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Abstract

This paper presents an elementary introduction to some of the theory of hyperellip-
tic curves over finite fields of arbitrary characteristic that has cryptographic relevance.
Cantor’s algorithm for adding in the jacobian of a hyperelliptic curve and a proof of
correctness of the algorithm are presented.
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1 Introduction

Hyperelliptic curves are a special class of algebraic curves and can be viewed as generaliza-

tions of elliptic curves. There are hyperelliptic curves of every genus g ≥ 1. A hyperelliptic

curve of genus g = 1 is an elliptic curve. Elliptic curves have been extensively studied for over

a hundred years, and there is a vast literature on the topic; for example, see the books by Sil-

verman [34, 35]. Originally pursued mainly for purely aesthetic reasons, elliptic curves have

recently become an essential tool in several important areas of applications including coding

theory (e.g., Driencourt and Michon [11] and van der Geer [15]); pseudorandom number

generation (e.g., Kaliski [18]); number theory algorithms (e.g., Goldwasser and Kilian [16]

and Lenstra [21]); and public-key cryptography (see Koblitz [19], Miller [27], and Menezes

[25]).

On the other hand, the theory of hyperelliptic curves has not received as much attention

by the research community. Most results concerning hyperelliptic curves which appear in

the literature on algebraic geometry are couched in very general terms. For example, a

common source cited in papers on hyperelliptic curves is Mumford’s book [28]. However, the

non-specialist will have extreme difficulty specializing (not to mention finding) the results in

this book to the particular case of hyperelliptic curves. Another difficulty one encounters is

that the theory in such books is usually restricted to the case of hyperelliptic curves over the

complex numbers (as in Mumford’s book), or over algebraically closed fields of characteristic

not equal to 2. The recent book of Cassels and Flynn [6] is an extensive account on curves

of genus 2. (Compared to their book, our approach is definitely “low-brow”.) Recently,

applications of hyperelliptic curves have been found to areas outside algebraic geometry.

Hyperelliptic curves were a key ingredient in Adleman and Huang’s random polynomial-

time algorithm for primality proving [3]. Hyperelliptic curves have also been considered

in the design of error-correcting codes [4], in integer factorization algorithms [22], and in

public-key cryptography [20]. Hyperelliptic curves over finite fields of characteristic two are

especially interesting for the purpose of implementing these codes and cryptosystems.

Charlap and Robbins [7, 8] presented an elementary introduction to elliptic curves. The

purpose was to provide elementary self-contained proofs of some of the basic theory relevant

to Schoof’s algorithm [33] for counting the points on an elliptic curve over a finite field.

The discussion was restricted to fields of characteristic not equal to 2 or 3. However, for

practical applications, elliptic and hyperelliptic curves over characteristic two fields are es-

pecially attractive. This paper, similar in spirit to that of Charlap and Robbins, presents

an elementary introduction to some of the theory of hyperelliptic curves over finite fields of

arbitrary characteristic that has cryptographic relevance. For a general introduction to the

theory of algebraic curves, consult Fulton’s book [14].
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2 Basic definitions and properties

Definition 1 (hyperelliptic curve) Let K be a field and let K be the algebraic closure of K.

A hyperelliptic curve C of genus g over K (g ≥ 1) is an equation of the form

C : v2 + h(u)v = f(u) in K[u, v], (1)

where h(u) ∈ K[u] is a polynomial of degree at most g, f(u) ∈ K[u] is a monic polynomial

of degree 2g + 1, and there are no solutions (u, v) ∈ K × K which simultaneously satisfy

the equation v2 + h(u)v = f(u) and the partial derivative equations 2v + h(u) = 0 and

h′(u)v − f ′(u) = 0.

A singular point on C is a solution (u, v) ∈ K × K which simultaneously satisfies the

equation v2 + h(u)v = f(u) and the partial derivative equations 2v + h(u) = 0 and h′(u)v−
f ′(u) = 0. Definition 1 thus says that a hyperelliptic curve does not have any singular points.

For the remainder of this paper it is assumed that the field K and the curve C have been

fixed.

Lemma 2 Let C be a hyperelliptic curve over K defined by equation (1).

(i) If h(u) = 0, then char(K) 6= 2.

(ii) If char(K) 6= 2, then the change of variables u→ u, v → (v− h(u)/2) transforms C to

the form v2 = f(u) where degu f = 2g + 1.

(iii) Let C be an equation of the form (1) with h(u) = 0 and char(K) 6= 2. Then C is a

hyperelliptic curve if and only if f(u) has no repeated roots in K.

Proof.

(i) Suppose that h(u) = 0 and char(K) = 2. Then the partial derivative equations reduce

to f ′(u) = 0. Note that degu f ′(u) = 2g. Let x ∈ K be a root of the equation f ′(u) = 0,

and let y ∈ K be a root of the equation v2 = f(x). Then the point (x, y) is a singular

point on C. Statement (i) now follows.

(ii) Under this change of variables, the equation (1) is transformed to

(v − h(u)/2)2 + h(u)(v − h(u)/2) = f(u),

which simplifies to v2 = f(u) + h(u)2/4; note that degu(f + h2/4) = 2g + 1.

(iii) A singular point (x, y) on C must satisfy y2 = f(x), 2y = 0, and f ′(x) = 0. Hence

y = 0 and x is a repeated root of the polynomial f(u). 2
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Definition 3 (rational points, point at infinity, finite points) Let L be an extension field of

K. The set of L-rational points on C, denoted C(L), is the set of all points P = (x, y) ∈ L×L

which satisfy the equation (1) of the curve C, together with a special point at infinity1

denoted ∞. The set of points C(K) will simply be denoted by C. The points in C other

than ∞ are called finite points.

Example 4 (hyperelliptic curves over the reals) The following are three examples of hyper-

elliptic curves over the field of real numbers. Each curve has genus g = 2 and h(u) = 0.

1. C1 : v2 = u5 + u4 + 4u3 + 4u2 + 3u + 3 = (u + 1)(u2 + 1)(u2 + 3). The graph of C1 in

the real plane is shown in Figure 1.

2. C2 : v2 = u5 + u4− u2− u = u(u− 1)(u + 1)(u2 + u + 1). The graph of C2 in the real

plane is shown in Figure 2.

3. C3 : v2 = u5 − 5u3 + 4u = u(u− 1)(u + 1)(u− 2)(u + 2). The graph of C3 in the real

plane is shown in Figure 3.
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Figure 1: The hyperelliptic curve C1 : v2 = u5 + u4 + 4u3 + 4u2 + 3u + 3 over the real numbers.

Definition 5 (opposite, special and ordinary points) Let P = (x, y) be a finite point on a

curve C. The opposite of P is the point P̃ = (x,−y − h(x)). (Note that P̃ is indeed on C.)

We also define the opposite of ∞ to be ∞̃ = ∞ itself. If a finite point P satisfies P = P̃

then the point is said to be special ; otherwise, the point is said to be ordinary.

1The point at infinity lies in the projective plane P 2(K). It is the only projective point lying on the
line at infinity that satisfies the homogenized hyperelliptic curve equation. If g ≥ 2, then ∞ is a singular
(projective) point which is allowed since ∞ 6∈ K ×K.
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Figure 2: The hyperelliptic curve C2 : v2 = u5 + u4 − u2 − u over the real numbers.
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Figure 3: The hyperelliptic curve C3 : v2 = u5 − 5u3 + 4u over the real numbers.
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Example 6 (hyperelliptic curve over Z7) Consider the curve C : v2 + uv = u5 + 5u4 +

6u2 +u +3 over the finite field Z7. Here, h(u) = u, f(u) = u5 +5u4 +6u2 +u +3 and g = 2.

It can be verified that C has no singular points (other than ∞), and hence C is indeed a

hyperelliptic curve. The Z7-rational points on C are

C(Z7) = {∞, (1, 1), (1, 5), (2, 2), (2, 3), (5, 3), (5, 6), (6, 4)}.

The point (6, 4) is a special point.

Example 7 (hyperelliptic curve over F25) Consider the finite field F25 = F2[x]/(x5 +x2 +1),

and let α be a root of the primitive polynomial x5 +x2 +1 in F25 . The powers of α are listed

in Table 1.

n αn n αn n αn

0 1 11 α2 + α + 1 22 α4 + α2 + 1
1 α 12 α3 + α2 + α 23 α3 + α2 + α + 1
2 α2 13 α4 + α3 + α2 24 α4 + α3 + α2 + α
3 α3 14 α4 + α3 + α2 + 1 25 α4 + α3 + 1
4 α4 15 α4 + α3 + α2 + α + 1 26 α4 + α2 + α + 1
5 α2 + 1 16 α4 + α3 + α + 1 27 α3 + α + 1
6 α3 + α 17 α4 + α + 1 28 α4 + α2 + α
7 α4 + α2 18 α + 1 29 α3 + 1
8 α3 + α2 + 1 19 α2 + α 30 α4 + α
9 α4 + α3 + α 20 α3 + α2 31 1

10 α4 + 1 21 α4 + α3

Table 1: Powers of α in the finite field F25 = F2[x]/(x5 + x2 + 1).

Consider the curve C : v2 +(u2 +u)v = u5 +u3 +1 of genus g = 2 over the finite field F25 .

Here, h(u) = u2 + u and f(u) = u5 + u3 + 1. It can be verified that C has no singular points

(other than ∞), and hence C is indeed a hyperelliptic curve. The finite points in C(F25),

the set of F25-rational points on C, are:

(0, 1) (1, 1) (α5, α15) (α5, α27) (α7, α4) (α7, α25) (α9, α27) (α9, α30)
(α10, α23) (α10, α30) (α14, α8) (α14, α19) (α15, 0) (α15, α8) (α18, α23) (α18, α29)
(α19, α2) (α19, α28) (α20, α15) (α20, α29) (α23, 0) (α23, α4) (α25, α) (α25, α14)
(α27, 0) (α27, α2) (α28, α7) (α28, α16) (α29, 0) (α29, α) (α30, 0) (α30, α16)

Of these, the points (0, 1) and (1, 1) are special.

3 Polynomial and rational functions

This section introduces basic properties of polynomial and rational functions which arise

when they are viewed as functions on a hyperelliptic curve.
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Definition 8 (coordinate ring, polynomial function) The coordinate ring of C over K, de-

noted K[C], is the quotient ring

K[C] = K[u, v]/(v2 + h(u)v − f(u)),

where (v2 + h(u)v − f(u)) denotes the ideal in K[u, v] generated by the polynomial v2 +

h(u)v − f(u). Similarly, the coordinate ring of C over K is defined as

K[C] = K[u, v]/(v2 + h(u)v − f(u)).

An element of K[C] is called a polynomial function on C.

Lemma 9 The polynomial r(u, v) = v2 + h(u)v − f(u) is irreducible over K, and hence

K[C] is an integral domain.

Proof. If r(u, v) were reducible over K, it would factor as (v − a(u))(v − b(u)) for some

a, b ∈ K[u]. But then degu(a · b) = degu f = 2g + 1 and degu(a + b) = degu h ≤ g, which is

impossible. 2

Observe that for each polynomial function G(u, v) ∈ K[C], we can repeatedly replace

any occurrence of v2 by f(u)− h(u)v, to eventually obtain a representation

G(u, v) = a(u)− b(u)v, where a(u), b(u) ∈ K[u].

It is easy to see that the representation of G(u, v) in this form is unique.

Definition 10 (conjugate) Let G(u, v) = a(u) − b(u)v be a polynomial function in K[C].

The conjugate of G(u, v) is defined to be the polynomial function G(u, v) = a(u)+b(u)(h(u)+

v).

Definition 11 (norm) Let G(u, v) = a(u)− b(u)v be a polynomial function in K[C]. The

norm of G is the polynomial function N(G) = GG.

The norm function will be very useful in transforming questions about polynomial func-

tions in two variables into easier questions about polynomials in a single variable.

Lemma 12 (properties of norm) Let G, H ∈ K[C] be polynomial functions.

(i) N(G) is a polynomial in K[u].

(ii) N(G) = N(G).

(iii) N(GH) = N(G)N(H).
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Proof. Let G = a− bv and H = c− dv, where a, b, c, d ∈ K[u]. 2

(i) Now, G = a + b(h + v) and

N(G) = G ·G = (a− bv)(a + b(h + v))

= a2 + abh− b2f ∈ K[u].

(ii) The conjugate of G is

G = (a + bh) + (−b)(h + v)

= a− bv = G.

Hence N(G) = G G = GG = N(G).

(iii) GH = (ac + bdf)− (bc + ad + bdh)v, and its conjugate is

GH = (ac + bdf) + (bc + ad + bdh)(h + v)

= ac + bdf + bch + adh + bdh2 + bcv + adv + bdhv

= ac + bc(h + v) + ad(h + v) + bd(h2 + hv + f)

= ac + bc(h + v) + ad(h + v) + bd(h2 + 2hv + v2)

= (a + b(h + v))(c + d(h + v))

= G H.

Hence N(GH) = GHGH = GHGH = GGHH = N(G)N(H). 2

Definition 13 (function field, rational functions) The function field K(C) of C over K is

the field of fractions of K[C]. Similarly, the function field K(C) of C over K is the field of

fractions of K[C]. The elements of K(C) are called rational functions on C.

Note that K[C] is a subring of K(C), i.e., every polynomial function is also a rational

function.

Definition 14 (value of a rational function at a finite point) Let R ∈ K(C), and let P ∈ C,

P 6=∞. Then R is said to be defined at P if there exist polynomial functions G, H ∈ K[C]

such that R = G/H and H(P ) 6= 0; if no such G, H ∈ K[C] exist, then R is not defined at

P . If R is defined at P , the value of R at P is defined to be R(P ) = G(P )/H(P ).

It is easy to see that the value R(P ) is well-defined, i.e., it does not depend on the choice

of G and H . The following definition introduces the notion of the degree of a polynomial

function.

2If not explicitly stated otherwise, the variable in all polynomials will henceforth be assumed to be u.
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Definition 15 (degree of a polynomial function) Let G(u, v) = a(u)− b(u)v be a non-zero

polynomial function in K[C]. The degree of G is defined to be

deg(G) = max[2 degu(a), 2g + 1 + 2 degu(b)].

Lemma 16 (properties of degree) Let G, H ∈ K[C].

(i) deg(G) = degu(N(G)).

(ii) deg(GH) = deg(G) + deg(H).

(iii) deg(G) = deg(G).

Proof.

(i) Let G = a(u)− b(u)v. The norm of G is N(G) = a2 + abh− b2f . Let d1 = degu(a(u))

and d2 = degu(b(u)). By definition of a hyperelliptic curve, degu(h(u)) ≤ g and

degu(f(u)) = 2g + 1. There are two cases to consider:

Case 1: If 2d1 > 2g+1+2d2 then 2d1 ≥ 2g +2+2d2, and hence d1 ≥ g +1+d2. Hence

degu(a
2) = 2d1 ≥ d1 + g + 1 + d2 > d1 + d2 + g ≥ degu(abh).

Case 2: If 2d1 < 2g + 1 + 2d2 then 2d1 ≤ 2g + 2d2, and hence d1 ≤ g + d2. Hence

degu(abh) ≤ d1 + d2 + g ≤ 2g + 2d2 < 2g + 2d2 + 1 = degu(b
2f).

It follows that

degu(N(G)) = max(2d1, 2g + 1 + 2d2) = deg(G).

(ii) We have

deg(GH) = degu(N(GH)), by (i)

= degu(N(G)N(H)), by Lemma 12(iii)

= degu(N(G)) + degu(N(H))

= deg(G) + deg(H).

(iii) Since N(G) = N(G), we have deg(G) = degu(N(G)) = degu(N(G)) = deg(G). 2

Definition 17 (value of a rational function at ∞) Let R = G/H ∈ K(C) be a rational

function.

(i) If deg(G) < deg(H) then the value of R at ∞ is defined to be R(∞) = 0.

(ii) If deg(G) > deg(H) then R is not defined at ∞.

(iii) If deg(G) = deg(H) then R(∞) is defined to be the ratio of the leading coefficients

(with respect to the deg function) of G and H .
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4 Zeros and poles

This section introduces the notion of a uniformizing parameter, and the orders of zeros and

poles of rational functions.

Definition 18 (zero, pole) Let R ∈ K(C)∗ and let P ∈ C. If R(P ) = 0 then R is said to

have a zero at P . If R is not defined at P then R is said to have a pole at P , in which case

we write R(P ) =∞.

Lemma 19 Let G ∈ K[C]∗ and P ∈ C. If G(P ) = 0 then G(P̃ ) = 0.

Proof. Let G = a(u) − b(u)v and P = (x, y). Then G = a(u) + b(u)(v + h(u)), P̃ =

(x,−y − h(x)), and G(P̃ ) = a(x) + b(x)(−y − h(x) + h(x)) = a(x)− yb(x) = G(P ) = 0. 2

Lemmas 20, 21 and 22 are used in Theorem 23 which establishes the existence of uni-

formizing parameters.

Lemma 20 Let P = (x, y) be a point on C. Suppose that G = a(u)− b(u)v ∈ K[C]∗ has a

zero at P and that x is not a root of both a(u) and b(u). Then G(P ) = 0 if and only if P is

a special point.

Proof. If P is a special point, then G(P ) = 0 by Lemma 19. Conversely, suppose that P is

an ordinary point, i.e., y 6= (−y − h(x)). If G(P ) = 0 then we have:

a(x)− b(x)y = 0

a(x) + b(x)(h(x) + y) = 0.

Subtracting the two equations yields b(x) = 0, and hence a(x) = 0, which contradicts the

hypothesis that x is not a root of both a(u) and b(u). Hence if G(P ) = 0 then P is special.

2

Lemma 21 Let P = (x, y) be an ordinary point on C, and let G = a(u)− b(u)v ∈ K[C]∗.

Suppose that G(P ) = 0 and x is not a root of both a(u) and b(u). Then G can be written

in the form (u − x)sS, where s is the highest power of (u − x) which divides N(G), and

S ∈ K(C) has neither a zero nor a pole at P .

Proof. We can write

G = G · G
G

=
N(G)

G
=

a2 + abh− b2f

a + b(h + v)
.

Let N(G) = (u − x)sd(u), where s is the highest power of (u − x) which divides N(G)

(so d(u) ∈ K[u]∗ and d(x) 6= 0). By Lemma 20, G(P ) 6= 0. Let S = d(u)/G. Then

G = (u− x)sd(u)/G and S(P ) 6= 0,∞. 2
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Lemma 22 Let P = (x, y) be a special point on C. Then (u − x) can be written in the

form (v − y)2 · S(u, v), where S(u, v) ∈ K(C) has neither a zero nor a pole at P .

Proof. Let H = (v − y)2 and S = (u− x)/H , and note that (u− x) = H · S. We will show

that S(P ) 6= 0,∞. Since P is a special point, 2y + h(x) = 0. Consequently, since P is not a

singular point, we have h′(x)y− f ′(x) 6= 0. Also, f(x) = y2 + h(x)y = y2 + (−2y)(y) = −y2.

Now,

H(u, v) = (v − y)2 = v2 − 2yv + y2 = f(u)− h(u)v − 2yv + y2.

Hence
1

S(u, v)
=

(
f(u) + y2

u− x

)
− v

(
h(u) + 2y

u− x

)
. (2)

Notice that the right hand side of (2) is indeed a polynomial function. Let s(u) = H(u, y),

and observe that s(x) = 0. Moreover, s′(u) = f ′(u)−h′(u)y, whence s′(x) 6= 0. Thus (u−x)

divides s(u), but (u− x)2 does not divide s(u). It follows that the right hand side of (2) is

non-zero at P , and hence that S(P ) 6= 0,∞, as required. 2

Theorem 23 (existence of uniformizing parameters) Let P ∈ C. Then there exists a func-

tion U ∈ K(C) with U(P ) = 0 such that the following property holds: for each polynomial

function G ∈ K[C]∗, there exists an integer d and function S ∈ K(C) such that S(P ) 6= 0,∞
and G = UdS. Furthermore, the number d does not depend on the choice of U . The function

U is called a uniformizing parameter for P .

Proof. Let G(u, v) ∈ K[C]∗. If P is a finite point, suppose that G(P ) = 0; if P = ∞,

suppose that G(P ) = ∞. (If G(P ) 6= 0,∞, then we can write G = U0G where U is any

polynomial in K[C] satisfying U(P ) = 0.) We prove the theorem by finding a uniformizing

parameter for each of the following cases: (i) P =∞; (ii) P is an ordinary point; and (iii) P

is a special point.

(i) We first show that a uniformizing parameter for the point P = ∞ is U = ug/v. First

note that U(∞) = 0 since deg(ug) < deg(v). Next, write

G =

(
ug

v

)d ( v

ug

)d

G,

where d = − deg(G). Let S = (v/ug)dG. Since deg(v) − deg(ug) = 2g + 1 − 2g = 1

and d = − deg(G), it follows that deg(u−gdG) = deg(v−d). Hence S(∞) 6= 0,∞.

(ii) Assume now that P = (x, y) is an ordinary point. We show that a uniformizing

parameter for P is U = (u− x); observe that U(P ) = 0. Write G = a(u)− b(u)v. Let

(u− x)r be the highest power of (u− x) which divides both a(u) and b(u), and write

G(u, v) = (u− x)r(a0(u)− b0(u)v).
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By Lemma 21, we can write (a0(u)− b0(u)v) = (u− x)sS for some integer s ≥ 0, and

S ∈ K(C) such that S(P ) 6= 0,∞. Hence G = (u − x)r+sS satisfies the statement of

the theorem with d = r + s.

(iii) Assume now that P = (x, y) is a special point. We show that a uniformizing parameter

for P is U = (v − y); observe that U(P ) = 0. By replacing any powers of u greater

than 2g with the equation of the curve, we can write

G(u, v) = u2gb2g(v) + u2g−1b2g−1(v) + · · ·+ ub1(v) + b0(v),

where each bi(v) ∈ K[v]. Replacing all occurrences of u by ((u−x)+x) and expanding

yields

G(u, v) = (u− x)2gb2g(v) + (u− x)2g−1b2g−1(v) + · · ·+ (u− x)b1(v) + b0(v)

= (u− x)B(u, v) + b0(v),

where each bi(v) ∈ K[v], and B(u, v) ∈ K[C]. Now G(P ) = 0 implies b0(y) = 0, and

so we can write b0(v) = (v − y)c(v) for some c ∈ K[v]. By the proof of Lemma 22

(see equation (2)), we can write (u− x) = (v− y)2/A(u, v), where A(u, v) ∈ K[C] and

A(P ) 6= 0,∞. Hence

G = (v − y)

[
(v − y)B(u, v)

A(u, v)
+ c(v)

]

=
(v − y)

A(u, v)
[(v − y)B(u, v) + A(u, v)c(v)]

def
=

(v − y)

A(u, v)
G1(u, v).

Now if G1(P ) 6= 0, then we are done by taking S = G1/A. On the other hand, if

G1(P ) = 0, then c(y) = 0 and we can write c(v) = (v − y)c1(v) for some c1 ∈ K[v].

Hence

G = (v − y)2

[
B(u, v)

A(u, v)
+ c1(v)

]

=
(v − y)2

A(u, v)
[B(u, v) + A(u, v)c1(v)]

def
=

(v − y)2

A(u, v)
G2(u, v).

Again, if G2(P ) 6= 0 then we are done. Otherwise, the whole process can be repeated.

To see that the process terminates, suppose that we have pulled k factors of v − y.

There are two cases to consider.
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(a) If k is even, say k = 2l, we can write

G =
(v − y)2l

A(u, v)l
D(u, v)

where D ∈ K[C]. Hence AlG = (v−y)2lD = (u−x)lAlD, whence G = (u−x)lD.

Taking norms of both sides yields N(G) = (u−x)2lN(D). Hence k ≤ degu(N(G)).

(b) If k is odd, say k = 2l + 1, we can write

G =
(v − y)2l+1

A(u, v)l+1
D(u, v)

where D ∈ K[C]. Hence Al+1G = (v − y)2l+1D = (u − x)lAl(v − y)D, whence

AG = (u−x)l(v−y)D. Taking norms of both sides yields N(AG) = (u−x)2lN(v−
y)N(D). Hence 2l < degu(N(AG)), and so k ≤ degu(N(AG)).

In either case, k is bounded by degu(N(AG)) and so the process must terminate.

To see that d is independent of the choice of U , suppose that U1 is another uniformizing

parameter for P . Since U(P ) = U1(P ) = 0, we can write U = Ua
1 A and U1 = U bB,

where a ≥ 1, b ≥ 1, A, B ∈ K(C), A(P ) 6= 0,∞, B(P ) 6= 0,∞. Thus U = (U bB)aA =

UabBaA. Dividing both sides by U yields Uab−1BaA = 1. Substituting P in both sides

of this equation tells us ab − 1 = 0. Hence a = b = 1. Thus G = UdS = Ud
1 (AdS),

where AdS has neither a zero nor a pole at P . 2

The notion of a uniformizing parameter is next used to define the order of a polynomial

function at a point. An alternative definition from [20], which is more convenient to use

for computational purposes, is given in Definition 26. Lemma 27 establishes that these two

definitions are in fact equivalent.

Definition 24 (usual definition of order of a polynomial function at a point) Let G ∈ K[C]∗

and P ∈ C. Let U ∈ K(C) be a uniformizing parameter for P , and write G = UdS where

S ∈ K(C), S(P ) 6= 0,∞. The order of G at P is defined to be ordP (G) = d.

Lemma 25 Let G1, G2 ∈ K[C]∗ and P ∈ C, and let ordP (G1) = r1, ordP (G2) = r2.

(i) ordP (G1G2) = ordP (G1) + ordP (G2).

(ii) Suppose that G1 6= −G2. If r1 6= r2 then ordP (G1 + G2) = min(r1, r2). If r1 = r2 then

ordP (G1 + G2) ≥ min(r1, r2).

Proof. Let U be a uniformizing parameter for P . By Definition 24, we can write G1 = U r1S1

and G2 = U r2S2, where S1, S2 ∈ K(C), S1(P ) 6= 0,∞, S2(P ) 6= 0,∞. Without loss of

generality, suppose that r1 ≥ r2.
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(i) G1G2 = U r1+r2(S1S2), from which it follows that ordP (G1G2) = r1 + r2.

(ii) G1 + G2 = U r2(U r1−r2S1 + S2). If r1 > r2 then (U r1−r2S1)(P ) = 0, S2(P ) 6= 0,∞, and

so ordP (G1 +G2) = r2. If r1 = r2 then (S1 +S2)(P ) 6=∞ (although it may be the case

that (S1 + S2)(P ) = 0), and so ordP (G1 + G2) ≥ r2. 2

Definition 26 (alternate definition of order of a polynomial function at a point) Let G =

a(u) − b(u)v ∈ K[C]∗ and P ∈ C. The order of G at P , denoted ordP (G), is defined as

follows:

(i) If P = (x, y) is a finite point, then let r be the highest power of (u− x) which divides

both a(u) and b(u), and write G(u, v) = (u−x)r(a0(u)− b0(u)v). If a0(x)− b0(x)y 6= 0

then let s = 0; otherwise, let s be the highest power of (u−x) which divides N(a0(u)−
b0(u)v) = a2

0 + a0b0h− b2
0f . If P is an ordinary point, then define ordP (G) = r + s. If

P is a special point, then define ordP (G) = 2r + s.

(ii) If P =∞ then

ordP (G) = −max[2 degu(a), 2g + 1 + 2 degu(b)].

Lemma 27 Definition 24 and Definition 26 are equivalent. That is, if the order function of

Definition 26 is denoted by ord, then ordP (G) = ordP (G) for all P ∈ C and G ∈ K[C]∗.

Proof. If P = ∞, the proof of the lemma follows directly from the proof of Theorem 23(i).

For the case P is an ordinary point, the proof of the lemma follows directly from Lemma 21

and the proof of Theorem 23(ii).

Suppose now that P = (x, y) is a special point, and let G = a − bv. Let r be the highest

power of (u− x) which divides both a(u) and b(u), and write

G = (u− x)r(a0(u)− b0(u)v)
def
= (u− x)rH(u, v).

Let ordP (H) = s. Then, by Lemma 22,

ordP (G) = ordP ((u− x)r) + ordP (H) = 2r + s.

Now, since v − y is a uniformizing parameter for P , we can write

H(u, v) = (v − y)sA1/A2, where A1, A2 ∈ K[C], A1(P ) 6= 0, A2(P ) 6= 0.

Multiplying both sides by A2 and taking norms yields

N(A2)N(H) = (y2 + h(u)y − f(u))sN(A1).

Now, N(A1)(x) 6= 0 since A1(P ) 6= 0 and P is special (Lemma 19). Similarly, N(A2)(x) 6= 0.

Also, u = x is a root of the polynomial y2 + h(u)y − f(u). Moreover, u = x is not a double

root of y2 + h(u)y − f(u) since h′(x)y − f ′(x) 6= 0. It follows that (u − x)s is the highest

power of (u− x) which divides N(H). Hence ordP (G) = 2r + s = ordP (G). 2
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Lemma 28 is a generalization of Lemma 19.

Lemma 28 Let G ∈ K[C]∗ and P ∈ C. Then ordP (G) = ord eP (G).

Proof. There are two cases to consider.

(i) Suppose P = ∞; then P̃ = ∞. By Definitions 26(ii) and 15, ordP (G) = − deg(G)

and ord eP (G) = ordP (G) = − deg(G). By Lemma 16(iii), deg(G) = deg(G). Hence

ordP (G) = ord eP (G).

(ii) Suppose now that P = (x, y) is a finite point. Let G = a(u)− b(u)v = (u−x)rH(u, v),

where r is the highest power of (u−x) which divides both a(u) and b(u) and H(u, v) =

a0(u)− b0(u)v. If H(x, y) 6= 0 then let s = 0; otherwise, let s be the highest power of

(u−x) which divides N(H). Now, G = (u−x)rH, where H = (a0 + b0h)+ b0v. Recall

that H(P ) = 0 if and only if H(P̃ ) = 0. Since (u − x) does not divide both a0 + b0h

and b0 (since otherwise, (u−x)|a0), and s is the highest power of (u−x) which divides

N(H) = N(H), it follows from Definition 26 that ord eP (G) = ordP (G). 2

Theorem 29 Let G ∈ K[C]∗. Then G has a finite number of zeros and poles. Moreover,∑
P∈C ordP (G) = 0.

Proof. Let n = deg(G); then degu(N(G)) = n. We can write

N(G) = GG = (u− x1)(u− x2) · · · (u− xn),

where xi ∈ K, and the xi are not necessarily distinct. The only pole of G is at P = ∞,

and ord∞(G) = −n. If xi is the u-coordinate of an ordinary point P = (xi, yi) on C, then

ordP (u−xi) = 1 and ord eP (u−xi) = 1, and (u−xi) has no other zeros. If xi is the u-coordinate

of a special point P = (xi, yi) on C, then ordP (u− xi) = 2, and (u− xi) has no other zeros.

Hence, N(G), and consequently also G, has a finite number of zeros and poles, and moreover∑
P∈C\{∞} ordP (N(G)) = 2n. But, by Lemma 28,

∑
P∈C\{∞} ordP (G) =

∑
P∈C\{∞} ordP (G),

and hence
∑

P∈C\{∞} ordP (G) = n. We conclude that
∑

P∈C ordP (G) = 0. 2

Definition 30 (order of a rational function at a point) Let R = G/H ∈ K(C)∗ and P ∈ C.

The order of R at P is defined to be ordP (R) = ordP (G)− ordP (H).

It can readily be verified that ordP (R) does not depend on the choice of G and H , and

that Lemma 25 and Theorem 29 are also true for non-zero rational functions.
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5 Divisors

This section presents the basic properties of divisors and introduces the jacobian of a hyper-

elliptic curve.

Definition 31 (divisor, degree, order) A divisor D is a formal sum of points in C

D =
∑

P∈C

mP P, mP ∈ Z,

where only a finite number of the mP are non-zero. The degree of D, denoted deg D, is the

integer
∑

P∈C mP . The order of D at P is the integer mP ; we write ordP (D) = mP .

The set of all divisors, denoted D, forms an additive group under the addition rule:

∑

P∈C

mP P +
∑

P∈C

nP P =
∑

P∈C

(mP + nP )P.

The set of all divisors of degree 0, denoted D0, is a subgroup of D.

Definition 32 (gcd of divisors) Let D1 =
∑

P∈C mP P and D2 =
∑

P∈C nP P be two divisors.

The greatest common divisor of D1 and D2 is defined to be

gcd(D1, D2) =
∑

P∈C

min(mP , nP )P −
(
∑

P∈C

min(mP , nP )

)
∞.

(Note that gcd(D1, D2) ∈ D0.)

Definition 33 (divisor of a rational function) Let R ∈ K(C)∗. The divisor of R is

div(R) =
∑

P∈C

(ordPR)P.

Note that if R = G/H then div(R) = div(G) − div(H). Theorem 29 shows that the

divisor of a rational function is indeed a finite formal sum and has degree 0.

Example 34 If P = (x, y) is an ordinary point on C, then div(u − x) = P + P̃ − 2∞. If

P = (x, y) is a special point on C, then div(u− x) = 2P − 2∞.

Lemma 35 Let G ∈ K[C]∗, and let div(G) =
∑

P∈C mP P . Then div(G) =
∑

P∈C mP P̃ .

Proof. The result follows directly from Lemma 28. 2

If R1, R2 ∈ K(C)∗ then it follows from Lemma 25(i) that div(R1R2) = div(R1)+div(R2).
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Definition 36 (principal divisor, jacobian) A divisor D ∈ D0 is called a principal divisor if

D = div(R) for some rational function R ∈ K(C)∗. The set of all principal divisors, denoted

P, is a subgroup of D0. The quotient group J = D0/P is called the jacobian of the curve C.

If D1, D2 ∈ D0 then we write D1 ∼ D2 if D1−D2 ∈ P; D1 and D2 are said to be equivalent

divisors.

Definition 37 (support of a divisor) Let D =
∑

P∈C mP P be a divisor. The support of D

is the set supp(D) = {P ∈ C | mP 6= 0}.

Definition 38 (semi-reduced divisor) A semi-reduced divisor is a divisor of the form D =∑
miPi − (

∑
mi)∞, where each mi ≥ 0 and the Pi’s are finite points such that when

Pi ∈ supp(D) then P̃i 6∈ supp(D), unless Pi = P̃i, in which case mi = 1.

Lemma 39 For each divisor D ∈ D0 there exists a semi-reduced divisor D1 (D1 ∈ D0) such

that D ∼ D1.

Proof. Let D =
∑

P∈C mP P . Let (C1, C2) be a partition of the set of ordinary points on C

such that (i) P ∈ C1 if and only if P̃ ∈ C2; and (ii) if P ∈ C1 then mP ≥ m eP . Let C0 be the

set of special points on C. Then we can write

D =
∑

P∈C1

mP P +
∑

P∈C2

mP P +
∑

P∈C0

mP P −m∞.

Consider the following divisor

D1 = D −
∑

P=(x,y)∈C2

mP div(u− x)−
∑

P=(x,y)∈C0

⌊mP

2

⌋
div(u− x).

Then D1 ∼ D. Finally, by Example 34, we have

D1 =
∑

P∈C1

(mP −m eP )P +
∑

P∈C0

(
mP − 2

⌊mP

2

⌋)
P −m1∞

for some m1 ∈ Z, and hence D1 is a semi-reduced divisor. 2

6 Representing semi-reduced divisors

This section describes a polynomial representation for semi-reduced divisors of the jacobian.

It leads to an efficient algorithm for adding elements of the jacobian (see §8).

Lemma 40 Let P = (x, y) be an ordinary point on C, and let R ∈ K(C) be a rational

function which does not have a pole at P . Then for any k ≥ 0, there are unique elements

c0, c1, . . . , ck ∈ K and Rk ∈ K(C) such that R =
∑k

i=0 ci(u− x)i + (u− x)k+1Rk, and where

Rk does not have a pole at P .
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Proof. There is a unique c0 ∈ K, namely c0 = R(x, y), such that P is a zero of R − c0.

Since (u− x) is a uniformizing parameter for P , we can write R− c0 = (u− x)R1 for some

(unique) R1 ∈ K(C) with ordP (R1) ≥ 0. Hence R = c0 +(u−x)R1. The lemma now follows

by induction. 2

Lemma 41 Let P = (x, y) be an ordinary point on C. Then for each k ≥ 1, there exists a

unique polynomial bk(u) ∈ K[u] such that

(i) degu bk < k;

(ii) bk(x) = y; and

(iii) b2
k(u) + bk(u)h(u) ≡ f(u) (mod (u− x)k).

Proof. Let v =
∑k−1

i=0 ci(u − x)i + (u − x)kRk−1 where ci ∈ K and Rk−1 ∈ K(C). Define

bk(u) =
∑k−1

i=0 ci(u − x)i. From the proof of Lemma 40, we know that c0 = y, and hence

bk(x) = y. Finally, since v2 + h(u)v = f(u), reducing both sides modulo (u − x)k yields

bk(u)2 + bk(u)h(u) ≡ f(u) (mod (u−x)k). Uniqueness is easily proved by induction on k. 2

The following theorem shows how a semi-reduced divisor can be represented as the gcd

of the divisors of two polynomial functions.

Theorem 42 Let D =
∑

miPi − (
∑

mi)∞ be a semi-reduced divisor, where Pi = (xi, yi).

Let a(u) =
∏

(u − xi)
mi . Let b(u) be the unique polynomial satisfying: (i) degu b < degu a;

(ii) b(xi) = yi for all i for which mi 6= 0; and (iii) a(u) divides (b(u)2 + b(u)h(u) − f(u)).

Then D = gcd(div(a(u)), div(b(u)− v)).

Notation: gcd(div(a(u)), div(b(u)− v)) will usually be abbreviated to div(a(u), b(u)− v) or,

more simply, to div(a, b).

Proof. Let C1 be the set of ordinary points in supp(D), and let C0 be the set of special

points in supp(D). Let C2 = {P̃ : P ∈ C1}. Then we can write

D =
∑

Pi∈C0

Pi +
∑

Pi∈C1

miPi −m∞,

where mi, m ∈ Z≥1.

We first prove that there does indeed exist a unique polynomial b(u) which satisfies the

conditions of the theorem. By Lemma 41, for each Pi ∈ C1 there exists a unique polynomial

bi(u) ∈ K[u] satisfying (i) degu bi < mi; (ii) bi(xi) = yi; and (iii) (u−xi)
mi |b2

i (u)+bi(u)h(u)−
f(u). It can be easily verified that for each Pi ∈ C0, bi(u) = yi is the unique polynomial

satisfying (i) degu bi < 1; (ii) bi(xi) = yi; and (iii) (u − xi)|b2
i (u) + bi(u)h(u) − f(u). By
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the Chinese Remainder Theorem for polynomials, there is a unique polynomial b(u) ∈ K[u],

degu b <
∑

mi, such that

b(u) ≡ bi(u) (mod (u− xi)
mi) for all i.

It can now be verified that b(u) satisfies conditions (i), (ii) and (iii) of the statement of the

theorem.

Now,

div(a(u)) = div
(∏

(u− xi)
mi

)
=
∑

Pi∈C0

2Pi +
∑

Pi∈C1

miPi +
∑

Pi∈C1

miP̃i − (∗)∞.

And,

div(b(u)− v) =
∑

Pi∈C0

tiPi +
∑

Pi∈C1

siPi +
∑

Pi∈C\(C0∪C1∪C2∪{∞})

miPi − (∗)∞,

where each si ≥ mi since (u−xi)
mi divides N(b− v) = b2 +hb− f . Now, if P = (x, y) ∈ C0,

then (u− x) divides b2 + bh− f . The derivative of this polynomial evaluated at u = x is

2b(x)b′(x) + b′(x)h(x) + b(x)h′(x)− f ′(x) = b′(x)(2y + h(x)) + (h′(x)y − f ′(x))

= h′(x)y − f ′(x), since 2y + h(x) = 0

6= 0.

Hence u = x is a simple root of N(b− v) = b2 + bh− f , and hence ti = 1 for all i. Therefore

gcd(a(u), b(u)− v) =
∑

Pi∈C0

Pi +
∑

Pi∈C1

miPi −m∞ = D,

as required. 2

Note that the zero divisor is represented as div(1, 0). The next result follows from the

proof of Theorem 42.

Lemma 43 Let a(u), b(u) ∈ K[u] be such that degu b < degu a. If a|(b2 + bh − f) then

div(a, b) is semi-reduced.

7 Reduced divisors

This section defines the notion of a reduced divisor and proves that each coset of the quotient

group J = D0/P has exactly one reduced divisor. We can therefore identify each coset with

its reduced divisor.

Definition 44 (reduced divisor) Let D =
∑

miPi− (
∑

mi)∞ be a semi-reduced divisor. If∑
mi ≤ g (g is the genus of C) then D is called a reduced divisor.
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Definition 45 (norm of a divisor) Let D =
∑

P∈C mP P be a divisor. The norm of D is

defined to be

|D| =
∑

P∈C\{∞}

|mP |.

Note that given a divisor D ∈ D0, the operation described in the proof of Lemma 39

produces a semi-reduced divisor D1 such that D1 ∼ D and |D1| ≤ |D|.

Lemma 46 Let R be a rational function in K(C)∗. If R has no finite poles, then R is a

polynomial function.

Proof. Let R = G/H , where G, H ∈ K[C]∗. Then R = G
H
· H

H
= GH/N(H), and so we

can write R = (a − bv)/c, where a, b, c ∈ K[u], c 6= 0. Let x ∈ K be a root of c. Let

P = (x, y) ∈ C where y ∈ K, and let d ≥ 1 be the highest power of (u− x) which divides c.

If P is ordinary, then ordP (c) = ord eP (c) = d. Since R has no finite poles, ordP (a−bv) ≥ d

and ord eP (a− bv) ≥ d. Now, since P and P̃ are both zeros of a− bv, it is true that a(x) = 0

and b(x) = 0. It follows that ordP (a) ≥ d and ordP (b) ≥ d. Hence (u − x)d is a common

divisor of a and b, which can be cancelled with the factor (u− x)d of c.

Suppose now that P is special. Then ordP (c) = 2d. Since R has no finite poles, ordP (a−
bv) ≥ 2d. Then, as in part (iii) of the proof of Theorem 23, we can write

a− bv =
(v − y)2dD

Ad
,

where A, D ∈ K[C]∗ and A satisfies (v− y)2 = (u− x)A. Hence a− bv = (u− x)dD. Again,

the factor (u− x)d of a− bv can be cancelled with the factor (u− x)d of c.

This can be repeated for all roots of c; it follows that R is a polynomial function. 2

Theorem 47 For each divisor D ∈ D0 there exists a unique reduced divisor D1 such that

D ∼ D1.

Proof. (Existence) Let D′ be a semi-reduced divisor such that D′ ∼ D and |D′| ≤ |D|
produced as in the proof of Lemma 39. If |D′| ≤ g then D′ is reduced and we are done.

Otherwise, let P1, P2, . . . , Pg+1 be finite points in supp(D′), not necessarily distinct. (A

point P cannot occur in this list more than ordP (D′) times.) Let div(a(u), b(u)) be the

representation of the divisor

P1 + P2 + · · ·+ Pg+1 − (g + 1)∞

as given by Theorem 42. Since degu(b) ≤ g, we have deg(b(u)− v) = 2g + 1, and hence

div(b(u)− v) = P1 + P2 + · · ·+ Pg+1 + Q1 + · · ·+ Qg − (2g + 1)∞
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for some finite points Q1, Q2, . . . , Qg. Subtracting this divisor from D′ gives a divisor D′′,

where D′′ ∼ D′ ∼ D and |D′′| < |D′|. We can now produce another semi-reduced divisor

D′′′ ∼ D′′ such that |D′′′| ≤ |D′′|. After doing this a finite number of times, we obtain a

semi-reduced divisor D1 with |D1| ≤ g, and we are done.3

(Uniqueness) Suppose that D1 and D2 are two reduced divisors with D1 ∼ D2, D1 6= D2.

Let D3 be a semi-reduced divisor with D3 ∼ D1−D2 obtained as in the proof of Lemma 39.

Since D1 6= D2, there is a point P such that ordP (D1) 6= ordP (D2). Suppose, without loss

of generality, that ordP (D1) = m1 ≥ 1, and either (i) ordP (D2) = 0 and ord eP (D2) = 0;

or (ii) ordP (D2) = m2 with 1 ≤ m2 < m1; or (iii) ord eP (D2) = m2 with 1 ≤ m2 ≤ m1.

(If P is special then only (i) can occur.) In case (i), ordP (D3) = m1 ≥ 1. In case (ii),

ordP (D3) = (m1 − m2) ≥ 1. In case (iii), ordP (D3) = (m1 + m2) ≥ 1. In all cases,

ordP (D3) ≥ 1, and so D3 6= 0. Also, |D3| ≤ |D1 − D2| ≤ |D1| + |D2| ≤ 2g. Let G be a

rational function in K(C)∗ such that div(G) = D3; since D1 ∼ D2, and D3 ∼ D1 −D2, we

know that D3 is principal and hence such a function G exists. By Lemma 46, since G has no

finite poles, it must be a polynomial function. Then G = a(u)− b(u)v for some a, b ∈ K[u].

Since deg(v) = 2g + 1 and deg(G) = |D3| ≤ 2g, we must have b(u) = 0. Suppose that

degu(a(u)) ≥ 1, and let x ∈ K be a root of a(u). Let P = (x, y) be a point on C. Now, if P

is ordinary, then both P and P̃ are zeros of G, contradicting the fact that D3 is semi-reduced.

If P is special, then it must also be a zero of G of order at least 2, again contradicting the

fact that D3 is semi-reduced. Thus, degu(a(u)) = 0 and so D3 = 0, a contradiction. 2

8 Adding reduced divisors

Let C be a hyperelliptic curve of genus g defined over a finite field K, and let J be the

jacobian of C. Let P = (x, y) ∈ C, and let σ be an automorphism of K over K. Then

P σ def
= (xσ, yσ) is also a point on C.

Definition 48 (field of definition of a divisor) A divisor D =
∑

mP P is said to be defined

over K if Dσ def
=
∑

mP P σ is equal to D for all automorphisms σ of K over K.

Note that if D is defined over K, it does not mean that each point in the support of D

is a K-rational point. A principal divisor is defined over K if and only if it is the divisor

of a rational function that has coefficients in K. The set J(K) of all divisor classes in J

that have a representative that is defined over K is a subgroup of J . Each element of J(K)

has a unique representation as a reduced divisor div(a, b), where a, b ∈ K[u], degu a ≤ g,

degu b < degu a, and hence J(K) is in fact a finite abelian group. This section presents an

efficient algorithm for adding elements in this group.

3Algorithm 2 in Section 8 describes an efficient algorithm which, given a semi-reduced divisor D =
div(a, b), finds a reduced divisor D1 such that D ∼ D1; the algorithm only uses a and b.
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Let D1 = div(a1, b1) and D2 = div(a2, b2) be two reduced divisors defined over K (so a1,

a2, b1, b2 ∈ K[u]). Algorithm 1 finds a semi-reduced divisor D = div(a, b) with a, b ∈ K[u],

such that D ∼ D1 + D2. Algorithm 2 reduces D to an equivalent reduced divisor D′.

Notation: b mod a denotes the remainder polynomial when b is divided by a.

Algorithms 1 and 2 were presented by Koblitz [20], and generalized earlier algorithms of

Cantor [5] which assumed that h(u) = 0 and char(K) 6= 2. 4

Algorithm 1

Input: Reduced divisors D1 = div(a1, b1) and D2 = div(a2, b2) both defined over K.

Output: A semi-reduced divisor D = div(a, b) defined over K such that D ∼ D1 + D2.

1. Use the extended Euclidean algorithm to find polynomials d1, e1, e2 ∈ K[u] where

d1 = gcd(a1, a2) and d1 = e1a1 + e2a2.

2. Use the extended Euclidean algorithm to find polynomials d, c1, c2 ∈ K[u] where

d = gcd(d1, b1 + b2 + h) and d = c1d1 + c2(b1 + b2 + h).

3. Let s1 = c1e1, s2 = c1e2, and s3 = c2, so that

d = s1a1 + s2a2 + s3(b1 + b2 + h). (3)

4. Set

a = a1a2/d
2 (4)

and

b =
s1a1b2 + s2a2b1 + s3(b1b2 + f)

d
mod a. (5)

Theorem 49 (Algorithm 1 works) Let D1 = div(a1, b1) and D2 = div(a2, b2) be semi-

reduced divisors. Let a and b be defined as in equations (4) and (5). Then D = div(a, b) is

a semi-reduced divisor and D ∼ D1 + D2.

Proof. We first verify that b is a polynomial. Using equation (3), we can write

s1a1b2 + s2a2b1 + s3(b1b2 + f)

d
=

b2(d− s2a2 − s3(b1 + b2 + h)) + s2a2b1 + s3(b1b2 + f)

d

= b2 +
s2a2(b1 − b2)− s3(b

2
2 + b2h− f)

d
.

Since d|a2 and a2|(b2
2 + b2h− f), b is indeed a polynomial.

4Koblitz did not provide proofs of correctness of the algorithms, and Cantor’s proof contains some errors.
In defining the polynomials a(u) and b(u) which represent the semi-reduced divisor D =

∑
Pi∈C

miPi (for

the case of hyperelliptic curves with h(u) = 0), Cantor incorrectly states that the condition that a|(b2 − f)
is equivalent to the condition that b− yi be divisible by (u− xi)

mi for all i (where Pi = (xi, yi)).
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Let b = (s1a1b2 + s2a2b1 + s3(b1b2 + f))/d + sa, where s ∈ K[u]. Now,

b− v =
s1a1b2 + s2a2b1 + s3(b1b2 + f)− dv

d
+ sa

=
s1a1b2 + s2a2b1 + s3(b1b2 + f)− s1a1v − s2a2v − s3(b1 + b2 + h)v

d
+ sa

=
s1a1(b2 − v) + s2a2(b1 − v) + s3(b1 − v)(b2 − v)

d
+ sa. (6)

From (6) it is not hard to see that a|(b2 + bh − f). Namely, b2 + bh − f is obtained by

multiplying the left side of (6) by its conjugate: (b−v)(b+v+h) = b2+bh−f . Thus, to see that

a|(b2+bh−f) it suffices to show that a1a2 divides the product of (s1a1(b2−v)+s2a2(b1−v)+

s3(b1−v)(b2−v)) with its conjugate; this follows because a1|(b2
1+b1h−f) = (b1−v)(b1+v+h)

and a2|(b2
2 + b2h− f) = (b2 − v)(b2 + v + h). Lemma 43 now implies that div(a, b) is a semi-

reduced divisor.

We now prove that D ∼ D1 + D2. There are two cases to consider.

(i) Let P = (x, y) be an ordinary point. There are two subcases to consider.

(a) Suppose that ordP (D1) = m1, ord eP (D1) = 0, ordP (D2) = m2, and ord eP (D2) = 0,

where m1 ≥ 0, m2 ≥ 0. Now, ordP (a1) = m1, ordP (a2) = m2, ordP (b1 − v) ≥ m1,

and ordP (b2 − v) ≥ m2. If m1 = 0 or m2 = 0 (or both) then ordP (d1) = 0,

whence ordP (d) = 0 and ordP (a) = m1 + m2. If m1 ≥ 1 and m2 ≥ 1, then, since

(b1 + b2 + h)(x) = 2y + h(x) 6= 0, we have ordP (d) = 0 and ordP (a) = m1 + m2.

From equation (6), it follows that

ordP (b− v) ≥ min{m1 + m2, m2 + m1, m1 + m2} = m1 + m2.

Hence ordP (D) = m1 + m2.

(b) Suppose that ordP (D1) = m1 and ord eP (D2) = m2, where m1 ≥ m2 ≥ 1. We have

ordP (a1) = m1, ordP (a2) = m2, ordP (d1) = m2, ordP (b1−v) ≥ m1, ordP (b2−v) =

0, and ord eP (b2−v) ≥ m2. The last inequality implies that ordP (b2 +h+v) ≥ m2,

and hence ordP (b1+b2+h) ≥ m2 or (b1+b2+h) = 0. It follows that ordP (d) = m2

and ordP (a) = m1 −m2.

From equation (6), it follows that

ordP (b− v) ≥ min{m1 + 0, m2 + m1, m1 + 0} −m2 = m1 −m2.

Hence ordP (D) = m1 −m2.

(ii) Let P = (x, y) be a special point. There are two subcases to consider.
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(a) Suppose that ordP (D1) = 1 and ordP (D2) = 1. Then ordP (a1) = 2, ordP (a2) = 2,

and ordP (d1) = 2. Now, (b1+b2+h)(x) = 2y+h(x) = 0, whence ordP (b1+b2+h) ≥
2 or (b1 + b2 + h) = 0. It follows that ordP (d) = 2 and ordP (a) = 0. Hence

ordP (D) = 0.

(b) Suppose that ordP (D1) = 1 and ordP (D2) = 0. Then ordP (a1) = 2, ordP (a2) = 0,

whence ordP (d1) = ordP (d) = 0 and ordP (a) = 2. Since ordP (b1−v) = 1, it follows

from equation (6) that ordP (b− v) ≥ 1. It can be inferred from equation (6) that

ordP (b−v) ≥ 2 only if ordP (s2a2 + s3(b2−v)) ≥ 1. If this is indeed the case, then

ordP (s2a2 + s3(b2 + h + v)) ≥ 1, and hence ordP (s2a2 + s3(b1 + b2 + h)) ≥ 1 (or

s2a2 + s3(b1 + b2 + h) = 0). It now follows from equation (3) that ordP (d) ≥ 1, a

contradiction. Hence ordP (b− v) = 1, whence ordP (D) = 1. 2

Example 50 (adding two reduced divisors) Consider the hyperelliptic curve C : v2 + (u2 +

u)v = u5 + u3 + 1 of genus g = 2 over the finite field F25 (see Example 7). P = (α30, 0)

is an ordinary point in C(F25) and the opposite of P is P̃ = (α30, α16). Q1 = (0, 1) and

Q2 = (1, 1) are special points in C(F25). The following are examples of computing the

semi-reduced divisor D = div(a, b) = D1 + D2, for sample reduced divisors D1 and D2 (see

Algorithm 1).

(i) Let D1 = P + Q1 − 2∞ and D2 = P̃ + Q2 − 2∞ be two reduced divisors. Then

D1 = div(a1, b1) where a1 = u(u + α30), b1 = αu + 1, and D2 = div(a2, b2) where

a2 = (u + 1)(u + α30), b2 = α23u + α12.

1. d1 = gcd(a1, a2) = u + α30; d1 = a1 + a2.

2. d = gcd(d1, b1 + b2 + h) = u + α30; d = 1 · d1 + 0 · (b1 + b2 + h).

3. d = a1 + a2 + 0 · (b1 + b2 + h).

4. Set a = a1a2/d
2 = u(u + 1) = u2 + u, and

b =
1 · a1b2 + 1 · a2b1 + 0 · (b1b2 + f)

d
mod a

≡ 1 (mod a).

Check:

div(a) = 2Q1 + 2Q2 − 4∞

div(b− v) = Q1 + Q2 +

3∑

i=1

Pi − 5∞, where Pi 6= Q1, Q2

div(a, b) = Q1 + Q2 − 2∞.

(ii) Let D1 = P + Q1 − 2∞ and D2 = Q1 + Q2 − 2∞. Then D1 = div(a1, b1) where

a1 = u(u + α30), b1 = αu + 1, and D2 = div(a2, b2) where a2 = u(u + 1), b2 = 1.
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1. d1 = gcd(a1, a2) = u; d1 = α14a1 + α14a2.

2. d = gcd(d1, b1 + b2 + h) = u; d = 1 · u + 0 · (b1 + b2 + h).

3. d = α14a1 + α14a2 + 0 · (b1 + b2 + h).

4. a = (u + α30)(u + 1); b ≡ α14u + α13 (mod a).

Check:

div(a) = 2Q2 + P + P̃ − 4∞

div(b− v) = P + Q2 +

3∑

i=1

Pi − 5∞, where Pi 6= P, P̃ , Q2

div(a, b) = P + Q2 − 2∞.

(iii) Let D1 = P + Q1 − 2∞ and D2 = P + Q2 − 2∞. Then D1 = div(a1, b1) where

a1 = u(u + α30), b1 = αu + 1, and D2 = div(a2, b2) where a2 = (u + α30)(u + 1),

b2 = α14u + α13.

1. d1 = gcd(a1, a2) = (u + α30); d1 = 1 · a1 + 1 · a2.

2. d = gcd(d1, b1 + b2 + h) = 1.

3. d = (α15u + α4)a1 + (α15u + α4)a2 + α15 · (b1 + b2 + h).

4. a = u(u + 1)(u + α30)2; b ≡ α17u3 + α26u2 + α2u + 1 (mod a).

Check:

div(a) = 2P + 2P̃ + 2Q1 + 2Q2 − 8∞

div(b− v) = 2P + Q1 + Q2 +
2∑

i=1

Pi − 6∞, where Pi 6= P, P̃ , Q1, Q2

div(a, b) = 2P + Q1 + Q2 − 4∞.

Algorithm 2

Input: A semi-reduced divisor D = div(a, b) defined over K.

Output: The (unique) reduced divisor D′ = div(a′, b′) such that D′ ∼ D.

1. Set

a′ = (f − bh− b2)/a (7)

and

b′ = (−h− b) mod a′. (8)

2. If degu a′ > g then set a← a′, b← b′ and go to step 1.
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3. Let c be the leading coefficient of a′, and set a′ ← c−1a′.

4. Output(a′,b′).

Theorem 51 (Algorithm 2 works) Let D = div(a, b) be a semi-reduced divisor. Then the

divisor D′ = div(a′, b′) returned by Algorithm 2 is reduced and D′ ∼ D.

Proof. Let a′ = (f − bh− b2)/a and b′ = (−h− b) mod a′. We show that

(i) degu(a
′) < degu(a);

(ii) D′ = div(a′, b′) is semi-reduced; and

(iii) D ∼ D′.

The theorem then follows by repeated application of the reduction process (step 1 of Algo-

rithm 2).

(i) Let m = degu a, n = degu b, where m > n, and m ≥ g + 1. Then degu a′ = max(2g +

1, 2n)−m. If m > g + 1, then max(2g + 1, 2n) ≤ 2(m− 1), whence degu a′ ≤ m− 2 <

degu a. If m = g + 1, then max(2g + 1, 2n) = 2g + 1, whence degu a′ = g < degu a.

(ii) Now, f − bh− b2 = aa′. Reducing both sides modulo a′ yields

f + (b′ + h)h− (b′ + h)2 ≡ 0 (mod a′)

which simplifies to

f − b′h− (b′)2 ≡ 0 (mod a′).

Hence a′|(f − b′h− (b′)2). It follows from Lemma 43 that div(a′, b′) is semi-reduced.

(iii) Let C0 = {P ∈ supp(D) : P is special}, C1 = {P ∈ supp(D) : P is ordinary}, and

C2 = {P̃ : P ∈ C1}. Then, as in the proof of Theorem 42, we can write

D =
∑

Pi∈C0

Pi +
∑

Pi∈C1

miPi − (∗)∞.

Now,

div(a) =
∑

Pi∈C0

2Pi +
∑

Pi∈C1

miPi +
∑

Pi∈C1

miP̃i − (∗)∞

and

div(b− v) =
∑

Pi∈C0

Pi +
∑

Pi∈C1

niPi +
∑

Pi∈C1

0P̃i +
∑

Pi∈C3

siPi − (∗)∞,
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where ni ≥ mi, C3 is a set of points in C\(C0 ∪ C1 ∪ C2 ∪ {∞}), si ≥ 1, and si = 1 if

Pi is special. Since b2 + bh− f = N(b− v), it follows from Lemma 35 that

div(b2 + bh− f) =
∑

Pi∈C0

2Pi +
∑

Pi∈C1

niPi +
∑

Pi∈C1

niP̃i +
∑

Pi∈C3

siPi +
∑

Pi∈C3

siP̃i − (∗)∞,

and hence

div(a′) = div(b2 + bh− f)− div(a)

=
∑

Pi∈C′

1

tiPi +
∑

Pi∈C′

1

tiP̃i +
∑

Pi∈C3

siPi +
∑

Pi∈C3

siP̃i − (∗)∞,

where ti = ni−mi and C ′
1 = {Pi ∈ C1 : ni > mi}. Now, b′ = −h− b+ sa′ for some s ∈

K[u]. If Pi = (xi, yi) ∈ C ′
1∪C3, then b′(xi) = −h(xi)−b(xi)+s(xi)a

′(xi) = −h(xi)−yi.

Then, as in the proof of Theorem 42, it follows that

div(b′ − v) =
∑

Pi∈C′

1

0Pi +
∑

Pi∈C′

1

riP̃i +
∑

Pi∈C3

0Pi +
∑

Pi∈C3

wiP̃i +
∑

Pi∈C4

ziPi − (∗)∞,

where ri ≥ ti, wi ≥ si, wi = 1 if Pi ∈ C3 is special, and C4 is a set of points in

C\(C ′
1 ∪ C3 ∪ {∞}). Hence

div(a′, b′) =
∑

Pi∈C′

1

tiP̃i +
∑

Pi∈C3

siP̃i − (∗)∞

∼ −
∑

Pi∈C′

1

tiPi −
∑

Pi∈C3

siPi + (∗)∞

= D − div(b− v),

whence D ∼ D′. 2

Note that all computations in Algorithms 1 and 2 take place in the field K itself (and

not in any proper extensions of K). In Algorithm 1, if degu a1 ≤ g and degu a2 ≤ g, then

degu a ≤ 2g. In this case, Algorithm 2 requires at most ⌈g/2⌉ iterations of step 1.

Example 52 (reducing a semi-reduced divisor) Consider the hyperelliptic curve C : v2 +

(u2 + u)v = u5 + u3 + 1 of genus g = 2 over the finite field F25 (see Example 7). Consider

the semi-reduced divisor D = (0, 1) + (1, 1) + (α5, α15)− 3∞. Then D = div(a, b), where

a(u) = u(u + 1)(u + α5) = u3 + α2u2 + α5u

and

b(u) = α17u2 + α17u + 1.

Algorithm 2 yields

a′(u) = u2 + α15u + α26,

b′(u) = α23u + α21.

Hence D ∼ div(a′, b′) = (α28, α7) + (α29, 0)− 2∞.
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9 Implementation of hyperelliptic curve cryptosystems

The Diffie-Hellman key exchange [10] is a protocol whereby two entities A and B can, by a

sequence of transmissions over a public channel, agree upon a secret cryptographic key. The

method is as follows. A and B first choose a (multiplicatively written) finite abelian group

G and some element α ∈ G. A then selects a random integer a and transmits αa to B. B in

turn selects a random integer b and transmits αb to A. Both A and B can then determine

αab, which is their shared secret key.

An eavesdropper C monitoring the transmission between A and B would know G, α, αa,

and αb. The parameters G and α should be chosen so that it is computationally infeasible for

C to then determine αab. Certainly, if C could compute either a or b, then C could determine

αab. The problem of determining a given α and β = αa is called the discrete logarithm

problem in G. The integer a, which is unique if restricted to the range [0, order(α) − 1], is

called the discrete logarithm of β to the base α. It is an open problem to decide whether or

not determining αab is equivalent to computing discrete logarithms in G. Among the other

cryptographic protocols whose security relies upon the discrete logarithm problem are the

ElGamal public-key encryption and digital signature schemes [12], and the recently adopted

U.S. Digital Signature Standard [29].

The best algorithms that are known for solving the discrete logarithm problem in an

arbitrary group G are the exponential square root attacks (see McCurley [24]) that have a

running time that is roughly proportional to the square root of the largest prime factor of

l, where l is the order of α. Consequently, if G and α are chosen so that l has a large prime

factor, then these attacks can be avoided.

Let Fq denote the finite field of order q, and let q = pm where p is the characteristic of Fq.

Diffie and Hellman originally proposed G = F
∗
q , the multiplicative group of Fq, as a candidate

for implementing the Diffie-Hellman key exchange. There are randomized subexponential-

time algorithms known for computing logarithms in Fq. (See Coppersmith, Odlyzko and

Schroeppel [9] and Gordon [17] for the case q a prime, Odlyzko [30] for the case where

p = 2, and Adleman and DeMarrais [1] for the general situation.) These algorithms are an

asymptotic improvement over the general algorithms mentioned in the previous paragraph.

For cryptographic purposes we are interested in groups for which subexponential algorithms

for the corresponding discrete logarithm problem are not known. Additionally, for efficient

and practical implementation, the group operation should be relatively easy to apply. The

jacobian of a hyperelliptic curve defined over a finite field is one possibility for such a group.

To implement a discrete log cryptosystem using hyperelliptic curves, a suitable curve C

and underlying finite field K must be selected. Desirable properties of the selected curve

and field include the following:

1. Arithmetic in the underlying finite field K should be efficient to implement; finite fields

of characteristic 2 appear to be the most attractive choice.
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2. The order of the jacobian J(K) of C, denoted #J(K), should be divisible by a large

prime number. Given the current state of computer technology, a security requirement

is that #J(K) be divisible by a prime number r of at least 45 decimal digits. In addi-

tion, to avoid the reduction attack of Frey and Rück [13] which reduces the logarithm

problem in J(K) to the logarithm problem in an extension field of K = Fq, r should

not divide qk − 1 for all small k for which the discrete logarithm problem in Fqk is

feasible (1 ≤ k ≤ 2000/(log2 q) suffices).

One technique for selecting a hyperelliptic curve and computing #J(K) is described next.

Let J be the jacobian of the hyperelliptic curve C defined over Fq, and given by the equation

v2 +h(u)v = f(u). Let Fqn denote the degree-n extension of Fq, and let Nn denote the order

of the (finite) abelian group J(Fqn). Denote by Mn the number of Fqn-rational points on C.

Associated with C is the zeta-function, defined next.

Definition 53 (zeta function) Let C be a hyperelliptic curve defined over Fq, and let Mr =

#C(Fqr) for r ≥ 1. The zeta-function of C is the power series

ZC(t) = exp

(
∑

r≥1

Mr
tr

r

)
.

The following are some well-known facts (e.g., see [23]) about the zeta-function.

Theorem 54 (properties of the zeta-function) Let C be a hyperelliptic curve of genus g

defined over Fq, and let ZC(t) be the zeta-function of C.

(i) ZC(t) ∈ Z(t). More precisely, we have

ZC(t) =
P (t)

(1− t)(1− qt)
(9)

where P (t) is a polynomial of degree 2g with integer coefficients. Moreover, P (t) has

the form:

P (t) = 1 + a1t + · · ·+ ag−1t
g−1 + agt

g+

qag−1t
g+1 + q2ag−2t

g+2 + · · ·+ qg−1a1t
2g−1 + qgt2g.

(10)

(ii) P (t) factors as

P (t) =

g∏

i=1

(1− αit)(1− αit), (11)

where each αi is a complex number of absolute value
√

q, and αi denotes the complex

conjugate of αi.

29



(iii) Nn = #J(Fqn) satisfies

Nn =

g∏

i=1

|1− αn
i |2, (12)

where | | denotes the usual complex absolute value.

In order to compute Nn, it thus suffice to (i) determine the coefficients a1, a2, . . . , ag of

P (t), hence determining P (t); (ii) factor P (t) thus determining the αi; (iii) compute Nn via

equation (12). Now, multiplying both sides of equation (9) by (1− t)(1− qt) yields

P (t) = (1− t)(1− qt)ZC(t).

Taking logarithms of both sides and then differentiating with respect to t yields

P ′(t)

P (t)
=
∑

r≥0

(Mr+1 − 1− qr+1)tr.

By equating coefficients of t0, t1, . . . , tg−1 of both sides, we see that the first g values M1, M2, . . . , Mg

suffice to determine the coefficients a1, a2, . . . , ag and, hence, Nn.

The following procedure summarizes the technique for computing Nn in the case g = 2.

1. By exhaustive search, compute M1 and M2.

2. The coefficients of ZC(t) are given by a1 = M1 − 1− q and a2 = (M2 − 1− q2 + a2
1)/2.

3. Solve the quadratic equation X2 + a1X +(a2− 2q) = 0, to obtain two solutions γ1 and

γ2.

4. Solve X2− γ1X + q = 0 to obtain a solution α1, and solve X2− γ2X + q = 0 to obtain

a solution α2.

5. Then Nn = |1− αn
1 |2 · |1− αn

2 |2.

The following bounds on the order Nn of the jacobian are an immediate corollary of

Theorem 54(iii).

Corollary 55 Let C be a hyperelliptic curve of genus g defined over Fq, and let Nn =

#J(Fqn). Then

(qn/2 − 1)2g ≤ Nn ≤ (qn/2 + 1)2g.

Hence, Nn ≈ qng.

Example 56 (selecting a hyperelliptic curve) Consider the following hyperelliptic curve C

of genus 2 defined over F2:

C : v2 + v = u5 + u3 + u.
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By exhaustive search, we find M1 = 3 and M2 = 9; hence a1 = 0 and a2 = 2. The solutions of

X2−2 = 0 are γ1 =
√

2 and γ2 = −
√

2. Solving X2−
√

2X+2 = 0 yields α1 = (
√

2+
√

6i)/2;

solving X2 +
√

2X + 2 = 0 yields α2 = (−
√

2 +
√

6i)/2. Hence

Nn = |1− αn
1 |2 · |1− αn

2 |2 =





22n + 2n + 1, if n ≡ 1, 5 (mod 6),
(2n + 2n/2 + 1)2, if n ≡ 2, 4 (mod 6),
(2n − 1)2, if n ≡ 3 (mod 6),
(2n/2 − 1)4, if n ≡ 0 (mod 6).

For n = 101,

N101 = 6427752177035961102167848369367185711289268433934164747616257,

and its prime factorization is

N101 = 7 · 607 · 1512768222413735255864403005264105839324374778520631853993.

Hence N101 is divisible by a 58-decimal digit prime r. However, since r divides (2101)3 − 1,

the Frey-Rück attack tells us that C offers no more security that a discrete log system in

F2303 . Hence the curve C is not suitable for cryptographic applications.

10 Future work

There are several areas of research that need to be pursued before hyperelliptic curve cryp-

tosystems may be adopted in practical applications.

1. The most important issue is with regards to the security of hyperelliptic curve cryp-

tosystems. More precisely, the security relies upon the hyperelliptic curve discrete

logarithm problem (HCDLP) which is the following: given a hyperelliptic curve C over

a finite field K, and given reduced divisors D1, D2 ∈ J(K), determine a positive integer

l such that D2 = lD1, provided that such an integer exists.

If the order of the divisor D1 is divisible by a large prime factor r, then the best algo-

rithm known for the HCDLP is an exponential one and takes O(
√

r) steps. However,

for special hyperelliptic curves, it may be possible to reduce the HCDLP to the DLP in

a small extension finite field. Since there are subexponential-time algorithms known for

the DLP, this will yield a subexponential-time algorithm for the HCDLP; hyperelliptic

curves for which such reductions exist offer no significant advantages over finite fields

for the implementation of discrete log cryptosystems.

Such a reduction was accomplished for the genus 1 hyperelliptic curves (or elliptic

curves) by Menezes, Okamoto and Vanstone [26]. Frey and Rück [13] extended this

reduction to more general classes of abelian varieties. The reduction is efficient for
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some classes of hyperelliptic curves; the implications of the Frey-Rück reduction to

hyperelliptic curve cryptography need to be fully explored.

Adleman, DeMarrais and Huang [2] recently discovered an algorithm for HCDLP which

takes subexponential time if the genus g of the curve is large. More precisely, if

the curve is defined over Zp, then the genus g should satisfy log p ≤ (2g + 1)0.98.

Interestingly, the algorithm is worse than exhaustive search if specialized to the g = 1

case. It would be interesting to implement this algorithm, and to better understand

why it is inefficient when the genus is small.

2. It could be useful to classify the isomorphism classes of hyperelliptic curves over finite

fields, in order to know how many essentially different choices of curves there are.

3. Further research needs to be done on the efficient implementation of the addition rule

in the jacobian. A more efficient algorithm may arise by considering a different form

of the defining equation or by restricting the genus to certain values (e.g., when g = 1,

the equation has a simple form). Cantor [5] described a reduction algorithm that

is asymptotically faster than Algorithm 2. Petersen [31] presented an algorithm for

addition in the jacobian when g = 2 which is comparable to that of Cantor’s.

4. Another method for selecting a suitable hyperelliptic curve is to select at random

a defining equation over a large finite field K, and compute #J(K) directly. Pila

[32] presented a generalization of Schoof’s algorithm for computing the characteristic

polynomial P (t) of the Frobenius endomorphism of an abelian variety defined over

a finite field in deterministic polynomial time. In the case that the variety is the

jacobian of an algebraic curve C defined over Fq, the number of Fq–rational points on

C is then easily recovered. Pila’s algorithm, as it applies to hyperelliptic curves, should

be studied further and implemented.
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