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PREFACE 

Algebraic geometry is among the oldest and most highly developed sub-
jects in mathematics. It is intimately connected with projective geometry, 
complex analysis, topology, number theory, and many other areas of 
current mathematical activity. Moreover, in recent years algebraic geome-
try has undergone vast changes in style and language. For these reasons 
there has arisen about the subject a reputation of inaccessibility. This book 
gives a presentation of some of the main general results of the theory 
accompanied by—and indeed with special emphasis on—the applications 
to the study of interesting examples and the development of computational 
tools. 

A number of principles guided the preparation of the book. One was to 
develop only that general machinery necessary to study the concrete 
geometric questions and special classes of algebraic varieties around which 
the presentation was centered. 

A second was that there should be an alternation between the general 
theory and study of examples, as illustrated by the table of contents. The 
subject of algebraic geometry is especially notable for the balance provided 
on the one hand by the intricacy of its examples and on the other by the 
symmetry of its general patterns; we have tried to reflect this relationship 
in our choice of topics and order of presentation. 

A third general principle was that this volume should be self-contained. 
In particular any "hard" result that would be utilized should be fully 
proved. A difficulty a student often faces in a subject as diverse as 
algebraic geometry is the profusion of cross-references, and this is one 
reason for attempting to be self-contained. Similarly, we have attempted to 
avoid allusions to, or statements without proofs of, related results. This 
book is in no way meant to be a survey of algebraic geometry, but rather is 
designed to develop a working facility with specific geometric questions. 
Our approach to the subject is initially analytic: Chapters 0 and 1 treat the 
basic techniques and results of complex manifold theory, with some 
emphasis on results applicable to projective varieties. Beginning in Chapter 
2 with the theory of Riemann surfaces and algebraic curves, and continu-
ing in Chapters 4 and 6 on algebraic surfaces and the quadric line 

v 
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complex, our treatment becomes increasingly geometric along classical 
lines. Chapters 3 and 5 continue the analytic approach, progressing to 
more special topics in complex manifolds. 

Several important topics have been entirely omitted. The most glaring 
are the arithmetic theory of algebraic varieties, moduli questions, and 
singularities. In these cases the necessary techniques are not fully devel-
oped here. Other topics, such as uniformization and automorphic forms or 
monodromy and mixed Hodge structures have been omitted, although the 
necessary techniques are for the most part available. 

We would like to thank Giuseppe Canuto, S. S. Chern, Maurizio 
Cornalba, Ran Donagi, Robin Hartshorne, Bill Hoffman, David Morrison, 
David Mumford, Arthur Ogus, Ted Shifrin, and Loring Tu for many 
fruitful discussions; Ruth Suzuki for her wonderful typing; and the staff of 
John Wiley, especially Beatrice Shube, for enormous patience and skill in 
converting a very rough manuscript into book form. 

PHILLIP GRIFFITHS 
JOSEPH HARRIS 

May 1978 
Cambridge, Massachusetts 
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0 
FOUNDATIONAL 
MATERIAL 

In this chapter we sketch the foundational material from several complex 
variables, complex manifold theory, topology, and differential geometry 
that will be used in our study of algebraic geometry. While our treatment is 
for the most part self-contained, it is tacitly assumed that the reader has 
some familiarity with the basic objects discussed. The primary purpose of 
this chapter is to establish our viewpoint and to present those results 
needed in the form in which they will be used later on. There are, broadly 
speaking, four main points: 

1. The Weierstrass theorems and corollaries, discussed in Sections 1 and 
2. These give us our basic picture of the local character of analytic 
varieties. The theorems themselves will not be quoted directly later, but the 
picture—for example, the local representation of an analytic variety as a 
branched covering of a polydisc—is fundamental. The foundations of 
local analytic geometry are further discussed in Chapter 5. 

2. Sheaf theory, discussed in Section 3, is an important tool for relating 
the analytic, topological, and geometric aspects of an algebraic variety. A 
good example is the exponential sheaf sequence, whose individual terms Z, 
0 , and 0* reflect the topological, analytic, and geometric structures of the 
underlying variety, respectively. 

3. Intersection theory, discussed in Section 4, is a cornerstone of classi-
cal algebraic geometry. It allows us to treat the incidence properties of 
algebraic varieties, a priori a geometric question, in topological terms. 

4. Hodge theory, discussed in Sections 6 and 7. By far the most 
sophisticated technique introduced in this chapter, Hodge theory has, in 
the present context, two principal applications: first, it gives us the Hodge 
decomposition of the cohomology of a Kahler manifold; then, together with 
the formalism introduced in Section 5, it gives the vanishing theorems of 
the next chapter. 

1 



2 FOUNDATIONAL MATERIAL 

1. RUDIMENTS OF SEVERAL COMPLEX VARIABLES 

Cauchy's Formula and Applications 

NOTATION. We will write z = (z, , . . . , z„) for a point in C , with 

z,. = xt + V^l y,; 

W = (z,z) = 2 |z,f. 
i = i 

For U an open set in C , write C°°(l/) for the set of C°° functions 
defined on U; C°°(U) for the set of C M functions defined in some 
neighborhood of the closure U of U. 

The cotangent space to a point in C" = R2" is spanned by {dx^cfyj}; it 
will often be more convenient, however, to work with the complex basis 

dZj = dXj + V— 1 dyt, dz( = dxt — V — 1 dyi 

and the dual basis in the tangent space 

_3_ = W_9 
3z,- 2 \ dXj 

With this notation, the formula for the total differential is 

, u/, j ozj 

In one variable, we say a C °° function / on an open set U c C is 
holomorphic if/satisfies the Cauchy-Riemann equations 3/ /3z=0. Writing 
f(z)=u(z) + \A^T U(Z), this amounts to 

ldy,)' 9z- 2\dXi 3yJ 

I 3z / 3JC 3^ 
I (^L\ - ^" do _ 0 

V 3z / 9^ 3x 
We say / is analytic if, for all z0 G {/, / has a local series expansion in z - z0, 
i.e., 

CO 

/ ( z ) = 2 a„(2-* 0 )" 

in some disc A(z0,e)= (z : |z - z0| < e}, where the sum converges absolutely 
and uniformly. The first result is that / is analytic if and only if it is 
holomorphic; to show this, we use the 

Cauchy Integral Formula. For A a disc in C, f eC°°(A), zeA, 

/ ( z ) = _ J _ _ f f(w)dw ( 1 r 3/(w) dwAdw 
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where the line integrals are taken in the counterclockwise direction (the fact 
that the last integral is defined will come out in the proof). 

Proof The proof is based on Stokes' formula for a differential form with 
singularities, a method which will be formalized in Chapter 3. Consider the 
differential form 

1 f(™)dw, 

we have lor z^w 

and so 

dr\ 

U—)-° 
dw \ w — z ) 

1 9/(HQ dw/\dw 

2irV=\ dw w-z 

Let A£=A(z,e) be the disc of radius e around z. The form 17 is C00 in 
A-AE, and applying Stokes' theorem we obtain 

1 

ITTV^I '3A, 

r f(w)dw _ 1 r f(w)dw 
•L w~z 2TTY^T JaA

 w~z 

A-At
 dW 2^ 1 

dw/\dw 
w — z 

Setting w-z = re'9, 

1 
J w-z 2wJ0 2-nV-\ J ^ , 

which tends to f(z) as e-»0; moreover, 

dw/\dw = -2Vzr\ dxf\dy = -2\fzr\ rdr/\, 

so 
9/(w) dw/\dw 

= 2 dw < c|rfrArf*|. 
div w — z 

Thus ( 9 / / 9 H > ) ( < / W A ^ W ) / ( H > - Z ) is absolutely integrable over A, and 

9/ dw/\dw 

I; dw w — z 
0 

Q.E.D. as £^>0; the result follows. 

Now we can prove the 

Proposition. For U an open set in C and f eC°°(U), f is holomorphic if and 
only if f is analytic. 
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Proof. Suppose first that 3 / /9z=0. Then for z0GU, e sufficiently small, 
and z in the disc A = A(z0,e) of radius e around z0, 

/ ( ; ) 
2irv — 1 ^34 

2« rV- l JM 

f(w)dw 

w — z 
f(w)dw 

(w-z0)-(z-z0) 

f{w)dw 

00 / 

so, setting 

„_o\ 2 7 ^ / ^ 1 ■/3A(tv-z0) 

/(w)rf>v 

/M^fo-.J-; 

" 3A (w - z0) 
« + I ' 

we have 

/ (z) = 2 fl„(2-20)" 
» = 0 

for z e A, where the sum converges absolutely and uniformly in any smaller 
disc. 

Suppose conversely that /(z) has a power series expansion 
00 

/(z) = 2 an(z-z0)
n 

n = 0 

for zGA = A(z0,e). Since (8/9z)(z — z0)" = 0, the partial sums of the expan-
sion satisfy Cauchy's formula without the area integral, and by the uniform 
convergence of the sum in a neighborhood of z0 the same is true of / , i.e., 

1 f f(w)dw 
w — z 

/ ( * ) - ■ 

Ja\ 2 w V - l J%\ 

We can then differentiate under the integral sign to obtain 

_9_ 
8z-

since for z¥^w 

k ITTV^T J^Z\W-Z) 
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We prove a final result in one variable, that given aC°° function g on a 
disc A the equation 

% -

can always be solved on a slightly smaller disc; this is the 

3-Poincare Lemma in One Variable. Given g(z)€C°°(A), the function 

/(z) = ' fiteIdWAd» 
27rV^T JA

W~Z 

is defined and C°° in A aw/ satisfies 

I-
/V»o/ For z0EA choose e such that the disc A(z0,2e)cA and write 

g(z) = 8\(z) + g2^% 
where g,(z) vanishes outside A(z0,2e) and g2(z) vanishes inside A(z0,e). The 
integral 

dw/\dw 
■ z ImV^X JA

 w ■ 

is well-defined and C°° for zeA(z0,e); there we have 

3 * * ' 2 \̂A^T JAaz-U-z; 
Since g,(z) has compact support, we can write 

1 /* , . dw/\dw 1 f , s dwAdw 
7 = r I g^w) = —— I g,(w) 

2 T T V ^ T A W _ Z 2TT\A^T J C W - Z 

-U(u + Z ) - ^ -
2ITV - 1 ^ c 

where M = W — Z. Changing to polar coordinates u = re'9 this integral be-
comes 

1 
'c~ 

which is clearly defined and C°° in z. Then 

3/i(*) 

/,(z) = - - fg,(r+ «")«"*«*■ A<«, 

l and C00 inz . Then 

= - ~ f^±(z + rei0)e-">drAd0 
3z 
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but g, vanishes on 3A, and so by the Cauchy formula 

Q.E.D. 

Several Variables 

In the formula 

*-2&«+2£« 3z, 3z; 

for the total differential of a function / on C , we denote the first term 3/ 
and the second term 3/; 3 and 3 are differential operators invariant under a 
complex linear change of coordinates. A C 0 0 function / on an open set 
t / c C " is called holomorphic if 3/=0; this is equivalent to/(z,, . . . ,z„) being 
holomorphic in each variable z, separately. 

As in the one-variable case, a function / is holomorphic if and only if it 
has local power series expansions in the variables z,. This is clear in one 
direction: by the same argument as before, a convergent power series 
defines a holomorphic function. We check the converse in the case n=2; 
the computation for general n is only notationally more difficult. For / 
holomorphic in the open set U c C2, z0 G U, we can fix A the disc of radius 
r around z0EU and apply the one-variable Cauchy formula twice to 
obtain, for ( z „ z 2 ) e i , 

f(z 
"Z2) = ? J~T / 

2*rV- l I 

f(zl,w2)dw2 

K - ^ o J ^ 
w, 

—kf \-7=f 
*/|«'2-^02l = ' - l •'IWI-ZO, 

•* ** \W.: — Zf 

/(w„tv2)<ftv, 

w, 

dwj 

W0 — Z0 

Using the series expansion 

1 
(w, -z , ) (w 2 -z 2 ) - 2 

f(wl,w2)dwidw2 

{w^-zx){w2-z2) 

(h-Zo)m(Z2~Z02T 

( \m+1/ \n 
Wl~zo) (W2-z02) 

we find that / has a local series expansion 
00 

/ ( Z l > ^ ) = 2 am,n(Z\-Zo)m(Z2-Zo)"-
m,n = 0 

Q.E.D. 
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Many results in several variables carry directly over from the one-vari-
able theory, such as the identity theorem: If f and g are holomorphic on a 
connected open set U and f = g on a nonempty open subset of U, then f=g, 
and the maximum principle: the absolute value of a holomorphic function f 
on an open set U has no maximum in U. There are, however, some striking 
differences between the one- and many-variable cases. For example, let U 
be the polydisc A(r) = {(z,,z2): | z , | , | z 2 |< r ) , and let VcU be the smaller 
polydisc A(r') for any r' < r. Then we have 

Hartogs' Theorem. Any holomorphic function f in a neighborhood of U — V 
extends to a holomorphic function on U. 

Proof. In each vertical slice z, = constant, the region U—V looks either 
like the annulus r'<\z2\<r or like the disc \z2\<r. We try to extend / i n 
each slice by Cauchy's formula, setting 

F(zl,z2) = — ^ I . 
2TAA^T J. . w2-z2 

F is defined throughout U; it is clearly holomorphic in z2, and since 
(3/9z,) /=0, it is holomorphic in z, as well. Moreover, in the open subset 
| z , | > r ' of U— V, F(zl,z2)=f(zl,z2) by Cauchy's formula; thus F\u_v=f. 

Q.E.D. 

Hartogs' theorem applies to many pairs of sets VcUcC; it is com-
monly applied in the form 

A holomorphic function on the complement of a point in an open set 
U c C (n> 1) extends to a holomorphic function in all of U. 

Weierstrass Theorems and Corollaries 

In one variable, every analytic function has a unique local representation 

from which we see in particular that the zero locus of / is discrete. 
Similarly, the Weierstrass theorems give local representations of holomor-
phic functions in several variables, from which we get a picture of the local 
geometry of their zero sets. 

Suppose we are given a function f(z,,...,zn_x,w) holomorphic in some 
neighborhood of the origin in C", with/(0, . . . ,0 )=0 . Assume t h a t / d o e s 
not vanish identically on the w-axis, i.e., the power series expansion for / 
around the origin contains a term a-wd with a=£0 and d > 1; clearly this 
will be the case for most choices of coordinate system. 
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For suitable r, 8, and e>0 , then, |/(0,w)| > 8 > 0 for |w| = r, and conse-
quently \f(z,w)\> 8/2 for |w| = r, | |z | |<e. Now if w = bt,...,bd are the 
roots of/(z,w) = 0 for |w |<r , by the residue theorem 

/ ■ 

rV=T J|w|_r M"0 
so the power sums 11bi(z)g are analytic functions of z for | |z | |<£. Let 
a,(z),...,CTd(z) be the elementary symmetric polynomials in bx,...,bd; 
av...,ad can be expressed as polynomials in the power sums Sfe,(z)9. Thus 
the function 

g(z,w) = wd- ox{z)W-" + • • • + ( - \)dod{z) 

is holomorphic in ||z|| < e, |w\ < r, and vanishes on exactly the same set a s / . 
The quotient 

h{z,w) = - ) \ 

is defined and holomorphic in ||z|| < e, \w\< r, at least outside the zero set 
of / and g. Moreover, for fixed z, h(z, w) has only removable singularities 
in the disc |w|</-, so h can be extended to a function in all of | |z | |<e, 
\w\ < r and analytic in w for each fixed z, as well as in the complement of 
the zero locus. Writing 

h(z,w) = . 1 f h(z,u)du 

we see that h is holomorphic in z as well. 

DEFINITION. A Weierstrass polynomial in w is a polynomial of the form 

wd+al(z)wd-, + --- +ad{z), at{0) = 0. 

We have proved the existence part of the 

Weierstrass Preparation Theorem. / / f is holomorphic around the origin in 
Cn and is not identically zero on the w-axis, then in some neighborhood of the 
origin f can be written uniquely as 

f=g-h, 

where g is a Weierstrass polynomial of degree d in w and 11(0)^0. 
The uniqueness is clear, since the coefficients of any Weierstrass poly-

nomial g vanishing exactly where / does are given as polynomials in the 
integrals 

/ 
J\w\ = r 

w«(df/dw)(z,w)dw 
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We see from the Weierstrass theorem that the zero locus of a function / , 
holomorphic in a neighborhood of the origin in C", is for most choices of 
coordinate system z , , . . . , z n _ v w the zero locus of a Weierstrass polynomial 

g(z, w) = wd + a1(z)wrf"1 + • • • + ad{z). 

Now, the roots Z>,(z) of the polynomial g(z, •) are, away from those values 
of z for which g(z, •) has a multiple root, locally single-valued holomorphic 
functions of z. Since the discriminant of g(z, •) is an analytic function of z, 

The zero locus of an analytic function f(z,,.. . ,zn_,,w), not vanishing 
identically on the v/-axis, projects locally onto the hyperplane (w = 0) as 
a finite-sheeted cover branched over the zero locus of an analytic 
function. 

As a corollary of the preparation theorem, we have the 

Riemann Extension Theorem. Suppose f(z,w) is holomorphic in a disc 
A c C " and g(z,w) is holomorphic in A— {f = 0} and bounded. Then g extends 
to a holomorphic function on A. 

Proof (in a neighborhood of 0). Assume that the line z = 0 is not con-
tained in { /=0} . As before, we can find r, e, and 8 > 0 such that 
| / ( 0 , w ) | > 8 > 0 for \w\ = r and e such that | / ( z ,w) |>8 /2 for | |z | |<e, 
|w| = r; / then has zeros only in the interior of the discs z = z0, \w\ < r. By 
the one-variable Riemann extension theorem, we can extend g to a 
function g in \z\ <e, |w\ < r, holomorphic away from {/=0} and holomor-
phic in w everywhere. As before, we write 

Lit V I ^ | M | = r 

to see that g is holomorphic in z as well. Q.E.D. 

We recall some facts and definitions from elementary algebra: 
Let R be an integral domain, i.e., a ring such that for « ,«£ /? , WU = 0=>M 

= 0 or v = 0. An element « £ / ? is a unit if there exists vE:R such that 
uv= 1; u is irreducible if for v,w&R, u = vw implies v is a unit or w is a 
unit. R is a unique factorization domain (UFD) if every uE.R can be 
written as a product of irreducible elements ut,...,u,, the w/s unique up to 
multiplication by units. The main facts we shall use are 

1. R is a UFD=>/?[/] is a UFD (Gauss' lemma). 
2. If J? is a UFD and u,vGR[t] are relatively prime, then there exist 

relatively prime elements a,/3GR[t], y=£0ER, such that 
au + /?i> = y. 

y is called the resultant of u and v. 
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Let 0„ z denote the ring of holomorphic functions defined in some neigh-
borhood of zGC"; write 0„ for 0„o . 0„ is an integral domain by the 
identity theorem, and moreover is a local ring whose maximal ideal m is 
{/: /(0) = 0}./e<9„ is a unit if and only i f / (0)^0. The first result is 

Proposition. 0n is a UFD. 

Proof. We proceed by induction. Assume 0„_, is a UFD and l e t / E 0 „ . 
We may assume / is regular with respect to w = zn; i.e., / (0 , . . . ,0 ,w)^0. 
Write 

where u is a unit in 0„ and gG0^ , [ tv ] is a Weierstrass polynomial. 
0„_ ,[w] is a UFD by Gauss' lemma, and so we can write g as a product of 
irreducible elements g,,...,gm G 0„^,[w] 

(*) f=gi---gm-«, 

where the factors g, are uniquely determined up to multiplication by units. 
Now suppose we write / a s a product of irreducible elements/„. . . , /^G0„. 
Each f must be regular with respect to w, and we can write 

ft = g'rui 
with H, a unit, g/ a Weierstrass polynomial, necessarily irreducible in 
6, , - iM- We have 

/ = g-u = UgrUu-, 

with g and II g\ both Weierstrass polynomials; by the Weierstrass prepara-
tion theorem 

g = ng;, 
and since 0„_,[w] is a UFD, it follows that the g,' are the same, up to units, 
as the g,. Thus the expression (*) represents a unique factorization of / in 
0„. Q.E.D. 

Proposition. / / f and g are relatively prime in 0n 0, then for ||z|| < e, f and g 
are relatively prime in 0n . 

Pro©/ We may assume that / and g are regular with respect to z„ and are 
both Weierstrass polynomials; for each fixed z ' e C ^ 1 sufficiently small 
we have/(z ' ,z„)^0 in z„. Now we can write 

« / + Pg = y 
with a,j3£0„_,[w], 7 £ 6 „ _ , ; the equation holds in some neighborhood of 
OeC". 

If for some small z 0 G C , /(zo) = g(zo)=0 and / and g have a common 
factor h(z',zn) in 0„ z with h(zo) = 0, then 

A|/,A|*=>A|y 
= ^ e 0 ^ , . 



RUDIMENTS OF SEVERAL COMPLEX VARIABLES 11 

But then h(z0,...,z0 ,zn) vanishes identically in z„, contradicting our 
assumption that/(z0 , . . . ,z0 ,z„)^0. Q.E.D. 

We now prove the 

Weierstrass Division Theorem. Let g(z, w) G 0n _, [w] be a Weierstrass poly-
nomial of degree k in w. Then for any f E 0 n , we can write 

f=g-h + r 

with r(z, w) a polynomial of degree < k in w. 

Proof. For e,8 > 0 sufficiently small, define for ||z|| <e , |»v| <S, 

h(z,w)= —— | J\ ' -
.. w 

h is clearly holomorphic, and hence so is r=f—gh. We have 

r{z,w) = f(z,w) - g(z,w)-h(z,w) 

1 I [ /■/ \ / \ / ( z >" ) 1 du ' lf(z,u)-g(z,w)^ '-I 
J\u\ l"l = 5L 

IITV-\ ■/,„, 

f(z,u) g(z,u)-g(z,w) ^ 

2TTV^\ JH = sg(z,u) u~w 

But (u — w) divides [g(z,u) — g(z,w)] as polynomials in w; thus 
, . g(z,u)-g(z,w) 

P(Z.U.W) = — — 
u — w 

is a polynomial in w of degree < k. Since the factor w appears only v\p in 
the expression for r(z,w), we see that r(z,w) is a polynomial of degree < k 
in w. Explicitly, if 

p(z,u,w) = p,(z,u)-wk~i + ■■■ +pk(z,u), 

then 
r(z,w) = ax(z)-wk~x + ■■■ + ak{z), 

where 

Corollary (Weak Nullstellensatz). If f(z, w) e 0n « irreducible and h e 0n 
vanishes on the set f(z,w) = 0, then f divides h /« 0n. 

iVoo/ First, we may assume / is a Weierstrass polynomial of degree k in 
w. Since / is irreducible, / and df/dw are relatively prime in O ^ i M 
(degM,/>deglv8//3H'); thus we can write 

a ' / + / ? " £ = Y ' Ye0n_„ y^O. 
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If, for a given z0,/(z0,w)e<C[w] has a multiple root u, we have 

/(^o>") = 9^(zo>") = ° 
=*• Y(*O) = 0; 

thus: f(z,w) has k distinct roots in w for y{z)^0. 
Now by the division theorem, we can write 

h=f-g + r, r G6„_, [ w], d e g r < f c . 

But for any z0 outside the locus (y — 0), /(z0, w) and hence h(z0, w) have at 
least A: distinct roots in w. Since degree r<k, this implies C ( Z 0 , H ' ) = 0 6 
C[H>]; it follows that r = 0 and h =fg. Q.E.D. 

Analytic Varieties 

The main purpose of the results given above is to describe the basic local 
properties of analytic varieties in C . We say a subset V of an open set 
f / c C " is an analytic variety in U if, for any p&U, there exists a 
neighborhood U' of p in U such that V n £/' is the common zero locus of a 
finite collection of holomorphic functions/,,...,fk on U'. In particular, F 
is called an analytic hypersurface if V is locally the zero locus of a single 
nonzero holomorphic function / . 

An analytic variety V cU cC" is said to be irreducible if V cannot be 
written as the union of two analytic varieties VvV2cU with Vl,V2¥* V; it 
is said to be irreducible at p £ V if V n U' is irreducible for small neighbor-
hoods {/' of p in £/. Note first that i f /G0„ is irreducible in the ring 0„, 
then the analytic hypersurface V= {f(z) = 0} given by / in a neighborhood 
of 0 is irreducible at 0: if V= F , u V2, with Vx, V2 analytic varieties^ V, 
then there exist/ , , /2G0„ with/ , (respectively/2) vanishing identically on 
K, (respectively V2) but not on V2 (respectively Vx). By the Nullstellensatz, 
/ m u s t divide the product/,-/2; s ince/is irreducible, it follows tha t /mus t 
divide either / , or f2, i.e., either F p F o r F 2 D F , a contradiction. In 
addition to the basic picture of an analytic hypersurface (p. 9) we see that 

1. Suppose Vc UcC is an analytic hypersurface, given by V= {/(z) 
= 0} in a neighborhood of 0E V. Since 6„ is a UFD, we can write 

/ = /,•••/„ 
with / irreducible in (9„; if we set V. = {f-(z) = 0} then we have 

v= v, u • • ■ u vk 

with Vt irreducible at 0. Thus \\p is any point on any analytic hypersurface 
V c U C C , V caw be expressed uniquely in some neighborhood U' of p as 
the union of a finite number of analytic hypersurfaces irreducible at p. 
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2. Let W c U C C" be an analytic variety given in a neighborhood A of 
OEW as the zero locus of two functions / , g E 0 „ . If W contains no 
analytic hypersurface through 0, then / and g are necessarily relatively 
prime in 0„; if W does not contain the line {z' = 0}, then by taking linear 
combinations we may assume that neither {/(z)=0) or { g(z) = 0} contains 
{z' = 0}, and hence t h a t / a n d g are Weierstrass polynomials in z„. Let 

y = af+pg^0<=6„_1 

be the resultant of / and g. We claim that the image of W under the 
projection map m: C-*C"~l is just the locus of y. To see this, write 

a = hg + r 

with the degree of r strictly less than the degree of g. Then 
y = rf+(l3 + hf)g. 

Now, if for some z in C 1 - 1 , y vanishes at z b u t / and g have no common 
zeros along the line IT ~ '(z), it follows that r vanishes at all the zeros of g in 
IT~\Z); since deg(r)<deg(g), this implies that r, and hence fi + hf, vanish 
identically on ir~l(z). Thus r and fl + hf both are zero on the inverse image 
of any component of the zero locus of y other than TT(W); but r and /? + hf 
are relatively prime and so have no common components. We see then that 
IT(W) is an analytic hypersurface in a neighborhood of the origin in C n _ 1 , 
and, reiterating our basic description of analytic hypersurfaces, that/7rq/'ec-
tion of W onto a suitably chosen (n — 2)-plane C " ~ 2 c C n expresses W locally 
as a finite-sheeted branched cover of a neighborhood of the origin in Cn~2. 

3. Last, let VcU cC" be an analytic variety irreducible at 0 E V such 
that for arbitrarily small neighborhoods A of 0 in C , TT( V n A) contains a 
neighborhood of 0 in C " ' . Write 

F = { / ] ( z ) = . . . = 4 ( z ) = 0} 
near 0. Then the functions / E 0„ must all have a common factor in 0„, 
since otherwise V would be contained in the common locus of two 
relatively prime functions, and by assertion 2,TT(VC\A) would be a proper 
analytic subvariety of C"~'. If we let g(z) be the greatest common divisor 
of the / ' s , then we can write 

,_tiW_„0(igJ...._$_.}. 
Since V is irreducible at 0 and since the locus {/(z) /g(z)=0, all /} cannot 
contain {g(z) = 0}, we must have 

F = { g ( z ) = 0 } , 
i.e., V is an analytic hypersurface near 0. 

The results 1, 2, and 3 above, together with our basic picture of an 
analytic hypersurface, give us a picture of the local behavior of those 
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analytic varieties cut out locally by one or two holomorphic functions. In 
fact, the same picture is in almost all respects valid for general analytic 
varieties, but to prove this requires some relatively sophisticated techniques 
from the theory of several complex variables. Since the primary focus of 
the material in this book is on the codimension 1 case, we will for the time 
being simply state here without proof the analogous results for general 
analytic varieties: 

1. If F c f / c C " is any analytic variety and pE:V, then in some 
neighborhood of p, V can be uniquely written as the union of analytic 
varieties Vt irreducible at p with Vt ZL Vj. 

2. Any analytic variety can be expressed locally by a projection map as 
a finite-sheeted cover of a polydisc A branched over an analytic hyper-
surface of A. 

3. If F c C " does not contain the line z, = ••• = z„_, = 0, then the 
image of a neighborhood of 0 in V under the projection map m:{z,,...,z„) 
—>(z,,..., z„_,) is an analytic sub variety in a neighborhood of 0 E C - 1 . 

The difficulties in proving these results are more technical than concept-
ual. For example, to prove assertion 3, note that if V is given near O E C " 
by functions/,,...,.4, then w(K) is defined in a neighborhood of O E C " ~ ' 
by the resultants of all pairs of relatively prime linear combinations of the 
fi. The problem then is to show that the zero locus of an arbitrary 
collection of holomorphic functions in a polydisc is in fact given by a finite 
number of holomorphic functions in a slightly smaller polydisc. Granted 
assertions 3 and 1, 2 is not hard to prove by a sequence of projections. 

All of these facts will follow from the proper mapping theorem, which 
we shall state in the next section and prove in Chapter 3. 

Finally, several more foundational results in several complex variables 
will be proved by the method of residues in Chapter 5. 

2. COMPLEX MANIFOLDS 

Complex Manifolds 

DEFINITION. A complex manifold M is a differentiable manifold admitting 
an open cover { Ua] and coordinate maps ya : Ua^>C" such that <pa °<pp] is 
holomorphic on <Pp(UaC\ f ^ c C " for all a,ft. 

A function on an open set UcM is holomorphic if, for all a,/<p„_1 is 
holomorphic on <pa(Un ! / J c C " . Likewise, a collection z = (z,,... ,zn) of 
functions on U c M is said to be a holomorphic coordinate system if <pa ° z ~' 
and z°y~x are holomorphic on z(U n Ua) and q>a(Un Ua), respectively, 
for each «; a map/:A/—>7V of complex manifolds is holomorphic if it is 
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given in terms of local holomorphic coordinates on N by holomorphic 
functions. 

Examples 

1. A one-dimensional complex manifold is called a Riemann surface. 

2. Let P" denote the set of lines through the origin in C" + l . A line 
/ c C + l is determined by any Z ^ O E / , so we can write 

{ [ Z ] * 0 E C + '} 
[z]~[xz] ■ 

On the subset Ui = {[Z]:Zi^0] c P " of lines not contained in the hyper-
plane (Z,=0), there is a bijective map <p, to C" given by 

( z z z \ 
~Zi'""~Zi'""~Zl\ 

On (zJ^0) = <pi(UJn UJcC, 

*•»"<' <->-(v"4-i t) 
is clearly holomorphic; thus P" has the structure of a complex manifold, 
called complex projective space. The "coordinates" Z = [Z0,...,Z„] are 
called homogeneous coordinates on P"; the coordinates given by the maps (p, 
are called Euclidean coordinates. P" is compact, since we have a continuous 
surjective map from the unit sphere in C"+ 1 to P". Note that P1 is just the 
Riemann sphere C u {oo}. 

Any inclusion C*+ l - » C + I induces an inclusion P*-»P"; the image of 
such a map is called a linear subspace of P". The image of a hyperplane in 
C"+ l is again called a hyperplane, the image of a 2-plane C 2 c C " + 1 is a 
line, and in general the image of a C * + l c C " + 1 is called a A>plane. We 
may speak of linear relations among points in P" in these terms: for 
example, the span of a collection {/»,} of points in P" is taken to be the 
image in P" of the subspace in C" + l spanned by the lines 7r~ '(/>,); k points 
are said to be linearly independent if their corresponding lines in C + I are, 
that is, if their span in P" is a (k - l)-plane. 

Note that the set of hyperplanes in P" corresponds to the set C + ' * — {0} 
of nonzero linear functional on C n + 1 modulo scalar multiplication; it is 
thus itself a projective space, called the dual projective space and denoted 
P"'. 

It is sometimes convenient to picture P" as the compactification of C" 
obtained by adding on the hyperplane H at infinity. In coordinates the 
inclusion C - » P " is (zi , . . . , r n )-»[l ,z„. . . ,z ]; H has equation (Z 0 =0) , and 
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the identification / / s P " ' comes by considering the hyperplane at infin-
ity as the directions in which we can go to infinity in C . 

3. Let A = Z* c C " be a discrete lattice. Then the quotient group C"/A 
has the structure of a complex manifold induced by the projection map 
7r:C—>C/A. It is compact if and only if k = 2n; in this case C / A is 
called a complex torus. 

In general, if ir:M^>N is a topological covering space and N is a. 
complex manifold, then IT gives M the structure of a complex manifold as 
well; if M is a complex manifold and the deck transformations of M are 
holomorphic, then N inherits the structure of a complex manifold from M. 

Another example of this construction is the Hopf surface, defined to be 
the quotient of C 2 -{0} by the group of automorphisms generated by 
ZH>2Z. The Hopf surface is the simplest example of a compact complex 
manifold that cannot be imbedded in projective space of any dimension. 

Let M be a complex manifold, pGM any point, and z = (z„... ,z„) a 
holomorphic coordinate system around p. There are three different notions 
of a tangent space to M at p, which we now describe: 

1. TRp(M) is the usual real tangent space to M aXp, where we consider 
M as a real manifold of dimension 2«. TRp(M) can be realized as the 
space of R-linear derivations on the ring of real-valued C °° functions in a 
neighborhood of/?; if we write z, = x, + /y„ 

^W-"{£■£} • 
2. TCp(M)= Tnp(M)®RC is called the complexified tangent space to 

M at p. It can be realized as the space of C-linear derivations in the ring of 
complex-valued C°° functions on M around p. We can write 

where, as before, 

3z,. 2\9*,. ay,./' 8z" 2 \ 3x,. ty)' 

3. Tp(M) = C{d/dzi] c TCp(M) is called the holomorphic tangent space 
to M at p. It can be realized as the subspace of TCp(M) consisting of 
derivations that vanish on antiholomorphic functions (i.e., / such that / is 
holomorphic), and so is independent of the holomorphic coordinate system 
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(z,,...,z„) chosen. The subspace Tp(M) = C{d/dzi) is called the antiholo-
morphic tangent space to M at/>; clearly 

TCJM) = T;(M)®T;(M). 

Observe that for M,N complex manifolds any C°° map f:M—>N in-
duces a linear map 

/ . : TR.p{M)-*T^m{N) 

and hence a map 
/*: TCJM)^TC,AP)(N), 

ice a map from 7 
;/ and only if 

/»(r;(M))cr;(p)(7v) 

but does not in general induce a map from Tp(M) to T^p)(N). In fact, a 
map f: M ^ N is holomorphic if and only if 

for a l l / ) 6M. 
Note also that since TCp(M) is given naturally as the real vector space 

TKp(M) tensored with C, the operation of conjugation sending 9/9z, to 
9/9z; is well-defined and 

r /(M)= T;(M). 

It follows that the projection 

is an R-linear isomorphism. This last feature allows us to "do geometry" 
purely in the holomorphic tangent space. For example, let z(t) (0< f < 1) 
be a smooth arc in the complex z-plane. Then z(t) = x(t) + V — 1 y(t), and 
the tangent to the arc may be taken either as 

or 

z'(t)4z ™ HC), 9z 
and these two correspond under the projection T^C)-* 7"(C). 

Now let M,N be complex manifolds, z = (z,,...,z„) be holomorphic 
coordinates centered at pGM, w = (wl,...,wm) holomorphic coordinates 
centered at qGN and f:M-*N a holomorphic map with f{p) = q. Corre-
sponding to the various tangent spaces to M and N at p and q, we have 
different notions of the Jacobian of/, as follows: 

1. If we write z, = x, + V— 1 yt and wa = ua + V— 1 va, then in terms of 
the bases {9/9x,,9/9>>,.} and {9/9ua,9/9t;a} for TUp{M) and TRq(N), the 
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linear m a p / , is given by the 2mX2n matrix 

, ( / ) 

In terms of the bases {9/9z,, 9/9z,} and {9/9wa,9/9wa} for TCp(M) and 
Tc,<,(X)>f* is given by 

dua 

dxj 

9o. 
dXj 

3M0 

ty 
dva 

-

where 
Uf) = o 

9z, 

HI) 

Note in particular that rank ^ , ( / ) = 2-rank f(f) and that if m = n, then 

de t£ R ( / ) = d e t £ ( / ) - d e t K / ) 

= |de t£( / ) | 2 > 0, 
i.e., holomorphic maps are orientation preserving. We take the natural 
orientation on C" to be given by the 2w-form 

m (dz}Adzy) A(dz2Adz2) A- ■ • A(dznAdz„) 

= dxx A dyx A ■ Adx„Ady„; 

it is clear that if q>a : [/„—»C, (pp: Up^>C are holomorphic coordinate maps 
on the complex manifold M, the pullbacks via <p„ and q>p of the natural 
orientation on C" agree on Ua n Up. Thus any complex manifold has a 
natural orientation which is preserved under holomorphic maps. 

Submanifolds and Subvarieties 

Now that we have established the relations among the various Jacobians of 
a holomorphic map, it is not hard to prove the 

Inverse Function Theorem. Let U,V be open sets in Cn with OEU and 
f :U-»V a holomorphic map with ^(f) = (9fj/3Zj) nonsingular at 0. Then f is 
one-to-one in a neighborhood of 0, and f _ ' is holomorphic at f(0). 

Proof. First, since det | J H ( / ) | = |det(^(/)) |27 t0 at 0, by the ordinary in-
verse function theorem/ has a C * inverse/""' near 0. Now we have 

f-\f(z)) = z 
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so 

o = ^(/-'(/(*))) 

4 * dzk 9z; 4* dzk dz, 

-2%-& ™ 
r - l 

. 3** I 9z; , 
Since (94/9z,) is nonsingular, this implies 9ĵ ~ 1/9zi = 0 for ally,k, s o / - ' is 
holomorphic. Q.E.D. 

Similarly, we have the 
Implicit Function Theorem. Given f,,..., fk G 0n with 

det(|f(0)) *0, 
\dzJ )i<ij<k 

there exist functions w,,..., wk G 6n _ k such that in a neighborhood of 0 in C", 
/,(z) = • • • = fk(z) = 0<=»z,. = Wi(zk+l,...,z„), 1 < i < k. 

Proof. Again, by the C°° implicit function theorem we can find C°° 
functions wl,...,wk with the required property; to see that they are holo-
morphic we write, for z = (zA + I,...,z„), k + l <a<n, 

o - jfUM'U)) 

= > - ^ = 0 for all a, I. Q.E.D. 
9z„ 

One special feature of the holomorphic case is the following: 

Proposition. Iff: U—»V is a one-to-one holomorphic map of open sets in Cn 

then 1^(01^0, i.e., f"1 is holomorphic. 

Proof. We prove this by induction on n; the case n = l is clear. Let 
z = (z,,...,z„) and w = (wv...,wn) be coordinates on U and V, respectively, 
and suppose $(f) has rank k at 0G U; we may assume then mat the matrix 
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((9//3z,)(0))o<;,,<* i s nonsingular. Set 
z! = / (z) , \ < i<k, 
z'a

 = za' k + I < a < n; 

by the inverse function theorem, z' = (z\,...,z'„) is a holomorphic coordi-
nate system for U near 0. But now / maps the locus {z\ = • • • = z'k — 0) 
one-to-one onto the locus (w, = • • - = wk = 0) and the Jacobian (3/„/3^) of 
/|(Z',= ...=2'=o) is singular at 0; by the induction hypothesis, either k=0 or 
&: = «. We see then that the Jacobian matrix of / vanishes identically 
wherever its determinant is zero, i.e., that / maps every connected compo-
nent of the locus |$-(/)| = 0 to a single point in V. Since/ is one-to-one and 
the zero locus of the holomorphic function \f(f)\ is positive-dimensional if 
nonempty, it follows that | % (f)\ ¥= 0. Q.E.D. 

Note that this proposition is in contrast to the real case, where the map 
ft-*/3 on U is one-to-one but does not have a C°° inverse. 

Now we can make the 

DEFINITION. A complex submanifold S of a complex manifold M is a 
subset ScM given locally either as the zeros of a collection /,,...,fk of 
holomorphic functions with rank $-(/) = k, or as the image of an open set 
U in C~k under a m a p / : U-*M with rank f(f) = n — k. 

The implicit function theorem assures us that the two alternate condi-
tions of the definition are in fact equivalent, and that the submanifold 5 
has naturally the structure of a complex manifold of dimension n — k. 

DEFINITION. An analytic subvariety V of a complex manifold M is a 
subset given locally as the zeros of a finite collection of holomorphic 
functions. A point p £ V is called a smooth point of V if V is a submanifold 
of M near p, that is, if V is given in some neighborhood of p by 
holomorphic functions/,,...,/^ with rank ^ ( / ) = &; the locus of smooth 
points of V is denoted V*. A point pG V— V* is called a singular point of 
V; the singular locus V- V* of V is denoted Vs. V is called smooth or 
nonsingular if V= V*, i.e., if V is a submanifold of M. 

In particular, if p is a point of an analytic hypersurface V C.M given in 
terms of local coordinates z by the function / , we define the multiplicity 
m\x\tp{V) to be the order of vanishing of/at/>, that is, the greatest integer 
m such that all partial derivatives 

dkf ^ J-^—(p) = 0, k<m-\. 

We should mention here a piece of terminology that is pervasive in 
algebraic geometry: the word generic. When we are dealing with a family 
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of objects parametrized locally by a complex manifold or an analytic 
subvariety of a complex manifold, the statement that "a (or the) generic 
member of the family has a certain property" means exactly that "the set 
of objects in the family that do not have that property is contained in a 
subvariety of strictly smaller dimension". 

In general, it will be clear how the objects in our family are to be 
parametrized. One exception will be a reference to "the generic A>plane in 
P"": until the section on Grassmannians, we have—at least officially—no 
way of parametrizing linear subspaces of projective space. The fastidious 
reader may substitute "the linear span of the generic (k+ l)-tuple of points 
in P"." 

A basic fact about analytic subvarieties is the 

Proposition. V, is contained in an analytic subvariety of M not equal to V. 

Proof. For p G V let k be the largest integer such that there exist k 
functions/],...,fk in a neighborhood U of p vanishing on F a n d such that 
$-(/) has a kxk minor not everywhere singular on V; we may assume that 
l(3///fc,-)j </,/<*! ^ 0 on V. Let U'cUbe the locus of | (3 / - / t e y ) l o ; / < * |*0 
and V the locus/, = • • • =fk =0 . Then V'= Vf) U' is a complex submani-
fold of U', and for any holomorphic function / vanishing on V the 
differential df=0 on V, i .e. , / is constant on V. It follows that for q& V 
near p, V= V is a manifold in a neighborhood of q and so Vsc 
(l0///fc,)i<,./<*l = O). Q.E.D. 

It is in fact the case that Vs is an analytic subvariety of M—if we choose 
local defining functions/,,...,// for V carefully, Vs will be the common zero 
locus of the determinants of the kxk minors of $-(/). For our purposes, 
however, we simply need to know that the singular locus of an analytic 
variety is comparatively small, and so we will not prove this stronger 
assertion. 

We state one more result on analytic varieties: 

Proposition. An analytic variety V is irreducible if and only if V* is 
connected. 

Proof. One direction is clear: if V=VluV2
 w ^ ^ i » ^ 5 ^ analytic 

varieties, then ( Vx n V2) C Vs, so V* is disconnected. 
The converse is harder to prove in general; since we will use it only for 

analytic hypersurfaces, we will prove it in this case. Suppose V* is 
disconnected, and let {Vt} denote the connected components of V*; we 
want to show that Vt is an analytic variety. Let p e Vt be any point, / a 
defining function for V nearp, and z = (zv...,zn) local coordinates around 
p; we may assume t h a t / is a Weierstrass polynomial of degree k in zn. 
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Write 

g-a-f+p-jL, g^oe©„_i; 

then for A some poly disc around p and A' a poly disc in C ~ ' , the 
projection map w: (z,,...,z„)i-*(z,,...,z„_,) expresses ^ n ( A - ( g = 0 ) ) as a 
covering space of A ' - ( g = 0 ) . Let {wv{z')} denote the z„-coordinates of 
the points in IT~\Z') for z ' = ( z , , . . . ,z„_,) E A'— (g = 0) and let 
0](z'),...,aA(z') denote the elementary symmetric functions of the wp. The 
functions o, are well-defined and bounded on A' — (g = 0), and so extend to 
A'; the function 

y;(z) = z„* + a 1 ( z ' ) z r i + - - - + o , ( z ' ) 

is thus holomorphic in a neighborhood of p and vanishes exactly on Vt. 
Q.E.D. 

We take the dimension of an irreducible analytic variety V to be the 
dimension of the complex manifold V*; we say that a general analytic 
variety is of dimension k if all of its irreducible components are. 

A note: if V dM is an analytic subvariety of a complex manifold M, 
then we may define the tangent cone Tp( V) c Tp\M) to V at any point 
pGV as follows: if V=(f=0) is an analytic hypersurface, and in terms of 
holomorphic coordinates z,,...,z„ on M centered aroundp we write 

/ (z„ . . . ,z„) = / m ( z „ . . . , z „ ) + / m + l ( z „ . . . , z „ ) + ---
with^(z, , . . . ,zn) a homogeneous polynomial of degree k in zx,...,zn, then 
the tangent cone to V at p is taken to be the subvariety of Tp(M) = 
C{8/3z,} defined by 

| 2«,-g]r : / m ( « l > " - . « n ) = 0 | -

In general, then, the tangent cone to an analytic variety V c M at p £ V is 
taken to be the intersection of the tangent cones at/) to all local analytic 
hypersurfaces in M containing V. In case V is smooth at p, of course, this 
is just the tangent space to V at p. 

More geometrically, the tangent cone Tp{ V) c Tp(M) may be realized as 
the union of the tangent lines at p to all analytic arcs y: A-» V c M. 

The multiplicity of a subvariety V of dimension k in M at a point /?, 
denoted multp (V), is taken to be the number of sheets in the projection, in 
a small coordinate polydisc on M around p, of V onto a generic A:-dimen-
sional polydisc; note that p is a smooth point of V if and only if 
mult/J(F)= 1. In general, if WcM is an irreducible subvariety, we define 
the multiplicity m\x\iw{V) of V along W to be simply the multiplicity of V 
at a generic point of W. 
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De Rham and Dolbeault Cohomology 

Let M be a differentiable manifold. Let AP(M,U) denote the space of 
differential forms of degree p on M, and ZP(M, R) the subspace of closed 
p-fovms. Since </2 = 0, d(Ap'](M,U))cZp(M,U); the quotient groups 

Hp
DR(M,U)= ZP{MM) 
DRV dA»-\M,U) 

of closed forms modulo exact forms are called the de Rham cohomology 
groups of M. 

In the same way, we can let AP(M) and ZP(M) denote the spaces of 
complex-valued /j-forms and closed complex-valued /?-forms on M, respec-
tively, and let 

DR dA»~\M) 

be the corresponding quotient; clearly 

Hp
DR(M) = Hp

DR(M,®)®C. 

Now let M be a complex manifold. By linear algebra, the decomposition 

T*JM)= T?(M)®Tf(M) 

of the cotangent space to M at each point z G M gives a decomposition 

A"Tt2(M) = p@=n(A
pT?(M)®AqTf(M)). 

Correspondingly, we can write 

A"(M)= © Ap-"(M), 
p + q = n 

where 
A"-i(M) = [<pEA"(M): <p(z)GApT?(M)®A',T?'(M)foral\zeM}. 

A form <pGAp,'(Af) is said to be of type (p,q). By way of notation, we 
denote by ■n(p-q) the projection maps 

A*(M)^AP"(M), 

so that for <p£A*(M), 

we usually write cp(p-q) for w(p-',)(p. 
If <p<EAp'q(M), then for each z G M , 

<Ap(z) E (ApT*'(M)®A"Tf(M)) A 7 £ Z ( M ) , 
i.e., 

d<pGAp + [-q(M)®Ap'''+\M). 
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We define the operators 

d:Ap-q(M)^Ap'q+\M) 

9:Ap-q(M)^>Ap+l-"(M) 

by 

3 = „<*»+')<> </, 3=we+>.»)0 </ ; 

accordingly, we have 

</ = 3+3 . 
In terms of local coordinates z = (z,, . . . ,zm), a form <jDE/f"(A/) is of type 

(p,q) if we can write 

q>(z) = 2 <Pu(z)dzi/\dzj, 
*i=p 

where for each multiindex /={ i„ . . . ,L ,} , 
rfzy = dzti/\--- /\dzip. 

The operators 3 and 3 are then given by 

M z ) = 2 -^<Pij{z)dzj/\dzI/\dzj, 

M * ) * 5 2 -^-q>u(z)dziAdzrAdzJ. 

In particular, we say that a form <p of type (#,0) is holomorphic if 3<p = 0; 
clearly this is the case if and only if 

<p(z) = ^ <Pi(z)dz, 
*l=q 

with (p7(z) holomorphic. 
Note that since the decomposition T%Z=T^'@T*" is preserved under 

holomorphic maps, so is the decomposition A* = ®Ap,q. F o r / : M-*N a 
holomorphic map of complex manifolds, 

f*(Apq(N)) cAp'"(M) 

and 

3 o / * = / * o 3 on A"-*(N). 

Let ZP,q(M) denote the space of 3-closed forms of type (p,q). Since 
3 2/3z,3z} = d2/dzjdz, 

3 2 = 0 
on Ap'q(M), and we have 

d(Ap'q(M))cZP-q+l(M); 
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accordingly, we define the Dolbeault cohomology groups to be 
Z™(M) 

d{A"'q-\M)) 

Note in particular that if f-.M-^-N is a holomorphic map of complex 
manifolds, / induces a map 

f*:H™(N)^>H™(M). 

The ordinary Poincare lemma that every closed form on IR" is exact 
assures us that the de Rham groups are locally trivial. Analogously, a 
fundamental fact about the Dolbeault groups is the 

9-Poincare Lemma. For A=A(r) a poly cylinder in Cn, 
#£*(A) = 0, q>\. 

Proof. First note that if 

<P = 2 <Pu- dzi A dzj 
*i=P 

is a 9-closed form, then the forms 

<P/= 2 VvdZjGA0-^) 
*J-i 

are again closed, and that if 

<Pi = <h/ 
then 

<p= ±3(2<fe/Ai/J; 

thus it is sufficient to prove that the groups / /" ' (A) vanish. 
We first show that if <p is a 9-closed (0,<y)-form on A = A(r), then for any 

s<r, we can find t//G/l0''7~1(A(.s)) with d\p = <p in A(s). To see this, write 

<p = "Z<p,dz,; 

we claim that if <JP=0 modulo (dzx,...,dzk)—that is, if <p,=0 for I el 
{1,...,A:}—then we can find r}EA°-"~l(A(s)) such that 

<p — 9TJ = 0 modulo (dzu...,dzk_}); 

this will clearly be sufficient. So assume (p = 0 modulo (dzv...,dzk) and set 

<Pi = 2 <Prdz,-{k), 

<P2 = 2 <P/ ■ <£,, 
/: * « / 
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so that <p = <pl/\dzk + <p2, with <p2 = 0 modulo (dzl,...,dzk_l). If l>k, 9<p2 

contains no terms with a factor dzk/\dz,; since d<p = d<pl + 9<p2=0, it follows 
that 

for / > k and / such that k e / . 
Now set 

where 
1 

%0) = 
2 T T V - 1 

By the proposition on p. 5, we have 

1: k<EI 

■ f <p,{zx,...,wk,.. 
J\»k\<Sk 

dwk/\dwk 

- — - T J / Z ) = 9/(2), 
dz^ 

and for / > A:, 

3 , . I /• 9 , , dwkAdwk 

°z/ I T T V ^ T •>*!<** oz, wk zk 

= 0 
Thus 

<p — 9T) = 0 modulo (dz~\,...,dzk_^) 

in A(i) as was desired. 
To prove the full 9-Poincare lemma let {r,} be a monotone increasing 

sequence tending to r. By the first step, we can find ^ G ^ ^ ' ^ ^ A ) such 
that % = <p in A(rk)— take ^G^0-«- | (A(r f c + 1 ) ) with 9>* = <p, p* a C°° 
bump function s i on A(rA.) and having compact support in A(rk+l), and 
set *Pk = Pk'4'k—tne problem is to show that we can choose {\pk} so that 
they converge suitably on compact sets. We do this by induction on q. 
Suppose we have \pk as above. Take aGA°'q~\A) with 9a = <p in A(rk+]); 
then 

9O,-a) = 0 inAfo), 
and, if q>2, then by the induction hypothesis we can find fi EA0i<l~2(&) 
with 

d(3=xpk-a inA(rk_]). 

Set 
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then d\pk+, = 3a = <p in A(rk+,) and 

^ + i = ^ inA(rk_l). 

Thus the sequence {\pk} chosen in this way converges uniformly on 
compact sets. 

It remains to consider the case q = 1. Again, say i|/s£C°°(A) with d\pk = <p 
in A(rk), a£C°°(A) with 3a = (p in A(rk + 1); then i / ^ - a is a holomorphic 
function in A(rk) and hence has a power series expansion around the origin 
in C . Truncate this series expansion to obtain a polynomial ji with 

sup \^k-a)-p\<Lf 
*('*-.) I 

and set 

&+I = « + /?• 

Then 3»^ + , = 3a = <p in A(rk+l), ^k+i^^k >s holomorphic in A(r^), and 

sup l ^ t + i - ^ l <-]f, 
A(r4_,) 2 

so i// = linn//t exists, and 3^ = (p. Q.E.D. 

Note that the proof works for r= oo. 
We leave it as an exercise for the reader to prove, using a similar 

argument with annuli and Laurent expansions, that 

/ / ^ (A**XA' ) = 0 for q > 1, 

where A* is the punctured disc A —{0}. 

Calculus on Complex Manifolds 

Let M be a complex manifold of dimension n. A hermitian metric on M is 
given by a positive definite hermitian inner product 

( , )z: T;{M)®T'Z(M)^C 

on the holomorphic tangent space at z for each z G M, depending smoothly 
on z—that is, such that for local coordinates z on M the functions 

are C°°. Writing ( , \ in terms of the basis {dz^dzj} for 

( r ; ( M ) ® 7 ^ ( A / ) ) * = T?{M)®Tf(M), 

the hermitian metric is given by 

ds2 = J1hij(z)dzi®dzJ. 
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A coframe for the hermitian metric is an «-tuple of forms (<p,,...,<pn) of 
type (1,0) such that 

ds2 = 2 <P, ® <P„ 

i.e., such that, in terms of the inner product induced on T* (A/) by ( , )z 

on TZ'(M), (qp^z),..., (p„(z)) is an orthonormal basis for T*(M). From this 
description it is clear that coframes always exist locally: we can construct 
one by applying the Gram-Schmidt process to the basis (dzx,...,dzn) for 
T* (M) at each z. 

The real and imaginary parts of a hermitian inner product on a complex 
vector space give an ordinary inner product and an alternating quadratic 
form, respectively, on the underlying real vector space. Since we have a 
natural R-linear isomorphism 

we see that for a hermitian metric ds2 on M, 

Reds2: TRJM)®TRIZ(M)^U 

is a Riemannian metric on M, called the induced Riemannian metric of the 
hermitian metric. When we speak of distance, area, or volume on a 
complex manifold with hermitian metric, we always refer to the induced 
Riemannian metric. 

We also see that since the quadratic form 

\mds2: TR,p(M)®TR,p(M)^U 

is alternating, it represents a real differential form of degree 2; w = 
— j Im ds2 is called the associated (1, l)-form of the metric. 

Explicitly, if (<?,,...,<p„) is a coframe for ds2, we write 

<p, = a,. + V ^ T /?,., 
where a,,/?, are real differential forms; then 

^ = (2(a, + \AMA))®(2(«,-^=TA)) 

The induced Riemannian metric is given by 

R e * 2 = 2(a,.<g>«,. + A ® # ) , 
and the associated (1, l)-form of the metric is given by 

to = — 5 Im<&2 

= S«,AA 
Y E L v A -

= —5—Z<P,A<p,-
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It follows from this last representation that the metric d!s2 = 2<p,<S><p, may 
be directly recovered from its associated (l,l)-form w = | V - 1 2<p,-A<Pi-
Indeed, any real differential form « of type (1,1) on M gives a hermitian 
form H{ , ) on each tangent space T'Z(M). The form H will be positive 
definite—i.e., will induce a hermitian metric on M—if and only if for 
every z e A/ and holomorphic tangent vector vG TZ\M), 

V1!• <u)(z),vAv) >.0. 
Such a differential form w is called a. positive (l,l)-form; in terms of local 
holomorphic coordinates z = (z, , . . . , z„) on M, a form w is positive if 

w(z) = 2 hijiz)dzi/\dlj 
L ij 

with H{z) = {hij{z)) a positive definite hermitian matrix for each z. 
If S c M is a complex submanifold, then for zES we have a natural 

inclusion 

r;(s)c r;(A/); 
consequently a hermitian metric on M induces the same on S by restric-
tion. More generally, if f:N-*M is any holomorphic map such that 

/♦: T;(N)^T;(Z)(M) 

is injective for all z G N, a metric on Af induces a metric on N by setting 

Note that in this case we can always find, for UcN small, a coframe 
(<p„...,<p„) on / ( ( / ) C M with <p,+ 1, . . . ,<p„EKer/*:r*/ (z )(A/)-*7?'(A0; 
then/*<p,,...,f*<pk form a coframe on U for the induced metric on N. The 
associated (1, l)-form coN on N is thus given by 

V^l k 

"N = — i — 2 f*<PiAf*<Pi 

= /*l^?-i>/A<R 
/=! 

" / * | — 2 ~ 2 <P,A<P,-
■ i 

i.e., the associated (1, l)-form of the induced metric on N is the pullback of 
the associated (1, l)-form of the metric on M. 
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Examples 

1. The hermitian metric on C" given by 
n 

ds2 = 2 dzi ® ^ 
/ = l 

is called the Euclidean or standard metric; the induced Riemannian metric 
is, of course, the standard metric on C = U2n. 

2. If A c C" is a full lattice, then the metric given on the complex torus 
C"/A by 

is again called the Euclidean metric on C"/A. 
3. Let Z0,.. . ,Z„ be coordinates on C + l and denote by w : C " + 1 - { 0 } 

—>P" the standard projection map. Let f / c P " be an open set and Z : I/—> 
C" + ' - {0} a lifting of U, i.e., a holomorphic map with IT°Z = id; consider 
the differential form 

co = ^ - 9 3 log || Z ||2. 
LIT 

If Z': t / -»Cn + l - {0} is another lifting, then 
Z'=f-Z 

with / a nonzero holomorphic function, so that 

2TT 
331og||Z'||2 = 

2TT 
93(log||Z||2 + log/+ log/ ) 

= w + 
1 

2w 
(33 l o g / - 3 9 log/ ) 

Therefore to is independent of the lifting chosen; since liftings always 
exist locally, to is a globally defined differential form in P". Clearly to is of 
type (1,1). To see that to is positive, first note that the unitary group 
U(n + 1) acts transitively on P" and leaves the form w invariant, so that « 
is positive everywhere if it is positive at one point. Now let {w, = Z, /Z 0 } 
be coordinates on the open set Uo=(Z0=£0) in P" and use the lifting 
Z = (l,wl,...,wn) on U0; we have 

1 
331og(l + 2 H>,H>.) 

1 + 2 wiW, 

2 dWiAdw, ( 2 "tdw) A( 2 w,d™) 

1 + 2 ( i+Sw) 2 
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At the point [1,0,...,0], 

w = —z 2 dwi A dwi > 0. 
2.1T 

Thus w defines a hermitian metric on P", called the Fubini-Study metric. 

The Wirtinger Theorem. The interplay between the real and imaginary 
parts of a hermitian metric now gives us the Wirtinger theorem, which 
expresses another fundamental difference between Riemannian and hermi-
tian differential geometry. Let M be a complex manifold, z = (z,,...,z„) 
local coordinates on M, and 

a hermitian metric on M with associated (l,l)-form to. Write <p; = 
a,+ V - 1 /?,; then the associated Riemannian metric on M is 

Re(*2) = 2>,®«, + A®#, 
•J 

and the volume element associated to Re(ds2) is given by 
dn = o ,A /8 ,A" - Aa„AP„-

On the other hand, we have 

« = 2 «< A A-> 
so that the nlh exterior power 

w" = / j!-a,A/8|A'--A«„AA, 
= nldfi. 

Now let S c M be a complex submanifold of dimension d. As we have 
observed, the (1, l)-form associated to the metric induced on S by ds2 is 
just co\s, and applying the above to the induced metric on S, we have the 
Wirtinger Theorem 

vo.(5)=J[/^. 
The fact that the volume of a complex submanifold 5 of the complex 

manifold M is expressed as the integral over 5 of a globally defined 
differential form on M is quite different from the real case. For a C°° arc 

in U2, for example, the element of arc length is given by 

(xVf+yXt)2y/2dt, 
which is not, in general, the pullback of any differential form in IR2. 

To close this section, we discuss integration over analytic subvarieties of 
a complex manifold M. To begin with, we define the integral of a 
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differential form <JD on M over a possibly singular subvariety V to be the 
integral of tp over the smooth locus V* of V. The first thing to prove is the 

Proposition. V* has finite volume in bounded regions. 

Proof Since the question is local and the volume increases by increasing 
the metric, it is sufficient to prove it for K c C " with the Euclidean metric. 
Suppose V is of dimension k and choose coordinates on C" so that, in a 
neighborhood of 0, V meets each of the coordinate (n — &)-planes (z, = z, 
= ■ • • = z, =0) only in discrete points. The (l,l)-form associated to the 
Euclidean metric on C" is 

^dZiAdzi, 2 

and so for c = ( \ ^ = T /2)k(- l ) ^ ' ) / 2 - / c ! 

to* = c- 2 dzjf\dzj. 

Thus it will suffice to prove that 

c J dZj A dz, < oo 

for 1= {l,...,k}, A a small polydisc around the origin. But the projection 
map 

■ 0„---,2„>-Kz„...,Z;t) 

expresses V* as a ^/-sheeted branched cover of A' = w(A) and consequently 

cl dzI/\dzl < del dz,/\dz, < oo. Q.E.D. 

Note again the contrast to the C°° case, where the set of manifold points 
of the zero locus of a smooth function — t.g.,f(y) = (e~y - 1) sin(l /y)— 
need not have locally finite area. 

As a corollary of the proof, we see that for any region U c M with U 
compact and <p£ A *(U), 

< oo. 
'vnu 

An obvious but fundamental observation is that if V* has dimension k, 
Apq{V*) = 0 forp or q>k; consequently for any form <p, 

r<p = /v*-*>. 
J y J y 

We can now prove 



COMPLEX MANIFOLDS 33 

Stokes' Theorem for Analytic Varieties. For M a complex manifold, V c M 
an analytic subvariety of dimension k, and <p a differential form of degree 
2k— 1 with compact support in M, 

f d<p = 0. 
Jy 

Proof. The question is local, i.e., it will be sufficient to show that for 
every pEV, there exists a neighborhood U of p such that for any 
<pEA}k-\U) 

f d<p = 0. 
Jv 

For any pEV, we can find a coordinate system z = (z,,...,z„) and a 
polycylinder A around p such that the projection map IT: (z,,...,z„)—» 
(zi,...,zk) expresses VnA as a branched cover of A' = 7r(A), branched over 
an analytic hypersurface D cA' . Let Tt be the e-neighborhood of D in A' 
and 

Vt = {Vr\b)-ir-\Tt). 

For(pG^c
2*-'(A), 

I dtp = lim I dtp 
-'K e—>0 J y 

= lim I <p 

= lim | <p. 
^ • ' j » - | ( 7 f ) 

Thus to prove the result, we simply have to prove that the volume of 
dir~\Te)-^0 as e—»0. But fe^fFJ is a finite cover of 37^; so we need 
prove only that vol(9T£)-»0 as e—>0. To see this, let D, be the singular 
locus of D, D2 the singular locus of Dt, and so on; let T't be the 
e-neighborhood of D* = D{ — Di+1 in A— Di+l. Then D* is a submanifold 
of real dimension <2A:-2 having finite volume in A — Di+l, and so the 
volume of dT> goes to 0 as e-»0. But 3T e c U(3r/) , and so vol(37;)-^0 as 
e-^0. Q.E.D. 

This result has to do with the fact that singularities of complex-analytic 
subvarieties occur only in real codimension 2. It assures us that integration 
over analytic varieties is much the same as integration over submanifolds; 
perhaps most importantly, it allows us to show (p. 61) that an analytic 
subvariety of a compact complex manifold always defines a homology 
class in //*(A/, R). 
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Finally, we can state the 

Proper Mapping Theorem. / / M,N are complex manifolds, f: M—»N a 
holomorphic map, and V c M an analytic variety such that f | v is proper, then 
f(V) is an analytic subvariety of N. 

The proof will be given in Section 2 of Chapter 3. 

3. SHEAVES AND COHOMOLOGY 

Origins: The Mittag-Leffler Problem 

Let 5 be a Riemann surface, not necessarily compact, p a point of 5 with 
local coordinate z centered at p. A principal part at p is the polar part 

n 

2 akz~k of a Laurent series. If (? is the local ring of holomorphic 

functions around p, 1̂1 the field of meromorphic functions around p, a 
principal part is just an element of the quotient group 9H /(? The 
Mittag-Leffler question is, given a discrete set {pn} of points in S and a 
principal part at pn for each n. does there exist a meromorphic function / 
on S, holomorphic outside {/>„}. whose principal part at each/?„ is the one 
specified? The question is clearly trivial locally, and so the problem is one 
of passage from local to global data. Here are two approaches, both of 
which lead to cohomology theories. 

Cech. Take a covering U—{Ua} of S by open sets such that each Ua 

contains at most one point/?„, and let fa be a meromorphic function on Ua 

solving the problem in Ua. Set 

In UanUpn Uy, we have 

faf,+fftr+fya=0-

Solving the problem globally is equivalent to finding {ga £©(£/„)} such 
that 

/a/s = 8p - 8a in Ua n Up\ 

given such ga, f=fa + ga is a globally defined function satisfying the 
conditions, and conversely. In the Cech theory, 

{{/a/*}: fap+fpy+f1a=0} = Z ' f t / .S ) 
{ {fafi}: fae-gp-g*, some {ga}} = 8C°(U,€■) 
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and the first Cech cohomology group 

ZHU C) 

Bl{u,e) 

is the obstruction to solving the problem in general. 

Dolbeault. As before, take/a to be a local solution in Ua and let pa be a 
bump function, 1 in a neighborhood of pn G Ua and having compact 
support contained in Ua. Then 

<P = S3(P„/a) 
a 

is a 3-closed C°° (0, l)-form on 5 (<p=0 in a neighborhood of p„). If 
<P = 9T) for rfGC°°(S), then the function 

/ = 2 P«/a - ■n 

satisfies the conditions of the problem; thus the obstruction to solving the 
problem is in H°-\S). 

Sheaves 

Given X a topological space, a sheaf <$ on X associates to each open set 
UcX a group ?(U), called the sections of <? over U, and to each pair 
U c V of open sets a map rvu: <5r(f/)-»?F(t/), called the restriction map, 
satisfying 

1. For any triple U <zV dW ol open sets, 
rw,u ~ rv,u'rw,v-

By virtue of this relation, we may write o\v for rv v(o) without loss of 
information. 

2. For any pair of open sets U,V CM and sections aG9( U), T G ? ( F ) 
such that 

a\unY ~ r\uc\v 
there exists a section p G <3( U u f7) with 

Pi t/ = <*. P\v = r-

3. If a E f ( ( / u F ) a n d 
oly = <T|^ = 0 

then CT = 0. 

Notation. The following are the sheaves we will be dealing with most 
often. In every case the restriction maps are the obvious ones, and the 
groups are additive unless otherwise stated. 
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1. On any C°° manifold M, we define sheaves C00, C*, &p, %p, Z, Q, 
U, and C by 

C°°(U)=C°° functions on U 
C*(U) = multiplicative group of nonzero C°° functions on U, 
tFp(t /)=C0° /?-formson U, 
<I"{U) = closed C°°/>-forms on £/, 
1(U), Q(U), U(U), C(U) = locally constant Z-, Q-, R-, or C-valued 
functions on U. 

2. If M is a complex manifold, V c M an analytic subvariety of A/, and 
E-*M a holomorphic vector bundle (defined below), we define the sheaves 
P, 0*, Of, &"•", 2|-«, V . e(£)> and #'•«(£) by 

(?(£/) = holomorphic functions on U, 
(?*(£/) = multiplicative group of nonzero holomorphic functions on U, 
Qp( U) = holomorphic p-loxms on U, 
tiP-"(U)=C°° forms of type (p,q) on U, 
'^■"((/) = 8-closed C00 forms of type (^,^) on U, 
■\y(U) = holomorphic functions on U vanishing on Vn U, 
£(E)(U) = holomorphic sections of E over U, 
(3p-i(E)(U)=Cx £-valued (p,q)-forms over U. 

3. If M is again a complex manifold, a meromorphic function f on an 
open set UcM is given locally as the quotient of two holomorphic 
functions—i.e., for some covering {{/,} of U, f\v =gi/hi, where g,,/i, are 
relatively prime in fi(i/,) and gihJ = gJhl in 0((/ ,n UJ). This definition makes 
implicit use of the proposition on p. 10. A meromorphic function/ is not, 
strictly speaking, a function even if we consider oo a value: at points where 
g,- = /i,- = 0, it is not defined. The sheaf of meromorphic functions on M is 
denoted 91L; the multiplicative sheaf of meromorphic functions not identi-
cally zero is denoted m*. 

A map of sheaves ?F -» # on M is given by a collection of homomor-
phisms {ay: §{U)^>?t{U)} U(zM such that for U dV cM, ay and aK 
commute with the restriction maps. The kernel of the map a: <S—*Q is just 
the sheaf Ker(a) given by Ker(a)(f/) = Ker(a{/: $(U)^6(U)); it is easy 
to check that this assignment does in fact define a sheaf. The cokernel of a 
is harder to define: if we set Coker(a)(U) = 6((/)/ayf(i/), Coker may 
not satisfy the conditions on p. 35. [The basic example of this is the sheaf 
map 

exp: e -► 8* 

on C - { 0 } given by sending /E(9( t / ) to e2"vr* fe&*(U). The section 
zEi°*(C-{0}) is not in the image of (9(C—{0}) under exp, but its restric-
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tion to any contractible open set (7cC-{0} is in the image of ©(£/)•] 
Instead, we take a section of the cokernel sheaf Coker(a) over U to be 
given by an open cover { Ua} of U together with sections aa £ § (Ua) such 
that for all a,/3, 

aa\u.nu„ - Ofhu.nv,, ^ ^ n ^ f ^ n Up)); 

we identify two such collections {(Ua,oa)} and {(U'a,o^)} if for all pGU 
and Ua, Up3p, there exists V withpEVc(Uar\ Up) such that a'J v — a'p\ v 

6 a ^ ( K ) ) . 
We say that a sequence of sheaf maps 

is exact if S =Ker(/?) and § =Coker(a); in this case we also say that & is 
a subsheaj of <? and § the quotient sheaf of 5" by S, written ?F/S. More 
generally, we say a sequence 

' ' ' ~~* ^n * • ' n + l * *'/i + 2 — * ' ' ' 

is exact if an+, ° a„ = 0 and 
0 - Ker(«„) - f„ -* Ker(a„ +,) -> 0 

is exact for each n. Note that by our definition of Coker, this does not 
imply that 

0—^&(U)—>9(U)-^S(U)—^0 

is exact for all U; it does imply that this sequence is exact at the first two 
stages for all U, and that for any section a £ % (U) and any point p £ U 
there exists a neighborhood V of p in U such that a\ v is in the image of fiv. 

A note: if M c TV is asubspace, "f a sheaf on M, we can "extend ?F fey 
zero" to obtain a sheaf 5" on TV, setting 

f ( ( / ) = ? ( [ / n M ) 
and letting the restriction maps be the obvious ones. Thus we may consider 
<? as a sheaf on either M or TV. 

1. On any complex manifold, the sequence 

o-»z4Ge^'e*-^o 
is exact, where /' is the obvious inclusion and exp the exponential map 
exp(/) = e2ir ~'f. This fundamental sequence is called the exponential 
sheaf sequence. 
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2. If M is a complex manifold, VcM a. complex submanifold, the 
sheaf 6y may, by extension by zero, be considered a sheaf on M. The 
sequence 

where / is inclusion and r restriction, is then exact. 
3. By the ordinary Poincare lemma, the sequence 

is exact on any real manifold. 
4. By the 8-Poincare lemma, the sequence 

0 -» Q,P -» &'° \($P- ' X<$?'2 -> • • • 

is exact on any complex manifold. 
5. If M is a Riemann surface and we let <3''3) be the quotient sheaf of 

the sheaf 9H by the subsheaf 0 -4 9H, then for U c M open, 

{pn} CU discrete, «<")-«^» = [%%£ 
i.e., giving a section of <3"3' over U is the same as specifying the data of a 
Mittag-Leffler problem for U. 

Cohomology of Sheaves 

Let f be a sheaf on M, and U={Ua} a locally finite open cover. We 
define 

c°((/,<j) = n m ) , 
a 

cl(u,$)= II 9(uanup), 

c»(u,<W) = n 5(( /„ 0 n-ni /J 

An element o = {o,G<»(r\ Uik)}*t=p + ] of CP(U,^) is called a p-cochain of 
*?F. We define a coboundary operator 

by the formula 

W , ^ « ' 2 ( - i K ,, ,,+l 
7 = 0 c/:„n---n(/ 
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In particular, if a = {%} £ C°(U,f), 

and if a = {ouv] EC\U,%), 

(8a)u, v, w ~ °uv + avw ~ auw 
(omitting the restriction). 

A /»-cochain o E C ( l / , f ) is called a cocycle if 8a = 0. Note that any 
cocycle a must satisfy the skew-symmetry condition 

a is called a coboundary if a = or for some r E Cp~l(U, <3r). It is easy to see 
that S2 = 0—i.e., a coboundary is a cocycle—and we set 

Zp(U,<5) = Ker8 c C"(U,<$) 
and ,_ z>(u,S) 

Now, given two coverings U= {Ua}afEI and U' = { Up}pBr of M, we say 
that U' is a refinement of £/ if for every ft El' there exists a £ / such that 
UpCUa; we write £/'< (/. If U' < U, we can choose a map <p: I'-+I such 
that t/^ c Uyp for all /?; then we have a map 

given by 

(Pv°)/V • • pp = "v/So-v l̂ y^n ••• n [/„, 
Evidently 8° pv = pv°8, and so p,,, induces a homomorphism 

p: Hp{U,<3)^Hp{U',<»), 

which is independent of the choice of <p. (The reader may wish to check 
that the chain maps pv and p^ associated to two inclusion associations <p 
and \p are chain homotopic and thus induce the same map on cohomology.) 
We define the p'h Cech cohomology group of *$ on M to be the direct limit 
of the HP(U, ?F)'s as U becomes finer and finer: 

litn 
/ F ( M , f ) = —> HP(U,<5). 

Where there is a possibility of confusion, we will denote Cech cohomology 
groups by H. Clearly, for any covering U 

H\M,<5) = H°(U,$) = $(M). 

Note that if MCN is a closed subspace, f any sheaf on M, then 
extending <$ by zero to a sheaf on N, we have 

H*{M, <$) = H*(N, <$). 
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The definition of H*(M, *$) as a direct limit is, in practice, more or less 
impossible to work with. What is needed is a simple sufficient condition on 
a cover U for 

//*((/,<?) = / /*(A/ , f ) , 
and this is provided by the 

Leray Theorem. If the covering U is acyclic for the sheaf ^ in the sense 
that 

H"(Uiin---nUip,®) = 0, q>0, a « y / , • • / , , 

then H * ( U , f ) s H * ( M , f ) . 

We will prove the Leray theorem in those cases where it will be used. 
The most basic property of sheaf cohomology is: Given an exact 

sequence 

of sheaves on M, we have maps 

CP(U,&)^CP(U,<3), C ( ( / , f ) 4 . C ( C / , § ) 

that commute with 8 and hence induce maps 
* B* 

HP(M,&) —> H"(M,<»), H"(M,^) —> HP(M,6). 

We next define the coboundary map 8*: HP{M,Q)-*HP+\M,&):giv&n 
aG CP(U,%) with 8a = 0, we can always pass to a refinement U' of U and 
find TG C"(U', <3) such that fi{r) = pa. Then (Jfrr = 8f3r = Spa = 0, so by 
passing to a further refinement U" we can find (ie.Cp+i(U",&) such that 
an = 8r; aS/x = 8aju = 82T = 0 and since a is injective this means 8/x = 0. Thus 
HG Zp+ \U",S) and we take 8*a = M GHp+ ' (M,S) . 

Basic Fact. 77je sequence 

0-*H°(M, & ) -» //°(A/, 5 ) -> H°(M, §) 

-> / / '(M, S ) -» / / '(M, <») -+ H \M, % ) -► • • • 

->Hp(M, & ) -». 7/"(M, S7) -» / / ' ( M , § ) - » • • • 

/s exact. 

For most exact sequences 0—>S —>?F—>§ -»0 that actually arise naturally 
—and certainly for all sheaves with which we shall deal in this book—it is 
the case that there exist arbitrarily fine coverings U such that for every 
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open set U= Uj r\ ■■■ n Uj the sequence 
0 - » . S ( l / ) - » S ' ( t / ) - » 9 ( t / ) - » 0 

is exact. Thus, we can find arbitrarily fine coverings U of M for which the 
cochain groups form an exact sequence 

0-> CP(U,S) -» C(U,$) -* C(U,§)->0. 
In this case, our basic fact is easy to verify: for example, to see that 

P* «• 
H"{U,^) —» HP(U,§) —> Hp+i(U,&) 

is exact, let a G C ( C / , S ) with 5a = 0 and S*a=0 in HP+\U,&). Then 
there exists T G C(J7 , f ) such that )3T = 0 and ju,eC/,+ 1(f/,S") such that 
aft = 5r; by definition /i = 5*a in HP + \U,&), so (i = Si> for some >>£ 
C ( t / , S ) . Then T - C W is a cocycle in C ( f / , f ) with P(T-cw) = pr = o, 
showing o&f3*(Hp(U,<3:)). Conversely, it is clear that 8*/?*=0. The re-
maining stages are similar but easier. 

The most common application of the exact cohomology sequence 
associated to a sheaf sequence 

is to answer the question: given a global section a of §, when is a the 
image under /? of a global section of W! The answer, according to the exact 
cohomology sequence, is that this is the case exactly when 5*o = 0 in 
H\M,&). 

For example, we consider again the exact sequence 

o -* 0 4 . 9it -d <3*3> -»o 
on a Riemann surface M. The data of the Mittag-Leffler problem consist 
of a global section g&tyty(M) = H\M,<$<$); the question is whether 
g = fi*f for some global meromorphic function/. If {fv} are the local 
solutions of the problem, we have seen that 

(8*g)u,v = fy-fu 
and that g = a*/if and only if S*g = 0 in H\M,6). 

There are, roughly speaking, three kinds of sheaves we will encounter: 

1. Holomorphic sheaves—such as (9, $v, 6(E), and Qp—whose sec-
tions are given locally by n-tuples of holomorphic functions. These contain 
for us the most information and are the principal objects of interest. 

2. C°° sheaves, such as &p,g, whose local sections can be expressed as 
n-tuples of C °° functions. These are generally used in an auxiliary manner. 

3. Constant sheaves, such as Z, R, C. These, as we will see, contain 
topological information about the underlying manifold. 
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There are a couple of observations to be made about the latter two 
classes of sheaves: 

1. Hp(M,&rs) = 0iorp>0. 

Proof. Given any locally finite cover U={Ua}a£/ of M, we can find a 
partition of unity subordinate to U, i.e., C00 functions pa on M such that 
2pa = l and support(pa)c Ua. Now given oE.Zp(U,&r's), we define T E 
C'\U,&r-s) by setting 

Ta„- • -^ , = ^^P/SCT/?,a0,. . . ,a,-,> 

where the section pft-0„ „ „ extends to £/„ n • • • n f/„ by zero; one 
verifies that OT = a. In the case/?=l, explicitly: 

a = { o ^ E <£'"<( (7 n F ) } ; 
<w+ °vw + °wu = ° in u n v nw. 

Set Ty-lyPyOyy-, then 

= — 2J Pwawu ' ZJ PW°WV 
w 

= SPM . 0 , ' [ / ( - ■ • 

1^ 

In general, sheaves that admit partitions of unity [more precisely, for any 
[/= u [/„, maps r)a: ^ l/a)^>lJ(C) such that the support of (ijaa) is con-
tained in Ua and 'Z'qa(o\u) = a for o E f ( [ / ) ] are called fine, and the same 
argument shows that their higher cohomology groups vanish. 

2. For K a simplicial complex with underlying topological space M, 

H*(K,Z)^ H*(M,I), 

that is, the Cech cohomology of the constant sheaf Z on M is isomorphic to 
the simplicial cohomology of the complex K. To see this, we associate to 
every vertex va in K the open set St(p„), called the star of va, which is the 
interior of the union of all simplices in Khaving va as a vertex. U= {Ua = 
St(pa)} is an open covering of M. C\p=0&{va^ is nonempty and connected 
if va ' " "a a r e t n e vertices of ap-simplex in our decomposition; otherwise 
it is empty. Thus a/>-cochain o of the sheaf Z associates to every (a0- • ■ ap) 
an element 

V- G z ( n S tK-)) = fZ lf""span a/7-simplex' 
' ' ( 0 otherwise. 

Given aE CP(U,Z), we are led to define a simplicial p-cochain a' by 
setting, for A = <(»»„ ••■*'„> a/>-simplex with vertices ! '„•••*'„, 

a'(A) = oan...... 
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oi-»a' gives an isomorphism of Abelian groups 
C(U,Z)^>C"(K,Z), 

and 
S a ' ( < « o - - - ^ + I » = S ( - l ) ' + V « a 0 - - - « , . - - - a ^ + I » 

= («a)', 
so that we have an isomorphism of chain complexes C*(£/,Z)-»C*(A",Z), 
hence an isomorphism H*(U,Z)^>H*(K,Z). Since we can subdivide the 
complex K to make the cover U of M arbitrarily fine without changing 
H*(K, Z), we finally obtain 

H*(M,Z) a H*(U,Z) a H*(K,Z). 

The de Rham Theorem 

Let M be a real C °° manifold. We say that a singular /?-chain o on A/, 
given as a formal linear combination 2 a,/ of maps A-* M of the standard 
/^-simplex A c R^ to A/, is piecewise smooth if the maps /• extend to C°° 
maps of a neighborhood of A to M. Let Cf\M,T) denote the space of 
piecewise smooth integral /7-chains. Clearly the boundary of a piecewise 
smooth chain is again piecewise smooth, so C^(M, Z) forms a subcomplex 
of C*(M, Z) and we can set 

Zp
ps(M, Z) = Ker 3: C*%M, Z) -> C/ l , (M, Z) 

#,r(M,z) = 
Z/S(M,Z) 

3C;:,(A/,Z)-

By a foundational result from differential topology, the inclusion map 
C£*(M, Z)—> C»(M, Z) induces an isomorphism 

H»(M,Z) a Hp(M,Z); 

in other words, every homology class in Hp(M, Z) can be represented by a 
piecewise smooth /»-cycle, and if a piecewise smooth />-cycle a is homolo-
gous to 0 in the usual sense, there exists a piecewise smooth (p + l)-chain T 
with 3T = a. 

Now let <pEAp(M) be a C°° />-form and o = lL,aJj a piecewise smooth 
/»-chain; we set 

0,CT> = | (p 

/ •'A 

If <p is a closed form, then for a the boundary of a (p + l)-chain T, by 
Stokes' theorem 

ftp = (d<p = 0, 
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so that <p defines a real-valued singular />-cocycle. Again by Stokes' 
theorem, we have for a a cycle 

for any rfGAp~t(M); thus there is a map 
i/£R(M)^i/*n g(A/,R). 

The de Rham theorem says that this map is in fact an isomorphism. 

De Rham's theorem was originally proved essentially by defining rela-
tive de Rham groups and showing that the resulting homology theory 
satisfied the axioms of Eilenberg and Steenrod. We will give here the 
shorter sheaf-theoretic argument that, while not so geometric, can be 
merely rephrased to give a proof of the Dolbeault theorem later. 

First, since any differentiable manifold M can be realized as the under-
lying topological space of a simplicial complex K, we have 

H*ng(M,U) « H*(K,U) * H*(M,U). 

Next by the ordinary Poincare lemma, the sequence of sheaves 

on M is exact; in other words, the sequences 

0->25-»<5*42'+,-»0 
are all exact. Now we have seen that 

for <7>0 and all /?; by the exact cohomology sequences associated to the 
short exact sheaf sequences above, 

H"(M,U)^HP~\M,Z{) 

ss /F-2(M,22) 

8H°{M,®>-{) 
Z"{M) 

dA"-\M) 

HUM). Q.E.D. 
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Note that the de Rham isomorphism is functorial: if f:M-*N is a 
diff erentiable map of C °° manifolds, <p a closed /7-form on N representing 
[<p] G H?ng(N, R) under the de Rham map and a = 2 a,/ a piecewise smooth 
/7-cycle on Af, 

i •'A 

= <<P,./» 

i -e . , /*M = [ /*?] . 

The Dolbeault Theorem 

We saw in the beginning of this section that the obstruction to solving the 
Mittag-Leffler problem on a Riemann surface S can be taken to lie in 
either Hl(S,<9) or H°'\S). In fact, this represents a special case of the 

Dolbeault Theorem. For M a complex manifold, 

H"{M,Q,")^ H>-"(M). 

Proof. By the 3-Poincare lemma the sequences 

o _* %p-i _* &•" X 2* •«+• _* o 

are exact for all p, q. Since 

for r >0 , all p, q, the long exact cohomology sequences associated to these 
sheaf sequences give us 

s//«-2(A/,2£-2) 

= H™(M). Q.E.D. 

As an application we will prove a special case of Leray's theorem: for a 
locally finite cover U= {Ua} of M that is acyclic for the structure sheaf 0 , 
i.e., has the property 

# ' ( £ / a i r v n t / , 0 ) - O for />>0, 
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we have 
H*(U,6) s H*(M,e). 

Proof. We have, by hypothesis, 

2£'(l/O0n • • • n uj = 8<£0'-'(t/aon • • • n t/a,); 

i.e., we have exact sequences of cochain groups 

o -»c"( t/, 2£r_') - » c ( t/, a0-'-') - » c ( t/, 2£r) -* o, 
which by the usual algebraic reasoning gives exact sequences 

->Hp+\U,@°'r-x)^--- . 

Since Hp(U,@°-r) = 0 for/?>0 by the partition of unity argument, we find 

Hq(U,e) = H«-\_U,<2%1) 

H\U,bZ%q) 

= Hf"{M) s / / ' (A/, 0). Q.E.D. 
The same argument works as well for the sheaves Q,p. 

Computations 

1. The first observation is that if M is an ^-dimensional complex 
manifold, then 

Hq(M,Q) =H°-"(M) = 0 f o r ? > n . 

2. By the 3-Poincare lemma, 
//«(C",G) = 0 for<7>0 

and more generally 

#*( (C)*x(C*) ' , e ) = 0 for<7>0. 
Since C is contractible, moreover, we see that 

7/9(C",Z) = 0 for«7>0. 
Now, from the long exact cohomology sequence associated to the exponen-
tial sheaf sequence on C , 

H'(C, 6) -> H"(C, 6*) -» Hq+ ' ( C , Z) 
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is exact, and it follows that 

/ /9(C",6*) = 0 for<7>0. 
As an immediate consequence, we have the answer to the Cousin 

problem: 

Any analytic hypersurface in Cn is the zero locus of an entire function. 

Proof. We have seen that in a neighborhood of any point p in C" an 
analytic hypersurface F c C " may be given as the zero locus of a holomor-
phic func t ion/GS^, and if we choose/ not divisible by the square of any 
nonunit in 6p then / is unique up to multiplication by a unit. We can thus 
find a cover U={Ua) of C" and functions/„£©(£/„) such that the locus 
(/a = 0)= Vn Ua, and such that for any a,fi, 

ga/i = ^eS*(uanUp). 

But since / / ' (C",0*) = O, the cocycle 

is a coboundary, i.e., after refinement of the covering if necessary there 
exists a cochain 

{ha}£C°(U,6*) 

such that 

The entire function 

/ = / A = fphp 

then has zero locus exactly V. Q.E.D. 

Another application of the vanishing If((C)k X(C*)',0)=O is that a 
covering of a complex manifold by products of planes and punctured 
planes is acyclic, a fact we will use in the following two computations. 

3. To compute the cohomology groups Hq(P\Q), take u and v = l/u 
Euclidean coordinates on P1, and set U=(v¥=0), V=(u^O). U and V are 
biholomorphic to C via the coordinates u and v, respectively, while 
t / n V=C*; thus the cover {U, V] of P1 is acyclic. Now 

C ° ( { C / , K } , 0 ) - { ( / , g ) : / e e ( C O , g e e ( F ) } 
and 

c\{u,v},6) = {hee(unv)}. 
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Given (f,g) G C°({ U, V), G) we can write 
CO CO 0 0 

/=2«,«"> * = 2 V>" = 2 M-"-

Thus S((f,g))= -f+gG6(Un V) is zero if and only if an = bn = 0 for n 
positive and a0 = b0, i.e., 

W°fP',6)sC, 
or in other words the only global holomorphic functions on P1 are 
constants. 

In general it is clear from the maximum principle that H°(M, 0)=*C for 
any compact, connected complex manifold. 

On the other hand, given any 
00 00 

h= 2 «„«"= 2 a„v-n<=cl({u,v},e) 
n= — co n= — co 

we can write 

where 
CO CO 

/=-2«„"", « = 2 « - / . 
and it follows that 

H\P\B) =0 . 
Similarly, any element (W,TJ) of 

C°({U,V } , « ' ) = {(w.l): w e a ^ l / X i j e O ' C K ) } 
may be written as 

« = ( 2 fl,«-)rf«; T; = f 2 V>"W = (- 2 A.1/-"-2)^, 
\ n = 0 / \ « = 0 / \ n = 0 / 

since dv = d{u~x)= — u~2 du. We see from this that 5((w,-q))=0 if and only 
if w = rj = 0, that is, 

/ / 0 (P ' , f i ' ) = 0. 

By the same token, an element 

i"=lf,xanu
n)duECl({U,V},^) = Ql(UnV) 

is expressible as 5((W,TJ))= - W + TJ if and only if a „ , = 0 ; thus 
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The reader may, in the same manner, verify that in general 

Hp(P",9f) = I C C if p = q<n, 
otherwise, 

a fact which we will prove later by means of Hodge theory. 
4. Let M = C2 - {0}. By Hartogs' theorem we have 0 ( C 2 - {0}) = 0(C2). 

Take the covering Ul = {zl¥=0},U2={z2¥=0); this is again an acyclic 
cover ( [ / | S ( / 2 s C x C » ; ( / , n { / 2 s C ' X C*). Now C'({{/„ U2), 0) = 
0( i / , n f/j) consists of Laurent series 

f{zx,z2) = 2 a-ifr" 
m,n= — oo 

0(£/,) consists of series 

and S([/2) of series 

/ (z„z 2 ) = 2 bmz?zZ 
m>0 

f(zvz2) = 2 cmnz?z"2. 
« > 0 

Thus 8C°({Ul,U2},6) = 6(Ul) + 6(U2) contains no Laurent series with 
terms zfz^, m,n<0; we see that d im/ / ' (C 2 -{O} ,0 )=oo . 

4. TOPOLOGY OF MANIFOLDS 

Intersection of Cycles 

Consider the standard torus T and the two 1-cycles A and B drawn in 
Figure 1. It is intuitively reasonable that any 1-cycle homologous to B 
must intersect any 1-cycle homologous to A, while a cycle holomologous to 
A—for example, A'—may well be disjoint from A. This is an invariant of 
the classes a = (A) and /? = (# ) in Ht(T,Z), which we would like to 
formalize. The problem is that the number of points of intersection of 
cycles representing a and (3 is indeterminate: we can have, for example, 
either of the situations shown in Figure 2. What is needed is a way of 
counting up the points of intersection of two cycles on T such that 
"extraneous" intersections cancel each other out. We may do this as 
follows: first choose an orientation on T. Then if two cycles A and B on T 
intersect transversely at a point/>, we define the intersection index ip(AB) 
of A and B at p to be + 1 if the tangent vectors to A and B in turn form an 
oriented basis for Tp(M), — 1 if not; we define the intersection number 
*(AB) of cycles A and B meeting transversely in smooth points to be the 
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Figure 1 

sum 

*(AB)= 2 ip(A-B). 
peAnB 

It is easy to see that *{AB) depends only on the homology classes of A 
and B: if A is homologous to zero—that is, if A is the boundary of regions 
C, c T with the tangent vector to A and the inward normal vector to 3C, 
always forming an oriented basis for T(M)—then the path B will intersect 
A positively every time it enters a region C, and negatively every time it 
leaves; thus 

*(A-B) = 0 

Figure 2 
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and, in general, since the intersection number is linear in either factor, if 
A~A' then 

*(A'-B)=*(AB). 

Finally, since for any two homology classes a , j8eW,( r ,Z) we can find 
cycles A and B onT representing a and /3 and intersecting transversely, we 
have defined a bilinear pairing 

ff,(7;z)xtf,(r,z)—>z. 
The definition of intersection of cycles on a general oriented manifold 

differs from this special case only in the difficulty of verifying the transver-
sality statements made. Suppose M is an oriented w-manifold, A and B two 
piecewise smooth cycles on M of dimensions k and n — k, respectively, and 
pEAnB a point of transverse intersection of A and B. Let vl,...,vkG 
Tp(A)cTp(M) be an oriented basis for Tp{A), wu...,wn_k an oriented 
basis for Tp(B)c Tp(M); we define the intersection index ip(AB) of A with 
B at/> to be + 1 if vl,...,vk,wl,...,wn_k is an oriented basis for Tp(M) = 
Tp{A)®Tp{B), and —1 if not. If A and B intersect transversely every-
where, we define the intersection number *{AB) to be 

peAnB 

Note that this sum is finite, since A and B are compactly supported and by 
hypothesis A n B is discrete. 

We now have to show that the intersection number *{AB) depends 
only on the homology class of A and B; i.e., that 

A~0=**(A-B) = 0. 

In this case we may take A = 3C to be the sum of boundaries of piecewise 
smooth (k+ l)-manifolds C,, so that at each smooth point p£A an 
oriented basis vl,...,vk for Tp(A) together with an inward normal vector to 
C, gives the orientation on C,. By a standard transversality argument, we 
may take the chain C to meet B transversely almost everywhere, so that 
the intersection C n B will consist of a collection {ya} of piecewise smooth 
arcs. The endpoints of these arcs will, of course, constitute the points of 
intersection of A with B; we claim that for each y, the two endpoints 
y(0),y(\)SA nB will have opposite intersection index for A and B. (See 
Figure 3.) This is not hard to see: we can find C°° vector fields {e,-(f)E 
^(o(c)}/- i . . . . .* t o C a l o m ? y a n d W ) e 7 ; ( 0 ( 5 ) } , ^ + 2 ,„ to B along y, 
such that for all t 

1. t5,(0,---,«*(')>Y'(0 is a n oriented basis for Ty(l)(C), 
2. y'((),vk+2(t),...,vn(t) is an oriented basis for Ty(l)(B), 
3. vl(t),...,vk(t),y'(t),vk+2(t),...,vn(t) is an oriented basis for T(l)(M), 
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Figure 3 

and such that t>,(0),...,^(0) is an oriented basis for Ty(0)(A), o^l),...,1^(1) 
a basis for TyW(A). (Satisfying all these conditions may require reversing 
the assigned direction of y.) Then since y'(i) is outward normal to C and 
vl(l),...,vk(l),y'(l) is positively oriented for C, the basis t>,(l),...,o,(l) for 
Ty(l)(A) must be negatively oriented. Thus 

iy(0)(A-B) = + 1 and ty0)(A-B) = - 1, 

and we are done. 
Now if a &Hk(M, Z) and B e H„ _k(M, Z) are any two homology classes, 

we may find C°° piecewise smooth cycles A and B on M representing a 
and B and intersecting transversely. The intersection number *(AB) is 
determined by the classes a,B, and so we have defined a bilinear pairing 

Hk(M,Z)xHtt_k(M,Z)-^>Z, 

called the intersection pairing, and denoted by *(a-B). Note that from the 
definition of the intersection index, 

*{B-a) = {-\)k("-k)#{a-B). 

We can also define a product 

Hn_ki(M,Z) X Hn_ki(M,Z)-*Hn_ki_ki{M,T) 

on the homology of M in arbitrary dimensions: if « £ f f ^ t ( M ) and 
B &Hn_k (M) are classes, we can find cycles A and B representing them 
and intersecting transversely almost everywhere. The intersection C is 
given the orientation such that if vl,...,v„_k _k is an oriented basis for 
T(C) at a smooth point of C and we complete it to bases 

wv...,wk2,v],...,v„_ki_k2 
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and 
v1,...,v„_ki_ki,ul,...,uki 

for Tp{A) and Tp(B), respectively, the full basis 

wi,...,wk!,vl,...,vn_ki_k2,ul,...,uki 

is positively oriented for Tp(M). C, with this orientation, is called the 
intersection cycle AB of A and B. Again, to show that intersection is 
well-defined on homology—that is, that the cycle AB is homologous to 
zero if A is—we have to show first that we can find a chain C with 

dC = A 
intersecting B transversely almost everywhere, and then that the set-theo-
retic relation 

AB = d(CB) 
holds as well on the level of oriented cycles. The techniques used to prove 
these assertions are similar but more complicated than those used in the 
case of complementary dimension. 

A point of terminology: when we speak of the intersection number or 
"topological intersection" of two cycles A and B on a manifold M, we 
shall always refer to the intersection number of the classes a,R E//„(Af,Z) 
they represent. Thus the expression #(AB) willl have meaning even when 
A and B fail to meet transversely. 

Poincare Duality 

The fundamental result on intersection of cycles is the 

Theorem (Poincare Duality). If M is a compact, oriented n-manifold, the 
intersection pairing 

Hk(M,Z)xHn_k(M,Z)-+Z 

is unimodular; i.e., any linear functional Hn_k(M, Z ) — ^ Z is expressible as 
intersection with some class a£H k (M,Z) , and any class a6H k (M,Z) having 
intersection number 0 with all classes in Hn_k(M,Z) is a torsion class. 

Proof. As in the previous section, we may assume that M is the underly-
ing manifold of a simplicial complex K={o£,d}aik. The essential step in 
the proof is the construction of the dual cell decomposition of M, as follows. 
(See Figure 4.) First let {ra*,9} be the first barycentric subdivision of the 
complex K. For each vertex a° in the original triangulation, let 

* < = U T; 
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Figure 4 

be the n-cell given as the union of the n-simplices T£ in the subdivision 
having o° as a vertex. Then for each A>simplex ak in the original decom-
position, let 

<= n *Oa 

be the intersection of the n-cells *Op associated to the k + 1 vertices of ak. 
The cells (A£~*= *ojc} then give a decomposition of M, called the dual 
cell decomposition to {oa}. 

Note that since the only point of a ^-complex o£ of our original complex 
held in common by k + 1 cells of the dual decomposition is its barycenter, 
the dual cell A"~k = *o* of aa is the only (n — k)-cell of the dual decomposi-
tion meeting ak; A"a~

k will intersect ak transversely. Given an orientation 
on ak, we may take the dual orientation on A"a~

k to be the one such that at 
P = <r\ aa, 

Hereafter, if aa is considered an oriented simplex, *aa will denote the 
oriented cell Aa with the dual orientation; we will also write *Aa to denote 
the original oriented simplex aa. 

We now relate the boundary operator 3 on the complex {ak} to the 
coboundary operator 8 

f 
on 

■4,...,o°, then the dual cell A"a 
k _ 

}. Note first that if a„ has vertices 
*ak is given as the (k+ l)-fold intersec-

tion n,A"= fl,*(T° of the dual «-cells, and so the cells appearing in the 
coboundary 8Al~k of An

a~
k will be just the k-iold intersections A" 

n ,-^Af of the cells A", that is, the dual cells of the faces of 
claim now that the basic relation 

- A + l _ 

of a". We 

s(K-k) = (-iy-k+l*(doa
k) 

holds on the level of oriented cells, i.e., that if a- and A, are oriented as the 
boundary and coboundary of aa and Aa, respectively, then at/>'= o,-n A7-, 
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(See Figure 5.) This is the same sort of argument as made in the verifica-
tion of homology-invariance of intersection number. The simplex o£ inter-
sects the cell A"~k+' in an arc y running from the barycenter p = y(0) of aa 

to the barycenter />' = y(l) of the face a, of a„. Let vl,...,vk_l then be 
vector fields to aa along y and vk+,,...,vn vector fields to A- along y such 
that o,(0),...,uA_,(0), y'(0) is an oriented basis for Ty(f))(aa) and 
vk + ](0),..., u„(0) an oriented basis for Ty(0)(Aa), and such that 
Vl) , . . . . t fc_ , (1)e 7;(1)(a0), vk+,(1),...,v„(l)G T.d/A,). By the hypothesis 

Sw(A«'°«) = + !> 
the basis t3,(0),...,«it_,(0),y'(0),t;ft+I(0),...,f;n(0) is positive for the given 
orientation on M. Moreover, since y'(0) is inward normal to Ay at y(0), and 
since vk+x(0),...,vn(0) is positively oriented for ry(0)(Aa), the basis 

will have sign (— 1)""* with respect to the orientation on A,. By continuity, 
these last two assertions will hold as well as y(l). There, since y'(0) is 
outward normal to Att at y(l) and since u,(l),...,i; / t_1(l), y'(l) is positively 
oriented for TrW(aa), the basis vl(l),...,vk_l(l) will be negatively oriented 
for Oj. Thus 

as desired. 
We see from this that the map 

ap—>&"-" 
induces an isomorphism between the complex (C», 3) of chains in the 
original simplicial decomposition of M and the complex (C*,8) of 
cochains in the dual cell decomposition. The resulting isomorphisms 

D : Hk{M,I) -» Hn~k(M,Z) 

FignreS 
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have the property that 
*(y\) = Dy(X) 

for any yGHk(M,Z) and \&H„_k(M,Z); and the theorem follows. 
Q.E.D. 

A somewhat weaker version of Poincare duality is the statement that the 
map 

Hk(M,Q) —> Hn_k{M,Q)* » H"~k(M,Q) 
given by 

P{A){B)=*{A-B) 

is an isomorphism, omitting the fact that the intersection pairing is unim-
odular. Via the de Rham isomorphism 

H^k(M)—>H"-k(M,C) 

this is equivalent to the assertion that for any A>cycle A on M there exists a 
closed (n - &)-form <p such that for any (n — k) cycle B on M, 

f<P=*(A-B). 
B 

Suppose <p and \p are two closed forms on the oriented manifold M. 
Then the wedge product <pA*P is closed, and by virtue of the relation 

a>A(^ + ^,) = <PA^ + ( - 1 ) ^ M < P A T J ) 

we see that the de Rham class of <pA'l' depends only on the de Rham 
classes of <p and t}/. Thus we have bilinear maps 

#* R (A/)<8>/ /* R ^ / /* , r (A/ ) 

and in particular a pairing 

We will now relate this pairing in de Rham cohomology to the intersection 
of cycles via Poincare duality; to do this we must first establish the 
Kunneth formula. 

Suppose M={ak}ak and N={a'a"}ak are two simplicial complexes. 
The products ak X a'p give a cell decomposition of the product space 
M X N, with boundary operator 

3fo* x »'(,') = 9«« X <# + ( - O V x 3<#-
The product 

A X B = 2 fl„ V * x afi 
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of two cycles 
A = 2 ««<*« and 5 = 2 bfio'p' 

in M and JV is a cycle, and the homology class of A X B depends only on 
the homology classes of A and B, since 

(A+dC)xB = AxB + d(CxB). 

We have thus a map 

Hm{M, Z) (8) //*( JV, Z) —» / /*(M X JV, Z); 

we claim that it is, modulo torsion, an isomorphism. This is readily seen 
once we express the chains of the complexes M and JV in terms of 
canonical bases, that is, ones in terms of which the boundary operators are 
diagonal. We may construct such a basis for the chains in M as follows. 
Suppose M has dimension m; let {T^*} be a rational basis for the m-cycles 
in M. Complete {r™} to a rational basis for the m-chains of M; call the 
additional basis elements {ju,am}. Set 

_ m - 1 a,,"!. 

so that {o™~]} is a basis for the boundaries of M in dimension m— 1; 
complete {<Ta

m~'} to a rational basis {o™ KT™ ~ '} for the (m — l)-cycles of 
M and complete {O^~\T^~'1} to a rational basis { a ™ - 1 , ^ " 1 , / ! ™ - 1 } for 
all (m— l)-chains on M. Set < C - 2 = 9/x<r '; continuing in this way, we 
obtain a rational basis {<*„*, Ta\ju.a*} for the chains of M, with {a^} a basis 
for the boundaries, {O*,T£} a basis for the cycles, and d(i£ = o£~l. 

Now let {o^\ T̂ *, /i,^} be a similarly constructed basis for the chains of JV, 
and let A be a. cycle in M X JV, expressed as a linear combination of the 
products of the basis elements in M and JV. Since the products o ' .Xoj , 
O 'XTJJ , and I ' X I J J are the boundaries of Ha+lx<Tp> / ^ + ' X T J B > a n d 
(— l)Va* Xfip+', respectively, we may, after replacing /I with a homologous 
cycle, assume that no such terms appear in the expression for A. Also, if a 
term 

°* x 4 
appears in A, we may remove it by subtracting from A the boundary 

Thus we can write 

A = 2 Oafikl'Ta X T# + 2 6<tf«T« X MJ8 

+ 2 C^/l* X T£ + 2 < V a >< /$ 

+ 2 <?„/*,/*« X <# 
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Taking the boundary, we have 

+ 2(-i)*<W«x<^' 

But now all the terms in the sum are linearly independent, and so each 
must be zero; thus balikl = capkl = dapkl = ea/ik/ = 0 for each a,(3,k,l and 

A = 2J aaPklra X Tfj 

is a linear combination of products of cycles of M and N. Similarly, we see 
that A is homologous to 0 in M X N only if aa/3kl=0 for each a,fi,k,l, and 
so we have established the Kunneth formula: 

H*(MxN,Q) sa H*(M,Q)®H*(N,Q). 

We now relate intersections of cycles to wedge products of forms on a 
compact oriented «-manifold M. Suppose a is a k-cycle on M and T an 
(n — k)-cyc\e and let cpG^""*(A/),i/'Gy4A:(M) be closed forms on M 
representing the cohomology classes Poincare dual to the classes of a and 
T, i.e., such that for any (n — k)-cyc\e JU, 

/<p=#(o-/x) 

and for any A:-cycle v 

J>=#(rV>. 
v 

On the product M X M, with projection maps irt,ir2, we have 

/ 7rf(pA7r|i|/ = j <p- f <p 
jlXv J» » 

= * ( * - / I ) - * ( T - ' ) -

On the other hand, if (py,p2) is a point of intersection of O X T with juX v, 
then writing out the orientations we see that 

tO>,./>2)(°XT,/iXj>) = (-l)"~kipi(a-n)-tp2(T-v). 

Thus 
#(aXT,jaXJ-) = (-l) ' , -A ; #(a- /x)-#(T-J .) 

note that this formula holds for any (n — k')-cyc\e fi and /c-cycle P: if 
k=£k', both sides are zero. By Kunneth such products of cycles generate 
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H„(M X M,Q), and so it follows that the form •n-fepA"'*'/' ' s Poincare dual 
to the cycle ( - l)"~*oXT, i.e., for any «-cycle i ) i n M x M , 

We apply this in particular to the diagonal A c M X M. On the one hand, 

J& J M 

On the other hand, a point (p,p) of intersection of <JXT with A corre-
sponds to a point p of intersection of a with T, and examining the 
orientations we find that for such a point p, 

W ) ( a X T - A ) = ( - i r \ > - T ) . 

Thus 

# ( a - r ) = ( - i r - * # ( o X T - A ) = / « p A ^ 
M 

i.e., intersection of cycles in homology is Poincare dual to wedge product in 
cohomology. 

Note that we can identify the Poincare dual of the pullback map on 
cohomology. Explicitly, if f:M-*N is a C00 map of manifolds nonsingular 
over the cycle A cN, then with the proper orientation the cycle f~'(A) is 
Poincare dual to the pullback via f of the Poincare dual of A. This is not 
hard to see: if B cM is any cycle on M meeting/- '(^4) transversely, then 
f(B) will meet A transversely a t / ( 5 C\f\A)). If <p is a closed form on N 
Poincare dual to A, then, 

/ / * ¥ > = ( <p=*(f(B)-A)=*(B-f-\A)), 
B Jf(B) 

sofl(A) is Poincare dual to f*<p. 
In this context, the weaker form of duality may be restated once again as 

the assertion that the pairing 

/ / * R ( A / ) ® / / S R * ( A / ) - * R 

given by 

M 

is nondegenerate, or that for any closed /c-form qp on M there exists an 
(n - &)-cycle A, unique up to homology, such that for any closed (n — k)-
form \\/, 

f<pA4' = f4>-
M A 
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A note: The ordinary cup product a\j ft of two cohomology classes 
a £ Hk(M, Q) and fi E Hk(M, Q) may be defined as the pullback 

« U i e = A*(«®|8) 
via the diagonal map A: A/—>A/ X M of the class a®ft on A/ X M defined 
by 

a<8>/?(aXT) = <X(O)-P(T) 

for all cycles a, r on A/. With this definition, it is clear that if <p and if/ are 
closed forms on M representing a and fi, the form ir*<p/\ir*ip on M XM 
represents a<8>fi, and hence that tpA'/' represents the class a\jfi. Thus 
wedge product of forms corresponds, via the de Rham isomorphism, to 
cup product of cocycles. 

As an example, let us compute the homology algebra of IP". To do this 
denote by X = (X0,...,X„) Euclidean coordinates on C n + 1 and 0 = V0c Vx 

C • • • C V„ = C the flag in C"+ ' given by 
V, = (*„ = - . . =X, + I = 0 ) ; 

let P * c P " be the image of Vk+i. As we have seen, the complement 
p ^ - P " - 1 of the hyperplane P""1 in P" is C with Euclidean coordinates 
X0/X„,...,X„_l/Xn; similarly, the complement of P*"1 in P* is C* with 
coordinates X0/Xk,...,Xk_]/Xk. We have therefore a cell-decomposition 
of P", 

P" = ( p « - p " - i ) u ( p " - i _ p " ^ 2 ) u . . . u (P1 - P°) U P°, 

as a union of 2fc-cells P* — P* ~' s C*, one for each k = 0,.. . , n, generalizing 
the familiar picture of the Riemann sphere. Since there are cells only in 
even dimension, all boundary maps are zero, and so the homology of P" is 
freely generated by the classes of the closures Pk of the cells, i.e., by the 
homology classes of its linear subspaces given the natural orientation. 

Inasmuch as a A>plane P* and an (n — &)-plane P"~k in P" will generi-
cally intersect transversely in one point, Poincare duality is clear in this 
case. Indeed, since an (« — &,)-plane will generically intersect an (n — k2)-
plane transversely in an (n — kl — fc2)-plane, 

((P"~k>)-(P"~k2)) = ± (P"_*'-*2). 

Intersection of Analytic Cycles 

Suppose now that M is a compact complex manifold of dimension n, 
V c M a possibly singular analytic subvariety of dimension k. As we have 
seen, Stokes' theorem 

j df, = 0 
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holds for any (2k — l)-form «p on M. We may thus define a linear 
functional on H$K(M) by 

[<p]—>/?, 

where V is given the natural orientation. By Poincare duality this linear 
functional determines a cohomology class i}v&H^2k(M), called the 
fundamental class of V. 

We may also define the fundamental class of V by means of the 
intersection pairing. For any homology class aEH2n_2k(M,Z) we may 
find a cycle A representing a and intersecting V transversely in smooth 
points. In fact, the intersection number 

*{V-A)= 2 lp(V,A) 
peAn v 

—where V again is given the natural orientation—depends only on the 
homology class a: if A'~A, then since the singular locus of V has real 
codimension > 2 we can find a (2n — 2k + l)-chain C on M avoiding the 
singular set of V, meeting V transversely almost everywhere and such that 

ac = A-A1. 
The proof that *(A-V) = *(A'-V) then proceeds exactly as at the begin-
ning of this section. Consequently V defines a linear functional 

#2„~2*(M,Z)->Z; 
the corresponding cohomology class ijvEH2n^2k(M) is the fundamental 
class of V. 

Note: When we speak of the fundamental class of a variety VcM we 
may also refer to its Poincare dual—that is, the element of homology given 
by the linear functional 

HgR-2k{M)^>C 

v 
Usually it will either be clear from the context or unimportant which of 
these we are referring to. 

We now make a very simple observation. Suppose V and W are analytic 
varieties of dimension k and n — k intersecting transversely at a point p on 
the complex manifold M. We may take holomorphic coordinates z = 
(z„...,zn) on M near/? such that V and W are given by 

^ = ( * *+ . - • • • =*„-*=o) 
and 

W = ( z , = - - -=z ,=0) . 
Writing z, = x, + \A—T yt, the natural orientation on M is given by the 
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basis 

_8 9_ J 9_\ 
9*i ' 3 V " ' 9 V 9yJ 

for Tp( V), while the natural orientations for V and W are given by 

/ j a_ j a_\ 
\ 9V 3y, 3V 8yJ 

and 

/ 9 9 J 3_\ 
I 9 ^ + i ' 9 ^ + i ' " " dx„' dyj' 

We see, then, that if V, W, and M are all given the natural orientations, 

lp(V-W)= + 1 . 
This trivial observation, that the intersection index of two analytic sub-

varieties meeting transversely is always positive, is in fact one of the 
cornerstones of algebraic geometry. It relates the set-theoretic intersection 
of two varieties—a priori a geometric invariant—to the intersection 
number—a topological invariant—and so provides a basic link. Before we 
can fully utilize this bond, however, we have to extend it to varieties that 
may not intersect transversely. This goes as follows (alternate discussion of 
intersections of analytic varieties will be given in Section 2 of Chapter 3 
and in Section 2 of Chapter 5). 

Let V and W be two analytic varieties of dimension k and n — k in the 
polycylinder A of radius 1 in C" having the origin as their only point of 
intersection. Consider in the product A' X A' of the polycylinder of radius \ 
with itself the two varieties 

V=^\V)={{z,w): z&V) 

and 
W= {(z,w): z-w(EW}. 

For each e, of course, the varieties V and W meet the fiber 7r2"'(e) = A'X 
{e}s=A' in the analytic variety V and the analytic variety W+e—that is, 
W translated by e—respectively; moreover, ^" ' (e) will meet the intersec-
tion V c\W transversely at a point (p,e) exactly when V and W+e meet 
transversely at p. The intersection V n H^cA'xA' is an analytic variety of 
dimension n, and so the projection TT2 : V n W —^ A' expresses V n W as a 
branched ju-sheeted cover of A'; accordingly, we see that for eGA' lying 
outside an analytic subvariety of A', the varieties V and W + e will meet 
transversely in /x points in A'. The number /n is called the intersection 
multiplicity of V and W at 0 and is written 

(i= m0(V-W). 
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By the construction the intersection multiplicity is always positive, and by 
the implicit function theorem will be 1 if and only if V n W meets the fiber 
7r2" '(0) transversely—that is, if and only if V and W meet transversely at 
the origin. Note that the definition does not depend on the choice of 
coordinates z, so that it applies as well to two analytic subvarieties of a 
complex manifold. We now check that if V and W are analytic subvarieties 
of complementary dimension on a compact complex manifold M, then 

*(V-W)= 2 m(V-W). 
pevn w 

To do this let z,w be local coordinates around a point pGVnW, with 
p = (0,0) the only point of intersection of V with W in the ball A of 
radius 1. Let p(r) be a C°° bump function, identically 1 on the ball A" of 
radius \ and identically zero outside the ball A' of radius \. Then for e 
generic and sufficiently small, the locus 

We = {(z): z-p(\\z\\)-eeW} c A 
will 

1. agree with W outside A', 
2. be disjoint from V in A' —A", 
3. be an analytic variety in A", meeting V transversely in ju = mp(V- W) 

points. 

Now let {pi)=V(~\W. Choose coordinate balls A, around/*, and values 
e, as above; set 

W is then smooth manifold outside a locus of codimension 2 or more, and 
so by our general method represents a cohomology class i\w, in M; indeed, 
Vw = Vw> since in each A, 

W- W" = 3({(z: z-t-ei&W,0<t<p(\\z\\)}). 

Finally, since W meets V transversely in mp{V-W) points in A"—where 
W and V are both analytic varieties with the natural orientation—and 
nowhere else, 

*{W-V) =*(W'-V) = ^mp(V-W) 

as desired. 
Summarizing, 

The topological intersection number *(V-W) of two analytic subvarieties 
of complementary dimension meeting in a finite set of points on a 
compact complex manifold is given by 

*{V-W)= 2 m(V-W). 
peVn w 
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The intersection multiplicity mp(V • W) satisfies 

mp(V-W) > 1 

with equality holding if and only if V and W meet transversely at p. 

One important corollary of this is that if V and W meet in isolated 
points, their topological intersection number *{V-W) is greater than or 
equal to their set-theoretic intersection *{Vr\ W). Thus, for instance, if 
the intersection F n W o f two analytic varieties in M contains more than 
*( V- W) points, it follows that V C\W must contain a curve. 

As a simple consequence of this assertion, note that 

/ / M is any complex submanifold of protective space Pn, V c M an 
analytic subvariety, then the fundamental class of V is nonzero in the 
homology of M. 

This is easy: if M has dimension m and V dimension k, we can find a 
linear subspace P"~* of P" meeting V in isolated points, and setting 
W=M nP"-k, 

*(W-V) >0 , 
which implies T j ^ 0 e # 2 " - 2 A : ( A / ) . 

As a corollary, we see that 

The even Betti numbers of M are positive, 

since by the above the intersection V of M with a linear subspace p"-m+k 

in P" is an analytic subvariety of dimension k in M, and so represents a 
nonzero element of Hlk(M). 

Similarly, 

Any analytic subvariety of Pn homologous to a hyperplane is a hyper-
plane. 

To see this, we note that if V is homologous to a hyperplane it has 
intersection number 1 with a line. Then if p{,p2 are any two points of V, 
the line L=plp2, having two points in common with V, must have a curve 
in common with V; that is, L must be contained in V. V thus contains the 
line joining any two of its points, and so is a linear subspace of P". 

From this it follows that 

Any holomorphic automorphism of Pn is induced by a linear transforma-
tion o / C n + l . 
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Let X0,...,Xn be homogeneous coordinates on P", Xj = Xj/X0 the corre-
sponding Euclidean coordinates on the complement of the hyperplane 
H = (X0 = 0). Since the fundamental class of a hyperplane in P" generates 
H2(P",Z)sZ, any holomorphic automorphism rp of P" must take a hyper-
plane into a complex submanifold of P" homologous to a hyperplane, 
hence to a hyperplane. Consequently, after composing <p with a linear 
transformation of P", we may assume that <p(H)=H. Similarly, <p must 
carry the coordinate hyperplanes H{ = {xi — 0) into hyperplanes other than 
H, and so we can write 

<p(Hi) = («i,,*i + • ' • +anixn + a0i = Q). 

The pullback <JP*(X,) of the Euclidean coordinate JC, is then a meromorphic 
function on P" with a simple pole along H and a zero along <p(//,); it 
follows that the function 

<P*(*,) 

is holomorphic on all of P", hence constant. Thus 

<P*(*,) = a'o,, + a'i,,x\ + •■■ + <,•*„, 

and so <p is linear. 
Note that the group of automorphisms of P" is thus the quotient 

PGL„+1 of the general linear group GL„ + , by the one-dimensional sub-
group of scalar matrices [XI]. 

A final remark: when two analytic subvarieties V and W of a complex 
manifold M—not necessarily of complementary dimension—intersect 
transversely, they likewise intersect positively in the sense that the variety 
V n W is counted with the natural orientation in the topological intersec-
tion of V and W. More generally, if we define the intersection multiplicity 
mz{ V- W) of V and W along an irreducible variety Z c V n W to be the 
multiplicity 

mu\tp((Vn H)-(WnH))H, 

where p is a generic smooth point of Z and H a submanifold in a 
neighborhood of p intersecting Z transversely at p, then the topological 
intersection of V and W is given by 

(VW)= 2 multzXFWO-Z,. 
z„r<zvnw 
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5. VECTOR BUNDLES, CONNECTIONS, AND CURVATURE 

Complex and Holomorphic Vector Bundles 

Let M be a differentiable manifold. A C 0 0 complex vector bundle on M 
consists of a family {Ex)x£M of complex vector spaces parametrized by 
M, together with a C°° manifold structure on £ = UxeMEx such that 

1. The projection map ir: E—>M taking Ex to x is C°°, and 
2. For every x0G M, there exists an open set U in M containing xQ and 

a diffeomorphism 

Vu: ir-l{U)—>(/XC* 
taking the vector space £x isomorphically onto {x}xC* for each xE.U; 
<pv is called a trivialization of £ over (/. 

The dimension of the fibers Ex of E is called the ra«A: of E; in particular, 
a vector bundle of rank 1 is called a line bundle. 

Note that for any pair of trivializations <pv and <pK the map 
guv: Un K ^ G L , 

given by 

Suvix) = (<PU°9Y%X)XC-

is C°°; the maps guv are called transition functions for E relative to the 
trivializations <pv,<pv. The transition functions of E necessarily satisfy the 
identities 

8uv(x) -gvu(x) = 1 for all x E [/ n K 

guv(x) ■ gvw(x) ■ gwu(x) = I f o r a11 x G U n V n W. 

Conversely, given an open cover C/= { Ua) of A/ and C°° maps ga/J -Uar)Up 
-^GL^ satisfying these identities, there is a unique complex vector 
bundle E^>M with transition functions {ga/3}: it is not hard to check that 
E as a point set must be the union 

U ua x c* 

with points (x,X)£ U/3xCk and (x,ga/3(x)-X)e UaXCk identified and with 
the manifold structure induced by the inclusions Ua X C * ^ £ . 

As a general rule, operations on vector spaces induce operations on 
vector bundles. For example, if E~*M is a complex vector bundle, we take 
the dual bundle E*-*M to be the complex vector bundle with fiber 
E* = (Ex)*; trivializations 

ipy: Eu-*UxCk 
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(where EU = IJT~\U)) then induce maps 

<p*: £ J ^ ( / x C l ' a ( / x C*. 

which give E* = u E* the structure of a manifold. The construction is most 
easily expressed in terms of transition functions: if E->M has transition 
functions {gap}, then £*—>M is just the complex vector bundle given by 
transition functions 

Jap{x)='gap{x)~S. 

Similarly, if E-+M, F^M are complex vector bundles of rank k and / with 
transition functions {gap} and {hap}, respectively, then one can define 
bundles 

1. E®F, given by transition functions 

2. E®F, given by transition functions 

Jap(x) = gap(x)®hap(x)eGL(Ck®C!), 

3. f\rE, given by transition functions 

JafiW = A'&tf (*) eGL(A'C*). 

In particular, A*£ is a line bundle given by 

Jafiix) = detg^(jf) GGL(1,C) = C*. 

called the determinant bundle of E. 

A subbundle FcE of a bundle E is a collection {^CfjJjeM °f 
subspaces of the fibers Ex of E such that F= u Fx c £ is a submanifold of 
E; F is clearly a vector bundle itself. The condition that FcE is a 
submanifold is equivalent to saying that for every xEM, there exists a 
neighborhood t/ of x in M and a trivialization 

<pv: Eu—>UxCk 

such that 

9U\F,■•■ Fu-X/XC'c UxCk. 
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The transition functions guv of E relative to these trivializations will 
then look like 

. . ( huv(x) 
8uv(x) = 

^uv\x) 
0 Juv(x) I 

The bundle F will have transition functions huv, and the maps j u v are 
transition functions for the quotient bundle E/F given by (E/F)x = Ex/Fx. 

Given a C°° map f:M—>N of differentiable manifolds M and N and a 
complex vector bundle E—>N, we can define the pullback bundle f*E by 
setting 

(f*E)x = EAxy 

If 
«p: £ „ - > ( / x C " 

is a trivialization of E in a neighborhood of f(x), then the map 

gives f*E its manifold structure over the open set / _ l t / . Transition 
functions for the pullback f*E will, of course, be the pullback of the 
transition functions for E. 

A map between vector bundles E and F on M is given by a C°° map 
/ : E-+F such that f(Ex) cFx and fx = / | ^ : EX-*FX is linear. Note that 

Ker(f) = u Kerfx c E 
and 

/ m ( / ) = u Imfx C F 
are subbundles of E and F, respectively if and only if the maps fx all have 
the same rank. Two bundles E and F on M are isomorphic if there exists a 
map f:E-+F with fx:Ex-^Fx an isomorphism for all xE.M; a vector 
bundle on M is called trivial if it is isomorphic to the product bundle 
A/XC*. 

IT 

Finally, a section a of the vector bundle E-+M over UcM is a C°° 
map 

a: £ / - » £ 
such that a(x) G £x for all xEU. A frame for £ over U c M is a collection 
o , , . . . , ^ of sections of M over (/ such that {ax(x),...,ak(x)} is a basis for 
Ex for all x G U. A frame for F over U is essentially the same thing as a 
trivialization of F over £/: given 

<pu: Ev -> [/ X C* 
a trivialization, the sections 
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form a frame, and conversely given au...,ak a frame, we can define a 
trivialization q>y by 

<Pt/W = (*>(V-A)) 
for A = 2 \o , (x ) in Ex. 

Note that given a trivialization yv of £ over U, we can represent every 
section a of E over {/ uniquely as a C°° vector-valued function / = 
(/i>-■•>/*) b y writing 

»(*) * 2/•(■"O-vJ'(*>*<); 
if (pv is a trivialization of E over K and / ' = (/[ , . . . ,fk) the corresponding 
representation of a\VnU, then 

so 

2/ / (■*) '3 = 2 ^ W - V I / V K ' ( ■ « . « / ) 
i.e. 

Thus, in terms of trivializations {<pa r i s ^ - ^ x C * } , sections of E over 
U t/a correspond exactly to collections {/a = ( / a , , - - , / a ) t )} a of vector-valued 
C°° functions such that 

/» = Sap'Jp 

for all a,/?, where the ga/8 are transition functions of E relative to {<p„}. 
Now, let M be a complex manifold. A holomorphic vector bundle E-^M 

is a complex vector bundle together with the structure of a complex 
manifold on E, such that for any x^M there exists UBx in M and a 
trivialization 

that is a biholomorphic map of complex manifolds. Such a trivialization is 
called a holomorphic trivialization. Note that if { ^ { ^ ^ ( / . X C * ) are 
holomorphic trivializations, then the transition functions for E relative to 
{<pa} are holomorphic maps, and that, conversely, given holomorphic maps 
Sap '■ Ua H Up~*GLk satisfying the identities on p. 66, we can construct a 
holomorphic vector bundle E-+M with transition functions gap. 

All the vector-bundle phenomena discussed so far carry over directly to 
the category of holomorphic vector bundles. We can define the dual 
bundle and direct, tensor, and alternating product bundles of holomorphic 
vector bundles to be holomorphic; likewise we observe that the pullback 
f*E of a holomorphic vector bundle E under a holomorphic m a p / : M-+N 
of complex manifolds has a natural holomorphic structure. A holomorphic 
map of holomorphic vector bundles E,F on M is a holomorphic map 
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/ : E - ± F with/:EX-*FX linear; a holomorphic subbundle of a holomorphic 
bundle E is a subbundle F <zE with F a complex submanifold of E, and 
the quotient bundle is again holomorphic. A section a of the holomorphic 
bundle E over U c M is said to be holomorphic if <r: (/—»£■ is a holomor-
phic map, a frame a = (al, . . . ,a/ t) is called holomorphic if each o, is; and in 
terms of a holomorphic frame {a,} any section 

is holomorphic if and only if the functions / are. 
One important difference between C °° and holomorphic vector bundles 

is this: while there is no naturally defined exterior derivative d on the space 
of sections of a vector bundle, on a holomorphic vector bundle E the 
3-operator 

3 : Ap-*(E)->A**+l(E) 

from £-valued (p,q)-forms to Zs-valued (p,q+ l)-forms is well-defined: we 
take {ex,...,ek} any local holomorphic frame for E over U, write o £ 
><'•*(£) as 

o = 2 «,. ® e,., « E i 4 ' ' * ( I / ) , 
and set 

3a = 2 3", ® ei-
If {e\,...,e'k} is any other holomorphic frame for £ over (/, with 

*.■ = 2 &><• 
then 

° = 2 $,*>.■ ® ei 
and 

3o = 2 3( gij*i) ® <£ = 2 £# • 3", ® < = 2 3", ® «,-. 
so 00 does not depend on the frame. 

Examples 

Let M be a complex manifold, and let TX(M) be the complex tangent 
space to M at x (p. 16). For xEUCM and <py: U-*C" a coordinate chart, 
we have maps 

for each x E [/, hence a map 

<Ptv U rx(M)^t/xc2" 
XGU 
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giving T(M)= uxeMTx(M) the structure of a complex vector bundle, 
called the complex tangent bundle. Transition functions for T(M) are given 
by 

Jv.v = $R(<PU<PV1)-

Now for each x G M 

TX(M)=T;(M)®T;(M), 

where TX(M) and T"(M) are as on p. 17. The subspaces {Tx(M)c 
TX(M)} form a subbundle T'(M)cT(M), called the holomorphic tangent 
bundle. Transition functions for T'(M) are given by 

Ju,v = fc(<Pu<Pvl), 

and so we see that T'(M) has naturally the structure of a holomorphic 
vector bundle. 

Similarly, we define: 

T*(M)= T(M)*: the complex cotangent bundle, 
T*'(M),T*"(M): the holomorphic and antiholomorphic cotangent bun-

dles, 
T*<P-*\M) = /\PT*'(M)® /\«T*"{M). 

The tensor, symmetric, and exterior products of the holomorphic and 
complexified tangent and cotangent bundles are called tensor bundles. 

If V c M is a complex submanifold, we define the normal bundle Nv/M 

to V in M to be the quotient of the tangent bundle to A/, restricted to V, 
by the subbundle 

r ( K ) c ^ r ( M ) | , . 
The conormal bundle N*/M to F in A/ is the dual of the normal bundle. 

Metrics, Connections, and Curvature 

Let E^*M be a complex vector bundle. A hermitian metric on E is a 
hermitian inner product on each fiber Ex of E, varying smoothly with 
xE.M—i.e., such that if f = {fi,...,f*} is a frame for E, then the functions 

M*) = (£■(*),£(*)) 
are C°°. A frame f for E is called unitary if f,(x),...,^(jc) is an orthonor-
mal basis for Ex for each x; unitary frames always exist locally, since we 
can take any frame and apply the Gram-Schmidt process. 

If E is a bundle with hermitian metric, f c £ a subbundle, then the 
subspaces {FX

XGEX} form a subbundle of E, C00 isomorphic to the 
quotient bundle E/F. 
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A holomorphic vector bundle with a hermitian metric is called a hermi-
tian vector bundle. 

DEFINITION. A connection D on a complex vector bundle E-*M is a map 

D: a°(E)^Hl(E) 

satisfying Leibnitz' rule 
D(f-$) = df®$ + f-D(n 

for all sections £ (E&°(E)(U),f<E C°°(U). 

A connection is essentially a way of differentiating sections: for £ e 
6B°(E)(U) the contraction of Z)£ with a tangent vector vETx(M) may be 
thought of as the derivative of £ in the direction v. It is, however, only a 
first-order approximation of differentiation, inasmuch as mixed partials 
will in general not be equal. 

Let e = eu...,e„ be a frame for E over U. Given a connection D on E, 
we can decompose Z)e, into its components, writing 

The matrix 0 = {9ij) of 1-forms is called the connection matrix of D with 
respect to e. The data e and 0 determine D: for a general section 
aE8°(E)(U), writing 

« = 2 <*,■*/» 
we have 

= 2 (̂ +2 )̂*,-
The connection matrix 0 at a point z0 €E t/ depends on the choice of 

frame in a neighborhood of z0: if e' = e[,...,e'„ is another frame with 

< 0 ) = 2 gy(z)ej(z)> 

then 

0*/ = 2 dgg ■ ej + 2 & A , • *y, 
so that 

0e=dg-g-' + g-9e-g-x (> = (&,))• 

There is in general no "natural" connection on a vector bundle E. If M 
is complex and E hermitian, however, we can make two requirements that 
dictate a canonical choice of connection. 
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1. Using the decomposition T* = T*'®T*", we can write D = D' + D", 
with D':&\E)-+8}-\E) and D": &°(E)^>&0-\E). Now we say that a 
connection D on E is compatible with the complex structure if D" = 8. 

2. If £ is hermitian, D is said to be compatible with the metric if 

</(£T,) « ( Z > £ T , ) + (£,!>!,). 

Lemma. If E is a hermitian vector bundle, there is a unique connection D 
OM E compatible with both the metric and the complex structure. 

Proof. Let e = e1,...,en be a holomorphic frame for £ , and let hij = {ei,eJ). 
If such a D exists, its matrix 9 with respect to e must have type (1,0), and 
consequently 

dh0 = die^ej) 

A A: 

= type (1,0) +type (0,1). 
Comparing types, we have 

% = 2 ^ A . i-e-, M = fc'0, 
and we see that 9 = dh-h ~~' is the unique solution to both equations. Since 9 
is determined by the conditions of compatibility, 9 is well-defined globally. 

Q.E.D. 

The unique connection compatible with the complex and metric struc-
tures on E is called the associated, or metric, connection. As mentioned in 
the proof, its matrix with respect to a holomorphic frame is of type (1,0); 
on the other hand if ex,...,en is a unitary frame, 

0 = d(ei,eJ) = 9iJ + ffji, 

so its matrix with respect to a unitary frame is skew-hermitian. 
The metric connections of hermitian vector bundles behave well with 

respect to bundle operations, as we see in the next two lemmas. 

Lemma. Let E—»M be a hermitian vector bundle and F c E a holomorphic 
subbundle. Then F is itself a hermitian bundle with metric connection DF. On 
the other hand, the metric connection DE in E and direct-sum decomposition 
E = F © F X induced by the metric give a connection wFDE in F, and 

DF = vF°DE, 

where irF is the projection onto F. 
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Proof. If £ is a section of F, then (i^ ° Z>£)"(f) = MDE"0 = w>(30 = 5£, 
so that mF°DE is compatible with the complex structure. If J , f are 
sections of F, then 

so that mF ° £>£ is compatible with the metric. Q.E.D. 
Similarly, if E,E' are hermitian vector bundles, there is a natural metric 

on E®E' given by 
(X®A',«®«') = (*.«)•(*',«') 

for A,8 Git,., A',8'G£^. Let DE,DE,DE<SE. denote the metric connections 
on £,£", and E®E', respectively, and let DE®\ be the connection on 
£ ® £ " given by 

(/>£®l)tt®£) = Ztf®fc 
define 1 ® Z)f analogously. Then we have 

Lemma. DEK)E =DE®1 +1®DE. 

Proof. Clearly (Z?E® 1 + 1 ® DE)" = 3; thus we just have to check compa-
tibility with the metric. Let f,£ be sections of E, f ',£' sections of £". Then 

d(s ®r,£®e) = (f',n((^,o+(f,^)) + (r,o((o£.r,r)+(r,^f)) 
= ((Z>£®1 + 1®Z>£.)(W,*®*') 

+ ( f ® r , ( ^ ® i + i®/?£-)(^®f))- Q-E.D. 

Finally, note that a hermitian metric on the holomorphic bundle E 
induces a metric on E*—if e is a unitary frame for E, e* the dual frame 
for E*, set 

(e*,ef) = S, 
—and the metric connection D* on E* can be defined by the requirement 

d(o,r) = (Da, T> + (O,D*T) 

for oE6P(EXU), T£@°(E*)(U). 
Now, returning to the general discussion, given a connection D o n a 

complex vector bundle E-*M we can define operators 
D: &P{E)->&P+\E) 

by forcing Leibnitz' rule 
D(^/\£) = d^®Z + (-m f\DZ 

for \pG&p(U), £G&°(E)(U). In particular we can discuss the operator 
D2: <S°(E)^&2(E). 
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The first fact about D2 is that it is linear over @°, i.e., for a a section of E 
and / a C °° function, 

D2(fa) = D(df®o+fDa) 
= - dff\ Da + df/\ Da + f-D2a 
= fD2a. 

Consequently the map D2: @P(E)^><3?(E) is induced by a bundle map 
E-*/\2T*®E, or in other words, D2 corresponds to a global section 6 of 
the bundle 

A 2 r * ® H o m ( £ , £ - ) = f\2T*®{E*®E). 

If e is a frame for E, then in terms of the frame {ef <8>e,} for E*®E, we 
can represent @^A2(E*<8)E) by a matrix 0 e of 2-forms—i.e., we can 
write 

D\ = 2@y®<?,; 

0 e is called the curvature matrix of Z> in terms of the frame e. If 
{e- = 2 £,£,} is another frame, then 

^2 ;̂ = />2(2g^) 
= 2^8/*** 

that is, 

The curvature matrix is readily expressed in terms of the connection 
matrix: by definition 

Z>2*,= .D(2*i,®*,-) 

In matrix notation, therefore, 
Qe = d9e-0eA9e. 

This is called the Cartan structure equation. 
We can say more about 6 in the holomorphic case. If E^>M is 

hermitian and the connection D on E is compatible with the complex 
structure, then D" = a implies D"2=0 and hence 0° ' 2 = O. If, moreover, D 
is compatible with the metric, then in terms of a unitary frame e, the 
connection matrix 9e is skew-hermitian and hence so is ® = d0 — 9f\9; thus 
0 2 O = - ' 0 ° ' 2 = O. Since the type of 0 is clearly invariant under change of 
frame, we see that the curvature matrix of the metric connection on a 
hermitian bundle is a hermitian matrix of (1, l)-forms. 
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To close this section, we give computations of the metric connection and 
curvature matrices of hermitian bundles in two special cases. 

First, recall that for E a hermitian bundle with metric connection D, the 
metric connection D* on E* satisfies 

d(a,r) = <Z)<T,T> + <O,JD*T> 

for all a G &°(E)( U), r E &°(E*)( U). In particular, if e is a frame for E and 
e* the dual frame in E*, 9 and 9* the corresponding connection matrices, 
we have 

0=d(ei,ef) = 9u + 9*, 

so that 9= -'9*. 
In view of this, a special situation holds when we consider the metric 

connection on the holomorphic tangent bundle of a hermitian manifold: 
we can compare the dual connection D* on the holomorphic cotangent 
bundle with the ordinary exterior derivative. Thus 

£,*: A'°^AX0®A' =(/!10(8)y41-0)e(^1-0(8)v40-1) 

Since D* is compatible with the complex structure, we have D*" = d; i.e., 
the two operators agree in the factor AU0®A0J. As will now be seen, this 
gives us an effective means of computing the connection matrix of D. Let 
ds2 = '2hijdzi<8)dzj = 'Zq)j®yi be a hermitian metric on M. 

Lemma. There exists a unique matrix i/'y of 1-forms such that i// + '»^ = 0 
and 

(*) <*P/ = S ^ A ? ; + T/, 
j 

where Tj is of type (2,0). 

Proof. Write \p = <|/' + \p" for the type decomposition of \f/. Then 

determines ^", and ^ + ' ^=0=x/ /= — 'ip. (Explicitly: if we write <p,= 
"Za/jdzj, where a'a = h, we have 

3<P; = 2 <*% A * * 

A: 

7'.* 

s o ^ " = 3aa- ' . ) Q.E.D. 
Let v = c,,...,u„ be the frame for the tangent bundle T'(M) dual to the 

frame <p,,...,<p„; let 0 be the connection matrix of D with respect to the 
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frame v and 9* the matrix for D* in the frame <p,,...,<p„. Then 

D*" = 9=*0*" = xj," 

since 9* + '9* = 0 and \p + '\f=0. Thus we have 

9= -'9* = - ty . 
In summary, using the basic structure equation (*) we may determine the 

connection matrix 9 = — ty in the holomorphic tangent bundle T\M) by 
knowing the exterior derivatives d<pt of a unitary coframe. The vector 
T = ( T , , . . . , T „ ) is called the torsion; a metric is called Kahler if its torsion 
vanishes. Later on we shall give alternate definitions of the Kahler condi-
tion. 

Examples 

Let M b e a Riemann surface with local coordinate z; a metric on M is 
given by 

ds2 = h2dz ®dz = <p ® 9, 
where <p = hdz. Then 

dq> = dh /\dz = — A <P, 

so i//" = 31ogA and ^ = (9 — 9) log A; by the structure equation the matrix for 
the metric connection on the tangent bundle is given by 

9 = ->// = (9-9)log/i 

= — log A • dz - — logh ■ dz. 
oz dz 

Now 9/\9 = 0, so by the Cartan structure equation 

e = d9= -2(-£—logh\dzAdz 

l( 92 92 \ , , , , 

= -jAlogft-rfz Adz. 

Comparing the curvature "matrix" 6 with the associated (l,l)-form 
$ = ( \ r r T /2)<pA^ = C v r - T /2)h2dz/\dz, we obtain 

where K=( — Alogh)/h2 is the usual Gaussian curvature. 
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Our second computation involves the curvature operator of sub- and 
quotient bundles of a hermitian bundle. While we cannot make a complete 
computation, we will run across a fundamental distinction between the C °° 
and holomorphic cases: the presence of a sign in the curvature of a 
hermitian bundle. 

Let £->M be a hermitian bundle, S cE a holomorphic subbundle, and 
Q = E/ S the quotient bundle. As mentioned earlier, Q is isomorphic, as a 
Cx vector bundle, to the orthogonal complement S x of S in E, and so 
both S and Q inherit hermitian structures from E; let DE, Ds, and DQ 

denote the corresponding metric connections. By the lemma on p. 73, Ds is 
equal to the composition of the operator 

DE\so(S): 6e°(S)->£»(£) 

with the projection (21 (£)->($'(S); thus the operator 

A = DE\SP{S)~ AS 
maps @°(S) to 8}{Q). A is called the second fundamental form of S in E; 
clearly, it is of type (1,0) and linear over C00 functions, i.e., 

A e f f i 1 0 (Hom(5,e)) . 
To compute curvatures, we choose a unitary frame e,,.. . ,er for E such 

that e,,...,es is a frame for 5. Using this frame and our lemma, the 
connection matrix for E is 

where 9S, 0Q are the respective connection matrices for S and Q. Then 

®E = d0E-9FJ\9E 

_ d0s -0SA0S- 'A A A * 

d9Q-eQABQ-AA'A) 

which implies that 

®S = ®E\S + 'AAA, 

®Q = @E\Q + AA'A. 

Now, we say that a curvature operator 

@GA2(Hom(E,E)) 

is positive at x&M if for \¥=0GEX, the multivector 

(A,0A)GA27?(M) 
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is positive of type (1,1), or equivalently if for any holomorphic tangent 
vector v E T^(M), the hermitian matrix 

- \A^T <e(jc);c,c> e Hom(£; ,£ ; ) 

is positive definite. We write 0 > 0 if 0 is positive everywhere, 0 > 0 if 0 is 
positive semidefinite, and 0 > 0 ' if 0 — 0 ' > 0. 

Let A be the second fundamental form of the subbundle S cE above, 
and write 

A= 2 <jdza®ex®ef, 
l < j < J 
J < A < r 

SO 

'A = ?JaZJdza®et®ej 

and 
A A 'A = 2 « dza A dzp ® e,. ® e/. 

Thus, if we let / i " = ( < ) , 

which implies that 

% > ®E\Q> 

with equality holding if and only if A = 0 . The principle that curvature 
decreases in holomorphic subbundles and increases in holomorphic quotient 
bundles is in marked contrast to the real case. 

For example, if M c C " is a complex submanifold with the metric 
induced from the Euclidian metric an C , we see that 

T'(M) c T'(C")\M ^@M< Qc.\u = 0. 
If M is a Riemann surface, then by the calculations on p. 77, this just 
means that its Gaussian curvature K < 0. 

Another basic fact that comes out of this calculation is the following: 
suppose E—>M is a holomorphic bundle and that there exist global 
holomorphic sections ol,...,o„ GT(M,E) such that, for all xGM, 
(CTi(x),...,on(x)} generate Ex. Then we have a surjective holomorphic 
bundle map 

A / x C - > £ - » 0 
given by 

M-»SViWe£x 
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for xEM, A E C . It follows that, if we give E the metric induced from the 
Euclidean metric on M x C", 

SE > 0; 

i.e., any holomorphic bundle with a finite number of global sections that 
generate each fiber has a metric with nonnegative curvature. 

The connection between the sign of the curvature of a vector bundle and 
the existence of global sections is fundamental in the theory of complex 
manifolds. 

6. HARMONIC THEORY ON COMPACT COMPLEX MANIFOLDS 

The Hodge Theorem 

This section is devoted to the statement and proof of the Hodge theorem 
for the 3-operator together with some of its immediate corollaries. 

M will be a connected, compact complex manifold of complex dimen-
sion n. We choose a hermitian metric ds2 with associated (1, l)-form 

Y E L v A -
« = — 5 — 2 J < P J A < P J 

* j 

in terms of a unitary coframe {<pi,...,«p„}. The metric ds2 induces a 
hermitian metric on all tensor bundles T*(p,q\M); the inner product in 
T*(P"\M) is given by taking the basis {<Pi(z)AvAz)}*i=p,*j=q to be 
orthogonal and of length ||<p/A?/||2 = 2' '+ ' ' (recall that ||<fe,||2 = 2 on C ) . 
Let C„ = ( - iy<"-1>/2(V^T /If and 

$ = -^- = C„«PiA--- A ^ A ^ A " - A<P„ 

be the volume form on M associated to the metric. The global inner 
product 

(>M) = f WZ),T}(Z))$(7) 
JM 

makes the space Ap-q(M) into a pre-Hilbert space. We pose the question: 
Given a d-closedform \peZ^,q(M), among all the forms {\p + dri} representing 
the Dolbeault cohomology class [^]EHj?,q(M) of <p, can we find one of 
smallest norm? To answer this we pretend for a moment that Ap,q(M) is 
complete and 3 is bounded, and define the adjoint operator 

3*: Ap'q{M)^Apq'\M) 

by requiring that 

(5*«M) = (*,3IJ) 
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for all j]^Ap-q~x{M). This will be justified in a moment, but first we show 

Lemma. A 3- closed form ^EZ!?,q(M) is of minimal norm in <|/ + 
3Ap-q ~ '(M) if and only ifd*^ = 0. 

Proof. If 3*^ = 0, then for any t)<EAp'q-\M) with 3TJ = 0 

||* + 3l?||2 = (* + 3~lf,* + 3l?) 

= imi2 + l W + 2Re(,MT|) 

= I M I 2 + l N | 2 + 2Re(3*«M) 
= H\\2 + \\h\\2 

> IMI2, 
so i/< has minimal norm. Conversely, if »// is of smallest norm, then for any 
T]EApq-\M) 

-^||* + '5tf||2(0) = 0. 

But at t = 0 

y ^ + tdji^ + tdi}) = 2Re(>^,3T}) 

and 

- l ^ + zaCnj^ + ^ n , ) ) = 2Im(^,3r,). 

So 

(3V,r>) = (^37,) = 0 
for all 7i<EAp-g-~\M), and hence 9*^ = 0. Q.E.D. 

So, at least formally, the Dolbeault cohomology group HP,q(M) = 
ZP-q(M)/dAp-q~\M) is represented exactly by the solutions of the two 
first-order equations 

3> = 0, 3*!// = 0. 
These two may be replaced by the single second-order equation 

A3>// = (3 3* + 3*3)^ = 0: 
clearly cty = 0 = 3*i//=>Ai|/ = 0, and conversely 

( A s ^ ) = (33**,*) + (3*3*,*) 
= | | 3 ^ | | 2 + | |3^ | | 2 , 

so A3i/' = 0=>3>// = 3*i/' = 0. The operator 
A5: Apq(M) —>Ap-q(M) 
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is called the d-Laplacian, or simply the Laplacian (written A) if no ambigu-
ity is likely. Differential forms satisfying the Laplace equation 

A^ = 0 
are called harmonic forms; the space of harmonic forms of type (p,q) is 
denoted %p,q(M) and called the harmonic space. What the above formal 
argument suggests is the isomorphism 
(•) %"-q(M)^ H™(M); 

if this can be proved, then we will have a unique representative for each 
cohomology class, which should certainly be an advantage. The isomor-
phism (*) is part of the Hodge theorem, whose proof together with the 
corollaries of (*) will occupy this section. 

We begin by giving an explicit formula for the adjoint 9*, thereby 
proving its existence. First we define the star, or duality operator, 

*: Ap-q{M)-^A"-p-n-'1{M) 

by requiring 
( * ( Z ) , T J ( Z ) ) $ ( Z ) = « K * ) A * I ? ( * ) 

for all ty&Ap'q(M). This is an algebraic operator, which is given locally as 
follows: if we write 

U 

then 

*T) = 2 ' + * - " 2 e/y %<*>,<, /\<PJO, 
I,J 

where 7 ° = { 1 , . . . , « } - / and we write e,j for the sign of the permutation 

(• "»! ' " ' ) - * ( ' W i ' - ^ - ' i . - . t p j ? , . . . j „ ° _ ? ) . 

The signs work out so that 

**r, = (-irv 
In terms of star, the adjoint operator is 

3* = _ * 3 * . 

Indeed, we have, for 4>&Ap-q~\M) and T)&Apq(M) 

(9>,TJ) = f ctyA*?? 
JM 

= (- iy+ 9r^A3*r,+ f 3(M*TJ). 
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Since d = d on forms of type (n,n- 1), the second term on the right is 

/ 
'M 

by Stokes' theorem. Thus, for all \p, 

(9>,T») = - f ^A*(*9*^) 
J M 

so that 3* is defined by the above formula. Note that 3 2 = 0 => 3*2 = 0. 
We now digress for a moment to explain the origins of the terminology 

Laplacian and harmonic. Provided we work with compactly supported 
forms, the above definitions are valid for any complex manifold. It is 
reasonable to expect the case of C with the Euclidean metric to provide a 
good local approximation to what is going on. Suppose we take p = q=0 
and write dz = dzxf\--- f\dz„. Then, for/eCC°°(C"), 

A(/ ) = 3*3/ 

-.8J2'-Z±it*A*/) 

3/ 
dzj \ dZj 

dz f\dz 

-US- * 
dz^ 

Since 

1 / 3 2 3 2 

: + 

we find that, up to a constant, A(/) is the usual Laplacian on functions in 
C" as K2". Later on, in the discussion of Kahler manifolds, this computation 
will be extended to show that 

AifdztAdzj) = 1-22 -gT^W/A^y, 

which explains the terminology for compactly supported forms in C". 
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Returning to our compact, complex manifold M, we are aiming for the 
famous 

Hodge Theorem 

1. d imW' q (M)<oo; and 
2. because of this, the orthogonal projection 

is well-defined, and there exists a unique operator, the Green's operator, 

G: Apq(M)—>Ap-'1(M), 

with G(D0,'q(M)) = 0, 3G = G3, 3*G = G3* and 

(**) I = % + &G 

on Ap-q(M). 

The equation ( * *) in the form 

^ = DC(^) + 3(3* G$) + d*(dCty) 

is called the Hodge decomposition on forms, since it directly implies the 
orthogonal direct-sum decomposition 

Ap'i(M) = %p'i{M)®1dAp'<<-\M)®d*Ap-'>+\M). 

The content of (**) is sometimes expressed by saying that, given rj, the 
equation 

has a solution \p if and only if %(-q) = 0, and then 

* = G( l ) 
is the unique solution satisfying %(ip) = 0. So, in effect what we shall be 
doing is trying to solve the Laplace equation on a compact manifold. The 
idea is to first solve this equation in the weak sense—i.e., in the Hilbert-
space completion tp'q(M) of Ap-q(M) to find a xp such that 

(i|/,A<p) = (ij,<p) 

for all <pGAp-9(M)—and then to prove that this i/> is in fact C00. The first 
step is pretty much formal Hilbert-space theory, and the second—usually 
called the regularity theorem—is at least a local problem, since <p may be 
written as a sum of forms with compact support in coordinate patches. 

Proof of the Hodge Theorem I: Local Theory 

The proof of the Hodge theorem given here uses elementary Hilbert-space 
techniques. We are looking for the element of smallest norm in the affine 
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subspace \f/ + dAp-q~l(M)cAp-9(M). Clearly such an element can be 
found in the closure of yp + dAp'q~x{M) in the completion tp,q(M) of the 
pre-Hilbert space Ap-q(M), simply by orthogonal projection. The problem 
then is to show that the element found in this way in fact lies in Ap,q(M). 
We start by discussing functions on the torus. This will provide a model 
for the formalism underlying the basic estimates; also, by rendering 
transparent the behavior of the Euclidean Laplacian on the torus, we will 
gain some idea of what to expect in general. 

Let T be the real torus (R/(27rZ))" with coordinates x = (*„... ,x„). 
Denote by F̂ the space of formal Fourier series 

fez-

The Sobolev s-norm is given by 

MJ-^O + llfllW. 
and we define the Sobolev spaces Hs by 

Hs={u<E<§: | |« | | ,<oo}. 
These are Hilbert spaces; we have clearly a sequence of inclusions 

D H_„ D # - n + 1 D • • • D H_x D HQ D # , D ■ • • D Hn D • ■ ■, 
and we let 

^oo = C\HS, H^x = U Hs. 

Now let CS(T) be the functions of class s on T. A function yeC°(T) 
has a Fourier expansion S<p^e'<£jc>, where 

We have Parseval's identity 

JT 
St-e'^-t'-^dx 

-'r f 

so that C0(T) maps into / / 0 injectively with || ||0 as L2-norm on C°(T). 
The justification of this interchange of limits is done by using partial sums 
and the Cauchy-Schwarz inequality. 
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We set Z)y = ( l / V — 1 )(d/dxj) and use the standard multiindex nota-
tions 

Da = D?<---D?, « = (<*„...,<*„), 
[ « ] = «!+••• +«„> 

? = #'•■■&. 

By integration by parts 

fz>Vf = f<p#^> <P,>P<ECX(T), 
JT JT 

and so for <pE CS{T) and [a] < s 

( £ > » £ = f Daye-i(i'xydx 

= f (ptae-Ki'x>dx 

i.e., 

iifl'viis-sinw 
Thus there is an inclusion 

cs(r) c //„ 
and from 

2 m<o+ii£ii2r<<; 2 m 
we see that on Cs(T)cHs the Sobolev norm || H, is equivalent to 

2 ll#>llo> 
[a]<s 

which we may describe as the \}-norm of the function <p together with its 
derivatives up to order s. Indeed, Hs is the completion of C°°(T) in this 
norm. 

There is a partial converse to this, the important 

Sobolev Lemma. Hs + ( n / 2 J + 1 c CS(T); that is, every ueH s + [ n / 2 ]+i is the 
Fourier series of a function <p £C(T) , and this series converges uniformly to <p. 

Proof. First, consider the case s = 0; let 

H 

with 

u = 2 «fe''<tJr> 

S ( l + lll|!2)"'/2,+l|«,l2<°o-
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The partial sums 

SK= 2 u,e-<^ 
ll«ll < « 

are continuous, and for R < R', 

\SK(X)-SA*)\< 2 N 
ii« ii > « 

87 

i (0+iifli2)t , , /21+Vtl2)" 

■* ((i + iini2)[n/21+,)1/2 

l l M l l [ n / 2 ]H 
i ^ « U i + lllll2)[n/2]+1) 

1/2 

( l + lllll2)1 

Now apply the integral test in W to conclude that 

1 

« U l + llfll2)' 2\[«/2]+« 

1/2 

î o u\ri 

converges, from which it follows that SR(x) converges uniformly to <pE 
C°(T) with«p{ = »{. 

Now we proceed by induction on s. Since the proof for general n 
involves only inessential formalism beyond what we have just done 
together with the one-variable case, we shall complete the argument only 
when n = 1. 

So, we suppose / / J + , c CS(T) and 

" = 2 ««**" 

satisfies wE/ / 5 + 2 , i.e., 

Set 

fez 

2 | ^ + 4 h | 2 < 00. 

e = 2 ifrte
iix. 

Then vBHs+l, and therefore is a function in CS(T) by induction hypothe-
sis. The convergence being uniform, we may integrate term-by-term: 

j v(t)dt = 2 Ute'&dx = u(x) — w0, 
•'o t 

so u'{x) = t)(x) and » 6 C ' + ' ( r ) . Q.E.D. 
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Summarizing, we have shown that the Fourier series mapping C°(T)-+<§ 
leads to inclusions 

C'{T)cH„ 
Hs + [n/2]+\ C CS(T), 

C°(T) = //„,. 
A useful remark is that the proof of the Sobolev lemma gives an estimate 

sup \D"tp(x)\ < Ca||<p||(„/2]+1+[o]. 
xer 

Rellich Lemma. For s > r the inclusion 

HscHr 

is compact. 

Proof. Given a bounded sequence {uk} in Hs, we want to find a conver-
gent subsequence in Hr. Since, for all k we have 

2 (i + ii*n2)rk.£f < 2 0+ll€im««l2 < c, 
( 

for fixed £ the sequence !( l + ||£||2) "*,?}* 1S bounded and hence has a 
Cauchy subsequence. By the standard diagonalization, then, we can find a 
subsequence {uk} such that 1(1 + ||£||2) uk,z)k is Cauchy for every £. 

Now we separate the terms with small | , of which there are only a finite 
number, from those with large £ where the factor (1 + | | | | | 2) r will help: given 
e > 0, choose R and m such that 

4 C <4 for U\\>R, 
2 V - ' 2 (l+lllll2) 

2 (l + llflfyi«M-"/.el2< 
e 

„ J < * " "" 2 

for k,l > m. Then 

ll»*-«,ll2 = 2 0 + ll*ll2)X«-««r' 
2\s 

0+na2) + ?. \uut-u, 
^ ( 1 + | |€H 2 ) ' - ' u\ 

12 

< | + | = e. Q.E.D. 

We now wish to examine the Laplace equation on the torus T. Essen-
tially we are going to prove in this case the Hodge theorem for 0-forms, or 
functions, with the standard Euclidean metric and relative to the exterior 
derivative d. 

file:///uut-u
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Although it is probably unnecessary, we remark that on a compact 
Riemannian manifold M we may define the adjoint d* of d, form the 
Laplacian Ad = dd* + d*d, and arrive at the exact same formalism as for 3 
on complex manifolds. The Hodge theorem is, of course, also true, and the 
proof is the same as the one we shall give in the complex case. 

For <p E C °°(T) the Laplacian is 

= - 2 *>£ll*l|V«-*>. 
i 

We will discuss the equation 

(*) A</«P = * 
in a manner such that the conclusions carry over to a general compact 
manifold. A function ( J D G L 2 ( T ) = H0 is said to be a weak solution to (*) if 

for all T ) G C 0 C ( 7 ) . In case the weak solution <p is also a C ° ° function, the 
Laplacian is self-adjoint, meaning that 

(7j,Arf<p) = (IJ,I/0 

for all TjeC°°(r) , and so Ad<p = \p in the usual sense. Weak solutions are 
easy to find by Hilbert-space methods, and the point is to prove regularity. 

We first note that the weak solutions of the homogeneous equation 

Arf<p = 0 

satisfy 

(ll*l|V<fcx\v) = o 
for all £. Thus the weak harmonic space consists of the constant functions, 
defined by <p^=0 for £=^0. 

Next, we observe that (*) makes sense when rp E L2(T) = H0. A necessary 
condition for it to have a weak solution is that i//0 = 0» i-e., ^ should be 
orthogonal to the harmonic space. 

Now, assuming this to be the case, 

^--2-iiiiV<tJ[> 

gives a formal Fourier series solution to (*). Since clearlv i/'EL2(T) => 
<pGL2(T), it is a weak solution. In fact we can say more: 



90 FOUNDATIONAL MATERIAL 

For i//EL2(7*), if we define the Green's operator by 

then 

G: Hs >Hs+2 

is a bounded linear operator. In case $ is perpendicular to the harmonic 
space, 

gives a weak solution to (*). By the Sobolev lemma, if f 6 C ° ° ( r ) then 
<jp G C °°(T) and y is a solution of (*) in the usual sense. Finally, by the 
Rellich lemma 

G: L2{T)-^L2{T) 

is a compact, self-adjoint operator. The spectral decomposition for G on 
L2(T) is just Fourier series. 

At this juncture the observations of the preceding paragraph more than 
establish the Hodge theorem for zero-forms on a torus. The essential point 
is this: The operator 

/ + Arf: HS-*HS 2 

is trivially bounded, since A is second order. More importantly, the identity 

| |(/ + A>p | | t 2 = | |<p | | 2
s 

allows us to invert I + Ad on L2(T) using the closed graph theorem. This 
inverse is a compact smoothing operator and contains the information of 
the Green's operator. If, on a general compact manifold M, we carry over 
the Sobolev-space formalism and can prove the basic estimate 

\\(I+*M\2s-2 > CsW\2s 

by calculus, then we can hope to obtain the same sort of picture as on the 
torus. 

We conclude the Fourier series discussion with some remarks concern-
ing distributions, defined as the linear functions 

\: c°°(r)—>c, 
which are continuous in the sense that 

|X(«p)| < Cx sup | />>(x) | 
[a]<k 
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for some k. Each distribution generates a formal Fourier series SA^e"**-* 
where 

A£ = A(e-'"«•*>). 

It follows from the definition of continuity of A and the above estimate on 
supx E r | / ) a(p(x) | that each distribution A is a continuous linear function on 
Hs for some s. The pairing 

(u,v) = 2 " £ u s 

identifies H_s with the dual of Hs, so that \EH_S with its formal Fourier 
series given above. If we denote by ^(T) the space of distributions, then 
we conclude that 

<%{T) = H_x. 

The derivatives of a distribution are defined by 

DaA(<p) = A(Z>». 
The Fourier coefficients of Z>"A are (Z)aA)|=|aA?. With this definition, a 
distribution is obtained by taking a finite number of derivatives of a 
continuous function. 

A final piece of useful terminology is this: A distribution A is said to be 
in L2 in case A G / / 0 c / / _ « , . Then we may describe the Sobolev spaces by 

Hs consists of all distributions A such that the distributional derivatives 
\y\are in V for [«]<s. 

An example of an interesting distribution is the delta function defined by 
8(<p) = <p(0). 

It has formal Fourier series 

t 
We shall not use distributions in proving the Hodge theorem, but they 

will be rather extensively discussed in Section 1 of Chapter 3. Note in 
passing that the equation 

Ad<p = ,//, 

where ^ is a distribution, may be solved provided that \p(rj) = 0 for any 
harmonic TJ. If ip&Hs for any s, positive or negative, then (p&Hs+2. In 
particular, regularity holds for distribution solutions as well as weak 
Hilbert-space solutions. We shall work in this latter setting in order to take 
advantage of the standard theory of compact, self-adjoint operators on 
Hilbert spaces. 
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Proof of the Hodge Theorem II: Global Theory 

On a torus the Sobolev s-norm is given equivalently by a weighted Fourier 
series norm or by the L2-norm 

2 {\Dy\2dx. 
[a\<sJT 

This latter may be extended to vector bundles over manifolds so that the 
Sobolev lemma and Rellich lemma both remain valid. We now explain 
how this is done. 

To begin with, suppose that f / c F c R " are open sets in R" with each 
relatively compact in the next. Functions with compact support in U may 
be considered as functions on a torus T. Suppose that t>,(x),...,t>„(;c) are 
C°° vector fields in V that are everywhere linearly independent, and that 
p(x) is a positive function on V. For cp e Cc°°( U) the Sobolev 0- and 
1-norms are equivalent to 

ff(x)\<p(x)\2dx, Jp(*){|<p(*)|2 + 2 | ^ * > H * ) | 2 } ^ 

respectively. More generally, note that the commutator 
[u,,o,]<p = vXvjtp) - u,(t>,.<p) 

is an operator of order 1, where an operator of order s is one involving at 
most ^-derivatives and denoted by a generic symbol A s<p. An expression 

» > = o f ' (o 2 - ' - - - (o» - - - ) 

is independent of the ordering modulo operators of order <[a]. It follows 
that the Sobolev .s-norm of <p G C/°( U) is equivalent to 

2 [\vMx)\2dx. 

Suppose now that E^>M is a vector bundle over a compact manifold M. 
Assume that we have connection V in E and in the tangent bundle T(M) 
of M. (It is more convenient to denote the connection operator by V, 
rather than D as in Section 5 of Chapter 0.) If {ea} is a local frame for E 
and {Vj} a local frame for T(M) with dual coframe {<p,}, then the 
covariant derivatives V,/a =fa , of a section/= 2 Jaea of E->M are defined 
by 

a,i 

We have 

/a.* «»//« + A r t , 
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where A is an operator of order zero involving the connection matrix. 
Applying these considerations to E®T*{M), we may define faiJ 

= V,( V,/a), and so forth. The commutation rule 

[V,,V,]/a = ^'(/) 
follows from the above expression for/a ,. 

Suppose now that E and T(M) have metrics and that {£„},{«,} are 
orthonormal frames. The global Sobolev s-norm of sections fEC°°(M,E) 
is defined by 

11/n2- = 2 f ii v*/ns<k, 
k<sJM 

where 

V* / -V(v ( . - - (V / ) - - . ) ) . 
k times 

Denote by %S{M,E) the completion of C°°(M,E) in this norm. Since, by 
our remarks at the beginning of this section, the global Sobolev norm 
induces a norm equivalent to the usual Sobolev norm on sections com-
pactly supported in a neighborhood of a point, by using a partition of 
unity we may conclude the 

Global Sobolev Lemma. Xln/2)+1+s(M)E)cCs(M,E), the sections of dif-
ferentiability class s on M, and 

Pi %,{M,E) = C°>(M,E). 
s 

Global Rellich Lemma. For s > r the inclusion 

%s(M,E)-^%r{M,E) 

is a compact operator. 

Now let M be a compact hermitian manifold with hermitian connection 
in the tangent bundle. Denote by %P,q(M) the completion of Ap'q(M) in 
the Sobolev .s-norm, || || = || ||0, and define the Dirichlet inner product 
and Dirichlet norm, respectively, by 

<$fa>,tf) = (<p,t) + (9<p,9» + (3*<p,3*^) 
= (<p,(/+AH0 

<3(9) = <fl(9,9) = |M|2 + ||3<p||2 + ||3*9||2. 
The basic estimate in the theory is provided by 

Garding's Inequality. For qpGAp'q(M) 
||<p||? < C^D(«p) (C>0). 
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We remark that the operator / + A, rather than just the Laplacian A, is 
being used, since A > 0 implies that / + A has no kernel and therefore we 
have a better chance of inverting it. 

One use of the Garding inequality will be to prove the 

Regularity Lemma I. Suppose that 9 e % r q ( M ) , and that 4>E%g,q(M) is 
a weak solution of the equation 

Ai/> = <p 

in the sense that 

(</-,AT)) = ((p,Tj) 

for all 77£AM(M). Then $£%^(M). 

For example, suppose that <p G % $q{M) is an eigenfunction for the 
Laplacian, meaning that, for a constant A, the equation 

A<p = A<p 
holds in the weak sense. Then by the regularity lemma, <pE:%P,q(M) for all 
s, and by the global Sobolev lemma we conclude that any eigenfunction 
for A is smooth. 

We note that any eigenvalue A>0, and A = 0 <=> <p is harmonic in the 
weak sense. By the regularity and Sobolev lemmas any such weakly 
harmonic form is C00 and harmonic in the usual sense. 

We shall assume the Garding inequality and regularity lemma and go 
ahead and complete the proof of the Hodge theorem. After this is done we 
shall prove the Garding inequality. The regularity lemma will be proved 
when we discuss smoothing of distributions in general. The reader who 
wishes to have the complete argument at hand may find the proof at the 
end of the subsection entitled "Smoothing and Regularity" in Section 1 of 
Chapter 3. 

The basic Hilbert-space tool is the spectral theorem for compact self-
adjoint operators, together with the principle of representing bounded 
linear functions by taking the inner product with a fixed vector, in the 
form of the following 

Lemma. Given <pG%$q(M), there exists a unique tp^% ?'q(M) such that 

(<p, 7,) = 6D0M) = (</,,(/+A)T}) 
for all i)6Ap,q(M). The mapping 

+ = n<p) 
from 5C{j'q(M) to SC^q(M) is bounded, and therefore the mapping 

T: %p
0-"{M)-^%p

Q-i{M) 

is compact and self-adjoint. 
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Proof The Girding inequality says that the Dirichlet norm is equivalent 
to the Sobolev 1-norm on %p,q(M). The linear functional 

Tj-»fo,i?) {i)&Apq{M)) 
extends to a bounded linear form on %p,q(M) with the Dirichlet norm, by 
virtue of 

\(<p,v)\ < IMIoltollo < IMIo^OO-
Thus the equation 

(<p,T>) = ^ ( ^ . I j ) 

has a unique solution \p = T(y) characterized by 
(<P,T,) = (r<p,(/+A)T,) ( 7 , e ^ « ( M ) ) . 

7" is self-adjoint, since this is true of / and A. From 

2aP < ea2 + -p2 

e 

and 

||7<p||?< Cq)(T<p,T<p) 
= C(<p, T<p) 

< C||<p|!ol|7Vllo 
1C 

<2eC\\T<p\\2
0 + — \Ml 

we deduce that 

This says that T is bounded as a map from % g'?(M) to 9C p,q{M), and by 
the global Rellich lemma it is compact as an operator on % ftq(M). Q.E.D. 

According to the spectral theorem for compact, self-adjoint operators 
there is a Hilbert-space decomposition 

%p
0'

q(M)=@E(pJ, 

where pm are the eigenvalues of T and E(pm) are the finite-dimensional 
eigenspaces. Since T is one-to-one, all pm¥=0; moreover, the equation 

T<P = Pm'P 

is the same as 

(«P.T,)-(pm V,(/ + A)i,) (VBA"'q(M)), 

which implies that 
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in the weak sense. It follows that the eigenspaces for T and A are the same 
and are finite-dimensional vector spaces consisting of C°° forms. The 
eigenvalues \ „ for A and pm for T are related by 

l 
Pm = 

We may assume that 
0 = X0 < A, < • • •, 

where A^foo, pm|0 as m—»oo. The harmonic space %p,q(M) corresponds to 
Ao = 0. ForcpEOC'^A/)-1 

I|A<P||0 > AJMIo (A,>0), 
and if we define the Green's operator by 

G = 0 onDC-*(3/), 

then G is a compact, self-adjoint operator with spectral decomposition 

%&«(M) = %™(M)(B(@E(pm)), 

where 

\ * Pm i 

At this point, we have proved the Hodge theorem. The essential idea is 
to produce the Green's operator by a Hilbert-space trick, and then to use 
the basic estimate to show that it is a compact smoothing operator. 
Actually, G is an integral operator of the form 

(Gcp)(x) = f G(x,y)<p(y), 
JM 

where G{x,y) is a beautiful kernel on M X M with certain singularities 
along the diagonal A. The Hilbert-space method has the disadvantage of 
not giving us the Green's operator in this form. If we were working with 
distributions rather than just L2-forms, then we could produce G(x,y) by 
solving a distributional equation of the type 

bxG(x,y) = 8y + Sy, 

where 8y is a delta function at_y and S is an operator of order — oo. Such 
equations will be discussed in Section 1 of Chapter 3. 
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Proof of the Gdrding Inequality. We suppose that <p,,...,<p„ is a local 
unitary coframe for the hermitian metric, so that 

i 

A form of type (p, q) is written locally as 

P-l- I,J 

where \pfJ is skew-symmetric in the indices /„ andjp. There is a famous 
formula for the Laplacian, the Weitzenbock identity, which we shall use in 
the crude form 

(W) (A*)/7 = ( - J ( V,V^/-7 j + A '(*). 

In other words, modulo lower-order terms the global Laplacian on forms 
looks like the Euclidean Laplacian — ~Zkd

2/\dzkdzk) on vector-valued 
functions. 

The precise Weitzenbock formula identifies the lower-order terms. For a 
general hermitian metric, A \\p) is a messy operator involving the torsion in 
its terms of first order. However, when the metric is Kahler, these drop out 
and A \\p) is the algebraic operator 

A '(>/')//= 2 Rj.k^ijr..e...j, (fc in ath spot), 
k,jatJ 

where 

RjR = 2 Rijk: 
i 

is the Ricci curvature. 
To prove the Weitzenbock formula we shall let vv...,v„ be the vector 

field frame dual to <p,,...,(p„, and vr=i5j. For a function/ 

and for a tensor T = {T,} the components of the z-covariant differential VT 
are given by 

( V T ) , = 3T, + A°(r). 

It is convenient to use the symbol " = " to denote "modulo lower-order 
terms," so that, e.g., 

( V T ) , = 8T,. 

W e s e t $ ' = <p,A--- A<P„-
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It will suffice to prove (W) when ip=f<p,A% (n° summation). Since the 
dz's act as, so to speak, vector bundle indices, we will assume p = 0. 
Finally, by the symmetry in the formula we may take J = (l,...,q), so that 

^ = / 9 i A ' - ' A%-

Now we compute: 

# = ( - l ) ' 2 M , A - A f ? A f t 
k>q 

^ = {-\)"2"+'-" 2 ( - i r ' - ' / ^ i A - ' A ^ A - ' A ^ A ^ 
k>q 

V k>q I t><7 

/ < ? 

*a*a^ = (2 2 /*,J<j>iA--- A % 

+ 2 2 ( - l ) / " , + 7M^,A-- -Af /A- - -A9 < 7A9/ t -
* > ? 

This gives *9*9^, and the other term 9*9*^ is similar but shorter: 

* * = 2»-"/s,+ i A - " A f „ A * ' 

d*4< = 2«~n 2 f,<P,A%+iA- ■ ■ A<PnA& 
/< q 

*9*^ = 2 2 ( - l)'~7,v. A- • • A#, A- • ■ A% 
l<q 

d*d*xp = 12 2 //./■ Wi A- ■ • A v , 

+ 2 2 ( - l ) ' + / / / , ^ iA- - ■ A ^ / A " • A<P,A% I. 

Now Vi(vjf) — vj(Vjf)=A\f), so that modulo first-order terms 

A^ = ( - 2 2 / ^ ) ^ , A - - - A ^ 

+ 2 2 ( - l ) , _ 1 +%9iA- • • A#/A- • • A<P„A<P* 

k>q 

+ 2 2 ( - l ) ' + 7£ /9 ,A - - -A# ,A - - -A9 n A%l 
k>q 
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The last two terms cancel to give 
A^ = (-22/f .* )viA-" A%-

This proves the Weitzenbock formula. 
We now come to the proof of the Garding inequality, where we assume 

the Weitzenbock in the form 

Inequalities of the type 

(*) 2a/? < ea2+-p2 

will be used repeatedly, and 3> = C„<I>'A$' denotes the volume form. Set 

V = Cn(- 2 (-l)*~W"fe<P.A---A<P*A---A<PnW' 
\ I,J,k I 

= C„'((V^)A<o"-')-
The second expression shows that TJ is globally defined, and since it has 
type (n— l,n), </TJ = 3TJ. By Stokes' theorem 

f 9TJ = 0. 

On the other hand 

9T, = (-2 2 taA)*-(2 2 totoW^V^)*-
V I,J,k I \ I,J,k I 

Thus, by the Weitzenbock formula 

where 
l | V ^ | | 2 = ( (V>,V*)* 

JM 

is the L2-norm of the z-covariant differential of the tensor i//, and A '(>//) is a 
first-order operator involving z-derivatives of \[/. Using (*), we obtain 

2|(^V^)l<e!|V^||2 + || |^||2, 
which implies that 

| |V^ | | 2 <C '{ (A^ ,^ ) + | | ^ | | 2 } , C > 0 . 
We now repeat the argument applied this time to 

Y = C„(- 2 ( - l ) * " 1 to^ / * iA-"A#*A"-A9 , , )A* ' 
V I,J,k I 
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and use fkj=fk-k + Al(f) to estimate the L2-norm ||Vi/'||2 of the z-deriva-
tives from below by the Dirichlet norm. Putting these together, 

| |V^| |2 + ||V^||2 + | | ^ | | 2 >C"( (A^^) + ||^I|2)=C"6D(^), 
which is the Garding inequality. 

Remark. In the Kahler case one may use the precise Weitzenbock for-
mula and the above integration by parts calculation to prove the Kodaira 
identity 

where, for <J>E/40,,?(Af) and summing repeated indices, 

If \p is harmonic and the hermitian form 

RuVV 
is positive definite, then we deduce that <^=0. By the Hodge theorem 

0 = %°"{M) a H°-*(M), q > 0. 

This is a special case of the famous Kodaira vanishing theorem, for which 
the general argument will be given in Section 3 of Chapter 1. 

Applications of the Hodge Theorem 

We begin by noting the isomorphism 
eXP'9(M)—>Hl'q(M) 

between the harmonic space and Dolbeault cohomology groups. In fact, by 
the Hodge decomposition every ci-closed form i f£Z^ ' ' (M) is 

since dG\p= G8i|/=0. Combining this isomorphism with the Dolbeault 
isomorphism, we find 

By the first statement in the Hodge theorem, this implies 

Finite Dimensionality 

d imt f^M. f l ' ) < oo. 
It is instructive to give a direct proof of finite dimensionality in the case 

<7 = 0. Let {Uj} be a finite coordinate covering of M with holomorphic 
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coordinates z, , , . . . ,z,„ in Ut. We may find relatively compact open subsets 
Vi c Ut that still constitute a covering of M. A global section 

( p £ / f ° ( M , S ! ' ) = H\{Vi]Mq) 

is given in {/, by 

where <^(z) E 0 ({/;). We define the norm 

IMI = 2 SUP l<P/.y(̂ )l-
i.J z S K, 

This norm is finite, and since (1) H°({ F,},fl9)s //°({ 1/,},Q«) and (2) any 
sequence of analytic functions i|'„E0(C/;) satisfying supiS>, |^,,(z)->pM(z)|-» 
0 has a subsequence converging uniformly to a holomorphic function 
i | / e0 (^ ) , we deduce that with this norm H\M,W) is a complete Banach 
space. By the Montel theorem, given a sequence <p^E//°(M,fl9) with 
||<p„|| < 1 we may extract a subsequence whose coefficient functions <p„,(i/(z) 
G 0( Uj) converge uniformly to some <pitj(z) E 0( Fj-). Thus the unit ball in 
this Banach space is compact, and by a result in Banach-space theory this 
implies that it is finite dimensional. 

Actually, it is obvious that a Hilbert space whose unit ball is compact is 
finite dimensional, and we may make H°(M,Q,q) into a Hilbert space by 
defining 

(? , * ) -2 f *>,.,(*) *7 * ) *(*/)» 

where 3>(z,) is the Euclidean volume form in the coordinates z,. Since (1) a 
sequence «//„E0(L^) that is Cauchy in L\V^) has a subsequence converging 
uniformly on compact subsets of Vt to ^E0(K, ) , and (2) a sequence 
ip„G6(Ui) that is bounded in L2(Vt) has a similarly convergent sub-
sequence, we may adopt the previous argument to this Hilbert-space 
setting. 

This argument may be modified to prove the finite dimensionality of all 
Hq{M,Q,p), and indeed the finite dimensionality of Hq{M,'§) for any 
coherent analytic sheaf ^—these matters will be discussed further in 
Section 3 of Chapter 5, where it will emerge that the finite dimensionality 
is the central fact in the global theory of coherent sheaf cohomology on a 
compact manifold. 

A second application of the Hodge theorem is to Kodaira-Serre duality. 
From the formula 3* = — *3 * we see that 

*A = A*. 
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This implies that the star operator induces an isomorphism 
*: %p-i{M)->W-p-n-q{M). 

In particular 

D C - " ( A / ) s C - * , 
where $ = * 1 is the volume form of the metric. 

To put this isomorphism in intrinsic form not depending on the choice 
of a metric, we remark in a general fashion that, given sheaves 'f, §, and 
% over a space X and a sheaf mapping 

there is an induced cup product 

H*(X, 9 ) ® H*(X, §)^>H*(X, X) 

given by the cochain formula at the end of the discussion of de Rham's 
theorem. In particular, the pairings 

induced by the exterior product of holomorphic differential forms induce 

(*) H*(M,Qr)® H*(M,QP)—>H*{M,Q,p+q). 

On the other hand, the pairing 
{ , } : Apr(M)®A"s(M)—>Ap+"<r++s{M) 

given by 

satisfies 

3{^,T,} = { a ^ } ( - i ) d e g V 9 T , } 

and so induces 

(**) HP*(M)<S>H?*(M)—>HP + "-*(M). 

The pairings (*) and (* *) correspond under the Dolbeault isomorphism, at 
least modulo signs, for the same reason as in the discussion at the end of 
de Rham's theorem. With this understood we have the 

Kodaira-Serre Duality Theorem 

1. H"(M,ttn)—>C,and 
2. the pairing 

H«(M,ttp) ® H"-"(M,Qr~p) —>H"(M,Qr) 

is nondegenerate. 
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Proof. The mapping in 1. is given by composing 

with the linear function 

defined by 

which is well-defined on account of Stokes' theorem and */=5 on 
A "•"" "(Af). The fact that 1. is an isomorphism results from 

Hln{M) a 3C-"(M) = C • $, 
since X 

f 4> = vol(M) > 0 . 

The pairing 2. is given by composing 

with the pairing 
H^"{M) (8) H^-p-n'"(M) —» C 

defined by 

It is nondegenerate, since 
H?'i{M)^ %P'«{M), 

and for a harmonic form \p^0 

xP<S)*xP^ f >PA**P= lhHI2>0. Q.E.D. 
■> M 

We now come to the Kiinneth formula. Given compact, complex mani-
folds M and N, we consider the product M X N. The projections onto the 
two factors induce maps 

H*(M,Wf)-*H*(MXN,arUxN), 
H*(N,%)->H*(MXN,WMXN). 

We will prove in a minute that these are injective, and will identify these 
groups with their images. This being understood, the cup product gives 
(*) H*(Af,Q*„)®H*(M,n%)—>H*(MxN,QtfxN). 
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The Kunneth formula asserts that this is an isomorphism. 
We will prove this using harmonic forms. Hermitian metrics on M and 

TV induce the product metric on M X TV, and we will show that, with this 
choice of metrics, 

(••) r ( M x J V ) - +©_u(3G'-*(A/)®3<r-*(JV)). 
q+ s = v 

This will establish the Kunneth theorem. 
To carry this out, we denote by z, w generic local coordinates on M and 

TV. Given forms ^,TJ on M,N, respectively, we will denote by Î <8>T) the 
induced form on M X TV given by 

{4>®T)){Z,W) = ^(z)Alj(w). 
These forms will be said to be decomposable. 

Lemma. The decomposable forms are L2-dense in all the forms on M X N. 

Proof. We will do this in the case of functions; the modifications neces-
sary to treat general forms will be clear. 

It must be proved that a function <p(z, w) that satisfies 

f <p(z,w)(^(z)T,(w)) = 0 
JMXN 

for all \p and 17 is zero. Suppose Re<p(z0,H>0)>0, choose \p(z),ri(w) to have 
compact support near z0, w0, respectively, and satisfy 

Re(<p(^)) > 0, Re(<p(z0,H>0)«Kz0)7](w0)) > °-
This is easy to accomplish using a real nonnegative bump function. Then 
the above integral is nonzero. Q.E.D. 

Forms on M X TV are locally written 

dz,/\dwr/\dzj/\dwj,, 

and then 

3/UXN =^M±^N 

where dM is exterior derivative with respect to the zfs and similarly for 3^. 
Since the metric is a product, we may choose an orthonormal coframe for 
M X TV of the form 

{<pl(z),...,<pm{z);xpi(w),...,xl/n(w)}, 

where the <p,(z) are an orthonormal coframe for M and the \pa(w) are the 
same for TV. Using the formula 

3 * = _ * 3 * 
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we find that 

These relations imply that 

More precisely, on decomposable forms 
(*®tj) = (A„*) ® r? + * ® (A^) , 

and by the lemma this determines AW)<Aron all forms. 
Now we come to the main point. If i//„^2,... are a complete set of 

eigenforms for AM and TJ,,TJ2, ... a complete set of eigenforms for AN, then 
the forms 

are eigenforms for AMxN. By the lemma they form a complete set. If 

then 

^x*(«fc®u,) = (\ + ft,)Wv®i<.). 
Since \ + jna = 0 «=» X, = jua = 0, the assertion (* *) about the harmonic forms 
follows. Q.E.D. for Kunneth. 

If we define the Hodge numbers 

h?«{M) = dim H<(M,0r), 
then we have proved that 

hpq{M) < oo, 
h"-"{M)=\ and 
h"-"(M) = h''-p"-'l(M), 

h"-v(MXN)= 2 h"'"(M)hr's{N). 
p + r= u 
q + s = v 

In case M is Kahler, there will be additional deeper-lying relations among 
the Hodge numbers, such as 

h"-"{M) = h"-p(M), 

MM)= 2 h"-"{M), 
p + q = r 

hpp(M) > 1, 
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where br(M) = dimHr(M, C) is the rth Betti number. These, and much 
more, will be derived in the next section. 

One final comment. In general the exterior product of harmonic forms is 
not harmonic. Similarly, the restriction of a harmonic form to a submani-
fold is generally not harmonic for the induced metric. Otherwise the 
cohomology ring would have only those relations imposed by exterior 
algebra. Moreover, the two Laplacians on a hermitian manifold, 

A 5 = 3 3 * + 3*3, 
Ad= dd* + d*d, 

are generally unrelated. It is a miraculous fact that, when the metric is 
Kahler, both these general principles are violated and the theory of 
harmonic forms has an extraordinary amount of symmetry. More on this 
in the next section. 

7. KAHLER MANIFOLDS 

The Kahler Condition 

Let M be a compact complex manifold with Hermitian metric ds2, and 
suppose that in some open set U CM, ds2 is Euclidean; that is, there exist 
local holomorphic coordinates z = (z,,...,z„) such that 

ds2 = 2 dz, ® dzt. 

Write z, = x, + V— 1 yt; one may directly verify that for a differential form 

<P = 2 Wudzi A dlj 

compactly supported in U, 

v ^ 92 

Ag(<p) = - 2 2J -T~^9JJ ■dz,/\dzJ 
TTli 9 z ' 9 z -

J ^ + ^ ) t e ' * ' A * ' I.JJ 

= f A„(<P), 
i.e., the 3-Laplacian is equal to the ordinary rf-Laplacian in U, up to a 
constant (cf. Section 6 above). Of course, very few compact complex 
manifolds have everywhere Euclidean metrics, but as it turns out in order 
to insure the identity 

A 5 = f A , 
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on a complex manifold, it is sufficient that the metric approximate the 
Euclidean metric to order 2 at each point. This is the Kdhler condition, and 
we will spend the greater part of this section discussing the condition and 
its consequences. 

We start by giving three alternate forms of the Kahler condition. Again, 
let 

ds2 = 2 hy dzi ®dzj = ^d <P, ® 9i 

be a Hermitian metric on the complex manifold M. We say that ds2 is 
Kdhler if its associated (1, l)-form 

w = — 2 — Z>VA<Pj 

is ^/-closed. In Section 5 above we showed that there was a unique matrix \p 
of 1-forms satisfying 

% + fji = 0. <*Pi = 2 % A 9$- + T, 

where T, is of type (2,0); there we said that the metric was Kahler if the 
torsion T = 0 . We now show that these conditions are equivalent. Write 

2 
, da = 2 d<pj A W: - 2 <P/ A # , 

= 2 tyAVjAw ~ 2 Vi/\%/\Vj + 2 T; A 9 / - 2 9,-AT,-
We have 

2 ti/AVjAVi - 2 toA$SA% = 2 *l>&A<PjAv, + 2 < P , A ^ A ^ = 0 

and so ( 2 / V - 1 )rfw = 2T,-Aw--StyAT,-. But T, is of type (2,0) and the 9, 
are pointwise linearly independent (0, l)-forms, which implies that </w=0 if 
and only if T = 0. 

Another interpretation of the Kahler condition that gives some geomet-
ric insight is this: We say a metric ds2 on M osculates to order k to the 
Euclidean metric on C" if for every point z0GM we can find a holomor-
phic coordinate system (z) in a neighborhood of zQ for which 

ds2 = 2(Sij + giJ)dz^dzJ, 

where g^ vanishes up to order k at z0; we usually write 

ds2 = ^(SiJ+[k])dzi®dzJ. 

Lemma, ds2 is Kdhler if and only if it osculates to order 2 to the Euclidean 
metric everywhere. 
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Proof. One direction is clear: if 

in some coordinate system around z0, then do)(z0)=0. 
Conversely, we can always find coordinates (z) for which hjj(z0) = 8iy, i.e., 

w = . 2 (8ij + alJkzk + aiJk-zk + [2]) dz-t f\ dzy, 
• J.k 

note that 

and 

hij = hji =» ajik = auk 

du = 0=*aiJk = av,, 

We want to find a change of coordinates 

h = w* + 2 2**to.w/w* 
such that 

(*) <o = ^ 

we normalize by requiring 

Then 

1 
2 ( S , + [ 2 ] ) < / w , A ^ ; 

dzk = dwk + '2 bklmw,dwm, 

so that 
2 

— w = 2 {dw^ + ̂ 2 bi/mw,dwm) A^1(dwi + ̂ l bipq wpdwq) 

+ 2 (aykwk + %k™k)dwt/\dwj + {2] 

= 2 ( % + 2 (aff* wt + a^wt + fyyW* + ~b~~kj wk ) j dW, A dWj,+ [ 2}. 

If we set 

then 

and 

"iki ~ aiik'i 

bjki — aijk — akji ~ fyik 

,Jikj ajik ~ aijk> 

so that the coordinate change does in fact satisfy the condition (*). Q.E.D. 
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Another way of expressing this condition that is useful in computation is 
to say that for each point z0GA/we can find a unitary coframe <p„...,q>„ 
for the metric in some neighborhood of z0 such that rf<p,(z0)=0. 

A manifold is called Kdhler if it admits a Kahler metric; we now give 
some examples of Kahler manifolds. 

Examples 

Any metric on a compact Riemann surface is Kahler, since du is a 
3-form, and hence zero. 

If A is a lattice in C , the complex torus T=C"/A is Kahler with the 
Euclidean metric ds2 = 'Zdzi<S>dzi. 

If M and N are Kahler then M X N is Kahler, with the product metric. 
If ScM is a submanifold, w the associated (l,l)-form of a Kahler 

metric on M, we have already noted in Section 2 above that the associated 
(1, l)-form of the induced metric on S is just the pullback to S of w; thus if 
M is Kahler then S is Kahler. 

Recall that the Fubini-Study metric on P" is given by its associated (1,1) 
form 

W = -^^331og| |Z | | 2 

LIT 

where Z is a local lifting of UcP" to C + 1 - {0}. Since 33= -98, 

' • - ^ ^ - ( 3 + 3)(3-3)log||Z||2 
4ir 

4w -rf((3-a)iog||zn2), 

so we see that w is closed, and the Fubini-Study metric is Kahler. 
{Note: It is convenient to define an operator dc by 

d and dc are both real differential operators, and 

ddc = -dcd= ~l 93. 
2n 

We can consequently write 

w = ^log||Z||2 .) 

Note by the above that any compact complex manifold that can be 
embedded in projective space Pn is Kahler. 

We give some immediate topological consequences of the Kahler condi-
tion: For M a compact Kahler manifold, 
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1. The even Betti numbers b2q(M) are positive; 
2. The holomorphic q-forms H°(M,flq) inject into the cohomology 

H^R(M), i.e., every such TJ is closed, and is never exact; and 
3. The fundamental class 17 v of any analytic subvariety V c M is nonzero. 

Proofs. 2. Let 17 be a holomorphic (<7,0)-form; we want to show rfrj = 0, 
and that i] = d\p only if rj=0. Let (p,,...,<p„ be a local unitary coframe; if 

^ = 2 Vi<Pi, 

then 

Now 

so 

— 2<P,A<P„ 

thus, for suitable C ^ O , 

T , A T ? A w " - 9 = C , 2 h i l 2 - * 

where $ is the volume form. Consequently, 

f T J A ^ A W ^ ' ^ O i f r j ^O. 
•'A/ 

Now suppose -q = d\p. Then d-q = di]=0, and since du = 0 we have 

f r, Ai? A«""» = f 4 M f A ^ " " ? ) = 0. 
•'A/ -'A/ 

Thus t) = d\p implies that rj=0. Finally, since </T/ = 3TJ is a holomorphic 
(q+ l)-form and is exact, it follows that dij = 0. 

1. To show b2q(M)>0, we exhibit uq as a closed 2^-form that is not 
exact: if uq = d*p, then we have 

f <o" = f rf^A""-') = 0. 
-'A/ •'A/ 

But w"/n! is the volume form on M, and so this cannot happen. 
3. The proof of 3 is clear: for V of complex dimension d, by the 

Wirtinger theorem from Section 2 above 

so ( T J K ) ^ 0 in H2d{M). Q.E.D. 
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Note that 1 and 3 are extensions of the propositions proved on p. 64 for 
submanifolds of projective space. 

The Hodge Identities and the Hodge Decomposition 

Let M be a compact complex manifold with hermitian metric ds2 and 
associated (1, l)-form w. We have defined a number of operators on the 
space A *(M) of differential forms on M, such as 3, 3, d, dc, their respective 
adjoints and associated Laplacians, and the decompositions 

IF'*: A*(M)^Ap'9(M) 

TJ' = 0 IF'*: A*(M)^Ar(M) 

by type and degree. We define an additional operator 
L: A"-"(M)-^A''+,'''+,(M) 

by 
L(v) = l A w 

and let 
A = L*: Apg(M)-*Ap-l''l-l(M) 

be its adjoint. Now, for general M there are no nonobvious relationships 
among these various operators. If we assume that the metric on M is 
Kahler, however, we get a host of identities relating them, called the Hodge 
identities. Indeed, the Kahler condition is exactly that which insures a 
strong interplay between the real potential theory associated to the 
Riemannian metric and the underlying complex structure. The basic iden-
tity, from which all the others will easily follow, is 

(*) [A,d] = -And'', 

where [A,B] denotes the commutator AB — BA; or eqitivalently, 
[L,d*] = « ( . 

Proof. By decomposition into type, this identity is equivalent to 

[A,3]= - V ^ l 3 * and [A,3] = \^=T 5*. 
Since A, d, and dc are real operators, either of these implies the other; we 
will prove [A, 3] = V - 1 3*. We make the computation first on C" with the 
Euclidean metric. Here it is messy but straightforward and will be facili-
tated by our breaking it up into component steps. To do this, we introduce 
some new operators on forms in C": for each k=\,...,n,\tiek :Ap'q(£.")^> 
Ap+,q(C") be the operator on compactly supported forms defined by 

ekW) = dzk/\fp; 
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let ek :AP-"(C)-^AP'''+\Cn) similarly be given by 

ek(<p) = dzk/\<p. 

Let ik and ik be the adjoints of ek and ek, respectively. Note that ek, ek, ik, 
and ik are all linear over C°°(C"). Now 

ik(dzj/\dzK) = 0, i{k<£J, 

and, recalling that the length ||rfzj|=2, 

'k (dzk A dzj /\dzK) = 2 dzj A dzK; 

since in the former case, we have for any multiindexes L and M 

(ik(dzjAdzK),dzL/\dzM) = (dzj /\dzK,dzk/\dzLf\dzM) 
= 0, 

so ik(dzjAdzK) = 0, while in the latter case 

(>k(dzk/\dzjAdzK),dzLAdzM) = (dzkAdzjAdzK,dzk/\dzL/\dzM) 

= 2(dzj AdzK,dzLAdzM). 

Similarly, we see that 

ik(dzjAdzK) = 0, xik&K, 

and 

ik(dzkAdzjAdzK) = 2dzjAdzK. 

Note also that for any monomial dzjAdzK, 

, , A ,_ x JO, if Zee/, 
ik ■ ek{dzjAdzK) = J 2dzjAdzK, if * <2/ 

while 

o, i f&gy. 
Thus 

hek + e*4 = 2 

and likewise / ^ + ekik = 2. On the other hand, we have for k=£l, 

ik-ei(dzkAdzjAdzK) = ik{dzlAdzkAdzJAdzK) 

= ' * ( - dzkAdz,AdzjAdzK) 

= -2{dz,AdzjAdzK) 

= -2e,{dzjAdzK) 

= -erik{dzkAdzjAdzK), 

while 

ik-ei(dzjAdzK) = e,-ik{dzjAdzK) = 0 
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in case k £ / , so we have 
ek'i + hek = 0. 

We also define operators 9* and 9*. on A^q{C) by 

M S ^ M ) = 2 -Qf-dzjAdzj 

and 

M 2 <Padz,Adzj) = ^~-dz,/\ dz}. 

Note that 9̂  and 9\ commute with e,, e„ i„ and /, and with each other. 
Finally, we see that the adjoint of 9A is — dk: we have for cp = '2<pIjdzl/\dzK 

any compactly supported form, L and M any multiindices and \p any C°° 
function, 

(-dk(p,xpdzL/\dzM) = [-—(<pLM)dzL/\dzM,^dzL/\dzM\ 

JC" vzk 

u # /• fj 

= 2 L + M I <p/Jir - -=—(^) (by integration by parts) 
•X" OZk 

= (<PLMdzLAdzM,dk(xp-dzL/\dzM)) 

= {<p,dk{xpdzLAdzM)). 

Likewise, the adjoint of 9* is — dk. 
We can express all of our operators on A**(C") in terms of these 

elementary operators: clearly 

* k 

and, taking adjoints, 

3* = - S 3,4-
3*=-23A-

L is defined as exterior product with the standard Kahler form defined 
on C", so 

L = — o — Z ekek 
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and, taking the adjoint, 

To evaluate the first term, write 

For the second term 

so the identity is proved on C". 
To prove the result on a Kahler manifold M we use the condition of 

osculation to show that the identity holds at any point: for z06M, we can 
choose a coframe <p,,...,<jp„ for the metric such that df<p,(z0) = 0. The 
expression for A holds with dz, replaced by <p,; we can make essentially the 
same computation for [A,3]T) as on C" except that we will get terms 
involving 3<p,. Since [A, 3] involves only first derivatives, however, all the 
additional terms will have a factor 3<p, and hence will vanish at z0. 
Likewise, we have computed 3*T) = C„*3*TJ on C" where it agrees with 
V - 1 [A,3]TJ; the computation on M in terms of the <p, will again be the 
same except for additional terms involving 3<p„ which vanish at z0. Thus we 
see that the identity holds at z0, hence everywhere. 
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This argument is just one instance of a general principle: any intrinsically 
defined identity that involves the metric together with its first derivatives and 
which is valid on Cn with the Euclidean metric, is also valid on a Kdhler 
manifold. 

Now, some consequences: if &d = dd* + d*d is the rf-Laplacian, we have 
[ L , A , ] = 0 

or, equivalently, 
[AA] = 0. 

Proof. First note that since co is closed, 

i.e., 
[L,d] = 0 

and so by taking adjoints 
[A,d*] = 0. 

Now 
A(dd* + d*d) = (dAd*-4<!rdc*d*) + d*Ad 

= dAd* + (4-!rd*dc* + d*Ad) 
= (dd* + d*d)A. Q.E.D. 

We also have, as mentioned earlier, 
Arf = 2Ag=2A3. 

Proof. First we show that 38*+ 3*3=0: since A3 —3A= V— 1 3*, we 
have 

V=T (33* + 3*3) = 3(A3 - 3A) + (A3 - 3A)3 
= 3 A 3 - 3 A 3 = 0 . 

Now, 
Ad = (3 + 3)(3* + 3*) + (3* + 3*)(3 + 3) 

= (33* + 3*3) + (33* + 3*3) + (33* + 33* + 3*3 + 3*3) 
= (33* + 3*3) + (33* + 3*3) 
= Ad + Ag, 

so we have to show 
A3 = Aj. 

For this 
- V ^ T Aa = 3(A3 - 3A) + (A3 - 3A)3 

= 3A3-33A + A 3 3 - 3 A 3 
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and consequently 

V ^ A3 = (3( A3 - 3 A) + (A3 - 3A)3) 
= 3A3-33A + A33-3A3 
= \A^TA3, 

since 33 = - 33. Q.E.D. 

As an immediate corollary we see that Ad preserves bidegree; i.e., 
[Arf,n"]=a 

There are two main applications of these identities, the Hodge decom-
position and the Lefschetz decomposition and theorem. We do Hodge first: 

Set 
, N ZS-HM) 

Hpq(M) = — - — 

%r(M) = {VEA"-"(M): Arf7,=0), 
%(M) = {VGAr(M): A „ T , = 0 } . 

Note that the first group is intrinsically defined by the complex structure, 
while the latter two depend on the particular metric. By the commutativity 
of Ad and IF'* and the fact that Ad is real, the harmonic forms satisfy 

\%'(M)= © %'-i{M), 

[ %p-"{M)=%e>-p{M). 

On the other hand, for 17 a closed form of pure type (p,q), 

r, = 0C(T,) + dd*G(v), 

where the harmonic part %(rj) also has pure type (p,q). Thus 
Hpq(M)s %P'"(M). 

Combining this with (*) and the Hodge theorem 

for the Laplacian Ad, we obtain the famous 

Hodge Decomposition. For a compact Kdhler manifold M, the complex 
cohomology satisfies 

Hr(M,C)= @=rH
p''(M), 

{ Hpq(M) = Hqp(M) . 

Since A^ = 2A5, we have %p,-"(M) = cXp-q(M) and consequently 

Hp-q(M) at Hpq{M) s Hq(M,tip). 
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In particular, taking q = 0, 

Hp0(M) = H°(M,QP) 

is the space of holomorphic jj-forms. The holomorphic forms are therefore 
harmonic for any Kahler metric on a compact manifold. 

We note also that 

The Betti numbers b 2 q + [(M) of odd degree are even. 

Proof. If we define the Hodge numbers by 
hp'«(M) = dim H"'q(M), 

then the Hodge decomposition gives 

br(M)= 2 h"-"(M), 
p + q = r 

h»«(M) = h"p(M). 
Taking r = 2q+ 1, we find 

b2q+i(M) = 2 2 h"-2"+l-p(M) 
p=0 

We can put the cohomology groups of a compact Kahler manifold 
diagrammatically in the Hodge diamond (Figure 6), so that the kth 
cohomology group of M can be read off as the sum of the groups in the 
&th horizontal row. The star operator gives a symmetry about the center of 
the diamond; conjugation gives a symmetry about the center vertical line. 

As an immediate application of the Hodge decomposition, we have the 

(», o) 

(1. 01 

(0, u) 

(0. 0) 

Figure 6 
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Corollary. 

H«(P",ttp) = HPq(P") = 
0, ifp¥=q, 
C, ifp = q. 

Proof. This is clear: since H2k+\Pn,Z) = 0, we have HP'q(P") = 0 for 
p + q odd; since H2k(P",Z) = Z, we have for p¥=k, 

1 = b2k{P") > hp-2k-p(Pn) + h2k-"'p(P") 

= 2-hp2k'p 

=*hp-2k-p{Pn) = 0 
and hence 

Hp-p(P") s» HgRr(P") st C. Q.E.D. 

Note in particular that 

There are no nonzero global holomorphic forms on Pn. 

The Lefschetz Decomposition 

Another important application of the Hodge identities is the Lefschetz 
decomposition of the cohomology of a compact Kahler manifold. To put 
this in proper perspective, we must first digress for a moment and discuss 
representations of sl2. 

Representations of sl2. sl2 is the Lie algebra of the group SL2; it is realized 
as the vector space of 2 x 2 complex matrices with trace 0, and with the 
bracket 

[A,B] = AB-BA. 

We take as standard generators 

*-(l ;)• H i .?)■ H? ?)■ 
with the relations 

[X,Y] = H, [H,X] =2X, [H,Y] = -2Y. 

Now, let V be a finite-dimensional complex vector space, gl(V) its 
algebra of endomorphisms. We want to study Lie algebra maps 

p: sl2-*gl(V), 

i.e., linear maps p such that 

p([A,B]) = p(A)p(B)-p(B)p(A). 

Such a map is called a representation of sl2 in V; V is called an sl2-module. 
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A subspace of V fixed under p(s/2) is called a submodule; V (or p) is called 
irreducible if V has no nontrivial submodules. By a fundamental result, 
which we won't prove here, every submodule W of an s/2-module V has a 
complementary submodule WL; thus every s/2-module is the direct sum of 
irreducible ^/2-modules, and to study representations of sl2 we need only 
look at irreducible ones. 

Suppose then that V is an irreducible j/2-module. The key to analyzing 
the structure of V is to look at the eigenspaces for p(H) (from now on, we 
will omit the p's). These are called weight spaces. First of all, note that if 
v £ V is an eigenvector of H with eigenvalue A, then Xv and Yv are also 
eigenvectors of H, with eigenvalues X+2 and \ — 2, respectively: this 
follows from 

H{Xv) = XHv + [H,X]v 

= XXv + 2Xv 
= (\ + 2)Xv, 

and similarly for Yv. Since H can have only a finite number of eigenval-
ues, we see from this that X and Y are nilpotent. We say that o £ F is 
primitive if v is an eigenvector for H and Xv = 0; clearly primitive elements 
exist. 

Proposition. / / v G V is primitive, then V is generated as a vector space by 

v,Yv,Y2v,.... 

Proof. Since V is irreducible, we need only show that the linear span V 
of {Y'v} is fixed under sl2. Clearly HV'cV and YV'cV. We show 
XV c V by an induction: ^ = 0 trivially lies in V, and in general 

XY"v= YXY"-{v+ HY"~lv; 
so 

A T " " ' t ) G r = > X Y " v e V. Q.E.D. 

Note that the elements { Y"v}n that are nonzero are linearly independent, 
since they are all eigenvectors for H with different eigenvalues. Thus we 
have the picture of V: V= © Vx, where each Vx is one-dimensional, 

n{vx) = vx, x(vx) = vx+2, Y(VX) = vx_2. 

Proposition. All eigenvalues for H are integers, and we can write 

Proof. Let v be primitive, and suppose 

Y"v¥=0, yn+1t5 = 0, 
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and Hv = \v. Then 
Xv = 0, 

XYv = YXv + Hv = \v, 
XY2v = YXYv + HYv 

= Y\v + (X-2)Yv = (X + (\-2))Yv, 

and in general XYmv= YXYm~iv+ HYm~xv, so we have 

XYmv = (A + ( A - 2 ) + ( A - 4 ) + • • • +(X-2(m-\)))Ym',v 

= ( w A - w 2 + m)ym _ l tJ , 
and since F W O , y + 1 u = 0, 

(« + l ) A - ( « + l ) 2 + « + l = 0=»A = n. Q.E.D. 
In summary, rte irreducible sl2 modules are indexed by nonnegative 

integers n; /or each such n //?e corresponding sl2-module V(n) /lay dimension 
n + 1. Explicitly, 

V(n) SE Sym"(C2) 
w /Ae n?A symmetric power of the vector space C2. 77ze eigenvalues of H 
acting on V(n) are — n, — n + 2, . . . , n — 2, n, eacA appearing with multiplicity 1. 

For any j/2-module K, not necessarily irreducible, we define the 
Lefschetz decomposition ofV as follows: let />K=Kerp(Ar); then 

V = PV® YPV @ Y2PV © • • • , 
and this decomposition is compatible with the decomposition of V into 
eigenspaces Vm for H. We also see that the maps 

V <=^ F 
" r " 

are isomorphisms. Finally, in general, 
( K e r * ) n Vk = Ker(Y* + l : Vk^V_k_2). 

We return now to our compact complex manifold M with Kahler metric 
<fc2 = 2<Pi®<p,-. First, we want to compute the commutator [L,A] of the 
operators L and A; this may be done on C" using the operators ek, ek, ik, 
and ik defined earlier. Recall that 

L = — - — ^ ekek and A = =— 2 4'*; 

we have then 

[L'A] = i ( 2 **<?*'/'/-2 '/'A^l 

= 7 2 {ekeki,i,-i,i,ekek) 4 * * / ■ 
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By our commutation relations, every term in the first sum is zero; for the 
second, we have 

ek&k'k'k ~ ^-ekh ~~ ek*k$k'k-> 

'k'kek^k = *-'k*k ~~ 'kekh?k> 

and, since ekikekik — ikekikek, this yields 

[L,A] =j^(ekik-fkek) 
*• k 

= ^H(^-ikek~'ksk) 
z k 

= n-^^(ikek + ikek). 

To evaluate this, note that ikek(dzj/\dzK) is zero if kSJ, and 2dzj/\dzK 

otherwise; ikek(dzj/\dzK) is zero if Are AT and 2dzjf\dzK if not. Thus 

2 ('*«•* + 'hh){dzj/\dzK) = 2 2 dzj/\dzK + 2 2 dzj AdzK 
k k&J k&K 

= (2(« - * / ) + 2(n - #A" ))(<fey ArfT/f). 
and so on i4*«(C") 

[L,A] = p + q-n. 

Since L and A are both algebraic operators, this identity will hold on any 
Kahler manifold. 

Now set 
In 

h= 2 {n-p)W; 
p = 0 

since L:AP(M)^>AP+2(M) and A:^/'(A/)-^^/,-2(A/), we obtain 
[A,L] = /i, 

(*) [/>,£] = - 2 L , 
[/i,A] = 2A. 

The operators L, A, and h all commute with Arf, and so act on the 
harmonic space %J'(M)^H*(M) with relations (*). We may therefore 
give a representation of sl2 on H*(M) by sending 

"-(J -?h* 
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the eigenspace for h with eigenvalue (« —p) will be HP(M). Applying our 
results on finite-dimensional representations of sl2 to this representation 
yields the 

Hard Lefschetz Theorem. The map 

Lk. H"-k{M)—>Hn+k{M), 

is an isomorphism; and if we define the primitive cohomology 

P»~k(M) = K e r L * + l : Hn~k{M)-> Hn+k+2(M) 

= (KerA)n Hn~k{M), 

then we have 

Hm{M)= ®LkPm-2k(M), 
k 

called the Lefschetz decomposition. 

Note that the Lefschetz decomposition is compatible with the Hodge 
decomposition; i.e., if we set 

pp-i(M) = (KerA)n Hpq{M), 
then 

P'(M)= © Pp-"(M). 
P + I~I 

We can give the following geometric interpretation of the Lefschetz 
theory in case the manifold M is embedded in projective space P^ with the 
induced metric. We have seen that the form 

" = ^ p - 3 3 1 o g | | Z | | 2 

is closed and not exact in PN. Since H2(PN) is one-dimensional, it follows 
that [u]EH^R(PN) is Poincare dual to some nonzero multiple of the 
homology class of a hyperplane H c P^. In fact, [w] is Poincare dual to 
(//) , as the reader may verify by integrating u over a line / s P 1 to obtain 

fu= i =*(//•/). 

We see from this that for M c P ^ a submanifold, the associated (1,1) form 
u\M of the induced metric is Poincare dual to the homology class (V) of 
the analytic sub variety V= M n H c M. The Poincare-dualized version of 
the hard Lefschetz theorem says that the operation of intersection with an 
(yV-£)-plane P ^ * c P ^ gives an isomorphism 

nP""1 

Hn+k{M) - ^ H„_k{M). 

Note that in this interpretation, the primitive cohomology P"~k{M) of 
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M corresponds via the isomorphisms 

Hn+k{M) 

Hn+k{M) 

to the subgroup of (n - &)-cydes that do not intersect a hyperplane, i.e., 
the image of the map 

Hn k{M-V)^Hn_k{M). 
Such cycles are called finite cycles since M— V is the "finite part" M n CN 

of M; their importance will be more apparent when we prove the Lefschetz 
theorem on hyperplane sections. 

As another application of the Hodge and Lefschetz decompositions, we 
will now describe the Hodge-Riemann bilinear relations. We define a 
bilinear form 

Q: Hn-k{M)®H"-k{M)-^€ 
by setting 

JM 

Note that since w is real, Q defines a real bilinear form on H"~k(M, R). By 
consideration of type, we see that 

Qiff^H"'"') = 0 unless/) = q\q = p'. 
The Hodge-Riemann bilinear relations assert that for £E.Pp'q(M) a primi-
tive class and k —p + q, 

v^\p~\-\in-k){'>-k-')/2Q(a)>o. 
In the case/7 + 9 even, this is the same as saying that on the real vector 

space 

(P"-"®P^)n Hp+"(M,U) = {Z + l,t£Pp+q(M)} c ff'+*(A/), 
the quadratic form (Y^ y-i(-i)(»-<*•-*- »>/2g is positive definite; in 
the case p + q odd, the bilinear relations tell us at least that Q is a 
nondegenerate skew-symmetric form on Pp+q{M). In either case, since we 
have the Lefschetz decomposition 

1-fm
 = Cf\ 1 kpm — 2k 

and Q{Lki,Lkt])=Q{i,j)), the bilinear relations tell us that Q is nondegen-
erate on H"-k(M). 
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We will not prove the bilinear relations in full generality, but will verify 
them in some cases including all those to be used in our applications to 
geometry. (The general proof may be based on the following observations: 
In the full exterior algebra 

corresponding to the differential forms at a point xEM, there is an 
s/2-action given by {L,A,/i) as above. Decomposing V into primitive 
spaces PkV is the same as decomposing V under the action of the unitary 
group U„, and thus by Schur's lemma any U„-invariant quadratic form on 
PkV is necessarily definite. The primitive harmonic forms on M are those 
which lie in PkV (fixed k) for each x E M , and this yields a proof. The 
result that decomposing V under sl2 together with ^p'q) yields the same 
irreducible factors as under the action of Un is proved in Herman Weyl's 
book The Classical Groups—it implies that, in general, there are no further 
Hodge identities.) 

First, let M be a compact Riemann surface. By the Hodge decomposi-
tion, 

H '(M,C) = Hl0(M)®H0l(M) 

The number of independent holomorphic 1-forms on M (classically called 
differentials of the first kind) is thus equal to bx{M)/2\ this in fact was one 
of the first links established between the topology of a complex manifold 
and its analytic structure. To verify the bilinear relations for M let 
i=h{z)dz&Hx\M); we have ( V ^ T Y'q{- 1)("-**»-*"'V2 = Y^1, 
and 

Q(i,l)=V=T [ \h{z)\2dz/\ds 

> 0 . 
In general, for M of any dimension, HPy0(M) and H0p(M) are primitive 

by consideration of type, and the same calculation works to verify the 
bilinear relations for them. In fact, it was in effect by deducing the 
Hodge-Riemann bilinear relations for holomorphic <?-forms that we first 
proved that the holomorphic forms inject into the cohomology of a 
compact Kahler manifold. 

Now let dimA/ = 2; it remains only to verify the bilinear relations for 
P 1 1 . Let £ be a real, primitive harmonic (l,l)-form; in terms of a local 
unitary coframe <p,,<p2 we write 
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Since £ is real, £.,.= - | , ; writing 

2 

£A" = — ^ — ( ^ I + ^ ' P I A ^ I A ^ A ^ 

we see that | primitive implies £n+£22 = 0- For the bilinear relation 

= - f Hnl22 + 2|£12|2-i22In) 
x<PiA9i A92A92 

- M " 
> 0 . 

/ (2|£np + 2|£12|
2)4» 

Recall that on a general oriented compact real manifold X of dimension 
2&, we have a bilinear form on Hk(X,U) = H^R(X) defined by 

Q(V,9= f ilAfc 
— •'w 

by Poincare duality Q is nondegenerate. If k is even, <2 is symmetric, and 
we can associate to X as a topological invariant the signature of (?, defined 
as the number of positive eigenvalues minus the number of negative 
eigenvalues in a matrix representation of Q. The signature of Q is called 
the index I(X) of the manifold X. Of course, if M is a compact Kahler 
manifold of dimension 2n, then Q= Q on H2"(M, U) and we may use the 
bilinear relations to compute the index of M: 

H2n(M) = ®LkP2("-k)(M) 
© L"~(p + 'l)/2Pp'q(M). 

p+q = 0(2) 
<2« 

We know that ioTp + q=0(2), (V^J y ~ « ( - iyp+"^P+"-^2Q > 0 on the 
real space (Pp-q®Pq-p)nHp+"(M,U); since <2(LI ] ,U)=<2(T) ,£ ) , we have 

I(M)= 2 ( \ ^ r r f - * ( - l ) ( p + " ) ( p + 9 - 1 ) / 2 d i m i " ' - ' ( A / ) 
p + q = 0(2) 

<2« 

= 2 (-iydimP**(A/). 
p + q = 0(2) 

<2n 
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Now we have by the Lefschetz decomposition 
p 

hP,P+j = ^ dim/"'-''-1-''; 

thus, along a vertical line in the Hodge diamond, 

and we can write, finally, 

/(A/)= 2 (-\Yhp-" + 2 2 (-Ifh"'", 
p + q = 2n p + q = 0(2) 

<2n 

or 

p + <?s0(2) 

the last equality holding by virtue of the duality hp-q — hn~pn~q. Note in 
particular that on a Kahler surface M the cup product Q on Hli(M) has 
exactly one positive eigenvalue; this fact is frequently called the index 
theorem for surfaces. 

Note, finally, one distinction between the Hodge and Lefschetz theo-
rems of this section: the Lefschetz theorems are essentially topological, 
while the Hodge decomposition reflects the analytic structure of the 
particular manifold M. For instance, if we take a real manifold and give it 
two different Kahler complex structures, the Hodge decomposition of H* 
may vary—the rank of the groups (Hpq(M)®Hqp(M))nHp + q(M,T) 
may even jump—but the Lefschetz isomorphism and decomposition re-
main the same. 
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1 
COMPLEX ALGEBRAIC 
VARIETIES 

An algebraic variety is defined to be the set of complex zeros of homoge-
neous polynomials in projective space and may be viewed a priori as an 
analytic subvariety of P". In case the variety is smooth, we may consider 
the associated abstract compact complex manifold, whose properties will 
be intrinsic to—i.e., not depending on the particular embedding of—the 
variety. Broadly speaking, we will approach algebraic geometry as the 
study of the interplay between the intrinsic and extrinsic or projective 
properties of algebraic varieties. 

In Section 1 we introduce the notion of divisors and line bundles; the 
material here is central for all that follows. Since a compact complex 
manifold admits no global holomorphic functions, we might rather expect 
its structure to be reflected in the global meromorphic functions and 
related linear systems of divisors on the manifold; this notion is a basic 
one in classical algebraic geometry. Associated to a divisor is a holomor-
phic line bundle, to a meromorphic function a line bundle together with a 
holomorphic section, and to a line bundle its Chern class. The subsequent 
formalism, developed by Kodaira and Spencer and others in the early 
1950s, gives an extremely useful technique for dealing with codimension-
one subvarieties (points on a curve, curves on a surface, etc.) on an 
algebraic variety. 

The basic question of constructing meromorphic functions with pre-
scribed properties—e.g., the principal parts on a Riemann surface—is a 
problem admitting local solutions where the obstruction to patching these 
together globally may be measured by a sheaf cohomology group. The 
Kodaira vanishing theorem provides the most useful condition under which 
these higher groups are zero. It is a remarkable result, one which is proved 
by potential theory and differential geometry, but which in the end turns 
out to be equivalent to the Lefschetz theorem concerning the topological 

128 
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position of a hyperplane section of a complex algebraic variety. Explaining 
these matters occupies Section 2. 

In Section 3 we began the transition 

{ abstract compact 1 [ algebraic variety 1 

complex manifold J [in projective space J 
The intermediate step is an analytic variety in projective space; the Chow 
theorem asserts that this must be an algebraic variety. The essential 
philosophical point here is illustrated by the identity of the two objects 
"global meromorphic function on the Riemann sphere" and "rational 
function of one complex variable." The practical consequence is that we 
may work either locally complex analytically or globally algebraically with 
the same end result. Our approach at this stage is analytic, as this ties in 
more readily with the topological and metric properties of an algebraic 
variety, but the understanding that in the end we are talking about 
solutions of polynomial equations is fundamental. 

In Section 4 we state and prove Kodaria's characterization of those 
compact complex manifolds which are derived from algebraic varieties, 
thus providing the essential link between the intrinsic and extrinsic proper-
ties of a variety. This embedding theorem and Chow's theorem are 
existence theorems—they do not by themselves provide a constructive 
method for finding the equations defining the image of a variety under a 
projective embedding—but together they form the philosophical corner-
stone for our analytic treatment of algebraic geometry. 

In the final section of this chapter we explain in some detail the 
Grassmannian, a variety whose points parametrize the linear subspaces of 
some fixed dimension in projective space and whose internal structure 
reflects the nongeneric intersections of a variable linear space with a fixed 
one. One reason for placing this discussion here is that the Grassmannian 
illustrates quite nicely the general structure theorems of this chapter. 
Another is that extensive use will be made in the following chapters of the 
Schubert calculus, a quantitative expression of the nongeneric incidence 
relations among linear spaces that is inherent in the structure of the 
Grassmannian. 

1. DIVISORS AND LINE BUNDLES 

Divisors 

Let M be a complex manifold of dimension n, not necessarily compact. We 
recall from Section 1 of Chapter 0 some facts about analytic hypersurfaces 
in M: 
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Any analytic subvariety V c M of dimension n — \ is an analytic hyper-
surface, i.e., for any point p E V c M, V can be given in a neighborhood of 
p as the zeros of a single holomorphic function / . Moreover, any holomor-
phic function g defined at p and vanishing on V is divisible by / in a 
neighborhood of p.f is called a local defining function for K near/), and is 
unique up to multiplication by a function nonzero at p. 

If Vf is a connected component of V*=V— Vs, then Kf is an analytic 
subvariety in M. Thus V can be expressed uniquely as the union of 
irreducible analytic hypersurfaces 

V = K, U • • • U Vm, 

where the Fj's are the closures of the connected components of V*. In 
particular, V is irreducible if and only if V* is connected. 

Now we define: 

DEFINITION. A divisor D on M is a locally finite formal linear combina-
tion 

of irreducible analytic hypersurfaces of M. 

"Locally finite" here means that for any p£M, there exists a neighbor-
hood of p meeting only a finite number of the V's appearing in D; of 
course, if M is compact, this just means the sum is finite. The set of 
divisors in M is naturally an additive group, denoted Div(Af). 

A divisor Z) = 2a,T^ is called effective if a ,>0 for all /; we write D >0 
for D effective. An analytic hypersurface V will usually be identified with 
the divisor 2 Vt where the Vj% are the irreducible components of V. 

Let VcM be an irreducible analytic hypersurface,pGVany point, and 
/ a local defining function for V near p. For any holomorphic function g 
defined near/?, we define the order ordv (g) of g along V at p to be the 
largest integer a such that in the local ring 0 ^ , 

g=fa-h. 
By the result from p. 10 that relatively prime elements of 0W stay 
relatively prime in nearby local rings, we see that for g a holomorphic 
function on M, ordv p(g) is independent of p. Thus we can define the order 
ordv(g) of g along V to be simply the order of g along V at any point/? G V. 
Note that for g,h any holomorphic functions, V any irreducible hyper-
surface, 

ox&v(gh) = ordK(g) + oxAv{K). 

Now let / be a meromorphic function on M, written locally as 
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with g,h holomorphic and relatively prime. For V an irreducible hyper-
surface, we define 

ordK(/ ) = ord F (g) - ordK(/i). 
We usually say that j has a zero of order a along V if ordK(/) = a > 0 , and 
that / has a pole of order a along V if ordK(/) = — a < 0. 

We define the divisor (f) of the meromorphic function f by 

(/) = 2 o r d p / ( / ) K 
v 

If / is written locally as g/h, we take the divisor of zeros (/)„ of / to be 

(/)o = 2>Mg)- r 
V 

and the divisor of poles (f)^ to be 

( / ) » - 2 o r d K ( / i ) - K . 

Clearly these are well-defined as long as we require g and h to be relatively 
prime, and 

( /) = ( / ) o - ( / ) « , 
Divisors can also be described in sheaf-theoretic terms, as follows: Let 

91L* denote the multiplicative sheaf of meromorphic functions on M not 
identically 0, and 0* the subsheaf of nonzero holomorphic functions. Then 
a divisor D on M is simply a global section of the quotient sheaf 91L*/0*. On 
the one hand, a global section {/} of cDTt*/0* is given by an open cover 
{ Ua) of M and meromorphic functions/„^0 in Ua with 

^ee*(uanufi); 

for any V c M, then, 
o r d K ( / J = ordyifp), 

and we can associate to {/} the divisor 

D = 2ordy(fa)-V, 
v 

where for each V we choose a such that Vn Ua^0. On the other hand, 
given 

v, 

we can find an open cover {Ua} of M such that in each Ua, every Vi 

appearing in D has a local defining function gia £ 0( Ua). We can then set 

/a-IIa2e<DR*(l/0) 
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to obtain a global section of 6Jt*/6*. The /0 's are called local defining 
functions for D. It follows immediately from the definitions that the 
identification 

H°(M,'Dl*/e*) = Div(M) 
is in fact a homomorphism. 

Given a holomorphic map TT : M-*N of complex manifolds, we define a 
map 

77*: Div(JV ) -> Div(Af) 
by associating to every divisor D = ({Ua},{fa}) on N the pullback divisor 
■7T*D = ({Tr~lUa},{iT*fa}) on M; this is well-defined as long as m{M)(ZD. 
Note that for a divisor on N given by an analytic hypersurface V c N, the 
pullback divisor ir*V on M lies over V but need not coincide with the 
analytic hypersurface IT~\V)CM—multiplicities may occur. 

We want to make one more remark before going on to consider line 
bundles. On a Riemann surface M, any point is an irreducible analytic 
hypersurface, and so clearly Div(Af) is always large. This is, in a sense, 
misleading: a complex manifold M of dimension greater than one need not 
have any nonzero divisors on it at all. If, however M is embedded in 
protective space PN, the intersections of M with hyperplanes in PN 

generate a large number of divisors. In fact, among all compact complex 
manifolds those which are embeddable in projective space can be char-
acterized by having "sufficiently many" divisors, in a sense that we shall 
make precise in later sections. 

Line Bundles 

All line bundles discussed in this section are taken to be holomorphic. 
IT 

Recall that for any holomorphic line bundle L - » M on the complex 
manifold M, we can find an open cover {Ua} of M and trivializations 

<pa : LUa —> Ua X C 

of LUa=7r~\Ua). We define the transition functions ga/3: Uat~\ t/̂ —>C* for 
L relative to the trivializations {<jpa} by 

^(^) = («P„0^",)l/.;
eC*-

The functions gaf} are clearly holomorphic, nonvanishing, and satisfy 

conversely, given a collection of functions {gtt/3 G G*( £4 n Up)} satisfying 
these identities, we can construct a line bundle L with transition functions 
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{Sap) by taking the union of f/„xC over all a and identifying { z } x C in 
UaXC and UpXC via multiplication by gap(z). 

Now, given L as above, for any collection of nonzero holomorphic 
functions fa E 0*( Ua) we can define alternate trivializations of L over {Ua} 
by 

transition functions g'ap for L relative to {<pa} will then be given by 

fa 
(**) g»/J = T'g"fi-

JP 

On the other hand, any other trivialization of L over { Ua) can be obtained 
in this way, and so we see that collections {ga/}} and {g^p} of transition 
functions define the same line bundle if and only if there exist functions 
fa&e*(Ua) satisfying (**). 

The description of line bundles by transition functions lends itself well 
to a sheaf-theoretic interpretation. First, the transition functions {gap& 
©*([/„ n Up)} for a line bundle L^M represent a Cech 1-cochain on M 
with coefficients in 0*; the relation (*) simply asserts that 8({gap})=0, i.e., 
{gap} is a Cech cocycle. Moreover, by the last paragraph, two cocycles 
{Sap) a n d { g'ap) define the same line bundle if and only if their difference 
{Sap'Safi1} i s a Cech coboundary; consequently the set of line bundles on M 
is just H\M,e*). 

We can give the set of line bundles on M the structure of a group, 
multiplication being given by tensor product and inverses by dual bundles. 
If L is given by data {gap], L' by {g'ap], we have seen that 

L®L' ~{gapg'ap}, L*~{g-p1}, 

and so the group structure on the set of line bundles is the same as the 
group structure on H '(A/, 0*). The group H '(A/, 0*) is called the Picard 
group of M, denoted Pic(M). 

We now describe the basic correspondence between divisors and line 
bundles. Let D be a divisor on M, with local defining functions /„ G 
(U\l*(Ua) over some open cover { Ua} of M. Then the functions 

fa 

h 
are holomorphic and nonzero in Ua n Up, and in Ua n Up n U we have 

Sa0 { 

= !si.ll.ll = 1 
oafi ojgy oya f f f 

Jfi Jy Ja 



134 COMPLEX ALGEBRAIC VARIETIES 

The line bundle given by the transition functions { gaB =fa/fB} is called the 
associated line bundle of D, and written [£>]. We check that it is well-
defined: if {/„'} are alternate local data for D, then ha=fa/£e&*(Ua), 
and 

, = :C A 
SaB f> SaB u 

J/3 "a 
for each a,ji. 

The correspondence [ ] has these immediate properties: First, if D and 
D' are two divisors given by local data {fa} and {/^}, respectively, then 
D + D' is given by {/„•/„}; it follows that 

[D + D'] =[£>]®[Z>'] 
so the map 

[ ] : Div(M)->Pic(M) 

is a homomorphism. Second, if D = (f) for some meromorphic function / 
on M, we may take as local data for D over any cover {Ua} the functions 
fa=f\u ; then fa/fB = 1 and so [D] is trivial. Conversely, if D is given by 
local data {fa} and the line bundle [D] is trivial, then there exist functions 
/iae0*(£/a)such that 

f=fa-hlT
l—f0-hpl is then a global meromorphic function on M with 

divisor D. Thus the line bundle [D] associated to a divisor D on M is trivial 
if and only if D is the divisor of a meromorphic function. We say that two 
divisors D,D' on M are linearly equivalent and write D—D' if D = D' + (f) 
for some/e9H*(A/), or equivalently if [D] = [D']. 

Also, note that [ ] is functorial: that is, if / : M^>N is a holomorphic 
map of complex manifolds, it is easy to check that for any D EDiv(AT), 

„*([D])=[«*(D)]. 

All these assertions are implicit in the following cohomological interpre-
tation of the correspondence [ ]. The exact sheaf sequence 

0 _»0* -L> 9ft* 4 91t*/<9* _»o 

on M gives us, in part, the exact sequence 

H°(M, 911*) J-XH°(M, 91t*/0*) XH\M, 0*) 
of cohomology groups. The reader may easily verify that under the natural 
identifications 

Div(Af) = H°( M, 91L*/0*) and Pic(M) = H \M, 0*) 
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for any meromorphic function / on M, 

j*f=(f), 
and for any divisor D on M, 

SD=[D]. 
Indeed, we will generally violate the previous multiplicative notation and 
write L + L' for the tensor product of two line bundles or mL for the with 
tensor powerL®"1 of L. 

We now wish to discuss holomorphic and meromorphic sections of line 
bundles. Let L->M be a holomorphic line bundle, with triviahzations 
(pa : L^ —> t/a X C over an open cover {Ua} of M and transition functions 
{&»/?) relative to {<pa}. As we have seen, the triviahzations <p„ induce 
isomorphisms 

tf: 0 (L) (£ /„ ) ->©(£ /„ ) ; 
we see via the correspondence 

see(L)(u)^{sa = <p;(s)ee(UnUa)} 
that a section of L over U c M is given exactly by a collection of functions 
5 o e 6 ( ( / n ( / J satisfying 

Sa ~ Sap " sp 

in unuan Up. 
In the same way, a meromorphic section s of L over U—defined to be a 

section of the sheaf 0(L)®(plL—is given by a collection of meromorphic 
functions sae<3R,({/n Ua) satisfying sa = gap-sp in UnUan Up. Note that 
the quotient of two meromorphic sections s,s'^0 of L is a well-defined 
meromorphic function. 

If s is a global meromorphic section of L, sa/sp£&*(Uar) Up), and so 
for any irreducible hypersurface VC.M, 

ordy(sa) = ordy(sp). 

Thus we can define the order of s along V by 
ordK(.?) = o r d ^ J 

for any a such that Ua D V^Q; we take the divisor (s) 0/ /Ae meromorphic 
section s to be given by 

(*) = 2 o r d „ ( j ) - K . 

With this convention 5 is holomorphic if and only if (s) is effective. 
Now if D EDiv(M) is given by local data/ aG91L((/J , then the func-

tions fa clearly give a meromorphic section sf of [D] with (sf) = D. 
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Conversely, if L is given by trivializations <pa with transition functions °<*/a 
and ^ is any global meromorphic section of L, we see that 

Sa/3> 

i.e., L = [(s)]. Thus if D is any divisor such that [D] = L, there exists a 
meromorphic section s o / L with (s) = D, and for any meromorphic section s of 
L, L = [(s)]. In particular, we see that L is the line bundle associated to 
some divisor D on M if and only if it has a global meromorphic section not 
identically zero; it is the line bundle of an effective divisor if and only if it 
has a nontrivial global holomorphic section. 

We can also view this correspondence as follows: Given a divisor 

on M, let £(Z>) denote the space of meromorphic functions/ on M such 
that 

D + (f)>0, 

i.e., that are holomorphic on M— u Vt with 
o r d K ( / ) > -a,. 

We denote by |Z)|cDiv(A/) the set of all effective divisors linearly 
equivalent to D; if L — [D], we write \L\ for \D\. Let s0 be a global 
meromorphic section of [D] with (s0) = D. Then for any global holomor-
phic section s of [D], the quotient 

is a meromorphic function on M with 

(/,) = (*)-(*„)> -D, 
i.e., 

/ , £ £ ( / > ) 
and 

(s) = D + (f)e\D\. 

On the other hand, for a n y / e £ ( Z ) ) the section s=fs0 of [D] is holomor-
phic. Thus multiplication by s0 g/ues an identification 

£(Z))-S-//°(A/,G([Z)])). 

Now suppose Af is compact. For every D'E\D\, there exists / G £ ( Z > ) 
such that 

D' = D + (f), 
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and conversely any two such functions / , / ' differ by a nonzero constant. 
Thus we have the additional correspondence 

\D\ « P(£(Z>)) = P(H°(M,e([D]))). 

In general, the family of effective divisors on M corresponding to a 
linear subspace of P(H°(M, B(L))) for some L-±M is called a linear system 
of divisors; a linear system is called complete if it is of the form \D\, i.e., if 
it contains every effective divisor linearly equivalent to any of its members. 
When we speak of the dimension of a linear system, we will refer to the 
dimension of the projective space parametrizing it; thus, when we write 
dimj£>| for the dimension of the complete linear system associated to a 
divisor D, we have 

dim|Z>| = h°(M,e(D))-l. 

A linear system of dimension 1 is called a pencil, of dimension 2 a net, and 
of dimension 3 a web. 

We will mention here two special properties of linear systems. The first 
is elementary: if E={DX)XEP„ is a linear system, then for any X 0 , . . . , \ 
linearly independent in P", 

DXon---nDK= n Dx. 
AGP" 

The common intersection of the divisors in a linear system is called the 
base locus of the system; in particular, a divisor F in the base locus—that 
is, such that Dx — F > 0 for all X—is called a fixed component of E. 

The second property is more remarkable; like the first, it is peculiar to 
linear systems and is not the case for general families of divisors, even 
general families of linearly equivalent divisors. This is 

Bertini's Theorem. The generic element of a linear system is smooth away 
from the base locus of the system. 

Proof. If the generic element of a linear system is singular away from the 
base locus of the system, then the same will be true for a generic pencil 
contained in the system; thus it suffices to prove Bertini for a pencil. 

Suppose (DA}XePi is a pencil, given in a polydisc A contained in M by 

£>A = ( / (z„. . . ,z„) + A-g(z„. . . ,zn)=0) 
and suppose Px is a singular point of the divisor Dx(\¥=0,oo) but not in 
the base locus B of the pencil. We have then 

f(Px)+\g(Px) = 0 

and 

f ( ^ ) + A||(A) = 0, ,■-!,...,„. 
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Since Px is not a base point of {Dx}, f and g cannot both vanish at Px 

and so neither one can; thus 

and 

Then 

3 (f\/n , _ (9f/9zi)(Px)-[fiPx)/g(Px)]-(dg/dzl)(Px)_n 

a*, I g rx) iV\) " 
Now the locus V of singular points of the divisors Dx, being locally the 
image in A of the variety 5 c A x P { cut out by the equations {f+\g = 0, 
3//3z,+X9g/3z,=0}, is an analytic subvariety of A. But by the calculation 
above the ratio f/g is constant on every connected component of V — B and 
so V can meet only finitely many divisors Dx away from the base locus of 
{Dx}. Q.E.D. 

The essential point here is that a pencil {Dx}XeP,, with base locus B 
gives a holomorphic mapping 

M-B-+P1 

since by linearity e v e r y p G M - B i s o n a unique Dx. The Bertini theorem is 
a refinement of Sard's theorem for this mapping. 

We make one final remark about sections of line bundles, which will be 
used repeatedly throughout the book. Recall that if D = '2aiVj is any 
effective divisor on the complex manifold M, .?oE//o(M,0 ([£>])) a section 
of [D] with divisor D, then tensoring with s0 gives an identification 
between the meromorphic functions on M with poles of order < a, on Vt 

and holomorphic sections of [D]. More generally, if E is any holomorphic 
vector bundle on M, £ its sheaf of holomorphic sections, we write &{D) 
for the sheaf of meromorphic sections of E with poles of order < a, on Vit 

S(—Z>) for the sheaf of sections of E vanishing to order > a, along Vt. 
Again, tensoring with s0 or s^' gives identifications 

S ( Z ) ) — > 6 ( E ® [ Z > ] ) , 

(*) ®*<f' 
£ ( - / > ) — > 6 ( £ ® [ - Z ) ] ) . 

Thus in particular if D is a smooth analytic hypersurface, the sequence of 
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sheaves 

o^eM(Es>[-D])^>eM(E)^eD(E\D)^o, 

where r is the restriction map, is exact. Henceforth, we shall make the 
identification (*) implicitly and write 0 (D) for 0([D1). 

Chern Classes of Line Bundles 

Let M now be a compact complex manifold of dimension n. The exact 
sequence of sheaves 

exp 
o - » z - > 6 — » e * - > o 

gives a boundary map in cohomology 

Hl{M,e*)XH2(M,Z.). 
For a line bundle L G Pic(M) = H \M, 0*), we define the first Chern class 
c,(L) of L (or simply Chern class) to be S(L)EH2(M,Z); for D a divisor 
on M, we define the Chern class of D to be c, ([£>]). By a slight abuse of 
language, we will sometimes write c,(L)e/?DR(Af) for the image of c{{L) 
under the natural map H2{M,Z)^H^K{M). 

As an immediate consequence of the definition, note that 
cx{L®L') = cx(L) + cx{L') 

and 
cx{L*)=-cx{L). 

Also, if f:M-*N is a holomorphic map of complex manifolds, the 
diagram 

H\M,e*)^H2(M,Z) 

H\N,6*)—>H2(N,Z) 

commutes, so that for L-±N any line bundle, 
ct(f*L)=f*Cl(L). 

We will be concerned in this subsection with giving two alternate 
interpretations of the Chern class; first, however, we want to make one 
observation: 

Let & and &* denote the sheaves of C00 functions and nonzero C°° 
functions, respectively. The transition functions of a C°° complex line 
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bundle L then give a Cech cocycle 

{gaP}EC\M,&*), 

and by the same argument as for holomorphic bundles, the bundle L is 
determined, up to C°° isomorphism, by the cohomology class [{ga/3}]£ 
H '(Af, &*). Now we have an exact sheaf sequence 

exp 
0-»Z-*#^<2*_»0 

and since the long exact sequence in Cech cohomology is functorial, the 
inclusion maps G —*& and ©*-*•($* give a commutative diagram 

«' 
H\M,&)—>H\M,&*) —> H\M,Z) 

t t II 
s 

H\M,6) —» # \ M , e * ) —» H\M,Z) 

with both rows exact. Thus we can define the Chern class c,(L) of a C°° 
line bundle to be 8'(L), and this definition agrees with the one above for 
holomorphic bundles. But in the upper row we have / / ' ( M , 6£)=0, since 
the sheaf & is fine; the conclusion is that a complex line bundle is 
determined up to C°° isomorphism by its Chern class. 

Recall now that for any vector bundle E—>M of rank k and any 
connection D on E, the curvature operator D2 is represented, in terms of a 
trivialization <pa of E over Ua, by a kxk matrix 6 a of 2-forms; if <pp is 
another trivialization, we have 

where ga^: Uan Up-+GLk is the transition function relative to <pa and <pp. 
In particular, if £ is a line bundle, since GL, = C* is commutative 
0 = 0 a = @/3 is a closed, globally defined differential form of degree 2, 
called the curvature form of E. 

Recall also that for any analytic subvariety V c M of dimension k, we 
have defined the fundamental class (V)EHlk(M,U) to be given by the 
linear functional 

<ph-» f <p 
Jy 

on H^{M); we denote its Poincare dual by r\v. In particular, we take the 
fundamental class of a divisor D = '2aj Vt on M to be 2a,-( Vj); we denote its 
Poincare dual by 

This subsection will be devoted to proving the 
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Proposition. 1. For any line bundle L with curvature form 0, 
T 

cx{L) = 
2TT 

-0 e//£R(M). 

2. IfL = [D] for some D e Div(M), 
c,(L) = % e ^ R ( M ) . 

Proof. First, we unwind the definition of c^L) for L-+M a line bundle 
with trivializations <pa and transition functions g0jS relative to a cover 
U={Ua) of M. We may assume the open sets Ua are simply connected 
and set 

Kp = 
1 

2 7 7 X ^ ^ 1 
•log&0. 

By the definition of 8, if we set 
C<*0y Kp + hPy 

1 
0ogga/3 + loggPy-\oggay), 

2TTV-1 

then {zapy} E Z2(U,Z) is a cocycle representing c{(L). 
Now choose any connection D on L. In terms of the frame ea(z) = 

<p~\z, l) on Ua, D is given by its connection matrix, which in this case is a 
l-form 9a. As was worked out in Section 5 of Chapter 0, in Ua(~\ Up 

i.e., 
0p-8a= -gapldga/} = -d{loggaP), 

and the curvature matrix is the global 2-form 
® = dOa-8aA0a = dffa = d9fi. 

Since © is given as a closed 2-form and c,(L) is given as a Cech cocycle, 
we must now look at the explicit form of the de Rham isomorphism. From 
the proof of de Rham's theorem, we have exact sequences of sheaves 

0-»R-»-6i!°->2j-»0, 0 - » Z J - > £ ' - » 23->0, 
giving us boundary isomorphisms 

J/°(23) _^ 
dH\&) 

H\%\), //■(£>) ^ > / / 2 

To calculate 8,(@), we write 0 locally as dffa; we see from the definition of 
5, that 

5 , ( 0 ) = { ^ - ^ } e Z ' ( 2 : i ) . 
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Now 0p-0a = - d\og gaP, so 

= { -(logga/} + logg^ -\oggay)} 

= -2wV^T-c,(L). 
To prove assertion 2 we have to show that, for 0 a curvature matrix for 

the bundle [D], the cohomology class [("V̂— 1 /2T7-)0] is the Poincare dual 
of (Z)) = Sa,(F,)—i.e., that for every real, closed form ipeA2"~2(M), 

AIT JM Jy 

Since both Z)f-̂ c,([Z>]) and Dv^y\D are homomorphisms from Div(M) to 
H^K(M), we may take D— V an irreducible subvariety. 

First, we compute the curvature form of a metric connection on [£)]. To 
do this, let e be a local nonzero holomorphic section of [ V] and write 

\e(z)\2 = h(z). 

Then for any section s = \-e, the connection matrix 9 for the metric 
connection D in terms of the frame e must satisfy 

0 = 0'° 
and 

Now 

So we have 

d(\s\2) = (Ds,s) + (s,Ds) 

= ((d\ + 9\)e,\e) + (\e,(d\ + 9\)e) 

= /i-X-rfX + fc-X-JX + /i-|X|2(0 + 0 ) . 

d(\s\2) = rf(X-X-A) 
= /!-X-^X + /!-X-JX + |X|2-^. 

0 + 8-4L, 
h 

i.e., 0 = 3 log/; = 91og|e|2, and 
0 = d0-9/\9 = d9 

= 531og|e|2 

= IITV^ ddc\og\e\2. 

Note that this holds for any nonzero holomorphic section e. 
Now let D = V be given by local data fa and let 5 be a global section 

{/a} of [D] vanishing exactly on V. Set 
D(e) = (\s(z)\<e) c M. 
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For small e, D(e) is just a tubular neighborhood around V in M, and 

f 9A«f = Hm27r\^T f ddc\og\s\2A>P 

2% 
— lim 

- 1 J->dD(c) 
log|^|2A'/' 

by Stokes' theorem. In Ua n £>(e), write 

fa\ -K =fa-fa-K 
with Aa > 0; we have 

rfclog|*|2 = d<\og{fJa-ha) 

1 (3log/a-31og/a + (3-3)log/g. 
4w 

Since dclogha is bounded and, as we have seen in the proof of Stokes' 
theorem for analytic varieties, vol(9£>(e))—»0 as e—»0, we deduce that 

lim f dc\oghaA^ = 0. 
e-*0JdD(e) 

Moreover, 9 log/„ = 9 log/a and, since \p is real, this implies 

f 5 log / a A*= f 91og/0A«^ 

Thus in Ua, 

lim ^0=-\ rfnog|s|2 = lim - V^M • Im f 91og/aA^-
c->0 V— 1 •'30(c) e ^° JSD(c) 

Now in the neighborhood of any smooth point z 0 6 F n f/a, we can find 
a holomorphic coordinate system w = (wl,...,wn) with w, =/a. Write \j/ = 
\p(w)dw'f\dw' + <p, where w' = (vv2,..., wn) and all terms of <p contain either 
dw^ or rfiv,; then in any polydisc A around z0, 

730(e)nA 
lim I 9logfaAi/' = lim I —--^(w)-^ ' / \dw ' 

= l-n^T^X f \p(0,w')-dw'/\dw' 

= 2TT\A^T r ^ 
•^ I /r- iA f n i 

and so 
( e/\*l>= - V ^ T - I m p w V ^ T r ^ j 
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The conclusion that the Chern class c,([D]) represents, on the one hand, 
the Poincare dual of the fundamental homology cycle carried by a divisor D, 
and on the other hand is given in de Rham cohomology by ( V - 1 /2-n) times 
the curvature of any connection in the line bundle [D], is of fundamental 
importance for what follows. The method of proof of this proposition, i.e., 
applying Stokes' theorem to a differential form with singularities—is 
likewise ubiquitous, and will be systematized in Chapter 3. 

The simplest consequence of this proposition is the fact that the divisor 
(/) of a meromorphic function is homologous to zero. This is intuitively 
clear: drawing an arc y from \ , = oo to A, = oo on the Riemann sphere PA', 
the divisors 

{ ( \ 0 /+A, )} [ V X | ] ( 5 y 

trace out a chain with boundary (/)0 — (f)^-

Examples 

1. In case M is a compact connected Riemann surface, a divisor D on 
M is just a finite sum 

0 = 2 "& 
of points PJ G M with multiplicities nt. The degree of D is defined to be its 
fundamental class (D)GH0(M,Z) = Z; clearly 

degZ) = 2 «,-• 

By the above proposition, if 0 is the curvature form of a connection in the 
line bundle [D], 

^ / w e = <c , ( [Z)] ) , [A/]>=deg/ ) . 

In general, we define the degree of a line bundle on M by 
deg(L) = <c,(L),[M]>, 

or in other words deg(L) = c,(L) under the isomorphism i / 2 ( M , Z ) » Z 
given by the natural orientation on M. 

Note that by the relation proved on page 77 between the curvature form 
0 of a metric connection on the tangent bundle of a Riemann surface and 
the ordinary Gaussian curvature KM the classical Gauss-Bonnet theorem 
gives 

deg T'(M) = ± f^KM ■ 0 = X ( M ) . 

2. By the exact cohomology sequence 

Hl(p»,e)-+Hl(p*,e*) —»//2(P",z) 
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arising from the exponential sheaf sequence on IP" and by the vanishing of 
H l(Pn, 0 ) (Section 7 of Chapter 1), we see that every line bundle on P" is 
determined by its Chern class, i.e., 

Pic(P")s ff2(P,Z)aZ. 

In other words, every divisor on P" is linearly equivalent to a multiple of the 
hyperplane divisor H = P n ~ ' c P n . The bundle [H] associated to a hyper-
plane in P" is called the hyperplane bundle; its inverse, J=[H\* = [ — H], is 
called the universal bundle on P". 

We can give a direct geometric construction of the universal bundle J on 
P" as follows. Let P" X C" + ' be the trivial bundle of rank n + l o n P " , with 
all fibers identified to C + l . Then the universal bundle is just the subbun-
dle J of P " X C " + I whose fiber at each point Z e P " is the line in C"+ 1 

represented by Z, i.e., 

yz = {A(z0,...,zj,Aec). 
To see that in fact J = [ — H], consider the section e0 of J over U0 — (Z0T6 

0 ) c P " given by 

e0 is clearly holomorphic and nonzero in U0 and extends to a global 
meromorphic section of / with a pole of order 1 along the hyperplane 
(Z 0 =0) c P". Thus J = [(e0)] = [ - / / ] . 

If M c P" is a submanifold of protective space, we usually call the 
restriction of [//]-»P" to M simply the hyperplane bundle on M; by 
functoriality, it is the line bundle associated to a generic hyperplane 
section P"~' n M of M. 

3. Let M be a compact complex manifold, VcM a smooth analytic 
hypersurface. Recall that we defined the normal bundle Nv on V to be the 
quotient line bundle 

T' I 
N = M]y 

1 V 

We defined the conormal bundle AT* to be the dual of Nv\ it is the 
subbundle of 7J,'\y consisting of cotangent vectors to M that are zero on 
T' r T' I 

There is an easy formula for the conormal bundle of a smooth hyper-
surface V, which we now derive: Suppose V is given locally by functions 
faG®(Ua); the line bundle [V] on M is then given by transition functions 
{Sap-fa/fp}- Now since fa=0 on Vn U„, the differential dfa is a section 
of the conormal bundle N$ of V; since V is smooth. dfa is everywhere 
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nonzero. On Ua n Up n V, moreover, we have 

dfa = d(gafifp) 
= dgap-fl3+gal3-dfl} 
= g«p-dfp, 

i.e., the sections dfa £ r ( U a , 0 (N*)) together give a nonzero global section of 
N$®[V]. Thus Np®[V] is the trivial line bundle; this is the 

Adjunction Formula I 

4. One of the most important line bundles in general is the highest 
exterior power of the holomorphic cotangent bundle 

KM = A T £ \ 
called the canonical bundle of the n-dimensional complex manifold M. 
Holomorphic sections of KM are holomorphic n-forms, i.e., <9(Ku) = fflM. 

We will compute the canonical bundle Kp* of projective space: Let 
Z0,...,Z„ be homogeneous coordinates on P", w,- = Z,-/Z0 Euclidean 
coordinates on U0 = (Z0¥"0), and consider the meromorphic «-form 

dw, dw1 dw„ 
„ = _ _ L A _ 2 A . . . A _ » . 

to is clearly nonzero in U0 with a single pole along each hyperplane (Z, = 0), 
/'= 1,...,«. Now if w{=Zj/Z; i = 0,...,j,...,n are Euclidean coordinates on 
Uj = (Zj¥=0), then 

which gives 

wi 

dwi 

= 

= 
dw\ dw'p 

w'0 ' 

1 

dW: -dw'o 
w'0 

and so in terms of {w-}, 

. dw'n dw' dw' 

= ( - i y ~ A " - A - f A - - - A - f . WJ 

Thus we see that w has likewise a single pole along the hyperplane (Z0 = 0), 
and consequently 

Kp„ =[(»)] =[-(n+l)H]. 

In general, we can compute the canonical bundle Kv of a smooth 
analytic hypersurface V in a manifold Af in terms of KM as follows. We 
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have an exact sequence of vector bundles on V 

0^N*^T*i'\v^T*'^0. 

By simple linear algebra, 

( A " 7 £ ' ) I K » A"-'??'®*?, 
i.e., 

KV = KM\V®NV. 

Combining this with the adjunction formula I above, we have the 

Adjunction Formula II 

(*) Kv = (K„®[V])\y. 

We can give the corresponding map on sections 
PR. 

as follows: Considering a section « of Q"M(V) as a meromorphic n-
form with a single pole along V and holomorphic elsewhere, we write 

g(z)dziA- ■ • Adz„ 
CO = 

where z = (2,,...,z„) are local coordinates on M and K is given locally by 
f(z). Under the isomorphism (*), then, to corresponds to the form to' such 
that 

Explicitly, 

4f A . 

df=ll;dz„ 
and so we can take 

w = ( _ , ) w*,—~~ 
for any /' such that df/dz^O. The map 

g{z)dzxA-- ■ Adz„ _ w _ j y - i g{z)dzxA- • • AdztA' • • Adz„ 

/(*) V ' 9//3z,. /-o 
is called the Poincare residue map, denoted P.R. 

Note that the kernel of the Poincare residue map consists simply of the 
holomorphic «-forms on M. The exact sheaf sequence 

PR. 
0 -»QTM —»QT M ( V) — > QPy-' - > 0 
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then gives us, in part, the exact sequence 

H°(M,QrM(V)) —> H°{V,Sln
v-

[) —> H\M,STM), 

i.e., the Poincare residue map is surjective on global sections if H](M,Sl"M) 
= H"\M) = 0. For example, since / /" ' ' (P") = 0 for n>\, every holomor-

phic form of top degree on a hypersurface V in P" is the Poincare residue of a 
meromorphic form on P". We will see later that the meromorphic n-forms 
on P" are easy to describe, so that we can readily write down the 
holomorphic (n — l)-forms on V. 

2. SOME VANISHING THEOREMS AND COROLLARIES 

The Kodaira Vanishing Theorem 

Let M be a compact Kahler manifold. 

DEFINITION. A line bundle L—>Af is positive if there exists a metric on L 
with curvature form 0 such that (V— 1 /2TT)@ is a positive (1, l)-form; L 
is negative if L* is positive. A divisor D on M is positive if the line bundle 
[D] is. 

The positivity of a line bundle is a topological property, as we see from 
the 

Proposition. If u is any real, closed (1, Y)-form with 

[co]=c, (L)e / / 2
R (A/) , 

then there exists a metric connection on L with curvature form 0 = 
(V — 1 /2TT)(JO. Thus L is positive if and only if its Chern class may be 
represented by a positive form in Hf)R(M). 

Proof. Let |^|2 be a metric on L with curvature form 0 . If <p: Lv^> U X C 
is a trivialization of L over an open set U, s a. section of L over U and % 
the corresponding holomorphic function, then 

W2 = M*)-k/l2 

for some positive function h(z). The curvature form and Chern class are 
given by 

0 = -aglogft(z), 
1 

ct(L) = ■ 0 HltfM). 2w 

Now let |^|'2 be another metric on L with curvature form 0 ' . Then 
|.s,|'2/|i|2 = ep for some real C°° function p on M, and from the local 
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formula 

149 

h'(z) = *>P< Z Hz) 
it follows that 

In particular, 
© = 99p + &'. 

277 
0 - 1 

6' 

Working in the other direction, suppose that (V — 1 /2W)()D is a real, 
closed (l,l)-form representing c,(L) in H^R(M). If we can solve the 
equation 

0 = 99p + <p 
for a real C°° function p, then the metric ep\s\2 on L will have curvature 
form <p. Our proposition therefore follows from the 

Lemma. / / TJ is any (p, q)-form on a compact Kahler manifold, and TJ is d-, 
9-, or d-exact, then 

TJ = 99y 
for some (p— l,q— X)-form y. If p = q a/irf TJ is real, then we may take 
V-^ 1 y a/so to be real. 

Proof. Let Gd denote the Green's operator associated to the Laplacian Arf, 
and similarly for G3 and G5. From the basic identity of page 115 

-Arf = A 3 =A 3 

it follows first that 
26^ = G 3 = G3, 

and then that all the operators d, 9, 9, d*, 9*, and 9* commute with the 
Green's operators. 

Now, since TJ is d-, 9-, or 9-exact, its harmonic projection under any of 
the above Laplacians is zero. By the Hodge decomposition for 9, 

TJ = 99*G3TJ. 

But 9*G5TJ has pure type (p,q— 1) and so 

9 ( 9 * G 5 T J ) = ± 9 * G 5 ( 9 T J ) = 0. 

Since the harmonic space for 9 is the same as the harmonic space for 9 and 
hence is orthogonal to the range of 9*, we deduce by the Hodge decom-
position for 9 that 

9*G3T, = 9 9 * G 3 ( 9 * G 5 T J ) . 
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By commuting the various operators, 

17 = ± 3 3 ( 3 * 3 * G 2 T ? ) , 

which implies the lemma. Q.E.D. 

The basic example of a positive line bundle is the hyperplane bundle [H] 
on P". Recall that the dual of the hyperplane bundle is the bundle J whose 
fiber at Z G P" is the line (AZ} c C"+ ' ; we can put a metric on J by setting 
|(Z0,...,Z„)|2 = 2|Z,|2. If Z is any nonzero section of J—i.e., a local lifting 
U c P"-»C"+ ' — {0}—then the curvature form in J is given by 

8* = 331og||Z||2 = 2wV^\ <#clog||Z||2. 
The curvature form 0 for the dual metric in [H] is then — ©*, and 
consequently 

, - e = ^iog||zn2, 
2TT 

i.e., (V— 1 /2TT)@ is just the associated (1, l)-form w of the Fubini-Study 
metric on P", which we have seen is positive. As a corollary, we see again 
that the Poincare dual of [u]EH^K(P") is the fundamental class ( / /) of a 
hyperplane. 

Note that since the restriction to a submanifold VcM of a positive 
form is again positive, L\V-*V will be positive if L-^M is. In particular, 
the hyperplane bundle on any complex submanifold of P" is positive. 

Our aim in this section is to prove that certain Cech cohomology groups 
Hq(M,W(L)) associated to a positive line bundle L-^M are zero. To begin 
with, we transpose the problem into one involving 9-cohomology and 
harmonic forms by a technique that will be familiar from the previous 
discussion. 

Recall that for any holomorphic vector bundle £—>M, the 3-operator 

3: Ap'i{E)^>Ap''<+\E) 

is defined for global C°° E-valued differential forms, and satisifes 3 2 = 0 . 
We let ZP'q{E) denote the space of 3-closed iT-valued differential forms of 
type {p,q), and we define the Dolbeault cohomology groups H|q(E) of E to 
be 

Z''"(E) 
HME)= _ a . 3 W-"-\E) 

Let %P'q(E) denote the sheaf of 3-closed £-valued (p,q)-forms. The exact 
sheaf sequences 

0 -» 2*«(£) -» 8f'"{E) X 2**+ '(£)-» 0 
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give us isomorphisms 

Hi(M,Zp-q+l(E)) —> Hi+\M,%p'q(E)), 

since the sheaves &p,q(E) admit partitions of unity and hence have no 
Cech cohomology. Thus, repeating the reasoning from the proof of de 
Rham's theorem, 

Hq(M,Qp(E)) at HP-"(E). 

Next we want to discuss harmonic theory in holomorphic vector bun-
dles. Suppose we have metrics given on M and E; we have then induced 
metrics on all tangential tensor bundles of M tensored with E or E*. In 
particular, if {<p,} is a local coframe for the metric on TM*' and {ea} a 
unitary frame for E, any section i\ of Ap,q(E) can be written locally as 

PQ- l,J,a 

fory1,t£Ap'q(E), 

P-9- l,J,a 

Again, we define an inner product on Ap'q(E) by setting 

M) = f (i»(z), *(*))*, 
JM 

where <J> is the volume form on M. 
We have a "wedge product" 

A : Ap-q(E)®Ap''q'(E*)^>Ap+p'q+q'(M) 

defined by 
(i)®s)A(IJ'®*') = <*,*'> vAn'; 

we define an operator 
* : Ap'q(E)-+A"-p'"-q(E*) 

E 

by requiring, for r},\pBAp-q(E), 

(7),«//) = f T)A* "I'-

Explicitly, if {ea} and {e*} are dual unitary frames for E and E*, then for 
TJ EAp-q(E) written as 

*E-n = 2 *»»«®««. 
where * is the usual star operator on Ap,q(M). 
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We take 

5*: Ap'q{E)-*Ap>q-\E) 

to be given by 

a * = _* . 5 . * ; 
E E 

as before, 3* is the adjoint of 3, i.e., for all <pEAp-q'\E) and >|/G Ap-q(E), 

(3<p,^) = (9,3*^). 
Finally, the 3-Laplacian on E is defined by 

A= 33* + 3*3: Ap-q(E) -> A"-q{E). 
An £"-valued form y is called harmonic if A<p = 0. (Again, harmonic forms <p 
are exactly the forms of smallest norm in their Dolbeault cohomology class 
v + 3i4 ' '«- I (£) . )Welet 

%p-"(E) = KeTA 

be the harmonic space. 
Now, the analytic part of the proof of the Hodge theorem for the 

3-Laplacian on ordinary differential forms on M is essentially local: we 
can always find appropriate solutions of A<p = 0 in the completion of 
Apq(M) in the L2-norm; the problem is to show that these solutions are in 
fact C00. Writing out E-valued forms in terms of a frame for E, all the 
local estimates used in the proof of the Hodge theorem for A *(M) go over 
to Ap'q(E)—the only difference is that in each estimate we will get 
lower-order terms involving the coefficient functions for the metric on E as 
well as the metric on TM*, and these can be estimated out as before. Thus 
the Hodge theorem holds for the 3-Laplacian on E, that is: 

1. %p'q{E) is finite dimensional, and 
2. If % denotes the orthogonal projection Ap-q(E)-^%p-q(£), there 

exists an operator 
G: Ap-q{E)->Ap'q(E) 

such that 
G(%p-q(E)) = 0, 

[G,d] = [G ,5*] = 0 , 

and 
/ = % + AG. 

3. Consequently, there is an isomorphism 

3CM(£ )—»//£•«(£), 
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and 
4. The *-operator gives an isomorphism 

H<(M,QT{E)) a Hn-"{MMn~p(E*)).* 

For p = 0, this last result reads 
H"(M,e(E)) a H"-"(M,e(E*®KM)).* 

This isomorphism is called Kodaira-Serre duality. 
Now if M is Kahler with associated (1, l)-form to, we define the operator 

L: Ap-q(E)^Ap+hq+l(E) 

by setting, for -q<EAp'q(M) and s<EA°(E), 

L(r}®s) = U A » | ® J ; 

let A = L* be the adjoint of L. If D = D' + D" (D" = d) is the metric 
connection on E, then we have the basic identity 

[ A , 3 ] - - ^ L D ' * . 

This identity follows from the analogous identity [A,9]= —(V— 1 /2)9* 
on scalar forms Ap'q{M), which we have already proved. To see this, pick a 
local frame {ea} for E; if 9 = 0'+ 9" is the connection matrix for D in 
terms of {ea}, we can write, for ■qEAp'q(E), 

i = 2 n , ® * « . T j a e ^ ' ? ( M ) , 
a 

5»» = 2 ^ ® ^ + 2 (u, A4£) ® ** 

AT? = 2 A ( ^ a ) ® ^ a . 
a 

[A,3]T, = 2 [ A , 9 ] T , a ® e a + [A,0"]T, 
so 

Similarly, 

i.e. 

D'r, = 2 &»„ ® <>„ + 2 (TJa A ^ f l ) ® **, 
" <*,/9 

/ ) ' * , , = ^ 9*T,a(g)ea+ «'*!,. 

The difference 
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is consequently an intrinsically defined algebraic operator; since we can 
choose at each z0 G M a frame for £ in a neighborhood of z0 for which 
0(zo) vanishes, we see that [A.SJ + CV^T /2)Z)'* = 0. 

We will use the representation of Cech cohomology by harmonic forms 
to prove our first main result on the cohomology of vector bundles, the 

Kodaira-Nakano Vanishing Theorem. / / L—>M is a positive line bundle, 
then 

Hq(M,Qp(L)) = 0 forp + q>n. 

Proof* By hypothesis we can find a metric in L whose curvature form 0 
is 2w/V— 1 times the associated (l,l)-form of a Kahler metric; let the 
metric on M be the one given by w = (V— 1 /2v)Q. Now by harmonic 
theory 

H"(M,W(L)) s %'-i(L). 
To prove the result, we will show that there are no nonzero harmonic 
L-valued forms of degree larger than n. We do this by interpreting the 
curvature operator ©77 = ©AT/ alternately as (2TT/V — 1 )L(rj), and as D2t], 
where D is the metric connection on L, and using the basic identity above. 

Let T) e %p-q{L) be a harmonic form. Then 

so from 3TJ = 0 

and 

0 = D2 = dD' + D'd, 

@rj = 3Z)'T,, 

2 V ^ T ( A © T , , T , ) = 2^ 

= 2> 

1 (A3£»'TJ,T/) 

((3A-~-Z)'*)Z)'T,,T,J 

= {D'*D'i],y]) = {D'T],D't]) > 0 , 

since (3AD'TJ,T/) = (AZ)'T/,3*TJ) = 0. Similarly, 

2\A^T (0AT),T)) = 2 V ^ T (£>'3AT,,TJ) 

""■1 

= -(D'D'*-n,-q) = - ( Z ) ' * T , , Z ) ' * T ) ) < 0. 

•This proof is due to Y. Akizuki and S. Nakano, Note on Kodaira-Spencer's proof of 
Lefschetz's theorems, Proc. Japan Acad., Vol. 30 (1954). 
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Combining, 
2 V ^ T ( [ A , 0 ] T , , T , ) > O . 

But ® = {2-n/V~^\ )L, and so 

2 \ ^ T ([A,e]T,,i,) = 47T([A,L]T, ,T, ) 

= 47r(/T-/7-^)||T?H2 > 0. 
Thus^ + 9 > « =>TJ = 0. Q.E.D. 

As was suggested when we first introduced cohomology, the groups 
Hq(M,Qp(E)) (<7>1) most frequently arise as obstructions to globally 
solving analytic problems—this is especially true for q=l as in the 
Mittag-Leffler problem, but once one admits H ' 's, then all the rest become 
involved. The Kodaira vanishing theorem—together with its variants to be 
discussed later—is the best general method for eliminating cohomology. 

Dualizing the Kodaira vanishing theorem, we obtain: 
Hq(M,Sp(L)) = Ofor p + q < n in case L -> M is a negative line bundle. 

The special case when p = q = 0 can be proved by elementary methods as 
follows: What we have to show is that 

(*) H°(M,e(L)) = 0 

in case L~^M has a metric with curvature form equal to 2 / V ^ T times a 
negative (1, l)-form. Suppose s^0GH0(M,6(L)), and let x0GM be a 
point where \s\2 attains a maximum. By hypothesis, if we write 
z, = x, + V r = T yi the coefficient matrix for the curvature form 

3z,dZj \\s\2l) 4\\dxidxJ dyfy 

+^T(4k^))(logi^) 
is negative definite hermitian, and in particular the real symmetric matrix 

dxidxj ty&j) \s\
2 

is negative definite. But log(l/|.s|2) attains a minimum at x0, and by the 
maximum principle, the matrices 

^khw and {^khw 
must both be positive semidefinite—a contradiction. 
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In case M is a Riemann surface, the special case (*) is the general case, 
since/? + q< l=>p = q = 0. The theorem then is even more elementary: if 0 
is a curvature form for L with (V^-T /27r)0 negative, we have 

JM 

But if s¥-0eH°(M,<5(L)), then L is the line bundle associated to the 
effective divisor D = (s), and we have 

c{(L) = degZ) > 0, 

a contradiction. 
As an immediate consequence of the vanishing theorem, we see that 

H"(P", ev„{kH)) = 0 for 1 < q < n - 1, all k. 

This follows directly from the dualized version of the vanishing theorem in 
case k is negative; if k is nonnegative, 

#*(P",0p.(*/O) = #«(P",fip.(*//-tfp.)) 

= #«(P",8£.((* + / i+l) /0) 
= 0 

by the original version of the theorem. 

The Lefschetz Theorem on Hyperplane Sections 

Using the Kodaira vanishing theorem, we can give a proof of the famous 
Lefschetz theorem relating the homology of a projective variety to that of 
its hyperplane sections. 

Let M be an n-dimensional compact, complex manifold and V C M a 
smooth hypersurface with L = [V] positive—e.g., McPN a submanifold of 
projective space and V— M f\H a hyperplane section of M. Then we have 
the 

Lefschetz Hyperplane Theorem. The map 

Hq{M,Q)->Hq{VM) 
induced by the inclusion i:V"^M is an isomorphism for q < n —2 and 
injective for q = n — 1. 

Proof. It will suffice to prove the result over C. By the Hodge decomposi-
tion 

Hr(M,C) = © Hpq(M), 
p + q=r 

and by Dolbeault 
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The same holding for V, it is sufficient to prove that the map 

H'(M,Olf)-+H>(V,Qf'v) 

is an isomorphism for p + q < n — 2, and injective for p + q = n — 1. 
To see this, we factor the restriction map WM~^VV by 

where O^j ^ is the sheaf of sections of (A*TJ/)IK—considered either as a 
sheaf on V or, by extension, as a sheaf on M—r is the restriction map, and 
/' is the pullback map induced by the natural projection {KPT^')\ V^>A.PT*'. 

The kernel of the restriction map r is clearly just the sheaf of holomor-
phic /7-forms on M vanishing along V, so we have an exact sequence of 
sheaves on M 

We can likewise fit the map i into an exact sequence: for pGV, the 
sequence 

0-> N*ip -> T*p\M) - 7?'(V) ->0, 

yields, by linear algebra, 

0 -> Nlp ® A " " l1?( F ) -* A ' 7 ? ' ( ^ ) -» A '7? ' ( K) -> 0, 

and consequently an exact sequence of sheaves on V 

0 -> fl£r'(TV*) -» fi^/l ,, 4 0 ^ - -» 0. 

But by the adjunction formula I, # £ = [ — F] |^ ; we can thus rewrite this 
last sequence as 

Now [ — V] is negative on M, and likewise [ - V]\v is negative on V. The 
Kodaira vanishing theorem accordingly gives 

H*(M,&M(-V)) = 0, p + q<n, 

H«(V,Wv-
l(-V)) = 0, p + q<n. 

By the exact cohomology sequences associated to the sheaf sequences (*) 
and (**), recalling that H*(M,W„\V) = H*(V,W„\V), 

H<(M,Qr„)* H«(M,WM\V)'L H"{VMp
v) 

for p + q < n — 2, and with both maps injective for p + q = n — 1. Q.E.D. 

The Lefschetz theorem on hyperplane sections is, of course, purely 
topological. There is another proof using a little Morse theory; we will give 
here a sketch of the argument:* 

*Due to R. Bott, On a theorem of Lefschetz, Mich. Math. J., Vol. 6 (1959), pp. 211-216. 
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To begin with, suppose that A is a compact manifold, B cA a smooth 
submanifold, and <p: A-*U+ a C°° function such that <JP~ '(0) = B. A critical 
point xpE.A of <p is a point such that rf<p(xr) = 0; <p(x„) is called a critical 
value of <p. At each critical point the Hessian d2q)/(dujduJ) = H(<p) is a 
well-defined quadratic form in the tangent space Tx (A); the critical point 
is nondegenerate in case H(y) is nonsingular. The function <p is called a 
Morse function if all critical points of <p are nondegenerate; according to a 
standard approximation theorem, such functions are dense in the (^-topol-
ogy. By the main lemma of Morse theory, if <p is a Morse function and the 
Hessian H(<p) is nonsingular in the normal bundle to B in A, then the 
homotopy type of 

A, = {xGA : <p(x)<t}, 

remains the same as long as / does not cross a critical value (this is 
obvious; we just retract along the gradient vector field of <p), and changes 
by attaching a cell of dimension k when we cross a critical value whose 
Hessian has exactly k negative eigenvalues. (This requires a local analysis 
of the Morse function \p around the critical point x„, and is the main step.) 

Now let M be a compact, complex manifold, L-+M a positive holomor-
phic line bundle, and sE/ / 0 (A/ , (9(L)) a holomorphic section whose zero 
divisor V=(s) is a smooth hypersurface. Choose a metric for L-*M such 
that ( V - 1 /2fl-)0 = (V— 1 /2ff)991og|s|~ 2 is positive and set 

<p(x) = log|s|2. 
<p—or a function near <p in the C2 topology—may be used as a Morse 
function (the fact that <p:A/-»[— oo, oo) with <p~'(— oo)= F causes no 
essential difficulty; what is important is that d(\s\)¥=0 along V). Now for 
any critical point x E M of (p, the matrix 

/ 3 3 V 1 III 3 2 3 2 \ V ^ T / 3 2 3 2 \\. , ,2 

is negative definite hermitian, and consequently the Hessian 

log U|2 

of <p has at least n negative eigenvalues. Clearly, this will also be true for 
functions i// sufficiently close to <p in the C2-topology. Thus, by Morse 
theory, as far as homotopy type is concerned M is obtained from V by 
attaching cells of dimension at least n, and this gives the Lefschetz theorem 
on the homotopy level and for homology with /-coefficients. Q.E.D. 

H(q>) = 

32 

3.x, dxj 

32 

32 

teity 
32 

tejtyi fyity 
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When n=l, the theorem doesn't say anything. However, when n = 
2—i.e., M is a (connected and compact) complex surface—and V c M is a 
Riemann surface embedded as a positive divisor, then the Lefschetz 
theorem gives 

H0(V,Z) ^ H0(M,Z) = Z, 
HX{V,Z)^HX{M,Z)^Q, 

i.e., all of the first homology of the 4-manifold M lies on the irreducible 
embedded Riemann surface V. 

We may also apply it to hypersurfaces of projective space: since any 
effective nonzero divisor on P" is positive, the theorem tells us that if V is 
any smooth hypersurface in P", then H2k~\V) = 0 for k¥=n/2, while 
H2k(V) is generated by the class of a A>plane section of V for k<n/2. In 
particular any smooth hypersurface of dimension 2 or more is connected 
and simply connected. The same results apply, for an appropriate range of 
k, to any submanifold of projective space given as the transverse intersec-
tion of hypersurfaces. 

A final remark on the Lefschetz theorem: Lefschetz's method was 
insofar as possible to study the topology of an algebraic variety M 
inductively, reducing questions about the homology of M to questions 
about the homology of a smaller-dimensional variety. His original proof of 
the last theorem asserted that for a hyperplane section V of M, the map 
Hq(V,Z)-+Hq{M,Z) is an isomorphism for q<n—\ and surjective in 
dimension n — 1. By the hard Lefschetz theorem, the homology of M in 
dimension above n is mirrored in dimensions less than n, and by the 
Lefschetz decomposition, any nonprimitive cycle in dimension n can be 
obtained by intersecting a cycle in dimension greater than n with hyper-
planes. Thus, the Lefschetz theorems together assert that the only "new" 
rational homology in varieties in each dimension is the primitive homology 
of the middle dimension. 

Theorem B 

Our second vanishing theorem for the cohomology of holomorphic vector 
bundles is less precise but broader in scope than the Kodaira Vanishing 
Theorem: 

Theorem B. Let M be a compact, complex manifold and L-^M a positive 
line bundle. Then for any holomorphic vector bundle E, there exists fi such 
that 

/ / ? ( M , 0 ( L " ® £ ' ) ) = O forq>0,fi> fiQ. 

Proof. Before we prove this, note that in case £ is a line bundle the result 
is already implied by the Kodaira theorem: just take j ^ , such that L^QE® 
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K%j is positive for n> ji^; then since c](L
t'®E) = [icl(L) + cl(E) 

H"{M,B{L'l®E)) = H«(M,Q"(L,l®E®K*)) = 0 

for q > 0, ju > jUo. Indeed, the proof of Theorem B is essentially the same as 
that of Kodaira's theorem, the only difference being that now we must 
associate a definite sign to the curvature operator on a general vector 
bundle. 

First, by Kodaira-Serre duality, 
H9(M,e(L>l®E)) at H"-'!{M,6(L-li®E*®KM)), 

so it will be sufficient to prove that for any E, there exists ^ such that 

H%p{M,L~>l®E) as Hp(M,6(L-*®E)) = 0 

for ft > /x0, p < n. 
Choose a metric in L such that w = ( V - 1 / 2 w ) 0 t is positive, where 0^ 

is the curvature form associated to the metric; let the metric on M be the 
one given by w. Now we have seen that if E,E' are two hermitian vector 
bundles and if we give E®E' the induced metric, then 

and so 
DE9E.= DE®\ + \®DE. 

®E®E. = e £ ® i + i ® 0 £ , 
where £>,0 always refer to the metric connection and curvature. In 
particular, for L and E as above with any metric on E, 

eL^E = -^-u®\E + @E. 

Let ■t}e%°'p(L~ll®E) be harmonic. Writing 0 for QL-^E, D for 
DL-f(g)E, we have 

© = D2 = D'd+dD', 
so 

01) = 3£>'TJ, 

and by the Kahler identity 

[A,9] = - ^ H - Z > " 
we see that 

2 V ^ T (A07j,T)) = 2 V ^ T (A9Z)'T),7J) 

= 2 V - 1 3A + D' £>'T),TJ 

U 2\^rT / 
= (D"D%7i) = (DXD'r,) > 0, 
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since (9AZ)'TJ,TJ) = (AZ)'TJ,3*T)) = 0. On the other hand, 

2 v r ^ T (0AT|,TJ) = 2 \ ^ T (D '5AIJ ,TJ) 

= 2 V ^ T | ( A 9 

161 

((A5-^L=-/>")T,,D"1 ?) 

Thus we have 

But now 

e = e 

2 V - 1 
= -{D'\D''T)) < 0. 

2 \ ^ T ( [ A , 0 ] T J , T J ) > 0 . 

2TT 
= @, flW, 

and so 

2 V ^ T ( [ A , 0 ] r , , r , ) = 2 ^ ^ T ( [ A , 0 £ ] 7 7 , T , ) - 4 ^ ( [ A , L ] T , , T , ) 

= 2 \ ^ T ( [ A , 0 £ ] I , , T , ) - 4 ^ ( « - J P ) | | T , | | 2 . 

Now [A,0£] is bounded on A°-*(L~li®E), so we can write 

| ( [A,e£]7M,) | < C||r,||2, 

and consequently for p < n, 

C 
H > T -=>?? = 0 

i.e., 

%°>p(L~>i®E) = 0 f o r / x > ^ , p<n. Q.E.D. 
LIT 

The Lefschetz Theorem on (l,l)-classes 

As an application of Theorem B, we will complete our picture of the 
correspondences among divisors, line bundles, and Chern classes on a 
complex submanifold of projective space. First, we have the 

Proposition. Let M c P N be a submanifold. Then every line bundle on M is 
of the form L = [D]/or some divisor D; i.e., 

Div(M) 
P i c ( A f ) s 

linear equivalence 

Proof. To prove this, we have to show that every line bundle on M has a 
global meromorphic section. To find such a section, let H denote the 
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restriction to M of the hyperplane bundle on PN. We will show that for 
JU»0, L + ju,// has a nontrivial global holomorphic section s; then if t is any 
global holomorphic section of [//] over M, s/C1 will be a global meromor-
phic section of L as desired. 

We proceed by induction on n = dim M: assume that for every submani-
fold F c P ^ of dimension less than n and every line bundle L—>V, 
H°(V,<9(L + iiH)¥=0 for JU.»0. By Bertini's theorem we can find a hyper-
plane P ^ ^ ' c P " with V=PN~> (~)M smooth; we consider the exact sheaf 
sequence 

0^eM(L + hi-\)H)->eM(L + nH)-^ey(L + iiH)^0, 

where s is the section of H vanishing exactly on H and r is the restriction 
map. For ju>0 we have both 

/ / ° (K,0(L + j d / ) ) ^ O 
by induction and 

H°(M,6(L + 11H)) -> H°(V,e(L + p.H)) -+0, 

since 

by Theorem B. Thus H°(M,e(L + (iH))¥=0, and the result is proved. 
Q.E.D. 

We now consider for a moment the general problem of analytic cycles. 
On a compact Kahler manifold M, the Hodge decomposition 

/ / " (A / ,C)= © Hpq(M) 
p+q=n 

on complex cohomology gives a slightly coarser decomposition of real 
cohomology 

H"(M,R)= © (Hpq(M)®H'<-p{M))nH"(M,U). 
p + q = n 

p<q 

A natural question to ask is whether we can characterize geometrically the 
classes in homology that are Poincare dual to classes in one of these 
factors. For example, we say a homology class y €E H2p(M, Z) is analytic if 
it is a rational linear combination of fundamental classes of analytic 
subvarieties of M; dually, we say a cohomology class is analytic if its 
Poincare dual is. Now, we have seen for purely local reasons that if V c M 
is an analytic subvariety of dimension p and \j/ any differential form on M, 

J y J y 

Thus if j] is the harmonic form on M representing the cohomology class i}y 
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and \p any harmonic form, 

JM JV JV JM 

i.e., TJ = r}p,p, and so we see that any analytic cohomology class of degree 2p 
is of pure type (p,p). The famous Hodge Conjecture asserts that the 
converse is also true: On M c P " a submanifold of projective space every 
rational cohomology class of type (p,p) is analytic. Whether the Hodge 
conjecture is true or false is at present unknown; it is a very beautiful and 
very difficult problem. The only case which has been proved in general is 
the case p = 1; this is the 

Lefschetz Theorem on (1,1)-Classes. For M c P N a submanifold, every 
cohomology class 

y e / / I J ( M ) n / / 2 ( M , Z ) 
is analytic; in fact 

y = VD 

for some divisor D on M. 

Here, of course, we are writing H2(M,Z) for its image under the natural 
inclusion in H2{M, R). 

Proof. Consider again the exact sequence 
o-^z->e ^0*^0 

and the associated cohomology sequence 

c, 

H\M,e*) —> H2(M,1) —> H2(M,6) a H°'2(M). 

We claim that the map /» is given by first mapping H2{M, Z)—> 
H2(M,C) and then projecting onto the (0,2)-factor of H2(M,C) in the 
Hodge decomposition; i.e., that the diagram 

* 
H\M,T) —» H2(M,6) 

\ 
H2(M,C) II Dolbeault 

de Rham I ft 
I ^ ' ' 

HlvfMX)—* H°-2(M) 

commutes. (The map m ' is defined on the form level, since for <o = « • + 
afiy) icl'l+03°'2EZ^(M), dw02=(dco)°'3=0). To see this, let z = ( z a „ ) e 

Z (M,Z); to find the image of z under the de Rham isomorphism, we take 
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fapEA°(UanUp) such that 
Zaf!y = fafi + ffiy ~ U i n Ua H Up D Uy\ 

since zafiy is constant, dfa/3 + dfpy-dfay=0, so {dfaP)&Z\M,%\) and we 
can find waG/f '(£/„) such that 

#«/? = «/?-«« i n ^a n Up. 

The global 2-form rf«a = dwp then represents the image of z in H^R(M, C). 
On the other hand, take the image of i*z under the Dolbeault isomor-
phism: we write 

Zapy ~ Ja/3 ~*~ -//3y — Jay' 

5f _ , , 0 , 1 _ , , 0 , 1 

and we see that 3w°1 = (rfwa)0,2 represents z in / /° ' 2(M). 
Now we are just about done: given yGHil(M)C\H*(M,T), we have 

/*(y) = 0, and hence y = c,(L) is the Chern class of some line bundle 
LEHl(M,B*). Writing L = [£»] for some divisor D = 'ZniVi, 

Y = C I ( [ D ] ) = T)D. Q.E.D. 

Note that since the isomorphism 

of the hard Lefschetz theorem is given by intersection with n — 1 hyper-
planes, it takes analytic classes to analytic classes; thus the Lefschetz (1,1) 
theorem also implies the Hodge conjecture for H2n~\M, <Q>) n 
H"~]n~l(M). In particular, we see that the intersection pairing between 
divisors and curves on a submanifold of projective space is nondegenerate. 

3. ALGEBRAIC VARIETIES 

Analytic and Algebraic Varieties 

Let XQ,...,Xn denote Euclidean coordinates on Cn + 1 and also the corre-
sponding homogeneous coordinates on P". Recall that the universal bundle 
J^>P" is the subbundle of the trivial bundle C " + l x P " - ^ P " whose fiber 
over a point A ' e P " is simply the line {\X}xcC"+l corresponding to X. 
The hyperplane bundle H->P" is the dual of J, i.e., it is the bundle whose 
fiber over A 'EP" corresponds to the space of linear functionals on the line 
{AA'}. As we saw in Section 1 of this chapter, the Chern class of H is the 
fundamental class u of a hyperplane in P"—that is, a generator of 
H2(P",Z)—and it follows from / / ' ( P " , 0 ) = O that every line bundle on P" 
is a multiple Hd of H. 

Consider now the global sections of the bundle H. First, we note that 
any linear functional L on C"+ l induces a section aL of H by restriction, 
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i.e., by setting 

Clearly aL is identically zero only if L is, so we have an injection 

C + 1 * — > i / ° ( P " , ©( / / ) ) . 
In fact, all of / /°(P", 0 (//)) is obtained in this way: if a is any section of 
H,D = (a) its zero divisor, then the fundamental class rjD is given by 

VD = C\iH) = w 

and by the argument of Section 4, Chapter 0, it follows that D is a 
hyperplane in P". If we let LGC+r be any linear functional vanishing on 
the hyperplane 77~'Z) c C " + l , then, the meromorphic function a/aL will be 
holomorphic on all of P", hence constant. 

In general, the fiber of a power Hd of H over a point X corresponds to 
the space of ^-linear forms on the line {\X}cC+l, and so as before any 
^/-linear form F on C" + l induces by restriction a global section 

°F(X) = F\{\x} 

of Hd. Since we are restricting F to one line at a time, we see that 0^ = 0 if 
F is alternating in any two factors, and so we have a map 

Symd(C"+'*) —>/ /° (P" , 6(Hd)) 

from the space of symmetric ^/-linear forms on C"+ l—that is, homoge-
neous polynomials F(X0,...,X„) of degree d in X0,...,X„—to the space of 
global sections of Hd. Again, the map is injective, and the zero divisor of 
the section aF is just the image in P" of the zero locus of F(X0,...,Xn) in 
C"+1. 

We claim now that these are all the global sections of Hd. To show this, 
let a be any global section of Hd, and denote by aF be the section of Hd 

corresponding to an arbitrary homogeneous polynomial F{XQ,...,Xn). The 
quotient o/oF is then a meromorphic function on P"; let 

-Hi) 
be its pullback to C" + ' - {0}. G' has a simple pole along the divisor F = 0 
in C"+1 — {0} and is holomorphic elsewhere, so the function 

G = G'F 
is holomorphic everywhere in C " + 1 - { 0 } and hence by Hartogs' theorem 
extends to an entire holomorphic function on C"+ I . Now since G'(\X) = 
G'(X) for all X e C " + l and X E C , and F(XX)=\dF(X), 

G(\X) = XdG(X), 

i.e., G is homogeneous of degree d. Thus if i-.t^y^t,...,^) is any line 
through the origin in C"+ l , the pullback i*G either is identically zero or 
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has a zero of order d at / = 0 and a pole of order d at / = oo, i.e., 

i*G = [i-td 

for some /z. It follows that the power series expansion 

G(X0,...,X„) = ^lalo_,Xi)o---X^ 

for G around the origin in C"+ l contains no terms of degree other than d, 
i.e., that G is a homogeneous polynomial of degree d in XQ, ..., X„. Thus 
a = ac is of the desired form, and we have shown that every global section 
of Hd is given by a homogeneous polynomial in X0,...,Xn. 

We note in passing that there is a useful formula for the dimension 
h°(P",6(Hd)).of the space of global sections of Hd, that is, the number of 
monomials XQ°, ...,X'n" of degree d in (n + 1) variables. We associate to any 
sequence /„,...,/„ of integers with "Zik = d the set of n integers 

{ i 0 + l , i 0 + i, + 2,...,/,>+••• +/„_, + «} C {\,...,d+n}. 

This subset of {\,...,d+n} determines the sequence ik, and conversely any 
subset of n distinct numbers between 1 and d+n corresponds to such a 
sequence. Thus the number of monomials of degree d in X0,...,X„ is just 
the number ( I of subsets of order n in a set of order d+n, and so 

h°(P",e(Hd)) = (d+n). 

Note that the locus of a homogeneous polynomial F(X0,...,X„) of 
degree d in the homogeneous coordinates Xi may also be given in terms of 
Euclidean coordinates XJ — XJXQ, i=\,...,n in (XQ^0) by the inhomoge-
neous polynomial of degree < d 

f(xl,...,x„) = F( l ,x„ . . . ,x„) = -—F(XQ,...,X„), 

and conversely any such polynomial 

/(*„...,*„) - S V i * ! ' " " ^ 
corresponds to a homogeneous polynomial 

F(X0,...,Xn) = 2 ati_xXt*k •*,"• - # . 
/ is called the affine, or inhomogeneons form of F. 

We now make the 

DEFINITION. An algebraic variety V c P" is the locus in P" of a collection 
of homogeneous polynomials [Fa(X0,...,Xn)}. 

An algebraic variety is clearly an analytic subvariety of P" and will be 
considered primarily as such (i.e., an algebraic variety F c P " is called 
smooth, irreducible, connected, etc. if it has these properties as an analytic 
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subvariety of P"). Conversely, we will show that any analytic subvariety of 
protective space is expressible as the locus of homogeneous polynomials. 
We have already done this in essence for hypersurfaces: if F c P " is any 
divisor, the line bundle [ V] is of the form Hd for some d, and V is the zero 
locus of some section a of [ V]. But all sections a of Hd are of the form oF, 
and so 

V=(oF) = (F(X0,...,X„) = 0) 

is algebraic. In general, suppose V c P" is a ^-dimensional variety, p £ P" 
any point not lying on V. We can find an (n — k — l)-plane p " - * _ l in P" 
through/) and missing V; let P"~k-2 be an (n-k-2)-plane in p"-*-> 
disjoint from p. Let TT denote the projection from p " - * - 2 onto a comple-
mentary (k+ l)-plane P* + 1; choose coordinates X0,...,X„ on P" so that 

Pk + l=(Xk+2=---=Xn = 0) 

P " - * - 2 = ( * 0 = . - - = Z f c + I = 0 ) 
and 

Tr([X0,...,Xn])=[X0,...,Xk+l]. 

By the proper mapping theorem the image IT{V) of V in P* + I is an 
analytic hypersurface in Pk + \ and by the hypothesis that P " ~ * _ l = 
P"~k~2,p misses V, ir(p) will lie outside ■n(V). By what we have seen, we 
can find a homogeneous polynomial F(X0,...,Xk + l) vanishing along ir{V) 
but not at Mp)', correspondingly, the polynomial 

F(X0,...,Xn) = F(X0,...,Xk+l) 

vanishes on V but not at p. We can thus find, for any point p&V, & 
polynomial vanishing identically on V but not at p, and so we have 

Chow's Theorem. Any analytic subvariety of protective space is algebraic. 

If F(Ar
0,...,A'n) and G(X0,...,Xn)^0 are two homogeneous polynomials 

of the same degree d in the homogeneous coordinates X on P", the 
quotient 

is a well-defined meromorphic function on P"; such a mermorphic func-
tion is called a rational function. Note that after dividing top and bottom 
by powers of X0, we may write the function <p as 

/ ( x „ . . . , x n ) 

where / and g are polynomials (not necessarily both of degree d) in the 
Euclidean coordinates x,. Thus the field K(P") of rational functions on P" 
is isomorphic to C(JC, , . . . ,x n ) . 
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It is not hard to see that any meromorphic function on P" is rational. By 
Chow's theorem, both the zero-divisor (<p)0 and the polar divisor (<p)x of <p 
are expressible as the loci of homogeneous polynomials F(X) and G(X). 
Since moreover the divisor (<p) is homologous to zero, F and G have the 
same degree, so F/G is a well-defined rational function on P"; then from 

( F / G ) = (<p) 
it follows that 

q> = XF/G 

for some X G C. 
Now if V c P" is any smooth variety, a meromorphic function on V is 

called rational if it is the restriction to V of a rational function on P". The 
rational functions of V a priori form a subfield of the field GJ\i(V) of 
meromorphic functions; in fact, 

Every meromorphic function on an algebraic variety V c P ° is rational. 

The proof of this assertion is in two stages: first, we express V as a 
branched cover of a linear subspace P* c P" by projection, and deduce 
from this representation that the pullback <n*K(Pk) to V of the field of 
rational functions on P* has index at most rf=deg(K) in the field tyL(V); 
we then show that the field K( V) is an extension of degree at least d over 
W*A:(P*). 

For the first part, choose a generic (n — k — l)-plane p n _ * - 1 in P"; at 
this stage we require only that p " - * - 1 be disjoint from V. Let P* be a 
complementary &-plane, and m: V-+Pk the projection from P " - * - 1 . For 
each point p of P*, the inverse image ir~*{p) is just the intersection of V 

with the («-£)-plane P"~k~i,p; since P"~k~~x,p will generically intersect 
V in d=deg(V) points, -n expresses V as a rf-sheeted branched cover of P* 
almost everywhere. In fact, IT must be everywhere finite: if for any point/) 
in P* the («-A:)-plane P"~k~l,p intersected V in a curve, that curve 
would necessarily meet the hyperplane P " _ / c _ l cP"~k~\p, contrary to 
the hypothesis that P " - ^ 1 is disjoint from V. 

Note that if we choose homogeneous coordinates X = [X0,...,X„] on P" 
such that P " - * - ' is given as (X0= ■ ■ ■ =Xk=0) and Pk as (Xk+l= ■ ■ ■ = 
X„ = 0), the map ir is given by 

In particular, the pullback w*f to V of any rational function / on P* is 
clearly rational, so that on V we have inclusions 

w*Jf(P*) c K(V) c 9 H ( K ) . 

Now, to see that -n*K{Pk) has index at most d in M(V), let q> be any 
meromorphic function on V and let D = (<p)o0. Let B cPk be the branch 
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locus of w; on P* — B we can define functions >p, by 

*i(/») = 2 <P(<7). 

hip) = 2 <p(?) •?(?'), 

*/(/') = n <P(?X 
qeir-'(p) 

i.e., we let ^(Z7) be the /th symmetric polynomial in the values of <p at the d 
points of ir~\p) in V. i//( is then a holomorphic function on Pk — B — 
IT(D), and being bounded away from TT(D) it extends by the Riemann 
extension theorem to a holomorphic function on Pk — ir{D). We claim that 
i//, extends to a meromorphic function on all of P*. IfpEi-ir(D) is any point 
a.ndf(X) a local defining function for w(D) in a neighborhood A of p, then 
for m sufficiently large, the function 

will be holomorphic in 7r~'(A). For <?eA- B, then, let 

a,,...,a, v ' 

be the /th symmetric function of the values of <p' at the points of w ~ \q); 
being bounded in any compact subset of A, »/// likewise extends to a 
holomorphic function on A. Writing 

, _ *; 
*• r i m ' 

we see that >p, extends to a meromorphic function in A, and hence in all of 
P*. Thus the functions i/<, are rational functions. But now on V we have 

<pd- v*+l-<pd-' + ■n*^2-<f
d-2 + ( - 1 ) V * = 0, 

i.e., every meromorphic function <pG 911(F) satisfies a polynomial relation 
of degree d over w*K(Pk). By the primitive element theorem, then, the field 
extension 91t(F)D7j-*Ar(P*) is finite of degree at most d. 

To complete the proof of our assertion, we want to exhibit a rational 
function on V which satisfies no polynomial relation of degree less than d 
over the field -!r*K(Pk). To do this, we factor the projection map IT: choose 
generic planes p»-*-2 c p"-*- i and p * + I

c P * , and let v':K->.P* + 1 be 
projection from p " * ^ 2 . We may take homogeneous coordinates X= 
[X0,...,Xn] on P" such that 

P"-*-1 = (*0 = • • • = Xk = 0), P* = (Xk+] = ••• = *„ = ()), 
W-k~2 = (X0 = • • • = Xk + 1 = 0), P*+l = (Xk+2 = • • • - Xn = 0); 
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in terms of these coordinates, -n is given as before and 

v'([X0,...,XH])=[X0,...,Xk+i] 

so that m is just the composition of IT' with projection from the point 
(X0= ■ ■ ■ = Xk = Xk+2 = •■■ =X„ = 0) in P* + I onto P*. Note that, P""k~2 

having been chosen generically, the map IT' will be one-to-one over an 
open set in its image: this will be the case as long as for some point/? in V 

the {n — k — l)-plane P"'k~2,p meets V only at/>—but for any/? in V, the 
generic (n — k— l)-plane through p meets V only at p. 

Now, consider the rational function 

_ Xk+\ 
xk+\ ~ V 

A0 

on V. Suppose that xk+x satisfied an equation of the form 

*k'+i + ^i(xl,---,xk)-xf+-]
1 + ■■■ + 4,d,(xx,...,xk) = 0, a" < d. 

Then for a generic point p = [a0,...,ak] in Pk, the inverse image of p in 
ir'(V)cPk + 1 would consist of at most of the a" points {[a0,...,ak,/3]}, 
where 

\«o «o/ V"o «o/ 
But since the projection TT' : V->Pk+1 is generically one-to-one onto its 
image and the fibers of m generically consist of d> a" points, this is 
impossible. Q.E.D. 

Note, as a consequence, that the field of rational functions on an 
algebraic variety V is independent of the embedding. Thus, the sheaf of 
germs of polynomial functions on V, which associates to every open set U on 
V the ring of rational functions on V finite in U, is intrinsically associated 
to V. This sheaf, the basic structure sheaf in algebraic treatments of the 
subject, is also denoted by 0^. 

It is not hard to see by the same sort of argument that 

1. Any meromorphic differential form on a smooth variety is algebraic, 
that is, expressible in terms of rational functions and their differentials. 

2. Any holomorphic map between smooth varieties may be given by 
rational functions. 

3. Any holomorphic vector bundle on a smooth variety is algebraic, 
that is, may be given by rational transition functions. 

The first assertion we can prove now: clearly the differentials dq> of the 
rational functions on V span the cotangent space to V at every point, and 
so a finite number of them do; any meromorphic form on V is then a 
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linear combination of wedge products of these forms with meromorphic, 
hence rational, coefficient functions. The second assertion will follow once 
we see in the following section that the product V X W of two algebraic 
varieties is again a variety; by Chow's theorem the graph r e Vx WcP" 
is then cut out by polynomials. The third assertion will be clear once we 
have discussed the Grassmannian manifold and proved an embedding 
theorem for vector bundles on algebraic varieties in Sections 5 and 6 of 
this chapter. 

All these results are special instances of the general G.A. G.A. principle* 
that any global analytic object on an algebraic variety is algebraic. The 
importance of Chow's theorem and the G.A.G.A. principle is, in this 
treatment, primarily philosophical rather than practical. While we shall not 
use them as tools in our study—most of our techniques apply uniformly to 
all analytic phenomena on a variety, so it will not be useful for us to know, 
for instance, that a given meromorphic function or map is rational—they 
assure us that, in treating varieties as analytic rather than algebraic entities, 
we are still dealing with the same class of objects. 

Degree of a Variety 

The fundamental projective invariant of an algebraic variety F c P " is its 
degree, defined as follows: Taking the class of a &-plane P * c P " as 
generator, we have an isomorphism 

/ / M ( P " , Z ) « Z . 
The degree of a A;-dimensional variety F c P " is its fundamental class in 
H2k(P",Z) via this identification. 

Alternative definitions abound. First, by Bertini applied to the smooth 
locus of V the generic (« - A:)-plane P" ~ * c P" will intersect V transversely, 
and so will meet V in exactly 

*(P"-*-K) = degree(F) 
points; thus we may define the degree of a variety to be the number of 
points of intersections of V with a generic linear subspace of complemen-
tary dimension. On the other hand, if w is the standard Kahler form on P", 

j co* = degree(F)- \ uk = degree(F), 
J y Jpk 

so we may define the degree of V to be simply its volume divided by &!. 
(This is sometimes called the Wirtinger theorem.) In case F c P " is a 
hypersurface, we have seen that it may be given in terms of homogeneous 

*So named after J. P. Serre's paper, Geometrie Algebrique et Geometrie Analytique, Annals 
of the Institute Fourier, Vol. 6. 
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coordinates X0,...,Xn on P" as the locus 
V=(F(Xo,...,Xn)=0) 

of a homogeneous polynomial F. If F has degree d, then the fundamental 
class of V=(oF) is y\v = cx{Hd)—that is, d times the class of a hyperplane 
—so V has degree d. Alternatively, if 

[Y0,Yl]^[a0Y0 + b0Yv...,anY0+b„Yi] 

is a generic line in P", the pullback n*F of F to P1 will be homogeneous of 
degree d in Y0 and Yu and so by the fundamental theorem of algebra will 
have exactly d roots. The degree of V is thus the degree d of the 
polynomial F. 

A basic fact about degree is that it is multiplicative with respect to 
intersections. Since a P"~*> and a P"~k2 intersect transversely in a 
P"-*1 -*2 , the degree of the intersection of two varieties meeting trans-
versely almost everywhere is the product of their degrees. More generally, 
if V and W are varieties of degrees d{ and d2 in P" intersecting in a variety 
of the appropriate dimension, {Z,} the irreducible components of V (~) W, 
then 

d\ ■ <*2 = 2 multZi (V-W)- degree(Z,) 
i 

with m\iltz(V-W) defined as in Section 4 of Chapter 0. This is of 
particular interest in the case of complementary dimension. For example, 
if C and D are two curves in P2 of degree d{ and d2 and having no 
component in common—that is, intersecting only in points—we see that 
they can have at most dxd2 points of intersection. This is a weak form of 

Bezout's Theorem. Two relatively prime polynomials f(x,y), g(x,y) €E 
C[x,y] of degrees d, and d2 can have at most d,d2 simultaneous solutions. 

The degree also behaves well with respect to the geometric operations of 
projection and coning. Clearly, if V c P" is any variety, p £ P" any point 
not on V, and irp : F—>P"_1 the projection onto a hyperplane, then 

deg(K) = deg (^ (K) ) : 
the number of points of intersection of ir(V) with a generic (n — k — l)-
plane P""*" ' in P"~' is just the number of points of intersection of V with 
the ( n - A:)-plane P"-k = P"~k-\p in P"; since by Bertini the generic P"~k 

through p meets V transversely, this is just the degree of V. 
Coning is an operation we have not previously encountered. If V C P" is 

any variety, p G P" at any point lying off V, we take the cone p, V through p 
over V to be the union of the lines through p meeting V. That p, V is a 
variety is easy to see: it is the image under projection on the first factor of 
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the incidence correspondence / c P" X P" defined by 
/ = {(q,r): r^V,pAqAr = 0}, 

itself an analytic subvariety of P" X P". (Alternatively, if in homogeneous 
coordinates/> = [0,...,0,1], let P"~ ' be the hyperplane Xn—0; if the image 
IT (V)c P"~' of V under projection from/? is cut out in P " " ' by polynomi-
als {Fa(X0,...,Xn_i)}, then the cone p, V is cut out by the polynomials 
{Fa(X0,...,Xn)=Fa(X0,...,X„^i)}.) Now if HcP" is a generic_hyper-
plane, not containing p, then the intersection of H with the cone p, V will 
be simply the projection IT { V) of V from p into H; so 

deg(^T ? ) = d e g ( / / n ^ T 7 ) 

= deg(7rp(F)) = deg(F) . 

Another variety we may associate with a variety F c P " is its chordal 
variety C( V), defined to be the union of all lines meeting V twice or, in the 
limiting case, tangent to V. C( V) is the image under projection on the third 
factor of the closure of the incidence correspondence / c P " x P " x P " 
defined by 

/ = {(p,q,r): p^qGV,p/\q/\r = 0}. 

I is an analytic subvariety of P" x P" x P", and so C( V) is an analytic 
variety in P". Note that since projection on the first factor maps / onto V 
with (dim V+ l)-dimensional fibers, / has dimension 2 - d i m F + l . C(V) 
will thus have dimension at most 2 dim V+ 1; generally, this will be exact. 
In particular, since the projection irp of a smooth variety into a hyperplane 
will be an embedding if and only if p(£C( V), we see that if n > 2 • dim V+ 
1, then V may be smoothly projected into a hyperplane. Thus 

Any smooth algebraic variety of dimension k may be embedded in P 2 k + ' . 

As we shall see, the degree of the chordal variety C( V) of a variety does 
not depend on the degree of V alone. 

A variety F c P " is called nondegenerate if it does not lie in a hyper-
plane. We have the following condition on the degree of a nondegenerate 
variety: 

/ / V c Pn is an irreducible, nondegenerate, k-dimensional variety, then 

deg(F) > n-k+ 1. 

We prove this first for V a curve in P". Any n points of V lie in a 
hyperplane H, and if the degree of V were less than n, then H, having n 
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points in common with V, would have a curve in common with V; being 
irreducible, V would then lie in H. 

Turning to the general case, we have to show that the generic hyperplane 
section H n V of an irreducible nondegenerate variety V of dimension > 2 
is again irreducible and nondegenerate in H. The latter part is clear: the 
condition that H n V be degenerate is a closed one on H G P"*, and since 
V itself is nondegenerate, we can find n points of V spanning a hyperplane, 
so not every hyperplane section of V can be degenerate. 

The former half of our assertion—that the generic hyperplane section of 
an irreducible variety is irreducible—is somewhat harder. We note first 
that in case V is smooth, this follows easily from the Bertini theorem and 
the Lefschetz theorem on hyperplane sections: by Bertini, the generic 
hyperplane section H n V is smooth, and so by Lefschetz, 

H0(HnVX) = H0(V,C) = C; 

i.e., H n V is connected. Thus, if H n V were reducible, the components of 
H <~)V would have to meet each other; but their points of intersection 
would be singular points of H n V, and so this cannot happen. 

To prove the assertion in the general case requires a different approach. 
We argue as follows: le tpG V be any smooth point, and let P " ~ 2 c P " be 
an (/?-2)-plane meeting V transversely at p; let Z be the irreducible 
component of VnP"~2 containing/?. Now consider the pencil {Hx} of 
hyperplanes in P" containing P"~2. Each hyperplane section Hxn V of V 
contains Z, but since each Hx intersects V transversely at p, p—being a 
smooth point of Hxn V—can lie on at most one of the irreducible 
components of Hx n V for each \. Let V be the union of the irreducible 
components of the sections HxnV that contain Z. Then V is an open 
A>dimensional analytic variety contained in V, and hence its closure V 
must be all of V; thus Hx n V= Hx n V is irreducible for generic A. 

Now the original lemma follows readily from the curve case: if V C P" is 
any irreducible nondegenerate A:-dimensional variety of degree d, then the 
generic intersection of V with k — 1 hyperplanes is an irreducible, nonde-
generate curve of degree d in P"~* + 1, and so 

d > n-k+l. 

We can restate the lemma as follows: any irreducible A:-dimensional 
variety VcP" of degree d must lie in a linear space of dimension d+ k—\; 
as a corollary, then, we see again that any variety of degree one in P" is a 
linear subspace. 

We shall see that varieties that realize this lower bound on the degree-
—e.g., curves of degree n in P", surfaces of degree n — 1 in P", etc.—are of 
a special character. 
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Tangent Spaces to Algebraic Varieties 

To a variety VcP" and a smooth point pG V is associated a linear 
subspace of P", the tangent space to V at p. This may be defined in several 
ways; we mention two here. 

1. The complement of a hyperplane H c P" is isomorphic to C" via 
Euclidean coordinates; we may take the tangent space to f^cP" at/7 to be 
the closure in P" of the usual tangent subspace Tp{ V) c Tp(C). Explicitly, 
if x„...,xn are Euclidean coordinates on P" in a neighborhood of p = 
(a,,...,a„) and V is cut out by functions {fa(xl,...,xn)}, this is just the 
linear subspace of P" defined by 

2 !*(/>)•(*,-«,■) = o. 

2. Alternatively, if V is given in terms of homogeneous coordinates 
Xo,...,Xn as the locus of polynomials {Fa(Xl,...,Xn)}, this is the linear 
subspace 

2|J(/>)-*, = o, 
where the differentiation is formal: if fa is the inhomogeneous form of Fa, 
then dfa/dxj is the inhomogeneous form of dFa/dXt, and by virtue of the 
relation 

--Y—-F 

where d=deg(F), we can write 

so the homogeneous form describes the same subspace. 
In a similar way we may define the tangent cone to a variety V c P" at a 

(possibly singular) point p e V. First, if F is a hypersurface cut out by the 
homogeneous polynomial F, and p a point of multiplicity k on K—so that 
all the partial derivatives of F of order < k — 1 vanish—we take the 
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tangent cone to V at p to be the locus 

In general, we will take the tangent cone to a variety V c P" at a point p to 
be the intersection of the tangent cones at p to all the hypersurfaces 
containing Fnear/?. 

This may be realized alternately as the union of the tangent lines at p to 
all curves lying on V and passing through p; or as the limiting position of 
chords limA_>0 p,q{\) where q(X) is an arc in V with q(0)=p. 

4. THE KODAIRA EMBEDDING THEOREM 

Line Bundles and Maps to Projective Space 

We will be concerned in this section with determining exactly when a 
compact complex manifold is an algebraic variety, i.e., when it can be 
embedded in projective space. We first establish a basic formalism for 
maps to P" . 

Let M be a compact complex manifold, L^>M a holomorphic line 
bundle. Recall that to any subspace £ of the vector space H°{M, 0 (L)) is 
associated the linear system 

\E\ = {(s)}seEcDw(M) 

of divisors on M. Since M is compact, (s) = (s') only if s=Xs' for some 
nonzero constant X e C ; thus | £ | is parametrized by the projective space 
P(£) . 

Suppose in addition that the linear system \E\ has no base points, i.e., 
that not all s G E vanish at any point p&M. Then for each p&M the set of 
sections SELE vanishing at p forms a hyperplane H c E—or, equivalently, 
the set of divisors D E | E \ containing p forms a hyperplane Hp in 
P(E)—and so we can define a map 

iE: M-+P(E)*, 

by sendingp £ M to Hp e P(£)*. 
We can describe the map iE more explicitly as follows. Choose a basis 

s0,...,sN for £. If we let sita = q>*(Sj)G.B(U) for any trivialization <pa of L 
over an open set U&M, it is clear that the point [s0a(p),...,sNa(p)]EPN 

is independent of the trivialization <pa chosen; we denote this point by 
[s0(p),...,sN(p)]. In terms of the identifications P ( £ ) * » P A ' corresponding 
to the choice of basis % . . . , s N , then, the map iE is given by 
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We see from this representation that iE is holomorphic. 
Now let H be the hyperplane bundle on PN. The pullback bundle iE(H) 

on M is given by the divisor (s,) —that is, 

L = i*(H). 

Moreover, any section s = 'ZaisiE.E is the pullback of the section 2a,Z, of 
H on P" ; i.e., 

E = i*(H°(PN,6(H))) c H°(M,B(L)). 

Thus iE: M-±PN determines both the line bundle L and the subspace 
EcH°(M, 0(L)), and we have a basic dictionary 

nondegenerate maps 
/ : M-*PN, modulo 
projective 
transformations 

line bundles L^>M 
with EcH°(M, 0(L)) 
such that |2T| has no base points 

where the choice of homogeneous coordinates on P ^ corresponds to the 
choice of basis s0,...,sN for E. 

We will often write iL for iHo(M>e(i)) and iD for t[0]. 
Note that the degree of the image of M under iE—that is, the intersec-

tion of M with n general hyperplanes in P"—is just the n-fold self-intersec-
tion of a representative divisor D E.\E\, that is, 

deg( t £M) = cr(L)". 

A variety VdP" is called normal if the linear system on V giving the 
embedding i: K°->P" is complete, that is, if the restriction map 

/ /°(P",8(H )) -^ H°( V, 6(H )) 

is surjective. Note that any hypersurface V c P " is normal: from the exact 
sheaf sequence 

o^eP„(H-v)-+ep„(H)^6y(H)-*o 
we have an exact sequence of cohomology groups 

H0(pn,eP.(H))^H°(v,ev(H))^H,(pn,eP.(H-v)), 
But 

H\P",6P„(H- V)) = H\P",ep„{{\-d)H)) = 0 

so r must be surjective. Note that two normal varieties V, V c P" will be 
projectively isomorphic—that is, V may be carried into V by an automor-
phism of P"—if V is biholomorphic to V via a mapping carrying Hv. to 
Hv. In particular, if V and V are smooth hypersurfaces of dimension > 3 
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and degree d¥= n +1 in P", then by the adjunction formula 
Kv = (KP„®[V])\V =[(d-n-\)H] 

and likewise for V. But by the Lefschetz theorem on hyperplane sections 

H\V,6) st H\P",6) = 0, H2(V,e) =s H2(P",6) = 0 
so from the long exact cohomology sequence associated to the exponential 
sheaf sequence and the Lefschetz theorem again 

Pic(K) = Hl(V,e*)s* H2(V,I)^ H2(Pn,Z) = Z 

and likewise for V. Thus if <p: V—> V is biholomorphic, 
<p*Ky. = Kv=*<p*{H\v.) = H\v, 

so V and V are projectively isomorphic. In conclusion 

Two smooth hypersurfaces of dimension > 3 and degree d=7tn+ 1 in 
Pn are isomorphic if and only if they are projectively isomorphic; or, 
equivalently, 

Any automorphism of a smooth hypersurface of dimension > 3 and 
degree d=^n+ 1 in Pn is induced by an automorphism of Pn. 

This result in fact holds for surfaces V of degree d=£4 in P3 as well: to 
apply the previous argument, we need to know only that H2(V,Z) contains 
no torsion; this follows from the fact that V is simply connected (Lefschetz 
theorem once more), and the statement of Poincare duality for the torsion 
part Ht tor of homology: 

HilOT(M,Z)^H?o;>-l(M,Z). 

We may illustrate the correspondence between maps to projective space 
and base-point-free linear systems with a classical example: the Veronese 
map associated to the line bundle dH on P". We have seen that the global 
sections of dH correspond to homogeneous polynomials of degree d in 
Z = [Z0,...,Z„], so that if {Za = Z^a- ■ ■ Z^} denotes the set of monomials 
of degree d in Z, then the Veronese map is given by 

[Z0,...,Zn]^[...,Z°,...]. 

It is easily verified that the Veronese map is a smooth embedding, with 
the property that every hypersurface of degree d in P" becomes a hyper-
plane section of idH(P")cPN. Here are a few cases: 

1. The Veronese map 

inH: P ' - » P " 

is given, in terms of the Euclidean coordinate t = Zi/ZQ on P1, by 

fl-*[l,t,t2,...,tH]. 
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Its image is a nondegenerate curve of degree n, called the rational normal 
curve. 

Conversely, if C c P" is an irreducible, nondegenerate curve of degree n, 
let/j,,...,/?„_| be any M— 1 independent points of C, V—pl,---,p„-i=Vn~2 

their linear span, and {Hx }x e p, the pencil of hyperplanes in P" containing 
V. Each hyperplane Hx will then intersect C in n points: P\,--.,p„-\, and 
an additional point we will call q(k). (In case Hx is the hyperplane 
containing V and tangent to C at/>(, the point q(X)=pi.) Every point of C 
will lie on a unique hyperplane Hx, and so the map q:P[—>C is an 
isomorphism. Since moreover nH is the unique line bundle of degree n on 
P1, it follows that every irreducible nondegenerate curve of degree n in Pn is 
projectively isomorphic to the rational normal curve. 

2. In terms of Euclidean coordinates s = ZjZ0, t = Z2/Z0 on P2, the 
Veronese map / = i2H : P2—>P5 is given by 

[s,t)^[l,s,t,s2,st,t2]. 

The image S=f(P2) is a nondegenerate surface of degree C\{f*HPs)2*= 
c,(2//p2)2 = 4; note that this degree is minimal in the sense of the last 
section. 

We digress for a moment to discuss a curious feature of the Veronese 
surface S c P 5 : it is th£ unique nondegenerate surface in P5 whose variety of 
chords C(S)= U p q e S p q is a proper subvariety of P5. To see this, note that 
for any point/? G P5 lying on the chord /(«), /(« ') of S, the line L = uu'c P2 

is mapped into a curve of degree 
# ( / / p 5 - / ( L ) ) = * ( 2 / V L ) = 2 

P5, hence by the result of p. 173 is a conic lying in a 2-plane F 2 c P 5 . 
N O W / ) G / ( H ) , / ( K ' ) C V2, and any line through p in V2 must intersect/(L) 
twice, so that any point of P5 lying on a chord of S lies on infinitely many 
chords of S. In particular, if we let LQ be the line 0 = 0) in P2, and let 
w0= L 0 n L, then the line f(u0),pc P5 is a chord of S. Thus 

C(S)= U f{p),f(q) , 
p£L0 

q£P2 

from which we see that C(S) is of dimension at most four. Explicitly, we 
describe C(S) as the locus 

{a-f(s,t) + (l- a)-f(0,t')} = {[l,as,at + (\-a)t',as2,ast,at2 + (\-a)t'2]}. 

Now we solve for a, s, t, and /': given X=[X0,...,X5]EC(S), X must be 
the point <x-f(s,t) + (l -a)-f(0,t') for the values 

s = X3/Xu t = XA/Xx, a = Xf/X0X3, 

t' = (X2X3-X}X4)/(X0X3-X
2). 
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Consequently the coordinates of I E C ( S ) must satisfy 

X5/X0= at2 + (l-a)t'2 

= X2/X0X3 + (X2X3 - XXX$/ (X0X3(X0X3 - X2)), 

i.e., 

[X0X3 — A" | )X5 = X0X4 + X2X3 — 21,^2^4, 

and we see that the variety of chords of the Veronese surface in P5 is a 
cubic hypersurface. 

We may state the original question of this section as: Given L-±M a 
holomorphic line bundle, when is iL : M—►P̂  an embedding? First, in order 
for iL to be well-defined the linear system \L\ cannot have any base points, 
i.e., for each x G M the restriction map 

H°(M,6(L)) ~^> Lx 

must be surjective. Granted this, iL will be an embedding if 

1. tL is one-to-one. Clearly this is the case if and only if for all x andy 
in M, there exists a section sEH°(M,&(L)) vanishing at x but not at y, 
i.e., if and only if the restriction map 

(*) H°(M,6(L))-^ Lx®ly 

is surjective for all x=£yEM. Note that if L satisfies this condition, then 
\L\ must be base-point-free. 

2. tL has nonzero differential everywhere. If <pa is a trivialization of L 
near x, then this is the case if and only if for all v* G T*(M), there exists 
sSH°(M,6(L)) with ^a(x) = 0 and dsa(x) = v* where sa = <p*s. We can 
express this requirement more intrinsically as follows: let ix C0 denote the 
sheaf of holomorphic functions on M vanishing at x, and let ix{L) be the 
sheaf of sections of L vanishing at x. If s is any section of $X(L) defined 
near x, and <pa,q>p are trivializations of L in a neighborhood U of x, then 
writing sa = <p*s, sp = <pp, sa = gafisp, we have 

d{sa) = d(sp)-ga/} + dgaP-sp 

= d{sp)-gap a t* . 

Thus we have a well-defined sheaf map 
dx: ^{L)^T*X'®LX 

and condition 2 can be stated as requiring that the map 

(**) / / ° ( A / , ^ ( L ) ) - > r * ' ® L x 

be surjective for all XELM. Note that (**) is the limiting case of (*) when 
y-^>x. 
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The result we are aiming for is the 

Kodaira Embedding Theorem. Let M be a compact complex manifold and 
L—>M a positive line bundle. Then there exists k^ such that for k > k^, the 
map 

iL„: M-*PN 

is well-defined and is an embedding of M. 

Let us consider how one might go about proving this. The first thing to 
do is to fit the maps (*) and (**) into exact sequences and try to use our 
vanishing theorems directly. To this end, let $xy(L) denote the sheaf of 
sections of L vanishing at x and y, and $2

X(L) the sheaf of sections of L 
vanishing to order 2 at x, i.e., sections 5 of §X{L) such that dx(s) = 0. We 
have exact sheaf sequences 

0-*$xjL)^e{L)A> Lx®Ly^O 

and 

0 _> %(L) -> ix{L) ~4> 7T ® Lx -> 0; 

so that to show that the maps (*) and (**) are surjective, it would suffice to 
prove that 

H\Mj2
x(L)) = H,(Mjxy(L)) = 0; 

indeed, replacing L by Lk and using H\M,0(L*))=O for k>kl, the 
reader may check that our theorem is equivalent to this vanishing theorem 
for high powers of L. The problem is that unless M is of dimension 1 
neither of the sheaves § (L) and PX(L) is the sheaf of sections of a 
holomorphic vector bundle—for E—>M a holomorphic vector bundle and 
VcM a subvariety, the kernel of the restriction map 0M(E)^>6V(E) is 
the sheaf of sections of a vector bundle if and only if V is of codimension 1 
in M—and so we cannot get a direct grip on them using our technique of 
harmonic theory. $x and § are examples of coherent sheaves, a class of 
sheaves broader than, but closely related to, sheaves of sections of holo-
morphic vector bundles. The theory of coherent sheaves will be discussed 
in Chapter 5. 

Another approach to the problem might be to emulate the proof of the 
proposition on p. 161 and do an induction on the dimension of M—for 
example, if we could find a smooth hypersurface V c M containing x and 
y, then to show the map (*) surjective, we would only have to prove it for 
L\ y on V and show that the restriction map 

H°(M,eM(L))^H°(V,ev(L)) 
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was surjective, i.e., that 

H\M,eM(L-V)) = 0. 

But this is very nearly presupposing the result to be proved: a priori, M 
need not have any divisors on it at all. 

It is clear by now that our difficulty lies in the simple fact that, unless M 
is a Riemann surface, a point on M is not a divisor. We can overcome this 
problem by means of a beautiful classical construction called blowing up, 
which transforms points on a complex manifold into divisors. 

Blowing Up 

We will first describe the blow-up of the origin in a disc A in C". Let 
z = (zl,...,zn) be Euclidean coordinates in A and /=[/, , . . . , /„] correspond-
ing homogeneous coordinates on P n _ I . Let A c A x P " - 1 be the submani-
fold of A X P" ~~' given by the quadratic relations 

A = {(z , / ) : z,lJ = zJli for all ij). 

If we consider points / 6 P " " ' as lines in C", then writing these equations 
as z/\l = 0 we see that this is just the incidence correspondence defined as 
{ ( z , / ) : z £ / } . 

Now A maps onto A via projection on the first factor 7r:(z,/)H>z; from 
the geometric interpretation it follows that the map is an isomorphism 
away from the origin in A, and m~ "(0) is just the projective space of lines in 
A. In effect, A consists of all the lines through the origin in A made disjoint. 
A, together with its projection map -n to A, is called the blow-up of A at 0. 
The real points of the blow-up of A c C2 are pictured in Figure 1. 

Note that we have encountered the manifold A before: together with the 
projection ir': A-»P"~' on the second factor it is the universal bundle J on 
P"~' . 

Now let M be a complex manifold of dimension n, xGM any point, and 
z: U—>A a coordinate polydisc centered around x&M. The restriction of 
the projection map 

IT: A-E—>U-{X) C M 

gives an isomorphism between a neighborhood of E = ir~xx in A and a 
neighborhood of x in M\ we define the blow-up Mx of M at x to be the 
complex manifold 

Mx = M-{x] U„A 

obtained by replacing A c M with A, together with the natural projection 
map TT:MX-*M. Again, the projection TT:Mx — {v~i(x)} —> M—{x) is an 
isomorphism; the inverse image TT~X(X) in Mx is called the exceptional 
divisor of the blow-up, and is usually denoted E or Ex. 
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Figure 1 

Note that the blow-up M—>M is independent of the coordinates used in 
the disc A: if (z/=/(z)} are other coordinates in A with/(0)=0, A' the 
blow up of A in terms of these coordinates, then the isomorphism 

/ : A - £ -^ A ' - £" 
may be extended over E by setting/(0,/) = (0,/'), where 

i"2|(0H 
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Indeed, we see from this that the identification 

E-±P(TX(M)) 

given by 

(0, / )^ 
^ ' dz, 

is likewise independent of the coordinate system chosen. 
Now we will describe the geometry of Mx near E in more detail. First, 

we give local coordinates near E on Mx: let z = (z,,...,zn) be local 
coordinates on U3x with center x. Then 

U=ir-\U) = { ( z , / ) e t / X P " - ' : Zilj^Zjl,}; 

and we set 

u, = (/,*0) c tf. 
In this way we obtain an open cover of the neighborhood U of E, and in 
each open set l)i we have local coordinates z(/)/ 

z(i)j = j = j> J*l> 

and 
z{i)i = z,-. 

The map m: MX-*M is given in t/, by 
(z( / )„ . . . ,z(/)„ • • • ,z(/)n))f-V (z((/),-z(/)„... ,z( / )„ . . . ,z(i),-z(i)„) 

and the divisor E is given by 

£ = ( z " ( 0 , = 0) 
in (7,, In UiDUj, 

z(0k = z(j)7]-z(j)k, 

z(')j = z0')/ '> 
Zi = z(j)rZj-

Now, since E = (z{) in £/,-, the line bundle [E] is given in U by transition 
functions 

&/ = 2 0 ' ) , = y = y , i n [ / , . n [/, 
> v 

and so we can realize [E]\o by identifying the fiber 

(•) [£](z / )-{A(/1,. . . ,/ ) l) ,xec}. 
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In particular, we see that the line bundle [E]|E is just the universal bundle 
J = - H o n E s P n - ' . 

Dually, the line bundle [— E] = [E]* has as fiber over any point (z,/)G U 
the space of linear functionals on the line / c C " ; [ — E]\E is the hyperplane 
bundle on E. 

Now we have seen that E is naturally identified with P(TX(M)), so that 
the global sections of [ — E] over E correspond exactly to the linear 
functionals on the tangent space, i.e., 

(**) H\E,dE{-E))=T*x'{M). 

On the_other hand, given a function / on U vanishing at x, the function 
ir*fe.G(U) vanishes along E and so can be considered as a section of 
[ - E] over U. By explicit computation we check that for a n y / G ^ ( t / ) the 
restriction to E of the section w*f G 0 ( - E)(U) corresponds, via the identifica-
tion (**), to the differential df(x) of f at x, i.e., the diagram 

rE 

H°(U,e(-E))—> H°(E,e(-E)) 

t II 
H°(UJX) > T*\U) 

commutes. 
This correspondence reflects a basic aspect of the local analytic char-

acter of blow-ups: the infinitesimal behavior of functions, maps, or dif-
ferential forms at the point x of M is transformed into global phenomena 
on M. Indeed, in classical terminology, a point in the exceptional divisor of 
the blow-up of M at x was called an "infinitely near point" of x; the 
exceptional divisor itself was called an "infinitesimal neighborhood" of x. 

The next thing to do is to compute the curvature of the line bundles [E] 
and [ — E] on M. We construct a metric on [E] as follows: let hx be the 
metric on [E]\Q given, in terms of the representation (*) of E, by 

|(/„...,/„)|2 = ||/||2. 
Let aEH°(M, 0 ([£])) be the above global section of [E] on M with 
(a) = £, so that a is nonzero on M — E; let h2 be the metric on [ £ ' ] | A / _ £ 

given by 

|o(z)| = 1. 
For £>0 , denote by Ue the ball ( | |z | |<c) around x in U and set t/e = 
7T~'(t/E); let px,p2 be a partition of unity for the cover {U2c,M— Ue) of M, 
and let h be the global metric given by 

h = pi-hi+p2-h2. 
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We will compute the curvature of [E] with this metric. For notational 
convenience, let Q[E] denote V— 1 / 2 times the curvature @[£] of [E], It is 
necessary to consider three cases: 

1. On M — U2E, PJ= 1 so |a | 2 = 1; consequently 

a,£] = <wiog-ir = o. 
\a\ 

2. On Ur — £ = Uc — {x), let a be given in terms of the representation 
(*) by 

a(z,l) = z; 
then 

fl[£] = ^ l o g - ^ = - ^ c l o g | | z | | 2 , 

i.e., -fl[£j is just the pullback 7r'*« of the associated (l,l)-form w of the 
Fubini-Study metric on P"~' under the map ir': £/t—>P"_1 given by 
(Z,/)H»/. Thus 

- O | £ ! > 0 o n t / E - £ . 
3. We have seen that -U[E] = <n'*ui on Ue-E; by continuity it follows 

that -A(£] = 7/*w throughout (7e, and in particular 
— fi[£l|£ = W > 0 

on E. 
Summing up, if we let S2(_B] be V— 1 / 2 times the curvature form of the 

dual metric in [£■]* = [ — £ ] , we have 

®l-E\ ~ " [£ ] 

0 on M-U^, 

> 0 on Ue, 

> 0 on T;(E)cT^(M) forallxG.E'. 

The point of this computation is the following: let L—»M be a positive 
line bundle with a metric hL whose curvature form 9 L is 2/\T--\ times a 
positive form QL. Then if fl„.L is V— 1 /2 times the curvature form of the 
induced metric on the bundle IT*L—>M, 

hence S2^.L>0 on M — E. Moreover, for any x&E and tangent vector 
vGTx(M), 

<fiT.L;u,tt> = <fiL;n-*u, 77*t;> > 0 

with equality holding if and only if w>(t>) = 0, i.e., if and only if v is tangent 
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to E. Thus 

K-L = < 

and the form 

>0 
>0 
>0 

everywhere, 
on M — E, 
on TX(M)/TX(E) for all x 6 £ , 

is positive everywhere in Ue and M— Ule. Moreover, since the form fi[_£) 

is bounded below in U2e - UE and Sln.L is strictly positive there, we see that 
^v*Lk<»[-E\ ' s everywhere positive for k sufficiently large; i.e., there exists 
ko such that ir*l} — E is a positive line bundle on M for k > k^. 

Note that by the same argument, for any positive integer n the bundle 
TT*Lk — nE will be positive for &»0. 

We need to establish one more relation between Mx and M: 

Lemma. K^ = IT*KM + (n— \)E. 

Proof. This is easy in case M has a nontrivial meromorphic w-form w. In 
terms of local coordinates z„...,z„ in a neighborhood (/ of JC, write 

» W -M^z ,A- Adz„. 

Now let 2(/)/ be local coordinates in as before. The map it is given in Ut 

by 

(z( / ) 1 , . . . ,z ( / )„) -^(z( / ) ,z„ . . ,z . , . . ,z ( /V,) , 
and so 

77*<o = i r * ( / / *Mz( / ) , z , . ) A • • Adz,^ A • • A</ (* ( 'V/ ) 

Thus we see that in a neighborhood of E=<ir~,(x0), the divisor (7r*w) is 
given by Tr*(u>) + (n- 1)£\ Since clearly (TT*U>) = w*(w) away from £, 

as desired. Thus the formula is proved under the assumption that M has a 
meromorphic /z-form; this is the easiest way to see the result. 

To prove the lemma in general, we let U={U0,Ua}a be an open 
coordinate cover of M with x G U0, x&Ua and all sets Ua having non-
empty intersection with U0 lying in one coordinate patch with coordinates 
z„. . . ,z„. Let 

{/={£„ = -n-'£/„, LU*-'</ontt-*0)} 
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be a corresponding cover for M; we compute the transition functions 
{8ij>8ia>8a(}} f o r KM i n t e r m s o f t h e coordinates z(i)j on Ut and w,a = 
TT*WI■ a on Ua, where {w, a } , are coordinates on Ua in M. First we have in 
t/,nt/2 

z(2), = z(l)2- ' , 
z2 = z(l)2-z„ 

z(2), = z(l) ,-z(l)2 ' 1 , «*=1,2, 
and so the Jacobian matrix for the change of coordinates is 

' 1 2 = 

0 

*(1)2 

0 

0 

- ^ ( 1 ) 2 " 2 

* 1 

- z ( lVz ( l ) 2 - 2 

0 •• 
0 •• 

0 •• 

0 
0 

• 0 z ( l ) 2 ' 0 •• • 0 

in general 

Similarly, in Ua n Ux 

So = det^. = z( l ) /" 4 

i,« = z\> wi,a = zrzO)i> 

0 

•/>„ = 

and in general 

Also 

1 0 

z(l),- 0 

^ 

oia 
= 7 ( » - l ) 

l'« J 

«a/8 = "^Stf. 
where g'ap are the transition functions for KM with respect to coordinates 
wi,a in tf«. wi,0 in *V„ 

Now £ ŝ given in If. by (z,), in t/a by (1); so the transition functions for 
[E] over £/ are 

h,-± = z(/)/\ 

K = *i, 
KP = 1. 
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Thus the transition functions for the bundle K^<^[E] " + l are 

f =.Z"~X- 7 . " " + l = 1 
Jia i^l I^I '> 

/a/3 = ^gcfl* 

and we see that K^ — {n — \)E is just the pullback via IT of the bundle on M 
given by transition functions 

i.e.,Kji-(n-l)E = ir*KM. Q.E.D. 

We will develop a much more complete picture of the geometry of 
blow-ups later on in the chapter on surfaces; for the time being, we have 
enough information to proceed to the proof of the embedding theorem. 

Proof of the Kodaira Theorem 

Again, let L—>Af be a positive line bundle on the compact complex 
manifold M. We want to prove that there exists k0 such that 

1. The restriction map 

H\M,®{Lk))rXL*®Lj 

is surjective for all x¥^yE.M, k> k0; and 
2. The differential map 

is surjective for all x £ M, k > k0. 

To prove assertion 1, let M -» M denote the blow-up of M at both x and 
y, EX = IT~\X) and Ey = 7r~\y) the exceptional divisors of the blow-up; 
for notational convenience, let E denote the divisor Ex + Ey and L = v*L. 
(Here we are tacitly assuming that n = dim(M) > 2; in case M is a Riemann 
surface, all the arguments that follow will be valid for M=M, -n = id.) 

Consider the pullback map on sections 

v*: H°(M,eM(Lk))-^ / / ° (M,G^(Z>)) . 

For any global section a of Lk, the section of Lk given by o over 
M'— {x,y} extends by Hartogs' theorem to a global section o E 
H°(M,6(Lk)), and so we see that IT* is an isomorphism. Furthermore, by 
definition Lk is trivial along Ex and E , i.e., 

(Lk)\Ex = ExXLk, (Lk)\Ey = EyxLk, 

so that 
H°(E,eE(Lk))^Lk®Lk, 
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and if rE denotes the restriction map to E, the diagram 

H°(M,IVL»)) A H»(£,e£(£*» 

t II 
H°(M,<9(Z.*)) —> Lk

x © L/ 

commutes. Thus to prove assertion 1 for x and y, we have to show the map 
rE is surjective. 

Now, on M we have the exact sheaf sequence 

O - > 0 A ( L * - £ ) - > 6 £ ( L * ) ^ e £ ( L * ) - > O . 
Choose fc| such that Lk' + K^ is positive on M. By virtue of the computa-
tion on p. 186, we can choose k2 such that Lk — nE is positive on M for 
k > k2. By the previous lemma 

Kt=KM + (n-l)E, 

where ^ M = "!r*KM; and so for A: >k0= &, + Ar2, 

0 ^ ( L * - £ ) = ^ ( / > - £ + / ^ ) 
= ^((Lk' + K*M)®(Lk-nE)) 

with A:' >A:2. Now by hypothesis, Lk' — nE has a positive definite curvature 
form on M; Lk' + K^, has a positive curvature form on M, and so 
(Lkl + KZf) has a positive semidefinite one on M. Thus the line bundle 
(Lk< +K%f)+Lk — nE is positive on M, and by the Kodaira vanishing 
theorem, 

H\M,eA(Lk-E)) = / / ^ M , ^ ( ( Z > + ^ ) + ( Z ? ' - n £ ) ) 
= 0 for k > k0. 

Hence the map 
rE: H%M,et(Lk))-+H0(E,eE(v*Lk)) 

is surjective for k > k0, and so assertion 1 is proved for x and y. 
Assertion 2 is proved similarly. Let M -» M now denote the blow-up of 

M at x, E = ir~,(x) the exceptional divisor. Again, the pullback map 

TT*: H\M,eM{Lk))^ H\M,e^{Lk)) 

is an isomorphism. Further, if oEH°(M, 6M(Lk)), then a(x)=0 if and 
only if a = 77* a vanishes on E; thus 77* restricts to give an isomorphism 

77*: # ° (M,$ x (L* ) )—»t f ° (AT ,©*( / : * -£ ) ) . 
As before, we can identify 

H°(E,6E(Lk-E)) = Lk®H°(E,6E(-E)) = Lk®T?', 
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and the diagram 

H°(M, 6^(Lk - £)) —> H°(E, eE(Lk - £)) 

»t-' II 
I dx II 

H°(Mjx(L
k)) —» T*'®Lk 

commutes. Thus we must prove that rE is surjective for fc>0. 
On A/, there is an exact sequence 

O->6l{j(L
k-2E)~>6l{i(L

k-E)X6E(Lk-E)-+0. 

Again, choose &, such that Lk' + K^ is positive on M and k2 such that 
Lk -(n+ \)E is positive on A/ for k' > k2. For Ac > k0= kt + k2 

e^(Lk-2E) = ^({Lk< + K*f)®(Lk-(n + \)E)) 

with k' > k2. It follows by the Kodaira vanishing theorem that 

H](M,eiCl{L
k-2E)) = 0 

for k > k0; hence rE is surjective on global sections and assertion 2 is 
proved for arbitrary fixed x. 

All that remains now to be proved is that we can find one value of k0 

such that assertions 1 and 2 hold for all choices of x and y and all k > k0. 
But clearly if iLt is defined at x a n d / and tL*(jc)7ttt*(_y), the same will be 
true for x' near x and y' near y, and likewise if tL* is smooth at x it will be 
smooth at x' near x and separate points x'=£x" near JC. Since M is 
compact, then, the result follows. Q.E.D. 

Before proceeding to some examples and corollaries, we give a some-
what more intrinsic restatement of the theorem: 

Kodaira Embedding Theorem. A compact complex manifold M is an alge-
braic variety—i.e., is embeddable in projective space—if and only if it has a 
closed, positive (1,1)-form u whose cohomology class [co] is rational. 

Proof. If [u]GH2(M,Q), then for some k, [ku]<EH2(M,Z); in the exact 
sequence 

H\M, 0*) -> H\M,T) - » H \ M , 0 ) 
i*([ku]) = 0, and so there exists a holomorphic line bundle L—*M with 
ct(L) = [kco]. The line bundle L will then be positive. Q.E.D. 

A metric whose (1, l)-form is rational is called a Hodge metric. 

Corollary. If M, M' are algebraic varieties, then M X M' is. 
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Proof. If w,co' are closed, integral, positive (1, l)-forms on M,M', respec-
tively, and IT:MX M'-+M, IT' : M X AT —>A/' are the projection maps, then 
7r*ui + -n'*ui' is again closed, integral, and positive of type (1,1). Q.E.D. 

A classical example of this is the Segre map P" X P ' ^ P * given by the 
complete linear system of the line bundle ■nfH'Si^H on P"XP m . For 
example, the Segre map P'xP1—>P3 is given, in terms of homogeneous 
coordinates [z0>zi] ar>d [wo'^il o n f'' by 

( [ Z 0 , Z 1 ] , [ W 0 , H > 1 ] ) ^ [ Z 0 H > 0 , Z 0 W „ zxw0, z ,w,] . 

The image is just the quadric hypersurface {X^X^X^Xj) in P3. 

Corollary. If M is an algebraic variety, M —> M the blow-up of M at a 
point x, then M is algebraic. 

Proof. We have seen in the course of the proof of the embedding theorem 
that if L^>M is positive and E = TT~\X), then m*Lk — E is positive for 
* » 0 . 

Corollary. If M —> M is a finite unbranched_ covering of compact complex 
manifolds, then M is algebraic if and only if M is. 

Proof. Clearly, if L-*M is positive, then c,(w*L) = 7r*c,(L) implies that 
■n*L is positive. Conversely, say w is an integral, positive (1, l)-form on M. 
For any/7 EM, we have isomorphisms of a neighborhood U of p in M with 
neighborhoods Ut of the points ql.ew_,(/>); we can define a (1, l)-form d 
on M by 

Then w' is closed and of type (1,1), and if TJ G H ^ 2 ( M ) is any integral 
cohomology class, then 

( io' AT) = — I w/\ir*t\ GQ, 

where m is the number of sheets of the cover. Thus [«'] is rational. 

DEFINITION. We say that a line bundle L-*M over an algebraic variety is 
very ample if H°(M, 0(L)) gives an embedding M^PN, i.e., if there exists 
an embedding/: M^>PN such that L=f*H. 

Now from the proof of the Kodaira embedding theorem, we see 

Corollary. If E—»M is any line bundle and L—>M a positive line bundle, 
then for k » 0 , the bundle Lk + E is very ample. 
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Definitions; The Cell Decomposition and Schubert Cycles 

In this section, we will construct and describe the Grassmannians, a 
fundamental family of compact complex manifolds. Grassmannians may 
be thought of as a generalization of projective space; the analogy will be 
apparent throughout. 

Let V be a complex vector space of dimension n. The Grassmannian 
G(k, V) is defined to be the set of /c-dimensional linear subspaces of V; we 
write G(k, n) for G(k, C ) . Given a &-plane A in C , we may represent A by 
a set of k row vectors in C spanning A, i.e., by a k X n matrix 

v u ■■■ vln 

of rank k. Clearly any such matrix represents an element of G(k,n) and 
any two such matrices A,A' represent the same element of G(k,n) if and 
only if A = gA' for some gEGLk. 

For every multiindex /={ /„ . . . , ik} c {1, • • •, n} of cardinality k, let Vr c 
C" be the (w-A:)-plane in C" spanned by the vectors {ejj&I}, and let 

Uj= {A<=G(k,n): A n K r = { 0 } } ; 
U, is just the set of A e G(k, n) such that the /th k X k minor of one, and 
hence for any, matrix representation for A is nonsingular. Any AEU, has 
a unique matrix representation A7 whose 7th kxk minor is the identity 
matrix, e.g., any AGl/,, k-, can be represented uniquely by a matrix of 
the form 

1 0 0 --• 0 * ••• * 

0 1 : * 

: o : ■. : 

o . . . i * . . . * 

(Note that the row vectors of such a matrix representative for A.E.U, are 
just the points of intersection of A with the affine (n — A:)-planes { V,o + ej :j 
G /}.) Conversely, any k X n matrix of the form above represents a A>plane 
AG(/,; thus the k(n-k) entries of the 7°th kX(n-k) minor A'r of A7 

give a bijection of sets 

9,: £/ /-»C*(""*) 
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for each / . Note that <pr(U,n U,) is open in C*'"-*' for all / , / ' ; we claim 
that in fact the map <P/°<Pr ' ' s holomorphic on this open set and hence that 
the maps <p, give G(k,n) the structure of a complex manifold. But this is 
clear: if, for A G [ / , n Ur, we let A7,- be the I'th kxk minor of A7, then 

A'=(AJ.;T'-A', 
and since the entries of (A ' )~ ' vary holomorphically with the entries of A7, 
<Pi°q>rX is holomorphic. 

With this topology G(k,n) is compact and connected, since the unitary 
group U„ maps surjectively and continuously onto G(k, n) by the map 

where Vk = {e},...,ek}cC". The full linear group GL„ likewise acts transi-
tively on G{k,n). 

Note in particular that (7(1, ri) is biholomorphic to P " _ l as a complex 
manifold: the "matrix representative" (vv...,vn) for a line AG(7(1,«) 
corresponds, via the natural set-theoretic identification of G(\,n) with 
P n _ 1 , to the homogeneous coordinates of A E P " ~ ' , and 

A < ' > - ( £ L , . . . , , , . . . > ) , 

so 

i.e., the coordinates on G(\,n) given by <p,(-, are just the Euclidean coordi-
nates on P""1. Dually, we have G(n- l , t t)^P"~'*, the projective space of 
hyperplanes in P""1. 

Finally, we note that G(k,n) can be considered either as the set of linear 
/c-planes A in C", or equivalently as the set of (/c—l)-planes A in P"~ ' . 
Our viewpoint in this section will for the most part be the former, as it is 
easier to keep track of dimension and codimension of cycles, but when 
Grassmannians arise in geometric questions we will generally want to think 
of them in the latter way. 

The Cell Decomposition 

Recall that the cell decomposition 

P" = C"uC"-,u--- uc 'uc 0 

of P"= (7(1,/i + 1) is obtained by choosing aflag 
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of linear subspaces of Cn+1 and taking ^.£=C'- , = { / c C + 1 : / c Vt, I £ 
Vj_t}. The same technique works to give a cell decomposition of the 
Grassmannian: if we set Vi = {ely...,ei}cC, then the set of ABG(k,n) 
whose intersection with each Vt is of a specified dimension turns out, as we 
shall see, to be a simple cell. The set-up is as follows: for every A e G(k,n) 
consider the increasing sequence of subspaces 

(*) o c A n v1 c An v2 c • • • c An vn_x c A n v„ = A. 

For generic A, A n Vf will be zero for i<n — k, and (i + k — n)-dimensional 
thereafter—indeed, we have seen that the set of such A is just the open set 
Ur = Ck(n~k)cG(k,n). Now, for any sequence of integers a^,...,ak, set 

Wo, ak = ( A G G ( M ) : dim(AnK„_,+,_a ) = / } . 

We observe that dim(A+ Vn_k+j_a) = n — ai, and consequently Wa 

will be empty unless au...,ak is a nonincreasing sequence of integers 
<n — k. Since dim(An V„-k + i-a)=' if a n ( i on"y if t n e r a i u c °f t n e ^ast 

kx(k + at — i) minor of a matrix representative for A is exactly k — i it 
follows that the closure 

Wa ak = {A: dim(AnK„_it+y_^)>i} 

is an analytic subvariety of G{k,ri). 
We can choose a special basis for a A:-plane A e W _ as follows: let 

t), be a generator for the line A n ^ _ t + i - a , normalized so that 
<Oi,e„-* + i - f l l > -= l ; i-e., 

c, = (*,*,...,*, 1,0,. ..,0). 

Now take v2 so that u, and t>2 together span An Vn^k+1_a, normalized so 
that 

< f 2 » ^ - i t + l - a , > = 0, < « 2 . ^ - * + 2 - « . 2 > = !• 

Continue in this way, choosing t>, so that v,,...,u, span An Vn_k+i_^ and 
such that 

/ x f0, j<i, 

Clearly, the choice of u, at each stage is completely specified by these 
conditions; thus the &-plane A has a unique matrix representative of the 
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form 

»* 

1 0 0 0 
0 * 1 0 0 0 
0 * 0 * * * 1 0 0 0 
0 0 0 

6 * 6 * * * 6 * * * 1 0 0 6 
o o o o 

-a2. 

Conversely, any matrix of this form describes a A>plane AG Wa<i..._(%. Since 
(k2 + '2ai) entries are specified in the diagram and the rest are completely 
free to vary, we have homeomorphisms 

rYaK,...,ak — ^ 

consequently, the sets Wa a< give a cell decomposition of G(k,n). Since 
we have cells only in even dimensions, all boundary maps are zero, and we 
deduce the 

Proposition. The integral homology of the Grassmannian G(k,n) has no 

torsion and is freely generated by the cycles aa a = [Wa ] in real 
codimension 2£aj, where {(a,,.. -,ak)} ranges over all nonincreasing 
sequences of integers between 0 and n — k. In particular, all cohomology in 
G(k,n) is analytic. 

In general, for any flag V=(Vt c V2c • • ■ C Vn_l c V„) in C" we let 

oa(V)={A: dim(AnVn_k + i_a)>i). 

Clearly the homology class of the subvariety aa(V) is independent of the 
flag chosen, since we can find a continuous family of linear automor-
phisms of C" taking any flag into any other. The subvarieties aa(V) are 
called the Schubert cycles of the Grassmannian. 
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The simplest example of a Grassmannian different from projective space 
is the (7(2,4) of 2-planes in C4. The Schubert cycles on G(2,4) are 

codiml : a 1 0 (K 2 )={A: dim(An V2)> 1}, 
codim2: oxl(V3) = {A: AcV3), 

^2,o(^i)={A: A D F , } , 

codim3: o 2 t l (K„K 3 )={A: F , c A c K 3 } . 

Alternatively, if we think of G(2,4) as the set of lines / in P3 and fix the 
projective f l a g p ^ l 0 c h consisting of a point, line, and hyperplane in P3, 
then 

°..o(/o) = { / : mio^0), 

°2,O(P) = ( / : PEl}> 
aItl(A) = {/: left), 

The Schubert Calculus 

Now that we have determined the additive cohomology of G(k,n), we 
would like to describe its multiplicative structure—that is, to express the 
intersection of general Schubert cycles oa,ab as a linear combination of 
other Schubert cycles in homology. 

The first task is to write down the intersection pairing in complementary 
dimensions. To do this, let 

ofl(K) = {A: d i m ( A n K „ _ , + , . ^ ) > / } 

and 

ab(V) = {A: dim(An V'n_k^b)>i) 

be general Schubert cycles. Then for each / and any A E aa( V) n ob( V), 

dim(An Vn_k + i_a)>U 

dim(A n K.'-*+<fc-.-+i)-4k_,+1) > * - i + 1 
=*An U ^ n i ' ; . , , , ^ , ^ ) . 

But now if a,, + bk _ ,-+, > n - k, we have 
(n-k+ I-a,) + (n-i+\-bk_i+]) = 2n-k+l- (a, + bk_l+l) 

< n, 
and so we can choose our flags V and V such that Vn_k+i_aj and 
K„'_,-+,_6 intersect only at the origin. Consequently the cycles aa(V) 
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and ab{ V) can be made disjoint, i.e., 

*(oa-ab) = 0 unless a, + bk_i+l < n — k, for all /. 

Now suppose aa and ab are cycles of complementary dimension, so that 

then 
at + bk_i+, < n — k for all /' => 6fc_/+, = n — k — ah 

i.e., the cycle aa has intersection number zero with all Schubert cycles in 
complementary dimension except <J„_*_aj...,„_*_„. Since the Schubert 
cycles form an integral basis for H*(G(k,n),Z), it follows either by 
Poincare duality and the fact that analytic cycles intersect positively or by 
direct examination that 

\aa'°n-k-a„ n-k-a) = ' • 

Summing up, then, we have the formula 
* / _ .„ \ _ s(n-k-bk n - A - 6 , ) 

\°a °b) °{at,...,ak) 

This enables us to express an arbitrary cycle y on G(k,n) as a linear 
combination of Schubert cycles, by computing intersections, i.e., 

y = 2 *(r«»-l-* .-t-.,)1".. 
and in particular reduces the problem of computing the intersection of 
pairs of Schubert cycles in arbitrary dimension to the problem of comput-
ing triple intersections in complementary dimension: 

{°a°b) = 2 *{°a°ban-k^ck n-k -<-,) ' °c-

As an example, for any hypersurface H^cP" of degree 2, let T ( W ) C 
G(2,«+l) denote the set of lines in P" lying on W. T(W) is clearly an 
analytic cycle in (7(2, n + 1), and since a line / c P" lies on W if and only if 
three points of / lie on W, T{W) has complex codimension 3. G(2,n+ 1) has 
only two Schubert cycles of codimension 3—a3 0 and a2 ,—and so we can 
write 

T(W) = # ( T ( W K _ , , n-4)-03 ) O+ *(r(W)-a„^n_3)-a2A. 

Now, o„_, „_4 is the set of lines in P" containing a point/? and contained 
in a 4-plane K 4 cP" ; if we choose our pointy to lie off W, clearly T(W) 
will be disjoint from on_, „_4. On the other hand, on_ln_3 is the cycle of 
lines meeting a line l0cP" and contained in a 3-plane S c P " containing /0. 
Generically, W = W n S will be a smooth quadric surface in S s P3, with 
/„ meeting it at two points px and p2; clearly any line /CT(W)no„_2,„-3 
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will pass through either/?, or/?2. But any line on W through/?, must lie in 
the tangent plane Tp(W); and T{W')p\ W is a singular curve of degree 2, 
hence consists of two lines. Thus r{W) meets o„__2n_3 in four points 
generically, and so 

r(W)~4-a2V 

In particular, if W and W are two generic quadric hypersurfaces in P4, 
meeting transversally in a smooth surface 5", then by the above S will have 

*(T(W)-T(W'))C(2I5) = # (4o 2 ; I -4a 2 1 ) G ( 2 5 ) = 16 

lines in P4 lying on it. We will verify this in Section 4 of Chapter 4. 
Similarly, we will be able to compute the homology class of T(W)C 

G(2,n + 1) for other hypersurfaces of low degree, once we know a few more 
things about special cases. 

Before we go on to consider general intersections, we want to offer two 
general observations. 

First, we will alter our formalism slightly, as follows: for any sequence 
a = ax,a2,■■■ of nonnegative integers, we let oa(V) denote the cycle 

o-0(K)= (A: dim(AnVn_k+i_a)>i} C G(k,n) 

so that the symbol oa can be used to refer to a Schubert cycle in any 
Grassmannian. Of course, aa will be null in G(k,n) unless at<n — k for all 
/, a ,=0 for all i>k, and a is nonincreasing. 

Now, the inclusion C"->C"+1 induces inclusions 

i,: G(k,n)^G(k,n+\) 
and 

i2: G(k,n)-±G(k+l,n+l) 

obtained by sending A c C " to A c C " + l and A©{<?„+ ,}cC + l, respec-
tively. Under these inclusions, it is not hard to see that for appropriate 
choices of flags V in C and V in C"+1, 

°a(V) = h\oa(V')) = t2-\oa{V% 

i.e., if we denote the Poincare dual of aa by aa, 

<■*% = '*<*„ = °a-

Thus any formula 

for the intersection of Schubert cycles in G(k,n + 1) or G(k + \,n + 1) holds 
as well in G{k,ri), and we can define the universal Schubert coefficients 



200 COMPLEX ALGEBRAIC VARIETIES 

8(a,b;c) to be such that the formula 

i.°aab) = ^8(a,b;c)-ac 

holds in all G(k,n). 
Note that by our first computation, we have 

8(a,b;c)=*(aa-ab-an_k_<i_^_k_e) 

for any k,n such that oc is nonnull in G(k,n), i.e., such that c ,<« — k for 
all /' and c, = 0 for all /' > k. In particular, if we let 1(c) denote the length of 
the sequence c, that is, the number of nonzero entries, we may take 
k — l(c), n — k = cx in the above to obtain 

(*) 8(a,b;c)=*(oa-ob-oCt_Ck_c^c) in G(/(c),/(c) + c,). 

As an immediate consequence, we see that 8(a,b;c) = 0 if aa or ob is null 
in G(/(c),/(c) + c,), i.e., 8(a,b;c) = 0 if either 

1. c, < o , or c, <bt, or 
2. 1(c) < 1(a) OT /(c) < 1(b). 

Next, note that for any vector space W of dimension n, we have a 
natural isomorphism 

*: G ( A : , f r ) - ^ C ( n - A : , ^ * ) 
defined by 

*A = Ann(A) = {iGV*: / (A)=0) . 
Let V={VlcV2c--- cVn= W) be a flag in H ,̂ and let V* = {VfcV$ 
C • • • C V* = W*} be the dual flag in W* given by 

V* = Ann(V„_t). 

By linear algebra, for A any k-plane in W, 

dim(An V„_k+i_a) > i<=>d im(*An V*-i+a,) > a,, 

Thus, for any a, the image *a a cG(n —k,n) of the Schubert cycle a a C 
G(k,n) is the Schubert cycle a*, where a* is defined to be the smallest 
nonincreasing sequence such that 

a* > i for all /'. 

For example, 

* 0 2 ) = <>1,1. *(<J2,l,l) = °3,1-

In general, we will have 
«(a,6;c) = S(a*,/>*;c*), 
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and so we may expect that any formula for the intersection of Schubert 
cycles aa,ob gives a dual formula, when applied to aa.,ab.. 

Note that 
l(a*) = a, and erf = 1(a) 

so that the formulas 1 and 2 above are, as expected, equivalent under the * 
map. 

We turn now to the original problem of computing S(a,b;c) for general 
a, b, and c. We will first give a reduction that allows us to compute 
effectively in many cases. 

Our basic technique is simply a linear algebra reduction to smaller 
Grassmannians. For example, consider a triple of indices a,/3,y such that 
a + P + y = 2k + l. Then for any A:-plane AGaa(V)nab(V')nac(V"), 

dim(An Vn_k+a_aJ > a, 

dim(An V^_k+p_b) > /?, 
dim(AnV^k + y_c)> y 

=>dim(An vn_k+a_^n v;_k+p_hn v;Lk+y_Cy) > l. 
Thus *(oa-ob-oc) = 0 in G(k,ri) if 

(k-a + aa) + (k-fl + bp) + (k-y + cy) > n-\, 

i.e., if 
aa + bp + cy > n - k. 

Suppose on the other hand that aa + b/3 + cy = n-k, i.e., that generically 
chosen subspaces Vn_k+a_a , V^_k+p_b, and V^'_k + y_c will intersect in a 
line L c C " . Then any Aeoa(V)nob(V

f)noc(V") must "contain L. Let L° 
denote a subspace complementary to L in C" and let w denote the 
projection of C" onto L° with kernel L. Let 

Vx=ir(Vx), 

Vn~k + a-a<,~\~'7T\Vn-k + a-aa-\)
 = " \ *n-k + a-aji 

Vn_2=-n(V„_x), 

Vn^ = v(Vn)=L°, 

and define V{. and Vt" similarly. Then V= { Vt), V' = { V?}, and V" =*{¥/'} 
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are transverse flags in L°, and for any (k— l)-plane A c i ° , we see that 

A= L,AEoa(V)noh(V')noc(V") 

^Aeaa a_,at(v)nob v..A(r)not -....(r). 
Thus we have the 

Reduction Formula I. For any three indices 0 < a, /?, y < k with a + /? + y = 
2 k + l , 

t(<V<Vac)G(*,«) = 
0 ifaa + bg + c>n-k, 

^(^-^•^-V^-'rW-i.--!) 'fac + bP + cy = "-k-
Note that in case we take fj=y = k, this reduction applies if a, = /i — k; 

in case we take y = k, it applies if a, + bk +, _, = n — k for any /. 
As suggested, we can apply this first reduction to the intersection of 

cycles *(aa.-ab.-ac.) in G(n — k,n); we obtain 

Reduction Formula II. For any three coefficients a0,b/8,cy with a.a + bp + cy 

>2(n-k)+l, 

*{°a0bac)G(k,n) 

0 ifa + f3 + y>k 

= i \°al-\,...a„-Y,a,^l...,all'
abt-~\...,b[l~\,bl,+ l,..,bk'

act-\,..,cy-\,c.t+t,..,ck)G(k,n-\) 

ifa + p + y = k. 

For the purposes of this formula, we may set a0=bQ = c0=n — k form-
ally; thus in case we take y = /? = 0, this reduction applies if ak^=0, and if 
we take y = 0, it applies in case ai + bk_j>n — k+1 for some /. 

Note also that if the sequence bi — l,...,bp_x,bp+l,... appearing in the 
formula is no longer nonincreasing—i.e., if b/3 = bp+]—then the intersec-
tion number is zero: just apply the formula to a,/3+ \,y. Thus we may use 
the formula in all circumstances, if we adopt the convention that ab is null 
for b not a nonincreasing sequence. 

As a sample calculation, we compute the coefficient 8(311,21; 521) of 
a52| in the expression for (o3ll-ff21) as a linear combination of Schubert 
cycles. By (*) and the reductions we have 

8(311,21;521)=#(a3n-a21-<T43) 
= #(<V°2rCT43) 
= # ( a 2 -a2 , -o 3 ) 

= *(o2-o}-o3) 

= # ( < V ° i ) 
= 1. 

inG(3,8) 

in (7(3,7) 

in G(2,6) 

inG(2,5) 

in G(l,4) = 
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The two formulas given here will not apply every time, but in low 
codimension will yield the answer more often than not. They work espe-
cially well in case one of the factors aa is a special Schubert cycle, defined 
to be one of the form oa00 . 1° this case, we can use the reductions to 
obtain the general 

Pieri's Formula. / / a = a, 0,0,... , then for any b, 

b,< c, < £ , _ , 

Proof. We want to show that, for ac of appropriate codimension, 

10, otherwise. 
We have, setting k = 1(c), 

8{a,b;c) = *(oa-oh-oC]_Ck,...,,.T_C2,o) in G(k,k + cx). 

To start, suppose that c, <bi_l for some /. Then we have 

C\ +*,--i + ( c i - c ; ) > 2c, + 1, 

and applying the second reduction formula with o = 0, fi = i—\, and 
y = k — i+l, we obtain 

S(a,b;c) =*(of l -o6 |_I i . .A_r_, i6 j i ._-a<. |_f4_, j ._>C|_Ci_1) ( . )_c._ i j__) 

in G(k,k + cl — 1) 
= S(a,b';c') 

where 
b' = b,-\,...,b^x-\,b„... 

and 
C = C] — 1 , . . . , C, _ | — 1 , 0 , , . . . . 

Now 
(6, < c, </>,„, for all /) <=> (6/ < c,' < */_, for all /) 

and of course 
6;_1-c; = ft,._I-cl.-i>o. 

77iM5 we way assume from the start that c, >/>,_, for all /. Since 2c, = tf+ 
"Ebj, it follows that a > c,; and so there are three cases: 

1. If c,> b,■ _ i for some /, then a > c, and so 8(a,b;c)=0. 
2. If c,<6, for any /, then ci>bi_l implies that 6,->&,-_„ i.e., the 

sequence b is not nonincreasing and ab is taken to be null; so S(a,b;c) = 0. 
3. If bj<ci<bi_l for all /', it follows that c, = Z>,_, for all /, hence 

a = ct,bk=0, and applying the first reduction formula with a = l and 
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p = y = k we have 

8(a,b;c) = *(oa-ob-oCi_Ck ,...,C|_C2>0) inG(Ar,fc + c,) 

= #(<V<>c,^,...,f l^2) in G(* - \,k + c, - 1) 

= (a*-0
C|-ft,_„...,c,-ft,) 

= 1. Q.E.D. 

Our final result on Schubert cycles is a formula that expresses the 
general Schubert cycle as a polynomial in the special Schubert cycles 
°A,O,...-

We proceed as follows: for aa a any Schubert cycle, we consider the 
cycle 

d 

(*) °a = 2 ( - 1 ) ^ , a,_„a,+ l - l , . . . , ^ - l -Ocj+d-j-

Note that 6a has the same dimension as aa. Now, we can by Pieri's formula 
write out each of the intersections in the sum (*) as a sum of Schubert 
cycles. Let ac Cd be any Schubert cycle; if ac appears in this expression, 
consider the sequence of integers 

c, - l,c2-2,...,cd- d. 

By Pieri, at most one of these numbers will lie in each of the (d+ 1) closed 
intervals 

[ax-\,n-k], 

[a 2 -2 , t f , -2 ] , 

{ad-d,ad_K-d\ 

\-d-\,ad-d-\\ 

and so exactly one of these intervals will fail to contain an integer c, — /. By 
cases, then: 

1. If no integer c, — / lies in the interval [ - d — 1, ad — d — 1 ], then 
c ) - - i £ [ a I . - i , o , _ , - i ] , 

and ac can appear only in the last term of the sum (*). But since 

c, > a, and 2 c; = 2 «;> 

it follows that c — a. The Schubert cycle aa flj thus appears once in (*), 
with coefficient (— \)d. 
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2. If no integer c, — i appears in the interval [ak — k,ak_i — k], then we 
have 

C| — 1 e[fl] — \,n — k], 

ck_t-k+ \E[ak_i-k+ \,ak 

ck-k E[ak+}-k-l,ak 

cd-d <E[-d-\,ad-d-l], 

i.e., 
a, < c, < a,_„ / = 1, —,A; — 1, 

and 
ai+x - 1 < c, < a, - 1, i = k,...,d. 

In this case, the Schubert cycle oc will appear twice in the expression for 
(*): once in the kih term, and once in the {k — l)st term. Since these two 
have opposite sign, ac will not appear in the final expression for aa. 

3. If the interval [a, — \,n-k] is unoccupied, we have 
c,:- i G [ a, +, - 1 - 1, a,,- i - 1 ] 

for each /—but then c, < a,-— I, and hence 2c ,<2tf„ so ac cannot appear 
in (.). 

We have, then, the formula 
d 

(*•) ( - ' A a „ = 2 (-lyWa,. . . .^. , .^.-! . . . . .^-! •°<i + d-j-
7 = 1 

Note that since each factor on the right has length < d, this already implies 
that aa is expressible as a polynomial in the special Schubert cycles ab0 , 
i.e., that 

The cohomology ring of the Grassmannian G(k, n) is generated by the 
classes of the special Schubert cycles. 

Now, we will use the relation (**) to prove Giambelli's formula 

aa, + d-l 

°a2 + d-2 

-k+l], 

-k-l], 

ua, + 2 

'^-d+l °ad 
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We will prove this by induction; clearly it is true for d= 1. Assume that it 
holds for d—l; expanding by cof actors along the left-hand row, the 
determinant is given by 

2(-i)V„-/ 

,+d-2 

ai-\~J 

t~d+\ 

"aj^+d-j 
Jaj+l+d-j-2 

"aH-\ 

\)\ ", + d-j 

Q.E.D. 

= 2(-
= a«, «, 

and the formula is proved. 

Note that Pieri's formula together with the formula (**) give an algo-
rithm for evaluating an arbitrary intersection of Schubert cycles. 

The Schubert calculus will appear frequently in the remainder of the 
book, in a variety of contexts; for the time being we give some applications 
of our formulas to elementary problems in enumerative geometry. Perhaps 
the simplest nontrivial such problem is the question: given four lines 
Ll,L2,L3,L4 in P3 in general position, how many lines meet all four? The 
answer is easily obtained: since the set of lines meeting L, is just the 
Schubert cycle 0|(L;), the answer is just the fourfold self-intersection 
number of a, in G(2,4); this is 

= <v(2o2 ) l) 
= 2. 

In general, the number of lines meeting four («+l)-planes in general 
position in p>2"+l is given by the fourfold self-intersection of a„ in 
G(2,2« + 2); this is 

K)4 = K)2 

(lo02"-'-') 2 a-> 
; = 0 

= n + 1. 
In a similar vein, the number of lines in P4 meeting six 2-planes in 

general position is given by a, in G(2,5); we have 

°l = * l ( < ' l . l + <*2) = 2(J2 

so 
, 6 = = (2a2J + a 3 r = 4 + 1 = 5 . 
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Universal Bundles 

Let C X G(k, ri) denote the trivial vector bundle of rank n over G(k, ri). We 
define the universal subbundle S-±G{k,ri) to be the subbundle of C x 
G(k,n) whose fiber at each point AEG(/c,n) is just the subspace A c C " . 5 
is clearly a holomorphic subbundle of C" X G(k, ri) —explicitly, in each 
open U, c G(k, ri) the row vectors of the normalized matrix representatives 
for A e [ / y give a frame for S over U,; transition functions relative to these 
frames are given in U,nUj. by gv^ =At-Apl. The quotient bundle 
Q = C"/S is called the universal quotient bundle on G{k,ri). Note that 
under the identification * : G(k,«)—> G(n — k, ri), the universal subbundle 
on G(n-k,n) corresponds to the dual of the universal quotient bundle in 
G(k,n), and likewise Q-+G(n-k,n) pulls back to the 
dual S*-*G(k,n). Note in particular that the universal subbundle 
S-*G(l,n)ssP"~l is just the universal line bundle mentioned earlier. 

Now let E-+M be any holomorphic vector bundle of rank k on a 
complex manifold M, V<zH°(M,6(E)) an /i-dimensional vector space of 
global holomorphic sections, and suppose that the values {o(x)}aev of the 
sections a in V span Ex for all xEM. Then for each x £ M , the subspace 
Ax c V of sections oGV vanishing at x is an (n — A:)-dimensional subspace; 
accordingly, we obtain a map 

iy: M^G{n-k,V)= G(k,V*) 

with 

E = i*S* and V = i*(H°(G(k,n),6(S*))) 

just as for line bundles. Explicitly, if we choose a basis ax,...,a„ for V and 
a frame et,...,ek for E locally and write 

°i = 2 aiaea, 
then in terms of the corresponding identification G(n — k,V)^ G(k, V*) 
the map iv is given by 

ak\ • • • akn, 

so that iv is clearly holomorphic. 
As in the case of line bundles, we have an embedding theorem: 

Theorem. For M any compact complex manifold, L-^M a positive line 
bundle and E—*M any holomorphic vector bundle, then for m sufficiently 
large, the map tE8>L™ is an embedding. 

Proof. Most of the work has been done for us already by the Kodaira 
embedding theorem: since M has a positive line bundle, we may take 
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M c P " an algebraic variety and L—>M the hyperplane bundle. 
Now iE®Lm will be 1-1 if for all x,y&M, the restriction map 

(•) H°(M,6(E®Lm))-*{E®Lm)x®(E®Lm)y 

is surjective. Similarly, we have a differential map 

(**) H0(M,$x(E®Lm))^Tx"®(E®Lm)x 

defined as for line bundles; iE®L™ will be smooth at x if this map is 
surjective. The compactness argument used in the proof of the Kodaira 
embedding theorem again assures us that to prove the result, it is sufficient 
to show that for any particular choice of x and y, the above two maps are 
surjective for m sufficiently large. 

We proceed by induction on the dimension of M. For any x,yGM, 
consider the linear system of hyperplane sections of M c PN containing x 
and y: by Bertini's theorem, the generic element of this system is smooth 
outside the base locus {x,y} of the system, and it is easy to see that, unless 
M is a curve with TX{M)= Ty(M)<zPN (which circumstance we can always 
avoid by embedding M differently), the generic element of the system will 
be smooth at x and y as well. Thus we can find a smooth hyperplane 
section V=H n M of M containing x and_y. Consider the sequence 

o^eM{E®Lm-,)^eM(E®Lm)-+ev(E®Lm)^o. 
By Theorem B, there exists w, such that for m>m{, H\M,lQ{E®Lm~x)) 
= 0, so that the restriction map 

H°(M,6(E®Lm))^H°(V,G(E®Lm)) 

will be surjective. On the other hand, by induction there exists m2 such that 
for m > m2, 

H°(V,6y(E®Lm))^(E®Lm)x®(E®Lm)y 

is surjective. For m > mQ = ma\(mi,m2), then, the map (*) will be surjective. 
Similarly, for each of a generating set of cotangent vectors {ua} for Tf 

we can find a smooth hyperplane section Va of M through x, such that wa 

is not in the kernel of the natural projection map 7^(M)-»7?(Ka) . Then 
by induction we can find ma such that for m>ma, the differential map 

H°(VaJx(E®L'"))-+Tx'(Va)®(E®L'")x 

is surjective. Likewise, from the sequence 

0 ^ eM(E®Lm-1) -> ixM{E®Lm) -» ixVa{E®Lm) ^ 0 

we see that for m>m{ as before, 

H°(M, $x{E®Lm)) -» H°( Va, $x(E®Lm)) 
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is surjective. Thus for m> Wo=max(/M|,m0), we have 

H°(Mjx(E®Lm)) ^ T*\M)®(E®Lm)x 

[ ^ i 

H°(Va,3x(E®L'")) % T*x(Va)®(E®Lm-)x 

for all a, i.e., the map (**) is surjective. Q.E.D. 

The Pliicker Embedding 

We close this section by describing the classical Pliicker embedding of the 
Grassmannian G(k,n) in projective space; this will illustrate both the 
Kodaira embedding theorem and Chow's theorem. The embedding line 
bundle over G(k,n) will be L=detS* = detQ. L may be seen to be positive 
by introducing a suitable metric with a positive curvature form in a similar 
manner to the Fubini-Study metric on projective space; rather than do 
this, however, we shall give the Pliicker embedding directly. The Pliicker 
map 

p: G(k,n) ^P(AkCn) = P ( " ) _ 1 

simply sends a A;-plane A = C{vl,...,vk) c C " to the multivector c, A " ' • A 
vk. Explicitly, in terms of the basis {e, = ?,- A" ■ ■ /\eik}*l=k for /\kC, this 
map is given by 

A^[...,\A,\,...}, 

i.e., the homogeneous coordinates of the map are just the determinants \A,\ 
of all the k X k minors A, of a matrix representative of A. It follows that 
(1) p is holomorphic, (2)p takes every Schubert cycle of the form 

CT,(K) = { A e G ( M ) : dim(AnVn_k)>l) 

into a hyperplane section of p(G(k,n))cP(*)~l- We can always find, for 
A^A'&G(k,n), an («-£)-plane Vn_k such that A n Vn_k^(Q>), A 'n V„_k 

= (0), so p is 1-1; and since, in each open set U/ = {A:\A,\¥i0} the 
Euclidean coordinates on G(k,n) described above appear as 

_ \^i-J+k\ 

°jk ~ |A/| ' 

the map p has nonzero differential. Thus the Pliicker mapping is an 
embedding. 

Now we shall determine equations which define the Pliicker image of 
G(k, V) in P(/\kV). What we are asking for are the conditions that a 
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multivector A E A ^ b e decomposable, i.e., of the form 

A = t> ,A-" A«*. 
For this we pose the more general problem of determining the minimal 
linear subspace W' cV such that A is in the image of 

/\kW-* /\kV. 
If dim W= I, then I > k with equality holding if and only if A is decompos-
able. 

Recall the contraction operator 

i(e*): A ^ ^ A * " 1 ^ 
defined for v* E V* by 

< / ( 0 * ) A , Z > - < A , o ' A S > 
for all ZG(/\k~xV)* = /\k~'[V*. We associate to A the linear spaces 

A x = ( c ' e P : i(»*)A=0} c V* 
and 

W = Ann(Ax) c V. 

Lemma. W is the minimal subspace of V such that A is in the image of 
/ \k W -*A k V. 

Proof. Let wu...,w, be a basis for W, and complete it by ul+l,...,u„ to a 
basis for V. Denote the dual basis of V* by {w*,u*}. Setting V— 
C{ul+],...,un), the direct sum decomposition V=W®U induces 

A ' K s /\kW®(/\k-{W®U)®(/\k-2W®/\2U)@--- . 
We want to show that A lies in the first factor. Write the component of A 
in the second factor as 2^ = / + 1 A a ®w 0 , where A ^ A * " ' ^ - Since 

' ( " * ) : /\k~mW® /\mU^ /\k~mW® Am~'C/ 
and /'(w*)A = 0, we deduce that all AQ = 0. Similarly, the other factors of A 
in /\k~mW®/\mU (m>2) are zero, and consequently AS/\kW. 

It is easy to see that W is the minimal such subspace. Q.E.D. 

We now define 
W = {w&W: wAA = 0}. 

If A is decomposable, then clearly W'= W. Conversely, if A is not 
decomposable so that dim W— l>k, then since the pairing /\kW® /\'~kW 
-*/\'W is nondegenerate we deduce that W'^= W. So A is decomposable if 
and only if W'=W. 

We now express this condition by duality, in two ways. For the first we 
use the operator 

/ (£) : A * K - » K * 
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defined for Z G A * + ' V* by 
(/(H)A,t!) = < i , A A c ) 

for all D £ K. We observe that, by the definition of A x , for c £ f the 
left-hand side depends only on the image of 1 under the natural projection 

A * + > F * - ^ A * + 1 ( - ^ ) = Ak+*W*. 

Consequently, the condition AAw = 0 for all wGW is equivalent to 
z ' ( i )AeAx for all c , which is in turn equivalent to 

(*) »(»'(2)A)A = 0 for all S G /\k+lV*-

The left-hand side of (*) gives I , , 1 quadratic forms in the homoge-
neous coordinates A, of p(G(k, V)); setting them equal to zero gives the 
classical Pliicker relations. In sum, 

the image of the Grassmannian under the Pliicker embedding 
p : G(k, V)—»P(AkV) is cut out by the linear system of quadrics given by 

Alternatively, we may characterize W as being the image of 

A*- 'K*-> V 
under the map 

Z - M ( S ) A , S 6 A * - ' P . 
Then the condition W' = W is equivalent to 

(**) ( i ( i ) A ) A A = 0 f o r a l l Z G A * - 1 ^ * -
For example, suppose that 

A = 1 2 V< A e,, Xy + \ji = 0, 
•J 

is a bivector. Since for v* G F* 

( I ( O * ) A ) A A - | I ( C * ) ( A A A ) , 

we may rewrite the conditions (**) as 
A A A = 0. 

When n = 4 we find the single equation 

^12^34 - ^13^24 + ^14^23 = ° 

expressing the condition that A G P(A2C4) s P5 be decomposable. In other 
words, (7(2,4) is naturally realized as a nonsingular quadric hypersurface in 
P5. We will see more of this in the final chapter. 



2 
RIEMANN SURFACES 
AND 
ALGEBRAIC CURVES 
The dominant theme of this chapter is the interplay between the extrinsic 
projective geometry of algebraic curves and the intrinsic structure of 
Riemann surfaces. The subject, initially studied in extrinsic terms, under-
went a basic shift in viewpoint with the introduction of the notion of 
abstract Riemann surface; nonetheless, the central aspects of the theory of 
algebraic curves as presented here are the same in either approach. Most of 
the results of this chapter were stated, if not proved, before the turn of the 
century. 

We begin in Section 1 by refining the Kodaira embedding theorem in 
the case of dimension one. We then describe the local structure of maps 
between Riemann surfaces, and we use this to prove the Riemann-Hurwitz 
and genus formulas.We suggest the reader start with Section 2 and refer 
back to Section 1 as needed. 

In Section 2 we introduce the theory of Abelian integrals and prove 
Abel's theorem and its converse. This theorem is perhaps most accessible 
in the case of elliptic curves—where indeed it was originally found—and 
we conclude with a discussion of this case. 

We turn in Section 3 to the study of linear systems on curves. The 
fundamental result here is, of course, the Riemann-Roch formula. Next, 
we introduce the canonical curve, an intrinsically defined projective model 
of any nonhyperelliptic Riemann surface. The importance of the canonical 
curve is suggested by the geometric version of the Riemann-Roch; its full 
significance will continue to emerge through the remainder of the chapter. 
We initiate our study of special linear systems with Castelnuovo's bound 
on the genus of a curve of given degree in projective space; following a 
discussion of hyperelliptic curves and Riemann's count—which establishes 
our notion of the dependence of a Riemann surface on parameters—we 
start out on the road toward the solution of the complementary problem of 
Brill and Noether. 
212 
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Sections 4 and 5 represent a shift of focus toward the extrinsic aspect of 
curves. In section 4 we prove the general Plucker formulas and the Plucker 
formulas for plane curves. There is a basic distinction between these 
results: the general Plucker formulas apply to curves in projective space of 
arbitrary dimension but deal only with the local character of the curve, 
while the formulas for plane curves describe such global phenomena as 
bitangents and double points, but apply only to curves in P2. The apparent 
gap is partially filled in the following section, where we introduce the 
powerful computational technique of correspondences and as an applica-
tion derive formulas for the geometry of space curves. In both sections, the 
application of projective-geometric formulas to the canonical curve yields 
results about the intrinsic structure of Riemann surfaces: in Section 4 we 
obtain the count of Weierstrass points, and in Section 5 we solve some 
special cases of the Brill-Noether problem. 

In the final two sections of the chapter we return to the study of the 
Jacobian variety associated to a compact Riemann surface. To begin with 
we give in Section 6 the rudiments of the theory of Abelian varieties; the 
dominant theme here is the working out of the Kodaira embedding 
theorem in the case of complex tori. In Section 7 we specialize to the case 
of the Jacobian of a curve. We see, by two lovely theorems of Riemann, 
how the geometry of the Jacobian is intimately connected to the special 
linear systems on the curve; following this we are finally able to prove 
some results on the Brill-Noether problem. The chapter concludes with 
Torelli's theorem, following Andreotti. 

1. PRELIMINARIES 

Embedding Riemann Surfaces 

Let S be a compact Riemann surface. Throughout this chapter we assume 
that S is connected. If ds2 is any metric on S with associated (1, l)-form w, 
then du has degree 3 and so is trivially 0; thus any metric on S is Kahler. 
Indeed, since the 3-Laplacian of any metric commutes with the decomposi-
tion into type, we see that a form <p, written in terms of a local coordinate 
z = x + V— 1 y as 

<p = pdx + qdy = adz + fldz, 

is harmonic if and only if (ph0 = adz is holomorphic and q>°'} = pdz is 
antiholomorphic. This will be the case if and only if 

9<p = 8<p = 0, 
or equivalently, if and only if 

d<p = dc<p = 0 . 
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If dq> = 0, then locally (p = df for some C °° function / ; we have 

i.e., <p is harmonic if and only if / is harmonic in the usual sense of one 
complex variable. In particular, we see that the harmonic space X ' ( 5 ) 
does not depend on the choice of metric. 

Now let ds1 be a metric with (1, l)-form «, multiplied by a constant so 
that 

f« = 1. 
Js 

[w]EHpK(S) is an integral cohomology class, and by the Kodaira embed-
ding theorem- S can be embedded in projective space P^. In fact, as 
suggested in the discussion of the embedding theorem, a sharper statement 
and a simpler proof of the theorem are possible for Riemann surfaces, and 
we give these here. 

Let L-^S be a holomorphic line bundle. Recall that the degree of L is 
defined to be its first Chern class c,(L)e^T2(5, Z) under the identification 
H2(S,I) = I given by the natural orientation of S. If L = [D] for 

then 

degL = 2 a,.. 
As we have seen, L has a nontrivial global holomorphic section only if 
c,(L)>0, i.e., 

degL <0=*H°(S,6(L)) = 0. 
On the other hand, since the generator of H2(S,Z) = Z corresponding to 
+ 1 is represented by a positive form, 

L positive <=> degL > 0. 
Thus, if degL>degA^, then L®K^ is positive, and by Kodaira vanishing 

//'(s,e(L)) = //1(S,O,(L+A:*)) = O. 

Alternatively, this fact follows from Kodaira-Serre duality: 

degL > d e g / ^ d e g ^ <8> L*) < 0 

=*H \S, 0 (L)) as H°(S, 0 (Ks ® L*)) = 0. 

Now for any p&S, consider the exact sequence 
rP 

0-^>e(L-p)—>6(L) —» Lp—>0. 
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If deg(L-/7) = degL - 1 >degATs, then H\S,6(L)-p))=0 and it follows 
that 

that is, the complete linear system of a line bundle of degree greater than 
degAT5+ 1 has no base points. Moreover, if degL>degATs + 2, then from 
the exact sequences 

rP.i 

dP 

O-»6(L-2/>)—>e(L) —» r;*®^—»o, 
and the vanishing 

H\S,d{L-p-q)) = Hl(S,e(L-2p)) = 0, 
it follows that the complete linear system of L gives an embedding 
iL: S - » P \ 

Summarizing, we have: 

1. d e g L < 0 => / /° (5 ,6(L)) = 0. 
2. degL>degATs => tf'(S,0(L)) = O. 
3. degL>degA^ + 2 => iL: S^>PN is well-defined and an embedding. 

The phrases compact Riemann surface and smooth algebraic curve or just 
curve will be used pretty much interchangeably from now on. This is 
somewhat imprecise, as a smooth algebraic curve may be thought of as 
carrying the additional structure of an embedding—i.e., as a Riemann 
surface S together with a line bundle L—>S and subspace E c H°(S, 0 (L)) 
—but hopefully no confusion should arise. What is important is the ability 
to think alternately of the abstract analytic object—the compact Riemann 
surface—and the algebraic object—the zeros of polynomials in P^; this is 
implicit in the use of the two terminologies. 

As we saw in Section 4 of Chapter 1, the variety C(S) of chords of an 
algebraic curve S cPN is a closed subvariety of dimension < 3 in PN. 
Projecting from a point p^C(S) to any hyperplane HcPN gives an 
embedding of S in H st PN ~'; thus any curve can be smoothly embedded 
in 3-space P3. We cannot, in general, embed a curve in P2. Given a smooth 
curve S c P3, however, we can find a point p G P3 that does not lie on any 
tangent line to S in P3, or on any line meeting S in more than two points, 
or on any line meeting S in two points with intersecting tangent lines. The 
projection map TTP\S : S—>P2 will then have everywhere nonzero differential 
and will be at most 2-1 at isolated points; the image Trp(S) c P 2 will be a 
plane algebraic curve whose only singularities are ordinary double points, or 
nodes—i.e., near a singular point, wp(5) will look like the union of two 
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smooth analytic arcs meeting at a point with distinct tangents. (This 
discussion will be sharpened considerably in Section 4 of this chapter.) 

Note also that for a curve S cPN and smooth point/) ES, the projection 
map irp :S — {p} -» P A ' " l c P A ' t o a hyperplane can be extended continu-
ously, hence holomorphically, over all of S by sending p to the point of 
intersection of its tangent line with P ^ - 1 . The intersection of a general 
hyperplane H c P ^ 1 with the image TTP(S) will be just the intersection of 
the hyperplane ITjxzP" with S- {p}, so that 

degirp(S) = degS-\ 

for pES. The simplest case here is the stereographic projection of a plane 
conic C from a point of C onto a line. (See Figure 1.) 

The Riemann-Hurwitz Formula 

We know from elementary topology that a compact Riemann surface S 
has only one topological invariant, which we may take to the be the genus 

,(s)_*i£>_^§M. 
or, commonly, the "number of handles." 

We saw in Section 2 of Chapter 1 that the curvature form of a metric on 
the holomorphic tangent bundle T'(S) = Kg is just the Gaussian curvature 
of the metric times the volume form divided by V— 1 . By the classical 
Gauss-Bonnet theorem, then, 

d e g t f s = - x ( S ) = 2 g - 2 . 
This is a form of the Riemann-Hunvitz formula and can be proved directly 
as follows: Le t / : 5->5" be a holomorphic map between compact Riemann 

Figure 1 
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surfaces S and 5". For the induced map/* : H2(S,Z)-±H2(S',Z), in homol-
ogy 

M[S]) = n-[S']; 

the integer n is called the sheet number, or degree, of the map. For any 
po in t / ?ES \ let 0 be a curvature form for the line bundle [(/>)] associated 
to the divisor (p). Then / * © is a curvature form for the line bundle 
/*[(/>)]= [/ *(/>)] o n S, and we see from the proposition in Section 2 of 
Chapter 1 that 

deg/*(„) = Jf / '^e) - »jf (^* ) =«, 
so the map/assumes all values />6 5 ' exactly « times, counting multiplic-
ity in the sense of divisors. 

For any p G 5", we can find local coordinates z around p'mS and w near 
/(/>) in 5 ' such that the m a p / i s given locally by 

w = zv. 
The number v is called the ramification index of the map/a t /> ; p is called 
a branch point if v(p) > 1. The branch locus of the map / is taken to be 
either the divisor 

* = 2 (V(P)-V-P 
p<ES 

on S or its image 

* '= 2 (»(/>)-1)/0>) 

on 5". For any point pG S', we can write 
f*(p) = 2 o(?)-?. 

<?e / ' ( /> ) 

deg/*(^) = n = 2 u(^). 
ief-\p) 

where the summation is over distinct points. This then gives us a picture of 
the m a p / : away from the branch locus o f / i n 5" , / is a covering map; at a 
branch point p £ S of ramification index k, k sheets of the covering come 
together. 

We can, in terms of the sheet number and ramification of /, relate the 
genus of S to the genus of S'. Take a triangulation of 5 ' in which every 
point of the branch locus appears as a vertex. Because / is a covering map 
away from B, we can take a triangulation of S whose open cells are just 
the connected components of the inverse images of the open cells in our 
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triangulation of 5". Then if c0,cx,c2 denote the number of 0-, 1-, and 2-cells 
in S', respectively, we will have n-cl 1-cells and n-c2 2-cells in S. Since for 
any p&S', 

2 v(q) = n, 

we see also that the number of distinct points 

* ( / - ' ( />) ) = « - 2 (v(q)-l). 

Consequently the number of vertices in our triangulation of S is 

n-c0- 2 (v(q)-l), 
qes 

and the Euler characteristic 

X(S) = / J - C 2 - / J - C , + / ! - C 0 - 2 (v(q)-l) 
q<=S 

= n-X(S')- 2 (v(q)-l), 
q<ES 

SO 

s(S) = „ . ( g ( S ' ) - l ) + l + j 2 (v(q)-l). 
*■ qes 

We can also relate the canonical bundle of S to that of 5". Let to be a 
global meromorphic 1-form on S', written locally as 

h(w) 

For any point p e 5 of ramification index v we can find a coordinate z on 
5 centered around p, with / given by 

w = zv. 
Then 

Hz") 

so 
ordp(/*w) = v OTdfip)(co) + (v- 1). 

This implies the equation of divisors on S 

( / M = / » + 2 («0>)-i)-p 
/.e.5 
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i.e., 

Ks=f*Ks,+B, 

dcgKs = ndegKs+ £ (v(p)-l). 
p<ES 

Now any compact Riemann surface 5 admits a holomorphic map to P1: 
if / £ 911(5) is any global meromorphic function written locally as g/h 
with g,h relatively prime, then/gives a map of 5 to P1 bypt-*[g(p),h(p)]. 
Let/:5—>P' be such a map; on P1 we have 

X(P') = 2 = -degATp,, 
and so 

X ( 5 ) = n - x ( P ' ) - 2 (v(p)-i) 
pes 

= -it-degATp,- 2 (o(p)-l) 
p<=S 

= -degAT5. 
Thus for any 5, 

degA:s= - x ( 5 ) = 2 g - 2 , 
and the Riemann-Hurwitz formula is established. 

We will sometimes refer to the Riemann-Hurwitz formula as being any 
of the following: 

degATs = 2 g - 2 , 

x ( 5 ) = « x ( 5 ' ) - 2 (v(q)-l), 
qeS 

Ks=f*Ks, + B. 

Note two things about maps / : 5—>5' between compact Riemann 
surfaces: first, that the number of branch points of/, counting multiplicity, 
is always even; and second, that un less / is constant, g(S)>g(S'). The 
latter follows also from the fact that a Riemann surface of genus g has 
exactly g linearly independent holomorphic 1-forms on it; if / : S—>S' is 
nonconstant, it is easy to see that / * : //°(5',fl5-)-^//°(5,fi5) is injective, 
and hence g(S) > g(S'). 

The Genus Formula 

We will give here three proofs of the genus formula, which gives the genus 
of a smooth plane curve in terms of its degree. 

First, the topological argument. Suppose 5 c P 2 is a smooth curve of 
degree d, given in P2 as the locus of zeros of a homogeneous polynomial 
F(ZQ,Zl,Z2) of degree d. In terms of Euclidean coordinates Z| = Z , / Z 0 , 
z2= Z2/Z0 on C 2 c P 2 , the equation is 

f{zx,z2) = F(l ,z„22) . 
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Choose a point p£.P2 not on S and a line H not containing/;; after a 
linear change of coordinates we may take 

/> =[0 ,0 ,1 ] , / / = (Z 2 =0) ; 

we may also assume the line L at infinity (Zo = 0) is not tangent to S. 
Now consider the map m : S—>Pl given by projecting from/7 to H. Near 

a point q&S with (df/dz2)(q)^0, z, will serve as local coordinate on S, so 
the map is unramified; if (9//9z2)(<7) = 0, then (9//9z1)(^)7t0 and—taking 
z2 as local coordinate on 5 near q, z, = zx{z2) as a function of z2—we can 
write 

so by the chain rule 
f(zi(z2),z2) = 0 

3/ 3/ 9 z i n „ 
- r L + / - T

i s 0 o n S . dz2 dz, dz2 

Consequently the order of vanishing of 9z,/9z2 at q—that is, the ramifica-
tion index v{q) of the map irp at q minus one—is equal to the order of zero 
of 9//9z2 at qES—that is, the multiplicity of intersection of 5 with 
the curve (9//9z2 = 0) at q. (9//9z2 = 0) is a curve of degree d— 1 in P2, 
and so its intersection number with 5" is d(d— 1); since all points of 
5 n ( 3 / / 3 z 2 = 0) lie in the finite plane (Z0=^0), 

^(v(q)-\) = d(d-l). 

Now [S]= d[H] in H2(P
2,Z), so the sheet number of the projection 

map irp is d; by the Riemann-Hurwitz formula, 

x(s) = rf-x(P')- 2 («>(?)-1) 

= 2d-d(d-\) 
and so 

2-xiS) g(S) = 
2 

(d-\)(d-2) 

A second way to arrive at this formula is by the adjunction formula from 
Section 2 of Chapter 1. It gives 

= (ATP2 + 5') |5. 

Now from that section Kpi= -3H and S = dH, so Kpi + S = (d-3)H on 
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P2. Thus 

and 

x(s) = 
= 

g(S) = 

-degKs 

-*{S-{d-

2-x(S) . 
2 

- 3 ) 7 / ) = -

2 

d(d-

-2) 

-3) 

The third way to compute g(S) is by the Poincare residue map. Recall 
(p. 147) that for a meromorphic 2-form « on P2 holomorphic on P2—5" 
and with a single pole along 5", and written locally as 

<•> = g(zt>z2) 
dzxf\dz2 

the Poincare residue R(u) is given by 

R(u) = - g ( z „ z 2 ) Z | 

(3//3z2)(z„z2) 

= g ( z " Z 2 ) ( 3 / / 3 z 1 ) ( z „ z 2 ) -

Recall also that the Poincare residue map gives in this case an isomor-
phism 

//°(P2,fl2(S))-H> H°(S,Sll
s). 

Now consider wG//°(P2,fl2(S)), written as above. The form dzxf\dz2 

extends to a meromorphic 2-form on P2; since Kpi= —3H and dzx/\dz2 is 
nonzero holomorphic on P2 — L, it follows that dz{/\dz2 must have a pole 
of order 3 along the line L. Similarly, / extends to a meromorphic function 
on P2, and since / is a polynomial with a single zero along a curve of 
degree d in P 2 — L, it must have a pole of order d along L. It follows that g 
must extend to a meromorphic function with a pole of order <d — 3 along 
L, i.e., g must be a polynomial of degree <rf—3 in zuz2. Thus f/ie 
holomorphic 1-forms in S are exactly the differentials 

<o = g(z„z2) -
(8//3z2)(z„z2) 

for g a polynomial of degree < d — 3. We have seen that the number of 
monomials of degree < d in n variables is I " I, and so 

g{S) = h\S,Slx) 

_{d-\){d-2) 
-{"V) 
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Later on we will see how to extend this formula to certain singular 
curves. 

Cases g = 0 , l 

First, let 5 be any compact Riemann surface of genus 0. Then 

/z1(S,0) = ^°(5,fl') = O 
and so, for L = [p] the line bundle associated to any p o i n t p E S we see 
from the long exact cohomology sequence associated to the sequence 

that L has a global section nonzero at p, i.e., there exists a nonconstant 
meromorphic function/on 5", holomorphic away from/? and having only a 
simple pole at p. But such a function assumes the value oo, and hence 
every value A, exactly once, and so gives an isomorphism f:S—>PK Thus, 

any compact Riemann surface of genus 0 is the Riemann sphere P1 

Next, we consider curves of genus 1. The full story on these curves will 
not be available to us until the next section; for the time being we will start 
by proving that any compact Riemann surface S of genus 1 can be realized 
as a nonsingular cubic curve in P2. 

The proposition is easy to prove: we know that degA^ = 0, and so, by 
the embedding theorem, for any p&S the complete linear system of the 
line bundle L = [ip] gives an embedding of S as a cubic curve in P* where 
N = h°(S,e(L))-\>2. But / /°(S,0(L)) corresponds to meromorphic 
functions on S holomorphic on 5 — {p} and of order > — 3 at/>; since any 
such function is uniquely determined by its principal part 

— + — + — + «<> + - • • • 
z zz z 

at p, and since there cannot exist a meromorphic function with only a 
single pole at/?—as noted before, such a function would give a 1-1 map of 
5 to P1—we see that h°(S, 0 (L)) < 3, hence h°(S,6(L)) = 3 and we are 
done. 

It is worthwhile, however, to go through the process explicitly in this 
case. First we shall establish a basic general fact: 
Lemma (Residue Theorem). For q> a meromorphic one-form on a compact 
Riemann surface S with polar divisor a, + • • • +ad, 

2Res f l » = 0. 
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Proof. Letting 2?c(a,) be an e-disc around a„ we have by Stokes' theorem 

0= - [ d<p= f <p = 2 Res.(<p). Q.E.D. 
JS~UiB,(ai)

 Jd(uiBr(ai)) i 

Applying this to q> = df/f shows again that meromorphic function f on S 
has the same number of zeroes as poles. 

We return to our Riemann surface S of genus 1. As noted before, there 
are no nonconstant meromorphic functions on S with only a single pole at 
p. On the other hand, by the vanishing theorem 

H\s,e(p)) = o, 
and so the exact sequence 

tells us that there does indeed exist a meromorphic function F on S with a 
double pole at p, holomorphic elsewhere. Next, 

h°(s,al) = g(s) = i, 
so S has a nonzero holomorphic 1-form «; since degAs = deg(w) = 0, w 
must be everywhere nonzero. Consider the meromorphic form Fa; it is 
holomorphic on S — {p}, and by the residue theorem 

Res,, (F-to) = 0. 
Consequently if z is any local coordinate around p, after multiplying by a 
constant and adding a constant we can write the series expansion of F as 

F(z) = ̂  + [1]. 

Now consider the meromorphic function dF/u on S. Since w is nonzero 
everywhere, dF/u is holomorphic on S — {p) and has a triple pole at/>; 
setting 

dF 
F' =\— + \'F + X" w 

for suitable constants A, A', A", we can write 

near/?. 
The map iL:S-*P2 associated to the line bundle L = [ip] can thus be 

given by 
q»[l,F(q),F'(q)]. 
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Writing out expansions around p, we have 

and 

*w-£+£+£+[-']. 
so that the meromorphic function 

F'{zf + c'F'(z) - F(zf + (c" - c)F(z) 
is holomorphic away from/?, with at most a single pole atp, hence equal to 
a constant. The image of S under the embedding iL is accordingly the 
locus of the polynomial 

y2 + c'y = x3 + ax + b, 

where x = Zl/Z0, y = Z2/Z0 are Euclidean coordinates on P2. After a 
linear change of the coordinate y, we may take this polynomial of the form 

(*) y2 = x3 + ax + b, 

and finally, after a linear change in the x-coordinate, taking two of the 
roots of the polynomial x3 + ax + b to 0 and 1, we see that any curve of 
genus 1 is the zero locus in P2 of a cubic polynomial 

y2 = x-(x-l)-{x-X) 

for some A e C . 
Note that by the above a Riemann surface of genus 1 is determined by 

the one parameter A in the polynomial (*) above; since the quotient C /A 
of C by any rank 2 lattice A c C is a Riemann surface of genus 1, and 
since one complex parameter is required to specify a lattice A c C of rank 
2 up to an automorphism of C, we might expect that in fact all curves of 
genus 1 may be realized as C/A. This is in fact the case, as we shall see in 
the next section. 

In closing we note that meromorphic functions on S = C/A are the same 
as entire meromorphic functions on C, which are periodic for the lattice A. 

2. ABELS THEOREM 

Abel's Theorem—First Version 

The indefinite integrals of the form 

(•) f , dX 
J Vx2 + ax + b 
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are readily solved in closed form; more generally, any integral 

JR(x, \Zx2 + ax + b )dx, 

for R a rational function, has a closed-form solution involving only 
elementary functions. The solutions to integrals of this type have been 
known since the early days of calculus. For a long time, however, mathe-
maticians were unable to do much with the integrals 

(••) f , ^ 
Vx3 + ax2 + bx + c 

or, more generally, the Abelian integrals 

J R(x,y)dx, 

where R is a rational function, and x and y are related by a polynomial 
equation f(x,y)=0 of degree >2. 

In view of the genus formula of the last section, one reason for the 
difficulty is easy to spot: the first integral (*) can be thought of as the line 
integral 

r dx 
J y 

of the meromorphic form dx/y on the curve C given in terms of Euclidean 
coordinates x,y in P2 by y2 = x2 + ax + b. Now C is a conic curve, hence 
isomorphic to P1 via a polynomial map; if t = t(x,y) is a Euclidean 
coordinate on P1, the meromorphic form dx/y on C must be of the form 
R(t)dt on P1 with R a rational function. Thus for (x0,y0),(x,y)E C, 

/ — = / R(t)dt, 
•VCKVO) y Jt(x0,y0) 

and the latter integral is easy to solve. Note moreover that since P1 is 
simply connected and dx/y is closed, the only dependence of the integral 
on the choice of path arises from the residues of dx/y, which are readily 
calculated. 

The integral (**), on the other hand, is the integral of the form dx/y on 
the cubic curve C=(y2 = x* + ax2 + bx + c). Now, if C is smooth then by 
the genus formula it has genus 1, and hence cannot be parametrized by a 
single meromorphic function; thus no such simple expression as the one 
given above for (*) is possible for (**). Moreover, C is topologically a torus 
and therefore not simply connected; so the integral 

/•<? dx 
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is well-defined only modulo the periods of dx/y, that is, the integrals of 
dx/y over closed loops yG/ / , (C , Z). More precisely, note that from the 
preceding section the form u> = dx/y is everywhere holomorphic on C and 
so is a generator of H°{C,Q}). Let Yi>Y2 D e closed loops on C generating 
/ / , (C ,Z)sZ©Z, and denote by 

«i = / w> a2 = / 
' Y l " Y 2 

the corresponding periods of o>. The general periods of u on C will then be 
of the form n-al + m-a2, n,mEZ. If a, and a2 were linearly dependent 
over U, we could write 

kl[u+k2(cj = 0 
• 'YI

 Jy2 

for / [^^ElR; we would then have 

A:, f w + A:2 f w = 0, 
•^Yl *^Y2 

and since w and u generate H l 0 ( C ) © / / 0 ' '(C) = H^R(C), this would imply 
that 

* I [ y , ] + A:2[72]-0e// I (C,R), 

which is impossible. Thus a, and a2 are independent over R, and so ;/ie 
periods A = {n-a ,+m-a 2 } n m e Z c C of w /« C form a lattice in C. Corre-
spondingly, the value of the integral 

/ ' * 

while not a well-defined number, is well-defined as a point of the complex 
torus C/A. 

The first major step toward understanding integrals of this type was 
made by Abel in 1826. Abel noted that, while the single integral above is a 
highly intractable function of the point p = (x,y) on C, the qualitative 
behavior of the more general Abelian sums 

2f« 
'Pa 

was in fact subject to easily expressed relations. A special case of what 
Abel proved is the following: for C and w as above, and for any line 
L c P 2 , let/7i(L),/?2(L), and/>3(L) denote the three points of intersection of 
L with C (the ordering of these points, of course, is not well-defined). Let 
>KL) denote the Abelian sum 

*(£) = 2 f V 
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as before, \p(L) is well-defined modulo the periods A of w. Then we have 

Abel's Theorem (First Version) 
\p(L) = constant (mod A) 

Proof. A modern version of the proof is deceptively easy. We consider *p 
as a map 

^ : p 2 * ^ C / A 
from the space P2* of lines in P2 to the complex torus C/A; clearly it is 
holomorphic. Let z be a Euclidean coordinate on C/A and dz the 
corresponding global 1-form; then, since //10(P2) = 7/°(P2,fil) = 0, 

$*dz = 0 , 
and hence ip is constant. Q.E.D. 

In a similar way, we prove a slight generalization: again let C be a curve 
of genus 1, ueW^C.fi1) a holomorphic differential, A c C the period 
lattice of w. Then, if D — (g) = 1,pi — 'Eqi is the divisor of a meromorphic 
function / on C, we have 

2 I w = 0 (modulo A), 

i.e., there exists a collection of paths a, from q{ to p, such that 

<* . 

Proof. Write Dx = (A0/-Al) = 2 / ? , ( A ) - 2 ^ ) for X = [X0,A,]ePl; set 

W = 2 f A(A)« (modulo A). 

\p is thus a holomorphic map P ' ^ C / A ; by the same argument as before 
we see 

ifr*dzGH°(Pl,a]») = 0 
=xp constant and since, as XQ-^0, {/>,-(A)}-»{^I.(A)}, we have ^ = 0 (modulo 
A). Q.E.D. 

Following some preliminaries concerning the reciprocity formulas, we 
will give the converse to this version of Abel's theorem for Riemann 
surfaces of arbitrary genus. Together with the Riemann-Roch formula, 
these constitute the fundamental tools in the study of algebraic curves. 

Let S now be a compact Riemann surface of genus g, and let S,,...,S2g 

be 1-cycles in S forming a basis for HX{X, Z). We may take 5„...,82g to be 
a canonical basis, i.e., such that 5, intersects Si+ once positively, and does 
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not intersect any other 5,. In such a canonical basis, the cycles 8„ . . . ,8 g are 
called the A-cycles, Sg+],...,82g the B-cycles. 

Now let ul,...,icgEH°(S,ili) be a basis for the space of holomorphic 
1-forms on 5". The period matrix of 5 is the gX2g matrix 

S2 = 

L / , » . 

The (transposed) column vectors II,• = (/8w,,...,fs,ug)EC* of the period 
matrix are called the periods; we first check that they are linearly indepen-
dent over R: If we have 2&,TI, = 0, fc,GR, then 

2 *,- f w.■ = 0 for ally => 2 */ f «/ = ° f o r a11 •/> 

=*2*,[S,]=0e//,(S,R), 
since {w,,«,} span H^K(S); this is impossible, since {8,} is a basis for 
tf,(S,Z). 

The 2g periods II, G Cg thus generate a lattice 
A = {/w,n,+ --- +m2gA2g,m,GZ} 

in Cg; we define the Jacobian variety $(S) of S to be the complex torus 
C*/A. The Jacobian is a natural range for Abelian integrals: whereas the 
integral /*w of a single holomorphic differential <o is defined only modulo 
the 2g periods of w, which are usually dense in C, the vector 

is well-defined as a vector in Cg modulo the discrete lattice A c Cg. Picking 
a base point/>0eS, accordingly, we have a natural map 

given by 

cW = (f'« f'JeKS)-
\JPo JPo I 

More generally, if Div°(S) denotes the group of divisors of degree 0 on S, 
we define ju: Div° (S) -4 (S) by 

M(2/>A-2?A) = ( 2 Px«x.—.2 P \ l -
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To study this map, we need to learn something about the relations among 
the periods of the co,. These are expressed in the reciprocity laws, one of 
which we now derive. 

The First Reciprocity Law and Corollaries 

To begin with, we may assume that all of the cycles 8, on the Riemann 
surface S issue from a common point s0 E S. The complement of the 8,'s is 
then a simply connected region A on S; the boundary 3A contains each 8, 
twice with opposite orientation, and may be pictured as in Figure 2. What 
we are doing is making the familiar topological representation of a surface 
of genus g as a polygon with 4g sides, which are identified in pairs. 

Now let w be a holomorphic differential on S, rj a meromorphic form 
whose only singularities are simple poles at points sxGS. Assuming that rj 
has no poles on the paths 8„ let IT and N' denote the periods of co and rj, 
respectively, along the path 8,. Since the region A is simply connected and 
co is holomorphic, we can set 

co 

to obtain a holomorphic function w in A with co = dm. (See Figure 3.) Note 
that for any pair of points p G 8„ p' G 8,"' on 3A that are identified on S 

co 
"p 

v(p') - TT(P) = fP, 
Jp 

= r-(i )co+f co+r 
Jp Jx Jx 

= n*+' 

p 
CO 

>/>0 A 

"\*i 

Figure 2 
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Figure 3 

and similarly for/>E5g+,,//E5gV, identified on S, 

*(P')-«(P)= -IT'. 
Consider the meromorphic 1-form ir-q in A. By the residue theorem, 

since TJ has only first order poles, 

f 77-17 = 2 7 r \ ^ T 2 Res (wij) 

A •'so 

On the other hand, we can compute the integral of ir-t) around 9A 
explicitly by considering together the contributions of the pair of sides of 
9A corresponding to 6, and 5,._1: since, for points p&8t and p'E8t~

l 

identified on S, the difference H(p') — H(p) is a constant Tlg+', we see that 

f r i | = - I F + ;- f-q = -n*+ '-Af' . 

Similarly 

f 77-77 = U'-Ng+i. 
•V.+«*+', 

Comparing the two expressions for S^ir-t), we find the 

Reciprocity Law I 
g r 

2 (nW* + ' - n « + W ' ) = l-nV^X 2 Res5 (TJ)- I V 
1 = 1 X X • % 

where the integrals on the right are taken in the interior of A. 

This is classically known as the reciprocity law for differentials of the first 
and third kinds. In classical terminology, a differential of the first kind on a 
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Riemann surface S is a holomorphic 1-form; a differential of the second 
kind is a meromorphic 1-form with no residues, and a differential of the 
third kind is a meromorphic form with only single poles. Clearly a differen-
tial is of the first kind if and only if it is both of the second kind and of the 
third kind; we shall see shortly that any meromorphic 1-form is the sum of 
differentials of the second and third kinds. Later on we will prove a 
reciprocity law for differentials of the first and second kinds. 

Before we can apply the reciprocity law, we need to prove a similar 
result, which will enable us to normalize our basis for //°(S',fl1). Let co,w' 
be two holomorphic 1-forms on S, IT and IT" their respective periods 
around 5,. Let A and it be as above, and consider the integral around 3A of 
the form tt-'Us. The exterior derivative d(ir-u') = ditAw' = «A« ' , and so by 
Stokes' theorem 

I it ■ u' = I w A <*>', 

and, evaluating the line integral just as in the proof of the reciprocity law, 
we obtain 

fwAw' -2(n'-n"'+«-n,'+«if7). 
In particular if we take «' = «, then since u/\w is positive we find that 

, s 

(**) o<Y^i | u A « = ^ r i 2(n''n«+'-n«+,'n') 
for to^O. It follows from this that any holomorphic 1-form <o whose 
A-periods all vanish must be identically zero, i.e., the first g X g minor of the 
period matrix S is nonsingular. Once we know this, we can take our basis 
« „ . . . , <og for H°(S,Ql) so that 

/ « = 80 for 1 < ij < g, 

i.e., so that the period matrix has the form 

Such a basis for H°(S,Sll) is called normalized. 
We now return to the reciprocity law and deduce some consequences. 

First, consider the case where TJ=W' is a holomorphic 1-form; write II" for 
the periods of w'. Since w' has no residues, the formula reads 

s 
2 (n«'n'*+'-n«+,'n"') = o. 
/ = i 

This is the first Riemann bilinear relation in the periods. In particular, if 
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to = w,-, to' = Uj are elements of our normalized basis, all but two terms in the 
expression on the right vanish, and we have 

f w , - f to, = 0, 
• V . \*j 

i.e., the right-hand block Z in the period matrix above is symmetric. Note 
that since the quadratic form on 7/°(S,Q!) given by 

(«,-,«,-) = V^l J to, Aw, = V^-T j oij - \T^\ j to, = 2 • ImJ u>j 
S 6g + , Sg+J Sg + , 

is positive definite, the imaginary part Im(Z) of Z is positive definite; this 
is the second Riemann bilinear relation. In sum, the two Riemann bilinear 
relations imply that for a normalized basis of H°(S,&), the period matrix 
fl of 5 has the form 

fi = ( / , Z ) with Z='Z, I m Z > 0 . 

Abel's Theorem—Second Version 

Let 5 as before be a Riemann surface of genus g, D = 2(/>x — q\) a divisor 
of degree 0 on S, and consider the Abelian sum 

Abel's theorem in the case g = 1 tells us that if D is the divisor ( / ) of a 
meromorphic function/on S, then n(D) = 0. It is not hard to extend this 
statement to the case of genus g: If £> = (/), then the map 

r- [Ao.AiH/ i ( (*o/ -A,) ) 
from P1 to f(S) is holomorphic, and since the holomorphic 1-forms dz{ on 
the complex torus §(S) span the cotangent space at each point, 

^(dZj) = 0=xp is constant 
=*H(D) = (KO) = i//(oo) = 0. 

Conversely, we will now show that / / D = 2(pA — c^) is any divisor on S of 
degree 0 and ju(D) = 0, then D is the divisor of a meromorphic function. 

The problem, which may at first seem difficult, becomes straightforward 
once we transpose it from a question about the existence of a meromorphic 
function to one about the existence of a certain meromorphic form. Note 
that i f / i s a meromorphic function with (/) = 2(/?A — qx), then the differen-
tial 

T) = j=- dlogf = —— -f 



ABEL'S THEOREM 233 

is a meromorphic form with polar divisor 

( T J ) O O = - ( | ( / > A + <7A)) 1) 

RespA ( ,) = — ^ = - , Res,A („) = —£=-, 2) 
2wV — 1 2wV - 1 

where we are now writing 
D = 2 aiPi + 2 ha 

with t h e ^ , ^ distinct; and moreover 

bEI 3) 

for any closed loop y on S—{pi,qi). Conversely, if TJ is any meromorphic 
form with these three properties, we can set 

to obtain a well-defined meromorphic function / with (/) = D. Thus, to 
prove the converse to Abel's theorem, we have to show that for Z> = 
2(/ 'A,-9A) w ' t r i V-(D) = {), there exists a differential of the third kind TJ, 
holomorphic on S — {px,qx) with residues ax &tpx, bx at qx, and having all 
integral periods. First, we check that we can at least find a meromorphic 
differential with the requisite singularities: 
Lemma. Given a finite set of points {px} on S and complex numbers ax such 
that 2ax = 0, there exists a differential of the third kind on S, holomorphic on 
S— {px} and having residue ax at px. 

Proof. Consider the exact sheaf sequence on S 

0 - ^ f i 1 —^fl'CS/O —> © C n —»0. 
By Kodaira-Serre duality 

H\S,Q1)^ //°(S,fi) = C, 
so that the image of H\S,^l]([Zp\])) in ©C n has codimension at most 1. 
But we have seen that the sum of the residues of any meromorphic 1-form 
on S is zero; so the image of H0(S,U\[2px])) is contained in, hence equal 
to, the hyperplane (2ax = 0) c ©C^. Q.E.D. 

Now choose cycles Sl,...,S2g representing a canonical basis for //,(S,Z) as 
on p. 227 such that no point px, qx lies on one of the paths 5,, and let 
co,,...,wg be a normalized basis for H°(S,til) with respect to {8l,...,d2g}-
By the lemma, there exists a differential of the third kind with residues 
ax/(277-V- 1 ) atpx, bx/(2irV— 1 ) at qx; any two such forms differ by a 
holomorphic form on S, and hence there exists a unique such form TJ such 
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that the A-periods 

y v ' = r i ) = 0, < = l , . . . , g . 

The problem now is to alter TJ so as to make all its fi-periods integral; 
clearly we can do this without disturbing the singularities of 17 or the 
integrality of its A -periods only by adding on an integral linear combina-
tion of the forms w,. To see if this is possible, we read off the B-periods of 
77 by the reciprocity law: since 7V' = 0 for /'= l, . . . ,g, we have for each /, 

tf'+,--2^/% + 2 * J % 

-2/'A«, 
for some choice of paths aK from qx topx. Now we are essentially done. By 
hypothesis, 

i.e., there exists a cycle 
2g 

such that for each /, 

and so 

Set 

Y~ 2 »»*A» « t £ Z 

2 ( «,- = /"«,-, 
X • % ->y 

JV* + ' = fw , - for alii. 

V' = 1 - 2 «« + *<•>*• 

The periods A7" of r\ are then given by 

N" = - w g + „ / = l, . . . ,g, 

W - 1.- - ^j m +k 1 UJ* 

2 £ S 

= 2 " » * / " , ■ - 2 mg+k[ w* 
A : = l • '«< A = l ->Sg + , 

= m,.+ 2 Wg + J f w, - | «*} 
*-l \-VA -V, / 

= mt, 
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by the first bilinear relation of Riemann. Thus TJ' has all integral periods, 
and D = (f) for f{p) = e\p(2ir\/^\ fij'). 

Summarizing, we have proved 

Abel's Theorem (Second Version). Given D = 2(pA - q j £ Div(S) and 
u,,..., wg a basis for the space of holomorphic I-forms on S, then D = (T)for 
some meromorphic function f on S if and only if 

#) = (S/\..,I/\W(A). 

In fancier language: recalling that Pic^S) is the group of divisors of 
degree zero on 5 modulo linear equivalence, the map 

/x: D i A S ) - £ ( S ) 
factors 

Div°(5) A £(S) 

Picas') 
to give an injection jS: Pic°(S)-*$-(S). 

Jacobi Inversion 

The second statement of Abel's theorem above suggests our next question: 
Is the map /x: Di\°(S)->$(S) given by Abelian sums surjective, or, in other 
words, is the induced map /x:Pic°(5)-»^(5) an isomorphism? The Jacobi 
inversion theorem asserts that the answer to this question is yes, and in fact 
tells us that we obtain what is suggested by counting dimensions. 

Theorem (Jacobi Inversion). Given S a curve of genus g, p0GS and 
w),...,wg a basis for H°(S,S2'), for any XG^-(S) we can find g points 
Pi , . . . , p g eS such that 

(•) M(2(A-JPO)) = A, 

i.e., for any vector AeCg, we can find p , , . . . , p g ES and paths a{from p0 to p{ 

such that 

2 ( w, = \ for allj. 

Moreover, for generic X G C E , the divisor 2pj is unique. 

Proof. For now, we will just prove the result; in Section 7 of this chapter, 
after introducing Riemann's theta function, we will see how to solve the 
equation (*) explicitly. 
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First let S(d) denote the set of effective divisors of degree d on S, i.e., the 
set of unordered ̂ -tuples of points {P\,..-,Pj} on S, not necessarily 
distinct. S(d) is the quotient of the d-fo\d product Sd=SxSX--- XS of 
S with itself d times by the action of the symmetric group 2rf on d letters; 
as such it inherits from Sd the structure of a topological space. In fact, the 
projection map w: Sd-*Sid) gives Sid) the structure of a complex manifold: 
for a point D = '2pi e S(d), let z, be a local coordinate in a neighborhood C, 
of Pj in S, where we take Utn Uj = 0 fox p^Pj and zt = Zj in t/,= £7, for 
Pi=Pj. Then if we let a,,...,arf denote the elementary symmetric functions, 
by the fundamental theorem of algebra the map 

gives a coordinate chart on -n{Ux X ■ ■ ■ X Ud)cS(d). Note that away from 
the branch locus the map w is a covering map and we can take coordinates 
{zx{p\),...,zd{pd)) on Si<r>. At the other extreme, around a point dp local 
coordinates are 

(z, + --- + zd, ...,zr--zd) 

The compact complex manifold Sw is called the dth symmetric product of 
S. (It is interesting to verify that pi<<r> = Pd.) Fixing a base point p0GS, 
there are inclusions 

i: S(d)-*Di\°(S) 
given by 

11P\>-*'2(P\-Po) 
and, correspondingly, holomorphic maps 

M C) : S ( , / ) ->J (S) 

: 2A~(2/V...2/\). 

In this context, the Jacobi inversion theorem asserts that for S of genus g, 
the map n(g) is surjective and generically one-to-one. 

Now let £> = 2/>, be a point of S'(g) with all /?, distinct, z, a local 
coordinate on S centered at/?,, and (z,,...,zg) corresponding coordinates 
on S'8' near Z). For D' = 2z, near Z), by calculus 

= «y/</z,., 

where we write w/rfz for the function h(z) such that u = h(z)dz. Thus, and 
this is a fundamental observation, the Jacobian matrix of the map ju(rf) is 
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given near D by 

Hun-
. M i 

ug/dz{ 

wx/dzg 

We note that changing the local coordinate z, multiplies the z'th column by 
a nonzero factor but does not affect the rank of $-(fi(rf)). 

We may choose/?, so that W|(/7,)=7feO, and then, subtracting a multiple of 
w, from a2,...,ug, we may arrange that w2(/'i)= ' " ' =CJ

g(Pi) — Q- Next, we 
may choose p2 so that u2(P2)^Q> a n ^ t n e n arrange as before that u3(p2) = 
• ■ • = ug(p2) — 0. Continuing in this way, the Jacobian matrix at D will be 
triangular with zeros below the diagonal and nonzero on the diagonal, and 
so has maximal rank at D. 

Thus the map jw(g) is not everywhere singular, and the Jacobi inversion 
theorem follows from the fact that any holomorphic map / : M—*N be-
tween compact connected equidimensional complex manifolds is surjective 
if | ^ ( / ) | ^0 . This follows immediately from the proper mapping theorem: 
f(M)cN is an analytic subvariety and contains an open set, hence 
f{M) = N. For a more elementary argument, let \pN be a volume form on A'. 
Since / i s orientation preserving and |^ ( / ) |^0 , 

f f**N > 0-

On the other hand, for any q £ ./V we have 

hence in N— {q} 
H2"(N-{q),U) = 0, 

4>N = dtp 

for some <p&A2"-\N- {q}). Then if q£f(M), 

[/•+»-( df*<p = 0, 

a contradiction. 
The only thing that remains to be proved is that /x<g) is generically 

one-to-one. But this is clear: by Abel's theorem the fiber of ju(g) over any 
point X£^(5) consists of the set \D\ of effective divisors linearly equiv-
alent to any divisor D £ju(g) (A), which is a projective space. On the other 
hand, by dimension considerations the generic fiber of ju(g) is 0-dimen-
sional; it follows that the generic fiber of /i(g) is one point. (The map ju(g) is 
an example of a birational map; we shall discuss these in detail in Chapter 
4.) Q.E.D. 
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Note that as a corollary to Jacobi inversion, we see that every divisor of 
degree > g on a Riemann surface of genus g is linearly equivalent to an 
effective divisor. 

Consider in particular the case of a Riemann surface S of genus 1. Then 
J (S ) = C/A and the map ju.(1> is given simply by 

ju: p\-+ fPu, 

where w is a generator of //°(5,fi ') . By Abel's theorem, /i(/>) = n(p') only if 
there exists a meromorphic function/on S with (f) = (p—Po)~(P~~Po) = 

p—p'; since we have seen that there are no meromorphic functions on S 
with only a single pole, it follows that the map p.m is injective. By the 
Jacobi inversion theorem, the map is surjective as well, and so we have an 
isomorphism 

i.e., every Riemann surface of genus 1 is of the form C/A for some lattice 
A c C . 

We have thus established the fundamental fact that the nonsingular 
cubic curves in P2 are the same as the compact Riemann surfaces C/A for 
a suitable lattice A in the complex plane. It follows that every such curve C 
has a group structure; we want to briefly discuss this. 

First, recall that at the end of the previous section we constructed 
meromorphic functions F and F' on a Riemann surface C of genus 1, 
having a double and triple pole, respectively, at a base point/>0 e C and 
holomorphic elsewhere. We chose F and F' so that in terms of a local 
coordinate w around p0, 

F(vv) = _L + [1] 
w 

and 

w 

and 

dF= F'- a, 

where w is a global nonzero holomorphic 1-form on C. Now, we may 
express C as the complex torus C/A; let z be the Euclidean coordinate on 
C with u> = dz. The function F is then the Weierstrass 'fP-function; its 
derivative (8/3z)9 = -IF' is denoted <3". Note that the Laurent expan-
sion for "3* around p0 can contain no terms of odd degree, since otherwise 
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9 (z) — <? ( — z) would be a nonconstant holomorphic function on C. Thus 

<3>(z) = ^1 + az2 + bz4 + [6], 

9(z)3 

<3"(z)2 

1 '• 

- 7 + 7 + '»+[2]. 
4 8a , , . r , , 

1 6 6 + [ 1 ] > 

from which we deduce that 9 and (3" satisfy the relation 
<3"2 

it is conventional to write 
= 4-GP3-20a-<3' -286; 
g2 for 20a and g3 for 28b. 

Now the holomorphic map 

given by 
4>: C / A ^ P 2 

z^[l,^(z),9'(z)] 

embeds C / A as the locus of the polynomial f(x,y)=y2-4x3 + g2x + g3. 
The differential « = oz on C = C/A is the Poincare residue 

I Axj)} 
dx dx 

df/dy y 

and the inverse of xp is the Abelian integral 

\P) — I "77 (mod periods) 

where we take in this case /?0 = i//(0) = [0,0,1 ] e P 2 . If pr,p2,p3&C and 
z , ,z2 ,z3eC are the corresponding points in C/A, then Abel's theorem is 
equivalent to the assertion 

z, + z2 + z3 EE 0(X)**(3p0-pl-p2-p3)~0, 

i.e., there exists a meromorphic function /(z) on C with a triple pole at p0 

and zeros at Pi,p2,p3. To see this, let >J(x,y) = ax + ty + c be the equation 
of the line L joining pl and p2 in P2 and denote by p' the third point of 
intersection of L with C (Figure 4). Then since the line at infinity intersects 
C in the divisor 3p0A(9(z),9'(z)) is a meromorphic function on C = C / A 
with divisorpt +p2 +p'-3p0. Thusp'~p3 and sop'=p3. In summary: 

(*) z, + z2 + z3 = 0(A) ^>P\,p2,p3 are collinear. 
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Settingpi=[\,'3'(zi),^"(zi)]j w e m a y rewrite (*) in the form 

(**) 

1 <?(*,) 

1 <?(z2) <?'(z2) 
<?(z3) V'(z3) 

= 0<^. { + z2 + z3 0(A). 

This beautiful relation may be interpreted in several—eventually equiv-
alent—ways. One is as the famous addition theorem for elliptic functions 
expressing 9{-zx - z2) =

 6P(zl +z2) and $"(-zl-z2) = -%"{z^ + z2) ra-
tionally in terms of 9(zt), 9{z2), 9"(^i)» a n d ^ (zi)- Alternately, we may 
give the group structure on the cubic curve C geometrically by making the 
construction with lines dictated by (**). In any case, the inversion of the 
elliptic integral via Abel's theorem and corresponding theory of cubic 
curves in the plane occupies a singular position of harmony and depth in 
the subject of algebraic geometry. 

3. LINEAR SYSTEMS ON CURVES 

Reciprocity Law II 

Let S b e a compact Riemann surface of genus g, w a global holomorphic 
l-form on S, and TJ a differential of the second kind, i.e., a global 
meromorphic l-form with no residues. We want, as in the first reciprocity 
law, to relate the periods of to and TJ to the singularities of TJ. Since these 
singularities are not described by the intrinsically defined residue, we 
choose a local coordinate z around each singular point p of TJ, and write 

TJ(Z) = (ap_nz~"+--- + a$ + apz+---)dz, 
to(z) = (bp + bpz+---)dz. 

Note that ap.] = Resp(Tj)=0, and that bfi(p) = (w/dz)(p) as defined earlier. 

Figure 4 
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Now let 8,,...,82g be cycles on S representing a canonical basis for 
/ / , (5,Z), disjoint except for a common base point s0E:S and not contain-
ing any singular points of TJ; let IT and N' denote the periods of w and TJ 
along 8j. As before, A = S— u 5, is simply connected and we can set 

*(*) = f 
■ % 

to obtain a holomorphic function 77 in A with dir = u. Consider the 
meromorphic differential 77-TJ on A; since TJ is smooth on the arcs 8„ the 
integral of 77-TJ along the boundary of A is well-defined, and by the same 
argument as used in the first reciprocity law 

r g 

I v-n = 2 (nw*+,-iF+w'). 
Jdb i = l 

On the other hand, near a singular point p of TJ with local coordinate z as 
above, 

so that 

w(z) = P w + bgz + \bPz2 + \bPz3 +■■■, 

( 77 -̂  = 2^X^312 ReS/,(̂ Tj) = 2wV^T 2 S ^ r 

Thus we have the reciprocity law for differentials of the first and second kind: 

2 (nw«+,-n»+w«) = 277 \ ^ T y / ' 2. 

The two reciprocity laws stated are the only ones we shall use in our 
discussion of curves. It should be pointed out, however, that more general 
laws can be obtained in the same way with little additional effort. For 
example, in either of the two formulas given, we may take w to be a 
differential of the second kind: the function 

IT(S) = I u 
•'■so 

will then be meromorphic but still well-defined, and again we will have 

2 ( n w * + , ' - I F + W ' ' ) = 2wV=T 2Resp(77-Tj). 
p 

Similarly, a reciprocity law for a pair of differentials of the third kind can 
be proved if we excise some additional arcs from our region A. We will not 
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derive all these formulas—the general formalism should by now be evident 
—but we will mention one rather pretty result that is similarly obtained: 

Theorem (Weil). Let f,g be meromorphic functions on the compact Rie-
mann surface S, with (f) disjoint from (g). Then 

Uf(prd^= H g w ^ 1 . 
pes pes 

Proof. Let 8,,...,§2g and A be as above. Let {/?,} denote the support of 
(/) , {<7,} the support of (g), and draw smooth arcs a, from sQ to/?, disjoint 
except for their common base point s0 and not containing any of the points 
{#,}. Let A' be the complement of the arcs a, in A; A' can again be 
considered as a polygon with sides ...,8i,8g+j,8i~

i,8^l.\,...,aj,aj~
1,... as 

drawn in Figure 5. Since A' is simply connected a n d / i s nonzero holomor-
phic in A', we can choose a single branch of the function log/ in A'; we 
consider the meromorphic differential 

dg <p = log/- rflogg = log/ 
o 

in A'. First, since dg/g has a single pole with residue ord? (g) at each qs, we 
have by the residue theorem 

f <p = lir^^l 2 Res (<p) 
JdA' 1i 

« 2 * v ' = T 2 ordft(g)-log/fa,). 

Figures 
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Now, for points p G 8,, /?'£§,T1 on 9A' identified on S, 

log f(p') = log f(p) + [ dlogf, 

and so 

and similarly 

f <p=(frfiogg)(-r diogf 
Js, + sr' \Js, l\ Jsg+, 

[ < p = ( f dlogg)t (dlogf). 

We also see that for points p £ a„ p' e a, ' on 8A' identified on S, 

log f(p') - log/(/>) = - 2,7 V ^ T • ordft ( / ) , 

and hence 

f <p = 2wVr:=T ordp ( / ) P v i o g g. 

Thus, 

2 f V = 2 T T V ^ T ( 2 ordft ( / ) • (log g{Pi) - log g(s0))) 
j ' (Xj + at; 

= 2<n^~l2lordPf(f)-logg(Pi), 

since S p ord^ (/) = 0. In sum, we have 

2 » \ ^ T ( 2 o r d a ( « ) - l o g / ( « ) - 2 o r d „ ( / ) l o g s ( A ) ) 

- 1 ((//,o8/)(i.rf ,o8*)-(//logs)(4..'"08/)) 
But } s dlogf is always an integral multiple of 2wV— 1 ; thus the right-
hand term above is an integral multiple of (27rV"—T )2 and we see that 

2 ord,, (g)■ log/(<7,.) - 2 ordA ( / ) • logg(Pi) e 2TT\A3T Z . 

Exponentiating, we obtain 

n/(, ,rd^) = ng(A)ord-c/) 

as desired. Q.E.D. 

The Riemann-Roch Formula 

The starting point for our discussion of linear systems is the natural 
question: given a divisor D on a Riemann surface S of genus g, determine 
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the dimension of H°(S, 6 (/>)), i.e., the number of meromorphic functions/ 
on 5 with 

( / ) + £>> 0. 

We will try to answer the question first for an effective divisor D = 2/>x 
of degree d on S. We will assume moreover that the points px are distinct 
—the only difference in the following computation if D has multiple points 
is a much more cumbersome notation. 

As with Abel's theorem, the problem becomes tractable when expressed 
in terms of differentials. Now if /E<91t(S) with (f) + D >0, then df is a 
meromorphic 1-form on S holomorphic on S — {px), with no periods, no 
residues, and a pole of order < 2 at each px. Conversely, given any such 
differential rj, the meromorphic function 

/(/>) = f% 
JPo 

is well-defined and satisfies (f) + D >0 . Since df=df <=>/=/'+A, A EC, 
we see that the dimension of H°(S,6(D)) is one more than the dimension 
of the vector space V of differentials of the second kind holomorphic on 
S-{px) with no periods and poles of order < 2 at px. 

By the Kodaira vanishing theorem, for any p G S 

H](SM](p)) = 0, 

and so from the exact sequence 

0 -» Q\p) -> Q\2p) -> Cp -> 0 

we see that there exists a meromorphic form on S, holomorphic on S — {p} 
and having a double pole at p; clearly this form cannot have any residues. 
It follows that if we let zx be a local coordinate around the point px, for 
any sequence au...,ad of complex numbers there exists a meromorphic 
1-form r\a on S, holomorphic on S— {px} and having principal part 

at px. Since any two such forms differ by a holomorphic 1-form on S, we 
see moreover that there exists a unique such differential (pa with all A-periods 
zero. Let W = Cd denote the vector space of such forms, and consider the 
linear map 

obtained by integration over the U-cycles of S: 

\Js,+ l
 Js2g ) 

Clearly, the vector space V above is just the kernel of the map ^. 
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To describe i/< explicitly, let « , , . . . ,« be a normalized basis for 
//°(5,fi ') . By the reciprocity law for differentials of the first and second 
kinds, 

f <pa = 2TTV^\ 2 «A • (<*j/dzx){px), 
Jfi . A 

(wt/dzd)(pd) 

i.e., the map ^ is given by the matrix 

(*>iMi)(/>i) •• 

(u<Jdzi){px) (u /'dzd)(pd) 

Now the number of independent relations among the row vectors of this 
matrix is just the number of linearly independent holomorphic differentials 
vanishing &ipx for all A, that is, the dimension of //°(5,S2'(— £>)). Thus 

h°(D) = dim(ker^) + 1 
= d — raruo// + 1 
= d-g + h°( K-D)+ 1. 

This is the classical Riemann-Roch formula. 
We have proved the Riemann-Roch for effective divisors, and hence for 

all divisors of degree > g. For a general D of degree < g — 2, we apply the 
formula to K — D to obtain 

h°(K-D) = (2g-2~d)~g+l + h°(D) 

=* A°(D ) = </ - g + 1 + h\K- D ). 

Finally, if degZ) = g— 1 and neither Z> nor K— D is linearly equivalent to 
an effective divisor, then /i°(Z)) = /!o(AT-Z)) = 0, and the formula again 
holds. 

The Riemann-Roch formula gives us immediately a picture of the 
behavior of generic linear systems: for generic effective divisors D = 
2A= I/>A of degree d the matrix ( ( H / ^ A X / ' A ) ) n a s maximal rank, and so 

d<g, 
d>g, 

for D outside an analytic subvariety in Sid\ 
An effective divisor D such that h°(K- D)¥=0is called special; a special 

divisor whose associated linear system is larger than that of the generic 
divisor of its degree—i.e., such that h°(K-D)>g — d—is called irregular. 
A linear system is called special or irregular if its individual divisors are. 

It should be mentioned at this point that the Riemann-Roch formula 
can be given a sheaf-theoretic proof. In general, if E-*M is a holomorphic 

h°(D) f1 ' \d-g+l, 
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vector bundle on a compact complex manifold M, we define the holomor-
phic Euler characteristic of E to be 

x(E) = ^(-\rh"{M,e(E)y, 

we usually write X(®M) f°r m e holomorphic Euler characteristic of the 
trivial line bundle, i.e., 

x(ew) = S ( - i f ^ ( M ) . 
Now for a line bundle L on a Riemann surface S, by Kodaira-Serre 

duality we have 
x(L) = h°(S,e(L))-hl(S,Q(L)) 

= h\L)-h°(K-L) 

x(L%) = h00(S)-h0-\S) 
= 1-g, 

and so the Riemann-Roch formula reads simply 
x(L)=x(0s) + c , a ) . 

To prove the Riemann-Roch in this form, we note that it is clear for the 
trivial bundle, and show that it holds for any L = [£>], if and only if it holds 
as well for L' = [D+p] and L" = [D—p],pES any point. This is easy: the 
exact sheaf sequence 

0 -> 6 (D ) -> (9 (D+p) -* Cp -»0 
gives us the exact cohomology sequence 

O-*tfo(S,0(Z>))->J/°(S,0(Z>+/O) 

-^Cp-+H\S,e(D )) -» H\S,6(D+p)) -*0, 
and since the alternating sum of the dimensions of the vector spaces in an 
exact sequence is zero, this implies that 

X([D+p]) = x([D])+l. Q-E.D. 
This version of the Riemann-Roch formula, while not as explicit as the 

first, points the way toward generalizations in higher dimensions. The 
principal fact that holds in general is this: the holomorphic Euler char-
acteristic of a vector bundle E-+M on a compact complex manifold is a 
topological invariant of E and M. In these terms, the essential point of the 
classical Riemann-Roch formula is the duality hi(D) = h°(K- D). 

Canonical Curves 

Let S be a compact Riemann surface of genus g>2, K the canonical 
bundle on 5. We note immediately that the complete linear system \K\ has 
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no base points: if p E S were in the base locus of \K\, we would have 

h°(K-p) = h°(K) = g, 
and hence by Riemann-Roch 

h°(p) = deg(/>) - g + 1 + h°(K-p) = l - g + l + g = 2, 
i.e., there would exist a nonconstant meromorphic function on S holomor-
phic on S-{p) and having only a single pole at p, so S would be 
biholomorphic to P1. It follows that the line bundle K gives a map 

iK: S^Pg~l 

where « , , . . . ,« g are a basis for H°(S,£ll). iK is called the canonical mapping 
of S, iK(S)cPg~1 the canonical curve of S. 

Now, the map iK is 1-1 if for any points p,qGS, we can find a 
we//°(5' ,B1) with a>O) = 0, W ^ T ^ O ; it is an immersion if for any pGS 
there exists w vanishing exactly to order 1 at p. Thus, iK is an imbedding if 
and only if for any points p, q, not necessarily distinct, 

h°(K-p-q)<h°(K-p) = g-l. 

By Riemann-Roch, 

h°(K-p-q) = g-3 + h°(p + q), 
and so 

h°(K-p-q) < h°(K-p)^h°(p + q) = 1. 

Thus (K fails to be an embedding if and only if there exists a meromorphic 
function on S having only two poles, i.e., if S can be expressed as a 
two-sheeted branched covering of P1. Such a Riemann surface is called 
hyperelliptic. Hyperelliptic Riemann surfaces form an important subset of 
the set of all curves of genus g, with properties that often differ markedly 
from those of a general Riemann surface. We will discuss them in detail 
later on in this section; for the time being, we merely assure the reader that 
the "general" Riemann surface of genus g > 3 is indeed nonhyperelliptic. 

Note that if L-*5 is any line bundle of degree 2 g - 2 , then 

by Riemann-Roch, if D=£K we find h°(D) = g— 1. This implies that: if 
S c P 8 ~ ' is any nondegenerate curve of genus g and degree 2g — 2, then S is a 
canonical curve. 

The canonical curve of a Riemann surface S derives much of its 
importance from the fact that it is intrinsically defined by S, and so as a 
general rule, any projective invariant of the canonical curve reflects the 
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intrinsic structure of S. We will see this principle applied when we discuss 
Weierstrass points, and again in discussing the Torelli theorem. 

We can rephrase the Riemann-Roch formula in terms of the geometry of 
the canonical curve: for any divisor Z> = 2/>, on the Riemann surface S, 
h°(K- D) is just the number of hyperplanes in P*"1 containing the points 
iK(Pi), and so h°(D) is equal to the degree of D minus the dimension of the 
linear space D spanned by the points pt on the canonical curve. Here, of 
course, we take the "linear span" of a point /?, with multiplicity a, in D to 
be the span of pt together with the first at — 1 derivatives of the canonical 
map. Finally, since the dimension of the linear span of d points on C is just 
d— 1 less the number of independent linear relations on the points, we 
have the geometric version of the Riemann-Roch: 

The dimension r of the complete linear system containing a divisor 
D = 2 pj is equal to the number of independent linear relations on the 
points p. on the canonical curve, 

i.e., 

The points of D span exactly a (d —r— \)-plane. 

Indeed, the Riemann-Roch formula may be quite easily proved in this 
geometric form. To start, we prove the inequality 

(*) dimD <{d-\)-dim\D\. 

Proof. Suppose that D=^Jpi moves in an r — dimensional linear system; 
that is, there exist r + 1 independent meromorphic functions / 0 , . . . ,/r on S 
with 

(/„) + /> >0. 

We may take / 0 = 1; then no nontrivial linear combination of the functions 
f\,...,fr will be holomorphic. Equivalently, if zt is a local coordinate on S 
centered around pt and if we write 

/ , ( z , . ) = apiz~l + ■■■ 

then the matrix 

a\,\ • • • a\,d 

_ar,\ •■• ard 
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has maximal rank r. Now, if w is any holomorphic l-form on S, then by 
the residue theorem, for each v, 

o = 2RcsAa«) 

This gives r independent relations on the points /?, on the canonical curve, 
establishing the inequality (*). 

We may now prove the opposite inequality by applying (*) to the 
residual series K— D of D. Suppose that on the canonical curve 

dimD = d — s - 1. 
The hyperplanes in P 8 " 1 containing D then cut out a linear subseries of 
\K— D\ of dimension 

{g-\)-{d-s-\)-\ =g-d + s - l . 

Applying (*) to a divisor E E\K— D\, then, we see that 

dimE < d e g £ - 1 - (g-d+s- 1) 
= (2g-2-d)-l-(g-d+s-l) 
= g-s-2. 

But now the hyperplanes in Pg"~' containing E will cut out on S a linear 
subseries of \D\ having dimension at least 

(g-\)-(g-s-2)-l = s, 
that is, 

dim|Z)| > s = d-l -dimZT 
and so the Riemann-Roch formula is proved. Q.E.D. 

Special Linear Systems I 

The Riemann-Roch formula describes exactly the behavior of the 
"generic" linear system on a Riemann surface, but it does not tell us much 
about irregular linear systems. We will now try to fill in the gap with some 
classical theorems relating the dimension, degree, and genus of special 
linear systems. Our basic lemma is 

Lemma. For C C Pn a nondegenerate curve, the points of a generic hyper-
plane section of C are in general position, i.e., no n of them are linearly 
dependent. 

Proof. Suppose C has degree d, and let H0 c P" be a hyperplane meeting 
C in ddistinct points/>,,...,pd. Then for H in a sufficiently small neighbor-
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hood U of H0 in P"*, the points {p^H)} of intersection of H with C will 
vary holomorphically with H E P"*. Accordingly, for every multiindex 
/ = { / „ • . . , /„}c{l , . . . ,</}, we get a map 

77,: £/ -+ C" = C X C X • • • X C, 
: H^(Pi](H),...,pln{H)); 

moreover, since for any point (q ],...,qn)EC" sufficiently near Tr/(//0), 
there is a hyperplane H EU containing qv...,qn, the image of U under mx 

contains an open set in Cn. 
Now let D cC" be the locus of points {qx,...,qn) such that qx,...,qn are 

linearly dependent: Since C is nondegenerate, Z) is a proper analytic 
subvariety of C", and so 77/'(D) is likewise a proper subvariety of U. 
Thus, for H E U- U /7T/" '(£>), the points of H nC are in general position. 

Q.E.D. 

Now, we can characterize the dimension of a linear system \D\ as 
follows: dim|D|> t if and only if for every t points p„ . . . , p t GS there exists a 
divisor EG|D| containing p , , . . . ,p ; . Thus, if D and D' are two effective 
divisors on S, we can find a divisor, E~D + D' containing any h°(D)— 1 
+ h°(D')— 1 points of 5", and so we have 

h°(D+D') > h°(D) + h°(D')-l 

In particular, suppose D is special, so that h°(K- D)^0 and we can 
take D'=K-D. Then h°(D + D') = h°(K) = g, and we have 

h°(D) + h°(K - D) < g + I 

h°(D)-h°(K- D) = d-g+\ 

2h°(D) <d + 2 

Note as well that equality holds in the last line if and only if every 
divisor in the canonical series |D + D' | = |AT| is the sum of a divisor in the 
linear system \D\ and a divisor from |D'|.But by our lemma the points of 
a generic hyperplane section of iK(S) are in general position, and so 
2h°(D) can equal d+2 only if £> = 0, D = K, or iK is not one-to-one. Sum-
ming up, then, we have 
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Clifford's Theorem. For any two effective divisors on the compact Riemann 
surface S, 

dim|Z>| + dim|Z>'| < dim|Z) + D'\ 

and for D special 

dim | Z) | < | 

with equality holding only if D = 0, D = K, or S is hyperelliptic. 

Corollary. If C c Pn is any curve of degree d < 2n and genus g, 
g < d — n 

with equality if and only if C is normal. 

Proof. Let D be the hyperplane section of C. Then 

dim|Z)| = A°(Z) ) -1 = n >j, 

and so by Clifford's theorem D is nonspecial. Thus h°(K—D) = 0, and by 
Riemann-Roch 

g = d-h°(D)+l 
<d-n. Q.E.D. 

Of course, this bound can be realized by any Riemann surface of genus 
g = d— n, and any linear system of degree d. 

It remains now to find the maximal genus of a curve of degree d in P" 
for d > In, or equivalently to find a sharper bound on the dimension of a 
linear system than that provided by Clifford's theorem when d<^g. We 
offer here an argument originally given by Castelnuovo in 1889. 

Let C c P" be a curve of degree d and genus g, with hyperplane section 
D. Consider the linear systems |A:Z>| for A: = 1 , 2 , . . . . By our basic lemma, 
we can take the points of D to be in general position in a hyperplane in P". 

Let m = [{d— l)/(«— 1)] be the greatest integer less than or equal to 
(d— l ) / ( « - 1), and for each integer k<m choose a set V of k(n— 1)+1 
points of D. We claim that the hyperplanes in H°(C,&(kD)) correspond-
ing to the points of T are all independent; to prove it we will exhibit, for 
any point q&T, a hypersurface of degree k in P" containing T—{q] but 
not q. This is easy: if we partition the remaining points of T into k sets 

of (n — \) points each, then each set {p^}a will be linearly independent, 
and its linear span will not contain q. We can thus find hyperplanes 
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Hx,...,Hk in P" containing the points {/»<J}a but not q; the sum / / , 
+ ■ ■ ■ + Hk is the desired hypersurface of degree k. 

We see from this that the vector space of sections of [kD] vanishing on 
all the points of D has codimension at least k{n — 1)+ 1 in H°(C,6(kD)), 
i.e., 

h\kD ) - h°((k - \)D ) > k(n - 1) + 1, for k < m. 

The same argument likewise shows that for k > m we can find k hyper-
planes in P" containing all but any one of the points of D, so that 

h°(kD)-h°((k-l)D) = d for k > m. 

Thus we have 

h°(D) > n+l, 

h°(2D) > / i + l + 2 ( n - l ) + l 

= 3 ( n - l ) + 3, 
h°(3D) > 6 ( « - l ) + 4, 

Ao( w Z ) ) >M^±l)(„_1 ) + w + 1 , 

A0((/+m)/>) > / W ^ + 1 \ / i - l ) + w + l + A/. 

But now for w sufficiently large, the divisor (/+ m)D will be nonspecial. 
By Riemann-Roch, then, 

h°((l+m)D) = (l+m)d-g+ 1, 
so that 

(*) g < (l+m)d—^-r ^ ( « - l ) - w - 1 - W+ 1 

W ( w . 1 ) ( n - l ) + m ( J - m ( » - l ) - l ) 

m ( m - l ) , ,. , 
— ~ (n —1)4- me, where m = , d — 1 = m(n— 1) 4- e. 

Thus //ie ge««5 o/ a nondegenerate curve of degree d in Pn is a; most 

d-\ 
n-\ 

We will see in the section on ruled surfaces that in fact this bound is 
realized for each d and n, and give an explicit description of these curves 
of maximal genus. For the time being, let us summarize what we know in 
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general about nondegenerate curves in P": if C has degree d, then 
d < n => C is degenerate, 
d — n => C is the rational normal curve, 

n<d<2n=*g<d— n, with equality if C is normal, 
d = 2n => g < n + 1 with equality if and only if 

C is a canonical curve, 

</>2„=»g<i5fclli(n-l) + 

rf-1 
2 - "' ' m £ ' 

where m = 1 , rf- 1 = m(n- l) + e. 

Note that if C achieves this bound, then equality must hold in the basic 
inequality (*) above, and it follows that the complete linear system |A:Z>| on 
C is cut out by hypersurfaces of degree k; or, in other words, the map 

H°(P",e(kH)) = SymkH°(P",e(H))^ H°(C,e(kH)) 

must be surjective. Applying this in particular to the canonical curve, we 
have 
Noether's Theorem. For any curve nonhyperelliptic C, the map 

Sym'H°(C,6(K)) -> H°(C,e(lK)) 

is surjective for all 1. 

Castelnuovo's inequality can be inverted in two ways to give an upper 
bound on n in terms of d and g and a lower bound on d in terms of n and 
g. Without going through the manipulation, we have 

Ki+i) d 

d> ^ ^ - ( n -l) + j + I, J(j- I K - ^ T J - < X / + 1). 

Hyperelliptic Curves and Riemann's Count 

Recall that a compact Riemann surface S of genus g > 2 is called hyper-
elliptic if there exists a meromorphic function / on S with only two poles, 
i.e., if S admits a 2-1 map f:S^>Pl to the Riemann sphere. By the 
Riemann-Hurwitz formula the number of branch points of such a map/is 
given by 

6 = 2 g - 2 + 2x(P') 
= 2g + 2; 
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of course, since / has only two sheets, it cannot have a multiple branch 
point. Let z,, . . . , z2g+2 be the branch points, assumed finite, o f / i n P1, and 
consider the curve 5" = (w2 = I I ; i H | 2 ( z _ z

1 ) )cC 2 , together with the projec-
tion map tr on the z-plane. Since the points zk are distinct 5" is smooth, and 
for R >max(|z,|) we see that m~\\z\>R) consists simply of two disjoint 
punctured discs; we can complete 5" to a compact Riemann surface S by 
replacing these punctured discs with full discs. The map IT : S'—*C can be 
extended continuously, hence holomorphically, to a map wiS-^P 1 by 
mapping the two added points to z = oo. Thus S will again be a double 
cover of P1 branched at the points {z,}. 

Now in general if two Riemann surfaces M,M' have m a p s / : M - » P \ 
/ ' : M ' - * P ' with the same branch locus B c P1, and i f / " ' ( P ' - f i ) is 
isomorphic t o / ' _ 1 ( P ' - f i ) as topological covering spaces of P1 — B, then 
M and M' will be isomorphic: the isomorphism between / - I ( P ' — B) and 
f'~\Pi- B) will extend continuously, hence holomorphically, over the 
branch loci of / and / ' . In the case at hand, it follows that the Riemann 
surfaces S and S are isomorphic, i.e., that any hyperelliptic Riemann surface 
of genus g can be realized as the smooth completion of the locus 

" 2 = g{z) 

in C2,for g(z) a polynomial of degree 2g+2. 
If 5 is a hyperelliptic Riemann surface given as the completion of 

(w2 = n 2 £* 2 (z -z , ) )cC 2 , we can compute explicitly a basis for H°(S,Ql). 
First, note that we have an automorphism j : S-^*S of order 2 given by 

y':(w,z)i-»(— w,z);j is called the hyperelliptic involution on S. The induced 
linear transformation 

j * : H°(S,Ql) -> H°(S,Ql) 

is likewise of order 2, and so a priori we obtain a decomposition of 
H°(S,&) into eigenspaces with eigenvalues +1 and —1. In fact, the + 1 
eigenspace is trivial, since a holomorphic 1-form w on S withy'*a> = « would 
descend to give a holomorphic 1-form on P1, and none such exists. Thus 
we havey'*w= - w for all uGH°(SM)-

Now consider the 1-form 

dz w0 = — 
w 

on S. to0 is holomorphic and nonzero away from the points at oo, since the 
points where w vanishes are exactly the zeros of dz. Since the total degree 
of w0 is 2g — 2 and w0 has the same order of zero or pole at the points of S 
lying over z = oo, w0 must have a zero of order g— 1 at each of these two 
points. If <o is any other holomorphic 1-form on 5, 

w = h ■ <o0, 
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where h is a meromorphic function on S, holomorphic away from oo. But 
we have_/*w= — w, j*cc0= — w0, and so j*h = ft, i.e., h is a function of z 
alone, and so necessarily a polynomial in z. If h is of degree d, then h has 
2d zeros on the finite part of S and hence a pole of order d at each of the 
points at oo; since w0 has zeros of order g — 1 at oo and h- w0 is holomor-
phic, we have deg/i< g - 1. Thus we can write out a basis for / /°(5,fi ' ) : 

dz dz „ _ , dz } — ,z — ,...,zg — . 
w w w I 

The canonical map iK of 5 is then given by 

iK(z,w)=[\,z,...,z*-l]GPs-1; 

the image of S under iK is thus the rational normal curve in P g ~ ' . Note, 
moreover that the canonical map factors through the projection / ; since iK 

is intrinsically defined, it follows that the map f is unique up to an 
automorphism of P1. 

To show that not all Riemann surfaces are hyperelliptic, we count the 
number of parameters needed to specify both a hyperelliptic curve and a 
general curve of genus g. First, we have seen that given any collection of 
2g + 2 distinct points z , e P ' there is a unique hyperelliptic curve 5 with a 
2-fold m a p / : S-»P' having branch locus B = {z,}. We can send any three 
points Z | ,z 2 ,z 3 E5 to 0, 1, and oo respectively by an automorphism of P1, 
and so we see that the general hyperelliptic Riemann surface of genus g 
can be described by specifying (2g + 2) —3 = 2g—1 points on P1. Con-
versely, s ince / i s unique up to an automorphism of P1, any hyperelliptic 
curve S corresponds to only finitely many such collections of 2g — 1 
points; thus the family of such curves has 2g— 1 parameters locally. 

We will now count the number of parameters needed to describe a 
general Riemann surface of genus g, following an argument of Riemann. 
Choose any integer n greater than 2g. Any Riemann surface of genus g can 
be expressed as an n -sheeted branched cover of P1; the number of branch 
points of such a map is given by 

b = 2g-2+n-x(P') 

= 2n+2g-2. 

Conversely we claim that given any divisor B on P ' of degree 2« + 2g —2 
and taking no point with multiplicity > n — 1, there exist a finite number of 
Riemann surfaces S of genus g expressible as n-sheeted covers of P ' with 
branch locus B. We will construct these Riemann surfaces in case B = 2 z, 
consists of 2« + 2g —2 distinct points; the general case is more complicated 
but conceptually no more difficult. 
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Draw disjoint arcs y, in P1 from z, to z, + 1; let Tv...,Tn be n disjoint 
copies of P1 — u y,. (See Figure 6.) Choose a sequence of permutations 
o0,...,o2„+2g-2G'S'n w i t r i °o~°2n+2g-2 = e ana" a/aj+\ a nontrivial simple 
transposition for each j , such that {a-} is transitive on { l , . . . , n} ; we can 
always find a finite number of such sequences. For each /', 1 < i <2n + 2g 
- 3 , adjoin to u_,-7} n copies {y{)j of the arc y,, identifying y/ with the 
boundary of Tj along the upper edge of the cut y, and also with the 
boundary of Ta(J) along the lower edge of the cut y;. Let 5 be the resulting 
topological space, / : S~>Pl the obvious projection map. / " '(P1 — B) c S is 
a covering space of P1 - B, and so inherits uniquely a complex structure; 
this structure extends over all of S, taking as local coordinate at a point 
/>G/~'(z,) either (z — z,) or V z ~ - ^ according to whether the map / i s 1-1 
or 2-1 in a neighborhood of p. Thus S is a compact Riemann surface that 
maps to P1 with branch locus B, and by the remark made earlier S is 
determined completely by the choices of permutations CT, made in the 
construction. 

We have seen that any divisor B of degree 2n + 2g — 2 as above corre-
sponds to a finite number of Riemann surfaces of genus g together with 
n-fold m a p s / to P1. It remains to see how many such divisors correspond 
to a single such Riemann surface S. Now the map / on S can be specified 
by giving first its polar divisor £> = (/)«, G S(n) and then the element of the 
linear system H (S,&([£>])) corresponding t o / . Clearly the choice of D 
depends on n parameters; since n>2g, h°(K-D) = 0, and by Riemann-
Roch, 

h°(D) = n-g+\, 

so the choice of f&H°(S,©([£)])) depends on n — g+\ parameters. Thus 
the family of «-fold maps/:S'—»P' is 

n + (n-g+\) = 2n- g+ 1 

-dimensional. Since the family of divisors B as above is (2«+2g —2)-
dimensional, it follows that the general Riemann surface of genus g 
depends locally on 

2« + 2 g - 2 - ( 2 « - g + l ) = 3 g - 3 

parameters. In particular we note that for g > 3, the "generic" Riemann 
surface of genus g is nonhyperelliptic. 

It is amusing to verify Riemann's count explicitly in cases g = 3, 4, and 5. 
First, as we have seen, the canonical curve of any Riemann surface of 
genus 3 is a quartic curve in P2, determined up to an automorphism of P2, 
and conversely if C c P2 is a smooth quartic curve, by the adjunction 



Figure 6. An example: o,=(l,2), <J2 = (1,3,2), o3 = (2,3). 
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formula 
Kc = ( ^ p 2 + C ) | c 

= ( - 3 / / + 4 / / ) | c 

= H\C, 

so C is a canonical curve. Now the space of quartic curves in P2 has 
dimension 

(!)—¥—'< 
and dimPGL3 = 9 - 1 =8 ; thus a curve of genus 3 depends on 14 — 8 = 6 
parameters, as predicted. 

Next, let C c P3 be a canonical curve of genus 4. By Riemann-Roch, 
since 2KC is nonspecial, 

h\C,2Kc) = 1 2 - 4 + 1 = 9 . 

But h°(P3,6(2H)) = 10, and so the restriction map 

/ /°(P3 , 6 (2 / / ) ) -» H°(C, 0 (2 / / c ) ) 
= H\C,2KC) 

has a kernel, i.e., C lies on a quadric surface Q\ since a reducible quadric 
consists of two planes and so cannot contain C, Q is irreducible. Also, 
since 

h°(C,3Kc) = 1 8 - 4 + 1 = 15 
and 

/ j°(P3,e(3//)) = 20, 

C lies on a four-dimensional linear system of cubics in P3. The system of 
cubics containing Q is only h°(P\e(3H- Q))- 1 = /z° (P 3 ,6 ( / / ) ) - 1 = 3 -
dimensional, and it follows that C also lies on a cubic Q' not containing Q. 
Since Q is irreducible, Q and Q' must then intersect in a curve of degree 6; 
but CcQnQ' and degC = 6, so 

C=QnQ'. 

Conversely, by the adjunction formula, for any cubic Q' and quadric Q 
meeting in a smooth curve C, we have 

KQ = (KV,+ Q')\Q, 

= ( - 4 / / + 3 / / ) | 0 , = - / / e , 
and 

*c = (*e '+0) lc 
= (-H + 2H)\c = H\c, 

so C is a canonical curve of genus 4. 
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Now the quadric Q depends, as we said before, on 9 parameters. Two 
cubic polynomials will cut out the same curve on Q if their difference 
vanishes identically on Q; the vector space of cubics vanishing on Q has 
dimension 

H°(P3,6(3H-2H)) = 4, 

and so, Q having been chosen, the choice of Q' depends on 
1 9 - 4 = 15 

parameters. Bertini's theorem, moreover, assures us that the generic pair 
(<2> (?) do indeed meet transversely. Finally, PGL4 has dimension 15, and 
so the number of parameters needed to describe a curve of genus 4 locally 
is 

9 + 1 5 - 1 5 = 9, 
as expected. 

The caseg = 5 is somewhat easier. For C c P * a canonical curve of genus 
5, we have 

H°(C,2KC)= 1 6 - 5 + 1 = 12. 

But 

//°(P4,0(2//))=(J) = 15, 

so the curve C must lie on three independent quadric surfaces Q, Q', and 
Q"; by the Enriques theorem of Section 3, Chapter 4, it is generically the 
intersection of these quadrics. Conversely, if Q, Q', and Q" are any three 
quadrics in P4 meeting transversely, the adjunction formula applied three 
times tells us that C is a canonical curve of genus 5. 

Now C is determined by specifying a three-dimensional subvector space 
of the vector space of polynomials of degree 2 on P4, i.e., by specifying a 
point in the Grassmannian G = G(3,//°(P4,0(3//)) . G has dimension 3(15 
- 3 ) = 36, and by Bertini's theorem applied three times we see that the 
linear system of quadrics corresponding to a generic point of G do in fact 
meet in a smooth curve. PGL5 is 24-dimensional, and so we see that a 
curve of genus 5 depends locally on 

36 - 24 = 12 
parameters. 

Special Linear Systems II 

Earlier in this section we asked, what is the greatest possible genus of a 
nondegenerate curve of degree d in P"? Inverted, this is equivalent to the 
problem, what is the largest possible dimension of a linear system of 
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degree d (or, the smallest possible degree of a linear system of dimension 
ri) on a Riemann surface S of genus g, not counting those that factor 
through a quotient of 5? We gave an answer to this question (which we 
shall later see is the correct one), but as we can now see, in case d>2n or 
n > g — 1 this bound cannot be realized by every Riemann surface of genus 
g. For example, we have seen that the greatest possible genus of a plane 
curve of degree d is (d- \){d-2)/2\ and of course this bound is sharp, 
being achieved by any smooth plane curve. The smallest degree of a 
two-dimensional linear system on a curve S of genus g which does not 
factor through a quotient of S is thus M, where 

(M-\)(M-2) (M-2)(M-3) 
2 > 8 > 2 • 

We can see, however, that not every Riemann surface of genus g possesses 
such a linear system: if g = {d—\){d—2)/2, then the family of Riemann 
surfaces of genus g with such a linear system—that is, plane curves of 
degree d—has dimension at most 

h°(P2, €(dH)) - 1 - dimPGL3 = (d+l)(d+2) _ 9 

while the family of all Riemann surfaces of genus g has dimension 

3>-3-3 ( r f - f - 2 ) -3 . 
For d>5, then, the curves S1 of genus g = (d—l)(d — 2)/2 having a net 
degree d are exceptional. 

This example suggests another question, complementary to Castelnuo-
vo's: what special linear systems exist on the generic Riemann surface of 
genus g? This is the Brill-Noether problem, which we will discuss further 
later in this chapter. 

The presumed answer to—if not a proof of—the Brill-Noether problem 
is given by a simple-minded dimension count. Consider a canonical curve 
C of genus g in P g _ l . By the geometric form of Riemann-Roch, an 
effective divisor D = 2/>, of degree d with dim | D | = r consists of d points 
on C spanning a (d- 1 -/-)-plane in P* - 1 , that is, a ^/-secant (d—l — r)-
plane to C. C will thus have a linear system of degree d and dimension r if 
and only if it has at least an r-dimensional family of <f-secant (d—r—\)-
planes. 

Now the Grassmannian G=G(d-r,g) of {d— r— l)-planes in Pg"x has 
dimension (d— r)(g — d+ r). The subvariety og_d+r{p) of (d—r— l)-planes 
passing through a point/? has codimension g — d+ r in G, so the subvariety 
of (d — r — l)-planes meeting the curve C has codimension g — d + r — 1. We 
may expect, then, that the subvariety of (d— r— l)-planes meeting C d 
times has codimension d(g-d+ r— 1) in G, so that there will be an 
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r-dimensional family of such planes if 

(d-r)(g-d+r)-d(g-d+r-l) > r. 
Solving, we see that this will be the case when 

(d-r)(r+\)-rg > 0. 
Our count thus suggests that 

The generic Riemann surface of genus g will possess a linear system of 
degree d and dimension r // and only if 

r+ I 

and there will in general be a [(d —r)(r+ 1) — v%\-dimensional family of 
such linear systems. 

Clearly, our argument as it stands falls far short of a proof; a proof of 
one direction will be given in the final section of this chapter. Two cases 
we can check now are r = 1 and 2. Since a linear system of degree d and 
dimension 1 without base points on a Riemann surface S gives a rf-sheeted 
map S—»P', the statement for r= 1 amounts to 

The generic Riemann surface of genus g is expressible as a branched 
cover of P1 with 

g+\ 
d = + 1 

sheets, but no fewer; in case g is even it is so expressible in a finite 
number of ways (up to automorphisms of P1), while if g is odd there is a 
one-dimensional family of such representations. 

We can verify this in one direction by a count of parameters. A 
rf-sheeted map of a curve of genus g to P1 has by Riemann-Hurwitz 

b = 2g - 2 + 2 d 

branch points. By our general argument, then, the family of Riemann 
surfaces expressible as rf-sheeted covers of P1 has dimension at most 

b-3 = 2g + 2d-5. 

If the generic Riemann surface of genus g is so expressible, then, we have 
by Riemann's count 

2g + 2d-5 >3g-3 
i.e., 
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In case r = 2, our result may be stated as 

The generic Riemann surface may be represented as a plane curve of 
degree 

2g + 2 
+ 2 

and no smaller. 

Again we can check this in one direction. In the linear system of all 
plane curves of degree d, those that have a double point or worse form a 
subvariety of codimension 1, and the generic such curve has just one 
ordinary double point. Similarly if 8<(d— l)(rf—2)/2, the variety of 
curves of degree d having 8 double points or worse has codimension 8, and 
the generic such curve has just 8 ordinary double points. Now, as we shall 
see in the next section, the genus of a plane curve of degree d with 8 
ordinary double points is 

there is, accordingly, an 

h^MdH))-l-8-{d+W+2)-l+8-id-lY-2) 

= 3d+g- 1 
-dimensional family of plane curves of degree d and genus g. Since the 
group PGL3 acts on the family of such curves, the number of Riemann 
surfaces so expressible has dimension 

3d+g- \-S = 3d+g-9. 

Thus the generic Riemann surface of genus g may be represented in this 
way only if 

3d + g~9>3g-3, 

i.e., if 

d>\g + 2, 

as predicted. 
Some amusing enumerative problems arise from this discussion. For 

example, we have seen that the generic Riemann surface of genus g — 2k 
has a finite number of pencils of degree k 4- 1; we may ask how many. This 
question will be answered in the cases g = 2, 4, 6, and 8 in the discussion of 
correspondences in the next section, and in general in the final section. 
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4. PLUCKER FORMULAS 

Associated Curves 

In this section we will concern ourselves with the extrinsic geometry of 
curves, i.e., the study of properties of curves C c P " having to do with the 
embedding. To a certain extent, our study of associated curves is the 
complex analogue of the Frenet formalism in classical Euclidean differen-
tial geometry. Because of the complex analytic structure, however, the 
subject is much richer; we will obtain quantitative and qualitative results 
that could not be hoped for in the C°° case. 

We make one remark before proceeding. Clearly, if f:S—>P" is any map 
of a Riemann surface into projective space, then we can lift / locally to 
C"+1—that is, in a neighborhood of any point p G 5 we can find a 
holomorphic vector-valued function v to C + l such that /(z) = 
[v0(z),...,vn(z)]. Conversely, for v:S^>C+l any vector-valued function, 
the map f (z) = [v0(z),..., vn(z)] is well-defined even if v = 0 at isolated points. 
To see this, simply let z be a local coordinate centered around a zero p of 
v; then if A: = min(ord t;,-), the map 

f{z)=[z-kvQ{z),...,z-\{z)} 

is well-defined and extends / . 
Now suppose S is a compact Riemann surface, and / : 5->P" a nonde-

generate map to P". Let / be given locally by the vector function v(z) = 
[v0(z),...,v„(z)]. We define the /cth associated curve of/: 

fk: S - ^ G ( J t + l , » + l ) c P ( A 4 + l C " + l ) 

by 
fk{z)=[v{z)/\v'{z)/\---^k\z)}. 

We emphasize that the curve is the abstract Riemann surface together with 
the map. 

In order to assure ourselves that fk is well-defined, we have to check 
three things: that v(z)/\- • • /\v(k\z) cannot be identically zero, and that it 
is independent, up to multiplication by a scalar, of the choice of lifting v 
and local coordinate z. To show the first, suppose that for some k < n, 
v(z)A- ■ Av(k)(z)=0 but o(z)A- • • Av(k~i\z)^0. Then evidently 

vik\z) = Omod(c(z),...,v{k-i\z)), 

i.e., 
(v(z)A- ■ ■ At>(*-"(z)) ' = v(z) A- • • A»<*-2)(z) A » ( k ) 0 0 

= A(z)- c (z)A-A/"'H 
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so thut fk_1(z) must be constant and f(S) lies in a (k — l)-plane in P", 
contradicting our assumption of nondegeneracy. 

Now let v{z)=p{z)-v{z) be another lifting of/. Then 
v = p ■ v + p ■ v' 

so 
v'Av = p2-(v/\v') 

and in general 
v/\--- Av(k) = pk + ,-v/\--- Avik). 

Similarly, let w be another local coordinate on S. Then 

dv _ 9z dv 
dw dw 3z ' 

and so 

dv dz I dv\ 
dw dw\ dz I 

In general, we will have 

dkV ( dz \ * < * + l > / 2 3*13 
0 A - A i ^ - ( ^ ) UA'--A^' 

and so /^ is well-defined. 
Geometrically, for a point zES with v(z)/\- ■ ■ /\v(k\z)^=0, the /c-plane 

/ t ( / ) c P " is the unique &-plane having contact of order at least k+ 1 with 
f(S) at z, called the osculating k-plane. In the case of a plane curve 
/:£—>P2, the m a p / , :S-»P2* is just the Gauss map sending z G S to the 
tangent line to/(S') a t / (z) ; the curve fi(S), often written/*, is called the 
dual curve of / . Note that even at a singular point z0 of f(S) the tangent 
line is well-defined by the remark at the beginning of this section. In 
practice,/,(z0) corresponds to what would ordinarily be called the tangent 
line at z0: the limiting position of the tangent lines at nearby points. (See 
Figure 7.) 

Ramification 

L e t / : 5 - * P " be any curve, given in terms of Euclidean coordinates in a 
neighborhood of /(z0) by fx(z),...Jn(z). We define the ramification index 
P(z0) of / at z0 to be the order of vanishing of the Jacobian 
(3/,/3z,...,3/„/3z),i.e., 

/*(z0) = m i n ( o r d Z o ( ! ) ) . 
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Figure 7 

Clearly /8(z0) = 0 if and only if the map / is smooth at z0; in general, /?(z0) 
is a measure of the singularity of / at z0. 

Another way to define the ramification index is as follows. Let w be the 
associated (1, l)-form of the Fubini-Study metric on P". Then /?(z0) is the 
unique integer such that 

f*u = ^-~-\z-z0\
2p^-h{z)-dz/\dz 

with h(z) C°° and nonzero at z0. To see that these two definitions are 
indeed equivalent, let v(z) be any lifting of / near z0. Then we have 

/*<o = ■931og|Kz)||2 

0 
I (v,v) dz 

1 (v, v)(v', v') - (v, v')(v', v) 

(v,v) 
dz /\dz 

= —r -• y. \vtv'i - v.v-P-dz/\dz. 

In particular we may take the lifting 

U(z)=[l,/,(z),...,/„(z)]; 
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then 

2\\V\\ \ / = l i#7 / 

and so clearly 

f*a = ~ ' [z - z0^^-h{zydz/\dz 

with j8(z0) = min(ordz (/')) a s originally claimed. 
Now we will be concerned not only with the ramification indices /?(z) of 

a curve /:S-»P", but also with the ramification indices fik{z) of its 
associated curves. In order to make the numbers (ik(z0) computable for a 
given point z0G5, we may put the curve in normal form at z0 as follows: 

Write /(z) = [t>(z)] = [t;0(z),...,u„(z)] with v(z0)¥=0. Making a linear 
change of coordinates in C + l , we may take 

t>(zo) = (l,0,...,0). 
We have Ui(z0)= • • • = D„(ZO) = 0; write 

(vi(z),...,v„(')) = (z-zor
 + \vl(z),...,v^(z)) 

with (v}(zo),...,v*(zo))^0. Now make a linear change of the last n coordi-
nates in C + l so that (v](z0),... ,v*(z0))=(l,0,... ,0); we write 

(o](z),...,cl|(z)) = (z-zor
+\v}(z),...,v%z)) 

with (t)|(z0),...,t)^(z0))^0. We change the last « - l coordinates on C"+1 

so that (t;f(z0),...,i^(z0)) = (l,0,...,0), and continuing in this way we end 
up with a system of coordinates for C + 1 in terms of which 

U(z) = (l + - - - , ( z - z o r + 1 + - - - , ( z - z 0 ) 2 + a ' + a j + - - - ) 

. . . , ( z - z 0 y + a ' + - " + « " + - - - ) . 

This is called the normal form of the curve / near z0; from it we see that 
fk(z0) is the P* spanned by the first k + 1 linearly independent vectors from 
the sequence v(z0),v'(z0),v"(z0), Putting a curve in normal form 
amounts to choosing a basis e0,...,en for C + l such that/^(z0) is spanned 
by {eQ,...,ek}. 

Now we compute the ramification index /3k(z0) of the kth associated 
curve of/at z0 in terms of the exponents a,,...,a„ appearing in the normal 
form: assume z0=0, normalize the homogeneous vector by making the first 
entry o0(z)= 1, and then write 

v(z) = (1, z1 + a '+ • • •, z2+a ' + ̂ + • • • , . . . , zn+c"+ -+a»+ • • •). 
The homogeneous coordinates of fk(z) are then the determinants of the 
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(k+\)x(k+l) minors of the matrix 

v(z) 
v'(z) 

267 

vw(z) 

1 + r l + « l . ,2 + a ,+a 2 _j_ . . . r n + a . + ••• + a„ 

0 (l + a,)za' + 
0 

The minor whose determinant vanishes to least order at 0 is clearly the 
left-hand minor A7, I0={\,...,k + \}, and so we may take as Euclidean 
coordinates on fk(S) near z0 the quotients {|A/|/|A/1}7; the minor other 
than A, whose determinant vanishes to smallest order at 0 is A„ for 

' o J 

J={l,...,k,k + 2), and so the index of ramification offk at z0 is the order 
of vanishing of 

3 / [Ay(z)| \ 

Now we have 

|A/o(z)| = 7 ^ . + + « -

dz\\Ar 

a, + l 
a,(a, + l) 

k + a,+ + a, ■k-\ 

and 

|Ay(z)| = z _ _fta, + ---+qt+0(n.1 + l 

a, + l 

ai(«i + l) 

k+l+at + --- +ak 

+ 

and, since neither of the determinants appearing on the right is zero, 

o rJJ^M| = «,+1 + i, 
0 lAd*)\ 
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hence 
Pk(zo) = «* + i-

The General Pliicker Formulas I 

Our aim now is to relate two invariants of the associated curves fk of a 
curve / :S ->P" : the degree dk of fk : S -^P(A* + 1 C + ' ) (or, if one prefers to 
think of fk as a map to G(k+l,n+l), the intersection number of fk(S) 
with the Schubert cycle a,, i.e., the number of osculating fc-planes to 
S c P" meeting a generic (n — k — l)-plane in P") and the total ramification 
fik of fk' defined as the sum of (ik{z) over all z 6 S . We do this by 
considering the pullback fk*(ds2) to S of the standard metric on 
P(A*+1G"+1). On the one hand, fk*(ds2) is a metric on 5 away from the 
singular points of fk, and so by a Gauss-Bonnet-type argument we can 
express the integral of its curvature form over 5 as a function of the genus 
of S and /5k; on the other hand, we can compute this curvature form 
directly and relate it to the degrees dk of the various associated curves. 

First, we say that a positive semidefinite inner product <p on the tangent 
bundle of a Riemann surface is a pseudo-metric if it is given locally as 

<p = h{z)-dz®dz, 
where 

h(z) = \z\2"-h0(z) 
with 

h0(z) > 0. 
We say that <p has a zero of order c at z = 0 and write ordp(<p) = v; the 
divisor 

D
v = S ord (9>)-/> 

is called the singular divisor of the pseudo-metric <p. In fact, <p defines an 
honest metric on the line bundle 7"®[Z> ]: if we identify sections of 
T'^lDy] with meromorphic vector fields 0=/(z)-(3/9z) having poles of 
order at most ordp (<p) at /?, then the inner product 

(0,0) = \f(z)\2-h(z) 

will be a well-defined metric. Now the curvature form 0 of <p, considered 
as a metric on 7"®[Z) ], will be given by 

6 = -331ogA(z), 
and so we have from the proposition on page 141 

^ L / s e = deg( r+Dj 

= 2 - 2 g + deg(Z>9). 
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In particular, if we take <p=fk*(ds2) to be the pullback via fk of the 
standard metric on P(A*+ ,C"+ I) , 

A P = 2 Pk(p)-P, 
pes 

^-fe = 2-2g + pk. 

and so if 0 is the curvature form of <p, 

The problem now is to evaluate directly the curvature form of the 
pseudo-metric f^(ds2). Let w be the (1,1)-form associated to the Fubini-
Study metric on P"; let v(z) be as before a lifting of/, and set Ak(z)=* 
v(z)A- ■ Av^^GA^'C^1. Then we have the 

Infinitesimal Pliicker Formula 

I I A t - ^ H A ^ . H 2 V ^ T 

HA* 
J?(") = ... 1.4 • J V ^ dz A dz. 

Proof. First, note that the expression on the right is independent of the 
choice of lifting, as indeed it must be. Now if v(z)=p(z)-v(z) is another 
lifting, we have 

v' = p' ■ v + p ■ v', 

v" = p" v + 2 ■ p' v' + p-v", 

tfk+i)=pik+».v + [k+i yk)v, + ...+^k+i y 0 w + p .„(*+». 

In particular, we see that we can find a function p with p(zo)¥=0 such that 
vik + l\z0) is orthogonal to v(z0), v'(z0),..., v(k)(zQ), and hence to 
v(z0),v'(z0),...,v

<k>(z0); i.e., at any point z0 such that Ak+1(z,j)^=0, we can 
choose a lifting v of f with v(k + l)(z0) orthogonal to v(z0),..., v<k)(z0). 

Now write 

/,*(<o) = ^ - ^ 3 8 1 o g | | A , " 2 

3 

2 " " ' " fe l l •'HI 

J(Ak,K)A 
2 

(Ak,Ak)(A'k,A'k)-(Ak,A'k)(A'k,Ak)\ ^ T 

with 
(A„A,r 

K = vAv'A---Avik~l)Av(k+,\ 

dz Adz 
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Let F 0 c C " + l be the linear span of u(z0),. . . ,uw(z0); let Vj- denote the 
orthogonal complement of V0 in C + 1 . Then the decomposition C + 1 = 
V0® F0

X gives a decomposition 

A* + ic»+i = 0 (APV0®A"V0
A-) 

p+q=k+1 

of A*+ IC"+ I as an inner product space, with the induced metric on each 
factor ApV0®Aq{V^). If we assume that vik+1)(z0)GV0

±, we have 

Ak(z0) G Ak + lV0, A;(z0) £ A*r0® A ' ^ ; 

hence 

(Ak(z0),A'k(z0)) = 0, 

(A'k(z0),A'k(z0)) = | |A^,(z0) | | 2- ||»<* + ,)(z0)||2, 
and 

(Ak(z0),Ak(z0))-(A'k(z0),A'k(z0)) = ||A,^(^o)ll2- l|o(* + ,)(*o)ll2' WKi^oW 

= l |A.-,(^)ll2- | |A, + 1(z0)||2, 

proving the lemma. 

The curvature form of pseudo-metric fk*(ds2) is then given by 

6 = = 39 log 
2 2 I l|A*||4 

= - /**- . («)+ 2/**(«)-/ ,*. ,(«) 

and so by the Wirtinger theorem, 

I 

Comparing this with our first evaluation of / ,9, we have the 

Global Pliicker Formula 

dk-i-2dk + dk + l = 2g-2-pk. 

As an immediate application of the Pliicker formula, we show that we 
can characterize the rational normal curve by the absence of inflectionary 
behavior. 

Proposition. The only totally unramijied curve f:S—»Pn is the rational 
normal curve. 

Proof. We can take a linear combination of the various Pliicker formulas 
to eliminate dk for A:>0: 

2 (n~k)(dk_l-2dk + dk + ])= 2 (n-k)(2g-2-fik), 
k=0 * = 0 
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obtaining 

2 ( « - * ) & - ( / ! + l ) r f + / ! ( / t + l ) ( g - l ) . 
In particular, if /?, =0 for all /' 

n ( # i + l ) ( g - l ) < 0 = » g = 0, 
and so this formula reads 

-(n+l)d = -n(n+l), 
i.e., d=n and the curve S is the rational normal curve. Q.E.D. 

The General Pliicker Formulas II 

We now wish to give a second proof of the general Pliicker formulas 
which, while it does not admit a local analogue, is of a more geometric 
character. 

Let/: C—>P" be a nondegenerate curve, t>(z) a local lifting of / to Cn+1, 
and denote the cast of characters 

Ak(z) = v(z) A- • • Ai)(i )W e A * + I C + I , 

fk:C^G(k + \,n + 1) cP(A*+ 1C"+ I) , 
dk = dtgfk(C) c P(A*+1Cn+1) 

= ( / t ( 0 'aUG(k + \,n+\) 

z e e 

as before; for convenience, set 

m = dimP(A* + ,Cn + l ) = ( " + [ ) - 1. 

Let Vm_2 be a generic (w-2)-plane in P(A*+'C"+1), disjoint from C and 
consider the map 

ITV: C—P1 

obtained by projecting/.(C) from Vm_2 onto a line. The sheet number of 
nty is clearly just the degree dk of fk(C); by Riemann-Hurwitz, then, 

2 g - 2 = -2<4 + rt, 
where T̂ . is the number of branch points of wy. 

To evaluate rk, put the map/^ in normal form at z0EC: 

/ , ( z ) = [ l + - - - , ( z - z 0 r + l + - - - , ( z - z 0 r + ^ + 2 + - - - , . . . ] . 
(Here the exponent 7, is the ramification index of the (/— l)st associated 
curve of fk at z0; thus yl = fik(z0), while the remaining integers y2,... have 
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no bearing on the proceedings.) From this normal form we see that z0 will 
be a branch point of order (y/+,H + y, + / - 1) of 77y exactly when the 
hyperplane Vm_2,fk(z0)cP"" contains the osculating /-plane to fk(C) at z0, 
but not the osculating (/+l)-plane. In particular, if we choose a 
sufficiently generic Vm_2—i.e., such that Vm_2 does not meet the tangent 
line to fk(C) at any stationary point fk, and does not meet the osculating 
2-plane to any point of fk(C) in a line—then a singular point z0 of fk(C) 
will be a branch point of order (3k(z0) of the map mv, while a smooth point 
z0 of fk(C) will be a simple branch point of nv if the tangent line TZ(j(fk(C)) 
to fk(C) at z0 meets Vm_2, not a branch point otherwise. The number of 
branch points of mv will thus be the total ramification index fik of fk, plus 
the number of times a tangent line to fk(C) meets a generic (m — 2)-plane 
in Pm—that is, the degree of the tangential ruled surface 

T(fk(C))= U n ( / t ( C ) ) c P " 
z£C 

of/ ,(C). 
Our computation of degr(/^(C)) is based on one observation. The 

tangent line to_4(C) at a smooth point z is spanned by the vectors 

Ak(z) = v(z)AV(z)A---Av(k\z) 
and 

K'k(z) = v{z) Av'(z) A- • • Ae ( * _ 1 ) (*) A / + I ) W 
Thus the tangent line 
Tz(fk(C))= {[v(z)A--- Av^\z)A(Kv(k\z)+\v<k+l\z))]}[KXi]ep 

lies entirely in the Grassmannian G(k + \,n+ l)cPm—in fact, it is simply 
the Schubert cycle of k-planes in Pn containing the osculating (k-l)-plane 
Ak_ ,(z) to f at z and contained in the osculating (k+ \)-plane Ak+1(z) to f at 
z. Since the hyperplane section of G(k + \,n+ l )cP"" is the Schubert cycle 
CT,, we can then write 

deg 7( /*(C)) =*{T{fk{C))-Vm_2)p„ 

= #(7-a(C)>a?)G(, + , , „ + I ) . 
Now by the Schubert calculus from Section 6 of Chapter 1, o\ is homolo-
gous to the Schubert cycle o, ,(r„_^) of /c-planes in P" meeting an 
(/i - &)-plane Tn_k in a line, plus the Schubert cycle <J2(Tn_k_2) of fc-planes 
meeting an ( « - A: — 2)-plane T„_k_2- We see, moreover, that the cycle 
Tz(fk(.C))cG(k+\,n + l) of A:-planes in P" containing At_,(z) and con-
tained in Ak+l(z) will meet the Schubert cycle o2(Tn_k_2) if and only if 
Tn_k_2 has a point in common with Ak+I(z), so that the intersection 
number of T(fk(C)) with a2 in G(k+ ! , « + ! ) is just the number of points 
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z G C whose (A:+ l)st osculating plane meets a generic (n — k — 2)-plane 
r „ _ ^ 2 c P " , that is, the degree dk + 1 of the (k+l)st associated curve 
fk+1(C). Similarly, Tz(fk(C)) will meet the cycle a u ( r n _ f c ) exactly when 
Ak_l(z) has a point in common with T„_k, so the intersection number of 
T(fk(C)) with a, , is the number of points z G C whose (A: — l)st osculating 
plane meets a generic (n — A:)-plane r ^ ^ c P " , i.e., the degree dk_x of the 
(k — l)st associated curve. We have thus 

d e g r a ( C ) ) c P " = # ( n / * ( C ) > K , + a 2 ) ) G ( , + I > n + 1 ) 

= "k-\ + "* + !' 

and so the number of branch points of iry is given by 

?k = Pk + dk- 1 + 4+1-
From Riemann-Hurwitz, then, we obtain the general Plucker formulas 

2 g - 2 = -2dk + Tk 

= ~2dk + & + 4 - . + dk+i-

Weierstrass Points 

In general, the Plucker formulas deal with extrinsic invariants of curves. 
Following the general principle that projective invariants of a canonical 
curve 5 correspond to intrinsic properties of S, however, we apply the 
Plucker formulas to the canonical curves and obtain a count of the number 
of Weierstrass points on a Riemann surface, as follows. 

Let S be a Riemann surface of genus g, p&S any point, and consider 
the linear systems associated to the divisors k-p, /c = 1,2, We know by 
Riemann-Roch that h°(kp) = k — g + 1 for k > 2g — 1, and, in general, 

h\kp) = 
[ h°((k-l)p)+], if there exists /e9H(5") such that (f)x = kp, 

\ h°((k - \)p), if there does not exist/G 911(5) such that (f)^ = kp. 

It follows that there exist exactly gpositive integers a, , . . . ,ag such that there 
does not exist a meromorphic function f on S with (f)x = aj). These integers 
a, < a2 < • • • < a are called the gap values of the point p G 5. 

Now we might expect that for a generic p G S, all the divisors kp will be 
regular, i.e., 

y y ) \k-g+l, k>g, 

so that 
a, = /, / = l , . . . ,g. 
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We say a point p is a Weierstrass point of S if any of the divisors kp is 
irregular, or in other words if there exists a meromorphic function f on S 
holomorphic on S — {p] and with a pole of order < g at / ) . We take the 
weight of the Weierstrass point p to be 

W(p) = ^(a-i), 

where the at are the gap values of p E S. For example, if S is hyperelliptic 
with h°(2p) = 2, then the gap values of p are 

a,. = 2/ - 1 
and /? is called a hyperelliptic Weierstrass point; at the other end of the 
scale, a point p with weight 1 has gap values 

l , 2 , 3 , . . . , g - l , g + l 
—i.e., has minimal deviation from the expected pattern—and is called a 
normal Weierstrass point of S. 

We can characterize Weierstrass points on a nonhyperelliptic Riemann 
surface S in another way. Let C c P 8 " 1 be the canonical curve of 5. Then 
by our geometric version of Riemann-Roch, for a n y / ; E C , h°(gp)>l if 
and only if the point pEC and its first g— 1 derivatives fail to span all of 
Ps~l, i.e., p is a Weierstrass point ofS if and only if it is a singular point of 
one of the associated curves of C. Precisely, if the canonical map iK is given, 
in terms of a local coordinate z centered around p, by 

iK(z) = [ l , z l + 0 " + ■ • • ,z2+a' + ai+ ■ ■ ■ ,...,zg-,+a< + -+a*-> + ■ ■ - ] , 

then the gap values of p E S are 

a, = l, 
a2 = 2 + a,, 
a3 = 3 + a, + a2, 

ag = g + a{ + a2 + --- +ag_„ 

and the weight of p is 

k=l 
8 - 2 

= 2 (*-*-i)&(/0. 

Now we can count the number of Weierstrass points on S by applying 
the Pliicker formulas obtained in the argument for the rational normal 
curve: setting d=2g — 2 and n = g— 1, we have 

2 ( * - * - l ) & = *(2*-2) + U - l ) * ( g - l ) - ( g - l ) g ( g + l ) 
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i.e., the total weight of the Weierstrass points on a Riemann surface of genus 
g is exactly ( g - l)-g-(g+ 1). 

Weierstrass points are of interest because they are "marked" points on a 
Riemann surface, i.e., points intrinsically defined. For example, we can 
apply our last result to show: 

Theorem. Any Riemann surface S of genus > 1 has only finitely many 
automorphisms. 

Proof. Any automorphism of S must permute its Weierstrass points; 
since there are only a finite number of these points, it will suffice to 
consider automorphisms of S fixing each of the Weierstrass points of S. 
Suppose now that 5 is nonhyperelliptic. First, note that by Clifford's 
theorem for any point p G S we have 

h°(kp)<^+l 

so 
a, < 2 / - 2 , /' = 2,...,g, 

and 

W{p) - 2 a * - ' -

; = i 

g 

< 2 / - 2 
( g - l ) ( g - 2 ) 

< 2 ' 
and so the number of distinct Weierstrass points on S is at least 

( g - l ) g ( g + l ) = 2 g ( g + l ) > 2 g + 6 

2 ( g - l ) ( g - 2 ) g 

Now suppose that S is nonhyperelliptic and let C be the canonical curve 
of S. Any automorphism of S is then induced by an automorphism of 
Pg~x fixing C; let T: P g _ , ^ > P 8 _ 1 be such an automorphism fixing each of 
the Weierstrass points of S. It follows then that T preserves all of the 
osculating planes at each Weierstrass point/?,; in particular, if we let Vt be 
the osculating (g —3)-plane to C at/?,, then T preserves Vt and the pencil of 
hyperplanes {H{}XfEP, containing Vr Suppose Vt contains k points of C 
other than/j,. Then any hyperplane containing Vt has k + g — 2 points of 
intersection with C lying inside Vt, and hence contains at most g — k 
Weierstrass points outside Vt. But there are at least 

2g + 2-(k+\) = 2g-k+l 

Weierstrass points of C lying off Vt. Thus at least three of the hyperplanes 
{H{}XeP< contain a Weierstrass point outside Vt, and so are fixed by T; it 
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follows that T fixes each of the hyperplanes H{, and hence, since the 
hyperplane sections of C are finite, that T has finite order. 

Suppose now that T has order d and consider the quotient curve S" of S 
by the group {T ' J of automorphisms. The projection map v expresses S as 
a J-sheeted cover of S', with each Weierstrass point a (d— l)-fold branch 
point; then we have 

2g-2 > d(2g(S')-2) + (d-l)(2g + 2) 
> (d- \){2g-2) + 2d-g{S') + 2(d-2), 

so d > 2=»g(S") = 0 and d=2, i.e., 5 is hyperelliptic. Thus // S is nonhyper-
elliptic, any automorphism fixing the Weierstrass points of S is the identity, 
and so the theorem is proved in this case. 

In case S is hyperelliptic, any automorphism of S is given, modulo the 
hyperelliptic involution, by an automorphism of C c P 8 - 1 ; but C is 
rational, and so any automorphism of C fixing the 2g + 2 > 3 Weierstrass 
points of C is the identity. Q.E.D. 

Now, let 5 be a Riemann surface of genus g > 3. By our last result, if S 
has any automorphisms at all, it has an automorphism <p of prime order/?. 
Let S' be the quotient of S by the group of automorphisms {<p'}, and g' 
the genus of S'. Since a fixed point of any power <p' of <p is a fixed point of 
<p, the branch locus of the quotient map 7r:S-*S' consists simply of a 
certain number k of (p — l)-fold branch points; and to specify the surface 
S up to a finite number of choices we simply have to specify the surface 
5", together with k points on S". This is a total of 3g' + 3 + A: parameters; 
but now by Riemann-Hurwitz, 

2g-2=p(2g'-2) + k(p-l), 
i.e., 

k _ 2g-2~p{2g'-2) _ 2g-2pg' | 2 
p-\ p-\ 

Thus we have at most 

parameters for S; and since we must have g'>(l/p)(g— 1)+ 1 > | ( g + 1) 
this number is less than 3g — 3. We conclude, then, that 

The generic Riemann surface of genus g > 3 has no automorphisms. 

The reader may check, by essentially the same techniques, that no 
Riemann surface of genus g>2 can have more than 84(g—1) automor-
phisms. 
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A final note on Weierstrass points: we can see by a count of parameters 
that the generic Riemann surface of genus g > 3 has no Weierstrass points 
with gap value a, > i for /' < g. To see this, suppose the contrary—i.e., that 
the generic Riemann surface S contains pointsp with dim|(g— \)p\ >\. S 
is then expressible as a (g— l)-sheeted cover of P1, with p appearing as a 
branch point of order g — 2; the branch locus B of this map consists of 
(g-2)p plus 

2g-2 + 2(g-\)-(g-2) = 3g-2 

other points, and so depends on 3g - 1 parameters. S thus depends on at 
most 3g - 1 - 3 = 3g — 4 parameters, a contradiction. Likewise, the reader 
may verify that a generic Riemann surface of genus g > 3 contains no 
pointsp with dim | (g+ X)p\)>3, by counting (as on p. 262) the number of 
parameters for plane curves of genus g and degree g +1 possessing a 
(g+l)-fold tangent line. Together, these two assertions imply that the 
generic Riemann surface of genus g > 3 has only normal Weierstrass points. 

Pliicker Formulas for Plane Curves 

We want to consider now the projective invariants of plane curves. This 
calls for somewhat different techniques from those used previously: the 
Pliicker formulas we have derived thus far deal only with singularities of a 
curve/: S1—>P" arising from the local character of the map/ . We have seen, 
however, that plane curves / : S—>P2 are subject to singularities arising 
from the global behavior of /—e.g., nodes—that are not reflected thus far 
in our general formulas. To obtain a reasonably broad range of applicabil-
ity, we will consider curves in P2 with traditional singularities, which we 
now define. 

DEFINITION. We say that a curve / : S-»P2 has traditional singularities if 
every point p G S is one of the following: 

1. A regular point, which is a smooth point of both / and the dual curve 
/ * . At such a point /i0(p) = (3](p)=0, a n d / h a s the local normal form 

/ ( z )= [ l , z+ - - - , z 2 + - - - ] . 

2. An ordinary flex off; i e., a smooth point of/where the tangent line 
has contact of order three. In normal form 

f(z)=[\,2+---,Z3+---], 

f*(z)=[\,z2+---,z3+---]. 

3. A cusp of/, i.e., a singular point o f / t ha t has normal form 

/ (z )=n,z 2 +- - - ,z 3 +- - - ] . 
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Figure 8 

Thus, p is a flex of f<=>p is a cusp of f*. 
4. A bitangent of/, i.e., a point/?, not a flex, where the tangent line is 

also simply tangent at some other point q¥=p-
5. Ajn ordinary double point of / , i.e., a point where two nonsingular 

branches of f(S) cross transversely. Clearly p is bitangent for f <=> p is an 
ordinary double point off*. 

Note one important point: if/:S—>P2 is any plane curve,/*:S—»P2* its 
dual, then for a point z0GS the tangent l ine /*(z 0 )eP 2 * is the limiting 
position of the secant lines /(z0)/(z) as z-+z0. (See Figure 9.) Similarly, 
(/*)*(z0)—that is, the point in P2 corresponding to the tangent line to 
/ * ( 5 ) c P 2 ' a t /*(z0)—is the limiting position of the intersection of the 
tangent lines to f(S) at z and z0, as z-*zQ, which is of course z0. We see 
then that the dual of the dual is the original curve. 

Now suppose f:S^>P2 has traditional singularities and let C=f(S), 
C*=f*(S). With the notations 

g = genus of S, 
d=degC, </* = degC*, 
b = number of bitangent lines of C, b* = number of bitangent lines of 

C*, 
f= number of flexes of C, / * = number of flexes of C*, 
K = number of cusps of C, K* = number of cusps of C*, 
S = number of double points of C, 8* = number of double points of C , 
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Figure 9 

we have the relations 
b = 8*, b* = 8, 
/ = § * , / * = «• 

The degree of the dual of C—usually called the class of C—is by 
definition the number of points of intersection of C* with a generic line in 
P2*, that is, the number of tangent lines to C containing a generic point 
p G P2. Let p be such a point, and assume moreover that p does not lie on 
any of the tangent lines to C at any of the singular points of C. Choose 
coordinates [X0,Xl,X2] on P2 with /? = [0,0,1]; if C is given in these 
coordinates as the locus of the polynomial g(Xo,Xl,X2)=0, then the 
tangent lines to C through p correspond exactly to the smooth points of C 
such that (dg/dX2)(q) = 0. Now the curve C'=(dg/dX2 = 0) has degree 
d— 1, and passes through each double point and cusp of C with intersec-
tion multiplicity 2 and 3, respectively. Thus the number of points of 
intersection of C" with the smooth points of C is (CC) —28 — 3K; i.e., 

(*) d* = d(d-I)-28-3K. 

Similarly, consider the projection map w of C from p onto a line, IT 
expresses C as a rf-sheeted cover of P1, and so we have 

X(S) = 2-2g = 2d-b, 
where b is the number of branch points of the map m ° / : .S-^P1. Now, as in 
the argument for the original genus formula, a smooth point q of C is a 
branch point of IT °f if and only if (dg/dX2)(q)=0; thus we have d(d— 1) — 
2 5 - 3 K branch points of ir°f among the smooth points of C. In addition 
we see that, while neither of the points of S corresponding to an ordinary 
double point of C is a branch point of m °f, every cusp of C is a branch 
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point of order 1 on S. Thus 
b = d(d-l)-2S-3K + K 

= d{d-\)-28-2K, 
and so 

2 - 2g = 2d - d(d- 1) + 25 + 2K 
( ^ (d-\)(d-2) 
(**) g = - j ' - - 8 - K . 

Applying the relations (*) and (**) to the dual curve C* as well, we 
obtain the classical Pliicker formulas 

d* = d(d- 1 ) - 2 S - 3 K 
_(d-l)(d-2) 

2 
(d*-l)(d*-2) 

d=d*(d*-l)-2b-3f g = ̂  'j >--b-f. 
It will be useful to us later on to have a formula for the canonical bundle 

of a Riemann surface S expressed as a curve C of degree d in the plane 
with traditional singularities. To find this, l e t / : 5 - » P 2 and 7r:C—>P' be as 
above, and consider the pullback w to S of the meromorphic 1-form 
d{Xxf X0). First, w will have double poles over the points of intersection of 
C with the line Xo = 0; thus 

Now consider the section oEH°(P2,6((d-l)H)) given by the homoge-
neous polynomial dg/dX2, g as above. Away from the singular locus of C, 
we have 

(<o)0 = ( /*a ) ; 
at an ordinary double point p =f(q) =f(q') of C, on the other hand, u will 
be nonzero while f*a will vanish at both q and q'\ at a cusp/>=/(<7) of C, 
w will have a simple zero while f*a will vanish to order 3. If D CS is the 
inverse image of the singular points of C (counting the inverse image of a 
cusp twice), then 

(«)0 = ( / * a ) - Z ) , 
and so finally 

Ks = («)0 - («)„ = f*((d- 3)H ) - D. 

We turn now to some special cases: 

Plane Cubics. Let C be a nonsingular plane cubic. Then d=3, g=\, 
K=8 = 0. Moreover, the number b of bitangents is zero, since no line can 
have four intersections with C. Similarly, any general flex with normal 
form 

z - > [ l , z + - - - , z 3 + / + - - - ] ( / > 0 ) 
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must be an ordinary flex (i.e., /=0) . The singularities are thus traditional, 
and the classical Pliicker formulas give 

d* = 6, / = 9. 
The nine flexes are distinct and can be found as follows: If O e C is one 
flex, then according to the discussion of the inversion of the elliptic 
integral in Section 2 of this chapter we may describe C parametrically by 

/ : C ^ P 2 , 
where 

/ (z)=[l ,9>(z) ,<3"(z)] , 

with w£/ /° (C, f i ' ) a generator. By the addition theorem the condition that 
points A, B, C be the points of intersection of a line is exactly 

rA rB fC 
I u+l « + / « = 0(A), 

•'0 J0 J0 

where A = / '(0) is the lattice in C. The flexes are those lines for which 
A = B = C; i.e., they are just the nine points 

[l,9,(z),«3>'(*)], where3zGA. 

From this we deduce the statement from classical geometry: If a line L 
passes through two flexes of a nonsingular plane cubic, then it also passes 
through a third flex. 

Note that if C has an ordinary double point, then the number of flexes 
of C drops to three, while if C has a cusp, it has only one flex point. 

Plane Quartics. In case C is a smooth plane quartic with ordinary 
singularities, the degree of C* is 

d* = d{d-\)= 12. 
We have, then, 

2b + 3 / = 12 • 11 - 4 = 128. 
On the other hand, C has genus 3, and so 

i.e., b+f =52. Solving, we find 

f=(2b + 3f)-(2b + 2f) 

= 1 2 8 - 2 - 5 2 
= 24 
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and 

b = (3b + 3f)-(2b + 3f) 
= 3-52-128 
= 28, 

i.e., C has 24 flexes and 28 bitangents. We will see the 28 bitangents to a 
smooth plane quartic reappear in Section 4 of Chapter 4, in another 
context. 

In general, if C is a smooth plane curve of degree d having traditional 
singularities, 

d* = d(d-l) 
and 

so 

and 

Thus 

and 

(d-l)(d-2) 
8 2 

2b + 3f=d(d-l)-(d(d-l)-l)-d 

b.{ , _ {d{d-\)-\){d{d-\)-2) (d-l){d-2) 
J 2 2 

f=(2b + 3f)-(2b + 2f) 

= 3d(d-2) 

b = (3b + 3f)-(2b + 3f) 

= ±d(d+\)(d-\)(d-2)-4d(d-2). 

5. CORRESPONDENCES 

Definitions and Formulas 

A correspondence T:C-*C of degree d between two curves C and C 
associates to every point p E C a divisor T(p) of degree d on C, varying 
holomorphically with p. It may be given either as a holomorphic map 

from C to the dth symmetric product of C , or equivalently—and more 
usefully to us—by its curve of correspondence (intuitively, its graph) 

£ = {(/>,<?): qeT(p)} C C X C ; 
conversely, given any curve D c C X C, we can define an associated 
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correspondence by 

r(/») = i;(D)eDiv(c), 
where ip:C'-^>C XC sends q to (p,q). A correspondence will be called 
irreducible if its curve of correspondence is. 

The inverse of a correspondence T: C—*C with curve of correspondence 
D c C X C ' is defined to be the correspondence given by the curve 

D' = {(q,p): (p,q)<=D}czC'XC, 

i.e., by 

T~\q)- 2 P. 

Some basic correspondences are: 

1. If {Dx} is a pencil on the curve C without base points, or equiv-
alently a branched covering map C—>P\ then for each ; ?EC there is a 
unique divisor D(p)G{Dx) containing/?; we may define a correspondence 
T b y 

T(p) = D(p)-p, 
i.e., T is given by the curve 

D = {(/>>?): D\-~P-<1>Q for some X} c C X C. 
Note that T is symmetric, that is, T—Tl. 

2. If C c P2 is a smooth plane curve, we define a correspondence 
T.C^C by 

T(p)=Tp(C)C-2P, 

i.e., T is given by the closure D in C X C of the locus 

{(p,q):p^q,q€ETp(C)}. 

Note that p G r(/>) only if Tp(C) meets C with multiplicity 3 or more at p, 
i.e., if p is a flex of C. T is called the tangential correspondence on C. 

The phenomena associated to correspondences with which we will be 
concerned are these: 

1. A coincident point of a correspondence T:C-*C is a pair {p,q)& 
CxC such that q appears in T(p) with multiplicity 2 or more; we say that 
(p,q) is a coincident point of multiplicity m for T if q appears with 
multiplicity (m+\) in T(p). In example 1 above, a pair (/?,?) will be a 
coincident point of T if # is a branch point of the map C -» P1 given by the 
pencil {Z)x} a n d / j ^ ^ e T r " ' ^ ? ) ) ; in example 2 a coincident point corre-
sponds to a bitangent line to C. 
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In general, if T:C-^>C is a correspondence given by the curve D c 
C X C", a coincident point is either a branch point of the projection 

77,: £ » ^ C 

of D on the first factor, or a singular point of D. 
2. A united point of a correspondence 7": CWC from a curve to itself is 

a point /> e C such that /> G T(p); we say that /> is a united point of 
multiplicity m for r if p appears with multiplicity m in T(p). In example 1 
above, the united points p of T are the branch points of the map C—>P' 
given by {Dx}\ in example 2 they are the flexes of C. In general, if 
T.C-+C is given by the curve DcCXC, a united point is a point of 
intersection of D with the diagonal A c C x C . 

3. A common point of two correspondences T, S: C—»C" is, as the name 
suggests, a pair (p,q)&C X C" such that 17 is in both T(^) and S(p). If T 
and 5 are given by curves D and F in CxC, a common point is just a 
point of intersection of D and F. 

4. A correspondence T: C—*C from a curve of genus g> 1 to itself is 
said to have valence k if the linear equivalence class of the divisor 

T(p) + k-p 

is independent of p. The correspondence of examples 1 and 2 above have 
valence 1 and 2, respectively. A correspondence need not, in general, have 
any valence; if it does have a valence though, the valence is unique: if for 
k > k' the linear equivalence classes of T(p) + k-p and T(p) + k' p were 
both constant, it would follow that the divisors (k - k') -p all belonged to 
some linear system E, of dimension r. Since the generic point of the curve 
% ( C ) c P r meets any hyperplane with multiplicity at most r, it follows that 
r = k-k'—but then iE(C) is the rational normal curve, contrary to the 
hypothesis that g(C) > 1. 

In practice, the information about a correspondence T:C^>C that will 
be most readily available to us is the degree of T—that is, the intersection 
number *(DE) of the curve of correspondence D c C x C with the 
vertical fibers Ep = ?rf \p)cC X C; the degree of T~x—the intersection 
number of D with the horizontal fibers F = 7r2" ' ( /»)cCxC; and the 
valence of T if it has one. On the other hand, as we shall see, to compute 
the number of coincident, or united, points of T, we will want to know the 
homology class of the curve D c C X C. This is, in general, impossible: the 
group 

wu(cxc)ni/2(cxc,z) 
of divisors on C X C modulo homology has highly unpredictable rank. 
What makes it possible to compute effectively with some correspondences 
is the fundamental 
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Lemma. Let T:C—»C be a correspondence, D c C x C its curve of corre-
spondence. Then T has valence k if and only if D is homologous to a linear 
combination 

D ~~ aE + bF - kd 
of the two fibers E, F of C X C and the diagonal A c C x C . 

Proof. First, assume that D—aE+ bF— kA. We claim to begin with that 
D is then linearly equivalent to a sum 

where Ep = ir^\p), Fq = W2l(q). This follows from the Kiinneth formulas: 
since the first two vertical maps of the diagram 

H\C X C,Z) > H\C X C,0) > Pic°(C X C ) ^ 0 

I 7jf X w j »rf X TTJ " f x " 2 

H\C,Z)@H\C,Z) -» / / 1 ( C , 0 ) © / / I ( C , 6 ) -» Pic°(C) X Pic°(C)-»0 

are isomorphisms, the last one is also. Now if D <zC X C is linearly 
equivalent to the divisor G written above, then for generic />6=C, the 
divisor T(p) = i*(D) is linearly equivalent to the divisor i*(G) = T,biq/ — 
k-p; clearly, then, the linear equivalence class of T(p) + k(p) is indepen-
dent of p. Conversely, suppose that the correspondence T has valence k. 
Write 

T(p) + k-p = ^lbiqi; 
and 

T~\q0) + k-q0=- ^aj>„ 

and let L be the line bundle 

Then by hypothesis the restriction of L to any fiber Ep of w„ and to the 
fiber Fqa of ir2

 a s we"> ' s trivial. We claim now that under these circum-
stances L must be trivial; this will certainly suffice to prove the lemma. To 
see this, let s0 be a global nonzero holomorphic section of the restriction of 
L to Fq<j. For each p&C, then, there will be a unique global section t(p) of 
L\Ep such that t(p)(p,q) = s0(p,q0); set 

t(p,q) = t{p){q). 

t is then a global nonzero holomorphic section of L, and consequently L is 
trivial. Q.E.D. 

Note: It may seem, at first glance, that the notion of valence is an 
unlikely one, and that correspondences with valency will be relatively rare. 
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In fact, just the opposite is true: on a generic Riemann surface there are no 
correspondences without valency. (Here "generic" has a meaning slightly 
different from usual, as will be seen.) We will not prove this, but the reader 
may see why it should be true: by the Kiinneth formula, 

/ / ' • ' ( C X C ) = ( / / U ( C ) ® / / O O ( C ) ) 0 ( / / I - O ( C ) O / / O J ( C ) ) 
© ( / / 0 - 1 ( C ) ® / / l 0 ( C ) ) © ( / / 0 - 0 ( C ) ® / / u ( C ) ) . 

The first and last terms in this expression are one-dimensional and are 
generated by the classes of the fibers E and FcCxC, respectively. 
Writing out a basis for ( / / l 0 (C) (8) / / 0 - , (C) )©( / / 0 1 (C)®/ / l 0 (C) ) , and 
integrating over a basis for H2(C X C,Z)=/ / , (C,Z)®// , (C,Z) , the reader 
will see that the requirement that there exist an integral class in the middle 
factor other than that of the diagonal A c C X C is that the period matrix 
of C satisfy certain rationality conditions (cf. Section 4 in Chapter 3 for 
similar computations); the set of curves of genus g possessing correspon-
dence without valence is thus expected to be a countable union of proper 
subvarieties of the family of all curves of genus g. 

For example, the reader may check that a curve of genus one has 
correspondences without valence if and only if it has complex multiplica-
tion, that is, writing 

C = ^ 
A ' 

where A is the lattice generated by 1 and T, if and only if T satisfies a 
quadratic polynomial over Q. 

Now, with our basic lemma, we can derive the three basic formulas for 
correspondences. The first thing to do is to determine the intersection 
pairing on the subspace of H2( C X C, Z) spanned by the classes of E, F, 
and A. We have, clearly, 

*{E-F) = 1, 
*(E-E) = *(F-F) = 0, 

and 

* ( A - £ ) = * ( A - F ) = 1; 
it remains only to determine A A. To do this, let {Dx} be a pencil of 
degree d on C and let T be the correspondence defined by {Dx} as in 
example 1 above; let D c C X C be its curve of correspondence. Since T 
has valence 1, we can write 

D~aE + bF-A. 
Since T and T~] both have degree d— 1, moreover, we have 

d- 1 = *(£>•£) = b-\ 
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and 
d-\ = # ( Z ) F ) = a-\, 

i.e., 
D~dE + dF-A. 

Now, the number *(DA) of united points of T is just the number b of 
branch points of the map C—>P' given by {Dx}; this being a rf-sheeted 
cover, we have by Riemann-Hurwitz 

2 g - 2 = -2d+b, 
i.e., 

b = 2g - 2 + 2d. 
Thus 

2g-2 + 2d = *(D-A) 
= d*(E-A) + d*(F-A) - *(A-A), 
= 2 < / - # ( A A ) 

and so we have 
A • A = 2 - 2g. 

The intersection pairing is therefore 

# 

E 
F 
A 

E 

0 
1 
1 

F 

1 
0 
1 

A 

1 
1 

2-2g 
Now suppose T is any correspondence with deg(T) = d, deg(T t) = d', 

and valence k. If D is the curve of correspondence of T, we write 
D~aE+ bF- IcA. 

Then, since 

and 

we obtain 

Consequently 

d = degT = #(DE) = b-k 

d' = d e g r ^ 1 =*(D-F) = a - k, 

D~(d' + k)E + (d+k)F-kA. 

DA = d' + k + d+k-k(2-2g) 
= d+d' + 2kg, 

i.e., 
(*) T has d + d' + 2kg united points, 

this is known as the Cay ley-Brill formula. 
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Similarly, if S is another correspondence with deg(5') = e, deg(S' ~') = e', 
and valence /, given by the curve G c C x C , 

G~(e' + l)E + (e + l)F-b. 

By an obvious computation using the intersection table, 

*(DG) = ed' + e'd-2gkl, 

i.e., 
(**) The correspondences T and S have ed' + e'd — 2gkl common points. 

The computation for the number of coincident points of a correspon-
dence T: C-» C is slightly more difficult. With T and D as above, 

D ~ {d' + k)E + (d+ k)F- k- A. 
In case D is smooth and irreducible, we may apply the adjunction formula 

KD = (KCXC + D)\D 

for the canonical bundle of D to obtain 

degKD=*(KCxcD) + #(DD). 

Once we have evaluated these intersection numbers, we will be done; by 
the Hurwitz formula, the number b of branch points of the projection 
w,: D-^C on the first factor is given by 

deg KD = d- deg Kc + b, 

i.e., 

b = deg KD — d- deg Kc 

= *(KCxCD)+*(DD)-d(2g-2). 

Now if oi,u are holomorphic 1-forms on C, then the divisor of the 
2-form TTfu/\n$w' on C X C is 

(TrftoA"'*60') = ""*(") + ""* (<•>')• 
Thus the homology class of Kc x c is 

&CXC ~ "*1KC + m2^C 

= (2g-2)E + (2g-2)F. 

We then obtain 
*{D-KCxC) = (2g-2)(d+k)-k(2g-2) + (2g-2)(d' + k)-k(2g-2) 

= (2g-2)(d+d') 

and by another straightforward manipulation 

*{DD) = 2dd' -2gk2. 
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Putting everything together, 

b=#(Kcxc-D) + *(D-D)-d(2g-2) 

= (d+d')(2g-2) + 2dd' - 2gk2 - d(2g-2) 

= 2dd' + (2g-2)d'-2gk2 

i.e., 

(***) The correspondence T has 2dd' + (2g —2)d' — 2gk2 coincident points. 

This computation may be readily extended to the case where the 
correspondence T is given by a sum of smooth irreducible curves £>, c C X 
C—the coincident points of T will then consist of coincident points for the 
correspondence Tt defined by the curves D„ plus common points of the 
correspondences />, and £>• for i=£j (to be counted, as we shall see, with 
multiplicity 2), and it is easily checked that the formula holds. A more 
serious objection is that the formula as stated holds only for correspon-
dences given by smooth curves D. Since this will not always be the case, 
we will borrow a couple of results from Section 2 of Chapter 4 to see how 
to handle at least the case where D has ordinary double points. 

Suppose that D cCXC has 8 ordinary double points (/?,,<jr() and is 
otherwise smooth. Assuming that neither branch of D at such a double 
point (p,q) is tangent to the fiber Ep = ir^(p), (p,q) will appear as a 
simple coincident point of T. From Section 2 of Chapter 4 we see that D is 
the image of a smooth curve D via a map w.D^DcCxC that is 
one-to-one and smooth away from the double points of D—we simply 
separate the two branches of D around the double points. The Riemann 
surface D, moreover, will have genus (cf. page 280) 

g(D ) = v c x c — j + 1 - 8, 

i.e., 
degK3 = *(KCXCD ) + *(DD ) - 28. 

The composite map wyw: D—>C will thus have 
b = degA^ — d- deg Kc 

= 2dd' + (2g-2)d' - 2gk2 - 28 

branch points; i.e., the correspondence T will have 
2dd' + {2g-2)d' - 2gk2 - 28 

coincident points apart from the double points (/>,,#,) of D. We see, then, 
that the formula given above for the number of coincident points of T holds if 
we count with multiplicity 2 a coincident point arising from an ordinary 
double point of D. 
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In practice, it will be easy to distinguish an ordinary coincident point of 
T from one corresponding to a double point of D: a smooth point 
(p,q)ED can be a branch point of only one of the projections w, :D->C 
and 7T2:Z)-H>C, while a double point (p,q)&D will appear as a coincident 
point for both T and T~\ 

We apply our formulas to the correspondence of example 2 on a smooth 
plane curve C of degree d. As we saw, T has degree d—2 and valence 2; 
the degree of T~x is the number of tangent lines to C other than Tq{C) 
passing through a point ? E C , i.e., the number b of branch points of the 
projection -nq of C from q onto a line. The projection is (d— l)-sheeted, and 
so by Riemann-Hurwitz, 

d e g r - ' = b = 2g-2 + 2(d-\) 
= {d-\){d-2)-2 + 2(d-\) 
= (d+l)(d-2). 

By the formula (*), the number of united points of T—that is, the number 
of flexes of C—is 

f=(d-2) + (d+l)(d-2) + 2kg 
= (d-2) + (d+ l)(d-2) + 2(d- l)(d-2) 
= 3d(d-2), 

which agrees with our computation in the last subsection of Plucker 
formulas. To compute the number of bitangent lines to C we have to be 
careful: if q and p are distinct points of C with Tp(C)= Tq(C), then both 
(p,q) and (q,p) are coincident points of T. The number b of bitangent lines 
to C is thus half the number of coincident points of T; by (***) this is 

b = \[2(d-2)(d-2){d+ \) + (2g~2)(d-2)(d+l)-2gk2] 

= \d{d+ \){d- \){d-2) - 4d(d-2), 

as we found earlier. 

Geometry of Space Curves 

We will now illustrate the technique of correspondences by an application 
to the geometry of space curves, i.e., curves in P3. Our primary goal will be 
to find the number of quadrisecants to a space curve C of degree d and 
genus g; along the way we will come across several other invariants. 

Before we begin, we want to make one observation. The family of lines 
in P3 meeting a curve C has codimension 1 in the four-dimensional 
Grassmannian G(2,4). By a naive dimension count, then, we may expect 
that C will have finitely many quadrisecants but no lines meeting C five 
times. Similarly, we expect that there will be a finite number of points of C 
whose tangent lines meet a given tangent line to C, hence a finite number 
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of trisecants p,q,r such that Tp(C) and Tg(C) meet, but no such quadrise-
cants. In general, we say that a curve has nondegenerate behavior if no such 
phenomena occur that are not predicted by a dimension count. We will be 
assuming, in the following discussion, that this is the case; in particular we 
will assume that 

1. C has no quintisecant lines. 
2. The tangent lines to the four points of intersection of each quadrise-

cant to C are disjoint. 
3. No line has contact of order 3 with C, i.e., the first associated curve 

of C is smooth. 
4. No osculating 2-plane to C contains another tangent line to C. 

Now, the central object of our discussion will be the trisecant correspon-
dence T on C, defined by the curve 

D = [(p,q): ~pq is a trisecant of C }. 

We first compute degree of T: if p is a generic point of C, then the image 
of C under projection of C from p will be a plane curve of degree d— 1 
having only ordinary double points, and the double points of this curve 
will correspond to the trisecants to C passing through p. By the Plvicker 
formulas, the number of trisecants through p is 

R_(d-2)(d-3) 
2 8' 

and since T(p) will contain two points for each trisecant of C through p, 

degT=(d-2)(d-3)-2g. 
(Note that by our bound on the genus of space curves (p. 252), this number 
will be positive unless d=3, g = 0 or d = 4, g= 1.) Since T is symmetric, this 
is also the degree of T '. 

Now T has valence, as we see from the following: if IT : C-^P2 is the 
projection of C from a generic p o i n t p £ C a s above, then as we proved in 
the preceding section, since AtgirpC = d~ 1 

Kc = TTp*((d-~4)Hp>)-D, 

where D is the inverse image in C of the double points of ir (C). But now 
on C we have 

">*(#P 2 ) = Hpi-p, 

and of course 
D = T(p), 

so 
Kc = {d-4)Hp> 

T(p) + (d-4)p = (d-4)Hpl 

{d-4)p-T{p), 
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is constant as a linear equivalence class, and so T has valence k = (d—4). 
Consider now the coincident points of the correspondence T. For pGC, 

T(p) will contain a multiple point if it fails to contain (d—2){d—3) — 2g 
distinct points. This will be the case exactly when the projected curve has 
singularities other than ordinary double points; this may happen in the 
following three ways: 

1. If a line through p is simply tangent to C at another point q, then the 
image of q in irp(C)cP2 will be a cusp of Tp(C). (See Figure 10.) By the 
Plucker formulas, in the absence of other special behavior irp(C) will have 
8 = (d-2)(d—3)/2 — g — 1 double points apart from iTp(q), and so T(p) will 
contain (d-2)(d-3)-2g-2 points besides q; q is thus taken in T(p) with 
multiplicity 2. 

Note that (p,q) is not a coincident point of T~\ so (p,q) is a simple 
point of the curve of correspondence D. 

A line tangent to C and meeting C again elsewhere is called a tangential 
trisecant of C. We see that there will be one coincident point of T for every 
tangential trisecant to C. 

Figure 10 
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2. If a line through p meets C in two other points q and q', and the 

tangent lines to C at q and q' meet, then the image point irp(q) = "^(9') 6 
■^(C) will be a double point of mp{C), but not an ordinary one: the tangent 
lines to the two branches of irp{C) at irp(q) will coincide. (See Figure 11.) 
Such a double point is called a tacnode. Now, as we will see in Section 2 of 
Chapter 4, a tacnode drops the genus of a curve by 2, so if irp{C) has a 
tacnode, it will have only (d-2)(d-3)/2-g-2 other double points. T(p) 
thus contains (d-2)(d-3)-2g-4 points other than q and ?', and so each 
of the pairs (p,q) and (p,q') will be a coincident point of T. Again, since 
neither (p,q) nor {p,q') is a coincident point of T~x, they will both be 
smooth points of D. 

A trisecant p,q,q' such that T?(C) and Tq(C) meet is called a stationary 
trisecant of C; by the above, there will be two coincident points of T for 
every stationary trisecant to C. 

3. If a line through/? meets C in three other points qx, q2, and q3, then 
the image point i"/,(<7i) = ,n"/,(<72) = 7!>(<73) w u l be an ordinary triple point of 
trp(C). (See Figure 12.) Looking ahead again to Section 2 of Chapter 4, we 
see that a triple point drops the genus of a curve by 3, so that T{p) will 
have only (d—2)(d— 3)-2g — 6 coincident points other than qy, q2, and <73; 

Figure 11 
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each of the pairs (p,qt), (p,q-i), a n d {p,q?) will thus be a coincident point 
of T. Moreover, (p,qt) will by the same argument be a coincident point 
of T~\ so (p,q,) is in fact a double point of D. Thus, if L=plp2p3p4 is a 
quadrisecant of C, each of the 12 pairs (/>,-,/>■) will be a double point of D, 
and so there are 24 coincident points of T for every quadrisecant to C. 

Now, knowing the degree and valence of T, we can compute the total 
number of coincident points of T, so to find the number Q of quadrise-
cants to C we have to find the number of tangential and stationary 
trisecants. The number / of tangential trisecants is easy, since clearly the 
trisecants p~~q with <?e Tp(C) correspond exactly to the united points (p,p) 
of T. By the formula (*), 

t = (d-2)(d-3)-2g + (d-2)(d-3)-2g + 2(d-4)g 
= 2(d-2)(d-3) + 2(d-6)g. 

The number .? of stationary trisecants is somewhat more difficult to 
calculate. To find it, we introduce the bitangential correspondence S on C, 

Figure 12 
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defined by the curve 

G = {(P,q): p^q,Tp(C)nTq(C)¥=0} C C X C. 

For each pEC, the divisor S(p) is the branch locus of the projection map 
ITL of C from the tangent line L= Tp{C) to C at/? onto a line; since mL has 
degree d— 2, by the Riemann-Hurwitz formula 

degS = 2 g - 2 + 2(rf-2) 
= 2g + 2d-6. 

Since S is symmetric, this is also the degree of 5 _ 1 . We have, moreover, 

Kc = «t(-2HP,) + S(p), 

and because w£(//pi) = / / p 3 — 2/?, this yields 

S(p) + 4p = Kc + 2Hph 

S(p) + 4/7 = Kc + 2HP,, 

i.e., S has valence / = 4. 
Consider now the common points of the two correspondences T and S. 

(See Figure 13.) These can occur in two ways: if p,q,q' is a stationary 
trisecant of C with Tq(C)n Tg.(C)¥=0, then each of the pairs (q,q') and 
(q',q) will be a common point of S and 7\ Alternately, if p,q is a tangential 
trisecant with qETp(C), then (p,q) and (<7,/?) are both common points of 
5 and T. The number of common points of S and T is therefore 25 + 2;; 
we have by the formula (**), 

2s + 2t = 2( ( r f -2) ( r f -3) -2g) (2g + 2</-6) - 2g(d-4)-4, 

s = ( ( r f -2 ) ( r f -3 ) -2g) (2g + 2 r f - 6 ) - 4 g ( r f - 4 ) 
- 2 ( r f - 2 ) ( r f - 3 ) - 2 ( < / - 6 ) * 

= 2d(d-2)(d-3) - 2(d-2)(d-3) - 6(d-2)(d-3) 
+ 2g((d-2)(d-3)-2g-2d+6-2(d-4)-(d-6)) 

= 2(d-2)(d-3)(d-4) + 2g(d2-\0d+26-2g). 

We now have enough to calculate the number Q of quadrisecants to C. 
As we have seen, the total number of coincident points of the correspon-
dence T is t + 2s + 24Q\ by our formula (***), 

t + 2s + 24Q = 2{{d-2)(d-3)-2gf 

+ 2g-2((d-2)(d-3)-2g)-2g(d-4)2, 

i.e., 

Q = ±((d-2)(d-3)-2g)2 + (g-l)((d-2)(d-3) 

-2g-g(d-4)2-(d-2)(d-3)-(d-6)g 

-2(d-2)(d-3)(d-4)-2g(d2-\0d+26-2g) 
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Figure 13 

Omitting the explicit reduction, this gives 

Q = &d-2)(d-3)\d-4) -\g{d2-ld+ 13-g). 

One point: while the formulas derived in this discussion apply a priori to 
curves that do not exhibit degenerate behavior, it should be clear from the 
derivation how to account for such behavior. For example, if L=pt,...,p5 

is a quintisecant to C, we can verify that each of the 20 pairs (/>,,/?,) is a 
triple point of the curve D and so drops the genus of D by 3; going back to 
the derivation of (***), we see that each pair (/>„/>,) counts as six coinci-
dent points. L thus contributes 120 coincident points to T, i.e., in terms of 
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the last formula a quintisecant line to C is equivalent to 120/24 = 5 
quadrisecants. 

Finally we take the opportunity here of remarking that some enumera-
tive problems having to do with the extrinsic properties of more than one 
curve in P3 may also be solved by means of the Schubert calculus. For 
example, if C and C" are space curves, we may ask for the number of 
common chords of C and C . To answer this, let K(C)c (7(2,4) be the 
algebraic surface of chords to C, in the Grassmannian of lines in P3. The 
fourth homology group of G(2,4) is generated by the cycles 

o2(p) = {ICP3: pel] 
and 

* , , , ( # ) = { / c P 3 : ICH}; 

we have clearly 
# (a2-a2)=#(a l l - (T1 , ) = 1; #(ff2-°i,i) = 0. 

If we write 

V(C) ~ a-ol , + b-o2, 
then 

a=*(V(C)-olJ, b=*{V{C)-o2). 

These numbers are readily calculable. A generic hyperplane H will meet 
C in d distinct points {/?,} and so contain exactly the d(d— l ) /2 chords 
{PiPj)i^P consequently 

2 
On the other hand, forp a generic point of P3, the number of chords to C 
passing through p will be just the number of double points of the image of 
C under projection from/? into a hyperplane; by the Pliicker formulas, this 
is 

(d-l)(d-2) 
2 g' 

Combining, 

If C" has degree d' and genus g', and if C and C are in general position 
with respect to one another so that V(C) and V(C') meet transversely, 
then C and C will have 

*( V(C )■ V{C')) = ^ - O ^ V - O + (d-l)(d-2)(d'-l)(d'-2) 

-(d-l)(d-2)g'-(d'-l)(d'-2)g + gg' 
common chords. 
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Special Linear Systems III 

As promised earlier, we will use the results on correspondences to answer 
some of the enumerative questions arising from the Brill-Noether problem. 
We have seen that the generic Riemann surface of genus g = 2k has a finite 
number of pencils of degree k + 1 ; the question is, how many? We will 
answer this in cases g = 4, 6, and 8. (Note that in case g = 2 the answer 1 
has already been obtained.) 

g = 4. If S is a Riemann surface of genus 4, its canonical curve is a curve 
of degree 6 in P3. Now if Z) = 2/?, is a divisor of degree 3 on S, then by the 
geometric version of the Riemann-Roch, 1(D) will be 1 exactly when the 
points pj are collinear; for each pencil of degree 3 there will be one such 
divisor through a generic point p £ S. The number of such pencils is thus 
the number of trisecants to S through a generic point p E S—and this we 
have seen is 

n = \{d-2)(d-3)-g 

= 1 ( 4 - 3 ) - 4 = 2, 

i.e., there are two pencils of degree 3 on S. Thus, the generic Riemann 
surface of genus 4 is expressible as a 3-sheeted cover of P1 in two ways. 

It is interesting to actually locate these two pencils. We saw in the last 
section that the canonical curve of S is the smooth intersection of a 
quadric Q and cubic Q' in P3; generically the quadric will be smooth. 
Now a smooth quadric surface in P3 (discussed on pages 478-480 below) 
contains two families of lines {L,},{L,'}, each parametrized by (GP 1 ; 
since 5 is cut out on Q by the cubic Q', each line L, or L', will meet S in 
three points; the divisors 

D, = L n S and Z>/ = L', n 5 
then form two pencils of degree 3 on S. Conversely, if Z) = 23

=i/>, is any 
divisor consisting of three collinear points, then the line L=pxp2pz, 
meeting Q in three points, must lie in Q; L is thus an L, or an L't and D a 
D, or a D;. 

Note that in case Q is singular, S will contain only one pencil of degree 
3; the projection of S from any point of S into a hyperplane will have not 
two ordinary double points but one tacnode. 

g = 6. If D = S?= ]Pi is a divisor of degree 4 and dim|D | = 1 on a curve S 
of genus 6, then the divisor K- D will have degree 2g —2-4 = 6, and by 
Riemann-Roch 

h°(K-D ) = deg( tf- D)-g+l + h°(D ) 
= 6 - 6 + 1 + 2 
= 3, 
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i.e., the complete linear system \K— D\ will have dimension 2. Conse-
quently the number of pencils of degree 4 on 5 is the number of nets of 
degree 6; it is this number that we shall compute. 

Now by the geometric Riemann-Roch formula a divisor D of degree 6 
with dim|£>| = 2 on S consists of six points on the canonical curve of S 
spanning a 3-plane in P5; and if p,qES are generic points for every net of 
degree 6 on S, there will be one such divisor containing p and q. If 
D =p + q + r, + • • • + r4 is such a divisor, moreover, then the images of the 
points r, under the projection 

mL: S-+P3 

of S1 from the line L =pq onto a 3-plane will be collinear, and conversely, if 
any four points w£(r,) of irL(S) are collinear, then the pointsp,q,rv . . . , r 4 

all lie in the 3-plane spanned by L and {iTL{r^}. The number of nets of 
degree 6 on S will thus be the number of quadrisecants to 7rL(S) in P3. Since 
trL(S) has degree d = d e g ( S ) - 2 = 8 and genus g = 6, by our previous 
formula this number is 

n = 1 L - 6 - 5 - 5 - 4 - | 6 ( 6 4 - 5 6 + 1 3 - 6 ) 

= 5 0 - 3 - 15 = 5. 
We see that the generic Riemann surface of genus 6 is expressible as a 
4-sheeted cover of P" in five ways. 

g = 8. If D is a divisor of degree 5 with dim| D \ — 1 on a Riemann surface 
S of genus 8, then the divisor K—D has degree 14 — 5 = 9 and 

h°(K- D ) = deg(A-- D ) - g + 1 + h°(D ) 
= 9 - 8 + 1 + 2 
= 4, 

i.e., dim\K— D\=3. By the Riemann-Roch, then, D will be represented by 
five points spanning a 3-plane on the canonical curve of S, while K—D 
will be represented by nine points of 5 spanning a 5-plane. 

To compute the number of pencils of degree 5 on S, we first prove the 

Lemma. / / D,D' are two divisors of degree 5 on S, dim|D| = dim|D'|= 1, 
then there will be a divisor E G |K — D'| containing D if and only if D and D' 
are not linearly equivalent; if E exists, it is unique. 

Proof. We want to show that 

v 10, if D~D'. 

(Note that since C is generic, it has no pencil of degree 4; thus 

h°(K-D -D')<\.) 
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By Riemann-Roch, 

h°(K-D-D') = deg(K- £>- D') - g + 1 + h°(D + D') 

= 4 - 8 + \ + h°(D + D'), 

i.e., we have to show that 

h°(D + D')=l3' ! !S~5/ v 14, if D^D'. 

But now if h°(D + D') were 3—i.e., if \D + D'\ were parametrized 
by P2—then for any D0 G \D\, DQ G \D'\ the two lines D0 + 
\D'\ and DQ + \D\C\D +D'\ would meet; we would then have Z)0G|Z>'| 
and D~D'. 

On the other hand, any divisor GG\K—D\ consists of nine points 
spanning a 5-plane and so lies on a pencil {H,} of hyperplanes in P7; the 
divisors 

D, = (H,C)-G 

comprise the linear system {D,}. Clearly, then, for t¥^t', Dt and D,. will lie 
in no hyperplane in P7, i.e., K— D, — Dt,~K—2D is not effective. Q.E.D. 

Now suppose D = 2/_,/>, is any divisor on 5 of degree 5 and dim|D | = 1. 
Then by our lemma the pencils of degree 5 in 5 other than D correspond 
exactly to 9-secant 5-planes to the canonical curve S c P 7 containing D. If 
p],...,p5,ql,...,q4 is any such 9-secant 5-plane, then the images of the 
points q{ under the projection 

■nv: S ^ P 3 

of S from the 3-plane V=pu...,p5 will be collinear, and conversely. Thus 
the number of pencils of degree 5 on S other than \D\ is just the number of 
quadrisecants to ITV(S)CP3- iTy(S) has degree d=deg(S) — 5 = 9, and so 
this number is 

^ 7 - 6 - 6 - 5 - ^ 8 ( 8 1 - 6 3 + 13-8) = 1 0 5 - 4 - 2 3 = 13. 

Summarizing, we see that the generic Riemann surface of genus 8 may be 
expressed as a 5-sheeted cover of P1 in 14 ways. 

6. COMPLEX TORI AND ABELIAN VARIETIES 

The Riemann Conditions 

En route to our analysis of the relationship between a compact Riemann 
surface and its Jacobian, we given here an introduction to the general 
theory of complex tori. 
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First, we make a definition: for V a complex vector space of dimension 
« , A c F a discrete lattice of maximal rank 2n, the complex torus M = V/A 
is called an Abelian variety if it is a projective algebraic variety, i.e., if it 
admits an embedding in projective space. 

Our first task will be to determine when a complex torus M= V/A is an 
Abelian variety. Since the cohomology of M is easily expressed in terms of 
V and A, Kodaira's embedding theorem will give us necessary and 
sufficient conditions; later on, we will verify the sufficiency of these 
conditions by direct computation. To begin with, we make some general 
remarks about the cohomology of complex tori. 

Let M= V/A as above. Since A is a subgroup of V, M likewise has the 
structure of a group: for any ( i £ M , and any xE V over /x, the map 

T : V-> V fi 

: v *-*v + x 

induces a map T^ : M-^>M, called translation by p.. 
Now we have a natural identificaton 

for each ( i £ M ; accordingly, any hermitian inner product on the vector 
space V gives a Kahler metric on M, invariant under the automorphisms 
{T^}. We claim first that with respect to such a metric, the harmonic forms 
are exactly the forms invariant under {T^}. To see this, note first that since 
T^ preserves the metric, T* :A*(M)^>A*{M) sends harmonic forms to 
harmonic forms. Then, since TM is homotopic to the identity map and by 
the Hodge theorem %*{M) maps isomorphically to H*(M, C), 

T*: %*(M)-^%*(M) 

is just the identity, i.e., harmonic forms are invariant. But now an invariant 
form on M is determined by its values on the tangent space TpC(M) = 
Tp\M)®Tp"(M) to M at a point p, and this tangent space is naturally 
identified with the vector space V®V. Letting § *(M) denote the space of 
invariant forms on M, then, 

3*(M) = A*(TpX(M)*) a* /\*V*® A**7*-
But we know that topologically M=(Sl)2n, so the dimension of the space 
of harmonic forms of degree A; is I " 1; since %*(M) c $*(M), we count 
dimensions to obtain 

H*(M,C) = %*{M) = f\*V®/\*7*. 

Thus if z = (z,,...,z ) are Euclidean coordinates on V, {dzv...,dzn} and 



302 RIEMANN SURFACES AND ALGEBRAIC CURVES 

{dzx,...,dz„} the corresponding global 1-forms on M, 

X*(M) = C{dz,AdzJ}lJ 

with 
%»>«(M) = C{dz,Adz-J}*I=p,*J=r 

On the other hand, note that any loop ye / / , (A/ ,Z) with base point 
[0]G M lifts to a path y in V starting at 0 and ending at a point \ £ A c F ; 
since V is the universal covering space of M, we can make the identifica-
tion 

//,(A/,Z) = A. 

Let X1,...,A2nEA be lattice vectors forming an integral basis for A; 
A,,...,A2n will also be a basis for the real vector space V. Let xv...,x2n be 
the dual real coordinates on V and dxv...,dxln the corresponding 1-forms 
on M. Then 

I dxj = 8ip 

i.e., 

H\M,T) = Z{dxx,...,dx7n} 

and in general 

Hk(M,Z) = Z{dx,}*l=k. 

Thus we have two alternate bases for the cohomology of M: the first, 
{dza,dza} reflecting the complex structure on H*(M) and the second, 
{dXj}, reflecting the rational structure. Now the Kodaira embedding theo-
rem says that M is algebraic if and only if there exists a Hodge form on M, 
i.e., a closed, positive form of type (1,1) representing a rational cohomol-
ogy class. Moreover, if co is any such form, written 

" = — 2 — ^ Kp(z)dz« A dip, 

and rf/i is the invariant Euclidean measure on M with jn(M)= 1, we can set 

and 

CO = 2*a0<&«A<fe/| 2 

to obtain an invariant form that is again closed, positive of type (1,1), and 
integral. Thus M has a Hodge form if and only if it has an invariant Hodge 
form. Accordingly, to determine whether such a form exists, we have to 
relate our two bases for H*(M). 
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Let II = (77-,a) be the 2nXn matrix such that 

dxi = 2 Tiadza + 2 ~TT~ dza, 
a a 

i.e., such that the 2nX2n matrix ft = (11,11) gives the change of basis from 
{dza,dza} to {dXi). Then, if co is an invariant, integral 2-form, we can write 

u = l'2<lijdXi/\dxj 

with Q — (qij) an integral skew-symmetric 2nX2n matrix. In terms of the 
dza,dza, we have 

= 1 2 1ijnianjP dZa A dzp + 5 2 tfy^a*//? ^ a A <£/} 

+ 5 2 ^ K a ^ / J - ^W^ja)dz
a A ^/J-

From this we see that w is of type (1,1) if and only if the coefficient matrix 

is zero, and that if this is the case, then to is positive if and only if 

- , /—T 2 ViAWjfl - Wipltja) 
2 V - 1 V I,J i aP 

1 ('nen-'n'en) = —L-'nelT 2V^T 

is hermitian positive definite. Thus we have the 

Riemann Conditions I. M is an Abelian variety if and only if there exists an 
integral, skew-symmetric matrix Q such that 

T I £ > n = 0 
and 

We can_also express these conditions in terms of the square matrix 
fr=(n,n): 

'ft-G-ft-f'nVe-cn.iD-f'"-^11 'UQU) 
\'uj vn-e-n 'TlQuJ 

and ' n £ > n = T / I T g n ) = -'('Il-Q-U), SO M is an Abelian variety if and 
only if there exists an integral, skew-symmetric matrix Q with 

- ^ ' n . e - f t = (" ° ) * \ o -'HI 
with H>0. 



304 RIEMANN SURFACES AND ALGEBRAIC CURVES 

The usual form of the Riemann conditions is in terms of the dual 
change-of-basis matrix. For A,,...,A2„ an integral basis for A and ex,...,en 

a complex basis for V, we take the period matrix of A c V to be the nXln 
matrix fi = (wm) such that 

Then we have 

so that the matrix fi 

{dza,dza}. Thus 

Now 

a 

dza = '£waidxi, 
i 

= [ _ } gives the change of basis from {dxt} to 

In or fin=/„, flll = 0. 

V ^ l -S1-Q-
\o 

and so in terms of fi we can write the Riemann conditions as 

0 
-'H-

where H>0. But H >0 <=> H ~' >0 ; thus 

Riemann Conditions II. M is an Abelian variety if and only if there exists 
an integral, skew-symmetric matrix Q satisfying 

It will be noticed that the period matrix 0 of A c V depends on the 
choice of basis for both A and V. By normalizing our choice of both with 
respect to a given form, we can simplify the Riemann conditions some-
what. First, we prove the 

Lemma. If Q( , ) is an integral, skew-symmetric quadratic form on A = 
Z2n, then there exists a basis A,,..., A2n for A in terms of which Q is given by 
the matrix 

Q = (° 
o 

o 
8, e z. 

Proof. For each A G A the set of values { Q(X, A'), A' G A) forms a principal 
ideal dxZ in Z, dx > 0. Let 8, =min(<ix :\^A,dx^0), and take A, and An+1 
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such that Q(\,h,+ \) = 8V Then for every X E A , 5, divides Q(X,Xt) and 
£?(X,X„+1), and we can write 

i.e., 

A = Z{X„Xn+I}©Z{Xl,X„+1}X. 
Set A' = Z{X,,\,+ ]}X; we can repeat this process to obtain two elements 
X2,X„+2EA' with 

A' = Z{X2,X„+2}©Z{X2,X„+2}\ 
Continuing in this way, we obtain a basis (A,,...,X2„) for A having the 
desired properties. 

Note that the integers {8,} obtained satisfy S,|S2, 82|S3, and so on: if, for 
example, 8, )( S2, then for some k we would have 

0<e (^ ,+A 2 ,A„ + 1 +A„ + 2 )<8 1 . 
We observe that with the additional condition 8,|8, + , the integers 8, are 
invariants of the quadratic form Q. Q.E.D. 

We see from the lemma that if w is any integral, invariant 2-form on 
M= V/A, we can find a basis X,,...,X2„ for A such that in terms of the 
dual coordinates x,,...,xln on V, 

n 

w = S si dxi A dxn+;, 8,. e Z. 
1 = 1 

Now if <o is nondegenerate—that is, if w" =^0, as will be the case if to is 
positive—then 8„7t0 for all a, and we can take as our basis for the 
complex vector space V the vectors 

ea ~ V'Aa> a = 1,•••,«• 
The period matrix of A c V will then be of the form 

a = (A5,Z); 
such a period matrix is called normalized. As before, w will be of type (1,1) 
if 

QQfl'U = 0, 

i.e., if 

H I . o-A*1(Az)=H~T'z) 
= Z - ' Z = 0, 
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i.e., if Z is symmetric; and « will be positive as well if 

-V^T-a-a-'-'S >o, 
i.e., if 

0 - A * - , \ / A 5 - V ^ T ( A 8 , Z ) ^ V 0 ' - | ^ j - - V 3 T ( Z - ' Z ) . 2 . I m Z > 0 . 

Thus we have 

Riemann Conditions HI. M = V/A is an Abelian variety if and only if there 
exists an integral basis Xv...,K2n for A and complex basis e,, . . . ,en for V 
such that 

fi = (As,Z) 

with Z symmetric and Im Z positive definite. 

Note that the matrix II above likewise takes a relatively simple form in 
terms of the bases {A,,...,A2„} a n d lev-->e

n}
: solving 

iw i ' l s ) - ' " 
we see that 

with 

n = | n ; 

n i = ^ - A 5 - , Z ( I m Z ) - ' . 

The cohomology class [u>] of a Hodge form w on an Abelian variety 
M= V/A is called a. polarization of M. The integers 8a appearing in the 
expression 

« = 2 Kdxa/\dxn+a, 8a\8a + l 

for w in terms of coordinates {x,} dual to an integral basis for A are 
invariants of the class [w], and are called the elementary divisors of the 
polarization; [to] is called a. principal polarization if 8a = 1 for all a. 

Now if S is a compact Riemann surface of genus g with bases 8l,...,82g 

for / / , (5,Z) and «,,...,cog for / / ' ' (^Q 1 ) , the Jacobian variety 

Cg 

^ ) = Z { A „ . . . , A 2 J ' 
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where the A, are the column vectors. 

of the period matrix Q of S. We have seen in Section 2 of this chapter that 
if 5,,. . . ,82g is a normalized basis for / / , (5,Z), we can choose a basis 
<o„...,«g for //°(S,£2') such that 

| w a = Sia, 1 < / , a < g; 

the period matrix will then be of the form 

G = ( / , Z ) , 
and by the two Riemann bilinear relations also proved in Section 2, 
Z = X+Vzr\ Y is symmetric with Y>0. Thus f(S) is an Abelian 
variety, and moreover has a principal polarization given in terms of the 
basis {dXi} for H\%(S),2) dual to {A,} E7/,(£(S),Z) by 

In intrinsic terms, the Jacobian variety $-(S) = V(S)/A(S), where V(S) 
= H°(S,ti1)* and the lattice A(S)as#,(S,Z) is embedded in F(5) by 
integration. The polarizing form wG/ / 2 ( | (S ) ,Z ) sHom z (A 2 / / | (S ,Z ) ,Z ) is 
the skew-symmetric bilinear form 

Q: H}(S,Z)®zHt(S,Z)^Z 

given by intersection of cycles; the fact that the polarization is principal is 
a reflection of Poincare duality. Note that the polarizing class [a] does not 
depend on the choice of basis S,,...,S2g for H^{S,Z). 

A note: Up to now, we have indexed our complex basis {ea} and dual 
complex coordinates {za} for V by a= l,...,n; the integral basis {A,-} and 
dual real coordinates {JC,} by i=\,...,2n. Once we have normalized our 
basis, however, we can no longer maintain the notational distinction; we 
will instead denote the integral basis by 

{K>K + «}a-\.....n
 a n d { XaiXn + a j a - = l n-

Line Bundles on Complex Tori 

We will now give explicit descriptions of positive line bundles on a 
complex torus M = V/A. The fundamental observation, proved on p. 46, is 
simply that, since H\C",6) = H2(C",Z) = 0, any line bundle on V a C " is 
trivial. Thus if L-»M is any line bundle, the pullback m* L of L to V is 
trivial, and we can find a global trivialization 

<p: i r ' t ^ K X C . 
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Now for zG V, A E A , the fibers of m*L at z and z+X are by definition 
both identified with the fiber of L at IT(Z), and comparing the trivialization 
<p at z and z+X yields a linear automorphism of C: 

€<—{**L)z = L^z) = (77*L)Z+X ^ > C. 
Such an automorphism is given as multiplication by a nonzero complex 
number; if we denote this number by ex(z), we obtain a collection of 
functions 

{ e , e 6 * ( K ) } X e A 

called a set of multipliers for L. The functions ex necessarily satisfy the 
compatibility relation 

ex,(z+ X)ex(z) = ex{z+\')ex.(z) = ex+x,(z) 

for all X, A'EA. 
Conversely, given any collection of entire nonzero holomorphic func-

tions {ex}X e A satisfying these relations, we can construct a line bundle 
L—>M having multipliers {ex}: we take L to be the quotient space of 
VxC under the identifications 

(z,|)~(z+WzK). 
Note that by the compatibility relations, we can give such a collection {ex} 
by specifying e^ for some basis {A„} for A so long as the functions {ex } 
satisfy 

(*) eK(z+\p)eXg(z) = eXp(z+Xa)eK(z). 

Our aim now is to show that any line bundle L—>M can be given by 
multipliers {ex(z)} of a very simple character. We will do this in two 
stages: first, we will construct line bundles having arbitrary positive Chern 
class, using elementary functions ex; then we will show that any positive 
line bundle L~*M is determined, up to translation in M, by its Chern class. 

One simplification is immediate: If {A,,...,A2„} is any basis for A over Z 
with A,,...,A„ linearly independent over C, then we have 

v 
Z { A „ . . . , A „ } - ^ >' 

and we can factor our projection map ti: V^>M by 

Now we have also seen on p. 27 that 

7/ '((C*)",e) = / /2((C*)",0) = O, 
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and hence 

//'((C*)",0*) - ^ H2((C*)",I), 

i.e., any line bundle on (C*)" is determined by its Chern class. For any L 
we can choose our basis A,,...,i\2„ for A such that in terms of the dual 
coordinates x,,..., x2„ on V, 

n 

C\(L)= 2 SadxaAdx„+a. 

But xn+a is a well-defined function on V/I_{\v...,\), so [dxn+a]=0B 
HU(V/Z{\v...,\,}).Thus 

and consequently wfL is trivial. If we then take a trivialization <p:7r*L—> 
(C*)" X C and choose our trivialization <p of m*L to extend <p, we have 

eXa{z) = 1 , a = 1,...,«. 

Now suppose w is any invariant integral form, positive of type (1,1). 
Choose a basis A,,...,\2„ for A over Z such that in terms of dual 
coordinates x,,...,x2n on K 

/? 

« = 2 SadxaA dxn+a, 8a G Z. 

Since w is nondegenerate, Sa¥=0 for all a, and we can set 

«a = C \ » a = l,...,«; 

let z,,...,z„ be linear coordinates on V dual to the basis el,...,en. Then as 
before we can write 

(A„.. . ,A2„) = «, 

i.e., 

dz, 

dz„ 

with 

= 'Q(dxt,...,dx2„) 

a - (A, ,Z) ; 
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and again, by the Riemann Conditions III, w positive of type (1,1) implies 
that Z='Z, ImZ >0 . Our fundamental calculation is the 

Lemma. The line bundle L—>M given by multipliers 

eK = \, eXnJz) = e~2m\ a = 1,...,», 

has Chern class c,(L) = [to]. 

Proof. We first check that the multipliers given do indeed satisfy the 
relations (*) above. Clearly (*) is satisfied for a or /?<«; and writing 
z = (z«/i)> we have 

_ e~2m(za+Zali + z/3) 

as required. 

Now let <p: m*L—> V X C be a trivialization of IT*L inducing the multi-
pliers given. Then for any section 0 of L over UcM, 9 = <p*{ir*9) is an 
analytic function on w " '(£/) satisfying 

9(z+Xa) = 0(z), 

and conversely any such function defines a section of L. Now if || || is 
any metric on L, we can write 

\\9(z)\\2 = h(z)-\9(z)\2 

for any section 9 of L; evidently h will be a positive C°° function of z 
satisfying 

A(z)|*(2)|2 = | | 0 » | | 2 = h(z+\)\9(z+X)\2 

for any AeA; thus 
h(z+Xa) = h(z), 

h(z+Xn+a) = \e2™fh(z). 

Conversely, any such function h defines a metric on L. Now write 
Z = X+V^1 Y as before; since r > 0 , we can set W=(Wap)=Y~\ 
Then we claim that the function 

h{z) - e(*/2)2^«M--J-.->(*fi-^--2''1wi) 

satisfies the functional equations above. Clearly h(z + Xa) = h(z); for the 
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others, write 

logA(*+\,+y) = y 2 ^ ( ^ - ^ + 2 / ^ ) ^ - ^ + 2 / ( 7 ^ - Ypp)) 

= y S W^iz.-z^Zp-Zp-liYpf)*^ 2 Wa0(z„-za)-2iYpy 
z a,/) *• a,fi 

a,P 

= logA(*) + f E ^ ' 2 ' k - O + y 2 ^ - 2 / ( ^ - ^ + 2 / ( 7 ^ - Ypp)) 
Z. a Z a 

(since 7 f f = / a n d W='W) 

= logh(z) + m(zy - zy) + m(zy - zy) 
= log^(z)-477-Im(zY); 

hence 
h{z + \ + y) = \e2™fh{z). 

Now we can compute the curvature form 0^ associated to the metric in 
L given by h: 

SL = 93 log -

= -y33(E W^-ZX^-^-HYA 

= T a 2 ^ / ? ( ( 2 a - 4 ) ^ + ( ^ - ^ - 2 / r ^ y j a ) 
a,y8 

= ^ 2 WapdzaAdz0. 
a,/3 

We want to express this in terms of the basis {dxa,dxn+a}; we have 

so 

<&« = $,<&« + 2 zapdxn+p, 

dza = Sadxa + '2^ dxn+/j, 

@L = ^ 2 WapdzaAdzp 

= * 2 Wa0SaSpdxa A ^ 

+ «■ 2 »^fi«(^Y-Z^)<&ttArfx/i+1 

+ «■ 2 »^2^Z/fcrfxJ,+TA<feB+«-
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Since W='W and Z = 'Z, the first and last of these three terms are zero, 
and hence 

© = 7T 2 SaWap(Z/}y-Z/3y)dxaAdx„+y 

= -2^\A=T 2 8aWa/3YpydxaAdxn+y 

= -2TTA/^T 12SadxaAdxn+a, 
a 

and so finally 
= [«] . Q.E.D. 

To continue our description of line bundles on M we want to consider 
the set of line bundles L-^M having a given positive Chern class. We note 
that for any ju E M the translation T : M-^M is homotopic to the identity 
and hence for any line bundle L-+M, 

C,(T;L) = cx{L). 

Note, moreover, that if L is given by multipliers 

then r̂ f L can be given by multipliers 
e\ ,(2) = e\(z + i>) = 1 

i.e., ê  will differ from ex by multiplication by a constant e~2m,t". Con-
versely, if L' is any line bundle with multipliers e'x = 1 and e'x =<V^\ , 
caEC*, then, setting 

/* = 2"~2^~logCa ' * « e F' 
we have 

L ' = T ;L . 

Thus, to prove that any line bundle having the same Chern class as L 
must be a translate of L, it will suffice to show that any line bundle with 
Chern class 0 can be realized by constant multipliers. To this end we first 
note that the inclusion of exact sheaf sequences 

exp 

o—>z—>e -^e*-^o 

cx{L) = 
2n 

0 
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on any compact Kahler manifold X induces a commutative diagram 

HX{X,Q)—>H\X,0*) —> H\X,Z) 

T« T.. II 
H\X,C)—>H\X,C*) —> H\X,T). 

The map if represents projection of H\X,£.) = Hh0(X)@H°\X) on 
the second factor, and so is surjective. It follows that any cocycle yG 
H l(X, (9*) in the kernel of c, is in the image of tf, i.e., is cohomologous to a 
cocycle with constant coefficients; thus any line bundle on X with Chern 
class 0 can be given by constant transition functions. 

Now if L^>M= V/A is any line bundle with trivial Chern class, we can 
find an open cover U= {Ua) of M such that for each a,TT"'({/„) = {UaJ}j 
is a disjoint collection of open sets isomorphic via IT to Ua, and a collection 
of trivializations <pa : Lv -» Ua X C having constant transition functions { ga y}. 
We ca« /fen de//A?e constants {haj}aj by taking haoJo= 1 /or some a0,jQ and 
setting 

Kj = KyZaa- f o r aj,a',f such that Uaj n l/„y # 0 . 

It is not hard to see that by the cocycle rule on {gaa } this is well-defined, 
and the trivializations 

defined by 

patch together to give a trivialization of -n*L having constant multipliers. 
To shed some light on this argument, we will describe in more detail the 

geometry of the group of line bundles on M. Recall that by the exponential 
sheaf sequence 

Hl(M,I)-+H\M,6)-+H\M,6*) —» H2(M,Z) 

the group Pic°(M) of holomorphic line bundles on M with Chern class 
zero is given by 

P,c°(M) = ^ W l . 
H\M,T) 

Now, H\M,e) = %y(M) is the^space of invariant forms of type (0,1) 
on M, i.e., the space V* = Homc( V, C) of conjugate linear functionals on 
V. H \M, Z), on the other hand, is the space of real invariant 1-forms w on 
M having integral periods, that is, the space of real linear functionals on V 
taking integral values on A c V. The map 

H\M,Z)^Hl(M,0) 
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is given simply by 

toH> to 0,1. 

since for to real 

f w = r w
, o + f to 0 -

is integral for all A £ A if and only if 

2Re f t o 0 , e Z 

for all XeA, we see that the image A* of H'(M,Z) in H1(M,0) = V* 
consists exactly of conjugate linear functionals on V whose real part is 
half-integral on A c V . Thus Pic°(M) is again a complex torus, often called 
the dual Abelian varitey of M and denoted M. 

Explicitly, if xx,...,x2n are, as above, real coordinates on V dual to the 
basis A,,...,A2n» and we let x* denote the conjugate linear part of the real 
functional x„ then the x* form a basis for A*. Writing 

we have 

where, as we found above 
*;«2 7 ? ' , „ z

n . 

n = 
2 \ ^ l 

Reordering our basis {x*} for A* by setting 

Set -*/7 + a> yn + a -*a > 

we see that 

W + 1 . ■••»>'£,) = As
lZY-\z„...,zn) 

= ^lZ(yf,...,y:). 

Consequently, if we order the elementary divisors 8a so that S,|S2|- • • \Sn, 
we may set 
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we then have 

(yt,...,y:) = 8&\e;,...,e;) 
and 

{yU i, • • • .>*„) = *A~ 'Z<V '(*f, • • •, <)• 
The period matrix of M in terms of the bases (y*) for A* and (e*) for F* 
is then 

Since 5J5„ for all a, S^g-1 is again diagonal and integral; and since 

- f iA- 'zV 
and 

im(fiA"1zV) = *A-,>'AiI 

is again positive definite, we see that M is an Abelian variety; indeed, the 
original polarization on M induces a polarization on M with "dual" 
elementary divisors {S„/8a}. 

Now let L be a positive line bundle on M. We can define a map 

qpj.: M-*Pic°(M) 
by 

«P/.(JU) = L - ' ® T ; L . 

We want to describe <pL explicitly in terms of the bases {\a} for A and {ea} 
for K normalized with respect to L, and the dual bases {y*} for A* and 
{<?*} for V*. 

First, we trace out the map 

//o. i ( M ) ^ H i(M, 0) _» Pic°( A/ ), 

where 5 is the Dolbeault isomorphism. If 

is a constant (0, l)-form on M, then in each open set Ut of a sufficiently 
fine open cover we may write 

° = VM, 
where 

for a suitable choice of branch of za. The line bundle associated to a thus 
has transition functions 
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and, correspondingly, in terms of a suitable trivialization, multipliers 

ex (z) = e-
2"iS"°% ex + = e - ^ ^ o ^ -

Multiplying the trivializations by the function 

f(z) = e2"'2*7-7-, 
yields the normalized multipliers 

e , „ ( z ) = l , 

where 7 = I m Z as above. In terms of the coordinates x* on V, we see that 
the line bundle associated to 

2J CaXa ~ *) 2j°a Ca^afi'Py "Zy 

a= 1 ^ 
has multipliers 

eK = 1, eXn+iJ(z) = e-2OT'2^'c-z°« 

and, likewise, the bundle corresponding to 

ZJ CaXn + a ~ / T ■" C<x aP P 

has multipliers 

ex = 1, eA (z) = e2™-. 
A „ ' A » + /?V ' 

On the other hand, since the line bundle L is given by 

for any ft = 2 ju.ae„ G K, T* L is given by e^ = 1 and 
A n + „ ' 

thus (p(L) = L~]<8>T*L has multipliers 

eAo = 1 and ex = e^2™*1". 

In particular, if jii = ScaXa = Sca5aea, we see that <Pi,(2caA„) has multipliers 
ex = 1 and e, = e'2,"iS'c«, 

i.e., 
<Pz.( 2 c A) = - 2 cA**+Q = 2 fa^*' 

and if o = 2 c a \ , + „ = Sc„Za/8e/3, then <pL(2cA+«) h a s multipliers 
eAa = 1 and ex 
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i.e., 

(These last two assertions are equivalent, since <pL is complex linear and so 

= 2caZafi(Sn/8p)e* 

= 2 Catena)-

In any event, we see clearly from this that the kernel of q>L is exactly the 
subgroup of M generated by {80~1\ , ,5a

_ 1An + a}; i.e., that the line bundle L 
is fixed under exactly the II 5„2 translations 

( V 0GZ{fia-1An,5a- ,Al l + a}}. 

Thera-Functions 

Having described a positive line bundle L^>M on an Abelian variety 
M = V/K as a quotient of the trivial bundle VxC, we can accordingly 
realize global holomorphic sections of L as entire holomorphic functions 
on VssC" satisfying certain functional equations. These functions are 
called theta-functions, and by examining them we shall prove the 

Theorem. Let L—>M be any positive line bundle, and let 8u...,8n be the 
elementary divisors of the polarization c,(L) of M. Then 

1. dimH°(M,0(L)) = n a 5 a . 
2. H°(M,0(Lk)) has no base points fork>2 and gives an embedding of 

Mfork>3. 

Before proving this theorem, we make a few remarks. First, since KM = 0, 
we have by the Kodaira vanishing theorem 

hp(M, ©(£)) = h"{M,Q,"{L)) = 0, p > 0, 
and hence 

h°(M,6(L)) = X(L). 
On the other hand, we can find an integral basis {dxv...,dx2„} for 

H\M,I) such that 

and so 
cx{L)" = n\U8a e H2"(M,Z) a Z. 
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Thus assertion 1 may be thought of as a special case of the general 
Riemann-Roch formula, expressing the holomorphic Euler characteristic 
of a line bundle in terms of its topological invariants. 

Assertion 2, due to Lefschetz, is of a deeper character, and will emerge 
later. 

To prove the first statement, choose {A,,...,A2„} an integral basis for A 
such that in terms of dual coordinates x,,...,x2n, 

cx(L) = ^8adxa/\dxn+a. 

As before, set 
e« = sa~ \ 

and let z,, . . . , z„ be the corresponding complex coordinates on V, so that 
the period matrix fi of A c V is of the form 

B = (A5,Z) 

with Z = X+ V^^T Y symmetric and Y >0 . 
Now we have seen that the line bundle L is a translate of the bundle L0 

given by multipliers 

eK = 1, eK+a(z) = e-^\ 

Since h°(L) is clearly invariant under translation, we will prove assertion 1 
for L = T*L0, where 

Multipliers for L are thus 
p = 1 p = f,-2<-m'Z.„ 

x„ — ' ^„+„ ' 

and so global sections 0 of L are given by entire holomorphic functions 9 
on V satisfying 

0(z + \a) = 0(z), 9(z + Xn+a) = e-2'^-^-9(z). 

By the first condition, such a function 9 must have a power series 
expansion in the variables z* = e2m5» Za; we can write 

(•) 

/eZ" 

Now the second set of conditions gives us recursive relations among the 

9(z) = 2 a, 
/ez° 

= 2 «/ 
/eZ" 

= 2 «/ 

. 7 * ' l . . . 7 * < , 

.e2m2'A"^. 

.<?2m</.A8-'z>_ 
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coefficients a, of 9; to begin with 

/eZ" 

/eZ" 

But the second condition above asserts that 

0{z + \,+a) = e-^-^-Oiz) 

/eZ" 

= 2 «/+*„«, •« "" -« 
.„-'"'Z„<t.^25T/</,As-'z> 

/EZ" 

Comparing these two Fourier expansions for 9(z + \+a), we obtain 

*l+$„e„ 
, 2 O T < / ,A 5 - ' \ , + „> + 77,Z0<,. 

a,. 
Thus 9 is completely determined by the choice of coefficients 

{al}l: 0«/„<«„, 
and accordingly we have 

h°(M,6(L)) < TTfia. 
To prove equality, we have to show that the series (*) determined by an 

arbitrary choice of coefficients {tf/}/:0</ <« does in fact converge. Now we 
can write 

(>(*)= 2 ( 2 «,0+v-*2"<,0+A,, ,v'>) 
0<l0a<Sa W e Z " / 

= 2 ^ ^ - f 2 <w■**«'•*>). 
0 < / 0 <S„ l / E Z " / 

Let 

/ 6 ? 

2m</,z> 

be the series determined by the choice a, = l and the recursion relations 
above; by the linearity of these relations we see that the general theta-func-
tion is of the form 

Hz) = 2 a,9,Jiz), 
0</ 0 „<S„ 

and so it will suffice to prove the series (**) converges. 
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For convenience, set bt = a, +A ,; the recursion relations then read 

_ _2iri<( /<, + V )• <*f ' \ . + „ > + «'Z„ . „ 

_ e2»i</.\, + «> + 2'""<'o.V\*.> + '"'Z«.-

We can solve these relations by setting 

to verify this, we have 
u _ -7ri<(/+O.Z(/ + 0 > + 2'»-<A,-%,Z(/ + 0 > 
'+<•„ — 

_ .m</, Z/> + 2TJ7</,Z<?„> + m<<?„,Ze„> + 2m'<A,- ''O, Z/> + 2m<As '/0, Zex> 

_ g2W</,A„ + „> + mZM +2m<Aa- ' / 0 . \ , + „>£ 

since Z = 'Z, and Zea=\,+a. Thus the ft, given are indeed the solutions to 
the recursion relations. 

Now 

i £ I _ e - *</, rr> - 2 * < A S - '/„, r/>^ 

where Y=lmZ as above. But K is positive definite, and so 

</,r/>>c'- | | / | | 2 

for some constant c' > 0. Also, clearly 
|<A 8 - ' / 0 ,y /> |<c"- | | / | | 

for some constant c", and so for some constant c > 0 we have 

\b,\ < e~c^2 

for / sufficiently large. Thus the series (**) converges uniformly on com-
pact sets in C , and we are done. 

Note that in particular if cx(L) is a principal polarization of M, 
H°(M,6(L)) is one-dimensional and is generated by the section B corre-
sponding to the function 

0 ( z ) = £ e«</.Z/>.e2«</.0 
/ez" 

which satisfies the functional equations 
9(z + ea) = 8(z), 

and 
9(z) = 9(-z). 

This beautiful entire function is called the Riemann 9-function of the 
principally polarized Abelian variety (A/,[w]). 
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Note also that since h°(M,&(L))=l, the divisor 0 = [0] is uniquely 
determined by L and hence determined up to translation by the cohomol-
ogy class [«]; © is called the Riemann theta-divisor of the polarized Abelian 
variety (Af,[w]). 

It may help in understanding the last result to consider the following 
configuration: let A, X, x, e, z, 8, and Z be as above. Let A ' c V be the 
lattice generated by the vectors 

K = s
a~ K> K+a

 = A«+a; 
set A/ '= V/A'. Since A is a sublattice of index A = IlSa in A', the projec-
tion map 

m': M—> M' 
expresses M as a A-sheeted covering of A/', the deck transformations being 
just the translations {T( l}M e A / A . 

But now the period matrix for A ' c V in terms of the bases {A',} and {ea} 
is just 

B' = ( / , Z ) . 
Consequently if x\,...,x'2n are real coordinates dual to (A',}, the class 

[«] = [ 2 dx'aAdx'n+a] = [ 2 «„«&«A<fr„+a] 
is a principal polarization of M. Since L is determined up to translation by 
its Chern class ct(L) = [u], it follows that we can find a line bundle L'-*M' 
such that ■n'*L' = L. Summarizing, // L—>M = V/A is any positive line 
bundle on an Abelian variety, we can find an Abelian variety M' with 
principally polarizing line bundle L'-»M' and a finite map IT' : M-»M' such 
that m'*\J = L. 

It is fairly clear that the A sections 0/ corresponding to the theta-func-
tions ffj defined in the proof of assertion 1 are, up to multiplication, all 
translates of one another by the deck transformations of IT' : M-+M', and 
that the generator 9 of H°(M',6(L')) is given by 

AeA'/A 

We now prove assertion 2 for a line bundle L with cx(L) a principal 
polarization; the idea is to use the group law on the torus. Let L^M be 
principally polarized and normalize everything as in the last paragraph. 
We have 

H°(M,0(Lk)) 

= ( 0 e e ( F ) : 0(z + ea) = 9(z),9(z+Xn+a) = e-2k^+z-^9(z)}. 

In particular, if 9 is the Riemann theta-function for (M,L), then for any 
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QJz) = 9(Z + 1L)9{Z-1L)E:H0{M,V{L2)). 

Now if z*E A/, we can find jiGM such that 9(z* + fi)=£0 and 9(z* — ju)^ 
0; i.e., 0(1(z*)?tO. Thus the linear system \L2\ has no base points, and 
hence it gives a map iL2\ M-^>PN. 

To see that the map iLr.M-*PN given by the line bundle L3 is an 
embedding, let 9O,...,0N be a basis for H°(M,6(L3)), and set 

* ( * ) = 

*«>(*) 
90( 

dz r(z) 

£<■> az 
* ( * ) 

We will show first that the rank of J(z) is n + l , and hence that i£3 is an 
immersion. Let 9{z) be the Riemann ^-function and set 

S(z,n,p) = 9(z + ii)9(z + v)0(z-n-v). 

0 is a holomorphic function of the three variables z, ju, and v; for fixed p. 
and v, 0M ,,(z) = 0(z,jLi,f) is a global section of L3. Thus we can write 

&(z,ix.,v) = co(/i,»>)-0o(z) + --- + t / v ( M . " ) - ^ ( ^ ) 
with c, well-defined and holomorphic in p,p. 

Now assume that f(z*) has rank < n + 1 for some z* GM, i.e., that 

90, 9ft 
ao0,.(z*) = a . ^ z * ) + • • • + « „ - ^ ( z * ) 9z 9z„ 

for 0 < i < N. Then 

a0@(z*,n,v) = a{-r-{z*,n,v) + --- + an-^-{z*,ii,v) 
9z, 9z„ 

for all n, v. If we define the entire meromorphic function 

<p(z) = a 
9 log 9 

9z, 
(z) + aiogg, 

+ fl„ „ ° (z), 3z„ 

then 

2 d los 0 a, {z*,n,v) 
dz, 

1 
0(Z*,JU,JO 2 d 0 . , 

9z 
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for all /x,v. Now for any 11, we can find a v such that <p(z* + f)7too and 
<p(z* - JU — v)¥= oo, i.e., such that both z* + v and z* — /x — v are outside the 
polar divisor of <p; since <p(z* + ju) + <p(z* + v) + <p{z* — xi — v) = a0, it follows 
that <p(z* + /x) is an entire holomorphic function of /x. Now clearly (jp(z + ea) 
= <p(z); and since 

9{z + Xn+a) = e-2m<^ + z«»/2)0(z), 

l o g 0 ( z + X „ + J = - 2 * i ( z a + ^ ) + log0(z), 

i.e., 
<p(z+^n + a) = <p(^)-2m-aa . 

Thus each partial derivative 3qp/3z, is periodic for the lattice A, hence 
bounded in F s C and therefore constant. Consequently <p must be linear; 
write 

<p(z) = ^ba-za + c. 
a 

But <p(z + ea) = <p(z)=>6a=0 for all a; hence <p(z+A„+a) = <p(z) = c. Then 

<p(z + \„+a) - (p(z) = 2m-aa => aa = 0 for all a. 

We deduce that the presumed linear relation 

is trivial, and iLi is an immersion. 
It remains to show by a similar argument that iLi is one-to-one. Suppose 

there exist z , ,z2EC" with 
9i{zx) = p-9i{z2) for all/; 

we will prove that z, and z2 represent the same point on M. From the 
general relation 

©(^,")= 2 C,(M,"K(2) 

it follows that 
6(z1,tt>») = 9(zl + n)ff(zi + p)9(zl-n-p) _ 

e(z2, / i , r) 0(z2 + /x)0(z2 + ,>)0(z1-fx-J ') P 

identically in /x and J>. For any /x £ C", we can find v such that 
9(Z1 + V),9(Z1-H-V\9(Z2+V),9(Z2-VL-V) 

are all nonzero; consequently 0(z, + [i)/0(z2 + fi) is a nonzero entire func-
tion of /x. Then we can set 

, , , 9(z. + z) 
^ z = l o g ' ' 

9(z2 + z) 
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and obtain an entire holomorphic function. By the functional equations of 
the ^-function, 

^(z + ea) = ^(z) + 27riba, 6„eZ, 

<KZ + *n + a) = *P(Z) ~ 2™(Z\ - Zl)a + 2 w^a- Ca <= Z" 
As before this implies that dxp/dz, is constant for all /, so we can write 

\p(z) = 2777 2 Clp-Z + d. 

Then \p(z + ea) = \l/(z) + 2mba=$ap = b/3EZ; this in turn implies that 

=> 2m(Zj - Z2)a = -^ICa + 2 ' r ' 2 a/3Za/} 

i.e., z, — z2EA. 
Finally, note that for L-»Af an arbitrary positive line bundle, we can 

construct as before an Abelian variety M' with principally polarizing line 
bundle L'-*M' and finite map 

77': M^M' 
such that 

77'*(L') = L. 

Since the map 77' is nowhere singular, the argument above applied to L' 
shows that i£3 is likewise an immersion, and that for p and q with 
-n'(p)^-n'(q), iLi(p)^iLi(q). That iL3 separates points in ir~x(p) can be 
seen directly from the explicit form of the 0-functions given on p. 319. 

Q.E.D. 
The first case beyond curves is the embedding 

iL,: M ^ P 8 

of a principally polarized Abelian surface. As a special case, if M=EXXE2 

is the product of two elliptic curves, LX^>EX and L2-*E2 line bundles of 
degree 1, and t^:/?,—»P2 the corresponding embeddings, then L = wfLl<8> 
TT*L2 is principally polarizing, and iL, is just the Segre map P 2 x P 2 - » P 8 

applied to M= El X £ 2 ^ P 2 X P2. 

The Group Structure on an Abelian Variety 

To close our discussion of complex tori, we want to make a few general 
remarks about the group structure on an Abelian variety. 
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Any complex torus A/ = C"/A is a complex Lie group—that is, a com-
plex manifold having a group structure in which the group operations are 
holomorphic. Conversely, we have 

Proposition. Any connected compact complex Lie group M is a complex 
torus. 

Proof. We first show that M must be commutative. For every g G M, let 
Ad( g) denote the automorphism of M given by 

Ad(g) : h\->ghg~\ 

Clearly the identity e is a fixed point of Ad( g) for all g G M. 
Now let Zi,...,z„ be holomorphic coordinates around eGM, and for 

each gEM, write out the power series expansion of Ad( g)*z, as 

Ad(g)*(z;) = 2 ait_in (g )z , ' - . -z> . 

For each index (/,,...,/„) the function a, , (g ) is clearly a holomorphic 
function of g ; since M is compact and connected, it follows that a, , , (g) 
is constant. Thus 

Ad(g)*(z,.)=Ad(e)*(z,.) = z„ 

and so 

Ad(g)* s /, 
i.e., M is commutative. 

Next, for any tangent vector v G T^{M) to M at e, let let t5 be the vector 
field on M defined by 

v(g) = (tgUv), 

where tg: M-+M is mult ipl icat ion by g; clearly v is holomorphic . Let 
<pt v : M^>M be the endomorphism of M obtained by integrating the vector 
field v to time t, and let 

be the exponential map, defined by 
"■(») = <Pi.v(e)-

Since M is commutative, w is in fact a group homomorphism. Thus M is 
the quotient of T^(M)^C" by a discrete subgroup, which must be a lattice 
A; since M is compact, A must have maximal rank In, and hence 
M = C / A is a complex torus. Q.E.D. 

Note that if A/=C"/A, M' = Cm/A' are two complex tori a n d / : M^M' 
any holomorphic map, then / lifts to a map 

/ : C-+Cm. 
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We see then that in terms of Euclidean coordinates z = (z, , . . . , z„) and 
w — (wl,...,wm) on C" and Cm respectively, the Jacobian matrix 

is a well-defined global holomorphic function on M, hence constant. It follows 
that / is an affine linear transformation, and we have 

Proposition. Any holomorphic map between complex tori is a group homo-
morphism followed by a translation. 

An Abelian variety is a homogeneous algebraic variety—that is, it admits 
a transitive group of biholomorphic automorphisms. Other homogeneous 
varieties are Grassmannians, quadrics, etc. There is an important dif-
ference between these two types. In the latter examples the automorphisms 
may be taken to be protective transformations—i.e., for a suitable embed-
ding M c P^, the automorphism group Aut(M) is just the group of linear 
automorphisms of P^ leaving M fixed. On the other hand: 

Theorem. / / M c P N is an Abelian variety, the group of automorphisms of 
M induced by linear transformations on P N is finite. 

Proof. Let L-+M be the hyperplane bundle on M. Then if y: M-»A/ is 
any automorphism induced by a linear transformation of PN, clearly 
<p*L = L. But L is positive, and so it is preserved by only a finite group of 
translations of M. Thus it will suffice to prove that the group of automor-
phisms (jp of M fixing L and fixing the point p = TT(0) in M is finite. Now 
any such automorphism lifts to a linear transformation <p: C - » C " fixing 
the lattice A c C " ; since <p takes L to itself, moreover, <p must be unitary with 
respect to the hermitian inner product given by c l(L)EH1 , '(M) = V®V. In 
particular, <p must take each lattice vector A, in a basis to a lattice vector of 
the same length. But there can be only a finite number of such lattice 
vectors for each /, and so the result is proved. 

Intrinsic Formulations 

It is frequently convenient to have the results on Abelian varieties ex-
pressed in a coordinate free manner, and we shall now give this together 
with a few applications. 

Suppose that VR is a real even-dimensional vector space containing 
a full lattice A, and with a decomposition of the complexification Vc = 
VU®U 

(*) Vc = V ® V, 
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into conjugate subspaces being given. Then the image of A in Vc projects 
onto a full lattice in V which we still denote by A; and 

M = V/A 

is a complex torus. We will see in the next paragraph that every complex 
torus arises in this way with VR = A<S)ZM. 

The natural isomorphisms 

A s / / , ( M , Z ) , V* a H°(M,Ul) 

have already been noted. If dimc V= n, then by Kodaira-Serre and Poin-
care dualities 

N / / " - l " ( M ) , A s Hln~\M,T). 

It follows that KR = A®ZIR is canonically isomorphic to H2"'l(M,U) with 
(*) being the Hodge decomposition 

H2n~\M,C) = H"-1 "(A/)© H"-'n(M) . 
According to the proposition in the preceding section, an arbitrary 

holomorphic mapping 
V V 

Y A A 
is given by an affine linear mapping F—> V. To see explicitly what this 
mapping is, we compose <p with a translation so that <p(e) = e' and let 

$ : A - » A ' 
denote the induced map on homology. Since <p* preserves the Hodge 
decomposition, we see that 

<t>: V-+ V, 
and this is the linear mapping inducing <p. 

The Riemann conditions for the existence of a polarization may be 
formulated as follows: A class in H2(M,Z) is given by a bilinear form 

Q: A ®ZA ^ Z, Q(X,X') = - Q(\',\). 

Identifying A® Z C with V® V, the bilinear relations are 

Q(v,v') = 0, v,v'GV, 

-V^l Q(v,v)>0, O^vEV. 

For example, if S is a compact Riemann surface with Jacobian variety 

US)-
 H°>{S) 

ns) H\s,zy 
the principal polarization given by the divisor 0 is that given by the cup 
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product 

H\S,Z)®H\S,Z)^Z, 

which is unimodular by Poincare duality. In general, if Q has elementary 
divisors 5,,...,S„, then A = 5,- . . . •§„ is called the Pfaffian of Q and 

det£> = A2. 
We shall use this intrinsic formulation to construct the Poincare line 

bundle 

P^M XM, 
where M = Pic°(M) is the complex torus dual to M. Recall that Pic°(M) is 
defined to be the group of holomorphic line bundles with first Chern class 
zero. Via the cohomology sequence of the exponential sheaf sequence we 
make the natural identifications 

KcW^W) 
Hl(M,Z) 

« - j £ , A* = Hom(A,Z) 

and denote by P^M the line bundle corresponding to £EPic°(Af). 

Lemma. There is a unique holomorphic line bundle 

P^MXM, 
called the Poincare line bundle, which is trivial on eXM and which satisfies 

P\MXH) = Pi-

Proof. Using M=H°'\M)/H](M,Z), the cohomology sequence of the 
exponential sheaf sequence and Kiinneth formula give 

H\M X M,S)^H\M X A/,6*)-» H\M X M,Z)^H2(M X A/,0). 

T T 
H\M,e)®H\M,B) H\M,Z)®H\M,Z) 

■T 
Hom{H \M, Z), H '(A/, Z)) 

Now the identity / G Hom(H '(A/, Z), H '(A/, Z)) has Hodge type (1,1) since 
it preserves the Hodge decomposition on Hl(M,C). By the Lefschetz 
theorem on (1,1) classes, then, we obtain a holomorphic line bundle 
P-*MxM with cl(P)=I. The restriction P\MX{i) has zero Chern class, 
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and hence is P ^ for some holomorphic mapping 

<p: M-»Pic° (M) . 
Normalizing so that tp(e) = e, which is achieved by multiplying P by 
ff*P_£ where £0=(p(e), the induced homology mapping is, by construc-
tion, just the identity. Thus <p is also the identity, and this proves the 
existence of the Poincare bundle. 

If P,P' are two such line bundles, then Q = P*®P' has the properties 
<2|MX{£} a M X C ; Q\{e) X M ss M XC. 

Denote the second trivialization by \p and let <T(A, £) e <2(X ?) be the unique 
section of Q\Mx{() which has the value ^ " ' ( O a t (e>£)- Then a is a 
nonvanishing holomorphic section of Q, which must then be the trivial line 
bundle. Q.E.D. 

For L-+M a positive line bundle we set L®P = -n^L®P on MxM; 
then 

L9P\MM(]^L<8>Pi 

where the last step is a definition. For use in Section 5 of Chapter 3 on 
differentials of the second kind, we will prove the 

Proposition. There exist A sections 0j(X, | )eH°(MxM,0(L®P)) inducing 
a basis of H°(M, 6 (L{)) for each £ e M . 

The proof will follow some preliminary observations on the map 

<pL: M —> M 

defined by 
<pL(\) = rZL®L* 

which was discussed in the preceding section. Since <pL(e) = e, according to 
our general remarks q>L is uniquely specified by the induced homology map 

Q>L: A->A* 

: H2"-\M,Z)^>Hom(H2"-\M,Z),Z). 

We will compute <5L, thereby giving another proof of the fact that <pL is an 
isogeny—i.e., a finitely sheeted covering mapping—of degree A2. 

For this we consider the group law 
m: M X M^>M 

given by 

m(X',X) = X' + \ . 
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By construction 

(*) <pL(\) = vtL*®m*L\MMX). 

If x},...,x2„ are real coordinates on VR such that the Chern class of L-+M 
is 

a 

then using (ua,Vp) as corresponding coordinates o n M x M 

™*u = 2 $a(dua + dva) A(dun+a + dv„+a). 
a 

If i j e# 2 " _ l (A / ,Z ) , we let T),EH2"-\MXM,I) be the class wfij, and 
similarly for rj2. From (*) we easily deduce that <&L is given by the bilinear 
form on H2n~\M,Z) defined by 

$ L ( W ) = [ W*WAT?,AT)2. 
JMXM 

For the explicit computation we write 

V = 2 ( - l ) ' ~ ' i 7 / * C i A - - - AdXjA--- Adx2n, 

V = 'Z(-l)}~lyjdxlA--- AdxjA--- Adx2„, 

and then by the formulas for m*o> and <&z 

$/.(»»> *»') = £ Ki^aVn + a-Vn + aVa)-
a 

This implies the previous assertion that 

(pL: M-+M «■ an isogeny of degree A , or, equivalently, the line bundle 
L—>M is fixed exactly under the group of translations 

Returning to the proof of the proposition, the equation 

£ = <PL&) 

has A2 solutions \,(0- If 0(z)E0(K) is a 8-1 unction giving a section of 
L-*M, then 6x{z) = 9(z+X) gives a section of TJfL = LO)L (X). Now if 
p:M XAf—>A/XA/ is the isogeny defined by P(A',A) = (A',<PL(A)), then 
9(z,X) = 9(z + X) gives a section of 

<L®p*P = p*(L®P)-> MxM. 

Since 0(z + \,(£)) = 9{z + Aft(£)), this section is induced from a section 
ff(z,lj,)EH0(MxM,tS(L®P)). In this way we may construct the sections 
required by the proposition. Q.E.D. 
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We conclude by discussing some complex tori which are intrinsically 
associated to an arbitrary compact Kahler manifold M. Recalling the 
Hodge decomposition 

H2q~\V,C)= © Hrs(M) 
r+s=2q-1 

from Section 1 of Chapter 2, we set 

Vq = Hq-x-q{M)® ■ ■ ■ © HQ'2q~x(M) 

for 1 < q < n = dimAf. Then 
H2q+\M,£)= Vq®Vq, 

and, if we let A^ denote the image of H2g+i(M,Z)-^Vq, then the ^th 
intermediate Jacobian is defined to be the complex torus 

i 

We shall discuss briefly the extreme cases q = 1 and q = n. 
When q=\, we find the Picard variety 

" V ' H\M,Z) 

= Pic°(M). 
For q = n we obtain the Albanese variety 

*"K ' H2"-\M,T) 
_ //°(M,12')* 

/ / , (M,Z) 
= Alb(A/), 

where the last step is a definition. Now, for the same reasons as in our 
discussion of Abel's theorem, choosing a base point p0GM and basis 
wI,...,w<7Gi/°(A/,fil) the map 

ju: Af->Alb(M) 
given by 

\JPo JPo I 

is well-defined and holomorphic. The induced mappings 

H,(M,Z) 

ju*: H°(Alb(M),il]) ^ H°(M,Q,X) 
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are, by construction, isomorphisms. Using our intrinsic formulations, we 
have 

Pic°(Alb(A/))= ^ ' W 

Alb(Pic°(A/)) = 

= Pic°(A/), 

H2n~\M,Z) 

= Alb(A/). 
In particular, Alb(M) and Pic°(A/) are, in a natural way, dual complex 
tori. 

Suppose now that u)GHll(M)nH2(M,I) is the Chern class of a 
positive line bundle. Then, by the Hodge-Riemann bilinear relations, the 
bilinear for.Ti 

given by 

Q: A , ® A , ^ Z 

0(T,,7)')= f ( 0 " - ' A T ? A T J ' 
JM 

induces a polarization on Pic°(M), which by the previous discussion 
induces a polarization on the dual torus Alb(M). For L-»Alb(M) a 
positive line bundle and P—>Alb(Af)xPic°(Alb(A/)) the Poincare bundle 
we set Z,£ = L®.P|Alb(M)x{£), where £EPic°(Alb(M)). Then for each section 
0E//°(Alb(A/),L) we have constructed ^G//°(Alb(A/),Lf) . Pulling this 
back under the canonical mapping 

JU: A/-»Alb(M) 

and making the previous identification Pic°(Alb(M))sPic°(A/), we deduce 
that: 

There are holomorphic line bundles L̂ —»M parametrized by | G Pic°(M) 
with Lj®L* = £, and holomorphic sections 9^ G H°(M, 0 (L{)) depending 
holomorphically on £. 

If q=\b\(M), then setting D^ = (8i) this last assertion was classically 
stated as saying that on M there is a family D( of oo9 linearly /^equivalent 
divisors. 
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7. CURVES AND THEIR JACOBIANS 

Preliminaries 

Let 5 now be a compact Riemann surface of genus g. Choose a canonical 
basis {a^...,ag,bx,...,bg} for / / , (5,Z), so that 

# (^)=*(H) = o, # KV = V 
let w,,...,wg in turn be a basis for H^S^tt*) normalized with respect to 
{aa,ba}, i.e., such that 

aa 

Recall that the Jacobian f(S) of S is given by $(S) = Cg/A, where A is 
the lattice generated by the vectors 

ea-\,-(/^„...,/^) 

\ + . - ( / « „ . . . , / ^ ) . 
'ba

 Jb„ 

By the Riemann bilinear relations, the period matrix fi of A c Cg is of the 
form 

0 = (/,Z) 
with Z = 'Z and Y=lmZ>0; thus if we let xi,...,x2g be real coordinates 
on C* dual to the real basis {\}, the differential form 

<o = ^dxa/\dxn+a 
a 

represents a principal polarization of f(S) = Cs/A. In terms of standard 
complex coordinates z = (z,,...,zg) on Cg, we can also write 

« = — 2 ~ 2 >W <**« Adzfi 

with Y = lmZ as above. 
(Note: Inasmuch as the Jacobian of a Riemann surface is always 

principally polarized, we will, after normalizing as above, write ea for Xa, 
and 

Za = (Zal,-..,Zag) = Jj «„. . . ,J wgj 

for \ , + „ . ) 
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Let L be the line bundle on %{S) with Chern class [to], translated so that 
a global section 0 of L is represented by the Riemann theta function 
0 e 0 ( C ) satisfying 

0(z + ea) = 9{z), 9(z + Za) = e-
2^z° + z^9{z); 

let &cfy(S) be the divisor of the section 9. 
Now, choose once and for all a base point z0 G S, and let ju: S-+f(S) be 

the map given by 

«z)-[j\,...,f\). 
We compute first of all the intersection number of the curve fi(S)cj-(S) 
with the divisor 6; to do this we simply count the zeros of the section JX*9 

of ii*L on S. Assume the cycles aa,ba are disjoint except for a common 
base point and, as in Section 2 of this chapter, represent 5 as a polygon A 
in the plane whose sides correspond in order to the cycles a1,bl,a^\b{'1, 
etc. (See Figure 14.) Then if fi: A-»Cg is the obvious lifting of n given by 
integrating from z0 to z in A and 0e6(C") is the Riemann ^-function 
above, we see that 

number of zeros of ji*9 = f d\og9(p(z)). 

To evaluate this integral, we consider together the contributions of the 
sides cip and ap~', bp and bp ' in 9A. If z,z* are corresponding points on ap 

Figure 14 
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and cip \ respectively, we have 

i.e., 
£(**) = ji(z) + Z^. 

Thus 
0(ji(z*)) = e-2"(*<*) + z«'/2)tf(jS(z)), 

so 

^ = - f rflog0(£(z)) + \ = f dlog9(fL(z)) 

f dloge~ 2m'('I<')/J + z«./0 
' — i •/„.-" 2wV-l 

= ( d{L{z)p 
Jaf> 

Similarly, we see that for z,z* corresponding points on b0,bp\ 

lL{z*) = ji(z)-e0, 

hence 9{jx{z*)) = 9(fi,{z)) and 

(.) ^-f d\og9(ii(z)) + ^-.[ rflog*(/i(z))-0. 
Zm Jb/j liri Jb-1 

Adding up the contributions from all the sides of A, we find 

deg/x*L = X—r f dlog9(ii(z)) = g. 
2wV- l Jd* 

Note that we assume in the course of this computation that fi.*9 ^ 0 on S; 
if this is not the case, we may take instead of L the translate LX = T£L and 
corresponding section 9x(z) = 9(z-\)eH°(f(S),6(Lx)) for a suitable Ae 
C . 

Another way to compute degju*L is topological: 

degft'L = fc,(,i*L) = / > c , ( L ) = / > ( ] > > „ A<**„+a). 
■'S •'S ■'S \ a ' 

Now /t*(aa)=Aa, M * ( ^ « ) = \ + « . and so 

•/"0 •/M(a/J) 

(p*dxa=( dxa=0. 
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From this we see that [ji*dxa] is Poincare dual to the cycle — ba, and 
[ft*dxn+a] is dual to +aa. Thus 

[ ^*(dxaAdxn+a) =*(-ba-aa) = 1, Js 
hence 

deg/x*(L) = f p*('2 dxaAdx„+a) = g. 

Now let 6 = (0) denote the divisor of the line bundle L and @A = 0+X = 
(6X), where 9x(z) = 0(z - X), denote the divisor of the translated bundle 
Lx = T{*L. Since c,(LA) = c}(L), we have shown by the last computation that 
for any A 6 £(S), either 

1. ju(S)c0x; or 
2. /i(5) intersects 0X in exactly g points, counting multiplicity. 
For \G$(S) such that n(S)£@x, write the divisor 

(/I***) = *,(*) + ••• +Z,(A). 

Now by the Abel and Jacobi theorems, the point AE^(S) represents a 
linear equivalence class of divisors of degree 0 on S. In fact, it turns out 
that up to a constant K, X is just the class of the divisor 2z,(A) — g-z0. We 
express this as the 
Lemma. For a suitable constant KE$-(S), 

£/iU-(A)) + «c = A 
/'— 1 

for allXef(S) such that n(S)Z.Sx. 

Note that this lemma gives our promised explicit solution to the Jacobi 
inversion problem, at least for a general XEf(S) such that the curve n(S) 
does not lie in Qx. 

Proof. Represent S again as a polygon A in the plane, with ji: A—»Cg the 
corresponding lifting of fi. jl*9x vanishes exactly on the points z,(X), and so 
by residues 

Sft ,U-(A))- ' f Ma(zMlog0A(,I(z)). 
2TTV-1 JM 

We evaluate this integral as before by considering corresponding points 
z,z* on sides a^,a^x of 8A. Since 

h(z*) = £„00 + za0, 

the functional equation for the ^-function gives 

0A(/Z(z*)) = e-2""(^)+z»/2-\>)ffA(/i(z)) 
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hence 

dlogOx(ji(z*)) = dlog9x(ji(z))-2irV=l-ait(z). 

Consequently 

2 
—$==r(f ii*(z)d\oMii(z))+f iia(z)dlog6x(ii(z))) 
77V — 1 \Jap Jap' I 

= - - ~ = r [ rflog0A(/I(z)) + Zap f Up(z) + f /x0(z)^(z) . 

The last two terms of this expression are independent of X and hence 
may be absorbed in the constant na. As for the first term, if z, and z2 are 
the endpoints of the arc ap, then jS(z2) = jS(z1)±e/3; hence 9x((i(z})) = 
*x(£(*2))and 

L _ r r f l O g 0 A ( / I ( z ) ) G Z . 
27TV — 1 Jap 

Thus the first term must likewise be constant and can be absorbed in K„. 
Now if z and z* are corresponding points of bp and bp\ we have 

j2(z*) = /I(z) - <>„, 0X( £(**)) = 0A(|u(z)); 

so 

1 - ( ( jiZa(z)</log0A(/I(z))+f fZa(z)</log0A(/I(z))) 

' ^ f dlog9x(fi(z)). 
1 •% 

Again, if z, and z2 are the endpoints of bp, we have j5(z2)=/I(zl)+Z^; 
hence 

*A( /* (* 2 ) ) = e _ 2 * ' ^ ( * ) -* ' + z«' /2)»A(/i(z,)), 

^ * f dlogOx(ji(z))-\fi = jifi(z) + ̂  (modZ). 
277-V — 1 "/6/?

 Z 

The expression on the right does not depend on A; thus the expression on 
the left must be constant and can be absorbed into KB. Adding up the 
contributions from all the sides, we finally obtain 

2 A,(z,(A)) = L . f iLa{z)d\og9x{jl{z)) = Xa + Ka. Q.E.D. 
2 7 7 - V - l JSA 

Following our discussion of Riemann's theorem, we will be able to identify 
the constant K and determine exactly when /x(5,)c©A-
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Riemann's Theorem 

We can use our last result to obtain a geometric description of the divisor 
0 of 6. It will be convenient to change our notation slightly, and denote by 

D=Pl + ---+pd&S^d) 

an effective divisor of degree d, and by z, a local coordinate around />,. 
Once we have chosen z,, we may define functions Ua around pt by 

fia is the function we have previously written as coa(p)/dZj. 
As before, we define 

by 
M(/>I + • • • +pd) = M/>i) + • • • + \i(pd) 

"p, - 2/> SX Pt> 

At a point D=px + • • • +/?d with the points/*, distinct the Jacobian matrix 
of the map p. is given, in terms of the coordinates z,,...,zd on S(d), by 

H^) = 
«,(/>,) ••• &,(/».) 

TTiis matrix has maximal rank exactly when the points /?, are linearly 
independent on the canonical curve of S; since this is generically the case 
as long as d < g, it follows that for d < g the image 

Wd = n(S(d)) 

is an analytic subvariety of dimension d, and since the fibers of ft, are linear 
spaces, that the map /i is generically one-to-one. The geometry of this 
mapping—especially its relation to the special linear systems on S—will 
be examined in the following two subsections. 

We have intrinsically associated to the Jacobian f(S) of S two divisors, 
unique up to translation: the divisor 0 of the line bundle L—>f(S) with 
Chern class given by the intersection form on Hl(S,Z)^Hi(f(S), Z), and 
the image Wg_x of 5 ( g _ 1 ) under ju. The first of these divisors is defined 
purely in terms of the linear algebra of f(S) and [w], while the second 
involves directly the geometry of 5 and ju. Of fundamental importance, 
accordingly, is 

Riemann's Theorem 
0 = Wg_x + K, 

where K is the constant appearing the last lemma. 
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Proof. We first show that Wg_x C0_ K . To see this, let D=px-\ +Pg^ 
5 ( g ) be a generic divisor, so that the points/?, are all distinct, JU : S(g^-*$(S) 
is one-to-one at D, and M ( S ) £ 0 K + M ( # ) . Set 

A = H(D) + K, 

so that by the preceding lemma, 

&xr)fi(S) = li(pl) + ---+(i(Pg). 

Now—and this is the crucial step—we have seen that 0(n) = 9( — ju); 
therefore, using 9X( /i(/?,)) = 0 for /' = g, 

0(li(P])+- ■ ■ +li(Pg_]) + K) = 0 ( A - M / g ) = h{tx{Pgj) = 0, 

i.e., 

0-«(M(/>i)+"-+MO>g-i)) = O. 

Thus n*0_K vanishes in an open set in S(g~l\ hence in all of 5 , < g _ 1 ) , and 
we see that Wg__, C 0 _ K . 

Now from Section 1 of Chapter 1 we can write 

0_K = a - ^ _ , + 0' 

with a > 0 e Z and 0 ' an effective divisor on f(S). We want to show first 
that a=\, and then that 0 ' = O; the first step will be to show that 
*(li(S)-Wg_l)>g. To prove this, note that the involution /xi—»■ — jut acts as 
the identity on H2(f(S)) = H](f(S))AHx(f(S)), and so the cycle - n(S) 
is homologous to n(S). Now take A =/!(/?,) + • • • + ii(pg) a generic point of 
f(S) so that -n(S)£ Wg_x-X; then - / J . ( 5 ) and Wg_x-X meet in 
isolated points, and for each / = \,...,g we have 

-/*(/>,) = M( 2 / ^ - A e w ^ , - A . 

Thus #(ii{S), Wg ,)>g. 
Now we have proved that the intersection number of 0 with n(S) is g, 

and consequently 

a-*(n(S)-Wg^)+*(li(Sy&') = g. 

But we can always find \Ef(S) such that JU(S)SZ:0' + A; thus #( ju(5),0 ') 
>0, and it follows that a= I, # (M(5)-»^_I) = g, and # ( / t (5 ) -0 ' ) = O. 

It remains to show that 0 ' = 0. We use the following argument: since 
*(KS) •©')=(), 

p(S)r\8'x¥=0=*VL(S)c&x for any A G f(S); 

it follows from this that 
0 ^ n W2¥=0=> W2c@'x f o r a n y A e J ( S ) , 
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since 

e ; 3 n(Pl) + ii(P2) 

= » e ; + M , i ) 3 / t ( / ' ? ) forall/»2*G5 

=> &x 3 ju(z,) + fi(p$) for all/7j G 5 

=>&x3 n(zf) + vipt) for all/>f ,/>J G 5 

i.e., W2C@v Repeating the argument gives 

for any n. But by Jacobi's theorem Wg = f(S), and hence ©^n Wg = 0; 
thus 0^=0 . Q.E.D. 

Note that by Riemann-Roch, if D is any effective divisor of degree g—\, 
then K- D is also; it follows that 

Wg_,=iL{K)-Wg_v 

It is now possible to identify the constant K appearing in Riemann's 
theorem: we have 

= - 9 

Since Wg_, is the theta-divisor of a principal polarization, by the result of 
p. 317 it cannot be fixed by any nonzero translation, and we find that 

2K = -ju.(AT). 
Similarly, we can determine exactly when ji(S)cSx: clearly, A —/x(/?)E 

Wg_, if and only if A = n(D) for some Z)G5 ( g ) containing the point pGS. 
Thus X-p{S)c Wg_{ if and only if X = n(D) for D such that h°(D)>\. 
Now for any A = ju(Z)), we have 

X-li(S)c Wg_l^»X-iilS) + K C@ 

<=>/i(S) - A - K c © 

<=>ju(5) C 0 + K + A, 

i.e., / i (S)c©„+A if and only if\ = ti(D)for DGS(g) rac/i /tor h°(D)>0. We 
can express this more intrinsically by noting that the lemma above (p. 336) 
fails to give an explicit answer to the Jacobi inversion problem—finding 
DES<g) such that p(D) = \for a given AE f(S)—exactly when that answer is 
not unique, i.e., when such a D varies in a nontrivial linear system. 
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Riemann's Singularity Theorem 

We turn our attention now to the subvariety Wd = n(S(d))cf(S) parame-
trizing linear equivalence classes of effective divisors of degree d on S. Our 
goal will be to prove a theorem, of which a special case was suggested by 
Riemann, relating the local geometry of the varieties Wd—specifically their 
tangent cones at various points ju(Z>)—to the geometry of the correspond-
ing linear systems \D\ on the canonical curve of S in P g _ 1 . 

To start, note that we have a natural identification 

P{T^{S)))^P{H\SMX
S)*) 

between the projective space associated to the tangent space to the 
Jacobian f(S), and the ambient space of the canonical map 

iK: S^P(H0(SMl
s)*)-Pg~l. 

Hereafter, when we refer to P g _ l we will always mean specifically 
P(H0(S,&s)*). In particular, the projective tangent cones 

P(T;(X))CP(T;(US))) = P*-1 

to any subvariety Xjzf(S) at any point p.EX will be considered as 
subvarieties of the ambient space P* ' of the canonical curve; we will 
denote this variety by T^X). 

To recall our notation, let w,,...,wg be a basis for the holomorphic 
1-forms on S, so that the map 

is given by 

\JPo JPo I 

and the map /i: S(d)-*$(S) by 

/*(/>! + • • • +Pd) = M(/>I) + • • • + Kfd)-
Whenever we have a local coordinate z on S we will define functions Ba 
by 

««(/>) = K(p)dz 

so that the vector 

represents the point/? on the canonical curve in P«~'. 
Our first object is to describe geometrically the tangent cone to the 

variety Wd at a point n(D). Suppose first that the divisor D is regular, i.e., 
that dim | D | = 0. By the geometric version of the Reimann-Roch, the linear 
span D of the points of D on the canonical curve is a (d— l)-plane, and we 
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claim that 
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Wd is smooth at fi(D), with tangent space T^^fWj) = D. 

Proof. Suppose first that D=pt H +pd with the points /?, distinct, so 
that local coordinates z, on S near/?, furnish local coordinates on 5<rf) near 
D. The map ju: Sw-*f(S) is given by 

/*0>i+-" +/><*) = 2 f A « i . - - - . 2 / '"« • 

Differentiating, we find that the Jacobian f(fi) of the map ju, is 

'U](p1),...Mpi)' 

KM) = 

a,(^),...,a.(^) 
By hypothesis, the row vectors tt(pi) = (Ql(pi),...,®g(pi)), representing the 
point Pi on the canonical curve, are all independent. Thus J(/i) has 
maximal rank d at D, so Wd = n(S{d)) is smooth at p.(D), with tangent 
plane spanned by the points /?,. 

We will illustrate what happens at the diagonals of 5(</) by assuming that 
£> = 2/>, +/>2+ • • • +Pd-i where the/?, are distinct; the general situation is 
only notationally more complicated. Let z be a coordinate of p varying in a 
neighborhood of/?,, and for S2(/>) = (0,(2),...,°,g(z)) as above we define 

'(,>-(£ £)• 
The line Q(/>)fi'(/>) in Ps ' determined by fi(/>) and fi'O) is t n e tangent 
line to the canonical curve at p. For 

z, + z-, 

fi'l 

w, = z,z, 

we set 

From 

we deduce that 

JPo JPo 

« d ( ^ ) +^d{z,z2) = Ua(z,) + Wa(z2) 

g - = -(S2a(z,) + fia(z2)); — -
Zo-Z, 
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Letting z2 go to z, it follows that the Jacobian matrix evaluated at 
D = 2pl+p2+--- +pd„x is 

0(/»,) 

-»'0»i) 
U(p2) 

n(/»rf-i) 

and the argument proceeds as before when the points were distinct. Q.E.D. 

Suppose now that D moves in an /--dimensional linear system, and 
denote the divisors in |D| by 

Dx=P](X) + ---+Pd(X), A e l * . 
According to Riemann-Roch, the points /7,(A) of each Dx will span a 
(d—r — l)-plane Dx in P*_ I ; we claim that in this case 

The projective tangent cone to Wd at the point ju(D) is the union 

W * ^ ) = u DX 

of the planes spanned by the divisors of the linear system |D|. 

Proof. Recall that the tangent cone to Wd at p.{D) is the locus of all 
tangent lines at /x(Z>) to analytic arcs in Wd. Now, let 

D{t) = <?,(/) + ••■ +qd(t) 

be any path in the symmetric product S(d) with 
D(0)=Dx=pl(\)+--+pd(X) 

for some DXE\D\. The image arc 
w(t) = KDW) 

then lies in Wd with w(0) = /i(D); and conversely any arc in Wd may be 
given in this fashion. For simplicity of notation we assume that /»,-(A) are 
distinct and let z, be a local coordinate around Pj(\). Then if qt(t) has 
coordinate zt{t), 

w(t) = /!($,(/)) + • • • + n(qd(t)) 

-(...,2/"(0o.UM,...) 
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where w0=Ra(z,)dz, near p^X) as before. Differentiating, 
dw 
~dt = (..-5XU(')K(0,-). 

and, setting / = 0, the tangent line to w(t) at n(D) is 

£ z;(0)fi(Pi(\)). 

Now the numbers z/(0) and point A e P r may be prescribed arbitrarily, 
which implies that as a set 

as desired. Q.E.D. 

Note in particular that if r > 0 , then T^D)(lVd) contains the /--secant 
variety of the canonical curve; since this does not lie in any linear 
subspace of Pg~l, we conclude that 

ju(D) is a singular point of Wd // and only if dim |D| > 0. 

We may interpret intrinsically the preceding computation as follows: 
With the identification |£>| = P', the linear system \D\cS(d) is a complex 
submanifold with normal bundle JV->Pr. We denote by P(N) the 
associated projective bundle whose fibers are given by 

P(N)X = P(NX). 

Since n:S(d)-*$(S) maps Pr to the point n(D), the differential n* is zero 
on tangent vectors to Pr and hence ju.*(|)G T^D)(fy(S)) is well-defined for 
any %£NX. This induces a holomorphic mapping 

/x„: P(A^)—>P*-', 

whose image is the tangent cone T^D)(Wd). For each A the fiber P(iV)x is 
parametrized by arcs in S(d) passing through Dx, and what the above 
computation shows is that ^» maps P(N)X isomorphically to the subspace 
DxcPg'1. 

One aspect of the behavior of the planes D in a linear system which will 
be useful is the following: 

Lemma. / / a point q G P 8 " ' lies on two secant planes Dx, D v , // lies on D^ 
for every DM in the pencil spanned by Dx and Dx-; or, in other words, the 
fibers of the map ju* : P(N)—>TM(D)(Wd) are linear spaces. 

Proof. Suppose that the dimension of the complete linear system \D\ 
is r. By Riemann-Roch, the points of any divisor F£i\K— D\ span a 
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(g - r — 2)-plane F. The linear system of hyperplanes in P g ~ ' containing F 
thus cuts out on the canonical curve the complete linear system |D|; in 
particular, any pencil [D^^D] is cut out by a pencil of hyperplanes 
through F. Thus, if q lies on two secant planes Dx and Dx, of the pencil 
{Z)J, it lies in the hyperplane spanned by any plane D and any divisor 
FeJA'— D\. But of course the residual intersection of the canonical curve 
with any hyperplane containing D^ is a divisor of the system \K— D|,_so 
this implies q lies on any hyperplane containing Z>M, i.e., q lies on D^. 

Q.E.D. 

Next, we set T = r (D)( Wd) and will prove the 

Proposition. For D e S ( d ) with dim|D| = r, the degree of the projective 

tangent cone T c P 8 " 1 is ( g _ d + r ) . 

Proof. Let q\,.--,qg-d+r be generic points of S, in particular such that 
(*) dim \D + qy + • • • + qg_d+r\ = dim\D\ = r 

and for any subset qx,...,qa with a < r, 

(**) dim|£> — q{ ■ ■ ■ — qa\ = dim|£)| — a = r ~ a. 

Note that by (*) the points qx,...,qg_d+r are all independent on the 
canonical curve; denote by E the linear space p « ~ d + r ~ ' c P*~' they span. 

To prove the proposition we will show that E intersects T transversely in 

a variety of degree I ̂  I; specifically, we will prove that 

1. The intersection T n E is the union 

U %- — ,qt, 
IC{l,....g-d+r} 

of the ( 8-d+r\ coordinate (/-- l)-planes in p< '~8 + ' - , ; and 
2. This intersection is transverse. 

To prove the first statement, we note that for any multiindex / = 
{/,,...,/,.} c { l , . . - , g - d + r ] , we can find a divisor DX&\D\ containing the 
points q,■.,...,q,■.; we then have 

%,..rqir C Dx 

and hence in general 

(J %,...,qt C l n f . 

Conversely, suppose that Dx is any divisor in \D\, and that Dx contains 
exactly a of the points qt, which we may take to be qy,...,qa (by (*), of 



346 RIEMANN SURFACES AND ALGEBRAIC CURVES 

course, a < r). Then since by (**) 
dim\D + qa+i + --- + qg_d+r\ = dim\D\ = r 

we have by the Riemann-Roch formula that 

dim(DxL)E) = dim Dx,qa+l,...,qg_d+r = g - 1 - a. 

It follows from linear algebra that 

dim(DxnE) = dim Dx + dim E - dim £>Au E 
= a - \ 

i.e., that Dx meets E only in the span qt,...,qa. Thus 

Enl c U «v•■»?,-

and the first part of the lemma is proved. 
Note that by this argument, for qu...,qr generic points on S and q any 

point in q],...,qr not in the span of a proper subset of qx,...,qr, there will 
be a unique plane Dx containing q. Thus, 

the map ju* is genetically one-to-one, i.e., the planes Dx sweep out the 
variety T only once. 

In particular, this assures us that T does indeed have dimension d— 1. 
The first—and principal—step in the proof of part 2 is to show that 

(*) For q,,...,qr GS generic, the variety T is smooth in the complement 
r 

of the coordinate hyperplanes in q,,...,qr. 

We have already seen that ju.* is one-to-one over such a point q; in order to 
prove this, we have to show that the map JU.* : P(JV)—>T has nonzero 
differential at q. For this we work in a neighborhood UaW with coordi-
nates \ = (A.,,...,\r) in which the/?,(A) a r e single-valued functions of X; we 
choose a local coordinate z, around pt{Q) and consider z,(A) = Z/iPjiX)) as a 
function of X. At any given point it is possible to choose the \a (1 < a < r) 
such that dza(X)/d\b = 8£. 

We may assume that/^(A),...,pd_r(k) span Dx; then for t = [tl,...,td^r] 
the corresponding homogeneous coordinates in the fibers of P(A^)|{/ the 
mapping /i* has a lifting 

/!*: U xCd~r—>C* 

defined by 

MKt) = /,Q(/>,(A)) + • • • + td_jn{Pd_,(\)). 
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Noting that /I* is linear on each fiber of P", it is straightforward to check 
that the Jacobian matrix of ju,» has rank one less than that of /!*, and we 
shall compute the latter. Using the index range 1 < a < d— r, the Jacobian 
of /I* is 

9£*/9'i 

9/t*/9A, 

9/x*/9Ar 

«(/>i(A)) 

a 

^ta(dza/d\r)2'(Pa(X)) 

At a point where 9za(A)/9Ai = S^ this is 

f ,«'(/>,(*)) + 2 ?0(920/9A,)fi'(^(A)) 

rrO'(̂ r(A))+ 2 ' . ( ' . A M A W ) 

at a point pBpu...,pr in the span of the first r points /?,—so that 
tr+1 = • • • = td_r = 0—but not in the span of any proper subset of them— 
so that /„ =^0 for a <r—the rank of this matrix is just the rank of 

0'(/>i) 

But now \ipx,...,pr are generic, then 
dim|D +/>, + •• • + /v| = dim|Z)| = /■ 

and so by Riemann-Roch the span 

D\+Pi + "- +Pr = 2p, + --- +2p,+p,+ l + --- +pd 

= U(P,),...,Q(Pd-r)M(pl),...MPr) 
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has dimension d— 1. Thus the Jacobian has maximal rank at a generic 
point of pt,...,pr, and the first assertion is proved. 

The remaining two steps in the proof of part 2 are much easier. The 
second step is to show that 

For some ql,...,qg_d + r, the intersection E n T is transverse at a generic 

point of q,,...,qr. 

This is immediate: choose qu...,qr generically, take any qGqu...,qr lying 
away from the hyperplanes qu...,qj_l,qj+i,...,qr, and then choose 
qr+\,---,qg-d+r independent modulo the subspace Tq(J). 

Finally, we claim that for generic qv...,qg_d+r on 5, 

(*) the intersection E n T is transverse at a generic point of each 
( r - l ) -^ /o«eq~T7q~. 

To see this, consider the map 

77: s{r)XS{g~d)—^Sig~d+r) 

sending (? ,+ • • • + qr,qr+, + • • • + ) to (?, + ••• + qg_d+r), and let 
BcSlg-d+r) be the locus of q),...,qg-d+r for which (*) fails to hold. By 
the second step, ir~\B)=^Slr)xS{g~d\ and since S(r)XSig~d) is irreduc-
ible, it follows that the dimension of B is strictly less than g-d+r; thus 
the proposition is proved. Q.E.D. 

In sum, we have proved the 

Riemann-Kempf Singularity Theorem*. For |D| a linear system of degree d 
and dimension r, the tangent cone 

TMD)(Wd)= U Dx 

is the union of the planes DA = p d ~ r ~ ' spanned by the points of the divisors 

DA £ |D| . // has degree I & r 1, and is swept out once by the planes D v 

In case d=g—l, we have seen that Wd is the translate 0_K of the 
theta-divisor 0 on f(S), and this gives us the result originally stated by 
Riemann: 

mult,(D)(e_J = A°(/)); 
in particular, the singular locus of the theta-divisor corresponds to those 
divisors of degree g — 1 which move in a linear system. Using this, we see 

*Cf. G. Kempf, On the geometry of a theorem of Riemann, Annals of Math., Vol. 98 (1973), 
178-185. 
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readily that 

The singular locus of © has dimension at least g — 4. 

Proof Assume, on the contrary, that the singular locus of 6_K has 
dimension < g — 5. A generic set of points p,,...,pg_3 on the canonical 
curves spans a P g ~ 4 . Let <p:S-*P2 be the projection of S from this P g ^ 4 . 
For points p ¥= q on S, 

<P(P) = <P(<7) 
if, and only if, 

P,P\,--,Pg-3 = q,P\,---,Pg-3 

which is equivalent to 

dim p,q,px,.-.,Pg-i = q ~ 3, 

i.e., 

dim|/? + <7+ /?, + ••• + pg-3\ = 1. 

Counting dimensions, we deduce that if dim(0_K)i were strictly less than 
g - 4 , there would be oor~4 divisors D^S(g~l) with d i m Z X g - 3 , and 
hence for generic choice of pt,... ,pg-3 the mapping <p would be one-to-one. 
But then the image curve would be a smooth plane curve of degree 
( 2 g - 2 ) - ( g - 3 ) = g + l and genus g ( g - l ) / 2 . Since g<(g)(g- l ) / 2 for 
g > 4, we have a contradiction. Q.E.D. 

The reader may enjoy working out the Riemann singularity theorem in 
the special case of a linear system of degree 5 and dimension 2 on a 
Riemann surface S1 of genus 6. After checking that such a linear system 
\D\ always embeds S as a smooth plane quintic—so that 2D = K—it is not 
hard to see that the tangent cone to W5 at the point n(D) is the chordal 
variety of the Veronese surface i 2 / / (P2)cP5, and that the singular locus of 
T is just the Veronese surface itself. 

Special Linear Systems IV 

We now have at our disposal the techniques necessary to answer in part 
the question of the existence of special linear systems on curves. For each 
pair of integers d and r with 1 < d < g — 1 we denote by Wr

d the image of 
the linear systems of degree d and dimension > r under the map 

By the proper mapping theorem, Wr
d is an analytic subvariety, and we will 

show that it has at least the dimension predicted by the naive dimension 
count of Section 3 in this chapter. 
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We begin by computing the homology class of the subvariety Wd = 
^(5<rf)); the answer is Poincare's formula 

d (g-d)\° ■ 

Proof. In terms of the real coordinates jc,,...,x2g on f(S) corresponding 
to a choice of canonical basis 8,,...,82g for Hf(S,Z), we have proved that 
the Poincare dual of 0 is 

g 

*>= 2 dXaf\dXa+g. 
a = 1 

Letting A =(rt,,...,aA.) run over index sets with 1 <<*,<••• < o k < g and 
setting dxA = dxaiA-- ■ Adx^, A + g = (as+g,...,ak+g), 

« « - ' = ( * - < / ) ! ( - ! ) « - * 2 dxAAdxA+g. 

If J = {jl,...,jk) runs over index subsets from (l , . . . ,2g), then since the dxj 
give a basis for Hk(f(S)) it will suffice to establish that 

Jwd (g-dy. J^s) 

Using the formula for tos~d, the right-hand side is 

(8-d) 0 otherwise. 
— / u'-"Adxj = 
d)\ Jj(s) 

1 if J = (A,A+g) for 
some A = (ai,...,ad), 

On the other hand, since the map n<d):S(d)—>Wd has degree one and 
Tr:Sd->S(d) has degree d\, 

J\v. a- JM'' 'w,t u- Jsd 

where jid = p.(d) ° 7r: Sd^>Wd is the composition. Now 
d 

(Hd)*dxj = 2 <V*dxj, 1 < j < 2g, 
k = \ 

where irk:S
d^S is projection on the kth factor and /i = fi'; since the 

fi*dxjEHpR(S) are Poincare dual to cycles 6), 

(*) f !J-*dxaAv*dxa+g= 1 

and all other integrals of p* dxt Al*-* dxj for / < / are zero. Thus, by 
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iteration, 

f {adYdXj = f Ar{£ Wtx\ 

is zero unless J = (B,B + g) for some B = (Ry,...,Rd), and in this case 
b y ( . ) 

i (^)*dxBB+g = d\. Q.E.D. 
jSd 

We now introduce a construction developed by Kempf and Kleiman-
Laksov.* Recall from pp. 328-332 that the principal polarization on the 
Jacobian leads to an identification 

and also to the Poincare bundle 

with the properties: 

1. under the above identification, 

is the line bundle corresponding to XEPic°($(.S)); and 
2. if p0 G S is a base point, then for any p 

P(X)P^ P(\ + ii(p))Po. 

Now we fix a divisor D0 of degree n>2g — 2 on S and set 
L(X) = P(X) + D0 

As X varies over f(S) the L(X) vary over all line bundles of degree n on S. 
Choose m>n generic points p,,...,pm on S. By property 2 there is a 
natural identification 

L(\)Pi^P(\ + tL(Pi))Po®Lpr 

Since, when restricted to p0X$(S), the Poincare bundle is topologically 
trivial, there is an isomorphism 

L(X)P ,^>Lp 

which depends Cx—but not holomorphically—on AE^(S) . 
By Riemann-Roch h°(6(L(K))) = n — g+ 1. Since no section of L(X) can 

vanish at m points, then, there is an injection 
m 

//°(0(L(X)))—> 0 L ( 4 
/ = l 

*S. Kleiman and D. Laksov, On the existence of special divisors, Amer. J. Math., Vol. 93 
(1972), 431-436. 
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whose image SA is an (n — g + l)-dimensional subspace Sx varying holo-
morphically with A. More precisely, there is a rank m holomorphic vector 
bundle E-+$(S) with fibers 

m 

Ex = © L{K)Pt; 
i~ 1 

if G(n-g + \,E) is the associated Grassmannian bundle with fibers 
G(n-g+\,E\= G(n-g+\,Ex), 

then the subspaces {Sx c Ex} give a holomorphic section of 
G(n-g+l,E). 

The point of the construction is this: for each d we consider the 
holomorphic subbundle Vm_n + daE with fibers 

m — n + d 

Vm.n + d,x= © L(\)Pr 
1= l 

and set 
EAX) = L{X)-pm„n+d+l -pm 

= P(*) + D0-pm_n+d+l pm. 

We have, then, that 

h°{Ed{\)) = &mSxr\Vm_H+d. 

This may be rephrased as follows: combining the C00 identifications 
L(\)p^Lp with isomorphisms Lp~C gives a C°° trivialization 

<p:E—>f(S)xCm 

taking the direct sum decomposition £=©JL,L(A) into the coordinate 
axes of C". We have thus a C°° map 

a: J ( 5 ) - » G ( « - g + l , / « ) 
given by a(A) = (p(5'x). If e,,...,em is the standard basis of Cm and Vm_n+d 

= {e„...,em_n+d], then 

r/ie translate by ju( — D0 + p m _ n + d + , + • • • +pm) o/ the variety WJj w 
set-theoretically the inverse image under a of the Schubert cycle 

ag + r-d,...,g + r~d\ *m-n + d) 

= {AGG(n-g+l,m):dim(AnVm_n + d)>r+l}. 

We note that, even though the mapping a is not holomorphic, the inverse 
image under a of any Schubert cycle corresponding to a flag whose 
subspaces are coordinate C*'s in Cm is a complex analytic subvariety of 
f(S). Alternatively, the Schubert conditions for these cycles makes sense 
in the fibers of the Grassmannian bundle. 
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The result we are aiming for is the lower bound on dim Wf given on p. 
358 below. The crucial step in the proof is the 

Lemma. a(f(S)) meets the special Schubert cycles og_d(Vm_n + d) trans-
versely away from o 8 „ d , 8 - d (V m _ n + d ) . 

Recall that set-theoretically a'\ag_d(Vm_n+d)) is a translate of Wd; since 
Wd is irreducible, the lemma essentially amounts to showing that a(f(S)) 
is not everywhere tangent to og_d(Vd+]) along the intersection. 

Assuming for a moment the lemma, the idea behind the remainder of 
the proof is this: First, by the lemma the fundamental class of Wd is 
a*(og_d). Then, by the Poincare formula 

Finally, as proved in Section 6 of Chapter I, every Schubert cycle—in 
particular og_d+r g_d+r—can be expressed as a polynomial in the basic 
Schubert cycles ak; carrying this out explicitly will give 

and this implies the bound dim Wd >g — (r+ l ) (g+ r— d). 

Proof of the Lemma. Take \^a~lag_d{Vm_n+d). Choose points qx,...,qg 

independent on the canonical curve of S, and set 

E0 = qx + ■ ■ ■ + qg - P(A0). 

Since ju: S(8)^>$(S) is one-to-one around qx + • • • +qg, then, there will be 
for all A near A,, uniquely determined points ql(X),...,qg(\) such that 

P(\)=[qt(\)+---+qg(A)-E0]; <7,(A0) = q, 

Set 

£(A)«e(-ift(A)-£0+J>o) 

= {/e9MS):(/) + 2«,(A)-2'* + A>>0} 
a #°(©(L(A))), 

and consider the map 
, \ R m 

£(2ft(A)-£0+A>)-> .©cA 

given by 

RU) = U(Pil-J{pm)). 
This defines, for A in a neighborhood U of A0, a map 

a: / /° (©(L(A)))—>C", 
which is just the map a in a suitable local trivialization of E. 



354 RIEMANN SURFACES AND ALGEBRAIC CURVES 

Now let 
/?: U->G(m-n + g-l,m) 

be the composition of d with the natural isomorphism 
*: G(n-g+\,Cm)~*G(m-n + g-\,Cm*), 

so that /?(A) is just the m — n + g- 1-dimensional vector space of relations 
on the values R(f) for/e£(A) at the points/>„...,pm. We want to show 
that /?( U) meets the dual Schubert cycle 

*{og-d) = {A*: dim(A*nAnnJV„+ r f )>g-</} 
transversely at /?(A0). 

Now, if A0 corresponds to a divisor D e Wd not in W], that is, if 
h°(P(\0) + D0-Pm_n+d+l Pm) = 1, 

then for some choice of ;' between 1 and m — n + d, andy',,... Jg-d between 
m — n + d+ 1 and m, we will have 

h°(P(X0) + D0-Pm_n+d+i Pm-p.+p.+. ■ ■ +PjgJ = 0. 

For notational convenience we may take i=l, jl,...Jg_d = m —n + d+ 
1,..., m - n + g. This means then that the subspace a(A„) in Cm is comple-
mentary to the subspace 

As we saw in Section 5 of Chapter 2, then, any A in a neighborhood of 
/?(A0) is uniquely represented by a matrix of the form 

«i,i 1 0 ... 0 0 aUm_n+g+i ... ahm 

0 1 ... 0 0 . 

0 0 ... 1 0 . 
am-n+g-],\ U U .. . U 1 a

m-n + g~\ ,m-n+g+\ •■• am-n+g-\,m 

The unspecified entries atj in this matrix are Plucker coordinates on 
G{m-n + g- \,m) near y8(Ao); and the Schubert cycle *ag_d(Arm Vm_n+d) 
is given, in these coordinates, by 

To give the map /? around AQ in terms of these coordinates we first find 
the linear relations on the subspace R(t(X)) as follows: by Riemann-Roch, 

h0(s,Sli(E0-Zql(\) + 2jPl-D0)) = m-n + g-\. 

Let T),,...,Tjm_„+1 be a basis of this space of meromorphic differentials. 
For any function/G £(A) the meromorphic forms f-t]a will have poles only 
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at the points /?,-, and adding up the residues we have 

2 Res^ /n . ) = 2 / U - ) - ResA(n.) = 0 

for each a = l,...,m —« + g—1. These are our desired relations, and the 
matrix (Res^i^)) represents the space j8(A)cCm*. (Note that we do get all 
the relations on £(A) this way: since h°(S,Q\E0- 2 ft ~ A»)) = °> t h e 

matrix (Res (TJ„)) has maximal rank ra - « + g— 1.) 
We can realize the coordinates of the map /? geometrically: again by 

Riemann-Roch, 

A°(s,fil(i?o + 2/ ' , -A>)) = w - « + 2 g - 1; 

consider the corresponding embedding of 5 in Pm~"+ 2 g _ 2. By hypothesis 
the pointsp2,..-,pm-„+g and ql(X),...,qg(X) are linearly independent; let V 
be the (m — n + g-2)-plane spanned by the pointsP2>---,Pm-„+g

 a n d W(A) 
the (g— l)-plane spanned by the points #,-(A). (See Figure 15.) Then, since 

Figure 15 
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the forms 

r , a e / / 0 ( 5 , a ' ( £ 0 - 2 ? , ( A ) + S A - ^ o ) ) 
correspond to the hyperplanes in pm-"+2g~2 containing the points q^X), 
we see that 

The Plucker coordinates a l k , . . . , a m _ n + g _ , k of /3(X) are the homoge-
neous coordinates of the image 77'W(A)(pk) of the point pk under projection 
from W(A) to V, in a coordinate system on V in which the points 
P2'--'Pm-'n+g represent the coordinate axes. 

Thus, to prove the transversahty of /? at \ we have to show that the map 

given by 

tr{\) = irwiK){P\) 
is transverse to the subspace of V spanned by the points/?2, ...,/?„,_„+rf. To 
see this, let the point <7,(A) vary. Since 77(A) is the intersection of V with the 
subspace <7,(A), ...,<7g(A),/?,, the tangent line to the arc formed by 7r(A) as 
<7,(A) varies is just the intersection of V with the space spanned by 
<?,(A),...,?,_. i(A),qi+ ,(A),...,qg(K),P\ and the tangent line to S at q,4\). Thus 
IT can fail to be transverse to />2>--->A»-«+</ on"y ^ the tangent lines 
{TqXX)(S)}i-i «. together with the points ^„. . . , /»m_n + r f , fail to span 
pm-n+2g-2. But this is equivalent to the statement 

h°(s,n,(E0+'2pi-D0-2-'2 q,(\0)-Pl Pm-„+d)) 

= h°(S,2\- P(K)~ D0+Pm_n + d+ ■ ■ ■ +pm-qi(\0))) 

and since the points <7,(A) are independent on the canonical curve of S, this 
is not the case. 

It follows from the lemma that 

The fundamental class of the variety Wd on $-(S) is the pullback via a of 
the cohomology class of the Schubert cycle og_d on G(n —g+ l,m). 

By the Poincare formula 

Now, by Giambelli's formula the class of the cycle ag+r_d ,g+r-d ^s 
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given by the determinant 
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"g + r-d,....g + r-d 

°g + r-d-\ "g + r-d 

"g-d 

"g + lr-d 

"g + r-d 

and so we can write 

l + r — d,...,g + r — d ' 
, Q( r+ ] ) (g + r-d) 

1 1 1 
(g+r-d)] (g+r-d+l)\ 

1 
(g + 2r-d)\ 

(g + r-d-l)\ 

1 1 
{g + d)\ (g + r-d)\ 

To evaluate in general the determinant D{x,y) of the (y + l)-by-(j> + 1) 
matrix 

[au (,-/+;)!)' u (x-i+j)l)' 

for each k = 2,...,y + \ in turn multiply the M i column by (x + k— 1) and 
subtract that quantity from the (k— l)st column. The new matrix A' will 
then be 

1 {x+j) 
a,j (x-i+j)\ (x-i+j+l)\ 

x+j x — i+j+l 

(x-i+j+iy (x-i+j+iy. 

(x—i + k+iy. l 
ai,y + 1 — ai,y + 1 (x-i+y+iy. ' 

In particular, all the entries of the top row will be zero, except a\y+x — 
\/{x+y)\; and its cofactor will bey\D(x,y — l); thus 

D(x,y) = 
(x+y)' 

D{x,y-\), 
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and, since D(x, 1)= l/x, this gives 

(x+y)\- ■ ■ xl 

Applying this to the cycles a*og_d + r j . . . j g_d + r , we have 

n*„ r ! ( r - ! ) ! • • • ( ) ! B ( r + 1 ) ( g + r _ d ) 
g-d+r--g-d+r(g + 2r-d)l---(g + r-d)\ 

Suppose now that the variety had dimension less than g~(r + l)(g — d+ 
r). Then we could find a cycle V on f(S) of dimension ( r + l ) ( g — d+r) 
missing Wd. We would then have 

(**°g-d+r g-d+r{V) =#(a(V)-°g~J+r,...,g-d+r) 

= 0. 

But on the other hand 

a*a (V)= /•!(/•- 1)1 ••0! #(y.a(r+l)(g + r-d)\ 
« °g-<,+ r,....g-d+r(Y) (g + 2r-d)\---(g + r-d)\ ( ° } 

> 0 , 

since 0 is positive. Thus we have, finally, the 
Theorem. The variety Wdcj-(S) of linear systems of degree d and dimen-
sion r on S has dimension at least g — (r+ l)(g+r — d). In particular, if 
g> (r+ l)(g+r — d), then every Riemann surface of genus g has such a linear 
system. 

Note that it will not always be the case that a(fy(S)) will meet the 
Schubert cycles ag+d+r g^d+r transversely—we have seen many cases 
where the variety Wd~ = a~xog_d+r g-d+r has dimension greater than that 
expected. Thus we cannot say with certainty what the class of Wd will be. 
It is worth stating, however, the obvious fact that 

In case a(^(S)) is transverse to og_d + r g~d + r, the class ofWd is 

Wr r ! Q - l ) ! - - - 0 i tfr+lYi+r-d) 
d (g + 2r-d)\---(g + r-d)l 

This gives us an "expected" answer to the enumerative questions raised in 
earlier discussions of special linear systems. For example, we have seen 
that a generic Riemann surface of genus g = 2k will have finitely many 
pencils of degree k+l, and asked how many; in case a(^(5)) is transverse 
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to the Schubert cycle ok k, this number will be 

Wk+X (k+iy.ki 

(*+l)!fc! 
since &g = gl. Note that in cases g — 2, 4, 6, and 8 this gives 1, 2, 5, and 14, 
which agrees with our previous computations. 

Torelli's Theorem 

Recall that a polarized Abelian variety is a pair (M,[<o]), where M is an 
Abelian variety and [u]GH2(M,Z) is a polarizing class on M. A mapping 
between polarized Abelian varieties (M,[u]) and (M',[w']) is given by a 
holomorphic mapping / : M-»A/' with/*([«']) = [w]. We have seen that a 
compact Riemann surface S of genus g > 1 gives a principally polarized 
Abelian variety (f(S),[us]) where, in intrinsic terms, f(S) is the quotient 
of (//°(5,fi'))* by the lattice A(S)^Hl(S,I) of functionals on H°(S,&) 
obtained by integration^over the 1-cycles of S, and the class 

[<os]: H2(US),Z)->Z 

is given, in terms of the natural identification 

H2(US),Z) = A2(//,(S,Z)), 
by 

[<os](a A/? )=*(«•/?), 
We will now prove that in fact the curve S can be reconstructed from the 
data [£(£),[«]): this is 
Torelli's Theorem. If S and S' are compact Riemann surfaces such that 

0(s),K])KKs'M<os.]) 
as polarized Abelian varieties, then SsS ' . 
Proof* We remark first that the essential transcendental step in the proof 
of Torelli's theorem—as stated above—consists of Riemann's theorem, 
which relates the divisor 0 as defined up to translation by [oos] to the 
divisor W ,; what follows now is a reconstruction of S from Wg_v 

We will prove Torelli's theorem first in the case S and S' are nonhyper-
elliptic. Recall that if M = Cg/A is any complex torus, then the tangent 

•This proof is due to A. Andreotti, On Torelli's theorem, Am. J. Math., Vol. 80 (1958), pp. 
801-821. 
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spaces {T{(M)}XeM are all naturally identified with C*. Thus if X <zM is 
any analytic subvariety of dimension k, X* = X 
X, we can define the Gauss map 

Xsing the smooth locus of 

§> G(k,g) 

on X* by 

Qx(\) = n(X)<zn(M) = C. 
We see immediately that %x is intrinsically defined and that it does not 
vary if X is translated in M. 

For example, consider the standard mapping n:S—>f(S) given by 

* ' > - ( / > - . / > ) ■ 

The Gauss map 

is then given by 

S-»G(1,*)«P«-

w = dz M
z)>- dz M*(z) 

= [<ox{z)/dz,...,wg{z)/dz]. 

i.e., The Gauss map of /x(S) is simply the canonical mapping iK: S ^ P 8 

Now consider the Gauss map 

Q: 0* = »?- G(g-\,g) = (p*-xy 

associated to the theta-divisor @^KC$(S). We have seen that a point 
H(D)GQ_K is smooth if and only if the divisor D = 'Zpi is regular, and 
that, if this is the case, the tangent plane to Q_K at /x(D) is the hyperplane 
spanned by the points p, on the canonical curve C of S. Since every 
hyperplane section of C contains only a finite number of points, it follows 
that the map § :0*K—>Pg_l* is everywhere finite; since the generic 
hyperplane section consists of 2g — 2 points in general position, we see that 
generically § has 

(2g-2\_g-(g+l)---(2g-2) 

\g-\j (g-\)\ 
sheets. 

Now let B c (P*~ ' )* denote the branch locus of §, that is, the image in 
(Pg ')* of the set of points in ©* K where the map § is singular. At a point 
ju,(D)£0*K, Z) = S / ' , £ S < g _ l ) , we may take as coordinates on 0_K the 
local coordinates z,,. . . ,z 
then, that if the tangent 

_, around the pointsp,,...,/> , on S. It is clear, 
line to any of the points pt on C lies in the 

file:///g-/j
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plane spanned by p{,... ,pg__,, 

^ ( # ) ) = 0, 

i.e. ju(Z>) is a singular point of §. Thus if we let K c ( P * - 1 ) * denote the 
proper subvariety of hyperplanes in P g _ 1 whose intersections with C are 
not in general position, we see that any tangent hyperplane H to C lying 
outside V is in the branch locus B o / § . 

Conversely, if H is not a tangent hyperplane to C, then H meets C in 
2g — 2 distinct points z}(H),...,z2g_2(H) that vary analytically with H. For 

H' near / / , the ( 1 branches of 9 are given by 

{/>,(#') = *,,(#')+ • • • +zii_i(H')).fmg_l, 

and since no two of these branches come together at H, H cannot be a 
branch point. Denoting by C * c ( P g ^ ' ) * the set of tangent hyperplanes to 
C, we have shown that 

B <zC* everywhere, 
B = C* i n ( P * _ 1 ) * - K . 

But now we see that C* is irreducible: it is the image of the incidence 
correspondence I={p,H):HD Tp{C)} c C X P * ~ u , which is itself fibered 
over C with irreducible fibers, and hence irreducible. 

It follows, then, that in (P*- 1)*, 

B = C*, 
i.e., the set of tangent hyperplanes to the canonical curve of S is the closure in 
(Pg~')* of the branch locus of the Gauss map § on the theta-divisor 
0cJ(S). 

Now we are just about finished with the proof: since the data (^(S),[«]) 
determine & and §, and hence C* up to an automorphism of (P g - 1 )* , all 
that remains is to show that if C and C ' c P 8 _ 1 are two canonical curves 
with C* = C"*, then C^C. This is not hard: just note that for every point 
pEC, the (g —3)-plane 

Tp(C)* = { # e ( P « - ' ) * : HDTP(C)} 

is contained in C* = C * . But by Bertini's theorem, the generic element of 
the linear system 

{//•C'}(/er,(C)' 
is smooth outside the base locus T(C)D C' of the system; since Tp(C)c 
C'*, it follows that Tp(C) must be a tangent line to C . We see, moreover, 
that if g>3, no line can be tangent to C" at two points q,q'GC: if it were, 
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by the geometric version of Riemann-Roch we would have hv>(2q + 2q') = 'i, 
and by Clifford's theorem the curve C would have to be hyperelliptic. 
Thus we can write T (C)= Tp(C) for a unique point p'G C", and the map 
pi->p' gives an isomorphism of C with C . In case g = 3, we have seen that 
there are only a finite number of bitangents to the quartic curves C and C" 
in P2; the map p^-*p' will extend over these points to give an isomorphism 

Essentially the same proof will go over to the hyperelliptic case: again, 
the branch locus of S 0 in (Pg~ ' )* will consist of those hyperplanes H such 
that i~'(// n C) contains multiple points. In the hyperelliptic case, how-
ever, this can occur in two ways: if H is tangent to C, or if H passes 
through any of the points in the branch locus of iK. Thus B will consist of 
C*, together with the hyperplane/?*=jJ/ : / / Ep) c ( P 8 ~ ' ) * for each p in 
the branch locus of iK. In effect, then, B determines C and also determines 
2g + 2 points {#} on C such that S is expressible as a double cover of 
C s P 1 branched exactly at {/?,}; as we saw in our discussion of hyper-
elliptic curves, these data determine S. Q.E.D. 

The Torelli theorem assures us that theoretically all the behavior of a 
Riemann surface 5 is reflected in its polarized Jacobian (f(S), [to]). In 
closing, we would like to make the remark that this is the case in practice 
as well as in theory—the reader may note that every result we have proved 
in this chapter can be readily expressed in terms of the geometry of the 
maps 

li: S<">-»£(S) . 
Indeed, as we have seen, some of the deeper properties of curves become 
tractable when expressed in terms of the essentially linear Jacobians. The 
relationship between curves and their Jacobians is, accordingly, an ex-
traordinarily rich one. Unfortunately, no analogous technique for studying 
higher-dimensional varieties has been found, though analogous construc-
tions may be made via the Hodge decomposition. 
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3 
FURTHER TECHNIQUES 

We return now to the subject of general analytic varieties in order to 
develop some further techniques especially intended for higher-dimen-
sional considerations. The motif of this chapter is differential forms; the 
theme is their wide variety of applications, cohomological and otherwise, 
to complex analytic geometry. 

We begin in Sections 1 and 2 with the theory of currents, or differential 
forms with distribution coefficients. This theory, initiated by de Rham to 
include both the C00 forms and piecewise smooth chains in the same 
framework, is especially fruitful in the complex analytic case. A pattern for 
the entire chapter is established, in that first the real or C°° situation is 
discussed and then the theory in the richer complex-analytic case devel-
oped. The topics in Section 1 are pretty much standard and well described 
by the table of contents. Coming to Section 2, there has recently been a 
flurry of research into the remarkable properties of currents associated to 
complex-analytic varieties. We have taken advantage of this to illustrate 
how the theory of currents is useful in establishing many of the founda-
tional results required in an analytic treatment of algebraic geometry. For 
example, there is now an elegant method for recognizing when a current is 
one defined by an analytic variety, and this affords a direct method for 
proving such results as Remmert's proper mapping theorem which, 
although intuitively plausible, were traditionally rather difficult to establish 
rigorously. 

Next we turn to the theory of Chern classes. The definition by differen-
tial forms that are polynomials in the curvature matrix provides a quick 
and easy derivation of the functoriality properties, especially Whitney 
duality, of the Chern classes as well as exhibiting directly the type and 
positivity properties in the complex analytic case. This is carried out in the 
364 



FURTHER TECHNIQUES 365 

beginning of Section 3; and in the second part we prove that the Chern 
classes are Poincare dual to the basic Schubert cycles in the Grassmannian. 
This identifies the differential-form Chern classes with the usual topologi-
cal ones, at least modulo torsion, and establishes the basic link between the 
Chern classes and enumerative questions in algebraic geometry, a recurrent 
theme in the remainder of the book. 

In Section 4 the currents and Chern classes are combined to establish 
two global formulas, the holomorphic Lefschetz fixed-point formula and 
Bott's residue formula. Although the external circumstances are different, 
in both cases we use the intersection-and-smoothing theory of currents to 
reduce the proof to an application of Stokes' theorem where the integrand 
is a singular differential form. This technique of Stokes' theorem with 
singularities is ubiquitous throughout the general theory presented in the 
book—e.g., it appears in Section 1 of Chapter 1, throughout Chapter 2, 
and again in the general residue theorem given in Section 1 of Chapter 
5—and we have to some extent formalized it in Section 1 of this chapter. 
The "principal part" of the singular differential forms inevitably turns out 
to be the Bochner-Martinelli kernel—a glance at the index will attest to its 
presence. Here we wish to point out that what is important is not so much 
its specific formula but rather its role as a fundamental solution for the 
9-equation on C". This is brought out in Section 1 of Chapter 5, the upshot 
of which is that any such fundamental solution would do—what is essen-
tial is the implicit duality. On the other hand, the Bochner-Martinelli 
kernel is characterized among all fundamental solutions by unitary invari-
ance, and this particular symmetry is manifest in the aforementioned two 
global formulas, as well as in the Todd polynomials, which appear in the 
Hirzebruch-Riemanh-Roch formula. 

This latter is briefly discussed at the end of Section 3 but is not proved 
in the book. One reason is that there are by now an abundance of proofs 
from many differing viewpoints, and we have nothing to add. A second 
reason is that our applications of the Riemann-Roch formula to specific 
geometric problems occur only for curves and surfaces, and we have given 
a direct argument establishing the result in these cases. 

The final section of this chapter is about spectral sequences, together 
with a few of their applications to algebraic geometry, which we hope will 
give at least an idea of how they are utilized. Again the motif is differential 
forms, especially those with singularities. In our discussion of hyper-
cohomology, the algebraic de Rham theorem, and differentials of the 
second kind it will be seen that the spectral sequence formalism distills out 
general patterns and yields sometimes deceptive derivations of classical 
results whose original proofs were responsible for introducing many of the 
techniques that have become second nature in the subject. 
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1. DISTRIBUTIONS AND CURRENTS 

Let M be a compact, oriented n-manifold. We know from Poincare duality 
and de Rham's theorem that if T is a /?-cycle on M—for example, an 
oriented submanifold—then there exists a closed C°° (n—p)-foTm w that is 
dual to T in the sense that for all closed />-forms <p 

-/r •>M 

We also know that to is unique up to an exact form. 
A special case when all this has been made quite explicit is when M is 

complex manifold and T is the cycle carried by an analytic subvariety V of 
codimension 1. If V is given locally as the divisor of /„G0({/„), and if we 
have chosen positive functions ha in Ua with ha/h/3 = \fa/fp\2 in £/„n Up, 
then u = ddclogha is the Chern class of the line bundle [V]. Especially 
noteworthy is the case when [ V] is positive in the sense that, with a 
suitable choice of the metric {ha} in [V], the real (1, l)-form w is positive. 

We shall introduce a formalism that includes both cycles and smooth 
forms. This will lead to a cohomology theory to which both the ordinary 
singular and de Rham's theories map, and both maps will be isomor-
phisms. 

Definitions; Residue Formulas 

We make our definitions first on U". Let CC°°(W) be the vector space of 
compactly supported smooth functions on U". If x = (xv...,x„) are coordi-
nates on R", we let Z), = 3/3x, and Da = D^...D^ for « = («„ . . . ,«„ )£ 
(Z+)". The C-topology is defined on CC°°(IR") by saying that a sequence 
<p„—>0 in case there is a compact set K with all supp<p„ c A" and with 

Z>>„(x)->0 
uniformly for xGK and all a satisfying [a] = a , + ... +a„ < p. The C°° 
topology is defined by saying that <p„-»0 in case all suppq^cA" and <p„^0 
in the C topology for each p. 

DEFINITION. A distribution on U" is a linear map T: C,."(R")-»C that is 
continuous in the C °° topology. The vector space of distributions on W is 
denoted ^ (R") . 

We say that a distribution is of order p if it is continuous in the 
C-topology. Now any linear map from a topological vector space V to C 
is continuous <=» the inverse of the unit ball in C is open in the topology of 
V. Since for the space (^(A^) of functions supported in a compact set K 
the C°° topology is the union of the C topologies, we see that any 
distribution is locally of finite order. 
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Examples 

1. If \p(x) is a locally L1 function on R", then we may define a 
distribution 7^ of order zero by 

7^(<p) = f <p(x)4>(x)dx. 

Here rfx = dxy/\... /\dxn, and we always assume that W is oriented by this 
form. 

2. The 8-function is the distribution defined by 

8(<p) = (p(O). 

Next we extend the operators Z>, to the space of distributions by setting 

(£>,T)(<P)= -HA<P) -

If T= 7^ is the distribution associated to a function ij/ of class C ' , then for 

(A7;)(«p)= -T;(A<P) 
= - f Hx)[(dq>/dXi(x))]dx 

ty(x) 

(by Stokes' theorem) 

= (^fo), 
so that our extended notion of differentiating distributions makes sense. 

An example that illustrates the principle underlying the various residue 
theorems we shall discuss is obtained by considering the locally L1 func-
tion \p(x) on IR defined by 

>//(x) = 0, x<0, 

i H * ) = l , x>l. 
Formally—i.e., ignoring the singularity—\p'(x) = 0. However, the distribu-
tional derivative is given by 

/

+ oo 
<p'(xWx)dx 

- 0 0 

J
r oo 

<p'(x)dx 
o 

= 9(0), 
i.e., 

DT^ = 8. 
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The general principle will be 

DTi, ~TD4. = "residue," 

where £hp is the derivative of \p computed formally. We will expound this 
in greater detail in a little while. 

Another picture of distributions is obtained by looking at the torus 
T= W/(2irl)n. In Section 6 of Chapter 0 on the proof of the Hodge 
theorem we defined the space ^(T) of distributions on the torus and 
showed that 

s 

where Hs is the Sobolev space of formal Fourier series T = S u^e'(ix) 

satisfying 2(1 + | |I | | 2) 'S |MJ|2< OO. By the Sobolev lemma proved there 

c°°(r) = n H„ s 

and tor <p = '2q>(e
ii(-xieC°e(T) 

r(<p) = 2 Wj<Pf • 

The 5-function is given by 
5 = 2 *'«•*>. 

i 

As usual, the torus will provide an excellent illustration of our general 
remarks. 

Now let A?{W) be the space of C°° ^-forms on W with compact 
support. In the obvious way the topology on CC°°(W) may be used 
componentwise to make A?(W) into a complete topological vector space. 
DEFINITION. The topological dual of A"~q{W) is the space of currents of 
degree q, and is denoted by ^ ( R " ) . 

Examples 

1. In the following examples we will denote by L^R^loc) the ^-forms 
\p = "Z\p,(x)dxl whose coefficient functions are locally L1 functions on R". 
For such a ^ there is an associated current T^ G ̂ ( R " ) defined by 
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2. If T is a piecewise smooth, oriented (n — q) chain in U", then T 
defines a current Tj-G^iU") by 

Tr(<p)=(<p, cpGArq(W). Jr 
In general if we call the support of the current T the smallest closed set S 
such that r(<p) = 0 for all (pEAc"~q(Un- S), then clearly supp(Fr) = r . 

The exterior derivative on smooth forms induces 

d: 6D<?([fr)-^6D'?+1(!R") 
defined by 

(dT)(<p) = (-\y+iT(d<p), <p&Arq-\u"). 

Then d2 = 0. If T=T+ for some smooth form xpGAq(Rn), by Stokes' 
theorem 

^(<p) = ( - i r + , ( +A*P 

= - f d(>PA<p)+ f < # A 9 

Similarly, for TT as in the second example, 

dTr(<p) = (-iy+lfd<p 

- ( - i r ' f v 
= (-\y+1Tdr(<p). 

Thus, d on the currents induces the usual exterior derivative on the smooth 
forms and ± 9 on the piecewise smooth chains. 

Here is an example that interpolates between these two. 
3. Suppose that i/zGL^IRVoc) is C00 outside a closed set S, and 

assume moreover that dxp on U" — S extends to a locally L1 form on IR". 
We define the residue R(*p) by the equation of currents 

dT+ = T^ + R(+). (*) 

It is clear that the support supp R(\p) c S. 
For example, suppose that we consider the Cauchy kernel 

1 dz 

on C. Then KeL , 0 (C, loc) and is C°° on C - { 0 } ; moreover, dK = dn = 0 
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there. The general version of Cauchy's formula 

9(0) = —J=- f3^1 *££. ^ c-(c), 
2 T 7 V ^ 1 . / C ° z z 

given in Section 1 of Chapter 0 translates into the equation of currents 

9(T;) = 5{0). 
Equivalently, the residue 

-y^K 
of the Cauchy kernel is the 5-function at the origin. 

We will generalize this, first to U" and then to C . The notations 

rdr = 2 x, A , 

$(*) = dxt/\---Adx„, 

$,(JC) = ( - ly'-'jc,.^, A - • • A ^ T A - • • A*cB 

will be used. We will also let C„ stand for a generic constant depending 
only on n. Finally, the operators such as * that depend on a metric will 
refer t o * 2 = S,(^,)2-

We note that the function r~s is locally integrable for s<n but not for 
s = n. Define 

S *,-(*) 
° C" IMI" 

= r *rdr 

This form a belongs to L"~\W,loc), is invariant under the proper orthog-
onal group, and is smooth on W - {0}. Since d<frj(x) = <b(x), it follows that 
in K"-{0} 

_ / n®(x) __ nrdr/\ *(rdr) 

= 0. 
By Stokes' theorem, then, the integral 

/ 
-Ml <- l = i 

da _ . . 

of a over a sphere is independent of the radius £>0 . Consequently, 
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choosing Cn properly, a is the unique form on W — {0} that is invariant 
under proper rotations, orthogonal to the normal dr to spheres, and that 
has integral 1 over a sphere of any radius. In U2 with coordinates 
(x,y) = (r cos 9, r sin 6), 

1 xdy—ydx 1 .„ 
a = -z — = — dt). 

2"" x2+y2 27r 
In general if 

x = ra>, 

where r= \\x\\ and wE 5 " ' are polar coordinates in U", then we may write 
a = Cndu. 

For <p £ CC°°(R"), by Stokes' theorem, 
_ I dy A o - lim — / dq>/\a 

JW E-*0 • /R"-{| |^| |<( :} 

= lim I <po 

= <p(o). 
Thus, the equation of currents 

dTo = S{0) 

is valid, as is the residue relation 

R(a) = 8{0). 

On C" s U2n the form a decomposes into type, each component of which 
is invariant under the unitary group. Up to a constant to be specified in a 
moment, the component of type («,«— 1) is 

(S*fcTA»(*)) 

■>(r5r) 
= C„ 

p.n 

Clearly y8 G L"•" '(C", loc), and since 34>,(z)= $(z) , the same computation 
as for a shows that 

3£ = 0 o n C " - { 0 } . 
Since d=d on forms of type (/!,</), we may repeat the previous argument to 
conclude that for a suitable choice of constant, 

dTp = 8{0}, 
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and therefore the residue 
*(0 ) = «,„,. 

Explicitly, for <p G Cf°°(C"), 

<p(0) = f d<pAP, 

and just as in the one-variable case this formula may be extended to 
noncompactly supported forms to obtain 

<p(0)=f a<pA£+f <p[3, 
JB[r) 9 B [ r ] 

where B[r]= (zGC": ||Z|| </-} is the ball of radius r in C . In case <pG 
0 (C) is holomorphic, this reduces to the Bochner-Martinelli formula 

9(0) = [ <p(z)B(z,z). 

It is possible to prove these formulas by reducing to the one-variable 
case in a manner that sheds some additional light on the expression for B. 
First, we shall show that 

/8=C„(31og||z||2)A(3aiog||z||2)"-1. 

Proof. Denote by y the form on the right-hand side of this equation. 
Since 

_ (dz,dz) (dz,z)/\(z,dz) 

(z>z) (z,zf 

and since (dz,z)/\(dz,z) = 0, 

= r,{dz,z)/\{dz,dz)n~l 

The numerator is 

Q'(2^A)A(2>,-A^-)" ' 

= Q " ( 2 ( - i r ' ^ i A- • • A C V • ■ Adi„AdztA-- • A*„) , 

which implies the result. 
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Now we recall that under the projection 

C - { 0 } - * P n - ' 
the Kahler form of the Fubini-Study metric pulls back to 

0 = ddc\og\\z\\2 

= ^ELa3l o gl |Z | |2. 
HIT 

Let C" be the blow-up of C" at the origin and 

the extension to C" of the projection. C" is the total space of the universal 
line bundle over projective space, and 7r*S2 is smooth up on C". Thus, on 

TT*(i=Cn9A(TT*ay~\ 

where 0 = 31og||z||2 is a (l,0)-form that on_each fiber {Az}AeC of C ^ P " " 1 

reduces to dX/X. Summarizing, ■7r*/3 on Cn is the pullback of the standard 
volume form on P " - 1 times a form 0 that reduces to the Cauchy kernel in 
each fiber of C n ^ P " _ I . Using this interpretation, the w-variable Bochner-
Martinelli formulas may, by pulling forms back to C" and making an 
obvious iteration of the integrals, be reduced to the one-variable Cauchy 
formula. 

A final remark is that the definition of distributions and currents may be 
localized. Thus, for U open in U" the space D̂ (U) of distributions on U is 
the dual of CC

X(U) with the obvious topology. Since a diffeomorphism 
/ : (/—> V (U, V open in IR") induces a topological isomorphism f* : Cc°°( V) 
—>Cc°°(t/), we may define the spaces ^ ( M ) and currents tf)'*(M) on a 
manifold M. 

Smoothing and Regularity 

A distribution TE^iW) is said to be smooth in case T=Ti, for a C™ 
function \p(x) on R". We shall now make precise the sense in which the 
smooth distributions are dense among all distributions. 

Let X(JC)GCC
C 0(R' ') be a nonnegative function supported in a neighbor-

hood of the origin, with 

f X(*)dx = 1. 
•/R" 

In a little while we shall assume that x is radially symmetric, i.e., in polar 
coordinates x = rw 

X(x) = x(r)-
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We set 

If suppx = Â , then suppxE = e^ and 

f Xe(x)dx = 1. 

We remark that 
TXi-+8 as e -> 0 

in the sense that for any test function q> G CC°°(W) 

lim \ Xt(x)<p{x)dx = <P(°)-
E—0 Ju" 

To see this, simply note that 

min <p(x) < I Xe(x)<p(x)dx < max <p(x)> 
Jc6e/C ^R» .V£E/C 

which tends to <p(0) as e—>0. 
Having "smoothed" the S-function, for a general distribution FG"?(R") 

we consider the function 

Ux) = Ty(xt(x-yj), 

where we use the subscript y on T to indicate that we consider Xe(x~ y) a s 

a function of y and apply T accordingly. Te(x) is a C°° function on U" with 
derivatives 

D°Tt{x)= ±Ty(D?xAx-y))-

By an abuse of notation, we denote by Te the distribution on U" defined by 
the function Te(x). 

The following formal properties of the 7"£'s will be proved: 

1. ( 7 ^ = 7 ^ for <p(X>eC°°(R"). 
2. r £ (W=r(^)for1p(x)£Cf

0 0 (R") . 
3. (DT\ = D(TC) for D = da/dxa. 

Proof of 1. For $ E Cf"(R"), 

= / J"<H>>)x^(*->')<M*)*<:4' 

by interchanging the order of integration. 
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Proof of 2. Since T is linear, 

Tttt)=Ty(f){x)xt(x-y)dx) 

= JHx)Tyxe(x-y)dx 

= ft(x)Te(x)dx 

= TM)-
Proof of 3. We may suppose that D = d/dxr If T= 7^ for ^EC^W) 
and^GCf°°(IR"), 

DTr(<p) = Tt(-top) 

= ff-^(x)Xc(x-yH(y)dxdy 

■ fxM(f-^(xW(x-«)dx}du 

lit 
<JP(X)-X— (x — u)dx \du 

(y)<p(x)xr(x-y)dxdy 

= (DT)t(<p). 

For a general r e ^ R " ) and <pGCc°°(R"), 
(DT\W) = (z>r)(<pe) 

— T( — D<p)e (by the previous step) 
= Tt(-Dq>) 

= ©7;(V), 
which proves assertion 3. 

In particular, we conclude that for any ipe CC°°(R") 

uniformly, and consequently 

7 ; ( * ) - > r ( * ) a s £ - * 0 . 
There are, of course, many subtle questions about the convergence of 

the smoothing process in particular norms, but we need not get into these 
here. 
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A current T G ̂ (W) may be considered as a differential form 

T = 2 T,dx, 

with distribution coefficients T, defined by 

T,(q>) = ±T(<pdx,o) 

for <pG Q°°(IR"). Here 7° is the index set defined by *dx,= ±dxI». The 
smoothing 

7; = 2(7-/)e^/ 

satisfies 
Te(cp)^T(<p) a s e - ^ 0 , 9 e / l e - « ( R - ) , 

and 
^ = d(Te). 

We will now use smoothing to prove some regularity results concerning 
the Laplace equation on distributions 

A T = 5, 
where 

Lemma. If TG<l)(Rn) satisfies AT = 0, fAe/i T = T<p /or some <peC°°(Rn) 
w/7/i A<p = 0. 

Proof. Smooth functions <p satisfying A<p = 0 are said to be harmonic. We 
shall first prove that harmonic functions obey the mean-value property 

<p(y) = f <p(x)o (x), 
■>\\x-y\\~e 

where, if 

r *(rdr) 
O — C„ -ft „ « 

is the form encountered in the preceding section, then 

°y(
x) = aix~y) 

is the invariant volume form on the sphere ||JC — y\\ = e having total area 1. 
Since the Laplacian is invariant under translations and proper rotations, it 
will suffice to prove the mean value property whenj>=0. 

We shall apply Stokes' theorem twice to spherical shells B[S,e] = 
{8 < \\x\\ < e}. The first time we take the («— l)-form 

?7 = <po. 



DISTRIBUTIONS AND CURRENTS 377 

Since da = 0, 

(rdr) _ + r ~A„ A dr 

1 d-q= CJ^A—r1-- ±Cn*d9A r r 

and Stokes' theorem gives 

(*) ±C„[ *d<pA~-ZT=( <P°-f <P°-
JB[8,e] r" J\\x]\=e J\\x\\ = S 

We write 

*d(pA-—7 = *d<p/\dy, 

where 

Y = 

Now 

so that 

logr in case n = 2, 

— - in case n > 3. 
V n — 2) r"~2 

d*d<p = ±A<pdx = 0, 

*d(p/\dy = d(y*d<p). 

Applying Stokes' theorem once again, we may express the integral on the 
left of (*) as a difference of integrals 

C„( y*dy. 

For fixed p, this integral is a constant times 

/ *dtp = I d*d<p — 0. 
J\\x\)-p •'11*11 <P 

Thus, for a harmonic function (p, 

/ <pa = f <pa. 
J\\x\\ = S J\\x\\-e 

If we let 5—>0, the left-hand side tends to <p(0), and the mean-value 
property is established. 

Now we assume that x(*) is radically symmetric. Then a harmonic 
function qp satisfies <pe = <p for e > 0 . By the formal properties 1-3 of 
smoothing, a harmonic distribution T satisfies TS=T for 8 >0. More 
precisely, by property 3, 

A 7 > ( A r ) e = 0, 

so that Tc= T^ for a harmonic function ipt. Then 

(Te)s = T(<l>,)s = T*, = T*' 
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andfor<pGCc°°(IRn), 

T(<p) = lim Tt(<p) 
£—►0 

= lim(rE)5((p) 

= I™ r £ ( % ) 
= T(<Ps) (by property 2) 
= Ts(<p); 

i.e., 

T=TS 

is a smooth distribution as desired. Q.E.D. 

We now extend regularity to the inhomogeneous equation. 

Lemma. / / T G <$ (Rn) satisfies 

AT= T jeC^R") , 

//?e« T = T^ /w rome ^eC°°(lRn) such that A ^ = TJ. 
Proo/ We will write down an explicit solution pEC°°(W) to the equa-
tion 

Ap = ij, 

using the classical Green's function 

' 1 

G(*,>0 = ■ 
\ag\\x-y\\, « = 2. 

Then 
A(r-rp) = o, 

and this lemma follows from the preceding one. 

We shall assume that n>3, the case n = 2 being essentially the same. 
Define 

r]{y)dy 

x-y\r2 
n>3, 

p(*) 
«\\x-y\r 

= +C f i\(x-u)du 

• ' B F 

where the equality follows from the change of variables y = x — u. The 
second expression shows that p(x) is smooth and 

ipW=±c„f ^ ^ 
2 
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We will prove that this integral is -q(x). By translating x to the origin, what 
must be verified is the Poisson formula 

In polar coordinates x = ru, where r= \\x\\ and uGS"~\ 

A-q(x)dx _ d*<h\ 

lUH"^2 r"~2 

J *d^\ + ( l )dr/\*dn 
\rn-2l~\n-2J -»-i r 

1 \ch\ A *{rdr) 

We apply 
forms on 

since At] i 

Stokes' theorem to the region 
the right-hand side. 

/ Arj(x)dx 

JR. W 2 

^|]x| | = 

Thus 

= lim | 
e^O ) 

•'R"-

= 4r + «E. 

*drj 

= e 

-^ 0 as e -»• 0, 
is C°°, and so 

R" 

- { I I ' 

1 

- {|j JC|| < e} and to each of the 

C | | < € } 

'AM 

Arj(x)dx 

iwr2 

Ai}dx 
| < £ 

f Ar, = 0(£"); 

and where 

BE = constant I TJO 
•/Il^ll = t 

-»rj(0) as E -» 0 
for a suitable choice of the constant C„. This proves the Poisson formula, 
and hence the lemma. 

Regularity also works locally: 

Lemma. Given an open set U c R n W T 6 6 f i ( U ) with AT = 0, then T = T^ 
for a function \p harmonic in U. 
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Proof. Given V c U a relatively compact open subset, then for qp €E 
CC°°(V) and e sufficiently small, s u p p l e U. We can then define TE by 

and repeat the previous argument to conclude that Te = T^ for some \j/v 

harmonic in V. Since \py is the same for all E, if VcWcU we have 
$w\v~4'v Consequently there is a harmonic function \p in U such that 
7 = Tr Q.E.D. 

As an application we have the 

Regularity for the 3-operator. / / U c C " is an open set and T E ^ U ) 
satisfies 3T = 0, then T = Tf for some f G 0 (U). 

Proof. By one of our Hodge identities from Section 6 of Chapter 0, 

A = ^f^l Add 
on C . Thus, 3 7 = 0 =» Ar=0,_and so T=Jf for some / e C°°(U) by the 
preceding lemma. But then 0 = 97}= T3/ => 3/=0 a n d / e © ( { / ) . Q.E.D. 

Finally, we will tie up the remaining loose end in Section 6 of Chapter 0 
on the proof of the Hodge theorem. Namely, referring to Regularity 
Lemma I in the subsection entitled "Proof of the Hodge Theorem II: 
Global Theory" we want to prove that if <p lies in the Sobolev space 
%p

s-
q{M) and $E3($-g(M) is a weak solution of the equation 

Axp = <p, 
then ipe%™2(M). Writing 7J=3 + 3*, P 2 = A. Therefore, we consider the 
weak equation 
(*) P0 = n 
and show that if TJGD(J-«(A/), thenfle3C™,(A/). I fpeC°°(M) , then 

P(P0) = P(p)A0 + pP(9) 
= P(p)A0 + (rn-

It will consequently suffice to prove the regularity assertion about weak 
solutions of the equation (*) for forms compactly supported in a fixed 
coordinate patch on M. This coordinate patch may be taken to be 
diffeomorphic to R", so that what we must show is the following 

Regularity Lemma II. Let Pu = Qu + Ru, where 

2 3«,(x) 
a!{x)~-£r 

kj OXk 
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be a first-order differential operator with C°° coefficients satisfying the 
Garding inequality 

||iV/||o+ll«llo> IMI, 
for compactly supported u. / / the distribution equation 

Pu = v 
holds for some compactly supported v in the Sobolev space %s, then u 6 

Proof. We define the smoothing 
UAX) = f ue(y)x*(x-y)dy 

as above. The L2 norm 

||«t — «Ho—*0 a s e - * 0 , 
since the convergence ue-±u is uniform. If we can prove that the Sobolev 
norms 

IklU, 
are uniformly bounded for 0 < e < e0, then, taking a sequence e^jO, a 
subsequence of uCk will converge weakly to an element u' of %s+l, and u' 
must be equal to u. 

By the Garding inequality in our assumption, we can bound the 9C,+ 1-
norm of ue in terms of the %s -norms of Qut and «E. Inductively, we may 
assume that uG.%s, and then the .s-norm of ur is bounded by the j-norm of 
u. 

It remains to bound the s-norm of Qur. We know how to bound the 
5-norm of (Qu\= —(Ru)e + vc, and so we must bound the i-norm of the 
difference 

(*•) (Qu).-QM. 
For constant-coefficient operators this is zero, and so in general we may 
expect a bound in terms of the s-norm of u and 1-norm of the a,*(x)'s. For 
simplicity we do the case s = 0, the general argument being the same. The 
z'th component of (**) is 

The last term is bounded by a constant times the L2-norm of u. The other 
term is 

- i l 2 f (Dkx){y-){a!;(x-y)-a*(x))uj{x-y)dy, 
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and the Minkowski inequality implies that its L2-norm is less than 

f -£r f (Dkx)(^)\\y\dy)\Mo < C||«||o 
\ e J\\y\\<eK \ c n I 

for suitable constants C, C". Q.E.D. 

Cohomology of Currents 

On a manifold M we have defined the complex ojcurrents (ty *(M),d). The 
inclusion of smooth forms into the currents gives a natural map 

H*)R(M)^H*(Gi)*(M),d) 

from de Rham cohomology into the cohomology computed from currents. 
We will prove that this mapping is an isomorphism. By de Rham's theorem 
the same is true of the mapping 

H*(M,smg) -» //*(6D*(M ),d) 

from the cohomology of piecewise smooth singular chains into the 
cohomology of currents. If T is a piecewise smooth (« — /?)-cycle, then there 
will be a smooth, closed /?-form i/< such that the equation of currents 

Tr=T^ + dR 

will be satisfied. Although we will not prove it, one may think of R as the 
current defined by a (/>— l)-form 17 that is integrable on M, C°° on M — T, 
and where rfrj = — $ on M — T. Then the equation above becomes 

dT
n ~ Tdn = Tr> 

which is a residue formula of the sort discussed above. 
Before doing this, we note that if M is a complex manifold, then we also 

have the complex (6Dp,*(A/),9) of currents of type (p,q). We will also 
prove that the map 

//f*(A/)^//*(6D'-*(A/),g) 
is an isomorphism. Since both proofs are essentially the same, we will do 
the complex case. 

Let tfF'q be the sheaf of currents of type (p,q). Then there is a complex 
of sheaves 

(*) O^W-^ty^Xw^ ->••• i»^'-',-»0. 
Since distributions may be multiplied by C°° functions, the sheaves 6bp,q 

admit partitions of unity. Consequently, Hk(M,tf)p,q) = 0 for k>0, and the 
sheaf-theoretic proof of the de Rham and Dolbeault theorems from Sec-
tion 3 of Chapter 0 will apply verbatim if we can prove that (*) is exact. In 
other words, we must establish the 9-Poincare lemma for currents. 
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The first step is just the regularity theorem for the 9-operator. Note that 

this step is trivial for the full exterior derivative d. 
To prove the 3-Poincare lemma for higher-degree currents, we shall give 

another proof for the C °° case that can be adapted to currents. This proof 
will be based on finding a homotopy operator 

K: A°-«{C")-+A0-«-l(Cn). 

The construction of K is based on the Bochner-Martinelli formula above, 
and the explicit expression will turn out to be useful in proving the 
holomorphic Lefschetz fixed-point formula. 

Some notation will be helpful in defining K. Given complex manifolds 
M and N with local holomorphic coordinates z and w, the forms on the 
product M X TV decompose into bitype, where, e.g., 

denotes the C°° forms having type (p,q) in </z's and (r,s) in dw's, and 
therefore type (p + r, q + s) on M XN. We set 

*,-(?) = (-1)'~ V?. A- • • A^TA- • • A C 
and define the Bochner-Martinelli kernel on C" XC" by 

2 *,(z-w)A*{w) 
k(z,w) = C„ — 

\z-w\\2n 

This form has singularities along the diagonal z = w and is integrable on 
C" X C . Its decomposition into bitype is 

n 

k(z,w)G © L(0^l)("-''-*)(C',xC",loc). 
q= i 

We then define 

by 

(K<p)(z)=[ k(z,w)A<p(w)-

This integral makes sense, since k is integrable and (p has compact support. 
With the usual change of variables u = z — w, 

(K<p)(z) = f k(z,z - w) A <p(z ~ «) 
Ju£C 

is C°° in z since only ||w||2" will appear in the denominator of the 
integrand. 
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We note that Kq> dees not have compact support. There are analogues of 
Ktp for forms <pEA^q(C") (p¥^0), but we shall leave it to the reader to 
write these out. 

What we need to know about K is the homotopy formula 

3 AT+#3 = identity. 

Proof. Since 

g /2* , t t ) \_nm) «3(U)A 2*.■(£) 
imi2" / \\n2n urn 2« + 2 

u\\2n 

= 0, 
iifir *(n 

we see that formally 3/c(z,w) = 0. Ignoring for a moment the singularities, 
for a test form \pEA"'n~'l+>(Cn) Stokes' theorem gives 

0 = f d(+(z)Ak(z,w)A<p(w)) 
JC"XC" 

= r d^{z)/\k(z,w)/\y(w)) 
•'C" X C" 

= f 3^(z)AA;(z,w)A<p(w)± f ^ ( z ) A * U , w ) A M w ) . 
- / C X C" JC X C" 

This equation says that, considering K^ = K<pG:A0,g~,(C") as a current 
operating on A"'n~q+\C), 

(*) 3 ^ + V = 0. 
Of course this formal computation is not correct, because in applying 
Stokes' theorem the singularities of the kernel along the diagonal come into 
the picture. Referring to the previously established Bochner-Martinelli 
formula, 

r,(0) = C „ ( 37,(0 A 
s<fr,-q)A<i>(n 

iifii2n 

for TJ e C"(C"), it seems pretty clear that the correction term that must be 
added to the right-hand side of (*) is just the identity. This may be proved 
by writing everything out and using the Bochner-Martinelli formula, but 
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since it is completely straightforward to carry out the computation, we will 
not do it here. 

A first application of the homotopy formula is another proof of the 
3-Poincare lemma for smooth forms. Given a 3-closed form <pEA0,q(U), 
where U c C" is an open set, we may find a relatively compact open subset 
VcU and bump function pGCc°°(C/) with p=\ on V. Then ptpE: 
Af"{Cn), and 

(p<p)(z) = d(Kp<p)(z) + K(d(p<p))(z). 

Restricting to V, 

<p(z) = d(Kp<p)(z) (zEV). 

Now, suppose we say that a current re6D°'q(C'1) is compactly supported 
if, for some relatively compact open set UcC", T(<p) = 0 whenever suppqp 
CC-U. Such a current may then be defined on all of A"-"~q(C"), not 

just on the forms with compact support. Using this device, we may define 
KT for a compactly supported current T by 

KT(y) = T(K<p), <p<=Ac
n-n-«+\C"). 

Then JO,G<5Da»-,(C"), and for a test form xpGAc
n'n~"(C), 

{d(KT))M + (K(dT))M = (KT)(fy) + (5T)(A^) 
= T(Kty + dKxp) 

so that, with this interpretation, the homotopy formula makes sense for 
compactly supported currents. In particular, the proof of the 9-Poincare 
lemma for smooth forms may be extended verbatim to prove the result for 
currents. 

This completes the argument establishing the isomorphisms 

ma*(M) -^H"-*^ *(M ),8), 

# D R W — > H * ( ^ * ( M ) , d ) , 

which we shall refer to as smoothing of cohomology. 

2. APPLICATIONS OF CURRENTS TO COMPLEX ANALYSIS 

Currents Associated to Analytic Varieties 

Let M be a complex manifold. The currents ^ ^ ( A f ) of type (p,p) are the 
continuous linear functionals on the compactly supported forms 
A"'p-"~P(M). A {p,p) current T is real in case T= T in the sense that 
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T(<p)=T(<p) for all <p&A" p,n P(M), and a real current is positive in case 

( V ^ T ^ - ' ^ ^ r i A T f ) > 0, T)£Ac"-p-°(M)-
Especially noteworthy are the closed, positive currents. Note that for real 

dT = 0^dT=dT = 0. 
The positivity of a current implies that it is order zero in the sense of 

distributions. For example, a current 7,G6D1''(Af) is locally written as 

T = — ^ - 2 ' i ^ , - A dEj, 
Z ij 

a differential form with distribution coefficients defined by 

t0(a) = ( - l ) " + ,'+>(a<fe,A-' - A ^ A - • - A ^ A ^ i A - • " A ^ / V • • A^„) . 
The current is real if ?,-,- tfi, and positive if for any A, , . . . , \ the distribution 

a-,rw(«) = (s^M-)(«) 

is nonnegative on positive functions. In this case, by taking monotone 
limits we may extend the domain of definition of r(A) to a suitable class of 
functions—including all the continuous functions—in L'(M,loc) that are 
integrable for the positive measure T(k). A similar discussion applies to 
positive (p,p) currents. 

Examples 

1. Let Z c M b e a codimension-/> analytic subvariety with Z* = Z—ZS 

the set of smooth points. In the subsection on calculus on complex 
manifolds in Section 2 of Chapter 0 we proved what, in the language of 
currents, amounts to the assertion that the map 

<p-» f <p, <peA?-'-"-p(M)t 

defines a closed, positive current Tz. This example is of fundamental 
importance. 

The cohomology class defined by Tz together with the isomorphism 
H^(M)*H*(W(M),d) 

is the fundamental class of Z. 
2. A smooth (1,1) form 

w = ——— -(svw^-) 
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is real if htj = A-,-, strictly positive if the matrix htj is positive definite, and 
closed exactly when the corresponding hermitian metric 

ds2 = 2 hijdZidlj 
U 

is Kahler. The powers up of a Kahler form define closed, positive (p,p) 
currents. 

3. A real function qpEL'(M, Ioc) is said to be plurisubharmonic in case 
V— 1 33<p is a positive (1,1) current. Here the derivatives are taken in the 
sense of distributions. Plurisubharmonic functions define potentials es-
pecially suitable for complex function theory. 

Lemma (39-Poincare Lemma). Let T be a closed, positive (1,1) current. 
Then locally 

T = V ^ T 33> 

for a real plurisubharmonic function <p, which is unique up to adding the real 
part of a holomorphic function. 

Proof. By the 3-Poincare lemma, locally 

T = - V ^ T 3r, 

for some current TJ of type (1,0). The current 3TJ is of type (2,0), and 
3(3TJ)= — 99TJ = ( 1 / \ / ~ ^ T )dT=0. By the regularity theorem for the 3-oper-
ator, 3TJ is a closed holomorphic 2-form, and so by the ^-Poincare lemma 
for holomorphic forms 3TJ = */£ for a holomorphic 1-form £. Then 
T= — V— 1 9TJ', where 77' = 77 — $ satisfies 9T/' = 0. Now, by the 9-Poincare 
lemma, Tj' = 3y for some distribution y; <p= j(y +y ) is then a real distribu-
tion satisfying V - 1 39<p = T. 

Using the fact that V^l 93(jp is a distribution of order zero, it may be 
proved that <p is a locally V function, but we will not completely prove 
this, since we do not need it. Intuitively, the argument is that 

A<p = V - 1 A33<p 

is a distribution of order zero, hence it is (more or less) in the Sobolev 
space H0. By the regularity theorem, then, <p is (more or less) in the 
Sobolev space H2. 

The function q> is called a potential for T, and it is unique up to adding a 
real function y with 33y=0. If y is any such function then 3y is a 3-closed 
current of type (1,0), and so again by regularity is a closed holomorphic 
1-form. Setting/(z)= f 3y, then, we have y = Re/ . Q.E.D. 
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If T= Tu is the current associated to a Kahler metric, then its potential 
function <p is smooth. For instance, <p(z) = ||z||2 is a global potential 
function for the Euclidean metric on C". 

At the other extreme we have the 

Lemma (Poincare-Lelong Equation). / / the holomorphic function f £ 0 (M) 
has divisor the analytic hypersurface Z, then the equation of currents 

rz = -—U3iog|/| 

is valid. 

Proof. Around a smooth point we may choose coordinates (z,,...,z„) 
such that f(z) = zn. Then 

^ - 3 3 1 o g | / | = g( ' 9 log/ 

- 31 ' dZ" 
2 T T V - 1 

by an obvious extension of the 1-variable Cauchy formula (in distribu-
tional form) 

J 1 dz 

) -
8{0) 

\2irV-l z 

allowing dependence on parameters. 
Next, suppose thatp(w)—w" + axw"~x + • • • 4-a0 is a polynomial in one 

complex variable, possibly with repeated roots. Then we have the distribu-
tion equation 

1 p'(w)dw' 

\2ir^ 1 P\w) I P(*>,) = 0 

This means that the 1-form 31og/?(w) is integrable, and moreover for 
«ec;°(C), 

1 

277V-1 J J $w P(w) P(»,)-O 

The formula follows by writing p{w) = Wv=x{w- vv„) and using the 
Cauchy formula on each factor. 

Returning to the general Poincare-Lelong formula, we must show that 
log | / | is integrable and 

—— [ log|/| 33? = f <p 

file:///2irV-l
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for <pGA"~l,n~l(M). The problem is local around a pointp e Z with local 
coordinates (z, , . . . , z„). We may assume that/(z, , . . . ,z„) is a Weierstrass 
polynomial in z„ and that 

<p = a(z)dzx/\--- A < f c „ - i A ^ i A - - - Adz„_lt 

since these forms generate all forms under coordinate stretchings, 
Z\ = Z „ ...,z'„_i = Z„_„ < = /J,Z, + ■ ■ • +fi„-iZH-i + ZK. 

Effectively, then, we are reduced to 2-variables (z,w), where 

<p = a(z,w)dz A <& 
and 

/(z,w) = w" + a1(z)wn- I + --- + a 0 ( z ) = I I (w-wv(z)) 
c = l 

is a Weierstrass polynomial. By iteration, the integral in question is a 
constant times 

log | /(z, w)| d ^ d ' j ) * A ^ I dz A <fe 

/ 

Applying first Stokes' theorem and then the polynomial result to the inner 
integral gives 

(*2«(z,wr(z))\dzAdZ= ( V Q-E.D. 

One may suspect that a general closed, positive current should be 
somewhere between the smooth currents and those supported by analytic 
varieties. This turns out to be basically true, and in order to describe what 
is known, we show how a closed, positive current T&tf)p,p(U) an open set 
U in C" has associated to each point p a Lelong number 

@(T,p) > 0, 
which is identically zero for smooth currents, and where at the other 
extreme 

&(Tz,p) = multp(Z) 

gives the multiplicity of an analytic variety Z at a point. 
For simplicity we assume U=C", p is the origin, and we use the 

notations 
B[r] = { z E C : \\z\\<r), 

x(r) = characteristic function of 5 [ r ] , 
B[r,R] = } z e C : r<\\z\\<R) (r<R), 

w = — j — ^dz/Adlij. 
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As mentioned above, by taking monotone limits the current T may be 
defined on suitable L'-forms, such as x(r)u"~p- In case T= Tz, 

Tz(x(r)o>"-p) = f 
JZnB[r\ 

= volume o f ( Z n # [ r ] ) 

by the Wirtinger theorem from Section 2 of Chapter 0. In general we set 

and shall prove the 

Lemma. 0(T, p, r) is an increasing function of r. 

Proof. The smoothing Te of a closed, positive current is again a closed, 
positive current. Using this it will suffice to prove the lemma when T=Tl)/ 

for a smooth, closed (p,p) form \p. Then 

r P •> B[r] 

-(yfLr'-^/,w<'(*A3||z|PA(33||.|lT-'-'. 
since yp is closed, 

by Stokes' theorem. 
Now on the sphere ||z|| = r, 

0 = d(z,z) = (dz,z) + (z,dz) 

•391og(z,z) = 3P- f) =±- r-, 

since {dz,z)/\(z,dz) = -(dz,z)/\(dz,z) = 0. The last integral is therefore 
equal to 

tVELY " r ^Aalog||Z,|2A(33,og||Z|,2)-/-i-
V l I J\\A\ = r 

By Stokes' theorem, for r < R (remembering that p is the origin) 
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@{T^p,R)-0(T^p,r) 

| | 2 \«-p-i 
= f t / \ \ { ^ - ) " "31og||z||2A(331og| 

JdB[r,R] [ \ z / 

J B\r,R\ 

Z 

1[r,R] 

where 

R = - ^ - 3 3 1 o g | | z | | 2 

Lit 

is the pullback to C" of the Fubini-Study metric on P" _ 1 . Since tyfWp > 
0, we have proved the lemma. Q.E.D. 

DEFINITION. The Lelong number is 

e(r,/0 = -^iime(7;/v-). 
IT r—>0 

It is clear that &(T,p)>0 and is identically equal to zero in case T is a 
smooth current. As indicated above 

e(Tz,p) = multp(Z) 

for currents defined by analytic varieties. 

Sketch of proof. By the proof of the previous lemma, 

9 ( r z , 0 ) = lim f B " - \ 
r_0^Z[r] 

where Z [ r ] c P " ' is the set of lines Oq for qGZC\B[r] and fl is the 
standard Kahler form on P"~' . The limiting position of Z[r] as r | 0 is the 
tangent cone C(Z) to Z at the origin, and by the Wirtinger theorem applied 
this time to the protective space P" _ 1 , 

f 0 " - ' = degree (C(Z)) 
JC(Z) 

= mul t ( 0 } (Z) . Q.E.D. 

This proof is not too difficult to make precise, and it is essentially 
obvious in case the origin is a smooth point of Z, which is all we shall use. 
Since the Lelong number is semicontinuous, it follows that 

@(Tz,p) > 1 
for / ) 6 Z . 
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Building upon previous work by several authors, Siu has recently proved 
that for a general closed, positive current T the set of points where 

0 ( 7 » > e > 0 

is supported in a codimension-/? analytic subvariety.* We shall not use this 
result, but it is worthwhile to keep in mind when we discuss the proper 
mapping theorem in the section after next, where in fact a special case of 
Siu's theorem will be proved. 

Intersection Numbers of Analytic Varieties 

Suppose that M is a compact, oriented manifold of real dimension n. Two 
closed currents T, S of complementary degrees have an intersection number 
defined by 

TS=f TeASs, 

where TE,SS are smooth forms in the cohomology classes defined by T and 
S using the isomorphism 

This intersection number coincides with the usual topological one on 
piecewise smooth singular cycles, with the cup product on the smooth 
forms considered as currents, and with the usual pairing 

/+ 
■'r 

of forms on cycles when T=T^ for a smooth form ip and S=Tr for a 
piecewise smooth chain I\ 

In case M is a complex manifold of complex dimension n, the pairing 
HP-q{M) ® H^-p-"-q(M) -» C 

induces an intersection number on 9-closed currents of complementary 
type (p,q) and {n—p,n-q). In casep = q and T is a real (p,p) current and 
S a real (n—p,n—p) current, then 

dT = 0**dT = 0, 
dS = 0<=>3S = 0, 

and the intersection number of closed currents is the same in either the d 
or 3 sense. 

*Y. T. Siu, Analyticity of sets associated to Lelong numbers and the extension of closed 
positive currents, Bull. Amer. Math. Soc, Vol. 79 (1973), pp. 1200-1205. 
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Now suppose that T is a closed, positive (p,p) current. Then by the 
smoothing of cohomology there is a closed, real smooth (p,p) form Te in 
the same cohomology class at T. With some care we could insure that 

lim Tt = T. 

However, we cannot say that the Te are positive forms. For example, 
suppose that M=Np is the blow-up of a two-dimensional complex mani-
fold N at a point p. The fiber over p in M-*N is a curve £ s P ' with 
normal bundle H*, where //—>P' has Chern class + 1 . Thus the self-inter-
section number EE= — 1. If Te is a smoothing of TE, then 

EE= ( Tt 
JE 

shows that we cannot take Tt to be a positive (1,1) form. 
The intuitive reason for this is that Te is a smooth form supported in 

e-tubular neighborhood of E, and so Tc has to do with the shape of the 
normal bundle of E. To say that Te is positive would be something like 
saying that the normal bundle has positive curvature, which is not the case 
in this example. 

Using the theory of currents, we now will reprove the fundamental result 
from Section 4 of Chapter 0 about positivity of intersection numbers of 
analytic varieties meeting in isolated points. 

Theorem. Suppose that Z and W are analytic subvarieties of complementary 
dimensions p and n — p in M that meet at a finite number of points of M. 
Then the intersection number 

ZW= 2 mp(Z,W), 
pezn w 

where (Z, W)p depends only on Z and W in a neighborhood of p and satisfies 

mp(Z,W) > mul t p (Z)mul t / , ( ^ ) . 

Proof. We first argue that we may assume W to be smooth. For this we 
consider the product MxM. By the formal properties of the Kunneth 
formula and Poincare duality, 

ZW ={ZXW)L, 

where the right-hand side is the intersection number in M XM of ZxW 
with the diagonal A. Set-theoretically, 

(zx»f)nA= {(P,P): p&znw}. 
Also, it has been established in Section 1 of Chapter 0 that 

m u l t , x , ( Z x W) = mult„(Z)mult , (W). 
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Since the diagonal is smooth, the general case is therefore reduced to the 
situation when W is smooth. 

Next, we may for simplicity assume that Z and W meet in a single point 
p0. We may choose a holomorphic coordinate system (z, w) = 
(zl,...,zp;w],...,wn_p) around p0 such that W is given by z=0 and the 
projection (z, w)—>z is a finitely sheeted branched covering mapping on Z. 
Set Ue = {{z,w): ||z|| < e, ||w|| <e} and let U=Ut. The picture is shown by 
Figure 1. 

Suppose now that we have a current S E6\)p-p~i(U) such that 

Tw\ U = 35. 
Let p be a bump function that is 1 in Ue and has compact support in U. 
Then 

T' — T 
1 w ' » 

3(P5) 
is a globally defined current on M in the same cohomology class as Tw. 
Moreover, T[v = (Tlv-pdS) — dpf\S is smooth near Zf\W, and so the 
integral 

i> 
is defined and computes the intersection number Z- W. If Ze = Z n Ut, then 
since T'W = Q near/>0, 

X Tu lim f x „, 7" 

= lim - f 3(pS') 

= lim f 
'z-z. 

S 

by Stokes' theorem. The formula 
Z- W = lim f 5 

reduces us to a purely local question. 
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We take for S the current 7^ defined by the Bochner-Martinelli form 

y8(z)=C„(91og||z| |2A(a31og||z| |2) / '"1) 

discussed in Section 1 of this chapter. The equation 

dTp = 7,
{z=0} 

is just the Bochner-Martinelli formula with trivial dependence on the 
parameters w. Let BeoCp be the ball {||z|| <e}. The projection 

is a d > mult/,(Z) sheeted branched covering, and consequently 

f S = d[ B = d. Q.E.D. 

The local intersection numbers mp{Z, W) will be discussed once again 
and in greater detail in case Z and W are locally complete intersections in 
Section 2 of Chapter 5. 

In case W is smooth of dimension 1, so that Z is an analytic hyper-
surface locally defined by a single holomorphic function / , the above proof 
gives the formula 

ZW = 2 ord„(/U. 
Pezn w 

The Levi Extension and Proper Mapping Theorems 

We first recall the statement of Remmert's 

Proper Mapping Theorem. Let U and N be complex manifolds, M c U a n 
analytic subvariety, and f: U—»N a holomorphic mapping whose restriction to 
M is proper. Then the image f(M) is an analytic subvariety of N. 

We shall give a proof of this result under one additional technical 
assumption, which will be trivially satisfied in all of our applications. This 
is: 

For each smooth point p £ M and each k-plane Ap in the tangent space 
to M at p(k<n== dimM), there is a k-dimensional analytic subvariety Z 
of M having Ap as tangent plane at p. 

In practice U will be an open subset of an algebraic variety V, and we 
may take Z to be a linear section of M. 

Our proof of the proper mapping theorem will use the discussion about 
currents from the preceding sections, together with the following 
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Levi Extension Theorem (I). Let f be a meromorphic function defined 
outside an analytic variety V of codimension > 2 on a complex manifold M. 
Then f extends to a meromorphic function on M. 

Proof. Let ( / )M be the polar divisor o f / in M—V, and let (f)^ be its 
closure in M. If we make the assumption that ( / ) M is an analytic sub-
variety of M, then we can argue as follows: for any/7 EM, let (/)«, = (g) in 
a neighborhood U of p. Then g-f=h is holomorphic in Uc\(M— V), and 
hence by Hartogs' theorem extends to a holomorphic function A in U. So 
/ i /g gives a meromorphic extension of/ to U. 

Since the question of whether (f)x is an analytic variety is local around 
a point of M, the theorem is reduced to 

Levi Extension Theorem (II). In the polycylinder An in Cn let V be a 
codimension > 2 analytic subvariety, and D a subvariety of codimension 1 in 
A n - V. Then the closure D o / D in An £y analytic. 

Proof. This is a geometric variant of Hartogs' theorem. The analogous 
general result, where 

codimD < (codimF)— 1, 
has been proved by Remmert and Stein. 

We begin by making some reductions. If we prove the result when V is 
nonsingular, then this will imply the general case by the following stratifi-
cation device: Let V be the variety of singular points of V, V" the variety 
of singular points of V, etc. Applying the nonsingular case to sufficiently 
small neighborhoods of points pS V— V, we conclude that D extends to 
A" — V. Repeating the argument, D will extend to A" — V", and so forth. 

Next, by localizing around a point of V and choosing coordinates 
properly, we may assume that V is a linear subspace of C". The essential 
case is thus when n = 2 and F={z , = z2=0} is the origin. We shall prove 
the result in this situation, from which the general conclusion may be 
drawn by analogy. 

Let A' = {|z, |<l, | z 2 | < l , z , ^ 0 } s A * x A . Then we have proved in 
Section 3 of Chapter 0 that 

/ / ' (A', 6) = H2(A',Z) = 0. 

From the exact cohomology sequence of the exponential sheaf sequence 
this implies that // ,(A',0*)=O. Consequently, if D* = £>nA', then the line 
bundle [D*]—>A' is trivial and we conclude that the analytic curve D* is the 
divisor of some h E 0 (A'). 

We may assume that D does not contain the line {z, =0} , and therefore 
D n { z , = 0 } consists of a finite number of points in the punctured disc 



APPLICATIONS OF CURRENTS TO COMPLEX ANALYSIS 397 
0< |z2| < 1. We may find a circle |z2| = e that does not meet these points. It 
follows by continuity that, for S sufficiently small, the locus 

{|z,|<S,|z2| = e} 

will not meet D (Figure 2). For fixed z with 0<|z, | < S the integral 
i r dh 

is well-defined, continuous, and integer-valued. It follows that D meets 
each vertical disc {z, = C, |z2| < e,0< |C| < 8} the same number d of times. 
Thus, projecting D on the z,-axis gives a proper mapping w:Z)-»A that 
restricts to a d-sheeted covering 7r:Z)*—>A* over the punctured disc. If 
d=l, we have the graph of a bounded holomorphic function, and our 
result follows from the Riemann extension theorem. In general we use the 
by-now-familiar argument involving the elementary symmetric functions: 
set 

<P,00 = 1 
/ 

dh{zx,z2) 
7 * 

'2 h(zvzi) 
d 

= 2 ■2,» (*.)''. 

where IT" ' ( Z , ) = {(Z,,Z2^(Z,)},,. The <p,(2,) are holomorphic and bounded in 
0< |z , |<8 , and hence they extend to holomorphic functions on the full 
disc. We may then set 

F(zvz2) = z( + Pi(q>l(zl),...,<Pd(z\))*: + ■ + Pd(<Pi(z\),---><Pd(z\)) 
a polynomial in z, whose roots are for fixed zt=£0 just the points 
(zj,z2 „(z,)), and which is holomorphic in the bicylinder. The divisor of Fis 
D, and we are done. Q.E.D. 

Note: The general principle is this: Let (fcA" be a closed subset such 
that (1) the projection Jf —>A* is proper, and (2) outside an analytic 
subvariety ZcA* this projection W*-^>bk-Z {W*=W-TT~\Z)) is an 

Is, I S 6 Figure 2 
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analytic branched covering. Then W is a ^-dimensional analytic subvariety 
of A". 

Now we come to the proof of the proper mapping theorem. We shall 
give several preliminary reductions before coming to the essential point. 

1. Since/(Af) is a closed subset of N, the question is local around a 
point pEf(M) in N. So we may assume that N is a polycylinder AN = A in 
C". 

Also, we may assume that M is irreducible, since only a finite number of 
components of M will have images meeting a given compact set in N. 

2. The proof is by induction on « = dimA/. Let M* = M— Ms be the 
complex manifold of smooth points of M, and choose a point p0EM* 
where the Jacobian matrix of / : M*-»CA' has maximum rank k < n. If 
k<n, by ouf assumption we may choose a fc-dimensional analytic sub-
variety S in M passing through pQ and such that f\ S has maximum rank k. 
We call such an S a horizontal slice for / : M—*CN. It is clear from the 
implicit function theorem that there is a neighborhood W of pQ such that 
f(W)=f(S(l W). It follows t h a t / ( M ) = / ( S ) , since M is irreducible. 

This reduces us to proving the theorem when / has maximum rank 
n = dimM at some point p0GM*. We will then prove t h a t / ( M ) is an 
n-dimensional analytic subvariety of the polycylinder. 

3. At this juncture we may define the current S 6 ^ ' ' ( A ) (p = N— n), 
which will turn out to be 7}(W) once the theorem is proven. The definition 
is 

Since / is proper and holomorphic, S is a closed, positive current. What we 
must prove is that it is the current given by integration over an analytic 
variety, which must then be/(A/) . 

Note that at each point qGf(M) the Lelong number 
S(S,q) > 1. 

This is true at points q =f(p), where p e M* and / has maximum rank, 
since then one piece of /(A/) passing through q will be a complex 
manifold, and it is therefore true on all of 5 by semicontinuity. 

4. We next argue that we may assume N = n + 1, so that/(Af) is to be 
analytic hypersurface. Precisely, we shall show that for a generic choice of 
coordinate system, the composition g in 

/ 
M —>AN 

gS N i IT = projection 
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are proper, at least if we allow ourselves to shrink the polycylinder A*. If 
this has been established, and if we have proved the result in case 
N = n + l, then a finite number of analytic functions of the form h-ir, where 
/ iG6(A"+ l) has divisor g(M), will define f(M). 

To prove the existence of these good projections, we let X be a generic 
linear form on CN and set Xf=X°f. Then Xf=0 defines 

Mx = / " ' (hyperplane section of / (M )). 

By the induction assumption, the image of 

/ : M A ^ A " - ' 

is an analytic variety of dimension < n — 1. For a generic choice of 
coordinate system, the coordinate projections 

/(AfA)->A" 
are all proper mappings. 

To complete the argument we make an observation: i n C x C x C with 
coordinates (u,vl,...,vp,w1,...,wq) = (u,v,w) we suppose given a closed 
subset S of the polycylinder AxA^xA* defined by | « |<e , |t>,|<«, | " „ | < c 
Suppose that we let S0= Sn{w = 0}, and assume that the projection 
S0-^>&p induced by (0,v,w)—>v is proper. Then, taking a smaller e if 
necessary, the projection S—>AxA^ induced by (u,v,w)-^>(u,v) will again 
be proper. 

Following these reductions we come to the essential point. 

Completion of the Proof. The idea is this. We are given a proper holomor-
phic mapping 

/ : M - ^ A " + I 

that has maximal rank n at some point p0GM*. We let WdM be the 
union of the singular set of M and subvariety where the Jacobian of / has 
rank <n. By the induction assumption / (W) is an analytic subvariety of 
codimension > 2 in An + I . The image of a sufficiently small neighborhood 
of a pointpEM— W is a piece of smooth analytic hypersurface in A"+l, 
and the closure 

f(M-W) = f{M~W)\jf{W). 

The problem is therefore to show that the two p ieces / (A/- W) a n d / ( W ) 
fit together nicely. 

What we do know is that 

<p^f rM, <peA"",(An+1) 

defines a closed, positive current 5 e6D, , ,(A"+')- By t n e 99-Poincare 
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lemma we may write 

S = ——— 99<p, 

where <p is a real distribution on A"+l. Around a point q^f(M— W) lying 
outside the codimension > 2 subvariety / (W), the image /(A/) is locally the 
divisor of a holomorphic function h. By the Poincare-Lelong formula 

93(<p-log|A|) = 0 
near q, so that <p — log |/i| is the real part of a holomorphic function j . This 
proves that the current 

g = 9<p = d\o%h + dj (locally) 
is a closed meromorphic 1-form on A"+i-f(W). By the Levi extension 
theorem, 9 extends to a meromorphic 1-form on all of A"+l. The polar 
divisor of 9 contains f{M— W) and therefore is equal to f(M). Equiv-
alently, f(M) is the divisor of the holomorphic function 

This completes the proof of the proper mapping theorem. 

3. CHERN CLASSES 

Definitions 

In this section we will give the definition and some properties of the basic 
topological invariants of complex vector bundles, the Chern classes. We 
will not be concerned with holomorphic bundles until later; for the 
present, all our manifolds and vector bundles will be simply C°°. 

We begin by recalling some of the definitions of Section 5 of Chapter 0. 
Let M be a manifold, E—>M a complex vector bundle, and &P(E) the 
sheaf of £-valued p-forms, that is, the sheaf of C°° sections of the bundle 
APT*(M)®E. We define a connection D on E to be an operator 

D: &°(E)-*&\E) 
satisfying Leibnitz' rule 

£(/•£) = <//<2>|+ /•/>£ 
for / £ C " ( U), i e <3°(E)( U). If «p„ : E| l/a-» Ua X C" is a trivialization of E 
over Ua c M, then we can identify sections £ of E over Ua with n-vectors 
£»='(£»,i>•••>£»,«) OI functions on Ua. If {eai} is the frame for E over Ua 

given by the constant vectors (0,. . . , 1,...,0), we can write 

DeaJ = ^9^eaJ. 
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The matrix 9a={9a) of 1-forms is called the connection matrix for D; we 
have for a general section £E&°(E)(Ua) 

/>& = «/£, + «„■$,. 

If q>p : E| Up -> L^ X C" is another trivialization of E over UpcM with 
<pa = gap-<Pp and fy is the connection matrix for Z> in terms of <pp, then 

0« = gap-Op-Sap + dgap-g*p-

Note that the dependence of 9 on the choice of frame is nonlinear—i.e., 9 
is not a tensor field of E. Indeed, by solving the equations gap(x^) = 
identity and dgap(x0) = — 9a(x0), we can find a trivialization of E in a 
neighborhood of any point x0 E M in terms of which the connection matrix 
9p(x0) of D vanishes at xQ. 

We extend the connection D to an operator D: &>{E)-^&+l(E) by 
forcing Leibnitz' rule; that is, by setting, for %E.&°(E) and TJ a ^-form, 

We then define the curvature operator 0 by 

0 = D2: (£«(£)-><£? + 2(£). 
In terms of a trivialization <pa, we have 

(6{)0 = ea£,, 
where 0 a is the matrix of 2-forms 

©« = <»«-4 , A *„; 
0 a is called the curvature matrix of Z) in terms of <pa. If (p̂  is another 
trivialization with <pa=g„/3<pj8, 

©« = g«p®p-g«p-

This transition rule just expresses the directly verifiable fact that 0 is linear 
over C°°(A/), i.e., that 0e^ 2 (Hom(E,E) ) . 

In the case of E a line bundle the curvature matrix is, according to the 
transition rule above, a global 2-form, and we have seen that the cohomol-
ogy class [(V — 1 /2w)0], the Chern class of E, reflects the topological 
structure of E. In order to define the general Chern classes of a vector 
bundle, we digress for a moment to consider those functions of a variable 
matrix which are invariant under conjugation. 

Let 91L„ s C" denote the vector space of n X n matrices. A polynomial 
function P: (Dlt„ ->C, homogeneous of degree k in the entries, is said to be 
invariant if 

P(A)=P(gAg-1) 

for all A G9H„, gGGL„. The basic examples of such polynomials P(A) are 
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the elementary symmetric polynomials of the eigenvalues of A, i.e., the 
polynomials P'(A) defined by the relation 

det(A + /• / )= 2 P"~k{A)-tk. 

In particular, P"(A) = det(A) and Pl(A) = tmce(A); in general, if for any 
multiindexes / , J c{l,..-,n} we let AtJ denote the ( / , / ) th minor 
(Ay)ieijeJ °f A> w e c a n w " t e 

Pk(A) = 2 det^, , ) 
*i=k 

= t race(A^)-
The polynomials P' are called the elementary invariant polynomials. In fact, 
any holomorphic function / on <DTL„ invariant under conjugation is expres-
sible as a power series in the P': If we set 

A, 0 
F(A„...,AJ=/ 

0 A„ 
then F is a symmetric holomorphic function in A,,...,A„. Write 

F(A„.. . ,AJ = G(0„. . . ,0n) , 
where a,,...,a„ are the elementary symmetric polynomials in the A,; the 
equality 

f(A) = G(P\A),...,P"(A)) 

then holds throughout the connected and dense open set of semisimple 
(i.e., diagonalizable) matrices in GL„, hence in all of 9tl„. 

Now, a Ar-linear form 

P: 91L„ x • • • x <%, - »C 

is called invariant if for any Ax,...,Ak&
GK,n, gEGL„, 

P(Al,...,Ak) = P(gAlg-\...,gAkg-1). 

An invariant form P clearly gives an invariant polynomial P by 

P(A) = P(A,...,A)-
In fact, the converse is also true: any invariant polynomial P of degree k 
can be realized as the restriction of a symmetric invariant A>linear form P 
on <51L„ X • • • X 9lt„ to the diagonal. The form P, called the polarization of 
P, is uniquely determined by P. For example, for k = 2 we have 

P( ,4 ,B) = i(J>(>! + S ) - P ( ^ ) - / W ) . 
In general, to polarize P*, if for (A\...,Ak)G(G)\l„)k, TGSk a permutation 
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and 7c{l , . . . ,«} a multiindex of order k, we let AJ be the kxk matrix 
whose ith column is the /th column of AJ$, then 

P\Ax,...,Ak) = ~ 2 2 det(^/); 
K- T 6 S ' « / - * 

and the polarizations of a general invariant polynomial—expressed as a 
polynomial in the elementary invariant polynomials P'—can be written 
out in a similarly unenlightening way. 

We return now to our complex vector bundle E-+M of rank n. Let 
{Ua) be an open cover of M with <pa a trivialization of E over Ua and 0a 
and 9„ the connection and curvature matrices of the connection D on E in 
terms of <pa. Then, since the wedge product is commutative on forms of 
even degree, for any invariant polynomial P of degree k on 9Hn the 
expression 

is a well-defined form of degree 2k on Ua; since 

®a = Saj3' ®p'8aP > 

we see that 

P(**) = P@p) 

in Uan Up, so that />(0) = 7>(©a) « a well-defined global 2k-form on M, 
independent of the trivializations chosen. The basic fact is 
Lemma. For P any invariant polynomial of degree k, 

i. rfP(ea)-o, 
2. 77ie cohomology class [P(8a)]£HoR(M) is independent of the connec-

tion chosen for E. 
Proof. Writing P(@a) = P(Ga,..., 0„) for P a polarization of P, by linear-
ity 

*(e.) = S % ^„ e„). 
Now Ba = d9a-0aA9a, so d@a = d9aA 0a-8aAd0a. But P(@a) is invariant 
under change of frame for E, and as we saw for any x0 G M, we can find a 
frame for E in terms of which the connection matrix 9p vanishes at x0. 
Thus 

dP(®a) = dP(%) 

= ,Z±P(efi,...,d0fiAOfi-9pAdBft,...,Sp) 

=>dP(®p)(x0) = 0 

=>rfP(9) = 0. 
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In order to prove part 2, we need to establish an identity for invariant 

forms. We consider the holomorphic function on GL„ given by 
f(g) = P(gAig-

l,...,gAkg->) 

for any choice of A,,... ,Ak G 9H„. Using as coordinates on GL„ the entries 
of g' = g — /, we compute the linear term /, of the power series expansion 
for / around /. First, 

(7+gT 1 = / - * ' + [2]. 
Thus 

f(g) = P(gAlg-\...,gAkg-1) 
= P((I + g')Al(I-g'),...,(l + g')Ak(I-g')) + [2] 

= P(Al,...,Ak) + ̂ lP(Al,...,g'Al-Aig',...,Ak) + [2]. 
i 

But if P is invariant, 
f= P(A,,..., Ak); 

thus all higher-order terms in the power series for / vanish, and in 
particular 

2,P(Al,...,g'A,-Aig',...,Ak) = 0. 
i 

Now if (JP is a 1-form, g a matrix of functions, and A, a matrix of forms of 
degree d{, by multilinearity 

-2(-\)^-+d-<P(Av...,<pAgA„...,Ak) 
i 

= ^<pf\P{Ai,...,gAi,...,Ak) 
i 

= 2«pA/>(^„...,^,g,-..,^) 

= 2(-i)rf,+ " + ^ , M « . - . . , ^ ) . 

In general, if 9 is any matrix of 1-forms, 0 can be written 2 0aga> where 0a 

is a 1-form and ga is a matrix of functions; by linearity again, 

(*) Id(-\)
d<+-+d-p(A],...,eAA„...,Ak) 

i 

^Z(-\)d> + -+4P(Al,...,AiA0,...,Ak). 
i 

Now we can prove Part 2. Let D,D be two connections on E, with local 
connection and curvature matrices 0a and #„,@a and ®a. In terms of the 
trivialization q>a, we have 
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consequently the operator -q = D — D is linear over C°°(Af), and so it is 
given in terms of the trivialization <pa as multiplication by the transpose of 
the matrix Tja = 9a — 9a, which transforms by the rule 

*)« = 8apVpg^\ 

where ga/3 = <pa-<Ppi- Consider the homotopy 
D, = D + tT), 0 < t < 1, 

between D0 = D and Dt = D. D, has connection matrix 9t = 0+ti), hence 
curvature matrix 

O, = d{9 + ftj) - (8 + tn)/\(0+ '*?)• 
Let P be an invariant polynomial of degree k. We claim that 

[P(®)]=[P(9)]EHgR(M). 

To prove this, we will consider the arc in A2k(M) given by 

fl-/»(e,) 
and show that its tangent vector (d/dt)P(@,) lies in the subspace 
dA2k~\M)<zA2k(M); this will show that the image curve t^[P(St)]E 
H^K{M) is constant. The calculation goes as follows: 

y( 0 , = dq - {9A*? +1»A* ) - 2trj A TJ, 

hence 

^(e,)- ip (e„. . . ,e , ) 

= *■/*(-^e„e„...,e,) 

= A ; ^ , © , , . . . , © , ) - A : P ( 0 7 \ T , + T,A0,©,, . •• ,©,) 
-2A:^(r ,AT?,0„ . . . ,0 , ) . 

Applying the identity (*) with 9 = ij, 

p(t,ATi,e l , . . . ,e / )-(A:-i)p(i , , i ?A«„e/ , . . . ,e / ) 
= - P ( T , A T ) , 0 „ . • • , © , ) - (Ac- 1 )P(T, ,0 ,A?) ,0„ . • •,©,), 

so that 

2ktP(r,Av,®n- •-,©,) = /*(A- l )P( i j ,T?A©,-e ,AiJ , . • ■,©„•••)• 
Similarly, by (*), 

F ( 0 " A T ? , 0 „ . . . , © , ) - ( * - 1 ) P ( T , , 0 ~ A 0 „ . . . , © „ • • • ) 

= -p(T,A9~,el,...,8t)-(k-i)p(r,,elA0,.~,e„-), 
and so 

-Ap(«An+i»A«,...,e„...)-*:(*:-i)^(ij,e/A^-^A©„-..,e/,...). 
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Thus we have 

|^/>(0,) = ^ 7 , , ©„..., e,) 

+ k(k-l)P(ii,e,A(9+hi)-(9 + tri)A&„..;&l,:;). 
But for any connection 8 with curvature 0, d® = 8/\@ — ®/\8 and conse-
quently 

</e, = (0+ft j )Ae,-e,A(0"+ftO; 
so we can write, finally, 

jjP(®,) = kPid-n,®,,...,®,) - k(k-i)p(i,,de„...,e,) 

= k-dP(ti,e„...,e,). Q.E.D. 
Note: For those accustomed to the general formalism of differential 

geometry, we can sketch the above calculation in more intrinsic terms as 
follows: First, the operator D:Aq(E)-*Aq+l(E) may be extended to an 
operator on all tensor bundles of E. Then, since the connection matrix of 
D can be made to vanish at any point, we obtain the Bianchi identity 

and applying P to the algebra A*(Wora{E, E)), 

dP(Al,...,Aq) = '2(-l)d<+-+d-'P(Al,...,DAi,...,Aq), 

where A,^/J4(Hom(£,£)); thus ^P(8)=0. Finally, with £>„ 0„ 0„ and TJ 
as above we see that (3/3r)0, = D,rj, and so 

rf(*p(T,,9„...,e,)) = fcp(z)/7,,e„...,e,) 

= *p(-^e„e„. ..,©,) 

To restate the lemma: If we let $ denote the graded algebra of invariant 
polynomials, then for any vector bundle £—>M, we obtain a well-defined 
homomorphism of algebras 

given by 

/> A [/>(©)], 

where 0 is the curvature matrix of any connection in E; w is called the 
Weil homomorphism. 
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In particular, let P' denote again the elementary invariant polynomials. 
We define the Chern forms c,(0) of the curvature © in E by 

and we define the Chern classes ct{E) by 

Ci(E) = "(^5"e)le//^(M)-
The total Chern class c{E) is the sum of the Chern classes: 

c(E)= 2 c,(E)eH£R(M), 

where we set c0(E) = 1 G //pR(Af ). Also, for M a complex manifold, we 
take the Chern classes c,(M) of M to be the Chern classes of its holomor-
phic tangent bundle T'{M). 

Note that the definition of c^E) here agrees with our former definition 
of the Chern class of a holomorphic line bundle. In general—as will be 
clear by the end of this section—the Chern classes of a vector bundle are 
likewise purely topological invariants. The basic properties of the Chern 
classes are these: 

1. First, if f:M-±N is any C00 map, E-+N a complex vector bundle, 
then 

cr(f*E)=f*cr(E). 

To see this, note that if D is a connection on E, U—{ Ua } an open cover 
of N with e} a,...,ek a a frame for E over Ua and 6a the connection matrix 
for D relative to {£,,„}, then the matrices 

f*(0a) i n / - ' ( { / J 
define a connection D* on f*E-*M with curvature 

@(D*) = / * ( © ( / ) ) ) . 
2. Next, let E^>M, F-*M be two vector bundles with connections 

D,D' and curvature matrices ©,©', respectively. Then the operator 

D" = D®D': &XE@F)->&\E®F) 

is a connection for the bundle E(BF, with curvature matrix 

U ©'/ 

Then we have 

de t (0" + tl) = det(@ + tl )• det(©' + / / ) 
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as polynomials in t; i.e., 
c(E®F) = c{E)c{F). 

This is the Whitney product formula. 
3. Similarly, if £ is a vector bundle of rank r and L is a line bundle, we 

have seen that for appropriate connections on E, L, and E®L, 

so that 

cx(E®L) = trace — ©£(g>z. 
Z77 

= c , ( £ ) + / -c ,(L). 

4. Finally for now, if 0 is the curvature matrix of a connection in a 
complex vector bundle E, then the dual connection in E* has curvature 
matrix — ©; thus 

cr(E*) = (-l)rcr(E). 

We can use the Whitney product formula to evaluate the Chern classes 
c,(P") of projective space, as follows. Let 

TT: C + I - { 0 } - ^ P " 

be the standard projection map; let X0,...,X„ be linear coordinates on 
C"+1 and 

x, = XJ/XQ, i = \,...,n 

corresponding affine coordinates on P". Then we have 
Xn'dXj — X;-dXn 

77* dX: — 
X2 

and so, at a point l £ C " + l , the image under m of the tangent vector 3/3X, 
is given by 

3 1 3 

3 _ _ Y Xj_ _3_ 

It follows from this calculation that: 

1. If l(X) is any linear functional on C + 1, the vector field 

v(X) = l{X)-^ 

descends to P"—that is, IT*V(X) = TT*V(\X) for any A r G C + l , X e C . We 
will denote by w*o the induced vector field on P". 
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2. The tangent space T^(P") to P" at a point x = TT(X) is spanned by 
the vectors 

a 

with the single relation 

Now, recalling that the fiber of the hyperplane line bundle H->P" over a 
point x = i ( X ) e P " corresponds to linear functionals on the line C{X] c 
C"+1, we can define a bundle map 

& 
H®(n+]) = H®--- ®H. —> 7"(P") 

n + I 

by setting, for a = (a0,...,a„) a section of H®(n+l\ 

S(a) = ^oXX)^. 

By the second observation the map £ is surjective, with kernel the trivial 
line bundle spanned by the section 

T = (X0,...,X„). 

Thus we have an exact sequence of bundles on P": 
& 

called the Euler sequence. Now, from the C°° decomposition 

//®<"+l> = 7 " ( P " ) S C 
and the Whitney product formula, we find 

c ( r ( P " ) ) = c ( / / e <" + 1>) = c(H)n+x - ( l + w ) n + I , 
where w= TJH G / / 2 (P" , Z) is the class of a hyperplane. 

The Gauss-Bonnet Formulas 

As we have seen, the first Chern class of a holomorphic line bundle is 
Poincare dual to the cycle represented by the zero-locus of a global 
holomorphic section. A similar geometric description of the general Chern 
classes—or rather their Poincare duals in homology—is available, and the 
remainder of this section will be spent in deriving it. The computation will 
not be made directly; instead, we will first compute the Chern classes of 
the universal bundles on the Grassmannians, and then by the functoriality 
of the Chern classes draw conclusions for general vector bundles. 



410 FURTHER TECHNIQUES 

Recall from Section 6 of Chapter 1 that for any strictly increasing flag 
0 = V0c K . C - - - C K„_,c Vn = C 

of linear subspaces of C , and for any nonincreasing sequence of k integers 
a,: 0 < a, < n — k, we define the Schubert cycle aa( V) c G(k, n) in the 
Grassmannian of fc-planes in C" by 

aa(V)={A: dim(AnV„_k+l_a)>i}. 

aa(V) is an analytic subvariety of G(k,n) of codimension 2 a „ with 
fundamental class aa independent of the flag V; as we saw, the integral 
homology of the Grassmannian is freely generated by the classes aa. 

Recall also that the universal subbundle S-^G(k,n) is defined to be the 
subbundle of the trivial bundle C XG(k,n) whose fiber over a point 
AGG(k,n) is just the Ac-plane A c C " . Letting a* denote the Poincare dual 
of the cycle aa, our fundamental result is the 

Gauss-Bonnet Theorem I 

cr(S) = (-l) r-a*.. . , , . 

Proof. By our computation of the intersection pairing in H*{G{k,n),T), 
we must show that for any Schubert cycle aa of dimension r, 

cr(s)(oa) = (-iy*(oi ,-o 
_ f (— \)r, if a = n — k,...,« — k,n — k— 1,...,« — k— 1, 

10, otherwise. 
We first note that if oa(V) is any Schubert cycle of dimension r, and 
a¥=n — k,...,n — k,n — k — \,...,n — k—l, then ak_r+i must necessarily be 
n-k, i.e., oa(V)<z{AGG(k,n): A D Vk_r+l). Thus if we take e{,...,ek_r+] 

any basis for Vk_r+lcC", the corresponding sections e, of the trivial 
bundle C X G(k,n) all lie in S over aa(V). The sections e, of S\a(V) then 
extend to give k — r + 1 everywhere linearly independent sections e, of S 
over an open set UcG(k,n) containing aa(V). Let S'-±U be the trivial 
subbundle of S| v spanned by e,,...,ek_r + , , and let S"-»U be the quotient 
of S\v by S'. Since S' is trivial, we have c ( S ' ) = l ; by the Whitney 
formula, 

c (S | l / ) = c(5") , 
and hence 

c r (S)(aa (K)) = cr(S")((ofl(K)) = 0> 

since S " has rank r - 1. 
Now set 

Zr = <*„-*....,„-fc,M-*-.....,n-*-i(f/)= {A: ^ . , c A c K t + , } . 
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It remains to check that 

c f (5) (Z r ) = ( - l ) r . 

To see this, let 

Z* = On-k-\ n - * - l ( ' ) 
= {A: A c K H 1 ) cG{k,n). 

Zk^P(Vk + l)* is just the dual projective space of hyperplanes in Vk+l, and 
ZrcZk the linear subspace of hyperplanes containing Vk_r. The bundle 
S\z , moreover, is just the subbundle of the trivial bundle Vk+]xZk whose 
fiber over any A.GZk is the hyperplane AcVk + l. The quotient Q of 
Vk + }xZk by 5 is thus the universal quotient bundle on Z ^ s P ' , that is, 
the hyperplane line bundle. Letting <o denote the class of a hyperplane in 
Zk ss P*, we have then 

c ( 0 ) = l + u , 
and since as C w bundles 

K,+ 1 X Z , = S | Z t ® 0 , 
> = c ( S | z J - ( l + u ) , 

hence 
c (5 | Z ( ) = 1 - w + w2 - w3 + • • ■, 

<Y(SlzJ = (- l )V-
Thus 

c r (S)(Zr) = c r ( S | z > ( Z f ) 

= (-irw'(P') 
= ( - ! ) ' , 

and the theorem is proved. Q.E.D. 

Note that by the relation giving the Chern classes of a dual bundle 

c,(S«) = ( - l ) ' c r ( S ) - o f , . . . , , 
and via the isomorphism (S* -+ G(n — k,n)) = (Q —> G{k,n)), we see that 

cr(Q) = <, 
where Q is the universal quotient bundle. 

The Gauss-Bonnet formula gives us a relatively concrete interpretation 
of Chern classes in general as follows. Let Af be a compact, oriented 
manifold, E—>M a complex vector bundle of rank k, and a = (o,,...,aA.) k 
global C °° sections of E. We define the degeneracy set Z),(0) t o ^ e the set of 
points x£M, where o„...,o,- are linearly dependent, i.e., 

Di(o) = {x: o,(x)A--- A<J,W=0). 
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We say that the collection a of sections is generic if, for each /', oI + 1 
intersects the subspace of E spanned by a„...,a, transversely—so that 
Dj+](a) is, away from Dt(a), a submanifold of codimension 2(k — /)—and 
if, moreover, integration over £>/+I(a) —£>,-(a) defines a closed current as 
discussed in Section 1 of this chapter. (By the results of Section 2 this will 
occur if everything is complex analytic and the dimensions are correct.) In 
this case, we can give the smooth locus Di — Di^l an orientation: In a 
neighborhood of a point x0£/), — £>,_,, complete the sections e ,= 
a„...,£,-_, = o,-_, to a frame for £, and write 

°M = *Zfj{x)-ej{x). 
j 

Dj is then given near x0 as the locus (/•=■•■ = / A = 0 ) ; let $, be the 
orientation on D, near JC0 such that the form 

^A^(^+,A4+I)A"- A ^ ( * A 4 ) 

is positive for the given orientation on M. By the theorem on smoothing of 
cohomology given in Section 1 of this chapter, the locus Dt together with 
the orientation $,- on Z),- £),-_, represents a cycle in homology, called the 
degeneracy cycle of the sections a. 

Now suppose au...,ak are generic sections of E. Using a partition of 
unity on M, we can then construct additional sections ak+l,...,an of E 
such that together a,(x),...,a„(x) span the fiber Ex of E over each point 
xGM. By the construction of Section 6 of Chapter 1, then, the sections 
o,,...,0„ give us a map 

i: M^G(k,n). 
In terms of a trivialization of if, we can express al,...,an as A>vectors 
Vl,...,Vn of C°° functions; the map i is given by 

x - ^ [ ( K , ( * ) , . . . , K l l ( * ) ) ] e G ( * , # i ) . 
Since the subspace i ( x ) = A c C " corresponds to linear functionals on the 
fiber Ex of E over x, moreover, we see as before that i*(S) = E*, i.e., 

i*(S*) = E. 

Now for each r=\,...,k let Vn_k+r_l = {ek_r+2,.-.,e„}(zC. Then for 
any xGM, the A:-plane A = t(x)G G(A:,«) will intersect Vn_k+r_1 in a space 
of dimension r or greater if and only if the sections ov...,ak^_r+1 are 
linearly dependent at x—i.e., i(M) meets the Schubert cycle a, , ( F ) c 
G(k,n) exactly in the degeneracy set Dk_r+{ of the sections ax,...,ak. 
Moreover the condition that al,...,ak be generic assures that i(M) meets 
a, ,(K) transversely. If a is any cycle of real dimension 2r on M meeting 
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Dk_r+1 transversely at points/?,, then, i*a will meet ox X(V) transversely 
at the points i(p,), and by our choice of orientation for Dk_r+X the 
intersection number of i*a with ox X(V) at t(p,) will be that of a with 
Afe-r+i atpt. Thus 

# 0 * « - « i , . . . , i ) = * ( « - ^ - r + i ) , 
and we see that 

c , (£ ) ( a ) = »*(cr(S*))(a) 
= cr(5*)( t +«) 

= # ( t * « - a i , . . . , i ) 

= *(a-Dk_r+l). 
We thus have the 

Gauss-Bonnet Formula II. The xth Chem class cr(E) is Poincare dual to the 
degeneracy cycle D k _ r + 1 . 

Example. We can now make a second computation for the Chern classes 
of projective space. Let X0,...,X„ be linear coordinates on C + 1 , and let & 
and w* be as in the Euler sequence above. Let A = (a,-,) be an (« +1) X (n + 
1) matrix all of whose minors are distinct and nonzero, and consider the 
vector fields 

»/ = S(a,-0A'o,...,a,>Ar„) 

We will leave it as an exercise to verify that, under the assumptions made 
about A, vl,...,vn are generic sections of T'(P") (this is simply a matter of 
writing c, out in terms of Euclidean coordinates on P"), and compute the 
degeneracy cycles Dt of «[,...,«,-. First, we see that u, vanishes at X 6 P " 
exactly when 

and since by assumption au¥^0 for all /' and aXi^aXj for all i¥=j, this is the 
case only for X=pt, where 

p,=[0,... ,0,1,0,. . . , 0 ] , i = 0,. . . ,«. 

Thus c„(P") = « + l. Now ©, and t>2 will be linearly dependent at I 6 F 
when there exist (Xl,X2)7,t0 such that 

[\awX0 + A2a20X0,...,\xaXrlXn+X2a2„X„] = [ ^ 0 ) . . . , ^ „ ] , 

and by the assumption that all 2 x 2 minor determinants of A are distinct 
and nonzero, this will be the case only when all but two of the homoge-
neous coordinates of X are zero, i.e., when X lies on a line p~p~ for some 
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0< i¥=j< r. D2 thus consists of the union of the I n I lines p~pf, or in 
other words, if <o is the hyperplane class on P", 

In general, «,,...,vq will be linearly dependent at X exactly when all but q 
of the homogeneous coordinates of X vanish, i.e., 

Dq= U PifPv-Ji, 
>I = q 

consists of the union of the coordinate (q— l)-planes spanned by the points 
/»,-. Thus 

as we computed before. 
As an immediate application, we can add one more identity to those 

previously mentioned. If E—>M is a complex vector bundle of rank k, then 
the first Chern class cx{E) is dual to the cycle DkcX given as the locus 
where k generic sections a,,...,ak of E are linearly dependent. But the k 
sections a, of E together give one section 

o = o , A - - - A 0 * 

of the line bundle AkE—*M, and the degeneracy set D, of a is equal to Dk. 
Checking that the orientations are in fact the same, we have 

cx{/\kE) - cx{E). 

Finally, note that given generic sections a,,...,a, we can define degener-
acy cycles 

£>,0) = {x:dima,(x) , . . . , a , (x) < / ' - /}■ 
If, as before, we complete the sections a,,...,a, to a collection a,,...,an 

spanning each fiber, then the degeneracy cycle D^ will be the inverse 
image, under the corresponding map i: M^>G(k,n), of the Schubert cycle 

a ^ ( K „ _ , _ ; + 1 ) = { A : d i m A n K „ _ , „ y + I > / c - / + l } . 

k-i+l 

Composing t with the isomorphism *: G(k,n) -» G(n — k,n), we find that 

j 

and since cr(E) = (*i)*ar, we may combine this with Giambelli's formula on 
p. 205 to obtain 
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Porteous' Formula. For a,,...,o, suitably generic, the Poincare dual of the 
degeneracy cycle D^' is 

Z),0)* = det 
-tUE) 

ck_,_J+2(E) 

Lk-i+j (E) 

- , ■ - ( * ) 

Finally, we will specialize our general Gauss-Bonnet formula to obtain a 
more classical form, and also to explain the terminology. Suppose that M 
is of real dimension In, E->M of complex rank n, and a a global C°° 
section of E having nondegenerate zeros at points p„ £ M. For each v, let 
ex,...,en be a frame for E aroundp„, x = (xv...,x2„) oriented real coordi-
nates on X centered around pv, and write 

° W = 2 ( ^ + ^ 1 Kk)-xa-ek{x) + [2], a:k,Kk e R. 
Let ^ be the 2«x2« matrix ( /T ,^ ) , where Av = {av

ak) and B" = (bv
ak\ 

Then, if we write 

<K*) = IU(*)-^(-*) 
as before, we have 

(<% A 4 ) ( / 0 = 2 (<*+v^T b'ak)dxa A 2 (<* - ^T" %)<^ 

= - iV^J 2 <* • Kk ■ dxa A dxb, 
and so by linear algebra the sign of the point pv in the degeneracy cycle Z>, 
of a is 

( - i y ( " - , ) / 2 - s g n d e t ( 4 j . 
Thus by Gauss-Bonnet II we have 

c„(£) = 2 ( - i r ( " " , ) / 2 s g n d e t ( ^ ) . 
Specializing still further, let M be a complex manifold of dimension n, 

E= T'(M)^>M its holomorphic tangent bundle and a a C00 section of E 
having nondegenerate zeros at/>„£A/. Let z = (z,,...,z„) be local holomor-
phic coordinates centered around pp, and write 

— 1 x-, 
so that x = (xu...,x2n) is an oriented real coordinate system for M near/>„. 
Then, if 

v(z) = ^{aJk + V-\b^)zj— + [2] 
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and if Ap =(A",B'') as above, we have 

c„(A/) = S ( - l ) " ( n " 1 ) / 2 s g n d e t ( ^ ) . 
Now let 

v'(z) = \(v(z)+v(z)) 

be the real vector field obtained from v by the real projection T'{M)-* 
TR(M). Then 

+ 52(*-^T«!)r/(^+V3T^) + [2] 

so the index of v' at/?,, is ( - \)n<~"-]'>/2 times the sign of the determinant of 
A . Thus by the Hopf index theorem (to be proved in the next section) 

x ( ^ ) = 2 ( - l ) " ( " " 1 ) / 2 , s g n d e t ( ^ ) , 

and so we have 
Gauss-Bonnet Formula III. cn(M) = x(M). 

We have, in this discussion, inverted the historical order of things. The 
Chern classes of complex vector bundles and the analogous Steifel-
Whitney classes of real vector bundles were originally defined using 
obstruction theory; in terms of this definition, the classes were visibly the 
Poincare duals of degeneracy cycles. Chern then discovered the remark-
able fact that these global topological invariants of a vector bundle could 
in fact be computed from the local hermitian differential geometric struc-
ture of the vector bundle; Chern's theorem has since been frequently 
adopted as a definition. 

Some Remarks—Not Indispensable—Concerning Chern Classes of 
Holomorphic Vector Bundles 

Suppose that E-^M is a holomorphic vector bundle with base space a 
complex manifold M. If we choose a hermitian connection as in Section 5 
of Chapter 0, then the hermitian symmetry 0 + ' 0 = O of the curvature 
matrix in a unitary frame implies the relations 

c.(9) has type (p,p), cp(@) = cp(0) 
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on the Chern forms. In case M is a compact Kahler manifold, these imply 
that 

cp(E) G Hp"(M) n H2p{M,T); 

i.e., the Chern classes are integral and of Hodge type (p, p). 
In case M is a projective algebraic variety, which by the Kodaira 

embedding theorem is equivalent to the existence of a positive holomor-
phic line bundle L-±M, we can say more. We assume that L is the 
hyperplane bundle relative to a projective embedding. First, the Chern 
classes of E={E®Lk)®L~k can be expressed as polynomials in the 
Chern classes of E®Lk and L~k. The Chern class of L"* is 

c(L~k)= l-knD, 

where D is a hyperplane section of M, and by Theorem B in Section 5 of 
Chapter 1 we may find a holomorphic embedding 

M-*G(r,N) (r = rankE) 
inducing E<S>Lk from the universal bundle over the Grassmannian. 
According to the preceding discussion, the Chern classes of E®Lk are 
Poincare dual to the intersection of M with suitable Schubert cycles. In 
summary, the Chern classes of a holomorphic vector bundle over an algebraic 
variety are represented by fundamental classes of algebraic cycles. 

There is also a notion of positivity for the Chern classes of holomorphic 
vector bundles. We shall not enter into this in detail, as it will not be used 
in the study of specific varieties, but will offer two observations. If £—>A/ 
is generated by its global holomorphic sections, we have seen at the end of 
Section 5 in Chapter 0 that there is a hermitian connection whose curva-
ture matrix has the local form 

where A°=^A£dzj is a matrix of (1,0) forms. The ^th Chern poly-
nomial is then 

<<<9>" {^~)'{ „,<?«J?f ? ̂ * e^A" • Ae;..,)j 

" (^L)*^1),<""^<2; <3E^. 'A ' ' w ^ r A- • -A-V.-

2 %A\, 
H = (/ i | , . . . ,H,) 
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where 

\ Z.7T I q . a | < . . . <<^ 
•77 

is a form of type (<7,0). It follows that 

(cq(@)>0 
J z 

for any ̂ -dimensional analytic subvariety Z in M. 
Perhaps more interesting are the Schwarz-type inequalities. The simplest 

of these is 

fc,(@)2>2fc2(e), 
Jz Jz 

where Z is a two-dimensional analytic subvariety of M. For simplicity of 
notation we prove this when the rank is 2, omitting the exterior multiplica-
tion symbol and summing repeated indices. Then 

c,(©)2 - [:^^AW+AlA,%Am+Am) 

= (^T")2{ -{KAl^^ + AX^2Ax
2) + 2A^AlA/} 

2c2(0) = ^^^{lAlA^A^-lAlA^AlA^}. 

Then 

c,(0)2-2c2(e) = ^^^J{A^AlAx
i+A2^2A2Ax

2-2A^2A2Ax
1}, 

and the inequality 

/c1(e)2-2C2(e),|-^J2T,AflAT2Af2\ > o 

for (1,0) vectors T,,T2 follows from the usual Cauchy-Schwarz inequality. 
The inequalities 

jc,(£)>0,. 
\ c 2 (£)>2c 2 (£) , etc., 

are valid for any holomorphic vector bundle that is positive in a suitable 
sense. We shall not give the proof here, but the reader may consult S. 
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Bloch and D. Gieseker, The positivity of the Chern classes of an ample 
vector bundle, Invent. Math., Vol. 12 (1971), 112-117. 

4. FIXED-POINT AND RESIDUE FORMULAS 

The Lefschetz Fixed-Point Formula 

We now derive Lefschetz's formula for the number of fixed points, 
properly counted, of an endomorphism f:M^>M on a compact oriented 
manifold M of dimension n in terms of the action of / * on the cohomol-
ogy of M. That such a formula should exist is not hard to see: a fixed point 
of / corresponds to a point of intersection of the graph TfcM xM o f / 
with the diagonal A c M X M, and as we have seen the intersection number 
*( iy A)M xM depends only on the homology classes of Ty and A in M X M. 
Nor is the calculation itself difficult; it will come out readily once we have 
obtained an expression for the cohomology class T J A G / / " ( A / X M ) of the 
diagonal A c M X M. We do this as follows: First, for each q, let {^ ? } be 
a collection of closed ^-forms on M representing a basis for / /pR(M), and 
let {v^*n_?} be (n — ^)-forms representing the dual basis for H^(M), i.e., 
such that 

f & AJ,* = § . 
I T(i ,9 / \ Tc ,n— q "(l.J'-

J M 

Let w, and ir2 denote the two projection maps M X M-±M. By the 
Kiinneth formula, the forms 

represent a basis for H^R(M X M). The dual basis for H^k{MxM) is 
then represented by 

since by a direct computation using iteration of the integral 

I H'fx.v.p.q '\*Pii',v',n—p',n — q' /!,/*' * ".v ' P.p' q.Q'' 
J M X M 

The Poincare dual rjA of the homology class of the diagonal A c M X M is 
thus represented by the form 

T i 2a Cp,u,j>T>u.,v,p,n—pi 

where 

p.H.v / ^P/t.p.n-p.p V V n.f 
JA 
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i.e., T)A is represented by 

P,V-

Now le t / : M-»A/ be a C°° map. We say that a fixed point /?eM of / is 
nondegenerate if it is isolated and in terms of local coordinates xv...,xn on 
M centered around p, the Jacobian matrix 

%{p): Tp(M)^Tp(M) 

satisfies 

d e t ( ^ ) - / ) ^ 0 ; 

under these circumstances, we define the index ij(p) of / at p to be 

t/(/>) = sgndet ( > / / > ) - / ) . 

We can give another interpretation of the nondegeneracy condition and 
the index as follows: let Tj= {{p,f{p))} C M X M be the graph of / Y} is a 
submanifold of M X M; we give it the orientation induced by the map 

f-P^(pJ(p))-
Letp be a fixed point of/, * , , . . . ,xn an oriented coordinate system for M 
centered around p; take as coordinates around (p,p) e M X Af the func-
tions 

>>, = wf xt and z, = 7r*x,. 
An oriented basis for T{p p)(A) c T(pp)(M X A/) is then given by 

A / — —\ = (-L J_ A JL^ 
* \ a V " a * J l^ i 3z,""" 9yB 3zJ' 

where A is the diagonal map x\-^(x, x), and an oriented basis for T^pp)(Tj) 
C T(pp)(M X M) is given by 

f(J- A^\ = lJ_ + y^L± J_ + \VL±\ 

The combined collection 

«) *teW£) '•(£)) 
is consequently obtained from the standard oriented basis (9/9y,, . . . , 
3/3>'„,3/3z1,...,8/3zn) for Tip p)(M X M) by the matrix 
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we see accordingly that the cycles Tj and A intersect transversely at (p,p) 
exactly when 

det(/ uP)) = det(Up)-n 
is nonzero, i.e., whenp is a nondegenerate fixed point of/; and in this case 
the index of /at /? is just the intersection number of A with Tf at p. Thus if/ 
has only nondegenerate fixed points, 

HP)=P 

and we can evaluate this intersection number by 

*(Ai7)= U, 

p Jr, u P JTf M 

since/*77j=/*, this is 

= 2(-l)"~'f 2^,A/N£„_, 

= 2 ( - i r " / , - t r a c e ( / * | / / & R , ( W ) ) 
/> 

= 2 ( - i y t r a c e ( / * U & R ( A / ) ) . 
/> 

The number 2 (~~ i y t r a c e ( / * I #£,„(*/)) *s called the Lefschetz number of 
the map / , and is usually denoted L(f); we have proved the 

Lefschetz Fixed-Point Formula. 

2 v(/0 «*.(/)■ 

Note that without computing signs the number of fixed points of / must 
be at least the absolute value of L(f), i.e., 

# { / > e M : f(p)=p) > | L ( / ) | , 
and in particular, 

£ ( / ) ^ 0=»/has a fixed point. 
As an immediate corollary to the Lefschetz fixed-point formula we will 

prove the Hopf index theorem. Let M be as above, and let o b e a global 
C °° vector field on M. We say a zero p of v is nondegenerate if it is isolated 
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and, in terms of local coordinates xi,...,x„ centered aroundp, 

v(x) = 2«j,-*/g^ + [2] 

with A = (fly) nonsingular; in this case we define the index iv(p) of v at p to 
be the sign of the determinant of A. Now, integrating the vector field v to 
time / gives a flow 

/ : M->M. 

For t small, the fixed points of /, will be exactly the zeros of v, and if v is 
given as above near a zero p, then in terms of the coordinates x, 

ff(p) — e'A + higher-order terms. 

Thus 

and for / positive and sufficiently small, 
if,(p) = sgndet(^( / j ) - / ) = sgndeM = iv(p). 

Since / is homotopic to the identity, /,* acts as the identity on the 
cohomology of M, so that 

trace/, * | ̂ ( M ) = &\mHp
OK(M), 

i.e., 
L(/,) = x(*0; 

and we have the 
Hopf Index Theorem. 

2 M = X(M). 

The Holomorphic Lefschetz Fixed-Point Formula 

Suppose now that M is a compact complex manifold of dimension n and 
/:A/-»A/ a holomorphic map. Then / acts not only on the de Rham 
cohomology of M but on the Dolbeault cohomology groups as well, and 
we may hope, by analogy with the Lefschetz fixed-point formula, that the 
action of/on H**{M) will be reflected in the local behavior of/around its 
fixed points. This is in fact the case, and we will spend the remainder of 
this section deriving the corresponding formula. 

Our starting point, as before, is a computation of the Dolbeault 
cohomology class of the diagonal A c M x M . T o this end, for each p and q 
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let 

be a collection of 3-closed (p,q)-foTms representing a basis for H!!,q(M), 
and let 

{Wn-p.n-q.fi) 

be 3-closed forms representing the dual basis for H^~p,n~q{M) under the 
pairing 

H™(M) <g> Hnf*n~q{M) -» C 

given by 
^ ® <pi-» [ \p/\<p. 

J M 

By the Kiinneth formula from Section 6 of Chapter 0 a basis for 
//"•"(A/ x A/) is represented by the forms 

{%,?,/1,, = ' r ! i , . | iAT2,l '*- / , , - , - , , J .}. 
and the dual basis for H^"(M X M) is represented, as in the real case 
above, by 

The Dolbeault class TJA of the diagonal is 

Now let f:M—>M be a holomorphic map with isolated nondegenerate 
zeros; let Tf= {(p,f(p))} c A/ X M be its graph. If we compute the inter-
section number of A and Tj in M X M, we find only that 

L(f) =[<PA 

p.? •/r> f 

= 2(-iy, + ? t r ace /* | / / , , ( W ) . 

This tells us nothing essentially new: in case M is Kahler, this follows from 
the ordinary Lefschetz fixed-point formula and the Hodge decomposition; 
in general, it follows from the Lefschetz formula and the Frohlicher 
spectral sequence relating Dolbeault and de Rham cohomology given in 
Section 5 of this chapter. To obtain finer information about the action of/ 
on the Dolbeault groups of M, let TJ^<? be the (p,q)th component of the 
class T}A under the decomposition into bitype 

H^n(MxM) = 0 ( < # £ " ( Af )®77*//"-"•"-"( A/)), 
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and set 

■ql is then represented by the form 

9.M 

and so the value of 77° on the cycle Tf is given by 

<7 •'MM 

= 2 ( - l ) ' t r a c e / * U v - f ( W ) 

= S ( - 0 * t r a c e / * | H ? , ( W ) 

by Kodaira-Serre duality. The number 2 9 ( _ ' ) 9 t r a c e / * l / / °« (M) ' s called 
the holomorphic Lefschetz number of the map/ , and is denoted L(f,0). 

We ask accordingly whether we can evaluate the number rf^(Tf) in terms 
of the local behavior of/around its fixed points. What makes this possible 
is the fact that while the full decomposition of forms on M X M into bitype 
(cf. Section 2 in this chapter) 

Ap'i(M XM) = © A^'i^^^HMxM), 
V ' Pl+Pl=P V ' 

<7i + ?2 = <7 

does not commute with the 3-operator, the coarser direct-sum decomposi-
tion 

A"'HMXM) = S ^ O - i . ' J . f c - w - ^ A / x M ) 

does. Here * represents an index running from zero to q. It follows that if 
r ° is the component of the current TA of bitype (0, *),(«,«-*)—i.e., the 
current defined by the linear function 

T%(q>)= fS<P("'"^>' ( 0 < ? ) 

on test forms <p, then T% is d-closed and represents the Dolbeault cohomology 
class TJ°. To compute T}&(Tf), then, we need only smooth the current 
T°—that is, solve the equation of currents 

(*) 7-°=<p + 5* 
with k any (n,n - l)-current on M X M and <p a smooth form; we will then 
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have 

ril(rf) = f<p. 

In fact, as we will see, it will suffice just to solve the equation (*) locally 
around the fixed points. We proceed as follows. 

Recall from the subsection "Definitions; Residue Formulas" in Section 
1 of this chapter the Bochner-Martinelli kernel on C" X C" is given by 

P-Sf 
where 

| $,(*) = ( - 1)' ' x . ^ A - • • A<fr,7V * • Adx„, 

[ * ( x ) = <4c,A--- /\dxn. 

This form has bitype (0, * - \),(n,n- *) in the variables (dz,dz)(d^,d[). 
Also, from 3$,(z - f )=<&,-(z - f ) it follows that 

3/c(z,f) = 0 o n C " x C " - A , 
so that the current defined by k{z,$) has distributional derivative dk 
supported on the diagonal. In fact, the homotopy formula proved in the 
subsection "Cohomology of Currents" is equivalent to the distributional 
equation 

w = rA°, 
giving the desired "smoothing" of T% in C"xC". 

Now we return to our complex manifold M and map/ :Af-»M. Assume 
t h a t / h a s isolated, nondegenerate fixed points {pa} and, in terms of local 
coordinates zai around pa, write 

/(U = 2V.* + [2]' 

Kza) = Baza+[2], 

where 5 a = (fe,y); by nondegeneracy, (I — Ba) is nonsingular. Let Bc(pa',Pa) 
be a ball of radius e around (pa,pa) in M XM, and let pa be a bump 
function with 

Pa = l in Be(Pa,pa) 

Pa=0 in M X M - B2e(pa,Pa)i 

let k be the current on M XM given by 
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where k(za,£a) is the Bochner-Martinelli kernel. Then in Bc(pa,pa)
 w e n a v e 

Moreover, k is smooth on M X M - A, so that if we set 

9= Tt-Bk, 
<p will be a 8-closed current representing TĴ , smooth in an open set 
containing Tf, and equal to — dk away from A. Then 

= - f dk 
JYj-uB,(pa,pa) 

-2 / * 
a •/3(I>n B,(pa,pa)) 

= Hmo 2 / *(*.>/(*a))-
Now if we set wa = za —/(z„), then 

A - „ , A - - A ^ = de t ( / - £(/)) • <**„, A • • • A ^ , 
and we have 
J | | z | | - £ 

= /* S ( - 1) '~ '^^0 |A- • • A<fi?„,A- • • A ^ . A ^ . A - • • A<fea„ 

" / llw IP" 

2 (~ 1)'~'% .^« , A- ■ • A * „ A - ' • Adwa /\dw A- ■ ■ Adwa 

II ~J'2"' 
1 1 

_ E |K||2"det(/-£(/)) 

det( / -K/)(0)) de t ( / -* a ) 
by the Bochner-Martinelli formula proved in Section 1 of this chapter. 
Putting this all together, we have the holomorphic Lefschetz fixed-point 
formula: 

1 M/,©) = 2 
/ ( / T - A . ^ 7 - * . ) ' 

The Bott Residue Formula 

We ask now whether there exist refinements of the Gauss-Bonnet formula 
for holomorphic vector bundles on complex manifolds. The answer, in 
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general, is no, for the reason that a zero of a section a of a holomorphic 
vector bundle E on a complex manifold carries no nonobvious local 
structure: since we can choose a frame e = (et,...,ek) for E and a local 
holomorphic coordinate system z = (z,,...,z„) for M independently, the 
local expansion 

°(z) = 2 V<" eJ + 2 V ' 7 / •«/ + •■■ 
for a can be given virtually arbitrary form. The exception to this occurs 
when £ is a holomorphic tensor bundle, e.g., when E=T'(M) is the 
holomorphic tangent bundle of M: in this case a local coordinate system 
(z,) determines naturally a frame {3/dz,} for T\M). Thus, in the neigh-
borhood of a zero of the holomorphic vector field v, we set Ap = (ay), where 

^ ) = 2%z<az~ + [2]-
If w=f(z) is any other coordinate system around z = 0 and we let Ap = (au) 
be given by 

r ( r ) - 2 ^ - " T - ^ + [2], 

then for g = (&,) = $-(/) the Jacobian of the change of coordinates, 

A = V JL 
9z,. ^ 8jl dwj ' 

and hence 

»(*)= 2 «,>•&*'•"*-£/,--^7 + [ 2 ] -

Thus 

^ ='g~'--Vg, 
i.e., /Ip is determined up to conjugation. The value P(Ap) of any invariant 
polynomial P on A is therefore an invariant of v and p, and we may hope 
that the numbers P(Ap) carry some global information. This is in fact the 
case: if 0 is any curvature matrix in the holomorphic tangent bundle 
T'(M) of the compact complex manifold M, P any invariant polynomial 
of degree n = dim A/, v a global holomorphic vector field and Ap as above, 
we have the 

Bott Residue Formula 

,(&o det(^) JM [ 2, U)> 
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i.e., if we write P as a polynomial 

P=Q{P\...,P") 

in the elementary invariant polynomials F , 

Proof.* The outline of the proof is this: we choose a metric in T'{M) that 
is Euclidean in a neighborhood of the zeros {/>„} of v, and let © be the 
curvature matrix of the metric connection on T'(M). Then 

0 = 0 
in a ball Be(pv) around each/»„. We will construct a C ° ° ( « , « - l ) form A on 
M* = M- {/>„} such that 

dh = 5A = P(0) ; 

we will then have 

- - ( ^ L ) " ? 4 ( W A . 
and since our construction of A is essentially a local process, we will be 
able to evaluate the last integrals in terms of the local behavior of v at/>„. 

So: let {/>„} denote the zeros of v, and z,,...,z„ local holomorphic 
coordinates in Blt(pv), and let hv be the Euclidean metric in Blc{pv) given 
by 

( 9 z / 8 z ; ) = V 

Let h0 be any metric on M* = M-{/>„}, and {p0,p„} a partition of unity 
for the covering of M by U0 = M- U Be(p„) and £/„ = B2e(pv); we take as 
our metric on M 

h = POA + 2 P A -
Let 0 hereafter be the curvature matrix of the associated metric connec-
tion £>; clearly 0 = 0 in Bc(p„) for each v. 

•This proof is due to S. S. Chem, "Meromorphic vector fields and characteristic numbers, 
Scripta Mathematical Vol. XXIX, pp. 243-251. 
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Now consider the bundle map 

A"~ XT ® A"T" —> A"T' ® f\"T" 

given by wedge product with t>(z)G T'z. We define the contraction operator 

t(v): Apq{M)^Ap-^''{M) 
to be the adjoint of /\v\ i.e., such that for any (pEAp'q(M) and 
T , e C 0 0 ( A ' - 1 r ® A * ( 7 " ' ) ) , 

<i(u)«p,i)> = <<P,UAT?>-
Thus, if in terms of local coordinates z, 

v(z) = 2vJ(z)-^-, 

we have 
i{v){dz,) = v' 

and in general 

.(^(/(z)-^) = 2(- i) t t~'o^)/W^/-{u-

In particular, since the coefficient functions u' are holomorphic it follows 
from sign considerations that 

3-i(©) + i(c)-3 = 0. 
The essential step in our construction of A is to express the tensor 

i(v)(e)(EA0l(T'®T'*) 
as 3 of a global section of T'8> T'*. To do this, we recall from Section 5 of 
Chapter 0 the definition of the torsion associated to a metric on T'(M). As 
we saw then, if v]y...,vn is a unitary frame for T'(M), <p,,...,«p„ the dual 
coframe for 7"*, 9 the connection matrix of D in terms of {c,} and 
9*= —'9 the connection matrix of the dual connection D* on T'* in terms 
of {<p,}, then 

d<Pi = ^l9*iJA<Pj + ri 

with T, of type (2,0); the vector T = ( T , , . . . , T „ ) of 2-forms is called the 
torsion of the metric in terms of {c,}. Now if 

{»/ = 2 $,■»,} 
is another frame, {<p,} the dual coframe, and 9' and 9'* the connection and 
curvature matrices of D and D* in terms of {u/} and {<p,'}, then in matrix 
notation and setting g* = 'g ~' 
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and 
T' = dtp' -9'*A<p' 

= d(g*<p)-0'*Ag*<P 
= d(g*)-<p + g*<p - g* -9* -'g-g* -<p - d(g*)-'g-g* -<p 

= g*<P~g*-0*A<P 
= g*-r 

i.e., the quantity 

r- = 2r ( ®^/ ! 2 ' 0 ( r ) 
is a tensor invariant of the metric, called the torsion tensor. Note that by our 
calculation, if v\,...,v'„ is any other frame for 7", not necessarily unitary 
but with (JP, 6, and 9* as before, we still have 

* = 2(«*p;-2'iA<p;)®t>;. 

Now let (z,, . . . ,z„) be local coordinates on A/ and 9 — (9iJ) the connection 
matrix of D in terms of the frame {9/9z,} for T\M). Write 

so that 

The torsion tensor f is given by 

*= -2*,?A<k,-®4-
ij azj 

= 2^A^,®^-

'.7. * 7 

and so the contraction i{v)-r&C°°{T'®T'*) of T by u is given by 

i.j.k 0Zj 

Thus the tensor 

E= -DV + I(V)T 



FIXED-POINT AND RESIDUE FORMULAS 431 
is a well-defined global section of the holomorphic vector bundle T'®T'*, 
and 

art .. 9 --2lif'-^* 
On the other hand, the curvature tensor €)&A2(T®T*) is given by 

where 

ar-' 

so that from the formula 

we deduce the desired relation 

t(o)e = 3£\ 
Now, consider 0, £, and dE = i(v)@ again as matrix-valued 2-, 0-, and 

1-forms, respectively; if P is any invariant polynomial of degree n on 
GL(n) and P its polarization, set 

pr(E, e) = (?)>"(£,...,£, e11:^e)eAr'r(M). 
n — r r 

Since 30=0 and 3£ = «(t>)0, 

3/»r(£,e) = (?) 2 p(E,...,i(v)-e,...,E,e,...,@) 

= t (c)-p r + I (£ ,e) . 
Let wG/1 l0(Af*) be the form dual to u under the metric on M; set 

$ r = U A ( 3 « r ' " ' A Pr{E, @)GA"-"- '(A/*). 
We have, for 0 < r < n — 1, 

3$, = ( 3 w r - r A i >
r ( £ , © ) - « A ( 3 < o r - r - , A t ( u ) P r + 1 ( ^ 0 ) ; 

since t(t>)<o= 1, 

0 = i(dv)u + t(t>)3« => <(f)3w = 0, 
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and so 

t(o)5*r = ( M " ~ ' A * ( « 0 W . © ) - ( 3 « ) " ~ r _ l A i ( t 0 ^ + i ( £ , 9 ) -
i(v)P0(E, 0) is trivially zero, and so if we set 

<*> = 2 %, 
( = 0 

we see that 

i(t;)3* = 2 §*)"-'r\tv)Pt{E,V)- 2 (3<o;r'At(t;)-/>,.(£,0) 
1 - 1 1 = 1 

= -t(0)p„(e) 

= -i(v)-P(9). 

Since 3$ and P(&) are both forms of top degree, 
i(o)(3$ + />(0)) = O 

implies that 
3$ + P(@) = 0 

and we have constructed our explicit solution to 3A = .P(0). 
It remains now to evaluate the integral of $ over the boundary of Be(pp). 

First of all, recall that by our choice of metric, 0—and hence Pr(£, 0) for 
r>0—vanishes identically in Be(pv); thus 

f 4>=f P0(E,G)=( <*A(far-XP(E). 
JdBt(p,) JdB,(p„) JBBc(py) 

Let z = (z,,...,zn) be as before local coordinates around/?, such that 

in Bc(pp); write 

fW = S>(z ) -^ . 

Then since our metric is Euclidean in Bt{pv), the connection D is zero and 

i.e., 
P(E)(py)=-P(Apv). 
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Moreover, 

2 ^ , 
w = 

2»'»' 
. = (dz.v) 

(v,v) ' 
so 

d<0 = — H — ; 
(» .») (t;,t>)2 

Thus, since («fe,u)A(dz>») = 0> 

(^L)-.A(iM).--(-,r.(^Lj(*.«)y-
2 ( - ly-'uWt;1 A- • • A ^ ' A - • • /\dvnf\dzxf\- ■ ■ Adz„ 

= -C. 
(v,v)n 

where C„ is the constant appearing in the Bochner-Martinelli formula from 
Section 1 of this chapter, 

1 
detAp 

P(v,v), 

where /? is the form appearing in that formula. Putting everything together, 

J M v ' JM■- I I « (n \ M ^M-UB^p,) 

= -2 / * 

-2 

/8(t>,t>) where A = (3u,/3z7), 
deU„ 

3*,(/>„) 

det^„ 

by the Bochner-Martinelli formula. Q.E.D. 

As an example of a computation involving the Bott residue theorem, we 
calculate for the third (and last) time the Chern classes of projective space. 
Let X = (X0,...,XJ be linear coordinates on C"+1, 7r* and & as in Section 
3 of this chapter, and (a0,.. . ,a„) any (« + !)-vector of distinct nonzero 
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complex numbers. Consider the vector field on P", 

v(X) = 77, 2J a,.*,-
( = 0 

_3_ 

(since w* 2 ^,-(9/9Ar,-) = 0, we may as well take 2 «, = 0)- As we have seen, 
v vanishes exactly at the points />, = [(),..., 1,,...,0]; in terms of Euclidean 
coordinates 

XJ 

on P" around 

and 

Thus 

Pi> we have 

^(^)=_Sx4' 

i.e., the matrix Ap for D near /?, is just the diagonal matrix with entries 
(ctj — at),j¥=i. According to the Bott residue formula, then, 

^ ( t race(A))" 

4 iW«,-«,) 

_ y (-(«+!)«,)" 
/ 11^,(0,.-a,) ' 

since ^ «* = 0. To evaluate this expression, consider the meromorphic 
functions f,g on the Riemann sphere given in terms of a Euclidean 
coordinate by 

n 

/ ( * )= II (ak-z), g(z) = z"; 
k=0 

then (g(z)/f(z))dz = <p is a meromorphic differential with simple poles at 
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z = ak and z = oo, and 

Res ((jp) = - — ? r , 

ResJ«p) = ( - l ) " . 

By the residue theorem 

1 (-1)" 
i \ n y ^ , ( a , - a , ) 

and consequently 

, ,n V ( -1)"(«+1)V , 

V n y 7 t , ( a y -a , ) 

since the nth power of the hyperplane class co in P" is 1, this implies that 
c,(P") = («+l)w. 

Now to compute the rest of the Chern classes of P" we need only 
evaluate the Chern numbers c,(P")" rcr(P")- By Bott residue applied to v, 

, v. r , , v(^-(«,-«,))"~r-(2:47ny6/(«,-«.)) 
c.tp-rr-<v(P") = 2, n f \ 

_ ̂  (-!)"->+i)-y-y-2 ?g7n,e/(«7-«,) 
fT0 n7^,(a,-a,) 

Again, for/(z) as above, g(z) = z"~~r > , - / ^ ^ n ^ e / a ^ - z ) , and <p = (g/f)dz 

Res0O(<p) = ( - i r ^ ( « + 1 ) 

and the residue theorem together with c,(P") = (/i + l)co imply 

^ ( P " ) = ( " + 1 ) " r -

The General Hirzebruch-Riemann-Roch Formula 

Consider now how we arrived at the identity 
c„(A/) = x ( M ) 
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for a compact complex manifold M of dimension n: On the one hand, the 
general Gauss-Bonnet formula tells us that we can realize cn(M) as the 
number of zeros, properly counted, of a generic C °° vector field on M; on 
the other hand, the Lefschetz fixed-point formula tells us that the Euler 
characteristic of M is equal to the number of fixed points, properly 
counted, of the map <pv : M-^M obtained by integrating v—that is, again 
the number of zeros of v. Now we have obtained refinements of both the 
Gauss-Bonnet and the Lefschetz fixed-point formulas in the holomorphic 
case, and we may try to apply them in the same way to arrive at a formula 
for the holomorphic Euler characteristic of a complex manifold. 

So, suppose again that M is a compact Kahler manifold of dimension n 
and let v be a holomorphic vector field on M having isolated nondegener-
ate zeros. Let 

/, = exp(fo): M —> M 

be the map obtained by integrating the corresponding real vector field to 
time t; /, is readily seen to be holomorphic. Moreover, if z,,...,z„ are local 
coordinates around a zero p of v and 

t,(z) = 2 > y ^ + [2] 

then the Jacobian of /,(z) at p is given by 

Bp = evA', 

where Ap = {at). Now for t small, /, will have a fixed point exactly where v 
has a zero, and by the holomorphic Lefschetz fixed-point formula, 

v(-f=0 &e\.{I- Bp) 

Since/, is homotopic to the identity,/,* is the identity on H?q{M), and so 
this formula reads 

x(M= 2 1 

2 
v{fjL0 iQX{I-e,A") 

1 / d e t ^ 

»(/>) = 
Now, for each t the holomorphic function 

Fl(A) = det(A)-(det(I-e'A)yl 

on GL„ is invariant under conjugation, and hence uniquely expressible as a 
power series in the elementary invariant polynomials P' on GL„. Ex-



FIXED-POINT AND RESIDUE FORMULAS 437 

plicitly, for A £GL„ semisimple with eigenvalues A„ . . . , \ , , 
d e U 

FM) = de t ( / - e M ) 

■S(r )̂ 
- ( - i ) - , -M-l-^Wf-?^+-^ ' l / 2 

12 

Swft [ Z W S W 
24 

?3 + 

■ ( - i r r ( i - P - ( ^ ( ^ ^ ) , 

24 
-?3 + 

where the summations occur over increasing indices. In general the coef-
ficient of t' in the bracketed power series may be expressed as a poly-
nomial in the elementary invariant polynomials. The Todd polynomials Td( 

are then defined by 

^ ^ . - ( - O V . j S r ^ ^ ) , . . . , ^ ) ) . ' } 
Now we may express the Lefschetz fixed-point formula as applied to v 

and /, by 

x(0w) 
detA„ 

v(j?-od*iAP det(I-e'A>) 

-(-l)"'-"2 2 (-0' 
/ v(p) = 0 

Tdi(P
l(Ap),...,P

i(Ap)Y 
delA„ 

■f. 

But x(©w) is obviously independent of t, and so all terms on the right 
involving nonzero powers of t are necessarily zero; thus 

X( M) " 0#-o d e t 4 
and finally, by the Bott residue formula, we can evaluate this last term to 
arrive, in this special case, at the famous 

Hirzebruch-Riemann-Roch Formula 

X (6 M )=ra„(c 1 (A/ ) , . . . , c„ (M)) . 
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For a curve, the formula reads 

x(0„) = ic,(M), 
which is equivalent to Riemanri's relation 

This we proved by harmonic theory. For a surface, we have Noether's 
formula 

cx{Mf + c2{M) 
X(PM) = 12 ' 

which we will prove and use extensively in the next chapter. 
Unfortunately, our analogy between the Gauss-Bonnet HI and Rie-

mann-Roch formulas fails in one crucial aspect: while any differentiable 
manifold has many C°° vector fields to use as props in the proof of 
Gauss-Bonnet III, relatively few compact manifolds have any global 
holomorphic vector fields. (Cf. the theorem of Carrell and Liebermann 
proved in Section 4 of Chapter 5.) Of course, since the Riemann-Roch 
formula itself has nothing to do with the vector field v used to obtain it, we 
may suspect that the role of v is only auxiliary. This is in fact the 
case—the formula holds for any compact complex manifold—but we do 
not have available here the techniques necessary to prove it. Our derivation 
of the formula thus remains only a suggestion, and not a proof; we will, 
however, give a geometric proof of the formula for algebraic surfaces in 
the next chapter. 

5. SPECTRAL SEQUENCES AND APPLICATIONS 

Spectral Sequences of Filtered and Bigraded Complexes 

Spectral sequences are algebraic tools for working with cohomology; 
basically they form an array of long exact sequences fit into a systematic 
pattern and are to be applied in a similar fashion. To someone who works 
with cohomology, they are essential in the same way that the various 
integration techniques are essential to a student of calculus. We shall use 
spectral sequences in rather limited circumstances, but it seems worthwhile 
to give the general definitions. 

A complex (K*,d) = {K0-* AT1 -> AT2->- • • } is a sequence of Abelian 
groups with differentials 

d: K"-^K''+i 
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satisfying d°d=0. The cohomology of the complex is 

where 

H*(K*) = © H"{K*), 
p>0 

H"{K*) = 
dK"-1 

with Zp = ker{d:Kp^Kp+[} the group of cycles and dKp~,^BpcZp the 
subgroup of boundaries. A subcomplex (J*,d) is given by subgroups Jp c 
Kp with dJ*cJ*. The ^worte/rt complex (L*,d) is defined by L* = K*/J* 
with the obvious differential. We then have an exact sequence of complexes 

by an easy and well-known argument, this gives rise to a long exact 
cohomology sequence 

■■■-> H"(J*) -* Hp(K*) -* Hp(L*) -* Hp+i(J*)^>- ■ ■ . 

Generalizing the notion of a subcomplex is that of a filtered complex 
(FpK*,d), defined as a decreasing sequence of subcomplexes 

K* = F°K* D FXK* D---D F"K* D F"+lK* = {0}. 
The single subcomplex mentioned above corresponds to the filtration 

K*DJ*D {0}, 

and the spectral sequence of a filtered complex will generalize the long 
exact cohomology sequence. Before coming to this, we need a few more 
definitions. 

The associated graded complex to a filtered complex (FpK*,d) is the 
complex 

GrK* = © Gr"K* 
p>0 

where 
F"K* 

Gxp K* = -Z—— 
Fp+lK* 

and the differential is the obvious one. The filtration FPK* on K* also 
induces a filtration FPH*{K*) on the cohomology by 

ppyi 
FpHi(K*) = . 

V" / FpBq 

The associated graded cohomology is 

GrH*(K*)= © G I * HHK*), 
P.<7 
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FpHq(K*) 

Fp + XH"(K*) (K*) 

DEFINITION. A spectral sequence is a sequence {Er,dr} (r >0) of bigraded 
groups 

Er = © E™ 
p,q>0 

a = o, 

together with differentials 

dr: E^-+Err-q~r+\ 

such that 
H*(Er)=Er+v 

When working with spectral sequences it is useful—even essential—to 
draw the "picture" (Figure 3). 

In practice we will always have Er = Er+, = • • • for r > r0; we call this 
limit group Ex and say that the spectral sequence {Er} converges to EOT. 

Proposition. Let K* be a filtered complex. Then there exists a spectral 
sequence {Er} with 

ppjsp+q 
pp.i — * 

Fp+sKp+q 

Ep-i = Hp+q{GxpK*), 

E™ = Gxp{Hp+q(K*)). 

Ep1 

(p + r, q - r + 1.) 

- • • • —•- ->P 

Figure 3 
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The last statement is usually written 

Er => H*(K*) 

and we say that the spectral sequence abuts to H*(K*). 

Proof. The initial term has been defined, and 

d0: Ep-q Efrq+' 

II II 
FpKp+q/ Fp+,Kp+q —^ FpKp+q+l / Fp+lKp+q+l 

is obtained from the given differential d by passing to the quotient. The 
cohomology of {E0,d0} is 

Kerrf0 {aEFpKp+tl: da<EFp+lKp + q + x ) 
1 Imrf0 d(FpKp + q~l) + Fp+lKp+q 

\FP+]K* I 
= Hp+q(GrpK*) 

as specified. 
If [a] is a class in Epq as just above, then 

{b<EFp + ]Kp+q+l: db<EFp+2Kp+q+2} 
daE1 —— — -

d(Fp+lKp+q) + Fp+ Kp+q+l 

defines a class in Ep+Uq, and this gives the differential 

d,: Ep-q^Ep + lq. 
It follows that 

{aEFpKp+q: daEFp + 2Kp + q+x) 
Ker^, = 

ImJ, = 

so that 

d(FpKp+q~t) + Fp+xKp+q 

d(Fp-lKp+q-1) 

d(FpKp + q-i) + Fp + iKp+q' 

„„ {a<=FpKp+q: da<=Fp+2Kp+q+x} 
Fp~q = — — 

2 d(Fp~xKp+q~x) + Fp+lKp + q 

Here, the denominator is not a subgroup of the numerator; the meaning is 
that we take {denominator as written) n {numerator}. A similar remark 
applies during the remainder of this proof. 

Continuing in this way, we define in general 
{aEFpKp + q: daEFp + rKp + q+x) 

Ep-q = 
d(Fp~r+xKp + q~') + Fp+]Kp + q ' 



442 FURTHER TECHNIQUES 

and for [a]GEpq we define 
, {b(EFp + rKp+i+l: dbGFp + 2r+lKp+q+2) 

dra=\da] E - ■ - = Ep + r'«~r+] 

L J d(FpKp+q) + Fp+r+ Kp+q+ 

A computation—straightforward but messy—gives 

For r sufficiently large, 
{a<EFpKp+q: da = 0} 

Ep-q = 
dKp+q~l + Fp*xKpArq 

FpHp+q{K*) 

Fp+xHp+q{K*) 

= Gr"Hp+q(K*). 

This completes the proof of the proposition. Q.E.D. 

One of our main examples is the spectral sequence associated to a double 
complex. This latter is a bigraded group 

K** = 0 K"-q 

p,q>0 

together with differentials 

d: Kp-q->Kp+hq, 

satisfying 

</2 = S2 = 0, dS + Sd=0. 
The double complex will be denoted (K**;d,S). The associated single 
complex (K*,D) is defined by 

Kn = 0 Kpq 

p + q=n 

Z> = d+S. 
There are two filtrations on (K*,D) given by 

'F»Kn = 0 Kp''q, 
p' + q=n 

P'>P 

"FqK" = © K"-q". 
p + q" = n 

q">q 

If, e.g., M is a complex manifold and 

K"-q = Apq(M), d=d, 8 = 9, 
then 'FPA"(M) means "«-forms having at least p-dz's." 
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There are two spectral sequences, {'Er) and {" Er), both abutting to 
H*(K*). By symmetry we may consider the first one. Then 

' £P,q _ n T fY !____ s frp.q 
0 £P+ lW-1 -I 

The differential d0 is induced from D = d+8 by passing to the quotient. 
Thus, under the above isomorphism d0 = 8 and 

>EP,q s Hg(Kp-*), 

where the right-hand side denotes the gth cohomology group of the 
complex 

• •. _> KP<4-I \ Kp-q—> Kp'q+1 - > • • • . 
The differential <i, is computed from D = d+8 on ' £ , . Since 5 = 0 on ' £ , , 
we see that dt = d and 

'££• ' = H*(Ep
{
q,dx) s Hp{Hq{K**)). 

The last expression denotes the cohomology of 

» Hq(Kp~{*) 4. Hq(Kp*) 4 Hg(Kp+ '•*)-»• ■ •, 
which has meaning, since dS + 8d=0. Summarizing: 

Associated to a bigraded complex (K**; d,8) are two spectral sequences 
both abutting to the cohomology of the total complex and where 

\"EPq^Hq(Hd
p(K*-*)). 

There is one point to be careful of here. A class [a]G'Epq is given by 
a&Kpq satisfying 8a = 0 and taken modulo 8Kpq~l. Then a class [a]G 
'Ep'q is given by aGKp,q satisfying 

8a = 0, 
da<E8Kp+Uq-1 

and taken modulo 

8Kpq', + dKp-hqr\KeT8; 
we cannot assume da = 0, but only that [da] = 0 in Hq(Kp+i*). 

Examples 

If M is a complex manifold and 

Kp-" = Ap-q(M), 

d=d and 8 = 3, 
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then the associated single complex is the de Rham complex (A *{M), d). In 
general not much seems to be known about the resulting Frohlicher spectral 
sequences {'Er) and {"Er), both of which abut to H^R(M). 

If, however M is compact Kahler, then every class [a]G' Ep'q =zHp-q(M) 
has a harmonic representative for the 3-Laplacian A3. By the Kahler 
assumption, 2Ag =Arf, and consequently da = Q. Thus 

'El = 'E2 = • ' " = '^oo* 

and the filtration on / /£R(M) is the Hodge filtration defined by 

FPH^K(M) = H"-°(M) <£>■■■ ®Hp'"-p(M). 

If M is compact but not Kahler, it may happen that 'EX^'E2, but no 
example seems to be known where 'E2¥='E00. An example of 'EX^'E2 is 
provided by the Iwasawa manifold 

where G is the Lie group of all complex matrices 

1 a b] 
g = 0 1 c 

0 0 1, 
and r c G is the discrete subgroup all of whose entries are Gaussian 
integers a + //?(a,/?EZ). Under the mapping g-*(a,c) we may check that 
M is a holomorphic fiber bundle over a complex 2-torus with fiber a 
complex 1-torus. The entries in the Maurer-Cartan matrix dg-g~l are 
right-invariant holomorphic forms on G and hence descend to M. These 
entries are 

w, = da, u2 = dc, «3 = — cda + db. 

In particular, 

so that w3 is a nonclosed holomorphic form on M. If we consider w3 as 
defining a class in ' £ 1

, o s / / _ , 0 (A / ) = //°(Bi/), then 

rf,[co3] =[du3] =[w,Aw 2 ] 
is nonzero in 'E2'°. 

Since dim£, > dim £,._,_, and the Euler characteristic is invariant under 
taking cohomology, we have the Frohlicher relations 

2 h"-" > br, 

2 ( - i y + ^ = 2 ( - l ) ^ = x(M), 
P.I r 

where hp-q = &\mHPq(M) and br is the rth Betti number. 
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At the other extreme, we suppose M is a noncompact complex manifold 
and that the Dolbeault cohomology 

(*) H™(M) = 0, q>0. 

This happens if M is what is called a Stein manifold—e.g., in Section 3 of 
Chapter 0 we proved (*) when 

M = A*k XA"'k 

is a punctured poly cylinder defined by 
{zGC: | z , | < l , z , - - - z ^ 0 } . 

If (*) is satisfied, then 'E^q=0 for q>0 and the first spectral sequence is 
trivial from E2 onward; i.e., 'E2ss'Eo0. What this implies is 

/ / £ R ( A / ) s i / £ R ( M , h o l ) , 
where the right-hand side is the de Rham cohomology computed from the 
complex of holomorphic forms. 

Hypercohomology 

This is a useful generalization of ordinary sheaf cohomology. On a topo-
logical space X, a complex of sheaves (%*,d) is given by sheaves of 
Abelian sheaves %p together with sheaf maps 

%o^ > g { > 4 9 ( > + , - > - - -
satisfying d2 = 0. In this discussion the notation does not mean that the 
sheaf sequence is exact. We sometimes write 

(9C*,rf) = [%o^%*^%2^---). 

Associated to a complex of sheaves (%*,d) are the cohomology sheaves 
%" = %"(%*): Setting %«(U) = H0(U,%«), thepresheaf 

d%"~\U) 

gives rise to a sheaf %q whose stalk is 

= H m Ker{^: W(U)^>W+\U)} 

A section o of DC* over an open set U c X is given by a covering {Ua} of U 
and 0aG!tC*(C/a) such that 

daa = 0, 
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the section is zero in case 

after perhaps refining the given covering. We note that essentially by 
definition: 

The cohomology sheaves %q = 0 for q > 0 «=> the Poincare lemma holds 
for the complex of sheaves (%*,d). 

Now let U= {(/„} be a covering of X and C(U,%q) the Cech cochains 
of degree/) with values in 5C. The two operators 

8: Cp(U,%g)^Cp + \U,%"), 

d: Cp{U,%q)^C(U,cK'>+'), 

satisfy S2 = d2 = 0,dd + 8d= 0; and hence gives rise to a double complex 
{Cp-q=Cp(U,cXq);8,d}. 

Let (C*(U),D) be the associated single complex. A refinement U'<U of 
coverings induces mappings 

Cp{U7%
q)-*Cp{U',%q), 

H*(C*(U))^>H*(C*(U% 

and we define the hypercohomology 

H*(X,%*) = hmH*(C*(U),D). 

Now the spectral sequences 'E,"E associated to the double complex 
(Cp(U,%q),8,d) behave well with respect to refinements of the covering, 
and passing to the limit we obtain two spectral sequences abutting to 
U*(X,%*)wHh 

'Ep-"= HP(X, %"(%*)), 

"Ep-q = Hq(Hp(X,%*)). 

Explanations. H*(X, %*(%*)) is the Cech cohomology of the cohomology 
sheaves DC*(gC*), and H*(H*(X,%*)) is the cohomology of the complex 

H*(X,%°)XH*(X,%{)^--- . 

Before giving some examples, we need one lemma. A map 
j : £*^%* 

between complexes of sheaves is a quasi-isomorphism if it induces an 
isomorphism on cohomology sheaves: 

U: %q (£*)-> %"{%*), q > 0. 
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Lemma. / / j : £*—>°}C* is a quasi-isomorphism, then the induced map on 
hypercohomology 

j * : H*(A\ £*) -» H*(X, %*) 

is an isomorphism. 

Proof. Clearly j induces mappings on the spectral sequences, and 
y«: Hp(X,%«(£*))—>Hp(X,%*(%*)) 

is an isomorphism by our assumption. It is a reasonably obvious general 
fact that a map between filtered complexes that induces an isomorphism 
on any term {Er} in the spectral sequences necessarily induces an isomor-
phism on the total cohomology. Q.E.D. 

Here are some examples. 

1. De Rham's theorem revisited. Suppose M is a manifold and (<3*,d) 
the de Rham complex of sheaves of smooth forms 

We denote by U* the trivial complex 
R - > 0 - » 0 - » - - -

with IR in degree zero and nothing elsewhere. By the d-Poincare lemma, 

%"(&*) = 0 for q > 0, 3C°(&*) s R. 
Consequently, the inclusion 

i: R*-^(2* 
is a quasi-isomorphism, and by the lemma 

H*(M,R*) s W*(M,&*). 

Evidently 

' Hp(M,R), q = 0, 
0, q>0, 

so the first spectral sequence for M* is trivial and 

H*(M,U) = H*(M,R*). 
On the other hand, by the partition of unity argument Hg(M,&*) = 0 for 
q > 0, and so 

('*„.£' = 

i,.E r = ( t f £ R ( A / ) , 9 = 0, 
2 (fJ, <7>0. 

Combining the previous remarks yields again the de Rham isomorphism 
H*(M,U)^H*>R(M). 
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This is, of course, essentially the previous sheaf-theoretic proof of the 
theorem. However, it is cast in such a way that the essential aspects are 
more clearly isolated, thus leading naturally to the generalizations to 
appear shortly. 

2. Same for Dolbeault. Suppose M is a complex manifold, and let 
(6E/>,*,9) denote the Dolbeault complex of sheaves 

and Qp' the trivial complex 
Q,p _* 0 -»0. 

Then, by the 8-Poincare lemma the inclusion 
w _> @p. * 

is a quasi-isomorphism. Repeating the argument just given for de Rham's 
theorem gives the Dolbeault isomorphism 

H"{M,Qf)st H*<(M). 

3. The complex of holomorphic forms. We now show how to compute 
the ordinary cohomology H*(M,C) of a complex manifold M purely in 
terms of the holomorphic differentials. First, note that the Poincare lemma 
holds for these forms: If qo is a closed holomorphic ^-form (p>0), then 
locally <p = <h\ for a holomorphic (p - l)-form ij. The proof may be done by 
the same method as the 3-Poincare lemma—a much more sophisticated 
lemma will be proved when we discuss the log complex in the next 
example. 

Now the holomorphic de Rham complex 

and trivial complex 
C - > 0 - * 0 - > - - -

are such that the inclusion 

is a quasi-isomorphism, and repeating the previous argument gives 

(*) H*(M,C)= H*(M,Q*), 

expressing the complex Cech cohomology in terms of the holomorphic 
forms. 

Concerning the right-hand side of (*), the second spectral sequence has 
"E™ = H${Hi(M,Q.p)). 

Two cases are noteworthy: If M is compact Kahler, then d=0 on 
Hq{MMp)-Hp'"{M), since 2A5 = Arf; thus "E2 = EX and 

H"(M,fi*) s © H"{M,9,p), 
p + q = n 
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which is the Hodge decomposition. In the Stein case, Hq(M,tt*)=0 for 
<7>0 and (*) reduces to the previously noted isomorphism 

H*(M,C) = H*>K(M,hol). 

4. The log complex. We now come to an interesting situation. Suppose 
Af is a complex manifold and D a divisor on M. We say that D has normal 
crossings in case D = HVDV, where the irreducible components Dv of D are 
smooth and meet transversely. At a point p through which k of the Dv 

pass, we may choose local holomorphic coordinates (z,,...,z„) in a neigh-
borhood t / = { | z , | < l ) of/? = (0,...,0) such that 

DnU= {Zl---zk=0} 

is the union of coordinate hyperplanes. The complement 

U* = U- UnD = (^)kxA"-k 

is a punctured polycylinder P*(k,n) given by 
{z: | z , | < l , z , - - - z ^ 0 } . 

Topologically, P*(k, n) is a product X kS' of & circles. 
Denote by Slp(*D) = U Q,p{kD) the sheaf on M of meromorphic p-

forms that are holomorphic on M* = M—D and have poles of arbitrary 
(finite) order on D. Similarly, we define &P(*D) to be the sheaf on M 
coming from the presheaf 

U-^Ap(U-U(lD). 
Both of these fit into complexes of sheaves (£l*(*D ),d) and (&*(*D ),d) 
on M. 

Next, we define Slp(\ogD) to be the subsheaf of Slp(*D) generated by the 
holomorphic forms and the logarithmic differentials dzj'z, (i=l,...,k). 
Symbolically, 

^°)-*>{d-t £}■ 
Clearly 

rfSFOogZ)) <zSlp+l(\ogD), 

and the resulting complex (fi*(logZ)),J) is called the log complex. An 
intrinsic characterization is given by the following 

Lemma. / / f is a local defining equation for D, then J2p(logD) is given by 
those meromorphic forms <p such that both 

f(p and fd(p 
are holomorphic. 

Proof. Obviously we may t a k e / = z , • • • zk, and then the necessary condi-
tion is clear. 
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Suppose, conversely, that /<p and fdtp are holomorphic. Using the nota-
tions 

/ = (\,...,k), J,K,L c (1,.. . ,«) are index sets, 
dzj = dz / . i A-" Adz., 

we may write 

zj ZI-J 

=0 

V VJK dzl~J A A 
9= 2a "77 7 7 7 A * ' 

( J c / 
1 Kni = i 

where (pyA- is holomorphic. Computing modulo terms T such that fT is 
holomorphic, 

* - S S 7 7 A ^ 
J,K JGJ ZJ Zj Zl-J 

= 2j^K-—AdzK, 

where 

^L* = ± 2 y(/-/ .)u(»},/c 

i<=L Z: 

is holomorphic. It follows that <pJK/zj is holomorphic, as was to be proved. 
Q.E.D. 

Intuitively, if <p contains a term with 1/z, but no dz: in the numerator, 
then d(p will contain dzj z}—what we have verified is that no cancellation 
occurs. 

The main local result, which as we will see plays the role of a Poincare 
lemma in the present context, is the following 

Lemma. The two inclusions 

Sl*(\ogD)c&*(*D), 

£2*(*£>)c <£*(*/>), 

are both quasi-isomorphisms. 

Proof. At a point p$.D, the stalks are 

(Q*(\ogD)p = Q*(*D)p = tt*p, 

[ @*(*D )„ = &%, 
and the result follows from the usual holomorphic and C°° Poincare 
lemmas, respectively. 

Around p G D we consider neighborhoods U as above. By the de Rham 
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theorem for the (open) manifold P*(k,n) 

H£R(U~UnD)sz H*(XkSx,C) = A"Hl(XkS\C), 

and so the stalk 

%"(&*(*D))p a H"(XkS\C). 

Since the cohomology of U*= U— Ur\D has as basis the forms 
dz, 

ZJ 

the stalks %q(Sl*{\ogD))p and T>(tt*(*D))p both map onto %"(&*{*D))p. 
What must be verified is: 

(*) Let <p be a closed meromorphic p-form on the polycylinder such that 
<p has poles on D and qp = 0 in HoR(P*(k, n)). Then <p = drj, where 17 
is meromorphic with poles on D. If <p w in the log complex and 
<p = 0 in HpR(P*(k, n)), then <p = drj/or a form TJ in the log complex. 

Before giving the proof, we remark that on two previous occasions we 
have proved the isomorphism 

/ /* (A/ ,C)^ / /* R (A/ ,ho l ) 

for a complex manifold M satisfying 

Hq(M,Qp) = 0, q>0. 

Since this latter is true for M = P*(k, ri), we may write <p = dq where TJ is 
holomorphic in P*(k,n) but may have an essential singularity on the divisor 
(z, - • • zk) = 0. By being careful we must show that TJ may be taken to be 
meromorphic. 

Proof. The argument is not difficult but is a little long. We shall con-
centrate on writing (p = dt], where TJ has at most a pole on the divisor 
{zl ■ ■ ■ zk) = 0. The argument will also show that 17 is in the log complex in 
case this is true of <p. 

Write (zl,...,z„) = (u1,...,uk,vl,...,vn„k) = (u,v), so that P*(k,n) is given 
by 

{(«,»): 0<|i4|<l,|e,|<l} 

and the divisor D by «,- • • -uk = 0. We first eliminate the t>'s from the 
picture. Following the procedure in the proof of the 3-Poincare lemma in 
Section 2 of Chapter 0, we suppose that <p=Q(du,dvl,...,dv/) and write 

<p = q>'+ <p" /\dv„ 

where <p',q>"^0(du,dv{,...,dv,_,). Then d<p = 0 => (3<p'/8t),-) = (9<p"/9t^) = 0 
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for_/> /, where if a = 'Za,dxl is a differential form, 
9a V 9a7 

= 2 Y7dx'-dxj ^f dXj 

Since <p is holomorphic in v, we may use formal integration of power series 
to solve 

„ 3TJ 

where rj has the same order pole in « as ip" and 9TJ/9U,=0 for all _/ > /. 
Then <p-drj=0(du,dvl,...,dvl_1). Continuing in this way, we may assume 
that (p=0(du). Then d<p=0 => (9<p/9t>,-) = 0, and so the t>'s may effectively 
be ignored. 

Inductively, we assume the theorem for u' = {ux,...,uk_l) and write 
(JP = f + V /\dtik, 

where \p',\p"=0(du'). Consider the Laurent series 

Then, by formally integrating the series insofar as possible, we may write 

,,. VW)-\ _ 9iJ 
V = 3—» 

where 17 has the same order pole in u' and one less order pole in uk. Clearly 
„ „. duk 

uk 

where £"=0(u',du') and £~0(du'). Since (p is closed, we deduce that 
g = 0(u',du') and 

di' = 0 = </£"-
Now <p = 0 in //£R((A*)*), and thus the restriction of q> to H^R((A*f~l) 

is zero, where (A*)*_Ic(A*)* is given by uk = constant. This restriction is 
just £', and by induction | ' = rfy', where y' has at most a pole in u'. 

Finally we consider <p = <p-dy' = i-"/\duk/uk. Writing (A*)* = (A*)*_1 X 
A* and using Kiinneth, <ji = 0 in //gR((A*)*) => | " = 0 in #gR '((A*)*"'). 
Then |" = Jy" where y" has at most a pole in u', and <p = d(y"f\duk/uk). 

Q.E.D. 

We now draw some conclusions from the lemma. The sheaves &*(*D) 
admit partitions of unity, and therefore Hq(M,&*(*D))=Q for <7>0 and, 
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by the spectral sequence for hypercohomology, 
H*(M,&*(*D)) » H2(H°(M,&*(*D))) 

= H*)K(M~D) 
= H*(M-D,C)-

Using this together with the lemma on quasi-isomorphisms, we deduce the 
isomorphisms 

H*(M, Q*(log D))^H*(M- D, C) 
(*) 4 II 

H*(M,fi*(*£>)) s / /*(M - AC). 
This gives a method for computing the cohomology of the complement of 
a divisor with normal crossing by using meromorphic forms that are 
holomorphic in M — D and have poles along D. 

Using the resolution of singularities theorem*, the second isomorphism 
H*(M,a*(*D)) a H*(M-D,C) 

holds with no assumptions on the singularities of D. 
Suppose now that the line bundle [D]—>M is positive. By Theorem B, 

H"{MM"{kD )) = 0 for q > 0, k > k0. 

If we set U= M- D and denote by 

the cohomology of the complex of meromorphic forms that are holomor-
phic in U and have poles on D, then by the degeneration of the second 
spectral sequence of hypercohomology we obtain 
Grothendieck's Algebraic de Rham Theorem 

#SR(l/,alg)«ff*(t/,C). 
The reason for this description of the result is this. An affine algebraic 

variety U is a complex submanifold of C^ defined by polynomial equa-
tions. We denote by £2*(£/,alg) the complex of holomorphic forms on U 
that are the restrictions of rational differential forms in C^. This notation 
is consistent, since if we take the projective closure M0 of U cCN cPN and 
apply Hironaka's theorem to obtain a resolution of singularities 

that is an isomorphism on U, then fi*([/,alg) are just the meromorphic 
forms on M that are holomorphic in U—cf. Section 4 of Chapter 1. The 

*H. Hironaka, On Resolution of Singularities, Proc. Int. Congress Math., Stockholm (1962), 
pp. 507-525. 
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algebraic de Rham theorem then asserts that cohomology H*(U,C) may 
be computed from the complex fl*(£/,alg). 

Differentials of the Second Kind* 

Let M be a smooth algebraic variety. A differential of the first kind is the 
classical terminology for a holomorphic pAorm on M. By Hodge theory 
these inject to give the part Hp0(M) of the cohomology HP(M,C) of M. 

DEFINITION. A differential of the second kind is given by a closed mero-
morphic pAoxm <p on M such that, for some divisor D with complement 
U= M - D, <p is holomorphic in U and is in the image of 

Hp
OK(M)^Hp

m{U). 

Equivalently, a differential of the second kind is a closed meromorphic 
pAorm on M, holomorphic on M-D, which can be extended, up to an 
exact form on M-D, to a C°° closed form on M. We let pp be the 
dimension of the space 

(p -forms of the second kind) 
d (meromorphic (p — 1 )-forms) 

Historically, differentials of the second kind for p = 1,2 played a pivotal 
role in the early development of the theory of algebraic surfaces. They 
furnished the technique for the first proof that the irregularity q of an 
algebraic surface was equal to \b{—so that in particular bx is even—and 
the original proof that the Neron-Severi group defined below 

{divisors on S } ^ _ 
{divisors algebraically equivalent to zero} 

is finitely generated. For p > 3 the differentials of the second kind are only 
partially understood, and even that is fairly recent. Because of their 
historical importance and close tie-in with the algebraic de Rham theorem, 
we shall give a brief discussion of differentials of the second kind with 
special emphasis on the cases p = 1,2. 

We begin by amplifying the definition of second kind in two ways. 
Given a closed meromorphic /7-form <p and divisor D such that <p is 
holomorphic in U=M' — D, we define a residue to be an integral 

/ * • 

where y£iHp(U,Z) is a/>-cycle that is homologous to zero in M. It is clear 

•This treatment is based on M. F. Atiyah and W. V. D. Hodge, Integrals of the second kind 
on an algebraic variety, Annals of Math., Vol. 62 (1955), pp. 56-91. 
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Figure 4 

that <p is of the second kind <=> // has no residues in open sets U = M — D for 
sufficiently large divisors D. 

For p = 1 we may obtain a clear picture of what the residues look like. 
Let D be an irreducible divisor and x0 G D a simple point. The boundary 
yD of a normal disc to D in M at x0 is then a 1-cycle in Ht(M— D,J) that 
bounds in M, and the class of yD is independent of x0, since the smooth 
points of D form a connected manifold (Figure 4). Now suppose that 
/) = £>, + ••• + Dk is a divisor with irreducible components D{. We may 
choose the y^ to lie in U= M — D, and we claim that any cycle y in 

Ker {# , ( I/, Z ) — » # , ( * / , Z)} 

is homologous to a linear combination of the y^. Indeed, by assumption 
y = 3A, where A is a 2-chain in M. Since the singularities of D are in real 
codimension4, we may assume that A meets D transversely at simple 
points. If XQEDJ is such an intersection point, then near JC0 we may picture 
the part A£ of A lying within distance e of Dt as a normal disc at x0 (Figure 
5), and so 9Ae = yD. Consequently y — yD has one less intersection point 
with D, and repeating the argument gives a homology 

Figure 5 
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A consequence of this is: 

For p = 1, a closed meromorphic \-form cp is of the second kind <=» <p has 
no residues in any open set of the form U = M — D where it is holomor-
phic. 

The argument also makes it pretty clear that residues will be com-
plicated when p > 3. 

We shall now show that 

For a p-form <p of the second kind, given any point XQ E M there is a 
meromorphic (p— \)-form <// such that 

<P — d\p = 7} 

is holomorphic near XQ. The converse is true when p = 1. 

Proof. Given x0EM, we may find an ample divisor D not passing 
through x0, and then for U=M-D by the algebraic de Rham theorem, 

In fact, we may take U to be an affine neighborhood of x0 as discussed at 
the end of the preceding section. Then for any divisor D'^D, M— D' = 
V c U will also be affine and consequently 

/ / £ R ( ( / ' )~ / /£ R (£ / ' , a lg ) . 
We may find a U' such that <p is holomorphic in U' and is the image of a 
class Q>G//gR(A/). In the diagram 

HP
DR(M) - //&R((/\alg) 

\ / 
#&R(t/,alg) 

the restriction of $ to U will be represented by a closed pAorm TJ that is 
meromorphic on M and holomorphic in U. Restricting to U', we find the 
desired presentation 

(JP - ij = d\p, 

where >/> is a meromorphic (p— l)-form on M that is holomorphic in U'. 
When/? = 1, it is clear from our above description of residue cycles that a 

closed meromorphic 1-form that has local presentations 
95 = d\p + r\ 

will have no residues, and consequently <p is of the second kind. Q.E.D. 

To give the interpretations of p, and p2, we define the Picard number p to 

file:///-form
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be the rank of the image 

Hl(M,e*)—» H2(M,Z). 

Equivalently, according to the proof of the Lefschetz (1,1) theorem from 
Section 2 of Chapter 1, p is the rank of Hu\M)nH2(M,Z), which is the 
rank of the quotient group 

divisors on M 
homological equivalence 

of all divisors on M modulo those homologous to zero. We shall prove that 

Pi = 6 i > 

P2 = b2~P-

Proof. Recall that for a divisor D on M, Q,P(*D) denotes the subsheaf of 
the sheaf <sMf of all meromorphic p-lorms consisting of those having poles 
only on D. We let 

W{*)= U W(*D) 
DeDiv(Af) 

be the subsheaf of GW of meromorphic p-{orms whose polar loci are a part 
of a global divisor on M. Clearly 

fi(*): fl°(*)^fi'(*)-^--. 4fi"(*) 

gives a complex of sheaves, and as usual !K?(fl(*)) denotes the /?th 
cohomology sheaf. Evidently 

0^ (00 ) ) a C, 
and we shall prove the 

Lemma. DC'(Q(*))» 0 CD, where CD is the constant sheaf con-
DeDivM 

centrated on divisor D. 
Proof. We let <p be a closed meromorphic 1-form given in a sufficiently 
small polycylindrical neighborhood W of a point x0 e M. The polar divisor 
of (p is D = Z>, H + £>£, where the Z), are irreducible and are divisors of 
holomorphic functions fE&(W). By the same argument as above, if 
W*=W-D, then HX(W*,I) is generated by 1-cycles y, consisting of 
circles turning once around Dt. If 

Z7TV — 1 -/Yi 

then 
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will have no periods, and consequently 

will be a meromorphic function in W with 

(*) v = 2\ f + *-

We define the residue map 

by 

R: fJC'(a(*))-> © CD 
DeDivM 

*(<p) = © A , - 1 A . 

The notation means that R(q>) is the constant A, on the divisor /),. The 
local presentation (*) shows that R is an isomorphism. Q.E.D. 

Now we write out the two spectral sequences abutting to H*(fi(*)). One 
of these has 

"Ef* = HS{H"(MM*)))-

Since the ample divisors are cofinal among all divisors, 

H"(M,tt(*)) = 0 for<7>0. 
Consequently, "E^'q — 0 for q>0 and 

, , .. {closed meromorphicp-forms} 
IHrlii l*)) = -̂  - r . 

{exact forms) 
We may therefore think of H*(12(*)) as the de Rham cohomology of the 
function field of M. 

For the other spectral sequence 
(*•) 'E™ = Hp(M,%«(tt(*))). 

Now any spectral sequence gives an exact sequence in low degrees, which 
in this case is 

0_> E'l2°-^H'^'E^^l'E2-0-» H2-» G->0, 

where G=H2/F2H2 has the subgroup G' = W/FXH2 with 

G'®G/G' c'E^O'E2-0 

a subgroup of kerd2. Substituting (**) in this exact sequence, we obtain 

0 - » # 1 ( A / , C ) - » H l ( a ( * ) ) - ^ # ° ( 0 C 0 )^/ / 2 (A/ ,C)-*H 2 (f l (*)) -^G. 
\D<EDivA/ / 
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The interpretations of the maps in this sequence are (we omit the proofs 
that diagrams commute): 

1. Using the previously established isomorphism 
(***) H*(M,C) - H*(fi*), 
the first map is the natural one 

H ' ( f i* )^H ' (n (* ) ) 

induced from the inclusions tip—>Qp(*). 
2. The second map assigns to a closed meromorphic 1-form its residue 

as in the proof of the lemma above. 
3. The map / assigns to \D the fundamental class r)DEH2(M,Z) of the 

divisor D. 
4. The map H2(M,C)^>H2(fl(*)) is again induced by the isomorphism 

(***) and inclusion Slp^->£lp(*). 

Now the isomorphism 

H\M,C) = kerfl 
_ {1-forms of the second kind} 

{exact forms) 
gives P| = 6,. 

Next, we have 

H\M,C) ^ H2(M,C) 
f Chern classes j iH°(®CD) 
I of holomorphic 
[ line bundles 

a image{tf 2(A/,C)-»H2(fl(*))} 
_ (2-forms of the second kind} 

{exact forms} 

and so p2 = b2 — p. Q.E.D. 

It is clear that the identification 

f , , o , u , / n , ^-, {/>-forms of the second kind} 
image{ E ^ H ^ ( - ) ) } ^ I { e x a c t f o r m s }

 I 

allows the above proof to continue, but the subsequent interpretation of 
the numbers pp has yet to yield much geometric information. So we shall 
conclude with some further remarks on the cases p= 1,2. 

For p = 1 perhaps the most interesting case is when M is an algebraic 
curve of genus g. Our definition of differentials of the second kind agrees 
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with that given in Section 2 of Chapter 2 on Riemann surfaces. We will 
prove the result: 

Let D = p, + • • • +pg be a nonspecial divisor of degree g. Then there is 
an isomorphism 

I-forms (p having 
no residues and 
polar divisor 2D 

{1-forms of the second kind } 
{exact forms } 

Proof. By the Riemann-Roch theorem 

h°(D) = degZ) - g + 1 + i(D) = 1, 
so the only meromorphic functions with polar divisor D are the constants. 
Again by Riemann-Roch applied to the line bundle Kc + 2D, 

h°(Kc + 2D) = deg(A; + 2Z>) - g + 1 + i(Kc + 2D) 
= 2 g - 2 + 2 g - g + l 
= 3 g - l , 

so that the space of meromorphic differentials having polar divisor 2D has 
dimension 3g— 1. The equations 

2ReS/)(«p) = 0 

impose exactly g -1 independent conditions on this space, due to the 
residue theorem 

2Resp(<)p) = 0) 
i 

and observation that we may find <pEH°(&c(K+2D)) with prescribed 
residues subject only to the residue theorem (cf. Section 2 in Chapter 2). So 
the space of 1-forms of the second kind with polar divisor 2D has 
dimension 

3g-l-(g-l) = 2g, 

and none of these can be exact by our remark about meromorphic 
functions with polar divisor D. Q.E.D. 

We turn now to the case p = 2. To first explain how the relation 

Pi = b2 ~ P 

was used classically, we refer to the exact sequence 

H' (12(*))^ / /° ( © CD\-UH\M,C), 
VOEDivM / 

which appeared in the proof above. We may interpret it in the following 
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manner: 

If D is a divisor on M with fundamental class T J D G H 2 ( M , Z ) , then TJD is 
a torsion element if and only if there exists a closed, meromorphic l-form 
<p whose residue R(<p) = D. 

This was proved by Picard, and Severi showed that a multiple XD (X £ Z) is 
algebraically equivalent to zero (to be explained momentarily) if and only 
if there is a closed meromorphic 1-form whose residue is D. Combining 
these, it follows that the Neron-Severi group 

NS(M\ = {divisors on M ) 

{ divisors algebraically 1 
equivalent to zero j 

is finitely generated (theorem of the base). The structure of the group of 
divisors on M may be pictured by the diagram 

Hu(M)nH2(M,Z) 

Div D DivA D Diva D Div, 

NS Pic0 

Pic 
where Div,,, Diva, Div, are the divisors homologous, algebraically equiv-
alent, and linearly equivalent to zero. 

We shall give the precise difinitions and derive the finiteness theorem in 
a different way. Two effective divisors Di,D2 are algebraically equivalent in 
the strong sense, written 

D, = D2, 

if there is a connected parameter variety T with marked points tut2GT 
and divisor D on M X T such that 

Z ) M X { / , } = D. (/=1,2). 
Intuitively, there is an algebraic family Dt(tE:T) of divisors connecting Z>, 
and D2. 

Two divisors DX,D2 are algebraically equivalent, written £>,=Z>2, if there 
is a divisor D such that both of D + Z), are effective and £> + £>, = D + D2-
We will see in a minute that this is an equivalence relation compatible with 
the group structure on Div(A/). The divisors algebraically equivalent to 
zero then form a subgroup " = " of Div(M), and the quotient 

Div(M)/"=" = N S ( M ) 
is called the Neron-Severi group. 
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The basic result we need is the 

Lemma. Two divisors D,,D2 are algebraically equivalent if and only if they 
are homologous. 

Proof. It is clear that D, =D2 => TJ0| = i\D in H\M,T). For the converse 
we assume that TĴ , = t\D, which is equivalent to c,([D1]) = c1([Z)2]) by the 
proposition in Section 1 of Chapter 1, and shall show that D, =Z>2. Let D~ 
be the part of Z), appearing with negative coefficients and add E=D{~ + 
D2 of each of £>„D2 to obtain effective divisors, thereby reducing us to 
proving that D1=D2 for effective divisors in the same homology class. 

Now we come to the point. Recall that the Picard variety Pic°(A/) = 
Hl(M,6)/Hl(M,Z) parametrizes line bundles with first Chern class 
zero; we denote by {^ -»M}( |G7 / ' (Af ,6 ) / / / 1 (M,Z) ) this family. Since 
[Z),]<8>[Z)2]* has zero Chern class, 

[Dt]®[D2]* = P^ 

for some £0. By the last result proved in the subsection "Intrinsic Formu-
lations" in Section 6 of Chapter 2, we may find a line bundle L^>M 
and sections 0f e f / ^ A / , © ^ ® ^ ) ) such that 0^0 for generic £. In fact 
from the proof we may assume that 0e,0io¥=O. Setting Z>j = (04) from 
[Dl -D2 + De] = [D^ ], we deduce that the linear equivalence 

Dt + De~D2 + Dio 

holds. In particular 

Dt + De=D2 + Dio, 

and it is clear that 

via the family of divisors {Z)£}(£ePic°(Af)). Thus DX = D2 and we are 
done. Q.E.D. 

As a corollary we deduce the theorem of the base: NS(A/) is a finitely 
generated group of rank p = b2 — p2. 

We have not dwelt on rational and algebraic equivalence of divisors or 
of general algebraic cycles, partly because we do not need these for our 
study of any specific varieties, and partly because the codimension-one 
theory is—at least as matters now stand—misleading as regards higher 
codimensional cycles. 

The Leray Spectral Sequence 

This is in many ways the most useful general spectral sequence, and so we 
want at least to say what it is and give an illustration. Suppose we are 
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given topological spaces X, Y with a continuous mapping 
/ : X^Y 

and sheaf f over X. The qt\i direct image sheaf is the sheaf Rf(^) on Y 
associated to the presheaf 

The Leray spectral sequence, which exists under very mild restrictions (cf. 
the references at the end of this chapter) is a spectral sequence {Er} with 

EX=>H*(X,V), 

E™ = Hp(Y,Rf($)). 
IT 

Suppose that E -> B is a differentiable fiber bundle with compact fiber F. 
Then E, B, and F are manifolds, it is a C M mapping, and 

for sufficiently small open sets UcB. For the constant sheaf <Q on E, by 
the Kunneth formula 

H«(w-](U),Q) = H"(F,Q). 

This suggests that as a first approximation 

/?/(Q) a tf*(F,Q) 
is a constant sheaf on 5 . This is not quite correct, since account must be 
taken of how the fundamental group ir,(J3,;c0) acts on the cohomology 
H9(FXO,Q)(FX = TT~\X)). More precisely, displacement of homology cycles 
in the fibers over a path y from x0 to x induces an isomorphism 

H"(FX,Q) ^ H"(FXo,Q) 

that depends only on the homotopy class of y. This is reasonably intuitive 
and is proven in standard books on topology. The upshot is that first there 
is a representation 

p : 7r}(B,x0)^Aut(H"(FXo,Q)) 

that describes how cycles change when they are displaced around closed 
paths. Second, any representation of the fundamental group 

p : *-,(2?,jc0)-»Aut(K) 
gives locally constant sheaf ^ on B. To construct Tp, we take the vector 
bundle 

V,, = BXVV 

associated to the universal covering B-+B, and then the sections of ^ 
over an open set U c B are just those which lift to constant sections of 
BxV. Third, the qth direct image sheaf R£(Q) is the sheaf constructed in 
this way from the representation of fl-,(Z?,.>c0) on Hq(FXo,Q). 
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It is instructive to sketch the derivation of the Leray spectral sequence in 

de Rham cohomology. At any point p E E we let 
r , (F ) = k c r { ^ : Tp(E)->T„(p)(B)} 

be the tangent space to the fiber F^p) passing through p. Setting 
F"(AnTp(E)) = (ApTp(F))A(An~pTp(E)) 

defines a filtration {FP(/\"T(E))} on the exterior powers of the tangent 
bundle T{E), and we let {Fp(/\nT*(E))} be the dual filtration of the 
exterior powers of T*(E) given by 

F"(f\nT*{E)) = Aim(F"-p+l(/\nT(E))). 

This gives a filtration FPA"(E) on the space of C°° differential forms of 
degree n on E, and, setting A" = A"(E), we have 

A"^F°AnZ)FlA''D--- DF"AnDFn+xA" = 0 
d: F"An^FpAn+\ 

To picture this filtration, we choose local product coordinates (x,y) in E 
with ir(x,y) = x. Then Tp(F) is spanned by the vectors 3/9y„ and 

FpA « = L = 2 <Pu(x,y)dXl/\dyj L 

/ >p 

from which the two above properties of the filtration are apparent. 
According to the general mechanism, once we have such a filtered 

complex {FpA*}, there is an associated spectral sequence {Er} with 
EX^H*(A*) = H^(E). 

We will calculate the terms £, and E2-
Recall that 

pPAP+1 
£p.q — 

0 fp + ^p+v' 

and do is obtained from d by passing to the quotient. Taking a local 
product isomorphism 

v-l(U)at UXF, 
we may represent Ep,q by forms 

<P= S Vi(x,y,dy)Adx„ 

where the i\, are ^-forms on F. Computing modulo FP+1A*, 

<*o<P= 2 dr\i/\dx„ 
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where a\, is the exterior derivative in the /-"-direction relative to the product 
decomposition. It follows that elements of Ep'q are locally represented by 

*I-P 

where 
rfj(x,y,dy) E H&R(FX). 

Intuitively, we may think of Ep'q as the/?-forms on B with values in the 
bundle H^K(F) whose fibers are 

We now compute rf,<p. For tp as above with do<p = dy<p = 0, 

rf,<p = dq>. 

Thus 
d\V = dxi # S i\i(x,y,dy)/\dx\ 

and so EP,q is given by 

E£< = HP
DR(B,HUF)1 

where the right-hand side may be defined by first interpreting H^,R(F)-*B 
as a flat vector bundle—i.e., a vector bundle associated to a representation 
of the fundamental group—whose locally constant sections are just the 
sheaf Rq(€), and then taking the de Rham cohomology of forms with 
values in this bundle. Granted that this interpretation needs some amplifi-
cation, but once this is done we have derived the spectral sequence of a 
differentiable fibration. 

These spectral sequences are generally nontrivial—i.e., E2^EX—and 
may be extremely complicated. Even the simplest nontrivial fibration, the 
Hopf fibration, 

has an interesting spectral sequence: The fiber is the circle S1, and since 
P" is simply connected, 

EP-q^ H"(Sl)®Hp(Pn). 

Figure 6 pictures the E2 term. If i\&E2
x = H\Si) is a generator, then 

d2ri¥=0, since Hq(S2n+l) = 0 for ?^0,2n+ 1. Thus 
d2i\ = u, 

where u&E2-°^H\Pn) is a generator. If we represent Sln+X as the unit 
sphere {z : \\z}\ = 1} in C + l , then 

u = ddclog\\z\\2 
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(0, DO 
• W 2 

(2, 0) (4, 0) (2n, 0) 

Figure 6 

is the standard Kahler form on P". Up on 5 2 n + 1 , 
w = <b\, 

where it is straightforward to check that 

T, = dc\o%\\z\\2 

restricts to the generator of HX(SX) for each fiber. So, in this case the 
relation 

d2T] — w 

is quite visible. We also note that 

rf2(i)Aw«)=«?+1 (0<q<n). 

By way of contrast, we suppose that E, B are compact Kahler manifolds 
and 

■n: E-*B 
is a surjective, holomorphic mapping of maximal rank. This is a differen-
tiable fiber bundle whose fiber F is a compact Kahler manifold, and we 
shall prove:* 

The Leray spectral sequence degenerates at E^; i.e., 

so that 

Ei^Ea 

H*(E,Q) » H*(B,R*W(Q)). 

Before giving the proof, we wish to suggest two interpretations of this 
result. One is as another reflection of the extraordinary topological proper-
ties, such as those encountered in Sections 1 and 3 of Chapter 1, possessed 

*Cf. P. Deligne, Theoreme de Lefschetz et criteres de degenerescence de suite spectrales, 
Publ. Math. I.H.E.S., Vol. 35 (1968), pp. 107-126. 
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by an algebraic variety. The other interpretation is as focusing attention on 
the extremely important role played by the monodromy group, which is by 
definition the image of W,(JB,X0) in Aut(//*(G, Q) under the representation 
obtained by displacing cycles around closed paths. 

Proof. We first remark that a closed fc-form <p given on the total space E 
defines classes in E*,k for all r, and moreover that multiplication by <p 
induces 

<p: E™^>E™+k 

commuting with 
dr: EP-«-+EP+r-<-r+l, 

again for all r. These assertions are clear from our proof of the spectral 
sequence using differential forms and also were verified in the little 
example above. 

Now let w be a Kahler form on E, and denote by L the map induced by 
multiplication by co. Then from the definition of the direct image sheaves, 
L: fl«(C)->/?«+2(C) is defined and if dimF= n the hard Lefschetz theorem 

Lk: i?r*(C)->/C+*(C) 
is valid, simply because each stalk 

Ri(C)x « H"(FX,C) 

and we may apply the usual hard Lefschetz theorem. Continuing this line 
of thought, if we define the primitive Leray sheaf by 

P"-k = ker{Lk + 1: R"-k^>Rn+k+2}, R" = R£{C), 

then for the same reasons the Lefschetz decomposition 

R« a © LkPq~2k (q<n) 
k 

is valid. 
We shall show that 

d2: E™-» E$+2'"-{ 

is zero, with the proof for the higher d/s being the same. Since 
EP,H = Hp(B,R") 

and 
j^k. £p,n-k s £P,n + k 

is an isomorphism commuting with d2, it will suffice to show that d2=0 on 
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£|"~*. Passing to the Lefschetz decomposition, we consider the commuta-
tive diagram 

H"(B,Pn~k)4 Hp+2(B,R"-k-1) 
| z . * + l « o 4,/.*+' 

Hp{B,Rn+k+2)% Hp+2(B,Rn+k+l). 

The right-hand vertical arrow is an isomorphism by hard Lefschetz, and 
the left-hand one is zero by definition of primitive. Thus d2=0. Q.E.D. 
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4 
SURFACES 

Perhaps the most striking aspect of the theory of algebraic surfaces, when 
first encountered, is how different it is in character from the theory of 
Riemann surfaces. Whereas curves, having the genus as their sole discrete 
invariant, fall into an orderly sequence of families, surfaces possess a 
variety of numerical invariants and are not so readily classified. Con-
versely, while curves have a natural continuous invariant—their periods, 
realized geometrically by the Jacobian—no fully satisfactory continuous 
invariant has been found for surfaces. As a result, the theory of algebraic 
surfaces does not possess the natural cohesiveness of the theory of curves; 
it tends to concentrate more on the study of special classes of surfaces. 
This is reflected in our treatment: with the exception of the basic tools 
presented in Sections 1 and 2 and the proof of Noether's formula, virtually 
all our results either describe or characterize specific families of surfaces. 

Sections 1 and 2 contain all the techniques used in our study. For the 
most part, these results are special cases of general phenomena discussed 
before; the one new idea introduced here is the notion of a rational map. 
This is an important aspect of the theory of varieties in dimension two or 
more; in the case of surfaces we are able to give a complete description of 
birational maps. 

In Section 3 we describe the general rational surface, and obtain in 
consequence the answer to some problems posed in curve theory. Section 4 
is complementary to 3: its main result is a characterization of rational 
surfaces by numerical invariants. 

Section 5 discusses the classification theorem for surfaces; this essen-
tially amounts to a description, in varying detail, of all surfaces except 
those of general type. 

It remains in Section 6 to prove Noether's formula. To do this, we 
introduce another technique of general interest: the blow-up of a complex 
manifold along any submanifold. Using this construction together with 
some remarks on singularities of surfaces in P3 we represent a general 

469 
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surface as a smooth divisor in a blow-up of P3, and obtain formulas for the 
numerical characters of a surface in terms of the projective invariants of a 
birational embedding in 3-space. Noether's formula is an immediate con-
sequence of these. 

1. PRELIMINARIES 

Intersection Numbers, the Adjunction Formula, and Riemann-Roch 

Let M be an algebraic surface, i.e., a compact complex manifold of 
dimension 2 that may be embedded in projective space. Since M is an 
oriented real 4-manifold, the intersection pairing 

H2(M,I)xH2(M,Z)^I 

is symmetric and nondegenerate. For divisors D and D' on M we define 
the intersection number DD' of D and D' to be simply the intersection 
number of their fundamental classes (£>), (D')&H2(M,Z). Similarly, if 
L-+M and L'^>M are two line bundles, we take the intersection number 
L-L' of L and L' to be given by 

L-L' = {cx{L)ucx{L'))[M}, 

and likewise we define the intersection number L-D of a line bundle L 
with a divisor D to be just the value of the Chern class c,(L)G7/2(A/,Z) 
on the fundamental class (Z))e//2(Af, Z) of D. Since intersection of cycles 
is Poincare dual to cup product, all these definitions are consistent with the 
correspondence between divisors and line bundles; i.e., if L = [D] and 
L'=[D'], then DD' = LD' = L' D = LL'. 

There are a few points to be made about the intersection of divisors on 
an algebraic surface: 

1. If L is a positive line bundle, then for any effective divisor D 

LD = [ c , ( L ) > 0 . 
JD 

2. Any two effective divisors D and D' intersecting in isolated points 
intersect positively; thus D - D ' X ) unless D and D' have a component in 
common. In particular, if D is irreducible, then any effective divisor D' not 
containing D intersects D positively, and if in addition, D-D > 0, then 
DD' > 0 for any effective divisor £>'. 

3. In a somewhat deeper vein, recall that by the Hodge-Riemann 
bilinear relations the intersection form is negative definite on the primitive 
cohomology Pll(M)cHhl(M). By the Lefschetz decomposition, Pl,i has 
codimension 1 in H11; thus if D is any divisor on M with D-D >0 , the 
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intersection pairing is negative definite on the orthogonal complement of 
■qD in H]\M). In particular, if DD>0, then for any divisor D' on M such 
that D ' D = 0, either D ' D ' < 0 or (D')=0; this is commonly called the 
index theorem. 

By way of terminology, we define a curve C on the surface M to be any 
effective divisor on M; a curve C is called smooth if it is the locus of a 
submanifold of M taken with multiplicity 1 and irreducible if it is not the 
sum of two nontrivial effective divisors. 

Let C be a smooth, irreducible curve on M. By the adjunction formula 
from Section 2 of Chapter 1 

KC = (KM + C)\C, 

where Kc and KM denote, as usual, the canonical line bundles of C and M. 
If g is the genus of the curve C, it follows that 

g = ±degKc+l 

= ideg(tfM + C ) | c + l 
KMC+CC 

2 

This formula is also referred to as the adjunction formula. In general, we 
define the virtual genus IT{C) of an arbitrary curve C on M by 

w(C) = x + 1-

Now let D be any smooth, irreducible curve on the surface M, and let 
L = [D] be its associated line bundle. From the long exact cohomology 
sequence associated to the exact sheaf sequence 

we obtain 

X(L) = X(VM) + X(®D(L)). 

Now, by Riemann-Roch for Z), 

X ( 0 D ( L ) ) = - ^ ( Z ) ) + d e g ( L | / , ) + l 
= -TT(D) + LL+1. 

But by the adjunction formula, 

w(D) = j ; 

thus we have 

X(L) = X(6M)+L-L-L-K. 
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This formula holds for an arbitrary line bundle L on M. We just choose 

a divisor D on M sufficiently positive so that both the linear series \D\ and 
\L + D\ contain smooth, irreducible divisors; setting 

U = L)+D 
the exact sequence 

gives 

But 

X(L) = X(L')-X(L'\D). 

x(L'\D)--v{D) + 6egL'\D + l 
DD + DK Tl n = - + L'D; 

so 

_ x ( 6 ) + {L'L'-2L'D + DD)-(L'K-DK) 

= x(e.) + ^ ^ ; 
this is the Riemann-Roch formula for line bundles on a surface. 

As suggested in the last chapter, the holomorphic Euler characteristic 
X(0M) of M is itself expressible as a polynomial in the Chern classes of M: 
the formula 

X(0A,) = T I ( C . ( * O 2 + ' 2 ( A O ) 

= ±(K-K+X(M)) 

is called Noether's formula. We defer the proof until the last section of this 
chapter. 

We observe that the Riemann-Roch theorem for line bundles gives a 
direct proof of the index theorem for divisors, as follows: let E be a 
positive divisor on S. We have seen (p. 164) that the intersection pairing on 
the group H1'1(S)nH2(S,Z) of divisors modulo homology is nondegener-
ate; if it had two positive eigenvalues, it would of course have at least one 
in the orthogonal complement of the class of E\ i.e., we could find a 
divisor D with 

DE = 0 and DD = d>0. 
We will show that such a divisor D cannot exist, first, since E has strictly 
positive intersection number with any effective divisor, neither mD nor 
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- mD can be effective for any m¥=0. Applying Riemann-Roch, we find 

h°(mD ) - h\mD ) + h2{mD ) = j m 2 d - ™ K-D + X(0S); 

i.e., 

h°{K-mD) = h2(mD) >^m2d-^-K-D+ X(<9S) +h\mD) 

becomes arbitrarily large as m goes to either — oo or + oo. In particular, 
K+mD is linearly equivalent to an effective divisor Em for all m»0. But 
now the map 

\K-mD\—>\2K\ 
given by 

G^G+Em 

is injective, and so the dimension of \K—mD\ is bounded—a contradic-
tion. 

Blowing Up and Down 
We recall some definitions from Chapter 1, Section 5: let M be a complex 
manifold of dimension n, z = (zl,...,z„) holomorphic coordinates in an 
open set U c M centered around the point/; G M. The blow-up M of M at/? 
is then taken to be the complex manifold obtained by adjoining to 
M— {/?} the manifold 

U= {{z,l): zGl] c UxP"-1 

via the isomorphism 
U-(z=0)^U~{p} 

given by (Z,/)H»Z. There is a natural projection map m:M-*M extending 
the identity on M — {/>}. The inverse image E=ir~l(p) is naturally isomor-
phic to P(Tp(M))2zP"~} and is called the exceptional divisor of the 
blow-up M-»A/. 

When blow-ups were introduced in the course of the Kodaira embed-
ding theorem, we were primarily concerned with the local geometry of M 
and M near pjmd E, respectively. We would now like to relate the global 
geometry of M to that of M. We begin by considering the topology of M 
and M: we set_M* = M-{p), M* = 7r~iM* = M-E, U*=U-{p] and 
U* = IJT~XU*=U- E, and compare the Mayer-Victoris sequences of M= 
M*uU and M=M*\jU: 

//,( #*)->#,( LO © //,(M*)-^(M)->/7,+,( L>) 
•j."'* 4 'w* 4- w* 4, i r* 

#,( £/*)->#,( LO © //,(M*)^//,(M)-*#,+,(I/*) 
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Now, IT* is an isomorphism between H+(U*) and H*(U*), and between 
H+(M*) and //*(Af *). On the other hand, we may choose our open set U a 
ball around the point/?; and the standard contraction z\-+tz of U onto/? 
induces, via IT, a contraction of U onto E. Thus we have 

Hi{M) = Hi{M)®Hi{E), i > 0 , 
Since all the cohomology of £ s P " ' is represented by analytic cycles, 

hi-l{M)-*ti'i(M)+\, i>0, 
with all other Hodge numbers of M equal to those of M. 

We make here one new definition. Let p, M, M, and IT be as above, and 
let VcM be any analytic subvariety of M. Then we define the proper 
transform V c M of K to be the closure in M of the inverse image 

K= w-l(K-{/>}) = w _ 1 ( K ) - £ 
of F away from x. Clearly TT maps K—2i = ?r~1(K—{/?}) isomorphically 
onto V—{p). To get a picture of V near the exceptional divisor, let 
z = (z,,...,z„) be holomorphic coordinates around/?EM, [7, the open set 
(4*0) in U= 77"'(I/), and 

*('%■ = 7 = 7 , 7 * i \ 
Z, = 2, 

holomorphic coordinates on 6̂  as on p. 184. Recall that the divisor E is 
given in U, as (z,=0), and that the coordinates {z(i)j}J¥=j restrict to 
Euclidean coordinates on E=P"~l. Now le t /be any holomorphic func-
tion near/>GAf, V=(f) its divisor. Write 

/00 = 2 /„(*). 
m>0 

where 

is the mth homogeneous component of / in terms of the coordinates z 
around/?. Setting/= 77*/, L = v*fm, we have 

/ » = 2/„(*) 
and 

/„(*)- 2 ca-(z,z(o1r---^---(^(onr 
= zr-2ca-z(o?---^---z(o:". 

Consequently if/vanishes to order m0 at x—i.e., i f / 0
= / i = • • • = /m o- i = 0 
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—then / vanishes to order m0 along E, and 
V= w*V-multp(V)-E 

= TT*V-OTdE(ir*V)-E. 

Moreover, we see that 

= ( 2 cfl■/,-.••/A 

i.e., under the identification EssP(Tp(M)), VnEisjwt theprqjective tangent 
cone to V at p. Figure 1 illustrates the case of a surface M and a curve V in 
M with an ordinary double point at p. 

Note finally that if p is a smooth point of the subvariety V <zM, then the 
proper transform V of V under the blow-up of M at p is just the blow-up 
of V at p. Accordingly, we sometimes refer to the proper transform V <zM 
of a subvariety V c M as the blow-up of V at p, even when p is a singular 
point of V. 

We now consider the case of a surface M and its blow-up A/ -> M at 
pGM. First, we see that if C is any curve on A/ not containing the 
exceptional divisor E, then C is the proper transform of its image IT(C) in 
M; thus 
(*) Div(M) = 77* Div(M )©!{£■}. 
We can now compute intersection numbers readily. We have seen in 
Chapter 1 that the normal bundle to E in M is just the dual of the 
hyperplane bundle on £ s P ' ; thus 

(E-E) = deg([E]\E) = d e g ( ^ ) = - 1 . 
Since the map 7r_has degree 1—that is, the image under w* of the 

fundamental class [A/] 6 H4(M,T) of M is just the fundamental class of M 

Figure 1 
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—we deduce that for any divisors D,D' on M, 

TT*DIT*D' = DD', 

and since the class ( £ ) of the exceptional divisor of the blow-up is in the 
kernel of ir+, 

IT* DE=*(D- ( * , ( £ ) ) = () 

for any divisor D on M. Summarizing, the isomorphism (*) above is an 
isomorphism of inner product spaces. 

Note in particular that if D,D' are two divisors on M intersecting 
transversely at/>, D and D' their proper transforms in M, we have 

DD' = (v*D-E)-(ir*D'-E) 
= ir*Dm*D' + E-E 
= DD'-\. 

This is as we would expect from our picture of the proper transforms of 
curves: for every pointp' of intersection of D and D' other than/;, D and 
D' will meet at w" ' ( / / ) ; since D and D' have distinct tangents at p, 
however, D and D' will not meet at any point of E = TT~1(P). 

One point that should be brought out here is that if {Dx} is a linear 
system of curves on the surface M, the proper transforms {Dx} of the 
curves Dx on M do not necessarily form a linear system on M. Indeed, since 

Dx = -n*Dx-mu\tp{Dx)E 

and the curves {TT*DX} do form a linear system, {Dx} will be a linear 
system if and only if all the curves Dx have the same multiplicity at/>. Thus 
when we speak of the proper transform of a linear system {Dx}, we will 
mean the linear system of curves {ir*Dx — mE), where m = 
min{mult/,(DA)}x is the multiplicity of the generic curve Dx a.tp. 

We see from all the above that the blow-up M of a surface M is very 
closely related to M. An important question to ask, then, is the converse: 
Given a surface M and a curve C on M, when can we realize M as the 
blow-up N ^ of some surface N, with C=7r"'({x0})? Clearly, necessary 
conditions are that C be rational and that CC= — 1; in fact, the following 
result says that these are also sufficient. 

Castelnuovo-Enriques Criterion. Let M be an algebraic surface, C c M a 
smooth rational curve on M of self-intersection —1. Then there exists a 

IT 

smooth algebraic surface N and a map IT: :M-»N such that M - * N is the 
blow-up o /N at p0GN, and C = ir~](p0). 

Proof. The proof here is along the lines of the Kodaira embedding 
theorem, but with a twist: we want to find a map / :Af-»P m that is 
one-to-one away from C, maps C to a point, and has smooth image. 
Accordingly, we look first for a line bundle L^>M that is sufficiently 
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positive away from C to have global sections, but whose restriction to C is 
trivial. 

To find such a bundle, we start with a very ample line bundle L on M; 
choosing L sufficiently large, we may assume that 

#'(Af,0(L)) = O. 
Let m = L-C and consider, for each Ac = 0,1,.. . , m the sequences 

(*k) 0-*6M(L + (k + l)C)-*eM(L + kC)-+ec(L + kC)^0. 
We note first that if fl-»CsP' is the point bundle on P', (L + kC)\c = 

(m — k)H, so that 
H,(C,B(L + kC)) = 0 fork<m + l. 

It follows from the long exact cohomology sequence associated 
to (*k) that # ' (M,0(L + (A:-1)C)) surjects onto H\M,6(L + kC)) for 

k < m + 1; and since by hypothesis H '(Af, 0 (L))=0, 
H\M,6(L+kC)) = 0 forA:<m+l 

so the restriction map #°(Af,0(L + A;C))-^#°(C,0((m- k)H)) is surjec-
tive for k <m +1. In particular, this tells us that the linear system |L + kC\ 
has no base points on C for k<m; since \L\ itself has no base points, it 
follows that |L + A:C| has no base points for k<m. 

Consider now the map iL. given by the linear system \L'\ = \L + mC\. 
Since \L'\ contains the subseries \L\ + mC and L is very ample, iL, embeds 
M-C and separates points of C from points of Af- C. On the other hand, 
since L'\ c is trivial, any section a G H°(M, 0 (L')) vanishing at a point of C 
vanishes identically along C; so iL. maps C to a point. To conclude the 
argument, we must show that iL(C) is a smooth point of the image iv(M); 
to see this, note that by the sequence (* ) the restriction map 

tn — 1 

H\M, 0 ( Z / - C)) -+ H°(C, e(H)) 
is surjective. Let p^p2GC, and let £, be a section of L1 vanishing on C 
that restricts, via the map above, to a section of H over C vanishing at/>x; 
let | 2 be a global section of L' restricting to a section of H vanishing at/»2. 
Let £0 be any section of L' not vanishing identically on C (and hence 
nonzero on C), and set 

-k -k 
Z ' ~ V Z 2 " £ o ' 

Let £/, = C— {/>2}> U2 = C~{Pi)- Then in some open set f/, c M contain-
ing (/,, Z ] / ^ is holomorphic; in fact, for pE [/, we have rf(z,/z2)=^0 on 
r ; (C)c r ; (M) and dz2¥^0 on r ; (M)/r ; (C), so that if we choose f?, 
sufficiently small, we may take z2, zi/z2 local coordinates on £/,. Similarly, 
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z, and z 2 / z i furnish local coordinates on an open set U2cM containing 
U2. We see from this that the functions (z,,z2) map a neighborhood of C in 
M onto a neighborhood of the origin in C2, a mapping that is holomorphic 
outside C. This proves that iL(C) is a smooth point of iv(M), completing 
the proof of the Castelnuovo-Enriques criterion. Q.E.D. 

A smooth rational curve of self-intersection — 1 on a surface is called an 
exceptional divisor of the first kind. 

The Quadric Surface 

We now consider a smooth surface of degree 2 in P3. Such a surface is 
given as the locus of 

(x-Qx) = 2 g0XiXj = 0 

for Q = (qjj) a symmetric matrix; since 

-^r(x-Qx) = 2'2lqiJxJ, 

we see that S is smooth exactly when the matrix Q is nonsingular. All 
nondegenerate symmetric quadratic forms on C4 are isomorphic, and it 
follows that any two smooth quadric surfaces in P3 are projectively isomor-
phic. Consider in particular the Segre map 

a: p' x P ' ^ P 3 

given by 

([wiM'o'M^tVo'Vi'Vo'Vi]-
o is clearly an embedding, and the image of a is contained in—hence equal 
to—the smooth quadric 

So = (X{X4-X2X3 = 0). 

Thus any quadric surface S c P 3 is isomorphic to P ' x P 1 . 
Of particular interest is the set of lines in P3 lying on a smooth quadric 

S. We see that under the Segre map a, the curves ( i ) x P 1 and P1 X {t} on 
P ' x P ' are sent into lines in P3. We will call these two families of lines on 
5 the A-lines and the B-lines; clearly every ,4-line meets every 5-line, and 
any two A -lines are disjoint, as are any two 5-lines. These are, moreover, 
all the lines on S: if L c S is any line, then obviously L must meet at least 
one ,4-line Lx and one 5-line L2. But L, and L2 meet, and the plane they 
span in P 3 can meet 5 in at most two lines, so either L = LX or L — L2. 

We can describe the set of lines on a general smooth quadric S directly 
as follows: first, note that if Q is any point in the intersection of S with its 
tangent plane Tp(S) c P3 at P, the line PQ meets S three times—once at Q 
and twice at P—and so must lie in S. The locus S n Tp(S) must therefore 
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consist of a union of lines; since S n Tp(S) has degree 2, it must consist of 
two lines. Conversely any line on S through P must lie in the locus 
S n Tp(S), and so we see that through every point PGS there pass exactly 
two lines on S, comprising the locus SnTp(S). (Note that these two lines are 
necessarily distinct: if Tp(S) met S in only one line L, Tp(S) would have to 
be tangent to S everywhere along L, and so no other line on S could meet 
L. But the intersection of 5 with a general tangent plane TQ(S) not 
containing L will consist of a union of lines, and must meet L, so this 
cannot be the case.) 

Now, pick one line LQcS and call any line on S an v4-line if it is either 
equal to or disjoint from L, a 5-line if it meets L in one point. If two lines 
L, L' T^ L0 on S meet in a point, the plane they span in P3 meets L0 in a 
point, which must be a point of either L or L'; so one of the two is an 
,4-line and the other a /Mine. Conversely, if L=£L0 is an v4-line and L' a 
5-line, the plane spanned by L' and L0 must meet L in a point, which by 
definition cannot be a point of L0; so L and L' intersect. Thus two lines on 
S meet if and only if they are of different type; since there will be a unique 
5-line passing through every point of L0 and likewise a unique /4-line 
passing through each point of a fixed 5-line, we see that the families of 
A -lines and 5-lines are each parametrized by P1 In sum, then, the set of 
lines on S consists of two disjoint families, each parametrized by P1, with two 
lines meeting if and only if they are from different families. It follows that 
S s s P ' x P ' . 

We can obtain another description of a quadric surface S by projecting 
from a point p of S onto a plane H in P3. Of course, the projection map 
TTp:S-{p}^>H is not defined at, and does not extend over, the point/*. If 
we let S be the blow-up of S at p, however, we can extend the map IT 
continuously over the exceptional divisor EaS, obtaining a holomorphic 
map TT:S—>H: for a point r&E corresponding via the identification 
£ss P(Tp(S)) to the line re Tp{S), take ir(r) to be the point of intersection 
of H with the line Lr c P3 through p with tangent line r. 

Now let LUL2 be the two lines on S passing through/?, and let qx and q2 

be their points of intersection with H. Then for any point qGH other than 
qx and q2, the line pq will either meet S in one point other than p, or be 
simply tangent to S at/>; in either case q will be the image under s o f a 
single point of S. The inverse images of qt and q2, on the other hand, will 
be the proper transforms L, and L2 of L, and L2 in 5. (Note that the 
A -lines of S—i.e., lines meeting L,—are mapped into the pencil of lines in 
H containing qu the 5-lines into the pencil of lines through q2, and the 
exceptional divisor E onto the line qxq2.) We see from this that w is 
one-to-one on S — Ll — L2, and maps L, and L2 onto qx and q2—i.e., 
7?: S-»P2 is just the blow-up of P2 at q, and a^. Thus we may obtain P2 

from a quadric surface S by blowing up one point p of 5 and blowing 
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down the proper transforms of the two lines on S through^. In reverse: we 
may obtain a quadric surface S s P ' x P 1 from P 2 by blowing up two points 
q,,q2 on P2 and blowing down the proper transform of the line q ^ c P 2 . We 
will see this operation more explicitly following our discussion of the cubic 
surface. 

Note that since the only invariant of a symmetric quadratic form on C" 
is its rank, there are all in all only three quadric surfaces without multiple 
components in P3: (1) those given as the locus of a nondegenerate form 

xl + x\ + xl + x2 

on C4—these are the smooth quadrics; (2) those given as the locus of a 
form 

X0 + X^ + X2', 

such a quadric is the cone over a plane conic curve and singular at the 
vertex [0,0,0,1] of the cone; and (3) those given as the locus of a form 

these consist of the union of two planes. 

The Cubic Surface 

We now describe a smooth cubic surface in P3. We will first construct such 
a surface by blowing up six "general" points in P2 and embedding the 
blown-up surface in P3 as a cubic; we will then show that in fact every 
nonsingular cubic surface may be obtained in this way. 

Choose six points/?,,...,/>6eP2 such that 
1. pu...,p6 do not all lie on a conic curve; and 
2. no three of them lie on a line. 

Let P 2 - ^ P 2 be the blow up of P2 at/?,,...,/>6, £, the exceptional divisor 
over/>„ and consider the complete linear system \C\ where 

C = ir*3H - £ , E6. 

If C is any cubic curve in the plane passing through all six points pt, then 
the curve v~l(C) — El — E6 is certainly in the linear system |C | ; 
conversely, if D is any curve in \C\, then 

■n(D)H = DTT*H = 3 

so 7r(Z)) is a cubic curve, and 

DE^-ErE^X 

so D meets every exceptional divisor £„ i.e., w(D) passes through all six 
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pointsPj. Thus the system \C\ consists exactly of curves 

v~\C)-Ex E6, 

where C is a cubic plane curve containingpx,...,p6. 
We claim now that the linear system |C| embeds P2 as a cubic surface in 

P3. This involves quite a bit of checking: we have to show that 

1. CC=3, 
2. dim | C | = 3, 
3. i£ separates pointsp=£qEP2, for 

a. /?,?EP2-u£„ 
b. />££,., ? E P 2 - u £ „ 
c. p E E{, q E Ej, and 
d. p,qGEt; and 

4. i£ has nonzero differential at p, for 
a. / ? E P 2 - u £ ; , and 
b. />££, , 

Assertion 1 is immediate: we have 

CC = «r*3#-ff*3# + £ , - £ , + --- + £ ' 6 £ 6 = 9 - 6 = 3. 

The other assertions, however, are of a different character. For example, 
we know that the complete linear system of cubic curves in the plane has 
dimension 9, and that the requirement that a cubic pass through any one 
of the points /», imposes one linear condition on the system \3H\; the 
statement d im|C| = 3 amounts to saying that the conditions imposed by 
the six points />, are independent. This, and the last two assertions as well, 
will follow from the 

Lemma. Eight points p , , . . . , pg E P2 fail to impose independent conditions on 
cubics only if either 

1. All eight lie on a conic curve; or 
2. Five of the points p; are collinear. 

Proof. The first step in the proof is to show that seven points p , , . . . , p 7 £ 
P 2 fail to impose independent conditions on cubics only if five are collinear. 
To see this, we argue as follows: Assume that />,,...,p7 fail to impose 
independent conditions on cubics. Then for some point p{, any cubic 
containing the other six will contain/?,; reordering, we may take/?, to be/?,. 
Let Ly denote the line />„/?,. The cubic curve 

contains/»2,...,/>7 and hence/>, as well; thus/*, is collinear with two other 
points p^ which we may take to be/>2 and/>3. 
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Suppose now that the line L=pip2p3 also contains one of the points 
p4,... ,p7, say p4. Then since the cubic 

contains px, we must have either p5, p6, or py lying on L as well; thus we 
have five collinear points. If, on the other hand, none of the points 
p4,... ,p7 lies on the line L, then since the cubics 

L24 + L35 + L67, L24 + L36 + L57, and L25 + L36 + L47 

all contain px but the lines L24, L25, L35, and L36 cannot, px must lie on L41, 
L57, and L67; thus/?4, p5, and/?6 all lie on the line L,7, and again we have 
five collinear points. 

The lemma follows readily from this first step. Suppose we have eight 
points Px,...,Pg in the plane imposing only seven or fewer conditions on 
cubics, and assume that no five are collinear. By our first step, then, any 
seven of the eight points pt do impose independent conditions, and it 
follows that any cubic passing through any seven of the points contains 
them all. Choose three noncollinear points; call them/;,,/;2, and/;3 and let 
C be a conic containing the remaining pointsp4,...,ps. By hypothesis, the 
cubics 

C + L12, C + L13, and C + L23 

each contain all eight points; since each of the points />,, p2, and p3 lies 
outside one of the lines L12, L,3, and L23, it follows that the conic C 
contains all eight. Q.E.D. 

The statement of the lemma also holds in case/j, is infinitely near p2, that 
is, if />, is a point on the exceptional divisor E of the blow-up P2-» P2 of 
P2 at/>2. In this case, we say that a curve C in the plane contains/), and/>2 
if C passes through p2 and the curve v~\C)- E contains/?„ i.e., if either 
C is smooth at/>2 with tangent line corresponding to/j„ or C is singular at 
p2. Thus, for example, we say that the points px,p2, and/?3 are collinear if 
the proper transform in P2 of the line p2p3 contains />,. Of course, the 
linear condition imposed by/7, on the system of cubics is defined only on 
the subsystem of cubics passing through p2, but the independence of the 
conditions imposed by/»,,...,ps is still well-defined. 

The argument for the lemma in case />, is infinitely near p2 runs as 
follows: as before, we first want to show that any seven points/»,,...,p7, 
with/?, infinitely near/>2, impose independent conditions on cubics unless 
five are collinear. Assuming that no five are collinear, we know from the 
first argument that the pointsp2,...,pn impose six conditions; if />,,...,p7 

fail to impose seven, every cubic passing throughp2,...,/?7 will contain/),. 
Now, if two of the points p3,... ,p7 lie on the line L = Lu—say p3 and 
p4—we are done: the cubic L25 + L36 + L41 contains/;,, and so eitherps,p6, 



PRELIMINARIES 483 

or p7 lies on L, giving us five coUinear points. If exactly one of the points 
p3,... ,p-,—say p3—lies on L, then the cubics 

L24 + L35 + L67, L24 + L36 + L5-j, and L25 + L36 4- L.41 

all contain />,, and so must be singular at/?2; thus/>2 lies on L47, L57, and 
L67, i.e., p4, p5, and />6 all lie on the line L21. If, finally, none of the points 
p3,... ,pn lies on L, then since the cubic 

L27 + Lj4 + L56 

contains px, either L34 or L56—say L34—must contain p2. In this case, take 
L' any line through/>7 missing all the other points/»,; the cubic 

contains/;,; thus/?2 lies on L56. But then since 
L27 + L35 + L46 

contains px, either L35 or L^ must pass through /J2, and in either case it 
follows that p2, p3, p4, p5, and p6 are coUinear. 

The lemma now follows just as in the original case: given eight points 
/>„...,/>g, with/?, infinitely near/?2 and no five collinear, by the first step 
any conic containing all but any three noncollinear points />, contains all 
eight. Q.E.D. 

We leave to the reader the proof of the lemma in three additional cases: 
when/?, and/>2 are infinitely near/>3, when/?, is infinitely near/>2 and/>3 is 
infinitely near/?4, and when/?, is infinitely near/>2, which is itself infinitely 
near p3. 

A note: this lemma will reappear as a consequence of the general duality 
theory discussed in Section 4 of Chapter 5. 

Let us return now to the blow-up m: P2—»P2 of P2 at six points /»,,... ,p6 

as specified earlier, and the linear system |C | = |w*3i/— is, — • ■ • — E6\. As 
an immediate consequence of the lemma, we see that the pointspu . . . ,p6 

impose independent conditions on cubics, so that d im|C | = 3. The remain-
ing assertions 3a-d and 4a and b likewise follow from the lemma: 
respectively, they may be restated as saying that the points/>,,...,p6,p and 
q impose independent conditions on cubics in case 

3a. p*qeP2-{/>„...,p6], 
3b. p infinitely near/>„ qGP2 — {/>,,...,p6], 
3c. p infinitely near /?„ q infinitely near pp 

3d. p ¥= q infinitely near pt, 
4a. p infinitely near q G P2 — {/?,,... ,p6}, 
4b. p infinitely near q infinitely near />,. 

In each of these cases, we see that since no three of the points p, are 
collinear, no five of the pointspx,...,p6,p,q are; and since the points/?, do 
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not all lie on a conic, certainly px,...,p6, p and q do not. By the lemma, 
then, the points />,,...,p6, q and p impose independent conditions on 
cubics, and the map i£ embeds P2 as a cubic S c P3. 

Before proceeding to study the geometry of S, we make one observation. 
Recall that a smooth quadric surface S c P 3 may be obtained by blowing 
up two points qx,q2 on P2, and blowing down the proper transform in P 2

? 2 

of the line qxq2. The reader may wish to verify, by the techniques of the 
preceding argument, that the linear system \n*2H — Ex — E2\ on 
P 2

9 —corresponding to conic curves in P2 passing through qx and 
q2—does indeed give a map of P2

i?2 onto a quadric surface in P3, 
one-to-one except along the proper transform of qyq2. 

Now return to our cubic surface S s r „ in P3. Consider first the 
image of the exceptional divisors Ex,..., E6 in S. Since CEt = \, we see that 
each of the curves Et has degree 1 in P3, hence must be a Une. Likewise, if 
Fy 0 > 0 is t n e proper transform in P2 of the line LiJ=p~p~ in P2, then 

Fu-C-(**Lu-Ei-EJ)(«*3H-'2lEk) 
= L - 3 / / - 2 = 3 - 2 = 1, 

so that the image of F0 in S c P 3 is again a line; there are 15 such lines. 
Note that 

F0-F0 = (*• Iy-E,- Ej)(m*%,-E-Ej) 

= V L , - 2 = - l 
so that the lines Fy are exceptional divisors of the first kind on S. Also, if 
G, is the proper transform in P 2 of the conic C, in P 2 through the five 
points^, , . . . , p;,...,/>6, 

C?,C = ( ^ q - 2 E ^ I H - ^ E , ) 

= C , - 3 / f - 5 = 6 - 5 = 1. 

Thus 6 , c S c P 3 is again a line, and 

GrG, = (**Ci-'2Ej)(**Ci-'2EJ) 

= crq- 5 = 4 - 5 = - l 
so G, is exceptional of the first kind. 

Now if L is any line in S, we consider the locus ir(L) c P2. Assuming L 
is not one of the exceptional divisors Et, L can meet each line £, at most 
once, and that transversely. Thus n(L) will be a smooth rational curve in 
P2, hence by the genus formula either a line or a conic. Now 

L = ir*m(L) - 2 E, 
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and so 

1 = CL = (7r*3/f-2 E,y lv*ir(L)- 2 E,) 

= 3HTT(L)+ 2 ErEi. 

This tells us that 7r(L) must contain exactly two of the points />,- in case 
7r(L) is a line, five of the points/), if ir(L) is a conic, and hence that L must 
be one of the lines Fy, G,. 

Thus there are exactly 27 lines on the cubic surface we have constructed: 
six E{'s, 15 Fy's, and six G{'s. The incidence relations among the lines are 
clearly seen from their description as curves in P2: the line £, will meet all 
lines on S coming from plane curves passing through pt, that is, FtJ for any 
j and Gj for any j¥= i. The line Ftj will meet, apart from Ej and EJt any line 
coming from a curve in P2 having a point of intersection with p~p~ other 
than/>, orpj, that is, Fk, for k,l¥=i,j, G„ and G,. The line G, will meet Ej for 
y'^/, and i*» for ally. Note in particular that every line of S meets exactly 
ten other lines; some other interesting aspects of this configuration of 27 
lines are: 

1. There are exactly 72 sets of six disjoint lines on S: these are 

{E,} (1), 
{Ej,Ej,Ek,Flm,Fmn,Flnj (20), 

{E^F^F^F^Fj,,} (30), 

{ G„ G,, Gk,Flm, Fmn, Fln ) (20), 

and 

{<?,} (I)-

As the reader may verify, there is a unique automorphism of the 
configuration of 27 lines on S (not an automorphism of S) that carries any 
of these 72 into any other, in any assignment; thus there are 72-6! = 51,840 
symmetries of the configuration of lines on S. 

2. If two of the lines L, L' on S intersect, then there is a unique other line 
on S that intersects them both: the hyperplane in P 3 containing L and L' 
must intersect S in a cubic curve including L and L, hence in a third line. 
In fact, the planes in P3 that meet S in a union of three lines are 

Hy = EfGjFy and Hijkbm = FyF^F^ . 

3. Recall from our discussion of Grassmannians in Section 6 of 
Chapter 1 that if L,,L2,L3,L4 are four disjoint lines in P3, then there are 
exactly two lines L, L' c P3 meeting all four. Now if the lines L, all lie on S, 
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then the lines L and L' meet S in four points, hence must also lie on S. 
Thus for any four disjoint lines on a cubic surface S there will be exactly two 
other lines on S meeting all four. 

We now want to show that every smooth cubic surface S in P3 can be 
obtained by blowing up P2 in six points. We first locate six exceptional 
divisors on S to blow down; to find these we look for the cohomology 
classes they represent. Let 5 0 = P2

T be the cubic surface constructed 
above, and let S be an arbitrary smooth cubic in P3. Let W— \3H\ a P19 be 
the linear system of all cubic surfaces in P3, and consider the incidence 
correspondence 

X= {(S,p): pES} cWxP3. 

The subset V cW of singular cubics is a proper analytic subvariety of 
W, and so W — V is connected; take y: / -» W— V a C00 embedding of the 
unit interval / c R in W- V with y(0) = So, y(l) = S\ Let -n:X-+Wbc the 
projection map on the first factor. The inverse image X' = ir~l(y(I))cX 
is a smooth manifold, and the map y~l°ir:X'-*I is smooth. By standard 
manifold theory, then, X' is diffeomorphic to the product IxS0, and 
consequently S is diffeomorphic to S0: since X' is compact and the map 
y ~' ° ir is smooth, we can by a partition of unity lift the vector field — d/dt 
on / to a vector field v on A"; the flow (p, = <p,(u) on A" will then map 
77 ' (y (0) diffeomorphically onto w_1(y(0)) = 50. Note also that if 
H c P 3 is any hyperplane meeting 5 and S0 transversely, the set V of 
cubic surfaces tangent to H is again an analytic subvariety of W. We may 
therefore choose our path y to lie in W—V—V, so that Y' = X'C\ 
(WxH) will be a submanifold of X' mapping smoothly onto / . Take v' a 
vector field on Y' lifting — 9/3/ and choose v to extend ©'; the diffeomor-
phism «p = «p, :S-±S0 will then carry the hyperplane section Hf)S to 
H n S0. This argument shows in general that any two smooth hypersurfaces 
of degree d in Pn are diffeomorphic via a map carrying a hyperplane section 
of one to a hyperplane section of the other. 

Now by the adjunction formula applied to S c P3, 
Ks = (Kp3+S)\s 

and similarly Ks =—H\s. Since our diffeomorphism <p:S-*S0 carries 
S n H to SQD H, we deduce that 

CI(KS) = <P*C,(A:SO). 

Let 7]EEH2(S0,Z) be the cohomology class of the exceptional divisor 
E;CSQ = P% , and set ju., = <P*%,- Since Ks is negative, it clearly cannot 
have any global sections, so h20(S) = h0,2(S) = 0 and the classes ju,,G 
H2(S,Z) are necessarily of type (1,1). By the Lefschetz (1,1) theorem, 
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there exists a holomorphic line bundle L,—»£ with c,(L,) = ju,,. Since inter-
section numbers are topologically invariant, 

£ , - £ , = - 1 , L,L y = 0 (i*j) 
LjKs = EjKSa = - 1 . 

Applying the Riemann-Roch 

x(A)-£'L'2L'^5+x(e,) = x(6y)-
Now, as remarked, h20(S) = 0; by the Lefschetz hyperplane theorem 

H\S,Z)s* H\P2,Z) = 0, 

so hl0(S) = 0 and consequently x (G s )= l - Moreover, by Kodaira-Serre 
duality A2(L,) = / J ° ( A : S - L , . ) ; but 

d e g ( X - s - A ) | s n * = * s ' # s " V # s = KSQ-HSo~ ErHSo = - 3 - 1 = - 4 , 

so ATS - L, cannot have any global sections. Thus 

A°(A-) > 1, 
so L, has a nonzero global section, and ju, is the cohomology class of an 
effective divisor £),. 

Since DtHs = \, Dj is a line on S in P3. Thus Z), is a smooth rational 
curve on S with self-intersection — 1 and so can be blown down. More-
over, since DiDj = 0, the lines Z>, on S are disjoint, so that the image ir^Dj) 
of Dj under the blowing-down w, of D, is again a smooth rational curve of 
self-intersection - 1. Thus we can blow down all six divisors Z), in turn; let 
S be the surface obtained by blowing them down. We observe first that the 
Betti numbers of S are 

b°(S ) = b\S ) = 1, 

b\S ) = b3(S ) = 0, 

b\S) = b2(S)-6 = 7-6 = 1. 

Note also that if IT : S-^S is the blowing-down map, then 
Ks = 7T*Ks+D1+-+D6, 

and since Ks is negative, we deduce that for any curve D c S, 

DK3 = -!r*D(Ks-Dl D6) 

< m*DKs < 0; 

so the bundle K§ is certainly not positive. Consequently our argument that 
S is P2 blown up six times will be complete once we prove the 

Lemma. If M is an algebraic surface with the same Betti numbers as P2 

and KM is not positive, then M s= P2. 
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Proof. Since bl(M) = 0, we have P i c ( M ) s / / 2 ( M , Z ) a Z . Since M is 
algebraic, there exists a positive line bundle L' on M; let L be the 
generator of Pic (A/) such that L' = L" for some « > 0 . (Note that L' 
positive implies that L is positive). By hypothesis, / / 2 (M,C) = C and since 
/ / U ( M , C ) = C, we have h2-°(M)=0; b\M) = 0 implies A10(M) = 0 and 
hence X(®M) = !• The topological Euler characteristic x(A/) = 3, and so by 
Noether's formula 

Since c^L) generates H2{M,I), by Poincare duality 

L - L = ( c , ( L ) u c , ( L ) ) [ M ] = ± 1 , 

and since Lk is effective for A:»0 and L is positive, 

LLk = /c(L-L) > 0=> LL = 1. 
Thus, if we write KM = Lm, m must be negative since KM is not positive, 
and so 

9 = KMKM = m2(LL)^m= - 3 , 

i.e., KM = L~3. Apply Riemann-Roch for L: 

h°(L) - h\L) + h\L) = 1 + L L ~ K L = 1 + 1 ^ 3 ) = 3. 

But h\L)= h°(K-L) = h0(L~4) = 0 since L~4 is negative. Also, by the 
Kodaira vanishing theorem, 

h\L) = h\K+4L) = 0, 
since L4 is positive. Consequently 

h°(L) = 3. 
Now if D G\L\ is any divisor in the linear system \L\, D must be 

irreducible: if D = DX + D2 where Z>„Z>2>0, we would obtain 
1 = LL = L D , + LD2 

Moreover, D must be a smooth curve: if p e D is a singular point, since 
dim|L| = 2 we can find D'¥=D E\L\ such thatpED'; we would then have 

1 = LL = DD' > 1. 
The genus of the curve D is given by the adjunction formula: 

T(D),°i^+1.izi+1,0, 
i.e., Z)ssP'. The restriction L\D is then the hyperplane (i.e., point) bundle 
/ / P i ; and from the cohomology of the exact sequence 

o-»ew-»eJ„(z,)-»0p1(#P')->o 
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and the fact that Hl(M,6M)=0, it follows that 

H°(M, eM(L)) -> H°{P\ epl(//pl)) ->o. 
HPi is very ample on P1 so the linear system \L\ separates points on each 
curve £>e |L | . But since dim|L| = 2, we see that for every two points 
p,qGM we can find a curve D e | L | passing through p and q. Thus the 
linear system \L\ has no base points, and the map 

separates points; it follows that iL is surjective, and hence is an isomor-
phism. Q.E.D. 

We have now shown that every smooth cubic surface S c P 3 is of the 
form P2 _̂ . Suppose that three of the points/?, lay on a line L c P 2 . Then 
the proper transform L of L in 5 would be a smooth rational curve of 
self-intersection 1-1 — 3 = —2, and by the adjunction formula, 

, ~ , L-L + Ks-L , 
0 = TT(L) = T ^ + ' 

i.e., KsL = 0. But the canonical bundle of S is negative, a contradiction. 
Similarly, suppose that the six points pt lay on a conic curve C c P2. By the 
above C would have to be smooth, and so its proper transform C in S 
would again be a smooth rational curve with self-intersection 2-2 — 6 = 
- 2 ; the same argument shows this cannot happen. Thus if S s P2, p<, the 
points pi necessarily satisfy the conditions 1 and 2 of p. 480; thus we see 
that 

Every smooth cubic surface S c P 3 may be obtained by blowing up P 2 at 
six points p , , . . . ,p 6 , no three collinear and not all six on a conic, and 
embedding the blow-up in P3 by the proper transform of the linear 
system of cubics passing through the points p;. 

In particular, we see that our discussion of the lines on the surface 
constructed before applies to all smooth cubics. 

As we will see in the following sections, the quadric and cubic surfaces 
are the only smooth hypersurfaces in P3 that may be obtained from P2 by 
a series of blow-ups and blow downs. 

2. RATIONAL MAPS 

Rational and Birational Maps 

One of the basic geometric operations on algebraic varieties V c P" is the 
projection 
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of a variety V from a point p G P" not lying on V to a hyperplane. In 
Chapter 2 we saw that, if V is a curve, the map -np is well-defined even in 
case;? lies on V: mp, defined a priori only on V— {p}, may be extended by 
mapping/? to the image in P"_1 of the tangent line to V at p. In general, 
however, if Fhas dimension greater than one and/>G V, the map n is not 
well-defined at, nor can it be extended over, the point/?. This is not hard to 
see: for any point q G P"~' n T {V) in the image of the tangent plane to V 
at/) there is a sequence {<?,} of points on V-{p) tending top, such that 
irp(qt) tends to q. Despite the fact that it is not everywhere defined, 
however, mp is a natural geometric operation—as we have already had 
occasion to see in the previous section—and it is recognized as such in 
algebraic geometry, IT is an example of a large class of transformations 
called rational maps, which we will now discuss. 

We begin with a definition. 
DEFINITION. A rational (or meromorphic) map of a complex manifold M 
to projective space P" is a map 

/ : z->[\J,{z),...,f„{z)} 

given by n global meromorphic functions on M. A rational map/:A/^>7V 
to the algebraic variety N c P" is a rational map / : A/-»P" whose image 
lies in N. 

One difficulty in understanding rational maps / : M—»P" is the fact that 
they are not, strictly speaking, maps: they need not be defined on all of M. 
Let us first see how this occurs. 

As we saw in several contexts in the chapter on curves, any collection 
/,,...,/„ of meromorphic functions on a Riemann surface S serves to define 
a holomorphic map 

/ : z^[l,/,(z),...,/„(z)] 
from S to P": while/ is defined a priori only away from the poles of the 
functions / , at any point p = (z = 0) G 5" we may set 

m = max{-ordp(fi)}., 

and the map 
/ : *->[*", z"y,(z),...,*"%(*)] 

extends/ over p. The fact that we are using here to extend/is simply that 
the point p is a divisor on the Riemann surface S; i.e., it is defined by a 
single function z, and any function vanishing at p must be divisible by z. 
This, of course, fails in higher codimension, and so we may expect that a 
general rational map will not be everywhere defined. The simplest case is 
the rational map 

/ : C 2 ^ P ' 
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given by the single meromorphic function f(x,y)=y/ x, i.e., by 

f(x,y) = \,y-
X 

•[x,y]: 

f is well-defined and holomorphic away from the origin (0,0)eC2, but 
cannot be extended to a map on all of C2. 

Another way to represent a rational m a p / : Af-»P" is by an (« + l)-tuple 
of holomorphic functions: i f / i s given by meromorphic functions/,, . . . , / , , 
write each of the functions locally as 

h ~ K 
with hhgt holomorphic and relatively prime; let h0 be the least common 
multiple of the functions ht. T h e n / m a y be given locally by 

/ : z^[\,fx{z),...,fn{z)} = [h0{z),f,{z)h0{z),...,fn{z)h0{z)}; 

of course the functions f0 = h0 a n d / = /?„/ are holomorphic, and /wi l l be 
well-defined away from their common zero locus D (/)• 

Note that the functions / have no common factors: if k is any irreduc-
ible function dividing h0 exactly m times, then km divides h, for some /. 
Since k cannot then divide g,, it follows that k cannot divide f-h0= 
gj-h0/hj. Thus no function vanishing at p can divide all the functions 
h0,h0f. It follows that the locus f~l ( / ) contains no divisors, i.e., that a 
rational map f is defined away from a subvariety of codimension 2 or more. 
Conversely, if V c M is any analytic subvariety of codimension at least 2, 
f.M— V-+P" a holomorphic map, then by the Levi theorem from Section 
2 of Chapter 3 the pullback to M—V of the Euclidean coordinate 
functions x, = A",/X0, i—l,...,n, on P" extend to meromorphic functions/ 
on M; the map/=[l , / , (z) , . . . , / , (z)] is thus rational. This affords a second 
point of view on rational maps, namely 

A rational map 

f: M—>N 

from the complex manifold M to the algebraic variety N is given by a 
holomorphic map 

f: M- V—>N 

defined on the complement of a subvariety V of codimension 2 or more in 
M. 

Next, we would like to relate rational maps to P" to linear systems of 
divisors and sections of line bundles, as we have done with holomorphic 
maps. Let L-±M be a line bundle and OQ, ..., a„ £ H°(M, S (L)) a collection 
of linearly independent global holomorphic sections of L. Then the 
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meromorphic functions 

determine a rational map 
/ : M—»P"*. 

In terms of divisors, suppose \Dx\x&pn is a linear system on M. Let E be 
the fixed component of {Dx}—that is, the largest effective divisor such 
that Dx-E>0 for every \—so that the divisors {D{ = DX-E} form a 
linear system with base locus of codimension at least 2. Then we may 
define a rational map 

/ : A/—»P"* 
by setting 

f(p)={\: D{3p}EP"'; 
this is well-defined away from the base locus of {D{}. Of course, if {Dx} is 
the linear system 

#A = vVo+ • • • + V J 
associated to the vector space {a0,...,a„} of sections of the line bundle L 
above, then the maps / given by the system {Dx} and the meromorphic 
functions CT,/O0 are the same. 

Note that while any linear system gives in this way a rational map, we 
have an exact correspondence 

rational maps 
.<-»- / : M->P", up to 

automorphisms of P" 
From yet another viewpoint, we may consider a rational map/:M-»P" 

as a subvariety of Af XP". Explicitly, we define the graph TfcMxP"off 
to be the closure in P" of the graph 

{(p,X):f(p) = X) 
of / where defined. Note that this is an analytic subvariety: if / is given 
locally by 

/ : /"-»[go(/»).-•.&,(/>)]» 
where g0,...,g„ are holomorphic functions with no common factor, then Tf 

will be contained in the variety 
T0 = (gt(p)-XJ-gJ(p)Xl=0) 

and will agree with T0 over the domain of definition M0 of / in M. Tj is 
thus the irreducible component of ro containing r o n M 0 x P " . Conversely, 

(linear systems of divisors 
on M with base locus 
of codimension > 2 
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suppose r c M X P" is any A>dimensional analytic subvariety having inter-
section number 

*(r,wxr)=i 
with the fibers of M X P" over M. For each pGM,T will either meet the 
fiber {p}XP" transversely in a single point (p,f(p))—in which case by 
the implicit function theorem T is the graph of a holomorphic map near p 
—or have at least a curve in common with it. The former is clearly 
generically the case. Indeed, the locus V of po in tspEM where the latter 
case occurs must have codimension at least 2: if V were of dimension 
A:- 1, the inverse image of V in T would have dimension k, and so would 
form a component of the irreducible variety T. T thus defines a rational 
m a p / : Af-»P". We have then: 

A rational map f: M—*Pn is given by an irreducible k-dimensional 
subvariety of M x P n having intersection number 1 with the fibers 
{p} X Pn of M X P n over M. 

One point that emerges readily from this description is that for M 
compact, the image of M under a rational map / : M—*P"—that is, the 
closure of the image of / where defined—is an algebraic subvariety of P". 
This follows from the proper mapping theorem, once we observe that the 
image of the closure of the graph Tf of / in M x P" is indeed just the 
closure of the image of / . 

Birational Maps. We say that a rational map f:M^>N is birational if 
there exists a rational map g:N->M such t h a t / ° g is the identity as a 
rational map; two algebraic varieties are said to be birationally isomorphic, 
or simply birational, if there exists a birational map between them. In 
particular, a variety is called rational if it is birational to P", i.e., if there 
exist n meromorphic functions on it providing local coordinates almost 
everywhere. Note that a rational m a p / : M->N is birational if and only if it 
is generically one-to-one: if, for generic pEN,f~x{p) is a single point, then 
the graph Tf(zMXN of / has intersection number 1 with the fibers 
M X {p}, and so defines an inverse rational map. 

Birational isomorphism represents an important intermediate notion of 
equivalence among varieties. Birational varieties are alike in more ways 
than they differ; to the classical geometers they were different manifesta-
tions of the same variety. This point of view is immediately clear to an 
algebraist, in whose terms the local rings of functions around points p £ M, 
q G AT on two varieties M and N are isomorphic as local rings if and only if 
there is a birational m a p / : A/-»iV taking/? to q and biregular around/?. It 
will take us somewhat longer to appreciate the close relationship between 
birational manifolds. To start, note the following: 
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Let f:M^>N be a rational map, defined and holomorphic on the 

complement M— V of a subvariety V of codimension >2. If <p is any 
global holomorphic /j-form on N, then by Hartogs' theorem the pullback 
f*<p on M— V extends uniquely to ap-form on all of M; thus we have a 
map 

for each/?. More generally, if EM—>M is any contravariant tensor bundle, 
the natural map /* from sections of EN over N to sections of EM over 
M-V gives a map 

/ * : H°(N,S(EN))^>H0(MMEM)). 

If / is a birational map, of course, then all the functions / * are isomor-
phisms; thus the space of sections of any contravariant holomorphic tensor 
bundle is a birational invariant; in particular, the Hodge numbers hp'°(M) 
are. Several of these invariants have been given names: 

1. The number /i10(S) of holomorphic 1-forms on a Riemann surface 
is its genus g(S). In general, the number h",0(M) of holomorphic forms of 
top degree on a compact complex /i-manifold M is called the geometric 
genus of M and denoted pg(M). 

2. An alternative generalization of the notion of genus is the number 

Pa{M) = h"'°(M)- h"-'<\M) + ■ ■ ■ + ( - 1)"~ V ° ( M ) , 
called the arithmetic genus of M. Using hq'\M) = h°'q{M) we can also 
write 

/>a(M) = (-ir(x(0w)-i). 
3. The number hh0(M) of holomorphic 1-forms on a compact complex 

manifold M is often denoted q(M) and called the irregularity of M. If M is 
Kahler, of course, the irregularity is simply half the first Betti number. 

4. Of interest also are the dimensions 

Pn(M) = h\MMKn
M)), 

of the spaces of sections of the nth powers of the canonical bundle, called 
collectively the plurigenera of M. 

5. The fundamental group w,(Af) of an algebraic variety is also a 
birational invariant: suppose 

/ : M—^N 

is a birational map, defined away from the subvariety UcM and one-to-
one away from the subvariety V c M. If 7 is any loop on M, then we can 
find a loop y' in M homotopic to y and disjoint from U; and the class of 
f(y') on N will be independent of the choice of y': since U has real 
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codimension at least 4, if y' —Y" is the boundary of a disc in A/, then it is 
the boundary of a disc in M — U. We thus obtain maps 

and 

inverse to one another; and so ■ni{M)^TTl(N). 
Another way in which a birational map carries structure is this: if 

/:A/—>JV is a birational map, we may define two maps 

/ * : Div(M)—»Div(AO, 

called the proper transform and the total transform. The proper transform of 
a divisor D in M is defined to be the closure in N of the image of D under 
/ where defined, while the total transform is defined to be the image in N 
of the inverse image of D in the graph TcMXN of / . The reader may 
verify that the total transform map preserves linear equivalence while the 
proper transform map does not. 

Examples of Rational and Birational Maps 

1. Any holomorphic map A/->P" is trivially rational. 
2. If M -» M is the blow-up of an algebraic variety M at a collection of 

points {/>,}, then the inverse map 

M-{Pi}^M 

is clearly rational, so -ir is a birational isomorphism. A holomorphic map 
/ :A/ ->P" thus gives a rational map from M to P"; in fact—as we shall 
prove later in this section in case M is a surface—the converse is true: any 
rational map/:A/—>P" is induced by a holomorphic map on a (possibly 
multiple) blow-up M of M. 

3. As mentioned at the beginning of this section, the projection map 

v c-{P}->P"-i 

of a curve C c P" from a point p on C into a hyperplane in P" extends to a 
holomorphic map on all of C. In general, if F c P" is any variety, p e F 
any point, the projection map irp of F from p to a hyperplane is a rational 
map. Indeed, mp may always be extended to a holomorphic map on the 
blow-up V of V at /> by sending a point r e £ in the exceptional divisor to 
the point of intersection of P"" 1 with the tangent line to F at p corre-
sponding to r. 

Note that in case F is a quadric hypersurface the map mp is a birational 
isomorphism. We have already seen this in the case of Q a quadric surface 
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in P3, where the map trp consists of the blow-up of the point p, followed by 
the blowing down of the two lines of Q through p. 

4. If <p: M—»P" is any holomorphic map of a ^-dimensional manifold 
to P", the associated Gauss map 

§ : M*—>G(/c+l,n + l), 
sending any smooth point of the image to its tangent plane in P", is a 
rational map: explicitly, if <p is given locally by 

< P O 0 =[<Po00,-••,<?>,,(*)]> 
then the map § is given in terms of the Plucker embedding 

G(k + l,n+ 1 ) - ^ P ( A * + 1 C " + 1 ) 
by the minors of the Jacobian matrix 9<p,/3za of <p. 

5. If F c P " is any variety, we may define a rational map 

Vk—>G(k,n+\), 

from the it-fold product of V with itself to the Grassmannian of (k — \)-
planes in P", by 

The graph of this map is just the main irreducible component of incidence 
correspondence I cVkx G(k, n+\) given by 

/ = {(pl,...,Pk;A): Pi<=A for a l l /} . 
6. We previously encountered the two birational maps 

and 
M(g-1). s t e - D ^ . 0 

from the g-fold symmetric product of a Riemann surface S to its Jacobian 
/ (S ) , and from the (g- l)st symmetric product of S to the theta-divisor 
© C / ( S ) . The latter map involves both of the two previous examples of 
rational maps: if § : 0->Pg~^' is the Gauss map, as defined in Section 6 of 
Chapter 2, then the composition 

5«- i _ > 5 (8 -0 —> © _ > p«-i* 

(m the standard quotient map) is just the map defined in example 4 above, 
applied to the canonical curve S c P 8 " ' . 

7. A birational map of the projective plane P2 to itself is called a 
Cremona transformation. One basic example of a Cremona transformation 
may be given as follows: let a,b,c be noncollinear points of P2, and P 2 the 
blow-up of P2 at these three points. The proper transforms Lab, Lbc, and Lac 
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of the lines ab, be, and ac are then disjoint rational curves of self-intersec-
tion - 1 in P2 and may all be blown down. (See Figure 2.) The resulting 
surface S, by the last lemma of the previous section, is isomorphic to P2; 
so we have given, up to an automorphism of P2, a birational map <pafr><- of 
P2 to itself. In terms of linear series, the map <pa b c is given by the linear 
system \2H\a+b+c of conies in P2 passing through the three points a, b, 
and c; in homogeneous coordinates, if 

a =[1,0,0], b =[0,1,0], c =[0,0,1], 
the map <pabc is 

Vabc'- [ ^ O ' ^ H ^ J ^ [ ^ l ^ ' ^ O ^ ' ^ O ^ ] ] -
Defined as it is by a linear system of conies, <pa6c is called a quadratic 
transformation of the plane. Note that a general line L through the point a 
is carried over into a line through the image point of L^, while a line L not 
containing any of the points a,b,c is carried over into a conic passing 
through all three image points d=y{Lab), e = <p(Lfec) a n d / = <p(Lac). This 
reflects the fact that <pedf ° <pabc is holomorphic. 

Another Cremona transformation has been implicitly mentioned in the 
last section. Let au...,a6 be six points in P2 in general position with 

Figure 2 
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respect to lines and conies. Then in the blow-up P2 of P2 at the points a, 
the proper transforms of the conies G^a-}-^ in P2 passing through five of 
the six points a, are disjoint rational curves of self-intersection — 1, and so 
in turn may be blown down. The resulting surface is P2; thus we have 
another Cremona transformation \p. The reader may verify that the bira-
tional map </< is given by the linear system of quintic curves in P2 having 
double points at each of the points at. Of course, blowing down any of the 
72 sets of six disjoint lines on the cubic P2 yields a Cremona transforma-
tion. 

It is a classical result that the group of Cremona transformations is 
generated by the set of quadratic transformations <pabc. An interesting 
exercise is to check this in the case of the map $ above by expressing ^ as a 
composition of quadratic transformations; three will be needed. 

We will return later in this section to prove a structure theorem for 
birational maps on surfaces; before we do that, however, we need to know 
some more about curves on surfaces. 

Curves on an Algebraic Surface 

We begin our discussion of curves on surfaces by proving a fact mentioned 
in Chapter 2: that if C c S is any irreducible curve on an algebraic surface, 
then there exists a compact Riemann surface C and a holomorphic map 

*l>: C-^C c S 

that is one-to-one over smooth points ofC The Riemann surface C together 
with the map \p is called a desingularization of C. 

To start, observe that the problem is a local one: we want to complete 
the (possibly) open Riemann surface C* = C—CS to a compact one, and 
we may do this over one singular point at a time. Indeed, since the local 
irreducible components of C* around a singular point pGC are all 
disjoint, we may proceed by completing one local component of C* at a 
time. Explicitly, suppose Pi,..-,pm are the singular points of C, and 
C,',...,Ca' the irreducible components of C at/?,. If we can find maps 

one-to-one away from OeAc a n d / > , e Q , then we take our desingulariza-
tion C to be the union 

C*LL ALL 4 U - LL ALL A U - - LL A 
+ 1,1 +1.2 +1.«, +2,1 +m.o„ 

of the smooth locus C* of C with the discs A via the maps {<p,a}. 
Now, let p be a singular point of C, and suppose C is irreducible in a 

small neighborhood A of p and smooth in A—{/?}. Let z,w be local 
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holomorphic coordinates on S around/? = (0,0), and let C be given in A by 
the holomorphic function f(z,w). After a holomorphic change of coordi-
nates we may take / to be a Weierstrass polynomial in w and write 

f(z,W) = wk+Pl(z)wk-l + ---+pk(z) 

with pi(0)=0 for every /. Now for e small and 0< |z | <e, the polynomial 
f(z,w) will have k distinct roots ar(z)\ the functions ar(z) will be locally 
single-valued holomorphic functions of zj^O, and 

/(z,w) = H(w-ar(z)). 

Geometrically, this means that the projection map TT(Z,W)-*Z on the 
z-plane expresses the inverse image ir"'(A*)cC* of the punctured disc 
Af = Ae-{0} as a topological covering space of A*. 

Analytic continuation of the function ar(z) around the origin in the 
z-plane gives a new function element aa(r){z), where a is a permutation of 
(1,...,A:)—that is, if we lift the path t^>z-e2wit from the z-plane to C, 
starting at the point (z,ar(z))GC, we end up at (z,ao(r)(z)). Since C is 
irreducible at p, the covering space 7r-1(A*)^^Ae* is connected and the 
permutations {ar} act transitively; thus a has order exactly k. 

We now construct our local desingularization map 

as follows: Consider the function 

defined a priori in a neighborhood of f = r. Writing f = re'9, we see that as 
9 increases from 0 to 2ir/k, f * turns once around the origin and, continu-
ing b, 

Continuing further, we have 

and so, since a has order k, the analytic continuation of b around the circle 
|f | = r agrees with the original function b. Thus fe(f) is well-defined in the 
punctured disc A*,, and, being bounded, it extends to a holomorphic 
function on A£,. Now let 

Clearlyy(f*,a,(ffc))=0, so ip maps the disc AC- into C. Moreover, ^ must 
be one-to-one: if for some f,f, we had 1^(0=W)> i* would follow first 
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that ?* = $"*, hence 

for some fi—\,...,k; then, since 

Mr) = w n = «.(?*) = MO, 
we would have 

a ' ( l ) « l . 
But since a acts transitively on {1,...,&}, this implies that n = k, i.e., f = £'. 
Consequently the map 

restricts to an isomorphism 

and we have our desingularization. (Note that C, being the image of a disc 
A, has a uniquely determined tangent line at p.) 

We see that the desingularization of C is unique: if IT : C^>C, IT' : C'-*C 
are two desingularizations, the isomorphism 

C-TT-\CS)-^C*-^C -TT"\CS) 

extends continuously, hence holomorphically, to an isomorphism of C and 
C. 

The desingularization of algebraic curves gives a second notion of the 
genus of a singular curve. Recall that f or C c S an irreducible curve on an 
algebraic surface S, the virtual genus w(C) is defined by 

/ ^ x CC+KSC , 
TT(C) = 2~^—+l' 

by the adjunction formula, ir{C) is the genus of any smooth curve 
homologous to C. On the other hand, we may define the real genus g(C) of 
C to be the genus of its desingularization C. The focal point of this 
discussion is a comparison of the two notions of genus; to make this 
comparison we will use the explicit form of the adjunction formula: the 
Poincare residue map. 

Let S be a smooth surface, C c 5 a smooth curve given locally in terms 
of holomorphic coordinates z,w on S by/(z,w) = 0. The Poincare residue 
map 

is given locally by 

#(z>w) "77 T *~^g(z>w) 
dz 

f(z,w) 6V ' ' (df/9w)(z,w) /(z.H-)-O 
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as observed in Section 2 of Chapter 1, this is independent of the choice of 
coordinates z,w. We can extend R to a map from the space of meromor-
phic 2-forms in S having a pole of order at most one along C to the space 
of meromorphic 1-forms on C simply by letting g(z, w) be meromorphic in 
the formula above. For a general meromorphic 2-form <o written as above, 
the Poincare residue R(<a) on C will have the following zeros and poles: 

1. At a point p of intersection of the divisor D = (g) = («) + ( /) = 
Ks+ C with C, R(<n) will have order exactly mp(D,C). 

2. At a point where the restriction to C of the 1-form dz vanishes, R(u) 
will have a zero. 

3. At a point where the derivative df/dw vanishes, R(ca) will have a 
pole. 

Now, as observed in the case of a curve in P2, the second and third 
factors exactly cancel each other out: at a point p with (3//3w)(/>) = 0, 
(3//3z)(/7) must be nonzero since C is smooth and we have 

df = 4-dz + ^-dw = 0 on C, 
dz 3H> 

hence 

°Td"(^) = °Tdp{dz) 

on C. We see then that the canonical divisor K=(R(u>)) on C is just the 
intersection of C with Ks + C, and consequently 

2g-2 = degKc = C(Ks + C), 
i.e., X 

C-C+K.-C 
g = ^ — + L 

We would like to see how this goes over when C is singular. In this case, 
let C-> C be the desingularization of C. As before, we let wGfi|(C) be a 
meromorphic 2-form with 

ordc(w) = — 1, 
written locally as 

, . dz/\dw 
u = g (z,w) 

Then the pullback 

w = ir*R(u) = 7T*( g(z,w) 
dz 

(df/dw)(z,W), 

is a well-defined meromorphic 1-form on the inverse image m '(C*) of the 
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smooth locus of C in C; we ask how « behaves over the singular points of 
C. To facilitate the calculation, we first check that we can choose <o so that 
its divisor (w) contains no components other than C passing through the 
singular points of C—that is, in the above expression for u>,g will be 
nonzero at all singular points of C. This is easy: if L is any positive 
line bundle on S, then for k sufficiently large, we can find B G 
H°(S,22(Lk + C)) and T G / / ° ( 5 , 0 ( L * ) ) nonzero on Cs; the quotient 
W = CT/T will then be a meromorphic 2-form of the desired type. 

First, we will consider the case of p a point of multiplicity k > 1 on C 
with C locally irreducible at/7. Since C is irreducible at/? the tangent cone 
to C at/> consists of one line taken k times; let z,w be local coordinates on 
S centered aroundp such that the tangent line to C at/> is given by (M> = 0) . 
Let f(z,w) be a defining function for C around/?; we may t a k e / t o be a 
Weierstrass polynomial in w. Write 

f(z,w) = ^larz--wk-i + [k+l] 
i 

= II(Y/*-«iH')+ [*+!] 

with (fjZ — SjW) the equations of the lines of the tangent cone to C at p; 
under the assumption that (w = 0) is the only tangent line to C at p, 

f(z,w) = wk + [k+l], 

i.e., the power series expansion of / in z and w contains no terms of degree 
< k except wk. Writing o u t / a s a Weierstrass polynomial, 

f{z,w) = wk +pl(z)wk~i + ■■■ +Pk(z), 

then, the function pj(z) must vanish to order at least i + l a ( z = 0 for each i. 
Let {ar(z)} be as before the function elements in a punctured disc in the 

z-plane such that 

f{z,w) = ^wk-'Pi{z) = ]{{w-ar{z)); 
r 

set 

and let m: AE—»C be the desingularization map 

constructed above. Then 

m*dz = </(£*) = k-$"-ld£ 

and 

£-?(n,<-M.») 
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so 

-•£tf)-?(nr(*tt)-^f*))) 
-2(lI(W)-Me2-""i-))) 

= n (b(n-b(e™/kn), 
since {b(e2vir/kO}r

 = K (£* )} r Wt= can write 

n ( ^ - ^ ( ^ ' r A 0 ) = ]I JI (b(e2^)-b(e2^+^kn) 

= n (^(^'^n-H^^t)). 
This last expression is a symmetric polynomial homogeneous of degree 
k(k-l) in the functions {b(e2™r/k$)} r = \ar(S

k)} r, and so is expressible as 
a polynomial in the elementary symmetric polynomials/>,(£*) of (ar(f k)}r; 
we have 

n (b(e2^kn-b(e^/kn) = 2 ^.aT^a*)'2- • -Pk(n
ek 

with 

for each e such that ce¥=0. But the function/?, vanishes to order at least 
/ + 1 at 0, and therefore the function/>,(?*) vanishes there to order k(i+ 1). 
Thus the function Ur(w*(df/dw)(e2™r/ £)) vanishes to order at least 
k(k- l)(k+ 1) at f = 0—and, since the functions {ir*(df/dw)(e2™/k$)}r all 
vanish to the same order at f = 0, it follows that 7r*(8//8w)(f) vanishes to 
order at least ( k - l)(k+ 1) at £ = 0. 

Summarizing, with u the 2-form above, 

w = IT*R(UI) = ir*g(z,w)-

= TT*g(z,w)-

ir*(B//te) 

»«(3//3*)tt) 
extends over w~'(^) to a meromorphic 1-form having a pole of order at 
least (k - \)(k + I)-(k - I) = k(k-I) at IT~\p). 

The computation in case C may be locally reducible around p is no 
more difficult. Let z, w, and / be as above, and write 

/ - I T / , 
wi th / irreducible and zero at/>; denote by 

q = u=o) 
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the irreducible components of C around p, and let 

*,: A->C, 
be the corresponding desingularization maps, / , = w,-- '(/>,)• Observe that if 

k, = mult„(C,), 

then 

A: = mult/,(C) = 2 ^ -

Consider again the Poincare residue of w on C near />„ 

77-*(3//3>v)(z,w) 

We have 

-?&£*) 
and, since / vanishes identically on Ct, 

* 9/ ♦ 9^ TT */ 

Thus 
1 ttfdz 

« = = "■*£•■ 

By our previous computation, the form 
■nfdz 

extends over /, to a meromorphic form having a pole of order at least 
kjik, — 1) at/ , . On the other hand, the function H^v*/; vanishes to order 

o r d ^ n < j 5 ) = mp(c,, | . C y ) 

7 # ' 

We see from this that w extends over/, to a meromorphic 1-form having a 
pole of order at least 

*»■(*,-!) + 2 M = *'( 2 ^ - i ) 
7 # ' 

* , ( * - ! ) 
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at/5,. The form w thus has a total of at least 

poles at the points {/?,} lying over p. Summarizing, we have proved that 

The form w on C* extends to a meromorphic l-form on all of C, having 
a total of at least k(k — 1) poles at the points of C lying over a point of 
multiplicity k on C. 

Now we count the degree of the meromorphic form w on C. Away from 
the inverse images in C of the singular points of C, as in the smooth case w 
will have poles and zeros exactly where g(z,w) does; as before, 

deg(£ i | c . )=C(A s + C) . 
Letting 

8P= 2 -ord^a) 

be the total order of <o at the points of C lying over/7, we have 8p > k(k — 1) 
for p a point of multiplicity k on C, and 

2 s ( C ) - 2 = deg(w) 
= CC+CKS- 2 8P> 

This gives the basic 

Lemma. If the curve C c S has singular points p; with multiplicities kj, 

In particular, 
g(C)<ir(C) 

with equality holding if and only if C is smooth. 

Note, as an important corollary, that 

w(C) > Ofor any irreducible curve C on a surface S; and if 7r(C) = 0, then 
C is smooth. 

This in turn yields a stronger statement of the Castelnuovo-Enriques 
criterion for blowing down: 

,<c) <££+£*+,_ V « t J ) 

/4n irreducible curve C on an algebraic surface S may be blown down if 
and only if C C and K-C are tatfA negative. 
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Proof. 

/ *-. \ C*C"f"A.'C , ^ _ 
■jr(C) = 2 + 1 > ° ' 

and if C C < 0 and A:C<0, this implies that 
CC= KC= - 1 . 

Then 
77(C) = 0; 

hence C is smooth and the first version of the blowing-down criterion 
applies. Q.E.D. 

Another important feature of the lemma is that it gives us a means of 
constructing the desingularization of a curve explicitly, as follows: Suppose 
C is an irreducible curve lying on the algebraic surface S, p G C a singular 
point of multiplicity k. Let S —> S be the blow-up of S at p, E = m ~ \p) c S 
the exceptional divisor of the blow-up, and C the proper transform of C in 
S. Then 

Kg ~ TT*KS + E, 

C~ir*C-kE, 

so 

and 

C-C = {7T*C-rr*C) + k2(E-E) 
= CC-k2 

K§C = (77*^s"n-*C) - £(£■£) 
= KsC + k. 

Combining, we have 

» ( C ) = 2 " ^ - + 1 

_ CC + KSC k(k-l) 
2 2 

i.e., the virtual genus of C will be strictly less than the virtual genus of C. 
This gives a recipe for the desingularization C. We define a sequence of 
curves and surfaces C, c S, by letting C, be the proper transform of C in 

the blow-up S, —> S of 5 at the singular points of C,C2 the proper 
" 2 

transform of C, in the blow-up S2 —> St of 51, at the singular points of 
C„ and so forth. If C, were singular for all /, we would have 

ir(C) > w(C,) >IT(C2) >■ 
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The lemma tells us, however, that 77(C,) > 0 for every /, so this is impossi-
ble. Therefore for some /", the proper transform Ci must be smooth. By our 
construction, the map 

•n = i7, o 772 ° • • • ° iTj: C , — ^ C 

is one-to-one away from the singular locus of C, and so C^C is the 
desingularization of C. 

Using this process we can, as promised in Section 5 of Chapter 1, 
evaluate the effect of any singular point on the genus of a curve. For 
example, suppose C aS has a tacnode, that is, a double point whose 
branches are simply tangent at a point/?. (See Figure 3.) If we let S-^S be 
the blow-up of S at p, C the the proper transform of C in S, then the 
proper transforms of the two branches of C will meet transversely at the 
point rGE in the exceptional divisor corresponding to their common 
tangent line at p. C thus has an ordinary double point at r. If we let 
S(2)^>S be the blow-up of S at r, then the proper transform C(2) of C in 
S(2) will be smooth. Now 

CC=CC-4, Ks-C=KsC + 2, 

C <2>-C(2) = C-C-4, Ks (2 )-C (2 )-K§-C+2, 

' A 
Figure 3 
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so that 

r(2>.r(2>+*r-<2>.r<2> 

= - * - + l - 2 
- i r ( C ) - 2 , 

i.e., a tacnode drops the genus of a curve by 2. 
Similarly, if p is an ordinary triple point of C—that is, around p C 

consists of three arcs meeting transversely at/?—then the proper transform 
C of C in the blow-up S of S atp will be smooth over/?, and we have 

77(C) = 7 7 ( C ) - 3 , 

i.e., an ordinary triple point drops the genus of a curve by 3. 
One final note, which we will have occasion to use in what follows: if 

C c S is a curve having singular points />, with multiplicity kt, C0 a smooth 
curve homologous to C, a n d / : C-*C the desingularization of C, then it 
has been proved that 

g<c) < ^c) - £ Mfci> _ „(Co) - £ i<^>, 
so 

x(c) >x(c0)+ 2 *,■(*,-0-
On the other hand, taking a triangulation of C having all the points / '(/>,) 
as vertices, we deduce that 

x(C) = x(C)-2#{r'(/>,)} -1; 
i 

since the points o f / ' ( / > , ) correspond exactly to the irreducible compo-
nents of C around/?,, and there are less than kt of these, this implies 

x(c )>x(c ) -2 ( * , -0 . 
Combining, we see that 

x(c)>x(c0) + 2(*,-i)2, 
i.e., the Euler characteristic of a singular curve on S is strictly greater than 
the Euler characteristic of a smooth curve homologous to it. 

In particular, if C has 5 ordinary double points and no other singulari-
ties, 

x ( C ) = x ( Q ) + 8. 

We introduce here a classical formula relating the Euler characteristic of 
a surface to the structure of a pencil of curves on it. Suppose that M is any 
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algebraic surface, {Cx} a pencil of generically irreducible curves on M. 
Assume in addition that all the curves Cx are smooth at the base points of 
the pencil {Cx], so that if we blow M up Cx-Cx = n times at the base points 
of {Cx}, the proper transforms Cx of the curves Cx on M form a pencil of 
disjoint, generically irreducible curves. Consider the map 

given by the pencil {CA}. By Bertini's theorem, the generic curve CX = CX 

is smooth; let CXi,...,Cx be the singular elements of the pencil. Then the 
restricted map 

i: M- \JC^^P1-{\U...,\) 
i 

is proper and everywhere nonsingular, so that M — u Cx is a C°° fiber 
bundle over P1 —{X„...,\^}. Thus 

X[M- U Q ) = X(P1-{A„...,A,})-X(C) 

= (2-(i)X(C), 
where x ( Q denotes the Euler characteristic of a generic curve Cx. Taking 
a triangulation of M in which the union of the singular fibers appears as a 
subcomplex, then, we see that 

x(M) = (2-fi)X(C2)+flx(CXi) 
1 = 1 

and so 
X(M) = x(M)-n 

= (2-M)x(Cx) + 2x(CA,)-«-
= 2x(c) + S(x(Q)-x(c))-« 

A 

If we make the additional assumption that each of the singular curves C^ 
has one double point and no other singularities (a pencil satisfying these 
conditions is called a Lefschetz pencil), then we have 

x(Qj = x(C) + i, 
i.e., 
Proposition. If {Cx} is a Lefschetz pencil of curves on M, with self-intersec-
tion n and containing /x singular curves, then 

X(M) = 2X(C) + ti-n, 

where x(Q denotes the Euler characteristic of the generic element of the 
pencil. 

We remark that if/: M-+B is any holomorphic map of a smooth surface 
5 onto a curve B with singular fibers Cp =f~'(/»,-), then the same argument 
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gives 

x ( M ) = x ( B - { A } ) - x ( C ) + 2 x ( C A ) 

= X(B)X(C) + 2(X(CP,)-X(C)), 
i 

where C is the generic fiber of / ; combining this with the inequality 
x(Cp)>x(C) noted above, we see that 

If f: M—>B is any holomorphic map of M. to a curve B, C the generic 

fiber of f, then 

X(M)>x(B)x(C). 

The Structure of Birational Maps Between Surfaces 

As we mentioned in the introduction to this chapter, we can give a 
comprehensive picture of birational maps on surfaces. This is the 

Theorem. Any birational map between surfaces may be obtained by a 
sequence of blow-ups followed by a sequence of blowing-downs; i.e., ifM and 
N are algebraic surfaces and 

f: M^N 

a birational map, then there exists a surface M and maps 7r,,7r2 

M 

M —» N 

such that f =i72
0wj_1, and-nl,

,n1 are blowing-up maps. 

Proof. The proof of this theorem consists of two parts: we will show that 

1. If/: Af-̂ Tv" is any rational map on the surface M, then there exists a 
blow-up M-* M such that 7r, °f is holomorphic; and 

2. Any holomorphic birational map M ^ 1 N is a sequence of blow-ups. 

To prove part 1, we must prove that if {Dx}xp* is any linear system of 
divisors on M having only isolated base points, then there exists a blow-up 
M-» M such that the proper transform in M of the linear system {Dx} has 
no base points. This is fairly easy. Suppose that the point p £ M is a base 
point of multiplicity k for the linear system {Dx} (i.e.,p has multiplicity k 
in the generic Dx). Let M\ M be the blow-up of M at p, E= -7r~l(p) the 
exceptional divisor of the blow-up. Then 

Dx = v*Dx - kE, 
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and therefore Dx has self-intersection 

Dx-Dx = (v*Dx-Tr*Dx) + k2(E-E) 

= DxDx-k
2<DxDx. 

Now define a sequence of blow-ups A/, A M,_, and linear systems {Dx} as 
follows: let Af, -4 M be the blow-up of A/ in the base points of {Dx} and 
{Dx} the proper transform in Af, of the system {.Dx}, Af2-»Af, the 
blow-up of Af, in the base points of {Dx} and {D2} the proper transform 
of {Dx

1} in A/2, etc. If every series {D{} had base points, we would have 

DXDX >Dl DX'>D2D2 > • • • . 
But for generic \,X', and any /', the divisors Dx and D{ have no common 
components, so 

D{DX > 0 

for all /'. Thus the linear system {D{} is base-point-free for some i, and we 
have proved part 1 of our theorem. 

Part 2 is somewhat deeper. Suppose that ir:M-*N is a holomorphic 
birational map, that is, a holomorphic map one-to-one away from a finite 
collection of points in N. Note that for any point p e N the inverse image 
f~\p)cM is connected: if it were not, we could find disjoint relatively 
compact open sets UuU2cM each containing connected components of 
f~\p)', being open, they could not map top nor to any curve through/?, so 
by the proper mapping theorem the image of each would contain a 
neighborhood of p—contradicting the hypothesis that IT is generically 
one-to-one. The inverse image of any point p €E N is thus either a single 
point or a connected divisor. We claim now that 

If the inverse image ir~'(p) of a point p E N is a curve C, then C 
contains an exceptional curve of the first kind. 

To prove this, we will use the index theorem. Let C,, . . . ,Cm be the 
irreducible components of C. We can certainly find a positive divisor E on 
N that does not pass through/?; we have 

(IT*E-JT*E) = {E-E)>Q 

but 
(ir*E-Ci) = 0 for every i. 

It follows from the index theorem that the intersection pairing is negative 
definite on the subspace of H2(M,Q) spanned by the classes {CJ. 

Let w be any meromorphic 2-form on N, regular at/?. The pullback 7r*w 
is a meromorphic 2-form on M, vanishing everywhere in C; we can thus 
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write 

KM = (77*co) = D + 2 a,q 

with D disjoint from C and a, > 0 for every /'. Now from the index theorem 

(2«,c,-2«,c,)<o. 
But since D is disjoint from C, 

which implies that 

CrK<0 

for some /. But by the index theorem again, 

c,-c,<o, 
and so by the stronger version of the Castelnuovo-Enriques criterion, C, is 
an exceptional curve of the first kind; we have thus proved the claim. 

Assertion 2, and hence the main theorem, follow readily. If f:M^>N is 
holomorphic and birational, but not biholomorphic, then for some pE.N, 
f~l(p) will be a curve and so contain an exceptional curve C, of the first 
kind. Let Af -» M, be the blow-down of C,; the map 

/ : A f , - w , ( C ) — > M - C - > N 

extends continuously, hence holomorphically, to a map 

Again, if / , is not biholomorphic, we can find an exceptional curve of the 
first kind C2 in A/, lying over a point of JV; let M2 be the blow-down of C2, 
and so define inductively a sequence of blow-downs M,-»Af,+1 and holo-
morphic birational maps / 

•At, 

The Betti numbers satisfy 
b2(M) >b2{M{)> b2(M2)>--

and, since b2(M) is finite, it follows that for some /, M, -» N is biholomor-
phic; the theorem is proved. 
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3. RATIONAL SURFACES I 

Noether's Lemma 

The next two sections will be devoted to a discussion of rational surfaces, 
that is, algebraic surfaces birationally isomorphic to P2. In this section our 
goal will be a description of all rational surfaces; as corollaries of the main 
theorem we will answer two questions left open in Chapter 2. 

We start with 

Noether's Lemma. An algebraic surface S is rational if and only if it 
contains an irreducible rational curve C with dim|C| > 1. 

Proof. One direction is clear: if m: 5—>P2 is a birational map, then for the 
generic line L c P 2 , the pullback C = IT*L on S will be such a curve. 
Conversely, suppose C c S is an irreducible rational curve varying in a 
nontrivial linear system. Choose a pencil {CA}AePi containing C in the 
complete linear system \C\. We have seen that if we blow up S sufficiently 
many times at the base points of the pencil {CA}, we obtain a surface S on 
which the proper transforms {CA} of the curves CA form a pencil without 
base points; clearly the curves CA will again be rational. Thus we may as 
well assume from the start that S contains a pencil (CA) of rational curves, 
not all reducible, having no base points. 

Since any point of intersection of two distinct elements CX,CX. of our 
pencil is a base point for the whole pencil, 

CA-CA = CACA, = 0. 
Now suppose a particular curve C0 in the pencil is reducible; write 

with C„ irreducible, av >0. Since each C„ is disjoint from CA —C0 for X^O, 

v' 

But CVCV. >0 for v^v', and C0, being the limiting position of irreducible 
curves CA, must be connected; we deduce that C„C„->0 for some v'¥=v. It 
follows that C„C„<0 for all v. By the adjunction formula, 

^(c0)=Co'Co
2

+c°"*+i = o 

^ C 0 t f = 2a„C„-/s:= - 2 
=> C„o- K < 0 for some vQ. 

Thus, by the strong version of the Castelnuovo-Enriques criterion, C„ can 
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be blown down. Let S^>S' be the blowing-down of C„o. Since every Cx 

other than C0 is disjoint from Cp, the curves 7r(Cx) form a pencil of 
rational curves without base points on S'; by the same argument, if any 
curve w(Cx) is reducible, 5 ' can again be blown down. Since we can only 
blow down a surface a finite number of times, we see that after a finite 
number of steps we obtain a surface S with map TT:S-*S such that the 
curves TT{CX) form a pencil of irreducible—hence smooth—disjoint ra-
tional curves. Such a surface is called a rational ruled surface; the proof of 
Noether's lemma will be completed in the following discussion. 

Rational Ruled Surfaces 

Let S be a rational ruled surface, {Cx} a pencil of disjoint smooth rational 
curves on S, and consider the map r.S^P1 given by the pencil {CA}. We 
claim first that iiS—>P' is a holomorphic fiber bundle over P1 with fiber P ' , 
i.e., for every AgGP1, there exists a neighborhood U3A 0 in P1 and an 
isomorphism <p: i~ '(U) = U X P1 fibering over U. To see this, let L-*S be a 
positive line bundle, sufficiently positive so that Hl(S,&(L— C)) = 0. Then 
from the exact cohomology sequence associated to the sequence 

0^6S(L-C)^eS(L)^6Cx(L)-*0 

we find 

ffo(S,0(L))->tf°(Q,0(L))-»O 
for each X. Let LCx = n—so that L\c sff", where H is the hyperplane 
bundle on Q s P 1 — a n d let a0,...,a„ be global sections of L whose 
restrictions to some fiber C0=CX span H°(C0,6(L). Then for X in some 
neighborhood U of X0 in P1, the restrictions of a0,...,an to Cx span 
H°(CX,6(L), i.e., the map i„:rl(U)-*P" given by [<r0.---,<vl is well-de-
fined and embeds each curve Cx as a rational normal curve in P". 

Choose n— 1 distinct points p],...,pn~\ on C0. Since the fibers of the 
map i: 5-^P1 are smooth, we can find holomorphic arcs y,, . . . , yn_,: A-+S 
with y, meeting C0 transversely at/?,; for A in some open set U' around A0, 
then, the curve Cx will likewise meet the arc y, transversely in a point />,(A)-
For each X G £/', let V(X) c P" be the (n - 2)-plane spanned by the points 
ia(Pi(X)), i=\,...,n- 1. Choose a line L c P " disjoint from V(X) for all 
\ E U'—restricting U' again if necessary—and let ITX denote the projection 
map from P" — V(X) onto L. Note that since /?,(X)—and hence 
i„(Pi(X))—varies holomorphically with X, the map irx likewise varies holo-
morphically with X; in particular the map 

„ ' : r\U')-*Lt* P1 
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given by 

"■'Id = *\ ^ c \ ^ L 

is holomorphic. The map 

then gives the bundle structure. 
In general, if E-+M is a holomorphic vector bundle on a complex 

manifold Af, we define the associated projective bundle P(E)—>M to be the 
fiber bundle over M whose fiber over any point x E M is the projective 
space P(EX). If { Ua } is an open cover of M, <pa : E \ v —> Ua X C a trivializa-
tion of £ over {/„ for each a, the maps <pa induce maps <pa: P(E)\V^ 
UaXPr~\ giving P ( £ ) the structure of a holomorphic Pr~ '-bundle over 
M. Note that if { gaB: Ua n L^—>GLr} are the transition functions for the 
trivializations <pa of E, then transition functions for P(E) relative to <pa are 
given by the composition gaB of gap with the standard projection map 
GLr-*PGLr. In particular, if L is any line bundle over M with transition 
functions haB: Ua n L^-^C*, then £ ® L is given by transition functions 
8Lp = hap-gaf>' since gaB = g'aB, we see that P(E) = P(E®L). Conversely, if 
E,E' are any two vector bundles over M with P ( £ ) s P ( £ ' ) , it follows that 
£" = £ ® L for some line bundle L-+M. 

We claim now that any holomorphic P r ~ ' bundle P over P1 is of the 
form P{E) for some vector bundle E-*PX of rank r. To see this, let 
Sap '■ U» f~l ^/?-»PGLr be transition functions for P relative to some open 
cover {{/„} of P1. Assuming {Ua} is sufficiently fine, we can find liftings 
gap :UaC\UB^GLrof gaB (the group S L r c G L r of matrices with determi-
nant 1 forms an unbranched r-sheeted cover of PGL,); on Uar\UBn Uy, 
set 

hafty = gap
 X gpy

 X gya-

Since haPy = ga0 X g0y X gya = / , we see that haBy:Uan UBC\Uy-*C*; i.e., 
( ^ } e Z 2 ( [ / , 6 * ) . But from the exact cohomology sequence of 0—»Z-» 
0-»©•-» 1 and i / 2 ( P ' , e ) = i / 3 (P ' ,Z) = 0, we deduce that i7 2 (P \e*) = 0, so 
we can write 

Kpy = Jafi X./0.,, Xjya 

for some Cech cochain {jaB : Uan UB-+C*}. The functions gapXj^pX then 
are the transition functions for a vector bundle £ - * P ' with 7>=P(£'). 
(Note that this argument works as well for a projective bundle over any 
Riemann surface.) 
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Summarizing, we have shown that any rational ruled surface is of the 
form P(E)/or some holomorphic vector bundle E of rank two over P1. The 
following lemma gives a complete description of such vector bundles: 

Lemma. Any holomorphic vector bundle on P1 is decomposable—that is, a 
direct sum of line bundles. 

Proof. First note that a vector bundle E is decomposable if and only if 
E®Hk is decomposable for any k. From the exact sequence 

0-+e(E®Hk-1)^0(E®Hk)Ex®H*^0, 

we find that Hl(Pl,6(E®Hk-l))=0 => H°(P\e(E®Hk))^0; i.e., for 
&»0, E' = E<2>Hk has a nontrivial global holomorphic section a. Now 
suppose a vanishes at n points on P1; then, multiplying a by a meromor-
phic function on P1 with poles exactly at the zeros of a, we obtain another 
section a' of E' with a and a' everywhere linearly dependent and nowhere 
both zero. Together, they span a subline bundle L in E' of degree n. Note 
that by Riemann-Roch for P \ h°(L) = n +1, and, since H°(P\ 0 (L)) injects 
into H°(PL, 0 (£"), we have n < h°(E); thus no global section of E can have 
more than h°(E) — 1 zeros. 

Assume now that rank E=2. Let n be the greatest number of zeros of a 
global section of E, and let a0 be a global section of E with n zeros. Let L, 
be the corresponding subline bundle of E and L2 = E/Ll the quotient 
bundle, we have an exact sequence of bundles 

0 -» L, -» E -» L2 -> 0. 
We claim now that m = degL2 < degL, = n. Otherwise, let f be a section of 
Lj vanishing at m>n points/>„... ,/?meP1. Since / / 1 (P ' ,0(L, ) )=O, 

/ / ° (P ' , 0 ( £ ) ) -> H°(P\0(L2)) ->0; 
i.e., f is the projection onto L2 of a section T of 2?; since f(/?,) = 0, T(/?,) G 

(L ,^ for all /. For any collection <70,...,qn of n + 1 points in P1, deg(L] — q0 

- • • ' • - g j = - l , so 
Hl(p|

>e(t ,-(? 0+-+9„))) = o 
=»^°(pI,e(LI-(9o+..-+ftl_1)))-cft^o. 

Thus there exist sections of Lx vanishing at qQ,...,qn_{ and nonzero at q„. 
Let T, be the section of L, vanishing at p„ . . . , ^ . . . , />„ + 1 and taking the 
value T(/?,) at/?,; then 

T - 2 Ty 

is a nonzero section of £■ vanishing at n + l points, contradicting our 
assumption that no section of E vanishes at more than n points. 
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Next consider the sequence of bundles 
0 -»Hom(L2,L,) -* Hom(L2,E ) -» Hom(L2,L2) ->0. 

Since deg L, > deg L2, deg(Hom(L2, L,)) = degL, - degL2 > 0; so 
//'(P1,0(Hom(L2,L1))) = O and 

H°(P\ 0(Hom(L2,£))) -* H°(Pl,0(Hom(L2,L2))) -» 0. 
Let i:L2-±E be a section of Hom(L2,is) that maps onto the identity 
section of Hom(L2,L2). Since i composed with the projection map E-*L2 

is the identity, i gives an inclusion of bundles L2 -+E, with i(L2)x disjoint 
from (Z.,)x for all x; thus 

E = .L| © L2. 

To prove the lemma for bundles of general rank, we use induction on 
the rank: if rank E — r and the lemma is proved for all bundles of rank 
<r, take again a section a and corresponding subline bundle L, of 
maximal degree; then 

The same argument shows that degL, < degL, for all /, hence 
n 

H\P\Uom{E',Lx))) = © tf'(RMfom^L,))) = 0, 

so that the exact sequence 

again splits. Q.E.D. 
By the lemma, any rational ruled surface is of the form 

P ( £ ) = P(L,©L2) = P((L,®LJ)©Cpi) = P(H"©CP.) 
for some n>0 (here CPi stands for the trivial line bundle over P1); the 
bundle P(//"©C) is denoted S„. 

Let E0 c Sn be the image of the section (0,1) of H" ©Cp.; E0 is called the 
zero-section of Sn. More generally, if a is any holomorphic section of H", 
let £■„ be the image in Sn of the section (a, 1) of H"(BCpi. Clearly i?0 is 
homologous to E0, and since for a a nontrivial section E„ will meet is0 
exactly n times, the intersection number EQ-E0 is n. (See Figure 4.) 

Consider the section (<r,0) of H"<8>CP, where o is any section of H". 
Away from the zeros of o, (a,0) gives a curve in Sn; let iT^ denote the 
closure of this curve. (Clearly Ex is independent of the choice of section a, 
since (a,0) and (a',0) have the same image in Sn away from a finite 
number of points.) More generally, if a is any meromorphic section of H", 
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Figure 4 

let Ea denote the closure of the curve given by (a, 1) away from the poles of 
a. Letting C be any fiber of the bundle map S^—>P', we have 

E0-E0= n 

Ea- E0 = number of zeros of a, 

Ea ■ Ex = number of poles of o, 

£ 0 £oo = o, 
E0C = EaC = ExC=l. 

S„— CK —E0 forms a C-bundle over P ' -{A}s*C, and therefore is con-
tractible; thus 

H2(Sn,I) » H2(CXUE0,Z) s Z{(Q) , (£ 0 )} 
and 

Hi(Sn,Z) = Hl(CxuEo,Z) = 0. 

Since H\S„,Z) = 0 and H\Sn,Z) is spanned by (1, l)-classes, we deduce 
that 

H\Sn,e) = H2(Sn,6) = 0. 

In particular, the Chern class map 

Hl(Sn,6*)^H2(Sn,Z) 

is an isomorphism; i.e., two curves on Sn are linearly equivalent if and only 
if they are homologous. Consequently we can write 

Eoo~ml-E0+m2-C 

for m„m 2 EZ. But then E^-C—l => m, = 1, and £'(>o-£0 = 0 => m2= — n; 
i.e., 

E^~E0-nC, 
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and so 

£«,•£«, = E0-E0-2nC-E0 = -n. 

Similarly, for a a meromorphic section of H", 

Ea~ E0+ m-C, 

where m is the number of poles of the section a. 
Now suppose D is any irreducible curve on Sn. If D=£EX, then since D 

and Ex are irreducible, we have DE^ >0; since D cannot contain every 
curve C\, and since Cx is irreducible, DC >0 . If 

D — m1-E0 + m2C, 

we see that DEX > 0 => m2 > 0, and DC > 0 => w, > 0; consequently 

DD = n-m\ + 2mxm2 > 0. 
From this it follows that £■„, is the only irreducible curve on S„ with 
negative self-intersection: for «^=0, then, S„ is the unique ¥x-bundle over P1 

having an irreducible curve of self-intersection — n. In particular, we see that 
the spaces {Sn}n>0 are all distinct as abstract compact complex manifolds. 

Note that_the blow-up P2 of P2 at a point ^ G P 2 is an Sn: the proper 
transforms Lx of the pencil of lines Lx c P2 through p form a pencil of 
disjoint irreducible rational curves on P2. Since the exceptional divisor E 
of the blow-up has self-intersection — 1, 

P2 a Sx. 

To determine the class of the canonical bundle K of Sn, note that by the 
adjunction formula, 

=>KE0= -n-2 

and 

o = 7r (c)= o c ^ c , A : + i 

^ . / : c = -2. 
Thus if K=mlE0 + m2C, KC= —2 implies that m ,= - 2 , and E0-K= —n 
— 2 implies that m2 = n — 2; i.e., 

K= -2E0 + (n-2)C. 

Finally, we would like to relate the surfaces S„ to one another geometri-
cally. To do this, let x E S„ be any point not on Ex, say x G Cx. Blow up x 
to obtain a surface S„^>Sn; the proper transform C\ of Q will then have 
self-intersection — 1 and can be blown down. If Sn^>S is the blowing-
down map, we notice that the curves {'T2('!r\(Cx))}x form a pencil of 
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irreducible rational curves on 5 with self-intersection 0, and hence S is 
again a ruled surface. Moreover, since irfE^-C^ — 1, 

7T2<jrfEa ■7r2^*Ex = Ex>-Ea0 + 1 = -n+ 1, 
i.e., S contains an irreducible curve of self-intersection — n + l, and hence 
S is biholomorphic to Sn_,. As Figure 5 attempts to show, the image 
TT2(EX)CS of the exceptional curve Ex of w, becomes an element of the 
pencil w27rf Cx, while E{j2) = TT2TT*E0 is the curve corresponding to a section 
T of / / " " ' with a single pole; the role of E0 is taken over by TT^E,, for 
some Ea passing through x. To obtain Sn+l from Sn, conversely, we blow 
up a point x on Ex and blow down the proper transform of the curve Cx 

through x. We have seen this process once before, when we showed that 
S0 = P1 X P1 could be obtained by blowing up a point q & E on the blow-up 
P2 = S, of P2 at a point p, and blowing down the proper transform of the 
line pq. 

The proof of Noether's lemma is at last complete: since the surfaces S„ 
are all obtained from one another by blowing up and down, and since 
5 0 = P 1 x P 1 and 5, are rational, it follows that all the surfaces Sn are 
rational. 

The General Rational Surface 

Having given a fairly thorough account of the rational ruled surfaces S„, 
we may now complete our picture of rational surfaces in general with the 

Theorem. Every rational surface is the blow-up of P2 or Sn. 

Proof. We begin by making two observations. First, we claim that any 
surface S with a pencil |C| of irreducible rational curves is either P2 or Sn. 
This is not hard: as we have seen, if we blow up the base points of the 
pencil \C\, we obtain a surface S-^>S with a pencil of disjoint irreducible 

"i*Cx T7(C\) 

lr2w*E, 

Figures 
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rational curves; S must then be a rational ruled surface. But b2(Sn) = 2, and 
since the second Betti number increases by 1 every time we blow up, it 
follows that either S is rational ruled, or b2(S) = 1. In the latter case, since 
S is rational, we have 

bl(S) = b3(S) = 0; 

moreover, P„(S) = H°(S,<9(K"))=0 for all n implies that Ks is not posi-
tive. By the lemma at the end of the discussion on cubic surfaces, then, we 
find that S s P 2 . 

Our second point is more obvious. Suppose C is a curve on an algebraic 
surface S, L a positive line bundle, and C-L = n. Then C cannot be linearly 
equivalent to a sum of more than n effective divisors Dt: if C=2"I1

1£>„ we 
would have LC = IlLDi> n+l. 

Now let S be any rational surface, {Q} a pencil of rational curves on S, 
not all reducible. We want to show that either 

1. S can be blown down; or 
2. 5 is rational ruled or P2. 

Since any surface can be blown down only finitely many times, this will 
suffice to prove the theroem. 

If all the curves Cx on S are irreducible, then by the above argument we 
are done. Suppose then that C0 is reducible and write 

k 

v= 1 

We note first that all the curves Cr must be rational. This follows from 
writing 

, . , (^apCr}(^arCv) + Ks\^avCp) , 
= 7r(cx) = 2 

= {[(2(«,-i)Q>(S^c„) 

+ 2 ar,Cv-Cr, + ̂ avCv-Cv + ̂ av-Ks-Cp + 2 

= j{2(cir-\)CP)-(1ZavCy) + "ZaMCp)+ ^ ar,Cv Cv.- (k- 1). 
vj=v 

Cp(2a„Cv)= C„-Cx>0, so the first term is nonnegative; since C0 is con-
nected, 2„#„'C„-C„. > k— 1 and so the third term is also nonnegative. It 
follows that 2tf„7r(C„)=0, and hence IT(CV) = 0. Since CxCx>0, by the 
adjunction formula 

0 - i r ( C x ) - C v C * i * J ' C x + l, 
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we see that KsCx<0, hence Ks-C„o<0 for some v0. Now if C -C <0, it 
follows that C.-C, =C,-K= — \ and hence C, can be blown down; in this 
case we are done. Suppose on the other hand C • C > 0; then, since S is 
rational, x(®s)= '> a n d ^y Riemann Roch, 

h\Cp) + h\Ks - C J > 1 + C ^ C ' ^ K s > 1. 

But /!°(X?) = 0 implies h°(Ks-Cr) = 0 and therefore A°(Cro)> 1, i.e., C„o « 
itself an element of a pencil of rational curves, which we will denote {Q1}. 

If all the curves Q1 are irreducible, we are done; if not, let C0' be a 
reducible element of {CA'} and write 

Again, 7r(Cx')=0 implies KC^ <0 , so A"-C„!
o<0 for some C„'o, and either C,[ 

can be blown down or Cj is itself an element of a pencil of rational curves 
{Q2}. If S has no exceptional curves and is not P2 or S„, we can continue 
to generate new pencils in this way. But after n steps we can write 

and so eventually either every element of the pencil we obtain will be 
irreducible or S will contain an exceptional curve. Q.E.D. 

Surfaces of Minimal Degree 

In Section 3 of Chapter 1 we showed that the smallest possible degree 
of an irreducible, nondegenerate variety M c P" of dimension m is « — m + 
1. We can now describe exactly the surfaces that achieve this minimal 
degree. We will start by constructing some such surfaces, and then show 
that all surfaces of minimal degree may be obtained in this way. 

Consider the linear system \E0 + kC\ on the rational ruled surface 
S„ = P(H"®C). If a is any meromorphic section of H" having exactly k 
poles, then, as we have seen, the corresponding curve 

Ea = o(P ') c S„ 

is homologous, hence linearly equivalent, to EQ + kC. Conversely, suppose 
D is any irreducible curve linearly equivalent to E0+kC. Then D meets 
each fiber C of the projection map Sn -^ P1 exactly once, and away from 
the k points ju,,... ,[ik G P1 over which D meets Ex we can define a section 
a of H" by 

(°(/0>l) ^DnC,,. 
a then extends to a global meromorphic section of H", having poles at 
fit,...,fik, such that D = Ea. 
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Note in particular that the linear system \E0 + kC\ has no base points; 
we denote the corresponding map iE +kc by <pk „. 

To specify a global meromorphic section of a having k poles, we have to 
specify first its polar divisor (a)^ = ju, + • • • + pk—involving k degrees of 
freedom—and then specify o as an element of the vector space 
H°(P,,6(H" + pl + --- + ju*))— involving h°(H" +^+■ ■ ■ + nk) = n + k + 
1 degrees of freedom. Thus we may expect that the linear system \E0 + kC\ 
is at least k + (n + k + \) = (n + 2k + l)-dimensional. The Riemann-Roch 
theorem confirms our guess: since h°(Ks) — 0, h2(E0+ kC)=h°(Ks^ — E0— 
kC) = 0, and we have 

uotr - u t ^ ^ i . (E0 + kC}(E0 + kC)-(E0 + kC)-(-2E0+{n-2)C) 
hu(E0+kC) > 1 -i 

n + 2k + 2n + 2k-n + 2 
2 

= n + 2k + 2. 
But now tpk „ maps Sn into projective space of dimension h°(E0+ kC)— 1 

as a nondegenerate surface of degree 
(E0+kC)-(E0+kC) = n + 2k, 

and so h°(E0 + kC)— 1 < n + 2k+ 1. Thus equality must hold, and we see 
that the image Ŝ  n of Sn under qĉ  is a surface of minimal degree n + 2k in 
pn + 2k+I 

We can give a nice description of the surfaces Skn as follows: recall first 
that 

E0-(E0+kC) = n + k, 
Ex-(E0 + kC) = k, 

C(E0 + kC) = 1. 
In fact, we see from the correspondence between irreducible curves EaE. 
\E0 + kC\ and meromorphic sections a of H" having k poles that the 
restrictions of j£'0+A:C| to the curves E0, E^, and C = P1 are the complete 
linear systems \H£,fk\, \Hp,\, and \HP,\, respectively: given any collection 
of points p,l,...,fin+k,vl,...,vkEP1 we can always find a meromorphic 
section a of H" with 

0 ) 0 = 2 M,> (̂ )co = 2",-; 

likewise, given any point (£, 1)ECA, we can find a with CT(A.)=£. Thus: 

1. The image D0 of E0 under q>k n is a rational normal curve in some 
linear subspace Vn+kcP"+2k+]. 

2. The image Dm of Ex under <pkn is a rational normal curve in some 
linear subspace VkcP"+2k+i. 

3. The image £A of the curves Cx under <pk „ are straight lines meeting 
D0 and Dx. Note that Sk thus lies in the linear span of Vk and Vn+k, so 
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that these subspaces are necessarily complementary (i.e., disjoint) in 

The surface S^n consists of the union of the straight lines joining points p 
on the rational normal curve D 0 c V n + k with corresponding points \p(p) 
on the rational normal curve DM C Vk. 

Conversely, suppose that Vk,Vn+k are complementary linear subspaces 
in pn+2k+l

t j)x a n ( j D0 rational normal curves in Vk and Vn+k, respec-
tively, and ^ : D0-*DX an isomorphism between the two curves. For each 
point juGZ)0, let LM be the line JU,^(JU) in pn+2k+\ and let 

S= U W 
peOo 

be the corresponding surface. To compute the degree of 5, note that the 
generic hyperplane H <zP"+lk+l containing Dx meets D0 transversely in 
deg£>0 = n + A; points JU,,...,JU.„+A:; we then have 

all components occurring with multiplicity 1. Therefore 
deg5 = degH n S = n + 2k, 

and 5 is a surface of minimal degree. 
Now the lines {L^} are disjoint: If L^ met Zy, the 2-plane spanned by LM 

and LM- in p n + 2A: + 1 would have to meet Vn + k in the line 
/u/z' and Vk in the line \(/( n),\p( n'), so that Vk and V„_k would intersect. 

Thus the map 

S-^D0s* P1 

sending L^ to ju expresses S as a rational ruled surface. To determine which 
rational ruled surface S is, consider again a hyperplane section D = HS = 
Dx + L,L "l + A. above. We have 

n + 2k = D-D 

= Z)0O-i)0O + 2Z)00-(2^(). 
But each line LM meets Dx transversely (otherwise it would lie in Vk), and 
so 

and hence 

so 
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with Dx corresponding to Ex. Moreover, the hyperplane section of S is 
D = Dvo + Lu + ' ■ • + La 

0 0 V-] Pn + k 

~Ex + (n + k)C 

so that indeed S= Sk „. 
The surfaces Ska are called rational normal scrolls. Note that in case 

n > 0 the curve Dx c Sk „ is unique; it is called the directrix of Sk„. 
Now we can apply our theorem on rational surfaces to prove the 

Proposition. Every nondegenerate irreducible surface of degree m — 1 in P m 

is either a rational normal scroll or the Veronese surface t 2 H (P 2 )cP 5 . 

Proof. Note first that if S is an irreducible surface of degree m — 1 in P™, 
then any line L meeting S in three or more points must lie in S. To see 
this, suppose that L meets S in three points pvp2,p3 but does not lie in S. 
The points of intersection of S with a generic (m — 2)-plane Vm_2 contain-
ing L span Vm_2, and so Vm_2nS must contain at least m — 3 points 
Qv-'Qm-^ lying outside L—but #{Vm_2-S) = m — 1 and so it follows that 
Vm_2 has a curve in common with S. The image irL(S) of 5 under 
projection from L into an (m — 2)-plane Wm_2 thus meets every (m — 4)-
plane in Wm__2

 m a curve, and so has dimension 3, an absurdity. 
In particular, we see that if S has a singular point p, then for any point 

q£S the line p~q must lie in S. S must therefore be the cone UqeCM 
through p over any hyperplane section C = S(~)H of S not containing p. 
Now C is nondegenerate and irreducible, since S is, and has degree m — 1 
i n f f s Pm~', hence is a rational normal curve. Thus S= S0 m_, w //ie cone 
ot>er a rational normal curve. 

The argument for S smooth is by induction. The result clearly holds for 
w = 3: as we have seen, the smooth quadric surface in P3 is just the image 
Sl 0 of S0= P1 X P1. Suppose the result is proved for all m<mQ, m0>4, and 
let 5 be a smooth irreducible nondegenerate surface of degree m— 1 in P"1. 
Assume first that S contains only finitely many lines. A generic point p of 
S will then lie on no lines on S, and since any line meeting 5 three times 
lies on S, it follows that no two points of S are collinear with/?. This means 
that the projection map 

gives an embedding of the blow-up S of S at p as a surface of degree m — 2 
in P m _ 1 . By induction hypothesis, then, we see that 

1. S is rational; and 
2. X(S) = X(S)-1<3. 
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But we have seen that the only rational surface of Euler characteristic 3 is 
P2; so 5 s P 2 . Now, any base-point-free linear system on P2 has degree k2 

and dimension at most ((k + l)(k + 2)/2)— 1 for some k, and so the only 
embedding of P2 as a surface of minimal degree is that given by the 
complete linear system of conies; thus S must be the Veronese surface. 

Suppose now that S does contain in irreducible one-parameter family 
{LM}M6C of lines. Note first that two generic lines in the family must be 
disjoint: if every two lines met, then every three lines would either lie in a 
plane—in which case every line in that plane would meet S three times 
and so lie in S—or meet in a point, with independent directions—impossi-
ble since S is assumed smooth. Set b = [m/2] and choose b lines Lx,...,Lb 

of the family. Lx,...,Lb together span at most an (m — l)-plane; take H a 
hyperplane containing Lx,...,Lb and consider the intersection HS. Since 
H has intersection number 1 with a line, there must be a unique irreducible 
component of the divisor HS having intersection number 1 with L^, call 
this curve Dx. The remaining components of HS, having intersection 
number 0 with Z^, must be themselves lines of the family; thus we can 
write 

HS= Da0 + Lx+-+Lb + Lb+X+-+Lc. 

Consider the curve Dx. By the above, Dx has degree k — m-c- 1. On 
the other hand, the linear span of Dx must be a least a fc-plane: otherwise, 
for any m — k pointspx, . . . ,pm-k of S — D^ we could find a hyperplane H' 
containing Dx and the pointsp , , . . . ,pm~k, and hence also the lines of the 
family passing through/>,,...,pm~k; the degree of H'S would then be at 
least m, which is impossible. Thus Dx spans a Ac-plane, i.e., Dx is a 
rational normal curve. 

Now let Lx>...,Lk be any lines of the family. Lx,...,Lk span at most a 
(2k— l)-plane in Pm (note that since c> b — \m/2\, k = m — c—\ must be 
strictly less than m/2, so Lx,...,Lk all lie in a proper subspace of P"1) 
which intersects the linear span Dx in at least the (k— l)-plane spanned by 
the points of intersection LxDao,...,LkD00. In fact, the span of the lines L, 
cannot contain D^: if it did, for any m—2k pointsP\,- - - ,Pm- i k^S — D B 
— u Lh the lines L, and the points /?, would all lie in a hyperplane, which 
would then contain the curve Dx, the k lines L„ and the m — 2k lines of 
the family passing through the points pt—altogether a curve of degree m. 
Thus we can find a hyperplane H in Pm containing the lines Lx,...,Lk but 
not D^. 

00 

Again, the hyperplane section HS will contain one component having 
intersection number 1 with L^, call this curve D0. Note that 

D0DX = {HS-LX Lk)Dx = 0 

so D0 and D^ will be disjoint. Since every line LM meets both D0 and Dx, 
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S lies in the linear span of D0 and Dx, so D0 must span at least an 
{m — k— l)-plane; on the other hand, 

degZ)0 < deg(HS- Lx Lk) = m - k - 1 
and it follows that D0 is a rational normal curve of degree k, in a k-plane 
complementary to the span of Dx. Thus S is the rational normal scroll 
Skm_2k-\, and the result is proved. Q.E.D. 

The reader may find it amusing to verify directly what was in effect 
proved on p. 520: that the image of Sk „ under projection from a point 
lying off the directrix DxcSk>n is Sk„_x, while the image of Sk„ under 
projection from a point q£Dx is Sk_t n+l. 

Curves of Maximal Genus 

We gave, in the section on linear systems on curves, Castelnuovo's upper 
bound on the genus of an irreducible nondegenerate curve B of degree d 
in P". Briefly, we showed that if D was the hyperplane divisor of B c P", 
then 

h°{kD)-h°((k-l)D) 

leading directly to 

>k(n-l) + l, 

= d, 

k< m = 

k> m 

d-\ 
n-l 

(•) 

h°(D)>n + l, 

h°(2D)>3(n-\) + 3, 

h°((m +j)D ) < m ( ^ + 0 (n - 1) + m + 1 +jd, 

and the last equality, fory'»0, gives by Riemann-Roch 
w + 1 g ( 2 ? ) < m ( r f - ^ - ( « - 2 ) - l ) . 

= m ( m - l ) ( w _ 1 ) + me where d—I — m{n — \) +e. 

We can now give a fairly complete description of those curves of degree 
d>2n that achieve this bound—called Castelnuovo curves—and, in so 
doing, verify that the bound is indeed sharp for all d and n. 

To begin with, we note that if C c P" is a Castelnuovo curve, equality 
must hold in all the inequalities above. In particular, we see that 

h°(C,e(2H)) = 3n; 
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and since / i°(P",0(2/f))=(n+ l)(« + 2)/2, this implies that 

The linear system W of quadrics in P n containing C has dimension at 
least (n-\)(n-2)/2-\. 

Since, moreover, no quadric containing C can contain a hyperplane, the 
restriction of I f to a hyperplane P" ' c P " is injective; thus the linear 
system of quadrics in n — 1 containing the points T= C n P"~' likewise has 
dimension at least (n — \){n — 2)/2— 1. Inasmuch as the linear system of all 
quadrics in P " _ 1 has dimension only n(n+ l ) / 2 - 1, this means that 

The points of a generic hyperplane section T — C n Pn ~' of C impose only 
2n — 1 conditions on quadrics. 

Now this is certainly a very strong statement. As we saw in the original 
discussion of Castelnuovo's bound, any 2n — 1 points in general position in 
P " - 1 must impose independent conditions on quadrics; here we have an 
arbitrary number </=degC of points imposing only this smallest possible 
number of conditions. Indeed, from our previous encounter with the 
phenomena of superabundance in the discussion of cubic surfaces, we may 
expect that the extreme failure of the points of T to impose independent 
conditions on quadrics should have strong geometric consequences. The 
problem is, it simply is not obvious how one should proceed from this 
hypothesis. To Castelnuovo, however, it must have been clear; after 
spending the first 30 pages of his original article arriving at this point, he 
draws the correct conclusion in a paragraph. The essential point seems to 
have been a familiarity with certain projective-geometric constructions 
called Steiner constructions, which we now describe. 

Steiner Constructions 

Let/*, and/>2 be points in the plane. Parameterize the two pencils (L,(\)} 
and {L2(X}} of lines through/), &ndp2 respectively by A E P 1 , choosing the 
parameterizations so that the one line ptp2 common to the two pencils 
corresponds to different values of X—that is, so that Ll(X)¥=L2(X) for all X. 
Then the curve 

C = U Lx{\) n L2(X) 
x 

is clearly irreducible and nondegenerate, containing the points /?, and p2 

but not lying in the line />,/>2. Its intersection with a general line L c P2 

consists of the fixed points of the automorphism of L sending the point 
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LnLx(X) to LnL2(X); since there can be at most two such fixed points it 
follows that C is a conic curve. 

Note that given three additional points p3, p4, and/>5 in the plane, no two 
collinear with either px or p2, we may choose our parameterizations of the 
pencils Lx and L2 so that L,(0) and L2(0) both contain p3, L,(l) and L2{\) 
contain p4, and Lx(ao) and L2(oo) contain p5. If in addition we assume that 
p3, p4, and/»5 lie off the line pxp2 and are not all three collinear, then these 
parameterizations satisfy our requirement that the line pxp2 correspond to 
different X in the two pencils. If indeed P\P2 = LX(XQ) — L2(XQ), then the 
automorphism of the line L —p3p4 taking Lf\ LX(X) to Lf\L2(X) would fix 
the three points p3, p4, and Lnpxp2, and so would be the identity; we 
would then have 

p5 = L,(oo) n L2(co) = L,(oo) n LE L. 

We see, accordingly, that we may construct a smooth conic through any 
five points in the plane, no three collinear. 

Classically, the common parameterization of the two pencils Lx and L2 

was given geometrically by choosing two auxiliary lines M, and M2 and an 
auxiliary point q£Mx,M2, and for each line M(X) through q letting L,(A) 
be the line joining/?, and the point Af, n M(X), L2(X) the line joining p2 and 
M2r\M(X). Thus, for example, to construct the conic through/»,,...,p5 one 
could take 

My = p3p4 , M2 = p3p5, q = p~,~p~5 n p^pZ. 

This construction may be generalized to higher dimensional space in 
many ways, two of which are the following: 

1. If Vx, V2 are two (« — 2)-planes in P", we may choose any parameteri-
zation of the two pencils of hyperplanes {HX(X)} and {H2(X)} through V{ 

and V2 respectively such that Hl(X)¥=H2(X) for all X, and consider the 
locus 

Q = U # , ( A ) n H2{X). 
X 

As in the previous construction, Q is readily seen to be an irreducible, 
nondegenerate hypersurface, and hence a quadric, intersecting a general 
line L c P" in the fixed points of the automorphism of L sending L n HX(X) 
to L n H2(X). In the terminology of Section 1 of Chapter 6, Q is a quadric 
of rank either 3 or 4, with vertex Vx n V2. 

2. Letpi,...,p„ be linearly independent points in P", and let {Ht(X)} be 
the pencil of hyperplanes containing the (n — 2)-plane Vt spanned by 
px,...,Pi,...,pn; choose the parameterizations so the one hyperplane 
V=px,...,pn common to all the pencils corresponds to n different values of 
X. Then for each X, the planes HX(X),...,H„(X) meet only in a point: if none 
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of the planes 7/,(A) a r e equal to V then the intersection Hl(K)r\... n Hn(X) 
cannot meet V and so must be a point; while if Hfi\) = V then //,(X)n 
Ht(X) is just ^ , and the intersection Ht(X)n ... n Hn(X)=pj. Thus the curve 

c= U//,Wn...n//n(X) 

is irreducible; and as before it is nondegenerate, containing the points 
pv...,pn but not lying in the hyperplane V they span. Its degree must 
therefore be at least n; and since its intersection with a general hyperplane 
H c P" consists of the fixed points of the automorphism of H sending the 
point HnHl(\)n...nHn_l(\) to HnH2(\)r\...nHn(X)—that is, the 
eigenspaces of the corresponding linear transformation of H—we see that 
the degree of C must be exactly n, that is, C is a rational normal curve. 

Note that if we set 

Qu= U //,(X)ntf,(X) 

then C will be the intersection of the quadrics Q^; thus we see that 

A rational normal curve is cut out by quadrics. 

Now, choose three additional points p„+1, p„+2, &ndpn+3 such that the 
points />,,...,pn+3 are in general position. As in the construction of the 
plane conic, then, we can choose our parameterizations of the pencils Hi so 
that 

Pn+i e //,.(0), Pn+2 e H,(1), Pn+3 e H,(co) 
for all i. This choice satisfies our requirement. If for some A G P1 we had 
Hj(\) = Hj(\) = V, the automorphism of the line L =/»„+1/>„+2 sending 
L n //,(X) to Lr\Hj(X) would fix the points p„+i, p„+2 and LnV, and so 
would be the identity; i/,(oo)n Hj(oc) would then meet L and so the n + 1 
pointspu. . . ,p t , . . . ,pp . . . ,pn , pn+v pn+2, andp n + 3 would all lie in a hyper-
plane. Having chosen our parameterizations in this way, we then see that 
all the pointsp„...,pn+3 will lie on C; thus we can find a rational normal 
curve in P" containing any n + 3 points in general position. Indeed, such a 
curve is unique: if D is another rational normal curve contaimng 
p„...,/>„+3, then each hyperplane Ht(X) will meet D inpl,...,pi,...,pn and 
one more point, which we may denote qt(X). But now the automorphism fy 
of D sending q^X) to qy(X) for each X fixes pn+i,pn+2, and/?„+3, and so is 
the identity; thus g,(X) = H,(X)n ... n #„(X) and correspondingly D = C. In 
sum, then, 

Through any n + 3 points in general position in P" there passes a unique 
rational normal curve. 
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We note in passing some of the other variations on the theme of Steiner 
constructions. For example, we may take three nets of planes in P 3 and 
parameterize each by A E P 2 ; the union of the intersection of correspond-
ing planes will then be a cubic surface. One can also take two pencils of 
planes in P 3 parameterized by A e P 1 and a correspondence T:Pl~*P\ 
and take the union of corresponding pairs of planes. If T has bidegree 
(1,2) the resulting surface will be a cubic surface with a double line, while 
if T has bidegree (2,2) the resulting surface is a quartic with two double 
lines; both of these surfaces will be discussed in Section 6 of this chapter. 

Now we can without difficulty prove 

Castelnuovo's Lemma. A collection p , , . . . , pd of d > 2n + 3 points in general 
position in Pn which impose only 2n + 1 conditions on quadrics lies on a 
rational normal curve. 

Proof. First note that, since any 2« + 1 points in general position in P" 
impose independent conditions on quadrics, any quadric containing 2n + 1 
of the points/>,,...,pd will contain them all. Now let (//,(^)} and {H(X)} 
be the pencils of hyperplanes in P" through pl,...,pi,...,p„ and 
Pn+i,---,p2„-v respectively, parameterized so that 

p2n E tf,(0),//(0); p2n+] E H,(l),H(l); p2n + 2 E /*;.(»),tf(oo) 

for all /. Then the quadrics 

ft = U #,(A) n H(X), 

containing the points px, . . . , / „ . . . ,p2n+2 must contain the points 
P2n + 3>--->Pd a s well; that is, the remaining points pln + 3 , . . . ,pd also lie on 
corresponding hyperplanes of the pencils //,-, and hence lie on the rational 
normal curve 

c = U #,(A)n...n//„(A). 
x 

We have shown then that px,...,pn,p2n,...,pd all lie on a rational normal 
curve, and hence after rearranging that any d—n+l>n + 3 of the points 
px,...,p„ do also; since a rational normal curve is determined by any n + 3 
points this implies that all the points pv...,p„ lie on a rational normal 
curve. Q.E.D. 

Returning to our Castelnuovo curve C c P", it is now straightforward to 
describe C explicitly. As we have seen, the linear system W of quadrics in 
P" through C cuts out on a general hyperplane P"" 1 c P " a linear system 
of quadrics through the hyperplane section r = C n P"~ ' having codimen-
sion In— 1 in the system of all quadrics in P"~ ' ; clearly these are all the 
quadrics containing T. Now, by Castelnuovo's lemma, T lies on a rational 
normal curve D c P"~ ' ; since T consists of d > 2n — 1 points, any quadric 
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will contain T if and only if it contains D; and since a rational normal 
curve is cut out by quadrics it follows that the base locus of the linear 
system W intersects the hyperplane P"~' in the rational normal curve D. 
But then the base locus of W must be a surface of degree n — 1 in P"; so by 
our previous result, 

A Castelnuovo curve lies on either a rational normal scroll or the 
Veronese surface. 

It is easily checked that any smooth plane curve, mapped to P5 via the 
Veronese map, is a Castelnuovo curve; in what follows we shall assume 
that C lies on a rational normal scroll S = Skl. We ask first for the 
homology class of the curve C on S; a priori we may write 

C~aH + bL 
where H and L are the classes of a hyperplane section of and line on S 
respectively. We have 

d = degC = H- C = a(n - 1) + b 

so b = d— a(n — 1); and applying the adjunction formula, 
CC+KSC 

g(C)<(C)= 2~^+1 

_(aH + (d-a(n-l))L)-((a-2)H + (d-(a-l)(n-l)-2)L) 
2 

= {{a(a - 2)(n - 1) + (a - 2)(d - a{n - 1)) + a(d -a(n-l) + n- 3)) 

= (a~1)(a~2\n-\) + (a-\)(d-(a-l)(n-l)-l) 

This in fact achieves our bound exactly when a = m+ 1, and, in case e = 0, 
when a = m as well. We see, then, that the curve C must be smooth, and 
have either class (m+ \)H-(n-2-e)L in general or class mH+ L when 
C = 0. Another way to express this, since the linear series cut out on a 
rational normal scroll by hypersurfaces of degree m is complete for all m, 
is to say that C plus any n — 2-e lines of S form the complete intersection 
of S with a hypersurface of degree m + 1 in P", or, in the exceptional case, 
that C together with the directrix Ex of S and any n — k — 2 lines of S form 
the complete intersection of I with a hypersurface of degree m+l. 

Finally, to see that smooth irreducible curves with this homology class 
exist on the surface S= Sk , (at least for some k), we simply write 

( / w + l ) / / - ( n - 2 - E ) L = ( m + l ) £ o + ( m ( « - / c - l ) - & + l + e ) L . 
Since the coefficient of L can, by a suitable choice of k, be made positive, 
we see that the linear system |(w+ \)H + (n-2-e)L\ on S has no base 
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points and so the generic element is smooth; since any two components of 
a reducible curve homologous to (m + l)H + (n — 2 — e)L would meet, 
it follows that the generic element is irreducible as well. 

Summing up, then, we can say that 

The greatest possible genus of an irreducible nondegenerate curve C of 
degree d in Pn is m ( m - l ) / 2 + me, where m = [(d—l)/(n—1)] and 
d— 1 = m(n— l) + e. Moreover, any curve achieving this bound is either 

1. Residual to either n—2 —e lines of n—k—2 lines plus the di-
rectrix in a complete intersection of a rational normal scroll \ , C P n 

with a hypersurface of degree m + 1; or 
2. A smooth curve on the Veronese surface in P5. 

The Enriques-Petri Theorem 

Recall from our initial discussion of curves of maximal genus that the 
curves of degree d=2n in P" having maximal genus are just the canonical 
curves of genus g = n +1. Much of the preceding analysis of extremal 
curves of degree greater than 2n applies as well in this case: for C C P" a 
canonical curve, we have 

h°(L) = n + \, h°(2L) = 3n, 
and so the linear system Wc\2H\ of quadrics in P" containing C again 
has dimension 

dimW > i ( « - l ) ( « - 2 ) - l . 

In addition, we see just as before that the restriction of W to a hyperplane 
is injective, and hence that the hyperplane section r = C n P " ~ ' imposes 
only 2n — 1 conditions on quadrics. At this point, our previous analysis 
breaks down: lacking 2/i+ 1 points, we cannot apply Castelnuovo's argu-
ment to prove that the hyperplane section of C lies on a rational normal 
curve. / / we hypothesize the existence of just one point of S not lying on C, 
however, Castelnuovo's argument is again in force. To see this, we need 
only prove a slight strengthening of the basic general position lemma of 
Section 3, Chapter 2: 

Basic Lemma II. Let C c P n be any nondegenerate curve, p G P n any point 
not lying on infinitely many chords of C. Then for H a generic hyperplane 
passing through p, the points 

{p)u(HnC) 
are in general position. 

Proof. We first show that for a generic hyperplane H containing p, the 
point p is linearly independent from any n -1 points of H nC. This is 
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clear: by hypothesis, for generic H the projection map irp of C from/> onto 
a hyperplane P n _ l is one-to-one on Hr\C, and for any n—\ points 
/>,,...,/>„_, e / / n C,p will lie in the linear span of/?,,...,/>„_, if and only if 
the points {^(/J,)} are linearly dependent in P"_1. But by our original 
basic lemma, the generic hyperplane in P"~' contains no such collection of 
points in irp{C). 

To see that the generic H containing p will not contain n linearly 
dependent points of C, consider the incidence correspondence 

/ c c ' x r 
given by 

7 = {(/>„...,Pn,H): Pi&H) 

and let J c I be given by 
J= {(/>„...,p„,H): dim/?„.. . , /?„<«-l}. 

The projection map 
7T,: J->C 

has fiber dimension at least 1. From the first half of our proof, moreover, 
we see that if every hyperplane through p contained n linearly dependent 
points /»„...,/>„ of C, then for a generic such hyperplane H the points 
px,...,pn would uniquely determine H, so that the image 7r,(y)cC" would 
have dimension at least n— 1. But then J would have dimension at least n, 
and since the projection 

TT2: J-^P"* 

is finite-to-one, this would imply that TT2(J) = P"*, i.e., that every hyper-
plane section of C contained n linearly dependent points, contradicting our 
first basic lemma. Q.E.D. 

Now let C c P " again be a canonical curve, W<z\2H\ the linear system 
of quadrics through C, and suppose that the base locus S of W is not equal 
to C. If any point/? e 5— C lay on a chord L=~qr of C the line L, meeting 
each quadric Q G W in the three points q, r and p, would lie in Q and 
hence in S; it follows that we may choose a point p&S — C not lying on 
infinitely many chords of C. By our basic lemma II, if H is a generic 
hyperplane through/? the 2n+ 1 points 

Wu(//nc) 
are in general position. But now the restriction W\H to H of W is a linear 
system of quadrics of dimension at least \{n —1)(«—2)— 1 with base locus 
containing 2n +1 points in general position, and so by Castelnuovo's 
argument, the base locus SnH of W|H mutf be a rational normal curve, 
hence S is a surface of minimal degree. 
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If S1 is the Veronese surface t2//(P2) C P5, then clearly C is just a quintic 
plane curve. On the other hand, if 5 is one of the ruled surfaces Sk h then 
by the computation of p. 532, the curve C—having maximal genus—must 
be linearly equivalent to 

(m+l)H-(n-2-e)C = 3H-(n-3)C 

since 

m = r = r~ = 2. r r f - l " 
« - l = 

[ 2 i i - l 1 
n - l 

In particular, we see that C has intersection number 3 with each of the 
lines of the surface Sk,. C is thus expressible as a 3-sheeted cover of P1; 
such a curve is called trigonal. 

Conversely, suppose the canonical curve C c P " is trigonal, ir:C-*Pl a 
threefold cover. Then the divisors {"!r~\X)=p\+P2 +/>3 }\ep' form a linear 
system of degree 3 and dimension 1 on C; by the geometric version of 
Riemann-Roch (p. 248), it follows that the points p\, p\, and p\ are 
collinear for each X. The line Lx=p\p2p\ then meets every quadric Q 
containing C in three points, and so lies on Q; the surface 

S'= U Lx 
XeP1 

is contained in—hence equal to—the intersection of all quadrics contain-
ing C. 

Similarly, if C is a plane quintic curve, then by the adjunction formula 
Kc = [ 2 / / p 2 | c ] , 

so that the canonical map on C is just the restriction to C of the Veronese 
map i2H: P2-»P5. In particular, if L is any line in P2, i2//(^) is a conic 
curve in P5 meeting C in five points; as before, any quadric contaimng C 
will have to contain i2H(L). The intersection of the quadrics containing 
C c P 5 thus contains—hence equals—the Veronese surface. 

Summarizing, we have proved* 
Theorem (Enriques; Petri). For C c P " arty canonical curve, either 

1. C is entirely cut out by quadric hypersurfaces; or 
2. C is trigonal, in which case the intersection of all quadrics containing C 

is the rational normal scroll swept out by the trichords of C; or 
3. C is a plane quintic, in which case the intersection of the quadrics 

containing C is the Veronese surface I 2 H ( P 2 ) C P 5 , swept out by the conic 
curves through five coplanar points of C. 

*Cf. B. Saint-Donat, On Petri's Analysis of the linear system of quadrics through a canonical 
curve, Math. Annalen, Vol. 206 (1973), pp. 157-175. 
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Note that since the rational normal scrolls Sk/ (other than S 0 , c P 3 ) 
contain only one family of lines, a trigonal curve of genus g > 5 can 
contain only one linear system of degree 3 and dimension 1. 

4. RATIONAL SURFACES II 

The Castelnuovo-Enriques Theorem 

Now that we have a fairly complete picture of rational surfaces, a natural 
question is whether we can characterize them by numerical birational 
invariants. Clearly, if S is rational, q(S)=pg(S) = i>„(5) = 0; we now prove 
a converse. 

Theorem of Castelnuovo-Enriques. / / S is an algebraic surface with q(S) = 
P2(S) = 0, then S is rational. 

Proof First of all, we can blow down S to obtain a surface birational to 
S that does not contain any exceptional curves of the first kind; thus we 
may assume from the start that S contains no such curves. 

To apply Noether's lemma we must show that S contains an irreducible 
curve C with w(C) = 0 and d im |C |>0 . To begin with, we transpose the 
problem slightly: since P2(5) = 0, we hzvepg(S)=0—a nontnvial section <j 
of Ks yields a nontrivial section o <%>a of AT|—so 

X(es)=l-q(S)+pg(S)=l. 

Moreover, for any curve C on S, 

/i2(C) = h°(Ks-C) = 0, 

and the Riemann-Roch formula tells us that 

h°(C)>C'C~K'C+\. 

Now if C is a rational curve and COO, then by the adjunction formula 
KC< - 2 ; thus h°(C)>2 and d i m | C | > l . It will suffice, then, to find an 
irreducible curve C on S such that 

(.) M c ) - a 
v ' \ coo. 

Before we proceed with the proof, we want to make explicit a special 
corollary to Bertini's theorem. 
Lemma. / / {DA} is a pencil of curves on a surface and the generic element 
of {Dx} is reducible—i.e., 
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where E is the fixed component of {DA}, then CpCv>0 for each v. 

Proof. Let {D{} = {DX — E] be the reduced pencil; {Dx} will have only 
isolated base points. Let S -H> S be the blow-up of S at the base points of 
{/);(}, so that the proper transforms 

k = 2 cn 
form a linear system {D{} without base points on S. Then, since a point of 
intersection of C„ with Cv- would be a singular point of D{, we see that for 
generic X, the curves C„ are disjoint. Thus, 

C„-C„ = C „ i 5 ' = 0 

and consequently CVC„> 0. Q.E.D. 

The proof of the Castelnuovo-Enriques theorem is in three cases, 
KK<0, KK=0, and KK>0, the last of which is the most difficult. We 
start with 

Case 1. KK=0 

First, by Riemarm-Roch applied to the divisor — K, 

h°(-K) + h2(-K) = h°(-K) + h°(2K) > 1; 
but h°(2K)= P2(S) = 0, and so h\-K)>l; i.e., there exists an effective 
divisor D linearly equivalent to - K. Note that D =5̂ 0, since the bundle K is 
nontrivial. 

Let L = [E] be a very ample line bundle on S; we may assume that 
h°(L-D)¥=0. Since E is positive, 

E K= -ED < 0 ; 
hence 

E(E+mK) < 0 f o r m » 0 . 
This implies that h°(E + mK) = 0 for m » 0 , since if E+mK were linearly 
equivalent to an effective divisor, we would have E(E+mK)>0. Choose 
n such that 

h°(E+nK) > 0 , 
h°(E+(n + l)K) = 0. 

Now let D'E\E+nK\, and write D ' = S ^ Q . Then 
KD' = / s r - ( £ + n / 0 = KE<0; 

thus Â  C < 0 for some v0. By Riemann-Roch applied to the divisor — C , 
C -C + C -K 

h\ - Cv) + h%K+ C„o) > y° ^ P° + 1 
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But h°(- C„) = 0 clearly, and since K+ CVg<K+D', 

h°(K+C„) < h°(K+D') = h°(E + (n + \)K) = 0; 

thus we have 

*(CJ = 0. 
By the adjunction formula C -K<0 implies C^oC„o> — 1; but if C -C = 
- 1, then C„ is an exceptional curve of the first kind, and we assumed that 
S contains no such curve. Consequently Cv satisfies the numerical condi-
tions (*), and we are done. 

Case 2: KK<0 

We claim first that, in this case, if E is any divisor on S, 

h°(E + nK) = 0 f o r « » 0 . 
To see this, first choose n0 large enough that 

K-(E + n0K) = K-E + n0K-K < 0. 

Now suppose h°(E+ W/QT^O for some m>n0; let D G\E + mK\ and write 
D = 2,apCl,. KD<K(E+noK)<0, so K-C,o<0 for some v0; then if 
C, C„ were negative, we would have KCV =C-C„ = — 1, i.e., C„ would 
be an exceptional curve of the first kind, contrary to assumption. Thus 
C„o-C„o> 0 and hence, by the remark of p. 470, C„a-D' > 0 for any effective 
divisor £>'. Then, since KC„ <0 , we have for m '»0 , 

( £ + m ' A : ) - Q o < 0 = > A ° ( £ , + /M'A') = 0, 

and our assertion is proved. 
Let £ be a very ample divisor with h°(E+ K) > 2; choose n such that 

h°(E + nK) > 2, A°(£ + (n + l)je) < 1. 
Let Z) be a generic element of the system \E+nK\; by our corollary to 
Bertini's theorem, if we write 

D = E + ^C„, 

where E is the fixed component of D, then C„C„>0 for all v. Since 
/i°( — Cr^ is clearly 0, we have by Riemann-Roch for — C„, 

h%K+ Cr) > C'C> + C>-K + i = w ( Q ) . 

But 

h°(K+Cr) < h°(K+D) < 1, 
and so 7r(C„) = 0 or 7r(C„)=l for all v. If •n-(C„)=0, we are done, since 
Q C „ > 0 ; assume that T T ( Q ) = 1 . In this case h°(K+ C,) = h°(K+ D)= 1; 
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let D'<E\K+ C„| and write 

v = 2 Vv 
Note that D'^0, since D '=0 => tf C„=>K-K*=Cv-Cr<0. By the 
adjunction formula, 

»(Cr) = 1 => K- C„ = - C„- C„=>D'CV = (K+ C > C, = 0; 

and since QC;>0=*C,-£ ( l >0 for all /i, it follows that £„• Q = 0 for all /x. 
Since AT-Q<0 and KK<0, we have D'K<0; thus E^KKO for some 

/ZQ. But then 

= ai*EiLo'Eit«+ 41 E^'Ef 

> a„ £■„ • £ „ . 
Mo Mo Mo 

Thus E„ K= E„ -E„ = — 1, i.e., E„ is an exceptional curve of the first kind, 
Mo Mo Mo Mo * 

a contradiction. 
Case 3: KK>0 

To begin with, since h°(2K) = 0, we have by Riemann-Roch for — K, 
h°(~K)>l + K'K~{*-K)>l, 

i.e., | — K\ contains a pencil of curves. Let D be a generic element of | — K\; 
by our lemma, 

Z) = £ + 2>„C„ 
with E the fixed component of \D\ and C„C„>0 for all v. Now if D is 
reducible—i.e., D=£C} —we have 

A2(-C,) = A°(tf+C,) = W - ( a , - l ) C , - £ ; - 2 avCv) = 0, 

and of course 
A ° ( - C , ) - 0 , 

so that by Riemann-Roch for — C„ 

0 > - ! — ^ ! - + l - w ( C , ) ; 

but then u-(C,) = 0 and CyC, >0, so we are done. Thus we may assume 
D = C, is an irreducible curve on 5; since D K, we have DK= — D-D, 
and hence TT{D) = l. 

Now if every very ample line bundle on S were a multiple of #, it would 
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follow then that every bundle on S is a multiple of K; i.e., 

H2(S,I) = Hh\S,l) = I 

with c,(AT) as a generator. But then by Poincare duality, we would have 
KK=\, and by Noether's formula 

a contradiction. Thus we can find a very ample line bundle [E] on S that is 
not a multiple of K and such that h°(E+K)> 1. Since £• # =-ED<0, 
we see that £ • ( £ + « # ) < ( ) , and hence h°(E+nK) = 0, for n » 0 ; let n0 be 
the integer such that 

h°(E + V O > 1, 

/ J ° ( £ + (n0 + l)K) = 0. 

Let D' be a generic element of I ^ + WQATI and write Z>' = 2a„C„; we know 
that D'T^O because E=£ - n0K. Now D is irreducible, and so D-D >0=> 
tf-C„=-D-C;<0 for all r. Again, h°(K+ C„)< h°{K + £>') = 0, and 
/J°(— C„)=0, so by Riemann-Roch 

0 > 1" I = 7r(C ), 

i.e., T T ( C ) = 0 . NOW we know ATC,,<0; if K-Cr<-\, then C / Q X ) and 
we're done. On the other hand, if KCV= — 1, then C„ is exceptional of the 
first kind. Thus we may assume 

Apply Riemann-Roch to the divisor D — C„ — — C„ — K; since 

h°{2K+Cv) < h°(2K+D') = 0, 

^-c^^-^^-y^^-^ + i 
_ DD+C,C„ + DD 

2 
= KK >0; 

Let r<E|Z>-C„| and write r=Sfe„r„; T ^ 0 , since T=0=*C, = D= -K=> 
KK= CPC„ = — 2. Applying Riemann-Roch to — r„, we have 

h°(K+T,) < h°(K+T) = A°( -C, ) = 0 

=*0 = h\-Yr)>
T'T' + T ' K + 1 = TT{TV), 

i.e., 7r(r„)==0 for all v. But now 
TK = {-K-Cv)K<0=>T1,<>K<0 for some v0. 



RATIONAL SURFACES D 541 

Consequently, either T„-Tr = — 1—in which case r„ is exceptional of 
the first kind—or r,o- r„o > 0, and we are done. Q.E.D. 

As an immediate corollary, we have 
Luroth's Theorem. If M is a rational surface, f: M-»N a surjective holo-
morphic map, then N is rational. 

Proof. The proof is clear: if P2(N) were nonzero, then the vanishing of 
the pullback to M of a nonzero section of K# would imply that the 
Jacobian of/was everywhere zero, and hence that the image of/could not 
be all of N. Similarly, if N had a nonzero holomorphic l-form, its pullback 
to M would have to vanish, so that again the Jacobian of / would be 
identically zero. Q.E.D. 

The Enriques Surface 

We will now show that the hypotheses q = P2=0 of the Castelnuovo-
Enriques theorem cannot be weakened. The condition ^=0 clearly cannot 
be eliminated: if 5 = P1 X E is the product of P1 with a Riemann surface of 
genus 1, then Ks= -2({/>} XE) and hence P„(S) = 0 for all «; but S 
cannot be rational, since q(S)=l. To show that the requirement P2=0 
cannot be replaced by the weaker condition pg—0 is somewhat more 
difficult. Enriques did it by constructing a class of surfaces satisfying 
q=pg = 0 and P2¥=0, one of which we now describe. 

Let [X0,Xl,X2,X3] be homogeneous coordinates on P3, and S the quartic 
Fermat surface, given as the locus of 

F(X) = X$ + X? - X* - X3
4 = 0. 

S is a smooth surface, and by the adjunction formula, the canonical 
bundle 

KS = (KP, + S)\S 

is trivial. Let T be the automorphism of P3 given by 

T: [X0,Xl,X2,X3]\-^>[XQ, V — 1 Xx, — X2, — V — 1 A3J. 

T preserves S c P3, and so generates a group { T" } of automorphisms of S, 
of order 4. T has four fixed points in P3, [0,0,0,1], [0,0,1,0], [0,1,0,0], and 
[1,0,0,0], none of which lies on 5". On the other hand, T1 has two fixed 
lines 

lt = (X0 = X2=0) and l2 = (X, = X3 = 0), 
each of which intersects S transversely in four points; thus T2 has eight 
isolated fixed pointsp,,...,ps on S. 
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The quotient of S by the group of automorphisms { T"} cannot be given 
the structure of a complex manifold—for one thing, a punctured neighbor-
hood of the image of a fixed point/?, in S/{T"} has fundamental group 
Z/2 . If we let S = Spi pt-^S be the blow-up of S at the pointspv. . . ,pB, 
however, the automorphisms F o n S - £ , — E%ss5 — {p,} extend to 
automorphisms {Tn} of S, and the quotient S/{T") is a complex mani-
fold. To see this, let 

\ i ^*2 3 

AQ A0 A.0 

be Euclidean coordinates on (X0^0) in P3, so that S is given by 

f(x,y,z) = l + x 4 - / - z 4 = 0 
and consider the fixed point p = [l,0,1,0] = (0,1,0) of T2 on S. In a 
neighborhood (/ of p in 5 (which we may take to be preserved by T2) the 
functions x and z furnish local coordinates; if we let t/, and U2 be the 
complements in U= •n~xU of the proper transforms of (x=0) and (z = 0), 
respectively, then we may correspondingly take as local coordinates in t/, 
the functions 

X ' 

and in U2 the functions 

X = — , Z = Z . 

z 

Now r 2 is given in £/ by 
T2: (x,z) -» ( — x, - z ) , 

and so T2 is given in (7, and t/2 by 

f\x',z') = (-x',z% f\x",z") = (JC", - z " ) ; 
we see then that f2 extends by the identity map on E=jr~x(p) to an 
automorphism of U. On the image of Ul in the quotient U/{f2}, more-
over, the functions v = x'2 and z' provide local coordinates; on the image 
of U2 in U/{T2}, similarly, x" and u = z"2 provide local coordinates, 
giving the quotient the structure of a complex manifold. Since all the fixed 
points behave similarly, we see that the quotient S" = S/{T2n} has naturally 
the structure of a complex manifold; and the quotient map i: S-»S" is a 
double cover simply branched at the divisors E],.. . ,E8. 

Now the automorphism T likewise induces an automorphism f on S, 
which then descends to S". T is fixed-point-free on S", moreover, so that 
the quotient S' = S"/{Tn} = S/{f"} naturally inherits a complex struc-
ture; the quotient map t ' : S " - » S ' is, of course, an unbranched double 
cover. 
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Note that S" (and hence 5") is an algebraic variety: the reader may 
verify directly that the space of sections of H4 on S invariant under T2 

(i.e., homogeneous polynomials of degree 4 involving only monomials 
XgoXf'XpX"! with a, + a3 even) and vanishing to order 2 at the points/?, 
(or in other words, sections of [n*4H — 2EX — ■ ■ ■ — 2Eg] on S invariant 
under T2) embeds S" as a surface of degree 16 in P9. In fact, S" has two 
linearly independent positive line bundles: the space of sections of H6 on 
S invariant under T2 and vanishing to order 4 at each pt embeds S" as a 
surface of degree 8 in P5. 

First observe that q(S') = 0: if TJ were any holomorphic 1-form on S', 
I'*TJ would, of course, be a holomorphic 1-form on S, hence zero, since 
q(S)=q(S) = 0. Similarly, if w were a holomorphic 2-form on S", t'*« 
would be a holomorphic 2-form on S, and so would give a holomorphic 
2-form on S invariant under T. But we know that //°(5',n2) = C, and we see 
from the Poincare residue map that a generator of H°(S,U2) is 

_ dx/\dz _ dx/\dz 

Since 
T*<p = - <p, 

it follows that S has no holomorphic 2-form invariant under T, and hence 
that pg(S') = 0. 

On the other hand, we have 

T2*<p = <p, 

so (JP descends to give a holomorphic 2-form \p on S" away from the branch 
locus i{Ex + • • • + Es) of the map i. We claim that in fact »// extends over 
«(£■,); to see this, let x',z' and x",z" be the coordinates introduced above 
on the neighborhood U of the exceptional divisor E cS. We can write 

x = x', z = z'x', 

dx = dx', dz = z'dx' + x'dz', 
so 

dx /\dz = x' dx' f\dz'. 
Thus 

w*(<p) = ^ — (dx'Adz') 
( l + x ' 4 - z ' V 4 ) 3 / 4 

_ t . (doAdz') 

2(l + « 2 - z ' V ) 3 / 4 ' 
so that indeed \p extends over all of S". Finally, since <p®<p is invariant 
under T, \p<8>\}/ must likewise be invariant under the induced involution T 
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of S". Thus \p<8)\p descends to give a nonzero holomorphic section of 
KS,<8KS,, and we see that P2(S')¥=0; so 5" cannot be rational. 

The surface 5" is called an Enriques surface. We can compute some of its 
invariants as follows: first, since ^ = 0 , 

K-s = E\ H + Es-
Now if u is any meromorphic 2-form on S", we see that 

K§ = (t*w) = i*Ks., + £ , + ••• + Eg, 

so the canonical bundle of 5 " has Chern class 0. The holomorphic 2-form 
\p on S" is therefore nowhere zero, and Ks» is trivial. Since 

Ks. = n*Ks., 

moreover, we see that Ks. has Chern class zero modulo torsion. 
Since we know that ci(S)2 = 0, we can apply Noether's formula to obtain 

x(S) = c2(S) = l2x(es) = 24, 

and similarly, since c,(S")2 = c,(S')2 = 0, 

X(S") = 24, X(S') = 12. 
So bl(S') = b3(S') = 0, and b2(S') = h1\S')= 10. 5" cannot be simply con-
nected—otherwise it would not have a connected two-sheeted unbranched 
cover. In fact, by the Lefschetz theorem, S is simply connected, and hence 
so is S. Now any loop y in S" lifts to S—just take the base point of y to be 
in the branch locus t(E] + •• • + Eg) of t—so it follows that 5"' is again 
simply connected, and hence 

#,(S',Z) = Z/2. 
Another way to see that S" is simply connected is as follows: we know 

that the fundamental group w,(5"') is torsion, since q(S") = 0; if w,(5"') 
had a subgroup of index d, then there would exist a ^-sheeted covering 
space A/—> S" of S". M would be a compact complex manifold with 

KM=j*Ks„ 

trivial, and 

X(M) = d-Ks„ = 24-d. 

Thus by Noether's formula 

X(®„) = ^ 1 = 2d. 

But since KM is trivial, pg(M)= 1, and q(S") = 0 implies q(M) = 0, so we 
must have 

X ( 0 M ) = 2 , rf-1. 
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Cubic Surfaces Revisited 

As an application of the techniques developed in the last two sections, we 
will now go back and give a shorter, if less ingenuous, analysis of a smooth 
cubic surface. We will then consider the correspondence between the lines 
on a cubic surface and the bitangents to a quartic curve in P2. 

Let S c P 3 be any smooth cubic surface. By the Lefschetz theorem, S is 
simply connected and so q(S)=0; by the adjunction formula 

%s ~ (^p3^)is = ~# l s> 
the canonical bundle of S is negative, and so P„(S)=0 for all n. By the 
Castelnuovo-Enriques theorem, then, we see immediately that 5 is rational. 

Now by Noether's formula, 

-xff,)-'^*5'. 
and since c , (5)= —H, c,(5')2 = 3 and it follows that 

X (S) = c2(S) = 9. 

By our theorem on rational surfaces, S must be a ruled surface S„ blown 
up five times. But for any irreducible curve C on S we have 

KC= ~HC <0, 

and so by the adjunction formula CC> - 1 , i.e., S cannot contain an 
irreducible curve of self-intersection - 2 or less. Thus S is S0 or 5, blown 
up five times, or, what is the same thing, P2 blown up six times. In fact, S 
must be P2 blown up in six distinct points/>,,...,p6: if at any stage in the 
sequence of blow-ups of P2 we blow up a point on the exceptional divisor 
of a previous blow-up, the proper transform of that exceptional divisor in 
S will have self-intersection < - 1. Likewise, the points />„..., p6 must be 
"general" in the sense of p. 480: if three of the points pt lay on a line 
L c P 2 , the proper transform L of L in S would have self-intersection 
< — 2, and similarly if all six lay on a conic C c P2, the proper transform C 
of C would have self-intersection — 2. Finally, the embedding line bundle 
of SssP2

p„...F/,<S-^ P2 is given by 

H = ~KS = - (^Kpi + Et + ■■■ +E6) 

= -n*{3H)-El E6. 

Thus we can show as on p. 485 that S contains exactly 27 lines. 

Now let 5" be, as above, a smooth cubic surface, PGS any point not 
lying on any of the 27 lines of S, and consider the projection map 

*>: 5 - { P } - * P 2 
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of S from P onto a hyperplane P2 c P3. As we have seen, irP extends to a 
holomorphic map 

tiP: S-^P2 

on the blow-up S of S at P; tip expresses S as a 2-sheeted branched cover 
of P2. 

Let B c P2 be the branch locus of tiP. If / c P2 is a generic line, the plane 
H, = /, P c P 3 spanned by / and P meets 5 in a smooth curve C,\ the generic 
hyperplane in P3 through P will not be tangent to 5 at P, and by Bertini's 
theorem will not be tangent to S anywhere else. The map tip then maps the 
proper transform C,^C, onto / s P ' as a 2-sheeted cover; since C, has 
genus 1, tiP\c must have four branch points, and since no branch point of 
a 2-sheeted cover can have multiplicity greater than 1, these points are all 
distinct. Thus the generic line / meets B in four points, and consequently B 
has degree 4. Note, moreover, that if q&P2 is any point, then for the 
generic line / c P2 containing q the plane H, meets S transversely: the 
generic plane in P3 containing Pq will not be tangent to S at any of the 
finite number of points of Pqn S, and by Bertini's theorem will not be 
tangent to S elsewhere. Thus by the same argument the generic line 
through q in P2 meets B in four distinct points, so q cannot be a singular 
point of B; it follows that B is a smooth quartic curve. 

We have argued that if the plane H, meets S in a smooth curve, then / 
meets B in four distinct points, i.e., / is nowhere tangent to B. Conversely, 
let Q^S be any point of the branch locus B of TTP, q — nP(Q)^B, and 
/0= Tq(B) the tangent line to B at q. The line P g c P 3 is clearly in the 
tangent plane TQ{S) to S at Q, and so is the tangent line TQ(B) to B at Q, 
hence so is the line TTP(TQ(B))=10; thus 

TQ(S) = Hlo. 

Summarizing, we see that for any line / c P 2 through q = irP(Q)&B, I is 
tangent to B at Q if and only if H, is tangent to S at Q, if and only if 
C, = H/ n S is singular at Q. 

Now let L,, . . . ,L2 7 be the lines on S, and /,, . . . ,/27 their images in P2 

under tiP. /, is a line in P2 by our assumption that P ^Lt. If /, = lj for some 
i¥=j, moreover, the plane H,=H, in P 3 would contain both L, and L, and 
so meet 5 in the sum of three lines—but PEH/HS does not lie on any 
line in 5, so this cannot happen; thus the lines /, are distinct. Note also that 
under the assumption that P £L, , no line on 5 lies in the tangent plane T 
to 5 at P: if L, c 7"n S, then we must have 

T n S = L,: + C, 

where C is a conic curve in T. But then C would be singular at P, hence 
would consist of two lines containing P. 
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Now consider the intersections of S with the planes H,., / = 1,...,27. H, 
meets S in a curve of degree 3 containing L, and no other line; thus 

H,nS = L, + C„ 

where C, is a smooth conic curve in H,. C, then meets L, in two points Qt 

and Rt (not necessarily distinct), which are singular points of H, n S. By 
what we said above, then, the points qt = irP{Q,) and r, = TTP{R,) are points 
of tangency of /, with B. Thus either 

1. ^T^r,—i.e., C, meets L, transversely—in which case /, is a bitangent 
line to B, or 

2. qt = /•,—i.e., C, is tangent to L, at <2, = Rt—in which case every line L 
through P in H, other than PQ, will meet C, and L, in two distinct points, 
so that ( will meet B only at qt—i.e., lt will have contact or order 4 with B 
at qt. Such a line is called a hyperflex of B. 

Finally, let /2g C P2 be the image under wP of the tangent plane T to S at 
/>—or, in other words, the image under TTP of the exceptional divisor E cS. 
Tintersects S in a cubic curve CdT with a singularity at P, either a node 
or a cusp. The tangent lines to C at f in 7" map via ITP to points of 
tangency of /2g with B, and no other line through P in r maps to a point of 
B, so that either 

1. P is a node of C, i.e., /28 is bitangent to B, or 
2. P is a cusp of C, i.e., /28 is a hyperflex of B. 

Conversely, let / c P2 be any bitangent to B. If H, ¥= T, then Ct must 
have two singular points. Since C, is a cubic curve in H„ it must then 
contain the line joining these two points, i.e., /= / , for some i. Similarly, if 
/ C P2 is a hyperflex of B and l=£ /28, then C, maps down to / via -nP as a 
double cover branched only over lp\B = {q}. Since /— {q} is simply 
connected, Cl — -rrP\q) is disconnected. Thus C, is reducible; since C, is a 
cubic curve, one of its irreducible components must be a line, and again we 
have /= /„ for some /'. 

Note that if we realize S as P2 blown up in six points xv...,x6 with 
x7 e P2 corresponding to P £ S, then the linear system giving the map 
mP: S'—»P2 is just the proper transform of the system of cubic curves C CP2 

passing through * , , . . . ,x 7 . In particular if 

1. L, = Et; then C, = H/HS corresponds to the cubic curve C c P 2 

through JC„ . . . , x7 singular at xr /, will be a bitangent if C has a node at x„ 
a hyperflex if C has a cusp at x,. 

2. L^Gjj-, then C, corresponds to the line L through JC, and Xj in P 2 

plus the conic C through {x .̂ :k¥=i,j}. lt will be a bitangent if C meets L 
transversely, a hyperflex is C is tangent to L. 
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3. £, = / ) ; then C, is the line L through xt and x7 in P2 plus the conic 
C c P 2 through {xk:k^i,l}\ again, /, will be a hyperflex or a bitangent 
according to whether these curves are tangent or not. 

We see from the above discussion that every quartic curve in P2 

obtained as the branch locus of the projection of a cubic surface from a 
point on the surface has exactly 28 bitangents and hyperflexes, and that 
the generic quartic curve of this form has no hyperflexes and 28 bitangents. 

Now we show that in fact every nonsingular quartic curve B c P 2 can be 
realized as the branch locus of the projection of a cubic surface S cP2 

from a point p G S. We first show that we can construct a surface S that is 
a double cover of P2 branched at B. To do this, fix an isomorphism of line 
bundles on P 2 

H2®H2^H4-
and let aEH°(P2,0(H4)) be a section defining B, i.e., such that (o) = B. 
Then in the total space of the bundle / / 2 - » P 2 , consider the locus 

S={(p,0: m=o(p)}. 
S is readily seen to1>e a submanifold of H2, and the projection map 
IT : H2-* P 2 expresses S a s a double cover of P2 branched exactly along B. 
(In general, a similar construction can be made of a double cover of P2 

branched along any given curve of even degree; the singularities of the 
double_cover will occur exactly over the singular points of the curve.) 

Let B cSbe the branch locus of IT:S-+P2 in S. If w is any meromorphic 
2-form on P2, we see that 

Ks = (ir*w) = TT*(W) + B = TT*(-3H) + B. 

But 2B = TT*(4H), and so 

2K§ = TT*(-6H ) + TT*(4H) = w*(-2H). 

Thus 
AK§- Ks = v*(-2H)-ir*(-2H) 

= 2-{-2H)-{-2H) 
= 8, 

i.e., K.Z'Kg*2.. 

Now, taking a triangulation of P2 extending a triangulation of B and 
lifting it to S, we see that 

X ( 5 ) = 2 - x ( P 2 ) - x ( B ) 
= 6 - ( - 4 ) 
= 10. 

Thus by Noether's formula 

x < % ) - ^ . . . 
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But 2 Kg is the inverse of an effective divisor, so 

P2(S ) = Pg{S ) = 0. 

Hence q(S) = 0 as well, and by Castelnuovo-Enriques, S is rational. Since 
x(S)= 10, S must then be the blow-up six times of some ruled surface Sn. 
But now for any irreducible curve D on S, 

Ks-D = ^v*(-2H)-D 

= -H-ir(D) < 0 , 

since TT{D) must again be effective and nonzero. It follows from the 
adjunction formula that 

DD > - 1 , 
and hence, as on p. 545, S must be either 5, or S0 blown up in six 
distinct points, or equivalently P2 blown up in seven distinct points 
px,...,p7. We see, moreover, that no three of the points/?, can lie on a line 
L: if they did, the proper transform L of L in S would have self-intersec-
tion < — 2; similarly, no six of the points can lie on a conic curve C c P 2 : 
C would have self-intersection < — 2. Thus if we blow down any of the 
exceptional divisors Et of S=PjuP7, the resulting surface S=P* ^ Pi 

may be embedded in P3 as a smooth cubic surface S. 
To complete our argument, then, we claim that the map 

V S-^P2, 

obtained by projecting S from the image point P of the exceptional divisor 
Ej c S, is the same as our original map m: S-+P2. But this is clear: on the 
one hand, the hyperplane section of 5" c P3 is just the dual — Ks of the 
canonical bundle of S, and so the proper transforms in S of hyperplane 
sections of S through P are elements of | — K§\, i.e., 

On the other hand, we have seen that 

2K§ = ir*(-2H); 

since S is rational and so has no torsion in Pic(S) = //2(S',Z), it follows 
that Ks = tr*(-H), i.e., 

77 = i_K_ = <nP. 

Thus the branch locus of the projection of S c P 3 from P is the quartic 
curve B we started with. 

In conclusion, then, every smooth quartic curve in P2 has exactly 28 
bitangents and/or hyperflexes. 
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The Intersection of Two Quadrics in P4 

Recall that in the section on Grassmannians we saw that the set of lines 
lying on a quadric hypersurface Q <zP" represented the Schubert cycle 
4-o21 in the Grassmannian G(2,n+l) of lines in P". In particular, this 
suggested that the generic intersection of two quadrics Q,Q'cP4 con-
tained 

(4o21-4a2I)C(2i5) = 16 
lines. We can now show that this is indeed the case for any smooth 
intersection, Q n Q '■ 

Let Q and Q' be any two quadric hypersurfaces in P4 intersecting 
transversely in a surface S. First, by the adjunction formula, 

KQ = (KP,+ Q)\Q=-3H\Q 

and 

KS = (KQ + Q% = ~H\S. 

In particular, 

c] = H-H = degS = 4 

and, since Ks is negative, 

Pg{S) = P2{S) = 0. 

Now Q is a positive divisor on P4 and S a positive divisor on Q, so by the 
Lefschetz theorem, 

H\S,T) = H\Q,T) = / / ' ( P \ Z ) = 0. 
Hence 

q(S) = 0, 
and, by Castelnuovo-Enriques, S is rational. By Noether's formula, 

1 X[Vs) 12 12 ' 
therefore c2(5)=x('S') = 8. Then, since Ks is negative, for any irreducible 
curve D on S, 

KSD < 0 , 

which implies 
DD > - 1 . 

By our classification of rational surfaces, S must be P2 blown up in five 
distinct points. No three of these points may be collinear, moreover, since 
the proper transform in S of a line in P2 containing three of them would 
have self-intersection < — 1. 
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Now let EU...,E5 be the five exceptional divisors of the blow-up, Ly the 
proper transform in S of the line Ly =PiPjC P2, and C the proper transform 
in S of the conic C c P2 through all five points. Since the hyperplane 
section H of 5" c P4 is given by 

H = - Ks = 7T*(3tfp2) - £ , £5, 

we see that 
ErH = -ErEt- 1, 
LyH = '3(LyHP2)-2= 1, 
C / / = 3 ( C / / P 2 ) - 5 = 1, 

i.e., E;, Ly, and C are a// lines on S. Conversely, if D^E/CS is any line, 
then since D can meet each line Et in at most one point, its image 
w ( D ) c P 2 is a smooth rational curve, hence either a line or a conic. If 
w(Z>) is a line, then 

1 = HD = TT{D)HP2- D^Et 

so Z> meets two of the exceptional divisors £,; thus 7r(D) contains two of 
the points/?, and so D = Ltj for some ij. Similarly, if ir(D) is a conic, 

1 = HD = ir{D)HP2-D^Ei 

-6-D-^E, 

tells us that TT{D) contains all five points/J,,.. . ,p5, i.e., D = C. Thus £„ L^, 
and C are all the lines on S, and consequently 5 contains exactly 
5+ 10+ 1 = 16 lines, as expected. 

Note that any line on S will meet exactly five other lines on S: the line C 
will meet the five lines {£,},, the line Et will meet the line C and the four 
lines {Ly}j, and the line Ly will meet the two lines Et and Ej and the three 
lines { L W } ^ , V ; ¥ V . 

We claim that conversely if pi,...,p5 are any five points no three of 
which are collinear, and S —> P2 is the blow-up of P2 at these points, then 
the linear system | — Ks\ = \7T*(3Hpi) — Et — • • ■ — E5\ embeds S in P4 as the 
intersection of two quadrics. First, note that if p6&S is any point lying off 
the inverse image m~xC of the conic C c P 2 containing px,...,p5l our 
argument of p. 481 shows that the proper transform in the blow-up S of S 
at/>6 of the linear system of curves D G \ — K§\ passing through p6 embeds S 
as a cubic in P3; thus a fortiori the complete linear system | — Ks\ embeds 
S as a surface of degree 4 in P4. Now, since —2KS is positive, by the 
Kodaira vanishing theorem 

H\S,6(-2KS)) = H 1 ( S , 0 2 ( - 3 A S ) ) = 0, 
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and likewise 

H2(S,e(-2Ks)) = H2(S,22(~3KS)) = 0. 
Thus by Riemann-Roch, 

= 14 
= 13. 

(-2Ks--2Ks)-(-2Ks-Ks) 

= l + 3KsKs 

But the linear system \2H\ on P4 has dimension I ^1 — 1 = 14; since its 
restriction to S has dimension 13—1 = 12, it follows that S must lie 
in—hence equal—the intersection of two quadric hypersurfaces in P4. 

Note that we can also find the 16 lines on the intersection S of two 
quadrics Q,Q' by our knowledge of cubic surfaces in P3. To see this, let 
p G S be any point not lying on a line of S; projection from p onto a 
hyperplane P3 then defines a holomorphic map 

on the blow-up S of 5 at p. This map is in fact an embedding: if any line L 
in P4 through p meet S twice away from p, it would have three points in 
common with each of the quadrics Q and Q', and so would lie on S—but 
we assumed to begin with that/7 lay on no line of 5. The image np(S) is a 
smooth cubic and so has 27 lines L, on it, including the image of the 
exceptional divisor E of S. For each L¥="!Tp{E)cnp(S), the inverse image 
L of L in S will be either 

1. a line on S, if L is disjoint from irp(E); or 
2. a conic curve on S, if L meets -!rp(E). 

Since, as we have seen, exactly 10 lines of ^ ( S ) will meet irp(E), it follows 
that S contains 27— 1 — 10= 16 lines. 

5. SOME IRRATIONAL SURFACES 

The Albanese Map 

In this section we will discuss the overall classification of surfaces and 
briefly describe some basic types of surfaces other than the rational ones. 
We will classify surfaces by means of birational invariants, and will often 
assume that our surfaces are minimal; i.e., that they contain no exceptional 
curves of the first kind. 

A basic new technique to be employed is the Albanese variety Alb(S') 
and Albanese mapping 

ju: S->Mb(S) 
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for a surface 5". We recall (pp. 331-332) that AJb(5)= V/A where V-
//0(S,B')* and A are the linear functions obtained by integrating over 
cycles in HX(S,T). Explicitly, if TJ,,...,t\q are a basis for the holomorphic 
one-forms on 5, then V^C and A is the lattice of vectors 

( / V - , / * ? , ) , YG//,(S,Z). 

The mapping ju is given by choosing a base point pQ, and then for p E. S 
setting 

\JPo JPa I 

As in the curve case, the map /t induces isomorphisms 
ja*: #,(M,Z)/torsion—>#,(/«, Z) 

and 

hence an isomorphism 

¥K\A) = H\A,BA)/H\A,Z)^H\M^M)/H\M,T) 

= Pic°(M). 

Irrational Ruled Surfaces 

In Section 3 of this chapter we defined a rational ruled surface to be a 
holomorphic P1-bundle over P1. Similarly, we define an irrational ruled 
surface to be a holomorphic P'-bundle S-+E over an irrational curve E. 

The first thing to notice about such a surface is that the pullback map 
^* on holomorphic 1-forms is injective. Conversely, since the fibers C of 
^ are rational, any holomorphic 1-form ij on S restricts to zero on the 
fibers. It follows that TJ is the pullback of a 1-form on E: in a neighbor-
hood of any fiber of ^ we may choose a point p0 and set 

/(/>) = f%; 
JPo 

/, being constant along the (connected) fibers of ^f, is the pullback of a 
function g on an open set in E, and we can write 

T, = **| , £ = dg. 

Inasmuch as rj determines £, £ is globally defined on E. The pullback map 
**: H°(E,Slx

E)^H°(S,nl
s) 
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is thus an isomorphism; in particular, the irregularity q(S) of S is the 
genus of E. 

Second, the fibers C of ^ have self-intersection 0 and so by adjunction 
KC= -2. 

But since C C = 0, any effective curve on S has nonnegative intersection 
number with C. Thus no multiple of K can be effective, i.e., 

Pm(S) = 0 for all m. 

Also, since S is a P1-bundle over a curve of genus q(S), 

x(S) = 2-x(E) = 4-4q, 

and it follows from Noether's formula 

i - * - x ( e , ) - ^ 
that 

KK=S-8q. 

Finally, by either the Leray spectral sequence or the exact homotopy 
sequence of a fiber bundle, we see that the map 

* , : HX{S,1)^HX(E,T) 

is an isomorphism; it follows that the Albanese variety of S is just the 
Jacobian of E, and the Albanese map S—>Alb(S') the composition of ^ 
with the natural map ju: E-*f(E). 

This is as far as we will go into the geometry of ruled surfaces. Our 
previous analysis of rational ruled surfaces applies to irrational ruled 
surfaces in one respect: any ruled surface S—*E is, by the same argument 
as given earlier, the projective bundle associated to a vector bundle of rank 
2 on E. Here the analogy ends: it is not the case that any vector bundle 
over an irrational curve is the direct sum of line bundles. To study ruled 
surfaces in any greater detail thus requires more knowledge of vector 
bundles on curves than we have. One point to bear in mind, however, is 
this: in large measure the geometry of a ruled surface is a reflection of the 
geometry of its base curve. 

In the remainder of this discussion we will give two numerical criteria 
for a surface S to be ruled. The first is 

The Castelnuovo-de Franchis Theorem. / / S is minimal, i.e., contains no 
exceptional curves of the first kind, and if x(S) < 0, then S is an irrational 
ruled surface. 

Proof. Before we begin, we prove the 

Lemma. If S is minimal, E a curve, and IT : S ^ E any holomorphic map 
whose generic fiber is irreducible and rational, then S is a P1-bundle over E. 
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Proof. We will show that S —»E can contain no reducible fibers; since all 
fibers of m have the same virtual genus 0, this will imply that all fibers are 
smooth. From the argument used for rational ruled surfaces (p. 514) it will 
follow that S is a P'-bundle. 

Suppose that tr has a reducible fiber 

C = 2 ",-£,•> ni > 0, C, irreducible. 

We may then write 

o=cc / = «,c,.c, + 2«,c,.cy 

and, since all fibers are connected, the latter term is strictly positive; thus 
crq<o 

for all /'. On the other hand, 

„{C)=C'C + K'C+l=0, 

so 
KC= - 2 

and hence AT-C,- < 0 for some /„. Cf then has negative intersection both 
with itself and with the canonical bundle, and so is an exceptional curve of 
the first kind. Q.E.D. 

Thus, to prove the Castelnuovo-de Franchis theorem, we need only 
exhibit a map w: S—»Zs whose generic fiber is irreducible and rational. We 
do this in two steps: we first find w under the assumption that S has two 
independent holomorphic 1-forms with wedge product identically zero; we 
then go back and show that every surface S with x ( S ) < 0 has two such 
forms. In following the proof of the former assertion, it is helpful to bear in 
mind the actual picture: for S —> E ruled, any two 1-forms are pullbacks of 
forms Tj|,T)2 on E. The quotient/=T},/TJ2 then gives a map of E to P1 with 
the fibers of the composed map m': S^E—tP1 consisting of combinations 
of fibers of m, and we may reconstruct E as the set of connected compo-
nents of fibers of m'. 

Suppose that w1,w2G//°(5,fiI) are linearly independent and that w,A«2 
= 0 . Then the vectors 

«,(/>W/»)e7?(,s) 
are linearly dependent at every point p e S, and therefore 

w, = /<o2 

for /some global meromorphic function on S; since w, and w2 are linearly 
independent, / is nonconstant. 
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In a small polydisc A around any point p0 £ S we may set 

*(/>) = ( ( ' « ! > / " % ) • 
\JPo *% / 

Then since co}/\w2=0 the Jacobian of ^ has rank one at a generic/?, and 
so the image is an analytic arc C in C2. Now, if the arc C is given in a 
neighborhood of the origin as the locus of the holomorphic function 
g(z,,z2), then we have 

Since / is locally the pullback of a meromorphic function on the curve C, 
then, it follows that the zero and polar divisors of f are disjoint, and hence 
that / gives a holomorphic—rather than rational—map 

77-': S-+P1 

with fibers CA = 77-'_1(X) = (/—A)0. The fibers of ir' may be (indeed will be) 
reducible; if so, by Bertini the irreducible components of the generic CA 
will be disjoint, and 

cA = c A J + --- + cAjn 

with CA, connected and generically irreducible, and 
Q,,-CA,, = 0 for a l l / ^ y ; 

since, of course, CACA,=0, it follows that 
cKi-cKi = o 

as well. 
Consider the set of connected components E= {CA ,}A , of curves in the 

pencil {CA}. E forms a branched cover of P1 via the map A and so inherits 
the structure of an algebraic curve. This is intuitively clear; a formal proof 
of the fact is based on two observations: all the curves C^ (taken with 
proper multiplicity) are homologous, and only finitely many pairs CA , and 
C j are linearly equivalent. The first follows from the fact that the curves 
{C^}A, must form a connected family: if instead the pairs (X,/) broke up 
into two families A and B, 

s = ( U Q,,)u( U c j 
V(A,i)e/f / V(X,,)es / 

would itself be reducible. To see the second point, note that if two generic 
components CA, and C^ are linearly equivalent, they span a pencil {Da} 
of curves. Every curve CA , will then meet at least one Da, and so lie in Da; 
thus the pencil {Da} is the pencil {CA}, and CA, and Cw- constitute the 
entire fibers CA, CM—but since the generic CA has two or more connected 
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components, there can be only finitely many such fibers. We may thus 
choose X0, ;0 and define 

E' c 5 X Pic^S") 
by 

E'={(p,8):PGCKi and [CKl-C^]-8 }; 

the desingularization E of E' is the curve we seek. 
Now, the map 

■n': S -»P ' 
factors through E via the map 

S^E, 

sending a pointp to the pair (A,/) such that/? E Cx ,. The fibers Cx , of TT are 
irreducible, and both the forms w, and <o2 vanish identically on all fibers of 
w. It follows as on p. 553 that the forms w, are the pullbacks of 1-forms 
T)I,TJ2 on the base E. Since E has at least the two one-forms TJ, and TJ2, then, 

8(E) > 2, 
so 

x(£)<0. 
Recalling from p. 510 the formula 

x(S)>X(E)x(F) 

for the Euler characteristic of a surface S mapped to a curve E with 
generic fiber F, it follows from x(S) < 0 that the fibers of IT have positive 
Euler characteristic, and so must be rational; thus S is ruled. 

To complete the proof of the Castelnuovo-de Franchis theorem, we now 
argue that any surface S with x ( S ) < 0 contains two independent l-forms 
with wedge product identically zero. To see this, note that from the Hodge 
decomposition, 

4q = 2 + 2pg + hi-,-X(S) 

>2pg + 3-x(S). 

It follows that 

In particular, q > 2—if q were 1, the Albanese map would take S to an 
elliptic curve, and by the formula of p. 510 quoted above the Euler 
characteristic of S would be nonnegative—so S contains at least two 
l-forms w,,w2. 
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Now, since irt(S) contains at least a Z-factor, we may for any m 
construct an wi-sheeted covering space S —> S; S inherits from S the 
structure of an algebraic surface. We then have 

X ( 5 ) = m - x ( S ) , 
so by taking m large we may assume x(S) < - 5 . Now consider the map 

A2(*W))Aff«(s,a|) 
given by wedge product. The kernel of p has codimension at most 

pg(S ) < 2q(S ) - ( 3 ~ ^ ( 5 }) < 2q(S ) - 4 

in A 2 # ° ( S , ^ ) - On the other hand, the cone of decomposable vectors 

U A T J 2 } C A2H°(S,&-) 

has dimension 2q(S) — 3, and so must meet the kernel of p. S thus contains 
two independent 1-forms with wedge product 0, and so by the first part of 
the argument is birational to a ruled surface. But as we have seen, on a 
ruled surface the wedge product of any two 1-forms is identically zero—in 
particular, the pullbacks ir*ax,m*(A>2 °f t n e t w o 1-forms w,,«2 on S have 
wedge product zero, and hence so do w, and w2. Q.E.D. 

Note also that we can take any surface 5 with x(-S')<0 and, blowing 
down, arrive at a minimal surface 5"0 with x(So)<x(S)<0; thus 

Any surface with x(S)<0 is the blow-up of a ruled surface. 

There is a second similar criterion for a surface to be ruled: 

Theorem. / / S is minimal and c^(S) < 0, then S is irrational ruled. 

Proof. We start by proving the 

Lemma. If S is minimal and Pm(S)=5t0 for any m>0—that is, if any 
multiple mK of the canonical divisor on S is linearly equivalent to an effective 
divisor D—then c|(S) > 0. 

Proof. Write 

mK~ D = 2»/A-. 
with n, > 0 and £>, irreducible. Suppose that KK were negative; we would 
then have 

KmK= K-^niDj < 0, 
=> K- Z>, < 0 for some /. 
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But then 

0 > K- «,£>, = «,Z>,.• Z), + 2 »jA ■ DJ 

>nfDiDi, 

so Z),-Z>, < 0 and Z), is an exceptional curve of the first kind, contrary to the 
hypothesis that S is minimal. Q.E.D. 

From this we see that if S is minimal and c2(S) < 0, then Pm(S) = 0 for 
all m; in particular, P2(S)=pg(S)=0. If the irregularity q of S were zero, it 
would follow from Section 4 that S was rational, and from Section 3 that S 
was either rational ruled or P2; in either case c\{S) would be positive. Thus 
q{S)>0; and_since pg(S) = 0, the Albanese map ^:,S->AIb(S) maps S 
onto a curve E cAl tyS) . Now let 

■n: £"—> E 

be the desingularization of E. The map 

^ = w - ' o * : S->E 

is defined outside the divisor ty~x{Es) on S, and is given, in terms of a 
local coordinate z around a pointpE.ir~\E3), by a bounded holomorphic 
function; by Riemann's extension theorem the map ^ extends to all of S. 
Note that since all holomorphic 1-forms on S are induced via * from 
Alb(S) (and hence via ^f from E), E must have genus at least q; on the 
other hand, since the pullback map 

xp*: H%E,Ql
E) -> H°(S,Sll

s) 

is injective, it follows that E must have genus exactly q. 
The final point in setting up the proof is that the fibers of the map 

ty: S1—>E are generically irreducible. To see this, we first note that they are 
generically smooth (apply Bertini's theorem to the pullback (^*(Z>X)} of 
any pencil {Dx} on E) and so, if the generic fiber were reducible, it would 
have more than one connected component. We could then make the 
construction used in the last argument (p. 557) to factor the map ¥ 

S > E 

V-
F 

through the curve F consisting of connected components of fibers of ¥ . If 
E were of genus q>2 or if the map a were branched, then by the 
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Riemann-Hurwitz formula 
g(F) = m(q-\)+\ + b>q, 

where b is the number of branch points of a and m its sheet number; since 
the pullback W' on 1-forms is injective, this is a contradiction. On the 
other hand, if q were 1 and a unbranched, then the image 

a*(Hx(F,Z)) c HX{E,Z) 

would have positive index—contradicting the fact that the composed map 
*; a, wm 

*» : H,(S,Z)/torsion —¥ H,(F,Z) —> H,(E,Z) —> H,(Alb(S),Z) 

IK II! II! 

Z2 Z2 Z2 

is an isomorphism. Thus a cannot have degree 2 or more, and the fibers of 
^ are generically irreducible. 

This completes the setting up. Our object now is to show that the fibers 
of ^ are rational; by the lemma used in the proof of the Castelnuovo-
de Franchis theorem, this will establish that 5 is ruled. The first step is to 
prove the 

Lemma. If c2(S) < 0, then S contains an irreducible curve D having non-
negative self-intersection, and negative intersection number with K. 

Proof First, since KK<0, by the index theorem the intersection pairing 
has one positive eigenvalue on the orthogonal complement Kx of the 
canonical class in Hl'l(S,Z); i.e., we can find a divisor class Dx on S with 

Dx-K = 0, />,-/>, > 0. 
By Riemann-Roch, for any m, 

h\mDx) + h°(K- mDx) >\-q+ ™ ^ ' Z ? 1 , 

so for large m, either mDx or K— mDx will be effective. K-(K— mDx) = KK 
is negative, so in the latter case we may take D2 = K—mDx. On the other 
hand, if mDx is effective, we apply Riemann-Roch to the divisor mDx + K 
to obtain 

h°(mDx + K) + h°(-mDx) > l-q + ^— l-

—but since mDx is effective, h°( — w£>,)=0, and consequently mDx-¥K is 
effective. (mDx + K)-K<0, so we may set D2 = mDx + K. In either event 
we obtain an effective curve D2 with D2K<0, and of course some 
irreducible component D of D2 will have negative intersection with K. 
Note that since D- K< 0 and 5 is minimal, DD > 0. Q.E.D. 
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Now, assume the fibers of ty are irrational of genus g. Let D be an 
irreducible curve on S with DK<0, and consider the linear systems 

\D + nK\, n = 0,1,2, . . . . 
These are eventually empty: for sufficiently large n 

D(D + nK) < 0 ; 
but D, being irreducible with nonnegative self-intersection, has nonnega-
tive intersection number with every effective divisor on S. We can thus 
choose an integer n such that 

h\D + nK)> 1, 
h°(D + (n + l)K) = 0. 

Let G be a generic curve in the system \D + nK\; since 
GK= DK+nKK<0, 

some irreducible component G0 of G will have negative intersection 
number with K. Let us first see that <70 cannot be contained in a fiber C of 
^f\ if we write 

C = 2 »,c;> 
then 

0 = Cr C = n,Cr C, + 2 n,C, • Cy, 

C being connected, the latter term is strictly positive, and so 
C , C , < 0 for all/. 

Since S contains no exceptional curves of the first kind, then, 
CrK>0 for all/. 

Thus, no component of a fiber of ty has negative intersection number with K; 
accordingly, our curve G0 cannot lie in a fiber, and so it must have positive 
intersection number k = G0C with C. 

The argument now splits up into two cases: 

Case 1: q>2 

Consider the representation 
* : G0->E 

of G0 as a A>sheeted cover of E; if ^ : G0-^E has b branch points, by 
Riemanh-Hurwitz 

*(G0) = * ( 9 - 1 ) + I + ! 

and in particular, if k > 2, then 
IT(G0) > q. 
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In this case, from the Poincare residue sequence 

o-*fl!->a!(G0)-^o^o 

and 

h%Ql
G) = 7r(G0) > h^a*) 

we deduce that 

h°(Q2
s(G0))*0. 

But 

/i°(fi|(G0)) = h°(K+G0) < h°(K+G) 

= h°(D + (n+l)K) 
= 0, 

so this is impossible. G0 must thus have intersection number 1 with C and 
therefore is mapped biholomorphically onto E by ty. Note that since 

TT(G0) = q and G0-K < 0, 

we have 
G0- G0 > 2q — 2. 

Now let Q and Cv be two distinct generic fibers of ^ : 5—>£, and 

G, being homologous to G0, by Riemann-Roch 

h%G])>x(es),
G^-G'K 

, , Go-G0-Go-K 
= \ - q + -2 

> 1, 
so G, is effective. On the other hand, since G0 and G{ are homologous and 
not linearly equivalent, G, cannot contain G0; thus G, and G0 each meet 
the generic fiber C in a single point, and these points are distinct. But 
inasmuch as the line bundles [Cx] and [Cv] on S both restrict to the trivial 
bundle on C, 

[Gi]\c-[G0]\c-

The single points G0C and GXC are thus linearly equivalent on C, 
contrary to the hypothesis that C is irrational. 

Case 2: q=\ 

Here our previous argument fails—a priori, G0 could very well be a 
multisheeted unbranched cover of E— and so we must employ a some-
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what subtler approach. Certainly, from the above we may conclude that 

"■(Go) = 9 = 1 . 
Write 

G0K= -d, d > 0 ; 
then, by adjunction, 

G0-G0 = d. 

Now choose a fixed point \0&E, and for each X e £ set 
G \ = G0+ Cx - C v 

(7X is once more homologous to G0, and by Riemann-Roch 

h<HGx)>l-q+
G°'G°-Go'K 

> d; 
in particular Gx is effective. Note that in fact we must have h\Gx) = d: 
since no curve in the system \GX\ can contain G0, \GX\ cuts out on G0 a 
linear system of degree d and dimension h°(Gx)— 1; if h°(Gx) were rf+ 1 or 
greater, this would imply that Gx was rational. 

Now choose d-\ generic points px,...,pd_x on S. For generic X&E, 
there will be a unique curve in the system \GX\ passing through the points 
Pd we will denote this curve by Hx. For two generic points X,X'E:E, Hx 

and Hx- will intersect in d points, consisting of pl,...,pd_l and an addi-
tional point, which we will call Q(X,X'). Note that the points Q(X,X') fill up 
the surface S, since the curves {Hx}x do and on any Hx the divisors 

Q(X,X')-Q(X,X") = (Hx,-Hx..)\Hy 

^(Cy-Cx..)\Hx 

fill up Pic°(//X). Now, considering the elliptic curve £ as a group with 
origin XQ, for any p. £ E set 

F, = U G(A,M"A). 

The points of FM are parametrized by the quotient of E by the involution 
XH*JU — X, and so F^ is a priori either a point or a rational curve; since the 
points {Q(X,ii — X)}M X fill up S1, it follows that for generic ju.E£, i^ is a 
rational curve. S thus contains a one-parameter family of rational curves 
—but since any rational curve on S lies in a fiber of ^ and the generic 
fiber is irreducible, this is impossible. Q.E.D. 

Note that by the Riemann-Roch formula 
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if the holomorphic Euler characteristic x(©s) of S is negative, then either 
c] or c2 is. We have, accordingly, a third 

Theorem. / / S is minimal and x(©s) < 0, then S w ruled. 

A Brief Introduction to Elliptic Surfaces 

An elliptic surface with base E is a surface S and a map ^f: S^E to a 
curve E such that the generic fiber of ^ is an irreducible elliptic curve. 
Elliptic surfaces form a far more varied class than ruled surfaces: for one 
thing, whereas all fibers of a ruled surface are irreducible and smooth, an 
elliptic surface may have singular, reducible, and/or multiple fibers; for 
another, while all fibers of a ruled surface are of necessity isomorphic to 
one another, the complex structure of the fibers of an elliptic surface will, 
in general, vary from fiber to fiber. The various questions arising from 
these considerations—what configurations of curves may occur as reduc-
ible fibers of elliptic surfaces and how they affect the global geometry of 
the surface; what variations of the complex structure of the fiber are 
possible, especially around singular fibers—are both fascinating and, to a 
large degree, tractable. We are not able, in the present context, to go into 
these questions fully; the interested reader is referred to the papers of 
Kodaira, "On compact complex analytic surfaces," I, II, III, and IV, listed 
at the end of this chapter. One phenomenon associated to elliptic surfaces, 
however, unlike anything we have dealt with previously and warranting 
some discussion is that of multiple fibers, which we now describe. 

Let us first say what a multiple fiber is. If ¥ : S->E is any holomorphic 
map of a surface S onto a curve E, then for generic p&E, the pullback 
t * z of a local coordinate z on E centered around/? will vanish simply to 
order 1 along the fiber ^~\p) of ^ over/?. A fiber C = ^ '(/?) of M* along 
which the pullback of a local defining function z for pEE vanishes to 
order m>2 is called a multiple fiber of multiplicity m. (More properly, if 
C = "ZCj is reducible, and ty*z vanishes to order n, along Ct, we say that C 
is multiple if the greatest common divisor of the n, is m > 2.) We note first 
a few points about a multiple fiber Cp: 

1. Since the divisors Q=(^ '* (z — X)) on S are all homologous, includ-
ing (ty*z) = mC , we see that m-Cp is homologous to a generic fiber C of "if. 
In particular, 

C - C = 0 and C■ K = — CA • K. 
P P P m A 

2. Similarly, if y.A^S is any holomorphic arc meeting the multiple 
fiber Cp transversely at y(0), the pullback 7*^*7 vanishes to order m at 0; 
thus the map ¥ ° y expresses A locally as an m-sheeted cover of its image in 



SOME IRRATIONAL SURFACES 565 

E, with a branch point of multiplicity m at 0; in particular, 7(A) will meet 
every fiber near Cp not once but a total of m times. Likewise, if y(A) meets 
Cp with multiplicity k, then *<>y expresses A as an mA>sheeted cover of its 
image, totally branched at 0, and y(A) will meet fibers near Cp a total of 
mk times. 

Now, it is easy to see that if the generic fiber of a map ¥ : S-^E is 
rational, then no fiber Cp may be multiple: we would have 

CpCp = 0 and CpK=-l, 

contradicting at the very least the integrality of the virtual genus ir(Cp). If 
the generic fiber of ¥ is of genus g > 2, then we see in the same way that a 
multiple fiber Cp must have multiplicity m dividing g — 1, and the genus of 
Cp will be g' = ( g - 1)/ m + 1< g. On the other hand, if * : 5 - » £ is elliptic, 
^ may have multiple fibers of any multiplicity, all of the same genus 1. 

We can construct a map ¥ : S—>A of an open surface S to the unit disc 
A c C with a multiple fiber at 0 as follows. Let F be any elliptic curve, 
given as the complex plane with Euclidean coordinate w modulo the lattice 
A = { 1 , T ) . Let z be the coordinate in the disc A, and consider the automor-
phism 

<p: AxF-*Ax F 

given by 

<p(z,w) = (e2™/m-z,w + — V 

<p has order m and all powers <p' of y are fixed-point-free; let S be the 
quotient of A x F by the group {<p'} and A x F -» S the quotient map. The 
map 

«//: AxF—>A 
(z,w)h*zm 

factors through S to give a map 
* : S^A 

whose fibers Cx = ̂ r~\X) are all elliptic curves. Now for X^OeA the 
divisor ir*Cx consists of the m elliptic curves {{«} xF:em=X} each taken 
singly, while the divisor w*C0 consists of the single curve {0}XF, taken 
with multiplicity 1 since the map ir is unbranched. C0 is thus a multiple fiber 
of ¥ , of multiplicity m. 

More generally, we can alter any elliptic surface S0-».E to create 
multiple fibers, as follows. Start with any point p £ E with Cp smooth and 
nonmultiple. By way of preparation, let U be a small disc around/? so that 
^ 0 has no singular fibers over U, let z be a local coordinate in U centered 
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aroundp such that U— {\z\< 1), and let 2 0 = '^(7l(t/). Take a section a of 
^0—that is, a map a:U^>S0 such that <f?0°a = id, and for each zGU 
consider the fiber C, as a group with a(z) G C. as the origin. The points of 
order exactly m in the fibers Cz form an unbranched cover of U and so 
break up into disjoint arcs; choose one such arc and call it /?. The elliptic 
curve Cz may be realized as C modulo the lattice {1,T(Z)} , with a(z) 
corresponding to the origin and /?(z) the point \/m. For any complex 
number /, then, let t-fi(z) denote the point of C, corresponding to ( / / w ) £ 
C; this is well-defined. 

Now define 
2 c A x 2 0 

by 
2 = {(w,r): z(r)=wm}. 

Note that the projection w: 2—»A expresses 2 as elliptic over A, and that 
the fibers over points w and e2m/mw are naturally identified with the fiber 
Cwm of ^ 0 ; accordingly, we can define an automorphism (p on 2 by 

<p(w,r) = {e2wi/mw, r + /3(wm)). 

The quotient 2 , of 2 by the finite group {<p'} is, as in the first example, an 
elliptic surface over A via the map <irl(w,r)=wm = z with a fiber of 
multiplicity m over w = 0. Moreover, the fiber Cz of 2 , over z is iso-
morphic to the fiber of the original surface S over z; indeed, the inverse 
image ^ f ' (A —{0}) of the punctured disc in 2 , and the inverse image 
^ ' ( U — {0}) are isomorphic as elliptic surfaces via the map a:2—»S0 
induced by 

a : 2 -> S0 

: (w,r)M>r + ( logtv) -/3(wm) 

away from the fibers over 0. We can thus glue the new surface 2 , into S0 

in place of the original 2 0 ; i.e., we can set 

51 = 50-*0-1(0)ua21 

to obtain an elliptic surface St-*E, isomorphic to S0 away from C = 
^ ' ( 0 ) and having a fiber of multiplicity m over/>. 

This operation—replacing an ordinary fiber of an elliptic surface with a 
multiple one—is called a logarithmic transformation; it was invented by 
Kodaira. One warning: if S} is obtained from S0 by a logarithmic transfor-
mation on the fiber Cp as above, then it is clear from the formulas that 
under the isomorphism 

S0-Cp = St-Cp, C , « V ( 0 ) , 
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a curve in S0 transverse to the fiber Cp may be mapped to a curve in 
5, - Cp having an essential singularity along Cp. There may be, accord-
ingly, very little correlation between closed curves in S0 and in 5, ; indeed, 
S^ may be algebraic and 5", not, or vice versa. 

One basic fact about multiple fibers is the 

Lemma. If B is a smooth multiple fiber of multiplicity m in the elliptic 
surface ty: S-»E, then the normal bundle N B / S = [B]|B of B is torsion of order 
exactly m in Pic°(B). 

Proof. It is easy to see that the normal bundle to B is m-torsion: the 
bundles {[^*(p)]\B}peE form a continuous family, trivial for p¥=qE¥(B) 
and hence for all/?, including ^*{q) = [mB]. To see that NB/S is indeed of 
order m, choose a local coordinate w on E centered around q=^{B), and 
a covering U={Ua] of a neighborhood U of B in S by small polydiscs. 
Since the function V*w vanishes to order m along B, we can in each Ua 

choose an mth root of ^*w, i.e., a holomorphic function za on Ua with 

z™ = ^*w? 

write 
za = e2**«/m-zp in Uan Up 

foTkap&{0,l,...,m-l}. 
Since za vanishes to order 1 along B in Ua, the 1-form dza restricted to B 

gives a nonzero section of the conormal bundle N^/s in B n Ua; transition 
functions for N%/s are thus given by the constant functions 

dzp 

Suppose that the */th power Ng/S (and hence the dth power (N^/S)
d is 

trivial. Then the cocycle 

{gap = e2"idk^m}<EZ\B,C*) 

is a coboundary, i.e., we can find constants / „£C such that for all a,B, 

~2vidkap/m __ _°£ 

V 
We may normalize the /a's by taking /, = 1; it then follows from the last 
equation that every /„ is a (d/m)th root of unity. Now let 

z' = I -zd 

'or 'a " o • 

The functions z'a E 0 (Ua) agree on the overlaps Ua n Up and so define a 
single function z ' E 0 ( t / ) , with 

z'm = ty*wd. 
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Moreover, z', being constant along the fibers of ^ , is in fact induced from 
a function w' on a neighborhood of q in E satisfying w""— wd\ but since wd 

vanishes to order exactly d at q, d= m-ord?(w>') is a multiple of m. We see, 
then, that Ng/S is trivial if and only if m divides d. Q.E.D. 

The proof of this lemma suggests a way to invert the logarithmic 
transformation; we will sketch this construction, leaving the details as an 
exercise for the reader. Let B be a smooth fiber of multiplicity m on 
S^E, U={\w\<]}cE a neighborhood of *,(#)> and 2 1 = * r ' ( t / ) . 
Consider the set 2 of pairs (p,za), where p is a point of 2 , c S , and za a 
function element around/? satisfying za

OT = ^ f w. By the proof of the lemma, 
2 forms a connected unbranched, m-sheeted cover of 2 , , and the map 

z = za 

2 — > A 

expresses 2 as an elliptic surface over the disc, with no multiple fiber: for 
X=£0, the fiber z " '(A) maps one-to-one onto the fiber ^,_1(Am) of Sv while 
z - 1(0) forms an m-sheeted cover of the multiple fiber B of Sx. Now take 
an arc y in Sx transverse to B; y then forms an m-sheeted cover of its 
image in E, branched totally over 0. The inverse image of y in 2 then 
consists of m disjoint arcs, each transverse to the fibers of z„. Choose one 
of these components and call it y, and let <pA be the isomorphism 

9 x = z - | ( \ ) — > 2 - 1 ( c w / ™ - X ) 

consisting of the natural identification 

z-'(X) - f | ' ( r ) - z" V"/m-X) 
composed with a translation, and carrying y-z~'(X) to y-z_1(e2m/m-X). The 
automorphism ep of 2 given by 

<P(P>Z«) = (<PdPl e2^mza) (X = za(/>)) 
then has order m and is fixed-point-free away from z~'(0), where it is the 
identity. The quotient 2 0 of 2 by the group {<p'} is again elliptic via the 
map w = zm and is without multiple fibers; moreover, the complement of 
w'\0) in 2 0 is isomorphic to the complement of ^,"'(0) in 2 , , and so we 
may plug 2 0 into 5, - ^ j " '(0) to obtain a surface S0, isomorphic to 5 , 
outside ^,"'(0) and having a nonmultiple fiber over q&E. The reader may 
verify that the operation is indeed inverse to the logarithmic transfor-
mation—i.e., that if we perform a logarithmic transformation to S0 

(making suitable choices of arcs a,B), we get 5, back again—and so show 
that every elliptic surface with smooth multiple fibers is obtained from an 
elliptic surface without multiple fibers by means of logarithmic transforma-
tions. 
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We come now to the main point of our analysis of elliptic surfaces: the 
formula for the canonical divisor. We will consider here an elliptic surface 
S —* E, all of whose multiple fibers are smooth—all of our formulas apply 
as well to the general case, but the proof is substantially harder. 

To start, let Cx ,..., Cx be n generic fibers of ¥. Consider the Poincare 
residue map 

0->fi!->fi!(Qi + --- + CK)-+QQ1^ -H>0. 

The image in H0(®a1
Cx) = ®H\Cx,Q

l
C)i)atCn of ^°(5,R|(2C^)) has 

codimension at most h\S,Q2
s) = q(S); thus 

h°(K+£cA>n+ps-q. 

In particular, for n large, we see that K+H"=iCXi is linearly equivalent to 
an effective divisor D. Now any fiber C of S has self-intersection 0 and 
hence, by adjunction, intersection number 0 with K. D, accordingly, has 
intersection number 

^c A = (*+,£ cAi)-cx = o 

with the fiber Cx and so must consist of a linear combination of fibers and 
components of fibers. We claim that D cannot contain a component of a 
reducible fiber C unless it contains the entire fiber. To see this, decompose 
C into irreducible components 

C = 2 n.Q 
and write 

D= D' + ^m^. 
with D' disjoint from C. By the standard argument (p. 555), every 
component C, of C has strictly negative self-intersection, and so by the 
hypothesis that S contains no exceptional curves of the first kind, KQ >0 
for all i. Writing 

K=D-2 CXi, 

this implies that for any i 

2 mjCrCj > -m,C,C,.. 

Now, 

0 = C - C , = niCrC, + ^nJCjCi, 



and so we obtain the inequality 

2 ^Crq 

SURFACES 

for any i; 

it follows that all the ratios mj/n; are equal. Thus, if C is nonmultiple (i.e., 
the coefficients «, have no common divisor), D contains the entire fiber 
C = 2«,C, with some multiplicity. 

From the above, we see that we can write the canonical divisor 

as the pullback of a divisor D on E, plus a linear combination of the 
multiple fibers Bt of S. If 2?, has multiplicity mt, then we can incorporate 
any integral multiple of miBi into D; thus we may take 

0 < p, < m,.- 1. 
This determines p,: by the adjunction formula, 

KBi =[K+ B^^K^ + m]^ =0; 

since the bundle [Bj]\B is torsion of order exactly mt, this implies 
ft = m, ~ I, 

i.e., 
/<:=**/) + 2 (m,-1)5,, 

Finally, we ask for the degree d of D. We will find d by computing 
h°(K+'2,Cx) for n generic fibers CX,...,CX of 5" in two ways: by Rie-
mann-Roch on E, and on S. First, note that since 

[K+^Cx]\Br K\B = [(m,-l)Bi]\B, 

the divisor 2(mj — l)Bj is a fixed component of the series |K + SCA |. We have 
thus for n large 

h°(S,es(K+2 CK)) = h0(E,6(D + 2\i)) 
= degD + n-g(E) + 1 

by Riemann-Roch on E. On the other hand, by Riemann-Roch on S, 

h°{K + ^Cx)-h^K + ^CXi)=X(es), 

inasmuch as h\K+ 2 Cx) = h°(- 2 CK)=*0, and A:-CA=CA-Cx =0. 
The problem hinges on determining h\K+ 2 C\)l to this end, consider 
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the sequence 

o-es(-2Q,)-*05-*©0c„-o. 
From the long exact cohomology sequence 

0-*Ho(s,es(-2,CK))^H0(S,6s)^(BHo(CXi,6cJ 

^ J r / ' ( ^ 0 5 ( - S Q , ) ) ^ / / , ( S , 0 5 ) ^ © / / ' ( C v 0 C A ) 

associated to this sequence, we see that 

hi(s,6(K+%cX:)) = A'(s,e(-SqJ) 
= 0-l + n + k, 

where k is the dimension of the kernel of the map H\S,&s)—> 
®Hi(CXj,6Cx) induced by restriction. To compute k, note that by the 
functoriality of the Dolbeault isomorphism—i.e., the commutativity of the 
diagram 

Hl(S,6s)^>®H\CK,eCx) 

II II 
H*\S) ->®H*\CX) 

II II 

—this is just the number of holomorphic 1-forms on S whose restriction to 
each of the C^ is identically zero. 

If TJ is any 1-form on S with i j | c = 0 , then the restriction of 77 to any 
smooth fiber Cx of S is likewise zero in the de Rham cohomology of Cx, 
and hence identically zero. Thus any 1-form vanishing on a single fiber of 
S vanishes on all fibers, and so by our previous argument (p. 553), is 
induced from a 1-form on the base E; conversely, of course, the pullback 
^*co of any 1-form w on E vanishes on every fiber of ^ . The number of 
1-forms on 5 vanishing on the curves Cx is thus just the genus g of E; we 
have, accordingly, 

hl(K+2CK) = h\-^Cx) = g + n-l 

and 

h°(K+ZCXi) = X(es) + g + n-h 

Combining this with the formula for h°(K + '£Cx) obtained from 
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Riemann-Roch on E, we see that 

X(es) + g + n-l = h°{K+2CK) 
= deg£> + n — g+ 1, 

and hence deg D = 2g — 2 + x(©s)-
Summarizing, we have 

The canonical bundle K of an elliptic surface S —» E with multiple fibers 
Bj of multiplicity m; is given by 

^ = p + 2(mrl)4 
where 

deg£> = 2 g ( £ ) - 2 + x ( 0 s ) . 

Note that a suitable multiple mK of K will always be the pullback 
of a bundle on the base E, of degree 

m(2g-2 + x(05) + 2 ^ 1 ) -

Kodaira Number and the Classification Theorem I 

In terms of their gross characteristics, algebraic curves may be said to fall 
into three classes—genus 0, genus 1, and genus g>2—according to 
whether the canonical bundle of the curve has negative, zero, or positive 
degree. Analogously, in trying to classify surfaces, we consider the be-
havior of their canonical bundles. Of course, we have for surfaces no 
notion completely analogous to the degree of a line bundle on a curve; nor 
does it suffice to consider only the dimension of the linear system |AT|: as 
we have seen in our discussion of elliptic surfaces, there may exist surfaces 
on which a multiple of K is effective and nonzero, while pg = 0. Indeed, 
taking the quotient of the Fermat quintic 

S' = (X£ + X? + Xi + Xi=0) c P3 

by the fixed-point-free group of automorphisms generated by 

<p[X0,Xx,X2,Xz] = [X^e^/'X^^X^'/'Xj], 

we obtain a surface S (called a Godeaux surface) on which the canonical 
bundle is actually positive but has no sections. We therefore consider not 
just the dimension of the linear system |AT| but all the plurigenera Pm(S) = 
H°(S,B(mK)). There are, in broad terms, four possible types of behavior 



SOME IRRATIONAL SURFACES 573 

for the sequence Pm(S): 

1. It may be—as, for example, on a rational surface—that Pm(S) = 0 
for all m. Such a surface is said to have Kodaira number — 1. 

2. Assuming that Pm(S)¥=0 for some m, we may ask whether the 
integers P„(S) are bounded. If in fact they are, then Pm(S) must be either 
0 or 1 for all m: if for some m the bundle mK had two linearly independent 
global holomorphic sections a and T, then the bundle mnK would possess 
at least the n + 1 independent sections 

CT",0"-|(8>T,...,0®T',~l,Tn. 

A surface whose plurigenera are bounded but not all 0 is said to have 
Kodaira number 0. 

3. If the sequence Pm(S) is unbounded, but 

Pm(S)<c-m 

for some constant c, then S is said to have Kodaira number 1. 
4. Finally, if the sequence Pm(S)/m is unbounded, S is said to have 

Kodaira number 2, and to be of general type. 

The Kodaira number of a surface S, usually written K ( 5 ) , can also be 
thought of as either one less than the transcendence degree over C of the 
quotient field of the pluricanonical (graded) ring 

© H°(S,e(mK)) 
m=0 

or alternatively as the dimension of the image of S under the rational map 
given by the linear system \mK\ for m large ( - 1 if the map is not defined 
—i.e., if \mK\ is empty—for all m). 

For example, any ruled surface S—> E has Kodaira number - 1 , as we 
have seen. An elliptic surface S - * E, on the other hand, may have Kodaira 
number — 1, 0, or 1. As we saw in the last discussion, if {2?,} are the 
multiple fibers of ¥ , mt the multiplicity of 2?,, and m a common multiple of 
the mt, then 

mKs = V*L 

for some line bundle L-+E of degree 

deg(L) = w | 2 g -2 + x(05) + 2 ^ ) > 

where g is the genus of E. The Kodaira number of S is clearly - 1 if 

2^<2-2,-x<e,) 
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and 1 if 

2^->2-2g-x(0s), 

while in case deg(L) = 0, S will have Kodaira number either — 1 or 0 
depending on whether some power of L is trivial or not (we shall see later 
that in fact deg(L) = 0 implies L" = 0 for some n). Note one point that 
emerges from our description of the canonical bundle of an elliptic surface 
S: if KD > 0 for any effective curve D on S (in particular if some multiple 
of K is effective and nonzero), then K(S)= 1. 

The version of the classification theorem for surfaces we shall prove here 
consists of describing in turn surfaces of Kodaira number —1,0, and + 1. 
The description of surfaces of general type is not yet in as complete a 
form. We begin with the relatively easy case K = + 1; we will prove that 

Any surface S with Kodaira number 1 is elliptic. 

The proof is fairly straightforward. We note first that if S is minimal 
with K(S) = 0 or 1, then c2(S) = 0: if cf(S) were negative, then S would be 
ruled, while if c2(S) were positive, we would have by Riemann-Roch 

h°(mK) + h°(-(m-l)K) > mK'mK~mK'K + X(&) >~rn2 

for m large, so that either h°( — (m— 1)^T)>0—in which case K ( 5 ) = —1 
—or h\mK) > c2m2/4, i.e., <c(S) = 2. 

Lemma. If any multiple D = mK of the canonical bundle on a minimal 
surface is effective, and D • D = 0, then all irreducible components D; of D 
satisfy 

KDt = 0, £>,/>, = 0 or - 2 . 

Proof. Write 
D = S ", A . ", > ° ' Dt irreducible; 

for each /' we have 

KDt = - ( « , A A + 2 njDj-D] > — DrD„ 
m\ j^j J J j m 

and it follows that KDj >0 for all /' since otherwise Z>, would be excep-
tional of the first kind. Now from the equation 

0 = DD = m^itiK-D, 

we see that in fact KDL = 0 for all /', and hence that D--Dt <(ni/m)K-Di=0 
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must be either 0 or —2 for each /. Each component Z>, is thus either 
rational or elliptic. Q.E.D. 

Note that the lemma applies as well to curves D homologous to a multiple 
of K. 

We may use this lemma to describe surfaces S with K(S)= 1. For some 
m, the linear system \mK\ contains at least a pencil {Dx}, and by the 
lemma all components of each curve Dx are either elliptic or rational. 
Since the rational components all have negative self-intersection, more-
over, they cannot vary; thus if F is the fixed component of the pencil 
{Dx}, the generic element of the pencil 

{D{ = DX-F} 

will contain only elliptic compoments D{,...,DX . Inasmuch as all compo-
nents of Dx have intersection number 0 with K, and hence with Dx, we 
have 

D{Di = DxDx-2DxF+FF 
<DXDX + FF 
<DxDx = 0. 

But since D{ moves in a pencil without fixed component, DXDX >0 ; thus 
D{Dx = 0. Finally, by the lemma Z^-Z)^ = 0 and obviously Dx-DX/ > 0 for 
i¥=j, so it follows that D{ -D{ —0 for all / andy, i.e., 

The pencil {D'x} has no base points, and its generic element D'x consists 
of a disjoint collection of elliptic curves. 

By the construction introduced in the proof of the Castelnuovo-de 
Franchis theorem (p. 557), the map 

■n: S^>P' 
given by the pencil {DQ factors 

IT: S^E^P1 

through the curve E={D{}Xi consisting of connected components of 
curves in the pencil {D{}, and the fibers of 77' are generically irreducible 
elliptic curves; thus S is elliptic. Q.E.D. 

Note, incidentally, that by this argument a minimal surface S with 
KK=0 cannot have Kodaira number 2: if Pm(S)> 1 for any m, S will be 
elliptic and so K ( 5 ) < 1. 

We next consider surfaces of Kodaira number - 1 . We will prove that 

A minimal surface S with K(S) = - 1 is either P2 or ruled. 
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A large part of the work involved in proving this has already been done: 
if q(S) = 0, then by the Castelnuovo-Enriques theorem of Section 4 the 
vanishing of P2(S) implies that S is rational, and our discussion in Section 
3 of minimal rational surfaces shows that 5 is either P2 or rational ruled. 
On the other hand, if either c2(S) or c2(5) is negative, then, as we have 
seen, S is ruled, so we may assume both are nonnegative; from this it 
follows that 

0 < ^ ^ = x ( © s ) = l - 9 , 

i.e., 

c? = c2 = x(6s) = 0 and q(S)=\. 

Let S be a surface with these numerical characters, and assume that S is 
not ruled. We will describe the geometry of S; our principal object for the 
present will be to show that Pm(S)¥z0 for some m. 

We start with some generalities. First, the Albanese map ^ : S—>E maps 
S to an elliptic curve E; assuming S is not ruled,the fibers will have genus 
g> 1. Since, moreover, x (S)=0 , by the formula of p. 510, all fibers of ^ 
must be smooth irreducible curves of genus g. Note in particular that S 
contains no rational curves, since any such curve would necessarily lie in a 
fiber of the Albanese map. Also, since S is not ruled, by the argument of p. 
561, 5 contains no effective curve having negative intersection number 
with the canonical bundle K; from this follows the basic 

Lemma. If D is any curve on S with 

KD = DD = 0, 
then D consists of a disjoint collection of smooth elliptic curves Dj5 each 
satisfying D- D; = K • D; = 0. 

Proof. The proof is not difficult: writing 

£ = 2",A, 
we see first that, since no Z>, can have negative intersection number with K, 
and 

KD = 'ZniKDi = 0, 

we must have 
KD, = 0 for all/. 

Then, since S contains no rational curves, 
D, ■ D, > 0 for all /, 
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and the inequality 

0 = D ■ D = 2 «,2A • A + 2 niniDi ■ DJ 

>yLnfDiDi > 0 
implies that 

DrDj = 0 for all ij, 

so the curves Z), are disjoint. Finally, since 5 contains no rational curves, 
any irreducible curve of virtual genus m = 1 on S is smooth. Q.E.D. 

The main point of our study of 5 will be to show that S is elliptic with 
rational base. The argument for this proceeds in three steps: we show first 
that S must contain an elliptic curve transverse to the fibers C of ¥ , 
second that it must contain two disjoint such elliptic curves, and finally 
that it must contain an elliptic pencil transverse to the fibers of ty. 

Step 1. S contains an irreducible curve F with K F = F F = 0, F C > 0 , 
transverse to the fibers of ty. 

This is the hardest of the three parts of the argument. We shall have to 
use two different approaches, depending on whether the genus g of the 
fibers of the Albanese map ^ is 1, or more than 1. 

Case I: g>2 

In this case, we will show that S contains an effective curve homologous to 
2K; by the last lemma, every component of such a curve will be elliptic, 
and as we shall see, one must be transverse to the fibers. 

Note first that since the fibers Cx of ^ have self-intersection 0, by the 
adjunction formula 

KCx = 2g-2. 

For each X G E, consider the linear system 
|2A-+CA|. 

Since 

h2(2K+Cx) = h°(-K-Cx) < h°(-K) = 0, 

by Riemann-Roch we have 

n / , (2K+CX)(K+CX) 
h°(2K+ Cx) > Y = 3g - 3. 

On the other hand, the line bundle [2K+ Cx] on S restricts to the 
bicanonical bundle 2KC on any fiber C0, and by Riemann-Roch for 
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curves, 

/*o(Co,0Co(2KCo)) = 3 g - 3 . 

Now, if for any X the restriction map 

rx : H°(S,es(2K+ Cx)) -> H%C0,6cpKCo)) 

failed to be injective, 2K+ Cx — C0 would be effective, and we would be 
done. Assume, on the other hand, that rx is injective (and hence an 
isomorphism) for all X. In this case, if we choose any divisor D = 
P} + • ■ ■ + P4g-4 in the bicanonical series \2KC |, then for every X there will 
be a unique curve Dx in the series \2K+ Cx\ cutting out D on C0. Consider 
then the incidence correspondence 

I C EXS 

defined by 
I={(X,p):PGDx) 

Since the curves Dx are distinct, the image of / under the projection TT2 

onto S cannot be a curve; since / is compact, it follows that ir2:I->S is 
surjective. Thus, for any QGC0, Q=£ Pt, there will be some curve Dx 

containing Q—but then Dx, containing the 4 g - 3 points />i , . . . , i>
4 g_4 and 

Q on C0, will contain C0. F= Dx — C0E \2K+ Cx — C0\ is thus effective, and 
we are done. 

Case 2: The fibers of the Albanese map have genus g= 1 

Note first that if the Albanese map S^: S—>£ had multiple fibers, then by 
the formula for the canonical class of an elliptic surface, 5 would have 
Kodaira number 1; assume therefore that Ŝ  has no multiple fibers. In 
particular, this means the canonical class of 5 is zero in homology. Let H 
be any curve on S having positive intersection number m with the fibers Cx 

of ty. In each fiber Cx of ^ , consider the set of points 

{ ^ E C A : [mp,x] = [ / / ] | C x GPic(C x )} . 

Inasmuch as the map 
£ - » P i c ° ( £ - ) s E 

given by 
p\^[mp-mp0] 

is simply multiplication by m on the group E, there are exactly m2 points 
{pf} in each fiber Cx, differing from one another by 1/w lattice points. 
The curve 

F= U {AX} 
A, I 
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is thus an unbranched /n2-sheeted cover of E, and so every component Ft 

of Fis elliptic. Since Kis homologous to 0, KFt= 0 and hence Fj-Fj =0 , so 
we are done. 

The remaining two steps apply equally in cases g = 1, g > 2. 

Step 2. S contains two disjoint irreducible elliptic curves F and F' satisfying 
K • F = K • F ' = 0, F' • C > 0, F • C > 0, transverse to the fibers of * . 

We have already located one such elliptic curve F in step 1. For any n, 

[nK+nF]\F= nKF = 0; 

consider the sequences 
0 -* es(nK+ (n - 1)F) -> 6s(nK+ nF) -> ©F -» 0. 

We have, for n > 2 

h2(nK+(n-\)F) = h°{-{n 

and likewise 

h2(nK+nF) = h°(-(n 
But 

h\eF) = 1, 
and so it follows that h\nK+nF)> 1. By Riemann-Roch, then, 

h%nK+nF) = (nK+nF)«n
2-

l)K+nFKX(6s) + h>(nK-rnF) 

= h\nK+nF) > 1, 
so nK+nF is equivalent to an effective curve G„. We note that G„ cannot 
be simply a multiple of F for all n: if, for example, we had 

G„ = nK + nF = m f 
and 

G„+i = (" + l ) ^ + ( n + l ) / 7 = «'/", 
we would have 

K~(m'-m-\)F, 
and since G„ + 1C>G„C,m'>m, so this would imply pg¥=0. Thus, some G„ 
contains at least one component F' distinct from F, and by our lemma, F' 
is elliptic with KF' = 0. Finally, since G„F= FF=0, F' is disjoint from F, 
and since FC>0 this in turn implies that F' is transverse to the fibers C 
of * . 

Step 5. S is elliptic with rational base. 

Let F and F ' be the two disjoint elliptic curves found above. We have 
[2K+2F+2F']\F = [2K+2F]\F = 2KF = 0 

-l)K-(n-l)F)=0 

-2)K-nF) = 0. 
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and likewise for F'\ consider the sequence 

0 -» es(2K+ F+ F') -» es(2K+2F+2F') -» 0 F 0 6F -» 0. 
We have 

h\2K+F+F') = h°{-K-F-F') = 0 
and likewise for h\2K+2F+2F'); since 

h\eF®oF.) = A 1 ^ ) © * 1 ^ ) = 2, 
it follows that 

h\2K+2F+2F') > 2. 

By Riemann-Roch, then, 

h%2K+2F+2F>) = ( ^ + 2 F + 2 F ^ + 2 F + 2 F 0 

+ x(6s) + / ' l ( 2 ^ + 2 F + 2 F ' ) 
= h\2K+2F+2F') > 2, 

i.e., the system \2K+2F+2F'\ contains at least a pencil {Gx}. By the 
lemma of p. 576, every Gx consists of a disjoint collection of elliptic curves; 
and we may apply once more the construction made in the proof of 
Castelnuovo's theorem to obtain a map 

S^B 
of S onto a curve B, with fibers consisting of the variable components of 
the curves {Gx}: thus S is elliptic. Finally, since GxF=FF=0, every 
component of Gx is either equal to or disjoint from F and so, as before, 
transverse to the fibers C of St'. The base B of an elliptic pencil on S must 
therefore be rational: if not, we could lift a holomorphic 1-form from B to 
S to obtain a 1-form on S not vanishing along the fibers of SI'. 

The assertion we set out to prove is easily seen, now that we have 
expressed S as an elliptic surface w: S-^P1 with rational base. If the fibers 
C of the Albanese map St' on S have genus g > 2, then the canonical bundle 
Ks has positive intersection with C, and we need only know that S is 
elliptic to conclude that K(S)= 1. On the other hand, if the fibers of St' have 
genus 1, then we have seen that the canonical bundle of S is homologous 
to 0—but some multiple of Ks is the pullback TT*L of a line bundle L on 
P1 and L, having degree 0, is trivial; thus K(S)=0. This completes the 
proof that a minimal surface S with Kodaira number — 1 is ruled. 

In fact, however, we can prove a bit more: namely, 

Enriques' Theorem. A minimal surface S with P4(S) = P6(S) = 0 is ruled or 
P2. 

Proof. This is clear in case q(S) = 0 or q(S) > 2. If q(S)= 1, on the other 
hand, and S is not ruled, then we have seen that either 
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1. The Albanese map ^ on S has elliptic fibers, with some multiple 

fibers; or 
2. S is elliptic with rational base. 
In case 1, applying the formula for the canonical bundle of an elliptic 

surface to ^ : S-+E, we have 

tfs = **/> + £ (m,-l)fi„ 
where degZ)=0; so 

2KS = 2¥*Z> + 2 (2m, -2)5,. 
= (2**£> + 2>,5,.) + 2(m,-2)fl,, 

The first term in this expression is the pullback of a divisor of positive 
degree on E, and so effective; thus 2KS is effective and P2(S)¥:0. 

Assume then that case 2 holds, and let 

m\ S-*Pl 

be the map expressing S as an elliptic surface with rational base. Let B be 
the generic fiber of IT, Bx,...,Bk the multiple fibers of w, and ml,...,mk 

their multiplicities. We have then 

Ks= -2B+'Z(mi-l)Bi 

and, since K(S) > 0, 

; = 1 rni 

with equality holding when K(S) = 0 (note that by (*), k > 3). Order the 
fibers Bt so that m, < m2< • • ■ <mk; we separate the possible values of 
{m,} into four cases: 

1. k>4, 
2. k = 3, mt =2, m2 = 3; in this case by (*) we must have m3>6, 
3. k = 3, mx = 2, m3 > m2 > 4, and 
4. k = 3, m3> m2> mx >3. 

In case 1, 
k 

2KS= -4B+ 2 (2m,-2)5, 
/ = i 

= -4B+^miBi + 'Z(mi-2)Bl 

>^{mi-2)Bi >0 
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is effective, so P2(S)¥:0. In case 4 we have 

3KS = - 6 5 + 2 (3m,-3)5, 

= - 65 + 2 2m,5( + 2 (m,- - 3)5, 

> 2 (^ , -3)5 , >0, 

so ^3 (5 )^0 . In case 3 we have 

4KS = - 8 5 + 4 5 , + ( 4 m 2 - 4 ) 5 2 + ( 4 m 3 - 4 ) 5 3 

= - 6 5 + 3m252 + 3m353 + ( m 2 - 4 ) 5 2 + ( m 3 - 4 ) 5 3 

= ( m 2 - 4 ) 5 2 + ( m 3 - 4 ) 5 3 > 0, 

so 54(5)7^0. Finally, in case 2 we see that 

6KS = - 1 2 5 + 65 , + 1252 + ( 6 m 3 - 6 ) 5 3 

= - 5 5 + 5m353 + ( m 3 - 6 ) 5 3 

= ( m 3 - 6 ) 5 3 > 0, 
so P6(S)¥=0. 

Thus in every case either P4(S)¥=0 or P6(S)^0, and so Enriques' 
theorem is proved. Q.E.D. 

Note that there are exactly four collections of integers m, > 2 that satisfy 
equality in (*): they are 

(2,2,2,2), (2,3,6), (2,4,4), (3,3,3). 

We will see in the following discussion that each of these in fact 
represents the multiplicities of the multiple fibers of a nonruled elliptic 
surface with rational base, and so Enriques' theorem is sharp. 

The Classification Theorem II 

To complete the classification theorem, we discuss surfaces of Kodaira 
number 0; we will find four distinct types of such surfaces. We make two 
observations before starting: by the remarks of p. 574, a minimal surface 5 
with K ( 5 ) = 0 must have c?(S) = 0; and inasmuch as x(©s)>0 and pg(S)< 
1, the irregularity q(S) must be 0, 1, or 2. We proceed now by cases: 

Case 1: q = 0 

There are two possibilities in this case: eitherpg = 0 oxpg= 1. We consider 
these separately: 

Case la: p„=\ 
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Here we have x(©s) = 2, and by Riemann-Roch for 2K 

h%2K) + h°(-K)>2K-2K-2K-K
 + x(es) 

= 2. 
But h°(2K) = 1, and consequently - K must be effective; since K and — K 
are both effective, it follows that the canonical bundle K of S is trivial. A 
surface with these invariants—# = 0 and K=0—is called a K-3 surface; we 
will give a brief description of these surfaces later in this section. 

Case lb: pg=0 

By the Castelnuovo-Enriques theorem, since q(S) = 0 and S has Kodaira 
number 0, we must have P2(S)= 1. Now by Riemann-Roch applied to 3K 
we have 

h°(3K) + h%-2K)>x(es)=l-
But h°(3K) must be zero: We know that there exists a global section a of 
2 AT not identically zero; if we had as well a nontrivial section T of 3K, then 
since P6(S) < 1 we would have 

a3 = A-r2 

for some A E C. But then if a vanished to order k along any curve C in S, T 
would vanish to order 3k/2, and so T/CT would be a global holomorphic 
section of K. Thus A°(3A:) = 0, and so from Riemann-Roch h°(-2K)¥=0. 
As before, then, h°(2K), h°(-2K)^Q implies that 2KS is trivial. A surface 
with these numerical characters—q=pg=0 and 2 K=0—is called an 
Enriques surface; we have already seen one example of such a surface in 
Section 4 of this chapter, and we will discuss them in general at the end of 
this section. 

Case 2: q = 2 

We will prove that 

Any algebraic surface S with q = 2 and Kodaira number 0 is an Abelian 
variety. 

Note first that since x(©s) is nonnegative, we must have/?g= 1. Let T7,,TJ2 

be generators for the space of holomorphic 1-forms on S. If the wedge 
product I),AT)2 were identically zero, the Albanese map ^ on 5 would map 
S to a curve of genus 2; since x(S) = 0 and S is not ruled, the fibers of ^ 
would have genus 1. But we have seen that an elliptic surface over a base 
of genus g > 2 has Kodaira number 1; thus, under the assumption that 
K(.S) = 0, the wedge product w = T J I A ^ is a generator for H°{S,Sl2

s). 
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Consider now the Albanese map ¥ of S onto the two-dimensional 
Abelian variety A = Alb (5). The Jacobian determinant of ty is, of course, 
zero exactly where the forms TJ, and TJ2 are dependent, i.e., on the canonical 
divisor D = (u = i}i/\r}2)', we consider what this locus may be. 

We first dispense with the possibility that the image of D in A has 
dimension 0. If this were the case, then the map 

S- D%A - * ( Z > ) 

would be an unbranched covering. But then, since 

mx{A--%(D))^-nx(A)^T* 

and 77,(5- D) surjects onto 7r,(S), it would follow from the isomorphism 

Ht(S, Z)/torsion —» HX(A, Z) 

that ^ was 1-sheeted—i.e., that ^ was birational. By the structure theorem 
for birational maps (Section 2 of this chapter), then, "9 would be a 
blowing-down map, contrary to the hypothesis that S is minimal. 

We see then that if D^O, its image in A must contain a curve. Suppose 
that this is the case. By the lemma of p. 574, every component of the 
divisor D is either elliptic or rational, and since the Abelian variety A 
contains no rational curves, it follows that D has an elliptic component Z)„ 
with E = ̂ {Di)<zA again elliptic. We may take the origin Q&A to lie on E, 
and consider the map 

JLI: A->Vic°{A) 

given by 

M: \H>[tx(E)-E], 

where tx is translation by X in the group A. Since any map between 
Abelian varieties is, up to translation, a homomorphism, £ = ^(Z),) is a 
subgroup of A, so translation by any point \EE fixes E; on the other 
hand the reader may check, either directly or via the set-up of pp. 315-317, 
that [E] cannot be fixed by all of A. The fibers of /x are thus one-dimen-
sional, and the image B = [i(A) a curve; indeed, since the fiber of ju. over 0 
is a subgroup of A and hence smooth, E constitutes one connected 
component of the fiber n~l(0). Making the construction used in the proof 
of Castelnuovo's theorem (p. 557), we obtain a map 

ju: A—^B 

of A onto a (a priori possibly) branched cover B of B, with E the fiber over 
a point; composing (L with ^ , we obtain a map of S onto B with Z>, a fiber. 
S is thus an elliptic surface—but we have seen that any elliptic surface 
with an effective, nonzero canonical divisor has Kodaira number 1. We 
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conclude that the divisor D must be zero, i.e., the canonical bundle of 5 is 
trivial. The map ^ is then an unbranched covering, and S is an Abelian 
variety. 

Case 3: q—l 

A surface S with these characters—K(S) = 0 and q(S)= 1—is called hyper-
elliptic, and we can give a fairly complete account of such surfaces. We 
start by showing that the geometric genus pg{S) of S must be zero: to see 
this, note that since w,(S) contains a Z-factor, we can construct for any m 
an unbranched w-sheeted cover S^>S. If pg(S) were 1, then, we would 
h a v e X ( 0 s ) = l , 

X(e i ) = m - X ( 0 s ) = m, 

and so 

pg(S ) > m. 

But now a section a G / / ° ( S , n | ) induces a section tr^a£H°(S,6S(K™)): 
since for a n y p & S and any qEwl(p) the fibers of Ks at/? and K§ at q 
are naturally identified via IT, we may set 

^a(p) = o(qi)®---®o(qm)EKsy, 

where T~~1(p) = {qi,---,qm}- Clearly TT*O is not identically zero if a is not. 
For m > 2, then, we could find a section a of A^ vanishing at some point 
qeS and another section T of K§ nonzero over ir{q); the images W*T and 
w*o would then be two independent sections of K®m—so S would have 
Kodaira number > 1. 

We conclude that a surface 5 with K ( S ) = 0 and q=\ must have/»g = 0, 
and hence cf = c2 = 0. We have already discussed surfaces with these 
numerical invariants. Recall from our previous discussion that for such a 
surface S the fibers {Cx} of the Albanese map ^:S-^E are elliptic, and 
none are multiple. S also contains a pencil {Fx} of curves, transverse to Cx 

and having rational base. Let F be a nonmultiple element of the second 
pencil {Fx}, and in the product S X F consider the surface 

S ={(p,q): *(/>) = * ( ? ) } • 

The projection trx: S-*S on the first factor expresses S as an unbranched 
cover of S; the projection TT2 '■ S^>F expresses S as an elliptic surface with 
base F, again with no multiple or singular fibers. By our formula for the 
canonical bundle of an elliptic surface, we can write 

Kg = Cx — Cy, 
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where Cx,Cy are fibers of m2 ■ S-*F. Now let 

F={(p,p):pSF}cS. 

F maps via TT2 one-to-one onto F, and likewise one-to-one via w, onto 
F cS. But now we have 

( Q - C v ) | # = A-s-|# = <A- S | # = * S | F = 0, 
and hence 

* i = 0. 
Thus/>(£) = 1, and since 

x((95-) = mX(es) = 0, 

<?(S ) = 2. 
Finally, 5", like S, must have Kodaira number 0: if K?" contained more 
than one linearly independent section, we could construct as above two 
independent sections of K®m". Thus we see from our last argument that S 
is an Abelian variety. 

Indeed, we can be even more specific. Let C0 be a fiber of the map TT2, 
and choose as the origin in S the point of intersection of C0 with F. Then 
we can define maps 

ju.,: S —^ F and ju2: S —^ C0 

by jti, = w2 and 

# = M f ) n C 0 . 
These maps give an isomorphism 

fi: S—>C0XF. 

Thus, we see that a surface S of Kodaira number 0 and irregularity 1 is the 
quotient, by a finite fixed-point-free group, of the product of two elliptic 
curves. 

We can construct these surfaces explicitly, as follows: let F and C be 
two arbitrary elliptic curves, with Euclidean coordinates z and w, and 
suppose C is given as C modulo the lattice A = { 1,T). Let f: C-+C be any 
automorphism on C of finite order m having fixed points (note that under 
this hypothesis the quotient of C by the group {£'} is rational, because the 
quotient map C—>C/{f'} is branched). Let <p be the automorphism of 
F X C defined by 

<p(z,w) = (z + -^- ,f(w)j . 

<p is then fixed-point-free of order m, and the quotient S of F X C by the 
group {<p'} is a smooth algebraic surface. Since the 1-form dz on FxC is 
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invariant under <p, it descends to give a 1-form on S. On the other hand, 

£*(4w) = e2"ik/m-dw 
for some &EZ, and since the quotient of C by {£'}—or any nonzero 
subgroup of {f'}—is rational, we see that k must be relatively prime to m. 
Thus neither of the forms dw nor dz/\dw on S is invariant under <p. Since 
any holomorphic form on S lifts to a holomorphic form o n f x C invariant 
under <p, it follows that 

q{S) = 1 , />,(£) = 0; 
more generally, since the generator {dzf\dw)®n of ff°(FxC,S(r)) is 
invariant under <p if and only if m divides n, 

nKs=0, if m\n, 
nKs ^ 0, otherwise. 

Note that the Albanese map ^ sends S to the curve E=C/{1, r/m), 
with fibers isomorphic to C, while the second pencil {Fp} of elliptic curves 
on 5 consists of the images in S of the fibers FX{p] of FxC. In 
particular, if p E C is not a fixed point of any multiple of f other than the 
identity, the curve Fp forms via ¥ an /w-sheeted cover of £, meeting a fiber 
C of ^ in the points {£'(/>)};• On t n e other hand, if q is fixed under a 
subgroup of order k in {£'}, then Fx{^} maps fc-to-1 onto its image Fq; 
Fq will then be a multiple fiber of multiplicity k in the pencil {Fp}, meeting 
a fiber C of ¥ in the w/A: points of the orbit {?'(#)}• 

We have four examples of this construction: 
1. If C is any elliptic curve, we may take f(w) = - w to obtain a surface 

5 with 2A^ = 0, /Ty^O. Note that the second elliptic pencil {Fp} has four 
double fibers, corresponding to the four fixed points pt of f shown in 
Figure 6. S in this case is said to be of type \a. 

2. If C is the elliptic curve given as C modulo the lattice A = {1,/}, we 
may take f(w) = /w to obtain a surface with AK trivial, but p = P2 = 0. The 

Figure 6 
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• 
P3 Figure 7 

pencil {Fp} on 5 has two quadruple fibers and one double, corresponding 
to the two fixed pointsP\,p2 of f and the fixed pair/>3,/?4 of f2, as shown 
in Figure 7. S here is called type IIa. 

3. If C is the elliptic curve C/{ l,em / 3}, we may take £(w) = e2m/3w; S 
then has canonical bundle of order 3. The pencil {Fp} then has three triple 
fibers, corresponding to the three fixed points />, of f in Figure 8. S is said 
to be of type IIIa. 

4. With C=C/{l,eOT/3} as above, we may set J(w) = em/3w; the 
canonical bundle of S then has order exactly 6. The pencil {Fp} has one 
sextuple fiber, one triple fiber, and one double corresponding to the orbits 
{/>i}> {Pi'Pj}* ar ,d {PvPs'Pe) °f $> respectively; see Figure 9. Note that S 
is the quotient of a surface of type IIIa by an involution; 5 itself is said to 
be of type IIIfe. 

Note that the multiplicities of the multiple fibers of the surfaces S 
expressed as elliptic surfaces with rational base—that is, (2,2,2,2), (2,4,4), 
(2,3,6), and (3,3,3) in cases 1 through 4, respectively—correspond to all 
four solutions of the equation (*) of p. 581. 

Pi Figure 8 

P4 
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Pi P* Figure 9 

Finally, we can introduce one additional twist into our construction. 
Suppose that with C, F, f, and <p as above, we let 

be a translation of order n on C that commutes with the automorphism f 
(i.e., translation by a fixed point of £)• We may then define a second 
automorphism of F X C by 

V'(*,H0 = (z+!,r(W)). 

<p and <jp' then generate a finite, fixed-point-free group of automorphisms of 
FxC, and the quotient S = F X C/{q>'q>'J} is again hyperelliptic: since the 
automorphism 9 ' induced by <p' on the partial quotient S = FXC/{<p'} 
described above preserves all the forms and multiforms on S, the numeri-
cal invariants of S are the same as those of S. The Albanese map ^ sends 
S to the curve E= /{l/n, r/m] with fiber C, and the elements of the 
second pencil {Fp} on S all form n-sheeted unbranched covers of their 
images F in S, giving a second elliptic pencil on S with multiple fibers 
corresponding exactly to those of {Fp} on S. Explicitly, in each of the four 
cases above: 

1. If £(H>)= — w as in case 1 above, we may take f' to be translation by 
any of the points {/>,} of order 2 on C, e.g., 

tp'{z,w) = (z + {, w+~). 

The resulting surface S is said to be of type lb. 
2. In case 2 above we must take f' to be translation by p2, i.e., 

<p'(z,w) = U + 2> W + ~Y~)' 

S is said to be of type IIfc. 
3. In case 3 we may take f to be translation by either of the points 
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p2,Pi, e.g., 

,< ^ / ] 3 + V 3 / \ <p(z,w) = \z+-,w + g 1. 

S is then called type IIIC. 
4. In the last case above no nontrivial translation commutes with f, 

and we cannot make this construction. 

We have described now seven classes of hyperelliptic surfaces: namely, 
Ia, Ifc, IIa, II6, IIIa, III6, and IIIC. The reader may, by examining in general 
finite commutative groups of automorphisms on elliptic curves C, see that 
we have constructed all hyperelliptic surfaces. 

In sum we have the following version of the 

Classification Theorem (Enriques; Kodaira) 

1. A minimal surface S with K(S) = — 1 is either P2 or ruled. 
2. A minimal surface S with K(S) = 0 is either 

(a) a K-3 surface, if q = 0 and p g = 1, 
(b) an Enriques surface, if q = 0 and pg = 0, 
(c) a hyperelliptic surface as constructed above, if q = 1; or 
(d) an Abelian variety, if q = 2. 

3. A surface S with K ( S ) = 1 is elliptic. 

K-3 Surfaces 

To conclude this section, we wish to study in some more detail two types 
of surfaces encountered in the course of the classification theorem: K-3 
surfaces and Enriques surfaces. 

Let us first dispose of the numerical characters of a K-3 surface S. By 
definition, 

q(S) = 0 and Ks = 0, 
sopg(S)= 1 and c?(S)=0. By Riemann-Roch, 

so the topological Euler characteristic 

X ( 5 ) = 24. 
The Hodge diamond of S is 

1 
0 0 

1 20 1 
0 0 

1 
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Suppose 5 is a K-3 surface embedded in P", and suppose that S is 
normal—that is, the embedding is given by a complete linear system. Let 
C=HS be a generic hyperplane section of S, and consider the standard 
sequence 

o->es-+0s(c)^ec(c)-»o. 
Since Ks=0, we see by the adjunction formula that 

e c (C) = 0c(As + C) = 8j:, 
i.e., the linear system cut out on C by hyperplane sections of S c P" is a 
subsystem of the canonical series on C. Since, moreover, the linear system 
of hyperplane sections of S is the complete series \H°(S,G5(C))|, and 

h\S,6s) = q(S) = 0, 

H°(P",e(H)) surjects onto H°(S,e(C)) which surjects onto H°(C,&C). 
The hyperplanes in P" thus cut out the complete canonical series on C, i.e., 
C c P " " 1 is a canonical curve. Accordingly C has genus n and degree 
2n-2; in particular, 

A normal K-3 surface S c Pn has degree 2n — 2. 

We may also see this directly from Riemann-Roch: if S c P" is a normal 
K-3 surface, C a hyperplane section of S, then since C is positive, 

h\S,G(C)) = A^S.flKC)) = 0 
and likewise 

/I
2(S,6(C)) = 0 

by the,Kodaira vanishing theorem. Riemann-Roch then tells us 

n+l=h°(S,e(C)) = ^f + x(VS) 
_ d e g ( S ) 

2 ' 
so deg(5) = 2« —2. 

We will see, in the four cases n = 2, 3, 4, and 5, how we may realize such 
a surface. The easiest is n = 3, i.e., S a quartic surface in P3. By the 
Lefschetz hyperplane theorem, a smooth quartic in P3 has irregularity 

q(S) = q(P3) = 0, 

and by adjunction, 
Ks = (Kp3 + S)\s = (-4H+4H)\S = 0, 

so S is a K-3 surface. Note that since the linear system of quartics in P3 

has dimension 34 and PGL4 dimension 15, the family of quartic K-3's has 
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dimension 

3 4 - 1 5 = 19. 
The second case is that of a sextic K-3 surface S in P4. Observe that if C 

is the hyperplane section of S, then the system of quadrics in P4 cuts out 
on S a system of dimension at most 

A ° ( S , 0 ( 2 C ) ) - 1 = ^ ^ + 2 - 1 = Y + 1 = 13 

—but the linear system of quadrics in P4 is 14-dimensional, and so S must 
lie on a quadric hypersurface Q c P4. Similarly, since 

and 

/j°(5,0(3C)) = y + 2 = 29 

/ l ° (P4 ,0(3/ / ) ) = ^ | ^ = 35, 

5 must lie on a five-dimensional family of cubics in P4—but the system of 
cubics containing the quadric Q is only A°(P4,0 (//)) - 1 =4-dimensional, 
and so S must lie on a cubic Q' not containing Q. Because Q is 
irreducible, Q' must meet Q in a surface of degree 6 or less, and hence 
exactly in S. Thus, a sextic K-3 in P4 is the complete intersection of a 
quadric and a cubic. Conversely, if S= Q n Q' is such a smooth complete 
intersection, then by the Lefschetz theorem on hyperplane sections applied 
twice, q(S) = 0, and by adjunction 

KS = (KQ,+ Q)\S 

= (KP,+ Q'+Q)\S 

= (-5H + 3H + 2H)\S = 0, 

so S is K-3. Note, finally, that such a K-3 is determined by choosing a 
quadric Q out of the 14-dimensional family of quadrics in P4 and then a 
cubic Q' in the 35 — 5—1 = 29-dimensional family of cubics in P4 modulo 
those containing Q. Since PGL5 has dimension 24, we see that again the 
family of sextic K-3's in P4 has dimension 

14 + 29 - 24 = 19. 
Next, consider an octic K-3 surface 5 c P5. By Riemann-Roch 

7C-7C 
* o (S ,0(2C)) = ^ y ^ + 2 = 1 8 , 

while /i°(P5,0(2/7)) = 21. S will thus always lie on three independent 
quadrics in P5; generically, S will be their complete intersection. Con-
versely, as in the last case, by the Lefschetz theorem and the adjunction 
formula any smooth complete intersection of three quadrics in P5 is a K-3 
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surface. Counting parameters, a generic octic K-3 is specified by a net of 
quadrics in P5—in other words, a point of the Grassmannian 
G(3 ,#° (P 5 , 0 (2 / / ) ) )— and so the family of octic K-3's has dimension 
once again 

dimG(3,21) - dimPGL6 = 54 - 35 = 19. 

The fourth case we shall look at is that of n=2—that is, K-3 surfaces 5" 
expressed as double covers S -» P2 of the plane. The "hyperplane section" 
of S—i.e., the inverse image ir~\l) of a line / c P 2 — i s a curve of genus 2, 
expressed by ir as a double cover of ? s P ' . m is thus branched over six 
points in /; and the branch locus of TT a sextic curve in P2. Conversely if 
B c P2 is any smooth sextic curve, we can construct a double cover S -> P2 

of P2 branched along B by the construction of p. 548; and the surface S is 
a K-3 surface: as in Section 4, if B — m ~\B) is the branch locus of m in S, 
we have 

Ks = 7r Kp2 + B, 

and so 

2KS = 2w*KP2 + IB 

= ■n*{-6H) + ir*B EEO. 
(Note that this implies S is minimal.) Also, since B has genus 10, 

X ( 5 ) = 2 - 2 g ( S ) = - 1 8 , 
and 

x(S) = 2 x (P 2 ) -x(* ) = 24, 
so, by the classification theorem, S must be a K-3. We count parameters 
once again: the system of sextic curves in P2 has dimension 27, and is 
acted on by PGL3, so the family of K-3 surfaces expressed as double 
covers of P2 is 27 —8= 19-dimensional. 

This is as much as we shall prove about K-3 surfaces. One comment, 
however, should be made: while the general statement which extrapolates 
our computations—that for any n, there is a 19-dimensional irreducible 
family Tn of K-3 surfaces of degree In —2 in Pn—is true, it may give a false 
impression. In fact, if we drop the requirement of projectivity and simply 
define a K-3 surface to be a compact complex 2-manifold, simply con-
nected and having trivial canonical bundle, then all K-3 surfaces will form 
an irreducible 20-dimensional family, the generic member of which is not 
algebraic; the families T„ form a countable union of subvarieties of this 
one moduli space. The picture is not unlike that for complex tori/Abelian 
varieties: in a family {Sx} of complex K-3 surfaces, parametrized by a 
polydisc, we may consider the cohomology group H2(SX,C) as a fixed 
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vector space V and the subgroup H2(SX,Z) of integral classes likewise as a 
fixed lattice inside V. The subspace Hx\Sx)<zV, however, varies as the 
complex structure of Sx varies; 5X will belong to the family Tn only when 
Hll(Sx) meets a lattice point corresponding to an integral cohomology 
class of self-intersection 2n — 2. (See Figure 10.) Note that more generally 
the group of divisors modulo homology on an algebraic Sx is exactly the 
intersection of Hl,1(Sx) with H2(SX,Z), and indeed it turns out to be the 
case that 

The family of K-3 surfaces having k or more divisors independent in 
homology forms a dense countable union of subvarieties of dimension 
2 0 - k in the family of all K-3's; in particular, on the generic algebraic 
K-3 surface all divisors are homologous to multiples of the hyperplane 
class. 

The reader may verify this in one particular case, by showing that a K-3 
expressed as a double cover of P2 branched along a sextic curve B contains 
two or more independent curves if and only if there is in P2 a rational 
curve of degree d tangent to B at 3d points (i.e., a tritangent line, etc.). 

Enriques Surfaces 

We turn our attention now to Enriques surfaces. First, for the numerical 
invariants: by definition, 

pg = q = 0, X(SS) = 1, 

Figure 10 
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and, since 2K=0, 

c? = 0; 

it follows from Riemann-Roch that 
X ( S ) = 1 2 

and the Hodge diamond of S is 

1 
0 0 

0 10 0 
0 0 

1 

Note in particular that since H2O(S)=0, all the second cohomology of 
51 is represented by algebraic curves. The group of divisors modulo rational 
homology on any Enriques surface is thus Z10. 

We have already constructed one Enriques surface in Section 4 of this 
chapter by letting S be the surface (A^4 + X? - X,4 - X,4 = 0) and T the 
automorphism sending [X0,Xl,X2,X3] into [X0,iXl,—X2,—iX3]; we blew 
up the fixed points of T2 on S and then took the quotient S" of the 
blow-up by T2; the Enriques surface S" was then the quotient of S" by the 
involution T. 5" was thus the quotient of the surface S"—which we can 
now identify as K-3—by a fixed-point-free involution. Indeed, it is not 
hard to see that any Enriques surface S arises as a quotient of a K-3 
surface: simply let oGH°(S, 6(2K)) be a nonzero section of the bundle 
K ® K, and consider, in the total space of the bundle K, the locus 

x = {(P,n- ?eA;,r®f=*(/>)}. 
Since a is nowhere zero, X projects to S as an unbranched 2-sheeted 
covering space. We have, then, 

q(X) = q(S) = Q, 

X(X)=2X(S) = 24, 

and 
X(ex) = 2X(6S) = 2. 

In particular, we see from the first and third equality that pg{X)= 1, and 
indeed the section is visible: since X—>S is unbranched, for any point 
(p,S)ex 

Kx((P,n) = KS(P), 

and so we can define a section a £ H°(X, S (Kx)) simply by 
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Clearly a never vanishes, and so Kx is trivial; consequently X is a K-3 
surface: 

Every Enriques surface is the quotient of a K-3 surface by a fixed-
point-free involution. 

A second way to represent an Enriques surfaces is as an elliptic surface S 
with rational base. To show that S has an elliptic pencil, we begin with the 
observation 

If E is any smooth elliptic curve on S, then h°(2E) > 2. 

Since h°(2E) > h°(E), if E moves in a pencil we are done, so we may 
suppose that E itself does not move, i.e., that h°(E)= 1. Now, since 

KE = 0, 
it follows from adjunction that 

£ • £ = 0, 
and hence, by Riemann-Roch, that 

h\E) = h \ E ) - ^ ^ + x { e s ) 

= 1 - 1 = 0 , 
since h2(E) = h°(K- £ ) = 0. Now we have 

[2E]\E-[2K+2E]\E = 2KE = Q, 

and so from the long exact sequence associated to the sequence 

O - » e s ( £ ) - » 0 s ( 2 £ ) - » 0 £ - » O 
we deduce that 

h°(S,6(2E)) = h°( S, e(E)) + h°(E,eE) 
= 2, 

and the assertion is proved. 
Now 2E, like E, has virtual genus 1; thus, to show that S is elliptic, we 

need only locate a smooth elliptic curve on S. 
We start by locating an effective divisor of self-intersection 0 (and hence 

virtual genus 1) on S. By the index theorem the intersection pairing on 
H2(S, Z ) s Z ' ° is unimodular with one positive and nine negative eigenval-
ues; so we can find a class a^0EH2(S,Z) with a-a = 0.* Sincepg(S) = 0, 
a is of type (1,1), and consequently by the Lefschetz (1,1) theorem is the 

*Cf. J.-P. Serre, Cours d'Arithmetique, Presses Universitaires de France, Paris, 1970, Chap. 5. 
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class of a divisor D' on S. By Riemann-Roch, 

h\D') + h\K- D') > D'D'~KD' + x(Bs) = 1, 

so either D' or K— D' is effective; call the effective one D. In either case, 
DD = 0. 

Let A" —> S be the twofold covering of S by a K-3 surface X, and 
D = -n*D the inverse image of D. We have 

D-D = 2DD = 0, 
and so by Riemann-Roch on X, 

h°(D)>5-3-2
K*-5

+x(ex) = 2, 

i.e., D moves in a linear system on X. To separate out the fixed compo-
nents of | ^ | we write 

1̂ 1 = |C| + 2 «,-£„ 

where the E/s are irreducible, «, >0 , and the linear system \C\ has no fixed 
components. £, being fixed, we find 

while 

]=h°(Ei)>^ + 2, 

0 < W ( £ , ) = ^ + 1 ; 

it follows that the curves Es are all rational of self-intersection —2. If for 
each i we set 

AT,- = {D-n^YE; = ( c + 2 «,£,)■ £„ 

then, 

0 = D D = D - ( c + 2 ",•£,•) 

= £ C + 2 nAD-n^E; + 2 ^ •£, 

= C-C + 2 « , C - £ ( + 2n ,A: , . -22« , 2 -

Now C- C > 0, since C moves in a linear system without fixed components. 
If C C = 0 , set Z), = C; if C - O 0 , then it follows that for some /0, 

k, < 2«,. 
'o 'o 

In this case, set 

Z>, = Z) - (In, - k, )E, 
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We have then 

5,-D, = D-D-2(2nio-kl)(D-EI) + (2n,o-kif(EIo-E,o) 

= -2(2« , o -A: , o ) (^ -2« , o ) -2 (2« , - /c , o ) 2 

= 0. 
Now once more by Riemann-Roch 

h°(Dx) + h°(K- Dt) > ^ ± - + 2 = 2, 

and since 

K-D.= K + (In, - k, )E, - D 

cannot be effective, Dl must move in a linear system. Since 2n, — kt >0 , 
we deduce that if the linear system | D \ has a rational fixed component, we 
may subtract an effective curve from D to obtain a divisor Dx moving in a 
linear series, again with self-intersection 0. If the system |D, | has rational 
fixed components, then, we may deduct an effective curve again to obtain 
a divisor D2>0 with D2D2 > 0, h°(D2) > 2, and so on. But, as was pointed 
out on p. 521, the divisor D cannot be written as the sum of arbitrarily 
many effective curves, and so we arrive at a divisor Da of self-intersection 
0, moving in a linear system without fixed components. By the lemma of p. 
576, every component of Dn is elliptic, with self-intersection 0. 

Consider now the image Da, in S of a component Dai of Da. If Dai 

maps two-to-one to Da„ then Dai is a smooth elliptic curve on S and by 
the lemma we are done. On the other hand, if Tr:Dai->Dai is generically 
one-to-one, then Da , will be singular exactly at those points p&S such 
that both points of -n~\p)<zX lie in Dai. In this case, let 

Kj = * * * . A,,/ " A M 

be the remaining component of v*Dai. Since -n: J)'ai-^Dai is again generi-
cally one-to-one, 

**(K,) = MA,.,) 
and hence 

4 , V A M = O. 

Since the self-intersection of ir*iritDa , = Da , + D'a_,- is again 0, it follows 
that DaJ-D^i = 0—i.e., Da , and D'a , are disjoint. But if Da , is singular at a 
point pE S, then Da, must pass through both points of ir~x{p) and Z> ,̂ 
likewise, so Dai and D'a, will meet over/). Thus D a , is a smooth elliptic 
curve, and we are done. 

Consider now the Enriques surface S as an elliptic surface ¥ : S—»P' 
with rational base. If S has multiple fibers 6, with multiplicity mt, then 
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since x(®s) = "> w e n a v e by our formula for the canonical class 

A*-**(-/>) + 2 to~ !)*,-> 
and since 

0 = 2KS = **(-2/>) + 2 2 t o - 1)5,, 

it follows that S has exactly two double fibers, Bl and B2. Finally, since 
2B{ = 2B2 = <ir*(p), we may write 

Ks = **(~P) + Bi + Bi = Bi - Bi = B2 - 5 „ 
i.e., ?Ae canonical divisor of an Enriques surface S is just the difference of the 
two double fibers appearing in an elliptic pencil on S. 

Performing the inverse logarithmic transformation on the two double 
fibers of an Enriques surface 5 -» P1, we obtain an elliptic surface S"—> P ' 
without multiple fibers. We see immediately that 

c?(5") = cf(S) = 0 

c2(S') = c 2 (5 )=12 , 

X ( 0 5 < ) - X ( 6 S ) - 1 . 

and 

so by Riemann-Roch 

By our formula, then, 

and so 
K(S')= - 1 ; 

in particular pg{S') = 0, and from x(©s-)=l we deduce that q(S') = 0. By 
Castelnuovo's theorem, 5 ' is rational; and by our classification of rational 
surfaces S' is some rational ruled surface blown up eight times, or P2 

blown up nine times. In fact, since — Ks, is effective and irreducible and 
has self-intersection 0, every curve on S' has nonpositive intersection 
number with Ks, and hence self-intersection > — 2; by the standard 
argument, S' must be P2 blown up nine times. Finally, the images in P2 of 
the fibers Cx of S - ^ P 1 under the blowing-down map 7r:S"—>P2 must 
represent sections of |-ATP2|, that is, cubic curves; since the Cx are all 
disjoint, the nine points blown up are the base locus of the pencil |w(Q)| 
of cubics. In sum 

An Enriques surface may be obtained by blowing up P2 at the nine base 
points of pencil Dx of cubic curves, and applying two logarithmic 
transformations of order 2 to the resulting elliptic surface P2-»P' . 
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Conversely, performing logarithmic transforms in this case will always 
yield an algebraic surface, which the reader may easily verify is an 
Enriques surface. Note that this construction enables us to count parame-
ters for Enriques surfaces: to construct an Enriques surface, we specify 
nine points in P2 forming the base locus of a pencil of cubics, blow them 
up, and then specify two fibers of the resulting elliptic surface (i.e., two 
cubics passing through the nine blown-up points) on which to perform 
logarithmic transformations. In short, then, the entire process is de-
termined by the choice of two cubic curves in P2 meeting transversely; 
since there is a nine-dimensional family of cubics in P2, and dim PGL3 = 8, 
the family of Enriques surfaces is irreducible of dimension 

9 + 9 - 8 = 10. 

6. NOETHER'S FORMULA 

Noether's Formula for Smooth Hypersurfaces 

A Riemann-Roch formula in general is a formula giving the holomorphic 
Euler characteristic of a vector bundle E-^M on a compact complex 
manifold M in terms of the Chern classes of E and M. In practice this 
problem breaks up into two halves: first, expressing the holomorphic Euler 
characteristic xCV) °f M in terms of the Chern classes of M—e.g., for 
curves and surfaces, 

and 
x(eM) = U^(M)+c2(M)) 

—and second, expressing the holomorphic Euler characteristic x(0 (E)) in 
terms of the Chern classes of E and M and the holomorphic Euler 
characteristic X(®M) of M, e.g., for line bundles L on curves and surfaces 

X(0(L)) = x ( e M ) + c,(L) 

and 

x(e(L)) = x (0 A / ) + K ^ ( ^ ) + c1(L)c1(M)). 

Of the two halves of a Riemann-Roch formula, the second is usually 
much easier: once we know the formula for (n — l)-dimensional varieties, 
we can compute it for the line bundle L—>M associated to a smooth divisor 
D on the w-dimensional manifold M simply by adding up the Euler 
characteristics of the sheaves in the sequence 

0->8M^eM(L)-*eD(L)^>0; 
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the resulting formula holds for all line bundles L^M. The first half 
—expressing X(®A/) m terms of the Chern classes of M—is in general 
harder. For curves, of course, the formula X(©M) = 2 C I ( - ^ ) *S a n e a s v 

consequence of Hodge theory; it was originally proved, in form h°(Qx
M) = 

b}(M)/2 or "the number of independent differentials of the first kind is 
equal to the number of handles," by Riemann. Our principal object in this 
section is to prove the analogous formula X ( ® M ) = 1 I ( C I ( ^ 0 + C 2 ( ^ 0 ) f ° r 

surfaces, called Norther's formula. 
To get a sense of the problem, we will first verify the formula for a 

smooth surface S in P 3 of degree n. To begin with, we establish two 
general formulas: for 5 c X a smooth surface on a threefold X, from the 
C°° decomposition 

Tx\s = Ts®Ns/x 
= TS®[S]\S 

and the Whitney product formula, we obtain the adjunction formulas 

(*) cl(X)\s = cl(S) + (S)\s 

and 
(**) c2(X)\s = c2(S) + Cl(S)-S\s. 

The first of these is, of course, the standard adjunction formula applied to 
c , ( S ) = - t f s . 

Applying these formulas to our smooth surface S c P 3 of degree n, and 
using the values 

ci(P
3) = 4H, c2(P3) = 6/ / 2 , 

we have 

cx{S)2 = {n-4)2H2 

= n(n-4)2 

= n3-Sn2+ \6n, 
since HH = n on S; and by (**), 

6H2 = c2(S) + cl(S)-cl(Ns) 

= c2(S) + (4-n)-n-H2, 

x(S) = c2(S) = (n(n-4) + 6)H2 

= n(n(n-4) + 6) 

= ni-4n2 + 6n. 
x(6 s ) is likewise readily expressed in terms of n. By the Lefschetz theorem, 
q(S) = 0; to compute pg(S), consider the Poincare residue map 

0 -»• fi3* -» ®1>(S ) -» Q | -> 0. 
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We have A°($£,)-0 and h\&p,)=h3\P3)=0, so 
pg(S) = h0(tfs) = h%aUS)) 

= h°(P\e((n-4)H)) 
_ / n - n _ ( n - l ) ( « - 2 ) ( « - 3 ) 

Thus 
x ( e 5 ) . ( n - l ) ( H - 2 ) ( n - 3 ) + 1 

« 3 - 6 « 2 + l l n - 6 , 
= 6 + 1 

_ 2n3-]2n2 + 22n 
12 

_ Cl(S)2 + c2(S) 
12 

and the Riemann-Roch formula is proved for S. 
This computation illustrates the general principle that if we know the 

cohomology ring and Chern classes of a variety M, we can compute most 
of these invariants—and hence verify Riemann-Roch—for a smooth di-
visor on M. Of course, a general surface S cannot be realized as a smooth 
divisor in P 3 : while we can embed S in some large projective space and 
project to P3 to obtain a generically one-to-one map <f>: S-»P3, the image 
S0 = <j>(S) will in general be singular. To prove Noether's formula, then, we 
will extend the formulas obtained above for the numerical characters of a 
smooth surface S in P3 to the case of surfaces S0 with standard singulari-
ties; we will do this by re-embedding S0 as a smooth surface in a threefold 
X obtained by blowing up P3. This requires two preliminary steps: we have 
to describe those types of singularities which arise under a generic projec-
tion of a surface to P3; and, given a surface 5 0 c P 3 with these singularities, 
construct a blow-up X -^ P3 in which the proper transform of 50 is smooth. 
The first of these steps is simply a matter of dimension-theoretic case 
checking, and will be deferred for the moment. The second, on the other 
hand, involves an important extension of our notion of blowing up; we 
take this up in the following discussion. 

Blowing Up Submanifolds 

As previously, we start by constructing the blow-up of a disc along a 
coordinate plane. Let A be an n-dimensional disc with holomorphic coordi-
nates zx,...,zn, and let F c A be the locus zk + l = ■ ■ ■ =z„ = 0. Let 
[4 + i>-••>(.] be homogeneous coordinates on p " - * - 1 , and let 
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be the smooth variety defined by the relations 

A = { (z , / ) : zilJ = zJli,k+\<i,j<n). 

The projection -n: A—»A on the first factor is clearly an isomorphism away 
from V, while the inverse image of a point z G V is a projective space 
pn-/c-i j j je manifold A, together with the map wiA—>A, is called the 
blow-up of A along V; the inverse image E = ir~l(V) is called the excep-
tional divisor of the blow-up. 

A may be covered by coordinate patches 

Uj = (lj*0), j=k+l,...,n 

with holomorphic coordinates 

on Uy, the coordinates {z(y'),} are Euclidean coordinates on each fiber 
w~\p)s*P"~k~] of the exceptional divisor. 

Note that the blow-up A —> A is independent of the coordinates chosen in 
A:if (z, '=/(z)} is another coordinate system in A with V again given as 
(*'* + ! « • • • =z'„=0), 

A' = {(z ' , / ' ) : z;ij = zjl/} c A X P " - * - ' 

the blow-up of A in this coordinate system, then the isomorphism 

/ : A - £ — > A ' - £ ; ' 
given by zv-*f(z) may be extended over E by sending a point (z,/) with 
zA:+l= • • • =z„ = 0 to the point (f(z)J'), where 

i = /t + i " < 

Indeed, we see from this that the identification of the fiber of E —> V over a 
point z = (z , , . . . , zk, 0, . . . , 0) with the projective normal space 
P (*V/A(Z))=P(TX&)/T;(V)) made via 

,'=A:+1 02, 

is natural, i.e., does not depend on the coordinate system used. 
This last observation allows us to globalize our construction. Let M be a 

complex manifold of dimension n and X <zM & submanifold of dimension 
k. Let { Ua) be a collection of discs in M covering V such that in each disc 

/ = \,...,k, 

i = k+ l,...,j,...,n, 
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Aa the subvariety A'nA^, may be given as the locus (zk+x— ■ ■ ■ = z„ = 0), 
and let Aa^>Aa be the blow-up of Aa along I n A „ . We have then 
isomorphisms 

"at'- ^,(uanup)->vel(uanu0) 
and using them, we can patch together the local blow-ups Aa to form a 
manifold 

~A = U^A Q 

with a map 

A ^ u A a . 

Finally, since ir is an isomorphism away from X n(U A„), we can take 

M = &U„M-X; 

M, together with the map IT : A/—>M extending 77 on A and the identity on 
M — X, is called the blow-up of M along X. By the construction, the 
blow-up has the following properties 

1. IT is an isomorphism away from XcM and E=TT~\X)CM. 
2. The exceptional divisor E is a fiber bundle over X with fiber P"~*~'; 

indeed, E-^X is naturally identified with the projectivization P(NX/M) of 
the normal bundle Nx/M of X in M. 

3. Locally the blow-up is isomorphic to the blow-up of a disc as given 
above. 

4. As the reader may check by the same method as used in the case of 
blow-ups of a point, blow-ups of submanifolds are unique, in the sense that 
if 

is any map of complex manifolds that is an isomorphism away from a 
smooth subvariety X of dimension k in M, and such that the fiber of IT 
over any point zGX is isomorphic to projective space p " _ * ~ ' , then 
N -» M is the blow-up of M along X. 

5. For any subvariety Y aM, we may define the proper transform 
Y c Mx of Y in the blow-up Mx to be the closure in Mx of the inverse 
image 

■n~\Y-X) = m~\Y)-E 

of Y away from the exceptional divisor E. As in the case of blowing up a 
point, we see that the intersection 

YnEcP(Nx/M) 
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corresponds to the image in Nx/M of the tangent cones Tp(Y)cTp(M) to 
Y at points of Yp\X. In particular, for YC.M a divisor, 

Y = IT XY - m-E, 
where 

m = mu\tx(Y) 

is the multiplicity of Y at a generic point of X. Note also that blow-ups are 
functorial, in the sense that if Y meets X transversely everywhere, the 
proper transform Y of Y in Mx is just the blow-up of Y along YnX. 

The Cohomology of a Blow-up. We would like now to describe the relation 
between the cohomology ring of M and that of its blow-up M= Mx along 
a submanifold. Cohomology is with Z coefficients throughout. As in our 
discussion of point blow-ups, we may take UcM a tubular neighbor-
hood of XcM, U=TT~XU, U*=U-X, U*=U-E, M* = M-X, and 
M* = M— E, and compare the Mayer-Vietoris sequences for M= U\J M* 
and M = M* u U. Since contractions yield, as before, isomorphisms 

H*(U)^>H*{X) and H*(U)^H*(E), 

and clearly w* gives isomorphisms 

H*(U*)-^H*(U*) and H*(M*)—>H*(M*), 
we obtain 

H'~ l(U*)->H'(M)->H'(M*) ®H\E) -* //'(£/*) 

II T II II 
H-\U*)-^Hi(M)^H'(M*)<£>Hi(X) -» # ' ( ( /*) . 

Since the pullback map IT* : H*(M)—>H*(M) is injective (equivalently, and 
more visibly, the map 7r*//*(A?)-*//(!)t(A/) is surjective), we see from this 
that (additively) 

H*(M) = TT*H*{M)@ H*(E)/V*H*{X) 

To describe the cohomology of E = P(NX/M), as well as the multiplicative 
structure of H*(M), we need a general result on the cohomology of 
projective bundles. First a definition: for E-+X a complex vector bundle 
of rank r and P(E)—>X its associated projective bundle, we define the 
tautological line bundle T-*P(E) to be the subbundle of the pullback 
bundle ir*E^>P(E) whose fiber at any point (p,v)EP(E) is the line in Ep 

represented by v. Note that the bundle T is not determined by the abstract 
projective bundle P(E)-^X alone: if L-^X is any line bundle, we have 
seen that 

P(E)s*P(E®L); 
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but the tautological line bundles on P(E) and P(E®L) will differ. One 
thing is always true: the restriction of T to each fiber P ^ s C " ' is the 
universal bundle. 

Now, the cohomology ring H*(P(E)) is, via the pullback map, 

H*(X)^H*(P(E)), 

an algebra over the ring H*{X). A complete description of H*(P(E)) is 
given in these terms by the 

Proposition. For X any compact oriented C°° manifold, E-^X any complex 
vector bundle of rank r, the cohomology ring H*(P(E)) is generated, as an 
H*(X)-algebra, by the Chern class 

of the tautological bundle, with the single relation 

r -c 1 (£ )r - , + c2(£)r-2+---+(-ir'cr_1(£K+(-i)rcr(£) = o. 
(*) 
Proof. We first establish the basic relation (*). To do this, let 5 be the 
quotient of the pullback ir*E by the tautological subbundle, and set 
7j, = c,(£^). By Whitney; then, 

( l + n ( l + T » , + • • • + ! » , _ , ) = **<:(£) 
and solving successively, we have 

•fli = £ , ( £ ) - £ 
7 , 2 = c 2 ( £ ) - f - e , ( £ ) + f2 

T f r - I = c r - , ( £ ' ) - ? - c r _ 2 ( £ ) + - - - + ( - i r 1 r - 1 -
The final equation 

is then our basic relation. 
Now let {\l>ita}a be a basis for H'(X), with { ,̂ „} and {^„_,„} ortho-

gonal—i.e., such that 

We claim that the classes 

{ff*^.-.«^^}l</<».l<><r-l,o 
are linearly independent in H*(P(E)). First, for any pair of classes \pUa and 
tpn-i.a' t n e CUP product ir*^iiaUir*^>n-^a will be Poincare dual to plus or 
minus the class of a fiber P(E)p of P(E). But the restriction of f to P(E)p 
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is minus the class of a hyperplane in P(E)p, and consequently 

f * i u ^ - f , „ u r ' = ±1, 
or, in other words, for any j , 

On the other hand, for a¥=fi, 

likewise, for i<k and any a,fi,j, 

Therefore the intersection matrix for the classes { ^ u D y . o m a y D e 

made upper triangular with ± l's along the diagonal; in particular, we see 
that it is nonsingular, and so these elements are all linearly independent in 
H*(P(E)). 

Finally, consider the Leray spectral sequence (E?,q,dr) of the bundle 
P(£)—>X. Since the cohomology of the fiber has rank at most 1 in each 
dimension, trx{X) acts trivially on i /*(Pr~') , and so 

E2 = H*(X)®H*(Pr-1). 

But since the classes { ^ u T } are all independent in H*(P(E)), 

r-dimH*(X) < dimH*(P(E)) 
= d i m ^ 
< dim£2 
= r-dimH*(X). 

Equality must therefore hold everywhere, i.e., the classes { i ^ U f } span 
H*(P(E)) so that £ generates H*(P(E)) as an //*(A>algebra, and there 
can be no relations on f other than (*) above. Q.E.D. 

_One observation makes this result particularly applicable to blow-ups: if 
M-+M is the blow-up of the manifold M along the submanifold X, 
E=P{NX/M) the exceptional divisor, then the normal bundle to E in M is 
just the tautological bundle on E « P ( N X / M ) . Indeed, for any point (p,v)G 
E, we easily see that 

77*: T'lp,D)(M)->T;(M) 

induces a map 

^ * : NE/M(P>»)-*NX/M(P)-

To see that the image of 7?* is just the line v in Nx/M(p), it is sufficient to 
check it for the blow-up C"V^>C of C" along the subspace V^Ck, and 
there it is clear. As a consequence, we see that the restriction to E of the 



608 SURFACES 

cohomology class e = c{([E]) is 

AE = CI(NE/M) = C\{T) = f, 

and correspondingly, with a knowledge of H*(E) and the restriction map 
H*(M)->H*(X), we may compute effectively in the cohomology ring of 
the blow-up Mx. 

Ckern Classes of Blow-ups. We have seen that if M -H> M is the blow-up of 
an w-dimensional complex manifold at a point, E the exceptional divisor, 
then 

C[(M)= -K/i = nr*ci(M)-(n-l)E. 

In a similar fashion, it is not hard to verify that for M —> M the blow-up of 
M along a k-dimensional submanifold X <zM, E again the exceptional 
divisor, 

c , (M) = ir*cl(M)-(n-k-\)E. 

This formula may be checked in general as it was in case A:=0—that is, by 
writing out transition functions for the canonical bundle K^. The com-
putation is substantially easier, however, if we consider only algebraic 
varieties M. In this case we can find a meromorphic rt-form w on M, with 
X not contained in the zero or polar divisor of <o. The divisor of the 
pullback form w*w on M is then, away from E, just the pullback of the 
divisor (w). To see how ir*u behaves around E, let/? be a generic point of 
X and z,,...,z„ local coordinates in a neighborhood U of p with 

* n t / = ( z , + 1,...,z„=0); 

we may write 
w = g{z)dzx/\--- /\dz„ 

with g nonzero and holomorphic around/?. In terms of coordinates 
z, = z;, i = i,...,k,j, 

and 
z-

z(j)i = —,i = k+ l,...J,...,n, 
ZJ 

on the open set UjCir~\U) as described above, we have 
7r*</z, = fife„ / = l,...,kj, 

^dz^dizjzU),) 

= Zj dz(j)i + z(J)i -dzj, i = k + 1,... ,j,..., n. 

Thus, 

TT*w = v*g(z)-zf-k-1-dzlA---AdzkAdz(j)k + lA---Adz(J)n 
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vanishes to order n — k—l along E = (z,), and the formula is verified. 
Computing the higher Chern classes of a general blow-up is substantially 

harder; in particular, one has to find the Chern classes of the exceptional 
divisor, and we do not have at present the requisite formalism of the Chern 
character. We may, however, determine the Chern classes of the blow-up of 
a threefold by essentially ad hoc methods; we will do this in the following 
two lemmas. 

Lemma. / / M -»M is the blow-up of the algebraic threefold M at a point, 

c2(M) = v*c2(M). 

Proof. We will prove this by applying the adjunction formulas (*) and 
(**) of p. 601 to surfaces in M whose Chern classes we know. First, let E 
be the exceptional divisor of the blow-up, lE:H2(E) the class of a line in 
£ s p2. We have seen that 

E\E= -I 
while 

c , ( £ ) = 3/ and c 2 (£ ) = 3. 

By the formula (**), then 

c2(M)\B = c2(E) + Cl(E)-E\£ 

= 3 + 3 / - ( - / ) 
= 0. 

Next, we do the same thing for a surface S c M not containing p and its 
inverse image S-v~\S)cM- Inasmuch as S s S and the fundamental 
class i]5 = 7r*Tjs, we have 

c2(M)\s = c2(S) + ci(S)-S\s 
= c2(S) + Cl(S)-S\s 

= c2(M)\s 

= n*c2(M)\§. 

We see from these two computations that the class c2(M) — TT*c2(M) 
restricts to zero on—i.e., has intersection number 0 with—the exceptional 
divisor E and the inverse image of any surface ScM not containing p. 
But any divisor on M is homologous to a linear combination of such 
surfaces; and since the intersection form 

H '• \M, Z) ® H2'2(M, Z) -» Z 

is nondegenerate, this implies the lemma. Q.E.D. 

Using the same approach, we can prove the slightly harder 

Lemma. / / IT : M-^M is the blow-up of the algebraic threefold M along a 
smooth curve X c M , E the exceptional divisor of the blow-up, and % E 
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H4(M) the class of X, then 

c2(M) = v*(c2(M) + i,x)-n*cl(M)-E. 

Proof. Let lEH2(E) denote the class of a fiber in E^P(NX/M)^>X; 
since the class e= E\E is the class of the tautological bundle on £, we have 
first 

/ • £ > = " I . 

From our basic relation 

e-e-e--?T*c](Nx/M) = 0, 

then, we have 

e-e= -cx(Nx/M). 

Now, by (*), 

ct(E) = c}(M)-E\E 

= TT*ct{M)-2E\E 

= (ci(M)-X)-2e 

and hence by (**), 
c2(M)\E = c2(E) + Cl(E)-E 

= c2(E)~C](M)-X + 2Cl{Nx/M). 

But 

c 2 ( £ ) = X ( £ ) 
= 2x(*) 
= 2ct(X) 

= 2c,{M)-X-2c,{Nx/M) 

and so we have 

c2{M)\E = cx(M)-X 
= - 7 r * c , ( M ) - £ | £ 

= (v*(c2(M) + r,x)-v*cl(M)-E)\E. 

Next, let 5 c M be a smooth surface meeting X transversely, and let S 
be its inverse image in M. S is just the blow-up of S at the points of S n X, 
and so 

c 2 ( 5 ) = c2(5) + 5,-X. 

By (*), 

cx{S) = {cx(M)-S)\§ 
= ir*c1(S)-E\s 
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and so from (**) we see that 

C 2 (M) | S = C2(S ) + <-,(<?)• s|i 
= c2(S) + cl(S)-S\s + SX- E-S\s 

= w*c2(M)\s+ir*r1x\§-E-S\s 

= v*(c2(M) + Vx)\§ 

since ESS = ETT*(SS) = 0. Thus we see that the class c2(A/) — 
W*(C2(M) + TJA.) + W*C 1 (M) • E has intersection number 0 with both E and 
S, and hence is zero. Q.E.D. 

Ordinary Singularities of Surfaces 

Our task in this section is to describe the singularities of a generic 
projection of a surface S cPN into P3. To begin with, we recall that for 
N > 5, the generic projection of S c PN from a point is an embedding, so 
we may take S smooth in P5 to start and consider the projection map 

■nL: S-+P3 

from a generic line L c P 5 . As we have seen, the map -nL will be 1-1 and 
smooth at a po in tpGS exactly when the 2-plane pL meets S transversely 
at p and nowhere else; accordingly, we will try to determine, at least 
dimension-theoretically, the number of times a generic line L c P 5 meets a 
chord of S, or a tangent plane to S, or lies in a 2-plane spanned by points 
of 5, etc. One point before we proceed: while we shall argue that the 
generic projection of any surface S c P5 has only ordinary singularities as 
defined on p. 616, all we need to know for the purpose of proving 
Noether's formula is that any surface may be embedded in P5 in such a 
way that the generic projection has only ordinary singularities. Indeed, 
some of the subtler questions of "general position" that arise in the latter 
part of our argument may be decided immediately by taking the embed-
ding S—»P5 to be of sufficiently high degree; accordingly we will leave the 
verification of these conditions to the reader, and merely show that they 
are satisfied for an appropriate embedding of S. 

Now let (7(2,6) be the Grassmannian of lines in P5 and consider the 
incidence correspondence 

/ c SxSxG(2,6) 
given by 

1 = {(p,q,L): p¥=q, dim pqL<2). 

Clearly for any two points p=£qES, TTL{P) = irL(q) exactly when (p, q, L) e 
/ . But now if we let w,, TT2, and w3 be the projections of / onto the three 
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factors of 5 X S X G(2,6), we see that the fiber of the map 

77-, X TT2: I->S XS 

over a point (p,q) corresponds to the set of lines LGG(2,6) meeting the 
line pqc P5, i.e., to a Schubert cycle a3. Since a3 has codimension 3 in the 
eight-dimensional G(2,6), the fibers of mx XTT2 have dimension 5, and so 

dim/ = 9. 
Thus the fiber of the map w3:I—>G(2,6) over a generic point L£G(2,6) 
has dimension at most 1. Indeed, as we shall see, -n^ '(L) cannot be empty 
or finite, so in fact 77-3" '(L) must be one-dimensional for a generic L, and 
hence the projection map TTL : S—»P3 is one-to-one outside the closure C of the 
curve 

The curve C is called the double curve of the map ITL; its image C = vrL(C) 
in the image surface 5 = irL(S) C P3 is likewise called the double curve of S. 

We claim now that -nL will be 3-1 only at a finite number of points, and 
nowhere 4-1 or more. To see this let 

/ ' c 5 X S X 5 X G ( 2 , 6 ) 
be given by 

I' ~ {{P>a>r>L): p¥= q¥=r¥=p,dimpqrL <2) 

and let irx, 7r2, TT3, and -n4 be the projections of / ' on the factors of 
S XS XS X G(2,6). Clearly the generic triple (p, q, r) of distinct points on 
S span a 2-plane; thus the fiber of 

7T, X 77-2 X 7T3 : I' ^-S XS XS 

over any point not in the locus 

J = {(p,q,r): p¥-q¥-r=£p collinear} c S XS XS 

corresponds to lines L lying in pqr and so is two-dimensional. Thus 

dim(7r,X7r2X7r3)" \SxSxS-J) = 8. 
On the other hand, since a generic 3-plane K3 c P5 meets 5 in a collection 
of points in general position, the generic chord pq to S will meet S only at 
p and q, so J is at most three-dimensional. The fiber of TT, X 7r2 X 77-3 over a 
point of J being, as we have seen, five-dimensional, we have 

dim(77-1X77-2X77-3)"lJ < 8. 

Thus / ' is eight-dimensional, and so the generic fiber of the projection 
7r4: /'->(7(2,8) is finite; this proves the first part of our present claim. In 
fact, we can say a bit more: from the proof of our basic lemma (p. 249), we 

file:///SxSxS-J
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see that among those 3-planes V3 meeting S in a collection of points not in 
general position, the generic one contains four points of 5 spanning a 
2-plane, and not three collinear points. Thus if we define 

K c SxSxSxG(4,6) 
by 

K = {(/>>#>'.A): p^q¥=rGA and rGpq], 

we see that the image of K under projection on the factor (7(4,6) has 
codimension at least 2, i.e., dimension at most 6. Assuming that S contains 
only finitely many lines, then, it follows that dim K < 6, and since the fibers 
of the projection map w1 X IT2 X w3: K-*S X S X S are all four-dimensional, 
that the dimension of J=TT1 XTT2XTT3(K) is at most 2. If S does contain a 
family of lines, of course, J will be three-dimensional; but as we will see, 
this causes no trouble. 

Now to see that TTL is never 4-1 or worse, let 

/ " c SxSxSxSxG(2,6) 

be given by 

/ " = {(p,q,r,t,L): p,q,r,t distinct and dimpqrtL < 2 } , 

and let 7r,,...,7r5 be the corresponding projection maps. First off, since the 
generic triple (p,q,r) of distinct points on 5 are linearly independent and 
the 2-plane they span contains no other points of S, the map w, X ir2 X tr3 

maps / " into a proper subvariety of S X S X S with fiber dimension 2 away 
from J; i.e., 

dim('!T]X'7r2XTT3y
l(SxSxS-J) < 7. 

On the other hand, mx X <n2 X ir3 has fiber dimension 5 over J, so if S does 
not contain a family of lines, 

dim(77-1Xw2X77-3)~1y < 7. 

Thus d i m / " < 7 , and the projection ir5:I"^G(2,6) cannot be surjective. 
Finally, if S does contain a family of lines, then / " may be 10-dimensional 
—but the generic point of / " lies in a fiber of TT5 of dimension 4, and so 
again IT5 cannot be surjective. 

In sum, then, we have seen that for generic L, w£: S—>S c P3 is 1-1 
outside of the double curve CcS, generically 2-1 on C, and 3-1 over a 
finite collection of points. We consider now the possible singularities of TTL. 
First, let 

/ , C SXG(2 ,6) 
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be given by 

/, = {{q,L): dim Tq(S),L<3) 

and let TTX,IT2 be the projection maps. For each ? £ S , the fiber 77 f \q) of 7r, 
over q is the Schubert cycle a2 of lines L c P 3 meeting Tq(S), and so has 
dimension 6; thus dim/, = 8. The generic fiber of tr2 on 7, is thus finite, so 
that for generic L the set 

i = W,K'(L))c5 
of points where irL fails to be smooth is finite. (Note that if (<7,L)E7,, then 
(q,q,L) lies in the closure of / above; thus we see that B lies in C.) 
Moreover, since for generic q G S not every line tangent to 5 at q meets S 
in another point besides q, the locus 

I[={(q,r,L): ( 9 > L ) E / 1 , ( 9 , r , L ) e / } 
has dimension at most 7, so that irL will be 1-1 at the points of B; and since 
the generic tangent line to S is simply tangent, the 2-plane qL will be 
simply tangent to S at each point of B. 

All that remains is to check that if irL(q) = vL{r) for two points q^rGS, 
then the images in P3 of neighborhoods of q and r meet transversely, and 
likewise for triple points. In the first case, neighborhoods of q and r will 
fail to meet transversely in P3 exactly when Tq(S ),L— Tr(S ),L; thus we 
consider the variety 

h C I C SxSxG(2,6) 

given by 

/ 2 ={(<7, r ,L) : Tq(S ),L= Tr(S ),L }. 

Letting ■nu <n2, and 7r3 denote the projection maps on I2, we see that for 
(q,r)GS X 5, (TT, X w 2 r \ q , r ) will be empty if Tq(S) is disjoint from r r (5) , 
the Schubert cycle a3 , c G(2,6) of lines lying in Tq(S ), Tr(S ) and meet-
ing ~qr if 7"9(S;) and Tr(S) meet in a point, and the Schubert cycle a3 of 
lines meeting ~qr if Tq(S) and Tf(S) have a line or more in common. The 
reader may check that in fact the only nondegenerate surface S in P5 every 
two of whose tangent planes meet is the Veronese surface, and any surface 
S c P 5 such that 7^,(5) meets 7^(5) in a line for all (p,q) in a three-dimen-
sional subvariety of S X S must contain a family of lines. Except for these 
exceptional cases, then, the variety 72 has dimension at most 7; if S is the 
Veronese surface or contains a family of lines, on the other hand, we see 
that I2 is at most eight-dimensional and the fiber of the map 7r3 through the 
generic point of 72 is positive dimensional. Thus in any case ir3:12—> G(2,6) 
cannot be surjective. 
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Alternatively, we can guarantee the condition dim/2 < 7 by rechoosing 
our embedding of S in P5: if L^>S is a positive line bundle, then for &»0 
we see by the proof of the Kodaira embedding theorem that Lk is very 
ample and for any two points p, q^S, 

Hi(S\g(L
k)) = H>{S,9pjL

k)) = 0. 

It follows that 

h°(SjpjL
k)) = h°(S,6(Lk))-2 

and 
h%SJlg(L

k)) = h°(S,6(Lk))~6, 

i.e., the linear subspace of divisors £> E|L*| singular at two fixed points p0 

and q0 is codimension 6. Thus the generic sublinear system of dimension 5 
in \Lk\ contains no such divisor, or in other words no hyperplane section 
of the image of ILK{S) under a generic projection to P5 is singular at both 
p0 and q0. This implies that the tangent spaces to S c P5 at p0 and q0 do not 
both lie in any 4-plane, and so are disjoint. Likewise, we see that for fixed 
p0 the locus of divisors D &\Lk\ singular at p0 and at some other point 
9 6 S as well has codimension 4. The generic five-dimensional sublinear 
system of \Lh\ will then contain at most a finite number of lines from this 
locus, that is, under a generic projection of iL»{S) to P5, there will be only 
finitely many qGS such that a pencil of hyperplane sections of S c P 5 is 
singular at both p0 and q. The locus of pairs (p,q)GSxS with Tp(S) 
meeting Tg(S) in a line is thus at most two-dimensional, and so I2 has 
dimension < 7. 

Lastly, if TrL{p) = irL(q) = irL{r) for distinct points p,q,r€zS, the images of 
neighborhoods of the three points will fail to meet transversely at 
77L(/>)GP3 exactly when the hyperplanes Tp(S ) , L,Tq(S ),L and 
Tr(S ),L intersect in a 3-plane. Since we have seen that the generic L c P 5 

will not meet any line containing three points of S, we consider 

I^C S xS XS XC(2,6) 

given by 

72 = {(p,q,r,L): Lcpqr , 

dim( Tp(S ),q,m Tg(S ),p,m Tr(S ),p,q)>2>). 

Again, we leave to the reader the verification that the projection map 
w4:12-* G(2,6) cannot be surjective, and argue that for an appropriate 
embedding of S, /2' will have dimension at most 7. This is not hard: as 
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before, we take L a positive line bundle and choose k such that 

H\SXq,r{L
k)) = H\sSp,q,r{L

k)) = 0. 

It then follows that the space of divisors £> E|L*| singular at/?, q, and r 
has codimension 9, and hence that the spaces E , Eq, and Erc\Lk\ of 
divisors D S\Lk\ containing all three points and singular at p, q, or r, 
respectively, have codimension 5 and are in general position in \Lk\. The 
generic five-dimensional sublinear system of \Lk\ will therefore intersect 
Ep, Eq, and Er in three linearly independent points, or in other words under 
the generic projection of iL*(S) into PT, no pencil of hyperplane sections ofS 
through all three points can contain elements singular at p, q, and r. But if 
Tp(S ),q,r, Tq(S ),p,r, and Tr(S ),q,p met in a 3-plane, the set of hyper-
plane sections of 5 containing that 3-plane would be just such a pencil. 
Thus the projection 

(TT, X7r2X7r3): I^-^S XSxS 

maps onto a proper subvariety of S XSxS; since the fiber dimension of 
the map is clearly < 2, we see that dim/j < 7. 

Putting this all together, then, we see that any singular point of the 
image S c P 3 of S under a generic projection 77 is one of the following 
three types: 

_ 1. A transverse double point of S, i.e., the image of two distinct points of 
S. A neighborhood of p in S then consists of two smooth polydiscs 
intersecting transversely in the double curve C of S (see Figure 11); in 
terms of an appropriate local holomorphic coordinate system (u,v, w) for 
P3 near/?, 

(*) s=(uv = 0) 
and 

C= ( H = 0 , U = 0 ) . 

Around the two points p',p" in the inverse image of p, the functions 

/ Figure 11 
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(■7r*v,ir*w) and (Tr*u,7r*w) furnish local holomorphic coordinates; C is 
given near/;' and/?" by 7r*u=0 and>*w = 0, respectively. Note in particu-
lar that C and C are smooth atp and ir~\p), as is the map m: C-+C. 

2. A triple point of S, that is, the image of three distinct points of S. A 
neighborhood of p in S then consists of three smooth polydiscs intersecting 
transversely (see Figure 12); we can choose holomorphic coordinates 
(u,v,w) for P3 near/7 so that 

(*) S = ( K W = 0 ) , 
C = {u = v = 0)u(u = w = 0)u(v = w = 0). 

Around the three points/ / , p", andp'" of S lying over/? we may take as 
local coordinates (ir*v,ir*w), (w*u,w*w) and (ir*u,irr*v); C is then given in 
these coordinate systems by (ir*vn*w = 0), (TT*U-7T*W = 0), and (w*u-ir*v = 
0), respectively. 

3. A cuspidal (or flat, or pinch) point of 5", i.e., the image in S of a 
simple tangent line to S. Here the local character of the map w near/? is 
not so plain. Choose Euclidean coordinates u,,...,us in P5 so that the 
family of 2-planes containing the line of projection L is given by (ux,u2,u^) 
= (cl,c2,c3), and so that the line H1 = M2 = W3 = « 4 = 0 is tangent to S atp, 
and choose local coordinates (s,t) on 5 such that under the inclusion 
Tp,(S)cTp,(P% 

A = J_ nd 9 _ 9 

9f 8w, 8.s Bw, ' 

Then the inclusion S c P 5 will have the form 

(MM[2],[2],5+[2],[2],/ + [2]) 

Figure 12 



618 SURFACES 

P 

Figure 13 

and in terms of Euclidean coordinates uvu2,u3 on P3, 

■n: (s,t)^{[2],[2],s+[2]). 

We can then find Euclidean coordinates u,v,w on P3 such that (after a 
change in the coordinate s) 

■n: ( 5 , / ) h ^ + [ 3 ] , / 2 + [ 3 ] , * + [ 3 ] ) . 

A local defining equation for S will then have the form 

(*) f(u,v,w) = u2-vw2 + [4]. 

C is thus given near/? by 
C = (w+[2] = w + [ 2 ] = 0 ) ; 

we see that both C and C are smooth near/? and/?', and that/?' is a branch 
point of the map 7r:C->C. The picture is this (Figure 13): at any point 
q¥=pEC near/?, the two branches of S—corresponding to the two points 
of C lying over q—meet transversely; at /?, these two branches come 
together. (Although we shall not need the fact, we can find holomorphic 
coordinates (s,t) on 5 and (u,v,w) on P3 near/? such that 

ir(s,t) = (st,t2,s) 

and correspondingly 

S=(u2-vw2).) 

The local defining equations (*) for the surface 5 given above are called 
the normal forms of the various singular points. A surface in general is said 
to have ordinary singularities if every singular point of S is one of the 
above types, i.e., if S can be given in a neighborhood of any point by one 
of the normal forms above. 

Noether's Formula for General Surfaces 

We have now at our disposal all the tools necessary to prove Noether's 
formula along the lines suggested earlier. Given any algebraic surface S, 
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embed S in P5 and choose a generic projection 

mapping S onto a surface S0 c P3 of degree n having ordinary singularities. 
Let p,,...,/>, be the triple points of S0, C,,...,C„ the irreducible compo-
nents of the double curve C of S0, and d( and g, the degree and genus of C„ 
respectively; call d=^ di and g= 2 &• t n e degree and genus of C. 

Our object is to compute both sides of Noether's formula for S in terms 
of the numbers n, d, g, u, and t. The first step is to describe a blow-up 
X -^ P3 such that the proper transform of S0 in X is smooth; because of the 
relatively simple nature of ordinary singularities, this is not difficult. To 
begin with, let 

7T,: Y—>P3 

be the blow-up of P3 at the triple pointspx,...,p, of S0, Et the exceptional 
divisor over /?,. In a neighborhood of each exceptional divisor £,, the 
proper transform S, of S will consist of three smooth sheets, intersecting 
pairwise in smooth arcs and intersecting £, =s P2 in three lines; the double 
curve of 5", is the proper transform of C, that is, the three arcs comprising 
the pairwise intersections of the three components of 5,, as shown in 
Figure 14. Explicitly, suppose zt,z2,z3 are local coordinates in an open set 
U around the triple point p such that 50 is given in U as the locus 
(zlz2z3 = 0). nr~\U) is then covered by three open sets {/,, U2, U3, where Ui 

is the complement in wf'({/) of the proper transform of the coordinate 
hyperplane (z, = 0); and in terms of coordinates 

on U^ we see that 
77r,(50) = (z,-z,z0>^(0* = 0) 

= 3£,. + (z(0, = 0) + (z-(/)* = ()) 

Figure 14 
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i.e., 5, n Ut consists of the proper transforms of the two coordinate 
hyperplanes (z- = 0) and zk = 0). The double curve C of 5, is the union of 
the arcs (z(i)j = z(i)k = 0 ) c Ut; in particular, we note that C is smooth, 
and hence that all the irreducible components C, of C are disjoint. 

Next, we let 
m2: X—->Y 

be the blow-up of Y along the double curve C = (J C, of S{, m = ir1°m2 the 
combined blow-up. Let Ft denote the exceptional divisor over C;, S the 
proper transform of S, in X, and Et the inverse image of the exceptional 
divisor £", c Y. Our first observation is that S is smooth in X. Clearly this 
has to be checked at the inverse image of a point pGC. If p is not a pinch 
point of 5,, then we may take coordinates z{,z2,z3 on a neighborhood U of 
p in K such that in £/, 

Si = {z2z3=0), C = (z2 = z3=0) . 
The inverse image of U in A' is covered by the complements U2 and U3 of 
the proper transforms of the coordinate hyperplanes (z2 = 0) and (z3 = 0). 
In U2 we have coordinates 

z \ = z l> z 2 = z2> ZV^J3 = 

z 2 
in terms of which F = ( z 2 = 0) and 

■n2~\S,) = {z2-z2z(2)^Q) 
= 2 F + ( z ( 2 ) 3 = 0) 

so S is smooth in U2, similarly in terms of coordinates 
z l = z l - z ( 3 ) 2 = - 1 . z 3 = Z3 

z 3 

on U3, we have 
^ ' ( S 1 ) = (z3-z3-z(3)2 = 0) 

= 2F+(z(3)2 = 0) 

so S is smooth in U3. Thus S is smooth around m2 \p); indeed, we see that 
near p the intersection S n F is just the two sections of the bundle F-> C 
corresponding to the normal directions to C in the two branches of Sl 

around/?. 
If p is a pinch point of Su then we may choose coordinates zvz2,z3 in a 

neighborhood U of p such that 
S, = (z2

2-z,z3
2 = 0), 

C = (z2 = z3 = 0). 
With Uj, z,, and z(y'), as above, then, we see that in U2, 

W2"1(51) = (z2-z1-z2
2z(2)^ = 0) 

= 2/=- + ( l - z , z ( 2 ) 3 = 0) 
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i.e., S intersects each fiber z, = c of F (except for z = 0) in the two points 
f(2)3= ± V l / c , and in particular S is smooth. In U3, 

W2-,(S1) = ( ^ , ( 3 ) ^ - z I r f = 0) 
= 2 F + ( z ( 3 ) 2 - z , ) 

so S intersects the fiber z, = c of F in the two points z(3)2 = ± Vc , and the 
fiber z , = 0 tangentially at the point z(3)2 = 0, i.e., TT^^P) is just a branch 
point of the twofold cover -n2: S n F—>C. Again, we see immediately that S 
is smooth at -n"'(/>)> and thus S is everywhere smooth. 

We obtain in this fashion a desingularization of any surface S 0 c P 3 

having only ordinary singularities. Note that in case S0 is the image under 
a generic projection of a smooth surface S c P5, the surface S is not the 
surface S: the identity map 

S-TT-](C)-^>S-<p-\C) 
extends to an isomorphism 

S-w-,({p1,...,p,})—>S- <p-\{pl,...,pl}) 

and then to a holomorphic map S^S blowing down the curves S r\ E 
lying over /?,,...,/>,; i.e., S is the blow-up of S at the 3/ points 
<p~\{pi,...,pl}). We will see later that if 5 0 c P 3 is any surface with 
ordinary singularities and S is proper transform in the blow-up X of P3 as 
constructed above, then the curves of S n E are all exceptional of the first 
kind. If we blow down these curves, we obtain a minimal desingularization 
of S0, that is, a surface S mapping holomorphically to 5 0 c P 3 which 
cannot be blown down to another smooth surface mapping holomorphi-
cally to S0. 

One point to be made here is that while the particularly simple nature of 
ordinary singularities allows us to remove them by only two blow-ups, any 
singularity may be eventually resolved by this process, i.e., 

Theorem (Resolution of Singularities). Given any variety V c P " , there 
exists a blow-up Pn—»Pn such that the proper transform ofV in X is smooth. 

The proof of this theorem, due to Hironaka (cf. p. 453 for the reference), is 
far beyond the scope of this book. 

The next step is to compute the cohomology ring of X, at least in even 
dimensions. To start, the cohomology ring H*(Y) is easily expressed: if 
EU...,E, are the exceptional divisors of F - » P 3 , L, a line in £, = P2, then 
we have 

H2(Y) = w*H 2(P3) ©€{£•„ . . . ,£ •} 
= C{H,EU. . . ,£ ,} 

and likewise 
H4(Y) = C{H\Ll,...,Lt}. 
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Clearly //•£, = i y £ . = 0 for i¥=j; and since the restriction [E]\E^[ — Lt], 
E^E,— — Lt. In complementary dimensions, then, 

HH2 = 1, H-L< = 0, 
ErH

2 = 0, ErLj=-Sy. 
By our formulas, 

c 1 ( r ) = 7 r f c 1 ( P 3 ) - 2 2 ^ 

= 4 / / -l^E, 

andc 2 (7) = 77*c2(P3) = 6/ / 2 . 
To find the class of C, in / / 4 ( Y), let T,-, be the number of branches of C 

atpj belonging to C,. (Note that 2,-7^ = 3 for ally, and so 2,yTy = 3r.) Then 

C, • / /=< /„ C,-£, = Ty, 
and accordingly 

In particular, we have 
c\(Nc,/r) = C\(Ty)\c, ~ ^i(^c,) 

= 4^.-22rff + 2 g / -2 . 
y 

We proceed now to X. Letting Ft denote as before the exceptional 
divisor of the blow-up •n1:X->Y over C,, Af, a fiber of the bundle 
7T2: F^Cj and £̂ . and L, the inverse images of £, and L, in Y, we see that 

/ / 2 ( X ) = C { / / , £ „ . . . , £ „ F I , . . . , F U } 
and 

H\X) = C{^2,L„. . . ,L, ,yV1, . . . ,A/ I I} . 
The intersection pairing in complementary dimensions is readily de-
termined; we note first that as before 

HH2=\, /YL, = 0, ErLj=-8ij, ErH
2 = 0, 

and similarly 
HM, = Ej-M, = H2 F, = FrLj = 0, 

since in each case the cycles can clearly be made disjoint. Lastly, since 
[Fi]\F is just the tautological bundle on F^PiN^/y) 

FrMj-Sy. 

In the pairing H2(X)XH\X)-*H\X), the relations 
HE, = 0, ErEj-SyLj 

are immediate. Since a hyperplane in P3 will meet C, in d, points, its 
inverse image in X will intersect the exceptional divisor F, in dt fibers, i.e., 

H-Fj-dM; 
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and likewise Ej will intersect /*} in the fibers of Ft over the points of 
intersection C, n Ej, so 

Finally, since the class [F;]|F is the class £ of the tautological bundle on 
F,szP(Nc./Y) -5 C, and by our relation 

= F/
2|J,+4^. + 2 a . - 2 - 2 2 T t f 

j 

we have 

/ ; 3 = - ( 4 ^ . + 2 g , - 2 - 2 2 r , ) . 

This, together with the products 
F2H ~Fr (FrH) = FrdiMl~ - 4 

and 

yield the formula 

7<2= - ^ 2 + (4^ + 2g , . -2 -22T, )M, + 2T,L,. 

In sum, then, the intersection form on HU(X) is given by the multiplica-
tion tables 

H2 

LJ 

Mj 

H 

1 
0 
0 

E, 

0 

~Su 
0 

Ft 

0 
0 

- « < / 

H 

Ek 

Fk 

H 

H2 

EJ 

0 

-v? 

^ 

J,M, 
r,.A/,. 

S , ( - 4 / / 2 + 2yT,Z, 
+ (4^ + 2 a - 2 - 2 2 y T j , ) ^ ) 

Note that the class of 5 is «// — 32 £} — 22 /•}, so that 
SH2 = «, S-Lj = 3, and SA/,. = 2. 
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Now, to compute c2(S) and c2(S) we have only to apply the adjunction 
formulas (*) and (**) of p. 601. First, 

cl(X) = ^c](Y)-^Fi 

= 4H-2^Ej-^JFi 

so 
Ci{S) = (cx{Tx)-{S))\5 

= -(«-4) i / + 2 ^ + 2 ^ 
and 

cftS ) = S (/z-4)2//2-2(«-4)2 4 ^ , - 2 A 

+ 2 2 ^ - 2 ^ 2 

+ 2 (4 .̂ + 2 a -2 -22 TJA/, + 2 TyLj 
i \ j I U 

= n(n~4)2 - 4{n-4)d - 3/ + 12/ - nd +%d 
+ 4g-4w- 12/+ 9/ 

= n(n-4)2 ~5nd + 24d+4g-4u + 6t. 
Since 5 is the blow-up of 5 at 3? points, then, 

c2(S) = c,(S) + 3/ = n(n-4)2-5nd+24d + 4g-4u + 9t. 

Next, we have 

c2(X) = W2*(c2( 7 ) + 2 C,) - *2V,( Y)• 2 *;■ 

= (rf+6)tf 2 - 2 (4^-22 r^M,. - 22 T̂ ZJ, 

hence 
c2(s) = (c2(r,)-c,(s)-s)|5-

(^+6)//2-2f4^-22^)M,-22^ 

+ n{n-4)H2-n^d1Mi-3^lLj-2(n~4)Y1diMi 
j 

+ 5'2lTuMi-2'2diH
2 + 2'2T0LJ 

+ 22(4^+2^. -2-22^)^ . ] 
i \ >: ' J 

n(d+6)-8d+\2t-9t-4(n-4)d+n2(n-4) 
-2dn-9t + 30t-2nd + 18/+ 16J+ 8g - 8w -24/ 

= S-
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and 

c2(S) = c2(S)-3t 

= n2(n-4) + 6« + 24d- Ind + Sg - 8« + 15?. 
Thus, in sum, 

cfW + c ^ („-!)(„ -2X-3)_ 4 M + 8 _„ + 2 > + | . 
12 6 

To prove Noether's formula we have now to express the holomorphic 
Euler characteristic x(®s)~x(®s) a ' s o m terms of n, d, g, u, and /. To 
begin with, by the Poincare residue sequence for S c X 

0—»Qj—»B*.(S )—>Q| —*0 

we see that 

X(®s) = x( f i | ) = X(^3(5 )) - x ( ^ ) = xfficiS )) + 1 

since X(^A-) = X(^P3) = - 1- To evaluate the holomorphic Euler characteris-
tic 

x(&x(S)) = x(®x(Kx + S)) 

= x(e*((«-4)//-2*,-2*;)) 
we use a succession of restriction maps. First, we consider the sequence 

0-+6x((n-4)H-2lEJ-ZFi)-*ex((n-4)H-'2Ej) 

-*©0„(((„-4)//-25-))^O. 

To find the Euler characteristic of the last term, we use Riemann-Roch for 
line bundles on Ft: the divisor ((n — 4)H — 2 £ , ) | F is just the sum of 
di(n — 4) — '2jTu fibers of the ruled surface /^—>C,; since the fibers have 
self-intersection 0 and intersection number — 2 with KF, 

x(0 / ; ( (n-4)/ / -2^)) = x(0^) + ^ ( « - 4 ) - 2 T , 

= 2-2gI. + 4(»-4)-2Ti, . 
y 

Thus 

X(®eF:((n-4)H-^EJ)) = u-g+d(n-4) + 3t 

and 

X(©5) = x(6^( («-4)^-2 ^-)) - rf(«"4) + g - « + 3/ + 1. 
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Next, from the sequence 

0-*ex((n-4)H - 2 Ej(-+ex(n-4)H)-* © 6^((/i - 4) t f ) -»0 

we see that 

x(0x((«-4)//-2£y)) = x(C\((«-4)//))-x(©0£J 
= xWx((n-4)H))-t 

and hence 

x(0s-) = x ( 6 ; r ( ( » - 4 ) t f ) ) - < / ( " - 4 ) + g - K + 2 / + I . 
Finally, to evaluate x(0*((«~4)/ /)) , in case n > 4 we let 7"cP 3 be a 

smooth surface of degree n — 4 missing/?,,...,/?, and meeting each curve C, 
transversely; we let f c A " be its inverse image and consider the sequence 

0—> ex —> ex((n-4)H) — > 0 f ( (« -4 )W ) —>0. 
On 7, we have ( ( n - 4 ) / / ) 2 = (« — 4)HKf, and by Riemann-Roch, 

X(0f ( ( « - 4 ) / / )) = X (0f ) = X(0r) = ( " ~ 1 ) ( W ~ 2 X " ~ 3 ) + 1 

so 

x ( 0 , ( ( « - 4 ) / / ) ) = ^ i K ^ ^ . 

In case n = 1, 2, or 3, we let T instead be a surface of degree 4— n in P3, 
and from the sequence 

O - ^ 0 A - ( ( " - 4 ) # ) ~ > & x — > G f —>0 

we deduce again that 

X ( 0 ^ ( ( « - 4 ) / / ) ) = l - x ( 0 f ) 
= 0 
_ ( / I - 1 ) ( / I - 2 ) ( / I - 3 ) 

6 
Thus, in either case, we have 

x(05-) = x ( 0 i ) 

= ^ A A ^ - ^ ( « - 4 ) + g - M + 2 / + 1 

and Noether's formula is proved. 
It should be noted that neither the geometric genus or the irregularity of 

the surface 5 appears by itself in the above formulas. The fact is that 
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while, as we shall see, we can usually determine pg(S) and q(S) for any 
given surface S1 c P3, these invariants are not determined by the numbers 
n, dj, gj, u, and t. 

To find the geometric genus of a surface S^>S0cP3 as given above, we 
return to the Poincare residue sequence on the desingularization S CX: 

0 —> Qx —> tfx (S ) —> fl| —-> 0. 

Since X is rational, 

h°(X,tix) = 0 and hl(X,tt3
x) = h°(X,il2

x) = 0 
so 

Pg(s) = h°(x,a3
x(s)) 

= A°(^e^((/.-4)//-2^-2^)). 
Now, any section of the line bundle ( « - 4 ) / / on P3 vanishing along the 
curve C gives a section of (n — 4)H — "ZEy — 'ZFi on X, and conversely by 
Hartogs' theorem any section aG.H°(X,6x((n-4)H-'ZEj-'S,Fl)) is the 
pullback of a section of (n-4)H on P3 vanishing on C. Thus, 

77ze canonical series |KS| o/S /s CM? owf ty surfaces of degree n — 4in P3 

containing the curve C; 

and we may express pg(S) accordingly: setting |E| = 7r*|0p3((n —4)H)|c 
|0c(**(n-4)H)| , 

The geometric genus pg(S) « the number I n J o / surfaces of degree 

n-4 in P3, few the vector space dimension of the linear system \E\ they 
cut out on C. 

Comparing this with our previous formula for the Euler characteristic 
X(<Ss)=pg(S)— q(S)+\y we obtain a particularly simple expression for 
q(S): we have 

, ( S ) - / > , ( S ) - x ( 6 j ) + l 

- ( « j ' ) - d N * | - ( V ) 
+ d(n-4)~g+u-2t 

= 2 ( 4 ( « - 4 ) - & + 1 ) - dim|£| 
I = I 

= / i°(C,ec((«-4)/ /))-dim|£: | 
- / i ' ( C , 0 c ( ( " - 4 ) ^ ) ) - 2 / . 
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The difference of the first two terms represents the failure of the linear 
system |£"| to be complete; it is called the deficiency of the system \E\. In 
these terms we have 

The irregularity q(S) is the deficiency minus the index of speciality of the 
linear system \E\ cut out on C by surfaces of degree n — 4 in P3, less 
twice the number of triple points. 

A final point to be made in this context is that the number b of pinch 
points of a surface S0 c P3 as given above is determined by the data n, d, g, 
u, and /: if D^cS is the inverse image of the curve Q c S ' , , then the 
number bt of pinch points of S0 along C, is just the number of branch 
points of the two-sheeted covering map v2:Di-^Ci, and by Riemann-
Hurwitz and adjunction this number is 

6, = ( 2 f ( A ) - 2 ) - ( 2 & - 2 ) 
= DrKs + DrDi-Agi + A. 

But we have seen that 

*5 = ((/!-4)tf-2£,-2*;)l5 

= ((«-4)//-2£,-)li-2A 
so 

Z V ( * S + A ) - 2 ( / I - 4 ) 4 . - 2 2 T J , 
j 

and 

6(. = 2 ( # i - 4 ) 4 - 2 2 > 0 - 4 & + 4. 
j 

The total number of pinch points on S is thus 
b = 2d(n-4)-6t -~4g + 4u. 

Some Examples 

We consider now some examples of irreducible surfaces 5 0 c P 3 with 
IT 

ordinary singularities. In each case we will let S —»S0 be the minimal 
desingularization of S0, C cS0 the double curve of 50, and D c S its 
inverse image in S, and take n, d, g, u, and t as above. 

To begin with, suppose S0 is a cubic surface. Inasmuch as the generic 
plane section HS0 of S0 is then an irreducible plane cubic curve singular 
at the d points of HC, we see that d<\, i.e., C can be at most a line. 
Supposing that C is a line, it follows immediately that 51 is a rational ruled 
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surface: the pencil {//*} of planes in P3 containing C cuts out on 5 a 
pencil {Lx} of lines. In terms of the basis {E0,LX} for S = Sn, we can write 
the class of a hyperplane on S as 

H = aE0+bLx; 

since HLX = \, a=\ and then from 

3 = HH = {E0+bLx)
2 = n + 2b 

it follows that n=l, H=E0 + LX, and D = H — Lx = E0. Now, we have seen 
that the complete linear system \E0+Lx\ embeds the ruled surface 5, as 
the Steiner surface 5, , c P 4 ; thus 

A cubic surface S0C P3 with a double line is the projection of the Steiner 
surface S, , C P 4 . 

Conversely, any Steiner surface S ^ S , , c P 4 may be realized as the 
union of lines joining points on a line / ) M c P 4 to corresponding points on 
a conic D0 in a complementary 2-plane W c P 4 ; and it is not hard to see 
that the projection mp of Sl , from a point pE W~ DQ is one-to-one away 
from D0 and maps D0 two-to-one onto a line. Since any irreducible curve 
in the two-dimensional system \E0\ may be chosen as D0 in this construc-
tion, any pointpGP4— Sti lies in the 2-plane spanned by such a curve, 
and hence 

The image of a Steiner surface S, , C P4 under projection from any point 
p E P 4 - S , , is a cubic surface with a double line. 

We turn now to quartic surfaces S0. Note first that since the generic 
plane section of S0 is an irreducible quartic with d=deg(C) singularities, 
we must have d< 3. Also, any line meeting C three times meets S0 six times 
and so lies in S0; and we accordingly eliminate the possibility of C being 
the union of three disjoint lines—as the reader may easily verify, the locus 
of lines in P3 meeting each of three skew lines is a quadric surface. The 
remaining possibilities are: 

1. C a line, 
2. C a smooth plane conic, 
3. C the union of two skew lines, 
4. C a rational normal curve, 
5. C the union of three lines meeting at a point. 

Note that in all these cases 
Ks = - D < 0 
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so that Pm(S) = 0 for all in; in cases 1, 2, 4, and 5 we see as well that 
q(S) = 0, and hence S is rational. By cases, then, 

2. C is a smooth plane conic. By our formula, 

c2(S) = n2(n-4) + 24d-7nd+6n + Sg-8u+\5t 

= 0 + 4 8 - 5 6 + 24 + 0 - 8 + 0 
= 8 

so S must be a ruled surface blown up four times, or P2 blown up five 
times; since 

Ks = - D = - H 

is strictly negative, no curve can have self-intersection less than — 1; it 
follows as usual that S is P2 blown up in five general points, no three 
collinear. We see in addition that each of the five exceptional divisors 
El,...,Ei must meet D=-Ks once; thus if r.S-^P2 is the blowing-up 
map, the image i(D) must be a curve of self-intersection 

DD + 5 = 9, 
containing all five blown-up points, i.e., 

H = i*3H - El E5. 

But we have seen that the linear system \i*3H— £ , — • • • — E5\ embeds S in 
P4 as the intersection of two quadrics; thus 

a quartic S with a double conic is the projection into P3 of the 
intersection of two quadrics in P4. 

3. C is two disjoint lines C, and C,. Since H°(P3,ep,((n-4)H)) = 
h°(P3,6P,)=l while h°(C,6) = A°(C„e) + h°(C2,6) = 2, and neither 0 C | 
nor (9C is special, we see that q{S)= 1; thus 5 is birationally ruled over an 
elliptic curve. Indeed, by our formula c2(S) = 0, so S is ruled. We can 
locate the ruling: the pencil {Hx} of hyperplanes through C, cuts out on S 
a pencil of conies { CA} which, being singular at the points Hx n C2, must 
all consist of two lines LX,L'X. Since the pencil [Cx] has no base points on 
5, moreover, the lines LX,L'X are disjoint there—one passes through each 
of the points of S lying over the point Hxn C2- The curves Dx and D2 are 
thus sections of the ruled surface S. 

The reader may find it an amusing exercise to show that the surface S0 

may be realized in two other ways: either as the union of the lines 
corresponding to the intersection of the Grassmannian G(2,4)cP5 of lines 
in P3 with a generic quadric surface g c P 3 c P 5 ; or as the union of the 
lines joining corresponding points on two skew lines C, and C2 in P3, 
under a correspondence of bidegree (2,2) between C, and C2. 
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4. C is a rational normal curve. S is now regular, hence rational; and 
since by the formula (*) 

c2(S) = 4, 

we see that S is a rational ruled surface. To see the ruling, let Q be a 
generic element of the net TV of quadrics through C; Q intersects S in a 
curve of type (4,4)—that is, homologous to a sum of four lines from each 
family—and since a rational normal curve has type (1,2) on Q, the 
residual intersection of Q with S is of type (4,4) — 2(1,2) = (2,0)—that is, 
the sum of two lines, L,U, each meeting C twice. Since any quadric Q&N 
containing a third point of L' contains L', we have a pencil of quadrics 
{Q\} containing L'\ the residual intersection of {Q\} with S will then be a 
pencil {LA} of lines. 

Now, consider the divisor D — H on S. By our formulas 

DD = KK = S 
and since 

HD = 6 
we see that 

k\D-H)>V-H*D
2-

H-KU\ 
_(D-h)(2D-h) 

2 
_ 1 6 - 1 8 + 4 

2 
= 2 

i.e., D — H moves in at least a pencil. Since 

(D-H )2 = 8 - 12 + 4 = 0 
and 

(DH)LX=^(D-H)(2H-D)=l, 

we see that the curves in \D — H\ form a second ruling of S transverse to 
the first; thus S s P ' x P ' with Lx and E=D~H the fibers. Finally, we 
have 

H = {D-H) + (2H-D) 
= E + 2LX, 

so we see that the complete linear system \H\ embeds S s P ' x P ' as the 
rational normal scroll S 2 0 c P 5 ; so 

a quartic surface S0 double along a rational normal curve is a projection 
of the surface S2 0 c P5. 



632 SURFACES 

5. C consists of three lines C,,C2,C3 meeting in a point p. This is the 
easiest case: we have by our formulas 

x(es) = i, 
hence q(S) = 0 and S is rational. But now 

c2(S) = 3 

and so S = P2. Since the degree of S0 is four, 5"0 is a projection of the 
Veronese surface S c P5-

Conversely, we can see that the projection of the Veronese surface 
5 c P 5 from a generic line L c P 5 is such a quartic: we have seen that the 
chordal variety of the Veronese is equal to the union of the 2-planes 
spanned by the conic curves (i.e., the images in 5 of lines in P2) on S, and 
that this is a cubic hypersurface in P5. L then meets this cubic hyper-
surface in three points; i.e., there are exactly three conies in S whose 
2-planes intersect L and under the projection these three conies are 
mapped two-to-one onto double lines of the image S0. 

We leave it to the reader to show that a quartic surface with a double 
line is the image of P2 blown up at nine points under the map given by the 
system of quartics double at one point and passing through the other eight. 

Our last example is perhaps the most interesting. We found, in the 
previous section, two ways of representing an Enriques surface: as the 
quotient of a K-3 surface by a fixed-point-free involution, or as an elliptic 
surface with rational base, having two double fibers. We can now give, in 
addition, a projective realization of an Enriques surface, as follows. (See 
Figure 15.) Let T be a tetrahedron in P 3 with vertices px, p2, p3, p4, edges 
lu=pipJ, and faces Hjjk =pPjPk, and let S c P 3 be a surface of degree 6 with 
ordinary singularities whose double curve is exactly the sum of the six lines 

ft 
Figure 15 
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Now if S ^> S c P 3 is the desingularization of S, /~ = IT Hip then we have 

K§ = -n*{2H)-^Ilp 

i.e., the canonical series on S is cut out by surfaces of degree 2 in P 3 

passing simply through the edges of T. But any quadric containing the 
lines ly, ljk, and lik contains the plane HiJk, so there are no such quadrics; 
thus 

Pg(S ) = 0. 
On the other hand, twice the canonical series 

is cut out by quartic surfaces in P3 passing doubly through the edges of T. 
There is one such quartic: namely the sum 

of the four faces of T. Moreover, each plane HiJk meets S in the sextic 
curve 2lij + 2ljk + 2lik and nowhere else; thus Q meets S only along the lines 
ly, and so the bundle 2K§ is trivial. 

Now, note that the desingularization C of the double curve C = 2/y of S 
consists of six disjoint rational curves; so that the system \E\ of p. 627 is 
nonspecial and has deficiency 

A°(C,0(2)) - 10 = 3 - 6 - 10 = 8. 
The irregularity of S is thus 

q{S) = 8 - 2 / = 0 
and hence S is an Enriques surface. 

We can realize a canonical divisor of S explicitly as follows: let Q be the 
quadric 

Hyk + Hiji 

consisting of two faces of T. Then Q passes doubly through the common 
line Ijj of the two faces, simply through the edges lik, lt„ ljk, and /,, and not 
at all through the edge lkl. Since the canonical curve of 5 is IT*2H~ 2 ly, 
then, we see that 

^ s = '</ — 'w 
i.e., the canonical divisor on S is (he difference of the inverse images of any 
two opposite edges of T. 

Now, in a previous discussion we showed that an Enriques surface S can 
be represented as an elliptic surface with rational base, having two double 
fibers. Indeed, if S is given as a sextic S-^S in P3 double along the edges 
of a tetrahedron, we can find three elliptic pencils on S directly: take two 
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disjoint edges liplkl of T and consider the linear system of quadrics in P3 

passing through the remaining four edges lik, In, IjkJji of T. To see that there 
is at least a pencil {Qx} of such quadrics, choose arbitrary points qxGllk, 
q2£lu, q^^ljk' a n d q^lji distinct from the vertices of 7"; any quadratic 
containing the four vertices {/>,} of T and the four points {<7,} will then 
have three points in common with each of the edges lik,lu,ljk,lji and so will 
contain them. Since the linear system of quadrics in P3 is nine-dimen-
sional, there will be at least a 9 - 8 = 1-dimensional family {Qx} of such 
quadrics. (Conversely, since the four lines comprise the complete intersec-
tion of any two quadrics containing them, there can be no more than a 
pencil of such quadrics.) 

Note that the pencil {Qx} will contain exactly two reducible quadrics: 
Q0= Hilk + Hjlk and Qx = Hjjk + Hijt. Every other quadric in the pencil will 
be smooth, inasmuch as it contains, for example, the two disjoint lines ljk 

and lj„ whereas we have seen that every two lines on an irreducible 
singular quadric in P3 meet. 

Now write 
Qx-S = 2llk + 2l,! + 2ljk + 2ljl+Cx. 

Consider the pencil {Cx} of curves on S and their inverse images Cx = 
w* Cx in S. We note that 

since in particular 
C0 = 4/„ and C, = Altj 

and their inverse images 

C0 = 2lkl and C, = 2/~, 

are disjoint. Since S is an Enriques surface, KCx = 0; so 

» ( C x ) - - ^ + l - l , 

and by Bertini the generic Cx is smooth. The surface S is thus an elliptic 
surface via the map 

* : S—->P' 
given by the pencil {Cx}; the two multiple fibers are 21 tj and 21 kl. Note that 
if L = [p] is the line bundle associated to a point p £ P ' , by our formula 

K§= - ^ L + 4 + 4 , ^ - 4 , , 

since 2lk , = ̂ *L; this agrees with our previous computation. 
Finally, while we will not prove that every Enriques surface can be 

realized as a sextic in P3, we can suggest this fact by counting parameters 



NOETHER'S FORMULA 635 

for sextics in P3 double along the edges of a tetrahedron T. To begin with, 
we may take the vertices of T to be the coordinate points />, = [1,0,0,0], 
/>2 = [0,1,0,0], p3 = [0,0,1,0], and p4 = [0,0,0,1]. The requirement that a 
sextic S c P 3 , given as the locus of a polynomial f(X0,...,X3), be double 
along the edges of T is simply that its intersection with each face HJkl = 
(Xj = 0) of T be the double triangle 

2/^+2/^ + 24,; 
e.g., that 

f(0,Xx,X2,X3) = XQ-X]X2X3, 

f(x0,o, x2,x3) = \{-x0x2x3, 
and so on. Every term in / other than the four terms XfXpif must thus 
contain the factor X0XlX2X3, and so we can write 
f(Xo>Xi,X2,X3) 

= \QX\X2X3 + \\XQX2X3 + ^2-^0 -̂ "l -̂ "3 "^ "3^0^ ' l ^2 ~̂~ Q\X ) ' XQX 1X2X3, 

where \,,...,X3GC and Q{X) is some homogeneous quadratic polynomial 
in A'Q, ..., X3. Conversely, since the sextics in P3 given by polynomials / of 
this type form a linear system without base locus except along the edges of 
T, for generic Q the locus of / is an Enriques surface. 

Now the group of automorphisms of P3 fixing the tetrahedron T is 
generated by the permutations 

[ x0,..., x3 ] H> [ xa(0),..., xo(3) ] 
of the coordinates, plus the diagonal maps 

[X0,...,X3]^[[i0X0,...,ti3X3]. 

There is, thus, up to a permutation oG24, a unique automorphism of P3 

carrying any sextic double along the edges of a tetrahedron into the locus of 
g{X0,Xx,X2,X3) 

= ^ 1 ^ 2 3 0 2 3 0 1 3 0 1 2 */\-^ 7 * 0 1 2 3' 

We see from this that the family of such sextics, up to projective 
isomorphism, has dimension H°(P3,6(2H))= 10. This is, of course, the 
dimension of the family of Enriques surfaces as we computed in the 
previous section; since the family of Enriques surfaces is irreducible and 
any Enriques surface—having irregularity 0—has only countably many 
divisor classes, hence at most countably many representations as a sextic in 
P3, this tells us that the generic Enriques surface may be realized as a 
sextic in P3, double along the edges of a tetrahedron. 



636 SURFACES 

Isolated Singularities of Surfaces 

Thus far we have dealt only with surfaces in P3 having positive-dimen-
sional singular locus, for the simple reason that these are the only singular-
ities that necessarily arise from a projection of a smooth surface. Isolated 
singularities of surfaces are ubiquitous in other contexts, however, and we 
would be remiss if we did not mention them. Since the general theory is far 
too complex for our present purposes, we will give here a few examples of 
surfaces with ordinary isolated double points. 

To begin with, if S is a surface lying on a smooth threefold X and p E S 
is an isolated point of multiplicity m on S, then the tangent cone to S at p 
will be a curve of degree m (counting multiplicity) in P(Tp(X))s*P2; we 
say that p is an ordinary m-fold point of 5 if the tangent cone is smooth 
with multiplicity 1. We consider first the simplest possible case, that of an 
ordinary double point p&S; to avoid complication, assume for the time 
being that S is smooth away from p. We construct the desingularization of 
S as follows: choose local coordinates x,y,z on a neighborhood U of p in 
X so that the defining function f(x,y,z) of S has the form 

f(x,y,z) = x2+y2 + z2 + [3]. 

Let X—>X be the blow-up of X at p. As per Section 5 of Chapter 1, we 
may take as local coordinates on the complement £/, in w~'(i/) of the 
closure of 7T*(JC = 0, (y,z)¥=0) the functions 

on U2 = v~\U)- ir-\y = 0, (x,z)^0) the functions 
x z 

and on U3-ir~\U)- w _ I ( z = 0 , (x,y)^0), 

x y 

We have, then, 

y = xxyx =y2 = y3z3, 
z = xxzx =y2z2 = zy 

In £/, we have 

* -» (S) = ( * • / ) 
= x2 + x2y2 + x2z2 + [x3

x] 

= (*?)0+^+*. + [*.]). 
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and so the proper transform S of S is given by 

S= ■n-\S)-2E=(l+y2 + z2+[xx]), 

where E — {x{) is the exceptional divisor of the blow-up; clearly S is 
smooth over/?. Likewise, in U2, E = {y2)

 a n ^ w e n a v e 

«-\S ) = (**/) 

= 4yl+yi+yl4 + [yl] 
= {y!){x2+\+z2+[y2]), 

so S = (x2 + 1 + zf + [y2]), which is smooth in the locus y2=0; and similarly 
we check that S is smooth in U3 n E. Since by hypothesis S is smooth away 
from/?, S is everywhere smooth, and the map 7T:S-*S is the desingulariza-
tion of S. Note that the inverse image of p in S is the smooth conic curve C 
given, in terms of Euclidean coordinates yvz} on £ s P 2 , by 

l+y2 + z2 = 0. 

Now we can compute the canonical bundle of S readily: recalling from 
Section 5 of Chapter 1 that 

A> = w*Kx + 2E 

and 
S~ir*S-2E, 

we see that 

= **(KX + S), 

i.e., the canonical divisor on 5 is cut out by the linear system \KX + S\ on 
X, just as for a smooth surface 5" of the same class as S on X; in 
particular, 

c2(S ) = cf(S'). 
Indeed, writing out the Poincare residue sequence 

o—>ax—»$£(s)—»n|—>o, 
we see that the codimension in |ATS| of the series cut out by \KX + S\ is the 
dimension of the kernel of the map Hl(X,i2x)-^Hl(X,Ux(S)), just as it is 
for S'; thus we have also 

pg(S)=Pg(S>). 

Now, since Kg = TT*(KX + S), 

K§ C = 0. 
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By the adjunction formula, then, 
CC= -2. 

Alternatively, another way to find the self-intersection of C is to write 

(C-C)s = (E-E-S)x 

= {E-E-{TT*S-2E))X 

= -2(E-E-E)X; 

since [E]\E is the dual of the hyperplane bundle H on E = P2, we have 
(E-E-E)x = (-H--H)E=l, 

and so CC=— 2. 
To find x(©s) w e consider the exact sequence of sheaves 

O ^ G x ( - S ) - ^ ^ J 1 > 0 s - ( - £ ) - > O ; 

we have 

x(e§(-E)) = x(Vs) + E'E\K'E- = x(0i) - 1 . 

and from the exact sequence 

we see that 

It follows that 

X(05) = x ( 6 * ) - X ( 0 ; r ( - S ) ) , 
which, we see from the analogous exact sequence 

o - > ex( - s') - » ex - » es, ->o, 
is just the holomorphic Euler characteristic of a smooth surface .S'cA' of 
the same class as 5. Sincepg(S)=pg(S), it follows that q(S)= q(S); from 
c*(S) = C\(S) and Riemann-Roch, it follows that c2(S) = c2(S). In sum, 
then, 

The desingularization S of a surface S c X with an ordinary double point 
p is the proper transform of S in the blow-up of P3 at p; //ze inverse 
image of p /'« S is a smooth rational curve of self-intersection —2, and 
all the invariants q, x, a«^ |K| of S are f/ie same as those of a smooth 
surface of the same class on X. 

One generalization of this case is straightforward: if p is an ordinary 
singular point of .multiplicity m on S cX, then the proper transform 5 of S 
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in the blow-up of X at p will always be smooth. The invariants of S—while 
not in general equal to those of a smooth surface, equivalent to S as above 
—are then relatively easy to find. For example, since 

S~ir*S- mE, 
we see that 

Ks<={m*Kx-{m-2)E)\§, 

i.e., the canonical divisor on 5 is cut out by surfaces in the series \KX + 5 | 
on X containingp with multiplicity m — 2. Likewise, we see that the inverse 
image C = S f~)E cS of p is a smooth plane curve of degree m in E= P2, 
having self-intersection — m in S, and so on. 

Of course, in general the proper transform S of a surface S c X in the 
blow-up of A' at a singular point p of S may still be singular at a point over 
p, necessitating further blow-ups. Consider, for example, a couple of 
nonordinary double points, both having as their tangent cone two distinct 
lines: 

5, = (x
2+y2 + z3+[4]=0) 

and 
5,

2 = (x2+>'2 + z 4 + [ 5 ] = 0 ) . 

Taking X^>X the blow-up of X at p — (0,0,0) with open sets £/, and 
coordinate systems (x^y^z,) as above, the proper transform S, of S{ in X is 
given as 

( l + 7 2 + [ x , j ) i n t / „ 
(l + x 2

2 + [ j 2 ] ) inf/2, 

and 

(x2
3+y2

3+[z3]) inU3. 

We see than that S, is smooth, with C = ir~l(p) the pair of rational curves 
C, and C2, given in [/,, U2, and U3 by 

c i = O i = ' , * i = 0 ) = ( x 2 = - / , ^ 2 = 0) = (y3 = ix3, z3 = 0) 

and 
C2 = (yi=-i,xl=0) = (x2 = i,y2 = 0) = (y3= -ix3, z3 = 0), 

respectively, each having self-intersection - 2 and meeting in the point 
y3 = x3 = z3 = 0, as in Figure 16. The proper transform S2 of S2, however, is 
given by 

{\+y] + x\z1+[x]]) i n [ / „ 
{xl+\+ylz*+[yl]) inU2, 
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Figure 16 

and 

(x2
3+y2

3 + z2
3+[zl]) inU3. 

Once again, the inverse image n~\p) in S2 is the two curves C, and C2, 
but this time their pointp' = (x3=y3 = z3 = 0) of intersection is an ordinary 

~ ™ 77"' w **" 

double point of 52. If we let X -*X be the blow-up of X at p', then the 
proper transform S2 of S2 will be smooth, and S2z-*S2 the desingulari-
zationof S2. The inverse image (IT°TT')~ \p) of p in S2 will thus consist of 
three curves: the proper transforms C, and C2 °f C\ a n d Q anc* t n e 

inverse image C3 = w'~'(/>'), forming the configuration shown in Figure 17. 
To see how isolated singularities affect the geometry of surfaces in 

projective space, we consider a cubic surface S in P3 having 8 isolated 
double points. By what we have said, the arguments of Section 4 of this 
chapter apply here to show that the desingularization S of S is P2 blown 
up at six points {/>,}; since 5 will contain 8 rational curves of self-intersec-
tion — 2, however, it is no longer true that the points pt are necessarily 
distinct (i.e., some />, may lie on the exceptional divisor of the blow-up of 
P2 at pj), or that they are in general position. 

Suppose first that 5 has exactly one ordinary double pointy; let D be its 
inverse image in S, and D = ir(D) the image of D under the blowing-down 
map 7T: 5—>P2. There are then three possibilities: 

Figure 17 
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PA 

« m 

P, 

P3 

Figure 18 

1. degZ> = 0, i.e., D is an exceptional divisor. Since D is the only curve 
of self-intersection < — 1 on S, this can occur in only one way (see Figure 
18): if the points/?,,/?3,...,/?6 are all distinct,p2 is a point on the exceptional 
divisor Ex of the blow-up P2 of P2 at/?,, and D is the proper transform of 
Ex under the blow-up of P2 at/?2. Also no three of the points/?,,/?3,...,/>6 
may be collinear, as this would give rise to a second curve of self-intersec-
tion — 2 on S; likewise, if t> is the tangent direction to/?, specified by/?2, 
then the line through /?, in the direction v contains none of the points 
/?3,...,/?6, and no conic containing/?3,...,/?6 passes through/?, with tangent 
v. We can count the number of lines on the surface S c P3' since the map 
S-*P3 is given by the inverse canonical series | — Ks\, the lines on S are, as 
before, the rational curves of self-intersection — 1 on S: namely, the five 
exceptional divisors E2,Ei,...,E6, the ten lines {Ly}^^ plus t n e « n e ^12 
through /?, in the direction v specified by p2, the four conies {C,},^, 2 
passing through the points/?„/?3,...,/,,...,p6 and having tangent line v at 
/?,, and the conic C2 passing through />,,/?3,...,/>6. We have thus a total of 
21 lines. 

2. degZ> = 1. In this case (Figure 19) exactly three of the points/?,—say 
/>,,/?2, and/>3—lie on the line £),; apart from that, the points {/?,} are in 
general position. Again, we have 21 lines on S: the six exceptional divisors 
EX,...,E6, the 12 lines {L0} for i,j not both in {1,2,3}, and the three conies 

^ P2 
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Figure 19 



SURFACES 

\ 
\ 
I 

A 

"p5 Figure 20 

3. deg/) = 2. In this case (Figure 20) all the points/?, lie on the conic D 
tfnd are otherwise in general position. Once more we have 21 lines on S: 
the six exceptional divisors Et and the 15 lines Ltj. 

The same argument as given for the smooth cubic surface shows that 
degZ) < 2, so these are the only possibilities. 

Note, finally, that any S may be realized as any one of these types: in 
case 1, the six lines {LXj}J=2 b, C2, and E2 are disjoint and may be blown 
down to obtain P2; the image of the exceptional divisor Ex is then a conic 
curve containing all six image points (this blowing-down amounts to 
projection of Sq from the double point). Likewise, the exceptional divisors 
E2, C2, L,3, and {L3J}j=456 are all disjoint and may be blown down; 
under this map to P2 £, maps a line containing the image points of E2, C2, 
and Ll3. 

A cubic surface S with two double points may be obtained by blowing 
up a configuration as shown in Figure 21; the lines p2p3p4 and p2p5p6 

become the double points. Such a surface will have 16 lines: the six 
exceptional divisors, the lines {L]J}J=2 6 and {L^L^L^L^}, and the 
conic C2. Note that apart from the one line E2 joining the two double 
points, there will be four lines on S through each of the double points: for 
example, through the image of p2p3p4 pass E3, E4, LI5, and Ll6. 

Of course, the desingularization 5 of a cubic surface S with two double 
points may also be realized as the blow-up of P2 at other configurations of 
points (for example, projection of S from either of its two double points 
expresses S as the blow-up of P2 at five pointsp,,...,p5, blown up again at 
the point of the exceptional divisor E5 corresponding to the tangent line at 
p5 to the conic through/7,,...,ps). The reader may, as an exercise, find all 
such configurations and then show that they are all equivalent, i.e., that by 
blowing down a suitable collection of six disjoint lines every cubic with 
two double points may be realized as P2 blown up in any of these 
configurations. (For example, if the surface 5 is a priori the blow-up 
described above, we may blow down the exceptional divisors £,, E2, L34, 

V 
/ 

Pe 
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L45, L35, and E6 to express 5 as P2 blown up in the configuration of Figure 
21, with /»„ p2, p2p3p4, and p2p5p6 the images of £34, £6, C6, and £5, 
respectively.) Note one configuration that does not work: in the blow-up S 
of P2 at the points/>,,...,p6 shown in Figure 22 the proper transforms of 
the lines p}p2p3 and p4p5p6 meet, and under the map of S to P 3 given by 
I — K§\ they will blow down to form a single nonordinary double point, of 
the same type as ^ in the example of p. 639. 

A cubic with three double points may be obtained by blowing up the 
pointsp , , . . . ,p6 as shown in Figure 23; the proper transforms of the lines 
Ll23, £345, and L]56 will map down to the double points. We have in this 
case 12 lines: £",,...,E6, L24, L25, L26, L4I, L46, and L56. 

Note that, apart from the three lines E{,E3,E5 forming the edges of the 
triangle with vertices at the double points of S, there will be just two lines 
through each of these double points (e.g., E2 and L^ pass through the 
image of Ln^}. 

To obtain a cubic with four double points, we specialize still further to 
the configuration of Figure 24. Here we have nine lines: again, the six Et, 
plus the three lines L24, L,5, and L36. Note that the lines Et form the edges 
of the tetrahedron whose vertices are the double points of S c P3, while the 
lines L24> ^15* a n d L36 form a triangle of lines joining opposite edges of the 
tetrahedron, disjoint from the double points. (See Figure 25.) 
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Finally, we note that a cubic surface S cannot contain more than four 
isolated singularities. To see this, suppose S had five double points 
PU...,P5. (See Figure 26.) Then all the lines L{j = P,P, lie on S, from which 
it follows that no four of the points Pt are coplanar: if they were, the plane 
containing them would have six lines in common with the cubic S and so 
would necessarily lie in S. Now the points P[t...,P4 form the vertices of a 
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tetrahedron T all of whose edges lie on S, and each face of the tetrahedron 
will meet S in exactly the three edges lying on it. The line P4P5 must 
therefore meet the face P\P2Pj at a point on one of the lines PyP2, P2P3, 
or PXP3—this implies that Ps lies on one of the faces of T containing P4, a 
contradiction. 
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5 
RESIDUES 

Thus far in this book most of the methods we have developed for studying 
algebraic varieties have centered around the divisors—especially the linear 
systems—that lie on the variety. Not only does this technique generally 
suffice for obtaining a deep understanding of curves and surfaces, but it 
also entails a minimal amount of analytic and algebraic machinery. On the 
other hand, many of the outstanding questions in algebraic geometry are 
concerned with higher-dimensional varieties. Because of the Lefschetz 
theorems from Chapters 0 and 1, the "new"—i.e., not coming from a 
lower-dimensional subvariety—cohomology of a smooth n-dimensional 
algebraic variety M lies in H[n/2](M), so that going to dimension n > 3 or 
studying subvarieties of codimension k>2 are closely related, while di-
visors pertain to cohomology in degrees 1 and 2. So in this chapter we shall 
present a modest introduction to some of the methods for dealing with 
general higher-codimensional problems, both local and global, and in the 
last chapter we shall investigate a three-dimensional variety. 

As in the divisorial case we will develop the theory around the concept 
of residue. The local residue, given by a variant of the n-variable Cauchy 
formula, has been present since the early days of several complex vari-
ables. It has recently come into focus in an algebraic context in connection 
with Grothendieck's general duality theorem, which in fact isolated the 
functorial aspects of the local analytic residue. The subsequent global 
residue theorem expresses the duality characteristic of a closed variety and 
should yield many specific applications. 

In Section 1 we give an analytic definition of the residue as an integral. 
It may be alternatively interpreted as a cohomology class, and many of the 
various integral formulas in several complex variables are manifestations 
of this same class in different cohomology theories. We then proceed to 
derive its two most important local properties, the behavior of the residue 
under a change of variables and local duality theorem. Once the local 
residue has been properly understood, the global residue theorem turns 
out, not surprisingly, to be Stokes' theorem. 

647 
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Next in Section 2 we give some applications of residues. The first two 

are to intersection numbers and finite holomorphic mappings. These are 
topics in local analytic geometry, and the use of residues affords an elegant 
method for studying them. Then we turn to applications of the global 
residue theorem in projective space. Here it is a kind of Lagrange inter-
polation formula in several variables, and it provides an amusing technique 
for studying configurations of points in P2 leading to several classical 
results in the theory of plane algebraic curves, including a discussion of the 
converse to the Bezout theorem. 

In Section 3 some of the recent algebraic techniques are introduced. The 
discussion here is minimal and develops only those methods that will be 
applied to concrete geometric problems. Following a discussion of Ext, 
Tor, and Koszul complexes, a synthesis occurs when our analytically 
defined local residue reappears in a final intrinsic form, one that opens the 
way for globalization. Other standard applications of computations based 
on the Koszul complex include Hilbert's syzygy and Noether's "AF+ BG" 
theorems. 

Next, in this same section, coherent sheaves are introduced. In essen-
tially the only violation of our principle of always proving the "hard" 
theorems used in the book, we discuss but do not prove the two main facts 
—Oka's lemma and the finite dimensionality of cohomology. In fact, these 
are not used in our study of any specific questions, but we felt it would be 
misleading in a book on algebraic geometry to leave such an important 
topic unmentioned. 

As hinted above, in Section 4 we reap one dividend of the intrinsic 
understanding of residues when we arrive at a global duality theorem in 
functorial form. We only prove a special case of the most general duality 
statement—one that is at the opposite extreme from the Kodaira-Serre 
duality previously encountered and that suffices for our applications. The 
methods used will adapt to a more general context. 

Our first application is a recent theorem of Carrell and Liebermann 
concerning vector fields with isolated zeros on compact Kahler manifolds. 
Following this we derive two "reciprocity formulas" which give methods 
for calculating the superabundance—or equivalently the measure of the 
failure to impose independent conditions on a linear system—of a config-
uration of points on an algebraic surface. Indeed, the second reciprocity 
formula deals with O-dimensional schemes and not just points, and uses in 
an essential way the local and global duality theorems. 

Finally we turn to a question, initiated by Schwarzenberger, of under-
standing the relation between points on a surface and rank-two vector 
bundles. This illustrates both the global duality theorem and original 
definition of "Ext" in terms of extensions. The end result is a generaliza-
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tion of the residue theorem to sections of vector bundles and subsequent 
interpretation of this as imposing necessary and sufficient Abel-type condi-
tions on a configuration of points on a surface to be the zeros of a section 
of a rank-two vector bundle, perhaps helping to clarify those aspects of the 
fundamental correspondence between divisors and line bundles that will 
and will not generalize. 

We would like to specifically thank Maurizio Cornalba and David 
Mumford for extremely valuable help in preparing this chapter. 

1. ELEMENTARY PROPERTIES OF RESIDUES 

Definition and Cohomological Interpretation 

Let {/be the ball {zGC : \\z\\ <e] and/ u . . . , / „G©((7) functions holomor-
phic in a neighborhood of the closure if of U. Since we are interested in 
the local theory around the origin, we shall allow ourselves to decrease the 
radius e as necessary. We assume that the /-(z) have the origin as isolated 
common zero, or equivalently that set-theoretically / _ 1 ( 0 ) = (0), where 
/ = ( / „ . . . , / „ ) . We set 

A = (fi) = divisor of/, 
D = Dl+-- + Dn, 
*/,-= U-Dt, 

n 

u* = u- {0} - u ut. 

Note that U= {£/,} gives an open cover of the punctured ball U*. 
We shall be interested in residues associated to a meromorphic H-form 

having polar divisor D. The residue is a variant of the Cauchy integral in 
several variables, and is defined as follows: Let T be the real n-cycle 
defined by 

T={z : U(z)| = £,} 
and oriented by 

d(argfi)A---Ad(axgf„)>0. 

Then the residue is given by 

Res{0) w = I —— I u 
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Here are some elementary properties of the residue. 

First, since o)EH°(U- DM") is holomorphic in U—D, the exterior 
derivative dw = 0. Consequently, the residue depends only on the homology 
class of Te Hn(U - D, Z) and the cohomology class [w] £ HU,R(U - D) of <o. 

Second, the residue is linear in g and alternating in the fi; the latter being 
due to the manner in which the cycle T has been oriented. 

Third, we shall say that /=(/ , , ••- , /„) is, nondegenerate in case the 
Jacobian determinant 

9(/„...,/„) 
*J (0) = (0) ^ 0 

9(r„...,0 
is nonzero at the origin. Later on we shall see that the Jacobian is not 
identically zero. In the nondegenerate case we find that 

Res - g<°> 
ReS(0)" J/o) • 

To prove this, consider the mapping w=f(z), which by the inverse function 
theorem is biholomorphic in a neighborhood of the origin. Set 

c(wO = g(r'(w)), 
, s dw. dw„ 

K(w) = — L A • • • A —" (Cauchy kernel), 
and 

Then 
£,(*)-2/(rV)). 

and by change of variables in the integral and the usual Cauchy integral 
formula from Section 1 of Chapter 0, 

f f G(w 
1 ^ | w , | = e ** \ Wj = £ J 

Finally, we denote by I(f)=f\,---,f„ the ideal generated by the / ' s in the 
ring of germs of holomorphic functions around 0. Then: 

Res(o}t«> = 0 in caseg €E / ( / ) . 
To prove this, it suffices by linearity to consider the case g = hfi. But then 

_ h(z)dZ]/\--- /\dzn 

is holomorphic in the larger open set f/{Ijo= U— (D2 + ■ ■ ■ + Dt+ ■ ■ ■ + Dn). 
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If T, is the chain 

T, = { z : \j/(z)\ = eJfoTJ¥=i,\fi(z)\<ei}, 

then T, c £/(|)0 and 3 r , = ± I \ Hence / r w= ±/Fl</w = 0 by Stokes' theorem. 
We now give a sheaf-cohomological interpretation of the residue. To 

motivate this we note that, even though the meromorphic form « has 
polar divisor £),+ • • • + / ) „ , it is the origin {0} = Z), n • • • C\Dn with 
which we are most concerned. To express this, we consider wG 
H°(Ul n • • • n U„,W) as a Cech («-l)-cochain for the sheaf 2" and 
covering U={Ut] of U*. Thus wGC _ I ( f / , f l " ) , and since trivially 8w = 0, 
we obtain a class in //""'({/*,fi"). Denote by TJW the image of 
( l /2wV - 1 )"« under the Dolbeault isomorphism 

Hn~\U*M") = H™~\U*). 

Now, since J = 9 on forms of type (n,q), there is a natural mapping 

# - - - ' ( C / * ) - » / / & - ' ( ( / • ) . 

The punctured ball U* is homotopically just the In— 1 sphere, and so the 
right side is C with the isomorphism given by 

Js2r-i 

the orientation on the sphere being induced from that in C . We shall 
prove that 

Lemma. Res,0)co = T)<-), or equivalently 

Proof. Recall that the 3-Poincare lemma gives exact sheaf sequences 

0 -» <2*-»-p-' _» @».»-p-1 i» 2« .« -P _^ o, 

where S ^ ' is the sheaf of C°°(p,q) forms and 2|-« c <£"'9 is the subsheaf of 
9-closed forms. Since the sheaves &p,g have no higher cohomology, the 
Dolbeault isomorphism is a composition of isomorphisms 

ip: Hp(u*,%l'"-p-,)^H>'~](U*,'2:i-n~p) 

[ coboundary maps in the exact cohomology s< 
equence. For/» = l, the right-hand side is to b 

H0(U*,%'l-''-,)/dH0(U*,&n-"~l) = H^"-\U*). 

obtained from coboundary maps in the exact cohomology sequence of the 
above sheaf sequence. For/» = l, the right-hand side is to be replaced by 
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Now we may follow our cocycle w through this sequence of isomor-

phisms. Beginning with 

V ZTTV — 1 / 

we let U,-\jielUi and 

denote a representative of 

ip+]° ■■■ o / „ _ , ( « „ _ , ) ; 

and then let 

be cochains such that 

Next, let r 7 be the chain defined by 

r 7 = { z : |/.(z)] = e f o r / € E / ^ . ( z ) | < E f o r / < 2 / } 
and with orientation 

*(argtf,) A • ■ ■ A d(argflp) A ( ^ ^ ^ ^ A # , ) > 0, 

where / = { / , < • • • <ip). Then the boundary 

ar ,= 2 ( - i ) ° ' - / " { y , ) r / u { 7 } , 

where {j,I-{j}) is the position from the rear of the index y when / u {7} 
is ordered in the usual manner. Now, since d£, = 3£, we may apply Stokes' 
theorem to obtain 

- / - / ' ' ' - / - / r 2 X"'-'-7" 2 Xrf*'-' 

»/-/, 3 r ' 

- 2 ( 2 / r (-i)°-,uw^) 

= 2 /r(*u 
" V ^ + i ^ 

" 2 Xw^ 
°J=P+\ 
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by the combinatorial definition of S. Consequently, the total sum 

*i=P + \ v> 

is the same for all p. At the two extremes p = n — 1 and p = 0 we obtain 

;—T=F f w = 2 f wo,, 
\ 2 T 7 V ^ T / Jr fez•% 

= 2 f ̂  since ̂  = " « , , i n ui> 
= ( v „ , w h e r e r 0 = { z : | / , (z) | <£,. . . , |/„(z)| «e} , 

-/3r0 

= f *?„■ Q.E.D. 
JS2n-\ 

We observe that this lemma does not use the assumption that w is 
meromorphic in U with polar divisor D. Only wE H°(U—D,ffl) is re-
quired, so that w could have a higher order pole or even an essential 
singularity along D. In case w is meromorphic with polar divisor D, we 
may find a distinguished representative for the Dolbeault class r\u as 
follows. Set 

UP 
Pi = 

l/.l2+---+l/J: 

and observe that 

and 

p,. isC°°in U*, 

2ft =1. 

supp(p,) c £/,. 
Thus {p,} looks something like a partition of unity for the covering { £7,} of 
U* and may be used as such for any w having first-order poles on the Z),. 
Indeed, given 

g(z)dzy/\- ■ ■ /\dzn 

we see that 

g(z)e€(u), 

fig dz^/\- ■ ■ /\dz 
ft" = — r — f — j - e ^ "-°( t/{l-,»), 

so we can set 

!{,,<>= ±p,w, « { l ) ° = ± 9 p , u . 
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Proceeding to the next step, fo r / ' ^ i , 

so we can set 

£{<v}°= ±(Piu>uf-Pju{i)°l 

<° {ij}° = ± 23P, A 3p, A "• 
Continuing, we finally arrive at 

Va = " { / } = « ' ( - ! ) ' 3 p i A - - - A 3 f t A - " A 3 p „ A < 

_ «!(-!)•" 1 g3p ,A-- -A3p ,A-- -A3p„A^ 1 A-- -A^ n 

But, setting/-(/„...,/„) and | |/ | |2 = 2,m2, 

p' II/II2 II/II4 ' 
and so the wedge product 

(Afj4) 2 (-0(M,}0)( AJ45)2//4Tii/*|2 

Ahj 
J*' \f\\2 

~ ( I I / I I 2 A^4-2 Ul2(A^) 
II/II V / * ' k*i V*=< I 

'MI2 AM+^im-if-' AM 
J*> k^i 

/.•••/.(-lyjUi-i^M;) 
II/II2" 

Putting this all together, what we might call the distinguished Dolbeault 
representative of (l/27rV— 1 )"w is 

*»„ = S{z) 
C„2 ( - 0 ' " ' / # , A- • • A 4 A - • • Adf„AdzxA-- ■ Adzn 

\\1n 

where C„ is a constant depending only on n. 
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At this juncture, recall from Section 1 of Chapter 3 the Bochner-
Martinelli kernel 

*(*>£) = c„ J¥" 
Ik-Ill2" 

on C" x C". If F: £/-»C" x C" is defined by 
F(z) = (z+f(z),z), 

then 
V» = sF*k. 

Taking fi{z) = zi and applying our lemma, we obtain another proof of the 
Bochner-Martinelli formula, 

f g(z)(3(z,Z-) = g(0). 

Recall also from Section 2 of Chapter 3 on the holomorphic Lefschetz 
fixed-point formula that we proved that if the origin is an isolated 
nondegenerate fixed point of a m a p / : U—>C", then 

f F*k = ff(0). 
• / | | Z | | = 6 

We now know that for any type of isolated fixed point, 

f F** = Res ( A l A , " M » l 

This leads to a corresponding extension of the holomorphic Lefschetz 
theorem. 

The Global Residue Theorem 

Suppose that M c M' are complex n -manifolds, where M is relatively 
compact with smooth boundary 3M= M — M. The case that M=M' is 
itself compact will be in many respects the most interesting situation. 
Suppose that Du...,Dn are effective divisors defined in some neighbor-
hood U of M in M' and whose intersection Z), n • • • C\Dn is a discrete— 
hence finite—set of points in M. By analogy with the previous notation, 
we set 

/> = / ) , + •••+£>„, 
u*= u-(D{n---nDn), 
ut= U-D„ 

so that U= { Uj) is an open covering of U*. Suppose that 

we//°(£/,fl"(Z>)) 
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is a meromorphic w-form on U with polar divisor D. For each point 
P £ Ux n • • • n U„ we may restrict w to a neighborhood UP of P and define 
the residue 

Res^w 

as in the previous section. On the other hand, 

defines a class [a>]EH"~\U*,tt") that has a Dolbeault representative 

T) U G/ / 5 " ' " - ' (£ /*) a / / " " ' ( t / * , ^ ) , 

and we have the 

Residue Theorem 

^Respu = I r]u. 
P JdM 

In particular, if M is compact, then 

2 Res^ w = 0. 
p 

Proof As in the Riemann surface case, we let UP(e) be an e-ball around 
P and use di}a = 0 and Stokes' theorem to write 

f *}« = 2 f T'» 
•/3A/ jS* - / 8 l / P (c) 

= 2 Resp w by the above lemma, 
p 

since TJJ £/£ is a Dolbeault representative of [w| Up] G / / " " '([/*,fi"). Q.E.D. 

Of course, the essential step here is to convert the original n-dimensional 
path of integration into one of dimension 2n — 1 so that Stokes' theorem 
may be utilized. 

The Transformation Law and Local Duality 

We now explore what might be called the functorial aspects of the residue 
symbol. To begin with we shall use the residue theorem to derive one of 
our main techniques, the method of continuity. Suppose that /, = 
(/ , , , . . . , / ,„) are ^-functions of (z,t), holomorphic for z in a neighborhood 
of U where U is a small ball around the origin in C", and continuous in a 
parameter variable 0<t <8. We s e t / = / 0 , and for a form 

g(z)<fe,A--- Adz„ . .-Mfj^ 
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we let 

g(z)<fe|A-'- Adzn 
03, 

If we assume that / '(0) is a finite set of points interior to U, then 
||/(z)|| > e > 0 on the boundary 31/= U- U, and so ||/,(z)|| > e / 2 > 0 for t 
sufficiently close to 0. Consequently / ," '(0) will again be a finite set of 
points interior to U. On the other hand, by the explicit formula 

S ( - ' ) " ' / " / ; , i A - • A? , -A - • AC.A<feiA- • • A<fe„ 

*H "g ( Z ) ll/,(*)ll2 

for the Dolbeault representative of [«,]£//"" '({/*,fi") , we see that the 
boundary integral 

i Vco, 
du 

is continuous in t. Going to the residue theorem, we find the principle of 
continuity: 

(*) lim 2 Res^w, = 2 ResPw. 
'-*0 p,ef,-'(0) ' /»e/-'(0) 

To apply this, we need to discuss perturbations of a given m a p / : (/->C" 
having/"""(0)= {0}. A_family of m a p s / : U^>C" defined and holomorphic 
in a neighborhood of U, varying continuously with t and such t ha t / 0 = / , is 
said to be a good perturbation of / in case / has only nondegenerate zeros 
for t¥=0. We will be able to easily see the existence of good perturbations 
when we discuss finite holomorphic mappings below. For the moment they 
may be deduced from Sard's theorem as follows: Since the critical values 
of/ : U-*C have measure zero in C , we can find an arc y(t), 0<t<e, 
with y(0)= {0} and y(t) not a critical value for t¥=0. Then 

/ ( z )= / ( z ) - Y (0 
is a good perturbation of/. 

Now we use the existence of good perturbations and continuity method 
to prove the 

Transformation Law. Suppose f = (f,,...,fn) and g = (g,,...,g„) give holo-
morphic maps f ,g:U-*Cn with f - 1(0)= {0}=g~'(0). Suppose moreover that 

j 

for some holomorphic matrix A(z) = (ay(z)). Equivalently, the ideals should 
satisfy 

{«!»■•■.&,} C {/ i ,••• , /„}• 
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Then, for h(z) £6 (U) 

ihdzlf\---/\dz„\ ( hdetAdZiA--- Adz„ 
ReS(0,l /,-■•/, j " ReS(0)l IFT. 

Proof. We prove this in cases of increasing difficulty. 

Case 1: ff(0) ¥= 0 and det A (0) ¥= 0 

Then $-g(0) = fyf(0)detA(0), and by the evaluation of the residue integral in 
the nondegenerate case 

hdzx/\-■ •/\dzH\ h(0) 
= (277 V - 1 ) 

= ( 2 ^ V ^ T ) 

ReS(0>l /,-••/„ J'i2'V-l) U0) '/v 
h(0)detA(0) 

M0) 
( h det Adz l A-■■ Adzn\ 

= R e M — * , - « . )■ 
Case 2: det /4 (0)^=0 but / possibly degenerate 

Since the result is local around the origin, we may shrink U and assume 
that d e t ^ ( z ) ^ 0 in U. If/, is a good perturbation o f / = / 0 , then g, = A-f, is a 
good perturbation of g = g0, and by continuity and case 1 

t hdzyA-■ ■ Adz„\ V D lhdzxA---Adz„\ 
Res(0) 77777 = ™ 2 * R e s ' , T ^ ^ T 

= lim 2 ^JhdetAdZtA'"Ad2" 
'^° P,eg,-'(0)nu \ 8<l 8'-" 

( h det Adz x A-■■ Adzn 

~ReS(0 )l i F 7 7 * 
Case 3: f, g, and A arbitrary 

Now we let At{z) be a continuous family of holomorphic matrices with 
A0(z) = A(z) and detA,(0)¥^0 for t¥=0. Set g, = A,-f, and observe that since 
g~'(()) = {0}, g~l(0)={P,} is an isolated set of points interior to U. For 
P,¥=0,f(Pt)¥=0. SupposeMP,)¥=0 and denote by AtJ the /,y'th minor of A. 
Then by Laplace's expansion of the determinant, for z near Pt 

detAt{z) = ^{-\)jAlhl{z)aljA{z) 
j 

= J77) ( ? (~ O^cia,,-,.-/-^))' since 2 ^y, .^ , , = 0 for 1 # 1, 
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Thus detA,(z) is in the ideal {g,,\,---,g,,n}P, and by the second elementary 
property of the residue integral 

/ hdetA.dz,/\- ■■ Adz„ \ 
Res„ '—— -^-^ = 0 for P, # 0. 

'I gtys,,n I 
Now then we use this together with case 2 to have: 

/ f t d e M * , A - - - A * . \ p / y / A d e t W V - A ^ ] 
1 ' I 8\---8n I '^0\'^> P-\ g,ygt,n }} 

hdZ]/\--- Adzn' 

S S ^ l /,-••/„ 

/ . 
= Res{0) / , , , ; " )• QE.D. 

Res<o)( / - . . . / " ) = 0 f o r g G / , 

Loco/ Duality. We now come to the local duality theorem. Given U a 
sufficiently small neighborhood of the origin a n d / : U-+C" with/" '(()) = 
{0}, or equivalently given an ideal / = / ( / ) = {/,,...,/„} in the local ring 
0 = 0(O} at the origin and having {0} as isolated common zero of the f% 
we may use the property 

gdzxA--- Adz„' 

J\' ' 'in 

to define a symmetric pairing 
reS/: 6 / / ® 0 / / - * C 

by setting 

The basic result is the 

Local Duality Theorem I. The pairing "resf" is nondegenerate; i.e., if 

(-M7 g(z)h(z)dZlA---Adzn 

UM\-t fM-'-fnW 
= 0 

for all h ( z ) £ 0 , then g(z) lies in the ideal {f, , . . . ,fn}. 

Proof. The proof is based on the transformation law and two further 
general results in local analytic geometry. The first of these is that 
/i,...,f„ G 0 form a regular sequence, which by definition means that 

f, is not a zero divisor in 0 /{f | , . . . , f i _ l } (1 < i < n ) . 
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Intuitively, this amounts to saying that the analytic varieties V,= 
{fi(z)= • '" = / ( - z ) = 0} have codimension exactly equal to i, which seems 
quite reasonable and may be rigorously proved in the case n = 2 as follows: 
We need to show that if g/2 = 0 in 0 / { / i } , then g = hfx is a multiple of/,. 
The problem is unchanged if we multiply the f/s or g by units, and so we 
may choose coordinates (z,w) such that/,,/2,gE0z[H>] are all Weierstrass 
polynomials. By the division theorem, 

g = hfx + r, 

where rG&z[w] is a polynomial of degree less than d=degfv For | z |<e , 
we denote by w,(z),...,wd(z) the roots of 

/ ,(z,W) = 0, 

where some roots may be repeated. Then, since the equations/,(z,w) = 
/2(z,w) = 0 have only (0,0) as common solution, for z* close to zero all 
/2(z*,wr(z*))#0. But then, since by assumption g(z,w^(z))/2(z,vv„(z)) = 0, 
the equation r(z*,w) = 0 will have d>degr roots. Hence r=0 and g = hfv 

Q.E.D. 

The general statement is: 

For U a sufficiently small neighborhood of the origin and f = 
( f ! , . . . , f n ) :U^C n a holomorphic mapping, the conditions 

1. f"'(0) = {0}, 
2. codim{fi|(z)= • • • = fik(z) = 0} = k, 
3. f,,...,fn is a regular sequence, 

are all equivalent. 

Since we shall be discussing regular sequences in detail in the section on 
Koszul complexes and shall give another proof of local duality there, we 
shall let our discussion in the case n = 2 suffice for the moment. 

The second result in local analytic geometry is the nullstellensatz for the 
ideal {/„.. . , /„}: 

There exists k; > 0 such that 

z,k' £ { / „ . . . , / „ } -

We will prove this in the next section on finite holomorphic mappings. 
Now to the proof of local duality. The idea is to directly verify the 

statement for ideals {z*',...,z„*"}, and then to use the transformation law 
to deduce the result for the ideal {/,,...,/„}D (zf',...,z„*"}. 

Step One. In case f(z) = zl
k' + \ we take h(z) = z['- • ■ z'j and write the 
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power series 

Then, by iterating the usual Cauchy integral formula, 
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res 
/,■••/„ \ 2 T 7 - V - 1 / J]z^e

zi 

A---Adzn 

, *, + !-/„-,„ 

&,-/ 

Thus, resy(g,/i) = 0 for all h is equivalent to g,- ...; = 0 for /', <&„. . . , / „< &„, 
in which case gE{z,*l +',...,z„*" + 1 } . This proves the local duality theorem 
in this case. 

Step Two. We will use the transformation law to prove the 

Lemma. Let f',,f1,...,fnG0 and set f' = (f',,f2,...,fn), f = (f„...,fn). Assume 
that f" 1 (0)={0}=f ' - '{0} and that F, G{f„f2, . . . ,fn}; i.e., I(f')Cl(f). Then, 
if the residue pairing is nondegenerate for f', it is nondegenerate for f. 

Proof. Let w: 0 //(/')—>0 /1(f) be the natural projection, and write 

so that / ' = 4 / , where 

A = 

If g = '2icif is in the ideal / ( / ) , then 

byg=cx(?lbj\+Yl{blcl-clbl)fl 
V i / i > 2 

is in the ideal / ( / ' ) • Thus multiplication by bx gives a map 

-«: 6 / / ( / ) - > © / / ( / ' ) 

going in the opposite direction to -n. Since det/l = 61, the transformation 
law states exactly that the diagram 

h 
0 

0 

b2 ■ 

1 • 

0 

• K 
• 0 

I 

e ii(f)® e /i(f) 
<4 T» 

i / / ( / ' )®0 / / ( / ' ) 

file:///2t7-V-1
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is commutative; i.e., 
resf(g,h) = rtsf{bxg,h) 

for all g,AG0. If resy(g,/i) = 0 for all h, then by the assumed nondegener-
acy of reSf. it follows that /> ,ge / ( / ' ) . Thus 

= ^1*1/1 + 2 ( V . - - V i ) / - . 

so that 
bxg = cxbjx in 0 / { / , , . . . , / „ } . 

This implies that either 
g - c , / , in 0 /{ / 2 , . . . , / „} 

or 
6, is a zero-divisor in 0 / { /2, . . . , / „} . 

In the first case, gE.{fl,f2,...,f„} as desired. In the second case, bxfx is a 
zero-divisor in 0 / {f2,... ,/„ }, and hence so is /,' = bx / , + (b2f2 +■■■ + bjn). 
But this contradicts the regular sequence property of {f[,f2, ••-,/„}• Q.E.D. 

Step Three. The theorem now follows easily. Given /=(/i,••■,/„), we 
inductively choose a coordinate system so that 

has an isolated zero at the origin. Appealing to the nuUstellensatz, we may 
take k( sufficiently large so that z,ki E I(F,■_ {). Then resf is nondegenerate 
by step one, and by the lemma 

resF nondegenerate => res^- nondegenerate 

=>res/r nondegenerate 
=> resf = res^ nondegenerate. Q.E.D. 

2. APPLICATIONS OF RESIDUES 

Intersection Numbers 

Recall that our discussion of the local structure of those analytic varieties 
defined by a single function—i.e., analytic hypersurfaces—was based on 
the one-variable Cauchy formula and subsequent residue theorem. It is 
similarly possible to use the /i-variable residue theorem to derive the local 
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properties of analytic varieties of codimension n defined by n holomorphic 
functions in UczCN. We shall now carry this out in case the variety is 
zero-dimensional—i.e., N=n. By allowing dependence on parameters, it is 
possible to adapt the method to the more general situation just mentioned. 

We begin by discussing intersection numbers, thereby complementing 
our previous definitions, which were either topological or used the theory 
of currents—cf. Section 4 of Chapter 0 and Section 2 of Chapter 3. 

Consider an ideal / ( / ) = {/i,...,/„) of holomorphic func t i ons /60 ( ( / ) 
whose divisors £>, have the origin as set-theoretic intersection—i.e., 
/~ ' (0) = {0}, where/=( / , , . . . , /„) . As usual, we allow ourselves to shrink U 
when necessary. Doing this, we may assume that /~ ' (w) is a discrete set of 
points in U for || w\\ < e, since we will have |/(z)| > C > 0 for zE.dU. 

We write w=f(z), denote by K=dwi/wl/\' • ■ /\dwn/wn the Cauchy 
kernel, and set 

J\ Jn 

The local intersection number is defined by 

(Dl,...,Dn){0) = Res{0}w(/„...,/n). 

We shall give a list of its properties: 

(a) (D, , . . . , Dn){0) is an integer that depends only on the ideal 1(f) and not 
the choice of generators f{. In particular, it depends only on the divisors D; 
and not on their defining functions. 

Proof. ( l / 2 i r V - 1 )"w(/,,...,/„) represents an integral cohomology class 
in H^R(U- D), and so the intersection number is an integer. If 

j 

where A = det(a0)^0, then 

df{A---A4fn A # i A - - - Adfn , dzx/\-■ ■ f\dzn 

-M ' ' ' Jn J] ' ' Jn J\ ' ' Jn 

where g is in the ideal. By the transformation law 

while 

M = 0 R c J r
A ' A - A * -

since g is in the ideal. 

(b) The intersection number is linear in each divisor D;. 
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Proof. If DX = D[+D[' corresponds to the factorization/, =/[ / ," , then 
clearly 

(.) «(/„/2, ...,/„) = «(/;,/2, ...,/„) + «(/r,/2,... ,/„). 
This is not yet enough to prove linearity, owing to the complicated nature 
of the path of integration r = { | / - | = e,-} in the definition of the residue. 
What is suggested is that we use the Dolbeault isomorphism to convert T 
into the sphere ||z|| = e. 

Thus, we consider w(/i',/2,•••,/„) as defining a class in H"~i(U',Sl"), 
where U' = {U[,U2,---,Un} is the corresponding covering of U*— U—{0). 
Since Ul c U[, there is a restriction mapping p' leading to a commutative 
diagram 

H"\U' ,Qn)!U H"-\UMn) 

X Y 
where TJ and T/' are Dolbeault maps. Setting I J ( / | , . . . , / „ ) = 77(W(/I>•••>/«)) and 
so forth, it follows from (*) that 

Tj(/|,/2. - • / « ) = VUIJ* ■ ■ ■ Jn) + Vifl'Jl, ■ ■ ■ Jn) 
in H"-"~'(U*). (It is not the case that TJ = TJ' + TJ" as differential forms, since 
the Bochner-Martinelli kernel is nonlinear. What the commutativity of the 
diagram proves is that ?j = T}' + i7" + 9£.) By t n e lemma on p. 651 above, 

(Dv...,Dn){0)= f r,(/„/2,...,/„), 

from which the linearity of the intersection number follows. 

(c) Suppose now that the divisors Di = (fi) meet at a finite number of 
points P„ interior to U. The total number of intersections of the Z), in U is 
defined by 

{Dl,...,Dn)u = ^(Dx,...,D„)P/ 
V 

We shall prove: 

The total intersection number is invariant under continuous deformation 
of the Dj. 

Proof. We assume that /,>;(z) £ 0 (U) is continuous in t and has divisor 
D,(t) with/<,_,.=/. and Di(6) = Di. Since 2 ,U(z ,0 | 2 > C > 0 for zG9t / and 
|/| < e, the divisors D,-(t) will meet at isolated points interior to U. The total 
intersection number 

(DM,..., Dn(t)) 
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is on the one hand an integer and on the other hand, by the continuity 
principle, continuous in t. Consequently, it is constant. Q.E.D. 

Given divisors Z) having the origin as isolated point of intersection, we 
may perturb them slightly to smooth divisors D[ having a finite number of 
transverse intersections near the origin (Figure 1). Each of these transverse 
intersections has local intersection number +1, and (D,,...,Z)n){0) is the 
total number of such intersections. 

(d) We now assume that the Z), meet at the origin and that Z>, is 
nonsingular. Set Z>/ = Z>, n Z>, for i > 2. Then we claim that 

(Dl,...,D„)m = (Di,...,D^{0]. 

Proof. We may choose coordinates so that /,(z) = z,. Set z = (z,,z') and 
fi'(z')=fi(0,z')=fi\Dr Then if r = {|/,(z)|= • • • =|/„(z)| = e} and F = 
{l/iCOl = • • • = |j£(z')l = e}, we may iterate the Cauchy integral formula to 
obtain 

<* ^--u^r/MA-Af 
.(_j=)-f^A...A« 

\ 2irV^T I Jr h Jn 

= (^,...,D„'){0). 
Using this, we shall prove: 

The Jacobian 3(f,,..., fn)/ 3(z,,..., zn) ̂  0 and the local intersection m/m-
&T(D„...,Dn){0)>0. 

Proof. The proof is by induction on n, with the case n = 1 being clear. 
Choose a point z0 that is a smooth point on D{ and is very close to the 

origin. If we assume that df}/\df2A'' • Adfn=0 and se t / '= / |D 1 ( then 
dflA''' A<^,'=0 near z0. Indeed, we may choose local coordinates 

D, D 2 D; "2 

Figure 1 
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(M,,M2,...,«„) around z0 such t h a t / , = «[", where m>0. Then djx/\df2 

A- • • Adfn = 0 => «{ - l d U l / \ d f 2 A- ■ ■ Adfn=0 =* # 2 A - • • A # „ = 0 mod-
ulo rfw, => <//2'A' • • A<#"„'=0. On the other hand, if we let f-(z0) = w/, then 
the equations fl'(z') = w'i have z0 as an isolated solution on D, near z0. 
Setting Z>/= (/■' —w/), the local intersection number (.Dj,...,AI){ro}>0 by 
induction hypothesis. This is in contradiction to df'2A' • ' Adf^, = 0. 

Now, assuming that ^ A ' • ' Adfn^0, we shall prove that (£),,...,D„){0) 
>0 . The Dolbeault representative is 

, , , , 2(-l)'~iMiA---AdflA---AdfnAdf,A---Adfn T?(/"-'/J = Q~ ii?ii= 
= /*(£), 

where, according to the Bochner-Martinelli formula in Section 1 of 
Chapter 3, 

2 ( - O'^'vv. dw{A- ■ • A^A- ■ ■ Adw„AdwlA- • ■ Adwn 
P=C„-

\w\\2n 

is a closed (n,n— l)-form in C" —{0} whose restriction to every sphere 
||w|| = e is a (2n— l)-form with total integral one. On every sphere ||z|| = e 
the form /*( /?) is >0, and it is strictly positive at a point z0 where 
(df\A- • • AdfJiz^^O. For a sphere passing through such a point, 

[ f*P > 0. 
•'Pll-ll'oll 

This proves the positivity of the local intersection number. 

(e) In fact it proves more. If we consider/=(/ , , . . . , /„) as a mapping 
/ : t / * - > C " - { 0 } , 

then we have essentially shown that 

The local intersection number is the topological degree deg(f) of f. 

Proof The form /? gives an integral generator of / / D R ' ( ^ 2 " '(e)) r o r a n y 
sphere ||w|| = e. By definition of the degree, 

deg(/) = f fP 

= f u(/„...,/J 
= (Z)„...,Z)„)(0) 

by our basic integral formula. 
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Finite Holomorphic Mappings 

We now want to tie in the local intersection number with the properties of 
/ viewed as a holomorphic mapping / : U—>C. For this, the following 
standard terminology will be useful: On a complex manifold M a zero cycle 
is a formal finite sum 

r = 2 mvpv 
V 

of points P„ G Af with multiplicities mrGZ. We set 

P+- ■■ + P = k-P. 

k 

The zero cycle is effective in case all mv > 0. The degree of a zero cycle is 
given by 

deg(T) = 2 "V 
V 

Suppose now tha t / : l / - » C is a holomorphic mapping w i t h / - ' ( 0 ) = {0}. 
We define the multiplicity of f at the origin to be the topological degree d of 
/ : t / * - » C - {0}. We then say that f/te equation 

f(z) = 0 
/zas //;e origin as a solution of multiplicity d. 

Now, according to the continuity property (c) of the local intersection 
numbers, for | |w| |<e the equation 

f(z) = w 

will have exactly d solutions z„(w) close to the origin. Of course, some of 
the zv(w) may be repeated. Using the zero-cycle notation, we write 

V 

Let » f={ | | w | | < £ ) and redefine \J=f~\W). Then we claim that the 
holomorphic mapping 

/ : U-> W 

has the following properties: It is surjective, open, and finite. The first of 
these is by definition. The second means that open sets map onto open 
sets, which is clear, as is the third property. These finite mappings behave 
quite differently from, for example, blowing-down mappings such as 

(u,v) -^(u,uv), 

which are not open. In general, they share most of the properties of maps 
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in one variable, as we shall now prove. For this we need the following: 
Lemma. For h(z) e (9 (U), the trace 

°*M = 2 *(*,(*)) 
(■=i 

w a holomorphic function o/wEW. 
Proof We consider aA as a distribution operating on the compactly 
supported («,«) forms A"'n(W) by the rule 

0A(9>) = f ^ ( H ' M * ' ) 

where <pE.A"-"(W). By the regularity theorem from Section 1 of Chapter 3 
it will suffice to show that 3aA=0 in the sense of currents. Now, for 
\pEAc

n'"~\W),f*\p is compactly supported and 

= f h(z)d(f*tf(z) Ju 

= - f Zh(z)f*+(z) 
Ju 

= 0, 
since h £0(1/). Q.E.D. 

If we apply the lemma to the power sums 2 vh{z„{w))k', then we deduce 
that any symmetric function—such as 

h{zM) h(zd(w)) 
—is holomorphic in w. 

One application is a proof of the proper mapping theorem for/: U-^W, 
and hence for general finite surjective mappings: If V c U is an analytic 
variety defined by equations {ha(z) = 0}, then f(V)cW is defined by 
{//a(H>) = 0}, where Ha(w)= Aa(z,(w))- • • ha(zd(w)). 

Note in particular that the discriminant, or branch locus, D c W, defined 
as the image f(R) of the ramification divisor 

is an analytic hypersurface. For wGW—D, h~x{w) = ̂ ,vzv{w), where the 
zv(w) are distinct. Choosing a path w(t) with w(0) = 0 and w(t)Ei W— /> for 
/ =£0, we find the explicit good perturbation /,(z) =f{z) — w(/) of/(z). 
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As another application of the lemma, we suppose that h(z) £ 0 ( t / ) and 
consider the expression 

//(z) = II (h(z)-h(zXf(z)))). 
v=\ 

On the one hand, / / ( z )=0 , since z = z,,(/(z)) for some v. On the other 
hand, H is a polynomial of the form 

h(z)d + a,{w)h(z)d- ' + • • • + ad(w) (w=/(z) ) , 

whose coefficients are holomorphic functions of w=f(z). Now, via the 
mapping / : U^>W the local ring ©„, = {germs of holomorphic functions 
h(w) defined in some neighborhood of w = 0} injects into 0^, and we have 
proved 

The degree of the extension [ 0 z : 0 w ]=d ; i.e., every h £ 0 z satisfies a 
polynomial equation of degree < d with coefficients in f*0 w C0 z , and 
moreover d is the least such integer. 

As a corollary we have the following special case of the nullstellensatz: 

/ / h(z) £ 0Z vanishes at z = 0, then 

h(z)de{fl(z),...,f„(z)}-

Proof. As z^>0, both /(z) and z,,(/(z))^>0. Consequently, the coefficients 
ap(w) in the polynomial H vanish at w = 0. This implies that hd= 
0modulo{/„. . . , /„}. 

(f) Finally, we can give one more interpretation of the local intersec-
tion number (D,,...,D„){0), where />, = (/)• L e t © = © z a n d / C 0 be the 
ideal {fi,...Jm} defined by f*(mw) where w w c S „ is the maximal ideal of 
functions h(w) with /J(0) = 0. Then we have: 

0 / I is a finite-dimensional complex vector space, and 

d i m c ( 0 / 7 ) = (/>„.. . , Dn){0]. 

Summarizing: Let /),- = (/•) be n divisors given in some small neighbor-
hood U of the origin in C" with n,/>, = {0}. Then the local intersection 
number has the following interpretations: 

(1) Analytic: The formula 

(Dl,...,D„){0) = R e s { 0 ) ( ^ A - • • Ay) 

was taken as our definition. 
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(2) Topological: Se t t ing/=( /„ . . . , / „ ) : t /* -*C"-{0} , 
(£>„...,Z>„){0) = degree(/). 

Equivalently,/: {/—> W is a finite open surjective holomorphic mapping for 
some neighborhood W o\ the origin in C . Since/is orientation preserving, 
(Z),,...,D„),0j is the sheet number of/. 

(3) Algebraic: If 0 is the local ring at the origin and / c © the ideal 
generated by t h e / , then 

(Z>„...,Z)„){O) = d i m c ( 0 / Z ) . 

In general, if Z), are divisors on a complex manifold M meeting at a 
finite number of isolated points Pp, we define the effective zero cycle 

Dx A, = 2 " ^ , . 
V 

where 
mr = {Dx,...,D„)Pr. 

The degree 

deg(Z), A,) = 2 X 
is the total intersection number of the Z),. 

Applications to Plane Projective Geometry 

We shall apply the residue theorem to the simplest global case A/=P", 
with special attention to the case n = 2. Suppose then that Z)„...,Z)„ are 
hypersurfaces of respective degrees du...,dn and meeting in isolated points 
Pv. According to the discussion in the preceding section, we may write the 
intersection as a zero cycle 

D, A, = 2 " ^ , , 
V 

where the local intersection numbers ml/ = (Dl,...,Dn)P are given by a 
residue, and the global Bezout theorem 

deg(Z), Dn) = y2lm„ = dx---dn 

is valid. In a suitable Euclidean coordinate system (xly...,xn), we may 
assume that all Pr lie in C" c P" and that Z), is the divisor of a polynomial 
/ (* , , . . . ,x n ) of degree d{. The most general meromorphic «-form on P" with 
polar divisor D = Z), + • • • + D„ has in C" an expression 

_ g(x)dxlA--- /\dxn 

/.(*)•••/„(*) 
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where g(x) is a polynomial. Under a typical change of coordinates in P" 

__L - i i - *a 

we have 

dxx f\-■ ■ f\dxn = — rfxjA^A--- A<K, 

/(.*„...,*„) = ——f;(x\,x'2,...,x'„). 
(X'I) ' 

It follows that w does not have the hyperplane at infinity as a component 
of its polar divisor exactly when the degree restriction 

deg(g) < (</, + •• -+d„)-(n+ 1) 

is satisfied. The global residue theorem then gives 

f\ V D I g{x)dxx/\--- /\dx„ \ 

In the case where the Dt meet transversely at rf, • • • 4, distinct points, (*) 
reduces to the Jacobi relation 

V 8{Pv) 0, deg(g )< 2 < ■ - ( « + ! ) ^ (3(/„...,/J/3(*1>...>JcJ)(0 

proved by him in 1834. For n = 1 we obtain the Lagrange interpolation 
formula 

? - ~ ) = ° ' deg(g)<deg(/)-2; 

it was in this context that Jacobi was led to his formula. 
In the case « = 2 the Jacobi relation immediately implies the 

Cayley-Bacharach Theorem. / / C and D are curves in P2 of respective 
degrees m and n and meeting at mn distinct points, then any curve E of 
degree m + n — 3 that passes through all but one point o / C n D necessarily 
passes through that remaining point also. 

It is clear that the stronger relation (*) gives a more general statement 
than the Cayley-Bacharach theorem when C and D may not have trans-
verse intersections. Rather than attempt to formalize this, we shall usually 
go ahead and use the Cayley-Bacharach theorem in degenerate cases where 
the proof will be an immediate consequence of (*). 
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To illustrate, we give an example of a degenerate case: 

Suppose that the curves C and D above have intersection 

C-D = *2,m,Pr, 
V 

where all the points P, are smooth points of C IfE is a curve of degree 
m + n — 3 such that for some v0, 

{C-E)Pr > m„, v ̂  v0, 
(CE)Ko > mro-\, 

then 

(OE)P > mv. 

Proof. By hypothesis, we may choose local holomorphic coordinates 
(z,w) around P„ and defining functions /(z, w), g(z,w) for C,D, respec-
tively, such that 

(f(z,w) = z, 
\g(0,w) = w"''o+--- . 

The defining function h(z, w) for E will then satisfy 

h(0,w) = mv ' " - H + ••• 
and 

(E, C)p > m„ <=>a = 0. 

Consequently, if we can show that 

ResJ4^A^)=0^ = 0, 
V f(^,w)g(z,w) } 

our assertion will follow from (*). By iterating the integral in the definition 
of the residue, 

Res(0) 
(h(z,w)dzAdw\_( 1 )2 f (f h(z,w)dz\ 

\ f(z,W)g(z,w) ) b^V^T / i , „ X l - e g(*>W)Z / 
|g(z,iv)| = e 

1 C h(0,w)dw 
/ 

f , x dw 

^ \w \ = e 

2 W \ ^ T ^,„, SCO,") 

1 
2wV- 1 ^|„,| = 

a. Q.E.D. 
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The first nontrivial case is when m = n = 3; then we obtain the classical 
statement: 

Suppose that C and D are cubic curves meeting in nine points that are 
not necessarily distinct but that are simple points of C. Then any cubic E 
passing through eight of these points must contain the remaining one 
also. 

This fact was known in 1748 to Euler, who remarked that as a con-
sequence polynomial functions in two or more variables would necessarily 
be much more complicated than in one variable, since then it is not 
generally the case that a set of mn points in plane is the common zero 
locus of a pair of polynomials. 

As another application, we can prove 

Pascal's Theorem. The pairs of opposite sides of a hexagon inscribed in a 
smooth conic Q meet in three collinear points. 

Proof. Suppose that LlL2L3L4L5L6 is the inscribed hexagon. Take C= Ll 

+ L3 + L5, D = L2 + L4 + L6, and E = Q + Pl2P34, where PtJ = L, n Lj. Then 
E passes through the remaining point P56 of C n D. Q.E.D. 

There is also a 

Converse to Pascal's Theorem. / / H = 1^1^1.3L4L5L6 is a hexagon such 
that the opposite sides meet in three collinear points, then the vertices of H 
are on a conic. 

Proof. Set Py = L, n Lj and let L be the line through Pi4, P25, and P36. 
Then if Q is a conic passing through the five vertices Pl2, P23, P34, ^45.^56 °f 
H, we may take C = L, + L3 + Ls, D = L2 + LA + L6, and E=Q + L to 
conclude that Q passes through P6l. Q.E.D. 

Along similar lines but at a deeper level we shall prove a converse to the 
Cayley-Bacharach theorem. Suppose that 

r = />, + ••• + pn2 

is a zero-cycle consisting of n2 distinct points. We say that T satisfies the 
Cayley-Bacharach property if every curve E of degree 2n —3 that passes 
through all but one point of T necessarily contains T. Since the dimension of 
the linear system of curves of degree In — 3 is 

n(2n — 3) = 2n2 — 3n, 

there are plenty of such "test curves" E. The result is the following. 

Proposition. Suppose that r = P, + • • • +Pn2 satisfies the Cayley-Bacharach 
property. Then T lies on a pencil of curves of degree n. 
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Proof. We consider the Veronese embedding 

given by the complete linear system of curves of degree n—i.e., by 
H°(P2,0(nH)). Since the hyperplane sections of ;„(P2) are just the curves 
of degree n, we must show that: 

(* *) The points in(P„) lie on a P N ~2 in PN. 

This in turn will be the case if any N of the points i„{Pv) are linearly 
dependent in PN. 

Suppose we select N of the points P„, say P},---,Pn(„+3)/2 f° r simplicity 
of notation, and let A cPN be any hyperplane containing N— 1 of them, 
say P2,---,Pn(n+3)/2- s i n c e 

_ 2 _ " ( " + 3) , / I ( / I - 3 ) 

and dim/f°(P2,e((Az-3)//)) = « ( / 7 - 3 ) / 2 + l , we may find a curve B of 
degree n - 3 passing through F(„ („+ 3 ) / 2 ) + , , . . . , .P„2. Then /I + 5 is a curve of 
degree 2n — 3 passing through P2,--,P„h and consequently /I + B contains 
F,. Now in general no n(n — 3 ) /2+ 1 of the points P„ will lie on a curve of 
degree « —3. In this case Pl lies on y4, and we have proved: 

Given N of the points P„, any hyperplane containing N — 1 of in(P„) 
contains the Nth point also. 

This clearly implies (**). 
In the exceptional case we label our points / , i , -- . ,Fn („+ 3 ) / 2 so that the 

curve B of degree n — 3 passes through exactly 

p P L. < « ( " + 3 ) 

Given any curve At of degree n passing through Pl,...,Pi,...,Pk, At + B 
will contain T and so Pt lies on /*,.. Consequently, the points \n(?^),...,'\n{?^) 
are linearly dependent in PN. 

This again implies (**). Q.E.D. 

We have now illustrated the application of the residue theorem to points 
arising as intersections of plane algebraic curves having no multiple 
components. Multiple components arise naturally when we wish to know 
not only about the position in P2 of the points of intersection, but also 
about higher-order infinitesimal behavior. 

For example, let LcP2 be a line. If we mark points Px,...,Pn on L, then 
it is trivially possible to find an algebraic curve C of degree n passing 
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through the Pv—just take C to be a union of lines. It is equally easy to 
prescribe the tangent lines T„ that C is to have at Pv. However, if we assign 
second-order elements of arc C„ passing through Pr and with tangent T„, 
then it is not always possible to find an algebraic curve C having the 
prescribed second-order behavior C„ around P„. There is one condition 
here, the Reiss relation, which we proceed to derive. 

Suppose that C has affine equation f(x,y) = 0, that L is the line {x=0}, 
and that the n points of intersection of C with L are distinct finite points 
on the 7-axis. We shall prove the 

Reiss Relation. With the notations fy = (3f/9y)(x,y), etc. 

Jy 

the terms in the sum being evaluated at the points L • C. 

Proof. In a general vein, the wth-order behavior of C near the points of 
intersection C r\L will be reflected in the residues of 

. _p(x,y)dx/\dy 
CO . 

xf{x,y)m 

If f(x,y) has degree n, then w will not have the line at infinity as a 
component of its polar divisor provided that deg(p) <mn-2. In case 
m = 2, the restriction deg( /?)<2n-2 suggests taking/? to be of the form 
p(x,y) = afxxf+ Pfxyf+ yfyyf+ 8fx + efxfy + Kfy. To see what p to choose, we 
assume that the origin is one of the points of intersection and will prove 
the 

Lemma. 

(p(x,y)dx/\dy\py Pfyy 
{ 0 ) \ xf(x,yf ) / / j * • 

Proof of Lemma. This is an application of the transformation formula 
from Section 2. We may assume that f(x,y) has a Taylor series 

2 2 

cx ev 
f(x,y) = ax + by + -^- + dxy+-^-+■ ■ ■, b^O. 

Consider the ideals 
I={x,y2}, I' = {xj(x,yf}. 

For a suitable function g(x,y) holomorphic in a neighborhood of the 
origin, 

f(x,yf = g(x,y)x + (b2 + bey+--- )y2. 
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Consequently, I'cl with transformation matrix 

\ 0 b2 + bey+--

Note that the determinant A = b2 + bey + ■ ■ • is nonzero at the origin. For 
h(x,y) holomorphic, the transformation law gives 

Res{0)( * < * ^ A » | = R e S { o / A(x,y)h(x,y)dxAdy \ 

\ xy I \ xf(x,y) I 

By the Cauchy formula the left-hand side is ^(0,0). Taking h=p/A, we 
obtain 

Res 
p{x,y)dx/\dy \ _ Py(0) P(0)fyy(0) 

m xf(x,yf } fy(0f fy(0y ' 
since fy(0) = b and fyy(0) = e. Q.E.D. for Lemma. 

On the basis of the lemma and elementary fiddling around, if we take 

P=f?-ff*x, 
then 

\JxxJy ^JxyJxJy JyyJx) 

\ xf(x,y) 7 ■f(x,y) I fy y 

Applying the residue theorem in the form (*) gives the Reiss relation. 
Q.E.D. 

The expression in the Reiss relation has an interpretation encountered in 
the differential geometry of plane curves—in the calculus sense. Namely, 
suppose that (x,y(x)) is a parametric representation of C near the origin. 
Differentiating f(x,y(x))=0 at the origin gives the equations 

f L+fyy'=Q, 

\fxx + 2fxyy'+fyyy'2+fyy"=0, 

and eliminating y yields 

„ \JxxJy ^"JxyJxJy JyyJx) 

y _ . 
Jy 

On the other hand, it is elementary calculus that 
/ ' ( 0 ) = - \ , 

sin 0 

file:///JxxJy
file:///JxxJy
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where K is the curvature of C at the origin and 9 is the angle that the 
tangent to C makes with the _y-axis. Consequently, the Reiss relation may 
be expressed in the very pretty metric form 

4 sin*, ' 
where K̂, is the curvature of C at Pv and 6P is the angle that the tangent Tv 

makes with the line L. 
We shall now show that the Reiss relation is sufficient. The polynomials 

f(x,y) of degree n form a vector space of dimmension (n+ l)(n + 2)/2. 
Those of the form g(x,y)x3 (deg( g) = n — 3) form a vector space of dimen-
sion (n —2)(«— l)/2. The quotient space V has dimension 

n2 + 3« + 2 « 2 -3« + 2 _ 

Finding a curve C of degree n and with prescribed second-order behavior 
at points P„ on the line {x = 0} is equivalent to finding a suitable point in 
the projective space P(K)sP3"" ' . Each second-order arc element imposes 
three linear conditions, and so there are 3« conditions in all. It follows that 
the Reiss relation is both necessary and sufficient. 

Finally, we wish to point out that the residue theorem from Section 1 
applies to configurations of points on general algebraic surfaces, not just 
P2. More precisely, suppose that L,L' are holomorphic line bundles over a 
surface S and Ce |L | ,C 'G|L ' | are curves meeting transversely at d= LL' 
points. Then we have the 
Proposition. Any curve D€=|K + L + L'| that passes through all but one 
point of C-C necessarily contains that remaining point. 

Proof. If a <EH°(S, 0 (L)) and a' G H°(S, 0 (Z/)) define C and C", and if 
+ G H°(S, 0 (K+ L + L')) = H°(S,Q2(L + L')), then 

co = - — -
aa 

is a meromorphic 2-form on S with polar curve C+C to which the 
general residue theorem 

2 Resp (<o) = 0 
f , e c n c 

clearly implies the result. Q.E.D. 
An extension to general vector bundles will be given in Section 4 at the 

end of this chapter. 
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3. RUDIMENTS OF COMMUTATIVE AND HOMOLOGICAL 
ALGEBRA WITH APPLICATIONS 

Commutative Algebra 

As the reader is no doubt aware, laying the proper algebraic foundations 
for the subject of algebraic geometry is an all-consuming task. On the 
other hand, just as sheaf cohomology greatly facilitates the study of 
divisors on a variety—a case where the local theory is relatively sim-
ple—the introduction of some algebraic machinery will clarify some of the 
preceding discussion concerning the local properties of a set of analytic 
equations/i(z,,.. . ,z„)= • • • =f„(zt,...,zn) = 0 having the origin as isolated 
common zero. This will be especially true of the transformation law and 
local duality theorem associated to our analytically defined residues; these 
two results will eventually achieve a very symmetric form. 

We use the notation 

0 = lim €(U) 
{0)SU 

for the germs of analytic functions defined in some neighborhood U of the 
origin in C . Clearly, 0 =C{z,, . . . ,z„} is the ring of convergent power 
series. When involved in inductive arguments we shall write 0„ for 0 . 
Recall that a local ring is a ring having a unique maximal ideal. 0 is such a 
local ring with maximal ideal m = {z,,...,z„} the ideal of functions/G0 
with /(0) = 0. The units are just 0 * = 0 — m. 

In Section 1 of Chapter 0 we proved that, given / T ^ O in 0„, there is a 
linear coordinate system (z,,z2,...,zn) = (z',zn) and unique Weierstrass 
polynomial 

w(z) = zd
n+a,(z')z^ + ■■■+ ad(z') £ 0„_ , [z n ] , 

where a,(z')£(9„.| are nonunits such that 
/(z) = u{z)w(z) 

with u E 0 *. In addition to the Weierstrass preparation theorem, we also 
proved the division theorem: For g E 0 „ , 

g = hf+r, 

where r60„_,[z„] has degree less than that of w. These two results provide 
the basic tools for studying the local ring 0 —especially the ideals in 0 . 

The method is frequently by induction on n. For example, the inductive 
hypothesis and Gauss lemma imply that 0„_i[z„] is a unique factorization 
domain, and using the preparation theorem we deduced that 

0n is a unique factorization domain. 
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Similarly, we shall prove: 

0n is a Noetherian ring, 

Proof. We must show that any ideal / c 0 has a finite number of 
generators. Let O^fGl. We may assume t h a t / e 0 n _ , [ z „ ] is a Weierstrass 
polynomial. Set / ' = / n 0 , _ | [ z J . By induction hypothesis 0„_, is 
Noetherian, and then the Hilbert basis theorem implies that / ' has a finite 
se t / , , . . . , / t 6G„_| [z„] of ©„_, generators. We claim that 

To see this, let g G / and apply the division theorem to obtain 
g = hf+r. 

Then r G / n 0„-i [■£„] = / ' and may be expressed in terms of /],...,fk. 
Q.E.D. 

Our discussion of commutative algebra will center around §-modules, 
usually denoted by M,N,R,... and which we always assume to be finitely 
generated. Choosing generators ml,...,mk for an 0-module M, there is an 
exact sequence 

of 0 -modules, where 
fi(*) = e$.- .$e 

k 

is the free 0 -module of rank k, 

v(gv-,8k) = g,m, + --- +gkmk, 

and 

R = { ( * „ . . . , & ) : £,»!,+ ••■ + &infc=0} 
is the module of relations among the m,'s. We claim that R is again finitely 
generated. The proof is by induction on k, with the case k = 1 being that of 
an ideal in 0 just discussed. Setting R' = R n 0(/c ~ l\ in the exact sequence 

0^R'^R->R/R'-*0 
both R' and / ? / / ? ' c 0 are finitely generated, and hence so is /?. 

As examples of 0 -modules, in addition to the free 0 -modules mentioned 
above, the most important ones are 

f /={ / , , . . . , f k } anidealinQ, 

lA/=0/{/„...,/,}. 
Very roughly speaking, the second of these is the local ring at the origin of 



680 RESIDUES 

the variety/,(z)= • • • =fk(z) = 0. We shall say more about this later. Given 
an ideal {/,,...,/*.}, where the/•£©„_ ,[.?„] are Weierstrass polynomials, it 
is natural to consider / ' = /nS„_i[z„] as a quotient-module of ©*.*— i o v e r 

©„_]. Consequently, even though ideals in ©„ may be our primary interest, 
more general modules arise naturally in inductive arguments. 

0 -modules admit the operations of linear algebra, such as 
M 0 N, M ®eN, Home(M,N). 

Given an exact sequence of 0 -modules 

the resulting sequences 

P ®eM^Q®eM -^R ®eA/-^0, 
0-^ Hom e (M,P )-+Home(A/, Q )^Home(M,R ), 

are exact. We express this by saying that <8> is right-exact and Horn is 
left-exact. Much of our discussion will be centered around the kernel of 
P®^M-^Q®6M and cokernel of Home(M,g)-*Hom0(A/,/?)-

Associated to an 0 -module M is its fiber M0— M/mM—the motivation 
for this terminology will emerge when we discuss coherent sheaves. This is 
a module over 0 / m = C and is therefore a finite-dimensional vector space. 
Our main technical tool is the 

Nakayama Lemma. / / M = m M , then M=(0). 

Proof. We define the ideal / = { / £ © : / • A/=0} and shall prove that 
7 = 0 . Suppose ml,...,mk generate M and write 

mt = 2 aijirij 
j 

or equivalently 

^(Sij-aiJ)mJ = 0, 

j 

where atjEm. By Cramer's rule this implies 
A • rrij = 0, 

where 

A = det(Sy-a ; > )Gl + m. 

Thus A is a unit, and so 1=0. Q.E.D. 

The Nakayama lemma is most useful in the following form: 

m,, . . . ,mk generate M<=>they generate M0. 
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Proof. The implication => is obvious. Conversely, assume that mu...,mk 

generate M0 and let S c M be the submodule of M that they generate. To 
show that S = M w e set Q= M/S and consider the exact sequence 

If m&M, then m — sEmM for some J £ 5 . Consequently, w(m) = 
ir{m — s) G m(? and Q = m£>. Then Q = (0) as desired. Q.E.D. 

We note one final version: 

/ / <p: M—>N is a homomorphism of 0 -modules such that <p0: M0-*N0 is 
surjective, then <p is surjective. 

Now we come to a main standard definition. An 0-module M is 
projective if the following diagram holds: 

M 
i 

A : ^ L - + O 

This diagram is to be interpreted as follows: K and L are given ©-modules, 
and a and /? are given 6 -module homomorphisms with a being surjective. 
Then there exists y such that the diagram is commutative. Briefly, the solid 
arrows are given and the dotted arrows can be filled in. This notation will be 
consistently used. 

Lemma. M is projective <=> it is free. 

Proof. Assume M is free—we may as well take M = 0 —and let /, G L be 
generators and k,GK with a(/c,) = /;. If /J(l) = 2,•/■/,■, t n e n w e m a v s e t 

y(l) = 2,/A:, to fill in the dotted arrow. 
Conversely, assume M is projective. Taking M= L and K to be free, we 

have 

We may assume that k is the minimal number of generators of M, or 

equivalently that the map C* —> M0 on fibers is an isomorphism. Then 
y ° a is surjective and y is surjective on the fibers. By Nakayama's lemma 
(third form) y is surjective and a is an isomorphism. Q.E.D. 

X 
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Note that the definition of projective may be rephrased as follows: 

Home(M, K)-*Home(M, L) -> 0. 

On the other hand, since projective modules are free, for M projective we 
have 

0-*M®e.P->M®eQ. 

Consequently, both the functors Homp(M, •) and M ® e • are exact for M 
projective. We shall explore this systematically in the next discussion. 

Homological Algebra 

We begin by remembering a series of definitions, most of which are 
probably familiar from algebraic topology. 

(a) A complex is given by either 

{K) ^KnXKn_A-> 32 = 0-
or 

Here the A"s will always be finitely generated 0-modules and maps 
G-module homomorphisms, although most of the present discussion goes 
over to modules over general rings. Taking cycles/boundaries gives respec-
tively H*(K)=®Hn{K) {homology) and H*(K)=®H"(K-) (cohomotogy). 
We shall give the remaining discussion in homology, leaving the dual 
considerations to the reader. 

(b) A mapping or homomorphism of complexes <p: K -*L_ is given by a 
commutative diagram 

iv 1? 
3 

It induces a map <p* :Ht(K)-^H*(L) on homology. When necessary we 
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shall write <p„: AT„-»L„ and 3#,3L for the boundary maps. The set 
Hom(A^.,L.) of homomorphisms of complexes is a group with ((p + ^)» = 
<p* + ^». 

(c) A homomorphism of complexes <p: A".-»L. is homotopic to zero, 
denoted (j>~0, if there is a chain homotopy 

as indicated by the diagram 

In this case <p* = 0. Two maps q> and ^ are homotopic if qp — ^ ~ 0 ; then 
<P* = </'*• 

(d) Most importantly, an exact sequence of complexes 
0 -» AT.-* L.-* M.-* 0 

is defined in the obvious way. It gives rise to a long exact homology 
sequence 

•• • - » / / „ (* . ) -> H„(L) - Hn{M) -H> H„_ , (*.) - » • • • . 

The following definition and proposition are our primary technical 
tools: 

DEFINITION. A projective resolution E(M) of ari 0-module M is given by 
an exact sequence 

E.(M): ...-^Em\Em_iX---XE0^M-+0, 

where the Em are projective ( = free) 0 -modules. 

Note that Hn{E.(M)) = Q for n > 0 and HQ(E.{M))^M. Given a projec-
tive resolution E_(M) and an exact sequence 

-*Fm^>Fm-i^> * Fo->0. 

where the Fm are free, we obtain a new projective resolution E[(M) by 
setting E'm = Em®Fm. We shall prove later that any projective resolution 
may be so modified as to have E'm = 0 for m > n (Syzygy theorem). 

Proposition. 1. Projective resolutions exist; 
2. Given <p: M—»N and projective resolutions E.(M) and E.(N), we may 

find a mapping of complexes $ : E.(M)-»E.(N) inducing <p in the sense of the 
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commutative diagram 

*. 
H0(E.(M)) —» H0(EXN)) 

\\l IK 

M > W 
■p 

3. $ is unique up to homotopy; and 
4. 7 / 0 - * M ' - » M - ^ M " - H > 0 /s exact, then we may chooseprojective resolu-

tions and mappings of complexes so that 0 —> E.(M')—>E.(M)^>E_(M")—»() /j an 
exacf sequence of complexes. 

Proofs. Since we have proved that the kernel of any surjective map 
0W—>A/->0 is a finitely generated 0-module, assertion 1 follows. 

The proofs of assertions 2-4 are all similar, but with increasing complex-
ity of notation. We shall therefore only prove assertion 2, leaving 3 and 4 
for the reader to carry out or look up in the references. 

Given the solid arrow in the diagram 

E0-*M^Q 

the dotted arrow <J>0 exists by the definition of projective. Proceeding to the 
next step, if R0 and S0 are defined by 

o^s 0 -* F0 ^yv->o 
then what we have is the solid arrows in the diagram 

E^R0^0 

and the dotted arrow fills in by projectivity. Continuing in this manner 
gives assertion 2. Q.E.D. 

DEFINITION. Given finitely generated 0 -modules M and N, 

Ext£ (M,N) = Hn{Uome(E_(M ),N)), 

Tor),0 (M,N) = Hn(E,(M)®eN). 
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We shall derive the main properties of Ext, for the most part leaving the 
analogous properties of Tor to the reader. We first note that by 2 and 3 
Ext is well-defined independently of the projective resolution E_{M). More 
generally, maps 

<p: M-+M', xp: N^N' 

induce 

$* : Exte(A/',iV)-*Exte(A/,AO, 
* * : Ext$(M,N)-*Exte(M,N'), 

with functoriality properties such as 

M"^M'->M 
y <p 

A* = o * - P . 

Thus, Ext*(M,N) is a functor contravariant in M and covariant in N. 
Next, we note that the definitions of Ext and Tor are not symmetric in 

M and N. For Tor this may be rectified as follows: Take projective 
resolutions E_(M) and F.(N) for M and N and consider the double 
complex 

{E.{M)®F(N),dM®\±\®dN). 

Recall from Chapter 3 that there are two spectral sequences with 

' £ , = Ht(E.(M)®eF(N),l®dN), 

"Ex = H*(E(M)®GF(N),dM®\), 

both of which abut to the hypercohomology 

//*(£•.(M ) ® e F.(N ) ,3„® 1 ± 1 ® d„). 

Since tensoring with a free module preserves exact sequences, 'E^'q = 0 for 
q>0 and "Ef,q = 0 forp>0. Thus both spectral sequences are trivial, and 
we deduce that 

H*{E(M)®eN) «s TOT%(M,N) at H*(M®6F{N)). 

For Ext the situation is more complicated and necessitates discussing 
injective resolutions for the second factor. Since this will not be required 
for our discussion, we won't get into these matters. 

Next, we observe that 

(*) Extg(M,AO = Home(M,jV). 
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Proof. If is,—»£0—»Af—»0 is exact, then so is 
0-» Home(Af,N) -» Home(£0,JV) -» Home(£„7V). Q.E.D. 

The main property of the Ext functor is: 

Short exact sequences of 0 -modules 

f 0->Af'->M->Af"->0, 
(0->N'^>N->N"-*0, 

induce long exact sequences 

f ■■■^Extn
e(M,N)-*Ext"e(M',N)-+Exl"e

+\M",N )-+■■■, 

[ >Extn
e(M,N)^Exll(M,N")-*Extn

e
+i{M,N')-+- ■ •, 

of Exfs. 

Proof. First we note that a short exact sequence of free 0 -modules splits, 
as indicated by the dotted arrow in the diagram 

0 - > £ ' - » £■->£"->(). 

Thus E^E'®E", and consequently 

0-*• Home(£",AT) -» Home(£, AT) -»Home(£ ' ,JV) -»0 

is exact for any 0 -module N. Choosing projective resolutions so that 

0 - > £ ( A / ' ) - » £ ' . ( M ) - > . E ( A ' " ) - » 0 

is exact, it follows that 

0-*Home(EXM"),N)-+Home(EXM),N)^Home(EXM'),N)-*0 

is an exact sequence of complexes, and this gives the first long exact 
sequence. The second one is even simpler. Q.E.D. 

For example, given 0-*N'^>N^>N"-^>0, we obtain 

(**) o -» Home(M,N') -* Uome(M,N) -»Hom e (M,Ar ) -> Ext J,(M,Af'), 
so that Exte(M, •) measures the extent to which Home(A/, •) fails to be 
right-exact. 

We next shall prove: 

Extg(M, N) = 0 for q > 0 and every 0 -module N «* M is projective. 

Proof. Clearly if M is projective, the higher Ext's are zero. 
Conversely, suppose that Extg(M,7V)=0 for all N, and consider a 
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diagram 

M 

in which the solid arrows are given. Applying (**) above and Extg(Af,7V) 
= 0 gives 

Uome(M,P) -♦ Home(A/,(?) -» 0, 
so that the dotted arrow /? can be filled in. Consequently M is projective. 

Q.E.D. 

Finally we shall refine this to: 

Extg(M,E) = 0 / w all projective modules E«=»M is projective. 

Proof. Suppose that Extg(M,£) for all projective ( = free) modules E. 
Choosing generators for M, we obtain a short exact sequence 

0-*R^>E-+M-*0 

with E free. Applying the other long exact sequence of Ext's gives 

Home (E,E) -»• Home (R,E) -» ExtJ(M,E) = 0. 
Consequently the dotted arrow m exists, and A/skerw, E^R®M. Since a 
direct summand of a projective module is again projective, we are done. 

Q.E.D. 

In closing we should like to comment that the name "Ext" suggests 
extensions, and it was in this context that Ext1 was first defined. We shall 
discuss this in Section 4, where it will arise quite naturally in context. 

Another possible interpretation of Ext is pertaining to some sort of 
duality, since it reflects the properties of passing from an 0 -module M to 
the "dual" ©-module Home(M, •). This will be made precise in the next 
section, where in particular the local duality theorem will be put in 
intrinsic form. 

Thus Ext has two quite different faces, each interesting in its own right. 

The Koszul Complex and Applications 

Koszul Complex. We continue using the notation 0 for the local ring of 
germs of analytic functions defined in some neighborhood of the origin in 
C . Suppose/, , . . . , fr E 0 ; denote by Ik = {/], ■■■Jk} the ideal generated by 
the first k functions, and set I=Ir. 
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DEFINITION. (/,,...,/r) is a regular sequence if fk is not a zero divisor in 
&/Ik_xiork=\,...,r. 

We recall the geometric interpretation, mentioned above and proved 
in the case n = 2, that this is equivalent to codim Vk = k, where Vk = 
{ / , ( * )=• • • =/*(*)=<>}. 

Given a regular sequence, the Koszul complex will give a particularly 
nice projective resolution of the ©-module /. It is modeled on the well-
known fact from linear algebra that, for an «-dimensional vector space V 
and nonzero vector v* G V*, the contraction operator 

i(v*): AkV^Ak~lV 
induces an exact sequence of vector spaces 

(C = A°V). The basis for our intrinsic formulation of local duality is that, 
under the identifications 

Hom(A*f/,C) = AkV* = /\nV*®/\n~kV, 
the above sequence is self-dual in the sense that the diagram 

Hom(A*K,C) - ^ /\nV*® /\"~kV 

Hom(A*+lF,C) -^> /\"V* <8> /y-<*+<>K 

is commutative. 
Now to construct the Koszul complex let ex....,ek be the standard basis 

for C and set 

I ej = eJiA---AeJt, J=(jl,...Jk)c(l,...,r). 

Then Ek is a free 0-module with basis {e,}, and we define 
a 

by 0 -linearity and the usual boundary formula 

3(«y) = 2 ( - i r ' ^ . A - • A 4; A" • • A%-
*-= i 

For & = 1 we set E0 = 0 and 9(e,)=/. This defines the Koszul complex E(f) 
for any set of functions/=(/,,...,/r), and we have the 
Lemma. In case (f,,...,fr) is a regular sequence, 

/ / , (£ . ( / ) ) -0 forq>0 
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and 

H0(EXf))^e/i. 
Consequently, E_(f) gives a projective resolution of 0 /I . 

Proof It is clear that the image of F, —>• F0 = 0 is just the ideal /, so that 
/ / 0 ( £ ( / ) ) s 6 / / . We shall prove by induction on r that the higher 
homology is zero. 

In case r= 1 the Koszul complex is O-*0 -» 0 since/, =^0, and the result 
is clear. 

Now we assume the result for r— 1, and let FkcEk be induced by the 
inclusion A ^ C ' - ' c A * ^ , where C~l is spanned by e,,...,er_,. There 
results a big commutative diagram: 

0 0 0 0 
4' •*' 4* 4-

F : o ^ F r _ 1 ^ F r _ 2 - * - - - - » F I - ^ / ._ , 

F : 0^Er-^Er_^Er_2-^-- • - > £ , - > / . 
1 1 4 i 4 

0 0 0 0 0 
We make the identification 

aseteOA'-'c-1). 
This being done, for J = (jl,...Jk_l)<z(l,...,r- 1). 

3 ( < ? r ® e , ) = / r e , ± e , ® 3 e , 
= er ® dej moduloFk. 

-»0 

-+0 

i ^ 0 

Thus Q. is again a Koszul complex, to which the induction assumption 
applies. 

We now examine the lower right-hand corner 
£ , - » Ir ^ 0 

I I 
Gz-^e.^/'r-.-o 

1 1 
0 0 

Under the identifications 

0 2 « 6(*,®€'-'), 3(er<g)e,)=^, 
G i = 6 - ^ <x(ger) = gfr, 
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the diagram is commutative. If a(ger) — 0, then gfr^{fi,---Jr-l), and so 
gE{/, , . . . , f r_ i} by the regular sequence assumption. Thus ger£dQ2, and 
so the big diagram is commutative and exact. Since H*(F)=0= H*(Q), 
we deduce that //*(£.) = 0as desired. Q.E.D. 

Intrinsic Form of Local Duality. We shall use the Koszul complex to 
compute Ext£ (0 / / , (9), and then interpret the result as an intrinsic form of 
the duality theorem from Section 2 above. In fact, we shall reprove the 
duality theorem in this new form. 

The following plays an analogous role to the *-operator in Hodge 
theory: 

r 

Lemma. There are isomorphisms Home(Ek,G) = Er^k such that the dia-
gram 

Home(Ek,6) -> Er_k 

Home(£* + 1 , 0 ) — » £ r _ A _ , 

is commutative. 

Proof. For an index set 7 c ( l , . . . , r ) , we let J°=(\,...,r) — J be the 
complementary index set and define 

ej. = ±ej0(EEr_k. 

The sign is chosen to make eJ/\eJ. = el/\- ■ ■ /\er. Then we define <?yG 
Hom P (£^G)by 

The isomorphism in the lemma is given by 

ej - » ej.. 

It is a direct computation that the diagram is commutative. Q.E.D. 

Applying this lemma gives the first part of the 

Proposition. Suppose that f = (f,,...,fr) is a regular sequence generating an 
ideal I = l(f). Then 

(*) E x t / t
0 ( 0 / / , 0 ) = O, k<r; Ex t r

e (0 / / , 0 ) a 0 / / . 

The second isomorphism has the following functoriality property: Suppose that 
I' = I(f') is a regular ideal contained in I, so that 

fi = S aijfr 
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Denote by A = det (a^) the determinant of the matrix (a^). Then the diagram 

E x f e ( 0 / / , 0 ) ^ 0 / 7 

(*•) I I* 
Extr

e(0/7', 0 ) ^ 0 / 7 ' 

is commutative. Moreover, the vertical map is infective. 

Proof. The computation of the Ex t* (0 /7 ,0 ) follows from the previous 
lemma. To prove the transformation formula (**), we shall define map-
pings 

£ . ( / ) : 0-» Er -» £,._, _» . .■-» £fc -> > Et -+ E0 - » 0 / / - » O 

£.(/')= o-> E; -> £;_, _>..._>£:;->...-> E; - ^ ->©//'->o 

between the Koszul complexes as follows: The map © / / ' - » © / / is the 
natural map induced by the inclusion I'd, and A0 is the identity under 
the identifications E0 = 0 = EQ. A,: £{-»£, is defined by 

so that 

3^1(e;) = 2 ^ = / ' = ^o(3e/). 

The remaining maps Ak:E'k-^>Ek are the &th exterior powers of Av The 
diagram is then commutative. Under the identifications 

Er s 0 , £ ; a 0 , 
^ r is just the determinant A. 

It remains to prove the injectivity. Before doing this, it might be 
instructive to verify directly that 

A / c / ' , 
so that multiplication by A induces a map 0 / 7 — > 0 / 7 ' going in the 
nonobvious direction. By Cramer's rule 

H = 2 akjAik, 
k 

where Aik is ± the (i,k)ih cofactor of (a,-,-). Then 

j j.k k 
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so that A/ c / ' as desired. 
Consider now the exact sequence 

O - » / / / ' - > © / / ' - » 0 / / - * O . 
The long exact sequence of Ext's gives 

-» Ext£(0 / / ' , 0) - » E x t * ( / / / ' , 0 ) -* Extfc+' ((9 / / , 0) -» • •■ . 

Our desired injectivity thus follows from 

Ex t r
e " , ( / / / ' , 0 ) = O, 

which we now prove. 
Set Ik = {f],--.,fk) a n d consider the following array of sequences of 

0 -modules, which are exact by the regular sequence property of the ft: 

o—> 0 —■> e —>©//,'—>o 

o—■> ©/ / ; —-> ©// ; —»©//^—»o 

o—» ©//;_, —> e/ / ; - i—>©// '—>o 

Applying the exact sequences of Ext in the second variable gives 
/( 

Extjr2(///',e //;)-» Extjr1 (///',©) —-> Ex^-1 (///',©) 
Ext r

e - 3 ( / / / ' , 0 / /2 ) ->Ext r
e - 2 ( / / / ' , 0 / / , ' ) —■> Ex t r

e - 2 ( / / / ' , 0 / / , ' ) 

Extg(///',e//;_I)->Ex4(///',e//;_2) - » Ext^///',©//;.^ 
Now, and this is the point, the maps 

A' 
Extrfk(i/r,e //,'_,) - » Ext̂ -*(///',e //;_,) 

are all zero, since these maps are 0 -linear, and therefore the multiplication 
by ft can be moved from the factor 0 / 4 ' _ , to / / / ' , where it is zero. 
Putting this all together, we obtain a surjective map 

H o m P ( / / / ' , 0 / / / _ , ) -> ExtjT' ( / / / ' , 0) ->0. 

If <pEHome(I/I',©///_,), then for any gGI/I' 

/ > ( £ ) = <p(/;2) = 0^(p(g) = 0 

=>ExtJf' ( / / / ' , 0 ) = 0. Q.E.D. 
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We now return to the local duality theorem. Let /={ / , , . . . , / „} and 
/ '={/, ' , . . . , /„ '} be regular ideals with I'cl, and denote by fl" the stalk at 
the origin of the sheaf of holomorphic n-forms. A choice of coordinates 
z,,...,z„ near the origin induces an isomorphism 

given by 
g(z)^g(z)dZ]A--- Adzn. 

We recall that the pairing 

res/: 0 / / ® 6 / / - > C 

defined by 

res T A ^ - R e s I s{z)h{z)dz^- ■ ■ Adzn \ «.,(*,*) - Res{0)^ / i ( z ) . . . / n ( z ) j 

depends on the choice of generators^ for / and local coordinates zx,...,z„. 
The behavior of res^ under changing generators for / or changing local 
coordinates is given by the transformation formula. This brings us to the 

Local Duality Theorem II. For regular ideals I = {f,,..., fn} the pairing 

res: 0 / /<8>Ex tS (0 / / , a " ) -»C 
defined by the isomorphism (*) in the previous proposition and residue resf is 
nondegenerate, independent of the choice of local coordinates and generators 
of I, and functorial in the sense that the diagram 

res 
0 / / ® E x t g ( 0 / / , S " ) — > C 

t- I - II 
0 / / ' ® E x t 3 ( 0 / / ' , Q " ) —> C 

is commutative for regular ideals V c I. 
Proof. The independence of the pairing "res" from choice of local coordi-
nates and generators for / , together with the functoriality, all follow from 
the commutative diagram (**) and transformation formula. To show that 

res 
the pairing 0 / / ® E x t e ( 0 / / ,A") —> C is nondegenerate, it will suffice to 
find a regular ideal / ' c / for which the pairing is nondegenerate, and then 
use the functoriality together with the facts that 0 / / ' - » 0 / / is surjective 
(obvious) and Ext"e(6/I,Q")?->Extn

e(6/I'M") is injective, which was 
proved in the previous proposition. Appealing to nullstellensatz in Section 
1, we may take I' = {zf,...,zf}, where d=dimc(G /I). Q.E.D. 
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Tor and the Syzygy Theorem. Having used Ext to put the local duality 
theorem in final form, we shall use Tor to prove the 

Syzygy Theorem. Let M be a finitely generated 0 -module and 

0-*F^En_l^--^>E1->Eo->M-^0 

an exact sequence of 0 -modules where the Ek are projective (=free). Then F 
is also projective. 

Let m = (zl,...,z„) be the maximal ideal and C = 0 / m considered as an 
0 -module. We begin by proving: 

Lemma. Torf (C, N) = CM-N is a free © -module. 

Proof. We first remark that 

TOT$(M,N)SZ M®eN. 

This is because <8> is right-exact, so that £\—>£■(,—>M gives Ex®eN-+ 
E0®eN->M®eN^0. 

Next, we note that short exact sequences 
( 0 - > M ' - H > M ^ M " - ^ 0 
I 0->N'->N-+N"^>0 

give rise to long exact sequences of Tor's 

f ■ • • -VTorf (M,N)-+ToTl(M",N)-*Tots
k_l(M',N)-*- • ■ 

{ »Torf (M,N)-*Tore
k(M,N")-*Tore

k^l(M,N')-*- ■ ■ 

for the same reason as for Ext. 

Now to prove the lemma. Observe that 
M ®eC s M/mM = MQ 

is the fiber of M. Choose a free 0-module E such that E0szM0. By the 
Nakayama lemma, we may extend this isomorphism to a surjective map 
£->A/-»0. Let R be the module of relations defined by 

0^R^E-*M-+0. 
By the exact sequence of Torf (C, •), 

Tor f (C ,M)^C® e /? -®e 

II 

*o 

#->C® e £ 

II 

- * E0 

-> 

—> 

C ® e M -

II 

M 0 

*0 

R = 0 
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by Nakayama again. Thus EszM and the lemma is proved. 

Now we can prove the syzygy theorem. For 0 < k < n, we define Rk by 

R0 = M, 

■ Rk = image Ek-^Ek_, (0 < k < n), 

R„ = F. 

Then we have short exact sequences 

0-» Rl -> E0 -> /?0 -»0, 
0-*/^ + I-»■ £* -> /?* -H.0 (0<A:<« ), 
0-> Rn ^ £„_ ,_* /?„„ , ^ 0 . 

Since higher Tor's are zero if one of the modules is free, the long exact 
sequence in the second factor gives 

Tor°+ , (€ , /? ,_ , ) » Torf (C,**), ? > 1. 

In particular 

T o r ? ( C , / U » T o r 2 + I ( C , A O . 
To show that the right-hand side is zero, we let 

K.: 0-^Kn-+Kn_]->----*Ko->e/m = C^0 

be the Koszul complex associated to the maximal ideal m = {zl,...,zn}. 
Since 

Tor£(C,A/) = H*(K®eM), 

it follows that Torf+A (C, M) = 0 for A: > 1. Q.E.D. 

A Brief Tour Through Coherent Sheaves 

Definitions and Elementary Properties. On an open set i / c C " we now 
denote by 0 the sheaf of holomorphic functions and by 6Z = lim7 g v 0 ( V) 

p 
the stalk of 0 at a point zGU. A sheaf mapping 6ip) -» 0(9) is given by a 
(p X <y) matrix of holomorphic functions defined on U. We define the sheaf 
of 0 -modules <3l by 

In the discussion of local rings, we pointed out that, because of the 
Noetherian property of 0ZQ, <$lZo was a finitely generated 0Zo-module. The 
following fundamental lemma is due to Oka: 

Oka's Lemma. The sheaf tfl is locally finitely generated as a sheaf of 
0-modules. More precisely, if ri,...,Tm are sections of 91 in a neighborhood 
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O/ZQ that generate the 6^-module <3LZo, then they generate the 6z-modules <3lz 

for | |z-Zo| |<e. 

We shall not give here the proof of this lemma, which is found in the 
references given at the end of this chapter. 

Taking q=\, F=(f],...,fp) generates an ideal sheaf 7 c 0 , and *3l is the 
sheaf of relations 2 rJi ~ 0 among the generators. Oka's lemma is there-
fore a sort of Noetherian property of 0 , not just in each stalk but, so to 
speak, spread out over sufficiently small open sets. We note the similarity 
to the following, which was proved in Section 1 of Chapter 0: 

If f and g are holomorphic in U and are relatively prime in the local ring 
© , then they are relatively prime in 0Z for ||z — ZQ|| < e. 

The proof of this result used the Weierstrass division theorem, and the 
same is true of the proof of Oka's lemma. 

Here is the basic 

DEFINITION. Let M be a complex manifold with structure sheaf 0 and '$ 
a sheaf of 0 -modules. Then ?F is coherent if locally it has a presentation 

In other words, ^ is coherent if, given any point z0GM, there is a 
neighborhood U of z0 and finitely many sections of ^\U that generate 
each 0Z -module <SZ (z e U), and if moreover the relations among these 
generators are finitely generated over U. 

Here are some remarks and examples. The gist throughout is that Oka's 
lemma allows properties in the local ring 0Z to propagate to the same 
properties in nearby local rings 0Z. We shall refer to this as the propagation 
principle; it gives rise to the name coherent. 

We begin by noting that: 

Coherent sheaves admit local syzygies 

0-»©(*»)->©(*--■)-> »<9(*o) _><j_^.o. 

Proof. By definition we have 

0</»^0(<?>_+<f _>0 
in a neighborhood U of z0. Applying Oka's lemma, we find 

©('•)_>(9(/')_>(9(?)_>g'_^o 
in a possibly smaller neighborhood V of z0. Applying it again, we obtain 

0 W _> ©(') _> 0</» _» 0(?) _» ^ _*0 
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in U" c U'. After at most n steps, the syzygy theorem assures us that the 
kernel on the left will have as stalk at zn a free 0T -module, and this then 
gives our local syzygy. Q.E.D. 

As an application we have: 

For a coherent sheaf <5, the cohomology sheaves 

%«(W) = 0 forq>0. 

Proof. By the 9-Poincare lemma, %q(&) = 0 for q>0. Arguing by induc-
tion on the length of a local syzygy, we may assume that we have 

o ̂  a - ^ e ^ —<?->(), 
where %q(%) = 0 for <7>0. Our result then follows by the exact sequence 
of cohomology. Q.E.D. 

A further property of coherent sheaves we shall repeatedly use is: 

Given an exact sequence 

of sheaves of 6-modules in which two of the three are coherent, then the 
remaining one is also. 

The proof is just tedious checking of details and will be omitted. 
Now we come to some examples. The simplest are those ?F such that 

locally f s 0<r\ Then % is said to be locally free of rank r, and such *$ are 
exactly the sheaves 0(E), where E-+M is a holomorphic vector bundle 
with fiber C . 

A subsheaf / c 0 that is locally finitely generated is called an ideal sheaf 
or sheaf of ideals. By Oka's lemma, these are always coherent, and because 
of the exact sequence 

0 ^ 7 - ^ 0 _>0//->O 
the same is true for 0 / 7 . If locally 7= {/,,...,/„} is generated by holomor-
phic functions/,,... ,/m, then the support of 0 / 7 is defined as 

Z = s u p p ( 0 / 7 ) 
= { zEM: 7Z^0J 
= { : £ M : / , ( Z ) = - = / J Z ) = 0 } . 

As a point set Z is an analytic variety. However, this should be refined, 
and the pair (Z, 0Z) should be thought of as a space whose support is an 
analytic variety but whose structure sheaf 0 z = 0 / 7 is a sheaf of rings 
possibly with nilpotent elements. These objects are called Schemes. 
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An ideal sheaf / that locally has a single generator / is locally free of 
rank one, and hence is of the form 

I = 0(L*) 
for some holomorphic line bundle L*-*M. Denoting by £> = (/) the divisor 
of/, we have previously used the notations L* = [-D] and L = [D] for this 
line bundle and its dual. The sheaf 0(Z)) is then the sheaf of meromorphic 
functions g with (g) + D >0. In general, sheaves G(£>) for a not neces-
sarily effective divisor D are said to be invertible. The multiplicative group 
of invertible sheaves on an algebraic variety M is just Hl(M, 0*) = Pic(M). 

An ideal sheaf / is a sheaf of regular ideals if locally / = {/,,..., / r } , where 
the _/* define a regular sequence in the local rings 0Z. For sheaves of regular 
ideals the Koszul complex from the preceding section provides an espe-
cially nice local syzygy. Later on we shall be especially concerned with the 
codimension-2 case. If locally /={/i,/2}> then the Koszul complex gives 
the local syzygy 

o _»e X e © 0 X e -> e // -»o, 
where 

M*) = (-/2 *)©(/.*). 

To illustrate how nilpotents arise geometrically, suppose that Z c M i s 
an irreducible subvariety defined by a sheaf of prime ideals / c 6 ■ Then 
the ideal sheaves / f l + l define spaces Z =(Z, ©/ / f l + 1 ) , which may be 
thought of as the fith infinitesimal neighborhood of Z. 

In this context let us reexamine the Reiss relation discussed in Section 2. 
Here M = P 2 and Z=L is a line. We denote by 6()l) = 0 / . P + 1 the 
structure sheaf of the juth infinitesimal neighborhood. The data of a 
second-order element of arc crossing L is equivalent to locally giving a 
section of 0(2) defined up to multiplication by units in 0(*2). 

Explicitly, let {Ua} be an open covering of a neighborhood of L in P2 

such that in Ua we have holomorphic coordinates (za,wa) with LnUa 

defined by wa = 0. In UanU0, za = za(zf),wf}) and wa = wa(zp,wp), where 
Wp(z/3,0) = 0. In Ua the sections of the sheaf 0(fl) are just the holomorphic 
functions fa(za,wa)=f0(za)+f](za)wa+ ■ ■ ■ +/fl(za)wa

fl taken modulo w£+1. 
The data in the Reiss relation are given by /„ e 0(2)( Ua) w i t h / a / / ^ = / a / 3 £ 
6(*)((/„n Up). Thus, giving the second-order elements-of arc is the same as 
giving an invertible sheaf £(2) GH'(L(2), 0 *(2)) and section o(2)EH°(£(2)). 

We now ask when there is an invertible sheaf £ G//'(0p2) that restricts 
to £(2). For this we consider the exact sequence 

O ^ l + / 3 ^ 0 ^ - ^ 0 ( * 2 ) - ^ O , 
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where /ss0p2(—/_,) is the ideal sheaf of the line L c P 2 and 1 + / 3 denotes 
the multiplicative sheaf of functions 1 + / , where / vanishes to third order 
along L. Clearly l + / 3 = / 3 , and since 73 = 0p2( —3), 

H\eP2(-3L)) = 0 by Kodaira vanishing, 

H2(ep2(-3L)) as #°(<V) as C by Kodaira-Serre duality, 

H2(B p*2) = 0, 

where the last step follows from the cohomology sequence of O-^Z-»0P2—> 
0p*2—>1. Thus we obtain 

0 -> Hl(e*2) -> H '(0(*2)) -> C -► 0, 
and consequently: 77jere is one condition on £(2)6H'(0(2)) t0 be the restric-
tion of some £eH'(6P*2). 

Assuming now this to be the case, we have £ss0p 2(«) («>0) , and the 
exact sheaf sequence 

0 -+ ep2(n - 3) -» 0p2(«) -» 0 (£(2)) -» 0 

together with /f '(0P2(n —3))s=/f'(0p2( —/j)) = 0 gives in cohomology 

0 -> #°(0p2(«-3)) -» //°(0P.(«)) -> //°(0(£(2))) -»0. 
Combining this with the previous paragraph, we conclude: There is exactly 
one condition that the second-order arcs C{ ( i= l , . . . , n ) be cut out by an 
algebraic curve C in P2. The Reiss relation gives this condition explicitly; 
this alternate approach illustrates the use of nilpotents. 

As another example of nilpotents, we assume that 7 c 0 is a sheaf of 
regular ideals whose support Z consists of a finite set of points. Thus, 
locally / = { / , , . . . , / „ } , where n — dimc M. Setting 0 Z = © / / the ringed 
space (Z ,0 Z ) consists of the points PEZ together with a finite- dimen-
sional C-algebra 0Z ( P = 6P/IP. The associated zero-cycle is 2 / > e z 
d i m c ( 0 z P)P. The space (Z, 0Z) contains more information than just the 
set of points PeZ, even if we include the multiplicities d im c (0 z / ) ) . 

Now we come to the question of sheafifying Ext and Tor. Recall from 
the section on homological algebra that we proved a proposition giving 
four properties of projective resolutions of 02-modules. The definition and 
basic properties of Ext and Tor for modules over local rings were formal 
consequences of this proposition. The point we wish to make here is this: 
By the propagation principle, the same four properties in that proposition are 
valid locally for coherent sheaves. For example, the first one, that projective 
resolutions exist, becomes that local syzygies exist, which we have already 
checked. 

As a consequence, if one thinks matters through, the following conclu-
sion emerges: Given coherent sheaves ®s and §, we may define sheaves 
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Extp(g, g) and Tor£("J-,g) with the properties: 

] f ^ ^ g ^ E x t ^ . g , ) , 

fExjO(^,g)sHomf(6F,g) , 

3. The exact sequences of Ext and Tor are valid; and 
4. Ext£C3\g) W T o r ^ ( ? F , g ) are coherent sheaves. 

The last property is because Ext and Tor fit into exact sequences where 
two out of three terms are coherent. 

As an illustration of property 3, given an exact sequence 0—>(?'-»§-» 
g "—>0 of coherent sheaves, application of ® f 7̂ gives 

■ • • ^ T o r f ( g , g ) - > T o r f ( g " , ^ ) - > g , 8 > e g r - > g ® ( , g : - > g " < 8 ) c g r - > 0 . 

This sequence will prove useful in a little while. 

Cohomology of Coherent Sheaves. Suppose now that M is a compact 
complex manifold and "JF is a coherent sheaf on M. The fundamental 
global fact is: The cohomology H*(M, ?F) is a finite-dimensional vector 
space. 

Again, this is proved in the references listed at the end of this chapter. 
We shall not prove it here but will show how the finite dimensionality may 
be used to draw consequences in case M is a smooth algebraic variety. 

Suppose then that L—*M is a positive line bundle, which we may as well 
take to be the hyperplane bundle relative to a smooth projective embed-
ding McPN. We let e = 0(L) and set <5(k) = <3®e£

k. The sections of 
'y(k) may be thought of as sections of 9" having poles of order k along a 
hyperplane. Consider the following two assertions: 

Theorem A. The global sections H°(M, ?F(k)) generate each 6x-module 
^(k), for k > k<, and x e M; i.e., 

H°{M, *5(k)) -» <3(k)x/mx$(k) -> 0, 
where m x c 0X is the maximal ideal. 

(The equivalence of the two statements in this theorem is the Nakayama 
lemma. In general, ^x/ mx^x may be called the fiber of the coherent sheaf 
f at x G A/.) 

Theorem B. Hq(M, ^(k)) = 0 for q > 0, k > k0. 

We have proved the finite dimensionality and also Theorems A and B in 
case <3 = 6(E) is locally free so that potential-theoretic methods may be 
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used. Now we prove the assertions: 

1. Theorem A => Theorem B. 
2. Theorem B=$Theorem A. 
3. dim H'(M, £F) < oo for all coherent sheaves Sr=* Theorem A. 

Proof of 1. Assuming Theorem A, we have 

o_>g'^ec)-»^(*)^o 
for some large k. Applying ®£~* to this exact sequence and setting 
§ = §'(- k), we obtain 

Now apply the same procedure to §, and keep on going. After at most 
n = dimc M steps we arrive at a global syzygy 

(*) o^>&„^Sn_1^----+&0^>V^O, 

where each S, is locally free. Note that for 0 < / < n — 1, &k is a direct sum 
of copies of £ *, but all we can say about the last term is that &„ = &(E) 
for some holomorphic vector bundle E-^M. The existence of such global 
syzygies for coherent sheaves is of fundamental importance. 

Returning to the proof of 1, we have proved in Section 4 of Chapter 1 
that Hq{M, &(k)) = 0 for £ locally free, <7>0, and k>k0. Applying this 
inductively on the length of a global syzygy gives Theorem B. 

Proof of 2. For each x0 E M, we have 
0 -+ mx$(k) - $(k) -» $(k)Xt/mXo<S(k) -> 0, 

where mXo c 0 is the sheaf of ideals given by the maximal ideal mXa at x0. 
The fiber <3(k)x /mx ^(k) is an example of a coherent sheaf supported at a 
point—these are sometimes called skyscraper sheaves. Now mx

 <3(k) = 
(mx%)(k)=Q{k), where S =mx% is a coherent sheaf. Using Hl(M,§(k)) 
= 0 for k>k0, we deduce that the global sections H°{M,'S{k)) generate 
the fiber of ^(A:) at x0 for k > k0. By the Nakayama lemma, these global 
sections generate the 6X -module c3(k)x for k>k0. By Oka's lemma they 
generate the 0^-modules ?(k)x for x near to x0. The result now follows by 
the compactness of M. 

Proof of 3. The proof is by induction on n = dimc M. Given a point x E M 
and hyperplane £ in the tangent space T'X(M), we may find a nonsingular 
hypersurface passing through x and with tangent plane £. Replacing £ by 
£*, we may assume that this hypersurface is a hyperplane H. Then we have 
an exact sequence 

o-»0„(-i)4>©j„-e*->o, 
where oG/f°(A/ ,6( l ) ) defines / / and 6H is the usual structure sheaf on 
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the complex manifold H. Applying ®?F to this sequence gives (0 = 0M) 

o-^Torf(e//,ff)^gr(-i)^gr^g//-+o, 
where ($H = C3®S 6H is a coherent sheaf of 6H -modules, and where we 
used that Torf(0^,<3r) = O. The sheaf § =Torj , (0„ ,§) is a coherent sheaf 
of 0^-modules. Multiplying a section of <? by a gives zero, since a- 0W =0 , 
and so § =§H is a coherent sheaf of 0^-modules. 

Now apply ®kt to this sequence. Since locally £ s f i , exactness is 
preserved and we obtain 
(**) 0-*§H(k) -+<»(k-]) ^%(k) ^%(k) ^ 0 . 

The induction hypothesis applies to give Theorem A, and hence Theorem 
B, for §H(k) and %(k). Thus H"(§H{k)) = Hq{%(k)) = 0 for q>0 and 
k > k0. From the exact cohomology sequence of (**) we obtain surjective 
maps 

H\%{k)) ^H\<5{k+\)) + > / / ' (^(fc + 2)) ^ * - ■ ■ 

for k>k0. Since Hl(^{k)) is finite dimensional, we must have isomor-
phisms 

H\%k))-^> H\<${k+\))-^ H\%{k + 2)) 

for k > kv But then the cohomology sequence of (**) gives 

H0(f{k))^H0(%(k))-*0 

for k>kx. Now H°(%(k)) generates %(k)x as an 6H ^-module for 
k> k2 and any x G H. Since the tangent space to H at JC was assigned 
arbitrarily, it follows easily that H°((S(k)) generates c5(k)x as an 6MyX-
module. Q.E.D. 

Noether's "AF+BG" Theorem. As an illustration of a particular global 
syzygy and application of the local residue theorem, we shall discuss a 
classical result of Max Noether, which is traditionally used as a corners-
tone in the algebraic treatment of plane curves. 

In P2 with homogeneous coordinates X^lX^X^Xj] let F(X) and G(X) 
be homogeneous polynomials of respective degrees m and n whose divisors 
are plane curves C and D, which we assume to have no common compo-
nent. Given a homogeneous polynomial H(X) of degree d=m+k=n+l 
with k, I > 0, we ask when there is a relation 
(*) H = AF+BG. 

An obvious necessary condition is that (*) should hold locally. This has 
the following meaning: Let PECnD and suppose that P is contained in 
the affine coordinate system (x,y) = [l,x,y]. Then f{x,y) = F{\,x,y) and 
g(x,y)=G(l,x,y) generate an ideal IP in the local ring 6P of germs of 
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holomorphic functions defined in a neighborhood of P. The obvious 
necessary local condition is that, setting h(x,y) = H(\,x,y), 

(**) h{x,y) <EIPC6P 

for each P GCnD. Conversely, we shall prove 

Noether's AF + BG Theorem. / / the local conditions (**) are satisfied, then 
there is a global relation (*). 

Proof. We let 7 c 0 be the sheaf of ideals generated by the various 
localizations/ and g as above. Then / is coherent and s u p p ( 0 / / ) = C C\D. 
Setting d=m + k = n + l and r = k — n = / - m , the Koszul complex gives the 
global syzygy (cf. p. 698) 

O - » 0 ( r ) - » 0 ( m ) © 0 ( n ) - » / ( < / ) - + O , 

where I(d) = I<S>e6(d) and the maps in this sequence are 

Tj-^r jGe-TjF, r jE0( r ) , 

£©«f--».Ff+Gy, £ e 0 ( * ) , * e 6 ( / ) , 

where F, G are considered as global sections of 0 (m), 0 (n), respectively. 

Next we recall that # ' (P 2 , 0 (> ) ) = O for all r, since first Hl(P2,0(r))= 0 
for r < 0 by the Kodaira vanishing theorem, and second 

/ / ' ( P 2 , 0 ( r ) ) s / / 1 ( P 2 , 6 ( - r - 3 ) ) = 0 

for r > 0 by Kodaira-Serre duality. The exact cohomology sequence then 
gives 

H°(P2,6 (m)) © / / ° (P 2 ,0(») ) -» 77°(P2, /(rf)) -» 0. 

Our local assumptions (**) exactly mean that 

/ / e H°(p2,i(d)) c / /°(P2,0(^/)) , 
and this proves the theorem. Q.E.D. 

In order to apply Noether's theorem, it is useful to have numerical 
criteria for when the local conditions (**) are satisfied. It is pretty clear 
that the local duality theorem is relevant to this question, and we shall 
pursue this lead in one rather simple case here. 

Suppose that f(z,w) is holomorphic in a neighborhood of the origin and 
has divisor a nonsingular curve C passing through the origin. If g(z,w) is 
holomorphic near the origin, then we define Ord c (g) to be the order of 
vanishing of g\c at the origin. Suppose now that g(z,w) has divisor D and 
that the set-theoretic intersection CnD = {0}. Denote by 7 c 0 the ideal 
{f,g} in the local ring at the origin. 
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Lemma. Given h(z,w)e(9,/f Ordc(h)>Ordc(g), then h e I . 

Proof. According to the local duality theorem we must prove that 

for all k E 0 . Since Ordc (hk) > Ordc (h) this will follow from showing that 

ReS|0|(M£*),0 

whenever Ordc(A)>Ord(g). We may choose local coordinates so that 
f(z,w) = z. Then, by iteration of the residue integral 

1 f h(0,w)dw 

= 0, 
since Ordc (h) > Ordc (g). Q.E.D. 

Of course this particular lemma may be proved directly, but the method 
of using residues and local duality will work in a variety of circumstances. 
Using the Max Noether theorem and this lemma, we shall reprove the 
result on cubics encountered in Section 4: 

Suppose that C,D,E are cubics in P2 and that each point P E C f l D / j a 
simple point on C. Suppose that for all but one such point Ordc(E)P> 
Ordc(D)P, and at the remaining one, say Q, we have Ordc(E)Q> 
O r d c ( D ) Q - l . Then Ordc(E)Q> Ordc(D)Q. Briefly stated: any cubic E 
passing through eight of the nine points of C n D passes through the 
remaining point also. 

Proof. Let F,G,H be homogeneous cubic polynomials defining C,D,E, 
respectively. Suppose L is a linear form vanishing at Q and at two points 
R\,R2 on C but not on D. Applying the lemma and Max Noether theorem 
to HL, we have 

HL = AF+BG. 
The linear form B vanishes at /?, and R2, and so B = fiL. It follows that L 
divides AF, and since the line L = 0 is not a component of C, it follows that 
A =aL. Then H=aF+RG, and so O r d c ( / / ) e > O r d c ( G ' ) e . Q.E.D. 

These methods may be generalized to prove the Cayley-Bacharach 
theorem from Section 4. 
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4. GLOBAL DUALITY 

Global Ext 

Let M be a compact, complex manifold and £ the invertible sheaf 
associated to a positive line bundle L—»M. Given coherent sheaves $", % on 
M, and using Theorem A discussed in the previous section, we may find a 
global syzygy 

0 ^ S„-> S„ _, ^ • • •-* S,-+S0-+<? ^ 0 
for c3. This gives rise to a complex of sheaves Home(S.(^)»^)> whose 
associated hypercohomology we take as the definition of global Ext, 
written 

Ext{M;^,Q) = H*(A/,Home(£(^)»S)). 
Of course, we must prove that the right-hand side is independent of the 

choice of global syzygy. Moreover, we would like global Ext to have 
functorial properties analogous to those enjoyed by Ext for local rings and 
the sheaf Ext. 

As was the case for the sheaf Ext, these matters will fall into place if we 
have at hand some global analogue of the four properties of projective 
resolutions given in the section on homological algebra. To achieve this, we 
recall the notation (̂Ar) = f®ee*: and note that since Home(,gr(A:),§(A:)) 
= Home(9r, @), we may replace l3r by 65{k) when convenient. Thus, 
suppose we are given a commutative diagram 

&' 

t 1 
of coherent sheaves on M where & and &' are locally free. It may not be 
possible to fill in the dotted arrow as it stands, but we can do the 
following: A section sG//°(Af,£*) gives an inclusion &'(— k)c&', and 
we claim that, for k > k0, the dotted arrow in the diagram 

s;(-*) 
£ i 

may be filled in. 
Proof. Since &'( — k) is locally free, Extg (S'(— A:), ■) = 0, and so the exact 
sequence of Ext's gives 
0 - > H o m e ( S ' ( - * ) . ^ ) - » H o m e ( S ' ( - ^ ) , S ) - » H o m e ( S ' ( - * ) . ^ ) - » 0 . 
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By Theorem B, 

Hl(M,Home(&'(- /(),<&)) = / / ' (M-Honv(S ' ,<$)(£)) = 0 

for k > k0. Consequently, we obtain a surjection 

H°(M, Home(S ' ( - * ) , S)) -» H°(M, H o r n ( 5 ' ( - k), $)) -*0 . Q.E.D. 

From this we may draw the following conclusion: When working globally 
with coherent sheaves on M, the four properties of projective resolutions of 
0 -modules carry over to global syzygies, at least provided we allow ourselves 
to tensor with £ ~k. As a consequence, Ext(M; ?T, <?,) is well-defined and has 
functorial properties analogous to those of local Ext. The most important 
of these are the two long exact sequences. 

In order to calculate global Ext, a main tool are the two spectral 
sequences of hypercohomology. The first of these is a spectral sequence 
{'£,} with 

'EP-" = HP{M, Ext%(ff,g», 
'EpJ^>E\ip+q(M;^,Q). 

Two applications of this spectral sequence will be useful. The first one is: 
For & a locally free sheaf on M, 

In particular, for any coherent sheaf *?F, 
Ext" (M, 0 ,^0 s H"(M,6P}. 

This is clear, since for & locally free, Ext*(S,S) = 0 for q>0 and 
Extg(S ,<? )ss Homf (&, S ) s e *®f<3. 

The second property is: Suppose Ext^C?,Q) = 0for 0 < q < k . Then 

Extk(M;^,$) s / /°(M, Ext*(<;?,(?)). 

/Voo/ The £2 term of the spectral sequence has only zeros below the 
horizontal line passing through (0,k), and this gives the result. Q.E.D. 

We now are in a position to globalize the local duality theorem. Suppose 
that / c© is a sheaf of regular ideals such that the support Z = supp(0 / / ) 
has dimension zero. Equivalently, locally / = { / , , . . . , / „ } , where t h e / form a 
regular sequence and « = dimcAf. We consider Z as a ringed space with 
structure sheaf 6 Z = 0 / / . 

We now refer to the intrinsic form of the local duality theorem in 
Section 3 above. According to the proposition in that section, the sheaves 
Ext* (0 Z , fl") = 0 for q < n. Moreover, since the sheaves 0 Z and 
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Ext"(0z,fl") are skyscraper sheaves, 

H°(M,ez) = 0 eZtP, 

■ H°(M, Ext£(0z,O")) = © Extg . (e z , P , a^) , 

H"(M,ez)=Hq(M, Ext£(0z,fl")) = O f o r ? > 0 

Adding up the local duality theorems in each point P ELZ gives the 

Global Duality Theorem I. Let I c 0 be a sheaf of regular ideals such that 
Z = supp(0 / I ) has dimension zero. Then there is a nondegenerate pairing 

H"{M, 0 Z ) <g> Ext"-*(A/; 0z,fl") -> C 

that is functorial in the sheaf of ideals I. 

Explanation of the General Global Duality Theorem 

We have now found duality theorems for the coherent sheaf cohomology 
Hq{M,^) in the two cases where §"ss(9(.F) is locally free and l3r = 0 z with 
dimZ = 0 and 0 z = 0 / / with / a sheaf of regular ideals. These represent 
the two extremes of a general duality theorem for Hq{My®i), which will 
now be explained. 

The steps are the following: 

1. Given modules L, M, N over the local ring 0 = 0„, the pairing 
Home (L, M ) <S> e Home ( M, N) -> Home (L, N) 

induces a pairing, called the Yoneda pairing 

ExtP(L,M)®eExtl(M,N)-*Ext»e
+'>(L,N) 

having associativity and graded commutativity properties analogous to the 
usual cup product. This is a formal exercise using the four-part proposi-
tion. 

2. Applying the propogation principle, if ®j, %, % are coherent sheaves 
on M, then there is 

Extg(gr,g)8>0Ext?
B(g,0C)-^Extg+ ?(gr,3C) 

inducing the previous pairing in each stalk. 
3. This procedure globalizes to give a pairing 

Exf (M; <f, g) ® Ext*(M; g, %) -» Ext' + *(A/; <?,%). 

Taking 
q = n-p, 

«F = 0, @ = f, DC = 0 " , 
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this pairing is 

(*) iF(M,f)®Ext"-~p(M;^,f l ' , )■^/7^(M,S2' , ) , 

since Ext* (M; 0 , $)= H* (M, f ). 

All this can be defined for any complex manifold M. For M an algebraic 
variety the proofs have essentially been given. In case M is compact and 
connected, H"(M,Q,n)^C and (*) becomes 

Hp(M,&)®Ex.r-"(M;V,Qr)-+C. 

Global Duality Theorem II. The above pairing is nondegenerate and is 
functorial in the following sense:A sheaf mapping p:$-^>§ induces 
p. :H*(M,5)->H*(M,9) and p* : Ext*(M; §,Kn)-*Ext*(M; f ,0n) such 
that the diagram 

Hp(M, 5 )®Exf _ ' (A/; Sr,Q")-*C 

P . 1 V II 
H"{M, §) ® Ext" ̂ ( M ; S, Q") -» C 

is commutative. 

As mentioned before, we have proved this in the two extreme cases 
f s 6 ( £ ) and l3 = Gz> which is all that we shall have geometric applica-
tions for. The general result can also be proved without too much addi-
tional effort—and most of this in the nature of formalism—from our local 
duality theorem. 

Finally, there is an even more general duality theorem dealing with a 
map—cf. the reference to Hartshorne's notes at the end of this chapter. 

Global Ext and Vector Fields with Isolated Zeros 

We shall prove a recent theorem, due to Carrell and Liebermann,* which 
will illustrate several of the techniques developed above, and which also 
will tie in with several previous results in the book. 

Let M be a compact Kahler manifold and v a holomorphic vector field 
having a set Z of isolated zeros. 

Theorem. If Z is nonempty, then 

HP"{M)=0 forp^q. 

*J. Carrell and D. Liebermann, Holomorphic vector fields and Kahler manifolds, Inventiones 
Math., Vol. 21 (1973), pp. 303-309. 
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Actually, Carrell and Lieberman proved the more general statement 

Hp"(M) = 0 for\p~q\> d im c Z, 

where Z is the zero set of any holomorphic vector field on M. Granted the 
general duality theorem, the proof of this stronger assertion runs about the 
same as the one we shall now give, which proceeds in two steps. 

Step One in the Proof. We denote by t(t>) the operation of contraction of 
a differential form with the vector field v. This operator was already 
encountered in the proof of the Bott residue theorem. If locally 

" = 2 ^ "a7 and 

9 = -^^WijdzI/\diJ P-T- u 

is a (p,q) form, then 

'(U)<P = (p-\)\q\ 2 ( ,1 , ± v.<Pudz,-{l)f\dzj}. 

From this the formal rules 

\(v): Ap-q(M)-^Ap-ui{M), 

t(t>)9 + 8t (u)=0, 

i(v)(cpAi) = «(«)<PA* + ( - 0d e g>MvH, 
are easily verified. 

In particular, contraction with v gives the complex of sheaves 

fin—>fi"-'^—>A' —>e. 
■(f ) 

We note that the image of fi1 —> 0 is the ideal sheaf / of Z; in fact, near 
a zero of t> the above sequence is the Koszul complex associated to regular 
ideal (t>,(z),...,u„(z)}. Consequently we have a very natural global syzygy 
for 0 Z = 0 / / , one which will be used to calculate global Ext. 

For this we observe the commutative diagram 

Homp(fip,fl") — > 0 " - ' 

■<t>)'4 !•(") 

H o m P ( a p + l , f l " ) — » 0 " - ^ - ' 
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similar to the one encountered in the lemma in the discussion concern-
ing the intrinsic form of local duality in Section 3 above. Recall that 
Ext*(Af; 0z,fi") is the hypercohomology of the complex of sheaves 

Home(e,f l") -> Hom e (n ' ,Sr ) -»■• - . 

Using the identifications provided by the commutative diagram, we write 
this complex of sheaves as fi"~ . Thus 

Ext*(M;6z,2") = H*(A/,a"") 

We note that the differential used to calculate the hypercohomology on the 
right is 8±i(v), where 8 is the Cech coboundary mapping. 

Now, according to the general discussion of hypercohomology there are 
two spectral sequences {" Er) and {''Er} abutting to H*(A/,fl"-). One of 
them has 

"Ep-q = H"(M, Extg(6z,fl")) 
= 0, unless/; = 0 and q — n. 

The other spectral sequence has 

The differentials d\, d'2, ■ ■ ■ are induced from i(v). If we can show that 
d[ = d'2 = • • • =0, then 

'Ep'q = 'Ep'q s • ■ - s= 'Ep'q 

= 0, unless p + q = n 

by the previous spectral sequence. This proves the theorem. 

Step Two. Let L £ / / I J ( A f ) be the cohomology class of a Kahler metric 
w. The proof that d[ — d'2 = • • • = 0 will use the hard Lefschetz theorem 

Lk: H"-k{M)—>Hn + k{M) 

and primitive decomposition 

H'(M)= © UP'-2j(M), where 
J<V/2] I, 

P"^*(M) = ker{LA : + l : H"'k(M)-*Hn+k+2{M)} 

both of which were proved in Section 6 of Chapter 0. We recall also that 
the primitive decomposition is compatible with the Hodge (p.q) decom-
position. 

Now, as noted above, the diagram 

'EP'" —> '£f+l-* 
tt 11/ 

H"-pq{M) —> Hn~p~hq(M) 
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is commutative, at least up to ± 1. Thus, we must prove that i(v) induces 
zero as a map on cohomology. For a holomorphic 1-form ( p £ / / l 0 ( M ) , 
i(v)(p is a holomorphic function on M that vanishes on Z¥=<p. Thus 
i(v)<p = 0. Using this, we shall prove 

Lichnerowicz' Lemma. e(v)«=0 in H0l(M). 

Proof. By hard Lefschetz and Kodaira-Serre duality, the pairing 

given by 

(p<8>\(/-> f u"~l /\q)/\xp 
J
 M 

is nondegenerate. According to the formal rules for i(v) listed above, for all 
<pGH,0(M) 

0 = i(v)(w " A <p) (since u>" A <p = 0 for trivial reasons) 

= «o)""'At(v)o) A 9 (since as observed above i(o)<p = 0) 

J M 

=> J(U)« = 0 in H°\M) 

by the nondegeneracy of the pairing. Q.E.D. for lemma. 

In particular, d[L = 0, so that L defines a class in 'Ej~x'y. Since 
d'r: 'Er

n-l-,^'Er"-l+r'2-r = 0 

for r>2, it follows that L defines a class in 'E"~U1 for all r. Moreover, 
multiplication by L* commutes with the differentials in the spectral 
sequence, as follows by the formal rules for calculating with t(v). There-
fore, to prove that d{ = 0, by using the primitive decomposition and hard 
Lefschetz it will suffice to prove that this is the case on primitive cohomol-
ogy. Let 

Then, essentially repeating the argument from the degeneration of the 
Leray spectral sequence in Section 6 of Chapter 3, 

in cohomology. But i(v)^eHn'k"l(M), and so L*+,((u)^=0=»t(t?)^ = 0 
by hard Lefschetz. Thus d{ — 0. 

The argument for d^ = d^ = • ■ • = 0 is the same. Q.E.D. 

We note that this proof has not used the full strength of duality. For 
example, the equality 

dimExt*(A/;ez ,f i") = deg(Z) = dim//°(A/ ,0z) 
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gives 
2 *'•'(*/) = deg(Z). 
p 

Since hpq(M)=0 for p f q the left-hand side is just the topological Euler 
characteristic, what we have is just a special case of the Hopf index theo-
rem. More substantial applications, including a proof of Bott's residue 
formula, arise by keeping track of the filtrations induced by the spectral 
sequences. These are given in the paper of Carrell and Liebermann. 

Global Duality and Superabundance of Points on a Surface 

Let L^S be a holomorphic line bundle over an algebraic surface. In the 
Riemann-Roch theorem for surfaces 

X(es(L)) = ^L-L-K-L)+x(es) 

the terms 

h°(L), h\L) = h\K-L), Pg, q, LL, KL 

all have immediate geometric interpretations, at least in case L = [D] for 
some effective divisor D on S. The Italian algebraic geometers first wrote 
this formula as 

dim|L| + h°(K-L) = \{LL- KL)+ pg -q + u, 

and then proved directly that the quantity co defined by this equation was 
nonnegative, which they then called the superabundance. The reader should 
keep in mind that the dual of H\8S(L)) is H\es(K-L)), and sheaf 
cohomology was 50 years in the future. Working backward historically, we 
shall use our global duality theorem for coherent sheaves to geometrically 
interpret the superabundance in some cases. We begin with an example; 
the final result is the Reciprocity Formula II on page 716. 

Suppose that r o is a set of distinct points in P2 and |C0| = | 5 r (n)\ is the 
linear system of curves of degree n passing through T0. Let S be the 
quadratic transform of P2 along T0 and |C | the linear system on S of 
proper transforms of curves C e | 3 r ( « ) | . Denote by TT:S-+P2 the projec-
tion map and £" = 7r~'(ro) the exceptional curve. Then \C\ is the complete 
linear system \L\ where 

L = TT*H"-E 

for / / ->P 2 the hyperplane bundle. The canonical bundle of S is 

Ks = **(*,*) + E 
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and the numerical characters for L^>S in the Riemann-Roch formula are 
h2(L) = h°(Ks - L) = 0, Pg = q = 0, 

C-C = C0C0 — d = n2 — d, where d = degro, 

CKS = C-{TT*H~* + E)= -3n + d. 

Consequently, by the Riemann-Roch formula, 
r = dim|L| = \{OC-C-Ks} + a 

On the other hand from the exact cohomology sequence of 
o^4ro(«)-+ep2(«)^ero(«)-»o 

and /i'(0p2(«)) = O, we obtain 
r = dim|4ro(n)| 

n(n + 3) , , | / i n , . , 

so that the superabundance 

u = h\6s(L)) = h\$To(n)). 

It is now clear that w = 0 // a/irf only if the points in T0 impose independent 
conditions on the linear system |SP2(«)|. As was seen in the Cayley-
Bacharach theorem in Section 2 of this chapter, it may well happen that 
h\$To(n))>0—indeed, this is frequently the interesting case. 

Returning now to a general surface S with line bundle L—>S, we will 
show: Suppose that dim|L| > 0 and that the complete linear system |L| has no 
base curves. Assume moreover that the irregularity q = 0. Then the superabun-
dance u=h\L) is given by 

w = dim\9r(Ks + L)\ - 2pg + dim\Ks -L\+2, 

where T = C • C for general curves C, C E |L|. 

Proof. Let s,s'&H°(Gs(L)) define C,C, respectively, and consider the 
Koszul complex 

0—>e(Ks-L) —>e(Ks) © 6(Ks) —-» 3T(KS + L) —>0. 
By our assumption 

/ I
, ( 0 ( ^ ) ) = ^ 1 ( 5 ) = / 'O'1(^) = O, 

so we find 

h \e (L)) = A '(6 (Jfs - L)) (by duality) 

^Ui^+^-z^Wl + ̂ ^ - m 
which gives our assertion. Q.E.D. 
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In case pg = 0, dim|As — L\ = — 1, and the formula simplifies to 
co = dim\$T(Ks + L)\ + \. 

As an application, suppose that T0 is a set of d< n(n + 3)/2 points in P2. 
Then the linear system |5ro(«)| of curves of degree n passing through ro 
contains at least a pencil, and either 

1. this linear system has a fixed curve of degree less than «; or 
2. general curves C,C £|fJr (/i)| will have intersection 

c- c = r0 + r, 
where T is a set of n2 — d points that we call a residue of ro with respect to 
curves of degree n. We shall prove the 

Reciprocity Formula, I 

dim|5ro(«)| = { ^ L t i l - r f } +A°(5r(„-3)). 

Thus, the superabundance ofT0 relative to the linear system |0P2(n)| is given 
by 

« = A°(9r(#i-3)). 

Proof. Let S be the blow-up of P2 along ro considered above and 
L = TT*H"-E. Then Ks +L = TT*H"~3 and by the result of p. 713 

dim|5ro(«)| = dim|L| 

where w = h°0r(Ks + L)) = dim|4r(" -3) | + 1. Q.E.D. 
As a first illustration we shall show how the reciprocity formula may be 

used to derive the properties of linear systems of cubics that arose in 
Section 1 of Chapter 4 in our study of the cubic surface. We begin with: 

A set r o of seven points imposes independent conditions on |0P2(3)|, 
unless five of the seven are collinear. 

Proof. If there are two cubics C,C 'e |5 r (3)| without a common compo-
nent, then for the residual set T we have h°0r) = O, and by (the most trivial 
case of) the reciprocity formula the points T0 impose independent condi-
tions on |0p2(3)|. 

So we may assume that dim|3r (3)| > 3 and that any two cubics in this 
linear system have a common component C0, which must be a line or a 
conic. Since the linear system of lines has dimension 2, C0 cannot be a 
conic and so must be a line. If C0 contains < 4 points from T0, then there 
will be a set T'0 of > 3 points left over. These will impose independent 
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conditions on the linear system |6P2(2)| of plane conies, and consequently 
dim|5ro(3)| = dim|3r,(2)| < 5 - 3 = 2, 

which is a contradiction. Q.E.D. 

A set r o of eight points imposes independent conditions on |0P2(3)|, unless 
five are on a line or all eight are on a conic. 

Proof If we assume that T0 fails to impose independent conditions, then 
dim|5ro(3)|>2 and, as before, we conclude that any two cubics from this 
linear system have a common component C0. If C0 is a conic, then since 
dim|5ro(3)| > 2, all the points of T0 must lie on C0. If C0 is a line, then the 
previous argument shows that at most three points of r o can fail to lie on 
C0. Q.E.D. 

The result we needed in the section on cubic surfaces now follows easily: 

Let A be six points in P2, no three of which are on a line and which are 
not on a conic. Then r o = A + p + q imposes independent conditions on 
|0p2(3)| for any p , q £ P 2 . 

Proof If not, then either five points from r o must be collinear or all eight 
must be on a conic—this contradicts the assumption on A. Q.E.D. 

Here is one more illustration of the reciprocity formula. 

Let r o be a set of 12 points in P2 that fails to impose independent 
conditions on |0P2(4)|. Then either 

T0 = C4- C3 is a complete intersection, or 

• 10 points from T0 are on a conic, or 

six points from T0 are collinear. 

Proof We assume that dim|9ro(4)| > 3. Recalling that dim|0P2(4)| = 14, if 
there are two curves C,C from this linear system having no common 
component, then 

C- C = T0 + T. 
By the reciprocity formula, T consists of four collinear points, and this 
implies that r o = C4C3. 

Now assume that any two curves from |ffr(4)| = |C | have a common 
component C0. It is not possible that C0 is a cubic, since otherwise the 
residual system | C — C0\ would consist of lines and have dimension > 3. 
Suppose next that C0 is a conic containing < 9 points from T0. Then the 
linear system of conies | C — C0\ will pass through > 3 points and have 
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dimension at least 3, which is a contradiction. So 10 or more points from 
r o lie on a conic. 

If, finally, C0 is a line containing <5 points from ro, then \C— C0\ will 
be a linear system of oo3+p(p>0) cubics passing through > 7 points. By 
our previous result, either five will be on a line—in which case 10 points 
from r o are on a (degenerate) conic—or eight will be on a conic. But then 
this conic must be a fixed component of the oo3+p cubics C— C0, which is 
a contradiction. Q.E.D. 

Now the Reciprocity Formula I was proved for P2 under the assumption 
that C-C' = r o + r where the 0-cycle r o + r consists of distinct points of 
transverse intersection. It is easy to extend the formula to a general 
surface, but relaxing the restriction on r o + r is more difficult by the 
previous method, which was to convert the ideal sheaf of T0 into a locally 
free one by a blowing up. In practice it is desirable to have a more general 
reciprocity formula, and as an application of global duality we shall give 
this extension. 

Suppose that S is a regular algebraic surface—thus hU0(S) = h2'\S) = 0 
—and L->S is a holomorphic line bundle with two sections s,s' such that 
the simultaneous equations s = 0,.s' = 0 define a zero-dimensional sub-
scheme Z of S. There is an ideal sheaf 5 C0 with 0Z = 0 /<f; in fact, § is 
the image under the mapping 

0 ( L * ) © 0 ( L * ) - ^ 0 
given by (f,f')-*fs+f's'. Suppose that we decompose Z into two disjoint 
sets r o and T; we may think of r o as part of the base of the pencil 
|s + As' |c |L| , and shall refer to T as the residue of ro. 

Reciprocity Formula (II). With the above notations, 

hl($ro(L)) = hVr(K+L))-2pg + h°(&(K-L)). 

In particular, if both q = pg = 0, then 

h\3ro(L)) = hVr(K+L)). 

Proof. We consider the two exact sheaf sequences 

O ^ ( L ) - ^ r o ( L ) ^ 0 r ( L ) - + O , 

O ^ 0 ( L * ) ^ 0 0 0 ^(L)^0, 

where 0 r = 0 / 5 r in the first, and the second is the Koszul resolution. By 
the duality theorem, H\ir(L)) and Ext'(S; 3 r (L),fl2) are cononically 
dual vector spaces. We shall calculate the latter by applying the exact 
sequence of global Ext and interpreting the maps. 

First we observe from Extg(0r(L),fl2)=Ex4(0r(L),fi2) = O and the 
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spectral sequence 

^"=>Ext*(5;0r(L),fl2) 

II 
//'(s,Extj(er(L),a2)) 

for global Ext that Extl(S; 0r(L),S22) = O. Thus we have 

(*) 0 ^ Ext'(S; $ro(L),Q2) -> Ext'(S; S(L),82) A Ext2(S; 0r(L),fi2). 

For the middle term we use the second exact sheaf sequence, noting that 
Ext'(5; 0 ®6 ,&) = H\S;Q,2®a2)=0 since 5 is regular, and also that 

Ext°(S;e(L*),Q,2) = n°(6(K+L)), 

• Exto(S;0©0,G2) = / / o (0(#))©tfo(0( /O), 
Ext°(Sj(L),tt2) = H0(Hom($(L),Sl2)) = H0(B(K-L)) 

to obtain 
0^H°(6(K-L))^H0(e(K))®H°(6(K)) 

-> H°(6(K+ L)) -> Ext'(5; S(L),fl2) -^0. 

This gives the interpretation 

(•.) ExV(S;HL)^)^lH0^K+L^^ + S ' ^ W h e r e ) . v ' v \ w , (o 'e / f o (0(A-) ) . J 

Now since Extg(0r (L), Q2) = Ext^(0r(L), ft2)=0 and Ext|(0r(L), Q2) is a 
skyscraper sheaf concentrated at points p G T and with stalks canonically 
isomorphic to (0r(L)p)*, 

Ext2(S;0r(L),fl2) * 0 (0r(L)„)*. per 
Combining this with (*) and (**) yields 

O^Ext ' (S;4 r(L) ,f i 2 )^{/ / o (0(#+L))/{s<o + /<o'}}A 0 (0r(L),)*. 0 per 

To interpret the mapping p, we suppose that ipE//°(0(^+L)) and TJ£ 
0 r ( L y Then 

has intrinsic meaning since TJI/>E0(A"+2L)P and s-s'E.<Q(2L) . Because 
duality is functorial, we deduce that 

p(*)(l) - R e ^ ) . 
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From the local duality theorem it follows that 

k e r p s H°(iT(K+ L))/ {sw + s'a'). 

We conclude from (*) and (**) that 

h\9To(L)) = dimExt'(>;<Jro(L),fl2) 
= dim(kerp) 
= h°(3r{K+L))-2Pg + h0(6(K-L)), 

which establishes the reciprocity formula. Q.E.D. 

We now illustrate how the singularities enter in a special case. Suppose 
that C and C" are two irreducible plane quartic curves having three 
ordinary double points/?, (/'= 1,2,3) in common. We assume that at each 
of these points the four tangent lines to the two curves are distinct. These 
curves then define an ideal § C 0p , which is contained in but not equal to 
the square mf of the maximal ideal, and which we now shall describe: 
Choose local coordinates (x,y) relative to which C and C" have respective 
equations 

xy = 0, 
(x-y)(x-yy) = 0. 

This is possible by identifying the directions through/?, with P1 and noting 
that any four points of P1 may be projectively transformed to {0, l,y, oo}. 
So in fact y is the cross-ratio associated to these four tangent lines in some 
order. Functions f(x,y) in the ideal have the form 

f(x,y) = axy + fi(x-y)(x-yy). 

In general /? will be a unit; then we may assume /?= 1 and 

f(x,y) = (x — fiy)(x —Xy) + (higher-order terms) 
where 

fiX = y, \ + n = 1 + y — a. 

Having fixed the tangent directions to C to correspond to the points 
0, oo GP1, the tangent directions to the curve Cf defined b y / w i l l be p,\ 
and the condition {i\ = y has intrinsic meaning and defines the ideal 
§p C 6p . Geometrically, the curve Cf must have an ordinary double point at p; 
and the cross-ratio of its tangents together with those of C is prescribed. 

We now write 

c c = r0 + r, 
where Tn and T are zero-dimensional schemes with $r = 5„ n $„ n 9„ and 

" L o P t Pi Py 

T is the residue of T0 relative to the pencil |C+AC'| . We note that 
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d e g r 0 = 12 and consequently degT = 4. The Reciprocity Formula II gives 

A'($r0(4)) = A°(Sr(l)) < 1, 
where 3ro(4) = 5Fo®0P2(4), and where equality holds on the right if and 
only if the points of t are distinct and collinear. Since /i°(0P2(4)) = 15 and 
^'(0P2(4)) = O, it follows that: The linear system of plane quartics through T0 

has dimension given by 

dim|3ro(4)| = 2 or 3 

where the second possibility holds exactly when the points of T are distinct 
and collinear. 

To see when this happens we consider the triangle A with vertices 
p{,p2,py This is a plane cubic with double points at the/»„ and we shall say 
that our configuration is in special position in case the defining equation of 
A is in the ideal % at each vertex. We now prove that: The configuration is 
in special position if, and only if, the points of T are distinct and collinear. 

Proof. If the points of T are distinct and collinear, then some member E 
of the pencil |C+AC' | will have this line L0 as tangent, from which it 
follows that 

E = A + L0, 
and so AE|5 r (3 ) | and the configuration is in special position. If, con-
versely, Ae|!fro(3)|, then the curves A+ L, L a line in P2, give a P 2 in the 
projective space \$r (4)|. Since not all curves in this linear system are 
reducible, we deduce that dim|5r (4)| = 3, which gives our conclusion. 

Q.E.D. 

It is interesting to investigate the rational map 

defined by the linear system \iT (4)| when the configuration is in special 
position. The image is a surface S of degree four with the property that 
there are oo2 reducible hyperplane sections. 

To see what the image 5 of / i s , we observe first that / i s well-defined on 
the blow-up P2 of P2 at the points pup2,p3 of T0. (See Figures 2 and 3.) If 
Ej is the exceptional divisor in P 2 over/?,, then the proper transform D of a 
generic element D G |5 r (4)| is given by 

D ~ ir*D - 2E, - 2E2 - 2E3. 

The degree of the image 5 = / ( P 2 ) in P 3 is thus 

DD = D- D - 4 £ r £ , - 4E2- E2- 4£3- E3 

= 1 6 - 4 - 4 - 4 
= 4. 



Figure 2 

Figure 3 
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Now consider the map / : P2-»P3. Since the linear system | 5 r (4)[ 
contains, as a subsystem, the triangle A plus the linear system of lines, / 
will be one-to-one and smooth away from the inverse image in P2 of the 
triangle. The proper transforms Li} of the lines L« =/y>,, on the other hand, 
are blown down to points: any curve D e | 9 r (4)| containing a point qE-Ly 
other than pi and pj has two double points and one single point of 
intersection with LtJ, and so contains Ltj. Also, while the proper transform 
of the linear system |ffr(4)| in P2 has intersection number 2 with each £,-, it 
does not cut out a complete linear system in £,: fixing one tangent line to a 
curve D &\ir (4)| at/7, determines the other, and s o / maps Et two-to-one 
onto a line in P3. These lines are double lines of the image S. Finally, since 
the triangle A is in the ideal 5 r , the points of intersection of the proper 
transforms Ltj and Lik with £), while distinct on P2, are identified under 
the map / . In other words, after blowing down the lines L(j on P2 the 
divisors Et form a triangular configuration. (See Figure 4.) The map / then 
folds each side of this triangle over so that the vertices are identified; the 
resulting configuration is shown in Figure 5. The surface S c P 3 is thus a 
quartic with three double lines meeting in a point. 

In fact, we have already encountered this surface, in Section 5 of 
Chapter 4; we saw there that S is the image under projection to P3 of the 
Veronese surface in P5. Indeed, we can see this directly in the present 
context: Since the transformation <p of P2 which blows up Pi,p2,P3 and 
blows down the lines Ly is given by the linear system \$pi®$Pi®§P2(2)\ of 
conies through the points/?,, the composition /|0(2)| ° 9>: P2-»P5 of <p with 
the map is given by the linear system 1 ^ ® ^ ® 52

3(4)| of quartics with 
double points at the points/?,; the m a p / , given by the sublinear system 
|3r0(4)l c | 9 2 ®32 <8>52 (4)|, is just the composition of im2)\c<P w i t n a projec-
tion to P3. 

Figure 4 
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Figure 5 

Extensions of Modules 

Ext1 and Extensions—Local Case. We consider again the local ring 0 = 
C{z , , . . . ,zn) and finitely generated modules over 0 . An extension of M by 
N is given by a short exact sequence 

( £ ) 0 ^ JV-->•£-> M-> 0. 

The trivial or split extension is M ®N, and two extensions are equivalent in 
case there is a commutative diagram 

0-±N^E-*M^0 

II 1 II 

The name "Ext" is derived from the following 

Lemma. There is a bijective correspondence between equivalence classes of 
extensions and Extp(M,N), with zero corresponding to the trivial extension. 

Proof. Given an extension (E) as above, we have 

H o m e ( M , £ ) -» Hom(M,M ) XExtJ,(M,N ) . 

The obstruction to splitting the sequence (E) is 3(lM)eExtJ)(M,Af), where 
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1M is the identity map from M to itself. This gives the map from extensions 
toExtJ(Af,W). 

Before giving the inverse map, we need one remark. Given the data 

R^N, 

we may construct an extension 
(F) o^N-+F^M-*0 

as follows: Define ii=j<$i:R-^N®S and F=N@S/(i(R). Then «©.?-> 
7r(s) and n—>n(B(Q) gives the exact sequence (F). 

To construct Ext^A/,/^), we start with part of a projective resolution 
E2 -» £•, -> £•„ -» M — 0 

and take kernel/image in 
Home(£o,7V) -> Horned,,TV) -» H o m e ^ T V ) . 

Thus a cycle gives a map El/E2—>N, and so a class in Extg(M,/V) gives 
the data 

0^El/E2->E0-^M^0, 
EJE2-*N 

Applying the discussion of the previous paragraph gives an extension. 
We leave it as an exercise to check that the two mappings 

equivalent classes | ^ E x t ' ( M , 0 ) 
of extensions I ^-^ 

are well-defined and inverse to one another. Q.E.D. 

Now suppose that 0 = C{z,,z2} is the local ring in two variables and 
/ = {/i,/2} is a regular ideal. From the exact sequence 

and computation of Ext's in the section on Koszul complexes we have 

ExtJ,(/,0) s E x t | ( 0 / / , 0 ) at 6/1. 

The second isomorphism depends on the choice of generators for / , but the 
assertion: 

e E E x 4 ( I , 0 ) 3 s 0 / I is a unit—i.e., e(0)^0, 

has intrinsic meaning, since if also / = {fifi}, then 

fi = 2 atjfj a n d e = Ae', 
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where A = det(aij) is a unit. For our construction of rank-two vector 
bundles on a surface, we will use the 

Lemma. Suppose that e£Extf(I ,0) gives an extension 

Then E is projective <=> e is a unit. 

Proof. The exact sequence of Ext gives 

Home(e ,e)X Extj,(/, e.) -> Ext£(£, 0) -* o. 
By definition, 3(1) = e, where 1 means the constant function "one" under 
the identification H o m f ( 0 , 0 ) s 0. Identifying Ex4( / ,0) with 0 / 7 and 
using that 9 is 0-linear, if e is a unit, 

3(<?-') = l e e / / . 

It follows that 3 is surjective, and so Extp(£, 0) = O. It is trivially the case 
that Ex4(£ ,0 ) = Ofor<7>2. 

We use this to prove that Ext'(M, N) = 0 for any 0 -module N and q > 1. 
The argument is by induction on the length of a projective resolution of N. 
Thus we may assume given 

0->R-±F^N^0, 
where F is free and Exfe(M,R) = 0 for q>\. The exact sequence of 
Ext^A/, •) then gives the result. 

From our original discussion of Ext, it follows from the vanishing of 
Ex4(£,7V) for all N implies that £ is projective (= free); this happens if e is 
a unit. If e is not a unit, then Extp(£, 0 ) ^ 0 and £ is not projective. Q.E.D. 

Ext1 and Extensions—Global Case. Let M be an algebraic variety and 
S\ § coherent sheaves on M. We may speak of global extensions 

(S) 0 ^ ^ - > S ^ § - ^ 0 , 
by which we mean an exact sequence of sheaves of 0 -modules—then £ is 
necessarily coherent—and with the equivalence relation and notion of 
trivial extension as in the local case. One's first guess might be that such 
(S)'s are in bijective correspondence with H°(M,ExtpC?,<§)). This is not 
quite correct for the following reason: 

Given a global section of H°(M,Ex4(3,fT)), choose a sufficiently fine 
covering U = {Ua} and corresponding local extensions 

(K) 0 ^ f T | u a - * S a ^ S | U a - > 0 . 
In U„ n U^ there will be a commutative diagram 

0- > g r |u„nu / , - > S a |u a nU / J ^S |u o nu / , ->0 

II 1 * * II 
o->5: |uanu/ ( -»S/ ? |uanu/ } -*g|u( 1nu/ l -»o> 
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but it need not be the case that in Ua n U^ n Ur the triangle 

V-<P«tl \ fyH 

tlh 

is commutative—i.e., the "transition functions" for gluing the local exten-
sions (Sa) may not satisfy the cocycle rule, and thus may not patch 
together to give a global extension. What is true is the 
Lemma. The equivalence classes of global extensions (S ) are in bijective 
correspondence with Ext'(M; g , ft). 

Proof. Given {&), the exact sequence of global Ext's gives 

Ext°(M; g, & ) -» Ext°(A/; §, §) X Ext'(M; g, ft) -»• • • 
II II 

H°(M, Home(g,&))-* H°(M, Home(g,g)) 

and the obstruction to splitting the sequence (£) is just 3(lg) as in the local 
case. 

The converse is more interesting. Let S0(g): • • • —»S2 -> S, -» S0—>g —* 
0 be the global syzygy for g, and U = {Ua} a sufficiently fine covering of 
M so that a class eeExt'(M; § ,ft) is given by a cocycle in the hyper-
cohomology group 

H'(y,Homc(S,(g),g)) . 
In the diagram 

C°( J J , Hom f (S , , f ) )0C ' ( J J , Home(60,ft)) 

V X. 7 M 
C°( JJ_, Home(S2, f)) © C'(_U, Hom F (S | ,^ ) )ec 2 ( U, Horn e(&0,ft)), 

The cocycle e is given by <p©7j, where 

9={<Pa} with(pae//0(Ua, Home(S|,g)), 

iJ = {l,/»} w i t h ^ e / / ° ( U n n Ug, Home(S0,g)). 
Writing out the conditions that e be a cocycle gives the relations: 

(1) 3*y = 0=>y<, €E //°(U„, Hom^S. /S, ,^)) 
=»(pa defines an extension 

( S J 0 ^ f | U „ ^ S a ^ g | U a ^ 0 
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by the same argument as in the proof of the first lemma in the preceding 
section, 

(2) 5<p = 3*rj => <pa - <pp = d*rin0 

=> the local extensions (&a) given above 
patch together in double intersections 
U a n V0; and 

(3) STJ = 0 => the cocycle rule for the patchings of the 
local extensions in double intersections. 

Admittedly, step 3 needs some amplification, but the details to be checked 
are straightforward enough. Q.E.D. 

Points on a Surface and Rank-Two Vector Bundles 

As an application of the global duality theorem (I), we shall discuss the 
following question:* Given an algebraic surface S and sheaf of regular ideals 
I c 6 with supp(0 / I ) a set of points Z, we define S z = 6 / I and ask whether 
there exists a rank-two holomorphic vector bundle E—>S with given first 
Chern class c,(E) and section sGH°(S, 0(E)) whose divisor (s) is Z ideal-
theoreticallyl 

To answer this question, suppose first that £—>S is the rank-two bundle 
and SELH°(S,Q(E)) the holomorphic section with divisor (s) = Z that we 
are trying to construct. We may consider s as a sheaf mapping &*—>&, 
£> * = 0 (£*), and what we are asking for is a short exact sequence 

where £ is locally free of rank one. 

Proof. Locally, £ =s & ©0 and s = (ft,f2). The map & * —> / is given by 

(£| .S2)-»/ l£ l+/2S2> 

and by comparison with the Koszul complex—of which this is the first 
step—£ is locally isomorphic to 6 in such a way that i(h) = (—f2h,flh). 

Q.E.D. 

The relation between the line bundle £ and vector bundle $ is 
c,(£)= -c , (S) . 

•This was first considered by R. L. E. Schwarzenberger, Vector bundles on algebraic surfaces, 
Proc. London Math. Soc, Vol. 11 (1961), pp. 601-622, and Vector bundles on the projective 
plane, toe. cit., Vol. 11 (1961), pp. 623-640. 
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Proof. On 5* = S - Z we have 

0-+£\S*-+G*\S*-*es. -»0 
=>c,(£) = c,(£*) in/ / 2 (S*,Z) 

=>c,(e) = c,(S*) in / / 2 (S,Z) , 
since in the exact cohomology sequence 

H2(S,S*; Z) -» H2(S,I) -» H2(S*,I) 

we have by excision 

/ / 2 ( S , S * , Z ) * 2 H2(Bp,B*;Z) 
pez 

= 0, 
where Z? is a ball around/?. Q.E.D. 

Actually this makes sense, since, very roughly speaking, giving £ is the 
same as giving its Chern classes c,(E) and c2(E), and c2(E) is just Z. The 
assertion c , ( £ ) = - c , ( S ) may be refined to 

£ = A 2 S * in Pic(S) = H\S,6*), 
which follows from the Levi Extension Theorem given in Section 2 of 
Chapter 3. 

Referring to (*), we may rephrase the problem as follows: Given (Z, 0Z) 
and £ G Pic(S), we seek 

/ x I eGExt'(S; I, £), .rac/; that ep « # MA?// in 

| Ext '(I, £ )p s e z p /or each point p GZ. 

Explanation. For any open set U (ZS, there is a restriction mapping 
Ext*(5; '3 r ,g)-^Ext*(t ; ;g r ,g) 

of global Ext's. For U sufficiently small so that Hq(U,Ex\{(6F,§)) = () for 
<7>0, 

Ext*( l / ;g \S) = H°(U, Ex t ? ( f , § ) ) 
by the spectral sequence relating local and global Ext's. Thus eG 
Ext'(5;7, £) induces ep in each stalk Extp(7, £) for any point /»GS. 

By the discussion in the preceding section, a class eGExt ' (5;7,£) 
defines a global extension 

0-^£ _»6*_»/_*o 
over 5, and by the lemma on p. 724 the coherent sheaf &* will be locally 
free if each ep is a unit for pGZ. Thus, solving (**) and finding (*) are 
entirely equivalent. 

The first approximation to understanding (**) is to look into the spectral 
sequence relating local and global Ext's. 
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Using that E?-" = Hp(S,Ext'>iI,£)), the picture of E2 is 

£2
0'' 

II 
/ /°(Ext t l(/ ,£)) 

< 
' ^ s 

£ 2 0 = //°(Ext°(/,£) 

where the isomorphism results from 

f 1 
0_»/-»e-»e z -*0, and 

Ext? (Pz,£) = 0 
' sExt°(e,e)sExt°(/,£) 

using the exact sequence of Ext. 
In particular, if £2

2'° = 0, then Ext'(S;I, E ) « H°(S,Ext\jI, £)), and (**) 
may be solved. Thus: / / H2(S, £) = 0, then we may find a rank-two holomor-
phic vector bundle E—>S and section sEH°(S, S ) such that c,(£) = 
— c,(£>) and s defines Z ideal-theoretically. In particular, we may take £ = 0 
/« case pg(S) = 0. Taking £ to be sufficiently ample, we may always arrange 
that H2(S, £) = 0, so that our original problem will have at least one solution. 

Example 

Take 5'=P2, so that the pg=0 condition is satisfied. Then there exists a 
rank-two holomorphic vector bundle £—>P2 and section jG/f°(P 2 , €(E)) 
that defines any given Z. If Z is nonempty, then we claim that s is unique 
up to a constant, and the vector bundle E is not a global extension 

0-^L-*E->L'-*0 
of line bundles on P2. Thus, in this manner we have found a whole 
collection of "new" vector bundles over P2. 

Proof. Us'<EH°(P2,6(E)) also defines Z, then iA-s 'e / /° (P 2 ,0(A 2 £)) = 
/ / ° (P 2 ,0) = C, since A2E is a trivial line bundle because cl(E) = 0. Thus 
either s/\s' = 0, in which case s' is a constant multiple of s, or else s/\s' is 
nowhere zero, which is excluded by the assumption that Z is nonempty. 

If £ is a global extension of line bundles, then £ s f l ( « ) and £'a=0(/i'), 
since Pic(P2)sZ. Now Ext ,(P2;£ ' ,£) = / / , ( P 2 , 0 ( « - « ' ) ) = O. Also, n + n' 
= 0, since c,(£) = 0. Thus 

& = e ( / i ) 0 6 ( - / i ) , 
where n > 0, and this is a contradiction, since any section of S is either 
nowhere zero (n =0) or else vanishes on a curve (« >0). Q.E.D. 

We still have not found necessary and sufficient conditions that (**) 
may be solved. To do this, we assume for simplicity that 

£ = 6, and 
Ip = mp is the maximal ideal for each point p EZ. 
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The exact sequence of global Ext applied to 
O _ > / - » 0 - ^ 0 Z - > O 

gives 

>H \S, 0 ) -* Ext'(S;/,©)-»• Ext2(S; 0 Z , 0) -* H2(S, © ) - * • • • . 
Since Extg(0z ,0) = O for #=^2 while Ext 2 (0 z ,0) is a skyscraper sheaf 
concentrated on Z with stalks 

E x t 2
p ( © z , 0 ) ^ A 2 r ; ( 5 ) , 

the above exact sequence is the top row in the diagram 

Ext ' (S ; / ,6) -> © A2T:(S)^H2(S,6) 
pez ' 

(***) t t t 
Ext'(5;/,e)*«- © A2T:*(S)^H°(S,SI2) 

pez F 

The bottom row are the dual vector spaces, where the dual of 
Ext2(S,ez,6) is H°(S,ez®Q,2) by the duality theorem (I). By functoral-
ity, the mapping p is simply the restriction of a global holomorphic 2-form 
on S to each point p&Z. 

Now what we are seeking is 

e e E x t ' ( S ; / , 0 ) with ep ¥= 0 in each A2T;(S) 0 > e Z ) . 

Applying the duality in (***), we have the following result: 

Given a set of points Z c S , there is a rank-two holomorphic vector 
bundle E-^S with A 2 6 =© and section sGH°(S,0(S)) that defines Z 
<=> there are bivectors O^TpE A2TJ,(S) (p£Z) such that 

2 <*,T,> = o 
f E Z 

/or a// \p G H°(S, fi2). /n particular, if degZ>pg(S), then (E,s) always 
exists. 

It remains to intrinsically interpret this relation, which we shall do in the 
next section. 

Residues and Vector Bundles 

We will interpret the relation at the end of the preceding section as a 
residue theorem for general vector bundles and will then put our conclu-
sions in a more geometric form. 

Suppose that M is a compact, complex manifold of dimension n and 
C" -> E -> M 
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is a rank-w vector bundle having a holomophic section sEH°(M,6(E)) 
with a set Z of isolated zeros. Using the notations 

A ? S * = 0(A*£*), 
%z = ideal sheaf of Z and 0Z = 0 /Iz, 

the sequence 

(•) o ^ A " £ * ^ - - - ^ A 2 S * ^ S * ^ 5 z ^ O 

localizes to the Koszul complex, and therefore gives a global projective 
resolution of both 6Z and <fz. In particular (*) gives an element 

eEExf-](M-Jz,A"&*)-

In the spectral sequence relating global and local Exfs we consider 

«/„_,: //°(A/; Ext?"' (5Z, A"S*)) -* # " ( M , A"S*), 

where we have used the isomorphism 

Extg(<fz,A"S*)» A"S* 
from the section on Koszul complexes. For each p G Z there is an induced 
local extension class 

^eExtr'^z.A"^),' 

where ®pezep eH%M,Ex$~i0z, A"& *)) is the image of e, and there-
fore satisfies 

</„_,( 0 e,) = 0 in / /"(A/ ,A"S*) . 

We will interpret this relation as a residue theorem. 
For this we consider the vector space H°(M,6(K<8)detE)) dual to 

H"(M,/\"&*). In terms of a local holomorphic frame ex,...,en for £ and 
local holomorphic coordinates z,,...,z„ on M, a section 

^ G / / ° ( M , 0 ( / f ® d e t £ ) ) 
is 

xp = Mz)(<fe, A- • • A<fc„)®(e.A- • • A«,) . 
Writing 

s = sl(z)el + --- +J,( : )f„ 
we consider the form 

^ _ h{z)dzfA--- /\dzn 

s Si{z)---s„{z) 

Of course the right-hand side is not well-defined, but by the transforma-
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tion formula the residue at a point p E Z 

is independent of choices. Because of the functorial property of duality we 
have 

0 = <</„_,( 0e,W> 

- 2 M *)• 
which we may state formally as the 

Residue Theorem for Vector Bundles. Given a rank-n holomorphic vector 
bundle E—>M over a compact, complex n-manifold and holomorphic section 
s G H°(M, 0 (E)) having a set Z of isolated zeros, if for each 4> G H°(M, 0 (K <g> 
detE)) and p E Z w define the residue 

by (**) above, then 

2>s,(i)-o. 

Corollary (Cayley-Bacharach for Vector Bundles). If Z consists of distinct 
simple points, then each D E | K ® detE| that passes through all but one point 
of Z necessarily contains that remaining point. 

The result at the end of the preceding section may be rephrased as: 

Corollary. On an algebraic surface S given a set Z of isolated points and 
holomorphic line bundle L, there exists a rank-two holomorphic vector bundle 
C2-*E->S with detE = L and having a section sGH°(S,0(E)) with (s) = Z //, 
and only if, 7L has the Cayley-Bacharach property relative to the linear system 
|K®L|. 

Finally, the Cayley-Bacharach property may be given a nice geometric 
interpretation in case the linear system |A"®L| gives a base-point-free 
mapping 

We denote by Z the linear span in Pr of a set Z of d distinct points on S. 
For generic Z, dimZ = d— 1; the Cayley-Bacharach property implies that 

dimZ = d-2-p (p>0) , 
so that configurations Z satisfying that property may be roughly thought 
of as "multisecant planes" such as trichords, etc. 
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6 
THE QUADRIC 
LINE COMPLEX 

This chapter occupies a somewhat anomalous position in the book: it falls, 
in fact, somewhere between a chapter and a protracted exercise. No new 
ground is broken: even the discussion of quadrics in Section 1 represents a 
gap in the previous material rather than further development. There are 
three reasons for its inclusion: 

First of all in Chapters 2 and 4 we have discussed in some detail the 
theory of curves and surfaces; it is natural now to look at varieties of 
higher dimension, such as threefolds. Unfortunately, there is for threefolds 
no systematic body of knowledge comparable to what we have for curves 
and surfaces. Whatever the reason, the fact is that the only wholly 
successful treatment of threefolds has been in special cases; this is one 
such. 

Second, while we have tried to provide applications of the theory and 
techniques developed in this book, we have not yet encountered a problem 
broad enough to bring to bear the full range of our techniques. The 
quadric line complex is just such a problem: in the course of our analysis 
of it we will have occasion to call upon results from Hodge theory, curves, 
Abelian varieties, surfaces, Chern classes, and the Schubert calculus. 

The third and final reason for the inclusion of this chapter is simply the 
subject itself. The quadric line complex is an object of long-standing 
attraction: much of the material that follows was developed in the mid-
nineteenth century and is still of interest today. It is a subject full of 
intricate symmetries and surprises; we hope the reader will find it as 
delightful to study as we did. 

733 



734 THE QUADRIC LINE COMPLEX 

1. PRELIMINARIES: QUADRICS 

Rank of a Quadric 

A quadric hypersurface FcP" may be represented as the locus of a 
quadratic form 

Q{X,X)= £ q^Xj 

with the matrix £? = (<7y) symmetric. The rank of the quadric F i s defined to 
be the rank of the matrix Q; since the only invariant of a symmetric 
quadratic form over C is its rank, two quadrics F , F ' c P " will be projec-
tively isomorphic if and only if they have the same rank. Now, taking 
partials, 

-^Q(X,X) = 22lqijXj, 

we deduce that the singular locus of F is just the linear subspace of P" 
corresponding to the kernel of the matrix Q on C + l ; thus 

A quadric F c P " is smooth if and only if it has maximal rank n + 1, 

and more generally, 

A quadric F c P " of rank n —k is singular along a k-plane A c F c P " . 

Indeed, we can be more explicit in our description: suppose F c P " is a 
quadric of rank k with singular set A s P " " * , and take Vk_x a generic 
(k — l)-plane complementary to, i.e., disjoint from, A; F= Fn Vk-\

 l$ t n e n 

a smooth quadric of dimension k-2. Now if L is any line in P" meeting 
both A and F, L meets F three times and so is contained in F. Conversely, 
if p e F is any point lying off A, the (n — k+ l)-plane spanned by p and A 
must meet Vk_} in a point q. The line L=p~q then meets F at p and twice 
again in A, and so lies in F; in particular q&F, so p lies on a line joining A 
and F. Consequently 

A quadric F c P " of rank k is the cone through an (n — k)-plane 
A C F c P" over a quadric of rank k in Pk ~ '. 

Note, incidentally, that since F contains all lines joining any p o i n t / J E F 
to A, the tangent plane to F at any point contains A. Thus, any plane in P" 
disjoint from A intersects F smoothly. 
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We can see most of this in terms of the Gauss map 

§ : F-+P"' 
defined by sending a point/) E F to its tangent plane Tp{F)EP"*. Since the 
tangent plane to the quadric given by Q above at a pointp = [a0,...,a„] is 

we see that the Gauss map on F is just the restriction to F of the rational 
map P"—>P"* given by the matrix Q. If F is smooth, % is an isomorphism, 
and the dual variety F* = § (F) c P"* is again a smooth quadric. Note that 
in this case no hyperplane in P" will be tangent to F more than once; so 
every tangent hyperplane section Tp{F)r\ F of a smooth quadric in P" has 
rank n—\, i.e., is the cone through p over a smooth quadric in P"~2. In 
general, if F has rank k and singular set A„_k, then every tangent 
hyperplane to F contains A, and {? maps F to a smooth quadric in the 
subspace P * " ' ' c P " ' of hyperplanes containing A. 

Linear Spaces on Quadrics 

One fascinating aspect of quadrics is the behavior of the linear spaces lying 
on them. This is described in the 

Proposition. A smooth quadric F of dimension m contains no linear spaces 
of dimension strictly greater than m/2 ; on the other hand 

1. / / m = 2n+ 1 is odd, then F contains an irreducible (n+ l)(n + 2)/2-
dimensional family of n-planes; while 

2. If m = 2n is even, then F contains two irreducible, n ( n + l ) / 2 -
dimensional families of n-planes and moreover for any two n-planes A . A ' c 
F, 

dim(AnA') = n (2) 

// and only if A and A' belong to the same family. 

Before we prove this, note that we have already observed this phenome-
non in the case m — 2: on a quadric surface in P3 there are two one-dimen-
sional families of lines; and two lines of opposite families always meet in a 
point, while lines of the same family are either disjoint or meet in a line. 
The reader is also referred to the discussion in Section 2 of the geometry of 
the Grassmannian (7(2,4) to see in detail the behavior of 2-planes on a 
quadric in P5. 

The first statement of the proposition is readily verified: since the Gauss 
map S on a smooth quadric F c P m + 1 is the restriction of a linear 
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isomorphism pm+,_>pm+}'t the family of tangent planes to F along a 
linear subspace AkcF forms a A>dimensional linear subspace of Pm*. 
Since the tangent space to F at any point of A contains A, moreover, the 
image 9(A) lies entirely in the (m — ft)-dimensional subspace of Pm + 1* of 
planes through A; thus 

k < m — k 
i.e., k < m/2. 

To prove the remainder of the proposition we use an induction on n. Let 
2 ,̂ c G(n + 1,2/1 + 3) be the set of n-planes A lying on a smooth quadric F 
of odd dimension 2 n + l in P 2 n + 2 , and 2 „ c G ( « + l , 2 n + 2 ) the family of 
n-planes on a smooth F2n c P 2 " + ' . Assume the statement of the proposition 
for m<n (it is trivially true for n = 0), and for F c P 2 " + 2 a smooth quadric 
consider the incidence correspondence 

I C FX G(n + \,2/i + 3) 
defined by 

/ = { ( / > , A „ ) : / / e A c F } . 

The projection map ir2:I-^G(n + 1,2/7 + 3) maps / onto 2^,, with fibers 
isomorphic to P". On the other hand, consider the fibers of the projection 
7r, :/—>F, that is, the n-planes on F passing through a point p. Clearly, any 
such //-plane A lies in the tangent plane to F at />, and hence in the 
intersection Ff l Tp{F). But we have seen that Ff i Tp(F) is just the cone 
through p over a smooth quadric F2n _, c P2", and so the n-planes in F 
through p are exactly the n-planes spanned by p together with («— 1)-
planes in F. The fibers of TT, are therefore isomorphic to 2^_„ which by 
hypothesis is irreducible of dimension n(n + l ) /2 ; it follows that / itself is 
irreducible of dimension n(n+ l ) / 2 + 2n+ 1. Finally, since the map TT2 ■ I—* 
2J, has fiber dimension n, we see that 2J, is irreducible of dimension 

^ + 2 n + l - n = ( * + 1 f + 2 > , 

and part 1 of our proposition is proved. 
Now let F2n c P 2 n + ' be a smooth quadric; again, we set 

/ = { ( / > , A „ ) : ? e A c F } C FxG(n + \,2n + 2). 

As before, the fibers of the projection map IT2 : /—»2„ c G(n + 1,2« + 2) are 
isomorphic to P", and the fibers of w, :I-+F isomorphic to 2„_, . In this 
case, however, by induction 2„ _ f is the disjoint union of two irreducible 
varieties of dimension n(n- l ) /2 . The connected components of the fibers 
of 7r, thus constitute an unbranched 2-sheeted cover of F, which, since F is 
rational and hence simply connected, must be disconnected. It follows that / 
has two connected components, each mapping via 77, onto F with fibers 
isomorphic to one irreducible component of 2 _,; as in the last argument, 
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each of the connected components of / is irreducible of dimension 
n(n- \)/2 + 2n. Since the fibers of the projection map 7r2:/^>2n are 
irreducible of dimension n, we see that 2„ has two connected components 
Sj, and 1?n, each irreducible of dimension 

n(n-l) n(n+l) 
2 2 ' 

Finally, it remains to show that for any two «-planes A,A'cF, the 
dimension of their intersection is congruent to n mod 2 if and only if they 
belong to the same family. Again, we proceed by induction: the statement 
is trivially true for « = 0 (and more visibly for n = \); assume it for all 
m<n. Suppose first that A and A' intersect, and let p by any point of 
An A'. Let P2" be any hyperplane in P 2 " + l not containing/7; by what we 
have seen, the intersection F n T (F) of F with its tangent plane at p is just 
the cone through/? over the smooth, {In - 2)-dimensional quadric F=Fn 
Tp(F)nP2". Set 

A = A n P2" and A' = A' n P2n; 
A and A' are then (n - l)-planes in F, and by our previous argument A and 
A' belong to the same family on F if and only if A and A' belong to the 
same family on F. But the intersection A n A' is just the plane spanned by 
the intersection A n A' together with p. By the induction hypothesis we 
have 

A, A' belong to the same family of w-planes on F 

«=>A, A belong to the same family of (n — l)-planes on F 

<^dim(AnA' )= « - l ( 2 ) 
<=*iim(A n A') = dim(A n A') + 1 = n(2), 

and we are done. Suppose on the other hand that A and A' are disjoint. In 
this case, take any point/>£A and set 

A" = A'nTp(F),p. 

Now Tp(F) cannot contain A'—all n-planes in Tp(F)oF contain p and 
hence meet A—so A" is an w-plane and 

dim(A'nA") = n- 1, 
and we deduce from our first argument that A' and A" belong to opposite 
families. We also see that A meets A" only in the point p—if A n A" 
contained a line, A would necessarily meet the hyperplane A 'n Tp(F)cA". 
Thus, by our first argument, A and A" belong to the same family on F if 
and only if « = 0(2); it follows that 

A and A' belong to the same family 
«=> n = - 1 = dim(A n A') (2). 
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This completes the proof of the proposition. 

We can write down explicitly the two families of H-planes on the smooth 
2«-dimensional quadric F c P 2 ° + 1 given by 

Q(X)= £* , -*„+/+1-

In this case for B any (« + \)X(n + 1) matrix the n-plane Afi spanned by 
the row vectors e, = (0,. . . , 1,0,..., 0,6,0,... ,b, ,J of the 2nXn matrix (I,B) 
lies in F if and only if 

0(ef,e,.) = *v + fy = O 

for all /' and j , i.e., if and only if B is skew-symmetric. The H-planes {Ag} 
form an open set T0 in one of the two families of w-planes on F. (Note that 

dim(ABn AB) = « - rank(fl - B ' ) = n(2) 
for any B,B' skew-symmetric.) More generally, if /={/',,...,/„,} is any 
subset of {0,...,n}, then the automorphism <p, of F defined by 

X„ /<£/, Vl[x] = [x'], x;={ 

carries the set T0={AB) of «-planes into another set T,; T, will be of the 
same family as T0 if and only if m = *l is even. In this way, we represent 
all n-planes on F. 

We consider now the family of ^-planes on a smooth quadric F in P"+'. 
The dimension of this family is easy to compute: we let |F |ss 
p(« + 2)(„ + 3)/2-i denote the linear system of all quadrics in P" + 1 and 
consider the incidence correspondence 

/ c\F\xG(k+\,n+2) 

given by 

/ = {(F,A): AcF}. 

The linear system \F\ cuts out on any /c-plane A the complete 
(k+ \)(k + 2)/2— 1-dimensional linear series of quadrics in A, so the 
fibers of the projection map TT2 : /—> G(k + 1, n + 2) have dimension 

(« + 2)(« + 3) (k+\)(k + 2) 
1, 

and / has dimension 

( , + 1)(B_^+1) + 0L±^Lt3)_(*±iM±^_1; 

it follows that a fiber of mx: /-»|F|—the family of A;-planes on a quadric F 
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— has dimension 
,, .w , ,x (k+\)(k + 2) (k+\)(n-k + \)-± ^ '-

or, alternatively, codimension (k + l)(k + 2)/2 in the Grassmannian G(k + 
l,« + 2). 

Let us now determine the class on G(k+l,n + 2) of the cycle ~Zkn of 
^-planes on a smooth quadric F c P " + l . Recall from Section 6 of Chapter 
1 that for any flag V0c Vx c • • • C V„+l c C " + 2 the cohomology group 
H(k + m+2\G(k+l,n + 2)) is generated by the classes of the Schubert 
cycles 

°a, ai + l = {A*+1: dim(AnK„_A + ) + , _ a ) > / } 
for all sequences 

n — k + I > ax > ■ ■ ■ > ak + { > 0 

with 2a,- = (A: + l)(/c + 2)/2. The cohomology in complementary dimension 
is likewise generated by Schubert cycles ob with 'Ebi = (k+\)(n~k + \) — 
(k+ \)(k + 2)/2; the intersection pairing is 

# r \-f1' ^ai + bk+2^i = n-k + \ioTa\\i, 

10, otherwise. 
To find the class of 2Ai„, accordingly, we have to evaluate the inter-
section numbers *(I.kn-ah) for all such b = (bly...,bk + l) with 2 6 , = 
(k + \)(n -k-\)-(k + \)(k + 2)/2. We start by noting that if the flag { Va] 
is generically chosen, each subspace Va c P " + l will intersect F i n a smooth 
(a -2)-dimensional quadric Fa_2- Now, as we have seen, F a _ 2 cannot 
contain any linear subspaces of projective dimension greater than (a — 
2)/2; thus, no k-p\&ne Ak lying on F can meet Va in a space of projective 
dimension > ( « —2)/2. If *(Zkn-ab) is to be nonzero, then we must have 

n-k+\+i-bj>2i for all /; 
i.e., 

bt < n- k- i+ 1. 
But from 

k+\ 

= lb, 
i = l 

£ + 1 

< 2 n-k-i+ 1 
i = i 

A + l 

; = 1 

(fc+l)(* + 2) 
2 
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we deduce that b,, = n - k — i + 1, i.e., 

The cycle 2 k n c G ( k + l,n + 2) has intersection number 0 with all Schu-
bert cycles of complementary dimension except on_k,n-k-i,n-k-2,...-

To compute the intersection number of ~Lk „ with 

we read off the defining conditions for an_k n_k_x one by one. The first 
condition says that any AES^ „n a„_A. „_^_, must meet a line V2c 
P " + ' in a point; since A c F, this point must be one of the two pointspx,p2 

of intersection of V2 with F. For each / = 1,2, let P " _ l be an (n- l)-plane 
contained in the tangent plane T (F) to Fat/?, and not containing/?,; P? _ 1 

then intersects F in a smooth quadric F,, with F n Tp(F) the cone through 
/?, over F,. Now the second condition on an_k „ _ k _ x says that any 
A G S ^ ^ n f l . - n . n - t - i , . . . must meet the 3-plane K4 in a line. But F4 will 
meet P"~' in a line, and fj- in a pair of points pn,pi2; and writing any 
fc-plane AcF through/?, as 

A = ft,AnP?"', 
we see that any A G/?, meets K3 in a line if and only if A contains either of 
the points pn or pi2. 

Consider now the set of A>planes on F passing through the points /?, and 
Pij. Take PJj~3 an (« — 3)-plane lying in the intersection T (F)c\ T (F) and 
missing the line p~p~; P ^ 3 intersects F in a smooth quadric Fip with 
FC\T(F)p\T(F) the cone through the line p~p~j over F,-,-. The third 
condition on_on_k „_k__t says_that any A&1,k nna„_k n_k_l meets 
the 5-plane V6 in a 2-plane. But K6 meets P ^ 3 in a line, and Fy in a pair 
of pointspjJl and/?,-^; and writing any &-plane A c f through/?, and/?,y as 

h = Pl,Pij,hnPir\ 

we see that A satisfies this condition if and only if it contains e i ther^ , or 
Pin-

The process is now clear. Defining inductively a collection of points 
Pil>Pw->Pit,...,ikyy letting/>,., L ^ and/?,- L a be the two points of 
intersection of V2m with a chosen (n — 2m+ l)-plane in the intersection of 
the tangent spaces to F at /?, ,/?, ,i,...,pi , , we find that the /c-planes 
A c Flying in on_kn^k^x are exactly the planes 

Pi, >Pi•,, i?Pi „ i2, ,y • • • iPi,, i2,..., 4 +, > 
and there are 2*+l of these. Consequently 

V ^ * , n ' a n - A \ n - A : - l , . . . ) = ^ , 
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and we have 

^k,n *"* * '°k+t,k.k-\ I 

in the cohomology of G(k + l,« + 2). 
Note that since the two families of n-planes on a 2n-dimensional quadric 

in p2" + l may be taken into one another by an automorphism of P2n+I, 
they represent the same class on G(n + \,2n+ 1), and hence each represents 
the class 2"-an + ln ,. Also, in case the quadric has odd dimension 
« = 2 w + l and k = m, the codimension (m+\)(m + 2)/2 of the cycle 
2 m 2m+1 *s exactly half the dimension of the Grassmannian G(m+ 1,2m + 
3), and so we may expect there to be a finite number of m-planes in the 
generic intersection of two quadrics in p 2 m + 2

; indeed, by our calculation 
this number is 

(2m,2m+l'^m.2m+l) = 2 m • ( < T m + , m \'Om+ ] , . . . , l ) 

We have already verified this in case n = 3. 

Linear Systems of Quadrics 

Thus far, we have examined the geometry of a single quadric hypersurface 
in P". We would now like to consider linear systems of quadrics; specifi-
cally we will study linear systems of quadrics in P2 and P3. 

We begin with P2. In the complete system Ws P5 of conic plane curves, 
let Wt c W be the subvariety of conies of rank two or less and W2 c Wx the 
set of conies of rank one. Wx is a hypersurface in W\ we first ask for its 
degree. This question may be answered in four ways: 

1. Suppose L = {Fx} is a generic line in W, that is, a generic pencil of 
quadrics in P2. The conies F of the pencil L may be given as the zero loci 
of the quadratic forms 

where 

for suitable choice of nonsingular symmetric matrices Q° and Qx. Fx will 
then be singular exactly when the determinant | 2 0 + A2°°| vanishes; since 
this determinant is a cubic polynomial in A, this will occur for three values 
of A. L thus intersects Wx three times, so deg(W/,) = 3. Note that in general 
by this argument the singular quadrics in P" form a hypersurface of degree 
n + 1 in the system of all quadrics. 

2. Letting L be, as above, a generic pencil of conies, we have by the 



742 THE QUADRIC LINE COMPLEX 

formula of p. 509 

X(P2) = 2X(FA) + 11 ■ 

L will have four base 
P2 passing through the 

where Fx is a generic element of L, n = FyFx the number of base points of 
L, and ju the number of singular conies in L. Since x(f\) = 2 and n = 4, this 
yields 

3 = 2 -2 + ^ - 4 , 

i.e., [i = 3, and Wt is cubic. 
3. Letting L again be a generic pencil of W, 

points P\,Pi^Pi,,Pi. and will consist of all conies in 
points {Pj}. (See Figure 1.) But since no three of the points/;, are collinear, 
if F is a conic consisting of two lines /,/ ' and containing {/>,}, then / and /' 
must each contain two of the points {/>,}. The singular conies passing 
through {/>,} are therefore 

TTPI + PTPI, PTPJ+PIPA and p~^ + pjp^. 

So we see again that L contains three singular conies. 
4. Alternatively, note that Wx c W is the image of P2* 

map / sending a pair of lines (/,,/2) to the conic lt + l2E W. Now the 
cohomology ring of P2* X P2* is generated by the classes w, and w2, where 

X P2* under the 

Figure 1 
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w, and w2
 a r e t n e pullbacks of the hyperplane class in P2* via the two 

projection maps, with the relations <o? = u>\ = 0, co2w| = 1. If H c W is the 
hyperplane in W consisting of conies containing a point p E P2, then the 
pullback/*/ / is the divisor of pairs (lvl2)

 W l t n either p E /, or p E/2, and so 
it represents the class w,+w2- Consequently, s ince/ is two-to-one, 

degW, = ( tf)V, 

= 2V w l+ ' °2)p 2 «xP 2 * 

= £•6 = 3. 

Note that the subvariety W2cWlclV is just the image u n d e r / of the 
diagonal A = P 2 * in P2*XP2*, which is the branch locus of/. Since the 
series | to, -+- co21 cuts out the complete series |0P2(2//)| on A, W2 is the 
Veronese surface i2H(P2) in W s P 5 . 

We note that Wx is smooth away from W2: if FE.WX is a conic 
consisting of two distinct lines, we can find another conic G meeting F 
transversely so that the pencil L generated by F and G will have four 
distinct base points. By argument 3, L will meet Wx in three distinct points, 
so that mF{L, Wl)= 1 and F is a smooth point of Wv On the other hand, if 
F is a double line and L a generic line through F, we see (Figure 2) that the 
pencil L will consist of all conies passing through the points p,p' of 
intersection of F with a second conic G of L, and tangent to (i.e., having 
intersection multiplicity > 1 with) G at those points. The only singular 
conic of L other than F is thus the sum of the tangent lines to C at p and 
p'\ so mF(L, Wx) = 2 and F is a double point of Wv The reader may check 
that the tangent space to Wx at a smooth point F= l{ +12 is just the plane 
H c W of conies passing through the point p = / , n / 2 £ P2, while the 
tangent cone to Wx at a double point F=2l is the locus of conies tangent 
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to /. (Note that since W2 is the double locus of the cubic Wx, any line 
meeting W2 twice must lie in Wx, this provides another proof that the 
chordal variety of the Veronese surface is a cubic hypersurface.) 

Finally, it is interesting to observe that there are two distinct four-
dimensional families of lines on the variety Wx—that is, two kinds of 
pencils of singular conies. First, there are the pencils formed by a fixed line 
l0 plus a pencil /x of lines; for example, 

L = {(\X0XX + X0X2)}X (/0=(*0=0)). 

(See Figure 3.) Such a pencil will either miss W2 altogether or meet it in a 
single point, depending on whether the base point of the pencil lx lies on /0. 
Second, there are the chords to W2 in Wx; such a pencil, containing two 
distinct double lines, will have only a single point p as its base locus and so 
will be just the pullback, via the rational projection mp: P2—»P!, of a pencil 
on P1. (See Figure 4.) For example, 

L={(\X* + X?)} 
is such a pencil. 

We now turn to quadrics in P3. Let ( f s P 9 be the complete linear 
system of all quadrics, Wx<zW the locus of quadrics of rank three or less, 
W2cWtcW the locus of quadrics of rank two or less and W3 the set of 
rank-one quadrics. By the first of our previous arguments, Wx is a 
hypersurface of degree 4 in W. Again, Wx is smooth away from W2: if F is 

I Figure 3 
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Figure 4 

any quadric of rank three—which we may take to be given by the matrix 

0 = 
0 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

and L is the pencil generated by F and a generic quadric G, given by the 
matrix 0 ' , then the polynomial 

1*0+01 
has degree 3 in X—i.e., L will contain three singular quadrics other than F, 
so mF{L- Wx) = 1 and F is a smooth point of Wx. Note that the polynomial 
1*0 + 0 1 wiH fail t o n a v e degree 3 exactly when the upper left-hand entry 
of 0 ' is zero, i.e., when the quadric G contains the point [1,0,0,0]. The 
tangent plane to Wx at F is thus the space of quadrics containing the 
singular point of F. 

Similarly, a quadric F 6= W2 — Wy of rank two may be represented by the 
matrix 

0 

for generic 0 ' , then, the polynomial |*0 + 0 ' | will have degree 2; that is, a 
generic pencil L in W containing F will meet Wx in only two other points. 
Thus F is a double point of Wx; indeed, since the polynomial | A 0 + 0 ' | 
will have degree < 2 exactly when the determinant of the upper left-hand 
2 x 2 minor of Q' is zero, we deduce that the tangent cone to Wx at a point 
F EW2is just the locus of quadrics tangent to the singular line of F. 

To find the degree of W2, we proceed as in 4 above: W2 is the image in 
W of P3* X P3* by the m a p / sending a pair (HX,H2) of hyperplanes in P3* 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
1 
0 

0 
0 
0 
1 



746 THE QUADRIC LINE COMPLEX 

to the quadric / / , 4- H2. The cohomology of P3* X P3* is generated by the 
pullbacks w, and <o2 of the hyperplane class in P3* via the two projection 
maps; as before, since/ is 2-sheeted, we obtain 

d e g ^ 2 = |(Wl+<o2)6 

= f 20w3w3 = 10. 

Lines on Linear Systems of Quadrics 

Earlier in this section, we found the class on the Grassmannian of the cycle 
of ^-planes lying on a smooth quadric in P". It is interesting to try and 
answer the same question for the cycle of fc-planes lying on a linear system 
of quadrics; we will discuss here the case of lines on quadrics in P3. 

To begin with, recall that the integral homology of the Grassmannian 
G(2,4) is generated by the Schubert cycles 

o , ( / 0 )= {xEG: / x n / o ^ 0 } , 
"ziPo) = {x^G: lx3p0}, 

"i.i(*o)= { * e G : /,CPol-
and 

°2,\(Po,ho) = {xEG: p0elxch0} 

for />0G/ocAo any choice of point, line, and hyperplane in P3. The 
intersections of these Schubert cycles are 

<7| • Oj = a 2 + Oj j , 

° i ' ° 2 = CTr°i.i = a2,i, 
< v a 2 = ° i , r ° i , i - a\-a2,\ - •> 

a2-ax | = 0. 

We have seen in the preceding discussion that the variety V{F) of lines 
lying on a smooth quadric F c P3 is homologous to 4a2 \: consider now the 
variety V0(L) of lines in P3 lying on some quadric of a generic pencil 
L = {FX) of quadrics. 

The base locus of the pencil L, being a smooth intersection of two 
quadrics, is an elliptic curve C of degree 4, and in fact it is not hard to see 
that V0(L) is just the set of chords to C: on the one hand, if / c Fx for 
some A, then C n / = Fxr\Fxr\l= Fx.(~)l consists of two points; on the 
other hand, if / meets C in two points/) and q, then for any third point r G / 
some quadric FXGL contains r, and so contains /. 

This being established, it is easy to compute the class of K0(L)c G(2,4): 
First, since a generic hyperplane H c P3 meets C in four points, (4 J = 6 
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chords of C will lie in H, so 
# ( F 0 ( L ) - a u ) = 6. 

Second, projection of C from a generic point p £ P3 to a plane maps C to a 
plane quartic, which by the genus formula will have two double points; 
consequently p lies on two chords of C and 

#(F0(L)-a2) = 2. 
In sum, 

K 0 ( L ) ~ 2 a 2 + 6 a M . 
We proceed to a generic net N = {FX)l}(Xlli)ep2 of quadrics. In this case 

we may associate to N two varieties of lines: the set V0(N)= U^V^F x) 
of all lines contained in some quadric of N, and the set K,(7V) of lines that 
lie on a pencil of quadrics in N. The latter is readily described: if / c P 3 lies 
on a pencil F^x, F. v of quadrics in TV, then the intersection of / with the 
base locus of N consists of two points: 

' n .̂.A n F^y n /y, v. = Ln F^y 
for any third quadric F .._x- in N. Conversely, if / contains two base points 
p,q, of N, choose a third point r 6 / ; r will lie on a pencil of quadrics from 
N that, containing p, q, and r £ /, contain /. Since TV has eight base points, 
no three collinear, VX(N) will consist of the (M = 28 lines joining these 
points. 

The class of K0(7V)c (7(2,4) may be determined as follows: let/? be a 
generic point of P3, H a generic plane containing/?. Then the restriction to 
H of the set of quadrics in N containing/) is a pencil L of conies with/? as 
one base point, and by argument 3 above, p will lie on exactly three lines 
of L. Thus 

#(F0(/V)-a2,,) = 3 
and hence 

V0(N)~3o{. 

Finally let W be a generic web of quadrics. Since in this case the set 
V0(W) of all lines on W is all of G(2,4), we will be concerned with the 
variety Vt(lV)cG(2,4) of lines lying on a pencil of quadrics from W. To 
begin with, if p £ P3 is a generic point, then the set of quadrics in W 
through /? forms a generic net Np, with p as a base point. By the argument 
given in the count for K,(7V), the lines through p lying on a pencil of 
quadrics from W will just be the lines joining p to the other seven base 
points of Np. Consequently 

#(V,(W)-o2) = 7. 
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There is another way to make the count, based on the fact that a smooth 
point p on a quadric F will lie on two lines of F if F is smooth, but only 
one if F is singular. Let P 2 c P 3 be a plane not containing /?, and I c 
P2 X N the incidence correspondence defined by 

I={(q,F): MCF). 

The projection of / on the second factor expresses / as a double cover of 
A ^ s P 2 , branched over the locus of singular quadrics in N . But by our 
analysis of the linear system of quadrics in P3, the locus of singular 
quadrics in N is a smooth quartic curve. Using the discussion of Section 4 
of Chapter 4, / has Euler characteristic 10. On the other hand, the map 
/^>P2 expresses / as the blow-up of P2 at the points of intersection of P2 

with the lines /G V{(W) through/?; there are thus x ( ^ ) - x ( p 2 ) = 1 0 - 3 = 7 
such lines. 

The calculation for *(Vl(W)-ol ,) is somewhat more difficult. Let H be 
a generic plane in P3, and let X be the restriction to H of the web W. If 
/ c H c P3 lies on a pencil {Fx} of quadrics in W, then the conies 
{Cx = FXC\ H) in ^ are all singular; thus we may ask for the number of 
pencils of singular conies in X having a fixed line. Now, by our discussion 
of the system of conies, the locus of singular conies in A1 is a cubic surface 
with four double points, these corresponding to the double lines in X. Such 
a surface has, we have seen in Section 6 of Chapter 4, nine lines on it—but 
of these nine, six comprise the edges of the tetrahedron whose vertices are 
the double points of the surface, and the pencils corresponding to these 
lines are of the second type (p. 744). Of the nine pencils of singular conies 
in X, then, only three have fixed lines. Thus 

and finally 
K , ( W 0 ~ 7 O 2 + 3 a M . 

We may check this calculation as follows: let N{,N2 be two generic nets in 
the web W, L = N{n N2 their common pencil, and consider the intersec-
tion VoiN^n V0(N2). If a line / lies on a quadric F,G./V, and a quadric 
F2 G N2, then either 

(1) F,¥=F2, so / lies on the pencil F ,F 2 c W, and hence /G VX(W); or 
(2) F, = F2GL, i .e. , /GF0(L). 
Since, conversely, both V0(L) and V^W) are contained in ^ ( ^ I ) D 

W i ) n v0(N2) = vi(w)u v0(L). 
Now K 0 ( J V , ) ~ K0(Ar

2)~3a1, so the intersection F0(7V,)n VQ{N2) has class 

(3<7,)2 = 9 a u + 9 a 2 ; 
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on the other hand, V0(L)~2a2 + 6al „ so we find again that 

V{{W)~lo2 + 3oXA. 

The reader may find it an interesting exercise to prove that, for a generic 
web W, the surface V{(fV) is an Enriques surface. 

The Problem of Five Conies 

To conclude this section, we will use the computation of Section 6, 
Chapter 4, for the cohomology ring of a blow-up to solve a classical 
problem in enumerative geometry: 

Given C,, . . . , C 5 c P 2 five smooth conic curves chosen genetically, how 
many smooth conic curves in P2 are tangent to all five! 

To answer this question, consider first the linear system 

W = \2H\ at P5 

of all conic curves in P2. For any smooth conic curve C, let Vc c W be the 
set of conic curves tangent to C (that is, having a point of intersection 
multiplicity > 2 with C); Vc is a hypersurface of some degree d in P5. If 
we could show that for a generic choice of five conies the hypersurfaces 
vc,...,vc cw 

1. met transversely away from the subvariety of singular conies, and 
2. contained no singular conies in common, 

the answer to our question would be easy: it would just be the fivefold 
self-intersection (deg Vc)

5 of Vc in W^ P5. Unfortunately, matters are not 
so simple: while assertion 1 above is the case, and half of assertion 2, 
namely 

2'. for Ct,...,C5 generically chosen, no conic consisting of two distinct 
lines will be tangent to all five 

holds, the problem is that all the hypersurfaces VccW will contain the 
subvariety 

W2 = {2L}LcP> 

of double lines. 
We can overcome this difficulty by blowing up. Precisely, let 

be the blow-up of W along the variety W2 of double lines; for C any 
smooth conic, denote by Vc the proper transform of the subvariety 
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Vc c P5- Then, once we verify assertions 1 and 2 above and the additional 
assertion that for C,, . . . ,C5 generically chosen, 

3. the proper transforms VC,...,VC have no common points in the 
exceptional divisor of W, 

the answer to our original question will be simply the fivefold self-intersec-
tion of the divisor Vc on W, and readily calculable. We will proceed with 
the computation, leaving the proof of assertions 1, 2, and 3 until later. 

We first compute the degree of the hypersurface Vc c P5 for smooth C; 
to do this, let La W be a generic line and {CX}X6P, the pencil of conies it 
represents. The curves {CA} then cut out on C a linear system of degree 4 
without base points. The corresponding map expresses C as a 4-sheeted 
cover of P1; and by the Riemann-Hurwitz formula, the number of branch 
points of this map is 

6 = 2 g ( C ) - 2 - 4 ( 2 g ( P ' ) - 2 ) 
= 6. 

The pencil {Cx} therefore contains six conies tangent to C, and conse-
quently 

deg Vc = 6. 
In fact, this argument tells us a bit more. Suppose that C is a smooth 
point of Vc and that C" is simply tangent to C at a single point p G C . If 
L c W is a generic line through C" lying in the hyperplane Hpc W of 
conies containing/?, the corresponding pencil { C X } X E P I will cut out on C a 
linear system of degree 4, with p as a base point. The corresponding map 
then expresses C as a 3-sheeted cover of P1, and so has only 

b = 2(g(c)-2)-3(2g(Pl)-2) 
= 4 

branch points—i.e., the pencil {Cx} can contain at most four conies 
tangent to C other than C". It follows that Hp is the tangent plane to Vc at 
C, and conversely if C" is simply tangent to C at only one point, then C" is 
a smooth point of Vc. 

Next, we compute the multiplicity of the locus W2 of double lines in the 
generic divisor Vc. This is not hard: for C a conic, 2L a generic double 
line, and { Cx} a generic pencil of conies containing the double line 2L as 
an element, {Cx} again cuts out on C a pencil of degree 4, without base 
points. The corresponding map then has six branch points as before—but 
two of these are just the points of intersection of L with C. {Cx} thus has 
four points of intersection with Vc other than 2L; it follows that 

m u M { C x } , K c ) = 2, 
and so, for generic C, 

mult„,(Kc) = 2. 
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We can thus write 

Vc~6u-2e(EH2(W,Z), 

where w = w*w is the pullback to W of the class w of the hyperplane in W, 
and e the class of the exceptional divisor E. 

Now, to determine the fivefold self-intersection 

(6w-2e) 5 

of Vc in W, recall from our discussion in Section 1 that the surface W2 is 
the Veronese surface i2H(P2)- Let / and p — I2 denote the classes of a point 
and a line in W2 = P2; \etp = w*p and l=-n*l be the pullback classes in 
E c W. We have 

w| Wi = 21, 

and so 

W
2U2 = (2/)2 = 4/7. 

Now by the computation for the Chern classes of projective space, 

c(T(W)\„2) = (\+6o,+ l5u>2)\fV2 

= 1 + 12/ + 60/2 

and 

c(T(W2))= 1 + 3 / + 3/2 . 
From the C °° decomposition of vector bundles 

T{W)W7=T{W^NWi/w 

we obtain 

c(N ) c(nw)) 

and performing the divison 

1 + 9/+30/ 2 

l + 3 / + 3/2)l + 12/+60/2 

1 + 3/+ 3 / 2 

91+5712 

91+2112 

30/2 

30/2 

we find that 

c(NWt/w)= 1 + 9 / + 30/2. 
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Thus if f G/ / 2 (£ ,Z) denotes the Chern class of the tautological bundle on 
£ = P(NWi/w), our general relation (p. 606) reads 

(*) f 3 -9 / - f 2 + 30/~2-f = 0. 
Now we have seen that the tautological bundle restricts to the universal 

bundle [ - H] on each fiber E of E-> W2, and so 

f2-/2 = c , ( r | £ / = i . 

Multiplying the basic relation (*) by /—and recalling that /3 = 0—we have 

/■•f3-9/2-f2 = 0 
and hence 

l-V = 9. 
Finally, multiplying (*) by f, 

f 4 - 9 / £ 3 + 30/2f2 = 0 

=*f4 = 9 / f 3 - 3 0 / 2 f 2 

= 51. 

It is now possible to calculate (6w —2e)5. First, since the class w of a 
hyperplane in P5 restricts to the class 2/ on W2 

&\E = 21, 

and the tautological bundle 

T = NE/pi, 

we obtain 

e\E = cx{T) = l 

Also, 

(»5)* = (wv=i. 

tf-e = ((2/ ) 4 ) £ = 0, 

w3-e2 = ((2/")3-f)£ = 0, 

a,2-e3 = ( ( 2 0 2 - r 2 ) £ = 4 ( / ^ 2 ) £ = 4, 
<o-e4 = (2/~?3)£ = 18, 

e5 = ?4 = 51, 
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and so 

(6ib-2e)5 = 6 5 w 5 -5 -6 4 -2 -w 4 - e + 10-63-22-w3-e2 - 10-62-23-w2-e3 

+ 5 - 6 - 2 4 - w - e 4 - 2 5 - e 5 

= 6 5 - 10-62-23-4 + 5-6-24- 18 - 2 5 - 51 
= 7776 - 11520 + 8640 - 1632 
= 3264. 

The answer, then, is that 

For a generic choice of five conic curves in P2, there will be exactly 3264 
smooth conies tangent to all five. 

We now go back and verify the transversality assertions 1, 2, and 3. For 
assertion 1, note that for C smooth, the divisor Vc is irreducible: to see 
this, let 

/ ' C Vc X C 
be the incidence correspondence given by 

/ ' = {(C0,p): C0 is tangent to C at/?}. 
Since C is irreducible and the fibers of the projection map 

w2: / ' —> C 
are linear subspaces of W, / ' is irreducible. This implies that Vc is 
irreducible. Now let U c W be the open set of smooth conies and denote 
by / the incidence correspondence 

/ c ( f f ) 5 x u 
defined by 

/ = { (C„ . . . ,C 5 ;C ' ) : C'GVC; for all i } ; 

let J C.I be the closed subvariety of / consisting of (C, , . . . ,C5; C") such 
that C" is a nontransverse point of intersection of KC|,..., Vc< The fibers of 
the projection 

on the last factor are isomorphic to (Vc)
5, and so irreducible; conse-

quently / is irreducible. Since the map wl :I^>(Wf is generically finite-to-
one, then, we see that assertion 1 can fail to hold—i.e., J can map 
surjectively onto (W)s—only if J = /. To verify this assertion it will suffice 
to exhibit a point of I — J; that is, six conies C,, . . . ,C5 and C such that 
VC,...,VC meet transversely at C". But this is clear: if C" is any smooth 
conic, C,, . . . ,C5 conies simply tangent to C" at distinct points /»,,...,p5, 
then the tangent hyperplanes TC(VC)= Hp are independent. 
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Assertions 2' and 3 are easier. Note first that in general if {D^} is any 
family of divisors without base points on an n-dimensional variety V, the 
generic choice of n + 1 divisors D , . . . ,D of the family have no points in 
common. This follows by an induction argument: if we assume the result 
for varieties of dimension n — 1, then by restricting the divisors {D^} to a 
hyperplane section of V the generic choice of n divisors D^,...,D will 
have only finitely many points in common. Since the family {D } has no 
base points, for generic D^ 

Now since the locus Wx c W of conies of rank two has dimension 4, to 
prove assertion 2' we need only check that the family {VC)C(EW has no 
base points on this locus. This is immediate: for any conic of rank two, we 
can obviously find a conic not tangent to it. 

Assertion 3 remains. We must prove that the family {Vc) has no base 
points in E. To do this, note that for any point 2LG.W2 and a normal 
vector v to W2 at 2L represented by a line {C\} in W, the proper 
transform Vc will contain the point of E corresponding to v if and only if 
the line {CA} has intersection multiplicity 3 or more with Vc at 2L; it will 
thus suffice to show that for any point 2LG W2 and any line {Cx} through 
2L but not tangent to W2 at 2L, there exists a conic C such that 

mult2Z.(Fc,{CA}) = 2. 

Now, if any pencil of conies contains two double lines 2L and 2L', it has a 
single base point of order 4, and so must consist entirely of singular conies. 
In the limiting case, then, we see that any pencil tangent to W2 at 2L 
consists entirely of singular conies; the tangent plane T2L( W2) to W2 at a 
point 2L is therefore contained in—hence equal to—the 2-plane 

{L+L')L.ePi-c W. 
If {Cx} is any pencil through 2L but not in the tangent space T2L(W2), then, 
it can have only finitely many base points. Choosing the conic C to miss 
these base points, the same argument as before shows that {C\} meets Vc 

with multiplicity 2 at 2L. 

A note: The problem of determining the number of conies tangent to 
five conies is of some historical importance, being one of the first problems 
requiring nontrivial intersection theory; it is interesting to see how it may 
be solved without explicit reference to abstract blow-ups or cohomology. 
One argument proceeds as follows: let / a n d I/C.W be, respectively, the 
variety of conies passing through the point p, and tangent to the line /; let 
Ip and /, be their proper transforms in the blow-up W of W along W2. 
Then it is easy to see that, in the cohomology ring of W, 

Ip ~ w and If ~ 2w — e, 
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so 

K c ~ 2 / ; + 2// . 

Without reference to blow-ups or cohomology, then, one could make the 
statement: "the condition that a conic be tangent to a conic C is equivalent 
to the condition that it contain either of two points, or be tangent to either 
of two lines"; this can be seen by noting that, as the conic C degenerates 
into a pair of lines /, + l 2 , the variety Vc degenerates into the variety 
/ , + / / + / / . , , the latter component occurring with multiplicity 2. (In fact, 
the blow-up W may be constructed geometrically as follows: let W* 
denote the" linear system of conies in P2*, Wf W* the locus of singular 
conies, and take the closure in W X W* of the locus 

{(C,D): D=C*} (W-W])x(W*-Wf). 

A pair (C,D) in this closure was classically called a complete conic). Now, 
the product 

Vl = 32(fp + I~l)
5 

= 32(1; + 5Ip% + Wlff + 10/;2/,3 + 5Ipf,
4 + / / ) 

can be evaluated by elementary geometry: since there is a unique conic in 
the plane through five generically chosen points, 

£ = »■ 
Likewise, the conies through four generic points cut out on a generic line / 
a pencil of degree 2, which then has two branch points; so 

ifh = 2. 
Next, the quadratic transformation of P2 based at three points pl,p2>P} 
transforms the net of conies through PX,P2,PT, into the complete series of 
lines in P2, and the generic lines in P 2 into conies; the number of conies 
through pt,p2,p3 tangent to two lines is just the number of lines in P2 

tangent to two conies. Since the tangent lines to a conic in P2 form a conic 
curve in P2*, this number is 

/?/? = 4. 
The remaining three products of Ip and /, are dual to the ones above—e.g., 
a conic C c P 2 will be tangent to five lines / , , . . . , / 5 c P 2 if the dual conic 
C*cP2*of tangent lines to C contains the five points /, , . . . ,/5GP2*—so we 
have 

12/3 = f3f2 = 4 f f4 = f*I = ") f5 = / 5 = 1 'p'l JP'I
 H* 'pJi 'P'I

 z> li 'P '• 
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The answer to the problem—modulo the checking of transversality 
assumptions—is then 

Vl = 32(l + 5-2+10-4+10-4 + 5 -2+ l ) 
= 32 102 = 3264. 

2. THE QUADRIC LINE COMPLEX: INTRODUCTION 

Geometry of the Grassmannian (7(2,4) 

First we will discuss the geometry of the Grassmannian G(2,4) of 2-planes 
in C4, viewed primarily as the set of lines in P3. Recall from Section 5 of 
Chapter 1 that the Pliicker embedding 

G ( 2 , 4 ) - ^ P ( A 2 C 4 ) = P5 

is given by mapping the 2-plane A spanned by vectors t),,u2EC4 into the 
wedge product v]/\v2EA2C4. AS was proved there, a general multivector w 
will be decomposable—that is, of the form v{/\v2—exactly when 

coAw = 0. 
This is a quadratic relation; the image of G(2,4) under the Pliicker 
embedding is therefore a quadric hypersurface in P5, which we will 
henceforth denote by G. The reader is referred to p. 746 for the definition 
and intersection numbers of the Schubert cycles o,(/0), o2(pQ), a, {(h0), and 
o2.i(Po>ho) on G. 

Now, since the wedge product 

A : A2C4 X A2C4 -»A4C4 a C 
is a nondegenerate pairing, every hyperplane in P(A2C4) is of the form 

HUo= {w: coAw0 = 0}. 

In particular, if w0 = u, f\v2 the hyperplane section Ha n G of G consists of 
the Schubert cycle a,(/0) of lines in P3 meeting the line l0=v{,v2 spanned 
by u, and v2. Thus 

Every Schubert cycle 0,(lo)cG is a hyperplane section of G. 

Since the Schubert cycle a2A(p,h)cG has intersection number 1 with 
the hyperplane class a,, it follows that 

Every Schubert cycle a2 | (p ,h)cG is a line in P5. 

Similarly, since 
a i ' a i , i = a i ' ° 2 = 1' 

Every Schubert cycle a2(p) or cr, , (h)cG is a 2-plane in P5. 
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To prove the converse of the last two statements, let x G G be any point. 
Since G c P 5 is a quadric, by what we have seen the intersection Tx(G)n G 
is just the locus of lines in G through x. But if x'GG is any point whose 
corresponding line in P3 lx, meets lx, then x and x' both lie on the 
Schubert cycle a2l(p,h) of lines in P 3 through the point p = lx n lx- and 
contained in the hyperplane h = lx,lx.. Since o2](p,h) is a line, it follows 
that o2 \(p,h)—and hence x'—lies in the locus Tx(G)n G. The hyperplane 
section Tx(G)n G thus contains the Schubert cycle a,(/x) of lines meeting 
lx—but 0,(4) is itself a hyperplane section of G, and so we have: 

For any xGG 
Tx(G)nG = ai(lx). 

It follows that for any x,x'E G, 

lxnlx.*4>*>x'eTx(G) 
<t=* x,x' c G. 

We see from this that 

Any line L lying on the Grassmannian is a Schubert cycle <r2,i(P>h)-

For any two points x^x'£L, \ztp = lxP\lx, be the point of intersection 
of the corresponding lines and h = lx,lx, the plane they span; the line 
a2X{p,h) in G then contains x and x\ and so equals L. 

Finally, to see that 

Every 2-plane V 2 c P 5 contained in G is a Schubert cycle a2(p) or 
a,,,(h). 

Observe that for any point xGV2 the tangent plane section Tx(G)r\G 

contains V2, thus for xt,x2,x3 any three noncollinear points of V2, 

V2 cGnTXi(G)nTX2(G)nTX3(G) = {xGG: lxn lx,¥=0,i= 1,2,3}. 

But the line xfXj lies in V2 c G, and so the corresponding lines lx and lx 

must have a point/^ in common. Since by hypothesis xx, x2, and x3 do not 
all lie on a Schubert cycle a2A(p,h), we must have either 

1. Pu>Pi3' and^1 3 are distinct, in which case a line / c P 3 will meet lx , 
I , and lx if and only if / lies in the hyperplane h=pl2,p2i,pi3= lx,lx,lx; or 

2- P\2—Pii=P\^ m which case, since lx ,1 , and lx cannot be coplanar, 
a line / c P3 will meet lx , lx , and lx if and only if it passes through the 
point p=pl2. 

In the first case, V2 is contained in—hence equal to—the Schubert cycle 
a, x(h) of lines lying in h; in the second case V2 is contained in, and so 
equal to, the Schubert cycle o2(p) of lines through p. 
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We will henceforth write the Schubert cycles on G simply as a(p), a(h), 
o(/), and o(p,h). In particular, the Schubert cycle L = o(p,h) of lines 
through a point p and lying in a hyperpiane A c P 3 is called a pencil of 

lines. The common point p = f] lx of a pencil L is called its focus and will 

be denoted pL; the plane h = [J lx swept out by the lines of the pencil is 
JT6Z. 

called simply its plane and will be denoted hL. 
Note that we can write, for any x G G, 

Tx(G)nG = o(lx)= U *(/>)= U o(h), 
pel, AD/, 

and conversely, for any line LcG, 

G n D Tx(G) = o(pL)ua(hL). 
xeL 

We can get a nice picture of the relations among the Schubert cycles on 
G by considering again the locus TX(G)C\G. As we have seen, if V3<z 
TX(G) is any 3-plane not containing x 

GnTx(G)= U W, 
ySV,r\G 

i.e., G n TX(G) is the cone over the smooth quadric surface Q= V3f) G. 
(See Figure 5.) Now, Q has two families {LA}Xepi and {L'x}x<=p\ of lines 
on it, with two lines meeting if and only if they are of different families. 
Let L be any line of the first family. Then the 2-plane x, L spanned by x 
and L lies in G, and so must be of the form 

o(p), for somep G lx, 

or 
o(h), for some h D lx. 

Indeed, since two Schubert cycles a(p),a(p') intersect only in one'point, 
while for/?Glx c h the Schubert cycles a{p) and o(h) intersect in a line, we 
see that the 2-planes {x,Lx}Xep, spanned by x and the lines of one ruling 

Figure 5. Tx(G)nG. 
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must be all the Schubert cycles {o(p)}pei, while the planes {x,L'x}Xep, 
associated to lines of the second ruling must be the Schubert cycles 
{o(h)}h^,. Note that since the tangent plane Ty(Q) to Q at any point 
y G Q meets Q in the sum of two lines, one from each family, the 3-plane 
x>Ty(Q) meets G in the sum of a a(p) and a a(h), showing directly that 

°2\ = CTi,i + 02-

Line Complexes 
We have given, above and in Section 1 of this chapter, accounts of various 
cycles in the Grassmannian G(2,4) arising from the geometry of P3. Of 
interest classically was the converse problem: to describe the geometry of 
the family of lines in P3 cut out in G(2,4)cP 5 by hypersurfaces in P5. In 
particular, we define 

DEFINITION. A line complex of degree d in P3 is the three-parameter 
family of lines in P 3 corresponding to the intersection of the Grass-
mannian G(2,4)cP 5 with a hypersurface of degree d in P5. 

We consider first livar line complexes, that is, line complexes X=G n H 
given as the intersection of G with a hyperplane H c P5. If X is singular-
—i.e., if H= TX{G) is the tangent plane to G at some point x—then, as we 
have seen, the complex X is the Schubert cycle a(lx) of lines in P3 meeting 
lx. Suppose on the other hand that X is smooth. For each/>EP3, then, the 
set 

Xp = a(p) n H 

of lines of the complex X passing through p is either all of a(p), or a line in 
o(p). But the set of tangent planes 

{Tx(G))xea(p) 

to G at points of o(p) form the linear system of all hyperplanes containing 
a(p), i.e., any hyperplane containing a(p) is tangent to G. Thus Xp must be 
a line, that is, 

For each p E P3, the lines of X through p form a pencil a(p, h). 

Likewise, H cannot contain the 2-plane a(h) for any hyperplane hcP3, 
and so 

For each hyperplane h c P3, the lines of X lying in h form a pencil 
a(p,h). 

Here is another way to view this: any element w of A2C4 corresponds to 
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a skew-symmetric quadratic form 

T > , t/) = <o A t> A u ' e A4C4 = C; 

the corresponding linear line complex X = Hu n G is then given by 

x=[i=^y: r>,t/)=o}. 
If u = v/\v' is decomposable, then Hu is tangent to G at l=v,v', and 
X= Hun G is the Schubert cycle a(l); if, on the other hand, to is indecom-
posable, then the form Tu is nondegenerate and for any/> = [«] E P 3 

where the hyperplane A c P 3 is the kernel of the linear functional Tu(v, •) 
on C4. 

An amusing construction associated to a nonsingular linear complex 
X = G n H is the configuration of Mobius, defined as follows: Let T be any 
tetrahedron in P3, with sides hvh2,h3,h4 and vertices 

P, = n hj. 

For each /', let h\ be the plane of the pencil Xp = o(pj) n / / of lines of A" 
through ^, and p- the focus of the pencil Xh = a(A,-) n H of lines of X lying 
in A,-. Note first that the planes h- are linearly independent: if all four 
contained a point q, then all four points pi would have to lie in the plane 
swept out by the pencil Xq of lines of X through q; dually, the points {/?,'} 
are independent. Next, we observe that for any i^j the line htC\ hj is a line 
of the complex X, lying in hj and passing through the point p\. Thus 

p\ = n hj, 

i.e., the points {p[} are the vertices of the tetrahedron T' having sides {hj}. 
(See Figure 6.) 

The line complex X thus associates to any tetrahedron T in P3 a "dual" 
tetrahedron T* feofA inscribed in and circumscribed about T. 

Figure 6 
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This process, moreover, is self-dual: the tetrahedron associated to r* is T 
again. 

We now claim that conversely any such configuration of two 
tetrahedrons T and 7" inscribed in and circumscribed about each other 
determines uniquely a smooth linear line complex in P 3 : if T has sides {A,-} 
and vertices {/?,}, 7" sides {h[} and vertices {/?/} as above, then 7" will be 
the dual tetrahedron of T with respect to the complex X exactly when the 
lines 

L, = a(Pi,h;), 
and 

LI = °(p'„h,l 
in G all lie in X. But we have 

L,C\L}*0 f o r / ^y ; 
and 

L,. n L; = 0. 
The lines {L,},{L/} in P5 thus form the configuration shown in Figure 7, 
and so all lie in the 4-plane spanned by the points L\ n L3, L\ n L4, L'2 n 7.3, 
Lj n L4, and L3 n L2. On the other hand, no quadric surface Q = G n ^3 in 
P3 can contain such a configuration of lines:if Q were smooth, then 
clearly the lines {L,} and {L/} would belong to opposite families—but in 
that case L, and L\ would meet; if Q had rank three, all lines on Q would 
meet, and if Q were the union of two planes, any hyperplane containing V3 

would be tangent to G. Consequently the lines {L^L-} lie in a unique 
4-plane. In sum, we have proved the rather amusing result: 

The set of nondegenerate skew-symmetric quadratic forms on C4, up to 
multiplication by scalars, is in one-to-one correspondence with the set of 
tetrahedra inscribed in and circumscribed about a given tetrahedron T0 
in P3. 

J I 

) ' 

1 [ 

Figure 7 

/ = 1,2,3,4, 

1 = 1,2,3,4, 
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The Quadric Line Complex and Associated Kummer Surface I 

We come now to the main object of study in this chapter: the quadric line 
complex, defined to be the family of lines in P3 corresponding to the 
smooth intersection X = G n F of the Grassmannian G c P5 with a quadric 
hypersurface F. As in the case of the linear complex, our initial problem in 
regard to the quadric line complex is to identify the pencils of lines in X 
and to determine, for any point p and any hyperplane h in P3, the locus of 
lines in our complex passing through p or contained in h. We first check 
that 

Lemma. No 2-plane a(p) or a(h) lies in the quadric line complex X = 
F n G . 

Proof. We will give two proofs of this fact. First, in an elementary but 
rather special vein, we can argue as follows: if the quadrics F and G 
contained a 2-plane V2 c P5 in common, then the Gauss maps 

QF: F ^ P 5 * and §G: G->P5* 

would each map V2 isomorphically onto the set V\ of hyperplanes contain-
ing V2. But then the isomorphism 

g - ' o g c ; V2^V2 

would have a fixed point—i.e., for some x£V2 we would have TX(F) = 
TX(G), contradicting the assumption that F and G meet transversely. 

Alternatively, we see by the Lefschetz theorem on hyperplane sections 
that the generator of 

H2(X,Z) as H2(G,Z) a H2(P5,Z) 

is the restriction to X of the hyperplane class w in P5; in particular, that 
every surface on X has even degree. Note that this argument may be used 
in general to show that a smooth nondegenerate complete intersection of 
dimension n in PN cannot contain a linear subspace of dimension >n/2. 

Now, we deduce from the lemma that for each/?£P 3 the set 

Xp = X n a(p) 

of lines in the complex X passing through p forms a conic curve in a(p). 
There are three possible cases: 

1. F meets a(p) transversely, i.e., X is a smooth conic curve. The locus 
of lines in X through p will then be a cone through p over a smooth conic 
curve (Figure 8). As we shall see, this is the generic case. 

2. F is tangent to a(p) at a point, i.e., Xp consists of two pencils with 
focus p. In this case the locus of the lines in Xp will be two hyperplanes 
(Figure 9). 
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Figure 8 

3. F is tangent to a(p) along a line, i.e., Xp consists of one double line. 
In this case, the locus of X will be a single hyperplane (Figure 10). 

Dually, for every hyperplane A c P 3 the set Xh = Xna{h) of lines of X 
lying in h is a conic curve; again, there are three possible cases: 

1'. F meets a{h) transversely, so that Xh c a(h) is a smooth conic curve. 
The lines of X lying in h are thus the set of tangent lines to a smooth conic 
curve in h (Figure 11). 

2'. F is tangent to a(h) at one point, so that Xh consists of two pencils 
with plane h (Figure 12). 

3'. F is tangent to a(h) along a line. In this case, Xh will consist of one 
pencil in h (Figure 13). 

Let S c P 3 be the locus of points p £ P3 such that Xp is singular, i.e., such 
that case 2 or 3 above occurs. S is called the associated Kummer surface of 
the quadric line complex X; it may be thought of, in slightly different 
terms, as the set of foci of pencils of lines in the complex X. We denote by 
R c S the locus of points p E S such that case 3 occurs. We define the dual 
Kummer surface S* c P3* to be the locus of hyperplanes h E P3* such that 
Xh is singular, i.e., the set of planes in P3 swept out by the pencils of X; let 
R*cS* be the set of hyperplanes A G P 3 * such that case 3' above occurs. 
Inasmuch as the set of singular plane conic curves has codimension 1 in 
the linear system of all conies, and the set of double lines codimension 3, 
we would expect the varieties S and R to be a surface and a finite 
collection of points, respectively. That S is indeed a surface will be 
apparent from the following computations; that R is finite will emerge 
later. 

Figure 9 
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Figure 10 

Our first task will be to determine the degree of S. To this end, we offer 
a computation and a proof, as follows. 

1. Let lx c P 3 be a generic line of the complex X—which we will 
assume is not tangent to 5—and consider the locus lx n S. For every point 
pGlxnS, the line lx will be an element of one or both of the two pencils in 
our complex with focus p; in other words, x will lie on one or both of the 
lines of Fda(p). Conversely, of course, any pencil of lines in X containing 
lx has its focus on lx, and hence in lx n S. Thus, if we make the assumption 
that the generic line lx does not lie on two confocal pencils of X, the points 
of intersection of lx with 5 correspond exactly to the lines L on X through 
x. But we have seen that the locus of lines in G (resp. F) through any point 
x is just the intersection Tx(G)n G (resp. TX(F)(~)F), so the locus of lines 
in X = F n G through x is 

Tx(x)nx= Tx(F)nFn Tx(G)nG. 
Tx(X)CtX has degree 4, and—making the final assumption that it contains 
no multiple components—it must consist of four lines. We thus have 

d e g S = # ( / x n S ) = 4. 
Now, all the assumptions made about the generic line lx of our complex 

are in fact the case, but their verifications are best left until we know more 
about the complex. There is one point worth mentioning now, which will 
emerge from this computation once we have established that S is quartic: 
Since Tx(X)nX can never contain more than four lines, for any point 
p E S — R the line lx held in common by the two pencils in A" through 
p—that is, the line of intersection of the two hyperplanes comprising the 

a. 
Figure 11 
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Figure 12 

locus of X—can lie on at most two lines in X not on a(p). Thus lx meets S 
in at most three points and so must be a tangent line to 5. 

2. A more conclusive argument for the degree of 5 goes as follows: we 
first claim that for a -generic x E G, the surface 

U= TX(G)DX c P 5 

is smooth—this fact will emerge in a moment. Granting this, we recall 

GnTx(G)= U o(p) 
pel, 

so that the curves 

xP = °(P) n F c u 
form a linear system on U without base point. In fact, we see that 

degS = # ( / x n S ) =*{/>: Xp is singular} 

is just the number /i of singular curves in this pencil. Now the generic 
curve X is a smooth conic, with Euler characteristic 2, and if we take lx 

disjoint from R, all the singular curves X in our pencil will consist of two 
distinct lines, i.e., the pencil will be Lefschetz. By the general formula 

X(S) = 2x(Cx)-n + ti 

of Section 2, Chapter 4, we have 

x ( t / ) = 4 + / i . 
But U, being the smooth intersection of two quadrics in P4, is biholomor-
phic to P2 blown up five times (Section 4, Chapter 4) and so has Euler 

jWj 
Figure 13 
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characteristic 8. Consequently 

degS = fi = 4. 

In fact, this last argument gives us something more: it tells us that 5 is 
smooth away from the locus R. To see this, let q be any point of S— R. 
Then the hyperplane sections 

{Tx(G)nX}xSa(q) 

form a linear system on X; by Bertini's theorem, for generic xEo(q) the 
surface Ux=Tx(G)f\X will be smooth away from the base locus Xq = 
o(q)r\X of the linear system. If q&R, moreover, then each Ux can be 
singular only at the singular point of X—but the hyperplanes 
{Tx(G))xea(g) are exactly all the hyperplanes in P5 containing a(q), and so 
the generic one will not contain the tangent space to X at the singular 
point of Xq. We have thus shown that for lx a generic line in P3 through 
qGS — R, the surface Ux is smooth. The argument above then shows that 
lx meets S in four distinct points, and hence meets S transversely; a 
fortiori, it shows that q is a smooth point of 5. 

Note that all three of these arguments apply as well to show that the 
dual Kummer surface 5* is a quartic surface smooth away from the locus 
R*. In the first argument, we observe that the points of intersection of S* 
with the pencil / *cP 3 * of hyperplanes in P3 containing a line lx of our 
complex again correspond to the pencils in X containing lx, and hence to 
the lines LonA" containing x. Likewise, the second argument goes over, 
and indeed establishes an important point: given any line /XCP3 not 
passing through any points of R or lying in any hyperplanes of R*, we 
have two pencils on the surface U= T^(G)n X: 

{Xp = o(p)rMJ}pEI and {X„ = a(h)nU}„^. 

Both are Lefschetz, and so the number of singular fibers in each is 
X(U) — 4. But while the singular fibers of the pencil [Xp] correspond to 
points of intersection of lx with S, singular fibers of {Xh} correspond to 
points of intersection of the dual line /* c P3* of hyperplanes containing lx 

with S*. In particular, *(lxnS)<4 ^ # ( / * n S*)<4, i.e., lx is tangent to S 
;/ and only if 1* is tangent to S*. Now suppose pGS is any point, h = Tp(S) 
its tangent plane, and let/?* and h* be the hyperplane and point in P3 dual 
top and h, respectively. The dual lines {/*} to the pencil of lines {lx} in P3 

through/? and lying in h form the pencil of lines in P3* containing h* and 
lying in /?*, and they are all tangent to S*. Every element of the pencil 
{/*-5'*} they cut out on the curve p*n S* is therefore singular, and so by 
Bertini they are all singular at the base locus h* of {/*}, i.e., h*ES* and 
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p*=Th.(S*). We see, then, that 

S and S* are dual surfaces, 

that is, S* is the locus of tangent planes to S and vice versa. 

Singular Lines of the Quadric Line Complex 

The next step in our study of X is to introduce a subvariety 2 c A" closely 
related to the Kummer surface S. 

DEFINITION. For any xEX, the line lx is called a singular line of the 
complex X if it is an element of two confocal pencils of X—in other 
words, if a(p) is tangent to F a t x for some point/?£/,.. 

For/?G S — R, of course, there is a unique singular line through/?: the line 
of intersection of the two hyperplanes comprising the locus of X ; for 
p&R, any line lx of X through/? is singular. We denote by 2 c X the set of 
x G X such that lx is singular. 

We first check that no line lx is singular at more than one point, i.e., that 
if a(p) is tangent to F at x, then for q=£pElx, o(q) cannot also be tangent 
to F at x. But a(p)no(q)={x], so the linear span of a(p) and a(q) in P5 is 
all of TX(G); thus a(p) and a(q) cannot both be contained in TX(F)¥= 
TX(G). We can therefore define a map 

■n: 2 ^ S 
sending each x G 2 to the unique p G lx for which a(p) is tangent to F at JC. 
By what was said above, ir is one-to-one and surjective over S — R, with 
ir-[(p) = Xp = Pl forp<ER. 

2 is easy to describe, once we have the following characterization. 

Lemma. For x G X, 
x G 2 <=> TX(F) is tangent to G. 

Proof. Say TX{F) is tangent to G at x'. Then xG. TX(G), and so lx meets 
lx. at a point/?GP3. The plane a(p) is then contained in TX,(G)=TX(F), 
i.e., is tangent to F at x; thus x E l 

Conversely, if a(p)cTx(F), then the quadric threefold Tx(F)nG con-
tains a 2-plane and so by our earlier argument must be singular; thus 
TX(F) must be tangent to G somewhere. Q.E.D. 

This argument will become clearer if we refer back to our picture of the 
locus Tx(G)nG as the cone over a quadric Q=Tx(G)nG nH, H a 
hyperplane disjoint from x. (See Figure 14.) Recall that the 2-planes 
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Figure 14. Tx(G)nG. 

{a(P)}Pei lying in Tx(G)p\ G are spanned by x together with the lines of 
one of the rulings of Q, while the planes {o(/i)}A:3/ are spanned by x and 
the lines of the other ruling of Q. Now if TX{F) is tangent to G at some 
pointy, we may take j G H, so that the locus Tx(F)n Tx(G)n G consists of 
the two 2-planes a(p) and a{h) spanned by x and the two lines of 
intersection QnTx(F). (See Figure 15.) Of the four lines of Tx(X)r\X = 
Tx(F)n Tx(G)n G r\F, then, two will lie on the 2-plane a(p) and two on 
a(h). Conversely, if TX(F) is nowhere tangent to G, then the locus Tx(F)n 
Tx(G)Ci G will just be the cone over the smooth conic Tx(F)n Q, and no 
two of the lines of TX(X)C\ X will lie on the same 2-plane o(p)—unless, of 
course, F is tangent to Tx(F)n Q, i.e., Tx(X)n X contains a multiple line. 
(See Figure 16.) 

One corollary of our lemma implied by this picture is that the locus 
Tx(X)nX will contain two lines from the same a(p) if and only if it 
contains two lines from the same a(h): in other words, 

A line lx of our complex is singular—i.e., lies on two confocalpencils—// 
and only if it lies on two coplanar pencils. 

We can now give an explicit description of S c X . Let X = [x0,...,xs] be 
homogeneous coordinates on P5, and suppose that G and F are given as 
the loci 

(Qx,x) = 0 and (Q'x,x) = 0, 

T (G)nG n T (F) n F 

Figure 15. Tx(G)nG r\Tx(F) if xG2. 
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Figure 16. Tx(G)n G n TX(F) if xgS. 

respectively. Then, in terms of dual coordinates x* on P5*, the Gauss maps 
of G and F are given by 

x* — Qx and x* = Q'x; 

the dual hypersurfaces G* and F* c P5* of tangent hyperplanes to G and F 
are thus 

G* = ((**,£?- ,JC*) = 0 ) 
and 

F * = ( ( x * , 0 ' - ' x * ) = O . ) 

We see from this that for x E F, TX{F) will be tangent to G if and only if 

9A*) e G*. 
i.e., when 

The surface 2 C X is thus cut out by the quadric hypersurface 

H = ((Q'Q >Q'x,x) = 0). 

We claim now that in fact the intersection 
2 = f n G n / f 

is everywhere transverse. To see this, suppose that for some xGFnG C\H 
the hyperplanes TX(F), TX(G), and TX(H) were linearly dependent, i.e., that 
the points 

M * ) = Qx, § Ax) = Q'x, and §„(x) = Q'Q~xQ'x 

in P5* lay on a line. The three points 

x, x' = Q~lQ'x, and x" = {Q~xQ'fx 

would then likewise be collinear in P5; since all three lie on G, the line L 
they span would lie on G. But now the linear transformation 

M: xh^Q 'Q'x 

taking G into G takes x and x' (distinct, since by hypothesis Qx^Q'x for 
any x £ F n C ) into L, and so takes L into itself; thus L<zFnG. M must 
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have a fixed point y somewhere on L, i.e., for some yGL, 

Qy = Q'y-
But since LcF(~)G, this implies that F and G are tangent at y, a 
contradiction. 

Now that we have described 2 as the smooth intersection of three 
quadrics in P5, the reader will recognize 2 as a K-3 surface (Section 5, 
Chapter 4); in particular, 2 has numerical invariants 

Kx = 0, 9 (2) = 0, />g(2) = l, c?(2) = 0, c2(2) = 24. 

Inasmuch as 2 is minimal and smooth, moreover, the map 

2—» S 
is the minimal desingularization os S; and since the inverse images 
ir~\p) = X of the singular points pE.S in 2 are all smooth rational 
curves, having by adjunction self-intersection - 2 on 2, we see from our 
discussion of isolated singularities of surfaces that the points of R are all 
ordinary double points of S. 

It remains to determine the number *R of double points on S. We will 
do this first by an Euler characteristic argument, as follows: Let {hx} be a 
generic pencil of hyperplanes in P3—specifically, one such that for each 
p&R, p lies on a unique Hx and Hx is generic among hyperplanes 
containing/?; and such that the pencil [Hx n S) is Lefschetz on S— R. Let 

{Cx = v-\HX)} 
be the corresponding pencil of curves on 2. The generic curve Cx is 
isomorphic to a smooth plane quartic, hence has genus 3 and Euler 
characteristic - 4 ; Cx will be singular if Hx either contains a point/?£./? or 
is tangent to 5. (See Figure 17.) In the first case, we can write 

Q = Q + xp 

with—by taking Hx generic—Cx a smooth curve meeting Xp in two 
distinct points. Now Cx is the disingularization of the plane quartic Hxf)S 
having one double point at/?, and so has genus 2; since X is a line and 
meets Cx in two points, 

x ( Q ) = x ( Q ) = - 2 . 

In the latter case—when Hx is simply tangent to S—Cx is isomorphic to a 
plane quartic with one ordinary double point and 

x ( Q ) = - 3 . 
Thus if v is the number of tangent hyperplanes to S in a pencil, the pencil 
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Figure 17 

{ Q } o n S has exactly 

ix = v + *R 

singular elements. By the formula of p. 509, then, we see that 

X(2) = 2--4+p + 2*R 

But as we have seen the dual Kummer surface S* is the dual surface to S, 
so that 

v = deg5* = 4, 
and, since x(2) = 24, this yields 

*R = | (24 + 8) = 16. 

Another way to compute the number of double points of S is by 
Schubert calculus, inasmuch as *R will be just the number of points of 
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intersection of the three- and six-dimensional cycles 

T = {c(/ ' ) )peP! 

and 

wf = { A 2 c P 5 : V2F is a double line] 

in the Grassmannian G(3,6) of 2-planes in P5. We have seen that 
T ~ 4 a 3 , 2 , h 

where 

°3.2,i = ( A 2 C P 5 : A 3 / 7 , d i m ( A n F 2 ) > l , A c F 4 } 

for any point, 2-plane, and hyperplanepGV2c V4. To compute 

*(T-WF) = 4- # ( a 3 2 ,-wf.) 

let/?, V2, and V4 be generic, so that/?g F, F2 intersects F in a smooth conic 
curve C, and F4 intersects F in a smooth quadric threefold Q. Say 
AEwfno3t2,i> i-e., A is a 2-plane containing/?, having a line in common 
with K2, lying in V4, and meeting F in a line. (See Figure 18.) Then the line 
An V2 can meet C in only one point, hence must be one of the two 
tangent lines LUL2 to C through/? in V2. Let xl,x2 denote the points of 
tangency of LUL2 with C; the locus of lines on Q= F n V4 through x, is 
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just Tx{Q)n Q. Let If be a 2-plane in T (Q) containing p and not 
containing JC,; then F n U, is a smooth conic curve C, and TX(Q)(~)Q is 
just the locus of lines through x, meeting C,. A must therefore intersect Uiy 

i=l or 2, in one of the two tangent lines L^,^ to C, through /?; i.e., A 
must be one of the four 2-planes Ay spanned by L, and Lsj. Clearly all four 
2-planes Ay lie in uF(~) o32,^ so we see that 

(<>VCT3,2,l) = 4 

and finally 
(TCOF) = 16. 

Note that, since any line of the complex X lies in two confocal pencils of 
X if and only if it lies in two coplanar pencils, we can also define a map 

it': 2 —>S* 
by sending any point J C £ 2 to the common plane h&S* of the two 
coplanar pencils containing lx, or equivalently to the unique plane h D lx 

for which a(h) is tangent to F at JC. The map it' is, by virtue of the same 
arguments, the desingularization of S*; note, however, that the lines 
{Xh = ir'~,(h)}heR. of 2 lying over the double points of S* are not the 
lines Xp of 2 lying over the double points of S. 

For later use, we compute the Euler characteristic x(^)> as follows. Take 
a triangulation of 2 that extends a triangulation of it~\R)= uX . Then 
the images of the simplices in 2 not in it~'(/?), together with the points 
p G R as vertices, form a cell decomposition of S. Since, in the course of 
passing from 2 to S, we lose all the simplices in u X and gain one new 
vertex for each p, we have 

X ( S ) = X ( 2 ) - 2 ( X ( * , ) - 1 ) 
peR 

= X (2) - 1 6 = 8. 

Two Configurations 

There are two classical configurations associated to the Kummer surface 
S c P 3 and its desingularization 2 c P 5 . The first has to do with the 16 
double points of /S and may be described as follows. Letp0&R be any of 
the double points of S, let ^ be the blow-up of 5 at p0, and consider the 
map 

r: S—>P2 

obtained by projection from/>0 onto a hyperplane. The generic hyperplane 
section Ch of S through p0 is a plane quartic curve with one double point at 
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p0, its proper transform Ch(zS its desingularization. Ch thus has genus 2, 
and since r expresses Ch as a 2-sheeted cover of its image L = /i n P 2 « P \ r 
must be branched at exactly six points over L. The branch locus F c P2 of 
r is thus a sextic plane curve without multiple components. On the other 
hand, if A is a generic hyperplane passing through p0 and another double 
point pt of 5,_then the curve Ch, having two double points, is elliptic, and 
the map /•:<?,,—>P', expressing Ch as a 2-sheeted cover of P1, can be 
branched at at most four points other than r(pt). The generic line L c P 2 

through /•(/>,-) thus meets F at most four times away from /•(/>,), and so we 
see that the images p<= /•(/>,-) of the double points of S axe double points of 
F. 

Now, suppose the curve F has irreducible components /} of degree dt. 
Singular points of F then arise in two ways: either as points of intersection 
of components Ft, F- or as singular points of a component Ft. There are, of 
course, at most 2 , ^ 4 4 s m g u l a r points of F of the former kind and, by the 
result of Section 2, Chapter 4, at most 2 , ( ( 4 - 1)(4 —2)/2) of the latter. 
But we know that 2 4 = degF=6, and we have seen that F has at least the 
15 singular points /•(/?,■), / = 1,..., 15. From the chain of inequalities 

-K24)2-2f-2(4-i) 
= 1 8 - 3 - 2 ( 4 - 1 ) 

we conclude that 4 = 1 for all /', i.e., that F consists of the sum of six distinct 
lines Lj. F then has exactly the 15 double points L^Ly, these must, of 
course, be the images /•(/>,). It follows that each of the lines L, contains 
exactly five of the points r(/>,), and correspondingly that the plane p0, Lfl 
P3 contains exactly six of the double points pt of S. Our first observation, 
then, is that 

Through each double point p of S there pass six hyperplanes, each 
containing six of the points p{. 

Let us consider in more detail one of the hyperplanes h =p0, L found in 
the last argument. We note first that, inasmuch as L is part of the branch 
locus of the map r, every line through p0 in the plane h meets S in exactly 
one more point and is tangent to S there. It follows from Bertini's theorem 
that h is tangent to S at every point p G S n h, since otherwise the pencil cut 
out on Ch by the lines in h through p would be generically singular away 
from its base locus p. The curve Ch is thus a plane conic, counted with 
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multiplicity 2 in the intersection S-h. We see from this that the hyperplane 
h is a double point of the dual Kummer surface S * c P 3 ' : clearly h G S*, so 
that if h were not in R*, then X would contain two pencils lying in h, and 
through a generic point /> G Q there would pass two distinct lines of the 
complex. But the common line of the two pencils of X through each/7 G Ch, 
we have seen, is tangent to S at/7 and so lies in h; if X contained a secant 
line through p in h, it would follow that X contained the pencil a(p,h), 
hence all of o(h). Thus, X can contain a priori only one pencil in o(h), and 
sohER*. 

Finally, applying the same arguments to the dual Kummer surface 
S*cP3*, we see that every point h*ER* lies on six of the hyperplanes 
p*ER, or in other words every hyperplane h in P 3 corresponding to a 
point of R* contains six of the points /7,; in sum, then, we have that: 

Every hyperplane hGR* contains exactly six of the 16 double points o/S 
and every double point of S lies on exactly six of the 16 hyperplanes 
hGR*. 

This configuration of 16 points and 16 hyperplanes is called the (166) 
configuration. 

Now consider the K-3 surface 2 c P 5 . 2 contains 32 lines: the 16 lines 
{Xp}peR forming the inverse image ■JT~1(R) of the double points of S, and 
likewise the 16 lines {Xh}heR,; the latter may be thought of either the 
exceptional divisors of the desingularization 7r':2—>S* or as the inverse 
images {T~\Ch)}heR. of the 16 double hyperplane sections of 5. The lines 
{Xp} are, of course, all disjoint, as are the lines {Xh}; and from our last 
argument we see that each line Xp on 2 meets exactly six of the lines {Xh}, 
and vice versa. 

Note that these are all the lines on 2 : if L c 2 is any line, a(p,h) the 
corresponding pencil, then by definition every line lEo(p,h) belongs to 
two confocal pencils of A'. If the common focus of these two pencils is p 
for every /, then clearly a(p,h) = Xp, while if for generic lEo(p,h) the 
common focus of the pencils containing / is a point q¥=p G Ch, then clearly 
h cannot contain two pencils, and so a{p,h) = Xh. 

We wish now to describe a set of special hyperplane sections of 2 . To do 
this, we go back to the picture of the (166) configuration obtained by 
projection from a point p0ER. We saw that under such a projection, the 
15 remaining points of R_were mapped to the points of intersection of six 
lines L , , . . . , L 6 c P 2 ; let/>,y=L,--Zy and letpy be the point of R lying overpay. 
Choose three of the lines L,, L,, and Lk, and consider the lines on 2 
corresponding to the points p0, pip pjk, and pikER, and the hyperplanes 
/i,=/70L„ hj=p0Lj, and hk=p0LkER*; these form on 2 a configuration as 
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PijPjkPtk 

X, 
p„ ->)* 

Figure 19 

Pik 

shown in Figure 19. Note that these seven lines lie in the hyperplane in P5 

spanned by the points that are circled. Now in that hyperplane, X and 
Xp span a 3-plane, which must then meet Xp in a point; thus there is a 
line L c P 5 meeting X , X , and X . But since 2 c P5 is cut out by 

V Pjk 

quadrics, the line L, meeting 2 in three points, must lie in 2 ; since L meets 
lines of the form Xp on 2 , we must have L = Xh for some hER*; and since 
L meets XPr, Xpt, and Xpk, we must have h =piJpJkpik- Thus all four faces of 
the tetrahedron in P3 with vertices p0, pi}, pjk, and pik are hyperplanes 
h&R*. Such a tetrahedron will be called special; corresponding to a 
special tetrahedron we have a hyperplane section of 2 consisting of eight 
lines forming the configuration of Figure 19. Indeed, since we have one 
special tetrahedron passing through p0 for every choice of three lines 
Lt,Lj,Lk out of the six {L,}, every line X (and likewise every line Xh) on 2 
lies on 20 such hyperplanes. Finally, since we have 16 points pER, 20 
special tetrahedra containing each p as a vertex, and four vertices on each 
tetrahedron, we see that there are exactly 80 such hyperplane sections of 2 . 
In sum, then, 

The surface 2 c P 5 contains 32 lines, forming two families of 16 disjoint 
lines, with each line meeting exactly six members of the opposite family. 
There are 80 hyperplanes in P5 intersecting 2 in the sum of eight 
lines—four from each family—forming the configuration of Figure 19; 
and every line in 2 lies on 20 such hyperplane sections of 2 . 
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This configuration of 32 lines and 80 hyperplanes in P5 we will call the 
(322O808) configuration. 

This last discussion sheds some additional light on the (166) configura-
tion. In terms of our description of the 16 points of R above, we could a 
priori identify only six of the 16 hyperplanes of R*: the planes A,=/?0,L„ 
containing the pointsp0 and {/>/,},. We can now describe the remaining 10: 
as we saw, for each triple Lj,Lj,Lk of lines, the hyperplane hiJk=p~p~^p^E. 
R*; we want now to identify the remaining three points q^,q2,q-i of R lying 
on hljk. (See Figure 20.) To do this, we recall that the points pip pjk, pik, qv 

q2, and q} all lie on a conic curve, and hence so do their images p~, p~~k, 

p~k, !fu lf2, and ~q~y In particular, this means that no three of these points are 
collinear, i.e., that ~q^, ~q2, and ^ must lie off the lines L„ Lj, and Lk. These 
three lines, however, account for 12 of the 15 points {py}; consequently 
the points q{, q2, and q3 can only be the pointsp,m,pmn, a.ndpln. Thus, if we 
label the 16 double points of S by {p0,Pij} and the 16 double points of S* 
as {ht, hjjk = hlmn}, the incidence relationships are 

hi^{p0,Pij}, j¥=i, 
hijk ^ { Pip Pik> Pjk'Plw Pmm Pnt } . 

/70G/!„ i= 1,...,6, 
and 

Figure 20 
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3. LINES ON THE QUADRIC LINE COMPLEX 

The Variety of Lines on the Quadric Line Complex 

We now introduce a central variety in our study: the variety A = 
{LcPs:LcX)cG(2,6) of lines lying on the quadric line complex X. To 
show that A is smooth, we first compute its cohomology class in G(2,6). 
Recalling from Section 1 of Chapter 6 that the cycle T ( F ) C G ( 2 , 6 ) of lines 
in P5 lying on a quadric hypersurface is homologous to the Schubert cycle 

T ( F ) ~ 4 - a 2 , „ 
we see that the variety A = T ( F ) - T ( C ) represents the cycle 

A ~ 16(o2 ,-o2 ,); 
in particular, the intersection number of A with the Schubert cycles 

0 u ( K 4 ) = { L C P 5 : L c K 4 } 

and 
a2(V2)= { L c P 5 : L n F 2 # 0 } 

in G(2,6) is given, according to our reduction formulas, by 
it(A-°\.\) = 16(CT2II-O2I1-<TU)C(2I6) 

= 16 
and 

*(A-o2) = 16-(a2 ,-a2 ,-o2)G(26) 

= 16-(<T,-a,-a2)c(2i4) 

= 16. 
Thus we can write 

A ~ 16 a4 2 + 16 -33. 

Now, for any point a&A, we can find a hyperplane K 4 c P 5 containing 
the corresponding line LacX and intersecting X transversely (by Bertini, 
the generic V4 containing La meets X'— La transversely, and by direct 
examination we see that V4r\X is smooth along La for a generic such 
4-plane). But we have seen in Section 4 of Chapter 4 that any smooth 
intersection of two quadrics in P4 contains exactly 16 lines, so that the 
Schubert cycle o, , (F 4 )c G(2,6) will meet A in 16 distinct points, including 
a. Since *(A-a] , )= 16, it follows that A has intersection multiplicity 1 with 
a, ,(K4) at every point of a, , ( F 4 ) n ^ , and hence that a is a smooth point 
of A. 
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For every pencil LcX in the complex X, the focus pL of L is by 
definition a point of the Kummer surface S and the plane hL of L likewise 
a point of the dual Kummer surface S*; thus we have natural maps 

j : A -> S and / : A -> S* 
defined by 

y: L\->pL and / : L\-+hL. 

For pE-S — R, X contains two pencils with focus p, while for pER, X 
contains a single such pencil p; thus j expresses A as a double cover of S 
branched in the 16 points of R. Similarly, a hyperplane hES* — R* 
contains two pencils of X while a hyperplane hER* contains only one; 
thus/:,4—>S* is a double cover of S* branched at R*. Let 

t: A^A 
be the involution of A that exchanges the sheets ofj:A—>S, sending each 
pencil LcX to the unique other pencil of X confocal with L; let 

t': A —* A 
similarly be the involution exchanging sheets of j':A^>S*, sending each 
LcX to the other pencil of X coplanar with L. 

We can now describe A intrinsically. First, from the expression of A as a 
double cover of S branched in the 16 points of R, we see that 

X(A) = 2 x ( S ) - 1 6 = 2 - 8 - 1 6 = 0. 

We have seen that K^ — 0; let w be a holomorphic nonzero 2-form on 2. 
Let 77~'(w) denote the corresponding 2-form on (S — R) = 1.— UpeRXp. 
Then j*ir~'(to) is a holomorphic nonzero 2-form on A-j~xR and by 
Hartogs' theorem it extends to a global nonzero holomorphic 2-form on A; 
so 

KA=0. 

By Riemann-Roch, 

x(0,) = ^ = o, 

so q(A) = 2; and from the classification theorem of Section 5, Chapter 4, 
we recognize that 

A is an Abelian variety. 

The involutions i and i' are readily identified: Let zvz2 be Euclidean 
coordinates on C2, and consider the holomorphic 1-forms dzx,dz2 on A: 
the forms 

co, = dzi + i* dzf 
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are invariant under i*, and so we can write 
to, = j*wi 

for w,,w2 holomorphic 1-forms on S—R. {7r*w,}i=12 are then bounded 
holomorphic 1-forms on 2 — Upl=RXp; by Riemann's theorem they extend 
to all of 2 , and, since 2 is simply connected, it follows that co,=0. Thus 
i*dzt = —dZj, i.e., i is the standard involution of the Abelian variety A = 
C2/A induced by the map (z,,z2)i-»( — z,, - z 2 ) on C2; precisely the same 
argument shows that the involution i is likewise induced by the involution 
ZH* — z on C2, but with a different choice of base point. 

Curves on the Variety of Lines 

We wish now to consider curves on the Abelian variety A. To start with, 
recall that the Schubert cycle a, on (7(2,6) is given by 

a,(K3) = { L c P 5 : LnV3^0), 

and that a, is the hyperplane section of (7(2,6) under the Pliicker embed-
ding (7(2,6) ->P(A2C6). For any 3-plane V3cP5 we set 

Dy = Ano,(V3) 
= {LcX: LnV3^0} cA. 

The self-intersection of Dv on A is given by 
{DVDV)A = M-o,-C|)C ( W ) 

= 16+ 16 = 32. 
We claim now that for a generic 3-plane V, the curve DvcA is smooth. 

Note that this does not follow immediately from Bertini's theorem: the 
divisors {Dv} K c P5 are all linearly equivalent, but they do not form a linear 
system. Indeed, the complete linear system |cr,| of hyperplane sections of 
the Grassmannian (7(2,6) c P(A2C6) corresponds naturally to the protec-
tive space 

P(A2C6)* = P(A4C6); 
and the map 

G(4 ,6)^P(A 4 C 6 ) 
given by 

is just the Pliicker embedding of the dual Grassmannian (7(4,6) of 3-planes 
in P5. However, since the Schubert cycle 

°2.2.2.i( V2, V4) = { V3cP5: V2GV3cV,} 
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in G(4,6) has degree 

(a2,2,2, 1 ' ° I ) G ( 4 , 6 ) = 1 

under the dual Plucker embedding, the family 

{Dv}veo2a_2l(.y2,y4) 

of divisors on A is in fact a pencil. Now, as we have seen, through a 
generic xEX there pass four lines in X, comprising the locus X n TX(X). 
Let V2 be a generic 2-plane, meeting X in four distinct such points, and let 
V4 be a generic hyperplane containing V2, not containing any line on X 
meeting V2; consider the pencil {Dv}y.v cVcV on A. By Bertini, the 
generic element of this pencil is smooth away from the base locus. But the 
base locus of this pencil consists of the 16 lines of X passing through the 
four points of V2r\X, and the 16 lines lying in the hyperplane section 
V4nX of X—32 distinct lines in all. The base points of our pencil are 
therefore all simple points and hence smooth points of every curve Dv in 
our pencil. Thus the generic divisor Dv is smooth. Note that the genus of a 
smooth Dv is then given by 

A second family of curves on A, more fundamental than the curves Dv, 
are the incidence divisors BLcA, defined to be the set of lines on X 
meeting a given line L. More precisely—since it is not a priori clear when 
L itself is to be counted among the lines meeting L—we will define BL to 
be the closure in A of the set of lines L'E.A — {L) meeting L; the Levi 
theorem assures us that BL is analytic, and we will see later under what 
circumstances L0£BL. The curves {BL}LeA form a continuous, con-
nected family, and so all represent the same homology class on A. Since we 
can find 3-planes F 3 c P 5 intersecting X in the sum of four lines 
LUL2,L3,L4—for example, TX(X)—we see from this that 

Dv = BLi + BLi + BLi + BLt 

We have then 

BL-BL = ±Dy-Dv = 2 

and hence the virtual genus 

^CBj = ^ - ^ + l = 2 . 

Note also that since Dv is positive, so is BL. 
We claim now that for any LcX, the curve BLcA is smooth. To see 

this, we observe that if two lines L and U in X meet—i.e., if the 
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corresponding pencils have a line / in common—then the focus pL of the 
second pencil must lie on the line /, and hence on the plane hL of the first 
pencil. The map 

sending each line L c X to its focus pL thus maps the curve BL 

j : BL-*hLnS 

onto the hyperplane section hL n S of S; j \ B is clearly generically one-to-one. 
By the duality of S and 5"*, hL is tangent to S, so that for generic L the 
curve CL = hL n S is a plane quartic with one ordinary double point. By the 
genus formula, then, 

g(BL) = S ( Q ) = 2, 
so BL is smooth. (Note that since ir{BL) = 2 implies a priori that g(CL) = 
g(BL) is less than or equal to 2, this affords another proof that hL is tangent 
to S, i.e., that S and S* are dual.) 

Now, since BL is a positive divisor on A by the Lefschetz theorem the 
inclusion map on integral homology 

/*: H,{BL,Z)^Hx(A,-l) 

is surjective. But since BL has genus 2, 

H^{BL,T) = HX(A,Z) » zezezez ; 
so the kernel of / , must have rank zero; since Ht(BL,Z) has no torsion, this 
implies that the map i* is an isomorphism. Likewise, by Lefschetz the 
restriction map 

Hl-°(A)^Hl-°(BL) 

is an isomorphism, and so we have 

" - / / , ( ^ ,Z) / / , (5 L ,Z) H ^ } ' 
i.e., 

r/ie Abelian variety A « //ie Jacobian of the curve BL. 

Note that since the analytic representative BL of the cohomology class 
[BL]GH2(A,Z) is unique up to translations, all the curves B L c A are 
translates of one another. Hence all the curves BL are smooth, and A = 
£(5L)for any LGA. 

To relate the various curves BL on A, let L0 be one of the 16 lines in 
/ " ' ( / ?* ) and take L0 to be the origin in A. Since clearly 

i'(L) G BL for L ^ i'{L), 
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by continuity, 

so we can also take L0 as base point on the curve BL . Now, we saw in 
Section 6 of Chapter 2 that the theta-divisor of a principally polarized 
Abelian variety cannot be carried into itself by a translation other than the 
identity. Thus we may define a map 

K: A-+A ' 
by setting, for each L, 

BL = BLa+ K(L); 

our first problem is to identify K. This is not hard: since K ( 0 ) = 0 , by the 
result of Section 6 of Chapter 2, K is a group homomorphism. We have 

L'(L)£BL = BLO+K(L) 

for each L, and hence 
K(L) + LE-BLO= BLQ 

for each L. But the map LH>K(L) + L is again a group homomorphism, 
and since BLo+ BL =A, this implies that K(L) + L is constant, i.e., 

K ( L ) = -L 

or in other words 
BL = BL0 - L f o r a11 L-

We can now identify the line bundles j*H a n d / * / / associated to the 
maps j and / . To begin with, we note that for any hyperplane h c P3, the 
inverse image j*h in A is just the set of pencils LEU A with focus lying on 
the hyperplane section hn S of S.ln particular, if we take hGS*—so that 
h contains two pencils L and i'(L) from X—then j * h will consist simply of 
the set of pencils having a line in common with either L or t'(X)—i.e., 

j*h = BL u B,(L). 

(To avoid confusion, we will here use the union symbol u to denote 
addition of divisors.) Similarly, for any point p&S, the pullback j'*(p*) of 
the dual hyperplane p* c P3* of hyperplanes containing p will consist of 
pencils whose plane contains p—that is, of pencils having a line in 
common with either of the pencils L' and i(L') with focus p. Thus 

j"P* = BLU Bl(L). 

Now in general, for any two lines L and L' and any element \BA, the 
divisors 

BL u BL and (BL + X) u (BL. -X) 
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are linearly equivalent: the map 

A-*A =P ic° ( /0 
defined by 

\»[(BL+\)u(BL.-\)]-[BL\jBL.] 

sends the points A and X' — L-L'—X into the same point—but being a 
group homomorphism, this implies it is constant. Thus we can write 

j*h = BL u B,a) 

= ( 2 ? , o - L ) u ( B i o + L ) 
= 2^„ 

and 
j"H = BL u B,{L) 

= (BLo-L)u(BLo+L + li) 

for some fiGA, i.e., the line bundles j*H ' tf«rf j'*H differ by translation. 
Since by the theorem of p. 317, 

h°(2BL) = h°(2BLo + ^) = 4, 

we see that bothy a n d / are given by complete linear systems, it follows 
that 

The Kummer surfaces S and S* are projectively isomorphic. 

Combined with the fact that S* c P3* is the dual variety of S c P3, this 
proves that 

The Kummer surface S is self-dual. 

Two Configurations Revisited 

We may, by considering the Kummer surface S c P 3 and its desingulariza-
tion 2 c P5 as the images of the Abelian variety A, get a new slant on the 
configurations associated to these varieties. To see this, think of A as the 
Jacobian of the curve B = BL, and realize B as the locus of 

y2= R(x-\), 
/ = 0 

with /?, = (A,,0) the Weierstrass points of B. Then, since the hyperelliptic 
series on B contains the divisors 2ph the points 

p, = (Pi-p0)ePic0(B) = A, / = 0,. . . ,5, 
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are points of order 2 on A, as are the points 

ft, = (Pi+Pj-2Po) GA' \ < i<j <5. 

Inasmuch as the hyperelliptic series on B is unique, no pair Pj+Pj is 
linearly equivalent to another pair pk+pt, so the points ju,,^ are all 
distinct; these, then, are the 16 half-lattice points of A. The group law on 
the points fi,,ju.y is easily written down: clearly 

ft + ft = ft/> 
and since the meromorphic function 

on B has divisor 

we see that 

f{x'y) = 7~T7 
(x-A 0 ) 

5 

(/)= Sft-^o. 
i = 0 

ft + ft* ~ (Pi + Pj +Pk-
 3/>o) 

~(~Pl ~Pm + 2/>o) ftm = ftm 

for i,j,k,l,m distinct; and 

ft) + ftc/ ~ (Pi + Pj +Pk+Pl~ 4Po) 

~(-Pm+Po) ft* = ft«-

Note that the standard theta-divisor 
© = {(p-Po)- P^B) a A 

of course contains the six half-lattice points {ju,,}; likewise its translate 

eI. = e + ft. = {(/>+/>,-2/,0)} 
contains the six points ju0 = 0, ju,, and { ft,-}y-^oj a n ^ 

0 y = 0 + /xy. = {(p+Pi+Pj-3p0)} 

contains the six points ju,, ju,, jiiy, and {ju./m}/ m^,7 . Conversely, each of the 
half-lattice points ju,,ju.y lies on exactly six of the divisors 0 , , 0 y : 

jti,e6, 0 „ and 0 y forj + 0,/ 

and 

ju.y e 6 „ ©,, e y , and 0 W for k,l ^ i j . 

Now, we have seen that the mapj:A—>S from A to the Kummer surface 
S c P3 is given by some translate |20 + A| of the linear system |20| on A; 
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since |20 + A| is invariant under the involution JUH> — (i fixing the 16 points 
jUj,/iy, we must have A = 0. In particular, then, the divisors 20,, 20,^ are all 
elements of the linear series |20|; and being invariant under the involution 
/xi-> - n they are mapped 2-1 onto hyperplane sections of S, consisting of 
double conic curves. Each divisor 0,, 0^ contains exactly six of the 
half-lattice points of A; consequently each of the corresponding hyper-
plane sections of S will pass through exactly six of the double points of S, 
and every double point of 5 is contained in exactly six of these hyper-
planes, giving us the (166) configuration. 

Now consider the map p from A to the K-3 surface S c P 5 . p is given, as 
the reader may check, by the linear series of curves in the system |40| 
passing through the 16 half-lattice points of A, or more properly by the 
linear system 

|4TT*0 - 2 £,| 

on the blow-up A of A at the half-lattice points of A. The map is 2-sheeted, 
branched exactly at the 16 exceptional divisors £, of the blow-up. 

We first locate the 32 lines of 2 . Sixteen are obvious: there are the 
images Xp of the 16 exceptional divisors £,, each of which has intersection 
number 1 with the system |77*40-2£', | and maps 1-1 onto a line in P5. 
The other 16 are the images in P5 of the proper transforms of the 
theta-divisors 0,,0y on A. Each of these has intersection number 8 with 
77*40, and, meeting six of the exceptional divisors £,, intersection number 
2 with 7r*40-S£' , ; being invariant under the involution fixing the half-
lattice points, it maps 2-1 onto a line in P5. 

Now, by the same argument as before, for any A„ A2, A3, and \4&A the 
divisor 

( 0 + A,) u ( 0 + A2) u ( 0 + A3) U (© + A4) 
will be in the linear system |40| if and only if 2A, = 0. In particular, we see 
that the system |4©| contains the 80 divisors 

a0;=0U0,U0,U0y (Ki<j<5), 

Pijk = aJk + M, =©, U 0 y U 0 „ U 0 / m ( 1 < / < 5; 1 < j < k < 5), 
yiJ=QlJu@ku@lu@m ( ! < / < ; < 5), 

SU = Yir + \h = 0 < U % U 0,, U 0 m ( 1 < i < 5 ,1< j < 5), 
*& = Y/m + ^ =® U 0 y U 0 * U ©,* (1 < i < j < k < 5). 

Each of these divisors contains all 16 half-lattice points, and each 
contains exactly four of them with multiplicity 3: three of the four 
components of atj, for example, pass through each of jm0, \it, (ij, and ju.̂ , 
while three components of y0 pass through each of (ik/, ju/m, fikm, and ju0; the 
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Figure 21 

remaining divisors BiJk, S0, and eiJk are all translates of these two types. The 
corresponding elements of the linear series |w*40 —2£,-| on'A thus all 
consist of four of the curves 0,, ©,-, and four of the exceptional divisors £, 
taken with multiplicity 2; and the corresponding hyperplane sections of 
2 c P 5 consist of eight lines forming the configuration of Figure 19. These, 
then, are the 32 lines and 80 hyperplanes of the (3220808) configuration on 
'2. 

The incidence relations among the 16 theta-divisors @0, ©,,©,■, and the 16 
points /x0,ju„jLiy (that is, among the points and planes of the 166 configura-
tion, or among the 32 lines on 2) are diagramed in Figure 21. 

The Group Law 

We will now give an abstract representation of the curves BL, which will 
allow us both to identify BL (and hence A = j(BL)) and to describe 
geometrically the group law on the variety A of lines of X. 

First, we consider not just the two quadrics F and G in P5, but the entire 
pencil {Fx} spanned by F and G, that is, the pencil of all quadrics in P5 

containing A'. 
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We define a map 

■n: BL^VX 

as follows: for any line L'cX meeting L, let A = L,L' be the 2-plane 
spanned by L and L'. There is then a unique quadric FA(i / ) in the pencil 
[Fx] containing the 2-plane A. To see this, let q&A be any point of A 
lying off L and L'. (See Figure 22.) q is then contained in some quadric 
F\{L)—but FK(Ly containing L, L', and q, has three points of intersection 
with any line L" in A through q, and so contains L"; thus FX(V) contains 
A. FX(L) is clearly unique; if A lay on two quadrics of the pencil Fx, it 
would be contained in X; but X, as we saw, contains no 2-planes. We may 
thus define the map -n by sending any line L' G BL to X(L'). 

Now let Fx be any quadric in our pencil, and consider the inverse image 
71-~'(A). If A is any 2-plane in Fx containing L, then the intersection of A 
with X—that is, the intersection of A with any second element F of the 
pencil—will consist of L plus a second line L'; the inverse image w~'(A) 
thus corresponds to the 2-planes in Fx containing L. There are two 
possibilities: first, if Fx is smooth, then, as we have seen, the 2-planes on Fx 

fall into two connected three-dimensional components. Now if p G L c Fx 

is any point of L, the intersection Tp(Fx) n Fx will be a cone over the 
smooth quadric surface Fx cut out on Fx by any 3-plane in Tp(Fx) missing 
p, and the 2-planes on Fx through the point p will be spanned by the lines 
on Fx together with/?. Since there are two lines on Fx containing the point 
LnFx, there will be two 2-planes on Fx containing L, one from each 
family. Suppose, on the other hand, that Fx is singular. Inasmuch as 
X = FxnF/JL is smooth, the singular locus of Fx must lie outside FM; in 
particular, it follows that the singular locus of Fx is only a point q, and that 
Fx is the cone through q over a smooth quadric Fx in a P 4 c P 5 . In this 
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case, the 2-planes on Fx will form a single irreducible three-dimensional 
family: namely, the 2-planes spanned by q together with the lines on FA; 
and the 2-plane q, L will clearly be the only 2-plane in Fx containing L. 

We see then that the map ir: BL-^P' expresses BL as a 2-sheeted cover of 
P1, branched at the points of P1 corresponding to the singular quadrics in the 
pencil {FA}; indeed, all the curves BL may be naturally identified with the 
abstract curve B of irreducible families of 2-planes in the quadrics of the 
pencil {Fx}. 

To be explicit, suppose that our original pair of quadrics G and F are 
given as the locus of two symmetric quadric forms Q and Q'. We can, of 
course, take Q to be given by the identity matrix, and by standard linear 
algebra we may at the same time diagonalize Q'; i.e., we may take 

G = ( 2 * , 2 = 0 ) and F = ( 2 M f , 2 = 0 ) . 

The singular elements of the pencil 

^ = (io(A-w2=o) 
are then the six quadrics Fk,...,Fx. The map IT is thus branched at the six 
points A0,...,A5; and consequently 

The variety A of lines on the quadric line complex X given as the 
intersection of the two quadrics 

G = (I,X,2 = 0) and F = ( 2 W = o) 

is the Jacobian of the curve expressible as a double cover of P1 branched 
at the six points X0,... ,X5. 

As promised, we can now describe geometrically the group law 'on A. 
There are basically two ingredients in this construction. The first is to note 
that the sum on A of four lines comprising the intersection of X with a 
3-plane V is constant. This is because if VX = L{ + L2 + L3 + LA, then by 
the argument of p. 784 we may write 

Dv = BLju BLiU BL}U BLt 

= {BL~ LX) U (BLO-L2) U {BL- L,) U (BL- L4) 

= 3 5 L o U ( A 0 - L , - L 2 - L 3 - L 4 ) . 

Since all divisors Dv are linearly equivalent, and since no translation of A 
fixes BL , it follows that the sum L, + L2 + L3 + L4 does not depend on V. 
Choose as the origin in A & line L0 with 4L0~DV, so that the sum of any 
four lines on 5 lying in a 3-plane is zero on A. 
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The second point is to identify the isomorphism 

of BL and BL given by translation on A. To do this, consider the set of all 
isomorphisms 

since BL can have only finitely many automorphisms, the set {yL} L forms 
an unbranched covering of A, of which the isomorphisms {tLa_L} form 
one sheet. But we can also define for each L an isomorphism <p2 'BL-^BL 

via the natural identification of both BL and BL with the abstract curve B 
introduced above; since (pL = /0 = id., it follows that <p2 = tL _L for all L. 

Now suppose we are given two lines L, and L2 in X, and we want to find 
their sum L, + L2 in A. 

The first step is to express L, as the sum of two points on the curve BL . 
This is easy: L, and L0 together span a 3-plane V in P5, which will 
intersect X in L0 and L, plus two additional lines M, and M2 meeting L0 
and L,; we have 

L, = -Mt-M2 

in A. (See Figure 23.) The second step is to translate the points MVM2EA 
by L2; this is done by identifying the curves BL and BL via the abstract 
curve B, as follows: each of the lines Af, and M2 determines, together with 
L0, a unique quadric F^ in the pencil spanned by F and (7, and an 
irreducible family of 2-planes in F^. In that family of 2-planes, moreover, 

to 

Figure 23 
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there will be a unique element A, containing L2; if we let A/,' be the 
remaining line of intersection of At with X, then as we have seen, 

M; = M, - L2. 

Finally, the lines L2, M[, and M2 span a 3-plane F ' c P 5 that will 
intersect S in L2,M[,M2, and a fourth line L3. We have then 

L3= -M[ - M2- L2 

= -Mx- M2 + L2 

= L, + L2 

in A; this is the group law. 

4. THE QUADRIC LINE COMPLEX: REPRISE 

The Quadric Line Complex and the Associated Kummer Surface II 

We return now to the geometry of the complex X of lines in P3. Our 
starting point this time around is the question: which lines lx of our 
complex are tangent lines to the Kummer surface 5? To answer this, we go 
back to our initial computation of the degree of the Kummer surface: 

Let lx, x G X, be any line of the complex. Then for any point p G lx n S of 
intersection of lx with S, lx will be an element of one or both of the pencils 
of lines in the complex through the point/?—that is, the point x £ l will lie 
on one or both of the lines of Xp = a(p) n F; and conversely, for any line 
L c X containing x, the focus pL of the corresponding pencil of lines in P3 

must by definition lie in lx n S. Now the locus 

TX(X )nx=Tx(G)nGnrx(F)nF 
of lines on X passing through the point x has degree 4. We concluded, 
then, if lx did not lie on any pair of confocal pencils, and if Tx(X)nX 
contained no multiple components, that lx met S in four distinct points. 
We have since seen that the degree of S is indeed four, and so we can now 
invert our argument to obtain the characterization: 

For any x G X, the line lx will be tangent to S // and only if either 

1. lx is a singular line, i.e., it is held in common by two confocal 
pencils; or 

2. the intersection Tx(X)nX contains a multiple component. 

We have already seen that the locus 2 c X of singular lines is the smooth 
intersection of X with a quadric hypersurface in P5; we turn our attention 
now to the second possibility. Now we notice something unexpected: the 
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intersection of TX{X) with X will fail to be transverse—that is, fail to 
consist of four distinct lines—everywhere along a line L c X if the intersec-
tion 

Tx(X)nTy(X) = Tx(F)nTy(F)nTx(G)DTy(G) 

is two-dimensional for all y G L. But the family of hyperplanes 

forms a pencil, as does the family {Tx(G)}xeL; thus for any x¥=x'GL, 

Tx(G)nTx(G)= D Ty(G) 

and 

Tx(F)nTx,(F)= H Ty(F). 

This says that the intersection 

Tx(x)nTy(x)= n TX{X) 

will be two-dimensional for any pair of distinct points x,y G L if and only 
if it is two-dimensional for all pairs X J £ J L ; in other words, the line L will 
be a multiple component of the intersection Tx(X)r\X for some xGL if 
and only if it is for all x G L, if and only if the locus 

n TX(X) 
x£L 

contains a 2-plane. In this case, all the lines {lx}xeL of the corresponding 
pencil will be tangent to S; thus we see that 

A line lx of the complex X, other than a singular line, is tangent to S if 
and only if it lies on a pencil of lines of X all tangent to S. 

Note that if L c X is any pencil of lines, all tangent to S, then by Bertini 
they must all be tangent at the focus pL of the pencil, i.e., the plane hL of 
the pencil must be the tangent plane to S at pL. We may thus make the 
following definition: 

DEFINITION. A line L c X is called special if, equivalently, 

1. dim(n; t e Lr ; c(A')) = 2; or 
2. the locus Tx(X)nX of lines in X through a generic point xGL 

consists of fewer than four lines; 
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3. hL= TPL(S), i.e., all the lines { I J ^ , , are tangent to S atpL. 

Let D c A be the set of special lines of X, and 

A = U LcX 
Led 

the locus of all special lines. We can also write 

A = { x 6 l : Tx (X) n X contains fewer than four lines} 

and 
{xCX: /x is tangent to S } = 2 U A. 

To find the degree of A, we make a second computation for the genus of 
the curve 

Dy= {LcX: LnV3^0} C A. 

Note that the generic V3 c P5 meets X in a curve E c V3 that is the smooth 
intersection of two quadrics on K3=s P3. By the adjunction formula, E is an 
elliptic curve. Since E contains no lines, every line L c X meeting E meets 
E in only one point, and so we may define a map 

T: D = {LcX: I n V3¥^0} -* E = V3n X 

expressing D as a fourfold branched cover of E. Now 
# £ = 0 

and, as we have seen, the generic curve Dv is smooth, so 
degtf0 = 32; 

thus the map T must have 32 branch points. But the branch locus of r in £ 
is just the set of points xCE having fewer than four lines through them; 
thus 

degA= # (A-F 3 ) p 5 = 32. 
Similarly, this argument yields 

*(DVD )A = 32, 
hence 

*{BL-D)A=\*{DV-D)A=% 

and likewise 

*{^L)X = 8. 
We are now in a position to sketch a picture of the generic pencil L of 

the complex X in relation to the Kummer surface S. Assume that neither L 
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nor its coplanar pencil L' = i'(L) is special, and let 

hL = hL, be the plane of the pencil [lx}xeL, 
pt ,pL, be the foci of the pencils L and L', 
CL = hLnS, 

AB,'- BL~+CL 

the map sending a line M cX meeting L to the focus pM of the corre-
sponding pencil, and 

y: BL^L 

the extension of the map from BL- {L) to L sending ea"ch line M^L&BL 

to its point of intersection with L. Note that y can be realized as the 
composition of j \ B with the projection fnap of CL from "the point pL. 

To start, we note that the pencil {lx}xeL contains 10 tangent lines to S: 
two singular lines corresponding to points of intersection of L with 
2 = X n H, and eight nonsingular tangents, corresponding to the eight 
points of intersection of L wi.th A. (In fact only eight of these lin-
es—namely the eight nonsingular tangent lines—correspond to honest 
branch points of the map y: BL-±L.) We can locate the two singular lines 
in the pencil L readily enough: first, the common line of the pencil L and 
its confocal pencil i(L), i.e., the tangent line to CL alpL. Second, we have 
seen that a line lx of the complex lies in two confocal pencils if and only if 
it lies on two other coplanar pencils, so the line J>Lj>L held in common by L 
and its coplanar pencil L must be the second singular line of the pencil L. 
(See Figure 24.) In particular, we see that the line p,pv meets S in just one 
point q other t h a n ^ and/>r. 

Figure 24 
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We can now identify the singular point q'&CL. Clearly, the lines pL,q' 
and pL,q' are both tangent lines to 5; we claim that in fact 

Pua' = Pi.-, 4 -
i.e., 

q = q 
is the singular point of CL. This is clear: if pL,q' and pv,q' were distinct 
and nonsingular, then they would necessarily lie in one special pencil, 
which could only be the pencil of lines through q' in hL—but L* and L' are 
the only pencils of X in hL. On the other hand, through a point q'^R in S 
there is only one singular line of X, and so we must have pL,q'=pL-,q. Thus 
in general, if hES* is any hyperplane and L,L' the two pencils of X in h, 
h is tangent to S at the focus of the two confocal pencils of X containing the 
singular line p L ,p L . 

Dually, of course, for p e S any point, L and L' = i(L) the two pencils of 
X confocal at p, 

The tangent plane to S at p is swept out by the two coplanar pencils of X 
containing the singular line hLnhL.. 

Note in particular that the map 
j - BL->CL 

is one-to-one at pL, and that 
ML)) = pL. 

It follows from this that BL — {L} is closed, and hence that 

L€BL 

for L a nonspecial line. This, finally, gives us the means to describe the 
divisor D cA of special lines o n l . Let 

D' = [L&A : L<=BL). 

Then we have 

D' = {L: LGBLo-L) 

= {L:2LEBLo} 

where m2: A -*A is the map multiplication by two. In particular, 

*(D'-BLo) = 4(BL-BL) = S. 
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Now, since no nonspecial line L is an element of D', 

D' c D, 
i.e., D-D' is an effective divisor on A. But we have seen that 

(DBL) = 8, 
and so 

((D-D')BL) = 0; 

since BL is positive and D — D' effective, this implies that 

D-D' = 0. 
In sum, then, 

A line L c X is special if and only if LGBL; the divisor D c A of special 
lines is the pullback m*B, of BL under multiplication by two. 

Rationality of the Quadric Line Complex 

We now shift our focus to consideration of the quadric line complex 
X = FnG as an abstract variety. In particular, we want to consider, for 
any line L\jX, the rational map 

fL: X-L-^P3 

obtained by projection from L onto a complementary 3-plane V3 c P5- We 
claim first that f, is a birational isomorphism of X with P3. To see this, 
simply note that if any 2-plane K 2 c P 5 containing L contains two points 
p¥^q of X not on L, then the line p~q<zV2 must meet X in at least three 
points—p, q, and the point of intersection ~pq u L—and so must lie in X. 
(See Figure 25.) Thus the map fL is one-to-one away from the locus of lines 
in X meeting L; this is sufficient to establish tha t / t is birational. 

A closer examination of fL, in fact, tells us a good deal more about X. 
To begin with, note that if 

m: XL->X 

is the blow-up of X along L and F=TT~1(L)CXL the exceptional divisor of 
the blow-up, then fL may be extended to a holomorphic map 

by sending a point (p,rj)GF, corresponding to the normal vector t] to L at 
p, to the point of intersection of V3 with the 2-plane spanned by L and any 
line through p representing the vector TJ—since -q is defined as a tangent 
vector to X at p modulo tangent vectors to L at p, this is well-defined. 

Now let £ L c P 3 be the image under fL of the locus u L-<=BLL' of lines in 
X meeting L, and let Q c P 3 be the image fL(F) of the exceptional divisor 
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Figure 25 

of XL. EL is a curve naturally isomorphic to BL, and we can compute its 
degree as follows: for any hyperplane F 2 c F3, the points of intersection 
F2 n EL will correspond to the lines in X meeting L and lying in the 
hyperplane L, F2 c P*5- But for generic V2, the hyperplane section L, V2 n X 
is the smooth intersection of two quadrics in 4-space, and we have seen 
that each of the 16 lines on such a surface meets exactly five other lines on 
the surface. Thus EL is a quintic space curve. The image Q of F, on the 
other hand, is readily seen to be a quadric surface—in fact, it is just the 
intersection of F3 c P5 with the quadric hypersurface 

U TX(S). 
xeL 

The m a p ^ is best understood by cases: for each point rG F3, let V2(f) 
be the 2-plane spanned by r and L, and write 

GV2(r) = L + Lx, F- V2(r) = L + L2. 
There are then a number of possibilities: 

1. Generically, L, L„ and L2 are all distinct, and L, meets L2 at a point 
pEX not on L. (See Figure 26.) In this case V2(r) will not be tangent to X 
anywhere along L, so 

2. In case L,, L2, and L are again distinct, but have a pointpGL in 
common—i.e., F2(r)n X=L—we see that V2(r) is tangent to X exactly at 
p. (See Figure 27.) The point r is thus the image of the point /■(/>)£ F on 
the exceptional divisor of XL corresponding to the normal vector to L c X 
atp lying in F2(r). 
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Figure 26 

3. In case Lt = L¥= L2—or similarly L2= L^=LX—we see as in the least 
case that V2(r) is tangent to X at the point p of intersection of L with L2 
(resp.L,). (See Figure 28.) r is thus the image of the normal vectors to 
L c X alp lying in V2{r). 
_ 4. If Lx = L2i=L, then clearly r is the image of the proper transform in 

XL of the line L, = L2 c X. (See Figure 29.) 
5. The final possibility is L^ = L2 = L. This can occur only when L is a 

special line and 

xez. 

In this case, V2(r) contains a normal vector to LdX at each point of L, 
and the map / L sends the curve consisting of these normal vectors to the 
point r. 

Figure 27 
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L = L, 

Figure 28 

Suppose now that the line L of projection is not a special line. Then by 
the above, the map/^ is one-to-one away from the proper transforms in XL 

of the lines on X meeting L, and maps each of these proper transforms 
onto the corresponding point of EL, i.e., that 

is the blow-up of the quintic curve ELcP3- We can identify one of the 
rulings on the quadric Q—fL(F): first, for every xEL, the image under fL 

of ir~x{x)cXL is just the line V3f) TX(X) lying on Q. Note that since L is 
nonspecial, for x¥=x'&L, TX(X) meets TX.(X) only in L, so that the 
corresponding lines fL(ir~}x) and fL{IT~~ xx') are disjoint; thus Q is a smooth 
quadric. Two of the lines in the second ruling are also visible: at each point 
p&L, one normal vector t o L c ^ will lie in the 3-plane nxeLTx(G), and 
the images of the points of FcXL corresponding to these normal vectors 
will be the line (C\xSLTx(G))r\ V3 in Q; similarly the intersection of V3 

with DxfELTx(F) will be a line of the second ruling in Q. Note that the 

Figure 29 
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lines of the first ruling—the fibers of the blow-up w: XL-*X—each meet 
EL three times, while the lines in the second ruling meet EL twice. 

The situation is slightly different in case L is a special line of X. Now all 
the lines {fL(^"lx)= F 3 n Tx(X)}xeL on the quadric Q have in common 
the point 

P=v3n D TX(X) 
xeL 

corresponding to the 2-plane tangent to X everywhere along L. Thus Q is 
singular—it is the cone over a conic curve, with vertex p. Away from the 
inverse image fjTx(p),fL is as before one-to-one except on the locus of lines 
in X meeting L and as we shall see later, the vertex p of Q lies in the 
closure EL of the image of this locus. Thus/L : A^—>P3 is again the blow-up 
of the curve EL. (Recalling that a special line L c X is to be counted among 
the lines meeting L, we may think of the line/L~'(/7) of points correspond-
ing to normal vectors to LcX in nxBLTx(X) as the "proper transform of 
L" itself in the blow-up XL of X). 

In either case, then, we have seen that the birational map/^X—>P3 

consists of the blow-up of the line LcX, followed by the blowing-down of 
the proper transforms in XL of the lines in X meeting L. In reverse, then, 
the quadric line complex X is obtained by blowing up the quintic curve 
EL c P3 and blowing down the proper transform of the quadric Q containing it 
{more precisely, the proper transforms of the family of trichords to EL) to a 
curve. 

One question that arises in this context is: what is the hyperplane bundle 
on the curve EL1 Explicitly, we have seen that for every line L EL A on the 
quadric line complex, we obtain an embedding £" L cP 3 of the curve B. 
Accordingly, we may define a map 

p: A=UB)-+HB) 
by sending each line LEA to the class of the hyperplane bundle on 
B s ^ c P 3 ; we ask now for a description of the map p. 

To answer this question, we argue as follows. First, we note that the 
linear system associated to any divisor D of degree 5 on the curve B gives 
an embedding of B in P3 P3 as a quintic curve ED (Section 1, Chapter 2). 
Second, since by Riemann-Roch 

h°(2D)= 1 0 - 2 + 1 = 9 
and the vector space / /°(P3 ,0(2/ / ) ) of quadrics on P3 has dimension 10, 
the restriction map 

/ / ° (P 3 ,6 (2 / / ) ) -» H°(B, e(2D)) 
must have a kernel—i.e., ED must lie on a quadric surface Q inP3. Since 
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ED is nondegenerate of degree 5, moreover, we see that the quadric Q is 
uniquely determined by ED. 

Suppose first that Q is a singular quadric, i.e., Q is the cone pC 
over a_smooth conic curve C. Q then contains a single family of lines 
{Lq—pq}qeC; since any two of these lines comprise a hyperplane section 
of Q, it follows that ED contains the vertexp of Q and every line Lq<zQ 
meets ED in two points other than p. But now the divisors 

Dq = LqED-p 

form a linear system of degree 2, and so Dq must be the standard 
hyperelliptic divisor D0 on B. Thus the divisor D = HED on B is of the 
form 

D = 2D0+p. 

Conversely, suppose that D is of the form 2D0+p for some/?E C. Then 
the divisors 

{p + D0+Dx)D^Do 

are all hyperplane sections of ED c P3, and so p must be collinear with the 
points of D0. The lines LA = {pDx}DK^DO, containing three points of ED, 
must lie on the quadric Q; it follows that 

is a singular quadric with singular point/?. 
We have seen then that among all divisors D of degree 5 on B, the 

divisors for which ED = iD(B) lies on a singular quadric are exactly those of 
the form 2D0+p. Now the set of such divisors forms a translate of the 
theta-divisor 0 on $(B). But by what we have said, the inverse image p '0 
of lines LGA such that EL lies on a singular quadric is just the divisor 
D cA ss j.(B), i.e., up to translation 

p*0 = § = m2*0 

it follows—at least in case B has no automorphisms other than the 
hyperelliptic—that, up to translation, the map p is simply multiplication by 
two. 

One point that emerges from this discussion is this: since p is surjective, 
the quadric line complex X is determined by the curve B. Indeed, we can 
give an explicit recipe for the reconstruction of X from B: first embed B in 
P3 as a quintic ED—by the above, it will not matter what divisor D we 
employ for the embedding. Then blow up P3 along the curve ED, and blow 
down the family of proper transforms in P^ of the trichords of ED into a 
curve. (Note that if D and D' are two divisors of degree 5 on B, not linearly 
equivalent, then P | will not in general be isomorphic to P| . ; they 
become isomorphic only after we blow down the trichlords to ED and ED,, 
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respectively). In particular, since B is itself determined by the Abelian 
variety A. 

The quadric line complex X is determined up to isomorphism by the 
abstract variety A of lines lying on it. 

Note, incidentally, that the preceding gives us another characterization 
of the special lines on X: for any line L c l w e have aC°° decomposition 
of vector bundles on L: 

T(P5)\L = NX/P>W®NL/X®T(L). 

Now we have 

c,(r(P5))L = 6, 
C\(NX/P>\J = ci(NF/f\J + C,(jVc/ps|t) 

= 2 + 2 = 4, 

and of course 
c , ( r (L)) = 2; 

it follows that 
^(NL/s) = 0. 

Thus, by our classification (Section 3, Chapter 4) of vector bundles on P1, 
we can write 

NL/X = H"®H-", n > 0, 
where H is the hyperplane bundle on L s P 1 . If L is nonspecial, then we 
have seen that 

P(NL/X) = P ' x P ' 

and it follows that n = 0, i.e., the normal bundle of L in X is trivial. On the 
other hand, if L is special, then P(NL/X) is the ruled surface S 0 2 = P ( # m 

®Hm+2), and so 

Thus we see that //ie special lines L c X are exactly the lines in X having 
normal bundle H © H ~ ' in X; the nonspecial lines in X are exactly the lines 
having trivial normal bundle. 

If we use the intermediate Jacobian J{X)= H\X, UH3(X,Z) defined on 
p. 331, then many of the results of this chapter may be summarized as 
follows: 

The intermediate Jacobian J(X), together with its principal polarization 
determined by the intersection form on H3(X, Z), is biholomorphic to the 
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surface A of lines in X with the corresponding polarization on A being 
given by the incidence curve B. 

In general, if X is the transverse intersection of two smooth quadrics in 
P2" + l, then the set A of Pn~' 's contain in X has the structure of an 
Abelian variety which may be identified with the middle intermediate 
Jacobian of X; a proof of this may be found in Ran Donagi, The variety of 
linear spaces on the intersection of two quadrics, to appear. The princip-
ally polarized Abelian variety determines the variety X so that we have a 
Torelli theorem—i.e., the Hodge structure of X determines the variety X. 

Particular to the case n = 2 is the Kummer surface 5 defined by taking 
the quotient of A by the involution z-+- z, and which we have identified 
geometrically as the surface in P3 defined by the condition that the conic 
Xtp of lines in the quadric line complex passing through p should be 
singular. The Kummer surface S uniquely determines A and hence X: If 
we desingularize S to obtain a K-3 surface 5 having a divisor £ = 2 | i , £ ' , 
lying over the double points of S, then the class of E in H2(S, Z) is even so 
that we may construct a two-sheeted covering IT:A—>S branched over E. 
The curves C, = w"'(C,) are rational curves with C,2= — 1; blowing them 
down gives the Abelian surface A. 
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Abelian integrals, 225 
Abelian sums, 226 
Abelian surface, 324, 583, 779 
Abelian variety, 301 

polarized, 359 
Abel's theorem, 226, 227, 232, 235 
A-cycles, 228 
Acyclic covering, 40, 45 
Addition theorem, 240 
Adjunction formula, 146,147,157,220,471 
AF + BG theorem, 703 
Affine algebraic variety, 453 
Albanese map/variety, 331, 552 
Algebraic curve, 215 
Algebraic equivalence of divisors, 461 
Algebraic de Rham theorem, 453 
Algebraic variety, 128, 166 

affine, 453 
homogeneous, 326 
nondegenerate, 173 
normal, 177 

Antiholomorphic, 17 
Arithmetic genus, 494 
Associated curve, 263 
Associated line bundle, 134 
Automorphisms, of Abelian varieties, 326 

of hypersurface, 178 
of projective space, 64 
of Riemann surface, 275, 276 

Base locus, 137, 176 
B-cycles, 228 
Bertini's theorem, 137, 536 
Bezout's theorem, 172, 670 
Bianchi identity, 406 
Birational invarients, 494 
Birational maps, 237, 493, 510 
Bitangential correspondence, 294 
Bitangent line, 278 

Bitype, 383 
Blow-up, of point, 182,373,473,510, 

558 
of submanifold, 603, 749 

Bochner-Martinelli formula, 372, 384,426, 
433,655,666 

Bochner-Martinelli kernel, 383, 425, 655 
Bott residue formula, 427,437 
Branch locus, 217,668 
Branch point, 217 
BrUl-Noether problem, 260 

Canonical basis, 227 
Canonical bundle, 146 

of blow-up, 187,608 
of divisor, 147 
of projective space, 146 

Canonical curve, 247, 535 
Canonical map, 247 
Cartan structure equations, 75 
Castelnuovo curves, 527 
Castelnuovo-de Franchis theorem, 554 
Castelnuovo-Enriques criterion, 476, 505 
Castelnuovo-Enriques theorem, 536 
Castelnuovo lemma, 531 
Cauchy integral formula, 2 
Cauchy-Riemann equations, 2 
Cauchy kernel, 369, 663 
Cayley-Bacharach, 671 

property, 671 
for vector bundles, 731 

Cayley-Brill formula, 287 
Cech cohomology, 35, 39 
Chern classes, 407 

of blow-up, 608 
of line bundle, 139, 144 
of projective space, 409, 413,433 

Chern-Gauss-Bonnet theorem ,410 ,413 , 
416 

Chordal variety, 173 
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Chow's theorem, 167 
Classification theorem for surfaces, 590 
Clifford's theorem, 251 
Coboundary, 38 
Cochain, 38 
Cocycle, 39 
Coframe, 28 
Coherent sheaves, 181, 696 
Cohomology, analytic, 162 

of blow-up, 473, 605, 751 
Cech, 35, 39 
of complex, 439 
of currents, 382 
Dolbeault, 25,80, 100, 150 
of Grassmannians, 205 
primitive, 122 
of projective bundles, 606 
of projective space, 60 
de Rham, 23 
simplicial, 42 
singular, 43 

Coincident point, 283 
Common point, 284 
Complete linear system, 137 
Complexes, 438, 682 

double, 442, 685 
homology and cohomology of, 682 
of sheaves, 445 

Complex manifold, 14, 20 
Cone, 172,734 
Conies, 529, 551,630,673 

linear systems of, 484, 497, 741 
five, 749 

Connection, 72, 400 
Conormal bundle, 71, 145 
Continuity principle, 657 
Coordinates, euclidean, 15 

holomorphic, 14 
homogenous, 15 
Plucker, 193 

Correspondence, 282 
associated to pencil, 283 
bitangential, 294 
tangential, 283 
trisecant, 291 

Cousin problem, 47 
Covering, branched, 9, 217, 255 

unbranched, 192, 542 
Cremona transformation, 496 
Cubic plane curve, 222, 280, 599, 673, 704 

linear system of, 480, 551 
see also Curves of genus 1, Elliptic 

curve 
Cubic surfaces, 480, 545 

with double ine, 531, 629 
lines, on, 485, 522, 546 
with ordinary double points, 640-646 

in P 4 , 531, 629 
Currents, 368 

positive, 386 
Curvature, 75, 140,401 
Curve of correspondence , 282 
Curves of genus 0, 222. See also Rational 

normal curve 
Curves of genus 1, 222, 238, 286. See also 

Cubic plane curve; Elliptic curve 
Curves of genus 2, 298, 359, 770, 782 
Curves of genus 3, 256, 281, 546-549, 770. 

See also Quartic plane curve 
Curves of genus 4, 258, 298, 359 
Curves of genus 5, 259 
Curves of genus 6, 298, 349, 359. See also 

Quintic plane curve 
Curves of genus 8, 299, 359 
Curves of genus 10, 593 
Cusp of curve, 277 
Cuspidal point of surface, 617 

8 -function, 367 
5-Laplacian, 82 
5-operator, 24, 70 
5-Poincare lemma, 5, 25 
dc-operator, 109 
Decomposable holomorphic vector bundle, 

516 
Deficiency of linear system, 628 
Degeneracy set, 411 
Degree, of line bundle, 144, 214 

of map, 217, 666 
of 0-cycle, 667 
of variety, 171, 172 

Desingularization, of algebraic curve, 498, 
506 

theorem of Hironaka, 621 
Differentials of first kind, 124, 230, 241, 

454 
Differentials of second kind, 231, 241, 

454,460 
Differentials of third kind, 231 
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Dimension, of linear system, 137 
of variety, 22, 173 

Direct image sheaf, 463 
Directrix of rational normal scroll, 525 
Dirichlet norm, 93 
Distributions, 90, 366 
Divisor, 130 

algebraic equivalence of, 461 
effective, 130, 238 
exceptional, 182, 603 
exceptional (of first kind), 478 
of function, 131 
linear equivalence of, 134, 161 
line bundle associated to, 134 
with normal crossings, 449 
of section, 135 
very ample, 192 

Divisors, elementary, 306 
Dolbeault cohomology, 25, 80, 100,150 
Dolbeault complex, 448 
Dolbeault theorem, 45, 100 
Double curve of surface, 612 
Double points of curve, cusp, 277 

ordinary, 215, 277 
tacnode, 293, 507 

Double points of surface, ordinary, 636 
pinch or cuspidal point, 617 
transverse, 616 

Dual, Abelian variety, 314 
Dual bundle, 66 
Dual cell decomposition, 53 
Dual curve, 264 
Dual Kummer surface, 763 
Dual projective space, 15 
Dual Schubert cycle, 200 

Effective divisor, 130, 238 
Effective 0-cycle, 667 
Elementary divisors, 306 
Elementary invariant polynomials, 402 
Elliptic curve, 222, 225, 238, 286, 564, 

575, 586. See also Cubic plane 
curve; Curves of genus 1 

Elliptic surface, 564, 573, 574 
with rational base, 577 
see also Enriques surface; Hyperelliptic 

surface; and K-3 surface 
Enriques classification of surfaces, 590 
Enriques-Petri theorem, 535 

Enriques surface, 544, 583, 594, 599, 632, 
749 

Enriques theorem, 580 
Equivalence of divisors, algebraic, 461 

linear, 134, 161 
Euclidean co-ordinates, 15 
Euclidean metric, 30 
Euler, 673 
Euler characteristic, holomorphic, 246, 

436 
topological, of blow-up, 474 
of branched cover, 218, 508, 548 
of curve, 218,508 
of surface with pencil, 509-510 
of surface in space, 601, 625 

Euler sequence, 409 
Exact sequence, long, 40 

of sheaves, 37 
Exceptional divisor, 182, 603 
Exceptional divisor of first kind, 478 
Exponential map, 325 
Exponential sheaf sequence, 37 
Ext, of modules, 684 

of sheaves, 700 
Extensions of modules, 722 

Fermat quartic surface, 541 
Fermat quintic surface, 572 
Fiber, of coherent sheaf, 700 

of vector bundle, 66 
Fiber bundle, holomorphic, 514 
Fine sheaf, 42 
Finite cycles, 123 
Five conies, 749 
Fixed component, 137 
Fixed point formulas, 421, 430 
Flag, 60, 194 
Flat vector bundle, 465 
Flex, 277 

hyper-, 547 
Focus of pencil of lines, 758 
Form, holomorphic, 24, 110, 148 

type (p, q), 23 
Frame, 68 
Frohlicher relations, 444 
Frohlicher spectral sequence, 444 
Fubini-Study metric, 31, 109, 373 
Functions, analytic, 2, 6 

holomorphic, 2, 6 
meromorphic, 36, 168 
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Fundamental class, 61, 140, 144, 356, 
386,475 

Fundamental group, 484 

G(2,4), 197, 290, 297,630, 746, 756 
G(2,5), 550 
G(2,6), 611,778 
G(3,6), 772 
G.A.G.A. principle, 171 
Gap values, 273 
Garding's inequality, 93, 97, 381 
Gauss-Bonnet formula, 144, 216, 410, 

413,416 
Gaussian curvature, 77 
Gauss map, 264, 360,496, 735 
General type, 573 
Generic, 20 
Genus, 216 

arithmetic, 494 
geometric, 494 
real, 500 
virtual, 471 

Genus formula, 219 
Geometric genus, 494 
Giambelli's formula, 205 
Global duality theorem, 707, 708 
Godeaux surface, 572 
Graph of rational map, 492 
Grassmannian, 193 
Green's function, 378 
Green's operator, 84, 90, 96, 149 

Hard Lefschetz theorem, 122 
Harmonic forms, 82, 83, 152, 376 
Harmonic space, 82, 100, 152 
Hartog's theorem, 7,49, 165,494 
Hermitian metric, 27, 71 
Hermitian vector bundle, 72 
Hirzebruch-Riemann-Roch formula, 437 
Hodge conjecture, 163 
Hodge decomposition on cohomology, 116 
Hodge decomposition on forms, 84 
Hodge diamond, 117 
Hodge filtration, 444 
Hodge identities, 111 
Hodge metric, 191 
Hodge-Riemann bilinear relations, 123 
Hodge theorem, 84, 116 
Holomorphic Euler characteristic, 246, 436 

Holomorphic Lefschetz fixed point formula, 
430 

Homogeneous algebraic variety, 326 
Homogeneous coordinates, 15 
Homotopy formula for Bochner-Martinelli, 

384 
Hopf fibration, 465 
Hopf index theorem, 421 
Hopf surface, 16 
Hypercohomology, 446 
Hyperelliptic curve, 247, 253, 362 
Hyperelliptic involution, 253 
Hyperelliptic surface, 585, 590 
Hyperelliptic Weierstrass point, 274 
Hyperflex, 547 
Hyperplane, 15 
Hyperplane bundle, 145, 150, 164 
Hypersurface, algebraic, 107 

analytic, 12, 13, 129 

Identity theorem, 7 
Implicit function theorem, 19 
Incidence correspondence, 182 
Incidence divisors, 781 
Index, 125 
Index theorem, 126,471,472 
Infinitely near point, 185, 482 
Inhomogeneous form, 166 
Intermediate Jacobian, 331, 802 
Intersection of currents, 392 

cycle, 53 
index, 49, 51 
multiplicity, 62, 64, 65 
number, 49, 51, 63, 392, 470, 663 
pairing, 52 

Invariant polynomial, 402 
Inverse function theorem, 18 
Irrational ruled surface, 553 
Irreducible, 12, 21 
Irregularity, 494 
Irregular linear system, 245 
Isogeny, 329 
Iwasawa manifold, 444 

Jacobian of map, 17 
Jacobian variety, 228, 235, 306, 327, 

333,496 
intermediate, 331, 802 

Jacobi inversion theorem, 235, 336, 340 
Jacobi relation, 671 



INDEX 

K-3 surface, 583, 590, 596, 770, 775. See 
also Kummer surface; Quartic 
surface 

Kahler manifold, 109 
Kahler metric, 72, 107 
Kodaira classification of surfaces, 590 
Kodaira embedding theorem, 181-191, 

207,209,214 
Kodaira identity, 100 
Kodaira-Nakano vanishing theorem, 128, 

154 
Kodaira number, 573 
Kodaira-Serre duality, 102, 153 
Koszul complex, 688 
Kummer surface, 763 
Kunneth formula, 58, 104 

Lagrange interpolation, 671 
Laplacian, 82 
Lefschetz decomposition, 122 
Lefschetz fixed point formula, 421 
Lefschetz hard Lefschetz theorem, 122 
Lefschetz hyperplane theorem 156 
Lefshcetz holomorphic fixed point formula, 

430 
Lefschetz holomorphic Lefschetz number, 

424 
Lefschetz number, 421 
Lefschetz pencil, 509 
Lefschetz theorem on (l,l)-classes, 163 
Lefschetz theorem on theta-functions, 317 
Lelong number, 391 
Leray spectral sequence, 463 
Leray theorem, 40 
Levi extension theorem, 396 
Lichnerowicz lemma, 711 
Lie group, complex, 325 
Linear equivalence of divisors, 134, 161 
Linear subspace, 15 
Linear system, 137, 176 

of conies, 484, 497, 741 
dimension of, 137 
irregular, 245 
of plane cubics, 480, 551 
proper transform of, 476 
of quadrics, 744 
special, 245 

Line bundle, 66, 132 
associated to divisor, 134 
Chern classes of, 139, 144 
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degree of, 144, 214 
positive/negative, 148 
on projective space, 145,165 
tautological, 605 
very ample, 192 

Line complex, linear, 759 
quadric, 762 

Local defining function, 130, 132 
Local duality theorem, 659, 693 
Local ring, 10, 678 
Logarithmic transformation, 566-568 
Log complex, 449 
Long exact sequence, 40 
Luroth's theorem, 541 

Map of sheaves, 36 
Maximal ideal, 10 
Maximum principle, 7 
Meromorphic function, 36, 168 
Meromorphic section, 135 
Metric connection, 73 
Minimal degree, 173 
Minimal surfaces, 552 
Mittag-Leffler problem 34 
Mobius configuration, 760 
Module, 679 
Monodromy group, 467 
Morse theory, 157 
Multiple fibers, 564 
Multiplicity, 20, 22 
Multipliers, 308 

Nakayama lemma, 680 
Natural orientation, 18 
Negative line bundle, 148 
Neron-Severi group, 454, 461 
Net, 137 
Node, 215 
Noether "AF + BG" theorem, 703 
Noether formula, 438,472, 601 
Noetherian ring, 679 
Noether lemma, 513 
Noether theorem, 253 
Nondegenerate curve, 253 
Nondegenerate variety, 173 
Normal bundle, 71, 145 
Normal crossings, 449 
Normal form of curve, 266 
Normal form for singularities of surface, 

618 
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Normalized basis, 231 
Normalized period matrix, 305 
Normal variety, 177 
Normal Weierstrass point, 274 
Nullstellensatz, 11, 660, 669 

0(D), 138,139 
Oka's lemma, 695 
Order, 130 
Ordinary double point of curve, 215, 278 
Ordinary double point of surface, 636 
Ordinary m-fold point of surface, 636 
Ordinary singularities of surface, 618 
Ordinary triple point of curve, 508 
Ordinary triple point of surface, 617 
Orientation, natural, 18 
Osculating k-plane, 264 

IP1, characterization of, 222. See also 
Rational curve, Rational normal 
curve 

vector bundles on, 145, 516 
IP2, birational automorphisms of, 496 

characterizations of, 487, 575, 580 
lPn, see Projective space 
Partition of unity, 42 
Pascal's theorem, 673 
Pencil, 137 
Pencil of lines, 758 
Periods, 226, 228 
Period matrix, 228, 231, 304 
Perturbation, 657 
Pfaffian, 328 
Picard group, 133, 161, 235, 313 
Picard number, 457, 593, 594 
Picard variety, 313,461 
Pieri's formula, 203 
Pinch point, 617 
Plane of pencil of lines, 758 
Plucker coordinates, 193, 354 
Plucker embedding/map, 209, 756 
Plucker formulas, 269, 270, 280 
Plucker relations, 211 
Pluricanonical ring, 573 
Plurigenera, 494, 558, 572, 580 
Plurisubharmonic function, 387 
Poincare duality, 53 
Poincare formula, 350 
Poincare-Lelong equation, 388 
Poincare lemmas, 25, 38, 385,450 
Poincare line bundle, 328 

INDEX 

Poincare residue map, 147, 221, 500 
Poisson formula, 379 
Polarization, 306 
Polycylinder, punctured, 445 
Porteous' formula, 415 
Positive current, 386 
Positive curvature operator, 78 
Positive divisor, 148, 307 
Positive line bundle, 148, 307 
Positive (l,l)-form, 29 
(p,p), classes, 163, 416 

currents, 385 
forms, 23 

(p,q)-forms, 23 
Primitive cohomology, 122 
Primitive cycles, 159 
Principal part, 34 
Principal polarization, 306 
Projective bundle, 515 
Projective module, 681 
Projective resolution, 683 
Projective space, 15 

automorphisms of, 64 
canonical bundle of, 146 
Chern classes of, 409 ,413 ,433 
cohomology of, 60 
Hodge numbers of, 118 
line bundles on, 145 
subvarieties of, 167 

Proper mapping theorem, 34, 395 
for finite maps, 668 

Proper transform, 474, 495 
of linear system, 476 

Propagation principle, 696 
Pseudo-metric, 268 
Pullback divisor, 132 
Punctured polycylinder, 445 

Quadratic transformation, 497 
Quadrics, 495, 529, 592,734 

intersection of two in IP4, 550, 630 
intersection of two in IP5, 762 
intersection of three in IP4, 259 
intersection of three in IP5, 592 
lines on, 199 
linear spaces on, 735-741 
linear systems of, 530, 741 

Quadric line complex, 762 
Quadric surface, 478,484, 744 

lines on, 298, 478 
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Quadrisecant, 295, 299 
Quartic plane curve, 256, 281, 546-549, 

770 
bitangent lines to, 282, 549 
with double point, 770 

Quartic surface, 591, 764 
with 16 double points, 763 
Fermat, 541 
with ordinary singularities, 630-632 
in IP' , 550 
with two double lines, 531, 630 

Quasi-isomorphism, 446 
Quintic Fermat surface, 572 
Quintic plane curve, 535 
Quotient bundle, 68 
Quotient sheaf, 37 

Ramification divisor, 668 
Ramification index of branched curve, 

217 
of curve in projective space, 264 

Rank of bundle, 66 
Rank of quadric, 734 
Rational functions, 167 
Rational map, 490^193 
Rational normal curve, 179, 270, 523, 530, 

631 
Rational normal scroll, 525, 532, 631 
Rational ruled surface, 514 
Rational surface, 513, 536 
Real genus, 500 
Reciprocity laws, 230, 241, 242 
Regularity lemma, 94 
Regular sequence, 659, 688 
Reiss relation, 675,698 
Rellich lemma, 88, 93 
Residue of complete intersection, 714 

of differential, 454 
n-variables, 649 
Poincare, 147, 221,500 
of singular form, 369 
theorem, 222, 656 
theorem for vector bundles, 731 

Resolution of singularities, 621 
Resultant, 9, 12-14 
de Rham, cohomology, 23 

isomorphism, 45 
theorem, 44,447 

algebraic, 453 
Ricci curvature, 97 

Riemann bilinear relations, 123, 231, 232 
Riemann conditions, 303, 304, 306, 327 
Riemann count, 255-256 
Riemann extension theorem, 9 
Riemann-Hurwitz formula, 216, 219 
Riemann-Kempf singularity theorem, 348 
Riemann metric, 28 
Riemann-Roch formula, 245, 248,437, 

472, 600 
Riemann surface, 15, 215 
Riemann theorem, 338 
Riemann theta-divisor, 321 
Riemann theta-function, 320 
Riemann relation, 438, 601 
Ruled surface, 558, 573, 575, 580 

irrational, 553 
rational, 514 

Sk,n .524 
S n .517 
Scheme, 697 
Schubert calculus, 197 
Schubert cycles, 196, 353 
Second fundamental form, 78 
Section, 68 

meromorphic, 135 
Segre map, 192 
Sextic Enriques surface, 632 
Sextic plane curve, 593 
Sheaf, 35 

coherent, 181,696 
fine, 42 
holomorphic, 40 
ideal, 36,38,697 
invertible, 698 
locally free, 697 
skyscraper, 701 
structure, 36, 170 

Sheafify, 699 
Sheet number, 217 
Signature, 125 
Singularities of curves, cusps, 277 

nodes, 215 
normal form of, 277 
resolution of, 621 
tacnodes, 293, 298, 507 
traditional, 277 
triple points, 508 

Singularities of surfaces, cuspidal points, 617 
double curves, 612 
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m-fold points, 636 
normal form of, 618 
ordinary, 618 
ordinary double points, 636 
transverse double points, 616 
triple points, 617 

Singular line, 767 
Singular locus/point, 20 
Skyscraper sheaf, 701 
Smooth point, 20 
Sobolev lemma, 86, 93 
Sobolev space, 85, 368 
Space curves, 290 
Span,15 
Special line, 792 
Special linear system, 245 
Spectral sequences, 440,442 
Star operator, 82, 151 
Stationary trisecant, 293 
Steiner constructions, 528 
Steiner surface, 531, 629 
Stein manifold, 445 
Stokes' theorem, 365, 647 
Stokes' theorem for analytic varieties, 33 
Structure sheaf, 36,170, 697 
Superabundance, 4 8 M 8 3 , 528, 531,712 
Symmetric product of curve, 236, 496 
Syzygy, global, 705 
Syzygy theorem, 683, 694 

Tacnode, 293, 507 
Tangent bundle, complex, 70 

holomorphic, 71 
Tangent cone, 22, 175, 391 
Tangential correspondence, 283 
Tangential ruled surface, 272 
Tangential trisecant, 292 
Tangent space, anifholomorphic, 17 

complex, 16 
holomorphic, 16 
in projective space, 175 

Tautological line bundle, 605 
Theorem A, 700 
Theorem B, 159, 700 
Theorem of base, 461 
Theta-divisor, 321,496, 785 
Theta-functions, 317 
Todd polynomial, 437 

INDEX 

Tor, of modules, 684 
of sheaves, 700 

Torelli's theorem, 359 
Torsion of metric, 77, 107,429 
Torus, complex, 16, 225, 300 

real, 85,368 
Total Chern class, 407 
Total transform, 495 
Trace, 668 
Traditional signularities, 277 
Transformation law, 657 
Transition functons, 66 
Transverse double point, 616 
Triple point, of curve, 508 

of surface, 617 
Trisecant, correspondence, 291 

stationary, 293 
tangential, 292 

Trivialization, 66 
Type, 23 

UFD, 9 
Unitary frame, 71 
United point, 284 
Universal bundle, 145, 164 
Universal quotient bundle, 207, 411 
Universal Schubert coefficients, 199 
Universal subbundle, 207, 410 

Valence, 284 
Variety, affine algebraic, 453 

algebraic, 166 
analytic, 12-14 
nondegenerate, 173 
normal, 177 

Vector bundle, 66 
holomorphic, 69 

Veronese map, 178, 674 
Veronese surface, 179, 349, 525, 532, 

535,632,743 
Very ample, 192 
Virtual genus, 471 

Web, 137 
Weierstrass division theorem, 11, 678? 
Weierstrass f-function, 238 
Weierstrass point, 274 
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Weierstrass polynomial, 8, 502, 678 
Weierstrass preparation theorem, 8, 678 
Weil homomorphism, 406 
Weil reciprocity, 242 
Weitzenbock identity, 97 
Whitney product formula, 408 
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Wirtinger theorem, 31, 390 

Yoneda pairing, 707 

Zero-cycle, 667 
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