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Foreword

Ever since the concepts of the Galois group and the fundamental group
emerged in the course of the nineteenth century, mathematicians have been
aware of the strong analogies between the two notions. In its early formula-
tion Galois theory studied the effect of substitutions on roots of a polynomial
equation; in the language of group theory this is a permutation action. On
the other hand, the fundamental group made a first, if somewhat disguised,
appearance in the study of solutions of differential equations in a complex
domain. Given a local solution of the equation in the neighbourhood of a
base point, one obtains another solution by analytic continuation along a
closed loop: this is the monodromy action.

Leaving the näıve idea of substituting solutions, the next important ob-
servation is that the actions in question come from automorphisms of objects
that do not depend on the equations any more but only on the base. In the
context of Galois theory the automorphisms are those of a separable closure
of the base field from which the coefficients of the equation are taken. For
differential equations the analogous role is played by a universal cover of the
base domain. The local solutions, which may be regarded as multi-valued
functions in the neighbourhood of a base point, pull back to single-valued
functions on the universal cover, and the monodromy action is the effect of
composing with its topological automorphisms.

In fact, the two situations are not only parallel but closely interrelated.
If our complex domain D is just the complex plane minus finitely many
points, a local solution of a linear holomorphic differential equation that
becomes single-valued on a cover with finite fibres lies in a finite algebraic
extension of the field C(t) of meromorphic functions on D. We actually
obtain a one-to-one correspondence between finite extensions of C(t) and
finite covers of D, provided that we allow finitely many exceptional points
called branch points. This opens the way for developing a unified theory
within the category of algebraic curves, first over the complex numbers and
then over a general base field. Algebraic geometers working in the 1950s
realized that the theory generalizes without much effort to higher-dimensional
algebraic varieties satisfying the normality condition.
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A further step towards generality was taken by Grothendieck. He gave a
definition of the fundamental group not as the automorphism group of some
space or field but as the automorphism group of a functor, namely the one
that assigns to a cover its fibre over the fixed base point. This point of view
permits a great clarification of earlier concepts on the one hand, and the
most general definition of the fundamental group in algebraic geometry on
the other. One should by no means regard it as mere abstraction: without
working in the general setting many important theorems about curves could
not have been obtained.

Grothendieck’s concept of the algebraic fundamental group gives a sat-
isfactory theory as far as finite covers of algebraic varieties or schemes are
concerned, but important aspects of previous theories are lost because one
restricts attention to finite covers. According to the fruitful motivic philos-
ophy of Grothendieck and Deligne that underlies much of current research,
this can be remedied by considering the algebraic fundamental group as only
one incarnation, the ‘étale realization’ of a more general object. Other in-
carnations are the ‘topological realization’ where not necessarily finite covers
of topological spaces are brought into play, and the ‘de Rham realization’
which is an algebraic formalization of the theory of differential equations.
For the definition of the latter Grothendieck envisioned the algebraic formal-
ism of Tannakian categories worked out in detail by Saavedra and Deligne.
The various realizations of the fundamental group are related by compari-
son theorems. One instance of these is the correspondence between covers
and field extensions mentioned above. Another one is the Riemann–Hilbert
correspondence relating linear differential equations to representations of the
fundamental group.

We have to stop here, as we have reached the viewpoint of present-day
algebraic geometers and algebraic analysts on the subject. The future may
well bring further unifications highlighting hitherto neglected aspects. Still,
we feel that the time is ripe for a systematic discussion of the topic starting
from the basics, and this is the aim of the present book. A glance at the
table of contents shows that we shall be following the line of thought sketched
above. Along the way we shall also mention a number of applications and
recent results.

The first three chapters may be read by anyone acquainted with basic field
theory, point set topology and the rudiments of complex analysis. Chapter
4 already treats algebraic geometry, but is meant to be accessible to readers
with no previous knowledge of the subject; the experts will skip a few in-
troductory sections. The last two chapters are of a slightly more advanced
nature. Nevertheless. we give a detailed summary of the basics on schemes
at the beginning of Chapter 5, while most of Chapter 6 assumes only basic
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algebra and is largely independent of previous chapters.
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Chapter 1

Galois Theory of Fields

This first chapter is both a concise introduction to Galois theory and a
warmup for the more advanced theories to follow. We begin with a brisk
but reasonably complete account of the basics, and then move on to discuss
Krull’s Galois theory for infinite extensions. The highlight of the chapter
is Grothendieck’s form of Galois theory that expresses the main theorem
as a categorical anti-equivalence between finite étale algebras and finite sets
equipped with a continuous action of the absolute Galois group. This theorem
is a prototype for many statements of similar shape that we shall encounter
later.

1.1 Algebraic Field Extensions

In this section and the next we review some basic facts from the theory of field
extensions. As most of the material is well covered in standard textbooks
on algebra, we shall omit the proof of a couple of more difficult theorems,
referring to the literature instead.

Definition 1.1.1 Let k be a field. An extension L|k is called algebraic if
every element α of k is a root of some polynomial with coefficients in k.
If this polynomial is monic and irreducible over k, it is called the minimal
polynomial of α.

When L is generated as a k-algebra by the elements α1, . . . , αm ∈ L, we
write L = k(α1, . . . , αm). Of course, one may find many different sets of such
αi’s.

Definition 1.1.2 A field is algebraically closed if it has no algebraic exten-
sions other than itself. An algebraic closure of k is an algebraic extension k̄
that is algebraically closed.

9



10 Chapter 1. Galois Theory of Fields

The existence of an algebraic closure can only be proven by means of
Zorn’s lemma or some other equivalent form of the axiom of choice. We
record it in the following proposition, along with some important properties
of the algebraic closure.

Proposition 1.1.3 Let k be a field.

1. There exists an algebraic closure k̄ of k. It is unique up to (non-unique)
isomorphism.

2. For an algebraic extension L of k there exists an embedding L → k̄
leaving k elementwise fixed.

3. In the previous situation take an algebraic closure L of L. Then the
embedding L→ k̄ can be extended to an isomorphism of L onto k̄.

For the proof, see Lang [48], Chapter V, Corollary 2.6 and Theorem 2.8
or van der Waerden [106], §72.

Thus henceforth when speaking of algebraic extensions of k we may (and
often shall) assume that they are embedded in a fixed algebraic closure k̄.

Facts 1.1.4 A finite extension L of k is algebraic. Its degree over k, denoted
by [L : k], is its dimension as a k-vector space. If L is generated over k
by a single element with minimal polynomial f , then [L : k] is equal to the
degree of f . For a tower of finite extensions M |L|k one has the formula
[M : k] = [M : L][L : k]. All this is proven by easy computation.

Definition 1.1.5 A polynomial f ∈ k[x] is separable if it has no multiple
roots (in some algebraic closure of k). An element of an algebraic extension
L|k is separable over k if its minimal polynomial is separable; the extension
L|k itself is called separable if all of its elements are separable over k.

Separability is automatic in characteristic 0, because a well-known crite-
rion implies that an irreducible polynomial has no multiple roots if and only
if its derivative f ′ is nonzero (see [106], §44). However, the derivative can be
zero in characteristic p > 0, e.g. for a polynomial xp− a which is irreducible
for a ∈ k× \ k×p.

In the case of finite extensions there is the following important charac-
terization of separability.

Lemma 1.1.6 Let L|k be a finite extension of degree n. Then L has at most
n distinct k-algebra homomorphisms to k̄, with equality if and only if L|k is
separable.
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Proof: Choose finitely many elements α1, . . . , αm that generate L over k.
Assume first m = 1, and write f for the minimal polynomial of α1 over k.
A k-homomorphism L → k̄ is determined by the image of α1, which must
be one of the roots of f contained in k̄. The number of distinct roots is at
most n, with equality if and only if α is separable. From this we obtain by
induction on m using the multiplicativity of the degree in a tower of finite
field extensions that L has at most n distinct k-algebra homomorphisms to
k̄, with equality if the αi are separable. To prove the ‘only if’ part of the
lemma, assume α ∈ L is not separable over k. Then by the above the number
of k-homomorphisms k(α) → k̄ is strictly less than [k(α) : k], and that of
k(α)-homomorphisms from L to k̄ is at most [L : k(α)]. Thus there are
strictly less than n k-homomorphisms from L to k̄.

The criterion of the lemma immediately implies:

Corollary 1.1.7 Given a tower L|M |k of finite field extensions, the exten-
sion L|k is separable if and only if L|M and M |k are.

In the course of the proof we have also obtained:

Corollary 1.1.8 A finite extension L|k is separable if and only if L =
k(α1, . . . , αm) for some separable elements αi ∈ L.

We now show that there is a largest separable subextension inside a fixed
algebraic closure k̄ of k. For this recall that given two algebraic extensions
L, M of k embedded as subfields in k̄, their compositum LM is the smallest
subfield of k̄ containing both L and M .

Corollary 1.1.9 If L, M are finite separable extensions of k, their composi-
tum is separable as well.

Proof: By definition of LM there exist finitely many separable elements
α1, . . . , αm of L such that LM = M(α1, . . . , αm). As the αi are separable
over k, they are separable over M , and so the extension LM |M is separable
by the previous corollary. But so is M |k by assumption, and we conclude by
Corollary 1.1.7.

In view of the above two corollaries the compositum of all finite sepa-
rable subextensions of k̄ is a separable extension ks|k containing each finite
separable subextension of k̄|k.

Definition 1.1.10 The extension ks is called the separable closure of k in k̄.
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From now on by “a separable closure of k” we shall mean its separable
closure in some chosen algebraic closure.

The following important property of finite separable extensions is usually
referred to as the theorem of the primitive element.

Proposition 1.1.11 A finite separable extension can be generated by a single
element.

For the proof, see Lang [48], Chapter V, Theorem 4.6 or van der Waerden
[106], §46.

A field is called perfect if all of its finite extensions are separable. By
definition, for perfect fields the algebraic and separable closures coincide.

Examples 1.1.12

1. Fields of characteristic 0 and algebraically closed fields are perfect.

2. A typical example of a non-perfect field is a rational function field F(t)
in one variable over a field F of characteristic p: here adjoining a p-th
root ξ of the indeterminate t defines an inseparable extension in view
of the decomposition Xp − t = (X − ξ)p.

This is a special case of a general fact: a field k of characteristic p > 0 is
perfect if and only if kp = k ([48], Chapter V, Corollary 6.12, or [106],
§45). The criterion is satisfied by a finite field Fpr as its multiplicative
group is cyclic of order pr − 1; hence finite fields are perfect.

1.2 Galois Extensions

Now we come to the fundamental definition in Galois theory. Given an
extension L of k, denote by Aut(L|k) the group of field automorphisms of
L fixing k elementwise. The elements of L that are fixed by the action of
Aut(L|k) form a field extension of k. In general it may be larger than k.

Definition 1.2.1 An algebraic extension L of k is called a Galois extension
of k if the elements of L that remain fixed under the action of Aut(L|k) are
exactly those of k. In this case Aut(L|k) is denoted by Gal (L|k), and called
the Galois group of L over k.

Though the above definition is classical (it goes back to Emil Artin), it
may not sound familiar to some readers. We shall now make the link with
other definitions. The first step is:

Lemma 1.2.2 A Galois extension L|k is separable, and the minimal poly-
nomial over k of each α ∈ L splits into linear factors in L.
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Proof: Each element α ∈ L is a root of the polynomial f =
∏

(x− σ(α)),
where σ runs over a system of (left) coset representatives of the stabiliser of
α in G = Gal (L|k). The product is indeed finite, because the σ(α) must be
roots of the the minimal polynomial g of α. In fact, we must have f = g.
Indeed, both polynomials lie in k[x] and have α as a root, hence each σ(α)
must be a root of both. Thus f divides g but g is irreducible. Finally, by
construction f has no multiple roots, thus α is separable over k.

The converse also holds. Before proving it, we consider the ‘most impor-
tant’ example of a Galois extension.

Example 1.2.3 A separable closure ks of a field k is always a Galois exten-
sion. Indeed, to check that it is Galois we have to show that each element
α of ks not contained in k is moved by an appropriate automorphism in
Aut(ks|k). For this let α′ ∈ ks be another root of the minimal polynomial of
α, and consider the isomorphism of field extensions k(α)

∼→ k(α′) obtained by
sending α to α′. An application of the third part of Proposition 1.1.3 shows
that this isomorphism can be extended to an automorphism of the algebraic
closure k̄. To conclude one only has to remark that each automorphism of
Aut(k̄|k) maps ks onto itself, since such an automorphism sends an element
β of k̄ to another root β′ of its minimal polynomial; thus if β is separable,
then so is β′.

The group Gal (ks|k) is called the absolute Galois group of k.

We can now state and prove the following important characterization of
Galois extensions.

Proposition 1.2.4 Let k be a field, ks a separable closure and L ⊂ ks a
subfield containing k. The following properties are equivalent.

1. The extension L|k is Galois.

2. The minimal polynomial over k of each α ∈ L splits into linear factors
in L.

3. Each automorphism σ ∈ Gal (ks|k) satisfies σ(L) ⊂ L.

Proof: The proof of (1) ⇒ (2) was given in Lemma 1.2.2 above. The
implication (2) ⇒ (3) follows from the fact that each σ ∈ Gal (ks|k) must
map α ∈ L to a root of its minimal polynomial. Finally, for (3) ⇒ (1) pick
α ∈ L \ k. As ks is Galois over k (Example 1.2.3), we find σ ∈ Gal (ks|k)
with σ(α) 6= α. By (3), this σ preserves L, so its restriction to L yields an
element of Aut(L|k) which does not fix α.
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Using the proposition it is easy to prove the main results of Galois theory
for finite Galois extensions.

Theorem 1.2.5 (Main Theorem of Galois theory for finite exten-
sions) Let L|k be a finite Galois extension with Galois group G. The maps

M 7→ H := Aut(L|M) and H 7→M := LH

yield an inclusion-reversing bijection between subfields L ⊃ M ⊃ k and sub-
groups H ⊂ G. The extension L|M is always Galois. The extension M |k
is Galois if and only if H is a normal subgroup of G; in this case we have
Gal (M |k) ∼= G/H.

In the above statement the notation LH means, as usual, the subfield of
L fixed by H elementwise.

Proof: Let M be a subfield of L containing k. Fixing a separable closure
ks|k containing L, we see from Proposition 1.2.4 (3) that L|k being Galois
automatically implies that L|M is Galois as well. Writing H = Gal (L|M),
we therefore have LH = M . Conversely, if H ⊂ G, then L is Galois over
LH by definition, and the Galois group is H. Now only the last statement
remains to be proven. If H ⊂ G is normal, we have a natural action of
G/H on M = LH , since the action of g ∈ G on an element of LH only
depends on its class modulo H. As L|k is Galois, we have MG/H = LG = k,
so M |k is Galois with group G/H. Conversely, if M |k is Galois, then each
automorphism σ ∈ G preserves M (extend σ to an automorphism of ks using
Proposition 1.1.3 (3), and then apply Proposition 1.2.4 (3)). Restriction to
M thus induces a natural homomorphism G → Gal (M |k) whose kernel is
exactly H = Gal (M |k). It follows that H is normal in G.

Classically Galois extensions arise as splitting fields of separable polyno-
mials. Given an irreducible separable polynomial f ∈ k[x], its splitting field
is defined as the finite subextension L|k of ks|k generated by all roots of f
in ks. This notion depends on the choice of the separable closure ks.

Lemma 1.2.6 A finite extension L|k is Galois if and only if it is the splitting
field of an irreducible separable polynomial f ∈ k[x].

Proof: The splitting field of an irreducible separable polynomial is indeed
Galois, as it satisfies criterion (3) of Proposition 1.2.4. Conversely, part (2)
of the proposition implies that a finite Galois extension L|k is the splitting
field of a primitive element generating L over k.
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Corollary 1.2.7 A finite extension L|k is Galois with group G = Aut(L|k)
if and only if G has order [L : k].

Proof: If L|k is Galois, it is the splitting field of a polynomial by the propo-
sition, so G has order [L : k] by construction. Conversely, for G = Aut(L|k)
the extension L|LG is Galois by definition, so G has order [L : LG] by what
we have just proven. This forces LG = k.

Remark 1.2.8 An important observation concerning the splitting field L of
a polynomial f ∈ k[x] is that by definition Gal (L|k) acts on L by permuting
the roots of f . Thus if f has degree n, we obtain an injective homomorphism
from Gal (L|k) to Sn, the symmetric group on n letters. This implies in
particular that L|k has degree at most n!. The bound is sharp; see for
instance Example 1.2.9 (3) below.

In the remainder of this section we give examples of Galois and non-Galois
extensions.

Examples 1.2.9

1. Let m > 2 be an integer and ω a primitive m-th root of unity. The
extension Q(ω)|Q is Galois, being the splitting field of the minimal
polynomial of ω, the m-th cyclotomic polynomial Φm. Indeed, all other
roots of Φm are powers of ω, and hence are contained in Q(ω). The
degree of Φm is φ(m), where φ denotes the Euler function. The Galois
group is isomorphic to (Z/mZ)×, the group of units in the ring Z/mZ.
When m is a prime power, it is known to be cyclic.

2. For an example of infinite degree, let Q(µ)|Q be the extension obtained
by adjoining all roots of unity to Q (in the standard algebraic closure
Q contained in C). Every automorphism in Gal (Q|Q) must send Q(µ)
onto itself, because it must send an m-th root of unity to another m-th
root of unity. Thus by criterion (3) of Proposition 1.2.4 we indeed get
a Galois extension. We shall determine its Galois group in the next
section.

By the same argument we obtain that for a prime number p the field
Q(µp∞) generated by the p-power roots of unity is Galois over Q.

3. Let k be a field containing a primitivem-th root of unity ω for an integer
m > 1 invertible in k (this means that the polynomial xm−1 splits into
linear factors over k). Pick an element a ∈ k× \ k×m, and let m

√
a be a

root of it in an algebraic closure k̄. The extension k( m
√
a)|k is Galois
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with group Z/mZ, generated by the automorphism σ : m
√
a → ω m

√
a.

This is because all roots of xm − a are of the form ωi n
√
a for some

0 ≤ i ≤ m− 1.

4. When k does not contain a primitive m-th root of unity, we may not get
a Galois extension. For instance, take k = Q, m = 3 and a ∈ Q×\Q×3.
We define 3

√
a to be the unique real cube root of a. The extension

Q( 3
√
a)|Q is nontrivial because 3

√
a /∈ Q, but Aut(Q( 3

√
a)|Q) is trivial.

Indeed, an automorphism in Aut(Q( 3
√
a)|Q) must send 3

√
a to a root

of x3 − a in Q( 3
√
a), but 3

√
a is the only one, since Q( 3

√
a) ⊂ R and

the other two roots are complex. Thus the extension Aut(Q( 3
√
a)|Q)

is not Galois. The splitting field of x3 − a is generated over Q by 3
√
a

and a primitive third root of unity ω that has degree 2 over Q, so it
has degree 6 over Q.

5. Finally, here is an example of a finite Galois extension in positive char-
acteristic. Let k be of characteristic p > 0, and let a ∈ k be an element
so that the polynomial f = xp−x−a has no roots in k. (As a concrete
example, one may take k to be the field Fp(t) of rational functions
with mod p coefficients and a = t.) Observe that if α is a root in some
extension L|k, then the other roots are α + 1, α + 2, . . . , α + (p − 1),
and therefore f splits in distinct linear factors in L. It follows that f is
irreducible over k, and that the extension k(α)|k is Galois with group
Z/pZ, a generator sending α to α+ 1.

Remark 1.2.10 There exist converse statements to Examples 3 and 5 above.
The main theorem of Kummer theory is that for a field k containing a prim-
itive m-th root of unity every cyclic Galois extension with group Z/mZ is
generated by an m-th root m

√
a for some a ∈ k× \ k×m. This further gener-

alizes to Galois extensions with a finite abelian Galois group of exponent m:
they can be generated by several m-th roots.

According to Artin-Schreier theory, in characteristic p > 0 every cyclic
Galois extension with group Z/pZ is generated by a root of an ‘Artin-Schreier
polynomial’ xp−x−a as above. There are generalizations to extensions with
a finite abelian Galois group of exponent p, but also to extensions with group
Z/prZ; the latter uses the theory of Witt vectors. For details and proofs of
the above statements, see e.g. [48], Chapter VI, §8.

Our final example gives an application of the above ideas outside the
scope of Galois theory in the narrow sense.
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Example 1.2.11 Let k be a field, and K = k(x1, . . . , xn) a purely transcen-
dental extension in n indeterminates. Make the symmetric group Sn act onK
via permuting the xi. By definition the extension K|KSn is Galois with group
Sn. It is the splitting field of the polynomial f = (x− x1) . . . (x− xn). As f
is invariant by the action of Sn, its coefficients lie in KSn . These coefficients
are (up to a sign) the elementary symmetric polynomials

σ1 = x1 + x2 · · · + xn,

σ2 = x1x2 + x1x3 + · · · + xn−1xn,
...

σn = x1x2 · · ·xn.

But by definition K is also the splitting field of f over the field k(σ1, . . . , σn).
As k(σ1, . . . , σn) ⊂ KSn and [K : KSn ] = n!, Remark 1.2.8 shows that
KSn = k(σ1, . . . , σn).

With a little commutative algebra one can say more. The xi, being
roots of f , are in fact integral over the subring k[σ1, . . . , σn] ⊂ k(σ1, . . . , σn)
(see Section 4.1 for basic facts and terminology). Therefore the subring
k[x1, . . . , xn]

Sn = k[x1, . . . , xn] ∩ KSn of k[x1, . . . , xn] is an integral ring ex-
tension of k[σ1, . . . , σn]. But as K ⊃ k(σ1, . . . , σn) is a finite extension con-
taining n algebraically independent elements, the σi must be algebraically
independent over k. Thus k[σ1, . . . , σn] is isomorphic to a polynomial ring;
in particular, it is integrally closed in its fraction field KSn . It follows that
k[x1, . . . , xn]

Sn = k[σ1, . . . , σn]. This is the main theorem of symmetric poly-
nomials : every symmetric polynomial in n variables over k is a polynomial
in the σi. For more traditional proofs, see [48], Chapter IV, Theorem 6.1, or
[106], §33.

Remark 1.2.12 The above example also shows that each finite group G
occurs as the Galois group of some Galois extension. Indeed, we may embed
G in a symmetric group Sn for suitable n and then consider its action on the
transcendental extension K|k of the above example. The extension K|KG

will then do. However, we shall see in the next section that the analogous
statement is false for most infinite G.

1.3 Infinite Galois Extensions

We now address the problem of extending the Main Theorem of Galois The-
ory to infinite Galois extensions. The main difficulty is that for an infinite
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extension it will no longer be true that all subgroups of the Galois group
arise as the subgroup fixing some subextension M |k. The first example of
a subgroup that does not correspond to some subextension was found by
Dedekind, who, according to Wolfgang Krull, already had the feeling that
“die Galoissche Gruppe gewissermaßen eine stetige Mannigfaltigkeit bilde”.
It was Krull who then cleared up the question in his classic paper [47]; we
now describe a modern version of his theory.

Let K|k be a possibly infinite Galois extension. The first step is the
observation that K is a union of finite Galois extensions of k. More precisely:

Lemma 1.3.1 Each finite subextension of K|k can be embedded in a Galois
subextension.

Proof: By the theorem of the primitive element (Proposition 1.1.11), each
finite subextension is of the form k(α) with an appropriate element α and
we may embed k(α) into the splitting field of the minimal polynomial of α
which is Galois over k.

This fact has a crucial consequence for the Galois group Gal (K|k), namely
that it is determined by its finite quotients. We shall prove this in Proposition
1.3.5 below, in a more precise form. To motivate its formulation, consider a
tower of finite Galois subextensions M |L|k contained in an infinite Galois ex-
tension K|k. The main theorem of Galois theory provides us with a canonical
surjection φML : Gal (M |k) ։ Gal (L|k). Moreover, if N |k is yet another
finite Galois extension containing M , we have φNL = φML ◦ φNM . Thus one
expects that if we somehow “pass to the limit in M”, then Gal (L|k) will
actually become a quotient of the infinite Galois group Gal (K|k) itself. This
is achieved by the following construction.

Construction 1.3.2 A (filtered) inverse system of groups (Gα, φαβ) consists
of:

• a partially ordered set (Λ,≤) which is directed in the sense that for all
(α, β) ∈ Λ there is some γ ∈ Λ with α ≤ γ, β ≤ γ;

• for each α ∈ Λ a group Gα;

• for each α ≤ β a homomorphism φαβ : Gβ → Gα such that we have
equalities φαγ = φαβ ◦ φβγ for α ≤ β ≤ γ.

The inverse limit of the system is defined as the subgroup of the direct
product

∏
α∈ΛGα consisting of sequences (gα) such that φαβ(gβ) = gα for all

α ≤ β. It is denoted by lim
←
Gα; we shall not specify the inverse system in the



1.3 Infinite Galois Extensions 19

notation when it is clear from the context. Also, we shall often loosely say
that lim

←
Gα is the inverse limit of the groups Gα, without special reference

to the inverse system.

Plainly, this notion is not specific to the category of groups and one can
define the inverse limit of sets, rings, modules, even of topological spaces in
an analogous way.

We now come to the key definition.

Definition 1.3.3 A profinite group is defined to be an inverse limit of a
system of finite groups. For a prime number p, a pro-p group is an inverse
limit of finite p-groups.

Examples 1.3.4

1. A finite group is profinite; indeed, it is the inverse limit of the system
(Gα, φαβ) for any directed index set Λ, with Gα = G and φαβ = idG.

2. Given a group G, the set of its finite quotients can be turned into an
inverse system as follows. Let Λ be the index set formed by the normal
subgroups of finite index partially ordered by the following relation:
Uα ≤ Uβ ⇔ Uα ⊃ Uβ. For each pair Uα ≤ Uβ of normal subgroups we
have a quotient map φαβ : G/Uβ → G/Uα. The inverse limit of this
system is called the profinite completion of G, customarily denoted by
Ĝ. There is a canonical homomorphism G→ Ĝ.

3. Take G = Z in the previous example. Then Λ is just the set Z>0, since
each subgroup of finite index is generated by some positive integer
m. The partial order is induced by the divisibility relation: m|n iff

mZ ⊃ nZ. The completion Ẑ is usually called zed hat (or zee hat in

the US). In fact, Ẑ is also a ring, with multiplication induced by that
of the Z/mZ’s.

4. In the previous example, taking only powers of some prime p in place
of m we get a subsystem of the inverse system considered there; it is
more convenient to index it by the exponent of p. With this convention
the partial order becomes the usual (total) order of Z>0. The inverse
limit is Zp, the additive group of p-adic integers. This is a commutative
pro-p-group. The Chinese Remainder Theorem implies that the direct
product of the groups Zp for all primes p is isomorphic to Ẑ. Again
the Zp carry a natural ring structure as well, and this is in fact a ring
isomorphism.
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Now we come to the main example, that of Galois groups.

Proposition 1.3.5 Let K|k be a Galois extension of fields. The Galois
groups of finite Galois subextensions of K|k together with the homomorphisms
φML : Gal (M |k) → Gal (L|k) form an inverse system whose inverse limit is
isomorphic to Gal (K|k). In particular, Gal (K|k) is a profinite group.

Proof: Only the isomorphism statement needs a proof. For this, define a
group homomorphism φ : Gal (K|k) → ∏

Gal (L|k) (where the product is
over all finite Galois subextensions L|k) by sending a k-automorphism σ of
K to the direct product of its restrictions to the various subfields L indexing
the product. That σ(L) ⊂ L for all such L follows from Proposition 1.2.4.
The map φ is injective, since if an automorphism σ does not fix an element
α of ks, then its restriction to a finite Galois subextension containing k(α)
is nontrivial (as we have already remarked, such an extension always exists).
On the other hand, the Main Theorem of Galois theory assures that the
image of φ is contained in lim

←
Gal (L|k). It is actually all of lim

←
Gal (L|k),

which is seen as follows: take an element (σL) of lim
←

Gal (L|k) and define a

k-automorphism σ of K by putting σ(α) = σL(α) with some finite Galois L
containing k(α). The fact that σ is well defined follows from the fact that
by hypothesis the σL form a compatible system of automorphisms; finally, σ
maps to (σL) ∈ lim

←
Gal (L|k) by construction.

Corollary 1.3.6 Projection to the components of the inverse limit of the
proposition yields natural surjections Gal (K|k) → Gal (L|k) for all finite
Galois subextensions L|k contained in K.

Examples 1.3.7

1. Let F be a finite field, and Fs a separable closure of F . It is well
known that for each integer n > 0 the extension Fs|F has a unique
subextension Fn|F with [Fn : F] = n. Moreover, the extension Fn|F is
Galois with group Gal (Fn|F) ∼= Z/nZ, a generator being given by the
Frobenius automorphism α 7→ αp. Via this isomorphism the natural
projections Gal (Fmn|F) → Gal (Fn|F) correspond to the projections
Z/mnZ → Z/nZ (see [48], Chapter V, §5 or [106], §§43, 57). It follows

that Gal (Fs|F) ∼= Ẑ, the element 1 on the right hand side correspond-
ing to the Frobenius automorphism on the left.

2. Consider now the infinite extension Q(µp∞) obtained by adjoining to Q
all p-power roots of unity for a fixed prime p. We have seen in Example
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1.2.9 (2) that this is a Galois extension. It is the union of the chain
of finite subextensions Q(µp) ⊂ Q(µp2) ⊂ Q(µp3) ⊂ . . . , where µpr is
the group of pr-th roots of unity. As mentioned in Example 1.2.9 (1),
one has Gal (Q(µpr)|Q) ∼= (Z/prZ)×. It follows that Gal (Q(µp∞)|Q)
is lim
←

(Z/prZ)× = Z×p , the group of units in the ring Zp. This group is

known to be isomorphic to Z/(p−1)Z×Zp for p > 2, and to Z/2Z×Z2

for p = 2 (see e.g. [90], Chapter II, Theorem 2).

Similarly, one obtains that the Galois group of the extension Q(µ)|Q
is isomorphic to Ẑ×, where Q(µ) is the extension of Q generated by all
roots of unity.

Profinite groups are endowed with a natural topology as follows: if G
is an inverse limit of a system of finite groups (Gα, φαβ), endow the Gα

with the discrete topology, their product with the product topology and the
subgroup G ⊂ ∏

Gα with the subspace topology. It immediately follows from
this construction that the natural projection maps G → Gα are continuous
and their kernels form a basis of open neighbourhoods of 1 in G (for the
last statement, note that the image of each element g 6= 1 of G must have
nontrivial image in some Gα, by definition of the inverse limit).

To state other topological properties, we need a lemma.

Lemma 1.3.8 Let (Gα, φαβ) be an inverse system of groups equipped with
the discrete topology. The inverse limit lim

←
Gα is a closed topological subgroup

of the product
∏
Gα.

Proof: Take an element g = (gα) ∈ ∏
Gα. If g /∈ lim

←
Gα, we have to

show that it has an open neighbourhood which does not meet lim
←
Gα. By

assumption for some α and β we must have φαβ(gβ) 6= gα. Now take the
subset of

∏
Gα consisting of all elements with α-th component gα and β-th

component gβ. It is a suitable choice, being open (by the discreteness of
the Gα and by the definition of topological product) and containing g but
avoiding lim

←
Gα.

Corollary 1.3.9 A profinite group is compact and totally disconnected (i.e.
the only connected subsets are the one-element subsets). Moreover, the open
subgroups are precisely the closed subgroups of finite index.

Proof: Recall that finite discrete groups are compact, and so is a product of
compact groups, by Tikhonov’s theorem ([66], Theorem 37.3). Compactness
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of the inverse limit then follows from the lemma, as closed subspaces of
compact spaces are compact. Complete disconnectedness follows from the
construction. For the second statement, note that each open subgroup U
is closed since its complement is a disjoint union of cosets gU which are
themselves open (the map U 7→ gU being a homeomorphism in a topological
group); by compactness of G, these must be finite in number. Conversely, a
closed subgroup of finite index is open, being the complement of the finite
disjoint union of its cosets which are also closed.

Remarks 1.3.10

1. In fact, one may characterize profinite groups as being those topological
groups which are compact and totally disconnected. See e.g. [96], §1,
Theorem 2 for a proof.

2. One may ask whether all subgroups of finite index in a profinite group
are actually open. This is false already for the absolute Galois group
of Q (see Exercise 4). However, it has been conjectured for a long
time whether the property holds for those profinite groups that are
topologically finitely generated (i.e. contain a dense finitely generated
subgroup). This conjecture was recently proven by Nikolov and Segal
[71].

We may now state and prove the main theorem of Galois theory for
possibly infinite extensions. Observe first that if L is a subextension of a
Galois extension K|k, then K is also a Galois extension of L and Gal (K|L)
is naturally identified with a subgroup of Gal (K|k).

Theorem 1.3.11 (Krull) Let L be a subextension of the Galois extension
K|k. Then Gal (K|L) is a closed subgroup of Gal (K|k). Moreover, the maps

L 7→ H := Gal (K|L) and H 7→ L := KH

yield an inclusion-reversing bijection between subfields K ⊃ L ⊃ k and
closed subgroups H ⊂ G. A subextension L|k is Galois over k if and only if
Gal (K|L) is normal in Gal (K|k); in this case there is a natural isomorphism
Gal (L|k) ∼= Gal (K|k)/Gal (K|L).

Proof: Take first a finite separable extension L|k contained in K. Using
Lemma 1.3.1 we may embed it in a finite Galois extension M |k contained
in K. Then Gal (M |k) is one of the standard finite quotients of Gal (K|k),
and it contains Gal (M |L) as a subgroup. Let UL be the inverse image of
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Gal (M |L) by the natural projection Gal (K|k) → Gal (M |k). Since the
projection is continuous and Gal (M |k) has the discrete topology, UL is open.
We claim that UL = Gal (K|L). Indeed, we have UL ⊂ Gal (K|L), for each
element of UL fixes L; on the other hand, the image of Gal (K|L) by the
projection Gal (K|k) → Gal (M |k) is contained in Gal (M |L), whence the
reverse inclusion. Now if L|k is an arbitrary subextension of K|k, write
it as a union of finite subextensions Lα|k. By what we have just proven,
each Gal (K|Lα) is an open subgroup of Gal (K|k), hence it is also closed
by Corollary 1.3.9. Their intersection is precisely Gal (K|L) which is thus a
closed subgroup; its fixed field is exactly L, for K is Galois over L.

Conversely, given a closed subgroup H ⊂ G, it fixes some extension L|k
and is thus contained in Gal (K|L). To show equality, let σ be an element of
Gal (K|L), and pick a fundamental open neighbourhood UM of the identity
in Gal (K|L), corresponding to a Galois extension M |L. Now H ⊂ Gal (K|L)
surjects onto Gal (M |L) by the natural projection; indeed, otherwise its im-
age in Gal (M |L) would fix a subfield of M strictly larger than L according
to finite Galois theory, which would contradict our assumption that each el-
ement of M \L is moved by some element of H. In particular, some element
of H must map to the same element in Gal (M |L) as σ. Hence H contains
an element of the coset σUM and, as UM was chosen arbitrarily, this implies
that σ is in the closure of H in Gal (K|L). But H is closed by assumption,
whence the claim. The assertion about finite extensions follows from the
above in view of Corollary 1.3.9.

Finally, the relation between Galois subextensions and normal subgroups
is proven exactly as in the finite case.

Remark 1.3.12 To see that the Galois theory of infinite extensions is really
different from the finite case we must exhibit non-closed subgroups in the
Galois group. We have already seen such a subgroup in the last two examples
of 1.3.4: the absolute Galois group of a finite field is isomorphic to Ẑ, which
in turn contains Z as a non-trivial dense (hence non-closed) subgroup; there
are in fact many copies of Z embeddded in Ẑ.

The original example of Dedekind was very similar: he worked with the
extension Q(µp∞)|Q. However, he did not determine the Galois group it-
self (profinite groups were not yet discovered at the time); he just showed
the existence of a non-closed subgroup. His proof was generalised in Krull
[47] to establish the existence of non-closed subgroups in the Galois group
of any infinite extension as follows. First one shows that given a non-trivial
Galois extension K2|K1, each automorphism of K1 may be extended to an
automorphism of K2 in at least two ways. From this one infers by taking an
infinite chain of non-trivial Galois subextensions of an infinite Galois exten-
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sion L|k that Gal (L|k) is uncountable. By the same argument, all infinite
closed subgroups of Gal (L|k) are uncountable, hence countable subgroups in
an infinite Galois group are never closed.

Remark 1.3.13 The absolute Galois group is a rather fine invariant for
fields of finite type. In 1995 Florian Pop proved the following remarkable
theorem: Let K,L be two infinite fields that are finitely generated over their
prime field. Fix separable closures Ks, Ls of K and L, respectively, and
assume there exists a continuous isomorphism Φ : Gal (Ks|K)

∼→ Gal (Ls|L)
of profinite groups. Then there exist purely inseparable extensions K ′|K,L′|L
with K ′ ∼= L′. Moreover, there is an isomorphism φ : L′Ls

∼→ K ′Ks of
separable closures such that Φ(g) = φ−1 ◦ g ◦ φ for all g ∈ Gal (K ′Ks|K ′).

Here recall that an algebraic extension is called purely inseparable if all
of its separable subextensions are trivial. Of course, in characteristic 0 such
extensions are trivial, and one has K = K ′, L = L′. In fact, already the
case L = K of Pop’s theorem is interesting: it shows that every continuous
automorphism of the absolute Galois group comes from a field automorphism.
The first nontrivial case of this theorem, that of finite Galois extensions of Q,
was proven by J. Neukirch [68]. Already this special case is quite surprising:
for instance, it shows that if p and q are different primes, then the absolute
Galois groups of Q(

√
p) and Q(

√
q) cannot be isomorphic. For more on this

fascinating topic, see [77] and [101].

1.4 Interlude on Category Theory

In the next section we shall give another formulation of Galois theory which
roughly states that ‘up to isomorphism it is the same to give a finite sepa-
rable extension of k and a finite set equipped with a continuous transitive
Gal (ks|k)-action’. In order to be able to formulate the ‘up to isomorphism it
is the same’ part of the above statement rigorously, it is convenient to recall
some basic notions from category theory. These notions will be of constant
use in the sequel.

Definition 1.4.1 A category consists of objects as well as morphisms be-
tween pairs of objects; given two objects A, B of a category C, the morphisms
from A to B form a set, denoted by Hom(A,B). (Notice that in contrast to
this we do not impose that the objects of the category form a set.) These
are subject to the following constraints.

1. For each object A the set Hom(A,A) contains a distinguished element
idA, the identity morphism of A.
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2. Given two morphims φ ∈ Hom(B,C) and ψ ∈ Hom(A,B), there exists
a canonical morphism φ ◦ψ ∈ Hom(A,C), the composition of φ and ψ.
The composition of morphisms should satisfy two natural axioms:

• Given φ ∈ Hom(A,B), one has φ ◦ idA = idB ◦ φ = φ.

• (Associativity rule) For λ ∈ Hom(A,B), ψ ∈ Hom(B,C), φ ∈
Hom(C,D) one has (φ ◦ ψ) ◦ λ = φ ◦ (ψ ◦ λ).

Some more definitions: a morphism φ ∈ Hom(A,B) is an isomorphism
if there exists ψ ∈ Hom(B,A) with ψ ◦ φ = idA, φ ◦ ψ = idB; we denote
the set of isomorphisms between A and B by Isom(A,B). If the objects
themselves form a set, one can associate an oriented graph to the category by
taking objects as vertices and defining an oriented edge between two objects
corresponding to each morphism. With this picture in mind, it is easy to
conceive what the opposite category Cop of a category C is: it is “the category
with the same objects and arrows reversed”; i.e. for each pair of objects (A,
B) of C, there is a canonical bijection between the sets Hom(A,B) of C and
Hom(B,A) of Cop preserving the identity morphisms and composition.

The product of two categories C1 and C2 is the category C1 × C2 whose
objects are pairs (C1, C2) with Ci ∈ Ci and whose morphisms are pairs (φ1, φ2)
of morphisms in the Ci. One defines arbitrary finite products of categories in
a similar way.

A subcategory of a category C is just a category D consisting of some
objects and some morphisms of C; it is a full subcategory if given two objects
in D, HomD(A,B) = HomC(A,B), i.e. all C-morphisms between A and B
are morphisms in D.

Examples 1.4.2 Some categories we shall frequently encounter will be the
category Sets of sets (with morphisms the set-theoretic maps), the category
Ab of abelian groups (with group homomorphisms) or the category Top of
topological spaces (with continuous maps). Both Ab and Top are naturally
subcategories of Sets but they are not full subcategories; on the other hand,
Ab is a full subcategory of the category of all groups.

Now comes the second basic definition of category theory.

Definition 1.4.3 A (covariant) functor F between two categories C1 and
C2 consists of a rule A 7→ F (A) on objects and a map on sets of morphisms
Hom(A,B) → Hom(F (A), F (B)) which sends identity morphisms to identity
morphisms and preserves composition. A contravariant functor from C1 to
C2 is a functor from C1 to Cop2 .
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Examples 1.4.4 Here are some examples of functors.

1. The identity functor is the functor idC on any category C which leaves
all objects and morphisms fixed.

2. Other basic examples of functors are obtained by fixing an object A
of a category C and considering the covariant functor Hom(A, ) (resp.
the contravariant functor Hom( , A)) from C to the category Sets which
sends an object B the set Hom(A,B) (resp. Hom(B,A)) and a mor-
phism φ : B → C to the set-theoretic map Hom(A,B) → Hom(A,C)
(resp. Hom(C,A) → Hom(B,A)) induced by composing with φ.

3. An example of a functor whose definition is not purely formal is given
by the set-valued functor on the category Top that sends a topological
space to its set of connected components. Here to see that this is really
a functor one has to use the fact that a continuous map between topo-
logical spaces sends connected components to connected components.

Definition 1.4.5 If F and G are two functors with same domain C1 and
target C2, a morphism of functors Φ between F and G is a collection of
morphisms ΦA : F (A) → G(A) in C2 for each object A ∈ C1 such that for
every morphism φ : A→ B in C1 the diagram

F (A)
ΦA−−−→ G(A)

F (φ)

y
yG(φ)

F (B)
ΦB−−−→ G(B)

commutes. The morphism Φ is an isomorphism if each ΦA is an isomorphism;
in this case we shall write F ∼= G.

Remark 1.4.6 In the literature the terminology ‘natural transformation’ is
frequently used instead of ‘morphism of functors’. We prefer the latter name,
as it reflects the fact that given two categories C1 and C2 one can define a
new category called the functor category of the pair (C1, C2) whose objects
are functors from C1 to C2 and whose morphisms are morphisms of functors.
Here the composition rule for some Φ and Ψ is induced by the composition
of the morphisms ΦA and ΨA for each object A in C1.

We can now give one of the notions which will be ubiquitous in what
follows.
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Definition 1.4.7 Two categories C1 and C2 are equivalent if there exist two
functors F : C1 → C2 and G : C2 → C1, and two isomorphisms of functors
Φ : F ◦ G ∼→ idC2 and Ψ : G ◦ F ∼→ idC1 . In this situation we say that the
functor G is a quasi-inverse for F (and F is a quasi-inverse for G).

If we can actually find F and G with F ◦ G = idC2 and G ◦ F = idC1 ,
we say that C1 and C2 are isomorphic. Finally, we say that C1 and C2 are
anti-equivalent (resp. anti-isomorphic) if C1 is equivalent (resp. isomorphic)
to Cop2 .

One sees that equivalence of categories has all properties that equivalence
relations on sets have, i.e. it is reflexive, symmetric and transitive. Also,
the seemingly asymmetric definition of anti-equivalence is readily seen to be
symmetric.

In practice, when one has to establish an equivalence of categories it often
turns out that the construction of one functor is easy but that of the quasi-
inverse is rather cumbersome. The following general lemma enables us to
make do with the construction of only one functor in concrete situations.
Before stating it, we introduce some terminology.

Definition 1.4.8 A functor F : C1 → C2 is faithful if for any two objects A
and B of C1 the map of sets FAB : Hom(A,B) → Hom(F (A), F (B)) induced
by F is injective; it is fully faithful if all the maps FAB are bijective.

The functor F is is essentially surjective if every object of C2 is isomorphic
to some object of the form F (A).

Lemma 1.4.9 Two categories C1 and C2 are equivalent if and only if there
exists a functor F : C1 → C2 which is fully faithful and essentially surjective.

There is an analogous characterization of anti-equivalent categories with
fully faithful and essentially surjective contravariant functors (defined in the
obvious way).

Proof: For the proof of the ‘if’ part fix for each object V of C2 an isomor-
phism iV : F (A)

∼→V with some object A of C1. Such an isomorphism exists
by the second condition. Define a functor G : C2 → C1 by sending each
object V in C2 to the A fixed above, and each morphism φ : V → W to
G(φ) = F−1

AB(i−1
W ◦ φ ◦ iV ) for φ ∈ Hom(V,W ), where B = G(W ) and FAB

is the bijection appearing in the definition of fully faithfulness. The maps
iV : F (G(V ))

∼→ V induce an isomorphism Φ : F ◦G ∼→ idC2 by construction.
To construct an isomorphism Ψ : G◦F ∼→ idC1 , we first need functorial maps
ΨA : G(F (A)) → A for each A in C1. By fully faithfulness of F it is enough
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to construct maps F (ΨA) : F (G(F (A)) → F (A), and we may take as F (ΨA)
the unique preimage of idF (A) by ΦF (A). A similar construction yields a map
A → G(F (A)) that is an inverse to ΨA. As the construction is functorial in
A, we obtain an isomorphism of functors.

For the ‘only if’ part assume there exist a functor G : C2 → C1 and
isomorphisms of functors Φ : F ◦ G ∼→ idC2 and Ψ : G ◦ F ∼→ idC1 . Essen-
tial surjectivity is immediate: given an object C of C2, it is isomorphic to
F (G(C)) via Φ. For fully faithfulness fix any two objects A, B of C1 and
consider the sequence of maps

Hom(A,B)→Hom(F (A), F (B))→Hom(G(F (A)), G(F (B)))→Hom(A,B)

induced respectively by FAB, GF (A),F (B) and Ψ. Their composite is the iden-
tity, which implies that FAB is a bijection.

Note that in the above proof the construction of G depended on the
axiom of choice: we had to pick for each V an isomorphism iV . Different
choices define different G’s but the categories are equivalent with any choice.
This suggests that the notion of equivalence of categories means that “up to
isomorphism the categories have the same objects and morphisms” but this
does not mean at all that there are bijections between objects and morphisms.
In order to stress this point we discuss an example that expresses a basic fact
from linear algebra in the language of category theory.

Example 1.4.10 Consider a field k and the category Vecfk of finite dimen-
sional k-vector spaces (with linear maps as morphisms). We show that this
category is equivalent to a category C that we define as follows. The objects
of C are to be the nonnegative integers, and the set of morphisms between
two integers n,m > 0 is to be the set of all n by m matrices with entries in
k; here the identity morphisms are given by the identity matrices and com-
position by multiplication of matrices. There are also canonical morphisms
0 → n and n → 0 for each n ≥ 0. (Notice that this is an example of a
category where morphisms are not set-theoretic maps.)

To show the asserted equivalence, we introduce an auxiliary subcategory
C′ and show it is equivalent to both categories. This category C′ is to be
the full subcategory of Vecfk spanned by the standard vector spaces kn. The
equivalence of C′ and Vecfk is immediate from the criterion of the previous
lemma applied to the inclusion functor of C′ to Vecfk: the first condition
is tautological as we took C′ to be a full subcategory and the second holds
because any finite dimensional vector space is isomorphic to some kn.

We now show the equivalence of C′ and C. Define a functor F : C′ → C
by sending kn to n and a morphism kn → km to its matrix with respect to
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the standard bases. The fact that F is indeed a functor hides a non-trivial
result of linear algebra, namely that the matrix of the composition of two
linear maps φ and ψ is the product of the matrix of φ with that of ψ. One
constructs an inverse functor G by reversing this procedure. It is immediate
to check that in this case F ◦G and G◦F are actually equal to the appropriate
identity functors.

We close this brief overview with a very important notion due to Groth-
endieck. It will not be used until the next chapter.

Definition 1.4.11 Let C be a category. A functor F from C to the category
Sets is representable if there is an object C ∈ C and an isomorphism of
functors F ∼= Hom(C, ).

Recall that the latter functor sends an object A to the set of morphisms
from C to A. There is also an analogous notion for contravariant functors.
The object C is called the representing object.

The following well-known lemma is of pivotal importance. Observe that
if C and D are objects of C, every morphism D → C induces a morphism of
functors Hom(C, ) → Hom(D, ) via composition.

Lemma 1.4.12 (Yoneda Lemma) If F and G are functors C → Sets
represented by objects C and D, respectively, every morphism Φ : F → G of
functors is induced by a unique morphism D → C as above.

Proof: There morphism ΦC : F (C) → G(C) can be rewritten as a map
Hom(C,C) → Hom(D,C) using the representability of the functors. The
image of the identity morphism idC ∈ Hom(C,C) by ΦC then identifies with
a morphism ρ : D → C; we claim this is the one inducing Φ. Indeed, for
an object A each element of F (A) ∼= Hom(C,A) identifies with a morphism
φ : C → A. Observe that φ as an element of F (A) is none but the image
of idC ∈ Hom(C,C) ∼= F (C) via F (φ). As Φ is a morphism of functors,
we get ΦA(φ) = G(φ)(ρ), which under the isomorphism G(A) ∼= Hom(D,A)
corresponds exactly to φ ◦ ρ.

Corollary 1.4.13 The representing object of a representable functor F is
unique up to unique isomorphism.

Proof: Assume C and D both represent F , and apply the Yoneda Lemma
to the identity map of F .

We shall encounter several interesting examples of representable functors
from Chapter 2 onwards.
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1.5 Finite Étale Algebras

We now return to Galois theory and give a second variant of the Main The-
orem which is often referred to as ‘Grothendieck’s formulation of Galois the-
ory’.

We start again from a base field k of which we fix separable and algebraic
closures ks ⊂ k̄. We use the shorthand Gal (k) for Gal (ks|k). Let L be a
finite separable extension of k; here we do not consider L as a subextension
of ks. We know that L has only finitely many k-algebra homomorphisms
into k̄ (the number of these is equal to [L : k] by Lemma 1.1.6); actually the
images of these homomorphisms are contained in ks. So we may consider the
finite set Homk(L, ks) which is endowed by a natural left action of Gal (k)
given by (g, φ) 7→ g ◦ φ for g ∈ Gal (k), φ ∈ Homk(L, ks).

The first property we shall show about this action is its continuity. Recall
that the action of a topological group G on a topological space X is said to
be continuous if the map m : G×X → X given by (g, x) 7→ gx is continuous.
In our case X is discrete, and the property is equivalent to the openness of
the stabilizer Gx of each point x ∈ X. Indeed, the preimage of x (which is an
open subset of X) in G×X is Ux = {(g, y) ∈ G×X : gy = x}, which is the
disjoint union of the sets {(g, y) ∈ G× {y} : gy = x} for fixed y ∈ X. Each
of these is either empty or homeomorphic to Gx via the map g 7→ (gh, y),
where h ∈ G is an element with hy = x. Thus the openness of Gx implies
that of Ux, i.e. the continuity of m. On the other hand, Gx is the preimage

of x by the composite map G
ix→ G × X

m→ X, where ix(g) = (g, x), so the
continuity of m implies the openness of Gx.

Lemma 1.5.1 The above left action of Gal (k) on Homk(L, ks) is continuous
and transitive, hence Homk(L, ks) as a Gal (k)-set is isomorphic to the left
coset space of some open subgroup in Gal (k). For L Galois over k this coset
space is in fact a quotient by an open normal subgroup.

Proof: The stabilizer U of an element φ consists of the elements of Gal (k)
fixing φ(L). Hence by Theorem 1.3.11 U is open in Gal (k), or in other
words Gal (k) acts continuously on Homk(L, ks). If L is generated by a
primitive element α with minimal polynomial f , each φ ∈ Homk(L, ks) is
given by mapping α to a root of f in ks. Since Gal (k) permutes these
roots transitively, the Gal (k)-action on Homk(L, ks) is transitive. The above
argument also shows that the map g ◦ φ 7→ gU induces an isomorphism of
Homk(L, ks) with the left coset space U \Gal (k). For U normal we obtain
the quotient Gal (k)/U ; by Theorem 1.3.11 this case arises if and only if L is
Galois over k.
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If M is another finite separable extension of k, each k-homomorphism
φ : L→M induces a map Homk(M,ks) → Homk(L, ks) by composition with
φ. This map is Gal (k)-equivariant, so we have obtained a contravariant
functor from the category of finite separable extensions of k to the category
of finite sets with continuous transitive left Gal (k)-action.

Theorem 1.5.2 Let k be a field with fixed separable closure ks. The con-
travariant functor mapping a finite separable extension L|k to the finite
Gal (k)-set Homk(L, ks) gives an anti-equivalence between the category of fi-
nite separable extensions of k and the category of finite sets with continuous
and transitive left Gal (k)-action. Here Galois extensions give rise to Gal (k)-
sets isomorphic to some finite quotient of Gal (k).

Proof: We check that Homk( , ks) satisfies the conditions of Lemma 1.4.9.
We begin by essential surjectivity. To show that any continuous transitive
left Gal (k)-set S is isomorphic to some Homk(L, ks), pick a point s ∈ S. The
stabilizer of s is an open subgroup Us of Gal (k) which fixes a finite separable
extension L of k. Now define a map of Gal (k)-sets Homk(L, ks) → S by
the rule g ◦ i 7→ gs, where i is the natural inclusion L → ks and g is any
element of G. This map is well-defined since the stabilizer of i is exactly Us
and is readily seen to be an isomorphism; in fact, both Gal (k)-sets become
isomorphic to the left coset space Us\Gal (k) by the maps sending i (resp. s)
to Us.

For fully faithfulness we have to show that given two finite separable
extensions L,M of k, the set of k-homomorphisms L → M corresponds
bijectively to the set of Gal (k)-maps Homk(M,ks) → Homk(L, ks). Since
both Homk(M,ks) and Homk(L, ks) are transitive Gal (k)-sets, a Gal (k)-map
f between them is determined by the image of a fixed φ ∈ Homk(M,ks). As
f is Gal (k)-equivariant, the elements of the stabilizer U of φ fix f(φ) as well,
whence an inclusion U ⊂ V , where V is the stabilizer of f(φ). By what we
have just seen, taking the fixed subfields of U and V respectively, we get an
inclusion of subfields of ks which is none but the extension f(φ)(L) ⊂ φ(M).
Denoting by ψ : φ(M) →M the map inverse to φ we readily see that ψ◦f(φ)
is the unique element of Homk(L,M) inducing f .

The last statement follows from Lemma 1.5.1.

If we wish to extend the previous anti-equivalence to Gal (k)-sets with
not necessarily transitive action, the natural replacement for finite separable
extensions of k is the following.

Definition 1.5.3 A finite dimensional k-algebra A is étale (over k) if it is
isomorphic to a finite direct product of separable extensions of k.
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As above, the Gal (k)-action on ks induces a left action on the set of
k-algebra homomorphisms Homk(A, ks).

Theorem 1.5.4 (Main Theorem of Galois Theory – Grothendieck’s
version) Let k be a field. Then the functor mapping a finite étale k-algebra
A to the finite set Homk(A, ks) gives an anti-equivalence between the category
of finite étale k-algebras and the category of finite sets with continuous left
Gal (k)-action. Here separable field extensions give rise to sets with transi-
tive Gal (k)-action and Galois extensions to Gal (k)-sets isomorphic to finite
quotients of Gal (k).

Proof: This follows from the previous theorem in view of the remark that
given a decomposition A =

∏
Li into a product of fields and an element

φ ∈ Homk(A, ks), the map φ induces the injection of exactly one Li in ks.
Indeed, if φ(Li) 6= 0, then being a field, Li injects in ks, and on the other
hand, a product Li × Lj cannot inject in ks since ks has no zero-divisors.
Thus Homk(A, ks) decomposes into the disjoint union of the Homk(Li, ks);
this is in fact its decomposition into Gal (k)-orbits. For a similar reason,
given another étale k-algebra A′ =

∏
L′j, a morphism A → A′ identifies

with a collection of morphisms Li → L′j, one for each i, and these in turn
correspond bijectively to morphisms of the corresponding Gal (k)-sets by the
previous theorem.

Remark 1.5.5 The theorem generalizes immediately to an arbitrary Ga-
lois extension K|k: if one restricts attention to finite étale k-algebras that
are products of subfields of K, the functor A 7→ Homk(A,K) induces an
equivalence with the category of finite continuous left Gal (K|k)-sets.

To conclude this section we give another characterisation of finite étale
k-algebras which ties in with more classical treatments. Recall that a com-
mutative ring is reduced if it has no nonzero nilpotent elements.

Proposition 1.5.6 Let A be a finite dimensional commutative k-algebra.
Then the following are equivalent:

1. A is étale.

2. A⊗k k̄ is isomorphic to a finite direct sum of copies of k̄;

3. A⊗k k̄ is reduced.
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In the literature, finite dimensional k-algebras satisfying the third condi-
tion of the proposition are often called separable k-algebras. The proposition
thus provides a structure theorem for these.

Note that it may well happen that A has no nilpotents but A⊗k k̄ does. A
typical example is the following: let k be an imperfect field of characteristic
p > 0, and set A := k[x]/(xp − a) for an a ∈ k that is not a p-th power in
k. Then A is a degree p field extension of k, so it has no nilpotents. But
A := A⊗k k̄ ∼= k̄[x]/(xp − a). Choosing α ∈ k̄ with αp = a and denoting by
x̄ the image of x in A we have (x̄− α)p = x̄p − αp = 0 in A.

For the proof we need the following lemma which is the commutative
version of the Wedderburn-Artin theorem.

Lemma 1.5.7 A finite dimensional commutative algebra over a field F is
isomorphic to a direct sum of finite field extensions of F if and only if it is
reduced.

The proof is taken from Fröhlich-Taylor [25].

Proof: The ‘only if’ part is obvious. To prove the ‘if’ part, by decomposing
a finite dimensional F -algebra A into a finite direct product of indecompos-
able F -algebras we may assume that A is indecomposable itself. Notice that
under this restriction A can have no idempotent elements other than 0 and
1; indeed, if e 6= 0, 1 were an idempotent then A ∼= Ae × A(1 − e) would
be a nontrivial direct product decomposition since e(1 − e) = e − e2 = 0
by assumption. The lemma will follow if we show that every nonzero ele-
ment x ∈ A is invertible and thus A is a field. Since A is finite dimensional
over F , the descending chain of ideals (x) ⊃ (x2) ⊃ . . . (xn) ⊃ . . . must
stabilise and thus for some m we must have xn = xn+1y with an appropriate
y. By iterating this formula we get xn = xn+iyi for all positive integers i,
in particular xn = x2nyn. Thus xnyn = (xnyn)2, i. e. xnyn is an idempo-
tent. By what has been said above there are two cases. If xnyn = 0, then
xn = (xn)(xnyn) = 0 which is a contradiction since x 6= 0 by assumption and
A is reduced. Otherwise, xnyn = 1 and thus x is invertible.

Remark 1.5.8 The lemma already implies that a finite-dimensional com-
mutative algebra over a perfect field is étale if and only if it is reduced.

Proof of Proposition 1.5.6. The derivation of the third condition from the
second is immediate; actually, the lemma applied to A⊗k k̄ shows that they
are equivalent. We therefore only have to prove the equivalence of the first
two conditions. To see that (1) implies (2) we may restrict to finite separable
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extensions L of k. We then have L = k[x]/(f) with some polynomial f which
decomposes as a product of n distinct factors (x− αi) in k̄. We conclude by
the chain of isomorphisms

L⊗k k̄ ∼= k̄[x]/(f) = k̄[x]/(x− α1) . . . (x− αn) ∼=
n∏

i=1

k̄[x]/(x− αi) ∼=
n∏

i=1

k̄,

the middle isomorphism holding by the Chinese Remainder Theorem (see
e.g. Lang [1], Chapter II, Theorem 2.1).

Now to derive (1) from (2), let A be the quotient of A by the ideal
formed by its nilpotent elements. The lemma implies that A is a sum of
finite extension fields of k. Since k̄ is reduced, each k-algebra homomorphism
A→ k̄ factors through A and hence through one of its decomposition factors
L. By Lemma 1.1.6, the number of k-algebra homomorphisms L → k̄ can
equal at most the degree of L over k, with equality if and only if L|k is
separable, whence Homk(A, k̄) has at most dimk(A) elements with equality if
and only if A = A and A is étale. To see that equality indeed holds, observe
that we have a canonical bijection of finite sets

Homk(A, k̄) ∼= Homk̄(A⊗k k̄, k̄).

[To see this, observe that given a k-algebra homomorphism A→ k̄, tensoring
by k̄ and composing by the multiplication map gives a k̄-homomorphism
A ⊗k k̄ → k̄ ⊗k k̄ → k̄; on the other hand the natural inclusion k → k̄
induces a k-homomorphism A ∼= A ⊗k k → A ⊗k k̄ which composed by
homomorphisms A⊗k k̄ → k̄ gives a map from the set on the right hand side
to that on the left which is clearly inverse to the previous construction.] The
assumption now implies that the set on the right hand side has dimk̄(A⊗k k̄)
elements. But dimk̄(A⊗k k̄) = dimk A, whence the claim.

Exercises

1. Show that an inverse limit of nonempty finite discrete sets (for any directed
index set) is nonempty. [Hint: For such an inverse system {Xα : α ∈ Λ}
consider the subsets Xλµ ⊂ ∏

Xα consisting of the sequences (xα) satisfying
φλµ(xµ) = xλ for a fixed pair λ ≤ µ and use the compactness of the topo-
logical product of the Xα. We shall go through this argument in a more
general case in Lemma 3.4.12.]

2. Let G be a profinite group, p a prime number. A pro-p-Sylow subgroup of G
is a pro-p-group whose image in each finite quotient of G is of index prime
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to p. Show that pro-p-Sylow subgroups exist and they are conjugate in G.
[Hint: Apply the previous exercise to the inverse system formed by the sets
of p-Sylow subgroups in each finite quotient of G.]

3. Let k be a perfect field, p a prime number. Show that there exists an
algebraic extension k(p)|k such that each finite subextension is of degree
prime to p and k(p) has no nontrivial finite extensions of degree prime to p.
Is such an extension unique inside a fixed algebraic closure? [Hint: Use the
previous exercise.]

4. Consider the compositum E of all quadratic extensions of Q inside a fixed
algebraic closure Q.

(a) Show that Gal (E|Q) is uncountable and has uncountably many sub-
groups of index 2.

(b) Deduce that there are uncountably many subgroups of index 2 in
Gal (Q|Q) that are not open.

5. Let G be a profinite group acting via field automorphisms on a field K.
Assume that the action is continuous when K carries the discrete topology
and that each nontrivial element in G acts nontrivially on K. Show that
G ∼= Gal (K|k), where k = KG.

6. (Leptin, Waterhouse) Show that every profinite group G arises as the Galois
group of some Galois extension K|k. [Hint: For each open normal subgroup
N ⊂ G fix a system of left coset representatives 1 = σN1 , . . . , σ

N
m . Let F be

a perfect field, and K|F the purely transcendental extension obtained by
adjoining an indeterminate xNi for each σNi . Make G act on F trivially, and
on K via σ(xNi ) = xNj , where xNj corresponds to σNj with σNj N = σ(σNi N).
Verify that this action satisfies the criterion of the previous exercise.]

[Remark: The statement does not hold if one requires K to be a separable
closure of k. For instance, Artin and Schreier showed in [3] that among the
nontrivial finite groups only Z/2Z can arise as an absolute Galois group.]

7. Let k be a field, and A a finite étale k-algebra equipped with an action
of a finite group G via k-algebra automorphisms; we call such algebras G-
algebras. We moreover say that A is Galois with group G if dimk(A) equals
the order of G and AG = k.

(a) Consider the G-algebra structure on A⊗k k̄ given by g(a⊗α) = g(a)⊗α.
Prove that A is Galois with group G if and only if A⊗k k̄ is isomorphic
to the group algebra k̄[G] as a G-algebra.

(b) Making G act on Homk(A, ks) via φ 7→ φ ◦ g, show that in the corre-
spondence of Theorem 1.5.4 Galois algebras with group G correspond
to finite continuous Gal (k)-sets with simply transitive G-action.
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8. Let k be a field of characteristic different from 2, and S a continuous left
Gal (k)-set with n elements. Consider the subset Σ(S) ⊂ Sn consisting of n-
tuples (s1, . . . , sn) with xi 6= xj for i 6= j. It inherits a continuous left action
of Gal (k) from the product action on Sn, and it also has a natural action
by the symmetric group Sn via permutation of the components. Denote by
∆(S) the quotient of Σ(S) by the action of the alternating group An ⊂ Sn.
It is a 2-element continuous left Gal (k)-set.

(a) Show that the finite étale k-algebra corresponding to ∆(S) via The-
orem 1.5.4 is isomorphic to k × k if Gal (k) acts on ∆(S) by even
permutations, and is a degree 2 field extension of k otherwise.

(b) If A is the finite étale k-algebra corresponding to S via Theorem 1.5.4,
denote the k-algebra of (a) by ∆(A). Show that when A ∼= k[x]/(f) for
a polynomial f without multiple roots, then ∆(A) ∼= k[x]/(x2 − d(f)),
where d(f) ∈ k is the Vandermonde determinant formed from the roots
of f .

[Remark: The k-algebra ∆(A) is called the discriminant of the finite étale k-
algebra A. For a description of ∆(A) in the general case, see [45], Proposition
18.24.]



Chapter 2

Fundamental Groups in Topology

In the last section we saw that when studying extensions of some field it is plausi-
ble to conceive the base field as a point and a finite separable extension (or, more
generally, a finite étale algebra) as a finite discrete set of points mapping to this
base point. Galois theory then equips the situation with a continuous action of
the absolute Galois group which leaves the base point fixed. It is natural to try
to extend this situation by taking as a base not just a point but a more general
topological space. The role of field extensions would then be played by certain con-
tinuous surjections, called covers, whose fibres are finite (or, even more generally,
arbitrary discrete) spaces. We shall see in this chapter that under some restrictions
on the base space one can develop a topological analogue of the Galois theory of
fields, the part of the absolute Galois group being taken by the fundamental group
of the base space.

In the second half of the chapter we give a reinterpretation of the main theo-
rem of Galois theory for covers in terms of locally constant sheaves. Esoteric as
these objects may seem to the novice, they stem from reformulating in a modern
language very classical considerations from analysis, such as the study of local
solutions of holomorphic differential equations. In fact, the whole concept of the
fundamental group arose from Riemann’s study of the monodromy representa-
tion for hypergeometric differential equations, a topic we shall briefly discuss at
the end of the chapter. Our exposition therefore traces history backwards, but
hopefully reflects the intimate connection between differential equations and the
fundamental group.

2.1 Covers

We start with the basic definitions.

Definition 2.1.1 Let X be a topological space. A space over X is a topological
space Y together with a continuous map p : Y → X. A morphism between two
spaces pi : Yi → X (i = 1, 2) over X is given by a continuous map f : Y1 → Y2

37
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making the diagram

Y1 Y2

X

-f

@
@

@@R
p1

?

p2

commute.

A cover of X is a space Y over X where the projection p : Y → X is subject
to the following condition: each point of X has an open neighbourhood V for
which p−1(V ) decomposes as a disjoint union of open subsets Ui of Y such that
the restriction of p to each Ui induces a homeomorphism of Ui with V .

We define a morphism between two covers of a space X to be a morphism of
spaces over X.

In the literature the terms ‘covering space’ and ‘covering’ are also used for what
we call a cover; we shall stick to the above terminology. Note an easy consequence
of the definition: if p : Y → X is a cover, the map p is always surjective.

Example 2.1.2 Take a nonempty discrete topological space I and form the topo-
logical product X × I. The first projection X × I → X turns X × I into a space
over X which is immediately seen to be a cover. It is called the trivial cover.

Trivial covers may at first seem very special but as the next proposition shows,
every cover is locally a trivial cover.

Proposition 2.1.3 A space Y over X is a cover if and only if each point of X
has an open neighbourhood V such that the restriction of the projection p : Y → X
to p−1(V ) is isomorphic (as a space over V ) to a trivial cover.

Proof: The ‘if’ part follows from the previous example and the ‘only if’ part
is easily seen as follows: given a decomposition p−1(V ) ∼=

∐
i∈I

Ui for some index

set I as in the definition of covers, mapping ui ∈ Ui to the pair (p(ui), i) defines
a homeomorphism of

∐
i∈I

Ui onto V × I, where I is endowed with the discrete

topology. By construction this is an isomorphism of covers of V .

In the notation of the previous proof, the set I is the fibre of p over the points
of V . The proof shows that the points of X over which the fibre of p equals I
form an open subset of X. Thus making I vary yields a decomposition of X into
a disjoint union of open subsets. In particular:

Corollary 2.1.4 If X is connected, the fibres of p are all homeomorphic to the
same discrete space I.
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Notice that this does not mean at all that the cover is trivial. Indeed, let us
give an example of a non-trivial cover with a connected base.

Example 2.1.5 Consider a rectangle XY ZW and divide the sides XY and ZW
into two equal segments by the points P and Q. Identifying the sides XY and ZW
with opposite orientations we get a Möbius strip on which the image of the segment
PQ becomes a closed curve C homeomorphic to a circle. The natural projection
of the boundary B of the Möbius strip onto C coming from the perpendicular
projection of the sides XW and Y Z of the rectangle onto the segment PQ makes
B a space over C which is actually a cover since locally it is a product of a segment
by a two-point space, i.e. a trivial cover of the segment. However, the cover itself
is non-trivial since B is not homeomorphic to a disjoint union of two circles.

Other important examples arise from group actions on topological spaces. To
obtain covers we need a technical restriction.

Definition 2.1.6 Let G be a group acting continuously from the left on a topo-
logical space Y . The action of G is even if each point y ∈ Y has some open
neighborhood U such that the open sets gU are pairwise disjoint for all g ∈ G.

This terminology is that of Fulton [26]. Older texts use the much more awkward
term ‘properly discontinuous’. Now recall that if a group G acts from the left on
a topological space Y , one may form the quotient space G\Y whose underlying
set is by definition the set of orbits under the action of G and the topology is the
finest one that makes the projection Y → G\Y continuous.

Lemma 2.1.7 If G is a group acting evenly on a connected space Y , the projection
pG : Y → G\Y turns Y into a cover of G\Y .

Proof: The map pG is surjective and moreover each x ∈ G\Y has an open
neighbourhood of the form V = pG(U) with a U as in Definition 2.1.6. This V is
readily seen to satisfy the condition of Definition 2.1.1.

Example 2.1.8 With this tool at hand, one can give lots of examples of covers.

1. Let Z act on R by translations (which means that the automorphism defined
by n ∈ Z is the map x 7→ x+ n). We obtain a cover R → R/Z, where R/Z
is immediately seen to be homeomorphic to a circle.

2. The previous example can be generalized to arbitrary dimension: take any
basis {x1, . . . , xn} of the vector space Rn and make Zn act on Rn so that
the i-th direct factor of Zn acts by translation by xi. This action is clearly
even and turns Rn into a cover of what is called a linear torus; for n = 2,
this is the usual torus. The subgroup Λ of Rn generated by the xi is usually
called a lattice; thus linear tori are quotients of Rn by lattices.
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3. For an integer n > 1 denote by µn the group of n-th roots of unity. Multi-
plying by elements of µn defines an even action on C∗ := C \ {0}, whence a
cover pn : C∗ → C∗/µn. In fact, the map z 7→ zn defines a natural home-
omorphism of C∗/µn onto C∗ (even an isomorphism of topological groups)
and via this homeomorphism pn becomes identified with the cover C∗ → C∗

given by z 7→ zn. Note that this map does not extend to a cover C → C;
this phenomenon will be studied further in Chapter 3.

2.2 Galois Covers

Henceforth we fix a base space X which will be assumed locally connected (i.e.
each point has a basis of neighbourhoods consisting of connected open subsets).
Given a cover p : Y → X, its automorphisms are to be automorphisms of Y as
a space over X, i.e. topological automorphisms compatible with the projection p.
They form a group with respect to composition that we shall denote by Aut(Y |X).
By convention all automorphisms will be assumed to act from the left. Note that
for each point x ∈ X, Aut(Y |X) maps the fibre p−1(x) onto itself, so p−1(x) is
equipped with a natural action of Aut(Y |X).

First we prove a necessary and sufficient condition for a topological automor-
phism of Y to be an element of Aut(Y |X).

Lemma 2.2.1 An automorphism φ of a connected cover p : Y → X having a
fixed point must be trivial.

Instead of proving the lemma we establish a more general statement which will
also be needed later. The lemma follows from it by taking Z = Y , f = id and
g = φ.

Proposition 2.2.2 Let p : Y → X be a cover, Z a connected topological space,
f, g : Z → Y two continuous maps satisfying p ◦ f = p ◦ g. If there is a point
z ∈ Z with f(z) = g(z), then f = g.

Proof: Suppose z ∈ Z is as above, y = f(z) = g(z). Take some connected open
neighbourhood V of p(y) satisfying the condition in the definition of a cover (such a
V exists since X is locally connected) and let Ui ∼= V be the component of p−1(V )
containing y. By continuity f and g must both map some open neighbourhood
W of z into Ui. Since p ◦ f = p ◦ g and p maps Ui homeomorphically onto V , f
and g must agree on W . The same type of reasoning shows that if f(z′) 6= z(y′)
for some point z′ ∈ Y , f and g must map a whole open neighbourhood of z′ to
different components of p−1(V ). Thus the set {z ∈ Z : f(z) = g(z)} is nonempty,
open and closed in Z, so by connectedness it is the whole of Z.

Here is a first application of Lemma 2.2.1.

Proposition 2.2.3 If p : Y → X is a connected cover, the action of Aut(Y |X)
on Y is even.
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Proof: Let y be a point of Y , and set x = p(y). Let V be a connected open
neighbourhood of x such that p−1(V ) is a disjoint union of open sets Ui as in
Definition 2.1.1. One of these, say Ui, contains y. We contend that Ui satisfies
the condition of Definition 2.1.6. Indeed, a nontrivial φ ∈ Aut(Y |X) maps Ui
isomorphically onto some Uj , by definition of a cover automorphism. Since Y is
connected, Lemma 2.2.1 applies and shows that for φ 6= idY we must have i 6= j.

Conversely, we have:

Proposition 2.2.4 If G is a group acting evenly on a connected space Y , the
automorphism group of the cover pG : Y → G\Y is precisely G.

Proof: Notice first that we may naturally viewG as a subgroup of Aut(Y |(G\Y )).
Now given an element φ in the latter group, look at its action on an arbitrary point
y ∈ Y . Since the fibres of pG are precisely the orbits of G we may find g ∈ G with
φ(y) = gy. Applying Lemma 2.2.1 to the automorphism φ ◦ g−1 we get g = φ.

Now given a connected cover p : Y → X, we may form the quotient of Y by the
action of Aut(Y |X). It is immediate from the definition of cover automorphisms
that the projection p factors as a composite of continuous maps

Y → Aut(Y |X)\Y p→X

where the first map is the natural projection.

Definition 2.2.5 A cover p : Y → X is said to be Galois if Y is connected and
the induced map p above is a homeomorphism.

Remark 2.2.6 Note the similarity of the above definition with that of a Galois
extension of fields. This analogy is further confirmed by remarking that the cover
pG in Proposition 2.2.4 is Galois.

Proposition 2.2.7 A connected cover p : Y → X is Galois if and only if Aut(Y |X)
acts transitively on each fibre of p.

Proof: Indeed, the underlying set of Aut(Y |X)\Y is by definition the set of
orbits of Y under the action of Aut(Y |X) and so the map p is one-to-one precisely
when each such orbit is equal to a whole fibre of p, i.e. when Aut(Y |X) acts
transitively on each fibre.

Remark 2.2.8 In fact, for a connected cover p : Y → X to be Galois it suffices
for Aut(Y |X) to act transitively on one fibre. Indeed, in this case Aut(Y |X)\Y
is a connected cover of X where one of the fibres consists of a single element; it is
thus isomorphic to X by Remark 2.1.4.
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Example 2.2.9 Consider the linear torus X = Rn/Λ with lattice Λ ∼= Zn, and
let m > 1 be an integer. The multiplication-by-m map of Rn maps Λ into itself
and hence induces a map X → X. It is a Galois cover with group(Z/mZ)n.

Now we can state the topological analogue of Theorem 1.2.5.

Theorem 2.2.10 Let p : Y → X be a Galois cover. For each subgroup H of
G = Aut(Y |X) the projection p induces a natural map pH : H\Y → X which
turns H\Y into a cover of X.

Conversely, if Z → X is a connected cover fitting into a commutative diagram

Y Z

X

-f

@
@

@@R

p

?

q

then f : Y → Z is a Galois cover and actually Z ∼= H\Y for the subgroup H =
Aut(Y |Z) of G. The maps H 7→ H\Y , Z 7→ Aut(Y |Z) induce a bijection between
subgroups of G and intermediate covers Z as above. The cover q : Z → X is Galois
if and only if H is a normal subgroup of G, in which case Aut(Z|X) ∼= G/H.

Before starting the proof we need a general lemma on covers.

Lemma 2.2.11 Assume given a connected cover q : Z → X and a continuous
map f : Y → Z. If the composite q ◦ f : Y → X is a cover, then so is f : Y → Z.

Proof: Let z be a point of Z, x = q(z) and V a connected open neighbourhood
of x satisfying the property of Definition 2.1.1 for both p = q ◦ f and q, giving rise
to decompositions p−1(V ) =

∐
Ui and q−1(V ) =

∐
Vj . Here for each Ui its image

f(Ui) is a connected subset of Z mapping onto V by q, hence there is some j with
f(Ui) ⊂ Vj . But this is in fact a homeomorphism since both sides get mapped
homeomorphically onto V by q. This implies in particular that f(Y ) is open in Z.

Now to prove the lemma we first show that f is surjective. For this it is enough
to see by connectedness of Z and openness of f(Y ) that the complement of f(Y )
in Z is open. If z is a point of Z \ f(Y ) and V is a neighbourhood of x = q(z) as
above, the whole component Vj of q−1(V ) containing z must be disjoint from f(Y ).
Indeed, otherwise by the previous argument the whole of Vj would be contained
in f(Y ) which is a contradiction. This settles the openness of Z \ f(Y ), and to
conclude the proof of the lemma it remains to notice that the preimage of the
above Vj by f is a disjoint union of some Ui’s.

Proof of Theorem 2.2.10: Since H ⊂ Aut(Y |X), the projection p factors as a

composite Y
pH→ H\Y pH→ X. Here pH is continuous because p is continuous and pH
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is a local homeomorphism by Lemma 2.1.7. By Proposition 2.1.3, over sufficiently
small subsets V of X we have p−1(V ) ∼= V ×F with a discrete set F equipped with
an H-action. The open set p−1

H (V ) ⊂ H\Y will then be isomorphic to a product
of V by the discrete set of H-orbits of F , so by applying Proposition 2.1.3 again
we conclude that pH : H\Y → X is a cover.

For the converse, apply the previous lemma to see that f : Y → Z is a cover.
Then H = Aut(Y |Z) is a subgroup of G, so to show that the cover is Galois it
suffices by Proposition 2.2.7 to check that H acts transitively on each fibre of f .
So take a point z ∈ Z and let y1 and y2 be two points of f−1(z). They are both
contained in the fibre p−1(q(z)), so since p : Y → X is Galois, we have y1 = φ(y2)
with some φ ∈ G. We are done if we show φ ∈ H, which is equivalent to saying
that the subset S = {y ∈ Y : f(y) = f(φ(y))} is equal to the whole of Y . But
this follows from Proposition 2.2.2, applied to our current Y , Z and f as well as
g = f ◦ φ.

It is immediate that the two constructions above are inverse to each other, so
only the last statement remains, and it is proven similarly as the corresponding
statement in the Galois theory of fields (see the proof of Theorem 1.2.5). One
implication is easy: if H is normal in G, then G/H acts naturally on Z = H\Y ,
and this action preserves the projection q. So we obtain a group homomorphism
G/H → Aut(Z|X) which is readily seen to be injective. But (G/H)\Z ∼= G\Y ∼=
X, so G/H ∼= Aut(Z|X) and q : Z → X is Galois. For the converse assume that
Z → X is a Galois cover. We first show that each element φ of G = Aut(Y |X)
induces an automorphism of Z over X. In other words, we need an automorphism
ψ : Z → Z which can be inserted into the commutative diagram:

Y
φ−−−→ Y

f

y
yf

Z Z

q

y
yq

X
id−−−→ X

For this take a point y ∈ Y with image x = (q ◦ f)(y) in X. By commutativity of
the diagram f(y) and f(φ(y)) are in the same fibre q−1(x) of q. Since Aut(Z|X)
acts transitively on the fibres of q, there is an automorphism ψ ∈ Aut(Z|X) with
the property that ψ(f(y)) = f(φ(y)). In fact, ψ is the unique element of Aut(Z|X)
with this property, for if λ ∈ Aut(Z|X) is another one, Lemma 2.2.1 implies that
ψ ◦ λ−1 is the identity. We contend that ψ is the map we are looking for, i.e.
the maps ψ ◦ f and f ◦ φ are the same. Indeed, both are continuous maps from
the connected space Y to Z that coincide at the point y, and moreover their
compositions with q are equal, so the assertion follows from Proposition 2.2.2.
The map φ 7→ ψ is in fact a homomorphism G → Aut(Z|X). Its kernel is none
but H = Aut(Y |Z), which is thus a normal subgroup in G.
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2.3 The Monodromy Action

Our next goal is to prove an analogue of Theorem 1.5.4 for covers. The role of the
absolute Galois group will be played by the fundamental group of the base space,
about which we quickly recall the basic facts.

Let X be a topological space. A path in X is a continuous map f : [0, 1] → X,
where [0, 1] is the closed unit interval. The endpoints of the path are the points
f(0) and f(1); if they coincide, the path is called a closed path or a loop. Two
paths f, g : [0, 1] → X are called homotopic if f(0) = g(0), f(1) = g(1) and there
is a continuous map h : [0, 1] × [0, 1] → X with h(0, y) = f(y) and h(1, y) = g(y)
for all y ∈ [0, 1]. It is an easy exercise to check that homotopy of paths is an
equivalence relation.

Now given two paths f, g : [0, 1] → X with f(0) = g(1), define their com-
position f • g : [0, 1] → X by setting (f • g)(x) = g(2x) for 0 ≤ x ≤ 1/2 and
(f • g)(x) = f(2x− 1) for 1/2 ≤ x ≤ 1. It is again an easy exercise to verify that
this operation passes to the quotient modulo homotopy equivalence, i.e. if f1, f2

are homotopic paths with f1(1) = f2(1) = g(0) then so are f1 • g and f2 • g, and
similarly for the homotopy class of g.

Remark 2.3.1 The above convention for composition of paths is the one used
by Deligne in his fundamental works [12] and [13]. It differs from the convention
of many textbooks: most authors define the composition by first going through f
and then through g. However, several reasons speak for our convention. One is
that it is parallel to the usual convention for composition of functions. For another
particularly pregnant one, see Remark 2.6.3 below.

Composition of paths thus induces a multiplication map on the set π1(X,x)
of homotopy classes of closed paths with endpoint equal to some fixed x ∈ X. In
fact, π1(X,x) equipped with this operation is a group: the unit element is the
class of the constant path [0, 1] → {x} and the inverse of a class given by a path
f : [0, 1] → X is the class of the path f−1 obtained by composing f with the map
[0, 1] → [0, 1], x 7→ 1 − x. It is called the fundamental group of X with base point
x. If X is path-connected, i.e. any two points x and y may be joined by a path
f , then π1(X,x) is non-canonically isomorphic to π1(X, y) via g 7→ f • g • f−1,
hence the isomorphism class of the fundamental group does not depend on the
base point. A path-connected space always connected; it is simply connected if it
has trivial fundamental group.

We now show that given a cover p : Y → X, the fibre p−1(x) over a point
x ∈ X carries a natural action by the group π1(X,x). This will be a consequence
of the following lemma on ‘lifting paths and homotopies’.

Lemma 2.3.2 Let p : Y → X be a cover, y a point of Y and x = p(y).

1. Given a path f : [0, 1] → X with f(0) = x, there is a unique path f̃ : [0, 1] → Y
with f̃(0) = y and p ◦ f̃ = f .
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2. Assume moreover given a second path g : [0, 1] → X homotopic to f . Then
the unique g̃ : [0, 1] → Y with g̃(0) = y and p ◦ g̃ = g has the same endpoint
as f̃ , i.e. we have f̃(1) = g̃(1).

Actually, the proof will show that in the second situation the liftings f̃ and g̃
are homotopic, but this will not be needed later.

Proof: For the first statement, note first that uniqueness follows from Propo-
sition 2.2.2 applied with X, Y and Z replaced by our current X, [0, 1] and Y .
Existence is immediate in the case of a trivial cover. To reduce the general case
to this, for each x ∈ f([0, 1]) choose some open neighbourhood Vx satisfying the
condition in the definition of a cover. The sets f−1(Vx) form an open covering of
the interval [0, 1] from which we may extract a finite subcovering since the interval
is compact. We may then choose a subdivision 0 = t0 ≤ t1 ≤ · · · ≤ tn = 1 of [0, 1]
such that each closed interval [ti, ti+1] is contained in some f−1(Vx), hence the
cover is trivial over each f([ti, ti+1]). We can now construct f̃ inductively: given
a lifting f̃i of the path f restricted to [t0, ti] (the case i = 0 being trivial), we may
construct a lifting of the restriction of f to [ti, ti+1] starting from f̃i(ti); piecing
this together with fi gives fi+1.

For statement (2) we first show that given a homotopy h : [0, 1] × [0, 1] → X
with h(0, t) = f(t) and h(1, t) = g(t), there is a lifting h̃ : [0, 1] × [0, 1] → Y with
p◦h̃ = h, h̃(0, t) = f̃(t) and h̃(1, t) = g̃(t). The construction is similar to that for f :
first choose a sufficiently fine subdivision of [0, 1]× [0, 1] into small subsquares Sij
so that over each h(Sij) the cover is trivial. That this may be done is assured by
a well-known fact from the topology of compact metric spaces called Lebesgue’s
lemma (see e.g. Munkres [66], Lemma 27.5; we have used a trivial case of it
above). Then proceed by piecing together liftings over each subsquare, moving
“serpent-wise” from the point (0, 0) (for which we put h̃(0, 0) = y) towards the
point (1, 1). Note that by uniqueness of path lifting it is sufficient to find a local
lifting which coincides with the previous one at the left corner of the side where
two squares meet; they will then coincide over the whole of the common side.
Again by uniqueness of path lifting we get successively that the path t 7→ h̃(0, t) is
f̃ (since both are liftings of f starting from y), the path s 7→ h̃(s, 0) is the constant
path [0, 1] → {y} and that t 7→ h̃(1, t) is none but g̃. Finally, s 7→ h̃(s, 1) is a path
joining f̃(1) and g̃(1) which lifts the constant path [0, 1] → {f(1)}; by uniqueness
it must coincide with the constant path [0, 1] → {f̃(1)}, whence f̃(1) = g̃(1).

We can now construct the promised left action of π1(X,x) on the fibre p−1(x).

Construction 2.3.3 Given y ∈ p−1(x) and α ∈ π1(X,x) represented by a path
f : [0, 1] → X with f(0) = f(1) = x, we define αy := f̃(1), where f̃ is the unique
lifting f̃ to Y with f̃(0) = y given by part (1) of the lemma above. By part (2)
of the lemma αy does not depend on the choice of f , and it lies in p−1(x) by
construction. This is indeed a left action of π1(X,x) on p−1(x): (α • β)y = α(βy)
for α, β ∈ π1(X,x). It is called the monodromy action on the fibre p−1(x).
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The monodromy action is the analogue of the Galois action on homomorphisms
encountered in Theorem 1.5.4. We now state a category equivalence analogous to
the algebraic case as follows. Fix a space X and a point x ∈ X. First we define
a functor Fibx from the category of covers of X to the category of sets equipped
with a left π1(X,x)-action by sending a cover p : Y → X the fibre p−1(x). This
is indeed a functor since a morphism f : Y → Z of covers respects the fibres over
x by definition, and sends the unique lifting of a closed path through x starting
with a point in y ∈ Y to the unique lifting in Z starting with f(y), by uniqueness
of the lifting.

Theorem 2.3.4 Let X be a connected and locally simply connected topological
space, and x ∈ X a base point. The functor Fibx induces an equivalence of the
category of covers of X with the category of left π1(X,x)-sets. Connected covers
correspond to π1(X,x)-sets with transitive action and Galois covers to coset spaces
of normal subgroups.

Here local simply connectedness means that each point has a basis of simply
connected open neighbourhoods.

The proof of this classification result relies on two crucial facts. The first one
uses the notion of representable functors introduced in Definition 1.4.11.

Theorem 2.3.5 For a connected and locally simply connected topological space X
and a base point x ∈ X the functor Fibx is representable by a cover X̃x → X.

The cover X̃x depends on the choice of the base point x, and comes equipped
with a canonical point in the fibre π−1(x) called the universal element. Let us spell
this out in detail. By definition, cover maps from π : X̃x → X to a fixed cover
p : Y → X correspond bijectively (and in a functorial way) to points of the fibre
p−1(x) ⊂ Y . In particular, since X̃x itself is a cover of X via π, we have a canonical
isomorphism Fibx(X̃x) ∼= HomX(X̃x, X̃x), where HomX denotes the set of maps
of spaces over X. Via this isomorphism the identity map of X̃x corresponds to a
canonical element x̃ in the fibre π−1(x); this is the universal element. Now for an
arbitrary cover p : Y → X and element y ∈ π−1(x) the cover map πy : X̃x → Y

corresponding to y via the isomorphism Fibx(Y ) ∼= HomX(X̃x, Y ) maps x̃ to y by
commutativity of the diagram

HomX(X̃x, X̃x)
∼=−−−→ Fibx(X̃x)y

y

HomX(X̃x, Y )
∼=−−−→ Fibx(Y )

where the vertical maps are induced by πy.
We next recover the monodromy action. Notice that given an automorphism

φ : X̃x → X̃x of X̃x as a cover of X, composition by φ induces a bijection of the
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set HomX(X̃x, Y ) onto itself for each cover Y . In this way we obtain a right action
on HomX(X̃x, Y ) ∼= Fibx(Y ) from the left action of Aut(X̃x|X) on X̃x. We would
like to compare it with the monodromy action, which is a left action. To this end
we introduce the following notion:

Definition 2.3.6 For a group G the opposite group Gop is the group with the
same underlying set as G but with multiplication defined by (x, y) 7→ yx.

Note that (Gop)op = G, and moreover G is canonically isomorphic to Gop via
the map g 7→ g−1. This being said, the above right action of Aut(X̃x|X) on X̃x

becomes a left action of Aut(X̃x|X)op.

Theorem 2.3.7 The cover X̃x is a connected Galois cover of X, with automor-
phism group isomorphic to π1(X,x). Moreover, for each cover Y → X the left
action of Aut(X̃x|X)op on Fibx(Y ) given by the previous construction is exactly
the monodromy action of π1(X,x).

We postpone the proof of the above two theorems to the next section, and
prove Theorem 2.3.4 assuming their validity.

Proof of Theorem 2.3.4: The proof is strictly parallel to that of Theorem
1.5.4: we check that the functor satisfies the conditions of Lemma 1.4.9. For full
faithfulness we have to show that given two covers p : Y → X and q : Z → X,
each map φ : Fibx(Y ) → Fibx(Z) of π1(X,x)-sets comes from a unique map
Y → Z of covers of X. For this we may assume Y , Z are connected and consider
the map πy : X̃x → Y corresponding to a fixed y ∈ Fibx(Y ). By Theorem 2.2.10

the map πy realizes Y as the quotient of X̃x by the stabilizer Uy = Aut(X̃x|Y ) of

y; let ψy : Y
∼→ Uy\X̃x be the inverse map. Since Uy injects into the stabilizer of

φ(y) via φ, the natural map πz : X̃x → Z corresponding to φ(y) induces a map
Uy\X̃x → Z by passing to the quotient; composing it with ψy gives the required
map Y → Z. For essential surjectivity we have to show that each left π1(X,x)-set
S is isomorphic to the fibre of some cover of X. For S transitive we may take
the quotient of X̃x by the action of the stabilizer of some point; in the general
case we decompose S into its π1(X,x)-orbits and take the disjoint union of the
corresponding covers.

Remark 2.3.8 If we compare the above theorems with Theorem 1.5.4, we see that
the cover X̃x plays the role of a separable closure ks; the choice of x corresponds
to the choice of the separable closure. The fundamental group is the counter-
part of the absolute Galois group. The functor inducing the equivalence is A 7→
Hom(A, ks) in the case of fields (it is contravariant), and Y 7→ HomX(X̃x, Y ) ∼=
Fibx(Y ) in the topological case.
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We now state a corollary of Theorem 2.3.4 that is even closer to Theorem 1.5.4
in its formulation and will be invoked in subsequent chapters. First a definition:
call a cover Y → X finite if it has finite fibres; for connected X these have the
same cardinality, called the degree of X.

Corollary 2.3.9 For X and x as in the Theorem 2.3.4, the functor Fibx induces
an equivalence of the category of finite covers of X with the category of finite

continuous left ̂π1(X,x)-sets. Connected covers correspond to finite ̂π1(X,x)-sets
with transitive action and Galois covers to coset spaces of open normal subgroups.

Here ̂π1(X,x) denotes the profinite completion of π1(X,x) (Example 1.3.4 (2)).
We need a well-known lemma from group theory.

Lemma 2.3.10 In a group G each subgroup H of finite index contains a normal
subgroup N of finite index.

Proof: Consider the natural left representation ρH of G on the left coset space
of H, and take N := ker(ρH). It is of finite index in G as [G : H] is finite, and it
is contained in H as it fixes H considered as a coset.

Proof of Corollary 2.3.9: For a finite connected cover p : Y → X the action
of π1(X,x) on p−1(x) factors through a finite quotient, so we obtain an action of

̂π1(X,x) as well. The stabilizer of each point y ∈ Y is a subgroup of finite index,
and hence contains a normal subgroup of finite index by the lemma. Therefore the

stabilizer of y under the action of ̂π1(X,x) is an open subgroup in the profinite
topology (being a union of cosets of an open normal subgroup), which means that

the action is continuous. Conversely, a continuous action of ̂π1(X,x) on a finite
set factors through a finite quotient which is also a quotient of π1(X,x), and as
such gives rise to a finite cover Y → X.

2.4 The Universal Cover

In this section we prove Theorems 2.3.4 and 2.3.7. We begin with the construction
of the space X̃x.

Construction 2.4.1 We construct the space X̃x as follows. The points of X̃x are
to be homotopy classes of paths starting from x. To define the projection π, we
pick for each point ỹ ∈ X̃x a path f : [0, 1] → X with f(0) = x representing ỹ, and
put π(X̃x) = f(1) = y. This gives a well-defined map since homotopic paths have
the same endpoints by definition. We next define the topology on X̃x by taking
as a basis of open neighbourhoods of a point ỹ the following sets Ũ : we start
from a simply connected neighbourhood U of π(ỹ) and if f : [0, 1] → X is a path
representing ỹ, we define Ũey to be the set of homotopy classes of paths obtained
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by composing the homotopy class of f with the homotopy class of some path
g : [0, 1] → X with g(0) = y and g([0, 1]) ⊂ U . Notice that since U is assumed
to be simply connected, two such g having the same endpoints have the same
homotopy class. Thus in more picturesque terms, Ũ is obtained by “continuing
homotopy classes of paths arriving at y to other points of U”. This indeed gives a
basis of open neighbourhoods of ỹ, for given two neighbourhoods Ũey and Ṽey, their

intersection Ũey∩ Ṽey contains W̃ey with some simply connected neighbourhood W of
y contained in U ∩ V ; one also sees immediately that π is continuous with respect
to this topology. The inverse image by π of a simply connected neighbourhood of
a point y will be the disjoint union of the open sets Ũey for all inverse images ỹ of y,
so we have obtained a cover of X. Finally note that there is a “universal element”
x̃ of the fibre π−1(x) corresponding to the homotopy class of the constant path.

Proof of Theorem 2.3.5: We show that the cover X̃x → X constructed above
represents the functor Fibx. This means that for a cover p : Y → X each point
y of the fibre p−1(x) should correspond in a canonical and functorial manner to a
morphism πy : X̃x → Y over X. We define πy as follows: given a point x̃′ ∈ X̃x

represented by a path f : [0, 1] → X, we send it to f̃(1), where f̃ : [0, 1] → Y is
the unique path lifting f with f̃(0) = y whose existence is guaranteed by Lemma
2.3.2 (1). Part (2) of the lemma implies that this map is well defined, and there
is no difficulty in checking that it is indeed a map of covers. The map y 7→ πy is

a bijection between p−1(x) and the set HomX(X̃x, Y ), an inverse being given by
sending a morphism φ to the image φ(x̃) of the universal element x̃. Finally, the
above bijection is functorial: given a morphism Y → Y ′ of covers of X mapping
y to some y′ ∈ Y ′, the induced map HomX(X̃x, Y ) → HomX(X̃x, Y

′) maps πy to
πy′ , since these are the maps sending x̃ to y and y′, respectively.

The proof of Theorem 2.3.7 will be in several steps. We begin with:

Lemma 2.4.2 The space X̃x is connected.

Proof: It is enough to see that X̃x is path-connected, for which we show that
there is a path in X̃x connecting the universal point x̃ to any other point x̃′.
Indeed, let f : [0, 1] → X be a path representing x̃′. The multiplication map
m : [0, 1] × [0, 1] → [0, 1], (s, t) 7→ st is continuous, hence so is f ◦ m and the
restriction of f ◦m to each subset of the form {s}× [0, 1]; such a restriction defines
a path fs from x̃ to f(s), with f0 the constant path [0, 1] → {x} and f1 = f .
The definition of the topology of X̃x implies that the map sending s ∈ [0, 1] to
the homotopy class of fs is continuous and thus defines the path we need; in fact,
it is the unique lifting of f to X̃x beginning at x̃. Alternatively, one may start
by taking this unique lifting and check by going through the construction that its
endpoint is indeed x̃′.

Next we prove:
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Proposition 2.4.3 The cover π : X̃x → X is Galois.

For the proof we need some auxiliary statements.

Lemma 2.4.4 A cover of a simply connected and locally path-connected space is
trivial.

Here ‘locally path-connected’ means that each point has a basis of path-
connected open neighbourhoods.

Proof: It is enough to show that given a connected cover p : Y → X of a
simply connected space X, the map p is injective. For this, note first that since
X is locally path-connected and p is a local homeomorphism, Y has a covering by
path-connected open subsets. The connectedness assumption on Y then implies
that it must be path-connected as well. Now consider two points y0, y1 in Y with
p(y0) = p(y1). By path-connectedness of Y there is a path f̃ : [0, 1] → Y with
f̃(0) = y0 and f̃(1) = y1. The path f̃ must be the unique lifting starting from
y0 of the path f = p ◦ f̃ which is a closed path around x = p(y0) = p(y1). Since
X is simply connected, this path is homotopic to the constant path [0, 1] → {x}
of which the constant path [0, 1] → {y0} provides the unique lifting to Y starting
from y0. By Lemma 2.3.2 (2) this is only possible if y0 = y1.

Corollary 2.4.5 Let X be a locally simply connected space. Given two covers
p : Y →X and q : Z→Y , their composite q ◦ p : Z→X is again a cover of X.

Proof: Given a point of X, choose a simply connected neighbourhood U . Ac-
cording to the proposition, the restriction of p to p−1(U) gives a trivial cover of U .
Repeating this argument for q over each of the connected components of p−1(U)
(which are simply connected themselves, being isomorphic to U) we get that the
restriction of p ◦ q to (p ◦ q)−1(U) is a trivial cover of U .

Proof of Proposition 2.4.3: By Remark 2.2.8 it is enough to show that the
group Aut(X̃x|X) acts transitively on the fibre π−1(x). For each point ỹ of the
fibre π−1(x) Theorem 2.3.5 gives a continuous map πey : X̃x → X̃x compatible with
π and mapping the universal element x̃ to ỹ. We show that πey is an automorphism.

Since X̃x is connected, by Lemma 2.2.11 πey endows X̃x with a structure of a cover
over itself – in particular it is surjective. Take an element z̃ ∈ π−1

ey (x̃). Since

π ◦ πey : X̃x → X is also a cover of X according to Corollary 2.4.5, we may apply

Theorem 2.3.5 to this cover to get a continuous and surjective map πez : X̃x → X̃x

with πez(x̃) = z̃ and π ◦πey ◦πez = π. But πey ◦πez(x̃) = x̃, hence πey ◦πez is the identity

map of X̃x by Lemma 2.2.2. By surjectivity of πez this implies that πey is injective
and we are done.

We now turn to the second statement of Theorem 2.3.7.

Proposition 2.4.6 There is a natural isomorphism Aut(X̃x|X)op ∼= π1(X,x).
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Proof: First observe that X̃x is endowed with a natural right action of π1(X,x)
defined as follows: given a point x̃′ ∈ X̃x and an element α ∈ π1(X,x) with
respective path representatives f and fα, we may take the composition f • fα and
then take the homotopy class of the product. It is straightforward to check that
the map φα : X̃x → X̃x thus obtained is continuous and compatible with π, i.e. it
is a cover automorphism. As by convention Aut(X̃x|X) acts on X̃x from the left,
this defines a group homomorphism π1(X,x) → Aut(X̃x|X)op that is moreover
injective, since any nontrivial α moves the distinguished element x̃. It remains to
prove the surjectivity of this homomorphism. For this purpose, take an arbitrary
φ ∈ Aut(X̃x|X) and a point x̃′ ∈ X̃x represented by some path f : [0, 1] → X.
The point φ(x̃′) is then represented by some g : [0, 1] → X with g(1) = f(1). Now
f−1 • g is a closed path around x in X satisfying f • (f−1 • g) = g; denote by α
its class in π1(X,x). The automorphism φ ◦ φ−1

α fixes x̃′, so it is the identity by
connectedness of X̃x and Lemma 2.2.1. This shows φα = φ.

Proof of Theorem 2.3.7: Everything was proven above except for the last
statement concerning the monodromy action. By Theorem 2.3.5 each point y of
the fibre corresponds to a morphism of covers πy : X̃x → Y and the proof shows

that πy maps points of X̃x represented by paths f to points of the form f̃(1) where

f̃ : [0, 1] → Y is the lifting of f with f̃(0) = y; in particular y, being the image
of the class of the constant path c : [0, 1] → {x}, corresponds to the constant
path [0, 1] → {y}. By the proof of the previous lemma an element of π1(X,x)
represented by a path fα acts on c by mapping it to the class of fα. Hence the
action of α on p−1(x) maps y to f̃α(1), where f̃α : [0, 1] → Y is the canonical
lifting of fα starting from y. This is the monodromy action.

We now examine the dependence of the fundamental group on the choice of the
base point. Assume given a path-connected and locally simply connected space X
and two base points x, y ∈ X. Pick a path f from x to y. There is a map X̃y → X̃x

induced on homotopy classes by the map g 7→ g • f (here g is a path starting from
y representing a point of X̃y). It only depends on the homotopy class of f and is
an isomorphism of spaces over X, the inverse coming from composition with f−1.

Proposition 2.4.7 The above construction yields a bijection between homotopy
classes of paths joining x to y and isomorphisms X̃y

∼→ X̃x in the category of
covers of X.

Proof: An isomorphism λ : X̃y → X̃x takes the distinguished element ỹ ∈ X̃y

of the fibre over y to an element λ(ỹ) ∈ X̃x. It must also lie above y, and hence is
the homotopy class of a path from x to y. The reader will check that it induces
the isomorphism λ in the manner described above.

Remark 2.4.8 A cover isomorphism λ : X̃y → X̃x induces a group isomorphism

Aut(X̃y|X)
∼→ Aut(X̃x|X) by the map φ 7→ λ ◦ φ ◦ λ−1. Via the isomorphism of
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Proposition 2.4.6 it corresponds to an isomorphism λop : π1(X, y)
∼→ π1(X,x). If

λ is induced by the homotopy class of a path f in the above construction, then λop

corresponds at the level of homotopy classes of paths to the map g 7→ f−1 • g • f .
We thus recover the familiar dependence of the fundamental group on the base
point. Changing the path f to f1 changes λop to its composite with the inner
automorphism of π1(X,x) induced by the class of f−1

1 • f , so λop is uniquely
determined up to an inner automorphism of π1(X,x).

Most textbooks neglect the role of the base point explained above and call any
cover isomorphic to some X̃x a universal cover of X. The next proposition shows
that one can easily detect universal covers in practice.

Proposition 2.4.9 Let X be a path-connected and locally simply connected space.
A cover X̃ → X is universal if and only if it is simply connected.

For the proof we need a lemma.

Lemma 2.4.10 Consider a space X be as in the proposition, a base point x ∈ X
and a connected cover p : Y → X. The cover map X̃x → X factors through Y ,
and X̃x represents Fiby for each y ∈ p−1(x).

Proof: Since X̃x represents Fibx, the point y corresponds to a canonical map
πy : X̃x → Y which turns X̃x into a cover of Y by virtue of Lemma 2.2.11.
Our task is to show that this cover represents the functor Fiby. So take a cover
q : Z → Y and pick a point z ∈ q−1(y). Since by Corollary 2.4.5 the composition
p ◦ q turns Z into a cover of X with z ∈ (p ◦ q)−1(x), the point z corresponds to a
morphism πz : X̃x → Z of covers of X mapping the universal point x̃ of X̃x to z.
It is now enough to see that πz is also a morphism of covers of Y , i.e. πy = q ◦ πz.
But p ◦ πy = p ◦ q ◦ πz by construction and moreover both πy and q ◦ πz map the
universal point x̃ to y, so the assertion follows from Lemma 2.2.2.

Proof of Proposition 2.4.9: To prove simply connectedness of X̃x for some
x ∈ X, apply the lemma to see that X̃x as a trivial cover of itself represents the
fibre functor Fibex for the universal element x̃. Then it follows from Theorem 2.3.7
that π1(X̃x, x̃) ∼= Aut(X̃x|X̃x)

op = {1}. Conversely, if X ′ is a simply connected
cover of X, then X̃ ′ ∼= π1(X

′, x′)\X̃x
∼= X̃x with some point x′ ∈ X ′, by Lemma

2.4.10 and Theorem 2.3.7.

Example 2.4.11 Since Rn is simply connected for any n, we see that the first
two examples in 2.1.8 actually give universal covers of the circle and of linear
tori, respectively. On the other hand, the third example there does not give a
universal cover since C∗ is not simply connected. However, the complex plane C,
being a 2-dimensional R-vector space, is simply connected and the exponential
map C → C∗, z 7→ exp(z) is readily seen to be a cover. Hence C is the universal
cover of C∗.
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Having determined the universal covers, we can compute the fundamental
groups as well. The first two examples were quotients by group actions, so we
obtain that the fundamental group of a circle is isomorphic to Z, and that of a
linear torus of dimension n to Zn. In the case of C∗ the fundamental group is
again Z, because the exponential map is periodic with respect to 2πi.

Example 2.4.12 Let us spell out in more detail an example similar to that of
C∗; it will serve in the next chapter. Let Ḋ be the punctured complex disc
{z ∈ C : z 6= 0, |z| < 1}. As in the previous example, the exponential map z 7→
exp(z) restricted to the left half plane L = {z ∈ C : Re z < 0} furnishes a uni-
versal cover of Ḋ. The automorphism groups of fibres are isomorphic to Z, the
action of n ∈ Z being given via translation by 2nπi. Thus if we let Z act on L
via translation by multiplies of 2πi, the disc Ḋ becomes the quotient of L by this
action. But then by Theorem 2.2.10 each connected cover of Ḋ is isomorphic to a
quotient of L by a subgroup of Z. These subgroups are 0 and the subgroups kZ
for integers k ≥ 1; the corresponding covers of Ḋ are L and Ḋ itself via the map
z 7→ zk. If we choose a base point x ∈ Ḋ, we obtain an isomorphism π1(Ḋ, x) ∼= Z.
A path representative of a generator is given by a circle around 0 going through
x, oriented counterclockwise.

The previous considerations showed that one way to eliminate the role of the
base point is to work up to non-canonical isomorphism. A better way is to consider
all possible base points at the same time, as we explain next.

We first need to recall the notion of the fibre product Y ×X Z of two spaces
p : Y → X and q : Z → X over X. By definition it is the subspace of Y × Z
consisting of points (y, z) satisfying p(y) = q(z). It is equipped with natural
projections qY : Y ×X Z → Y and pZ : Y ×X Z → Z making the diagram

Y ×X Z
qY−−−→ Y

pZ

y
yp

Z
q−−−→ X

commute. In fact, it satisfies a universal property: it represents the set-valued
functor on the category of spaces over X that maps a space S → X to the set of
pairs of morphisms (φ : S → Y, ψ : S → Z) over X satisfying p◦φ = q ◦ψ. In case
p : Y → X is a cover, then so is pZ : Y ×X Z → Z and moreover the fibre p−1

Z (z)
over z ∈ Z is canonically isomorphic to p−1(q(z)). Indeed, using Proposition 2.1.3
it suffices to check these properties in the case when Y → X is a trivial cover,
which is straightforward. The cover pZ : Y ×X Z → Z is called the pullback of
p : Y → X along q and is also denoted by q∗Y → Z. Now we come to:

Construction 2.4.13 Let again be X a connected and locally simply connected
space. We construct a space X̃ over X × X as follows. For each pair of points
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(x, y) ∈ X × X we consider the set X̃x,y of homotopy classes of paths from x

to y and we define X̃ to be the disjoint union of the X̃x,y for all pairs (x, y).

The projection X̃ → X × X is induced by mapping a path to its endpoints and
the topology on X̃ is defined similarly as in Construction 2.4.1: one continues
homotopy classes of paths into small neighbourhoods of both of their endpoints.
The fact that X̃ is a cover of X × X is again checked as in 2.4.1. Notice that
the cover X̃x constructed in 2.4.1 is none but the pullback of X̃ → X × X via
the inclusion map {x} ×X → X ×X. Thus X̃ can be thought of as a continuous
family of the X̃x; it is called the path space or the fundamental groupoid of X. This
is the promised base point free construction. The name ‘fundamental groupoid is
explained in Exercise 7.

Remarks 2.4.14

1. Fix a pair of points (x, y) ∈ X ×X. Pulling back the cover X̃ → X ×X via
the inclusion map {(x, y)} → X ×X we get back the space X̃x,y viewed as
a cover of the one point space {(x, y)}. Notice that it carries a natural right
action X̃x,y × π1(X, y) → X̃x,y by the fundamental group π1(X, y) coming
from composition of paths. This action is in fact simply transitive: given
two paths f, g : [0, 1] → X with f(0) = g(0) = x and f(1) = g(1) = y, we
may map f to g by composing with the closed path g • f−1 around y. A
topological space equipped with a continuous simply transitive action of a
topological group G is sometimes called a G-torsor. In our case we thus
obtain discrete π1(X, y)-torsors X̃x,y and we may view X̃x as a continuous

family of π1(X, y)-torsors. The space X̃ is then a continuous 2-parameter
family of torsors.

2. An interesting cover of X is given by the pullback of X̃ → X ×X via the
diagonal map ∆ : X → X × X sending x ∈ X to (x, x) ∈ X × X. The
fibre of the resulting cover X̃∆ over a point x ∈ X is precisely π1(X,x); in
particular, it carries a group structure. Thus X̃∆ encodes the fundamental
groups of X with respect to varying base points. For some of its properties
see Exercise 6.

2.5 Locally Constant Sheaves and Their Classification

In this section we shall reformulate Theorem 2.3.4 in terms of locally constant
sheaves. The first step is to introduce presheaves and sheaves.

Definition 2.5.1 Let X be a topological space. A presheaf of sets F on X is a
rule that associates with each nonempty open subset U ⊂ X a set F(U) and each
inclusion of open sets V ⊂ U a map ρUV : F(U) → F(V ), the maps ρUU being
identity maps and the identity ρUW = ρVW ◦ρUV holding for a tower of inclusions
W ⊂ V ⊂ U . Elements of F(U) are called sections of F over U .
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Remarks 2.5.2

1. Similarly, one defines a presheaf of groups (resp. abelian groups, or rings,
etc.) by requiring the F(U) to be groups (resp. abelian groups, rings, etc.)
and the ρUV to be homomorphisms.

2. Here is a more fancy formulation of the definition. Let us associate a category
XTop with our space X by taking as objects the nonempty open subsets
U ⊂ X, and by defining Hom(V,U) to be the one-element set consisting of
the natural inclusion V → U whenever V ⊂ U and to be empty otherwise.
Then a presheaf of sets is just a set-valued contravariant functor on the
category XTop.

With this interpretation we see immediately that presheaves of sets (abelian
groups, etc.) on a fixed topological space X form a category: as morphisms one
takes morphisms of contravariant functors. Recall that by definition this means
that a morphism of presheaves Φ : F → G is a collection of maps (or homomor-
phisms) ΦU : F(U) → G(U) such that for each inclusion V ⊂ U the diagram

F(V )
ΦV−−−→ G(V )

ρFUV

y
yρGUV

F(U)
ΦU−−−→ G(U)

commutes.

Example 2.5.3 The basic example to bear in mind is that of continuous real-
valued functions defined locally on open subsets of X; in this case, the maps ρUV
are given by restriction of functions to some open subset.

Motivated by the example, given an inclusion V ⊂ U , we shall also use the
more suggestive notation s|V instead of ρUV (s) for a section s ∈ F(U).

The presheaf in the above example has a particular property, namely that
continuous functions may be patched together over open sets. More precisely, given
two open subsets U1 and U2 and continuous functions fi : Ui → R for i = 1, 2
with the property that f1(x) = f2(x) for all x ∈ U1 ∩ U2, we may unambiguously
define a continuous function f : U1 ∪ U2 → R by setting f(x) = fi(x) if x ∈ Ui.
We now axiomatize this property and state it as a definition.

Definition 2.5.4 A presheaf F (of sets, abelian groups, etc.) is a sheaf if it
satisfies the following two axioms:

1. Given a nonempty open set U and a covering {Ui : i ∈ I} of U by nonempty
open sets, if two sections s, t ∈ F(U) satisfy s|Ui

= t|Ui
for all i ∈ I, then

s = t.
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2. For an open covering {Ui : i ∈ I} of U as above, given a system of sections
{si ∈ F(Ui) : i ∈ I} with the property that si|Ui∩Uj

= sj |Ui∩Uj
whenever

Ui ∩Uj 6= ∅, there exists a section s ∈ F(U) such that s|Ui
= si for all i ∈ I.

By the previous property such an s is unique.

The category of sheaves of sets (or abelian groups, etc.) on a space X is defined
as the full subcategory of the corresponding presheaf category. This means that a
morphism of sheaves is just a morphism of the underlying presheaves.

Examples 2.5.5

1. If D is a connected open subset of C, we define the sheaf of holomorphic
functions on D to be the sheaf of rings O whose sections over some open
subset U ⊂ D are the complex functions holomorphic on U . This construc-
tion carries over to any complex manifold. One defines the sheaf of analytic
functions on some real analytic manifold, or the sheaf of C∞ functions on a
C∞ manifold in a similar way.

2. Let S be a topological space (or abelian group, etc.) and X another topolog-
ical space. Define a sheaf FS on X by taking FS(U) to be the set (abelian
group, etc.) of continuous functions U → S for all nonempty open U ⊂ X.
As in the case of real-valued functions, this is a sheaf.

3. In the previous example assume moreover that S is discrete. In this case FS
is called the constant sheaf on X with value S. The name comes from the
fact that over a connected open subset U the sections of FS are just constant
functions, i.e. FS(U) = S.

4. Here is a more eccentric example. Fix an abelian group A and a point x of
a given topological space X. Define a presheaf Fx of abelian groups on X
by the rule Fx(U) = A if x ∈ U and Fx(U) = 0 otherwise, the restriction
morphisms being the obvious ones. This presheaf is easily seen to be a sheaf,
called the skyscraper sheaf with value A over x.

Given an open subset U of a topological space X, there is an obvious notion of
the restriction F|U of a presheaf F from X to U : one simply considers the sections
of F only over those open sets that are contained in U . This remark enables us to
define locally constant sheaves.

Definition 2.5.6 A sheaf F on a topological space is locally constant if each point
ofX has an open neighbourhood U such that the restriction of F to U is isomorphic
(in the category of sheaves on U) to a constant sheaf.

In fact, as we shall instantly show, these are very familiar objects. Assume
henceforth that all spaces are locally connected. First a definition that will ulti-
mately explain the use of the terminology ‘section’ for sheaves.
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Definition 2.5.7 Let p : Y → X be a space over X, and U ⊂ X an open set. A
section of p over U is a continuous map s : U → Y such that p ◦ s = idU .

Given a space p : Y → X over X, define a presheaf FY of sets on X as follows:
for an open set U ⊂ X take FY (U) as the set of sections of p over U , and for
an inclusion V ⊂ U define the restriction map FY (U) → FY (V ) by restricting
sections to V .

Proposition 2.5.8 The presheaf FY just defined is a sheaf. If moreover p : Y → X
is a cover, then FY is locally constant. It is constant if and only if the cover is
trivial.

We call the sheaf FY the sheaf of local sections of the space p : Y → X over X.

Proof: The sheaf axioms follow from the fact that the sections over U are con-
tinuous functions U → Y and hence satisfy the patching properties. Now assume
p : Y → X is a cover. Given a point x ∈ X, take a connected open neighbourhood
V of x over which the cover is trivial, i.e. isomorphic to V × F where F is the
fibre over x. The image of a section V → Y is a connected open subset mapped
isomorphically onto V by p, hence it must be one of the connected components of
p−1(V ). Thus sections over V correspond bijectively to points of the fibre F and
the restriction of FY to V is isomorphic to the constant sheaf defined by F . We
get the constant sheaf if and only if we may take V to be the whole connected
component of X containing x in the above argument.

Thus for instance Example 2.1.5 which shows a simple example of a nontriv-
ial cover also gives, via the preceding proposition, a simple example of a locally
constant but non-constant sheaf.

Given a morphism φ : Y → Z of covers of X, it induces a natural morphism
FY → FZ of locally constant sheaves by mapping a local section s : U → Y of
p : Y → X to φ◦s. To see that we indeed obtain a local section of q : Z → X over
U in this way, it is enough to show by the sheaf axioms that there is a covering of
U by open subsets Ui such that (φ ◦ s)|Ui

is a local section over Ui for all i. But
this holds if we choose each Ui to be so small that both covers are trivial over Ui.
Thus the rule Y 7→ FY is a functor.

Theorem 2.5.9 The above functor induces an equivalence between the category
of covers of X and that of locally constant sheaves on X.

For the proof of the theorem we construct a functor in the reverse direction;
the construction will in fact work for an arbitrary presheaf on X. We first need a
definition:
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Definition 2.5.10 Let F be a presheaf of sets on a topological space X, and
let x be a point of X. The stalk Fx of F at X is defined as the disjoint union
of the sets F(U) for all open neighbourhoods U of x in X modulo the following
equivalence relation: s ∈ F(U) and t ∈ F(V ) are equivalent if there exists an open
neighbourhood W ⊂ U ∩ V of x with s|W = tW .

In case F is a sheaf of abelian groups (or rings, etc.), the stalk Fx carries a
natural structure of abelian group (ring, etc.) For example, if F is the sheaf of
continuous real-valued functions on X, then Fx is the ring of ‘germs of continuous
functions’ at x.

Remark 2.5.11 The above definition is a special case of a more general construc-
tion. Namely, a (filtered) direct system of sets (Sα, φαβ) consists of sets Sα indexed
by a directed partially ordered set Λ together with maps φαβ : Sα → Sβ for all
α ≤ β. The direct limit of the system is defined as the quotient of the disjoint
union of the Sα modulo the equivalence relation in which sα ∈ Sα and sβ ∈ Sβ are
equivalent if φαγ(sα) = φβγ(sβ) for some γ ≥ α, β. In our case Λ consists of the
open neighbourhoods of x with the partial order in which U ≤ V means V ⊂ U .
This partially ordered set is directed since for any U , V we have U, V ≤ U∩V . The
sets F(U) form a direct system indexed by Λ whose direct limit is Fx. Again, one
can define direct limits of systems of abelian groups (rings, etc.) in an analogous
manner.

Notice that a morphism of presheaves F → G induces a natural morphism
Fx → Gx on stalks. Hence taking the stalk of a presheaf at some point defines a
functor from the category of presheaves of sets (abelian groups, etc.) on X to the
category of sets (abelian groups, etc.)

Construction 2.5.12 Having the notion of stalks at hand, we now associate a
space pF : XF → X over X with a presheaf of sets F in such a way that moreover
p−1
F (x) = Fx for all x ∈ X. As a set, XF is to be the disjoint union of the stalks

Fx for all x ∈ X. The projection pF is induced by the constant maps Fx → {x}.
To define the topology on XF , note first that given an open set U ⊂ X, a section
s ∈ F(U) gives rise to a map is : U → XF sending x ∈ U to the image of s in
Fx. Now the topology on XF is to be the coarsest one in which the sets is(U)
are open for all U and s; one checks that the projection pF and the maps is are
continuous for this topology. In case F is locally constant, the space XF is a cover
of X. Indeed, if U is a connected open subset of X such that F|U is isomorphic
to the constant sheaf defined by a set F , then we have Fx = F for all x ∈ U and
hence p−1

F (U) is isomorphic to U × F , where F carries the discrete topology.

A morphism φ : F → G of presheaves induces maps Fx → Gx for each x ∈ X,
whence a map of sets Φ : XF → XG compatible with the projections onto X.

Lemma 2.5.13 The map Φ is a morphism of spaces over X.
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Proof: To see that Φ is continuous, pick an open subset U ⊂ X, a section
t ∈ G(U) and a point x ∈ X. The basic open set it(U) meets the stalk Gx in the
image tx of t in Gx. Each preimage sx ∈ Φ−1(tx) lies in Fx and comes from a
section s ∈ F(V ), with a V ⊂ U containing x that can be chosen so small that
φ(s) = t|V . Then sx is contained in the basic open set is(V ) ⊂ XF whose image
by Φ is exactly it(V ). Thus Φ−1(is(U)) is open in XF .

By the lemma, the rule F → XF is a functor from the category of sheaves on
X to that of spaces over X. On the full subcategory of locally constant sheaves it
takes values in the category of covers of X, and the stalk Fx at a point x equals
the fibre of XF over x.

Proof of Theorem 2.5.9: We have to show that given a locally constant sheaf F
we have FXF

∼= F functorially in F and conversely, given a cover Y → X we have
XFY

∼= Y functorially in Y . In any case we have a natural morphism of sheaves
F → FXF

sending a section s ∈ F(U) to the local section is : U → XF it defines,
and a morphism of covers Y → XFY

sending a point y ∈ Y in the fibre Yx over a
point x ∈ X to the corresponding point of the fibre FY,x = Yx of XFY

over x. To
show that these maps are isomorphisms it enough to show that their restrictions
over a suitable open covering of X are. Now choose the open covering {Ui : i ∈ I}
so that F|Ui

is constant for each i. Replacing Ui by X we may thus assume F is
a constant sheaf with values in a set F . But then XF ∼= X × F , and conversely
the sheaf of local sections of the trivial cover X × F → X is the constant sheaf
defined by F . This finishes the proof.

Now that we have proven the theorem, we may combine it with Theorem 2.2.10
to obtain:

Theorem 2.5.14 Let X be a connected and locally simply connected topological
space, and let x be a point in X. The category of locally constant sheaves of sets
on X is equivalent to the category of sets endowed with a left action of π1(X,x).
This equivalence is induced by the functor mapping a sheaf F to its stalk Fx at x.

Finally, we consider sheaves with values in sets with additional structure.

Theorem 2.5.15 Let X and x be as above, and let R be a commutative ring.
The category of locally constant sheaves of R-modules on X is equivalent to the
category of left modules over the group ring R[π1(X,x)].

Proof: The stalk Fx is an R-module by construction, and it is also equipped with
a left action by π1(X,x) as a set. To show that it is an R[π1(X,x)]-module we have
to show that the action of π1(X,x) is compatible with the R-module structure. For
this let F ×F be the direct product sheaf defined by (F ×F)(U) = F(U)×F(U)
over all open U ⊂ X; its stalk over a point x is just Fx×Fx. The addition law on
F is a morphism of sheaves F × F → F given over an open set U by the formula
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(s1, s2) 7→ s1 + s2; the morphism Fx × Fx → Fx induced on the stalk at x is the
addition law on Fx. But this latter map is a map of π1(X,x)-sets, which means
precisely that σ(s1 + s2) = σs1 + σs2 for all s1, s2 ∈ Fx and σ ∈ π1(X,x). One
verifies the compatibility with multiplication by elements of R in a similar way.
The rest of the proof is a straightforward modification of that given for sheaves of
sets; we leave the details to the reader.

2.6 Local Systems

In this section we investigate a most interesting special case of the preceding con-
struction, which is also the one that historically first arose.

Definition 2.6.1 A complex local system on X is a locally constant sheaf of finite
dimensional complex vector spaces. If X is connected, all stalks must have the
same dimension, which is called the dimension of the local system.

With this definition we can state the following corollary of Theorem 2.5.15:

Corollary 2.6.2 Let X be a connected and locally simply connected topological
space, and x a point in X. The category of complex local systems on X is equivalent
to the category of finite dimensional left representations of π1(X,x).

Thus to give a local system on X is the same as giving a homomorphism
π1(X,x) → GL(n,C) for some n. This representation is called the monodromy
representation of the local system.

Remark 2.6.3 This is a point where the reader may appreciate the advantage
of the convention we have chosen for the multiplication rule in π1(X,x) in the
previous chapter. With our convention, the monodromy representation is indeed
a homomorphism for the usual multiplication rule of matrices in GL(n,C). Had
we defined the composition of paths ‘the other way round’, we would be forced to
use here an unorthodox matrix multiplication of columns by rows instead of rows
by columns.

The following example shows where to find local systems ‘in nature’. It uses
the straightforward notion of a subsheaf of a sheaf F : it is a sheaf whose sections
over each open set U form a subset (subgroup, subspace etc.) of F(U).

Example 2.6.4 Let D ⊂ C be a connected open subset. Consider over D a
homogeneous n-th order linear differential equation

y(n) + a1y
(n−1) + · · · + an−1y

′ + any = 0 (2.1)

where the ai are holomorphic functions on D. We look at local holomorphic
solutions of the equation over each open subset U ⊂ D. As C-linear combinations
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of local solutions of (2.1) over U are again local solutions, they form a C-vector
space S(U). Moreover, by a classical theorem due to Cauchy (see [23], Theorem
11.2 or any basic text on differential equations) each point of D has an open
neighbourhood U where the C-vector space S(U) has a finite basis x1, . . . , xn.
The second sheaf axiom then shows that the local solutions of the equation (2.1)
form a subsheaf S ⊂ On; this is a sheaf of complex vector spaces. Since the
restrictions of the above xi to smaller open sets still form a basis for the solutions,
we conclude that the sheaf S is a complex local system of dimension n.

A similar observation can be made when one considers solutions of a system
of n linear differential equations in n variables, given in matrix form by y′ = Ay,
where A is an n× n matrix of holomorphic functions and y = (y1, . . . , yn) is an n-
tuple of variables. In fact, by a classical trick the solutions of (2.1) are the same is
the solutions of the linear system in the n variables y1 = y, y2 = y′, . . . , yn = y(n−1)

given by y′i = yi+1 for 1 ≤ i ≤ n− 1 and y′n = −a1yn − · · · − any1.

Remark 2.6.5 According to Corollary 2.6.2, the local system S of the above ex-
ample is uniquely determined by an n-dimensional left representation of π1(X,x),
where x is a point of D (notice that D is locally simply connected). Let us describe
this representation explicitly. Take a closed path f : [0, 1] → D representing an el-
ement γ ∈ π1(X,x) and take an element s ∈ Sx which is, in classical terminology, a
germ of a (vector-valued) holomorphic function satisfying the equation (2.1). Now
s is naturally a point of the fibre over x of the cover pS : DS → D associated with
S by Theorem 2.5.9. By definition of the monodromy action, the element γ acts
on s as follows: s is mapped to the element f̃(1) of the fibre p−1

S (x) = Sx, where

f̃ is the unique lifting of f to DS . By looking at the construction of the unique
lifting in the proof of Lemma 2.3.2, one can make this even more explicit as follows.
There exist open subsets U1, . . . , Uk of D such that the f−1(U1), . . . , f

−1(Uk) give
an open covering of [0, 1] and S is constant over each Ui. There are moreover
sections si ∈ S(Ui) such that the restrictions of si and si+1 to Ui ∩ Ui+1 coincide
for all 1 ≤ i ≤ k − 1, and such that s1 (resp. sk) maps to s (resp. γs) in Sx.
Classically this is expressed by saying that γs is the analytic continuation of the
holomorphic function germ s along the path f representing γ.

Notice that the existence and the uniqueness of γs are guaranteed by the fact
that S is a locally constant sheaf and hence DS → D is a cover. Had we worked
with the bigger sheaf On instead of S, the analytic continuation of an arbitrary
germ may not have been possible.

Example 2.6.6 Let us work out the simplest nontrivial case of the above theory
in detail. Take as D an open disc in the complex plane centered around 0, of
radius 1 < R ≤ ∞, with the point 0 removed. We choose 1 as base point for the
fundamental group of D. We study the local system of solutions of the first order
differental equation

y′ = fy (2.2)
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where f is a holomorphic function on D that extends meromorphically into 0. It
is well known that the solutions to (2.2) in some neighbourhood of a point x ∈ D
are constant multiples of functions of the form exp ◦F where F is a primitive of f .
Thus the solution sheaf is a locally constant sheaf of 1-dimensional complex vector
spaces. The reason why it is locally constant but not constant is that, as we learn
from complex analysis, the primitive F exists locally but not globally on the whole
of D. A well defined primitive F− of f exists, for instance, over U− = D \ (0,−iR)
and another primitive F+ over U+ = D \ (0, iR). The intersection U− ∩ U+ splits
in two connected components C− ⊂ {z : Re(z) < 0} and C+ ⊂ {z : Re(z) > 0}.
As F+ and F− may differ only by a constant on each component, we are allowed to
choose them in such a way that F− = F+ on C−. The local system of solutions to
(2.2) is isomorphic over U− to the constant sheaf defined by the one-dimensional
subspace of O(U−) generated by exp ◦ F−, and similarly for U+.

Now we compute the monodromy representation π1(D, 1) → GL(1,C) of this
local system. We have seen in Example 2.4.12 that π1(D, 1) ∼= Z. Explicitly,
a generator γ is given by the class of the path g : [0, 1] → D, t 7→ e2πit which
‘goes counterclockwise around the unit circle’. A one-dimensional representation of
π1(D, 1) is determined by the image m of γ in GL(1,C) ∼= C∗. By the recipe of the
previous remark, in our case m can be described as follows: given a holomorphic
function germ φ defined in a neighbourhood of 1 and satisfying (2.2) with y = φ,
the analytic continuation of φ along the path g representing γ is precisely mφ. But
we may take for φ the function exp ◦ F−; when continuing it analytically along
g, we obtain exp ◦ F+ since we have to switch from F− to F+ somewhere on C−.
Thus

m = exp (F−(1))(exp (F+(1)))−1 = exp (F−(1) − F−(−1) + F+(−1) − F+(1))

= exp (

∫

γ

f) = exp (2πiRes 0 f)

by the Residue Theorem (see e.g. Rudin [80], Theorem 10.42), where Res (f)
denotes the residue of f at 0. So we have expressed m in terms of the function f
occurring in the equation (2.2).

Remark 2.6.7 One sees from the above example that for any one-dimensional
monodromy representation on the punctured open discD we may find a differential
equation of type (2.2) whose local system has the given monodromy; if m is the
image of γ, one may take, for example, y′(z) = µz−1y(z) with µ ∈ C satisfying
exp (2πiµ) = m. This equation has the additional virtue that the coefficient µz−1

has only a simple pole at 0.

We can generalize this to higher dimension. An n-dimensional representation of
the punctured open disc D of radius R is again determined by the image of γ which
is a matrix M ∈ GLn(C). To find a system of n differential equations y′ = Ay
with the above monodromy representation and with coefficients holomorphic on D
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except for a simple pole at the origin, we may take A = Bz−1, where B ∈ GLn(C)
is a matrix with exp (2πiB) = M . Here exp (2πiB) is defined by the absolutely
convergent power series

exp (2πiB) :=
∞∑

i=0

(2πiB)i

i!
.

Given M ∈ GLn(C), one constructs B with exp (2πiB) = M using the Jordan
decomposition of M (see [23], 11.8 for details).

2.7 The Riemann–Hilbert Correspondence

Our discussion of complex local systems would not be complete without the intro-
duction of connections. We shall only define them in the classical situation where
the basis is a connected open subset D ⊂ C, but everything holds in much greater
generality; see the remarks below.

To begin with, consider the ring sheaf O of holomorphic functions on our open
domain D ⊂ C. A sheaf of O-modules is a sheaf of abelian groups F on X such
that for each open U ⊂ X the group F(U) is equipped with an O(U)-module
structure O(U) ×F(U) → F(U) making the diagram

O(U) ×F(U) −−−→ F(U)
y

y

O(V ) ×F(V ) −−−→ F(V )

commute for each inclusion of open sets V ⊂ U . A morphism of O-modules is a
morphism of sheaves of abelian groups compatible with the O-module structure
just described.

We say that F is locally free if every point of D has an open neighbourhood
V ⊂ D such that F|V ∼= On|V for some n > 0, where On denotes the n-fold direct
sum of O. The integer n is called the rank of F . We say that F is free of rank n
if there is actually an isomorphism F ∼= On on the whole of D.

Remark 2.7.1 Locally free sheaves on D are related to holomorphic vector bun-
dles on D. The latter are defined as complex manifolds E equipped with a holomor-
phic surjection p : E → D (see Remark 3.1.2 below for these concepts) such that
p−1(z) has the structure of a complex vector space for each z ∈ D, and moreover
each z ∈ D has an open neighbourhood V ⊂ D for which there is an isomorphism
p−1(V ) ∼= V × Cn of complex manifolds over V inducing vector space isomor-
phisms on the fibres. Given a holomorphic vector bundle p : E → D, its sheaf of
holomorphic sections HE is given over U ⊂ D by the holomorphic maps s : U → E
satisfying p ◦ s = idU. The restriction of HE to an open subset V ⊂ D where
p−1(V ) ∼= V ×Cn is isomorphic to On|V , therefore HE is a locally free sheaf. This
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construction induces an equivalence between the category of holomorphic vector
bundles on D and that of locally free sheaves on D, the functor in the reverse
direction being defined by sending F|V to V ×Cn, and then patching the resulting
complex manifolds together. For the above reason locally free sheaves are often
called vector bundles in the literature.

We shall also need the sheaf Ω1
D of holomorphic 1-forms on D. It may be

defined as follows. Given a holomorphic function f on some U ⊂ D, consider the
function df : U → C given by z 7→ f ′(z). A section of Ω1

D over U is then defined as
a complex function ωU : U → C such that each z ∈ U has an open neighbourhood
V ⊂ U mapped isomorphically onto an open disc around 0 in C by a holomorphic
function g ∈ O(V ) such that ωU |V = f dg with some f ∈ O(V ). This is a sheaf of
O-modules on D.

The above definition is a bit clumsy, but it extends well to more general situ-
ations. Note that dz : D → C is a global section of Ω1

D (because d(z − a) = dz
for all a ∈ D), and so is df for an arbitrary f ∈ O(D) (because df = f ′dz). In
particular, we may identify the function df/dz : D → C with f ′ ∈ O(V ).

Now we come to the main definition.

Definition 2.7.2 A holomorphic connection on D is a pair (E ,∇), where E is a
locally free sheaf on D, and ∇ : E → E⊗OΩ1

D is a morphism of sheaves of C-vector
spaces satisfying the ‘Leibniz rule’

∇(fs) = df ⊗ s+ f∇(s) (2.3)

for all U ⊂ D, f ∈ O(U) and s ∈ E(U). We call ∇ the connection map.

Here the tensor product E ⊗O Ω1
D is defined in the obvious way, by the rule

U 7→ E(U) ⊗O(U) Ω1
D(U). Holomorphic connections form a category: a morphism

(E ,∇) → (E ′,∇′) is a morphism of O-modules φ : E → E ′ making the diagram

E ∇−−−→ E ⊗O Ω1
D

φ

y
yφ⊗id

E ′ ∇′

−−−→ E ′ ⊗O Ω1
D

commute.

Example 2.7.3 Assume that E ∼= On is a free O-module. In this case we may
identify sections s ∈ E(U) with n-tuples (f1, . . . , fn) of holomorphic functions
on U . We can define an obvious connection map d : On → (Ω1

D)⊕n by setting
d(f1, . . . , fn) = (df1, . . . , dfn); the formula (2.3) follows from the usual Leibniz rule
for differentiation.

Now given any other connection map ∇ on Or, formula (2.3) implies that the
map ∇− d : On → (Ω1

D)⊕n satisfies (∇− d)(fs) = f(∇− d)(s) for all f ∈ O(D)
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and s ∈ E(D). It follows that ∇− d is given by an n× n matrix Ω of holomorphic
1-forms, called the connection matrix of ∇. In other words,

∇((f1, . . . , fn)) = (df1, . . . , dfr) + Ω(f1, . . . , fn).

By the remarks preceding Definition 2.7.2, we can actually identify each entry ωij
of Ω with a 1-form of the shape fij dz, so ‘division of Ω by dz’ yields a matrix [fij ]
with entries in O(D). Hence setting f = (f1, . . . , fn) and A = −[fij ] we see that
∇(f) = 0 if and only if f satisfies the system of differential equations y′ = Ay.

In general, a section s ∈ E(U) of a connection (E ,∇) is called horizontal if it
satisfies ∇(s) = 0. Horizontal sections form a subsheaf of C-vector spaces E∇ ⊂ E .

Lemma 2.7.4 The sheaf E∇ is a local system of dimension equal to the rank of E.

Proof: According to a general fact on noncompact Riemann surfaces ([23], The-
orem 30.4), every locally free sheaf on D is actually free. Therefore by the above
example the sections of E∇ over U ⊂ D correspond to local solutions of a lin-
ear system y′ = Ay of holomorphic differential equations on D. We conclude by
Cauchy’s theorem reinterpreted in Example 2.6.4.

We can now prove a proposition that belongs to the family of statements that
usually go by the name of ‘Riemann–Hilbert correspondence’ in the literature.

Proposition 2.7.5 The functor (E ,∇) 7→ E∇ induces an equivalence between the
category of holomorphic connections on D and that of complex local systems on D.

Proof: To construct a functor in the reverse direction, take a local system L
on D. The rule U 7→ L(U) ⊗C O(U) defines a locally free sheaf EL on D. We
define a connection map ∇L on EL as follows. Given an open subset U where
L|U ∼= Cn, fix a C-basis s1, . . . , sn of L(U). Then each section of EL(U) can be
uniquely written as a sum

∑
si ⊗ fi with some fi ∈ O(U). Now define ∇L|U by

setting ∇L(
∑
si ⊗ fi) :=

∑
si ⊗ dfi. As two bases of L(U) differ by a matrix whose

entries are in C and hence are annihilated by the differential d, the definition does
not depend on the choice of the si. Therefore the ∇L|U defined over the various
U patch together to a map ∇L defined over the whole of D.

To check that the functors (E ,∇) 7→ E∇ and L 7→ (EL,∇L) induce an equiva-
lence of categories, one may argue over open subsets where E (resp. L) are trivial,
and there it follows from the construction.

Remark 2.7.6 The Riemann–Hilbert correspondence holds for arbitrary Rie-
mann surfaces, and extends to higher dimensional complex manifolds as well. In
the higher dimensional case, however, one has to impose a further condition on
the connection (E ,∇) which is automatic in dimension 1: namely that it is flat
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(or integrable). This means the following. Write Ω1
X for the sheaf of holomorphic

1-forms on the complex manifold X, and Ω2
X for its second exterior power. For

each connection (E ,∇) one may define a map ∇1 : E⊗OΩ1
X → E⊗OΩ2

X by setting
∇1(s⊗ ω) = ∇(s) ∧ ω + s⊗ dω. Here d : Ω1

X → Ω2
X is the usual differential given

by d(fdzi) = df ∧ dzi, where dz1, . . . , dzn are free generators of Ω1
X in the neigh-

bourhood of a point. One then says that the connection is flat if the composite
map ∇1◦∇ is trivial. The Riemann–Hilbert correspondence for complex manifolds
asserts that the category of holomorphic flat connections on a complex manifold
X is equivalent to that of complex local systems on X. For a proof, see e.g. [110],
Proposition 9.11.

Combined with Corollary 2.6.2, Proposition 2.7.5 implies that every finite di-
mensional representation of π1(D,x) for some base point x is the monodromy rep-
resentation of some linear system of holomorphic differential equations. Assume
now that D is a complement of finitely many points in C. Then one may consider
a more subtle question, namely realizing representations of the fundamental group
as monodromy representations of linear systems satisfying additional restrictions
on the local behaviour of the coefficients around the missing points.

Traditionally, this problem is studied over the projective line P1(C). The
precise definition of P1(C) as a Riemann surface will be given in Example 3.1.3
(2), but it can be easily introduced in an ad hoc way: it is just the complex plane
with a point ∞ added at infinity. A system of complex open neighbourhoods
of ∞ is given by the complements of closed discs around 0, and a function f is
holomorphic around ∞ if z 7→ f(z−1) is holomorphic around 0. Thus we may
extend the notion of sheaves of O-modules to P1(C). One difference should be
noted, however: whereas over a domain D ⊂ C all locally free sheaves are free,
over P1(C) this is not so any more.

Consider a finite set S = {x1, . . . , xm} of points of P1(C), and set henceforth
D := P1(C) \ S. We may safely assume xm = ∞. Define an extension Ω1(S) of
Ω1
D to an O-module on P1(C) as follows: the sections of Ω1(S) are P1(C)-valued

functions that restrict to sections of Ω1
D over open subsets contained in D, and in

a neighbourhood of a xi can be written in the form f dz with f having at most
a simple pole at xi (for xi = ∞ one of course requires a representation of the
form f d(z−1)). The sheaf Ω1(S) is called of the sheaf of 1-forms with logarithmic
poles along S. The name is explained by writing f = g(z − xi)

−1 with a function
g holomorphic around xi: we then obtain f dz = g (z − xi)

−1d(z − xi), and we
recognize the logarithmic derivative of z − xi on the right hand side.

A connection with logarithmic poles along S is a pair (E ,∇), where E is a locally
free sheaf on P1(C), and ∇ : E → E ⊗O Ω1(S) is a C-linear map satisfying (2.3).
As in Example 2.7.3, in the case when E is free a connection with logarithmic poles
corresponds to a linear system y′ = Ay of differential equations where the entries
of the matrix A are holomorphic functions on D that have at worst a simple pole
at the xi. Such linear systems are called Fuchsian.
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Proposition 2.7.7 Given a holomorphic connection (E ,∇) on D, there is a con-
nection (E ,∇) on P1(C) with logarithmic poles along S satisfying (E ,∇)|D ∼= (E ,∇).

The proof uses a general construction for patching sheaves that will also serve
later.

Construction 2.7.8 Let X be a topological space, {Ui : i ∈ I} an open covering
of X, and Fi a sheaf of sets on Ui for i ∈ I. Assume further given for each pair
i 6= j isomorphisms

θij : Fi|Ui∩Uj

∼→ Fj |Ui∩Uj

satisfying θjk ◦θij = θik over Ui∩Uj∩Uk for every triple (i, j, k) of different indices.
Then there exists a sheaf F on X with F|Ui

= Fi for each i ∈ I; it is unique up to
unique isomorphism.

To define F(U) over an open subset U ⊂ X, set

F(U) := {(si)i∈I : si ∈ Fi(U ∩ Ui) and θij(si|U∩Ui∩Uj
) = sj |U∩Ui∩Uj

for all i 6= j}.

The F(U) together with the obvious restriction maps form a presheaf F , and the
sheaf axioms for the Fi imply that F is in fact a sheaf. Its restrictions over the
Ui yield the Fi by construction. The verification of the isomorphism statement is
left to the readers.

One says that F is obtained by patching (or gluing) the Fi together. Of course
the lemma also holds for sheaves with additional structure (sheaves of groups,
rings, etc.) In particular, patching locally free sheaves on a complex domain yields
a locally free sheaf. Also, patching locally constant sheaves on a topological space
results in a locally constant sheaf.

Proof of Proposition 2.7.7: Take small open discs Di ⊂ P1(C) around each
xi that do not meet, and write n for the rank of the connection (E ,∇). We
know from Remark 2.6.7 that for each i there exists an n × n system y′ = Aiy
of linear differential equations having a simple pole at xi and holomorphic else-
where. Write (Ei,∇i) for the connection given by Ei = O|nDi

and ∇i((f1, . . . , fn)) =
(df1, . . . , dfr)+Ai(f1, . . . , fn). We can cover each open set D∩Di = Di\{xi} by two
simply connected open subsets Ui+ and Ui− as in Example 2.6.6. Over each Ui+
and Ui− the locally constant sheaves E∇ and E∇i

i are both trivial of dimension n by
Lemma 2.4.4. Consequently, we may patch the locally free sheaves E ∼= E∇ ⊗C O
and Ei ∼= E∇i

i ⊗C O together using the above construction. The restrictions of E
and Ei to the Ui+ and Ui− are both equipped with the trivial connection map since
they correspond to trivial local systems, so the connections also patch.

Corollary 2.7.9 There is an essentially surjective functor from the category of
connections on P1(C) with logarithmic poles along S to that of finite dimensional
left representations of π1(D,x) for some base point x ∈ D.
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Proof: Combine the proposition with Proposition 2.7.5 and Corollary 2.6.2.

Remarks 2.7.10

1. In his fundamental work [12], Deligne proved a vast generalization of the
above results. He considered a complex algebraic variety U , and introduced
the notion of regular connections on the associated analytic space Uan. In
the case when U is a Zariski open subset in a smooth projective variety X
whose complement S is a divisor with normal crossings (which means that
its irreducible components are smooth of codimension 1 and meet trans-
versely), a regular connection is a holomorphic flat connection on Uan that
extends to a meromorphic connection on X with logarithmic poles along
S. The extension is then actually an algebraic connection, which in our
very special case corresponds to the fact that the functions occurring in the
construction of our connections are meromorphic over P1(C) and hence are
rational functions. Deligne showed that all holomorphic flat connections on
Uan are regular, and consequently every finite dimensional representation of
the fundamental group of Uan can be constructed in a purely algebraic way.
For a nice introduction to these ideas, see [40].

2. Corollary 2.7.9 does not say that every representation ρ : π1(D,x) → GLn(C)
is the monodromy representation of a Fuchsian system of linear differential
equations, because the sheaf E we constructed above is not necessarily free.
The question whether every such ρ is the monodromy representation of a
Fuchsian system is usually called the Riemann–Hilbert problem in the lit-
erature, though it is due neither to Riemann nor to Hilbert. However, the
21st problem on Hilbert’s famous list, which he did not formulate completely
rigorously, may be interpreted in this way.

The fundamental group of D = P1(C) \ S is known to have a presentation
of the form 〈γ1, . . . , γm | γ1 · · · γn = 1〉, where γi is the class of a closed
path going through z that turns around xi. Thus the representation ρ is
determined by the image of the γi in GLn(C), i.e. by a system ofm invertible
matrices M1, . . . ,Mm ∈ GLn(C) satisfying M1 · · ·Mm = 1.

It was believed for a long time that Pljemelj gave a positive answer to the
question as early as 1908. However, the last step of his argument contains
a gap, and only works under the additional assumption that one of the ma-
trices Mi is diagonalizable; see [37], Theorem 18.6 for a proof of Pljemelj’s
result. At the end of the 1980’s Bolibrukh came up with a series of coun-
terexamples showing that the answer can be negative in general, already for
n = 3. For expositions of the problem and of Bolibrukh’s counterexamples,
see the Bourbaki seminar by Beauville [4] as well as the book of Ilyashenko
and Yakovenko [37].

One way to eliminate the mistake from Pljemelj’s proof is to allow apparent
singularities for the system y′ = Ay. This means that the entries of A may
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have poles outside the xi, but the associated monodromy matrix should be
the identity. Pljemelj’s theorem then immediately yields a positive answer:
one simply adds one more xi with the identity as monodromy matrix and
applies the theorem. Thus if Hilbert meant that apparent singularities are
allowed, then Pljemelj already solved the problem.

3. There is a variant of the Riemann–Hilbert problem with a single n-th order
linear differential equation

y(n) + a1y
(n−1) + · · · + an−1y

′ + any = 0. (2.4)

Such an equation is called Fuchsian if its coefficients are holomorphic outside
a finite set S = {x1, . . . , xm} ⊂ P1(C), and at each xj the coefficient ai has
a pole of order at most i. The relation with the previous definition is as
follows. Assume for simplicity that xj = 0 and write ∂ for the differential
operator y 7→ zy′ (recall that z is the coordinate function on C). After
multiplying the equation by zn we may rewrite it in the form

∂ny + b1∂
n−1y + · · · + bn−1∂y + bny = 0, (2.5)

where the bi are holomorphic at 0 as a consequence of the Fuchsian condition.
By this equation the Cn-valued function (∂n−1y, ∂n−2y, . . . , ∂y, y) satisfies
a matrix equation of the form

y′ = Bz−1y,

where B is a matrix of holomorphic functions. This is a Fuchsian system in
the previous sense.

A simple counting argument shows that one cannot hope for realizing each
representation of π1(D,x) → GLn(C) as the monodromy representation
of an n-th order Fuchsian equation: Fuchsian equations ‘depend on fewer
parameters’ than monodromy representations do. However, if apparent sin-
gularities are allowed, then such a realization is possible; this is already
contained in Pljemelj’s work.

Example 2.7.11 The case n = 2, m = 3 of the Riemann–Hilbert problem has a
long and glorious history, with a groundbreaking contribution by Riemann himself.
He introduced the concept of local exponents of an equation (2.4) around a singular
point xj . We quote the later definition of Fuchs: for xj = 0 the local exponents
are the roots of the indicial equation

xn + b1(0)xn−1 + · · · + bn−1(0)x+ bn(0) = 0.

with the bi as in (2.5). In the case n = 2,m = 3 one may assume {x1, x2, x3} =
{0, 1,∞}, and then gets three pairs of local exponents at 0, 1 and ∞, tradition-
ally denoted by (α, α′), (β, β′) and (γ, γ′), respectively. If one moreover imposes
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α+ α′ + β + β′ + γ + γ′ = 1, it turns out that there is (up to equivalence) a unique
second order Fuchsian differential equation on P1(C) \ {0, 1,∞} with the above
local exponents, namely

y′′ +
(1 + γ + γ′)z + (α+ α′ − 1)

z(z − 1)
y′ +

γγ′z2 + (ββ′ − γγ′ − αα′)z + αα′

z2(z − 1)2
y = 0.

Setting α = β = 0, γ = a, γ′ = b, α′ = 1 − c, β′ = c − a − b yields the famous
hypergeometric differential equation

y′′ +
(1 + a+ b)z − c

z(z − 1)
y′ +

ab

z(z − 1)
y = 0

studied previously by Euler, Gauss, Kummer and others; the general equation can
be reduced to this form by suitable transformations.

Riemann computed (and also defined!) the monodromy representation associ-
ated with such equations. The results are quite complicated. For instance, under
the additional assumption that none of the differences α − α′, β − β′, γ − γ′ are
integers, one obtains for the monodromy representation ρ

ρ(γ0) =

[
exp (2πiα) 0

0 exp (2πiα′)

]
,

ρ(γ1) =




τ exp (2πiβ)−exp (2πiβ′)
τ−1

exp (2πiβ)−exp (2πiβ′)
τ−1

τ exp (2πiβ′)−τ exp (2πiβ)
τ−1

τ exp (2πiβ′)−exp (2πiβ)
τ−1


 ,

where γ0, γ1 are the standard loops around 0 and 1, respectively, and

τ =
sin((β′ + α+ γ)π) sin((β + α′ + γ)π)

sin((β + α+ γ)π) sin((β′ + α′ + γ)π)
.

These formulae are taken from Section 3.1 of Varadarajan’s expository paper [108],
where the degenerate cases are also discussed. See also [5] for an introduction to
hypergeometric equations.

Exercises

1. Show that if a finite group G acts on a Hausdorff space Y such that none of
its elements has a fixed point, the action is even and thus it yields a Galois
cover Y → G\Y for connected Y .

2. Show that a connected cover Y → X is Galois with automorphism group
G if and only if the fibre product Y ×X Y is isomorphic to the trivial cover
Y ×G→ Y (where G carries the discrete topology).
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3. Let X be a connected and locally simply connected topological space and
x ∈ X a fixed base point. Consider a connected cover p : Y → X and a
base point y ∈ p−1(x).

(a) Show that there is a natural injective homomorphism π1(Y, y) → π1(X,x).

(b) Viewing π1(Y, y)
op as a subgroup of Aut(X̃x|X) via the isomorphism

Aut(X̃x|X) ∼= π1(X,x)
op, establish an isomorphism π1(Y, y)

op\X̃x
∼= Y .

4. Let G be a connected and locally simply connected topological group with
unit element e. Let π : G̃e → G be a universal cover, and ẽ the universal
element in the fibre π−1(e).

(a) Equip G̃e with a natural structure of a topological group with unit
element ẽ for which π becomes a homomorphism of topological groups.

(b) Show that a group structure with the above properties is unique.

(c) Construct an exact sequence of topological groups

1 → π1(G, e)
op → G̃e → G→ 1,

the topology on π1(G, e) being discrete.

5. Let p : Y → X be a cover of a connected and locally simply connected
topological space X. For a point x ∈ X, we have defined two canonical
left actions on the fibre p−1(x): one is the action by Aut(Y |X) and the
other is that by π1(X,x)

op. Verify that these two actions commute, i.e. that
α(φ(y)) = φ(αy) for y ∈ π−1(x), φ ∈ Aut(Y |X) and α ∈ π1(X,x). [Hint:
Use Theorems 2.3.5 and 2.3.7.]

6. Let X̃∆ → X be the cover of the connected and locally simply connected
space X introduced in Remark 2.4.14 (2).

(a) Verify that the π1(X,x)-space corresponding to X̃∆ via Theorem 2.3.4
is π1(X,x) acting on itself via inner automorphisms.

(b) Let f : [0, 1] → X be a path with endpoints x = f(0) and y = f(1).
The pullback f∗X̃∆ is a trivial cover of [0, 1] by simply connectedness
of [0, 1], whence an isomorphism of fibres X̃∆,x

∼→ X̃∆,y. Verify that

under the identifications X̃∆,x
∼= π1(X,x) and X̃∆,y

∼= π1(X, y) this
isomorphism corresponds to the isomorphism of fundamental groups
π1(X,x)

∼→ π1(X, y) induced by g 7→ f • g • f−1.

7. (Deligne) Let X be a connected and locally simply connected topological
space. A groupoid cover over X is a cover π : Π → X×X together with the
following additional data. Denote by s and t the maps Π → X obtained by
composing π with the two projections X ×X → X, and consider the fibre
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product Π ×X Π with respect to the map s on the left and t on the right.
The groupoid structure is given by three morphisms of spaces over X ×X:
a multiplication map m : Π ×X Π → Π, a unit map e : X → Π (where X is
considered as a space over X × X by means of the diagonal map), and an
inverse map ι : Π → Π which satisfies t ◦ ι = s, s ◦ ι = t. These are subject
to the following conditions:

m(m× id) = m(id ×m), m(e× id) = m(id × e) = id,

m(id × ι) = e ◦ t, m(ι× id) = e ◦ s.
A morphism of groupoid covers is a morphism of covers of X×X compatible
with the above additional data.

(a) Verify that the space X̃ → X × X of Construction 2.4.13 carries the
structure of a groupoid cover over X.

(b) Fix a base point (x, x) of X×X coming from a point x ∈ X. Show that
the cover X̃ → X×X corresponds via Theorem 2.3.4 to the underlying
set of π1(X,x) together with the left action of π1(X,x)×π1(X,x) given
by (γ1, γ2)γ = γ1γγ

−1
2 .

(c) Show that for every groupoid cover Π → X × X there is a unique
morphism of groupoid covers X̃ → Π.

8. Let X be a connected and locally path-connected, but not necessarily locally
simply connected topological space. Construct a profinite group G such that
the category of finite covers of X becomes equivalent to the category of finite
sets equipped with a continuous left G-action.

9. Let S be a set having at least two elements, and let X be a topological space.
Define a presheaf FS of sets on X by setting FS(U) = S for all nonempty
open sets U ⊂ X and ρUV = idS for all open inclusions V ⊂ U . Give a
necessary and sufficient condition on X for FS to be a sheaf.

10. Let X be a topological space. Show that the category of sheaves on X is
equivalent to the category of those spaces p : Y → X over X where the
projection p is a local homeomorphism (i.e. each point in Y has an open
neighbourhood such that p|U is a homeomorphism onto its image). [Hint:
Begin by showing that for a sheaf F the projection pF : XF → X is a local
homeomorphism.]

11. Let F be a presheaf of sets. Show that there is a natural morphism of
presheaves ρ : F → FXF

, and moreover every morphism F → G with G a

sheaf factors as a composite F ρ→ FXF
→ G. [Remark: For this reason FXF

is called the sheaf associated with F .]



Chapter 3

Riemann Surfaces

One obtains more information on covers of a topological space when it carries
additional structure, for instance when it is a complex manifold. The complex
manifolds of dimension 1 are called Riemann surfaces, and they already have a
rich theory. The study of their covers creates a link between the Galois theory
of fields and that of covers: finite étale algebras over the field of meromorphic
functions on a connected compact Riemann surface correspond up to isomorphism
to branched covers of the Riemann surface; by definition, the latter are topological
covers outside a discrete exceptional set. As we shall see, all proper holomorphic
surjections of Riemann surfaces define branched covers. The dictionary between
branched covers and étale algebras over the function field has purely algebraic
consequences: as an application, we shall prove that every finite group occurs as
the Galois group of a finite Galois extension of the rational function field C(t).

Parts of this chapter were inspired by the expositions in [17] and [23].

3.1 Basic Concepts

Let X be a Hausdorff topological space. A complex atlas on X is an open covering
U = {Ui : i ∈ I} of X together with maps fi : Ui → C mapping Ui homeo-
morphically onto an open subset of C such that for each pair (i, j) ∈ I2 the map
fj ◦ f−1

i : fi(Ui ∩Uj) → C is holomorphic. The maps fi are called complex charts.
Two complex atlases U = {Ui : i ∈ I} and U ′ = {U ′i : i ∈ I ′} on X are equivalent
if their union (defined by taking all the Ui and U ′i as a covering of X together with
all complex charts) is also a complex atlas. Note that the extra condition to be
satisfied here is that the maps f ′j ◦ f−1

i should be holomorphic on fi(Ui ∩ U ′j) for
all Ui ∈ U and Uj ∈ U ′.

Definition 3.1.1 A Riemann surface is a Hausdorff space together with an equiv-
alence class of complex atlases.

We shall often refer to the equivalence class of atlases occurring in the above
definition as the complex structure on the Riemann surface.

73
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Remark 3.1.2 The above definition is the case n = 1 of that of n-dimensional
complex manifolds: these are Hausdorff spaces equipped with an equivalence class
of n-dimensional complex atlases defined in the same way as above, except that
the complex charts fi map onto open subsets of Cn, and the fj ◦ f−1

i are to be
holomorphic maps from fi(Ui ∩ U ′j) to Cn.

Examples 3.1.3

1. An open subset U ⊂ C is endowed with a structure of a Riemann surface
by the trivial covering U = {U} and the inclusion i : U → C.

2. The complex projective line. Consider the real 2-sphere S2, and fix antipodal
points 0,∞ ∈ S2. We define two complex charts on S2 as follows. We first
map the complement of ∞ homeomorphically onto the complex plane C via
stereographic projection; we call the resulting homeomorphism z. Then we
define a homeomorphism of the complement of 0 onto C by mapping ∞
to 0 and using the map 1/z at the other points. Since the map z 7→ 1/z
is holomorphic on C \ {0}, this is a complex atlas; the resulting Riemann
surface is the complex projective line P1(C).

3. Complex tori. Consider C as a 2-dimensional real vector space and let
c1, c2 ∈ C be a basis over R. The ci generate a discrete subgroup Λ of C
isomorphic to Z × Z. The topological quotient space is homeomorphic to a
torus. We define a complex atlas on T as follows. We cover C by sufficiently
small open discs Di such that neither of them contains two points congruent
modulo Λ. The image of each Di by the projection p : C → T is an open
subset of T by definition of the quotient topology, and the projection maps
Di homeomorphically onto its image. The images of the Di thus form an
open covering of T , and the complex charts fi are to be the inverses of the
projection maps p|Di

: Di → p(Di). The coordinate changes fj ◦ f−1
i are

translations by elements of Λ, so we have indeed obtained a complex atlas.

4. Smooth affine plane curves. Let X be the closed subset of C2 defined as the
locus of zeros of a polynomial f ∈ C[x, y]. Assume that there is no point ofX
where the partial derivatives ∂xf and ∂yf both vanish. We can then endow
X with the structure of a Riemann surface as follows. In the neighbourhood
of a point where ∂yf is nonzero, define a complex chart by mapping a point
to its x-coordinate; similarly, for points where ∂xf is nonzero we take the y-
coordinate. By the inverse function theorem for holomorphic functions, in a
sufficiently small neighbourhood the above mappings are indeed homeomor-
phisms. Secondly, the holomorphic version of the implicit function theorem
([28], p. 19) implies that in the neighbourhood of points where both x and
y define a complex chart, the transition function from x to y is holomor-
phic, i.e. when ∂yf does not vanish at some point, we may express y as a
holomorphic function of x and vice versa. So we have defined a complex
atlas.
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In the second and third examples we obtain compact Riemann surfaces; the
other two are non-compact. In fact, one may define a compact version of the
last example by considering smooth projective plane curves: these are to be the
closed subsets of the complex projective plane P2(C) arising as the locus of zeros
of some homogeneous polynomial F ∈ C[x, y, z] such that the partial derivatives
∂xF, ∂yF, ∂zF have no common zero. The complex structure is defined in a similar
way as above, or by means of a covering by smooth affine curves.

Definition 3.1.4 Let Y and X be Riemann surfaces. A holomorphic (or analytic)
map φ : Y → X is a continuous map such that for each pair of open subsets
U ⊂ X, V ⊂ Y satisfying φ(V ) ⊂ U and complex charts f : U → C, g : V → C
the functions f ◦ φ ◦ g−1 : g(V ) → C are holomorphic.

It follows from the definition of equivalence between atlases that the above
definition does not depend on the atlases chosen. Riemann surfaces together with
holomorphic maps form a category.

We define a holomorphic function on an open subset U ⊂ X to be a holomor-
phic map U → C, where C is equipped with its usual complex structure. For
instance, a complex chart f : U → C is a holomorphic map.

Remark 3.1.5 The sheaf of holomorphic functions on a Riemann surface X is
defined by associating with an open subset U ⊂ X the ring O(U) of holomorphic
functions on U . One can check that the complex structure on X is uniquely
determined by its underlying topological space and the sheaf O. This is the starting
point of the general definition of complex analytic spaces.

3.2 Local Structure of Holomorphic Maps

In this section we study holomorphic maps between Riemann surfaces from a
topological viewpoint. Henceforth we shall tacitly assume that the maps under
consideration are non-constant on all connected components, i.e. they do not map
a whole component to a single point.

We have seen in Example 2.4.12 that the map z 7→ zk defines a cover of C×

by itself but its extension to C does not. The next proposition shows that locally
every holomorphic map of Riemann surfaces is of this shape.

Proposition 3.2.1 Let φ : Y → X be a holomorphic map of Riemann surfaces,
and y a point of Y with image x = φ(y) in X. There exist open neighbourhoods
Vy (resp. Ux) of y (resp. x) satisfying φ(Vy) ⊂ Ux, as well as complex charts
gy : Vy → C and fx : Ux → C satisfying fx(x) = gy(y) = 0 such that the diagram

Vy
φ−−−→ Ux

gy

y
yfx

C
z 7→zey−−−−→ C
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commutes with an appropriate positive integer ey that does not depend on the choice
of the complex charts.

Proof: By performing affine linear transformations in C and by shrinking Ux
and Vy if necessary, one may find charts gy and fx satisfying all conditions of the
proposition except perhaps the last one. In particular, fx◦φ◦g−1

y is a holomorphic
function in a neighbourhood of 0 which vanishes at 0. As such, it must be of the
form z 7→ zeyH(z) where H is a holomorphic function with H(0) 6= 0. Denote
by log a fixed branch of the logarithm in a neighbourhood of H(0). It is then
a basic fact from complex analysis that by shrinking Vy if necessary the formula
h := exp((1/ey) logH)) defines a holomorphic function h on gy(Vy) with hey = H.
Thus by replacing gy by its composition with the map z 7→ zh(z) we obtain a chart
that satisfies the required properties. The independence of ey of the charts follows
from the fact that changing a chart amounts to composing with an invertible
holomorphic function.

Definition 3.2.2 The integer ey of the proposition is called the ramification index
or branching order of φ at y. The points y with ey > 1 are called branch points.
We denote the set of branch points of φ by Sφ.

Corollary 3.2.3 A holomorphic map between Riemann surfaces is open (i.e. it
maps open sets onto open sets).

Proof: Indeed, the map z → ze is open.

Corollary 3.2.4 The fibres of φ and the set Sφ are discrete closed subsets of Y .

Proof: The proposition implies that each point of Y has a punctured open
neighbourhood containing no branch points where φ is finite-to-one.

Now we restrict our attention to proper maps. Recall that a continuous map of
locally compact topological spaces is proper if the preimage of each compact subset
is compact. If the spaces in question are moreover Hausdorff spaces, then a proper
map is closed, i.e. maps closed subsets to closed subsets. This follows from the
easy fact that in a locally compact Hausdorff space a subset is closed if and only if
its intersection with every compact subset is closed. Note that Riemann surfaces
are locally compact Hausdorff spaces (since they are locally homeomorphic to open
subsets of C).

Examples 3.2.5

1. A continuous map Y → X of locally compact Hausdorff spaces is automat-
ically proper if Y is compact. The main case of interest for us will be that
of compact Riemann surfaces.
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2. A finite cover p : Y → X of locally compact topological spaces is proper.
Indeed, given a compact subset Z ⊂ X and an open covering U of p−1(Z),
we may refine U in a covering by open subsets Ui ⊂ p−1(Z) so that the
cover is trivial over each p(Ui). As p is an open map, the p(Ui) form an
open covering of Z, whence we may extract a finite subcovering V. The
Ui with p(Ui) ∈ V yield a finite open covering of p−1(Z) because the cover
p : Y → X is finite.

3. In the next chapter we shall see that if X and Y are smooth complex affine
plane curves and φ : Y → X is a finite algebraic morphism, then φ is proper
as a map of Riemann surfaces.

We can now state the main topological properties of proper holomorphic maps.

Proposition 3.2.6 Let X be a connected Riemann surface, and φ : Y → X
a proper holomorphic map. The map φ is surjective with finite fibres, and its
restriction to Y \ φ−1(φ(Sφ)) is a finite topological cover of X \ φ(Sφ).

Proof: Finiteness of fibres follows from the previous corollary, since discrete
subsets of a compact space are finite. Surjectivity of φ holds because φ(Y ) is open
in X (by Corollary 3.2.3) as well as closed (as φ is proper), and X is connected.
For the last statement note that by Proposition 3.2.1 each of the finitely many
preimages of x ∈ X\φ(Sφ) has an open neighbourhood mapping homeomorphically
onto some open neighbourhood of x; the intersection of these is a distinguished
open neighbourhood of x as in the definition of a cover.

We call a proper surjective map of locally compact Hausdorff spaces that re-
stricts to a finite cover outside a discrete closed subset a finite branched cover.
Its degree is by definition the degree of the cover obtained by restriction. With
this terminology the proposition says that proper holomorphic maps of Riemann
surfaces give rise to finite branched covers.

We now state a theorem that will show in particular that a proper holomorphic
map is determined by its topological properties. First some notation: given a
connected Riemann surface X and a discrete closed subset S ⊂ X, we denote by
HolX,S the category of Riemann surfaces Y equipped with a proper holomorphic
map Y → X whose branch points all lie above points in S. A morphism in this
category is a holomorphic map compatible with the projections onto X.

Theorem 3.2.7 In the above situation mapping a Riemann surface φ : Y → X
over X to the topological cover Y \ φ−1(S) → X \ S obtained by restriction of φ
induces an equivalence of the category HolX,S with the category of finite topological
covers of X \ S.

The proof will be in several steps. The following lemma essentially handles the
case S = ∅.
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Lemma 3.2.8 Let X be a Riemann surface, and p : Y → X a connected cover
of X as a topological space. The space Y can be endowed with a unique complex
structure for which p becomes a holomorphic mapping.

In fact, the proof will show that it is enough to require that p is a local home-
omorphism.

Proof: Each point y ∈ Y has a neighbourhood V that projects homeomorphi-
cally onto a neighbourhood U of p(y). Take a complex chart f : U ′ → C with
U ′ ⊂ U ; f ◦ p will the define a complex chart in a neighbourhood of y. It is im-
mediate that we obtain a complex atlas in this way, and uniqueness follows from
the fact that for any complex structure on Y the restriction of p to V must be an
analytic isomorphism.

The following proposition shows that the functor of Theorem 3.2.7 is essentially
surjective.

Proposition 3.2.9 Assume given a connected Riemann surface X, a discrete
closed set S of points of X and a finite connected cover φ′ : Y ′ → X ′, where
X ′ := X\S. There exists a Riemann surface Y containing Y ′ as an open subset and
a proper holomorphic map φ : Y → X such that φ|Y ′ = φ′ and Y ′ = Y \ φ−1(S).

Proof: Fix a point x ∈ S. By performing an affine linear transformation in C
if necessary we find a connected open neighbourhood Ux of x avoiding the other
points in S and a complex chart mapping Ux homeomorphically onto the open
unit disc D ⊂ C. The restriction of φ′ to φ′−1(Ux \ {x}) is a finite cover, hence
φ′−1(Ux \ {x}) decomposes as a finite disjoint union of connected components V i

x

each of which is a cover of Ux \ {x}. Via the isomorphism of Ux \ {x} with the
punctured disc Ḋ = D \ {0} each V i

x becomes isomorphic to a finite connected
cover of Ḋ, hence by Example 2.4.12 it must be isomorphic to a cover Ḋ → Ḋ
given by z 7→ zk for some k > 1. Now choose ‘abstract’ points yix for all i and x,
and define Y as the disjoint union of Y ′ with the yix. Define an extension φ of φ′ to
Y by mapping each yix to x. For each i and x extend the holomorphic isomorphism
ρix : V i

x
∼→ Ḋ to a bijection ρ̄ix : V i

x ∪ {yix}
∼→ D by sending yix to 0, and define

the topology on Y in such a way that this bijection becomes a homeomorphism
extending ρix. Use the ρix as complex charts in the neighbourhoods of the points
yix. Together with the canonical complex structure on Y ′ defined in the previous
lemma they form a complex atlas on Y . The map φ is holomorphic, as it is
holomorphic away from the yix by the lemma above, and in the neighbourhood of
these looks like the map z 7→ zk. Finally, the map φ is proper, because φ′ is proper
by Example 3.2.5 (2), the fibres of φ are finite, and the compact subsets of X ′

differ from those of X by finitely many points.

Proof of Theorem 3.2.7: In view of the proposition above it remains to prove
that the functor of the theorem is fully faithful. This means the following: given
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two Riemann surfaces Y and Z equipped with proper holomorphic maps φY and
φZ onto X with no branch points above S and a morphism of covers ρ′ : Y ′ → Z ′

over X ′ with Y ′ = Y \φ−1
Y (S) and Z ′ = Z \φ−1

Z (S), there is a unique holomorphic
map ρ : Y → Z over X extending ρ′. We know from Lemma 2.2.11 that ρ′ : Y ′ →
Z ′ is a cover, so it is holomorphic with respect to a unique complex structure
on Y ′ by Lemma 3.2.8. This complex structure must be compatible with that
of Y , because φY |Y ′ = φZ ◦ ρ′ is holomorphic with respect to both. It follows
that for each point y ∈ φ−1

Y (S) the map ρ′ must send a sufficiently small open
neighbourhood of y holomorphically isomorphic to Ḋ to a similar neighbourhood
of a point z ∈ φ−1

Z (S). Setting ρ(y) = z we obtain the required holomorphic
extension, by a similar argument as in the previous proof.

By the theorem the automorphism group of Y → X as an object of HolX,S is
the same as that of the cover Y ′ → X ′. Therefore it makes sense to call Y a finite
Galois branched cover of X if Y ′ is Galois over X ′. We conclude with some simple
topological properties of Galois branched covers that will be needed later.

Proposition 3.2.10 Let φ : Y → X be a proper holomorphic map of connected
Riemann surfaces that is topologically a Galois branched cover. Then the following
hold.

1. The group Aut(Y |X) acts transitively on all fibres of φ.

2. If y ∈ Y is a branch point with ramification index e, then so are all points in
the fibre φ−1(φ(y)). Moreover, the stabilizers of these points in Aut(Y |X)
are conjugate cyclic subgroups of order e.

Proof: As Aut(Y |X) acts transitively on all fibres not containing branch points,
the first statement follows from the continuity of automorphisms. Most of the sec-
ond statement then results from the automorphism property. Finally, the assertion
about stabilizers follows from the fact that an automorphism fixing y must stabi-
lize a sufficiently small open neighbourhood of y over which φ is isomorphic to the
cover z 7→ ze of the open disc.

3.3 Relation with Field Theory

We begin with a basic definition.

Definition 3.3.1 Let X be a Riemann surface. A meromorphic function f on
X is a holomorphic function on X \ S, where S ⊂ X is a discrete closed subset,
such that moreover for all complex charts φ : U → C the complex function
f ◦ φ−1 : φ(U) → C is meromorphic.

Note that meromorphic functions on a Riemann surface X form a ring with
respect to the usual addition and multiplication of functions; we denote this ring
by M(X).
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Lemma 3.3.2 If X is connected, the ring M(X) is a field.

Proof: For a nonzero f ∈ M(X) the function 1/f will be seen to give an element
of M(X) once we show that the zeros of f form a discrete closed subset. Indeed,
if it is not discrete, then it has a limit point x. Composing f with any complex
chart containing x we get a holomorphic function on some complex domain whose
set of zeros has a limit point. By the Identity Principle of complex analysis ([80],
Theorem 10.18) this implies that the function is identically 0, so f is 0 in some
neighbourhood of x. Now consider the set of those points y of X for which f
vanishes identically in a neighbourhood of y. This set is open by definition, but it
is also closed for it contains all of its boundary points by the previous argument.
Since X is connected, this implies f = 0, a contradiction.

The field M(X) contains a subfield isomorphic to C given by the constant
functions. Surprisingly, in the case when X is compact, it is not obvious at all
that there are other functions in M(X) as well. We shall use a somewhat stronger
form of this fact:

Theorem 3.3.3 (Riemann’s Existence Theorem) Let X be a compact Rie-
mann surface, x1, . . . , xn ∈ X a finite set of points, and a1, . . . , an a sequence of
complex numbers. There exists a meromorphic function f ∈ M(X) such that f is
holomorphic at all the xi and f(xi) = ai for 1 ≤ i ≤ n.

The proof uses nontrivial analytic techniques and cannot be given here. See
e.g. [23], Corollary 14.13.

Remark 3.3.4 The theorem easily follows from the following seemingly weaker
statement: given a compact Riemann surface X and two points x1, x2 ∈ X, there
exists a meromorphic function f on X holomorphic at the xi with f(x1) 6= f(x2).
Indeed, the function f1 := f − f(x2) satisfies f1(x1) 6= 0 but f1(x2) = 0, and there
is a similar function for x2. If n points x1, . . . , xn are given, we obtain by induction
functions fi with fi(xi) 6= 0 but fi(xj) = 0 for i 6= j. The theorem then follows by
taking a suitable linear combination.

Consider now a holomorphic map φ : Y → X of Riemann surfaces which
is not constant on any connected component. It induces a ring homomorphism
φ∗ : M(X) → M(Y ) via φ∗(f) := f ◦ φ. In the case when X and Y are compact
and X is connected, the map φ is proper and surjective with finite fibres. Our
first goal is to show that in this case M(Y ) becomes a finite étale algebra over
M(X) via φ∗. Note that by compactness Y must be a finite disjoint union of
connected compact Riemann surfaces Yi. Since in this case M(Y ) ∼=

∏M(Yi), we
only have to show that for compact and connected X and Y the field extension
M(Y )|φ∗M(X) is finite. We prove somewhat more:
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Proposition 3.3.5 Let φ : Y → X be a nonconstant holomorphic map of compact
connected Riemann surfaces which has degree d as a branched cover. The induced
field extension M(Y )|φ∗M(X) is finite of degree d.

The key lemma is the following.

Lemma 3.3.6 Let φ : Y → X be a proper holomorphic map of connected Rie-
mann surfaces which has degree d as a branched cover. Every meromorphic func-
tion f ∈ M(Y ) satisfies a (not necessarily irreducible) polynomial equation of
degree d over M(X).

Proof: Let S be the set of branch points of φ. Each point x /∈ φ(S) has some
open neighbourhood U such that φ−1(U) decomposes as a finite disjoint union of
open sets V1, . . . , Vd homeomorphic to U . Let si be the (holomorphic) section of
φ mapping U onto Vi and put fi = f ◦ si. The function fi is then a meromorphic
function on U . Put

F =
∏

(t− fi) = td + an−1t
d−1 + · · · + a0.

The coefficients aj , being the elementary symmetric polynomials of the fi, are
meromorphic on U . Now if x1 /∈ φ(S) is another point with distinguished open
neighbourhood U1, then on U ∩ U1 the coefficients of the polynomial F1 corre-
sponding to the similar construction over U1 must coincide with those of F since
the roots of the two polynomials are the same meromorphic functions over U ∩U1.
Hence the aj extend to meromorphic functions on X \ φ(S). To see that they ex-
tend to meromorphic functions on the whole of X, pick a point x ∈ S and consider
a coordinate chart fx : Ux → C in a neighbourhood Ux of x contained in U with
fx(x) = 0. Then fx ◦ φ defines a holomorphic function in some neighbourhood of
each y ∈ φ−1(x), with (fx ◦ φ)(y) = 0. As f extends meromorphically to all y, we
find k > 0 such that (fx ◦φ)kf is holomorphic at all y ∈ φ−1(x); in particular, this
function is bounded in a punctured neighbourhood of each y. Composing with
the si we obtain that the functions fkxfi, and hence also the fkdx aj are bounded on
Ux\{x}, so they extend to holomorphic functions on the whole of Ux by Riemann’s
removable singularity theorem (see e.g. [80], Theorem 10.20). This shows that the
aj are meromorphic on X and hence F ∈ M(X)[t]. Finally, we have (φ∗F )(f) = 0
because over U we have (φ∗F ◦ si)(f ◦ si) = F (fi) = 0 for each i.

Proof of Proposition 3.3.5: We first show that we may find a function f ∈
M(Y ) satisfying an irreducible polynomial equation of degree d over M(X). Take
a point x ∈ X which is not the image of a branch point, and let y1, . . . , yd be its
inverse images in Y . By Theorem 3.3.3 we find f ∈ M(Y ) that is holomorphic at all
the yi and the values f(yi) are all distinct. By the lemma f satisfies an irreducible
polynomial equation (φ∗an)f

n + · · · + (φ∗a0) = 0, with ai ∈ M(X) and n ≤ d. If
the ai are all holomorphic at x, then the polynomial an(x)t

n + · · · + a0(x) ∈ C[t]



82 Chapter 3. Riemann Surfaces

has d distinct complex roots (namely the f(yi)), whence we must have n = d. If
by chance one of the ai happens to have a pole in x, observe that by continuity all
points x′ in a sufficiently small open neighbourhood of x still have the property
that they are not images of branch points, and moreover f is holomorphic and
takes distinct values at all of their preimages. We may choose x′ as above so that
all the ai are holomorphic at x′ and apply the argument with x′ instead of x.

Next observe that with f as above we have M(Y ) ∼= M(X)(f). Indeed, if g is
another element of M(Y ), we have M(X)(f, g) = M(X)(h) with some function
h ∈ M(Y ) according to the theorem of the primitive element. In particular we
have M(X)(f) ⊂ M(X)(h), but since h should also have degree at most d over
M(X) by the lemma, this inclusion must be an equality, i.e. g ∈ M(X)(f).

According to the proposition and the remarks preceding it, the rule Y 7→ M(Y )
gives a contravariant functor from the category of compact Riemann surfaces map-
ping holomorphically onto a fixed connected compact Riemann surface X to the
category of finite étale algebras over M(X).

Theorem 3.3.7 The above functor is an anti-equivalence of categories. In this
anti-equivalence finite Galois branched covers of X correspond to finite Galois
extensions of M(X) of the same degree.

We first prove that the functor is essentially surjective.

Proposition 3.3.8 Let X be a connected compact Riemann surface, and let A
be a finite étale algebra over M(X). There exists a compact Riemann surface
Y mapping holomorphically onto X such that M(Y ) is isomorphic to A as an
M(X)-algebra.

Proof: Since a non-connected compact Riemann surface Y is a finite disjoint
union of its connected components Yi and M(Y ) ∼= ⊕M(Yi), by decomposing A
into a direct sum of fields it is enough to treat the case of a finite field extension
L|M(X). Denote by α a primitive element in L, by F the minimal polynomial
of α over M(X), and by d the degree of F . The irreducible polynomial F is
separable over M(X), so the ideal (F ′, F ) of the polynomial ring M(X)[t] (which
is a principal ideal domain) must be the whole ring. Therefore there are functions
A,B ∈ M(X) satisfying AF + BF ′ = 1. Denote by Fx the complex polynomial
obtained from F by evaluating its coefficients at a point x ∈ X where all of them
are holomorphic. From the above equation we infer that Fx and F ′x may have a
common root only at those points x ∈ X where one of the functions A,B has a
pole. Therefore if we denote by S ⊂ X the discrete closed set consisting of poles
of the coefficients of F as well as those of B and B, we get that on X ′ = X \ S all
coefficients of F are holomorphic and Fx(a) = 0 for a ∈ C implies F ′x(a) 6= 0. We
conclude that for x ∈ X ′ the polynomial Fx ∈ C[t] has d distinct roots a1, . . . , ad.
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Now for an open subset U ⊂ X ′ denote by F(U) the set of holomorphic
functions f on U satisfying F (f) = 0. Together with the natural restriction maps
they form a sheaf of sets F on X ′. We contend that F is locally constant on X ′,
and each stalk has cardinality d. Indeed, by the holomorphic version of the implicit
function theorem (see e.g. [28], p. 19) given a point x ∈ X ′ and a root ai of the
polynomial Fx ∈ C[T ] for some x, the condition F ′x(ai) = 0 implies that there is
a holomorphic function fi defined in a neighbourhood of x with F (fi) = 0 and
fi(x) = ai. For each of the d distinct roots of Fx we thus find d different functions
fi that are all sections of F in some open neighbourhood of x. In a connected
open neighbourhood V the sheaf F cannot have more sections, since the product
of the polynomials (t−fi) already gives a factorization of F in the polynomial ring
M(V )[t]. Thus over V F is isomorphic to the constant sheaf given by the finite
set of the {f1, . . . , fd}.

Once we know that F is locally constant, invoking Theorem 2.5.9 yields a
cover pF : X ′F → X ′. We can then apply Proposition 3.2.9 to each of the con-
nected components X ′j of X ′F , and get compact Riemann surfaces Xj mapping
holomorphically onto X. We still have to show that j = 1, i.e. XF is connected.
Indeed, define a function f on X ′F by putting f(fi) = fi(pF (fi)). One sees by the
method of proof of Proposition 3.3.5 that f extends to a meromorphic function on
each Xj and by applying Proposition 3.3.5 we see that f as an element of M(Xi)
has a minimal polynomial G over M(X) of degree at most dj , where dj is the
cardinality of the fibres of the cover X ′j → X ′. But since manifestly F (f) = 0, G
must divide F in the polynomial ring M(X)[t], whence F = G by irreducibility of
F and dj = d. This proves that there is only one Xj , i.e. XF is connected.

Finally, mapping f to α induces an inclusion of fields M(Y ) ⊂ L which must
be an equality by comparing degrees.

Remark 3.3.9 One may replace the use of the implicit function theorem by using
ideas from residue calculus in complex analysis as in [23], Corollary 8.8.

Proof of Theorem 3.3.7: Essential surjectivity was proven in the previous
proposition. It is enough to prove fully faithfulness when Y is connected. We
first show that given a pair (Y, φ) as in the theorem and a generator f of the
extension M(Y )|M(X) with minimal polynomial F , the cover of X given by the
restriction of φ to the complement of branch points and inverse images of poles of
coefficients of F is canonically isomorphic to the cover XF defined in the previous
proof. This isomorphism is best defined on the associated sheaves of local sections:
just map a local section si to the holomorphic function f ◦si. By Theorem 3.2.7 the
isomorphism extends uniquely to an isomorphism of Y with the compactification
X ′F of XF defined in the previous proof. Thus it suffices to check fully faithfulness
for holomorphic maps of Riemann surfaces of the form X ′F . So assume given a
tower of finite field extensions M |L|M(X), with L and M corresponding by the
previous proof to canonical maps of Riemann surfaces X ′F → X and X ′G → X,
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respectively. But by construction the map X ′G → X factors through a holomorphic
map X ′G → X ′F inducing the extension M |L, which is the one we were looking for.

It remains to prove the second statement of the theorem. Given a branched
cover Y → X of degree d, we have Aut(Y |X) ∼= Aut(M(Y )|M(X)) by the fully
faithfulness just proven, and we also know from Proposition 3.3.5 that the exten-
sion M(Y )|M(X) has degree d. The group Aut(Y |X) is of order at most d, with
equality if and only if the finite branched cover φ : Y → X is Galois over X.
Similarly, the group Aut(M(Y )|M(X)) is of order at most d, with equality if and
only if M(Y )|M(X) is a Galois extension. The claim follows from these facts.

Combining the theorem with Theorem 1.5.4 we obtain:

Corollary 3.3.10 Let X be a connected compact Riemann surface. The cate-
gory of compact Riemann surfaces equipped with a holomorphic map onto X is
equivalent to that of finite continuous left Gal (M(X)|M(X))-sets.

The case X = P1(C) of the Theorem 3.3.7 is particularly interesting because
of the following consequence of the Riemann Existence Theorem.

Proposition 3.3.11 Let Y be a connected compact Riemann surface. There exists
a nonconstant holomorphic map Y → P1(C). Consequently M(Y ) is a finite
extension of C(t).

Proof: By the Riemann existence theorem M(Y ) contains a nonconstant func-
tion f . Define a map φf : Y → P1(C) by

φf (y) =

{
f(y) y is not a pole of f

∞ y is a pole of f .

For each y ∈ Y choose a complex chart g : U → C around y so that f is holomor-
phic on U \ {y}. Recall that the two standard complex charts on P1(C) are given
by z and 1/z, respectively. If f is holomorphic at y, then z◦φf ◦g−1 is holomorphic
on g(U). If not, then (1/z) ◦ φf ◦ g−1 maps g(U \ {y}) to a bounded open subset
of C, so (1/z) ◦φf ◦ g−1 extends to a holomorphic function on g(U) by Riemann’s
Removable Singularity Theorem (see e.g. [80], Theorem 10.20). This proves that
φf is holomorphic. The second statement follows from Proposition 3.3.5 and the
well-known fact that M(P1(C)) ∼= C(t).

Corollary 3.3.12 The contravariant functor Y 7→ M(Y ), φ 7→ φ∗ induces an
anti-equivalence between the category of connected compact Riemann surfaces with
nonconstant holomorphic maps and that of fields finitely generated over C of tran-
scendence degree 1.

Recall that a finitely generated field of transcendence degree 1 over C is just
a finite extension of the rational function field C(t). We chose the above formu-
lation of the corollary in order to emphasize that the morphisms in the category
under considerations are C-algebra homomorphisms and not C(t)-algebra homo-
morphisms.
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Proof: Essential surjectivity follows from Theorem 3.3.7 applied with X =
P1(C), taking the proposition into account. To prove full faithfulness, i.e. the bi-
jectivity of the map Hom(Y, Z) → Hom(M(Z),M(Y )) we first choose a homomor-
phic map φf : Z → P1(C) inducing a C-algebra homomorphism C(t) → M(Z).
This enables us to consider the elements of Hom(Y, Z) as morphisms of spaces
over P1(C), and those of Hom(M(Z),M(Y )) as C(t)-algebra homomorphisms.
We can then apply the fully faithfulness part of Theorem 3.3.7.

Remark 3.3.13 The corollary is often summarized in the concise statement that
‘compact Riemann surfaces are algebraic’. In fact, it can be shown that compact
Riemann surfaces are always holomorphically isomorphic to smooth projective
complex algebraic curves, and that holomorphic maps between them all come
from algebraic morphisms. Here, however, one has to allow smooth curves in
projective 3-space as well, not just the plane curves mentioned at the beginning
of this chapter. For a vast generalization in higher dimension, see Theorem 5.7.4
and the subsequent discussion.

3.4 The Absolute Galois Group of C(t)

Corollary 3.3.10 bears a close resemblance to Corollary 2.3.9, except that we now
allow branched covers as well. But as we have seen in Proposition 3.2.6, each
finite branched cover of the compact Riemann surface X restricts to a cover over a

cofinite open subset X ′ ⊂ X. Therefore it is natural to expect that ̂π1(X ′, x) with
some base point x is isomorphic to a quotient of Gal (M(X)|M(X)) in a natural
way. The following theorem confirms this intuition.

Theorem 3.4.1 Let X be a connected compact Riemann surface, and let X ′ be
the complement of a finite set of points in X. Let KX′ be the composite in a
fixed algebraic closure M(X) of M(X) of all finite subextensions arising from
holomorphic maps of connected compact Riemann surfaces Y → X that restrict to
a cover over X ′. The field extension KX′ |M(X) is Galois, and its Galois group is
isomorphic to the profinite completion of π1(X

′, x) (for some base point x ∈ X ′).

The key point is the following property of the extension KX′ .

Lemma 3.4.2 Every finite subextension of KX′ |M(X) comes from a connected
compact Riemann surface that restricts to a cover over X ′.

Proof: First we show that given two subextensions Li|M(X) (i = 1, 2) coming
from compact connected Riemann surfaces Yi → X that restrict to covers Y ′i
over X ′, their compositum in M(X) comes from a compact Riemann surface
Y12 → X with the same property. For this consider the fibre product of covers
Y ′1×X′Y ′2 introduced at the end of Chapter 2. It is a cover of X ′, whence a compact
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Riemann surface Y12 → X restricting to Y ′1 ×X′ Y ′2 over X ′ by Theorem 3.2.7.
We claim that its ring of meromorphic functions is isomorphic to the finite étale
M(X)-algebra L1 ⊗M(X) L2. Indeed, the latter algebra represents the functor on
the category of M(X)-algebras associating with an algebra R the set of M(X)-
algebra homomorphisms L1 × L2 → R. On the other hand, the fibre product
represents the functor on the category of X ′-spaces that maps a space Y the set
of pairs of morphisms (φ : Y → Y ′1 , ψ : Y → Y ′2) compatible with the projections
to X ′. The anti-equivalence of categories obtained by a successive application
of Theorems 3.3.7 and 3.2.7 transforms these functors to each other, whence the
claim. Now connected components of Y1×X Y2 correspond exactly to direct factors
of L1 ⊗M(X) L2, both corresponding to the factorisation of a minimal polynomial
of a generator of L1|M(X) into irreducible factors over L2. But when we look at
the fixed embeddings of the Li into M(X), the component coming from one of
these factors becomes exactly the composite L1L2, and we are done.

The above argument shows that KX′ can be written as a union of a tower of
finite subextensions L1 ⊂ L1L2 ⊂ L1L2L3 ⊂ . . . of M(X) coming from Riemann
surfaces that restrict to a cover over X ′. To conclude the proof of the lemma we
show that if this property holds for a finite subextension KX′ ⊃ L ⊃ M(X), it
holds for all subextensions L ⊃ K ⊃ M(X) as well. This is an easy counting
argument: according to Proposition 3.3.5, if L = M(Y ) and K = M(Z), each
point of X ′ has [L : M(X)] preimages in Y and at most [K : M(X)] preimages in
L, whereas each point of Z has at most [L : K] preimages in Y (taking Theorem
3.3.7 into account). Therefore must have equality everywhere, and Z must restrict
to a cover over X ′.

Proof of Theorem 3.4.1: To see that KX′ is Galois over M(X) it suffices to
remark that if L|M(X) comes from a Riemann surface that restricts to a cover over
X ′, then the same holds for all Galois conjugates of L by construction. We now

realize ̂π1(X ′, x) as a quotient of Gal (KX′ |M(X)) as follows. Each finite quotient

of ̂π1(X ′, x) corresponds to a finite Galois cover of X ′, which in turn corresponds
to a finite Galois branched cover of X by Proposition 3.2.9, and finally to a finite
Galois subextension of KX′ |M(X). By Theorem 3.3.7 and the lemma above we

get in this way a bijection between isomorphic finite quotients of ̂π1(X ′, x) and
Gal (KX′ |M(X)), respectively, and moreover this bijection is seen to be compatible
with taking towers of covers on the one side and field extensions on the other. The
theorem follows by passing to the inverse limit.

Remark 3.4.3 Since by Proposition 3.2.6 every holomorphic map Y → X of con-
nected compact Riemann surfaces restricts to a cover over a suitable X ′, Theorem
3.3.7 shows that each finite subextension of M(X) is contained in some extension
of the form KX′ considered above. Thus the Galois group Gal (M(X)|M(X))
is isomorphic to the inverse limit of the natural inverse system of groups formed
by the Gal (KX′ |M(X)) with respect to the inclusions KX′ ⊃ KX′′ coming from
X ′ ⊂ X ′′. Each of the groups Gal (KX′ |M(X)) is isomorphic to the profinite
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completion of the fundamental group of the Riemann surface X ′, and an explicit
presentation for these fundamental groups is known from topology. Thus it is pos-
sible to determine the absolute Galois group of M(X). The case X = P1(C) will
be treated in detail below.

Consider the case X = P1(C). As already mentioned in the previous chapter
(and will be stated in greater generality in Remark 3.6.4 below), given a finite set
{x1, . . . , xn} of points of P1(C), it is known from topology that the fundamental
group of the complement with respect to some base point x has a presentation

π1(P
1(C) \ {x1, . . . , xn}, x) = 〈γ1, . . . , γn | γ1 · · · γn = 1〉, (3.1)

where each generator γi can be represented by a closed path around the point xi
passing through x. For n > 1 this group is isomorphic to the free group Fn−1

on n − 1 generators (send γi to a free generator fi of Fn−1 for i < n and γn
to (f1 · · · fn−1)

−1). In particular, every finite group arises as a finite quotient of
π1(P

1(C) \ {x1, . . . , xn}, x) for sufficiently large n. Since the field M(P1(C)) is
isomorphic to C(t), Theorem 3.4.1 implies the corollary:

Corollary 3.4.4 Every finite group occurs as the Galois group of some finite Ga-
lois extension L|C(t).

We have proven more than what is stated in the corollary, namely that every
finite group G that can be generated by n−1 elements arises as the automorphism
group of a Galois branched cover p : Y → P1(C) ramified above at most n points
x1, . . . , xn. We note for later use the following complement.

Proposition 3.4.5 Under the surjection π1(P
1(C) \ {x1, . . . , xn}, x) ։ G the

image of each topological generator γi generates the stabilizer of a point in the
fibre p−1(xi).

Proof: To ease notation, set X := P1(C) \ {x1, . . . , xn}. According to The-
orem 2.3.4 the surjection π1(X,x) ։ G is induced by a morphism of covers
px : X̃x → p−1(X) from the universal cover X̃x, which in turn corresponds to a
point y ∈ p−1(x). If x′ is another base point, the choice of a path between x and x′

induces an isomorphism π1(X,x) ∼= π1(X,x
′), whence a surjection π1(X,x

′) ։ G
and a point y′ ∈ π−1(x′). Choose an open neighbourhood Ui of xi so that p−1(Ui) is
a finite disjoint union of open sets over which p is isomorphic to the branched cover
z 7→ zej of the unit disc. Modifying y if necessary we may assume x ∈ Ui \ {xi}.
Denote by Vi the component of p−1(Ui) containing y, and by yi the unique preim-
age of xi in Vi. By continuity the stabilizer of yi in G must map Vi onto itself,
so it is a subgroup of the cyclic group Aut(Vi|Ui). The latter group is generated
by the image of γi in G by Example 2.4.12. The action of γi stabilizes yi, so the
stabilizer of yi is the whole of Aut(Vi|Ui).
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Corollary 3.4.4 describes the finite quotients of Gal (C(t)|C(t)), but does not
determine the profinite group itself. As the corollary indicates, it should be free
in an approprate sense. Here is a formal definition.

Definition 3.4.6 Let X be a set, and let F (X) be the free group with basis X.
The free profinite group F̂ (X) with basisX is defined as the inverse limit formed by
the natural system of quotients F (X)/U , where U ⊂ F (X) is a normal subgroup
of finite index containing all but finitely many elements of X.

Remarks 3.4.7

1. If X is finite, then F̂ (X) is just the profinite completion of F (X). In this
case the cardinality r of X is called the rank of F̂ (X).

2. The inclusion map i : X → F̂ (X) is characterized by the following universal
property: given a profinite group G and a map λ : X → G such that every
open normal subgroup of G contains all but finitely many elements of λ(X),
there is a unique morphism λF : F̂ (X) → G of profinite groups making the
diagram

X F̂ (X)

G

-i

@
@

@
@@R

λ

?

λF

commute. This universal property may also be taken as a definition of F̂ (X).
By writing G as an inverse limit of finite groups G/V and λ as an inverse
limit of the composite maps X → G → G/V one sees that it is enough to
require the universal property for G finite.

Theorem 3.4.8 (Douady) There is an isomorphism of profinite groups

Gal (C(t)|C(t)) ∼= F̂ (C)

of the absolute Galois group of C(t) with the free profinite group on the set C of
complex numbers.

Proof: Let S ⊂ C be a finite set of r points. Applying Theorem 3.4.1 with
XS := P1(C) \ (S ∪ ∞) in place of X ′ we obtain a quotient Gal (KXS

|C(t)) of
Gal (C(t)|C(t)) that is isomorphic to the free profinite group on r generators by
(3.1), one generator γx for each x ∈ S. For a finite subset S ⊂ T ⊂ C giving rise
to XT = P1(C)\(T ∪∞) we have a natural inclusion KXS

⊂ KXT
of Galois exten-

sions of C(t), whence a surjection λST := Gal (KXT
|C(t)) ։ Gal (KXS

|C(t)) by
infinite Galois theory. This map comes from a natural map of fundamental groups
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π1(XT , x0) → π1(XS , x0) for some base point x0 after taking profinite completion,
so in particular λST (γx) = 1 for x ∈ T \ S. The groups Gal (KXS

|C(t)) together
with the maps λST form an inverse system indexed by the system of finite subsets
of C partially ordered by inclusion. The inverse limit is Gal (C(t)|C(t)), because
by Theorem 3.3.7 and Proposition 3.2.6 every finite subextension of C(t)|C(t) is
contained in KXS

for sufficiently large S, so the intersection of the open normal
subgroups Gal (C(t)|KXS

) must be trivial. The theorem now follows from the
purely group-theoretic proposition below.

Proposition 3.4.9 Let X be a set, and S the system of finite subsets S ⊂ X
partially ordered by inclusion. Let (GS , λST ) be an inverse system of profinite
groups indexed by S satisfying the following conditions:

1. The λST are surjective for all S ⊂ T .

2. Each GS has a system {gx : x ∈ S} of elements so that the map F̂ (S) → GS
induced by the inclusion S → GS is an isomorphism, and moreover for every
S ⊂ T we have λST (gx) = 1 for x /∈ S.

Then lim
←
GS is isomorphic to F̂ (X).

For the proof we need three lemmas.

Lemma 3.4.10 The proposition is true in the case when GS = F̂ (S) for all S ∈ S,
and λST : F̂ (T ) → F̂ (S) is the map characterized by

λST (x) =

{
x x ∈ S

1 x ∈ T \ S
for all S ⊂ T .

Proof: We check the property of Remark 3.4.7 (2). First observe that there is
a natural injection ı̂ : X → lim

←
F̂ (S) sending x ∈ X to (xS)S∈S , where xS = x

for x ∈ S and xS = 1 otherwise. It generates a dense subgroup in lim
←
F̂ (S), so

given a map λ : X → G with G finite, an extension lim
←
F̂ (S) → G must be unique

if exists. But since G is finite, we must have λ(x) = 1 for all but finitely many
x ∈ X, so λ factors through the image of ı̂(X) in some quotient F̂ (S), which is
none but S. The existence then follows from the freeness of F̂ (S).

Before the next lemma we introduce some terminology. A subset S of a free
profinite group F̂ (X) is called a basis if each open normal subgroup of F̂ (X) con-
tains all but finitely many elements of S, and moreover the map iF : F̂ (S) → F̂ (X)
extending the natural inclusion i : S → F̂ (X) as in Remark 3.4.7 (2) is an isomor-
phism.

Lemma 3.4.11 In a free profinite group F̂ (X) of finite rank r every system
S ⊂ F̂ (X) of r elements that topologically generate F (X) is a basis of F̂ (X).
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Proof: By assumption the map iF : F̂ (S) → F̂ (X) is surjective, so it is enough
to show injectivity. For each n > 0 consider the sets Qn(S) (resp. Qn(X)) of
open normal subgroups of index n in F̂ (S) (resp. F̂ (X)). As F̂ (S) and F̂ (X) are
both profinite free of rank r, these sets have the same finite cardinality (bounded
by (n!)r). By surjectivity of iF the map Qn(X) → Qn(S) sending U ⊂ F̂ (X)
to i−1

F (U) is injective, hence bijective. It follows that ker(iF ) is contained in all

subgroups in Qn(S), for all n > 0. As F̂ (S) is profinite, this means ker(iF ) = {1}.

Lemma 3.4.12 An inverse system (Xα, φαβ) of nonempty compact topological
spaces is nonempty.

Proof: Consider the subsets Xλµ ⊂ ∏
Xα consisting of the sequences (xα) satis-

fying φλµ(xµ) = xλ for a fixed pair λ ≤ µ. These are closed subsets of the product,
and their intersection is precisely lim

←
Xα. Furthermore, the directedness of the

index set implies that finite intersections of the Xλµ are nonempty. Since
∏
Xα is

compact by Tikhonov’s theorem, it ensues that lim
←
Xα is nonempty.

Proof of Proposition 3.4.9: For each S ∈ S denote by r the cardinality of S
and by BS ⊂ GrS the set of all r-tuples that satisfy condition 2 of the proposition.
If g = (g1, . . . , gr) ∈ GrS is such that each open neighbourhood of g meets BS ,
then g ∈ BS by continuity. This means that BS ⊂ GrS is a closed subset, hence
it is compact by Corollary 1.3.9 and Tikhonov’s theorem. By conditions 1 and 2
together with Lemma 3.4.11 the λST induce maps BS → BT for all pairs S ⊂ T .
We thus obtain an inverse system of nonempty compact spaces indexed by S;
its inverse limit is nonempty by the lemma above. By construction, an element
of lim

←
BS induces an isomorphism of the inverse system of Lemma 3.4.10 with

(GS , λST ). The proposition now follows from that lemma.

3.5 An Alternate Approach: Patching Galois Covers

We now present another approach to the proof of Corollary 3.4.4 based on a nowa-
days commonly used technique known as patching pioneered by David Harbater.
The specific argument we shall present is an adaptation of a rigid analytic method
due to Florian Pop [75] in the complex setting; we are grateful to him for explaining
it to us.

We begin by some purely topological constructions that could have figured in
earlier chapters. The first is about patching together topological covers.

Lemma 3.5.1 Let X be a locally connected topological space, and let {Ui : i ∈ I}
be an open covering of X. Assume given covers pi : Yi → Ui for i ∈ I, together
with isomorphisms

θij : p−1
i (Ui ∩ Uj) ∼→ p−1

j (Ui ∩ Uj)
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for each pair i 6= j satisfying θjk ◦ θij = θik over Ui ∩Uj ∩Uk. Then there exists a
cover p : Y → X with p−1(Ui) isomorphic to Yi as a space over Ui for each i ∈ I.
It is unique up to unique isomorphism.

If moreover X and Y are connected and the Yi are Galois covers of X with
group G, then p : Y → X is also a Galois cover of X with group G.

Proof: In Construction 2.7.8 we have already seen how to patch locally constant
sheaves together. Therefore the dictionary between covers and locally constant
sheaves (Theorem 2.5.9) yields the first part of the lemma. For the second part
notice first that in the above construction automorphisms of the covers pi : Yi → X
also patch together to automorphisms of X; in particular we obtain an injective
map G → Aut(Y |X). Since each Aut(Yi|X) is transitive on the fibres of pi, so is
Aut(Y |X). By the connectedness assumption on Y we thus obtain that it is Galois
over X. Finally, restriction to the Yi shows that Y/G ∼= X, whence it follows that
G ∼= Aut(Y |X).

We also need another topological construction, that of induced covers. This
concept is analogous to that of induced representations in algebra.

Construction 3.5.2 LetG be a group, andH ⊂ G a subgroup. Assume moreover
given a space p : Y → X over X such that H is isomorphic to a subgroup of
Aut(Y |X). We construct a space IndGH(Y ) over X such that G is isomorphic to
a subgroup of Aut(IndGH(Y )|X). Moreover, in the case H ∼= Aut(Y |X) we shall
actually have G ∼= Aut(IndGH(Y )|X).

Consider the left coset space G/H as a discrete topological space, and define
IndGH(Y ) to be the topological product (G/H) × Y . The projections on each
component equip it with the structure of a space overX. The G-action on IndGH(Y )
is defined as follows. Fix a system of left representatives {gi : i ∈ G/H} for G
mod H. For g ∈ G and i ∈ G/H we find j ∈ G/H and h ∈ H such that ggi = gjh.
The action of G on IndGH(Y ) = (G/H)× Y is then defined by g(i, y) = (j, hy). As
h ∈ Aut(Y |X) by assumption, this is indeed an automorphism of IndGH(Y ) as a
space over X. Note that this G-action depends on the choice of the gi, but the
space IndGH(Y ) itself does not.

It is immediate from the construction that if Y → X is a cover, then so is
IndGH(Y ) → X, and if Y is Galois over X with group H, then Aut(IndGH(Y )|X) ∼=
G. For this reason IndGH(Y ) is called the induced G-cover from Y . Note, however,
that it is not connected when H 6= G, and therefore it is not a Galois cover.

Using the above patching and induction techniques, we now prove:

Proposition 3.5.3 Let G be a finite group, and g1, . . . , gn a system of generators
of G. Fix points x1, . . . , xn on the complex projective line P1(C). There exists a
finite Galois branched cover Y → P1(C) with group G such that each xi is the
image of a branch point whose stabilizer is generated by gi.
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Notice that we do not claim that all branch points lie above the xi. In fact, the
construction will yield n other points y1, . . . , yn above which the cover is branched.
Still, by the same arguments as in the previous section, the proposition implies
Corollary 3.4.4, i.e. that every finite group arises as a Galois group over C(t).

Proof: By an adequate choice of the complex coordinate z we may assume that
none of the xi lies at infinity. For each xi choose a small open disc Di of radius ri
centered around xi in such a way that the Di are all disjoint. Denote by Gi the
cyclic subgroup generated by gi in G, and by ki the order of gi. Fix for each i a
point yi ∈ C with 0 < |xi − yi| < ri/2, and consider the rational function

z 7→ fi(z) :=
yiz

ki + xi
zki + 1

.

It induces a holomorphic map φi : P1(C) → P1(C) mapping 0 to xi and ∞ to
yi. Since fi is the composite of the map z 7→ zki with a complex automorphism of
P1(C), the branch points of φi are 0 and ∞, lying above xi and yi, respectively.
The map φi : φ−1

i (Di) → Di is by construction a Galois branched cover with
group Gi; it restricts to a Galois cover over D̈i := Di \{xi, yi}. Let Yi → D̈i be the
G-cover obtained by inducing this cover from Gi to G as in Construction 3.5.2.

For each i denote by Bi the closed disc of radius ri/2 around xi; it contains yi
in its interior. Since P1(C) \Bi is simply connected, the restriction of the Galois
cover φi : P1(C)\{0,∞} → P1(C)\{xi, yi} to P1(C)\Bi is trivial. Therefore the
restriction of the G-cover Yi → D̈i to the annulus Di \ Bi is trivial as well, being
induced from a trivial cover. Now denote by U the open subset of P1(C) obtained
by removing all the Bi, and consider the trivial G-cover G×U → U . By what we
have just said, the restrictions of Yi → D̈i and G×U → U to D̈i∩U = Di \Bi are
both trivial G-covers, and are therefore isomorphic. We can now apply Lemma
3.5.1 to the covering of X := P1(C) \ {x1, . . . , xn, y1, . . . yn} formed by the D̈i and
U and patch the covers Yi → D̈i and G × U → U together in a G-cover Y ′ → X
(notice that the triple intersections are empty). It extends to a finite branched
cover Y → X by Theorem 3.2.7.

As the statement about the gi results from the construction, it remains to show
that Y → X is a Galois branched cover, which boils down to the connectedness
of Y ′. Write Yi = (G/Gi) × φ−1

i (D̈i) using the definition of induced covers. If ē
denotes the class of the unit element e ∈ G in G/Gi, we see from the construction
that the action of gi ∈ Gi maps the component {ē} × φ−1

i (D̈i) of Yi onto itself.
Since the component {ē}×φ−1

i (D̈i) meets the component {e}×U of G×U in Y ′,
we conclude applying gi that it also meets {gi} × U . It follows that {e} × U and
{gi} × U lie in the same connected component of Y ′. Iterating the argument we
find that {e} × U and {g} × U lie in the same component of Y ′ for an arbitrary
product g = gs11 · · · gsn

n of the gi. But the gi generate G by assumption, hence all
components of G × U lie in the same component of Y ′. This shows that Y ′ has
only one connected component.
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Remark 3.5.4 The advantage of the above method is that it works in a more
general setting, that of complete valued fields. For instance, the same argument
can be used to prove the following interesting theorem originally due to D. Harbater
[31]: Every finite group arises as the Galois group of a finite Galois extension of
L|Qp(t), with Qp algebraically closed in L. Here Qp is the field of p-adic numbers,
i.e. the fraction field of the ring Zp encountered in Example 1.3.4 (4).

3.6 Topology of Riemann Surfaces

In order to give a reasonably complete treatment of the theory of covers of Riemann
surfaces we have to mention several topological results that are proven by methods
different from those encountered above. Since this material is well documented in
several introductory textbooks in topology, we shall mostly review the results
without proofs, the book of Fulton [26] being our main reference. All Riemann
surfaces in this section will be assumed to be connected.

We begin with the topological classification of compact Riemann surfaces. This
is a very classical result stemming from the early days of topology and is proven
by a method commonly called as “cutting and pasting” (see [26], Theorem 17.4).

Theorem 3.6.1 Every compact Riemann surface is homeomorphic to a torus with
g holes.

Recall that the simplest way to conceive a torus with g holes is to take a two-
dimensional sphere and attach g ‘handles’ on it. This includes the case g = 0,
where we just mean the 2-sphere. The number g of is called the genus of the
Riemann surface.

Remarks 3.6.2

1. A more rigorous way of defining a torus with g holes (for g > 0) is by taking
a connected sum of g usual tori. This is done as follows: one first takes two
copies of the usual torus, cuts out a piece homeomorphic to a closed disc
from each of them, and then patches the two pieces together by identifying
the boundaries of the two discs just cut out. In this way one obtains a torus
with two holes; the general case is done by iterating the procedure.

Another construction generalizes the fact that we may obtain the usual
torus by identifying opposite sides of a square (with the same orientation).
In the general case one takes a regular 4g-gon and labels its sides clock-
wise by a1, b1, a

−1
1 , b−1

1 , . . . , ag, bg, a
−1
g , b−1

g . Here the notation means that

we consider the ai, bi with clockwise orientation and the a−1
i , b−1

i with coun-
terclockwise orientation. Now identify each ai with a−1

i and bi with b−1
i

taking care of the chosen orientations (see the very suggestive drawings on
pp. 240-241 of [26]). In this way one gets a sphere with g handles, and
the sides ai, bi, a

−1
i , b−1

i of our initial polygon get mapped to closed paths all
going through a common point x.
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2. What the theorem really uses about the topology of compact Riemann sur-
faces is that they are orientable topological manifolds of dimension 2. The
topological manifold structure is obtained by considering the complex charts
as homeomorphisms of some neighbourhood of each point with an open sub-
set of R2. Orientability can be expressed in this case by remarking that if
fi : Ui → C (i = 1, 2) are some complex charts on our Riemann surface,
then the map f−1

1 ◦ f2 regarded as a real differentiable map from R2 to R2

has a positive Jacobian determinant at each point; this is a consequence of
the Cauchy-Riemann equations.

The second representation of tori with g holes in Remark 3.6.2 (1) makes it
possible to compute the fundamental group of a compact Riemann surface of genus
g. Here it is convenient to take as a base point the point x where all the closed
paths coming from the ai, bi, a

−1
i , b−1

i meet. The homotopy classes of these paths
then generate the fundamental group. More precisely, one proves:

Theorem 3.6.3 The fundamental group of a compact Riemann surface X of
genus g has a presentation of the form

π1(X,x) = 〈a1, b1, . . . , ag, bg | [a1, b1] . . . [ag, bg] = 1〉,

where the brackets [ai, bi] denote the commutators aibia
−1
i b−1

i .

For the proof see e.g. [26], Proposition 17.6. It uses the definition of the
fundamental group in terms of closed paths and the van Kampen theorem.

Remark 3.6.4 By the same method that proves the theorem one can also de-
termine the fundamental group of the complement of n+ 1 points x0, . . . , xn in a
compact Riemann surface X of genus g. Here one has to add one generator γi for
each xi represented by a closed path going through x and turning around xi. We
get a presentation of π1(X \ {x1, . . . , xn}, x) by

〈a1, b1, . . . , ag, bg, γ0, . . . , γn | [a1, b1] . . . [ag, bg]γ0 . . . γn = 1〉.

The special case g = 0 has already turned up in previous sections.

Remark 3.6.5 Realizing the groups described in the theorem as automorphism
groups of the universal cover gives rise to a fascinating classical theory known as
the theory of uniformization; see Chapter IX of [95] for a nice introduction.

The main result here, originating in work by Riemann and proven completely
by Poincaré and Koebe, is that a simply connected Riemann surface is isomorphic
as a complex manifold to the projective line P1(C), the complex plane C or the
open unit disc D (see e.g. [23], Theorem 27.6). Now one can produce compact
Riemann surfaces as quotients of the above as follows. In the case of P1(C) there
is no quotient other than itself, for an automorphism of P1(C) is known to have
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a fixed point (Exercise 2). For C, one can prove that the only even action on it
with compact quotient is the one by Z2 as in the second example of Chapter 2,
Example 2.1.8, so the quotient is a torus C/Λ; this is in accordance with the case
g = 1 of the theorem. All other compact Riemann surfaces are thus quotients of
the open unit disc D by some even group action. Poincaré studied such actions
and showed that they come exactly from transformations mapping ai to a−1

i and
bi to b−1

i in a 4g-gon with sides labelled as above; the only difference is that in this
case the sides of the polygon are not usual segments but circular arcs inscribed
into the unit disc, for he worked in the model of the hyperbolic plane named after
him.

We finally discuss triangulations of compact Riemann surfaces. Recall the
definition:

Definition 3.6.6 Let X be a compact topological manifold of dimension 2. A
triangulation consists of a finite system T = {T1, . . . , Tn} of closed subsets of X
whose union is the whole of X, and homeomorphisms φi : ∆

∼→ Ti, where ∆ is the
unit triangle in R2. The Ti are called the faces of the triangulation, and the images
of the edges (resp. vertices) of ∆ edges (resp. vertices) of the triangulation. These
are subject to the following conditions: each vertex (resp. edge) of T contained in
a face Ti should be the image of a vertex (resp. edge) of ∆ by φi, and moreover
any two different faces must be either disjoint, or intersect in a single vertex, or
else intersect in a single edge.

Examples 3.6.7 We describe triangulations of compact Riemann surfaces of genus
0 and 1.

1. The 2-dimensional sphere (which is the underlying topological space of P1
C)

has several natural triangulations; one of them is cut out by the equator and
two meridians.

2. A triangulation of the complex torus C/Λ may be easily obtained from its
description as a square with opposite edges identified. Divide first the square
into nine subsquares by dividing each edge in three, and then divide each
subsquare in two triangles by the diagonal from the upper left to the lower
right corner. After identification of the edges of the original square these
induce a triangulation of the torus.

We now prove:

Proposition 3.6.8 Every compact Riemann surface has a triangulation.

The proposition is an immediate consequence of Example 3.6.7 (1), of Propo-
sition 3.3.11 and the following lemma.
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Lemma 3.6.9 Let φ : Y → X be a branched cover of compact Riemann surfaces
(e.g. a holomorphic map). Than every triangulation of X can be lifted canonically
to a triangulation of Y .

Before giving the proof, note the obvious fact that given a triangulation T
of a compact topological surface X and a point x ∈ X which is not a vertex of
T , the triangulation can be refined in a canonical way to a triangulation whose
set of vertices is that of T with x added: take the face φi(∆) containing x (if x
happens to lie on an edge, take both faces meeting at that edge), consider the
natural subdivision of ∆ given by joining φ−1

i (x) to the vertices and replace φi by
its restrictions to the smaller triangles arising from the subdivision (which are of
course homeomorphic to ∆).

Proof: By refining the triangulation as above if necessary, we may assume that
in the given triangulation of X the set S0 of vertices contains all images of branch
points. Hence the restriction of φ to X \φ−1(S0) is a cover. As the subset ∆′ ⊂ ∆
obtained by omitting the vertices is simply connected, the restriction of the cover
φ : Y → X above each φi(∆

′) is trivial. Therefore the restriction of each φi to
∆′ can be canonically lifted to each sheet of the cover; we may lift those vertices
of φi(∆) as well which are not images of branch points. By comparing with the
triangulation of X we see that away from the branch points we have defined a
triangulation of Y . Finally, the local form of Lemma 3.2.1 shows that in the
neighbourhood of branch points we obtain a triangulation by adding the branch
point as a vertex.

Given a triangulation T of a compact Riemann surface X, denote by S0, S1, S2

the set of vertices, edges and faces of T , respectively, and write si for the cardinality
of Si.

Definition 3.6.10 The integer χX := s0−s1+s2 is called the Euler characteristic
of X.

To justify the definition, one has to verify that χX is an invariant of X itself,
and does not depend on the triangulation. Indeed, one checks immediately that
χX does not change if we refine a triangulation by the process described above.
From this the invariance of χX follows by choosing common refinements of two
triangulations.

Proposition 3.6.11 Let φ : Y → X be a holomorphic map of compact Riemann
surfaces having degree d as a branched cover. The Euler characteristics χX and
χY of X and Y are related by the formula

χY = d · χX −
∑

y

(ey − 1)

where the sum is over the branch points of φ and ey is the ramification index at
the branch point y ∈ Y .
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Proof: In the process of lifting a triangulation to a branched cover as in the
lemma the number of edges of the lifted triangulation is ds1 and the number of
its faces is ds2. Those points of S0 which are not in the image of the branch locus
have d preimages as well but with each branch point the number of preimages
diminishes by ey − 1.

Now it is a known topological fact that the Euler characteristic of a torus with
g holes is 2−2g (see [26], p. 244; the cases g = 0, 1 may be read off from the above
example). Hence the proposition implies:

Corollary 3.6.12 (Riemann-Hurwitz Formula) The formula of the proposi-
tion can be rewritten as

2gY − 2 = d(2gX − 2) +
∑

y

(ey − 1)

where gX and gY are the genera of X and Y , respectively.

The formula is extremely useful in practice, as it puts constraints on branched
covers of compact Riemann surfaces. As an example, note that if X = P1(C),
d = 2 and there are four branch points (necessarily with ramification index 2),
then gY = 1 and Y is a torus. Another famous application is:

Corollary 3.6.13 If X is a compact Riemann surface of genus g > 0, there are
no nonconstant holomorphic maps P1(C) → X.

Proof: Otherwise the right hand side of the Riemann-Hurwitz formula would
be non-negative and the left hand side −2.

Remark 3.6.14 Combining the last corollary with Theorem 3.3.7 one obtains the
following purely algebraic fact: Every subfield C ⊂ K ⊂ C(t) with [C(t) : K] <∞
is isomorphic to C(t). This is in fact true for an arbitrary field k in place of C and
is known as Lüroth’s Theorem (see [106], §73). Using the techniques of subsequent
chapters it is possible to extend the above proof to the general case.

Exercises

1. Let φ : Y → X be a nonconstant holomorphic map of Riemann surfaces,
with X connected. Show that for all x ∈ X we have

∑

y∈φ−1(x)

ey = n,

where n is the cardinality of the fibres not containing branch points, and ey
is the ramification index at y ∈ Y .
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2. Consider a nonconstant holomorphic map φ : P1(C) → P1(C).

(a) Show that there exists a unique rational function f ∈ C(t) such that
φ = φf as in the proof of Proposition 3.3.11.

(b) Relate the branch points of φf to zeros and poles of f , and determine
the ramification indices.

(c) Show that φf is a holomorphic automorphism of P1(C) if and only if
f = (at+ b)(ct+ d)−1 with some a, b, c, d ∈ C satisfying ad − bc 6= 0.
[Hint: Observe that if φf is an automorphism, f can only have a single
zero and pole, and these must be of order 1.]

(d) Deduce that a holomorphic automorphism of P1(C) has one or two
fixed points.

3. Let Y → X be a holomorphic map of compact Riemann surfaces, restricting
to a cover Y ′ → X ′ outside the branch points.

(a) Show that the étale M(X)-algebra M(Y ) is isomorphic to a finite
direct sum of copies of M(X) if and only if the cover Y ′ → X ′ is
trivial.

(b) Using Chapter 2, Exercise 2 give another proof of the fact that in the
anti-equivalence of Theorem 3.3.7 Galois branched covers correspond
to Galois extensions.

4. LetX be a compact connected Riemann surface, and φ : X → P1(C) a holo-
morphic map. Show that if φ is not an isomorphism, then its branch points
cannot all lie above the same point of P1(C). [Hint: Use the Riemann–
Hurwitz formula.]

5. Let n > 2 be an even integer, and consider the dihedral group

Dn = 〈σ, τ | σn = τ2 = 1, στ = τσn−1〉.

Show that every complex torus X = C/Λ has a Galois branched cover
Y → X with group Dn with exactly n branch points, all lying above the
same point of X.

6. Let φ : C/Λ → C/Λ′ be a holomorphic map of complex tori.

(a) Show that φ has no branch points.

(b) Denoting by p : C → C/Λ, p′ : C → C/Λ′ the natural projections,
show that there exists a holomorphic map φ̃ : C → C with p′◦φ̃ = φ◦p.

(c) Check that setting φ̃(∞) = ∞ defines an extension of φ̃ to a holo-
morphic map P1(C) → P1(C), and show that this map is in fact a
holomorphic automorphism of P1(C). [Hint: Use Exercise 4.]
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(d) Establish a correspondence between holomorphic maps φ : C/Λ → C/Λ′

and pairs (a, b) ∈ C2 with a 6= 0 and aΛ+b ⊂ Λ′. [Hint: Use Exercise 2.]
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Chapter 4

Fundamental Groups of Algebraic Curves

In the previous chapter the Riemann Existence Theorem created a link between
the category of compact connected Riemann surfaces and that of finite extensions
of C(t). This hints at a possibility of developing a theory of the fundamental
group in a purely algebraic way. We shall now present such a theory for curves
over an arbitrary perfect base field, using a modest amount of algebraic geometry.
Over the complex numbers the results will be equivalent to those of the previous
chapter, but a new and extremely important feature over an arbitrary base field
k will be the existence of a canonical quotient of the algebraic fundamental group
isomorphic to the absolute Galois group of k. In fact, over a subfield of C we shall
obtain an extension of the absolute Galois group of the base field by the profinite
completion of the topological fundamental group of the corresponding Riemann
surface over C. This interplay between algebra and topology is a source for many
powerful results in recent research. Among these we shall discuss applications to
the inverse Galois problem, Belyi’s theorem on covers of the projective line minus
three points and some advanced results on ‘anabelian geometry’ of curves.

Reading this chapter requires no previous acquaintance with algebraic geome-
try. We shall, however, use some standard results from commutative algebra that
we summarize in the first section. The next three sections contain foundational
material, and the discussion of the fundamental group itself begins in Chapter 5.4.

4.1 Background in Commutative Algebra

We collect here some standard facts from algebra needed for subsequent develop-
ments. The reader is invited to use this section as a reference and consult it only
in case of need. In what follows, the term ‘ring’ means a commutative ring with
unit.

Recall that given an extension of rings A ⊂ B, an element b ∈ B is said to be
integral over A if it is a root of a monic polynomial xn+an−1x

n−1+ · · ·+a0 ∈ A[x].
The integral closure of A in B consists of the elements of B integral over A; if this
is the whole of B, then one says that the extension A ⊂ B is integral or that B is
integral over A. Finally, A is integrally closed in B if it equals its integral closure
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in B. In the special case when A is an integral domain and B is the fraction field of
A one says that A is integrally closed. The basic properties of integral extensions
may be summarized as follows.

Facts 4.1.1 Let A ⊂ B be an extension of rings.

1. An element b ∈ B is integral over A if and only if the subring A[b] of B is
finitely generated as an A-module.

2. The integral closure of A in B is a subring of B, and moreover it is integrally
closed in B.

3. Given a tower extensions A ⊂ B ⊂ C with A ⊂ B and B ⊂ C integral, the
extension A ⊂ C is also integral.

4. If B is integral over A and P ⊂ A is a prime ideal, there exists a prime ideal
Q ⊂ B with Q ∩A = P . Here P is a maximal ideal in A if and only if Q is
a maximal ideal in B.

All these facts are proven in [48], Chapter VII, §1, or [2], Chapter 5, 5.1–5.10.

Example 4.1.2 An unique factorisation domain A is integrally closed. Indeed, if
an element a/b of the fraction field (with a, b coprime) satisfies a monic polynomial
equation over A of degree n, then after multiplication by bn we see that an should
be divisible by b, which is only possible when b is a unit.

Assume now that A ⊂ B is an integral extension of integrally closed domains,
such that moreover the induced extension K ⊂ L of fraction fields is Galois with
finite Galois group G. Then B is stable by the action of G on L, being the integral
closure of A in L. Given a maximal ideal P ⊂ A denote by SP the set of maximal
ideals Q ⊂ B with Q∩A = P . The group G acts on the finite set SP : each σ ∈ G
sends Q ∈ SP to the prime ideal σ(Q) ∈ SP .

Fix Q ∈ SP , and denote by DQ its stabilizer in G for the above action. The
action of each σ ∈ DQ on B induces an automorphism σ̄ of κ(Q) fixing κ(P ) ele-
mentwise. Moreover, the map σ 7→ σ̄ is a homomorphism DQ → Aut(κ(Q)|κ(P )).
Its kernel IQ is a normal subgroup of DQ called the inertia subgroup at Q.

Facts 4.1.3 In the situation above the following statements hold.

1. The group G acts transitively on the set SP ; in particular, SP is finite.

2. The subgroups DQ and IQ for Q ∈ SP are all conjugate in G.

3. It the extension κ(Q)|κ(P ) is separable, then it is a Galois extension and the
homomorphism DQ/IQ → Gal (κ(Q)|κ(P )) defined above is an isomorphism.

4. If the order of IQ is prime to the characteristic of κ(P ), then IQ is cyclic.
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Statement (1) is [48], Chapter VII, Proposition 2.1, and (2) results from (1).
Statement (3) is proven in [48], Chapter VII, Proposition 2.5. Finally, statement
(4) results from [69], Theorem 9.12 (and the discussion preceding it).

We now state an important result concerning the finiteness of integral closure.

Facts 4.1.4 Let A be an integral domain with fraction field K, and let L|K be a
finite extension. Assume that either

a) A is integrally closed and L|K is a separable extension, or

b) A is a finitely generated algebra over a field.

Then the integral closure of A in L is a finitely generated A-module.

For the proof of part a), see e.g. [2], Corollary 5.17; for b), see [18], Corollary
13.13.

An integral domain A is called a Dedekind ring if A is Noetherian (i.e. all of
its ideals are finitely generated), integrally closed, and all nonzero prime ideals
in A are maximal. Basic examples of Dedekind rings are polynomial rings in one
variable over a field, the ring Z of integers and, more generally, the integral closure
of Z in a finite extension of Q.

Facts 4.1.5 Let A be a Dedekind ring.

1. Every nonzero ideal I ⊂ A decomposes uniquely as a product I = P e11 · · ·P er
r

of powers of prime ideals Pi.

2. For a prime ideal P ⊂ A the localization AP is a principal ideal domain.

Recall that the localization AP means the fraction ring of A with respect to
the multiplicatively closed subset A \ P , which in our case is the subring of the
fraction field of A constisting of fractions with denominator in A \P . For a proof,
see e.g. [2], Theorem 9.3 and Corollary 9.4.

Note that in view of Facts 4.1.1 (2), (4) and 4.1.4 a) the integral closure of a
Dedekind ring in a finite separable extension of its fraction field is again a Dedekind
ring. We then have the following consequence of the above facts.

Proposition 4.1.6 Let A be a Dedekind ring with fraction field K, and let B be
the integral closure of A in a finite separable extension L|K. For a nonzero prime
ideal P ⊂ A consider the decomposition PB = Qe11 · · ·Qer

r in B. Then

r∑

i=1

ei[κ(Qi) : κ(P )] = [L : K].
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Proof: By the Chinese Remainder Theorem and Fact 4.1.5 (1) we have an iso-
morphism

B/PB ∼= B/Qe11 ⊕ · · · ⊕B/Qer
r . (4.1)

Since each Qi generates a principal ideal (qi) in the localization BQi
by Fact

4.1.5 (2), the map b 7→ qji b induces isomorphisms κ(Qi) = B/Qi
∼→ Qji/Q

j+1
i

for all 0 ≤ j ≤ ei − 1. It follows that the left hand side of the formula of the
proposition equals the dimension of the κ(P )-vector space B/PB. Choose elements
t1 . . . , tn ∈ B whose images B/PB form a basis of this vector space. By a form
of Nakayama’s lemma ([48], Chapter X, Lemma 4.3) the ti generate the finitely
generated AP -module B ⊗A AP , hence they generate the K-vector space L. It
remains to see that there is no nontrivial relation

∑
aiti = 0 with ai ∈ K. Assume

there is one. By multiplying with a suitable generator of the principal ideal PAP
we may assume the ai lie in AP and not all of them are in PAP . Reducing
modulo PAP we then obtain a nontrivial relation with coefficients in κ(P ), which
is impossible.

The integers ei in formula (4.1) are called the ramification indices at the prime
ideals Qi lying above P . As it will turn out later, it is by no means accidental that
we are using the same terminology as for branched topological covers.

Corollary 4.1.7 Let A ⊂ B be an integral extension of Dedekind rings such that
the induced extension K ⊂ L of fraction fields is a finite Galois extension with
group G, and let P be a maximal ideal of A. Assume that the extensions κ(Qi)|κ(P )
are separable for all Qi ∈ SP . Then the ramification indices ei in the above formula
are the same for all i, and they equal the order of the inertia subgroups at the Qi.

Proof: It is enough to verify the second statement for the inertia subgroup at
Q1, the rest then follows from Proposition 4.1.3 (2). Let K1 be the subfield of L
fixed by DQ1 , A1 the integral closure of A in K1 and P1 := Q1∩A1. Since Q1 is the
only maximal ideal of B above P1 by construction, the formula of the proposition
reads |DQ1 | = e1 · [κ(Q1) : κ(P1)]. On the other hand, Proposition 4.1.3 (3) implies
|DQ1 | = |IQ1 | · [κ(Q1) : κ(P1)] (note that the extension κ(Q1)|κ(P1) is separable,
being a subextension of κ(Q1)|κ(P )). The statement follows by comparing the two
equalities.

Before leaving this topic, we collect some facts about local Dedekind rings.

Fact 4.1.8 The following are equivalent for an integral domain A.

1. A is a local Dedekind ring.

2. A is a local principal ideal domain that is not a field.

3. A is a Noetherian local domain with nonzero principal maximal ideal.
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For a proof, see e.g. [57], Theorem 11.2. Such rings are called discrete valuation
rings in the literature.

Proposition 4.1.9 Let A be a discrete valuation ring, and t a generator of its
maximal ideal.

1. Every nonzero a ∈ A can be written as a = utn with some unit u ∈ A and
n ≥ 0. Here n does not depend on the choice of t.

2. If x is an element of the fraction field K of A, then either x or x−1 is
contained in A.

3. If B ⊃ A is a discrete valuation ring with the same fraction field, then
A = B.

Proof: The intersection of the ideals (tn) is 0 (this follows, for instance, from
the fact that A is a principal ideal domain). Thus for a 6= 0 there is a unique n ≥ 0
with a ∈ (tn) \ (tn+1), whence (1). By (1), if x is an element of the fraction field,
we may write x = utn with a unit u and t ∈ Z, whence (2). For statement (3),
assume b ∈ B is not a unit. Then b ∈ A, for otherwise we would have b−1 ∈ A ⊂ B
by (2), which is impossible. It moreover follows that b ∈ (t) (otherwise it would be
a unit), so using (1) we see that t cannot be a unit in B. It follows that non-units
in A are non-units in B, from which we conclude by (2) that the units of B lie in
A.

The first two statements imply:

Corollary 4.1.10 Every nonzero a ∈ K can be written as a = utn with some unit
u ∈ A and n ∈ Z. Here n does not depend on the choice of the generator t.

In the notation of the corollary, the rule a 7→ n defines a well-defined map
v : K× → Z called the discrete valuation associated with A. It is actually a
homomorphism of abelian groups and satisfies v(x + y) ≥ min(v(x), v(y)). One
often extends v to a map K → Z ∪ {∞} by setting v(0) = ∞.

Finally, let A be a finitely generated algebra over a field k. Recall that A is
Noetherian by the Hilbert basis theorem. If A is an integral domain, we define
its transcendence degree over k to be that of its fraction field K. Recall that
this is the largest integer d for which there exist elements a1, . . . , ad in K that
are algebraically independent over k, i.e. they satisfy no nontrivial polynomial
relations with coefficients in k. As K is finitely generated over k, such a d exists.

Fact 4.1.11 (Noether’s Normalization Lemma) Let A be an integral domain
finitely generated over a field k, of transcendence degree d. There exist alge-
braically independent elements x1, . . . , xd ∈ A such that A is finitely generated
as a k[x1, . . . , xd]-module.



106 Chapter 4. Fundamental Groups of Algebraic Curves

See [48], Chapter VIII, Theorem 2.1 for a proof. Notice that in the situation
above k[x1, . . . , xd] is isomorphic to a polynomial ring.

Corollary 4.1.12 If A is as above and d = 1, then every nonzero prime ideal in
A is maximal.

Hence if moreover A is integrally closed, it is a Dedekind ring.

Proof: Let P ⊂ A be a nonzero prime ideal, and use the normalization lemma
to write A as an integral extension of the polynomial ring k[x]. The prime ideal
P ∩ k[x] of k[x] is nonzero, because if t is a nonzero element of P , it satisfies a
monic polynomial equation tn + an−1t

n−1 + · · · + a0 = 0 with ai ∈ k[x]. Here we
may assume a0 is nonzero, but it is an element of P ∩k[x] by the equation. Now all
nonzero prime ideals in k[x] are generated by irreducible polynomials and hence
they are maximal. Thus P is maximal by Fact 4.1.1 (4).

Corollary 4.1.13 Let A be an integral domain finitely generated over a field k,
and let M ⊂ A be a maximal ideal. Then A/M is a finite algebraic extension of k.

Proof: Apply Noether’s Normalization Lemma to A/M . If A/M had positive
transcendence degree d, it would be integral over the polynomial ring k[x1, . . . , xd]
This contradicts Fact 4.1.1 (4) (with P = Q = 0), because A/M is a field but the
polynomial ring isn’t.

Corollary 4.1.14 Let k be algebraically closed. Every maximal ideal M in the
polynomial ring k[x1, . . . , xn] is of the form (x1−a1, . . . , xn−an) with appropriate
ai ∈ k.

Proof: As k is algebraically closed, we have an isomorphism k[x1, . . . , xn]/M ∼= k
by the previous corollary. Let ai be the image of xi in k via this isomorphism.
Then M contains the maximal ideal (x1 − a1, . . . , xn − an), hence they must be
equal.

Corollary 4.1.15 Let k be a field, and φ : A→ B a k-homomorphism of finitely
generated k-algebras. If M is a maximal ideal in B, then φ−1(M) is a maximal
ideal in A.

Proof: By replacing A with φ(A) we may assume A is a subring of B and
φ−1(M) = M ∩ A. In the tower of ring extensions k ⊂ A/(M ∩ A) ⊂ B/M the
field B/M is a finite extension of k by Corollary 4.1.13, so A/(M∩A) is an integral
domain algebraic over k. By Fact 4.1.1 (4) it must be a field, i.e. M∩A is maximal
in A.
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Corollaries 4.1.13 and 4.1.14 are weak forms of Hilbert’s Nullstellensatz. Here
is a statement that may be considered as a strong form. Recall that the radical√
I of an ideal I in a ring A consists of the elements f ∈ A satisfying fm ∈ I with

an appropriate m > 0.

Fact 4.1.16 Let A be an integral domain finitely generated over a field k, and
let I ⊂ A be an ideal. The radical

√
I is the intersection of all maximal ideals

containing I.

This follows from [48], Chapter IX, Theorem 1.5 in view of the previous corol-
lary. See also [18], Corollary 13.12 combined with Corollary 2.12.

4.2 Curves over an Algebraically Closed Field

We now introduce the main objects of study in this chapter in the simplest context,
that of affine curves over an algebraically closed field. When the base field is C,
we shall establish a connection with the theory of Riemann surfaces.

We begin by defining affine varieties over an algebraically closed field k. To
this end, let us identify points of affine n-space An over k with

An(k) := {(a1, . . . , an) : ai ∈ k}.

Given an ideal I ⊂ k[x1, . . . , xn], we define

V (I) := {P ∈ An(k) : f(P ) = 0 for all f ∈ I}.

Definition 4.2.1 The subset X := V (I) ⊂ An(k) is called the affine closed set
defined by I.

Remark 4.2.2 According to the Hilbert Basis Theorem there exist finitely many
polynomials f1, . . . , fm ∈ k[x1, . . . , xn] with I = (f1, . . . , fm). Therefore

V (I) = {P ∈ An(k) : fi(P ) = 0 i = 1, . . . ,m}.

Example 4.2.3 Let us look at the simplest examples. For n = 1 each ideal in
k[x] is generated by a single polynomial f ; since k algebraically closed, f factors
in linear factors x− ai with some ai ∈ k. The affine closed set we obtain is a finite
set of points corresponding to the ai.

For n = 2,m = 1 we obtain the locus of zeros of a single two-variable polyno-
mial f in A2: it is a plane curve. In general it may be shown that an affine closed
set in A2 is always the union of a plane curve and a finite set of points.

The following lemma is an easy consequence of the definition; its proof is left
to the readers.
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Lemma 4.2.4 Let I1, I2, Iλ (λ ∈ Λ) be ideals in k[x1, . . . , xn]. Then

a) I1 ⊆ I2 ⇒ V (I1) ⊇ V (I2);

b) V (I1) ∪ V (I2) = V (I1 ∩ I2) = V (I1I2);

c) V (〈Iλ : λ ∈ Λ〉) =
⋂
λ∈Λ V (Iλ).

The last two properties imply that the affine closed sets may be used to define
the closed subsets in a topology on An (note that An = V (0), ∅ = V (1)). This
topology is called the Zariski topology on An, and affine closed sets are equipped
with the induced topology. A basis for the Zariski topology is given by the open
subsets of the shape D(f) := {P ∈ An : f(P ) 6= 0}, where f ∈ k[x1, . . . , xn] is a
fixed polynomial. Indeed, each closed subset V (I) is the intersection of subsets of
the form V (f).

If I =
√
I, then by Fact 4.1.16 it is the intersection of the maximal ideals

containing it. These are of the form (x1 − a1, . . . , xn − an) with some ai ∈ k ac-
cording to Corollary 4.1.14, therefore I consists precisely of those f ∈ k[x1, . . . , xn]
that vanish at all P ∈ V (I). Thus in this case the ideal I and the set X = V (I)
determine each other, and we call X an affine variety.

Definition 4.2.5 If X = V (I) is an affine variety, we define the coordinate ring
of X to be the quotient O(X) := k[x1, . . . , xn]/I. Its elements are called regular
functions on X; the images x̄i of the xi are called the coordinate functions on X.

We may evaluate a regular function f ∈ O(X) at a point P = (a1, . . . , an) ∈ X
by putting f(P ) := f̃(a1, . . . , an) with a preimage f̃ of f in k[x1, . . . , xn]; the value
does not depend on the choice of f̃ .

Note that by definition the finitely generated k-algebra O(X) is reduced, i.e.
it has no nilpotent elements. It may have zero-divisors, however; it is an integral
domain if and only if I is a prime ideal. In that case we say that X is an integral
affine variety over k.

Example 4.2.6 If we look back at the examples in 4.2.3, we see that for n = 1
the affine closed set we obtain is a variety if and only if the ai are distinct, and it
is integral if and only if it is a single point, i.e. f = x− ai.

The affine plane curve X = V (f) ⊂ A2 is an integral variety if and only if f is
irreducible.

We may use the notion of regular functions to define morphisms of affine vari-
eties, and hence obtain a category.

Definition 4.2.7 Given an affine variety Y = V (J), by a morphism or regular
map Y → Am we mean an m-tuple φ = (f1, . . . , fm) ∈ O(Y )m. Given an affine
variety X ⊂ Am, by a morphism φ : Y → X we mean a morphism φ : Y → Am

such that φ(P ) := (f1(P ), . . . , fm(P )) ∈ Am lies in X for all points P ∈ Y .
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Example 4.2.8 If X = V (f) is a plane curve, a morphism X → A1 is defined by
a polynomial f1 ∈ k[x1, x2]. The polynomial f1 + fg defines the same morphism
X → A1 for all g ∈ k[x1, x2]. If Y = V (h) is another plane curve, a morphism
Y → X is defined by a pair of polynomials (h1, h2) such that f ◦ (h1, h2) is a
multiple of h. Again, the hi are determined up to adding multiples of h.

If φ : Y → X is a morphism of affine varieties, there is an induced k-algebra
homomorphism φ∗ : O(X) → O(Y ) given by φ∗(f) = f ◦ φ. Note that φ∗ takes
functions vanishing at a point P ∈ X to functions vanishing at the points φ−1(P ),
so the preimage in O(X) of the ideal of O(Y ) corresponding to a point Q ∈ φ−1(P )
is precisely the ideal defined by P .

Remark 4.2.9 A morphism φ : Y → X is continuous with respect to the Zariski
topology. Indeed, it is enough to see that the preimage of each basic open set
D(f) ⊂ X is open in Y , which holds because φ−1(D(f)) = D(φ∗(f)).

Proposition 4.2.10 The maps X → O(X), φ → φ∗ induce an anti-equivalence
between the category of affine varieties over k and that of finitely generated reduced
k-algebras.

Proof: For fully faithfulness, let x̄1, . . . , x̄m be the coordinate functions on X.
Then φ∗ 7→ (φ∗(x̄1), . . . , φ

∗(x̄m)) defines an inverse for the map φ 7→ φ∗. For essen-
tial surjectivity, simply write a finitely generated reduced k-algebra as a quotient
A ∼= k[x1, . . . , xn]/I. Then X = V (I) is a good choice.

To proceed further, we define regular functions and morphisms on open subsets
of an integral affine variety X. First, the function field K(X) of X is the fraction
field of the integral domain O(X). By definition, an element of K(X) may be
represented by a quotient of polynomials f/g with g /∈ I, with two quotients f1/g1
and f2/g2 identified if f1g2 − f2g1 /∈ I.

Next let P be a point of X. We define the local ring OX,P at P as the subring
of K(X) consisting of functions that have a representative with g(P ) 6= 0. It is the
same as the localization of O(X) by the maximal ideal corresponding to P . One
thinks of it as the ring of functions ‘regular at P ’. For an open subset U ⊂ X we
define the ring of regular functions on U by

OX(U) :=
⋂

P∈U

OX,P ,

the intersection being taken inside K(X). The following lemma shows that for
U = X this definition agrees with the previous one.

Lemma 4.2.11 For an integral affine variety X one has O(X) =
⋂
P∈X

OX,P .
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Proof: To show the nontrivial inclusion, pick f ∈ ⋂
P OX,P , and choose for each

P a representation f = fP /gP with gP /∈ P . By our assumption on the gP none
of the maximal ideals of O(X) contains the ideal I := 〈gP : P ∈ X〉 ⊂ O(X),
so Fact 4.1.16 implies I = O(X). In particular, there exist P1, . . . , Pr ∈ X with
1 = gP1hP1 + . . . gPrhPr with some hPi

∈ O(X). Thus

f =
r∑

i=1

fgPi
hPi

=
r∑

i=1

(fPi
/gPi

)gPi
hPi

=
r∑

i=1

fPi
hPi

∈ O(X),

as required.

Now given integral affine varieties X and Y and open subsets U ⊂ X, V ⊂ Y ,
we define a morphism φ : V → U similarly as above: we consider X together with
its embedding in Am, and we define φ as an m-tuple φ = (f1, . . . , fm) ∈ OY (V )m

such that φ(P ) := (f1(P ), . . . , fm(P )) lies in U for all points P ∈ Y . We say that
φ is an isomorphism if it has a two-sided inverse.

We now restrict the category under consideration. First a definition:

Definition 4.2.12 The dimension of an integral affine k-variety X is the tran-
scendence degree of its function field K(X) over k.

Remark 4.2.13 We can give a geometric meaning to this algebraic notion as fol-
lows. First note that since O(An

k) = k[x1, . . . , xn], affine n-space has dimension n,
as expected. Next, let X be an integral affine variety of dimension n. The Noether
Normalization Lemma (Fact 4.1.11) together with Proposition 4.2.10 shows that
there is a surjective morphism φ : X → An so that moreover O(X) is a finitely
generated k[x1, . . . , xn]-module. The latter property implies that φ has finite fi-
bres. Indeed, if P = (a1, . . . , an) is a point in An and MP = (x1 −a1, . . . , xn−an)
the corresponding maximal ideal in k[x1, . . . , xn], then O(X)/MPO(X) is a fi-
nite dimensional k-algebra, and as such has finitely many maximal ideals. Their
preimages in O(X) correspond to the finitely many points in φ−1(P ). Thus n-
dimensional affine varieties are ‘finite over An’.

Integral affine varieties of dimension 1 are called integral affine curves. The
following lemma shows that their Zariski topology is particularly simple.

Lemma 4.2.14 All proper Zariski closed subsets of an integral affine curve are
finite.

Proof: Quite generally, in a Noetherian ring every proper ideal I satisfying
I =

√
I is an intersection of finitely many prime ideals (a consequence of primary

decomposition; see e.g. [2], Theorem 7.13). Therefore the lemma follows from
Corollary 4.1.12.

We now impose a further restriction, this time of local nature.
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Definition 4.2.15 A point P of an integral affine variety X is normal if the local
ring OX,P is integrally closed. We say that X is normal if all of its points are
normal.

Remark 4.2.16 In fact, X is normal if and only if O(X) is integrally closed.
Indeed, if O(X) is integrally closed, then so is each localization OX,P ; the converse
follows from Lemma 4.2.11.

Normality is again an algebraic condition, but in dimension 1 the geometric
meaning is easy to describe. In this case normality means by definition that the
OX,P are discrete valuation rings. We first look at the key example of plane curves.

Example 4.2.17 Let X = V (f) ⊂ A2 be an integral affine plane curve. Write x
and y for the coordinate functions on A2 and assume that P is a point such that
one of the partial derivatives ∂xf(P ), ∂yf(P ) is nonzero; such a point is called a
smooth point. Then OX,P is a discrete valuation ring, i.e. P is a normal point.

To see this, we may assume after a coordinate transformation that P = (0, 0)
and ∂yf(P ) 6= 0. The maximal ideal MP of OX,P is generated by x and y. Re-
grouping terms in the equation f we may write f = φ(x)x + ψ(x, y)y, where
φ ∈ k[x] and ψ ∈ k[x, y]. The constant term of ψ is ∂y(P ), which is nonzero by
assumption. Thus in OX,P we may write y = gx, where g is the image of −φψ−1

in OX,P , and hence MP = (x). We conclude by Fact 4.1.8.

We now show that in characteristic 0 every normal affine curve is locally iso-
morphic to one as in the above example.

Proposition 4.2.18 Assume k is of characteristic 0, and let X be an integral
affine curve. Every normal point P of X has a Zariski open neighbourhood iso-
morphic to an open neighbourhood of a smooth point on an affine plane curve.

Proof: The local ring OX,P is a discrete valuation ring, so its maximal ideal
is principal, generated by an element t. Since we are in characteristic 0, by the
theorem of the primitive element we find s ∈ K(X) such that K(X) = k(t, s).
Replacing s by stm for m sufficiently large if necessary, we may assume s ∈ OX,P .
Taking the minimal polynomial of s over k(t) and multiplying by a common de-
nominator of the coefficients we find an irreducible polynomial f ∈ k[x, y] such that
f(t, s) = 0 and moreover the fraction field of the ring k[x, y]/(f) is isomorphic to
K(X). It follows that the map (t, s) 7→ (x, y) defines an isomorphism of K(X)
onto the function field of the plane curve V (f) ⊂ A2

k. If we choose U ⊂ X so that
t, s ∈ OX(U), then the above map defines a morphism ρ : U → V (f). Conversely,
the map x 7→ t, y 7→ s defines a morphism V (f) → X that is an inverse to ρ on
ρ(U); in particular, ρ(U) is open in V (f). We conclude that X and V (f) contain
the isomorphic open subsets U and ρ(U), with U containing P .
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We finally show that (∂yf)(ρ(P )) 6= 0. The image of P by ρ is a point of the
form (0, α); by composing ρ with the map (x, y) 7→ (x, y − α) we may assume
ρ(P ) = (0, 0). Since t generates the maximal ideal of OX,P

∼= OV (f),(0,0), we find
ā, b̄ ∈ O(V (f)) with b̄((0, 0)) 6= 0 and s = (ā/b̄)t. Lifting them to polynomials
a, b ∈ k[x, y], we get the equality by = ax+ cf in k[x, y]. Taking partial derivative
with respect to y gives (∂yb)y + b = (∂ya)x1 + (∂yc)f + c∂yf . Evaluating at (0, 0)
we obtain b(0, 0) = c(0, 0) · ∂yf(0, 0). Here the left hand side is nonzero since
b̄((0, 0)) 6= 0, hence so is ∂yf(0, 0).

Remarks 4.2.19

1. The only place in the above proof where we used the characteristic 0 assump-
tion is where we applied the theorem of the primitive element. But if t is a
generator of the maximal ideal of a normal point as in the above proof, the
extension K(X)|k(t) is always separable (see e.g. [100], Proposition II.1.4),
and hence the theorem applies. Thus the proposition extends to arbitrary
characteristic.

2. Readers should be warned that in dimension greater than 1 the normality
condition is weaker than smoothness (which is in general a condition on the
rank of the Jacobian matrix of the equations of the variety; see Definition
5.1.30 and the subsequent discussion).

In the case k = C the above considerations enable us to equip a normal affine
curve X with the structure of a Riemann surface.

Construction 4.2.20 Let X be an integral normal affine curve over C, P a point
of X. Choose a generator t of the maximal ideal of OX,P . By the discussion above
we find an open neighbourhood U of P and a function u ∈ OX(U) such that the
map (t, u) 7→ (x, y) yields an isomorphism ρ of U onto a Zariski open subset of
some V (f) ⊂ A2

C satisfying (∂yf)(ρ(P )) 6= 0. Equip V (f) with the restriction of
the complex topology of C2. As in Example 3.1.3 (4) we find a complex open
neighbourhood V of ρ(P ) (which we may choose so small that it is contained in
ρ(U)) where x defines a complex chart on V (f). Now define a ‘complex’ topology
on ρ−1(V ) by pulling back the complex topology of V and declare x ◦ ρ to be a
complex chart in the neighbourhood ρ−1(V ) of P .

We contend that performing this construction for all P ∈ X yields a well-
defined topology and a complex atlas on X. Indeed, if P ′ ∈ ρ−1(V ) is a point
for which the complex chart is constructed via a morphism ρ′ : (t′, s′) 7→ (x, y),
the map τ : (t, s) 7→ (t′, s′) defines an algebraic isomorphism between some Zariski
open neighbourhoods of P and P ′. The composite ρ′◦τ ◦ρ−1 induces a holomorphic
isomorphism between suitable small complex neighbourhoods of ρ(P ) and ρ′(P )
(an algebraic function regular at a point is always holomorphic in some neighbour-
hood). It follows that the topologies and the complex charts around P and P ′ are
compatible.
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Remarks 4.2.21

1. In fact, one sees that the complex chart x ◦ ρ in the neighbourhood of P
viewed as a C-valued function is nothing but t. For this reason generators
of the maximal ideal of OX,P are called local parameters at P .

2. Given a morphism φ : Y → X of normal affine curves over C, an examina-
tion of the above construction shows that φ is holomorphic with respect to
the complex structures on Y and X.

4.3 Affine Curves over a General Base Field

We now extend the theory of the previous section to an arbitrary base field. The
main difficulty over a non-closed field is that there is no reasonable way to identify a
variety with a point set. For instance, though the polynomial f = x2+y2+1 defines
a curve V (f)C in A2

C, it has no points with coordinates in R. Still, it would make
no sense to define the real curve defined by f to be the empty set. Furthermore,
the ‘coordinate ring’ R[x, y]/(x2 + y2 + 1) still makes sense. If we tensor it with
C, we obtain the ring O(V (f)C) whose maximal ideals are in bijection with the
points of V (f)C as defined in the previous section. These points come in conjugate
pairs: each pair corresponds to a maximal ideal in R[x, y]/(x2 + y2 + 1).

If we examine the situation of the last section further, we see from Proposi-
tion 4.2.10 that the coordinate ring O(X) completely determines an affine variety
X over the algebraically closed field. In particular, we may recover the Zariski
topology: the open sets correspond to sets of maximal ideals not containing some
ideal I ⊂ O(X). When X is integral, the function field, the local rings and the
ring of regular functions on an open subset U ⊂ X are all constructed out of
O(X). Moreover, we see that for each pair V ⊂ U of open subsets there are natu-
ral restriction homomorphisms OX(U) → OX(V ), and thus the rule U 7→ OX(U)
defines a presheaf of rings on X. It is immediate to check that the sheaf axioms
are satisfied, so we obtain a sheaf of rings OX on X, the sheaf of regular functions.
To proceed further it is convenient to formalize the situation.

Definition 4.3.1 A ringed space is a pair (X,F) consisting of a topological space
X and a sheaf of rings F on X.

We now give the general definition of integral affine curves. This will be a
special case of the definition of affine schemes to be discussed in the next chapter,
but there are some simplifying features.

Construction 4.3.2 We define an integral affine curve over an arbitrary field
k as follows. Start with an integral domain A ⊃ k finitely generated and of
transcendence degree 1 over k. By Corollary 4.1.12 every nonzero prime ideal in
A is maximal. We associate a topological space X with A whose underlying set
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is the set of prime ideals of A, and we equip it with the topology in which the
open subsets are X and those that do not contain a given ideal I ⊂ A. Note
that all nonempty open subsets contain the point (0); it is called the generic point
of X. The other points come from maximal ideals and hence are closed as one-
point subsets; we call them closed points. By the same argument as in Corollary
4.2.14 the open subsets in X are exactly the subsets whose complement is a finite
(possibly empty) set of closed points.

Given a point P in X, we define the local ring OX,P as the localization AP ;
note that for P = (0) we obtain OX,(0) = K(X), the fraction field of A. Finally,
we put

OX(U) :=
⋂

P∈U

OX,P ,

for an open subset U ⊂ X. As above, it defines a sheaf of rings on X. We define
an integral affine curve over k to be a ringed space (X,OX) constructed in the
above way. We usually drop the sheaf OX from the notation. When we would like
to emphasize the relationship with A, we shall use the scheme-theoretic notation
X = Spec (A).

Next we introduce morphisms for the curves just defined. They are to be
morphisms of ringed spaces, whose general definition is as follows.

Definition 4.3.3 A morphism (Y,G) → (X,F) of ringed spaces is a pair (φ, φ♯),
where φ : Y → X is a continuous map, and φ♯ : F → φ∗G a morphism of sheaves
on X. Here φ∗G denotes the sheaf on X defined by φ∗G(U) = G(φ−1(U)) for all
U ⊂ X; it is called the pushforward of G by φ.

In more down-to-earth terms, a morphism Y → X of integral affine curves is
a continuous map φ : Y → X of underlying spaces and a rule that to each regular
function f ∈ OX(U) defined over an open subset U ⊂ X associates a function

φ♯U (f) in OY (φ−1(U)). One should think of φ♯U (f) as the composite f ◦ φ.

Remark 4.3.4 In the case when k is algebraically closed, this definition is in
accordance with that of the previous section. Indeed, the morphisms defined there
are continuous maps (Remark 4.2.9) and induce maps φ♯ of sheaves via the rule
f 7→ f ◦ φ. Conversely, to see that a morphism φ : X → An

k in the new sense
induces a morphism as in the previous section it is enough to consider the n-tuple
(φ♯(x1), . . . , φ

♯(xn)).

We now establish an analogue of Proposition 4.2.10 for affine curves. To begin
with, a finitely generated integral domain A of transcendence degree 1 over a field
determines an integral affine curve X = Spec (A); conversely, an integral affine
curve X gives rise to an A as above by setting A = OX(X). By construction,
these two maps are inverse to each other. We shall also use the notation O(X)
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instead of OX(X). This is in accordance with the notation of the previous chapter,
and we may also call O(X) the coordinate ring if X.

For affine curves X = Spec (A) and Y = Spec (B) a morphism φ : X → Y in-

duces a ring homomorphism φ♯X : A → B given by O(X) → (φ∗OY )(X) = O(Y ).
Associating a morphism of curves with a ring homomorphism is a bit more com-
plicated.

Lemma 4.3.5 Given a homomorphism ρ : A→ B with A and B as above, there
is a unique morphism Spec (ρ) : Y → X such that (Spec (ρ))♯X : O(X) → O(Y )
equals ρ.

Proof: For a prime ideal P ⊂ B the ideal ρ−1(P ) ⊂ A is a prime ideal (indeed,
the map A/(ρ−1(P )) → B/P is injective, hence A/(ρ−1(P )) is an integral domain).
This defines a map of sets Spec (ρ) : Y → X that is easily seen to be a continuous
map of topological spaces. But in our situation we can say more. There are two
cases.

Case 1: ρ is injective. In this case A is a subring of B via ρ, and moreover by
Corollary 4.1.15 if P is a maximal ideal in B, then ρ−1(P ) = P ∩A is a maximal
ideal in A. Of course, we have ρ−1((0)) = (0).

Case 2: ρ is not injective. As we are dealing with curves, the ideal M := ker(ρ) is
maximal in A, and so ρ−1(P ) = M for all prime ideals P ⊂ B. This corresponds
to a ‘constant morphism’ Y → {M}.

We define morphisms of sheaves Spec (ρ)♯ : OX → Spec (ρ)∗OY in each case.
In Case 1 we have an inclusion of function fields K(X) ⊂ K(Y ) and also of
localizations A(P∩A) ⊂ BP for each maximal ideal P ⊂ B. By taking intersections
this defines maps OX(U) → OY (Spec (ρ)−1(U)) for each open set U ⊂ X; for
U = X we get ρ : A → B by the same argument as in Lemma 4.2.11. In Case 2
we define OX(U) → OY (Spec (ρ)−1(U)) to be the composite

OX(U) → AM → AM/MAM
∼→ A/M → B

if M ∈ U , and to be 0 otherwise. The reader will check that this indeed yields a
morphism of sheaves.

The lemma and the arguments preceding it now imply:

Proposition 4.3.6 The assignments A 7→ Spec (A), ρ 7→ Spec (ρ) and X 7→ O(X),

φ 7→ φ♯X yield mutually inverse contravariant functors between the category of in-
tegral domains finitely generated and of transcendence degree 1 over a field, and
that of integral affine curves.

Note that the conclusion here is stronger than in Proposition 4.2.10, because
here we say that the two categories are actually anti-isomorphic: there is an arrow-
reversing bijection between objects and morphisms. In Proposition 4.2.10 this was
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only true up to isomorphism, because an affine variety as defined there may have
several embeddings in affine spaces.

We now discuss an important construction related to extensions of the base
field.

Construction 4.3.7 Let X = Spec (A) be an integral affine curve over a field k,
and L|k a field extension for which the tensor product A⊗kL is an integral domain.
Then the integral affine curve XL = Spec (A⊗kL) is defined. We call the resulting
curve over L the base change of X to L. There is a natural morphism XL → X
corresponding by the previous proposition to the map A → A ⊗k L sending a to
a⊗ 1.

Assume that A⊗k k̄ is an integral domain for an algebraic closure k̄|k; in this
case X is called geometrically integral. Then A⊗k L is an integral domain for all
algebraic extensions L|k, so that the above assumption on L is satisfied. Thus for a
fixed algebraic extension L|k the rule X 7→ XL defines a functor from the category
of geometrically integral affine k-curves to that of integral affine L-curves.

Example 4.3.8 We can now discuss the R-curve with equation x2 + y2 + 1 = 0
rigorously. It is defined as X := Spec (R[x, y]/(x2 + y2 + 1)). The closed points
of X correspond to the maximal ideals in R[x, y] containing (x2 + y2 + 1); for
each such ideal M we must have R[x, y]/M ∼= C, as C is the only nontrivial finite
extension of R and X has no points over R. Under the base change morphism
XC → X there are two closed points lying above each closed point of X, because
C⊗R C ∼= C⊕C. If we make Gal (C|R) act on the tensor product via its action
on the second term, then on the right hand side the resulting action interchanges
the components.

To give a concrete example, the ideal M = (x2, y2 + 1) ⊂ R[x, y] contains
(x2 + y2 + 1), hence defines a point of X. The maximal ideals of C[x, y] lying
above M are (x, y+ i) and (x, y− i), corresponding to the points (0,−i) and (0, i).
They are indeed conjugate under the Galois action.

We say that an integral affine curve is normal if its local rings are integrally
closed. As in the previous section, this is equivalent to requiring that the coordinate
ring O(X) is integrally closed.

We now prove an analogue of Theorem 3.3.7 for integral affine curves. For
this we have to restrict the morphisms under the consideration. We say that a
morphism φ : Y → X of integral affine curves is finite if O(Y ) becomes a finitely

generated O(X)-module via the map φ♯X : O(X) → O(Y ). A finite morphism has
finite fibres, by the same argument as in Remark 4.2.13. This property is shared
by proper holomorphic maps of Riemann surfaces.

Remark 4.3.9 A finite morphism of integral affine curves is always surjective.
Indeed, Case 2 of the proof of Lemma 4.3.5 cannot occur for a finite morphism,
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and in Case 1 we may apply Fact 4.1.1 (4). An example of a non-finite mor-
phism is given by the inclusion A1

k \ {0} → A1
k, corresponding to the natural ring

homomorphism k[x] → k[x, x−1] (over any field k).

Now assume given a finite morphism Y → X integral affine curves. We have
just remarked that the corresponding homomorphism O(Y ) → O(X) of coordinate
rings is injective, whence an inclusion of function fields φ∗ : K(X) ⊂ K(Y ). As
the morphism is finite, this must be a finite extension.

Theorem 4.3.10 Let X be an integral normal affine curve. The rule Y 7→ K(Y ),
φ 7→ φ∗ induces an anti-equivalence between the category of normal integral affine
curves equipped with a finite morphism φ : Y → X and that of finite field exten-
sions of the function field K(X).

Proof: For essential surjectivity take a finite extension L|K(X), and apply Fact
4.1.4 b) with A = O(X). It implies that the integral closure B of O(X) in L is a
finitely generated k-algebra, which is also integrally closed by Fact 4.1.1 (2). As L
is finite over K(X), it is still of transcendence degree 1. Applying Proposition 4.3.6
to the ring extension O(X) ⊂ B we obtain an integral affine curve Y = Spec (B)
and a morphism φ : Y → X inducing the ring inclusion O(X) ⊂ B above. Again
by Fact 4.1.4 b) the morphism φ is finite. Fully faithfulness is proven by a similar
argument as in Theorem 3.3.7.

The affine curve Y constructed in the first part of the proof is called the
normalization of X in L.

Examples 4.3.11

1. The theorem is already interesting over an algebraically closed field k. For
instance if we take X = A1

k and L = k(x)[y]/(y2 − f), where f ∈ k[x] is of
degree at least 3 having no multiple roots, then the normalization of A1

k in
L is the normal affine plane curve V (y2 − f) ⊂ A2

k.

2. Over a non-closed field we get other kinds of examples as well. If we assume
that X is geometrically integral, then for every finite extension L|k we may
look at the normalization of X in L ⊗k K(X). It will be none other than
the base change XL, because tensorizing with L does not affect integral
closedness.

Remark 4.3.12 The concept of normalization is also interesting for a non-normal
integral affine curve X. Taking the integral closure B of O(X) in K(X) yields
via Proposition 4.3.6 a normal integral affine curve X̃ with function field K(X)
that comes equipped with a finite surjective morphism X̃ → X. This implies a
characterization of normality: an integral affine curve X is normal if and only if
every finite morphism φ : Y → X inducing an isomorphism φ∗ : K(X)

∼→ K(Y ) is
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an isomorphism. As in the proof of Proposition 4.2.18 one sees that the condition
φ∗ : K(X)

∼→ K(Y ) can be rephrased by saying that φ is an isomorphism over
an open subset. So the criterion becomes: X is normal if and only if every finite
surjective morphism Y → X inducing an isomorphism over an open subset is in
fact an isomorphism.

4.4 Proper Normal Curves

When one compares the theory developed so far with the theory of finite covers of
Riemann surfaces, it is manifest that our presentation is incomplete at one point:
the preceding discussion does not include the case of compact Riemann surfaces,
only those with some points deleted. For instance, we have an algebraic definition
of the affine line, but not that of the projective line. We now fill in this gap by
considering proper normal curves.

We shall give the scheme-theoretic definition, which is in fact quite close to
what Zariski and his followers called an ‘abstract Riemann surface’. Its starting
point is the study of the local rings OX,P of an integral normal affine curve X
over a field k. They are all discrete valuation rings having the same fraction field,
namely the function field K(X) of X, and they all contain the ground field k.

Lemma 4.4.1 The local rings of an integral normal affine curve X are exactly
the discrete valuation rings R with fraction field K(X) containing O(X).

Proof: If R is such a ring, the intersection of its maximal ideal M with O(X) is
nonzero, for otherwise the restriction of the projection R→ R/M to O(X) would
be injective, and the field R/M would contain K(X), which is absurd. Thus
M ∩ O(X) is a maximal ideal in O(X), and R contains the local ring OX,P . But
then by Proposition 4.1.9 (3) we have R = OX,P .

We now consider the simplest example.

Example 4.4.2 The rational function field k(x) is the function field of the affine
line A1

k over k; we have O(A1
k) = k[x]. But k(x) is also the fraction field of the

ring k[x−1], which we may view as the coordinate ring of another copy of A1
k

with coordinate function x−1. By Proposition 4.1.9 (3) every discrete valuation
ring R ⊃ k with fraction field k(x) contains either x or x−1, and hence by the
preceding discussion R is a local ring of one of the two copies of A1

k. In fact, there
is only one localization of k[x−1] that does not contain x: the localization at the
ideal (x−1). Thus there is only one discrete valuation ring R as above that is not
a local ring on the first copy of A1

k; it corresponds to the ‘point at infinity’. The
whole discussion is parallel to the construction of the complex structure on the
Riemann surface P1(C) in Example 3.1.3 (2): there we took a copy of C around 0,
another copy around ∞, and outside these two points we identified the two charts
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via the isomorphism z 7→ z−1. Thus we may regard the discrete valuation rings
R ⊃ k with fraction field k(x) as the local rings of the projective line over k.

We can generalize the example as follows. Given a normal integral affine curve
X, we may use the Noether Normalization Lemma (Fact 4.1.11) to find a regular
function f ∈ O(X) such that O(X) is a finitely generated module over k[f ]. Let
X− be the normal affine curve corresponding to the integral closure of k[f−1] in
K(X). By Lemma 4.4.1 and the above example every discrete valuation ring R ⊃ k
with fraction field K(X) is a local ring of either X or X−. Moreover, there are only
finitely many R that are not local rings of X, namely the localizations of O(X−) at
the finitely many maximal ideals lying above (f−1) ⊂ k[f−1]. Informally speaking,
we may view the set of the above R as the local rings on a ‘curve’ obtained by
‘gluing X and X− together’.

We now give a formal definition that is independent of the choice of the function
f above.

Construction 4.4.3 Let k be a field, and K|k a finitely generated field extension
of transcendence degree 1. Let XK be the set of discrete valuation rings with
fraction field K containing k. Endow XK with the topology in which the proper
closed subsets are the finite subsets. Define a sheaf of rings on XK by the formula
OK(U) =

⋂
R∈U R for an open subset U ⊂ XK . We call the ringed space (XK ,OK)

an integral proper normal curve over k with function field K.

A morphism Y L → XK of proper normal curves is again defined as a morphism
of ringed spaces. The preceding discussion shows that every integral proper normal
curve has an open covering (as a ringed space) by two integral affine normal curves.
The learned reader will recognize that this is the extra ingredient needed to define
a scheme.

Remark 4.4.4 It can be shown that a proper normal curve comes from a pro-
jective curve in the same way as its affine open subsets come from affine curves.
We explain the necessary notions very briefly over an algebraically closed field
k. One identifies points of projective n-space Pn

k over k with (n + 1)-tuples
(a0, . . . , an) ∈ kn+1 \ {(0, . . . , 0)}, modulo the equivalence relation identifying two
(n+ 1)-tuples (a0, . . . , an) and (b0, . . . , bn) if there exists λ ∈ k× with ai = λbi for
all i. A projective variety X over k is then a subset of some Pn(k) given by the
locus of common zeros of a finite system of homogeneous polynomials. If these
polynomials generate a prime ideal I(X) in k[x0, . . . , xn] we say that the variety
is integral. The subring of the fraction field of k[x0, . . . , xn]/I(X) that can be
represented by quotients of homogeneous polynomials of the same degree is the
function field K(X) of X. The local ring OX,P of a point P ∈ X is the subring
of K(X) consisting of elements that can be represented by a function with non-
vanishing denominator at P ; the sheaf OX is defined as in the affine case. The
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integral projective variety X is a curve if K(X) is of transcendence degree 1; it is
a normal curve if moreover all the OX,P are discrete valuation rings.

There are two basic facts about normal integral projective curves. Firstly, if X
is such a curve, then every discrete valuation ring R ⊃ k with fraction fieldK(X) is
a local ring of some point P ∈ X, and consequently the pair (X,OX) is isomorphic
to the proper normal curve (XK(X),OK(X)) as a ringed space. Secondly, every
integral proper normal curve (XK ,OK) arises from a normal projective curve in
this way; it is then necessarily unique up to isomorphism. These statements are
proven e.g. in [34], Chapter I, §6.

Given a surjective morphism Y L → XK of integral proper normal curves, the
field L is a finite extension of K, since both are finitely generated of transcendence
degree 1 over K. Fixing K, we obtain in this way a contravariant functor.

Proposition 4.4.5 The above functor induces an anti-equivalence between the
category of integral proper normal curves equipped with a morphism onto XK and
that of finite field extensions of K.

Proof: Given a finite extension L|K, we may use the discussion after Example
4.4.2 to cover XK (resp. XL) by two open subsets XK

+ and XK
− (resp. XL

+ and
XL
−) arising as normalizations of two overlapping copies of A1

k in K (resp. L).
The morphisms of affine curves XL

+ → XK
+ and XL

− → XK
− arising from this

construction glue together to a morphism φ : XL → XK . To see that it does
not depend on the choice of the open coverings, it suffices to remark that a point
S ∈ XL viewed as a discrete valuation ring gets mapped to S ∩K by the above
construction, which determines φ uniquely.

We call an open subset UK of an integral proper normal curve XK affine if
OK(UK) is a finitely generated k-algebra. The ringed space (UK ,OK |UK

) is by
construction the same as the integral affine curve corresponding to OK(UK) via
Proposition 4.3.6. Conversely, we have seen above that the set of local rings of an
integral normal affine curve with function field K is a nonempty open subset of
XK . From these facts and the proposition above we deduce:

Proposition 4.4.6 The category of integral affine normal curves is equivalent to
that of affine open subsets of integral proper normal curves.

In particular, every integral affine normal curve X can be embedded as an affine
open subset in an integral proper normal curve XK , and every morphism Y → X
of integral affine normal curves extends uniquely to a morphism Y L → XK of
proper normal curves.

It is a nonobvious fact that every open subset of XK other than XK is affine,
but we shall not need this.
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From now on we drop the annoying superscript K from the notation when
discussing proper normal curves.

A morphism φ : Y → X of proper normal curves is finite if for all affine
open subsets U ⊂ X the preimage φ−1(U) ⊂ Y is affine, and moreover φ∗O(U)
is a finitely generated O(U)-module. The restriction of φ to each φ−1(U) may be
identified with the finite morphism of affine curves corresponding to the k-algebra
homomorphism O(U) → φ∗O(U). It thus follows from Remark 4.3.9 that a finite
morphism is always surjective. Conversely, we have:

Proposition 4.4.7 A surjective morphism φ : Y → X of proper normal curves
is always finite.

Proof: Let U ⊂ X be an affine open subset. The points of φ−1(U) are the
discrete valuation rings R with fraction field L containing O(U). Since each R is
integrally closed, it contains the integral closure B of O(U) which is none but the
coordinate ring of the normalization V of U in L by the proof of Theorem 4.3.10.
Lemma 4.4.1 then allows us to identify V with φ−1(U), so the latter is indeed an
affine open subset finite over U .

According to Propositions 4.4.5 and 4.4.7, given an integral proper normal
curve X with function field K and an element f ∈ K transcendental over k, the
inclusion k(f) ⊂ K corresponds to a finite surjective morphism φf : X → P1

k,
where P1

k is considered as a proper normal curve with function field k(f). This
is to be compared with Proposition 3.3.11: in fact, when k is algebraically closed
and X is realized as a projective curve one may check that φf (P ) = f(P ) for all
points P ∈ X where f ∈ OX,P and φf (P ) = ∞ otherwise (see Exercise 6). As in
Corollary 3.3.12, one then obtains:

Corollary 4.4.8 Mapping an integral proper normal curve over k to its function
field induces an anti-equivalence between the category of integral proper normal
curves with finite surjective morphisms and that of finitely generated field exten-
sions of k having transcendence degree 1.

4.5 Finite Branched Covers of Normal Curves

We can now finally discuss our central topic in this chapter, the analogue of topo-
logical covers for normal algebraic curves. We first treat the case of integral affine
curves. Let us begin with some terminology: a finite morphism of integral affine
curves is called separable if the field extension K(Y )|K(X) induced by φ is sepa-
rable.

Definition 4.5.1 Let φ : Y → X be a finite separable morphism of integral affine
curves, corresponding to an inclusion of rings A ⊂ B via Proposition 4.3.6. We
say that φ is étale over a closed point P ∈ X if B/PB is a finite étale algebra over
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the field κ(P ) = A/P . It is étale over an open subset U ⊂ X if it is étale over all
P ∈ U .

Using some commutative algebra, we can give an equivalent definition under
the additional assumption that X and Y are normal. Recall that in this case
the rings A and B above are Dedekind rings, so we have a decomposition PB =
P e11 · · ·P er

r by Fact 4.1.5 (1). The maximal ideals Pi ⊂ B correspond to the direct
summands of the κ(P )-algebra B/PB, and geometrically to the points of the fibre
φ−1(P ). Étaleness above P means that ei = 1 for all i, and that the field extensions
κ(Pi)|κ(P ) are separable, where κ(Pi) := B/Pi. In other words:

Lemma 4.5.2 A morphism φ : Y → X of integral normal affine curves is étale
above P if and only if a generator of the maximal ideal of OX,P generates the
maximal ideal of OY,Pi

for each i, and the field extensions κ(Pi)|κ(P ) are separable.

Proof: This follows from the above discussion, together with the facts that φ
induces inclusions of discrete valuation rings OX,P ⊂ OY,Pi

for each i, and OY,Pi

is the localization of B by Pi.

Remark 4.5.3 The κ(P )-algebra B/PB should be interpreted as the ring of reg-
ular functions on the fibre of φ over the point P . The fact that some ei above is
greater than 1 means that there are nilpotent functions on the fibre.

In sheaf-theoretic language, one can check that B/PB ∼= (φ∗OY )P ⊗OX,P
κ(P ),

where (φ∗OY )P is the stalk of the direct image sheaf φ∗OY at P . In this interpre-
tation, the separability of φ means that (φ∗OY )(0) is a separable field extension of
OX,(0) = K(X), and therefore an étale K(X)-algebra.

The above abstract notions are enlightened by the following key example.

Example 4.5.4 Consider the map ρn : A1
C → A1

C given by x → xn for some
n > 0. The coordinate ring of A1 over C is C[x], and the morphism corresponding
to ρn by Proposition 4.3.6 is given by the inclusion C[xn] → C[x]. A closed point
a ∈ A1(C) corresponds to the maximal ideal Ma = (x− a). To check whether ρn
is étale over the point a, we take a primitive n-th root of unity ω and an n-th root
n
√
a of a, and compute

C[x]/(xn − a)C[x] ∼=





n−1⊕
i=0

C[x]/(x− ωi n
√
a) ∼= Cn a 6= 0

C[x]/(xn) a = 0.

In the first case we indeed obtain a finite étale algebra of dimension n over C.
On the other hand, for a = 0 we obtain a C-algebra containing nilpotents, which
therefore cannot be étale. The nilpotent functions on the fibre over 0 reflect the
property that the fibre is degenerate.
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Remark 4.5.5 The above example is the algebraic analogue of the local branch-
ing behaviour of the morphism z → zn of Riemann surfaces. In fact, the same
argument shows more generally that if k is algebraically closed and ρf : A1

k → A1
k

is the morphism coming from the k-homomorphism k[x] → k[x] mapping x to
f ∈ k[x], then ρf is étale above a point P if and only if every preimage Q of P
satisfies f ′(Q) 6= 0.

We can generalize this comparison with the theory over C as follows. Assume
given a finite morphism φ : Y → X of integral normal affine curves over C
coming from a ring homomorphism A→ B, and equip X and Y with the complex
structures defined in Construction 4.2.20. Let P ∈ X be a closed point, and
consider the decomposition PB = P e11 · · ·P er

r discussed above.

Proposition 4.5.6 With notations as above, the integer ei is the same as the
ramification index at Pi of φ considered as a holomorphic map. In particular, φ as
an algebraic map is étale above P if and only if as a holomorphic map it restricts
to a cover over a complex neighbourhood of P .

Proof: It suffices to prove the first statement. If t is a local parameter at P ,
then in OX,Pi

we have t = git
ei

i with some local parameter ti and element gi with
gi(Pi) 6= 0. So in the complex charts on Y and X defined by t and ti, respectively,
the map φ looks like ti 7→ git

ei

i . As in the proof of Proposition 3.2.1 we may
replace ti by a complex chart such that the local form of φ becomes zi 7→ zei

i , so
ei is indeed the ramification index at Pi.

Remark 4.5.7 Comparing the above proposition with Theorem 3.2.7 we see that
a finite morphism of normal affine curves must be proper as a holomorphic map.

Example 4.5.8 A key example occurring over a non-closed field is the following.
Assume that X is a geometrically integral affine curve over a field k (see Construc-
tion 4.3.7). Given a finite separable extension L|k, the base change morphism
XL → X is finite and étale over the whole of X. Indeed, it is finite as L|k is finite,
and moreover it is étale over each P ∈ X, because O(XL)/PO(XL) ∼= κ(P ) ⊗k L,
which is indeed a product of finite separable field extensions of κ(P ).

The next proposition is an algebraic reformulation of the property that a proper
holomorphic map of Riemann surfaces restricts to a cover outside a discrete closed
set of points.

Proposition 4.5.9 Let φ : Y → X be a finite separable morphism of integral
affine curves. There is a nonempty open subset U ⊂ X such that φ is étale over
all P ∈ U .

The proof uses a lemma that will also serve later.



124 Chapter 4. Fundamental Groups of Algebraic Curves

Lemma 4.5.10 Let φ : Y → X and ψ : Z → Y be finite separable morphisms
of integral affine curves, and let P be a point of X. If φ is étale over P and ψ is
étale over all points of Y lying above P , then ψ ◦ φ is étale over P . If moreover
X, Y and Z are normal, then the converse also holds.

Proof: Write A = O(X), B = O(Y ) and C = O(Z). Then φ (resp. ψ) corre-
sponds to the inclusion of rings A ⊂ B (resp. B ⊂ C) via Proposition 4.3.6. We
have

C/PC ∼= C ⊗A κ(P ) ∼= C ⊗B (B ⊗A κ(P )). (4.2)

By assumption (and the Chinese Remainder Theorem) here B ⊗A κ(P ) is isomor-
phic to the direct sum of the residue fields κ(Q), where Q runs over the points
of Y lying above P , and these fields are separable over κ(P ). Thus C/PC ∼=⊕
C ⊗B κ(Q), and again by assumption each of the components is a direct sum

of finite separable extensions of κ(Q). The first statement follows.

For the converse, note that by the normality assumption Proposition 4.1.6
applies and shows that φ is étale over P if and only if the κ(Q) are separable
extensions of κ(P ) for all Q lying above P , and moreover the sum of the degrees
[κ(Q) : κ(P )] equals [K(Y ) : K(X)]. It then follows from formula (4.2) and a
simple degree count that if one of these properties fails for φ, it also fails for ψ ◦φ.
Since ψ ◦ φ was assumed to be étale over P , this cannot happen, so φ is étale over
P . Once we know this, a similar reasoning shows that ψ must be étale above each
Q as well.

In the proof of the proposition we shall only use the first statement of the
lemma, which holds without the assumption of normality.

Proof of Proposition 4.5.9: We keep the notation A = O(X), B = O(Y ) from
the previous proof. As φ is finite, viewing A as a subring of B we find finitely many
elements f1, . . . , fr ∈ B integral over A such that B = A[f1, . . . , fr]. Consider the
chain

A ⊂ A[f1] ⊂ A[f1, f2] ⊂ · · · ⊂ A[f1, . . . , fr−1] ⊂ B

and the chain of morphisms of curves corresponding to it via Proposition 4.3.6.
By induction on r using Lemmas 4.2.14 and 4.5.10 we reduce to the case r = 1, i.e.
B = A[t]/(F ) with a monic polynomial F ∈ A[t] satisfying F (f1) = 0. Here F is
also the minimal polynomial of f1 over K(X), so its derivative F ′ must be prime
to F in the ring K(X)[t], since f1 is contained in the separable extension K(Y ) of
K(X). We then find polynomials G1, G2 ∈ K(X)[t] satisfying G1F + G2F

′ = 1.
Multiplying with a common denominator g ∈ A of the coefficients of G1 and G2

we obtain polynomials H1 = gG1, H2 = gG2 ∈ A[t] with H1F + H2F
′ = g. We

claim that U = D(g) ⊂ X is a good choice. Indeed, assume P is a maximal ideal
in A with g /∈ P . The image F̄ of F in κ(P )[t] cannot have multiple roots in an
algebraic closure of κ(P ), because reducing H1F + H2F

′ = g mod P we obtain
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H̄1F̄ + H̄2F̄
′ 6= 0, so F̄ (α) = 0 implies F̄ ′(α) 6= 0. By the Chinese Remainder

Theorem the κ(P )-algebra B/PB ∼= κ(P )[t]/(F ) is isomorphic to a finite direct
sum of field extensions κ(P )[t]/(F̄i), where F̄ = F̄1 · · · F̄s is the decomposition of
F̄ in irreducible components. By the above none of the F̄i has multiple roots, so
B/PB is indeed an étale κ(P )-algebra.

We may call a morphism Y → X as in the proposition a finite branched cover.
It is a Galois branched cover if the field extension K(Y )|K(X) induced by φ∗ is
Galois. According to Fact 4.1.3 (1), if moreover the curves are normal, then the
Galois group acts transitively on the fibres of φ. Combining Lemma 4.5.2 with
Corollary 4.1.7 we then obtain the following group-theoretic criterion for étaleness.

Proposition 4.5.11 Let φ : Y → X be a finite Galois branched cover of normal
integral affine curves defined over a perfect field k. The map φ is étale over a point
P of X if and only if the inertia subgroups IQi

are trivial for all points Qi of Y
lying above P .

One obtains an infinite version of the above proposition as follows. Fix a
separable closure Ks of K(X), and choose an infinite tower K1 ⊂ K2 ⊂ . . . of
finite Galois extensions of K(X) whose union is Ks. Let Aj be the integral closure
of A = O(X) in Kj , and Pj a maximal ideal of Aj with Pj ∩ O(X) = P such
that Pj+1 ∩ Aj = Pj for all j. The corresponding inertia subgroups Ij form an
inverse system whose inverse limit is a closed subgroup IP in Gal (Ks|K(X)). The
subgroup IP depends on the choice of the system (Pj), but it follows from Fact 4.1.3
(2) that by varying the (Pj) we obtain conjugate subgroups in Gal (Ks|K(X)).

Corollary 4.5.12 Let φ : Y → X be as in the previous corollary, and assume
K(Y ) ⊂ Ks. Then Y is étale over P if and only if the image of the subgroup IP
defined above is trivial in Gal (K(Y )|K(X)).

Proof: Choose j so large that K(Y ) ⊂ Kj , and set Q := Pj ∩ O(Y ). By
construction the inertia subgroup at Q is the image of IP in Gal (k(Y )|k(X)). The
corollary now follows from the previous one together with Fact 4.1.3 (2).

We now extend the above notions to integral proper normal curves. Note first
that the notion of a separable morphism carries over immediately to the proper
case, as it only depends on the function fields. Then define a finite separable
morphism φ : Y → X of proper normal curves to be étale above a point P of X if
there is an affine open subset U ⊂ X containing P such that the finite morphism
of affine curves φ−1(U) → U induced by φ is étale above P . Lemma 4.5.2 implies
that this definition does not depend on the choice of U . If φ is étale above all P ,
we say that φ is a finite étale morphism.

Using this definition of étaleness we can extend the above theory from the affine
to the proper case by choosing affine open coverings of proper normal curves. In
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particular, Proposition 4.5.9 implies that a finite separable morphism of integral
proper normal curves is étale above an open subset. Lemma 4.5.2 and Corollary
4.5.12 immediately generalize to proper normal curves, since they are of local
nature.

Finally, assume k = C. We may then equip an integral proper normal curve
X with a complex structure by taking affine open coverings and using Construc-
tion 4.2.20. The resulting Riemann surface X(C) is compact, because X has a
finite morphism φf onto P1

C, the Riemann surface P1(C) is compact, and the
holomorphic map coming from φf is proper by Remark 4.5.7. Combining Propo-
sition 4.4.5 with Theorem 3.3.7 and Corollary 3.3.12, and applying Proposition
4.5.6 then yields:

Proposition 4.5.13 Let X be an integral proper normal curve over C with func-
tion field K. Both of the first two categories below are anti-equivalent to the third
one:

1. Integral proper normal curves equipped with a finite morphism onto X.

2. Compact connected Riemann surfaces equipped with a proper holomorphic
map onto X(C).

3. Finite extensions of K.

Moreover, a finite morphism Y → X is étale above a point P ∈ X if and only if the
induced holomorphic map Y (C) → X(C) restricts to a cover in a neighbourhood
of P .

4.6 The Algebraic Fundamental Group

We now use the results of the previous section to define the algebraic fundamental
group of an open subset in an integral proper normal curve. By Proposition 4.4.6
this will also yield a definition of the fundamental group of an integral affine normal
curve. The procedure is completely parallel to the one proving Theorem 3.4.1 on
Riemann surfaces. We first prove an analogue of Lemma 3.4.2.

Proposition 4.6.1 Let k be a perfect field, X an integral proper normal k-curve
with function field K, and U ⊂ X a nonempty open subset. Denote by Ks a fixed
separable closure of K. The composite KU of all finite subextensions L|K of Ks

so that the corresponding finite morphism of proper normal curves is étale above
all P ∈ U is a Galois extension of K, and each finite subextension of KU |K comes
from a curve étale over U .
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Proof: To prove that KU is Galois over K we have to check that it is stable
by the action of Gal (Ks|K), which is an easy consequence of its definition. As in
the proof of Lemma 3.4.2, for the statement concerning finite subextensions it is
enough to check the following two properties:

a) If a finite subextension L|K comes from a curve étale over U , then so does
every subfield L ⊃ L′ ⊃ K.

b) If M |K is another finite subextension coming from a curve étale over U ,
then so does the composite LM in Ks.

Property a) follows from Lemma 4.5.10. It is then enough to check property b)
when L andM are Galois overK, in which case the criterion of Corollary 4.5.12 ap-
plies, and we conclude by the equality Gal (Ks|LM) = Gal (Ks|L) ∩ Gal (Ks|M).

Remark 4.6.2 It is possible to prove the proposition in a way completely analo-
gous to the proof of Lemma 3.4.2. There are some technical difficulties, though: for
instance, one needs a definition of the fibre product of two finite branched covers of
X. This we shall define in the next chapter, but an elementary presentation of the
argument would be cumbersome. We have resorted to the above Galois-theoretic
approach instead.

Definition 4.6.3 In the situation of the proposition we define the algebraic fun-
damental group π1(U) of U to be the Galois group Gal (KU |K).

By definition π1(U) is a profinite group. It depends on the choice of the
separable closure Ks which plays the role of a base point, just as in the Galois
theory of fields. We shall discuss the role of the base point in more detail in the
next chapter.

We now come to the main result of this section. Before stating it, we define
a (not necessarily integral) proper normal curve to be a finite disjoint union of
integral proper normal curves. The notion of morphism extends to these in an
obvious way. Also, we define their ring of rational functions as the direct sum of
the function fields of their components. A finite morphism φ : Y → X of a proper
normal curve onto an integral proper normal curve equips the ring of rational
functions on Y with the structure of a finite dimensional K-algebra; we say that
the morphism is separable if this algebra is étale over K.

Theorem 4.6.4 Let X be an integral proper normal curve over a perfect field k,
and let U ⊂ X be a nonempty open subset. The category of proper normal curves
Y equipped with a finite separable morphism φ : Y → X étale over U is equivalent
to the category of finite continuous left π1(U)-sets.



128 Chapter 4. Fundamental Groups of Algebraic Curves

Proof: Apply Theorem 4.4.5, Proposition 4.6.1 and Theorem 1.5.4.

Let now U be an integral normal affine curve over a perfect field k. By Propo-
sition 4.4.6 we may realize U as an affine open subset of a proper normal curve
X, and therefore by Lemma 4.6.1 the fundamental group π1(U) is defined; it does
not depend on the embedding of U in X. The theorem together with the last
statement of Proposition 4.4.6 and Proposition 4.4.7 then implies:

Corollary 4.6.5 The category of normal affine curves V equipped with a finite
étale morphism V → U is equivalent to the category of finite continuous left π1(U)-
sets.

Here, of course, a normal affine curve is defined to be a finite disjoint union
of integral normal affine curves; morphisms extend as in the proper case. We
could have proven the corollary directly without embedding U in the proper curve
X, thereby circumventing the theory of proper curves. This embedding will be,
however, crucial in proving Theorem 4.6.7 below.

Remark 4.6.6 In the situation of the above corollary let Ã be the integral closure
of A := O(U) in KU . For a finite subextension K(V ) of KU |K(X) coming from
a finite étale cover V → U we have O(V ) = Ã ∩ K(V ), and for each maximal
ideal M ⊂ Ã the intersection M ∩O(V ) defines a closed point of O(V ). Although
the k-algebra Ã is not finitely generated, it is the union of the finitely generated
k-algebras O(V ), and the set Ũ of its maximal ideals may be identified with the
inverse limit of the natural inverse system formed by the closed points of each V .
We may even equip Ũ with the inverse limit topology, and view it as an affine ‘pro-
algebraic curve’ by defining a sheaf of rings OeU

on it in the usual way: localizing

Ã by a maximal ideal Q̃ ⊂ Ã we get the local ring OeU, eQ
of the pro-point Q̃, and

for an open subset Ṽ ⊂ Ũ we let OeU
(Ṽ ) be the intersection of the rings OeU, eQ

for

Q̃ ∈ Ṽ . We obtain a ‘pro-étale cover’ of U which is the algebraic analogue of the
universal cover in topology. Note that it carries a natural action by π1(U).

If we embed U in a proper normal curve X, we may perform a similar con-
struction for X by taking an affine open cover and considering the normalizations
of its elements in finite subextensions of KU |K. We obtain a ringed space (X̃,O eX

)
which is a ‘profinite branched cover’ of X ‘pro-étale over U ’. It carries a natural
action of π1(U), but it also has ‘pro-points at infinity’ lying above points in X \U .
The action of π1(U) on the latter captures a lot of information about U .

In the case k = C our discussion was completely parallel with the theory for
Riemann surfaces discussed in the previous chapter. This yields the following
important structure theorem for the algebraic fundamental group.

Theorem 4.6.7 Let X be an integral proper normal curve over C, and let U ⊂ X
be an open subset. The algebraic fundamental group π1(U) is isomorphic to the
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profinite completion of the topological fundamental group of the Riemann surface
associated with U . Hence as a profinite group it has a presentation

〈a1, b1, . . . , ag, bg, γ1, . . . , γn | [a1, b1] . . . [ag, bg]γ1 · · · γn = 1〉,

where n is the number of points of X lying outside U , and g is the genus of the
compact Riemann surface associated with X.

Proof: In view of Proposition 4.5.13, the extension KU |K of Proposition 4.6.1
is isomorphic to the extension KX′ |M(X) of Theorem 3.4.1, when X ′ is taken
to be the Riemann surface associated with U . The Galois group of the former
extension is π1(U) by definition, and that of the latter is the profinite completion
of the topological fundamental group of X ′ by Theorem 3.4.1. The last statement
then follows from Remark 3.6.4.

Remark 4.6.8 Let γi be one of the above generators, and letG be a finite quotient
of π1(U) corresponding to a finite Galois branched cover Y → X. By Proposition
3.4.5 γi generates the cyclic stabilizer of a point Qi of Y lying above a point
Pi ∈ X \ U . If we make G vary among the finite quotients of π1(U), we obtain
a coherent system of points Qi which define a point Q̃ of the profinite branched
cover X̃ of Remark 4.6.6 that lies above Pi. By construction, its stabilizer I eQ

under the action of π1(U) is the procyclic subgroup generated by γi. In particular,
it is isomorphic to Ẑ.

A surprising fact is that the above presentation for π1(U) holds over an ar-
bitrary algebraically closed field of characteristic 0. To derive it we first have to
discuss base change for proper normal curves.

Construction 4.6.9 Let X be an integral proper normal curve over a field k.
Denote by K its function field, and let L|k be a field extension. Recall that K is a
finite extension of the rational function field k(t), so K⊗kL is a finite dimensional
L(t)-algebra. Assume it is in fact a finite direct product of fields Li. Each Li is
then finitely generated and of transcendence degree 1 over L, hence corresponds
to an integral proper normal curve Xi over L. We define the base change XL to
be the disjoint union of the Xi. There is a natural morphism XL → X of proper
normal curves.

The assumption on K ⊗k L is satisfied when L|k is a separable algebraic ex-
tension, or when k is algebraically closed. In the latter case K ⊗k L is in fact a
field for all L ⊃ k.

If U ⊂ X is an open subset, we define UL to be inverse image of U in XL. In
the case when U is affine, this is in accordance with Construction 4.3.7. Indeed,
there we worked under the assumption that O(U)⊗kL is an integral domain, which
holds if and only if K⊗kL is a field. Then by construction UL = Spec (O(U)⊗kL).
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We can now state the following nontrivial theorem whose proof we leave to the
next chapter (see Remark 5.7.8).

Theorem 4.6.10 Let k ⊂ L be an extension of algebraically closed fields of char-
acteristic 0, X an integral proper normal curve over k, and U ⊂ X an open subset.
The base change functor Y 7→ YL induces an equivalence between the finite covers
of X étale over U and those of XL étale over UL.

Consequently there is an isomorphism π1(UL)
∼→ π1(U).

Corollary 4.6.11 Let k be an algebraically closed field of characteristic 0, X an
integral proper normal curve over k, and U ⊂ X an open subset. Then π1(U) has
a presentation as in Theorem 4.6.7.

Examples 4.6.12 Let k be an algebraically closed field of characteristic 0.

1. By Theorems 4.6.7 and 4.6.10 we have π1(P
1
k) = π1(A

1
k) = {1}.

2. The same theorems show that π1(P
1
k \ {0,∞}) ∼= Ẑ. Thus for each n > 0

there is a unique isomorphism class of finite Galois covers of P1
k with group

Z/nZ that are étale outside 0 and ∞. Such a cover is given by the normal-
ization of A1

k in the cyclic Galois extension of k(t) defined by the equation
xn = t.

3. The group π1(P
1
k \ {0, 1,∞}) is the free profinite group on two generators.

Thus every finite group that may be generated by two elements is the Galois
group of a finite Galois cover of P1

k étale outside 0, 1 and ∞. It is known from
the classification of finite simple groups that all of them can be generated
by two elements – hence all of them arise as quotients of π1(P

1
k \ {0, 1,∞}).

4.7 The Outer Galois Action

Our examples in the last section concerned curves over algebraically closed fields.
We now turn to non-closed base fields where a crucial new feature appears: the
absolute Galois group of the base field arises as a canonical quotient of the algebraic
fundamental group.

To explain this, let X be an integral proper normal curve over a perfect field
k. Fix an algebraic closure of k, and denote as usual by K the function field of X.
We assume that X is geometrically integral, which means that K ⊗k k̄ is a field.
This is then the function field of the base change Xk̄ of X to k̄, and also that of
Uk̄ for an affine open subset U ⊂ X. The affine curve Uk̄ is then integral, i.e. this
definition is coherent with the earlier notion of geometric integrality encountered
in Construction 4.3.7.

LetKs be a separable closure ofK containing k̄. The fieldK⊗k k̄ identifies with
the composite Kk̄ of K and k̄ in Ks. It may also be described as the composite in
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Ks of the function fields of all base changes XL, with L|k finite. The morphisms
XL → X are finite étale for all L|k by the same argument as in Example 4.5.8.
It follows that Kk̄ is contained in the subfield KU ⊂ Ks of Proposition 4.6.1
for all open subsets U ⊂ X. By construction there is a canonical isomorphism
Gal (K(XL)|k(X)) ∼= Gal (L|k) for each L, where K(XL) is the function field of
XL, whence an isomorphism Gal (Kk̄|K) ∼= Gal (k̄|k). In conclusion, Gal (k̄|k)
arises as a quotient of π1(U) for all open U ⊂ X.

Proposition 4.7.1 Let X be a geometrically integral proper normal curve over a
perfect field k, and U ⊂ X an open subset (possibly equal to X). There is an exact
sequence of profinite groups

1 → π1(Uk̄) → π1(U) → Gal (k̄|k) → 1.

Proof: By the above discussion it remains to identify the kernel of the map
π1(U) → Gal (Kk̄|K) with π1(Uk̄). A finite quotient G of the latter group corre-
sponds to a finite Galois extension K0 of Kk̄ that is the function field of a finite
Galois branched cover Y0 → Xk̄ étale over Uk̄. Let f ∈ (Kk̄)[t] be a minimal poly-
nomial for this field extension. We may find a finite extension L|k contained in k̄ so
that the coefficients of f lie in KL and the finite extension L0|KL defined by f is
Galois with group G. By construction we have L0k̄ = K0, and moreover L0 is the
function field of a finite branched cover Y → XL so that Yk̄

∼= Y0. It then follows
from the definition of étaleness that Y must be étale over UL. As XL is finite étale
above X, the composite map Y → XL → X realizes Y as a finite branched cover
of X étale above U . Therefore L0 ⊂ KU , where KU is as in Proposition 4.6.1.
Moreover, we have L0 ∩Kk̄ = KL, which allows us to identify G = Gal (L0|KL)
with a finite quotient of ker(π1(U) → Gal (Kk̄|K)). On the other hand, as L0 was
shown to be a subfield of KU , so is the composite L0k̄ = K0, and therefore by
making G vary among the finite quotients of π1(Uk̄) we see that KUk̄

⊂ KU . It
follows that there is a surjection from Gal (KU |Kk̄) = ker(π1(U) → Gal (Kk̄|K))
onto Gal (KUk̄

|Kk̄) = π1(Uk̄). We have just seen that for each finite quotient G
of the latter we may find a finite quotient of the former mapping isomorphically
onto G via the above surjection, which shows that the map is an isomorphism.

Now recall that quite generally given an exact sequence

1 → N → G→ Γ → 1

of profinite groups, the action of G on the normal subgroup N via conjugation
yields a continuous homomorphism G→ Aut(N). Its restriction to N takes values
in the normal subgroup Inn(N) ⊂ Aut(N) of inner automorphisms, i.e. those that
come from conjugation by an element of N . Denote the quotient Aut(N)/Inn(N)
by Out(N); it is the group of outer automorphisms of N . By passing to the
quotient we thus obtain a continuous homomorphism Γ → Out(N).
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Applying the above to the exact sequence of the proposition we obtain a con-
tinuous homomorphism

ρU : Gal (k̄|k) → Out(π1(Uk̄)).

The group π1(Uk̄) is called the geometric fundamental group of U , and ρU the outer
Galois action on the geometric fundamental group.

We now investigate the action of π1(U) on the space X̃ introduced in Remark
4.6.6 above. Let Q̃ be a pro-point of X̃ lying above a point P of X, and D eQ

its

stabilizer in π1(U). The residue field κ(Q̃) = O eX, eQ
/Q̃O eX, eQ

is an algebraic closure

of κ(P ) = OX,P /POX,P . By the same argument as before the statement of Fact

4.1.3, we have a homomorphism D eQ
→ Gal (κ(P )|κ(P )), and one sees using Fact

4.1.3 (3) that it is surjective. Its kernel I eQ
is called the inertia group at Q̃.

By the previous proposition (and its proof) we may view X̃ as a profinite Galois
branched cover of Xk̄ with Galois group π1(Uk̄), a normal subgroup in π1(U).

Lemma 4.7.2 Let P be a closed point of X with κ(P ) ∼= k. The stabilizer of a
point Q̃ of X̃ lying above P in π1(Uk̄) equals its inertia group I eQ

in π1(U).

Proof: The subgroups in question consist of those elements of the stabilizer D eQ

that are in the kernel of the natural projection D eQ
→ Gal (k̄|k).

A closed point P as in the statement of the lemma is called a k-rational
point of X. It has the following more transparent interpretation. Take an affine
open U ⊂ X and view the coordinate ring O(U) as a quotient of the polynomial
ring k[x1, . . . , xn] for suitable n. The point P identifies with a maximal ideal of
O(U), and there is a k-isomorphism κ(P ) ∼= k if and only if the preimage of P in
k[x1, . . . , xn] is of the form (x1 − a1, . . . , xn − an) with some ai ∈ k. This means
that if we choose an embedding of U in affine space An

k , then after base change to
k̄ we obtain a single point of An

k̄
lying above our closed point P , and moreover it

has coordinates in k.

Corollary 4.7.3 If U contains a k-rational point, then the exact sequence of
Proposition 4.7.1 splits, and π1(U) is a semidirect product of π1(Uk̄) with Gal (k̄|k).

Proof: Let Q̃ be a pro-point of Ũ lying above a k-rational point of U , and Q̄ its
image in Uk̄. By definition of π1(Uk̄) it must have trivial stabilizer in π1(Uk̄). The
lemma then implies that I eQ

is trivial, so D eQ
⊂ π1(U) maps isomorphically onto

Gal (k̄|k) by the projection π1(U) → Gal (k̄|k), whence the required splitting.

Example 4.7.4 Let us consider the case U = P1
k \ {0,∞}. We have seen that

π1(Uk̄)
∼= Ẑ is commutative, hence we have a true action of Gal (k̄|k) on π1(Uk̄), not
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just an outer action. For each n > 0 the quotient π1(Uk̄)/nπ1(Uk̄)
∼= Z/nZ can be

identified with the Galois group of the extension Kn|k̄(t) defined by the equation
xn−t by Example 4.6.12 (2). Moreover, the action of Gal (k̄|k) on π1(Uk̄)/nπ1(Uk̄)
is the one coming from the extension of profinite groups

1 → Gal (Kn|k̄(t)) → Gal (Kn|k(t)) → Gal (k̄|k) → 1.

A generator of Gal (Kn|k̄(t)) is given by sending 1 to the automorphism mapping
a fixed n-th root n

√
t of t to ωn

n
√
t, where ωn ∈ k̄ is a primitive n-th root of

unity. The action of σ ∈ Gal (k̄|k) on Gal (Kn|k̄(t)) sends this automorphism to
n
√
t 7→ σ(ωn)

n
√
t.

The actions of Gal (k̄|k) on the quotients π1(Uk̄)/nπ1(Uk̄) are compatible for
different n. This translates to the following. By the above, defining an isomorphism
π1(Uk̄)

∼→ Gal (
⋃
Kn|k̄(t)) corresponds to fixing a choice of a primitive n-th root

of unity ωn for each n, with the property that for all pairs (n,m) with n|m we have

ω
m/n
m = ωn. The action of σ ∈ Gal (k̄|k) then corresponds to sending a system

(ωn) of roots of unity as above to the system σ(ωn).

Via the fixed isomorphisms Ẑ
∼→ Gal (

⋃
Kn|k̄(t)) ∼→ π1(Uk̄) we get a continuous

homomorphism Gal (k̄|k) → Aut(Ẑ) ∼= Ẑ×, inducing maps Gal (k̄|k) → (Z/nZ)×

for each n. It is called the cyclotomic character of Gal (k̄|k).

Remark 4.7.5 In the situation of Lemma 4.7.2 the action of Gal (k̄|k) on I eQ
∼= Ẑ

coming from the extension

1 → I eQ
→ D eQ

→ Gal (k̄|k) → 1

is also given by the cyclotomic character. Indeed, each degree n finite extension
Kn|Kk̄ contained in the fixed field of I eQ

is given by an n-th root of a local param-

eter at the unique point Q of Xk̄ above P , by Kummer theory and the fact that
the ramification index at the unique point of the curve corresponding to Kn lying
above Q must be n. This being said, the same argument as above applies.

We conclude this section by a famous theorem of Belyi stating that for k = Q
and U = P1 \{0, 1,∞} the outer representation ρU is faithful. He derived this fact
from the following result that is very interesting in its own right.

Theorem 4.7.6 (Belyi) Let X be an integral proper normal curve defined over
an algebraically closed field k of characteristic 0. There exists a morphism X → P1

k

étale over P1
k \ {0, 1,∞} if and only if X can be defined over Q.

Here the condition that X may be defined over Q means that there exists a
curve X0 defined over Q such that X comes from X0 by base change from Q to k.
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Proof: The ‘only if’ part follows from Theorem 4.6.10 (to be proven in the next
chapter). Belyi proved the ‘if’ part as follows. In any case there is a morphism
p : X → P1 defined over Q and étale above the complement of a finite set S of
closed points. The idea is to compose p with suitable morphisms P1 → P1 that
reduce the size of S.

In a first step, we reduce to the case where S consists of Q-rational points. For
this, let P be a point for which the degree n = [κ(P ) : Q] is maximal among the
points in S. Choose a minimal polynomial f ∈ Q(t) for a generator of the extension
κ(P )|Q and consider the map φf : P1 → P1 attached to f . Since f has coefficients
in Q, this map is defined over Q, and as it is given by a polynomial, it restricts to
a map A1 → A1 that we denote in the same way. By Remark 4.5.5 the map φf
is étale outside the φf (Sf ), where Sf is the set of points Q ∈ A1

Q
with f ′(Q) = 0.

Therefore the composite φf ◦ p is étale outside the set S′ = φf (S)∪{∞}∪φf (Sf ).
Now ∞ has degree 1 over Q; the points of Sf , and hence of φf (Sf ) have degree at
most n − 1; finally, those in φf (S) have degree at most n. But since φf (P ) = 0,
there are strictly less points of degree exactly n in S′ than in S. Replacing p by
φf ◦ p and S by S′ we may continue this procedure until we arrive at n = 1.

So assume all points in S are Q-rational. If S consists of at most three points,
we are done by composing with an automorphism of P1; otherwise we may assume
S contains 0, 1,∞ and at least one more Q-rational point α. The idea again is
to compose p with a map φf : P1 → P1 associated with a well-chosen rational
function f . This time we seek f in the form xA(x − 1)B with some nonzero
integers A,B. Outside 0, 1 and ∞ it restricts to a morphism of affine curves
A1

Q\{0, 1} → A1
Q corresponding to the homomorphism Q[x] → Q[x][(x(x−1))−1]

sending x to f . As above, φf ◦p will be étale outside φf (S) together with the images
of those points in A1 \ {0, 1} where the derivative f ′ vanishes. These are given by
the equation AxA−1(x − 1)B + BxA(x − 1)B−1 = 0, or else A(x − 1) + Bx = 0.
We therefore have only one such point, namely x = A/(A+B). So if we choose A
and B so that α = A/(A+B), then φf ◦ p will be étale everywhere outside φf (S).
But φf (S) contains strictly less points than S, because φf ({0, 1,∞}) ⊂ {0,∞}.
We may then continue the procedure until φf (S) has at most 3 elements.

A function f = xA(x − 1)B as in the above proof is called a Belyi function.
It is often multiplied with the constant (A + B)A+BA−AB−B which ensures that
α = A/(A+B) gets mapped to 1.

We can now give the promised application concerning the outer Galois action
on the fundamental group of P1

Q
\ {0, 1,∞}.

Theorem 4.7.7 The outer Galois representation

ρP1\{0,1,∞} : Gal (Q|Q) → Out(π1(P
1
Q
\ {0, 1,∞})

has trivial kernel.
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Proof: We use the shorthands U for P1
Q \ {0, 1,∞} and U for UQ. Assume

that ρU has a nontrivial kernel, fixing a (possibly infinite) extension L|Q. The
representation ρUL

: Gal (L) → Out (π1(U))) is trivial. Recall that ρUL
comes

from the short exact sequence

1 → π1(U) → π1(UL) → Gal (Q|L) → 1

via the conjugation action of π1(UL) on π1(U). The triviality of ρUL
means that

every automorphism of π1(U) induced by conjugating with an element x ∈ π1(UL)
equals the conjugation automorphism by an element y ∈ π1(U). This implies that
y−1x is in the centralizer C of π1(U) in π1(UL), and therefore the latter group is
generated by C and π1(U). But by Example 4.6.12 (3) the group π1(U) is a free
profinite group on two generators, and as such has trivial center. Hence C and
π1(U) have trivial intersection, which implies that π1(UL) is actually their direct
product. Whence a quotient map π1(UL) → π1(U) which is a retraction of the
natural inclusion. Considering finite continuous π1(U)-sets and applying Theorem
4.6.4 we conclude that every finite étale cover of U comes by base change from a
cover of UL. By Belyi’s theorem this then means that every integral proper normal
curve defined over Q̄ can in fact be defined over L. But there are counter-examples
to this latter assertion; see the facts below.

Facts 4.7.8 Let L be a subfield of Q. A geometrically integral proper normal
curve E defined over L is an elliptic curve if it has an L-rational point P and is of
genus 1 (meaning that the compact Riemann surface coming from EC has genus 1
in the sense of Section 3.6). Then it is known that there is an embedding E → P2

L

whose image is defined by an equation of the form y2z = x3 +Axz2 +Bz3 with
A,B ∈ L, the point (0, 1, 0) being the image of P . The j-invariant

j(E) := 1728
4A3

4A3 + 27B2
∈ L

is preserved by all Q-isomorphisms EQ
∼= X ′, where X ′ is a projective plane curve

over Q given by an equation of the above shape. Furthermore, for every j ∈ Q
there exists an elliptic curve E′ over Q as above with j(E′) = j. For these facts
see e.g. [100], Proposition III.3.1 and §3.1.

Fix now an elliptic curve E′ over Q such that j(E′) /∈ L. We contend that
there is no proper normal curve X over L with XQ

∼= E′. Indeed, were there such
a curve, it would be of genus 1, and then it is known ([100], Ex. 10.3) that there
is an elliptic curve E over L canonically attached to X, its Jacobian, satisfying
XQ

∼= EQ. We would then have an isomorphism EQ
∼= E′, which would contradict

the assumption about the j-invariant of E′.

Remarks 4.7.9
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1. The significance of Theorem 4.7.7 lies in the fact that it embeds the group
Gal (Q|Q), which is of arithmetic nature, in the outer automorphism group
of a group coming from topology. It is the starting point of Grothendieck’s
fascinating theory of dessins d’enfants; see [85] for a comprehensive intro-
duction.

2. Theorem 4.7.6 also has important applications in Diophantine geometry. For
instance, Elkies [19] used it to deduce Mordell’s Conjecture (now Faltings’
Theorem) from the abc conjecture. See [6], Chapter 12 for further discussion.

4.8 Application to the Inverse Galois Problem

We now discuss a spectacular application of the methods developed so far. It
concerns the regular inverse Galois problem over Q that may be stated as follows.

Problem 4.8.1 Let G be a finite group. Construct a finite Galois extension
K|Q(t) regular over Q with Gal (K|Q(t)) ∼= G.

The regularity condition means that there is no subextension in K|Q(t) of the
form L(t), where L is a nontrivial extension of Q.

A positive solution to the regular inverse Galois problem implies a positive
solution to the inverse Galois problem over Q because of the following well-known
result.

Fact 4.8.2 Consider a finite regular Galois extension K|Q(t) with Galois group
G. Let xm + am−1x

m−1 + · · · + a0 be a minimal polynomial for this extension,
with ai ∈ Q(t). There exist infinitely many α ∈ Q such that none of the ai has
denominator vanishing at α, and xm + am−1(α)xm−1 + · · · + a0(α) ∈ Q[x] defines
a Galois extension of Q with group G.

This is a somewhat sharpened form of Hilbert’s Irreducibility Theorem. (The
original form only states that there are infinitely many α for which the polynomial
xm + am−1(α)xm−1 + · · ·+ a0(α) remains irreducible.) For proofs, see e.g. Serre’s
books [91] or [93]. They show that the α can in fact be chosen to be integers, or
even prime numbers.

Problem 4.8.1 is largely open at the present day and is the subject of intense
research. Towards the end of the 1970’s Belyi, Fried, Matzat and later Thompson
independently developed a method based on the theory of the algebraic fundamen-
tal group that yields a positive solution for many of the finite simple groups. We
now explain the basic idea of the construction, relying largely on the exposition of
Serre in [93].

The starting point is that, as we have seen in Corollary 3.4.4, every finite group
G occurs as a Galois group over C(t). More precisely, we have shown that if G
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can be generated by n − 1 elements, then G is isomorphic to a finite quotient of
the topological fundamental group

πtop
1 (P1(C) \ {P1, . . . , Pn}) = 〈γ1, . . . , γn | γ1 · · · γn = 1〉.

Thus giving a surjective homomorphism φ : πtop
1 (P1(C) \ {P1, . . . , Pn}) ։ G is

equivalent to specifying an n-tuple (g1, . . . , gn) ∈ Gn with g1 . . . gn = 1 such that
the gi generate G. We shall call n-tuples satisfying these two properties generating.

Since the above holds with an arbitrary choice of the points Pi, we may assume
that the Pi are Q-rational. By Theorems 4.6.7 and 4.6.10 the profinite completion
π(n) of πtop

1 (P1(C) \ {P1, . . . , Pn}) is isomorphic to the algebraic fundamental
group π1(P

1
Q
\ {P1, . . . , Pn}), and the surjection φ induces a continuous surjection

π(n) ։ G. Moreover, with the notation Π(n) := π1(P
1
Q \ {P1, . . . , Pn}) we have

the basic exact sequence

1 → π(n) → Π(n) → Gal (Q|Q) → 1.

Our task is then to extend the surjection φ : π(n) ։ G to a continuous homo-
morphism φ̃ : Π(n) → G. It will be automatically surjective (since φ is), and
hence will define a finite Galois extension K|Q(t), because by construction Π(n) is
a quotient of Gal (Q(t)|Q(t)). The regularity of the extension K|Q(t) over Q will
follow from the assumption that the restriction of φ̃ to π(n) is already surjective.

To construct φ̃ we first formulate an abstract group-theoretic lemma. Assume
given a profinite group Γ, a closed normal subgroup N ⊂ Γ, and a finite group G.
The set Hom(N,G) of continuous homomorphisms N → G is equipped with a left
action of G given by (g, φ) 7→ gφ, where gφ(n) = gφ(n)g−1 for all n ∈ N . There
is also a right action of Γ on Hom(N,G) given by (φ, σ) 7→ φσ, where φσ(n) =
φ(σnσ−1) for all n ∈ N , and the two actions are compatible, i.e. g(φσ) = (gφ)σ.

Lemma 4.8.3 In the above situation let S ⊂ Hom(N,G) be a subset stable by the
actions of G and Γ, such that moreover G acts freely and transitively on S. Then
every φ ∈ S extends to a continuous homomorphism φ̃ : Γ → G.

Proof: Let φ be an element of S. For each σ ∈ Γ there exists gσ ∈ G such
that φ(σnσ−1) = gσφ(n)g−1

σ for all n ∈ N , because S is stable by Γ and G acts
transitively on S. Moreover, such a gσ is unique, because the action of G on S
is free. We contend that the formula φ̃(σ) := gσ for σ ∈ Γ defines the required
extension. Indeed, the compatibility of the actions of G and Γ implies that φ̃
is a homomorphism, and moreover for σ ∈ N we have gσ = φ(σ), since φ is a
homomorphism. For continuity it is enough to show by finiteness of G that φ̃ has
open kernel. But ker(φ̃) consists of those σ ∈ Γ that leave φ invariant, so it is open
by continuity of φ.

We would like to apply the lemma in the situation where N = π(n) and
Γ = Π(n), so we have to specify a subset S ⊂ Hom(π(n), G) with the required
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properties. Recall that a surjection φ : π(n) ։ G is determined by the elements
φ(γi), which are to form a generating n-tuple. If S contains φ and is stable by the
action of Π(n), then it should contain all the homomorphisms φσ for σ ∈ Π(n).
In particular this should hold for σ ∈ π(n), in which case φσ = φ(σ)φ. Conversely,
for each g ∈ G the map gφ defines a continuous surjection π(n) ։ G. Thus it is
natural to fix n conjugacy classes C1, . . . Cn in G, and look for S in the form

S = {φ ∈ Hom(π(n), G) : φ(γi) ∈ Ci and (φ(γ1), . . . , φ(γn)) is a generating n-tuple}.
By definition S is stable by the actions of G and π(n). We now impose condi-

tions on the Ci that force the other conditions of the lemma.

Definition 4.8.4 Let G be a finite group. An n-tuple C1, . . . , Cn of of conjugacy
classes in G is called rigid if there exists a generating n-tuple (g1, . . . , gn) in Gn

with gi ∈ Ci, and moreover G acts transitively on the set of all such generating
n-tuples.

By the above discussion, G acts transitively on S if and only if the Ci form a
rigid system. Moreover, if G has trivial center, then its action on S is also free.
Indeed, in general if φ ∈ S, g ∈ G and each gi = φ(γi) is invariant for conjugation
by g, then g must lie in the center of G since the gi generate G.

We still have to present a criterion ensuring that S is stable by the action of
Π(n).

Definition 4.8.5 A conjugacy class C in a finite group G is called rational if
g ∈ C implies gm ∈ C for all m ∈ Z prime to the order of G.

For rational conjugacy classes the stability of the set S by the action of Π(n)
boils down to:

Lemma 4.8.6 Assume that C1, . . . , Cn are rational conjugacy classes in a finite
group G, and φ : π(n) → G is a continuous homomorphism with φ(γi) ∈ Ci for
all i. Then the same holds for φσ for all σ ∈ Π(n).

Proof: By Remark 4.6.8 and Lemma 4.7.2 each γi topologically generates the

inertia subgroup I eQi
⊂ π(n) of a point Q̃i of the profinite branched cover P̃1

C of
Remark 4.6.6 above the point Pi. By definition of inertia subgroups, for every
σ ∈ Π(n) the conjugate σγiσ

−1 lies in the inertia subgroup I
σ( eQi)

of another point

σ(Q̃i) above Pi. Since Pi is rational over Q, there is a unique point Qi of Xk̄ lying
above Pi. Hence both I eQi

and I
σ( eQi)

are stabilizers of points above Qi in π(n), and

as such they are conjugate in π(n) as well. Thus φ(I eQi
) and φ(I

σ( eQi)
) are conjugate

cyclic subgroups in G, with respective generators φ(γi) and φ(σγiσ
−1). Therefore

there is m ∈ Z prime to the order of G and g ∈ G with φ(σγiσ
−1) = gφ(γi)

mg−1.
As Ci is a rational conjugacy class, this shows that φ(σγiσ

−1) ∈ Ci, as required.

We can summarize the result of the above discussion in the following theorem.
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Theorem 4.8.7 Let G be a finite group with trivial center, and assume there
exists a rigid system C1, . . . , Cn of rational conjugacy classes in G. For each n-
tuple P1, . . . , Pn of Q-rational points on P1

Q there is a surjection

π1(P
1
Q \ {P1, . . . , Pn}) ։ G

such that moreover the image of each canonical generator γi lies in Ci. In partic-
ular, G is the Galois group of a Galois extension of Q(t) regular over Q.

Remark 4.8.8 The role played by rationality in the above proof can be made
more precise as follows. Denoting by N the order of G, there is a natural action
of (Z/NZ)× on G (as a set) via (m, γ) 7→ γm; this also induces an action of
(Z/NZ)× on the set of conjugacy classes of G. Rationality of a class Ci then means
that Ci is preserved by the action of (Z/NZ)×. Now observe that (Z/NZ)× ∼=
Gal (Q(µN )|Q), where as usual µN denotes the group of N -th roots of unity.
Remark 4.7.5 then implies that the integer m at the end of the proof of Lemma
4.8.6 can be recovered as the image of σ by the composite map

Π(n) → Gal (Q|Q)
χ→ Ẑ× ։ (Z/NZ)×,

where χ denotes the cyclotomic character.

This interpretation opens the way for various generalizations of Theorem 4.8.7.
For instance, a variant we shall use in Example 4.8.10 below is the following. As-
sume that G has a rigid system of conjugacy classes that are either rational or
come in pairs (Ci, C

′
i) such that both Ci and C ′i are preserved by a subgroup

Hi ⊂ (Z/NZ)× of index 2, and the induced action of (Z/NZ)×/Hi
∼= Z/2Z inter-

changes Ci and C ′i. Then the conclusion of the theorem holds with the modification
that the points Pi corresponding to the rational Ci are Q-rational, and otherwise
come in pairs (Pi, P

′
i ) where κ(Pi) ∼= κ(P ′i ) is the subfield of Q(µN ) fixed by Hi

and the action of Gal (Q|Q) on the points of P1
Q

interchanges Pi and P ′i . The

proof is a straightforward modification of that of Lemma 4.8.6.

Example 4.8.9 The criterion of Theorem 4.8.7 is satisfied for many of the spo-
radic finite simple groups. For instance, Thompson has verified that the Monster
has a rigid system of three rational conjugacy classes of orders 2, 3 and 29, re-
spectively. Such a verification is of course far from trivial and often relies on the
classification of finite simple groups. Concerning Thompson’s theorem and further
results about sporadic groups, see Section II.9 of [56].

We now present an example where the criterion of Theorem 4.8.7 does not
apply directly but the variant of Remark 4.8.8 does.

Example 4.8.10 Let p be an odd prime such that 2 is not a square modulo p. We
construct a rigid triple of conjugacy classes in the finite simple group PSL2(Fp).
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Each element of order p in PSL2(Fp) comes from a matrix in SL2(Fp) having an
eigenvalue 1, so since it has determinant 1, its upper triangular form is

Ea :=

[
1 a

0 1

]

for some a ∈ F×p . It follows that order p elements in PSL2(Fp) fall into two
conjugacy classes pA and pB, depending on whether a is a square in Fp or not.
Another calculation shows that the order 2 elements form a single conjugacy class
2A. We contend that (2A, pA, pB) is a rigid triple of conjugacy classes in PSL2(Fp).
The matrices

M1 =

[
1 −1

2 −1

]
, M2 =

[
1 1

0 1

]
, M3 =

[
1 0

−2 1

]

represent elements of 2A, pA, pB, respectively, the last one because it is conjugate
to E2 and 2 is not a square in Fp by assumption. Their product is the identity
matrix, and the pair (M2,M3) generates SL2(Fp), because their powers are exactly
the 2 × 2 elementary matrices (see [48], Chapter XIII, Lemma 8.1). To conclude
it suffices to show that given a triple (N1, N2, N3) of matrices representing a gen-
erating triple from 2A × pA × pB, the pair (N2, N3) is conjugate in SL2(Fp) to
(M2,M3). For this notice that both N2 and N3 have a 1-dimensional eigenspace
corresponding to the eigenvalue 1, and they are not the same since otherwise the
Ni would not generate. Hence we may choose a basis of F2

p consisting of an eigen-
vector of N2 and an eigenvector of N3. Passing to this basis the matrices become

N ′2 =

[
1 a

0 1

]
, N ′3 =

[
1 0

b 1

]
.

By assumption we find c ∈ Fp with c2 = a, therefore we have DN ′2D
−1 = M2,

where D is the diagonal matrix with entries (c, c−1). Conjugation by D preserves
the shape of N ′3, so we may assume N ′2 = M2. Finally the fact that N2N3 = N−1

1

has order 4 implies Tr(N2N3) = Tr(N ′2N
′
3) = 0, whence b = −2 as required.

The conjugacy class 2A is rational. However, the classes pA and pB aren’t,
because by the assumption that 2 is nonsquare modulo p the odd powers of each
matrix Ea are in the same conjugacy class as Ea and the even powers are in the
other one. But this shows that the pair (pA, pB) satisfies a property as in the
criterion of Remark 4.8.8. Hence for p as above PSL2(Fp) occurs as a Galois
group over Q(t).

Many of the finite simple groups have been realized as Galois groups over Q(t)
by a variant of the rigidity method like in the above example. For the state of the
art in 1998, see the book of Malle and Matzat [56].
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4.9 A Survey of Advanced Results

In this final section we give an overview of some of the major results currently
known about the structure of fundamental groups of integral normal curves. In
the first part we assume that the base field k is algebraically closed.

A fundamental invariant of an integral proper normal curve X over k is its
genus g. Over k = C this is the same as the genus of the associated Riemann
surface introduced in Section 3.6. For definitions that work in general, see [95] or
[34]. An open subcurve U ⊂ X different from X is isomorphic to an affine curve
(see e.g. [34], Exercise IV.1.3). The fundamental invariants of U are g and the
number n of closed points in X \ U .

The first main theorem says that these invariants completely determine the
maximal quotient of π1(U) which is ‘prime to the characteristic of k’. In order to
state it precisely, we need to introduce some terminology. Given a prime p and
a group G, the inverse limit of the natural inverse system of the finite quotients
of G having order prime to p (resp. a power of p) is called the profinite p′-
completion (resp. profinite p-completion) of G. If G is moreover profinite, these
are the maximal prime-to-p quotient G(p′) and maximal pro-p quotient G(p) of G,
respectively. We extend the notion of profinite p′-completion to p = 0 by defining
it as the usual completion.

Theorem 4.9.1 (Grothendieck) Let k be an algebraically closed field of char-
acteristic p ≥ 0, and let X be an integral proper normal curve of genus g over k.
Let U ⊂ X be an open subcurve (possibly equal to X), and n ≥ 0 the number of
closed points in X \U . Then π1(U)(p

′) is isomorphic to the profinite p′-completion
of the group

Πg,n := 〈a1, b1, . . . , ag, bg, γ1, . . . , γn | [a1, b1] . . . [ag, bg]γ1 . . . γn = 1〉.

For k = C we have seen this in Theorem 4.6.7, and the case of a general
k of characteristic 0 follows using Theorem 4.6.10. The main contribution of
Grothendieck was in positive characteristic; we shall discuss it in more detail in
Theorem 5.7.13 and Remark 5.7.16 (4) of the next chapter.

Remark 4.9.2 It is an interesting question whether one can prove Theorem 4.9.1
without recourse to transcendental techniques. It would be enough to show that
the finite quotients are exactly the finite groups that can be generated by 2g + n
elements satisfying a relation as above. Indeed, it can be proven in a purely
algebraic way that for fixed N > 0 the group π1(X)(p

′) has only finitely many
quotients of order N (Lang–Serre [51], Abhyankar [1]). But a profinite group
having this property is determined up to isomorphism by its finite quotients (see
Lemma 5.7.7 in the next chapter).

Results in this direction are quite scarce. Borne and Emsalem have observed
in a recent preprint [7] that the methods of Serre [92] can be used to determine
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the finite solvable quotients of π1(P
1 \ {0, 1,∞})(p′), and hence to describe the

maximal pro-solvable quotient of π1(P
1 \ {0, 1,∞})(p′) in a purely algebraic way;

see also [54] for further results in this direction. Also, Wingberg used methods of
Galois cohomology and class field theory to show that for a normal curve U defined
over Fp the maximal pro-ℓ quotient of π1(U) has a presentation as in Theorem
4.9.1 for all primes ℓ 6= p (see [70], Theorem 10.1.2).

A special case of Theorem 4.9.1 says that in characteristic 0 the fundamental
group of a proper normal curve is completely determined by the genus of the asso-
ciated compact Riemann surface. In particular, there are many curves having the
same fundamental group. However, over the algebraic closure of a finite field the
situation is completely different, as a striking result of Tamagawa [103] (building
upon earlier work by Raynaud, Pop and Säıdi) shows.

Theorem 4.9.3 (Tamagawa) Let p be a prime number, and G a profinite group.
There are only finitely many proper normal curves of genus g ≥ 2 over Fp whose
fundamental group is isomorphic to G.

Of course, the theorem is only interesting for those G that actually arise as the
fundamental group of some curve as above.

Now that we know the maximal prime-to-p quotient of the fundamental group,
we may ask for the structure of its maximal pro-p quotient in characteristic p > 0.
The answer is radically different in the proper and the affine cases.

In order to be able to state the result for proper curves, we need to recall
some facts from algebraic geometry. With a proper normal curve over a field k
one associates its Jacobian variety, which is an abelian variety, i.e. a projective
group variety over k (these are known to be commutative). The p-rank of an
abelian variety A over an algebraically closed field k of characteristic p > 0 is the
dimension of the Fp-vector space given by the kernel of the multiplication-by-p
map on the k-points of A. It is a nonnegative integer bounded by dimA.

Theorem 4.9.4 For an integral normal curve X over an algebraically closed field
k of characteristic p > 0 the group π1(X)(p) is a free pro-p group. It is of finite
rank equal to the p-rank of the Jacobian variety of X if X is proper, and of infinite
rank equal to the cardinality of k if X is affine.

Here one may define a free pro-p group of rank r as the maximal pro-p quo-
tient of the free profinite group of rank r. The proper case was first proven by
Shafarevich in [94] using the classical theory of Hasse-Witt matrices. Nowadays
the theorem can be quickly derived using methods of étale cohomology; see the
chapters by Gille and Bouw in [8] or [10], Theorem 1.9 (which only deals with the
proper case).

Observe that Theorems 4.9.1 and 4.9.4 do not elucidate completely the struc-
ture of the fundamental group of an integral normal curve over an algebraically
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closed field of positive characteristic; this is still unknown at the present day. The
theorems give, however, a good description of its maximal abelian quotient: this
group is the direct sum of its maximal prime-to-p and pro-p quotients, and hence
the previous two theorems together suffice to describe it.

By the previous theorem every finite p-group arises as a quotient of the funda-
mental group of a normal affine curve over an algebraically closed field of character-
istic p > 0. More generally, we have the following important theorem, previously
known as Abhyankar’s Conjecture.

Theorem 4.9.5 (Raynaud, Harbater) Let k be an algebraically closed field of
characteristic p > 0, and let U be an affine curve over k arising from an integral
proper normal curve X ⊃ U of genus g by deleting n points.

Every finite group G whose maximal prime-to-p quotient can be generated by
2g + n− 1 elements arises as a quotient of π1(U).

Raynaud proved the crucial case X = A1
k in his paper [79]. He constructed

Galois covers of the affine line with prescribed group G satisfying the condition
of the theorem by combining three different methods. The first came from an
earlier paper [92] by Serre that handled the case of solvable G, and contained
an inductive statement for extensions of groups satisfying the conclusion of the
theorem by solvable groups. The second method used a patching technique like
the one we encountered in Chapter 3, but in the setting of rigid analytic geometry.
Finally, the third method exploited the theory of semi-stable curves. Soon after
Raynaud’s work Harbater reduced the general case to the case of the affine line in
[32]; another proof for this reduction was given by Pop [76]. See also the chapters
by Chambert-Loir and Säıdi in [8].

In the remainder of this section k will denote a perfect field, k̄ a fixed algebraic
closure, and X an integral proper normal curve over k. For an open subcurve
U ⊂ X we introduced after Proposition 4.7.1 an outer Galois representation

ρU : Gal (k̄|k) → Out(π1(Uk̄)).

In a 1983 letter to Faltings (reprinted in [85]) Grothendieck proposed a conjectural
theory named ‘anabelian geometry’ according to which the above representation
should determine U when π1(Uk̄) is ‘far from being abelian’. A satisfactory for-
mulation of the conjectures in higher dimension is not known at present, but in
the case of curves precise statements are known, and mostly proven. They concern
hyperbolic curves U , i.e. integral normal curves such that 2g − 2 + n > 0, where
g is the genus of the compactification Xk̄, and n is the number of closed points in
Xk̄\Uk̄. The group π1(Uk̄) is indeed nonabelian by Theorem 4.9.1; in characteristic
0 it is even a free profinite group.

The most important result is the following.
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Theorem 4.9.6 (Tamagawa, Mochizuki) Let k be a field that may be embedded
in a finitely generated extension of the field Qp of p-adic numbers for some prime
p. Then every hyperbolic curve U over k is determined up to k-isomorphism by
the outer Galois representation ρU .

The theorem was proven by Tamagawa [102] in the important special case
when k is a number field and U is affine. He first proved a result over finite fields
(see Theorem 4.9.8 below), and then used a specialization argument to obtain the
statement in the number field case. Mochizuki first extended Tamagawa’s theorem
to proper curves over number fields in [61] using techniques from logarithmic ge-
ometry, and then in [62] proved the general theorem stated above in a completely
different way, exploiting p-adic Hodge theory. For a survey of this second method,
see the Bourbaki lecture [22] by Faltings.

In fact, Mochizuki proved much more. In order to formulate the general result
of his paper [62] we need to set up some notation. First, for U and p as in the
theorem above consider the maximal pro-p-quotient π1(Uk̄)

(p) of the geometric
fundamental group π1(Uk̄). The kernel N of the projection π1(Uk̄) → π1(Uk̄)

(p) is
preserved by all automorphisms of π1(Uk̄), hence it is normal in π1(U). We denote

the quotient π1(U)/N by π
(p)
1 (U); it is an extension of Gal (k̄|k) by the pro-p-group

π1(Uk̄)
(p).

Given profinite groups G1, G2 equipped with continuous surjections Gi ։ G
onto a third profinite group G, we denote by Hom∗G(G1, G2) the set of continuous
homomorphisms G1 → G2 that are compatible with the projections onto G up to
an inner automorphism of G. Composition with inner automorphisms of G2 equips
this set with a left action by G2; we denote the quotient by HomOut

G (G1, G2). We
shall see in the next chapter (Remark 5.5.3 and the subsequent discussion) that a
morphism φ : U → U ′ of curves over a perfect field k induces a homomorphism on
fundamental groups that is well-defined up to an inner automorphism of π1(U

′),

whence a well-defined element in HomOut
Gal (k̄|k)

(π
(p)
1 (U), π

(p)
1 (U ′)). If moreover φ

is dominating, i.e. has Zariski dense image, then the induced homomorphism
of fundamental groups is known to have open image. Accordingly, given curves
U,U ′ over a perfect field k, denote by Homdom

k (U,U ′) the set of k-morphisms

U → U ′ with dense image, and by HomOut, open

Gal (k̄|k)
(π

(p)
1 (U), π

(p)
1 (U ′)) the subset of

HomOut
Gal (k̄|k)

(π
(p)
1 (U), π

(p)
1 (U ′)) coming from homomorphisms with open image. We

may now state:

Theorem 4.9.7 (Mochizuki) Let k be a field that may be embedded in a finitely
generated extension of Qp, and let U,U ′ be hyperbolic curves over k. The natural
map

Homdom
k (U,U ′) → HomOut, open

Gal (k̄|k)
(π

(p)
1 (U), π

(p)
1 (U ′))

is a bijection.
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As mentioned above, there are also results for curves over finite fields. Here
they are:

Theorem 4.9.8 (Tamagawa, Mochizuki) Let F be a finite field, and let U,U ′

be hyperbolic curves over F. The natural map

Isom(U,U ′) → Isom(π1(U), π1(U
′))

is a bijection.

Here on the left hand side we have the set of isomorphisms between U and
U ′ as schemes, regardless of the F-structure, and on the right hand side the set of
continuous isomorphisms between π1(U) and π1(U

′). Note that here we are not
considering Gal (k̄|k)-isomorphisms between π1(UF) and π1(U

′
F
) as before; in fact,

over a finite field F the outer Galois action on π1(UF) is ‘encoded’ in π1(U).

The theorem was proven in the affine case by Tamagawa in [102] using class
field theory, and in the proper case by Mochizuki [63] as a consequence of his theory
of cuspidalizations. Using Tamagawa’s affine result and a specialization technique,
Stix [98] proved an analogue of Theorem 4.9.6 for non-constant hyperbolic curves
over a finitely generated field of positive characteristic.

We conclude this survey by stating the main open question in the area, the
famous Section Conjecture of Grothendieck. Let k be a perfect field, and X an
integral proper normal curve over k. Recall from Proposition 4.7.1 that there is an
exact sequence

1 → π1(Xk̄) → π1(X)
p→ Gal (k̄|k) → 1

of profinite groups. Assume P ∈ X is a k-rational point, and let P̃ be a point
lying above P on the profinite cover X̃ → X introduced in Remark 4.6.6. By
Corollary 4.7.3 the stabilizer of P̃ in π1(X) maps isomorphically onto Gal (k̄|k) by
the projection p, and hence yields a section of p. The different points P̃ above
P are conjugate by the action of π1(X) (in fact, already by the action of π1(Xk̄),
as P was assumed to be k-rational). Hence P gives rise to a conjugacy class of
sections (see Remark 5.6.3 (2) for another approach). In our previous notation we
may write that we have constructed a map

X(k) → HomOut
Gal (k̄|k)(Gal (k̄|k), π1(X)).

Conjecture 4.9.9 (Section Conjecture) If k is finitely generated over Q and
X has genus ≥ 2, then the above map is a bijection.

In other words, each conjugacy class of sections should come from a unique
k-rational point of X. The proof of injectivity is not hard and was already known
to Grothendieck, but as of today, the issue of surjectivity is widely open.
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Remark 4.9.10 In his letter to Faltings Grothendieck also formulated a variant of
the Section Conjecture for an affine hyperbolic curve U . As the profinite branched
cover X̃ of Remark 4.6.6 carries an action of π1(U), each section Gal (k̄|k) → π1(U)
of the natural projection π1(U) → Gal (k̄|k) induces an action of Gal (k̄|k) on X̃.
Grothendieck then conjectured that this action should have a unique fixed point.
As the Gal (k̄|k)-actions on X̃ and Xk̄ are compatible by construction, the fixed
point lies above a k-rational point P of X. If P ∈ U , then the section should come
from the stabilizer of a point of X̃ above P . If P ∈ (X \U), then the cardinality of
the sections inducing a fixed point above P should be the continuum. This latter
assertion was recently verified by Esnault and Hai [20] as well as Stix [99].

Exercises

1. Let k be an algebraically closed field of characteristic not 2, f ∈ k[x1] a non-
constant polynomial, Y = V (x2

2 − f) ⊂ A2
k and φ : Y → A1

k the morphism
given by (x1, x2) 7→ x1. Show that φ is a finite morphism that is étale over
the point of A1

k corresponding to a ∈ k if and only if f(a) 6= 0.

2. Let k be an algebraically closed field of characteristic 0, and φ : Y → A1
k

a finite surjective morphism over k such that O(Y ) ∼= O(A1
k)[f ] with some

f ∈ O(Y ). Verify directly that φ cannot be étale above the whole of A1
k.

3. Let k be an algebraically closed field, and n an integer prime to the charac-
teristic of k. Prove in a purely algebraic way that up to isomorphism there
is a unique cyclic Galois cover of A1

k with group Z/nZ étale outside 0, as in
Example 4.6.12 (2). [Hint: Use Kummer theory (Remark 1.2.10.)]

4. Let k be an algebraically closed field of characteristic p > 0, and consider
the rational function field k(t). Choose f ∈ k[t] so that the polynomial
xp − x− f ∈ k(t)[x] is irreducible over k(t).

(a) Show that the normalization of A1
k in the finite extension of k(t) defined

by xp−x−f is an étale Galois cover of A1
k whose Galois group is Z/pZ;

it is called an Artin–Schreier cover of A1
k.

(b) Conclude that the maximal abelian quotient of exponent p of π1(A
1
k)

is an infinite dimensional Fp-vector space of dimension equal to the
cardinality of k.

5. Give an example showing that the converse statement in Lemma 4.5.10 fails
if one does not assume that Y is normal.

[Hint: Take X = A1
k, Y = V (x2

2 − x3
1 + x2

1) ⊂ A2
k, Z the normalization of Y

and φ : (x1, x2) 7→ x1.]
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6. Let k be an algebraically closed field, X an integral proper normal curve
over k, and f ∈ K(X) a rational function.

(a) Verify that the morphism φf : X → P1
k defined in Section 4.4 satisfies

φf (P ) = f(P ) for all closed points P ∈ X where f ∈ OX,P , and
φf (P ) = ∞ otherwise.

(b) Show that φf is étale exactly above those points whose preimages sat-
isfy (f ′/f)(P ) 6= 0.

7. Prove the following sharpening of Belyi’s theorem: an integral proper normal
curve over an algebraically closed field k of characteristic 0 can be defined
over Q if and only if there is a morphism X → P1

k étale over P1
k \ {0, 1,∞}

such that all ramification indices at points lying above 1 are equal to 2.
[Hint: Compose with an appropriate Belyi function.]

8. Prove that when G is a finite group with trivial center having a rigid system
(C1, . . . , Cn) of not necessarily rational conjugacy classes, the conclusion of
Theorem 4.8.7 holds with Q replaced by Q(µ), where µ is the group of all
complex roots of unity.

9. Verify that for n ≥ 3 the three conjugacy classes in the symmetric group Sn
consisting of 2–cycles, (n−1)–cycles and n–cycles, respectively, form a rigid
system of rational conjugacy classes. [Remark: It then follows from Theorem
4.8.7 that Sn occurs as a Galois group over Q(t). For a more elementary
proof, see [93], Section 4.4.]

10. Let G be a finite group with trivial center possessing a rigid system of
three rational conjugacy classes, and let H ⊂ G be a subgroup of index 2.
(Example: G = Sn, H = An, n ≥ 3.) Show there exists a Galois extension
of Q(t) regular over Q with group H.

[Hint: Apply Theorem 4.8.7 to get a Galois extension K|Q(t) with group
G corresponding to a morphism étale outside three Q-rational points, and
set L := KH . Use the Riemann–Hurwitz formula (Corollary 3.6.12) to show
that the morphism X → P1

Q corresponding to L|Q(t) is étale outside exactly
two points, and conclude that L ∼= Q(u) for some u ∈ K(X).]

11. (Tamagawa, Koenigsmann) Let X be a proper normal curve over a perfect
field k. Fix a separable closure Ks of the function field K of X, let KX ⊂ Ks

be the Galois subextension with Galois group π1(X) over K, and k̄ the
algebraic closure of k in KX .

(a) Let s be a section of the natural projection π1(X) → Gal (k̄|k), and
denote by D the image of s in π1(X); it has a natural action on KX .
Prove the equivalence of the following statements about a k-rational
point P of X:
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• D is the decomposition group of a closed point of the pro-étale
cover X̃ → X of Remark 4.6.6 lying above P .

• For all finite extensions L|K contained in the fixed field of D the
corresponding proper normal curve has a k-rational point lying
above P .

(b) Show that the surjectivity part of Grothendieck’s Section Conjecture
(Conjecture 4.9.9) is equivalent to the following statement: if k is
finitely generated over Q, then for every proper normal curve X of
genus at least 2 the projection π1(X) → Gal (k̄|k) has a section if and
only if X has a k-rational point. [Hint: Use the generalization of the
theorem of Faltings ([49], Chapter I, Corollary 2.2) according to which
such an X has finitely many k-rational points.]



Chapter 5

Fundamental Groups of Schemes

Though the theory of the previous chapter is sufficient for many applications,
a genuine understanding of the algebraic fundamental group only comes from
Grothendieck’s definition of the fundamental group for schemes. His theory en-
compasses the classification of finite covers of complex algebraic varieties of any
dimension, Galois theory for extensions of arbitrary fields and even notions coming
from arithmetic such as specialization modulo a prime. Moreover, it is completely
parallel to the topological situation and clarifies the role of base points and univer-
sal covers – these have been somewhat swept under the carpet in the last chapter.
In his original account in [29] Grothendieck adopted an axiomatic viewpoint and
presented his constructions within the context of ‘Galois categories’. Here we
choose a more direct approach, emphasizing the parallelism with topology. The
background from algebraic geometry that is necessary for the basic constructions
will be summarized in the first section. However, the proofs of some of the deeper
results discussed towards the end of the chapter will require more refined tech-
niques.

5.1 The Vocabulary of Schemes

In this section we collect the basic notions from the language of schemes that
we shall need for the development of Grothendieck’s theory of the fundamental
group. Our intention is to summarize for the reader what will be needed; this
concise overview can certainly not replace the study of standard references such
as [34] or [64], let alone Grothendieck’s magnum opus EGA.

We first define affine schemes. Let A be a ring (commutative with unit, as
usual). The affine scheme associated with A will be a certain ringed space (recall
from Section 4.4 that this means a topological space together with a sheaf of rings
on it). Here is the definition of the underlying topological space.

Definition 5.1.1 The prime spectrum Spec (A) of A is the topological space
whose points are prime ideals of A and a basis of open sets is given by the sets

D(f) := {P : P is a prime ideal with f /∈ P}

149
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for all f ∈ A.

For this definition to be correct, one must verify that the system of the sets
D(f) is closed under finite intersections. This holds because it follows from the
definition that D(f) ∩D(g) = D(fg) for all f, g ∈ A.

We next define a sheaf of rings on X = Spec (A) as follows. Recall that for a
nonzero element f ∈ A the notation Af stands for the ring of fractions of A with
denominators in the multiplicatively closed subset {1, f, f2, . . . } ⊂ A. See ([2],
Chapter 3) for the definition of rings of fractions in the case when A may contain
zero-divisors.

Lemma 5.1.2 There is a unique sheaf of rings OX on X = Spec (A) satisfying
OX(D(f)) = Af for all nonzero f ∈ A.

Proof: See [64], Section II.1 (or [34], Proposition II.2.2 for a direct construction).

Definition 5.1.3 The ringed space (X,OX) defined above is the affine scheme
associated with A. The sheaf OX is called its structure sheaf.

The structure sheaf OX has the special property that its stalk at a point P is
a local ring, namely the localization AP . This follows from the fact that AP is the
direct limit of the fraction rings Af for all f /∈ P . A ringed space satisfying the
above property is called a locally ringed space.

Recall that a morphism (X,F) → (Y,G) of ringed spaces is a pair (φ, φ♯), where
φ : X → Y is a continuous map and φ♯ : G → φ∗F is a morphism of sheaves.
Given a point P ∈ X, there is an induced map φP : Gφ(P ) → FP on stalks given
by passing to the direct limit of the maps G(U) → φ∗F(U) over all open subsets
U containing φ(P ). If (X,F) and (Y,G) are locally ringed spaces, we say that φ is
a local homomorphism if the preimage of the maximal ideal of FP is the maximal
ideal of Gφ(P ). (In the case of proper normal curves considered in Section 4.4 this
condition is automatically fulfilled by the morphisms considered there.)

The category of locally ringed spaces is defined to be the category whose objects
are locally ringed spaces and whose morphisms are local homomorphisms.

Definition 5.1.4 A scheme is a locally ringed space (X,OX) having an open
covering {Ui : i ∈ I} such that for all i the locally ringed spaces (Ui,OX |Ui

) are
isomorphic to affine schemes.

We define the category of schemes (resp. affine schemes) as the full subcategory
of that of locally ringed spaces spanned by schemes (resp. affine schemes). This
means that a morphism of schemes is a morphism of locally ringed spaces.

Given a ring homomorphism φ : A → B, there is a canonically defined mor-
phism Spec (φ) : Spec (B) → Spec (A) of schemes ([34], II.2.3 (b) or [64], II.2).
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The continuous map Spec (φ) sends a prime ideal P ∈ Spec (B) to φ−1(P ), and
the morphism Spec (φ)♯ of sheaves is the unique one that is given over a basic open
set D(f) ⊂ Spec (A) by the natural ring homomorphism Af → Bφ(f). Thus the
rule A 7→ (Spec (A),OSpec (A)) is a contravariant functor from the category of rings
to that of schemes.

Proposition 5.1.5 The above contravariant functor induces an isomorphism of
the category of affine schemes with the opposite category of commutative rings with
unit. The inverse functor is given by (X,OX) → OX(X).

Proof: See [34], Proposition II.2.3 or [64], II.2, Corollary 1.

Examples 5.1.6 Here are some examples of schemes.

1. If k is a field, then the underlying space of Spec (k) consists of a single point,
and the stalk of the structure sheaf at this point is k.

2. More generally, if A ∼=
⊕
Li is a finite étale k-algebra with some finite

separable extensions Li|k, then Spec (A) is the disjoint union of the one-
point schemes Spec (Li).

3. If A is a discrete valuation ring with fraction field K, then X = Spec (A) has
one closed point corresponding to the maximal ideal M , and one non-closed
point corresponding to the ideal (0). There are two open subsets, namely
(0) and X. The rings of sections of OX over these open subsets are K and
A, respectively.

4. The affine scheme Spec (Z) has one closed point corresponding to each prime
number p, and a non-closed point corresponding to (0). The nonempty open
subsets all contain (0) and their complement in Spec (Z) is finite (possibly
empty). The ring of sections of the structure sheaf over an open subset U is
the ring of rational numbers with denominator divisible only by the primes
lying outside U . This example has a direct generalization to affine schemes
of the form Spec (A) with A a Dedekind ring.

5. If k is a field and A is a finitely generated k-algebra, then the closed points of
X = Spec (A) correspond bijectively to the closed points of an affine variety
with coordinate ring A as defined in Section 4.2. Moreover, the stalk of OX

at a closed point P is exactly the local ring OX,P as defined in the previous
chapter, and the topology induced on the subset X0 ⊂ X of closed points
is exactly the Zariski topology as defined there. However, X has non-closed
points as well, corresponding to non-maximal prime ideals.

6. A proper normal curve XK as defined in Section 4.4 gives rise to a non-affine
scheme. The only difference with the definition given there is that one has
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to add an extra point to the underlying topological space that is contained
in every open subset. It corresponds to the ideals (0) in the local rings of X,
and is called the generic point. The structure sheaf is defined in the same
way. Its stalk at the generic point is isomorphic to K.

We now generalize a few other notions from the previous chapter to schemes.

Definition 5.1.7 A scheme X is called reduced (resp. integral) if for all open
subsets U ⊂ X the ring OX(U) has no nilpotent elements (resp. no zero-divisors).

Recall that a topological space is irreducible if it cannot be expressed as a
union of two proper closed subsets.

Lemma 5.1.8 A scheme X is integral if and only if it is reduced and its underlying
space is irreducible.

Proof: See [34], Proposition II.3.1.

An integral scheme always has a unique point whose closure is the whole un-
derlying space of the scheme (see [64], §II.2), its generic point. In the affine case
it corresponds to the ideal (0).

Definition 5.1.9 The dimension dimX of a scheme X is the supremum of the
integers n for which there exists a strictly increasing chain Z0 ⊂ Z1 ⊂ · · · ⊂ Zn
of irreducible closed subsets properly contained in X. The dimension dimA of a
ring is the dimension of Spec (A).

There are topological properties of schemes coming from the topology of the
underlying space. Thus for instance we say that a scheme is connected or that it
is quasi-compact (meaning that from each open covering we may extract a finite
subcovering) if the underlying space is. Similarly, properties of local rings define
algebraic restrictions. A scheme X is thus said to be locally Noetherian if the stalks
OX,P of its structure sheaf are Noetherian local rings; if moreover X is integral,
then we say that X is Noetherian. The scheme X is normal if the stalks OX,P are
integrally closed domains, and regular if the OX,P are regular local rings. (Recall
that a Noetherian local ring A with maximal ideal M and residue field κ = A/M
is said to be regular if dimκM/M2 = dimA.) A regular scheme is integral if and
only if it is connected.

Next we mention some important examples of morphisms of not necessarily
affine schemes.

Examples 5.1.10
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1. Given a scheme X and an open subset U ⊂ X, the ringed space given by U
and OU := (OX)|U ) is also a scheme, the open subscheme associated with U .
The morphism of schemes defined by the topological inclusion j : U → X
and the morphism of sheaves OX → j∗OU is called an open immersion.

2. A morphism Z → X of affine schemes is a closed immersion if it corresponds
via Proposition 5.1.5 to a quotient map A → A/I for some ideal I ⊂ A. A
general morphism is a closed immersion if it is injective with closed im-
age and its restrictions to elements of an affine open covering yield closed
immersions in the above sense.

We now come to an important construction for schemes that will in particular
enable us to define the fibres of a morphism. Before Construction 2.4.13 we intro-
duced the fibre product Y ×X Z of two topological spaces Y and Z equipped with
maps to a third space X as the subspace of those points (y, z) ∈ Y ×Z where y and
z map to the same point of X. We also remarked that the fibre product is charac-
terized by a universal property. It is this definition via the universal property that
carries over to the category of schemes. Before we state it precisely, we define, as
in topology, a scheme over X to be a morphism Y → X of schemes. A morphism
of schemes over X is a morphism Y → Z compatible with the projections to X. In
the case when X = Spec (k) for a field k, we shall abusively speak of a k-scheme.

Proposition 5.1.11 Given a scheme X and two morphisms p : Y → X, q : Z → X
of schemes, the contravariant functor

S 7→ {(φ, ψ) ∈ Hom(S, Y ) × Hom(S,Z) : p ◦ φ = q ◦ ψ}

on the category of schemes over X is representable by a scheme Y ×X Z over X.

Proof: See [34], Theorem II.3.3. In the case when X = Spec (A), Y = Spec (B)
and Z = Spec (C) are all affine, then Y ×X Z is Spec (B ⊗A C). The general case
is handled by a patching procedure.

The scheme Y ×X Z is called the fibre product of Y and Z over X. It is
equipped with two canonical morphisms to Y and Z making the diagram

Y ×X Z
π2−−−→ Z

π1

y
yq

Y
p−−−→ X

commute (they correspond to the identity morphism of Y ×X Z via Proposition
5.1.11). We say that the morphism π1 is the base change of q via p, and similarly
π2 is the base change of p via q.

We now define the fibre of a morphism Y → X at a point P of X. For this we
first need to define the inclusion morphism iP : Specκ(P ) → X of the point P in
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X. If U = SpecA is an affine open subset of X containing P , then P is identified
with a prime ideal of A and we dispose of a morphism A → AP that we may
compose with the natural projection AP → AP /PAP = κ(P ). By Proposition
5.1.5 it corresponds to a morphism Specκ(P ) → U , whence iP by composition
with the inclusion map U → X. It is readily verified that iP does not depend on
the choice of U .

Definition 5.1.12 Given a morphism φ : Y → X and a point P of X, the fibre
of φ at P is the scheme YP := Y ×X Specκ(P ), the fibre product being taken with
respect to the maps φ and iP .

Remark 5.1.13 The underlying topological space of a fibre product of schemes
is not the topological fibre product of the underlying spaces in general. For in-
stance, if k is a field, ks a separable closure and L|k a separable extension, then
Spec (L) ×Spec (k) Spec (ks) = Spec (L ⊗k ks) is a finite disjoint union of copies of
Spec (ks), whereas the topological fibre product is just a point.

However, given a morphism φ : Y → X of schemes and a point P of X,
the underlying topological space of the fibre YP is homeomorphic to the subspace
φ−1(P ) of the underlying space of Y ([34], Ex. II.3.10).

Example 5.1.14 When X = Spec (A) with A a discrete valuation ring, a mor-
phism Y → X has two fibres. One is over the generic point of X called the generic
fibre; it is an open subscheme in X and may be empty. The other fibre is the one
over the closed point; it is closed in X and is usually called the special fibre.

The notion of fibre product also allows us to define the diagonal map ∆ : Y →
Y ×X Y coming from a morphism of schemes Y → X; it is induced by the identity
map of Y in both coordinates. In the affine case X = Spec (A), Y = Spec (B) it
is a closed immersion coming from the surjection B ⊗A B → B induced by the
multiplication map (b1, b2) 7→ b1b2. However, this is not always so in the general
case ([34], Example 4.0.1), so we record it as a definition:

Definition 5.1.15 A morphism Y → X of schemes is separated if the diagonal
map ∆ : Y → Y ×X Y is a closed immersion.

The separatedness property of schemes is an analogue of the Hausdorff prop-
erty in topology: one checks that the topological diagonal map Y → Y × Y has
closed image if and only if Y is a Hausdorff space. Separatedness thus intuitively
corresponds to the Hausdorff property for all fibres. The next important defini-
tion should be thought of as the scheme-theoretic analogue of a morphism with
compact fibres. First a general notion: a morphism φ : Y → X is locally of finite
type if X has an affine open covering by subsets Ui = Spec (Ai) so that φ−1(Ui)
has an open covering Vij = Spec (Bij) with finitely generated Ai-algebras Bij . It
is of finite type if there is such an open covering with finitely many Vij for each i.
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Definition 5.1.16 A separated morphism Y → X of schemes is proper if it is of
finite type and for every morphism Z → X the base change map Y ×X Z → Z is
a closed map (i.e. maps closed subsets onto closed subsets).

Examples 5.1.17

1. A closed immersion is proper ([34], Corollary II.4.8 (a)).

2. A finite morphism Y → X is proper ([64], §II.7). Here a finite morphism
is defined as in the previous chapter: there is an affine open covering of X
by subsets Ui = Spec (Ai) so that φ−1(Ui) = Spec (Bi) is affine, and Bi is
finitely generated as an Ai-module. In fact, under a finite morphism the
inverse image of every affine open subset of X has this property ([64], §II.7,
Proposition 5). It follows that the class of finite morphisms is stable by
composition and base change.

3. An important example of a proper morphism is the projective line P1
X over

a scheme X. For X = Spec (A) affine, it can be defined by gluing the ringed
spaces Spec (A[x]) and Spec (A[x−1]) together along the isomorphic open
subschemes Spec (A[x, x−1]). For general X one takes an open covering of X
by open affine subschemes Ui and glues the P1

Ui
together in a straightforward

way.

More generally, one defines Pn
X for affine X by gluing together n+ 1 copies

of Spec (A[x1, . . . , xn]) along the open subsets defined by xi 6= 0 in the usual
way. One then defines a morphism Y → X to be projective if it factors as
a closed immersion Y → Pn

X for some n, followed by the natural projection
Pn
X → X. All these morphisms are proper ([34], Theorem II.4.9).

Next a general notion for schemes that generalizes the concept of modules over
a ring.

Definition 5.1.18 Let X be a scheme. A sheaf of OX-modules or an OX-module
for short is a sheaf of abelian groups F on X such that for each open U ⊂ X the
group F(U) is equipped with an OX(U)-module structure OX(U)×F(U) → F(U)
making the diagram

OX(U) ×F(U) −−−→ F(U)
y

y

OX(V ) ×F(V ) −−−→ F(V )

commute for each inclusion of open sets V ⊂ U . In the special case when F(U) is
an ideal in OX(U) for all U we speak of a sheaf of ideals on X.

Examples 5.1.19 Here are two natural situations where OX -modules arise.
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1. Let φ : X → Y be a morphism of schemes. We know that at the level of
structure sheaves φ is given by a morphism φ♯ : OY → φ∗OX , whence an
OY -module structure on φ∗OX .

2. In the previous situation the kernel I of the morphism φ♯ : OY → φ∗OX

(defined by I(U) = ker(OY (U) → φ∗OX(U))) is a sheaf of ideals on Y .

The next proposition gives a means for constructing OX -modules over affine
schemes out of modules over the ring of global sections.

Lemma 5.1.20 Let X = Spec (A) be an affine scheme, and M an A-module.

There is a unique OX-module M̃ satisfying M̃(D(f)) = M ⊗A Af over each basic
open set D(f) ⊂ X.

Proof: The proof is similar to that of Lemma 5.1.2. See [64], Section III.1 or
[34], Proposition II.5.1 for a direct approach.

Definition 5.1.21 Let X be a scheme. A quasi-coherent sheaf on X is an OX -
module F for which there is an open affine cover {Ui : i ∈ I} of X such that the
restriction of F to each Ui = Spec (Ai) is isomorphic to an OUi

-module of the form

M̃i with some Ai-module Mi. If moreover each Mi is finitely generated over Ai,
then F is a coherent sheaf. The sheaf F is locally free we may choose the above
data in such a way that the Mi are free A-modules. Locally free sheaves of rank
1 are called invertible sheaves.

Remark 5.1.22 It can be shown that for an affine scheme X = Spec (A) the

functor M → M̃ establishes an equivalence between the category of A-modules
and that of quasi-coherent sheaves on X. See [34], Corollary II.5.5 or [64], III.1,
Corollary to Proposition 1.

We now return to the first example in 5.1.19 and investigate the question of
determining whether a morphism φ : X → Y yields a quasi-coherent sheaf φ∗OX

on Y . This is not true in general, but imposing restrictions on φ yields sufficient
conditions.

Here is such a condition: a morphism φ : X → Y of schemes is affine if Y
has a covering by affine open subsets Ui = SpecAi such that for each i the open
subscheme φ−1(Ui) of X is affine as well. By definition, finite morphisms (Example
5.1.10 (2)) are affine. The following lemma is then almost tautological for F = OX ,
and the general case can be reduced to it; we leave it as an exercise to the readers.

Lemma 5.1.23 If φ : X → Y is an affine morphism and F is a quasi-coherent
sheaf on X, then φ∗F is a quasi-coherent sheaf on Y . If moreover F is coherent
and φ is finite, then φ∗F is coherent.
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Remark 5.1.24 If φ : X → Y is an affine morphism, then φ∗OX is actually a
sheaf of OY -algebras. It can be shown that the contravariant functor X 7→ φ∗OX

induces an anti-equivalence of categories between affine morphisms X → Y and
quasi-coherent sheaves of OX -algebras. The inverse functor is obvious when X
and Y are affine, and the general case is handled by patching; see [34], Exercise
II.5.17.

Remark 5.1.25 Nakayama’s lemma ([48], Chapter X, Lemma 4.3) is a key tool
in the study of coherent sheaves. For instance, it can be used to show that if the
stalk of a coherent sheaf is 0 at a point P , then the sheaf restricts to 0 in an open
neighbourhood of P . Similarly, if the stalk at P is a free OX,P -module, then the
sheaf is locally free in a neighbourhood of P . See the discussion at the end of §III.2
of [64].

We now introduce an important class of quasi-coherent sheaves, the sheaves of
relative differentials. First a construction for rings.

Definition 5.1.26 Given a morphism A → B of rings, we define the B-module
Ω1
B|A of relative differential forms as follows: if F (B) denotes the free B-module

generated by symbols db for all b ∈ B, let Ω1
B|A be the quotient of F (B) by

the submodule generated by elements of the form da, d(b1 + b2) − db1 − db2 or
d(b1b2) − b1db2 − b2db1 for some a ∈ A or b1, b2 ∈ B.

Example 5.1.27 Assume that B arises as the quotient of the polynomial ring
A[x1, . . . , xn] by an ideal (f1, . . . , fm). Then Ω1

B|A is the quotient of the free B-
module generated by the dxi modulo the submodule generated by the elements∑

i ∂ifjdxi (1 ≤ j ≤ m), where ∂i denotes the partial derivative with respect to
xi. This follows immediately from the above construction.

It follows from the construction that for an A-algebra A′ one has an isomor-
phism Ω1

B⊗AA′|A′
∼= Ω1

B|A ⊗A A
′; this is the base change property of differentials.

Also, for a multiplicative subset S of B one has Ω1
BS |A

∼= Ω1
B|A ⊗B BS ; this is the

localization property of differentials. It follows from the latter property that the
quasi-coherent sheaf Ω̃1

B|A on Spec (B) satisfies Ω̃1
B|A(D(f)) = Ω1

Bf |A
for all basic

open sets D(f) ⊂ Spec (B).
This defines the sheaf of relative differential forms for morphisms of affine

schemes. To extend the definition to general morphisms we need an algebraic
lemma. Let A→ B be a ring homomorphism, and let I be the kernel of the multi-
plication map m : B⊗AB → B sending b1 ⊗ b2 to b1b2. Then since multiplication
by elements of I is trivial on I/I2, there is a natural (B⊗AB)/I-module on I/I2.
This is in fact a B-module structure since (B ⊗A B)/I ∼= B by surjectivity of m.

Lemma 5.1.28 There is a canonical isomorphism of B-modules Ω1
B|A

∼= I/I2.
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Proof: See [64], III.1, Theorem 4.

The lemma motivates the following construction. Let φ : X → Y be a sepa-
rated morphism of schemes, and let ∆ : X → X ×Y X be the associated diagonal
morphism. Let I ⊂ OX×Y X be the kernel of the morphism of structure sheaves
∆♯ : OX×Y X → ∆∗OX . It defines the closed subscheme ∆(X) ⊂ X ×Y X. As
in the affine case, we see that I/I2 is a OX×Y X/I-module. But the latter sheaf
is zero outside ∆(X), and may be identified with O∆(X) (more precisely, with the
extension of this sheaf by 0).

Definition 5.1.29 The sheaf of relative differentials ΩX|Y is the OX -module de-

fined by pulling back the O∆(X)-module (I/I2) via the isomorphism X
∼→ ∆(X).

We finally discuss two important applications of differentials. The first is the
definition of smoothness for a scheme of finite type over a field k (i.e. for a
morphism X → Spec (k) of finite type).

Definition 5.1.30 Let k be a field, and X a separated k-scheme of finite type
whose irreducible components are of the same dimension d. We say that X is
smooth over k if the sheaf ΩX|Spec (k) is locally free of rank d.

Using Example 5.1.27 one shows that for k algebraically closed the condition
on ΩX|Spec (k) is equivalent to saying that for an affine open subset of the form
U = Spec (k[x1, . . . , xn]/(f1, . . . , fm)) the Jacobian determinant of the fi has rank
n − d at all closed points of U ; see [34], Theorem II.8.15. Thus we have defined
an algebraic analogue of the concept of a complex submanifold of Cn. For k
perfect there is also a purely algebraic characterization going back to Zariski: X
is smooth over k if and only if it is a regular scheme (see [34], Theorem II.8.15 for
k algebraically closed; the proof of the general case is similar).

The other application is the differential characterization of finite étale algebras.

Proposition 5.1.31 A finite dimensional algebra A over a field is étale if and
only if Ω1

A|k = 0.

Proof: The ‘only if’ part is an easy application of Example 5.1.27 and the prim-
itive element theorem. The ‘if’ part is a bit more difficult; see e.g. [18], Corollary
16.16.

5.2 Finite Étale Covers of Schemes

We now come to the general definition of finite étale morphisms of schemes.
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Definition 5.2.1 A finite morphism φ : X → S of schemes is locally free if the
direct image sheaf φ∗OX is locally free (of finite rank). If moreover each fibre XP

of φ is the spectrum of a finite étale κ(P )-algebra, then we speak of a finite étale
morphism. A finite étale cover is a surjective finite étale morphism.

Remarks 5.2.2

1. In view of Remark 5.1.24, to define a finite locally free morphism is the same
as defining a quasi-coherent OX -algebra A that is locally free of finite rank
as an OX -module. Finite étale morphisms correspond to OX -algebras such
that AP ⊗OX,P

κ(P ) is a finite étale κ(P )-algebra for all P ∈ X.

2. A finitely generated module M over a local ring A is free if and only if it
is flat, i.e. tensoring with M takes short exact sequences of A-modules to
short exact sequences (see e.g. [48], Chapter XVI, Theorem 3.8). Thus a
finite morphism of schemes is locally free if and only if φ∗OX is a sheaf of
flat OS-modules. In the latter case one calls φ a flat morphism.

In general, a not necessarily finite morphism is defined to be étale if it is flat,
locally of finite type and the fibre over each point P has an open covering
by spectra of finite étale κ(P )-algebras. In this book we shall not consider
non-finite étale morphisms.

3. The image of a finite and locally free morphism φ is both open and closed.
Indeed, it is closed because φ is finite, hence proper, and it is open because
by local freeness φ∗OX has nonzero stalks over an open subset of S.

There is an important reformulation of the definition of a finite étale morphism
that brings it closer to the notion of a finite cover in topology. To state it, define
first a geometric point of a scheme S as a morphism s̄ : Spec (Ω) → S, where
Ω is an algebraically closed field. The image of s̄ is a point s of S such that Ω
is an algebraically closed extension of κ(s). Given a morphism φ : X → S and
a geometric point s̄ : Spec (Ω) → S of S, the geometric fibre Xs̄ of φ over s̄ is
defined to be the fibre product X ×S Spec (Ω) induced by s̄ : Spec (Ω) → S. Now
Proposition 1.5.6 implies that the fibres of φ are spectra of finite étale algebras if
and only if its geometric fibres are of the form Spec (Ω × · · · × Ω), i.e. they are
finite disjoint unions of points defined over Ω. (The latter is to be understood in
the scheme-theoretic sense, because for instance in Example 4.5.4 the fibre over
0 is topologically a point, but not a C-point as a scheme.) We shall see that
working with the geometric fibres of a finite étale morphism one obtains a nice
theory analogous to that of topological covers.

Remarks 5.2.3 Here are some properties of finite étale morphisms that are more
or less immediate from the definition.
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1. If φ : X → S and ψ : Y → X are finite étale morphisms, then so is
φ ◦ ψ : Y → S. Local freeness is immediate to check, and the property of
fibres follows as in Lemma 4.5.10.

2. If φ : X → S is a finite étale morphism and Z → S is any morphism, then
X ×S Z → Z is a finite étale morphism. This is again immediate from the
definition.

We next check that the definition of finite étale covers given above generalizes
the one for normal curves used in the previous chapter. To see this, note first that
the separability assumption made in Definition 4.5.1 corresponds to étaleness of
the fibre over the generic point. Thus it suffices to prove the following lemma.

Lemma 5.2.4 Let φ : X → S a finite surjective morphism of integral schemes,
where S is normal of dimension one. Then φ is locally free.

Proof: We may assume that X = Spec (B) and S = Spec (A) are affine, and
φ comes from a ring homomorphism λ : A → B. At a point P ∈ S the stalk
of φ∗OX is the spectrum of the localization Bλ(P ), which is a finitely generated
AP -module. Choose elements t1, . . . , tn ∈ BP whose images modulo PBP form a
basis of the κ(P )-vector space BP /PBP . By Nakayama’s lemma ([48], Chapter
X, Lemma 4.3) they generate BP over AP . It then suffices to see that the ti are
linearly independent over the fraction field K of AP . If not, there is a nontrivial
relation

∑
aiti = 0 with ai ∈ K. As S is normal of dimension one, the local ring

AP is a discrete valuation ring (Proposition 4.1.9), so PAP is a principal ideal. By
multiplying with a suitable power of a generator of PAP we may assume that all
the ai lie in AP and not all of them are in PAP . But then reducing modulo P we
obtain a nontrivial relation among the ti in BP /PBP , a contradiction.

Remark 5.2.5 There are other important examples of finite étale covers X → S
with S normal of dimension one. For instance, when X = Spec (B) and S =
Spec (A) are affine and the morphism comes from an inclusion A ⊂ B, then A and
B are Dedekind rings and the points in the fibre over P ∈ S correspond to the
factors Pi in the decomposition PB = P e11 . . . P er

r (see Facts 4.1.5). In particular,
XP is étale if and only if all ei are equal to 1.

This is particularly interesting when K ⊂ L are finite extensions of Q, and A
(resp. B) is the integral closure of Z in K (resp. B). The morphism Spec (B) →
Spec (A) is finite (Fact 4.1.4) and surjective (Fact 4.1.1 (4)). The case when it
is a finite étale cover corresponds in classical parlance to an unramified extension
of number fields K ⊂ L. According to a famous theorem of Minkowski (see e.g.
[69], Chapter III, Theorem 2.18) the scheme Spec (Z) has no nontrivial finite étale
covers. This is the arithmetic analogue of the simply connectedness of the complex
affine line.
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We now give a simple example of a finite étale cover X → S where S is not
necessarily one-dimensional.

Example 5.2.6 Let S = Spec (A) and X = Spec (B) be affine, where B =
A[x]/(f) with a monic polynomial f ∈ A[x] of degree d. As B is freely gen-
erated as an A-module by the images of 1, x, x2, . . . xd−1 in B, the morphism
φ : Spec (B) → Spec (A) is finite and locally free. If moreover (f, f ′) = (1) in
A[x], then φ is finite étale. Indeed, if P ∈ S, then the fibre XP is the spectrum
of B ⊗A κ(P ) ∼= κ(P )[x]/(f̄), where f̄ is the image of f in κ(P )[x]. It has only
simple roots by our assumption on f ′, so this is a finite étale κ(P )-algebra.

In the previous example we have Ω1
X/S = 0. This is a general fact, as the

following proposition shows.

Proposition 5.2.7 Let φ : X → S be a finite and locally free morphism. The
following are equivalent.

1. The morphism φ is étale.

2. The sheaf of relative differentials Ω1
X/S is 0.

3. The diagonal morphism ∆ : X → X×SX coming from φ is an isomorphism
of X onto an open and closed subscheme of X ×S X.

See [59], Proposition I.3.5 for a generalization without the assumption that φ
is finite and locally free.

Proof: To show that (1) ⇔ (2) we may assume that X and S are affine, and
then by the localisation and base change properties of differentials and Nakayama’s
lemma we are reduced to showing that for all P ∈ S the fibre XP is the spectrum of
a finite étale κ(P )-algebra if and only if Ω1

XP |Spec (κ(P )) = 0. This is the differential

characterization of finite étale algebras (Proposition 5.1.31).

Next we show (2) ⇒ (3). As φ is finite, hence separated, the diagonal morphism
∆ : X → X ×S X is a closed immersion. It corresponds to a coherent sheaf of
ideals I on X ×S X. The restriction of the quotient I/I2 to ∆(X) is isomorphic
to Ω1

X/S , so it is 0 by assumption (2). It follows using Nakayama’s lemma that the
stalk of I is trivial at all points of X. As I is coherent, we obtain that I = 0 on
an open subset of X ×S X, so ∆(X) is both open and closed in X ×S X.

Finally, for (3) ⇒ (1) let s̄ : Spec (Ω) → S be a geometric point. Taking the
base change of the morphism ∆ : X → X×SX over S via s̄, we obtain a morphism
∆s̄ from the geometric fibre Xs̄ = Spec (Ω) ×S X to

(Xs̄) ×S X = (Spec (Ω) ×S X) ×Spec (Ω) Spec (Ω) ×S X = Xs̄ ×Spec (Ω) Xs̄.
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As property (3) behaves well with respect to base change, ∆s̄ is an isomorphism
of Xs̄ onto an open and closed subscheme of Xs̄ ×Spec (Ω) Xs̄. The geometric fi-
bre Xs̄ is the spectrum of a finite dimensional Ω-algebra, and as such it has
finitely many points, all having residue field Ω because Ω is algebraically closed.
If t̄ : Spec (Ω) → Xs̄ is such a point, then by taking yet another base change, this
time by t̄, we obtain a morphism Spec (Ω) → Xs̄, which is again an isomorphism
onto an open and closed subscheme of Xs̄. As Spec (Ω) is connected, this must
be a connected component. We conclude that Xs̄ as a scheme is a finite disjoint
union of points, as required.

Remark 5.2.8 The equivalence (1) ⇔ (2) of the proposition gives a criterion for
checking étaleness in practice. Assume φ : X → S is finite and locally free (as
we have seen, the latter property is automatic for S normal of dimension one),
and moreover each point of S has an affine open neighbourhood U = Spec (A)
such that φ−1(U) = Spec (B), with B = A[x1, . . . , xn]/(f1, . . . , fn) for some monic
polynomials fi. If over all these open subsets the Jacobian determinant det(∂jfi)i,j
maps to a unit in B, then Ω1

X|S = 0, and so φ is a finite étale morphism. This is

the Jacobian criterion for étaleness. (The converse is also true; see [59], Corollary
I.3.16.)

Using the previous proposition we now prove that finite étale covers are locally
trivial in an appropriate sense. Call a finite étale cover φ : X → S trivial if X as a
scheme over S is isomorphic to a finite disjoint union of copies of S, and the map
φ restricts to the identity on each component.

Proposition 5.2.9 Let S be a connected scheme, and φ : X → S an affine
surjective morphism. Then φ is a finite étale cover if and only if there is a finite,
locally free and surjective morphism ψ : Y → S such that X×S Y is a trivial cover
of Y .

Proof: To prove the ‘if’ part, we first show that φ must be finite and locally
free. As ψ is locally free, each point of S is contained in an affine open subset
U = Spec (A) over which ψ restricts to a morphism Spec (C) → Spec (A) with an
A-algebra C that is finitely generated and free as an A-module. If φ restricts to
Spec (B) → Spec (A) over U , then the base change over Spec (B) is of the form
Spec (B⊗A C) → Spec (B). Here B⊗A C is a finitely generated free C-module by
assumption, so it is also a finitely generated and free A-module. As on the other
hand it is isomorphic to a finite direct sum of copies of B, this is only possible if
B is finitely generated and free over A.

Next let s̄ : Spec (Ω) → Y be a geometric point of Y ; by composition with ψ
it yields a geometric point of S. The geometric fibres X(s̄◦ψ) and (X ×S Y )s̄ are
isomorphic, and the latter is a finite direct sum of copies of Spec (Ω) by assumption.
As ψ is surjective, this shows that all fibres of φ are étale.
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Now to the ‘only if’ part. As S is connected, we see as in topology that all fibres
of φ have the same cardinality n. Following Lenstra [52], we use induction on n,
the case n = 1 being trivial. For n > 1 we consider the base change X×SX → X.
By part (3) of the previous proposition the diagonal map ∆ induces a section of
this map, and in fact X ×S X is the disjoint union of ∆(X) with some open and
closed subscheme X ′. As the inclusion map X ′ → X ×S X and the projection
X ×S X → X are both finite and étale (the latter by Remark 5.2.3 (2)), we see
from Remark 5.2.3 (1) that so is their composite X ′ → X. By construction, it
has fibres of cardinality n − 1, so the inductive hypothesis yields a finite, locally
free and surjective morphism ψ′ : Y → X such that X ′ ×X Y is isomorphic to
the disjoint union of (n− 1) copies of Y . But then (X ×S X) ×X Y ∼= X ×S Y is
the disjoint union of n copies of Y . It remains to notice that the composite map
ψ := ψ′ ◦ φ is also finite, locally free and surjective, being the composite of two
such maps.

Remark 5.2.10 In topology covers are characterized by the property that they
become trivial after restricting to sufficiently small open subsets. Notice that the
restriction of a cover Y → X above an open subset U ⊂ X is none but the fibre
product Y ×X U → U in the category of topological spaces. This explains the
analogy of the above proposition with the topological situation.

In fact the proposition says that finite étale covers are locally trivial for the
Grothendieck topology where covering families are given by surjective finite locally
free morphisms. For a discussion of Grothendieck topologies, see e.g. [59] or [109].

We conclude this section with some facts related to special schemes. Among
these normal schemes will play a prominent role, so we first summarize a few
known facts about them.

Facts 5.2.11

1. Recall that we defined a scheme to be normal if its local rings are integrally
closed domains. In the locally Noetherian case there is a useful algebraic
criterion for this:

Serre’s Normality Criterion. A reduced Noetherian local ring is normal
if and only if for each prime ideal P of height 1 the localization AP is a
discrete valuation ring, and each prime divisor of a principal ideal is of
height 1.

Here the height of a prime ideal P is by definition the dimension of the
localization AP . For a proof of the criterion, see [57], Theorem 23.8.

2. Given an integral scheme S with function field K and a finite separable
extension L|K, the normalization of S in L is defined to be a normal integral
scheme S̃ with function field L together with a finite surjective morphism
ν : S̃ → S. The normalization exists and is unique ([64], §III.8, Theorem
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3). In the affine case S = Spec (A) it is the spectrum of the integral closure
of A in L (compare with the proof of Theorem 4.3.10); in the general case it
is obtained by patching normalizations of affine open subschemes together.

This being said, we return to finite étale covers.

Proposition 5.2.12 Let S be a connected scheme, and φ : X → S a finite étale
cover. Any of the following properties of S implies the same property for X.

1. S is reduced.

2. S is regular.

3. S is normal and locally Noetherian.

Proof: In all three cases we may assume X = Spec (B) and S = Spec (A) are
affine.

Assume first S is reduced. Let P be a point of S, which we view as a prime ideal
of A. By assumption the localization AP has no nilpotents, and we shall prove that
the same holds for CP = B⊗AAP . This will suffice, as the local rings of points ofX
lying above P are localizations of CP , and φ is surjective. Let P1, . . . , Pr be the set
of minimal prime ideals of AP . Their intersection is the ideal of nilpotents in AP ,
so by assumption the natural map AP → ∏

(AP /Pi) is injective. But CP is a free
AP -module (because φ is locally free), hence by tensoring with CP we again obtain
an injective map CP → ∏

(CP /PiCP ). It thus suffices to show that the C/PiCP
have no nilpotents. But each Spec (CP /PiCP ) is finite étale over Spec (AP /Pi)
by Remark 5.2.3 (2), so by replacing AP with AP /Pi and CP with CP /PiCP we
reduce to the case where AP is an integral domain. Denoting by KP its fraction
field, we obtain that Spec (CP ⊗AP

KP ) → Spec (KP ) is a finite étale morphism
(again by Remark 5.2.3 (2)), and that the natural map CP → CP ⊗AP

KP induced
by the inclusion AP → KP is injective (again because φ is locally free). But then
CP has no nilpotents because CP ⊗AP

KP is a direct product of fields.

Now return to the case where X = Spec (B) and S = Spec (A) are affine. As
φ is a finite morphism, they have the same dimension, and if Q is a prime ideal
of B with Q ∩ A = P , then P and Q must have the same height. Moreover, it
follows from the definition of étaleness that the image of the maximal ideal MP of
OS,P generates the maximal ideal MQ of OX,Q. From this we conclude that the
regularity of S implies the regularity of X, and also that if MP is principal, then
so is MQ. This shows that both conditions of Serre’s normality criterion recalled
above are preserved, whence the proposition in the last two cases.

The strongest result about finite étale covers of a regular scheme is the follow-
ing.
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Theorem 5.2.13 (Zariski–Nagata purity theorem) Let φ : X → S be a finite
surjective morphism of integral schemes, with X normal and S regular. Assume
that the fibre XP of φ above each codimension 1 point P of S is étale over κ(P ).
Then φ is a finite étale cover.

Here the codimension of P means the dimension of the local ring OX,P . The
name ‘purity’ comes from the following reformulation: for φ : X → S a finite
surjective morphism of integral schemes with X normal and S regular, the closed
subscheme Z ⊂ S over which φ is not étale (the ‘branch locus’) must be of pure
codimension 1, i.e. each irreducible component of Z must have codimension 1.

The statement is of local nature, therefore it is enough to prove it whenX is the
spectrum of a regular local ring. In this case it is a difficult piece of commutative
algebra. See [67], Theorem 41.1 for Nagata’s original proof, and [30], X.3.4 for a
proof by Grothendieck.

Corollary 5.2.14 Let S be a regular integral scheme, and U ⊂ S an open sub-
scheme whose complement consists of points of codimension ≥ 2. The functor
X 7→ X ×S U induces an equivalence between the category of finite étale covers of
S and the category of finite étale covers of U .

Proof: To begin with, the morphism X×S U → U is a finite étale cover of U by
Remark 5.2.3 (2). Fully faithfulness holds because if and Y are finite and locally
free over S, then any morphism X×SU → Y ×SU over a dense open subset U ⊂ S
extends uniquely to a morphism X → Y over S by local freeness (to see this, look
at the corresponding morphism of OU -algebras). For essential surjectivity take a
finite étale cover Z → U . By Proposition 5.2.12 (2) it is a regular scheme, so it is
a finite disjoint union of regular integral schemes Zi finite and étale over U . Let
Xi be the normalization of S in the function field of Zi. It is normal and finite
étale over each codimension 1 point of S because these all lie in U by assumption.
Hence Xi → S is a finite étale cover by the theorem. Moreover, the disjoint union
X of the Xi satisfies X ×S U ∼= Z by construction.

5.3 Galois Theory for Finite Étale Covers

In this section we develop an analogue of the basic Galois theory of topological
covers. We begin with a characterization of sections of finite étale covers.

Proposition 5.3.1 Let φ : X → S be a finite étale cover, and let s : S → X
be a section of φ (i.e. a morphism satisfying φ ◦ s = idS). Then s induces an
isomorphism of S with an open and closed subscheme of X. In particular, if S is
connected, then s maps S isomorphically onto a whole connected component of X.

For the proof we need the following useful lemma.
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Lemma 5.3.2 Let φ : X → S and ψ : Y → X be morphisms of schemes.

1. If φ ◦ ψ is finite and φ is separated, then ψ is finite.

2. If moreover φ ◦ ψ and φ are finite étale, then so is ψ.

Proof: For the first statement, note again that the diagonal morphism X →
X ×S X coming from φ is a closed immersion as φ is separated. In particular,
it is a finite morphism. Taking fibre products over X with Y via ψ we obtain a
morphism Γψ : Y → Y ×S X (the ‘graph’ of ψ) that is again finite. The second
projection p2 : Y ×SX → X is also finite, being the base change of φ ◦ψ : Y → S
by φ : X → S. Thus p2 ◦ Γψ = ψ is finite.

If φ is moreover étale, then by Proposition 5.2.7 the diagonal morphism X →
X ×S X is an isomorphism of X onto an open and closed subscheme (a union of
connected components) of X×SX. As such, it is certainly a finite étale morphism,
hence so is Γψ : Y → Y ×S X by Remark 5.2.3 (2). As above, p2 : Y ×S X → X
is finite étale as well, and hence so is p2 ◦ Γψ = ψ by Remark 5.2.3 (1).

Proof of Proposition 5.3.1: By the lemma s is a finite étale morphism, hence
its image is both open and closed in X by Remark 5.2.2 (3). As it is injective, the
proposition follows.

The above property of sections enables us to prove the following analogue of
Proposition 2.2.2 which played a key role in the topological theory.

Corollary 5.3.3 If Z → S is a connected S-scheme and φ1, φ2 : Z → X are two
S-morphisms to a finite étale S-scheme X with φ1 ◦ z̄ = φ2 ◦ z̄ for some geometric
point z̄ : Spec (Ω) → Z, then φ1 = φ2.

Proof: By passing to the fibre product Z ×S X → Z and using the base change
property of étale morphisms (Remark 5.2.3 (2)) we may assume S = Z. Then we
have to prove that if two sections of a finite étale cover X → S of a connected
scheme S coincide at a geometric point, then they are equal. This follows from the
proposition because each such section, being an isomorphism of S onto a connected
component of X, is determined by the image of a geometric point.

Given a morphism of schemes φ : X → S, define Aut(X|S) to be the group
of scheme automorphisms of X preserving φ. By convention, automorphisms act
from the left. For a geometric point s̄ : Spec (Ω) → S there is a natural left action
of Aut(X|S) on the geometric fibre Xs̄ = X ×S Spec (Ω) coming by base change
from its action on X. We have the following property analogous to Proposition
2.2.4:

Corollary 5.3.4 If φ : X → S is a connected finite étale cover, the nontrivial
elements of Aut(X|S) act without fixed points on each geometric fibre. Hence
Aut(X|S) is finite.
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Proof: Applying the previous corollary with φ1 = φ, φ2 = φ ◦ λ for some au-
tomorphism λ ∈ Aut(X|S) yields the first statement. It then follows that the
permutation representation of Aut(X|S) on the underlying sets of geometric fibres
is faithful. But these sets are finite, whence the second statement.

To continue the parallelism with the topological situation, we consider quo-
tients by group actions. By the corollary just proven we need to restrict to quo-
tients by finite groups.

Construction 5.3.5 Let φ : X → S be an affine surjective morphism of schemes,
and G ⊂ Aut(X|S) a finite subgroup. Define a ringed space G\X and a morphism
π : X → G\X of ringed spaces as follows. The underlying topological space of
G\X is to be the quotient of X by the action of G, and the underlying continuous
map of π the natural projection. Then define the structure sheaf of G\X as the
subsheaf (π∗OX)G of G-invariant elements in π∗OX .

Proposition 5.3.6 The ringed space G\X constructed above is a scheme, the
morphism π is affine and surjective, and φ factors as φ = ψ ◦ π with an affine
morphism ψ : G\X → S.

Proof: We may assume, using the affineness assumption on φ, thatX = Spec (B)
and S = Spec (A) are affine, and φ comes from a ring homomorphism λ : A→ B.
Then it suffices to show that the ringed space G\X is isomorphic to the spectrum
of BG, the ring of G-invariants of B. This will imply the claim including the
assertions on π, because B is integral over BG (as every b ∈ B is a root of the
monic polynomial

∏
(x − σ(b)) ∈ BG[x], where σ runs over the elements of G),

and therefore Fact 4.1.1 (4) implies the surjectivity of π.
To identify the underlying space of G\X with XG := Spec (BG) it is enough

to identify them as sets, as a closed subset V (I) ⊂ X induces the closed subset
V (IG) ⊂ XG. As we have just seen the surjectivity of π : X → XG, we have to
show that the fibres of the map X → XG coming from the inclusion BG → B
are the G-orbits of Spec (B). Assume that two G-orbits {σ(P ) : σ ∈ G} and
{σ(Q) : σ ∈ G} of points of B lie above the same point PG ∈ Spec (BG). As the
fibre Xκ(PG) is zero-dimensional, the σ(P ) and σ(Q) induce maximal ideals σ(P )

and σ(Q) of the ring B = B ⊗BG κ(PG) with
⋂
σ(P ) =

⋂
σ(Q) = 0. But using

the Chinese Remainder Theorem we find b̄ ∈ B with b̄ ∈ σ(P ) and b̄ /∈ σ(Q) for
all σ ∈ G, which is a contradiction.

Finally, to show (π∗OX)G ∼= OXG
, notice that the first sheaf is quasi-coherent,

being the kernel of the morphism of quasi-coherent sheaves

π∗OX →
⊕

σ∈G

π∗OX , s 7→ (. . . , σ(s) − s, . . . ).

Thus it is enough to check the isomorphism on the rings of sections over XG, which
are BG in both cases.
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The scheme G\X over S is the quotient of X by G. It can be shown that it is
characterized by a universal property: every morphism λ : X → Y in the category
of schemes affine and surjective over S such that λ is constant on the orbits of G
factors uniquely through G\X.

Proposition 5.3.7 Let φ : X → S be a connected finite étale cover, and G ⊂
Aut(X|S) a finite group of S-automorphisms of X. Then X → G\X is a finite
étale cover of G\X, and G\X is a finite étale cover of S.

In [29] Grothendieck proved this under the additional assumption that the
schemes are locally Noetherian. We give a proof due to Lenstra [52] that works in
general.

Proof: Thanks to Lemma 5.3.2 (2) it suffices to prove that G\X → S is a finite
étale cover. Apply Proposition 5.2.9 to obtain a base changeX×SY → Y such that
X×S Y is a finite disjoint union of copies of Y , i.e. X×S Y ∼= F ×Y for a finite set
F . There is a natural action of G on X×SY coming by base change from its action
of X, which yields an isomorphism G\(X ×S Y ) ∼= (G\F ) × Y . Now observe that
G\(X×SY ) ∼= (G\X)×SY . Indeed, there is a natural map X×SY → (G\X)×SY
that is constant on G-orbits, whence a map G\(X ×S Y ) → (G\X) ×S Y . To see
that it induces an isomorphism we may argue over a small affine neighbourhood
U = Spec (A) of each point of S, with preimages Spec (B) and Spec (C) in X and
Y , respectively. There the isomorphism to be proven translates to BG ⊗A C

∼→
(B ⊗A C)G, which holds for U sufficiently small, as C is then a free A-module
with trivial G-action. We thus obtain that (G\X) ×S Y ∼= (G\F ) × Y , which is
again a finite disjoint union of copies of Y . We may then conclude by applying
Proposition 5.2.9 in the other direction.

As in topology, we define a connected finite étale cover X → S to be Galois
if its S-automorphism group acts transitively on geometric fibres. The following
analogue of Theorem 2.2.10 is now proven in the same way as in topology, using
Corollaries 5.3.1 and 5.3.3 as well as Proposition 5.3.7 instead of the corresponding
topological facts.

Proposition 5.3.8 Let φ : X → S be a finite étale Galois cover. If Z → S is a
connected finite étale cover fitting into a commutative diagram

X Z

S

-π

@
@

@@R
φ

?
ψ

then π : X → Z is a finite étale Galois cover, and actually Z ∼= H\X with some
subgroup H of G = Aut(X|S). In this way we get a bijection between subgroups
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of G and intermediate covers Z as above. The cover ψ : Z → S is Galois if and
only if H is a normal subgroup of G, in which case Aut(Z|S) ∼= G/H.

We next prove a key proposition that generalizes not so much a well-known
topological fact, but rather a basic statement in field theory. Namely, in Lemma
1.3.1 we proved that every finite separable field extension can be embedded in a
finite Galois extension and there is a smallest such extension, the Galois closure.

Proposition 5.3.9 Let φ : X → S be a connected finite étale cover. There is a
morphism π : P → X such that φ ◦ π : P → S is a finite étale Galois cover, and
moreover every S-morphism from a Galois cover to X factors through p.

The following proof is due to Serre.

Proof: Fix a geometric point s̄ : Spec (Ω) → S, and let F = {x̄1, . . . , x̄n} be the
finite set of Spec (Ω)-points of the geometric fibreXs̄. An ordering of the x̄i induces
a canonical geometric point x̄ of the n-fold fibre productXn = X×S · · ·×SX, giving
x̄i in the i-th component. Let P be the connected component of Xn containing
the image of x̄, and let π : P → X be the map induced by the first projection of
Xn to X. Using Remarks 5.2.3 we see that P is a finite étale cover of S via φ ◦ π.

Next we show that each point in the geometric fibre Ps̄ can be represented by
an n-tuple (x̄σ(1), . . . , x̄σ(n)) for some permutation σ of the x̄i. Indeed, each point
of Xn

s̄ corresponds to an element of Fn, so we only have to show that the points
concentrated on P have distinct coordinates. But by Proposition 5.2.7 (3) the
diagonal image ∆(X) of X in X ×S X is open and closed, and therefore so is its
inverse image by a projection πij mapping Xn to the (i, j)-components. As P is
connected, π−1

ij (∆(X)) ∩ P 6= ∅ would imply π−1
ij (∆(X)) ⊃ P , which is impossible

because x̄ hits P away from any of the π−1
ij (∆).

Now to show that P is Galois over S, remark that each permutation σ of
the x̄i induces an S-automorphism φσ of Xn by permuting the components. If
φσ ◦ x̄ ∈ Ps̄, then φσ(P ) ∩ P 6= ∅ and so φσ ∈ Aut(P |S) by connectedness of P .
Thus Aut(P |S) acts transitively on one geometric fibre, from which we conclude
as in Remark 2.2.8 that P is Galois.

Finally, if q : Q→ X is an S-morphism with Q Galois, choose a preimage ȳ of
x̄1. As q is a surjective morphism of covers by Proposition 5.3.8, after composing
with appropriate elements of Aut(Q|S) we get n maps q = q1, . . . , qn : Q → X
such that qi ◦ ȳ = x̄i. Whence an S-morphism Q → Xn that factors through P ,
for it maps ȳ to x̄ and Q is connected. This concludes the proof.

To close this section, we briefly discuss another point of view on Galois covers
that is often useful. First some definitions.

Definition 5.3.10 Let S be a scheme. A group scheme over S is a morphism of
schemes p : G → S that has a section e : S → G, together with S-morphisms
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mult : G ×S G → G (‘multiplication’) and i : G → G (‘inverse’), subject to the
commutative diagrams

G×S G×S G G×S G G G×S G

G×S G G G×S G G

-id×mult

?

mult×id

?

mult

Q
Q

Q
Q

Q
Q

QQs

id

?

e×id

-id×e

?

mult

-mult -mult

and

G G×S G

G×S G G.

@
@

@
@

@R

e◦p

?

i×id

-id×i

?

mult

-mult

We say that G is finite if the structure morphism p : G → S is finite. Similarly,
G is a finite flat (resp. finite étale) group scheme if p : G→ S is finite locally free
(resp. finite étale).

Examples 5.3.11

1. Let S be a scheme, Γ a finite group of order n. We define the constant group
scheme ΓS → S corresponding to Γ over S to be the disjoint union of n
copies of S indexed by Γ and equipped with the projection map given by
the identity on each component. The group operation is induced by that on
Γ. (Explicitly, a point (P1, P2) of ΓS ×S ΓS lies in some component indexed
by a pair (g1, g2) ∈ Γ × Γ, and on that component may be identified with a
point P ∈ S. We define P1 · P2 to be the point P on the component of ΓS
indexed by g1g2. The inverse is given similarly.) This is a finite étale group
scheme over S.

2. Assume S = Spec (k) for a field k. In this case a finite étale group scheme
G→ S is of the form G = Spec (A) with a finite étale k-algebra A. Hence
it corresponds via Theorem 1.5.2 to a finite set equipped with a continuous
action of Gal (ks|k). The fibre of G over the geometric point given by an
algebraic closure of ks carries a group structure coming from that of G; it
is compatible with the Galois action. Conversely, Galois-equivariant group
operations on a finite continuous Gal (ks|k)-set come from a group scheme
structure on the corresponding finite étale k-scheme, by a similar reasoning
as in the proof of Theorem 2.5.15. Thus the category of finite étale k-group
schemes is equivalent to the category of finite groups Γ carrying a continuous
Gal (ks|k)-action. Here the constant group scheme ΓSpec (k) corresponds to
Γ with trivial Galois action. For a general finite étale group scheme G there
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is always a finite separable field extension L|k such that G ×S Spec (L) is
isomorphic to the constant group scheme ΓSpec (L).

Definition 5.3.12 Let S be a connected scheme, and G → S a finite flat group
scheme. A (left) G-torsor or principal homogeneous space over S is a finite locally
free surjective morphism X → S together with a group action ρ : G ×S X → X
(defined by diagrams similar to those in the above definition) such that the map
(ρ, id) : G×S X → X ×S X is an isomorphism.

Another characterization of G-torsors is the following.

Lemma 5.3.13 Let S be a connected scheme, G → S a finite flat group scheme,
and X → S a scheme over S equipped with a left action ρ : G×S X → X.

These data define a G-torsor over S if and only if there exists a finite locally
free surjective morphism Y → S such that X ×S Y → Y is isomorphic, as a
Y -scheme with G×S Y -action, to G×S Y acting on itself by left translations.

Proof: For the ‘only if’ part, take Y = X. For the ‘if’ part, note first that
since G ×S Y → Y and Y → S are finite, locally free and surjective, the same
must be true of X → S. Also, the map G ×S X → X ×S X corresponds via
Remark 5.1.24 to a morphism λ : (φ∗OX) ⊗OS

(φ∗OX) → (φ∗OX) ⊗OS
(φ∗OG).

We have G×S Y ∼= X ×S Y by assumption, and therefore the map (ρ, idX , idY ) :
G×S X ×S Y → X ×S X ×S Y is an isomorphism. This means that λ becomes an
isomorphism after tensoring with φ∗OY . But φ∗OY is locally free, so λ must be
an isomorphism.

Remark 5.3.14 One defines torsors under arbitrary flat group schemes and states
a lemma exactly as above, except that ‘finite, locally free and surjective’ must be
replaced by ‘flat, locally of finite presentation and surjective’ everywhere. However,
the proof of the general lemma requires flat descent theory. See [59], Section III.4.

Example 5.3.15 Let k be a field, m > 1 an integer invertible in k. The spectrum
of the finite étale k-algebra k[µm] := k[x]/(xm − 1) is a finite étale group scheme
because it corresponds to the Gal (ks|k)-set given by the group µm of m-th roots
of unity. It is the group scheme (µm)k of m-th roots of unity over k.

Given an element a ∈ k× \ k×m, the spectrum of the field extension k( m
√
a)

is a µm-torsor. The action Spec (k[µm]) ×Spec (k) Spec (k( m
√
a)) → Spec (k( m

√
a))

is induced by multiplication with roots of unity; explicitly, it comes from the
k-morphism k( m

√
a) → k( m

√
a) ⊗k k[µm] sending m

√
a to m

√
a ⊗ ζ, where ζ is a

primitive m-th root of unity. When ζ ∈ k, the group scheme (µm)k is isomorphic
to the constant group scheme Z/mZ over k, and k( m

√
a) is a Galois extension with

group Z/mZ; therefore k( m
√
a) ⊗k k( m

√
a) is a finite direct product of copies of

k( m
√
a) carrying a permutation action of Z/nZ. Thus in this case we see that
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Y = Spec (k( m
√
a)) satisfies the requirement of the above definition. In the general

case Y = Spec (k(ζ, m
√
a)) will do.

A generalization of Kummer theory states that actually all µm-torsors over
Spec (k) arise in this way. See e.g. [111], Sections 18.2 and 18.4.

Proposition 5.3.16 Let S be a connected scheme, and G a finite étale group
scheme over S.

1. If G is a constant group scheme ΓS, then a G-torsor is the same as a finite
étale Galois cover with group Γ.

2. If there is a morphism S → Spec (k) with a field k, and G arises from an
étale k-group scheme Gk by base change to S, then every G-torsor Y → S is
a finite étale cover of S. Moreover, there is a finite separable extension L|k
such that Y ×Spec (k) Spec (L) → S ×Spec (k) Spec (L) is a Galois étale cover.

Proof: Statement (1) follows from Proposition 5.2.9 and Lemma 5.3.13. To
prove (2), one first takes a separable extension L|k for which Gk ×Spec (k) Spec (L)
is a constant group scheme, and then applies statement (1) to Y×Spec (k)Spec (L) →
S ×Spec (k) Spec (L); the conclusion follows by another application of Proposition
5.2.9.

5.4 The Algebraic Fundamental Group in the General
Case

We now come to the construction of the algebraic fundamental group of a scheme.
The discussion will be parallel to the classification of covers in topology, but there
are two important differences: there is no a priori definition of the monodromy
action, and the fibre functor is not representable. Grothendieck overcame these
difficulties by using categorical constructions.

We begin with some notation and terminology. For a scheme S denote by FetS
the category whose objects are finite étale covers of S, and the morphisms are
morphisms of schemes over S. Fix a geometric point s̄ : Spec (Ω) → S. For an
object X → S of FetS we consider the geometric fibre X ×S Spec (Ω) over s̄, and
denote by Fibs̄(X) its underlying set. Given a morphism X → Y in FetS , there
is an induced morphism of schemes X ×S Spec (Ω) → Y ×S Spec (Ω), whence a
set-theoretic map Fibs̄(X) → Fibs̄(Y ). We have thus defined a set-valued functor
Fibs̄ on FetS ; we call it the fibre functor at the geometric point s̄.

We now define the monodromy action on the fibres in an abstract way. Quite
generally, given a functor F between two categories C1 and C2, an automorphism
of F is a morphism of functors F → F that has a two-sided inverse. Composition
of morphisms then equips the set Aut(F ) of automorphisms of F with a group
structure, and we call the resulting group the automorphism group of F . Notice
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that for every object C of C1 and automorphism φ ∈ Aut(F ) there is by definition
a morphism F (C) → F (C) induced by φ. For a set-valued functor this gives a
natural left action of Aut(F ) on F (C).

Definition 5.4.1 Given a scheme S and a geometric point s̄ : Spec (Ω) → S, we
define the algebraic fundamental group π1(S, s̄) as the automorphism group of the
fibre functor Fibs̄ on FetS .

By the preceding discussion, there is a natural left action of π1(S, s̄) on Fibs̄(X)
for each finite étale S-scheme X, and therefore Fibs̄ takes its values in the category
of left π1(S, s̄)-sets. The main theorem is now the following.

Theorem 5.4.2 (Grothendieck) Let S be a connected scheme, and s̄ : Spec (Ω) →
S a geometric point.

1. The group π1(S, s̄) is profinite, and its action on Fibs̄(X) is continuous for
every X in FetS.

2. The functor Fibs̄ induces an equivalence of FetS with the category of finite
continuous left π1(S, s̄)-sets. Here connected covers correspond to sets with
transitive π1(S, s̄)-action, and Galois covers to finite quotients of π1(S, s̄).

In [29] this was proven under the additional assumption that S is locally
Noetherian, because Proposition 5.3.7 was only proven in that case.

Example 5.4.3 The theorem contains as a special case the case S = Spec (k) for
a field k. Here a finite étale S-scheme X is the spectrum of a finite étale k-algebra.
For a geometric point s̄ the fibre functor maps a connected cover X = Spec (L)
to the underlying set of Spec (L ⊗k Ω), which is a finite set indexed by the k-
algebra homomorphisms L → Ω. The image of each such homomorphism lies in
the separable closure ks of k in Ω via the embedding given by s̄. So finally we
obtain that Fibs̄(X) ∼= Homk(L, ks) for all X = Spec (L), and therefore π1(S, s̄) ∼=
Gal (ks|k). Thus in this case the theorem is equivalent to Theorem 1.5.2.

Note that although in the above example the fibre functor is identified with
the functor X 7→ Hom(Spec (ks), X), this does not mean that the fibre functor is
representable, for ks is not a finite étale k-algebra. However, it is the union of
its finite Galois subextensions which already are. Passing to the associated affine
schemes, this motivates the following definition.

Definition 5.4.4 Let C be a category, and F a set-valued functor on C. We
say that F is pro-representable if there exists an inverse system P = (Pα, φαβ)
of objects of C indexed by a directed partially ordered set Λ, and a functorial
isomorphism

lim
→

Hom(Pα, X) ∼= F (X) (5.1)

for each object X in C.
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Notice that in the above definition the inverse limit of the Pα may not exist
in C, but the direct limit of the Hom(Pα, X) does in the category of sets. Recall
that by definition the direct limit of a direct system (Sα, φαβ) of sets is the disjoint
union of the sets Sα modulo the equivalence relation where sα ∈ Sα is equivalent
to sβ ∈ Sβ if φαγ(sα) = φαγ(sβ) for some γ ≥ α, β.

Remark 5.4.5 If F is pro-representable by an inverse system P = (Pα, φαβ),
then for each α the identity map of Pα gives rise to a class in Hom(Pα, Pα), and
hence to a class in the direct limit on the left hand side of (5.1) with X = Pα. It
thus gives rise to an element pα ∈ F (Pα), and for α ≤ β the morphism F (φαβ)
maps pβ to pα. The pα thus define an element (pα) of the inverse limit lim

←
F (Pα).

The isomorphism (5.1) is then induced by (pα) in the sense that a morphism
φ : Pα → X is mapped to the image of pα by F (φ).

In Example 5.4.3 the fibre functor was pro-representable by the inverse system
of spectra of finite (Galois) extensions contained in ks. We now prove that this
holds in general.

Proposition 5.4.6 Under the assumptions of the theorem the fibre functor Fibs̄
is pro-representable.

Proof: Take the index set Λ to be the set of all finite étale Galois covers Pα → S,
and define Pα ≤ Pβ if there is a morphism Pβ → Pα. This partially ordered set
is directed, because if Pα, Pβ ∈ Λ, we may apply Proposition 5.3.9 to a connected
component Z of the fibre product Pα ×S Pβ to obtain Pγ ∈ Λ together with maps
Pγ → Z → Pα, Pγ → Z → Pβ .

The objects of the inverse system will be the Pα themselves, so we next have
to define the morphisms φαβ . If Pα ≤ Pβ in the above ordering, then by definition
there exists a morphism φ : Pβ → Pα over S. This φ is in general not unique, so
we ‘rigidify’ the situation as follows. For each Pα ∈ Λ we fix an arbitrary element
pα ∈ Fibs̄(Pα). Since Pβ → S is a Galois cover, we find by Corollary 5.3.3 a unique
S-automorphism λ of Pβ so that φ ◦ λ maps pβ to pα. Defining φαβ := φ ◦ λ we
obtain an inverse system (Pα, φαβ) such that moreover for each α ≤ β we have
Fibs̄(φαβ)(pβ) = pα.

As in Remark 5.4.5 above, for every X in FetS and every Pα ∈ Λ there is a
natural map Hom(Pα, X) → Fibs̄(X) sending φ ∈ Hom(Pα, X) to Fibs̄(φ)(pα).
These maps are compatible with the transition maps in the inverse system defined
above, whence a functorial map lim

→
Hom(Pα, X) → Fibs̄(X). To conclude the

proof we have to construct a functorial inverse to this map. To do so, we may
assume X is connected (otherwise take disjoint unions), and consider the Galois
closure π : P → X given by Proposition 5.3.9. Here P is one of the Pα ∈ Λ
by definition, and since it is Galois, for each x̄ ∈ Fibs̄(X) we find a unique S-
automorphism λ as above so that Fibs̄(π ◦ λ) maps the distinguished element
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pα ∈ Fibs̄(Pα) to x̄. Now sending x̄ to the class of π ◦ λ in lim
→

Hom(Pα, X) yields

the required inverse.

An inspection of the above proof shows that the maps φαβ in the system pro-
representing the fibre functor Fibs̄ depend on the choice of the system of geometric
points (pα); however, once such a system (pα) is fixed, the pro-representing system
becomes unique. This fact will be crucial for the proof of the next corollary.

Corollary 5.4.7 Every automorphism of the functor Fibs̄ comes from a unique
automorphism of the inverse system (Pα, φαβ) constructed in the proof above.

Here by definition an automorphism of (Pα, φαβ) is a collection of automor-
phisms λα ∈ Aut(Pα|S) compatible with the transition maps φαβ .

Proof: An automorphism of Fibs̄ maps the system (pα) of distinguished ele-
ments to another system (p′α). As the Pα are Galois, for each α there is a unique
automorphism λα ∈ Aut(Pα|S) sending pα to p′α. Since the pα form a compatible
system, so do the λα, whence the corollary.

Before stating the next corollary, recall from Chapter 2 that the opposite group
of a group G is the group Gop with the same underlying set but multiplication
defined by (x, y) 7→ yx.

Corollary 5.4.8 The automorphism groups Aut(Pα)op form an inverse system
whose inverse limit is isomorphic to π1(S, s̄).

Proof: The inverse system comes from Proposition 5.3.8: if Pα ≤ Pβ in the
partial order of the proof above, then since the covers are Galois, there is a nat-
ural surjective group homomorphism Aut(Pβ |S) ։ Aut(Pα|S). The elements of
the inverse limit are exactly the automorphisms of the inverse system (Pα, φαβ),
which in turn correspond bijectively to automorphisms of the fibre functor by the
previous corollary. The isomorphism with the opposite group then comes from the
contravariance of the Hom-functor.

Proof of Theorem 5.4.2: Apply Proposition 5.4.6 to find an inverse system
(Pα, φαβ) of Galois covers pro-representing the functor Fibs̄. By Corollary 5.3.4
the groups Aut(Pα|S) are finite for all α, hence π1(S, s̄) is a profinite group by
the previous corollary. An automorphism of the inverse system (Pα, φαβ) induces
an automorphism of Fibs̄(X) = lim

→
(Pα, X), whence a left action of π1(S, s̄) on

Fibs̄(X) for each X in FetS . This action is continuous, because if x̄ ∈ Fibs̄(X)
comes from a class in Hom(Pα, X), then the action of π1(S, s̄) factors through
Aut(Pα|S)op.

The proof of the second statement of the theorem is parallel to that in the
special case of fields done in Theorem 1.5.2. We indicate the proof of essential
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surjectivity, leaving the details for fully faithfulness to the readers. Given a finite
continuous left π1(S, s̄)-set E, we may assume that the π1(S, s̄)-action is transitive
by decomposing E in orbits. The stabilizer U of a point x ∈ E is an open subgroup
of π1(S, s̄), and therefore contains an open normal subgroup Vα arising as the
kernel of a projection π1(S, s̄) → Aut(Pα|S)op, since the Vα form a basis of open
neighbourhoods of 1 in π1(S, s̄). Let U be the image of U in Aut(Pα|S)op, and let
X be the quotient of Pα by the action of U

op
constructed in Lemma 5.3.7. Then

E ∼= Fibs(X).

Finally we make the link with the theory of the previous chapter. In fact, it
generalizes to an arbitrary integral normal scheme S.

Proposition 5.4.9 Let S be an integral normal scheme. Denote by Ks a fixed
separable closure of the function field K of S, and by KS the composite of all finite
subextensions L|K of Ks such that the normalization of S in L is étale over S.
Then KS |K is a Galois extension, and Gal (KS |K) is canonically isomorphic to
the fundamental group π1(S, s̄) for the geometric point s̄ : Spec (K) → S, where
K is the algebraic closure of K containing Ks.

Proof: A finite étale cover X → S is normal by Proposition 5.3.2 (3). Its generic
fibre is a finite product of finite separable extensions Li|K, so by uniqueness of
normalization (Fact 5.2.11 (2)) X must be the disjoint union of the normalizations
of S in the Li. This being said, one proves exactly as in Theorem 4.6.4 that KS |K
is a Galois extension, and that the category of finite étale S-schemes is equivalent
to that of finite continuous left Gal (KS |K)-sets, except that for the composition
and base change properties of finite étale covers one applies Remarks 5.2.3 as in
the proof of Lemma 3.4.2. By construction, the equivalence is induced by the fibre
functor at the geometric point s̄.

5.5 First Properties of the Fundamental Group

Now that we have constructed the fundamental group, we discuss some of its basic
properties.

First we show that, just as in topology, fundamental groups of the same S
corresponding to different base points s̄, s̄′ are (non-canonically) isomorphic. We
begin by constructing isomorphisms between different fibre functors.

Proposition 5.5.1 Let S be a connected scheme. Given two geometric points
s̄ : Spec (Ω) → S and s̄′ : Spec (Ω′) → S, there exists an isomorphism of fibre func-
tors Fibs̄

∼→ Fibs̄′.

Proof: By Proposition 5.4.6 both fibre functors are pro-representable. More-
over, the proof shows that the representing inverse systems have the same index
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set Λ and objects Pα, only the transition morphisms may be different. Denote them
by φαβ and ψαβ, respectively. Proving the proposition amounts to constructing
an isomorphism of the inverse system (Pα, φαβ) onto the system (Pα, ψαβ), i.e. a
system of automorphisms λα ∈ Aut(Pα|S) transforming the maps φαβ to the ψαβ .
Assume given a pair α ≤ β in Λ and an automorphism λβ ∈ Aut(Pβ |S). Consider
the distinguished elements pα ∈ Fibs̄(Pα) and pβ ∈ Fibs̄(Pβ). By construction we
have Fibs̄(φαβ)(pβ) = pα. On the other hand, set p′α := Fibs̄(ψαβ)(λβ(pβ)). As
Pα is Galois, there is a unique automorphism λα ∈ Aut(Pα|S) mapping pα to p′α.
Corollary 5.3.3 applied with z̄ = pα, φ1 = ψαβ ◦λβ and φ2 = λα ◦φαβ then implies
that the diagram of S-morphisms

Pβ
λβ−−−→ Pβ

φαβ

y
yψαβ

Pα
λα−−−→ Pα

commutes. Define ραβ : Aut(Pβ |S) → Aut(Pα|S) to be the map sending each
λβ ∈ Aut(Pβ |S) to the λα defined as above. It is a map of sets but in general not
a group homomorphism. We thus obtain an inverse system (Aut(Pα|S), ραβ) of
finite sets. The inverse limit of such a system is nonempty (see Corollary 3.4.12).
An element of it defines the required isomorphism of (Pα, φαβ) onto (Pα, ψαβ).

Corollary 5.5.2 Let S be a connected scheme. For any two geometric points
s̄ : Spec (Ω) → S and s̄′ : Spec (Ω′) → S there exists a continuous isomorphism of
profinite groups π1(S, s̄

′)
∼→ π1(S, s̄).

Proof: An isomorphism λ : Fibs̄
∼→ Fibs̄′ of fibre functors induces an isomor-

phism of their automorphism groups via φ 7→ λ−1 ◦ φ ◦ λ. Continuity of this
isomorphism with respect to the profinite structure follows from the construction
in the proof above.

Remark 5.5.3 In analogy with the topological situation (Proposition 2.4.7) an
isomorphism Fibs̄

∼→ Fibs̄′ of fibre functors is called a path from s̄′ to s̄ (sometimes
the French word chemin is used). As in Remark 2.4.8 it follows from the above
statements that the isomorphism π1(S, s̄

′)
∼→ π1(S, s̄) induced by a path from s̄′ to

s̄ depends on the path but is unique up to an inner automorphism of π1(S, s̄) (or
π1(S, s̄

′)). In particular, the maximal abelian (profinite) quotient of π1(S, s̄) does
not depend on the choice of the geometric base point.

Next we investigate functoriality with respect to base point preserving mor-
phisms. Let S and S′ be connected schemes, equipped with geometric points
s̄ : Spec (Ω) → S and s̄′ : Spec (Ω) → S′, respectively. Assume given a mor-
phism φ : S′ → S with φ ◦ s̄′ = s̄. Then φ induces a base change functor
BCS,S′ : FetS → FetS′ sending an object X to the base change X ×S S

′ and a



178 Chapter 5. Fundamental Groups of Schemes

morphismX → Y to the induced morphismX×SS
′ → Y ×SS

′. Moreover, the con-
dition φ ◦ s̄′ = s̄ implies that there is an equality of functors Fibs̄ = Fibs̄′ ◦BCS,S′ .
Consequently, every automorphism of the functor Fibs̄′ induces an automorphism
of Fibs̄ via composition with BCS,S′ , and we have a map

φ∗ : π1(S
′, s̄′) → π1(S, s)

which is readily seen to be a continuous homomorphism of profinite groups.

The base change functor X → X ×S S
′ corresponds via Theorem 5.4.2 to the

functor sending the π1(S, s̄)-set Fibs̄(X) to the π1(S
′, s̄′)-set obtained by compos-

ing with φ∗. We now investigate how properties of the functor BCS,S′ are reflected
by properties of the morphism φ∗.

Proposition 5.5.4

1. The map φ∗ is trivial if and only if for every connected finite étale cover
X → S the base change X×S S

′ is a trivial cover (i.e. isomorphic to a finite
disjoint union of copies of S′).

2. The map φ∗ is surjective if and only if for every connected finite étale cover
X → S the base change X ×S S

′ is connected as well.

Proof: A finite étale cover is trivial if and only if it corresponds to a finite set
with trivial action of the fundamental group. This immediately gives the ‘only if’
part of the first statement. For the ‘if’ part assume that im (φ∗) is nontrivial, and
choose an open subgroup of π1(S, s̄) not containing the whole of im (φ∗). Then the
action of π1(S

′, s̄′) on the coset space π1(S, s̄)/U induced by φ∗ is nontrivial, so
the finite étale cover corresponding to U\π1(S, s̄) pulls back to a nontrivial cover
of S′.

In the second statement the ‘only if’ part follows from the fact that connected
covers correspond via the fibre functor to sets with transitive π1(S, s̄)-action. For
the ‘if’ part assume that im (φ∗) is not the whole of π1(S, s̄). It is then a proper
closed subgroup by compactness of π1(S

′, s̄′), so we find a nontrivial open subgroup
U ⊂ π1(S, s̄) containing it (see Lemma 5.5.7 (1) below for a stronger statement).
Then π1(S

′, s̄′) acts trivially on the coset space U\π1(S, s̄) via φ∗, which means
that the connected cover corresponding to U\π1(S, s̄) pulls back to a trivial cover
of S′ (different from S′).

We now prove a common generalization of both parts of the previous propo-
sition. Observe first that identifying a finite continuous transitive left π1(S, s̄)-set
F with the coset space U\π1(S, s̄) of some open subgroup U amounts to choosing
a point x̄ of F which will correspond to the coset of 1. In terms of the étale cover
X → S corresponding to F this is the choice of a geometric point x̄ in the fibre
above s̄. We may also view x̄ as a geometric point of a base change X ×S S

′.
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Proposition 5.5.5 Let U ⊂ π1(S, s̄) be an open subgroup, and let X → S be the
connected cover corresponding to the coset space U\π1(S, s̄), together with the base
point x̄ described above.

The subgroup U contains the image of φ∗ if and only if the finite étale cover
X ×S S

′ → S′ has a section S′ → X ×S S
′ sending s̄ to x̄.

Proof: We have im (φ∗) ⊂ U if and only if π1(S
′, s̄′) acts trivially on x̄ via φ∗.

This in turn implies that the whole connected component of x̄ in X ×S S
′ is fixed

by π1(S
′, s̄′). In other words, this component is a one-sheeted trivial cover of S′,

and hence mapped isomorphically onto S′ by the map X ×S S
′ → S′.

The corresponding characterization of ker(φ∗) is the following.

Proposition 5.5.6 Let U ′ ⊂ π1(S
′, s̄′) be an open subgroup, and let X ′ → S′ be

the cover corresponding to the coset space U ′\π1(S
′, s̄′).

The subgroup U ′ contains the kernel of φ∗ if and only if there exists a finite
étale cover X → S and a morphism Xi → X ′ over S′, where Xi is a connected
component of X ×S S

′.

For the proof we need an easy group-theoretic lemma.

Lemma 5.5.7 Let G be a profinite group, and H ⊂ G a closed subgroup.

1. The intersection of the open subgroups of G containing H is exactly H.

2. Given an open subgroup V ′ ⊂ H, there is an open subgroup V ⊂ G with
V ∩H = V ′.

Proof: For the first statement, given g ∈ G \H we shall find an open subgroup
of G containing H but not g. To do so, by closedness of H we first pick an open
normal subgroup N ⊂ G with gN ∩H = ∅ (such an N exists, because the gN of
this type form a basis of open neighbourhoods of g). Denoting by p : G → G/N
the natural projection, the open subgroup p−1(p(H)) ⊂ G will do.

For statement (2) use the closedness of V ′ in G and part (1) to write both
H and V ′ as the intersection of the open subgroups of G containing them. Since
[H : V ′] is finite, we find finitely many open subgroups V1, . . . , Vn in G containing
V ′ but not H such that V ′ = V1 ∩ · · · ∩ Vn ∩H. Thus V := V1 ∩ · · · ∩ Vn will do.

Proof of Proposition 5.5.6: For the ‘only if’ part let X be as in the statement
of the proposition, and let U ⊂ π1(S, s̄) be an open subgroup with X ∼= U\π1(S, s̄).
By choosing an appropriate geometric base point we may identify the component
Xi ⊂ X ×S S

′ with the coset space U ′′\π1(S
′, s̄′), for some open subgroup U ′′ ⊂

π1(S
′, s̄′). Note that U ′′ must contain ker(φ∗), as ker(φ∗) stabilizes the base point

by construction. To say that there is a morphism Xi → X ′ is then equivalent to
the inclusion U ′′ ⊂ U ′, but U ′′ contains ker(φ∗) as we just said, and we are done.
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Conversely, assume U ′ ⊃ ker(φ∗). As H = φ∗(π1(S
′, s̄′)) is a closed subgroup

in π1(S, s̄) (being compact), and V ′ = φ∗(U
′) is open in H (being compact of

finite index), we may apply the lemma to find an open subgroup V ⊂ π1(S, s̄) with
V ∩H = V ′, giving rise to a connected finite étale cover X → S. Again a connected
component Xi of X ×S S

′ corresponds to some coset space U ′′ ⊂ π1(S
′, s̄′), and

there is a morphism Xi → X ′ if and only if U ′′ ⊂ U ′. As both groups here contain
ker(φ∗), the required inclusion is equivalent to φ∗(U

′′) ⊂ φ∗(U
′), but this holds by

construction.

Corollary 5.5.8 The map φ∗ is injective if and only if for every connected finite
étale cover X ′ → S′ there exists a finite étale cover X → S and a morphism
Xi → X ′ over S′, where Xi is a connected component of X ×S S

′.
In particular, if every connected finite étale cover X ′ → S′ is of the form

X ×S S
′ → S′ for a finite étale cover X → S, then φ is injective.

Proof: This follows from the proposition since the intersection of the open sub-
groups of π1(S

′, s̄′) is trivial.

Corollary 5.5.9 Let S′′
ψ→ S′

φ→ S be a a sequence of morphisms of connected
schemes, and let s̄, s̄′, s̄′′ be geometric points of S, S′ and S′′, respectively, satisfying
s̄ = φ ◦ s̄′ and s̄′ = ψ ◦ s̄′′. The sequence

π1(S
′′, s̄′′)

ψ∗→ π1(S
′, s̄′)

φ∗→ π1(S, s̄)

is exact if and only if the following two conditions are satisfied.

1. For every finite étale cover X → S the base change X ×S S
′′ → S′′ is a

trivial cover of S′′.

2. Given a connected finite étale cover X ′ → S′ such that X ′ ×S′ S′′ has a
section over S′′, there exists a connected finite étale cover X → S and an
S′-morphism from a connected component of X ×S S

′ onto X ′.

Proof: This is a consequence of Propositions 5.5.4 (1), 5.5.5 and 5.5.6.

Remark 5.5.10 In part (2) of the above criterion it suffices to consider finite
Galois covers. This is because ker(φ∗), being a closed normal subgroup of π1(S

′, s̄′),
is the intersection of the open normal subgroups containing it.

5.6 The Homotopy Exact Sequence and Applications

We now prove a generalization of Proposition 4.7.1. Recall that given a field k, a
k-scheme X → Spec (k) is geometrically integral if X ×Spec (k) Spec (k̄) is integral
for an algebraic closure k̄ ⊃ k.
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Proposition 5.6.1 Let X be a quasi-compact and geometrically integral scheme
over a field k. Fix an algebraic closure k̄ of k, and let ks|k be the corresponding
separable closure. Write X := X ×Spec (k) Spec (ks), and let x̄ be a geometric point

of X with values in k̄. The sequence of profinite groups

1 → π1(X, x̄) → π1(X, x̄) → Gal (ks|k) → 1

induced by the maps X → X and X → Spec (k) is exact.

For the proof we need a standard lemma.

Lemma 5.6.2 Given a finite étale cover Y → X, there is a finite extension L|k
contained in ks and a finite étale cover YL of XL := X ×Spec (k) Spec (L) so that

Y ∼= YL ×Spec (L) Spec (ks).

Similarly, elements of Aut(Y |X) come from Aut(YL|XL) for L sufficiently
large.

Proof: We prove the first statement, the proof of the second one being similar.
Since X is quasi-compact by assumption, it has a finite covering by open affine
subschemes. Let Ui = Spec (Ai) (1 ≤ i ≤ n) be a finite affine open covering of X
so that the preimage in Y of each U i := Spec (Ai⊗kks) is an affine open subscheme
of the form Spec (Bi), where Bi is a finitely generated Ai ⊗k ks-module. Each Bi

then arises as a quotient of some polynomial ring (Ai⊗k ks)[x1, . . . , xm] by an ideal
generated by finitely many polynomials f1, . . . , fr. The finitely many coefficients
involved in the fj generate a finitely generated ks-subalgebra A′i ⊂ Ai ⊗k ks, itself
a quotient of a polynomial ring over ks by an ideal generated by finitely many
polynomials g1, . . . , gs. If L|k is the finite extension generated by the coefficients
of the gl, then the coefficients of the fj are contained in Ai ⊗k L, and hence
Bi ∼= ((Ai ⊗k L)[x1, . . . , xm]/(f1, . . . , fr)) ⊗L ks. Moreover, such an isomorphism
holds for all i for L sufficiently large. Similarly, one sees that the isomorphisms
showing the compatibility of the Y Ui

over the overlaps Ui ∩ Uj can be defined by
equations involving only finitely many coefficients. Thus an extension L that is so
large that it contains all the coefficients involved satisfies the requirements of the
lemma.

Proof of Proposition 5.6.1: Injectivity of the map π1(X, x̄) → π1(X, x̄) follows
from the criterion of Corollary 5.5.8 in view of the lemma. Similarly, the surjectiv-
ity of π1(X, x̄) → Gal (ks|k) follows from Proposition 5.5.4 (2) and our assumption
that X is geometrically connected.

It thus remains to prove exactness in the middle. For this we apply the criterion
of Corollary 5.5.9, complemented by Remark 5.5.10. Condition (1) is straightfor-
ward: each finite étale cover of the form XL → X, with L|k a finite extension,
yields a trivial cover when pulled back to X. For condition (2), assume Y → X
is a finite étale Galois cover such that Yks

→ X has a section. As X is integral,
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the generic fibre of Y → X is the spectrum of a finite Galois extension K of the
function field k(X) of X that splits in a finite direct sum of copies of ks(X) when
tensored with ks. This is possible if and only if K ∼= k(X) ⊗k L for some finite
Galois extension L|k. Consider the corresponding étale Galois cover XL → X. It
has the same function field as Y , so they are isomorphic over the generic point
of X. This means that there is a dense open subset U ⊂ X such that Y ×X U
and (XL)×X U are isomorphic. As Y and XL are locally free over U , this implies
Y ∼= XL, as required.

Remarks 5.6.3

1. Using the proposition we may extend the definition the outer Galois rep-
resentation ρX : Gal (ks|k) → Out(π1(X, x̄)) of Section 4.7 to an arbitrary
quasi-compact and geometrically integral scheme over a field k.

2. The proposition also enables us to give another, slightly more precise formu-
lation of Grothendieck’s Section Conjecture discussed at the end of Section
4.9. Given a k-rational point y : Spec k → X, it induces by functoriality a
map σy : Gal (k̄|k) → π1(X, ȳ) for a geometric point ȳ lying above y. This
is not quite a section of the exact sequence of the proposition because of the
difference of base points. But by Remark 5.5.3 a path from ȳ to x̄ induces
an isomorphism λ : π1(X, ȳ)

∼→ π1(X, x̄) that is uniquely determined up
to inner automorphism of π1(X, x̄). The composite λ ◦ σy is then a section
of the exact sequence uniquely determined up to conjugation. The Section
Conjecture predicts that in the case when X is a smooth projective curve
of genus at least 2 and k is finitely generated over Q this construction es-
tablishes a bijection between k-rational points of X and conjugacy classes
of sections.

Using more algebraic geometry it is possible to prove a relative version of
Proposition 5.6.1, under a properness assumption.

Proposition 5.6.4 Let S be a Noetherian integral scheme, and φ : X → S a
proper flat morphism with geometrically integral fibres. Let s̄ : Spec (k) → S be
a geometric point of S such that k is the algebraic closure of the residue field of
the image of s̄ in S, and let x̄ be a geometric point of the geometric fibre Xs̄. The
sequence

π1(Xs̄, x̄) → π1(X, x̄) → π1(S, s̄) → 1

is exact.

For the notion of a flat morphism, see Remark 5.2.2 (2). The main tool in the
proof is the Stein factorization theorem. Let us recall the statement.
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Facts 5.6.5 A proper morphism φ : X → S of Noetherian integral schemes has
a Stein factorization φ = ψ ◦ φ′, where ψ : S′ → S is a finite morphism, and
φ′ : X → S′ satisfies φ′∗OX = OS′ . For a proof, see [34], Corollary III.11.5 (under
the unnecessary assumption that φ is projective). The condition φ′∗OX = OS′

implies that φ′ has geometrically connected fibres ([34], Corollary III.11.3 and its
proof); in fact, the two conditions are equivalent by the existence of the Stein
factorization.

Proof of Proposition 5.6.4: We first prove surjectivity of the map π1(X, x̄) →
π1(S, s̄) by means of the criterion of Proposition 5.5.4 (2). Assume given a con-
nected finite étale cover ρ : Y → S. We have to show that ρX : Y ×S X → X is
again connected. By our assumption on φ we have φ∗OX = OS , from which we con-
clude φ∗(ρX∗OX×SY ) = ρ∗OY . Were X ×S Y disconnected, the sheaf ρX∗OX×SY

would decompose as a nontrivial direct product of sheaves of OX -algebras, cor-
responding to the regular functions on different components. But then the same
would be true of ρ∗OY , contradicting the connectedness of Y .

Next we show exactness in the middle by checking the conditions of Corollary
5.5.9. Condition (1) is automatic, so we turn to condition (2). Take a connected
finite étale cover X ′ → X, and consider the Stein factorization of the composite
map X ′ → X → S. We obtain a finite morphism ψ : S′ → S and a morphism
φ′ : X ′ → S′ with φ′∗OX′ = OS′ . As we assumed φ flat, we may apply Corollary
III.12.9 of [34]. It first shows that ψ∗OS′ = (ψ ◦ φ′)∗OX′ is locally free, i.e. ψ
is a locally free morphism. Secondly, it shows that for each point P of S we
have (ψ∗OS′)P ⊗OX,P

κ(P ) = ((ψ ◦ φ′)∗OX′)P ⊗OX,P
κ(P ) ∼= OX′

P
(X ′P ), where

X ′P = X ′ ×S Spec (κ(P )). But since φ had proper geometrically integral fibres,

here OX′
P
(X ′P ) ⊗κ(P ) κ(P ) must be a finite direct product of copies of κ(P ). We

conclude that ψ : S′ → S is a finite étale cover; it is connected because so is X ′

and φ′ is surjective by the condition φ′∗OX′ = OS′ . Consider the natural map
X ′ → X ×S S

′ given by the universal property of the fibre product. It is a map
of finite étale covers of X. Assuming, as in condition (2) of Corollary 5.5.9, that
the base change of X ′ → X to Xs̄ has a section implies that the base change of
X×S S

′ has a section as well. This shows that the finite étale cover X ′ → X×S S
′

must be of degree 1, i.e. an isomorphism.

Corollary 5.6.6 Let k be an algebraically closed field, and X, Y Noetherian con-
nected schemes over k. Assume moreover that X is proper and geometrically inte-
gral, and choose geometric points x̄ : Spec (k) → X, ȳ : Spec (k) → Y with values
in k. The natural morphism

π1(X × Y, (x̄, ȳ)) → π1(X, x̄) × π1(Y, ȳ) (5.2)

induced by the projections of X × Y to X and Y , respectively, is an isomorphism.
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Proof: The map (5.2) may be inserted in the commutative diagram of exact
sequences

1 −−−→ π1(X, x̄) −−−→ π1(X × Y, (x̄, ȳ)) −−−→ π1(Y, ȳ) −−−→ 1
y

y
y

1 −−−→ π1(X, x̄) −−−→ π1(X, x̄) × π1(Y, ȳ) −−−→ π1(Y, ȳ) −−−→ 1.

Here the upper row comes from the previous proposition applied to the morphism
X ×Y → Y and the geometric point ȳ. Injectivity on the left comes from the fact
that the projection X × Y → Y yields a section of the inclusion map X → X × Y
(where X is identified with the fibre Xȳ) sending (x̄, ȳ) to x̄. The outer vertical
maps are identity maps, hence the middle one must be an isomorphism.

We conclude this section by two applications of Corollary 5.6.6, taken from the
classic paper of Lang and Serre [51]. The first one is:

Proposition 5.6.7 Let k ⊂ K be an extension of algebraically closed fields, and
let X be a proper integral scheme over k. The natural map π1(XK , x̄K) → π1(X, x̄)
is an isomorphism for every geometric point x̄ of X.

Proof: If Y → X is a connected finite étale cover, then Y is reduced (Proposition
5.2.12 (1)) and the generic fibre must be a finite field extension of the function
field of X. Thus Y is integral as well. Since k is algebraically closed in K,
the tensor product K(Y ) ⊗k K is a field, where K(Y ) is the function field of
Y . This shows that YK is again connected, whence the surjectivity of the map
π1(XK , x̄K) → π1(X, x̄) by Proposition 5.5.4 (2).

For the proof of injectivity we start with a connected finite étale cover Y → XK .
As in the proof of Lemma 5.6.2 we find a subfield k′ ⊂ K finitely generated over k
and a connected finite étale cover φ′ : Y ′ → Xk′ with Y ′×Spec (k′)Spec (K) ∼= Y . In
fact, the argument shows that there is an integral affine k-scheme T with function
field k′ and a finite morphism φT : Y → X ×Spec (k) T of schemes of finite type
over T such that the induced morphism Y ×T Spec (k′) → Xk′ is isomorphic to φ′.
Since the sheaves φT∗OY (resp. ΩY|(S×T )) are coherent and φ′∗OY ′ is locally free
(resp. ΩY ′|Sk′

= 0) by Proposition 5.2.7, we see that after replacing T with an
affine open subscheme and restricting φT we obtain a connected finite étale cover.
We now choose a geometric point t̄ : Spec (k) → T and apply the isomorphism
π1(X×T, (x̄, t̄)) ∼→ π1(X, t̄)×π1(T, t̄) of the previous corollary. By Corollary 5.5.8
it implies that we may find connected finite étale covers Z → X, T ′ → T together
with a morphism Z×T ′ → Y of schemes over X ×T . The function field of T ′ still
embeds in K, so by base change with T ′ → T we may assume T ′ = T . Then the
fibre of Z × T → T at a k-point P of T is a finite étale cover of X equipped with
a morphism to Y over XK , and the criterion of Corollary 5.5.8 is satisfied.
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In the next section we shall give another proof of the proposition due to Pop
that is more natural but works under somewhat different assumptions. The proper-
ness assumption in the proposition is essential in positive characteristic; see Exer-
cise 8.

The second application of Corollary 5.6.6 concerns abelian varieties. Recall
that an abelian variety over a field k means a proper geometrically integral group
scheme over k; it is necessarily commutative by [65], §II.4.

Proposition 5.6.8 Let A be an abelian variety over an algebraically closed field k.
Given a finite étale cover φ : Y → A, the scheme Y can be equipped with the struc-
ture of an abelian variety over k such that the map φ becomes a homomorphism of
k-group schemes.

In fact, the map φ is an isogeny of abelian varieties, i.e. a surjective homomor-
phism with finite kernel. This follows immediately from the proposition and the
assumption that φ is a finite étale cover.

Proof: It is enough to prove the proposition in the case when Y → A is a Galois
finite étale cover. Indeed, by Propositions 5.3.8 and 5.3.9 a general Y → A is a
quotient of a Galois étale cover by the action of a finite group of automorphisms.
But the quotient of an abelian variety by the action of a finite group is again an
abelian variety ([65], §7, Theorem 4).

Denote by mA : A× A → A the group operation of A, and consider the fibre
product square

Y ′ = (A×A) ×A Y −−−→ Y
y

yφ

A×A
mA−−−→ A.

We contend that Y ′ is connected. Indeed, the base change Y ′1 of Y ′ → A×A by the
closed embedding {0}×A→ A is isomorphic to Y , hence it is connected. Thus it
must be contained in a connected component of Y ′, but all connected components
of Y ′ project surjectively onto A×A and therefore meet Y ′1 . This is only possible
if Y ′ is connected.

Thus Y ′ → A×A is a Galois étale cover with group G = Aut(Y |A). Applying
Corollary 5.6.6 (together with Propositions 5.3.8 and 5.3.9) we see that there exist
étale Galois covers Z1 → A and Z2 → A, with groups G1 and G2, respectively, such
that Y ′ is a quotient of the direct product Z1×Z2 → A×A. In particular, there is
a normal subgroup H ⊂ G1×G2 with G ∼= (G1×G2)/H. Replacing the Zi by their
quotients by the actions of the Gi ∩H we may assume H ∩Gi = {1} for i = 1, 2.
Thus the Gi may be identified with normal subgroups of G that generate G and
centralize each other. But by construction Y ′1 → {0} ×A must be an étale Galois
cover with group G1, and similarly for the base change Y ′2 → A × {0}. It follows
that G = G1 = G2, and G is commutative. Moreover, we have isomorphisms
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Yi ∼= Y ′i
∼= Y for i = 1, 2. This yields a map Y × Y → Y ′, whence also a map

mY : Y × Y → Y by composing with the projection Y ′ → Y . Fix a point 0Y of
Y in the fibre above 0. Modifying mY by an automorphism of Y if necessary we
may assume mY (0Y , 0Y ) = 0Y .

We contend that mY is a commutative group operation on Y with 0Y as
null element. By construction this will also imply that Y is an abelian variety
(being proper over k) and that φ is a group homomorphism. To see that mY is
commutative, consider the automorphism σY : Y × Y given by permuting the
factors. The maps mY and mY ◦ σY : Y × Y → Y coincide at the point (0Y , 0Y ),
so they are the same by Corollary 5.3.3. Similar reasonings show that mY is
associative with null element 0Y . The existence of an inverse is equivalent to the
property that the product map (idY ,mY ) : Y ×Y → Y ×Y is an isomorphism. We
know that (idA,mA) is an isomorphism. Therefore from the commutative diagram

Y × Y
(idY ,mY )−−−−−−→ Y × Y

φ×φ

y
yφ×φ

A×A
(idA,mA)−−−−−−→ A×A

we infer that the composite (φ × φ) ◦ (idY ,mY ) : Y × Y → A × A is an étale
Galois cover with group G×G. But so is φ× φ, so (idY ,mY ) must indeed be an
isomorphism.

Corollary 5.6.9 Let n > 0 be an integer divisible by the degree of φ. There is a
map ψ : A→ Y and a commutative diagram

A Y

A

-ψ

@
@

@@R
nA

?
φ (5.3)

where nA : A→ A is the multiplication-by-n map of A.

Proof: We have just proven that φ is an isogeny, and by assumption on n we have
n ker(φ) = 0. Consider the multiplication-by-n map nY : Y → Y . Since ker(φ) ⊂
ker(nY ) and A ∼= Y/ ker(φ) as an abelian variety (compare with Proposition 5.3.6),
the map nY induces a homomorphism of abelian varieties ψ : A → Y satisfying
nY = ψ ◦ φ. But we also have nA = φ ◦ ψ because for P ∈ A we find Q ∈ Y with
φ(Q) = P by surjectivity of φ, and so

φ(ψ(P )) = φ(ψ(φ(Q)) = φ(nQ) = nφ(Q) = nP.

This proves the corollary.
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We can now completely determine the fundamental group of the abelian variety
A. Recall that given a prime number ℓ, the ℓ-adic Tate module Tℓ(A) of A is defined
as the inverse limit of the inverse system formed by the ℓr-torsion subgroups ℓrA(k)
for all r > 0. Here A(k) denotes the group of k-rational points of A (i.e. the group
of sections of the structure morphism A → Spec (k)). The direct product of the
Tℓ(A) for all ℓ is the full Tate module T (A) of A; it is also the inverse limit of the
inverse system of n-torsion subgroups nA(k) partially ordered by divisibility.

Theorem 5.6.10 Let A be an abelian variety over an algebraically closed field.
The fundamental group of A is commutative, and there are natural isomorphisms

π1(A) ∼= T (A) ∼=
∏

ℓ

Tℓ(A).

We have omitted the base point from the notation as it plays no role in the
commutative case (Remark 5.5.3).

Proof: When n is prime to the characteristic of k, the map nA : A → A is a
finite étale Galois cover with group ker(nA)(k) ∼= nA(k). Indeed, the fibres of nA
are all given by the constant group scheme nA(k). By the previous corollary each
finite étale cover Y → X of degree dividing n arises as a quotient of this cover.

When n is divisible by the characteristic of k, the finite map nA is not étale
(the group scheme ker(nA) is not reduced). Still, we can make the finite group

nA(k) act on A by translation; the quotient is A because A(k) is divisible ([65],
§6, Application 2). We thus get a finite étale Galois cover n′ : A→ A with group

nA(k), and moreover the map nA factors as nA = n′ ◦ ρ for some ρ : A → A
as in the previous proof. The map ρ must induce a purely inseparable extension
of function fields for degree reasons (see [95], Section II.6, Theorems 3 and 4).
Therefore the image of the embedding of function fields ψ∗ : K(Y ) → K(A) must
lie in n′∗K(A). As Y is the normalization of A in the extension K(Y )|φ∗K(A)
and similarly for A and K(A)|n′∗K(A), we obtain that a diagram of the form (5.3)
exists with n′ in place of nA.

Thus in both cases we conclude π1(A)/nπ1(A) ∼= nA(k), and the theorem
follows by taking the inverse limit over all n.

Remark 5.6.11 From the theory of abelian varieties it is known (see [65], §6) that
in the case when ℓ is prime to the characteristic of k, one has Tℓ(A) ∼= Z2g

ℓ , where
g is the dimension of A. When k has characteristic p > 0, one has Tp(A) ∼= Zρp
with an integer 0 ≤ ρ ≤ g, the p-rank of A. This determines the structure of π1(A)
completely.

5.7 Structure Theorems for the Fundamental Group

Already in the case of curves the more precise structural results for the fundamental
group relied on comparison with the theory over C. In higher dimension the
situation is similar. We begin with a basic finiteness result.
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Proposition 5.7.1 Let X be a smooth projective integral scheme over C. For
every geometric base point x̄ the fundamental group π1(X, x̄) is topologically finitely
generated.

Recall that a profinite group is topologically finitely generated if it contains a
dense finitely generated subgroup. For the proof we need a Bertini type lemma.

Lemma 5.7.2 Let k be an algebraically closed field, X ⊂ Pn
k a smooth connected

closed subscheme of dimension at least 2, and Y → X a connected finite étale
cover. There exists a hyperplane H ⊂ Pn

k not containing X so that X ∩H is again
smooth and connected, and moreover the fibre product Y ×X (H ∩X) is connected
as well.

Proof: By Theorem II.8.18 in [34] one may find H with X ∩H smooth. Then
Remark III.7.9.1 of op. cit. shows the connectedness of X ∩ H for this H.
The same argument carries over mutatis mutandis to to the closed immersion
Y ×X (H ∩X) →֒ Y and shows the connectedness of Y ×X (H ∩X).

Proof of Proposition 5.7.1: Since by Remark 5.2.3 (2) the fibre product
Y ×X (H ∩X) in the lemma is a connected finite étale cover of H ∩X, we obtain
from Proposition 5.5.4 (2) a surjection π1(H ∩ X, x̄) ։ π1(X, x̄) for a geomet-
ric point x̄ of H ∩ X. As H ∩ X is smooth and projective of strictly smaller
dimension than X, we may apply induction on dimension to obtain a surjection
π1(C, x̄) ։ π1(X, x̄), where C ⊂ X is a smooth projective curve obtained by cut-
ting X with a linear subspace in Pn, and x̄ is a geometric point of C. Over k = C
we know from Theorem 4.6.7 that π1(C, x̄) is topologically finitely generated, hence
so is π1(X, x̄).

Remark 5.7.3 The key point in the above proof was the surjectivity of the map
π1(H ∩ X, x̄) → π1(X, x̄). In fact, when X has dimension at least 3, the Lef-
schetz hyperplane theorem states that this map is actually an isomorphism for any
hyperplane H (and X ∩H is connected).

Over k = C there is a simple topological proof by Andreotti and Frenkel (see
[60], §7). In the general case there is a proof by Grothendieck in [30]. He constructs
an equivalence of categories between FetX and FetX∩H in three steps. First he
takes an open subscheme U ⊂ X containing X∩H. As X has dimension at least 3,
each codimension 1 closed subset meetsX∩H and hence the complement of U must
be of codimension ≥ 2. Corollary 5.2.14 then implies an equivalence between FetX
and FetU . Next he considers the formal completion X̂ of X along X ∩ H ([34],
Section II.9) and defines finite étale covers for formal schemes. He then proves
a nontrivial algebraization theorem asserting the equivalence of FetU and Fet bX

.
Finally, the equivalence between Fet bX

and FetX∩H results by a generalization of
Exercise 7. For a simplified account of Grothendieck’s proof, see [33], Chapter IV.
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Now let us return to Proposition 5.7.1. A similar argument involving reduction
to the case of curves via cutting with hyperplanes shows that the topological fun-
damental group of the complex manifold associated with X is finitely generated
(in the usual sense for groups). This hints at the possibility of generalizing the
comparison between algebraic and topological fundamental groups to higher di-
mension. Such a generalization involves a higher-dimensional Riemann Existence
Theorem that we now briefly explain.

Given a scheme X of finite type over C, one may define the complex an-
alytic space Xan associated with X (see [34], Appendix B, §1). When X is
smooth, the space Xan is a complex manifold as defined in Remark 3.1.2. A
morphism φ : Y → X of schemes of finite type over C induces a holomorphic map
φan : Y an → Xan of analytic spaces. We then have the following vast generaliza-
tion of Theorem 4.6.7 (see [29], Exposé XII, Corollaire 5.2).

Theorem 5.7.4 Let X be a connected scheme of finite type over C. The functor
(Y → X) 7→ (Y an → Xan) induces an equivalence of the category of finite étale
covers of X with that of finite topological covers of Xan. Consequently, for every
C-point x̄ : Spec (C) → X this functor induces an isomorphism

̂πtop
1 (Xan, x̄)

∼→ π1(X, x̄)

where on the left hand side we have the profinite completion of the topological
fundamental group of X with base point im (x̄).

The hard part of the theorem is the essential surjectivity of the functor. As in
the theory of Riemann surfaces, one first proves that every finite topological cover
p : Y → Xan can be equipped with a canonical structure of analytic space for
which p becomes a proper holomorphic map. Next there is a reduction to the case
where X is normal. One then has to use a deep theorem, first proven by Grauert
and Remmert, which says that for normal X every proper analytic map Z → Xan

with finite fibres is isomorphic to Y an → Xan for a finite surjective morphism
of schemes Y → X. In the case when X is a projective variety over C this is
part of Serre’s famous GAGA theorems. The proof given in [29], Exposé XII does
not use the theorem of Grauert and Remmert, but needs Hironaka’s resolution of
singularities.

Remark 5.7.5 Despite the above theorem, there is in general a big difference be-
tween the topological and algebraic fundamental groups. Toledo [104] constructed
a smooth projective variety X over C such that the intersection of all subgroups
of finite index in πtop

1 (X, x̄) is a free group of infinite rank. In other words, the
completion map πtop

1 (X, x̄) → π1(X, x̄) has a free kernel of infinite rank. It is
an open question of Serre whether there exist examples with π1(X, x̄) = {1} but
πtop

1 (X, x̄) 6= {1}.
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Now let us return to Proposition 5.7.1. Combined with Proposition 5.6.7 it
yields:

Corollary 5.7.6 Let k be an algebraically closed field of characteristic 0, and let
X be a smooth connected projective scheme over k. For every geometric base point
x̄ the fundamental group π1(X, x̄) is topologically finitely generated.

Proof: Applying Proposition 5.6.7 to the inclusion Q →֒ C we obtain the result
for k = Q. Then we deduce the result for general k using the inclusion Q →֒ k.

Before leaving the case of characteristic 0, we give an alternate approach to the
above corollary due to Pop. It uses the following well-known lemma on profinite
groups.

Lemma 5.7.7 Let G1 be a profinite group that has only finitely many open normal
subgroups of index N for every integer N > 0. Assume that G2 is another profinite
group such that for every open normal subgroup U ⊂ G1 there is an open normal
subgroup V ⊂ G2 with G1/U ∼= G2/V , and vice versa. Then:

1. There exists an isomorphism of profinite groups G1
∼= G2.

2. Every continuous surjection G1 ։ G2 (or G2 ։ G1) is an isomorphism.

Proof: For part (1) denote by UN (resp. VN ) the intersection of all open normal
subgroups of index at most N in G1 (resp. G2). By assumption [G1 : UN ] is finite.
If V ⊂ G2 is an open normal subgroup that is an intersection of open normal
subgroups of index at most N , there is an open normal subgroup U ⊃ UN in G1

with G1/U ∼= G2/V . Thus G2/V is a quotient of G1/UN . Now let W ⊂ G2 be an
open normal subgroup of maximal index such that G2/W arises as a quotient of
G1/UN . By the previous discussion G2/(W ∩ V ) is again a quotient of G1/UN for
every open normal V ⊂ G2 of index at most N . It follows from the maximality
assumption that the inclusionW∩V ⊂W must be an equality, and hence VN = W .
In particular, [G2 : VN ] is finite. As the finite groups G1/UN and G2/VN have the
same quotients, the natural surjection G1/UN ։ G2/VN is an isomorphism.

Now consider the finite set XN of isomorphisms G1/UN
∼→ G2/VN for each

N > 0. The XN form a natural inverse system indexed by the positive integers,
because composing a given isomorphism G1/UN+1

∼→ G2/VN+1 with the projection
G2/VN+1 → G2/VN induces an isomorphismG1/UN → G2/VN . Thus we obtain an
inverse system of nonempty finite sets, and the inverse limit is nonempty by Lemma
3.4.12. An element of lim

←
XN is a compatible system of isomorphisms G1/UN

∼→
G2/VN , so it induces a continuous isomorphism lim

←
G1/UN

∼→ lim
←
G2/VN . But

these inverse limits are G1 and G2, respectively, because the UN are cofinal in the
system of open normal subgroups of G1, and similarly for the VN .
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For part (2) let φ : G1 ։ G2 be a continuous surjection. For each N > 0 it
induces a surjection φN : G1/UN ։ G2/VN . But we have just seen that these are
finite groups of the same order, so φN must be an isomorphism. Passing to the
inverse limit we obtain that φ is an isomorphism. The argument for a surjection
G2 → G1 is similar.

Second proof of Corollary 5.7.6: Assume first k may be embedded in C.
Then the surjectivity part of the proof of Proposition 5.6.7 (which was elementary)
shows that the map π1(XC, x̄C) → π1(X, x̄) is surjective. What therefore remains
to be shown is the injectivity part of Proposition 5.6.7 for an extension k ⊂ K
of algebraically closed fields of characteristic 0 and X smooth and projective,
knowing already that π1(X, x̄) is topologically finitely generated. This enables us
to apply the lemma, which reduces us to showing that π1(X, x̄) and π1(XK , x̄K)
have the same finite quotients. By surjectivity we already know that every finite
quotient of π1(X, x̄) is also a finite quotient of π1(XK , x̄K). For the converse,
assume given a finite connected Galois cover φ : Y → XK with group G. As in
the proof of Proposition 5.6.7 we find a subfield k′ ⊂ K finitely generated over
k, an integral affine k-scheme T with function field k′ and a finite étale cover
φT : Y → X ×Spec (k) T of schemes of finite type over T such that the induced
morphism Y×T Spec (k′) → Xk′ is isomorphic to φ′. Moreover, by construction φT
is a Galois cover with group G. Now a Bertini type lemma ([95], II.6.1, Theorem
1) allows us to find a k-point P of T such that the fibre YP of the composite map
Y → X ×Spec (k) T → T over P is connected. We obtain a finite étale Galois cover
YP → X with group G.

Remark 5.7.8 Though it works under more restrictive assumptions than that
of Proposition 5.6.7, the above proof has several advantages. To begin with, it
avoids the use of the difficult Proposition 5.6.4, and in particular the properness
assumption that was crucial in its proof. Instead, all we need here is the fact that
π1(XC, x̄C) is topologically finitely generated. In particular, the above proof also
works for a normal affine curve X over an algebraically closed field of characteristic
0 (by virtue of Theorem 4.6.7), and we obtain a result used in the previous chapter.

On the other hand, if one is only interested in proving Proposition 5.6.7 for
proper normal schemes but not Corollary 5.7.6, even the transcendental input is
superfluous. In fact, in order to be able to apply the lemma, all one needs is the
fact that π1(X, x̄) has only finitely many open normal subgroups of index N for
every integerN > 0. But, as already noted in the previous chapter, this was proven
in a purely algebraic way for proper normal schemes (in arbitrary characteristic)
by Lang and Serre ([51], th. 4).

We now extend the previous results to positive characteristic. The extension
is based on Grothendieck’s specialization theory for the fundamental group which
we now explain. We shall work over the spectrum of a complete discrete valuation
ring A. (Recall that a local ring A with maximal ideal M is said to be complete
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if the natural map A → lim
←
A/M i is an isomorphism.) Examples of complete

discrete valuation rings are the ring Zp of p-adic integers for a prime p (Example
1.3.4 (4)) and the formal power series ring k[[t]] over a field k. We shall tacitly use
the key property that the integral closure of a complete discrete valuation ring in
a finite extension of its fraction field is again a complete discrete valuation ring
(see [69], Chapter II, Theorem 4.8 and its proof).

Let us introduce some notation. Denote by K the fraction field and by k the
residue field of the complete discrete valuation ring A. The affine scheme Spec (A)
will be denoted by S, and η : Spec (K) → S (resp. s : Spec (k) → S) will stand
for the generic (resp. closed) points of S. Fix geometric points η̄ (resp. s̄) lying
above η (resp. s). Given a morphism of schemes X → S, we denote by Xη, Xs,
Xη̄, Xs̄ its base change by the corresponding maps.

Theorem 5.7.9 (Grothendieck) Let S be as above, and let φ : X → S be a
proper morphism. Fix geometric points x̄ and ȳ of Xη̄ and Xs, respectively.

1. The natural map π1(Xs, ȳ) → π1(X, ȳ) induced by the map Xs → X is an
isomorphism.

2. Assume moreover that k is algebraically closed, φ is flat, and the geometric
fibres Xη̄, Xs̄ are reduced. Then the natural map π1(Xη̄, x̄) → π1(X, x̄) is
surjective.

This is proven in [29], Exposé X using deep algebraization techniques for formal
schemes. We refer to Section 8.5.C of [36] for an excellent exposition.

If k is algebraically closed and s = s̄, we may consider the composite map

sp : π1(Xη̄, x̄) → π1(X, x̄)
∼→ π1(X, ȳ)

∼→ π1(Xs̄, ȳ) (5.4)

where the middle isomorphism is a non-canonical one coming from Corollary 5.5.2,
the first map is the one in part (2) of the theorem, and the last one is the inverse of
the isomorphism of part (1). It is called a specialization map for the fundamental
group associated with φ. As it depends on the choice of a path from x̄ to ȳ, it is
unique up to inner automorphism.

Concerning the specialization map the main result is the following.

Theorem 5.7.10 (Grothendieck) Keep notations and assumptions as above,
and assume moreover that φ is proper and smooth with geometrically connected
fibres. Then the specialization map sp induces an isomorphism

π1(Xη̄, x̄)
(p′) ∼→ π1(Xs̄, ȳ)

(p′),

where the superscripts (p′) denote the maximal prime-to-p quotients of the profinite
groups involved.
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The proof uses a lemma on discrete valuation rings. It is often referred to
by the slogan ‘ramification kills ramification’. For background and terminology
concerning extensions of discrete valuation rings, see Section 4.1.

Lemma 5.7.11 (Abhyankar) Let A be a discrete valuation ring with maximal
ideal P , fraction field K, and perfect residue field κ. Let K1|K, K2|K be two finite
Galois extensions. Denote by Ai the integral closure of A in Ki, and fix maximal
ideals Pi lying above P for i = 1, 2. Assume that the orders ei of the inertia
subgroups Ii of the Pi are prime to the characteristic of κ, and that moreover e1
divides e2.

Then the finite morphism Spec (C) → Spec (A2) is étale, where C denotes the
integral closure of A in the composite field K1K2.

Proof: Let Q be a maximal ideal of C lying above P . As the Galois groups
Gal (Ki|K) act transitively on the set of maximal ideals of Ai lying above P for
i = 1, 2 (Fact 4.1.3 (1)), we may assume without loss of generality that Q ∩Ai = Pi
for i = 1, 2. Restriction to the subfields Ki yields an injective homomorphism
Gal (K1K2|K) → Gal (K1|K) × Gal (K2|K). Moreover, if we denote by IQ the
inertia subgroup of Q in Gal (K1K2|K), then the above map induces an injection
IQ →֒ I1 × I2 such that the projections IQ → Ii are surjective for i = 1, 2. Here all
three groups have order prime to the residue characteristic by assumption, hence
all of them are cyclic by Fact 4.1.3 (4). By the assumption e1|e2 the elements of
I1 × I2, and hence of IQ, have order dividing e2. But IQ surjects onto I2, so it
must have order e2 and the projection IQ → I2 must be an isomorphism. This
implies that the inertia group of Q over P2 is trivial. As Q here was arbitrary, the
conclusion follows from Corollary 4.1.7 (and the isomorphism (4.1) preceding it).

Proof of Theorem 5.7.10: In view of Theorem 5.7.9 (1) we have to show that
the map π1(Xη̄, x̄) → π1(X, x̄) induces an isomorphism on maximal prime-to-p
quotients.

We first show that the map π1(Xη̄, x̄) → π1(X, x̄) itself is surjective. By
Proposition 5.5.4 (2) we have to check that for each connected finite étale cover
π : Y → X the base change Yη̄ := Y ×X η̄ remains connected. The scheme
Yη̄ is the inverse limit of the schemes Yη′ := Y ×S Spec (K ′), where K ′|K is a
finite extension contained in the algebraic closure of K corresponding to η̄′. As
an inverse limit of connected topological spaces is again connected, it suffices to
check the connectedness of the Yη′ . But Yη′ is the generic fibre (so in particular an
open subscheme) of Y ′ = Y ×S S

′, where S′ is the spectrum of the normalization
A′ of A in K ′, so therefore it is enough to check the connectedness of Y ′. If Y ′

were the disjoint union of two nonempty closed subsets Z1 and Z2, one of them,
say Z1, would contain the special fibre Ys. Indeed, Ys is the same as Xs (since
s = s̄) and Xs is connected by assumption. But then the image of Z2 by the map
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Y ′ → S′ induced by φ ◦ π via base change would be the open point η′ of S′. This
is impossible, because Y ′ → S′ is a proper, hence closed map.

For injectivity on maximal prime-to-p quotients we have to show by virtue of
Corollary 5.5.8 (taking the argument of Remark 5.5.10 into account) that every
finite étale Galois cover Y → Xη̄ of degree prime to p comes via base change from
a Galois cover Y → X of degree prime to p. As before, we know that Y comes
via base change from a finite étale cover of Xη′ , with η′ corresponding to a finite
extension K ′|K. On the other hand, for each finite extension K ′|K we have, in the
above notation, an isomorphism π1(X ×S S

′, ȳ)
∼→ π1(X, ȳ), because both groups

here are isomorphic to π1(Xs̄, ȳ) by Theorem 5.7.9 (1). Thus after replacing S by
S′ we may assume that Y comes from a finite Galois cover Yη → Xη, and we have
to show that there is a finite extension K ′′|K such that, with obvious notation, Y
comes by base change from an étale Galois cover Y ′′ → X ×S S

′′ of degree prime
to p. To see this, write Z → X for the normalization of X in the function field
K(Yη) of Yη. Note that K(Yη)|K(X) is a finite Galois extension; denote by d its
degree. By Zariski–Nagata purity (Theorem 5.2.13) it suffices to find K ′′|K such
that Z ×S S

′′ → X ×S S
′′ is étale over all codimension 1 points of X ×S S

′′, for
then we may set Y ′′ := Z ×S S

′′. Now all codimension 1 points of X lie in Xη

except for the generic point ξ of Xs. So taking Remark 5.2.3 (2) into account it
is enough to find S′′ such that Z ×S S

′′ is étale over the points of X ×S S
′′ lying

above ξ.
Now if we denote by π a generator of the maximal ideal of A, then by construc-

tion π also generates the maximal ideal of the discrete valuation ring OX,ξ. The
extension K(X)( d

√
π)|K(X) is a finite Galois extension of degree d by Kummer

theory. Moreover, Corollary 4.1.7 implies that there is a single point ξ′ on the
normalization of X in K(X)( d

√
π) lying above ξ, with cyclic inertia group of order

d. Hence we may apply Lemma 5.7.11 to the extensions K(Yη) and K(X)( d
√
π)

of K(X) to conclude that the fibre over ξ′ of the normalization Y ′′ of X in the
composite K(Yη) ·K(X)( d

√
π) is étale. It remains to notice that by construction

Y ′′ ∼= X×SS
′′, where S′′ is the spectrum of the normalization of A in the extension

K( d
√
π)|K.

Remark 5.7.12 In fact, one may define the specialization map in the following
more general situation: S is a locally noetherian scheme, X → S is a proper
morphism with connected geometric fibres, and s0, s1 are scheme-theoretic points
of S such that s0 lies in the closure of s1 in S. Fix geometric points s̄i lying
above the si and geometric points x̄i of the corresponding geometric fibres. We
then have a specialization homomorphism π1(Xs̄1 , x̄1) → π1(Xs̄0 , x̄0) defined as
follows. Replace S by the spectrum of the local ring OZ,s0 of s0 on the closure Z
of s1 in S; this does not affect the geometric fibres Xs̄i

. Let A be the completion
of the localization of the integral closure of OZ,s0 in its fraction field K0 by a
prime ideal of height 1. It is a complete discrete valuation ring containing OZ,s0 ,
hence the specialization map (5.4) is defined for X ×S Spec (A) → Spec (A). The
geometric special fibre Xs̄0 is preserved, and the natural map Xη̄ → Xs̄0 induces
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an isomorphism on fundamental groups by Proposition 5.6.7. Composing with
this isomorphism (and possibly changing base points) we obtain the required map
π1(Xs̄1 , x̄1) → π1(Xs̄0 , x̄0). The statements of Theorems 5.7.9 (2) and 5.7.10 carry
over immediately to this more general specialization map.

Grothendieck’s main motivation for developing the above theory was to prove
Theorem 4.9.1 in positive characteristic. Let us restate it in the proper case.

Theorem 5.7.13 Let k be an algebraically closed field of characteristic p ≥ 0, and
let X be an integral proper normal curve of genus g over k. For every geometric
point x̄ of X the group π1(X, x̄) is topologically finitely generated, and its maximal
prime to p-quotient π1(X, x̄)

(p′) is isomorphic to the profinite p′-completion of the
group

Πg,0 := 〈a1, b1, . . . , ag, bg | [a1, b1] . . . [ag, bg] = 1〉.

As already remarked in the previous chapter, for k = C this follows from the
topological theory and the Riemann existence theorem, and then for general k of
characteristic 0 it follows from Proposition 5.6.7. When k has positive character-
istic, the proof proceeds in three steps.

1. First one uses the fact that there exists a discrete valuation ring A with fraction
field K of characteristic 0 and residue field κ isomorphic to k ([57], Theorem 29.1).
Here A may be assumed complete by taking its completion.

2. Then one uses the existence of a smooth proper scheme X → Spec (A) with
Xs ∼= X and Xη a smooth proper curve over K. This can be proven in several
ways. The original approach of Grothendieck was to extend X first to a formal
Spec (A)-scheme and use an algebraization theorem; see [36], Theorem 8.5.19.

Another approach is to use the classification of curves. For instance, one may
embed X in projective space using the third power of the canonical sheaf, and then
identify its isomorphism class with a k-point [X] of the Hilbert scheme denoted
by H0

g in [15]. According to Corollaries 1.7 and 1.9 of that paper the scheme H0
g

is smooth over Spec (Z), and therefore a form of Hensel’s lemma (see e.g. [64],
§III.5) can be applied to extend [X] to an A-valued point. (This argument works
for g ≥ 2, but the cases g = 0, 1 are easily handled directly.)

3. Finally, one applies Theorem 5.7.10.

Corollary 5.7.14 Let X be a smooth connected projective scheme over an al-
gebraically closed field. For each geometric base point x̄ the fundamental group
π1(X, x̄) is topologically finitely generated.

Proof: Like Proposition 5.7.1, this is proven by reduction to the case of curves
treated in the theorem above.

Combining the arguments involved in the above proof with techniques of flat
descent theory, Grothendieck proved in ([29], X.2.10) that the corollary holds for
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an arbitrary proper connected scheme over an algebraically closed field. Without
the properness assumption the corollary is false in positive characteristic even for
smooth curves: see Theorem 4.9.5.

In the case of non-proper schemes it is therefore often useful to work with a
fundamental group whose p-part is also topologically finitely generated in charac-
teristic p > 0. Such a fundamental group is defined by means of finite étale covers
tamely ramified at infinity.

Definition 5.7.15 Let X be a normal integral scheme, and U ⊂ X an open
subscheme. Assume given a connected finite étale cover Y → U . We say that Y is
tamely ramified along X \U if for each codimension 1 point P of X not lying in U
the closed points of the normalization of Spec (OX,P ) in the function field K(Y )
have ramification indices prime to the characteristic of κ(P ).

Assume now that U is a regular integral scheme that is separated of finite
type over a base scheme S which is the spectrum of a field, a complete discrete
valuation ring or Z. We say that a connected finite étale cover Y → U is tamely
ramified if for all normal integral schemes X proper over S that contain U as a
dense open subscheme the cover Y is tamely ramified along X \U . This definition
naturally extends to non-connected covers by considering the function fields of
various components of Y .

In the above situation fix moreover a geometric point ū of U . We define the
tame fundamental group πt1(U, ū) as the automorphism group of the restriction of
the fibre functor Fibū to the full subcategory of FetU spanned by tamely ramified
finite étale covers of U .

Remarks 5.7.16

1. It follows from the definition that πt1(U, ū) is a quotient of π1(U, ū); in par-
ticular, it is a profinite group. When ū is given by an algebraic closure K(U)
of the function field K(U), we may identify πt1(U, ū) with the Galois group
Gal (Kt

U |K(Y )), where Kt
U is the compositum in K(U) of the function fields

of tamely ramified connected finite étale covers of U . This makes sense,
because composita of tamely ramified extensions of discrete valuation rings
are again tamely ramified ([69], Chapter II, Corollary 7.9).

2. In the case when U has dimension 1, there is a unique regular proper X
containing U as an open subscheme. We have seen this in the case of normal
curves in the previous chapter; the general case is similar. Thus in this case
the tameness condition is to be checked for a single compactification X.

3. The above definition of tameness is taken from Kerz and Schmidt [43]. They
show that if there exists a regular proper X containing U such that the
complement X \ U is a so-called normal crossing divisor, then Y → U is
tamely ramified if and only if it is tamely ramified along X \ U . The latter
condition is the definition of tameness adopted in [29]. In [43] it is also
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shown that a finite étale cover Y → U is tamely ramified if and only if the
base change X ×S C → C is a tamely ramified cover of C for every regular
integral separated scheme of finite type over S that has dimension 1. This
implies in particular that the notion of tameness is preserved by base change.

4. Assume that X → S is a proper smooth morphism with geometrically inte-
gral fibres of dimension 1, where S is the spectrum of a complete discrete
valuation ring with algebraically closed residue field. Assume moreover given
a closed subscheme Y ⊂ X such that the composite Y → X → S is a finite
étale cover. Set U = X \ Y , fix geometric points η̄ and s̄ lying above the
generic and closed points of S, and choose geometric points ū and ȳ of the
the geometric fibres Uη̄ and Us̄, respectively. In this situation there is a
specialization map πt1(Uη̄, ū) → πt1(Us̄, ȳ) which is surjective and induces an
isomorphism on maximal prime-to-p quotients. For a proof, see the chapter
by Orgogozo and Vidal in [8].

As a consequence, one obtains by a similar argument as in Theorem 5.7.13
that when U is an integral normal curve over an algebraically closed field,
the tame fundamental group πt1(U, ū) is topologically finitely generated ([29],
exposé XIII, corollaire 2.12). Of course, in characteristic 0 this uses the topo-
logical result of Remark 3.6.4. By means of a hyperplane section argument
as in Proposition 5.7.1 one gets the more general statement that for an open
subscheme U of a smooth projective integral scheme over an algebraically
closed field the group πt1(U, ū) is topologically finitely generated.

5.8 The Abelianized Fundamental Group

Abelian covers of a scheme are easier to describe than general finite étale covers,
and they already capture a lot of information. They can be very conveniently
studied using étale cohomology; see [59], especially Section III.4. Here we content
ourselves with an elementary exposition which, however, heavily uses the theory
of abelian varieties.

Let X be a regular integral Noetherian separated scheme with function field
K. Recall that the group Div(X) of divisors on X is by definition the free abelian
group with basis consisting of the codimension 1 points of X. A principal divisor
is a divisor of the form

∑
vP (f)P , where f is an element of the function field

of X and vP is the discrete valuation associated with the local ring OX,P of the
codimension 1 point P (see Proposition 4.1.9 and the subsequent discussion). This
is indeed a divisor because there are only finitely many codimension 1 points P
that correspond to a prime ideal on an open affine subscheme that contains f .
Principal divisors form a subgroup in Div(X), and the Picard group Pic (X) of X
may be defined in this case as the quotient of Div(X) by the subgroup of principal
divisors (compare with [34], Corollary II.6.16).
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Torsion elements in Pic (X) of order prime to the characteristic of K give rise
to finite étale covers of X via the following construction.

Construction 5.8.1 Assume moreover that the residue fields of codimension 1
points of X are perfect. Fix an integer m prime to the characteristic of K, and
assume K contains a primitive m-th root of unity. Let D ∈ Div(X) be a divisor
whose class in Pic (X) has order dividing m. Then by definition there exists a
function f ∈ K with div(f) = mD; such an f is unique up to multiplication with
an everywhere regular function onX. Choose anm-th root m

√
f in a fixed algebraic

closure of K, and let Y be the normalization of X in the extension K( m
√
f)|K.

Note that this field extension is Galois with group Z/mZ (Example 1.2.9 (2)); in
particular it is separable.

Lemma 5.8.2 The morphism φ : Y → X constructed above is a finite étale
Galois cover with group Z/mZ.

Proof: Pick a codimension 1 point P of X. If f is a unit in OX,P , then
the fibre YP of φ above P is isomorphic to the spectrum of the κ(P )-algebra
κ(P )[x]/(xm − f̄), where f̄ is the image of f in κ(P ). As we assumed κ(P ) to be
perfect, this is a finite étale κ(P )-algebra. If f is not a unit in OX,P , pick a point
Q of Y lying above P (necessarily of codimension 1). In the discrete valuation
vQ associated with OY,Q we have vQ(f) = mvQ( m

√
f), and both integers here are

nonzero because OY,Q ∩K = OX,P , and either f or its inverse lies in the maximal
ideal of OX,P by assumption. By Proposition 4.1.6 and Fact 4.1.3 (3) this is only
possible if Q is the only point of Y lying above P , and the residue field exten-
sion κ(Q)|κ(P ) is Galois with group Z/mZ. Hence YP is again étale. Applying
Zariski–Nagata purity (Theorem 5.2.13) we obtain that Y → X is a finite étale
cover; it is moreover Galois with group Z/mZ by construction.

From now on we write πab
1 (X) for the maximal abelian profinite quotient of

the fundamental group π1(X, x̄) with respect to some geometric base point x̄. It
can also be described as the quotient of π1(X, x̄) by the closure of its commutator
subgroup. According to Remark 5.5.3 it does not depend on the choice of the
geometric base point.

Proposition 5.8.3 For X and m as in Construction 5.8.1 there is an exact se-
quence

1 → OX(X)×/OX(X)×m → Hom(πab
1 (X),Z/mZ) → mPic (X) → 0.

Here for an abelian groupA the notation mA stands for them-torsion subgroup,
and continuous homomorphisms are considered.
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Proof: Each continuous homomorphism πab
1 (X) → Z/mZ factors through a

cyclic quotient of πab
1 (X) of order dividing m, which in turn corresponds to a cyclic

Galois étale cover Y → X. In this way we obtain a one-to-one correspondence
between Hom(πab

1 (X),Z/mZ) and cyclic Galois étale covers of degree dividing m.
To define the map OX(X)×/OX(X)×m → Hom(πab

1 (X),Z/mZ), pick a func-
tion f ∈ OX(X)×, and normalize X in the extension K( m

√
f)|K. The above

arguments applied with D = 0 show that we obtain a finite étale cover of X.
To define the next map in the sequence, start with a cyclic Galois étale cover
Y → X with group Z/mZ. Replacing Y by a connected component (and lower-
ing m) if necessary, we may assume Y is integral. The function field extension
K(Y )|K is then Galois with group Z/mZ, so by Kummer theory (Remark 1.2.10)
K(Y ) is of the form K( m

√
f) for some f ∈ K. As Y is normal (Proposition

5.2.12 (3)) and finite over X, it must be isomorphic to the normalization of X in
the extension K( m

√
f)|K. Since Y → X is étale, we must have vP (f) = vQ(f)

for all points Q lying above a P of codimension 1. But vQ(f) = mvQ( m
√
f),

whence div(f) = mD for some D ∈ Div(X). As Div(X) is a free abelian group,
the said D is uniquely defined, so by passing to the class of D we get a map
Hom(πab

1 (X),Z/mZ) → mPic (X). This map is in fact surjective, as it has a
retraction by the lemma above.

The two maps in the previous paragraph are homomorphisms. Indeed, the sum
λ + λ′ of two homomorphisms λ, λ′ : πab

1 (X) → Z/mZ induces via composition
with the map πab

1 (Spec (K)) → πab
1 (X) the sum λK + λ′K of the two restrictions

λK , λ
′
K : Gal (K|K)ab → Z/mZ. This in turn corresponds via Kummer theory to

the product ff ′ of the corresponding functions f, f ′ ∈ K×, and finally we have
div(ff ′) = div(f) + div(f ′). Exactness of the sequence at the other terms then
follows from the construction.

Remark 5.8.4 It is possible to construct the exact sequence of the proposition
for an arbitrary Noetherian connected scheme such that m is prime to the residue
characteristic of each point; see [59], Proposition III.4.14. (Here of course one
has to work with the more general definition of the Picard group via isomorphism
classes of invertible sheaves.)

In characteristic p > 0 we can use Artin–Schreier theory to construct étale
Galois covers with group Z/pZ.

Construction 5.8.5 Assume K is of characteristic p > 0, and let f ∈ OX(X) be
an everywhere regular function. In a fixed algebraic closure of K choose a function
g with gp − g = f , and let Y be the normalization of X in the extension K(g)|K.
The field extension here is Galois with group Z/pZ by Example 1.2.9 (5). The
fibre YP above a point P is the spectrum of the κ(P )-algebra κ(P )[x]/(xp−x− f̄),
where f̄ is the image of f in κ(P ). This is a product of copies of κ(P ) for f̄ = 0
and a Galois field extension with group Z/pZ otherwise. It follows as above that
Y → X is indeed a finite étale Galois cover with group Z/pZ.
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Remark 5.8.6 The above construction yields an injective map

OX(X)/℘(OX(X)) → Hom(πab
1 (X),Z/pZ)

where ℘ : OX(X) → OX(X) is the map f 7→ fp − f . Serre has identified the
cokernel with the invariants of the cohomology group H1(X,OX) under the action
of the Frobenius morphism. Nowadays this result is viewed as a consequence of the
Artin-Schreier exact sequence for étale cohomology (see [59], Proposition III.4.12).

In the special case where X is affine we have H1(X,OX) = 0 by Serre’s van-
ishing theorem ([34], Theorem II.3.7), so the above map is an isomorphism. On
the other hand, when X is proper over an algebraically closed field, it is the term
OX(X)/℘(OX(X)) that is trivial, and Hom(πab

1 (X),Z/pZ) is isomorphic to the
subgroup of Frobenius-invariant elements in H1(X,OX).

Proposition 5.8.3 relates prime-to-p quotients of the abelianized fundamental
group to torsion in the Picard group. In order to obtain more precise information
we need deep theorems concerning the Picard variety.

Facts 5.8.7 Let X be a smooth, projective integral scheme over an algebraically
closed field k. The group Pic (X) can be identified with the group of k-points of
a commutative k-group scheme PicX . The identity component Pic0

X ⊂ PicX is
an abelian variety called the Picard variety of X. If X is defined over a subfield
F ⊂ k (i.e. arises via base change to Spec (k) from a smooth projective scheme
over Spec (F )), then so does Pic0

X . For these facts, see [44], Theorem 9.5.4.
The abelian group Pic0

X(k) is divisible (a general fact about abelian varieties;
see [65], §6, Application 2). The quotient NS(X) := PicX(k)/Pic0

X(k) is a finitely
generated abelian group ([59], Theorem VI.11.7). It is called the Néron–Severi
group of X. When X is a curve, one has NS(X) ∼= Z, and when X is an abelian
variety, then NS(X) ∼= Zr for some r > 0 ([65], §19, Corollary 2).

Keeping the assumptions under which the above facts hold, we have for each
m > 0 a commutative diagram

0 −−−→ Pic0
X(k) −−−→ PicX(k) −−−→ NS(X) −−−→ 0
ym

ym
ym

0 −−−→ Pic0
X(k) −−−→ PicX(k) −−−→ NS(X) −−−→ 0

where the vertical maps are given by multiplication by m, the left one being
surjective. We deduce an exact sequence on m-torsion subgroups

0 → mPic0
X(k) → mPicX(k) → mNS(X) → 0.

Assuming m prime to the characteristic, we may combine the above with Propo-
sition 5.8.3 and obtain an exact sequence

0 → mPic0
X(k) → Hom(πab

1 (X),Z/mZ) → mNS(X) → 0.
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since in this case OX(X) = k is divisible. Dualizing the above sequence of Z/mZ-
modules and bearing in mind the facts recalled in Remark 5.6.11 we obtain:

Corollary 5.8.8 Let X be a smooth, projective, integral scheme over an alge-
braically closed field k, and let m be an integer prime to the characteristic of k.
We have an exact sequence

0 → Hom(mNS(X),Z/mZ) → πab
1 (X)/mπab

1 (X) → Hom(mPic0
X(k),Z/mZ) → 0.

In particular, πab
1 (X)/mπab

1 (X) is a finite abelian group that is an extension of
(Z/mZ)2g by a group of order bounded independently of m.

In the case of a curve or an abelian variety the group NS(X) is torsion-free,
and we actually obtain an isomorphism πab

1 (X)/mπab
1 (X) ∼= (Z/mZ)2g.

To proceed further, we invoke the theory of Albanese varieties.

Facts 5.8.9 Let X be a geometrically integral separated scheme of finite type
over a field k, and assume X has a k-rational point P . There is an abelian variety
AlbX (the Albanese variety of X) and a map φP : X → AlbX sending P to 0 such
that every k-morphism X → A into an abelian variety A sending P to 0 factors
uniquely through φP .

The map φP gives a natural homomorphism φ∗P : Pic (AlbX) → Pic (X), in-
duced by pullback of divisors in the smooth case. By a theorem going back to
Severi, if we moreover assume k algebraically closed as well as X smooth and pro-
jective, the map φ∗P restricts to an isomorphism Pic 0

AlbX
(k)

∼→ Pic0
X(k) which does

not depend on P any more. In fact, this isomorphism comes from an isomorphism
of abelian varieties Pic 0

AlbX

∼→ Pic0
X . In other words, Pic0

X is the dual abelian va-
riety of AlbX . When X is a curve, both AlbX and Pic0

X are equal to the Jacobian
of X, and we recover the classical self-duality of the Jacobian.

For the above facts the best references are still Serre’s seminar lectures [86]
and [87]. (He assumes k algebraically closed throughout, but the statement of the
first paragraph follows via a standard descent argument.)

Finally, recall that by the general theory of abelian varieties ([65], §20) the
duality between AlbX and Pic0

X induces for every integer m prime to the charac-
teristic of k a perfect pairing

mAlbX(k) × mPic0
X(k) → µm

where µm is the group of m-th roots of unity in k. It is called the Weil pairing.

Corollary 5.8.10 Let X be a smooth, projective, integral scheme over an alge-
braically closed field k. For every prime number ℓ different from the characteristic

of k the maximal pro-ℓ-quotient π
ab,(ℓ)
1 (X) of πab

1 (X) sits in an exact sequence

0 → Hom(NS(X){ℓ},Qℓ/Zℓ) → π
ab,(ℓ)
1 (X) → Tℓ(AlbX) → 0,



202 Chapter 5. Fundamental Groups of Schemes

where NS(X){ℓ} denotes the (finite) ℓ-primary torsion subgroup of NS(X).

In particular, the ℓ-primary torsion subgroup π
ab,(ℓ)
1 (X){ℓ} of π

ab,(ℓ)
1 (X) is fi-

nite, and the quotient π
ab,(ℓ)
1 (X)/(π

ab,(ℓ)
1 (X){ℓ}) is isomorphic to Z2g

ℓ , where g is
the dimension of AlbX .

Proof: By choosing a primitive ℓr-th root of unity in k for all r > 0 we obtain
isomorphisms µℓr ∼= Z/ℓrZ. Hence we may identify the group ℓrAlbX(k) with
Hom(ℓrPic0

X(k),Z/ℓrZ). The statement then follows from applying Corollary 5.8.8
with m = ℓr for all r > 0, and passing to the inverse limit in the resulting inverse
system of exact sequences of finite abelian groups.

Remark 5.8.11 The exact sequence of the corollary also holds for ℓ = p. In
fact, an argument of Raynaud in flat cohomology (see [59], Proposition III.4.16)
implies that there are isomorphisms Hom(πab

1 (X),Z/mZ) ∼= Hom(µm,PicX) for
all m > 0. The rest of the proof then goes through. Consequently, the whole
torsion subgroup of πab

1 (X) is finite, and the quotient is isomorphic to the full
Tate module T (AlbX).

On the other hand, if we only assume X to be smooth and quasi-projective,
Serre’s theory of generalized Albanese varieties implies an analogous exact sequence
for the abelianized tame fundamental group. See [97], Proposition 4.4.

We now investigate the abelianized fundamental group over more general bases.
First assume X is a proper smooth geometrically integral scheme of finite type over
an arbitrary perfect base field k. The homotopy exact sequence

1 → π1(X, x̄) → π1(X, x̄) → Gal (k̄|k) → 1 (5.5)

of Proposition 5.6.1 yields upon abelianization an exact sequence

πab
1 (X) → πab

1 (X) → Gal (k̄|k)ab → 0.

Recall the canonical outer action of Gal (k̄|k) on π1(X, x̄): it is induced by the
action of π1(X, x̄) on itself via conjugation. It thus yields a well-defined action of
of Gal (k̄|k) on πab

1 (X). Moreover, if we equip πab
1 (X) with the trivial Gal (k̄|k)-

action, the map πab
1 (X) → πab

1 (X) is compatible with the action of Gal (k̄|k).
It thus factors through the maximal quotient πab

1 (X)Gal (k̄|k) of πab
1 (X) invariant

under the action of Gal (k̄|k), the coinvariants of the Galois action. We obtain an
exact sequence

πab
1 (X)Gal (k̄|k) → πab

1 (X) → Gal (k̄|k)ab → 0.

Remark 5.8.12 In the case when X has a k-rational point the exact sequence
(5.5) has a section, so we obtain a semidirect product decomposition

π1(X, x̄) ∼= π1(X, x̄) ⋊ Gal (k̄|k).
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By a general property of semidirect products, the abelianization then becomes a
direct product

πab
1 (X) ∼= πab

1 (X)Gal (k̄|k) × Gal (k̄|k)ab.
Such a decomposition does not exist in general.

When the base field is a finite field, we obtain a finiteness result.

Proposition 5.8.13 Let X be a smooth projective geometrically integral scheme
over a finite field F of characteristic p. The kernel of the map πab

1 (X) → Gal (F|F)
is the product of a finite group and a pro-p-group.

In fact, the p-part of the kernel is also finite, but we shall not prove this; see
Remark 5.8.15 below.

Proof: It suffices to show that the coinvariants of the action of Gal (F|F) on the
Tate module Tℓ(AlbX̄) are finite for all ℓ 6= p and trivial for all but finitely many
ℓ. As Gal (F|F) ∼= Ẑ, topologically generated by the Frobenius automorphism
F : x 7→ xp, and the Galois action is continuous, we may identify Tℓ(AlbX̄)Gal (F|F)

with the cokernel of the Zℓ-linear automorphism F − id of Tℓ(AlbX̄). Now recall
from Remark 5.6.11 that Tℓ(AlbX̄) is a finitely generated free Zℓ-module. It follows
that the map

F − id : Tℓ(AlbX̄) → Tℓ(AlbX̄) (5.6)

has finite kernel (resp. cokernel) if and only if the induced map

F − id : Tℓ(AlbX̄) ⊗Zℓ
Qℓ → Tℓ(AlbX̄) ⊗Zℓ

Qℓ

is injective (resp. surjective). But the latter is an endomorphism of a finite-
dimensional Qℓ-vector space, so it is injective if and only if it is surjective. There-
fore the finiteness of the cokernel of (5.6) is equivalent to the finiteness of its kernel.
The kernel is indeed finite, being the ℓ-primary torsion subgroup AlbX(F){ℓ} of
the finite group AlbX(F). To show that the cokernel is 0 for almost all ℓ we invoke
Weil’s theorem ([65], §19, Theorem 4) according to which the order of AlbX(F)
(which is the same as the degree of the endomorphism F − id of the abelian variety
AlbX) equals the determinant of the Zℓ-linear map (5.6). For the ℓ not dividing
the order of AlbX(F) this determinant is a unit in the ring Zℓ and therefore (5.6)
is an isomorphism, whence the assertion.

Using a specialization argument we can prove a much broader statement.

Theorem 5.8.14 (Katz–Lang) Let S be an integral scheme whose function field
K is finitely generated over Q, and let φ : X → S be a smooth projective morphism
with geometrically integral fibres. The kernel of the natural map φ∗ : πab

1 (X) →
πab

1 (S) is finite.
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Proof: First we treat the case S = Spec (K). As above, we have to show that
the coinvariants of the action of Gal (K|K) on πab

1 (X) are finite. By a similar
argument as in the proof of Lemma 5.6.2 we find an integrally closed domain A
finitely generated over Z with fraction fieldK such thatX → S extends to a proper
smooth morphism X → Spec (A) with generic fibre X and all fibres geometrically
integral. Pick a point Q of codimension 1 in Spec (A) and a normal closed point P
on the closure Y of Q in Spec (A). Let B be the completion of the local ring OY,P ;
it is a complete discrete valuation ring with residue field κ(P ). Denote by p the
residue characteristic, and fix geometric points η̄ (resp. s̄) lying above the generic
(resp. closed) point of Spec (B). Theorem 5.7.10 implies that the specialization
map sp : π1(Xη̄)ab,(p′) → π1(Xs̄)ab,(p′) on maximal abelian prime-to-p quotients is
an isomorphism. The geometric point η factors as η : Spec (Ω) → Spec (K) →
Spec (K), where K is an algebraic closure ofK in Ω. Denoting by ηK the geometric
point Spec (K) → Spec (A), we obtain from Proposition 5.6.7 an isomorphism
π1(Xη̄)ab,(p′) ∼→ π1(Xη̄

K
)ab,(p

′) through which the map sp factors. We conclude

that there is an isomorphism π1(Xη̄
K

)ab,(p
′) ∼→ π1(Xs̄)ab,(p′).

Denote by K∧ the fraction field of B. The Galois group Gal (K
∧|K∧) may

be identified with a subgroup D ⊂ Gal (K|K), and its action on π1(Xη̄)ab,(p′)
corresponds to the action of D on π1(Xη̄

K
)ab,(p

′). It follows that there exists a
surjective map

π1(Xη̄)ab,(p
′)

Gal (K
∧
|K∧)

։ π1(Xη̄
K

)
ab,(p′)

Gal (K|K)
. (5.7)

But Gal (K
∧|K∧) acts on π1(Xη̄)ab,(p′) via its quotient π1(Spec (B), η̄) because

of the isomorphism π1(Xη̄)ab,(p′) ∼→ π1(XSpec (B))
ab,(p′) factoring the specialization

isomorphism sp, where B is the integral closure of B in K
∧
. On the other hand,

the choice of a path between s̄ and η̄ yields a map

Gal (κ(P )|κ(P )) ∼= π1(Spec (κ(P ), s̄) → π1(Spec (B), η̄).

Putting all the above together, we conclude that there is a surjective map

π1(Xs̄)ab,(p
′)

Gal (κ(P )|κ(P ))
։ π1(Xη̄)ab,(p

′)

Gal (K
∧
|K∧)

. (5.8)

But the first group here is finite, as we saw in the proof of the previous propo-
sition. We conclude from the surjections (5.7) and (5.8) that the coinvariants of
Gal (K|K) on π1(X)ab,(p

′) are finite. Working with another closed point of residue
characteristic different from p we obtain that the coinvariants on π1(X)ab,(p) are
finite as well. This concludes the proof of the case S = Spec (K).

To treat the general case, fix a geometric point x̄ of X and consider the com-
mutative diagram

πab
1 (Xx̄) −−−→ πab

1 (X ×S Spec (K))
φK∗−−−→ πab

1 (Spec (K)) −−−→ 0
yid

y
y

πab
1 (Xx̄) −−−→ πab

1 (X)
φ∗−−−→ πab

1 (S) −−−→ 0
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whose exact rows result from Proposition 5.6.4 after abelianization. A diagram
chase shows that there is a surjective map ker(φK∗) ։ ker(φ∗), and we reduce to
the special case proven above.

Remark 5.8.15 If we only assume that the field K is finitely generated over its
prime field, the above proof shows that the maximal prime-to-p quotient of ker(φ∗)
is finite, where p is the characteristic of K. An additional argument sketched in
[41] shows that the p-part is finite as well. Katz and Lang also proved the finiteness
of the maximal prime-to-p quotient of ker(φ∗) under the following assumptions: S
is normal, φ is smooth and surjective with geometrically integral generic fibre, and
K is finitely generated over the prime field, of characteristic p ≥ 0.

We close this section with a theorem of Lang about the abelianized fundamen-
tal group of a separated scheme of finite type over Z. When X is such a scheme,
the residue field κ(P ) of every closed point P is finite by Corollary 4.1.14. The
fundamental group of Spec (κ(P )) is the absolute Galois group of κ(P ). It is iso-
morphic to Ẑ, and a topological generator is given by the Frobenius automorphism
FP of a fixed algebraic closure κ(P ).

Given a geometric point x̄ of X, the morphism Spec (κ(P )) → X induces a
continuous homomorphism Gal (κ(P )|κ(P )) → π1(X, x̄). Its definition involves
the choice of a path between the geometric points Spec (κ(P )) and x̄ of X, hence
it is only defined up to inner automorphism. The element FP thus gives rise to a
conjugacy class of elements in π1(X, x̄) called Frobenius elements.

When we compose with the projection π1(X, x̄) → πab
1 (X), the resulting map

Gal (κ(P )|κ(P )) → πab
1 (X) becomes well-defined, and each FP maps to a unique

Frobenius element in πab
1 (X).

Theorem 5.8.16 (Lang) Let X be an integral separated scheme of finite type
over Z. The Frobenius elements generate a dense subgroup in the topological group
πab

1 (X).

Somewhat surprisingly, the proof uses analytic tools.

Facts 5.8.17 Given a separated scheme X of finite type over Z, its zeta function
ζX is defined by the Euler product

ζX(s) =
∏

P∈X0

1

(1 − NP )−s

where X0 denotes the set of closed points of X, and NP is the cardinality of
the residue field κ(P ). The product converges for Re (s) > dim(X), and can be
extended meromorphically to the half-plane Re (s) > dim(X) − 1/2. At the point
s = dim(X) it has a simple pole.

These facts can be found in [89] without proof. They can, however, be proven
in the same way as in the well-known special case of the Dedekind zeta function
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(where X is the spectrum of the ring of integers in an algebraic number field; see
e.g. [50], Chapter VIII, Theorem 5), using estimates on the number of points on
varieties over number fields. When X is actually of finite type over a finite field,
much more is true: ζX is a rational function (Dwork’s theorem), there are simple
poles at s = 1 and s = d, and for X smooth and projective the other poles are
described by Deligne’s theorem (ex Weil conjecture). See e.g. [59], Section VI.12.

Proof of Theorem 5.8.16: Assume the subgroup H generated by the Frobenius
elements is not dense in πab

1 (X), and denote by H its closure. Let U be an open
subgroup containing H. It corresponds to a finite étale cover Y → X (which is
moreover Galois with abelian Galois group). Given a closed point P of X, the
fibre YP above P must be the spectrum of a finite direct product of copies of κ(P ),
because by construction of Y the Frobenius element FP acts trivially on each
geometric point of YP . From this we obtain that Y has exactly d closed points
lying above each closed point of X, where d is the degree of the cover Y → X.
But then by definition ζY = ζdX , which is impossible because both have a simple
pole at s = dim(X) = dim(Y ).

Remark 5.8.18 Using a more powerful analytic result one obtains a non-commuta-
tive generalization of the theorem. Namely, a consequence of the generalized Cheb-
otarev density theorem ([89], Theorem 6) can be stated as follows. Assume given a
finite étale Galois cover Y → X of integral separated schemes of finite type over Z.
Then each subset C of the Galois group G that is stable by conjugation contains
the image of a conjugacy class of Frobenius elements in π1(X, x̄). Consequently,
the union D of all conjugacy classes of Frobenius elements in π1(X, x̄) meets every
single coset of every open normal subgroup, and D is therefore dense in π1(X, x̄).
Note that this gives a stronger result even for πab

1 (X): already the subset of the
Frobenius elements is dense, not just the subgroup they generate.

Remark 5.8.19 Lang’s theorem is the starting point of unramified class field
theory for schemes of finite type over Z. We review here the main statements. Let
X be a regular integral proper scheme over Z. Denote by Z0(X) the free abelian
group with basis the closed points of X; it is called the group of zero-cycles on
X. By the discussion above, functoriality of the abelianized fundamental group
induces a well-defined homomorphism

Z0(X) → πab
1 (X) (5.9)

with dense image. A zero-cycle D ∈ Z0(X) is called rationally equivalent to 0 if
there exists an integral closed subscheme C ⊂ X of dimension 1 and a rational
function f on the normalization C̃ of C such that D = p∗(div(f)). Here p : C̃ → X
is the natural morphism, and the map p∗ is induced by sending a closed point
P ∈ C̃ to the zero-cycle [κ(P ) : κ(φ(P ))]φ(P ). The quotient of Z0(X) modulo
the subgroup of zero-cycles rationally equivalent to 0 is called the Chow group of
zero-cycles on X, and is denoted by CH0(X).
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In the case when the map X → Spec (Z) factors through the spectrum of
a finite field F, the map (5.9) factors through the quotient CH0(X), yielding a
reciprocity map ρX : CH0(X) → πab

1 (X). Moreover, the natural degree map
CH0(X) → Z induced by sending a zero-cycle to the sum of its coefficients sits in
a commutative diagram

CH0(X)
ρX−−−→ πab

1 (X)
y

y

Z −−−→ Gal (F|F).

Under the assumptions that X is projective and geometrically integral, the reci-
procity map ρX induces an isomorphism on the kernels of the vertical maps, which
are moreover finite abelian groups.

In the case when the map X → Spec (Z) is surjective, one works with a slight

modification of the reciprocity map. Namely, one considers the quotient π̃ab
1 (X) of

πab
1 (X) that classifies finite étale abelian Galois covers Y → X with the property

that for each R-valued point Spec (R) → X the base change Y ×X Spec (R) is
a finite disjoint union of copies of Spec (R). From (5.9) one then derives a map

CH0(X) → π̃ab
1 (X) that is actually an isomorphism of finite groups.

The above statements are due to Lang, Bloch, Kato and Saito. See [78] for a
detailed survey, as well as [83], [84] for generalizations to the tame fundamental
group.

Exercises

1. Let A be a commutative ring with unit. Prove that Spec (A) is a connected
affine scheme if and only if A contains no idempotent other than 0 and 1.

2. Let G be a profinite group, and let F be the forgetful functor from the
category of finite continuous G-sets to the category of sets mapping a G-set
to its underlying set. Prove that Aut(F ) ∼= G. [Hint: Begin with the case
of finite G.]

3. Show that for a connected scheme S the category of inverse systems (Pα, φαβ)
indexed by Λ, with Λ and the Pα as in the proof of Proposition 5.4.6, is
equivalent to the category of fibre functors Fibs̄ at geometric points of S.

4. Let φ : S′ → S be a morphism of connected schemes, and let s̄ and s̄′ be
geometric points of S and S′, respectively, satisfying s̄ = φ ◦ s̄′. Show that
the induced homomorphism φ∗ : π1(S

′, s̄′) → π1(S, s̄) is surjective if and
only if the functor Fet|S → FetS′ mapping X to X ×S S

′ is fully faithful.
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5. Let X be a quasi-compact and geometrically integral scheme over a field k.
For each finite Galois extension L|k consider the étale Galois cover XL → X,
where XL := X ×Spec (k) Spec (L). Put X := X ×Spec (k) Spec (ks), and fix a

geometric point x̄ of X.

(a) Establish an isomorphism

π1(X, x̄) ∼= lim
←
π1(XL, x̄),

the inverse limit being taken over all finite Galois extensions of k con-
tained in k̄.

(b) For each L|k as above construct an exact sequence

1 → π1(XL, x̄L) → π1(X, x̄) → Aut(XL|X)op → 1.

(c) Give another proof of Proposition 5.6.1 using the above two statements.

6. (Katz–Lang) Let S be a normal integral scheme, and X → S a smooth
surjective morphism. Denote by η̄ a geometric generic point of S, and by x̄
a geometric point of Xη̄.

Assuming Xη̄ connected, construct an exact sequence

π1(Xη̄, x̄) → π1(X, x̄) → π1(S, η̄) → 1.

7. Let A be a complete local ring with maximal ideal M and residue field k
(recall that completeness means A

∼→ lim
←
A/M i). We say that an A-algebra

B is finite étale if the induced morphism of schemes Spec (B) → Spec (A) is.

(a) Show that Spec (B) is connected if and only if Spec (B ⊗A k) is.

[Hint: Observe that the natural maps Spec (B/M iB) → Spec (B/MB)
are identity maps on the underlying topological spaces, and apply Ex-
ercise 1.]

(b) Show that for every finite separable field extension L|k there is a finite
étale A-algebra B with B ⊗A k ∼= L.

(c) Conclude that the natural morphism π1(Spec (k), s̄) → π1(Spec (A), s̄)
is an isomorphism for a geometric point s̄ lying above the closed point of
Spec (A). In particular, π1(Spec (A), s̄) = {1} if k is separably closed,
and π1(Spec (A), s̄) ∼= Ẑ if k is finite.

(d) Conclude that the natural functor FetSpec (A) → FetSpec (k) induces an
equivalence of categories.

[Remark: The statements of this exercise hold more generally for so-called
Henselian local rings. See [59], §I.4.]
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8. Let k ⊂ K be an extension of algebraically closed fields of characteristic
p > 0, and fix an element s ∈ K \ k. Verify that the map

Spec (K[t, y]/(xp − x− st)) → Spec (K[t])

defines a finite étale cover of A1
K that does not arise by base change from a

finite étale cover of A1
k.

9. Check that if k is an algebraically closed field, then π1(P
n
k , x̄) = {1} for all

n > 0 and all geometric points x̄.

10. Let X be an integral scheme. Recall that a rational map ρ : X 99K Y is an
equivalence class of morphisms from some nonempty open subset of X to Y ,
two morphisms being equivalent if they coincide over some nonempty open
subset where both are defined.

(a) Let X be a proper regular integral scheme over a field k, and let
ρ : X 99K Y be a k-rational map to a normal scheme Y of finite type
over k. Show that ρ induces a well-defined map π1(X, x̄) → π1(Y, ρ◦ x̄)
for every geometric point x̄ of X for which ρ ◦ x̄ is defined.

[Hint: Use Zariski–Nagata purity and the fact that under the above as-
sumptions ρ is defined outside a closed subset of codimension at least 2.]

(b) Conclude that a birational map between proper regular k-schemes in-
duces an isomorphism on their fundamental groups.

11. Let X be a proper normal integral scheme over an algebraically closed field
k for which there exists a rational map Pn

k 99K X with dense image such
that the induced extension of function fields k(Pn)|k(X) is separable. Prove
that the fundamental group of S is finite.

[Hint: Use Zariski–Nagata purity to show that the function field of every
connected finite étale cover of X can be embedded in the finite extension
k(Pn)|k(X).]

Remark. An X having the property of the exercise is called separably uni-
rational. In fact, every separably unirational smooth proper k-scheme has
trivial fundamental group. In characteristic 0 this is an old result due to
Serre [88] who used Hodge theory. The general case was settled only recently
by Kollár using a clever deformation trick and a powerful theorem of de Jong
and Starr (see [11], Corollaire 3.6). The argument works more generally for
so-called separably rationally connected schemes.
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Chapter 6

Tannakian Fundamental Groups

The theory of the last chapter established an equivalence between the category
of finite étale covers of a connected scheme and the category of finite continuous
permutation representations of its algebraic fundamental group. We shall now
study a linearization of this concept, also due to Grothendieck and developed in
detail by Saavedra [81] and Deligne [14]. The origin is a classical theorem from the
theory of topological groups due to Tannaka and Krein: they showed that one may
recover a compact topological group from the category of its continuous unitary
representations. In Grothendieck’s algebraic context the group is a linear algebraic
group, or more generally an affine group scheme, and one studies the category of
finite dimensional representations. The key features that enable one to reconsti-
tute the group are the tensor structure on this category and the forgetful functor
that sends a representation to its underlying vector space. Having abstracted the
conditions imposed on the category of representations, one gets a theorem stating
that a category with certain additional structure is equivalent to the category of
finite dimensional representations of an affine group scheme. This can be applied
in several interesting situations. We shall discuss in some detail the theory of dif-
ferential Galois groups, and also Nori’s fundamental group scheme that creates a
link between the algebraic fundamental group and Tannakian theory.

We only treat so-called neutral Tannakian categories, but the reader familiar
with Grothendieck’s descent theory will have no particular difficulty afterwards in
studying the general theory of [14]. Non-commutative generalizations have also
been developed in connection with quantum groups; as samples of a vast literature
we refer to the books of Chari–Pressley [9] and Majid [55].

6.1 Affine Group Schemes and Hopf Algebras

We have already encountered group schemes in the previous chapter. However, in
order to keep the discussion of Tannakian categories at a more elementary level,
here we shall work with a more accessible but equivalent definition in the affine
case.

211
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Definition 6.1.1 Let k be a field. An affine group scheme G over k is a functor
from the category of k-algebras to the category of groups that, viewed as a set-
valued functor, is representable by some k-algebra A. We call A the coordinate
ring of G.

Remark 6.1.2 In the last chapter we defined a group scheme over k as a group
object in the category of k-schemes, i.e. a k-scheme G together with k-morphisms
m : G × G → G (‘multiplication’), e : Spec (k) → G (‘unit’) and i : G → G (‘in-
verse’) subject to the usual group axioms. These morphisms induce a group struc-
ture on the set G(S) := Homk(S,G) of k-morphisms into G for each k-scheme S.
Therefore the contravariant functor S 7→ Homk(S,G) on the category of k-schemes
represented by G is in fact group-valued. Restricting it to the full subcategory of
affine k-schemes we obtain a covariant functor R 7→ Homk(Spec (R), G). Propo-
sition 5.1.5 shows that when G = Spec (A) is itself affine, this is none but the
functor above.

The coordinate ring A of an affine group scheme G carries additional structure
coming from the group operations. To see this, note first that the functor G×G
given by R 7→ G(R)×G(R) is representable by the tensor product A⊗kA in view of
the functorial isomorphisms Hom(A,R)×Hom(A,R)

∼→ Hom(A⊗k A,R) induced
by (φ, ψ) 7→ φ⊗ψ (the inverse is given by λ 7→ (a 7→ λ(a⊗ 1), a 7→ λ(1 ⊗ a)). Thus
by the Yoneda Lemma (Lemma 1.4.12) the morphism of functors m : G×G→ G
defining the multiplication of G comes from a unique k-algebra homomorphism
∆ : A⊗k A→ A. The unit and the inverse operation translate similarly to k-
algebra maps. We summarize all this by the correspondences

multiplication mult : G×G→ G ↔ comultiplication ∆ : A→ A⊗k A

unit {e} → G ↔ counit ε : A→ k

inverse i : G→ G ↔ antipode ι : A→ A

The group axioms imply compatibility conditions for ∆, ε and ι by the uniqueness
statement of the Yoneda lemma. Below we indicate diagram translations of the
associativity, unit and inverse axioms for groups on the left hand side, and the
corresponding compatibility conditions on A on the right hand side. They are
called the coassociativity, counit and antipode (or coinverse) axioms, respectively.

G×G×G G×G A⊗A⊗A A⊗A

G×G G A⊗A A

-id×mult

?

mult×id

?

mult

�id⊗∆

-mult

6
∆⊗id

� ∆

6
∆
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G G×G A A⊗A

G×G G A⊗A A

@
@

@
@@R

id

?

e×id

-id×e

?

mult

�id⊗ε

-mult

6
ε⊗id

@
@

@
@@I

id

�∆

6
∆

G G×G A A⊗A

G×G G A⊗A A

@
@

@
@@R

c

?

i×id

-id×i

?

mult

�m◦(id⊗ι)

-mult

6
m◦(ι⊗id)

@
@

@
@@I γ

�∆

6
∆

In the two last diagrams c is the constant map G → {e} on the left hand side, γ
the composite A→ k → A and m : A⊗k A→ A the algebra multiplication on the
right hand side. To see that they indeed correspond, observe that m corresponds
to the diagonal map G→ G×G by the Yoneda Lemma.

A not necessarily commutative k-algebra equipped with the above additional
structure and satisfying the three axioms is called a Hopf algebra. Hopf algebras
coming from affine group schemes are always commutative, but interesting non-
commutative Hopf algebras arise, for instance, in the theory of quantum groups.

Remark 6.1.3 In calculations it is often useful to write down the Hopf algebra ax-
ioms explicitly for concrete elements. For instance, if we write ∆(a) =

∑
ai ⊗ bi for

the comultiplication map, then the counit axiom says a =
∑
ε(ai)bi =

∑
aiε(bi),

and the antipode axiom says ε(a) =
∑
ι(ai)bi =

∑
aiι(bi). Patient readers will

write out the coassociativity axiom.

Tautologically, the category of commutative Hopf algebras over k is anti-
equivalent to that of affine group schemes over k. Here are some basic examples
of affine group schemes and their Hopf algebras.

Examples 6.1.4

1. The functor R 7→ Ga(R) mapping a k-algebra R to its underlying additive
group R+ is an affine group scheme with coordinate ring k[x], in view of the
functorial isomorphism R+ ∼= Homk(k[x], R). The comultiplication map on
k[x] is given by ∆(x) = 1 ⊗ x + x ⊗ 1, the counit is the zero map, and the
antipode is induced by x 7→ −x.

2. Similarly, the functor R 7→ Gm(R) sending a k-algebra R to the subgroup
R× of invertible elements is an affine group scheme with coordinate ring
k[x, x−1], because an invertible element in R corresponds to a k-algebra
homomorphism k[x, x−1] → R. On the coordinate ring the comultiplication
map is induced by ∆(x) = x⊗ x, the counit sends x to 1, and the antipode
is induced by x 7→ x−1.
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3. More generally, sending a k-algebra R to the group GLn(R) of invertible
matrices with entries in R is an affine group scheme. To find the coordinate
ring A, notice that an n×n matrix M over R is invertible if and only if there
exists r ∈ R with det(M)r = 1. This allows us to recover A as the quotient
of the polynomial ring in n2 + 1 variables k[x11, x12, . . . , xnn, x] by the ideal
generated by det(xij)x − 1. The isomorphism GLn(R) ∼= Homk(A,R) is
induced by sending a matrix M = [mij ] to the homomorphism given by
xij 7→ mij , x 7→ det(mij)

−1. The comultiplication is induced by xij 7→∑
l xil ⊗ xlj , the counit sends xij to δij (Kronecker delta), and the antipode

comes from the formula for the inverse matrix.

4. Here is a link with the classical theory of linear algebraic groups. Assume
k is algebraically closed. Observe that in the previous example we real-
ized GLn(k) as a closed subvariety of affine n2 + 1-space; in particular, it
inherits a Zariski topology. Let G(k) ⊂ GLn(k) be a closed topological sub-
group. By Proposition 4.2.10 this inclusion corresponds to a surjective map
O(GLn) → O(G) of coordinate rings. Here the k-algebra O(GLn) is just the
algebra A of the previous example; in particular, it carries a Hopf algebra
structure. But then the quotient map O(GLn) → O(G) induces a Hopf alge-
bra structure on O(G), because the Hopf algebra structure on A corresponds
to maps GLn(k) × GLn(k) → GLn(k), k → GLn(k) and GLn(k) → GLn(k)
via Proposition 4.2.10, and G(k) is a subgroup in GLn(k). The affine group
scheme associated with the Hopf algebra O(G) is the group scheme deter-
mined by the linear algebraic group G(k).

As concrete examples, one may associate affine group schemes with the other
classical groups SLn, On, etc. The construction generalizes to general base
fields: an affine group scheme G embeds as a closed subgroup scheme in
GLn if there is a morphism of group-valued functors such that the induced
map O(GLn) → O(G) on Hopf algebras is surjective. Thus Hopf algebra
quotients of O(GLn) correspond to closed subgroup schemes in general.

Let us now forget about the k-algebra structure on Hopf algebras for a while.
We then obtain the following more general notion.

Definition 6.1.5 A coalgebra over k is a k-vector space equipped with a comulti-
plication ∆ : A→ A⊗kA and a counit map ι : A→ k subject to the coassociativity
and counit axioms.

In this definition the maps ∆ and ι are only assumed to be maps of k-vector
spaces. Coalgebras over k form a category: morphisms are defined as k-linear
maps compatible with the k-coalgebra structure.

We now define right comodules over a coalgebra by dualizing the notion of left
modules over a k-algebra B. Observe that to give a unitary left B-module is to
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give a k-vector space V together with a k-linear multiplication l : B⊗k V → V so
that the following diagrams commute:

B ⊗k B ⊗k V B ⊗k V k ⊗k V B ⊗k V

B ⊗k V V V
?

m⊗id

-id⊗l

?

l

-ǫ⊗id

Q
Q

Q
Q

Q
QQs

∼=

?

l

-l

where ǫ : k → B is the natural map sending 1 to the unit element of B. The first
diagram here corresponds to the axiom (b1b2)v = b1(b2v) for bi ∈ B and v ∈ V ,
and the second to 1 · v = v. The dual notion for k-coalgebras is the following.

Definition 6.1.6 Let A be a coalgebra over a field k. A right A-comodule is a
k-vector space M together with a k-linear map ρ : M → M ⊗k A so that the
diagrams

M M ⊗k A M M ⊗k A

M ⊗k A M ⊗k A⊗k A M ⊗k k
?

ρ

-ρ

?

id⊗∆

-ρ

Q
Q

Q
Q

Q
QQs

∼=

?

id⊗ε

-ρ⊗id

(6.1)

commute.

Remark 6.1.7 We can write out the comodule axioms explicitly on elements as
follows. Assume ρ is given by ρ(m) =

∑
mi ⊗ ai, and ρ(mi) =

∑
mij ⊗ cj . Use

furthermore the notation ∆(ai) =
∑
ail ⊗ bl. Here m,mi,mij are in M and the

other elements lie in A. Then the commutativity of the first diagram is described
by the equality

∑

i,l

mi ⊗ ail ⊗ bl =
∑

i,j

mij ⊗ cj ⊗ ai. (6.2)

The second diagram reads

∑

i

ε(ai)mi = m. (6.3)

Another useful form of the first compatibility is obtained by fixing a k-basis
e1, . . . , en of M , and defining cij ∈ A via ρ(ei) =

∑
j ej⊗cij . Then

∑
l ρ(el)⊗cil =∑

j ej ⊗ (
∑

l clj ⊗ cil) must equal
∑

j ej ⊗ ∆(cij) by commutativity of the first
diagram, which by the linear independence of the ej holds if and only if

∆(cij) =
∑

l

clj ⊗ cil. (6.4)
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A subcoalgebra of a coalgebra A is a k-subspace B ⊂ A with ∆(B) ⊂ B ⊗k B.
The restrictions of ∆ and ε then turn B into a coalgebra over k. One defines a
subcomodule of an A-comodule M in a similar way: it is a k-subspace N ⊂ M
with ρ(N) ⊂ ρ(N) ⊗k A. A subcoalgebra B ⊂ A is also naturally a subcomodule
of A considered as a right comodule over itself.

Subcomodules and subcoalgebras enjoy the following basic finiteness property.

Proposition 6.1.8 Let A be a coalgebra, M a right A-comodule.

1. Each finite set m1, . . . ,mn of elements of M is contained in a subcomodule
N ⊂ M finite dimensional over k. Consequently, M is a directed union of
its finite dimensional subcomodules.

2. Each finite set a1, . . . , an of elements of A is contained in a subcoalgebra
B ⊂ A finite dimensional over k. Consequently, A is a directed union of its
finite dimensional subcoalgebras.

Proof: For (1), note first that by the k-linearity of ρ : M →M⊗kA the k-linear
span of finitely many subcomodules of M is again a subcomodule. Therefore it
is enough to prove the case n = 1 of the first statement. Fix a (possibly infinite)
k-basis B of A. For m ∈ M we may write ρ(m) =

∑
mi ⊗ ai with mi ∈ M and

ai ∈ B (finite sum). Therefore (ρ ⊗ idA)(ρ(m)) =
∑

i ρ(mi) ⊗ ai. On the other
hand, by the first comodule axiom we must have (ρ⊗ idA)(ρ(m)) =

∑
imi⊗∆(ai).

Writing ∆(ai) =
∑

j,k λijk(aj ⊗ ak), we obtain (after changing running indices)

∑

k

ρ(mk) ⊗ ak =
∑

i

mi ⊗
∑

j,k

λijk(aj ⊗ ak),

which by the linear independence of the ak is equivalent to

ρ(mk) =
∑

i

mi ⊗
∑

j

λijkaj

for all k. This implies that the k-span of m and the mi is a finite dimensional
subcomodule of M .

To prove (2) we again reduce to the case n = 1. By part (1) for fixed a ∈ A we
find a finite dimensional k-subspace N ⊂ A containing a with ∆(N) ⊂ N ⊗k A.
Fix a k-basis e1, . . . , en of N , and write ∆(ei) =

∑
j ej ⊗ cij with some cij ∈ A.

By formula (6.4) above we have ∆(cij) =
∑

l clj ⊗ cil, therefore the k-span of the
finitely many elements ej and cij is a subcoalgebra containing a.

In the case when A is moreover a commutative Hopf algebra, an A-comodule
M gives rise to a representation of the corresponding affine group scheme G in the
following way. Given a k-algebra R, an element of G(R) corresponds to a k-algebra

homomorphism λ : A→ R. The composite ρ : M →M ⊗kA
id⊗λ−→ M ⊗kR induces
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an R-linear map M ⊗k R → M ⊗k R that depends on R in a functorial way. By
the comodule axioms, we thus obtain a functorial collection of left group actions
G(R) × (M ⊗k R) → M ⊗k R such that for each g ∈ G(R) the map m 7→ gm is
R-linear. We call such a collection a left representation of the affine group scheme
G. If moreover M is finite dimensional over k and we fix a k-basis m1 . . . ,mn of M ,
giving a representation of G becomes equivalent to giving a morphism G → GLn
of group-valued functors.

Proposition 6.1.9 The above construction gives a bijection between right comod-
ules over the commutative Hopf algebra A and left representations of the corre-
sponding affine group scheme G.

Proof: Given a left representation of G on a finite dimensional k-vector space V ,
the element in G(A) corresponding to the identity morphism of A gives rise to an
A-linear map V ⊗kA→ V ⊗kA. By composition with the natural map V → V ⊗A
sending v ∈ V to v ⊗ 1 we obtain a k-linear map V → V ⊗ A. The reader will
check that this is an A-comodule structure on V , and the two constructions are
inverse to each other.

We conclude this section by discussing dualities between algebras and coalge-
bras. Given a k-coalgebra A, the k-linear dual A∗ := Homk(A, k) of the underly-
ing vector space of A carries additional structure. Namely, the comultiplication
∆ : A → A ⊗k A induces a k-bilinear map m : A∗ ⊗k A

∗ → A∗ sending a pair
(φ, ψ) of k-linear maps A → k to the k-linear map (φ ⊗ φ) ◦ ∆ : A → k. We
may view m as a multiplication map on A; the coassociativity axiom for A implies
that it is associative. Furthermore, the k-linear dual k → A∗ of the counit map
e : A→ k is determined by the image of 1 ∈ k in A∗; by the counit axiom on A it is
a unit element for the multiplication on A∗. We thus obtain a k-algebra with unit
that is not necessarily commutative. The rule A 7→ A∗ is a contravariant functor:
dualizing a morphism A1 → A2 of k-coalgebras gives a k-algebra homomorphism
A∗2 → A∗1.

Conversely, if we start with a k-algebra B with unit, the multiplication map
m : B ⊗k B → B induces a map B∗ → (B ⊗k B)∗ on k-linear duals. But there
is a caveat here: it does not necessarily induce a comultiplication map on B∗,
because the natural map B∗ ⊗k B

∗ → (B ⊗k B)∗ sending φ ⊗ ψ ∈ B∗ ⊗k B
∗ of

to the k-linear map given by a⊗ b 7→ φ(a)ψ(b) is not necessarily an isomorphism
(Exercise 1). However, for B finite dimensional over k it is, being an injective map
between vector spaces of the same dimension. So in this case we can equip the
k-linear dual B∗ with a k-coalgebra structure by reversing the procedure above,
and obtain:

Proposition 6.1.10 The contravariant functor A 7→ A∗ induces an anti-iso-
morphism between the category of k-coalgebras finite dimensional over k and that
of not necessarily commutative finite dimensional k-algebras with unit.
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Under the duality of the proposition each right A-comodule structure on a
finite dimensional vector space V gives rise to a natural left A∗-module structure
on V ∗, and we have:

Corollary 6.1.11 Given a finite dimensional k-coalgebra A, the contravariant
functor V 7→ V ∗ induces an anti-isomorphism between the category of finitely
generated right A-comodules and that of finitely generated left A∗-modules.

Combining the above corollary with Proposition 6.1.8 is often useful in calcu-
lations. Here is such an application that will be needed later.

Proposition 6.1.12 Let A be a coalgebra, M a right A-comodule. The sequence

0 −−−→ M
ρ−−−→ M ⊗k A

ρ⊗idA−idM⊗∆−−−−−−−−−→ M ⊗k A⊗k A (6.5)

is exact.

Proof: The first comodule axiom implies that the sequence is a complex, and
the second axiom implies the injectivity of ρ. It remains to see that each element
α =

∑
mi ⊗ ai in the kernel of ρ ⊗ idA − idM ⊗ ∆ is in the image of ρ. Using

Proposition 6.1.8 we find a finite dimensional subcomodule M ′ ⊂ M and a finite
dimensional subcoalgebra A′ ⊂ A with α ∈ M ′ ⊗k A

′. Thus we reduce to the
case when A and M are finite dimensional over k. Taking k-linear duals we then
obtain a finite dimensional k-algebra B = A∗, a left B-module N = M∗, and the
sequence becomes

B ⊗k B ⊗k N → B ⊗k N
ρ∗−→ N → 0.

Here ρ∗ is the map giving the left B-module structure on N , whereas the unnamed
map is the difference of the maps b⊗ b′⊗n 7→ b(b′⊗n) and b⊗ b′⊗n 7→ (bb′)⊗n.
Exactness of this sequence is a tautology, and the dual exact sequence is (6.5) by
Corollary 6.1.11.

6.2 Categories of Comodules

A basic fact about a finite dimensional algebra B over a field k is that it is de-
termined up to isomorphism by the category ModfB of finitely generated left B-
modules; in fact, it can be recovered as the endomorphism algebra of the forgetful
functor from ModfB to the category of finite dimensional k-vector spaces (see Ex-
ercise 2). A similar statement holds for arbitrary k-algebras if we allow B-modules
that are infinite dimensional over k. By dualizing the finite dimensional statement
we obtain a result about comodules over finite dimensional k-coalgebras, but as
we have seen, in infinite dimension the dualizing procedure breaks down.
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Still, it is possible to recover an arbitrary k-coalgebra A from the category
ComodfA of finite dimensional k-vector spaces carrying a right A-coalgebra struc-
ture. To do so, denote by ω the forgetful functor from ComodfA to the category
Vecfk of finite dimensional k-vector spaces. For an arbitrary k-vector space V
denote by ω ⊗ V the functor M 7→ ω(M) ⊗k V from ComodfA to the category
Veck of k-vector spaces. Write Hom(ω, ω ⊗ V ) for the set of functor morphisms
ω → ω ⊗ V , where ω is considered as a Veck-valued functor under the natural
embedding.

Proposition 6.2.1 The underlying k-vector space of A represents the functor
V 7→ Hom(ω, ω ⊗ V ) on the category Veck.

In other words, for each k-vector space V there are functorial isomorphisms

Hom(A, V )
∼→ Hom(ω, ω ⊗ V ). (6.6)

The proof below is taken from [82].

Proof of Proposition 6.2.1: To begin with, there is a canonical morphism of
functors Π : ω → ω ⊗A given for each object M of ComodfA by the comodule
structure map ω(M) → ω(M) ⊗k A. A morphism φ : A → V induces maps
(id ⊗ φ) : ω(M) ⊗ A → ω(M) ⊗ V for each M , whence a morphism of functors
(id ⊗ φ) : ω ⊗ A → ω ⊗ V . Sending φ to (id ⊗ φ) ◦ Π therefore defines a map
ΨV : Hom(A, V ) → Hom(ω, ω⊗V ) that is functorial in V , whence a morphism of
functors Ψ : Hom(A, ) → Hom(ω, ω⊗ ). We now construct a morphism Ξ in the
reverse direction. Consider A as a right comodule over itself, and for each a ∈ A
fix a finite dimensional subcomodule N ⊂ A containing A; such an N exists by
Proposition 6.1.8 (1). Then for Φ ∈ Hom(ω, ω ⊗ V ) we define Ξ(Φ) ∈ Hom(A, V )
to be the morphism a 7→ (ǫ|N ⊗ idV )(ΦN (a)). This definition does not depend
on the choice of N , as we can always embed finite dimensional subcomodules N ,
N ′ into a larger finite dimensional subcomodule N ′′, and use the fact that Φ is a
morphism of functors.

To check that Ξ ◦ Ψ is the identity, take φ ∈ Hom(A, V ), a ∈ A and a finite
dimensional subcomodule N ⊂ A containing a. As N is a subcomodule, ∆(a) =∑
ni ⊗ bi with some ni ∈ N and bi ∈ A, and ΨN (φ)(a) =

∑
ni ⊗ φ(bi). Then

(Ξ ◦ Ψ)(φ)(a) =
∑
ε(ni)φ(bi) = φ(a) by the counit axiom.

We finally show that Ψ◦Ξ is the identity. Fix a finite dimensional A-comodule
N and a morphism of functors Φ ∈ Hom(ω, ω ⊗ V ). Using Proposition 6.1.8 (2)
we find a finite dimensional subcoalgebra B ⊂ A with ρN (N) ⊂ N ⊗k B, where
ρN : N → N ⊗k A is the comodule structure map. In particular, N is a right
comodule over B. The statement to be proven is that ρN equals the composite
map

N
ρN→ N ⊗B

id⊗ΦB−→ N ⊗k B ⊗k V
id⊗ε⊗id−→ N ⊗k k ⊗k V

∼→ N ⊗k V,
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where we have omitted the ω’s to ease notation. To prove it, notice first that the
map idN ⊗ ∆ : N ⊗k B → N ⊗k B ⊗k B defines a right B-comodule structure
on the k-vector space N ⊗k B. The fact that N is a B-comodule means precisely
that ρN : N → N ⊗k B is a morphism of B-comodules. As Φ is a morphism of
functors, we have a commutative diagram

N
ρN−−−→ N ⊗k B

id⊗ε−−−→ N ⊗k k
∼=−−−→ N

ΦN

y ΦN⊗kB

y ΦN

y

N ⊗k V
ρN⊗id−−−−→ N ⊗k B ⊗k V

id⊗ε⊗id−−−−−→ N ⊗k k ⊗k V
∼=−−−→ N ⊗k V

where the composites of the maps in the horizontal lines are identity maps by the
second comodule axiom. It then suffices to see that the second vertical map equals
idN ⊗ ΦB. This holds because choosing a k-basis of N identifies N ⊗k B as a
B-comodule with a finite direct sum of copies of B, and Φ commutes with direct
sums.

One has the corollary:

Corollary 6.2.2 The k-coalgebra A is determined up to unique isomorphism by
the category ComodfA and the functor ω.

Proof: By the proposition, the underlying vector space of A is determinded up
to unique isomorphism. To recover the comultiplication ∆ : A → A ⊗k A, we
apply (6.6) with V = A⊗k A to see that it corresponds to a canonical morphism
of functors ω → ω ⊗ (A ⊗k A). In order to exhibit this morphism we use the
morphism of functors Π : ω → ω⊗A defined at the beginning of the above proof.
Iterating Π we obtain a morphism (Π⊗ id) ◦Π : ω → (ω⊗A)⊗A ∼= ω⊗ (A⊗kA),
which is the one we were looking for. Finally, the counit map A→ k corresponds
under (6.6) to the natural isomorphism ω

∼→ ω ⊗ k.

Assume now that A is moreover a Hopf algebra. We shall investigate how
the additional structure on A is reflected by the category ComodA. We treat the
multiplication, unit and antipode maps one by one. Let us first concentrate on
the multiplication map m : A ⊗k A → A. Observe that the coalgebra structure
maps ∆ and ε are algebra homomorphisms with respect to m if and only if m is a
k-coalgebra morphism. So let a k-coalgebra morphism m : A⊗k A→ A be given.
For a pair (M,N) of A-comodules, it enables us to define an A-comodule structure
on the tensor product M ⊗k N of vector spaces by

M ⊗k N
ρM⊗ρN−→ M ⊗k A⊗k N ⊗k A

∼→M ⊗k N ⊗k A⊗k A
id⊗m−→ M ⊗k N ⊗k A.

(6.7)

Denote the tensor product comodule obtained in this way by M ⊗m N .
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To be more precise, we have actually defined an A-comodule structure on
ω(M) ⊗k ω(N), where ω is the above forgetful functor. In the same way we
see that each k-linear map A ⊗k A → V to a k-vector space V induces a k-
linear map ω(M) ⊗k ω(N) → ω(M) ⊗k ω(N) ⊗k V . Denote by ω ⊗ ω the functor
(M,N) 7→ ω(M) ⊗k ω(N) on ComodfA × ComodfA. We then have the following
analogue of Proposition 6.2.1.

Proposition 6.2.3 The underlying k-vector space of A⊗kA represents the functor
V 7→ Hom(ω⊗ω, ω⊗ω⊗V ) on the category Veck. In particular, we have a bijection

Hom(A⊗k A,A)
∼→ Hom(ω ⊗ ω, ω ⊗ ω ⊗A).

Proof: We have just seen that each k-linear map A⊗kA→ V induces a k-linear
map ω(M) ⊗k ω(N) → ω(M) ⊗k ω(N) ⊗k V functorial in V for each pair (M,N)
of objects of ComodfA. This gives a morphism of functors Hom(A ⊗k A, ) →
Hom(ω⊗ω, ω⊗ω⊗ ). The proof that it is an isomorphism is completely analogous
to the proof of the previous proposition.

By the proposition the multiplication map m : A⊗k A → A can be recovered
as the map corresponding to the morphism of functors given on an object (M,N)
of ComodfA × ComodfA by the composite

ω(M) ⊗k ω(N)
∼→ ω(M ⊗m N) → ω(M ⊗m N) ⊗k A

∼→ ω(M) ⊗k ω(N) ⊗k A,

where the map in the middle is the one defining the comodule structure ofM⊗mN .
As we have seen in the proof of Proposition 6.2.1, it is induced by the morphism
of functors ω → ω ⊗A corresponding to the identity map of A.

Corollary 6.2.4

1. The multiplication map m is commutative if and only if for all M,N in
ComodfA the isomorphism ω(M) ⊗k ω(N)

∼→ ω(N) ⊗k ω(M) of k-vector
spaces comes from an isomorphism of A-comodules M ⊗m N

∼→ N ⊗m M
via ω.

2. The map m is associative if and only if for all M,N,P in ComodfA the
isomorphism (ω(M) ⊗k ω(N)) ⊗k ω(P )

∼→ ω(M) ⊗k (ω(N) ⊗k ω(P )) of k-
vector spaces comes from an isomorphism (M⊗mN)⊗mP

∼→M⊗m(N⊗mP )
of A-comodules via ω.

Proof: For commutativity, note that m is commutative if and only if m = m◦σ,
where σ : A ⊗k A → A ⊗k A is the map a ⊗ b 7→ b ⊗ a. By the above discussion
this holds if and only if the k-linear maps ω(M ⊗m N) → ω(M ⊗m N) ⊗k A and
ω(M ⊗m◦σ N) → ω(M ⊗m◦σ N) ⊗k A are the same. The construction of the
comodule structure on M ⊗m N in (6.7) shows that this is exactly the case when
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the isomorphism M ⊗k N ∼= N ⊗k M of k-vector spaces is compatible with the
comodule structure of both sides. The proof for associativity is similar.

We now turn to the unit element e for the multiplication in Hopf algebras. It
is determined by the morphism k → A sending 1 to e that we also denote by e. As
in the definition of a Hopf algebra we imposed that the counit map is a k-algebra
homorphism, we now have to require dually that e : k → A be compatible with
the coalgebra structures on k an A, where k is equipped with the comultiplication
sending 1 to 1 ⊗ 1. This holds if and only if ∆(e) = e⊗ e, which is also precisely
the condition for e to equip k with a right comodule structure. Now we have:

Proposition 6.2.5 An element e ∈ A is a unit for the multiplication defined by
m compatible with the coalgebra structure on A if and only if the map e : k → A
defines an A-comodule structure on k, and moreover the k-linear isomorphisms
k⊗k ω(M) ∼= ω(M)⊗k k ∼= ω(M) come from A-comodule isomorphisms k⊗mM ∼=
M ⊗m k ∼= M for each A-comodule M .

Proof: For a finite dimensional k-comodule M consider the composite map

M
∼→M ⊗k k

ρM⊗e−→ M ⊗A⊗k A
id⊗m→ M ⊗k A.

It corresponds by Proposition 6.2.1 to the map A → A given by a 7→ m(a ⊗ e).
Therefore the right unit property holds if and only if the above composite equals
the comodule structure map ρM : M → M ⊗k A for all M . This means precisely
that the isomorphism M ⊗k k ∼= M is compatible with the A-comodule structures
on M ⊗m k and M . Similar arguments apply to the left unit property, and the
proposition follows.

It remains to discuss the antipode ι : A → A. It turns out that ι induces
an A-coalgebra structure on the dual k-vector space M∗ of each A-comodule M .
Before going into more detail about this, let us recall some easy facts about duals
of vector spaces.

Given k-vector spaces V and W , there is a natural map

τV,W : V ∗ ⊗k W → Hom(V,W )

given by φ ⊗ w 7→ φ ⊗ φw, where φw ∈ Hom(k,W ) is the map λ 7→ λw. For V
finite dimensional the map τV,W is an isomorphism, as it commutes with direct
sums, and is trivially an isomorphism for dim V = 1. In particular, for V = W
finite dimensional we have an isomorphism τV,V : V ∗ ⊗ V

∼→ End(V ). Sending
1 to τ−1

V,V (idV ) defines a canonical k-linear map δ : k → V ∗ ⊗k V called the
coevaluation map. The name comes from the fact that dually there is an evaluation
map ǫ : V ⊗k V

∗ → k (for V of arbitrary dimension) given by v⊗φ 7→ φ(v). They
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are related by the commutative diagrams

V k ⊗k V V ∗ V ∗ ⊗k k

V ⊗k k V ⊗k V
∗ ⊗k V k ⊗k V

∗ V ∗ ⊗k V ⊗k V
∗

?

∼=

-
∼=

?

∼=

-
∼=

-id⊗δ

6
ǫ⊗id

-δ⊗id

6
id⊗ǫ (6.8)

where the marked isomorphisms are the usual ones sending v to 1 ⊗ v or v ⊗ 1.
Commutativity of the diagrams may be easily checked by choosing bases v1, . . . , vn
(resp. φ1, . . . , φn) in V (resp. V ∗) so that φi(vj) = δij (Kronecker delta), and
noticing that δ sends 1 to

∑
vi ⊗ φi.

Now assume A is a Hopf algebra and M is an object of ComodfA. Define a
map ρ∗ : M∗ →M∗⊗kA ∼= Hom(M,A) by sending φ ∈M∗ to the composite map

M →M ⊗k A
φ⊗ι−→ k ⊗k A

∼→ A,

where the first map is given by the comodule structure on M .

Lemma 6.2.6 The map ρ∗ defines an A-comodule structure on M∗ so that the
evaluation (resp. coevaluation) maps ǫ : M ⊗kM

∗ → k (resp. δ : k →M∗ ⊗kM)
are A-comodule homomorphisms.

Here the tensor products are equipped with the A-comodule structure coming
from the multiplication of A, and k with the one coming from the unit element
1 ∈ A.

Proof: This is just calculation with the axioms. We first check that ρ∗ defines an
A-comodule structure on M∗. The first diagram in (6.1) for M∗ can be rewritten
as

M∗
ρ∗−−−→ Hom(M,A)

ρ∗
y

y

Hom(M,A) −−−→ Hom(M,A⊗k A)

where the right vertical map is induced by ∆ and the bottom map is defined
similarly as ρ∗, with A in place of k. With the notation of Remark 6.1.7 the
composite of the upper and right maps in the diagram maps φ ∈ M∗ to the map
m 7→ ∑

i,l φ(mi)ι(ail) ⊗ ι(bl), and the composite of the left and bottom maps to
m 7→ ∑

i,j φ(mij)ι(cj) ⊗ ι(ai). Equality of the two follows from equation (6.2) of
Remark 6.1.7. Finally the counit axiom φ(m) =

∑
i φ(m)ε(ι(ai)) follows from (6.3)

and the identity ε ◦ ι = ε, which is an easy consequence of the antipode axiom.
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Checking the compatibility of the evaluation map ǫ : M ⊗k M
∗ → k with the

comodule structures amounts to checking the commutativity of the diagram

M ⊗kM
∗ k

M ⊗k A⊗k Hom(M,A) A⊗k A A

-ǫ

?

ρ⊗ρ∗

?

e

- -m

where the unnamed map is induced by the evaluation map M ⊗kHom(M,A) → A
after permuting the first two factors. In the above notation, the composite of the
left and bottom maps sends m ⊗ φ ∈ M ⊗k M

∗ to
∑

i,j φ(mij)ι(cj)ai which, by
the same argument as above, equals

∑
i,l φ(mi)ι(ail)bl. By the coalgebra axioms

(Remark 6.1.3) we have

∑

i

φ(mi)
∑

l

ι(ail)bl =
∑

i

φ(mi)ε(ai) = φ(m),

as required. The proof for compatibility with the coevaluation map is similar.

The next proposition provides a converse to this lemma.

Proposition 6.2.7 Let A be a coalgebra over k equipped with a multiplication
map m : A⊗k A→ A and a unit map k → A that are compatible with the coalgebra
structure.

Assume moreover that for each object M of ComodfA the dual k-vector space
M∗ has an A-comodule structure so that the evaluation (resp. coevaluation) maps
ǫ : M ⊗kM

∗ → k (resp. δ : k → M∗ ⊗k M) are A-comodule homomorphisms.
Then A has an antipode map ι : A→ A making it into a Hopf algebra.

The following proof is due to Ulbrich [105].

Proof: We begin by constructing a morphism of functors ω → ω⊗A. Given M
in ComodfA, we construct ω(M) → ω(M) ⊗A as the composite

ω(M)
id⊗δ−→ω(M) ⊗k ω(M)∗ ⊗k ω(M)

=→

→ω(M) ⊗k ω(M∗) ⊗k ω(M)
id⊗ρM∗⊗id−→

→ω(M) ⊗k ω(M∗) ⊗k A⊗k ω(M)
∼=→

→ω(M) ⊗k ω(M∗) ⊗k ω(M) ⊗k A
=→

→ω(M) ⊗k ω(M)∗ ⊗k ω(M) ⊗k A
ǫ⊗id−→ ω(M) ⊗k A.
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Here the equality ω(M∗) = ω(M)∗ that we used twice is of course a tautology,
but we wrote it out explicitly, because for later use it is important to note that ω
transforms duals in ComodfA (which exist by assumption) to duals in Vecfk.

By Proposition 6.2.1 the resulting morphism of functors ω → ω ⊗ A yields a
map of comodules ι : A → A. It remains to show that it satisfies the antipode
axiom, i.e. that the composite map

A
∆→ A⊗k A

id⊗ι−→ A⊗k A
m→ A

is the identity. Again by Proposition 6.2.1 this is equivalent to saying that for
all M in ComodfA with comodule structure map ρM : ω(M) → ω(M) ⊗k A the
composite map

ρ1 : ω(M)
ρM→ ω(M) ⊗k A

id⊗∆−→ω(M) ⊗k A⊗k A
id⊗id⊗ι−→

−→ω(M) ⊗k A⊗k A
id⊗m−→ ω(M) ⊗k A

equals ρM . This we shall check in two steps. First we shall show that ρ1 equals
the composite map

ρ2 : ω(M)
id⊗δ−→ω(M) ⊗k ω(M)∗ ⊗k ω(M)

id⊗ρM∗⊗id−→

→ω(M) ⊗k ω(M)∗ ⊗k ω(M) ⊗k A
id⊗ρM⊗id−→

→ω(M) ⊗k ω(M)∗ ⊗k ω(M) ⊗k A⊗k A
id⊗m−→

→ω(M) ⊗k ω(M)∗ ⊗k ω(M) ⊗k A
ǫ⊗id−→ ω(M) ⊗k A

(where we have not written out the equality ω(M∗) = ω(M)∗ and permutation of
components any more), and then we check that ρ2 = ρM .

To check ρ1 = ρ2, note first that the diagram

ω(M)
ρM−−−→ ω(M) ⊗k A

id⊗ι−−−→ ω(M) ⊗k A

ρM

y ρM⊗id

y ρM⊗id

y

ω(M) ⊗k A
id⊗∆−−−→ ω(M) ⊗k A⊗k A

id⊗id⊗ι−−−−−→ ω(M) ⊗k A⊗k A

commutes: the first square by the comodule axiom, and the second by construction.
Therefore ρ1 equals the composite map

ρ′1 : ω(M)
ρM→ ω(M)⊗kA

id⊗ι−→ ω(M)⊗kA
ρM⊗id−→ ω(M)⊗kA⊗kA

id⊗m−→ ω(M)⊗kA.

Here the composite of the first two maps equals

ω(M)
id⊗δ−→ω(M) ⊗k ω(M)∗ ⊗k ω(M)

id⊗ρM∗⊗id−→
→ω(M) ⊗k ω(M∗) ⊗k ω(M) ⊗k A

ǫ⊗id−→ ω(M) ⊗k A,
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by the very definition of ι. Thus to show ρ′1 = ρ2 it remains to note the commu-
tativity of the diagram

ω(M) ⊗k ω(M)∗ ⊗k ω(M) ⊗k A
ǫ⊗id−−−→ ω(M) ⊗k A

ρM⊗id

y
yid⊗ρM⊗id

ω(M) ⊗k ω(M)∗ ⊗k ω(M) ⊗k A⊗k A
ǫ⊗id−−−→ ω(M) ⊗k A⊗k A

id⊗m

y
yid⊗m

ω(M) ⊗k ω(M)∗ ⊗k ω(M) ⊗k A
ǫ⊗id−−−→ ω(M) ⊗k A

which follows from the compatibility of the evaluation map ǫ with the comodule
structure and the fact that the composite of the right vertical maps is the identity,
the map m being a morphism of comodules.

Finally, to show that ρ2 = ρM , note that by definition of the comodule structure
on M∗ ⊗mM and the compatibility of ω with tensor products the map ρ2 equals
the composite

ω(M)
id⊗δ−→ω(M) ⊗k ω(M∗ ⊗mM)

∼→ (ω(M ⊗mM∗) ⊗ ω(M)
ρM⊗mM∗⊗id−→

→ω(M ⊗mM∗) ⊗k ω(M) ⊗k A
ǫ⊗id−→ ω(M) ⊗k A.

Using the compatibility of ǫ with the comodule structure we may rewrite this map
as the composite

ω(M)
id⊗δ−→ ω(M ⊗mM∗ ⊗mM)

ǫ⊗id−→ ω(M)
ρM→ ω(M) ⊗k A,

but the composite of the first two maps is the identity by the first diagram in (6.8)
(we have dropped tensorizations with k throughout to ease notation).

6.3 Tensor Categories and the Tannaka–Krein Theo-
rem

In order to elucidate the relation between Hopf algebra structures and comod-
ule categories completely, it is convenient to axiomatize the properties of comod-
ule categories that were used in the previous section. They lead us to abstract
category-theoretical notions that we now define formally.

A tensor category is a category C together with a functor C × C → C and an
isomorphism Φ of functors from C×C×C to C given on a triple (X,Y, Z) of objects
by

ΦX,Y,Z : (X ⊗ Y ) ⊗ Z
∼→ X ⊗ (Y ⊗ Z)
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so that the diagram

(X ⊗ (Y ⊗ Z)) ⊗W ((X ⊗ Y ) ⊗ Z) ⊗W

X ⊗ ((Y ⊗ Z) ⊗W ) (X ⊗ Y ) ⊗ (Z ⊗W )

X ⊗ (Y ⊗ (Z ⊗W ))

?

Φ

-Φ⊗id

?

Φ

HHHHHHHHHj
id⊗Φ

����������
Φ

commutes for each four-tuple (X,Y, Z,W ) of objects in C. It is customary to call
the isomorphism Φ the associativity constraint. Not surprisingly, the commutativ-
ity of the above diagram is usually referred to as the pentagon axiom.

A unit object in a tensor category C is an object 1 together with an isomorphism
ν : 1 → 1⊗ 1 so that moreover the functors X 7→ 1⊗X and X 7→ X ⊗ 1 are fully
faithful. In what follows we shall often be sloppy and forget about the isomorphism
ν. In the tensor category of k-vector spaces a unit object is given by k itself,
together with one of the canonical isomorphisms k

∼→ k ⊗k k.

Remark 6.3.1 For each object X in C there exist canonical functorial isomor-
phisms α1

X : 1 ⊗X
∼→ X and β1

X : X ⊗ 1
∼→ X; in particular, the functors

X 7→ 1 ⊗ X and X 7→ X ⊗ 1 induce category equivalences of C with itself. To
construct α1

X , start with the isomorphism ν ⊗ idX : 1⊗ 1⊗X
∼→ 1⊗X, and then

define αX as the morphism 1 ⊗X → X that induces ν ⊗ idX via tensoring by 1
on the left. Such an α1

X exists and is unique as the functor X 7→ 1 ⊗ X is fully
faithful, and it must be an isomorphism because so is ν ⊗ idX . The construction
of β1

X is similar.

Given two unit objects 1 and 1′, the composite α1
1′ ◦ (β1′

1 )−1 : 1
∼→ 1 ⊗ 1′

∼→ 1′

defines a canonical isomorphism between 1 and 1′. It is the unique isomorphism
φ making the diagram

1 ⊗ 1
φ⊗φ−−−→ 1′ ⊗ 1′

ν

y
yν′

1
φ−−−→ 1′

commute. Consequently, a unit object is unique up to unique isomorphism.
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In what follows we shall assume that all tensor categories under consideration
have a unit object. Such tensor categories are often called monoidal categories; this
terminology goes back to MacLane. (There is no universally accepted terminology
concerning tensor categories in the literature; here we are adopting that of [42].)

A commutativity constraint on a tensor category is an isomorphism Ψ of func-
tors from C × C to C given on a pair (X,Y ) of objects by

ΨX,Y : X ⊗ Y
∼→ Y ⊗X

such that ΨY,X ◦ ΨX,Y = idX⊗Y for all X,Y . A tensor category C is commutative
if there is a commutativity constraint on C so that the diagram

X ⊗ (Y ⊗ Z)

X ⊗ (Z ⊗ Y ) (X ⊗ Y ) ⊗ Z

(X ⊗ Z) ⊗ Y Z ⊗ (X ⊗ Y )

(Z ⊗X) ⊗ Y

�
�

�
�

��+

id⊗Ψ
Q

Q
Q

Q
QQs

Φ

?

Φ

?

Ψ

Q
Q

Q
Q

QQs
Ψ⊗id

�
�

�
�

��+
Φ

commutes for each triple (X,Y, Z) of objects in C. This compatibility is called the
hexagon axiom.

A tensor functor between two tensor categories C and C′ is a functor F : C → C′
together with an isomorphism Λ of functors from C×C to C′ given on a pair (X,Y )
of objects of C by

ΛX,Y : F (X ⊗ Y )
∼→ F (X) ⊗ F (Y )

such that moreover for a triple (X,Y, Z) of objects of C the diagram

F ((X ⊗ Y ) ⊗ Z)
ΛX⊗Y,Z−−−−−→ F (X ⊗ Y ) ⊗ F (Z)

ΛX,Y ⊗id−−−−−→ (F (X) ⊗ F (Y )) ⊗ F (Z)

F (ΦX,Y,Z)

y
yΦF (X),F (Y ),F (Z)

F (X ⊗ (Y ⊗ Z))
ΛX,Y ⊗Z−−−−−→ F (X) ⊗ F (Y ⊗ Z)

id⊗ΛY,Z−−−−−→ F (X) ⊗ (F (Y ) ⊗ F (Z))

commutes. Moreover, if 1 and 1′ denote unit objects of C and C′, respectively, we
require that F (1) = 1′, the isomorphism 1′ → 1′ ⊗ 1′ being given by Λ1,1 ◦ F (ν).
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We define a tensor category to be rigid if each object X has a dual X∗. The
precise definition is as follows: there exist morphisms ǫ : X ⊗X∗ → 1 and δ : 1 →
X∗ ⊗X so that the diagrams

X 1 ⊗X X∗ X∗ ⊗ 1

X ⊗ 1 X ⊗X∗ ⊗X 1 ⊗X∗ X∗ ⊗X ⊗X∗
?

∼=

-
∼=

?

∼=

-
∼=

-id⊗δ

6
ǫ⊗id

-δ⊗id

6
id⊗ǫ (6.9)

commute. Here the isomorphisms are the inverses of the canonical isomorphisms
α1 and β1 constructed in Remark 6.3.1. The reader will recognize the formalism of
dual vector spaces discussed in the previous section. Note that while the preceding
axioms are satisfied by the usual tensor product of vector spaces, here we have
to restrict to finite dimensional spaces in order to get examples. The following
general lemma implies that up to isomorphism the k-linear dual V ∗ of a finite
dimensional vector space V is the only dual object of V in the tensor category of
finite dimensional vector spaces.

Lemma 6.3.2 A dual X∗ of an object X that satisfies the above properties is
uniquely determined up to isomorphism. If we fix one of the maps ǫ or δ, then this
isomorphism is unique.

Proof: We fix X and ǫ, and show that X∗ represents the contravariant functor
Z 7→ Hom(X ⊗ Z, 1), from which the uniqueness statements will follow. For
representability we show that for each map φ : X⊗Z → 1 we can find ν : Z → X∗

making the diagram

X ⊗ Z X ⊗X∗

1
?

φ

-id⊗ν

�
�

�
�

��+
ǫ

commute. Define ν as the composite

Z
∼→ 1 ⊗ Z

δ⊗idZ−−−−→ X∗ ⊗X ⊗ Z
idX∗⊗φ−−−−→ X∗ ⊗ 1

∼→ X∗

(with some δ as in the definition of a dual). Commutativity of the diagram then
holds because the first diagram in (6.9) commutes.

In a rigid tensor category every morphism φ : X → Y has a transpose: it is
the morphism φt : Y ∗ → X∗ defined as the composite

Y ∗
∼→ 1 ⊗ Y ∗

δ⊗id−→ X∗ ⊗X ⊗ Y ∗
id⊗φ⊗id−−−−−→ X∗ ⊗ Y ⊗ Y ∗

id⊗ǫ−→ X∗ ⊗ 1
∼→ X∗.
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The map φ 7→ φt induces a bijection Hom(X,Y )
∼→ Hom(Y ∗, X∗).

A morphism of tensor functors between two tensor categories is a morphism of
functors F → G compatible with the isomorphisms ΛX,Y for F and G occurring
in the definition of tensor functors, and for which the composite isomorphism
1′ ∼= F (1)

∼→ G(1) ∼= 1′ is the identity of 1′. An isomorphism of tensor functors
is a morphism as above that has a two-sided inverse that is again a morphism of
tensor functors. We shall need the following lemma later.

Lemma 6.3.3 A morphism of tensor functors between rigid tensor categories is
always an isomorphism.

Proof: Given a morphism of tensor functors Φ : F → G and an object X,
we have isomorphisms F (X∗) ∼= F (X)∗ and G(X∗) ∼= G(X)∗ by the previous
lemma. The morphism ΦX∗ therefore induces a morphism F (X)∗ → G(X)∗ with
transpose G(X) → F (X). Applying this to allX we obtain a morphism of functors
Φ∗ : G → F . Verifying that Φ∗ is a morphism of tensor functors inverse to Φ on
both sides is a formal exercise left to the readers.

Having introduced all this terminology, we can now summarize the discussion
of the previous section in the following theorem.

Theorem 6.3.4 Let A be a coalgebra over a field k, and ω the forgetful functor
from the category ComodfA of right A-comodules finite dimensional over k to the
category Vecfk of finite dimensional k-vector spaces.

Assume that there is a tensor category structure on ComodfA for which ω
becomes a tensor functor when Vecfk carries its usual tensor structure.

1. There is a canonical k-algebra structure with unit on A defined by means of
coalgebra morphisms.

2. If moreover the tensor category structure on ComodfA is rigid, then A has
the structure of a Hopf algebra.

3. Assume moreover the tensor category structure on ComodfA is commuta-
tive, and ω transforms the commutativity constraint on ComodfA to that
on Vecfk. Then A is a commutative Hopf algebra, and ComodfA becomes
equivalent to the category RepG of finite dimensional representations of the
associated affine group scheme G.

The last statement of course uses Proposition 6.1.9.

We close this section by two key properties of the category RepG of finite
dimensional representations of an affine group scheme G. Before stating them,
observe that given a commutative k-algebra R, the forgetful functor ω on RepG
induces a tensor functor ω ⊗ R : V 7→ V ⊗k R with values in the tensor category
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of R-modules. We can thus define set-valued functors End(ω) (resp. End⊗(ω),
Aut⊗(ω)) on the category of k-algebras by sending R to the set of R-linear functor
morphisms (resp. tensor functor morphisms, tensor functor isomorphisms) ω⊗R→
ω ⊗R. The functor Aut⊗(ω) is actually group-valued.

Proposition 6.3.5 There is a canonical isomorphism of group-valued functors
G
∼→ Aut⊗(ω). Consequently, Aut⊗(ω) is an affine group scheme.

Proof: The proof is in three steps. First we show that we have functorial iso-
morphisms End(ω)(R) ∼= HomModR

(A ⊗k R,R), where A is the Hopf algebra of
G. Note that here we are considering R-module homomorphisms. In fact, we
have HomModR

(A ⊗k R,R) ∼= HomVeck
(A,R), the isomorphism being induced by

composition with the map A → A⊗k R given by a 7→ a⊗ 1. Similarly, we obtain
HomR(ω ⊗ R,ω ⊗ R) ∼= Homk(ω, ω ⊗ R). Now we can conclude by Proposition
6.2.1, with the additional remark that it also holds with Veck replaced by the cat-
egory of underlying vector spaces of k-algebras, because all we needed in the proof
is that A is an object of the category.

Next we check that elements of End(ω)(R) lying in End⊗(ω)(R) correspond to
k-algebra homomorphisms A→ R. By definition, a morphism ΦR : ω⊗R→ ω⊗R
is a morphism of tensor functors if the diagram

ω( ⊗ ) ⊗R
ΦR−−−→ ω( ⊗ ) ⊗R

y
y

ω( ) ⊗ ω( ) ⊗R
ΦR⊗ΦR−−−−−→ ω( ) ⊗ ω( ) ⊗R

commutes, where the vertical maps are induced by the isomorphisms ΛX,Y in the
definition of tensor categories. By Propositions 6.2.1 and 6.2.3 the maps ΦR and
ΦR ⊗ ΦR correspond to k-linear maps λ : A → R and λ ◦ m : A ⊗k A → R,
respectively, where m : A⊗k A→ R is the multiplication map of A. The diagram
thus expresses the fact that λ is a k-algebra homomorphism.

Finally, Lemma 6.3.3 implies that the natural morphism Aut⊗(ω) → End⊗(ω)
of functors is an isomorphism.

The proposition shows that one may recover an affine group scheme from the
tensor category of its representations. This is the algebraic analogue of the classical
Tannaka–Krein theorem on topological groups ([35], §30).

Now let G and G′ be affine group schemes. Given a group scheme homo-
morphism φ : G → G′, every finite dimensional representation of G′ yields a
representation of G via composition with φ. In this way we obtain a tensor func-
tor φ∗ : RepG′ → RepG satisfying ω ◦ φ∗ = ω′, where ω′ is the forgetful functor on
RepG′ .
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Corollary 6.3.6 The rule φ 7→ φ∗ induces a bijection between group scheme
homomorphisms G → G′ and tensor functors F : RepG′ → RepG satisfying
ω ◦ F = ω′.

Proof: Every tensor automorphism of ω yields a tensor automorphism of ω′

via composition with a tensor functor F as above. The same holds for ω ⊗ R
for a k-algebra R, and therefore we obtain a morphism of group-valued functors
Aut⊗(ω) → Aut⊗(ω′). By the previous proposition it may be identified with a
group scheme homomorphism G → G′. Readers will check that this construction
yields an inverse to the map φ 7→ φ∗.

6.4 Second Interlude on Category Theory

To proceed further, we need to recall some basic notions about abelian categories.
These are obtained by axiomatizing some properties of the category of abelian
groups.

To begin with, if C is a category and A1, A2 two objects of C, a product
of A1 and A2 (if it exists) is by definition an object together with morphisms
pi : A1 × A2 → Ai, such that each pair φi : C → Ai (i = 1, 2) of morphisms from
an object C factors uniquely as φi = pi ◦ φ with a morphism φ : C → A1 ×A2. In
other words, A1 × A2 represents the functor C 7→ Hom(C,A1) × Hom(C,A2). As
such, it is determined up to unique isomorphism if it exists. Dually, a coproduct
A1

∐
A2 is an object representing the functor C 7→ Hom(A1, C)×Hom(A2, C). One

defines similarly arbitrary finite products and coproducts, and even (co)products
over an infinite index set; we shall not need the latter.

If moreover A1 and A2 are equipped with morphisms ψi : Ai → A into a
fixed object A, a fibre product A1 ×A A2, if it exists, is an object representing the
set-valued functor

C 7→ {φ1, φ2) ∈ Hom(C,A1) × Hom(C,A2) : ψ1 ◦ φ1 = ψ2 ◦ φ2}.

There is also a dual notion of an amalgamated sum that the reader will formulate.

This being said, an additive category is a category A in which each pair of
objects has a product, and moreover the sets Hom(A,B) carry the structure of
an abelian group so that the composition map (φ, ψ) 7→ φ ◦ ψ is Z-bilinear. If
moreover the Hom(A,B) are k-vector spaces over a fixed field k and composition
of maps is k-bilinear, we speak of a k-linear additive category.

Note that in an additive category each set Hom(A,B) has a zero element, i.e.
there is a canonical morphism 0 : A → B between A and B whose composite
with other morphisms is again 0. This allows us to define the kernel ker(φ) of a
morphism φ : A → B (if it exists) as the fibre product of the morphisms φ and
0 : A → B over B. Dually, the cokernel coker (φ) of φ is the amalgamated sum
of φ and 0 over A, or equivalently, the kernel of φ in the opposite category of A.
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Assume that ker(φ) exists. We then define the coimage coim(φ) of φ as the cokernel
of the natural map ker(φ) → A (if it exists). Similarly, assuming the existence of
coker (φ), we define im (φ) as the kernel of the natural map B → coker (φ) (if it
exists). Note that if φ has an image and a coimage, it induces a natural map
coim(φ) → im (φ).

Definition 6.4.1 An abelian category is an additive category in which every mor-
phism φ has a kernel and a cokernel (hence also an image and a coimage), and
moreover the natural map coim(φ) → im (φ) is an isomorphism. An abelian cate-
gory is k-linear for some field k if it is k-linear as an additive category.

Plainly, the categories of abelian groups, modules over a fixed ring or abelian
sheaves over a topological space are abelian, and the category of vector spaces over
a field k is a k-linear abelian category.

In an abelian category it is customary to speak of direct products and direct
sums instead of products and coproducts. Also, one says that φ : A → B is a
monomorphism (resp. epimorphism) if the morphism ker(φ) → A (resp. B →
coker (φ)) is the zero morphism. We say abusively that A′ is a subobject (resp. A′′

is a quotient) of A if there is a monomorphism A′ → A (resp. an epimorphism
A → A′′). We shall often use the notations A′ ⊂ A and A/A′ for subobjects
and quotients. An object A is simple if for each subobject φ : A′ → A the
monomorphism φ is either 0 or an isomorphism. A composition series of an object
A, if it exists, is a descending series A = F 0 ⊃ F 1 ⊃ F 2 ⊃ · · · of subobjects such
that the quotients F i/F i+1 are simple.

We say that A has finite length if it has a finite composition series. One proves
as in the case of abelian groups that in this case every chain of subobjects in A
can be refined to a composition series. Thus A is both Noetherian and Artinian,
i.e. all ascending and descending series of subobjects in A stabilize. Moreover,
all composition series of A are finite of the same length, and the finite set of the
isomorphism classes of the F i/F i+1 is the same up to permutation.

The usual notion of an exact sequence carries over without change to abelian
categories. A functor between abelian categories is said to be exact if it takes
short exact sequences to short exact sequences; there are also the usual weaker
properties of left and right exactness that the appropriate Hom-functors enjoy.
An object P of an abelian category A is projective if the functor Hom(P, ) is
exact. As the Hom-functor is always left exact, this is equivalent to requiring that
given an epimorphism A ։ B, each map P → B can be lifted to a map P → A.
The reader will define the dual notion of injective objects.

An object G of A is a generator if the functor Hom(G, ) is faithful. This
amounts to saying that for each nonzero morphism φ : A → B in A there is
a morphism G → A such that the composite G → A → B is again nonzero.
In the case when G is projective, this is moreover equivalent to the condition
Hom(G,A) 6= 0 for all A 6= 0 (for the nontrivial implication, use the projectivity
of G to lift a nonzero morphism G→ im (φ) to a morphism G→ A).
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In the next section we shall need the following variant of a theorem of Mitchell
and Freyd (for the original result, see [24], Exercise 4F).

Proposition 6.4.2 Let A be an abelian category such that every object of A has
finite length. Assume that A has a projective generator P . Then the functor
Hom(P, ) induces an equivalence of A with the category ModfEnd(P ) of finitely
generated right End(P )-modules.

We first prove a lemma.

Lemma 6.4.3 Under the assumptions of the proposition for each A in A there is
an epimorphism P⊕r → A from a finite direct power of P .

Proof: Start with a nonzero morphism φ1 : P → A. If it is an epimorphism,
we are done. Otherwise there is a nonzero morphism P → A/im (φ) that lifts to a
morphism φ2 : P → A. The image of (φ1, φ2) : P ⊕ P → A is then strictly larger
than im (φ). As A has finite length, by continuing the procedure we obtain after
finitely many steps an epimorphism (φ1, . . . , φr) : P⊕r → A.

Proof: The left action of End(P ) on P induces a right End(P )-module structure
on Hom(P,A) for each A via composition of maps. To see that we obtain a finitely
generated module, consider an epimorphism P⊕r → A as in the lemma. Applying
the functor Hom(P, ) and noting the isomorphism End(P )⊕r ∼= Hom(P, P⊕r) we
obtain a surjection End(P )⊕r ։ Hom(P,A).

Next we show that Hom(P, ) is fully faithful. As P is a generator by assump-
tion, this boils down to showing that every morphism φ : Hom(P,A) → Hom(P,B)
comes from a morphism A → B. Consider epimorphisms P⊕r → A, P⊕s → B
given by the lemma. Applying the functor Hom(P, ) we obtain a diagram

End(P )⊕r −−−→ Hom(P,A) −−−→ 0
yφ

End(P )⊕s −−−→ Hom(P,B) −−−→ 0

with exact rows. As End(P )⊕r is a free, hence projective End(P )-module, there
is a map ψ : End(P )⊕r → End(P )⊕s of free End(P )-modules making the diagram
commute. Here ψ is defined by multiplication with an r × s matrix of elements
in End(P ). But such a matrix defines a morphism ψ̄ : P⊕r → P⊕s that gives
rise to ψ after applying the functor Hom(P, ). By construction, the composite

map End(P )⊕r
ψ→ End(P )⊕s → Hom(P,B) annihilates the kernel of the map

End(P )⊕r → Hom(P,A). Therefore by exactness of the functor Hom(P, ) the

composite P⊕r
ψ̄→ P⊕s → B annihilates the kernel of P⊕r → A, i.e. induces a map

A→ B. This is the map we were looking for.
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Finally, for essential surjectivity write a finitely generated End(P )-module M
as the cokernel of a map α : End(P )⊕r → End(P )⊕s of free modules (this is
possible as End(P ) is right Noetherian by the finiteness assumption). By what we
have just proven α comes from a map P⊕r → P⊕s. Let C denote its cokernel; we
then have Hom(P,C) ∼= M by the exactness of Hom(P, ), i.e. the projectivity
of P .

We shall also need a description of certain subcategories of a category as in
the above proposition. Observe that given a homomorphism φ : End(P ) → R
to some ring R, there is an induced functor ModfR → ModfEnd(P ) sending a
right R-module to its underlying abelian group equipped with the End(P )-module
structure coming from φ. If moreover φ is surjective, i.e. R is of the form End(P )/I
for some two-sided ideal I, this functor is fully faithful, so that ModfR identifies
with a full subcategory of ModfEnd(P ). Besides, the subcategory thus obtained is
closed under subobjects, quotients and finite direct sums. The next proposition
gives a converse.

Proposition 6.4.4 Keep the assumptions of the previous proposition, and assume
moreover that B is a full subcategory of A closed under subobjects, quotients and
finite direct sums. There exist a uniquely determined ideal I ⊂ End(P ) and an
equivalence of categories between B and the category ModfEnd(P )/I under which
the inclusion functor B → A becomes identified with the functor ModfEnd(P )/I →
ModfEnd(P ) described above.

The assumption on B is to be understood in the sense that every object of A
isomorphic to a subquotient of a finite direct sum of objects in B lies in B. For
the proof we need a lemma.

Lemma 6.4.5 For each object A of A there is a maximal quotient qB(A) of A
lying in B. More precisely, there is an object qB(A) in B and an epimorphism
ρA : A ։ qB(A) such that every epimorphism A ։ B with an object B of B
factors as a composite λ ◦ ρA for some λ : qB(A) → B.

By its very definition, the rule A → qB(A) induces a functor A → B. Experts
in category theory will recognize that it is a left adjoint to the inclusion functor
B → A.

Proof: Let KB(A) be the intersection of the kernels of all epimorphisms A ։ B
with B in B, and set qB(A) := A/KB(A). By construction qB(A) satisfies the
required universal property, but we still have to show that it lies in B. As A has
finite length, there exist finitely many objects B1, . . . Bn in B together with epimor-
phisms ρi : A ։ Bi so that KB(A) =

⋂
ker(φi). Here A/

⋂
ker(φi) is isomorphic

to a subobject of
⊕

(A/ ker(φi)) ∼=
⊕
Bi, so it lies in B by the assumption on B.
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Proof of Proposition 6.4.4: Given a projective generator P of A, the ob-
ject qB(P ) is a projective generator in B, as exactness and faithfulness of the
functor HomB(qB(P ), ) immediately follow from the corresponding properties
of HomA(P, ). By Proposition 6.4.2 the functor HomB(qB(P ), ) establishes an
equivalence of categories between B and ModfEnd(qB(P )). As qB is a functor, there is
a natural map q : End(P ) → End(qB(P )). This map is surjective, because given an

endomorphism ψ ∈ End(qB(P )), we may lift the composite P → qB(P )
ψ→ qB(P )

to an endomorphism of P by the projectivity of P . The ideal I := ker(q) and
the equivalence between B and ModfEnd(qB(P ))

∼= ModfEnd(P )/I then satisfy the
requirements of the proposition.

6.5 Neutral Tannakian Categories

We can now state the main results of this chapter. First the long-awaited definition:

Definition 6.5.1 A neutral Tannakian category over a field k is a rigid k-linear
abelian tensor category C whose unit 1 satisfies End(1) ∼= k, and is moreover
equipped with an exact faithful tensor functor ω : C → Vecfk into the category of
finite dimensional k-vector spaces. The functor ω is called a (neutral) fibre functor.

Remark 6.5.2 The term ‘k-linear abelian tensor category’ involves a compatibil-
ity condition relating the tensor and abelian category structures on C. It means
that the tensor operation

Hom(X,Y ) × Hom(Z,W ) → Hom(X ⊗ Z, Y ⊗W ), (φ, ψ) 7→ φ⊗ ψ

should be k-bilinear with respect to the k-vector space structures on the Hom-sets
involved. This also explains the presence of the condition End(1) ∼= k. Namely,
the isomorphism 1 ⊗X

∼→ X induces a map End(1) → End(X) that endows the
group Hom(X,Y ) with the structure of an End(1)-module via composition, and
similarly for endomorphisms of Y . We require that the isomorphism End(1) ∼= k
transforms these to the k-linear structure on Hom(X,Y ). These requirements are
of course satisfied in tensor categories of k-vector spaces.

Given an affine group scheme G over k, the category RepG of finite dimensional
representations of G with its usual tensor structure and the forgetful functor as
fibre functor is a neutral Tannakian category. Conversely, we have:

Theorem 6.5.3 Every neutral Tannakian category (C, ω) over k is equivalent to
the category RepG of finite dimensional representations of an affine group scheme
G over k.
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By Proposition 6.3.5 the group scheme G as a functor is isomorphic to the
functor Aut⊗(ω) of tensor automorphisms of the fibre functor ω. We call it the
Tannakian fundamental group of (C, ω).

Theorem 6.5.3 immediately follows from Theorem 6.3.4 and the following state-
ment that does not involve the tensor structure.

Theorem 6.5.4 Let C be an k-linear abelian category equipped with an exact faith-
ful k-linear functor ω : C → Vecfk. There exists a k-coalgebra AC so that each
ω(X) carries a natural right AC-comodule structure for X in C. Moreover, ω in-
duces an equivalence of categories between C and the category ComodfAC

of finite
dimensional right AC-comodules.

We shall give a proof of Theorem 6.5.4 due to Deligne and Gabber which is
extracted from Deligne’s fundamental paper [14]; see also [38], §7 and [82] for other
approaches. For the readers’ convenience we begin with a brief overview of the
main steps of the argument. First some general notation: for an object X in an
abelian category A we denote by 〈X〉 the full subcategory of A spanned by the
objects of A isomorphic to a subquotient of a finite direct sum of copies of X.

Step 1. Let C be as in the theorem, and let X be an object of C. There exist a
finite dimensional k-algebra R and an equivalence of categories between 〈X〉 and
the category ModfR of finitely generated right R-modules.

Step 2. Moreover, there exists a finitely generated left R-module M so that un-
der the equivalence of Step 1 the functor ω becomes identified with the functor
N → N ⊗RM from ModfR to Vecfk.

Step 3. There is a canonical k-coalgebra structure on A := M∗ ⊗RM and a right
A-comodule structure on N ⊗RM for each right R-module N so that the functor
N → N ⊗RM induces an equivalence of the previous categories with the category
ComodfA of finite dimensional right A-comodules.

Step 4. The theorem follows by writing C as a directed union of subcategories of
the form 〈X〉 and passing to the direct limit.

We now give details on the first step. The crucial statement is:

Proposition 6.5.5 (Gabber) Let A be a k-linear abelian category in which every
object has a finite composition series and the k-vector spaces Hom(A,B) are finite
dimensional for all A,B in A. Then for each object X the full subcategory 〈X〉
has a projective generator P .

The following lemma summarizes the basic strategy of the proof of the propo-
sition.

Lemma 6.5.6 Denote by S the finite set of isomorphism classes of simple objects
occurring in a composition series of X. Assume given for each representative S
of a class [S] ∈ S an epimorphism φS : PS → S in 〈X〉 with PS projective. Then
P :=

⊕
[S]∈S PS is a projective generator in 〈X〉.
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Proof: Finite direct sums of projective objects are again projective, so we only
have to exhibit a nonzero morphism P → X ′ for each nonzero object X ′ of 〈X〉.
By definition the composition factors of X ′ lie in S, so in particular there is an
epimorphism X ′ → S with [S] ∈ S. We may define an epimorphism P → S
by taking it to be φS on PS and extending by 0 on the other components. By
projectivity of P it lifts to a nonzero morphism P → X ′, as required.

To construct the objects PS → S we need the notion of essential extension of
an object Y in an abelian category. By definition, this is an object E together
with an epimorphism α : E → Y such that there is no subobject E′ ⊂ E distinct
from E so that the composite E′ → E → Y is still an epimorphism. When Y is
simple, this is the same as saying that all E′ ⊂ E distinct from E are contained
in the kernel of α, because for Y simple each nonzero morphism E′ → Y is an
epimorphism.

Lemma 6.5.7 Let S be a simple object in an abelian category, and α : E → S
an essential extension. For each simple object T the natural map

α∗ : Hom(S, T ) → Hom(E, T )

induced by α is an isomorphism. In particular, Hom(E, T ) = 0 for T ≇ S.

Proof: Given a nonzero map φ : E → T , we have ker(φ) ⊂ ker(α) by the above.
The induced map A/ ker(φ) → A/ ker(α) must be an isomorphism because both
objects are simple, whence ker(φ) = ker(α) and φ = φ′ ◦ α for some φ′ : S → T .
The map φ 7→ φ′ is then an inverse to α∗. The second statement follows because
Hom(S, T ) = 0 for nonisomorphic simple objects.

Let us now return to the k-linear category 〈X〉 of Proposition 6.5.5. Let S be
a simple object in 〈X〉, and E → S an essential extension. The following lemma
gives a criterion for E to be projective.

Lemma 6.5.8 Let E → S be an essential extension as above. For all Y in 〈X〉
we have an inequality

dimk Homk(E, Y ) ≤ ℓS(Y ) dimk End(S), (6.10)

where ℓS(Y ) denotes the number of composition factors of Y isomorphic to S.
Moreover, the following statements are equivalent.

1. The essential extension E of S is projective.

2. There is equality in (6.10) for all Y in 〈X〉.

3. There is equality in (6.10) for Y = X.
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Proof: The right hand side of (6.10) is additive for short exact sequences of the
form

0 → Y ′ → Y → Y ′′ → 0. (6.11)

Concerning the left hand side, we have the inequality

dimk Homk(E, Y ) ≤ dimk Homk(E, Y
′) + dimk Homk(E, Y

′′) (6.12)

by left exactness of the Hom-functor; it is an equality for all short exact sequences
(6.11) if and only if the Hom-functor is exact, i.e. E is projective. By the previous
lemma (6.10) holds with equality for all simple objects Y in 〈X〉. For arbitrary Y
we may consider a composition series and conclude from the previous arguments
that (6.10) holds for Y ; moreover it holds with equality for all Y if and only if E is
projective. This shows the first statement of the lemma as well as the equivalence
of (1) and (2). The implication (2) ⇒ (3) is obvious. To prove the converse,
note that given a short exact sequence (6.11), we infer from (6.12) and (6.10) that
there is equality in (6.10) for Y if and only if there is equality for Y ′ and Y ′′, and
moreover equality holds in (6.12). This shows that equality in (6.10) for Y = X
implies equality for all finite direct powers of X, as well as for their subquotients.

Proof of Proposition 6.5.5: In view of Lemma 6.5.6 we have to construct a
projective essential extension PS → S for each simple object S in 〈X〉. We do
so by considering a composition series X = F 0 ⊃ F 1 ⊃ · · · ⊃ F r = {0}, and
constructing by induction on i essential extensions Pi → S satisfying

dimk Homk(Pi, X/F
i) = ℓS(X/F i) dimk End(S). (6.13)

By the previous lemma PS = Pr will be a good choice. We start by setting
P1 := S. Assuming that Pi−1 has been constructed, consider a k-basis φ1, . . . , φn
of Homk(Pi, X/F

i). For each 1 ≤ j ≤ n, take the fibre product Qj defined by the
square

Qj −−−→ X/F i+1

y
y

Pi
φj−−−→ X/F i,

where the right vertical map is the natural projection; note here that the vertical
maps are epimorphisms. Let Q be the fibre product of the Qj over Pi for 1 ≤ j ≤ n,
and let Pi+1 ⊂ Q be a minimal subobject with the property that the composite
Pi+1 → Q→ Pi is an epimorphism. It is then an essential extension of Pi, hence
of S.

To show that Pi+1 satisfies (6.13) for i+1, we begin by constructing a retraction
for the natural map Hom(Pi+1, X/F

i+1) → Hom(Pi+1, X/F
i). To do so, observe

first that since Pi+1 → Pi is an epimorphism, the induced map Hom(Pi, X/F
i) →
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Hom(Pi+1, X/F
i) is injective. But the dimension of the first k-vector space here

is ℓS(X/F i) dimk End(S) by the inductive hypothesis, and that of the second is
at most ℓS(X/F i) dimk End(S) by (6.10) applied with E = Pi+1 and Y = X/F i.
This is only possible if

Hom(Pi, X/Fi)
∼→ Hom(Pi+1, X/Fi). (6.14)

From the diagram above we infer that each φj gives rise to a map ψj : Qj → X/F i+1

by base change. As the φj form a k-basis of Homk(Pi, X/F
i), composing the ψj

with the epimorphisms Pi+1 → Qj induces a homomorphism Hom(Pi, X/F
i) →

Hom(Pi+1, X/F
i+1) whose composite with the inverse isomorphism of (6.14) yields

the required retraction.
All in all, we obtain that the last map in the exact sequence

0 → Hom(Pi+1, F
i/F i+1) → Hom(Pi+1, X/F

i+1) → Hom(Pi+1, X/F
i)

is surjective. The dimension of the last term is ℓS(X/F i) dimk End(S) by the
inductive hypothesis and (6.14), and that of the first is ℓS(F i/F i+1) dimk End(S)
by Lemma 6.5.7. The required formula for i+ 1 follows.

Combining the proposition with Proposition 6.4.2 immediately yields:

Corollary 6.5.9 In the above situation the functor A 7→ Hom(P,A) induces an
equivalence of the subcategory 〈X〉 with the category ModfEnd(P ) of finitely gener-
ated right End(P )-modules.

This completes Step 1 of the proof of Theorem 6.5.4 outlined above, with
R = End(P ). We now turn to Step 2, and show that M = ω(P ) is a good choice
for the R-module M required there. For one thing, there is indeed a natural
left End(P )-module structure on ω(P ), the multiplication End(P ) × ω(P ) → ω(P )
being defined for a pair (φ, a) by ω(φ)(a). The statement of Step 2 is then:

Proposition 6.5.10 Via the category equivalence of the previous corollary the
functor ω becomes isomorphic to the functor mapping a right End(P )-module N
to the underlying k-vector space of N ⊗End(P ) ω(P ).

Proof: For each object A in 〈X〉 the rule φ ⊗ x 7→ ω(φ)(x) defines a natural
map Hom(P,A) ⊗End(P ) ω(P ) → ω(A) that is moreover functorial in A. It is
tautologically an isomorphism for A = P and, being compatible with finite direct
sums, for A = P⊕r for all r > 0. Given an arbitrary object A, we choose an
epimorphism λ : P⊕r → A with the benediction of Lemma 6.4.3, and consider the
commutative diagram

Hom(P,K) ⊗ ω(P ) −−−→ Hom(P, P⊕r) ⊗ ω(P ) −−−→ Hom(P,A) ⊗ ω(P ) −−−→ 0
y

y∼=
y

ω(K) −−−→ ω(P⊕r) −−−→ ω(A) −−−→ 0



6.5 Neutral Tannakian Categories 241

where K := ker(λ) and tensor products are taken over End(P ). The lower row
is exact by exactness of ω (it is even exact on the left), and the upper row by
projectivity of P and right exactness of the tensor product. We have just seen
that the middle vertical map is surjective, which implies the surjectivity of the
map on the right. As this holds for all A, we get surjectivity of the left vertical
map as well. But then the injectivity of the middle vertical map implies the
injectivity of the one on the right.

Our assumption on ω then yields:

Corollary 6.5.11 The functor N 7→ N ⊗End(P ) ω(P ) is exact and faithful on
ModfEnd(P ).

We now turn to Step 3 of the proof of Theorem 6.5.4, and use the notation
R := End(P ) and M := ω(P ) from now on. Note first that the tensor product
A := M∗ ⊗RM makes sense as a k-vector space, because the dual k-vector space
M∗ carries a right R-module structure induced from that of M . Our next task is
to define a k-coalgebra structure on A.

Quite generally, given a right R-module N , we have a natural map

idN⊗RM ⊗ δM : N ⊗RM → N ⊗RM ⊗kM
∗ ⊗RM, (6.15)

where δM : k → M∗ ⊗k M is the coevaluation map. For N = M∗ this defines
a comultiplication ∆ : A → A ⊗k A whose coassociativity the reader will verify.
Together with the counit A→ k given by the map M∗⊗RM → k sending φ⊗m to
φ(m) we obtain a k-coalgebra structure on A. Moreover, for each right R-module
N the map (6.15) equips N ⊗RM with a right A-comodule structure. In this way
we obtain a functor N 7→ N ⊗RM from the category of right R-modules to that
of right A-comodules.

Proposition 6.5.12 The above functor induces an equivalence of categories, where
finitely generated R-modules correspond to A-comodules finite dimensional as a k-
vector space.

Proof: Start with a k-vector space V equipped with an A-comodule structure
ρ : V → V ⊗k A. Recalling that A = M∗ ⊗R M , we have two natural maps of
right R-modules V ⊗kM

∗ → V ⊗kM
∗⊗RM ⊗kM

∗: one is ρ⊗ idM∗ , the other is
idV ⊗δM⊗idM∗ . Write λ for the difference of these two maps, and set N := ker(λ).
Tensoring λ with idM over R we obtain a map V ⊗kA→ V ⊗kA⊗kA that is none
but the map ρ⊗idA−idV ⊗∆. Proposition 6.1.12 together with the exactness of the
functor N 7→ N⊗RM (Corollary 6.5.11) then yields an isomorphism N⊗RM ∼= V ,
which shows that the said functor is essentially surjective. By the same corollary
it is also faithful, so for the equivalence of categories it remains to be shown that
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each A-coalgebra map φ : N ⊗RM → N ′ ⊗RM comes from a map of R-modules
N → N ′. This is shown by applying the above construction simultaneously for
the source and the target of φ. Finally, the second statement of the proposition
follows from the finite dimensionality of R over k.

This completes Step 3 in the proof of Theorem 6.5.4, so it remains to give some
details on the limit procedure of Step 4, which will complete the proof.

Proof of Theorem 6.5.4: Write the category C as a union of the full subcat-
egories 〈X〉 for each object X. The system of these subcategories is partially
ordered by inclusion; the partial order is directed, because given two objects X
and Y , both 〈X〉 and 〈Y 〉 are full subcategories of 〈X ⊕ Y 〉. By Proposition 6.5.5
each 〈X〉 is equivalent to a module category ModfR, and by Proposition 6.4.4 a
full subcategory 〈Y 〉 ⊂ 〈X〉 corresponds to the category ModfR/I for some ideal
I ⊂ R. From Proposition 6.5.12 we obtain a further equivalence of ModfR and
ComodfA, where A = M∗ ⊗R M . In particular, by Proposition 6.5.10 we obtain
an A-comodule structure on ω(X). In what follows we write AX in place of A in
order to emphasize the dependence of A on X. The coalgebra AY corresponding
to the full subcategory 〈Y 〉 ∼= ModfR/I is

(M ⊗R R/I)
∗ ⊗R/I (M ⊗R R/I) ∼= (M ⊗R R/I)

∗ ⊗RM,

whose natural map in AX = M∗ ⊗R M is injective, because tensoring with M
is an exact functor by Corollary 6.5.11. The direct limit of the coalgebras AX
with respect to these maps is a coalgebra AC in which each AX is in fact a sub-
coalgebra. We thus obtain an AC-comodule structure on ω(X) by extending the
AX -comodule structure to AC . To show that ω induces an equivalence between
C and ComodfAC

, we check fully faithfulness and essential surjectivity as usual.
The bijection between HomC(X,Y ) and HomAC

(ω(X), ω(Y )) already follows from
Steps 2 and 3, as the morphisms in HomC(X,Y ) all lie in 〈X ⊕ Y 〉. Finally, as
AC is a directed union of the subcoalgebras AX , each object of ComodfAC

comes
from some AX -comodule by base extension, and hence is of the form ω(Z) for a
Z ∈ 〈X〉, again by Steps 2 and 3.

Remark 6.5.13 We now briefly discuss the theory of general Tannakian cate-
gories, for which we have to use the language of schemes. Assume that C is, as
before, a rigid k-linear abelian tensor category whose unit 1 satisfies End(1) ∼= k.
A general (non-neutral) fibre functor is an exact faithful tensor functor ω on C
with values in the k-linear abelian tensor category LFS of locally free sheaves on
a k-scheme S. The pair (C, ω) defines a Tannakian category.

Given a morphism φ : T → S, the functor ω induces a fibre functor φ∗ω with
values in LFT via X 7→ ω(X)⊗OS

OT . Define the functor Aut⊗k (ω) on the category
of schemes over S×kS by sending T → S×kS to the set of OT -linear isomorphisms
of tensor functors π∗2ω

∼→ π∗1ω, where π1, π2 : T → S are the composite maps of
T → S ×k S with the two projections S ×k S → S. It can be shown that this
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functor is representable by an affine, flat and surjective morphism Πω → S ×k S.
Moreover, the scheme Πω carries the structure of an affine groupoid scheme over
k acting on S, a notion we now explain. The reader will notice the similarity with
the definition of groupoid covers in Exercise 7 of Chapter 2.

Let Π be a k-scheme equipped with two k-morphisms s, t : Π → S; these
maps enable us to view Π as an S ×k S-scheme. To turn Π into a k-groupoid
scheme acting on S, three additional morphisms of S ×k S-schemes are required:
a multiplication map m : Π ×S Π → Π (where the fibre product over S is with
respect to the maps s and t), a unit map e : S → Π (where S is considered as an
S×kS-scheme by means of the diagonal morphism), and an inverse map ι : Π → Π
which satisfies t ◦ ι = s, s ◦ ι = t. These are subject to the following conditions:

m(m× id) = m(id ×m), m(e× id) = m(id × e) = id,

m(id × ι) = e ◦ t, m(ι× id) = e ◦ s.

Note that the multiplication m induces a product operation (π, π′) 7→ ππ′ for
morphisms π, π′ : T → Π satisfying s ◦ π = t ◦ π′.

A representation of Π is a locally free sheaf F on S together with morphisms
of OT -modules ρπ : (s ◦ π)∗F → (t ◦ π)∗F for each k-scheme T and k-morphism
π : T → Π, such that the following hold: we have ρππ′ = ρπ ◦ ρπ′ whenever
s ◦ π = t ◦ π′; the map ρπ is the identity whenever π = e ◦ ψ for some ψ : T → S;
and finally all ρπ are compatible with respect to morphisms T ′ → T .

The main theorem is then the following: the affine S ×k S-scheme Πω repre-
senting the functor Aut⊗k (ω) has the additional structure of a k-groupoid scheme,
and the Tannakian category (C, ω) is equivalent to the category of representations
of Πω. The proof of this theorem occupies most of Deligne’s paper [14]. When
S = Spec (k), identifying k ⊗k k with k via the multiplication map a ⊗ b 7→ ab
turns Πω into an affine k-group scheme, and we recover Theorem 6.5.3.

We return to neutral Tannakian categories, and close this section by discussing
an almost tautological example which will nevertheless have interesting conse-
quences.

Example 6.5.14 Let Γ be an arbitrary group, and let k be a field. Denote by
Repfk(Γ) the category of finite dimensional representations of Γ over k. The usual
tensor product and dual operations for representations equip Repfk(Γ) with the
structure of a k-linear rigid abelian tensor category. With the forgetful functor
Repfk(Γ) → Vecfk as fibre functor we get a neutral Tannakian category. Its
Tannakian fundamental group is called the algebraic hull (or algebraic envelope)
of Γ over k; we denote it by Γalg.

A similar construction can be applied to the category of finite dimensional
continuous real or complex linear representations of a topological group.



244 Chapter 6. Tannakian Fundamental Groups

The algebraic hull Γalg is usually huge, even for Γ = Z, so it is mainly of
theoretical interest. However, we can understand small quotients of it rather well,
as the following construction will show.

Quite generally, given a Tannakian category (C, ω) and an object X of C,
we shall denote by 〈X〉⊗ the smallest full Tannakian subcategory of C contain-
ing X. Its objects are subquotients of finite direct sums of objects of the form
X⊗r ⊗ (X∗)⊗s, with some r, s ≥ 0.

This being said, let us return to the category Repfk(Γ) and fix an object V .
After the choice of a basis it corresponds to a homomorphism ρV : Γ → GLn(k).
Assume for simplicity that k is algebraically closed.

Proposition 6.5.15 The Tannakian fundamental group of the full Tannakian
subcategory 〈V 〉⊗ of Repfk(Γ) is canonically isomorphic to the Zariski closure of
the image of ρV in GLn(k).

Here we view the closure im (ρV ) as an affine group scheme as in Example
6.1.4 (4). For the proof we need a standard lemma from the theory of linear alge-
braic groups.

Lemma 6.5.16 Let K be a field, and G a closed subgroup scheme of GLn over K.
Denote by W the n-dimensional representation of G corresponding to its action on
Kn via the inclusion G→ GLn. The full Tannakian subcategory 〈W 〉⊗ ⊂ RepG is
the whole of RepG.

We include a proof for the readers’ convenience, taken from [111].

Proof: Let M be an arbitrary object of RepG. We first reduce to the case
where M in a finite dimensional K-subcomodule of the Hopf algebra A of G. It
will be enough to embed M in a finite direct sum Am of copies of A, because each
subcomodule in Am is the direct sum of its projections to the components. Now
let m = dimK(M), and consider M ⊗K A ∼= Am. It is an A-comodule via the map
idM ⊗∆ : M ⊗K A→M ⊗K A⊗K A. Now look at the two diagrams in Definition
6.1.6: the first one says that ρ : M → M ⊗K A is a morphism of A-comodules,
and the second one implies that ρ is injective.

The closed embedding G→ GLn corresponds to a surjection of Hopf algebras
B ։ A, where B ∼= K[x11, x12, . . . , xnn,det(x−1

ij )] by Example 6.1.4 (3). As every
finite dimensional A-subcomodule of A is contained in the image of a finite di-
mensional B-subcomodule of B (for instance as a consequence of Proposition 6.1.8
(1)), we reduce to the case B = A, or in other words G = GLn.

Given integers r, s ≥ 0, define a K-subspace

Vr,s := {det(xij)
−rf | f ∈ K[x11, x12, . . . , xnn], deg(f) ≤ s}

of B. Each finite dimensional subcomodule of B is contained in some Vr,s for r, s
large enough. Actually, Vr,s is a finite dimensional B-subcomodule of B, because
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the comultiplication on B is given by xij 7→ xik⊗xkj . Now W is just the standard
representation of GLn onKn, so its comodule structure is given by vj 7→

∑
vk⊗xkj ,

where the vj are the standard basis elements of Kn. Thus for each i the map
vk 7→ xik induces a morphism of B-comodulesW → B; it is actually an embedding.
Taking the direct sum over all i we obtain an isomorphism of Wn with the K-
subspace V1 ⊂ B spanned by the xij ; in particular V1 ⊂ 〈W 〉⊗. As the subspace
Vs of homogeneous polynomials of degree s is the symmetric product of s copies
of V1 and hence a quotient of V ⊗s1 , we conclude Vs ⊂ 〈W 〉⊗. The 1-dimensional
subspace 〈det(xij)〉 lies in Vn, so the tensor powers of its dual 〈det(xij)

−1〉 also
lie in 〈W 〉⊗. As by definition Vr,s is the tensor product of 〈det(x−1

ij )〉⊗r with the
direct sum of the Vi for i ≤ s, we conclude that Vr,s ⊂ 〈W 〉⊗, which suffices to
conclude.

Proof of Proposition 6.5.15: Denote by G the affine group scheme over k
defined by im (ρV ). The representation ρV gives rise to a representation of the
affine group scheme G in a natural way; we denote it by V . Similarly, each object
of 〈V 〉⊗ gives rise to an object of RepG, and we obtain an equivalence between
〈V 〉⊗ and the full Tannakian subcategory 〈V 〉⊗ of RepG. In particular, the two
categories have isomorphic Tannakian fundamental groups. But 〈V 〉⊗ is the whole
of RepG by the lemma, whence the proposition.

Remark 6.5.17 As Repfk(Γ) is the direct limit of the full subcategories 〈V 〉⊗,
the proposition implies the following description of Γalg. Consider pairs (G,φ),
where G is a closed subgroup of GLn(k) for some n, and φ : Γ → G is a morphism
with dense image. The system of the (G,φ) carries a natural partial order where
(G,φ) ≥ (G′, φ′) if there is a morphism λ : G → G′ of algebraic groups with
λ ◦φ = φ′. Notice that if λ exists, it is unique by our assumption that φ has dense
image. Thus the (G,φ) together with the λ form a natural inverse system whose
inverse limit is precisely Γalg.

6.6 Differential Galois Groups

We now turn to more interesting examples of Tannakian categories. We begin by
revisiting some constructions of Chapter 2 in the Tannakian context.

Example 6.6.1 Consider a connected and locally simply connected topological
spaceX, and fix a base point x ∈ X. The category LSX of complex local systems on
X is a C-linear abelian category, and the customary tensor product and dual space
constructions of linear algebra induce a commutative and rigid tensor structure on
it. Taking the stalk of a local system at x yields a fibre functor with values in
VecfC. Hence LSX is a neutral Tannakian category.

In Corollary 2.6.2 we established an equivalence between LSX and the cate-
gory Repfπ1(X,x) of finite dimensional left representations of the fundamental group
π1(X,x). This is moreover an equivalence of neutral Tannakian categories if we
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consider Repfπ1(X,x) with its Tannakian structure described in Example 6.5.14.
Consequently, the Tannakian fundamental group of LSX is isomorphic to the al-
gebraic hull of π1(X,x) over C. Moreover, by Proposition 6.5.15 the Tannakian
fundamental group of each full Tannakian subcategory 〈L〉⊗ of LSX is isomorphic
to the Zariski closure of the image of ρL,x : π1(X,x) → GLn(C), where ρL,x is the
monodromy representation of L at the point x.

In the next example we exploit the Riemann–Hilbert correspondence of Propo-
sition 2.7.5.

Example 6.6.2 Consider now a connected open subset D ⊂ C, and let x be a
point of D. We introduce a neutral Tannakian structure on the category ConnD of
holomorphic connections on D as follows. The tensor product of two connections
(E1,∇1) and (E2,∇2) is to be (E1 ⊗O E2,∇1 ⊗ ∇2), with ∇1 ⊗ ∇2 : E1 ⊗O E2 →
E1 ⊗O E2 ⊗O Ω1

D given by

(∇1 ⊗∇2)(s1 ⊗ s2) = ∇1(s1) ⊗ s2 + s1 ⊗∇2(s2).

The dual connection to (E ,∇) is (E∗,∇∗), the locally free sheaf E∗ being given by
U 7→ Hom(E|U ,O|U ) and ∇∗ over φ ∈ Hom(E|U ,O|U ) by

∇∗(φ)(s) = 1 ⊗ dφ(s) − (φ⊗ idΩ1
D
)(∇(s)).

Finally, the fibre functor is given by (E ,∇) 7→ E∇x . One checks that the category
equivalence (E ,∇) 7→ E∇ of Proposition 2.7.5 between ConnD and LSD is compat-
ible with the tensor structures and fibre functors, so the Tannakian fundamental
group of ConnD with respect to the above fibre functor is again the algebraic hull
of π1(D,x) over C.

The above construction generalizes to arbitrary complex manifolds if one con-
siders flat connections as in Example 2.7.6.

Notice a subtlety in the above argument: it is a priori not obvious at all that
ConnD is a C-linear abelian category, which is part of the definition of Tannakian
categories. We deduced this fact from its equivalence with LSD.

The next example is, in some sense, a differential analogue of Theorem 3.3.7.
We relate holomorphic connections onD to algebraically defined objects over C(z),
the field of meromorphic functions D.

Example 6.6.3 Consider the field C(t) equipped with its usual derivation f 7→ f ′.
A differential module over C(t) is a finite dimensional C(t)-vector space V together
with a C-linear map ∇ : V → V satisfying

∇(fv) = f ′v + f∇(v) (6.16)

for all f ∈ C(t) and v ∈ V . Morphisms of differential modules are to be morphisms
of C(t)-vector spaces compatible with ∇. This defines a category which is in fact
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abelian: a submodule of (V,∇) is a C(t)-subspace W ⊂ V stable by ∇, and for
such a W we obtain an induced differential module structure on the quotient space
V/W .

Next we introduce tensor products and duals for differential modules in a
similar way as above. Given (V1,∇1) and (V2,∇2), we define ∇1 ⊗∇2 on V1 ⊗ V2

by

(∇1 ⊗∇2)(v1 ⊗ v2) = ∇1(v1) ⊗ v2 + v1 ⊗∇2(v2), (6.17)

and ∇∗ on V ∗ = HomC(t)(V,C(t)) by

∇∗(φ)(v) = (φ(v))′ − φ(∇(v)). (6.18)

In this way we obtain a C-linear rigid tensor abelian category DiffmodC(t).

If we identify an n-dimensional C(t)-vector space V with C(t)n, we can define a
differential module (V, d) by d(f1, . . . , fn) = (f ′1, . . . , f

′
n). Given another differential

module structure (V,∇) on V , the difference ∇−d is C(t)-linear by (6.16), so it is
defined by an n×n matrix [fij ] of functions in C(t) called the connection matrix of
∇. Setting A = −[fij ] we see that ∇ corresponds to the system of linear differential
equations y′ = Ay. As the reader has noticed, all this is completely parallel to the
discussion in Example 2.7.3.

Given an open subset D ⊂ C whose complement is finite, we know from
Proposition 2.7.7 that every holomorphic connection (E ,∇) on D extends to a
connection on P1(C) with simple poles outside D. In particular, the entries of
its connection matrix are meromorphic functions on P1(C), i.e. elements of C(t).
We can thus associate to (E ,∇) the differential module (V,∇) over C(t) with
the same connection matrix. This induces an equivalence of the full subcategory
〈(E ,∇)〉⊗ of ConnD with the full subcategory 〈(V,∇)〉⊗ of DiffmodC(t). A fibre
functor on the former category induces one on the latter, so 〈(V,∇)〉⊗ is a neutral
Tannakian category. By Proposition 6.5.15 and the two previous examples, its
Tannakian fundamental group is isomorphic to the Zariski closure of the image of
the monodromy representation of the local system E∇.

A shortcoming of the above example was that we introduced the fibre functor
on 〈(V,∇)〉⊗ in a transcendental way, by comparison with the holomorphic theory.
It is natural to ask whether this is possible using a direct construction. After
all, the fibre functor is given by local horizontal sections of the connection, i.e.
solutions of the corresponding differential equation. These are not elements of
C(z) any more, but typically exponential functions. By adjoining the solution
functions to C(z) we obtain a large transcendental extension which, however, can
be studied in a purely algebraic way. This is the purpose of differential Galois
theory, a vast subject of which we now explain the rudiments.

Let K be a field of characteristic 0. A derivation on K is an additive function
∂ : f 7→ f ′ satisfying the Leibniz rule (fg)′ = f ′g+fg′. The pair (K, ∂) is called a
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differential field. The kernel ker(∂) is a subfield of K; we shall call it the constant
field of (K, ∂) and denote it by k. We define a differential module over (K, ∂) by
direct generalization of the above special case: it is a pair (V,∇) consisting of a
finite dimensional K-vector space V and a k-linear map ∇ : V → V satisfying
(6.16). The subset V ∇ := ker(∇) is a k-subspace of V ; its elements are called
horizontal vectors. As above, the category DiffmodK of differential modules over
K is a rigid k-linear abelian tensor category, the tensor structure being defined
by (6.17) and (6.18). Given an extension of differential fields (L, ∂) ⊃ (K, ∂) (i.e.
a field extension L|K together with a derivation extending ∂) and a differential
module (V,∇) over K, there is a natural notion of base change (V ⊗K L,∇L),
where ∇L has the same connection matrix as ∇ in a basis of V .

We can now give the formal definition of the extension generated by the local
solutions.

Definition 6.6.4 Let (V,∇) be a differential module over K. A Picard–Vessiot
extension for (V,∇) is a differential field extension (L, ∂) ⊃ (K, ∂) satisfying the
following properties:

1. (L, ∂) has the same constant field k as K;

2. V ⊗K L is generated as an L-vector space by the horizontal vectors of ∇L;

3. the coordinates of the horizontal vectors of ∇L in any L-basis of V ⊗K L
coming from a K-basis of V generate the field extension L|K.

In more down-to-earth terms, property (3) says that L is generated over K by
a system of local solutions of the system of differential equations corresponding to
(V,∇), and (2) ensures that the functions in the system are linearly independent
over k.

Now observe that if L satisfies property (2) of the above definition for (V,∇),
then so does each object of the full subcategory 〈(V,∇)〉⊗ by our definition of
the abelian and tensor structure on the category DiffmodK . Therefore such an L
defines a fibre functor ωL on 〈(V,∇)〉⊗ with values in Vecfk via

ωL : (W,∇) 7→ (W ⊗K L)∇L .

Remark 6.6.5 In the last section of [14] Deligne and Bertrand show that Picard–
Vessiot extensions for (V,∇) correspond bijectively to neutral fibre functors on
〈(V,∇)〉⊗. The proof is not very hard, and uses a construction akin to Lemma
6.7.17 below.

On the other hand, Corollary 6.20 of the same paper implies the much deeper
fact that over an algebraically closed field k a neutral fibre functor always ex-
ists on a rigid abelian k-linear tensor category of the form 〈X〉⊗ that has some
(non-neutral) fibre functor into a category VecfK for an extension K ⊃ k. As
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the forgetful functor on 〈(V,∇)〉⊗ is such a fibre functor, we obtain that Picard–
Vessiot extensions always exist for differential modules over differential fields with
algebraically closed constant field (they may not exist in general). In [107], Propo-
sitions 1.20 and 1.22 a simple direct proof is given for this fundamental fact. There
it is also proven that if a Picard–Vessiot extension exists, it is unique up to an
isomorphism of differential fields.

Definition 6.6.6 Assume that there exists a Picard–Vessiot extension (L, ∂) for
(V,∇). The differential Galois group scheme Gal (V,∇) of (V,∇) is defined as the
Tannakian fundamental group of the category 〈(V,∇)〉⊗ equipped with the above
fibre functor ωL.

By definition, Gal (V,∇) is an affine group scheme over k. A priori it depends
on the Picard–Vessiot extension L, but the last sentence of the above remark shows
that its isomorphism class doesn’t.

In the classical literature the differential Galois group is defined as the group
of automorphisms of the field extension L|K preserving ∂. We now make the link
with with the above definition. The first step is to turn the automorphism group
of (L, ∂) ⊃ (K, ∂) into an affine k-group scheme.

Given a k-algebra R, extend the derivation ∂ on L to L ⊗k R by the rule
f ⊗ r 7→ f ′ ⊗ r. Define a group-valued functor Gal ∂(L|K) on the category of
k-algebras by sending R to the group of K⊗kR-algebra automorphisms of L⊗kR
commuting with ∂. Given a morphism φ : R1 → R2, we define Gal ∂(L|K)(φ) by
sending an automorphism of L⊗k R1 to the automorphism of L⊗k R2 induced by
base change via φ.

Lemma 6.6.7 The functor Gal ∂(L|K) defines an affine group scheme over k.

Proof: We have to show that Gal ∂(L|K) is representable by a finitely generated
k-algebra A. The proof will actually realize A as a quotient of the coordinate
ring B = k[x11, . . . , xnn,det(xij)

−1] of GLn, where n = [L : K]. Fixing a K-
basis of L as in defining property (3) of Picard–Vessiot extensions, we can write
the coordinates of a k-basis of horizontal vectors in a nonsingular n × n matrix
[fij ]. An automorphism σ ∈ Gal ∂(L|K)(k) multiplies this matrix by a matrix
Mσ ∈ GLn(k); as the fij generate L over K, this determines σ. Similarly, elements
σR ∈ Gal ∂(L|K)(R) for a k-algebra R correspond to matrices MσR

∈ GLn(R).
There is a natural K-algebra surjection B ⊗k K → L induced by xij 7→ fij ,

compatible with the natural derivations on B and L. Its kernel is a maximal
ideal P ⊂ B ⊗k K. Each σR : L ⊗k R → L ⊗k R lifts to a K-algebra map
σ̃R : B ⊗k K ⊗k R → L ⊗k R with σ̃R(PR) = 0, where PR is the ideal generated
by P in B ⊗k K ⊗k R. Choosing an (infinite) k-basis {eλ : λ ∈ Λ} of L, we may

write σ̃R(b) =
∑
αeσR

λ (b)eλ for all b ∈ B ⊗k K ⊗k R, where the sum is finite and

the coefficients are in R. The condition is therefore that the αeσR

λ (b) must vanish
for b ∈ PR; it suffices to verify this for a system p1, . . . , pm of generators of P .
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Now choose R = B, and let σB be the ‘universal’ automorphism corresponding
toMσB

= [xij ]. Write A for the quotient of B by the ideal generated by the αeσB

λ (pl)
for 1 ≤ l ≤ m and λ ∈ Λ. Given a k-algebra R and an element σR ∈ Gal ∂(L|K)(R)
corresponding to a matrix MσR

∈ GLn(R), define a map B → R by sending xij to
the (i, j)-term of MσR

. As σR comes from a σ̃R annihilating PR, our map factors
through A. This shows that A represents Gal ∂(L|K).

Now assume given a differential module (V,∇) over K, and let L be a Picard–
Vessiot extension for (V,∇). Observe that if σ : L → L is a K-automorphism of
L commuting with ∂, then the induced automorphism of V ⊗K L preserves the
space (V ⊗KL)∇L of horizontal vectors. This holds for each object of 〈(V,∇)〉⊗, so
the fibre functor ωL takes its values not only in the category of finite dimensional
k-vector spaces, but actually in the category of finite dimensional representations
of Gal ∂(L|K)(k). For each object (W,∇) of 〈(V,∇)〉⊗ we have a functor on the
category of k-algebras given by R 7→ (W⊗KL⊗KR)∇L⊗KR , where the base change
∇L⊗KR is defined in a straightforward way. This shows that ωL induces a functor
from 〈(V,∇)〉⊗ to the category RepGal ∂(L|K) of representations of the affine group
scheme Gal ∂(L|K). It is moreover a tensor functor as ωL is.

Proposition 6.6.8 If k is algebraically closed, the above tensor functor induces an
equivalence of neutral Tannakian categories between 〈(V,∇)〉⊗ and RepGal ∂(L|K).
Consequently, the affine group schemes Gal (V,∇) and Gal ∂(L|K) are isomorphic.

We give a proof following [107]. One additional algebraic fact is needed which
does not result from the Tannakian theory.

Fact 6.6.9 Let (K, ∂) be a differential field with algebraically closed constant
field k, and (L, ∂) a Picard–Vessiot extension for the differential module (V,∇)
over K. Then the fixed field for the action of Gal ∂(L|K)(k) on L is exactly K.
Thus Picard–Vessiot extensions play the role of Galois extensions in the differential
theory.

For proofs, see [107], Theorem 1.27 (3) or [39], Theorem 5.7.

Proof of Proposition 6.6.8: For fully faithfulness, assume given two objects
(V1,∇) and (V2,∇) of 〈(V,∇)〉⊗. By the definition of duals in a rigid tensor cat-
egory we have Hom((V1,∇), (V2,∇)) ∼= Hom(K, (V ∗1 ⊗K V2,∇)), and similarly for
the corresponding representations of Gal ∂(L|K), so we may assume that (V1,∇) is
K equipped with the trivial connection. Elements of Hom(K, (V2,∇)) correspond
bijectively to horizontal elements of V2. As k is algebraically closed, elements in the
image of Hom(K, (V2,∇)) by ωL correspond to elements of (V2 ⊗K L)∇L invariant
by Gal ∂(L|K)(k). But by the above fact the Gal ∂(L|K)(k)-invariant elements in
V2 ⊗k L are exactly the elements of V2, so we again obtain the horizontal elements
of V2.

For essential surjectivity, note that by property (3) of Picard–Vessiot extensions
the functor ωL maps (V,∇) to a faithful representation of Gal ∂(L|K), or in other
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words the induced map Gal ∂(L|K) → GLn(k) is injective. We then conclude by
Lemma 6.5.16.

When k is algebraically closed, the group Gal ∂(L|K)(k) of k-points of the affine
group scheme Gal (M,∇) ∼= Gal ∂(L|K) is called the differential Galois group of
(M,∇). In this case the above considerations imply an analogue of the main
theorem of Galois theory (Theorem 1.2.5) in the differential context.

Theorem 6.6.10 Let (K, ∂) be a differential field with algebraically closed con-
stant field k, and (L, ∂) a Picard–Vessiot extension for the differential module
(V,∇) over K. The rule H(k) 7→ LH(k) induces a bijection between closed sub-
groups of Gal ∂(L|K)(k) and differential subfields of (L, ∂) containing (K, ∂). Here
closed normal subgroups correspond to Picard–Vessiot extensions of (K, ∂), and the
associated differential Galois group is (Gal ∂(L|K)/H)(k).

Proof: If (M,∂) is an intermediate differential field between (K, ∂) and (L, ∂),
then (L, ∂) is a Picard–Vessiot extension for the base change (VM ,∇M ). This
identifies Gal ∂(L|M)(k) with a closed subgroup H(k) of Gal ∂(L|K)(k) (as it is
closed in GLn(k) with the same GLn as for Gal ∂(L|K)(k)), and by Fact 6.6.9 we
have LH(k) = M . Similarly, a closed subgroup H(k) ⊂ Gal ∂(L|K)(k) fixes some
M with Gal (VM ,∇M )(k) ∼= H(k).

Given a closed normal subgroup scheme H ⊂ Gal ∂(L|K), fix a representation
ρ in RepGal ∂(L|K) with kernel H. (Such a representation exists; see e.g. [111],
§16.1.) The full subcategory 〈ρ〉⊗ is equivalent to RepGal ∂(L|K)/H by Lemma
6.5.16 on the one hand, and to 〈(W,∇)〉⊗ for some (W,∇) in 〈(V,∇)〉⊗ on the
other hand. As we have already noted, (L, ∂) satisfies defining properties (1) and
(2) of Picard–Vessiot extensions for (W,∇), therefore by defining property (3) it
contains a Picard–Vessiot extension (M,∂) for (W,∇). By construction we have
Gal (W,∇) ∼= Gal (V,∇)/H, and Gal ∂(L|M)(k) ∼= H(k) by the first part of the
proof.

6.7 Nori’s Fundamental Group Scheme

In this final section we draw the ties closer between the Tannakian theory and
Grothendieck’s algebraic fundamental group discussed in the previous chapter.
Recall that the fundamental group of a scheme S is a profinite group whose finite
quotients correspond to finite étale Galois covers X → S. We observed in Propo-
sition 5.3.16 (1) that the Galois cover X → S can be viewed as a torsor under
a finite constant group scheme. In his influential paper [72], Nori observed that
by means of the theory of Tannakian categories one may construct a fundamental
group classifying torsors under arbitrary finite group schemes in the case when
S is a proper integral scheme over a field k and has a k-rational point. Nori’s
fundamental group is actually an affine group scheme which is a projective limit
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of finite group schemes. When k is algebraically closed of characteristic 0, there
is a comparison theorem with Grothendieck’s fundamental group, but in general
Nori’s group is larger.

From now on we again consider group schemes as schemes and not as functors.
The starting observation is the following. Assume k is a field, and S → Spec (k) a
scheme over k. Given a finite group scheme G over k, by a (left) G-torsor over S
we mean a (left) torsor over S with structure group GS = G×Spec (k) S (note that
GS is a finite flat group scheme over S by construction).

Lemma 6.7.1 Let φ : X → S be a G-torsor over S. The locally free sheaf
EX := φ∗OX satisfies E⊗2

X
∼= E⊕nX , where n is the order of the group G(k̄) for an

algebraic closure k̄ of k.

Proof: Consider the isomorphism GS×SX ∼= X×SX given by the definition of
torsors. The OS-algebra corresponding via Remark 5.1.24 to the left hand side is
isomorphic as an OS-module to E⊕nX because GS ×S X ∼= G×kX and G is a finite
k-group scheme. The right hand side corresponds to E⊗2

X , whence an isomorphism
E⊗2
X

∼= E⊕nX as required.

The property of EX in the lemma is a special case of a general definition
introduced by Weil in [112]. Given a scheme S, an OS-module F and a polynomial
f = anx

n + an−1x
n−1 + · · · + a0 with non-negative integer coefficients, we define

f(F) :=
n⊕

i=0

(F⊗i)⊕ai .

By convention, here F⊗0 := OS and F⊕0 = 0.

Definition 6.7.2 A locally free sheaf E is called finite if there exist polynomials
f 6= g with non-negative integer coefficients such that f(E) ∼= g(E).

Here and below the term ‘locally free sheaf’ will always mean ‘locally free sheaf
of finite rank’.

To obtain another characterization of finite locally free sheaves, call a locally
free sheaf indecomposable if it is not isomorphic to a direct sum of nonzero locally
free sheaves. For a general locally free sheaf E write I(E) for the set of isomorphism
classes of indecomposable locally free sheaves E ′ for which there exists a locally
free E ′′ with E ∼= E ′ ⊕ E ′′.

Lemma 6.7.3 The set I(E) is finite.
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Proof: Quite generally, for a coherent sheaf F the set of isomorphism classes
of coherent sheaves that are isomorphic to a direct summand of F and cannot be
decomposed in a nontrivial direct sum of two coherent sheaves is finite. This is
a consequence of the Krull–Remak–Schmidt theorem for coherent sheaves which
is proven in the same way as the classical theorem for modules (see [48], Chapter
X, Theorem 7.5). Now if E has only finitely many nonisomorphic indecomposable
direct summands as a coherent sheaf, then it has the corresponding property as a
locally free sheaf.

Denote by S(E) the union of the finite sets I(E⊗i) for all i > 0.

Proposition 6.7.4 A locally free sheaf E is finite if and only if S(E) is a finite
set.

Proof: The ‘if’ part is proven using the well-known ‘determinant trick’. Write
L for the free abelian group generated by isomorphism classes of indecomposable
locally free sheaves on S. Those elements in L that have nonnegative coefficients
correspond to isomorphism classes of locally free sheaves, and L carries a structure
of a commutative ring induced by tensor product. Consider the free additive
subgroup LE ⊂ L with basis S(E). It is preserved by the Z-linear map mE given
by multiplication with the class of E . The characteristic polynomial χ is a monic
polynomial in Z[x] with χ(mE) = 0. Writing χ = f − g, where f and g have
nonnegative coefficients, we obtain polynomials with f(E) = g(E).

Conversely, if there exist such f and g, then plugging the class of E in L into
f − g ∈ Z[x] we obtain 0. Writing d for the degree of f − g, this implies that each
indecomposable direct summand of E⊗d must be a direct summand of some E⊗j
for j < d. Applying the above to the polynomials (f − g)xi for i > 0 and using
induction on i, we obtain that each element of S(E) may be represented by a direct
summand of some E⊗j for j < d. We then conclude by the previous lemma.

Corollary 6.7.5 An invertible sheaf L is finite if and only if L⊗m ∼= OS for some
m > 0.

Proof: This follows from the proposition because the tensor powers L⊗i are
invertible for all i > 0, and invertible sheaves are indecomposable.

Corollary 6.7.6 The category of finite sheaves is stable under taking direct sums,
direct summands, tensor products of two sheaves and duals.

Here recall that the dual E∨ of a locally free sheaf E on S is the sheaf U 7→
HomOU

(E|U ,OS |U ), where the Hom-group means homomorphisms of OU -modules.
It is again a locally free sheaf of the same rank. The easy proof of the corollary is
left to the readers.



254 Chapter 6. Tannakian Fundamental Groups

We now see that the category of finite locally free sheaves on S is a rigid
commutative tensor category with unit OS . If moreover S is equipped with a
morphism S → Spec (k) for a field k and has a k-rational point s : Spec (k) → S,
the rule E 7→ s∗E yields a faithful tensor functor to the category Vecfk. (Recall
that if Spec (A) ⊂ S is an affine open subset containing the image of s and E = Ẽ
for an A-module E, the pullback s∗E is just given by the k-vector space E ⊗A k
on the one-point space Spec (k), where the map A → k corresponds to s.) Our
category thus satisfies all requirements for a neutral Tannakian category except
that we don’t know yet whether it is abelian. It will turn out to be abelian when k
is of characteristic 0 and S is proper and integral, but this is not obvious to prove.
Nori’s idea was to use the theory of semi-stable sheaves, so we need first to recall
some facts about these.

Facts 6.7.7 Let S be a scheme, and E a locally free sheaf on S. Consider the dual
sheaf E∨ and the OS-algebra S(E∨) :=

⊕
i≥0 (E∨)⊗i. Let V(E) → S be the affine

morphism corresponding to S(E∨) via Remark 5.1.24; it is called the vector bundle
associated with E . For an open subset U ⊂ S where E|U is a free sheaf of rank n
we have V(E)×S U ∼= U ×An; this is because the tensor algebra of a free module
is a polynomial ring. We have worked with the dual sheaf E∨ in order to obtain
a covariant functor E 7→ V(E). It is also possible to define a vector bundle as an
affine morphism satisfying such a local triviality condition; see e.g. [34], Exercise
II.5.18. In the literature locally free sheaves are often called vector bundles.

A locally free subsheaf E ′ ⊂ E is called a subbundle if the corresponding mor-
phism V(E ′) → V(E) is a closed immersion. In this case E ′ is a direct summand
in E with locally free complement ([95], Chapter VI, §1.3, Proposition), so the
quotient E/E ′ is locally free; it is called a quotient bundle. A sufficient condition
for the kernel and the image of a morphism φ : E → F of locally free sheaves to
be subbundles is that for all geometric points s̄ : Spec (Ω) → S the Ω-linear maps
s̄∗E → s̄∗F have the same rank ([53], Proposition 1.7.2).

Assume now that C is an integral proper normal curve over a field, and E is a
locally free sheaf of rank r on C. The determinant det(E) (which is by definition
the r-th exterior power of E) is an invertible sheaf, so by [34], Propositions II.6.11
and II.6.13 it corresponds to a divisor D on C. The degree d of D is called the
degree of E , and the quotient µ(E) := d/r the slope of E . For locally free sheaves
E and F on C one has

µ(E ⊗OC
F) = µ(E) + µ(F). (6.19)

A quick way to prove this formula is to identify the degree of a locally free sheaf
with the degree of its first Chern class ([27], Theorem 3.2 (f) and Remark 3.2.3
(c)), and then to use the multiplicativity of the Chern character ([27], Example
3.2.3). See also Exercise 9 for a direct argument.

Also, using the Riemann–Roch formula for vector bundles ([53], Theorems 2.6.3
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and 2.6.9) one can calculate the degree of a locally free sheaf E of rank r as

deg(E) = χ(E) − rχ(OC), (6.20)

where χ(G) denotes the Euler-Poincaré characteristic of a coherent sheaf G ([53],
Section 2.3).

One says that E is semi-stable if µ(E ′) ≤ µ(E) for all nonzero subbundles E ′ ⊂ E .
Equivalently (see [53], p. 74), the sheaf E is semi-stable if µ(E ′′) ≥ µ(E) for all
nonzero quotient bundles E ′′ of E . The kernel and the image of a morphism E → F
of semi-stable sheaves of slope µ are subbundles, and the cokernel is a quotient
bundle that is semistable of rank µ. Consequently, the full subcategory C(µ) of
the category of locally free sheaves on C spanned by semi-stable sheaves of slope
µ is an abelian category. For a proof of these facts, see [53], Proposition 5.3.6.

The relevance of semi-stability to our topic is shown by the following proposi-
tion.

Proposition 6.7.8 A finite locally free sheaf E on an integral proper normal curve
is semi-stable of slope 0.

We first prove a lemma.

Lemma 6.7.9 Let C be an integral proper normal curve.

1. For a locally free sheaf F on C the slopes of subbundles F ′ ⊂ F are bounded
from above.

2. If we denote by µmax(F) the maximum of the slopes of subbundles of F , and
F1,F2 are locally free sheaves on C, then

µmax(F1 ⊕F2) ≤ max(µmax(F1), µmax(F2)).

Proof: Denoting by r the rank of F , for (1) it suffices to show that the degrees of
rank r′ subbundles F ′ ⊂ F are bounded for all 1 ≤ r′ ≤ r. But by the Riemann–
Roch formula (6.20) the degree of such an F ′ equals χ(F ′) − r′χ(OC). As the
Euler–Poincaré characteristic χ is additive for short exact sequences, we see that
χ(F ′) ≤ χ(F), whence statement (1).

For (2) consider a subbundle G ⊂ F1⊕F2, and denote by j : Spec (K(C)) → C
the inclusion of the generic point of C. The pullback j∗G decomposes as a di-
rect sum j∗G ∼= G′1 ⊕ G′2, where the G′i are locally free sheaves on Spec (K(C))
corresponding to subspaces of the vector spaces j∗Fi. The j∗(G′i) are locally
free subsheaves of the Fi, hence there exist subbundles j∗(G′i) ⊂ Gi ⊂ Fi that
have the same rank as the j∗(G′i) (see [53], p. 73). It then suffices to prove
µ(G1 ⊕ G2) ≤ max(µ(G1), µ(G2)), which is an easy calculation.
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Proof of Proposition 6.7.8: We use the characterization of Proposition 6.7.4.
Denote by µ the maximum of the numbers µmax(Ei), where Ei runs over a set of
representatives of S(E). By part (2) of the above lemma and the definition of S(E)
we have µ(F) ≤ µ for every locally free sheaf F that is a subbundle of some E⊗i.
For every j > 0 the tensor power F⊗j satisfies µ(F⊗j) = jµ(F) by (6.19). On the
other hand, it is a subbundle of E⊗ij , so µ(F⊗j) ≤ µ must hold by what we have
just proven. This is only possible if µ(F) ≤ 0 for all F ; in particular, we have
µ(E) ≤ 0. But the dual sheaf E∨ is again finite by Corollary 6.7.6, so µ(E∨) ≤ 0
must hold as well. Since µ(E∨) = −µ(E), this shows µ(E) = 0, and therefore also
µ(E ′) ≤ µ(E) for all subbundles E ′ ⊂ E .

The above considerations are sufficient for constructing a Tannakian category
out of finite locally free sheaves when the base scheme is a proper normal curve.
However, we first discuss how to generalize the theory to higher dimensional base
schemes.

Let S be a proper integral scheme over a field k. Following Nori, we say
that a locally free sheaf E on S is semi-stable of slope 0 if for all integral closed
subschemes C ⊂ X of dimension 1 with normalization C̃ → C the pullback of E
via the composite morphism C̃ → C → X is a semi-stable sheaf of slope 0 on the
proper normal curve C̃.

Proposition 6.7.10 Let S be a proper integral scheme over a field k.

1. The full subcategory of the category of locally free sheaves on S spanned by
semi-stable sheaves of slope 0 is an abelian category.

2. Every finite locally free sheaf on S is semi-stable of slope 0.

Proof: To prove (1), consider a morphism φ : E → F of semi-stable locally free
sheaves of slope 0 on S. Given an integral closed subscheme C ⊂ X of dimension
1 with normalization C̃, the pullback φ eC

of φ to C̃ is a morphism of semi-stable
sheaves of slope 0, so by the theory of semi-stable sheaves on curves (last paragraph
of Facts 6.7.7) the kernel and the image are subbundles, and both the kernel and
the cokernel are semi-stable of slope 0. In particular, for every geometric point
s̄ : Spec (Ω) → C̃ the Ω-linear maps s̄∗E → s̄∗F have the same rank. Now observe
that after base change to an algebraic closure of k any two points of S lie on
a closed connected subscheme of dimension 1. When S is projective, this can
be proven by cutting S with a suitable linear subspace and applying a Bertini
argument, and the general case follows via Chow’s lemma ([95], Chapter VI, §2.1).
We conclude that the maps s̄∗E → s̄∗F have the same rank for all geometric points
of S, and therefore by the criterion mentioned above both the kernel and the image
are subbundles. Therefore the kernel and the cokernel of φ are locally free sheaves;
they are semistable of degree 0 because the φ eC

have this property. Finally, (2)
follows from Proposition 6.7.8 because the pullback of a finite locally free sheaf
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to every curve C̃ → X as above is again a finite locally free sheaf: polynomial
equalities are preserved by base change.

Now define a locally free sheaf E on S to be essentially finite if it is semistable
of slope 0, and moreover there is a finite locally free sheaf F on S and subbundles
F ′ ⊂ F ′′ ⊂ F with E ∼= F ′′/F ′. To put briefly, an essentially finite sheaf is a
subquotient of a finite locally free sheaf.

Proposition 6.7.11 Assume moreover S has a k-rational point s : Spec (k) → S.
Then the full subcategory EFS of the category of locally free sheaves on S spanned
by essentially finite sheaves, together with the usual tensor product of sheaves and
the functor E 7→ s∗E, is a neutral Tannakian category over k.

Proof: By definition, the category EFS is abelian. To see that it is stable by
tensor product, take two essentially finite sheaves E1 and E2 which are subquotients
of the finite locally free sheaves F1 and F2, respectively. Writing Ei ∼= F ′′i /F ′i with
subbundles F ′i ⊂ F ′′i ⊂ Fi, we see that E1 ⊗OS

E2 is isomorphic to a quotient of
F ′′1 ⊗OS

F ′′2 . It is thus a subquotient of F1⊗OS
F2 which is finite by Corollary 6.7.6.

Therefore it remains to see that it is semi-stable of slope 0. It will suffices to show
that its pullbacks to each proper normal curve π : C̃ → X as in the definition of
semi-stability have slope 0, for then we may use the semistability of the pullback
of F ′′1 ⊗OS

F ′′2 and apply the definition of semi-stability over curves via quotient
bundles. But the π∗Ei to are semistable of slope 0 as they are quotients of the
π∗F ′′i by the π∗F ′i which are all semistable of slope 0 by assumption. Therefore
π∗(E1 ⊗OS

E2) ∼= π∗E1 ⊗ eC
π∗E2 has slope 0 by formula (6.19).

To show that the tensor structure on EFS is rigid, observe that the dual of an
essentially finite locally free sheaf is again essentally finite by a similar argument
as above. Finally, consider the functor given by E 7→ s∗E . It is a faithful exact
tensor functor with values in the category of finite dimensional k-vector spaces,
i.e. a fibre functor on EFS .

Remark 6.7.12 The point where the use of semi-stability was crucial in the con-
struction was in the innocent-looking last part of the above proof. Indeed, for the
purpose of embedding the category of finite locally free sheaves in an abelian cat-
egory, the category of coherent sheaves on S is just as handy; it moreover carries
a commutative tensor structure with unit. However, for duals to exist we need
to know that the objects are locally free sheaves, and this is also needed for the
construction of the fibre functor.

Definition 6.7.13 Let S be a proper integral scheme over a field k that has a
k-rational point s : Spec (k) → S. The fundamental group scheme of S with base
point s is the affine k-group scheme corresponding via Theorem 6.5.3 to the neutral
Tannakian category EFS and the fibre functor s∗. We denote it by πN1 (S, s) (the
superscript N stands for ‘Nori’).
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Proposition 6.7.14 The group scheme πN1 (S, s) is an inverse limit of finite k-group
schemes.

Proof: Let F be a finite locally free sheaf on S. Consider the direct sum F̃ of a
system of representatives of S(F ⊕F∨); by Proposition 6.7.4 this is a finite direct
sum. As before, denote by 〈F̃〉 the full abelian subcategory of EFS generated
by the object F̃ . It is stable by tensor product and duals because by definition
S(F⊕F∨) contains all indecomposable direct summands of tensor products of the
form F⊗i⊗ (F∨)⊗j . The category 〈F̃〉 thus equals the full Tannakian subcategory
〈F〉⊗ of EFS , and as such is equivalent to the category RepG for an affine group
scheme G. The group scheme G is finite, because we know from Step 1 of the
proof of Theorem 6.5.4 that 〈F̃〉 is equivalent to the category of finite dimensional
comodules over a finite dimensional k-coalgebra RF which must be the underlying
coalgebra of the Hopf algebra of G. It remains to note that EFS is the direct limit
of the full Tannakian subcategories 〈F〉⊗, as each object E is a subquotient of a
finite locally free sheaf F , and is therefore contained in 〈F〉⊗.

Remark 6.7.15 The arguments in the above proof also imply that when k is of
characteristic 0, every essentially finite locally free sheaf over S is finite. Indeed,
it follows from a theorem of Cartier (see [111], Theorem 11.4) that in characteristic
0 every finite group scheme is étale. On the other hand, for a finite étale group
scheme G the regular representation k[G] is manifestly semisimple (i.e. a direct
sum of irreducible representations), hence each object in the category RepG is
semisimple. Applying this to the category 〈F̃〉 of the above proof which is equiva-
lent to RepG for some finite G, we see that each object is a direct sum of objects
in S(F ⊕ F∨), and therefore a finite locally free sheaf by Corollary 6.7.6.

The next theorem shows why πN1 (S, s) is called a fundamental group scheme.
To state it, introduce the category FtorsS,s of triples (G,X, x), where G is a finite
group scheme over k, X is a left G-torsor over S and x is a k-rational point in the
fibre of X above s. A morphism (G,X, x) → (G′, X ′, x′) in this category is given
by a pair of morphisms φ : G → G′, ψ : X → X ′ such that the G-action on X is
compatible with the G′-action on X ′ via (φ, ψ), and moreover ψ(x) = x′.

Theorem 6.7.16 There is an equivalence of categories between FtorsS,s and the
category of finite group schemes G over k equipped with a k-group scheme homo-
morphism πN1 (S, s) → G.

Note that not all G-torsors over S have a k-point in the fibre above s. The proof
will show that every G-torsor X gives rise to a homomorphism φX : πN1 (S, s) → G
but one may recover X from φX only after securing a k-point in the fibre. We
need the following general lemma.



6.7 Nori’s Fundamental Group Scheme 259

Lemma 6.7.17 Let G be a finite k-group scheme, and consider the neutral Tan-
nakian category RepG of its finite dimensional representations, together with a
fibre functor ω : RepG → Vecfk.

Given a non-neutral fibre functor η with values in the category LFSof locally free
sheaves on S, the functor Hom⊗(η, ωS) given by T 7→ Hom⊗(η⊗OS

OT , ω⊗kOT )
on the category of schemes over S is representable by a left G-torsor over S.

Proof: By Lemma 6.3.3 the subfunctor Isom⊗(η, ωS) ⊂ Hom⊗(η, ωS) given by
tensor isomorphisms equals Hom⊗(η, ωS). Therefore for each T → S the natural
map

Aut⊗(ωS)×Hom⊗(η, ωS) → Hom⊗(η, ωS)×Hom⊗(η, ωS), (g, φ) 7→ (φ, g ◦ φ)

is bijective. As Aut⊗(ωS) ∼= GS by Proposition 6.3.5, if Hom⊗(η, ωS) is repre-
sentable by a scheme X over S, we conclude that X carries the structure of a left
G-torsor over S.

To show the representability of Hom⊗(η, ωS), we could invoke a general rep-
resentability result for torsors under affine group schemes (e.g. [59], Proposition
III.4.3. a)). But a direct reasoning is also available that generalizes our previous
constructions. We only sketch it, leaving details to the readers. As G is finite, the
regular representation P = k[G] of G is a projective generator in RepG. In Steps
1–3 of the proof of Theorem 6.5.4 and the first step of the proof of Proposition
6.3.5 we have seen that ω(P )∗ ⊗End(P ) ω(P ) represents the functor End(ω) on
the category of k-algebras. A direct generalization of the argument shows that
the coherent sheaf A := η(P )∗ ⊗End(P ) ωS(P ) of OS-modules represents the func-
tor Hom(η, ωS) on the category of quasi-coherent OS-algebras. (This is done by
reduction to the affine case: for S = Spec (R) we have R-module structures on
(ω ⊗ R)(P ) and η(P ); as before, the tensor product η(P )∗ ⊗End(P ) (ω ⊗ R)(P ) is
defined and has an R-module structure, and we can glue these in the non-affine
case.) Then as in the second step of the proof of Proposition 6.3.5 one shows that
for each T → S endomorphisms in Hom⊗(η, ωS)(T ) correspond to maps A → OT

that are OS-algebra homomorphisms for a canonical multiplicative structure on
A. With this structure A gives rise to an affine scheme over S by Remark 5.1.24.

Remark 6.7.18 In fact, the construction of the lemma generalizes to an arbitrary
affine group scheme G, and moreover yields a bijective correspondence between
fibre functors with values in LFS and left G-torsors over S; see [81], corollaire
3.2.3.3. The functor from torsors to fibre functors is given by ‘twisting the fibre
functor ωS by the torsor X.’

Proof of Theorem 6.7.16: A G-torsor X gives rise to a finite locally free sheaf
EX on S by Lemma 6.7.1. As we have seen in the proof of Proposition 6.7.14,
the full Tannakian subcategory 〈EX〉⊗ is equivalent to the category RepG for some
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finite group scheme G. Consider the fibre functor on RepG given by composing the
equivalence RepG

∼→ 〈EX〉⊗ with the restriction of the functor s∗ to 〈EX〉⊗. The in-
clusion functor 〈EX〉⊗ → EFS then corresponds to a group scheme homomorphism
φX : πN1 (S, s) → G by Corollary 6.3.6 and Proposition 6.7.11.

Conversely, a homomorphism φ : πN1 (S, s) → G induces a tensor functor
φ∗ : RepG → EFS , whence a non-neutral fibre functor η with values in LFS
by composition with the inclusion of categories EFS → LFS , and a neutral fibre
functor ω by composing with s∗. Applying the lemma we obtain a G-torsor Xφ

over S. However, for φ = φX the G-torsor Xφ is not necessarily isomorphic to X.
Indeed, the construction shows that we would get X back if instead of the above ω
we applied the lemma to the forgetful fibre functor F sending an object of RepG to
its underlying k-vector space. By fixing an isomorphism ω ∼= F of fibre functors we
can thus define a quasi-inverse to the functor of the previous paragraph. But such
an isomorphism exists if and only if there is a k-rational point in the fibre of X
above s. Indeed, the affine k-scheme Isom⊗(η, ωS) has a canonical k-rational point
corresponding to s∗, so an isomorphism ω ∼= F of functors yields a k-rational point
of Isom⊗(η, FS) ∼= X above s. Conversely, such a point defines a trivialization of
the G-torsor Xs over k, whence an isomorphism of functors ω ∼= F .

Over an algebraically closed base field we may compare Nori’s fundamental
group scheme to Grothendieck’s algebraic fundamental group.

Proposition 6.7.19 Assume k is algebraically closed, and fix a k-valued geomet-
ric point s = s̄ of S. The algebraic fundamental group π1(S, s̄) is canonically
isomorphic to the group of k-points of the maximal pro-étale quotient of πN1 (S, s).

Here ‘maximal pro-étale quotient’ means the inverse limit of those quotients
of πN1 (S, s) that are finite étale group schemes over k.

Proof: From Proposition 5.3.16 (1) and the fact that k is algebraically closed we
conclude that a torsor under a finite étale k-group scheme G is one and the same
thing as a finite étale Galois cover with group G(k). In the proof of Proposition
5.4.6 we turned the set of finite étale Galois covers of S into an inverse system
(Pα, φαβ) by specifying a point pα in the geometric fibre Fibs̄(Pα) and defining
φαβ to be the unique morphism Pβ → Pα sending pβ to pα. The group π1(S, s̄)
was the automorphism group of this inverse system.

On the other hand, we have seen that each Gα-torsor Pα defines an object
of EFS . The full Tannakian subcategory 〈Pα〉⊗ ⊂ EFS is equivalent to the cat-
egory RepGα

. Let F be the neutral fibre functor on RepGα
given by the forget-

ful functor, and let η be the non-neutral fibre functor given by the composite
RepGα

∼→ 〈Pα〉⊗ → EFS → LFS . By Lemma 6.7.17 the functor Hom⊗(η, FS)
on RepGα

is representable by a Gα-torsor over S and, as we have noted in the
previous proof, this Gα-torsor is none but Pα. Thus fixing points pα as above
turns the functors Hom⊗(η, FS) on the various RepGα

into an inverse system as
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well. Passing to automorphisms defines an inverse system for the Gα whose inverse
limit lim

←
Gα is an affine group scheme over k whose group of k-points is π1(S, s̄)

by construction. But lim
←
Gα is also the maximal pro-étale quotient of πN1 (S, s) by

Theorem 6.7.16.

Corollary 6.7.20 When k is algebraically closed of characteristic 0, there is a
canonical isomorphism πN1 (S, s)(k)

∼→ π1(S, s̄) for each k-valued geometric point
s = s̄ of S.

Proof: This follows from the proposition above, Proposition 6.7.14 and the fact,
already recalled in Remark 6.7.15, that in characteristic 0 all finite group schemes
are étale.

Remarks 6.7.21

1. Nori established in [73] a number of properties of πN1 (S, s). For instance,
given two k-rational points s and t, one has π1(S, s)×k k̄ ∼= π1(S, t)×k k̄ (we
have omitted the ‘Spec ’ to ease notation). Also, one has an isomorphism
of group schemes π1(S ×k L) ∼= π1(S, s) ×k L for a separable algebraic ex-
tension L|k. However, as Mehta and Subramanian have shown in [58], the
corresponding property does not hold for extensions of algebraically closed
fields, at least if one allows S to be singular. In the same paper they checked
that πN1 (S, s) is compatible with direct products. This can be used to adapt
the Lang–Serre arguments on the étale fundamental group of an abelian va-
riety A, and obtain that πN1 (A, 0) is the inverse limit of the kernels of the
multiplication-by-m maps m : A → A considered as finite group schemes.
Nori proved this earlier in [74] by a direct method.

2. In their recent paper [21], Esnault and Hai develop a generalization of Nori’s
theory for smooth geometrically connected schemes S over a field k of char-
acteristic 0, without assuming the existence of a k-point. They consider
the category FConnS of locally free sheaves on S equipped with the struc-
ture of a flat connection, and then define a connection (E ,∇) to be finite
if f((E ,∇)) = g((E ,∇)) for some polynomials f 6= g. They show that in
the proper case each object of Nori’s category EFS carries the structure of
a flat connection lying in FConnS . But in the absence of a k-rational point
the category FConnS has a priori only a non-neutral Tannakian structure.
If ω is a non-neutral fibre functor coming from a k̄-valued geometric point
of S, the general Tannakian theory (Remark 6.5.13) shows that Aut⊗k (ω)
is representable by a groupoid scheme Π over k̄. Esnault and Hai identify
the sections of the groupoid map s : Π → Spec (k̄) with elements of the
étale fundamental group π1(S⊗k k̄) and show that neutral fibre functors on
FConnS correspond to sections of the projection π1(S) → Gal (k̄|k). This
yields a Tannakian reinterpretation of Grothendieck’s Section Conjecture:
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given a proper normal curve C of genus at least 2 over a finitely gener-
ated extension k of Q, neutral fibre functors on FConnC should come from
k-rational points.

Exercises

1. Let V and W be infinite dimensional vector spaces. Show that the natural
embedding V ∗ ⊗k W

∗ → (V ⊗k W )∗ sending a tensor product φ ⊗ ψ of
functions to the function given by v ⊗ w 7→ φ(v)ψ(w) is not surjective.

[Hint: Choose infinite sequences of linearly independent vectors v1, v2, . . .
and w1, w2, . . . in V and W , respectively. Define a k-linear function on
V ⊗k W by sending vi ⊗ wj to δij (Kronecker delta), extending linearly to
the span S of the vi ⊗ wj , and extending by 0 outside S. Show that this
function is not in the image of V ∗ ⊗k W

∗.]

2. Let B be a finite dimensional k-algebra, and let ω be the forgetful functor
from the category of finitely generated left B-modules to the category Vecfk
of finite dimensional k-vector spaces.

(a) Show that the set End(ω) of functor morphisms ω → ω carries a natural
k-algebra structure.

(b) Verify that the map B 7→ End(ω) induced by mapping b ∈ B to the
functorial collection Φb of multiplication-by-b maps V → V on the un-
derlying space of each finitely generated B-module V is an isomorphism
of k-algebras.

(c) State and prove a dual statement for a finite dimensional k-coalgebra
A and the category of finite dimensional k-vector spaces equipped with
a right A-comodule structure.

3. Denote by ComodfA the category of finite dimensional right comodules over
a k-coalgebra A. Show that the map A′ 7→ ComodfA′ yields a bijection
between the sub-coalgebras A′ ⊂ A and the subcategories of ComodfA closed
under taking subobjects, quotients and finite direct sums.

4. Let A be a commutative ring, and C a full subcategory of the category of
finitely generated A-modules containing A and stable by tensor product.
Show that (C,⊗) is a rigid tensor category if and only if its objects are
projective A-modules.

5. Let k be a field. In the category GrVecfk of finite dimensional graded vec-
tor spaces over k objects are families (Vi)i∈Z of k-vector spaces indexed
by Z such that the direct sum

⊕
Vi is finite dimensional, and morphisms

are families (φi : Vi → V ′i )i∈Z. Define a tensor product on GrVecfk by



Exercises 263

(Vi) ⊗ (V ′i ) = (
⊕

p+q=i Vp ⊗k V
′
q ) and a functor GrVecfk → Vecfk by (Vi) 7→⊕

Vi. Check that GrVecfk with the above additional structure is a neutral
Tannakian category, and determine the Tannakian fundamental group.

6. Let (K, ∂) be a differential field.

(a) Given a differential module (V,∇) over K, show that a system of el-
ements of V ∇ is k-linearly independent if and only if it is K-linearly
independent.

(b) Let f1, . . . , fn be elements of K, and consider the Wronskian matrix

W (f1, . . . , fn) = [f
(i−1)
j ]1≤i,j≤n, where f

(i−1)
j denotes the (i − 1)-st

derivative of fj and f
(0)
j = fj by convention. Show that W (f1, . . . , fn)

is invertible if and only if the fj are k-linearly independent. [Hint:
Define a differential module structure on Kn for which the vectors
(fj , f

′
j , . . . , f

n−1
j ) are horizontal.]

7. Let (K, ∂) be a differential field with algebraically closed constant field k,
and let L|K be a finite Galois extension with group G (in the usual sense).

(a) Show that the derivation ∂ : f 7→ f ′ extends uniquely to L.

(b) Let f ∈ K[x] be a polynomial such that L is the splitting field of f over
K. Index the roots αi of f so that α1, . . . , αn are k-linearly independent
and the other αi are in their k-span. Denote by W the Wronskian
matrix W (α1, . . . , αn); it is invertible by the previous exercise. Show
that (L, ∂) is a Picard–Vessiot extension for the differential module on
Kn with connection matrix A = W ′W−1, and the differential Galois
group is G.

8. Let k be an algebraically closed field of characteristic 0, and G ⊂ GLn(k) a
closed subgroup. Show that there exists a Picard–Vessiot extension (L, ∂) ⊃
(K, ∂) over k with differential Galois group isomorphic to G. [Hint: Treat
first the case G = GLn(k).]

[Remark. C. and M. Tretkoff have shown that for k = C one may actually
take K = C(t) with the usual derivation, thereby obtaining an analogue of
Corolary 3.4.4. For a proof as well as a discussion of related work, see [107],
Section 5.2.]

9. (suggested by Totaro) Let E and F be locally free sheaves on a scheme S,
of respective ranks e and f .

(a) Establish a canonical isomorphism of invertible sheaves

det(E ⊗OS
F) = det(E)⊗f ⊗OS

det(F)⊗e.

(b) When S = C is a normal curve, derive a proof of formula (6.19).
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10. Let S be a proper integral scheme over a field k, and let s : Spec (k) → S
be a k-rational point. Consider the category of pairs (G,X) with G a finite
group scheme over k and X → S a left GS-torsor such that the fibre Xs over
s has a k-rational point. Let Fs be the functor on this category sending a
pair (G,X) to the set of k-rational points of the fibre Xs. Show that Fs is
a pro-representable functor.
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matics, vol. 187, Birkhäuser, Basel, 2000.
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