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Optimal Tower Fields for Hyperelliptic Curve
Cryptosystems

Selçuk Baktır, Jan Pelzl, Thomas Wollinger, Berk Sunar, and Christof Paar

Abstract— Cryptographic primitives have increasingly
emerged into embedded systems such as mobile phones,
smart cards, and personal digital assistants. Elliptic Curve
Cryptosystems (ECC) and Hyperelliptic curve cryptosystems
(HECC) are the cryptosystems of choice for asymmetric
data encryption in environments where processor power and
storage are limited [1]. We introduce the first cryptographic
implementation of Optimal Tower Fields (OTF) [2], [3] for
HECC. Furthermore, we introduce the first implementation
of HECC over an extension field of odd characteristic on
an embedded processor. With our implementation, a scalar
multiplication for a 160 bit group order can be performed in
44ms on the ARM processor which is 57% faster than the best
previously known implementation on the same processor. Our
implementations also target a general purpose processor.

Keywords: optimal tower field, hyperelliptic curve cryp-
tosystem, efficient implementation, embedded system, crypto-
graphic application.

I. I NTRODUCTION

Asymmetric cryptosystems based on hyperelliptic curve
cryptosystem (HECC) are perfectly suited for devices where
computational power and disposal memory are constrained [1].
Consequently, a lot of work has been done on improving
hyperelliptic curve cryptosystems (see [4], [5] for a summary).

It is widely accepted that for HECC one needs a group order
of size at least≈ 2160. Thus, for HECC overFq we will need
at leastg · log

2
q ≈ 2160, whereg is the genus of the curve. In

particular, for a curve of genus two and three, we will need a
field Fq with p ≈ 280 andp ≈ 256, respectively. Therefore, the
field arithmetic has to be performed using 80-bit and 56-bit
long operands. The overall performance of HECC is directly
related to its underlying field by means of the field arithmetic.
Note that the necessary bit lengths for the operands are still
large compared to the word size of embedded processors.

Optimal Extension Fields (OEF) [6], Processor Adequate
Finite Fields (PAFF) [7], and Optimal Tower Fields (OTF) [2],
[3] present techniques to adjust the computational effort to the
processor. OTFs seem to be particularly suited for processor
adapted implementations. The use of pseudo-Mersenne primes
as field characteristic and the selection of binomials as field
extension polynomials allow for very efficient field arithmetic.
Moreover, the inversion operation has a low complexity and
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can be performed as fast as a single field multiplication
depending on the particular OTF used.
Our Main Contributions
This contribution provides for the first time an implementation
of a cryptographic application using OTFs. The resulting
performance indicates clearly the advantages and the practical
relevance of the use of OTFs for modern cryptosystems on
different processors.

• The work at hand provides the first implementation of
HECC over an extension field of odd characteristic on an
embedded processor.

• We analyze our implementations on a general pur-
pose processor (Pentium 4) and an embedded processor
(ARM7TDMI) and put them into prospective with previ-
ous work.

• We investigated the performance of a low power imple-
mentation, using the ARM Thumb mode.

• We examined the impact of assembly driven optimiza-
tions of the implementations on the ARM processor as
well as on the Pentium 4 processor.

II. PREVIOUS WORK

A. Software Implementation of HECC

Hyperelliptic curve cryptosystems were first suggested for
cryptographic use in 1988 [8] and it took almost 10 years until
they were implemented. Relevant software implementations
on general purpose machines can be found in [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [5]. The
first two contributions listed implemented Cantor’s algorithm
with polynomial arithmetic, whereas the others used explicit
formulae. For a detailed overview of HECC implementations
the reader is referred to [1], [5].

Aware of several practical advantages, the research com-
munity recently implemented HECC on embedded processors
using characteristic two fields. The authors in [20], [17], [18]
provided results of relevant implementations on the ARM
microprocessor for genus-2, genus-3, and genus-4 curves,
respectively.

We are not aware of any publications considering an
implementation of HECC over an extension field of odd
characteristic on an embedded processor. Due to their high
complexity, GF(p) and GF(pn) implementations of HECC have
not been accomplished on embedded devices. With the use of
OTF, this contribution is the first to address an implementation
of HECC over fields of odd characteristic on an embedded
microprocessor.
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III. M ATHEMATICAL BACKGROUND

A. OTF

Optimal Tower Fields were introduced and suggested for
use in elliptic curve cryptography in 2003 [2]. In this section
we briefly introduce OTFs. For the theory of optimal tower
fields and further details of efficient implementation options
of OTF arithmetic, the interested reader is referred to [2],[3].

A field obtained by repeatedly extending a ground field with
a series of irreducible polynomials of the same degree is called
a tower field.Optimal Tower Fieldsare a special class of tower
fields defined as follows

Definition 1: An Optimal Tower Field (OTF) is a finite field
GF (qtk

) such that

1) q is a pseudo-Mersenne prime,
2) GF (qtk

) is constructed by an ensemble of binomials
Pi(x) = xt − αi−1 irreducible overGF (qti−1

) with
Pi(αi) = 0, for 0 < i ≤ k .

OEF arithmetic can be utilized for doing OTF arithmetic
operations. Moreover, the special structure of OTFs allows
particularly very fast inversion by utilizing the OTF recursive
direct inversion technique [2], [3]. By using OTF inversion,
an inversion inGF (qtk

) can be reduced to a single inversion
in the ground fieldGF (q) in addition to some multiplications
and additions in the subfields ofGF (qtk

).
In our implementation, we applied OTF inversion to OTFs

of the formGF (q2
2

) andGF (q2
3

). We performed the single
inversion inGF (q) by using either table lookup or the binary
extended Euclidean algorithm (EEA). In [2] the theoretical
complexity of an inversion using the OTF recursive direct
inversion technique is shown to be in the order of a single
multiplication, which is also verified by our implementation
results.

B. HECC

We only present a brief introduction to the theory of
hyperelliptic curves and refer the reader to [21], [22] for more
details.

Let F be a finite field andF be the algebraic closure ofF.
A hyperelliptic curveC of genusg ≥ 1 over the fieldF is
defined as the following equation:

C : y2 + h(x)y = f(x)

The solutions(x, y) ∈ F × F are points which satisfy the
equation C and the partial derivative equations2y +h(x) = 0
andh′(x)y − f ′(x) = 0.

The Jacobian ofC over F, denoted byJC(F), is a divisor
D =

∑
miPi that is defined overF if Dσ =

∑
miP

σ
i is equal

to D for all automorphismsσ of F over F [23]. Each element
of the Jacobian can be represented uniquely by a reduced
divisor [24], [25]. This divisor can be represented as a pair
of polynomialsu(x) andv(x), where the coefficients ofu(x)
andv(x) are elements ofF [26].

The algorithms used for adding and doubling divisors on
JC(F) were introduced by Cantor [25]. These group opera-
tions are performed in two steps: composition and reduction.
Cantor’s group operation can be written explicitly, resulting

in more efficient arithmetic [27]. Since the publication of the
explicit formulae a major effort of the research community
has been the optimization of all the formulae. A chronological
overview of the improvements, the computational complexity,
and the corresponding references can be found in [4], [5].

In this contribution the implementation is based on the
explicit formulae for genus 2 and 3 presented in [20], [16]
and [17], [15], respectively.

IV. M ETHODOLOGY

1) Selection of tower fields: we chose the underlying fields
(security levels of 160, 192, and 240 bits) for genus-2
and genus-3 curves. We focused on fields with char-
acteristic smaller than 32-bits for efficiency. Table IV
(Appendix) provides an overview of all the fields used
for implementation.

2) Programming of the field arithmetic.
3) Implementation of HECC in NTL [28]: The main pur-

pose of this implementation was to get test vectors to
check our final implementation. Microsoft’sVisual C++
Compiler 6.0 and Developer Studio 6were used for
compilation and debugging on the Pentium 4 processor.

4) Implementation of HECC on Pentium: Using the field
operations we could program the group addition, group
doubling, and finally the scalar multiplication for the
Pentium processor.

5) Adjusting the code for the ARM microprocessor:
We used our Pentium implementation, ported it onto
ARM7TDMI@80MHz (ARMulator) and timed it. We
used ARM Developer Suite 1.2as programming and
debugging platform. TheARM Compiler 1.2was used
to generate executable images for the microprocessor.

6) Analysis of the efficiency of a low power implementa-
tion on ARM (Thumb mode).

7) Optimization of our implementation for the ARM and
Pentium: The bottleneck of our implementation is the
field multiplication routine. Therefore, we implemented
this routine for one designated field in assembly to
accelerate the HECC.

V. RESULTS

A. Field Arithmetic

The core routines of our HECC implementation are the
field operations, namely multiplication, squaring, inversion
and addition. The efficiency of these operations are in a
large extent dependent on the particular field structure. We
timed the field multiplication and inversion on the ARM
microprocessor for fields of different structures (see Table I).

TABLE I. T IMINGS OF THE FIELD L IBRARY ON THE ARM80MHZ

Fieldsize Field Polynomial Multiplication Inversion inµs

in µs LUT Euclid Fermat
256 GF (p4) with p = 214 − 3 p(x) = x4 − 2 6.4 6.4 12.8 -
264 GF (p8) with p = 28 + 1 p(x) = x8 − 3 9.7 16.0 - -
264 GF (p4) with p = 216 + 1 p(x) = x4 − 3 6.4 - 9.6 9.6
280 GF (p8) with p = 210 − 3 p(x) = x8 − 2 12.8 16.0 - -
280 GF (p4) with p = 220 − 3 p(x) = x4 − 2 6.0 - 19.2 25.6
296 GF (p8) with p = 212 − 3 p(x) = x8 − 2 12.8 16.0 - -
296 GF (p4) with p = 224 − 3 p(x) = x4 − 2 6.0 - 19.2 28.8
2112 GF (p8) with p = 214 − 3 p(x) = x8 − 2 12.8 16.0 - -
2116 GF (p4) with p = 229 − 3 p(x) = x4 − 2 6.0 - 22.4 28.8
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1) Field Inversion:For the field inversion, we used the OTF
recursive direct inversion technique. We investigated three dif-
ferent ways to compute the single ground fieldGF (p) inverse
required for performing an OTF inversion: precomputation
and lookup table (LUT), binary extended Euclidean algorithm
(EEA) and Fermat’s method. For small values ofp, this
inversion can be done very fast by LUTs. EEA and Fermat’s
method can be used for largep values, where inversion by
LUT is not practical.

According to our timings, the binary EEA turns out to be the
faster than Fermat’s method for ground fieldGF (p) inversion,
therefore it will be used in our implementation forp larger than
214.

2) Field Multiplication: Like the other field arithmetic
operations, the timings of the field multiplication depend on
the field characteristics and the field generating binomials.
Naturally, a binomial of higher degree (e.g. 8 in our case)
leads to a larger number of processor word multiplications
than with lower degree (e.g. 4 in our case). Table I shows
that multiplications over fields with higher degree binomials
are more than twice as slow. Hence, for the implementation
of HECC only fields of low degree binomials will be used.

Note that an OTF inversion takes between a factor of 1.25
and 4.75 more time than a field multiplication. Therefore,
HECC with affine coordinates using OTFs is preferable.

B. Scalar Multiplication of HECC

The main operation in HECC is the scalar multiplication
of a divisor and is realized by the sliding window method
(w = 4). Table II provides timings for a scalar multiplication
on HECC over different OTFs for the ARM and Pentium
processors. Figure 1 depicts the performance of HECC of
genus 2 and 3 for equal group orders of length approximately
160bit and 190bit. The execution time of the scalar
multiplication essentially depends on the bit length of the
scalar (≈ bit length of the group order).

TABLE II. T IMINGS FOR SCALAR MULTIPLICATIONS)

Genus Fieldsize Field Polynomial Time in ms
ARM@80MHz P4@1.8GHz

280 GF (p4) with p = 220 − 3 p(x) = x4 − 2 44.2 2.24
2 296 GF (p4) with p = 224 − 3 p(x) = x4 − 2 53.3 2.70

2116 GF (p4) with p = 229 − 3 p(x) = x4 − 2 63.3 3.34
256 GF (p4) with p = 214 − 3 p(x) = x4 − 2 95.0 3.87

3 264 GF (p4) with p = 216 + 1 p(x) = x4 − 3 138.7 7.33
280 GF (p4) with p = 220 − 3 p(x) = x4 − 2 183.3 9.37

Figure I clearly shows that HECC of genus 2 perform better
than HECC of genus 3. For a security level of approximately
160bit, a scalar multiplication on the ARM processor takes
44.2ms for genus-2 HECC and95ms for genus-3 HECC. With
increasing group order the cryptosystems perform slower.

The fastest known implementation on the same processor
was done in [20], [17]. Over characteristic two fields, a scalar
multiplication was achieved in69ms and90ms on HECC of
genus 2 and 3, respectively. Thus, for a comparable security
level of 160bit, our implementation of HECC of genus 2
over OTF is 57% faster. Genus 3 HECC over OTF and
characteristic two fields have equal performance, though the
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Fig. 1. Timings of Scalar Multiplication for Different GroupOrders and
Genera (ARM7TDMI@80MHz)

group operations on fields of odd characteristic are more
complex [5].

On the Pentium processor, a scalar multiplication (160bit se-
curity) takes2.24ms and3.87ms for the two genera. Whereas,
the fastest known implementation targeting fields GF(p) take
1.72ms and 2.8ms and are presented in [19]. Note that the
author in [19] used a different processor, namely an AMD
Athlon with a clockrate of 1GHz. Note that we caution the
reader to compare the two implementations, since the targeted
processors have very different characteristics.

C. Optimized Implementation on the ARM and Pentium

In this section we analyze the impact of processor specific
optimizations and also compile the code for ARM in the
so calledThumb mode, which is an energy efficient 16-bit
mode of the ARM microprocessor. Furthermore, we decided to
optimize the multiplication routine for the ARM and Pentium
processors in assembly.

1) Using the Energy and Space Efficient ARM Thumb
Mode: The ARM Thumb mode solely uses 16-bit operations,
resulting in a smaller code size and lower power consumption
which are eminently important for embedded applications.
Table III gives the timings for the Thumb mode. Compared
to Table II, a slowdown factor of approximately 2 can be
observed. However, in the case of our smallest sized OTF,
there is a mere 14% slowdown compared to the 32-bit code.

TABLE III. T IMINGS FOR SCALAR MULTIPLICATIONS
(ARM@80MHZ IN THUMB MODE)

Genus Fieldsize Field Polynomial Time in ms

280 GF (p4) with p = 220 − 3 p(x) = x4 − 2 98.9
2 296 GF (p4) with p = 224 − 3 p(x) = x4 − 2 119.6

2116 GF (p4) with p = 229 − 3 p(x) = x4 − 2 147.2
256 GF (p4) with p = 214 − 3 p(x) = x4 − 2 107.7

3 264 GF (p4) with p = 216 + 1 p(x) = x4 − 3 330.0
280 GF (p4) with p = 220 − 3 p(x) = x4 − 2 415.2

Furthermore, instead of using the same OTFs that we used
for the 32-bit code, we also can use OTFs with smaller
characteristics, e.g. characteristics smaller than 16 bits in
length. This yields to higher performance for the ARM Thumb
mode. For example in genus-2 HECC over a field of order280,
we can gain approximately 13% in performance compared
to lower extension fields, if we use the field GF(p8) with
p = 210−3 andp(x) = x8−2. For genus-3, a speed up of 15%
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can be achieved by using a fieldGF (p8) with p = 214−3 and
p(x) = x8−2. Table V (Appendix) includes the timing results
in ARM Thumb mode for fields with small characteristic.

2) Assembly Optimization on ARM and Pentium:A further
speed up can be achieved with the use of processor specific
assembly instructions. Due to time restrictions we decided
to analyze solely the effect of an optimized multiplication
routine. The multiplication routine is the crucial function of
this cryptosystem since a scalar multiplication is mainly com-
puted with field multiplications. We optimized a multiplication
routine for a fixed field size in assembly.

Our assembly code makes intensive use of the registers
by trying to keep often used values in the registers, i.e.,
performing less memory accesses. By utilizing the multiply
and accumulate routine (MLA, UMLAL) we could achieve
a speed up of approximately 35% for a field of size280.
The whole cryptosystem (genus-2) gained 13% in performance
with this simple optimization.

Since only four registers can be addressed directly on the
Pentium platform, we had to arrange a different approach. For
the Pentium platform, we optimized the multiplication over
a field of size296. The use of special operations from the
MMX and SSE2 instruction set resulted in an acceleration of
the genus-2 HECC by 27% (a scalar multiplication takes now
2.13ms).

VI. CONCLUSIONS

Since the development of asymmetric cryptosystems based
on elliptic and hyperelliptic curves, it has been a challeng-
ing task to implement ECC and HECC over fields of odd
characteristic. With the advent of OEF, PAFF, and more
recently OTF, the performance of ECC and HECC over prime
(extension) fields increased drastically. For a fixed security
level, OTFs offer different field extensions. Thus, the structure
of the field can be varied and adapted to the processor word
size which yields to an efficient field arithmetic.

Our implementation of HECC over OTF shows the practical
relevance of OTF in cryptographic implementations. The arith-
metic over OTFs allows for a very efficient implementation.
On a typical 32-bit embedded microprocessor, namely the
ARM7TDMI, a scalar multiplication for a 160-bit group order
can be performed in44.2ms. Compared to the currently
fastest implementation over fields of characteristic two, namely
genus-2 HECC over GF(281) on the same processor [20], this
is an improvement of approximately 57%. The implementation
on the Pentium 4 processor computes a scalar multiplication
over a group order of 160 bit in2.13ms.

Using theThumb Modeof the ARM microprocessor, a 16-
bit implementation of the cryptosystem was realized. This
type of implementation is eminently important for power and
memory limited environments. The performance of the 16-
bit cryptosystem can be improved by changing the underlying
field structure of the OTFs. A scalar multiplication of a genus-
2 HECC with 160-bit group order can be done in87.5ms in
the ARM Thumb mode.

Furthermore, we investigated the influence of an assembly
optimized multiplication routine on the efficiency of the

whole cryptosystem for both the ARM and the Pentium
microprocessor. On the ARM, we could gain approximately
35% in speed for the field multiplication routine compared to
the implementation without assembly optimizations. Hence,
the entire cryptosystem was accelerated by 13%. Using
special MMX and SSE2 instructions, the cryptosystem on the
Pentium 4 processor gained 27% in speed.

VII. A PPENDIX

TABLE IV. OTFS AND CORRESPONDINGOEF REPRESENTATIONS

Field size OTF Corresponding OEF representationGF (pm)
p field generating polynomial

256 GF (q2
2

) with q = 214 − 3, andα0 = 2 p = 214 − 3 p(x) = x4 − 2

264 GF (p2
3

) with q = 28 + 1, andα0 = 3 p = 28 + 1 p(x) = x8 − 3

264 GF (q2
2

) with q = 216 + 1, andα0 = 3 p = 216 + 1 p(x) = x4 − 3

280 GF (q2
3

) with q = 210 − 3, andα0 = 2 p = 210 − 3 p(x) = x8 − 2

280 GF (q2
2

) with q = 220 − 3, andα0 = 2 p = 220 − 3 p(x) = x4 − 2

296 GF (q2
3

) with q = 212 − 3, andα0 = 2 p = 212 − 3 p(x) = x8 − 2

296 GF (q2
2

) with q = 224 − 3, andα0 = 2 p = 224 − 3 p(x) = x4 − 2

2112 GF (q2
3

) with q = 214 − 3, andα0 = 2 p = 214 − 3 p(x) = x8 − 2

2116 GF (q2
2

) with q = 229 − 3, andα0 = 2 p = 229 − 3 p(x) = x4 − 2

TABLE V. T IMINGS FOR SCALAR MULTIPLICATIONS OVER FIELDS OF

SMALLER CHARACTERISTIC (ARM@80MHZ IN THUMB MODE)

Genus Fieldsize Field Polynomial Time in ms

280 GF (p8) with p = 210 − 3 p(x) = x8 − 2 87.5
2 296 GF (p8) with p = 212 − 3 p(x) = x8 − 2 106.3

2112 GF (p8) with p = 214 − 3 p(x) = x8 − 2 123.7
264 GF (p8) with p = 28 + 1 p(x) = x8 − 3 280.4

3 280 GF (p8) with p = 210 − 3 p(x) = x8 − 2 374.0
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