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Abstract— Cryptographic ~ primitives  have increasingly can be performed as fast as a single field multiplication
emerged into embedded systems such as mobile phonesgepending on the particular OTF used.
smart cards, and personal digital _as_sistants. Elliptic Curve Our Main Contributions
Cryptosystems (ECC) and Hyperelliptic curve cryptosystems Thi ntribution provides for the first time an implemeidat
(HECC) are the cryptosystems of choice for asymmetric 'S cONtribution provides for the first ime an impiemeruat
data encryption in environments where processor power and of a cryptographic application using OTFs. The resulting
storage are limited [1]. We introduce the first cryptographic —performance indicates clearly the advantages and theigahct
implementation of Optimal Tower Fields (OTF) [2], [3] for  relevance of the use of OTFs for modern cryptosystems on
HECC. Furthermore, we introduce the first implementation different processors
of HECC over an extension field of odd characteristic on '

an embedded processor. With our implementation, a scalar « The work at hand provides the first implementation of

multiplication for a 160 bit group order can be performed in
44ms on the ARM processor which is 57% faster than the best
previously known implementation on the same processor. Our
implementations also target a general purpose processor.

Keywords: optimal tower field, hyperelliptic curve cryp-
tosystem, efficient implementation, embedded system taryp

HECC over an extension field of odd characteristic on an
embedded processor.

We analyze our implementations on a general pur-
pose processor (Pentium 4) and an embedded processor
(ARM7TDMI) and put them into prospective with previ-
ous work.

graphic application. « We investigated the performance of a low power imple-
mentation, using the ARM Thumb mode.

. INTRODUCTION « We examined the impact of assembly driven optimiza-

tions of the implementations on the ARM processor as

Asymmetric cryptosystems based on hyperelliptic curve .
y yprosy yb P well as on the Pentium 4 processor.

cryptosystem (HECC) are perfectly suited for devices where
computational power and disposal memory are constrairied [1
Consequently, a lot of work has been done on improving I
hyperelliptic curve cryptosystems (see [4], [5] for a sumyha

It is widely accepted that for HECC one needs a group order

of size at leasts 2'%°. Thus, for HECC oveff, we will need  Hyperelliptic curve cryptosystems were first suggested for
at leasty - log, ¢ ~ 2'%Y, wherey is the genus of the curve. In cryptographic use in 1988 [8] and it took almost 10 years| unti
particular, for a curve of genus two and three, we will needthey were implemented. Relevant software implementations
field F, with p ~ 280 andp ~ 2°6, respectively. Therefore, the on general purpose machines can be found in [9], [10], [11],
field arithmetic has to be performed using 80-bit and 56-[it2], [13], [14], [15], [16], [17], [18], [19], [20], [5]. Tte
long operands. The overall performance of HECC is directfifst two contributions listed implemented Cantor’s algfomi
related to its underlying field by means of the field arithmeti with polynomial arithmetic, whereas the others used eitplic
Note that the necessary bit lengths for the operands ate stkmulae. For a detailed overview of HECC implementations
large compared to the word size of embedded processors.the reader is referred to [1], [5].

Optimal Extension Fields (OEF) [6], Processor Adequate Aware of several practical advantages, the research com-
Finite Fields (PAFF) [7], and Optimal Tower Fields (OTF) [2] munity recently implemented HECC on embedded processors
[3] present techniques to adjust the computational effothe  using characteristic two fields. The authors in [20], [12B8][
processor. OTFs seem to be particularly suited for procesg@ovided results of relevant implementations on the ARM
adapted implementations. The use of pseudo-Mersennerimgfcroprocessor for genus-2, genus-3, and genus-4 curves,
as field characteristic and the selection of binomials as figlespectively.
extension polynomials allow for very efficient field arithtice We are not aware of any publications considering an
Moreover, the inversion operation has a low complexity anghplementation of HECC over an extension field of odd

. L characteristic on an embedded processor. Due to their high
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[1l. M ATHEMATICAL BACKGROUND in more efficient arithmetic [27]. Since the publication bet
A. OTF explicit formulae a major effort of the research community
i , i has been the optimization of all the formulae. A chronolabic
Optimal Tower Fields were introduced and suggested fg(qjiew of the improvements, the computational compjexit

use in elliptic curve cryptography in 2003 [2]. In this sedli 5. the corresponding references can be found in [4], [5].
we briefly introduce OTFs. For the theory of optimal tower In this contribution the implementation is based on the

fields and further details of efficient implementation op&o explicit formulae for genus 2 and 3 presented in [20], [16]
of OTF arithmetic, the interested reader is referred to [[Z], and [17], [15], respectively.

A field obtained by repeatedly extending a ground field with
a series of irreducible polynomials of the same degree isatal IV. METHODOLOGY
a tower field.Optimal Tower Fieldsre a special class of tower

fields defined as follows 1) Selection of tower fields: we chose the underlying fields

: . L ity levels of 160, 192 240 bits) f -2
Deflpmon 1: An Optimal Tower Field (OTF) is a finite field gsnedcugggﬁugge iu?vesGO{Neg fc;cir;(l d o?n bfliteslzjso\r/v%ﬁngsar_
. .

GF(q ) such that ) acteristic smaller than 32-bits for efficiency. Table IV
1) ¢ is a pseudo-Mersenne prime, (Appendix) provides an overview of all the fields used
2) GF(q") is constructed by an ensemble of binomials  for implementation.

Py(w) = @' — ;. irmeducible overGF(¢" ) with  2) Programming of the field arithmetic.
Pi(a;) =0,for0 <i<k. 3) Implementation of HECC in NTL [28]: The main pur-
OEF arithmetic can be utilized for doing OTF arithmetic pose of this implementation was to get test vectors to
operations. Moreover, the special structure of OTFs allows  check our final implementation. Microsoffsual C++

particularly very fast inversion by utilizing the OTF resiwe Compiler 6.0and Developer Studio 6vere used for
direct inversion technique [2], [3]. By using OTF inversjon compilation and debugging on the Pentium 4 processor.
an inversion inGF(¢"") can be reduced to a single inversion 4) |mplementation of HECC on Pentium: Using the field
in the ground field7F(¢) in addition to some multiplications operations we could program the group addition, group
and additions in the subfields 6tF(¢""). doubling, and finally the scalar multiplication for the
In our implementation, we applied OTF inversion to OTFs Pentium processor.

of the formGF(¢%°) andGF(¢*’). We performed the single 5) Adjusting the code for the ARM microprocessor:
inversion inGF'(¢q) by using either table lookup or the binary We used our Pentium implementation, ported it onto

extended Euclidean algorithm (EEA). In [2] the theoretical ARM7TDMI@80MHz (ARMulator) and timed it. We
complexity of an inversion using the OTF recursive direct used ARM Developer Suite 1.2s programming and
inversion technique is shown to be in the order of a single  debugging platform. Th&ARM Compiler 1.2was used

multiplication, which is also verified by our implementatio to generate executable images for the microprocessor.

results. 6) Analysis of the efficiency of a low power implementa-
tion on ARM (Thumb mode).

B. HECC 7) Optimization of our implementation for the ARM and

Pentium: The bottleneck of our implementation is the
field multiplication routine. Therefore, we implemented
this routine for one designated field in assembly to

We only present a brief introduction to the theory of
hyperelliptic curves and refer the reader to [21], [22] foprm

details. L _ _ accelerate the HECC.
Let F be a finite field andf be the algebraic closure @f.
A hyperelliptic curveC' of genusg > 1 over the fieldF is V. RESULTS

defined as the following equation: A Field Arithmetic

C:y* +h(z)y = f(z) The core routines of our HECC implementation are the
field operations, namely multiplication, squaring, invens
and addition. The efficiency of these operations are in a
large extent dependent on the particular field structure. We
timed the field multiplication and inversion on the ARM
microprocessor for fields of different structures (see @dhl

The solutions(x,y) € F x F are points which satisfy the
equation C and the partial derivative equati@pst h(x) = 0
andh/(x)y — f'(z) = 0.

The Jacobian o over F, denoted byl (F), is a divisor
D =3 m,;P,; thatis defined oveF if D7 = > m;P¢ is equal
to D for all automorphisms— of F overF [23] Each element TABLE I. TIMINGS OF THEFIELD LIBRARY ON THE ARM8OMHZ

of the Jacobian can be represented uniquely by a reduced " Fretd Polmomal | MUtRlcaton | T aed | eormt
divisor [24], [25]. This divisor can be represented as a pair| 2 gig;; = A Zgi;zjjjg o Sal 128 -
of polynomialsu(z) andv(z), where the coefficients af(x) 2| GRpY with p=21° + 1 | p(e) =a' -3 64 - | 96 | 96
280 GF(p®) with p =210 -3 | p(z) =2° -2 12.8 16.0 - -

andv(z) are elements of [26]. 20| GE(pY) with p= 22 — 3 | p(z) = o — 2 6.0 - | 192 | 256
: : : . 296 GF(p®) with p =212 —3 | p(z) =28 -2 12.8 160| - -

The algorlf[hms used for adding and doubling divisors on - %Eﬁ:; W“Ef’:ff*;‘ ﬂgiiz%,g g0 | - | w2
- 1 JF(p®) with p =24 — 3 | p(z) = 2® — . . - -

Jo(F) were introduced by Cantor [25]. These group opera G e G e K S 2 o0 oa | ons

tions are performed in two steps: composition and reduction
Cantor’'s group operation can be written explicitly, remgjt



1) Field Inversion:For the field inversion, we used the OTF 140
recursive direct inversion technique. We investigatedetdif-
ferent ways to compute the single ground fi€ld'(p) inverse
required for performing an OTF inversion: precomputation
and lookup table (LUT), binary extended Euclidean algonith
(EEA) and Fermat's method. For small values @f this BO S S
inversion can be done very fast by LUTs. EEA and Fermat's sk N G - -
method can be used for largevalues, where inversion by
LUT is not practical. .

According to our timings, the binary EEA turns out to be the genus 2 genus 3 genus 2 us 3
faster than Fermat's method for ground fi€ld”(p) inversion, #IF zgﬁmy #E ~ ZQSQ

therefore it will be used in our implementation fetarger than N o .
914 Fig. 1. Timings of Scalar Multiplication for Different Grou@rders and

. e . . . . Genera (ARM7TDMI@80MHz)
2) Field Multiplication: Like the other field arithmetic

operations, the timings of the field multiplication depend o
the field characteristics and the field generating binomialgroup operations on fields of odd characteristic are more
Naturally, a binomial of higher degree (e.g. 8 in our casepmplex [5].
leads to a larger number of processor word multiplications On the Pentium processor, a scalar multiplication (16@bit s
than with lower degree (e.g. 4 in our case). Table | shovesirity) takes2.24ms and3.87ms for the two genera. Whereas,
that multiplications over fields with higher degree binolsiia the fastest known implementation targeting fields & Réake
are more than twice as slow. Hence, for the implementatiati’2ms and 2.8ms and are presented in [19]. Note that the
of HECC only fields of low degree binomials will be used. author in [19] used a different processor, namely an AMD
Note that an OTF inversion takes between a factor of 1.28hlon with a clockrate of 1GHz. Note that we caution the
and 4.75 more time than a field multiplication. Thereforegeader to compare the two implementations, since the &dget
HECC with affine coordinates using OTFs is preferable.  processors have very different characteristics.
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C. Optimized Implementation on the ARM and Pentium

B. Scalar Multiplication of HECC ) ] . ”
] o ) _ . Inthis section we analyze the impact of processor specific
The main operation in HECC is the scalar multiplicatioyiimizations and also compile the code for ARM in the
of a divisor and is realized by the sliding window method, called Thumb modewhich is an energy efficient 16-bit
(w = 4). Table Il provides timings for a scalar multiplicationysde of the ARM microprocessor. Furthermore, we decided to
on HECC over different OTFs for the ARM and Pentiumyimize the multiplication routine for the ARM and Pentium
processors. Figure 1 depicts the performance of HECC ;S’rfocessors in assembly.
genus 2 and 3 for _equal group ord_ers of_length approximatelyl) Using the Energy and Space Efficient ARM Thumb
160bit ‘and 190bit. The execution time of the scalafjoge: The ARM Thumb mode solely uses 16-bit operations,
multiplication essentially depends on the bit length of thgsyiting in a smaller code size and lower power consumption
scalar ¢ bit length of the group order). which are eminently important for embedded applications.
Table Il gives the timings for the Thumb mode. Compared

TABLE II. TIMINGS FOR SCALAR MULTIPLICATIONS) .
to Table I, a slowdown factor of approximately 2 can be

Genus| Fieldsize Field Polynomial Time inms
. —- ‘ | ARMOSOMHz | P4@18GHz  ghserved. However, in the case of our smallest sized OTF,
2 GF(pH) withp =220 -3 | p(z) =2 -2 442 2.24 . .
2 29 | GF(p*) with p=22 —3 | p(z) =2* 2 533 2.70 there is a mere 14% slowdown compared to the 32-bit code.
216 | GF(p*) with p=2%2 -3 | p(z) =a* -2 63.3 3.34
2 GE(p7) with p =2 % -3 [ p(z) = a” -2 95.0 3.87 TABLE IlI. T IMINGS FOR SCALAR MULTIPLICATIONS
3 264 GF(p*)with p=20+1 | p(z) =2 -3 138.7 7.33 .
20| QR with p =220 3 | pla) = ot —2 1833 9.37 (ARM@80MHZ IN THUMB MODE)
Genus | Fieldsize Field Polynomial Time in ms
280 GF(p*) withp =220 —3 | p(z) = 2% -2 98.9
2 296 GF(p*) with p =224 —3 | p(z) =2* -2 119.6
. 2116 GF(p*) with p = 229 — 3 z) =az* -2 147.2
Figure | clearly shows that HECC of genus 2 perform better 55 GF% Wit Y= oI 58 T
than HECC of genus 3. For a security level of approximately | 3 2 2?25,‘?3 ot = 20tl ni) = T, 3| 3800

160bit, a scalar multiplication on the ARM processor takes
44.2ms for genus-2 HECC an@lbms for genus-3 HECC. With
increasing group order the cryptosystems perform slower.  Furthermore, instead of using the same OTFs that we used
The fastest known implementation on the same proces$or the 32-bit code, we also can use OTFs with smaller
was done in [20], [17]. Over characteristic two fields, a acalcharacteristics, e.g. characteristics smaller than 16 it
multiplication was achieved i69ms and90ms on HECC of length. This yields to higher performance for the ARM Thumb
genus 2 and 3, respectively. Thus, for a comparable securitpde. For example in genus-2 HECC over a field of ofér
level of 160bit, our implementation of HECC of genus 2ve can gain approximately 13% in performance compared
over OTF is 57% faster. Genus 3 HECC over OTF ano lower extension fields, if we use the field GFY( with
characteristic two fields have equal performance, though th = 2'°—3 andp(x) = 28 —2. For genus-3, a speed up of 15%



can be achieved by using a fieldF(p®) with p = 2!* —3 and whole cryptosystem for both the ARM and the Pentium
p(x) = 2% —2. Table V (Appendix) includes the timing resultsmicroprocessor. On the ARM, we could gain approximately
in ARM Thumb mode for fields with small characteristic. 35% in speed for the field multiplication routine compared to

2) Assembly Optimization on ARM and Pentiufnfurther the implementation without assembly optimizations. Hence
speed up can be achieved with the use of processor spedliie entire cryptosystem was accelerated by 13%. Using
assembly instructions. Due to time restrictions we decideghecial MMX and SSE2 instructions, the cryptosystem on the

to analyze solely the effect of an optimized multiplicatiofPentium 4 processor gained 27% in speed.

routine. The multiplication routine is the crucial functi@f
this cryptosystem since a scalar multiplication is mairdyne
puted with field multiplications. We optimized a multiplican
routine for a fixed field size in assembly.

Our assembly code makes intensive use of the registers

VII. APPENDIX

TABLE IV. OTFs AND CORRESPONDINGOEF REPRESENTATIONS

by trying to keep often used values in the registers, i.e.,

performing less memory accesses. By utilizing the multiply
and accumulate routine (MLA, UMLAL) we could achieve
a speed up of approximately 35% for a field of si2®.
The whole cryptosystem (genus-2) gained 13% in performance
with this simple optimization.

Since only four registers can be addressed directly on the
Pentium platform, we had to arrange a different approach. Fo

Field size OTF Corresponding OEF representatiohF (p™)
P field generating polynomial
256 GF(qZ") with g =24 -3, andag =2 | p=2"-3 plz) =2t -2
264 GF(p23)Withq:28+1, andag =3 | p=28+1 p(z) =28 -3
204 GF(qZQ)WiIhq=216+1, andap =3 | p=21+1 p(z)=a*-3
20 | GR(g?) with g =21 -3, andag =2 | p=21—3 pla)=a5 -2
20| GF(g) with g =22~ 3, andag =2 | p=2% -3 plx) =24 -2
296 | GR(g?) with g =212 -3, andag =2 | p=212 -3 pla) =25 -2
2% | GF(g) with g =22 -3, andag =2 | p=2% -3 plx) =24 -2
2112 | GF(g®) with g =2 -3, andag =2 | p=214 -3 plz) =28 -2
2116 | GR(g?) with g =229 -3, andag =2 | p=22—3 plz) =2 -2

the Pentium platform, we optimized the multiplication over
a field of size2%¢. The use of special operations from the
MMX and SSE?2 instruction set resulted in an acceleration of
the genus-2 HECC by 27% (a scalar multiplication takes now

TABLE V. TIMINGS FOR SCALAR MULTIPLICATIONS OVER FIELDS OF
SMALLER CHARACTERISTIC (ARM@80MHz IN THUMB MODE)

2.13ms).

VI. CONCLUSIONS

Since the development of asymmetric cryptosystems based
on elliptic and hyperelliptic curves, it has been a challeng
ing task to implement ECC and HECC over fields of odd
characteristic. With the advent of OEF, PAFF, and more
recently OTF, the performance of ECC and HECC over prime
(extension) fields increased drastically. For a fixed sécuri [1]
level, OTFs offer different field extensions. Thus, the ctuice
of the field can be varied and adapted to the processor word
size which yields to an efficient field arithmetic. [2]

Our implementation of HECC over OTF shows the practical
relevance of OTF in cryptographic implementations. Ththari
metic over OTFs allows for a very efficient implementation.[3]
On a typical 32-bit embedded microprocessor, namely thﬁ]
ARM7TDMI, a scalar multiplication for a 160-bit group order
can be performed int4.2ms. Compared to the currently [5]
fastest implementation over fields of characteristic tvaonaly
genus-2 HECC over GE{!) on the same processor [20], this
is an improvement of approximately 57%. The implementation
on the Pentium 4 processor computes a scalar multiplicatidf!
over a group order of 160 bit iR.13ms.

Using theThumb Modeof the ARM microprocessor, a 16-
bit implementation of the cryptosystem was realized. Thi$’]
type of implementation is eminently important for power and
memory limited environments. The performance of the 16-
bit cryptosystem can be improved by changing the underlyinf]
field structure of the OTFs. A scalar multiplication of a genu
2 HECC with 160-bit group order can be done8n5ms in
the ARM Thumb mode.

Furthermore, we investigated the influence of an assembly
optimized multiplication routine on the efficiency of the

El

Genus | Fieldsize Field Polynomial Time in ms
280 GF(p®) withp =210 —3 | p(z) = 2F -2 87.5
2 296 GF(p®) with p =212 -3 | p(z) =28 -2 106.3
2112 GF(p®) with p =21 —3 | p(z) =28 -2 123.7
261 GF@®) withp =28 +1 | p(z)=2%-3 280.4
3 280 GF(p®) withp =210 -3 | p(z) =2® -2 374.0
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