms

Hn(C ⊗R A) ∼= (Hn(C)⊗R A)⊕ T orR
1 (Hn−1(C),A), (3.5.4)

Hn(HomR(C,A) ∼= HomR(Hn(C),A)⊕ Ext1
R(Hn−1(C),A). (3.5.5)

Note that, if R is a field, the T or1 and Ext1 terms, of course, vanish.
For R = Z and a topological space X, we get, in particular,

Hn(X;A) ∼= (Hn(X)⊗ A)⊕ T orZ1 (Hn−1(X),A), (3.5.6)

Hn(X;A) ∼= Hom(Hn(X),A)⊕Ext1
Z
(Hn−1(X),A). (3.5.7)
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These facts are referred to as the Universal coefficient theorem. One caveat emptor is that
the choice of the splittings was not canonical, and thus, the isomorphisms (3.5.4), (3.5.5),
(3.5.6), (3.5.7) are not canonical (and, as it turns out, not even natural). In (3.5.4), (3.5.5),
one observes carefully that there are in fact short exact sequences of the form

0 → Hn(C)⊗R A → Hn(C ⊗ A)→ T orR
1 (Hn−1(C),A) → 0 (3.5.8)

0 → Ext1
R(Hn−1(C),A) → Hn(HomR(C,A))→ HomR(Hn(C),A) → 0,

(3.5.9)

which are independent of the splitting (and hence canonical and natural), and which split
(non-canonically) to give (3.5.4), (3.5.5). Let us see this for the case of (3.5.8) (the other
cases are analogous). To this end, the first map (3.5.8) follows simply from that fact that
for z ∈ Zn, a ∈ A, z⊗ a is a cycle in C ⊗R A. To construct the second map, consider the
canonical map

φ : Cn ⊗ A → Bn−1 ⊗R A

given by d ⊗ A. If c is a cycle in C ⊗ A, then φ(c) becomes 0 when we apply the map

⊆ ⊗A : Bn−1 ⊗R A → Cn−1 ⊗R A.

But we claim that

⊆ ⊗A : Zn−1 ⊗R A→ Cn−1 ⊗R A (3.5.10)

is injective. Thus, φ(c) vanishes when we apply

⊆ ⊗A : Bn−1 ⊗R A → Zn−1 ⊗R A,

and thus defines an element in T orR
1 (Hn−1(C),A), using the projective resolution Hn. To

see (3.5.10), apply (1) of Proposition 2.3.19 to the short exact sequence (3.5.2) (with n

replaced by n − 1) and the functor ? ⊗R A, recalling that since Bn−1 is a free R-module,
we have T orR

1 (Bn−2, A) = 0.
Note that a completely similar discussion applies to (the totalization of) a tensor product

of chain complexes C ⊗R D assuming R is a PID and C,D are chain complexes of free
R-modules. We obtain an isomorphism

Hn(C ⊗R D) =
⊕

k+�=n

Hk(C)⊗R H�(D)⊕
⊕

k+�=n−1

T orR
1 (Hk(C),H�(D)),
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with a canonical natural short exact sequence. This is known as the Künneth Theorem. For
example, for R = R (where, of course, the T or1-term goes away), (1.4.2) therefore gives
a homomorphism (sometimes called the cup product)

∪ : Hk
DR(M)⊗R H�

DR(M) → Hk+�
DR (M)

(and similarly with complex coefficients for complex manifolds M). Thinking of H ∗
DR(M)

as a graded R-module, the properties of differential forms then easily imply that ∪ turns
H ∗

DR(M) into a graded-commutative (associative unital) ring (in fact, R-algebra), which
means that for homogeneous elements x, y of degrees k, �,

x ∪ y = (−1)k�y ∪ x.

(The ∪ symbol is pretty but a bit slow, and is often omitted.)
This brings up a natural question as to whether a similar discussion also applies to

spaces, i.e. whether singular cohomology with coefficients in a commutative ring R has a
cup product, which would make it a graded-commutative R-algebra. The answer to both
questions turns out to be positive, the key observation being the Eilenberg-Zilber theorem,
which states that for spaces X, Y , we have a natural chain-homotopy equivalence

ψ : C(X × Y ) � CX ⊗ CY,

unique in the category hAb-Chain subject to the condition that it induces the canonical
identification in degree 0. (See Exercise 27.) A detailed discussion, again, can be found in
[20]. Letting � : X → X×X be the diagonal, i.e. �(x) = (x, x), we have a composition

CX
�

�� C(X ×X)
ψ

�� CX ⊗ CX,

and various dualizations give chain maps

C∗(X;Z)⊗ C∗(X;Z) → C∗(X;Z), (3.5.11)

C∗(X;Z)⊗ C∗(X;Z) → C∗(X;Z) (3.5.12)

(and similarly with coefficients in a commutative ring). Now for any two chain complexes
C,D, we have a canonical homomorphism

HkC ⊗H�D → Hk+�(C ⊗D)
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by taking the class represented by the tensor product of representative cycles of given
classes. Using this, (3.5.11) and (3.5.12) give homomorphisms

∪ : Hk(M;Z)⊗H�(M;Z)→ Hk+�(M;Z),

∩ : Hk(M;Z)⊗H�(M;Z) → H�−k(M;Z)

(and similarly with coefficients in any commutative ring). Then ∪ makes H ∗(M;Z) into a
graded-commutative ring. Sign conventions on ∩ vary, but it is possible to pick the signs
in such a way that H∗(M;Z) becomes a left H ∗(M;Z)-module, i.e. that we have

(α ∪ β) ∩ γ = α ∩ (β ∩ γ ). (3.5.13)

3.6 CW-Homology

Let

Dn = {(x1, . . . , xn) ∈ R
n |
∑

x2
i ≤ 1}.

Thus, Sn−1 ⊂ Dn. A CW-complex is a topological space X which is a union of subspaces

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ . . . ,

with the colimit topology, together with sets In (called sets of n-cells) maps

fn : Sn−1 × In → Xn−1

(called the attaching map) such that Xn is the pushout of the diagram

Sn−1 × In

fn
��

⊂
��

Xn−1

Dn × In.

A CW pair (X, Y ) is defined in the same way, except that X−1 = Y .
Note the similarity with the notion of cell chain complex of Sect. 2.3.9. In addition to

moving from the category of chain complexes to the category of spaces, in a CW complex,
we require that “a cell be attached to cells of lower degrees only.” This requirement can
in fact be added to the notion of a cell chain complex to obtain a notion of a CW-chain
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complex. Conversely, the requirement can be dropped from the definition of a CW-complex
to obtain the notion of a cell space. These notions happen to be of lesser immediate
importance to our discussion. In a CW-complex X, the subspace Xn is often referred to as
the n-skeleton.

COMMENT In fact, the analogy with chain complexes extends further. For a space X and a
point x ∈ X, we can define, for all n ∈ N, πn(X, x) as the set of based homotopy classes of
continuous maps Sn → X which send a chosen base point to x. One proves that πn(X, x)

are groups similarly as in the case n = 1 (see Sect. 5.5 of Chap. 3); in fact, these groups are
abelian for n ≥ 2, and are called the homotopy groups of the space X. Unlike homology,
the calculation of homotopy groups of a given space is a difficult, and in general unsolved,
problem. They are, however, useful from a foundational point of view. To this end, it is
helpful to also introduce π0(X), by which we mean the set of path-components of X, i.e.
equivalence classes of points x ∈ X where x ∼ y if there exists a path in X from x to y.
(This is a set without a natural group structure.) The groups πn(X, x) and the set π0(X)

have the expected functorialities.
Now one says that a continuous map f : X → Y is a weak equivalence when π0(f ) is

a bijection and for all n ∈ N and all x ∈ X,

πn(f ) : πn(X, x)→ πn(Y, f (x))

is an isomorphism.
It turns out that analogously to the case of chain complexes, the category hT op with

respect to the subcategory E of weak equivalences has colocalization in the class B

consisting of all CW-complexes. This is sometimes referred to as the Whitehead Theorem.
The proof is not necessarily harder than in the case of chain complexes, but it involves
methods of homotopy theory of spaces. Details can be found in [13]. Thus, a derived
category DT op = DhT op in the sense of Sect. 2.1 exists. It is known as the derived
category of spaces. Weak equivalences can be proved to induce isomorphisms on singular
homology and cohomology, which can therefore be considered as functors on DT op.

3.6.1 Example The space (Pn
C
)an consisting of closed points of P

n
C

with the analytic
topology is, in the context of topology, often denoted by CPn. It is, as remarked in
Example 1.1.2, canonically a complex manifold. We will now also give it the structure
of a CW-complex. Indeed, CPn is identified with the set of complex lines through the
origin in the vector space Cn+1 (which is a linear algebra name for An+1

C
). It is actually

useful to mention another concept here which is important in algebraic topology: We have
an obvious projection pn : Cn+1 � {0} → CPn by

(z0, . . . zn) → [z0 : · · · : zn],

and given the induced topology on Cn+1 � {0} from Cn+1, the topology on CPn is the
universal topology which makes the projection pn continuous. This is called the quotient
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topology. In general, for a topological space X (not necessarily Hausdorff) and any map
f : X → Y where Y is a set, the quotient topology has U ⊆ Y open if and only if
f−1(U) ⊆ X is open. The quotient topology is useful in defining colimits. For example,
the pushout of a diagram of topological spaces

X
f

��

g

��

Y

Z

can be constructed as the quotient of Y � Z under the smallest equivalence relation ∼
which has f (x) ∼ g(x) for all x ∈ X, with the quotient topology.

Now using the usual embedding Cn ⊂ Cn+1 by

(z1, . . . , zn) → (z1, . . . , zn, 0),

we obtain a continuous embedding CPn−1 ⊂ CPn. We claim that we can take CPk to be
the 2k-skeleton of CPn with 0 ≤ k ≤ n, and no odd-dimensional cells. To this end, by
induction on n, we just need to show how CPn is obtained from CPn−1 by attaching a
single 2n-cell. To this end, consider the space

Pn = {(z0, . . . , zn) ∈ C
n+1 |

∑
|zk|2 = 1}

with the induced topology from Cn+1. (Of course, Pn
∼= S2n+1.) Then consider the

subspace

Qn = {(z0, . . . , zn) ∈ Pn | zn ∈ R, zn ≥ 0}.

Then we have Pn−1 ⊂ Qn, and in fact the pair (Qn, Pn−1) is homeomorphic to
(D2n, S2n−1). Letting fn : Pn−1 → CPn−1 be the obvious projection

(x0, . . . , xn−1, 0) → [x0 : · · · : xn−1],

we then obtain a canonical homomorphism from the pushout of the diagram of topological
spaces

Pn−1

⊂
��

fn
�� CPn−1

Qn
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to CPn, which is bijective, and hence by Theorem 2.1.2 of Chap. 2, is a homeomorphism.
Similarly, one can show that the real projective space RPn of lines through the origin in

Rn+1 with the quotient topology from Rn+1 � {0} is a CW-complex with one cell in each
dimension 0 ≤ k ≤ n, with skeleta RPk . The pair (Qn, Pn−1) is replaced by (Sn+, Sn−1).
This is a good example in algebraic topology. We should note however that RPn is, in
our discussion so far, “not an object of algebraic geometry” in the sense that it is the set
of closed points of Pn

R
of residue field R only; the variety P

n
R

also has closed points with
residue field C, and from our point of view should therefore be regarded as CPn with
Gal(C/R)-action by complex conjugation.

3.6.2 Lemma Let X be a CW-complex. Then for n ≥ 0, the group Hk(Xn,Xn−1) is
canonically isomorphic to the free abelian group ZIn when k = n, and to 0 otherwise.

Proof Let

Dn◦ = Dn
� {0}, Bn = Dn

� Sn−1, Bn◦ = Dn◦ � Sn−1.

Let Xn,◦ be the pushout of the diagram

Sn−1 × In

fn
��

⊂
��

Xn−1

Dn◦ × In.

The pair (Xn,Xn−1) is homotopy equivalent to the pair (Xn,Xn,◦) whose homology is,
by excision, isomorphic to the homology of the pair

∐

In

(Bn, Bn◦ ).

But the pair (Bn, Bn◦ ) is homotopy equivalent to the pair (Dn, Sn−1), whose homology
was calculated in our proof of Proposition 3.4.1. ��

Now define, for a CW-complex X, the chain complex CCWX where

CCW
n X = ZIn,

and using the identification of Lemma 3.6.2, the differential dCW = dCW
n is the

composition

Hn(Xn,Xn−1) → Hn−1(Xn−1) → Hn−1(Xn−1,Xn−2) (3.6.1)
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which is the composition of the maps involved in the long exact sequences in homology of
the pairs (Xn,Xn−1), (Xn−1,Xn−2). Note that the composition of two consecutive maps
(3.6.1) contains a composition of two consecutive maps in the long exact sequence in
homology of the pair (Xn−1,Xn−2), and thus is 0. We denote

HCW
n (X) = Hn(C

CWX),

and call this the CW-homology of X. CW homology with coefficients and cohomol-
ogy is defined analogously, using the chain complexes CCW(X;A) = CCWX ⊗ A,
C∗CW(X;A) = Hom(CCWX,A) (which also satisfy a version of Lemma 3.6.2). Similarly,
we also have CW-homology and cohomology of CW pairs. Now the central fact about
CW homology and cohomology is that it is, in fact, the same as singular homology and
cohomology.

3.6.3 Theorem For a CW-complex X, we have canonical isomorphisms

Hn(X;A) ∼= HCW
n (X;A), Hn(X;A) ∼= Hn

CW(X;A),

and similarly for CW-pairs.

This fact can be proved directly, but instead, we shall deduce it in the next subsection as
an easy application of the concept of a spectral sequence, which is useful more generally
in the context of (co)homology.

Meanwhile, to use Theorem 3.6.3 to compute (co)homology, we need an approach to
calculating

dcell : ZIn → ZIn−1.

This can be considered as an “In−1×In-matrix,” which can be called the incidence matrix.
Of course, these sets can be infinite, but only finitely many entries in each column can be
non-zero. To the (i, j)-entry with i ∈ In−1, j ∈ In, we note that it is, in fact, induced in
homology by a map

φ : Sn−1 → Sn−1, (3.6.2)

which is the composition

Sn−1 → Xn−1 → Xn−1/Xn−2 → Dn−1/Sn−2 ∼= Sn−1

where the first map is the restriction of the attaching map fn to Sn−1 × {j }, X/Y is
obtained from X by identifying all the points of Y (and taking the quotient topology),
the penultimate map projects onto the i’th cell modulo its boundary, collapsing all the
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other (n−1)-cells to the base point, and the last homeomorphism is chosen arbitrarily, but
the same for all pairs (i, j) ∈ In−1× In. Thus, we just need to compute what a map (3.6.2)
induces in (n− 1)’st homology.

Before tackling that question, let us mention a little detail: note that this method is only
correct for n > 1. For n = 1, we note that we have a canonical bijection I0 ∼= X0, and
the j ’th column of the incidence matrix simply has 1 in the f1(1, j)’th row, and −1 in the
f1(−1, j)’th row.

To find out what a map φ : Sm → Sm induces in m’th homology for m > 0 (this is
called the degree deg(φ) ∈ Z of the map φ, it is useful to identify Sm ∼= Rm ∪ {∞} (thus
determining the topology on the target) via the projection from the point (0, . . . 0, 1) to
Rm ⊂ Rm+1, i.e.

(x0, . . . , xm) → (
x0

1− xm

, . . .
xm−1

1− xm

) (3.6.3)

which has inverse

(t1, . . . , tm−1) →
(

2t1

1+ t2
1 + · · · + t2

m−1

, . . . ,
2tm−1

1+ t2
1 + · · · + t2

m−1

,
t2
1 + · · · + t2

m−1 − 1

1+ t2
1 + · · · + t2

m−1

)
.

Now every map

φ : Rm ∪ {∞} → R
m ∪ {∞} (3.6.4)

is homotopic to one which sends ∞ → ∞ and has a regular value which means a point
y ∈ R

m such that φ−1(y) is finite, and for all x ∈ φ−1(y) there exists an open set U � x

such that φ|U is smooth and det (Dφ|x) �= 0. Then one can show that

deg(φ) =
∑

y∈φ−1(x)

sign(det (Dφ|x)). (3.6.5)

Details can be found in [16].

3.6.4 Example 3.6.1 Continued
We see that the cell chain complex CCW

CPn with the CW-structure we described is of the
form

Z→ 0 → Z→ · · · → Z→ 0 → Z,

and thus, there is no possibility of differentials. Thus, we can conclude that Hk(CPn) = Z

for 0 ≤ k ≤ 2n even, and 0 else.



3 Singular Homology and Cohomology 345

In contrast, for RPn, the cell chain complex is of the form

Z→ Z→ · · · → Z→ Z,

and thus, we must compute the differentials using the degree formula. The attaching map

Sn−1 → Sn−1+ /Sn−2

sends (x1, . . . , xn) → (x1, . . . , xn) for xn ≥ 0, and (x1, . . . , xn) → (−x1, . . . ,−xn) for
xn ≤ 0 (note that when xn = 0, the point goes to the base point). Conjugating the map

(x1, . . . , xn) → (−x1, . . . ,−xn)

by (3.6.3), we get the map

(t1, . . . , tn−1) → (
−t1

t2
1 + · · · + t2

n−1

, . . . ,
−tn−1

t2
1 + · · · + t2

n−1

),

whose Jacobi matrix is the 1/(t2
1 + · · · + t2

n−1)
2-multiple of

−(t2
1 + · · · + t2

n−1)In−1 + 2(t1, . . . , tn−1)
T (t1, . . . , tn−1).

Thus, it has one eigenvalue 1/(t2
1+· · ·+t2

n−1) and m−2 eigenvalues−1/(t2
1+· · ·+t2

n−1)
2,

so its determinant is positive when n is even and negative when n is odd.
Choosing any point y ∈ Rn−1 � {0} as a regular value, we therefore see that φ−1(y)

has two elements, and that the two summands (3.6.5) have the same signs when n is even
and opposite signs when n is odd. Thus, CCW(RPn) is of the form

Z �� . . . �� Z
2

�� Z
0

�� Z , (3.6.6)

thereby showing that Hk(RPn) is Z when k = 0 or k = n odd, Z/2 when 0 < k < n

odd, and 0 otherwise. It is also worth noting that for cohomology, the arrows (3.6.6) are
reversed, so Hk(RPn;Z) is Z when k = 0 or k = n odd, Z/2 when 0 < k ≤ n even, and
0 otherwise. Alternately, we can also see that by the universal coefficient theorem for the
last statement.

It can be shown that every complete algebraic variety over C with the analytic topology
has a structure of a finite CW-complex (meaning with finitely many cells), and any
algebraic variety over C is homotopy equivalent to a finite CW-complex, so at least
theoretically, CW-homology can be used to calculate singular homology and cohomology.
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3.7 Spectral Sequences

Spectral sequences are perhaps the most advanced tool of homological algebra. There is
a homological and cohomological version of the concept of a spectral sequence, which
differ by interchanging subscripts and superscripts, and reversing the signs of all gradings.
We will mostly discuss the homological spectral sequence version in this subsection, only
pointing out in a few places what the cohomological situation looks like, for the sake of
familiarity of notation.

A homological exact couple consists of Z-graded abelian groups (or more generally,
objects of an abelian category) D, E, together with graded homomorphisms which form a
long exact sequence,

D
i

�� D

j����
��
��
��

E.

k

����������
(3.7.1)

where i, j are of degree 0, and k is of degree −1. Also, note that E then becomes a chain
complex with the differential

d = j ◦ k.

The main point of this concept is that we can define a derived exact couple

D′ i′
�� D′

j ′����
��
��
��

E′
k′

����������
(3.7.2)

where D′ = Im(i), E′ = H∗(E, d) where the homomorphisms i ′, k′ are just induced
from the homomorphisms i, k, while j ′ is “induced by j ◦ i−1.” More precisely, for the
definition of j ′, one observes that, (using exactness), one also has

E′ = k−1Im(i)/j (Ker(i)). (3.7.3)

Using the short exact sequence

0 → Ker(i)→ D → Im(i) → 0,
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the morphism j : D → E then induces a morphism D → E′ which becomes 0 when
composed with the inclusion Ker(i) ⊆ D, and thus induces a morphism j ′ : Im(i) → E′.
The fact that (3.7.2) is again an exact couple is readily verified by hand. (Exercise 28.)

In fact, by induction, one can show that when iterating this procedure, the m’th derived
exact couple

D(m)
i(m)

�� D(m)

j(m)����
��
��
��

E(m)
k(m)

����������

can also be described directly: One has

D(m) = Im(im), (3.7.4)

E(m) = k−1Im(im)/j (Ker(im)), (3.7.5)

the morphisms i(m), k(m) are induced from i, k, and the morphism j (m) is “induced by
j ◦ i−m” in precisely the same sense as for m = 1 (Exercise 29).

Terminology varies somewhat, but for our purposes, we can say that a homological
spectral sequence arises from a sequence of exact couples

Dr
ir

�� Dr

jr����
��
��
��

Er,

kr

����������
(3.7.6)

r ≥ 1, where the exact couple (3.7.6) for r + 1 is the derived exact couple of the exact
couple (3.7.6) for r . Additionally, usually, these exact couples are in fact bigraded by pairs
of integers (p, q) whose total degree p + q is the degree mentioned in the definition of
an exact couple, p is referred to as the filtration degree and q is called the complementary
degree. In (3.7.6), ir , j r , kr are bigraded homomorphisms where ir has bidegree (1,−1),
j r has bidegree (1 − r, r − 1) and k has bidegree (−1, 0). (Note that if the bidegree
convention holds for a given r , it also holds for all the successively derived exact couples.)

Typically, we are using the spectral sequence to gain information about D1, while
(E1, d1) (and therefore, usually, E2) are known. A homological spectral sequence is then
a system of abelian groups (or objects of an abelian category)

Er
p,q, r ∈ N, p, q ∈ Z
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and differentials

dr : Er
p,q → Er

p−r,q+r−1, dr ◦ dr = 0

where

Er+1 = H(Er, dr).

We say that the spectral sequence converges if for every pair of integers (p, q), there exists
an N such that for r > N , the differential dr is 0 on Er

p,q . Then the expression

E∞p,q = colim
r

Er
p,q

makes sense. This happens for example when for each given total degree, the sequence

. . .
i

�� Dp,q

i
�� Dp+1,q−1

i
�� . . . (3.7.7)

satisfies the Mittag-Leffler condition. If this condition holds, we have

E∞ = (k−1
⋂

n

Im(in))/(j
⋃

n

Ker(in)). (3.7.8)

As already mentioned, in a cohomological spectral sequence the indexing is reversed,
so we have abelian groups (or objects of an abelian category)

E
p,q
r , r ∈ N, p, q ∈ Z

and differentials

dr : Ep,q
r → E

p+r,q−r+1
r

with

Er+1 = H(Er, dr).

The definition and criterion of convergence are completely symmetrical.

3.7.1 The Spectral Sequence of a Filtered Chain Complex
An increasing filtration on a chain complex C is a sequence of inclusions

· · · ⊆ FnC ⊆ Fn+1C ⊆ . . .
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of subcomplexes of C. We shall call an increasing filtration convergent if for every n ∈ Z,
there exists an N ∈ Z such that FNCn = 0, and if

⋃
p FpC = C. The associated graded

chain complex of an increasing filtration is

E0C =
⊕

n∈Z
FnC/Fn−1C.

A decreasing filtration is a sequence of subcomplexes (F nC) where (FnC) = (F−nC)

is an increasing filtration. Under this correspondence, the convergence condition on
decreasing and increasing filtrations are the same, and for a decreasing filtration, the
associated graded chain complex is

E0C =
⊕

n∈Z
FnC/Fn+1C.

With a filtration of a chain complex, there is an associated spectral sequence, which
is usually written homologically when the filtration is understood as increasing and
cohomologically when the filtration is understood as decreasing. We shall treat the
homological case (both cases are equivalent).

The spectral sequence of an increasing filtration FpC on a chain complex C has

D1
p,q = Hp+q(FpC),

E1
p,q = Hp+q(FpC/Fp−1C),

and the homomorphisms i1, j1, k1 are the homomorphisms in the long exact sequence in
homology associated with the short exact sequence of chain complexes

0 → Fp−1C → FpC → FpC/Fp−1C → 0.

From (3.7.8), we then obtain (with the understanding that all unlabeled arrows are the
canonical homomorphisms):

E∞p,q = k−1(0)p,q/j (Ker(Hp+qFpC → Hp+qC)) =
j (Hp+qFpC)/j (Ker(Hp+qFpC → Hp+qC)) =
Hp+qFpC/(Ker(Hp+qFpC → Hp+qC)+ Im(Hp+qFp−1C → Hp+1FpC))

= Im(Hp+qFpC → Hp+qC)/Im(Hp+qFp−1C → Hp+qC).

In other words, if we introduce a filtration

FpHp+qC = Im(Hp+qFpC → Hp+qC),
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then this filtration is convergent (by commutation of homology with colimits of a
sequence) and

E∞p,q = E0Hp+qC.

In general, if we have a convergent spectral sequence and a Z-graded abelian group G with
an increasing filtration (FpG) such that

E∞p,q = (E0Gp+q)p,

we write

Er
p,q ⇒ Gp+q,

and say that the spectral sequence Er
p,q converges to G (with the understanding that the

associated graded object is “the best information we can get from a spectral sequence,” at
least without further input). Thus, in the case of the spectral sequence associated with a
convergent filtration on a chain complex C, we can write

E1
p,q = Hp+q(FpC/Fp−1C) ⇒ Hp+qC. (3.7.9)

Again, the discussion for convergent decreasing filtrations is entirely equivalent, and in
that case one usually writes the spectral sequence cohomologically, and C as a cochain
complex, so one has

E
p,q

1 = Hp+q(FpC/Fp+1C) ⇒ Hp+qC. (3.7.10)

3.7.2 Proof of Theorem 3.6.3
We prove the statement for homology with coefficients in Z. For a CW complex X, let

FpCX = C(Xp)

be the singular chain complex of the p-skeleton. Now apply (3.7.9). By Lemma 3.6.2, we
have

E2
p,q = HCW

p (X) for q = 0

and

E2
p,q = 0 for q �= 0.
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Thus, all differentials dr with r > 1 have either source or target 0, and hence are 0, and
we have

E2
p,q = E∞p,q,

but also the associated graded group of the convergent filtration on HnX has only one non-
trivial term in filtration degree p = n, which is therefore canonically isomorphic to HnX.
The statement follows.

For homology with coefficients, the proof is the same. For cohomology, the decreasing
filtration on C∗X is

FpC∗(X;A) = Ker(C∗(X;A) → C∗(Xp−1;A))

(where the arrow is induced by inclusion). Alternately, one can also deduce this case from
the universal coefficient theorem, but one must be careful about functoriality. ��

We shall now give the example of the Grothendieck spectral sequence, which is possibly
the one most used in algebraic geometry. We will state it here for right derived functors,
because it is often used in the context of sheaves, which have enough injectives. However,
a precisely symmetrical statement holds for left derived functors.

3.7.3 Theorem (The Grothendieck Spectral Sequence) Let F : A → B, G : B → C
be additive functors between abelian categories, where A and B have enough injectives.
Suppose further that for every injective object Q ∈ Obj(A), F(Q) is G-local. Then for
every object A ∈ Obj(A), there exists a convergent cohomological spectral sequence

E
p,q

2 = RpG ◦ RqF(A) ⇒ Rp+q(G ◦ F)(A). (3.7.11)

Proof Let Q be an injective resolution of A, and let C(0) = FQ. Assuming we have
constructed HnC

(m) = 0 for n > −m, we have an embedding

H ∗C(m) → I (m) (3.7.12)

where I (m) is a complex of injectives with I
(m)
n = 0 for n > 0. Now (3.7.12) extends to a

graded homomorphism

fm : C(m) → I (m)

which is then necessarily a chain map. Let

C(m+1) = Cfm[−1]
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be the mapping co-cone. We have HnC
(m+1) = 0 for n > −m − 1 by Theorem 2.3.7.

From (2.3.5), we obtain an inverse sequence

. . . C(2) → C(1) → C(0) (3.7.13)

and we let C be its limit. Note then that the canonical chain map C → C(n) is an
isomorphism in degrees > −n, and thus the Mittag-Leffler condition is satisfied both for
(3.7.13) and its homology, and hence

H∗C = lim H∗C(m) = 0.

Note that by construction, we also have a short exact sequence of chain complexes

0 → I → C → FQ → 0.

This gives a quasiisomorphism

FQ
∼

�� I [1]. (3.7.14)

By the assumption on F , and by Proposition 2.3.21, FQ and I are both G-local, so
applying G to (3.7.14) induces a quasiisomorphism

GFQ
∼

�� GI [1]. (3.7.15)

Now the short exact sequences

0 → Fp(I) → I → C(p) → 0

give a decreasing filtration on I by chain complexes which are again G-local by
Proposition 2.3.21. Then

HnGI [1] ∼= Rn(G ◦ F)(A)

by (3.7.15), while

H ∗E0I [1] = E0I [1]

with the differential given by the connecting maps is a direct sum of injective resolutions
of RqF(A), q ≥ 0, and thus the E2-term of the spectral sequence associated with the
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decreasing filtration (GFpI [1]) of the chain complex GI [1] is RpG ◦RqF(A). Thus, our
statement follows from the result of Sect. 3.7.1. ��

3.7.4 Corollary (The Leray Spectral Sequence) Let f : X → Y be a continuous map
of topological spaces and let F be a sheaf on X. Then we have a convergent spectral
sequence

Hp(Y,Rqf∗(F)) ⇒ Hp+q(X,F). (3.7.16)

Note that the homology (in the category of abelian sheaves) of a chain complex of
abelian sheaves is calculated by taking its homology on sections, and then sheafifying.
Thus, Rqf∗(F) is the sheaf associated with the presheaf on Y given by

U → Hq(f−1(U), i∗F)

where i : f−1(U) → X is the inclusion.

Proof Apply Theorem 3.7.3 with F = f∗, G = � (global sections). This is possible, since
f∗ clearly preserves flasque sheaves. ��

3.8 Singular Cohomology vs. Sheaf Cohomology

A topological space X is called locally contractible if for every x ∈ X and every open
set U � x, there exists an open subset V ⊆ U with x ∈ V such that V is contractible.
For example, it is easy to see that all smooth manifolds, as well as all CW complexes, are
locally contractible.

3.8.1 Theorem Let X be a locally contractible Hausdorff topological space. Then for an
abelian group A, there is a canonical isomorphism

Hn(X;A) ∼= Hn(X,A)

(where the left hand side denotes singular cohomology and the right hand side denotes
sheaf cohomology with constant coefficients).

Proof Suppose X is locally contractible. Consider the cochain complex C on X associated
to the cochain complex of presheaves

U → C∗(U ;A)
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for U ⊆ X open. Then, by construction, C is a cochain complex of flasque presheaves,
and by the assumption that X is locally contractible, the canonical morphism of cochain
complexes of abelian sheaves

A → C

is a quasiisomorphism. In other words, C is a flasque resolution of A. On the other hand,
the cohomology of the cochain complex of abelian groups �C is the singular cohomology
H ∗(X;A) by Lemma 3.2.1. (We can pass from homology to cohomology using the
Universal Coefficient Theorem). Thus, our statement follows. ��

Theorem 3.8.1 together with Theorem 2.5.10 imply that for a smooth manifold M , we
have

Hn
DR(M) ∼= Hn(M;R) (3.8.1)

and similarly for a complex manifold M ,

Hn
DR(M;C) ∼= Hn(M;C), (3.8.2)

where the right hand sides denote singular cohomology. This is the de Rham Theorem.
There is a more direct approach to that result. Consider some n-simplex K ⊂ Rn and a
linear homeomorphism

φ = φk : K → �k

(where �k is the standard k-simplex (3.1.1)). For a smooth manifold M and a smooth
singular simplex σ : �k → M (i.e. one which extends to a smooth map on an open
neighborhood), let ω be a k-form on M . Then we have

(σ ◦ φ)∗ω = hdx1 ∧ · · · ∧ dxn

for some smooth function on K . We can define a bilinear pairing

〈ω, σ 〉 =
∫

K

hdx1 . . . dxn. (3.8.3)

By the substitution theorem for multivariable integrals, this depends on the choice of
the linear homeomorphism φ only up to sign (note that the substitution theorem for k-
dimensional integrals on subsets of Rk involves the absolute value of the determinant of
the Jacobian matrix). Now obviously, (3.8.3) extends uniquely to an R-bilinear pairing

�k(M)⊗R Csm
k (M) → R (3.8.4)
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were Csm
k (M) denotes the free abelian group on smooth singular k-simplices in M . The

formula (3.1.3) defines a differential

d : Csm
k (M) → Csm

k−1(M),

making Csm(M) ⊂ CM a chain subcomplex, and one can prove that this inclusion of
chain complexes is a quasiisomorphism.

Additionally, the Stokes theorem states that with an appropriate choice of the maps φk ,
the signs work out so that (3.8.4) induces a chain map

�k(M) → Hom(Csm
k (M),R) (3.8.5)

(for example, φk can be chosen to be the projection to the last k coordinates). One can then
prove directly that (3.8.5) is a quasiisomorphism, and it is easy to check that it coincides
with the isomorphism obtained by Theorems 3.8.1 and 2.5.10.

By applying ?⊗RC, this entire discussion is also valid with complex coefficients, which
is relevant to the case of complex manifolds.

3.8.2 Sheaves Do Not Have Enough Projectives
We can now show that the category of abelian sheaves on a space X sometimes (perhaps
typically) does not have enough projectives. The point is that there is such a thing as a free
sheaf, which is a direct sum of sheaves of the form j!Z where j : U → X is the inclusion
of an open subset (with possibly varying U ). By definition, for every abelian sheaf S on
X, there is a surjection

F → S → 0 (3.8.6)

where F is a free sheaf.
Now let, for example, X = R2. If S were projective, then the morphism (3.8.6) would

have to split, i.e. have a right inverse. This means that for every x ∈ X, Sx is a direct
summand of the free abelian group Fx . Suppose

Sx �= 0.

Then Sx has a direct summand isomorphic to Z, let it be generated by an element u. Then
u comes from a section s on an open set U � x, and thus, denoting by j : U → X the
inclusion, Z generated by s is a direct summand of j∗S. However, the constant sheaf Z
on U cannot be projective, since then, by Theorem 3.8.1, every subset of U would have 0
singular cohomology in degrees > 0 (since sheaf cohomology is computed as morphisms
from Z in the derived category of abelian sheaves). We see that for X = R

2, this fails to
hold for any non-empty open subset U , which is a contradiction.
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4 Exercises

1. On the smooth manifold Rn � {(0, . . . , 0)T }, consider the (n− 1)-form

ω =
∑n

k=1(−1)kxkdx1 ∧ · · · ∧ dxk−1 ∧ dxk+1 ∧ · · · ∧ dxn

(x2
1 + · · · + x2

n)n/2
.

(a) Prove that dω = 0.
(b) Is there a differential form η such that dη = ω? [Integrate ω over the unit sphere,

more precisely a smooth singular chain complex triangulating it.]
2. A differential form ω on a smooth manifold M is said to have compact support if

there exists a compact subset K ⊆ M such that ω |M�K= 0. Using the de Rham
differential, forms with compact support make a cochain subcomplex �∗cM ⊆ �∗M .
Its cohomology is called de Rham cohomology with compact support and denoted by
Hk

DR,c(M). Prove that Hm
DR,c(R

n) = R for m = n and 0 for m �= n. [Integrate over
Rn to get a map Hn

DR,c(R
n) → R which is easily seen to be onto. Use induction on n

and Fubini’s theorem to show this is the only cohomology we get.]
3. Noting that �∗c (U) is covariantly functorial in inclusions of open submanifolds, (while

�∗(U) is, of course, contravariantly functorial), observe that for open submanifolds
U,V of a smooth manifold M , there are short exact sequences

0 → �∗c (U ∩ V ) → �∗c (U)⊕�∗c (V ) → �∗c(U ∪ V ) → 0,

0 → �∗(U ∪ V ) → �∗(U)⊕�∗(V ) → �∗(U ∩ V ) → 0.

Write down the corresponding long exact sequences in cohomology. These are the
Mayer-Vietoris sequences in de Rham cohomology. (There are some sign choices.
If, for example, we take the R-vector space homomorphisms induced by inclusions
U ∩ V ⊆ U,V , then we need to reverse the sign of the homomorphism induced by
one of the inclusions U,V ⊆ U ∪ V .)

4. Let M be a compact smooth (real) n-manifold. An orientation form (if one exists)
is an n-form ω on M which is not zero at any point. Two orientation forms ω, η

are considered equivalent if ω = hη for a nowhere zero smooth function h. An
equivalence class of orientation forms is called an orientation. A smooth n-manifold
which has an orientation is called orientable. When an orientation is chosen we say
that M is oriented.
(a) Prove that an orientable connected smooth manifold has precisely two orienta-

tions. Give an example of a smooth manifold which is not orientable.
(b) Prove that if M is an oriented connected smooth n-manifold, then Hn

DR,c(M) = R.
[Use induction to prove it for a union of finitely many coordinate neighborhood,
then use a colimit argument. For the induction step, use the long exact sequence in
cohomology associated with the first short exact sequence of Exercise 3. Observe
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that on an open subset of Rn, we have a canonical orientation form dx1∧· · ·∧dxn

from which, at each point x, our given orientation form differs by a non-zero
scalar multiple which h(x). Further, the sign of h(x) cannot change signs by the
intermediate value theorem.]

(c) Observe that for an oriented smooth n-manifold M , we have a canonical chain
map

�∗c(M) → R[−n],

given in degree n, on a coordinate neighborhood by integration, with coordinates
chosen so that dx1∧· · ·∧dxn is equivalent to the pullback of the orientation form
(and extended, say, by partition of unity).

(d) Observe that every complex smooth manifold has a canonical orientation. [If z1 =
x1 + iy1, . . . zn = xn + iyn is a complex basis of the dual of the tangent space,
then dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn is well defined up to positive scalar multiple.]

5. Observe that for any smooth n-manifold M , the exterior product gives a homomor-
phism of cochain complexes

�∗(M)⊗�∗c(M) → �∗c (M).

When M is oriented and connected, by composing with the chain map constructed in
Exercise 4 (c), we obtain a canonical chain map

�∗(M)⊗�∗c (M) → R[−n],

which can by reinterpreted by adjunction as

�∗(M)→ HomR(�∗c (M),R)[−n].

Prove that this chain map is a quasiisomorphism. [Show that this chain map is
compatible with the Mayer-Vietoris exact sequences of Exercise 3. Then prove the
quasiisomorphism on a coordinate neighborhood, use induction to extend it to a union
of finitely many coordinate neighborhoods, and finally a limit argument. Be mindful
of tricky signs throughout. Also, note that an intersection of coordinate neighborhoods
does not have to be homeomorphic to R

n. Probably the easiest way to get around this
is to prove the statement for open subsets of Rn first by induction for unions of k

convex open subsets, and a colimit argument.] Conclude that for a connected smooth
n-manifold M , we have an isomorphism

Hk
DR(M) ∼= HomR(Hn−k

DR,c(M),R).

This is Poincaré duality for DeRham cohomology.
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6. Prove the uniqueness of a derived category.
7. Prove that the kernel and cokernel of a morphism f in Diagram (2.2.1) with rows

exact are 0.
8. Prove directly that the chain maps (2.3.1) are quasiisomorphisms.
9. Complete the proof of Theorem 2.3.7.

10. Prove the 5-lemma (Lemma 2.3.8).
11. Prove Lemma 2.3.13.
12. For a commutative ring R, an R-module M is called flat when tensoring with M over

R is an exact functor. Prove that the following are equivalent
(i) M is flat

(ii) For every R-module N , T orR
i (M,N) = 0 for i > 0

(iii) For any fixed R-module N , if FN denotes the functor of tensoring with N over
R, then M is FN -colocal.

13. Prove that if M is a flat R-module, S ⊂ R a multiplicative set (i.e. a set closed under
multiplication which contains 1 and does not contain 0) then S−1M = S−1R ⊗R M

is flat.
14. Prove that cdZ(Q) = 1 (and thus, is not equal to the supremum of cd(N) with N ⊆ Q

finitely generated Z-modules).
15. Let R → S be a morphism of commutative rings and let M be an S-module. Prove

that

cdR(M) ≤ cdS(M)+ cdR(S).

16. Let R = Z[x1, . . . , xn]. Consider the R-modules Z, Z/p where xi act by 0. Compute
ExtiR(Z,Z) and ExtiR(Z/p,Z/p) together with the product given by composition in
the derived category DR.

17. Using the result of Exercise 16, prove (2.6.8) in the proof of Lemma 2.6.5.
18. Prove that the ring S−1R of Exercise 38 of Chap. 1, under the assumption of (c), has

infinite cohomological dimension of S−1R, while its localization at every prime ideal
is regular (and thus, by our definition from Sect. 3.5 of Chap. 1, S−1R is regular).

19. Prove that the localization S−1R at a multiplicative set (containing 1 and not
containing 0) of a regular local ring is regular. Then prove the analogous statement
after dropping the word “local.”

20. Let R be a regular ring and let M be a finitely generated R-module. Prove that M has
a resolution of the form

Pn → Pn−1 → · · · → P0

where Pi are finitely generated projective R-modules. [Letting P0 be a finitely
generated free R-module mapping onto R, let K0 be the kernel. K0 is finitely
generated since R is Noetherian. If Ki is a finitely generated R-module, let Pi be
a finitely generated free R-module mapping onto Ki , and let Ki+1 be the kernel. We
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need to prove that some Kn is projective for some n. To this end, by Lemma 2.2.4 of
Chap. 4, it suffices to prove that Mp has a finite free resolution of uniformly bounded
length over Rp for any prime p of R. This is true for each prime individually, and
if we have such a resolution for a given prime p, a resolution also exists in its open
neighborhood, i.e. over R[a−1] for some a /∈ p. Then use the quasicompactness of an
affine scheme.]

21. Let R be a regular ring. Recalling the concepts of Sects. 2.1 and 2.2 of Chap. 4,
construct a homomorphism φ : G(R) → K(R) by sending a finitely generated
module M to

n∑

i=0

(−1)iPi

where Pi are the projective modules in the resolution constructed in Exercise 20.
Prove that this gives a well-defined homomorphism which is inverse to the canonical
homomorphism ψ : K(R) → G(R) given by sending a finitely generated projective
module to itself. [To show that the map φ is well-defined, i.e. independent of the
resolution, first reduce to the case when we have a term-wise epimorphism of finite
projective resolutions of the same module. Then the kernel is a finite projective
resolution of 0, and splits as a direct sum of isomorphisms.]

22. Using Exercise 27 of Chap. 4, prove that every coherent sheaf on a Noetherian regular
scheme has a resolution by finitely many locally free sheaves. Using this, extend the
result of Exercise 21 to regular Noetherian schemes.

23. Prove that if R is a Noetherian ring and G(R) = 0 then G(R[x]) = 0. [On a finitely
generated R[x]-module M , consider the filtration M ⊇ xM ⊇ x2M ⊇ . . . . Using
the fact that R is Noetherian, conclude that the class [M] ∈ G(R[x]) is the sum of a
class [N ⊗R R[x]] for an R-module N and a class of an R[x]-module on which x acts
nilpotently, hence, without loss of generality, trivially.]

24. Prove that every finitely generated projective k[x1, . . . , xn]-module P is stably free
which means that there exists a finitely generated free module F such that P ⊕ F is
free. [Prove that this is true for any ring R which satisfies K(R) = 0. (In fact, both
properties are equivalent.) Then use Exercises 23, 21.]

25. (Quillen and Suslin) Prove that for a field k, every finitely generated projective
k[x1, . . . , xn]-module is free. Therefore, every algebraic vector bundle over A

n
k is

trivial. The following proof is due to Vaserstein. Let R be an integral domain. A
column vector (f1, . . . , fn)T ∈ Rn is called unimodular if (f1, . . . , fn) is the unit
ideal in R. We say that R has the unimodular extension property if every unimodular
vector over R is the column of an invertible matrix over R.
(a) Prove that if R is a commutative ring which has the unimodular extension property

such that every finitely generated R-module is stably free, then every finitely
generated projective R-module is free. Thus, it suffices to prove that k[x1, . . . , xn]
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has the unimodular extension property. [It suffices to prove that if P ⊕ R is free
then P is free.]

(b) (Horrocks) Let R be a local ring. Then every unimodular vector v over R[x]
whose one coordinate is a monic polynomial is a column of an invertible matrix.
[Let (f1, . . . , fn)T be a unimodular vector and let, say, f1 be monic of degree d .
Proceed by induction on d . Use the Euclidean algorithm to reduce to the case
where f2, . . . , fn have degree < d . Without loss of generality, say, f2 has a
coefficient which is a unit in R. Using the method of the Buchberger algorithm,
show that some linear combination of f1, f2 is a monic polynomial of degree
< d .]

(c) Let R be an integral domain and let v(x) be a unimodular vector in R[x] which
has a monic coordinate. Then v(x) is equivalent to v(0) over R[x], meaning that
there exists an invertible matrix A over R[x] with Av(x) = v(0). [Let J be the set
of all x ∈ R such that v(x + cy) is equivalent to v(x) over R[x, y]. Prove that J is
an ideal which is not contained in any prime ideal and thus is the unit ideal. From
there, v(x + y) is equivalent to v(x), hence v(y) is equivalent to v(0). To show
that J is not contained in a prime p, we have v(x) = M(x)v(0) for an invertible
matrix M over Rp. Let G(x, y) = M(x)M(x+y)−1, so G(x, y)v(x+y) = v(x).
Then G(x, 0) is the identity matrix, so G is congruent to the identity modulo y.
Thus, for some c /∈ p, G(x, cy) has coefficients in R.]

(d) Let v be a unimodular vector in k[x1, . . . , xn]. By (c), we can use induction on n if
v has a coordinate monic in xn. But this can be achieved by substituting yn = xn,
yi = xi − x

mi
n , similarly as in the proof of the Noether normalization lemma.

26. From the definition (3.1.3), prove d ◦ d = 0. [Composing the differential with itself,
we obtain a double sum. Breaking up into the cases i ≤ j and i > j , we obtain pairs
of equal summands with opposite signs, using the relation (3.1.2).]

27. (Eilenberg-Zilber Theorem) Observe that for spaces X,Y , the chain group Ci(X) ⊗
Cj (Y ) is canonically identified with the chain group Ci+j (X × Y ) if i = 0 or j =
0. Using this identification, prove that there exist natural chain maps between any
two of the chain complexes C(X) ⊗ C(Y ) and C(X × Y ) which are the identity in
degree 0, and that any two such chain maps are further naturally chain homotopic. By a
natural chain homotopy we mean that each of the homomorphisms of abelian groups
constituting the chain homotopy is natural. [This is an application of the method of
acyclic models used in Sect. 3.3. Proceed by induction on dimensional degree. By
naturality, it is necessary and sufficient to construct the value of each chain map on
a universal element. In Cn(X × Y ), the universal element is the diagonal singular n-
simplex �n → �n ×�n for X = Y = �n. In Ck(X)⊗ C�(Y ), the universal element
is ιk ⊗ ι� where ιi = Id : �i → �i . Now the condition on the value of the desired
chain map on the universal element is that its boundary be a cycle given by induction.
The obstruction for doing so therefore lies in a homology group, which is 0 by the
homotopy axiom. In constructing chain maps (not homotopies), be mindful of degree
1, where the homology group in question is in degree 0 and therefore is not 0 but Z,
and thus, an additional argument is needed.]
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28. Complete the proof that (3.7.2) is an exact couple, and prove formula (3.7.3).
29. Prove formulas (3.7.4), (3.7.5).
30. Poincaré duality for singular (co)homology. The argument of Exercises 2–5 essen-

tially also works for singular homology, replacing the sheaf of de Rham forms by the
sheafification C of the complex of presheaves

U → Ck(U,Z).

It also works for a topological manifold M (i.e. a Hausdorff space in which every point
has an open neighborhood homeomorphic to Rn whose every connected component
has a countable basis of topology). The reader should consult [20] for details on
singular homology. Here are the basic steps and technical points:
(a) Denoting by Cc(U) the sections of C over U with compact support and Hk

c (U) its
cohomology, prove that Hk

c (Rn) is Z for k = n and 0 for k �= n. The covariant
functoriality of Cc in open subsets of a manifold and the Mayer-Vietoris sequences
work the same as in the de Rham case.

(b) An orientation of a topological n-manifold M is a homomorphism ω : Hn
c (M) →

Z which is an isomorphism when composed with the map induced by the
inclusion of coordinate neighborhoods. Again, a topological manifold which has
an orientation is called orientable, and when an orientation is chosen, we call it
oriented. Prove that if M is an orientable connected topological n-manifolds, an
orientation is an isomorphism of abelian groups. Denote, for a chain complex C,
by τ≤k(C) the factor complex which in degree i is Ck for i ≤ k, in degree i + 1
is Bk , and is 0 in other degrees. Thus, if M is oriented connected, we have a chain
map

Cc(M) → τ≤−nCc(M),

and the target chain complex has homology Z[−n].
(c) Prove that HiCc(M) = 0 for i > n. [Use the Mayer-Vietoris sequence and a

colimit argument.]
(d) The Eilenberg-Zilber map (see [20]) induces a chain map

Cc(U)⊗ C(U) → Cc(U)

for U ⊆ M open. Composing with the chain map constructed in (b), construct a
chain map

C(U) → RHom(Cc(U), τ≤−nCc(M))

∼ RHom(Cc(U),Z)[−n].
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Similarly as in the de Rham case, this chain map is compatible with Mayer-
Vietoris exact sequence with and without compact support, and thus, combining
induction on number of coordinate neighborhoods and a limit argument, one
shows that it is a quasiisomorphism. One denotes

HBM
k (M;Z) = HkRHom(Cc(M),Z),

and calls these groups Borel-Moore homology. Thus, we have proved the following
version of Poincaré duality for oriented connected topological manifolds:

Hk(M;Z) ∼= HBM
n−k (M;Z).

31. Let M be a compact topological n-manifold.
(a) Prove that M can be covered by finitely many coordinate neighborhoods Ui , i =

1, . . .m, so that there exist continuous maps φi : M → Sn so that φ|Ui is a
homeomorphism onto an open subset of Sn. Then φ =∏φi’s is an embedding of
M as a closed subset of a product of spheres T .

(b) Prove that the image N of φ is a retract of an open neighborhood U . [Prove,
by induction on j , that U1 ∪ . . . Uj is a retract of an open neighborhood Vj by
a retraction rj . This is true for j = 1. Suppose it is true for a given j . There
exists an open set W ⊆ T such that Uj+1 ⊂ W is closed. Now there exists
a closed subset Z ⊆ Vj whose interior contains Vj � W , and without loss of
generality, Z∩M ⊆ U1∪ . . . Uj . By making the sets smaller if necessary, we may
assume that Vj ∩ W is mapped, by rj , into a set K homeomorphic to a product
of compact intervals which contains Uj+1 as an open subset. Now extend the map
Z ∪ Uj+1 → K to a continuous map φ : W → K . (Use the fact if Q ⊆ RN is
open and P ⊆ Q is closed, then a continuous map P → [0, 1] extends to Q.) Now
glue φ with rj , and replace its source by the open subset φ−1(U1 ∪ · · · ∪ Uj+1).
Let rj+1 be the restriction.]

(c) By making U smaller if necessary, U can be assumed to be homotopy equivalent
to a finite CW-complex. Conclude that every homology group Hi(M) is finitely
generated.

32. (Poincaré duality continued) When M is a compact topological n-manifold, prove that

HBM
k (M;Z) ∼= Hk(M;Z).

Thus, in this case, when M is oriented, we obtain a Poincaré duality isomorphism

Hk(M;Z) ∼= Hn−k(M;Z).

The class in Hn(M) Poincaré dual to 1 ∈ H 0(M) is sometimes called the fundamental
class. [In this case, Borel-Moore homology is the homology of the chain complex
RHomZ(C∗(M;Z),Z). Thus, in view of Exercise 31, it suffices to show that if C
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is a chain complex whose sum of homology groups is finitely generated, then the
canonical map

C → RHom(RHom(C;Z),Z)

in the derived category of abelian groups is a quasiisomorphism.]
33. Let M be a smooth n-manifold. Prove that an orientation in the sense of Exercise 4

determines an orientation in the sense of Exercise 30. [Use the Mayer-Vietoris
sequence and a limit argument, with the slogan “the ambiguity is only up to sign.”]

34. Using Poincaré duality, prove that H ∗((Pn
C
)an) = Z[x]/(xn+1) where x ∈

H 2(Pn
C
)an) ∼= Z is a generator. [Induction on n, using the fact that the inclusion

P
n−1
C

→ P
n
C

induces an isomorphism in singular cohomology in dimensions≤ 2n−2.]
35. Due to Poincaré duality, for a continuous map between compact oriented topological

manifolds f : X → Y , we have a functorial homomorphism f∗ : Hk(X) → Hk(Y ).
(All cohomology is, say, with coefficients in Z.) Prove the projection formula

f∗(x · f ∗(y)) = f∗(x) · y

where f ∗ : H�(Y ) → H�(X) is ordinary cohomological functoriality. You may
assume the existence of a natural cup product map C∗X ⊗ C∗X → C∗X (which
follows from the Eilenberg-Zilber theorem). [Investigate the effect of f ∗ on the map
ω of Exercise 30.]

36. Cohomology of non-degenerate projective quadrics In this exercise, we shall calculate
the singular cohomology ring H ∗(Xan) where X is a projective quadric of dimension
n, i.e. a hypersurface in P

n+1
C

defined by one non-degenerate quadratic form. Recall
that all such quadrics are isomorphic smooth projective varieties. The answer differs
depending on whether n is even or odd.
(a) If n is even, change coordinates so the equation of the quadric is

x1x2 + · · · + xn+1xn+2 = 0

where x1, . . . xn+2 are the projective coordinates. Consider the filtration on Xan

where

X2n−2 = Z(xn+2),

X2n−4 = Z(xn+2, xn),

. . . ,

Xn−2 = Z(xn+2, xn, . . . , x2) ∼= (P
n/2−1
C

)an.

If n is odd, change coordinates so the equation of the quadric is

x2
1 + x2x3 + · · · + xn+1xn+2 = 0.
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Consider the filtration on Xan where

X2n−2 = Z(xn+2),

X2n−4 = Z(xn+2, xn),

. . . ,

Xn−1 = Z(xn+2, xn, . . . , x3) ∼= (P
(n−1)/2
C

)an.

Prove that these are cellular filtration on Xan, and compute the singular
(co)homology of Xan by counting cells.

(b) Prove that the embedding in the analytic topology

f : Xan → (Pn+1
C

)an

is not onto. Using the CW-structure on (Pn+1
C

)an, prove that f is homotopic to a
map f0 whose image is in (Pn

C
)an. Prove that on fundamental classes, the map f0

induces multiplication by 2. Use this and Poincaré duality to deduce the complete
ring structure on H ∗(Xan).

37. Prove that if f : X → Y is a birational morphism of smooth projective varieties over
C, then

f∗f ∗ = 1 : H ∗(Yan) → H ∗(Yan).

Deduce that Hk(Y ) is a direct summand of Hk(X) for any k. [By the projection
formula of Exercise 35, it suffices to prove this on the class 1 ∈ H 0.]

38. (Artin-Mumford)
(a) Let X be a smooth projective variety over C, and let Y ⊆ X be a smooth projective

subvariety of codimension r + 1. Let X′ = BlY (X) let f : X′ → X, be the
projection, and let i : Y → X be the inclusion. Prove that in the analytic topology,
R0f∗Z = Z, RqZ = i∗Z for q = 2i, 1 ≤ i ≤ r , and RqZ = 0 for other values of
q . (We omit the subscript ?an in this exercise to make the notation shorter.)

(b) Deduce from the Leray spectral sequence that we have an exact sequence of the
form

0

��

H 0(Y )
d3

�� H 3(X) �� H 3(X′) �� H 1(Y )
d3

�� H 4(X)

��

H 4(X′).

(All cohomology is with coefficients in Z.)
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(c) Deduce from part (b) and Exercise 37 that the torsion part of H 3(X) is isomorphic
to the torsion part of H 3(X′). [Observe from that Universal Coefficient Theorem
that H 1(Y ) is torsion free.]

(d) Suppose X and Y are smooth projective varieties over C which are birationally
equivalent. By a result of Hironaka (see [4] and Sect. 2.4 of Chap. 6 below), there
exists a smooth projective variety Z over C and birational morphisms f : Z → X,
g : Z → Y where f is a composition of projections of blow-ups of smooth
subvarieties. Deduce that the torsion part of H 3(Xan) is isomorphic to a subgroup
of the torsion part of H 3(Yan) and hence, by symmetry, the torsion subgroups of
H 3(Xan), H 3(Yan) are isomorphic. In other words, the torsion part of the third
singular cohomology group is a birational invariant.
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We shall now look more closely at how cohomology is used in algebraic geometry.
This will include exploring additional structure present on the cohomology of algebraic
varieties in the analytic topology as defined in the last chapter, as well as defining new
cohomology theories which are closer to the Zariski topology.

As in the last chapter, we will begin with de Rham cohomology. We shall study in more
detail what properties de Rham cohomology has when applied to complex manifolds, and,
eventually, to the analytic topology on smooth projective varieties over C. The additional
structure we see in this context is called Hodge theory.

Next, we will observe that there is an algebraic version of de Rham cohomology
obtained by plugging in a smooth algebraic variety instead of a manifold, and using regular
functions instead of analytically smooth functions. Thus, we encounter, once again, the
principle of imitating topological concepts algebraically. In the process, we shall study
the more general concept of cohomology with coefficients in quasicoherent sheaves.
Putting these methods together, we will be able to compare algebraic and geometric de
Rham cohomology in the smooth projective case (Serre’s GAGA Theorem), as well as
Grothendieck’s algebraic de Rham Theorem over C.

Algebraic de Rham cohomology of smooth varieties can be defined over any field, or
even a ring. For fields of characteristic 0, its behavior is largely as we would expect. For
fields of characteristic p > 0, (in addition to its good properties generally weakening),
one restriction of de Rham cohomology is that it produces only vector spaces over the
same field. Crystalline cohomology gives a method for obtaining, among other things,
non-torsion groups, and also Hodge-theory type information. We present here an approach
to crystalline cohomology using the de Rham-Witt complex, which does allow the
computation of some basic examples.

Crystalline cohomology of a smooth projective variety over the finite field Fp produces
Zp-modules. Is there another method which would give information in characteristic

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
I. Kriz, S. Kriz, Introduction to Algebraic Geometry,
https://doi.org/10.1007/978-3-030-62644-0_6

367

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62644-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-62644-0_6


368 6 Cohomology in Algebraic Geometry

� �= p? As it happens, a source of such information is in a concept we already studied
in Chap. 3, namely étale morphisms. Using étale morphisms, we can obtain entirely
new topological information. (Recall the concept of étale fundamental group in Chap. 3,
Sect. 5.6.) We shall briefly explore this topic in more detail here, introducing the concept
of a Grothendieck topology. Concretely, we shall describe the étale topology and the
cohomology theory it leads to, called étale cohomology. We shall compute some basic
examples, such as the étale cohomology of curves. We will see that quite strikingly, étale
cohomology behaves well precisely with finite coefficients whose order is not divisible by
the characteristic of the field. A guide to the foundational cornerstone of this theory, called
Zariski’s Main Theorem, is presented in the Exercises.

Can there be a cohomology theory which would combine, for varieties over any field,
all the information from different characteristics, and produce cohomology groups with
coefficients in Z? In the case of smooth varieties, such a “universal” cohomology theory (in
a less precise sense than used for spaces in Chap. 5) was defined by Bloch and Voevodsky
using the theory of algebraic cycles. We will present the most basic definitions of this
theory, called motivic cohomology, compute some basic examples, and state Voevodsky’s
main theorem comparing motivic and étale cohomology, in the final section.

The subject of cohomology theory is involved, and all the concepts introduced here
can, and should, be studied in further detail. Our principal purpose is mapping out the
basic directions of study, and treating the very first steps.

1 Hodge Theory

The goal of this section is to explore additional structure on the cohomology of smooth
projective varieties over C in the analytic topology.

1.1 Dolbeault Cohomology

From the material of Sect. 1.4 of Chap. 5, we see that for a complex manifold M , we have
a decreasing filtration on the de Rham complex �∗(M;C) given by

Fp�∗(M;C) =
⊕

k≥p

�k,∗(M;C),

(and similarly on the sheaf level). Now in Sect. 3.7.1 of Chap. 5, we have constructed a
spectral sequence associated with a decreasing filtration on a cochain complex, which, in
the present case, will take the form

E
p,q

1 = H
p,q

∂
(M) ⇒ Hp+q(M;C). (1.1.1)
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Here by H
p,q

∂
(M), we mean the q’th cohomology of the cochain complex

�p,0(M)
∂

�� �p,1(M)
∂

�� . . .
∂
�� �p,n(M) (1.1.2)

where �p,q(M) is placed in degree q . The cohomology groups H
p,q

∂
(M) are called

Dolbeault cohomology. The decreasing filtration on Hk(M,C) associated with the spectral
sequence (1.1.1) is called the Hodge filtration.

The key fact about Dolbeault cohomology is the following result:

1.1.1 Theorem (Dolbeault Theorem) We have

H
p,q

∂
(M) ∼= Hq(M,�

p
Hol). (1.1.3)

Proof We already proved that the complex of sheaves

�p,0(M)
∂

�� �p,1(M)
∂

�� . . .
∂
�� �p,n(M) (1.1.4)

consists of soft sheaves, and it is also obvious that its 0’th cohomology is �
p

Hol . Thus, we
can precisely mimic our proof of Theorem 2.5.10 of Chap. 5, if we we can prove that the
cochain complex of sheaves (1.1.4) has 0 cohomology in degrees > 0. This follows from
the ∂-Poincaré Lemma, which states that if D = {z ∈ C | ||z|| ≤ 1}, we have

H
p,q

∂
(D × · · · ×D︸ ︷︷ ︸

n

) = 0 for q > 0. (1.1.5)

(By the de Rham complex of D × · · · × D, we mean the direct limit of the de Rham
complexes of open neighborhoods of D × · · · ×D in Cn.) This is proved analogously to
Lemma 2.5.8 of Chap. 5. Let Ba = {z ∈ C | ||z|| < a}. We consider subcomplexes C(m,a)

of (1.1.2) with M = Ba × · · · × Ba , a > 1, spanned by differential forms

f dzi1 ∧ · · · ∧ dzik

such that i1 < · · · < ik < m, and f is holomorphic in coordinates m,m + 1, . . . , n. We
construct, for 0 < b < a, chain homotopies between the restriction C(m,a) → C(m,b) to a
chain map C(m,a) → C(m−1,b) ⊂ C(m,b). The homotopy is given by a formula precisely
analogous to (2.5.12) of Chap. 5, where the integral is replaced by

∫

Bb

g(w)

w − z
dw ∧ dw (1.1.6)
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with g(w) = f (z1, . . . , zm−1, w). Cauchy’s integral formula in complex analysis (see for
example [1]) implies that for a smooth function g on Ba , the integral (1.1.6) produces a
function h on on Bb which satisfies

∂h

∂z
= g.

The result is then proved by taking direct limits over a > 1. (Note the subtlety of having to
integrate in (1.1.6) over a disk whose closure is in the domain of definition of the smooth
function g; this technical difficulty is the reason for the limit argument.)

��

1.1.2 Corollary Let M be a complex manifold. Then we have a canonical isomorphism

Hk(M;C) = Hk
DR(M;C) ∼= Hk(M,�∗Hol).

(Recall that the right hand side means hypercohomology of M with coefficients in the
holomorphic de Rham complex �∗Hol .)

Proof By the Dolbeault Theorem and the sheaf version of the spectral sequence (1.1.1),
the complex de Rham complex �∗M,C is a soft resolution of the holomorphic de Rham
complex �∗M,Hol . ��

1.2 Riemann and Hermitian Metrics

For a smooth manifold M , a Euclidean metric on a sheaf F of C∞M -modules M is a
morphism of sheaves of C∞M -modules

g : F ⊗C∞M F → C∞M (1.2.1)

which is symmetric (i.e. for sections s, t ∈ F(U), g(s, t) = g(t, s) and is positive definite,
which means that for a section s ∈ F(U), g(s, s) ≥ 0 (at every point of U ), with equality
arising at a point x if and only if s = 0 at x. (By the value of a section s ∈ G(U) of a
sheaf of C∞M -modules G at a point x ∈ U we mean the image of s in the tensor product
G(U) ⊗C∞M (U) kx where kx is the residue field of the local ring C∞M,x - clearly, a similar
definition can be made for a sheaf of modules over any locally ringed space.)

For a sheaf F of C∞M,C-modules, a Hermitian metric on F is a morphism of sheaves of
C∞M,C-modules

g : F ⊗C∞
M,C

F → C∞M,C (1.2.2)
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(where F is equal to F as a sheaf of C∞M -modules, with multiplication by i replaced by
multiplication by −i), satisfying, for sections s, t ∈ F(U),

g(s, t) = g(t, s),

and g(s, s) ≥ 0 ∈ C∞M , with equality arising at a point x � U only for s = 0 at x. (Note
that a Hermitian metric on F is equivalent to a Hermitian metric on F .) When M is a
single point, these concepts reduce to the usual notions of positive definite real symmetric
(resp. Hermitian) forms (or, in another word, inner products) on a vector space over R
(resp. C).

The real part of a Hermitian metric is a Euclidean metric on F considered as a sheaf of
C∞M -modules. The imaginary part of a Hermitian metric defines an antisymmetric form

�2
C∞M F → C∞M .

(Here again we mean the obvious generalization to sheaves of modules of the exterior
power construction of Exercise 16 of Chap. 4.)

Note that a C∞M -linear combination with positive real function coefficients of (finitely
many) Euclidean (resp. Hermitian) metrics is a Euclidean (resp. Hermitian) metric. For a
Euclidean (resp. Hermitian) metric g, and sections s, t ∈ F(U), one often writes

〈s, t〉 = g(s, t).

A Riemann metric on a smooth manifold M is a Euclidean metric on �1
M , and a

Hermitian metric on a complex manifold M is a Hermitian metric on �
1,0
M . (Note that

complex conjugation gives a canonical isomorphism �
1,0
M

∼= �
0,1
M .) Riemann (resp.

Hermitian) metrics always exist by smooth partition of unity. A Riemann (resp. Hermitian)
manifold is a smooth (resp. complex) manifold with a Riemann (resp. Hermitian) metric.

For a complex manifold M , we have a canonical isomorphism of real bundles (i.e. C∞M -
modules)

�
1,0
M
∼= �1

M (1.2.3)

given by

κ → κ + κ.

Thus, the real part of a Hermitian metric on M defines a Riemann metric on M considered
as a smooth manifold.

Now for a smooth manifold M , a smooth vector bundle is a finitely generated locally
free sheaf of C∞-modulesF (i.e. M is covered by open sets U such thatF |U is isomorphic,
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as a F∞U -module, to a finite sum of copies of F∞U ). Smooth complex vector bundles and
holomorphic vector bundles over complex manifolds are defined analogously. One notes
that given Euclidean metrics on smooth vector bundles F , G, we get canonical Euclidean
metrics on F ⊗C∞M G, �k

C∞M (F), F∗ = HomC∞M (F , C∞M ). If e1, . . . , em is an orthonormal

basis of F(U) (i.e. 〈ei, ej 〉 = 1 when i = j and 0 otherwise), and f1, . . . , fp is an
orthonormal basis of G(U), then 〈ei⊗fj , ek⊗f�〉 = 1 when i = �, j = k, and 0 otherwise.
Similarly, for i1 < · · · < ik, j1 < · · · < jk , 〈ei1 ∧ · · · ∧ eik , ej1 ∧ · · · ∧ ejk 〉 = 1 when
is = js for all s = 1, . . . , k, and 0 otherwise. In F∗, the dual basis to an orthonormal basis
is orthonormal. It is a standard exercise to show that this does not depend on the choice of
orthonormal bases.

Completely analogous comments apply to Hermitian metrics (with the exception that
complex orthonormal bases are sometimes referred to as unitary).

Thus, given a Riemann metric on a smooth manifold (resp. a Hermitian metric on a
complex manifold) M , we automatically obtain canonical Euclidean metrics on �k

M (resp.
Hermitian metrics on �p,q(M)). We call such a manifold M a Riemann (resp. Hermitian)
manifold.

Note that for an n-dimensional Riemann manifold M , the smooth vector bundle �n
M is

1-dimensional, i.e. locally isomorphic to C∞M . Recall from Exercise 4 of Chap. 5 that an
orientation on M is given by an isomorphism of C∞M -modules

�n
M
∼= C∞M . (1.2.4)

Two orientations are considered the same if one is a positive multiple of the other. If an
orientation exists, then the smooth manifold M is called orientable. We already know from
the calculation of homology in Sect. 3.6 of Chap. 5 that, for example,RPn is not orientable
for n even.

On the other hand, (compare with Exercise 4 of Chap. 5), a complex n-manifold
M always has a canonical orientation. This is because for U ⊆ Cn with coordinates
x1, . . . , xn, letting dyk = I · dxk,

dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn

changes by a positive factor if we change coordinates holomorphically. (Here we denote
the imaginary unit acting on the real cotangent space of M by I , to avoid confusion with
the action of i after complexification.)

An orientation together with a Riemann metric on a smooth n-manifold M specify a
unique n-form dV ∈ �n(M) such that

〈dV, dV 〉 = 1

and dV is positive under the isomorphism (1.2.4). The form dV is called the volume form.
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Now it is a theorem of algebraic topology that if M is a compact connected oriented
manifold, then we have

Hn(M;Z) ∼= Z. (1.2.5)

A proof can be found in the Exercises of Chap. 5, in particular Exercise 32. For more
information, see [13]. We then have a unique generator [M] such that

vol(M) =
∫

[M]
dV > 0.

This number is called the volume of M . For a compact Riemann manifold with connected
components M1, . . . ,Mk (there are necessarily finitely many), one puts

[M] = [M1] + · · · + [Mk].

1.3 Hodge Theorem

Given real (resp. complex) smooth bundles F , G on a smooth manifold M with a Riemann
(resp. Hermitian) metric, for a morphism of bundles (i.e. morphism of sheaves of C∞M -
modules, resp. C∞M,C-modules)

Q : F → G,

we have a unique morphism

Q∗ : G → F

satisfying the identity

〈Qs, t〉 = 〈s,Q∗t〉

for sections s ∈ F(U), t ∈ G(U). We refer to Q∗ as the adjoint operator to Q. (An
analogy with this terminology is what inspired the term “adjoint functor.”)

The difficulty is that we also want to talk about adjoints of certain operators

Q : �∗M → �∗M (1.3.1)

for a Riemann manifold M or

Q : �∗M,C → �∗M,C (1.3.2)
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for a Hermitian manifold M which are morphisms of sheaves of C-modules but not of
C∞M -modules, such as d , ∂ or ∂ . For such operators Q, the definition of an adjoint operator
Q∗ requires more care. If M is a compact oriented Riemann manifold, we certainly require
that for forms κ, η on M of the applicable dimensions, we have

∫

[M]
〈Qκ, η〉dV =

∫

[M]
〈κ,Q∗η〉dV. (1.3.3)

This formula even makes sense for morphisms of sheaves of C-modules between any two
smooth vector bundles on M . However, apart from the fact that the formula (1.3.3) applies
only to global sections of bundles on a compact oriented Riemann manifold, the difficulty
is that it does not suggest how to prove existence (or uniqueness) of the operator Q∗, since
we are dealing with infinite-dimensional C-vector spaces.

In the case of bundles of differential forms when Q is one of the operators d , ∂ , ∂, this
difficulty can be circumvented by a device called the Hodge ∗-operator. For an oriented
Riemann n-dimensional manifold M , we have a unique morphism of smooth bundles

∗ : �k
M → �n−k

M (1.3.4)

given by

〈κ, η〉dV = κ ∧ ∗η. (1.3.5)

For a Hermitian manifold M of complex dimension n, the same formula defines a
morphism of smooth complex bundles

∗ : �p,q
M → �

n−p,n−q
M

∼= �
n−q,n−p
M . (1.3.6)

One has

∗ ∗ = (−1)k(n−k) : �k
M → �k

M (1.3.7)

in the oriented Riemann case, and

∗ ∗ = (−1)p(n−p)+q(n−q) : �p,q
M → �

p,q
M (1.3.8)

in the Hermitian case. (Note: For (1.3.8), we consider ∗ as a C-linear operator landing
in �n−q,n−p. If we considered it as an antilinear operator landing in �n−p,n−q , the sign
would be (−1)(p+q)(2n−p−q) = (−1)p+q .)
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Now we define

d∗ = − ∗ d∗, (1.3.9)

∂∗ = − ∗ ∂∗, ∂
∗ = − ∗ ∂ ∗ . (1.3.10)

In (1.3.10), we use, again, the convention of treating ∗ as a C-linear operator. It is useful
to note that in the Riemann case, while we assumed that M is oriented in the definition of
the ∗-operator, the definition of d∗ in fact is local and does not depend on the sign of dV ,
and thus makes sense for any Riemann manifold without assuming orientability.

Let us verify that for an oriented compact Riemann manifold, the definition (1.3.9)
satisfies (1.3.3): We have, using Stokes’ theorem,

∫

[M]
〈κ, d∗η〉dV =

−
∫

[M]
〈κ, ∗d ∗ η〉dV = −

∫

[M]
κ ∧ d ∗ η =

∫

[M]
dκ ∧ ∗η =

∫

[M]
〈dκ, η〉dV.

In the complex case, using Stokes’ theorem (keeping in mind that one summand vanishes
for reasons of type), we have

∫

[M]
〈κ, ∂∗η〉dV =

−
∫

[M]
〈κ, ∗∂ ∗ η〉dV = −

∫

[M]
κ ∧ ∂ ∗ η = −

∫

[M]
κ ∧ ∂∗η =

∫

[M]
∂κ ∧ ∗η =

∫

[M]
〈∂κ, η〉dV.

The proof for ∂ is analogous.
Now one defines the Laplacean operators by

�d = dd∗ + d∗d, �∂ = ∂∂∗ + ∂∗∂, �∂ = ∂∂
∗ + ∂

∗
∂. (1.3.11)

One has

1.3.1 Lemma For a differential form κ , one has

�d(κ) = 0 (1.3.12)
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if and only if

dκ = d∗κ = 0. (1.3.13)

Similarly for ∂ and ∂.

Proof It is clear that (1.3.13) implies (1.3.12). For the converse, note that

〈�dκ, κ〉 = 〈d∗κ, d∗κ〉 + 〈dκ, dκ〉,

and similarly in the case of ∂ and ∂ . ��

One usually denotes the kernel of �d on �k(M) for a Riemann manifold M by Hk
d ,

and calls its elements d-harmonic k-forms. The definitions of ∂-harmonic and ∂-harmonic
(p, q)-forms on a Hermitian manifold M is analogous.

1.3.2 Theorem (Hodge Theorem) For a compact Riemann manifold M , the R-vector
spaces Hk

d are finite-dimensional, and one has a direct sum decomposition

�k(M) = Hk
d ⊕ Imd ⊕ Imd∗.

For a compact Hermitian manifold M , the C-vector spaces Hp,q
∂ , Hp,q

∂
are finite-

dimensional, and one has a direct sum decomposition

�p,q(M) = Hp,q

∂ ⊕ Im∂ ⊕ Im∂∗,

�p,q(M) = Hp,q

∂
⊕ Im∂ ⊕ Im∂

∗
.

(By the images, we understand their summands in the given (bi)degree.)

Proving the Hodge theorem requires some advanced analysis, and exceeds the realm
of this text. The case of ∂ is proved in detail in [10]. The reader may wonder how come
an analogous result holds for the a priori quite different operators d , ∂ , ∂ . That is because
there is a version of the Hodge theorem for a broader class of elliptic differential operators,
to which they all belong. A treatment of that theory can be found in [26]. We will now state
some consequences of the Hodge Theorem.

1.3.3 Theorem

1. For a compact Riemann manifold M , we have a canonical isomorphism

Hk
d
∼= Hk(M;R).
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For a compact Hermitian manifold M , we have

Hp,q

∂
∼= Hq(M,�

p
Hol,M).

2. For a compact oriented Riemann n-manifold M , have a canonical isomorphism

Hk(M;R) ∼= Hn−k(M;R).

3. For a compact Hermitian manifold M of complex dimension n, we have a canonical
isomorphism

H
p,q

∂
(M) ∼= H

n−p,n−q

∂
(M).

Proof Equation (1) follows from Lemma 1.3.1 and from the Hodge Theorem. For
example, for the case of d , it suffices to notice that d is injective on Im(d∗), since we
have

〈dd∗κ, κ〉 = 〈d∗κ, d∗κ〉.

For the case of ∂, we additionally invoke Dolbeault’s theorem (Theorem 1.1.1).
For (2), the version of the Hodge ∗-operator for an oriented Riemann manifold gives an

isomorphism

Hk
d
∼= Hn−k

d ,

so the result follows from part (1).
For (3), the version of the Hodge ∗-operator for a Hermitian manifold gives an

isomorphism

Hp,q

∂
∼= Hn−q,n−p

∂ ,

while the right hand side is, by definition, isomorphic to Hn−p,n−q

∂
. ��

It should be pointed out that part (2) of Theorem 1.3.3 has a version which does not use
the Hodge theorem, or a Riemann metric. In fact, it even has a version valid in singular
homology and cohomology: for an oriented compact n-manifold M , the abelian groups
Hp(M) are finitely generated, and

? ∩ [M] : Hq(M;Z) → Hn−q(M;Z)
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is an isomorphism of abelian groups. This statement is referred to as Poincaré duality, and
it was proved in Exercise 32 of Chap. 5 (see also [13]). For de Rham cohomology, we can
rephrase it to state that

Hk
DR(M)⊗Hn−k

DR (M)
∧

�� Hn
DR(M)

∫
[M]

�� R

defines an isomorphism

Hk
DR(M) ∼= HomR(Hn−k

DR (M),R).

Note that for a compact complex manifold M , for reasons of type (i.e. examining what
p, q can satisfy p + q = 2n), we have a canonical homomorphism of C-vector spaces

H
n,n

∂
(M) → H 2n

DR(M;C).

The Kodaira-Serre duality states that this is an isomorphism of C-vector spaces and that
the composition

H
p,q

∂
(M)⊗H

n−p,n−q

∂
(M)

∧
�� H

n,n

∂
(M)

∫
[M]

�� C

defines an isomorphism

H
p,q

∂
(M) ∼= HomC(H

n−p,n−q

∂
(M),C).

1.4 Kähler Manifolds

Consider a complex manifold M with a Hermitian metric g. As remarked in Sect. 1.2, g

defines a Hermitian metric on the complex vector bundle (�
1,0
M )∗, which, in turn, can be

viewed as a global section γ of

�
1,0
M ⊗C∞

M,C
�

0,1
M
∼= �

1,1
M .

As a matter of convention,

ω = iγ ∈ �1,1(M)
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is called the Kähler form of M . The Hermitian manifold M is called a Kähler manifold if
we have

dω = 0. (1.4.1)

This is called the Kähler condition. On a Kähler manifold M , one defines a morphism of
C∞M,C-modules

L =? ∧ ω : �p,q

M → �
p+1,q+1
M .

One also also denotes

� = L∗

the adjoint operator. Denote for two graded operators A, B, one of which is of even degree,
[A,B] = AB − BA.

1.4.1 Lemma (Kähler Identities) We have

[L, ∂] = [L, ∂] = [�, ∂∗] = [�, ∂
∗] = 0, (1.4.2)

and

[L, ∂
∗] = −i∂, [L, ∂∗] = i∂, [�, ∂] = −i∂∗, [�, ∂] = i∂

∗
. (1.4.3)

Proof The identities (1.4.2) follow immediately from the Kähler condition (1.4.1).
Regarding (1.4.3), we shall prove

[L, ∂
∗] = −i∂. (1.4.4)

All the other identities follow by complex conjugation or adjunction.
To prove (1.4.4), let φ1, . . . , φn be an orthonormal basis of �

1,0
M . Then we have

ω = i

n∑

s=1

φs ∧ φs.

Moreover, putting for I = {i1 < · · · < ip}, J = {j1 < · · · < jq}

φI = φi1 ∧ · · · ∧ φip , φJ = φj1
∧ · · · ∧ φjq

,

for a complex differential form

κ = fφI ∧ φJ ∈ �p,q(U),
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we can write

∂κ =
∑

s /∈I

∂s,I,J f φs ∧ φI ∧ φJ ,

∂κ =
∑

s /∈J

∂s,I,J f φs ∧ φI ∧ φJ .

Furthermore, we have

∂s,I,J f = ∂s,J,I f ,

and the Kähler condition implies that for k /∈ I ∪ J , we have

∂s,I∪{k},J∪{k} = ∂s,I,J , ∂s,I∪{k},J∪{k} = ∂s,I,J .

Letting I ′ = {1, . . . , n}� I , J ′ = {1, . . . , n}� J , we note that this also implies

∂s,I,J = ∂s,J ′,I ′ , ∂s,I,J = ∂s,J ′,I ′ ,

since

J ′ � I = I ′ � J = J ′ ∩ I ′,

J � I ′ = I � J ′ = I ∩ J.

Using these relations, and denoting J≤j = {s ∈ J | s ≤ j } (and J>j similarly), one
computes:

∂
∗
(f φI ∧ φJ ) = −

∑

j∈J

(−1)|J>j |(∂j,J ′,I ′f )φI ∧ φJ�{j}.

Thus,

(∂
∗
f φI ∧ φJ ) ∧ ω =

−i
∑

j∈J
k/∈I∪J

(−1)|J≤j |+|I |(∂j,J ′,I ′f )φI ∧ φJ�{j} ∧ φk ∧ φk

−i
∑

j∈J

(−1)|J≤j |+|I |(∂j,J ′,I ′f )φI ∧ φJ�{j} ∧ φj ∧ φj ,
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while

∂
∗
(f φI ∧ φJ ∧ ω) =

−i
∑

k/∈I∪J
j∈J

(−1)|J≤j |+|I |(∂i,J ′�{k},I ′�{k}f )φI ∧ φJ�{j} ∧ φk ∧ φk

−i
∑

k/∈I∪J

(−1)|I |+|J |(∂k,J ′,I ′f )φI ∧ φJ ∧ φk.

Subtracting these expressions, we see that the first terms on the right hand side cancel,
while the second terms add up to

−i∂(f φI ∧ φJ ),

as claimed. ��

1.4.2 Corollary On a Kähler manifold M , we have

[L,�d ] = 0, [�,�d ] = 0, (1.4.5)

�d = 2�∂ = 2�∂. (1.4.6)

Proof For (1.4.5), both identities are adjoint, so we shall only treat the case of L. It is
possible to simply plug in and use Lemma 1.4.1. This is basically the only proof there is,
but it is possible to make it slightly more conceptual by noting the following: For three
even-degree operators A,B,C, one easily checks that we have

[[A,B], C] + [[B,C], A] + [[C,A], B] = 0. (1.4.7)

This is called the Jacobi identity. A vector space over a field of characteristic �= 2, 3 with a
bilinear operation [?, ?] which is antisymmetric (i.e. satisfies [A,B] = −[B,A]), and the
Jacobi identity, is called a Lie algebra. The operation [?, ?] is then called the Lie bracket.
Thus, in particular, an associative algebra with the operation [a, b] = ab − ba is a Lie
algebra.

Now for graded operators A, B, we can also put

[A,B] = AB − (−1)|A| |B|BA

where |A| denotes the degree of A. Note that, for example, in this sense,

�d = [d, d∗].
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Then we have the graded Jacobi identity

[[A,B], C] + (−1)(|B|+|C|)|A|[[B,C], A] + (−1)(|A|+|B|)|C|[[C,A], B] = 0, (1.4.8)

which is just as easy to verify as the ungraded one. From this point of view, we have

[[d, d∗], L] − [[d∗, L], d] + [[L, d], d∗] = 0,

so it just suffices to note that [[L, d], d∗] = 0, which easily follows from the Kähler
identities.

Accordingly, a Z/2-graded vector space over a field of characteristic �= 2, 3 which
satisfies, for homogeneous elements,

[A,B] + (−1)|A| |B|[B,A] = 0

and (1.4.8) is called a super-Lie algebra.
Using the graded Jacobi identity, (1.4.6) is easily proved as well. For example,

−[∂, [�, ∂]] + [�, [∂, ∂]] + [∂, [∂,�]] = 0

implies

[∂, ∂
∗] = −i[∂, [�, ∂]] = 0.

Similarly,

[∂, ∂∗] = 0.

Therefore,

�d = [∂ + ∂, ∂∗ + ∂
∗] = [∂, ∂∗] + [∂, ∂

∗] = �∂ +�∂.

Now the graded Jacobi identity

−[∂, [�, ∂]] + [�, [∂, ∂]] + [∂, [∂,�]] = 0

(together with the fact that [∂, ∂] = 0) imply that

�∂ = �∂.

��
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Now in view of the Hodge Theorem, (1.4.6) in particular implies that on a compact
Kähler manifold M , we have

Hp,q
d = Hp,q

∂ = Hp,q

∂
.

Since, by definition,

Hp,q
∂ = Hq,p

∂
,

we conclude that

Hp,q
d = Hq,p

d .

Now recall the spectral sequence (1.1.1). By the Hodge Theorem, then, the spectral
sequence (1.1.1) collapses to E1, and the Hodge filtration on FpHk(M,C) satisfies, for
p + q = k, the isomorphism

FpHk(M;C) ∩ FqHk(M;C) ∼= H
p,q

∂
(M;C). (1.4.9)

(At this point, one simply denotes the left hand side by Hp,q(M).)
In fact, note that the spectral sequence (1.1.1), by collapsing to E1, determines an

isomorphism

H
p,q

∂
(M,C) ∼= FpHk(M;C)/Fp+1Hk(M;C),

while we also have a canonical homomorphism

FpHk(M;C) ∩ FqHk(M;C)→ FpHk(M;C)/Fp+1Hk(M;C),

which we have now proved is an isomorphism. Thus, the isomorphism (1.4.9) does not
depend on the choice of a Kähler metric!

Now we can combine this with the fact that by the finiteness statement of Poincaré
duality and the universal coefficient theorem, for a compact complex manifold M , we
have a canonical isomorphism

Hk(M;Z)⊗ C ∼= Hk(M;C).

Define then a Hodge structure of weight k to consist of a finitely generated abelian group
A and a direct sum decomposition

A⊗ C =
⊕

p∈Z
Ap,k−p
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such that

Ap,q = Aq,p.

(Sometimes we also speak of a weight k Hodge structure on A.) Define a morphism of
Hodge structures as a homomorphism of abelian groups h : A → B such that

(h⊗ C)(Ap,q) ⊆ Bp,q .

We have therefore proved the following

1.4.3 Theorem (Hodge Decomposition Theorem) Let M be a compact complex mani-
fold on which there exists a Kähler metric. Then we have a canonical Hodge structure of
weight k on Hk(M;Z), functorial with respect to holomorphic diffeomorphisms (i.e., in
particular, independent of the choice of Kähler metric).

��

1.5 The Lefschetz Decomposition

For a Lie algebra L over a field F , a representation of L over F is an F -vector space V

with a linear morphism

h : L→ HomF (V, V )

such that for x, y ∈ L, we have

[h(x), h(y)] = h([x, y])

(i.e. a homomorphism of Lie algebras). A representation of a super-Lie algebra on a
Z/2-graded vector space is defined analogously. The above argument really rested on the
fact that the de Rham complex of a Kähler manifold is a representation of the super-
Lie algebra generated by the symbols ∂, ∂, ∂∗, ∂∗, L,� subject to relations given by the
Kähler identities and the usual anticommutation relations between ∂ and ∂ , and ∂∗ and ∂

∗
.

It is worth mentioning that this can be pushed a little further. If one defines

H = [L,�], (1.5.1)

one can show that

[H,L] = 2L, [H,�] = −2�, (1.5.2)
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and in fact that on �p,q(M) for a Kähler manifold M , H acts by

p + q − n. (1.5.3)

The Lie algebra generated by the symbols H,L,� subject to the relations (1.5.1), (1.5.2)
is easily seen to be isomorphic to the Lie algebra sl2(C) of 2 × 2 matrices with trace 0
with Lie bracket given by [A,B] = AB −BA, where L,�,H correspond to the matrices

(
0 1

0 0

)
,

(
0 0

1 0

)
,

(
1 0

0 −1

)
,

respectively.
For a compact Kähler manifold M , since the operators L,� commute with �, we have,

for each k, a finite-dimensional representation

⊕

p−q=k

Hp,q .

(We omit the subscripts d, ∂, ∂ , since they do not matter.) The numbers by which the
operator H acts are called weights. Finite-dimensional representations of sl2(C) have
been classified, and are, in fact, isomorphic to direct sums of representations of the form
V� = Sym�(V ) where V = C2 is the “standard” representation given by multiplication of
matrices. Here Sym�(V ) denotes the �th symmetric power, which, for a basis x1, . . . , xm

of a vector space V , can be identified with the vector space of homogeneous polynomials
in x1, . . . , xm of degree �. In the present case, the C-vector space V has dimension 2, so
V� has dimension �+ 1.

In fact, we can pick basis elements of V of weights −1, 1, thus showing that the
representation V� has weights

−�,−�+ 2, . . . , �− 2, �.

Thus, we know that H∗,∗ is a direct sum of representations of the form V�, (for varying �)
with bottom weight −� in Hp,q ,

p + q = n− �.

Furthermore, one notes that the operator L does not depend on the Kähler metric (even
though the operator � does), so if we define

PHp,q(M) = {α ∈ Hp,q(M) | α ∪ ωn+1−p−q = 0},

one obtains the following result:
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1.5.1 Theorem (Hard Lefschetz Theorem) The de Rham cohomology of a compact
complex manifold on which there exists a Kähler metric decomposes canonically, and
functorially with respect to holomorphic diffeomorphisms, as

⊕

p,q

⊕

0≤i≤n−p−q

PHp,q(M) ∪ {ωi}. (1.5.4)

��
The decomposition (1.5.4) is referred to as the Lefschetz decomposition. To read about

basic representation theory, including the classification of finite-dimensional representa-
tions of sl2(C), we recommend [8].

1.6 Examples

1.6.1 The Fubini-StudyMetric
By the discussion of the beginning of Sect. 1.4, a (1, 1)-form

ω ∈ �1,1(M) ∼= �1,0(M)⊗C∞(M,C) �1,0(M)

γ = −iω is a Hermitian metric on M if

γ ∗ = γ (1.6.1)

where (?)∗ is the composition of the homorphisms of R-vector spaces

�1,0(M)⊗C∞(M,C) �1,0(M)

T
��

�1,0(M)⊗C∞(M,C) �1,0(M)

?
��

�1,0(M)⊗C∞(M,C) �1,0(M)

where T is switching factors, and ? is complex conjugation, and we have positivity, which
can be expressed by requiring that for every point x ∈ M , and every non-zero complex-
linear homomorphism f : �1,0(x)→ C, we have

(f ⊗C f )(γx) > 0. (1.6.2)
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(Here by �1,0(x) we mean again the finite-dimensional C-vector space of “values at x,”
technically obtained from the stalk by tensoring over the stalk C∞M,C,x with the residue field
C.)

We can use the conditions (1.6.1), (1.6.2) to construct Kähler metrics from closed
(1, 1)-forms. Most notably, on CPn, we have the Fubini-Study metric, constructed as
follows. Denote by π : Cn+1 � {0} → CPn the projection, consider for an open set
U ⊂ CPn a holomorphic section s : U → Cn+1 � {0} (i.e. a holomorphic map such that
for x ∈ U , π(s(x)) = x). Then put

ω = i

2π
∂∂ ln(〈s, s〉). (1.6.3)

Since for a holomorphic function g : U → C� {0},

∂∂ ln(gg) = 0,

we see that (1.6.3) does not depend on the choice of holomorphic section, and thus is
a well-defined (1, 1)-form on CPn. Additionally, for γ = −iω, (1.6.1) is immediately
obvious from the definition (the multiplication by i is only a matter of historical
convention, anyway). Thus, to show that γ defines a Kähler metric on CPn, it remains
to verify the condition (1.6.2). Since clearly applying a unitary transformation on Cn+1

(i.e. one that preserves the inner product) preserves ω, it suffices to verify (1.6.2) at the
point [1 : 0 : · · · : 0] ∈ CPn. Letting

s([1 : z1 : · · · : zn]) = (1, z1, . . . , zn),

we have

∂∂ ln(1+ z1z1 + · · · + znzn) = ∂
z1dz1 + · · · + zndzn

1+ z1z1 + · · · + znzn
.

At z1 = · · · = zn = 0, the right hand side is

dz1dz1 + · · · + dzndzn,

which, for a non-zero linear form f (dzj ) = aj ∈ C gives

(f ⊗ f )(dz1 ⊗ dz1 + · · · + dzn ⊗ dzn) = a1a1 + · · · + anan > 0.

Thus, the Fubini-Study metric is a Kähler metric, and using restriction, we proved
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1.6.2 Theorem On every smooth projective variety over C with the analytic topology
there exists a Kähler metric.

��

1.6.3 The Cohomology of the Complex Projective Space
In Sect. 3.6 of Chap. 5, we proved that the singular homology of CPn is Z in even degrees
0 ≤ k ≤ 2n, and 0 else. By the universal coefficient theorem of Sect. 3.5 of Chap. 5, the
same is true about singular cohomology with coefficients in Z. Using Poincaré duality and
(3.5.13) of Chap. 5, we see that there is class u ∈ H 2(CPn;Z) such that

H ∗(CPn;Z) ∼= Z[u]/(un+1)

(see also Exercise 34 of Chap. 5). By Theorem 1.4.3, then, there is weight 2k Hodge
structure on

H 2k(CPn;Z) ∼= Z

for 0 ≤ k ≤ n. We see that the only possibility is Hk,k(CPn) ∼= C, Hk,�(CPn) = 0 for
� �= k. We also note that there is, in fact, up to isomorphism, a unique Hodge structure
on Z of even weight 2k, k ∈ Z. There is no Hodge structure on Z of odd weight. The
Hodge structure of weight 2k on Z is, by convention, denoted by Z(−k), and called the
Tate Hodge structure. (In some sources, the term Tate Hodge structure is more narrowly
reserved forZ(1).) It should be also noted that, as we shall see later, the symbolZ(k) is also
used for objects which play, in some sense, analogous roles to the Tate Hodge structures
in other categories.

1.6.4 Elliptic Curves overC
Suppose L is a lattice in C, i.e. a subgroup of C isomorphic to Z2, which is discrete in the
induced topology. Lattices in C form a category where a morphism L1 → L2 is a number
λ ∈ C such that λ(L1) ⊆ L2. For a lattice L in C, the Weierstrass function is defined by

PL(z) = 1

z2 +
∑

a∈L�{0}

(
1

(z+ a)2 −
1

a2

)
.

The series converges absolutely locally uniformly in z /∈ L, so this is, in fact, a function
holomorphic on C�L, and has, in fact, a pole of degree 2 at each point of L. Moreover, by
grouping terms (which is possible due to absolute convergence), one sees that for a ∈ L,
we have

PL(z+ a) = PL(z).
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Expanding the Weierstrass function in the neighborhood of 0, one gets

PL(z) = z−2 + 1

20
g2z

2 + 1

28
g3z

4+ ≥ 6’th powers of z

where

g2 = 60
∑

a∈L�{0}
a−4,

g3 = 140
∑

a∈L�{0}
a−6.

One has the Weierstrass equation

(P ′L)2 = 4(PL)3 − g2PL − g3. (1.6.4)

To show this, one expands

(P ′L(z))2 = 4

z6 −
2

5

g2

z2 −
4

7
g3 + higher powers,

(PL(z))3 = 1

z6 +
3

20

g2

z2 +
3

28
g3 + higher powers,

so the difference of the two sides of (1.6.4) is bounded holomorphic function on C with
zero at z = 0, which is therefore 0 constantly.

Thus, setting x = P ′L, y = PL turns (1.6.4) into the equation

x2 = 4y3 − g2y − g3, (1.6.5)

which is the equation of an affine part of an elliptic curve CL over C. One can show that all
elliptic curves overC arise in this fashion. (See [23] for more details.) For us, it is important
that the elliptic curve (CL)an with the analytic topology is, in fact, holomorphically
diffeomorphic to the quotientC/L (which has an obvious canonical structure of a complex
manifold). To see this, in the neighborhood of the point at∞, change variables to

u = y

x
, v = 1

x
,

so (1.6.5) becomes

v = 4u3 − g2uv2 − g3v
3.
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The point at ∞ then has coordinates u = 0, v = 1, and u′(0) �= 0, so one can solve for z

by the implicit function theorem.
Thus, we can apply Hodge theory to (CL)an

∼= C/L. In fact, picking generators a1, a2

of the free abelian group L, we have a homeomorphism

S1 × S1 ∼= C/L

given by

(x, y) → a1x + a2y

(thinking of S1 as [0, 1]/(0 ∼ 1) with the quotient topology). By the Künneth theorem,
we then have

H 0(C/L;Z) ∼= Z, H 1(C/L;Z) ∼= Z⊕ Z, H 2(C/L;Z) ∼= Z

(and Hk(C/L;Z) = 0 for k �= 0, 1, 2). By the Hodge decomposition, we then know that

H 1,0(C/L) ∼= H 0,1(C/L) ∼= C.

In fact, we can see that H 1,0(C/L) is generated by dz. To see this, one needs to observe
that dz �= 0 ∈ H 1(C/L). To this end, one notes that

∫

s

dz = a1,

∫

t

dz = a2 (1.6.6)

where s resp. t is the singular simplex mapping [0, 1] linearly to [0, a1] (resp. [0, a2]).
These integrals are referred to as periods. Since s, t represent cycles in H1(C/L;Z), if dz

were a coboundary, these integrals would be 0 by Stokes’ theorem.
Since the homology classes s, t , in fact, generate H1(C/L;Z), we see that that the

Hodge structure on A = H 1((CL)an;Z) ∼= Z⊕ Z has

H 1,0 = C · (a1, a2) H 0,1 = C · (a1, a2). (1.6.7)

(It follows, but is also easily verified directly, that the vectors (a1, a2) and (a1, a2) are
C-linearly independent.)

We see that an automorphism of the abelian group Z⊕ Z replaces in (1.6.7) a1, a2 by
a different set of generators of the lattice L. Thus, the Hodge structures of CL, CL′ are
isomorphic if and only if the lattices L, L′ are isomorphic.

Therefore, for the curves CL, CL′ to be isomorphic as algebraic varieties over C, it is
necessary that the lattices L, L′ be isomorphic. One can show that this is sufficient as well,
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by displaying an algebraic isomorphism of elliptic curves given by the transformation of
g2, g3 induced by the isomorphism of lattices (see [23] for details).

2 Algebraic de RhamCohomology

After having studied some of the constructions by which cohomology arises in topology,
it makes sense to consider the question of imitating these constructions algebraically, i.e.
in the Zariski topology. We shall mostly focus on the case of a smooth variety over a field.
Apart from being “more intrinsic” to algebraic geometry, such constructions allow us for
example to consider cohomology of varieties over fields of characteristic > 0, or have a
cohomology theory functorial with respect to automorphisms of the ground field.

2.1 The Algebraic de Rham Complex

Let us begin by noting that the first possible approach that may come to mind, namely
taking the cohomology of a constant abelian sheaf, fails, in a spectacular fashion, to
produce an analogous effect as in the analytic topology:

2.1.1 Proposition Suppose X is a non-empty irreducible topological space and A is an
abelian group. Then the constant sheaf A on X is flasque. Consequently, for any abelian
group B,

H 0(X,B) = B, Hn(X,B) = 0 for n > 0.

Proof Dualizing the irreducibility condition shows that all non-empty open sets in X are
connected. Given this, we see that A(U) = A for A �= ∅, and A(∅) = 0. The statement
follows. ��

2.1.2 Kähler Differentials
Given this, it may come as a pleasant surprise that an algebraic analogue of the de Rham
complex in fact works much better. Let us begin with the affine case. Let A → B be
a homomorphism of commutative rings (in other words, let B be an A-algebra). Then a
differentiation on B over A consists of a B-module M and a homomorphism of A-modules

d : B → M

such that

d(1) = 0
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and for x, y ∈ B,

d(xy) = xdy + ydx.

It is easy to see that there exists a universal differentiation, i.e. a differentiation

d : B → �B/A

such that for any differentiation d ′ : B → M , there exists a unique homomorphism of
B-modules f : �B/A → M with d ′ = f ◦ d:

B
d

��

d ′ ���
��

��
��

�
�B/A

��
f

M.

To see this, simply take the free B-module on elements db, b ∈ B, and factor by the
submodule generated by da, a ∈ A, and d(xy)− xdy − ydx for x, y ∈ B. The B-module
�B/A is called the B-module of Kähler differentials of B over A.

2.1.3 Lemma Let A be a Noetherian ring and suppose that B is a standard smooth A-
algebra of dimension k. Then �B/A is a rank k (in particular, finitely generated) projective
B-module.

Proof By Lemma 2.2.4 of Chap. 4, it suffices to prove that �B/A is a finitely generated
locally free module. To this end, it suffices to assume that A is a local ring. If B is smooth
over A, then we have

B = A[z1, . . . , zn]/(p1, . . . , pm), m+ k = n

where the ideal generated by the determinants of the m × m submatrices of the Jacobi
matrix in B contains 1. Now the B-module �B/A is, by definition, the quotient of the free
B-module on elements dz1, . . . , dzn, modulo the relations

∂p1

∂z1
dz1 + · · · + ∂p1

∂zn

dzn = 0,

. . .
∂pm

∂z1
dz1 + · · · + ∂pm

∂zn

dzn = 0.

(2.1.1)
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Now let p be a prime ideal of B. We claim that �B/A ⊗B Bp is a finitely generated free
Bp-module. To this end, note that a maximal subdeterminant of the Jacobi matrix, say, on
columns i1 < · · · < im, must be non-zero in the residue field Bp/p, which means that it is
a unit in Bp . Thus, the linear equations (2.1.1) can be solved for dzi1 , . . . , dzim in terms of
the other dzj ’s, thus proving that �B/A ⊗B Bp is a free Bp-module on those generators.

��

2.1.4 Algebraic de Rham Cohomology
Now let X be a smooth variety of dimension n over a field k. Then X is covered by open
sets Ui = Spec(Ai) where each Ai is a standard smooth k-algebra. Since we clearly have,
for g ∈ Ai , �g−1Ai/k = g−1�Ai/k , the �Ai/k’s glue to a coherent sheaf �X/k, and we
have a morphism of sheaves of k-modules (although not of OX-modules)

d : OX → �X/k.

We may now form a cochain complex �∗X/k of sheaves of k-modules on X of the form

OX

d
�� �1

X/k

d
�� �2

X/k

d
�� . . .

d
�� �n

X/k
(2.1.2)

where

��
X/k = ��

OX
�X/k

and the differential is, as in the analytic case, uniquely determined by the conditions

d ◦ d = 0

and for sections ω ∈ ��
X/k(U), η ∈ �m

X/k(U),

d(ω ∧ η) = (dω) ∧ η + (−1)�ω ∧ dη.

(The point is that, again, by the fact that the sheaf �X/k is locally free, each section can
locally be written as a linear combination of sections of the form

f dzj1 ∧ · · · ∧ dzjm

for some basis dzj .) The complex (2.1.2) is referred to as the algebraic de Rham complex
of the variety X. The hypercohomology groups

Hm
DR(X) = Hm(X,�∗X/k)
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are referred to as the algebraic de Rham cohomology of X over k. (Compare with
Corollary 1.1.2.)

2.1.5 The Non-smooth Case
While we will focus on the case of a smooth variety in this section, it is important for later
to note that the definition of the algebraic de Rham complex actually does not need this
assumption. For any homomorphism of commutative rings A → B, we may define

�∗B/A = �B�B/A

(see Exercise 16 of Chap. 4). The differential

d : ��
B/A → ��+1

B/A

is well-defined. In fact, in the case of a polynomial algebra B0 = A[xi | i ∈ S], we see
that �∗B0/A

is the exterior algebra on B0 on generators dxi , i ∈ S, and when B = B0/I for
an ideal I , we can describe �∗B/A as the factor of the differential graded A-algebra �∗B0/A

by the differential graded ideal generated by I , which is the (two-sided) ideal generated
by I , dI . Here by a differential graded A-algebra we mean a graded-commutative graded
A-algebra R = ⊕

n∈N0
Rn with a differential d : Rn → Rn+1 such that for x ∈ Rm,

y ∈ Rn,

x · y = (−1)mny · x, d(x · y) = (dx) · y + (−1)mx · dy,

and da = 0 for a ∈ A. A differential graded ideal is an ideal J generated by homogeneous
elements such that

dJ ⊆ J.

The factor of a differential graded algebra by a differential graded ideal is easily verified
to be again a differential graded algebra with the induced differential. In particular,

�∗B/A = �∗B0/A
/J

where J is the ideal generated by {x, dx | x ∈ I } (this is proved by considering the
universal property of both sides).

Thus, by gluing sheaves, for a scheme X over Spec(A), we also have a complex of
sheaves �∗X/A on X.
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2.2 Quasicoherent Cohomology

One of our tasks will be comparing, for a smooth variety X over C, the algebraic de Rham
cohomology of X with the analytic de Rham cohomology of Xan. To this end, however, it
will be useful to make a few remarks about cohomology of schemes with coefficients in
quasicoherent sheaves.

2.2.1 Lemma Let R be a Noetherian ring. Suppose I is an injective R-module. Then the
quasicoherent sheaf on Spec(R) corresponding to I is flasque.

Proof We need to prove that for elements f1, . . . , fn ∈ R, xi ∈ f−1
i I such that xi, xj

map to the same element of (fifj )
−1I , there exists an element x ∈ I which maps to

xi ∈ f−1
i I . This is done by induction on n. For n = 1, let f = f1. The annihilator of an

element m ∈ M of an R-module M is the R-ideal

AnnR(m) = {g ∈ R | gm = 0}.

Since R is Noetherian, there exists an N such that

Ann(f N) = Ann(f N+1) = . . . . (2.2.1)

Now for an element f−r z ∈ f−1I , define

(f N+r ) → I (2.2.2)

by

f N+r → f Nz,

which is possible by (2.2.1). Extending (2.2.2) to a map

(f N) → I,

the image of f N maps to f−r z ∈ f−1I , as required.
Now consider our assumption for a given n > 1, and suppose the statement is true with

n replaced by n − 1. Let y ∈ I be an element which maps to xn ∈ f−1
n I . Then for some

N ,

f N
n (y − xi) = 0 ∈ f−1

i I, i = 1, . . . , n− 1, (2.2.3)
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Suppose xi = f
−ri
i zi , zi ∈ I . Then (2.2.3) implies the existence of an M such that

f N
n f M

i (yf
ri
i − zi) = 0 ∈ I. (2.2.4)

Now consider the ring R′ = R/(f N
n ) and the R′-module

I ′ = HomR(R/f N
n , I).

By (2.2.4), y − xi , i = 1, . . . , n − 1, can be considered as elements of f−1
i I ′, which,

additionally, satisfy our hypothesis with n replaced by n − 1 and R replaced by R′.
Additionally, the R′-module I ′ is injective. Thus, by the induction hypothesis, there exists
a u ∈ I ′ such that

u → y − xi ∈ f−1
i I ′, i = 1, . . . , n− 1.

Considering u as an element of I , we then have

y − u → xi ∈ f−1
i I, i = 1, . . . n,

as required. ��

2.2.2 Proposition Suppose R is a Noetherian ring and F is a quasicoherent sheaf of R-
modules on Spec(R). Then

Hn(Spec(R),F) = 0 for n > 0.

Proof Consider an injective resolution

I0 → I1 → . . . (2.2.5)

of the R-module M corresponding to F . Then by Lemma 2.2.1, the corresponding exact
sequence of quasicoherent sheaves

I0 → I1 . . .

is a flasque resolution of F . Applying global sections, we get (2.2.5) again, and the
statement follows. ��

2.2.3 Lemma Let X be a Noetherian scheme. Then the abelian category of quasicoherent
sheaves of OX-modules has enough injectives. Moreover, from every object, there exists a
monomorphism into an injective I such that I is also flasque as an abelian sheaf. For a
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quasicoherent sheaf F on X, the abelian group Hn(X,F) is canonically isomorphic to the
n’th right derived functor Rn� in the category of quasicoherent sheaves of OX-modules.

Proof Let U1, . . . , Un be a cover of X by affine open sets. Then quasicoherent sheaves of
the form

n⊕

s=1

js∗(Fs) (2.2.6)

where js : Us → X are the inclusions, and Fs correspond to injective OUs (Us)-modules
are clearly injective in the category of quasicoherent sheaves on X, and obviously there
is a monomorphism from every quasicoherent sheaf on X to a quasicoherent sheaf of the
type (2.2.6) (by restriction). On the other hand, abelian sheaves of the form (2.2.6) are
flasque by Lemma 2.2.1.

The last statement follows from Proposition 2.3.21 of Chap. 5. ��

2.2.4 Quasicoherent Čech Cohomology
Let X be a separated Noetherian scheme, let F be a quasicoherent sheaf on X, and let
U = (U1, . . . Un) be an open affine cover. Recall that all intersections Ui1 ∩ · · · ∩ Uik are
also affine. Then the Čech complex ČU (X,F) of X with coefficients in F with respect to
the covering U is defined as the cochain complex

⊕

1≤i0≤n

F(Ui0)
d

�� . . .
d

��
⊕

1≤i0<···<ik≤n

F(Ui0 ∩ · · · ∩ Uik )
d

�� . . .

(2.2.7)

where the first term is placed in cohomological degree 0 and the differential is the direct
sum of maps

F(Ui0 ∩ . . . Ûis · · · ∩ Uik ) → F(Ui0 ∩ · · · ∩Uik )

is (−1)s times restriction. (As usual, ?̂ denotes a missing term.) The cohomology of
ČU (X,F) is denoted by Ȟ k

U (X,F), and called the quasicoherent Čech cohomology of
X with coefficients in F with respect to the covering U .

When F is a chain complex of sheaves then (2.2.7) is a double chain complex, and
by ČU (X,F), we mean its totalization. Its cohomology Ȟ k

U (X,F) is then referred to as
the quasicoherent Čech hypercohomology of X with coefficients in F with respect to the
covering U .

Note that Ȟ k
U (X,F) makes sense for every finite open cover of a topological space X,

and any abelian sheaf F .
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2.2.5 Lemma Let U = (U1, . . . , Un) be a finite open cover of a topological space X, and
let F be a flasque sheaf on X. Then

Ȟ 0
U (X,F) = F(X)

and

Ȟ k
U (X,F) = 0 for k > 0.

Proof Induction on n. For n = 1, there is nothing to prove. Suppose the statement is
true with n replaced by n − 1. Let V = U1 ∪ · · · ∪ Un−1, V = (U1, . . . , Un−1), W =
(U1 ∩ Un, . . . , Un−1 ∩ Un). Then ČU (X,F) is isomorphic to the mapping co-cone of the
canonical chain map (induced by restriction)

ČV (V ,F |V )⊕ F(Un) → ČW (V ∩ Un,F |V∩Un).

By the induction hypothesis, this is quasiisomorphic to the mapping co-cone of

F(V )⊕ F(Un) → F(V ∩ Un),

which has 0’th cohomology isomorphic to F(X) by the gluing property of sheaves, and
first cohomology isomorphic to 0 by the fact that F is flasque. ��

2.2.6 Proposition Let X be a separated Noetherian scheme, let U be an open cover of X

by affine open sets, and let F be a quasicoherent sheaf (or bounded above chain complex
of quasicoherent sheaves) on X. Then we have a canonical isomorphism

Ȟ k
U (X,F) ∼= Hk(X,F).

Proof Let I be an injective resolution of F in the category of quasicoherent sheaves on X

by sheaves which are also flasque as abelian sheaves. Then the Čech complex

ČU (X,I)

is a double chain complex bounded above in both degrees. Denote the I-differential by
dI and the Čech differential by ď . Then we have two spectral sequences convergent to
Ȟ ∗
U (X,I), depending on by which degree we filter.
One spectral sequence with E1-term

H ∗(ČU (X,I), ď)
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which is isomorphic to

�(I)

concentrated in q = 0 by Lemma 2.2.5. Thus, the spectral sequence collapses to E2 =
H ∗(X,F).

The other spectral sequence has E1-term

H ∗(ČU (X,I), dI),

which is canonically isomorphic to Č(X,F) by Proposition 2.2.2. ��

COMMENT Čech cohomology may be defined for an arbitrary abelian sheaf on a
topological space X by allowing ordered infinite covers (replacing

⊕
with

∏
in (2.2.7)),

and taking a colimit with respect to refinement of covers. (One needs to notice that up
to canonical isomorphism, the Čech complex does not really depend on the ordering of
the cover.) This way, we obtain a generalization of the first Čech cohomology considered
in Sect. 3.1 of Chap. 4. There is also a canonical map from Čech to sheaf cohomology.
However, for k > 1, the map is not in general an isomorphism. (For k = 0, 1, it is an
isomorphism by the observations of Sect. 3.1 of Chap. 4, in particular Theorem 3.1.2.) On
the other hand, the method of the proof of Proposition 2.2.6 clearly gives the following
generalization:

2.2.7 Proposition Let F be an abelian sheaf on a topological space X, let I be a flasque
resolution of F , and let U = (U1, . . . , Un) be a finite open cover of X. Then we have

Ȟ
p

U (X,I) = Hp(X,F)

where on the left hand side, we mean Čech hypercohomology, i.e. the cohomology of
the totalization of the double cochain complex given by the Čech and I-differentials. In
particular, we have a natural spectral sequence of the form

E
p,q

2 = Ȟ
p

U (X,Hq(I)) ⇒ Hp+q(X,F)

where on the left hand side, Hq(I) denotes cohomology in the abelian category of sheaves
on X.

��
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2.3 Algebraic de Rham Cohomology of Projective Varieties—GAGA

We begin with a calculation of the cohomology of the projective space with coefficients in
the structure sheaf.

2.3.1 Theorem For a field k, we have

H 0(Pn
k,OP

n
k
) = k,

Hm(Pn
k,OP

n
k
) = 0 for m > 0.

(2.3.1)

Proof We will write O without a subscript to simplify notation when no confusion can
arise. Denote the projective coordinates of Pn

k by [z0 : · · · : zn], and consider the open
affine cover U = (U0, U1, . . . , Un) where

Ui = Spec(k[z0

zi

, . . . ,
ẑi

zi

, . . . ,
zn

zi

].

Thus, by definition, for ∅ �= J ⊆ {0, . . . , n},

O(
⋂

j∈J

Uj )

is the free k-module on monomials of the form

z
a1
1 . . . zan

n (2.3.2)

where ai ∈ Z

∑
ai = 0 (2.3.3)

and ai ≥ 0 for i /∈ J .
Now the Čech complex (2.2.7) is a direct sum, over (n+ 1)-tuples

a = (a0, . . . , an)

satisfying (2.3.3), of the subcomplexes Ca where Cm
a is the free k-vector space on subsets

J ⊆ {0, . . . , n} with |J | = m+ 1 and such that

ai < 0 ⇒ i ∈ J.



2 Algebraic de Rham Cohomology 401

Let Ia = {i ∈ {1, . . . , n} | ai < 0}. By (2.3.3), we have Ia �= {1, . . . , n}. Denoting by Ik

the cochain complex

k
d=Id

�� k

where the bottom term is in cohomological degree 0, we have

Ca =
⊗

J∩Ia=∅k
Ik[1− |J |]

(the shift is counted homologically) if Ia �= 0, which has 0 cohomology by the Künneth
theorem (see Sect. 3.5 of Chap. 5). When J = ∅, then a = (0, . . . , 0) by (2.3.3), so Ca is
isomorphic to the subcomplex of

⊗

J⊆{1,...,n}k
Ik[1]

in non-negative cohomological (i.e. non-positive homological) degrees, which has coho-
mology k concentrated in degree 0 by the long exact sequence in cohomology (Theo-
rem 2.3.7 of Chap. 5).

��

Using the short exact sequence (3.3.1) of Chap. 4, we can use induction on n to
generalize this computation to cohomology with coefficients in O(j):

2.3.2 Theorem For j ≥ 0, we have

Hm(Pn
k,O(j)) =

{
k(n+j

n ) for m = 0

0 for m > 0.

For j < 0, we have

Hm(Pn
k ,O(j)) =

{
k(−1−j

n ) for m = n and j ≤ −n− 1

0 else.

Proof Exercise 1. ��

2.3.3 Serre’s GAGA Theorem
In his famous paper [21] referred to as GAGA (Géométrie Algébrique et Géométrie
Analytique), Serre proved that for a smooth projective variety X over C, the category
of coherent sheaves on X is equivalent to the category of coherent sheaves on the complex
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manifold Xan. The comparison functor from coherent sheaves on X to coherent sheaves
on Xan is ι∗ where

ι : Xan → X (2.3.4)

is the morphism of locally ringed spaces given by the identity on X.

2.3.4 Lemma The functor ι∗ is exact.

Proof This follows from the fact that for a closed point x ∈ X, Oan
X,x is a flat OX,x-

module. The key step in proving this is to show that the ring Oan
X,x is Noetherian (for then,

it is clearly regular local, and the inclusion OX,x ⊂ Oan
X,x induces an isomorphism on

associated graded rings).
To show that Oan

X,x is Noetherian, without loss of generality, X = Cn, x = 0. In
this setting, this fact is known as the Rückert Basis Theorem. To prove it, we proceed by
induction on n. Let 0 �= g ∈ Oan

Cn,0. Let the standard coordinates in Cn be z1, . . . , zn. Then
there exists a coordinate zi such that

g =
∞∑

j=0

gj z
j

i

where gj are holomorphic functions in the remaining coordinates in some neighborhood of
0, and for some (finite) number b, gj (0) = 0 for j < b, while gb(0) �= 0. The Weierstrass
Division Theorem then states that any holomorphic function on Cn in a neighborhood of 0
can be uniquely written as

a0 + a1zi + · · · + ab−1z
b−1
i + gh

where h is a holomorphic function in z1, . . . zn and aj are holomorphic functions in the
variables z�, � �= i, in a neighborhood of 0. Thus, Oan

Cn,0/(g) is isomorphic to (Oan
Cn−1,0

)b

as an Oan
Cn−1,0

-module, which is Noetherian by the induction hypothesis. The details of this
argument can be found in [9]. ��

By (2.5.4) and (2.5.3) of Chap. 5, we also obtain, for a coherent sheaf F , a canonical
homomorphism

H�(X,F) → H�(Xan, ι
∗F). (2.3.5)

We will prove the following result of Serre [21]:
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2.3.5 Theorem For a smooth projective variety X over C and any coherent sheaf F (or,
more generally, any chain complex of coherent sheaves non-zero in only finitely many
degrees), the canonical homomorphism (2.3.5) is an isomorphism.

COMMENTS

1. Note that Theorem 2.3.5 does not extend to general smooth varieties over C. For
example, letting X = A1

C
, we have

H 0(X,O) = C[x]

while H 0(Xan,Oan) is the C-vector space of holomorphic functions on C.
2. For a smooth projective variety X over C, Theorem 2.3.5 can be, in particular, applied

to the de Rham complex F = �∗X, thus giving an isomorphism between the de Rham
cohomology of X and its algebraic de Rham cohomology. We will show below that this
isomorphism, in fact, extends to all smooth varieties over C.

3. For a smooth projective variety X over C, we can also apply Theorem 2.3.5 to a single
sheaf F = �

p
X, and define algebraic Dolbeault cohomology as

H
p,q
db (X) = Hq(X,�

p
X). (2.3.6)

Thus, we also have an algebraic version of the spectral sequence (1.1.1). Theorem 2.3.5
then shows that algebraic and analytic Dolbeault cohomology groups coincide, and
thus, the algebraic Dolbeault spectral sequence also collapses to E1.

4. The concepts of algebraic Dolbeault cohomology (2.3.6), and the algebraic version
of the spectral sequence (1.1.1), make sense for a smooth projective variety X over
any field. Mumford [17] showed, however, that for fields of positive characteristic, the
algebraic analogue of the spectral sequence (1.1.1) does not in general collapse to E1.
Also, an algebraic version of a Hodge-like isomorphism between H

p,q

db (X) and the dual
of H

q,p
db (X) fails in general for smooth projective varieties X over fields of positive

characteristic of dimension > 1 (even in dimension 2). There is, however, an analog
of Kodaira-Serre duality, and also a version of Serre duality which holds for coherent
sheaves in great generality (see Exercises 3, 4, and [11] for an even greater generality).

Proof of Theorem 2.3.5 First, using the comments in Sect. 2.5.2 of Chap. 5, we may
restrict attention to the case when X = P

n
C

. In that case, note that the statement is true
for F = O by Theorem 2.3.1 and Sect. 1.6.3 (and the easy observation that it holds in
cohomological degree 0). Now we can show by induction on n that the statement is true
for F = O(m) for any m ∈ Z. Indeed, for n = 0, there is nothing to prove. Assuming
the statement is true when replacing n by n − 1, using the short exact sequence (3.3.1) of
Chap. 4 and its twists by m ∈ Z, we see from the 5-lemma that the statement is true for
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O(m) if and only if it is true for O(m+ 1), for any m ∈ Z. But since it is true for m = 0,
it must therefore be true for all m ∈ Z.

Thus, we proved that for all n ∈ N0, and all m ∈ Z, the statement is true for F = O(m).
Thus, our statement is also true for a direct sum of finitely many sheaves of the form O(m).
But any coherent sheaf on P

n
C

has a resolution of O-modules of the form

Pn → · · · → P0 (2.3.7)

where each Pi is a direct sum of coherent sheaves of the formO(m). This is a consequence
of Lemma 2.4.3 of Chap. 4, the fact that C[x0, . . . , xn] is Noetherian (Hilbert basis
theorem), and Hilbert’s syzygy theorem (Theorem 2.4.5 of Chap. 5). Recall from Sect. 2.4
of Chap. 4 that the category of quasicoherent sheaves is a reflexive subcategory of the
category of graded C[x0, . . . , xn]-modules. Theorem 2.4.5 of Chap. 5 gives a resolution in
the category of graded C[x0, . . . , xn]-modules which correspond to quasicoherent sheaves,
since the inclusion of a reflexive subcategory preserves kernels (and therefore the kernel
of each step of the resolution again corresponds to a coherent sheaf). Thus, we may invoke
the spectral sequences on the algebraic and analytic side obtained by filtering the complex
(2.3.7), and its ι∗, by elements of degree≤ p. We obtain a morphism of spectral sequences
which induces an isomorphism on E1, and thus on E∞. A homomorphism of filtered
abelian groups where the filtrations in the source and target are convergent and which
induces an isomorphism on associated graded abelian groups is an isomorphism. ��

It is worth noting that since the resolution (2.3.7) works over any field, using
Theorem 2.3.2, it also implies the following result:

2.3.6 Proposition Let X be a projective variety over a field k, and let F be a coherent
sheaf over X. Then there exists an N such that the k-module

Hm(X,F) (2.3.8)

is finite-dimensional for all m, and 0 for m > N .

��

2.3.7 Corollary Let X be a smooth projective variety over a field k. Then the algebraic
de Rham cohomology Hi

DR(X) is a finite-dimensional k-module.

Proof We can use the algebraic analogue of the spectral sequence (1.1.1) and Proposi-
tion 2.3.6. ��
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2.4 Algebraic and Analytic de Rham Cohomology of Smooth Varieties
overC

As we remarked, there is no chance that the canonical homomorphism (2.3.5) would be an
isomorphism for general smooth varieties X. This makes the following result all the more
remarkable:

2.4.1 Theorem (Grothendieck) For every smooth variety W over C, the homomorphism
(2.3.5) induces an isomorphism of hypercohomology

H�
DR(W) = H�(W,�∗)

∼=
�� H�(Wan,�

∗
Hol) = H�

DR(Wan;C) (2.4.1)

(i.e. an isomorphism between algebraic and analytic de Rham cohomology).

The main ingredient in the proof is resolution of singularities. Let X be a smooth variety
over a field k. A closed smooth subvariety of codimension � of X is a subvariety Y ⊆ X

such that for every closed point y ∈ Y , there exists a Zariski open neighborhood U of x in
X and a smooth morphism g : U → A

�
k over Spec(k) such that

Y ∩ U = g−1({0})

(as before, by ∩ we mean pullback).
Now let X be a smooth variety over a field k and let Y1, . . . , Ym be closed subvarieties

such that for all closed points y ∈ X, there exists a Zariski open neighborhood U of y in X

and a smooth morphism g : U → A
m
k over Spec(k) such that Yi ∩ U is the inverse image

of the subvariety of Am
k given by vanishing of the i’th coordinate. Note that in particular,

for 1 ≤ i1 < · · · < ik ≤ m, Yi1 ∩ · · · ∩ Yik is then a disjoint union of smooth subvarieties
of X of codimension k. Then Y1, . . . , Ym are called divisors with normal crossings. The
resolution of singularities theorem has many versions. We will need the following version
(see for example [4]).

2.4.2 Theorem Suppose U is a smooth affine variety over C. Then there exists a smooth
projective variety X over C and divisors with normal crossings Y1, . . . , Ym in X such that

U ∼= X � (Y1 ∪ · · · ∪ Ym).

��
Next, we need to prove a local result. Let B = {z ∈ C | |z| < 1}. Let

U = Um = Bm, V = Vm,� = (B � {0})� × Bm−�,
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1 ≤ � ≤ m. Denote by i : V → U the inclusion. Denoting the coordinates by z1, . . . , zm,
consider the complex of sheaves of C-modules

F = Fm,� = colim (�∗U,Hol

z1...z�
�� �∗U,Hol

z1...z�
�� . . . ). (2.4.2)

(In other words, F is the sheaf of holomorphic differential forms with at most pole
singularities at 0 in the first � coordinates.)

2.4.3 Lemma We have

H ∗(F(U)) = �C(
dz1

z1
, . . .

dz�

z�

).

Proof Consider, for 0 ≤ j ≤ m, the subcomplex Cj ⊆ F(U) spanned by all differential
forms

ω = f (z1, . . . , zm)dzi1 ∧ · · · ∧ dzis , (2.4.3)

1 ≤ i1 < · · · < is ≤ m where there exists a form

η ∈ Fj,min(j,�)(Uj )

such that

ω = η ∧
∧

j<is≤�

dzis

zis

.

Then we will construct a chain homotopy between the identity on Cj and the chain map

gj : Cj → Cj−1

given on a form (2.4.3) by

gj (ω) = reszj=0(f )

zj

dzi1 ∧ · · · ∧ dzis

when j = it , and gj (ω) = 0 when no such t exists. (To review the concept of a residue,
we refer the reader to [1].) In fact, we may pick an 0 < |a| < 1, and take, for it = j ,

h(ω) = (−1)t−1(

∫ zj

a

(
f − reszj=0(f )

zj

)
dzj )dzi1 ∧ . . . d̂zit · · · ∧ dzis
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and h(ω) = 0 if no such t exists. The result then follows, since the identity on F(U) is
homotopic to the composition g1 ◦ · · · ◦ gm, thus producing a chain homotopy equivalence
between F(U) and C0. ��

We have the following immediate

2.4.4 Corollary The canonical morphism

Fm,� → Ri∗�∗Vm,�,C

(obtained by adjunction) is a quasiisomorphism in the category of sheaves of C-modules
on Um.

Proof It suffices to show that we have a quasiisomorphism on stalks. This is done by
induction on �. For � = 0, the complexes are isomorphic. For a given �, the result follows
from the induction hypothesis on all stalks except at the point 0. There, we may apply
Lemma 2.4.3, shrinking the ball B by factors converging to 0, and taking colimits. ��

Proof of Theorem 2.4.1 First, note that it is sufficient to prove the statement for W a
smooth affine variety. This is because in general, we may cover W by finitely many open
affine subvarieties W1, . . . ,Wn (all the intersection of which will then also be open affine).
Let is : Ws → X be inclusions. Then for an injective resolution I of a bounded above
chain complex of sheaves F on X, we may always obtain another injective resolution of
F in the form of a cochain complex which, in degree s, will be a sum of terms of the form

i∗i∗(I), i = ij1 ∩ · · · ∩ ijs , 1 ≤ j1 < · · · < js ≤ n

and the differentials alternating sums analogously as in (2.2.7). This construction is
functorial, and thus shows, using a spectral sequence of a double chain complex, that
an isomorphism in cohomology on restrictions to all the intersections of the Wj ’s implies
isomorphism globally.

Thus, assume that W is affine. Then, by Theorem 2.4.2, W can be embedded, via an
open embedding which we denote by i, into a smooth projective variety X over C as a
complement of a finite set of divisors Y1, . . . , Yp with normal crossings. Now note that for
each point x ∈ Xan, we have a holomorphic diffeomorphism φ of an open neighborhood
U � x to Bm which intersects only Yi1 , . . . , Yi� , i1 < · · · < i� and φ maps U ∩ Yis

holomorphically diffeomorphically to the set of points of Bm with s’th coordinate equal to
0. Thus, the complexes of sheaves of the form (2.4.2) in open neighborhoods of points of
X glue to a complex of sheaves F on X, and by Corollary 2.4.4, the canonical morphism

F → Ri∗�∗Wan,Hol
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is a quasiisomorphism of sheaves on Xan. However, note that F is a direct limit of a
sequence of sheaves of the form ι∗Gm where ι is as in (2.3.4), and Gm is the complex of
coherent sheaves on X in the Zariski topology of algebraic differential forms with poles of
degree ≤ m along the divisors Ys . The colimit of the coherent sheaves Gm is, in fact, the
pushforward i∗�∗W of the algebraic de Rham complex on W . Thus, by Theorem 2.3.5, we
obtain an isomorphism

H�(W,�∗W) = H�(�∗W (W)) =
H�((i∗�∗W )(X)) = H�(F(Xan)) =
H�(Xan,Ri∗�∗Wan,Hol) = H�(Wan,�

∗
Wan,Hol).

We also see that the identifying homomorphism is, in fact, induced by ι. ��

2.5 Examples

2.5.1 The Affine and Projective Lines
The cohomology H ∗

DR(A1
k) is the cohomology of the complex

k[x] d
�� k[x]{dx}. (2.5.1)

Since d is a differentiation, we have

d(xn) = nxn−1dx.

Thus, if k is a field of characteristic 0, then Hi
DR(A1

k) is equal to k for i = 0, and 0 for
i > 0, as we expect. However, if k is a field of characteristic p > 0, then we get

H 0
DR(A1

k) = k[xp],

H 1
DR(A1

k) = k[xp]{xp−1dx}.

In particular, these are not finite-dimensional k-vector spaces.
Similarly, for Gm, we have the complex

k[x, x−1] d
�� k[x, x−1]{dx}, (2.5.2)
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so if k is of characteristic 0,

H 0
DR(Gm,k) = k,

H 1
DR(Gm,k) = k{dx

x
},

and if char(k) = p > 0, then

H 0
DR(Gm,k) = k[xp, x−p],

H 1
DR(Gm,k) = k[xp, x−p]{dx

x
}.

Now as an exercise, let us calculate the algebraic de Rham cohomology of P1
k . We may

cover P
1
k with two affine open sets Spec(k[x]) and Spec(k[t]) where t = x−1. Their

intersection is Gm,k , so we obtain a long exact sequence

· · · → Hi
DR(P1

k) → Hi
DR(Spec(k[x]))⊕Hi

DR(Spec(k[t])) →
→ Hi

DR(Gm,k) → Hi+1
DR (P1

k) → . . .

Of course Spec(k[t]) is another copy of A1
k, and the map into the cohomology of Gm,k is

calculated by

t → x−1,

dt → −x−2dx.

We see then that regardless of characteristic, we obtain

Hi
DR(P1

k) =
{

k for i = 0, 2,

0 otherwise,

as expected. Recall that we know from Proposition 2.3.6 that the algebraic de Rham
cohomology of the projective line is finite-dimensional, regardless of characteristic.

2.5.2 Algebraic Dolbeault and de Rham Cohomology of the Projective
Space

In fact, we can prove that for a field k of any characteristic,

Hi(Pn
k,�

�
P

n
k/k

) =
{

k for 0 ≤ i = � ≤ n

0 else.
(2.5.3)
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Thus, the E1-term of the algebraic version of the spectral sequence (1.1.1) is concentrated
in even total degrees, and therefore must collapse, concluding that

Hi
DR(Pn

k ) =
{

k for 0 ≤ k ≤ 2n even

0 else.
(2.5.4)

To prove (2.5.3), note that it is another generalization of Theorem 2.3.1, which settles the
case of � = 0. Letting P

n
k = Proj (k[x0, . . . , xn]), in the general case, we use the same

method, covering again P
n
k by the open affine sets

Ui = Spec[x0

xi

, . . . ,
x̂i

xi

, . . . ,
xn

xi

].

In the higher degrees, it is convenient to write for i �= j

d ln(
xi

xj

) = d(xi/xj )

xi/xj

= dxi

xi

− dxj

xj

, (2.5.5)

and write every element of ��(Ui0∩· · ·∩Uim) as a product of elements of the form (2.5.5),
and a monomial

p = x
a1
1 . . . xan

n (2.5.6)

with
∑

ai = 0. The Čech complex for calculating H ∗(Pn
k,�

�) with respect to the open
affine cover (Ui) then splits as a sum of chain subcomplexes Q(p) over the monomials
(2.5.6). The non-trivial contribution is again for p = 1. In this case, the chain complex
in question is identified with the Eilenberg-Mac Lane complex, which can be described as
follows:

Consider the filtration on the standard simplex �n by the subsets of elements
(x0, . . . , xn) with n − i coordinates equal to 0. Then this gives �n a structure of a
CW-complex, and CW chains with respect to this structure are called simplicial chains,
and j -cells of this filtration (which are copies of �j inserted by setting a chosen set of
n − j coordinates to 0) are called j -faces. Now the Eilenberg-Mac Lane complexes C�,
Z�, B� are the chain complexes obtained by assigning to each i-face σ of �n, the set
of all simplicial �-cochains, resp. �-cocycles resp. �-coboundaries on σ with some fixed
coefficients (in our case, k). The differentials are given by alternating sums of restrictions
to faces. Then one notices that

H ∗C� = 0 for 0 ≤ � < n.
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Additionally, one has

B� = Z� for � > 0

(since H�(�n) = 0), and thus, we have a short exact sequence of chain complexes

0 → Z
� → C� → Z�−1 → 0.

By induction, this then implies, for � < n,

Hi(Z�) =
{

k for i = �

0 else.

Now more or less by definition, the summand Q(1) is isomorphic to Z�−1[1], and thus
has cohomology k in degree �, and 0 elsewhere. For other p as in (2.5.6), the set I (p) =
{j | ij > 0} is non-empty. One then sees that Q(p) is isomorphic to the subcomplex of
Z�−1[1] on faces which contain the I -face, which has cohomology 0 by the same inductive
argument.

2.5.3 The Algebraic de Rham Cohomology of an Elliptic Curve
Consider, for simplicity, a field k of characteristic 0, and an elliptic curve E which is the
closure in P

2
k of the closed subset of A2

k = Spec(k[x, y]) with equation defined over k

x2 = (y − a)(y − b)(y − c), (2.5.7)

with a ∈ k, b, c ∈ k (and a, b, c are different). Let

R = k[x, y]/(x2 − (y − a)(y − b)(y − c)).

Let

u = (y − a)(y − b)(y − c)′ = (y − a)(y − b)+ (y − a)(y − c)+ (y − b)(y − c).

Thus, we have

�R/k = R{dx, dy}/〈2xdx − udy〉.

Now we have

1 = s2x + tu ∈ R
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for some s, t ∈ R. Let

dz = tdx + sdy.

Then

udz = tudx + sudy = (s2x + tu)dx − s2xdx + sudy = dx,

and similarly

2xdz = dy.

In other words, we also have

�R/k = R{dz}. (2.5.8)

Thinking of R as a free k[y]-module on 1, x, we compute, for n ∈ N0,

dyn = nyn−1dy = 2nyn−1xdz,

d(xyn) = yndx + 2nxyn−1dz = (ynu+ 2nyn−1(y − a)(y − b)(y − c))dz.

We compute

H 0
DR(Spec(R)) = k{1},

H 1
DR(Spec(R)) = k{dz, ydz}.

(2.5.9)

Now consider the ring S = (y − a)−1R. Then

�S/k = S{dz}. (2.5.10)

Now using partial fractions, every element of S can be written uniquely as a k-linear
combination of elements of R and elements of the form 1/(y − a)n, x/(y − a)n, n ∈ N.
We compute

d(
1

(y − a)n
) = −n

x

(y − a)n+1 dz,

d(
x

(y − a)n
) =

(
u

(y − a)n
− 2n

(y − b)(y − c)

(y − a)n

)
dz.
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Thus, we conclude that

H 0
DR(Spec(S)) = k{1},

H 1
DR(Spec(S)) = k{dz, ydz,

x

y − a
dz}.

(2.5.11)

Now adding the point x = 0, y = a defines a morphism of schemes

E → E

which sends U = Spec(R) to another isomorphic open set V , with U ∩ V = Spec(S).
The 1-form dz is preserved, and y is transformed to

(c − a)(b − a)

y − a
+ a.

Note that in H 1
DR(Spec(S)), d(x/(y − a)) gives a k-linear relation between

dz, ydz,
1

y − a
dz.

Thus, the canonical homomorphism

H 1
DR(U)⊕H 1

DR(V ) → H 1
DR(U ∩ V )

can be identified with a k-linear map

k{dz, ydz} ⊕ k{dz,
1

y − a
dz} → k{dz, ydz,

x

y − a
dz}

whose kernel and image have dimension 2. We conclude that

Hi
DR(E) ∼=

⎧
⎪⎨

⎪⎩

k for i = 0, 2

k2 for i = 1

0 else,

“as expected.”

2.5.4 Non-canonicity over R
Now consider, in the previous example, k = R. Clearly, the computation was functorial
in the field, so for an elliptic curve E over R as above, the algebraic R-valued de Rham
cohomology is invariant under complex conjugation in the algebraic de Rham cohomology
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of EC = E ×Spec(R) Spec(C) which, by Serre’s GAGA theorem (Theorem 2.3.5) and
the de Rham theorem, is canonically isomorphic to the singular cohomology of the the
complex manifold Ean

C
of complex points on E with the analytic topology with coefficients

in C. But now we can also consider the singular cohomology of Ean
C

with coefficients in
R. Thus, we have two 2-dimensional R-vector subspaces

H 1
DR(E) and H 1

DR(Ean
C
;R) = H 1(Ean

C
;R)

of

H 1
DR(EC) = H 1

DR(Ean
C
;C) = H 1(Ean

C
;C).

These subspaces, however, are different! For example, the class represented by the
holomorphic (or algebraic) form dz on E, as we saw, is in H 1

DR(E), but not in the
subspace H 1

DR(Ean
C
;R). This is because, as we saw in Sect. 1.6.4, the set of all 〈dz, α〉

with α ∈ H1(E;Z) is a lattice in C, and thus cannot be contained in R. This is the reason
one sometimes says that “the (algebraic) de Rham theorem is false over R.”

3 Crystalline Cohomology

One major limitation of algebraic de Rham cohomology is that the coefficients must be a
module over the field of definition. If the variety is defined over a field of characteristic
p > 0, the cohomology will always be p-torsion. Crystalline cohomology adapts the
construction in a way which gives non-torsion information.

3.1 Witt Vectors

The basic technique for producing non-torsion output from a p-torsion input is the theory
of Witt vectors.

Let A be any commutative ring. Choose a prime number p ∈ N. The set of Witt vectors
on A is

W(A) = AN0 = {(a0, a1, . . . ) | ai ∈ A}.

We will define a structure of a commutative ring on W(A) which is different from the
product ring structure on AN0 . Consider a map

w : W(A) → AN0,

(a0, a1, . . . ) → (w0, w1, . . . )
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where

w0 = a0,

w1 = a
p

0 + pa1,

w2 = a
p2

0 + pa
p

1 + p2a2,

wn = a
pn

0 + pa
pn−1

1 + · · · + pnan.

The elements wi are called the ghost components of the element (a0, a1, . . . ).

3.1.1 Proposition There exists a unique ring structure on W(A) natural with respect to
homomorphism of rings such that w is a natural homomorphism of rings with the product
ring structure on the target AN0 (or, equivalently, that each of the wi’s is a ring map into
A). In particular, for a = (a1, a1, . . . ), b = (b0, b1, . . . ), the first coordinates of a + b

and a · b are

a + b = (a0 + b0, a1 + b1 + (a
p

0 + b
p

0 − (a0 + b0)
p)/p, . . . ),

a · b = (a0b0, a
p

0 b1 + a1b
p

0 + pa1b1, . . . ).

The multiplicative unit in W(A) is (1, 0, . . . ).

The proof rests on the following

3.1.2 Lemma Let f ∈ Z[a1, . . . , an]. Then

f (a1, . . . , an)
pk+1 ≡ f (a

p

1 , . . . , a
p
n )p

k

mod (pk+1).

Proof It clearly suffices to prove the statement of the Lemma for

f (a1, . . . , an) = a1 + · · · + an. (3.1.1)

This can be done by induction on n. This is proved by induction on n. For n = 1, there is
nothing to prove. Assuming the statement is true with n replaced by n − 1, compute, by
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the induction hypothesis, in Z/(pk+1):

(a1 + · · · + an)
pk+1 =

(a
p
1 + · · · + a

p
n−2 + (an−1 + an)

p)p
k =

(a
p
1 + · · · + a

p
n + pc)p

k =

(a
p

1 + · · · + a
p
n )p

k +
pk∑

i=1

(
pk

i

)
(a

p

1 + · · · + a
p
n )p

k−ipici.

Now for each i in the sum on the right hand side, let j be the maximal number such that

pj | i. Then
(
pk

i

)
is divisible by pk−j . On the other hand, that summand has a factor pi

where i ≥ pj ≥ j + 1, proving that each summand is divisible by pk+1. ��

Proof of Proposition 3.1.1 First consider the case

A0 = Z[a0, a1, . . . , b0, b1, . . . ].

Then letting c = (c0, c1, . . . ) be a + b or a · b, clearly, the formulas for c0, . . . , cn are
recursively determined by wi(c) being wi(a) + wi(b) resp. wi(a) · wi(b). This proves
uniqueness. For existence of the operations in this ring W(A0), we must first prove that
these recursive formulas just mentioned are integral (since upon tensoring with Q, w

clearly becomes bijective, and hence the definition is consistent).
To prove integrality, in the case of addition, we must prove that

(a
pn

0 + pa
pn−1

1 + . . . pn−1a
p

n−1)+ (b
pn

0 + pb
pn−1

1 + . . . pn−1b
p

n−1)

−(c
pn

0 + pc
pn−1

1 + . . . pn−1c
p

n−1)

is divisible by pn. To this end, let

(c0, c1, . . . ) = (a0, a1, . . . )+ (b0, b1, . . . )

where ai = a
p

i , bi = b
p

i . Then, by Lemma 3.1.2, modulo pn,

(a
pn

0 + pa
pn−1

1 + . . . pn−1a
p

n−1)+ (b
pn

0 + pb
pn−1

1 + . . . pn−1b
p

n−1)

= (a
pn−1

0 + pa
pn−2

1 + . . . pn−2an−2)+ (b
pn−1

0 + pb
pn−2

1 + . . . pn−1bn−1)

= c
pn−1

0 + pc
pn−2

1 + . . . pn−2cn−2 = c
pn

0 + pc
pn−1

1 + . . . pn−1c
p

n−1,

proving what we need. The multiplicative case is completely analogous.
Now in an arbitrary ring A, to add (or multiply) α = (α0, α1, . . . ), β = (β0, β1, . . . ),

read off the answer γ = (γ0, γ1, . . . ) by substituting αi , βi for ai , bi in the polynomials
ci . To prove consistency, it suffices to show that in the case of addition, γi is in the ideal
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generated by α0, α1, . . . , β0, β1, . . . and in the case of multiplication, γi is in the ideal
generated by α0, α1, . . . . Both statements are obvious from the definitions in the case
αi = ai , βi = bi , γi = ci , and thus follow. ��

3.1.3 Proposition There exists a unique natural transformation

F : W(A) → W(A)

in the category of commutative rings and homomorphisms (called the Frobenius) such that

F(a0, a1, . . . ) = (f0, f1, . . . )

where

a
pn+1

0 + pa
pn

1 + · · · + pn+1an+1 = f
pn

0 + pf
pn−1

1 + · · · + pnfn. (3.1.2)

(In other words, the Frobenius “shifts the ghost components down by 1.”)

Proof The proof is completely analogous to the proof of Proposition 3.1.1. First, one
considers the ring

A = Z[a0, a1, . . . ].

There, the given formula completely determines fn inductively (and consistently, by
tensoring with Q), up to integrality. For integrality, one puts ai = a

p

i ,

F(a0, a1, . . . ) = (f 0, f 1, . . . )

and invokes Lemma 3.1.2 to conclude inductively that modulo pn,

a
pn+1

0 + · · · + pna
p
n − f

pn

0 − · · · − pn−1fn−1 =
a

pn

0 + · · · + pnan − f
pn−1

0 − · · · − pn−1f n−2 = 0,

and thus, f n is integral.
The formulas on an arbitrary commutative ring are then again induced by sending ai to

chosen elements, and consistency translates to the fact that each fi is in the ideal generated
by a0, a1, . . . , which, given integrality, is obvious from the definition. ��

One defines a map A → W(A) by putting, for a ∈ A,

a = (a, 0, 0, . . . ). (3.1.3)
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It is immediate from the definition that this map is multiplicative (although not additive).
Now the Verschiebung is the map

V : W(A) → W(A)

which sends

(a0, a1, . . . ) → (0, a0, a1, . . . ).

3.1.4 Lemma In W(A), one has

F ◦ V = p, (3.1.4)

V (F(x) · y) = x · V (y). (3.1.5)

Additionally, V preserves addition,

p | (fnx − a
p
n ), (3.1.6)

and one has fi = a
p
i for all i if and only if A is an Fp-algebra. This happens if and only

if V ◦ F = p ∈ W(A).
If A is an Fp-algebra, we additionally have

(V mx)(V ny) = V m+n(Fnx, Fmy) (3.1.7)

for x, y ∈ W(A).

Proof The formula (3.1.4) only needs to be checked in Z[a0, a1, . . . ], where it follows
inductively immediately from (3.1.2) (which says that the n’th ghost component of F ◦
V (a) is p times the n’the ghost component of a). For (3.1.5), it suffices to check in

A = Z[a0, a1, . . . , b0, b1, . . . ]

with x = (a0, a1, . . . ), y = (y0, y1, . . . ). In this case, we see that the n’th ghost
component of both sides is p times the n’th ghost component of x times the (n − 1)’st
ghost component of y. Now since for this ring

A = Z[a0, a1, . . . , b0, b1, . . . ],

W(A) is non-torsion (being a subgroup of W(A⊗Q) = (a⊗Q)N0 , it follows from (3.1.4)
that V is additive in A, and hence in any commutative ring. Using Lemma 3.1.2 again, one
proves analogously that in Z[a0, a1, . . . ] (and hence in any commutative ring), fn − a

p
n
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is divisible by p, thus proving (3.1.6). Thus, fn = a
p
n if A is an Fp-algebra. On the other

hand, by definition, f0 = a
p
0 + pa1, so the converse also holds.

Regarding V ◦ F , we see from (3.1.5) that V ◦ F(x) = x · V (1), which is equal to p if
and only if

V (1) = p ∈ W(A). (3.1.8)

However, in the ring W(Z), writing p = (c0, c1, . . . ), we have p = c0, and hence p =
(p, . . . ) ∈ W(A) for any commutative ring A, while V (1) = (0, 1, 0, . . . ). Thus, for
(3.1.8) to hold, we must have p = 0 ∈ A. On the other hand, by what we already proved,
in an Fp-algebra,

p = F ◦ V (1) = F(0, 1, 0, . . . ) = (0, 1, 0, . . . ) = V (1).

When A is an Fp-algebra, then V and F commute, so we may compute from (3.1.5):

(V mx)(V ny) = V (F(V mx) · V n−1y) =
V ((V mFx) · V n−1y),

and we see that formula (3.1.7) follows by induction. ��

3.1.5 TruncatedWitt Vectors
By (3.1.5), V nW(A) is an ideal in W(A), and one puts

Wn(A) = W(A)/V nW(A).

The ring Wn(A) is called the ring of truncated Witt vectors of A. By inclusion of ideals,
we have a canonical surjective homomorphism of rings

R : Wn(A) → Wn−1(A),

called the restriction. By (3.1.4), F induces a homomorphism of rings

F : Wn(A)→ Wn−1(A). (3.1.9)

When A is an Fp-algebra, by Lemma 3.1.4, (3.1.9) canonically factors through the
homomorphism

(a0, . . . , an−1) → (a
p
0 , . . . , a

p
n−1)
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which, by a somewhat unfortunate convention, is also denoted by

F : Wn(A) → Wn(A). (3.1.10)

Elements of Wn(A) can be, by definition, represented by sequences of length n:

(a0, . . . , an−1), ai ∈ A,

and the definition of addition also implies that we have the (perhaps surprisingly simple)
formula in Wn(A):

(a0, . . . , an−1) =
(a0, 0 . . . , 0)+ (0, a1, 0, . . . , 0)+ · · · + (0, . . . , 0, an−1) =
a0 + V a1 + · · · + V n−1an−1.

(3.1.11)

3.1.6 TheWitt Vectors of Fp

For A = Fp, by Lemma 3.1.4, the Frobenius on W(Fp) is the identity by Lemma 3.1.4,
and thus, in Wn(Fp), V i(1) = pi , and thus we see that

Wn(Fp) ∼= Z/(pn).

By taking limits, we then have

W(Fp) = Zp.

This illustrates how Witt vectors are a device for lifting from p-torsion to non-torsion
information.

3.2 The de Rham-Witt Complex and Crystalline Cohomology

In this subsection, we shall assume that A is a commutative Fp-algebra. Then consider the
de Rham complex

�∗Wn(A) = �∗Wn(A)/Wn(Fp) = �∗Wn(A)/Z (3.2.1)

(see Sect. 2.1.5). One defines a differential graded ideal Nn (i.e. an ideal stable under d) in
�∗Wn(A) inductively as follows:

N1 = 0,
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and for n ∈ N, Nn+1 is generated, as a differential graded ideal, by elements of the form

∑

j

V (aj )d(V x1,j ) . . . d(V xm,j ) (3.2.2)

where

∑

j

aj dx1,j . . . dxm,j ∈ Nn,

and elements of the form

V (y)dx − V (xp−1y)d(V x) (3.2.3)

where x ∈ A, y ∈ Wn(A). We put

Wn�
∗(A) = �∗Wn(A)/Nn.

Since R commutes with V on Witt vectors, we have

R(Nn+1) ⊆ Nn,

and thus we obtain a surjective homomorphism of commutative differential graded rings

R : Wn+1�
∗(A) → Wn�

∗(A),

called the restriction. One puts

W�∗(A) = lim
n

Wn�
∗(A)

and calls this the de Rham-Witt complex of the Fp-algebra A. On a smooth variety X over
Fp, this construction sheafifies to produce a complex of sheaves of Zp-modules W�∗X. Its
hypercohomology is denoted by

H�
crys(X) = H�(X,W�∗X),

and called the crystalline cohomology of X. More generally, for a Zp-module M , we can
define

H�
crys(X,M) = H�(X,W�∗X ⊗Zp M).
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3.2.1 Verschiebung and Frobenius
One defines homomorphisms of rings, called again the Frobenius

F : Wn�
∗(A) → Wn−1�

∗(A),

F : W�∗(A)→ W�∗(A),

and homomorphisms of abelian groups

V : Wn�
∗(A) → Wn+1�

∗(A),

V : W�∗(A) → W�∗(A)

called again the Verschiebung. Clearly, it suffices to make the definitions in the truncated
case, as long as they are compatible with restriction. In the case of Verschiebung, one puts
simply

V (adx1 . . . dxm) = V (a)d(V x1) . . . d(V xm). (3.2.4)

The relation (3.2.2) is designed precisely to ensure that this homomorphism of abelian
groups is well defined. Note that, since A is an Fp-algebra, we have in particular for
x ∈ Wn(A)

V (dx) = V (1)dV (x) = pdV (x).

In fact, (3.2.4) implies

V (xdy) = V (x)dV (y) (3.2.5)

for x, y ∈ Wn�
∗(A) (and hence also in W�∗(A)). In fact, when x = adx1 . . . dxm,

y = bdy1 . . . dy�, both sides are equal to

V (a)dV (x1) . . . dV (xm)dV (b)dV (y1) . . . dV (y�).

To define the Frobenius, the key point is that it should coincide with the Frobenius on Witt
vectors, and further, (recalling (3.1.3)), one requires

Fdx = xp−1dx, (3.2.6)

FdV = d. (3.2.7)
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Note that by (3.1.11), the formulas (3.2.6), (3.2.7) determine the definition of F on dx

where x is a (truncated or not) Witt vector, and thus, in general by the property that it
should be a ring homomorphism. In particular,

Fd(a0, . . . , an−1) = a
p−1
0 da0 + da1 + dV a2 + · · · + dV n−2an−1.

To prove consistency, it suffices to verify that the Frobenius thus defined preserves the
relations (3.2.2), (3.2.3). In case of (3.2.3), one computes for a Witt vector y and x ∈ A:

F(V (y)dx) = F ◦ V (y)Fdx =
pyxp−1dx = F ◦ V (xp−1y)Fd(V x).

In the case of the relation (3.2.2), one notes that for Witt vectors a, x0, . . . , xm, by
definition,

F(V (a))FdV (x1) . . . FdV (xm) = padx1 . . . dxm.

Clearly, the definition of the Frobenius also commutes with restriction, and thus is
consistent on the truncated, as well as untruncated, de Rham-Witt complex. Note also
that by plugging in adx1 . . . dxm, one sees immediately that (3.2.7) holds in general on the
de Rham-Witt complex. In a similar way, one also sees that (3.1.4) holds in general on the
de Rham-Witt complex.

3.2.2 Proposition The relation (3.1.5) holds for arbitrary elements x, y of the de Rham-
Witt complex. Additionally, on the de Rham-Witt complex, one has

dF = pFd. (3.2.8)

Proof Note that to prove relation (3.2.8), by the Leibniz rule, we only need to prove it
on elements of the form x, dx where x is a Witt vector. For the case of x, this follows
from (3.2.6) (and, at least modulo torsion, essentially forces it). For the case of dx, x =
(x0, . . . , xn−1), we compute

dFdx = d(x
p−1
0 + dx1 + · · · + dV n−2xn−1) = (p − 1)x

p−2
0 dx0dx0 = 0.

For relation (3.1.5), first note that multiplying y by a dyi results in multiplying both sides
by dVyi , and thus, it suffices to assume that y is a Witt vector. Similarly, the formula is
“multiplicative in the x-coordinate” in the sense that if it holds for x1, x2, then it holds for
x1x2 by the calculation

x1x2Vy = x1V ((Fx2)y) = V (F(x1)F (x2)y).
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Thus, it suffices to consider the case when x is either of the form a or da where a is a Witt
vector. In the case of a, it holds by Lemma 3.1.4. In the case when a = x, we have, by
(3.2.3) and (3.2.6):

V (y)dx = V (xp−1y)d(V x) = V (yxp−1dx) = V (yF(dx))

(Note that, again, relation (3.2.3) is forced.) Now when a = dV �x, � ≥ 1, compute

V (y)dV �x = V (ydV �−1x) = V (yFdV �x)

by (3.2.7). ��

Thus, by Proposition 3.2.2,

� = piF : W�i(A) → W�i(A) (3.2.9)

defines a chain map on W�∗(A). The induced map on crystalline cohomology is known
as the Frobenius action on crystalline cohomology. We refer the reader to [12] for more
details.

3.3 Crystalline Cohomology of Pn

The purpose of this subsection is to work out, as an example, the de Rham-Witt complex of
schemes of the form (Ai × (Gm)j )Spec(k), i+ j = n and, as an application, the crystalline
cohomology of Pn

k , where k is a perfect field of characteristic p > 0. Let

A = (T1 . . . Tj )
−1

Fp[T1, . . . , Tn], (3.3.1)

C = colim
r

(T1 . . . Tj )
−1

Qp[T 1/pr

1 , . . . , T
1/pr

n ]. (3.3.2)

We shall write

T k = T
k1

1 . . . T kn
n , k = (k1, . . . , kn).

Denote the p-valuation on Qp by v. Put

E = {∑ akT
k ∈ C | ak ∈ Zp,

v(ak) ≥ max{−v(ki) | 1 ≤ i ≤ n}, kj+1, . . . , kn ≥ 0}. (3.3.3)



3 Crystalline Cohomology 425

We have a Zp-linear homomorphism

V : E → E

given by

V (T k) = pT k/p.

Thus, the image of V r consists of all
∑

akT
k where all of the ak’s are divisible by pr .

Consequently, the V rE is a decreasing filtration of rings on E (i.e. V rE are ideals, and
V rE · V sE ⊆ V r+sE).

Now we have a homomorphism of Zp-algebras

τ : E → W(A)

given by

prτ(T k) → V rT kpr

.

3.3.1 Proposition The map of rings τ preserves V and induces an isomorphism of rings

E/V rE → Wr(A). (3.3.4)

Proof The fact that τ preserves V is immediate from the definitions. The fact that (3.3.4)
is an isomorphism follows from the fact that on the r’th associated graded piece of it, it is
the identity on Ar , which is A, considered as an A-module where the multiplication of a
scalar a ∈ A with x ∈ Ar is apr

x ∈ Ar ��

Now put, as usual,

d ln(Ti) = dTi

Ti

.

Now consider the sub-differential graded algebra

E∗ ⊂ �∗C/Qp

where Em is generated, as a Zp-submodule, by

akT
kd ln(Ti1) . . . d ln(Tim), 1 ≤ i1 < · · · < im ≤ n (3.3.5)
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where

vp(ak) ≥ max{−v(kj ) | j /∈ {i1, . . . , im}}

and

ki ≥ 0 for i > j, (3.3.6)

where the inequality (3.3.6) is strict when i = is for some s. Then, by definition, E∗ is a
quotient of �∗E/Zp

. Again, we have a ring filtration V rE∗ of E∗. Moreover, the relations
(3.2.2), (3.2.3) hold in E∗, since they hold in �∗

C/Qp
(by direct computation). Thus, we

obtain a homomorphism of differential graded Z/pn-algebras

τ ∗ : Wn�
∗A → E∗/(V nE∗ + dV nE∗−1). (3.3.7)

3.3.2 Theorem The homomorphism (3.3.7) is an isomorphism.

Proof One define an inverse of τ by expressing (3.3.5) as a product of an element of
E and differentials of elements in the obvious way, using the valuation conditions. The
ambiguity of doing so is resolved by relation (3.2.3) (note that it happens in each variable
separately). ��

3.3.3 Theorem One has

Hi
crys(P

n
Fp

) =
{
Zp for 0 ≤ i ≤ 2n even

0 else.

On H 2i
crys(P

n
Fp

), the Frobenius acts by pi .

Proof One actually proves, for each individual �,

Hi(Pn
Fp

,W��) =
{
Zp when 0 ≤ i = � ≤ n

0 else.

Then one, again, applies the fact that the hypercohomology spectral sequence must
collapse due to evenness of total degrees. Using Theorem 3.3.2, this is completely
analogous to the proof in Sect. 2.5.2, replacing coefficients k by the appropriate Zp-
submodule of Qp for each monomial T kd ln(Ti1) . . . d ln(Tim).

The Frobenius on the de Rham-Witt complex, by definition, acts trivially on d ln(Ti).
The products of those classes represent the surviving cohomology classes. The action on
cohomology then comes from formula (3.2.9). (Note that filtration degree shifts of the
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hypercohomology spectral sequence move the generators from cohomological degree i to
cohomological degree 2i.) ��

4 Étale Cohomology

If, for a variety over a field of characteristic p, we want to obtain torsion cohomology
information at primes � �= p, a different technique is required, called étale cohomology.
This theory was developed by Grothendieck and Deligne. Deligne [5,6] used it, along with
other techniques, to prove the Weil conjectures briefly mentioned in Sect. 5.7 of Chap. 3
above. In this section, we introduce étale cohomology briefly. More information can be
find in [15].

4.1 Grothendieck Topology

To discuss étale cohomology, we must first generalize the concept of a topology. A
Grothendieck topology is a category C together with a class of sets of morphisms

{fi : Ui → U | i ∈ I }

(where Ui,U ∈ Obj(C)) called covers such that the following axioms hold:

1. If f : U → V is an isomorphism, then {f : U → V } is a cover.
2. If {fij : Uij → Ui} are covers and {fi : Ui → U} is a cover, then {fi ◦ fij : Uij → U}

is a cover.
3. If {fi : Ui → U} is a cover and g : V → U is any morphism, then the pullbacks

Ui ×U V of fi and g exist, and {fi ×U V : Ui ×U V → V } is a cover.

Terminology varies, notably the words site and topos are often used. Also, axioms vary
in the literature, but the definition given above is all we need. For a category D, a D-
presheaf on a Grothendieck topology C is a functor from COp → D. Analogously to
(1.1.3) of Chap. 4, if the category D has limits, a presheaf F on a Grothendieck topology
is called a sheaf if for every cover {Ui → U | i ∈ I }, F(U) is the equalizer of

∏

i∈I

F(Ui)→→
∏

j,k∈I

F(Uj ×U Uk). (4.1.1)

If the category D satisfies the Assumption of Sect. 1.1 of Chap. 4, and the Grothendieck
topology is small, meaning that there exists a set of objects to one of which every
object is isomorphic, then essentially verbatim, the entire discussion of Sect. 1.1 applies.
In particular, we have an obvious analogue of the functor L on presheaves, and the
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obvious analogue of Proposition 1.1.1 holds, thus describing sheafification, i.e. a left
adjoint to the forgetful functor from presheaves to sheaves. (Note: a refinement of a cover
{Ui → U | i ∈ I } is a cover {Vj → U | j ∈ J } such that for every j ∈ J there exists an
i ∈ I and a morphism Vj → Ui over U .)

The example of principal interest in this Section is the étale topology Xet on a locally
Noetherian scheme X. The objects are étale morphisms f : Y → X of finite type,
morphisms are commutative diagrams

Y ��

		�
��

��
��

�
Y ′

����
��
��
��

X,

and covers are sets of morphisms {Ui → U} over X (we suppress the arrows to X from
the notation) such that the induced morphism

∐
Ui → U is onto.

4.1.1 Lemma For a scheme X and a scheme (resp. abelian group scheme) Z, the presheaf
on Xet whose sections on U are morphisms of schemes from U to Z is a sheaf (resp.
abelian sheaf) on Xet . (Usually, this sheaf is denoted by the same symbol Z.)

It may be tempting to call such a sheaf representable, but note that in the present
context, the representing object may not be in the category.

Proof Since we already know this statement in the Zariski topology (see Sect. 2.5 of
Chap. 2), it suffices to verify the statement for an affine étale cover of an affine scheme,
i.e. that if a homomorphism of commutative rings A → B is étale, and the corresponding
morphism of schemes Spec(B) → Spec(A) is onto, then a morphism of schemes
Spec(A) → Z is precisely specified by a morphism Spec(B) → Z which coincides
when composed with the morphisms Spec(B ⊗A B) → Spec(B) obtained from the two
canonical inclusions B → B ⊗A B. Now to prove that for any scheme Z, by passing
to additional Zariski open covers, we may assume that Z is also affine, i.e. one needs
to prove that for any commutative ring C, a homomorphism of rings C → B factors
through A uniquely if and only if it coincides when composed with the two canonical
homomorphisms of rings B → B⊗A B. This holds because B is flat over A (Exercise 20),
and also A→ B is an injection, since we assumed Spec(B) → Spec(A) is an étale cover.

��
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4.2 Geometric Points

It is possible to define geometric points in a Grothendieck topology more abstractly, but
for our purposes, we may define a geometric point x of Xet as a point x ∈ X, together
with a choice kx → kx of a separable closure of the residue field kx . Thus, a geometric
point can be equivalently specified as a morphism of schemes x : Spec(k) → X where k

is a separable closure of the residue field of the image of x. An étale neighborhood of x

can then be defined as a diagram

Y

f

��
k

y
���������� x
�� X

(4.2.1)

where f is étale. Specifying an étale neighborhood of y then by composition determines
an étale neighborhood of x. Thus, the diagrams (4.2.1) form a category (Xet )x of étale
neighborhoods of x, which, via the vertical arrow, has a canonical forgetful functor to Xet .

4.2.1 Lemma The category (Xet )x of étale neighborhoods of x is directed, which means
that for every two objects b, c, there is an object a with morphisms a → b, a → c, and for

every two morphisms b→→ c, there exists a morphism a → b with which they give equal

compositions.

Proof The first condition follows from the fact that a pullback of two étale morphisms
over X is étale.

For the second statement, we need to use the fact that an equalizer of two étale
morphisms over X is étale. But an equalizer can be realized by a pullback, followed by
another pullback along the diagonal Y → Y ×X Y where Y is étale over X. However,
the diagonal is then an open inclusion, and hence is also étale. Our statement then follows
from the fact that a composition of étale morphisms is étale. ��

The stalk Fx of a sheaf F on Xet at a geometric point x is defined as the colimit of
sections F(U) where U runs through the category (Xet )x of étale neighborhoods of x.
Just like for sheaves over a topological space, a stalk functor preserves colimits (in fact,
has a right adjoint, the étale skyscraper sheaf on the geometric point x), and is exact (which
is an easy general property of directed categories).

4.2.2 Lemma For morphisms f, g : F → G of sheaves of sets on Xet , f = g if and only
if the induced maps on stalks Fx → Gx coincide for all geometric points x. We say that
the étale topology has enough points.
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Proof Necessity just follows from functoriality. For sufficiency, if f and g induce the
same maps on stalks, then they must induce the same maps on sections for some étale
neighborhood of every geometric point x. Those étale neighborhoods form an étale cover
of X, and thus, our statement follows from the gluing axiom for sheaves. ��

Consequently, for abelian sheaves (i.e. sheaves of abelian groups) on Xet , a sequence
of morphisms is exact if and only if it is exact on stalks.

4.2.3 Stalks of the Structure Sheaf
For the structure sheaf O (a.k.a A1), the stalks at geometric points of Xet are obtained by
taking a local ring OX,x , and successively taking étale covers and localizing at maximal
ideals (taking colimits at limit ordinal steps) until one obtains a local ring R for which
every étale homomorphism R → S where S is a local ring is an isomorphism. Such a
ring R is called strictly Henselian, and the transfinite procedure just described is called
strict henselization. For a local ring R to be strictly Henselian, it is obviously necessary
that every monic polynomial p(x) over R whose reduction to the residue field has no
multiple roots factor to linear factors. It is also sufficient, which is a deep theorem of
commutative algebra, relying on a hard result known as the Zariski main theorem. Zariski’s
main theorem (in the form one needs here) states that if f : Y → X is a separated
morphism of finite type of schemes such that for every point x ∈ X, f−1(x) is discrete in
the induced topology from Y and X is a quasicompact separated scheme (this condition
can be further weakened), then we have a diagram

Y
ι

��

f 		�
��

��
��

Z

g����
��
��
�

X

(4.2.2)

such that ι is a quasicompact open immersion and g is finite. For a proof of this statement,
see Exercises 16, 18, 19 below. For further details, see [18].

4.2.4 The Kummer Exact Sequence
Consider, for a natural number �, the abelian group scheme

μ� = Spec(Z[x]/(x� − 1)).

The associated étale sheaf on Xet for a Noetherian scheme X is also denoted by Z/�(1).
If X is a variety over a field of characteristic 0 or prime to �, then we have a short exact
sequence of sheaves on Xet

0 �� Z/�(1) �� Gm

�
�� Gm

�� 0 (4.2.3)
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where the morphisms are induced by the corresponding morphisms of abelian group
schemes. It suffices to verify exactness on stalks, which means that for a strictly Henselian
algebra R over a field of characteristic not dividing �, the sequence

1 → {a ∈ R | a� = 1} → R× → R× → 1

(written multiplicatively) is exact, where the map R× → R× is the �’th power. Clearly, the
only non-trivial part is verifying that the �’th power map is onto, but by the assumptions
on characteristic, that follows from R being strictly Henselian.

4.2.5 The Étale Topology on Spec(k)

The étale topology is quite complicated, and usually difficult to calculate with directly.
One exception is the case of X = Spec(k) for a field k. Then by reinterpreting the
comments in Sect. 5.4 of Chap. 3, we have already seen that the Grothendieck topology
Xet is simply the full subcategory of the category of schemes on disjoint unions of finite
separable extensions of k. All morphisms are étale. Choosing a separable closure k of k,
we see then that abelian sheaves on Xet are then identified with Gal(k/k)-modules, by
which we mean abelian groups M with an action of the inverse limit of Gal(L/k) for
Galois extensions k ⊆ L ⊂ k where M is the union of fixed points MGal(k/L) over finite
extensions L of k contained in k.

In particular, (defining tensor product of abelian sheaves by taking tensor product on
sections and then sheafifying), we see that we may define a sheaf Z/�(m), m ∈ Z on
Spec(k)et for a field k by letting Gal(k/k) act by the m’th power of its action on μ�.
Additionally, we have

Z/�(m)⊗ Z/�(n) ∼= Z/�(m+ n), m, n ∈ Z.

Consequently, by pullback, we have the same relation on Xet where X is any variety over
a field.

4.3 Étale Cohomology

For a Noetherian scheme X, the abelian category of sheaves on Xet has enough injectives
by the same argument as for the abelian category of sheaves on a topological space, i.e. by
taking products of étale skyscraper sheaves, which are pushforwards of injective abelian
groups. Thus, for a sheaf F on Xet , we can define

H�(Xet ,F) = R��(F)

where � denotes global sections (i.e. sections on X). Alternately, again, this coincides with
the �’th Ext group from the constant sheaf Z on Xet to F .
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4.3.1 Étale Cohomology of Spec(k) for a Field k

For a group G, the free abelian group ZG has a unique ring structure where the product
of free generators g, h ∈ G is the free generator gh ∈ G.This is called the group ring
of G. The ring ZG is not commutative when the group G is not commutative. For a non-
commutative ring R, we must distinguish between left R-modules M , which have structure
maps

R ⊗M → M

and right R-modules N , which have structure maps

N ⊗ R → N

(which are required to satisfy unitality and associativity in the usual sense). For a left ZG-
module M , however, M automatically has a canonical right ZG-module structure given
by

mg = g−1m, g ∈ G,m ∈ M,

and vice versa. Thus, left and right ZG-modules form equivalent abelian categories, whose
objects are (somewhat dangerously) often just called G-modules. A G-module can then be
understood simply as an abelian group on which G acts by group homomorphisms. A
trivial G-module is an abelian group on which G acts trivially (i.e. every element of G

acts by the identity).
The category of left modules over any ring R has enough injectives (by the same proof

as in Lemma 2.4.2), and we define group cohomology of G with coefficients in a module
M as

H�(G;M) = Ext�
ZG(Z,M) = R�Hom(Z,M) (4.3.1)

where Z is a trivial module. It should be mentioned that unlike the case of commutative
rings, where Hom and Ext are canonically modules over the ring, for a non-commutative
ring, they only have a canonical abelian group structure.

Now for a pro-finite group G, denote by Ĝ the limit of the system of finite groups
defining G. We can define a G-module M as a Ĝ-module which is a direct limit of
submodules MK such that the Ĝ-module structure of each MK factors through a K-
module structure, where K is one of the finite groups in the inverse system defining G

(i.e. Ker(Ĝ→ K) acts trivially on MK ). Then we define pro-finite group cohomology of
G as

H�(G,M) = colim
K

H�(K,MK). (4.3.2)
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Now for a field k, as we remarked before, choosing a separable closure k of k, Gal(k/k) is
a pro-finite group, and étale sheaves on Spec(k) are an equivalent category to Gal(k/k)-
modules in the above sense. Thus,

H�(Spec(k)et ,M) ∼= H�(Gal(k/k),M). (4.3.3)

This is one of the few cases of calculations of étale cohomology which can be done easily
directly from the definition.

4.4 Étale Cohomology of Curves

Let X be a smooth curve over an algebraically closed field k, and let � be a natural number
not divisible by the characteristic of k. We will now show how to calculate the étale
cohomology of X with coefficients in the constant sheaf Z/� using the Kummer exact
sequence (4.2.3). Note that since k is separably closed, all the sheaves Z/�(n) on X are
isomorphic.

Now let i : Spec(L) → X be the inclusion of the generic point. By taking the cokernel,
we get a short exact sequence of étale sheaves on X of the form

0 → Gm → i∗Gm → Div → 0. (4.4.1)

We claim that Div(Y ) is the abelian group of Weil divisors on Y for Y → X étale. In fact,
defining Div(Y ) this way produces a short exact sequence on sections, by the equivalence
of Weil and Cartier divisors. Functoriality with respect to étale maps is given by taking
a closed point to the sum of the points in the fiber over it (note that we assumed the
residue fields of the points to be algebraically closed). Thus, we need to prove that the
étale presheaf thus defined is a sheaf. Again, since we assume the residue fields to be
algebraically closed, if we let P ∈ X be a closed point and denote by S the fiber (i.e.
inverse image) of P in Y for an étale morphism Y → X, then the fiber of Y ×X Y over P

is S× S. Thus, our claim reduces to a statement about sets: For a finite set S, the equalizer
of the two maps ZS → ZS ⊗ ZS given by x → x ⊗∑ S, x →∑

S ⊗ x is Z{∑ S}.
Note that the sheaf Div can also be described as the direct sum of the étale skyscraper

sheaves on all Zariski closed points of X (recalling that the constant sheaf with values in
Z on a finite set S has sections ZS).

Now consider the diagram of étale sheaves on X

0 �� Gm

�1

��

�� i∗Gm

�2

��

�� Div

�3

��

�� 0

0 �� Gm
�� i∗Gm

�� Div �� 0

(4.4.2)
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where �1, �2 are �’th powers (thinking of the abelian groups multiplicatively), and �3 is
multiplication by � (thinking of Weil divisors additively).

Then the “snake lemma” (which is a special case of Theorem 2.3.7 of Chap. 5) states
that there is an exact sequence

0 �� Ker(�1)
ι

�� Ker(�2) �� Ker(�3)

�������
�����

����
����

�����

Coker(�1) �� Coker(�2)
κ

�� Coker(�3) �� 0.

(4.4.3)

with the horizontal morphisms induced by the horizontal morphisms (4.4.2). However,
since Ker(�3) = 0 and Coker(�1) = 0, ι and κ are isomorphisms. Thus, we obtain an
exact sequence

0 �� Z/� �� i∗Gm

�
�� i∗Gm

�� Div/� �� 0. (4.4.4)

Now since the étale sheaf Div/� is a sum of skyscraper sheaves of Zariski closed points, it
is flasque and hence has no étale cohomology in degrees > 0, and in the next subsection,
we will show the same about the sheaf i∗Gm. Therefore,

i∗Gm

�
�� i∗Gm

�� Div/� (4.4.5)

is a resolution of Z/� by �-local étale sheaves, and H ∗(Xet ,Z/�) therefore is the
cohomology of the induced complex on global sections, which is

L×
�

�� L× �� Div(X)/� (4.4.6)

where Div(X) denotes the group of Weil divisors on X, reduced mod �. Now applying
the snake lemma to the diagram of abelian groups

0 �� L×/k× ��

�

��

Div(X) ��

�

��

Pic(X) ��

�

��

0

0 �� L×/k× �� Div(X) �� Pic(X) �� 0,

we obtain an exact sequence

0 → �P ic(X) → L×/(L×)� → Div(X)/� → Q → 0,
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where �P ic(X) is the �-torsion in the Picard group of X, and Q is Z/� if X is projective
(because of the degree), and 0 otherwise. This is proved by generalizing the observations
on the Picard group of an elliptic curve made in Sect. 3.4 of Chap. 4. One can prove that
for a smooth affine curve X over an algebraically closed field k, Pic(X) can be identified
with the k-points of a projective group scheme, and prove the surjectivity of the �th power,
for � not divisible by the characteristic, in that context. Details would take us too far afield,
but they do not depend on the foundations of Grothendieck topology. Using (4.4.5), we
then conclude the following

4.4.1 Proposition Let X be a smooth curve over an algebraically closed field k, and
suppose that the characteristic of k does not divide a natural number �. Then

Hi(Xet ,Z/�) =

⎧
⎪⎪⎨

⎪⎪⎩

Z/� if i = 0 or X is projective and i = 2

�P ic(X) if i = 1

0 else.

��

4.4.2 Cohomology of Function Fields of Transcendence Degree 1
We begin with the following important consequence of the Nullstellensatz (Sect. 1.1.2 of
Chap. 1):

4.4.3 Theorem Let k be an algebraically closed field, let x1, . . . , xn be variables, and let
f1, . . . , fm be homogeneous polynomials in x1, . . . , xn such that m < n. Then the system
of equations

f1(x1, . . . , xn) = 0

. . .

fm(x1, . . . , xn) = 0

has at least one solution (x1, . . . , xn) �= (0, . . . , 0).

Proof By the Nullstellensatz, it suffices to prove that for a homogeneous ideal I ⊆
k[x1, . . . , xn] generated by m < n homogeneous elements, we have

√
I �= (x1, . . . , xn). (4.4.7)

One way to of doing this is using a concept called local cohomology. Let R be a ring and
let I = (r1, . . . , rm) be a finitely generated ideal. Then the local cohomology

H ∗
I (R)
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is defined as the cohomology of the totalization of the m-fold cochain complex which in
m-tuple degree (ε1, . . . , εm), εi ∈ {0, 1} is

(
∏

εi=1

ri )
−1R,

(and 0 otherwise), and the j ’th differential from j ’th degree 0 to j ’th degree 1 is
localization by inverting ri , times a sign equal to (−1) to the power of

|{j < i | εj = 1}|

(to satisfy our sign conventions regarding multiple chain complexes which is that the i’th
and j ’th differential should anticommute). More generally, an analogous definition can
clearly be made for R-modules.

A key fact is that up to isomorphisms, the definition of local cohomology does not
depend on the choice of the (finitely many) generators ri . This is shown by showing, using
the definition, that the cohomology does not change when another generator is added.

Similarly, one shows that for a polynomial ring R = k[x1, . . . , xn] where k is a field,
the canonical map

H ∗
I (R) → H ∗√

I
(R)

is an isomorphism. Now if an ideal I is generated by m elements, then, by definition,
Hi

I (R) = 0 for i > m. On the other hand, if I = (x1, . . . , xn), then by direct computation,
Hn

I (R) �= 0. Thus, the augmentation ideal cannot be generated by fewer than n elements.
��

Now the key fact about the cohomology of function fields over an algebraically closed
field k (i.e. fields generated, as fields, by k and finitely many elements) of transcendence
degree 1 is the following theorem of Tsen:

4.4.4 Theorem If K is a function field over an algebraically closed field k of transcen-
dence degree 1, and L is a finite extension of K , then for every x ∈ K×, there exists a
y ∈ L× such that NL/K(y) = x. (Recall that the norm NL/K(y) of an element y ∈ L× is
defined as the product of the roots of a minimal polynomial p(y) of y over K , taken to the
power of [L : K]/deg(p).)

Proof Tsen (1933) argues as follows: K is isomorphic to a finite extension of the field of
rational functors k(u). Now choose a basis (αi | i = 1, . . . n) of K as a k(u)-vector space.
By taking a common denominator which is an [L : K] = m’th power, we may assume,
without loss of generality, that x is a linear combination of the αi ’s with coefficients in
k[x]. Choosing another basis βj of L over K , we look for a solution to NL/K(y) = x
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where y is a linear combination of the basis elements αiβj of L over k(x) with coefficients
in k[x]. Multiplying by a common denominator and writing down those equations, one
finds that they are homogeneous polynomial equations over k of the form

Ni(p1, . . . , pmn) = pm
0 ai, i = 1 . . . n (4.4.8)

where pi/p0 are solutions to the norm equation over the k(x)-basis (αiβj ) (the equations
are obtained by comparing the coefficients at each power of x). If the maximum degree
of the polynomials pi, p0 is t , and the maximum degree of the ai’s is t0, we obtain ≤
n(t0+mt+1) homogeneous equations with (1+mn)(1+ t) unknowns. By increasing the
degree of the denominator, if necessary, we can increase t and thus arrange for the number
of unknowns to be greater than the number of equations, and apply Theorem 4.4.3. (The
possibility of the common denominator being 0 is avoided by noting that the norm of a
non-zero element is non-zero.) ��

Now for a profinite group G, call a G-module M (in the above sense) flasque if for every
factor K of a group in the projective system defining G, and every subgroup H ⊆ K , every
element x ∈ MKer(Ĝ→K)·H , there exists an element y ∈ MKer(Ĝ→K) such that

x = NK/H (y) =
∑

k∈K/H

ky.

One has the following

4.4.5 Proposition If G is a profinite group and M is a flasque module, then

Hi(G,M) = 0 for i > 0.

Proof Exactly emulates the proof for sheaves. (In fact, one can take the point of view that
we are dealing with étale sheaves here.) ��

4.4.6 Corollary If K is a function field of transcendence degree 1 over an algebraically
closed field k, then

Hi(Spec(K)et ,Gm) = 0 for i > 0.

Proof Apply Proposition 4.4.5 to G = Gal(K/K) where K is the separable closure of
K , and the G-module K

×
. ��

Now Corollary 4.4.6 is a part of what we need to finish the proof of Proposition 4.4.1.
The other part is that we need to show that if i : Spec(K) → X is the inclusion of the
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generic point for a smooth curve over an algebraically closed field k, then

Rj i∗Gm = 0 for j > 0. (4.4.9)

To this end, one notes that Rj i∗Gm is the sheafification of the presheaf on Spec(L)et which
to an étale cover U of X assigns Hj(i−1(U),Gm). However, i−1(U) is an étale cover of
Spec(L), so for j > 0 this group is 0 by Corollary 4.4.6.

5 Motivic Cohomology

The idea of motivic cohomology (originally due to Grothendieck) is to construct a
cohomology theory of schemes which would be universal in an analogous sense as singular
(co)homology is universal for topological spaces. In particular, motivic cohomology
should allow coefficients in Z. For varieties over perfect fields, such a cohomology theory
was first constructed by Bloch, and reformulated by Voevodsky, who used it to prove an
important conjecture of Bloch and Kato on Galois cohomology of fields. In this section,
we give a brief introduction to these concepts. More information can be found in [14].

In this section, we restrict attention to the full subcategory Smk of the category of
schemes and morphisms on smooth separated schemes X of finite type over a perfect field
k.

5.1 A
1-Homotopy Invariance

In algebraic geometry, we do not have, of course, literally the notion of homotopy as
considered in Sect. 3 of Chap. 5. Nevertheless, in some sense, an analogous concept can
be developed by using A

1 as the object corresponding to the unit interval [0, 1]. We say
that a functor F from Smk to another category is A1-homotopy invariant if for every object
X of Smk , the induced morphism F(X ×A1) → F(X) is an isomorphism.

Analogously to (3.1.1) of Chap. 5, the algebraic standard simplex is defined as

��n = Spec(k[t0, . . . , tn]/(
∑

ti − 1)). (5.1.1)

We have, again, face maps

∂i : ��n−1 → ��n, i = 0, . . . , n,

given by setting the i’th coordinate to 0.
Now we shall discuss presheaves and Zariski sheaves on the category Smk of separated

smooth schemes of finite type over a perfect field k, and morphisms of schemes over k.
Here by the Zariski topology, we mean the Grothendieck topology on the category Smk
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where covers are Zariski open covers. In this section, we shall always consider this Zariski
topology on Smk , unless otherwise specified. For a chain complex F of abelian sheaves
on Smk and an object of Smk , we define

H�(X,F)

as the cohomology of a smooth scheme X over k with coefficients F , restricted to the
category of Zariski open sets of X, and inclusions. Denote this restriction of F by F(X)

(to distinguish it from the restriction to the category of Smk-arrows into X, which is yet a
different concept).

Note that the (hyper)cohomology thus defined is contravariantly functorial with respect
to morphisms in Smk , since for a morphism f : X → Y in Smk , we have a canonical
morphism of complexes of abelian sheaves

f−1F(Y ) → F(X). (5.1.2)

(This is because the left hand side is defined as the colimit of F(Y )(V ) over open sets V

such that f−1(V ) ⊇ U , but then f restricts to a morphism of schemes U → V .) Now
choose quasiisomorphisms F(Y ) → I, F(X) → K with I, K local. Since f−1 is exact,
f−1(I) is quasiisomorphic to f−1F(Y ), which maps (uniquely up to chain homotopy) to
K. Taking global sections and cohomology gives the required functoriality.

For an abelian presheaf F on Smk , define a complex of abelian presheaves C∗F on
Smk by letting its sections on a separated smooth scheme U of finite type over k be the
chain complex

. . . �� F(��2 × U)
d2

�� F(��1 × U)
d1

�� F(��0 × U)

where, for α ∈ F(��n × U),

dn(α) =
n∑

i=0

∂∗i (α)

(where by f ∗ we mean F(f ) - note that F is contravariant on Smk). Clearly, if F is a
sheaf on Smk , then C∗F is a chain complex of sheaves on Smk .

The key result is that hypercohomology with coefficients in a complex of sheaves of
the form C∗F is A1-homotopy invariant:

5.1.1 Proposition Let F be an abelian sheaf on Smk . Then for every smooth scheme
X ∈ Obj(Smk), the projection X×A1 → X induces an isomorphism of hypercohomology

H�(X,C∗F) ∼= H�(X × A
1, C∗F). (5.1.3)
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We will prove Proposition 5.1.1 by reducing it to simpler statements. First, note that
it suffices to prove that the identity on X × A1 induces the same homomorphism on
C∗F -hypercohomology as the map X × 0 (where 0 : Spec(Z[x]) → Spec(Z[x]) is the
morphism corresponding to the homomorphism of rings given by x → 0). This is because
then the projection X × A1 → X and the inclusion X → X × A1 by 0 in the second
coordinate induce inverse homomorphisms in C∗F -hypercohomology.

Next, we claim that in fact, it suffices to prove that the inclusions

i0, i1 : X → X ×A
1

by 0 and 1 in the second coordinate induce the same homomorphism in C∗F -cohomology.
This suffices because then we can consider the composition

X ×A
1→→X × A

1 ×A
1 → X × A

1

where all the morphisms are identity on the X coordinate, the first two morphisms are
inclusions to 0 resp. 1 in the last coordinate, and the second morphism is the product in A1,
i.e. the morphism Spec(Z[s])× Spec(Z[t]) → Spec(Z[u]) given by u → st . If the first
two morphisms induce the same on C∗F -hypercohomology, so do their compositions with
the second morphism, which are IdX times the 0 map and the identity on A1, respectively.

Now the statement we just reduced Proposition 5.1.1 to will follow from the following

5.1.2 Lemma There exists a natural (in F ) chain homotopy between the homomorphisms

�(C∗F(X×A1))
→→�(C∗F(X))

induced by i0 and i1.

Proof The idea here is the triangulation of a prism. (In fact, using the same argument in
the topological case, we could prove the homotopy axiom for singular homology.) For the
“prism”

A
1 ×��n = Spec(k[t0, . . . , tn, q]/

∑
ti = 1)

and

��n+1 = Spec(k[s0, . . . , sn+1]),

define a morphism

γi : ��n+1 → A
1 ×��n, i = 0, . . . , n
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by

t0 = s0, . . . , ti−1 = si−1,

ti = si + si+1,

ti+1 = si+2, . . . , tn = sn+1,

q = si+1 + · · · + sn+1.

The chain homotopy is

n∑

i=0

(−1)i(γi × IdX)∗.

��

5.1.3 Proof of Proposition 5.1.1
The idea is to apply Lemma 5.1.2 to a flasque resolution I of F . This works, provided
we can prove that C∗I is �-local. (Note that the chain complex C∗I is bounded below
homologically, i.e. bounded above cohomologically, which is in the wrong direction!)
What saves us here is that we can actually choose I to be non-zero in only finitely many
degrees, since X is Noetherian of finite dimension, and hence its cohomology can be non-
trivial in only finitely many degrees (see Hartshorne [11]). For an additive functor � with
only finitely many non-zero right derived functors, and a double chain complex (Cm,n)

whose columns C(m,∗) are �-local such that Cm,n is non-zero only for−N ≤ n ≤ N for a
fixed N , the totalization |C| is �-local by applying R� to the inverse limit

lim
m

(Cm,∗/Im(∂) → Cm−1,∗ → Cm−2,∗ → . . . ).

��

5.2 Finite Correspondences and the Definition ofMotivic Cohomology

Let X ∈ Obj(Smk). The group Zr (X) of algebraic cycles of codimension r on X is the
free abelian group on the set of integral closed subschemes of X of codimension r (which
we will call elementary algebraic cycles). In particular,Z1(X) is the group of Weil divisors
on X.



442 6 Cohomology in Algebraic Geometry

An important feature of algebraic cycles is their intersection product

· : Zr (X)⊗ Zs (X) → Zr+s (X),

which on elementary algebraic cycles is given by

Z · T =
∑

njWj

where Wj are the irreducible components of Z ∩ T and nj is a certain number called the
multiplicity. The multiplicity was defined by Serre [22] as follows: Let wj ∈ Wj be the
generic point, and let A = OX,wj be the local ring of X at wj . In particular, A is a regular
ring, since X is regular. The dimension of A is equal to the codimension of Wj in X. Let
I , J be the ideals defining Z, T in A. One notes that if we put

B = A/(I + J ) = A/I ⊗A A/J,

then

B/Nil(B) = K

where Nil(B) is the nilradical of B, and K is the residue field of A. Let N = Nil(B) =
Ker(B → K). Then B is filtered by powers of N , and the associated graded object is a
finitely generated K-module. Its dimension is called the length �(B) of B. More generally,
a finitely generated B-module M is also filtered by powers of N (F iM = M · Ni ),
and its associated graded object is also a finitely generated K-module, whose dimension
�(M) is called the length of M (Compare with Sect. 5.3 of Chap. 1.). The B-modules
T orA

i (A/I,A/J ) are finitely generated, so we can define

nj =
∑

i

(−1)i�(T orA
i (A/I,A/J )).

An important point is that if the codimension of Wj is not r + s, then nj = 0. Another
important point is that the intersection product on algebraic cycles is commutative,
associative and unital, thus making

Z∗(X) =
⊕

r

Zr (X)

into a graded ring. Associativity is non-trivial and is proved in [22], Chapter V.
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We will focus on a particular type of algebraic cycles called finite correspondences. For
X,Y ∈ Obj(Smk), a finite correspondence from X to Y is an algebraic cycle

∑
aiZi ∈ Zr (X × Y ), r = dim(Y )

(where Zi are integral closed subschemes of X × Y of codimension r) such that the
restriction of the projection X × Y → X to each Zi is a finite morphism of schemes.
An elementary finite correspondence is a finite correspondence which is an elementary
algebraic cycle.

Finite correspondences are thought of as a kind of “multivalued maps from X to Y with
finitely many values.” Composition of a finite correspondence F from Y to Z with a finite
correspondence G from X to Y is defined as the intersection of the cycles F × Z and
X × G in X × Y × Z. (The finiteness condition follows from the fact that a pullback of
a finite morphism is finite.) Composition of finite correspondences is associative because
intersection of cycles is.

Thus, finite correspondences on separated smooth schemes of finite type over a perfect
field k form a category, which we denote by SmCork . Moreover, we have a canonical
functor

Smk → SmCork

given by sending a morphism X → Y to its graph, i.e. to the reduced closed subscheme of
X × Y given by the equation y = f (x) (thought of, as an algebraic cycle, as a sum of its
connected components).

Now we define, for X ∈ Obj(Smk), a Zariski sheaf Zt r (X) on Smk by

Zt r (X)(U) = SmCork(U,X). (5.2.1)

By definition, Zt r is a covariant functor from Smk to abelian sheaves. In particular,
applying Zt r to the inclusion of the unit

Spec(k)→ Gm,

we obtain a chain complex of Zariski sheaves on Smk :

G = (Zt r (Spec(k))→ Zt r (Gm)) (5.2.2)

(where we place Zt r (Spec(k)) in degree 0). We define, for n ≥ 0,

Z(n) = C∗(G ⊗ · · · ⊗ G︸ ︷︷ ︸
n times

). (5.2.3)
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By functoriality of C∗, then, we have a morphism of chain complexes of Zariski sheaves

Z(m)⊗ Z(n) → Z(m+ n). (5.2.4)

In fact, extending the argument of Lemma 5.1.2, one can actually show that (5.2.4) is a
quasiisomorphism, but one must be mindful of the fact that in general,⊗ does not preserve
quasiisomorphisms. For an abelian group (more generally, abelian sheaf) A, one can also
define a Zariski sheaf on Smk:

A(n) = Z(n)⊗ A.

5.2.1 Definition (Voevodsky) Motivic cohomology of X ∈ Obj(Smk) is defined, for
m,n ≥ 0, as the Zariski cohomology

Hm,n(X) = Hm(X,Z(n)),

Hm,n(X;A) = Hm(X,A(n)).

As a direct consequence of Proposition 5.1.1, we see that motivic cohomology is A1-
homotopy invariant. Also, by (5.2.4), we have, for a commutative ring R, a multiplication

Hm1,n1(X;R)⊗Hm2,n2(X;R) → Hm1+m2,n1+n2(X;R)

which is associative, unital and graded-commutative in the sense that for α ∈
Hm1,n1(X;R), β ∈ Hm2,n2(X;R),

αβ = (−1)m1m2βα.

5.3 Some Computations of Motivic Cohomology

The sheaf Z(0) on Smk is chain-homotopy equivalent to the constant sheaf (since
Zt r (Spec(k)) is). Thus, we have

Hm,0(X;A) =
{

A(X) for m = 0

0 else.
(5.3.1)

5.3.1 Proposition There exists a quasiisomorphism of complexes of Zariski sheaves on
Smk:

Z(1)
∼

�� Gm[−1]. (5.3.2)
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Proof ([14]) A Zariski abelian sheaf M is defined by letting M(X) be the group of
rational functions on X × P1 which are regular in an open neighborhood of X × {0,∞}
and equal to 1 on X× {0,∞}. One has a short exact sequence of abelian sheaves on Smk:

0 �� M κ
�� Zt r (Gm)

λ
�� Z⊕Gm

�� 0 (5.3.3)

constructed as follows: The map κ is the Weil divisor of the given rational function.
The first coordinate of the map λ is the degree, the second, on an elementary finite
correspondence Z, is the product of the values over a given point of X. (This can be
more formally defined as follows: There exists a unique rational function f on X × P1

whose divisor is Z such that f (z)/zn is 1 at z = ∞, where n = deg(Z). Then
f (z) = (z − a1)· · · (z − an) is a polynomial non-zero at z = 0, and we can define the
second component of λ as (−1)nf (0) = a1 . . . an.) Now by basic facts on divisors (see
Sect. 3 of Chap. 4), the sequence of sheaves (5.3.3) is exact on sections, and hence is exact.
Next, factor out Zt r (Spec(k)) from the last two terms (5.3.3), and apply C∗. We get a short
exact sequence of complexes of Zariski sheaves on Smk:

0 → C∗M→ Z(1)[1] → C∗(Gm) → 0.

However, one has

C∗(Gm) ∼ Gm,

since Gm is homotopy invariant (in other words, invertible regular functions on X × A1

are constant on the A1-coordinate). Thus, (5.3.2) follows, if we can prove

C∗M ∼ 0. (5.3.4)

This is easy, however, since a rational function in f ∈M(X) is obviously A1-homotopic
to the function 1 by theA1-homotopy sf+(1−s). Thus, (5.3.4) follows from Lemma 5.1.2.

��

By Proposition 5.3.1, we have

Hm,1(X) ∼= Hm−1(X,Gm).

The right hand side was essentially calculated in Sect. 3 of Chap. 4. On a smooth variety
X over k, one considers the exact sequence of Zariski sheaves on X (4.4.1) where i is the
inclusion of the generic point. The sheaves DivX and i∗Gm have no Zariski cohomology in
degrees > 0 (the first one is a sum of pushforwards of constant sheaves on closed subsets,
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the second is a constant sheaf). Thus,

i∗Gm → DivX

can be taken as a �-local resolution of Gm. Taking global sections, we get

K(X)× → Div(X) (5.3.5)

where K(X) is the function field of X. By the discussions of Sect. 3 of Chap. 4, the kernel
of (5.3.5) is Gm(X) = O(X)×, and the cokernel is Pic(X). Thus, we have

Hm,1(X) =

⎧
⎪⎪⎨

⎪⎪⎩

O(X)× for m = 1

Pic(X) for m = 2

0 otherwise.

(5.3.6)

5.3.2 Milnor K-Theory
For a field k, one defines Milnor K-theory KM∗ (k) as the quotient of the tensor algebra (i.e.
free algebra) on the set k× (which is set in degree 1), modulo the two-sided ideal generated
by

a ⊗ (1− a), a ∈ k � {0, 1}.

(This relation is called the Steinberg relation.) We already know from (5.3.6) that we have
a canonical isomorphism

k× = K1
M(k) ∼= H 1,1(Spec(k)).

Now one can prove by explicit calculation (see [14], Lecture 5) that the Steinberg relation
holds in H 2,2(Spec(k)). Thus, (using Exercise 30), we obtain a canonical homomorphism
of rings

KM
n (k)→ Hn,n(Spec(k)). (5.3.7)

5.3.3 Theorem ([14], Theorem 5.1) The homomorphism of rings (5.3.7) is an isomor-
phism. More generally, it induces an isomorphism

KM
n (k)/� → Hn,n(Spec(k);Z/�).

��
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5.4 Relation with étale Cohomology—Voevodsky’s Theorem

Let k be a perfect field and let � be a natural number not divisible by its characteristic. By
the étale topology on Smk , we mean the Grothendieck topology on that category where
covers are étale covers.

Now Proposition 5.3.1 gives a quasiisomorphism of Z/�(1) with the chain complex in
homological degrees 0,−1 of Zariski sheaves on Sm/k:

H = ( Gm

�
�� Gm ). (5.4.1)

By the quasiisomorphism (5.2.4), we then have a canonical morphism of Zariski sheaves

Z/�(n) → H⊗n. (5.4.2)

But now H⊗n is a complex of étale sheaves on Sm/k which is non-zero in only finitely
many cohomological degrees, and quasiisomorphic to the sheaf Z/�(n) on (Smk)et . Thus,
by functoriality of sheaf (hyper)cohomology, we obtain a canonical homomorphism,
compatible with the product:

Hm,n(X;Z/�) → Hm(Xet ,Z/�(n)). (5.4.3)

This homomorphism is sometimes called the norm residue symbol. The following theorem
of Voevodsky solved the famous Bloch-Kato conjecture:

5.4.1 Theorem (Voevodsky [25]) For a separated smooth scheme X of finite type over
a perfect field k, the norm residue symbol (5.4.3) is an isomorphism for m ≤ n, and is
injective for m = n+ 1.

��
In view of Theorem 5.3.3, we have, for example, the following

5.4.2 Corollary For a perfect field k of characteristic not dividing a natural number �,
the norm residue symbol induces an isomorphism, compatible with ring structure:

Kn
M(k)/� ∼= Hn(Gal(k/k);Z/�(n)).

In particular, if k contains the �’th roots of unity, then we have

K∗
M(k)/� ∼= H ∗(Gal(k/k),Z/�).

��
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This is a powerful tool for calculating Galois cohomology. For example, even the
statement that for perfect fields of characteristic not dividing � and containing �’th roots
of unity, Galois cohomology with coefficients Z/� is generated, as a ring, by H 1, is highly
non-trivial.

6 Exercises

1. Prove in detail the formula of Theorem 2.3.2.
2. Let k be a field, and let X = P

n
k .

(a) Consider the epimorphism of coherent sheaves

h :
n⊕

i=0

OX(−1)→ OX

given by the direct sums of the morphisms corresponding to the global sections
of OX given by the projective coordinates x0, . . . , xn. Prove that Ker(h) is
isomorphic to �1

X/k.
(b) Prove that �n

X/k
∼= OX(−n− 1).

3. (Serre duality I: The projective space) Prove that for a coherent sheaf F on P
n
k where

k is a field, we have an isomorphism

Hk(X,F) ∼= Extn−k
OX (F ,�n

X/k)
∨

where V ∨ = Homk(V, k) denotes the dual of a k-vector space V . [First, note that by
functoriality alone, we have a canonical map

Hom(F ,�n
P

n
k
) → Hom(Hn(X,F),Hn(X,�n

P
n
k
))

= Hn(X,F)∨

which is an isomorphism by using the resolution (2.3.7) and Exercises 2, 1. Now by
using the first i stages of the resolution (2.3.7), one can pass from Hn to Hn−i .]

4. (Serre duality II: A smooth projective variety) Prove the formula

Hk(X,F) ∼= Extn−k
OX (F ,�n

X/k)
∨

for any smooth projective variety X of dimension n over a field k. The line bundle
�n

X/k is sometimes denoted by ωX and called the canonical line bundle on X. [Using

a very ample line bundle L, embed i : X ⊂ P = P
N
k . Prove that

RHomOp
(i∗OX,�N

P/k) ∼ i∗�n
X/k[N − n].

Note: essentially, this is a local question.]
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5. Prove the Riemann-Roch Theorem for curves: Let X be a smooth projective curve over
an algebraically closed field k. Let L be be a line bundle on X. Then

dimk(H
0(X,L))− dimk(H

0(X,�1
X/k ⊗ L−1))

= deg(D)+ 1− g

where

g = dimk(H
1(X,OX)).

The quantity g is called the arithmetic genus of the curve X. Note that, for
k = C, by Hodge theory, it is equal to the geometric genus, which is defined as
dimk(H

0(X,�1
X/C)). [Use Serre duality to show that

dimk(H
0(X,�1

X/k ⊗ L−1)) = dimk(H
1(X,L)).

With this in mind, verify the statement in the case when L = OX. Denoting by L(D)

the line bundle corresponding to a Weil divisor D, use the long exact sequence in
cohomology corresponding to the short exact sequence

0 → L(D) → L(D + P) → i∗OP → 0

where i : P → X is the inclusion of a closed point.]
6. The adjunction formula

(a) Let X be a smooth variety over a field k and let Y be a smooth subvariety of X,
defined by a sheaf of ideals I. Let i : Y → X be the closed immersion. Prove that
there is a short exact sequence

0 → i∗I/I2 → i∗�1
X/k → �1

Y/k → 0.

(b) Prove that in the situation above, if the dimension of X resp. Y is n resp. m, we
have

�m
Y/k ⊗OY

�n−m
OY

i∗(I/I2) ∼= i∗�n
X/k.

(c) Prove that if D is a smooth subvariety of X of codimension 1, then i∗I/I2 is
isomorphic to i∗L(D)−1 where L(D) is the line bundle on X corresponding to the
divisor D. Deduce that in this case,

�n−1
D/k

∼= i∗(�n
X/k ⊗OX L(D)).



450 6 Cohomology in Algebraic Geometry

7. Let X be a smooth curve in P
2
C

of degree d and genus g. Prove that g = (d − 1)(d −
2)/2. [By the adjunction formula, ωX is the restriction of O(d − 3) from P2

k to X, and
thus has degree d(d − 3). Apply the Riemann-Roch Theorem to L = ωX.]

8. Following the method of Exercise 7, prove that a smooth closed curve in P
1
C
×spec(C)

P1
C

of bidegree (d, e) (defined as the pair of degrees of compositions with the two
projections to P1) has genus

g = (d − 1)(e − 1).

Conclude that there exists a smooth closed curve in P
3
C

of any genus. [Use the
Veronese embedding.]

9. Let C be a smooth closed curve in P3
C

which is the complete intersection of two smooth
closed surfaces D, E of degrees d, e. (Complete intersection means that the sheaf of
ideals corresponding to C is generated by the sheaves of ideals corresponding to D,
E.) Using the adjunction formula, show that the degree of ωC is de(d + e − 4), and
consequently, using the Riemann-Roch Theorem,

g = de(d + e − 4)/2+ 1.

Deduce that there exists a smooth curve in P
3
C

which is not the complete intersection
of two smooth closed surfaces.

10. Prove the Bott Theorem: We have

Hq(Pn
C
,�

p

P
n
C
/C

(r)) = 0

unless 0 ≤ p = q ≤ n, r = 0, or q = 0, r > p, or q = n, r < −n + p. [Given the
fact that we know the Hodge numbers of Pn

C
, this can be done by mimicking precisely

the method of Exercise 1, tensoring with �
p

P
n
C
/C

.]

11. Put, for a coherent sheaf F on a smooth projective variety X,

χ(F) =
∑

i

(−1)idim(H i(X,F)).

(Sums of this type are referred to by the term Euler characteristic.)
(a) Putting P = P

n
C

, prove that we have a short exact sequence of coherent sheaves on
P:

0 → �r
P/C →

⊕

(n+1
r )

OP(−r) → �r−1
P/C → 0.
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(b) Prove (by induction on r) that

χ(�r
P/C(i)) =

r∑

j=0

(−1)j
(

n+ 1

r − j

)(
i − r + j + n

n

)
.

12. Let X be a degree d smooth (closed) hypersurface in P = P
n
C

, and let i : X → P be
the inclusion.
(a) Prove that there is a short exact sequence

0 → �r
P/C(−d) → �r

P/C → i∗i∗�r
P/C → 0.

[Consider the case r = 0 first.]
(b) Prove that for r ≥ 1, there is a short exact sequence

0 → �r−1
X (−d) → (�r

P/C)|X → �r
X/C → 0.

[Consider the case r = 1 first.]
(c) Prove that for p + q < n− 1,

Hq(X,�
p

X/C(−r)) =
{

Hq(P,�
p

P/C) if r = 0

0 if r > 0.

[Use induction on p. Use (b) to prove Hq(X,�
p

X/C(−r)) = Hq(�
p

P/C(−r)|X).

Then use (a) and Exercise 10 to show that the right hand side is Hq(P,�
p

P/C) for
r = 0 and 0 for r > 0.]

13. Cohomology of Smooth Hypersurfaces: Let X be a degree d smooth (closed)
hypersurface in P = P

n
C

. Note that in view of Exercise 12 (d), the dimension hp,q(X)

of the C-vector space Hp,q(X) is determined for p + q �= n − 1. Further, for
p + q = n− 1, hp,q(X) is equal to

(−1)n−1−pχ(�
p

X/C)+ (−1)n

if p �= q , and to this number plus 1 if p = q . Thus, it is determined by χ(�
p

X/C).
(a) Use Exercise 12 (a) and Exercise 11 (b) to prove that

χ(OX(i)) =
(

i + n

n

)
−
(

i + n− d

n

)
.
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(b) Use Exercise 12 (a) and (b) to prove that

χ(�
p

X/C(i)) =
χ(�

p

P/C(i))− χ(�
p

P/C(i − d))− χ(�
p−1
X/C(i − d))

for p ≥ 1.
(c) Note that (a) and (b) together with Exercise 11 (b) give a complete recursive

formula for hp,q(X). Use this to calculate hp,q(Xan) where

X = Proj (C[x, y, z, t, u]/(x5 + y5 + z5 + t5 + u5)).

14. Let X be a smooth projective variety over C of dimension n, and let 0 ≤ i <

,n/2-. Prove that dimH i(X,C) ≤ dimH i+2(X,C). Is it necessarily true that
dimH i(X,C) ≤ dimH i+1(X,C)?

15. The Wonderful Compactification II (DeConcini, Procesi, Fulton, MacPherson): Let X

be a smooth variety over a field k. Assume again for simplicity that k is algebraically
closed. The ordered configuration space F(X, n) of n points in X is the open
subvariety of Xn which is the complement of all loci where two coordinates of
a point of Xn coincide. We describe here a generalization of the construction in
Exercise 35 of Chap. 4 which gives a resolution of singularities of F(X, n) in the
sense of Theorem 2.4.2 in the case where X is smooth projective. Define varieties
X[n, i], X[n] and subvarieties �

n,i
S ⊂ X[n, i], �n

S ⊂ X[n] in the same way as in
Exercise 35 of Chap. 4, with A

m
k replaced by our variety X.

The algebraic tangent space TX,x of X at a closed point x is defined as the dual of
the k-vector space m/m2 where m is the maximal ideal of OX,x .

For a closed point x ∈ X, an S-screen at x ∈ X is a finite subset of the vector space
TX,x whose elements are labeled by non-empty disjoint finite sets whose union is S.
Again, screens are identified when they are related by translation and multiplication
by a scalar in k×.

By an (n, i)-tree T in X, we mean a finite set of distinct closed points xj of X

labeled by non-empty disjoint sets whose union is {1, . . . , n} together with a minimal
collection of screens at the points xj which satisfies the following conditions: For a
subset S ⊆ {1, . . . , n} where |S| > 1 and n /∈ S, or n ∈ S and |S| > i where T

contains either a point xj labeled S or a point of a screen at xj labeled by S, there is
an S-screen at xj . If n ∈ S and 2 < |S| ≤ i and T contains a point xj labeled S or a
point of a screen at xj labeled S, there is an (S � {n})-screen at xj .
(a) Defining again DS , for S ⊆ {1, . . . , n}with |S| > 1, as the closed subvariety of Xn

of n-tuples of points whose S-coordinates coincide, prove statements analogous to
parts (a) and (b) of Exercise 35 of Chap. 4.

(b) Prove that in X[n], �n
S for |S| > 1 are divisors with normal crossings. Therefore,

if X is smooth projective, X[n] is a resolution of singularities of F(X, n) in the
sense of Theorem 2.4.2.
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16. Prove the following version of Zariski’s Main Theorem: Let A be a commutative ring
and B be a finitely generate A-algebra. Let P ⊂ B be a prime which is both maximal
and minimal among primes whose pullback in A is a given prime p (in other words,
in its Zariski fiber over p). We also say that the prime P is isolated in its fiber over
p. Then there exists an f ∈ A � p such that the unit map induces an isomorphism of
rings f−1A ∼= f−1B. (The assumptions are stronger than necessary to simplify the
proof.)
(a) Suppose the A-algebra B is generated by n elements x1, . . . , xn. Reduce to the

case n = 1 by using induction on n: Suppose the theorem holds with n > 1
replaced by a smaller number. Let C be the A-algebra generated by x1, . . . , xn−1.
Let Q be the pullback of the prime P to C. Then P is both minimal and maximal
over Q. Thus, it suffices to show that Q is both minimal and maximal over p. For
minimality, use that by the n = 1 case, u−1B ∼= u−1C for some u ∈ C � Q, so
primes contained in Q and P are in a bijective correspondence. For maximality,
let, as usual, the rings Bp , Cp be formed by inverting A � p in each of them
respectively. Then, by maximality, Bp/P is a field which is finitely generated as
an algebra (hence finite) over the field Ap/p. Now Cp/Q is a finitely generated
Ap/p-algebra, over which the field Bp/P is a finitely generated algebra. By the
Nullstellensatz, Cp/Q is a field, and hence Q is maximal.

(b) Suppose the A-algebra B is generated by a single element x. Without loss of
generality, A = Ap is local and B = Bp. Then Bp/p is generated as an algebra
by the image x of x over the field Ap/p. But it cannot be a polynomial algebra on
one generator (then no prime over p in Bp would be isolated in its fiber). Thus,
the element x is algebraic. In other words, there is a polynomial relation

adxd + ad−1x
d−1 + · · · + a0 = 0

with ai ∈ Ap, and not all ai ∈ p. Let d be minimal possible. Then d > 0, adx is
integral over Ap and hence in Ap, and thus, we can rewrite the equation as

(adx + ad−1)x
d−1 + ad−2x

d−2 + · · · + a0 = 0.

By the assumption, a0, . . . , ad−2, adx + ad−1 ∈ p. If adx ∈ p, then ad−1 is not
in p while adx + ad−1 ∈ p, which is a contradiction. Thus, ad /∈ p, and hence
x ∈ Ap, completing the argument.

17. Prove the following form of Zariski’s Main Theorem: Let f : X → Y be a morphism
of varieties over an algebraically closed field k where f is bijective on closed points,
Y is normal, and the function field K(Y ) is a separable extension of K(X) (note that
f is dominant because it is bijective on closed points; by separable extension here
we mean that every algebraic sub-extension is separable). Then f is an isomorphism.
(The same argument also gives a version of the theorem for k a perfect field if we
additionally assume that the bijection on closed points preserves residue fields.)
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(a) Give examples to show that the assumptions (normal and separable) are both
necessary. [For separability, consider the affine line over a field of characteristic
p > 0, and the Frobenius map.]

(b) Reduce to the affine case, i.e. Y = Spec(A), X = Spec(B) for a homomorphism
of k-algebras A→ B.

(c) Deduce from the results of Sect. 5.5 of Chap. 1 that the transcendence degree of
K(X) over K(Y ) is 0, and hence K(X) is finite over K(Y ).

(d) Prove that for a closed point p in a non-empty open set U ⊆ Spec(A), the
dimension of the A/p-vector space B/Bp is equal to [K(X) : K(Y )] (i.e. the
dimension of the K(Y )-vector space K(X)). [B is finitely generated over A, and
after inverting an element, becomes integral, hence a finite module. Since K(X)

is separable, it is generated by a single element t ∈ B; localize away from the
denominators of its coefficients, its discriminant, and the quotient of B by the
subalgebra generated by t , which is finitely generated and torsion.] Conclude from
the assumptions that K(X) = K(Y ).

(e) We have A ⊆ B, and we need to prove that the inclusion is onto. If it isn’t onto,
then for some maximal ideal m ⊂ A, (B/A)m = Bm/Am �= 0, thus, Bm �=
Am. Since Bm and Am have the same field of fractions, by assumption, Am is
integrally closed in Bm, and by assumption, there is only one prime in the fiber
of the maximal ideal in Bm, and thus is isolated. Thus, by Exercise 16, there is an
f ∈ Am not in the maximal ideal such that f−1Am = f−1Bm. But since Am is
local, f is a unit.

18. Prove the following version of the Zariski Main Theorem: Let A be a commutative
ring, and let B be a finitely generated A-algebra such that every prime in B is isolated
in its fiber. Then there exists a finite subalgebra C of the integral closure A′ of A

in B and an element f ∈ C such that the unit morphism induces an isomorphism
f−1C ∼= f−1B. Further, for any prime P of B we may choose C, f so that f /∈ P .
[Let A′ be the integral closure of A in B. Use Exercise 16 to conclude that there
exists an element f ∈ A′ such that f−1A′ = f−1B. In particular, f−1A′ is a finitely
generated A-algebra, say, by elements x1/f

r1, . . . xn/f
rn with xi, f ∈ A′. Let C be

the subalgebra of A′ generated by x1, . . . , xn, f .]
19. Using the result of Exercise 18, prove that diagram (4.2.2) can be completed with ι a

quasi-compact open immersion and g a finite morphism when X is a quasi-compact
separated scheme, for every point x ∈ X, f−1(x) is discrete in the induced topology
from Y , and the morphism f is separated and of finite type. [Use gluing.]

20. A morphism A → B of commutative rings is called flat if it makes B a flat A-module.
It is called unramified if it is of finite type (i.e. B is a finitely generated A-algebra)
and �B/A = 0. (Note: both are clearly local concepts, and hence readily generalize to
schemes.) Prove that the following are equivalent:

(i) f is étale
(ii) f is flat and unramified
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(iii) For every prime q ⊂ B over a prime p ⊂ A, there exists an g ∈ A � p and
h ∈ B � q such that h | g and B ′ = h−1B is standard étale over A′ = g−1A

(i.e. B ′ ∼= A′[x]/(φ(x)) where φ is a monic polynomial whose discriminant is a
unit).

Clearly, (iii) implies (i).
(a) Assuming (i), assume further f is standard smooth of dimension 0. �B/A is

the dual of the tangent space, which is the cokernel of the Jacobi matrix of the
constraints. Thus, it is 0. Recalling what we proved about étale extensions of
fields, prove that the Zariski fiber of every prime p ⊂ A is finite and discrete.
By Exercise 18, f is locally finite. Without loss of generality, then, we may
assume f is finite. Choose a prime p ⊂ A. Localizing further, we may assume
that Bp/pBp is a finite separable extension of Ap/pAp. A set of elements of Bp

whose projections form a basis of Bp/pBp over Ap/pAp also generates Bp as a
module over Ap by Nakayama’s lemma. In particular, an element x ∈ Bp which
projects to a primitive element of Bp/pBp over Ap/pAp is the root of a monic
polynomial with coefficients in Ap of the same degree, whose discriminant is a
unit. This proves (iii). It also proves flatness (hence (ii)), since it shows that Bp is
a free Ap-module.

(b) Assume f is flat and unramified. Let again p ⊂ A be a prime. Then Bp/pBp

is unramified over Ap/pAp . Verify that this, again, means that Bp/pBp is a
product of finite separable extensions of Ap/pAp. Again, localizing further, we
may assume it is just a finite separable extension. By Exercise 18, again, B is
locally finite over A, and thus, by Nakayama’s lemma, the set of powers of an
element x ∈ Bp which projects to a primitive element of Bp/pBp below the
degree of the minimal polynomial of its projection to Bp/pBp forms a set of
generators of Bp as an Ap-module, which is a basis since it projects to a basis
of Bp/pBp over Ap/pAp. Thus, Bp is standard étale over Ap. Thus, (ii) implies
(iii).

21. Prove that if S is a Noetherian scheme and f : X → S is a morphism of finite type,
then f is smooth of dimension n if and only if for every x ∈ S there exists an open
neighborhood U , an open cover (Vi) of f−1(U) and étale morphisms gi : Vi → A

n
U

over S.
22. (Deligne) Let k be a perfect field of characteristic p > 0 and let A = k[T1, . . . , Tn].

Using the computations of Sect. 3.3, prove that the de Rham-Witt complex WN�∗A
contains the de Rham complex �∗A/WN(k) as a direct summand, where the complemen-
tary summand has cohomology 0.

23. Let A be an Fp-algebra, and let B be an étale A-algebra. Prove that there is an
isomorphism

Wn�
∗B ∼= WnB ⊗WnA Wn�

∗A.
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24. Let X be a smooth scheme over Wk where k is a perfect field of characteristic p > 0.
Using the results of Exercises 21–23, prove that

H ∗
crys(X ×Spec(Wk) Spec(k)) ∼= H ∗

DR(X).

25. Proof the statement of the Comment under Proposition 2.4.4 of Chap. 4.
26. Prove an analogue of Corollary 3.7.4 of Chap. 5 in the étale topology, i.e., for a

morphism of schemes f : X → Y , and a sheaf F on Xet , a convergent spectral
sequence of the form

Hp(Yet , R
qf∗(F)) ⇒ Hp+q(Xet ,F).

27. Using the result of Exercise 26, prove that for any algebraic variety X over a perfect
field k, the projection p : A1

X → X, and, more generally, the projection p : UM → X

for any algebraic vector bundle M on X induces an isomorphism in étale cohomology
with coefficients in Z/� where � is not divisible by the characteristic of k. (In other
words, étale cohomology is A1-homotopy invariant.)

28. Let X be an algebraic variety over an algebraically closed field k. Let f : (X ×
Gm)et → Xet be the projection and let � ∈ Z not be divisible by the characteristic of
k. Prove that Rif∗Z/� is equal to Z/� for i = 0, 1 and to 0 otherwise. Using the result
of Exercise 26 together with the fact that f has a right inverse, prove that

Hi((X ×Gm)et ,Z/�) = Hi(Xet ,Z/�)⊕Hi−1(Xet ,Z/�).

29. Let k be an algebraically closed field and let let � ∈ Z not be divisible by the
characteristic of k. Using the results of Exercises 27, 28, calculate H ∗((Pn

k )et ,Z/�).
30. Let G be a group and let M,N be Z[G]-modules (recall that left and right modules

form equivalent categories by setting gm = mg−1 for g ∈ G). Observe that M ⊗Z N

is a Z[G]-module by setting g(m⊗ n) = g(m)⊗ g(n) for m ∈ M , n ∈ N , g ∈ G. By
using injective resolutions, construct a bilinear product

Hi(G;M)⊗Z Hj(G,N) → Hi+j (G;M ⊗Z N)

and prove that it is unital, associative and graded-commutative in the obvious sense.
(This product is sometimes denoted by ∪ and called the cup product.)

31. Suppose H ⊆ G is an inclusion of groups. Then by forgetting structure (which is an
exact functor), we obtain an additive functor DZ[G]-Mod → DZ[H ]-Mod from the
derived category of G-modules to the derived category of H -modules, and an induced
map called restriction resG

H : Hi(G;M) → Hi(H ;M) for a Z[G]-module M . The
forgetful functor from Z[G]-modules to Z[H ]-modules has both a right and a left
adjoint (the left and right Kan extension) which are both exact, and hence induce
additive functors on the derived categories.
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(a) Prove that if the index [G : H ] is finite, then the left and right Kan extension
are canonically isomorphic. If M is a Z[G]-module, and N is the Kan extension
of itself considered as a Z[H ]-module, then the counit of the left Kan extension
gives a homomorphism of G-modules α : N → M . The homomorphism on
cohomology Hi(H ;M) → Hi(G;M) given by α composed with the derived
Kan extension is called the corestriction and denoted by corH

G .
(b) Prove that resG

H is a homomorphism of rings, and corH
G is thus a homomorphism

of modules. Explicitly,

corH
G (resG

H (α) · β) = α · corH
G (β)

for α ∈ Hi(G;M) and β ∈ Hj(H ;M) where M is a Z[G]-modules. This relation
is sometimes referred to as the projection formula.

32. Using Hilbert’s 90 Theorem and the Kummer exact sequence, prove that if � is not
divisible by the characteristic of a field k, then

H 1(k,Z/�(1)) ∼= k×/(k×)�.

Prove that if K is a finite separable extension of k, then under this identification,
inclusion k× ⊆ K× induces restriction in Galois cohomology, while NK/k induces
corestriction. (This involves an obvious extension of Exercise 31 to profinite groups.)

33. Using the results of Exercises 30–32, prove directly that for a field k, a number � not
divisible by its characteristic, and elements a �= 0, 1 ∈ k×, the Steinberg relation

a ∪ (1− a) = 0 ∈ H 2(k;Z/�(2))

holds. [Factor x� − a = ∏
pi into irreducible polynomials pi ∈ k[x]. Let Ki =

k[x]/(pi), an let αi be the image of x in Ki . First observe that

1− a =
∏

i

NKi/k(1− αi).

Using the projection formula and the result of Exercise 32, prove that

a ∪ (1− a) =
∑

i

cori(resi(a) ∪ (1− αi))

where cori , resi denote corestriction and restriction between Gal(k) and Gal(Ki).
Now observe that resi(a) = 0 since a = α�

i .]
34. Referring to the definitions of Sect. 5.2, prove that for smooth schemes X, Y over a

field k and for the projection f : X ×Gm → X, we have

Rf∗(Zt r (Y )(1)) ∼ Zt r (Y )⊕ Zt r (Y )(1),
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where f∗ is applied on categories of Zariski abelian sheaves. [Consider Y = Spec(k)

first.] Conclude that

Hm,n(X ×Gm) ∼= Hm,n(X)⊕Hm−1,n−1(X).

35. Using the result of Exercise 34 and A
1-homotopy invariance of motivic cohomology,

prove that

H�,m(Pn
k) =

n⊕

i=0

H�−2i,m−i (Spec(k)).

[Use the spectral sequence arising from the standard affine cover of Pn.]
36. Let k be a perfect field. Let a ∈ k× not be a square. Prove that there is a short exact

sequence of Zariski sheaves of Smk

0 → Z/2 → Z/2t r (Spec(k[√a])) → Z/2 → 0

where both arrows are compositions with the correspondence given by Spec(k[√a]).
Write down the resulting long exact sequence in motivic and Galois cohomology.
(Note: the sequence in Galois cohomology can also be obtained directly from the
Leray spectral sequence of the projection Spec(k[√a])et → Spec(k)et .)
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cell, 298
co-cell, 301
double, 285
singular, 325

relative, 325
Chain homotopy, 293
Chain map, 280

double, 285
Characteristic

of a field, 78
Charts, 273
Class, 12

proper, 12
Closure, 4

algebraic, 136, 159
integral, 34
separable, 136

Coboundary, 219, 280
Cochain complex, 280

double, 285
Cocycles, 280

Čech, 217
cohomologous, 219
condition, 217

Codiagonal, 64, 221
Codimension, 99, 228
Codomain, 12
Coefficient

leading, 28
Coequalizer, 65, 158
Cohomology

Čech, 399
first, 219
quasicoherent, 397

crystalline, 421
CW, 343
de Rham, 281

algebraic, 394
complex, 284

Dolbeault, 369
algebraic, 403

group, 432
local, 216, 435
motivic, 444
reduced, 334
of the projective space, 388, 400
sheaf, 311
singular, with coefficients, 326

Cokernel, 68

Colimit, 64
directed, 184
of schemes, 79

Colocalization, 288
Compactification

Wonderful, 268
Complex

de Rham
algebraic, 393
complex, 281
holomorphic, 286

de Rham-Witt, 421
Eilenberg-MacLane, 410

Component
connected, 50
irreducible, 50

Composition, 13
Composition series, 40
Condition

ascending chain, 2
descending chain, 28, 39, 92
Kähler, 379
Mittag-Leffler, 301

Cone, 295
affine, 51

Conjugation
complex, 159

Coordinates
barycentric, 324

Coproduct, 65
of schemes, 80

Corestriction, 457
Correspondence

finite, 443
Cosets, 8

left, 151
right, 151

Co-unit of adjunction, 62
Cover, 427

locally finite, 273
Covering, 165

of finite degree, 167
Galois, 169
regular, 167
universal, 167

Cup product, 338, 456
Curve, 139

cusp, 249
elliptic, 132, 144, 388
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nodal, 251
rational, 144

CW-chain complex, 340
CW-complex, 339

finite, 345
Cycles, 280, 302

algebraic, 441

D
Decomposition

of ideals, 37
Degree, 6

complementary, 347
of a divisor, 247
of a field extension, 157, 175
filtration, 347
of a map, 344
of a morphism of curves, 143
transcendence, 48

Descending chain condition (DCC), 28, 39, 92
Determinant, 263
Dévissage, 204
Diagonal, 64, 104, 221
Diagram, 63

commutative, 15
constant, 64

Diffeomorphism, 273
holomorphic, 273

Differential, 280
total, 275

Differentiation, 391
Dimension, 99, 139

cohomological, 317
global, 317
Krull, 23
of a manifold, 273

Dimension axiom, 327
Distance, 87
Divisor

Cartier, 224, 226
principal, 224

exceptional, 259
Weil, 230

effective, 230
locally principal, 234
prime, 230
principal, 231

Divisor class group, 231

Divisors
with normal crossings, 405

Domain, 12
Dedekind, 115, 204
Euclidean, 26
integral, 6, 114
principal ideal, 236
unique factorization, 25, 115

Domination, 115
Duality

Kodaira-Serre, 378
Poincaré, 357, 361, 378
Serre, 403, 448

E
Elements

algebraic, 147
algebraically independent, 46
homogeneous, 83
idempotent, 55
integral, 34, 147
irreducible, 25
nilpotent, 34, 37, 70
primitive, 136
regular, 44
transcendental, 140
universal, 67

Embedding
Segre, 98, 142
Veronese, 51, 253

Endomoprhism, 262
Enough injectives, 293
Enough points, 429
Enough projectives, 293
Equalizer, 65, 158
Equation

Weierstrass, 389
Equivalence, 287

birational, 21, 139
of categories, 15
homotopy, 164

chain, 294, 296
of ideals, 236
linear, 224
weak, 340

Equivariant, 150
Euler characteristic, 450
Exact couple, 346
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derived, 346
Exactness axiom, 327
Example

Hironaka’s, 267
Excision axiom, 328
Extension, 220

by 0, of a sheaf, 74
of a field

algebraic, 135
finite, 135
Galois, 149, 175
separable, 135

integral, 34, 147

F
Face, 410
Field

algebraically closed, 3
finite, 169
of fractions, 10, 114
number, 173, 236
perfect, 136
quadratic, 236
residue, 23, 148
splitting, 148, 176

Filtration
convergent, 349
decreasing, 349
Hodge, 369
increasing, 349
q-stable, 41

Form
differential, 277

harmonic, 376
Kähler, 379

Formula
adjunction, 449
projection, 457

Frobenius, 170, 417, 422
Function

holomorphic, 272
locally constant, 262
rational, 20
regular, 7
smooth, 272
transition, 217
Weierstrass, 388

Function fields, 21

Functor, 15
additive, 68
contravariant, 62
covariant, 62
derived

n’th left, 305
n’th right, 305
total, 305

exact, 69
forgetful, 62
left adjoint, 62
left derivable, 303
left derived, 303
left exact, 69
right adjoint, 62
right derivable, 303
right derived, 303
right exact, 69

Fundamental class, 362

G
GAGA, 402
Galois theory, 175
Genus

arithmetic, 449
geometric, 449

Geometry
algebraic, real, 159
arithmetic, 172
of numbers, 173

Ghost components, 415
Gluing, 11, 58

of schemes, 79
Grassmannian, 266
Greatest common divisor (GCD), 25
Group, 13

abelian, 13
divisible, 308
graded, 211
partially ordered, 115
totally ordered, 115

acting on a set, 149
algebraic, 249
factor, 151
free, 62
free abelian, 63
fundamental, 165

étale, 169
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Galois, 149, 175
absolute, 163

general linear, 223
Grothendieck, 195
ideal class, 205, 236
isotropy, 150
multiplicative, 252
Picard, 191
pro-finite, 162
topological, 162
of units, 117

Group action, 149
faithful, 176
homogeneous, 152
transitive, 152
trivial, 150

Groupoid, 164
fundamental, 164

Group ring, 217, 432
Group scheme, 249
G-set, 150

H
Hauptidealsatz, 46, 232
Height, 23
Hodge decomposition, 384
Hodge structure, 383

Tate, 388
Homeomorphism, 16
Homology, 280

Borel-Moore, 362
CW, 343
reduced, 334
singular, 326

relative, 326
with coefficients, 326

Homomorphism, 13
graded, of degree k, 211
of groups, 14
of rings, 14

standard smooth, 22
of universal algebras, 63

Homotopy, 164, 327
Homotopy equivalence, 327
Homotopy groups, 340
Homotopy invariance

A1, 438
Homotopy inverse, 164

Hypercohomology, 312
quasicoherent, Čech, 397

I
Ideal, 2, 206

augmentation, 83
differential graded, 394
elimination, 31
homogeneous, 83
indecomposable, 37
leading term, 28
maximal, 6, 23
primary, 37
prime, 6
principal, 25

Image, 68
Immersion, 253

closed, 74
Integer

square free, 236
Interior, 4
Intersection

complete, 450
Inverse image, 16
Isomorphism, 14

J
Jacobi identity, 381

graded, 382

K
Kähler differentials, 392
Kähler identities, 379
Kan extension, 303

left, 158, 456
right, 158, 456

Kernel, 68
K-theory

algebraic, 196
Milnor, 446

L
Laplacean, 375
Lattice, 388
Laurent series
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finite, 95
Lemma

5-, 297
Artin-Rees, 41
Gauss, 26
Nakayama, 47
Noether’s normalization, 35
Poincaré, 316

∂ , 369
snake, 434
Zorn’s, 6, 34

Length, 40, 442
of a resolution, 320

Limit, 64
direct, 64
inductive, 64
inverse, 64
projective, 64
of schemes, 76

which does not exist, 80
Line bundle

algebraic, 193
canonical, 448
very ample, 253

Linear combination, 2, 89
Linear equivalence, 231
Localization, 9, 60, 61, 288
Locus

singular, 177
Loop, 165

M
Möbius strip, 193
Manifold

complex, 272
Hermitian, 371, 372
Kähler, 379
orientable, 356
Riemann, 371, 372
smooth, 272

Map
bilinear, 67
birational, 139
closed, 108
connecting, 226
continuous, 16
of long exact sequences, 245

open, 178
rational, 20, 139

dominant, 20
Mapping co-cone, 295
Mapping cone, 295
Matrix

Jacobi, 22, 276
Metric

Euclidean, 370
Fubini-Study, 387
Hermitian, 370
Riemann, 371

Module, 14
cyclic, 317
flasque, 437
flat, 358
graded, 211
left, 262, 432
right, 432
simple, 40
stably free, 359

Monad, 262
Monoid

commutative, 195
Monomial, 28
Monomorphism, 65
Morphism, 11

affine, 129
dominant, 142
étale, 130
finite, 94
of finite type, 93
flat, 454
identity, 12
locally of finite type, 93
of locally ringed spaces, 59
of local rings, 59, 95
proper, 110
quasi-compact, 172
separated, 105
smooth, 130
universally closed, 110
unramified, 454
of varieties, 139

smooth, 22
zero, 68

Multidegree, 28
Multiplicity, 442
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N
Natural transformation, 15
Neighborhood

coordinate, 192
étale, 429
fundamental, 165
open, 4

n-equivalence, 300
Nilradical, 34, 103
Norm, 173, 436
Norm residue symbol, 447
Nullstellensatz, 3
Numbers

p-adic, 171

O
Object, 11

colocal, 288
F -colocal, 303
F -local, 303
G-equivariant, 157
initial, 66
injective, 293
local, 288
projective, 293
terminal, 66

Operator
adjoint, 373
Hodge ∗, 374

Orbit, 150
Orbit category, 153
Order

lexicographical, 28
monomial, 28

Ordinal, 109
Orientation, 356, 372

P
Pairs

of topological spaces, 324
Parameters, 45
Path, 164
Path components, 340
Periods, 390
Permutation, 149
Poincaré series, 42
Point

beginning, 164
closed, 111
end, 164
fixed, 151
generic, 111
geometric, 169, 429

Polynomial
characteristic, 42
Eisenstein, 52, 137
Hilbert, 43
homogeneous, 6
minimal, 135
monic, 34, 147
primitive, 26

Presheaf, 427
in a category, 182
separated, 184

Prime
isolated in its fiber, 453

Product
Cartesian, 66
categorical, 65
direct, 70
inner, 371
intersection, 442
of schemes, 76
tensor, 67

of chain complexes, 285
of sheaves, 190

of topological spaces, 104
Projection

stereographic, 241
Property

2/3, 287
Pullback, 65, 187
Pushforward, 58, 187
Pushout, 65

Q
Quadric, 363

affine, 52
projective, 52

R
Radical

Jacobson, 34
Radical of an ideal, 4
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Rank
of a vector bundle, 204

Ratios, 6
Refinement, 184, 273
Reflection, 215
Regular value, 344
Relation

Steinberg, 446, 457
Remainder, 26, 29
Representation

of a Lie algebra, 384
Resolution

injective, 300
minimal, 319
projective, 300

Resolution of singularities, 405
Restriction, 11, 57, 456

on the de Rham-Witt complex, 421
of a sheaf, 74
of Witt vectors, 419

Retract, 178
Ring, 2

Artinian, 39
Cohen-Macaulay, 45
of fractions, total, 54
Goldman, 146
graded, 83
graded-commutative, 263, 338
integrally closed, 147
Jacobson, 146
local, 23
localized at p, 23
Noetherian, 2, 89
normal, 54, 115, 147
reduced, 54, 70, 103
regular, 23
strictly Henselian, 430
valuation, 115

discrete, 115
Root

simple, 135

S
Scheme, 60

affine, 59
connected, 70
of finite type, 93
integral, 70

irreducible, 70
locally factorial, 235
locally Noetherian, 130
locally of finite type, 93
Noetherian, 90
normal, 230
over a scheme, 85
Proj , 83, 257
projective, 86
proper, 110
quasiprojective, 252
reduced, 70
regular, 129, 204
separated, 105
universally closed, 110

Screen, 269, 452
Section, 11, 57

global, 61
Semiring

commutative, 195
Separate

points, to, 255
tangent vectors, to, 255

Sequence
exact, 220

Kummer, 430
long, 227, 297
Mayer-Vietoris, 356, 361
short, 220
short, split, 222

regular, 45, 132
spectral

cohomological, 348
convergent, 348
Grothendieck, 351
homological, 347
Leray, 353

Set, 12
algebraic

affine, 1
projective, 6

closed, 4
connected, 5
dense, 112
irreducible, 5
multiplicative, 61
open, 4

distinguished, 59, 83
ordered
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partially, directed, 162
totally, 6, 28, 112
well, 28

Sheaf, 11, 57
abelian, 191
in a category, 182
coherent, 201
constant, 185, 222
flabby, 313
flasque, 227, 313
free, 355
Hom, 190
of ideals, 206
invertible, 191
locally free, 192
of modules, 189

generated by global sections, 253
quasicoherent, 201
representable, 428
of rings, 58
soft, 313
structure, 11
twisting, of Serre, 212

Sheafification, 183
Shift, 295
Simplex

singular, 324
smooth, 354

standard, 324
algebraic, 438

Site, 427
Skeleton, 340
Source, 12
Space

affine, 5
over a scheme, 84

cell, 340
cotangent, 277
covering, 165
locally ringed, 59
projective, 6

over a scheme, 85
weighted, 98

ringed, 58
tangent, 275

algebraic, 452
topological, 4

compact, 87
connected, 70

contractible, 177, 335
Hausdorff, 102
irreducible, 5
locally contractible, 353
locally path-connected, 166
paracompact, 273
path-connected, 165
semilocally simply connected, 166
T1, 102
T2, 102

Specialization, 111
Sphere, 273
Stabilizer, 150
Stalk, 58, 183, 429
Strict henselization, 430
Subcategory

abelian, 69
full, 60, 215
reflexive, 215

Subconjugacies, 153
Subgroup

conjugate, 153
normal, 151

Subscheme
closed, 74
open, 74

Subset
cofinal, 184
dense, 20

Subvariety
closed, 145
open, 145

Sum
direct, 70

Support
of a divisor, 244

Surface, 139
System

inverse, 162

T
Target, 12
Theorem

Auslander-Buchsbaum, 263
Auslander-Buchsbaum-Serre, 317
binomial, 170
Bott, 450
Chinese remainder, 154
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de Rham, 354
Dolbeault, 369
Eilenberg-Zilber, 338, 360
fundamental, of algebra, 3, 159
hard Lefschetz, 386
Hilbert basis, 2, 27
Hilbert’s 90, 176
Hilbert syzygy, 310
Hodge, 376
Künneth, 338
Krull height, 46
Krull principal ideal, 46
Lüroth, 175
Minkowski’s, 173
primitive element, 136
Rückert basis, 402
Riemann-Roch, 449
Stokes, 355
universal coefficient, 337
Weierstrass division, 402
Whitehead, 340
Zariski’s main, 453

Threefold, 139
Topology, 4

analytic, 5, 102, 139, 274
discrete, 103, 162, 185
étale, 428
Grothendieck, 427
induced, 6, 102, 108
order, 110
quotient, 341
Zariski, 6, 59, 83, 139

for varieties, 5
Topos, 427
Torsor, 159
Totalization, 285
Transform

strict, 261

U
Unique factorization domain (UFD), 25
Units, 25, 34, 117

of adjunction, 62
Universal property, 62

V
Valuation, 115
Variety, 139

abstract, 139
affine, 5, 139
complete, 139
projective, 6, 139
quasi-affine, 5, 139

non-affine, 18
quasi-projective, 6, 139
rational, 21, 241
smooth, 23

Vector
tangent, 275
unimodular, 359

Vector bundle
algebraic, 192
smooth, 371

Vector field, 276
Verschiebung, 418, 422
Volume, 373
Volume form, 372

W
Weights, 385
Weil conjectures, 171
Witt vectors, 414

truncated, 419

Z
Zero divisor, 6, 37
Zeta function of X, 171


	Preface
	Introduction
	Contents
	1 Beginning Concepts
	1 The Definition of Algebraic Varieties
	1.1 Affine Algebraic Sets
	1.1.1 Complex Numbers
	1.1.2 Nullstellensatz

	1.2 Zariski Topology
	1.2.1 Topology
	1.2.2 Zariski and Analytic Topology

	1.3 Affine and Projective Varieties
	1.3.1 Affine and Quasi-Affine Varieties
	1.3.2 Projective and Quasi-Projective Varieties

	1.4 Regular Functions on Different Types of Varieties
	1.4.1 Regular Functions on a Quasiaffine and Quasiprojective Variety
	1.4.2 Regular Functions on AnC
	1.4.3 Regular Functions on an Affine Variety
	1.4.4 Regular Functions on the Complement of a Set of Zeros Z(f)
	1.4.5 Regular Functions on a Quasiaffine Variety
	1.4.6 Regular Functions on a Projective Variety

	1.5 Sheaves

	2 Categories, and the Category of Algebraic Varieties
	2.1 Categories, Functors and Algebraic Structures
	2.1.1 The Definition of a Category, and an Example: The Category of Sets
	2.1.2 Categories of Algebraic Structures
	2.1.3 Isomorphisms
	2.1.4 Functors and Natural Transformations

	2.2 Categories: Topological Spaces and Algebraic Varieties
	2.2.1 The Category of Topological Spaces
	2.2.2 The Category of Algebraic Varieties

	2.3 The Morphisms into an Affine Variety
	2.3.1 Quasiaffine Varieties which are not Isomorphic to Affine Varieties
	2.3.2 Quasiaffine Varieties which are Isomorphic to Affine Varieties


	3 Rational Maps, Smooth Maps and Dimension
	3.1 Definition of a Rational Map
	3.2 The Field of Rational Functions
	3.2.1 The Category of Varieties and Dominant Rational Maps

	3.3 Standard Smooth Homomorphisms of Commutative Rings
	3.4 Smooth Morphisms of Varieties
	3.4.1 Smooth Varieties

	3.5 Regular Rings and Dimension
	3.5.1 Smooth Varieties and Regular Rings


	4 Computing with Polynomials
	4.1 Divisibility of Polynomials
	4.2 Gröbner Basis
	4.3 Nullstellensatz

	5 Introduction to Commutative Algebra
	5.1 Primary Decomposition
	5.2 Artinian Rings
	5.3 Dimension
	5.4 Regular Local Rings
	5.5 Dimension of Affine Varieties

	6 Exercises

	2 Schemes
	1 Sheaves and Schemes
	1.1 Sheaves Revisited
	1.2 Ringed Spaces and Locally Ringed Spaces
	1.3 Schemes
	1.4 Category Theory Revisited: Adjoints, Limits and Colimits, Universality
	1.5 Abelian Categories: Abelian Sheaves

	2 Beginning Properties and Examples of Schemes
	2.1 Connected, Irreducible, Reduced and Integral Schemes
	2.2 Properties of Affine Schemes
	2.3 Open and Closed Subschemes
	2.4 Limits of Schemes
	2.5 Gluing of Schemes: Colimits
	2.6 A Diagram of Schemes Which Does Not Have a Limit
	2.7 Proj Schemes
	2.8 The Affine and Projective Space Over a Scheme: Projective Schemes

	3 Finiteness Properties of Schemes and Morphisms of Schemes
	3.1 Quasicompactness
	3.2 Noetherian Schemes
	3.3 Morphisms Locally of Finite Type and Morphisms of Finite Type
	3.4 Finite Morphisms

	4 Exercises

	3 Properties of Schemes
	1 Separated Schemes and Morphisms
	1.1 Hausdorff and T1 Topological Spaces
	1.2 The Product of Topological Spaces: Reformulating the Hausdorff Property
	1.3 Separated Schemes and Morphisms

	2 Universally Closed Schemes and Morphisms
	2.1 More Facts About Compact and Hausdorff Spaces
	2.2 Universally Closed Schemes and Morphisms
	2.3 Specialization
	2.4 Valuation Rings
	2.5 Valuation Criteria for Universally Closed and Separated Morphisms
	2.6 More Observations on Universally Closed and Separated Morphisms

	3 Regular Schemes and Smooth Morphisms
	3.1 Regular Schemes
	3.2 Smooth Morphisms
	3.3 Smooth Morphisms Over Regular Schemes
	3.4 Étale Schemes Over a Field

	4 Abstract Varieties
	4.1 The Definition of an Algebraic Variety
	4.2 A Classification of Smooth Curves
	4.3 The Role of Closed Points

	5 The Galois Group and the Fundamental Group
	5.1 Varieties Over Perfect Fields and G-Sets
	5.2 Some Details on G-Sets
	5.3 Closed Points as Galois Group Orbits
	5.4 The Absolute Galois Group: Profinite Groups
	5.5 The Fundamental Group of a Topological Space
	5.6 From Coverings to the Fundamental Group: The Étale Fundamental Group
	5.6.1 Regular Coverings
	5.6.2 The Étale Case

	5.7 Finite Fields and the Weil Conjectures

	6 Exercises

	4 Sheaves of Modules
	1 Sheaves of Modules
	1.1 Presheaves and Sheaves Valued in a Category
	1.1.2 An alternate characterization of sheafification

	1.2 The Effect of Continuous Maps on Sheaves
	1.3 Sheaves of Modules
	1.4 The Effect of Continuous Maps on Sheaves of Modules
	1.5 Biproduct, Tensor Product and Hom of Sheaves of Modules

	2 Quasicoherent and Coherent Sheaves
	2.1 Invertible Sheaves, Picard Group, Locally Free Sheaves, Algebraic Vector Bundles, Algebraic K-Theory
	2.2 Quasicoherent and Coherent Sheaves of Modules
	2.3 Sheaves of Ideals
	2.4 Quasicoherent Sheaves on Proj Schemes

	3 Divisors
	3.1 First Cohomology
	3.2 Cartier Divisors
	3.3 Weil Divisors
	3.3.9 Example: Divisors on Dedekind Domains

	3.4 Examples and Calculations
	3.5 Very Ample Line Bundles
	3.6 Blow-ups

	4 Exercises

	5 Introduction to Cohomology
	1 De Rham Cohomology in Analysis
	1.1 Smooth and Complex Manifolds
	1.2 Differential Forms
	1.3 De Rham Cohomology
	1.3.3 The Difference Between Vector Fields and 1-Forms

	1.4 The de Rham Complex of a Complex Manifold
	1.4.1 The Holomorphic de Rham Complex


	2 Derived Categories and Sheaf Cohomology
	2.1 Derived Categories
	2.2 Properties of Abelian Categories
	2.3 The Derived Category of an Abelian Category
	2.3.1 Projective and Injective Objects
	2.3.2 The Homotopy Category of Chain Complexes
	2.3.5 Introduction to homological algebra
	2.3.9 Cell Chain Complexes
	2.3.11 Proof of (1) and (2) of Theorem 2.3.4
	2.3.12 Proof of (3) and (4) of Theorem 2.3.4
	2.3.15 Derived Functors
	2.3.18 Derived Functors in an Abelian Category

	2.4 Examples of Abelian Categories
	2.4.1 Abelian Groups and Modules
	2.4.3 Definition of TorR(M,N)

	2.5 Sheaf Cohomology
	2.5.2 Functoriality of Sheaf Cohomology
	2.5.3 Flasque and Soft Sheaves
	2.5.7 Proof of Proposition 2.5.4

	2.6 A Cohomological Criterion for Regular Local Rings
	2.6.7 Proof of Theorem 2.6.1


	3 Singular Homology and Cohomology
	3.1 The Singular Chain and Cochain Complex
	3.2 Eilenberg-Steenrod Axioms
	3.3 Proof of the Homotopy and Excision Axioms
	3.4 The Homology of Spheres
	3.5 Universal Coefficients and Künneth Theorem
	3.6 CW-Homology
	3.6.4 Example 3.6.1 Continued

	3.7 Spectral Sequences
	3.7.1 The Spectral Sequence of a Filtered Chain Complex
	3.7.2 Proof of Theorem 3.6.3

	3.8 Singular Cohomology vs. Sheaf Cohomology
	3.8.2 Sheaves Do Not Have Enough Projectives


	4 Exercises

	6 Cohomology in Algebraic Geometry
	1 Hodge Theory
	1.1 Dolbeault Cohomology
	1.2 Riemann and Hermitian Metrics
	1.3 Hodge Theorem
	1.4 Kähler Manifolds
	1.5 The Lefschetz Decomposition
	1.6 Examples
	1.6.1 The Fubini-Study Metric
	1.6.3 The Cohomology of the Complex Projective Space
	1.6.4 Elliptic Curves over C


	2 Algebraic de Rham Cohomology
	2.1 The Algebraic de Rham Complex
	2.1.2 Kähler Differentials
	2.1.4 Algebraic de Rham Cohomology
	2.1.5 The Non-smooth Case

	2.2 Quasicoherent Cohomology
	2.2.4 Quasicoherent Čech Cohomology

	2.3 Algebraic de Rham Cohomology of Projective Varieties—GAGA
	2.3.3 Serre's GAGA Theorem

	2.4 Algebraic and Analytic de Rham Cohomology of Smooth Varieties over C
	2.5 Examples
	2.5.1 The Affine and Projective Lines
	2.5.2 Algebraic Dolbeault and de Rham Cohomology of the Projective Space
	2.5.3 The Algebraic de Rham Cohomology of an Elliptic Curve
	2.5.4 Non-canonicity over R


	3 Crystalline Cohomology
	3.1 Witt Vectors
	3.1.5 Truncated Witt Vectors
	3.1.6 The Witt Vectors of Fp

	3.2 The de Rham-Witt Complex and Crystalline Cohomology
	3.2.1 Verschiebung and Frobenius

	3.3 Crystalline Cohomology of Pn

	4 Étale Cohomology
	4.1 Grothendieck Topology
	4.2 Geometric Points
	4.2.3 Stalks of the Structure Sheaf
	4.2.4 The Kummer Exact Sequence
	4.2.5 The Étale Topology on Spec(k)

	4.3 Étale Cohomology
	4.3.1 Étale Cohomology of Spec(k) for a Field k

	4.4 Étale Cohomology of Curves
	4.4.2 Cohomology of Function Fields of Transcendence Degree 1


	5 Motivic Cohomology
	5.1 A1-Homotopy Invariance
	5.1.3 Proof of Proposition 5.1.1

	5.2 Finite Correspondences and the Definition of Motivic Cohomology
	5.3 Some Computations of Motivic Cohomology
	5.3.2 Milnor K-Theory

	5.4 Relation with étale Cohomology—Voevodsky's Theorem

	6 Exercises

	Bibliography
	Index

