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Preface: Algebra and Geometry

Syzygy [from] Gr.
��������� �

yoke, pair, copulation, conjunction

— Oxford English Dictionary (etymology)

Implicit in the name “algebraic geometry” is the relation between geometry and equa-
tions. The qualitative study of systems of polynomial equations is the chief subject of
commutative algebra as well. But when we actually study a ring or a variety, we often
have to know a great deal about it before understanding its equations. Conversely, given a
system of equations, it can be extremely difficult to analyze its qualitative properties, such
as the geometry of the corresponding variety. The theory of syzygies offers a microscope
for looking at systems of equations, and helps to make their subtle properties visible.

This book is concerned with the qualitative geometric theory of syzygies. It describes
geometric properties of a projective variety that correspond to the numbers and degrees
of its syzygies or to its having some structural property—such as being determinantal, or
having a free resolution with some particularly simple structure. It is intended as a second
course in algebraic geometry and commutative algebra, such as I have taught at Brandeis
University, the Institut Poincaré in Paris, and the University of California at Berkeley.

What Are Syzygies?

In algebraic geometry over a field K we study the geometry of varieties through properties
of the polynomial ring

S = K[x0, . . . , xr]
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and its ideals. It turns out that to study ideals effectively we we also need to study more
general graded modules over S. The simplest way to describe a module is by generators
and relations. We may think of a set A ⊂ M of generators for an S-module M as a map
from a free S-module F = SA onto M , sending the basis element of F corresponding to
a generator m ∈ A to the element m ∈M.

Let M1 be the kernel of the map F → M ; it is called the module of syzygies of M
corresponding to the given choice of generators, and a syzygy of M is an element of M1 —
a linear relation, with coefficients in S, on the chosen generators. When we give M by
generators and relations, we are choosing generators for M and generators for the module
of syzygies of M.

The use of “syzygy” in this context seems to go back to Sylvester [1853]. The word
entered the language of modern science in the seventeenth century, with the same as-
tronomical meaning it had in ancient Greek: the conjunction or opposition of heavenly
bodies. Its literal derivation is a yoking together, just like “conjunction”, with which it is
cognate.

If r = 0, so that we are working over the polynomial ring in one variable, the module
of syzygies is itself a free module, since over a principal ideal domain every submodule of
a free module is free. But when r > 0 it may be the case that any set of generators of the
module of syzygies has relations. To understand them, we proceed as before: we choose a
generating set of syzygies and use them to define a map from a new free module, say F1,
onto M1; equivalently, we give a map φ1 : F1 → F whose image is M1. Continuing in this
way we get a free resolution of M, that is, a sequence of maps

· · · - F2
φ2- F1

φ1- F - M - 0,

where all the modules Fi are free and each map is a surjection onto the kernel of the
following map. The image Mi of φi is called the i-th module of syzygies of M.

In projective geometry we treat S as a graded ring by giving each variable xi degree 1,
and we will be interested in the case where M is a finitely generated graded S-module. In
this case we can choose a minimal set of homogeneous generators for M (that is, one with
as few elements as possible), and we choose the degrees of the generators of F so that the
map F → M preserves degrees. The syzygy module M1 is then a graded submodule of
F , and Hilbert’s Basis Theorem tells us that M1 is again finitely generated, so we may
repeat the procedure. Hilbert’s Syzygy Theorem tells us that the modules Mi are free as
soon as i ≥ r.

The free resolution of M appears to depend strongly on our initial choice of generators
for M, as well as the subsequent choices of generators of M1, and so on. But if M is a
finitely generated graded module and we choose a minimal set of generators for M , then
M1 is, up to isomorphism, independent of the minimal set of generators chosen. It follows
that if we choose minimal sets of generators at each stage in the construction of a free
resolution we get a minimal free resolution of M that is, up to isomorphism, independent
of all the choices made. Since, by the Hilbert Syzygy Theorem, Mi is free for i > r, we
see that in the minimal free resolution Fi = 0 for i > r+1. In this sense the minimal free
resolution is finite: it has length at most r+1. Moreover, any free resolution of M can be
derived from the minimal one in a simple way (see Section 1B).
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The Geometric Content of Syzygies

The minimal free resolution of a module M is a good tool for extracting information about
M. For example, Hilbert’s motivation for his results just quoted was to devise a simple
formula for the dimension of the d-th graded component of M as a function of d. He
showed that the function d 7→ dimK Md, now called the Hilbert function of M, agrees for
large d with a polynomial function of d. The coefficients of this polynomial are among the
most important invariants of the module. If X ⊂ Pr is a curve, the Hilbert polynomial of
the homogeneous coordinate ring SX of X is

(degX) d+(1−genusX),

whose coefficients degX and 1−genusX give a topological classification of the embedded
curve. Hilbert originally studied free resolutions because their discrete invariants, the
graded Betti numbers, determine the Hilbert function (see Chapter 1).

But the graded Betti numbers contain more information than the Hilbert function. A
typical example is the case of seven points in P3, described in Section 2C: every set of
7 points in P3 in linearly general position has the same Hilbert function, but the graded
Betti numbers of the ideal of the points tell us whether the points lie on a rational normal
curve.

Most of this book is concerned with examples one dimension higher: we study the
graded Betti numbers of the ideals of a projective curve, and relate them to the geometric
properties of the curve. To take just one example from those we will explore, Green’s
Conjecture (still open) says that the graded Betti numbers of the ideal of a canonically
embedded curve tell us the curve’s Clifford index (most of the time this index is 2 less
than the minimal degree of a map from the curve to P1). This circle of ideas is described
in Chapter 9.

Some work has been done on syzygies of higher-dimensional varieties too, though this
subject is less well-developed. Syzygies are important in the study of embeddings of abelian
varieties, and thus in the study of moduli of abelian varieties (for example [Gross and
Popescu 2001]). They currently play a part in the study of surfaces of low codimension
(for example [Decker and Schreyer 2000]), and other questions about surfaces (for example
[Gallego and Purnaprajna 1999]). They have also been used in the study of Calabi–Yau
varieties (for example [Gallego and Purnaprajna 1998]).

What Does Solving Linear Equations Mean?

A free resolution may be thought of as the result of fully solving a system of linear equa-
tions with polynomial coefficients. To set the stage, consider a system of linear equations
AX = 0, where A is a p× q matrix of elements of K, which we may think of as a linear
transformation

F1 = Kq A- Kp = F0.

Suppose we find some solution vectors X1, . . . ,Xn. These vectors constitute a complete
solution to the equations if every solution vector can be expressed as a linear combination
of them. Elementary linear algebra shows that there are complete solutions consisting of
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q− rankA independent vectors. Moreover, there is a powerful test for completeness: A
given set of solutions {Xi} is complete if and only if it contains q− rankA independent
vectors.

A set of solutions can be interpreted as the columns of a matrix X defining a map
X : F2 → F1 such that

F2
X- F1

A- F0

is a complex. The test for completeness says that this complex is exact if and only if
rankA+rankX = rankF1. If the solutions are linearly independent as well as forming a
complete system, we get an exact sequence

0 → F2
X- F1

A- F0.

Suppose now that the elements of A vary as polynomial functions of some parameters
x0, . . . , xr, and we need to find solution vectors whose entries also vary as polynomial
functions. Given a set X1, . . . ,Xn of vectors of polynomials that are solutions to the
equations AX = 0, we ask whether every solution can be written as a linear combination
of the Xi with polynomial coefficients. If so we say that the set of solutions is complete.
The solutions are once again elements of the kernel of the map A : F1 = Sq → F0 = Sp,
and a complete set of solutions is a set of generators of the kernel. Thus Hilbert’s Basis
Theorem implies that there do exist finite complete sets of solutions. However, it might be
that every complete set of solutions is linearly dependent: the syzygy module M1 = kerA
is not free. Thus to understand the solutions we must compute the dependency relations
on them, and then the dependency relations on these. This is precisely a free resolution
of the cokernel of A. When we think of solving a system of linear equations, we should
think of the whole free resolution.

One reward for this point of view is a criterion analogous to the rank criterion given
above for the completeness of a set of solutions. We know no simple criterion for the
completeness of a given set of solutions to a system of linear equations over S, that is, for
the exactness of a complex of free S-modules F2 → F1 → F0. However, if we consider a
whole free resolution, the situation is better: a complex

0 - Fm
φm- · · · φ2- F1

φ1- F0

of matrices of polynomial functions is exact if and only if the ranks ri of the φi satisfy the
conditions ri+ri−1 = rankFi, as in the case where S is a field, and the set of points

{p ∈ Kr+1 | the evaluated matrix φi|x=p has rank < ri}
has codimension ≥ i for each i. (See Theorem 3.4.)

This criterion, from joint work with David Buchsbaum, was my first real result about
free resolutions. I’ve been hooked ever since.

Experiment and Computation

A qualitative understanding of equations makes algebraic geometry more accessible to
experiment: when it is possible to test geometric properties using their equations, it be-
comes possible to make constructions and decide their structure by computer. Sometimes
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unexpected patterns and regularities emerge and lead to surprising conjectures. The ex-
perimental method is a useful addition to the method of guessing new theorems by ex-
trapolating from old ones. I personally owe to experiment some of the theorems of which
I’m proudest. Number theory provides a good example of how this principle can operate:
experiment is much easier in number theory than in algebraic geometry, and this is one
of the reasons that number theory is so richly endowed with marvelous and difficult con-
jectures. The conjectures discovered by experiment can be trivial or very difficult; they
usually come with no pedigree suggesting methods for proof. As in physics, chemistry or
biology, there is art involved in inventing feasible experiments that have useful answers.

A good example where experiments with syzygies were useful in algebraic geometry
is the study of surfaces of low degree in projective 4-space, as in work of Aure, Decker,
Hulek, Popescu and Ranestad [Aure et al. 1997]. Another is the work on Fano manifolds
such as that of of Schreyer [2001], or the applications surveyed in [Decker and Schreyer
2001, Decker and Eisenbud 2002]. The idea, roughly, is to deduce the form of the equations
from the geometric properties that the varieties are supposed to possess, guess at sets of
equations with this structure, and then prove that the guessed equations represent actual
varieties. Syzygies were also crucial in my work with Joe Harris on algebraic curves. Many
further examples of this sort could be given within algebraic geometry, and there are still
more examples in commutative algebra and other related areas, such as those described
in the Macaulay 2 Book [Decker and Eisenbud 2002].

Computation in algebraic geometry is itself an interesting field of study, not covered in
this book. It has developed a great deal in recent years, and there are now at least three
powerful programs devoted to computation in commutative algebra, algebraic geometry
and singularities that are freely available: CoCoA, Macaulay 2, and Singular.1 Despite
these advances, it will always be easy to give sets of equations that render our best
algorithms and biggest machines useless, so the qualitative theory remains essential.

A useful adjunct to this book would be a study of the construction of Gröbner bases
which underlies these tools, perhaps from [Eisenbud 1995, Chapter 15], and the use of one
of these computing platforms. The books [Greuel and Pfister 2002, Kreuzer and Robbiano
2000] and, for projective geometry, the forthcoming book [Decker and Schreyer ≥ 2004],
will be very helpful.

What’s In This Book?

The first chapter of this book is introductory: it explains the ideas of Hilbert that give the
definitive link between syzygies and the Hilbert function. This is the origin of the modern
theory of syzygies. This chapter also introduces the basic discrete invariants of resolution,
the graded Betti numbers, and the convenient Betti diagrams for displaying them.

At this stage we still have no tools for showing that a given complex is a resolution, and
in Chapter 2 we remedy this lack with a simple but very effective idea of Bayer, Peeva, and
Sturmfels for describing some resolutions in terms of labeled simplicial complexes. With

1These software packages are freely available for many platforms, at the websites cocoa.dima.unige.it,

www.math.uiuc.edu/Macaulay2 and www.singular.uni-kl.de, respectively. These web sites are good sources
of further information and references.
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this tool we prove the Hilbert Syzygy Theorem and we also introduce Koszul homology.
We then spend some time on the example of seven points in P3, where we see a deep
connection between syzygies and an important invariant of the positions of the seven
points.

In the next chapter we explore a case where we can say a great deal: sets of points in
P2. Here we characterize all possible resolutions and derive some invariants of point sets
from the structure of syzygies.

The following Chapter 4 introduces a basic invariant of the resolution, coarser than
the graded Betti numbers: the Castelnuovo–Mumford regularity. This is a topic of central
importance for the rest of the book, and a very active one for research. The goal of
Chapter 4, however, is modest: we show that in the setting of sets of points in Pr the
Castelnuovo–Mumford regularity is the degree needed to interpolate any function as a
polynomial function. We also explore different characterizations of regularity, in terms of
local or Zariski cohomology, and use them to prove some basic results used later.

Chapter 5 is devoted to the most important result on Castelnuovo–Mumford regularity
to date: the theorem by Castelnuovo, Mattuck, Mumford, Gruson, Lazarsfeld, and Peskine
bounding the regularity of projective curves. The techniques introduced here reappear
many times later in the book.

The next chapter returns to examples. We develop enough material about linear series
to explain the free resolutions of all the curves of genus 0 and 1 in complete embeddings.
This material can be generalized to deal with nice embeddings of any hyperelliptic curve.

Chapter 7 is again devoted to a major result: Green’s Linear Syzygy theorem. The
proof involves us with exterior algebra constructions that can be organized around the
Bernstein–Gelfand–Gelfand correspondence, and we spend a section at the end of Chapter
7 exploring this tool.

Chapter 8 is in many ways the culmination of the book. In it we describe (and in most
cases prove) the results that are the current state of knowledge of the syzygies of the ideal
of a curve embedded by a complete linear series of high degree —that is, degree greater
than twice the genus of the curve. Many new techniques are needed, and many old ones
resurface from earlier in the book. The results directly generalize the picture, worked out
much more explicitly, of the embeddings of curves of genus 0 and 1. We also present the
conjectures of Green and Green–Lazarsfeld extending what we can prove.

No book on syzygies written at this time could omit a description of Green’s conjecture,
which has been a wellspring of ideas and motivation for the whole area. This is treated in
Chapter 9. However, in another sense the time is the worst possible for writing about the
conjecture, since major new results, recently proven, are still unpublished. These results
will leave the state of the problem greatly advanced but still far from complete. It’s clear
that another book will have to be written some day. . .

Finally, I have included two appendices to help the reader: Appendix 1 explains lo-
cal cohomology and its relation to sheaf cohomology, and Appendix 2 surveys, without
proofs, the relevant commutative algebra. I can perhaps claim (for the moment) to have
written the longest exposition of commutative algebra in [Eisenbud 1995]; with this second
appendix I claim also to have written the shortest!
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Prerequisites

The ideal preparation for reading this book is a first course on algebraic geometry (a little
bit about curves and about the cohomology of sheaves on projective space is plenty) and
a first course on commutative algebra, with an emphasis on the homological side of the
field. Appendix 1 proves all that is needed about local cohomology and a little more, while
Appendix 2 may help the reader cope with the commutative algebra required.

How Did This Book Come About?

This text originated in a course I gave at the Institut Poincaré in Paris, in 1994. The
course was presented in my imperfect French, but this flaw was corrected by three of my
auditors, Freddy Bonnin, Clément Caubel, and Hèléne Maugendre. They wrote up notes
and added a lot of polish.

I have recently been working on a number of projects connected with the exterior
algebra, partly motivated by the work of Green described in Chapter 7. This led me to
offer a course on the subject again in the Fall of 2001, at the University of California,
Berkeley. I rewrote the notes completely and added many topics and results, including
material about exterior algebras and the Bernstein–Gelfand–Gelfand correspondence.

Other Books

Free resolutions appear in many places, and play an important role in books such as
[Eisenbud 1995], [Bruns and Herzog 1998], and [Miller and Sturmfels 2004]. The last is
also an excellent reference for the theory of monomial and toric ideals and their resolutions.
There are at least two book-length treatments focusing on them specifically, [Northcott
1976] and [Evans and Griffith 1985]. See also [Cox et al. 1997]. The notes [Eisenbud and
Sidman 2004] could be used as an introduction to parts of this book.

Thanks

I’ve worked on the things presented here with some wonderful mathematicians, and I’ve
had the good fortune to teach a group of PhD students and postdocs who have taught me
as much as I’ve taught them. I’m particularly grateful to Dave Bayer, David Buchsbaum,
Joe Harris, Jee Heub Koh, Mark Green, Irena Peeva, Sorin Popescu, Frank Schreyer, Mike
Stillman, Bernd Sturmfels, Jerzy Weyman, andSergey Yuzvinsky, for the fun we’ve shared
while exploring this terrain.

I’m also grateful to Eric Babson, Baohua Fu, Leah Gold, George Kirkup, Pat Perkins,
Emma Previato, Hal Schenck, Jessica Sidman, Greg Smith, Rekha Thomas, Simon Turner,
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xvi Preface: Algebra and Geometry

Notation

Throughout the text K denotes an arbitrary field; S = K[x0, . . . , xr] denotes a polynomial
ring; and m = (x0, . . . , xr) ⊂ S denotes its homogeneous maximal ideal. Sometimes when
r is small we rename the variables and write, for example, S = K[x, y, z].
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Free Resolutions and Hilbert Functions

A minimal free resolution is an invariant associated to a graded module over a ring graded
by the natural numbers N or by Nn. In this book we study minimal free resolutions
of finitely generated graded modules in the case where the ring is a polynomial ring
S = K[x0, . . . , xr] over a field K, graded by N with each variable in degree 1. This study is
motivated primarily by questions from projective geometry. The information provided by
free resolutions is a refinement of the information provided by the Hilbert polynomial and
Hilbert function. In this chapter we define all these objects and explain their relationships.

The Generation of Invariants

As all roads lead to Rome, so I find in my own case at least

that all algebraic inquiries, sooner or later, end at the Capitol of modern algebra,

over whose shining portal is inscribed The Theory of Invariants.

— J. J. Sylvester (1864)

In the second half of the nineteenth century, invariant theory stood at the center of algebra.
It originated in a desire to define properties of an equation, or of a curve defined by an
equation, that were invariant under some geometrically defined set of transformations
and that could be expressed in terms of a polynomial function of the coefficients of the
equation. The most classical example is the discriminant of a polynomial in one variable.
It is a polynomial function of the coefficients that does not change under linear changes of
variable and whose vanishing is the condition for the polynomial to have multiple roots.
This example had been studied since Leibniz’s work: it was part of the motivation for his
invention of matrix notation and determinants (first attested in a letter to l’Hôpital of
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April 1693; see [Leibniz 1962, p. 239]). A host of new examples had become important
with the rise of complex projective plane geometry in the early nineteenth century.

The general setting is easy to describe: If a group G acts by linear transformations on
a finite-dimensional vector space W over a field K, the action extends uniquely to the
ring S of polynomials whose variables are a basis for W . The fundamental problem of
invariant theory was to prove in good cases — for example when K has characteristic zero
and G is a finite group or a special linear group—that the ring of invariant functions SG

is finitely generated as a K-algebra, that is, every invariant function can be expressed as
a polynomial in a finite generating set of invariant functions. This had been proved, in a
number of special cases, by explicitly finding finite sets of generators.

Enter Hilbert

The typical nineteenth-century paper on invariants was full of difficult computations, and
had as its goal to compute explicitly a finite set of invariants generating all the invariants
of a particular representation of a particular group. David Hilbert changed this landscape
forever with his papers [Hilbert 1978] or [Hilbert 1970], the work that first brought him
major recognition. He proved that the ring of invariants is finitely generated for a wide
class of groups, including those his contemporaries were studying and many more. Most
amazing, he did this by an existential argument that avoided hard calculation. In fact, he
did not compute a single new invariant. An idea of his proof is given in [Eisenbud 1995,
Chapter 1]. The really new ingredient was what is now called the Hilbert Basis Theorem,
which says that submodules of finitely generated S-modules are finitely generated.

Hilbert studied syzygies in order to show that the generating function for the number of
invariants of each degree is a rational function [Hilbert 1993]. He also showed that if I is a
homogeneous ideal of the polynomial ring S, the “number of independent linear conditions
for a form of degree d in S to lie in I” is a polynomial function of d [Hilbert 1970, p. 236].
(The problem of counting the number of conditions had already been considered for some
time; it arose both in projective geometry and in invariant theory. A general statement
of the problem, with a clear understanding of the role of syzygies (but without the word
yet —see page x) is given by Cayley [1847], who also reviews some of the earlier literature
and the mistakes made in it. Like Hilbert, Cayley was interested in syzygies (and higher
syzygies too) because they let him count the number of forms in the ideal generated by a
given set of forms. He was well aware that the syzygies form a module (in our sense). But
unlike Hilbert, Cayley seems concerned with this module only one degree at a time, not
in its totality; for instance, he did not raise the question of finite generation that is at the
center of Hilbert’s work.)

1A The Study of Syzygies

Our primary focus is on the homogeneous coordinate rings of projective varieties and the
modules over them, so we adapt our notation to this end. Recall that the homogeneous
coordinate ring of the projective r-space Pr = Pr

K
is the polynomial ring S = K[x0, . . . , xr]
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in r+1 variables over a field K, with all variables of degree 1. Let M =
⊕

d∈Z
Md be a

finitely generated graded S-module with d-th graded component Md. Because M is finitely
generated, each Md is a finite-dimensional vector space, and we define the Hilbert function
of M to be

HM (d) = dimK Md.

Hilbert had the idea of computing HM (d) by comparing M with free modules, using
a free resolution. For any graded module M, denote by M(a) the module M shifted (or
“twisted”) by a:

M(a)d = Ma+d.

(For instance, the free S-module of rank 1 generated by an element of degree a is S(−a).)
Given homogeneous elements mi ∈ M of degree ai that generate M as an S-module, we
may define a map from the graded free module F0 =

⊕
i S(−ai) onto M by sending the

i-th generator to mi. (In this text a map of graded modules means a degree-preserving
map, and we need the shifts mi to make this true.) Let M1 ⊂ F0 be the kernel of this
map F0 →M. By the Hilbert Basis Theorem, M1 is also a finitely generated module. The
elements of M1 are called syzygies on the generators mi, or simply syzygies of M .

Choosing finitely many homogeneous syzygies that generate M1, we may define a map
from a graded free module F1 to F0 with image M1. Continuing in this way we construct
a sequence of maps of graded free modules, called a graded free resolution of M :

· · · - Fi
ϕi- Fi−1

- · · · - F1
ϕ1- F0.

It is an exact sequence of degree-0 maps between graded free modules such that the
cokernel of ϕ1 is M. Since the ϕi preserve degrees, we get an exact sequence of finite-
dimensional vector spaces by taking the degree d part of each module in this sequence,
which suggests writing

HM (d) =
∑

i

(−1)iHFi
(d).

This sum might be useless, or even meaningless, if it were infinite, but Hilbert showed
that it can be made finite.

Theorem 1.1 (Hilbert Syzygy Theorem). Any finitely generated graded S-module M
has a finite graded free resolution

0 - Fm
ϕm- Fm−1

- · · · - F1
ϕ1- F0.

Moreover , we may take m ≤ r+1, the number of variables in S.

We will prove Theorem 1.1 in Section 2B.

As first examples we take, as did Hilbert, three complexes that form the beginning of
the most important, and simplest, family of free resolutions. They are now called Koszul
complexes:
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K(x0) : 0 - S(−1)
(x0)- S

K(x0, x1) : 0 - S(−2)

(
x1

−x0

)

- S2(−1)
(x0 x1)- S

K(x0, x1, x2) : 0 - S(−3)



x0

x1

x2




- S3(−2)




0 x2 −x1

−x2 0 x0

x1 −x0 0




- S3(−1)
(x0 x1 x2 )- S.

The first of these is obviously a resolution of S/(x0). It is quite easy to prove that the
second is a resolution—see Exercise 1.1. It is also not hard to prove directly that the third
is a resolution, but we will do it with a technique developed in the first half of Chapter 2.

The Hilbert Function Becomes Polynomial

From a free resolution of M we can compute the Hilbert function of M explicitly.

Corollary 1.2. Suppose that S = K[x0, . . . , xr] is a polynomial ring . If the graded S-
module M has finite free resolution

0 - Fm
ϕm- Fm−1

- · · · - F1
ϕ1- F0,

with each Fi a finitely generated free module Fi =
⊕

j S(−ai,j), then

HM (d) =

m∑

i=0

(−1)i
∑

j

(
r+d−ai,j

r

)
.

Proof. We have HM (d) =
∑m
i=0(−1)iHFi

(d), so it suffices to show that

HFi
(d) =

∑

j

(
r+d−ai,j

r

)
.

Decomposing Fi as a direct sum, it even suffices to show that HS(−a)(d) =
(
r+d−a
r

)
.

Shifting back, it suffices to show that HS(d) =
(
r+d
r

)
. This basic combinatorial identity

may be proved quickly as follows: a monomial of degree d is specified by the sequence
of indices of its factors, which may be ordered to make a weakly increasing sequence of
d integers, each between 0 and r. For example, we could specify x3

1x
2
3 by the sequence

1, 1, 1, 3, 3. Adding i to the i-th element of the sequence, we get a d element subset of
{1, . . . , r+d}, and there are

(
r+d
d

)
=

(
r+d
r

)
of these.

Corollary 1.3. There is a polynomial PM (d) (called the Hilbert polynomial of M) such
that , if M has free resolution as above, then PM (d) = HM (d) for d ≥ maxi,j{ai,j−r}.
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Proof. When d+r−a ≥ 0 we have

(
d+r−a

r

)
=

(d+r−a)(d+r−1−a) · · · (d+1−a)
r!

,

which is a polynomial of degree r in d. Thus in the desired range all the terms in the
expression of HM (d) from Proposition 1.2 become polynomials.

Exercise 2.15 shows that the bound in Corollary 1.3 is not always sharp. We will inves-
tigate the matter further in Chapter 4; see, for example, Theorem 4A.

1B Minimal Free Resolutions

Each finitely generated graded S-module has a minimal free resolution, which is unique
up to isomorphism. The degrees of the generators of its free modules not only yield the
Hilbert function, as would be true for any resolution, but form a finer invariant, which is
the subject of this book. In this section we give a careful statement of the definition of
minimality, and of the uniqueness theorem.

Naively, minimal free resolutions can be described as follows: Given a finitely generated
graded module M, choose a minimal set of homogeneous generators mi. Map a graded free
module F0 onto M by sending a basis for F0 to the set of mi. Let M ′ be the kernel of the
map F0 →M, and repeat the procedure, starting with a minimal system of homogeneous
generators of M ′. . . .

Most of the applications of minimal free resolutions are based on a property that
characterizes them in a different way, which we will adopt as the formal definition. To
state it we will use our standard notation m to denote the homogeneous maximal ideal
(x0, . . . , xr) ⊂ S = K[x0, . . . , xr].

Definition. A complex of graded S-modules

· · · - Fi
δi- Fi−1

- · · ·

is called minimal if for each i the image of δi is contained in mFi−1.

Informally, we may say that a complex of free modules is minimal if its differential is
represented by matrices with entries in the maximal ideal.

The relation between this and the naive idea of a minimal resolution is a consequence
of Nakayama’s Lemma. See [Eisenbud 1995, Section 4.1] for a discussion and proof in the
local case. Here is the lemma in the graded case:

Lemma 1.4 (Nakayama). Suppose M is a finitely generated graded S-module and
m1, . . . ,mn ∈M generate M/mM. Then m1, . . . ,mn generate M.

Proof. Let M = M/
(∑

Smi

)
. If the mi generate M/mM then M/mM = 0 so mM = M.

If M 6= 0, since M is finitely generated, there would be a nonzero element of least degree
in M ; this element could not be in mM. Thus M = 0, so M is generated by the mi.
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Corollary 1.5. A graded free resolution

F : · · · - Fi
δi- Fi−1

- · · ·

is minimal as a complex if and only if for each i the map δi takes a basis of Fi to a minimal
set of generators of the image of δi.

Proof. Consider the right exact sequence Fi+1 → Fi → im δi → 0. The complex F is
minimal if and only if, for each i, the induced map

δi+1 : Fi+1/mFi+1 → Fi/mFi

is zero. This holds if and only if the induced map Fi/mFi → (im δi)/m(im δi) is an isomor-
phism. By Nakayama’s Lemma this occurs if and only if a basis of Fi maps to a minimal
set of generators of im δi.

Considering all the choices made in the construction, it is perhaps surprising that min-
imal free resolutions are unique up to isomorphism:

Theorem 1.6. Let M be a finitely generated graded S-module. If F and G are minimal
graded free resolutions of M, then there is a graded isomorphism of complexes F → G
inducing the identity map on M. Any free resolution of M contains the minimal free
resolution as a direct summand .

Proof. See [Eisenbud 1995, Theorem 20.2].

We can construct a minimal free resolution from any resolution, proving the second
statement of Theorem 1.6 along the way. If F is a nonminimal complex of free modules,
a matrix representing some differential of F must contain a nonzero element of degree 0.
This corresponds to a free basis element of some Fi that maps to an element of Fi−1 not
contained in mFi−1. By Nakayama’s Lemma this element of Fi−1 may be taken as a basis
element. Thus we have found a subcomplex of F of the form

G : 0 - S(−a) c- S(−a) - 0

for a nonzero scalar c (such a thing is called a trivial complex) embedded in F in such a
way that F/G is again a free complex. Since G has no homology at all, the long exact
sequence in homology corresponding to the short exact sequence of complexes 0 → G →
F → F/G → 0 shows that the homology of F/G is the same as that of F. In particular,
if F is a free resolution of M, so is F/G. Continuing in this way we eventually reach
a minimal complex. If F was a resolution of M, we have constructed the minimal free
resolution.

For us the most important aspect of the uniqueness of minimal free resolutions is that, if
F : · · · → F1 → F0 is the minimal free resolution of a finitely generated graded S-module
M, the number of generators of each degree required for the free modules Fi depends only
on M. The easiest way to state a precise result is to use the functor Tor; see for example
[Eisenbud 1995, Section 6.2] for an introduction to this useful tool.



1B Minimal Free Resolutions 7

Proposition 1.7. If F : · · · → F1 → F0 is the minimal free resolution of a finitely
generated graded S-module M and K denotes the residue field S/m, then any minimal
set of homogeneous generators of Fi contains precisely dimK TorSi (K,M)j generators of
degree j.

Proof. The vector space TorSi (K,M)j is the degree j component of the graded vector space
that is the i-th homology of the complex K⊗SF. Since F is minimal, the maps in K⊗SF
are all zero, so TorSi (K,M) = K⊗S Fi, and by Lemma 1.4 (Nakayama), TorSi (K,M)j is
the number of degree j generators that Fi requires.

Corollary 1.8. If M is a finitely generated graded S-module then the projective dimension
of M is equal to the length of the minimal free resolution.

Proof. The projective dimension is the minimal length of a projective resolution of M,
by definition. The minimal free resolution is a projective resolution, so one inequality is
obvious. To show that the length of the minimal free resolution is at most the projective
dimension, note that TorSi (K,M) = 0 when i is greater than the projective dimension of
M. By Proposition 1.7 this implies that the minimal free resolution has length less than i
too.

If we allow the variables to have different degrees, HM (t) becomes, for large t, a poly-
nomial with coefficients that are periodic in t. See Exercise 1.5 for details.

Describing Resolutions: Betti Diagrams

We have seen above that the numerical invariants associated to free resolutions suffice to
describe Hilbert functions, and below we will see that the numerical invariants of minimal
free resolutions contain more information. Since we will be dealing with them a lot, we
will introduce a compact way to display them, called a Betti diagram.

To begin with an example, suppose S = K[x0, x1, x2] is the homogeneous coordinate
ring of P2. Theorem 3.13 and Corollary 3.10 below imply that there is a set X of 10 points
in P2 whose homogeneous coordinate ring SX has free resolution of the form

0 - S(−6)⊕S(−5) - S(−4)⊕S(−4)⊕S(−3) - S.

F2

ww
F1

ww
F0

ww

We will represent the numbers that appear by the Betti diagram

0 1 2

0 1 − −
1 − − −
2 − 1 −
3 − 2 1
4 − − 1

where the column labeled i describes the free module Fi.
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In general, suppose that F is a free complex

F : 0 → Fs → · · · → Fm → · · · → F0

where Fi =
⊕

j S(−j)βi,j ; that is, Fi requires βi,j minimal generators of degree j. The
Betti diagram of F has the form

0 1 · · · s

i β0,i β1,i+1 · · · βs,i+s

i+1 β0,i+1 β1,i+2 · · · βs,i+s+1

· · · · · · · · · · · · · · ·

j β0,j β1,j+1 · · · βs,j+s

It consists of a table with s+ 1 columns, labeled 0, 1, . . . , s, corresponding to the free
modules F0, . . . , Fs. It has rows labeled with consecutive integers corresponding to degrees.
(We sometimes omit the row and column labels when they are clear from context.) The
m-th column specifies the degrees of the generators of Fm. Thus, for example, the row
labels at the left of the diagram correspond to the possible degrees of a generator of F0.
For clarity we sometimes replace a 0 in the diagram by a “−” (as in the example given
on the previous page) and an indefinite value by a “∗”.

Note that the entry in the j-th row of the i-th column is βi,i+j rather than βi,j . This
choice will be explained below.

If F is the minimal free resolution of a module M, we refer to the Betti diagram of
F as the Betti diagram of M and the βm,d of F are called the graded Betti numbers of
M, sometimes written βm,d(M). In that case the graded vector space Torm(M,K) is the
homology of the complex F⊗FK. Since F is minimal, the differentials in this complex are
zero, so βm,d(M) = dimK(Torm(M,K)d).

Properties of the Graded Betti Numbers

For example, the number β0,j is the number of elements of degree j required among the
minimal generators of M. We will often consider the case where M is the homogeneous
coordinate ring SX of a (nonempty) projective variety X. As an S-module SX is generated
by the element 1, so we will have β0,0 = 1 and β0,j = 0 for j 6= 1.

On the other hand, β1,j is the number of independent forms of degree j needed to
generate the ideal IX of X. If SX is not the zero ring (that is, X 6= ∅), there are no
elements of the ideal of X in degree 0, so β1,0 = 0. This is the case i = d = 0 of the
following:

Proposition 1.9. Let {βi,j} be the graded Betti numbers of a finitely generated S-module.
If for a given i there is d such that βi,j = 0 for all j < d, then βi+1,j+1 = 0 for all j < d.

Proof. Suppose that the minimal free resolution is · · · δ2- F1
δ1- F0. By minimality

any generator of Fi+1 must map to a nonzero element of the same degree in mFi, the
maximal homogeneous ideal times Fi. To say that βi,j = 0 for all j < d means that all
generators—and thus all nonzero elements —of Fi have degree ≥ d. Thus all nonzero



1C Exercises 9

elements of mFi have degree ≥ d+1, so Fi+1 can have generators only in degree ≥ d+1
and βi+1,j+1 = 0 for j < d as claimed.

Proposition 1.9 gives a first hint of why it is convenient to write the Betti diagram in
the form we have, with βi,i+j in the j-th row of the i-th column: it says that if the i-th
column of the Betti diagram has zeros above the j-th row, then the (i+1)-st column also
has zeros above the j-th row. This allows a more compact display of Betti numbers than
if we had written βi,j in the i-th column and j-th row. A deeper reason for our choice will
be clear from the description of Castelnuovo–Mumford regularity in Chapter 4.

The Information in the Hilbert Function

The formula for the Hilbert function given in Corollary 1.2 has a convenient expression in
terms of graded Betti numbers.

Corollary 1.10. If {βi,j} are the graded Betti numbers of a finitely generated S-module
M, the alternating sums Bj =

∑
i≥0(−1)iβi,j determine the Hilbert function of M via the

formula

HM (d) =
∑

j

Bj

(
r+d−j

r

)
.

Moreover , the values of the Bj can be deduced inductively from the function HM (d) via
the formula

Bj = HM (j)−
∑

k: k<j

Bk

(
r+j−k

r

)
.

Proof. The first formula is simply a rearrangement of the formula in Corollary 1.2.
Conversely, to compute the Bj from the Hilbert function HM (d) we proceed as follows.

Since M is finitely generated there is a number j0 so that HM (d) = 0 for d ≤ j0. It follows
that β0,j = 0 for all j ≤ j0, and from Proposition 1.9 it follows that if j ≤ j0 then βi,j = 0
for all i. Thus Bj = 0 for all j ≤ j0.

Inductively, we may assume that we know the value of Bk for k < j. Since
(
r+j−k
r

)
= 0

when j < k, only the values of Bk with k ≤ j enter into the formula for HM (j), and
knowing HM (j) we can solve for Bj . Conveniently, Bj occurs with coefficient

(
r
r

)
= 1, and

we get the displayed formula.

1C Exercises

1. Suppose that f, g are polynomials (homogeneous or not) in S, neither of which divides
the other, and consider the complex

0 - S

(
g′

−f ′

)
- S2 (f g)- S,

where f ′ = f/h, g′ = g/h, and h is the greatest common divisor of f and g. Proved
that this is a free resolution. In particular, the projective dimension of S/(f, g) is at
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most 2. If f and g are homogeneous and neither divides the other, show that this is
the minimal free resolution of S/(f, g), so that the projective dimension of this module
is exactly 2. Compute the twists necessary to make this a graded free resolution.

This exercise is a hint of the connection between syzygies and unique factorization,
underlined by the famous theorem of Auslander and Buchsbaum that regular local
rings (those where every module has a finite free resolution) are factorial. Indeed,
refinements of the Auslander–Buchsbaum theorem by MacRae [1965] and Buchsbaum–
Eisenbud [1974]) show that a local or graded ring is factorial if and only if the free
resolution of any ideal generated by two elements has the form above.

In the situation of classical invariant theory, Hilbert’s argument with syzygies easily
gives a nice expression for the number of invariants of each degree—see [Hilbert 1993].
The situation is not quite as simple as the one studied in the text because, although
the ring of invariants is graded, its generators have different degrees. Exercises 1.2–1.5
show how this can be handled. For these exercises we let T = K[z1, . . . , zn] be a graded
polynomial ring whose variables have degrees deg zi = αi ∈ N.

2. The most obvious generalization of Corollary 1.2 is false: Compute the Hilbert function
HT (d) of T in the case n = 2, α1 = 2, α2 = 3. Show that it is not eventually equal to
a polynomial function of d (compare with the result of Exercise 1.5). Show that over
the complex numbers this ring T is isomorphic to the ring of invariants of the cyclic
group of order 6 acting on the polynomial ring C[x0, x1], where the generator acts by
x0 7→ e2πi/2x0, x1 7→ e2πi/3x1.

Now let M be a finitely generated graded T -module. Hilbert’s original argument
for the Syzygy Theorem (or the modern one given in Section 2B) shows that M has a
finite graded free resolution as a T -module. Let ΨM (t) =

∑
dHM (d) td be the generating

function for the Hilbert function.

3. Two simple examples will make the possibilities clearer:

(a) Modules of finite length. Show that any Laurent polynomial can be written as ΨM

for suitable finitely generated M.

(b) Free modules. Suppose M = T , the free module of rank 1 generated by an element
of degree 0 (the unit element). Prove by induction on n that

ΨT (t) =

∞∑

e=0

teαnΨT ′(t) =
1

1− tαn
ΨT ′(t) =

1∏n
i=1(1− tαi)

,

where T ′ = K[z1, . . . , zn−1].

Deduce that if M =
∑N

i=−N T (−i)φi then

ΨM (t) =
N∑

i=−N

φiΨT (−i)(t) =

∑N
i=−N φit

i

∏n
i=1(1− tαi)

.

4. Prove:
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Theorem 1.11 (Hilbert). Let T = K[z1, . . . , zn], where deg zi = αi, and let M be a
graded T -module with finite free resolution

· · · -
∑

j

T (−j)β1,j -
∑

j

T (−j)β0,j .

Set φj =
∑
i(−1)iβi,j and set φM (t) = φ−N t

−N + · · ·+φN tN . The Hilbert series of M
is given by the formula

ΨM (t) =
φM (t)∏n
1 (1− tαi)

;

in particular ΨM is a rational function.

5. Suppose T = K[z0, . . . , zr] is a graded polynomial ring with deg zi = αi ∈ N. Use
induction on r and the exact sequence

0 → T (−αr)
zr- T - T/(zr) → 0

to show that the Hilbert function HT of T is, for large d, equal to a polynomial with
periodic coefficients: that is,

HT (d) = h0(d)d
r+h1(d)d

r−1 + · · ·

for some periodic functions hi(d) with values in Q, whose periods divide the least
common multiple of the αi. Using free resolutions, state and derive a corresponding
result for all finitely generated graded T -modules.

Some infinite resolutions: Let R = S/I be a graded quotient of a polynomial ring
S = K[x0, . . . , xr]. Minimal free resolutions exist forR, but are generally not finite. Much is
known about what the resolutions look like in the case whereR is a complete intersection —
that is, I is generated by a regular sequence—and in a few other cases, but not in general.
For surveys of some different areas, see [Avramov 1998, Fröberg 1999]. Here are a few
sample results about resolutions of modules over a ring of the form R = S/I, where S is a
graded polynomial ring (or a regular local ring) and I is a principal ideal. Such rings are
often called hypersurface rings.

6. Let S = K[x0, . . . , xr], let I ⊂ S be a homogeneous ideal, and let R = S/I. Use the
Auslander–Buchsbaum–Serre characterization of regular local rings (Theorem A2.19)
to prove that there is a finite R-free resolution of K = R/(x0, . . . , xr)R if and only if
I is generated by linear forms.

7. Let R = K[t]/(tn). Use the structure theorem for modules over the principal ideal
domain K[t] to classify all finitely generated R-modules. Show that the minimal free
resolution of the module R/ta, for 0 < a < n, is

· · · ta- R
tn−a

- R
ta- · · · ta- R.
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8. Let R = S/(f), where f is a nonzero homogeneous form of positive degree. Suppose
that A and B are two n×n matrices whose nonzero entries have positive degree in S,
such that AB = f ·I, where I is an n×n identity matrix. Show that BA = f ·I as well.
Such a pair of matrices A,B is called a matrix factorization of f ; see [Eisenbud 1980].
Let

F : · · · A- Rn
B- Rn

A- · · · A- Rn,

where A := R⊗SA and B := R⊗SB , denote the reductions of A and B modulo (f).
Show that F is a minimal free resolution. (Hint: any element that goes to 0 under A
lifts to an element that goes to a multiple of f over A.)

9. Suppose that M is a finitely generated R-module that has projective dimension 1 as
an S-module. Show that the free resolution of M as an S-module has the form

0 - Sn
A- Sn - M - 0

for some n and some n× n matrix A. Show that there is an n× n matrix B with
AB = f ·I. Conclude that the free resolution of M as an R-module has the form given
in Exercise 1.8.

10. The ring R is Cohen–Macaulay, of depth r (Example A2.40). Use part 3 of Theorem
A2.14, together with the Auslander–Buchsbaum Formula A2.13, to show that if N is
any finitely generated graded R-module, then the r-th syzygy of M has depth r, and
thus has projective dimension 1 as an S-module. Deduce that the free resolution of any
finitely generated graded module is periodic, of period at most 2, and that the periodic
part of the resolution comes from a matrix factorization.
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First Examples of Free Resolutions

In this chapter we introduce a fundamental construction of resolutions based on simplicial
complexes. This construction gives free resolutions of monomial ideals, but does not always
yield minimal resolutions. It includes the Koszul complexes, which we use to establish basic
bounds on syzygies of all modules, including the Hilbert Syzygy Theorem. We conclude
the chapter with an example of a different kind, showing how free resolutions capture the
geometry of sets of seven points in P3.

2A Monomial Ideals and Simplicial Complexes

We now introduce a beautiful method of writing down graded free resolutions of monomial
ideals due to Bayer, Peeva and Sturmfels [Bayer et al. 1998]. So far we have used Z-gradings
only, but we can think of the polynomial ring S as Zr+1-graded, with xa0

0 · · · xar
r having

degree (a0, . . . , ar) ∈ Zr+1, and the free resolutions we write down will also be Zr+1-
graded. We begin by reviewing the basics of the theory of finite simplicial complexes. For
a more complete treatment, see [Bruns and Herzog 1998].

Simplicial Complexes

A finite simplicial complex ∆ is a finite set N , called the set of vertices (or nodes) of ∆,
and a collection F of subsets of N , called the faces of ∆, such that if A ∈ F is a face and
B ⊂ A then B is also in F . Maximal faces are called facets.

A simplex is a simplicial complex in which every subset of N is a face. For any vertex
set N we may form the void simplicial complex, which has no faces at all. But if ∆



14 2. First Examples of Free Resolutions

has any faces at all, then the empty set ∅ is necessarily a face of ∆. By contrast, we
call the simplicial complex whose only face is ∅ the irrelevant simplicial complex on
N . (The name comes from the Stanley–Reisner correspondence, which associates to any
simplicial complex ∆ with vertex set N = {x0, . . . , xn} the square-free monomial ideal in
S = K[x0, . . . , xr] whose elements are the monomials with support equal to a non-face of ∆.
Under this correspondence the irrelevant simplicial complex corresponds to the irrelevant
ideal (x0, . . . , xr), while the void simplicial complex corresponds to the ideal (1).)

Any simplicial complex ∆ has a geometric realization, that is, a topological space that
is a union of simplices corresponding to the faces of ∆. It may be constructed by realizing
the set of vertices of ∆ as a linearly independent set in a sufficiently large real vector
space, and realizing each face of ∆ as the convex hull of its vertex points; the realization
of ∆ is then the union of these faces.

An orientation of a simplicial complex consists of an ordering of the vertices of ∆. Thus
a simplicial complex may have many orientations—this is not the same as an orientation
of the underlying topological space.

Labeling by Monomials

We will say that ∆ is labeled (by monomials of S) if there is a monomial of S associated
to each vertex of ∆. We then label each face A of ∆ by the least common multiple of
the labels of the vertices in A. We write mA for the monomial that is the label of A. By
convention the label of the empty face is m∅ = 1.

Let ∆ be an oriented labeled simplicial complex, and write I ⊂ S for the ideal generated
by the monomials mj = xαj labeling the vertices of ∆. We will associate to ∆ a graded
complex of free S-modules

C (∆) = C (∆;S) : · · · - Fi
δ- Fi−1

- · · · δ- F0,

where Fi is the free S-module whose basis consists of the set of faces of ∆ having i elements,
which is sometimes a resolution of S/I. The differential δ is given by the formula

δA =
∑

n∈A

(−1)pos(n,A) mA

mA\n
(A\n),

where pos(n,A), the position of vertex n in A, is the number of elements preceding n in
the ordering of A, and A\n denotes the face obtained from A by removing n.

If ∆ is not void then F0 = S; the generator is the face of ∆ which is the empty set.
Further, the generators of F1 correspond to the vertices of ∆, and each generator maps
by δ to its labeling monomial, so

H0(C (∆)) = coker
(
F1

δ- S
)

= S/I.

We set the degree of the basis element corresponding to the face A equal to the exponent
vector of the monomial that is the label of A. With respect to this grading, the differential
δ has degree 0, and C (∆) is a Zr+1-graded free complex.
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For example we might take S = K and label all the vertices of ∆ with 1 ∈ K; then
C (∆; K) is, up to a shift in homological degree, the usual reduced chain complex of ∆
with coefficients in S. Its homology is written Hi(∆; K) and is called the reduced homology
of ∆ with coefficients in S. The shift in homological degree comes about as follows: the
homological degree of a simplex in C (∆) is the number of vertices in the simplex, which
is one more than the dimension of the simplex, so that Hi(∆; K) is the (i+1)-st homology
of C (∆; K). If Hi(∆; K) = 0 for i ≥ −1, we say that ∆ is K-acyclic. (Since S is a free
module over K, this is the same as saying that Hi(∆;S) = 0 for i ≥ −1.)

The homology Hi(∆; K) and the homology Hi(C (∆;S)) are independent of the orien-
tation of ∆— in fact they depend only on the homotopy type of the geometric realization
of ∆ and the ring K or S. Thus we will often ignore orientations.

Roughly speaking, we may say that the complex C (∆;S), for an arbitrary labeling,
is obtained by extending scalars from K to S and “homogenizing” the formula for the
differential of C (∆,K) with respect to the degrees of the generators of the Fi defined for
the S-labeling of ∆.

Example 2.1. Suppose that ∆ is the labeled simplicial complex

x0x1 x0x2 x1x2

x0x1x2 x0x1x2

with the orientation obtained by ordering the vertices from left to right. The complex
C (∆) is

0 - S2(−3)




−x2 0
x1 −x1

0 x0




- S3(−2)
(x0x1 x0x2 x1x2 )- S.

This complex is represented by the Betti diagram

0 1 2

0 1 − −
1 − 3 2

As we shall soon see, the only homology of this complex is at the right-hand end, where
H0(C (∆)) = S/(x0x1, x0x2, x1x2), so the complex is a free resolution of this S-module.

If we took the same simplicial complex, but with the trivial labeling by 1’s, we would
get the complex

0 - S2




−1 0
1 −1
0 1




- S3 ( 1 1 1 )- S,

represented by the Betti diagram

0 1 2

−2 − − 2
−1 − 3 −

0 1 − −
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which has reduced homology 0 (with any coefficients), as the reader may easily check.

We want a criterion that will tell us when C (∆) is a resolution of S/I; that is, when
Hi(C (∆)) = 0 for i > 0. To state it we need one more definition. If m is any monomial,
we write ∆m for the subcomplex consisting of those faces of ∆ whose labels divide m. For
example, if m is not divisible by any of the vertex labels, then ∆m is the empty simplicial
complex, with no vertices and the single face ∅. On the other hand, if m is divisible by all
the labels of ∆, then ∆m = ∆. Moreover, ∆m is equal to ∆LCM{mi|i∈I} for some subset
∆′ of the vertex set of ∆.

A full subcomplex of ∆ is a subcomplex of all the faces of ∆ that involve a particular
set of vertices. Note that all the subcomplexes ∆m are full.

Syzygies of Monomial Ideals

Theorem 2.2 (Bayer, Peeva, and Sturmfels). Let ∆ be a simplicial complex labeled
by monomials m1, . . . ,mt ∈ S, and let I = (m1, . . . ,mt) ⊂ S be the ideal in S generated
by the vertex labels. The complex C (∆) = C (∆;S) is a free resolution of S/I if and only
if the reduced simplicial homology Hi(∆m; K) vanishes for every monomial m and every
i ≥ 0. Moreover , C (∆) is a minimal complex if and only if mA 6= mA′ for every proper
subface A′ of a face A.

By the remarks above, we can determine whether C (∆) is a resolution just by checking
the vanishing condition for monomials that are least common multiples of sets of vertex
labels.

Proof. Let C (∆) be the complex

C (∆) : · · · - Fi
δ- Fi−1

- · · · δ- F0.

It is clear that S/I is the cokernel of δ : F1 → F0. We will identify the homology of C (∆)
at Fi with a direct sum of copies of the vector spaces Hi(∆m; K).

For each α ∈ Zr+1 we will compute the homology of the complex of vector spaces

C (∆)α : · · · - (Fi)α
δ- (Fi−1)α - · · · δ- (F0)α,

formed from the degree-α components of each free module Fi in C (∆). If any of the
components of α are negative then C (∆)α = 0, so of course the homology vanishes in this
degree.

Thus we may suppose α ∈ Nr+1. Set m = xα = xα0
0 · · ·xαr

r ∈ S. For each face A of ∆,
the complex C (∆) has a rank-one free summand S ·A which, as a vector space, has basis
{n ·A | n ∈ S is a monomial}. The degree of n ·A is the exponent of nmA, where mA is
the label of the face A. Thus for the degree α part of S ·A we have

S ·Aα =

{
K ·(xα/mA) ·A if mA|m,

0 otherwise.

It follows that the complex C (∆)α has a K-basis corresponding bijectively to the faces of
∆m. Using this correspondence we identify the terms of the complex C (∆)α with the terms
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of the reduced chain complex of ∆m having coefficients in K (up to a shift in homological
degree as for the case, described above, where the vertex labels are all 1). A moment’s
consideration shows that the differentials of these complexes agree.

Having identified C (∆)α with the reduced chain complex of ∆m, we see that the complex
C (∆) is a resolution of S/I if and only if Hi(∆m; K) = 0 for all i ≥ 0, as required for the
first statement.

For minimality, note that if A is an (i+1)-face and A′ an i-face of ∆, then the component
of the differential of C (∆) that maps S ·A to S ·A′ is 0 unless A′ ⊂ A, in which case it is
±mA/mA′ . Thus C (∆) is minimal if and only if mA 6= mA′ for all A′ ⊂ A, as required.

For more information about the complexes C (∆) and about a generalization in which
cell complexes replace simplicial complexes, see [Bayer et al. 1998] and [Bayer and Sturm-
fels 1998].

Example 2.3. We continue with the ideal (x0x1, x0x2, x1x2) as above. For the labeled
simplicial complex ∆

x0x1 x0x2 x1x2

x0x1x2 x0x1x2

the distinct subcomplexes ∆′ of the form ∆m are the empty complex ∆1, the complexes
∆x0x1

, ∆x0x2
, ∆x1x2

, each of which consists of a single point, and the complex ∆ itself.
As each of these is contractible, they have no higher reduced homology, and we see that
the complex C (∆) is the minimal free resolution of S/(x0x1, x0x2, x1x2).

Any full subcomplex of a simplex is a simplex, and since the complexes ∆1, ∆x0x1
, ∆x0x2

,
∆x1x2

, and ∆ are all contractible, they have no reduced homology (with any coefficients).
This idea gives a result first proved, in a different way, by Diana Taylor [Eisenbud 1995,
Exercise 17.11].

Corollary 2.4. Let I = (m1, . . . ,mn) ⊂ S be any monomial ideal , and let ∆ be a sim-
plex with n vertices, labeled m1, . . . ,mn. The complex C (∆), called the Taylor complex of
m1, . . . ,mn, is a free resolution of S/I.

For an interesting consequence see Exercise 2.1.

Example 2.5. The Taylor complex is rarely minimal. For instance, taking

(m1,m2,m3) = (x0x1, x0x2, x1x2)

as in the example above, the Taylor complex is a nonminimal resolution with Betti diagram

0 1 2 3

0 1 − − 1
1 − 3 3 −

Example 2.6. We may define the Koszul complex K(x0, . . . , xr) of x0, . . . , xr to be the
Taylor complex in the special case where the mi = xi are variables. We have exhibited
the smallest examples on page 3. By Theorem 2.2 the Koszul complex is a minimal free
resolution of the residue class field K = S/(x0, . . . , xr).
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We can replace the variables x0, . . . , xr by any polynomials f0, . . . , fr to obtain a com-
plex we will write as K(f0, . . . , fr), the Koszul complex of the sequence f0, . . . , fr. In fact,
since the differentials have only Z coefficients, we could even take the fi to be elements
of an arbitrary commutative ring.

Under nice circumstances, for example when the fi are homogeneous elements of positive
degree in a graded ring, this complex is a resolution if and only if the fi form a regular
sequence. See Section A2F or [Eisenbud 1995, Theorem 17.6].

2B Bounds on Betti Numbers and Proof of Hilbert’s Syzygy
Theorem

We can use the Koszul complex and Theorem 2.2 to prove a sharpening of Hilbert’s Syzygy
Theorem 1.1, which is the vanishing statement in the following proposition. We also get
an alternate way to compute the graded Betti numbers.

Proposition 2.7. Let M be a graded module over S = K[x0, . . . , xr]. The graded Betti

number βi,j(M) is the dimension of the homology , at the term Mj−i⊗
∧i Kr+1, of the

complex

0 →Mj−(r+1)⊗
∧r+1 Kr+1 → · · ·

→Mj−i−1⊗
∧i+1 Kr+1 →Mj−i⊗

∧i Kr+1 →Mj−i+1⊗
∧i−1 Kr+1 →

· · · →Mj⊗
∧0 Kr+1 → 0.

In particular we have βi,j(M) ≤ HM (j− i)
(
r+1
i

)
, so βi,j(M) = 0 if i > r+1.

See Exercise 2.5 for the relation of this to Corollary 1.10.

Proof. To simplify the notation, let βi,j = βi,j(M). By Proposition 1.7,

βi,j = dimK Tori(M,K)j .

Since K(x0, . . . , xr) is a free resolution of K, we may compute TorSi (M,K)j as the degree-j
part of the homology of M⊗SK(x0, . . . , xr) at the term

M⊗S
∧i

Sr+1(−i) = M⊗K

∧i Kr+1(−i).

Decomposing M into its homogeneous components M = ⊕Mk, we see that the degree-j
part of M ⊗K

∧i Kr+1(−i) is Mj−i⊗K

∧i Kr+1. The differentials of M ⊗S K(x0, . . . , xr)
preserve degrees, so the complex decomposes as a direct sum of complexes of vector spaces
of the form

Mj−i−1⊗K

∧i+1 Kr+1 - Mj−i⊗K

∧i Kr+1 - Mj−i+1⊗K

∧i−1 Kr+1.

This proves the first statement. The inequality on βi,j follows at once.
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The upper bound given in Proposition 2.7 is achieved when mM = 0 (and conversely—
see Exercise 2.6). It is not hard to deduce a weak lower bound, too (Exercise 2.7), but
is often a very difficult problem, to determine the actual range of possibilities, especially
when the module M is supposed to come from some geometric construction.

An example will illustrate some of the possible considerations. A true geometric example,
related to this one, will be given in the next section. Suppose that r = 2 and the Hilbert
function of M has values

HM (j) =





0 if j < 0,

1 if j = 0,

3 if j = 1,

3 if j = 2,

0 if j > 2.

To fit with the way we write Betti diagrams, we represent the complexes in Proposition

2.7 with maps going from right to left, and put the term Mj⊗
∧i Kr+1(−i) = Mj(−i)(

r+1
i )

(the term of degree i+j) in row j and column i. Because the differential has degree 0, it
goes diagonally down and to the left.

M M⊗K ∧Kr(−1)

M0 K1 K3 K3 K1

↙ ↙ ↙
M1 K3 K9 K9 K3

↙ ↙ ↙
M2 K3 K9 K9 K3

From this we see that the termwise maximal Betti diagram of a module with the given
Hilbert function, valid if the module structure of M is trivial, is

0 1 2 3

0 1 3 3 1
1 3 9 9 3
2 3 9 9 3

On the other hand, if the differential

di,j : Mj−i⊗
∧i K3 →Mj−i+1⊗

∧i−1 K3

has rank k, both βi,j and βi−1,j drop from this maximal value by k.
Other considerations come into play as well. For example, suppose that M is a cyclic

module (a module requiring only one generator), generated by M0. Equivalently, β0,j = 0
for j 6= 0. It follows that the differentials d1,1 and d1,2 have rank 3, so β1,1 = 0 and
β1,2 ≤ 6. Since β1,1 = 0, Proposition 1.9 implies that βi,i = 0 for all i ≥ 1. This means
that the differential d2,2 has rank 3 and the differential d3,3 has rank 1, so the maximal
possible Betti numbers are

0 1 2 3

0 1 − − −
1 − 3 8 3
2 − 9 9 3
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Whatever the ranks of the remaining differentials, we see that any Betti diagram of a
cyclic module with the given Hilbert function has the form

0 1 2 3

0 1 − − −
1 − 3 β2,3 β3,4

2 − 1+β2,3 6+β3,4 3

for some 0 ≤ β2,3 ≤ 8 and 0 ≤ β3,4 ≤ 3. For example, if all the remaining differentials
have maximal rank, the Betti diagram would be

0 1 2 3

0 1 − − −
1 − 3 − −
2 − 1 6 3

We will see in the next section that this diagram is realized as the Betti diagram of the
homogeneous coordinate ring of a general set of 7 points in P3 modulo a nonzerodivisor
of degree 1.

2C Geometry from Syzygies: Seven Points in P3

We have seen above that if we know the graded Betti numbers of a graded S-module, then
we can compute the Hilbert function. In geometric situations, the graded Betti numbers
often carry information beyond that of the Hilbert function. Perhaps the most interesting
current results in this direction center on Green’s Conjecture described in Section 9B.

For a simpler example we consider the graded Betti numbers of the homogeneous co-
ordinate ring of a set of 7 points in “linearly general position” (defined below) in P3. We
will meet a number of the ideas that occupy the next few chapters. To save time we will
allow ourselves to quote freely from material developed (independently of this discussion!)
later in the text. The inexperienced reader should feel free to look at the statements and
skip the proofs in the rest of this section until after having read through Chapter 6.

The Hilbert Polynomial and Function. . .

Any set X of 7 distinct points in P3 has Hilbert polynomial equal to the constant 7 (such
things are discussed at the beginning of Chapter 4). However, not all sets of 7 points in
P3 have the same Hilbert function. For example, if X is not contained in a plane then
the Hilbert function H = HSX

(d) begins with the values H(0) = 1, H(1) = 4, but if X is
contained in a plane then H(1) < 4.

To avoid such degeneracy we will restrict our attention in the rest of this section to
7-tuples of points that are in linearly general position. We say that a set of points Y ⊂ Pr

is in linearly general position if there are no more than 2 points of Y on any line, no
more than 3 points on any 2-plane, . . . , no more than r points in an r−1 plane. Thinking
of the points as coming from vectors in Kr+1, this means that every subset of at most
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r+1 of the vectors is linearly independent. Of course if there are at least r+1 points,
this is equivalent to say simply that every subset of exactly r+1 of the vectors is linearly
independent.

The condition that a set of points is in linearly general position arises frequently. For
example, the general hyperplane section of any irreducible curve over a field of character-
istic 0 is a set of points in linearly general position [Harris 1980] and this is usually, though
not always, true in characteristic p as well [Rathmann 1987]. See Exercises 8.17–8.20.

It is not hard to show—the reader is invited to prove a more general fact in Exercise
2.9—that the Hilbert function of any set X of 7 points in linearly general position in P3

is given by the table

d 0 1 2 3 . . .

HSX
(d) 1 4 7 7 . . .

In particular, any set X of 7 points in linearly general position lies on exactly 3 =(
3+2
2

)
− 7 independent quadrics. These three quadrics cannot generate the ideal: since

S = K[x0, . . . , x3] has only four linear forms, the dimension of the space of cubics in the
ideal generated by the three quadrics is at most 4×3 = 12, whereas there are

(
3+3
3

)
−7 = 13

independent cubics in the ideal of X. Thus the ideal of X requires at least one cubic gen-
erator in addition to the three quadrics.

One might worry that higher degree generators might be needed as well. The ideal of
7 points on a line in P3, for example, is minimally generated by the two linear forms that
generate the ideal of the line, together with any form of degree 7 vanishing on the points
but not on the line. But Theorem 4.2(c) tells us that since the 7 points of X are in linearly
general position the Castelnuovo–Mumford regularity of SX (defined in Chapter 4) is 2,
or equivalently, that the Betti diagram of SX fits into 3 rows. Moreover, the ring SX is
reduced and of dimension 1 so it has depth 1. The Auslander–Buchsbaum Formula A2.15
shows that the resolution will have length 3. Putting this together, and using Corollary
1.9 we see that the minimal free resolution of SX must have Betti diagram of the form

0 1 2 3

0 1 − − −
1 − β1,2 β2,3 β3,4

2 − β1,3 β2,4 β3,5

where the βi,j that are not shown are zero. In particular, the ideal of X is generated by
quadrics and cubics.

Using Corollary 1.10 we compute successively β1,2 = 3, β1,3−β2,3 = 1, β2,4−β3,4 = 6,
β3,5 = 3, and the Betti diagram has the form

0 1 2 3

0 1 − − −
1 − 3 β2,3 β3,4

2 − 1+β2,3 6+β3,4 3

(This is the same diagram as at the end of the previous section. Here is the connection:
Extending the ground field if necessary to make it infinite, we could use Lemma A2.3
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and choose a linear form x ∈ S that is a nonzerodivisor on SX . By Lemma 3.15 the
graded Betti numbers of SX/xSX as an S/xS-module are the same as those of SX as an
S-module. Using our knowledge of the Hilbert function of SX and the exactness of the
sequence

0 - SX(−1)
x- SX - SX/xSx - 0,

we see that the cyclic (S/xS)-module SX/xSx has Hilbert function with values 1, 3, 3.
This is what we used in Section 2B.)

. . . and Other Information in the Resolution

We see that even in this simple case the Hilbert function does not determine the βi,j , and
indeed they can take different values. It turns out that the difference reflects a fundamental
geometric distinction between different sets X of 7 points in linearly general position in
P3: whether or not X lies on a curve of degree 3.

Up to linear automorphisms of P3 there is only one irreducible curve of degree 3 not
contained in a plane. This twisted cubic is one of the rational normal curves studied in
Chapter 6. Any 6 points in linearly general position in P3 lie on a unique twisted cubic
(see Exercise 6.5). But for a twisted cubic to pass through 7 points, the seventh must lie
on the twisted cubic determined by the first 6. Thus most sets of seven points do not lie
on any twisted cubic.

7′7

6

5 4

3

2

1
?

z}|{

Theorem 2.8. Let X be a set of 7 points in linearly general position in P3. There are
just two distinct Betti diagrams possible for the homogeneous coordinate ring SX :

0 1 2 3

0 1 − − −
1 − 3 − −
2 − 1 6 3

and

0 1 2 3

0 1 − − −
1 − 3 2 −
2 − 3 6 3

In the first case the points do not lie on any curve of degree 3. In the second case, the
ideal J generated by the quadrics containing X is the ideal of the unique curve of degree 3
containing X, which is irreducible.
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Proof. Let q0, q1, q2 be three quadratic forms that span the degree 2 part of I := IX . A
linear syzygy of the qi is a vector (a0, a1, a2) of linear forms with

∑2
i=0 aiqi = 0. We will

focus on the number of independent linear syzygies, which is β2,3.
If β2,3 = 0, Proposition 1.9 implies that β3,4 = 0 and the computation of the differences

of the βi,j above shows that the Betti diagram of SX = S/I is the first of the two given
tables. As we shall see in Chapter 6, any irreducible curve of degree ≤ 2 lies in a plane.
Since the points of X are in linearly general position, they are not contained in the union
of a line and a plane, or the union of 3 lines, so any degree 3 curve containing X is
irreducible. Further, if C is an irreducible degree 3 curve in P3, not contained in a plane,
then the C is a twisted cubic, and the ideal of C is generated by three quadrics, which
have 2 linear syzygies. Thus in the case where X is contained in a degree 3 curve we have
β2,3 ≥ 2.

Now suppose β2,3 > 0, so that there is a nonzero linear syzygy
∑2

i=0 aiqi = 0. If the ai
were linearly dependent then we could rewrite this relation as a′1q

′
1 +a′2q

′
2 = 0 for some

independendent quadrics q′1 and q′2 in I. By unique factorization, the linear form a′1 would
divide q′2; say q′2 = a′1b. Thus X would be contained in the union of the planes a′1 = 0
and b = 0, and one of these planes would contain four points of X, contradicting our
hypothesis. Therefore a0, a1, a2 are linearly independent linear forms.

Changing coordinates on P3 we can harmlessly assume that ai = xi. We can then read
the relation

∑
xiqi = 0 as a syzygy on the xi. But from the exactness of the Koszul

complex (see for example Theorem 2.2 as applied in Example 2.6), we know that all the
syzygies of x0, x1, x2 are given by the columns of the matrix




0 x2 −x1

−x2 0 x0

x1 −x0 0


 ,

and thus we must have


q0
q1
q2


 =




0 x2 −x1

−x2 0 x0

x1 −x0 0






b0
b1
b2




for some linear forms bi. Another way to express this equation is to say that qi is (−1)i

times the determinant of the 2×2 matrix formed by omitting the i-th column of the matrix

M =

(
x0 x1 x2

b0 b1 b2

)
,

where the columns are numbered 0, 1, 2. The two rows of M are independent because the
qi, the minors, are nonzero. (Throughout this book we will follow the convention that a
minor of a matrix is a subdeterminant times an appropriate sign.)

We claim that both rows of M give relations on the qi. The vector (x0, x1, x2) is a
syzygy by virtue of our choice of coordinates. To see that (b0, b1, b2) is also a syzygy, note
that the Laplace expansion of

det



x0 x1 x2

b0 b1 b2
b0 b1 b2
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is
∑
i biqi. However, this 3×3 matrix has a repeated row, so the determinant is 0, showing

that
∑
i biqi = 0. Since the two rows of M are linearly independent, we see that the qi

have (at least) 2 independent syzygies with linear forms as coefficients.
The ideal (q0, q1, q2) ⊂ I that is generated by the minors of M is unchanged if we

replace M by a matrix PMQ, where P and Q are invertible matrices of scalars. It follows
that matrices of the form PMQ cannot have any entries equal to zero. This shows that
M is 1-generic in the sense of Chapter 6, and it follows from Theorem 6.4 that the ideal
J = (q0, q1, q2) ⊂ I is prime and of codimension 2—that is, J defines an irreducible curve
C containing X in P3.

From Theorem 3.2 it follows that a free resolution of SC may be written as

0 → S2(−3)



x0 b0
x1 b1
x2 b2




- S3(−2)
( q0 q1 q2 )- S - SC - 0.

From the resolution of SC we can also compute its Hilbert function:

HSC
(d) =

(
3+d
3

)
−3

(
3+d−2

3

)
+2

(
3+d−3

3

)

= 3d+1 for d ≥ 0.

Thus the Hilbert polynomial of the curve is 3d+1. It follows that C is a cubic curve—
see [Hartshorne 1977, Prop. I.7.6], for example.

It may be surprising that in Theorem 2.8 the only possibilities for β2,3 are 0 and 2,
and that β3,4 is always 0. These restrictions are removed, however, if one looks at sets
of 7 points that are not in linearly general position though they have the same Hilbert
function as a set of points in linearly general position; some examples are given in Exercises
2.11–2.12.

2D Exercises

1. Suppose that m1, . . . ,mn are monomials in S. Show that the projective dimension
of S/(m1, . . . ,mn) is at most n. No such principle holds for arbitrary homogeneous
polynomials; see Exercise 2.4.

2. Let 0 ≤ n ≤ r. Show that if M is a graded S-module which contains a submodule
isomorphic to S/(x0, . . . , xn) (so that (x0, . . . , xn) is an associated prime of M) then
the projective dimension of M is at least n+ 1. If n+ 1 is equal to the number of
variables in S, show that this condition is necessary as well as sufficient. (Hint: For the
last statement, use the Auslander–Buchsbaum theorem, Theorem A2.15.)
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3. Consider the ideal I = (x0, x1)∩(x2, x3) of two skew lines in P3:

Prove that I = (x0x2, x0x3, x1x2, x1x3), and compute the minimal free resolution of
S/I. In particular, show that S/I has projective dimension 3 even though its associated
primes are precisely (x0, x1) and (x2, x3), which have height only 2. Thus the principle
of Exercise 2.2 can’t be extended to give the projective dimension in general.

4. Show that the ideal J = (x0x2−x1x3, x0x3, x1x2) defines the union of two (reduced)
lines in P3, but is not equal to the saturated ideal of the two lines. Conclude that the
projective dimension of S/J is 4 (you might use the Auslander–Buchsbaum formula,
Theorem A2.15). In fact, three-generator ideals can have any projective dimension; see
[Bruns 1976] or [Evans and Griffith 1985, Corollary 3.13].

5. Let M be a finitely generated graded S-module, and let Bj =
∑
i(−1)iβi,j(M). Show

from Proposition 2.7 that

Bj =
∑

i

(−1)iHM (j− i)
(
r+1

i

)
.

This is another form of the formula in Corollary 1.10.

6. Show that if M is a graded S module, then

β0,j(M) = HM (j) for all j

if and only if mM = 0.

7. If M is a graded S-module, show that

βi,j(M) ≥ HM (j− i)
(
r+1

i

)
−HM (j− i+1)

(
r+1

i−1

)
−HM (j− i−1)

(
r+1

i+1

)
.

8. Prove that the complex

0 → S2(−3)



x0 x1

x1 x2

x2 x3




- S3(−2)
(x1x3−x2

2 −x0x3 +x1x2 x0x2−x2
1 )- S

is indeed a resolution of the homogeneous coordinate ring SC of the twisted cubic curve
C, by the following steps:
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(a) Identify SC with the subring of K[s, t] consisting of those graded components whose
degree is divisible by 3. Show in this way that HSC

(d) = 3d+1 for d ≥ 0.

(b) Compute the Hilbert functions of the terms S, S3(−2), and S2(−3). Show that
their alternating sum HS−HS3(−2)+HS2(−3) is equal to the Hilbert function HSC

.

(c) Show that the map

S2(−3)



x0 x1

x1 x2

x2 x3




- S3(−2)

is a monomorphism. As a first step you might prove that it becomes a monomor-
phism when the polynomial ring S is replaced by its quotient field, the field of
rational functions.

(d) Show that the results in parts (b) and (c) together imply that the complex exhibited
above is a free resolution of SC .

9. Let X be a set of n ≤ 2r+1 points in Pr in linearly general position. Show that X
imposes independent conditions on quadrics: that is, show that the space of quadratic
forms vanishing on X is

(
r+2
2

)
−n dimensional. (It is enough to show that for each

p ∈ X there is a quadric not vanishing on p but vanishing at all the other points of X.)
Use this to show that X imposes independent conditions on forms of degree ≥ 2. The
same idea can be used to show that any n ≤ dr+1 points in linearly general position
impose independent conditions on forms of degree d.

Deduce the correctness of the Hilbert function for 7 points in linearly general
position given by the table in Section 2C.

10. The sufficient condition of Exercise 2.9 is far from necessary. One way to sharpen it
is to use Edmonds’ Theorem [1965], which is the following beautiful and nontrivial
theorem in linear algebra (see [Graham et al. 1995, Chapter 11, Theorem 3.9] for an
exposition):

Theorem 2.9. Let v1, . . . , vds be vectors in an s-dimensional vector space. The list
(v1, . . . , vds) can be written as the union of d bases if and only if no dk+ 1 of the
vectors vi lie in a k-dimensional subspace, for every k.

Now suppose that Γ is a set of at most 2r+1 points in Pr, and, for all k < r,
each set of 2k+1 points of Γ spans at least a (k+1)-plane. Use Edmonds’ Theorem to
show that Γ imposes independent conditions on quadrics in Pr (Hint: You can apply
Edmonds’ Theorem to the set obtained by counting one of the points of Γ twice.)

11. Show that if X is a set of 7 points in P3 with 6 points on a plane, but not on any conic
curve in that plane, while the seventh point does not line in the plane, then X imposes
independent conditions on forms of degree ≥ 2 and β2,3 = 3.

12. Let Λ ⊂ P3 be a plane, and let D ⊂ Λ be an irreducible conic. Choose points p1, p2 /∈ Λ
such that the line joining p1 and p2 does not meet D. Show that if X is a set of 7 points
in P3 consisting of p1, p2 and 5 points on D, then X imposes independent conditions on
forms of degree ≥ 2 and β2,3 = 1. (Hint: To show that β2,3 ≥ 1, find a pair of reducible
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quadrics in the ideal having a common component. To show that β2,3 ≤ 1, show that
the quadrics through the points are the same as the quadrics containing D and the
two points. There is, up to automorphisms of P3, only one configuration consisting of
a conic and two points in P3 such that the line though the two points does not meet
the conic. You might produce such a configuration explicitly and compute the quadrics
and their syzygies.)

13. Show that the labeled simplicial complex

x1x2

x0x2

x0x1 x2x3

gives a nonminimal free resolution of the monomial ideal (x0x1, x0x2, x1x2, x2x3). Use
this to prove that the Betti diagram of a minimal free resolution is

0 1 2 3

0 1 − − −
1 − 4 4 1

14. Use the Betti diagram in Exercise 2.13 to show that the minimal free resolution of
(x0x1, x0x2, x1x2, x2x3) cannot be written as C (∆) for any labeled simplicial complex
∆. (It can be written as the free complex coming from a certain topological cell complex;
for this generalization see [Bayer and Sturmfels 1998].)

15. Show the ideal
I = (x3, x2y, x2z, y3) ⊂ S = K[x, y, z]

has minimal free resolution C (∆), where ∆ is the labeled simplicial complex

z3

x3

x2y

x2z

Compute the Betti diagram, the Hilbert function, and the Hilbert polynomial of S/I,
and show that in this case the bound given in Corollary 1.3 is not sharp. Can you see
this from the Betti diagram?
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3

Points in P2

The first case in which the relation of syzygies and geometry becomes clear, and the one
in which it is best understood, is the case where the geometric objects are finite sets of
points in P2. We will devote this chapter to such sets. (The reader who knows about
schemes, for example at the level of the first two chapters of [Eisenbud and Harris 2000],
will see that exactly the same considerations apply to finite schemes in P2.) Of course
the only intrinsic geometry of a set of points is the number of points, and we will see
that this is the data present in the Hilbert polynomial. But a set of points embedded
in projective space has plenty of extrinsic geometry. For example, it is interesting to ask
what sorts of curves a given set of points lies on, or to ask about the geometry of the
dual hyperplane arrangement (see [Orlik and Terao 1992]), or about the embedding of
the “Gale transform” of the points (see [Eisenbud and Popescu 1999]). All of these things
have some connections with syzygies.

Besides being a good model problem, the case of points in P2 arises directly in consid-
ering the plane sections of varieties of codimension 2, such as the very classical examples
of curves in P3 and surfaces in P4. For example, a knowledge of the possible Hilbert func-
tions of sets of points in “uniform position” is the key ingredient in “Castelnuovo Theory”,
which treats the possible genera of curves in P3 and related problems.

Despite this wealth of related topics, the goal of this chapter is modest: We will charac-
terize the Betti diagrams of the possible minimal graded free resolutions of ideals of forms
vanishing on sets of points in P2, and begin to relate these discrete invariants to geometry
in simple cases.

Throughout this chapter, S will denote the graded ring K[x0, x1, x2]. All the S-modules
we consider will be finitely generated and graded. Such a module admits a minimal free
resolution, unique up to isomorphism. By Corollary 1.8, its length is equal to the module’s
projective dimension.
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3A The Ideal of a Finite Set of Points

The simplest ideals are principal ideals. As a module, such an ideal is free. The next
simplest case is perhaps that of an ideal having a free resolution of length 1, and we will
see that the ideal of forms vanishing on any finite set of points in P2 has this property.

We will write pd I for the projective dimension of I. By the depth of a graded ring, we
mean the grade of the irrelevant ideal— that is, the length of a maximal regular sequence
of homogeneous elements of positive degree. (The homogeneous case is very similar to
the local case; for example, all maximal regular sequences have the same length in the
homogeneous case as in the local case, and the local proofs can be modified to work in the
homogeneous case. For a systematic treatement see [Goto and Watanabe 1978a; 1978b].)

Proposition 3.1. If I ⊂ S is the homogeneous ideal of a finite set of points in P2, then
I has a free resolution of length 1.

Proof. Suppose I = I(X), the ideal of forms vanishing on the finite set X ⊂ P2. By the
Auslander–Buchsbaum Formula (Theorem A2.15) we have

pd S/I = depthS−depthS/I.

But depthS/I ≤ dimS/I = 1. The ideal I is the intersection of the prime ideals of
forms vanishing at the individual points of X, so the maximal homogeneous ideal m of
S is not associated to I. This implies that depthS/I > 0. Also, the depth of S is 3 (the
variables form a maximal homogeneous regular sequence). Thus pd S/I = 3− 1 = 2,
whence pd I = 1, as I is the first module of syzygies in a free resolution of S/I.

It turns out that ideals with a free resolution of length 1 are determinantal (see Ap-
pendix A2G for some results about determinantal ideals.) This result was discovered by
Hilbert in a special case and by Burch in general.

The Hilbert–Burch Theorem

In what follows, we shall work over an arbitrary Noetherian ring R. (Even more general
results are possible; see for example [Northcott 1976].) For any matrix M with entries in
R we write It(M) for the ideal generated by the t× t subdeterminants of M The length
of a maximal regular sequence in an ideal I is written grade I.

Theorem 3.2 (Hilbert–Burch). Suppose that an ideal I in a Noetherian ring R admits
a free resolution of length 1:

0 - F
M- G - I - 0.

If the rank of the free module F is t, then the rank of G is t+ 1, and there exists a
nonzerodivisor a such that I = aIt(M). Regarding M as a matrix with respect to given
bases of F and G, the generator of I that is the image of the i-th basis vector of G is
±a times the determinant of the submatrix of M formed from all except the i-th row .
Moreover , the grade of It(M) is 2.
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Conversely , given a (t+1)× t matrix M with entries in R such that grade It(M) ≥ 2
and given a nonzerodivisor a of R, the ideal I = aIt(M) admits a free resolution of length
one as above. The ideal I has grade 2 if and only if the element a is a unit .

In view of the signs that appear in front of the determinants, we define the i-th minor
of M to be (−1)i detM ′

i , where M ′
i is the matrix M ′ with the i-th row omitted. We can

then say that the generator of I that is the image of the i-th basis vector of G is a times
the i-th minor of M.

We postpone the proof in order to state a general result describing free resolutions. If
ϕ is a map of free R-modules, we write rank(ϕ) for the rank (that is, the largest size of
a nonvanishing minor) and I(ϕ) for the determinantal ideal Irank(ϕ)(ϕ). For any map ϕ
of free modules we make the convention that I0(ϕ) = R. In particular, if ϕ is the zero
map, the rank of ϕ is 0, so I(ϕ) = I0(ϕ) = R. We also take depth(R,R) = ∞, so that
grade I(ϕ) = ∞ if I(φ) = R.

Theorem 3.3 (Buchsbaum–Eisenbud). A complex of free modules

F : 0 - Fm
ϕm- Fm−1

- · · · - F1
ϕ1- F0

over a Noetherian ring R is exact if and only if

rankϕi+1 +rankϕi = rankFi and depth I(ϕi) ≥ i for every i.

For a proof see [Eisenbud 1995, Theorem 20.9]. It is crucial that the complex begin with
a zero on the left; no similar result is known without such hypotheses.

In the special case where R is a polynomial ring R = K[x0, . . . , xr] and K is algebraically
closed, Theorem 3.3 has a simple geometric interpretation. We think of R as a ring of
functions on Kr+1 (in the graded case we could work with Pr instead). If p ∈ Kr+1, we
write I(p) for the ideal of functions vanishing at p, and we write

F(p) : 0 - Fm(p)
ϕm(p)- · · · ϕ1(p)- F0(p)

for the result of tensoring F with the residue field κ(p) := R/I(p), regarded as a complex
of finite-dimensional vector spaces over κ(p). A matrix for the map ϕi(p) is obtained by
evaluating a matrix for the map ϕi at p. Theorem 3.3 expresses the relation between the
exactness of the complex of free modules F and the exactness of the complexes of vector
spaces F(p).

Corollary 3.4. Let

F : 0 - Fm
ϕm- Fm−1

- · · · - F1
ϕ1- F0

be a complex of free modules over the polynomial ring S = K[x0, . . . , xr], where K is an
algebraically closed field . Let Xi ⊂ Kr+1 be the set of points p such that the evaluated
complex F(p) is not exact at Fi(p). The complex F is exact if and only if, for every i, the
set Xi is empty or codimXi ≥ i.
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Proof. Set ri = rankFi− rankFi+1 + . . .± rankFm. Theorem 3.3 implies that F is exact
if and only if grade Iri

(ϕi) ≥ i for each i ≥ 1. First, if F is exact then by descending
induction we see from condition 1 of the theorem that rankϕi = ri for every i, and then
the condition grade Iri

(ϕi) ≥ i is just condition 2 of Theorem 3.3.
Conversely, suppose that grade Iri

(ϕi) ≥ i. It follows that rankϕi ≥ ri for each i.
Tensoring with the quotient field of R we see that rankϕi+1 +rankϕi ≤ rankFi in any
case. Using this and the previous inequality, we see by descending induction that in fact
rankϕi = ri for every i, so conditions 1 and 2 of Theorem 3.3 are satisfied.

Now let
Yi = {p ∈ Kr+1 | rankϕi(p) < ri}.

Thus Yi is the algebraic set defined by the ideal Iri
(ϕi). Since the polynomial ring S is

Cohen–Macaulay (Theorem A2.33) the grade of Iri
(ϕi) is equal to the codimension of this

ideal, which is the same as the codimension of Yi. It follows that F is exact if and only if
the codimension of Yi in Kr+1 is at least i for each i ≥ 1.

On the other hand, the complex of finite-dimensional K-vector spaces F(p) is exact at
Fj(p) if and only if rankϕj+1(p)+rankϕj(p) = rankFj(p). Since F(p) is a complex, this
is the same as saying that rankϕj+1(p)+rankϕj(p) ≥ rankFj(p). This is true for all j ≥ i
if and only if rankϕj(p) ≥ rj for all j ≥ i. Thus F(p) is exact at Fj(p) for all j ≥ i if and
only if p /∈

⋃
j≥i Yj .

The codimension of
⋃
j≥i Yj is the minimum of the codimensions of the Yj for j ≥ i.

Thus codim
⋃
j≥i Yj ≥ i for all i if and only if codimYi ≥ i for all i. Thus F satisfies the

condition of the Corollary if and only if F is exact.

Example 3.5. To illustrate these results, we return to the example in Exercise 2.8 and
consider the complex

F : 0 → S2(−3)

ϕ2=



x0 x1

x1 x2

x2 x3




- S3(−2)
ϕ1=(x1x3−x

2
2 −x0x3+x1x2 x0x2−x

2
1)- S.

In the notation of the proof of Corollary 3.4 we have r2 = 2, r1 = 1. Further, the entries
of ϕ1 are the 2× 2 minors of ϕ2, as in Theorem 3.2 with a = 1. In particular Y1 = Y2

and X1 = X2. Thus Corollary 3.4 asserts that F is exact if and only if codimX2 ≥ 2.
But X2 consists of the points p where ϕ2 fails to be a monomorphism—that is, where
rank(ϕ(p)) ≤ 1. If p = (p0, . . . , p3) ∈ X2 and p0 = 0 we see, by inspecting the matrix ϕ2,
that p1 = p2 = 0, so p = (0, 0, 0, p3). Such points form a set of codimension 3 in K4. On
the other hand, if p ∈ X2 and p0 6= 0 we see, again by inspecting the matrix ϕ2, that
p2 = (p1/p0)

2 and p3 = (p1/p0)
3. Thus p is determined by the two parameters p0, p1, and

the set of such p has codimension at least 4−2 = 2. In particular X2, the union of these
two sets, has codimension at least 2, so F is exact by Corollary 3.4.

In this example all the ideals are homogeneous, and the projective algebraic set X2 is
in fact the twisted cubic curve.

A consequence of Theorem 3.2 in the general case is that any ideal with a free resolution
of length 1 contains a nonzerodivisor. Theorem 3.3 allows us to prove a more general result
of Auslander and Buchsbaum:
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Corollary 3.6 (Auslander–Buchsbaum). An ideal I that has a finite free resolution
contains a nonzerodivisor .

In the nongraded, nonlocal case, having a finite projective resolution (finite projective
dimension) would not be enough; for example, if k is a field, the ideal k×{0} ⊂ k×k is
projective but does not contain a nonzerodivisor.

Proof. In the free resolution

0 - Fn
ϕn- · · · ϕ2- F1

ϕ1- R - R/I - 0

the ideal I(ϕ1) is exactly I. By Theorem 3.3 it has grade at least 1.

The proof of Theorem 3.2 depends on an identity:

Lemma 3.7. If M is a (t+1)× t matrix over a commutative ring R, and a ∈ R, the
composition

Rt
M- Rt+1 ∆- R

is zero, where the map ∆ is given by the matrix ∆ = (a∆1, . . . , a∆t+1), the element ∆i

being the t× t minor of M omitting the i-th row (remember that by definition this minor
is (−1)i times the determinant of the corresponding submatrix).

Proof. Write ai,j for the (i, j) entry of M. The i-th entry of the composite map ∆M is
a

∑
j ∆jai,j , that is, a times the Laplace expansion of the determinant of the (t+1)×(t+1)

matrix obtained from M by repeating the i-th column. Since any matrix with a repeated
column has determinant zero, we get ∆M = 0.

Proof of Theorem 3.2. We prove the last statement first: suppose that the grade of It(M)
is at least 2 and a is a nonzerodivisor. It follows that the rank of M is t, so that I(M) =
It(M), and the rank of ∆ is 1. Thus I(∆) = I1(∆) = aI(M) and the grade of I(∆) is at
least 1. By Theorem 3.3,

0 - F
M- G - I - 0

is the resolution of I = aI(M), as required.
We now turn to the first part of Theorem 3.2. Using the inclusion of the ideal I in R,

we see that there is a free resolution of R/I of the form

0 - F
M- G

A- R.

Since A is nonzero it has rank 1, and it follows from Theorem 3.3 that the rank of M
must be t, and the rank of G must be t+1. The grade of I(M) = It(M) is at least 2.
Theorem A2.54 shows that the codimension of the ideal of t× t minors of a (t+ 1)× t
matrix is at most 2. By Theorem A2.11 the codimension is an upper bound for the grade,
so grade I(M) = 2. Write ∆ = (∆1, . . . ,∆t+1), for the 1× (t+1) matrix whose entries
∆i are the minors of M as in Lemma 3.7. Writing −∗ for HomR(−, R), it follows from
Theorem 3.3 that the sequence

F ∗ �M
∗

G∗ �∆∗

R � 0,
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which is a complex by Lemma 3.7, is exact. On the other hand, the image of the map A∗

is contained in the kernel of M ∗, so that there is a map a : R → R such that the diagram

F ∗ �M
∗

G∗ �A∗

R

F ∗

wwwww
�M

∗

G∗

wwwww
�∆∗

R

a
?

.........

commutes. The map a is represented by a 1× 1 matrix whose entry we also call a. By
Corollary 3.6, the ideal I contains a nonzerodivisor. But from the diagram above we see
that I = aIt(M) is contained in (a), so a must be a nonzerodivisor.

As It(M) has grade 2, the ideal I = aIt(M) has grade 2 if and only if a is a unit. With
Theorem 3.3 this completes the proof.

Invariants of the Resolution

The Hilbert–Burch Theorem just described allows us to exhibit some interesting numerical
invariants of a set X of points in P2. Throughout this section we will write I = IX ⊂ S for
the homogeneous ideal of X, and SX = S/IX for the homogeneous coordinate ring of X.
By Proposition 3.1 the ideal IX has projective dimension 1, and thus SX has projective
dimension 2. Suppose that the minimal graded free resolution of SX has the form

F : 0 - F
M- G - S,

where G is a free module of rank t+1. By Theorem 3.2, the rank of F is t.
We can exhibit the numerical invariants of this situation either by using the degrees of

the generators of the free modules or the degrees of the entries of the matrix M. We write
the graded free modules G and F in the form G =

⊕t+1
1 S(−ai) and F =

⊕t
1 S(−bi),

where, as always, S(−a) denotes the free module of rank 1 with generator in degree a.
The ai are thus the degrees of the minimal generators of I. The degree of the (i, j) entry
of the matrix M is then bj −ai. As we shall soon see, the degrees of the entries on the
two principal diagonals of M determine all the other invariants. We write ei = bi−ai and
fi = bi−ai+1 for these degrees.

To make the data unique, we assume that the bases are ordered so that a1 ≥ · · · ≥ at+1

and b1 ≥ · · · ≥ bt or, equivalently, so that fi ≥ ei and fi ≥ ei+1. Since the generators of
G correspond to rows of M and the generators of F correspond to columns of M, and the
ei and fi are degrees of entries of M, we can exhibit the data schematically as follows:




b1 b2 · · · bt

a1 e1 ∗ · · · ∗
a2 f1 e2 · · · ∗
...

...
. . .

. . .
...

at ∗ · · · ft−1 et
at+1 ∗ · · · ∗ ft
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The case of 8 general points in P2 is illustrated by the following figure. The ideal of the 8
points is generated by two cubics and a quartic (in gray); the degree matrix is




b1 = 5 b2 = 5

a1 = 4 e1 = 1
a2 = 3 f1 = 2 e2 = 2
a3 = 3 f2 = 2


,

e1f1 +e1f2 +e2f2 = 8.

Since minimal free resolutions are unique up to isomorphism, the integers ai, bi, ei, fi
are invariants of the set of points X. They are not arbitary, however, but are determined
(for example) by the ei and fi. The next proposition gives these relations. We shall see
at the very end of this chapter that Proposition 3.8 gives all the restrictions on these
invariants, so that it describes the numerical characteristics of all possible free resolutions
of sets of points.

Proposition 3.8. If

F : 0 -
t∑

1

S(−bi)
M-

t+1∑

1

S(−ai) - S,

is a minimal graded free resolution of S/I, with bases ordered as above, and ei, fi denote
the degrees of the entries on the principal diagonals of M, the following statements hold
for all i.

1. ei ≥ 1 and fi ≥ 1.

2. ai =
∑
j<i ej+

∑
j≥i fj .

3. bi = ai+ei for i = 1, . . . , t and
∑t

1 bi =
∑t+1

1 ai.

If the bases are ordered so that a1 ≥ · · · ≥ at+1 and b1 ≥ · · · ≥ bt then in addition

4. fi ≥ ei, fi ≥ ei+1.

This gives an upper bound on the minimal number of generators of the ideal of a set
of points that are known to lie on a curve of given degree. Burch’s motivation in proving
her version of the Hilbert–Burch theorem was to generalize this bound, which was known
independently.
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Corollary 3.9. If I is the homogeneous ideal of a set of points in P2 lying on a curve of
degree d, then I can be generated by d+1 elements.

Proof. If t+ 1 is the minimal number of generators of I then, by Proposition 3.8, the
degree ai of the i-th minimal generator is the sum of t numbers that are each at least 1,
so t ≤ ai. Since I contains a form of degree d we must have ai ≤ d for some i.

Hilbert’s method for computing the Hilbert function, described in Chapter 1, allows us
to compute the Hilbert function and polynomial of SX in terms of the ei and fi. As we will
see in Section 4A, HX(d) is constant for large d, and its value is the number of points in
X, usually called the degree of X and written degX. If X were the complete intersection
of a curve of degree e with a curve of degree f , then in the notation of Proposition 3.8
we would have t = 1, e1 = e, f1 = f , and by Bézout’s Theorem the degree of X would
be ef = e1f1. The following is the generalization to arbitrary t, discovered by Ciliberto,
Geramita, and Orrechia [Ciliberto et al. 1986]. For the generalization to determinantal
varieties of higher codimension see [Herzog and Trung 1992, Corollary 6.5].

Corollary 3.10. If X is a finite set of points in P2 then, with notation as above,

degX =
∑

i≤j

eifj .

The proof is straightforward calculation from Proposition 3.8, and we leave it and a
related formula to the reader in Exercise 3.15.

Proof of Proposition 3.8. Since I has codimension 2 and S is a polynomial ring (and thus
Cohen–Macaulay) I has grade 2. It follows that the nonzerodivisor a that is associated to
the resolution F as in Theorem 3.2 is a unit. Again because S is a polynomial ring this
unit must be a scalar. Thus the ai are the degrees of the minors of M.

We may assume that the bases are ordered as in the last statement of the Proposition.
We first show that the ei (and thus also, by our ordering conventions, the fi) are at least 1.
Write mi,j for the (i, j) entry of M. By the minimality of F, no mi,j can be a nonzero
constant, so that if ei ≤ 0 then mi,i = 0. Moreover if p ≤ i and q ≥ i then

degmp,q = bq−ap ≤ bi−ai = ei,

by our ordering of the bases. If ei ≤ 0 then mp,q = 0 for all (p, q) in this range, as in the
following diagram, where t = 4 and we assume e3 ≤ 0:

M =




∗ ∗ 0 0
∗ ∗ 0 0
∗ ∗ 0 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗



.

We see by calculation that the determinant of the upper t× t submatrix of M vanishes.
By Theorem 3.2 this determinant is a minimal generator of I, and this is a contradiction.
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The identity ai =
∑
j<i ej +

∑
j≥i fj again follows from Theorem 3.2, since ai is the

degree of the determinant ∆i of the submatrix of M omitting the i-th row, and one term
in the expansion of this determinant is

∏

j<i

mj,j ·
∏

j≥i

mj+1,j .

Since ei = bi−ai. we get

t∑

1

bi =
t∑

1

ai+
t∑

1

ei =
t+1∑

1

ai.

3B Examples

Example 3.11 (Points on a conic). We illustrate the theory above, in particular
Corollary 3.9, by discussing the possible resolutions of a set of points lying on an irreducible
conic.

1
2 3

· · ·
d

1

2

3
. . .

d

For the easy case of points on a line, and the more complicated case of points on a
reducible conic, see Exercises 3.1 and 3.3–3.6 below.

Suppose that the point set X ⊂ P2 does not lie on any line, but does lie on some conic,
defined by a quadratic form q. In the notation of Proposition 3.8 we have at+1 = 2. Since
at+1 =

∑t
1 ei, it follows from Proposition 3.8 that either t = 1 and e1 = 2 or else t = 2

and e1 = e2 = 1.

1. If t = 1 then X is a complete intersection of the conic with a curve of degree a1 = d
defined by a form g. By our formula (or Bézout’s Theorem), the degree of X is 2d.
Note in particular that it is even. We have b1 = d+2, and the resolution takes the
following form (see also Theorem A2.48):

S(−2)

����g > ZZZZ
q

~
0 - S(−d−2) ⊕ S - SX

ZZZZ−q ~ ����

g

>

S(−d)
In the case d = 2 the Betti diagram of this resolution is

0 1 2

0 1 − −
1 − 2 −
2 − − 1
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while for larger d it takes the form

0 1 2

0 1 − −
1 − 1 −
2 − − −
...

...
...

...
d−2 − − −
d−1 − 1 −

d − − 1

2. The other possibility is that t = 2 and e1 = e2 = 1. We will treat only the case where
the conic q = 0 is irreducible, and leave the reducible case to the reader in Exercises
3.3–3.6 at the end of the chapter. By Proposition 3.8 the resolution has the form

0 - S(−1−f1−f2)⊕S(−2−f2)
M- S(−f1−f2)⊕S(−1−f2)⊕S(−2) - S,

where we assume that f1 ≥ e1 = 1, f1 ≥ e2 = 1, and f2 ≥ e2 = 1 as usual. If there are
two quadratic generators, we further assume that the last generator is q.

By Theorem 3.2, q is (a multiple of) the determinant of the 2×2 matrix M ′ formed
from the first two rows of M. Because q is irreducible, all four entries of the upper 2×2
submatrix ofM must be nonzero. The upper right entry ofM has degree e1+e2−f1 ≤ 1.
If it were of degree 0, by the supposed minimality of the resolution it would itself be 0,
contradicting the irreducibility of q. Thus e1+e2−f1 = 1, so f1 = 1. By our hypothesis
a3 = 2, and it follows from Proposition 3.8 that a1 = a2 = 1+f2, b1 = b2 = 2+f2. We
deduce that the resolution has the form

0 - S(−2−f2)2
M- S(−1−f2)2⊕S(−2) - S.

If f2 = 1 the Betti diagram is
0 1 2

0 1 − −
1 − 3 2

while if f2 > 1 it has the form

0 1 2

0 1 − −
1 − 1 −
2 − − −
...

...
...

...
f2−1 − − −

f2 − 2 2

Applying the formula of Corollary 3.10 we get degX = 2f2 +1. In particular, we can
distinguish this case from the complete intersection case by the fact that the number
of points is odd.
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Example 3.12 (Four noncolinear points). Any 5 points lie on a conic, since the
quadratic forms in 3 variables form a five-dimensional vector space, and vanishing at a
point is one linear condition, so there is a nonzero quadratic form vanishing at any 5
points. Thus we can use the ideas of the previous subsection to describe the possible
resolutions for up to 5 points. One set of three noncolinear points in P2 is like another, so
we treat the case of a set X = {p1, . . . , p4} of four noncolinear points, the first case where
geometry enters. (For the case of 3 points see Exercise 3.2.)

Since there is a six-dimensional vector space of quadratic forms on P2, and the condition
of vanishing at a point is a single linear condition, there must be at least two distinct conics
containing X.

First suppose that no three of the points lie on a line. It follows that X is contained in
the following two conics, each a union of two lines:

C1 = p1, p2∪p3, p4 C2 = p1, p3∪p2, p4.

In this case, X is the complete intersection of C1 and C2, and we have the Betti diagram

0 1 2

0 1 − −
1 − 2 −
2 − − 1

The two conics are two pairs of lines containing the four points.

On the other hand, suppose that three of the points, say p1, p2, p3 lie on a line L. Let
L1 and L2 be lines through p4 that do not contain any of the points p1, p2, p3. It follows
that X lies on the two conics

C1 = L∪L1 C2 = L∪L2,

and the intersection of these two conics contains the whole line L. Thus X is not the
complete intersection of these two conics containing it, so by Corollary 3.9 the ideal of X
requires exactly 3 generators. From Propositions 3.8 and 3.10 it follows that

e1 = e2 = 1, f1 = 2, f2 = 1,
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L

L1

L2

Four points, three on a line, are the intersection

of two conics (here L∪L1 and L∪L2) and a cubic.

and the ideal I of X is generated by the quadrics defining C1 and C2 together with a
cubic equation.

The Betti diagram will be
0 1 2

0 1 − −
1 − 2 1
2 − 1 1

3C The Existence of Sets of Points with Given Invariants

This section is devoted to a proof of the following converse of Proposition 3.8:

Theorem 3.13. If the ground field K is infinite and ei, fi ≥ 1, for i = 1, . . . , t, are
integers, there is a set of points X ⊂ P2 such that SX has a minimal free resolution whose
second map has diagonal degrees ei and fi as in Proposition 3.8.

The proof is in two parts. First we show that there is a monomial ideal J ⊂ K[x, y]
(that is, an ideal generated by monomials in the variables), containing a power of x and
a power of y, whose free resolution has the corresponding invariants. This step is rather
easy. Then, given any such monomial ideal J we will show how to produce a set of distinct
points in P2 whose defining ideal I has free resolution with the same numerical invariants
as that of J .

The second step, including Theorem 3.16, is part of a much more general theory, some-
times called the polarization of monomial ideals. We sketch its fundamentals in the exer-
cises at the end of this chapter.

Proposition 3.14. Let S = K[x, y] and let e1, . . . , et and f1, . . . , ft be positive integers.
For i = 1, . . . , t+1 set

mi =
∏

j<i

xej

∏

j≥i

yfj ,
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and let I = (m1, . . . ,mt+1) ⊂ S be the monomial ideal generated by these products. Define
ai and bi by the formulas of Proposition 3.8. The ring S/I has minimal free resolution

0 -
t∑

i=1

S(−bi)
M-

t+1∑

i=1

S(−ai) - S - S/I → 0

where

M =




xe1 0 0 · · · 0 0
yf1 xe2 0 · · · 0 0
0 yf2 xe3 · · · 0 0
0 0 yf3 . . . 0 0
...

...
...

. . .
. . .

...

0 0 0 · · · yft−1 xet

0 0 0 · · · 0 yft




and the generator of S(−ai) maps to ±mi ∈ S.

Proof. It is easy to see that mi is the determinant of the submatrix of M omitting the
i-th row. Thus by Theorem 3.2 it suffices to show that the ideal of maximal minors of M
has grade at least 2. But this ideal contains

∏t
i=1 x

ei and
∏t
i=1 y

fi .

As background to the second part of the theorem’s demonstration, we will prove general
results that allow us to manufacture a reduced algebraic set having ideal with the same
Betti diagram as any given monomial ideal, as long as the ground field K is infinite. This
treatment follows Geramita, Gregory and Roberts [Geramita et al. 1986].

Here is the tool we will use to show that the two resolutions have the same Betti
diagram:

Lemma 3.15. Let R be a ring . If M is an R-module and y ∈ R is a nonzerodivisor
both on R and on M, then any free resolution of M over R reduces modulo (y) to a free
resolution of M/yM over R/(y). If , in addition, R is a graded polynomial ring , M is a
graded module, and y is a linear form, then the Betti diagram of M (over R) is the same
as the Betti diagram of M/yM (over the graded polynomial ring R/(y).)

Proof. Let F : · · · → F1 → F0 be a free resolution of M. We must show that F/yF =
R/(y)⊗RF, which is obviously a free complex of R/(y)-modules, is actually a free resolu-
tion—that is, its homology is trivial except at F0, where it is M/yM. The homology of
F/yF = R/(y)⊗RF is by definition TorR∗ (R/(y),M). Because y is a nonzerodivisor on R,
the complex

0 → R
y- R→ R/(y) → 0

is exact, and it is thus a free resolution of R/(y). We can use this free resolution in-
stead of the other to compute Tor (see [Eisenbud 1995, p. 674], for example), and we
see that TorR∗ (R/(y),M) is the homology of the sequence 0 →M

y- M . Since y is a
nonzerodivisor on M, the homology is just M/yM in degree 0, as required.

We now return to the construction of sets of points. If K is infinite we can choose r
embeddings (of sets) ηi : N ↪→ K. (If K has characteristic 0, we could choose all ηi equal to
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the natural embedding ηi(n) = n ∈ Z ⊂ K, but any assignment of distinct ηi(n) ∈ K will
do. In general we could choose all ηi to be equal, but the extra flexibility will be useful in
the proof.) We use the ηi to embed Nr, regarded as the set of monomials of K[x1, . . . , xr],
into PK

r: if m = xp11 · · ·xpr
r we set η(m) = (1, η1(p1), . . . , ηr(pr)), and we set

fm =

r∏

i=1

pi−1∏

j=0

(xi−ηi(j)x0).

Note in particular that fm ≡ m mod (x0); we will maintain this notation throughout this
section. We think of fm as the result of replacing the powers of each xi in m by products
of the distinct linear forms xi−ηi(j)x0.

Theorem 3.16. Let K be an infinite field , with an embedding Nr ⊂ PK
r as above, and

let J be a monomial ideal in K[x1, . . . , xr]. Let XJ ⊂ Pr be the set

XJ = {p ∈ Nr ⊂ Pr | xp /∈ J}.

The ideal IXJ
⊂ S = K[x0, . . . , xr] has the same Betti diagram as J ; in fact x0 is a

nonzerodivisor modulo IXJ
, and J ≡ IXJ

mod (x0). Moreover , IXJ
is generated by the

forms fm where m runs over a set of monomial generators for J .

Before we give the proof, two examples will clarify the result:

Example 3.17. In the case of a monomial ideal J in K[x1, . . . , xr] that contains a power
of each variable xi, such as the ones in K[x, y] described in Proposition 3.14, the set XJ

is finite. Thus Theorem 3.16 and Proposition 3.14 together yield the existence of sets of
points in P2 whose free resolution has arbitrary invariants satisfying Proposition 3.8. For
example, the Betti diagram

0 1 2

0 1 − −
1 − − −
2 − 1 −
3 − 2 1
4 − − 1

corresponds to invariants (e1, e2) = (2, 1) and (f1, f2) = (2, 2), and monomial ideal J =
(y4, x2y2, x3), where we have replaced x1 by x and x2 by y to simplify notation. We
will also replace x0 by z. Assuming, for simplicity, that K has characteristic 0 and that
ηi(n) = n for all i, the set of points XJ in the affine plane z = 1 looks like this:
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Its ideal is generated by the polynomials

y(y−1)(y−2)(y−3)

x(x−1)y(y−1)y

x(x−1)(x−2).

As a set of points in projective space, it has ideal IXJ
⊂ K[z, x, y] generated by the

homogenizations
fy4 = y(y−z)(y−2z)(y−3z)

fx2y2 = x(x−z)y(y−z)
fx4 = x(x−z)(x−2z).

Example 3.18. Now suppose that J does not contain any power of x ( = x1). There are
infinitely many isolated points in XJ , corresponding to the elements 1, x, x2, . . . /∈ J . Thus
XJ is not itself an algebraic set. Its Zariski closure (the smallest algebraic set containing
it) is a union of planes, as we shall see. For example, if J = (x2y, xy2, x3), here are XJ

and its Zariski closure:

. . .

For the proof of Theorem 3.16 we will use the following basic properties of the forms fm.

Lemma 3.19. Let K be an infinite field , and let the notation be as above.

1. If f ∈ S is a form of degree ≤ d that vanishes on η(m) ∈ Pr for every monomial m
with degm ≤ d, then f = 0.

2. fm(η(m)) 6= 0.

3. fm(η(n)) = 0 if m 6= n and degn ≤ degm.

Proof. 1. We induct on the degree d ≥ 0 and the dimension r ≥ 1. The cases in which
d = 0 or r = 1 are easy.

For any form f of degree d we may write f = (xr−ηr(0)x0)q+g, where q ∈ S is a form
of degree d−1 and g ∈ K[x0, ..., xr−1] is a form of degree ≤ d not involving xr. Suppose
that f vanishes on η(m) = (1, η1(p1), . . . , ηr(pr)) for every monomial m = xp11 . . . xpr

r of
degree ≤ d. The linear form xr−ηr(0)x0 vanishes on η(m) if and only if ηr(pr) = ηr(0),
that is, pr = 0. This means that m is not divisible by xr. Thus g vanishes on η(m) for all
monomials m of degree ≤ d that are not divisible by xr. It follows by induction on r that
g = 0.

Since g = 0, the form q vanishes on η(xrn) for all monomials n of degree ≤ d−1. If we
define new embeddings η′i by the formula η′i = ηi for i < r but η′r(p) = ηr(p+1), and let
η′ be the corresponding embedding of the set of monomials, then q vanishes on η ′(n) for
all monomials n of degree at most d−1. By induction on d, we have q = 0, whence f = 0
as required.

2. This follows at once from the fact that η : N → K is injective.
3. Write m = xp11 . . . xpr

r and n = xq11 . . . xqr
r . Since degn ≤ degm we have qi < pi for

some i. It follows that fm(η(n)) = 0.
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Proof of Theorem 3.16. Let I be the ideal generated by {fm} where m ranges over a set
of monomial generators of J . We first prove that I = IXJ

.
For every pair of monomials m ∈ J, n /∈ J one of the exponents of n is strictly less than

the corresponding exponent of m. It follows immediately that I ⊂ IXJ
.

For the other inclusion, let f ∈ IXJ
be any form of degree d. Suppose that for some

e ≤ d the form f vanishes on all the points η(n) for deg n < e, but not on some η(m) with
degm = e. By parts 2 and 3 of Lemma 3.19 we can subtract a multiple of xd−e0 fm from f
to get a new form of degree d vanishing on η(m) in addition to all the points η(m′) where
either degm′ < e or degm′ = e and f(η(m′)) = 0. Proceeding in this way, we see that
f differs from an element of I by a form g of degree d that vanishes on η(m) for every
monomial m of degree ≤ d. By part 1 of Lemma 3.19 we have g = 0, so f ∈ I. This proves
that I = IXJ

.
Since none of the points η(m) lies in the hyperplane x0 = 0, we see that x0 is a nonze-

rodivisor modulo IXJ
. On the other hand it is clear from the form of the given generators

that I ∼= J mod (x0). Applying Lemma 3.15 below we see that a (minimal) resolution
of I over S reduces modulo x0 to a (minimal) free resolution of J over K[x1, . . . , xr]; in
particular the Betti diagrams are the same.

3D Exercises

1. Let X be a set of d points on a line in P2. Use Corollary 3.9 to show that the ideal IX
can be generated by two elements, the linear form defining the line and one more form
g, of degree a1 = d. Compute the Betti diagram of SX .

2. By a change of coordinates, any three noncolinear points can be taken to be the points
x = y = 0, x = z = 0, and y = z = 0. Let X be this set of points. Show that X lies on
a smooth conic and deduce that its ideal IX must have 3 quadratic generators. Prove
that IX = (yz, xz, xy). By Proposition 3.8 the matrix M of syzygies must have linear
entries; show that it is 


x 0

−y y
0 −z


 .

The three pairs of lines span the space of conics through the three points.
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In Exercises 3.3 to 3.6 we invite the reader to treat the case where the conic in part 2
(where t = z) of Example 3.11 is reducible, that is, its equation is a product of linear
forms. Changing coordinates, we may assume that the linear forms are x and y. The
following exercises all refer to a finite set (or, in the last exercise, scheme) of points lying
on the union of the lines x = 0 and y = 0, and its free resolution. We use the notation of
pages 34–35. We write a for the point with coordinates (0, 0, 1) where the two lines meet.

3. Show that the number of points is f1 +2f2, which may be even or odd.

4. Suppose that M ′ : F → G1 is a map of homogeneous free modules over the ring
S = K[x, y, z], and that the determinant of M ′ is xy. Show that with a suitable choice
of the generators of F and G1, and possibly replacing z by a linear form z ′ in x, y, z,
the map M ′ can be represented by a matrix of the form

(
xy 0
0 1

)
or

(
x 0
0 y

)
or

(
x 0
z′f y

)

for some integer f ≥ 0.

5. Deduce that the matrix M occuring in the free resolution of the ideal of X can be
reduced to the form

M =




x 0
zf1 y

p(y, z) q(x, z)


 ,

where p and q are homogeneous forms of degrees f1 +f2−1 and f2 respectively. Show
that X does contains the point a if and only if q(x, z) is divisible by x.

6. Supposing that X does not contain the point a, show that X contains precisely f2

points on the line y = 0 and f1 +f2 points on the line x = 0.

7. Consider the local ring R = k[x, y](x,y), and let I ⊂ R be an ideal containing xy such
that R/I is a finite-dimensional k vector space. Show that (possibly after a change of
variable) I = (xy, xs, yt) or I = (xy, xs+yt). Show that

dimk R/(xy, x
s, yt) = s+ t−1; dimk R/(xy, x

s+yt) = s+ t.

Regarding R as the local ring of a point in P2, we may think of this as giving a
classfication of all the schemes lying on the union of two lines and supported at the
intersection point of the lines.

8. (For those who know about schemes) In the general case of a set of points on a reducible
conic, find invariants of the matrix M (after row and column transformations) that
determine the length of the part of X concentrated at the point a and the parts on
each of the lines x = 0 and y = 0 away from the point a.

9. Let u ≥ 1 be an integer, and suppose that K is an infinite field. Show that any
sufficiently general set X of

(
u+1

2

)
points in P2 has free resolution of the form

0 - Su(−u−1)
M- Su+1(−u) - S;

that is, the equations of X are the minors of a (u+1)×u matrix of linear forms.
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Exercises 3.10–3.14 explain when we can apply the technique of Theorem 3.16 to the
set X ⊂ Pr. As an application, we produce very special sets of points with the same Betti
diagrams as general sets of points.

10. (Monomial ideals and partitions.) Suppose that J ⊂ K[x1, x2] is a monomial ideal such
that dimK K[x1, x2]/J = d <∞. For each i, let σi be the number of monomials of the
form xi1x

j
2 not in J . Similarly, for each j let τj be the number of monomials of the form

xi1x
j
2 not in J .

(a) Show that σ is a partition of d, in the sense that

σ0 ≥ σ1 ≥ · · · ≥ 0 and
∑

w

σw = d.

(b) Show that the function J 7→ σ is a one-to-one correspondence between monomial
ideals J with dimK K[x1, x2]/J = d and partitions of d.

(c) Show that σ and τ are dual partitions in the sense that σw is the number of integers
v such that τv = w, and conversely.

11. Now suppose that U, V are finite subsets of K, and identify U ×V with its image in
K2 ⊂ P2

K
. Let X ⊂ P2 be a finite subset of U×V . For i ∈ U and j ∈ V , let gi be the

number of points of X in {i}×V , and let hj be the number of points of X in U×{j}.
Write σ = (σ0, σ1, . . .) with σ0 ≥ σ1 ≥ · · · for the sequence of nonzero numbers

gi, written in decreasing order, and similarly for τ and hj . Show that if σ and τ are
dual partitions, and J is the monomial ideal corresponding to σ as in Exercise 3.10,
then the Betti diagram of SX is the same as that of K[x1, x2]/J . (Hint: You can use
Theorem 3.16.)

12. (Gaeta.) Suppose d ≥ 0 is an integer, and let t, s be the coordinates of d in the diagram

0 1 2 3 4
t

0

1

2

3

4

s

0 1 3 6 10

2 4 7 11

5 8 12

9 13

14

Algebraically speaking, s, t are the unique nonnegative integers such that

d =

(
s+ t+1

2

)
+s, or equivalently d =

(
s+ t+2

2

)
− t−1.
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(a) Use Theorem 3.16 to show that there is a set of d points X ⊂ P2 with Betti diagram

0 1 2

0 1 − −
1 − − −
...

...
...

...
− − −

s+ t−1 − t+1 t−s

s+ t − − s

or

0 1 2

0 1 − −
1 − − −
...

...
...

...
− − −

s+ t−1 − t+1 −
s+ t − s− t s

according as s ≤ t or t ≤ s. (This was proved by Gaeta [1951] using the technique of
linkage; see [Eisenbud 1995, Section 21.10] for the definition of linkage and modern
references.)

(b) Let MX be the presentation matrix for the ideal of a set of points X as above. Show
that if s ≤ t then MX has t+1 rows, with s columns of quadrics followed by t−s
columns of linear forms; while if t ≤ s then MX has s+1 rows, with s− t rows of
linear forms followed by t+1 rows of quadrics.

(c) (The Gaeta set.) Suppose that K has characteristic 0. Define the Gaeta set of d
points to be the set of points in the affine plane with labels 1, 2, . . . , d in the picture
above, regarded as a set of points in P2. Show that if X is the Gaeta set of d points,
then the Betti diagram of SX has the form given in part (a). (Hint: Theorem 3.16
can still be used.)

(d) Find the smallest d such that the d points 0, 1, . . . , d− 1 have a different Hilbert
function than the d points 1, 2, . . . , d in the diagram above.

13. Although the Gaeta setX (part (c) of preceding exercise) is quite special— for example,
it is usually not in linearly general position—show that the free resolution of SX as
above has the same Betti diagram as that of the generic set of d points. (Saying that
“the generic set of d points in P2” has a certain property is saying that this property
is shared by all d-tuples of points in some open dense set of (P2)d.) One way to prove
this is to follow these steps. Let Y be the generic set of d points.

(a) Show that the generic set of points Y has Hilbert functionHSY
(n)=min{HS(n), d},

and that this is the same as for the Gaeta set.

(b) Deduce that with s, t defined as above, the ideal IY of Y does not contain any form
of degree < s+ t, and contains exactly t+1 independent forms of degree s+ t; and
that IY requires at least (s−t)+ generators of degree s+t+1, where (s−t)+ denotes
max{0, s− t}, the “positive part” of s− t.

(c) Show that the fact that the ideal of the Gaeta set requires only (s−t)+ generators
of degree s+ t+1, and none of higher degree, implies that the same is true for an
open (and thus dense) set of sets of points with d elements, and thus is true for Y .

(d) Conclude that the resolution of SX has the same Betti diagram as that of SY .

Despite quite a lot of work we do not know how to describe the free resolution of a
general set of d points in Pr. It would be natural to conjecture that the resolution is
the “simplest possible, compatible with the Hilbert function”, as in the case above,
and this is known to be true for r ≤ 4. On the other hand it fails in general; the
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simplest case, discovered by Schreyer, is for 11 points in P6, and many other examples
are known. See Eisenbud, Popescu, Schreyer and Walter [Eisenbud et al. 2002] for a
recent account.

14. (Geramita, Gregory, and Roberts [Geramita et al. 1986]) Suppose J ⊂ K[x1, . . . , xr] is
a monomial ideal, and that the cardinality of K is q. Suppose further that no variable
xi appears to a power higher than q in a monomial minimal generator of J . Show
that there is a radical ideal I ⊂ S = K[x0, . . . , xr] such that x0 is a nonzerodivisor
modulo I and J ∼= I mod (x0). (Hint: Although XJ may not make any sense over K,
the generators of IXJ

defined in Theorem 3.16 can be defined in S. Show that they
generate a radical ideal.)

15. (Degree formulas.) We will continue to assume that X ⊂ P2 is a finite set of points,
and to use the notation for the free resolution of SX developed in Proposition 3.8.

Show that

HX(d) = HS(d)−
t+1∑

i=1

HS(d−ai)+
t∑

i=1

HS(d−bi)

=

(
d+2

2

)
−
t+1∑

i=1

(
d−ai+2

2

)
+

t∑

i=1

(
d−bi+2

2

)

and

PX(d) =
(d+2)(d+1)

2
−

t+1∑

i=1

(d−ai+2)(d−ai+1)

2
+

t∑

i=1

(d−bi+2)(d−bi+1)

2
.

Deduce that in PX(d) the terms of degree ≥ 1 in d all cancel. (Of course this can also
be deduced from the fact that the degree of PX is the dimension of X.) Prove that

PX(0) =
1

2

( t∑

i=1

b2i −
t+1∑

i=1

a2
i

)
=

∑

i≤j

eifj .

In Chapter 4 we will see that PX(0) = degX.

16. (Sturmfels.) Those who know about Gröbner bases (see [Eisenbud 1995, Chapter 15],
for instance) may show that, with respect to a suitable term order, the ideal IXJ

constructed in Theorem 3.16 has initial ideal J .

Monomial ideals. This beautiful theory is one of the main links between commu-
tative algebra and combinatorics, and has been strongly developed in recent years. We
invite the reader to work out some of this theory in Exercises 3.17–3.24. These results only
scratch the surface. For more information see [Eisenbud 1995, Section 15.1 and Exercises
15.1–15.6] and [Miller and Sturmfels 2004].
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17. (Ideal membership for monomial ideals.) Show that if J = (m1, . . . ,mg) ⊂ T =
K[x1, . . . , xn] is the ideal generated by monomials m1, . . . ,mg then a polynomial p
belongs to J if and only if each term of p is divisible by one of the mi.

y3

x3y

x4

18. (Intersections and quotients of monomial ideals.) Let I =(m1, . . . ,ms), J =(n1, . . . , nt)
be two monomial ideals. Show that

I∩J = ({LCM(mi, nj) | i = 1 . . . s, j = 1, . . . , t})

and

(I : J) =
⋂
j=1...,t({mi : nj | i = 1 . . . s}),

where we write m : n for the “quotient” monomial p = LCM(m,n)/n, so that (m) :
(n) = (p).

19. (Decomposing a monomial ideal.) Let J = (m1, . . . ,mt) ⊂ T = K[x1, . . . , xn] be a
monomial ideal. If mt = ab where a and b are monomials with no common divisor,
show that

(m1, . . . ,mt) = (m1, . . . ,mt−1, a) ∩ (m1, . . . ,mt−1, b).

20. Use the preceding exercise to decompose the ideal (x2, xy, y3) into the simplest pieces
you can.

21. The only monomial ideals that cannot be decomposed by the technique of Exercise 3.19
are those generated by powers of the variables. Let

Jα = (xα1
1 , xα2

2 , . . . , xαn
n )

where we allow some of the αi to be ∞ and make the convention that x∞i = 0. Set
N∗ = Z∪{∞}. Now show that any monomial ideal J may be written as J =

⋂
α∈A Jα

for some finite set A ⊂ Nn
∗ . The ideal Jα is Pα := ({xi | αi 6= ∞})-primary. Deduce

that the variety corresponding to any associated prime of a monomial ideal J is a plane
of some dimension.
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22. If P is a prime ideal, show that the intersection of finitely many P -primary ideals is P -
primary. Use the preceding exercise to find an irredundant primary decomposition, and
the associated primes, of I = (x2, yz, xz, y2z, yz2, z4). (Note that the decomposition
produced by applying Exercise 3.19 may produce redundant components, and also may
produce several irreducible components corresponding to the same associated prime.)

23. We say that an ideal J is reduced if it is equal to its own radical; that is, if pn ∈ J implies
p ∈ J for any ring element p. An obvious necessary condition for a monomial ideal to
be reduced is that it is square-free in the sense that none of its minimal generators is
divisible by the square of a variable. Prove that this condition is also sufficient.

24. (Polarization and Hartshorne’s proof of Theorem 3.16.) An older method of prov-
ing Theorem 3.16, found in [Hartshorne 1966], uses a process called polarization. If
m = xa1

1 x
a2
2 . . . xan

n is a monomial, the polarization of m is a monomial (in a larger
polynomial ring) obtained by replacing each power xai

i by a product of ai distinct new
variables P (xai

i ) = xi,1 . . . xi,ai
. Thus

P (m) =
∏

i

∏

j

xij ∈ K[x1,1, . . . , xn,an
].

Similarly, if J = (m1, . . . ,mt) ⊂ T = K[x1, . . . , xn] is a monomial ideal, then we
define the polarization P (J) to be the ideal generated by P (m1), . . . , P (mt) in a
polynomial ring T = K[x1,1, . . .] large enough to form all the P (mi). For example,
if J = (x2

1, x1x
2
2) ⊂ K[x1, x2] then

P (J) = (x1,1x1,2, x1,1x2,1x2,2) ⊂ K[x1,1, x1,2, x2,1, x2,2].

(a) Show that P (J) is square-free and that if xi,j+1 divides a polarized monomial P (m),
then xi,j divides P (m). Let L be the ideal of T generated by all the differences
xi,j−xi,k. Note that T/L ' S, and that the image of P (J) in S is J . Prove that a
minimal set of generators for L is a regular sequence modulo P (J). Conclude that
the Betti diagram of P (J) is equal to the Betti diagram of J .

(b) Suppose the ground field K is infinite and J is a monomial ideal in K[x1, x2] con-
taining a power of each variable, with polarization P (J) ⊂ K[x0, . . . , xr]. Show
that for a general set of r− 2 linear forms y3, . . . , yr in the xi the ideal P (J) +
(y3, . . . , yr)/(y3, . . . , yr) is reduced and defines a set of points in the 2-plane defined
by y3 = 0, . . . , yr = 0. Show that the ideal I of this set of points has the same Betti
diagram as J .



This is page 51
Printer: Opaque this

4

Castelnuovo–Mumford Regularity

4A Definition and First Applications

The Castelnuovo–Mumford regularity, or simply regularity, of an ideal in S is an important
measure of how complicated the ideal is. A first approximation is the maximum degree of a
generator the ideal requires; the actual definition involves the syzygies as well. Regularity
is actually a property of a complex, defined as follows.

Let S = K[x0, . . . , xr] and let

F : · · · - Fi - Fi−1
- · · ·

be a graded complex of free S-modules, with Fi =
∑

j S(−ai,j). The regularity of F is the
supremum of the numbers ai,j−i. The regularity of a finitely generated graded S-module
M is the regularity of a minimal graded free resolution of M. We will write regM for
this number. The most important special case gets its own terminology: if X ⊂ Pr

K
is a

projective variety or scheme and IX is its ideal, then reg I is called the regularity of X, or
regX.

For example, if M is free, the regularity of M is the supremum of the degrees of a set of
homogeneous minimal generators of M. In general, the regularity of M is an upper bound
for the largest degree of a minimal generator of M, which is the supremum of the numbers
a0,j − 0. Assuming that M is generated by elements of degree 0, the regularity of M is
the index of the last nonzero row in the Betti diagram of M. Thus, in Example 3.17, the
regularity of the homogeneous coordinates ring of the points is 4.

The power of the notion of regularity comes from an alternate description, in terms
of cohomology, which might seem to have little to do with free resolutions. Historically,
the cohomological interpretation came first. David Mumford defined the regularity of a
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coherent sheaf on projective space in order to generalize a classic argument of Casteln-
uovo. Mumford’s definition is given in terms of sheaf cohomology; see Section 4D below.
The definition for modules, which extends that for sheaves, and the equivalence with the
condition on the resolution used as a definition above, come from [Eisenbud and Goto
1984]. In most cases the regularity of a sheaf, in the sense of Mumford, is equal to the
regularity of the graded module of its twisted global sections.

To give the reader a sense of how regularity is used, we postpone the technical treatment
to describe two applications.

The Interpolation Problem

We begin with a classic problem. It is not hard to show that if X is a finite set of points in
Ar = Ar

K
, all functions from X to K are induced by polynomials. Indeed, ifX has n points,

polynomials of degree at most n−1 suffice. To see this, letX = {p1, . . . , pn} and assume for
simplicity that the field K is infinite (we will soon see that this is unnecessary). Using this
assumption we can choose an affine hyperplane passing through pi but not through any
of the other pj . Let `i be a linear function vanishing on this hyperplane: that is, a linear
function on Ar such that `i(pi) = 0 but `i(pj) 6= 0 for all j 6= i. If we set Qi =

∏
j 6=i `j ,

the polynomial
n∑

i=1

ai
Qi(pi)

Qi

takes the value ai at the point pi for any desired values ai ∈ K.
The polynomials Qi have degree n−1. Can we find polynomials of strictly lower degree

that give the same functions on X? Generally not: a polynomial of degree less than n−1
that vanishes at n−1 points on a line vanishes on the entire line, so if all the points of X
lie on a line, the lowest possible degree is n−1. On the other hand, if we consider the set of
three noncolinear points {(0, 0), (0, 1), (1, 0)} in the plane with coordinates x, y, the linear
function a(1−x−y) + by + cx takes arbitrary values a, b, c at the three points, showing
that degree 1 polynomials suffice in this case although 1 < n−1 = 2. This suggests the
following problem.

Interpolation Problem. Given a finite set of points X in Ar, what is the smallest
degree d such that every function X → K can be realized as the restriction from Ar of a
polynomial function of degree at most d?

The problem has nothing to do with free resolutions; but its solution lies in the regu-
larity.

Theorem 4.1. Let X ⊂ Ar ⊂ Pr be a finite collection of points, and let SX be the
homogeneous coordinate ring of X as a subset of Pr. The interpolation degree of X is
equal to regSX , the regularity of SX .

The proof comes in Section 4B. As we shall see there, the interpolation problem is
related to the question of when the Hilbert function of a module becomes equal to the
Hilbert polynomial.
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When Does the Hilbert Function Become a Polynomial?

As a second illustration of how the regularity is used, we consider the Hilbert polynomial.
Recall that HM (d) = dimK Md is the Hilbert function of M, and that it is equal to a
polynomial function PM (d) for large d. How large does d have to be for HM (d) = PM (d)?
We will show that the regularity of M provides a bound, which is sharp in the case of a
Cohen–Macaulay module.

Recall that a graded S-module is said to be Cohen–Macaulay if its depth is equal to its
dimension. For any finite set of points X ⊂ Pr we have depthSX = 1 = dimSX , so SX is
a Cohen–Macaulay module.

Theorem 4.2. Let M be a finitely generated graded module over the polynomial ring
S = K[x0, . . . , xr].

1. The Hilbert function HM (d) agrees with the Hilbert polynomial PM (d) for d ≥ regM+1.

2. More precisely , if M is a module of projective dimension δ, then HM (d) = PM (d) for
d ≥ regM+δ−r.

3. If X ⊂ Pr is a nonempty set of points and M = SX , then HM (d) = PM (d) if and
only if d ≥ regM. In general , if M is a Cohen–Macaulay module the bound in part 2
is sharp.

Proof. Part 1 follows at once from part 2 and the Hilbert Syzygy Theorem (Theorem 1.1),
which shows that δ ≤ r+1. To prove part 2, consider the minimal graded free resolution
of M. By assumption, it has the form

0 -
∑

j

S(−aδ,j) - · · · -
∑

j

S(−a0,j) - M - 0,

and in these terms regM = maxi,j(ai,j− i).
We can compute the Hilbert function or polynomial of M by taking the alternating sum

of the Hilbert functions or polynomials of the free modules in the resolution of M. In this
way we obtain the expressions

HM (d) =
∑

i, j

(−1)i
(
d−ai,j+r

r

)
,

PM (d) =
∑

i, j

(−1)i
(d−ai,j+r)(d−ai,j+r−1) · · · (d−ai,j+1)

r!
.

where i runs from 0 to δ. This expansion for PM is the expression for HM with each
binomial coefficient replaced by the polynomial to which it is eventually equal. In fact the
binomial coefficient

(
d−a+r
r

)
has the same value as the polynomial

(d−a+r)(d−a+r−1) · · · (d−a+1)/r!

for all d ≥ a−r. Thus from d ≥ regM+δ−r we get d ≥ ai,j− i+δ−r ≥ ai,j−r for each
ai,j with i ≤ δ. For such d, each term in the expression of the Hilbert function is equal to
the corresponding term in the expression of the Hilbert polynomial, proving part 2.
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Half of part 3 follows from part 2: The ideal defining X is reduced, and thus SX is
of depth ≥ 1 so, by the Auslander–Buchsbaum formula (Theorem A2.15), the projective
dimension of SX is r. Thus by part 2, the Hilbert function and polynomial coincide for
d ≥ regSX . The converse, and the more general fact about Cohen–Macaulay modules,
is more delicate. Again, we will complete the proof in Section 4B, after developing some
general theory. A different, more direct proof is sketched in Exercises 4.8–4.10.

4B Characterizations of Regularity: Cohomology

Perhaps the most important characterization of the regularity is cohomological. One way
to state it is that the regularity of a module M can be determined from the homology of
the complex Hom(F, S), where F is a free resolution of M. This homology is actually dual
to the local cohomology of M. We will formulate the results in terms of local cohomology.
The reader not already familiar with this notion which, in the case we will require, is a
simple extension of the notion of the (Zariski) cohomology of sheaves, should probably
take time out to browse at least the first sections of Appendix 1 (through Corollary
A1.12). The explicit use of local cohomology can be eliminated—by local duality, many
statements about local cohomology can be turned into statements about Ext modules. For
a treatment with this flavor see [Eisenbud 1995, Section 20.5]. We follow the convention
that the maximum of the empty set is −∞.

Theorem 4.3. Let M be a finitely generated graded S-module and let d be an integer .
The following conditions are equivalent :

1. d ≥ regM.
2. d ≥ max{e | Hi

m
(M)e 6= 0 }+ i for all i ≥ 0.

3. d ≥ max{e | H0
m

(M)e 6= 0}; and Hi
m
(M)d−i+1 = 0 for all i > 0.

The proof of this result will occupy most of this section. Before beginning it, we illustrate
with four corollaries.

Corollary 4.4. If M is a graded S-module of finite length, then

regM = max{d |Md 6= 0}.

Proof. H0
m
(M) = M and all the higher cohomology of M vanishes by by Corollary A1.5.

Corollary 4.4 suggests a convenient reformulation of the definition and of a (slightly
weaker) formulation of Theorem 4.3. We first extend the result of the Corollary with a
definition: If M =

⊕
Md is an Artinian graded S-module, then

regM := max{d |Md 6= 0}.

This does not conflict with our previous definition because an Artinian module that is
finitely generated over a Noetherian ring is of finite length. The local cohomology modules
of any finitely generated graded module are graded Artinian modules by local duality,
Theorem A1.9. Thus the following formulas make sense:
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Corollary 4.5. With the preceding notation,

regM = max
i

reg Tori(M,K)− i = max
j

reg Hj
m

(M)+j.

There is also a term-by-term comparison,

reg Hj
m
(M)+j ≤ reg Torr+1−j(M,K)−(r+1−j) for each j,

as we invite the reader to prove in Exercise 4.12.

Proof. The formula regM = maxj reg Hj
m(M)+ j is part of Theorem 4.3. For the rest,

let F : · · · → Fi → · · · be the minimal free resolution of M, with Fi =
∑
j S(−aij).

The module Tori(M,K) = Fi/mFi is a finitely generated graded vector space, thus a
module of finite length. By Nakayama’s Lemma, the numbers ai,j , which are the degrees
of the generators of Fi, are also the degrees of the nonzero elements of Tori(M,K). Thus
reg Tori(M,K)− i = maxj{ai,j}− i and the first equality follows.

It follows from Corollary 4.4 that the regularity of a module M of finite length is a
property that has nothing to do with the S-module structure of M —it would be the
same if we replaced S by K. Theorem 4.3 allows us to prove a similar independence
for any finitely generated module. To express the result, we write regSM to denote the
regularity of M considered as an S-module.

Corollary 4.6. Let M be a finitely generated graded S-module, and let S ′ → S be a
homomorphism of graded rings generated by degree 1 elements. If M is also a finitely
generated S′-module, then regSM = regS′ M.

Proof of Corollary 4.6. The statement of finite generation is equivalent to the statement
that the maximal ideal of S is nilpotent modulo the ideal generated by the maximal ideal
of S′ and the annihilator of M. By Corollary A1.8 the local cohomology of M with respect
to the maximal ideal of S ′ is thus the same as that with respect to the maximal ideal of
S, so Theorem 4.3 gives the same value for the regularity in either case.

Theorem 4.3 allows us to complete the proof of part 3 of Theorem 4.2. We first do the
case of points.

Corollary 4.7. If X is a set of n points in Pr then the regularity of SX is the smallest
integer d such that the space of forms vanishing on the points X has codimension n in the
space of forms of degree d.

Proof. The ring SX has depth at least 1 because it is reduced, so H0
m

(SX) = 0. Further,
since dimSX = 1 we have Hi

m
(SX) = 0 for i > 1 by Proposition A1.16. Using Theorem

4.3, we see that the regularity is the smallest integer d such that H1
m

(SX)d = 0. On the
other hand, by Proposition A1.11, there is an exact sequence

0 - H0
m

(SX) - SX -
⊕

d

H0(OX(d)) - H1
m
SX - 0.

Since X is just a finite set of points, it is isomorphic to an affine variety, and every line
bundle on X is trivial. Thus for every d the sheaf OX(d) ∼= OX , a sheaf whose sections are
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the locally polynomial functions on X. This is just KX , a vector space of dimension n.
Thus (H1

m
SX)d = 0 if and only if (SX)d = (S/IX)d has dimension n as a vector space, or

equivalently, the space of forms (IX)d of degree d that vanish on X has codimension n.

Corollary 4.8. Let M be a finitely generated graded Cohen–Macaulay S-module. If s is
the smallest number such that HM (d) = PM (d) for all d ≥ s, then s = 1−depthM+regM.

Proof. Since M is Cohen–Macaulay we have dimM = depthM , so Proposition A1.16
shows that the only local cohomology module of M that is nonzero is HdepthM

m M. Given
this, there can be no cancellation in the formula of Corollary A1.15. Thus s is the smallest
number such that HdepthM (M)d = 0 for all d ≥ s, and Corollary 4.8 follows by Theo-
rem 4.3.

See Exercise 4.6 for an example showing that the Cohen–Macaulay hypothesis is neces-
sary, and Exercise 4.9 for a proof that gives some additional information.

It will be convenient to introduce a temporary definition. We call a module weakly d-
regular if Hi

m
(M)d−i+1 = 0 for every i > 0, and d-regular if in addition d ≥ reg H0

m
(M).

In this language, Theorem 4.3 asserts that M is d-regular if and only if regM ≤ d.

Proof of Theorem 4.3. For the implication 1 ⇒ 2 we do induction on the projective di-
mension of M. If M =

⊕
S(−aj) is a graded free module, this is easy: regM = maxj aj

by definition, and the computation of local cohomology in Corollary A1.6 shows that M
is d-regular if and only if ai ≤ d for all i.

Next suppose that d ≥ regM and the minimal free resolution of M begins

· · · - L1
ϕ1- L0

- M - 0.

Let M ′ = imϕ1 be the first syzygy module of M. By the definition of regularity, regM ′ ≤
1+regM. By induction on projective dimension, we may assume that M ′ is (d+1)-regular;
in fact, since e ≥ regM for every e ≥ d we may assume that M ′ is e+1-regular for every
e ≥ d. The long exact sequence in local cohomology

· · · - Hi
m

(L0) - Hi
m
(M) - Hi+1

m
(M ′) - · · ·

yields exact sequences in each degree, and shows that M is e-regular for every e ≥ d. This
is condition 2.

The implication 2 ⇒ 3 is obvious, but 3 ⇒ 1 requires some preparation. For x ∈ R we
set

(0 :M x) = {m ∈M | xm = 0} = ker(M
x- M).

This is a submodule of M that is zero when x is a nonzerodivisor (that is, a regular
element) on M. When (0 :M x) has finite length, we say that x is almost regular on M.

Lemma 4.9. Let M be a finitely generated graded S-module, and suppose that K is
infinite. If x is a sufficiently general linear form, then x is almost regular on M.

The meaning of the conclusion is that the set of linear forms x for which (0 :M x) is
of finite length contains the complement of some proper algebraic subset of the space S1.
The same argument would work for forms of any degree d.
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Proof. The module (0 :M x) has finite length if the radical of the annihilator of (0 :M x)
is the maximal homogeneous ideal m, or equivalently, if the annihilator of (0 :M x) is not
contained in any prime ideal P 6= m. This is equivalent to the condition that for all primes
P 6= m, the localization (0 :M x)P = 0 or equivalently that x is a nonzerodivisor on the
localized module MP . For this it suffices that x not be contained in any associated prime
ideal of M except possibly m.

Each prime ideal P of S other than m intersects S1 in a proper subspace, since otherwise
P ⊃ m, whence m = P . Since there are only finitely many associated prime ideals of M,
an element x ∈ S1 has the desired property if it is outside a certain finite union of proper
subspaces.

Proposition 4.10. Suppose that M is a finitely generated graded S-module, and suppose
that x is almost regular on M .

1. If M is weakly d-regular , M/xM is weakly d-regular .

2. If M is (weakly) d-regular , M is (weakly) (d+1)-regular .

3. M is d-regular if and only if M/xM is d-regular and H0
m

(M) is d-regular .

Here is a consequence that seems surprising from the free resolution point of view.

Corollary 4.11. If a linear form x is almost regular on M , then

regM = max{reg H0
m

(M), regM/xM} = max{reg(0 :M x), regM/xM}.

Proof. The first equality follows at once from Theorem 4.3 and part 3 of the proposition.
For the second, note that (0 :M x) ⊂ H0

m
(M), so reg(0 :M x) ≤ reg H0

m
(M). On the other

hand, if f ∈ H0
m

(M) is a nonzero element of (maximal) degree reg H0
m

(M), then xf = 0,
giving the opposite inequality.

Proof of Proposition 4.10. Part 1. We set M = M/(0 :M x). Using Corollary A1.5 and
the long exact sequence of local cohomology we obtain Hi

m
(M) = Hi

m
(M) for every i > 0.

Consider the exact sequence

0 - (M)(−1)
x- M - M/xM - 0, (∗)

where the left-hand map is induced by multiplication with x. The associated long exact
sequence in local cohomology contains the sequence

Hi
m

(M)d+1−i → Hi
m

(M/xM)d+1−i → Hi+1
m

(M(−1))d+1−i.

By definition Hi+1
m

((M)(−1))d+1−i ' Hi+1
m

(M)d−i. If M is weakly d-regular then the
modules on the left and right vanish for every i ≥ 1. Thus the module in the middle
vanishes too, proving that M/xM is weakly d-regular.

Part 2. Suppose M is weakly d-regular. To prove that M is weakly d+1-regular we do
induction on dimM. If dimM = 0, then Hi

m
(M) = 0 for all i ≥ 1 by Corollary A1.5, so

M is weakly e-regular for all e and there is nothing to prove.
Now suppose that dimM > 0. Since

(0 :M x) = kerM
x- M
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has finite length, the Hilbert polynomial of M/xM is the first difference of the Hilbert
polynomial of M. From Theorem A2.11 we deduce dimM/xM = dimM − 1. We know
from part 1 that M/xM is weakly d-regular. It follows from our inductive hypothesis that
M/xM is weakly d+1-regular.

From the exact sequence (*) we get an exact sequence

Hi
m

(M(−1))(d+1)−i+1
- Hi

m
(M)(d+1)−i+1

- Hi
m

(M/xM)(d+1)−i+1.

For i ≥ 1, we have Hi
m

(M(−1)) = Hi
m

(M), and since M is weakly d-regular the left-hand
term vanishes. The right-hand term is zero because M/xM is weakly d+1-regular. Thus
M is weakly d+1-regular as asserted.

IfM is d-regular then as beforeM is weakly (d+1)-regular; and since the extra condition
on H0

m
(M) for (d+1)-regularity is included in the corresponding condition for d-regularity,

we see that M is actually (d+1) regular as well.

Part 3. Suppose first that M is d-regular. The condition that H0
m

(M)e = 0 for all e > d is
part of the definition of d-regularity, so it suffices to show that M/xM is d-regular. Since
we already know that M/xM is weakly d-regular, it remains to show that if e > d then
H0

m
(M/xM)e = 0. Using the sequence (*) once more we get the exact sequence

H0
m

(M)e → H0
m

(M/xM)e → H1
m

(M(−1))e.

The left-hand term is 0 by hypothesis. The right-hand term is equal to H1
m

(M)e−1. From
part 2 we see that M is weakly e-regular, so the right-hand term is 0. Thus H0

m
(M/xM)e =

0 as required.
Suppose conversely that H0

m
(M)e = 0 for e > d and that M/xM is d-regular. To show

that M is d-regular, it suffices to show that Hi
m

(M)d−i+1 = 0 for i ≥ 1. From the exact
sequence (*) we derive, for each e, an exact sequence

Hi−1
m

(M/xM)e+1
- Hi

m
(M)e

αe- Hi
m

(M)e+1.

Since M/xM is d-regular, part 2 shows it is e-regular for e ≥ d. Thus the left-hand term
vanishes for e ≥ d− i+1, so αe is a monomorphism. From Hi

m
(M) ∼= Hi

m
(M) we thus get

an infinite sequence of monomorphisms

Hi
m

(M)d−i+1 → Hi
m

(M)d−i+2 → Hi
m

(M)d−i+3 → · · · ,

induced by multiplication by x on Hi
m

(M). But by Proposition A1.1 every element of
Hi

m
(M) is annihilated by some power of x, so Hi

m
(M)d−i+1 itself is 0, as required.

We now complete the proof of Theorem 4.3. Assuming that M is d-regular, it remains
to show that d ≥ regM. Since extension of our base field commutes with the formation
of local cohomology, these conditions are independent of such an extension, and we may
assume for the proof that K is infinite.

Suppose that the minimal free resolution of M has the form

· · · - L1
ϕ1- L0

- M - 0.
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To show that the generators of the free module L0 are all of degree ≤ d we must show
that M is generated by elements of degrees ≤ d. For this purpose we induct on dimM. If
dimM = 0 the result is easy: M has finite length, so by d-regularity Me = H0

m
(M)e = 0

for e > d.
Set M := M/H0

m
(M). From the short exact sequence

0 → H0
m

(M) →M →M → 0,

we see that it suffices to prove that both H0
m

(M) and M are generated in degrees at most
d. For H0

m
(M) this is easy, since H0

m
(M)e = 0 for e > d.

By Lemma 4.9 we may choose a linear form x that is a nonzerodivisor on M . By Propo-
sition 4.10 we see that M/xM is d-regular. As dimM/xM < dimM , the induction shows
that M/xM , and thus M/mM , are generated by elements of degrees ≤ d. Nakayama’s
Lemma allows us to conclude that M is also generated by elements of degrees ≤ d.

If M is free, this concludes the argument. Otherwise, we induct on the projective di-
mension of M. Let M ′ = imϕ1 be the first syzygy module of M. The long exact sequence
in local cohomology coming from the exact sequence

0 - M ′ - L0
- M - 0

shows that M ′ is d+ 1-regular. By induction regM ′ ≤ d+ 1; that is, the part of the
resolution of M that starts from L1 satisfies exactly the conditions that make regM ≤ d.

Solution of the Interpolation Problem

The first step in solving the interpolation problem is to reformulate the question solely
in terms of projective geometry. To do this we first have to get away from the language
of functions. A homogeneous form F ∈ S does not define a function with a value at a
point p = (p0, . . . , pr) ∈ Pr: for we could also write p = (λp0, . . . , λpr) for any nonzero
λ, but if degF = d then F (λp0, . . . , λpr) = λdF (p0, . . . , pr) which may not be equal to
F (p0, . . . , pq). But the trouble disappears if F (p0, . . . , pr) = 0, so it does make sense to
speak of a homogeneous form vanishing at a point. This is a linear condition on the coeffi-
cients of the form (Reason: choose homogeneous coordinates for the point and substitute
them into the monomials in the form, to get a value for each monomial. The linear combi-
nation of the coefficients given by these values is zero if and only if the form vanishes at the
point.) We will say that X imposes independent conditions on the forms of degree d if the
linear conditions associated to the distinct points of X are independent, or equivalently
if we can find a form vanishing at any one of the points without vanishing at the others.
In this language, Corollary 4.7 asserts that the regularity of SX is equal to the smallest
degree d such that X imposes independent conditions on forms of degree d. The following
result completes the proof of Theorem 4.1.

Proposition 4.12. A finite set of points X ⊂ Ar ⊂ Pr imposes independent conditions
on forms of degree d in Pr if and only if every function on the points is the restriction of
a polynomial of degree ≤ d on Ar.
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l1 = 0

l2 = 0l4 = 0

l3 = 0

p1

p2

p3

p4

p5
p6

Every function {p1, . . . , p6} → R is the restriction of a quadratic polynomial.

Proof. We think of Ar ⊂ Pr as the complement of the hyperplane x0 = 0. If the points
impose independent conditions on forms of degree d then we can find a form Fi(x0, . . . , xr)
of degree d vanishing on pj for exactly those j 6= i. The polynomial fi(x1, . . . , xr) =
Fi(1, x1, . . . , xr) has degree ≤ d and the same vanishing/nonvanishing property, so the
function

∑
i(ai/fi(pi))fi takes values ai on pi for any desired ai.

Conversely, if every function on X is induced by a polynomial of degree ≤ d on Ar,
then for each i there is a function fi of degree ≤ d that vanishes at pj for j 6= i but does
not vanish at pi. The degree d homogenization Fi(x0, . . . , xr) = xd0fi(x1/x0, . . . , xr/x0)
has corresponding vanishing properties. The existence of the Fi shows that the points pi
impose independent conditions on forms of degree d.

The maximal number of independent linear equations in a certain set of linear equa-
tions—the rank of the system of equations—does not change when we extend the field,
so Proposition 4.12 shows that the interpolation degree is independent of field extensions.

4C The Regularity of a Cohen–Macaulay Module

In the special case of Proposition 4.10 where x is a regular element, H0
m

(M) must vanish,
so part 3 of the proposition together with Theorem 4.3 says that regM/xM = regM.
This special case admits a simple proof without cohomology.

Corollary 4.13. Suppose that M is a finitely generated graded S-module. If x is a linear
form in S that is a nonzerodivisor on M then regM = regM/xM.
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Proof. Let F be the minimal free resolution of M. We can compute Tor∗(M,S/(x)) from
the free resolution

G : 0 - S(−1)
x- S

of S/(x). Since x is a nonzerodivisor on M, the sequence 0 → M(−1) → M obtained by
tensoring M with G has homology

Tor0(M,S/(x)) = M/xM ; Tori(M,S/(x)) = 0

for i > 0. We can also compute Tor as the homology of the free complex F⊗G, so we
see that F⊗G is the minimal free resolution of M/xM. The i-th free module in F⊗G is
Fi⊕Fi−1(−1), so regM/xM = regM.

We can apply this to get another means of computing the regularity in the Cohen–
Macaulay case.

Proposition 4.14. Let M be a finitely generated Cohen–Macaulay graded S-module, and
let y1, . . . , yt be a maximal M -regular sequence of linear forms. The regularity of M is the
largest d such that (M/(y1, . . . , yt)M)d 6= 0.

Proof. Because M is Cohen–Macaulay we have dimM/(y1, . . . , yt)M = 0. With Corol-
lary 4.13, this allows us to reduce the statement to the zero-dimensional case. But if
dimM = 0 the result follows at once from Theorem 4.3.

As a consequence, we can give a general inequality on the regularity of the homoge-
neous coordinate ring of an algebraic set X that strengthens the computation done at the
beginning of Section 4A—so long as SX is Cohen–Macaulay.

Corollary 4.15. Suppose that X ⊂ Pr is not contained in any hyperplane. If SX is
Cohen–Macaulay , then regSX ≤ degX−codimX.

Proof. Let t = dimX, so that the dimension of SX as a module is t+1. We may harmlessly
extend the ground field and assume that it is algebraically closed, and in particular infinite.
Thus we may assume that a sufficiently general sequence of linear forms y0, . . . , yt is a
regular sequence in any order on SX . Set SX = SX/(y0, . . . , yt). Since X is not contained
in a hyperplane, we have dimK(SX)1 = r+1, and thus dimK(SX)1 = r− t = codimX. If
the regularity of SX is d, then by Proposition 4.14 we have HSX

(d) 6= 0. Because SX is
generated as an S-module in degree 0, this implies that HSX

(e) 6= 0 for all 0 ≤ e ≤ d. On
the other hand, degX is the number of points in which X meets the linear space defined
by y1 = · · · = yt = 0. By induction, using the exact sequence

0 → SX/(y1, . . . , yt)(−1)
y0- SX/(y1, . . . , yt) - SX → 0,

we see that HSX/(y1,...,yt)(d) =
∑d
e=0HSX

(e). For large d the polynomials of degree d
induce all possible functions on the set X∩L, so degX = HSX/(y1,...,yt)(l). It follows that
for large d

degX =
d∑

e=0

HSX
(e) ≥ 1+(codimX)+(regX−1)

since there are at least regX−1 more nonzero values of HSX
(e) 6= 0 for e = 2, . . . , d. This

gives regX ≤ degX−codimX as required.
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In the most general case, the regularity can be very large. Consider the case of a module
of the form M = S/I. Gröbner basis methods give a general bound for the regularity of
M in terms of the degrees of generators of I and the number of variables, but these
bounds are doubly exponential in the number of variables. Moreover, there are examples
of ideals I such that the regularity of S/I really is doubly exponential in r (see [Bayer
and Stillman 1988] and [Koh 1998]). (Notwithstanding, I know few examples in small
numbers of variables of ideals I where regS/I is much bigger than the sum of the degree
of the generators of I. Perhaps the best is due to Caviglia [2004], who has proved that if
S = K[s, t, u, v] and d > 1 then

I = (sd, td, sud−1− tvd−1) ⊂ K[s, t, u, v]

has regS/I = d2 − 2. It would be interesting to have more and stronger examples with
high regularity.)

In contrast with the situation of general ideals, prime ideals seem to behave very well.
For example, in Chapter 5.1 we will prove a theorem of Gruson, Lazarsfeld, and Peskine
to the effect that if K is algebraically closed and X is an irreducible (reduced) curve in
projective space, not contained in a hyperplane then again regSX ≤ degX − codimX,
even if SX is not Cohen–Macaulay, and we will discuss some conjectural extensions of this
result.

4D The Regularity of a Coherent Sheaf

Mumford originally defined a coherent sheaf F on Pr to be d-regular if HiF (d− i) = 0
for every i ≥ 1 (see [Mumford 1966, Lecture 14].) When F is a sheaf, we will write reg F

for the least number d such that F is d-regular (or −∞ if F is d-regular for every d.)
The connection with our previous notion is the following:

Proposition 4.16. Let M be a finitely generated graded S-module, and let M̃ be the
coherent sheaf on Pr

K
that it defines. The module M is d-regular if and only if

1. M̃ is d-regular ;

2. H0
m

(M)e = 0 for every e > d; and

3. the canonical map Md → H0(M̃(d)) is surjective.

In particular, one always has regM ≥ reg M̃, with equality if M =
⊕

d H0(F (d)).

Proof. By Proposition A1.12, Hi
m

(M)e = Hi−1(M̃(e)) for all i ≥ 2. Thus M is d-regular
if and only if it fulfills conditions 1, 2, and

3′. H1
m

(M)e = 0 for all e ≥ d.

The exact sequence of Proposition A1.12 shows that conditions 3′ and 3 are equivalent.

We can give a corresponding result starting with the sheaf. Suppose F is a nonzero
coherent sheaf on Pr

K
. The S-module Γ∗(F ) :=

⊕
e∈Z

H0(F (e)) is not necessarily finitely



4E Exercises 63

generated (the problem comes about if F has 0-dimensional associated points); but for
every e0 its truncation

Γ≥e0(F ) :=
⊕

e≥e0

H0(F (e))

is a finitely generated S-module. We can compare its regularity with that of F .

Corollary 4.17. For a coherent sheaf F on Pr
K
,

reg Γ≥e0(F ) = max(reg F , e0).

Proof. Suppose first that M := Γ≥e0(F ) is d-regular. The sheaf associated to M is F .
Proposition A1.12 shows that F is d-regular. Since M is d-regular it is generated in
degrees ≤ d. If d < e0 then M = 0, contradicting our hypothesis F 6= 0. Thus d ≥ e0.

It remains to show that if F is d-regular and d ≥ e0, then M is d-regular. We again
want to apply Proposition A1.12. Conditions 1 and 3 are clearly satisfied, while 2 follows
from Proposition A1.12.

It is now easy to give the analogue for sheaves of Proposition 4.10. The first statement
is one of the key results in the theory.

Corollary 4.18. If F is a d-regular coherent sheaf on Pr then F (d) is generated by
global sections. Moreover , F is e-regular for every e ≥ d.

Proof. The module M = Γ≥d(F ) is d-regular by Corollary 4.17, and thus it is generated

by its elements of degree d, that is to say, by H0F (d). Since M̃ = F , the first conclusion
follows.

By Proposition 4.10 M is e-regular for e ≥ d. Using Corollary 4.17 again we see that
F is e-regular.

4E Exercises

1. For a set of points X in P2, with notation ei, fi as in Proposition 3.8, show that
regSX = e1 +

∑
i fi−2. Use this to compute the possible regularities of all sets of 10

points in P2.

2. Suppose that

0 →M ′ →M →M ′′ → 0

is an exact sequence of finitely generated graded S-modules. Show that

(a) regM ′ ≤ max{regM, regM ′′−1};
(b) regM ≤ max{regM ′, regM ′′};
(c) regM ′′ ≤ max{regM, regM ′+1}.

3. Suppose X ⊂ Pr is a projective scheme and r > 0. Show that reg IX = reg IX =
1+reg OX = 1+regSX .
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4. We say that a variety in a projective space is nondegenerate if it is not contained in
any hyperplane. Correspondingly, we say that a homogeneous ideal is nondegenerate
if it does not contain a linear form. Most questions about the free resolutions of ideals
can be reduced to the nondegenerate case, just as can most questions about varieties
in projective space. Here is the basic idea:

(a) Show that if I ⊂ S is a homogeneous ideal in a polynomial ring containing linearly
independent linear forms `0, . . . , `t, there are linear forms `t+1, . . . , `r such that
{`0, . . . , `t, `t+1, . . . , `r} is a basis for S1, and such that I may be written in the
form I = JS+(`1, . . . , `t) where J is a homogeneous ideal in the smaller polynomial
ring R = K[`t+1, . . . , `r].

(b) Show that the minimal S-free resolution of JS is obtained from the minimal R-free
resolution of J by tensoring with S. Thus they have the same graded Betti numbers.

(c) Show that the minimal S-free resolution of S/I is obtained from the minimal S-free
resolution of S/JS by tensoring with the Koszul complex on `0, . . . , `t. Deduce that
the regularity of S/I is the same as that of R/J .

5. Suppose that M is a finitely generated graded Cohen–Macaulay S-module, with min-
imal free resolution

0 → Fc → · · · → F1 → F0,

and write Fi =
⊕
S(−j)βi,j as usual. Show that

regM = max{j | βc,j 6= 0}−c;

that is, the regularity of M is measured “at the end of the resolution” in the Cohen–
Macaulay case. Find an example of a module for which the regularity cannot be mea-
sured just “at the end of the resolution.”

6. Find an example showing that Corollary 4.8 may fail if we do not assume that M is
Cohen–Macaulay. (If this is too easy, find an example with M = S/I for some ideal I.)

7. Show that if X consists of d distinct point in Pr then the regularity of SX is bounded
below by the smallest integer s such that d ≤

(
r+s
r

)
. Show that this bound is attained

by the general set of d points.

8. Recall that the generating function of the Hilbert function of a (finitely generated
graded) module M is ΨM (t) =

∑∞
−∞HM (d)td, and that by Theorem 1.11 (with all xi

of degree 1) it can be written as a rational φM (t)/(1−t)r+1. Show that if dimM < r+1
then 1− t divides the numerator; more precisely, we can write

ΨM (t) =
φ′M (t)

(1− t)dimM
.

for some Laurent polynomial φ′
M, and this numerator and denominator are relatively

prime.
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9. With notation as in theprevious exercise, suppose that M is a Cohen–Macaulay S-
module, and let y0, . . . , ys be a maximal M -regular sequence of linear forms, so that
M ′ = M/(y0, . . . , ys) has finite length. Let ΨM ′ =

∑
HM ′(d)td be the generating

function of the Hilbert function of M ′, so that ΨM ′ is a polynomial with positive
coefficients in t and t−1. Show that

ΨM (t) =
ΨM ′(t)

(1− t)dimM
.

In the notation of Exercise 4.8 φ′
M = ΨM ′ . Deduce that

HM (d) =
∑

e≤d

(
dimM+d

dimM

)
HM ′(d−e).

10. Use Proposition 4.14 and the result of Exercise 4.9 to give a direct proof of Theo-
rem 4.3.2.

11. Find an example of a finitely generated graded S-module M such that φ′
M (t) does not

have positive coefficients.

12. Use local duality to refine Corollary 4.5 by showing that for each j we have

reg Hj
m

(M)+j ≤ reg Torr+1−j(M,K)−(r+1−j).

13. (The basepoint-free pencil trick.) Here is the idea of Castelnuovo that led Mumford to
define what we call Castelnuovo–Mumford regularity: Suppose that L is a line bundle
on a curve X ⊂ Pr over an infinite field, and suppose and that L is basepoint-free.
Show that we may choose 2 sections σ1, σ2 of L which together form a basepoint-free
pencil— that is, V := 〈σ1, σ2〉 is a two-dimensional subspace of H0(L ) which generates
L locally everywhere. Show that the Koszul complex of σ1, σ2

K : 0 → L
−2 → L

−1⊕L
−1 → L → 0

is exact, and remains exact when tensored with any sheaf.

Now let F be a coherent sheaf on X with H1F = 0 (or, as we might say now, such
that the Castelnuovo–Mumford regularity of F is at most −1.) Use the sequence K
above to show that the multiplication map map V ⊗F → L ⊗F induces a surjection
V ⊗H0F → H0(L ⊗F ).

Suppose that X is embedded in Pr as a curve of degree d ≥ 2g+1, where g is the
genus of X. Use the argument above to show that

H0(OX(1))⊗H0(OX(n)) → H0(OX(n+1))

is surjective for n ≥ 1. This result is a special case of what is proved in Theorem 8.1.

14. Suppose that X ⊂ Pr is a projective scheme. We say that X is d-normal if the restric-
tion map

H0(OPr (d)) → H0(OX(d))

is surjective. We say that X is d-regular if IX is d-regular.
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(a) Show that X is d-normal if and only if H1(IX(d)) = 0.

(b) Let x ∈ S1 be a linear form that is almost regular on SX , and let H ⊂ Pr be the
hyperplane defined by the vanishing of x. Show that X is d-regular if and only if
H∩X is d-regular and X is (d−1)-normal.

15. Surprisingly few general bounds on the regularity of ideals are known. As we have
seen, if X is the union of n points on a line, then regSX = n−1. The following result
[Derksen and Sidman 2002] shows (in the case I0 = (0)) that this is in some sense the
worst case: no matter what the dimensions, the ideal of the union of n planes in Pr

has regularity at most n. Here is the algebraic form of the result. The extra generality
is used for an induction.

Theorem 4.19. Suppose that I0, . . . , In are ideals generated by spaces of linear forms
in S. Then, for n ≥ 1, the regularity of I = I0 +

⋂n
1 Ij is at most n.

Prove this result by induction on dimS/I0, the case dimS/I0 = 0 being trivial.

(a) Show that it is equivalent to prove that regS/I = n−1.

(b) Reduce to the case where I0 +I1 + · · ·+In = m and the ground field is infinite.

(c) Use Corollary 4.11 to reduce the problem to proving reg H0
m

(S/I) ≤ n− 1; that
is, reduce to showing that if f is an element of degree at least n in H0

m
(S/I) then

f = 0.

(d) Let x be a general linear form in S. Show that f = xf ′ for some f ′ of degree
n− 1 in S/I. Use the fact that x is general to show that the image of f ′ is in
H0

m

(
S/

(
I0 +

⋂
j 6=i Ij

))
for i = 1, . . . , n. Conclude by induction on n that the image

of f ′ is zero in
S/

(
I0 +

⋂
j 6=i Ij

)
.

(e) Use part (b) to write x =
∑
xi for linear forms xi ∈ Ii. Now show that f = xf ′ ∈ I.

Putting Theorem 4.19 together with Conjecture 5.2, that the regularity is bounded
(roughly) by the degree in the irreducible case, one might be tempted to guess that
the regularity of an algebraic set would be bounded by the sum of the degrees of
its components. This is false: Daniel Giaimo [2004] has given a series of examples of
algebraic sets Xr = Lr∪Yr ⊂ Pr, where Lr is a linear subspace and Yr is a reduced,
irreducible complete intersection of the same dimension as Lr, but regXr is exponential
in the degree of Xr (and doubly exponential in r).
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The Regularity of Projective Curves

This chapter is devoted to a theorem of Gruson, Lazarsfeld and Peskine [Gruson et al.
1983] giving an optimal upper bound for the regularity of a projective curve in terms of
its degree. The result had been proven for smooth curves in P3 by Castelnuovo [1893].

Theorem 5.1 (Gruson–Lazarsfeld–Peskine). Let K be an algebraically closed field . If
X ⊂ Pr

K
is a reduced and irreducible curve, not contained in a hyperplane, then regSX ≤

degX−r+1, and thus reg IX ≤ degX−r+2.

In particular, Theorem 5.1 implies that the degrees of the polynomials needed to gen-
erate IX are bounded by degX−r+2. If the field K is the complex numbers, the degree
of X may be thought of as the homology class of X in H2(Pr; K) = Z, so the bound given
depends only on the topology of the embedding of X.

5A A General Regularity Conjecture

We have seen in Corollary 4.15 that ifX ⊂ Pr is arithmetically Cohen–Macaulay (that is, if
SX is a Cohen–Macaulay ring) and nondegenerate (that is, not contained in a hyperplane),
then regSX ≤ degX − codimX, which gives degX − r+ 1 in the case of curves. This
suggests that some version of Theorem 5.1 could hold much more generally. However, this
bound can fail for schemes that are not arithmetically Cohen–Macaulay, even in the case
of curves; the simplest example is where X is the union of two disjoint lines in P3 (see
Exercise 5.2). The result can also fail when X is not reduced or the ground field is not
algebraically closed (see Exercises 5.3 and 5.4). And it is not enough to assume that the
scheme is reduced and connected, since the cone over a disconnected set is connected and
has the same codimension and regularity.
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X Y

X is 2-regular but Y is not.

A possible way around these examples is to insist that X be reduced, and connected
in codimension 1, meaning that X is pure-dimensional and cannot be disconnected by
removing any algebraic subset of codimension 2.

Conjecture 5.2. [Eisenbud and Goto 1984] If K is algebraically closed and X ⊂ PrK be
a nondegenerate algebraic set that is connected in codimension 1, then

reg(SX) ≤ degX−codimX.

For example, in dimension 1 the conjecture just says that the bound should hold for
connected reduced curves. This was recently proved in [Giaimo 2003]. In addition to the
Cohen–Macaulay and one-dimensional cases, the conjecture is known to hold for smooth
surfaces in characteristic 0 [Lazarsfeld 1987], arithmetically Buchsbaum surfaces [Stückrad
and Vogel 1987] and toric varieties of low codimension [Peeva and Sturmfels 1998]. Some-
what weaker results are known more generally; see [Kwak 1998] and [Kwak 2000] for the
best current results and [Bayer and Mumford 1993] for a survey.

Of course for the conjecture to have a chance, the number degX − codimX must at
least be nonnegative. The next proposition establishes this inequality. The examples in
Exercises 5.2–5.4 show that the hypotheses are necessary.

Proposition 5.3. Suppose that K is algebraically closed . If X is a nondegenerate algebraic
set in Pr = Pr

K
and X is connected in codimension 1, then degX ≥ 1+codimX.

To understand the bound, set c = codimX and let p1, . . . , pc+1 be general points on
X. Since X is nondegenerate, these points can be chosen to span a plane L of dimension
c. The degree of X is the number of points in which X meets a general c-plane, and it
is clear that L meets X in at least c points. The problem with this argument is that L
might, a priori, meet X in a set of positive dimension, and this can indeed happen without
some extra hypothesis, such as “connected in codimension 1”.

As you may see using the ideas of Corollary 4.15, the conclusion of Proposition 5.3 also
holds for any scheme X ⊂ Pr such that SX is Cohen–Macaulay.

Proof. We do induction on the dimension of X. If dimX = 0, then X cannot span Pr

unless it contains at least r+1 points; that is, degX ≥ 1+r = 1+codimX. If dimX > 0
we consider a general hyperplane section Y = H ∩X ⊂ H = Pr−1. The degree and
codimension of Y agree with those for X. Further, since H was general, Bertini’s Theorem
[Hartshorne 1977, p. 179] tells us that Y is reduced. It remains to show that Y is connected
in codimension 1 and nondegenerate.
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The condition that X is pure-dimensional and connected in codimension 1 can be rein-
terpreted as saying that the irreducible components of X can be ordered, say X1,X2, . . .
in such a way that if i > 1 then Xi meets some Xj , with j < i, in a set of codimension
1 in each. This condition is inherited by X∩H so long as the H does not contain any of
the Xi or Xi∩Xj .

For nondegeneracy we need only the condition that X is connected. Lemma 5.4 com-
pletes the proof.

Lemma 5.4. If K is algebraically closed and X is a connected algebraic set in Pr = Pr
K
,

not contained in any hyperplane, then for every hyperplane in Pr the scheme X ∩H is
nondegenerate in H.

For those who prefer not to deal with schemes: the general hyperplane section of any
algebraic set is reduced, and thus can be again considered an algebraic set. So scheme
theory can be avoided at the expense of taking general hyperplane sections.

Proof. Let x be the linear form defining H. There is a commutative diagram with exact
rows

0 - H0(OPr)
x- H0(OPr (1)) - H0(OH(1)) - H1(OPr)

0 - H0(OX)

?
x- H0(OX(1))

?
- H0(OX∩H(1))

?
- · · ·

The hypotheses that X is connected and projective, together with the hypothesis that
K is algebraically closed, imply that the only regular functions defined everywhere on X
are constant; that is, H0(OX) = K, so the left-hand vertical map is surjective (in fact,
an isomorphism). The statement that X is nondegenerate means that the middle vertical
map is injective. Using the fact that H1(OPr ) = 0, the Snake Lemma shows that the
right-hand vertical map is injective, so X∩H is nondegenerate.

5B Proof of the Gruson–Lazarsfeld–Peskine Theorem

Here is a summary of the proof: We will find a complex that is almost a resolution of an
ideal that is almost the ideal IX of X. Miraculously, this will establish the regularity of
IX .

More explicitly, we will find a module F over SX which is similar to SX but admits
a free presentation by a matrix of linear forms ψ, and such that the Eagon–Northcott
complex associated with the ideal of maximal minors of ψ is nearly a resolution of IX . We
will then prove that the regularity of this Eagon–Northcott complex is a bound for the
regularity of IX . The module F will come from a line bundle on the normalization of the
curve X. From the cohomological properties of the line bundle we will be able to control
the properties of the module.
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Still more explicitly, let π : C → X ⊂ Pr
K

be the normalization of X. Let A be an
invertible sheaf on C and let F = π∗A . The sheaf F is locally isomorphic to OX except
at the finitely many points where π fails to be an isomorphism. Let F =

⊕
n≥0 H0F (n),

and let

L1
ψ- L0

- F

be a minimal free presentation of F . We write I(ψ) for the ideal generated by the rankL0-
sized minors (subdeterminants) of a matrix representing ψ; this is the 0-th Fitting ideal
of F . We will use three facts about Fitting ideals presented in Section A2G (page 207):
they do not depend on the free presentations used to define them; they commute with
localization; and the 0-th Fitting ideal of a module is contained in the annihilator of the
module. Write I (ψ) for the sheafification of the Fitting ideal (which is also the sheaf of
Fitting ideals of the sheaf A , by our remark on localization). This sheaf is useful to us
because of the last statement of the following result.

Proposition 5.5. With notation above, I (ψ) ⊆ IX . The quotient IX/I (ψ) is sup-
ported on a finite set of points in Pr, and reg I(ψ) ≥ reg IX .

Proof. The 0-th Fitting ideal of a module is quite generally contained in the annihilator
of the module. The construction of the Fitting ideal commutes with localization (see
[Eisenbud 1995, Corollary 20.5] or Section A2G.) At any point p ∈ Pr such that π is an
isomorphism we have (π∗A)p ∼= (OX)p, where the subscript denotes the stalk at the point
p. Since the Fitting ideal of SX is IX , we see that (IX)p = I (ψ)p. Since X is reduced
and one-dimensional, the map π is an isomorphism except at finitely many points.

Consider the exact sequence

0 - I (ψ) - IX
- IX/I (ψ) - 0.

Since IX/I (ψ) is supported on a finite set, we have H1(IX(d)/I (ψ)(d)) = 0 for every
d. From the long exact sequence in cohomology we see that H1(IX(d)) is a quotient
of H1(I (ψ)(d)), while Hi(IX(d)) = Hi(I (ψ)(d)) for i > 1. In particular, reg I (ψ) ≥
reg IX . Since IX is saturated, we obtain reg I(ψ) ≥ reg IX as well.

Thus it suffices to find a line bundle A on C such that the regularity of I (ψ) is
low enough. We will show that when F has a linear presentation, as defined below, the
regularity of this Fitting ideal is bounded by the dimension of H0(F ). We begin with a
criterion for linear presentation.

Linear Presentations

The main results in this section were proved by Green [1984a; 1984b; 1989] in his explo-
ration of Koszul cohomology.

If F is any finitely generated graded S module, we say that F has a linear presentation
if, in the minimal free resolution

· · · - L1
ϕ1- L0

- F - 0,
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we have Li =
⊕
S(−i) for i = 0, 1. This signifies that F is generated by elements of degree

0 and the map ϕ1 can be represented by a matrix of linear forms.
The condition of having a linear presentation implies that the homogeneous components

Fd are 0 for d < 0. Note that if F is any module with Fd = 0 for d < 0, and L1 → L0

is a minimal free presentation, then the free module L0 is generated in degrees ≥ 0.
By Nakayama’s lemma the kernel of L0 → F is contained in the homogeneous maximal
ideal times L0 so it is generated in degrees ≥ 1, and it follows from minimality that L1

is generated in degrees ≥ 1. Thus a module F generated in degrees ≥ 0 has a linear
presentation if and only if Li requires no generators of degree > i for i = 0, 1—we do not
have to worry about generators of too low degree.

In the following results we will make use of the tautological rank-r subbundle M on
P := Pr

K
. It is defined as the subsheaf of O

r+1
P

that fits into the exact sequence

0 - M - O
r+1
P

(x0 ··· xr)- OP(1) - 0,

where x0, . . . , xr generate the linear forms on P. This subsheaf is a subbundle (that is,
locally a direct summand, and in particular locally free) because, locally at each point of
Pr, at least one of the xi is a unit. (The bundle M may be identified with the twist ΩP(1)
of the cotangent sheaf Ω = ΩP ; see for example [Eisenbud 1995, Section 17.5]. We will not
need this fact.)

The result that we need for the proof of Theorem 5.1 is:

Theorem 5.6. Let F be a coherent sheaf on P = Pr
K

with r ≥ 2 and let M be the
tautological rank-r subbundle on P. If the support of F has dimension ≤ 1 and

H1
(∧2

M ⊗F
)

= 0,

the graded S-module F :=
⊕

n≥0 H0F (n) has a linear free presentation.

Before giving the proof we explain how the exterior powers of M arise in the context
of syzygies. Set S = K[x0, . . . , xr] and let

K : 0 - Kr+1
- · · · - K0

be the minimal free resolution of the residue field K = S/(x0, . . . , xr) as an S-module.
By Theorem A2.50 we may identify K with the dual of the Koszul complex of x =
(x0, . . . , xr) ∈ (Sr+1)∗ (as ungraded modules). To make the grading correct, so that the

copy of K that is resolved is concentrated in degree 0, we must set Ki =
∧i(

Sr+1(−1)
)

=(∧i
Sr+1

)
(−i), so that the complex begins with the terms

K : · · · ϕ3- (
∧2

Sr+1)(−2)
ϕ2- Sr+1(−1)

ϕ1=(x0 ··· xr)- S.

Let Mi = (kerϕi)(i), that is, the module kerϕi shifted so that it is a submodule of the free

module
∧i−1

Sr+1 generated in degree 0. For example, the tautological subbundle M ⊂
O
r+1
Pr on projective space is the sheafification of M1. We need the following generalization

of this remark.



72 5. The Regularity of Projective Curves

Proposition 5.7. With notation as above, the i-th exterior power
∧i

M of the tautological
subbundle on Pr is the sheafification of Mi.

This result is only true at the sheaf level:
∧i

M1 is not isomorphic to Mi.

Proof. Locally at any point of Pr at least one of the xi is invertible, so the sheafification of
the Koszul complex is split exact. Thus the sheafifications of all the Mi are vector bundles,
and it suffices to show that (M̃i)

∗ ∼= (
∧i

M )∗. Since Hom is left exact, the module Mi

is the dual of the module Ni = (cokerϕ∗
i )(−i). Being a vector bundle, Ñi is reflexive, so

M̃∗
i = Ñi. Thus it suffices to show that Ni ∼=

∧i
N1 (it would be enough to prove this for

the associated sheaves, but in this case it is true for the modules themselves.)
As described above, the complex K is the dual of the Koszul complex of the element

x = (x0, . . . , xr) ∈ (Sr+1)∗(1). By the description in Section A2F (page 204), the map

ϕ∗
i :

∧i−1
((Sr+1)∗(1)) →

∧i
((Sr+1)∗(1)) is given by exterior multiplication with x. But

the exterior algebra functor is right exact. Thus from

N1 =
(Sr+1)∗(1)

Sx

we deduce that
∧
N1 =

∧(
(Sr+1)∗(1)

)

x∧
(∧

Sr+1
)∗

(1))

as graded algebras. In particular

∧i
N1 =

∧i(
(Sr+1)∗(1)

)

x∧
(∧i−1

(Sr+1)∗(1)
) = coker(ϕi)

∗

as required.

With this preamble, we can state the general connection between syzygies and the sort
of cohomology groups that appear in Theorem 5.6:

Theorem 5.8. Let F be a coherent sheaf on Pr
K
, and set F =

⊕
n≥0 H0F (n). Let M be

the tautological rank-r subbundle on P. If d ≥ i+1 then there is an exact sequence

0 - TorSi (F,K)d - H1
(∧i+1

M ⊗F (d−i−1)
) α- H1

(∧i+1
O
r+1
P

⊗F (d−i−1)
)

where the map α is induced by the inclusion M ⊂ O
r+1
P

.

Proof. The vector space TorSi (F,K) can be computed as the homology of the sequence
obtained by tensoring the Koszul complex, which is a free resolution of K, with F . In
particular, TorSi (F,K)d is the homology of of the sequence

(∧i+1
Sr+1(−i−1)⊗F

)
d
→

(∧i
Sr+1(−i)⊗F

)
d
→

(∧i−1
Sr+1(−i+1)⊗F

)
d
.

For any t the module
∧t

Sr+1(−t)⊗F is just a sum of copies of F (−t), and thus if d ≥ t,
so that Fd−t = H0F (d− t), then

(∧t
Sr+1(−t)⊗F

)
d

=
(∧t

Sr+1⊗F
)
d−t

= H0
(∧t

O
r+1
P

⊗F (d− t)
)
.
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For this reason we can compute Tor through sheaf cohomology. Since the sheafification of
K is locally split, it remains exact when tensored by any sheaf, for example F (d). With
notation as in Proposition 5.7 we get short exact sequences

0 →
∧t

M ⊗F (d− t) →
∧t

O
r+1
P

⊗F (d− t) →
∧t−1

M ⊗F (d− t+1) → 0 (5.1)

that fit into a diagram

· · · - ∧i+1
O
r+1
P

⊗F (d−i−1) - ∧i
O
r+1
P

⊗F (d−i) - · · ·
@

@R �
�� @

@R �
��

∧i+1
M ⊗F (d−i−1)

∧i
M ⊗F (d−i)

�
�� @

@R �
�� @

@R
0 0 0 0

where every left-to-right path is exact. It follows that TorSi (F,K)d is the cokernel of the
diagonal map

H0
(∧i+1

O
r+1
P

⊗F (d− i−1)
) - H0

(∧i
M ⊗F (d− i)

)
.

The long exact sequence in cohomology associated to the sequence 5.1 now gives the
desired result.

Proof of Theorem 5.6. Let

L : · · · - L1
ϕ1- L0

- F - 0

be the minimal free resolution of F . By the definition of F the free module L0 has no
generators of degrees ≤ 0. As we saw at the beginning of this section, this implies that L1

has no generators of degrees < 1.
Since H1(

∧2
M ⊗F ) = 0 and

∧2
M ⊗F has support of dimension at most 1, it has

no higher cohomology and is thus a 1-regular sheaf. It follows that this sheaf is s-regular
for all s ≥ 2 as well, so that

H1
(∧2

M ⊗F (t)
)

= 0

for all t ≥ 0. By Theorem 5.8 we have TorS1 (F,K)d = 0 for all d ≥ 2. We can compute
this Tor as the homology of the complex L⊗K. As L is minimal, the complex L⊗K has
differentials equal to 0, so TorSi (F,K) = Li⊗K. In particular, L1 has no generators of
degrees ≥ 2.

Being a torsion S-module, F has no free summands, so for any summand L′
0 of L0 the

composite map L1 → L0 → L′
0 is nonzero. From this and the fact that L1 is generated

in degree 1 it follows that L0 can have no generator of degree ≥ 1. By construction, F is
generated in degrees ≥ 0 so L0 is actually generated in degree 0, completing the proof.
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Regularity and the Eagon–Northcott Complex

To bound the regularity of the Fitting ideal of the sheaf π∗A that will occur in the proof
of Theorem 5.1 we will use the following generalization of the argument at the beginning
of the proof of Theorem 4.3.

Lemma 5.9. Let

E : 0 → Et
ϕt- Et−1

- · · · - E1
ϕ1- E0

be a complex of sheaves on Pr, and let d be an integer . Suppose that for i > 0 the homology
of E is supported in dimension ≤ 1. If regEs ≤ d+s for every s, then reg cokerϕ1 ≤ d
and reg imϕ1 ≤ d+1.

Proof. We induct on t, the case t = 0 (where ϕ1 : 0 → E0 is the 0 map) being immediate.
From the long exact sequence in cohomology coming from the short exact sequence

0 - imϕ1
- E0

- cokerϕ1
- 0

we see that the regularity bound for imϕ1 implies the one for cokerϕ1.
Since the homologyH1(E) is supported in dimension at most 1, we have Hi(H1(E)(s)) =

0 for all i > 1. Thus the long exact sequence in cohomology coming from the short exact
sequence

0 - H1(E) - cokerϕ2
- imϕ1

- 0

gives surjections Hi(cokerφ2(s)) → Hi(imφi(s)) for all i > 0 and all s, showing that
reg imϕ1 ≤ reg cokerϕ2. By induction, we have reg cokerφ2 ≤ d+1, and we are done.

From Lemma 5.9 we derive a general bound on the regularity of Fitting ideals:

Corollary 5.10. Suppose ϕ : F1 → F0 is a map of vector bundles on Pr with F1 =⊕n
i=1 OPr(−1) and F0 =

⊕h
i=1 OPr . If the ideal sheaf Ih(ϕ) generated by the h×h minors

of ϕ defines a scheme of dimension ≤ 1, then

reg Ih(ϕ) ≤ h.

Proof. We apply Lemma 5.9 to the Eagon–Northcott complex E = EN(ϕ) of ϕ (see
Section A2H). The zeroth term of the complex is isomorphic to OPr , while for s > 0 the
s-th term is isomorphic to

Es = (Syms−1 F0)
∗⊗

∧h+s−1
F1⊗

∧h
F ∗

0 .

This sheaf is a direct sum of copies of OPr(−h−s+1). Thus it has regularity h+s−1, so
we may take d = h−1 in Lemma 5.9 and the result follows.

The following Theorem, a combination of Corollary 5.10 with Theorem 5.6, summarizes
our progress. For any sheaf F , we set h0(F ) = dimK H0(F ).
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Theorem 5.11. Let X ⊂ Pr
K

be a reduced irreducible curve with r ≥ 3. Let F be a
coherent sheaf on X which is locally free of rank 1 except at finitely many points of X,
and let M be the tautological rank-r subbundle on Pr

K
. If

H1
(∧2

M ⊗F
)

= 0

then reg IX ≤ h0F .

Proof. By Theorem 5.6 the module F =
⊕

n≥0 H0(F (n)) has a linear presentation matrix;

in particular, F is the cokernel of a matrix ϕ : On
Pr (−1) → Oh

Pr . Applying Corollary 5.10
we see that reg Ih(ϕ) ≤ h0F . But by Proposition 5.5 we have reg IX ≤ reg Ih(ϕ).

Even without further machinery, Theorem 5.11 is quite powerful. See Exercise 5.7 for a
combinatorial statement proved by S. Lvovsky using it, for which I don’t know a combi-
natorial proof.

Filtering the Restricted Tautological Bundle

With this reduction of the problem in hand, we can find the solution by working on the
normalization π : C → X of X. If A is a line bundle on C then F = π∗A is locally free
except at the finitely many points where X is singular, and

H1
(∧2

M ⊗π∗A
)

= H1
(
π∗

∧2
M ⊗A

)
= H1

(∧2
π∗M ⊗A

)
.

On the other hand, since π is a finite map we have h0π∗A = h0A . It thus suffices to
investigate the bundle π∗M and to find a line bundle A on C such that the cohomology
above vanishes and h0A is small enough.

We need three facts about π∗M . This is where we use the hypotheses on the curve X
in Theorem 5.1.

Proposition 5.12. Let K be an algebraically closed field , and let X ⊂ Pr
K

be a nonde-
generate, reduced and irreducible curve. Suppose that π : C → Pr is a map from a reduced
and irreducible curve C onto X, and that π : C → X is birational . If M denotes the
tautological subbundle on Pr, then

1. π∗M is contained in a direct sum of copies of OC ;

2. H0(π∗M ) = 0; and

3. deg π∗M = −degX.

Proof. Since any exact sequence of vector bundles is locally split, we can pull back the
defining sequence

0 → M → O
r+1
Pr → OPr(1) → 0

to get an exact sequence

0 → π∗
M → O

r+1
C → L → 0,

where we have written L for the line bundle π∗OPr (1). This proves part 1.
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Using the sequence above, it suffices in order to prove part 2 to show that the map on
cohomology

H0(Or+1
C ) → H0(L )

is a monomorphism. Since π is finite, we can compute the cohomology after pushing
forward to X. Since X is reduced and irreducible and K is algebraically closed we have
H0OX = K, generated by the constant section 1. For the same reason K = H0OC =
H0(π∗OC) is also generated by 1. The map OX(1) → π∗L = π∗π

∗OX(1) looks locally like
the injection of OX into OC , so it is a monomorphism. Thus the induced map H0OX(1) →
H0L is a monomorphism, and it suffices to show that the map on cohomology

H0(Or+1
X ) → H0(OX(1))

coming from the embedding of X in Pr is a monomorphism. This is the restriction to X
of the map

H0(Or+1
Pr ) → H0(OPr (1))

sending the generators of O
r+1
Pr to linear forms on Pr. SinceX is nondegenerate, no nonzero

linear form vanishes on X, so the displayed maps are all monomorphisms.
Finally, we must prove that deg π∗M = −degX. The bundle M has rank r, and so

does its pullback π∗M . The degree of the latter is, by definition, the degree of its highest
nonvanishing exterior power,

∧r
π∗M = π∗

∧r
M . From the exact sequence defining M

we see that
∧r

M ∼= OPr(−1), and it follows that π∗
∧r

M = π∗OX(−1) has degree
−degX.

Any vector bundle on a smooth curve can be filtered by a sequence of subbundles in
such a way that the successive quotients are line bundles (Exercise 5.8). Using Proposition
5.12 we can find a special filtration.

Proposition 5.13. Let N be a vector bundle on a smooth curve C over an algebraically
closed field K. If N is contained in a direct sum of copies of OC and h0N = 0 then N

has a filtration
N = N1 ⊃ · · · ⊃ Nr+1 = 0,

such that Li := Ni/Ni+1 is a line bundle of strictly negative degree.

Proof. We will find an epimorphism N → L1 from N to a line bundle L1 of negative
degree. Given such a map, the kernel N ′ ⊂ N automatically satisfies the hypotheses of
the proposition, and thus by induction N has a filtration of the desired type.

By hypothesis there is an embedding N ↪→ On
C for some n. We claim that we can take

n = rankN . For simplicity, set r = rankN . Tensoring the given inclusion with the fieldK
of rational functions on C, we get a map ofK-vector spacesKr ∼= K⊗N → K⊗On

C = Kn.
Since this map is a monomorphism, one of its r×r minors must be nonzero. Thus we can
factor out a subset of n− r of the given basis elements of Kn and get a monomorphism
Kr ∼= K⊗N → K⊗Or

C = Kr. Since N is torsion free, the corresponding projection of
On
C → Or

C gives a composite monomorphism α : N ↪→ Or
C as claimed.

Since N has no global sections, the map α cannot be an isomorphism. Since the rank
of N is r, the cokernel of α is torsion; that is, it has finite support. Let p be a point of its
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support. Since we have assumed that K is algebraically closed, the residue class field κ(p)
is K. We may choose an epimorphism from Or

C/N → Op, the skyscraper sheaf at p. Since
Or
C is generated by its global sections, the image of the global sections of O r

C generate
the sheaf Op, and thus the map Kr = H0(Or

C) → H0(Op) = K is onto, and its kernel
has dimension r−1. Any subspace of H0(Or

C) generates a direct summand, so we get a
summand O

r−1
C of Or

C which maps to a proper subsheaf of Or
C/N . The map Or

C → Op

factors through the quotient Or
C/O

r−1
C = OC , as in the diagram

O
r−1
C

@
@

@
@

@R
N

α - O
r
C

?
- O

n
C/N

@
@

@
@

@
β

R
OC

?
-- Op

?

The composite map N → Op is zero, so β : N → Or
C → OC is not an epimorphism.

Thus the ideal sheaf L1 = β(N ) is properly contained in OC . It defines a nonempty finite
subscheme Y of C, so deg L1 = −deg Y < 0. Since C is smooth, L1 is a line bundle, and
we are done.

Multilinear algebra gives us a corresponding filtration for the exterior square.

Proposition 5.14. If N is a vector bundle on a variety V which has a filtration

N = N1 ⊃ · · · ⊃ Nr ⊃ Nr+1 = 0,

such that the successive quotients Li := Ni/Ni+1 are line bundles, then
∧2

N has a
similar filtration whose successive quotients are the line bundles Li⊗Lj with 1≤ i < j ≤ r.

Proof. We induct on r, the rank of N . If r = 1 then
∧2

N = 0, and we are done. From
the exact sequence

0 → Nr → N → N /Nr → 0,

and the right exactness of the exterior algebra functor we deduce that
∧

(N /Nr) =
∧

N /
(
Nr ∧

∧
N

)

as graded algebras. In degree 2 this gives a right exact sequence

N ⊗Nr →
2∧

N →
2∧

(N /Nr) → 0.

Since Nr is a line bundle, the left-hand map kills Nr ⊗Nr, and thus factors through
N /Nr⊗Nr. The induced map N /Nr⊗Nr →

∧2
N is a monomorphism because

rank(N /(Nr⊗Nr)) = (r−1) ·1 = r−1
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is the same as the difference of the ranks of the right-hand bundles,

r−1 =

(
r

2

)
−

(
r−1

2

)
.

Thus we can construct a filtration of
∧2

N by combining a filtration of (N /Nr)⊗Nr

with a filtration of
∧2

(N/Nr). The subbundles (Ni/Nr)⊗Nr ⊂ (N /Nr)⊗Nr give a
filtration of N /Nr with successive quotients Li⊗Lr = Nr for i < r. By induction on the

rank of N , the bundle
∧2

(N/Nr) has a filtration with subquotients Li⊗Lj , completing
the argument.

General Line Bundles

To complete the proof of Theorem 5.1 we will use a general result about line bundles on
curves:

Proposition 5.15. Let C be a smooth curve of genus g over an algebraically closed field .
If B is a general line bundle of degree ≥ g−1 then h1B = 0.

To understand the statement, the reader needs to know that the set Picd(C) of iso-
morphism classes of line bundles of degree d on C form an irreducible variety, called the
Picard variety. The statement of the proposition is shorthand for the statement that the
set of line bundles B of degree g− 1 that have vanishing cohomology is an open dense
subset of this variety.

We will need this Proposition and related results in Chapter 8, Lemma 8.5 and we
postpone the proof until then.

Proof of Theorem 5.1. Set d = degX. By Propositions 5.12–5.14, the bundle
∧2

π∗M can
be filtered in such a way that the successive quotients are the tensor products Li⊗Lj of
two line bundles, each of strictly negative degree.

To achieve the vanishing of H1(
∧2

M ⊗A ) it suffices to choose A such that h1(Li⊗
Lj ⊗A ) = 0 for all i, j. By Proposition 5.15, it is enough to choose A general and of
degree e such that deg(Li⊗Lj⊗A ) = deg Li+deg Lj+e ≥ g−1 for every i and j.

Again by Proposition 5.12 we have −d = deg π∗M =
∑
i deg Li. Since the deg Li are

negative integers,

deg Li+deg Lj = −d−
∑

k 6=i,j

deg Lk ≥ −d−r+2,

and it suffices to take e = g−1+d− r+2. In sum, we have shown that if A is general
of degree g−1+d− r+2 then reg IX ≤ h0A . By the Riemann–Roch theorem we have
h0A = h1A +d−r+2. By Proposition 5.3, d ≥ r, so deg A ≥ g+1, and Proposition 5.15
implies that h1A = 0. Thus reg IX ≤ h0A = d−r+2, completing the proof.

As we shall see in the next chapter, the bound we have obtained is sometimes optimal.
But the examples that we know in which this happens are very special— rational and
elliptic curves. Are there better bounds if we take into account more about the curve?
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At any rate, we shall see in Corollary 8.2 that there are much better bounds for curves
embedded by complete series of high degree. (Exercise 8.5 gives a weak form of this for
varieties, even schemes, of any dimension.)

5C Exercises

1. Show that if the curve X ⊂ Pr has an n-secant line (that is, a line that meets the
curve in n points) then reg IX ≥ n. Deduce that that there are nondegenerate smooth
rational curves X in P3 of any degree d ≥ 3 with regSX = degX− codimX. (Hint:
consider curves on quadric surfaces.)

2. Show that if X is the union of 2 disjoint lines in P3, or a conic contained in a plane in
P3, then 2 = reg IX > degX−codimX+1.

3. Let Xd be the scheme in P3 given by the equations

x2
0, x0x1, x

2
1, x0x

d
2−x1x

d
3.

Show that Xd is one-dimensional, irreducible, and not contained in a hyperplane. Show
that the degree of Xd is 2 but the regularity of SXd

is ≥ d. In case K is the field
of complex numbers, the scheme Xd can be visualized as follows: It lies in the first
infinitesimal neighborhood, defined by the ideal (x2

0, x0x1, x
2
1), of the line X defined by

x0 = x1 = 0, which has affine coordinate x2/x3. In this sense Xd can be thought of
as a subscheme of the normal bundle of X in P3. Identifying the normal bundle with
X×K2 the scheme Xd meets each p×K2 = K2 as a line through the origin of K2, and
is identified by its slope x0/x1 = (x2/x3)

d. Thus for example if we restrict to values of
x2/x3 in the unit circle, we see that Xd is a ribbon with d twists:

4. Consider the reduced irreducible one-dimensional subscheme X of the real projective
space P3

R
defined by the equations

x2
0−x2

1, x
2
2−x2

3, x3x0−x1x2, x0x2−x1x3.
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Show that degX = 2 and regSX > degX−codimX, so the conclusion of Theorem 5.1
does not hold for X. Show that after a ground field extension X becomes the union of
two disjoint lines. Hint: consider the rows of the matrix

(
x0 + ix1 x2− ix3

x2 + ix3 x0− ix1

)
.

5. Show that Proposition 5.7 is only true on the sheaf level; the i-th syzygy module of K
itself is not isomorphic to a twist of the i-th exterior power of the first one. (Hint: Con-
sider the number of generators of each module, which can be deduced from Nakayama’s
Lemma and the right exactness of the exterior algebra functor; see [Eisenbud 1995,
Proposition A2.1].)

6. Generalizing Corollary 5.10, suppose ϕ : F1 → F0 is a map of vector bundles on Pr

with F1 =
⊕n

i=1 OPr(−bi) and F0 =
⊕h

i=1 OPr(−ai). Suppose that min aj < min bj (as
would be the case if ϕ were a minimal presentation of a coherent sheaf.) Show that if
the ideal sheaf Ih(ϕ) generated by the h×h minors of ϕ defines a scheme of dimension
≤ 1, then

reg Ih ≤
∑

bi−
∑

ai−(n−h)(1+min
i
ai)

7. The monomial curve in Pr with exponents a1 ≤ a2 ≤ · · · ≤ ar−1 is the curve X ⊂ Pr

of degree d = ar parametrized by

φ : P1 3 (s, t) 7→ (sd, sd−a1ta1 , . . . , sd−ar−1 tar−1 , td).

Set a0 = 0, ar = d, and for i = 1, . . . , r set αi = ai−ai−1. With notation as in Theorem
5.11, show that

φ∗(M ) =
⊕

i6=j

OP1(−αi−αj).

Now use Theorem 5.11 to show that the regularity of IX is at most maxi6=j αi+αj .
This exercise is taken from [L’vovsky 1996].

8. Let C be a smooth curve, and let E be a vector bundle. Let F be any coherent subsheaf
of E , and denote by F ′ ⊂ E the preimage of the torsion subsheaf of E /F . Show that
F ′ is a subbundle of E ; that is, both F ′ and E /F ′ are vector bundles. Show that
rankF ′ = rankF . Show that any bundle has subsheaves of rank 1. Conclude that E

has a filtration by subbundles.
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Linear Series and 1-Generic Matrices

In this chapter we introduce two techniques useful for describing embeddings of curves
and other varieties: linear series and the 1-generic matrices they give rise to. By way of
illustration we treat in detail the free resolutions of ideals of curves of genus 0 and 1 in
their “nicest” embeddings.

In the case of genus-0 curves we are looking at embeddings of degree at least 1; in the
case of genus-1 curves we are looking at embeddings of degree at least 3. It turns out that
the technique of this chapter gives very explicit information about the resolutions of ideal
of any hyperelliptic curves of any genus g embedded by complete linear series of degree at
least 2g+1. We will see in Chapter 8 that some qualitative aspects extend to all curves
in such “high-degree” embeddings.

The specific constructions for elliptic curves made in the last part of this chapter are
rather complex, and involve the theory of divisors on a ruled surface, which we will not
need later in this book. The qualitative properties of these curves that we deduce from
the resolutions we construct, such as the Castelnuovo–Mumford regularity, can be seen
with much less work from the general theory to be developed later. I felt that it was worth
including the most explicit treatment I could for these resolutions, but the reader may
skim the material from Proposition 6.19 to Theorem 6.26, and return to detailed reading
in Chapter 7 without missing anything needed in the rest of the book.

For simplicity we suppose throughout this chapter that K is an algebraically closed field
and we work with projective varieties, that is, irreducible algebraic subsets of a projective
space Pr.
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6A Rational Normal Curves

Consider first the plane conics. One such conic—we will call it the standard conic in P2

with respect to coordinates x0, x1, x2 —is the curve with equation x0x2−x2
1 = 0. It is the

image of the map P1 → P2 defined by

(s, t) 7→ (s2, st, t2).

Any irreducible conic is obtained from this one by an automorphism—that is, a linear
change of coordinates—of P2.

Analogously, we consider the curve X ∈ Pr that is the image of the map P1 νr- Pr

defined by
(s, t) 7→ (sr, sr−1t, . . . , str−1, tr).

We call X the standard rational normal curve in Pr. By a rational normal curve in Pr

we will mean any curve obtained from this standard one by an automorphism—a linear
change of coordinates—of Pr. Being an image of P1, a rational normal curve is irreducible.
In fact, the map νr is an embedding, so X ∼= P1 is a smooth rational (genus 0) curve.
Because the monomials sr, sr−1t, . . . , tr are linearly independent, it is nondegenerate, that
is, not contained in a hyperplane. The intersection of X with the hyperplane

∑
aixi = 0

is the set of nontrivial solutions of the homogeneous equation
∑
ais

r−iti. Up to scalars
there are (with multiplicity) r such solutions, so that X has degree r. We will soon see
(Theorem 6.8) that any irreducible, nondegenerate curve of degree r in Pr is a rational
normal curve in Pr.

In algebraic terms, the standard rational normal curve X is the variety whose ideal is
the kernel of the ring homomorphism α : S = K[x0, . . . , xr] → K[s, t] sending xi to sr−iti.
Since K[s, t] is a domain, this ideal is prime. Since K[s, t] is generated as a module over
the ring α(S) ⊂ K[s, t] by the the finitely many monomials in K[s, t] of degree < r, we
see that dimα(S) = 2. This is the algebraic counterpart of the statement that X is an
irreducible curve.

The defining equation x0x2−x2
1 of the standard conic can be written in a simple way

as a determinant:

x0x2−x2
1 = det

(
x0 x1

x1 x2

)
.

This whole chapter concerns the systematic understanding and exploitation of such de-
terminants!

6A.1 Where’d That Matrix Come From?

If we replace the variables x0, x1, x2 in the matrix above by their images s2, st, t2 under
ν2 we get the interior of the “multiplication table”

s t

s s2 st
t st t2
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The determinant ofM goes to zero under the homomorphism α because (s2)(t2) = (st)(st)
(associativity and commutativity).

To generalize this to the rational normal curve of degree r we may take any d with
1 ≤ d < r and write the multiplication table

sr−d sr−d−1t . . . tr−d

sd sr sr−1t . . . sdtr−d

sd−1t sr−1t sr−2t2 . . . sd−1tr−d+1

...
...

...
...

...

td sr−dtd sr−d−1td+1 . . . tr

Substituting xi for sr−iti we see that the 2×2 minors of the (d+1)×(r−d+1) matrix

Mr,d =




x0 x1 · · · xr−d
x1 x2 · · · xr−d+1

...
...

. . .
...

xd xd+1 · · · xr




vanish on X. Arthur Cayley called the matrices Mr,d catalecticant matrices (see Exercises
6.2 and 6.3 for the explanation), and we will follow this terminology. They are also called
generic Hankel matrices; a Hankel matrix is any matrix whose antidiagonals are constant.

Generalizing the result that the quadratic form q = detM2,1 generates the ideal of the
conic in the case r = 2, we now prove:

Proposition 6.1. The ideal I ⊂ S = K[x0, . . . , xr] of the rational normal curve X ⊂ Pr

of degree r is generated by the 2×2 minors of the matrix

Mr,1 =

(
x0 · · · xr−1

x1 · · · xr

)
.

Proof. Consider the homogeneous coordinate ring SX = S/I which is the image of the
homomorphism

α : S → K[s, t]; xi 7→ sr−iti.

The homogeneous component (S/I)d is equal to K[s, t]rd, which has dimension rd+1.
On the other hand, let J ⊂ I be the ideal of 2×2 minors ofMr,1, so S/I is a homomorphic

image of S/J . To prove I = J it thus suffices to show that dim(S/J)d ≤ rd+1 for all d.
We have xixj ≡ xi−1xj+1 mod (J) as long as i−1 ≥ 0 and j+1 ≤ r. Thus, modulo J ,

any monomial of degree d is congruent either to xa0x
d−a
r , with 0 ≤ a ≤ d, or to xa0xix

d−1−a
r

with 0 ≤ a ≤ d− 1 and 1 ≤ i ≤ r− 1. There are d+1 monomials of the first kind and
d(r−1) of the second, so dim(S/J)d ≤ (d+1)+d(r−1) = rd+1 as required.

By using the (much harder!) Theorem 5.1 we could have simplified the proof a little:
Since the degree of the rational normal curve is r, Theorem 5.1 shows that reg I ≤ 2, and
in particular I is generated by quadratic forms. Thus it suffices to show that comparing
the degree-2 part of J and I we have dimJ2 ≥ dim(I)2. This reduces the proof to showing
that the minors of M1,r are linearly independent; one could do this as in the proof above,
or using the result of Exercise 6.7.
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Corollary 6.2. The minimal free resolution of the homogeneous coordinate ring SX of
the rational normal curve X of degree r in Pr is given by the Eagon–Northcott complex
of the matrix Mr,1,

EN(Mr,1) : 0 → (Symr−2 S
2)∗⊗∧r

Sr → . . .→ (S2)∗⊗∧3
Sr → ∧2

Sr
∧2

Mr,1- ∧2
S2

(see Theorem A2.60). It has Betti diagram

0 1 2 · · · r−1

0 1 − − · · · −
1 −

(
r
2

)
2
(
r
3

)
· · · (r−1)

(
r
r

)
= r−1

In particular , SX is a Cohen–Macaulay ring .

Proof. The codimension of X ⊂ Pr, and thus of I ⊂ S, is r− 1, which is equal to the
codimension of the ideal of 2× 2 minors of a generic 2× r matrix. Thus by Theorem
A2.60 the Eagon–Northcott complex is exact. The entries of Mr,1 are of degree 1. From
the construction of the Eagon–Northcott complex given in Section A2H we see that the
Eagon–Northcott complex is minimal. In particular, the Betti diagram is as claimed. The
length of EN(Mr,1) is r− 1, the codimension of X, so SX is Cohen–Macaulay by the
Auslander–Buchsbaum Theorem (A2.15).

6B 1-Generic Matrices

To describe some of what is special about the matrices Mr,d we introduce some terminol-
ogy: If M is a matrix of linear forms with rows `i = (`i,1, . . . , `i,n) then a generalized row
of M is by definition a row

∑

i

λi`i =

(∑

i

λi`i,1 , . . . ,
∑

i

λi`i,n

)
,

that is, a scalar linear combination of the rows of M , with coefficients λi ∈ K that are not
all zero. We similarly define generalized columns of M . In the same spirit, a generalized
entry of M is a nonzero linear combination of the entries of some generalized row of M
or, equivalently, a nonzero linear combination of the entries of some generalized column
of M . We will say that M is 1-generic if every generalized entry of M is nonzero. This
is the same as saying that every generalized row (or column) of M consists of linearly
independent linear forms.

Proposition 6.3. For each 0 < d < r the matrix Mr,d is 1-generic.

Proof. A nonzero linear combination of the columns of the multiplication table corre-
sponds to a nonzero form of degree r− d in s and t, and, similarly, a nonzero linear
combination of the rows corresponds to a nonzero form of degree d. A generalized entry
of Mr,d corresponds to a product of such nonzero forms, and so is nonzero.
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The same argument would work for a matrix made from part of the multiplication table
of any graded domain; we shall further generalize and apply this idea later.

Determinantal ideals of 1-generic matrices have many remarkable properties. See [Room
1938] for a classical account and [Eisenbud 1988] for a modern treatment. In particular,
they satisfy a generalization of Proposition 6.1 and Corollary 6.2.

Theorem 6.4. If M is a 1-generic matrix of linear forms in S = K[x0, . . . , xr], of size
p×q with p ≤ q, over an algebraically closed field K, then the ideal Ip(M) generated by the
maximal minors of M is prime of codimension q−p+1; in particular , its free resolution
is given by an Eagon–Northcott complex , and S/Ip(M) is a Cohen–Macaulay domain.

Note that q−p+1 is the codimension of the ideal of p×p minors of the generic matrix
(Theorem A2.54).

Proof. Set I = Ip(M). We first show that codim I = q− p+1; equivalently, if X is the
projective algebraic set defined by I, we will show that the dimension of X is r−(q−p+1).
By Theorem A2.54 the codimension of I cannot be any greater than q−p+1, so it suffices
to show that dimX ≤ r−(q−p+1).

Let a ∈ Pr be a point with homogeneous coordinates a0, . . . , ar. The point a lies in
X if and only if the rows of M become linearly dependent when evaluated at a. This is
equivalent to saying that some generalized row vanishes at a, so X is the union of the
zero loci of the generalized rows of M . As M is 1-generic, each generalized row has zero
locus equal to a linear subspace of Pr of dimension precisely r− q. A generalized row is
determined by an element of the vector space Kp of linear combinations of rows. Two
generalized rows have the same zero locus if they differ by a scalar, so X is the union of a
family of linear spaces of dimension r−q, parametrized by a projective space Pp−1. Thus
dimX ≤ (r−q)+(p−1) = r−(q−p+1). More formally, we could define

X ′ = {(y, a) ∈ Pp−1×Pr | Ry vanishes at a},

where Ry denotes the generalized row corresponding to the parameter value y. The set
X ′ fibers over Pp−1 with fibers isomorphic to Pr−q so

dimX ′ = (r−q)+(p−1) = r−(q−p+1).

Also, the projection of X ′ to Pr carries X ′ onto X, so dimX ≤ dimX ′.
A projective algebraic set, such as X ′, which is fibered over an irreducible base with

irreducible equidimensional fibers is irreducible; see [Eisenbud 1995, Exercise 14.3]. It
follows that the image X is also irreducible. This proves that the radical of Ip(M) is
prime.

From the codimension statement, and the Cohen–Macaulay property of S, it follows
that the Eagon–Northcott complex associated to M is a free resolution of S/I, and we see
that the projective dimension of S/I is q−p+1. By the Auslander–Buchsbaum Formula
(Theorem A2.15) the ring S/I is Cohen–Macaulay.

It remains to show that I itself is prime. From the fact that S/I is Cohen–Macaulay,
it follows that all the associated primes of I are minimal, and have codimension precisely
q−p+1. Since the radical of I is prime, we see that in fact I is a primary ideal.
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The submatrix M1 of M consisting of the first p−1 rows is also 1-generic so, by what we
have already proved, the ideal Ip−1(M1) has codimension q−p. Thus some (p−1)×(p−1)
minor ∆ of M1 does not vanish identically on X. Since X is the union of the zero loci
of the generalized rows of M , there is even a generalized row whose elements generate an
ideal that does not contain ∆. This generalized row cannot be in the span of the first p−1
rows alone, so we may replace the last row of M by this row without changing the ideal
of minors of M , and we may assume that ∆ /∈ Q := (xp,1, . . . , xp,q). On the other hand,
since we can expand any p×p minor of M along its last row, we see that I is contained
in Q.

Since the ideal Q is generated by a sequence of linear forms, it is prime. Since we
have seen that I is primary, it suffices to show that ISQ is prime, where SQ denotes the
local ring of S at Q. Since ∆ becomes a unit in SQ we may make an SQ-linear invertible
transformation of the columns of M to bring M into the form

M ′ =




1 0 . . . 0 0 . . . 0
0 1 . . . 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .

0 0 . . . 1 0 . . . 0
x′p,1 x′p,2 . . . x′p,p−1 x′p,p . . . x′p,q



,

where x′p,1, . . . , x
′
p,q is the result of applying an invertible SQ-linear transformation to

xp,1, . . . , xp,q, and the (p−1)×(p−1) matrix in the upper left-hand corner is the identity.
It follows that ISQ = (x′p,p, . . . , x

′
p,q)SQ.

Since xp,1, . . . , xp,q are linearly independent modulo Q2SQ, so are x′p,1, . . . , x
′
p,q. It fol-

lows that SQ/(x
′
p,p, . . . , x

′
p,q) = SQ/ISQ is a regular local ring and thus a domain (see

[Eisenbud 1995, Corollary 10.14]). This shows that ISQ is prime.

Theorem 6.4 can be used to give another proof of Proposition 6.1; see Exercise 6.4.

6C Linear Series

We can extend these ideas to give a description of certain embeddings of genus-1 curves.
At least over the complex numbers, this could be done very explicitly, replacing monomials
by doubly periodic functions. Instead, we approach the problem algebraically, using the
general notion of linear series. For simplicity, we continue to suppose that the curves and
other algebraic sets we consider are irreducible, and that the ground field K is algebraically
closed.

A linear series (L , V, α) on a variety X over K consists of a line bundle L on X, a
finite dimensional K-vector space V and a nonzero homomorphism α : V → H0L . We
define the (projective) dimension of the series to be (dimK V )− 1. The linear series is
nondegenerate if α is injective; in this case we think of V as a subspace of H0(L ), and
write (L , V ) for the linear series. Frequently we consider a linear series where the space
V is the space H0(L ) and α is the identity. We call this the complete linear series defined
by L , and denote it by |L |.
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One can think of a linear series as a family of divisors on X parametrized by the nonzero
elements of V : corresponding to v ∈ V is the divisor which is the zero locus of the section
α(v) ∈ H0(L ). Since the divisor corresponding to v is the same as that corresponding
to a multiple rv with 0 6= r ∈ K, the family of divisors is really parametrized by the
projective space of one-dimensional subspaces of V , which we think of as the projective
space P(V ∗). The simplest kind of linear series is the “hyperplane series” arising from a
projective embedding X ⊂ P(V ). It consists of the family of divisors that are hyperplane
sections of X; more formally this series is (OX(1), V, α) where OX(1) is the line bundle
OP(V )(1) restricted to X and

α : V = H0(OP(V )(1)) → H0(OX(1))

is the restriction mapping. This series is nondegenerate in the sense above if and only if
X is nondegenerate in P(V ) (that is, X is not contained in any hyperplane).

For example, if X ∼= P1 is embedded in Pr as the rational normal curve of degree r, the
hyperplane series is the complete linear series

|OP1(r)| =
(
OP1(r),H0(OP1(r)), id

)
,

where id is the identity map.
Not all linear series arise as the linear series of hyperplane sections of an embedded

variety. For example, given p ∈ P2, we may describe the linear series on P2 of conics
through p as follows: Let L = OP2(2). The global sections of L correspond to quadratic
forms in three variables. Taking coordinates x, y, z, we choose p to be the point (0, 0, 1),
and we take V to be the vector space of quadratic forms vanishing at p:

V = 〈x2, xy, xz, y2, yz〉.

We call p a basepoint of the series L , V ). In general we define a basepoint of a linear series
to be a point in the zero loci of all the sections in α(V ) ⊂ H0(L ). Equivalently, this is a
point at which the sections of α(V ) fail to generate L ; or, again, it is a point contained
in all the divisors in the series. In the example above, p is the only basepoint. The linear
series is called basepoint-free if it has no basepoints. The hyperplane series of any variety
in Pr is basepoint-free because there is a hyperplane missing any given point.

Recall that a rational map from a variety X to a variety Y is a morphism defined on
an open dense subset U ⊂ X. A nontrivial linear series L = (L , V, α) always gives rise to
a rational map from X to P(V ). Let U be the set of points of X that are not basepoints
of the series, and let ΦL : U → P(V ) be the map associating a point p to the hyperplane
in V of sections v ∈ V such that α(v)(p) = 0. If L is basepoint-free, we get a morphism
defined on all of X.

To justify these statements we introduce coordinates. Choose a basis x0, . . . , xr of V
and regard the xi as homogeneous coordinates on P(V ) ∼= Pr. Given q ∈ X, suppose
that the global section α(xj) generates L locally near q. There is a morphism from the
open set Uj ⊂ X where α(xj) 6= 0 to the open set xj 6= 0 in P(V ) corresponding to the
ring homomorphism K[x0/xj , . . . , xr/xj ] → OX(U) sending xi/xj 7→ ϕ(xi)/ϕ(xj). These
morphisms glue together to form a morphism, from X minus the basepoint locus of L, to
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P(V ). See [Hartshorne 1977, Section II.7] or [Eisenbud and Harris 2000, Section 3.2.5] for
more details.

For example, we could have defined a rational normal curve in Pr to be the image
of P1 by the complete linear series |OP1(r)| = (OP1(r),H0(OP1(r)), id) together with an
identification of Pr and P(V )— that is, a choice of basis of V .

On the other hand, the series of plane conics with a basepoint at p = (0, 0, 1) above
corresponds to the rational map from P2 to P4 sending a point (a, b, c) other than p to
(a2, ab, ac, b2, bc). This map cannot be extended to a morphism on all of P2.

If Λ ⊂ Ps is a linear space of codimension r+1, the linear projection πΛ from Ps to
Pr with center Λ is the rational map from Ps to Pr corresponding to the linear series of
hyperplanes in Ps containing Λ. The next result shows that complete series are those not
obtained in a nontrivial way by linear projection.

Proposition 6.5. Let L = (L , V, α) be a basepoint-free linear series on a variety X. The
linear series L is nondegenerate (that is, the map α is injective) if and only if φL(X) ⊂
P(V ) is nondegenerate. The map α is surjective if and only if φL does not factor as the
composition of a morphism from X to a nondegenerate variety in a projective space Ps

and a linear projection πΛ, where Λ is a linear space not meeting the image of X in Ps.

Proof. A linear form on P(V ) that vanishes on φL(X) is precisely an element of kerα,
which proves the first statement. For the second, note that if φL factors through a mor-
phism ψ : X → Ps and a linear projection πΛ to Pr, where Λ does not meet ψ(X), then
the pullback of OPr(1) to ψ(X) is OPs(1)|ψ(X), so ψ∗(OPs(1)) = φ∗

L(OPr(1)) = L . If
ψ(X) is nondegenerate, then H0(L ) is at least (s+1)-dimensional, so α cannot be onto.
Conversely, if α is not onto, we can obtain a factorization as above where ψ is defined by
the complete linear series |L |. The plane Λ is defined by the vanishing of all the forms in
α(V ), and does not meet X because L is basepoint-free.

A variety embedded by a complete linear series is said to be linearly normal. In Corollary
A1.13 it is shown that if X ⊂ Pr is a variety, the homogeneous coordinate ring SX has
depth 2 if and only if SX → ⊕

d∈Z
H0(OX(d)) is an isormorphism. We can restate this

condition by saying that, for every d, the linear series (OX(d),H0(OPr (d)), αd) is complete,
where

αd : H0(OPr (d)) → H0(OX(d))

is the restriction map. Using Theorem A2.28 we see that if X is normal and of dimension
≥ 1 (so that SX is locally normal at any homogeneous ideal except the irrelevant ideal,
which has codimension ≥ 2), then this condition is equivalent to saying that SX is a
normal ring. Thus the condition that X ⊂ Pr is linearly normal is the “degree-1 part” of
the condition for the normality of SX .

Ampleness

The linear series that interest us the most are those that provide embeddings. In general, a
line bundle L is called very ample if |L | is basepoint-free and the morphism corresponding
to |L | is an embedding of X in the projective space P(H0(L)). (The term ample is used
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for a line bundle for which some power is very ample.) In case X is a smooth variety over
an algebraically closed field there is a simple criterion, which we recall here in the case of
curves from [Hartshorne 1977, IV.3.1(b)].

Theorem 6.6. Let X be a smooth curve over an algebraically closed field . A line bundle
L on X is very ample if and only if

h0(L (−p−q)) = h0(L )−2

for every pair of points p, q ∈ X.

That is, L is very ample if and only if any two points of X (possibly equal to one
another) impose independent conditions on the complete series |L |.

Combining this theorem with the Riemann–Roch formula, we easily prove that any line
bundle of high degree is very ample. In what follows we write L (D), where D is a divisor,
for the line bundle L ⊗OX(D).

Corollary 6.7. If X is a smooth curve of genus g, any line bundle of degree ≥ 2g+1 on
X is very ample. If g = 0 or g = 1, the converse is also true.

Proof. For any points p, q ∈ X, deg L (−p−q) > 2g−2 = degωX , so L and L (−p−q)
are both nonspecial. Applying the Riemann Roch formula to each of these bundles we get

h0(L (−p−q)) = deg L −2−g+1 = h0(L )−2.

as reqired by Theorem 6.6.
Any very ample line bundle must have positive degree, so the converse is immediate for

g = 0. For g = 1, we note that, by Riemann–Roch, h0(L ) = deg L as long as L has
positive degree. Thus a linear series of degree 1 must map X to a point, and a linear series
of degree 2 can at best map X to P1. Since X 6= P1, such a map is not very ample.

The language of linear series is convenient for the following characterization:

Theorem 6.8. Any nondegenerate curve X ⊂ Pr of degree r is a rational normal curve.

Proof. Suppose that the embedding is given by the linear series L = (L , V, α) on the curve
X, so that L is the restriction to X of OPr(1) and deg L = r. As X is nondegenerate,
Lemma 6.5 shows that h0(L ) ≥ r+1.

We first prove that the existence of a line bundle L on X with deg L ≥ 1 and h0(L ) ≥
1+deg L implies that X ∼= P1. To see this we do induction on deg L .

If deg L = 1 we have deg L (−p−q) = −1 for any points p, q ∈ X, whence

h0(L (−p−q)) = 0 ≤ h0(L )−2.

In fact, we must have equality, since vanishing at two points can impose at most two
independent linear conditions. Thus L is very ample and provides an isomorphism from
X to P1.

If, on the other hand, deg L > 1, we choose a smooth point p of X, and consider
the line bundle L (−p), which has degree deg L (−p) = deg L − 1. Since the condition
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of vanishing at p is (at most) one linear condition on the sections of L , we see that
h0(L (−p)) ≥ h0(L )−1, so L (−p) satisfies the same hypotheses as L .

Returning to the hypotheses of the theorem, we conclude that X ∼= P1. There is only
one line bundle on P1 of each degree, so L ∼= OP1(r). It follows that h0(L ) = 1+r. Thus
the embedding is given by the complete linear series

∣∣OP1(r)
∣∣ and X is a rational normal

curve.

Corollary 6.9. (a) If X is a nondegenerate curve of degree r in Pr, then the ideal of
X is generated by the 2× 2 minors of a 1-generic, 2× r matrix of linear forms and
the minimal free resolution of SX is the Eagon–Northcott complex of this matrix . In
particular , SX is Cohen–Macaulay .

(b) Conversely , if M is a 1-generic 2×r matrix of linear forms in r+1 variables, then the
2×2 minors of M generate the ideal of a rational normal curve.

Proof. (a) By Theorem 6.8, a nondegenerate curve of degree r in Pr is, up to change of
coordinates, the standard rational normal curve. The desired matrix and resolution can
be obtained by applying the same change of coordinates to the matrix Mr,1.

(b) By Theorem 6.4 the ideal P of minors is prime of codimension r−1, and thus defines a
nondegenerate irreducible curve C in Pr. Its resolution is the Eagon–Northcott complex,
as would be the case for the ideal defining the standard rational normal curve X. Since
the Hilbert polynomials of C and X can be computed from their graded Betti numbers,
these Hilbert polynomials are equal; in particular C has the same degree, r, as X, and
Theorem 6.8 completes the proof.

In fact any 1-generic 2× r matrix of linear forms in r+1 variables can be reduced to
Mr,1 by row, column, and coordinate changes; see Exercise 6.6.

Matrices from Pairs of Linear Series

We have seen that the matrices produced from the multiplication table of the ring K[s, t]
play a major role in the theory of the rational normal curve. Using linear series we can
extend this idea to more general varieties.

Suppose that X ⊂ Pr is a variety embedded by the complete linear series |L | cor-
responding to some line bundle L . Set V = H0(L ), the space of linear forms on Pr.
Suppose that we can factorize L as L = L1 ⊗L2 for some line bundles L1 and L2.
Choose ordered bases y1 . . . ym ∈ H0(L1) and z1 . . . zn ∈ H0(L2), and let

M(L1,L2)

be the matrix of linear forms on P(V ) whose (i, j) element is the section yi⊗ zj ∈ V =
H0(L ). (Of course this matrix is only interesting when it has at least two rows and two
columns, that is, h0L1 ≥ 2 and h0L2 ≥ 2.) Each generalized row of M(L1,L2) has entries
y⊗z1, . . . , y⊗zn for some section 0 6= y ∈ H0(L1), and a generalized entry of this row will
have the form y⊗z for some section 0 6= z ∈ H0(L2).

Proposition 6.10. If X is a variety and L1,L2 are line bundles on X, then the matrix
M(L1,L2) is 1-generic, and its 2×2 minors vanish on X.
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Proof. With notation as above, a generalized element of M may be written x = y⊗ z
where y, z are sections of L1,L2 respectively. If p ∈ X we may identify L1 and L2 with
OX in a neighborhood of p and write x = yz. Since OX,p is an integral domain, x vanishes
at p if and only if at least one of y and z vanish at p. Since X is irreducible, X is not
the union of the zero loci of a nonzero y and a nonzero z, so no section y⊗z can vanish
identically. This shows that M is 1-generic. On the other hand, any 2×2 minor of M may
be written as

(y⊗z)(y′⊗z′) − (y⊗z′)(y′⊗z) ∈ H0(L )

for sections y, y′ ∈ H0(L1) and z, z′ ∈ H0(L2). Locally near a point p ofX we may identify
L1,L2 and L with OX,p and this expression becomes (yz)(y′z′)− (yz′)(y′z) which is 0
because OX,p is commutative and associative.

It seems that if both the line bundles L1 and L2 are “sufficiently positive” then the
homogeneous ideal of X is generated by the 2×2 minors of M(L1,L2). For example, we
have seen that in the case where X is P1 it suffices that the bundles each have degree at
least 1. For an easy example generalizing the case of rational normal curves see Exercise
6.10; for more results in this direction see [Eisenbud et al. 1988]. For less positive bundles,
the 2×2 minors of M(L1,L2) may still define an interesting variety containing X, as in
Section 6D.

Using the idea introduced in the proof of Theorem 6.4 we can describe the geometry of
the locus defined by the maximal minors of M(L1,L2) in more detail. Interchanging L1

and L2 if necessary we may suppose that n = h0L2 > h0L1 = m so M(L1,L2) has more
columns than rows. If y =

∑
riyi ∈ H0(L1) is a section, we write `y for the generalized

row indexed by y. The maximal minors of M(L1,L2) vanish at a point p ∈ Pr if and only
if some row `y consists of linear forms vanishing at p; that is,

V
(
Im(M(L1,L2)

)
=

⋃
y V (`y). (∗)

The important point is that we can identify the linear spaces V (`y) geometrically.

Proposition 6.11. Suppose X ⊂ Pr is embedded by a complete linear series, and assume
that the hyperplane bundle L = OX(1) decomposes as the tensor product of two line
bundles, L = L1⊗L2. For each y ∈ H0L1 we have V (`y) = Dy, the linear span of Dy.

Recall that the linear span of a divisor D on X ⊂ Pr is the smallest linear subspace of
Pr containing D.

Proof. The linear span of Dy is the interesection of all the hyperplanes containing Dy, so
we must show that the linear forms appearing in the row `y span the space of all linear
forms vanishing on Dy. It is clear that every entry y⊗zi of this row does in fact vanish
where y vanishes.

Moreover, if x ∈ H0L is any section vanishing on Dy, and E is the divisor of x, then
OX(E−D)⊗OX(D) = L , and multiplying by OX(−D) = L

−1
1 we see that OX(E−D) =

L2. Thus the divisor E−D is represented by a section z of L2, and x = y⊗ z up to a
scalar, since both vanish on the same divisor.
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Note that V (`y) and Dy do not change if we change y by a nonzero scalar multiple.
Thus when we write Dy we may think of y as an element of Pm−1. We can summarize the
results of this section, in their most important special case, as follows.

Corollary 6.12. Suppose that X ⊂ Pr is embedded by the complete linear series |L | and
that L1,L2 are line bundles on X such that L = L1 ⊗L2. Suppose that h0L1 = m ≤
h0L2. If y ∈ H0L1, write Dy for the corresponding divisor . If Dy denotes the linear span
of Dy, the variety defined by the maximal minors of M(L1,L2) is

Y = V
(
Im(M(L1,L2))

)
=

⋃
y∈Pm−1 Dy.

We may illustrate Corollary 6.12 with the example of the rational normal curve. Let
X = P1 and let L1 = OP1(1),L2 = OP1(r−1) so that

M(L1,L2) = Mr,1 =

(
x0 x1 . . . xr−1

x1 x2 . . . xr.

)

The generalized row corresponding to an element y = (y1, y2) ∈ P1 has the form

`y = (y0x0 +y1x1, y0x1 +y1x2, . . . , y0xr−1 +y1xr).

The linear space V (`y) is thus the set of solutions of the linear equations

y0x0 +y1x1 = 0,

y0x1 +y1x2 = 0,

. . . . .

y0xr−1 +y1xr = 0.

Since these r equations are linearly independent, V (`y) is a single point. Solving the
equations, we see that this point has coordinates xi = (−y0/y1)ix0. Taking y0 = 1,
x0 = sr, y1 = −s/t we obtain the usual parametrization xi = sr−iti of the rational
normal curve.

Linear Subcomplexes and Mapping Cones

We have seen that if X is embedded by the complete linear series |L | and if L = L1⊗L2

is a factorization, then by Theorem 6.4 and Proposition 6.10 the ideal I = IX ofX contains
the ideal of 2×2 minors of the 1-generic matrix M = M(L1,L2). This has an important
consequence for the free resolution of M .

Proposition 6.13. Suppose that X ⊂ Pr is a variety embedded by a complete linear series
|L |, and that L = L1⊗L2 for some line bundles L1,L2 on X. Let M ′ be a 2×h0(L2)
submatrix of M(L1,L2), and let J be the ideal generated by the 2×2 minors of M ′. If
F : · · · → F0 → IX is a minimal free resolution and E : · · · → E0 → J denotes the Eagon–
Northcott complex of M ′, then E is a subcomplex of F in such a way that Fi = Ei⊕Gi
for every i.
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Proof. Choose any map α : E → F lifting the inclusion J ⊂ I = IX . We will show
by induction that αi : Ei → Fi is a split inclusion for every i ≥ 0. Write δ for the
differentials—both of E and of F. Write P = (x0, . . . , xr) for the homogeneous maximal
ideal of S. It suffices to show that if e ∈ Ei but e /∈ PEi (so that e is a minimal generator)
then αi(e) /∈ PFi.

Suppose on the contrary that αie ∈ PFi. If i = 0, we see that δe must be in PI∩J . But
the Eagon–Northcott complex EN(M ′) is a minimal free resolution, so δe is a nonzero
quadratic form. As X is nondegenerate the ideal I = IX does not contain any linear form,
so we cannot have e ∈ PI.

Now suppose i > 0, and assume by induction that αi−1 maps Ei−1 isomorphically to a
summand of Fi−1. Since F is a minimal free resolution the relation αi ∈ PFi implies that

αi−1δe = δαie ∈ P 2Fi−1,

where δ is the differential of EN(M ′). However, the coefficients in the differential of the
Eagon–Northcott complex are all linear forms. As EN(M ′) is a minimal free resolution we
have δe 6= 0, so δe /∈ P 2Ei−1, a contradiction since Ei−1 is mapped by αi−1 isomorphically
to a summand of Fi−1.

You can verify that the idea just used applies more generally when one has a linear
complex that is minimal in an appropriate sense and maps to the “least degree part” of a
free resolution. We will pursue linear complexes further in the next chapter.

Proposition 6.13 is typically applied when L1 has just two sections—otherwise, to
choose the 2×n submatrix M ′ one effectively throws away some sections, losing some
information. It would be very interesting to have a systematic way of exploiting the exis-
tence of further sections, or more generally of exploiting the presence of many difference
choices of factorization L = L1 ⊗L2 with a choice of two sections of L1. In the next
section we will see a case where we have in fact many such factorizations, but our analysis
ignores the fact. See, however, [Kempf 1989] for an interesting case where the presence of
multiple factorizations is successfully exploited.

The situation produced by Proposition 6.13 allows us to split the analysis of the reso-
lution into two parts. Here is the general setup, which we will apply to a certain family
of curves in the next section.

Proposition 6.14. Let F : · · · → F0 be a free complex with differential δ, and let E :
· · · → E0 be a free subcomplex , with quotient complex G = F/E : · · · → G0. If Ei is a
direct summand of Fi for each i, then F is the mapping cone of the map α : G[−1] → E
whose i-th component is the composite

Gi+1 ⊂ Gi+1⊕Ei+1 = Fi+1
δ- Fi = Gi⊕Ei - Ei.

Proof. Immediate from the definitions.

To reverse the process and construct F as a mapping cone, we need a different way
of specifying the map from G[−1] to E. In our situation the following observation is
convenient. We leave to the reader the easy formalization for the most general case.
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Proposition 6.15. Suppose that J ⊂ I are ideals of S. Let G : · · · → G0 be a free
resolution of I/J as an S-module. Let E : · · · → E1 → S be a free resolution of S/J . If
α : G → E is a map of complexes lifting the inclusion I/J → S/J , then the mapping
cone, F, of α is a free resolution of S/I. If matrices representing the maps αi : Gi → Ei
have all nonzero entries of positive degree, and if both E and G are minimal resolutions,
then F is also a minimal resolution.

Proof. Denoting the mapping cylinder of α by F, we have an exact sequence 0 → E →
F → G[−1] → 0. Since G and E have no homology except at the right-hand end, we
see from the long exact sequence in homology that HiF = 0 for i ≥ 2. The end of this
sequence has the form

· · · - H1E - H1F - I/J - S/J - H0F - 0,

where the map I/J → S/J is the inclusion. It follows that H1F = 0 and F : · · · → F1 →
S = F0 is a resolution of S/I.

6D Elliptic Normal Curves

Let X be a smooth, irreducible curve of genus 1, let L be a very ample line bundle on
X, and let d be the degree of L . By Corollary 6.7, d ≥ 3, and by the Riemann–Roch
formula, h0(L ) = d. Thus the complete linear series |L | embeds X as a curve of degree d
in Pr = Pd−1. We will call such an embedded curve an elliptic normal curve of degree d.
(Strictly speaking, an elliptic curve is a smooth projective curve of genus 1 with a chosen
point, made into an algebraic group in such a way that the chosen point is the origin.
We will not need the chosen point for what we are doing, and we will accordingly not
distinguish between an elliptic curve and a curve of genus 1.)

In this section we will use the ideas introduced above to study the minimal free resolution
F of SX , where X ⊂ Pr is an elliptic normal curve of degree d. Specifically, we will
show that F is built up as a mapping cone from an Eagon–Northcott complex E and its
dual, appropriately shifted and twisted. Further, we shall see that SX is always Cohen–
Macaulay, and of regularity 3.

The cases with d ≤ 4 are easy and somewhat degenerate, so we will deal with them
separately. If d = 3, then X is embedded as a cubic in P2, so the resolution has Betti
diagram

0 1

0 1 −
1 − −
2 − 1

In this case the Eagon–Northcott complex in question would be that of the 2×2 minors
of a 2×1 matrix—and thus isn’t visible at all.

Next suppose d = 4. By the Riemann–Roch formula we have

h0(L 2) = 8−g+1 = 8,
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while, since r = 3, the space of quadratic forms on Pr has dimension dimS2 = 10. It
follows that the ideal IX of X contains at least 2 linearly independent quadratic forms,
Q1, Q2. If Q1 were reducible then the quadric it defines would be the union of two planes.
Since X is irreducible, X would have to lie entirely on one of them. But by hypothesis
X is embedded by the complete series |L |, so X is nondegenerate in P3. Thus Q1 is
irreducible, and S/(Q1) is a domain.

It follows that Q1, Q2 form a regular sequence. The complete intersection of the two
quadrics corresponding to Q1 and Q2 has degree 4 by Bézout’s Theorem, and it contains
the degree 4 curve X, so it is equal to X. Since any complete intersection is unmixed (see
Theorem A2.36), the ideal IX is equal to (Q1, Q2). Since these forms are relatively prime,
the free resolution of SX has the form

0 - S(−4)

(
Q2

−Q1

)

- S2(−2)
(Q1, Q2 )- S,

with Betti diagram

0 1 2

0 1 −
1 − 2 −
2 − − 1

In this case the Eagon–Northcott complex in question is that of the 2×2 minors of a 2×2
matrix. It has the form

0 - S(−2)
Q1- S.

In both these cases, the reader can see from the Betti diagrams that SX is Cohen–Macaulay
of regularity 3 as promised. Henceforward, we will freely assume that d ≥ 5 whenever it
makes a difference.

To continue our analysis, it is helpful to identify the surface Y . Let D be a divisor
consisting of 2 points on X. We have h0(OX(D)) = 2 and h0(L (−D)) = d−2, so from
the theory of the previous section we see that M = M(OX(D),L (−D)) is a 2× (d−2)
matrix of linear forms on Pr that is 1-generic, and the ideal J of 2× 2 minors of M is
contained in the ideal of X. Moreover, we know from Theorem 6.4 that J is a prime ideal
of codimension equal to (d−2)−2+1 = r−2; that is, J = IY is the homogeneous ideal
of an irreducible surface Y containing X. The surface Y is the union of the lines spanned
by the divisors linearly equivalent to D in X. Since Y is a surface, X is a divisor on Y .

We can now apply Proposition 6.13 and Proposition 6.15 to construct the free resolution
of I from the Eagon–Northcott resolution of J and a resolution of I/J . To this end we
must identify I/J . We will show that it is a line bundle on Y .

Although it is not hard to continue this analysis in general, the situation is slightly
simpler when D = 2p and L = OX(dp) for some point p ∈ X. This case will suffice for
the analysis of any elliptic normal curve because of the following:

Theorem 6.16. If L is a line bundle of degree k on a smooth projective curve of genus
1 over an algebraically closed field , then L = OX(kp) for some point p ∈ X.
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Proof. The result follows from the construction of a group law on X: Choose a point
q ∈ X to act as the identity. By the Riemann–Roch Theorem, any line bundle of degree 1
on X has a unique section, so there is a one-to-one correspondence between the group of
divisor classes of degree 0 on X and X itself, taking a divisor class D to the unique point
where the global section of OX(q+D) vanishes, and taking a point p ∈ X to the class of
p−q. This makes X into an algebraic group.

Multiplication by k is a nonconstant map of projective curves X → X, and is thus
surjective. It follows that there is a divisor p− q such that D−kq ∼ k(p− q), and thus
D ∼ kp as claimed.

Returning to our elliptic normal curve X embedded by |L |, we see from Theorem 6.16
that we may write L = OX(dp) for some p ∈ X, and we choose D = 2p. To make the
matrix M(OX(2p),OX((d−2)p)) explicit, we choose bases of the global sections of OX(dp)
and OX(2p).

In general the global sections of OX(kp) may be thought of as rational functions on X
having no poles except at p, and a pole of order at most k at p. Thus there is a sequence of
inclusions K = H0OX ⊆ H0OX(p) ⊆ H0OX(2p) ⊆ · · · ⊆ H0OX(kp) ⊆ · · ·. Moreover, we
have seen that h0OX(kP ) = k for k ≥ 1. It follows that 1 ∈ H0(OX) = H0(OX(p) may be
considered as a basis of either of these spaces. But there is a new section σ ∈ H0(OX(2p)),
with a pole at p of order exactly 2, and in addition to 1 and σ a section τ ∈ H0(OX(3p))
with order exactly 3. The function σ2 has a pole of order 4, and continuing in this way
we get:

Proposition 6.17. If p is a point of the smooth projective curve X of genus 1 and d ≥ 1
is an integer , the rational functions σa for 0 ≤ a ≤ d/2 and σaτ , for 0 ≤ a ≤ (d−3)/2,
form a basis of H0(OX(d)).

Proof. The function σaτ b has pole of order 2a+ 3b at p, so the given functions are all
sections, and are linearly independent. Since the dimension of H0(OX(dp)) is d = 1 +
bd/2c+ b(d− 1)/2c = (1 + bd/2c) + (1+ b(d− 3)/2c), the number of sections given, this
suffices.

Corollary 6.18. Let X be an elliptic curve, and let p ∈ X be a point . If d ≥ 2 and e ≥ 3
are integers, the multiplication map

H0(OX(dp))⊗H0(OX(ep)) → H0(OX((d+e)p)

is surjective. In particular , if L is a line bundle on X of degree ≥ 3, and X ⊂ Pr is
embedded by the complete linear series |L |, then SX is Cohen–Macaulay and normal .

We will see Corollaries 8.2 and 8.4 that the regularity of SX (which is 2) can be deduced
easily from Corollary 6.18. In this chapter we will deduce it from an explicit free resolution.

Proof. The sections of H0(OX(dp)) exhibited in Proposition 6.17 include sections with
every vanishing order at p from 0 to d except for 1, and similarly for H0(OX(dp)). When
we multiply sections we add their vanishing orders at p, so the image of the multiplication
map contains sections with every vanishing order from 0 to d+ e except 1, a total of
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d+e distinct orders. These elements must be linearly independent, so they span the d+e-
dimensional space H0(OX((d+e)p).

For the second statement we may first extend the ground field if necessary until it is
algebraically closed, and then use Theorem 6.16 to rewrite L as OX(dp) for some d ≥ 3.
From the first part of the Corollary we see that the multiplication map

H0
OX(d)⊗H0

OX(md) → H0
OX((m+1)d)

is surjective for every m ≥ 0. From Corollary A1.13 we see that SX has depth 2. Since
SX is a two-dimensional ring, this implies in particular that it is Cohen–Macaulay.

For example, consider an elliptic normal cubicX ⊂ P2. By Theorem 6.16 the embedding
is by a complete linear series |OX(3p)| for some point p ∈ X. Let S = K[x0, x1, x2] →
SX =

⊕
n H0(OX(3np) be the map sending x0 to 1, x1 to σ and x2 to τ . By Corollary 6.18

this map is a surjection. To find its kernel, the equation of the curve, consider H0(OX(6p)),
the first space for which we can write down an “extra” section τ 2. We see that there must
be a linear relation among 1, σ, σ2, σ3, τ , στ and τ2, and since σ3 and τ2 are the only two
sections on this list with a triple pole at p, each must appear with a nonzero coefficient.
From this we get an equation of the form τ 2 = f(σ)+τg(σ), where f is a polynomial of
degree 3 and g a polynomial of degree ≤ 1. This is the affine equation of the embedding
of the open subset X \{p} of X in A2 with coordinates σ, τ corresponding to the linear
series |OX(3p)|. Homogenizing, we get an equation of the form

x0x
2
2 = F (x0, x1)+x0x2G(x0, x1),

where F and G are the homogenizations of f and g respectively. Since 3p is a hyperplane
section, the point p goes to a flex point of X, and the line at infinity is the flex tangent.
When the characteristic of K is not 2 or 3, further simplification yields the Weierstrass
normal form y2 = x3 +ax+b for the equation in affine coordinates.

In general, the table giving the multiplication between the sections of OX(2p), and the
sections of OX((d−2)p), with the choice of bases above, can be written as

1 σ . . . σn−1 τ στ . . . σm−1τ

1 1 σ . . . σn−1 τ στ . . . σm−1τ
σ σ σ2 . . . σn στ σ2τ . . . σmτ,

where n = bd/2c and m = b(d−3)/2c, so that (m+1)+(n+1) = r+1 = d. Taking xi to
be the linear form on Pr corresponding to σi and yj to be the linear form corresponding
to σjτ , the matrix M = M(OX(2p),OX((d−2)p) takes the form

M =

(
x0 x1 · · · xn−1

x1 x2 · · · xn

∣∣∣ y0 y1 · · · ym−1

y1 y2 · · · ym

)
,

where the vertical line indicates the division of M into two parts, which we will call M ′

and M ′′. The reader should recognize the matrices M ′ and M ′′ from Section 6A: their
ideals of 2× 2 minors define rational normal curves X ′ and X ′′ of degrees n and m in
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the disjoint subspaces L′ defined by y0 = · · · = ym and L′′ defined by x0 = · · · = xn
respectively.

Let Y be the vanishing locus of the 2×2 minors of M , the union of the linear spaces de-
fined by the vanishing of the generalized rows ofM . Since
M is 1-generic each generalized row consists of linearly
independent linear forms—that is, its vanishing locus is
a line. Moreover, the intersection of the line with the sub-
space Lx is the the point on the rational normal curve in
that space given by the vanishing of the corresponding
generalized row of M ′, and similarly for Ly. Thus the
matrix M defines an isomorphism α : X ′ → X ′′, and in
terms of this isomorphism the surface Y is the union of
the lines joining p ∈ X ′ to α(p) ∈ X ′′. Such a surface is
called a rational normal scroll; the name is justified by
the picture on the right:

• •
�

�/
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Q
QQs

Dλ

XXXXXy

X ′ X ′′

Y XXXXz

��* QQk

In the simplest interesting case, r = 3, we get m = 2 and n = 0 so

M =

(
x0 x1

x1 x2

)
.

In this case Y is the cone in P3 over the irreducible conic x0x2 = x2
1 in P2, and the lines

F are the lines through the vertex on this cone. When r ≥ 4, however, we will show that
Y is smooth.

Proposition 6.19. Suppose that d ≥ 5, or equivalently that r ≥ 4. The surface Y defined
by the 2×2 minors of the matrix M

(
OX(2p),OX((d−2)p)

)
is smooth.

Proof. As we have already seen, Y is the union of the lines defined by the generalized rows
of the matrix M

(
OX(2p),OX((d−2)p)

)
. To see that no two of these lines can intersect,

note that any two distinct generalized rows span the space of all generalized rows, and
thus any two generalized rows contain linear forms that span the space of all linear forms
on Pr. It follows that the set on which the linear forms in both generalized rows vanish is
the empty set.

We can parametrize Y on the open set where x0 6= 0 as the image of A2 by the map
sending f : (t, u) 7→ (1, t, . . . , tm, u, ut, . . . , utn). The differential of f is nowhere vanishing,
so f is an immersion. It is one-to-one because, from our previous argument, the lines t = c1
and t = c2 are distinct for any distinct constants c1, c2. A similar argument applies to the
open set ym 6= 0, and these two sets cover Y .

One can classify the 1-generic matrices of size 2×m completely using the classification
of matrix pencils due to Kronecker and Weierstrass. The result shows that the varieties
defined by the 2 × 2 minors of such a matrix are all rational normal scrolls of some
dimension; for example, if such a variety is of dimension 1 then it is a rational normal curve.
See [Eisenbud and Harris 1987] for details and many more properties of these interesting
and ubiquitous varieties.

To identify X as a divisor, we use a description of the Picard group and intersection
form of Y .
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Proposition 6.20. Let Y be the surface defined in Proposition 6.19. The divisor class
group of Y is

PicY = ZH⊕ZF,

where H is the class of a hyperplane section and F is the class of a line defined by the
vanishing of one of the rows of the matrix M(OX(D),L (−D)) used to define Y . The
intersection numbers of these classes are F ·F = 0, F ·H = 1, and H ·H = r−1.

Proof. The intersection numbers are easy to compute: We have F ·F = 0 because two
fibers of the map to P1 (defined by the vanishing of the generalized rows of M) do not
meet, and F ·H = 1 because F is a line, which meets a general hyperplane transversely
in a single point. Since Y is a surface the number H ·H is just the degree of the surface.

Modulo the polynomial xm+1−y0, the matrix M becomes the matrix whose 2×2 minors
define the rational normal curve of degree m+n+2 = r−1. Thus the hyperplane section
of Y is this rational normal curve, and the degree of Y is also r− 1. The fact that the
intersection matrix (

0 1
1 r−1

)

that we have just computed has rank 2 shows that the divisor classes of F and H are
linearly independent. The proof that they generate the group is outlined in Exercise 6.8.

We can now identify a divisor by computing its intersection numbers with the classes
H and F :

Proposition 6.21. In the basis introduced above, the divisor class of X on the surface Y
is 2H−(r−3)F .

Proof. By Proposition 6.20 we can write the class of X as [X] = aH+bF for some integers
a, b. From the form of the intersection matrix we see that a = X.F and b = X.H−(r−1)a.
Since the lines F on the surface are the linear spans of divisors on X that are linearly
equivalent to D, and thus of degree 2, we have a = 2. On the other hand X.H is the
degree of X as a curve in Pr, that is, r+1. Thus b = r+1−(r−1)2 = −(r−3).

By this proposition, the sheaf of ideals Ĩ/J = IX/Y defining X in Y is the sheaf

Ĩ/J = OY ((r−3)F −2H) = OY ((r−3)F )(−2)

and thus the homogeneous ideal I/J of X in Y is, up to a shift of grading,
⊕

n≥0

H0
OY ((r−3)F )(n).

Here is a first step toward identifying this module and its free resolution.

Proposition 6.22. The cokernel K of the matrix

M = M(OX(2p), OX((r−1)p))

has associated sheaf on Pr equal to K̃ = OY (F ).
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Proof. Let K̃ be the sheaf on Pr that is associated to the module K. We will first show
that K̃ is an invertible sheaf on Y . The entries of the matrix M span all the linear forms
on Pr so locally at any point p ∈ Pr one of them is invertible, and we may apply the
following result.

Lemma 6.23. If N is a 2×n matrix over a ring R and M has one invertible entry , the
cokernel of N is isomorphic to R modulo the 2×2 minors of N .

Proof. Using row and column operations we may put N into the form

N ′ =

(
1 0 . . . 0
0 r2 . . . rn

)

for some ri ∈ R. The result is obvious for this N ′, which has the same cokernel and same
ideal of minors as N .

Continuing the proof of Proposition 6.22, we note that the module K is generated by
degree 0 elements e1, e2 with relations xie1 + xi+1e2 = 0 and yie1 + yi+1e2 = 0. The
elements ei determine sections σi of K̃. Thus if p ∈ Y is a point where some linear form
in the second row of M is nonzero, then σ1 generates K̃ locally at p. As the second row
vanishes precisely on the fiber F , this shows that the zero locus of σ1 is contained in F .

Conversely, suppose p ∈ F so that the second row of M vanishes at p. Since the linear
forms in M span the space of all linear forms on Pr, one of the linear forms in the first row
of M is nonzero at p. Locally at p this means m1σ1 +m2σ2 = 0 in K̃p where m1 is a unit
in OY,p, the local ring of Y at p, and m2 is in the maximal ideal mY,p ⊂ OY,p. Dividing

by m1 we see that σ1 ∈ mY,pK̃p. Since mY,p is the set of functions vanishing at p, we see
that σ1 vanishes at p when considered as a section of a line bundle. Since this holds at all
p ∈ F we obtain K̃ = OY (F ).

To apply Proposition 6.21, we wish to find a free resolution (as S-module) of the ideal
IX/Y ⊂ S/IY , that is, of the module of twisted global sections of the sheaf OY ((r −
3)F )(−2). This sheaf is the sheafification of the module K⊗(r−3)(−2), but one can show
that for r ≥ 5 this module has depth 0, so it differs from the module of twisted global
sections. A better module— in this case the right one— is given by the symmetric power.

Proposition 6.24. Let L be an S-module. If the sheaf L = L̃ on Pr is locally generated
by at most one element , then the sheafification L ⊗k of L⊗k is also the sheafification of
Symk L. In particular , this is the case when L is a line bundle on some subvariety Y ⊂ Pr.

Proof. Since the formation of tensor powers and symmetric powers commutes with local-
ization, and with taking degree 0 parts, it suffices to do the case where L is a module over
a ring R such that L is generated by at most one element. In this case, L ∼= R/I for some
ideal I. If ri are elements of R/I then

r1⊗r2 = r1r2(1⊗1) = r2⊗r1 ∈ R/I⊗R/I.

Since Sym2 L is obtained from L⊗L by factoring out the submodule generated by elements
of the form r1⊗r2−r2⊗r1, we see that L⊗L = Sym2 L. The same argument works for
products with k factors.
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We return to the module K = cokerM , and study Symr−3K.

Proposition 6.25. With notation as above,
⊕

d H0(L ⊗(r−3)(d)) = Symr−3K as S-
modules. The free resolution of these modules is, up to a shift of degree, given by the dual
of the Eagon–Northcott complex of M .

Proof. We use the exact sequence of Corollary A1.12,

0 → H0
m

(Symr−3K) → Symr−3K →
⊕

d

H0(L (d)) → H1
m

(Symr−3K) → 0.

Thus we want to show that H0
m

(Symr−3K) = H1
m

(Symr−3K) = 0. By Proposition A1.16
it suffices to prove that the depth of K is at least 2. Equivalently, by the Auslander–
Buchsbaum Formula A2.15 it suffices to show that the projective dimension of Symr−3K
is at most r−1.

From the presentation Sr−1(−1)
ϕ- S2 → K → 0, we can derive a presentation

Sr−1⊗Symr−4 S
2(−1)

ϕ⊗1- Symr−3 S
2 - Symr−3K → 0;

see [Eisenbud 1995, Proposition A2.2d]. This map is, up to some identifications and a
twist, the dual of the last map in the Eagon–Northcott complex associated to Mµ, namely

0 → (Symr−3 S
2)∗⊗

∧r−1
Sr−1(−r+1) → (Symr−4 S

2)∗⊗
∧r−2

Sr−1(−r+2).

To see this we use the isomorphisms
∧i

Sr−1 ' (
∧r−1−i

Sr−1)∗ (which depend on an

“orientation”, that is, a choice of basis element for
∧r−1

Sr−1). Since the Eagon–Northcott
complex is a free resolution of the Cohen–Macaulay S-module S/I, its dual is again a free
resolution, so we see that the module Symr−3K is also of projective dimension r−1.

By Proposition 6.15, there is an S-free resolution of the homogeneous coordinate ring
S/I of the elliptic normal curve X obtained as a mapping cone of the Eagon–Northcott
complex of the matrix M , which is a resolution of J , and the resolution of the module
I/J . The proof of Proposition 6.25 shows that the dual of the Eagon–Northcott complex,
appropriately shifted, is a resolution of Symr−3K, while I/J ∼= Symr−3K(−2). Thus the
free resolution of I/J is isomorphic to the dual of the Eagon–Northcott complex with a
different shift in degrees. Using an orientation as above, it may be written as

0 → (
∧2

S2)∗(−r−1) - (
∧2

Sr−1)∗(−r+1) - · · ·
· · · - Sr−1⊗Symr−4 S

2(−3)
ϕ⊗1- Symr−3 S

2(−2).

The resolution constructed this way is minimal:
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Theorem 6.26. The minimal free resolution of an elliptic normal curve in Pr has the
form

0 - Symr−3(S
2)∗⊗

∧r−1
Sr−1(−r+1) - · · ·

��
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�
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�>

0
⊕ ⊕

Z
ZZ~∧2

(S2)∗(−r−1) - ∧2
(Sr−1)∗(−r+1) - · · ·

· · · - (S2)∗⊗
∧3

Sr−1(−3) - ∧2
Sr−1(−2)
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�>

�
�

�
�

�
�

�
�> ZZZ~⊕ ⊕

S→ SX → 0.

���>

· · · - (Sr−1)∗⊗Symr−4 S
2(−3) - Symr−3 S

2(−2)

It has Betti diagram of the form

0 1 2 . . . r−2 r−1

0 1 0 0 · · · 0 0
1 0 b1 b2 . . . br−2 0
2 0 0 0 . . . 0 1

with

bi = i

(
r−1

i+1

)
+(r− i−1)

(
r−1

i−1

)
.

In particular , regX = 3.

The terms of the resolution are symmetric about the middle. A closer analysis shows
that the i-th map in the resolution can be taken to be the dual of the (r−1− i)-th map,
and if r ∼= 0 (mod 4) then the middle map can be chosen to be skew symmetric, while if
r ∼= 2 (mod 4) then the middle map can be chosen to be symmetric. See [Buchsbaum and
Eisenbud 1977] for the beginning of this theory.

Proof. We have already shown that the given complex is a resolution. Each map in the
complex goes from a free module generated in one degree to a free module generated in
a lower degree. Thus the differentials are represented by matrices of elements of strictly
positive degree, and the complex is minimal. Given this, the value for the regularity follows
by inspection.

The regularity statement says that for an elliptic normal curve X (degree d = r+ 1
and codimension c = r− 1) in Pr the regularity of the homogeneous coordinate ring
SX is precisely d− c = 2. By the Gruson–Lazarsfeld–Peskine Theorem (5.1), this is the
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largest possible regularity. We shall see in the next chapter that linearly normal curves
of high degree compared to their genus always have regularity 3, which is less than the
Gruson–Lazarsfeld–Peskine bound when the genus is greater than 1.

The methods used here apply, and give information about the resolution, for a larger
class of divisors on rational normal scrolls. The simplest application is to give the resolution
of the ideal of any set of points lying on a rational normal curve in Pr. It also works for
high degree embeddings of hyperelliptic curves (in the sense of Chapter 8, trigonal curves
of any genus in their canonical embeddings, and many other interesting varieties. See
[Eisenbud 1995, end of appendix A2] for an algebraic treatment with further references.

Another way to generalize elliptic curves is by considering abelian varieties. The syzygies
of abelian varieties are much less well understood and offer fascinating problems. For the
state of the art as this book was written see [Rubei 2001] and the references there.

6E Exercises

The catalecticant matrix. (The results of Exercises 1 and 2 were proved by a different
method, requiring characteristic 0, in [Gruson and Peskine 1982], following the observation
by T. G. Room [1938] that these relations held set-theoretically. The simple proof in full
generality sketched here was discovered by Conca [1998].)

1. Prove that Ie(Mr,d) = Ie(Mr,e−1) for all d with e ≤ d+1 and e ≤ r−d+1 and thus
the ideal Ie(Mr,d) is prime of codimension r−2e+1, with free resolution given by the
Eagon–Northcott complex associated to Mr,e−1. In particular, the ideal of the rational
normal curve may be written as I2(Mr,e) for any e ≤ r− d. You might follow these
steps:

(a) Using the fact that the transpose of Mr,d is Mr,r−d, reduce the problem to proving
Ie(Mr,d) ⊂ Ie(Mr,d+1) for e−1 ≤ d < d+1 ≤ r−e+1.

(b) If a = (a1, . . . , as) with 0 ≤ a1, . . . , as and b = (b1, . . . , bs) with 0 ≤ b1, . . . , bs with
ai+bj ≤ r for every i, j, then we write [a, b] for the determinant of the submatrix
involving rows a1, . . . , as and columns b1, . . . , bs of the triangular array

x0 x1 . . . xr−1 xr
x1 x2 . . . xr
...

...
xr−1 xr
xr

.

Let e be the vector of length s equal to (1, . . . , 1). Prove that [a+e, b] = [a, b+e]
whenever this makes sense.

(c) Generalize the previous identity as follows: for I ⊂ {1, . . . , s} write #I for the
cardinality of I, and write e(I) for the characteristic vector of I, which has a 1 in
the i-th place if and only if i ∈ I. Show that for each k between 1 and s we have

∑

#I=k

[a+e(I), b] =
∑

#J=k

[a, b+e(J)].
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(Hint: Expand each minor [a+e(I), b] on the left-hand side along the collection of
rows indexed by I, as

[a+e(I), b] =
∑

#J=k

±1
[
aI +e(I)I , bJ

] [
aIc +e(Ic)I , bJc

]
,

where |I| =
∑

i∈I i, the superscript c denotes complements and aI denotes the
subvector involving only the indices in I. Expand the right-hand side similarly
using along the set of columns from J , and check that the two expressions are the
same.)

2. Let M be any matrix of linear forms in S. We can think of M as defining a linear
space of matrices parametrized by Kr+1 by associating to each point p in Kr+1 the
scalar matrix M(p) whose entries are obtained by evaluating the entries of M at p. A
property of a matrix that does not change when the matrix is multiplied by a scalar
then corresponds to a subset of Pr, namely the set of points p such that M(p) has the
given property, and these are often algebraic sets. For example the locus of points p
where M(p) has rank at most k is the algebraic set defined by the (k+1)× (k+1)
minors of M .

(a) From the fact that the sum of k rank 1 matrices has rank at most k, show that
the locus where M(p) has rank ≤ k contains the k-secant locus of the locus where
M(p) has rank at most 1. (The k-secant locus of a set X ⊂ Pr is the closure of the
union of all linear spans of k-point sets in X.)

(b) If M = Mr,d is the catalecticant matrix, show that the rank k locus of M is
actually equal to the k-secant locus of the rational normal curve X ⊂ Pr of degree
r as follows: First show that two generic k-secant planes with k < r/2 cannot meet
(if they did they would span a 2k-secant 2k−2-plane, whereas any set of d points
on X spans a d− 1-plane as long as d ≤ r.) Use this to compute the dimension
of the k-secant locus. Use Exercise 6.1 above, together with Theorem 6.4, to show
that the ideal of (e+1)×(e+1) minors of Mr,d is the defining ideal of the e-secant
locus of X.

3. We can identify Pr with the set of polynomials of degree r in 2 variables, up to scalar.
Show (in characteristic 0) that the points of the rational normal curve may be identified
with the set of r-th powers of linear forms, and a sufficiently general point of the k-
secant locus may thus be identified with the set of polynomials that can be written as
a sum of just k pure r-th powers. The general problem of writing a form as a sum of
powers is called Waring’s problem. See, for example, [Geramita 1996], and [Ranestad
and Schreyer 2000] for more information.

4. Use Theorem 6.4 to reprove Proposition 6.1 by comparing the codimensions of the
(necessarily prime) ideal generated by the minors and the prime ideal defining the
curve.

5. Let X = {p1, . . . , pr+3} ⊂ Pr be a set of r+3 points in linearly general position. Show
that there is a unique rational normal curve in Pr containing X, perhaps as follows:



6E Exercises 105

(a) Existence. We will use Corollary 6.9. We look for a 1-generic matrix of linear forms

M =

(
a0 . . . ar−1

b0 . . . br−1

)

whose minors vanish on X. Let ai be a linear form that vanishes on p1, . . . , p̂i, . . . ,
pn, pn+1; and let bi be a linear form that vanishes on p1, . . . , p̂i, . . . , pn, pn+3.
These forms are unique up to scalars, so we may normalize them to make all the
rational functions ai/bi take the value 1 at pn+2. Show that with these choices the
matrix M is 1-generic and that its minors vanish at all the points of X.

For example, let X be the set of r+3 points pi with homogeneous coordinates
given by the rows of the matrix




1 0 . . . 0
0 1 . . . 0

. . .

0 0 . . . 1
1 1 . . . 1
t0 t1 . . . tr



.

Show that these points are in linearly general position if and only if the ti ∈ K are
all nonzero and are pairwise distinct, and that any set of r+3 points in linearly
general position can we written this way in suitable coordinates. Show that the 2×2
minors of the matrix

M =




x0 . . . xr−1

tnx0− t0xn
tn− t0

. . .
tnxn−1− tn−1xn

tn− tn−1




generate the ideal of a rational normal curve containing these points. See [Griffiths
and Harris 1978, p. 530] for a more classical argument, and [Harris 1995] for further
information.

(b) Uniqueness. Suppose that C1, C2 are distinct rational normal curves containing X.
Show by induction on r that the projections of these curves from pr+3 into Pr−1

are equal. In general, suppose that C1, C2 are two rational normal curves through
pr+3 that project to the same curve in Pr−1, so that C1, C2 both lie on the cone F
over a rational normal curve in Pr−1.

Let F ′ be the surface obtained by blowing up this cone at pr+3, let E ⊂ F ′ be
the exceptional divisor, a curve of self-intersection −r+1, and let R′ ⊂ F ′ be the
preimage of a ruling of the cone F . See for example [Hartshorne 1977, Section V.2]
for information about such surfaces, and [Eisenbud and Harris 2000, Section VI.2]
for information about blowups in general.

Show that F ′ is a minimal rational surface, ruled by lines linearly equivalent
to R′, and E.E = −r+ 1. Let C ′

1, C
′
2 ⊂ F ′ be the strict transforms of C1, C2.

Compute the intersection numbers C ′
i.E and C ′

i.R, and conclude that C ′
i ∼ E+rR

so C ′
1.C

′
2 = r+1. Deduce that the number of distinct points in C1∩C2 is at most

r+2, so that C1∩C2 cannot contain X, a contradiction.
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F F ′

E

R

FIGURE 6.1. Two rational normal curves in Pr meet in at most r+2 points. The picture on the
left shows two twisted cubics in P3, lying on a quadric cone F , while the picture on the right
shows the strict transforms of these curves, lying on the surface F ′ obtained by blowing up the
cone at the vertex. The horizontal line E represents the exceptional divisor, while the vertical
line R is the strict transform of a line on the cone, which is a ruling of the ruled surface F ′.

6. Let M be a 1-generic 2× r matrix of linear forms on Pr, and let X ∼= P1 be the
rational normal curve defined by the 2×2 minors of M . Suppose that M ′ is any other
1-generic 2×r matrix of linear forms on Pr whose minors are contained in the ideal of
X. Show that the sheaf associated to the S-module cokerM is isomorphic to the line
bundle OX(p) for any point p ∈ X, and that M is a minimal free presentation of this
module. Deduce from the uniqueness of minimal free resolutions that M and M ′ differ
by invertible row and column transformations and a change of variable.

7. (For those who know about Gröbner bases.) Let < be the reverse lexicographic order
on the monomials of S with x0 < · · · < xr. For 1 ≤ e ≤ d+1 ≤ r show that the initial
ideal, with respect to the order <, of the ideal Ie(Mr,d), is the ideal (xe−1, . . . , xr−e)

e.
This gives another proof of the formula for the codimension of Ie(Mr,d) above, and also
for the vector space dimension of the degree e component of Ie(Mr,d). Use this and
Theorem 5.1 to give another proof of the fact that I2(Mr,1) is the ideal of the rational
normal curve.

8. With notation as in Proposition 6.22, show that the two sections OY (F ) corresponding
to generators of cokerM define a morphism π of Y to P1. The fibers are the linear spaces
defined by rows of M , thus projective spaces, and Y is a projective space bundle; in
fact, Y = Proj(π∗(OY (1))) (we could show this is OP1(m)⊕OP1(n).) From [Hartshorne
1977, V.2.3] it follows that Pic(Y ) = Z⊕π∗ Pic(P1) = Z⊕Z. Since the determinant of
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the intersection form on the sublattice spanned by F and H is 1, these two elements
must be a basis.

9. (For those who know about schemes.) Generalize Theorem 6.6 as follows: Let X be a
smooth projective variety over an algebraically closed field and let L = (L , V, α) be a
linear series on X. Show that L is very ample if, for each finite subscheme Y of length
2 in X, the space of sections in α(V ) vanishing on Y has codimension 2 in α(V ).

10. Here is the easiest case of the (vague) principle that embeddings of varieties by suffi-
ciently positive bundles are often defined by ideals of 2×2 minors: Suppose that the
homogeneous ideal I of X in Pr is generated by equations of degrees ≤ d, and let Ye be
the image of X in P(H0(OX(e))) under the complete series |OX(e)|. Choose e ≥ d, and
let e1 ≥ 1 and e2 ≥ 1 be integers with e1+e2 = e. Show that the ideal of Ye is generated
by the 2×2 minors of M(OX(e1),OX(e2). (Hint: Start with the case X = Pr.)

11. Theorem 6.8 shows that any nondegenerate, reduced irreducible curve of degree r in P r

is equivalent by a linear automorphism to the rational normal curve (we usually say:
is a rational normal curve.) One can be almost as explicit about curves of degree r+1.
Use the Riemann–Roch theorem and Clifford’s theorem [Hartshorne 1977, Theorem
IV.5.4] to prove:

Proposition 6.27. If X is a nondegenerate reduced irreducible curve of degree r+1
in Pr over an algebraically closed field , then X is either

• a smooth elliptic normal curve,

• a rational curve with one double point (also of arithmetic genus 1), or

• a smooth rational curve.

Moreover , up to linear transformations of Pr each singular curve (type 2) is equivalent
to the image of one of the two maps

P1 3 (s, t) 7→ (sr+1, sr−1t, sr−2t2, . . . , tr+1) ∈ Pr, or

P1 3 (s, t) 7→ (sr+1 + tr+1, st ·sr−2t, st ·sr−3t2, . . . , st · tr−1) ∈ Pr.

Unlike for the singular case there are moduli for the embeddings of a smooth
rational curve of degree r+1 (third case in the proposition above), and several different
Betti diagrams can appear. However, in all of these cases, the curve lies on a rational
normal scroll and its free resolution can be analyzed in the manner of the elliptic
normal curves (see [Eisenbud and Harris 1987] for further information.)
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7

Linear Complexes and the Linear Syzygy
Theorem

Minimal free resolutions are built out of linear complexes, and in this chapter we study
a canonical linear subcomplex (the linear strand) of a free resolution. We start with an
elementary version of the Bernstein–Gelfand–Gelfand correspondence (BGG) and use it
to prove Green’s Linear Syzygy Theorem. In brief, BGG allows us to translate statements
about linear complexes over a polynomial ring S into statements about modules over an
exterior algebra E. The Linear Syzygy Theorem bounds the length of the linear part of the
minimal free resolution of a graded S-moduleM . Its translation is that a certain E-module
is annihilated by a particular power of the maximal ideal. This is proved with a variant
of Fitting’s Lemma, which gives a general way of producing elements that annihilate a
module.

The proof presented here is a simplification of that in Green’s original paper [Green
1999]. Our presentation is influenced by the ideas of [Eisenbud et al. 2003a] and [Eisenbud
and Weyman 2003]. In Chapter 8 we will apply the Linear Syzygy Theorem to the ideals
of curves in Pr.

The last section of the chapter surveys some other aspects of BGG, including the con-
nection between Tate resolutions and the cohomology of sheaves.

Throughout this chapter, we denote the polynomial ring in r + 1 variables by S =
K[x0, . . . , xr]. We write W = S1 for the space of linear forms, and V or Ŵ for its dual
HomK(W,K). (In this chapter we will use ̂ to denote the vector space dual HomK(−,K),
reserving ∗ for the dual of a module over a larger ring.)

We let E =
∧
V be the exterior algebra of V .
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7A Linear Syzygies

The Linear Strand of a Complex

One natural way to study the minimal resolution of a graded S-module is as an iterated
extension of a sequence of linear complexes. In general, suppose that

G : · · · - Gi
di- Gi−1

- · · ·
is a complex of graded free S-modules, whose i-th term Gi is generated in degrees ≥ i,
and suppose, moreover that G is minimal in the sense that di(Gi) ⊂WGi−1 (for example
G might be a minimal free resolution, or a free sub- or quotient-complex of a minimal free
resolution of a module generated in degrees ≥ 0.) Let Fi ⊂ Gi be the submodule generated
by all elements of degree precisely i. Since i is the minimal degree of generators of Gi, the
submodule Fi is free. Since di(Fi) is generated in degree i and is contained in WGi−1, it
must in fact be contained in WFi−1. In particular the Fi form a free subcomplex F ⊂ G,
called the linear strand of G. The Betti diagram of F is simply the 0-th row of the Betti
diagram of G. The linear strand sometimes isolates interesting information about G.

For an arbitrary free complex G, we define the linear strand to the be the linear strand
of the complex G(i) where i = sup {regGj− j}, the least twist so that G(i) satisfies the
condition that the j-th free module is generated in degrees ≥ j. (The case where G is
infinite and the supremum is infinity will not concern us.)

Since F is a subcomplex of G we can factor it out and start again with the quotient
complex G/F. The linear strand of G/F(1), shifted by −1, is called the second linear
strand of G. Continuing in this way we produce a series of linear strands, and we see that
G is built up from them as an iterated extension. The Betti diagram of the i-th linear
strand is the i-th row of the Betti diagram of G.

For example Theorem 3.16 shows that there is a set X of 9 points in P2 whose ideal
I = IX has minimal free resolution G with Betti diagram

0 1

3 2 1
4 1 −
5 − 1

From this Betti diagram we see that the ideal of X is generated by two cubics and a
quartic and that its syzygy matrix has the form

d =



q 0
f1 `1
f2 `2


 ,

where q has degree 2, the `i are linear forms and the fi have degree 3.
Let p be the intersection of the lines L1 and L2 defined by `1 and `2. We claim that p

is a point and that the nine points consist of p together with the 8 points of intersection
of the conic Q and the quartic G defined by q and by

g = det

(
f1 `1
f2 `2

)



7A Linear Syzygies 111

G

Q

L2

L1

p

Nine points whose ideal is generated by two cubics and a quartic,

the equations of the curves Q∪L1, Q∪L2, and G.

respectively (counted with appropriate multiplicities).
Indeed, the Hilbert–Burch Theorem 3.2 shows that I is minimally generated by the 2×2

minors `1q, `2q, and g of the matrix d, so `1 and `2 must be linearly independent. At the
point p both `1 and `2 vanish, so all the forms in the ideal of X vanish, whence p ∈ X.
Away from p, the equations `1q = 0, `2q = 0 imply q = 0, so the other points of X are in
Q∩G as required.

On the other hand, the Betti diagram of the linear strand of the resolution G of I is

0 1

3 2 1

and the matrix representing its differential is

d|F =

(
`1
`2

)
.

Thus the linear strand of the resolution captures a subtle fact: a set of 9 distinct points
in P2 with resolution as above contains a distinguished point. In this case the second and
third linear strands of G have trivial differential; the remaining information about the
maps of G is in the extension data.
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Green’s Linear Syzygy Theorem

The length of the minimal free resolution of a module M , that is, its projective dimen-
sion, is a fundamental invariant. One may hope that the length of the linear strand of a
resolution will also prove interesting, and in many examples it does.

The following result of Mark Green gives a useful bound in terms of a simple property of
the rank-1 linear relations of M , that is, the elements of the algebraic set R(M) ⊂W⊗M0

defined by
R(M) := {w⊗m ∈W ⊗M0 | wm = 0 in M1}.

One can also define linear syzygies of higher rank, and there are many interesting open
questions about them; see [Eisenbud and Koh 1991], where the set R(M) just defined is
called R1(M).

Theorem 7.1 (Green’s Linear Syzygy Theorem). Let S = K[x0, . . . , xr] and let M
be a graded S-module with Mi = 0 for i < 0 and M0 6= 0. The length n of the linear strand
of the minimal free resolution of M satisfies

n ≤ max
(
dimM0−1, dimR(M)

)
.

See Exercise 7.3 for a way to see the maximum as the dimension of a single natural
object.

We postpone the proof, which will occupy most of this chapter, to study some special
cases. First, we give examples illustrating that either term in the max of the theorem can
be achieved.

Example 7.2. Consider first the Koszul complex

K(x1, . . . , xn) : 0 → S(−n) → · · · → S(−1)n → S → 0,

which is the resolution of S/(x1, . . . , xn). It is linear, and has length n. We have dimM0 =
dim K = 1, but the variety R is all of W⊗M0 = W⊗K, which has dimension precisely n.

Example 7.3. For the other possibility, let r = n+2 and consider the 2×(n+2) matrix

N =

(
x0 · · · xr−1

x1 · · · xr

)

whose minors define the rational normal curve in Pr, or more generally any 2× (n+2)
1-generic matrix of linear forms

N =

(
`1,1 · · · `1,n+2

`2,1 · · · `2,n+2

)
.

It follows from Theorem 6.4 that the ideal I = I2(N) has codimension n+1, the largest
possible value. In this case we know from Theorem A2.60 that the minimal free resolution
of S/I is the Eagon–Northcott complex of N ,

EN(N) : 0 - ̂Symn S
2⊗

∧n+2
Sn+2(−n−2) - · · ·

- ̂Sym0 S
2⊗∧2

Sn+2(−2)
∧2N- ∧2

S2 - 0,
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with Betti diagram

0 1 · · · n+1

0 1 − · · · −

1 −
(
n+2

2

)
· · · n+1

The dual of EN(N) is a free resolution of a module ω; see Theorem A2.60. (This module
is, up to a shift of degrees, the canonical module of S/I, though we shall not need this
here; see [Bruns and Herzog 1998, Chapter 3].) Let G be the dual of EN(N), so that G
has Betti diagram

0 · · · n n+1

−n−2 n+1 · · ·
(
n+2

2

)
−

−n−1 − · · · − 1

We see that the linear part of G has length n. The module ω requires n+1 generators, so
equality holds with the first term of the max in Theorem 7.1. In this case we claim that
R(ω) = 0 (see also Exercise 7.4).

To see this, note first that ω = Extn+1
S (S/I, S) is annihilated by I. If a nonzero element

m ∈ ω were annihilated by a nonzero linear form x then it would be annihilated by I+(x).
By Theorem 6.4 I is a prime ideal of codimension n+1, so I+(x) has codimension greater
than n+1. It follows that some associated prime (= maximal annihilator of an element) of
ω would have codimension greater than n+1, and thus ω would have projective dimension
greater than n+1 by Theorem A2.16. Since we have exhibited a resolution length n+1,
this is a contradiction.

The phenomenon we saw in the second example is the one we will apply in the next
chapter. Here is a way of codifying it.

Corollary 7.4. Let X ⊂ Pr be a reduced , irreducible variety that is not contained in a
hyperplane, let E be a vector bundle on X, and let M ⊂ ⊕

i≥0 H0E (i) be a submodule of
the S-module of nonnegatively twisted global sections. If M0 6= 0, the linear strand of the
minimal free resolution of M , as an S-module, has length at most dimM−1.

Proof. Let R(M) ⊂M0⊗W be the variety defined in 7.1. If w ∈ W and m ∈M0 = H0E

with wm = 0 then X would be the union of the subvariety of X defined by the vanishing
of w and the subvariety of X defined by the vanishing of m. Since X is irreducible and not
contained in any hyperplane, this can only happen if w = 0 or m = 0. Thus R(M) = 0,
and Theorem 7.1 gives the result.

The history is this: Corollary 7.4 was proved in [Green 1984a]. In trying to understand
and extend it algebraically, Eisenbud, Koh and Stillman were lead to conjecture the truth
of the Theorem 7.1, as well as some stronger results in this direction [Eisenbud and Koh
1991]. Green [1999] proved the given form; as of this writing the stronger statements are
still open.
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7B The Bernstein–Gelfand–Gelfand Correspondence

Graded Modules and Linear Free Complexes

Recall that V = Ŵ denotes the vector space dual to W , and E =
∧
V denotes the

exterior algebra. If e0, . . . , er is a dual basis to x0, . . . , xr then e2i = 0, eiej = −ejei, and
the algebra E has a vector space basis consisting of the square-free monomials in the ei.
Since we think of elements of W as having degree 1, we will think of elements of V as
having degree −1.

Although E is not commutative, it is skew-commutative (or strictly commutative): that
is, homogeneous elements e, f ∈ E satisfy ef = (−1)deg e deg ffe, and E behaves like a
commutative local ring in many respects. For example, any one-sided ideal is automatically
a two-sided ideal. The algebra E has a unique maximal ideal, generated by the basis
e0, . . . , er of V ; we will denote this ideal by (V ). The analogue of Nakayama’s Lemma is
almost trivially satisfied (and even works for modules that are not finitely generated, since
(V ) is nilpotent). It follows for example that any graded E-module P has unique (up to
isomorphism) minimal free graded resolution F, and that TorE(P,K) = F⊗EK as graded
vector spaces. The same proofs work as in the commutative case.

Also, just as in the commutative case, any graded left E-module P can be naturally
regarded as a graded right E-module, but we must be careful with the signs: if p ∈ P and
e ∈ E are homogeneous elements then pe = (−1)deg p deg eep. We will work throughout
with left E-modules.

An example where this change-of-sides is important comes from duality. If P =
⊕
Pi

is a finitely generated left-E-module, then the vector space dual P̂ :=
⊕
P̂i, where P̂i :=

HomK(Pi,K), is naturally a right E-module, where the product φ · e is the functional

defined by (φ ·e)(p) = φ(ep) for φ ∈ P̂i, e ∈ E−j , and p ∈ Pi+j . As a graded left module,

with (P̂ )−i = P̂i in degree −i, we have

(eφ)(p) = (−1)deg e deg φ(φe)(p) = (−1)deg e deg φφ(ep).

Let P be any graded E-module. We will make S⊗K P into a complex of graded free
S-modules,

L(P ) : · · · - S⊗K Pi
di- S⊗K Pi−1

- · · ·
1⊗p -

∑
xi⊗eip

where the term S⊗Pi ∼= S(−i)dimPi is in homological degree i, and is generated in degree
i as well. The identity

di−1dip =
∑

j

∑

i

xjxi⊗ejeip =
∑

i≤j

xjxi⊗(ejei+eiej)p = 0

follows from the associative and commutative laws for the E-module structure of P . Thus
L(P ) is a linear free complex.

If we choose bases {ps} and {p′t} for Pi and Pi−1 respectively we can represent the dif-
ferential di as a matrix, and it will be a matrix of linear forms: writing emps =

∑
t cm,s,tp

′
t

the matrix of di has (t, s)-entry equal to the linear form
∑

m cm,s,txm.
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It is easy to see that L is actually a functor from the category of graded E-modules to
the category of linear free complexes of S-modules. Even more is true.

Proposition 7.5. The functor L is an equivalence from the category of graded E-modules
to the category of linear free complexes of S-modules.

Proof. We show how to define the inverse, leaving to the reader the routine verification
that it is the inverse. For each e ∈ V = Hom(W,K), and any vector space P there is a
unique linear map e : W ⊗P → P satisfying e(x⊗p) = e(x)p. If now

· · · - S⊗K Pi
di- S⊗K Pi−1

- · · ·

is a linear free complex of S-modules, then d(Pi) ⊂W ⊗Pi−1 so we can define a multipli-
cation V ⊗K Pi → Pi−1 by e⊗p 7→ e(d(p)). Direct computation shows that the associative
and anti-commutative laws for this multiplication follow from the identity di−1di = 0.
(See Exercise 7.9 for a basis-free approach to this computation.)

Example 7.6. Take P = E, the free module of rank 1. The complex L(E) has the form

L(E) : 0 → S⊗K → S⊗V → · · · → S⊗
∧r

V → S⊗
∧r+1

V → 0,

since
∧r+2

V = 0. The differential takes s⊗ f to
∑
xis⊗ eif . This is one way to write

the Koszul complex of x0, . . . , xr, though we must shift the degrees to regard
∧r+1

V ∼= S
as being in homological degree 0 and as being generated in degree 0 if we wish to have a
graded resolution of K (see [Eisenbud 1995, Section 17.4]). Usually the Koszul complex is
written as the dual of this complex:

K(x0, . . . , xr) = HomS(L(E), S) :

0 →
∧r+1

W ⊗K → S⊗
∧r

W → · · · → S⊗
∧1

W → S⊗K → 0,

where we have exploited the identifications
∧k

W = HomK(
∧k

V,K) coming from the iden-
tification W = HomK(V,K). It is useful to note that HomS(L(E), S) = L(HomK(E,K)) =

L(Ê) (and more generally L(P̂ ) = HomS(L(P ), S) for any graded E-module P , as the
reader is asked to verify in Exercise 7.7. From Theorem 7.5 and the fact that the Koszul
complex is isomorphic to its own dual, it now follows that Ê ∼= E as E-modules. For a
more direct proof, see Exercise 7.6.

There are other ways of treating linear complexes and the linear strand besides BGG.
One approach is given by [Eisenbud et al. 1981]. Another is the Koszul homology approach
of Green—see, for example, [Green 1989]. The method we follow here is implicit in the
original paper of Bernstein, Gelfand, and Gelfand [Bernstein et al. 1978], and was made
explicit by Eisenbud, Fløystad, and Schreyer [Eisenbud et al. 2003a].

What It Means to Be the Linear Strand of a Resolution

We see from Proposition 7.5 that there must be a dictionary between properties of linear
free complexes over S and properties of graded E-modules. When is L(P ) a minimal free
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resolution? When is it a subcomplex of a minimal resolution? When is it the whole linear
strand of a resolution? It turns out that these properties are most conveniently charac-
terized in terms of the dual E-module P̂ introduced above. For simplicity we normalize
and assume that L(P ) has no terms of negative homological degree, or equivalently that
Pi = 0 for i < 0. For the proof of Green’s Theorem 7.1 we will use part 3 of the following
dictionary.

Theorem 7.7 (Dictionary Theorem). Let P be a finitely generated , graded E-module
with no component of negative degree, and let

F = L(P ) : · · · d2- S⊗K P1
d1- S⊗K P0

- 0

be the corresponding finite linear free complex of S-modules.

1. F is a free resolution (of coker d1) if and only if P̂ is generated in degree 0 and has a
linear free resolution.

2. F is a subcomplex of the minimal free resolution of coker d1 if and only if P̂ is generated
in degree 0.

3. F is the linear strand of the free resolution of coker d1 if and only if P̂ is linearly
presented (that is, P̂ is generated in degree 0 and has relations generated in degree
−1.)

In Example 7.6 above we saw that L(E) and L(Ê) are both linear free resolutions. By

part 1 of Theorem 7.7, this statement is equivalent to saying that both E and Ê have
linear free resolutions as E-modules. Since E is itself free, and Ê ∼= E, this is indeed
satisfied.

We will deduce Theorem 7.7 from a more technical result expressing the graded com-
ponents of the homology of L(P ) in terms of homological invariants of P̂ .

Theorem 7.8. Let P be a finitely generated graded module over the exterior algebra E.
For any integers i ≥ 0 and k the vector space Hk(L(P ))i+k is dual to TorEi (P̂ ,K)−i−k.

We postpone the proof of Theorem 7.8 until the end of this section.

Proof of Theorem 7.7 from Theorem 7.8. Let P be a finitely generated graded E-module
such that Pi = 0 for i < 0 as in Theorem 7.7, and set M = coker d1 = H0(L(P )).

The module P̂ is generated in degree 0 and has a linear free resolution if and only
if TorEi (P̂ ,K)−i−k = 0 for k 6= 0. By Theorem 7.8 this occurs if and only if L(P ) has
vanishing homology except at the 0-th step; that is, L(P ) is a free resolution of M . This
proves part 1.

For part 2, note that P̂ is generated as an E-module in degree 0 if and only if

TorE0 (P̂ ,K)−k = 0

for k 6= 0. By Theorem 7.8 this means that Hk(L(P ))k = 0 for k 6= 0. Since L(P )k+1 is
generated in degree −k−1, this vanishing is equivalent to the statement that, for every
k, the map of Pk to the kernel of W ⊗Pk−1 → S2(W )⊗Pk−2 is a monomorphism.
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Suppose that
L(P )≤k−1 : S⊗Pk−1 → S⊗Pk−2 → · · ·

is a subcomplex of the minimal free resolution G of M (this is certainly true for k = 1). In
order for L(P )≤k to be a subcomplex of G, it is necessary and sufficient that 1⊗Pk ⊂ S⊗Pk
maps monomorphically to the linear relations in kerS⊗Pk−1 → S⊗Pk−2, and this is the
same condition as above. This proves 2.

For part 3, notice that P̂ is linearly presented if, in addition to being generated in degree
0, it satisfies TorE1 (P̂ ,K)−1−k = 0 for k 6= 0. By Theorem 7.8 this additional condition is
equivalent to the statement that Hk(L(P ))1+k = 0 for all k, or in other words that the
image of Pk generates the linear relations in kerS⊗Pk−1 → S⊗Pk−2, making L(P ) the
linear part of the minimal resolution of M .

To prove Theorem 7.8 we will compute TorE(P̂ ,K) using the Cartan complex, which

we will show to be the minimal free resolution of K as an E-module. Define Ŝ to be the
S-module

Ŝ :=
⊕

HomK(Si,K) =
⊕

i Ŝi.

We regard Ŝi as a graded vector space concentrated in degree −i. The Cartan resolution
is an infinite complex of the form

C : · · · d2- E⊗K Ŝ1
d1- E⊗K Ŝ0,

where the free E-moduleE⊗K Ŝi, which is generated in degree −i, has homological degree i.
To define the differential di : E⊗ Ŝi → E⊗ Ŝi−1 we regard Ŝ as a graded S-module,

taking multiplication by s ∈ S to be the dual of the multiplication on S, and we choose
dual bases {ej} and {wj} of V and W . If p ∈ E and f ∈ Ŝi, we set

di(p⊗f) =
∑

j

pej⊗wjf ∈ E⊗ Ŝi−1. (∗)

It is easy to check directly that di−1di = 0, so that C is a complex of free E-modules,
and that di is independent of the choice of dual bases; as with the differential of the Koszul
complex, this occurs because the differential is really right multiplication by the element∑

j ej⊗wj ∈ E⊗S, and this well-defined element squares to zero.

Proposition 7.9. If P is a finitely generated graded E-module then, for any integers i, k
the vector space Hi(P ⊗EC)−i−k is dual to Hk(L(P̂ ))i+k.

Proof. The i-th term of P ⊗EC is

P ⊗EE⊗K Ŝi = P ⊗K Ŝi,

and the differential P⊗Edi is expressed by the formula (∗) above (but now we take pi ∈ P ).
We will continue to denote it di. Taking graded components we see that Hi(P ⊗EC)−i−k
is the homology of the sequence of vector spaces

P−k+1⊗ Ŝi+1
di+1- P−k⊗ Ŝi

di- P−k−1⊗ Ŝi−1.
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Its dual is the homology of the dual sequence

P̂k−1⊗Si+1
�d̂i+1

P̂k⊗Si �d̂i
P̂k+1⊗Si−1

which is the degree i+k component of the complex L(P̂ ) at homological degree k.

Corollary 7.10. The Cartan complex C is the minimal E-free resolution of the residue
field K = E/(V ).

Proof. By the Proposition, it suffices to show that H0(L(Ê)) = K in degree 0, while

Hk(L(Ê)) = 0 for k > 0; that is, L(Ê) is a free resolution of K as an S-module. But we

have already seen that L(Ê) is the Koszul complex, the minimal free resolution of K, as
required.

Proof of Theorem 7.8. By Corollary 7.10, TorEi (P̂ ,K)−i−k = Hi(P̂⊗EC)−i−k. By Propo-

sition 7.9, Hi(P̂ ⊗EC)−i−k is dual to Hk(L(P ))i+k.

Identifying the Linear Strand

Given a graded S-module M we can use part 3 of the Dictionary Theorem to identify the
E-module Q such that L (Q̂) is the linear strand of the minimal free resolution of M . If
we shift grading so that M “begins” in degree 0, the result is the following:

Corollary 7.11. Let M =
∑
i≥0Mi be a graded S-module with M0 6= 0. The linear strand

of the minimal free resolution of M as an S-module is L(Q̂), where Q is the E-module
with free presentation

E⊗M̂1
α- E⊗M̂0

- Q - 0

where the map α is defined on the generators 1⊗M̂1 = M̂1 by the condition that

α|M̂1
: M̂1 → V ⊗M̂0

is the dual of the multiplication map µ : W ⊗M0 →M1.

Proof. By Proposition 7.5 we may write the linear part of the resolution of M as L(P )
for some E-module P , so

L(P ) : · · · - S⊗P1
- S⊗P0

- M.

It follows that P0 = M0, and P1 = kerµ : W ⊗M0 → M1, that is, P1 = R. Dualizing, we
get a right-exact sequence M̂1 → V ⊗M̂0 → R̂ → 0; that is, the image of M̂1 generates
the linear relations on Q = P̂ = · · · ⊕ R̂⊕ M̂ . By part 3 of Theorem 7.7, Q is linearly
presented, so α is the presentation map as claimed.

Using Corollary 7.11 we can explain the relationship between the linear strand of the
free resolution of a module M over the polynomial ring S = SymW and the linear strand
of the resolution of M when viewed, by “restriction of scalars”, as a module M ′ over a
smaller polynomial ring S ′ = SymW ′ for a subspace W ′ ⊂W . Write V ′ = W ′⊥ ⊂ V = Ŵ
for the annihilator of W ′, and let E′ = E/(V ′) =

∧
(V/V ′), so that E′ =

∧
Ŵ ′.
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Corollary 7.12. With notation as above, the linear part of the S ′-free resolution of M ′

is L(P ′), where P ′ is the E′-module {p ∈ P | V ′p = 0}.

Proof. The dual of the multiplication map µ′ : W ′⊗M0 →M1 is the induced map M̂1 →
(V/V ′)⊗M̂0, and the associated map of free modules E ′⊗M̂1 → E′⊗M̂0 is obtained by
tensoring the one for M with E ′. Its cokernel is Q′ = Q/V ′Q. By Corollary 7.11 the linear

part of the S′-free resolution of M ′ is L(P ′), where P ′ = Q̂′ is the set of elements of Q̂

annihilating V ′Q. This is the same as the set of elements of Q̂ annihilated by V ′.

One concrete application is to give a bound on the length of the linear part that will
be useful in the proof of Green’s Theorem.

Corollary 7.13. With notation as in Corollary 7.12, suppose that the codimension of W ′

in W is c. If the length of the linear strand of the minimal free resolution of M as an S ′

module is n, then the length of the linear strand of the minimal free resolution of M is at
most n+c.

Proof. By an obvious induction, it suffices to do the case c = 1. Write the linear strand
of the minimal S-free resolution of M as L(P ) for some E-module P . Suppose that W ′ is
spanned by e ∈ V , so that P ′ = {p ∈ P | ep = 0} ⊃ eP . Because the degree of e is −1,
there is a left exact sequence

0 - P ′ - P
e- P (−1).

The image of the right-hand map is inside P ′(−1). Thus if P ′
i = 0 for i > n then Pi = 0

for i > n+1 as required.

7C Exterior Minors and Annihilators

From Theorem 7.7 we see that the problem of bounding the length of the linear part of
a free resolution over S is the same as the problem of bounding the number of nonzero
components of a finitely generated E-module P that is linearly presented. Since P is
generated in a single degree, the number of nonzero components is ≤ n if and only if
(V )nP = 0. Because of this, the proof of Theorem 7.1 depends on being able to estimate
the annihilator of an E-module.

Over a commutative ring such as S we could do this with Fitting’s Lemma, which says
that if a module M has free presentation

φ : Sm
φ- Sd - M - 0

then the d×dminors of φ annihilateM (see Section A2G on page 207.) The good properties
of minors depend very much on the commutativity of S, so this technique cannot simply
be transplanted to the case of an E-module. But Green discovered a remarkable analogue,
the exterior minors, that works in the case of a matrix of linear forms over an exterior
algebra. (The case of a matrix of forms of arbitrary degrees is treated in [Eisenbud and
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Weyman 2003].) We will first give an elementary description, then a more technical one
that will allow us to connect the theory with that of ordinary minors.

It is instructive to look first at the case m = 1. Consider an E-module P with linear
presentation

E(1)



e1
...
ed




- Ed - P - 0.

where the ei ∈ V are arbitrary. We claim that (e1∧· · ·∧ed)P = 0. Indeed, if the basis of
Ed maps to generators p1, . . . , pd ∈ P , so that

∑
i eipi = 0, then

(e1∧· · ·∧ed)pi = ±(e1∧· · ·∧ei−1∧ei+1∧· · ·∧ed)∧eipi
= ∓(e1∧· · ·∧ei−1∧ei+1∧· · ·∧ed)

∑

j 6=i

ejpi = 0,

since e2j = 0 for all j.
When the presentation matrix φ has many columns, it follows that the product of the

elements in any one of the columns of φ is in the annihilator of P , and the same goes
for the elements of any generalized column of φ—that is, of any column that is a scalar
linear combination of the columns of φ. These products are particular examples of exterior
minors. We shall see in Corollary 7.16 that all the exterior minors are linear combinations
of exterior minors of this type, at least over an infinite field

In general, suppose that φ is a p×q matrix with entries ei,j ∈ V ⊂ E. Given a collection
of columns numbered c1, . . . , ck, with multiplicities n1, . . . , nk adding up to d, and any
collection of d rows r1, . . . rd, we will define an d×d exterior minor

φ
[
r1, . . . , rd | c(n1)

1 , . . . , c
(nk)
k

]
∈

∧d
V

to be the sum of all products of the form er1,j1 ∧ · · · ∧ erd,jd where precisely ni of the
numbers js are equal to ci.

For example, if the multiplicities ni are all equal to 1, the exterior minor is the permanent
of the d×d submatrix of φ with the given rows and columns. On the other hand, if we
take a single column with multiplicity d, then φ

[
r1, . . . , rd | c(d)1

]
is the product of d entries

of column number c1, as above.
With general multiplicities, but in characteristic zero, φ

[
r1, . . . , rd | c(n1)

1 · · · c(nk)
k

]
is the

permanent of the d× d matrix whose columns include ni copies of ci, divided by the
product n1! · · ·nk!. (The permanent of a d× d matrix with entries xij is the sum, over
all permutations σ on d indices, of the products

∏d
i=1 xi,σi

—the same products that
appear in the determinant, but not multiplied by alternating signs.) If we think of the
rows and columns as being vectors in V , the exterior minor is alternating in the rows and
symmetric in the columns. We have chosen the notation i(ni) to suggest a divided power;
see for example [Eisenbud 1995, Appendix 2].

Description by Multilinear Algebra

We next give an invariant treatment, which also relates the exterior minors of φ to the
ordinary minors of a closely related map φ′.
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We first write the transpose φ∗ : Ep(1) → Eq of φ without using bases as a map
φ∗ : E⊗KA→ E⊗KB where A and B are vector spaces of dimensions p and q generated
in degrees −1 and 0, respectively. Thus the rows of φ (columns of φ∗) correspond to

elements of A while the columns of φ (rows of φ∗) correspond to elements of B̂.
The map φ∗ (and with it φ) is determined by its restriction to the generating set

A = 1⊗A ⊂ E⊗A, and the image of A is contained in V ⊗B. Let

ψ : A→ V ⊗B,

be the restriction of φ∗. We can recover φ from ψ; explicitly,

φ′ :
∧
V ⊗ B̂ - ∧

V ⊗ Â
1⊗ b̂ -

∑

i

vi⊗(v̂i⊗ b̂)◦ψ,

where {vi} and {v̂i} are dual bases of V and V̂ .

Taking the d-th exterior power of ψ, we get a map
∧d

ψ :
∧d

A→
∧d

(V ⊗B). Because
any element x ∈ V⊗B ⊂ (

∧
V )⊗SymB satisfies x2 = 0, the identity map on V⊗B extends

uniquely to an algebra map
∧

(V ⊗B) → (
∧
V )⊗SymB. The degree-d component m of

this map is given by

∧d
(V ⊗B)

m- ∧d
V ⊗SymdB

(v1⊗b1)∧· · ·∧(v1⊗bd) - (v1∧· · ·∧vd)⊗(b1 · · · · ·bd).

We will see that m◦
∧d

ψ may be regarded as “the matrix of exterior minors of φ.”
On the other hand, we could equally consider ψ as specifying a map of free modules in

which “variables” are elements of B, and columns correspond to elements of V̂ , with rows
corresponding to elements of A as before. This could in fact be done over any algebra
containing the vector space B. We take the algebra to be the new polynomial ring SymB
and define

φ′ : SymB⊗ V̂ - SymB⊗ Â
1⊗ v̂ -

∑

i

bi⊗(v̂⊗ b̂i)◦ψ,

where {bi} and {b̂i} are dual bases of B and B̂.

If a1, . . . , ad ∈ A and v̂1, . . . , v̂d ∈ V̂ , we write

φ′(a1, . . . , ad | v̂1 . . . v̂d) ∈ SymdB

for the d×d minor of φ′ involving the rows corresponding to a1, . . . , ad and the columns
corresponding to v1, . . . , vd.

We will similarly extend our previous notation φ
[
r1, . . . , rd | c(n1)

1 , . . . , c
(nk)
k

]
to allow the

ri to be elements of A and to allow the ci to be elements of B̂ instead of row and column
numbers.

We can now show that the map m◦
∧d

ψ expresses both the exterior minors of φ and
the ordinary minors of φ′.
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Proposition 7.14. With notation as above, let {v0, . . . , vr} and {v̂0, . . . , v̂r} be dual bases

for V and V̂ , and let {b1, . . . , bq} and {b̂1, . . . , b̂q} be dual bases for B and B̂. The map

m◦∧d
ψ is given by the formulas

m◦
∧d

ψ(a1∧· · ·∧ad) =
∑

0≤i1<···<id≤r

vi1 ∧· · ·∧vid ⊗ φ′( a1, . . . , ad | v̂i1 , . . . , v̂id )

=
∑

1≤i1≤...≤ik≤q∑
nj=d, 0<nj

φ
[
a1, . . . , ad | b̂(n1)

i1
· · · b̂(nk)

ik

]
⊗ bn1

i1
· · · bnk

ik

Proof. Let ψ(at) =
∑

i,j ci,j,tvi⊗ bj with coefficients ci,j,t ∈ K. Let G be the symmetric
group on {1, . . . , d}.

For the first equality, set `i,t =
∑

j ci,j,tbj ∈ B = Sym1B, so that (φ′)∗ has (i, t)-entry
equal to `i,t and ψ(at) =

∑
i vi⊗`i,t. We have

m◦
∧d

ψ(a1∧· · ·∧ad) = m

(∑

i

(vi⊗`i,1) ∧ · · · ∧
∑

i

(vi⊗`i,d)
)

= m

( ∑

0≤i1,...,id≤r

(vi1 ⊗`i1,1)∧· · ·∧(vid ⊗`id,d)
)

=
∑

0≤i1,...,id≤r

vi1 ∧· · ·∧vid ⊗`i1,1 · · · `id,d.

Gathering the terms corresponding to each (unordered) set of indices {i1, . . . , id}, we see
that this sum is equal to the first required expression:

∑

0≤i1<···<id≤r σ∈G

vi1 ∧· · ·∧vid ⊗(signσ)`iσ(1),1 · · · `iσ(d),d

=
∑

0≤i1<···<id≤r

vi1 ∧· · ·∧vid ⊗φ′(a1, . . . , ad | v̂i1 , . . . , v̂id).

The proof that m◦
∧d

ψ(a1 ∧ · · ·∧ad) is given by the second expression is completely

parallel once we write mj,t =
∑

i ci,j,tvi ∈ V =
∧1

(V ), so that (φ)∗ has (j, t)-entry equal
to mj,t and ψ(at) =

∑
jmj,t⊗bj .

How to Handle Exterior Minors

Here are some results that illustrate the usefulness of Proposition 7.14.

Corollary 7.15. With the notation above, the span of the d×d exterior minors of φ is
the image of a map

md :
∧d

A⊗ ̂SymdB →
d∧
V

that depends only on φ as a map of free modules, and not on the matrix chosen. In
particular , if v1, . . . , vd are the elements of any generalized column of φ, then v1∧· · ·∧vd
is in this span.
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Proof. The map md is defined by saying that it sends a⊗g ∈
∧d

A⊗ ̂SymdB to

(1⊗g)
(
m◦

∧d
ψ(a)

)
.

Since we can replace one of the columns of φ by a generalized column without changing
the map of free modules, the second statement follows from our original description of the
exterior minors.

Corollary 7.15 suggests a different approach to the the exterior minors. In particular,
if we take V = A⊗ B̂ and if φ is the generic matrix of linear forms over the ring E,
then the span of the d×d exterior minors of φ is invariant under the product of linear
groups GL(A)×GL(B), and is the (unique) invariant submodule of

∧
(A⊗B) isomorphic

to
∧d

A⊗ ̂SymdB. For further information see [Eisenbud and Weyman 2003].

Corollary 7.16. If K is an infinite field and φ is a d×m matrix of linear forms over E,
then the vector space generated by all the d×d exterior minors of φ is in fact generated
by all elements of the form e1∧· · ·∧ed, where e1, . . . , ed are the elements of a generalized
column of φ.

Proof. A (generalized) column of φ corresponds to an element b̂ : B → K. Such an
element induces a map SymB → Sym K = K[x], and thus for every d it induces a map

SymdB → K ·xd = K that we will call b̂(d). This notation is compatible with our previous
notation because

φ
[
a1, . . . , ad|b̂(d)

]
= e1∧· · ·∧ed = m

(
a1∧· · ·∧ad⊗ b̂(d)

)
.

By Corollary 7.15 the span of the exterior minors of φ is the image of

md :
∧d

A⊗ ̂SymdB →
∧d

V.

Thus to show that the special exterior minors that are products of the elements in a
generalized column span all the exterior minors, it suffices to show that the elements b̂(d)

span ̂SymdB. Equivalently, it suffices to show that there is no element in the intersection

of the kernels of the projections b̂(d) : SymdB → K. But this kernel is the degree d part

of the ideal generated by the kernel of b̂. If we think of this ideal as the ideal of the point
in projective space P(B) corresponding to b̂, the desired result follows because the only
polynomial that vanishes on all the points of a projective space over an infinite field is the
zero polynomial.

The next two corollaries are the keys to the proof of the Linear Syzygy Theorem to be
given in the next section.

Corollary 7.17. (Exterior Fitting Lemma) If φ is a d×m matrix of linear forms over
the exterior algebra E then the cokernel of φ is annihilated by the exterior minors of φ.

Proof. We may harmlessly extend the field K, and thus we may suppose that K is infinite.
By Corollary 7.16 it suffices to prove the result for the special exterior minors that are
products of the elements in generalized columns. The proof in this case is given at the
beginning of Section 7C.
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Corollary 7.18. Let φ : E⊗ B̂ → E⊗ Â and φ′ : SymB⊗ V̂ → SymB⊗ Â be maps
of free modules coming from a single map of vector spaces ψ : A → V ⊗B as above. If
dimK A = d, then the dimension of the span of the d×d exterior minors of φ is the same
as the dimension of the span of the (ordinary) d×d minors of φ′.

Proof. Let a1, . . . , ad be a basis of A. The element

f = m◦
∧d

ψ(a1∧· · ·∧ad) ∈
∧d

V ⊗SymdB

may be regarded as a map
∧̂d

V → SymdB or as a map ̂SymdB →
∧d

V . These maps
are dual to one another, and thus have the same rank. By Proposition 7.14 the image of
the first is the span of the ordinary minors of φ′, while the image of the second is the span
of the exterior minors of φ.

7D Proof of the Linear Syzygy Theorem

We now turn to the proof of the Linear Syzygy Theorem 7.1 itself. Let M = M0⊕M1⊕· · ·
be an S-module with M0 6= 0, and let m0 = dimM0. We must show that the length of the
linear strand of the minimal free resolution of M is at most max(m0 −1,dimR), where
R = {w⊗a ∈W ⊗M0 | wa = 0}. We may harmlessly extend the ground field if necessary
and assume that K is algebraically closed.

Suppose first that dimR ≤ m0 − 1. In this case we must show that the length of the
linear strand is ≤ m0−1. From Theorem 7.5 and Corollary 7.11 we know that the linear
strand has the form L(P ), where P = Q̂ and

Q = coker
(
E⊗M̂1

α- E⊗M̂0

)
.

Here α is the dual of the multiplication map µ : W ⊗M0 → M1. Since Q is generated in
degree 0, it will suffice to show that Q is annihilated by (V )m0 , and by Corollary 7.17 it
suffices in turn to show that the m0×m0 exterior minors of α span all of Em0

, a space of
dimension

(
r+1
m0

)
.

By Corollary 7.18, the dimension of the span of the exterior minors of α is the same as
the dimension of the span of the ordinary m0×m0 minors of the map of SymM1-modules

φ′ : SymM1⊗W → SymM1⊗M̂0

corresponding to the map W →M1⊗M̂0 adjoint to the multiplication W ⊗M0 →M1.
Perhaps the reader is by now lost in the snow of dualizations, so it may help to remark

that φ′ is represented by an m0×(r+1) matrix whose rows are indexed by a basis of M0

and whose columns indexed by a basis of W . The entry of this matrix corresponding to
m ∈M0 and w ∈W is simply the element wm ∈M1. It suffices to prove that the m0×m0

minors of φ′ span a linear space of dimension
(
r+1
m0

)
—that is, these minors are linearly

independent.
Using the Eagon–Northcott complex as in Corollary A2.61 it is enough to show that

the m0 ×m0 minors of φ′ vanish only in codimension r+1−m0 +1 = r+2−m0. The
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vanishing locus of these minors is the union of the loci where the generalized rows of φ′

vanish, so we consider these rows. Let Be ⊂ M0 be the set of elements m such that the
corresponding generalized row vanishes in codimension e. This means thatm is annihilated
by an r+1−e dimensional space Wm ⊂W . The tensors w⊗m with w ∈Wm and m ∈ Be
form a dimBe+(r+1−e)−1 = dimBe+ r−e-dimensional family in R. By hypothesis,
dimR ≤ m0−1, so dimBe ≤ m0−1−(r−e) = m0−r+e−1.

Two elements of Be that differ by a scalar correspond to rows with the same vanish-
ing locus. Thus the union of the vanishing loci of the generalized rows corresponding to
elements of Be has codimension at least e− (dimBe−1) ≥ r+2−m0. Since this is true
for each e, the union of the Be, which is the set defined by the m0 ×m0 minors of φ′,
has codimension at least r+ 2−m0, as required. This completes the proof in the case
dimR ≤ m0−1.

Finally, suppose that dimR ≥ m0. By induction and the proof above, we may assume
that the Theorem has been proved for all modules with the same value of m0 but smaller
dimR.

The affine variety R is a union of lines through the origin in the vector space W ⊗M0.

Let R be the corresponding projective variety in P(Ŵ ⊗M0). The set of pure tensors w⊗a
corresponds to the Segre embedding of P(Ŵ )×P(M̂ 0), so R is contained in this product.
Each hyperplane W ′ ⊂W corresponds to a divisor

P(Ŵ ′)×P(M̂0) ⊂ P(Ŵ )×P(M̂0),

and the intersection of all such divisors is empty. Thus we can find a hyperplane W ′ such
that dimR∩

(
P(Ŵ ′)×P(M0)

)
≤ dimR−1.

Let M ′ be the S′ = SymW ′-module obtained from M by restriction of scalars. By
Corollary 7.13, the length of the linear strand of the minimal free resolution of M ′ is
shorter than that of M by at most 1. By induction Theorem 7.1 is true for M ′, whence it
is also true for M .

7E More about the Exterior Algebra and BGG

In this section we will go a little further into the the module theory over the exterior
algebra E =

∧
V and then explain some more about the Bernstein–Gelfand–Gelfand

correspondence. Our approach to the latter is based on [Eisenbud et al. 2003a].

The Gorenstein Property and Tate Resolutions

We have already introduced the duality functor P 7→ P̂ = HomK(P,K) for finitely gener-

ated E-modules. Since K is a field the duality functor P 7→ P̂ is exact, so it takes projective
modules to injective modules. Just as in the commutative local case, Nakayama’s Lemma
implies that every projective E-module is free (even the nonfinitely generated modules are
easy here because the maximal ideal (V ) of E is nilpotent). It follows that every finitely

generated injective E-module is a direct sum of copies of the module Ê. We gave an ad
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hoc proof, based on the self-duality of the Koszul complex, that Ê ∼= E as E-modules,
but the isomorphism is noncanonical and does not preserve the grading. Here is a more
precise statement, with an independent proof; note that by Theorem 7.5 it implies the
self-duality of the Koszul complex.

Proposition 7.19 (Gorenstein property). The rank 1 free E-module E has a unique
minimal nonzero ideal , and is injective as an E-module. Thus it is an injective envelope
of the simple E-module and is isomorphic to Ê as an E-module (with a shift in grading .)

Moreover , Ê ∼= E⊗K

∧r+1
W canonically .

Proof. In fact the minimal nonzero ideal is the one-dimensional vector space
∧r+1

V = Er,
generated by the product of the elements of any basis of V . To see this, we show that any
nonzero element of E generates an ideal containing

∧r+1
V . If e is a nonzero element of

E we can write e = a ·ei1ei2 · · · eit +e′ with respect to a basis ei of V , where 0 6= a ∈ K,
i1 < · · · < it, and e′ consists of other monomials of degree t as well (perhaps) as monomials
of degree exceeding t. Let J be the complement of i1, . . . , it in 0, . . . , r. It follows that every
monomial of e′ is divisible by one of the elements ej with j ∈ J , so

e ·
∏

j∈J

ej = ±a ·e0 · · · er

is a generator of
∧r+1

V , as required.

From this we see that Ê is generated by the one-dimensional vector space
∧̂r+1

V =∧r+1
W , so there is a canonical surjection E⊗

∧r+1
W → Ê. Since E and Ê have the

same dimension, this surjection is an isomorphism. It follows that E is injective, so E is
the injective envelope of its submodule (

∧r+1
V ).

As a consequence we can give another view of the duality functor P 7→ P̂ for finitely
generated E-modules:

Corollary 7.20. There is a natural isomorphism P̂ ∼= HomE(P,E)⊗
∧r+1

W . In partic-
ular , HomE(−, E) is an exact functor .

Proof. Since E⊗− is left adjoint to the forgetful functor from E-modules to K-modules
we have

HomK(P,K) = HomE(E⊗K P,K) = HomE(P,HomK(E,K)) = HomE(P, Ê),

and by the Gorenstein property (Proposition 7.19) HomE(P, Ê) = HomE(P,E)⊗∧r+1
W .

The last statement follows from this (or directly from the fact that E is injective as an
E-module.)

Over any ring we can combine a projective resolution F and an injective resolution I of
a module P into a Tate resolution:

· · · - F1
- F0

- I0 - I1 - · · ·
@R ��

P

�� @R
0 0
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Over a ring like E the Ij are also free. In fact, we may take F to be a minimal free
resolution and I to be the dual of a minimal free resolution of P̂ , and we get a unique
minimal Tate resolution, a doubly infinite exact free complex as above where the image
of the 0-th differential is isomorphic to P .

For example, if we take P = E/(V ) = K to be the residue field of E, then we already
know that the minimal free resolution of P is the Cartan resolution. Since P is self-
dual, the minimal injective resolution is the dual of the Cartan resolution, and the Tate
resolution has the form

· · · - E⊗ ̂Sym2W - E⊗Ŵ - E - Ê - Ê⊗W - Ê⊗Sym2W - · · ·
@R ��

K

�� @R
0 0

Note that the sum of the terms on the right is Ê⊗S; we shall see in the next section
that this is not an accident. Tate resolutions over E appear rather naturally in algebraic
geometry.

It is not hard to show that Gröbner basis methods apply to the exterior algebra just as
to the commutative polynomial ring (in fact, there are some advantages to computation
that come from the finite dimensionality of E.) Thus it is possible to compute Tate resolu-
tions—or at least bounded portions of them —explicitly in a program such as Macaulay 2
[Grayson and Stillman 1993–].

Where BGG Leads

The Bernstein–Gelfand–Gelfand correspondence was stated in [Bernstein et al. 1978] as
an equivalence between the derived categories of bounded complexes of finitely generated
graded S-modules and graded E-modules, or between the bounded derived categories of
coherent sheaves on Pr and the graded E-modules modulo free modules. A different way
of describing this equivalence was discovered at the same time in [Bĕılinson 1978]. Both
these papers were inspired by a lecture of Manin. BGG was the first appearance of the
“derived equivalences” between various module and sheaf categories that now play an
important role in representation theory (for example [Ringel 1984]), algebraic geometry
(for example [Bridgeland 2002]) and mathematical physics (for example [Polishchuk and
Zaslow 1998]). Here we will explain a little more about the BGG equivalence, and describe
one of its recent applications.

The functor L from graded E-modules to linear free complexes of S-modules has a
version R that goes “the other way” from graded S-modules to linear free E complexes:
it takes a graded S-module M = ⊕Mi to the complex

R(M) : · · · - Ê⊗K Mi
- Ê⊗K Mi−1

- · · ·
f⊗m -

∑

i

fei⊗xim,
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where {xi} and {ei} are dual bases of W and V . We think of Mi as being a vector space

concentrated in degree i, and the term Ê ⊗Mi as being in cohomological degree i (≡
homological degree −i). For any vector space N we have Ê ⊗K N = HomK(E,N), so
thinking of R(M) as a differential graded E-module, we could simply write R(M) =
HomK(E,M), just as we can write L(P ) = S⊗K P .

This suggests that the two functors might somehow be adjoint. However, they do not
even go between the same pair of categories! To repair this, we extend the functor L from
the category of modules to the category of complexes: If · · · → A→ B → · · · is a complex
of graded S-modules, then · · · → L(A) → L(B) → · · · is naturally a double complex,
and we can take its total complex to get a complex of S-modules. Thus L goes from the
category of complexes of E-modules to the category of complexes of S-modules. Similarly,
R may be extended to a functor going the other way. These two functors are adjoint.
Moreover, they pass to the derived categories and are inverse equivalences there. See for
example [Gelfand and Manin 2003].

We will not pursue this line of development further. Instead we want to point out a
source of interesting Tate resolutions connected with the functor R. An argument similar
to the proof of Theorem 7.8 (see also Exercise 7.10) yields:

Proposition 7.21. If M is a graded S-module, the homology of the complex R(M) is

Hj(R(M))i+j = Tori(K,M)i+j .

This shows in particular that R(M) is exact “far out to the right”. The key invariant
is, once again, the Castelnuovo–Mumford regularity of M :

Corollary 7.22. regM ≤ d if and only if Hi(M) = 0 for all i > d.

Proof. The condition regM = d means that Tori(K,M)i+j = 0 for j > d.

Now suppose that M is a finitely generated graded S-module of regularity n. By Corol-
lary 7.22 the free complex

· · · - 0 - Ê⊗Mn
dn

- Ê⊗Mn+1
dn+1

- · · ·

is exact except at Ê⊗Mn.
We will truncate this complex at Ê⊗Mn+1 and then adjoin a minimal free resolution

of ker dn+1. The result is a Tate resolution

T(M) : · · ·Tn−1 - Tn - Ê⊗Mn+1
dn+1

- · · · .

The truncation at Mn+1 is necessary in order to ensure minimality (as we will see in the
proof of the Proposition 7.23.)

The resolution T(M) obviously depends only on the truncation M≥n+1, but even more
is true:

Proposition 7.23. Let F be a coherent sheaf on Pr, and let M be a finitely generated
graded S-module whose sheafification is F . The Tate resolution T(M) depends, up to
noncanonical isomorphism, only on the sheaf F .
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Proof. The sheaf F determines M up to finite truncation, so it suffices to show that if
m ≥ n = regM then the Tate resolution

T(M≥m) : · · ·T ′m−1 - T ′m - Ê⊗Mm+1
dm+1

- · · · .

is isomorphic to T(M). By the definition of T(M≥m) and the uniqueness of minimal
resolutions, it suffices to show that

Ê⊗Mn+1
- · · · dm−1

- Ê⊗Mm (∗)

is the beginning of a minimal free resolution of coker dm−1 = ker dm+1. By Corollary 7.22
it is at least a resolution, and this would be so even if we extended it one more step to
Ê⊗Mn. But the differentials in the complex

Ê⊗Mn
dn- · · · dm−1

- Ê⊗Mm

are all minimal (their matrices have entries of degree 1), so for all i > n the module Ê⊗Mi

is the minimal free cover of ker di+1.

Henceforward, when F is a coherent sheaf on Pr, we will write T(F ) for the Tate
resolution T(M) associated with any finitely generated S-module having sheafification
F , and call it the Tate resolution of F .

For example, let X be the standard twisted cubic curve in P3 with structure sheaf OX

and homogeneous coordinate ring SX . To simplify notation write a, b, c, d for the homoge-
neous coordinates of P3, instead of x0, . . . x3. We have regSX ≤ 1 by Gruson–Lazarsfeld–
Peskine (Theorem 5.1), and in fact the resolution is the Eagon–Northcott complex of

(
a b c
b c d

)

with Betti diagram

0 1 2

0 1 − −
1 − 3 2

so regSX = 1. The values of the Hilbert function HSX
(n) are 1, 4, 7, . . ., and R(SX) is

the complex

Ê



a
b
c
d




- Ê4(−1)

d2 =




a 0 0 0
b a 0 0
c b a 0
d c b a
0 d c b
0 0 d c
0 0 0 d




- Ê7(−2) - · · · .
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Corollary 7.22 shows that R(SX) is not exact at Ê4(−1) = Ê⊗ (SX)1, but we can see

this in a more primitive way. It suffices to show that R̂(SX) is not exact at E4(1). But

the first map in R̂(SX) is the same as the first map in the Cartan resolution R̂(S), while
the second map has source E7(2) instead of the E⊗Sym2W = E10(2) that occurs in the
Cartan resolution. Since the Cartan resolution is minimal, this proves the inexactness.

It turns out that ker d2 has three minimal generators: the given linear one and two more,
which have quadratic coefficients. The map d1 of the Tate resolution may be represented
by the matrix

d1 =



a 0 0
b ad ac
c bd bc+ad
d cd bd


 .

(It is obvious that the columns of this matrix are in the kernel, and that no two of
them could generate it; to prove that they actually generate it requires either an (easy)
computation with Gröbner bases or an application of Theorem 7.24 below.) The rest of
the Tate resolution of OX has the form

Ê



a
b
c
d




- Ê4(−1)

d2 =




a 0 0 0
b a 0 0
c b a 0
d c b a
0 d c b
0 0 d c
0 0 0 d




- Ê7(−2) -

- Ê8(3)




d c b a 0 0 0 0
0 d c b a 0 0 0
0 0 d c b a 0 0
0 0 0 d c b a 0
0 0 0 0 d c b a




- Ê5(2)



d c b a 0
0 d c b a
0 0 da ca ba




- Ê⊕ Ê2(1)
d1-

The reader with a background in algebraic geometry may have noticed that the ranks
of the free modules with generators in various degrees in the Tate resolution of OX are
precisely the numbers hi(OX(n)), as suggested in this table:

n −3 −2 −1 0 1 2

h1OX(n) 8 5 2 0 0 0
h0OX(n) 0 0 0 1 4 7

The terms of the Tate resolution are reflected in the pairs of numbers on the diagonals of
this table: for example, Ê⊕ Ê2(1) corresponds to the terms 2 (upper row) and 1 (lower
row).

Here is the general result:
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Theorem 7.24. Let F be a coherent sheaf on Pr. The free module T i in cohomological
degree i of the Tate resolution T(F ) is

T i =
⊕

j

Ê⊗Hj(F (i−j)),

where Hj(F (i−j)) is regarded as a vector space concentrated in degree i−j.

For the proof we refer to [Eisenbud et al. 2003a]. For further applications see [Eisenbud
et al. 2003b], and for an exposition emphasizing how to use these techniques in computa-
tion see [Decker and Eisenbud 2002]. We close this section by interpreting Theorem 7.24
in the case of the Tate resolution of the residue field, the Cartan resolution.

We claim that the Tate resolution of K = E/(V ) derived above by putting the Cartan
resolution together with its dual is precisely the Tate resolution of the sheaf OPr . In fact,
S is a module whose sheafification is OPr , and the regularity of S (as an S-module) is 0,
so from Corollary 7.22 we can deduce again what we already knew: the dual

R(S) : Ê - Ê⊗W - Ê⊗Sym2W - · · ·

of the Cartan resolution is exact starting from Ê ⊗W . Since Ê is a minimal cover of
the next map, we may complete it to a Tate resolution T(OPr ) by adjoining a minimal

free resolution of the kernel K of Ê → Ê⊗W . This gives us the Tate resolution of K as
claimed.

Comparing the free modules T i with Theorem 7.24 we deduce the well-known formula

Hi
OPr (n) =





SymnW if i = 0,
0 if 0 < i < r,

̂Symn−r−1W, if i = r.

See [Hartshorne 1977, III.3.1], and also Corollary A1.6.

7F Exercises

1. Let F be a finitely generated free graded module. Show that, for any i, the submodule
of F generated by all elements of degree ≤ i is free.

2. Let F : · · · - Fi
φi- Fi−1

- · · · be the linear strand of a minimal free
resolution. Show that when Fi is nonzero, no generalized column of φi can have all
entries equal to zero.

3. With hypotheses as in the Linear Syzygy Theorem 7.1, let

A = {(w,m) ∈W ×P(M∗
0 ) | wm = 0},

where m denotes the one-dimensional subspace spanned by a nonzero element m ∈M0.

Show that the statement of Theorem 7.1 is equivalent to the statement that the
length of the linear strand of the free resolution of M is ≤ dimA.
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4. Consider Example 7.3. Show that if the linear forms `i,j span all of W , then the variety
X defined by the minors of N is nondegenerate. Since N is 1-generic, the module ω is
the module of twisted global sections of a line bundle, so the hypotheses of Corollary
7.4 apply.

5. Show that over any local Artinian ring, any free submodule of a free module is a
summand. Deduce that the only modules of finite projective dimension are the free
modules. Over the exterior algebra, show that any free submodule of any module is a
summand.

6. Though E is a noncommutative ring, it is so close to commutative that commutative
proofs can usually be used almost unchanged. Following the ideas at the beginning of
[Eisenbud 1995, Chapter 21], give a direct proof that Ê ∼= E as E-modules.

7. Show that L(P̂ ) = HomS(L(P ), S) as complexes.

8. Let e ∈ E be an element of degree −1. Show that the periodic complex

· · · e- E
e- E

e- E
e- · · ·

is exact. In fact, it is the Tate resolution of a rather familiar sheaf. What is the sheaf?

9. Here is a basis free approach to the equivalence in Proposition 7.5.

(a) If V is finite-dimensional vector space and Pi, Pi−1 are any vector spaces over K,
show that there is a natural isomorphism

HomK(V ⊗Pi, Pi−1) ∼= HomK(Pi,W ⊗Pi−1),

where W is the dual of V , taking a map µ : V ⊗Pi → Pi−1 to the map

d : Pi →W ⊗Pi−1; d(p) =
∑

i

xi⊗µ(ei⊗p).

Maps that correspond under this isomorphism are said to be adjoint to one another.

(b) Suppose that µi : V ⊗ Pi → Pi−1 and µi−1 : V ⊗ Pi−1 → Pi−2 are adjoint to
di and di−1, and write s : W ⊗W → Sym2W for the natural projection. Show
that Pi⊕Pi−1⊕Pi−2 is an E =

∧
V -module (the associative and anti-commutative

laws hold) if and only if the map V ⊗V ⊗Pi → Pi−2 factors through the natural

projection V ⊗V ⊗Pi →
∧2

V ⊗Pi.
(c) Show that the maps

S⊗Pi - S⊗Pi−1
- S⊗Pi−2

induced by di and di−1 compose to zero if and only if the composite map

Pi
di- W ⊗Pi−1

1⊗di−1- W ⊗W ⊗Pi−2
s⊗1- Sym2W ⊗Pi−2

is zero.
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(d) Show that the composite map

Pi
di- W ⊗Pi−1

1⊗di−1- W ⊗W ⊗Pi−2
s⊗1- Sym2W ⊗Pi−2

is adjoint to the composite map

(Sym2W )∗⊗Pi
s∗- W ∗⊗W ∗⊗Pi

1⊗µi- W ∗⊗Pi−1
µi−1- Pi−2.

Deduce that the first of these maps is 0 if and only if the second is zero if and only
if the map

W ∗⊗W ∗⊗Pi
1⊗µi- W ∗⊗Pi−1

µi−1- Pi−2

factors through
∧2

(V )⊗Pi.
(e) Deduce Proposition 7.5.

10. Prove Proposition 7.21 by examining the sequence of vector spaces whose homology is
Hi(R(M))i+j , as in Theorem 7.8.
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8

Curves of High Degree

Let X be a curve of genus g. We know from Corollary 6.7 that any line bundle of degree
at least 2g+1 on X is very ample. By an embedding of high degree we will mean any
embedding of X by a complete linear series of degree d ≥ 2g+1, and by a curve of high
degree we mean the image of such an embedding.

In Chapter 6 we gave an account of the free resolutions of curves of genus 0 and 1,
embedded by complete linear series, constructing them rather explicitly. For curves of
genus g = 0, we had embeddings of any degree ≥ 1. For curves of genus g = 1, only linear
series of degree ≥ 3 could be very ample, so these were all curves of high degree. In this
chapter we will see that many features of the free resolutions we computed for curves of
genus 0 and 1 are shared by all curves of high degree.

To study these matters we will introduce some techniques that play a central role in
current research: the restricted tautological subbundle, Koszul cohomology, the property
Np and the strands of the resolution. We will see that the form of the free resolution is
related to special varieties containing X, and also to special sets of points on the curve in
its embedding.

For simplicity we will use the word curve to mean a smooth irreducible one-dimensional
variety over an algebraically closed field K, though the sophisticated reader will see that
many of the results can be extended to Gorenstein one-dimensional subschemes over any
field. Recall that the canonical sheaf ωX of a curve X is the sheaf of differential forms
associated to the cotangent bundle of X. If X is embedded in some projective space Pr, it
is convenient to use a different characterization: ωX is the sheaf associated to the module
Extr−1

S (SX , S(−r− 1)). For this and much more about canonical sheaves, see [Altman
and Kleiman 1970]. We write KX for the (class of) a canonical divisor— the divisor of a
section of ωX .
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8A The Cohen–Macaulay Property

Theorem 8.1. Let X ⊂ Pr be a smooth irreducible curve of arithmetic genus g over an
algebraically closed field K, embedded by a complete linear series as a curve of degree d.
If d ≥ 2g+1, then the homogeneous coordinate ring SX is Cohen–Macaulay .

This result first appeared in [Castelnuovo 1893]; subsequent proofs were published in
[Mattuck 1961], [Mumford 1970] ,and [Green and Lazarsfeld 1985]. Here we follow a
method of Green and Lazarsfeld because it works in all characteristics and generalizes
easily to singular curves. In Exercises 8.16–8.20 we give an attractive geometric argument
that works most smoothly in characteristic 0.

Before giving the proof, we deduce the Castelnuovo–Mumford regularity and Hilbert
function of SX :

Corollary 8.2. Let X ⊂ Pr be an irreducible smooth curve of genus g over an algebraically
closed field K, embedded by a complete linear series as a curve of degree d ≥ 2g+1. If
g = 0 then regSX = 1; otherwise regSX = 2.

Proof of Corollary 8.2. Since SX is Cohen–Macaulay of dimension 2 we have H0
m
(SX) =

H1
m

(SX) = 0, so SX is m-regular if and only if H2
m
(SX)m−1 = 0. By Corollary A1.12 this is

equivalent to the condition that H1OX(m−1) = 0. Serre duality says that H1(OX(m−1))
is dual to H0(KX(−m+1)), where KX is the canonical divisor of X. Since the degree
of OX(1) = L is at least 2g+ 1, we have degKX(−1) ≤ 2g− 2− (2g+ 1) < 0. Thus
H0(KX(−1)) = 0, and SX is 2-regular. On the other hand SX is 1-regular if and only if
h1(OX) = 0. Since h1(OX) = g, this concludes the proof.

Classically, the Cohen–Macaulay property of SX was described as a condition on linear
series. The degree n part of the homogeneous coordinate ring (SX)n of X is the image
of H0OPr (n) in H0OX(n). Thus the linear series (OX(n), (SX)n) may be described as the
linear series cut out by hypersurfaces of degree n on X. We may compare it to the complete
series (OX(n),H0OX(n)). To prove Theorem 8.1 we will use the following criterion.

Proposition 8.3. Let X be a curve in Pr. The homogeneous coordinate ring SX of X is
Cohen–Macaulay if and only if the series of hypersurfaces of degree n in Pr is complete
for every n; that is, the natural monomorphism

SX →
⊕

n

H0
OX(n)

is an isomorphism.

Proof. The ring SX has dimension 2, so it is Cohen–Macaulay if and only if it has has
depth 2. By Proposition A1.16 this is the case if and only if H0

m
SX = 0 = H1

m
SX . Since

SX has no nilpotent elements we have H0
m
SX = 0 in any case. The conclusion of the

proposition follows from the exactness of the sequence

0 - H0
m
SX - SX -

⊕

n

H0
OX(n) - H1

m
SX - 0

and from Corollary A1.12.



8A The Cohen–Macaulay Property 137

Corollary 8.4. Let X ⊂ Pr be a smooth irreducible curve of arithmetic genus g over
an algebraically closed field K, embedded by a complete linear series as a curve of degree
d = 2g+1+ p ≥ 2g+1. If x, y are linear forms of S that do not vanish simultaneously
anywhere on X, the Hilbert functions of SX , SX/xSX and SX/(x, y)SX are as follows:

HM (n) :

n M = SX/(x, y)SX SX/xSX SX

0 1 1 1
1 d−g+1 d−g g+p
2 2d−g+1 d g
3 3d−g+1 d 0
...

...
...

...
n nd−g+1 d 0

In particular , if Γ = H∩X is a hyperplane section of X consisting of d distinct points, the
points of Γ impose independent linear conditions on forms of degree ≥ 2, and the “last”
graded Betti number of X is βr−1,r+1(SX) = g.

Proof. By Theorem 8.1 and Proposition 8.3 we have (SX)n = H0(OX(n)). Furthermore,
H1OX(n) = 0 for n > 0 because d ≥ 2g−2. For M = SX , the value HM (n) is thus given
by the Riemann–Roch formula,

HM (n) = h0
OX(n) = h0

OX(n)−h1
OX(n)

= deg OX(n)−g+1 = dn−g+1.

These are the values in the left-hand column of the table. Since SX is Cohen–Macaulay,
the elements x, y for a regular sequence on SX and we get short exact sequences

0 - SX(−1) - SX - SX/xSX - 0,

0 - (SX/xSX)(−1) - (SX/xSX) - SX/(x, y)SX - 0.

From these we see that the Hilbert functions of SX/xSX and SX/(x, y)SX can be obtained
from that of SX by taking first and second differences, giving the rest of the values in the
table.

If a hyperplane H has equation x = 0, then for any variety Y the homogeneous ideal of
the hyperplane section H∩Y is the saturation of the homogeneous ideal IY +(x) defining
SY /xSY . Since SX is Cohen–Macaulay, SX/xSX has depth 1, and the ideal IX +(x) is
already saturated. Thus the homogeneous coordinate ring SH∩X is equal to SX/xSX . To
say that the points of Γ = H ∩X impose d linearly independent conditions on quadrics
means that for M = SH∩X we have HM (2) = d, and the second column of the table shows
that this is so.

Finally, to compute the “last” graded Betti number, we use the idea of Section 2B. If
x, y ∈ S1 form a regular sequence on SX as above, then by Lemma 3.15 graded Betti
numbers of SX , as a module over S, variables are the same as those of SX/(x, y)SX , as
a module over S/(x, y)S. The last column of the table gives us the Hilbert function of
SX/(x, y)SX . By Proposition 2.7, βr−1,r+1(SX) is the dimension of the homology of the
complex 0 - Kg - 0, which is obviously g.
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In fact, if X is a linearly normal curve and the points of a hyperplane section of X
impose independent conditions on quadrics, then SX is Cohen–Macaulay (Exercise 8.16).
The alternate proof given in the Exercises relies on this.

Proof of Theorem 8.1. We will use the criterion in Proposition 8.3, and check that for each
n the map αn : (SX)n → H0OX(n) is surjective. Any effective divisor has nonnegative
degree, so for n < 0 we have H0OX(n) = 0 (see Exercise 8.6 for a generalization). Since
the curve X in Theorem 8.1 is projective and connected, H0(OX) consists of the constant
functions [Hartshorne 1977, Theorem I.3.4(a)]. Thus α0 is an isomorphism, while α1 is an
isomorphism by our assumption that X is embedded by a complete linear series.

We now do induction and prove the surjectivity of αn+1 given the surjectivity of αn
with n ≥ 1. There is a commutative diagram

(SX)1⊗(SX)n
α1⊗αn- H0

OX(1)⊗H0
OX(n)

(SX)n+1

? αn+1 - H0
OX(n+1).

µn

?

Since αn is surjective, so is α1⊗αn. Thus it suffices to show that µn is surjective for each
n ≥ 1.

For n ≥ 2 the surjectivity can be proved by the “basepoint-free pencil trick” of Casteln-
uovo; see Exercise 4.13. This is presumably the origin of the idea of Castelnuovo–Mumford
regularity. For the case n = 1 we need a new tool, which in fact works in all cases.

8A.1 The Restricted Tautological Bundle

For simplicity we return to the notation L = OX(1). The map µn is the map on coho-
mology induced by the multiplication map of sheaves H0(L )⊗K L n → L n+1 where L n

means L ⊗· · ·⊗L with n factors). Thus µn is the map on cohomology induced by the ten-
sor product of the identity map on L n with the multiplication map H0(L )⊗K OX → L .
We set

MX = ker
(
H0(L )⊗K OX → L

)
.

Thus MX is the restriction to X of the tautological subbundle on Pr (see page 71).
Tensoring with L n we obtain an exact sequence

0 → MX⊗L
n → H0(L )⊗K L

n → L
n+1 → 0.

Taking cohomology, we see that the surjectivity of the map µn would follow from the
vanishing of H1(MX⊗L n). We will prove this vanishing by analyzing MX .

We first generalize. For any sheaf F on X we define

MF = ker
(
H0(F )⊗K OX → F

)
,
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so that MX = ML . Thus we have a tautological left exact sequence

εF : 0 → MF → H0
F ⊗OX → F → 0.

which is right exact if and only if F is generated by global sections. This construction is
functorial in F . For any effective divisor D ⊂ X, the short exact sequence

0 → L (−D) → L → L |D → 0

gives rise to a diagram (whose rows and columns may not be exact!)

0 0 0

0 - ML (−D)

?
- H0

L (−D)⊗K OX

?
- L (−D)

?
- 0

0 - ML

?
- H0

L ⊗K OX

?
- L

?
- 0

0 - ML |D

?
- H0(L |D)⊗K OX

?
- L |D

?
- 0

0
?

0
?

0.
?

(∗)

Whenever we can prove that the left-hand column is exact and analyze the sheaves
ML (−D) and ML |D we will get useful information about MX = ML .

We will do exactly that for the case where D is the sum of d−g−1 general points of X.
For this we need some deeper property of linear series, expressed in part 6 of the following
Lemma. Parts 1–3 will be used in the proof of part 6. We will leave parts 4 and 5, which
we will not use, for the reader’s practice (Exercise 8.11).

Theorem 8.5. Suppose that X is a smooth curve of arithmetic genus g over an alge-
braically closed field , and let d be an integer .

1. If d ≥ g− 1 then the set of line bundles L ′ ∈ Picd(X) with h1L ′ = 0 is open and
dense.

2. If L ′ is any line bundle of degree ≥ g then L ′ = OX(D) for some effective divisor D
on X.

3. If L ′ is a general line bundle of degree ≥ g+1 then |L ′| is base point free. In particular ,
if deg L ′ = g+1, then h2L ′ = 0, h0L ′ = 2, and |L ′| exhibits X as a (g+1)-fold cover
of P1.

4. If L ′ is a general line bundle of degree ≥ g+ 2 then |L ′| maps X birationally . If
deg L ′ = g+2, the image is a curve of degree g+2 with at worst ordinary nodes in P2.

5. If L ′ is a general line bundle of degree ≥ g+3 then L ′ is very ample; that is, |L ′|
embeds X. In particular , if deg L ′ = g+3, then |L ′| embeds X as a curve of degree
g+3 in P3.
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6. If L is a line bundle of degree d ≥ 2g+1 and D is a general effective divisor of degree
d−g−1 then L ′ = L (−D) has h1(L ′) = 0,h0(L ′) = 2, and |L ′| is basepoint-free.

Here, when we say that something is true for “a general effective divisor of degree m,”
we mean that there is a dense open subset U ⊆ Xm = X ×X × · · ·×X such that the
property holds for all divisors D =

∑m
1 pi with (p1, . . . , pm) ∈ U . To say that something

holds for a general line bundle of degree m makes sense in the same way because Picm(X)
is an irreducible algebraic variety. In the proof below will use this and several further facts
about Picard varieties. For a characteristic 0 introduction to the subject, see [Hartshorne
1977, Appendix B, Section 5]. A full characteristic 0 treatment is given in [Arbarello et al.
1985, Chapter 1], while [Serre 1988] gives an exposition of the construction in general.

• For each integer d the variety Picd(X) is irreducible of dimension g, the genus of X.

• The disjoint union
⋃

Picd(X) is a graded algebraic group in the sense that the inverse
and multiplication maps

Picd(X) → Pic−d(X) : L 7→ L
−1

Picd(X)×Pice → Picd+e(X) : (L ,L ′) 7→ L ⊗L
′

are maps of varieties.

• The set of effective divisors of degree d on X may be identified with the d-th symmetric
power X(d) := Xd/G, where Xd = X×· · ·×X is the direct product of d copies of X
and G is the symmetric group on d elements, permuting the factors. The identification
is given by

Xd 3 (x1, . . . , xd) 7→ x1 + · · ·+xd.

Since Xd is a projective variety of dimension d and G is a finite group, X (d) is also a
projective variety of dimension d.

• The map of sets X(d) → Picd(X) sending x1+· · ·+xd to the line bundle OX(x1+· · ·+
xd) is a map of algebraic varieties, called the Abel–Jacobi map. Its fiber over a line
bundle L is thus isomorphic to the projective space of global sections of L , modulo
nonzero scalars.

Proof of Theorem 8.5. Part 1: By Serre duality, h1L ′ = h0(ωX ⊗ L ′−1). Further, if
deg L ′ = d ≥ g− 1 then deg(ωX ⊗L ′−1) = 2g− 2− d ≤ g− 1. The map Picd(X) →
Pic2g−2−d(X) taking L ′ to ωX ⊗L ′−1 is a morphism. Its inverse is given by the same
formula, so it is an isomorphism. Thus it suffices to show the set of line bundles L ′′ ∈
Pic2g−2−d(X) of with h0L ′′ = 0 is open and dense. Let e = 2g− 2− d ≤ g− 1. The
complementary set, the set of bundles L ′′ ∈ Pice(X) with nonzero sections, is the image
of the Abel–Jacobi map X(e) → Pice . Since X(e) is projective, the image is closed and of
dimension at most ≤ dimX (e) = e < g = dimPice(X). Thus the set of bundles of degree
e without sections is nonempty and open; it is dense since Pice(X) is irreducible.

Part 2: Let x be a point of X. For any integer d the morphism

Picd(X) 3 L
′ 7→ L

′(p) = L
′⊗OX(p) ∈ Picd+1(X)
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is an isomorphism (its inverse is L ′′ 7→ L ′′(−p)). Thus it suffices to show that every
line bundle of degree exactly g can be written as OX(D) for some D ∈ X(g). That is, it
suffices to show that the Abel–Jacobi map X (g) → Picg(X) is surjective. These varieties
both have dimension g. Since X (g) is a projective variety its image is closed, so it suffices
to show that the image has dimension g, or equivalently, that the general fiber is finite.
The fiber through a general divisor D consists of the set of divisors linearly equivalent to
D, so it suffices to show that there are none except D—that is, h0(OX(D)) = 1.

By the Riemann–Roch theorem and Serre duality,

h0(OX(D)) = degD−g+1+h1(OX(D)) = 1+h0(ωX(−D)).

If F is any sheaf on X with H0F 6= 0 then the set of sections of F vanishing at a
general point of X is a proper linear subspace of H0F . We may write D as the sum of g
general points, D = p1 + · · ·+pg. Since h0(ωX) = g, we have h0(ωX(−p1−· · ·−pg)) = 0
as required.

Part 3: Suppose d ≥ g+1 and let U ⊂ Picd(X) be set of line bundles L ′ with h1(L ′) = 0,
which is open and dense by part 8.5. Let

U ′ = {(L ′, p) ⊂ U×X | p is a basepoint of L
′},

and let π1 : U ′ → U and π2 : U ′ → X be the projections. The set of line bundles of
degree d without basepoints contains the complement of π1(U

′). It thus suffices to show
that dimU ′ < g.

Consider the map

φ : U ′ → Picd−1(X); (L ′, p) 7→ L
′(−p).

The fiber φ−1(L ′′) over any line bundle L ′′ is contained in the set {(L ′′(p), p) | p ∈ X}
parametrized by X, so dimφ−1(L ′′) ≤ 1. On the other hand, the image φ(U ′) consists
of line bundles L ′(−p) such that h0(L ′(−p)) = h0(L ′). Applying the Riemann–Roch
formula, and using h1(L ′) = 0, we see that h0(L ′(−p)) = (d−1)−g+1+h1(L ′(−p)) =
d−g+1; that is, h1(L ′(−p)) = 1. It thus suffices to show that the set U ′′ of line bundles
L ′′ of degree d−1 ≥ g with h1(L ′′) 6= 0 has dimension ≤ g−2.

Let e = 2g−2−(d−1). Under the isomorphism

Picd−1(X) → Pice(X); L
′′ 7→ ωX⊗L

′′−1

the set U ′′ is carried into the set of bundles with a nonzero global section, the image of
the Abel–Jacobi map X(e) → Pice(X). This image has dimension at most dimX (e) = e =
2g−2−(d−1) ≤ 2g−2−g = g−2 as required.

Part 6: If d ≥ 2g+1 then d− g− 1 ≥ g, so any line bundle of degree d− g− 1 can be
written as OX(D) for some effective divisor. Thus if L has degree d, and D is a general
effective divisor of degree d−g−1, then L ′′ := OX(D) is a general line bundle of degree
d−g−1, and L ′ = L ⊗L ′′−1 is a general line bundle of degree g+1. The assertions of
part 6 thus follow from those of part 3.
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Returning to the proof of Theorem 8.1 and its notation, we suppose that D is a general
divisor of degree d− g−1, the sum of d− g−1 general points. Since L |D is a coherent
sheaf with finite support, it is generated by global sections. The line bundle L is generated
by global sections too, as already noted, and by Theorem 8.5, part 6, the same goes for
L (−D). Thus all three rows of diagram (∗) are exact. The exactness of the right-hand
column is immediate, while the exactness of the middle column follows from the fact that
H1L (−D) = 0. By the Snake Lemma, it follows that the left-hand column of (∗) is exact.

To understand ML (−D), we use part 6 of Theorem 8.5 again. Let σ1, σ2 be a basis of
the vector space H0(L (−D)). We can form a sort of Koszul complex

K : 0 → L
−1(D)

(
σ2

−σ1

)

- O
2
X

(σ1 σ2 )- L (−D) → 0

whose right-hand map O2
X

(σ1 σ2 )- L (−D) → 0 is the map H0L (−D) ⊗K OX →
L (−D) in the sequence εL (−D). If U = SpecR ⊂ X is an open set where L is trivial,
then we may identify L |U with R, and σ1, σ2 as a pair of elements generating the unit
ideal. Thus K|U is exact, and since X is covered by such open sets U , the complex K is
exact. It follows that ML (−D) = L −1(D).

Finally, to understand ML |D we choose an isomorphism L |D = OD. Writing D =∑d−g−1
1 pi, the defining sequence εOD

becomes

0 → MOD
→

d−g−1∑

1

OX →
d−g−1∑

1

Opi
→ 0,

and we deduce that MOD
=

∑d−g−1
1 OX(−pi).

The left-hand column of diagram (∗) is thus an exact sequence

0 → L
−1(D) → MX →

d−g−1∑

1

OX(−pi) → 0.

Tensoring with L n and taking cohomology, we get an exact sequence

H1(L n−1(D)) → H1(L n⊗MX) →
∑

H1(L n(−pi)).

As D is general of degree d−g−1 > g−1, part 1 of Theorem 8.5 gives H1(L n−1(D)) = 0
for all n ≥ 1. Since L n(−pi) has degree at least n(2g+1)−1 ≥ 2g, its first cohomology
also vanishes, whence H1(L n⊗MX) = 0 as required for the proof of Theorem 8.1.

8B Strands of the Resolution

Consider again the case of a curve X of genus g embedded in Pr by a complete linear
series |L | of “high” degree d = 2g+1+p ≥ 2g+1 (so that by Riemann–Roch we have
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r = d−g.) By Theorem 8.1 and Corollary 8.2 the resolution of SX has the form

0 1 2 · · · · · · r−2 r−1

0 1 - - · · · · · · - -
1 - β1,2 β2,3 · · · · · · βr−2,r−1 βr−1,r

2 - β1,3 β2,4 · · · · · · βr−2,r βr−1,r+1

where βi,j is the vector space dimension of TorSi (SX ,K)j . The goal of this section is to ex-
plain what is known about the βi,j . We will call the strand of the resolution corresponding
to the βi,i+1 the quadratic strand ; the βi,i+2 correspond to the cubic strand. (The names
arise because β1,2 is the number of quadratic generators required for the ideal of X, while
β1,3 is the number of cubic equations.)

Since IX contains no linear forms, the number of generators of degree 2 is

β1,2 = dim(IX)2 = dimS2−dim(SX)2 =

(
r+2

2

)
−(2d−g+1) =

(
d−g−1

2

)
,

where the penultimate equality comes from Corollary 8.4 and the Riemann–Roch theorem.
This argument extends a little. By Corollary 1.10, the formula in Corollary 8.4 determines
the numbers βi,i+1−βi−1,i+1 for all i in terms of the genus g and degree d of X ⊂ Pr0.

We have already given a similar argument computing the “last” graded Betti number,
βr−1,r+1(SX) (Corollary 8.4). Now we will give a conceptual argument yielding much
more.

Proposition 8.6. With notation as above, βr−1,r+1 = g. In fact , if F is the minimal
free resolution of SX as an S-module, and ωX is the canonical sheaf of X, then the
twisted dual , HomS(F, S(−r− 1)), of F, is the minimal free resolution of the S-module
wX :=

⊕
n H0ωX(n).

Proof. The first statement of the Proposition follows from the second because wX is 0 in
negative degrees, while (wX)0 = H0ωX is a vector space of dimension g.

Since SX is Cohen–Macaulay and of codimension r−1 we have

ExtiS(SX , S(−r−1)) = 0 for i 6= r−1.

In other words, the cohomology of the twisted dual Hom(F, S(−r− 1)) is zero except
at the end, so it is a free resolution of the module Extr−1

S (SX , S(−r−1)). It is minimal
because it is the dual of a minimal complex. Because the resolution is of length r−1, the
module Extr−1

S (SX , S(−r−1)) is Cohen–Macaulay, and it follows from Corollary A1.12
that Extr−1

S (SX , S(−r−1)) =
⊕

n H0ωX(n). In particular, we see that

βr−1,r+1(SX) = β0,0

(
Extr−1

S (SX , S(−r−1))
)

= dimK H0ωX = h0ωX .

From Serre duality we have h0ωX = h1OX = g, as required by the last formula.

In terms of Betti diagrams, Proposition 8.6 means that the Betti diagram of wX is
obtained by “reversing” that of SX left-right and top-to-bottom. Taking account of what
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we know so far, it has the form:

0 1 2 · · · · · · r−2 r−1

0 g βr−2,r · · · · · · β2,4 β1,3 -
1 βr−1,r βr−2,r−1 · · · · · · β2,3 β1,2 -
2 - - · · · · · · - - 1

It would be fascinating to know what the value of each individual Betti number says
about the geometry of the curve, but this is far beyond current knowledge. A cruder
question is, “Which of the βi,j are actually nonzero?” In fact, there is just one block of
nonzero entries in each row:

Proposition 8.7. If I ⊂ S is a homogeneous ideal that does not contain any linear forms,
and if S/I is Cohen–Macaulay of regularity 3, then

βi,i+1 = 0 ⇒ βj,j+1 = 0 for j ≥ i,
βi,i+2 = 0 ⇒ βj,j+2 = 0 for j ≤ i.

Proof. Using Proposition 1.9, applied to the resolution of SX , gives the first conclusion.
By Proposition 8.6 the dual complex is also a resolution; applying Proposition 1.9 to it,
we get the second conclusion.

Because the projective dimension of SX is r−1, at least one of βi,i+1 and βi,i+2 must
be nonzero for i = 1, . . . , r−1. Thus the nonzero entries in the Betti diagram of SX are
determined by two numbers a = a(X) and b = b(X) with 0 ≤ a < b ≤ r which may be
defined informally from the diagram

0 1 · · · a a+1 · · · b−1 b · · · r−1

0 1 − · · · − − · · · − − · · · −
1 − ∗ · · · ∗ ∗ · · · ∗ − · · · −
2 − − · · · − ∗ · · · ∗ ∗ · · · g

where “−” denotes a zero entry and “∗” denotes a nonzero entry (we admit the possibilities
a = 0, b = r, and b = a+1.) More formally, 0 ≤ a(X) < b(X) ≤ r are defined by letting
a(X) be the greatest number such that βi,i+2(SX) = 0 for all i ≤ a(X) and letting b(X)
be the least number such that βi,i+1(SX) = 0 for all i ≥ b(X).

Note that when b ≤ a+2 Corollaries 8.4 and 1.10 determine all of the numbers βi,j .
However if b ≥ a+3 there could be examples with the same genus and degree but with
different graded Betti numbers.

8B.1 The Cubic Strand

What does the number a tell us? It is closely related to an important geometric invariant
of the embedding X ⊂ Pr, the dimension of the smallest degenerate secant plane. To
understand this notion, recall that q general points span a projective q−1-plane. A plane
in Pr is a degenerate q-secant plane to X if it has dimension at most q−2 and meets X in
at least q points, or more generally if it meets X in a scheme of length at least q. We use
bxc and dxe to denote the floor and ceiling of x, the largest integer ≤ x and the smallest
integer ≥ x respectively.
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Theorem 8.8. Suppose that X ⊂ Pr is a curve embedded by a complete linear series of
degree 2g+1+p, with p ≥ 0.

1. p ≤ a(X).

2. If X has a degenerate q-secant plane, then a(X) ≤ q−3.

3. X always has a degenerate q-secant plane for q = p+3+max(0,
⌈
g−p−3

2

⌉
). Thus

p ≤ a(X) ≤ p+max
(
0,

⌈
g−3−p

2

⌉)
.

When p ≥ g−3, or in other words d = 2g+1+p ≥ 3g−2, Parts 1 and 2 show that a(X)
determines the size of the smallest degenerate secant plane precisely. For smaller p, and
special X other phenomena can occur. See the example and discussion in Section 8C.

Part 1 of Theorem 8.8, along with Theorem 8.1, is usually stated by saying that a
linearly normal curve X ⊂ Pr of degree 2g+1+p satisfies condition Np; here N0 is taken
to mean that SX is Cohen–Macaulay; N1 means N0 and the condition that IX is generated
by quadrics; N2 means in addition that IX is linearly presented; and so on.

Proof of Theorem 8.8.1. Let F be the minimal free resolution of SX . By Proposition 8.6
the complex HomS(F, S(−r−1)) is the minimal free resolution of wX = ⊕nH0(ωX(n)).
We have h0(ωX) = g, while h0ωX(n) = 0 for n < 0 since deg OX(1) > degωX = 2g−2.
Thus we may apply Corollary 7.4, and we see that the linear strand of the free resolution
HomS(F, S(−r−1)) has length r−a−2 ≤ g−1, as required.

Theorem 8.8.2 is a special case (see Exercise 8.12) of a more general geometric result:

Theorem 8.9. If a variety (or scheme) X ⊂ Pr intersects a plane Λ of dimension e in
a finite scheme of length at least e+2, the graded Betti number βe,e+2(SX) is nonzero. In
particular , a ≤ e−1.

The idea is that by Theorem 4.1 and Proposition 4.12, the homogeneous coordinate
ring of a set of dependent points in Pe cannot be 1-regular, and the cubic strand of its
resolution begins by the e-th step. In general, the regularity of a subset Y ⊂ X need not
be bounded by the regularity of X, but in our setting the high degree syzygy in the e-th
place of the resolution of the coordinate ring of the point somehow forces a high degree
syzygy in the same place in the resolution of the coordinate ring of X. The proof we will
give is indirect; we bound the local cohomology instead of the syzygies. Here is a general
algebraic version, from which Theorem 8.9 will follow easily. The reader will recognize
the idea used here from the proof of the Gruson–Lazarsfeld–Peskine Theorem 5.1: if the
homology of a free complex has low dimension, then the complex can be used to compute
regularity as if it were a resolution.

Theorem 8.9 follows at once from a still more general result of Eisenbud, Huneke and
Ulrich [Eisenbud et al. 2004, Theorem 2.1]. We give here the special case of the result that
is needed:

Theorem 8.10. Let M be a finitely generated gradedmodule over a polynomial ring S =
K[x0, . . . , xr]. Set S = K[x0, . . . , xp] be the quotient of S by an ideal generated by r−p
linear forms, and M = M⊗S S. If dimM ≤ 1 then reg H1

m
(M)+1 ≤ reg Torp(M,K)−p.
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Proof. Let F : · · · → F1 → F0 → M → 0 be the minimal free resolution of M as an
S-module, and write F i for S⊗Fi. Let Ki = kerF i → F i−1 be the module of i-cycles, and
let Bi = imF i+1 → F i be the module of boundaries, so that there are exact sequences

(Ei) 0 → Bi → Ki → Hi(S⊗F) → 0,

(Gi) 0 → Ki → F i → Bi−1 → 0,

(G0) 0 → K0 → F 0 →M → 0.

The objects that play a role in the proof appear in the diagram

H1
m
M

s0- H2
m
K0

�t0 H2
m
B0

s1- H3
m
K1

�t1 H3
m
B1

s2- H4
m
K2

�t2 · · ·

· · ·

H2
m
F 1

u1
6

H3
m
F 2

u2
6

· · ·
where the map ti is induced by the inclusion Bi ⊂ Ki, the map si is the connecting
homomorphism coming from the sequence Gi and the map ui comes from the surjection
F i → Bi−1. We will prove:

1. Each ti is an isomorphism;
2. For i < p the map si is a monomorphism;
3. For i = p the map ui is a surjection.

It follows from items 1–3 that H1
m

(M) is a subquotient of Hp+1
m (F p). In particular, since

both of these are Artinian modules, reg H1
m

(M) ≤ reg Hp+1
m (F p). By Lemma A1.6,

reg Hp+1
m

(F p)+p+1

is the maximum degree of a generator of F p or, equivalently, of Fp; this number is also
equal to reg Torp(M,K). Putting this together we get reg H1

m
(M)+1 ≤ reg Torp(M,K)−p

as required.
The map ti is an isomorphism for i = 0 simply because B0 = K0. For i > 0, we first

note that Hi(S⊗F) = Tori(S,M). Since M = S⊗M has dimension ≤ 1, the annihilator
of M plus the annihilator of S is an ideal of dimension ≤ 1. This ideal also annihilates
Tori(S,M), so dimTori(S,M) ≤ 1 also. It follows that Hj

m(Hi(S⊗F)) = 0 for all j ≥ 2
and all i. The short exact sequence (Ei) gives rise to a long exact sequence containing

Hi+1
m

(Hi(S⊗F)) - Hi+2
m

(Bi)
ti- Hi+2

m
(Ki) - Hi+2

m
(Hi(S⊗F))

and we have just shown that for i ≥ 1 the two outer terms are 0. Thus ti is an isomorphism,
proving the statement in item 1.

For items 2 and 3 we use the long exact sequence

· · · - Hi+1F i - Hi+1Bi−1
si- Hi+2Ki

- · · ·

corresponding to the short exact sequence (Gi). For i < p we have Hi+1F i = 0, giving the
conclusion of item 2. Finally, dimS = p+1, so Hp+2

m Ki = 0. This gives the statement of
item 3.
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Conclusion of the proof of Theorem 8.8. It remains to prove part 3, and for this it is
enough to produce a degenerate q-secant plane with q = p+3 +max

(
0, d(g−p−3)/2e

)
,

to which to apply Theorem 8.9.
To do this we will focus not on the q-plane but on the subscheme D in which it meets

X. We don’t need to know about schemes for this: in our case D is an effective divisor on
X. Thus we want to know when an effective divisor spans “too small” a plane.

The hyperplanes in Pr correspond to the global sections of L := OX(1), so the hyper-
planes containing D correspond to the global sections of L (−D). Thus the number of
independent sections of L (−D) is the codimension of the span of D. That is, D spans a
projective plane of dimension e = r−h0(L (−D)) = h0(L )−1−h0(L (−D)).

The Riemann–Roch formula applied to L and to L (−D) shows that

e = (deg L −g+1−h1
L )−1−(degL −degD−g+1−h1

L (−D))

= degD+h1
L −h1

L (−D)−1

= degD−h1
L (−D)−1,

since h1L = 0. From this we see that the points of D are linearly dependent, that is,
e ≤ degD−2, if and only if

h1
L (−D) = h0

(
ωX⊗L

−1(D)
)
6= 0.

This nonvanishing means ωX ⊗ L −1(D) = OX(D′), or equivalently that L ⊗ ω−1
X =

OX(D−D′), for some effective divisor D′.
The degree of L ⊗ω−1

X is 2g+1+p−(2g−2) = p+3, but we know nothing else about
it. If p ≥ g− 3, then deg L ⊗ω−1

X ≥ g. By Theorem 8.5, Part 8.5, there is an effective
divisor D such that L ⊗ω−1

X = OX(D), and taking D′ = 0 we see that the span of D is
a degenerate p+3-secant plane, as required in this case.

On the other hand, if p < g−3, the subset of Picp+3(X) that consists of line bundles
of degree p+3 that can be written in the form OX(D) is the image of Xp+3, so it has at
most dimension p+3 < g. Thus it cannot be all of the variety Picp+3(X), and we will not
in general be able to take D′ = 0. From this argument it is clear that we may have to take
the degree q of D large enough so that the sum of the degrees of D and D′ is at least g.
Moreover this condition suffices: if q and q′ are integers with q+q′ = g then the map

Xq×Xq′ → Picq−q′(X)

(
(a1, . . . , aq), (b1, . . . bq′)

)
7→ OX

( q∑

1

ai−
q′∑

1

bj

)

is surjective (see [Arbarello et al. 1985, V.D.1]).
With this motivation we take

q = p+3+
⌈g−p−3

2

⌉
=

⌈g+p+3

2

⌉
,

q′ =
⌊g−p−3

2

⌋
.
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We get q−q′ = p+3 and q+q′ = g, so by the result above we may write the line bundle
L ⊗ω−1

X in the form OX(D−D′) for effective divisors D and D′ of degrees q and q′, and
the span of D will be a degenerate q-secant plane as required.

Some of the uncertainty in the value of a(X) left by Theorem 8.8 can be explained in
terms of the quadratic strand; see Example 8.21 and Theorem 8.23.

8B.2 The Quadratic Strand

We turn to the invariant of X given by b(X) = min
{
i ≥ 1 | βi,i+1(X) = 0

}
. Theorem 8.8

shows that some βi,i+2 is nonzero when X contains certain “interesting” subschemes. By
contrast, we will show that some βi,i+1 is nonzero by showing that X is contained in a
variety Y with βi,i+1(SY ) 6= 0. To do this we compare the resolution of IX with that of
its submodule IY .

Proposition 8.11. Suppose that M ′ ⊂ M are graded S-modules. If Mn = 0 for n < e,
then βi,i+e(M

′) ≤ βi,i+e(M) for all i.

Proof. If M ′
e = 0 then β0,e(M

′) = 0, and since the differential in a minimal resolution
maps each module into m times the next one, it follows by induction that βi,i+e(M

′) = 0
for every i. Thus we may assume that M ′

e ⊂Me are both nonzero. Under this hypothesis,
we will show that any map φ : F′ → F from the minimal free resolution of M ′ to that
of M that lifts the inclusion M ′ ⊂ M must induce an inclusion of the linear strands. To
simplify the notation we may shift both M and M ′ so that e = 0.

Let G ⊂ F be the linear strand, so that the i-th free module Gi in G is a direct sum of
copies of S(−i), and similarly for G′ ⊂ F′. To prove that φi|Gi

: G′
i → Fi is an inclusion,

we do induction on i, starting with i = 0.
Because the resolution is minimal, we have F0/mF0 = M/mM . In particular G0/mG0 =

M0, and similarly G′
0/mG

′
0 = M ′

0, which is a subspace of M0. Thus the map φ0|G′
0

has
kernel contained in mG′

0. Since G′
0 and G0 are free modules generated in the same degree,

and φ0|G′
0

is a monomorphism in the degree of the generators, φ0|G′
0

is a monomorphism
(even a split monomorphism.)

For the inductive step, suppose that we have shown φi|G′
i
is a monomorphism for some i.

Since F′ is a minimal resolution, the kernel of the differential d : F ′
i+1 → F ′

i is contained in
mF ′

i+1. Since d(G′
i+1) ⊂ G′

i, and G′
i+1 is a summand of F ′

i+1, the composite map φi|Gi+1
◦d

has kernel contained in mGi+1. From the commutativity of the diagram

Gi+1
d - Gi

G′
i+1

φi+1|Gi+1

6

d
- G′

i

φi|Gi

6

we see that the kernel of φi+1|Gi+1
must also be contained in mG′

i+1. Once again, φi+1|Gi+1

is a map of free modules generated in the same degree that is a monomorphism in the
degree of the generators, so it is a (split) monomorphism.
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To apply Proposition 8.11 we need an ideal generated by quadrics that is contained in
IX . We will use an ideal of 2×2 minors of a 1-generic matrix, as described in Chapter 6.
Recall that the integer b(X) was defined as the smallest integer such that βi,i+1(SX) = 0
for all i ≥ b(X).

Theorem 8.12. Suppose that X ⊂ Pr is a curve embedded by a complete linear series
|L |. Suppose a divisor D ⊂ X has has h0OX(D) = s+1 ≥ 2. If h0L (−D) = t+1 ≥ 2,
then βs+t−1,s+t(SX) 6= 0. In particular b(X) ≥ s+ t.

Proof. After picking bases for H0OX(D) and H0L (−D), the multiplication map

H0
OX(D)⊗H0

L (−D) → H0
L

corresponds, as in Proposition 6.10, to a 1-generic (s+1)×(t+1) matrix A of linear forms
on Pr whose 2×2 minors lie in IX .

Since IX contains no linear forms we may apply Proposition 8.11, and it suffices to show
that the ideal I = I2(A) ⊂ IX has βs+t−2,s+t(I) 6= 0.

If s = 1, we can get the result from the Eagon–Northcott complex as follows. By Theo-
rem 6.4 the maximal minors of A generate an ideal I of codimension (t+1)−(s+1)+1 = t
whose minimal free resolution is given by the Eagon–Northcott complex (see Section
A2H). Examining this complex, we see that βt−1,t+1(I) 6= 0. A similar argument holds
when t = 1.

If s > 2 and t > 2 we use a different technique, which also covers the previous case
and is in some ways simpler. Since the matrix A is 1-generic, the elements of the first row
are linearly independent, and the same goes for the first column. We first show that by
choosing bases that are sufficiently general, we can ensure that the s+ t+1 elements in
the union of the first row and the first column are linearly independent.

Choose bases σ0, . . . , σs and τ0, . . . , τt for H0OX(D) and H0L (−D) respectively, so that
the (i, j)-th element of the matrix A is the linear form corresponding to σiτj ∈ H0L = S1.
Let Bσ and Bτ be the base divisors of the linear series |OX(D)| = (OX(D), 〈σ0, . . . , σs−1〉)
and |L (−D)| = (L (−D), 〈τ0, . . . , τt−1〉) respectively. Since the linear series |OX(D−Bσ)|
is basepoint-free, we may choose the basis {σi} so that the divisor corresponding to σ0

is Bσ +D0, and D0 is disjoint from Bτ . We may then choose τ0 such that the divisor
corresponding to τ0 is BτE0 and E0 is disjoint from both Bσ and D0.

With these choices, we claim that the spaces of linear forms 〈σ0τ0, . . . , σ0τt−1〉 and
〈σ0τ0, . . . , σs−1τ0〉 intersect only in the one-dimensional space 〈σ0τ0〉. Indeed, if a linear
form ` is in the intersection, then ` vanishes on both D0 and E0, so it vanishes on D0+E0

and thus, taking the base loci into account, on Bσ+Bτ +D0 +E0. This is the divisor of
σ0τ0, so ` is a scalar multiple of σ0τ0 as required. It follows that the linear forms that
appear in the first row and column of A, that is the s+ t+1 elements

σ0τ0 · · · σ0τt
...

σsτ0

are linearly independent.
The following more general result now concludes the proof of Theorem 8.12.
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Theorem 8.13. Let A = (`i,j)0≤i≤s,0≤j≤t be an s+ 1× t+ 1 matrix of linear forms.
If the first row and column of A consist of s+ t+1 linearly independent elements, then
βs+t−1,s+t(S/I2(A)) 6= 0.

A weaker version of Theorem 8.13 was proved by Green and Lazarsfeld to verify one
inequality of Green’s conjecture, as explained below. A similar theorem holds for the 4×4
pfaffians of a suitably conditioned skew-symmetric matrix of linear forms, and in fact this
represents a natural generalization of the result above. See [Koh and Stillman 1989] for
details.

Example 8.14. Consider the matrix

A =




x0 x1 x2 · · · xt
x1+t 0 0 · · · 0

...
...

... · · ·
...

xs+t 0 0 · · · 0


 (∗)

where x0, . . . , xs+t are indeterminates. To simplify the notation, let P = (x1, . . . , xt) and
Q = (x1+t, . . . , xs+t) be the ideals of S corresponding to the first row and the first column
of A, respectively. It is easy to see that I2(A) = PQ = P ∩Q. Consider the exact sequence

0 → S/P ∩Q→ S/P ⊕S/Q→ S/P +Q→ 0.

The corresponding long exact sequence in Tor includes

Tors+t(S/P ⊕S/Q,K) → Tors+t(S/(P +Q),K) → Tors+t−1(S/(P ∩Q),K).

The free resolutions of S/P , S/Q and S/(P +Q) are all given by Koszul complexes, and
we see that the left-hand term is 0 while the middle term is K in degree s+ t, so

βs+t−1,s+t(S/I2(A)) = dimTors+t−1(S/(P ∩Q) ≥ 1

as required.
Note that x0 actually played no role in this example—we could have replaced it by

0. Thus the conclusion of Theorem 8.13 holds in slightly more generality than we have
formulated it. But some condition is necessary: see Exercise 8.14.

The proof of Theorem 8.13 uses the Koszul complex through the following result.

Theorem 8.15. Let I ⊂ S be a homogeneous ideal containing no linear form, and let δ be
the differential of the Koszul complex K(x0, . . . , xr). The graded Betti number βi,i+1(S/I)

is nonzero if and only if there is an element u ∈
∧i

Sr+1(−i) of degree i+1, such that

δ(u) ∈ I
∧i−1

Sr+1(−i+1) and δ(u) 6= 0.

Given an element u ∈
∧i

Sr+1(−i) of degree i+1 with δ(u) 6= 0, there is a smallest

ideal I such that δ(u) ∈ I
∧i−1

Sr+1(−i+1); it is the ideal generated by the coefficients of

δ(u) with respect to some basis of
∧i−1

Sr+1(−i+1), and is thus generated by quadrics.
This ideal I is called the syzygy ideal of u, and by Theorem 8.15 we have βi,i+1(S/I) 6= 0.
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Proof. Suppose first that βi,i+1(S/I) = dimK Tori(S/I,K)i+1 6= 0, so we can choose a
nonzero element t ∈ Tori(S/I,K)i+1. Since Tori(S/I,K) is the i-th homology of S/I ⊗
K(x0, . . . , xr), we may represent t as the class of a cycle 1⊗ u with u ∈

∧i
Sr+1(−i)

and deg u = i+ 1. Thus δ(u) ∈ I
∧i−1

Sr+1(−i+ 1). If δ(u) = 0, then u would be a
boundary in K(x0, . . . , xr), and thus also a boundary in S/I ⊗K(x0, . . . , xr), so that
t = 0, contradicting our hypothesis.

Conversely, let u ∈
∧i

Sr+1(−i) be an element with deg u = i+ 1 and δ(u) 6= 0. If

δ(u) ∈ I
∧i−1

Sr+1(−i+1) then the element 1⊗u is a cycle in S/I⊗K(x0, . . . , xr).

We show by contradiction that 1⊗u is not a boundary. The generators of
∧i

Sr+1(−i)
are all in degree exactly i. Since I contains no linear forms, the degree i+ 1 part of
S/I⊗

∧i
Sr+1(−i) may be identified with the degree i+1 part of

∧i
Sr+1(−i). If 1⊗u

were a boundary in S/I ⊗K(x0, . . . , xr), then u would be a boundary in K(x0, . . . , xr)
itself. But then δ(u) = 0, contradicting our hypothesis.

Since 1⊗u is not a boundary, Tori(S/I,K)i+1 6= 0, and thus βi,i+1(S/I) 6= 0.

The hypothesis that I contain no linear forms is necessary in Theorem 8.15. For example,
if I = m, then δ(u) ∈ I

∧i−1
Sr+1(−i+1) for any u, but βi,i+1S/m = 0 for all i.

As an application, using Theorem 8.15 we can easily describe all the ideals I ⊂ S such
that I contains no linear form but βr+1,r+2(S/I) 6= 0. (For the case of βr,r+1(S/I) 6= 0 see

the next theorem.) Since
∧r+1

Sr+1 ∼= S, an element of degree r+2 in
∧r+1

Sr+1(−r−1)
may be written as a linear form ` times the generator. Applying δ gives an element whose
coefficients are ±xi`. By Theorem 8.15, if I is a homogeneous ideal that contains no linear
forms, then βr+1,r+2(S/I) 6= 0 if and only if I contains the ideal `(x0, . . . , xr) for some
linear form `.

Proof of Theorem 8.13. To simplify notation, set I = I2(A). We must show that the vector
space Tors+t−1(S/I,K)s+t is nonzero, and we use the free resolution K of K to compute
it. We may take K to be the Koszul complex

K : 0 - ∧r+1
Sr+1(−r−1)

δ- ∧r
Sr(−r) δ- · · · δ- S,

Thus it suffices to give a cycle of degree s+ t in

S/I⊗Ks+t−1 = S/I⊗
s+t−1∧

Sr+1(−s− t+1)

that is not a boundary. The trick is to find an element α, of degree s+ t in Ks+t−1, such
that

1. δ(α) 6= 0 ∈ Ks+t−2; and

2. δ(α) goes to zero in S/I⊗Ks+t−2.

Having such an element will suffice to prove the Theorem: From condition 2 it follows that
the image of α in S/I⊗K is a cycle. On the other hand, the generators of Ks+t−1 have
degree s+ t−1, and the elements of I are all of degree 2 or more. Thus the degree s+ t
part of Ks+t−1 coincides with that of S/I⊗Ks+t−1. If the image of α were a boundary in
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S/I⊗K, then α would also be a boundary in K, and δ(α) would be zero, contradicting
condition 1.

To write down α, let x0, . . . xt be the elements of the first row of A, and let x1+t, . . . , xs+t
be the elements of the first column, starting from the position below the upper left corner,
as in equation (∗) in the example above. Thus if 0 ≤ j ≤ t then `0,j = xj , while if 1 ≤ i ≤ s
then `i,0 = xi+t. Complete the sequence x0, . . . , xs+t to a basis of the linear forms in S
by adjoining some linear forms xs+t+1, . . . , xr. Let {ei} be a basis of Sr+1(−1) such that
δ(ei) = xi in the Koszul complex.

The free module
∧s+t−1

Sr+1(−s−t+1) has a basis consisting of the products of s+t−1
of the ei. If 0 ≤ j ≤ t and 1 ≤ i ≤ s, then we denote by e[i+t,j] the product of all the
e1, . . . , es+t except ej and ei+t, in the natural order, which is such a basis element. With
this notation, set

α =
∑

1≤i≤s

0≤j≤t

(−1)i+j`i,je[i+t,j].

If 0 ≤ k ≤ s+ t and k 6= i+ t, k 6= j then we write e[k,i+t,j] for the product of all the
e1, . . . , es+t except for ei+t, ek and ej , as always in the natural order. These elements are

among the free generators of
∧s+t−2

Sr+1(−s− t+2). The formula for the differential of
the Koszul complex gives

δ(e[i+t,j]) =
∑

0≤k<j

(−1)ke[k,i+t,j] +
∑

j<k<i+t

(−1)k−1e[k,i+t,j] +
∑

i+t<k≤s+t

(−1)ke[k,i+t,j].

Write (p, q | u, v) for the 2×2 minor of A involving rows p, q and columns u, v. Straight-
forward computation shows that the coefficient of e[k,i+t,j] in δ(α) is

{±(0, i | j, k)e[k,i+t,j] if 0 ≤ k ≤ t,

±(i, k−t | 0, j)e[k,i+t,j] if 1+j ≤ k =≤ s+ t.

In particular, the coefficients of the e[k,i+t,j] in δ(α) are all in I.
Consider a 2×2 minor of A involving the upper left corner, say

(0, 1 | 0, 1) = det

(
`0,0 `0,1
`1,0 `1,1

)
= `0,0`1,1−`0,1`1,0.

Since `0,0, `0,1, and `1,0 are distinct prime elements of S, and S is factorial, this element
is nonzero. Thus the coefficients of δ(α) are not all 0, so α satisfies conditions 1 and 2 as
required.

One way to get a divisor to which to apply Theorem 8.12 is to choose D to be a general
divisor of degree g+1. By Theorem 8.5.1, we have h0OX(D) = 2. Since L (−D) is a general
line bundle of degree 2g+1+p−g−1 = g+p the bundle L (−D) will be nonspecial, whence
h0(L (−D)) = p+1 by the Riemann–Roch formula. Thus b(X) ≥ p+1. However, we could
already have deduced this from the fact that b(X) > a(X) and a(X) ≥ p by Theorem 8.8.

To do better, we need to invoke a much deeper result, the Brill–Noether Theorem. The
statement first appears in [Brill and Noether 1873], but it was realized fairly soon that
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the proof given by Brill and Noether was incomplete. The first complete proofs are found
in [Kempf 1972; Kleiman and Laksov 1972; 1974] (see [Arbarello et al. 1985, Chapter V]
for an exposition and history). The application to high degree curves was first noted in
the thesis of Schreyer [1983].

Theorem 8.16 (Brill–Noether). If X is a curve of genus g, then the set J rd of line
bundles F ∈ Picd(X) with h0F ≥ s+1 is an algebraic subset with dimension

dimJrd ≥ ρ(d, s) = g−(s+1)(g−d+s).

In particular , if if d ≥ 1 + dg/2e then X has a line bundle of degree d with at least 2
independent sections.

It is known that the Brill–Noether theorem is sharp for a general curve (that is, for the
curves in on open dense set of the moduli space of curves of genus g.) See [Gieseker 1982]
or, for a simpler proof, [Eisenbud and Harris 1983].

Idea of the proof. The formula is easy to understand, even though it is hard to prove.
Take an arbitrary divisor E that is the sum of a large number e of distinct points of X.
The divisor E corresponds to a section of the line bundle OX(E) from which we get a
short exact sequence

0 - OX
- OX(E) - OE

- 0.

Let F be a line bundle of degree d on X. We tensor the exact sequence above with F .
Since E is a finite set of points we may identify F ⊗OE with OE . Taking cohomology, we
get a left exact sequence

0 - H0
F - H0

F (E)
αL- H0

OE .

Now H0OE
∼= Ke is the e-dimensional vector space of functions on E. If we choose e so

large that deg F (E) = d+e > 2g−2, then by the Riemann–Roch formula

h0
F (E) = (d+e)−g+1+h1

F (E) = d+e−g+1.

Thus the dimension of H0F (E) does not vary as F runs over Picd(X). Locally on Picd(X)
we may think of αF as a varying map between a fixed pair of vector spaces (globally it
is a map between a certain pair of vector bundles). The set of F with h0F ≥ s+1 is the
set of F with rankαF ≤ d+e−g+1−(s+1) = d+e−g−s, so, locally, J rd (X) is defined
by the (d+e−g−s−1)×(d+e−g−s−1) minors of a (d+e−g+1)×e matrix. Macaulay’s
formula, Theorem A2.54 shows that if the set J rd is nonempty then its codimension is at
most (s+1)(g−d+s), so the dimension is at least g− (s+1)(g−d+s) as required. The
argument we have given is essentially the original argument of Brill and Noether. Its main
problem is that is does not prove that the locus J rd (X) is nonempty—the very fact we
were interested in.

One way to address this point is to identify αF as the map on fibers of a map of explicitly
given vector bundles, α : E1 → E2. To see what might be required, replace Picd(X) by a
projective space Pr, and α by a map

α : E1 = OPr(a) → E2 = OPr(b).
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Let Y be the locus of points y ∈ Pr such that the fiber of α at y has rank 0. There are
three cases:

• If b−a < 0 then α = 0 and Y = Pr.
• If b−a = 0 then either Y = Pr or Y = ∅.

• If b− a > 0 then Y is always nonempty, and has codimension ≤ 1 by Macaulay’s
formula, Theorem A2.54, or just the Principal Ideal Theorem, of which Macaulay’s
Theorem is a generalization.

Thus the case in which Macaulay’s formula is relevant is the case where E ∗
1 ⊗E2 = OPr(b−a)

with b−a > 0. This suggests the general case: by [Fulton and Lazarsfeld 1983, Prop. 3.5],
the determinantal loci are really nonempty if E ∗

1 ⊗E2 is ample in the vector bundle sense.
This turns out to be true for the bundles that appear in the Brill–Noether theorem,
completing the proof.

As promised, we can use the Brill–Noether theorem to give a lower bound for the number
b(X) that is better than p+1:

Theorem 8.17 (Schreyer). If X ⊂ Pr is a curve ,embedded by a complete linear series
of degree 2g+1+p, with p ≥ 0, then

b(X) ≥ p+1+
⌊g
2

⌋
.

Proof. Theorem 8.16 tells us that X must have a line bundle F of degree 1 + dg/2e
with h0F ≥ 2. Let D be the divisor corresponding to a global section of F . As before,
set L = OX(1). The codimension of the span of D in Pr is number of independent
hyperplanes containing D, that is h0L (−D). By the Riemann–Roch formula,

h0
L (−D) ≥ deg L −degD−g+1 = 2g+1+p−

⌈g
2

⌉
−1−g+1 = p+1+

⌊g
2

⌋
,

and the desired result follows from Theorem 8.12.

With this lower bound for b(X) in hand, we turn to the question of an upper bound.
When X ⊂ Pr is the rational normal curve, then the Eagon–Northcott construction
(Theorem A2.60) shows that the quadratic strand is the whole resolution. Thus b(X) =
1+pdSX = r. However, b(X) ≤ r−1 for curves of higher genus. To derive this bound we
use Koszul homology, which enables us to go directly from information about the βi,i+1(X)
to information about quadrics in the ideal of X.

Theorem 8.18. Suppose that K is algebraically closed . If I ⊂ S is a homogeneous ideal
not containing any linear form, then βr,r+1(S/I) is nonzero if and only if , after a linear
change of variables, I contains the ideal of 2×2 minors of a matrix of the form

(
x0 · · · xs xs+1 · · · xr
`0 · · · `s 0 · · · 0

)

where 0 ≤ s < r and `0, . . . , `s are linearly independent linear forms.
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See Exercise 8.10 for an example in the non–algebraically closed case.

Proof. Consider the Koszul complex

K(x0, . . . , xr) : 0 - ∧r+1
Sr+1(−r−1)

δ- · · · δ- Sr+1(−1)
δ- S.

By Theorem 8.15 it suffices to show that if u ∈
∧r

Sr+1(−r) is an element of degree r+1
such that δ(u) 6= 0, then the syzygy ideal of u has the given determinantal form.

Let e0, . . . , er be the basis of Sr+1 such that δ(ei) = xi. There is a basis for
∧r−1

Sr+1

consisting of all products of “all but one” of the ej ; we shall write

ie = e0∧· · ·∧ei−1∧ei+1∧· · ·∧er

for such a product. Similarly, we write ije for the product of all but the i-th and j-th

basis vectors, so the ije form a basis of
∧r−1

Sr+1.
Suppose that u =

∑
imi ie. Since deg u = i+1, the mi are linear forms. We have

δ( ie) =
∑

j<i

(−1)jxj ije+
∑

j>i

(−1)j−1xj ije

so
δ(u) =

∑

g<h

(
(−1)gxgmh+(−1)h−1xhmg

)
ije

=
∑

g<h

det

(
(−1)gxg (−1)hxh
mg mh

)
ije

=
∑

g<h

(−1)g+h det

(
xg xh

(−1)gmg (−1)hmh

)
ije.

Setting `′i = (−1)imi, it follows that the syzygy ideal of u is the ideal of 2×2 minors of
the matrix

M =

(
x0 x1 · · · xr
`′0 `′1 · · · `′r

)
.

If we set e = e0∧· · ·∧er, then δ(e) =
∑

(−1)ixi ie. Moreover, the Koszul complex is exact,
so the hypothesis δ(u) 6= 0 translates into the hypothesis that u is not a scalar multiple
of δ(e). It follows in particular that the two rows R1, R2 of the matrix M , regarded as
vectors of linear forms, are linearly independent, so no scalar linear combination of R1 and
R2 can be 0. If the elements `′i are linearly dependent, then after a column transformation
and a linear change of variables, the matrix M will have the desired form. Furthermore,
we could replace the second row R2 by λR1 +R2 for any λ ∈ K without changing the
situation, so it is enough to show that the linear forms in the vector λR1+R2 are linearly
dependent for some λ.

Each vector `0, . . . , `r of r+1 linear forms corresponds to a linear transformation of the
space of linear forms sending xi to `i. Because R2 is not a scalar multiple of R1, the set of
vectors λR1 +R2 correspond to a line in the projective space of matrices modulo scalars.
In this projective space, any line must meet the hypersurface of matrices of vanishing
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determinant, so some row λR1+R2 consists of linearly dependent forms, and we are done.
(This last argument is a special case of a general fact about 1-generic matrices [Eisenbud
1988, Proposition 1.3].)

Using these ideas, we can characterize rational normal curves in terms of syzygies.

Corollary 8.19. Suppose that X ⊂ Pr is an irreducible nondegenerate curve such that
SX is Cohen–Macaulay and some hyperplane section H∩X of X consists of simple points
in linearly general position. X is a rational normal curve if and only if b(X) = r.

Proof. The points of a general hyperplane section of the rational normal curve P1 ' X ⊂
Pr correspond to the roots of a general polynomial of degree r, so they are distinct, simple
and independent. We already know that βr−1,r(X) 6= 0 and βr,r+1(X) = 0, so b(X) = r.

Conversely, the hypothesis b(X) = r means that βr−1,r 6= 0. Let Y be a hyperplane
section Y = X ∩H. After a change of variable, we may suppose that the ideal of H
is generated by the last variable, xr. Since SX is Cohen–Macaulay, the minimal free
resolution of SY as an S = S/(xr)-module is obtained by reducing the resolution of SX
modulo xr.

We consider Y as a subset of H = Pr−1. Write βr−1,r(SY , S) for the graded Betti
number of this S-free resolution. We have βr−1,r(SY , S) 6= 0 and S has only r vari-
ables, so we may apply Theorem 8.18. In particular, the ideal of Y contains a product
(`0, . . . , `s)(xs+1, . . . , xr−1) with 0 ≤ s < r− 1. Since Y is reduced, it is contained in
the union of the linear subspaces L and L′ in Pr−1 defined by the ideals (`0, . . . , `s) and
(xs+1, . . . , xr−1) respectively. The dimensions of L and L′ are r−1− (s+1) < r−1 and
s < r−1. Since the points of Y are in linearly general position, at most (r−1−(s+1))+1
points of Y can be contained in L and at most s+1 points of Y can be contained in L′,
so the cardinality of Y , which is the degree of X, is at most

degX ≤ (r−1−(s+1)+1)+(s+1) = r.

By Theorem 6.8, X is a rational normal curve.

Corollary 8.20. If X ⊂ Pr is a curve embedded by a complete linear series of degree
2g+1+p, with p ≥ 0, and X is not a rational normal curve, then b(X) < r. In particular ,
the graded S-module wX = ⊕H0(ωX(n)) is generated by H0(ωX).

The method explained at the end of Section 2B can be used to derive the value of the
second-to-last Betti number in the cubic strand from this; see Exercise 8.9.

Proof. The hypothesis of Corollary 8.19 holds for all smooth curves X embedded by linear
series of high degree. The Cohen–Macaulay property is proved in Theorem 8.1 and the
general position property is proved in the case char K = 0 in Exercises 8.18–8.20. A general
proof may be found in [Rathmann 1987].

Because pdSX ≤ r−1 we have b(X) ≤ r. By Corollary 8.19, except possibly b(X) < r.
To prove the second statement we must show that β0,m(wX) = 0 for m 6= 0. Since

SX is Cohen–Macaulay, the dual of its free resolution, twisted by −r − 1, is a free
resolution of the canonical module wX = Extr−1(SX , S(−r − 1)). Thus β0,m(wX) =
βr−1,r+1−m(SX). When m ≥ 2 this is zero because IX is 0 in degrees ≤ 1, and when
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m < 0 we have H0(ωX(m)) = 0 because then ωX(m) has negative degree. Thus only
β0,0(wX) = βr−1,r(SX) and β0,1(wX) could be nonzero. But βr−1,r(SX) = 0 by the first
part of the Corollary.

8C Conjectures and Problems

Again, let X be a (smooth irreducible) curve embedded in Pr as a curve of degree d =
2g+1+p ≥ 2g+1 by a complete linear series |L |. We return to the diagram at the end
of the introduction to Section 8B:

0 1 · · · a a+1 · · · b−1 b · · · r−1 = g+p

0 1 − · · · − − · · · − − · · · −
1 −

(
d−g−1

2

)
· · · ∗ ∗ · · · ∗ − · · · -

2 − − · · · − ∗ · · · ∗ ∗ · · · g

We have shown that

p ≤ a ≤ p+max
(
0,

⌈g−p−3

2

⌉)

and
p+1+

⌊g
2

⌋
≤ b ≤ r−1.

Using Proposition 2.7 and Corollary 8.4 we can compute some of the nonzero graded Betti
numbers, namely βi,i+1 for i ≤ a+1 and βi,i+2 for i ≥ b−1 in terms of g and d. When
b(X) ≤ a(X) + 2 (and this includes all cases with g ≤ 3) we get the values of all the
graded Betti numbers. However, in the opposite case, for example when g ≥ 4, p ≥ 2, we
will have both βa,a+2 6= 0 and βa+1,a+2 6= 0, so βa,a+2 cannot be determined this way. In
such cases the remaining values, and their significance, are mostly unknown.

We can probe a little deeper into the question of vanishing in the cubic strand, that
is, the value of a(X). Part 3 of Theorem 8.8 shows that, when the degree d is at least
3g− 2, the value of a(X) is accounted for by degenerate secant planes to X. But when
2g+1 ≤ d < 3g−2, other phenomena may intervene, as the next example shows.

Example 8.21. When does a high degree curve require equations of degree 3?
Suppose that X ⊂ Pr is a curve embedded by a complete linear series of degree d =
2g+1+p. By Corollary 8.2, the ideal IX of X is generated by forms of degrees ≤ 3. We
know that IX contains exactly

(
g+2
2

)
quadrics. But these quadrics might not generate the

ideal of X. For example, if X has a trisecant line L, every quadric containing X vanishes
at three points L, and thus vanishes on all of L. This shows that IX is not generated by
quadrics. (This is an simple special case of Theorem 8.8.)

Another way to see that IX is not generated by quadrics is to show that the quadrics it
contains have “too many” linear relations. By Corollary 8.4, we may choose linear forms
x, y ∈ S that form a regular sequence on SX , and the nonzero values of the Hilbert function
of SX/(x, y)SX are 1, g, g. Using Proposition 2.7 we see that

β1,3(SX)−β2,3(SX) = g2−g
(
g

2

)
+

(
g

3

)
= g2−2

(
g+1

3

)
.



158 8. Curves of High Degree

From this it follows that if β2,3(SX) > 2
(
g+1
3

)
−g2, then β1,3(SX) 6= 0. (A similar argument

shows that if any Betti number βj−1,j(SX) in the quadratic strand is unusually large, then
the Betti number βj−2,j in the cubic strand is nonzero, so a(X) ≤ j−3.)

One geometric reason for the quadratic strand to be large would be the presence of
a special variety containing X (Theorem 8.12). The most extreme examples come from
two-dimensional scrolls, defined by the 2×2 minors of a 1-generic matrix of linear forms
on Pr. Such scrolls appear, for example, when X is hyperelliptic in the sense that g ≥ 2
and there is a degree 2 map X → P1. Let D be a fiber of this map, so that degD = 2
and h0(OX(D) = 2. The multiplication matrix H0(OX(D))⊗H0(L (−D)) → H0L = S1

corresponds to a 2×h0(L (−D)) matrix of linear forms. Since L has degree 2g+1, the
line bundle L (−D) is nonspecial, so the Riemann–Roch theorem yields h0L (−D) =
g+p−1 = r−2. By Theorem 6.4 the variety Y defined by the 2×2 minors is irreducible
and has the “generic” codimension for a variety defined by such matrices, namely r−2,
so it is a surface, the union of the lines spanned by divisors linearly equivalent to D (see
the equality (*) on page 91 and [Eisenbud 1988]). Moreover X ⊂ Y by Proposition 6.10.

The minimal free resolution of S/IY is an Eagon–Northcott complex, and it follows that
β2,3(SY ) = 2

(
r−2
3

)
. By Theorem 8.12

β2,3(SX) ≥ 2

(
r−2

3

)
= 2

(
g−1

3

)
.

But 2
(
g−1
3

)
> 2

(
g+1
3

)
−g2 for every g ≥ 1. This proves the first statement of the following

Proposition.

Proposition 8.22. If X ⊂ Pr is a hyperelliptic curve embedded by a complete linear
series |L | of degree 2g+1, then IX is not generated by quadrics (so a(X) = 0). Moreover ,
if g ≥ 4 and L is general in Pic2g+1(X), then X has no trisecant .

Using the same method one can show that a(X) = p whenever X ⊂ Pr is hyperelliptic
of degree 2g+1+p (Exercise 8.15).

Proof. We can characterize a trisecant as an effective divisor D of degree 3 on X lying
on r−2 independent hyperplanes, which means h0L (−D) = r−2. Since deg L (−D) =
2g+1−3 = 2g−2, the Riemann–Roch theorem yields h0L (−D) = 2g−2+h1L (−D) =
r−1+h0(ωX⊗L −1(D)). Since ωX⊗L −1(D) is a line bundle of degree 0, it cannot have
sections unless it is trivial. Unwinding this, we see that there exists a trisecant D to X
if and only if the line bundle L = OX(1) can be written as OX(1) = ωX(D) for some
effective divisor D of degree 3. When g ≤ 3 this is always the case —that is, there is
always a trisecant —by Theorem 8.5.3. But when g ≥ 4 most line bundles of degree 3 are
ineffective, so when L is general X has no trisecant.

It turns out that hyperellipticity is the only reason other than a degenerate secant plane
for having a(X) = p.

Theorem 8.23. [Green and Lazarsfeld 1988] Suppose that X is a curve of genus g. If
X ⊂ Pr is embedded by a complete linear series of degree 2g+ 1 + p, with p ≥ 0, and
a(X) = p, then either X ⊂ Pr has a degenerate (p+3)-secant plane (that is, OX(1) =
ωX(D) for some effective divisor D) or X is hyperelliptic.
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Hyperelliptic curves are special in other ways too; for example b(X) takes on its maximal
value r−1 for hyperelliptic curves: if X is hyperelliptic, then the scroll Y ⊃ X constructed
above has βr−2,r−1(SY ) 6= 0 because the free resolution is given by the Eagon–Northcott
complex of 2×2 minors of a 2×(r−1) matrix. Thus βr−2,r−1(SX) 6= 0 by Theorem 8.12.

More generally, we say that a curve X is δ-gonal if there is a nonconstant map φ : X →
P1 of degree δ. The gonality of X is then the minimal δ such that X is δ-gonal. (The
name came from the habit of calling a curve with a three-to-one map to P1 “trigonal”.)
Suppose that X ⊂ Pr is a δ-gonal curve in a high degree embedding, and set L = OX(1).
Let D be a fiber of a map φ : X → P1 of degree δ. By the same arguments as before, X is
contained in the variety Y defined by the 2×2 minors of the matrix M(OX(D),L (−D)).
This matrix has size at least 2×(r+1−δ), so the Eagon–Northcott complex resolving SY
has length at least r− δ, and b(X) ≥ r− δ+1 by Theorem 8.12. For embedding of very
high degree, this may be the only factor:

Gonality Conjecture. [Green and Lazarsfeld 1985, Conjecture 3.7] If d � g and X is
a δ-gonal curve of genus g embedded by a complete linear series of degree d in Pr, then
b(X) = r−δ+1.

This conjecture was recently verified for generic curves and in some further cases by
Aprodu and Voisin. See [Aprodu 2004].

8D Exercises

1. Suppose that X ⊂ Pr is a curve of genus > 0. Use the sheaf cohomology description
of regularity to prove that the regularity of SX is at least 2.

2. Show that if X ⊂ Pr is any scheme with SX Cohen–Macaulay of regularity 1, then
X has degree at most 1+codimX (this gives another approach to Exercise 8.1 in the
arithmetically Cohen–Macaulay case.)

3. Let X be a reduced curve in Pr. Show that SX is Cohen–Macaulay if and only if the
space of forms of degree n in Pr vanishing on X has dimension at most (equivalently:
exactly)

dim(IX)n =

(
r+n

r

)
−h0

OX(n),

or equivalently dim(SX)n = h0OX(n) for every n ≥ 0.

4. Suppose that X ⊂ Pr is a hyperelliptic curve of genus g. Show that if SX is Cohen–
Macaulay then degX ≥ 2g+ 1, by using Exercise 8.3 and the 2× 2 minors of the
matrix M(L ′,L ⊗L ′−1) as defined on page 90, where L ′ is the line bundle of degree
2 defining the two-to-one map from X → P1.

5. Show that if X ⊂ Pr is any variety (or even any scheme) of dimension d, and νd :
X → PN is the d-th Veronese embedding (the embedding by the complete linear series
|OX(d)|) then for d � 0 the image νd(X) is (1+dimX)-regular. (This can be proved
using just Serre’s and Grothendieck’s vanishing theorems [Hartshorne 1977, Theorems
III.2.7 and III.5.2].)
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6. Suppose that X is an irreducible algebraic variety of dimension ≥ 1 and that L 6∼= OX

is a line bundle on X with H0L 6= 0. Show that H0L −1 = 0. (Hint: A nonzero section
of L must vanish somewhere. . . ).

7. Suppose that X is a smooth projective hyperelliptic curve of genus g, and let L0 be
the line bundle that is the pull-back of OP1(1) under the two-to-one map X → P1.
Show that if L is any line bundle on X that is special (which means h1(L ) 6= 0) then
L = L a

0 L1 where L1 is a special bundle satisfying h0L1 = 1 and a ≥ 0. Show under
these circumstances that h0L = g+1. Deduce that any very ample line bundle on X
is nonspecial.

8. Compute all the βi,j for a curve of genus 2, embedded by a complete linear series of
degree 5.

9. Let X ⊂ Pr be a curve of degree 2g+1+p embedded by a complete linear series in Pr.
Use Corollary 8.20 and the method of Section 2B to show that βr−2,r(X) = g(g+p−1)
(the case g = 2, p = 0 may look familiar.)

10. Let r = 1, and let

Q = det

(
x0 x1

−x1 x0

)
; I = (Q) ⊂ R[x0, x1].

Show that βr,r+1(R[x0, x1]/I) 6= 0, but that I does not satisfy the conclusion of The-
orem 8.18. Show directly that I does satisfy Theorem 8.18 if we extend the scalars to
be the complex numbers.

11. Prove parts 4 and 5 of Theorem 8.5.

12. Complete the proof ofthe second statement of Theorem 8.8 by showing that there are
effective divisors D and E such that L −1⊗ωX(D) = OX(E) with

degD ≤ 2+max
(
p+1, d(g+p−1)/2e

)
.

Hint: the numbers are chosen to make degD+degE ≥ g.

13. Theorem 8.8 implies that a smooth irreducible curve X of genus g, embedded in Pr by
a complete linear series of degree 2g+1+p, cannot have a degenerate q-secant plane
for q < p+3. Give a direct proof using just the Riemann–Roch Theorem.

14. Find a 2× t+1 matrix of linear forms
(
`0,0 · · · `0,t
`1,0 · · · `1,t

)

such that the 1+t elements `1,0, `0,1, `0,2, . . . , `0,t are linearly independent, but all the
2×2 minors are 0.

15. Let X ⊂ Pr be a hyperelliptic curve embedded by a complete linear series of degree
2g+1+ p with p ≥ 0. Show by the method of Section 8C that a(X) ≤ p, and thus
a(X) = p by Theorem 8.8.
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Many deep properties of projective curves can be proved by Harris’ “Uniform Position
Principle” [Harris 1979], which says that, in characteristic 0, two subsets of points of
a general hyperplane section are geometrically indistinguishable if they have the same
cardinality. A consequence is that the points of a general hyperplane section always lie
in linearly general position. It turns out that Theorem 8.1 (in characteristic 0) can easily
be deduced from this. The following exercises sketch a general approach to the arithmetic
Cohen–Macaulay property for “nonspecial” curves —that is, curves embedded by linear
series whose line bundle has vanishing first cohomology—that includes this result.

16. Suppose that X ⊂ Pr is a (reduced, irreducible) curve. Use Exercise 8.2 to show
that if X is linearly normal and the points of some hyperplane section of X impose
independent conditions on quadrics, then SX is Cohen–Macaulay. If h1OX(1) = 0,
show that the converse is also true.

17. Suppose that X is a curve of genus g, embedded in Pr by a complete linear series
of degree d ≥ 2g+ 1. Show that d ≤ 2(r− 1) + 1. Deduce from Exercise 2.9 that if
the points of the hyperplane section H∩X are in linearly general position, then they
impose independent conditions on quadrics. By Exercise 8.16, this statement implies
Theorem 8.1 for any curve of high degree whose general hyperplane section consists of
points in linearly general position.

Here are two sharp forms of the uniform position principle, from [Harris 1979]. The
exercises below sketch a proof of the first, and suggest one of its simplest corollaries.

Theorem 8.24. Let X ⊂ Pr
C

be an irreducible reduced complex projective curve. If U ⊂
P̌r

C
is the set of hyperplanes H that meet X transversely then the fundamental group of U

acts by monodromy as the full symmetric group on the hyperplane section H∩X.

In other words, as we move the hyperplane H around a loop in U and follow the
points of intersection H∩X (which we can do, since the intersection remains transverse)
we can achieve any permutation of the set H∩X. The result can be restated in a purely
algebraic form, which makes sense over any field, and is true in somewhat more generality.

Theorem 8.25. [Rathmann 1987] Let S = K[x0, . . . , xr] be the homogeneous coordinate
ring of Pr, and let X ⊂ Pr

K
be an irreducible reduced curve. Assume that K is alge-

braically closed , and that either K has characteristic 0 or that X is smooth. Let H be
the universal hyperplane, defined over the field of rational functions K(u0, . . . , ur), with
equation

∑
uixi = 0. The intersection H∩X is an irreducible variety and the natural map

H ∩X → X is a finite covering with Galois group equal to the full symmetric group on
degX letters.

Theorem 8.25 can be stated as the same way as Theorem 8.24 by using the étale
fundamental group. It remains true for singular curves in P5 or higher-dimensional spaces.
Amazingly, it really can fail for singular curves in P3: [Rathmann 1987] contains examples
where the general hyperplane section looks like the set of points of a finite projective plane
(with many collinear points, for example).

Theorem 8.24 may be proved by following the steps in Exercises 8.19–8.20. But first,
here is an application.
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18. Use Theorem 8.24 to show that if X ⊂ Pr
C

is an irreducible curve, then the general
hyperplane section Γ = H∩X consists of points in linearly general position (If a point
p ∈ H ∩X lies in the span of p1, . . . , pk ∈ H ∩X, use a permutation to show that
every point of H ∩X lies in this span.) Use Exercise 8.17 to deduce Theorem 8.1 for
projective curves over C.

19. Let X ⊂ Pr
C

be a reduced, irreducible, complex projective curve. Show that a general
tangent line to X is simply tangent, and only tangent at 1 point of X as follows.

(a) Reduce to the case r = 2 by showing that X ⊂ Pr
C

can be projected birationally
into P2 (Show that if r > 2 then there is a point of Pr on only finitely many (or
no) secant lines to X at smooth points. Sard’s Theorem implies that projection
from such a point is generically an isomorphism. For a version that works in any
characteristic see [Hartshorne 1977, Proposition IV.3.7]).

(b) Assume that r = 2. Show that the family of tangent lines to X is irreducible and
one-dimensional, and that not all the tangent lines pass through a point. (For the
second part, you can use Sard’s theorem on the projection from the point.) Thus
the general tangent line does not pass through any singular point of the curve.

(c) Let U be an open subset of C. Show that the general point of any analytic map
v : U → C2, is uninflected. (This means that there are points p ∈ U such that
the derivatives v′(p) and v′′(p) are linearly independent.) Deduce that the general
tangent line is at worst simply tangent at several smooth points of X.

(d) Let p ∈ X ⊂ P2
C

be an uninflected point. Show that in suitable analytic coordinates
there is a local parametrization at p of the form v(x) = p+v0(x) and v0(x) = (x, x2).
Deduce that as p moves only X the motion of the tangent line is approximated to
first order by “rolling” on the point p.

p

(e) Conclude that there are only finitely many lines that are simply tangent to X at
more than one point. Thus the general tangent line to X is tangent only at a single,
smooth point.
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20. Complete the proof of Theorem 8.24 as follows.

(a) Use Exercise 8.19 to prove that the general tangent hyperplane to X is tangent at
only one point, and is simply tangent there.

(b) Suppose that H meets X at an isolated point p, at which H is simply tangent to X.
Show that a general hyperplane H ′ near H meets X in two points near p, and that
these two points are exchanged as H ′ moves along a small loop around the divisor
of planes near H that are tangent to X near p. That is, the local monodromy of
H ′∩X is the transposition interchanging these two points.

(c) Show that the incidence correspondence

I :=
{
(p1, p2,H) ∈ X2× P̌r : p1 6= p2, p1, p2 ∈ H and H meets X transversely

}

is an irreducible quasiprojective variety, and is thus connected (this depends on
the complex numbers: over the real numbers, an irreducible variety minus a proper
closed set may be disconnected).

(d) Deduce that the monodromy action in Theorem 8.24 is doubly transitive. Show
that a doubly transitive permutation group that contains a transposition is the full
symmetric group.
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Clifford Index and Canonical Embedding

If X ⊂ Pr is a curve embedded by a complete linear series |L | of high degree, as studied
in Chapter 8, then properties of the homogeneous coordinate ring SX , such as its graded
betti numbers, depend both on the curve and on L . But there is a distinguished linear
series on X, called the canonical series. It is the complete linear series |ωX | associated
to the to the canonical bundle ωX , the cotangent bundle of the curve. For most curves
the canonical series gives an embedding, and properties of the homogeneous coordinate
ring of a curve X in this embedding are intrinsic properties of X alone. We will call the
image of X under the map defined by |ωX | the canonical model of X, and refer to it as a
canonical curve.

Green’s Conjecture says that the invariants a(X) and b(X), studied in Chapter 8, mea-
sure, in the case of canonical curves, the Clifford index of X. In this chapter we briefly
introduce the Clifford index, canonical curves, and Green’s conjecture. As this book is
being completed there are dramatic advances in our knowledge, and we will finish the
chapter with some pointers to this literature.

9A The Cohen–Macaulay Property and the Clifford Index

To introduce the Clifford index, we will consider the question: when is the homogeneous
coordinate ring of a curve X ⊂ Pr Cohen–Macaulay? To avoid technicalities, we will
restrict to the case of smooth curves. By Proposition 8.3 this is the case if and only if the
linear series of hypersurface sections of degree d onX is complete for every d. In particular,
the linear series of hyperplane sections must be the complete. It makes no difference to
restrict our attention to the linear span of X, and thus to assume that X is nondegenerate
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in Pr. With this restriction, to say that the linear series of hyperplane sections is complete
is to say that X is embedded by the complete series |L |, where L is the line bundle
OX(1). Thus we may restate the original question: for which line bundles L on a curve
X is it the case that the homogeneous coordinate ring of the curve embedded by |L | is
Cohen–Macaulay? Theorem 8.1 asserts that this is the case whenever deg L ≥ 2g+ 1.
What about bundles of lower degree?

For at least one sort of curve, there are no such bundles of lower degree: Recall that
X is hyperelliptic if X has genus ≥ 2 and X admits a map of degree 2 onto P1, or,
equivalently, X has a line bundle of degree 2 with 2 independent global sections (such a
line bundle is then unique.) Exercise 8.4 shows that if X ⊂ Pr is a hyperelliptic curve
with SX Cohen–Macaulay, then X must have degree ≥ 2g+1, so Theorem 8.1 is sharp in
this sense. However, among curves of genus ≥ 2, hyperelliptic curves are the only curves
for which Theorem 8.1 is sharp! To give a general statement we will define the Clifford
index, which measures how far a curve is from being hyperelliptic. It may be thought of as
a refinement of the gonality, the lowest degree of a nonconstant morphism from the curve
to the projective line; the Clifford index is the gonality minus 2 in many cases.

The name “Clifford index” comes from Clifford’s Theorem (see, for example, [Hartshorne
1977, Theorem IV.5.4]). Recall that a line bundle L on a curve X is called special if
h1(L ) 6= 0. Clifford’s classic result gives an upper bound on the number of sections of a
special line bundle L . If we set r(L ) = h0(L )−1, the dimension of the projective space
to which |L | maps X, Clifford’s Theorem asserts that a special line bundle L satisfies
r(L ) ≤ (deg L )/2, with equality if and only if L = OX or L = ωX or X is hyperelliptic
and L = L k

0 , where L0 is the line bundle of degree 2 with two independent sections and
0 ≤ k ≤ g−1.

With this in mind, we define the Clifford index of (any) line bundle L on a curve X
to be

Cliff L = deg L −2(h0(L )−1) = g+1−h0(L )−h1(L ),

where g is the genus ofX and the two formulas are related by the Riemann–Roch Theorem.

For example, if L is nonspecial (that is, h1L = 0) then Cliff L = 2g−degL depends
only on the degree of L , and is negative when degL ≥ 2g+1. By Serre duality,

Cliff L = Cliff(L −1⊗ωX).

Finally, the Clifford index of the curve X of genus g ≥ 4 is defined by taking the
minimum of the Clifford indices of all “relevant” line bundles on X:

CliffX = min{Cliff L | h0
L ≥ 2 and h1

L ≥ 2}.

If g ≤ 3 (in which case there are no line bundles L with h0L ≥ 2 and h1L ≥ 2) we
instead make the convention that a nonhyperelliptic curve of genus 3 has Clifford index
1, while any hyperelliptic curve or curve of genus ≤ 2 has Clifford index 0.

Thus, by Clifford’s Theorem, CliffX ≥ 0 and CliffX = 0 if and only ifX is hyperelliptic
(or g ≤ 1). If L is a line bundle defining a map of degree δ from X to P1, and h1(L ) ≥ 2
(the Brill-Noether Theorem 8.16 shows that this is always the case if X if X is δ-gonal
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(see page 159), then h0(L ) ≥ 2, so Cliff L ≤ δ−2. On the other hand, the Brill-Noether
Theorem also shows the gonality of any curve is at most

⌈
1
2 (g+2)

⌉
, and it follows that

0 ≤ CliffX ≤
⌈

1
2 (g−2)

⌉
.

The sharpness of the Brill–Noether Theorem for general curves implies that for a general
curve of genus g we actually have CliffX =

⌈
1
2 (g−2)

⌉
, and that (for g ≥ 4) the “relevant”

line bundles achieving this low Clifford index are exactly those defining the lowest degree
maps to P1.

For a first example where the gonality does not determine the Clifford index, let X be
a smooth plane quintic curve. The line bundle L embedding X in the plane as a quintic
has

g = 6, deg L = 5, h0
L = 3,

whence
h1

L = 3, Cliff L = 1 and CliffX ≤ 1.

Any smooth plane quintic X is in fact 4-gonal: the lowest degree maps X → P1 are
projections from points on X, as indicated in the drawing.

p

X

πp

In general, one can show that CliffX = 1 if and only if X is either trigonal or X can be
represented as a smooth plane quintic. This sort of analysis can be carried much farther;
see for example [Eisenbud et al. 1989], joint work with Herbert Lange and Frank-Olaf
Schreyer.

Using the Clifford index we can state a strong result about the Cohen–Macaulay prop-
erty:

Theorem 9.1. Suppose that X ⊂ Pr is a smooth curve over an algebraically closed field
of characteristic 0, embedded by a complete linear series. If

Cliff OX(1) < CliffX,

then SX is Cohen–Macaulay .
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This was first proved in [Green and Lazarsfeld 1985] over the complex numbers. See
[Koh and Stillman 1989] for a proof in all characteristics, along lines developed in this
book. Theorem 9.1 includes Theorem 8.1 and some other classical assertions:

Corollary 9.2. Let X ⊂ Pr be a smooth nondegenerate curve of degree d and genus g ≥ 2,
embedded by a complete linear series, and let L = OX(1). The homogeneous coordinate
ring SX is Cohen–Macaulay if any of the following conditions are satisfied :

1. (Castelnuovo) d ≥ 2g+1.

2. (Max Noether) X is nonhyperelliptic and L = ωX .

3. (Arbarello, Cornalba, Griffiths, Harris) X is a general curve, L is a general bundle
on X, and d ≥

⌊
3
2g

⌋
+2.

Proof. 1. If d ≥ 2g+1 then L is nonspecial so Cliff L = 2g−d < 0 while CliffX ≥ 0.

2. Cliff ωX = 0, and by Clifford’s theorem CliffX = 0 only if X is hyperelliptic.

3. If X is general, CliffX equals
⌈

1
2 (g−2)

⌉
. If L is general of degree at least 3

2g, then L is
nonspecial by Lemma 8.5, so Cliff L = 2g−d. Arithmetic shows that 2g−d <

⌈
1
2 (g−2)

⌉
if

and only if d ≥ b 3
2gc+2 (compare Theorem 8.16). See and [Arbarello et al. 1985, Exercises

V.C] for further information.

Because of the way CliffX is defined, the only very ample bundles that can have
Cliff L < CliffX must have h1L ≤ 1. It would be interesting to know what is true
beyond this range. Some results of this sort appear in [Yau and Chen 1996].

9B Green’s Conjecture

The homogeneous coordinate ring of a canonical curve has been an object of study in
algebraic geometry and commutative algebra since the work of Petri [1922] in the early
part of the twentieth century. It was my own path of entry from commutative algebra
to algebraic geometry, and it still contains plenty of mysteries! In this last section we
will concentrate on one of the major conjectures, relating the the free resolution of the
homogeneous coordinate ring of a canonical curve with the Clifford index of the curve.

The Homogeneous Coordinate Ring of a Canonical Curve

Let X be a smooth projective curve. If X has genus 0—and since we are working over
an algebraically closed field, this just means X ∼= P1 —the canonical bundle has only the
0 section. For a curve of genus g > 0, however, the canonical series is basepoint-free. If
X has genus 1, the canonical line bundle is OX , and the canonical model is a point. For
a curve of genus 2, there are 2 sections, so the canonical model is P1. In these cases the
canonical series is not very ample. But for g ≥ 3, the canonical series is very ample on
most curves of genus g.
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Theorem 9.3. [Hartshorne 1977, Proposition IV.5.2] Let X be a smooth curve of genus
g ≥ 2. If X is hyperelliptic, then the canonical series maps X two-to-one onto X, which
is a rational normal curve of degree g−1 in Pg−1. Otherwise, the canonical series is very
ample and embeds X = X as a curve of degree 2g−2 in Pg−1.

Since the hyperelliptic case is so simple we will normally exclude it from consideration,
and we will discuss only canonical models X ⊂ Pg−1 of smooth, nonhyperelliptic curves
of genus g ≥ 3. By Part 2 of Corollary 9.2, the homogeneous coordinate ring SX of X in
its canonical embedding is then Cohen–Macaulay.

For example, it follows from Exercise 9.2 or from the adjunction formula [Hartshorne
1977, Example II.8.20.3] that any smooth plane curve of degree 4 = 2·3−2 is the canonical
model of a smooth nonhyperelliptic curve of genus 3, and conversely; see Exercise 9.1. The
Betti diagram is

g = 3 :

0 1

0 1 −
1 − −
2 − −
3 − 1

For a nonhyperelliptic curve X of genus g = 4, we see from the Hilbert function that
the canonical model X ⊂ P3 has degree 6 and lies on a unique quadric. In fact, X is
a complete intersection of the quadric and a cubic (see Exercise 9.3). Conversely, the
adjunction formula shows that every such complete intersection is the canonical model of
a curve of genus 4.

g = 4 :

0 1 2

0 1 − −
1 − 1 −
2 − 1 −
3 − − 1

Finally, we shall see in Exercise 9.4 that there are two possible Betti diagrams for the
homogeneous coordinate ring of the canonical model of a curve of genus 5:

g = 5 :

0 1 2 3

0 1 − − −
1 − 3 − −
2 − − 3 −
3 − − − 1

or

0 1 2 3

0 1 − − −
1 − 3 2 −
2 − 2 3 −
3 − − − 1

In all these examples we see that SX has regularity 3. This is typical:

Corollary 9.4. If X ⊂ Pg−1 is the canonical model of a nonhyperelliptic curve of genus
g ≥ 3, the Hilbert function of SX is given by

HSX
(n) =





0 if n < 0,
1 if n = 0,
g if n = 1,
(2g−2)n−g+1 = (2n−1)(g−1) if n > 1.
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In particular , β1,2(SX), the dimension of the space of quadratic forms in the ideal of X,
is

(
g−1
2

)
and the Castelnuovo–Mumford regularity of SX is 3.

Proof. Because SX is Cohen–Macaulay, its n-th homogeneous component (SX)n is iso-
morphic to H0(OX(n)) = H0(ωnX). Given this, the Hilbert function values follow at once
from the Riemann–Roch theorem.

Because SX is Cohen–Macaulay we can find a regular sequence on X consisting of 2
linear forms `1, `2. The regularity of SX is the same as that of SX/(`1, `2). The Hilbert
function of this last module has values 1, g−2, g−2, 1, and thus regSX/(`1, `2) = 3. (See
also Theorem 4.2.)

The question addressed by Green’s conjecture is: which βi,j are nonzero? Since the
regularity is 3 rather than 2 as in the case of a curve of high degree, one might think that
many invariants would be required to determine this. But in fact things are simpler than
in the high degree case, and a unique invariant suffices. The simplification comes from a
self-duality of the resolution of SX , equivalent to the statement that SX is a Gorenstein
ring. See [Eisenbud 1995, Chapter 20] for an introduction to the rich theory of Gorenstein
rings, as well as [Huneke 1999] and [Eisenbud and Popescu 2000] for some manifestations.

As in the previous chapter, we write a(X) for the largest integer a such that βi,i+2(SX)
vanishes for all i ≤ a(X), and b(X) for the smallest integer such that βi,i+1(SX) = 0 for
all i ≥ b(X). The next result shows that, for a canonical curve, b(X) = g−2−a(X).

Proposition 9.5. If X ⊂ Pg−1 is the canonical model of a nonhyperelliptic curve of genus
g ≥ 3, then wX = Extg−2(SX , S(−g)) ∼= SX(1), so the minimal free resolution of SX is,
up to shift , self-dual , with

βi,j(SX) = βg−2−i,g+1−j(SX).

Setting βi = βi,i+1 the Betti diagram of SX has the form

0 1 · · · a a+1 · · · b−1 b · · · g−3 g−2

0 1 − · · · − − · · · − − · · · − −
1 − β1 · · · βa βa+1 · · · βg−3−a − · · · − −
2 − − · · · − βg−3−a · · · βa+1 βa · · · β1 −
3 − − · · · − − · · · − − · · · − 1

where the terms marked “−” are zero, the numbers βi are nonzero, and β1 =
(
g−2
2

)
.

Proof. By Theorem 9.3, local duality (Theorem A1.9), and Corollary 9.2 we have

SX =
⊕

H0OX(n) =
⊕

H0(ωnX) =
⊕

H0(ωX(n−1)) = wX(−1).

The rest of the statements follow.

Here is Green’s Conjecture, which stands at the center of much current work on the
topics of this book.

Conjecture 9.6. [Green 1984b] Let X ⊂ Pg−1 be a smooth nonhyperelliptic curve over
a field of characteristic 0 in its canonical embedding . The invariant a(X) of the free
resolution of SX is equal to CliffX−1.
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The first case in which Green’s conjecture is nontrivial is that of a nonhyperelliptic
curve X of genus 5. In this case X has Clifford index 1 if and only if X has a degree 3
divisor that “moves” in the sense that h0OX(D) = 2; otherwise X has Clifford index 2. If
the Clifford index of X is 2, then the canonical model X ⊂ P4 is a complete intersection
of 3 quadrics, with Betti diagram

g = 5, Cliff X = 2 :

0 1 2 3

0 1 − − −
1 − 3 − −
2 − − 3 −
3 − − − 1

On the other hand, if X has Clifford index 1 then the Betti diagram of X is

g = 5, Cliff X = 1 :

0 1 2 3

0 1 − − −
1 − 3 2 −
2 − 2 3 −
3 − − − 1

(Exercise 9.4). In the case g = 6 one encounters for the first time a case in which the
Clifford index itself, and not just the gonality of X enters the picture. If X is a smooth
plane curve of degree d, then by the adjunction formula ([Hartshorne 1977, Example
8.20.3]) the canonical series is the restriction of OP2(d−3) = OP2(2) to X. Thus in the
case d = 5 the canonical model of X in P5 is the image of X ⊂ P2 under the quadratic
Veronese map ν2 : P2 → P5. The Veronese surface V := ν2(P2) has degree 4, and thus its
hyperplane section is a rational normal curve. Since SV is Cohen–Macaulay (A2.44), the
graded Betti numbers of SV are the same as those for the rational normal quartic, namely

0 1 2 3

0 1 − − −
1 − 6 8 3

It follows from Theorem 8.12 that β3,4(S/IX) 6= 0, so a(X) = 0 in this case, just as it
would if X admitted a line bundle L of degree 3 with h0L = 2. This corresponds to the
fact that CliffX = 1 in both cases.

Green and Lazarsfeld proved one inequality of the Conjecture, using the same technique
that we have used above to give a lower bound for b(X) [Green 1984b, Appendix].

Corollary 9.7. With hypothesis as in Green’s Conjecture,

a(X) ≤ CliffX−1.

Proof. Let D be a divisor on X with h0OX(D)≥ 2 and h1OX(D)≥ 2. Theorem 8.12 shows
that b(X) is bounded below by

h0
OX(D)−1+h0ωX(−D)−1 = h0

OX(D)+h1
OX(D)−2 = g−1−Cliff OX(D).

By virtue of the duality above, this bound can also be viewed as an upper bound

a(X) = g−2−b(X) ≤ g−2−(g−1−Cliff OX(D)) = Cliff OX(D)−1.
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Thus, to prove Green’s Conjecture for a particular curve X we need to show that
a(X) ≥ Cliff(X)−1. As of this writing the result is known for all curves of genus up to
9 (see [Schreyer 1986] for genus up to 8, and [Hirschowitz and Ramanan 1998a], [Mukai
1995] and [Schreyer 1989] for different subcases of genus 9). It is known for all curves of
Clifford index at most 4 [Voisin 1988, Schreyer 1991], and it is also known for some special
classes of curves, such as those that can be represented as smooth plane curves [Loose
1989].

On the other hand, The obvious extension of Green’s conjecture to positive characteristic
is known to fail in characteristic 2 for curves of genus 7 [Schreyer 1986] and 9 [Mukai 1995]
and there is strong probabilistic evidence that it fails in various other cases of positive
characteristic. For this and a very interesting group of conjectures about the possible Betti
diagrams of canonical curves of genus up to 14 in any characteristic, see [Schreyer 2003,
Section 6].

As of this writing, a series of spectacular papers [Voisin 2002, Voisin 2003, Teixidor
I Bigas 2002] has greatly advanced our knowledge: roughly speaking, we now know that the
conjecture holds for the generic curves of each genus and Clifford index. By [Hirschowitz
and Ramanan 1998b] this implies that the conjecture is true for every curve of odd genus
g that has the maximal possible Clifford index, 1

2 (g−1).
As always in mathematics, when one approaches the frontier one begins to realize that

the unknown is far larger and than the known. But the recent progress in Green’s conjec-
ture offers plenty of hope for further breakthroughs. Perhaps the reader will take the next
step!

9C Exercises

1. Show that a smooth plane curve is a canonical model if and only if it is a plane quartic
(you might use the Adjunction Formula of [Hartshorne 1977, Example 8.20.3].

2. Suppose X ⊂ Pg−1 is a nondegenerate curve such that SX is Cohen–Macaulay. Show
that X is the canonical model of the abstract curve X if and only if

βg−2,n =
{

1 if n = g,
0 otherwise.

3. Prove that a curve in P3 is a canonical model if and only if it is a complete intersection
of a quadric and a cubic. (You might use Exercise 9.2.)

4. Let X ⊂ P4 be a nondegenerate smooth irreducible curve. If X is the complete inter-
section of three quadrics, show that X is a canonical model. In this case a(X) = 1.

Now let X ⊂ P4 be a canonical model with a(X) = 0; that is, suppose that
IX is not generated by quadrics. Show that the quadratic forms in IX form a three-
dimensional vector space, and that each of them is irreducible. Show that they define a
two-dimensional irreducible nondegenerate variety Y of degree 3. This is the minimal
possible degree for a nondegenerate surface in P4 [Hartshorne 1977, Exercise I.7.8]. By
the classification of such surfaces (see for example [Eisenbud and Harris 1987]) Y is a
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scroll. Using the Adjunction formula ([Hartshorne 1977, Proposition V.5.5]) show that
the curve meets each line of the ruling of Y in 3 points. The divisor defined by these
three points moves in a one-dimensional linear series by Theorem 9.8, and thus the
Clifford index of X is 1, as required by Green’s Theorem.

5. Suppose that X ⊂ Pg−1 is a smooth, irreducible, nondegenerate curve of degree 2g−2
where g ≥ 3 is the genus ofX. Using Clifford’s Theorem (page 166), show that OX(1) =
ωX , so X is a canonical model.

6. Let X ⊂ Pg−1 be the canonical model of a smooth irreducible curve of genus g ≥ 3.
Assume that for a general hyperplane H ⊂ Pg−1 the hyperplane section Γ = H ∩
X consists of points in linearly general position. Show that Γ fails by at most 1 to
impose independent conditions on quadrics in H, and imposes independent conditions
on hypersurfaces of degree n for n > 2. Deduce that the linear series of hypersurfaces
of degree n is complete for every n, and thus that SX is Cohen–Macaulay.

7. Reinterpret the Riemann–Roch theorem to prove the following:

Theorem 9.8 (Geometric Riemann–Roch). Let X ⊂ Pg−1 be a canonically em-
bedded nonhyperelliptic curve. If D is an effective divisor on X and L is the smallest
linear space in Pg−1 containing D, then h0OX(D) = degD−dimL.

Otherwise stated: The (projective) dimension, h0(OX(D))−1, of the linear series
D equals the amount by which the points of D fail to be linearly independent. (Some
care is necessary when the points ofD are not distinct. In the statement of the theorem,
we must insist that L cut X with multiplicity at least as great as that of D at each
point. And “the amount by which the points of D fail to be linearly independent”
requires us to think of the span of a multiple point as the dimension of the smallest
linear space that contains it, in the sense just given.)

8. Use Theorem 8.9, Corollary 9.7, and Theorem 9.8 to show that for a canonically em-
bedded, nonhyperelliptic curve X ⊂ Pg−1, with genus g ≥ 4,

a(X) ≤ Cliff OX(D)−1 ≤ d−3.

9. Work through the page on “Canonical Embeddings of Plane Curves and Gonality” in
the Macaulay manual (see www.math.uiuc.edu/Macaulay2/Manual/1617.html).
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Appendix 1

Introduction to Local Cohomology

This appendix is an introduction to local cohomology, including the results used in the
text and the connection with the cohomology of sheaves on projective space. For another
version, see [Hartshorne/Grothendieck 1967]; for more results, and a very detailed and
careful treatment, see [Brodmann and Sharp 1998]. A partial idea of recent work in the
subject can be had from the survey [Lyubeznik 2002].

We will work over a Noetherian ring, with a few comments along the way about the
differences in the non-Noetherian case. (I am grateful to Arthur Ogus and Daniel Schepler
for straightening out my ideas about this.)

A1A Definitions and Tools

First of all, the definition: If R is a Noetherian ring, Q ⊂ R is an ideal, and M is an
R-module, then the zeroth local cohomology module of M is

H0
Q(M) := {m ∈M | Qdm = 0 for some d}.

H0
Q is a functor in an obvious way: if ϕ : M → N is a map, the induced map H0

Q(ϕ) is
the restriction of ϕ to H0

Q(M). One sees immediately from this that the functor H0
Q is left

exact, so it is natural to study its derived functors, which we call Hi
Q.

For example, suppose that R is a local ring and Q is its maximal ideal. If M is a
finitely generated R-module then we claim that H0

Q(M) is the (unique) largest submodule
of M with finite length. On one hand, Nakayama’s Lemma shows that any finite length
submodule is annihilated by some power of Q, and thus is contained in H0

Q(M). On the

other hand, since R is Noetherian and M is finitely generated, H0
Q(M) is generated by
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finitely many elements. Some power of Qd annihilates each of them, and thus H0
Q(M) is

a finitely generated module over the ring R/Qn, which has finite length, completing the
argument. The same proof works in the case where R is a graded algebra, generated over
a field K by elements of positive degree, the ideal Q is the homogeneous maximal ideal,
and M is a finitely generated graded R-module.

Local Cohomology and Ext

We can relate the local cohomology to the more familiar derived functor Ext.

Proposition A1.1. There is a canonical isomorphism

Hi
Q(M) ∼= lim−→ ExtiR(R/Qd,M),

where the limit is taken over the maps ExtiR(R/Qd,M) → ExtiR(R/Qe,M) induced by the
natural epimorphisms R/Qe -- R/Qd for e ≥ d.

Proof. There is a natural injection

Ext0R(R/Qd,M) = Hom(R/Qd,M) - M

φ - φ(1)

whose image is {m ∈ M | Qdm = 0}. Thus the direct limit lim−→Ext0R(R/Qd,M) =
lim−→Hom(R/Qd,M) may be identified with the union

⋃
d {m ∈M | Qdm = 0} = H0

Q(M).

The functor ExtiR(R/Qd,−) is the i-th derived functor of HomR(R/Qd,−). Taking filtered
direct limits commutes with taking derived functors because of the exactness of the filtered
direct limit functor [Eisenbud 1995, Proposition A6.4].

Corollary A1.2. Any element of Hi
Q(M) is annihilated by some power of Q.

Proof. Any element is in the image of some ExtiR(R/Qd,M), which is itself annihilated
by Qd.

Local Cohomology and Čech Cohomology

Another useful expression for the local cohomology is obtained from a Čech complex:
Suppose that Q is generated by elements (x1, . . . , xt). We write [t] = {1, . . . , t} for the set
of integers from 1 to t, and for any subset J ⊂ [t] we let xJ =

∏
j∈J xj . We denote by

M [x−1
J ] the localization of M by inverting xJ .

Theorem A1.3. Suppose that R is a Noetherian ring and Q = (x1, . . . , xt). For any
R-module M the local cohomology Hi

Q(M) is the i-th cohomology of the complex

C(x1, . . . , xt; M) : 0 - M
d-

t⊕

1

M [x−1
i ]

d- · · ·

-
⊕

#J=s

M [x−1
J ]

d- · · · - M [x−1
{1,...,t}]

- 0,
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whose differential takes an element

mJ ∈M [x−1
J ] ⊂

⊕

#J=s

M [x−1
J ]

to the element
d(mJ ) =

∑

k/∈J

(−1)oJ (k)mJ∪{k},

where oJ(k) denotes the number of elements of J less than k, and mJ∪{k} denotes the

image of mJ in the further localization M
[
(xJ∪{k})

−1
]

= M [x−1
J ][x−1

k ].

Here the terms of the Čech complex are numbered from left to right, counting M as the
0-th term, and we write Cs(M) =

⊕
#J=sM [x−1

J ] for the term of cohomological degree s.

If R is non-Noetherian, then the Čech complex as defined here does not always compute
the derived functors in the category of R-modules of H0

I() as defined above, even for finitely
generated I; see Exercise A1.7. Rather, it computes the derived functors in the category
of (not necessarily quasi-coherent) sheaves of OSpecR modules. For this and other reasons,
the general definition of the local cohomology modules should probably be made in this
larger category. As we have no use for this refinement, we will not pursue it further. See
[Hartshorne/Grothendieck 1967] for a treatment in this setting.

Proof. An element m ∈ M goes to zero under d : M →
⊕

jM [x−1
j ] if and only if m is

annihilated by some power of each of the xi. This is true if and only if m is annihilated
by a sufficiently big power of Q, so H0(C(M)) = H0

Q(M) as required.
The complex C(x1, . . . , xt; M) is obviously functorial in M. Since localization is exact,

a short exact sequence of modules gives rise to a short exact sequence of complexes,
and thus to a long exact sequence in the homology functors Hi(C(M)). To prove that
Hi(C(M)) = Hi

Q(M) we must show it is the derived functor of H0
Q(M) = H0(C(M)). For

this it is enough to show that Hi(C(M)) = 0 when M is an injective module and i > 0
(see for example [Eisenbud 1995, Proposition A3.17 and Exercise A3.15]). We need two
properties of injective modules over Noetherian rings:

Lemma A1.4. Suppose that R is a Noetherian ring , and M is an injective R-module.

1. For any ideal Q ⊂ R, the submodule H0
Q(M) is also an injective module.

2. For any x ∈ R, the localization map M →M [x−1] is surjective.

Proof. 1. We must show that if I ⊂ R is an ideal and φ : I → H0
Q(M) is a map, then

φ extends to a map R → H0
Q(M). We first extend φ to an ideal containing a power of

Q: Since I is finitely generated, and each generator goes to an element annihilated by a
power of Q, we see that for sufficiently large d the ideal QdI is in the kernel of φ. By the
Artin–Rees Lemma [Eisenbud 1995, Lemma 5.1], the ideal QdI contains an ideal of the
form Qe∩ I. It follows that the map (φ, 0) : I⊕Qe → H0

Q(M) factors through the ideal
I+Qe ⊂ R. Changing notation, we may assume that I ⊃ Qe from the outset.

By the injectivity of M we may extend φ to a map φ′ : R→M. Since φ′(Qe) = φ(Qe) ⊂
H0
Q(M), it follows that some power of Q annihilates Qeφ′(1), and thus some power of Q

annihilates φ′(1); that is, φ′(1) ∈ H0
Q(M), so φ′ is the desired extension.
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2. Given m ∈M and natural number d, we want to show that m/xd is in the image of M
in M [x−1]. Since R is Noetherian, the annihilator of xe in R is equal to the annihilator
of xd+e in R when e is large enough. Thus the annihilator of xd+e is contained in the
annihilator of xem. It follows that there is a map from the principal ideal (xd+e) to M
sending xd+e to xem. Since M is injective, this map extends to a map R → M ; write
m′ ∈ M for the image of 1, so that xe+dm′ = xem. Since xe(xdm′−m) = 0, the element
m′ goes, under the localization map, to m/xd ∈M [x−1], as required.

To complete the proof of Theorem A1.3 we prove that Hi(C(x1, . . . , xt;M)) = 0 for all
i > 0, when M is an injective module. We apply induction on t, the case t = 0 being
obvious. For the case t = 1 we must show that, for any injective R-module M and any
x ∈ R, the localization map M → M [x−1] is surjective, and this is the content of part 2
of Lemma A1.4.

When t > 1, we observe that the submodules
⊕

t∈J
#J=s

M [x−1
J ] ⊂ Cs(x1, . . . , xt;M)

for a subcomplex isomorphic to C(x1, . . . , xt;M)[x−1
J ][1], where the [1] indicates that the

cohomological degree is shifted by 1. Since the quotient involves no terms where xt is
inverted, we get a short exact sequence of complexes

0 - C(x1, . . . , xt−1; M)[x−1
t ][1] - C(x1, . . . , xt; M) - C(x1, . . . , xt−1; M) - 0.

The associated long exact sequence contains the terms

Hi−1(C(x1, . . . , xt−1; M))
δi- Hi−1(C(x1, . . . , xt−1; M)[x−1

t ]) -

Hi(C(x1, . . . , xt; M)) - Hi(C(x1, . . . , xt−1; M)).

It is easy to check from the definitions that the connecting homomorphism δ is simply
the localization map. If M is injective and i > 1 we derive Hi(C(x1, . . . , xt; M)) = 0 by
induction. For the case i = 1 we use Lemma A1.4, which implies that δ0 : M → M [x−1

t ]
is surjective. By induction, H1(C(x1, . . . , xt; M)) = 0, and the result follows.

Corollary A1.5. If M is a graded S-module of finite length, then H0
Q(M) = M, while

Hi
Q(M) = 0 for i > 0.

Note the contrast with the case of ExtiS(S/Qj ,M); for example, when M is the module
K, of length 1, the value is nonzero for all j and all 0 ≤ i ≤ r. The corollary says that in
the limit everything goes to zero except when i = 0!

Proof. The first assertion is the definition of H0
Q(M). Since a power of each xi annihilates

M, we have M [x−1
i ] = 0 for each i. Thus the complex C(x1, . . . , xt; M) reduces to 0 →

M → 0, so the the second assertion follows from Theorem A1.3.

Theorem A1.3 also allows us to compute the Hi
(x0,...,xr)(S) explicitly. For any finitely

generated graded S-moduleM letM∨ be the graded vector space dual
⊕

d(HomK(Md,K),
regarded as an S-module by the rule (sφ)(m) := φ(sm) for s ∈ S, φ ∈ ⊕HomK(Md,K)
and m ∈M . As usual we set ωS = S(−r−1), called the canonical module of S.
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Corollary A1.6. If S = K[x0, . . . , xr] is the polynomial ring in r+ 1 variables, and
Q = (x0, . . . , xr) is the ideal generated by the variables, then Hi

Q(S) = 0 for i < r+ 1
while

Hr+1
Q (S) = (ωS)∨

functorially as S-modules. That is, the functor on free S-modules that takes F to Hr+1
Q (F )

is naturally isomorphic to the functor F 7→ (HomS(F, ωS))∨.

Proof. To show that Hi
Q(S) = 0 for i < r+1 it suffices, since the complex C(x0, . . . , xr;S)

is multigraded, to work on one multi-degree α ∈ Zr+1 at a time. Let J be the set of those
indices j ∈ {0, . . . , r+1} such that αj < 0. The summand S[x−1

I ] contains the monomial
xα if and only if I ⊃ J , so

S[x−1
I ]α =

{
K if I ⊂ J ;
0 otherwise.

Consider the simplex ∆ whose faces are the subsets of K := {0, . . . , r}\J . Examining the
maps of the complex, we see that the the degree α part of C(x0, . . . , xr;S) is the reduced
chain complex of ∆, where the face with index set L corresponds to the monomial xα in
the component S[x−1

J∪L] of C(x0, . . . , xr;S). Since the reduced homology of a simplex is 0
unless the simplex is empty, we are done.

The same argument shows that Hr
Q(S)α is K if every component of α is negative, and

zero otherwise, which agrees as a vector space with (ωS)∨ = (HomS(S, ωS))∨. To say that
the identification is functorial means that if f : S(d) → S(e) is a map, so that f ∈ Se−d,
then the induced map f∨ : ωS(d)∨ → ωS(d)∨ is the map f : Hr+1

Q (S(d)) → Hr+1
Q (S(e))

induced by multiplication. For this we must simply show that the module structure of
Hr+1
Q (S) agrees with that of (ωS)∨.

As an S-module Hr+1
Q (S) is, by definition, the cokernel of the natural map

⊕

#I=r

S[x−1
I ] - S[(x0 · · · xr)−1].

The image is the vector space spanned by those monomials xα such that one of the
components αi of the multi-index α = (α0, . . . , αr) is non-negative. Thus the cokernel,
Hr+1
Q (S), may be identified with the vector space

(x0 · · ·xr)−1K[x−1
0 , · · · , x−1

r ].

The S-module structure on Hr+1
Q (S) induced from S[(x0 · · · xr)−1] may be described, with

this identification, by saying that for xβ ∈ S and xα ∈ Hr+1
Q (S) we have

xβxα =

{
xα+β if all components of α+β are negative,
0 otherwise.

Thus the map Hr+1
Q → ⊕

d HomK(Sd,K) sending xα to the dual basis vector of x−α is an
isomorphism.

One of the most important applications of local cohomology depends on the following
easy consequence.
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Corollary A1.7. Suppose Q = (x1, . . . , xt). If M is an R-module then Hi
Q(M) = 0 for

i > t.

Proof. The length of the Čech complex C(x1, . . . , xt; M) is t.

We say that an algebraic set X is defined set-theoretically by n equations if there is
an ideal Q with n generators whose radical is I(X). Corollary A1.7 is a powerful tool for
testing whether this holds. Since the local cohomology Hi

I(M) depends only on the radical
of I, this implies Hi

I(X)(M) = Hi
Q(M) = 0 for all i > n and all modules M. See [Schmitt

and Vogel 1979] and [Stückrad and Vogel 1982] for examples of use of this technique, and
[Lyubeznik 2002] for a recent survey including many pointers to the literature.

By far the most famous open question of this type is whether each irreducible curve in
P3

K
can be defined set-theoretically by just two equations; it is not even known whether

this is the case for the smooth rational quartic curve X in P3
K

defined as the image of the
map

P1
K 3 (s, t) → (s4, s3t, st3, t4) ∈ P3

K .

For this curve it is known that Hi
I(X)(M) = 0 for all i > 2 and all modules M [Hartshorne

1970, Chapter 3], so the local cohomology test is not useful here. To add to the fun, it
is known that if we replace K by a field of characteristic p > 0 then this curve is set-
theoretically the complete intersection of two surfaces [Hartshorne 1979]. See [Lyubeznik
1989] for an excellent review of this whole area.

Change of Rings

Suppose ϕ : R → R′ is a homomorphism of rings, Q is an ideal of R, and M is an R′-
module. Using the map ϕ we can also regard M as an R-module. For any given d, the
relation between ExtiR(R/Qd,M) and ExtiR′(R′/Q′d,M), where Q′ = QR′, is mysterious
(there is a change of rings spectral sequence that helps a little). For some reason taking
the limit, and thus passing to local cohomology, fixes this.

Corollary A1.8. Suppose that ϕ : R → R′ is a homomorphism of Noetherian rings. With
notation as above, there is a canonical isomorphism Hi

Q(M) ∼= Hi
QR′(M).

Proof. If x ∈ R is any element, the localization M [x−1] is the same whether we think
of M as an R-module or an R′-module: it is the set of ordered pairs (m,xd) modulo
the equivalence relation (m,xd) ∼ (m′, xe) if xf (xem−xdm′) = 0 for some f . Thus the
Čech complex C(x1, . . . , xt; M) is the same whether we regard M as an R-module or an
R′-module, and we are done by Theorem A1.3.

Corollary A1.8 fails in the non-Noetherian case even when R = K[t] and I = t; see
Exercise A1.7.

Local Duality

Because it comes up so often in applications, we mention a convenient way to compute
local cohomology with respect to the maximal ideal of a homogeneous polynomial ring.
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The same method works more generally over regular local rings, and, with some care, over
arbitrary rings.

Theorem A1.9. Let S = K[x0, . . . , xr] be the polynomial ring , and let m = (x0, . . . , xr)
be the homogeneous maximal ideal . If M is a finitely generated graded S-module then
Hi

m
(M) is (as S-module) the graded K-vectorspace dual of Extr+1−i(M,S(−r−1)).

Proof. Let F : · · ·F1 → F0 be a free resolution of M . Tensoring F with the complex
C := C(x0, · · · , xr;S) gives a double complex. If we think of the differentials from F
as horizontal, and the differentials induced from C as vertical, then since localization
is an exact functor the horizontal homology of the double complex is just the complex
C(x0, · · · , xr;M). The i-th homology of C(x0, · · · , xr;M) is Hi

Q(M). Thus one spectral
sequence of the double complex degenerates, and the homology of the total complex F⊗C
is Hi

Q(M).

By Corollary A1.6 Hi
QFj = 0 for i < r+ 1, so the columns of the double complex

have homology only at the end, and the vertical homology of the double complex is the
complex Hr+1

Q (F) ∼= ((Hom(F, ωS))∨. Since A 7→ A∨ is an exact functor, it comutes with

homology, and the j-th homology of ((Hom(F, ωS))∨ is (Extr+1−j
S (M,ωS))∨. Thus the

other spectral sequence degenerates too, and the homology of the total complex F⊗C is
(Extr+1−j

S (M,ωS))∨, proving the desired equality.

Example A1.10. A simple example may serve to make all these computations clearer.
Let S = K[x, y], m = (x, y), and consider the S-module R = K[x, y]/(x2, xy). We will

compute the local cohomology Hi
m

(R) (which is the same, by Theorem A1.8, as the local
cohomology of R as a module over itself) in two ways:

From the Čech complex: The Čech complex of R is by definition

0 - R

(
1
1

)
- R[x−1]⊕R[y−1]

(1,−1)- R[(xy)−1] - 0.

However, R is annihilated by x2, and thus also by (xy)2. Consequently, the Čech complex
takes the simpler form

0 → R
(1)- R[y−1] - 0,

where the map denoted (1) is the canonical map to the localization.
The kernel of this map is the 0-th homology of the Čech complex, and thus by Theorem

A1.3 it is H0
m

(R). As the kernel of the localization map R → R[y−1], it is the set of
elements of R annihilated by a power of y, which is the one-dimensional vector space

H0
m
(R) = (x2, xy) : y∞/(x2, xy) = (x)/(x2, xy) = K ·x = K(−1).

Since the localization map kills x, we see that R[y−1] = S/(x)[y−1], and the image of R
in R[y−1] is the same as the image of S/(x) in S/(x)[y−1]. Thus the first homology of the
Čech complex, which is equal by Theorem A1.3 to the first local cohomology of R, is

H1
m

(R) = S/(x)[y−1]/(S/(x)) = K ·y−1⊕K ·y−2⊕· · · = K(1)⊕K(2)⊕· · · .
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From local duality: Because (x2, xy) is generated by just two elements it is easy to write
down a free resolution of R = S/(x2, xy):

0 - S(−3)

(
y

−x

)

- S2(−2)
(x2 xy )- S - R - 0.

The modules ExtiS(R,S(−2)) = ExtS(R,S(−2)) are the homology of the dual complex,
twisted by −2, which is

0 � S(1) �(y −x )
S2 �

(
x2

xy

)

S(−2) � 0.

It is thus immediate that Ext0S(R,S(−2)) = 0. We also see at once that Ext2S(R,S(−2)) =
S(1)/(x, y) = K(1), the dual of K(−1) = H0

m
(R), as claimed by Theorem A1.9.

To analyze Ext1S(R,S(−2)) = 0 we note that the actual kernel of the map

S(1) �(y −x )
S2

is the image of the map

S2 �

(
x
y

)

S(−1),

so the desired homology is

Ext1S(R,S(−2)) = S ·
(
x
y

)
/S ·

(
x2

xy

)
= S/(x)(−1) = K(−1)⊕K(−2)⊕· · · ,

which is indeed the dual of the local cohomology module H1
m

(R), as computed above.

A1B Local Cohomology and Sheaf Cohomology

If M is any module over a Noetherian ring R and Q = (x1, . . . , xt) ⊂ R is an ideal, then
M gives rise by restriction to a sheaf FM on the scheme SpecR\V (Q). The i-th Zariski
cohomology Hi(FM ) may be defined as the i-th cohomology of the Čech complex

Čech(x1, . . . , xt; M) :

0 -
t⊕

1

M [x−1
i ]

d- · · ·
⊕

#J=s

M [x−1
J ]

d- · · · - M [x−1
{1,...,t}]

- 0,

whose differential is defined as in Theorem A1.3. The reader who has not yet studied
schemes and their cohomology should think of Hi(FM ) as a functor of M without wor-
rying about the nature of FM. The definition is actually independent of the choice of
generators x1, . . . , xt for Q; one can show that H0(FM ) = lim−→d Hom(Qd,M). This module
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is sometimes called the ideal transform of M with respect to Q (see Exercise A1.3). Fur-
ther, Hi(M) is the i-th right derived functor of the ideal transform functor—this follows
just as in the proof of Theorem A1.3. As a consequence, Hi(FM ) = limn Exti(Qn,M).

The local cohomology is related to Zariski cohomology in a simple way:

Proposition A1.11. Suppose Q = (x1, . . . , xt).Then:

1. There is an exact sequence of R-modules

0 → H0
Q(M) →M → H0(FM ) → H1

Q(M) → 0.

2. For every i ≥ 2,
Hi
Q(M) = Hi−1(FM ).

Proof. Note that Čech(x1, . . . , xt; M) is the subcomplex of the complex C(x1, . . . , xt; M)
obtained by dropping the first term, M ; so we get an exact sequence of complexes

0 - Čech(x1, . . . , xt; M)[−1] - C(x1, . . . , xt; M) - M - 0,

where M is regarded as a complex with just one term, in degree 0. Since this one-term
complex has no higher cohomology, the long exact sequence in cohomology coming from
this short exact sequence of complexes gives exactly statements 1 and 2.

Henceforward we will restrict our attention to the case where R is a graded polynomial
ring S = K[x0, . . . , xr], each variable xi ahs degree 1, the ideal Q is the homogeneous
maximal ideal Q = (x0, . . . , xr), and the module M is finitely generated and graded.

It follows that all the cohomology is graded too. Following our usual convention, we
will write Hi

Q(M)d for the d-th graded component of Hi
Q(M), and similarly for the Zariski

cohomology of FM.
In this setting the Zariski cohomology has another interpretation: Any graded S-module

M gives rise to a quasicoherent sheaf M̃ on the projective space Pr (for the definition
and properties of this construction see [Hartshorne 1977, II.5], for example). The Čech

complex for M̃ is the degree 0 part of the complex Čech(x0, . . . , xr; M). In particular, the

i-th (Zariski) cohomology of the sheaf M̃ is the degree 0 part of the cohomology of FM,

that is Hi(M̃) = Hi(FM )0. If we shift the grading of M by d to get M(d), then M̃(d) is

the sheaf on Pr associated to M(d), so in general Hi(M̃(d)) = Hi(FM )d. Thus Theorem
A1.11 takes on the following form:

Corollary A1.12. Let M be a graded S-module, and let M̃ be the corresponding quasi-
coherent sheaf on Pr.

1. There is an exact sequence of graded S-modules

0 - H0
Q(M) - M -

⊕

d

H0(M̃(d)) - H1
Q(M) - 0.

2. For every i ≥ 2,

Hi
Q(M) =

⊕

d

Hi−1(M̃(d)).
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This corollary reduces the computation of the cohomology of line bundles on projective
space to Corollary A1.6.

Corollary A1.13. Let M be a finitely generated graded S-module. The natural map
M → ⊕

d H0(M̃(d)) is an isomorphism if and only if depthM ≥ 2.

Proof. We have seen that depthM ≥ 2 if and only if Hi
QM = 0 for i = 0, 1; the first

assertion now follows from the first assertion of Proposition A1.12.

Corollary A1.14. Let S = K[x0, . . . , xr], with r ≥ 1. The line bundle OPr(d) on Pr =
Proj(S) has cohomology

Hi(OPn(d)) =




Sd if i = 0,
0 if 0 < i < n,
(Sr−1−d)

∨ if i = r.

The final result of this section explains the gap between the Hilbert function and the
Hilbert polynomial:

Corollary A1.15. Let M be a finitely generated graded S-module. For every d ∈ Z,

PM (d) = HM (d)−
∑

i≥0

(−1)i dimK Hi
Q(M)d.

Proof. The Euler characteristic of the sheaf M̃(d) is by definition

χ(M̃(d)) =
∑

i≥0

(−1)i dimK HiM̃(d).

We first claim that PM (d) = χ(M̃(d)) for every d. Indeed, by Serre’s Vanishing Theorem

[Hartshorne 1977, Chapter 3], Hi(M̃(d)) vanishes for i > 0 when d � 0 so χ(M̃(d)) =

dimK H0(M̃(d)) = Md for large d. Thus for the claim it suffices to show that χ(M̃(d)) is
a polynomial function of d. This is done by induction: if x is a general linear form on Pr

then from the exact sequence

0 → M̃(−1)
x- M̃ - M̃/xM → 0

we derive a long exact sequence in cohomology which (since it has only finitely many
terms) establishes the recursion formula

χ(M̃(d))−χ(M̃(d−1)) = χ(M̃/xM (d)).

Since the support of M̃/xM is the hyperplane section of the support of M̃, we see by
induction on the dimension of the support that

χ(M̃/xM (d))

is a polynomial, and thus χ(M̃(d)) is also.
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By Corollary A1.12 we have, as required,

χ(M̃(d)) = dimK H0(M̃(d))−
∑

i≥1

(−1)i dimK Hi(M̃(d))

= dimK Md−dimK H0
Q(M)d+dimK H1

Q(M)d−
∑

i≥2

(−1)i dimK Hi
Q(M)d.

A1C Vanishing and Nonvanishing Theorems

In this section we maintain the hypothesis that S = K[x0, . . . , xr], the ideal Q is the
homogeneous maximal ideal Q = (x0, . . . , xr), and the module M is finitely generated
and graded.

The converse of Corollary A1.5 is also true; it is a special case of the dimension as-
sertion in the following result. The proofs of the next two results require slightly more
sophisticated commutative algebra than what has gone before.

Proposition A1.16. Let M be a finitely generated graded S-module.

1. If i < depthM or i > dimM then Hi
Q(M) = 0 for all e ≥ d.

2. If i = depthM or i = dimM then Hi
Q(M) 6= 0.

3. There is an integer d (depending on M) such that Hi
Q(M)e = 0

In the context of sheaf cohomology the dimension statement of part 1 is called Grothen-
dieck’s Vanishing Theorem, and part 3 is called Serre’s Vanishing Theorem. In between
the depth and dimension the local cohomology modules can be zero and nonzero in any
pattern; see [Evans and Griffith 1979].

Proof. We will use local duality (Theorem A1.9) and the Auslander–Buchsbaum Formula
(Theorem A2.15). With these tools, the depth assertions of parts 1 and 2 are equivalent
to the statements that ExtjS(M,S) = 0 for j > n−depthM , while ExtjS(M,S) 6= 0 for
j = n−depthM . By the Auslander–Buchsbaum Formula, n−depthM is the projective
dimension of M , and the depth statement in part 1 follows. When j is equal to the
projective dimension of M , the module ExtjS(M,S) is the cokernel of the dual of the last
map in a minimal free resolution of M . This cokernel is nonzero by Nakayama’s Lemma,
since the minimality of the resolution implies that the entries of a matrix representing the
map are contained in the maximal ideal of S. This gives the depth statement in part 2.

The dimension assertion of part 1 is likewise equivalent to the statement that ExtjS(M,S)
vanishes for j < codimM = codimannSM . The polynomial ring S is Cohen–Macaulay,
so the depth of annSM on S is equal to the codimension codimannSM = codimM . We
will show that ExtjS(M,N) = 0 whenever j < d := depth(annSM,N). For this we do
not need the hypothesis that S is a polynomial ring—any Noetherian ring will do. We
do induction on the this depth, the case d = 0 being trivial, since then j < 0. If d > 0,
then by the definition of depth, the annihilator of M contains an element f that is a
nonzerodivisor on N . The exact sequence

0 - N
f- N - N/fF - 0
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gives rise to a long exact sequence in ExtS(M,−). The maps in this sequence corre-
sponding to multiplication by f are zero since f annihilates M . Thus ExtjS(M,N) ∼=
Extj−1

S (M,N/fN). Since depthN/fN = depthN−1, we are done by induction.

To finish the proof of part 2 we must show that ExtjS(M,S) 6= 0 for j = codimM .
Choose a codimension j prime P of S that is minimal over the annihilator of annSM . Since
the construction of Ext commutes with localization, it suffices to show that ExtjSP

(MP , SP )
is nonzero when MP is a module of finite length and dimSP = j. As any module of
finite length also has depth 0, and as SP is a Cohen-Macaulay ring, we may apply the
nonvanishing result of part 1.

Finally, part 3 is equivalent to the statement that when d is sufficientlly negative the
d-th graded component of the module E := ExtjS(M,S) is 0. This holds because E is a
finitely generated module— just take d less than the degree of any generator of E.

A1D Exercises

1. (Cofinality.) Let R ⊃ J1 ⊃ J2 ⊃ · · · and R ⊃ K1 ⊃ K2 ⊃ · · · be sequences of ideals in
a ring R, and suppose that there exist functions m(i) and n(i) such that Ji ⊃ Km(i)

and Ki ⊃ Jn(i) for all i. Show that for any R-module M we have

lim−→i ExtpR(S/Ji,M) = lim−→i ExtpR(S/Ki,M).

2. Use Exercise A1.1 and the Artin–Rees Lemma to show that if R is a Noetherian ring
containing ideals Q1 andQ2, andM is an R-module, then there is a long exact sequence

· · · → Hi
Q1+Q2

(M) → Hi
Q1

(M)⊕Hi
Q2

(M) → Hi
Q1∩Q2

(M) → Hi+1
Q1+Q2

(M) → · · · .

3. Let Q be an ideal in a Noetherian ring R. Let F be a coherent sheaf on SpecR\V (Q).
Prove that H0(FM ) = lim−→Hom(Qd,M) by defining maps {mi/x

d
i } 7→ [f : xei 7→ xe−di mi]

in both directions restricted to Q(r+1)e ⊂ (xe0, . . . , x
e
r) for big e; and [f : Qd →M ] 7→

{f(xdi )/x
d
i }.

4. Prove that, for any R-module M over any Noetherian ring,

lim−→d Hom((xd),M) = M [x−1].

5. Show that the complex C(x1, . . . , xt; M) is the direct limit of the Koszul complexes.
Use this to give another proof of Theorem A1.3 in the case where x1, . . . , xt is a regular
sequence in R.

6. The ring R = k[x, y1, y2, . . . ]/(xy1, x
2y2, . . .) is non-Noetherian: the sequence of ideals

ann(xn) increases forever. Show that the formula in Exercise A1.4 fails over this ring
for M = R.

7. Let R be any ring containing an element x such that the sequence of ideals ann(xn)
increases forever. If an R-module M contains R, show that the map M → M [x−1]
cannot be surjective; that is, the first homology of the Čech complex

0 →M →M [x−1] → 0
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is nonzero. In particular, this is true for the injective envelope of R in the category of R-
modules. Conclude that the cohomology of this Čech complex of M does not compute
the derived functors of the functor H0

Rx, and in particular that Corollary A1.8 fails for
the map Z[t] → R with t 7→ x.
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Appendix 2

A Jog Through Commutative Algebra

My goal in this appendix is to lead the reader on a brisk jog through the garden of
commutative algebra. There won’t be time to smell many flowers, but I hope to impart a
sense of the landscape, at least of that part of the subject used in this book.

Each section is focused on a single topic. It begins with some motivation and the main
definitions, and then lists some central results, often with illustrations of their use. Finally,
there are some further, perhaps more subtle, examples. There are practically no proofs;
these can be found, for example, in [Eisenbud 1995].

I assume that the reader is familiar with

• rings, ideals, and modules, and occasionally homological notions such as Hom and ⊗,
Ext and Tor;

• prime ideals and the localizations of a ring; and

• the correspondence between affine rings and algebraic sets.

There are a few references to sheaves and schemes, but they can be harmlessly skipped.

The topics treated in Sections A to H are:

A. associated primes

B. depth

C. projective dimension and regular local rings

D. normalization (resolution of singularities for curves)

E. the Cohen–Macaulay property

F. the Koszul complex

G. Fitting ideals

H. the Eagon–Northcott complex and scrolls
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Throughout, K denotes a field and R denotes a commutative Noetherian ring. You can
think primarily of the cases where R = K[x1, . . . , xn]/I for some ideal I, or where R is the
localization of such a ring at a prime ideal. Perhaps the most interesting case of all is when
R is a homogeneous algebra (or standard graded algebra), by which is meant a graded ring
of the form R = K[x0, . . . , xr]/I, where all the xi have degree 1 and I is a homogeneous
ideal (an ideal generated by homogeneous polynomials, so that a polynomial f is in I if
and only if each homogeneous component of f is in I).

There is a fundamental similarity between the local and the homogeneous cases. Many
results for local rings depend on Nakayama’s Lemma, which states (in one version) that if
M is a finitely generated module over a local ring R with maximal ideal m and g1, . . . , gn ∈
M are elements whose images in M/mM generate M/mM , then g1, . . . , gn generate M . A
closely analogous result is true in the homogeneous situation: if M is a finitely generated
graded module over a homogeneous algebra R with maximal homogeneous ideal m =∑

d>0Rd, and if g1, . . . , gn ∈ M are homogeneous elements whose images in M/mM
generate M/mM , then g1, . . . , gn generate M . These results can be unified: following
[Goto and Watanabe 1978a; 1978b], one can define a generalized local ring to be a graded
ring R = R0⊕R1⊕· · · such that R0 is a local ring. If m is the maximal homogeneous ideal,
that is, the sum of the maximal ideal of R0 and the ideal of elements of strictly positive
degree, then Nakayama’s Lemma holds for R and a finitely generated graded R-module
M just as before.

Similar homogeneous versions are possible for many results involving local rings. Both
the local and homogeneous cases are important, but rather than spelling out two versions
of every theorem, or passing to the generality of generalized local rings, we usually give
only the local version.

A2A Associated Primes and Primary Decomposition

Any integer admits a unique decomposition as a product of primes and a unit. Attempts
to generalize this result to rings of integers in number fields were the number-theoretic
origin of commutative algebra. With the work of Emanuel Lasker (who was also a world
chess champion) and Francis Macaulay around 1900 the theorems took something like
their final form for the case of polynomial rings, the theory of primary decomposition. It
was Emmy Noether’s great contribution to see that they followed relatively easily from
just the ascending chain condition on ideals. (Indeed, modern work has shown that most
of the important statements of the theory fail in the non-Noetherian case.) Though the full
strength of primary decomposition is rarely used, the concepts involved are fundamental,
and some of the simplest cases are pervasive.

The first step is to recast the unique factorization of an integer n ∈ Z into a unit and
a product of powers of distinct primes pi, say

n = ±
∏

i

pai

i ,
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as a result about intersections of ideals, namely

(n) =
⋂

i

(pai

i ).

In the general case we will again express an ideal as an intersection of ideals, called primary
ideals, each connected to a particular prime ideal.

Recall that a proper ideal I ⊂ R (that is, an ideal not equal to R) is prime if xy ∈ I and
x /∈ I implies y ∈ I. If M is a module then a prime ideal P is said to be associated to M
if P = annm, the annihilator of some m ∈ M . We write AssM for the set of associated
primes of M . The module M is called P -primary if P is the only associated prime of
M . The most important case occurs when I ⊂ R is an ideal and M = R/I; then it is
traditional to say that P is associated to I when P is associated to R/I, and to write Ass I
in place of AssR/I. We also say that I is P -primary if R/I is P -primary. (The potential
confusion is seldom a problem, as the associated primes of I as a module are usually not
very interesting.) The reader should check that the associated primes of an ideal (n) ⊂ Z
are those ideals (p) generated by the prime divisors p of n. In particular, the (p)-primary
ideals in Z are exactly those of the form (pa).

For any ideal I we say that a prime P is minimal over I if P is is minimal among primes
containing I. An important set of primes connected with a module M is the set MinM
of primes minimal over the annihilator I = annM . These are called the minimal primes
of M . Again we abuse the terminology, and when I is an ideal we define the minimal
primes of I to be the minimal primes over I, or equivalently the minimal primes of the
module R/I. We shall see below that all minimal primes of M are associated to M . The
associated primes of M that are not minimal are called embedded primes of M .

Theorem A2.1. Let M be a nonzero finitely generated R-module.

1. MinM ⊂ AssM , and both are nonempty finite sets.

2. The set of elements of R that are zerodivisors on M is the union of the associated
primes of M .

If M is a graded module over a homogeneous algebra R, all the associated primes of M
are homogeneous.

Among the most useful corollaries is the following.

Corollary A2.2. If I is an ideal of R and M is a finitely generated module such that every
element of I annihilates some nonzero element of M , then there is a single nonzero element
of M annihilated by all of I. In particular , any ideal of R that consists of zerodivisors is
annihilated by a single element .

The proof is immediate from Theorem A2.1 given the following result, often called
“prime avoidance”.

Lemma A2.3. If an ideal I is contained in a finite union of prime ideals, then it is
contained in one of them.
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It is easy to see that an element f ∈ R is contained in an ideal I (equivalently: is zero
in R/I) if and only if the image of f in the localization RP is contained in IP for all prime
ideals, or even just for all maximal ideals P of R. Using Theorem A2.1 one can pinpoint
the set of localizations it is necessary to test, and see that this set is finite.

Corollary A2.4. If f ∈ M , then f = 0 if and only if the image of f is zero in MP

for each associated prime P of M . It even suffices that this condition be satisfied at each
maximal associated prime of M .

One reason for looking at associated primes for modules, and not only for ideals, is the
following useful result, a component of the proof of Theorem A2.1.

Theorem A2.5. Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence of finitely
generated R-modules. Then

AssM ′ ⊂ AssM ⊂ AssM ′ ∪ AssM ′′.

If M = M ′⊕M ′′ then the second inclusion becomes an equality .

Here is the primary decomposition result itself.

Theorem A2.6. If I is an ideal of R then Ass(R/I) is the unique minimal set of prime
ideals S that can written as I =

⋂
P∈S QP , where each QP is a P -primary ideal . (There

is a similar result for modules.)

In this decomposition the ideals QP with P ∈ Min I are called minimal components
and are unique. The others are called embedded components and are generally nonunique.

Example A2.7. Primary decomposition translates easily into geometry by means of
Hilbert’s Nullstellensatz [Eisenbud 1995, Theorem 1.6]. Here is a sample that contains a
fundamental finiteness principle. Recall that the radical of an ideal I, written

√
I, is the

ideal √
I = {f ∈ R | fm ∈ I for some m}.

We say that I is radical if I =
√
I. The primary decomposition of a radical ideal has the

form √
I =

⋂

P∈Min I

P.

Any algebraic set X (say in affine n-space An
K

over an algebraically closed field K, or in
projective space) can be written uniquely as a finite union X =

⋃
iXi of irreducible sets.

The ideal I = I(X) of functions vanishing on X is the intersection of the prime ideals
Pi = I(Xi). The expression I =

⋂
i Pi is the primary decomposition of I.

Example A2.8. For any ring R we write K(R) for the result of localizing R by inverting
all the nonzerodivisors of R. By Theorem A2.1, this is the localization of R at the comple-
ment of the union of the associated primes of R, and thus it is a ring with finitely many
maximal ideals. Of course if R is a domain then K(R) is simply its quotient field. The
most useful case beyond is when R is reduced. Then K(R) = K(R/P1)×· · ·×K(R/Pm),
the product of the quotient fields of R modulo its finitely many minimal primes.
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Example A2.9. Let R = K[x, y] and let I = (x2, xy). The associated primes of I are
(x) and (x, y), and a primary decomposition of I is I = (x)∩ (x, y)2. This might be read
geometrically as saying: for a function f(x, y) to lie in I, the function must vanish on
the line x = 0 in K2 and vanish to order 2 at the point (0, 0) (this last condition can
be expressed by saying that the partial derivatives of f relative to x and y vanish at
(0, 0)). In this example, the (x, y)-primary component (x, y)2 is not unique: we also have
I = (x)∩ (x2, y). The corresponding geometric statement is that a function f lies in I if
and only if f vanishes on the line x = 0 in K2 and (∂f/∂x)(0, 0) = 0.

Example A2.10. If P is a prime ideal, the powers of P mayfail to be P -primary! In
general, the P -primary component of Pm is called the m-th symbolic power of P , written
P (m). In the special case where R = K[x1, . . . , xn] and K is algebraically closed, a famous
result of Zariski and Nagata (see for example [Eisenbud and Hochster 1979]) says that
P (m) is the set of all functions vanishing to order ≥ m at each point of V (P ). For example,
suppose that

A =



x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x3,1 x3,2 x3,3




is a matrix of indeterminates. If P is the ideal I2(A) of 2×2 minors of A, then P is prime
but, we claim, P (2) 6= P 2. In fact, the partial derivatives of detA are the 2×2 minors of
A, so detA vanishes to order 2 wherever the 2×2 minors vanish. Thus detA ∈ P (2). On
the other hand, detA /∈ P 2 because P 2 is generated by elements of degree 4, while detA
only has degree 3.

A2B Dimension and Depth

Perhaps the most fundamental definition in geometry is that of dimension. The dimension
(also called Krull dimension) of a commutative ring plays a similarly central role. An
arithmetic notion of dimension called depth is also important (the word “arithmetic”
in this context refers to divisibility properties of elements in a ring). Later we shall see
geometric examples of the difference between depth and dimension.

The dimension of R, written dimR is the supremum of lengths of chains of prime ideals
of R. (Here a chain is a totally ordered set. The length of a chain of primes is, by definition,
one less than the number of primes; that is P0 ⊂ P1 ⊂ · · · ⊂ Pn is a chain of length n.) If P
is a prime ideal, the codimension of P , written codimP , is the maximum of the lengths of
chains of prime ideals P ⊃ · · · ⊃ P0 descending from P . If I is any ideal, the codimension
of I is the minimum of the codimension of primes containing I. See [Eisenbud 1995, Ch. 8]
for a discussion linking these very algebraic notions with geometry.) The generalization
to modules doesn’t involve anything new: we define the dimension dimM of an R-module
M to be the dimension of the ring R/ annM .

A sequence x = x1, . . . , xn of elements of R is a regular sequence (or R-sequence) if
x1, . . . , xn generate a proper ideal of R and if, for each i, the element xi is a nonzerodivisor
modulo (x1, . . . , xi−1). Similarly, if M is an R-module, then x is a regular sequence on M
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(or M -sequence) if (x1, . . . , xn)M 6= M and, for each i, the element xi is a nonzerodivisor
on M/(x1, . . . , xi−1)M .

An ideal that can be generated by a regular sequence (or, in the geometric case, the
variety it defines) is called a complete intersection.

If I is an ideal of R and M is a finitely generated module such that IM 6= M , then
the depth of I on M , written depth(I,M), is the maximal length of a regular sequence on
M contained in I. (If IM = M we set depth(I,M) = ∞.) The most interesting cases are
the ones where R is a local or homogeneous algebra and I is the maximal (homogeneous)
ideal. In these cases we write depthM in place of depth(I,M). We define the grade of I to
be grade I = depth(I,R). (Alas, terminology in this area is quite variable; see for example
[Bruns and Herzog 1998, Section 1.2] for a different system.) We need one further notion
of dimension, a homological one that will reappear in the next section. The projective
dimension of an R-module is the minimum length of a projective resolution of M (or ∞
if there is no finite projective resolution.)

We will suppose for simplicity that R is local with maximal ideal m. Similar results hold
in the homogeneous case. A fundamental geometric observation is that a variety over an
algebraically closed field that is defined by one equation has codimension at most 1. The
following is Krull’s justly celebrated generalization.

Theorem A2.11 (Principal Ideal Theorem). If I is an ideal that can be generated by
n elements in a Noetherian ring R, then grade(I) ≤ codim(I) ≤ n. Moreover , any prime
minimal among those containing I has codimension at most n. If M is a finitely generated
R-module, then dimM/IM ≥ dimM−n.

For example, in R = K[x1, . . . , xn] or R = K[x1, . . . , xn](x1,...,xn) or R = K[[x1, . . . , xn]]
the sequence x1, . . . , xn is a maximal regular sequence. It follows at once from Theorem
A2.11 that in each of these cases the ideal (x1, . . . , xn) has codimension n, and for the
local ring R = K[x1, . . . , xn](x1,...,xn) or R = K[[x1, . . . , xn]] this gives dimR = n. For the
polynomial ring R itself this argument gives only dimR ≥ n, but in fact it is not hard to
show dimR = n in this case as well. This follows from a general result on affine rings.

Theorem A2.12. If R is an integral domain with quotient field K(R), and R is a finitely
generated algebra over the field K, then dimR is equal to the transcendence degree of K(R)
over K. Geometrically : the dimension of an algebraic variety is the number of algebraically
independent functions on it .

The following is a generalization of Theorem A2.11 in which the ring R is replaced by
an arbitrary module.

Theorem A2.13. If M is a finitely generated R-module and I ⊂ R is an ideal , then

depth(I,M) ≤ codim((I+annM)/ annM) ≤ dimM.

A module is generally better behaved—more like a free module over a polynomial
ring— if its depth is close to its dimension. See also Theorem A2.15.

Theorem A2.14. Suppose R is a local ring and M is a finitely generated R-module.
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1. All maximal regular sequences on M have the same length; this common length is equal
to the depth of M . Any permutation of a regular sequence on M is again a regular
sequence on M .

2. depthM = 0 if and only if the maximal ideal of R is an associated prime of M (see
Theorem A2.1.2).

3. For any ideal I, depth(I,M) = inf {i | ExtiR(R/I,M) 6= 0}.
4. If R = K[x0, . . . , xr] with the usual grading , M is a finitely generated graded R-module,

and m = (x0, . . . , xr), then depthM = inf {i | Hi
m

(M) 6= 0}.

Parts 3 and 4 of Theorem A2.14 are connected by what is usually called local duality ;
see Theorem A1.9.

Theorem A2.15 (Auslander–Buchsbaum formula). If R is a local ring and M is
a finitely generated R-module such that pdM (the projective dimension of M) is finite,
then depthM = depthR−pdM .

The following results follow from Theorem A2.15 by localization.

Corollary A2.16. Suppose that M is a finitely generated module over a local ring R.

1. If M has an associated prime of codimension n, then pdM ≥ n.

2. If M has finite projective dimension, then pdM ≤ depthR ≤ dimR. If also depthM =
dimR then M is free.

3. If pdM = dimR then R is Cohen–Macaulay and its maximal ideal is associated to M .

Another homological characterization of depth, this time in terms of the Koszul complex,
is given in Section A2G.

Example A2.17. Theorem A2.14 really requires the“local” hypothesis (or, of course, the
analogous “graded” hypothesis). For example, in K[x]×K[y, z] the sequence (1, y), (0, z)
of length two and the sequence (x, 1) of length one are both maximal regular sequences.
Similarly, in R = K[x, y, z] the sequence x(1−x), 1− x(1−y), xz is a regular sequence
but its permutation x(1−x), xz, 1−x(1−y) is not. The ideas behind these examples are
related: R/(x(1−x)) = K[y, z]×K[y, z] by the Chinese Remainder Theorem.

A2C Projective Dimension and Regular Local Rings

After dimension, the next most fundamental geometric ideas may be those of smooth
manifolds and tangent spaces. The analogues in commutative algebra are regular rings
and Zariski tangent spaces, introduced by Krull [1937] and Zariski [1947]. Since the work
of Auslander, Buchsbaum, and Serre in the 1950s this theory has been connected with the
idea of projective dimension.

Let R be a local ring with maximal ideal m. The Zariski cotangent space of R is
m/m2, regarded as a vector space over R/m; the Zariski tangent space is the dual,
HomR/m(m/m2, R/m). By Nakayama’s Lemma, the vector space dimension of m/m2 is
the minimal number of generators of m. By the Principal Ideal Theorem A2.11 this is an
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upper bound for the Krull dimension dimR. The ring R is called regular if dimR is equal
to the vector space dimension of the Zariski tangent space; otherwise, R is singular. If R
is a Noetherian ring that is not local, we say that R is regular if each localization at a
maximal ideal is regular.

For example, the n-dimensional power series ring K[[x1, . . . , xn]] is regular because the
maximal ideal m = (x1, . . . , xn) satisfies m/m2 =

⊕n
1 Kxi. The same goes for the localiza-

tion of the polynomial ring K[x1, . . . , xn](x1,...,xn). Indeed any localization of one of these
rings is also regular, though this is harder to prove; see Corollary A2.20.

Here is a first taste of the consequences of regularity.

Theorem A2.18. Any regular local ring is a domain. A local ring is regular if and only
if its maximal ideal is generated by a regular sequence.

The following result initiated the whole homological study of rings.

Theorem A2.19 (Auslander–Buchsbaum–Serre). A local ring R is regular if and
only if the residue field of R has finite projective dimension if and only if every R-module
has finite projective dimension.

The abstract-looking characterization of regularity in Theorem A2.19 allowed a proof
of two properties that had been known only in the “geometric” case (R a localization of
a finitely generated algebra over a field). These were the first triumphs of representation
theory in commutative algebra. Recall that a domain R is called factorial if every element
of r can be factored into a product of prime elements, uniquely up to units and permutation
of the factors.

Theorem A2.20. Any localization of a regular local ring is regular . Every regular local
ring is factorial (that is, has unique factorization of elements into prime elements.)

The first of these statements is, in the geometric case, a weak version of the statement
that the singular locus of a variety is a closed subset. The second plays an important role
in the theory of divisors.

Example A2.21. The ringsK[x1, . . . , xn], K[x1, . . . , xn, x
−1
1 , . . . , x−1

n ], and K[[x1, . . . , xn]]
are regular, and the same is true if K is replaced by the ring of integers Z.

Example A2.22. A regular local ring R of dimension 1 is called a discrete valuation
ring. By the definition, together with Nakayama’s Lemma, the maximal ideal of R must
be principal; let π be a generator. By Theorem A2.18, R is a domain. Conversely, any one-
dimensional local domain with maximal ideal that is principal (and nonzero!) is a discrete
valuation ring. Every nonzero element f of the quotient fieldK(R) can be written uniquely
in the form u·πk for some unit u ∈ R and some integer k ∈ Z. The name “discrete valuation
ring” comes from the fact that the mapping ν : K(R)∗ → Z taking f to k satisfies the
definition of a valuation on R and has as value group the discrete group Z.

Example A2.23. A ring of the form A = K[[x1, . . . , xn]]/(f) is regular if and only if the
leading term of f has degree ≤ 1 (if the degree is 0, of course A is the zero ring!) In case
the degree is 1, the ring A is isomorphic to the ring of power series in n−1 variables. If
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R = K[[x1, . . . , xn]]/I is nonzero then R is regular if and only if I can be generated by
some elements f1, . . . , fm with leading terms that are of degree 1 and linearly independent;
in this case R ∼= K[[x1, . . . , xn−m]]. Indeed, Cohen’s Structure Theorem says that any
complete regular local ring containing a field is isomorphic to a power series ring (possibly
over a larger field.)

This result suggests that all regular local rings, or perhaps at least all regular local
rings of the same dimension and characteristic, look much alike, but this is only true
in the complete case (things like power series rings). Example A2.30 shows how much
structure even a discrete valuation ring can carry.

Example A2.24. Nakayama’s Lemma implies that amodule over a local ring has projec-
tive dimension 0 if and only if it is free. It follows that an ideal of projective dimension
0 in a local ring is principal, generated by a nonzerodivisor. An ideal has projective di-
mension 1 (as a module) if and only if it is isomorphic to the ideal J of n×n minors of
an (n+1)×n matrix with entries in the ring, and this ideal of minors has depth 2 (that
is, depth(J,R) = 2), the largest possible number. This is the Hilbert–Burch Theorem,
described in detail in Chapter 3.

A2D Normalization: Resolution of Singularities for Curves

If R ⊂ S are rings, an element f ∈ S is integral over R if f satisfies a monic polynomial
equation

fn+a1f
n−1 + · · ·+an = 0

with coefficients in R. The integral closure of R in S is the set of all elements of S integral
over R; it turns out to be a subring of S (Theorem A2.25). The ring R is integrally closed
in S if all elements of S that are integral over R actually belong to R. The ring R is
normal if it is reduced and integrally closed in the ring obtained from R by inverting all
nonzerodivisors.

These ideas go back to the beginning of algebraic number theory: the integral closure of
Z in a finite field extension K of Q, defined to be the set of elements of K satisfying monic
polynomial equations over Z, is called the ring of integers of K, and is in many ways the
nicest subring of K. For example, when studying the field Q[x]/(x2 − 5) ∼= Q(

√
5) it is

tempting to look at the ring R = Z[x]/(x2−5) ∼= Z[
√

5]. But the slightly larger (and at
first more complicated-looking) ring

R =
Z[y]

(y2−y−1)
∼= Z

[1−
√

5

2

]

is nicer in many ways: for example, the localization of R at the prime P = (2, x−1) ⊂ R
is not regular, since RP is one-dimensional but P/P 2 is a two-dimensional vector space
generated by 2 and x−1. Since x2−x−1 has no solution modulo 2, the ideal P ′ = PR =
(2)R is prime and RP ′ is regular. In fact R itself is regular. This phenomenon is typical
for one-dimensional rings.
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In general, the first case of importance is the normalization of a reduced ring R in its
quotient ring K(R). In addition to the number-theoretic case above, this has a beautiful
geometric interpretation. Let R be the coordinate ring of an affine algebraic set X ⊂ Cn

in complex n-space. The normalization of R in K(R) is then the ring of rational functions
that are locally bounded on X.

For example, suppose that X is the union of two lines meeting in the origin in C2,
with coordinates x, y, defined by the equation xy = 0. The function f(x, y) = x/(x−y)
is a rational function on X that is well-defined away from the point (0, 0). Away from
this point, f takes the value 1 on the line y = 0 and 0 on the line x = 0, so although
it is bounded near the origin, it does not extend to a continuous function at the origin.
Algebraically this is reflected in the fact that f (regarded either as a function onX or as an
element of the ring obtained from the coordinate ring R = K[x, y]/(xy) of X by inverting
the nonzerodivisor x−y) satisfies the monic equation f 2−f = 0, as the reader will easily
verify. On the disjoint union X of the two lines, which is a smooth space mapping to X,
the pull back of f extends to be a regular function everywhere: it has constant value 1 on
one of the lines and constant value 0 on the other.

Another significance of the normalization is that it gives a resolution of singularities in
codimension 1 ; we will make this statement precise in Example A2.32.

Theorem A2.25. Let R ⊂ S be rings. If s, t ∈ S are integral over R, then s+ t and st
are integral over R. Thus the of elements of S integral over R form a subring of S, called
the normalization of R in S. If S is normal (for example if S is the quotient field of R),
the integral closure of R in S is normal .

The following result says that the normalization of the coordinate ring of an affine
variety is again the coordinate ring of an affine variety.

Theorem A2.26. If R is a domain that is a finitely generated algebra over a field K,
then the normalization of R (in its quotient field) is a finitely generated R-module; in
particular it is again a finitely generated algebra over K.

It is possible to define the normalization of any abstract variety X (of finite type over
a field K), a construction that was first made and exploited by Zariski. Let X =

⋃
Xi be

a covering of X by open affine subsets, such that Xi∩Xj is also affine, and let X i be the
affine variety corresponding to the normalization of the coordinate ring of Xi. We need to
show that the Xi patch together well, along the normalizations of the sets Xi∩Xj . This
is the essential content of the next result.

Theorem A2.27. Normalization commutes with localization in the following sense. Let
R ⊂ S be rings and let R be the subring of S consisting of elements integral over R. If U
is a multiplicatively closed subsetof R, then the localization R[U−1] is the normalization
of R[U−1] in S[U−1].

Here is what good properties we can expect when we have normalized a variety.

Theorem A2.28 (Serre’s Criterion). Any normal one-dimensionsonal ring is regular
(that is, discrete valuation rings are precisely the normal one-dimensional rings). More
generally , we have Serre’s Criterion: A ring R is a finite direct product of normal domains
if and only if
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1. RP is regular for all primes P of codimension ≤ 1; and

2. depth(PP , RP ) ≥ 2 for all primes P of codimension ≥ 2.

When R is a homogeneous algebra, it is only necessary to test conditions 1 and 2 at
homogeneous primes.

When R is the coordinate ring of an affine variety X over an algebraically closed field,
condition 1 has the geometric meaning one would hope: the singular locus of X has
codimension at least 2.

Example A2.29. The ring Z is normal; so is any factorial domain (for example, any
regular local ring). (Reason: Suppose f = u/v is integral, satisfying an equation f n +
a1f

n−1 + · · ·+ an = 0, with a1 ∈ R. If v is divisible by a prime p that does not divide
u, then p divides all except the first term of the expression un+a1vu

n−1 + · · ·+anv
n =

vn(fn+a1f
n−1 + · · ·+an) = 0, a contradiction.)

Example A2.30. Despite the simplicity of discrete valuation rings (see Example A2.22)
there are a lot of nonisomorphic ones, even after avoiding the obvious differences of char-
acteristic, residue class field R/m, and quotient field. For a concrete example, consider
first the coordinate ring of a quartic affine plane curve, R = K[x, y]/(x4+y4−1), where K
is the field of complex numbers (or any algebraically closed field of characteristic not 2).
The ring R has infinitely many maximal ideals, which have the form (x−α, y−β), where
α ∈ K is arbitrary and β is any fourth root of 1−α4. But given one of these maximal
ideals P , there are only finitely many maximal ideals Q such that RP ∼= RQ. This follows
at once from the theory of algebraic curves (see [Hartshorne 1977, Ch. I, §8], for example):
any isomorphism RP → RQ induces an automorphism of the projective curve x4+y4 = z4

in P2 carrying the point corresponding to P to the point corresponding to Q. But there
are only finitely many automorphisms of this curve (or, indeed, of any smooth curve of
genus at least 2).

Example A2.31. The set of monomials in x1, . . . , xn corresponds to the set of lattice
points Nn in the positive orthant (send each monomial to its vector of exponents). Let
U be an subset of Nn, and let K[U ] ⊂ K[x1, . . . , xn] be the subring generated by the
corresponding monomials. For simplicity we assume that the group generated by U is all
of Zn, the group generated by Nn. It is easy to see that any element of Nn that is in the
convex hull of U , or even in the convex hull of the set generated by U under addition, is
integral over K[U ]. In fact the integral closure of K[U ] is K[Ū ], where Ū is the convex hull
of the set generated by U using addition. For example take U = {x4

1, x
3
1x2, x1x

3
2, x

4
2}—

all the monomials of degree 4 in two variables except the middle monomial f := x2
1x

2
2.

The element f is in the quotient field of K[U ] because f = x4
1 ·x1x

3
2/x

3
1x2. The equation

(2, 2) = 1
2

(
(4, 0)+(0, 4)

)
, expressing the fact that f corresponds to a point in the convex

hull of U , gives rise to the equation f 2−x4
1 ·x4

2 = 0, so f is integral over K[U ].

Example A2.32 (Resolution of singularities in codimension 1). Suppose that X
is an affine variety over an algebraically closed field K, with affine coordinate ring R. By
Theorem A2.26 the normalization R corresponds to an affine variety Y , and the inclusion
R ⊂ R corresponds to a map g : Y → X. By Theorem A2.27 the map g is an isomorphism
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over the part of X that is smooth, or even normal. The map g is a finite morphism in the
sense that the coordinate ring of X is a finitely generated as a module over the coordinate
ring of X; this is a strong form of the condition that each fiber g−1(x) is a finite set.

Serre’s Criterion in Theorem A2.28 implies that the coordinate ring of Y is smooth in
codimension 1, and this means the singular locus of Y is of codimension at least 2.

Desingularization in codimension 1 is the most that can be hoped, in general, from a
finite morphism. For example, the quadric cone X ⊂ K3 defined by the equation x2+y2+
z2 = 0 is normal, and it follows that any finite map Y → X that is isomorphic outside
the singular point must be an isomorphism.

However, for any affine or projective variety X over a field it is conjectured that there
is actually a resolution of singularities: that is, a projective map π : Y → X (this means
that Y can be represented as a closed subset of X ×Pn for some projective space Pn)
where Y is a smooth variety, and the map π is an isomorphism over the part of X that
is already smooth. In the example above, there is a desingularization (the blowup of the
origin in X) that may be described as the subset of X×P2, with coordinates x, y, z for X
and u, v, w for P2, defined by the vanishing of the 2×2 minors of the matrix

(
x y z
u v w

)

together with the equations xu+ yv + zw = 0 and u2 + v2 +w2 = 0. It is described
algebraically by the Rees algebra

R⊕I⊕I2⊕· · ·

where R = K[x, y, z]/(x2 +y2 +z2) is the coordinate ring of X and I = (x, y, z) ⊂ R.
The existence of resolutions of singularities was proved in characteristic 0 by Hironaka.

In positive characteristic it remains an active area of research.

A2E The Cohen–Macaulay Property

Which curves in the projective plane pass through the common intersections of two given
curves? The answer was given by the great geometer Max Noether (father of Emmy)
[Noether 1873] in the course of his work algebraizing Riemann’s amazing ideas about
analytic functions, under the name of the “Fundamental Theorem of Algebraic Functions”.
However, it was gradually realized that Noether’s proof was incomplete, and it was not in
fact completed until work of Lasker in 1905. By the 1920s (see [Macaulay 1916] and
[Macaulay 1934]), Macaulay had come to a much more general understanding of the
situation for polynomial rings, and his ideas were studied and extended to arbitrary local
rings by Cohen in the 1940s [Cohen 1946]. In modern language, the fundamental idea is
that of a Cohen–Macaulay ring.

A curve in the projective plane is defined by the vanishing of a (square-free) homoge-
neous polynomial in three variables. Suppose that curves F , G and H are defined by the
vanishing of f , g and h. For simplicity assume that F and G have no common component,
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so the intersection of F and G is finite. If h can be written as h = af+bg for some a and
b, then h vanishes wherever f and g vanish, so H passed through the intersection points
of F and G. Noether’s Fundamental Theorem is the converse: if H “passes through” the
intersection of F and G, then h can be written as h = af+bg.

To understand Noether’s Theorem we must know what it means for H to pass through
the intersection of F and G. To make the theorem correct, the intersection, which may
involve high degrees of tangency and singularity, must be interpreted subtly. We will give
a modern explanation in a moment, but it is interesting first to phrase the condition in
Noether’s terms.

For Noether’s applications it was necessary to define the intersection in a way that
would only depend on data available locally around a point of intersection. Suppose, after
a change of coordinates, that F and G both contain the point p = (1, 0, 0). Noether’s idea
was to expand the functions f(1, x, y), g(1, x, y) and h(1, x, y) as power series in x, y, and
to say thatH passes through the intersection of F andG locally at p if there are convergent
power series α(x, y) and β(x, y) such that h(1, x, y) = α(x, y)f(1, x, y)+β(x, y)g(1, x, y).
This condition was to hold (with different α and β !) at each point of intersection.

Noether’s passage to convergent power series ensured that the condition “H passes
through the intersection of F and G” depended only on data available locally near the
points of intersection. Following [Lasker 1905] and using primary decomposition, we can
reformulate the condition without leaving the context of homogeneous polynomials. We
first choose a primary decomposition (f, g) =

⋂
Qi. If p is a point of the intersection F∩G,

then the prime ideal P of forms vanishing at p is minimal over the ideal (f, g). By Theorem
A2.1, P is an associated prime of (f, g). Thus one of the Qi, say Q1, is P -primary. We say
that H passes through the intersection of F and G locally near p if h ∈ Q1.

In this language, Noether’s Fundamental Theorem becomes the statement that the only
associated primes of (f, g) are the primes associated to the points of F ∩G. Since f and
g have no common component, they generate an ideal of codimension at least 2, and by
the Principal Ideal Theorem A2.11 the codimension of all the minimal primes of (f, g)
is exactly 2. Thus the minimal primes of (f, g) correspond to the points of intersection,
and Noether’s Theorem means that there are no nonminimal, that is, embedded, associ-
ated primes of (f, g). This result was proved by Lasker in a more general form, Lasker’s
Unmixedness Theorem: if a sequence of c homogeneous elements in a polynomial ring
generates an ideal I of codimension c, then every associated prime of I has codimension
c. The modern version simply says that a polynomial ring over a field is Cohen–Macaulay.
By Theorem A2.36, this is the same result.

Now for the definitions: a local ring R is Cohen–Macaulay if depthR = dimR; it follows
that the same is true for every localization of R (Theorem A2.33). More generally, an R-
module M is Cohen–Macaulay if depthM = dimM . For example, if S is a local ring
and R = S/I is a factor ring, then R is Cohen–Macaulay as a ring if and only if R is
Cohen–Macaulay an S-module.

If R is not local, we say that R is Cohen–Macaulay if the localization RP is Cohen–
Macaulay for every maximal ideal P . If R is a homogeneous algebra with homogeneous
maximal ideal m, then R is Cohen–Macaulay if and only if grade(m) = dimR (as can be
proved from Theorem A2.15 and the existence of minimal graded free resolutions).
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Globalizing, we say that a variety (or scheme) X is Cohen–Macaulay if each of its local
rings OX,x is a Cohen–Macaulay ring. More generally, a coherent sheaf F on X is Cohen–
Macaulay if for each point x ∈ X the stalk Fx is a Cohen–Macaulay module over the local
ring OX,x.

If X ⊂ Pr is a projective variety (or scheme), we say that X is arithmetically Cohen–
Macaulay if the homogeneous coordinate ring

SX = K[x0, . . . , xr]/I(X)

is Cohen–Macaulay. The local rings of X are, up to adding a variable and its inverse,
obtained from the homogeneous coordinate ring by localizing at certain primes. With
Theorem A2.33 this implies that if X is arithmetically Cohen–Macaulay then X is Cohen–
Macaulay. The “arithmetic” property is much stronger, as we shall see in the examples.

The Cohen–Macaulay property behaves well under localization and forming polynomial
rings.

Theorem A2.33. The localization of any Cohen–Macaulay ring at any prime ideal is
again Cohen–Macaulay . A ring R is Cohen–Macaulay if and only if R[x] is Cohen–
Macaulay if and only if R[[x]] is Cohen–Macaulay if and only if R[x, x−1] is Cohen–
Macaulay .

The following result is an easy consequence of Theorems A2.19 and A2.15, and should
be compared with Example A2.42 above.

Theorem A2.34. Suppose that a local ring R is a finitely generated module over a regular
local subring T . The ring R is Cohen–Macaulay as an R-module if and only if it is free as
a T -module. A similar result holds in the homogeneous case.

Sequences of c elements f1, . . . , fc in a ring R that generate ideals of codimension c
have particularly nice properties. In the case when R is a local Cohen–Macaulay ring the
situation is particularly simple.

Theorem A2.35. If R is a local Cohen–Macaulay ring and f1, . . . , fc generate an ideal
of codimension c then f1, . . . , fc is a regular sequence.

Here is the property that started it all. We say that an ideal I of codimension c is
unmixed if every associated prime of I has codimension exactly c.

Theorem A2.36. A local ring is Cohen–Macaulay if and only if every ideal of codimen-
sion c that can be generated by c elements is unmixed , and similarly for a homogeneous
algebra.

Theorem A2.18 shows that a local ring is regular if its maximal ideal is generated by a
regular sequence; here is the corresponding result for the Cohen–Macaulay property.

Theorem A2.37. Let R be a local ring with maximal ideal m. The following conditions
are equivalent :

(a)R is Cohen–Macaulay .
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(b) There is an ideal I of R that is generated by a regular sequence and contains a power
of m.

The next consequence of the Cohen–Macaulay property is often taken as the definition.
It is pleasingly simple, but as a definition it is not so easy to check.

Theorem A2.38. A ring R is Cohen–Macaulay if and only if every ideal I of R has
grade equal to its codimension.

One way to prove that a ring is Cohen–Macaulay is to prove that it is a summand in a
nice way. We will apply the easy first case of this result in Example A2.43.

Theorem A2.39. Suppose that S is a Cohen–Macaulay ring and R ⊂ S is a direct
summand of S as R-modules. If either S is finitely generated as an R-module, or S is
regular , then R is Cohen–Macaulay .

The first statement follows from basic statements about depth and dimension [Eisenbud
1995, Proposition 9.1 and Corollary 17.8]. The second version, without finiteness, is far
deeper. The version where S is regular was proved by Boutot [1987].

Example A2.40 (Complete intersections). Any regular local ring is Cohen–Macaulay
(Theorem A2.18). If R is any Cohen–Macaulay ring, for example the power series ring
K[[x1, . . . , xn]], and f1, . . . , fc is a regular sequence in R, then R/(f1, . . . , fc) is Cohen–
Macaulay; this follows from Theorem A2.13(a). For example, K[x1, . . . , xn]/(x

a1
1 , . . . , x

ak

k )
is Cohen–Macaulay for any positive integers k ≤ n and a1, . . . , ak.

Example A2.41. Any Artinian local ring is Cohen–Macaulay. Any one-dimensional lo-
cal domain is Cohen–Macaulay. More generally, a one-dimensional local ring is Cohen–
Macaulay if and only if the maximal ideal is not an assocated prime of 0 (Theorem A2.1.2).
For example, K[x, y]/(xy) is Cohen–Macaulay.

Example A2.42. The simplest examples of Cohen–Macaulay rings not included in the
preceding cases are the homogeneous coordinate rings of set of points, studied in Chapter
3, and the homogeneous coordinate rings of rational normal curves, studied in 6.

Example A2.43. Suppose a finite group G acts on a ring S, and the order n of G is
invertible in S. Let R be the subring of invariant elements of S. The Reynolds operator

s 7→ 1

n

∑

g∈G

gs

is an R linear splitting of the inclusion map. Thus if S is Cohen–Macaulay, so is R by
Theorem A2.39. Theorem A2.39 further shows that the ring of invariants of any linearly
reductive group, acting linearly on a polynomial ring is a Cohen–Macaulay ring, a result
first proved by Hochster and Roberts [1974].

Example A2.44. Perhaps the most imporant example of a ring of invariants under a finite
group action is that where S = K[x0, . . . , xr] is the polynomial ring on r+1 indeterminates
and G = (Z/d)r+1 is the product of r+1 copies of the cyclic group of order d, whose i-th
factor acts by multiplying xi by a d-th root of unity. The invariant ring R is the d-th
Veronese subring of S, consisting of all forms whose degree is a multiple of d.
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Example A2.45. Most Cohen–Macaulay varieties in Pn (even smooth varieties) are not
arithmetically Cohen–Macaulay. A first example is the union of two skew lines in P3. In
suitable coordinates this scheme is represented by the homogeneous ideal I := (x0, x1)∩
(x2, x3); that is, it has homogeneous coordinate ring R := K[x0, x1, x2, x3]/(x0, x1) ∩
(x2, x3). To see that R is not Cohen–Macaulay, note that

R ⊂ R/(x0, x1)×R/(x2, x3) = K[x2, x3]×K[x0, x1],

so that f0 := x0 − x2 is a nonzerodivisor on R. By the graded version of Theorem
A2.14.1, it suffices to show that every element of the maximal ideal is a zerodivisor in
R/(f0). As the reader may easily check, I = (x0x2, x0x3, x1x2, x1x3), so R := R/(f0) =
K[x1, x2, x3]/(x

2
2, x2x3, x1x2, x1x3). In particular, the image of x2 is not zero in R, but

the maximal ideal annihilates x2.

Example A2.46. Another geometric example easy to work out by hand is that of a
smooth rational quartic curve in P3. We can define such a curve by giving its homogeneous
coordinate ring. Let R be the subring of K[s, t] generated by the elements f0 = s4, f1 =
s3t, f2 = st3, f3 = t4. Since R is a domain, the element f0 is certainly a nonzerodivisor,
and as before it suffices to see that modulo the ideal (f0) = Rs4 the whole maximal ideal
consists of zerodivisors. One checks at once that s6t2 ∈ R\Rs4, but that fis

6t2 ∈ Rs4 for
every i, as required.

Many of the most interesting smooth projective varieties cannot be embedded in a
projective space in any way as arithmetically Cohen–Macaulay varieties. Such is the case
for all abelian varieties of dimension greater than 1 (and in general for any variety whose
structure sheaf has nonvanishing intermediate cohomology.)

A2F The Koszul Complex

One of the most significant homological constructions is the Koszul complex. It is funda-
mental in many senses, perhaps not least because its construction depends only on the
commutative and associative laws in R. It makes one of the essential bridges between
regular sequences and homological methods in commutative algebra, and has been at the
center of the action since the work of Auslander, Buchsbaum, and Serre in the 1950s.
The construction itself was already exploited (implicitly) by Cayley; see [Gel’fand et al.
1994] for an exegesis. It enjoys the role of premier example in Hilbert’s 1890 paper on
syzygies. (The name Koszul seems to have been attached to the complex in the influential
book [Cartan and Eilenberg 1956].) It is also the central construction in the Bernstein–
Gelfand–Gelfand correspondence described briefly in Chapter 7. It appears in many other
generalizations as well, for example in the Koszul duality associated with quantum groups
(see [Manin 1988].)

I first learned about the Koszul complex from lectures of David Buchsbaum. He always
began his explanation with the following special cases, and these still seem to me the best
introduction.
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Let R be a ring and let x ∈ R be an element. The Koszul complex of x is the complex

0 1

K(x) : 0 - R
x - R - 0.

We give the cohomological degree of each term of K(x) above that term so that we can
unambiguously refer to Hi(K(x)), the homology of K(X) at the term of cohomological
degree i. Even this rather trivial complex has interesting homology: the element x is a
nonzerodivisor if and only if H0(K(x)) is 0. The homology H1(K(x) is always R/(x), so
that when x is a nonzerodivisor, K(x) is a free resolution of R/(x).

If y ∈ R is a second element, we can form the complex

0 1 2

K(x) = K(x, y) : 0 - R

(
x
y

)

- R2 (−y x )- R - 0.

Again, the homology tells us interesting things. First, H0(K(x, y)) is the set of elements
annihilated by both x and y. By Corollary A2.2, H0(K(x, y)) = 0 if and only if the
ideal (x, y) contains a nonzerodivisor. Supposing that x is a nonzerodivisor, we claim that
H1(K(x, y)) = 0 if and only if x, y is a regular sequence. By definition,

H1(K(x, y)) =
{(a, b) | ay−bx = 0}

{rx, ry | r ∈ R} .

The element a in the numerator can be chosen to be any element in the quotient ideal
(x) : y = {s ∈ R | sy ∈ (x)}. Because x is a nonzerodivisor, the element b in the
numerator is then determined uniquely by a. Thus the numerator is isomorphic to (x) : y,
and H1(K(x, y)) ∼= ((x) : y)/(x). It follows that H1(K(x, y)) = 0 if and only if y is a
nonzerodivisor modulo x, proving the claim. The module H2(K(x, y)) is, in any case,
isomorphic to R/(x, y), so when x, y is a regular sequence the complex K(x, y) is a free
resolution of R/(x, y). This situation generalizes, as we shall see.

In general, the Koszul complex K(x) of an element x in a free module F is the complex

with terms Ki :=
∧i

F whose differentials d : K i - Ki+1 are given by exterior
multiplication by x. The formula d2 = 0 follows because elements of F square to 0 in the
exterior algebra. (Warning: our indexing is nonstandard—usually what we have called
Ki is called Kn−i, where n is the rank of F , and certain signs are changed as well. Note
also that we could defined a Koszul complex in exactly the same way without assuming
that F is free— this makes it easy, for example, to define the Koszul complex of a section
of a vector bundle.) If we identify F with Rn for some n, we may write x as a vector
x = (x1, . . . , xn), and we will sometimes write K(x1, . . . , xn) instead of K(x).

Here is a weak sense in which the Koszul complex is always “close to” exact.

Theorem A2.47. Let x1, . . . , xn be a sequence of elements in a ring R. For every i, the
homology Hi(K(x1, . . . , xn)) is anhilated by (x1, . . . , xn).

The next result says that the Koszul complex can detect regular sequences inside an
ideal.



206 Appendix 2. A Jog Through Commutative Algebra

Theorem A2.48. Let x1, . . . , xn be a sequence of elements in a ring R. The grade of the
ideal (x1, . . . , xn) is the smallest integer i such that Hi(K(x1, . . . , xn)) 6= 0.

In the local case, the Koszul complex detects whether a given sequence is regular.

Theorem A2.49. Let x1, . . . , xn be a sequence of elements in the maximal ideal of a local
ring R. The elements x1, . . . , xn form a regular sequence if and only if

Hn−1(K(x1, . . . , xn)) = 0.

In this case the Koszul complex is the minimal free resolution of the module R/(x1, . . . , xn).

The Koszul complex is self-dual, and this is the basis for much of duality theory in
algebraic geometry and commutative algebra. Here is how the duality is defined. Let F
be a free R-module of rank n, and let e be a generator of

∧n
F ∼= R. Contraction with

e defines an isomorphism φk
∧k

F ∗ →
∧n−k

F for every k = 0, . . . , n. The map φk has a
simple description in terms of bases: if e1 . . . , en is a basis of F such that e = e1∧· · ·∧en,
and if f1, . . . , fn is the dual basis to e1 . . . , en, then

φk(fi1 ∧· · ·∧fik) = ±ej1 ∧· · ·∧ejn−k

where {j1, . . . , jn−k} is the complement of {i1, . . . , ik} in {1, . . . , n}, and the sign is that
of the permutation (i1 . . . ikj1 . . . jn−k).

Theorem A2.50. The contraction maps define an isomorphism of K(x1, . . . , xn) with
its dual complex .

Example A2.51. The Koszul complex can be built up inductively as a mapping cone.
For example, using an element x2 we can form the commutative diagram with two Koszul
complexes K(x1):

K(x1) : 0 - R
x1 - R - 0

K(x1) : 0 - R

x2

?

x1

- R

x2

?
- 0

We regard the vertical maps as forming a map of complexes. The Koszul complex K(x1, x2)
may be described as the mapping cone.

More generally, the complex K(x1, . . . , xn) is (up to signs) the mapping cone of the map
of complexes

K(x1, . . . , xn−1) - K(x1, . . . , xn−1)

given by multiplication by xn. It follows by induction that, when x1, . . . , xn is a regular
sequence, K(x1, . . . , xn) is a free resolution of R/(x1, . . . , xn). This is a weak version of
Theorem A2.49.



A2G Fitting Ideals and Other Determinantal Ideals 207

Example A2.52. The Koszul complex may also be built up as a tensor product of
complexes. The reader may check from the definitions that

K(x1, . . . , xn) = K(x1)⊗K(x2)⊗· · ·⊗K(xn).

The treatment in Serre’s book [Serre 2000] is based on this description.

A2G Fitting Ideals and Other Determinantal Ideals

Matrices and determinants appear everywhere in commutative algebra. A linear trans-
formation of vector spaces over a field has a well defined rank (the size of a maximal
submatrix with nonvanishing determinant in a matrix representing the linear transforma-
tion) but no other invariants. By contrast linear transformations between free modules
over a ring have as invariants a whole sequence of ideals, the determinantal ideals gener-
ated by all the minors (determinants of submatrices) of a given size. Here are some of the
basic tools for handling them.

Let R be a ring and let A be a matrix with entries in R. The ideal of n×n minors of A,
written In(A), is the ideal in R generated by the n×n minors (= determinants of n×n
submatrices) of A. By convention we set I0(A) = R, and of course In(A) = 0 if A is a
q×p matrix and n > p or n > q. It is easy to see that In(A) depends only on the map
of free modules φ defined by A—not on the choice of bases. We may thus write In(φ) in
place of In(A).

Let M be a finitely generated R-module, with free presentation

Rp
φ- Rq - M - 0.

Set Fittj(M) = Iq−j(φ). The peculiar numbering makes the definition of Fittj(M) inde-
pendent of the choice of the number of generators chosen for M .

There is a close relation between the annihilator and the zeroth Fitting ideal:

Theorem A2.53. If M is a module generated by n elements, then

(annM)n ⊂ Fitt0M ⊂ annM.

Krull’s Principal Ideal Theorem (Theorem A2.11) says that an ideal generated by n
elements in a Noetherian ring can have codimension at most n; and when such an ideal
has codimension n it is unmixed. An ideal generated by n elements is the ideal of 1×1
minors of a 1×n matrix. Macaulay generalized these statements to determinantal ideals in
polynomial rings. The extension to any Noetherian ring was made by Eagon and Northcott
[1962].

Theorem A2.54 (Macaulay’s Generalized Principal Ideal Theorem). If A is a
p×q matrix with elements in a Noetherian ring R, and It(A) 6= R, then

codim(It(A)) ≤ (p− t+1)(q− t+1)
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Let R be a local Cohen–Macaulay ring. Theorem A2.35 together with Example A2.40
show that if f1, . . . , fc is a sequence of elements that generates an ideal of the maximum
possible codimension, c, then R/(f1, . . . , fc) is a Cohen–Macaulay ring. The next result,
proved by Hochster and Eagon [1971], is the analogue for determinantal ideals.

Theorem A2.55. If A is a p× q matrix with elements in a local Cohen–Macaulay ring
R and codim(It(A)) = (p− t+1)(q− t+1), then R/It(A) is Cohen–Macaulay .

Note that the determinantal ideals defining the rational normal curves (Example A2.58)
have this maximal codimension.

Example A2.56. Suppose that R = Z, K[x], or any other principal ideal domain. Let
M be a finitely generated R-module. The structure theorem for such modules tells us
that M ∼= Rn⊕R/(a1)⊕ . . .⊕R/(as) for uniquely determined nonnegative n and positive
integers ai such that ai divides ai+1 for each i. The ai are called the elementary divisors

of M . The module M has a free presentation of the form Rs
φ- Rs+n where φ is

represented by a diagonal matrix whose diagonal entries are the ai followed by a block
of zeros. From this presentation we can immediately compute the Fitting ideals, and we
find:

• FittjM = 0 for 0 ≤ j < n.

• For n ≤ j, the ideal FittjM is generated by all products of j−n+1 of the ai; in view
of the divisibility relations of the ai this means FittjM = (a1 · · · aj−n+1).

In particular the Fitting ideals determine n by the first relation above and the elemen-
tary divisors by the formulas

(a1) = Fittn, (a2) = (Fittn+1 : Fittn), . . . , (as) = (Fittn+s : Fittn+s−1).

Thus the Fitting ideals give a way of generalizing to the setting of arbitrary rings the
invariants involved in the structure theorem for modules over a principal ideal domain;
this seems to have been why Fitting introduced them.

Example A2.57. Over more complicated rings cyclic modules (that is, modules of the
form R/I) are still determined by their Fitting ideals (Fitt0(R/I) = I); but other modules
are generally not. For example, over K[x, y], the modules with presentation matrices

(
x y 0
0 x y

)
and

(
x y 0 0
0 0 x y

)

are not isomorphic (the second is annihilated by (x, y), the first only by (x, y)2) but they
have the same Fitting ideals: Fitt0 = (x, y)2, Fitt1 = (x, y), Fittj = (1) for j ≥ 2.

Example A2.58. A determinantal prime ideal of the “wrong” codimension Consider the
smooth rational quartic curve X in P3 with parametrization

P1 3 (s, t) 7→ (s4, s3t, st3, t4) ∈ P3.
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Using the “normal form” idea used for the rational normal curve in Proposition 6.1, it is
not hard to show that the ideal I(X) is generated by the 2×2 minors of the matrix

(
x0 x2 x2

1 x1x3

x1 x3 x0x2 x2
2

)
.

The homogeneous coordinate ring SX = S/I(X) is not Cohen–Macaulay (Example A2.46).
The ideal I(X) is already generated by just four of the six minors:

I(X) = (x0x3−x1x2, x1x
2
3−x3

2, x0x
2
2−x2

1x3, x
3
1−x2

0x2).

Compare this with the situation of Corollary A2.61.

A2H The Eagon–Northcott Complex and Scrolls

Let A be a g×f matrix with entries in a ring R, and suppose for definiteness that g ≤ f .
The Eagon–Northcott complex of A [Eagon and Northcott 1962] bears the same relation
to the determinantal ideal Ig(A) of maximal minors of A that the Koszul complex bears
to sequences of q elements; in fact the Koszul complex is the special case of the Eagon–
Northcott complex in which g = 1. (A theory including the lower-order minors also exists,
but it is far more complicated; it depends on rather sophisticated representation theory,
and is better-understood in characteristic 0 than in finite characteristic. See for example
[Akin et al. 1982].) Because the material of this section is less standard than that in the
rest of this appendix, we give more details.

Sets of points in P2 (Chapter 3) and rational normal scrolls (Chapter 6) are some of
the interesting algebraic sets whose ideals have free resolutions given by Eagon–Northcott
complexes.

Let R be a ring, and write F = Rf , G = Rg. The Eagon–Northcott complex of a map
α : F - G (or of a matrix A representing α) is a complex

EN(α) : 0 → (Symf−gG)∗⊗
∧f

F
df−g+1- (Symf−g−1G)∗⊗

∧f−1
F

df−g-

· · · - (Sym2G)∗⊗
∧g+2

F
d3- G∗⊗

∧g+1
F

d2- ∧g
F

∧g
α- ∧g

G.

Here SymkG is the k-th symmetric power ofG and the notationM ∗ denotes HomR(M,R).
The maps dj are defined as follows. First we define a diagonal map

∆ : (SymkG)∗ - G∗⊗(Symk−1G)∗

as the dual of the multiplication map G⊗ Symk−1G - SymkG in the symmetric
algebra of G. Next we define an analogous diagonal map

∆ :
∧k

F - F ⊗
∧k−1

F

as the dual of the multiplication in the exterior algebra of F ∗. These diagonal maps can
be defined as components of the maps of algebras induced by the diagonal map of modules
F → F⊕F sending f to (f, f). For the exterior algebra, for example, this is the composite

∧k
F ↪→ ∧

F - ∧
(F ⊕F ) =

∧
F ⊗∧

F → F ⊗∧k−1
F.
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On decomposable elements, this diagonal has the simple form

f1∧ . . .∧fk 7→
∑

i

(−1)i−1fi⊗f1∧ . . .∧ f̂i∧ . . .∧fk.

For u ∈ (Symj−1G)∗) we write ∆(u) =
∑
i u

′
i⊗u′′i ∈ G∗⊗ (Symj−2G)∗ and similarly for

v ∈ ∧g+j−1
F we write ∆(v) =

∑
v′t⊗ v′′t ∈ F ⊗∧g+j−2

F . Note that α∗(u′i) ∈ F ∗, so
[α∗(u′i)](v

′
t) ∈ R. We set

dj : (Symj−1G)∗⊗∧g+j−1
F → (Symj−2G)∗⊗∧g+j−2

F

u⊗v 7→
∑

s,t

[α∗(u′s)](v
′
t) ·u′′s ⊗v′′t .

That the Eagon–Northcott complex is a complex follows by a direct computation, or by
an inductive construction of the complex as a mapping cone, similar to the one indicated
above in the case of the Koszul complex. The most interesting part— the fact that d2

composes with
∧g

α to 0— is a restatement of Cramer’s Rule for solving linear equations;
see Examples A2.67 and A2.68 below.

Rational Normal Scrolls

We give three definitions of rational normal scrolls, in order of increasing abstraction.
See [Eisenbud and Harris 1987] for a proof of their equivalence. Fix nonnegative integers
a1, . . . , ad. Set D =

∑
ai and N = D+d−1.

As homogeneous ideals. Take the homogeneous coordinates on PN to be

x1,0, . . . , x1,a1
, x2,0, . . . , x2,a2

, . . . , xd,0, . . . , xd,ad
.

Define a 2×D matrix of linear forms on PN by

A(a1, . . . , ad) =

(
x1,0 . . . x1,a1−1 x2,0 . . . x2,a2−1 . . .
x1,1 . . . x1,a1

x2,1 . . . x2,a2
. . .

)
.

The rational normal scroll S(a1, . . . , ad) is the variety defined by the ideal of 2×2 minors
of I2(A(a1, . . . , ad)). Each of the blocks

(
xi,0 xi,1 . . . xi,a1−1

xi,1 xi,2 . . . xi,a1

)

used to construct A(a1, . . . , ad) is 1-generic by Proposition 6.3, and since the blocks involve
different variables the whole matrix A(a1, . . . , ad) is 1-generic. It follows from Theorem 6.4
that the ideal of 2×2 minors I2(A(a1, . . . , ad)) is prime. (This could also be proved directly
by the method of Proposition 6.1.)

As a union of planes. Let Vi be a vector space of dimension ai. Regard P(Vi) as a subspace
of PN = P(

⊕
i Vi). Consider in P(Vi) the parametrized rational normal curve

λi : P1 - P(Vi)
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represented in coordinates by

(s, t) 7→ (sai , sai−1t, . . . , tai).

For each point p ∈ P1, let L(p) ⊂ PN be the (d−1)-plane spanned by λ1(p), . . . , λd(p).
The rational normal scroll S(a1, . . . , ad) is the union

⋃
p∈P1 L(p).

Structural definition. Let E be the vector bundle on P1 that is the direct sum E =⊕d
i=1 O(ai). Consider the projectivized vector bundle X := P(E ), which is a smooth d-

dimensional variety mapping to P1 with fibers Pd−1. Because all the ai are nonnegative,
the tautological bundle OP(E )(1) is generated by its global sections, which may be natu-
rally identified with the N+1-dimensional vector space H0(E ) =

⊕
i H

0(OP1(ai)). These
sections thus define a morphism X - PN . The rational normal scroll S(a1, . . . , ad) is
the image of this morphism.

Here are generalizations of Theorems A2.47, A2.49 and Example A2.40.

Theorem A2.59. Let α : F → G with rankF ≥ rankG = g be a map of free R-modules.
The homology of the Eagon–Northcott complex EN(α) is annihilated by the ideal of g×g
minors of α.

The following result gives another (easier) proof of Theorem A2.55 in the case of max-
imal order minors. It can be deduced from Theorem A2.59 together with Theorem 3.3.

Theorem A2.60. Let α : F → G with rankF = f ≥ rankG = g be a map of free
R-modules. The Eagon–Northcott complex EN(α) is exact (and thus furnishes a free res-
olution of R/Ig(α)) if and only if grade(Ig(α)) = f−g+1, the greatest possible value. In
this case the dual complex Hom(EN(α), R) is also a resolution.

The following important consequence seems to use only a tiny part of Theorem A2.60,
but I know of no other approach.

Corollary A2.61. If α : Rf → Rg is a matrix of elements in the maximal ideal of a local
ring S such that grade(Ig(α)) = f−g+1, then the

(
f
g

)
maximal minors of α are minimal

generators of the ideal they generate.

Proof. The matrix of relations on these minors given by the Eagon–Northcott complex is
zero modulo the maximal ideal of S.

We can apply the preceding theorems to the rational normal scrolls.

Corollary A2.62. The ideal of 2×2 minors of the matrix A(a1, . . . , ad) has grade and
codimension equal to D− 1, and thus the Eagon–Northcott complex EN(A(a1, . . . , ad))
is a free resolution of the homogeneous coordinate ring of the rational normal scroll
S(a1, . . . , ad). In particular the homogeneous coordinate ring of a rational normal scroll is
Cohen–Macaulay .

The next results give some perspective on scrolls. The first is part of the Kronecker–
Weierstrass classification of matrix pencils.
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Theorem A2.63. Suppose A is a 2×D matrix of linear forms over a polynomial ring
whose ideal I of 2× 2 minors has codimension D− 1. If I is a prime ideal then A is
equivalent by row operations, column operations, and linear change of variables to one of
the matrices A(a1, . . . , ad) with D =

∑
ai.

Theorem A2.64. If X is an irreducible subvariety of codimension c in PN , not contained
in a hyperplane, then the degree of X is at least c+1. Equality is achieved if and only if
X is (up to a linear transformation of projective space) either

• a quadric hypersurface,

• a cone over the Veronese surface in P5 (whose defining ideal is the ideal of 2×2 minors
of a generic symmetric 2×2 matrix ), or

• a rational normal scroll S(a1, . . . , ad) with
∑
ai = c+1.

Consider a map α : F - G, where F and G are free R-modules of ranks f and
g respectively. The definition of the Eagon–Northcott complex is easier to understand if
g = 1 or if f is close to g:

Example A2.65 (The Koszul complex). If g = 1 and we choose a generator for G,
identifying G with R, then the symmetric powers Symk(G) and their duals may all be
identified with R. If we suppress them in the tensor products defining the Eagon–Northcott
complex, we get a complex of the form

0 - ∧f
F - . . . - ∧1

F - {
∧1

G = R}.

Choosing a basis for F and writing x1, . . . , xf for the images of the basis elements in
G = R, this complex is isomorphic to the Koszul complex K(x1, . . . , xf ).

Example A2.66. If f = g then the Eagon–Northcott complex is reduced to

0 - {R ∼=
∧f

F} detα- {R ∼=
∧g

G}.

Example A2.67 (The Hilbert–Burch complex). Supose f = g+ 1. If we choose

an identification of
∧f

F with R then we may suppress the tensor factor
∧f

F from the

notation, and also identify
∧g

F =
∧f−1

F with F ∗. If we also choose an identification of∧g
G with R, then the Eagon–Northcott complex of α takes the form

0 - G∗ α∗

- {F ∗ =
∧g

F} ∧g
α- {

∧g
G = R}.

This is the complex used for the Hilbert–Burch in Chapter 3.

Example A2.68. If α is represented by a matrix A, then the map at the far right of the
Eagon–Northcott complex,

∧g
α, may be represented by the 1×

(
f
g

)
matrix whose entries

are the g×g minors of α. The map d2 admits a similarly transparent description: for every
submatrix A′ of A consisting of g+1 columns, there are g relations among the minors
involving these columns that are given by A′∗, exactly as in the Hilbert–Burch complex,
Example A2.67. The map d2 is made by simply concatenating these relations.
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Example A2.69. Suppose that α is represented by the 2×4 matrix

(
a b c d
e f g h

)

so that g = 2, f = 4. There are six 2×2 minors, and for each of the four 2×3 submatrices
of A there are two relations among the six, a total of eight, given as in A2.68. Since
(Sym2G)∗ ∼= (Sym2(R

2))∗ ∼= R3, the the Eagon–Northcott complex takes the form

0 - R3 - R8 - R6 - R .

The entries of the right-hand map are the 2×2 minors of A, which are quadratic in the
entries of A, whereas the rest of the matrices (as in all the Eagon–Northcott complexes)
have entries that are linear in the entries of A.
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Gröbner basis, 48, 62, 106, 130

grade of an ideal, 30

grade of ideal, 194

graded

Betti number, 18, 20, 22, 64, 137, 143–145, 157,
171

Betti numbers, 90

free complex, 14

free resolution, 13, 29, 34, 35, 53, 114

modules, equivalence to linear free complexes,
115, 127

Greek, ix, x

Green’s Conjecture, xi, xiv, 20, 168–172

statement, 170

Green’s Theorem, see Linear Syzygy Theorem

Green, Mark L., xv, 70, 109, 113, 115, 136, 158,

159, 168, 170, 171

Green–Lazarsfeld Conjecture, 171

Gregory, David A, 41, 48

Griffith, Phillip, 185

Griffiths, Phillip A., 105, 168, see also

Arbarello, Enrico

Gross, Mark, xi

Grothendieck’s Vanishing Theorem, 159, 185

Grothendieck, Alexandre, 175, 177

Gruson, Laurent, xiv, 62, 67, 103

Gruson–Lazarsfeld–Peskine Theorem, 67, 83, 103,

129

Hankel matrix, 83

Harris, Joe, xiii, xv, 105, 140, 153, 161, 168, 172,
see also Arbarello, Enrico

Hartshorne, Robin, 50, 131, 140, 162, 175, 177, 180

Herzog, Jürgen, 36, 113, 194

high degree, embedding of, 135

Hilbert Basis Theorem, x, xii, 2, 3

Hilbert function, xi, xiii, 1, 3, 4, 10, 11, 20, 29, 36,

47, 53, 64, 136

and Betti numbers, 9

Hilbert polynomial, xi, 1, 4, 11, 20, 29, 53, 58, 90

Hilbert series, 11



References 227

Hilbert Syzygy Theorem, x, xiv, 13, 53

proof, 18
statement, 3

Hilbert, David, 2–3, 10, 30

Hilbert–Burch Theorem, 30, 34, 35, 111

Hironaka, Heisuke, 200
Hirschowitz, André, 172
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L’Hôpital, Guillaume François Antoine, Marquis

de, 1

labeled simplicial complex, 14
Laksov, Dan, 153

Lange, Herbert, 167

Laplace expansion, 23
Lasker, Emanuel, 190, 200, 201

Laurent polynomial, 10, 64

Lazarsfeld, Robert, xiv, 62, 67, 68, 136, 154, 158,
168, 171

Leibniz, Gottfried Wilhelm, Freiherr von, 1

line bundles on curves, 78

linear

form, 57, 60, 64, 66

free complex, 114

presentation, 70

projection, 88

series, 81, 86

strand, 109–113, 115, 116, 118–119, 124

second, 110, 111

syzygy, 23

Linear Syzygy Theorem, xiv, 109–113, 116, 131

proof, 116, 124

linearly general position, 20

linearly normal, 88

local cohomology, 175–187

and cohomology of sheaves, 183

and Zariski cohomology, 183

local ring, regular, 11, 196, 199

Lvovsky, S., 75

Lyubeznik, Gennady, 175, 180

Macaulay (software), xiii, 173

Macaulay, Francis S., 190, 200, 208

MacRae, R. E., 10

Manin, Yuri I., 127, 204

mapping cone, 93–95, 101, 206, 210

mapping cylinder, 94

matrix factorization, 12

matrix of degrees of a presentation matrix, 36

Mattuck, Arthur, xiv, 136

Maugendre, Hèléne, xv
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