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Preface

This book is an introductory course in algebraic geometry, proving most of
the fundamental classical results of algebraic geometry.

Algebraic geometry combines the intuition of geometry with the preci-
sion of algebra. Starting with geometric concepts, we introduce machinery
as necessary to model important ideas from algebraic geometry and to prove
fundamental results. Emphasis is put on developing facility with connect-
ing geometric and algebraic concepts. Examples are constructed or cited
illustrating the scope of these results. The theory in this book is developed
in increasing sophistication, giving (and refining) definitions as required to
accommodate new geometric ideas.

We work as much as possible with quasi-projective varieties over an
algebraically closed field of arbitrary characteristic. This allows us to inter-
pret varieties through their function fields. This approach and the use of
methods of algebraic number theory in algebraic geometry have been cen-
tral to algebraic geometry at least since the time of Dedekind and Weber
(Theorie der algebraischen Functionen einer Veränderlichen [46], translated
in [47]). By interpreting the geometric concept of varieties through their
regular functions, we are able to use the techniques of commutative algebra.

Differences between the theory in characteristic 0 and positive charac-
teristic are emphasized in this book. We extend our view to schemes, al-
lowing rings with nilpotents, to study fibers of regular maps and to develop
intersection theory. We discuss the cases of nonclosed ground fields and
nonseparated schemes and some of the extra considerations which appear in
these situations. A list of exercises is given at the end of many sections and
chapters.

xi



xii Preface

The classic textbooks Basic Algebraic Geometry [136] by Shafarevich,
Introduction to Algebraic Geometry [116] by Mumford, and Algebraic
Geometry [73] by Hartshorne, as well as the works of Zariski, Abhyankar,
Serre, and Grothendieck, have been major influences on this book.

The necessary commutative algebra is introduced and reviewed, begin-
ning with Chapter 1, “A Crash Course in Commutative Algebra”. We state
definitions and theorems, explain concepts, and give examples from com-
mutative algebra for everything that we will need, proving some results and
giving a few examples, but mostly giving references to books on commuta-
tive algebra for proofs. As such, this book is intended to be self-contained,
although a reader may be curious about the proofs for some cited results
in commutative algebra and will want to either derive them or look up the
references. We give references to several books, mostly depending on which
book has the exact statement we require.

A reader should be familiar with the material through Section 1.6 on
primary decomposition before beginning Chapter 2 on affine varieties. De-
pending on the background of students, the material in Chapter 1 can be
skipped, quickly reviewed at the beginning of a course, or be used as an
outline of a semester-long course in commutative algebra before beginning
the study of geometry in Chapter 2.

Chapters 2–10 give a one-semester introduction to algebraic geometry,
through affine and projective varieties. The sections on integral extensions,
dimension, depth, and normal and regular local rings in Chapter 1 can be
referred to as necessary as these concepts are encountered within a geometric
context. Chapters 11–20 provide a second-semester course, which includes
sheaves, schemes, cohomology, divisors, intersection theory, and the appli-
cation of these concepts to curves and surfaces.

Chapter 21 (on ramification and étale maps) and Chapter 22 (on
Bertini’s theorems and general fibers of maps) could be the subject of a
topics course for a third-semester course. The distinctions between char-
acteristic 0 and positive characteristic are especially explored in these last
chapters. These two chapters could be read any time after the completion
of Chapter 14.

I thank the students of my classes, especially Razieh Ahmadian,
Navaneeth Chenicheri Chathath, Suprajo Das, Arpan Dutta, Melissa Emory,
Kyle Maddox, Smita Praharaj, Thomas Polstra, Soumya Sanyal, Pham An
Vinh, and particularly Roberto Núñez, for their feedback and helpful com-
ments on preliminary versions of this book. I thank Maya Cutkosky for help
with the figures.



Chapter 1

A Crash Course in
Commutative Algebra

In this chapter we review some basics of commutative algebra which will be
assumed in this book.

All rings will be commutative (with identity 1). The natural numbers,
{0, 1, 2, . . .}, will be denoted by N. The positive integers, {1, 2, . . .}, will be
denoted by Z+. Throughout this book, k will be an algebraically closed field
(of arbitrary characteristic) unless specified otherwise.

1.1. Basic algebra

The starting point of commutative algebra is the fact that every ring R has
a maximal ideal and thus has at least one prime ideal [13, Theorem1.3].

We will say that a ring R is a local ring if R has a unique maximal ideal.
We will denote the maximal ideal of the local ring R by mR. If φ : R → S
is a ring homomorphism and I is an ideal in S, then φ−1(I) is an ideal in R.
If P is a prime ideal in S, then φ−1(P ) is a prime ideal in R. Suppose that
R,S are local domains with maximal ideals mR, mS , respectively. We will
say that S dominates R if R ⊂ S and mS ∩ R = mR. We will write QF(R)
for the quotient field of a domain R.

A fundamental fact is the following theorem.

Lemma 1.1. Let π : R → S be a surjective ring homomorphism, with
kernel K.

1) Suppose that I is an ideal in S. Then π−1(I) is an ideal in R
containing K.

1



2 1. A Crash Course in Commutative Algebra

2) Suppose that J is an ideal in R such that J contains K. Then π(J)
is an ideal in S.

3) The map I �→ π−1(I) is a 1-1 correspondence between the set of
ideals in S and the set of ideals in R which contain K. The inverse
map is J �→ π(J).

4) The correspondence is order preserving: for ideals I1, I2 in S,
I1 ⊂ I2 if and only if π−1(I1) ⊂ π−1(I2).

5) For an ideal I in S, I is a prime ideal if and only if π−1(I) is a
prime ideal in R.

6) For an ideal I in S, I is a maximal ideal if and only if π−1(I) is a
maximal ideal in R.

In the case when S = R/K and π : R → R/K is the map π(x) = x+K
for x ∈ R, we have that π(J) = J/K for J an ideal of R containing K.

Proof. [84, Theorem 2.6]. �

A ring S is an R-algebra if there is a given ring homomorphism φ : R →
S. This gives us a multiplication rs = φ(r)s for r ∈ R and s ∈ S. Suppose
that S is an R-algebra by a homomorphism φ : R → S and T is an R-algebra
by a homomorphism ψ : R → T . Then a ring homomorphism σ : S → T is
an R-algebra homomorphism if σ(φ(r)) = ψ(r) for all r ∈ R.

A proof of the following universal property of polynomial rings can be
found in [84, Theorem 2.11].

Theorem 1.2. Suppose that R and S are rings and R[x1, . . . , xn] is a
polynomial ring over R. Suppose that φ : R → S is a ring homomor-
phism and t1, . . . , tn ∈ S. Then there exists a unique ring homomorphism
Φ : R[x1, . . . , xn] → S such that Φ(r) = φ(r) for r ∈ R and Φ(xi) = ti for
1 ≤ i ≤ n.

A polynomial ring over a ring R is naturally an R-algebra. With the
notation of the previous theorem, S is an R-algebra by the homomorphism
φ, making φ an R-algebra homomorphism.

Suppose that R ⊂ S is a subring and Λ ⊂ S is a subset. Then R[Λ]
is defined to be the smallest subring of S containing R and Λ. For n ∈ N,
letting R[x1, . . . , xn] be a polynomial ring, we have that

R[Λ] = {f(t1, . . . , tn) | t1, . . . , tn ∈ Λ and f ∈ R[x1, . . . , xn]}.

If Λ = {t1, . . . , tn}, write R[Λ] = R[t1, . . . , tn].

Suppose that we have a surjective ring homomorphism Φ : R[x1, . . . , xn]
→ S from the polynomial ring R[x1, . . . , xn]. Letting I be the kernel of Φ,
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we have an induced isomorphism R[x1, . . . , xn]/I ∼= S. Letting R = Φ(R) ∼=
R/I ∩R, we have that S = R[t1, . . . , tn] where ti = Φ(xi). More abstractly,
if I is an ideal in the polynomial ring R[x1, . . . , xn], let S = R[x1, . . . , xn]/I.
Let R = R/(I ∩R) ⊂ S and xi = xi + I in S. Then S = R[x1, . . . , xn].

An element x ∈ R is a zero divisor if x 
= 0 and there exists 0 
= y ∈ R
such that xy = 0. An element x ∈ R is nilpotent if x 
= 0 and there exists
n ∈ N such that xn = 0. The radical of an ideal I in R is

√
I = {f ∈ R | fn ∈ I for some n ∈ N}.

A ring R is reduced if whenever f ∈ R is such that fn = 0 for some
positive integer n, we have that f = 0. Suppose that I is an ideal in a ring
R. The ring R/I is reduced if and only if

√
I = I.

An R-algebra A is finitely generated if A is generated by a finite number
of elements as an R-algebra, so that A is a quotient of a polynomial ring
over R in finitely many variables.

If A is nonzero and is generated by u1, . . . , un as a R-algebra, then
R = R1A is a subring of A and A = R[u1, . . . , un]. In particular, A is a
quotient of a polynomial ring over R.

If K is a field and A is a nonzero K-algebra, then we can view K as a
subring of A by identifying K with K1A.

The following lemma will be useful in some of the problems in Chapter 2.

Lemma 1.3. Suppose that K is a field, K[x1, . . . , xn, z] is a polynomial ring
over K, and f1, . . . , fr, g ∈ K[x1, . . . , xn]. Then

A = K[x1, . . . , xn, z]/(f1(x1, . . . , xn), . . . , fr(x1, . . . , xn), z − g(x1, . . . , xn))

∼= K[x1, . . . , xn]/(f1(x1, . . . , xn), . . . , fr(x1, . . . , xn)).

Proof. Let x1, . . . , xn, z be the classes of x1, . . . , xn, z in A. We have that
A is generated by x1, . . . , xn and z as a K-algebra, and z = g(x1, . . . , xn),
so A = K[x1, . . . , xn] is generated by x1, . . . , xn as a K-algebra.

By the universal property of polynomial rings, we have a K-algebra
homomorphism Φ : K[x1, . . . , xn] → A defined by Φ(xi) = xi for 1 ≤ i ≤ n.
Since A = K[x1, . . . , xn], Φ is surjective.

We now compute the kernel of Φ. The elements fi(x1, . . . , xn) are in
Kernel(Φ) since Φ(fi) = fi(x1, . . . , xn) = 0. Suppose

h(x1, . . . , xn) ∈ Kernel(Φ).

Then Φ(h(x1, . . . , xn)) = h(x1, . . . , xn) = 0 in A, and so h(x1, . . . , xn) is in
the ideal

(f1(x1, . . . , xn), . . . , fr(x1, . . . , xn), z − g(x1, . . . , xn))
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of K[x1, . . . , xn, z] and so

h(x1, . . . , xn)

= a1(x1, . . . , xn, z)f1(x1, . . . , xn) + · · · + ar(x1, . . . , xn, z)fr(x1, . . . , xn)

+ b(x1, . . . , xn, z)(z − g(x1, . . . , xn))

for some ai, b ∈ K[x1, . . . , xn, z]. Setting z = g(x1, . . . , xn), we have

h(x1, . . . , xn) = a1(x1, . . . , xn, g(x1, . . . , xn))f1(x1, . . . , xn)
+ · · · + ar(x1, . . . , xn, g(x1, . . . , xn))fr(x1, . . . , xn).

Thus h is in the ideal (f1, . . . , fr) in K[x1, . . . , xn], and so Kernel(Φ) =
(f1, . . . , fr). Thus A ∼= K[x1, . . . , xn]/(f1, . . . , fr). �

The following theorem justifies the common identification of polynomials
and polynomial functions over an infinite field.

Theorem 1.4. Suppose that L is an infinite field and f ∈ L[x1, . . . , xn] is
a nonzero polynomial. Then there exist elements a1, . . . , an ∈ L such that
f(a1, . . . , an) 
= 0.

Proof. We prove the theorem by induction on n. A nonzero polynomial
f(x) ∈ L[x] has at most finitely many roots so, since L is infinite, there
exists a ∈ L such that f(a) 
= 0.

Assume that n > 1 and the theorem is true for n − 1 indeterminates.
Expand

f(x1, . . . , xn) = B0 +B1xn + · · · +Bdx
d
n

where Bi ∈ L[x1, . . . , xn−1] for all i and Bd 
= 0. By induction, there exist
ai ∈ L such that Bd(a1, . . . , an−1) 
= 0. Thus

f(a1, . . . , an−1, xn)

= B0(a1, . . . , an−1) +B1(a1, . . . , an−1)xn + · · · +Bd(a1, . . . , an−1)x
d
n

is a nonzero polyomial in L[xn]. Hence we can choose an ∈ L such that
f(a1, . . . , an−1, an) 
= 0. �

Theorem 1.5 (Chinese remainder theorem). Let A be a ring and I1, . . . , In
be ideals in A such that Ii+ Ij = A for i 
= j (Ii and Ij are coprime). Given
elements x1, . . . , xn ∈ A, there exists x ∈ A such that x ≡ xi mod Ii for
all i.

Proof. [95, page 94]. �
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Corollary 1.6. Let A be a ring and I1, . . . , In be ideals in A. Assume that
Ii + Ij = A for i 
= j. Let

f : A →
n⊕

i=1

A/Ii

be homomorphism induced by the canonical maps of A onto each factor A/Ii.
Then the kernel of f is I1 ∩ I2 ∩ · · · ∩ In = I1I2 · · · In and f is surjective, so
we have an isomorphism A/

⋂
Ii ∼=

∏
A/Ii.

Proof. [95, page 95]. �

Exercise 1.7. Suppose that R is a domain and 0 
= f ∈ R. Show that
R[x]/(xf − 1) ∼= R[ 1f ]. Hint: Start by using the universal property of poly-

nomial rings to get an R-algebra homomorphism φ : R[x] → K where K is
the quotient field of R and φ(x) = 1

f .

Exercise 1.8. Let K be a field and R = K[x, y]/(y2 − x3) = K[x, y] where
x, y are the classes of x and y in R. Show that R is a domain. Let R1 be the
subring R1 = R[ yx ] of the quotient field of R. Show that R2 = R[t]/(xt− y)
is not a domain, so that the K-algebras R1 and R2 are not isomorphic.

Exercise 1.9. Let K be a field and R = K[x, y] be a polynomial ring in
the variables x and y. Let R1 be the subring R1 = R[ yx ] of the quotient
field of R. Let R2 = R[t]/(xt − y). Show that the K-algebras R1 and R2

are isomorphic and that R1 = K[x, yx ] is a polynomial ring in the variables
x and y

x .

Exercise 1.10. Suppose that R is a domain and f, g ∈ R with g 
= 0. Show
that R[ fg ]

∼= R[t]/(tg − f) if and only if (tg − f) is a prime ideal in R[t].

Exercise 1.11. Let A be a ring and X be the set of all prime ideals in A.
For each subset E of A, let V (E) be the set of all prime ideals in A which
contain E. Prove that:

a) If I is the ideal generated by E, then V (E) = V (I) = V (
√
I).

b) V (0) = X and V (1) = ∅.
c) If {Es}s∈S is any family of subsets of A, then

V

(⋃
s∈S

Es

)
=
⋂
s∈S

V (Es).

d) V (I ∩ J) = V (IJ) = V (I) ∪ V (J) for any ideals I, J of A

This exercise shows that the sets V (E) satisfy the axioms for closed sets in
a topological space. We call this topology on X the Zariski topology and
write Spec(A) for this topological space.
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Exercise 1.12. Suppose that R is a local ring and f1, . . . , fr ∈ R generate
an ideal I of R. Suppose that I is a principal ideal. Show that there exists
an index i such that I = (fi). Give an example to show that this is false in
a polynomial ring k[x].

Exercise 1.13. Let κ be a field, and define Map(κn, κ) to be the set of maps
(of sets) from κn to κ. Since κ is a κ-algebra, Map(κn, κ) is a κ-algebra,
with the operations (φ + ψ)(α) = φ(α) + ψ(α), (φψ)(α) = φ(α)ψ(α), and
(cφ)(α) = cφ(α) for φ, ψ ∈ Map(κn, κ), α ∈ κn, and c ∈ κ.

a) Let κ[x1, . . . , xn] be a polynomial ring over κ and define

Λ : κ[x1, . . . , xn] → Map(κn, κ)

by Λ(f)(α) = f(α) for f ∈ k[x1, . . . , xn] and α ∈ κn. Show that
Λ is a κ-algebra homomorphism. The image, Λ(κ[x1, . . . , xn]), is a
subring of Map(κn, κ) which is called the ring of polynomial func-
tions on κn.

b) Show that Λ is an isomorphism onto the polynomial functions of
κn if and only if κ is an infinite field.

1.2. Field extensions

Suppose that K is a field and A is a K-algebra. Suppose that Λ is a subset
of A. The set Λ is said to be algebraically independent over K if whenever
we have a relation

f(t1, . . . , tn) = 0

for some distinct t1, . . . , tn ∈ Λ and a polynomial f in the polynomial ring
K[x1, . . . , xn], we have that f = 0 (all the coefficients of f are zero).

Suppose that K is a subfield of a field L and Λ is a subset of L. The
subfield K(Λ) of L is the smallest subfield of L which contains K and Λ.

A subset Λ of L which is algebraically independent over K and is max-
imal with respect to inclusions is called a transcendence basis of L over
K. Transcendence bases always exist. Any set of algebraically independent
elements in L over K can be extended to a transcendence basis of L over
K. Any two transcendence bases of L over K have the same cardinality
([95, Theorem 1.1, page 356] or [160, Theorem 25, page 99]). This cardi-
nality is called the transcendence degree of the field L over K and is written
as trdegKL.

Suppose that L ⊂ M ⊂ N is a tower of fields. Then

(1.1) trdegLN = trdegMN + trdegLM

by [160, Theorem 26, page 100].
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An algebraic function field over a field K is a finitely generated field
extension L = K(y1, . . . , ym) of K. After possibly permuting y1, . . . , ym,
there exists an integer r with 0 ≤ r ≤ m such that y1, . . . , yr is a transcen-
dence basis of L over K. The field L is then said to be an r-dimensional
algebraic function field. We have that L is finite over K(y1, . . . , yr). The
field K(y1, . . . , yr) is isomorphic as a K-algebra to the quotient field of a
polynomial ring over K in r variables, so K(y1, . . . , yr) is called a rational
function field over K.

The field L is said to be separably generated over K if there exists a
transcendence basis z1, . . . , zn of L over K such that L is separably algebraic
over K(z1, . . . , zn). The set of elements z1, . . . , zn is then called a separating
transcendence basis of L over K.

Theorem 1.14. If K is a perfect field (K has characteristic 0, or K has
characteristic p > 0 and all elements of K have a p-th root in K), then all
finitely generated field extensions over K are separably generated over K.

Proof. [160, Theorem 31, page 105]. �

In any algebraic extension of fields, there is a maximal separable exten-
sion.

Theorem 1.15. Suppose that L is an algebraic extension of a field K. Then
there exits a maximal subfield M of L which is separable algebraic over K
and such that L is purely inseparable over M .

Proof. [95, Theorem 4.5, page 241]. �

The M of the conclusions of Theorem 1.15 is called the separable closure
of K in L. With the notation of the above theorem, we define

(1.2) [L : K]s = [M : K] and [L : K]i = [L : M ].

The primitive element theorem gives a nice description of finite separable
extensions.

Theorem 1.16 (Primitive element theorem). Suppose that L is finite exten-
sion field of a field K. There exists an element α ∈ L such that L = K(α) if
and only if there exist only a finite number of fields F such that K ⊂ F ⊂ L.
If L is separable over K then there exists such an element α.

Proof. [95, Theorem 4.6, page 243]. �

Suppose that L is a finite extension field of a field K. We will write
Aut(L/K) for the group of K-automorphisms of L. In the case that L is
Galois over K, we will write G(L/K) for the Galois group Aut(L/K).
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Exercise 1.17. Suppose that κ is a perfect field of characteristic p > 0 and
L = κ(s, t) is a rational function field over κ. Let K = {fp | f ∈ L}. Show
that K = κ(sp, tp), L is finite algebraic over K, and L is not a primitive
extension of K.

1.3. Modules

[13, Chapter 2] and [95, Chapters III and X] are good introductions to the
theory of modules over a ring.

An R-module M is a finitely generated R-module if there exist n ∈ Z+

and f1, . . . , fn ∈ M such that M = {r1f1 + · · ·+ rnfn | r1, . . . , rn ∈ R}.
The following is Nakayama’s lemma.

Lemma 1.18. Suppose that R is a ring, I is an ideal of R which is contained
in all maximal ideals of R, M is a finitely generated R-module, and N is a
submodule. If M = N + IM , then M = N .

Proof. [95, Chapter X, Section 4] or [13, Proposition 2.6]. �

We will use the following lemma to determine the minimal number of
generators of an ideal.

Lemma 1.19. Suppose that R is a local ring with maximal ideal m and M is
a finitely generated R-module. Then the minimal number of elements μ(M)
of M which generate M as an R-module is the R/m-vector space dimension

μ(M) = dimR/mM/mM.

Proof. Observe that M/mM is an R/m-vector space by the well-defined
map R/m×M/mM → M/mM given by mapping the classes [x] in R/m of
x ∈ R and [y] ∈ M/mM of y ∈ M to the class [xy] of xy in M/mM .

Suppose that a1, . . . , ar generate M as an R-module. Then the classes
[a1], . . . , [ar] ∈ M/mM generate M/mM as an R/m-vector space. Thus

dimR/mM/mM ≤ μ(M).

Suppose that a1, . . . , ar ∈ M are such that the classes [a1], . . . , [ar] ∈ M/mM
generate M/mM as an R/m-vector space. Let N be the submodule of M
generated by a1, . . . , ar. Then N + mM = M so N = M by Lemma 1.18.
Thus

μ(M) ≤ dimR/mM/mM. �

A chain of submodules of a module M is a sequence of submodules

(1.3) 0 = Mn ⊂ · · · ⊂ M1 ⊂ M0 = M.

The length of (1.3) is n. If each module Mi/Mi+1 has no submodules other
than 0 and Mi/Mi+1, then (1.3) is called a composition series. If M has a
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composition series, then every composition series of M has length n, and
every chain of submodules of M can be extended to a composition series
[13, Proposition 6.7]. We define the length �R(M) of an R-module M to
be the length of a composition series if a composition series exists, and we
define �R(M) = ∞ if a composition series does not exist. If R is a local ring
with maximal ideal mR containing a field κ such that R/mR

∼= κ, then any
R-module M is naturally a κ-vector space, and

�R(M) = dimκM.

1.4. Localization

Amultiplicatively closed (multiplicative) subset S of a ring R is a subset of R
such that 1 ∈ S and S is closed under multiplication. Define an equivalence
relation ≡ on R × S by

(a, s) ≡ (b, t) if and only if (at− bs)u = 0

for some u ∈ S. The localization of R with respect to S, denoted by S−1R,
is the set of equivalence classes R × S/ ≡. The equivalence class of (a, s) is
denoted by a

s . The localization S−1R is a ring with addition defined by

a

s
+

b

t
=

at+ bs

st

and multiplication defined by(a
s

)(b
t

)
=

ab

st
.

This definition extends to localization S−1M of R-modules M , in par-
ticular for ideals in R [13, page 38].

There is a natural ring homomorphism φ : R → S−1R defined by φ(r) =
r
1 for r ∈ R.

We summarize a few facts from [13, Proposition 3.11]. The ideals in
S−1R are the ideals S−1I = I(S−1R) such that I is an ideal of R. We have
that S−1I = S−1R if and only if S ∩ I 
= ∅. The prime ideals of S−1R are
in 1-1 correspondence with the prime ideals of R which are disjoint from S.

Suppose that f ∈ R. Then S = {fn | n ∈ N} is a multiplicatively closed
set. The localization S−1R is denoted by Rf . Suppose that p is a prime
ideal in R. Then S = R \ p is a multiplicatively closed set. The localization
S−1R is denoted by Rp.

If p is a prime ideal in a ring R, then Rp is a local ring with maximal
ideal pp = pRp.
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If R is a domain, the quotient field of R is defined as QF(R) = Rp where
p is the zero ideal of R.

More basic properties of localization and localization of homomorphisms
are established in [13, Chapter 3].

Exercise 1.20. Suppose that R is a domain and I is an ideal in R. Let RI

be the subset of the quotient field of R defined by

RI =

{
f

g
| f ∈ R, g ∈ R \ I

}
.

Show that RI is a ring if and only if I is a prime ideal in R.

Exercise 1.21. Suppose that S is a multiplicative set in a ring R. Show
that the kernel of the natural homomorphism φ : R → S−1R is the ideal

{g ∈ R | gs = 0 for some s ∈ S}.

Give an example of a ring R and 0 
= f ∈ R such that the kernel of R → Rf

is nonzero.

Exercise 1.22. Suppose that S and T are multiplicatively closed subsets
of a ring R. Let U be the image of T in S−1R. Show that (ST )−1R ∼=
U−1(S−1R), where ST = {st | s ∈ S and t ∈ T}.

Exercise 1.23. Suppose that R is a ring and P is a prime ideal in R. Show
that RP is a local ring with maximal ideal PRP = PP . Let Λ : R → RP

be the natural homomorphism defined by Λ(f) = f
1 for f ∈ R. Show that

Λ−1(PRP ) = P .

1.5. Noetherian rings and factorization

Noetherian rings enjoy many good properties. They are ubiquitous through-
out algebraic geometry.

Definition 1.24. A ring R is Noetherian if every ascending chain of ideals

I1 ⊂ I2 ⊂ · · · ⊂ In ⊂ · · ·

is stationary (there exists n0 such that In = In0 for n ≥ n0).

Proposition 1.25. A ring R is Noetherian if and only if every ideal I in
R is finitely generated; that is, there exist f1, . . . , fn ∈ I for some n ∈ Z+

such that

I = (f1, . . . , fn) = f1R+ · · · + fnR.

Proof. [13, Proposition 6.3]. �
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We have the following fundamental theorem.

Theorem 1.26 (Hilbert’s basis theorem). If R is a Noetherian ring, then
the polynomial ring R[x] is Noetherian.

Proof. [13, Theorem 7.5, page 81]. �

Corollary 1.27. A polynomial ring over a field is Noetherian. A quotient
of a Noetherian ring is Noetherian. A localization of a Noetherian ring is
Noetherian.

The following lemma will simplify some calculations.

Lemma 1.28. Suppose that R is a Noetherian ring, m is a maximal ideal
of R, and N is an R-module such that maN = 0 for some positive integer
a. Then Nm

∼= N .

Proof. Suppose that f ∈ R \ m. We will first prove that for any r ∈ Z+,
there exists e ∈ R such that fe ≡ 1 mod mr.

The ring R/m is a field, and the residue of f in R/m is nonzero. Thus
for any h ∈ R, there exists g ∈ R such that fg ≡ h mod m. Taking h = 1,
we obtain that there exists e0 ∈ R such that fe0 ≡ 1 mod m.

Suppose that we have found e ∈ R such that fe ≡ 1 mod mr. Let
x1, . . . , xn be a set of generators of m. There exists hi1,...,in ∈ R such that

fe − 1 =
∑

i1+···+in=r hi1,...,inx
i1
1 · · ·xinn . There exist gi1,...,in ∈ R such that

fgi1,...,in ≡ hi1,...,in mod m. Thus∑
i1+···+in=r

fgi1,...,inx
i1
1 · · ·xinn ≡

∑
i1+···+in=r

hi1,...,inx
i1
1 · · ·xinn mod mr+1.

Set e′ = e −
∑

gi1,...,inx
i1
1 · · ·xinn to get fe′ ≡ 1 mod mr+1.

Consider the natural homomorphism Φ : N → Nm defined by Φ(n) = n
1

for n ∈ N . We will show that Φ is an isomorphism. Suppose that Φ(n) = 0.
Then there exists f ∈ R\m such that fn = 0. By the first part of the proof,
there exists e ∈ R such that fe ≡ 1 mod ma. Thus n = efn = 0. Suppose
n
f ∈ Nm. Then there exists e ∈ R \m such that ef = 1+h with h ∈ ma, and

Φ(ne) = n
f . �

Suppose R is a domain. A nonzero element f ∈ R is called irreducible
if f is not a unit and whenever we have a factorization f = gh with g and
h in R, then g is a unit or h is a unit.

Since every ascending chain of principal ideals is stationary in a Noe-
therian ring, we have the following proposition.
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Proposition 1.29. Suppose R is a Noetherian domain. Then every nonzero
nonunit f ∈ R has a factorization f = g1 · · · gr for some positive integer r
and irreducible elements g1, . . . , gr ∈ R.

Suppose R is a domain. A nonzero element f ∈ R is called a prime if
the ideal (f) ⊂ R is a prime ideal.

Proposition 1.30. Suppose R is a domain and f ∈ R. Then:

1) If f is prime, then f is irreducible.

2) If R is a unique factorization domain (UFD), then f is a prime if
and only if f is irreducible.

Proof. [84, Theorem 2.21]. �

Proposition 1.31. Suppose that A is a UFD. Let K be the quotient field of
A. Then the ring of polynomials in n variables A[x1, . . . , xn] is a UFD. Its
units are precisely the units of A, and its prime elements are either primes
of A or polynomials which are irreducible in K[x1, . . . , xn] and have content
1 (the greatest common divisor of the coefficients in A of the polynomial
is 1).

Proof. [95, Corollary 2.4, page 183]. �

Suppose that R is a ring and R[x1, . . . , xn] is a polynomial ring over R.
If f ∈ R[x1, . . . , xn], then f has a unique expansion

f =
∑

ai1,...,inx
i1
1 · · ·xinn

with ai1,...,in ∈ R. If f is nonzero, the (total) degree deg f of f is defined to
be

deg f = max{i1 + · · · + in | ai1,...,in 
= 0}.
The polynomial f is homogeneous of degree d if ai1,...,in = 0 if i1+· · ·+in 
= d.

Suppose that A = K[x, y, z, w] is a polynomial ring over a field K. The
units inA are the nonzero elements ofK. Let f = xy−zw ∈ A. Suppose that
f = gh with g, h ∈ A nonunits. Since f is homogeneous of degree 2, we have
that g and h are both homogeneous of degree 1, so g = a0x+a1y+a2z+a3w
and h = b0x + b1y + b2z + b3w with a0, . . . , a3, b0, . . . , b3 ∈ K. We verify
by expanding gh that there do not exist a0, . . . , a3, b0, . . . , b3 ∈ K such that
gh = f . Thus xy − zw is irreducible in A. Since A is a UFD, we have
that (f) is a prime ideal in A, and thus R = A/(f) is a domain. For
u ∈ A, let u denote the class of u in R. Then R = K[x, y, z, w] where
x, y, z, w are the classes of x, y, z, w. Since f is homogeneous, the function
deg g = deg g if 0 
= g is well-defined on R (we will see that R is graded
in Section 3.1). The units of R are the nonzero elements of K (they have
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degree 0) and since x, y, z, w are all nonzero and they have degree 1, they
must be irreducible in R. We have that the ideal (f, x) = (zw, x) in A, so
R/(x) ∼= A/(zw, x) ∼= K[y, z, w]/zw by Lemma 1.3, which is not a domain
(the classes of z and w are zero divisors). In particular, x is an irreducible
element of R which is not a prime. We see from Proposition 1.30 that R is
not a UFD. We also have that

xy = zw

gives two factorizations in R by irreducible elements, none of which are
associates, showing directly that R is not a UFD.

Exercise 1.32. Suppose that K is a field and K[x1, . . . , xn] is a polynomial
ring over K. Let f ∈ K[x1, . . . , xn] be nonzero and homogeneous, and
suppose that g, h ∈ K[x1, . . . , xn] are such that f = gh. Show that g and h
are homogeneous and deg g + deg h = deg f .

Exercise 1.33. Suppose thatK is an algebraically closed field andK[x1, x2]
is a polynomial ring over K. Suppose that f ∈ K[x1, x2] is homogeneous of
positive degree. Show that f is a product of homogeneous polynomials of
degree 1. Show that this is false if K is not algebraically closed.

Exercise 1.34. Let K be a field and K[x, y, z] be a polynomial ring over
K. Let f = y3 − x3 + xz2 ∈ K[x, y, z]. Show that f is irreducible and that
R = K[x, y, z]/(f) is a domain. Show that R is not a UFD.

Exercise 1.35. Prove Euler’s formula: Suppose that K is a field and F is a
homogeneous polynomial of degree d in the polynomial ring K[x0, . . . , xn].
Show that

n∑
i=0

∂F

∂xi
xi = dF.

1.6. Primary decomposition

Suppose that R is a ring. An ideal Q in R is primary if Q 
= R and if for
x, y ∈ R, xy ∈ Q implies either x ∈ Q or yn ∈ Q for some n > 0.

Proposition 1.36. Let Q be a primary ideal in a ring R. Then
√
Q is the

smallest prime ideal of R containing Q.

Proof. It suffices to show that
√
Q is a prime ideal. Suppose x, y ∈ R are

such that xy ∈
√
Q. Then (xy)n ∈ Q for some n > 0. Then either xn ∈ Q

or ymn ∈ Q for some m > 0. Thus either x ∈
√
Q or y ∈

√
Q. �

If p is a prime ideal, an ideal Q is called p-primary if Q is primary and√
Q = p.

Proposition 1.37. If
√
I is a maximal ideal m, then I is m-primary.
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Proof. [13, Proposition 4.2]. �

Lemma 1.38. If the Qi are p-primary, then Q =
⋂n

i=1Qi is p-primary.

Proof. [13, Lemma 4.3]. �

A primary decomposition of an ideal I in R is an expression of I as a
finite intersection of primary ideals,

(1.4) I =
n⋂

i=1

Qi.

The ideal I is called decomposable if it has a primary decomposition. If
I is decomposable, then I has a minimal (or irredundant) primary decom-
position, that is, an expression (1.4) where the

√
Qi are all distinct and⋂

j �=iQj 
⊂ Qi for all i. By Lemma 1.38, every decomposable ideal I has a
minimal primary decomposition.

Theorem 1.39. In a Noetherian ring R, every ideal has a primary decom-
position (and hence has a minimal primary decomposition).

Proof. [13, Theorem 7.13]. �

Let M be an R-module. A prime ideal p is an associated prime of M if
p is the annihilator

Ann(x) = {r ∈ R | rx = 0}
for some x ∈ M . The set of associated primes of M is denoted by Ass(M) or
AssR(M). In the case of an ideal I of R, it is traditional to abuse notation
and call the associated primes of R/I the associated primes of I.

An element a in a ring R is called a zero divisor for an R-module M if
there exists a nonzero x ∈ M such that ax = 0. Otherwise, a is M -regular.

Theorem 1.40. Let A be a Noetherian ring and M a nonzero A-module.

1) Every maximal element of the family of ideals F = {Ann(x) | 0 
=
x ∈ M} is an associated prime of M .

2) The set of zero divisors for M is the union of all the associated
primes of M .

Proof. 1) We must show that if Ann(x) is a maximal element of F , then it
is prime. If a, b ∈ A are such that abx = 0 but bx 
= 0, then by maximality,
Ann(bx) = Ann(x). Hence ax = 0.

2) If ax = 0 for some x 
= 0, then a ∈ Ann(x) ∈ F . By 1), there is an
associated prime of M containing Ann(x). �
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Another important set of prime ideals associated to a module M is the
support of M , which is

Supp(M) = {prime ideals p of R | Mp 
= 0}.

Theorem 1.41. Let R be a Noetherian ring and M a finitely generated
R-module. Then:

1) Ass(M) is a finite set.

2) Ass(M) ⊂ Supp(M).

3) Any minimal element of Supp(M) is in Ass(M).

Proof. [107, (7.G) on page 52] and [107, Theorem 9], or [106, Theorem
6.5]. �

The minimal elements of the set Ass(M) are called minimal or isolated
prime ideals belonging to M . The others are called embedded primes. We
have that a prime ideal P of R is a minimal prime of an ideal I (a minimal
prime of R/I) if I ⊂ P , and if Q is a prime ideal of R such that I ⊂ Q ⊂ P ,
then Q = P .

Theorem 1.42. Let I be a decomposable ideal and let I =
⋂n

i=1Qi be a
minimal primary decomposition of I. Then:

1)

Ass(R/I) = {
√

Qi | 1 ≤ i ≤ n}.
2) The isolated primary components (the primary components Qi cor-

responding to minimal prime ideals pi) are uniquely determined
by I.

Proof. [13, Theorem 4.5 and Corollary 4.11]. �

Proposition 1.43. Let S be a multiplicatively closed subset of a ring R
and let I be a decomposable ideal. Let I =

⋂n
i=1Qi be a minimal primary

decomposition of I. Let pi =
√
Qi and suppose that the Qi are indexed so

that S ∩ pi 
= ∅ for m < i ≤ n and S ∩ pi = ∅ for 1 ≤ i ≤ m. Then

S−1I =

m⋂
i=1

S−1Qi

is a minimal primary decomposition of S−1I in S−1R, with
√

S−1Qi =
piS

−1R.

Proof. [13, Proposition 4.9]. �
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Exercise 1.44. Let K be a field and R = K[x, y] be a polynomial ring. Let
I = (x2y, xy2). Compute a minimal primary decomposition of I. Compute

the set Ass(R/I). Identify the minimal and embedded primes. Compute
√
I

and compute a minimal primary decomposition of
√
I. Identify the minimal

and embedded primes. Compute the set Ass(R/
√
I). Compute minimal

primary decompositions of Ip and the set Ass(Ip) when p = (x) and when
p = (x, y). Identify the minimal and embedded primes.

Exercise 1.45. Let K be a field and R = K[x, y, z]/(z2 − xy) = K[x, y, z].
Compute a minimal primary decomposition of the ideal (z).

Exercise 1.46. Suppose that I is an ideal in a Noetherian ring R and√
I = I. Show that all elements of Ass(R/I) are minimal and the minimal

primary decomposition of I is

I =
⋂

{minimal primes p of I}
p.

Exercise 1.47. Suppose that R is a Noetherian ring and I ⊂ J are ideals
of R. Show that I = J if and only if Im = Jm for all maximal ideals m of R.

1.7. Integral extensions

[13, Chapter 5], [95, Chapter VII, Section 1] and [160, Sections 1–4 of
Chapter V] are good references for this section.

Definition 1.48. Suppose that R is a subring of a ring S. An element
u ∈ S is integral over R if u satisfies a relation

un + a1u
n−1 + · · · + an−1u+ an = 0

with a1, . . . , an ∈ R.

Theorem 1.49. Suppose that R is a subring of a ring S and u ∈ S. The
following are equivalent:

1) u is integral over R.

2) R[u] is a finitely generated R-module.

3) R[u] is contained in a subring T of S such that T is a finitely
generated R-module.

Proof. [13, Proposition 5.1]. �

We have the following immediate corollaries.

Corollary 1.50. Let u1, . . . , un be elements of S which are each integral over
R. Then the subring R[u1, . . . , un] of S is a finitely generated R-module.
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Corollary 1.51. Suppose that R is a subring of a ring S. Let

R = {u ∈ S | u is integral over R}.
Then R is a ring.

Proof. If x, y ∈ R, then the subring R[x, y] of S is a finitely generated R-
module by Corollary 1.50. The elements x+y and xy are in R[x, y] so x+y
and xy are integral over R by Theorem 1.49. �

R is called the integral closure ofR in S. This construction is particularly
important when R is a domain and S is the quotient field of R. In this case,
R is called the normalization of R. R is said to be normal if R = R. If R
is a domain and S is a field extension of the quotient field of R, then the
integral closure of R in S is called the normalization of R in S.

We now state some theorems which will be useful.

Lemma 1.52. Let A ⊂ B be rings with B integral over A and let S be a
multiplicatively closed subset of A. Then S−1B is integral over S−1A.

Proof. Suppose b ∈ B satisfies a relation

bn + a1b
n−1 + · · · + an = 0

with a1, a2, . . . , an ∈ A and s ∈ S. Then(
b

s

)n

+
a1
s

(
b

s

)n−1

+ · · · + an
s

= 0. �

Theorem 1.53 (Noether’s normalization lemma). Let R be a finitely gener-
ated L-algebra, where L is a field. Then there exist y1, . . . , yr ∈ R such that
the subring L[y1, . . . , yr] of R is a polynomial ring over L and R is integral
over L[y1, . . . , yr].

Proof. We give a proof with the assumption that L is an infinite field. For
a proof when L is a finite field, we refer to [161, Theorem 25 on page 200].
Write R = L[x1, . . . , xn]. Suppose that R is not a polynomial ring over L,
so there exists a nonzero f in the polynomial ring L[z1, . . . , zn] over L such
that f(x1, . . . , xn) = 0. Let d = deg f and let fd be the homogeneous part
of f of degree d, so that

fd = zdnfd

(
z1
zn

, . . . ,
zn−1

zn
, 1

)
.

By Theorem 1.4, there exist c1, . . . , cn−1 ∈ L such that fd(c1, . . . , cn−1, 1) 
=
0. Set yi = xi − cixn for 1 ≤ i ≤ n− 1. Then

0 = f(x1, . . . , xn) = f(y1 + c1xn, . . . , yn−1 + cn−1xn, xn)
= fd(c1, . . . , cn−1, 1)x

d
n + g1x

d−1
n + · · · + gd
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with all gi ∈ L[y1, . . . , yn−1], so that xn is integral over L[y1, . . . , yn−1]. The
theorem then follows by induction on n. �
Theorem 1.54. Let R be a domain which is a finitely generated algebra over
a field K. Let Q be the quotient field of R and let L be a finite algebraic
extension of Q. Then the integral closure R′ of R in L is a finitely generated
R-module and is also a finitely generated K-algebra.

Lemma 1.55. Suppose that R is a Noetherian ring, M is a finitely generated
R-module, and N is a submodule of M . Then N is a finitely generated R-
module.

Proof. This follows from (1) of the “basic criteria” for a module to be
Noetherian of [95, page 413] and [95, Proposition 1.4, page 415]. �

Let B be a ring and A be a subring. Let P be a prime ideal of A and
let Q be a prime ideal of B. We say that Q lies over P if Q ∩ A = P .

Proposition 1.56. Let A be a subring of a ring B, let P be a prime ideal
of A, and assume B is integral over A. Then PB 
= B and there exists a
prime ideal Q of B lying over P .

Proof. We first show that PB 
= B. By Lemma 1.52, it suffices to show
that PS 
= S where S = BP . Suppose that PS = S. Then there is a relation

1 = a1b1 + · · ·+ anbn

with ai ∈ P and bi ∈ S. Let R = AP and S0 = R[b1, . . . , bn]. Then PS0 = S0

and S0 is a finitely generated R-module by Corollary 1.50, and so S0 = 0 by
Nakayama’s lemma, Lemma 1.18, a contradiction.

Thus we have that PBP is contained in a maximal ideal m of BP . Then
PAP ⊂ m ∩ AP . But PAP is the maximal ideal of AP so m ∩ AP = PAP .
Let Q be the inverse image of m in B. We have that P ⊂ Q ∩ A. Suppose
f ∈ Q ∩A. Then f

1 ∈ m ∩ AP = PAP and so f ∈ P . Thus P = Q ∩ A. �

We will further develop the theory of integral extensions in Section 21.2.

Exercise 1.57. Suppose that R is a domain which is contained in a field
K of characteristic p > 0. Suppose that f ∈ K is such that fp ∈ R. Let
S = R[f ]. Suppose that Q is a prime ideal in R. Show that

√
QS is a prime

ideal.

Exercise 1.58. Suppose that K is a field and A is a subring of K. Let B
be the integral closure of A in K. Let S be a multiplicatively closed subset
of A. Show that S−1B is the integral closure of S−1A in K.

Exercise 1.59. Let K be a field and R be a polynomial ring over K. Show
that R is integrally closed in its quotient field.
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1.8. Dimension

In this section we define the height of an ideal and the dimension (Krull
dimension) of a ring.

Definition 1.60. The height, ht(P ), of a prime ideal P in a ring R is the
supremum of all natural numbers n such that there exists a chain

(1.5) P0 ⊂ P1 ⊂ · · · ⊂ Pn = P

of distinct prime ideals. The dimension dimR of R is the supremum of the
heights of all prime ideals in R.

If P is a prime ideal in a ring R, then dimRP = ht(P ) by Proposition
1.43.

A chain (1.5) is maximal if the chain cannot be lengthened by adding
an additional prime ideal somewhere in the chain.

Definition 1.61. The height of an ideal I in a ring R is

ht(I) = inf{ht(P ) | P is a prime ideal of R and I ⊂ P}.

Theorem 1.62. Let B be a Noetherian ring and let A be a Noetherian
subring over which B is integral. Then dimA = dimB.

Proof. [107, Theorem 20, page 81]. �

Theorem 1.63. Let K be a field and A be a finitely generated K-algebra
which is a domain. Let L be the quotient field of A. Then dimA = trdegKL,
the transcendence degree of L over K.

Proof. The dimension of a polynomial ring over K in n variables is n by
[107, Theorem 22]. The proof of the theorem now follows from Theorem
1.53 (Noether’s normalization lemma) and Theorem 1.62. �

An example of a Noetherian ring which has infinite dimension is given
in [121, Example 1 of Appendix A1, page 203]. Rings which are finitely
generated K-algebras have the following nice property.

Theorem 1.64. Let K be a field and A be a finitely generated K-algebra
which is a domain. For any prime ideal p in A we have that

ht(p) + dimA/p = dimA.

Proof. [28, Theorem A.16] or [13, Chapter 11]. �

There are Noetherian rings which do not satisfy the equality of Theorem
1.64 [121, Example 2, Appendix A1].
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The following theorem is of fundamental importance.

Theorem 1.65 (Krull’s principal ideal theorem). Let A be a Noetherian
ring, and let f ∈ A be an element which is neither a zero divisor nor a unit.
Then every minimal prime ideal p containing f has height 1.

Proof. [13, Corollary 11.17]. �

Proposition 1.66. A Noetherian domain A is a UFD if and only if every
prime ideal of height 1 in A is principal.

Proof. [106, Theorem 20.1] or [23, Chapter 7, Section 3] or [50, Proposition
3.11]. �

1.9. Depth

Let R be a ring and M be an R-module. Elements x1, . . . , xr ∈ R are said
to be an M -regular sequence if

1) for each 1 ≤ i ≤ r, xi is a nonzero divisor on M/(x1, . . . , xi−1)M
(xiy 
= 0 for all nonzero y ∈ M/(x1, . . . , xi−1)M) and

2) M 
= (x1, . . . , xr)M .

Definition 1.67. Let R be a Noetherian ring, I be an ideal in R, and M
be a finitely generated R-module. We define depthIM to be the maximal
length of an M -regular sequence x1, . . . , xr with all xi ∈ I.

Definition 1.68. A Noetherian ring R is said to be Cohen-Macaulay if
depthIR = ht(I) for every maximal ideal I of R.

We give some examples of Cohen-Macaulay rings in the following theo-
rem and proposition.

Theorem 1.69. Let A be a Cohen-Macaulay ring. Then the polynomial
ring A[x1, . . . , xn] is a Cohen-Macaulay ring. In particular, a polynomial
ring over a field is Cohen-Macaulay.

Proof. [107, Theorem 33]. �

Proposition 1.70. Let A be a Cohen-Macaulay ring and J = (a1, . . . , ar)
be an ideal of height r. Then A/Jv is Cohen-Macaulay for every v > 0.

Proof. [107, Proposition, page 112]. �

A proof of the following theorem is given in [50, Corollary 18.14] or
[107, Theorem 32].
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Theorem 1.71 (Unmixedness theorem). Let R be a Cohen-Macaulay ring.
If I = (x1, . . . , xn) is an ideal such that ht(I) = n, then all associated primes
of I are minimal primes of I and have height n.

Lemma 1.72. Suppose that R is a ring and I, P1, . . . , Pr are ideals in R
such that the Pi are prime ideals. Suppose that I 
⊂ Pi for each i. Then
I 
⊂

⋃
i Pi.

Proof. We may omit the Pi which are contained in some other Pj and
suppose that Pi 
⊂ Pj if i 
= j. We prove the lemma by induction on r.
Suppose r = 2 and I ⊂ P1 ∪ P2. Choose x ∈ I \ P2 and y ∈ I \ P1. Then
x ∈ P1 so y + x 
∈ P1. Thus y and y + x ∈ P2 so x ∈ P2, a contradiction.

Now suppose r > 2. Then IP1 · · ·Pr−1 
⊂ Pr since Pr is a prime ideal.
Choose x ∈ IP1 · · ·Pr−1 \ Pr. Let S = I \ (P1 ∪ · · · ∪ Pr−1). By induction,
S 
= ∅. Suppose I ⊂ P1 ∪ · · · ∪ Pr. Then S ⊂ Pr. Suppose s ∈ S.
Then s + x ∈ S and thus both s and s + x are in Pr, and so x ∈ Pr, a
contradiction. �

Lemma 1.73. Suppose that R is a Noetherian ring, m is a maximal ideal
of R, and M is a finite R-module. Then depthmM = 0 if and only if
m ∈ AssR(M).

Proof. If m is an associated prime for M , then there exists x ∈ M such
that m = Ann(x). Thus depthmM = 0.

Suppose depthmM = 0. Then all elements of m are zero divisors for
M . Now the set of all zero divisors for M is the union of the finitely many
associated primes of R by Theorems 1.40 and 1.41. Thus m is an associated
prime of M by Lemma 1.72. �

A proof of the following lemma is given in [50, Corollary 18.6].

Lemma 1.74. Let R be a Noetherian ring, m be a maximal ideal of R, and

0 → N ′ → N → N ′′ → 0

be a short exact sequence of nonzero finitely generated R-modules. Then

1) depthmN
′′ ≥ min{depthmN, depthmN

′ − 1},
2) depthmN

′ ≥ min{depthmN, depthmN
′′ + 1}.

Example 1.75. There exists a domain A and a nonzero element f ∈ A
such that the ideal fA has an embedded prime.

We now construct such an example. Let K be a field. We will first show
that the two-dimensional domain

R = K[s4, s3t, st3, t4]
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which is a subring of the polynomial ring K[s, t] has depthm(R) = 1 where
m = (s4, s3t, st3, t4) (so R is not Cohen-Macaulay). Let

S = K[s4, s3t, s2t2, st3, t4].

The domain S contains R as a subring, realizing S = R+ s2t2R as a finitely
generated R-module. We have a short exact sequence of R-modules

0 → R → S → M → 0

where M = S/R. We have that depthmS ≥ 1 since S is a domain which
is not a field. Let a be the class of s2t2 in M . Consider the surjective R-
module homomorphism φ : R → M defined by φ(f) = fa for f ∈ R. Since
ma = 0, φ induces an isomorphism of R-modules M ∼= R/m. By Lemma
1.74 we have that depthmR ≤ 1, so that depthmR = 1 since R is a domain
which is not a field.

Thus R has the following attribute: For every nonzero f ∈ m,

depthmR/(f) = 0,

so by Lemma 1.73, m is an embedded prime for the ideal (f); that is, a
minimal primary decomposition of fRm is

(1.6) fRm = Q1 ∩ · · · ∩ Qt ∩ Q0

where the Qi are Pi-primary for a height 1 prime Pi in Rm (a minimal prime
of fRm) and Q0 is a nontrivial mm-primary ideal.

The following theorem will be useful.

Theorem 1.76. Suppose that R is a Cohen-Macaulay ring and J=(g1, . . . , gs)
is an ideal in R such that g1, . . . , gs is an R-regular sequence. Then

grJ(R) =
⊕
i≥0

J i/J i+1 = R/J [g1, . . . , gs]

is a polynomial ring over R/J in g1, . . . , gs, where gi is the class of gi in
J/J2.

Proof. This follows from [107, Theorem27, page 98] and the equivalence
(***) on page 98 of [107]. �

1.10. Normal rings and regular rings

Normal and regular rings play an important role in algebraic geometry. In
normal rings, the concepts of zeros and poles of a function are well-defined,
and regular rings correspond to nonsingular spaces.

We begin this section with some properties of normal rings which we
will use. A normal ring is defined in Section 1.7.
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Lemma 1.77. Suppose that A is a domain with quotient field K. Then

A =
⋂
P

AP

where the intersection in K is over all maximal ideals P of A.

Proof. Suppose x ∈ K. Let D = {a ∈ A | ax ∈ A}. The element x is in A
if and only if D = A, and x is in AP if and only if D 
⊂ P . Thus if x 
∈ A,
there exists a maximal ideal P of A such that D ⊂ P , and so x 
∈ AP . �

Corollary 1.78. Suppose that A is a domain. Then A is normal if and
only if AP is normal for all maximal ideals P of A.

Proof. If A is normal, then S−1A is normal for every multiplicatively closed
subset of A not containing 0. Since A =

⋂
AP by Lemma 1.77, where the

intersection is over all maximal ideals P of A, the domain A is normal if and
only if AP is normal for all maximal ideals P . �

A stronger intersection theorem holds for height 1 primes.

Theorem 1.79. Let A be a Noetherian normal domain. Then:

1) All associated primes of a nonzero principal ideal have height 1.

2)

A =
⋂
p

Ap

where the intersection in K is over all height 1 prime ideals p of A.

Proof. [107, Theorem 38] or [106, Theorem 11.5]. �

We now develop some concepts to define a regular local ring.

Definition 1.80. Suppose that R is a local ring with maximal ideal mR.
The associated graded ring of R is

grmR
(R) =

⊕
i≥0

mi
R/m

i+1
R .

Theorem 1.81. Suppose that R is a Noetherian local ring with maximal
ideal mR. Then:

1) dimgrmR
(R) = dimR.

2) dimR/mR
mR/m

2
R ≥ dimR.

Proof. Equation 1) is proven in [107, Theorem 17] or [106, Theorem 13.9],
using the theory of Hilbert polynomials. Equation 2) follows from [160,
Theorem 30, page 240, and Theorem 31, page 241] or [107, (12.J)]. �
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If A is a local ring with maximal ideal mA and residue field κ = A/mA,
then the tangent space of A is defined as

(1.7) T (A) = Homκ(mA/m
2
A, κ).

Definition 1.82. A Noetherian local ring R with maximal ideal mR is a
regular local ring if dimR/mR

mR/m
2
R = dimR.

Since dimκ T (R) = dimκmR/m
2
R, we always have that dimκ T (R) ≥

dimR and R is regular if and only if dimκ T (R) = dimR.

We now state some useful properties of regular local rings and their
relation to normal rings.

Theorem 1.83. Let A be a ring such that for every prime ideal P of A the
localization AP is regular. Then the polynomial ring A[x1, . . . , xn] has the
same property. In particular, every local ring of a polynomial ring over a
field is a regular local ring.

Proof. [107, Theorem40] �
Theorem 1.84. Suppose that R is a regular local ring. Then R is a Cohen-
Macaulay normal domain.

Proof. This follows from [161, Corollary 1 on page 302] and [107, Theorem
36]. �

The proofs of the following theorems are through homological algebra.

Theorem 1.85. A Noetherian ring A is normal if and only if it satisfies
the following two condtions:

1) For every prime ideal p ⊂ A of height 1, Ap is regular.

2) For every prime ideal p ⊂ A of height ≥ 2, we have depthAp ≥ 2.

Proof. [107, Theorem 39, page 125]. �
Corollary 1.86. Suppose that R is a regular local ring and f ∈ R is nonzero
and is not a unit. Then R/(f) is normal if and only if (R/(f))p is regular
for all prime ideals p of R/(f) of height 1.

Proof. Let A = R/(f). We must show that condition 2) of Theorem 1.85
holds. We have that R is a Cohen-Macaulay domain by Theorem 1.84. Since
f is R-regular, we have that AP is Cohen-Macaulay for all prime ideals P
of A by [107, Theorem 30], and so

depth(AP ) = dimAP = ht(P ). �
Theorem 1.87. Suppose that R is a normal Noetherian local ring of di-
mension 1. Then R is a regular local ring.



1.10. Normal rings and regular rings 25

Proof. This follows from Theorem 1.85. �

Theorem 1.88. Suppose that R is a regular local ring and P is a prime
ideal in R. Then RP is a regular local ring.

Proof. [107, Corollary, page 139] or [106, Theorem 19.3]. �

Theorem 1.89 (Auslander and Buchsbaum). Suppose that R is a regular
local ring. Then R is a UFD.

Proof. [15] or [107, Theorem 48] or [106, Theorem 20.3]. �





Chapter 2

Affine Varieties

In this chapter we define affine and quasi-affine varieties and their regular
functions and regular maps. We develop the basic properties of affine vari-
eties. Recall that throughout this book, k will be a fixed algebraically closed
field.

In Sections 2.1–2.4 we develop a correspondence between the commuta-
tive algebra of finitely generated k-algebras which are domains (or reduced)
and the geometry of algebraic varieties (or algebraic sets) in an affine space.
In Section 2.5, we study the open sets in the Zariski topology on an affine
variety (which are the quasi-affine varieties) and the regular functions and
regular maps on such open sets. We show in Lemma 2.83 and Proposition
2.93 that every affine variety X has the basis for the Zariski topology con-
sisting of the open sets D(f) for f ∈ k[X] which are (isomorphic to) affine
varieties.

In Section 2.6, we define rational maps on an affine variety X. A rational
map on X is determined by a regular map on a dense open subset U of X.

2.1. Affine space and algebraic sets

Affine n-space over k is

An = An
k = {(a1, . . . , an) | a1, . . . , an ∈ k}.

An element p = (a1, . . . , an) ∈ An is called a point. The ring of regular
functions on An is the k-algebra of polynomial mappings

k[An] = {f : An → A1 | f ∈ k[x1, . . . , xn]}.

Here k[x1, . . . , xn] is the polynomial ring over k in the variables x1, . . . , xn.

27
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Since an algebraically closed field is infinite, the natural surjective ring
homomorphism k[x1, . . . , xn] → k[An] is an isomorphism by Theorem 1.4,
as shown in Exercise 1.13. Thus we may identify the ring k[An] with the
polynomial ring k[x1, . . . , xn].

The zeros of a regular function f ∈ k[An] are

Z(f) = {p ∈ An | f(p) = 0}.
If T ⊂ k[An] is a subset, then the set of common zeros of the elements of T
is

Z(T ) = {p ∈ An | f(p) = 0 for all f ∈ T}.
A subset W of An is called an algebraic set if there exists a subset T of
k[An] such that W = Z(T ).

If I is the ideal in k[An] generated by T , then Z(T ) = Z(I).

By Corollary 1.27 every algebraic set in An is the set of common zeros
of a finite number of polynomials.

Proposition 2.1. Suppose that I1, I2, {Iα}α∈S are ideals in

k[An] = k[x1, . . . , xn].

Then:

1) Z(I1I2) = Z(I1) ∪ Z(I2).

2) Z(
∑

α∈S Iα) =
⋂

α∈S Z(Iα).

3) Z(k[An]) = ∅.
4) An = Z(0).

Proof of 1). Suppose that p ∈ Z(I1)∪Z(I2). Then p ∈ Z(I1) or p ∈ Z(I2).
Thus for every f ∈ I1 we have f(p) = 0 or for every g ∈ I2 we have that
g(p) = 0. If f ∈ I1I2, then f =

∑r
i=1 figi for some f1, . . . , fr ∈ I1 and

g1, . . . , gr ∈ I2. Thus f(p) =
∑

fi(p)gi(p) = 0, so that p ∈ Z(I1I2).

Now suppose that p ∈ Z(I1I2) and p 
∈ Z(I1). Then there exists f ∈ I1
such that f(p) 
= 0. For any g ∈ I2, we have fg ∈ I1I2 so that f(p)g(p) = 0.
Since f(p) 
= 0, we have that g(p) = 0. Thus p ∈ Z(I2). �

Proposition 2.1 tells us that:

1. The union of two algebraic sets is an algebraic set.

2. The intersection of any family of algebraic sets is an algebraic set.

3. ∅ and An are algebraic sets.

We thus have a topology on An, defined by taking the closed sets to be
the algebraic sets. The open sets are the complements of algebraic sets in
An (any union of open sets is open, any finite intersection of open sets is
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open, the empty set is open, and An is open). This topology is called the
Zariski topology. If Y is a subset of An, we will denote the Zariski closure
of Y in An by Y .

Example 2.2. Suppose that I is a nontrivial ideal in k[A1] = k[x]; that is,
I 
= (0) and I 
= k[x]. Then I = (f) where f = (x − α1) · · · (x − αr) for
some α1, . . . , αr ∈ k since k[x] is a PID and k is algebraically closed. Thus
Z(I) = {α1, . . . , αr}. The open sets in A1 are thus A1, the complement of
finitely many points in A1, and ∅.

We see that the Zariski topology is not Hausdorff (to be Hausdorff,
distinct points must have disjoint neighborhoods).

A nonempty subset Y of a topological space X is said to be irreducible
if it cannot be expressed as a union Y = Y1 ∪Y2 of two proper subsets, each
of which is closed in Y (∅ is not irreducible).

Example 2.3. A1 is irreducible as all proper closed subsets are finite and
A1 is infinite.

Definition 2.4. An affine algebraic variety is an irreducible closed subset
of An. An affine algebraic set is a closed subset of An.

Given a subset Y of An, the ideal of Y in k[An] is

I(Y ) = {f ∈ k[An] | f(p) = 0 for all p ∈ Y }.

We now state Hilbert’s Nullstellensatz.

Theorem 2.5. Let F be an algebraically closed field, I be an ideal in the
polynomial ring R = F [x1, . . . , xn], and f ∈ R be a polynomial which van-
ishes at all points of Z(I). Then f r ∈ I for some r ∈ Z+.

Our proof is based on Lang’s proof in [95, Chapter IX, Section 1]. To
prove Theorem 2.5 we require some preliminary results.

Proposition 2.6. Let A be a subring of a ring B and assume that B is
integral over A. Let φ : A → L be a homomorphism into a field L which
is algebraically closed. Then φ has an extension to a homomorphism of B
into L.

Proof. Let P be the kernel of φ and S = A \ P . We have a natural com-
mutative diagram

B → S−1B
↑ ↑
A → S−1A = AP
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and φ induces a natural homomorphism φ of AP into L which factors φ, by
defining

φ

(
x

y

)
=

φ(x)

φ(y)

for x ∈ A and y ∈ S. Let C = S−1B, which is integral over AP . Let m
be the maximal ideal of AP . By Proposition 1.56, there exists a maximal
ideal n of C which lies over m. Then C/n is a field which is an algebraic
extension of AP /m, and AP /m is isomorphic to the subfield φ(AP ) of L.
Since the kernel of φ is m, φ induces a natural factorization

AP → AP /m → L

of φ. We can embed C/n into L since C/n is algebraic over AP /m and L
is algebraically closed [95, Theorem 2.8, page 233], to make a commutative
diagram

C → C/n
↑ ↑ ↘
AP → Ap/m → L

giving a homomorphism of B into L which extends φ. �

Theorem 2.7. Let F be a field and F [y1, . . . , yn] be a finitely generated
F -algebra. If F [y1, . . . , yn] is a field, then F [y1, . . . , yn] is algebraic over F .

Proof. Let L be an algebraic closure of F . Suppose that F [y] = F [y1, . . . , yn]
is a field which is not algebraic over F . Let t1, . . . , tr (with r ≥ 1) be a
transcendence basis of F [y] over F . The elements y1, . . . , yn are algebraic
over N = F (t1, . . . , tr) = F (t). Let fi(x) ∈ N [x] be the minimal polyno-
mial of yi over N . If we multiply the fi by a suitable nonzero element of
F [t] = F [t1, . . . , tr], we get polynomials in N [x], all of whose coefficients lie
in F [t]. Let a1(t), . . . , an(t) be the leading coefficients of these polynomials,
and let

a(t) = a1(t) · · · an(t).
Since a(t) 
= 0, there exist t′1, . . . , t

′
r ∈ L such that a(t′) = a(t′1, . . . , t

′
r) 
= 0,

by Theorem 1.4, so that ai(t
′) 
= 0 for all i. Each yi is integral over the ring

F

[
t1, . . . , tr,

1

a1(t)
, . . . ,

1

an(t)

]
.

Consider the F -algebra homomorphism Ψ : F [t1, . . . , tr] → L such that Ψ is
the identity on F and Ψ(ti) = t′i for 1 ≤ i ≤ r. Let P be the kernel of Ψ.
We have an extension of Ψ to

Ψ : F [t]P → L defined by Ψ

(
f

g

)
=

Ψ(f)

Ψ(g)

for f ∈ F [t] and g ∈ F [t] \ P . Since ai(t) 
∈ P for 1 ≤ i ≤ n, we have that
y1, . . . , yn are integral over F [t]P . By Proposition 2.6, we have an extension
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of Ψ to a homomorphism from F [t]P [y1, . . . , yn] into L which restricts to Ψ,
giving an F -algebra homomorphism F [y] → L which is an inclusion since
F [y] is a field. Thus F [y] is algebraic over F , giving a contradiction. �

Corollary 2.8. Let F be an algebraically closed field and I be an ideal in
the polynomial ring R = F [x1, . . . , xn]. Then either I = R or there exists
α ∈ An

F such that f(α) = 0 for all f ∈ I.

Proof. Suppose that I 
= R. Then I is contained in some maximal ideal
m of R (as the ring R/I has a maximal ideal) and R/m is a field, which
is a finitely generated F -algebra. By Theorem 2.7, this field is algebraic
over F and so is equal to F as F is algebraically closed. Thus there exist
a1, . . . , an ∈ F such that m = (x1 − a1, . . . , xn − an) and f(a1, . . . , an) = 0
for all f ∈ I since I ⊂ m. �

The above proof establishes the following corollary.

Corollary 2.9. Suppose that F is an algebraically closed field and I is an
ideal in the polynomial ring F [x1, . . . , xn]. Then I is a maximal ideal if and
only if there exist a1, . . . , an ∈ F such that I = (x1−a1, x2−a2, . . . , xn−an).

We now prove Theorem 2.5. We may assume that f 
= 0. Let Y be
a variable and let I ′ be the ideal in R[Y ] generated by I and 1 − fY . By
Corollary 2.8, the ideal I ′ = R[Y ], so there exist gi ∈ R[Y ] and hi ∈ I such
that

1 = g0(1− Y f) + g1h1 + · · · + grhr.

Substitute 1
f for Y and multiply by an appropriate positive power fm of f

to clear denominators on the right-hand side, to conclude that fm ∈ I.

The following proposition is proven in Exercise 2.14.

Proposition 2.10. The following statements hold:

1) Suppose that Y is a subset of An. Then I(Y ) is an ideal in k[An].

2) If T1 ⊂ T2 are subsets of k[An], then Z(T2) ⊂ Z(T1).

3) If Y1 ⊂ Y2 are subsets of An, then I(Y2) ⊂ I(Y1).

4) For any two subsets Y1, Y2 of An, we have I(Y1∪Y2) = I(Y1)∩I(Y2).

5) For any ideal a of k[An], we have I(Z(a)) =
√
a.

6) For any subset Y of An, Z(I(Y )) = Y , the Zariski closure of Y .

Theorem 2.11. A closed set W ⊂ An is irreducible if and only if I(W ) is
a prime ideal.
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Proof. Suppose that W is irreducible and f, g ∈ k[An] are such that fg ∈
I(W ). Then W ⊂ Z(fg) = Z(f)∪Z(g). Thus W = (Z(f)∩W )∪(Z(g)∩W )
expresses W as a union of closed sets. Since W is irreducible, we have
W ⊂ Z(f) or W ⊂ Z(g). Thus f ∈ I(W ) or g ∈ I(W ). We have verified
that I(W ) is a prime ideal.

Now suppose that W is not irreducible. Then W = Z1 ∪ Z2 where Z1

and Z2 are proper closed subsets of W . The ideal I(Z1) is not a subset of
I(Z2). If it were, then we would have

Z2 = Z(I(Z2)) ⊂ Z(I(Z1)) = Z1

by 2) and 6) of Proposition 2.10, which is impossible. Thus there exists
f1 ∈ k[An] which vanishes on Z1 but not on Z2. Similarly, there exists
f2 ∈ k[An] which vanishes on Z2 and not on Z1. We have f1f2 ∈ I(W ), but
f1, f2 
∈ I(W ). Thus I(W ) is not a prime ideal. �

Theorem 2.12. Every closed set in An is the union of finitely many irre-
ducible ones.

Proof. Suppose that Z is an algebraic set in An which is not the union
of finitely many irreducible ones. Then Z = Z1 ∪ Z2 where Z1 and Z2

are proper closed subsets of Z and either Z1 or Z2 is not a finite union of
irreducible closed sets. By induction, we can construct an infinite chain of
proper inclusions

Z ⊃ W1 ⊃ W2 ⊃ · · ·
giving an infinite chain of proper inclusions

I(Z) ⊂ I(W1) ⊂ I(W2) ⊂ · · ·

of ideals in k[An] (by 3) and 6) of Proposition 2.10), a contradiction to
Corollary 1.27. �

Exercise 2.13. Prove 2), 3), and 4) of Proposition 2.1.

Exercise 2.14. Prove Proposition 2.10.

Exercise 2.15. Suppose that X ⊂ An is an affine algebraic set. Show that√
I(X) = I(X).

Exercise 2.16. Show that An is irreducible in the Zariski topology.

Exercise 2.17. Suppose that k[x1, . . . , xn] is a polynomial ring over k.
Suppose that I ⊂ k[x1, . . . , xn] in an ideal. Let R = k[x1, . . . , xn]/I. Let xi
be the class of xi in R, so that R = k[x1, . . . , xn]. Show that an ideal m in
R is a maximal ideal of R if and only if there exist a1, . . . , an ∈ k such that
m = (x1 − a1, x2 − a2, . . . , xn − an).
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Exercise 2.18. Suppose that F ∈ k[x1, . . . , xn] is a nonzero nonunit ( 
∈ k).
Show that Z(F ) ⊂ An is irreducible if and only if F is a positive power
of an irreducible element of k[x1, . . . , xn]. Warning: The conclusion of this
exercise can be false if k is not algebraically closed.

Exercise 2.19. Let Y = Z(x21 − x2x3, x1x3 − x1). Show that Y is a union
of three irreducible components. Describe them and find their prime ideals.

Exercise 2.20. Identify A2 with A1×A1 in the natural way. Show that the
Zariski topology on A2 is not the product topology of the Zariski topology
on the two copies of A1.

Exercise 2.21. Suppose that X is an irreducible topological space.

a) Suppose that U is a nonempty open subset. Show that U is irre-
ducible.

b) Suppose that U1 and U2 are nonempty open sets. Show that U1 ∩
U2 
= ∅.

2.2. Regular functions and regular maps of affine algebraic
sets

Definition 2.22. Suppose X ⊂ An is a closed set. The regular functions
on X are the polynomial maps on X,

k[X] = {f : X → A1 | f ∈ k[An]},

which is a subalgebra of the k-algebra Map(X,A1) of maps from X to A1.

We have a natural surjective k-algebra homomorphism, given by restric-
tion, k[An] → k[X]. An element f ∈ k[An] is in the kernel if and only if
f(q) = 0 for all q ∈ X, which holds if and only if f ∈ I(X). Thus

k[X] ∼= k[An]/I(X).

We have that k[X] is a reduced ring by Exercise 2.15.

Definition 2.23. Suppose that X is an affine algebraic set. If T ⊂ k[X],
then

ZX(T ) = {p ∈ X | f(p) = 0 for all f ∈ T},
a subset of X. Suppose that Y ⊂ X is a subset. Then

IX(Y ) = {f ∈ k[X] | f(p) = 0 for all p ∈ Y }.

We readily verify that IX(Y ) is an ideal in k[X].

When there is no ambiguity, we will usually write Z(T ) for ZX(T ) and
I(Y ) for IX(Y ).
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Lemma 2.24. Suppose that X is a closed subset of An. Let res : k[An] →
k[X] be the restriction map.

1) Suppose that Y ⊂ X. Then

res−1(IX(Y )) = IAn(Y ).

2) Suppose that I is an ideal in k[X]. Then

ZAn(res−1(I)) = ZX(I).

Proof. The map res : k[An] → k[X] is surjective with kernel IAn(X). We
first prove 1). Since Y ⊂ X, f ∈ k[An] vanishes on Y if and only if the
restriction res(f) of f to X vanishes on Y . Thus formula 1) holds.

Now we prove 2). For p ∈ ZX(I) and f ∈ k[An], f(p) = res(f)(p) since
ZX(I) ⊂ X. Thus f ∈ res−1(I) implies f(p) = 0 for all p ∈ ZX(I), so that
ZX(I) ⊂ ZAn(res−1(I)).

Now 0 ∈ I since I is an ideal, so IAn(X) ⊂ res−1(I). Suppose that
p ∈ ZAn(res−1(I)). Then p ∈ ZAn(IAn(X)) = X. Since res is surjective,
p ∈ X, and f(p) = 0 for all f ∈ res−1(I), we have that g(p) = 0 for all g ∈ I.
Thus p ∈ ZX(I). �

We see from Lemma 2.24 that the natural isomorphism of k[X] with
k[An]/IAn(X) identifies the ideal IX(Y ), for Y a subset of X, with the
quotient IAn(Y )/IAn(X).

Theorem 2.25. Suppose that X is a closed subset of An. Then the conclu-
sions 1)–4) of Proposition 2.1 hold, with An replaced with X.

We thus obtain a topology on a closed subset X of An, where the closed
sets are ZX(I) for ideals I ⊂ k[X]. This topology is the restriction topology
of the Zariski topology on An. We call this the Zariski topology on X.

If Y is a subset of X, Y will denote the Zariski closure of Y in X. A
closed irreducible subset of an affine variety X is called a subvariety of X.
An open subset of an affine variety is called a quasi-affine variety. An affine
algebraic set is a closed subset of An. A quasi-affine algebraic set is an open
subset of a closed subset of An.

Theorem 2.26. Suppose that X is a closed subset of An. Then the conclu-
sions 1)–6) of Proposition 2.10 hold, with An replaced with X.

Proof. We have already observed that the conclusion 1) holds. We will es-
tablish that 5) of Proposition 2.10 holds for algebraic sets. We first establish
that

(2.1)
√

res−1(a) = res−1(
√
a).
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To prove this, observe that

f ∈ res−1(
√
a)

if and only if res(fn) = res(f)n ∈ a for some positive integer n

if and only if fn ∈ res−1(a)

if and only if f ∈
√

res−1(a).

We have that

res−1(IX(ZX(a))) = IAn(ZAn(res−1(a))) by 1) and 2) of Lemma 2.24

=
√

res−1(a) by 5) of Proposition 2.10.

Thus

IX(ZX(a)) = res(res−1(IX(ZX(a)))) = res(
√

res−1(a)) =
√
a

by (2.1). �

Theorem 2.27. Suppose that X is a closed subset of An. A closed set
W ⊂ X is irreducible if and only if IX(W ) is a prime ideal in k[X].

Definition 2.28. Suppose X ⊂ An is a closed set. A map φ : X → Am is a
regular map if there exist f1, . . . , fm ∈ k[X] such that φ = (f1, f2, . . . , fm).

A regular map φ = (f1, . . . , fm) : X → Am induces a k-algebra homo-
morphism φ∗ : k[Am] → k[X] by φ∗(g) = g ◦ φ for g ∈ k[Am]. Writing
k[Am] = k[y1, . . . , ym], we see that φ∗ is determined by φ∗(yi) = fi for
1 ≤ i ≤ m. For g = g(y1, . . . , ym) ∈ k[Am], we have

φ∗(g) = g(φ∗(y1), . . . , φ
∗(ym)) = g(f1, . . . , fm).

Example 2.29. Let C = Z(y2 − x(x2 − 1)) ⊂ A2. Let φ : C → A1 be the
projection on the first factor, so that φ(u, v) = u for (u, v) ∈ C.

φ∗ : k[A1] = k[t] → k[C] = k[x, y]/(y2 − x(x2 − 1)) = k[x, y]

is the k-algebra homomorphism induced by t �→ x. Here x is the class of x
in k[C] and y is the class of y in k[C].

Example 2.30. Let ψ : A1 → A2 be defined by ψ(s) = (s2, s3) for s ∈ A1.

ψ∗ : k[A2] = k[x, y] → k[A1] = k[t]

is the k-algebra homomorphism induced by x �→ t2 and y �→ t3.

Proposition 2.31. Suppose that X is a closed subset of An, Y is a closed
subset of Am, and φ : X → Am is a regular map. Then φ(X) ⊂ Y if and
only if

I(Y ) ⊂ kernel φ∗ : k[Am] → k[X].
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Proof. We have that φ(X) ⊂ Y holds if and only if h(φ(p)) = 0 for all
h ∈ I(Y ) and p ∈ X, which holds if and only if φ∗(h) = 0 for all h ∈ I(Y ),
which holds if and only if I(Y ) ⊂ kernel φ∗. �
Corollary 2.32. Suppose that X is an affine algebraic set and φ : X → Am

is a regular map. Then
√
kernel —φ∗ = kernel φ∗, and φ(X) = Z(kernel φ∗),

where φ(X) is the Zariski closure of φ(X) in An.

Proof. The fact that
√
kernel φ∗ = kernel φ∗ follows from the fact that

k[Am]/kernel φ∗ is isomorphic to a subring of the reduced ring k[X].

Let
S = {closed subsets Y of Am | φ(X) ⊂ Y }.

A closed set Y is in S if and only if I(Y ) ⊂ kernel φ∗ by Proposition 2.31
and W = Z(kernel φ∗) ∈ S since I(W ) = kernel φ∗ by 5) of Proposition
2.10. Thus ∑

Y ∈S
I(Y ) = kernel φ∗,

and

Z(kernel φ∗) = Z

(∑
Y ∈S

I(Y )

)
=
⋂
Y ∈S

Z(I(Y )) by 2) of Proposition 2.1

=
⋂
Y ∈S

Y by 6) of Proposition 2.10

= φ(X). �
Example 2.33. The image of a regular map may be neither closed nor
open. Let φ : A2 → A2 be defined by φ(u, v) = (u, uv). Then

φ(A2) = A2 \ {(0, y) | y 
= 0}.
Definition 2.34. Suppose that X ⊂ An and Y ⊂ Am are closed sets. A
map φ : X → Y is a regular map if φ is the restriction of the range of a
regular map φ̃ : X → Am, such that φ̃(X) ⊂ Y .

Suppose that φ : X → Y is a regular map as in the definition. Let π :
k[Am] = k[y1, . . . , ym] → k[Y ] be the restriction map, which has kernel I(Y ).

We have that φ̃(X) ⊂ Y , so I(Y ) ⊂ kernel(φ̃∗) by Proposition 2.31. Thus

φ̃∗ induces a k-algebra homomorphism φ∗ : k[Y ] ∼= k[Am]/I(Y ) → k[X].

Thus writing φ̃ = (f1, . . . , fm), where f1, . . . , fm ∈ k[X], and k[Y ] =
k[y1, . . . , ym], where yi = π(yi) for 1 ≤ i ≤ m are the restrictions of yi to Y ,

we have that fi = φ∗(yi) = φ̃∗(yi) for 1 ≤ i ≤ m, and for g(y1, . . . , ym) ∈
k[Y ], we have that φ∗(g) = g(φ∗(y1), . . . , φ

∗(ym)) = g(f1, . . . , fm).
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Definition 2.35. A regular map φ : X → Y is dominant if φ(X) is dense
in Y .

Proposition 2.36. Suppose that φ : X → Y is a regular map of affine
algebraic sets and Z ⊂ Y is a closed set. Then φ−1(Z) = Z(φ∗(I(Z))).

Corollary 2.37. Suppose that X and Y are affine algebraic sets and φ :
X → Y is a regular map. Then φ is continuous.

Proposition 2.38. Suppose that φ : X → Y is a regular map of affine
algebraic sets. Then φ∗ : k[Y ] → k[X] is injective if and only if φ(X) = Y .

Proof. We have that φ(X) = Z(kernel φ∗) by Corollary 2.32 and

Z(kernel φ∗) = Y

if and only if kernel φ∗ = I(Y ) = (0). �

Lemma 2.39. Suppose that φ : X → Y and ψ : Y → Z are regular maps of
affine algebraic sets. Then ψ◦φ : X → Z is a regular map of affine algebraic
sets. Further, (ψ ◦ φ)∗ = φ∗ ◦ ψ∗ : k[Z] → k[X].

Proposition 2.40. Suppose that X and Y are affine algebraic sets and
Λ : k[Y ] → k[X] is a k-algebra homomorphism. Then there is a unique
regular map φ : X → Y such that φ∗ = Λ.

Proof. We first prove existence. We have that Y is a closed subset of An,
giving a surjective k-algebra homomorphism π : k[An] = k[y1, . . . , yn] →
k[Y ]. Let yi = π(yi) for 1 ≤ i ≤ n, so that k[Y ] = k[y1, . . . , yn]. Define a

regular map φ̃ : X → An by φ̃ = (Λ(y1), . . . ,Λ(yn)).

Suppose f(y1, . . . , yn) ∈ k[An]. Then

φ̃∗(f(y1, . . . , yn)) = f ◦ φ̃ = f(Λ(y1), . . . ,Λ(yn))
= Λ(f(y1, . . . , yn)) = Λ(π(f))

since Λ and π are k-algebra homomorphisms. Thus φ̃∗ = Λ ◦ π, and so

I(Y ) = kernel π ⊂ kernel φ̃∗.

Thus φ̃(X) ⊂ Y by Proposition 2.31. Let φ : X → Y be the induced regular

map. The map φ∗ is the homomorphism induced by φ̃∗ on the quotient
k[y1, . . . , yn]/I(Y ) = k[Y ]. Thus φ∗ = Λ.

We now prove uniqueness. Suppose that φ : X → Y and ψ : X → Y
are regular maps such that φ∗ = ψ∗ = Λ. Suppose that φ 
= ψ. Then there
exists p ∈ X such that φ(p) 
= ψ(p). Let q1 = φ(p) and q2 = ψ(p). There
exists f ∈ I(q1) \ I(q2) since I(q1) and I(q2) are distinct maximal ideals of
k[Y ]. Thus f(q1) = 0 but f(q2) 
= 0. We have

(φ∗f)(p) = f(φ(p)) = f(q1) = 0
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but

(ψ∗f)(p) = f(ψ(p)) = f(q2) 
= 0.

Thus φ∗ 
= ψ∗, a contradiction, so we must have that φ = ψ, and thus φ is
unique. �

Definition 2.41. Suppose that X and Y are affine algebraic sets. We say
that X and Y are isomorphic if there are regular maps φ : X → Y and
ψ : Y → X such that ψ ◦ φ = idX and φ ◦ ψ = idY .

Proposition 2.42. Suppose that φ : X → Y is a regular map of affine
algebraic sets. Then φ is an isomorphism if and only if φ∗ : k[Y ] → k[X] is
an isomorphism of k-algebras.

Proof. First suppose that the regular map φ : X → Y is an isomorphism.
Then there exists a regular map ψ : Y → X such that ψ ◦ φ = idX and
φ ◦ ψ = idY . Thus (ψ ◦ φ)∗ = idk[X] and (φ ◦ ψ)∗ = idk[Y ]. Now (ψ ◦ φ)∗ =
φ∗ ◦ ψ∗ and (φ ◦ ψ)∗ = ψ∗ ◦ φ∗ by Lemma 2.39, so φ∗ : k[Y ] → k[X] is a
k-algebra isomorphism with inverse ψ∗.

Now assume that φ∗ : k[Y ] → k[X] is a k-algebra isomorphism. Let
Λ : k[X] → k[Y ] be the k-algebra inverse of φ∗. By Proposition 2.40, there
exists a unique regular map ψ : Y → X such that ψ∗ = Λ. Now by Lemma
2.39,

(ψ ◦ φ)∗ = φ∗ ◦ ψ∗ = φ∗ ◦ Λ = idk[X]

and

(φ ◦ ψ)∗ = ψ∗ ◦ φ∗ = Λ ◦ φ∗ = idk[Y ].

Since (idX)∗ = idk[X], by uniqueness in Proposition 2.40, we have that
ψ ◦ φ = idX . Similarly, φ ◦ ψ = idY . Thus φ is an isomorphism. �

Definition 2.43. Suppose that X is an affine algebraic set and t1, . . . , tr ∈
k[X] are such that t1, . . . , tr generate k[X] as a k-algebra. Let φ : X → Ar

be the regular map defined by φ = (t1, . . . , tr). Then t1, . . . , tr are called
coordinate functions on X and φ is called a closed embedding.

That the map φ of Definition 2.43 is called a closed embedding is justified
by the following proposition.

Proposition 2.44. Suppose that X is an affine algebraic set and t1, . . . , tr
are coordinate functions on X. Let φ : X → Ar be the associated closed
embedding φ = (t1, . . . , tr), and let Y = φ(X). Then Y is a closed subset of
Ar with ideal I(Y ) = kernel φ∗ : k[Ar] → k[X], and regarding φ as a regular
map to Y , we have that φ : X → Y is an isomorphism.

Proof. Let Y be the Zariski closure of Y in Ar. We have I(Y ) = kernel φ∗

by Corollary 2.32. Thus φ∗ : k[Ar] → k[X] is onto with kernel I(Y ), so that
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now regarding φ as a regular map from X to Y , we have that φ∗ : k[Y ] =
k[Ar]/I(Y ) → k[X] is an isomorphism. Thus φ : X → Y is an isomorphism
by Proposition 2.42, and so Y = Y . �

Our definition of An = {p = (a1, . . . , an) | a1, . . . , an ∈ k} naturally
gives us particular coordinate functions, namely the coordinate functions xi
for 1 ≤ i ≤ n. If B = (bij) is an invertible n×n matrix with coefficients in k
and c = (c1, . . . , cn) is a vector in kn, then yi =

∑n
j=1 bijxj+ci for 1 ≤ i ≤ n

defines another choice of coordinate functions y1, . . . , yn on An.

We deduce the following from Proposition 2.36.

Lemma 2.45. Suppose that φ : X → Y is a regular map of affine algebraic
sets and t1, . . . , tn are coordinate functions on Y (giving a closed embedding
of Y in An). Suppose that p ∈ Y . Then I(p) = (t1 − t1(p), . . . , tn − tn(p))
and

I(φ−1(p)) =
√
(φ∗(t1) − t1(p), . . . , φ∗(tn) − tn(p)).

The results of this section show that there is an equivalence of categories
between the category of reduced finitely generated k-algebras and their k-
algebra homomorphisms, and the category of affine algebraic sets in An

k for
some n and regular maps between affine algebraic sets. Further, this equiv-
alence restricts to give an equivalence of categories between the category of
finitely generated k-algebras which are domains and their k-algebra homo-
morphisms, and the category of affine varieties in An

k for some n and regular
maps between affine varieties.

Exercise 2.46. Is formula 2) of Lemma 2.24 always true if I is replaced by
a subset T of k[X]?

Exercise 2.47. Prove Theorem 2.25.

Exercise 2.48. Prove 4) and 6) of Theorem 2.26.

Exercise 2.49. Prove Theorem 2.27.

Exercise 2.50. Prove Proposition 2.36 and deduce Lemma 2.45.

Exercise 2.51. Prove Lemma 2.39.

Exercise 2.52. Let k[An] = k[x1, . . . , xn].

a) Suppose that a, b, c, d, e, f ∈ k with ae − bd 
= 0. Show that the
map φ : A2 → A2 defined by φ = (ax1 + bx2 + c, dx1 + ex2 + f) is
an isomorphism. Give an explicit description of φ−1.
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b) Suppose that φ : An → An is defined by φ = (f1, . . . , fn) where

fi =
n∑

j=1

aijxj + bi

with aij , bi ∈ k and Det(aij) 
= 0. Show that φ is an isomorphism
of An. Give an explicit description of φ−1.

Exercise 2.53. A quadratic polynomial in k[x1, x2] is a polynomial all of
whose terms are monomials of degree ≤ 2.

a) Let X = Z(x2 − x21) ⊂ A2. Show that X is a variety and that
X ∼= A1.

b) Let Y = Z(x1x2 − 1) ⊂ A2. Show that Y is a variety and that
Y 
∼= A1.

c) Let f be any irreducible quadratic polynomial in k[x1, x2], and let
W = Z(f). Assume that k has characteristic 
= 2. Show that W is
isomorphic to X or to Y .

d) Can you give a proof of c) which is valid when k has characteristic
2?

Exercise 2.54. Let X = Z(x22 − x31) ⊂ A2. Consider the regular map
φ : A1 → X defined by φ(t) = (t2, t3) for t ∈ A1.

a) Show that φ is a bijection.

b) Show that φ is not an isomorphism.

2.3. Finite maps

In this section we interpret the algebraic notion of a ring extension being
finite geometrically.

Definition 2.55. Suppose that f : X → Y is a regular map of affine
varieties. We say that f is a finite map if k[X] is integral and thus a finitely
generated module over the subring f∗(k[Y ]).

In the case when f : X → Y is dominant, so that f∗ : k[Y ] → k[X]
is injective, it may sometimes be convenient to abuse notation and identify
k[Y ] with its isomorphic image f∗(k[Y ]). In this way, we may sometimes
write t for f∗(t) if t ∈ k[Y ].

Theorem 2.56. Suppose that f : X → Y is a finite map of affine varieties.
Then f−1(p) is a finite set for all p ∈ Y .

Proof. Let t1, . . . , tn be coordinate functions on X. It suffices to show that
each ti assumes only finitely many values on f−1(p). Since k[X] is integral
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over f∗(k[Y ]), each ti satisfies a dependence relation

tmi + f∗(bm−1)t
m−1
i + · · · + f∗(b0) = 0

with m ∈ Z+ and b0, . . . , bm−1 ∈ k[Y ]. Suppose that q ∈ f−1(p). Then

0 = ti(q)
m + f∗(bm−1)(q)ti(q)

m−1 + · · · + f∗(b0)(q)
= ti(q)

m + bm−1(p)ti(q)
m−1 + · · · + b0(p).

Thus ti(q) must be one of the ≤ m roots of this equation. �

Theorem 2.57. Suppose that f : X → Y is a dominant finite map of affine
varieties. Then f is surjective.

Proof. Let q ∈ Y . Let mq = I(q) be the ideal of q in k[Y ]. Then
f−1(q) = Z(f∗(mq)) by Proposition 2.36. Then f−1(q) = ∅ if and only
if f∗(mq)k[X] = k[X]. By Proposition 1.56, f∗(mq)k[X] is a proper ideal of
k[X] since f∗(k[Y ]) ∼= k[Y ] and mq is a prime ideal of k[Y ]. �

Corollary 2.58. A finite map f : X → Y of affine varieties is a closed
map.

Proof. It suffices to verify that if Z ⊂ X is an irreducible closed subset,
then f(Z) is closed in Y . Let W = f(Z) be the closure of f(Z) in Y . Let
f = f |Z : Z → W . The homomorphism f∗ : k[Y ] → k[X] induces the

homomorphism f
∗
: k[W ] = k[Y ]/I(W ) → k[X]/I(Z) = k[Z] by Proposi-

tion 2.31. The ring k[Z] is integral over f
∗
(k[W ]) since k[X] is integral over

f∗(k[Y ]). Thus f : Z → W is a dominant finite map, which is surjective by
Theorem 2.57. Thus f(Z) = W is closed in Y . �

Theorem 2.59. Suppose that X is an affine algebraic set. Then there exists
a dominant finite map φ : X → Ar for some r.

Proof. There exist, by Theorem 1.53, y1, . . . , yr ∈ k[X] such that
k[y1, . . . , yr] is a polynomial ring and k[X] is integral over k[y1, . . . , yr].
Define a regular map φ : X → Ar by φ(p) = (y1(p), y2(p), . . . , yr(p)) for
p ∈ X. Let t1, . . . , tr be the natural coordinate functions on Ar. Then
φ∗ : k[Ar] → k[X] is the k-algebra homomorphism defined by φ∗(ti) = yi
for 1 ≤ i ≤ r. Thus φ∗ is injective and k[X] is integral over k[Ar], and so
φ : X → Ar is dominant and finite. �

Exercise 2.60. Suppose that φ : X → Y is a regular map of affine varieties
such that φ−1(p) is a finite set for all p ∈ Y and φ∗ : k[Y ] → k[X] is injective.
Is φ necessarily a finite map?

Exercise 2.61. Suppose that φ : X → Y is a surjective regular map of affine
varieties such that φ−1(p) is a finite set for all p ∈ Y and φ∗ : k[Y ] → k[X]
is injective. Is φ necessarily a finite map?
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Exercise 2.62. Suppose that φ : X → Y is a dominant regular map of
varieties. Can there exist a prime ideal I in k[Y ] such that Ik[X] = k[X]?
Compare this exercise with the conclusions of Proposition 1.56.

2.4. Dimension of algebraic sets

Theorem 2.59 gives us a geometric way to define the dimension of an affine
variety: an affine variety X has dimension r if there is a dominant finite map
from X to Ar. We will give an algebraic definition of dimension and show
that it agrees with the geometric definition. An introduction to dimension
theory in rings can be found in Section 1.8.

An irreducible topological space is defined before Example 2.3.

Definition 2.63. Suppose that X is a topological space. The dimension of
X, denoted dimX, is the supremum of all numbers n such that there exists
a chain

(2.2) Z0 ⊂ Z1 ⊂ · · · ⊂ Zn

of distinct irreducible closed subsets of X. The dimension of an affine alge-
braic set or quasi-affine algebraic set is its dimension as a topological space.

This definition of dimension works well for the Zariski topology but does
not agree with the usual definition of dimension of Cn with the Euclidean
topology since the only irreducible subsets in Cn (in the Euclidean topology)
are the single points. We will see that the dimension of a complex variety
is equal to its dimension in the Euclidean topology in Theorem 10.45.

Proposition 2.64. Suppose that X is an affine algebraic set. Then the di-
mension of X is equal to the dimension of the ring k[X] of regular functions
on X.

Proof. By Theorems 2.26, 2.25, and 2.27, chains

Z0 ⊂ Z1 ⊂ · · · ⊂ Zn

of distinct irreducible closed subsets of X correspond 1-1 to chains

IX(Zn) ⊂ IX(Zn−1) ⊂ · · · ⊂ IX(Z0)

of distinct prime ideals in k[X]. �

From Theorem 1.63 we obtain the following two propositions.

Proposition 2.65. The dimension of an affine variety is finite.

This proposition follows since if X is an affine variety, then the domain
k[X] is a finitely generated k-algebra, so its quotient field is a finitely gen-
erated extension field of k, and thus it has a finite transcendence basis.
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Proposition 2.66. The dimension of An is dimAn = n.

Proposition 2.67. Suppose that X is an affine algebraic set and V1, . . . , Vr

are the irreducible components of X (the distinct largest irreducible sets con-
tained in X). Then

dimX = max{dimVi}.

Proof. Suppose that (2.2) is a chain of irreducible closed subsets of X.
Then Zn is contained in Vi for some i since Zn is irreducible and the Vi are
the irreducible components of X. �

A chain (2.2) is maximal if the chain cannot be lengthened by adding
an additional irreducible closed set somewhere in the chain.

Corollary 2.68. Suppose that X is an affine variety. Then every maximal
chain of distinct prime ideals in k[X] has the same finite length equal to the
dimension of k[X].

Proof. The proof is by induction on the dimension of X. If dimX = 0,
then k[X] = k is a field and the corollary is trivially true.

Suppose dimX = n > 0 and the corollary is true for varieties of dimen-
sion < n. Suppose that

P0 ⊂ P1 ⊂ · · · ⊂ Pm

is a maximal chain of distinct prime ideals in k[X].

1 + dim k[X]/P1 = ht(P1) + dim k[X]/P1 = dim k[X] = n

by Theorem 1.64, and so dim k[X]/P1 = n− 1. Now

P1/P1 ⊂ P2/P1 ⊂ · · · ⊂ Pm/P1

is a maximal chain of distinct prime ideals in k[X]/P1, and k[X]/P1 =
k[ZX(P1)] so by induction on n, the variety ZX(P1) has dimension m − 1.
Thus

n − 1 = dim k[X]/P1 = m− 1,

and so m = n = dimX. �

Some examples of noncatenary Noetherian rings (rings which do not sat-
isfy the conclusions of Corollary 2.68) are given by Nagata in [121, Appendix
A1].

Corollary 2.69. Suppose that X is an affine variety. Then every maximal
chain of distinct irreducible closed subsets of X has the same length (equal
to dimX).
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Proof. Suppose that (2.2) is a maximal chain of distinct irreducible closed
subsets of X. Since X is irreducible, we must have that Zn = X and Z0

is a point. Taking the sequence of ideals of (2.2), we have a maximal chain
(0) = IX(Zn) ⊂ · · · ⊂ IX(Z0) of distinct prime ideals in k[X]. By Corollary
2.68 and Proposition 2.64, we have that n = dim k[X] = dimX. �

Proposition 2.70. Suppose that X is an affine variety and Y is a nontrivial
open subset of X. Then dimX = dimY .

Proof. Suppose that

(2.3) Z0 ⊂ Z1 ⊂ · · · ⊂ Zn

is a sequence of distinct closed irreducible subsets of Y . Let Zi be the Zariski
closure of Zi in X for 0 ≤ i ≤ n. Then

(2.4) Z0 ⊂ Z1 ⊂ · · · ⊂ Zn

is a sequence of distinct closed irreducible subsets of X since Zi∩Y = Zi, as
Zi is closed in Y and Y is open in X. Thus dimY ≤ dimX. In particular,
dimY is finite, so we can choose a maximal such chain (2.3). Since the chain
is maximal, Z0 is a point and Zn = Y . Now if W is an irreducible closed
subset of X such that the open subset W ∩ Y of W is nonempty, we then
have that W ∩ Y is dense in W . In particular, if A ⊂ B are irreducible
closed subsets of X such that A ∩ Y 
= ∅ and A ∩ Y = B ∩ Y , then we have
that A = A ∩ Y = B ∩ Y = B. Thus we have that (2.4) is a maximal chain
in X, and hence dimY = dimX by Corollary 2.69. �

Noether’s normalization lemma, Theorem 1.53, can be used to compute
the dimension of any affine variety (by Theorem 1.63). In fact, we see that
if φ : X → Ar is a dominant finite map, then r = dimX.

Suppose that R is a Noetherian ring and I ⊂ R is an ideal. Since R is
Noetherian, the ideal I has only a finite number of minimal primes P1, . . . , Pr

(Section 1.6). We have that I ⊂ P1 ∩ · · · ∩ Pr and I = P1 ∩ · · · ∩ Pr if and

only if I is a radical ideal (
√
I = I).

Suppose thatX is a closed subset of An. Let V1, . . . , Vr be the irreducible
components of X; that is, V1, . . . , Vr are the irreducible closed subsets of X
such that X = V1 ∪ · · · ∪ Vr and we have Vi 
⊂ Vj if i 
= j. Then the
minimal primes of I(X) are Pi = I(Vi) for 1 ≤ i ≤ r. The prime ideals
P i = IX(Vi) = Pi/I(X) are the minimal primes of the ring k[X], that is,
the minimal primes of the zero ideal. We have that P 1∩· · ·∩P r = (0) since
I(X) is a radical ideal.

The following theorem follows from Krull’s principal ideal theorem (The-
orem 1.65).
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Theorem 2.71. Suppose that X is an affine variety and f ∈ k[X]. Then:

1) If f is not 0 and is not a unit in k[X], then ZX(f) is a nonempty
algebraic set, all of whose irreducible components have dimension
equal to dimX − 1.

2) If f is a unit in k[X], then ZX(f) = ∅.
3) If f = 0, then ZX(f) = X.

Proposition 2.72. Suppose that X is a variety in An. Then X has dimen-
sion n − 1 if and only if I(X) = (f) where f ∈ k[An] = k[x1, . . . , xn] is an
irreducible polynomial.

Proof. Suppose that I(X) = (f) where f is irreducible. Then (f) is a prime
ideal by Proposition 1.30 (since k[An] is a unique factorization domain)
which has height 1 by Theorem 1.65. Thus

dimX = dim k[X] = dim k[An] − ht(f) = dim k[An] − 1 = dimAn − 1

by Theorem 1.64.

Now suppose that X has dimension n − 1. Then the prime ideal I(X)
has height 1 by Theorem 1.64. Since the polynomial ring k[An] is a unique
factorization domain, I(X) is a principal ideal generated by an irreducible
element by Proposition 1.66. �

If Y is an affine or quasi-affine algebraic set contained in an affine variety
X, then we define the codimension of Y in X to be codimX(Y ) = dimX −
dimY . If Y is a subvariety of an algebraic variety X, then we have that
codimX(Y ) is the height of the prime ideal IX(Y ) in k[X].

More generally, suppose that X is an n-dimensional affine variety and
Y ⊂ X is an algebraic set with irreducible components Y1, . . . , Ys. We have

codimX(Y ) = dim(X)− dim(Y )
= dim(X)− max{dim(Yi)} (by Proposition 2.67)
= min{n− dim(Yi)}
= min{height IX(Yi)}.

We will call a one-dimensional affine variety a curve and a two-dimen-
sional affine variety a surface. An n-dimensional affine variety is called an
n-fold.

We see that if C is a curve, then the prime ideals in k[C] are just the
maximal ideals (corresponding to the points of C) and the zero ideal (cor-
responding to the curve C). If S is a surface and k[S] is a UFD, then the
prime ideals in k[S] are the maximal ideals (corresponding to the points of
S), principal ideals generated by an irreducible element (corresponding to
the curves lying on S), and the zero ideal (corresponding to the surface S).
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If X is an n-fold with n ≥ 3, then the prime ideals in k[X] are much more
complicated. The prime ideals in k[A3] are the maximal ideals (height 3),
height 2 prime ideals, principal ideals generated by an irreducible element
(height 1), and the zero ideal (height 0). The height 2 prime ideals p , which
correspond to curves in A3, can be extremely complicated, although many
times one has the nice case where p is generated by two elements. A height
2 prime p in k[A3] requires at least two generators but there is no upper
bound on the minimum number of generators required to generate such a
prime p. Some examples showing this are given in [5]. A complete analysis
of the generators of monomial space curves is given by Jürgen Herzog in
[76]. The book [130] by Judith Sally gives an excellent introduction to the
question of the number of generators of an ideal in a local ring.

Exercise 2.73. This exercise gives a criterion which can be used to de-
termine the minimal number of generators of an ideal in a nonlocal ring.
Suppose that R = k[x1, . . . , xn] is a finitely generated k-algebra, I ⊂ R is
an ideal, and m is a maximal ideal of R. Let μ(I) be the minimal number
of generators of I. Using Lemmas 1.19 and 1.28, show that

μ(I) ≥ μ(Im) = dimk Im/mIm.

Exercise 2.74. Define a regular map Φ : A1 → A3 by Φ(t) = (t, t2, t3) for
t ∈ A1. Let X be the image of Φ.

a) Show that Φ is a finite map.

b) Show that X is a variety (the image of Φ is Zariski closed).

c) Show that Φ is injective.

d) Determine if Φ : A1 → X is an isomorphism of varieties.

e) Find a minimal set of generators of the ideal I(X); that is, find
a set of generators of I(X) with the smallest possible number of
elements.

Exercise 2.75. Define a regular map Φ : A1 → A3 by Φ(t) = (t2, t3, t4) for
t ∈ A1. Let X be the image of Φ.

a) Show that Φ is a finite map.

b) Show that X is a variety (the image of Φ is Zariski closed).

c) Show that Φ is injective.

d) Determine if Φ : A1 → X is an isomorphism of varieties.

e) Find a minimal set of generators of the ideal I(X); that is, find
a set of generators of I(X) with the smallest possible number of
elements. You may find that Exercise 2.73 and the method of the
next problem (Exercise 2.76) will be useful in this problem.
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Exercise 2.76. Define a regular map Φ : A1 → A3 by Φ(t) = (t3, t4, t5) for
t ∈ A1. Let X be the image of Φ.

a) Show that Φ is a finite map.

b) Show that X is a variety (the image of Φ is Zariski closed).

c) Show that Φ is injective.

d) Determine if Φ : A1 → X is an isomorphism of varieties.

e) Find a minimal set of generators of the ideal I(X); that is, find
a set of generators of I(X) with the smallest possible number of
elements. You may find the following outline of a solution helpful:
i) Define a “weighting” on the variables x1, x2, x3 by setting

wt(x1) = 3, wt(x2) = 4, and wt(x3) = 5. Define the weight of
the monomial xl1x

m
2 xn3 to be wt(xl1x

m
2 xn3 ) = 3l+4m+5n. Say

that an element g =
∑

almnx
l
1x

m
2 xn3 is weighted homogeneous

of degree d if 3l + 4m + 5n = d whenever almn 
= 0. Every
element f ∈ k[x1, x2, x3] has a unique expression f =

∑
i Fi

where Fi is weighted homogeneous of degree i.
ii) Show that f ∈ I(X) if and only if Fi ∈ I(X) for all i. Conclude

that I(X) is generated by weighted homogeneous elements.
iii) Show that I(X) is generated by the set of “binomials” A−B

where A and B are monomials which have the same weighted
degree.

iv) Show that I(X) is generated by the set of weighted homoge-
neous binomials which are of one of the following three types:

xl1 − xm2 xn3 , xm2 − xl1x
n
3 , xn3 − xl1x

m
2 .

v) Make an (intelligent) guess of a set of minimal generators of
I(X), consisting of weighted homogeneous binomials. Let J
be the ideal generated by this set. Show that J contains all
weighted homogeneous binomials, by induction on the weighted
degree. Conclude that I(X) = J and your set generates I(X).

vi) Now use Exercise 2.73 to show that you have found a minimal
generating set.

Exercise 2.77. Suppose that R is a ring. Recall (Section 1.5) that an
element f ∈ R is called irreducible if f is not a unit, and f = ab with
a, b ∈ R implies a or b is a unit.

Suppose that X is an affine variety and f ∈ k[X] is irreducible. Is ZX(f)
necessarily irreducible? Either prove this or give a counterexample.

Exercise 2.78. Let X be the variety which is the image of A1 in A3 by the
map φ(t) = (t3, t4, t5) of Exercise 2.76. Compute the dimension of X and
the height of I(X) in k[A3].
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Exercise 2.79. This exercise shows that the assumption that A is a domain
is necessary in the statement of Theorem 1.64.

Let V1 = Z(x) and V2 = Z(y, z) be algebraic sets in A3. The sets V1 and
V2 are irreducible, with I(V1) = (x) and I(V2) = (y, z) (you do not need to
show this). Compute the dimensions of V1 and V2 and the heights of the
prime ideals I(V1) and I(V2) in k[A3]. Let X = V1 ∪ V2. Compute I(X).
Compute the heights of the prime ideals IX(V1) and IX(V2) in k[X].

Exercise 2.80. Let X be a variety, U an open subset of X, 0 
= g ∈ k[X] a
nonunit, and Z an irreducible component of Z(g) ∩ U . Show that dimZ =
dimX − 1.

Exercise 2.81. Suppose thatX ⊂ An is a nonempty closed subset such that
I(X) = (f1, . . . , fr) is generated by r elements. Show that codimAn(X) ≤ r.

Exercise 2.82. Suppose that C is a one-dimensional subvariety of A3. Let
k[A3] = k[x, y, z]. Suppose that C is not a line parallel to the z-axis. Let
π : A3 → A2 be the projection π(a, b, c) = (a, b) for (a, b, c) ∈ A3.

a) Show that the Zariski closure of π(C) is a one-dimensional subva-
riety D of A2 and I(D) = I(π(C)) is a principal ideal (g) where g
is an irreducible polynomial in k[x, y].

b) Let h = g0(x, y)z
n+ · · ·+gn(x, y) be an element of I(C) of smallest

positive degree n in z. Prove that if f ∈ I(C) has degree m as a
polynomial in z, then we have an expression

fgm0 = hq + v(x, y)

where v(x, y) is divisible by g(x, y).

c) Show that the algebraic set Z(h, g) is the union of C and finitely
many lines parallel to the z-axis.

d) Show that C can be defined by three equations by finding t ∈
k[x, y, z] such that C = Z(g, h, t).

2.5. Regular functions and regular maps of quasi-affine
varieties

In this section we consider regular functions and regular maps on open
subsets of an affine variety.

Lemma 2.83. Suppose that X is an affine algebraic set. Then the open sets
D(f) = X \ Z(f) for f ∈ k[X] form a basis of the Zariski topology on X.

We will also denote the open set D(f) by Xf .
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Proof. We must show that given an open subset U of X and a point q ∈ U ,
there exists f ∈ k[X] such that q ∈ X \ Z(f) ⊂ U . Set m = I(q). There
exists an ideal I in k[X] such that U = X \ Z(I). The fact that q ∈ U
implies q 
∈ Z(I) which implies I 
⊂ m. Thus there exists f ∈ I such that
f 
∈ m. Then Z(I) ⊂ Z(f) implies X \ Z(f) ⊂ U . Now f 
∈ m implies
q = Z(m) 
∈ Z(f) so that q ∈ X \ Z(f). �

The process of localization is reviewed in Section 1.4. Suppose that R
is a domain with quotient field K. If 0 
= f ∈ R, then Rf is the following
subring of K:

Rf = R

[
1

f

]
=

{
g

fn
| g ∈ R and n ∈ N

}
.

If p is a prime ideal in R, then Rp is the following subring of K:

Rp =

{
f

g
| f ∈ R and g ∈ R \ p

}
.

Rp is a local ring: its unique maximal ideal is pRp = pp.

Suppose that X is an affine variety. Let k(X) be the quotient field of
k[X]. The field k(X) is called the field of rational functions on X, or the
function field of X. For p ∈ X, we have that the localization

k[X]I(p) =

{
f

g
| f, g ∈ k[X] and g(p) 
= 0

}
.

For f ∈ k[X]I(p), we have a value f(p) ∈ k, defined as follows. Write f = g
h

with g, h ∈ k[X] and h(p) 
= 0 and define f(p) = g(p)
h(p) ∈ k. This value

is independent of choice of g and h as above. We have natural isomor-
phisms k[X]I(p)/I(p)I(p) ∼= k[X]/I(p) ∼= k, identifying the value f(p) with
the residue of f in k[X]I(p)/I(p)I(p).

Suppose that U is a nonempty open subset of X. Define the regular
functions on U to be

OX(U) =
⋂
p∈U

k[X]I(p),

where the intersection in k(X) is over all p ∈ U . If U = ∅, we define
OX(U) = OX(∅) = 0.

Suppose that U is a nonempty open subset of X. Let Map(U,A1) be the
set of maps from U to A1. The set Map(U,A1) is a k-algebra since A1 = k
is a k-algebra.

We have a natural k-algebra homomorphism φ : OX(U) → Map(U,A1)
defined by φ(f)(p) = f(p) for f ∈ OX(U) and p ∈ U . We will show that φ
is injective. Suppose f ∈ Kernel φ and p ∈ U . There exists an expression
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f = g
h where g, h ∈ k[X] and h(p) 
= 0. For q in the nontrivial open set

U \ Z(h) we have that g(q)
h(q) = f(q) = 0. Thus g(q) = 0, and so

g ∈ I(U \ Z(h)) = I(X) = (0)

since U \ Z(h) is a dense open subset of X. Thus g = 0, and so f = g
h =

0. Hence φ is injective. We may thus identify OX(U) with the k-algebra
φ(OX(U)) of maps from U to A1.

An element f of the function field k(X) of X induces a map f : U → A1

on some open nonempty subset U of X.

For p ∈ X, we define

OX,p =
⋃
p∈U

OX(U),

where the union in k(X) is over all open sets U in X containing p. An ele-
ment f ∈ OX,p thus induces a map f : U → A1 on some open neighborhood
U of p in X. We will see that OX,p is a local ring (Proposition 2.86). We will
denote the maximal ideal of OX,p by mX,p or by mp if there is no danger of
confusion. We will denote OX,p/mp by k(p). As a field, k(p) is isomorphic
to k. Also, k(p) has a natural structure as an OX,p-module.

Suppose that U ⊂ V are open subsets of X and p ∈ V . We then have
injective restriction maps

(2.5) OX(V ) → OX(U)

and

(2.6) OX(V ) → OX,p.

Proposition 2.84. Suppose that X is an affine variety and 0 
= f ∈ k[X].
Then OX(D(f)) = k[X]f .

Proof. We have k[X]f = { g
fn | g ∈ k[X] and n ∈ N}. If g

fn ∈ k[X]f ,

then g
fn ∈ k[X]I(p) for all p ∈ D(f) since then f(p) 
= 0. Thus k[X]f ⊂

OX(D(f)).

Suppose that h ∈ OX(D(f)), which is a subset of k(X). Let B = {g ∈
k[X] | gh ∈ k[X]}. If we can prove that fn ∈ B for some n, then we will have
that h ∈ k[X]f , and it follows that k[X]f = OX(D(f)). By assumption, if
p ∈ D(f), then h ∈ k[X]I(p), so there exist functions a, b ∈ k[X] such that
h = a

b with b(p) 
= 0. Then bh = a ∈ k[X] so b ∈ B, and B contains an

element not vanishing at p. Thus Z(B) ⊂ Z(f). We have f ∈
√
B by the

nullstellensatz 5) of Theorem 2.26. �

In particular, we have that for any affine variety X,

(2.7) k[X] = OX(X).
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The above proposition shows that if U = D(f) for some f ∈ k[X], then
every element of OX(U) has the form a

b where a, b ∈ k[X] and b(p) 
= 0 for
p ∈ U . The following example, from page 44 of [116], shows that the above
desirable property fails in general for an open subset U of an affine variety
X.

Example 2.85. There exists an open subset U of an affine variety X such
that

OX(U) 
=
{
f

g
| f, g ∈ k[X] and g(p) 
= 0 for all p ∈ U

}
.

Proof. Write k[A4] = k[x, y, z, w] and let X = Z(xw − yz) ⊂ A4 and
U = D(y) ∪ D(w) = X \ Z(y, w). Write k[X] = k[A4]/I(X) = k[x, y, z, w]
where x, y, z, w are the respective classes of x, y, z, w. Let h ∈ OX(U) be
defined by h = x

y on D(y) and h = z
w on D(w). We have that x

y = z
w on

D(y) ∩D(w) = X − Z(yw), so that h is a well-defined function on U .

Now suppose that h = f
g where f, g ∈ k[X] and g does not vanish

on U . We will derive a contradiction. Let Z = ZX(y, w). Then Z is a
plane in X (k[Z] = k[x, y, z, w]/(xw − yz, y, w) ∼= k[x, z]). We have that
U = X \ Z. Thus ZX(g) ⊂ Z. Suppose that g does not vanish on X.

Then x
y = f

g so xg = fy. Now p = (1, 0, 0, 0) ∈ X so (xg)(p) 
= 0 but

(fy)(p) = 0, which is a contradiction. Thus g is not a unit in k[X]. By
Theorem 2.71 (X is irreducible) all irreducible components of ZX(g) have
dimension 2 = dimX − 1. Since Z is irreducible of dimension 2, we have
that ZX(g) = Z. Let Z ′ = ZX(x, z), which is another plane. We have that

{(0, 0, 0, 0)} = Z ∩ Z ′ = ZX(g) ∩ Z ′.

But (again by Theorem 2.71) a polynomial function vanishes on an algebraic
set of dimension 1 on a plane, which is a contradiction since a point has
dimension 0. �

Proposition 2.86. Suppose that X is an affine variety and p ∈ X. Then
OX,p = k[X]I(p).

Proof. We have that

k[X]I(p) =
⋃

{f∈k[X]|f(p) �=0}
k[X]f =

⋃
p∈D(f)

OX(D(f)) =
⋃
p∈U

OX(U).

The last equality is true since the open sets D(f) are a basis for the topology
of X. �

Suppose that X is an affine variety. From the nullstellensatz, 5) of
Theorem 2.26, we have that there is a 1-1 correspondence between the points
in X and the maximal ideals in k[X]. Thus we have the following corollary.
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Corollary 2.87. Suppose that X is an affine variety. Then X is separated;
that is, if p, q ∈ X are distinct points, then OX,p 
= OX,q.

We may express

(2.8) k[X] = OX(X) =
⋂
p∈X

OX,p =
⋂
p∈X

k[X]I(p) =
⋂

k[X]m

where the last intersection is over the maximal ideals m of k[X].

Lemma 2.88. Suppose that φ : X → Y is a dominant regular map of affine
varieties with induced k-algebra homomorphism φ∗ : k[Y ] → k[X]. Suppose
that p ∈ X and q ∈ Y . Then the following are equivalent:

1) φ(p) = q.

2) The preimage (φ∗)−1(I(p)) = I(q).

3) φ∗(OY,q) ⊂ OX,p.

In 3), we consider φ∗ to be its extension to an inclusion φ∗ : k(Y ) → k(X).

Proof. For p ∈ X, we have that the preimage

(φ∗)−1(I(p)) = {f ∈ k[Y ] | φ∗(f) ∈ I(p)}
= {f ∈ k[Y ] | (f ◦ φ)(p) = 0} = I(φ(p)).

Since Y is separated (or by the nullstellensatz 5) of Theorem 2.26), φ(p) = q
if and only if I(φ(p)) = I(q), so we have established the equivalence of 1)
and 2). The statement 2) is equivalent to 3) follows since

φ∗(OY,q) ⊂ OX,q if and only if (φ∗)−1(I(p)) ∩ (k[Y ] \ I(q)) = ∅
if and only if (φ∗)−1(I(p)) ⊂ I(q)
if and only if (φ∗)−1(I(p)) = I(q)

since (φ∗)−1(I(p)) is a maximal ideal of k[Y ]. �

Lemma 2.89. Suppose that U is a nontrivial open subset of an affine variety
X. Then ⋃

p∈U
OX,p = k(X).

Proof. By Proposition 2.86,

OX,p = k[X]I(p) for p ∈ X.

So ⋃
p∈U

OX,p ⊂ k(X).
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Suppose that h ∈ k(X). Write h = f
g with f, g ∈ k[X] and 0 
= g. Then

Z(g) ∩ U 
= U since U is Zariski dense in X. So there exists p ∈ U \ Z(g).
Thus g(p) 
= 0 and so g 
∈ I(p),

f

g
∈ OX,p = k[X]I(p),

and

h ∈ OX,p ⊂
⋃
p∈U

OX,p.

Thus k(X) ⊂
⋃

p∈U OX,p. �

We define the rational functions k(U) on a quasi-affine variety U to be
the quotient field of OX(U), which is equal to k(X), where X is the affine
variety containing U as an open subset. We also say that k(U) is the function
field of U . We further define OU (V ) = OX(V ) for an open subset V of U
and

OU,p =
⋃
p∈V

OU (V )

where the union in k(U) is over all open sets V in U containing p. We
have that OU,p = OX,p for p ∈ U . A quasi-affine variety is separated by
Proposition 2.86.

Suppose that U is a quasi-affine variety with field k(U) of rational func-
tions on U . A function f ∈ k(U) is said to be regular at a point p ∈ U if
f ∈ OU,p.

Lemma 2.90. Suppose that U is a quasi-affine variety and f ∈ k(U). Then

V = {p ∈ U | f ∈ OU,p}

is a dense open subset of U .

Proof. The quasi-affine variety U is an open subset of an affine variety X.
Suppose that p ∈ V . Since f ∈ OX,p, there exist g, h ∈ k[X] with h 
∈ I(p)
such that f = g

h . For q ∈ D(h) ∩ U we have that h 
∈ IX(q), and thus
f = g

h ∈ OX,q = OU,q and D(h) ∩ U is an open neighborhood of p in V .

V is nonempty since we can always write f = g
h for some g, h ∈ k[X]

with h 
= 0. We have that U ∩ D(h) 
= ∅ since X is irreducible. Thus
∅ 
= D(h) ∩ U ⊂ V . �

Lemma 2.91. Suppose that U is a quasi-affine variety and p ∈ U . Let

IU (p) = {f ∈ OU (U) | f(p) = 0}.

Then IU (p) is a maximal ideal in OU (U) and OU (U)IU (p) = OU,p.



54 2. Affine Varieties

Proof. The quasi-affine variety U is an open subset of an affine variety X,
and OU (U) = OX(U). We have injective restriction maps

k[X] → OU (U) → OX,p = k[X]IX(p).

The ring OX,p is a local ring with maximal ideal m = IX(p)OX,p. We have
that m ∩ OU (U) = IU (p) and m ∩ k[X] = IX(p), so we have inclusions

OX,p = k[X]IX(p) ⊂ OU (U)IU (p) ⊂ OX,p. �

Definition 2.92. Suppose that Y is a quasi-affine variety. A regular map
φ : Y → Ar is a map φ = (f1, . . . , fr) where f1, . . . , fr ∈ OY (Y ). Suppose
that φ(Y ) ⊂ Z where Z is an open subset of an irreducible closed subset of
Ar (a quasi-affine variety). Then φ induces a regular map φ : Y → Z. A
regular map φ : Y → Z of quasi-affine varieties is an isomorphism if there
is a regular map ψ : Z → Y such that ψ ◦ φ = idY and φ ◦ ψ = idZ .

We point out that an affine variety is also a quasi-affine variety.

Proposition 2.93. Suppose that X is an affine variety and 0 
= f ∈ k[X].
Then the quasi-affine variety D(f) is isomorphic to an affine variety.

Proof. A choice of coordinate functions on X gives us a closed embedding
X ⊂ An. We thus have a surjection k[x1, . . . , xn] → k[X] with kernel I(X).
Let g ∈ k[x1, . . . , xn] be a function which restricts to f on X. Let J be
the ideal in the polynomial ring k[x1, . . . , xn, xn+1] generated by I(X) and
1 − gxn+1. We will show that J is prime, and if Y is the affine variety
Y = Z(J) ⊂ An+1, then the projection of An+1 onto its first n factors
induces an isomorphism of Y with D(f).

Using Exercise 1.7 of Section 1.1, we have

k[x1, . . . , xn, xn+1]/J ∼= (k[x1, . . . , xn]/I(X)) [xn+1]/(xn+1f − 1)
∼= k[X][ 1f ] = OX(D(f)),

which is an integral domain (it is a subring of the quotient field k(X) of
k[X]). Thus J is a prime ideal. Now projection onto the first n factors
induces a regular map φ : Y → An. We have that

Y = {(a1, . . . , an, an+1) | (a1, . . . , an) ∈ X and g(a1, . . . , an)an+1 = 1}.
Thus φ(Y ) = D(f) ⊂ X. In particular, we have a regular map φ : Y →
D(f). Now this map is injective and onto, but to show that it is an iso-
morphism we have to produce a regular inverse map. Let x1, . . . , xn be
the restrictions of x1, . . . , xn to X. Then x1, . . . , xn,

1
f ∈ OX(D(f)). Thus

ψ : D(f) → An+1 defined by ψ = (x1, . . . , xn,
1
f ) is a regular map. The

image of ψ is Y . We thus have an induced regular map ψ : D(f) → Y .
Composing the maps, we have that ψ ◦ φ = idY and φ ◦ψ = idD(f). Thus φ
is an isomorphism. �



2.5. Regular functions and regular maps of quasi-affine varieties 55

We will say that a quasi-affine variety is affine if it is isomorphic to an
affine variety.

Definition 2.94. Suppose that φ : U → V is a regular map of quasi-affine
varieties.

1) The map φ is called a closed embedding if there exists a closed
subvariety Z of V (an irreducible closed subset) such that φ(U) ⊂ Z
and the induced regular map φ : U → Z is an isomorphism.

2) The map φ is called an open embedding if there exists an open
subset W of V such that φ(U) ⊂ W and the induced regular map
φ : U → W is an isomorphism.

The above definition of a closed embedding generalizes Definition 2.43.

In general, a map φ : X → Y of affine varieties which is continuous
(in the Zariski topology) is not regular. This can be seen most easily on
A1. The closed subsets of A1 are the finite subsets and all of A1. Thus any
bijection (or finite-to-one map) of sets from A1 to A1 is continuous.

Proposition 2.95. Suppose that U, V are quasi-affine varieties and φ : U →
V is a continuous map. Let φ∗ : Map(V,A1) → Map(U,A1) be defined by
φ∗(f) = f ◦ φ for f : V → A1 a map. Then the following are equivalent:

1) φ∗ maps OV (V ) into OU (U), inducing a k-algebra homomorphism
φ∗ : OV (V ) → OU (U).

2) φ∗ maps OV,φ(p) into OU,p for all p ∈ U , inducing k-algebra homo-
morphisms φ∗ : OV,φ(p) → OU,p.

3) φ∗ maps OV (W ) into OU (φ
−1(W )) for all open subsets W of V ,

inducing k-algebra homomorphisms φ∗ : OV (W ) → OU (φ
−1(W )).

Proof. Suppose that 1) holds, p ∈ U , and φ(p) = q. Then (φ∗)−1(IU (p)) =
IV (φ(p)). This follows since for f ∈ k[V ],

f ∈ IV (φ(p)) if and only if f(φ(p)) = 0
if and only if φ∗(f)(p) = 0
if and only if f ∈ (φ∗)−1(IU (p)).

Thus OV (V )IV (φ(p)) → OU (U)IU (p) and so φ∗ : OV,φ(p) → OU,p by
Lemma 2.91. Thus 2) holds.

Suppose that 2) holds. Then 3) follows from the definition of regular
functions. Suppose that 3) holds. Then 1) follows by taking W = V . �

Proposition 2.96. Suppose that U and V are quasi-affine varieties and
φ : U → V is a map. Then φ is a regular map if and only if φ is continuous
and φ∗ satisfies the equivalent conditions of Proposition 2.95.
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Proof. Suppose that φ is regular. Then V is an open subset of an affine
variety Y which is a closed subset of An, such that the extension φ̃ : U → An

of φ has the form φ̃ = (f1, . . . , fn) with f1, . . . , fn ∈ OU (U). We will first

establish that φ̃ is continuous. Let {Ui} be a cover of U by affine open

subsets Ui. Write k[An] = k[x1, . . . , xn]. It suffices to show that φi = φ̃|Ui

is continuous for all i. Now φ∗
i : k[An] → OU (U) → k[Ui] is a k-algebra

homomorphism. Since Ui and An are affine, there exists (by Proposition
2.40) a unique regular map gi : Ui → An such that g∗i = φ∗

i .

Suppose that p ∈ Ui and q ∈ An. We have that
(2.9)
φ∗
i (IAn(q)) ⊂ IUi(p) if and only if φ∗

i (f)(p) = 0 for all f ∈ IAn(q)
if and only if f(φi(p)) = 0 for all f ∈ IAn(q)
if and only if IAn(q) ⊂ IAn(φi(p))
if and only if IAn(q) = IAn(φi(p)) since IAn(q)

and IAn(φi(p)) are maximal ideals
if and only if q = φi(p) since An is separated

(by Corollary 2.87).

We have that φi(p) = q if and only if φ∗
i (IAn(q)) ⊂ IUi(p) and similarly

gi(p) = q if and only if g∗i (IAn(q)) ⊂ IUi(p). Thus φi = gi. Since a regular

map of affine varieties is continuous, we have that φi is continuous. Thus φ̃
and φ are continuous.

Now let φ̂ be the extension φ̂ : U → Y of φ. Then φ̂∗ : OY (Y ) →
OU (U) is a k-algebra homomorphism since OY (Y ) = k[Y ] = k[x1, . . . , xn]

and φ̂∗(xi) = fi for all i. By 1) implies 3) of Proposition 2.95, applied to

φ̂ : U → Y , we have that

φ∗ = φ̂∗ : OY (V ) = OV (V ) → OU (φ
−1(V )) = OU (U)

is a k-algebra homomorphism. Thus φ : U → V satisfies condition 1) of
Proposition 2.95.

Now suppose that φ : U → V is continuous and φ∗ satisfies the equiv-
alent conditions of Proposition 2.95. Then the extension φ̃ : U → An

satisfies φ̃∗ : k[An] → OU (U) is a k-algebra homomorphism. Since φ̃ =

(φ̃∗(x1), . . . , φ̃∗(xn)), we have that φ is a regular map. �

Suppose that R is an integral domain with quotient field L and I is an
ideal in R. The ideal transform of I in R is

S(I;R) = {f ∈ L | fIn ⊂ R for some n ∈ N} =
∞⋃
i=0

R :L In = R :L I∞.

We have the following algebraic interpretation of regular functions on a
quasi-affine variety.
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Lemma 2.97. Suppose that X is an affine variety and I ⊂ k[X] is an ideal.
Let U = X \ Z(I). Then OU (U) = S(I; k[X]).

Proof. Write I = (g1, . . . , gr) with g1, . . . , gr ∈ k[X]. Suppose that f is
in the quotient field of k[X]. We have that f ∈ S(I; k[X]) if and only if
Imf ∈ k[X] for some m > 0, which holds if and only if gni f ∈ k[X] for
some n > 0 and for all i with 1 ≤ i ≤ r. This condition is equivalent to
the statement that f ∈ k[X]gi for 1 ≤ i ≤ r, which is equivalent to the
statement that f ∈ OX(U) since OX(U) =

⋂
1≤i≤r k[X]gi. �

Example 2.98. There are examples of quasi-affine varieties U such that
OU (U) is not a finitely generated k-algebra.

Nagata gives examples in [122] showing this and discusses when OU (U)
is a finitely generated k-algebra. The simplest example of a quasi-affine
variety U such that OU (U) is not a finitely generated k-algebra that he
presents is constructed from an example of Rees [125]. Nagata explains
Rees’s construction on page 48 of [122]. The existence of the example then
follows from properties (1) and (2) of Rees’s example, given on page 49 of
[122], Proposition 4 on page 39 of [122], and the above Lemma 2.97.

Exercise 2.99. Suppose that U in an open subset an affine variety X and
f1, . . . , fn ∈ k[X] are such that U = D(f1) ∪ · · · ∪ D(fn). Show that

OX(U) = k[X]f1 ∩ · · · ∩ k[X]fn

where the intersection is in the quotient field k(X) of X.

Exercise 2.100. Let U = A1 \ {0}.
a) Compute OA1(U), the regular functions on the quasi-affine variety

U .

b) Is U (isomorphic) to an affine variety?

Exercise 2.101. Let U = A2 \ {(0, 0)}.
a) Compute OA2(U), the regular functions on the quasi-affine variety

U .

b) Is U (isomorphic) to an affine variety?

Exercise 2.102. At what points of the subvariety X = Z(x2+y2−1) of A2

with regular functions k[X] = k[x, y]/(x2 + y2 − 1) = k[x, y] is the rational

function 1−y
x regular? Assume that the characteristic of k is 
= 2.

Exercise 2.103. Suppose that X is an affine variety and U is an open
subset of X (so that U is a quasi-affine variety). Suppose that p ∈ U . Show
that OU,p = OX,p.
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2.6. Rational maps of affine varieties

In this section, we define a rational map of an affine variety X. We begin
by noting some properties of restriction and extension of regular maps.

Lemma 2.104. Suppose that X and Y are affine varieties and U ⊂ V ⊂ X
are nonempty open subsets. Suppose that φ, ψ : V → Y are regular maps
such that φ|U = ψ|U . Then φ = ψ.

Proof. There exist a closed embedding Y ⊂ An and f1, . . . , fn ∈ OX(V ),
g1, . . . , gn ∈ OX(V ) such that φ = (f1, . . . , fn) and ψ = (g1, . . . , gn). Since
φ|U = ψ|U , we have that fi|U = gi|U for 1 ≤ i ≤ n. Thus fi = gi for
1 ≤ i ≤ n since the restriction map OX(V ) → OX(U) is injective. �
Lemma 2.105. Suppose that X, Y are affine varieties, U ⊂ X is a nontriv-
ial open subset, and φ : U → Y is a regular map. Then there exists a largest
open subset W (φ) of X such that there exists a regular map ψ : W (φ) → X
with the property that ψ|U = φ. The map ψ is uniquely determined.

Proof. There exist a closed embedding Y ⊂ An and f1, . . . , fn ∈ OX(U)
such that φ = (f1, . . . , fn) : U → Y . Let Vi = {p ∈ X | fi ∈ OX,p}. The Vi

are nontrivial open subsets of X by Lemma 2.90. Then W (φ) =
⋂n

i=1 Vi is
the largest open subset of X on which φ extends to a regular map ψ. The
map ψ is uniquely determined by Lemma 2.104. �

We can thus define a rational map φ between affine varieties X and Y to
be a regular map on some nonempty open subset U of X to Y . By Lemma
2.105, φ has a unique extension as a regular map to a largest open subset
W (φ) of X, and if φ and ψ are rational maps from X to Y which are regular
on respective nonempty open subsets U and V such that φ and ψ agree on
the intersection U ∩ V , then φ = ψ. It is usual to write φ : X ��� Y for a
rational map, to emphasize the fact that φ may not be regular everywhere.
The rational maps φ : X ��� A1 can be identified with the rational functions
k(X).

We now formulate the concept of a rational map as a statement in alge-
bra.

Definition 2.106. Suppose that X is an affine variety. A rational map
φ : X ��� Am is an m-tuple φ = (f1, . . . , fm) with f1, . . . , fm ∈ k(X).
Such a map φ induces a k-algebra homomorphism φ∗ : k[Am] → k(X) by
φ∗(ti) = fi for 1 ≤ i ≤ m where k[Am] = k[t1, . . . , tm].

Suppose that Y is an affine variety which is a closed subvariety of an
affine space Am. A rational map φ : X ��� Y is a rational map φ : X ��� Am

such that I(Y ) is contained in the kernel of φ∗ : k[Am] → k(X). This induces
a k-algebra homomorphism φ∗ : k[Y ] → k(X).
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In particular, a rational map φ : X ��� Y of affine varieties can be
understood completely by the corresponding k-algebra homomorphism φ∗ :
k[Y ] → k(X).

Suppose that φ = (f1, . . . , fm) : X ��� Y is a rational map of affine
varieties. The set of points of X on which f1, . . . , fm are all regular is a
nonempty open set W (φ) by Lemma 2.90. This is the set of points on which
φ is regular (Lemma 2.105). If U ⊂ W (φ) is a nonempty open subset, we
have that φ∗ : k[Y ] → OX(U). A rational map φ is completely determined
by its restriction to any open subset U of X. In particular, we have that if
Y is a closed subvariety of Am and φ : X ��� Am is a rational map, then
φ : X ��� Y if and only if φ(W (φ)) ⊂ Y .

A rational map φ : X ��� Y is called dominant if φ(U) is dense in Y
when U is an open subset of X on which φ is a regular map.

Lemma 2.107. Suppose that φ : X ��� Y is a dominant rational map
of affine varieties. Then φ induces an injective k-algebra homomorphism
φ∗ : k(Y ) → k(X) of function fields.

Proof. There exists a nonempty open subsetW of X on which φ is a regular
map. W contains an open set D(f) for some f ∈ k[X] by Lemma 2.83. The
open set D(f) is affine with k[D(f)] = k[X]f by Propositions 2.93 and 2.84.
Then we have an induced k-algebra homomorphism φ∗ : k[Y ] → k[X]f
which is injective by Corollary 2.32. We thus have an induced k-algebra
homomorphism of quotient fields. �

If φ∗ induces a well-defined injective homomorphism φ∗ : k(Y ) → k(X),
and if U is an affine open subset of X on which φ is regular, we have that
φ∗ : k[Y ] → k[U ] is injective and thus φ(U) is dense in Y by Corollary 2.32.
Thus the rational map φ : X ��� Y is dominant.

Proposition 2.108. Suppose that X and Y are affine varieties and Λ :
k(Y ) → k(X) is an injective k-algebra homomorphism. Then there is a
unique (dominant) rational map φ : X ��� Y such that φ∗ = Λ.

Proof. Let t1, . . . , tm be coordinate functions on Y such that

k[Y ] = k[t1, . . . , tm].

Write Λ(ti) = fi
gi

with fi, gi ∈ k[X] (and gi 
= 0) for 1 ≤ i ≤ m. Let

g = g1g2 · · · gm. Then Λ induces a k-algebra homomorphism Λ : k[Y ] →
k[X]g. Now k[X]g = k[D(g)] where D(g) is the affine open subset of X,
by Proposition 2.84. By Proposition 2.40, there is a unique regular map
φ : D(g) → Y such that φ∗ = Λ. Since a rational map of varieties is uniquely
determined by the induced regular map on a nontrivial open subset, there
is a unique rational map φ : X ��� Y inducing Λ. �
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Suppose that α : X ��� Y is a dominant rational map and β : Y ��� Z
is a rational map. Then β ◦ α : X ��� Z is a rational map. We see this as
follows. Since α is dominant, α∗ induces a homomorphism k(Y ) → k(X) so
the composition α∗β∗ : k[Z] → k(X) is well-defined.

There exist open sets U of X on which α is regular and V of Y on which
β is regular. Since α(U) is dense in Y , we have that α(U) ∩ V 
= ∅. Thus
the nonempty open set (α|U)−1(V ) is contained in the open set W (β ◦ α)
where β ◦ α is regular.

Definition 2.109. A dominant rational map φ : X ��� Y of affine varieties
is birational if there is a dominant rational map ψ : Y ��� X such that
ψ ◦ φ = idX and φ ◦ ψ = idY (that is, φ∗ ◦ ψ∗ : k[X] → k(X) is equal to the
inclusion id∗X and ψ∗ ◦ φ∗ : k[Y ] → k(Y ) is equal to the inclusion id∗Y ).

Proposition 2.110. A rational map φ : X ��� Y is birational if and only
if φ∗ : k(Y ) → k(X) is a k-algebra isomorphism.

Theorem 2.111. A dominant rational map φ : X ��� Y of affine varieties
is birational if and only if there exist nonempty affine open subsets U of X
and V of Y such that φ : U → V is a regular map which is an isomorphism.

Proof. Suppose that there exist open sets U of X and V of Y such that
φ : U → V is a regular map which is an isomorphism. Then there exists
a regular map ψ : V → U such that ψ ◦ φ = idU and φ ◦ ψ = idV . Since
idk[V ] = (φ ◦ ψ)∗ = ψ∗ ◦ φ∗ and idk[U ] = (ψ ◦ φ)∗ = φ∗ ◦ ψ∗, we have that
φ∗ : k[V ] → k[U ] is an isomorphism of k-algebras, so that φ∗ induces an
isomorphism of their quotient fields, which are respectively k(Y ) and k(X).

Suppose that φ∗ : k(Y ) → k(X) is an isomorphism. Then there exists a
unique rational map ψ : Y ��� X such that ψ∗ is the inverse of φ∗ by Propo-
sition 2.108. Let t1, . . . , tm be coordinate functions on Y and let s1, . . . , sn
be coordinate functions on X. There are functions a1, . . . , am, f ∈ k[X] and
b1, . . . , bn, g ∈ k[Y ], with f, g 
= 0, such that φ∗(ti) =

ai
f for 1 ≤ i ≤ m and

ψ∗(sj) =
bj
g for 1 ≤ i ≤ n. Thus φ∗(k[Y ]) ⊂ k[X]f and ψ∗(k[X]) ⊂ k[Y ]g.

Since ψ∗ is the inverse of φ∗, we have that φ∗(k[Y ]gψ∗(f)) ⊂ k[X]fφ∗(g) and
ψ∗(k[X]fφ∗(g)) ⊂ k[Y ]gψ∗(f). Thus φ∗ : k[Y ]gψ∗(f) → k[X]fφ∗(g) is an iso-
morphism, and φ : D(fφ∗(g)) → D(gψ∗(f)) is a regular map which is an
isomorphism by Proposition 2.42. �

Two affine varieties X and Y are said to be birationally equivalent if
there exists a birational map φ : X ��� Y .

Proposition 2.112. Every affine variety X is birationally equivalent to a
hypersurface Z(g) ⊂ An.
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Proof. Let dim(X) = r. Then the quotient field k(X) is a finite sep-
arable extension of a rational function field L = k(x1, . . . , xr) (by The-
orem 1.14). By the theorem of the primitive element (Theorem 1.16),
k(X) ∼= L[t]/(f(t)) for some irreducible monic polynomial f(t) ∈ L[t]. Mul-
tiplying f(t) by an appropriate element a of k[x1, . . . , xr], we obtain a prim-
itive polynomial g = af(t) ∈ k[x1, . . . , xr, t], which is thus irreducible. The
quotient field of k[x1, . . . , xr, t]/(g) is isomorphic to k(X). Thus X is bira-
tionally equivalent to Z(g) ⊂ Ar+1 by Proposition 2.110. �

Exercise 2.113. Prove Proposition 2.110.

Exercise 2.114. Consider the regular map φ : A2 → A2 defined by

φ(a1, a2) = (a1, a1a2) for (a1, a2) ∈ A2.

a) Show that φ is dominant.

b) Show that φ is birational.

c) Show that φ is not an isomorphism.

d) Show that φ is not finite.

Exercise 2.115. Is a composition of rational maps always a rational map?





Chapter 3

Projective Varieties

In this chapter we define projective and quasi-projective varieties, their reg-
ular functions and regular maps. Recall that throughout this book, k will
be a fixed algebraically closed field.

We develop a correspondence between the commutative algebra of stan-
dard graded k-algebras which are domains (or reduced) and the geometry
of projective varieties (or projective algebraic sets) in Sections 3.1–3.2. In
Section 3.4, we define the regular functions on a projective variety.

3.1. Standard graded algebras

In this section we discuss algebraic methods necessary for our study of pro-
jective space and projective varieties. We begin with some general defini-
tions of graded rings and modules. Some references on graded algebras and
modules are [161, Chapter VII] and [28].

A graded ring is a ring R with a decomposition R =
⊕

i∈ZRi such that
RiRj ⊂ Ri+j for all i, j ∈ Z.

A graded R-module is an R-module M together with a decomposition
M =

⊕
i∈Z Mi such that RiMj ⊂ Mi+j for all i, j ∈ Z. The elements x ∈ Mi

are called homogeneous of degree i. The degree of x is denoted by deg x.
Every element f ∈ M has a unique expression as a sum with finitely many
nonzero terms f = F0 + F1 + · · · where the Fi ∈ Mi are homogeneous of
degree i, with Fi = 0 for all i sufficiently large.

If M is a graded R-module and n ∈ Z, then the twisted R-module M(n)
is M , with the grading M(n)i = Mn+i for i ∈ Z.

63
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Suppose that R is a graded ring and M is a graded R-module. Suppose
that F ∈ R is homogeneous. Then the localization MF is graded by

deg

(
G

Fn

)
= deg(G) − ndeg(F )

for G ∈ M homogeneous. We define

M(F ) =

{
h =

G

Fn
∈ MF | G is homogeneous and deg(h) = 0

}
.

If p is a homogeneous prime ideal in R, then we define

(3.1) M(p) = {elements of degree 0 in V −1M}
where V is the multiplicatively closed subset of homogeneous elements of R
not in p. The ring R(p) is a local ring with maximal ideal p(p). In particular,
if R is a domain, so that the zero ideal q = (0) is a prime ideal, then R(q) is
a field.

Suppose that R is a graded ring and d is a positive integer. The d-th
Veronese ring of R is

(3.2) R(d) =
⊕
i∈Z

Rid.

It is a graded ring with R
(d)
i = Rid for i ∈ Z.

Suppose that A =
⊕

i∈ZAi and B =
⊕

j∈ZBj are graded rings. A ring

homomorphism φ : A → B is said to be graded of degree s if φ(Ai) ⊂ Bis

for all i. The inclusion of the Veronese ring R(d) into R is an example of a
graded ring homomorphism of degree d.

Suppose that M =
⊕

i∈ZMi and N =
⊕

j∈ZNj are graded R-modules.

An R-module homomorphism λ : M → N is graded of degree s if λ(Mi) ⊂
Ni+s for all i.

The following lemma follows from [153, Theorem on page 151].

Lemma 3.1. Suppose that R is a graded ring and I ⊂ R is an ideal. Then
the following are equivalent:

1) Suppose that f ∈ I and f =
∑

Fi where Fi is homogeneous of
degree i. Then Fi ∈ I for all i.

2) I =
⊕∞

i=−∞(I ∩Ri).

An ideal satisfying the conditions of Lemma 3.1 is called a homogeneous
ideal. An ideal I is homogeneous if and only if I has a homogeneous set of
generators.

Lemma 3.2. Suppose that P is a homogeneous ideal in a graded ring R.
Then P is a prime ideal if and only if it has the property that whenever
F,G ∈ R are homogeneous and FG ∈ P , then F or G is in P .
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Proof. Suppose that P is a homogeneous ideal in R and P has the property
that whenever F,G ∈ R are homogeneous and FG ∈ P , then F or G is in P .
Let f, g ∈ R and suppose that f 
∈ P and g 
∈ P . We will show that fg 
∈ P .
Let f = fr + fr+1 + · · · and g = gs + gs+1 + · · · be the decompositions of
f and g into their homogeneous components. Let fr+a and gs+b be the first
homogeneous components of f and g, respectively, which does not belong
to P . Then fr+a, gs+b 
∈ P , and so

[f − (fr + fr+1 + · · · + fr+a−1)][g − (gs + · · ·+ gs+b−1)] 
∈ P

since P is homogeneous. Since fr + fr+1+ · · ·+ fr+a−1 and gs+ gs+1+ · · ·+
gs+b−1 are in P , we have that fg 
∈ P . �

The following lemma follows from [161, Theorem on page 152] and [161,
Theorem 9 on page 153].

Lemma 3.3. Suppose that R is a graded ring and I and J are homogeneous
ideals in R. Then:

1) I + J is a homogeneous ideal.

2) IJ is a homogeneous ideal.

3) I ∩ J is a homogeneous ideal.

4)
√
I is a homogeneous ideal.

5) I : J is homogeneous.

6) If I admits a primary decomposition, then I admits a homogeneous
primary decomposition.

We now consider the case of graded rings which are quotients of poly-
nomial rings over a field. A thorough development of this material is in
[161, Section 2, Chapter VII].

Let T be the polynomial ring T = K[x0, x1, . . . , xn] over a fieldK. An el-
ement f ∈ T is called homogeneous of (total) degree d if it is a K-linear com-

bination of monomials of degree d. The degree of the monomial xi00 x
i1
1 · · ·xinn

is i0 + i1 + · · ·+ in. Let Td be the K-vector space of all homogeneous poly-
nomials of degree d (we include 0). Every polynomial f ∈ T has a unique
expression as a sum with finitely many nonzero terms f = F0 + F1 + · · ·
where the Fi are homogeneous of degree i, with Fi = 0 for all i sufficiently
large. This is equivalent to the statement that T =

⊕∞
i=0 Ti, where T0 = K

and Ti is the K-vector space of homogeneous polynomials of degree i; that
is, T is a graded ring. Since T = K[T1] = T0[T1] is generated by elements of
degree 1 as a T0 = K-algebra, we say that T is a standard graded K-algebra.
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Suppose that U =
⊕∞

i=0 Ui is a homogeneous ideal in T . Then S =
T/U ∼=

⊕∞
i=0 Si where Si = Ti/Ui. The ring S is a standard graded K-

algebra (elements of Si have degree i and S is generated by S1 as an S0 = K-
algebra). Every f ∈ S has a unique expression as a sum with finitely many
nonzero terms f = F0 + F1 + · · · where the Fi ∈ Si are homogeneous of
degree i, with Fi = 0 for all i sufficiently large. The conclusions of Lemma
3.1 hold for ideals in S, so we can speak of homogeneous ideals in S.

Suppose that U is an ideal in the standard graded polynomial ring T
and S = T/U . Then S = K[x0, . . . , xn] is the K-algebra generated by the
classes xi of the xi in S. We can extend the grading of T to S if and only if
U is a homogeneous ideal. In this case, we have that S =

⊕∞
i=0 Si where Si

is the K-vector space generated by the monomials
∏

x
aj
j where

∑
aj = i.

If U is not homogeneous, the concept of degree is not well-defined on S. As
an example, if U = (x−y2) ⊂ K[x, y], then x = y2 would have to have both
degree 1 and degree 2 in K[x, y]/U .

Suppose that I is a homogeneous ideal in S and I =
⋂
Qj is a primary

decomposition of I by homogeneous ideals. Let m be the homogeneous
maximal ideal m =

⊕
i>0 Si. The saturation of I is the homogeneous ideal

Isat which is the intersection of all the primary components of I which are
not m-primary. Properties of the saturation are derived in [161, Section 2,
Chapter VII], especially in Lemmas 4 and 5. We have that In = (Isat)n for
n � 0 and Isat = I : m∞ =

⋃∞
i=1 I : mi.

We have an expression of our standard graded K-algebra S as S =
K[x0, . . . , xn] where x0, . . . , xn are homogeneous of degree 1. Suppose that
I ⊂ S is a homogeneous ideal. Then

S(xi) = K

[
x0
xi

, . . . ,
xn
xi

]
⊂ Sxi

for 0 ≤ i ≤ n and

I(xi) =

{
G

(
x0
xi

, . . . ,
xn
xi

)
| G ∈ I

}
.

The following lemma will be useful.

Lemma 3.4. Suppose that I and J are homogeneous ideals in S. Then
I(xi) = J(xi) for 0 ≤ i ≤ n if and only if

Isat = J sat.

Proof. Suppose that I(xi) = J(xi) for 0 ≤ i ≤ n. We then have equality of
localizations

Ixi = I(xi)S = J(xi)S = Jxi
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for 0 ≤ i ≤ n. In particular, there exists an integer t such that xtiJ ⊂ I for
all i, so that J ⊂ Isat. Similarly, I ⊂ J sat.

Suppose that Isat = J sat. Since xi ∈ m, we have by Proposition 1.43
that Ixi = Jxi for all i. Thus I(xi) = J(xi) for all i. �

Exercise 3.5. Let K be a field and S = K[x0, . . . , xn] be a standard graded
K-algebra. Show that if xi is nilpotent in S, then S(xi) = 0.

Exercise 3.6. Let K be a field and suppose that A =
⊕∞

i=0Ai is a graded
ring, which is a finitely generated A0 = K-algebra. Show that there exists

d ∈ Z+ such that A(d) is a standard graded K-algebra (generated by A
(d)
1 ).

Exercise 3.7. Let A =
⊕∞

i=0Ai be a graded ring and X be the set of
all homogeneous prime ideals in A which do not contain the ideal A+ =⊕

i>0Ai. For each subset E of homogeneous elements of A, let V (E) be the
set of all elements of X which contain E. Prove that:

a) If I is the homogeneous ideal generated by a set of homogeneous

elements of E, then V (E) = V (I) = V (
√
I).

b) V (0) = X and V (1) = V (A+) = ∅.
c) If {Es}s∈S is any family of subsets of homogeneous elements of A,

then

V

(⋃
s∈S

Es

)
=
⋂
s∈S

V (Es).

d) V (I ∩ J) = V (IJ) = V (I) ∪ V (J) for any homogeneous ideals I, J
of A

This exercise shows that the sets V (E) satisfy the axioms for closed sets in
a topological space. We call this topology on X the Zariski topology and
write Proj(A) for this topological space.

3.2. Projective varieties

In this section we define projective varieties and projective algebraic sets.
[161, Sections 4 and 5 of Chapter VII] is a good reference to the algebra
of this section. As usual, we assume throughout this chapter that k is an
algebraically closed field.

Define an equivalence relation ∼ on kn+1 \ {(0, . . . , 0)} by

(a0, a1, . . . , an) ∼ (b0, b1, . . . , bn)

if there exists 0 
= λ ∈ k such that (b0, b1, . . . , bn) = (λa0, λa1, . . . , λan).
Projective space Pn

k over k is defined as

Pn
k = Pn =

(
kn+1 \ {(0, . . . , 0)}

)
/ ∼ .
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The equivalence class of an element (a0, a1, . . . , an) in kn+1 \ {(0, . . . , 0)} is
denoted by (a0 : a1 : . . . : an).

We define the homogeneous coordinate ring of Pn
k to be the standard

graded polynomial ring S(Pn) = k[x0, x1, . . . , xn]. We think of the xi as
“homogeneous coordinates” on Pn.

Suppose that F ∈ k[x0, . . . , xn] is homogeneous of degree d, λ ∈ k, and
a0, . . . , an ∈ k. Then

(3.3) F (λa0, . . . , λan) = λdF (a0, . . . , an).

Thus we see that if U is a set of homogeneous polynomials in S(Pn) (possibly
of different degrees), then the set

Z(U) = {(a0 : . . . : an) ∈ Pn | F (a0, . . . , an) = 0 for all F ∈ U}

is a well-defined subset of Pn.

If I is a homogeneous ideal in S(Pn), we define

Z(I) = {(a0 : . . . : an) ∈ Pn | F (a0, . . . , an) = 0 for all F ∈ U}

where U is a set of homogeneous generators of I. This is a well-defined set
(independent of the choice of homogeneous generators U of I).

Definition 3.8. A subset Y of Pn is a projective algebraic set if there exists
a set U of homogeneous elements of S(Pn) such that Y = Z(U).

Proposition 3.9. Suppose that I1, I2, {Iα}α∈Λ are homogeneous ideals in
S(Pn). Then:

1) Z(I1I2) = Z(I1) ∪ Z(I2).

2) Z(
∑

α∈Λ Iα) =
⋂

α∈Λ Z(Iα).

3) Z(S(Pn)) = ∅.
4) Pn = Z(0).

Proposition 3.9 tells us that:

1. The union of two algebraic sets is an algebraic set.

2. The intersection of any family of algebraic sets is an algebraic set.

3. ∅ and Pn are algebraic sets.

We thus have a topology on Pn, defined by taking the closed sets to be
the algebraic sets. The open sets are the complements of algebraic sets in
Pn. This topology is called the Zariski topology.

If X is an algebraic set in Pn, then the Zariski topology on X is the
subspace topology.
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Definition 3.10. A projective algebraic variety is an irreducible closed sub-
set of Pn. A quasi-projective variety is an open subset of a projective variety.
A projective algebraic set is a closed subset of Pn. A quasi-projective alge-
braic set is an open subset of a closed subset of Pn. A subset X of a variety
Y is called a subvariety of Y if X is a closed irreducible subset of Y .

Given a subset Y of Pn, the ideal I(Y ) of Y in S(Pn) is the ideal in
S(Pn) generated by the set

U = {F ∈ S(Pn) | F is homogeneous and F (p) = 0 for all p ∈ Y }.

Proposition 3.11. Suppose that a is a homogeneous ideal in the standard
graded polynomial ring T = k[x0, . . . , xn] =

⊕∞
i=0 Ti. Then the following are

equivalent:

1) Z(a) = ∅.
2)

√
a is either T or the ideal T+ =

⊕
d>0 Td.

3) Td ⊂ a for some d > 0.

4) asat = T .

Proof. We will prove the essential implication that Z(a) = ∅ implies Td ⊂ a

for some d > 0. Suppose that F1, . . . , Fr are homogeneous generators of a.
Since Z(a) = ∅, we have that the polynomials Fi(1, y1, . . . , yn) have no
common root. By the nullstellensatz in k[y1, . . . , yn] (Theorem 2.5), there
exist polynomials Gi(y1, . . . , yn) such that∑

i

Gi(y1, . . . , yn)Fi(1, y1, . . . , yn) = 1.

Substituting yi = xi
x0

and multiplying by xl00 with l0 sufficiently large, we

obtain that xl00 ∈ a. Similarly, we have xlii ∈ a for 0 ≤ i ≤ n. Let l =
max{l0, . . . , ln} and d = (l − 1)(n+ 1) + 1. Then Td ⊂ a. �

Theorem 3.12 (Homogeneous nullstellensatz). Let a be a homogeneous
ideal in the polynomial ring T = k[x0, . . . , xn] such that

√
a 
= (x0, . . . , xn),

and let F ∈ T be a homogeneous polynomial which vanishes at all points of
Z(a) in Pn. Then F r ∈ a for some r > 0.

Proof. We may suppose that a 
= T . Let V = Z(a) ⊂ Pn and C(V ) =
ZAn+1(a) ⊂ An+1 (regarding k[x0, . . . , xn] as the regular functions on An+1).
Since a is a homogeneous ideal, a point (a0, . . . , an) is in C(V ) if and only
if (ta0, ta1, . . . , tan) is in C(V ) for all t ∈ k; further, the point (a0 : a1 :
. . . : an) ∈ V if and only if (ta0, . . . , tan) ∈ C(V ) for all t ∈ k. Since√
a 
= (x0, . . . , xn), we have that C(V ) contains a point other than (0, . . . , 0)

by the affine nullstellensatz (Theorem 2.5) and thus V 
= ∅. Since V 
= ∅,
I(V ) ⊂ IAn+1(C(V )).
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If a polynomial f ∈ IAn+1(C(V )), then f(ta0, . . . , tan) = 0 for all
(a0 : . . . : an) ∈ V and t ∈ k. Writing f =

∑q
j=0 Fj where each Fj is a

homogeneous form of degree j, we have

F0(a0, . . . , an) + tF1(a0, . . . , an) + · · · + tqFq(a1, . . . , aq) = 0

for all t ∈ k which implies that Fi(a0, . . . , an) = 0 for all i since an alge-
braically closed field is infinite. Thus f ∈ I(V ) and so I(V ) = IAn+1(C(V )).
By the affine nullstellensatz (Theorem 2.5), we have that I(C(V )) =

√
a,

and the theorem follows. �
Proposition 3.13. The following statements hold:

1) If T1 ⊂ T2 are subsets of S(Pn) consisting of homogeneous elements,
then Z(T2) ⊂ Z(T1).

2) If Y1 ⊂ Y2 are subsets of Pn, then I(Y2) ⊂ I(Y1).

3) For any two subsets Y1, Y2 of Pn, we have I(Y1∪Y2) = I(Y1)∩I(Y2).

4) If a is a homogeneous ideal in S(Pn) with Z(a) 
= ∅, then I(Z(a)) =√
a.

5) For any subset Y of Pn, Z(I(Y )) = Y , the Zariski closure of Y .

The proofs of Theorem 3.14 and Proposition 3.15 are similar to those
of Theorem 2.11 and Theorem 2.12 for affine space, using Proposition 3.13
instead of Proposition 2.10.

Theorem 3.14. A closed set W ⊂ Pn is irreducible if and only if I(W ) is
a prime ideal.

Proposition 3.15. Every closed set in Pn is the union of finitely many
irreducible ones.

Suppose that X is a closed subset of Pn. We define the coordinate ring
of X to be S(X) = S(Pn)/I(X), which is a standard graded ring. Suppose
that U is a set of homogeneous elements of S(X). Then we define

ZX(U) = {p ∈ X | F (p) = 0 for all F ∈ U}.
If J is a homogeneous ideal in S(X), we define ZX(J) = ZX(U) where U
is a homogeneous set of generators of J . This set is independent of choice
of homogeneous generating set U of J .

Given a subset Y ofX, we define IX(Y ) to be the ideal in S(X) generated
by the homogeneous elements of S(X) which vanish at all points of Y . When
there is no danger of confusion, we will sometimes write Z(J) to denote
ZX(J) and I(Y ) to denote IX(Y ).

The above results in this section hold with Pn replaced byX. The Zariski
topology on X is the topology whose closed sets are ZX(I) for I ⊂ S(X) a
homogeneous ideal (which is the subspace topology of X).
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Suppose that X is a projective algebraic set and F ∈ S(X) is homoge-
neous. We define D(F ) = X \ Z(F ), which is an open set in X. We will
also denote the open set D(F ) by XF .

The proof of the following lemma is like that of Lemma 2.83.

Lemma 3.16. Suppose that X ⊂ Pn is a projective algebraic set. Then the
open sets D(F ) for homogeneous F ∈ S(X) form a basis for the topology
of X.

We now construct a correspondence between elements ofR = k[y1, . . . , yn]
(a polynomial ring in n variables) and homogeneous elements of the stan-
dard graded polynomial ring T = k[x0, . . . , xn]. Fix i with 0 ≤ i ≤ n. To
f(y1, . . . , yn) ∈ R we associate the homogeneous polynomial

fh = F (x0, . . . , xn) = xdi f

(
x0
xi

, . . . ,
xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

)
,

where d is the degree of f . To F (x0, . . . , xn) ∈ T we associate

F a = F (y1, . . . , yi, 1, yi+1, . . . , yn).

This definition is valid for all F ∈ T . One has that

(fh)a = f

for all f ∈ R, and for all homogeneous F ∈ T ,

(F a)h = x−m
i F

where m is the highest power of xi which divides F .

We extend h to a map from ideals in k[y1, . . . , yn] to homogeneous ideals
in k[x0, . . . , xn] by taking an ideal I to the ideal Ih generated by the set of
homogeneous elements {fh | f ∈ I}. We also extend a to a map from ho-
mogeneous ideals in k[x0, . . . , xn] to ideals in k[y1, . . . , yn]. A homogeneous
ideal J is mapped to the ideal

Ja = {fa | f ∈ J} = {F a | F ∈ J is homogeneous}.
The properties which are preserved by these correspondences of ideals are
worked out in detail in [161, Section 5 of Chapter VII] (especially Theorem
17 on page 180 and Theorem 18 on page 182). The following formulas hold:

(Ih)a = I for I an ideal in R

and

(Ja)h =
∞⋃
j=0

J : xji for J a homogeneous ideal in T

where J : xji = {f ∈ T | fxji ∈ J}. In particular, (Ja)h = J if J is a
homogeneous prime ideal which does not contain xi. We thus deduce from
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these formulas, [161, Theorem on page 180] and [161, Theorem on page
182], the following propositions.

Proposition 3.17. The functions a and h give a 1-1 correspondence between
prime ideals in k[y1, . . . , yn] and homogeneous prime ideals in k[x0, . . . , xn]
which do not contain xi.

Recall that an ideal A is radical if
√
A = A.

Proposition 3.18. The functions a and h give a 1-1 correspondence between
radical ideals in k[y1, . . . , yn] and homogeneous radical ideals in k[x0, . . . , xn]
all of whose associated prime ideals do not contain xi.

Theorem 3.19. Suppose that i satisfies 0 ≤ i ≤ n and D(xi) is the open
subset of Pn. Then the maps φ : D(xi) → An defined by

φ(a0 : . . . : an) =

(
a0
ai

, . . . ,
ai−1

ai
,
ai+1

ai
, . . . ,

an
ai

)
for (a0 : . . . : an) ∈ D(xi) and ψ : An → D(xi) defined by

ψ(a1, a2, . . . , an) = (a1 : . . . : ai : 1 : ai+1 : . . . : an)

for (a1, . . . , an) ∈ An are inverse homeomorphisms.

Proof. The maps φ and ψ are inverse bijections of sets, so we need only
show that φ and ψ are continuous.

Suppose that Z ⊂ An is closed. Then Z = Z(I) for some ideal I
in k[y1, . . . , yn]. Then φ−1(Z) = D(xi) ∩ Z(Ih) is closed in D(xi), and
so φ is continuous. Suppose that Z ⊂ D(xi) is closed in D(xi). Then
Z = W ∩ D(xi) for some closed subset W of Pn. We have that W = Z(J)
for some homogeneous ideal J of k[x0, . . . , xn] and so ψ−1(Z) = Z(Ja) is
closed in An. �

It follows from Theorem 3.19 and Proposition 3.17 that if X is an al-
gebraic set (variety) in An, then ψ induces a homeomorphism of X with
W ∩ D(xi), where W is the projective algebraic set (variety) Z(I(X)h).
If W is a projective algebraic set (variety) in Pn which is not contained in
Z(xi), then ψ induces a homeomorphism of the closed algebraic set (variety)
X = Z(I(W )a) of An with W ∩ D(xi).

Exercise 3.20. Prove Proposition 3.9.

Exercise 3.21. Prove Proposition 3.13.

Exercise 3.22. Suppose that p = (a0 : . . . : an) ∈ Pn. Show that

I(p) = (aixj − ajxi | 0 ≤ i, j ≤ n).
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Exercise 3.23. In Theorem 3.19, we showed that the open set D(xi) of
Pn is homeomorphic to An. Suppose that Y is a closed subset of the open
subset D(xi) of Pn. The closure Y of Y in Pn is the intersection of all closed
subsets of Pn containing Y . Show that

IAn(φ(Y ))h = IPn(Y ).

Exercise 3.24. Suppose that Y ⊂ Pn is a closed subvariety of D(x0) such
that I(φ(Y )) = (f) for some irreducible f ∈ k[An] = k[y1, . . . , yn]. Suppose
that d is the degree of f , so that we have an expansion

f =
∑

j1+···+jn≤d

aj1,...,jny
j1
1 · · · yjnn

for some aj1,...,jn ∈ k and so that some term aj1,...,jn 
= 0 with j1+· · ·+jn = d.
Find generators of I(φ(Y ))h.

Exercise 3.25. Let φ : k[x0, x1, x2, x3] → k[s, t] be the k-algebra homomor-
phism of polynomial rings defined by

φ(x0) = s3, φ(x1) = ts2, φ(x2) = t2s, φ(x3) = t3.

Wewill say that a monomial sitj has bidegree (i, j) and a monomial xa0x
b
1x

c
2x

d
3

has bidegree (3a+2b+ c, b+2c+3d). A k-linear combination of monomials
of a common bidegree is called a bihomogeneous form. The map φ is bi-
homogeneous, as it takes forms of bidegree (i, j) to forms of bidegree (i, j).
Let J be the kernel of φ. Use a variation of the method of Exercise 2.76 to
show that

J = (x1x2 − x0x3, x
2
1 − x0x2, x

2
2 − x1x3).

Exercise 3.26. Let I = (F1 = y1y2 − y3, F2 = y21 − y2). Show that I is a
prime ideal in R = k[y1, y2, y3]. Compute the ideal Ih in T = k[x0, x1, x2, x3]
and show that it is not equal to (F h

1 , F
h
2 ).

Hint: Consider the ideal of the “twisted cubic curve” J = (x1x2 − x0x3,
x21 − x0x2, x

2
2 − x1x3) from Exercise 3.25 which is a prime ideal.

3.3. Grassmann varieties

The Grassmannian Grass(a, b) is the set of a-dimensional linear subspaces
of kb. We will show that Grass(a, b) naturally has a structure as a projective
variety.

An a-dimensional linear subspace W of kb is determined by a basis
v1, . . . , va of W and hence by the a× b matrix

(3.4) A =

⎛⎜⎝ v1
...
va

⎞⎟⎠
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which has rank a. Two such matrices A and A′ represent the same a-
dimensional subspace W if and only if there exists an a × a matrix B with
nontrivial determinant (an element of GLa(k)) such that BA = A′. This
determines an equivalence relation ∼ on

S = {a× b matrices A of rank a},

giving us a natural identification of the sets Grass(a, b) and S/ ∼.

We now show, by means of the Plücker embedding, that Grass(a, b) has

a natural structure as a projective variety. Define a map ρ : S → P(
b
a)−1 by

sending the matrix A of (3.4) to the equivalence class (aI) where the aI are
the minors of a × a submatrices of A (in some fixed order). At each point
A of S, for at least one I, aI is not zero. If A ∼ A′, then (a′I) = Det(B)(aI)

as vectors in k(
a
b). Thus ρ(A) = ρ(A′) so ρ induces a well-defined map

ρ : Grass(a, b) → P(
b
a)−1.

Now using linear algebra, we can show that ρ is injective and its image

is a closed subvariety of P(
b
a)−1, whose ideal is generated by quadrics. For

more details about Grassmannians, see [81, Chapter VII of Volume 1], [136,
Example 1 on page 42 of Volume 1], and [62, Section 5 of Chapter 1].

3.4. Regular functions and regular maps of quasi-projective
varieties

Suppose that X is a projective variety, that is, a closed irreducible subset
of Pn. Then the coordinate ring S(X) = S(Pn)/I(X) of X is a standard
graded k-algebra. We define

k(X)=

{
F

G
| F,G∈S(X) are homogeneous of the same degree d and G 
=0

}
.

It is readily verified that k(X) is a field. The field k(X) is called the field
of rational functions on X or the function field of X. We have that k(X) =
S(X)(q), defined in (3.1), where q is the prime ideal q = (0) in S(X), the

elements of degree 0 in T−1S(X) where T is the multiplicative set of nonzero
homogeneous elements of S(X). By (3.3), if f = F

G ∈ k(X) with F,G
homogeneous of the same degree d and p ∈ X is such that G(p) 
= 0, then
the value f(p) ∈ k is well-defined. Specifically, if p = (a0 : . . . : an) = (b0 :
. . . : bn), then there exists 0 
= λ ∈ k such that ai = λbi for 0 ≤ i ≤ n and

f(a0, . . . , an) = F (a0,...,an)
G(a0,...,an)

= F (λb0,...,λbn)
G(λb0,...,λbn)

= λdF (b0,...,bn)
λdG(b0,...,bn)

= F (b0,...,bn)
G(b0,...,bn)

= f(b0, . . . , bn).
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Suppose that f ∈ k(X). We say that f is regular at p ∈ X if there
exists an expression f = F

G , where F,G ∈ S(X) are homogeneous of the
same degree d, such that G(p) 
= 0.

Lemma 3.27. Suppose that f ∈ k(X). Then the set

U = {p ∈ X | f is regular at p}

is an open subset of X.

Proof. Suppose that p ∈ U . Then there are F,G ∈ S(X) which are ho-
mogeneous of the same degree d such that f = F

G and G(p) 
= 0. Then
X \ ZX(G) is an open neighborhood of p which is contained in U . Thus U
is open. �

For p ∈ X, we define

OX,p = {f ∈ k(X) | f is regular at p}.

An element f ∈ OX,p induces a map f : U → A1 on some open neigh-
borhood U of p in X. The ring OX,p is a local ring. We will write its
maximal ideal as mX,p, or mp if there is no danger of confusion. We have
that OX,p = S(X)(I(p)), defined in (3.1), the elements of degree 0 in the

localization T−1S(X), where T is the multiplicative set of homogeneous el-
ements of S(X) which are not in I(p). We will denote OX,p/mp by k(p).
As a field, k(p) is isomorphic to k. Also, k(p) has a natural structure as a
OX,p-module.

Suppose that U is an open subset of X. Then we define

OX(U) =
⋂
p∈U

OX,p.

Here the intersection takes place in k(X) and is over all p ∈ U . The ring
OX(U) is called the ring of regular functions on U .

Suppose that U is a nontrivial open subset of X. Let Map(U,A1) be the
set of maps from U to A1. The set Map(U,A1) is a k-algebra since A1 = k
is a k-algebra. We have a natural k-algebra homomorphism φ : OX(U) →
Map(U,A1) defined by φ(f)(p) = f(p) for f ∈ OX(U) and p ∈ U . We will
show that φ is injective. Suppose f ∈ Kernel φ and p ∈ U . There exists an
expression f = F

G where F,G ∈ S(X) are homogeneous of the same degree
d and G(p) 
= 0. For q in the nontrivial open set U \ Z(G) we have that
F (q)
G(q) = f(q) = 0. Thus F (q) = 0, and so

F ∈ I(U \ Z(G)) = I(X) =
√

(0) = (0)
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by Proposition 3.13. Thus F = 0, and so f = F
G = 0. Hence φ is injective.

We may thus identify OX(U) with the k-algebra φ(OX(U)) of maps from U
to A1.

An element f of the function field k(X) of X induces a map f : U → A1

on some open subset U of X. An element f ∈ OX,p induces a map f : U →
A1 on some open neighborhood U of p in X.

There are examples of quasi-projective varieties U such that OU (U)
is not a finitely generated k-algebra, as discussed earlier for quasi-affine
varieties in Example 2.98. A quasi-projective example is given by Zariski
[159, page 456 ], based on his example which we will expound in Theorem
20.14.

We now define a regular map of a quasi-projective variety.

Definition 3.28. Suppose that X is a quasi-projective variety or a quasi-
affine variety and Y is a quasi-projective variety or a quasi-affine variety.
A regular map φ : X → Y is a continuous map such that for every open
subset U of Y , the map φ∗ : Map(U,A1) → Map(φ−1(U),A1) defined by
φ∗(f) = f ◦ φ for f ∈ Map(U,A1) gives a k-algebra homomorphism φ∗ :
OY (U) → OX(φ−1(U)).

Definition 3.28 is consistent with our earlier definitions of regular maps
of affine and quasi-affine varieties by Propositions 2.95 and 2.96.

We will show that OX(X) can be identified with the ring of regular maps
from X to A1 in Theorem 3.40.

Definition 3.29. Suppose that X is a quasi-projective variety or a quasi-
affine variety and Y is a quasi-projective variety or a quasi-affine variety. A
regular map φ : X → Y is said to be an isomorphism if there exists a regular
map ψ : Y → X such that ψ ◦ φ = idX and φ ◦ ψ = idY .

We will say that a quasi-projective variety is affine if it is isomorphic to
an affine variety.

Theorem 3.30. Suppose that W is a projective variety which is a closed
subset of Pn, with homogeneous coordinate ring S(Pn) = k[x0, . . . , xn], and
xi is a homogeneous coordinate on Pn such that W ∩ D(xi) 
= ∅. Then
W ∩ D(xi) is an affine variety.

Proof. Without loss of generality, we may suppose that i = 0. Write

S(W ) = k[x0, . . . , xn]/I(W ) = k[x0, . . . , xn]

where xi is the class of xi. The ring S(W ) is standard graded with the xi
having degree 1. By our assumption, x0 
= 0, so

xj

x0
∈ k(W ) for all j. We
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calculate

k(W ) = S(W )(q) = QF

(
k

[
x1
x0

, . . . ,
xn
x0

])
where q is the zero ideal (0) of S(W ).

Let φ : W ∩D(x0) → X be the homeomorphism induced by the map of
Theorem 3.19, as explained after the proof of Theorem 3.19, where X is the
affine variety X = Z(I(W )a) ⊂ An. We have that

k[X] = k[An]/I(X) = k[y1, . . . , yn]/I(X) = k[y1, . . . , yn],

where yi is the class of yi in k[X]. For a point

p = (a0 : a1 : . . . : an) ∈ W ∩ D(x0),

we have that φ(p) = (a1a0 , . . . ,
an
a0
).

Define φ∗ : k[An] = k[y1, . . . , yn] → k(W ) by

(3.5) φ∗(f) = f ◦ φ = f

(
x1
x0

, . . . ,
xn
x0

)
=

fh(x0, . . . , xn)

(x0)deg(f
h)

for f ∈ k[y1, . . . , yn].

The ideal I(W )a is a prime ideal by Proposition 3.17, so I(X) = I(W )a

since I(X) = I(Z(I(W )a)) =
√

I(W )a. The kernel of φ∗ is

Kernel(φ∗) = {f ∈ k[y1, . . . , yn] | fh(x0, . . . , xn) = 0}
= {f ∈ k[y1, . . . , yn] | fh ∈ I(W )}.

Suppose f ∈ k[y1, . . . , yn] and fh ∈ I(W ). Then f = fha ∈ I(W )a = I(X).
If f ∈ I(X), then fh ∈ I(X)h = I(W ) by Proposition 3.17. Thus the kernel
of φ∗ is I(X).

We thus have that φ∗ induces an injective k-algebra homomorphism φ∗ :
k[X] = k[y1, . . . , yn] → k(W ), giving an induced k-algebra homomorphism
φ∗ : k(X) → k(W ). By (3.5) we have that φ∗(f) ∈ OW,p for all f ∈ k[X]
and p ∈ W ∩ D(x0).

Suppose that p = (a0 : . . . : an) ∈ W ∩ D(x0) and h ∈ OX,φ(p). Then

h = f
g with f, g ∈ k[X] and g(φ(p)) = g(a1a0 , . . . ,

an
a0
) 
= 0. Since a0 
= 0, we

see from (3.5) that φ∗(g)(p) 
= 0. Thus φ∗(h) ∈ OW,p. We thus have that

φ∗(OX,φ(p)) ⊂ OW,p. Suppose that h ∈ OW,p. Then h = F (x0,...,xn)
G(x0,...,xn)

where

F,G are homogeneous of a common degree d and G(p) 
= 0. We have

F

G
=

F
xd
0

G
xd
0

=
F (1, x1

x0
, . . . , xn

x0
)

G(1, x1
x0
, . . . , xn

x0
)
= φ∗

(
F a

Ga

)
.
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Now Ga(φ(p)) = G(p)

ad0

= 0 so Fa

Ga ∈ OX,φ(p). We thus have that

(3.6) φ∗ : OX,φ(p) → OW,p

is an isomorphism for all p ∈ W ∩ D(x0).

Since φ is a homeomorphism and by the definitions of OX and OW , we
have for an open subset U of X an isomorphism
(3.7)

OX(U) =
⋂
q∈U

OX,q =
⋂

p∈φ−1(U)

OX,φ(p)
φ∗
→

⋂
p∈φ−1(U)

OW,p = OW (φ−1(U))

by (3.6). In particular, φ is a regular map.

Now we have that the inverse map ψ of φ is determined by the map
defined in Theorem 3.19, as explained after the proof of Theorem 3.19, and
ψ induces a map ψ∗ : k(W ) → k(X), defined by ψ∗(f) = f ◦ψ for f ∈ k(W ).
We have that

ψ∗
(
xj
x0

)
= yj

for 1 ≤ j ≤ n. Thus ψ∗ is an isomorphism of function fields with inverse φ∗.
By our above calculations, we then see that ψ is a regular map which is an
inverse to φ. Thus φ is an isomorphism. �

Corollary 3.31. Suppose that X is a quasi-affine variety. Then X is iso-
morphic to a quasi-projective variety.

Proof. The quasi-affine variety X is an open subset of an affine variety
Y ⊂ An. The affine variety An is isomorphic to the open subset D(x0)
of Pn by Theorem 3.30. Let W be the Zariski closure of Y in Pn. Then
W ∩ D(x0) ∼= Y by Theorem 3.30. Since X is an open subset of Y and Y
is isomorphic to an open subset of W , we have that X is isomorphic to an
open subset of W and thus is isomorphic to a quasi-projective variety. �

We will call an open subset U of a projective variety an affine variety if
U is isomorphic to an affine variety. With this identification, we have that
all quasi-affine varieties are quasi-projective.

Corollary 3.32. Every point p in a quasi-projective variety has an open
neighborhood which is isomorphic to an affine variety.

Proof. Suppose that V is a quasi-projective variety and p ∈ V is a point.
Then V is an open subset of a projective variety W , which is itself a closed
subset of a projective space Pn. Writing S(Pn) = k[x0, . . . , xn], there exists
a homogeneous coordinate xi on Pn such that xi(p) 
= 0, so D(xi) contains
p. By Theorem 3.30, D(xi)∩W is isomorphic to an affine variety. We have
that V ∩ (D(xi) ∩ W ) is an open subset of D(xi) ∩ W since V is open in
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W . Now by Lemma 2.83 and Proposition 2.93, there exists an affine open
subset U of D(xi) ∩ W which contains p and is contained in V . �

The proof of Theorem 3.30 gives us the following useful formula. Sup-
pose that W ⊂ Pn is a projective variety, and suppose that W is not con-
tained in Z(xi). Letting S(Pn) = k[x0, . . . , xn] and S(W ) = S(Pn)/I(W ) =
k[x0, . . . , xn], we have that

(3.8) OW (D(xi)) = k

[
x0
xi

, . . . ,
xn
xi

]
∼= k

[
x0
xi

, . . . ,
xn
xi

]
/J

where

J = {f(x0
xi
, . . . , xn

xi
) | f ∈ I(W )}

= { F
xd
i

| F ∈ I(W ) is homogeneous of some degree d}.

With the notation introduced before Lemma 3.4, we have that

OW (D(xi)) = S(W )(xi)
∼= S(Pn)(xi)/I(W )(xi).

We give a proof of this formula. Without loss of generality, we may assume
that i = 0. By (3.7), the homomorphism φ∗ : k(X) → k(W ) takes OX(X) =
k[X] = k[y1, . . . , yn] to OW (D(x0)). In our construction of φ∗, we saw that

φ∗(yj) =
xj

x0
for all j, so

OW (D(x0)) = k

[
x1
x0

, . . . ,
xn
x0

]
.

Further, this last ring is the quotient of the polynomial ring

k

[
x1
x0

, . . . ,
xn
x0

]
by φ∗(I(X)) = φ∗(I(W )a) = J . Finally, we observe that by Euler’s formula,
if F (x0, . . . , xn) is homogeneous of degree d, then

F (x0, . . . , xn) = F

(
xi
x0
xi

, . . . , xi
xn
xi

)
= xdiF

(
x0
xi

, . . . ,
xn
xi

)
.

Example 3.33. Let F = x22x0 − x1(x
2
1 − x20) ∈ S(P2) = k[x0, x1, x2]. The

form F is irreducible, so C = Z(F ) ⊂ P2 is a projective variety (an elliptic
curve). Let y1 =

x1
x0

and y2 =
x2
x0
, which are coordinate functions on D(x0) ∼=

A2. Then I(C∩D(x0)) = (F )a = (f) where f = y22−y1(y
2
1−1) ∈ k[D(x0)] =

k[y1, y2]. We have that

C ∩ Z(x0) = Z(x22x0 − x1(x
2
1 − x20), x0) = Z(x0, x1) = {Q}

where Q = (0 : 0 : 1). Thus C is the union of the affine curve C ∩D(x0) and
the point Q ∈ Z(x0) ∼= P1. Figure 3.1 shows this curve over C. We will see
in Chapter 18 that C has genus 1, and thus (Section 18.8) C is topologically
a sphere with one handle.
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Q

Figure 3.1. C over C (left) and the real part of C ∩D(x0) (right)

We can now calculate the regular functions on Pn.

Proposition 3.34. The regular functions on Pn are OPn(Pn) = k.

Proof. Since {D(xi) | 0 ≤ i ≤ n} is an open cover of Pn,

OPn(Pn) =
⋂
p∈Pn

OPn,p =

n⋂
i=0

⎛⎝ ⋂
p∈D(xi)

OPn,p

⎞⎠
=

n⋂
i=0

OPn(D(xi)) =

n⋂
i=0

k

[
x0
xi

, . . . ,
xn
xi

]
.

Thus if g ∈ OPn(Pn), we have expressions

g = gi

(
x0
xi

, . . . ,
xn
xi

)
∈ k

[
x0
xi

, . . . ,
xn
xi

]
.

For each i, there exists a smallest di ∈ N such that

xdii gi

(
x0
xi

, . . . ,
xn
xi

)
= fi(x0, . . . , xn)

is a polynomial. Necessarily, we have that xi 
 | fi in the UFD k[x0, . . . , xn].
Further, di is the degree of fi. If d0 = 0, then we have that g = g0 ∈ k, and
we have established the proposition. Suppose that d0 > 0. Since gi = gj

for all i, j, we have that fix
dj
j = fjx

di
i for all i, j. Since the polynomial ring

k[x0, . . . , xn] is a UFD and xi, xj are relatively prime for i 
= j, we have that
x0 | f0, which is a contradiction. Thus d0 = 0 and so OPn(Pn) = k. �

The statement of Proposition 3.34 is true for arbitrary projective vari-
eties W (taking the intersection over the open sets W ∩ D(xi) such that
D(xi) ∩ W 
= ∅) but we need to be a little careful with the proof, as can
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be seen from the following example. Consider the standard graded domain
T = Q[x0, x1] = Q[x0, x1]/(x

2
0 + x21). We compute L = Q[x0

x1
] ∩ Q[x1

x0
]. We

have that x20 = −x21 so x1
x0

= −x0
x1
.

L = Q

[
x0
x1

]
∼= Q[t]/(t2 + 1) ∼= Q[

√
−1],

which is larger than Q. This example shows that any proof that OW (W ) = k
for a projective variety W must use the assumption that k is algebraically
closed.

We will give a different proof of Theorem 3.35 in Corollary 5.15.

Theorem 3.35. Suppose that W is a projective variety. Then the regular
functions on W are OW (W ) = k.

Proof. W is a closed irreducible subset of Pn for some n. Let S(Pn) =
k[x0, . . . , xn] and S(W ) = k[x0, . . . , xn] where xi is the class of xi in S(W ).
We may suppose that xi 
= 0 for all i, for otherwise we have that W ⊂ Z(xi)
so that W is a closed subset of Z(xi) ∼= Pn−1 ⊂ Pn, and W is contained in
a projective space of smaller dimension. Repeating this reduction at most
a finite number of times, we eventually realize W as a closed subset of a
projective space such that W 
⊂ Z(xi) for all i. Suppose that

f ∈ OW (W ) =
n⋂

i=0

OW (D(xi)) =
n⋂

i=0

k

[
x0
xi

, . . . ,
xn
xi

]
.

Then there exist Ni ∈ N and homogeneous elements Gi ∈ S(W ) of degree
Ni such that

f =
Gi

xNi
i

for 0 ≤ i ≤ n.

Let Si be the set of homogeneous forms of degree i in S(W ) (so that S(W ) ∼=⊕∞
i=0 Si). We have that xNi

i f ∈ SNi for 0 ≤ i ≤ n. Suppose that N ≥
∑

Ni.
Since SN is spanned (as a k-vector space) by monomials of degree N in
x0, . . . , xn, for each such monomial at least one xi has an exponent ≥ Ni.
Thus SNf ⊂ SN . Iterating, we have that SNf q ⊂ SN for all q ∈ N. In
particular, xN0 f q ∈ S(W ) for all q > 0. Thus the subring S(W )[f ] of the

quotient field of S(W ) is contained in x−N
0 S(W ), which is a finitely generated

S(W ) module. Thus f is integral over S(W ) (by Theorem 1.49), and there
exist m and a1, . . . , am ∈ S(W ) such that

fm + a1f
n−1 + · · ·+ am = 0.

Since f has degree 0, we can replace the ai with their homogeneous compo-
nents of degree 0 and still have a dependence relation. But the elements of
degree 0 in S(W ) consists of the field k. Now k[f ] is a domain since it is a
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subring of the quotient field of S(W ) and so k[f ] is a finite extension field
of k. Thus f ∈ k since k is algebraically closed. �

Proposition 3.36. Suppose that W is a projective variety. Then W is
separated (distinct points of W have distinct local rings).

Proof. Suppose that W is a closed subset of a projective space Pn. Write

S(W ) = S(Pn)/I(W ) = k[x0, . . . , xn]/I(W ) = k[x0, . . . , xn]

where xi is the class of xi in S(W ). Suppose that p ∈ W . Then p ∈ D(xi)
for some i, and since W ∩D(xi) is affine with

k[W ∩D(xi)] = k

[
x0
xi

, . . . ,
xn
xi

]
,

OW,p is the localization of k
[
x0
xi
, . . . , xn

xi

]
at a maximal ideal m. Let π :

OW,p → OW,p/mOW,p
∼= k be the residue map. Let π(

xj
xi
) = αj ∈ k for

0 ≤ j ≤ n (with αi = 1 since xi
xi

= 1). We have that xi(p) 
= 0 and

xj(p) = αjxi(p). Thus

p = (x0(p) : . . . : xn(p)) = (α0 : . . . : αn) ∈ W

is uniquely determined by the ring OW,p. �

Proposition 3.37. Suppose that X is a projective variety and U ⊂ X is a
nonempty quasi-affine open subset. Then the quotient field of OX(U) is the
function field k(X) of X.

Proof. Let p ∈ U . Then OX,p = OU,p is a localization of OU (U) at a
maximal ideal (by Lemma 2.91). By the definition of OX,p, we have that
OX,p ⊂ k(X), so QF(OX(U)) ⊂ k(X). Suppose that f ∈ k(X). The

function f = F
G where F,G ∈ S(X) are homogeneous of a common degree

d and G 
= 0. There exists a linear form L ∈ S(X) such that L(p) 
= 0.
Thus F

Ld ,
G
Ld ∈ OX,p so F

G is in the quotient field of OX,p and hence is in the
quotient field of OU (U). �

It follows from Proposition 3.37 that if X is a projective variety and
p ∈ X, then k(X) = QF(OX,p).

Proposition 3.37 allows us to define the field of rational functions or the
function field k(Y ) of a quasi-projective variety Y as k(U), where U is a
nontrivial affine open subset of Y .

Suppose that φ : X → Y is a regular map of quasi-projective varieties.
Extending our definition for quasi-affine varieties, we say that φ is dominant
if the Zariski closure of φ(X) in Y is equal to Y .
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Proposition 3.38. Suppose that X and Y are quasi-projective varieties and
φ : X → Y is a dominant regular map. Then the map φ∗ : Map(Y,A1) →
Map(X,A1) defined by φ∗(f) = f ◦φ for f ∈ Map(Y,A1) induces an injective
k-algebra homomorphism φ∗ : k(Y ) → k(X).

Proof. Let V be an affine open subset of Y and U be an affine open subset
of the open subset f−1(V ) of X. Then the restriction of φ to a map of
affine varieties φ : U → V is dominant, so the k-algebra homomorphism
φ∗ : k[V ] → k[U ] is injective. Taking the induced map on quotient fields, we
obtain by Proposition 3.37 the desired homomorphism of function fields. �

The following proposition gives a useful criterion for a map of quasi-
projective varieties to be regular.

Proposition 3.39. Suppose that X and Y are quasi-projective varieties and
φ : X → Y is a map. Let {Vi} be a collection of open affine subsets covering
Y and {Ui} be a collection of open subsets covering X, such that

1. φ(Ui) ⊂ Vi for all i and

2. the map φ∗ : Map(Vi,A1) → Map(Ui,A1) defined by φ∗(f) = f ◦ φ
for f ∈ Map(Vi,A1) maps OY (Vi) into OX(Ui) for all i.

Then φ is a regular map.

Proof. Suppose that U is an affine subset of Ui. Then φ∗ induces a k-algebra
homomorphism φ∗ : k[Vi] → k[U ] since the restriction map OY (Ui) →
OY (U) is a k-algebra homomorphism. Thus we may refine our cover {Ui}
to assume that the Ui are affine for all i.

Let φi : Ui → Vi be the restriction of φ. Consider the k-algebra homo-
morphism φ∗

i : k[Vi] → k[Ui]. Suppose that p ∈ Ui and q ∈ Vi. We have
that
(3.9)
φ∗
i (IVi(q)) ⊂ IUi(p) if and only if φ∗

i (f)(p) = 0 for all f ∈ IVi(q)
if and only if f(φi(p)) = 0 for all f ∈ IVi(q)
if and only if IVi(q) ⊂ IVi(φi(p))
if and only if IVi(q) = IVi(φi(p)) since IVi(q)

and IVi(φi(p)) are maximal ideals
if and only if q = φi(p) since the affine variety Vi

is separated by Corollary 2.87.

Now there exists a regular map gi : Ui → Vi such that g∗i = φ∗
i (by

Proposition 2.40). The calculation (3.9) shows that for p ∈ Ui and q ∈ Vi

we have that gi(p) = q if and only if g∗i (IVi(q)) ⊂ IUi(p). Thus φi = gi so
that φi is a regular map. In particular the φi are all continuous so that φ is
continuous.
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Suppose that q ∈ Y and p ∈ φ−1(q). Then there exist Ui and Vi such
that p ∈ Ui and q ∈ Vi. For f ∈ k[Vi],

f ∈ IVi(q) = IVi(φi(p)) if and only if f(φi(p)) = 0
if and only if φ∗

i (f)(p) = 0
if and only if f ∈ (φ∗

i )
−1(IUi(p)).

Thus (φ∗
i )

−1(IUi(p)) = IVi(q), and we have an induced k-algebra homomor-
phism

φ∗
i : OVi,q = k[Vi]IVi (q)

→ k[Ui]IUi
(p) = OUi,p.

But this is just the statement that

φ∗ : OY,q → OX,p.

Thus

(3.10) φ∗ : OY,q →
⋂

p∈φ−1(q)

OX,p.

Suppose that U is an open subset of Y . Then

OY (U) =
⋂
q∈U

OY,q

and

OX(φ−1(U)) =
⋂
q∈U

⎛⎝ ⋂
p∈φ−1(q)

OX,p

⎞⎠ .

Thus by (3.10), we have that

φ∗ : OY (U) → OX(φ−1(U)).

We have established that φ satisfies Definition 3.28, and so φ is a regular
map. �

In the following theorem we show that the regular functions on a quasi-
projective variety X are the regular maps from X to A1.

Theorem 3.40. Suppose that X is a quasi-projective variety. Then OX(X)
is naturally isomorphic to the k-algebra of regular maps from X to A1.

Proof. Let R be the k-algebra of regular maps from X to A1. Let t be the
natural coordinate function on A1 defined by t(q) = q for q ∈ A1. Suppose
that f ∈ OX(X). Then the association p �→ f(p) is a well-defined map
from X to A1, which we will denote by f : X → A1. Since f∗(t) = f , the
map f∗ : k[A1] = k[t] → OX(X) is a well-defined k-algebra homomorphism.
We have that f : X → A1 is a regular map by Proposition 3.39, taking
the trivial open cover {X} of X and the trivial affine open cover {A1} of
A1. We thus have that the rule φ(f)(p) = f(p) for f ∈ OX(X) and p ∈ X
determines a well-defined k-algebra homomorphism φ : OX(X) → R.
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The map φ is injective as shown before Definition 3.28. Now suppose that
g : X → A1 ∈ R. Then g∗ : k[A1] → OX(X) is a k-algebra homomorphism.
Let f = g∗(t) ∈ OX(X). Then

φ(f)(p) = [g∗(t)](p) = t(g(p)) = g(p)

for all p ∈ X. Thus φ is surjective. �

Exercise 3.41. Let W be the projective variety (surface)

W = Z(x0x1 − x2x3) ⊂ P3.

We can write W as a union of an affine variety, W ∩D(x0), and the algebraic
set W ∩ Z(x0) ⊂ Z(x0) ∼= P2. Let

y1 =
x1
x0

, y2 =
x2
x0

, y3 =
x3
x0

,

which are coordinate functions on D(x0) ∼= A3. Find the ideal I(W ∩
D(x0)) ⊂ OP3(D(x0)) = k[y1, y2, y3]. What is the algebraic set W ∩ Z(x0)
viewed as a subset of P2?

Exercise 3.42. Let U be the quasi-affine variety U = An+1 \ {(0, . . . , 0)}.
Consider the map

π : U → Pn

defined by π(a0, a1, . . . , an) = (a0 : . . . : an). Is π a regular map? Prove
your answer.





Chapter 4

Regular and
Rational Maps
of Quasi-projective
Varieties

In this chapter we define rational maps, give some useful ways to represent
regular and rational maps, and give some examples. We show in Corollary
4.7 that every projective variety X has the basis of open sets D(F ) for
F ∈ S(X) which are (isomorphic to) affine varieties.

4.1. Criteria for regular maps

Lemma 4.1. A composition of regular maps of quasi-projective varieties is
a regular map.

Proof. This follows from the definition of a regular map, Definition 3.28,
since the composition of continuous functions is continuous and a composi-
tion of k-algebra homomorphisms is a k-algebra homomorphism. �

Proposition 4.2. Suppose that U and V are quasi-projective varieties.

1) Suppose that U is an open subset of V . Then the inclusion

i : U → V

is a regular map.

87
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2) Suppose that U is a closed subset of V . Then the inclusion

i : U → V

is a regular map.

Proof. Let {Vi} be a cover of V by affine open sets. Let Ui = i−1(Vi). Then
{Ui} is an open cover of U such that i(Ui) ⊂ Vi for all i. In both cases 1)
and 2), i∗ is restriction of functions, so i∗ : OV (Vi) → OU (Ui) for all i. By
Proposition 3.39, i is a regular map. �

Generalizing Definition 2.94, we have the following definition.

Definition 4.3. Suppose that φ : U → V is a regular map of quasi-
projective varieties.

1) The map φ is called a closed embedding if there exists a closed
subvariety Z of V (an irreducible closed subset) such that φ(U) ⊂ Z
and the induced regular map φ : U → Z is an isomorphism.

2) The map φ is called an open embedding if there exists an open
subset W of V such that φ(U) ⊂ W and the induced regular map
φ : U → W is an isomorphism.

Proposition 4.4. Suppose that X is a quasi-projective variety and

φ = (f1, . . . , fn) : X → An

is a map. Then φ is a regular map if and only if fi are regular functions on
X for all i.

Proof. First suppose that φ : X → An is a regular map. Let x1, . . . , xn be
the natural coordinate functions on An, so that k[An] = k[x1, . . . , xn]. We
have that fi = xi ◦ φ : X → A1 is a regular map for 1 ≤ i ≤ n by Lemma
4.1, so fi ∈ OX(X) by Theorem 3.40.

Now suppose that f1, . . . , fn ∈ OX(X) and φ = (f1, . . . , fn) : X → An.
Then the map φ∗ : k[An] → Map(X,A1) has image in OX(X) and so φ is
a regular map by Proposition 3.39 (taking the trivial open cover {X} of X
and the trivial affine open cover {An} of An). �

Suppose that X is a quasi-projective variety and φ : X → Pn is a regular
map. Let S(Pn) = k[y0, . . . , yn]. Suppose that p ∈ X. Then there exists a
j such that φ(p) ∈ D(yj). Let V = D(yj). Now φ−1(V ) is an open subset
of X, so by Corollary 3.32, there exists an affine open neighborhood U of
p in φ−1(V ). Consider the restriction φ : U → V . Then φ is a regular
map of affine varieties, so on U , we can represent φ : U → V ∼= An as
φ = (f1, . . . , fn) for some f1, . . . , fn ∈ k[U ] = OX(U) ⊂ k(U) = k(X) (by
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Proposition 3.37). Thus we have a representation φ = (f1 : . . . : fj : 1 :
fj+1 : . . . : fn) on the neighborhood U of p.

In summary, we have shown that there exists an open neighborhood U
of p in X and regular functions f0, . . . , fn ∈ OX(U) such that

(4.1) φ = (f0 : . . . : fn)

on U and there are no points on U where all of the fi vanish.

Suppose that q ∈ X is another point and Y is an open neighborhood of
q in X with regular functions g0, . . . , gn ∈ OX(Y ) such that

(4.2) φ = (g0 : . . . : gn)

on Y and the gi have no common zeros on Y . These two representations of
φ must agree on U ∩ Y , which happens if and only if

(4.3) figj − fjgi = 0 for 0 ≤ i, j ≤ n

on U ∩ Y (which occurs if and only if figj − fjgi = 0 in k(x)).

We can also use this method to construct regular maps. Suppose that
X is a quasi-projective variety, {Us} is an affine open cover of X, and for
all Us,
(4.4)
fs,0, . . . , fs,n ∈ OX(Us) are functions that have no common zeros on Us

and

(4.5) fs,ift,j − fs,jft,i = 0 for all s, t and 0 ≤ i, j ≤ n.

Then by Proposition 3.39 (and Proposition 2.96), the collection of maps
(4.4) on an open cover {Us} of X satisfying (4.5) determines a regular map
φ : X → Pn.

We can thus think of a regular map φ : X → Pn as an equivalence class
of expressions (f0 : f1 : . . . : fn) with f0, . . . , fn ∈ k(X) and such that

(f0 : f1 : . . . : fn) ∼ (g0 : . . . : gn)

if and only if

figj − fjgi = 0 for 0 ≤ i, j ≤ n.

We further have the condition that for each p ∈ X there exists a represen-
tative (f0 : f1 : . . . : fn) of φ such that fi ∈ OX,p for all i and some fi does
not vanish at p.

We can reinterpret this to give another useful way to represent a regular
map φ : X → Pn. The quasi-projective variety X is an open subset of a
projective variety W which is a closed subvariety of a projective space Pm.
In the representation (4.1) of φ near p ∈ X, we can write the regular maps as

ratios fi =
Fi
Gi

where Fi, Gi are homogeneous elements of a common degree

di in the homogeneous coordinate ring S(W ) (which is a quotient of S(Pm))
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and the Gi do not vanish near p. We can thus represent φ near p by the
expression

(H0 : H1 : . . . : Hn)

where the Hi = (
∏

j �=iGj)Fi are homogeneous elements of S(W ) (or of

S(Pm)) of a common degree and at least one Hi does not vanish at p.

We can thus think of a regular map φ : X → Pn as an equivalence class
of expressions (F0 : F1 : . . . : Fn) with F0, . . . , Fn homogeneous elements of
S(W ) (or of S(Pm)) all having the same degree and such that

(F0 : F1 : . . . : Fn) ∼ (G0 : . . . : Gn)

if and only if

FiGj − FjGi = 0 for 0 ≤ i, j ≤ n

in S(W ). We further have the condition that for each p ∈ X there exists a
representative (F0 : F1 : . . . : Fn) of φ such that some Fi does not vanish at
p. It is not required that the common degree of the Fi be the same as the
common degree of the Gj .

4.2. Linear isomorphisms of projective space

Suppose that A = (aij) is an invertible (n + 1) × (n + 1) matrix with co-
efficients in k (indexed as 0 ≤ i, j ≤ n). Define homogeneous elements
Li of degree 1 in S = k(Pn) = k[x0, . . . , xn] =

⊕
Si by Li =

∑n
j=0 aijxj

for 0 ≤ i ≤ n. Then the Li are a k-basis of S1 so that Z(L0, . . . , Ln) =
Z(x0, . . . , xn) = ∅. Thus φA : Pn → Pn defined by

φA = (L0 : . . . : Ln)

is a regular map. If B is another invertible (n + 1) × (n + 1) matrix with
coefficients in k, then we have that

φA ◦ φB = φAB .

Thus φA is an isomorphism of Pn, with inverse map φA−1 .

We will call L0, . . . , Ln homogeneous coordinates on Pn.

Proposition 4.5. Suppose that W is a projective variety which is a closed
subvariety of Pn. Suppose that L ∈ S(Pn) is a linear homogeneous form,
such that D(L) ∩ W 
= ∅. Then D(L) ∩ W is an affine variety.

Proof. Write L =
∑n

j=0 a0jxj for some a0j ∈ k not all zero, and extend

the vector (a00, . . . , a0n) to a basis of kn+1. Arrange this basis as the rows
of the (n + 1) × (n + 1) matrix A = (aij). Here A is necessarily invertible.
Now the isomorphism φA : Pn → Pn maps D(L) to D(x0) and W to a
projective variety φA(W ) which is not contained in Z(x0). We have that
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φA(W ) ∩ D(x0) is an affine variety by Theorem 3.30. Thus W ∩ D(L) is
affine since it is isomorphic to φA(W ) ∩D(x0). �

Composing the isomorphism φ∗
A : OφA(W )(D(x0)) ∼= OW (D(L)) of the

above proof with the representation of OφA(W )(D(x0)) of (3.8), letting S(Pn)
= k[x0, . . . , xn] and S(W ) = S(Pn)/I(W ) = k[x0, . . . , xn], we obtain that

(4.6) OW (D(L)) = k

[
x0

L
, . . . ,

xn

L

]
∼= k

[x0
L
, . . . ,

xn
L

]
/J

where J = {f(x0
L , . . . , xn

L ) | f ∈ I(W )}. With the notation introduced before
Lemma 3.4, we have that

OW (D(L)) = S(W )(L)
∼= S(Pn)(L)/I(W )(L).

4.3. The Veronese embedding

Suppose that d is a positive integer. Let xd0, x
d−1
0 x1, . . . , x

d
n be the set of

all monomials of degree d in S(Pn) = k[x0, . . . , xn]. There are
(
n+d
n

)
such

monomials. Let e =
(
n+d
d

)
− 1. Since these monomials are a k-basis of Sd,

we have that Z(xd0, x
d−1
0 x1, . . . , x

d
n) = ∅. Thus we have a regular map

Λ : Pn → Pe

defined by Λ = (xd0 : xd−1
0 x1 : . . . : x

d
n). Let W be the closure of Λ(Pn) in Pe.

Let Pe have the homogeneous coordinates yi0i1...in where i0, . . . , in are
nonnegative integers such that i0 + · · · + in = d. The map Λ is defined by
the equations

(4.7) yi0i1...in = xi00 x
i1
1 · · ·xinn .

We will establish that Λ is an isomorphism of Pn to W . Suppose that
q ∈ W . We can verify that q = Λ(p) for some p ∈ Pn (in Theorem 5.14 we
will establish this generally), so that xj(p) 
= 0 for some j. We have that

y0...0d0...0(q) = xdj (p) 
= 0, where d is in the j-th place of y0...0d0...0. Thus the

affine open sets Wj = D(y0...0d0...0) of Pe cover W . Let

S(W ) = S(Pe)/I(W ) = k[{yi0,...,in}].
In S(W ), we have the identities

(4.8) yi0...inyj0...jn = yk0...knyl0...ln if i0+ j0 = k0+ l0, . . . , in+ jn = kn+ ln.

Now on each open subset Wj = D(y0...0d0...0) ∩ W of W we define a
regular map

Ψj : Wj → D(xj) ⊂ Pn

by

Ψj = (y10...0(d−1)0...0 : y010...0(d−1)0...0 : . . . : y0...0d0...0 : . . . : y0...0(d−1)0...01).
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Now we have that

Ψj ◦ Λ = (x0x
d−1
j : x1x

d−1
j : . . . : xnx

d−1
j ) = (x0 : x1 : . . . : xn) = idD(xj),

and the identities

yi0...in y
d
0...0(d−1)0...0 = yi010...0(d−1)0...0 y

i1
010...0(d−1)0...0 · · · yin0...0(d−1)0...01

whenever i0 + i1 + · · ·+ in = d (which are special cases of (4.8)) imply that

Λ ◦ Ψj = idWj .

Now we check, again using the identities (4.8), that Ψj = Ψk onWj∩Wk.
Thus the Ψj patch by Proposition 3.39 to give a regular map Ψ : W → Pn

which is an inverse to Λ.

The isomorphism Λ : Pn → W is called the Veronese embedding.

Recalling the definition (3.2) of a Veronese ring of a graded ring, we have
a graded, degree-preserving isomorphism

Λ∗ : S(W ) → S(Pn)(d) =
⊕
i≥0

S(Pn)id

where elements of S(Pn)
(d)
i = S(Pn)id have degree i. The map is the k-

algebra homomorphism defined by

Λ∗(yi0,...,in) = xi00 · · ·xinn .

We obtain the following result using the Veronese embedding, composed
with a linear isomorphism, which generalizes Proposition 4.5.

Proposition 4.6. Suppose that W is a projective variety which is a closed
subvariety of Pn. Suppose that F ∈ S(Pn) is a homogeneous form of degree
d > 0 such that D(F ) ∩ W 
= ∅. Then D(F ) ∩ W is an affine variety.

Letting S(Pn) = k[x0, . . . , xn] and S(W ) = S(Pn)/I(W ) = k[x0, . . . , xn],
we obtain that
(4.9)

OW (D(F ))

= k[M
F

| M is a monomial in x0, . . . , xn of degree d, F = F (x0, . . . , xn)]

∼= k[MF | M is a monomial in x0, . . . , xn of degree d]/J

where J = {G(x0,...,xn)
F e | G ∈ I(W ) is a form of degree de}. With the nota-

tion introduced before Lemma 3.4, we have that

OW (D(F )) = S(W )(F )
∼= S(Pn)(F )/I(W )(F ).

Corollary 4.7. Suppose that X is a projective variety. Then the set of
affine open subsets D(F ) for F ∈ S(X) is a basis of the Zariski topology
on X.
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Proof. This follows from Proposition 4.6 and Lemma 3.16. �

Exercise 4.8. Suppose that k has characteristic 
= 2. Let W be the conic
W = Z(x20 + x21 + x22) ⊂ P3. Then W has the coordinate ring

S(W ) = k[x0, x1, x2]/(x
2
0 + x21 + x22).

Compute OW (D(L)) where L is the linear form L = x0 + x1 + x2. Express
your answer as a quotient of a polynomial ring by an ideal.

Exercise 4.9. A subset W of Pn is called a cone if there exists a closed
subvariety Y of a linear subvariety Pr of Pn and a linear subvariety Z ∼=
Pn−r−1 of Pn such that Pr ∩ Z = ∅ and W is the union of all lines joining
a point of Y to a point of Z. Show that a cone W is a closed subvariety
of Pn and that there exist homogeneous coordinates x0, . . . , xn on Pn such
that x0, . . . , xr are homogeneous coordinates on Pr, and if I(Y ) is the ideal
of Y in S(Pr) = k[x0, . . . , xr], then I(W ) = I(Y )k[x0, . . . , xn] in S(Pn) =
k[x0, . . . , xn].

4.4. Rational maps of quasi-projective varieties

Suppose that X and Y are quasi-projective varieties. As in Section 2.6, we
define a rational map φ : X ��� Y to be a regular map on some nonempty
open subset U of X to Y . As in the affine case, we have that φ has a unique
extension as a regular map to a largest open subset W (φ) of X, and if φ
and ψ are rational maps from X to Y which are regular on respective open
subsets U and V such that φ and ψ agree on the intersection U ∩ V , then
φ = ψ.

We now formulate the concept of a rational map of projective varieties
in algebra.

The following definition extends Definition 2.106.

Definition 4.10. Suppose that X is a projective variety. A rational map
φ : X ��� Pn is an equivalence class of (n + 1)-tuples φ = (f0 : . . . : fn)
with f0, . . . , fn ∈ k(X) not all zero, where (g0 : . . . : gn) is equivalent to
(f0 : . . . : fn) if figj − fjgi = 0 for 0 ≤ i, j ≤ n.

A rational map φ : X ��� Pn is regular at a point p ∈ X if and only if
there exists a representation (f0 : . . . : fn) of φ such that all of the fi are
regular functions at p (fi ∈ OX,p for all i) and some fi(p) 
= 0.

Let W (φ) be the open set of points of X on which φ is regular. Then
φ : W (φ) → Pn is a regular map.

Suppose that Y is a projective variety which is a closed subvariety of
a projective space Pn. A rational map φ : X ��� Y is a rational map
φ : X ��� Pn such that φ(W (φ)) ⊂ Y .
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A rational map φ : X ��� Y is called dominant if φ(U) is dense in Y
when U is a (nontrivial) open subset of X on which φ is a regular map.

Definition 2.109 extends to define a birational map of quasi-projective
varieties, as follows.

Definition 4.11. A dominant rational map φ : X ��� Y of quasi-projective
varieties is birational if there exists a dominant rational map ψ : Y ��� X
such that ψ ◦ φ = idX and φ ◦ ψ = idY .

Two quasi-projective varieties X and Y are said to be birationally equiv-
alent if there exists a birational map φ : X ��� Y .

Suppose that φ : X ��� Y is a rational map. Let U be an open subset of
X such that φ : U → Y is a regular map. Let A be an open affine subset of
Y such that A∩φ(U) 
= ∅, and let B be an open affine subset of (φ|U)−1(A).
Then φ induces a regular map of affine varieties φ : B → A (by Definition
3.28 and Propositions 2.95 and 2.96). From this reduction, we obtain that
the results of Section 2.6 on rational maps of affine varieties are also valid for
projective varieties. We obtain the following generalization of Proposition
2.112.

Proposition 4.12. Every projective variety X is birationally equivalent to
a hypersurface Z(G) ⊂ Pn.

It is sometimes convenient to interpret rational maps in terms of equiv-
alence classes of (n + 1)-tuples of homogeneous forms (H0 : . . . : Hn) of
a common degree. Recalling our analysis of regular maps in the previous
section, we see that a rational map φ : X ��� Pn can also be interpreted as
an equivalence class of (n + 1)-tuples (F0 : . . . : Fn) with F0, . . . , Fn forms
of the same degree in S(X) which are not all zero, where (G0 : . . . : Gn) is
equivalent to (F0 : . . . : Fn) if FiGj − FjGi = 0 for 0 ≤ i, j ≤ n. A rational
map φ is regular at a point p ∈ X if and only if there exists a representation
(F0 : . . . : Fn) of φ by forms in S(X) of the same degree such that at least
one of the Fi does not vanish at p.

The image of a rational map φ : X ��� Y is the Zariski closure in Y of
φ(U) where U is a nontrivial open subset of X on which φ is regular.

Lemma 4.13. Suppose that X is a projective variety and φ : X ��� Pn is
a rational map. Then the image of φ has the coordinate ring k[H0, . . . , Hn]
for any equivalence class of homogeneous forms H0, . . . , Hn representing φ.

Proof. Let W be the image of φ in Pn. Let V = X \ Z(H0, . . . , Hn).
Then W is the Zariski closure of φ(V ). Let x0, . . . , xn be our homogeneous
coordinates on Pn, so that S(Pn) = k[x0, . . . , xn]. We have a surjective
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k-algebra homomorphism

Φ : k[x0, . . . , xn] → k[H0, . . . , Hn]

defined by Φ(xi) = Hi for 0 ≤ i ≤ n. Let I be the kernel of this map.

For 0 ≤ i ≤ n, we have regular maps

φi = (φ|XHi) : XHi → Pn
xi

of affine varieties, with

φ∗
i : k[P

n
xi
] = k

[
x0
xi

, . . . ,
xn
xi

]
→ k[XHi]

defined by

φ∗
i

(
xj
xi

)
=

Hj

Hi

for 0 ≤ j ≤ n. The kernel of φ∗
i is

I(W ∩ Pn
xi
) =

{
F

(
x0
xi

, . . . ,
xn
xi

)
| F ∈ I(W )

}
= I(W )(xi)

and the image of φ∗
i is k[

H0
Hi

, . . . , Hn
Hi

]. For all i we have short exact sequences

0 → I(xi) → S(Pn)(xi) = k

[
x0
xi

, . . . ,
xn
xi

]
φ∗
i→ k

[
H0

Hi
, . . .

Hn

Hi

]
→ 0.

Thus I(xi) = I(W )(xi) for 0 ≤ i ≤ n, and thus Isat = I(W )sat by Lemma
3.4. Since both I(W ) and I are prime ideals, we have that I(W ) = I. �

4.5. Projection from a linear subspace

A linear subspace E of a projective space Pn is the closed subset defined
by the vanishing of a set of linear homogeneous forms. Such a subvariety is
isomorphic to a projective space Pd for some d ≤ n. The ideal I(E) is then
minimally generated by a set of n − d linear forms; in fact a set of linear
forms {L1, . . . , Ln−d} is a minimal set of generators of I(E) if and only if
L1, . . . , Ln−d is a k-basis of the k-linear subspace S1 of the homogeneous
linear forms on Pn which vanish on E. We will say that E has dimension d.

Suppose that E is a d-dimensional linear subspace of Pn. Let L1, . . . , Ln−d

be linear forms in k[x0, . . . , xn] which define E. The rational map φ : Pn ���
Pn−d−1 with φ = (L1 : . . . : Ln−d) is called the projection from E. The map
is regular on the open set Pn \E.

This map can be interpreted geometrically as follows: choose a linear
subspace F of Pn of dimension n−d−1 which is disjoint from E (to find such
an F , just extend L1, . . . , Ln−d to a k-basis L1, . . . , Ln−d,M1, . . . ,Md+1 of S1

(the vector space of linear forms in S(Pn)), and let F = Z(M1, . . . ,Md+1).
Suppose that p ∈ Pn \ E. Let Gp be the unique linear subspace of Pn of
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dimension d + 1 which contains p and E. We have that Gp intersects F in
a unique point. This intersection point can be identified with φ(p).

This map depends on the choice of basis L1, . . . , Ln−d of linear forms
which define E. However, there is not a significant difference if a different
basis L′

1, . . . , L
′
n−d is chosen. In this case there is a linear isomorphism

Λ : Pn−d−1 → Pn−d−1 such that (L1 : . . . : Ln−d) = Λ ◦ (L′
1 : . . . : L

′
n−d).

Exercise 4.14. Suppose that φ : Pm → Pn is a regular map. Show that
there exist homogeneous forms F0, . . . , Fn of S(Pm), all of a common degree,
such that Z(F0, . . . , Fn) = ∅ and φ = (F0 : . . . : Fn). (The conclusions of
this exercise are not true for Pm replaced with a projective variety W as is
shown in the next exercise).

Exercise 4.15. Let W = Z(xw − yz) ⊂ P3, where

S(W ) = k[x, y, z, w]/(xw − yz) = k[x, y, z, w].

Consider the rational map φ : W ��� P1 defined by φ = (x : y).

a) Show that (x : y) ∼ (z : w) as rational maps, so that φ is repre-
sented by both (x : y) and (z : w). Then show that φ is a regular
map of W .

b) Show that there do not exist forms F0, F1 ∈ S(W ) of a common
degree, such that φ is represented by (F0 : F1) and ZW (F0, F1) = ∅.
To do this, assume that such F0, F1 do exist, and derive a contra-
diction. First show that p ∈ Wy implies F1(p) 
= 0. Then show
that p ∈ Ww implies F1(p) 
= 0. Conclude that

ZW (F1) ∩ (Wy ∪Ww) = ∅.

Consider the affine varietyX = Z(xw−yz) ⊂ A4, which has regular
functions k[X] = k[x, y, z, w]. Let U = Xy ∪ Xw, an open subset

of X. Show that F0
F1

∈ OX(U). Now consider Example 2.85 and
explain how the conclusions of this example give a contradiction.

Exercise 4.16. Let V be the vector space V = kn+1, and let

π : V \ {(0, . . . , 0)} → Pn

be the map π(c0, . . . , cn) = (c0 : . . . : cn) for (c0, . . . , cn) ∈ V \ {(0, . . . , 0)}.
Writing S(Pn) = k[x0, . . . , xn] =

⊕
i≥0 Si, we have an identification of

the linear forms S1 on Pn with the linear forms on V ; that is, S1 is naturally
isomorphic (as a k-vector space) to the dual space V ∗.

a) Suppose that W is a linear subspace of V of dimension d > 0. Let
X = π(W \ {(0, . . . , 0)}). Show that X is a closed subset of Pn
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which is isomorphic to Pd−1. (We will say that X has dimension
d − 1). Define

W⊥ = {L ∈ V ∗ | L(w) = 0 for all w ∈ W}.

Show that X = Z(W⊥).

b) Show that every linear subspace X of Pn is the image

π(W \ {(0, . . . , 0)})

for some linear subspace W of V .

c) Suppose that w0, . . . , wr ∈ V are nonzero. Define the linear span
L of π(w0), . . . , π(wr) in Pn to be

L = {π(c0w0+· · ·+cnwn) | c0, . . . , cn ∈ k and c0w0+· · ·+cnwn 
= (0, . . . , 0)}.

Show that L is a linear subspace of Pn.

Exercise 4.17. Suppose that

A =

⎛⎜⎝ v0,0 . . . v0,m
...

...
vn,0 . . . , vn,m

⎞⎟⎠
is an (n + 1) × (m + 1) matrix with coefficients in our algebraically closed
field k, such that rank(A) = m+ 1. Let vi = (v0,i, . . . , vn,i) ∈ V = kn+1 for
0 ≤ i ≤ m, and let W be the span of v0, . . . , vm in V . Let F be the linear
subspace π(W \ {(0, . . . , 0)}) of Pn. Define

φA : Pm → Pn

by

φA(c0 : . . . : cm) = π(c0v0 + · · ·+ cmvm)
= (

∑m
j=0 v0,jcj : . . . :

∑m
j=0 vn,jcj)

for (c0, . . . , cm) ∈ Pm. Show that φA is a regular map, which is an isomor-
phism onto the linear subspace F of Pn.

Exercise 4.18. The purpose of this exercise is to prove the geometric in-
terpretation of projection from a linear subspace stated in this section. We
begin by recalling notation.

Suppose that E is a d-dimensional linear subspace of Pn. Let L1, . . . , Ln−d

be linear forms in k[x0, . . . , xn] which define E. The rational map φ : Pn →
Pn−d−1 with φ = (L1 : . . . : Ln) is the projection from E. The map is regular
on the open set Pn \E.
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Choose a linear subspace F of Pn of dimension n − d − 1 which is dis-
joint from E (to find such an F , just extend L1, . . . , Ln−d to a k-basis
L1, . . . , Ln−d,M1, . . . ,Md+1 of S1, the vector space of linear forms in S(Pn)),
and let F = Z(M1, . . . ,Md+1). Identifying V = kn+1 with V ∗∗. Let

{v1, . . . , vn−d, w1, . . . , wd+1}
be the ordered dual basis to the ordered basis {L1, . . . , Ln−d,M1, . . . ,Md+1}
of S1 = V ∗.

Suppose that p ∈ Pn \ E. Let Gp be the unique linear subspace of Pn

of dimension d+ 1 which contains p and E. Show that Gp intersects F in a
unique point and

Gp = φA(φ(p)),

where

A =

⎛⎜⎝ v1
...
vn−d

⎞⎟⎠
t

(so that φA : Pn−d−1 → Pn is an isomorphism onto F ).

Exercise 4.19. Suppose that φ : X ��� Y is a dominant rational map
of varieties, with induced inclusion of function fields φ∗ : k(Y ) → k(X).
Suppose that p ∈ X. Show that φ is regular at p if and only if there exists
q ∈ Y such that OY,q ⊂ OX,p, and when this happens, φ(p) = q.

Exercise 4.20. Suppose that p = (a0 : . . . : an) and q = (b0 : . . . : bn)
are points in Pn. Show that there is a unique projective line L (a one-
dimensional linear subvariety) in Pn containing p and q. Compute the ideal
I(L) in S(Pn).

Suppose that pi = (a0(i) : . . . : an(i)) for 1 ≤ i ≤ m are points in Pn

such that the matrix (aj(i)) has rank m. Show that there is a unique linear
subvariety M of Pn of dimension n − m + 1 containing pi for 1 ≤ i ≤ m.
Compute the ideal I(M) in S(Pn).



Chapter 5

Products

In this chapter we define the product of two varieties and explore some of
its basic properties. We define graphs of regular and rational maps.

5.1. Tensor products

The tensor product of two modules is defined as follows:

Definition 5.1. Let R be a ring and M,N be R-modules. A tensor product
T of M and N is an R-module T and an R-bilinear mapping g : M × N →
T with the following universal property: given an R-module P and an
R-bilinear map f : M × N → P , there exists a unique R-linear map
f ′ : T → P such that f = f ′ ◦ g.

Tensor products always exist and are uniquely determined by the uni-
versal property [13, Proposition 2.12]. The tensor product is denoted by
M ⊗R N .

In the section on “Tensor products of algebras” [13, pages 30–31], it is
shown that the tensor product A⊗RB of two R-algebras A and B naturally
has the structure of an R-algebra.

Tensor products behave well with respect to localization. Let S be a
multiplicative set in a ring A and let M be an A-module. Then S−1M ∼=
S−1A⊗A M and by [128, Definition on page 100] and [128, Corollary 3.72]
if M,N are two A-modules, then by [128, Lemma 3.77]

S−1(M ⊗A N) ∼= S−1M ⊗S−1A S−1N.

99
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In the case when R = K is a field and M = A, N = B are rings
containing K, there is an alternate definition of the tensor product. This is
developed by Zariski and Samuel [160, Section 14 of Chapter III].

Definition 5.2. Suppose that S is a ring containing a field K. Two K-
subspaces L and L′ of S are said to be linearly disjoint over K if the fol-
lowing condition is satisfied: whenever x1, . . . , xn are elements of L which
are linearly independent over K and x′1, . . . , x

′
m are elements of L′ which are

linearly independent over K, then the mn products xix
′
j are also linearly

independent over K.

Many important applications of this definition are given in [160, Section
15 of Chapter II]. A useful equivalent formulation is: the K-subspaces L and
L′ are linearly disjoint over K if and only if:

Whenever x1, . . . , xn are elements of L which are linearly
independent over K, these elements xi are also linearly
independent over L′.

Theorem 5.3. Suppose that K is a field and A, B, C are K-algebras with
K-algebra isomorphisms φ and ψ of A, respectively B, to K-subalgebras of
C such that:

1. C is generated by φ(A) and ψ(B) as a K-algebra.

2. φ(A) and φ(B) are linearly disjoint over K.

Then C is a tensor product A ⊗K B.

Theorem 5.3 follows from the observation that the construction of C in
[160, Theorem 33 on page 179] is the same as the construction of the tensor
product in [13, Proposition 2.12].

Lemma 5.4. Suppose that K is an algebraically closed field and L, K ′ are
any field extensions of K. Then L ⊗K K ′ is an integral domain.

Lemma 5.4 is proven in [160, Corollary 1 to Theorem 40, page 198].

Proposition 5.5. Suppose that R is a ring and G is an R-module. Let

0 → L → M → N → 0

be a short exact sequence of R-modules. Then the sequence

(5.1) G⊗R L → G⊗R M → G⊗R N → 0

is right exact.

Proof. [95, Proposition 2.6, page 610] or [13, Proposition 2.18]. �
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An R-module G for which the sequence (5.1) is always short exact is
called a flat R-module. Locally free modules are aways flat.

Theorem 5.6. An R-module M is flat if and only if the following condition
holds. Suppose that ai ∈ R, xi ∈ M , for 1 ≤ i ≤ r and

∑r
i=1 aixi = 0. Then

there exists an integer s and elements bij ∈ R and yj ∈ M , for 1 ≤ j ≤ s,
such that

∑
i aibij = 0 for all j and xi =

∑
j bijyj for all i.

Proof. [23, Corollary I.11.1, page 27]. �

5.2. Products of varieties

Now we define products of quasi-projective varieties. We continue to as-
sume that k is a fixed algebraically closed field. Suppose that X and Y are
varieties. We will put a structure of a variety on the set X × Y which has
the property that the projections π1 : X × Y → X and π2 : X × Y → Y are
regular maps.

We construct the product of Am and An as the variety

Am × An = Am+n.

As sets, this gives a natural identification, and this identification makes
Am × An into an affine variety. The projections π1 : Am × An → Am and
π2 : Am × An → An are regular maps. In fact, we have that if k[Am] =
k[x1, . . . , xm] and k[An] = k[y1, . . . , yn], then

k[Am × An] = k[x1, . . . , xm, y1, . . . , yn].

This follows since the subrings k[Am] and k[An] of k[Am × An] are linearly
disjoint and generate k[Am × An] as a k-algebra.

Now suppose that X and Y are affine varieties, with X a closed subset
of Am and Y a closed subset of An. The product X × Y can be naturally
identified with a subset of Am × An, and we have that X × Y is a closed
subset of Am × An, as we have that X × Y = Z(π∗

1(I(X)) ∪ π∗
2(I(Y ))). Let

R = k[Am ×An]. We identify π∗
1(I(X)) with I(X) and π∗

2(I(Y )) with I(Y )
in the following proposition.

Proposition 5.7. The ideal I(X)R+ I(Y )R is a prime ideal in R.

Proof. We make use of properties of tensor products to prove this. We have
that

R/(I(X)R+ I(Y )R) ∼= k[X]⊗k k[Y ]

[160, Theorem 35, page 184]. We have that k(X)⊗k k(Y ) is a domain since
k(X) and k(Y ) are fields and k is algebraically closed, by Lemma 5.4. The
subring of k(X)⊗k k(Y ) generated by k[X] and k[Y ] is a tensor product of
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k[X] and k[Y ] over k by Theorem 5.3, so that k[X] ⊗k k[Y ] is naturally a
subring of the domain k(X)⊗k k(Y ). �

Thus X × Y is an affine variety, with prime ideal

I(X × Y ) = I(X)R+ I(Y )R in R = k[Am × An].

Products are much more subtle over nonalgebraically closed fields, as
can be seen from the following example. Let A = Q[x]/(x2 + 1) and B =
Q[y]/(y2 + 1), which are fields. We have that

A⊗Q B ∼= Q[x, y]/(x2 + 1, y2 + 1) ∼= Q[i][y]/(y2 + 1) = Q[i][y]/(y− i)(y + i)

is not a domain.

We now construct a product Pm × Pn. As a set, we can write

Pm × Pn

= {(a0 : . . . : am; b0 : . . . : bn) | (a0 : . . . : am) ∈ Pm, (b0 : . . . : bn) ∈ Pn}.

Let S be a polynomial ring in two sets of variables,

S = S(Pm × Pn) = k[x0, . . . , xm, y0, . . . , yn].

We put a bigrading on S by bideg(xi) = (1, 0) for 0 ≤ i ≤ m and bideg(yj) =
(0, 1) for 0 ≤ j ≤ n. We have

S =
⊕
k,l

Sk,l

where Sk,l is the k-vector space generated by monomials xi00 · · ·ximm yj00 · · · yjnn
where i0 + · · · + im = k and j0 + · · · + jn = l. Elements of Sk,l are called
bihomogeneous of bidegree (k, l). The bigraded ring S(Pm × Pn) is called
the bihomogeneous coordinate ring of Pm ×Pn. Suppose F ∈ S is bihomo-
geneous of bidegree (k, l) and (a0 : . . . : am; b0 : . . . : bn) ∈ Pm×Pn. Suppose
that (c0 : . . . : cm; d0 : . . . : dn) is equal to (a0 : . . . : am; b0 : . . . : bn), so that
there exist 0 
= α ∈ k and 0 
= β ∈ k such that ci = αai for 0 ≤ i ≤ m and
dj = βbj for 0 ≤ j ≤ n. Then

(5.2) F (c0, . . . , cm, d0, . . . , dn) = αkβlF (a0, . . . , am, b0, . . . , bn).

Thus the vanishing of such a form at a point is well-defined. We put a
topology on the set Pm × Pn by taking the closed sets to be

Z(A) = {(p, q) ∈ Pm × Pn | F (p, q) = 0 for F ∈ A}

where A is a set of bihomogeneous forms. We can extend this definition to
bihomogeneous ideals by considering the vanishing at a set of bihomogeneous
generators.
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Given a subset Y of Pm × Pn, the ideal I(Y ) of Y in S is the ideal in S
generated by the set

U = {F ∈ S | F is bihomogeneous and F (p, q) = 0 for all (p, q) ∈ Y }.

The ideal I(Y ) is a bihomogeneous ideal (it is naturally bigraded as an
S-module).

We define biprojective varieties, quasi-biprojective varieties, biprojective
algebraic sets, quasi-biprojective algebraic sets, and subvarieties of biprojec-
tive varieties analogously to the projective case.

The ideal I(W ) of a biprojective subvariety W of Pm ×Pn is a bigraded
prime ideal in S = S(Pm × Pn). The bihomogeneous coordinate ring of W
is S(W ) = S/I(W ), which is a bigraded ring. The rational functions on W
or the function field of W is

k(W ) =

{
F

G
| F,G ∈ S(W ) are bihomogeneous of the same bidegree and G 
= 0

}
.

If f = F
G ∈ k(W ) where F and G are bihomogeneous of the same bidegree

and (p, q) ∈ W is such that G(p, q) 
= 0, then the value of f(p, q) ∈ k is
well-defined by (5.2). The regular functions OW,(p,q) at a point (p, q) ∈ W

are the quotients F
G where F,G ∈ S(W ) are bihomogeneous of the same

bidegree and G(p, q) 
= 0. We construct regular functions on an open subset
U of W as

OW (U) =
⋂

(p,q)∈U
OW,(p,q).

We expand our definition of regular maps (Definition 3.28) to include
quasi-biprojective varieties (open subsets of biprojective varieties).

Suppose that F ∈ S(W ) is bihomogenous. We define D(F ) = WF =
W \Z(F ). The open sets D(F ) = WF where F is bihomogenous of bidegree
(a, b) with a > 0 and b > 0 are a basis for the topology of W .

The proof of Theorem 3.30 generalizes (working with a bigrading instead
of a grading) to show that Wxiyj is an affine variety, and we obtain the
following explicit computation of OW (Wxiyj ) = k[Wxiyj ]. Write

S(W ) = k[x0, . . . , xm, y0, . . . , yn]/I(W ) = k[x0, . . . , xm, y0, . . . , yn]

where I(W ) = (G1, . . . , Gt) with G1, . . . , Gt bihomogeneous generators of
I(W ). Then

k[Wxiyj ] = k[x0xi
, . . . , xm

xi
, y0yj

, . . . , ynyj
]

∼= [x0
xi
, . . . , xm

xi
, y0yj , . . . ,

yn
yj
]/(F1, . . . , Ft),
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where

Fa = Ga

(
x0
xi

, . . . ,
xm
xi

,
y0
yj

, . . . ,
yn
yj

)
for 1 ≤ a ≤ t.

If X is a projective variety which is a closed subset of Pm and Y is a
projective variety which is a closed subset of Pn, then X × Y = Z(I(X)S +
I(Y )S) is a closed subset of Pm×Pn. We have that I(X)S+I(Y )S is a prime
ideal in S by the proof of Proposition 5.7, soX×Y is a subvariety of Pm×Pn,
with I(X × Y ) = I(X)S + I(Y )S. The biprojective variety X × Y has a
covering by open affine sets (X ×Y )∩ (Pm ×Pn)xiyj

∼= (X ∩Pm
xi
)× (Y ∩Pn

yj )

for 0 ≤ i ≤ m and 0 ≤ j ≤ n. We have that the open set WF is (isomorphic
to) an affine variety if and only if F is bihomogeneous of bidegree (a, b)
with both a > 0 and b > 0 (Exercise 5.20). Proposition 3.39 is valid for
maps between quasi-biprojective varieties; even the proof is valid in the
larger setting of quasi-biprojective varieties. We deduce from this that if
X,Y, Z,W are quasi-projective varieties and φ : Z → X and ψ : Z → Y are
regular maps, then (φ, ψ) : Z → X × Y is a regular map. If α : Z → X and
β : W → Y are regular maps, then α × β : Z × W → X × Y is a regular
map.

Suppose that W is a closed subvariety of Pm × Pn with bihomogeneous
coordinate ring

S(W ) = S(Pm × Pn)/I(W ).

We can represent a rational map φ : W ��� Pl by equivalence classes
(f0 : . . . : fl) with f0, . . . , fl ∈ k(W ) not all zero. We have (f0 : . . . : fl) ∼
(g0 : . . . : gl) if figj − fjgi = 0 for 0 ≤ i, j ≤ l. The rational map φ is regular
at p ∈ W if φ has a representative (f0 : . . . : fl) with f0, . . . , fl ∈ OW,p and
fi(p) 
= 0 for some i.

Alternatively, we can represent rational maps from W to a projective
space Pl by equivalence classes (F0 : . . . : Fl) where the Fi ∈ S(W ) are
bihomogeneous of the same bidegree. The rational map is regular at a point
q ∈ W if there is a representative (F0 : . . . : Fl) such that some Fi(q) 
= 0.

We have that the projections π1 : X × Y → X and π2 : X × Y → Y are
regular maps.

If W is a closed subvariety of Pm ×Pn and U ⊂ W is a quasi-affine open
subset, then k(W ) is the quotient field of OW (U) (as in Proposition 3.37).

Using the fact that the affine open subsets (Pm × Pn)xiyj
∼= Am ×An of

Pm × Pn have regular functions

k[(Pm × Pn)xiyj ] = k

[
x0
xi

, . . . ,
xm
xi

,
y0
yj

, . . . ,
yn
yj

]
,
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we see that Y = (Pm × Pn)xi
∼= Am × Pn is covered by the affine open sets

(Pm × Pn)xiyj for 0 ≤ j ≤ n. We can associate a coordinate ring

S(Y ) = k

[
x0
xi

, . . . ,
xm
xi

, y0, . . . , yn

]
to Y . An element of k

[
x0
xi
, . . . , xm

xi

]
has bidegree (0, 0) and yj has bidegree

(0, 1) for 0 ≤ j ≤ n. Thus the bidegree makes S(Y ) a graded ring (graded
by the natural numbers N). All of the theory that we have worked out above
extends to this situation. We compute k[Yyj ] = S(Y )(yj), the elements of

degree 0 in the localization S(Y )yj .

Given an affine variety X, we can realize X as a closed subvariety of
Am ∼= Pm

xi
⊂ Pm, and then we have realized X × Pn as a closed subvariety

of Am × Pn. This gives us a graded coordinate ring for X × Pn as

S(X × Pn) = k[X][y0, . . . , yn].

Here, elements of k[X] have degree 0, and the variables yj have degree 1.

All of the theory we developed above goes through for this coordinate
ring, with this grading.

Suppose that W is a closed subvariety of X×Pn (where X is affine), with
coordinate ring S(W ) = S(X×Pn)/I(W ). We can represent rational maps
from W to Pl by equivalence classes (F0 : . . . : Fl) where the Fi ∈ S(W )
are homogeneous of the same degree (and not all zero). The rational map
is regular at a point q ∈ W if there is a representative (F0 : . . . : Fl) such
that some Fi(q) 
= 0.

If U is a quasi-affine open subset of W , then the quotient field of OW (U)
is k(W ).

If X is affine and W is a projective variety with coordinate ring S(W ) =
k[y0, . . . , yn], then X × W has the coordinate ring

S(X × W ) = k[X]⊗k S(W ) = k[X][y0, . . . , yn]

which is a domain as shown by the proof of Proposition 5.7. Also, S(X) is
graded by deg(f) = 0 if f ∈ k[X] and deg(yi) = 1 for 1 ≤ i ≤ n.

5.3. The Segre embedding

We define the Segre embedding

φ : Pm × Pn → PN

where N = (n+ 1)(m+ 1) − 1 by

φ(a0 : . . . : am; b0 : . . . : bn) = (a0b0 : a0b1 : . . . : aibj . . . : ambn).
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The map φ is a regular map (since ZPm×Pn(x0y0, x0y1, . . . , xmxn) = ∅), and
it can be verified that its image is a closed subvariety of PN and φ is an
isomorphism onto this image (φ is a closed embedding). If we take wij , with
0 ≤ i ≤ m and 0 ≤ j ≤ n, to be the natural homogeneous coordinates on
PN , then the image of φ is the projective variety W whose ideal I(W ) is
generated by {wijwkl − wkjwil | 0 ≤ i, k ≤ m and 0 ≤ j, l ≤ n}. This is
proven in [81, Section 2 of Chapter XI of Volume 2].

Thus the product X × Y of two quasi-projective varieties is actually
(isomorphic to) a quasi-projective variety, by the Segre embedding. In fact,
any quasi-biprojective variety is (isomorphic to) a quasi-projective variety.

5.4. Graphs of regular and rational maps

Suppose that X and Y are quasi-projective varieties and φ : X → Y is a
regular map. Then we have a regular map ψ : X → X × Y defined by
ψ(p) = (p, φ(p)) for p ∈ X. Let Γφ be the image ψ(X) in X × Y . We call
Γφ the graph of φ.

Proposition 5.8. Γφ is Zariski closed in X × Y .

Proof. We have an embedding of Y in a projective space Pn, as an open
subset of a projective subvariety. The map φ : X → Y thus extends to
a regular map φ̃ : X → Pn and Γφ = Γφ̃ ∩ (X × Y ). Thus it suffices to

prove the proposition in the case when Y = Pn. Let i : Pn → Pn be the
identity map. Then φ × i : X × Pn → Pn × Pn is a regular map. Let
ΔPn ⊂ Pn × Pn be the “diagonal” {(q, q) | q ∈ Pn}. We have that S(Pn ×
Pn) = k[u0, . . . , un, v0, . . . , vn] where the ui are homogeneous coordinates on
the Pn of the first factor and the vj are homogeneous coordinates on the Pn

of the second factor. The diagonal ΔPn is a closed subset of Pn × Pn with
ΔPn = Z(uivj − ujvi | 0 ≤ i, j ≤ n). Since the preimage of a closed set
by a regular map is closed, we have that Γφ = (φ × i)−1(ΔPn) is closed in
X × Pn. �

The graph Γφ = ψ(X) is irreducible since X is, so Γφ is a closed subva-
riety of X × Y .

We can extend this construction to give a useful method of studying
rational maps. Suppose that X and Y are quasi-projective varieties and
φ : X ��� Y is a rational map. Let U be a nontrivial open subset of X on
which φ is regular. The graph Γφ of φ is defined to be the closure in X × Y
of the image of the regular map p → (p, φ(p)) from U to X × Y . The graph
Γφ does not depend on the choice of open subset U on which φ is regular
(since Γφ is irreducible and (U × Y )∩ Γφ is a nontrivial open subset of Γφ).
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Further,

(5.3) Γφ|V = Γφ ∩ (V × Y ) = π−1
1 (V )

for any open subset V of X, where π1 : Γφ → X is the projection.

Proposition 5.9. Suppose that φ : X ��� Y is a rational map of quasi-
projective varieties. Then Γφ is a quasi-projective variety, and the projection
π1 : Γφ → X is a birational map. If U is a nonempty open subset of X on
which φ is regular, then the restriction

π1 : Γφ|U = Γφ ∩ (U × Y ) → U

is an isomorphism.

Proof. It suffices to prove this in the case when φ is itself a regular map,
as Γφ is the Zariski closure in X × Y of the graph Γφ|U for any dense open
subset U of X. Now Γφ is the image of the regular map (i, φ) : X → X × Y
where i : X → X is the identity map. Since X is irreducible, its image Γφ

is irreducible. The set Γφ is closed in X × Y by Proposition 5.8 so Γφ is
a variety. The map (i, φ) is an inverse to π1. Since both maps are regular
maps, π1 is an isomorphism, and π1 is thus birational. �

Proposition 5.10. Suppose that φ : X ��� Y is a rational map of quasi-
projective varieties and Γφ is the graph of φ, with projection π1 : Γφ → X.
Suppose that p ∈ X. Then φ is a regular map at p if and only if the rational
map π−1

1 is a regular map at p.

Proof. Let U be an open subset of X on which φ is regular. Then π−1
1 =

i × φ : U → Γφ is a regular map where i : X → X is the identity map.

Suppose that the rational map π−1
1 : X ��� Γφ is regular at a point p ∈ X.

Let V be an open neighborhood of p in which π−1
1 is regular. We have that

π2π
−1
1 = φ as a rational map where π2 : Γφ → Y is the projection and

π2π
−1
1 : V → Y is regular, so φ is regular on V . �

Theorem 5.11 (Elimination theory). For 1 ≤ i ≤ r, let di be a positive
integer, and let Fi =

∑
|J |=di

biJx
J be a homogeneous polynomial in the vari-

ables x0, . . . , xn of degree di with indeterminate coefficients biJ , where the
sum is over J = (j0, . . . , jn) ∈ Nn+1 with |J | = j0 + · · · + jn = di and

xJ = xj00 · · ·xjnn . Then there exists a set of polynomials

g1, . . . , gt ∈ Z[{biJ | 1 ≤ i ≤ r, |J | = di}]
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which are homogeneous with respect to each set of variables biJ with fixed i,
with the following property:

Let K be an algebraically closed field and suppose that b
i
J ∈ K. Let

F i =
∑

|J |=di

b
i
Jx

J ∈ K[x0, . . . , xn] for 1 ≤ i ≤ r.

Then a necessary and sufficient condition for the F i to have a common zero

in Kn+1, different from the trivial solution (0, . . . , 0), is that the b
i
J are a

common zero of the gl.

Proof. [143, Section 80, page 8]. �

Theorem 5.12. Suppose that Z is a closed subset of Pn × Am. Then the
image of the second projection π2 : Z → Am is Zariski closed.

Proof. Let x0, . . . , xn be homogeneous coordinates on Pn and y1, . . . , ym be
affine coordinates on Am. Then I(Z) = (G1, . . . , Gr) for some G1, . . . , Gr ∈
k[x0, . . . , xn, y1, . . . , ym] where the Gi are homogeneous in the xi variables
of some degrees di. Write Gi =

∑
|J |=di

aiJx
J , where aiJ ∈ k[y1, . . . , ym]. Let

g1, . . . , gt be the polynomials of the conclusions of Theorem 5.11, and let

hl = gl(a
i
J) ∈ k[y1, . . . , ym] = k[Am].

For P ∈ Am, we have

π−1
2 (P ) ∩ Z = Z(G1(x, P ), . . . , Gr(x, P )) ⊂ Pn × {P} ∼= Pn

where Gi(x, P ) =
∑

aiJ(P )xJ . Thus π−1
2 (P ) ∩ Z 
= ∅ if and only if the

polynomials Gi(x, P ) have a common nontrivial zero in kn+1, which holds if
and only if P is a common zero of the hl(y) = gl(a

i
J) in km, and this holds

if and only if P ∈ Z(h1, . . . , ht). Thus π2(Z) = Z(h1, . . . , ht) is Zariski
closed. �

Theorem 5.12 does not hold for closed subsets of An × Am. A simple
example is to take Z to be Z(xy − 1) ⊂ A2 ∼= A1 ×A1. The projection of Z
onto the y-axis is the nonclosed subset A1 \ {(0)} of A1.

Corollary 5.13. Suppose that X is a projective variety and Y is a quasi-
projective variety. Then the second projection π2 : X × Y → Y takes closed
sets to closed sets.

Proof. Suppose that Z is a closed subset of X × Y . After embedding X
as a closed subset of a projective space Pn, so that Z is a closed subset
of Pn × Y , we may assume that X = Pn. Let Y =

⋃r
i=1 Vi be an affine
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open cover of Y . We must show that π2(Z) ∩ Vi is closed in Vi for all
i. Let Zi = Z ∩ (Pn × Vi), a closed subset of Pn × Vi. We have that
π2(Z) ∩ Vi = π2(Zi). Here Vi is isomorphic to a closed subset of Ami for
some mi. Thus Zi is a closed subset of Pn×Ami under the natural inclusion.
We have projections πi

2 : Pn × Ami → Ami . By Theorem 5.12, πi
2(Zi) is a

closed subset of Ami . Since πi
2(Zi) ⊂ Vi, we have that π2(Zi) = πi

2(Zi) is
closed in Vi for all i. �

Theorem 5.14. Suppose that φ : X → Y is a regular map of projective
varieties. Then the image of φ is a closed subset of Y .

Proof. Apply the corollary to the closed subset Γφ of X × Y . �

We now give another proof of Theorem 3.35.

Corollary 5.15. Suppose that X is a projective variety. Then OX(X) = k.

Proof. Suppose that f ∈ OX(X). Then f is a regular map f : X → A1.
After including A1 into P1, we obtain a regular map f : X → P1. By
Theorem 5.14, we have that the image f(X) is closed in P1. Since f cannot
be onto, f(X) must be a finite union of points. Since X is irreducible, f(X)
is irreducible, so f(X) is a single point. Thus f ∈ k. �

Corollary 5.16. Suppose that X is a projective variety and φ : X → An is
a regular map. Then φ(X) is a point.

Proof. Let πi : An → A1 be projection onto the i-th factor. Then πi ◦ φ :
X → A1 is a regular map, so πi ◦ φ is a constant map by the previous
corollary for 1 ≤ i ≤ n. Thus φ(X) is a point. �

Exercise 5.17. Let t be an indeterminate, F be the field Zp(t), and K, L
be the fields

K = F [x]/(xp − t), L = F [y]/(yp − t).

Show that K ⊗F L is not reduced.

Exercise 5.18. Let W ⊂ P3 be the image of P1 × P1 in P3 by the Segre
map.

i) Find the ideal I(W ) ⊂ k[P3].

ii) Suppose that p ∈ P1. Find the ideal in k[P3] of the image of {p}×P1

in P3. Find the ideal in k[P3] of the image of P1 × {p} in P3.

Exercise 5.19. Let a and b be positive integers. Consider the Veronese
map φ1 on Pm defined by the forms of degree a on Pm and the Veronese
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map φ2 on Pn defined by the forms of degree b on Pn. Let W1 be the image
of φ1 and let W2 be the image of φ2.

i) Show that φ1 × φ2 : Pm × Pn → W1 × W2 is an isomorphism onto
the biprojective variety W1 × W2.

ii) Show that S(W1 × W2)(1,1) = S(Pm × Pn)(a,b); that is, the forms
of bidegree (1, 1) on W1 × W2 are the forms of bidegree (a, b) on
Pm × Pn.

Exercise 5.20. Suppose that F ∈ S(Pm × Pn) with m,n > 0 is a bihomo-
geneous form of bidegreee (a, b).

i) Show that D(F ) = (Pm × Pn)F is (isomorphic to) an affine variety
if a > 0 and b > 0.

ii) Show that (Pm × Pn)F ∼= Pm
F × Pn if F has bidegree (a, 0) and

(Pm × Pn)F ∼= Pm × Pn
F if F has bidegree (0, b). Conclude that

D(F ) = (Pm × Pn)F is not affine if a = 0 or b = 0.

Hint: Use the construction of Exercise 5.19, followed by a Segre embedding.

Exercise 5.21. Suppose thatX is a quasi-projective variety and U1, U2 ⊂ X
are affine open subsets. Show that U1 ∩ U2 is an affine open subset of X;
that is, show that U1 ∩U2 is isomorphic to an affine variety. Hint: Consider
the open subset U1 × U2 ⊂ X × X and its intersection with the diagonal
ΔX = {(p, p) | p ∈ X} ⊂ X × X.



Chapter 6

The Blow-up
of an Ideal

In this chapter we construct the blow-up of an ideal in an affine or projective
variety. The more general construction of the blow-up of an ideal sheaf will
be given in Chapter 12.

As usual, we will assume that k is a fixed algebraically closed field.

6.1. The blow-up of an ideal in an affine variety

Suppose that X is an affine variety and f0, . . . , fr ∈ k[X] are not all zero.
We can define a rational map Λf0,...,fr : X ��� Pr by Λf0,...,fr = (f0 : . . . : fr).

Proposition 6.1. Suppose that g0, . . . , gs ∈ k[X] and

(f0, . . . , fr) = (g0, . . . , gs)

are the same ideal J 
= (0) in k[X]. Then there is a commutative diagram
of regular maps

ΓΛf0,...,fr

ψ
��

����
���

���
���

ΓΛg0,...,gs

��

X

where the vertical arrows are the projections and ψ is an isomorphism.

111
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Proof. This will follow from Theorem 6.4. In this theorem it is shown that
there are graded k[X]-algebra isomorphisms

S(ΓΛf0,...,fr
) = S(X × Pr)/I(ΓΛf0,...,fr

) ∼=
⊕
i≥0

J i

and

S(ΓΛg0,...,gs
) = S(X × Ps)/I(ΓΛg0,...,gs

) ∼=
⊕
i≥0

J i,

which thus induce a graded k[X]-algebra isomorphism

α : S(ΓΛg0,...,gs
) → S(ΓΛf0,...,fr

).

Write S(ΓΛg0,...,gs
) = k[X][y0, . . . , ys] where the yi are the restriction to

ΓΛg0,...,gs
of the homogeneous coordinates on Ps. Then define

α : ΓΛf0,...,fr
→ X × Ps

by

α(p, q∗) = (p;α(y0)(p, q
∗) : . . . : α(ys)(p, q

∗))

for (p, q∗) ∈ ΓΛf0,...,fr
. We will now establish that α is an isomorphism onto

ΓΛg0,...,gs
.

Since α is an isomorphism, we have that α(y0), . . . , α(ys) generate

[S(ΓΛf0,...,fr
)]1

(the homogeneous forms of degree 1) as a k[X]-module.

Since α(y0), . . . , α(ys) ∈ S(Γf0,...,fr) are homogeneous of degree 1 and
Z(α(y0), . . . , α(ys)) = ∅, we have that

q �→ (α(y0)(q) : . . . : α(ys)(q))

is a regular map from ΓΛf0,...,fr
to Ps (as explained before Section 5.3).

Since the first projection π1 : ΓΛf0,...,fr
→ X is a regular map, the

product α is a regular map α : ΓΛf0,...,fr
→ X × Ps.

Suppose that F ∈ S(X × Ps) is a homogeneous form and that q ∈
ΓΛf0,...,fr

. We have that

F (α(q)) = (α(F ))(q)

where F is the residue of F in S(ΓΛg0,...,gs
). Thus F (α(q)) = 0 for all

F ∈ I(ΓΛg0,...,gs
), giving us that α is a regular map from ΓΛf0,...,fr

into
ΓΛg0,...,gs

.
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Since α is an isomorphism, we can apply the above argument to β =
(α)−1 to construct a regular map β : ΓΛg0,...,gs

→ ΓΛf0,...,fr
which has the

property that

α ◦ β = idΓΛg0,...,gs
and β ◦ α = idΓΛf0,...,fr

,

so that α is an isomorphism with inverse β. �

The following definition of the blow-up of an ideal is well-defined by
Proposition 6.1.

Definition 6.2. Suppose that X is an affine variety and I ⊂ k[X] is a
nonzero ideal. Suppose that I = (f0, . . . , fr). Let Λ : X ��� Pr be the
rational map defined by Λ = (f0 : . . . : fr). The blow-up of I is B(I) = ΓΛ,
with projection π : B(I) → X.

The blow-up B(0) of the zero ideal is defined to be B(0) = ∅, with
natural inclusion π of the empty set into X.

If I = I(Y ) is the ideal of a subvariety Y of X, then B(I) → X is called
the blow-up of Y .

The blow-up π : B(J) → X has the property that π−1 is regular and is
an isomorphism over the open set X \Z(J), as follows from Proposition 5.9.
If J 
= (0), then X \ Z(J) 
= ∅.

Lemma 6.3. Suppose that R is a Noetherian ring and P ⊂ R is a prime
ideal. Suppose that J,A are ideals in R such that J 
⊂ P , A ⊂ P and the
localizations AQ = PQ for Q a prime ideal in R such that J 
⊂ Q. Then

P = A :R J∞ := {f ∈ R | fJn ⊂ A for some n ≥ 0}.

Proof. By Proposition 1.43, A has an irredundant primary decomposition

A = P ∩ I1 ∩ · · · ∩ Ir

where for 1 ≤ i ≤ r, Ii are Qi-primary for prime ideals Qi such that J ⊂ Qi.
Thus there exists n > 0 such that Jn ⊂ Ii for all i. Thus JnP ⊂ A, so
P ⊂ A : J∞.

Now suppose that f ∈ R is such that fJn ⊂ P for some n ≥ 0. Since
P is a prime ideal and there exists an element of Jn which is not in P , we
have that f ∈ P . Thus A : J∞ ⊂ P . �

Theorem 6.4. Suppose that X is an affine variety and J ⊂ k[X] is a
nonzero ideal. Let π : B(J) → X be the blow-up of J . Suppose that J =
(f0, . . . , fn), with the fi all nonzero, so that B(J) ⊂ X × Pn. Then the
coordinate ring of B(J) (viewing B(J) as a closed subvariety of X × Pn) is

S(B(J)) ∼=
⊕
i≥0

J i
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as a graded k[X]-algebra (with the degree 0 elements of S(B(J)) being J0 =
k[X] and the degree i elements of S(B(J)) being J i). Let R = k[X] and
y0, . . . , yn be homogeneous coordinates on Pn. Then

(6.1) k[B(J)yi ] = OB(J)(B(J)yi) = R

[
f0
fi
, . . . ,

fn
fi

]
for 0 ≤ i ≤ n. We thus have that

(6.2) Jk[B(J)yi ] = fik[B(J)yi ]

is a principal ideal for all i. Let A = (yifj − yjfi | 0 ≤ i, j ≤ n), a
homogeneous ideal in S(X × Pn) = k[X][y0, . . . , yn]. The ideal of B(J) in
S(X × Pn) is

IX×Pn(B(J)) = A :S(X×Pn) (JS(X × Pn))∞

= {f ∈ S(X × Pn) | fJn ⊂ A for some n≥0}.

Proof. Let φ = (f0 : . . . : fn) : X ��� Pn. The variety B(J) is defined to
be the closure of Λ(X \ ZX(f0, . . . , fn)) in X × Pn, where Λ(p) = (p; f0(p) :
. . . : fn(p)) for p ∈ X \ ZX(f0, . . . , fn). The coordinate ring of X × Pn

is R[y0, . . . , yn] which is graded by deg yi = 1 for 0 ≤ i ≤ n. The ideal
A = (yifj − yjfi | 0 ≤ i, j ≤ n) in R[y0, . . . , yn] is contained in I(Γφ).

Since fi is a unit in Rfi , φ is regular on Xfi and we have that Γφ|Xfi
⊂

Xfi × Pn is isomorphic to the open subset Xfi of X. Further, we calculate
(using the fact that fi is a unit in Rfi) that Afi is a prime ideal in

Rfi [y0, . . . , yn] = S(Xfi × Pn) = S(X × Pn)fi .

Now we will show that

IX×Pn(Γφ)fi = IXfi
×Pn(Γφ|Xfi

) = Afi .

We have that Γφ|Xfi
= {(p; f0(p) : · · · : fn(p)) | p ∈ Xfi}. Thus (as already

observed) Afi ⊂ I(Γφ|Xfi
). Now

(6.3) Afi =

(
yj − fj

fi
yi | 0 ≤ j ≤ n

)
.

Suppose F ∈ S(Xfi × Pn) = Rfi [y0, y1, . . . , yn] is homogeneous of degree d.

Then (6.3) implies that F = gydi +H with H ∈ Afi homogeneous of degree
d and g ∈ Rfi . Suppose that F ∈ I(Γφ|Xfi

). Then for all p ∈ Xfi ,

0 = F (p, f0(p), . . . , fn(p)) = g(p)fi(p)
d

which implies that g(p) = 0 for all p ∈ Xfi , so that g = 0.
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If Q is a prime ideal in S(X × Pn) such that fi 
∈ Q, we have that

AQ
∼= (Afi)Qfi

∼= (I(Γφ)fi)Qfi

∼= I(Γφ)Q

by Exercise 1.22. Since this is true for 0 ≤ i ≤ n, we have that AQ = I(Γφ)Q
for Q a prime ideal in R[y0, . . . , yn] such that (f0, . . . , fn) 
⊂ Q. We have
that J 
⊂ I(Γφ), since, otherwise, Γφ ⊂ π−1(Z(J)) implies X ⊂ Z(J) which
implies that J ⊂ I(X) = (0), a contradiction to our assumption that J 
=
(0). By Lemma 6.3, we have that

A :S(X×Pn) (JS(X × Pn))∞ = I(Γφ).

Let t be an indeterminate, which we give degree 1, and let P be the kernel
of the graded k-algebra homomorphism

R[y0, . . . , yn] → R[tf0, . . . , tfn] ⊂ R[t]

defined by mapping yj �→ tfj. Here P is a prime ideal since R[t] is a domain.
We have that A ⊂ P and for a prime ideal Q in R[y0, . . . , yn], we have that
AQ = PQ if J 
⊂ Q (this follows since after localizing at such a Q, some fi
becomes invertible and so we can make a similar argument to the preceding
paragraph). Assume that J ⊂ P . We will derive a contradiction. Then
Pfi = Rfi [y0, . . . , yn] for all i, which implies Rfi [tf0, . . . , tfn] = 0, which is
a contradiction since the fi are assumed nonzero and R is a domain. Thus
J 
⊂ P . Thus by Lemma 6.3, P = A :R[y0,...,yn] J∞ = I(Γφ), and the
coordinate ring of B(J) is

R[y0, . . . , yn]/P ∼= R[tf0, . . . , tfn] ∼=
∞⊕
i=0

J i.

We have

OB(J)(B(J) ∩ (X × Pn
yj )) = S(B(J))(yj)

∼= R[tf0, . . . , tfn](tfj)
∼= R[ tf0tfj

, . . . , tfntfj
] = R[ f0fj , . . . ,

fn
fj
] ⊂ k(X).

�

As a graded k[X]-algebra, we have

S(B(J)) ∼=
⊕
i≥0

J i ∼= k[X][tf0, . . . , tfn] ⊂ k[X][t]

where k[X][t] is the polynomial ring over k[X], graded by deg(t) = 1. The
algebra

⊕
i≥0 J

i is called the Rees algebra of J .

We have the following useful proposition, which allows us to easily com-
pute the coordinate ring of a blow-up in an important case.

Proposition 6.5. With the notation of Theorem 6.4, suppose that the gen-
erators f0, . . . , fn of J are a k[X]-regular sequence. Then IX×Pn(B(J)) = A
and S(B(J)) ∼= k[X][y0, . . . , yn]/A.
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Proof. This follows from Theorem 1 of [108]. �

There are sophisticated techniques to compute coordinate rings S(B(J))
of blow-ups of ideals in more general situations. Some important results on
this topic are given in the papers [77] by Herzog, Simis, and Vasconcelos,
[82] and [83] by Huneke, and [138] by Simis, Ulrich, and Vasconcelos.

Let W be a closed subset of the affine variety X. Then π−1(W \ Z(J))
∼= W \ Z(J) by Proposition 5.9. We will call the Zariski closure of
π−1(W \ Z(J)) ∼= W \ Z(J) in B(J) the strict transform of W in B(J).

Proposition 6.6. Suppose that X is an affine variety and J ⊂ k[X] is an
ideal. Let W be a closed subvariety of X, and let J = Jk[W ]. Then the
strict transform of W in B(J) is isomorphic to B(J).

The ideal of B(J)yi in k[B(J)yi] is

(6.4)
I(B(J)yi) = I(W )k[B(J)yi] :k[B(J)yi ]

(Jk[B(J)yi ])
∞

= I(W )k[B(J)yi] :k[B(J)yi ]
(fik[B(J)yi ])

∞.

Proof. We have natural projections π : B(J) → X and π : B(J) → W .

First suppose J = (0), so that B(J) = ∅. Then J ⊂ I(W ) so W ⊂ Z(J).
Thus W \ Z(J) = ∅ and the Zariski closure of W \ Z(J) in B(J) is ∅.

Now suppose that J 
= (0). Let f0, . . . , fn be a set of generators of J .
Let f i be the residues of the fi in k[W ]. Let φ : X ��� X × Pn be the
rational map φ = id × (f0 : . . . : fn) and let φ : W ��� W × Pn be the
rational map φ = id × (f0 : . . . : fn). We have a commutative diagram of
regular maps, where the vertical maps are the natural inclusions:

X \ Z(J)
φ→ X × Pn

↑ ↑
W \ Z(J)

φ→ W × Pn.

Now B(J) is the closure of φ(X \ Z(J)) in X × Pn and B(J) is the closure
of φ(W \ Z(J)) in W × Pn, so the conclusions of the first paragraph of the
proposition thus follow from the above diagram.

The final equation (6.4) follows from Lemma 6.3. �

We now discuss an important example.

Let p be the origin in X = A2. Let m = (x1, x2) be the ideal of p in
k[A2] = k[x1, x2]. Let π : B = B(m) → X be the blow-up of p (the blow-up
of m). Let E = π−1(p).

Letting P1 have homogeneous coordinates y0 and y1, from formula (6.1),
we know that B(m) ⊂ X × P1 has the affine cover {B1 = By0 , B2 = By1}
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where

(6.5) k[B1] = k[A2]

[
x2
x1

]
= k

[
x1, x2,

x2
x1

]
= k

[
x1,

x2
x1

]
and

(6.6) k[B2] = k[A2]

[
x1
x2

]
= k

[
x2,

x1
x2

]
are polynomial rings (x1, x2 algebraically independent over k implies x1,

x2
x1

are algebraically independent over k and x2,
x1
x2

are algebraically independent

over k), so B1
∼= A2 and B2

∼= A2.

We have that B1
∼= A2 has coordinates u1 = x1, u2 = x2

x1
and B2

∼= A2

has coordinates v1 = x2, v2 =
x1
x2
. On

B1 ∩ B2 = B1 \ Z(u2) = B2 \ Z(v2),

we have u1 = v1v2 and u2 = 1
v2
. The map π : B → A2 satisfies π|B1 =

(u1, u1u2) and π|B2 = (v1v2, v1). Let E = π−1(p). We have that E =
Z(x1, x2), so I(E ∩B1) = (u1) and I(E ∩B2) = (v1).

The projection π : B \E → X \ {p} is an isomorphism. Since mk[B1] =
x1k[B1] and mk[B2] = x2k[B2] by (6.2), which are prime ideals, we have
that I(E ∩B1) = x1k[B1] and I(E ∩ B2) = x2k[B2] and

k[E ∩B1] = k[B1]/(x1) ∼= k

[
x2
x1

]
and k[E ∩B2] = k[B2]/(x2) ∼= k

[
x1
x2

]
,

from which we see that E∩B1
∼= A1 and E∩B2

∼= A1. Since k[E∩B1∩B2] =
k[x1

x2
, x2
x1
], the regular maps (1 : x2

x1
) : E∩B1 → P1 and (x1

x2
: 1) : E∩B2 → P1

agree on E ∩ B1 ∩ B2. Thus the maps patch to give a well-defined map
E → P1 which is a regular map by Proposition 3.39. By a similar argument,
the inverse map P1 → E is a regular map, so E ∼= P1. The blow-up π :
B → E is illustrated in Figure 6.1. In the figure, L1 = Z(x1), L2 = Z(x2),

L̃1 = Z(y0) = strict transform of L1, L̃2 = Z(y1) = strict transform of L2.

L̃2L̃1

E

π
L2

L1

p

Figure 6.1. The blow-up π : B → X
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Suppose that C ⊂ A2 is a curve which contains p. Let f(x1, x2) ∈ k[A2]
be such that I(C) = (f). Write

f =
∑

i+j≥r

aijx
i
1x

j
2

where aij ∈ k and some aij 
= 0 with i + j = r (r is the order of f). Let C̃
be the strict transform of C in B. In B1, we have that

f =
∑

aijx
i+j
1

(
x2
x1

)j

= xr1f1

(
x1,

x2
x1

)
where

f1 =
∑

aijx
i+j−r
1

(
x2
x1

)j

.

By (6.4), since x1 does not divide f1 in k[B1], we have that

I(C̃ ∩B1) = fk[B1] :k[B1] (x1k[B1])
∞ = (f1).

Similarly,

f2 =
∑

aij

(
x1
x2

)i

xi+j−r
2

and I(C̃ ∩ B2) = (f2).

By Proposition 6.6, we have that B(mk[C]) ∼= C̃ (where B(mk[C]) is
the blow-up of p in C). Thus B(mk[C]) is covered by the two affine open

subsets C̃ ∩ B1 and C̃ ∩ B2. We have that

k[C̃ ∩ B1] = k

[
x1,

x2
x1

]
/(f1) and k[C̃ ∩B2] = k

[
x2,

x1
x2

]
/(f2).

Write k[C] = k[x1, x2]/(f) = k[x1, x2], From equation (6.1), we have that

k[x1, x2]

[
x2
x1

]
∼= k

[
x1,

x2
x1

]
/(f1)

and

k[x1, x2]

[
x1
x2

]
∼= k

[
x2,

x1
x2

]
/(f2),

E

C̃

π

p

C

Figure 6.2. The curve C and its strict transform C̃
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from which we see that an understanding of the ring of (6.1) as isomorphic
to a quotient of a polynomial ring is often not trivial (see Exercise 1.8). The

curve C and its strict transform C̃ are illustrated in Figure 6.2.

From the above analysis, we are able to obtain all intrinsic properties
of the blow-up B(mk[C]) of the point p in C. The methods demonstrated
above are generally the best way to understand the geometry of blow-ups.

We will now compute the full coordinate ring S(B(m)) and indicate how
we can compute k[B1] and k[B2] from the coordinate ring.

With the notation of Theorem 6.4, we have that

A = (y1x1 − y0x2) ⊂ S(X × P1) = k[x1, x2, y0, y1]

is a prime ideal, so

IX×P1(B(m)) = A : m∞ = A.

This also follows from Proposition 6.5.

In this particular example, we have the desirable condition that I(B) =
(x1y1 −x2y0) = A, so I(B) is actually generated by the obvious relations A.

The coordinate ring of B (as a subvariety of X × P1) is thus

(6.7) S(B) = k[x1, x2, y0, y1]/(y1x1 − y0x2).

We also have (by Theorem 6.4) that

(6.8) S(B) ∼=
⊕
i≥0

mi ∼= k[A2][tx1, tx2].

There is a natural isomorphism of graded k[X]-algebras from (6.7) to (6.8)
by mapping y0 �→ tx1 and y1 �→ tx2.

We have that {X × P1
y0 , X × P1

y1} is an affine cover of X × P1. Thus

{B1 = (X × P1
y0) ∩ B,B2 = (X × P1

y1) ∩ B}
is an affine cover of B. Now

k[B1] = S(B)(tx1) = k[A2]

[
tx2
tx1

]
= k

[
x1, x2,

x2
x1

]
= k

[
x1,

x2
x1

]
since x2 = x1

x2
x1
. Also, x2 and x2

x1
are algebraically independent over k since

x1, x2 are. Thus k[B1] is a polynomial ring in these two variables, so that
B1 is isomorphic to A2. Similarly, we have that

k[B2] = S(B)(tx2) = k

[
x2,

x1
x2

]
since x1 = x2

x1
x2

andB2 is isomorphic to A2. We thus recover our calculations

in (6.5) and (6.6).
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E = π−1(p) is the algebraic set ZB(x1, x2) ⊂ B ⊂ X × P1. We compute

S(B)/(x1, x2)S(B) = (k[A2][tx1, tx2])/(x1, x2)
∼= (k[A2]/(x1, x2))[tx1, tx2]
= k[tx1, tx2].

Since tx1 and tx2 are algebraically independent over k, this ring is isomorphic
to a graded polynomial ring in two variables, which is the coordinate ring of
P1. Since E ⊂ {p} × P1, we have that E = {p} × P1, with I(E) = (x1, x2).
We thus recover the calculations following (6.6).

6.2. The blow-up of an ideal in a projective variety

Suppose that X ⊂ Pn is a projective variety, with coordinate ring S(X) =
k[x0, . . . , xn]. Suppose that I is a homogeneous ideal in S(X). Each open
set D(xi) (for which xi 
= 0) is affine with regular functions k[D(xi)] =

k
[
x0
xi
, . . . , xn

xi

]
. In k[D(xi)] we have an ideal

Ĩ(D(xi)) =

{
f

(
x0
xi

, . . . ,
xn
xi

)
| f ∈ I

}
.

This definition is such that for p ∈ D(xi)∩D(xj) we have equality of ideals

Ĩ(D(xi))OX,p = Ĩ(D(xj))OX,p.

We write Ĩp for the ideal Ĩ(D(xi))OX,p in OX,p if p ∈ D(xi). To every open
subset U of X we can thus define an ideal

Ĩ(U) =
⋂
p∈U

Ĩp ⊂
⋂
p∈U

OX,p = OX(U).

The method of the proof of Theorem 3.30 shows that we have⋂
p∈D(xi)

Ĩp =

{
f

(
x0
xi

, . . . ,
xn
xi

)
| f ∈ I

}
,

which we initially defined to be Ĩ(D(xi)), so our definition is consistent.

If Z(I) 
= ∅, we have that 0 = Ĩ(X) ⊂ OX(X) = k. We will see this

construction again later as a special case of Theorem 11.25. We will call Ĩ
the ideal sheaf on X associated to I.

Lemma 6.7. Suppose that I ⊂ S(X) is a homogeneous ideal. Then there
exists some d ≥ 1 such that the ideal J which is generated by the elements
Id (the elements of I which are homogeneous of degree d) satisfies Ĩ = J̃ .

Proof. Let F0, . . . , Fr be a homogeneous set of generators of I. Let d0, . . . , dr
be their respective degrees. Suppose that d ≥ max{di}, and let J be the

ideal generated by Id. We will show that J̃ = Ĩ . It suffices to show that
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J̃(D(xj)) = Ĩ(D(xj)) for all j. This follows since xd−di
j Fi ∈ J for all i, so

that

Fi

(
x0
xj

, . . . ,
xn
xj

)
∈ J̃(D(xj)). �

Definition 6.8. Suppose that X is a projective variety and I ⊂ S(X) =
k[x0, . . . , xn] is a nonzero homogeneous ideal. Let d and J be as in the
conclusions of Lemma 6.7. Suppose that J = (F0, . . . , Fr), where F0, . . . , Fr

are homogeneous generators of degree d. Let Λ : X ��� Pr be the rational
map defined by Λ = (F0 : . . . : Fr). The blow-up of I is B(I) = ΓΛ, with
projection π : B(I) → X.

We have that π−1(D(xi)) = ΓΛ|D(xi) by (5.3) and Λ|D(xi) = (F0

xd
i
: . . . :

Fr

xd
i
). Since

Ĩ(D(xi)) = J̃(D(xi)) =

(
F0

xdi
, . . . ,

Fr

xdi

)
,

we see that the restriction of π to π−1(D(xi)) → D(xi) is the blow-up of the

ideal Ĩ(D(xi)) in k[D(xi)] for 0 ≤ i ≤ r.

We thus have that Definition 6.8 is well-defined by Proposition 6.1 (ap-
plied on each affine open set D(xi)), so that B(I) is independent of choice
of d and choice of generators of J (of the same degree d).

More generally, for any affine open subset U of X, the restriction of π
to π−1(U) → U is the blow-up of the ideal Ĩ(U) in k[U ] (this will be proven
in Lemma 12.3).

Theorem 6.9. Suppose that X ⊂ Pm and Y ⊂ Pn are projective varieties
and φ : Y → X is a birational regular map. Then φ is the blow-up of a
homogeneous ideal in S(X).

Proof. Let ψ : X ��� Y be the inverse rational map to φ. Define a regular
map γ : Y → X × Y by γ(q) = (φ(q), q) for q ∈ Y . The image of γ is closed
in X × Y by Proposition 5.8 and the fact that the map X × Y → Y × X
given by (a, b) �→ (b, a) is an isomorphism. The map γ is an isomorphism
onto its image since the inverse map is the projection onto Y . We have that
π1(γ(q)) = φ(q) for q ∈ Y .

By Theorem 2.111, there exist affine open subsets V of Y and U of X
such that φ : V → U is an isomorphism. For q ∈ V , γ(q) = (p, ψ(p))
where p = φ(q). Since φ : V → U is an isomorphism, γ : V → Γψ|U is an
isomorphism. Thus γ(Y ) ⊂ Γψ since Y is the closure of V , Y is irreducible,
and Γψ is closed. The image γ(Y ) contains Γψ|U . Thus Γψ = γ(Y ) since
both Γψ and γ(Y ) are closed and irreducible. We thus have a commutative
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diagram

Y
γ

��

φ ��
��

��
��

��
Γψ

π

��

X

where γ is an isomorphism.

Choose forms F0, . . . , Fr ∈ S(X) of a common degree, so that (F0 : . . . :
Fr) is a representative of the rational map ψ. Then π : Γψ → X is the
blow-up of the ideal I = (F0, . . . , Fr). �

Suppose that Λ : X ��� Y is a rational map of projective varieties, with
Y ⊂ Pn. Suppose that (F0 : . . . : Fn) represents the rational map Λ; that is,
F0, . . . , Fn ∈ S(X) have the same degree, U = X \ Z(F0, . . . , Fn) 
= ∅, and
Λ|U = (F0 : . . . : Fn).

The graph ΓΛ is the closure of ΓΛ|V in X ×Y for any dense open subset
V of X on which Λ is regular (ΓΛ|V is the image of V in V × Y of the map
p �→ (p,Λ(p))). We thus have that

ΓΛ = Γ(F0:...:Fn) = B(I)

where I is the ideal I = (F0, . . . , Fn) ⊂ S(X). We obtain the statement
that if (F0 : . . . : Fn) and (G0 : . . . : Gn) are two representations of Λ,
so that F0, . . . , Fn are homogeneous of a common degree, G0, . . . , Gn are
homogeneous of a common degree, and

FiGj − FjGi = 0 for 0 ≤ i, j ≤ n,

then B(I) is isomorphic to B(J), where

I = (F0, . . . , Fn) and J = (G0, . . . , Gn).

In general, Z(I) 
= Z(J) for two such representations, and Ĩ 
= J̃ .

The reason this works out is that two very different ideals can have
the same blow-up. For instance, if X is affine, I ⊂ k[X] is an ideal, and
0 
= f ∈ k[X], then B(I) is isomorphic to B(fI). To prove this, suppose
that I = (g0, . . . , gr) ⊂ k[X]. The rational map (g0 : . . . : gr) : X ��� Pr is
the same as the rational map (fg0 : . . . , : fgr) : X ��� Pr so the two ideals
have the same blow-up. In particular, X is isomorphic to B(fk[X]) for any
nonzero f ∈ k[X].

As an example, consider the projective variety A = Z(xy − zw) ⊂ P3.
Let S(A) = k[x, y, z, w]/(xy− zw) = k[x, y, z, w]. Consider the regular map
φ : A → P1 which has the representations

φ = (x : z) = (w : y).
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Let I = (x, z) and J = (w, y). Since φ is regular, we have that B(Ĩ)

and B(J̃) are isomorphic to A by Proposition 5.9. We can verify this by
computing the blow-ups on the affine cover {D(x), D(y), D(z), D(w)} of A.
For instance, on D(x), we have

k[A ∩D(x)] = k

[
y

x
,
z

x
,
w

x

]
= k

[y
x
,
z

x
,
w

x

]
/
(y
x

− z

x

w

x

)
.

We have

Ĩ(D(x)) =

(
1,

z

x

)
= k[A ∩ D(x)]

and

J̃(D(x)) =

(
w

x
,
y

x

)
=

(
w

x
,
z

x

w

x

)
=

(
w

x

)
,

and we see that both ideals are principal ideals.

The blow-up of a subvariety Y of a projective variety X is the blow-up
of a homogeneous ideal I, which has a set of generators of a common degree,

such that Ĩ(U) = ĨX(Y )(U) for all affine open sets U ⊂ X. We find such an
ideal by applying Lemma 6.7 to IX(Y ).

If π : B(I) → X is the blow-up of a homogeneous ideal in the coordinate
ring S(X) of a projective variety X and W is a closed subvariety of X, then
as in the case when X is affine, the strict transform of W in B(I) is defined
to be the Zariski closure of π−1(W \ Z(I)) ∼= W \ Z(I) in B(I).

Definition 6.10. Suppose that f : X → Y is a birational regular map of
quasi-projective varieties. Let U be the largest open subset of Y on which
the inverse of f is a regular map. Suppose that Z is a subvariety of Y . The
proper transform of Z by f is the closure of f−1(Z ∩ U) in X.

In determining the difference between the strict transform and proper
transform of a subvariety under a blow-up, the following lemma is useful.

Lemma 6.11. Suppose that I is an ideal in the regular functions of an
affine variety X and π : B(I) → X is the blow-up of I. Then the largest
open subset U of X on which π−1 is regular (and thus an isomorphism) is
the set

U = {p ∈ X | IOX,p is a principal ideal}.

Proof. Suppose that IOX,p is a principal ideal. Then there exists an affine
open neighborhood V of p such that Ik[V ] is principal. Suppose that
Ik[V ] = (f). Then π−1(V ) = B(Ik[V ]) is the graph of the rational map

f̃ : V ��� P0 defined by f . But P0 is a single point, so f̃ is the regular
map which contracts V to this point. The blow-up of Ik[V ] is the graph

of the regular map f̃ : V → P0, so that π−1(V ) = B(Ik[V ]) → V is an
isomorphism.
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Now suppose that V is an affine open subset of X such that π−1(V ) =
B(Ik[V ]) → V is an isomorphism. We have that IOB(I),q is a principal ideal
for all q ∈ B(Ik[V ]) by (6.2), so IOX,p is a principal ideal for all p ∈ V since
π is an isomorphism above V . �

Use the methods of the example after Proposition 6.6 (before the com-
putation of the coordinate ring of B(m)) in doing these exercises. Describe
the affine rings that come up in the computations as explicit quotients of
polynomial rings. Lemma 6.11 should also be useful.

Exercise 6.12. Analyze the strict transform C̃ of the curve C = Z(y2−x3)
under the blow-up π : B(p) → A2 of the origin p, and compute the rings of

regular functions on the natural affine cover of C̃. (See Exercise 1.9). Let

E = π−1(p) ∼= P1. What is E ∩ C̃?

Exercise 6.13. Analyze the strict transform C̃ of the curve C =
Z(x2y − xy2 + x4 + y4) under the blow-up π : B(p) → A2 of the origin
p, and compute the rings of regular functions on the natural affine cover of
C̃. Let E = π−1(p) ∼= P1. What is E ∩ C̃?

Exercise 6.14. Analyze the blow-up π : B(W ) → A3 of the following
subvarieties of A3. Describe π−1(W ).

a) W = {(0, 0, 0)}.
b) W = Z(x1, x2).

c) Compute the strict transform of the surface S = Z(x31+x2x
2
3) under

each of these blow-ups.

d) Compute the strict transform of the surface T = Z(x31 + x22) under
each of these blow-ups.

e) Compute the strict transform of the curve S = Z(x3, x
2
1−x32) under

each of these blow-ups.

Exercise 6.15. Consider the rational map φ : P2 ��� P2 which is repre-
sented by (x0x1 : x0x2 : x1x2). This rational map is called a quadratic
transformation. Let P1 = (0 : 0 : 1), P2 = (0 : 1 : 0), P3 = (1 : 0 : 0) ∈ P2.
Let L1,2 be the projective line in P2 containing P1 and P2 (that is, the one-
dimensional linear subspace of P3 containing these two points), let L1,3 be
the projective line containing P1 and P3, and let L2,3 be the projective line
containing P2 and P3.

a) Show that φ2 = id as a rational map. Explain why this tells us
that φ is birational.
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b) Show that the ideal I = (x0x1, x0x2, x1x2) in S(P2) = k[x0, x1, x2]
is the intersection of prime ideals

I = I(P1) ∩ I(P2) ∩ I(P3).

c) Let π : B(I) → P2 be the blow-up of I. Show that B(I) is the
graph of φ.

d) Show that for 0 ≤ i ≤ 2, π−1(D(xi)) → D(xi) is isomorphic to
the blow-up of a point in A2 which we analyzed at the end of
this section; that is, show that there is a commutative diagram of
regular maps

π−1(D(xi))
α ��

π

��

B

λ
��

D(xi)
β

�� A2

where λ : B → A2 is the blow-up of the origin and α, β are isomor-
phisms.

e) Determine the largest open subset of P2 on which φ is a regular
map. Explain why part d) of this problem tells us the answer to
this question.

f) Explain the geometry of the projections π1 : Γφ → P2 and π2 :
Γφ → P2 in terms of the points P1, P2, P3 and their preimages by
π1 and π2, and the lines L1,2, L1,3, L2,3 and their strict transforms
by π1 and π2.

Exercise 6.16. Let X = Z(xy − zw) ⊂ A4, an affine 3-fold with

k[X] = k[x, y, z, w]/(xy − zw) = k[x, y, z, w].

Let S1 be the affine surface S1 = Z(x, z) and S2 be the affine surface S2 =
Z(x,w). These surfaces are subvarieties of X.

a) Let π : B(m) → X be the blow-up of m = (x, y, z, w) (the blow-up
of the point p = (0, 0, 0, 0)). Show that π : π−1(X \ {p}) → X \ {p}
is an isomorphism and E = π−1(p) is a surface which is isomorphic
to P1 × P1.

b) Compute the strict and proper transforms of S1 in B(m). Are
they the same? Compute the strict and proper transforms of S2 in
B(m). Are they the same?

c) Let π1 : B(I1) → X be the blow-up of I1 = (x, z) (the blow-up of
S1). Show that π1 : π

−1
1 (X \{p}) → X \{p} is an isomorphism and

F1 = π−1
1 (p) is isomorphic to P1.
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d) Compute the strict and proper transforms of S1 in B(I1). Are
they the same? Compute the strict and proper transforms of S2 in
B(I1). Are they the same?

e) Answer the questions of part c) for the blow-up π2 : B(I2) → X of
the ideal I2 = (x,w) (the blow-up of S2), letting F2 = π−1

2 (p).

f) Answer the questions of part d) for the blow-up of I2.

g) Show that there is a natural regular map φ1 : B(m) → B(I1) such
that (φ1|E) : E → F1 induces the projection on the first factor
P1 × P1 → P1.

h) Show that there is a natural regular map φ2 : B(m) → B(I2) such
that (φ2|E) : E → F2 induces the projection on the second factor
P1 × P1 → P1.

i) Show that the induced birational map B(I1) ��� B(I2) is not reg-
ular.



Chapter 7

Finite Maps of
Quasi-projective
Varieties

In this chapter we explore properties of finite maps.

7.1. Affine and finite maps

Definition 7.1. Suppose that X and Y are quasi-projective varieties and
φ : X → Y is a regular map.

1) The map φ is affine if for every q ∈ Y there exists an affine neigh-
borhood U of q in Y such that φ−1(U) is an affine open subset
of X.

2) The map φ is finite if for every q ∈ Y there exists an affine neigh-
borhood U of q in Y such that φ−1(U) is an affine open subset of
X and φ : φ−1(U) → U is a finite map of affine varieties (as defined
in Definition 2.55).

It follows from the more general statement of Theorem 7.5 below that
if X and Y are affine varieties and φ : X → Y is a finite map of quasi-
projective varieties, then φ is a finite map of affine varieties (as defined in
Definition 2.55).

Lemma 7.2. Suppose that X is an affine variety. Then X is quasi-compact
(every open cover has a finite subcover).

127
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Proof. Let {Ui}i∈Λ be an open cover of X. We may refine the cover by
basic open sets D(f) with f ∈ k[X] and may so assume that each Ui =
D(fi). Since

⋃
i∈Λ Ui = X, we have that Z(I) = ∅, where I is the ideal

I = (fi | i ∈ Λ). Thus I = k[X] and so there exist a positive integer r and
i1, . . . , ir ∈ Λ such that (fi1 , . . . , fir) = k[X]. Thus {Ui1 , . . . , Uir} is a finite
cover of X. �

Lemma 7.3. Suppose that A is a ring and f1, . . . , fn ∈ A are such that
the ideal (f1, . . . , fn) = A. Suppose that N is a positive integer. Then
(fN

1 , . . . , fN
n ) = A.

Proof. Since (f1, . . . , fn) = A, there exist g1, . . . , gn ∈ A such that

f1g1 + · · · + fngn = 1.

Thus

1 = (f1g1 + · · ·+ fngn)
nN

=
∑

i1+···+in=nN
(nN)!

i1!i2!···in!(f1g1)
i1(f2g2)

i2 · · · (fngn)in ∈ (fN
1 , . . . , fN

n ).

�

Lemma 7.4. Suppose that A is a domain which is a subring of a domain
B and there exist f1, . . . , fn ∈ A such that

1) the ideal (f1, . . . , fn) = A and

2) the localization Bfi is a finitely generated Afi-algebra for all i.

Then B is a finitely generated A-algebra.

Further suppose that Bfi is a finitely generated Afi-module for all i.
Then B is a finitely generated A-module.

Proof. By assumption, there exist ri ∈ Z+ for 1 ≤ i ≤ n and zi1, . . . , ziri ∈
Bfi for 1 ≤ i ≤ n such that

Bfi = Afi [zi1, . . . , ziri ].

After possibly multiplying the zij by a positive power of fi, we may assume
that zij ∈ B for all i, j. Let

C = A[{zij}].

C is a finitely generated A-algebra which is a subring of B. We will show
that B = C.

Suppose that b ∈ B. Then b ∈ Bfi implies there are polynomials gi ∈
Afi [x1, . . . , xri ] such that b = gi(zi1, . . . , zi,ri) for 1 ≤ i ≤ n. Since the
polynomials gi have only a finite number of nonzero coefficients, which are
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in Afi , there exists a positive integer N such that fN
i gi ∈ A[x1, . . . , xri ] for

1 ≤ i ≤ n. Thus

fN
i b = fN

i gi(zi1, . . . , ziri) ∈ A[zi1, . . . , ziri ] ⊂ C

for all i. By Lemma 7.3, there exist ci ∈ A such that
∑

cif
N
i = 1. Thus

b =
(∑

cif
N
i

)
b =
∑

cif
N
i b ∈ C.

Now suppose that the Bfi are finitely generated Afi-modules. Suppose
that b ∈ B. Then b is integral over Afi for all i, so there exists N > 0 such

that fN
i b is integral over A for all i. By Lemma 7.3, there exist ci ∈ A such

that
∑

cif
N
i = 1. Thus b =

∑
i cif

N
i b is integral over A. �

Theorem 7.5. Suppose that φ : X → Y is a regular map of quasi-projective
varieties.

1) Suppose that φ is affine and U is an affine open subset of Y . Then
V = φ−1(U) is an affine open subset of X.

2) Suppose that φ is finite and U is an affine open subset of Y . Then
V = φ−1(U) is an affine open subset of X, and the restriction of φ
to a regular map from V to U is a finite map of affine varieties.

Proof. Let T be the Zariski closure of φ(X) in Y . Then for all affine open
subsets U of Y , T ∩ U is affine and the inclusion of T ∩ U into U is a finite
map of affine varieties. Thus we may assume that φ is dominant.

Suppose that φ is affine and dominant and U is an affine open subset of
Y . We will first show that φ−1(U) → U is an affine map. Suppose that q ∈
U . Then there exists an affine neighborhood W of q in Y such that φ−1(W )
is affine. There exists f ∈ k[W ] such that q ∈ Wf ⊂ U ∩ W since such
open sets are a basis of the topology on W . Thus φ−1(Wf ) = φ−1(W )φ∗(f)

is affine by Proposition 2.93. We conclude that φ : φ−1(U) → U is an affine
map.

Let A = k[U ] = OY (U). Suppose that q ∈ U and let W be an affine
neighborhood of q in U such that φ−1(W ) is affine. Then there exists f ∈
A ⊂ k[W ] such that q ∈ Uf ⊂ W since open sets of this form are a basis
for the topology on U . The inclusions Wf ⊂ Uf ⊂ W imply that Wf =
Uf and so φ−1(Uf ) = φ−1(Wf ) = φ−1(W )φ∗(f) is affine by Proposition
2.93. Since U is affine, it is quasi-compact (by Lemma 7.2) so there exist
f1, . . . , fn ∈ A such that

⋃n
i=1 Ufi = U and φ−1(Ufi) is affine for all i.

Thus ZU (f1, . . . , fn) = ∅, so
√

(f1, . . . , fn) = I(ZU (f1, . . . , fn)) = A by the
nullstellensatz. Thus

(7.1) (f1, . . . , fn) = A.
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Let Vi = φ−1(Ufi) for 1 ≤ i ≤ n. The Vi are an affine cover of V = φ−1(U).
Let B = OY (V ). The map φ gives us an injective k-algebra homomorphism
φ∗ : A → B ⊂ k(X). Let Bi = OY (Vi) = k[Vi] for 1 ≤ i ≤ n. The restriction
of φ to Vi gives 1-1 k-algebra homomorphisms φ∗ : k[Ufi ] = Afi → Bi =
k[Vi] ⊂ k(X), realizing the Bi as finitely generated Afi-algebras (Bi are
finitely generated k-algebras since the Vi are affine). Now Vi∩Vj is precisely
the open subset (Vi)φ∗(fj) of Vi, so for all i, j, Vi ∩ Vj is affine with regular
functions

k[Vi ∩ Vj ] = (Bi)φ∗(fj) = (Bj)φ∗(fi) ⊂ k(X)

by Propositions 2.84 and 2.93.

Since φ∗(fj) does not vanish on Vj , φ
∗(fj) is a unit in Bj , so (Bj)φ∗(fj) =

Bj , and

Bj ⊂ (Bj)φ∗(fi) = (Bi)φ∗(fj)

for all i, j. Now

B = OY (V ) =
n⋂

i=1

OY (Vi) =
n⋂

i=1

Bi.

We compute

Bφ∗(fj) =

(
n⋂

i=1

Bi

)
φ∗(fj)

=
n⋂

i=1

(Bi)φ∗(fj) = Bj .

By Lemma 7.4, B is a finitely generated A-algebra, and since A is a finitely
generated k-algebra, B is a finitely generated k-algebra. Thus there exists
an affine variety Z such that k[Z] = B. Let t1, . . . , tm ∈ B generate B
as a k-algebra (the ti are coordinate functions on Z). Since B = OX(V ),
α = (t1, . . . , tm) induces a regular map α : V → Z. Now the αi = α | Vi

induce isomorphisms αi : Vi → Zφ∗(fi) of affine varieties for all i, since α∗
i

induces an isomorphism of regular functions. We may thus define regular
maps ψi : Zφ∗(fi) → Vi which are isomorphisms by requiring that (ψi)

∗ =

(α∗
i )

−1. The ψi patch to give a continuous map ψ : V → Z which is a regular
map by Proposition 3.39. Since ψ is an inverse to α, we have that V ∼= Z is
an affine variety.

Now suppose that X → Y is a finite map of quasi-projective varieties.
Then we may choose f1, . . . , fn ∈ A as above with the additional property
that the Bfi are finitely generated Afi-modules for all i. Thus B is a finite
A-module by Lemma 7.4, and so V = φ−1(U) → U is a finite map of affine
varieties. �

Exercise 7.6. Suppose that X is a quasi-projective variety. Show that X
is quasi-compact (every open cover has a finite subcover).
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7.2. Finite maps

Theorem 7.7. Suppose that X and Y are quasi-projective varieties and
φ : X → Y is a finite regular map. Then φ is a closed map, and if φ is
dominant, then φ is surjective.

Proof. There exists an affine cover {Vi} of Y such that the maps φ : Ui → Vi

where Ui = φ−1(Vi) are finite maps of affine varieties. We obtain this by
either choosing the Vi so that φ−1(Vi) are affine with φ : Ui → Vi finite,
which exist by the definition of a finite map, or we pick an arbitrary affine
cover {Vi} of Y and apply Theorem 7.5 to get this statement. We have
that each φ : Ui → Vi is a closed map by Corollary 2.58 and is surjective
if φ is dominant by Theorem 2.57, so φ : X → Y is a closed map, which is
surjective if φ is dominant. �

Theorem 7.8. Suppose that X and Y are quasi-projective varieties and
φ : X → Y is a dominant regular map. Then φ(X) contains a nonempty
open subset of Y .

Proof. It suffices to prove the theorem for the map to an affine open subset
V of Y from the restriction of φ to an affine open subset U contained in
the preimage of V . Thus we may assume that X and Y are affine. Let
u1, . . . , ur ∈ k[X] be a transcendence basis of k(X) over k(Y ). Then

k[Y ] ⊂ k[Y ][u1, . . . , ur] = k[Y × Ar] ⊂ k[X].

Thus φ factors as the composition φ = g ◦ h of regular maps where h : X →
Y × Ar and g : Y × Ar → Y is the projection onto the first factor.

Every element v ∈ k[X] is algebraic over k(Y × Ar). Thus there exists
a polynomial f(x) = xs + b1x

s−1 + · · · + bs with bi ∈ k(Y × Ar) such that
f(v) = 0. Write bi = ci

a with a, ci ∈ k[Y × Ar]. Thus v is integral over
k[Y × Ar]a.

Let v1, . . . , vm be coordinate functions onX (so that k[X]=k[v1, . . . , vm]).
For each vi choose ai ∈ k[Y × Ar] such that vi is integral over k[Y × Ar]ai .
Let F = a1 · · · am. Then k[X]h∗(F ) is integral over k[Y × Ar]F , so that
h : Xh∗(F ) → (Y × Ar)F is finite and dominant. Thus (Y × Ar)F =
h(Xh∗(F )) ⊂ h(X) by Theorem 7.7. It remains to show that g((Y × Ar)F )
contains a set that is open in Y .

We have an expression

F =
∑

fi1,...,iru
i1
1 . . . uirr ∈ k[Y × Ar] = k[Y ][u1, . . . , ur]

with fi1,...,ir ∈ k[Y ] not all zero. If p ∈ Y and some fi1,...,ir(p) 
= 0, then
there exists a point q ∈ Ar such that F (p, q) 
= 0 (by Theorem 1.4 or the
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affine nullstellensatz). Thus the nonempty open set⋃
Yfi1,...,ir

= Y \ Z({fi1,...,ir}) ⊂ g((Y × Ar)F ) ⊂ φ(X). �

A short proof of Theorem 7.8 can be obtained by using some theorems
from commutative algebra on flatness. We reduce to the case where X and
Y are both affine. By the theorem of generic flatness, [107, Theorem 52 on
page 158], there is a nontrivial open subset U of Y such that φ−1(U) → U
is flat. By [107, Theorem 4 on page 33] and [107, Theorem 8 on page 48],
φ = φ−1(U) → U is an open map, so φ(X) contains a nontrivial open subset
of X.

Theorem 7.9. Suppose that X is a projective variety which is a closed
subvariety of a projective space Pn and suppose that X ⊂ Pn \E where E is
a d-dimensional linear subspace. Then the projection π : X → Pn−d−1 from
E determines a dominant finite map from X to the projective variety π(X).

Proof. Let y0, . . . , yn−d−1 be homogeneous coordinates on Pn−d−1 and let
L0, . . . , Ln−d−1 be a basis of the vector space of linear forms vanishing on
E. Define π by the formula π = (L0 : . . . : Ln−d−1). Here π is a regular
map on X since E ∩ X = ∅, so the forms L0, . . . , Ln−d−1 do not vanish
simultaneously on X.

Let Ui = π−1(Pn−d−1
yi ) ∩X = Pn

Li
∩X. Then Ui is an affine open subset

of X. We will show that for all i such that Ui 
= ∅, Ui → π(X)∩Pn−d−1
yi is a

finite map. The image π(X) is a closed subset of Pn−d−1 by Theorem 5.14.
Hence π(X) is a projective variety and π(X)yi = π(X)∩Pn−d−1

yi is an affine
open subset of π(X).

We will show that k[Ui] is integral over the subring k[π(X)yi] for all i,
so that π : Ui → π(X)yi is finite for all i and thus π : X → π(X) is finite
and dominant.

Suppose g ∈ k[Ui]. Then g is the restriction of a form G
Lm
i

where m

is the degree of the homogeneous form G ∈ S(Pn) by formula (4.6). Let
z0, . . . , zn−d be homogeneous coordinates on Pn−d, and define a rational
map π1 = (Lm

0 : . . . : Lm
n−d−1 : G) from Pn to Pn−d. The rational map

π1 induces a regular map of X and its image π1(X) is closed in Pn−d by
Theorem 5.14. Let F1, . . . , Fs be a set of generators of I(π1(X)) ⊂ S(Pn−d).
As X ∩ E = ∅, the forms L0, . . . , Ln−d−1 do not vanish simultaneously on
X. Thus the point (0 : . . . : 0 : 1) is not contained in π1(X), so that

ZPn−d(z0, . . . , zn−d−1, F1, . . . , Fs) = {(0 : . . . : 0 : 1)} ∩ π1(X) = ∅.

By Proposition 3.11, we have that Tl ⊂ (z0, . . . , zn−d−1, F1, . . . , Fs) for some
l > 0, where Tl is the vector space of homogeneous forms of degree l on
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Pn−d. In particular, we have an expression

zln−d =

n−d−1∑
j=0

zjHj +

s∑
j=1

FjPj

where Hj , Pj ∈ S(Pn−d) = k[z0, . . . , zn−d] are polynomials. Denoting by

H(q) the homogeneous component of H of degree q, let

Φ(z0, . . . , zn−d) = zln−d −
n−d−1∑
j=0

zjH
(l−1)
j .

We have that Φ ∈ I(π1(X)). The homogeneous polynomial Φ has degree l,
and as a polynomial in zn−d it has the leading coefficient 1, so that it has
an expression

Φ = zln−d +
∑

Al−j(z0, . . . , zn−d−1)z
j
n−d

where the Al−j are homogeneous of degree l−j. Substitution of the defining
formulas π∗

1(zi) = Lm
i for 0 ≤ i ≤ n − d − 1 and π∗

1(zn−d) = G induces a
k-algebra homomorphism π∗

1 : S(Pn−d) → S(Pn). Since the Fi vanish on
π1(X), we have that π∗

1(Fi) ∈ I(X). We thus have that

π∗
1(Φ) = Φ(Lm

0 , . . . , Lm
n−d−1, G) ∈ I(X)

is a homogeneous form of degree lm in S(Pn). Dividing this form by Lml
i ,

we obtain a relation(
G
Lm
i

)l
+
∑l−1

j=0Al−j

((
L0
Li

)m
, . . . , 1, . . . ,

(
Ln−d−1

Li

)m)(
G
Lm
i

)j
∈ I(X ∩ Pn

Li
) ⊂ k[Pn

Li
].

The rational map π induces a regular map π : Pn
Li

→ Pn−d−1
yi of affine

varieties, with π∗ : k[Pn−d−1
yi ] → k[Pn

Li
] given by π∗

(
yj
yi

)
=

Lj

Li
for 0 ≤

j ≤ n − d − 1. We have that (π∗)−1(I(X ∩ Pn
Li
)) = I(π(X) ∩ Pn−d−1

yi ).

Since g is the residue of G
Lm
i

in k[Ui] = k[X ∩ Pn
Li
] = k[Pn

Li
]/I(X ∩ Pn

Li
),

we obtain the desired dependence relation, showing that g is integral over
k[π(X)yi] = k[Pn−d−1

yi ]/I(π(X)yi). �

Remark 7.10. Looking back at the proof, we see that we have also proved
the following theorem. Writing the coordinate ring of X as

S(X) = S(Pn)/I(X)

and the coordinate ring of π(X) as

S(π(X)) = k[y0, . . . , ym] = S(Pm)/I(π(X))
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wherem = n−d−1, we showed that the 1-1 graded k-algebra homomorphism

π∗ : S(π(X)) → S(X)

defined by π∗(yi) = Li for 0 ≤ i ≤ m makes S(X) an integral extension of
S(π(X)).

By applying this theorem to a Veronese embedding of X, or modify-
ing the proof using formula (4.9) instead of (4.6), we obtain the following
generalization.

Theorem 7.11. Let F0, . . . , Fs be linearly independent forms over k of de-
gree m > 0 on Pn that do not vanish simultaneously on a closed subvariety
X ⊂ Pn. Then φ = (F0 : . . . : Fs) determines a dominant finite map
φ : X → φ(X) of projective varieties.

Corollary 7.12. Suppose that X is a projective variety which is a closed
subvariety of a projective space Pn. Then there exists a surjective finite map
φ : X → Pm for some m. The map φ is the restriction to X of a projection
from a suitable linear subspace of Pn.

Proof. If X 
= Pn, choose a point p ∈ Pn \ X and let π : X → Pn−1 be the
projection from p. The induced regular map π : X → π(X) is a finite map
and π(X) is a projective variety which is a closed subset of Pn−1 by Theorem
7.9. We continue until the image of X is the whole ambient projective space.
A composition of finite maps is finite so the resulting map is finite. �

Corollary 7.13 (Projective Noether normalization). Suppose that R is the
coordinate ring of a projective variety. Then there exist m ≥ 0 and linear
forms L0, . . . , Lm in R such that the graded k-algebra homomorphism

φ∗ : k[x0, . . . , xm] → R

is an integral extension, where k[x0, . . . , xm] is a polynomial ring and φ∗(xi)
= Li for 0 ≤ i ≤ m.

Proof. This statement follows from Corollary 7.12 and Remark 7.10. A
purely algebraic proof is given in [28, Theorem I.5.17]. �

Exercise 7.14. Suppose that φ : Pn → Pm is a regular map. Show that
either φ(Pn) is a point or φ is a finite map onto a closed subvariety of Pm.
(Recall the conclusions of Exercise 4.14 and the assumption that F0, . . . , Fs

are linearly independent forms in Theorem 7.11.)
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7.3. Construction of the normalization

In this section we construct the normalization of a quasi-projective variety
in a finite extension of its function field.

Definition 7.15. Suppose that X is a quasi-projective variety and p ∈ X.
The point p is called a normal point of X if OX,p is integrally closed in its
quotient field k(X). The variety X is called normal if all points of X are
normal points of X.

Proposition 7.16. Suppose that X is a normal quasi-projective variety.
Then OX(X) is integrally closed in k(X).

Proof. Suppose that f ∈ k(X) is integral over OX(X). Then for all p ∈ X,
f is integral over OX,p, so that f ∈ OX,p. Thus

f ∈
⋂
p∈X

OX,p = OX(X). �

The remainder of this section will be devoted to the proof of the following
theorem (from the proof on page 177 of [161] and of [116, Theorem 4,
Section III.8]).

Theorem 7.17 (Normalization, in a finite extension). Suppose X is a quasi-
projective variety and Λ : k(X) → L is a k-algebra homomorphism of fields,
such that L is a finite extension of k(X). Then there is a unique normal
quasi-projective variety Y with function field k(Y ) = L, and there is a dom-
inant finite regular map π : Y → X such that π∗ : k(X) → k(Y ) is the
homomorphism Λ.

If X is affine, then Y is affine. If X is projective, then Y is projective.

The normal variety Y is called the normalization of X in L. If L = k(X),
then Y is called the normalization of X. We first prove uniqueness. Suppose
that π : Y → X and π′ : Y ′ → X each satisfy the conclusions of the theorem.
Suppose that p ∈ X and that U is an affine neighborhood of p in X. Then
V = π−1(U) is an affine open subset of Y since π is finite. Further, k[V ]
is integrally closed in L and is finite over k[U ] by Theorem 7.5. Thus k[V ]
is the integral closure of k[U ] in L. We thus have that k[V ′] = k[V ] where
V ′ = (π′)−1(U), so that the identity map is an isomorphism of the affine
varieties V and V ′. Since this holds for an affine cover of X, we have that
Y = Y ′ by Proposition 3.39.

We now prove existence for an affine variety X. Let R be the integral
closure of k[X] in L. Then R is a finitely generated k-algebra (by Theorem
1.54) which is a domain, so that R = k[Y ] for some affine variety Y . The in-
clusion Λ : k[X] → k[Y ] induces a finite regular map Y → X by Proposition
2.40.
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We now prove existence for a projective variety X, from which existence
for a quasi-projective variety follows.

For a graded ring A and d ∈ Z, recall that in (3.2), we define a graded

ring A(d) by A(d) =
⊕∞

i=−∞A
(d)
i , where A

(d)
i = Aid.

Now suppose that X ⊂ Pn is a projective variety, with homogeneous
coordinate ring

R = S(X) = k[x0, . . . , xn]/P = k[x0, . . . , xn].

Let α ∈ R1 be a nonzero element, and let Σ ⊂ R be the multiplicatively
closed set of nonzero homogeneous elements. Then the localization Σ−1R is
graded.

Lemma 7.18. There is an isomorphism of graded rings

Σ−1R ∼= k(X)

[
α,

1

α

]
∼=
⊕
n∈Z

k(X)αn,

which is the localization k(X)[α]α of the standard graded polynomial ring
K(X)[α] in the variable α (which has degree 1) over k(X).

Proof. We have that a homogeneous element β ∈ Σ−1R of degree d has
an expression β = a

f where a ∈ Ri and f ∈ Rm and i − m = d. Thus the

elements of Σ−1R of degree 0 are exactly the elements of k(X). If β has
degree d 
= 0, then we have

β = αd a

fαd
,

where a
fαd has degree 0. Thus a

fαd ∈ k(X), and we have that (Σ−1R)d =

k(X)αd. In particular, Σ−1R = k(X)[α, 1
α ]. �

Lemma 7.19. The integral closure S of R in L[α] is a graded ring and a
finitely generated R-module.

Proof. Since R is a finitely generated k-algebra and L(α) is a finite field
extension of k(X)(α), we have that the integral closure of S in the field L(α)
is a finite R module by Theorem 1.54. Thus the submodule S is a finitely
generated R-module by Lemma 1.55. We observe that since L[α] is normal,
S is the integral closure of R in the field L(α).

We first proof the lemma when L = k(X). Suppose that a ∈ S. Write
a = as + as+1 + · · · + at where each ai ∈ L[α] is homogeneous of degree i
and as 
= 0. The homogeneous form as is called the initial component a.
Since S ⊂ k(X)[α], every element of S can be written as a quotient of two
elements of R such that the denominator is a homogeneous element. Since a
is integral over R, R[a] is a finitely generated R-module, by Theorem 1.49.
Thus there exists a homogeneous element 0 
= d ∈ R such that dR[a] ⊂ R.
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Hence for every i ≥ 0, dai ∈ R. We have that dais is the initial component
of dai, so dais ∈ R since R is graded. Thus ais ∈ 1

dR for all i ∈ N, so

R[as] ⊂ 1
dR is a finite R-module by Lemma 1.55. Thus as is integral over R,

and so a − as = as+1 + · · · + at is integral over R, and continuing this way,
we establish that all ai are integral over R. Thus S is a graded subring of
k(X)[α].

Now assume that L is a finite extension of k(X) and S is the integral
closure of R in L[α]. Let S′

q = S ∩ L[α]q for all q ∈ N, and let S′ =
⊕

S′
q, a

graded subring of L[α] which is contained in S. Suppose β ∈ L. There exist
n ∈ Z+ and ci ∈ k(X) such that

βn + c1β
n−1 + · · ·+ cn = 0.

Thus there exists a homogeneous element h ∈ R such that hβ is integral
over R. We have that hβ ∈ S′ since hβ is homogeneous of degree deg h.
Thus the quotient field of S′ is L(α). As S′ contains R, the integral closure
of S′ in L[α] is S. But then S = S′ by the first part of the proof. �

Although S is graded, it may be that S is not generated in degree 1. By
Exercise 3.6, there exists d ∈ Z+ such that S(d) is generated in degree 1.

We have that R(d) = R ∩ k(X)[αd]. We will show that S(d) is the
integral closure of R(d) in L[αd]. If x ∈ L[αd] is integral over R(d), then

as an element of L[α], it is integral over R. Thus x ∈ S ∩ L[αd] = S(d).

If x ∈ S(d) is homogeneous, then x is integral over R and we then have a
homogeneous equation of integral dependence

xm + f1x
m−1 + · · ·+ fm = 0

with fi ∈ Rdeg(x)i. But d divides deg(x), so x is integral over R(d).

Choosing a basis y0, . . . , ym of S
(d)
1 , we have an isomorphism

S(d) ∼= k[y0, . . . , ym]/P ∗ = k[y0, . . . , ym]

where P ∗ is a homogeneous prime ideal in the polynomial ring k[y0, . . . , ym]
and the yi all have degree 1. Let Y ⊂ Pm be the projective variety Y =
Z(P ∗). We have S(Y ) ∼= S(d).

We will now show that Y is normal. The ring S(d) is integrally closed
in L[αd]. Since L[αd] is isomorphic to a polynomial ring over a field, it is
integrally closed in its quotient field. Hence S(d) is integrally closed in its

quotient field. Thus the localization S
(d)
yi is integrally closed in its quotient

field (by Exercise 1.58). By (3.8),

OY (D(yi)) =

{
f

ymi
| m ∈ Z+ and f ∈ S(d)

m

}
,
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which is the set of elements of S
(d)
yi

of degree 0. Thus it is the intersection

S
(d)
yi

∩ L taken within L[αd], which is integrally closed in L since S
(d)
yi

is

integrally closed. Since the local ring of every point of Y is a localization of
one of the normal local rings OY (D(yi)), all of these local rings are integrally
closed, so that Y is normal.

By the Veronese embedding φ : Pn → Pe where e =
(
n+d
n

)
− 1, we have

an isomorphism of X with a closed subset of Pe, such that the coordinate

ring of φ(X) satisfies S(φ(X)) ∼= R(d). Choosing a basis z0, . . . , zl of R
(d)
1 ,

we have an isomorphism R(d) ∼= k[z0, . . . , zl]/P
′ = k[z0, . . . , zl] where P

′ is a
homogeneous prime ideal in the polynomial ring k[z0, . . . , zl] and the zi all
have degree 1.

Our graded inclusion R(d) ⊂ S(d) gives us an expression

zi =
∑
j

aijyi

with aij ∈ k for all i, j.

Let Li =
∑

j aijyi for 0 ≤ i ≤ l. We will now show that Z(L1, . . . , Ll) ∩
Y = ∅. Suppose that p ∈ Z(L1, . . . , Ll) ∩ Y . Since S(d) is integral over

R(d), for 0 ≤ i ≤ m we have that yi is integral over R
(d), by a homogeneous

relation. Thus we have equations

yni
i + bi1(L0, . . . , Ll)y

ni−1
i + · · ·+ bi,ni(L0, . . . , Ll) ∈ P ∗

where the bij are homogeneous polynomials of degree j. Evaluating at p, we
obtain that yni

i (p) = 0, so that yi(p) = 0 for all i, which is impossible. Thus
Z(L1, . . . , Ll) ∩ Y = ∅.

By Theorem 7.9, the rational map π = (L0 : . . . : Ll) from Y to φ(X) ∼=
X is a finite regular map. By our construction, the induced map π∗ : k(X) →
k(Y ) is Λ.

Exercise 7.20. Show that an affine variety X is normal if and only if k[X]
is integrally closed in k(X).



Chapter 8

Dimension of
Quasi-projective
Algebraic Sets

8.1. Properties of dimension

Suppose that X is a quasi-projective algebraic set. We define the dimension
of X to be its dimension as a topological space (Definition 2.63). The
following proposition is proved in the same way as Proposition 2.67.

Proposition 8.1. Suppose that X is a quasi-projective algebraic set and
V1, . . . , Vn are its irreducible components. Then dimX = max{dimVi}.

Theorem 8.2. Suppose that X is a projective variety. Then:

1) dimX = trdegkk(X).

2) Any maximal chain of distinct irreducible closed subsets of X has
length n = dimX.

3) Suppose that U is a dense open subset of X. Then dimU = dimX.

Proof. We have a closed embedding X ⊂ Pn. Let x0, . . . , xn be homoge-
neous coordinates on Pn. Suppose that

(8.1) W0 ⊂ W1 ⊂ · · · ⊂ Wm

is a chain of distinct irreducible closed subsets of X. There exists an open
setD(xi) = Pn

xi
such thatW0∩D(xi) 
= ∅. Then since theWi are irreducible,

(8.2) W0 ∩D(xi) ⊂ · · · ⊂ Wm ∩ D(xi)

139
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is a chain of distinct irreducible closed subsets of the affine variety U =
X ∩ D(xi). Thus m ≤ dimU = trdegkk(X) by Proposition 2.64, Theorem
1.63, and Proposition 3.37.

Suppose that (8.1) is a maximal chain. Then (8.2) is a maximal chain.
Thus m = trdegkk(X) by Proposition 2.64, Theorem 1.63, and Corollary
2.69.

Now the proof that all nontrivial open subsets of X have the same di-
mension as X follows from the proof of Proposition 2.70. �

Theorem 8.3. Suppose that X is a projective variety, with homogeneous
coordinate ring S(X). Then dimX + 1 = dimS(X).

Proof. By Lemma 7.18, The localization Σ−1S(X) ∼= k(X)[t, 1t ] as graded
rings, where Σ is the multiplicatively closed set of nonzero homogeneous el-
ements of S(X) and t is an indeterminate (with deg(t) = 1 and the elements
of k(X) have degree 0). Thus the transcendence degree of the quotient field
of S(X) over k is equal to one plus the transcendence degree of k(X) over
k. �

Theorem 8.4. Suppose that W ⊂ Pn is a projective variety of dimension
≥ 1 and F ∈ S(Pn) is a form which is not contained in I(W ). Then
W ∩Z(F ) 
= ∅ and all irreducible components of Z(F )∩W have dimension
dimW − 1.

Proof. Suppose that X is an irreducible component of W ∩ Z(F ). Then
there exists an open subset D(xi) of Pn such that X ∩ D(xi) 
= ∅. Let d
be the degree of F . Here F

xd
i

∈ OPn(D(xi)) and X ∩ D(xi) is an irreducible

component of ZD(xi)(
F
xd
i

) ∩ (W ∩ D(xi)). Since F
xd
i

does not restrict to the

zero element on W ∩D(xi), we have that X∩D(xi) has dimension dimW−1
by Theorem 2.71.

Suppose that Z(F )∩W = ∅. Then by Theorem 7.11, φ = (F ) induces a
finite regular map from W to P0, which is a point, so that k(P0) = k. Since
φ is finite, k(W ) is a finite field extension of k(P0), so that k(W ) = k and
dimW = trdegkk(W ) = 0. �

Corollary 8.5. Suppose that W ⊂ Pn is a projective variety and F1, . . . , Fr

∈ S(Pn) are forms (of degree > 0). Then

dimG ≥ dimW − r

for all irreducible components G of Z(F1, . . . , Fr) ∩ W . If r ≤ dimW , then
Z(F1, . . . , Fr) ∩ W 
= ∅. (The dimension of ∅ is −1.)

Proof. If r > dimW , then the corollary is certainly true, so suppose r ≤
dimW . Inductively define subvarieties Wi1,...,is of Pn for 1 ≤ s ≤ r and
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natural numbers σ(i1, . . . , is) by

W ∩ Z(F1) = W1 ∪ · · · ∪ Wσ(0)

and

Wi1,...,is ∩ Z(Fs+1) = Wi1,...,is,1 ∪ · · · ∪Wi1,...,is,iσ(i1,...,is)

for s ≥ 1, where

Wi1,...,is,1, . . . ,Wi1,...,is,iσ(i1,...,is)

are the irreducible components of Wi1,...,is ∩ Z(Fs+1).

If Fs+1 ∈ I(Wi1,...,is), then Wi1,...,is ∩ Z(Fs+1) = Wi1,...,is , so that

σ(i1, . . . , is) = 1,

Wi1,...,is,1 = Wi1,...,is and dim(Wi1,...,is ∩ Z(Fs+1)) = dim(Wi1,...,is).

If Fs+1 
∈ I(Wi1,...,is), then dimWi1,...,is,j = dimWi1,...,is − 1 for all j by
Theorem 8.4 since dimWi1,...,is ≥ 1 for s < r = dimW by induction on s.

Since Z(F1, . . . , Fr) ∩ W =
⋃

Wi1,...,ir , we have that G = Wi1,...,ir for
some i1, . . . , ir, and thus dimG ≥ dimW − r. �

Corollary 8.6. Suppose that W is a quasi-projective variety and f1, . . . , fr ∈
OW (W ). Suppose that ZW (f1, . . . , fr) 
= ∅. Then

dimG ≥ dimW − r

for all irreducible components G of ZW (f1, . . . , fr).

If Y is a quasi-projective algebraic set, contained in a quasi-projective
variety X, then we define the codimension of Y in X to be

codimX(Y ) = dimX − dimY.

Exercise 8.7. Show that the m in Corollary 7.12 is m = dimX.

Exercise 8.8. Show that the definition of the dimension of a linear subspace
of a projective variety, defined in Section 4.5, agrees with Definition 2.63.

Exercise 8.9. Suppose that L is an (n− 1)-dimensional linear subspace of
Pn, X ⊂ L is a closed subvariety, and y ∈ Pn \ L. Let Y be the union of all
lines containing y and a point of X. Recall from Exercise 4.9 that Y is a
projective subvariety of Pn. Show that dimY = dimX + 1.

8.2. The theorem on dimension of fibers

Lemma 8.10. Suppose that p1, . . . , ps, q1, . . . , qr ∈ Pn are distinct points for
some s, r, and n. Then there exists a homogeneous form F ∈ S(Pn) such
that F (p1) = · · · = F (ps) = 0 and F (qi) 
= 0 for 1 ≤ i ≤ r.
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Proof. By the homogeneous nullstellensatz (Theorem 3.12), there exist ho-
mogeneous forms

Fi ∈ I({p1, . . . , ps, q1, . . . , qi−1, qi+1, . . . , qr})
for 1 ≤ i ≤ r such that Fi(qi) 
= 0 for 1 ≤ i ≤ r. Let di be the degree of Fi

for 1 ≤ i ≤ r, and set d = d1d2 · · · dr. The homogeneous form

F =
r∑

i=1

F
d
di
i

satisfies the conclusions of the lemma. �

Proposition 8.11. Suppose that X is a quasi-projective variety of dimen-
sion m ≥ 1 and p ∈ X. Then there exist an affine neighborhood U of p in
X and f1, . . . , fm ∈ OX(U) such that ZU (f1, . . . , fm) = {p}.

Proof. X is an open subset of a projective variety W ⊂ Pn. Choose a
point q1 ∈ W \ {p}. By Lemma 8.10, there exists a form F1 ∈ S(Pn) such
that F1(q1) 
= 0 and F1(p) = 0. Let X1 = Z(F1) ∩ W . By Theorem 8.4,
X1 = X1,1∪· · ·∪X1,r is a union of irreducible components each of dimension
m − 1. At least one of the components necessarily contains p. If m > 1,
we continue, choosing points q1,i ∈ X1,i for 1 ≤ i ≤ r, none of which are
equal to p. By Lemma 8.10, there exists a form F2 ∈ S(Pn) such that
F2(q1,i) 
= 0 for 1 ≤ i ≤ r and F2(p) = 0. By Theorem 8.4, for each i,
Z(F2)∩X1,i = X2,i,1 ∪ · · ·∪X2,i,si is a union of irreducible components each
of dimension m− 2. Thus Z(F1, F2)∩W =

⋃
X2,i,j is a union of irreducible

components of dimensionm−2, at least one of which contains p. Continuing
by induction, we find homogeneous forms F1, . . . , Fm ∈ S(Pn) such that
Z(F1, . . . , Fm)∩W is a zero-dimensional algebraic set which contains p. Thus
Z(F1, . . . , Fm)∩W = {a0, a1, . . . , at} for some points a0 = p, a1, . . . , at ∈ W .
Now by Lemma 8.10, there exists a form G ∈ S(Pn) such that G(ai) = 0 for
1 ≤ i ≤ t and G(p) 
= 0. Let L be a linear form on Pn such that L(p) 
= 0.
Let di be the degree of Fi and e be the degree of G. Then

f1 =
F1

Ld1
, . . . , fm =

Fm

Ldm
, g =

G

Le
∈ OPn(D(L)).

Let V be an affine neighborhood of p in X such that V ⊂ X ∩D(L). Then
Z(f1, . . . , fm) ∩ V ⊂ {a0, . . . , at}. Let U be an affine neighborhood of p in
(V \ Z(g)) ∩ X. Then ZU (f1, . . . , fm) = {p}. �

A set of elements {f1, . . . , fd} in a local ring R with maximal ideal mR of
dimension d such that the ideal (f1, . . . , fd) is mR-primary is called a system
of parameters in R.

Theorem 8.12. Suppose that A is a Noetherian local ring. Then A has a
system of parameters.
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Proof. [161, Theorem 20, page 288] or [50, Corollary 10.7]. �

Proposition 8.11 and the nullstellensatz give a direct proof that a sys-
tem of parameters exists in a local ring OX,p of a point p on an algebraic
variety X.

Theorem 8.13. Let φ : X → Y be a dominant regular map between quasi-
projective varieties. Let dimX = n and dimY = m. Then m ≤ n and:

1) Suppose that p ∈ Y . Then dimF ≥ n − m for all irreducible
components F of φ−1(p).

2) There exists a nonempty open subset U of Y such that all irre-
ducible components of φ−1(p) have dimension n − m for p ∈ U .

Proof. From the inclusion k(Y ) → k(X) we see that

m = dimY = trdegkk(Y ) ≤ trdegkk(X) = dimX = n.

We first prove 1). The conclusion of 1) is local in Y , so we can replace
Y with an affine open neighborhood U of p in Y and X with φ−1(U). By
Proposition 8.11, we may assume that there exist f1, . . . , fm ∈ k[Y ] such
that ZY (f1, . . . , fm) = {p}. Thus the equations φ∗(f1) = · · · = φ∗(fm) = 0
define φ−1(p) inX. By Corollary 8.6, all irreducible components F of φ−1(p)
satisfy dimF ≥ n − m.

Now we prove 2). We may replace Y with an affine open subset W,
X by an affine open subset V ⊂ φ−1(W ), and φ with the restriction of φ
to V . (The theorem follows for X if it holds for each member of a finite
affine open cover of φ−1(W ).) Since φ is dominant, φ determines an inclu-
sion φ∗ : k[W ] → k[V ], hence an inclusion k(W ) = k(Y ) ⊂ k(X) = k(V ).
Let S = k[W ]. Consider the subring R of k(V ) generated by k(W ) and
k[V ]. This is a domain which is a finitely generated k(W )-algebra. Fur-
ther, the quotient ring of R is k(V ). Now k(W ) is not algebraically closed,
but Noether’s normalization lemma does not need this assumption. By
Noether’s normalization lemma (Theorem 1.53) we have that there exist
t1, . . . , tr in R such that t1, . . . , tr are algebraically independent over k(W )
and R is integral over the polynomial ring k(W )[t1, . . . , tr]. We may assume,
after multiplying by an element of k[W ], that t1, . . . , tr ∈ k[V ]. Since the
quotient field of R is k(V ), we have by (1.1) that

r = trdegk(W )k(V ) = trdegkk(V )− trdegkk(W ) = dimX − dimY = n−m.

Now consider the subring S[t1, . . . , tr] of k[V ]. Here S[t1, . . . , tr] is a poly-
nomial ring over S, so S[t1, . . . , tr] = k[W ×Ar], and we have a factorization
of φ by

V
π→ W × Ar ψ→ W.
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We have that k[V ] is a finitely generated k-algebra, so it is a finitely gen-
erated S[t1, . . . , tr]-algebra, say generated by v1, . . . , vl as an S[t1, . . . , tr]-
algebra. Since R is integral over k(W )[t1, . . . , tr], there exist polynomials
Fi(x) in the indeterminate x,

Fi(x) = xdi + Pi,1(t1, . . . , tr)x
di−1 + · · · + Pi,di(t1, . . . , tr)

where the Pi,j are polynomials with coefficients in k(W ), such that

Fi(vi) = 0 for 1 ≤ i ≤ l.

Let g ∈ S = k[W ] be a common denominator of the polynomials Pi,j . Then
Pi,j ∈ (Sg)[t1, . . . , tr] for all i, j. Thus k[V ]g is finite over (Sg)[t1, . . . , tr].

Let U = D(g) ⊂ W . We then have a factorization of φ restricted to
φ−1(U) as

φ−1(U)
π→ U × Ar ψ→ U

where U is affine with regular functions k[U ] = k[W ]g = Sg and φ−1(U)
is affine with regular functions k[φ−1(U)] = k[V ]g and π is a finite map.
For y ∈ U , we have that ψ−1(y) = {y} × Ar has dimension r. Suppose
that A is an irreducible closed subset of φ−1(U) which maps into {y} ×Ar.
Then π(A) is closed in U × Ar and the restriction of φ from A to π(A) is
finite, so that the extension k(A) of k(π(A)) is an algebraic extension. Thus
dimA = dimπ(A). Since π(A) is a subvariety of {y} × Ar ∼= Ar, we have
that dimA ≤ r = n −m.

By part 1) of this theorem, dimA = n−m for all irreducible components
A of φ−1(y). �

A short proof of Theorem 8.13 can be obtained by using some theorems
from commutative algebra, particularly on flatness, as we now indicate. We
reduce to the case where X and Y are both affine. Conclusion 1) of the
theorem follows from [107, (1) of Theorem 19 on page 79]. By the theorem
of generic flatness, [107, Theorem 52 on page 158], there is a nontrivial
open subset U of Y such that φ−1(U) → U is flat. By consideration of an
open affine cover of φ−1(U), we obtain conclusion 2) of Theorem 8.13 from
[107, Theorem 4 on page 33] and [107, (2) of Theorem 19 on page 79].

Corollary 8.14. Suppose that φ : X → Y is a dominant regular map
between quasi-projective varieties. Then the sets

Yk = {p ∈ Y | dimφ−1(p) ≥ k}

are closed in Y .
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Proof. Let dimX = n and dimY = m. By Theorem 8.13, Yn−m = Y ,
and there exists a proper closed subset Y ′ of Y such that Yk ⊂ Y ′ if k >
n−m. If Zi are the irreducible components of Y ′ and φi : φ

−1(Zi) → Zi the
restrictions of φ, then dimZi < dimY , and the corollary follows by induction
on dimY , applied to the restriction of φi to the irreducible components of
φ−1(Zi). �





Chapter 9

Zariski’s Main
Theorem

In this chapter we prove Zariski’s main theorem and give some applications.

Proposition 9.1. Suppose that X and Y are quasi-projective varieties.

1) Suppose that φ : X → Y is a dominant regular map. Then

Λ = φ∗ : k(Y ) → k(X)

has the property that for all p ∈ X,

Λ : OY,φ(p) → OX,p

is a local homomorphism (Λ(OY,φ(p)) ⊂ OX,p and Λ−1(mp) = mφ(p)).
Further, q = φ(p) is the unique point q′ in Y such that

Λ : OY,q′ → OX,p

is a local homomorphism.

2) Conversely, suppose that Λ : k(Y ) → k(X) is a k-algebra homomor-
phism. Further suppose that for all p ∈ X, there exists a unique
point q ∈ Y such that Λ : OY,q → OX,p and Λ−1(mp) = mq. Then
there exists a unique dominant regular map φ : X → Y such that
φ∗ : k(Y ) → k(X) is the map Λ.

Proof. We first prove statement 1). The fact that for all p ∈ X, Λ induces
a local homomorphism

Λ : OY,φ(p) → OX,p

147
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follows from Definition 3.28 of a regular map. Suppose that q, q′ ∈ Y have
the properties that Λ : OY,q → OX,p with Λ−1(mp) = mq and

Λ : OY,q′ → OX,p

with Λ−1(mp) = mq′ . We will show that q = q′. We have that Y is an open

subset of a projective variety Y . Thus there exists an affine open subset
U of Y such that q, q′ ∈ U . There exists a closed subset Z of U such that
Y ∩ U = U \ Z. By the nullstellensatz, there exists f ∈ k[U ] such that
f(Z) = 0 but f(q) 
= 0 and f(q′) 
= 0. Then V = Uf is an affine open subset
of Y containing q and q′. From the homomorphism Λ : k[V ] → OX,p, we
see that IV (q) = Λ−1(mp) = IV (q

′). Thus q = q′ since an affine variety is
separated by Corollary 2.87.

We now prove 2). Define a map Σ : X → Y by Σ(p) = q for p ∈ X if
Λ−1(mp) = mq. We will show that Σ is a regular map. Fix p ∈ X. Let
q = Σ(p). Let Uq be an affine neighborhood of q in Y and Vp be an affine
neighborhood of p in X. Since OY,q is a localization of k[Uq], we have that
Λ induces a homomorphism Λ : k[Uq] → OX,p. Let k[Uq] = k[x1, . . . , xn].
Since OX,p is a localization of k[Vp], there exists f ∈ k[Vp] \ IVp(p) such
that Λ(xi) ∈ k[Vp]f for 1 ≤ i ≤ n. Thus Λ induces a homomorphism
Λ : k[Uq] → k[Wp] where Wp = DVp(f) is an affine neighborhood of p
in X. Thus there exists a unique regular map ψp : Wp → Uq such that
ψ∗
p = Λ : k[Uq] → k[Wp] by Proposition 2.40. By Lemma 2.88, for a ∈ Wp,

ψp(a) = b if and only if Λ−1(ma) = mb, so that Σ|Wp = ψp. Now by
Proposition 3.39, Σ is a regular map. �

We will need the following local version of Zariski’s main theorem, which
was first proven by Zariski in [152, Theorem 14].

Theorem 9.2. Let K be an algebraic function field over a field κ. Suppose
that R and S are local domains which have K as their common quotient field
such that S dominates R (R ⊂ S and mS ∩R = mR where mR and mS are
the respective maximal ideals of R and S) and R is normal. Suppose that
R and S are localizations of finitely generated κ-algebras, dimR = dimS,
S/mS is a finite extension of R/mR, and mRS is mS-primary. Then R = S.

Theorem 9.2 is an immediate consequence of Proposition 21.54, which
we will prove in Section 21.6. The following theorem was proven by Zariski
in [152] and [156].

Theorem 9.3 (Zariski’s main theorem). Let φ : X → Y be a birational
regular map of projective varieties. Suppose that Y is normal. Let U =
{q ∈ Y | φ−1(q) is a finite set}. Then U is a dense open subset of Y and
φ : φ−1(U) → U is an isomorphism.
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Proof. The set U is a dense open subset of Y by Theorem 8.13 and Corollary
8.14. The regular map φ induces an isomorphism φ∗ : k(Y ) → k(X) which
allows us to identify k(Y ) with k(X). Suppose q ∈ U . Since X is projective,
q = φ(p) for some p ∈ φ−1(U) by Theorem 5.14. Thus OX,p dominates
OY,q. We have that mY,qOX,p is mX,p-primary since φ−1(q) is a finite set.
By Theorem 9.2, OY,q = OX,p.

Suppose that p′ ∈ X is such that OX,p′ dominates OY,q. Then OX,p ⊂
OX,p′ and so OX,p′ = OX,p since the dimension of both rings is equal to
dimX. Thus p = p′ since X is separated by Proposition 3.36. By Propo-
sition 9.1, there exists a unique dominant regular map ψ : U → φ−1(U)
such that ψ(q) = p if and only if φ(p) = q. Thus φ : φ−1(U) → U is an
isomorphism with inverse ψ : U → φ−1(U). �

Theorem 9.4. Suppose that φ : X → Y is a dominant regular map of
projective varieties and X is normal. Suppose that k(X) is a finite field
extension of k(Y ). Let λ : Y → Y be the normalization of Y in k(X)
(Theorem 7.17). Then there exists a unique regular map ψ : X → Y making
a commutative diagram

X
ψ

��

φ ��
��

��
��

��
Y

λ
��

Y.

Proof. Let Γ = Γψ ⊂ X × Y be the graph of the natural rational map

ψ : X ��� Y (since k(Y ) = k(X)). Let π1 : Γ → X and π2 → Y be the
projections. The map π1 is birational.

We will show that we have a commutative diagram of regular maps

(9.1) Γ
π1

����
��
��
��

π2
��

X

φ ��
��

��
��

��
Y

λ
��

Y.

By the construction of the normalization Y , we have a commutative
diagram

k(Y )

λ∗

��

φ∗

���
��

��
��

��

k(Y )
ψ∗

�� k(X).
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There exists a nontrivial open subset U of X such that ψ : U → Y is a
regular map. The regular maps λψ : U → Y and φ : U → Y are equal as
rational maps by Proposition 2.108 (which is valid for arbitrary varieties)
so λψ : U → Y and φ : U → Y are the same regular map by Lemma 2.104.
Thus when restricting to the open subset Γψ|U of Γ, we have a commutative
diagram of regular maps

Γψ|U
π1

����
��
��
��

π2

��

U

φ
		�

��
��

��
��

ψ
�� Y

λ
��

Y.

Thus φπ1 = λπ2 as rational maps from Γ to Y , so that they are the
same regular maps from Γ to Y by Proposition 2.108 and Lemma 2.104,
establishing the commutativity of the diagram (9.1).

Suppose that p ∈ X. Then π−1
1 (p) ⊂ {p} × λ−1(φ(p)), which is a finite

set for all p ∈ X since λ is a finite map. Thus π1 is a birational regular map
of projective varieties such that all fibers are finite. Since X is normal, we
have that π1 is an isomorphism by Theorem 9.3, and thus the rational map
ψ : X ��� Y is a regular map. �

Proposition 9.5. Suppose that φ : X → Y is a dominant regular map of
projective varieties such that φ−1(q) is a finite set for all q ∈ Y . Then φ is
an affine map.

Proof. We have a closed embedding X ⊂ Pm, giving closed embeddings

X ∼= Γφ ⊂ X × Y ⊂ Pm × Y.

Let π : Pm × Y → Y be the projection. Suppose that q ∈ Y . Then
φ−1(q) ∼= X ∩ (Pm × {q}) is a finite set of points. Let H be a hyperplane
section of Y such that q 
∈ H and let L be a hyperplane section of Pm such
that

(L × {q}) ∩ X ∩ (Pm × {q}) = ∅.
Then U = X ∩ (Pm

L × YH) is a closed subset of an affine space so it is affine.

Let Z = π(X ∩ (L× YH)). We have that Z is a closed subset of YH , by
Corollary 5.13, which does not contain q. We have that

φ−1(YH\Z) ∼= X∩(Pm×(YH\Z)) = X∩(Pm
L ×(YH\Z)) = U∩(π−1(YH\Z)).

Let f ∈ k[YH ] be such that q ∈ DYH
(f) ⊂ YH \ Z. Let V = DYH

(f). Then
V is an affine neighborhood of q and φ−1(V ) ∼= U ∩ π−1(V ) = DU (φ

∗(f)) is
affine with k[φ−1(V )] = k[U ]φ∗(f). Applying this construction to all q ∈ Y ,
we see that φ is an affine map. �
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Theorem 9.6. Suppose that φ : X → Y is a dominant regular map of
projective varieties such that φ−1(q) is a finite set for all q ∈ Y . Then φ is
a finite map.

Proof. We have that dimX = dimY by Theorem 8.13. Now Theorem
8.2 implies k(X) is a finite extension of k(Y ). Let α : X → X be the
normalization of X in k(X) and β : Y → Y be the normalization of Y
in k(X) (Theorem 7.17). Then we have a commutative diagram of regular
maps of projective varieties

X

α
��

ψ
�� Y

β
��

X
φ

�� Y

by Theorem 9.4. Now α and β are finite maps so they have finite fibers
by Theorem 2.56. Thus ψ has finite fibers and is birational so ψ is an
isomorphism by Theorem 9.3. Let V ⊂ Y be an affine open subset. Then
(φα)−1(V ) ∼= β−1(V ) is affine and k[(φα)−1(V )] is a finitely generated k[V ]-
algebra since β is finite. Now φ−1(V ) is affine by Proposition 9.5, and
k[φ−1(V )] is a finitely generated k[V ]-module by Lemma 1.55, since it is a
submodule of k[(φα)−1(V )]. Thus φ is finite. �

We also have the related theorem, which was first proven by Zariski in
[156].

Theorem 9.7 (Zariski’s connectedness theorem). Let X and Y be projective
varieties and φ : X → Y be a birational regular map. Suppose that Y is
normal at a point q ∈ Y . Then φ−1(q) is connected.

We mention a nice generalization of Zariski’s main theorem, which is
proven in [67] or [124, Chapter IV] and [109, Theorem 1.8].

Theorem 9.8 (Grothendieck). Let φ : X ′ → X be a regular map of varieties
with finite fibers. Then φ is a composition of an open embedding of X ′ into
a variety Y and a finite map from Y to X.

Exercise 9.9. Suppose that X and Y are projective varieties such that X
is normal and φ : X ��� Y is a rational map. Let Γφ be the graph of φ, with
projections π1 : Γφ → X and π2 : Γφ → Y . Suppose that p ∈ X is such that

φ is not regular at p. Show that there exists a curve C ⊂ π−1
1 (p) such that

π2(C) is a curve of Y .





Chapter 10

Nonsingularity

In this chapter, we explore the concept of nonsingularity of a variety. The
tangent space Tp(X) to a point p on a variety X is first defined in Defini-
tion 10.7 extrinsically for an affine variety embedded in An and then given
an equivalent intrinsic definition, Tp(X) = Homk(mp/m

2
p, k), in Definition

10.8. We show that dimX ≤ dimTp(X) in Theorem 10.11, and in Defini-
tion 10.12 we define X to be nonsingular at p if dimX = dimk Tp(X). In
Proposition 10.13, we show that X is nonsingular at p if and only if OX,p

is a regular local ring. Our definition of nonsingularity extends to varieties
over arbitrary fields and general schemes. We prove the Jacobian criterion
of nonsingularity, Proposition 10.14, in our situation of varieties over an al-
gebraically closed field. The Jacobian criterion of nonsingularity is valid for
varieties over a perfect field but can fail for varieties over nonperfect fields
(Exercise 10.21). In Theorem 10.16, we show that the set of nonsingular
points of X is a dense open subset of X.

In the remainder of the chapter, we give applications of the above con-
cepts, including the factorization of birational regular maps of nonsingular
projective surfaces, Theorem 10.32, and the fact (Theorem 10.38) that a
nonsingular projective variety of dimension n can be embedded in P2n+1.
We end the chapter with a proof (Theorem 10.45) that a nonsingular com-
plex variety is a complex analytic manifold.

10.1. Regular parameters

Suppose that R is a regular local ring, with maximal ideal m and residue field
κ = R/m. Let d = dimR, so that dimκm/m2 = d. Elements u1, . . . , ud ∈ m

153
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such that the classes of u1, . . . , ud are a κ-basis of m/m2 are called regular
parameters (or a regular system of parameters) in R.

Lemma 10.1. Suppose that R is a regular local ring of dimension d with
maximal ideal m and that p ⊂ R is a prime ideal such that dimR/p = a.
Then

dimR/m(p+m2/m2) ≤ d − a,

with equality if and only if R/p is a regular local ring.

Proof. Let R′ = R/p, m′ = mR′, and κ = R/m ∼= R′/m′. There is a short
exact sequence of κ-vector spaces

(10.1) 0 → p/p∩m2 ∼= p+m2/m2 → m/m2 → m/(p+m2) = m′/(m′)2 → 0.

The lemma now follows since dimκm
′/(m′)2 ≥ a by Theorem 1.81 and R′ is

regular if and only if dimκm
′/(m′)2 = a. �

Lemma 10.2. Suppose that R is a regular local ring, with maximal ideal
m and residue field κ = R/m. Let d = dimR, and suppose that u1, . . . , ud
are regular parameters in R. Then Ii = (u1, . . . , ui) is a prime ideal in R
of height i for all i, R/Ii is a regular local ring of dimension d − i, and the
residues of ui+1, . . . , ud in R/Ii are regular parameters in R/Ii.

Proof. Let mi = m(R/Ii) be the maximal ideal of R/Ii. Then

d − i = dimκmi/m
2
i ≥ dimR/Ii

by Theorem 1.81. Since none of the ui are units in R, we have by Krull’s
principal ideal theorem, Theorem 1.65, that

dimR/Ii = htmi ≥ d − i,

so that R/Ii is a regular local ring of dimension d − i. �

Lemma 10.3. Suppose that R is a regular local ring of dimension n with
maximal ideal m, p ⊂ R is a prime ideal such that R/p is regular, and
dimR/p = n − r. Then there exist regular parameters u1, . . . , un in R such
that p = (u1, . . . , ur) and ur+1, . . . , un map to regular parameters in R/p.

Proof. Consider the exact sequence (10.1). Since R and R′ are regu-
lar, there exist regular parameters u1, . . . , un in R such that ur+1, . . . , un
map to regular parameters in R′ and u1, . . . , ur are in p. By Lemma 10.2,
(u1, . . . , ur) is a prime ideal of height r contained in p. Thus p = (u1, . . . , ur).

�
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Proposition 10.4. Suppose that x1, . . . , xd is a regular system of parame-
ters in a regular local ring R. For i ≤ d, let Pi = (x1, . . . , xi). Then Pi is a
prime ideal of height i and we have equality of ordinary and symbolic powers

P
(n)
i = Pn

i

for all n > 0.

Proof. The ideals Pi are prime ideals of height i by Lemma 10.2. The
regular system of parameters x1, . . . , xd is an R-regular sequence by Lemma
10.2, and hence R is a Cohen-Macaulay local ring. Thus we have equality of
ordinary and symbolic powers by Proposition 1.70 and Theorem 1.71. �

10.2. Local equations

Suppose that X is a quasi-projective variety and Y is a closed subvariety.
Define IY by

IY (U) = IU (Y ∩ U) ⊂ k[U ]

if U is an affine open subset of X, and for p ∈ X, define

IY,p = IU (Y ∩ U)k[U ]I(p)

if U is an affine open subset of X containing p. We have that IY,p is inde-
pendent of the choice of affine open subset U containing p.

Letting X be the closure of X in a projective space Pn and Y be the
closure of Y in Pn, we can construct IY as in Section 6.2, by taking IY to

be the restriction of ĨX(Y ) to X, where IX(Y ) is the homogeneous ideal of

Y in the coordinate ring S(X). This construction will be examined in more
generality in Chapter 11.

Definition 10.5. Suppose that X is a quasi-projective variety, Y is a closed
subvariety of X, and p ∈ X. Functions f1, . . . , fn ∈ OX,p are called local
equations of Y in X at p (we also say f1 = · · · = fn = 0 are local equations
of Y in X at p) if there exists an affine neighborhood U of p in X such that
f1, . . . , fn generate the ideal IY (U) of Y ∩ U in U .

Lemma 10.6. Functions f1, . . . , fn ∈ OX,p are local equations of Y in some
affine neighborhood of p ∈ X if and only if IY,p = (f1, . . . , fn), the ideal
generated by f1, . . . , fn in OX,p.

Observe that IY,p = OX,p if and only if p 
∈ Y , and this holds if and only
if fi(p) 
= 0 for some i.
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Proof. Suppose that f1, . . . , fn are local equations of Y at p. Then there
exists an affine neighborhood U of p such that IY (U) = (f1, . . . , fn), so

IY,p = (f1, . . . , fn)k[U ]I(p) = (f1, . . . , fn)OX,p,

where I(p) is the ideal of p in U .

Now suppose that IY,p = (f1, . . . , fn). Let U be an affine neighbor-
hood of p, and suppose that IY (U) = (g1, . . . , gm). Then we have that
(g1, . . . , gm)OX,p = (f1, . . . , fn), so there exist expressions

(10.2) gi =
n∑

j=1

ai,jfj

for 1 ≤ i ≤ m, where ai,j ∈ OX,p for all i, j, and we have expressions

(10.3) fk =
m∑
l=1

bk,lgl

for 1 ≤ k ≤ n, where bk,l ∈ OX,p for all k, l. After possibly replacing U with
a smaller affine neighborhood of p, we may assume that all fi, ai,j , bk,l are
in k[U ]. Then

(f1, . . . , fn)k[U ] = (g1, . . . , gm)k[U ] = IY (U). �

10.3. The tangent space

Suppose that p = (b1, . . . , bn) ∈ An. Let xi = xi − bi for 1 ≤ i ≤ n. Transla-
tion by p is an isomorphism of An, and we have that k[An] = k[x1, . . . , xn] =
k[x1, . . . , xn] is a polynomial ring. Suppose that f ∈ k[An]. Then f has a
unique expansion

f =
∑

ai1,...,in(x1 − b1)
i1 · · · (xn − bn)

in

with ai1,...,in ∈ k. If f(p) = 0, we have that a0,...,0 = 0, and

f ≡ Lp(f) mod I(p)2,

where

(10.4)
Lp(f) = a1,0,...,0(x1 − b1) + · · ·+ a0,...,0,1(xn − bn)

= ∂f
∂x1

(p)(x1 − b1) + · · · + ∂f
∂xn

(p)(xn − bn).

Definition 10.7 (Extrinsic definition of the tangent space). Suppose that
X is an affine variety, which is a closed subvariety of An, and that p ∈ X.
The tangent space to X at p is the linear subvariety Tp(X) of An, defined
by

Tp(X) = Z(Lp(f) | f ∈ I(X)).
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We have that if I = (f1, . . . , fr), then I(Tp(X)) = (Lp(f1), . . . , Lp(fr)).

The ideal I(p) of the point p is I(p) = (x1, . . . , xn) ⊂ k[An]. Let V be
the n-dimensional k-vector space which is spanned by x1, . . . , xn in k[An].
For f ∈ I(X), we have that Lp(f) ∈ V . Let W be the subspace of V defined
by W = {Lp(f) | f ∈ I(X)}.

Let mp be the maximal ideal of the local ring OX,p. By Lemma 1.28,

mp/m
2
p
∼= I(p)/(I(p)2 + I(X)) ∼= I(p)/(I(p)2 + I(Tp(X))) ∼= V/W.

We can naturally identify the set of points of An with the dual vector space
Homk(V, k) by associating to q ∈ An the linear map L �→ L(q) for L ∈ V .
Now

Homk(V/W, k) = {φ ∈ Homk(V, k) | φ(W ) = 0}
= {q ∈ An | Lp(f)(q) = 0 for all f ∈ I(X)}
= Tp(X).

This gives us the following alternate definition of the tangent space.

Definition 10.8 (Intrinsic definition of the tangent space). Suppose that
X is a quasi-projective variety and p ∈ X. The tangent space to X at p is
the k-vector space Tp(X) defined by

Tp(X) = Homk(mp/m
2
p, k),

where mp is the maximal ideal of OX,p.

The vector space Tp(X) is the tangent space T (OX,p) of the local ring
OX,p, as defined in (1.7).

Suppose that φ : X → Y is a regular map of quasi-projective varieties
and p ∈ X. Let q = φ(p). Then φ∗ : OY,q → OX,p induces a k-vector
space homomorphism mq/m

2
q → mp/m

2
p, where mq and mp are the maximal

ideals of OY,q and OX,p respectively, and thus we have a k-vector space
homomorphism dφp : Tp(X) → Tq(Y ).

Suppose that φ : X → Y is a regular map of affine varieties, Z ⊂ X is
a subvariety, W ⊂ Y is a subvariety of Y such that φ(Z) ⊂ W , and p ∈ Z.
Let q = φ(p). Let φ : Z → W be the restricted map. We have prime ideals
I(W ) ⊂ I(q) ⊂ k[Y ] and I(Z) ⊂ I(p) ⊂ k[X]. Here φ∗ : k[Y ] → k[X]

induces φ
∗
: k[W ] = k[Y ]/I(W ) → k[X]/I(Z) = k[Z].

We have a commutative diagram of k-vector spaces

I(q)/I(q)2 → I(p)/I(p)2

↓ ↓
I(q)/I(q)2 + I(W ) → I(p)/I(p)2 + I(Z),
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where the vertical arrows are surjections. Taking the associated diagram of
dual k-vector spaces (applying Homk(∗, k)), we get a commutative diagram

(10.5)

Tq(Y )
dφp← Tp(X)

↑ ↑

Tq(W )
dφp← Tp(Z)

where the vertical arrows are the natural inclusions.

Example 10.9. Suppose that φ : Am → An is a regular map, defined by
φ = (f1, . . . , fn) for some fi ∈ k[Am] = k[x1, . . . , xm]. Suppose that α ∈ Am

and β = φ(α). Then

dφα : Tα(A
m) → Tβ(A

n)

is the linear map km → kn given by multiplication by the n × m matrix
( ∂fi∂xj

(α)).

Proof. φ∗ : k[y1, . . . , yn] = k[An] → k[x1, . . . , xm] = k[Am] is defined by
φ∗(yi) = fi for 1 ≤ i ≤ n. Let α = (α1, . . . , αm) and β = (β1, . . . , βn). We
have expressions for 1 ≤ i ≤ n,

(10.6) fi = fi(α) +
m∑
j=1

∂fi
∂xj

(α)(xj − αj) + hi

where hi ∈ I(α)2. We have that fi(α) = βi. Here {y1 −β1, . . . , yn −βn} is a
k-basis of I(β)/I(β)2, and {x1−α1, . . . , xm−αm} is a k-basis of I(α)/I(α)2.
By (10.6) and since φ∗(yi − βi) = fi − fi(α), we have that the induced map
φ∗ : I(β)/I(β)2 → I(α)/I(α)2 is given by

(10.7) φ∗(yi − βi) =
m∑
j=1

∂fi
∂xj

(α)(xj − αj),

for 1 ≤ i ≤ n. Let {δ1, . . . , δm} be the dual basis to {x1 −α1, . . . , xm −αm},
and let {ε1, . . . , εn} be the dual basis to {y1 − β1, . . . , yn − βn}. That is,

δs(xt − αt) =

{
1 if s = t,
0 if s 
= t

and

εs(yt − βt) =

{
1 if s = t,
0 if s 
= t.

Now we compute the dual map

φ∗ : Homk(I(α)/I(α)
2, k) → Homk(I(β)/I(β)

2, k).



10.4. Nonsingularity and the singular locus 159

For 1 ≤ s ≤ m, we have commutative diagrams

I(β)/I(β)2

φ∗

��

φ∗(δs)



�
��

��
��

��
�

I(α)/I(α)2
δs

�� k.

For 1 ≤ t ≤ n and 1 ≤ s ≤ m, we have

δs(φ
∗(yt − βt)) = δs

⎛⎝ m∑
j=1

∂ft
∂xj

(α)(xj − αj)

⎞⎠ =
∂ft
∂xs

(α).

Thus

φ∗(δs) =
n∑

t=1

∂ft
∂xs

(α)εt

for 1 ≤ s ≤ m. �

Exercise 10.10. Suppose that k is an algebraically closed field of charac-
teristic p > 0. Show that the regular map φ : A1 → A1 defined by φ(α) = αp

is a homeomorphism. Show that dφq : Tq(A1) → Tφ(q)(A
1) is the zero map

for all q ∈ A1.

10.4. Nonsingularity and the singular locus

Theorem 10.11. Suppose that X is a quasi-projective variety and p ∈ X.
Then

dimk Tp(X) ≥ dimX.

Proof. Let d = dimX and n = dimk Tp(X) = dimk mp/m
2
p, wheremp is the

maximal ideal of OX,p. The ideal mp is generated by n elements as an OX,p-
module by Nakayama’s lemma, Lemma 1.18. Let mp = (f1, . . . , fn). There
exists an affine neighborhood U of p in X such that IU (p) = (f1, . . . , fn) by
Lemma 10.6. Without loss of generality, we may assume that X is affine
with this property. Let π : B(p) → X be the blow-up of p. Since B(p) is
the graph of the rational map (f1 : . . . : fn) : X ��� Pn−1, B(p) is a closed
subvariety of X ×Pn−1, and so π−1(p) ⊂ {p}×Pn−1 has dimension ≤ n− 1.
But dimB(p) = d and so dimπ−1(p) = d − 1, by Krull’s principal ideal
theorem (Theorem 1.65) since I(p)OB(p),q is a principal nonzero ideal in the

domain OB(p),q for all q ∈ π−1(p) (by (6.2)). Thus d ≤ n. �

Suppose that X is affine and let S = S(B(p)) be the coordinate ring of
the blow-up of p in the above proof. We will show that

dimS/I(p)S = dim π−1(p) + 1 = d.
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Let V1, . . . , Vn be the irreducible components of π−1(p). Then√
I(p)S =

⋂
i

I(Vi)

where I(Vi) is the homogeneous ideal of Vi in S. We have that

dimS/I(p)S = maxi{dim(S/I(Vi))}
since I(Vi) are the minimal primes of I(p)S

= maxi{dim(Vi) + 1} by Theorem 8.3
= maxi{dim(Vi)}+ 1 = dimπ−1(p) + 1

by Proposition 8.1
= d by the proof of Theorem 10.11.

By Theorem 6.4, S ∼=
⊕

i≥0 I(p)
i, and thus

S/I(p)S ∼=
⊕
i≥0

I(p)i/I(p)i+1 ∼=
⊕
i≥0

mi
p/m

i+1
p

by Lemma 1.28, where mp is the maximal ideal of OX,p. This last ring is
the associated graded ring of mp,

grmp
(OX,p) =

⊕
i≥0

mi
p/m

i+1
p .

We obtain that

dimgrmp
(OX,p) = dimOX,p.

From Theorem 10.11, we have that dimOX,p/mp
mp/m

2
p ≥ dimOX,p, so we

recover the statements of Theorem 1.81 in our geometric setting.

Definition 10.12. A point p of a quasi-projective varietyX is a nonsingular
point of X if dimk Tp(X) = dimX. A quasi-projective variety X is said to
be nonsingular if all points of X are nonsingular points of X.

We have the following proposition, which is immediate from the defini-
tion of a regular local ring, giving us an alternate algebraic definition of a
nonsingular point.

Proposition 10.13. A point p of a quasi-projective variety X is a nonsin-
gular point of X if and only if OX,p is a regular local ring.

Proposition 10.14 (Jacobian criterion). Suppose that X is an affine va-
riety of dimension r, which is a closed subvariety of An, and f1, . . . , ft ∈
k[An] = k[x1, . . . , xn] are a set of generators of I(X). Suppose that p ∈ X.
Then

dimk Tp(X) = n− s
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where s is the rank of the t× n matrix

A =

(
∂fi
∂xj

(p)

)
.

In particular, s ≤ n − r, and p is a nonsingular point of X if and only if
s = n − r.

Proof. Going back to our analysis of Tp(X), we have that x1, . . . , xn is a k-
basis of V andW is the subspace of V spanned by {Lp(f1), . . . , Lp(ft)}. This
subspace has dimension equal to the rank of A by (10.4). Since Tp(X) and
V/W are k-vector spaces of the same dimension, we have that dimk Tp(X) =
n− s. �

Exercise 10.21 shows that the Jacobian criterion for nonsingularity of
Proposition 10.14 does not always hold for a nonsingular point on a variety
over a nonalgebraically closed field in positive characteristic. An extensive
study of nonsingularity of varieties over arbitrary fields is made by Zariski
in his paper [154].

Corollary 10.15. Suppose that X is a quasi-projective variety. Then the
set of nonsingular points of X is an open subset of X.

Proof. Since X has an open cover by affine open subsets, we may assume
that X is affine, so that X is a subvariety of An for some n. Let I(X) =

(f1, . . . , ft) and let B be the t × n matrix B = ( ∂fi∂xj
). Let r = dimX and

let In−r(B) be the ideal generated by the determinants of (n− r)× (n− r)
submatrices of B in k[An]. By Proposition 10.14, q ∈ X is a nonsingular
point if and only if q 
∈ Z(In−r(B)). Thus the set of nonsingular points of
X is open in X. �

Theorem 10.16. Suppose that X is a quasi-projective variety. Then the
set of nonsingular points of X is a dense open subset of X.

Proof. By Proposition 2.112, there is a birational map from X to a hyper-
surface Z(f) ⊂ An, where f is irreducible in k[An] = k[x1, . . . , xn]. We will
show that the nonsingular locus of Z(f) is nontrivial. Then the conclusions
of the theorem follow since the nonsingular locus is open, any nontrivial
open subset of a variety is dense, and birational varieties have isomorphic
open subsets (by Theorem 2.111). Thus we may assume that X = Z(f).

Suppose that every point of X is singular. Then Z(f, ∂f
∂x1

, . . . , ∂f
∂xn

) = Z(f),

so ∂f
∂xi

∈ I(X) = (f) for all i. Since deg( ∂f
∂xi

) < deg(f) for all i (here the
degree of a polynomial is the largest total degree of a monomial appearing
in the polynomial), the only way this is possible is if ∂f

∂xi
= 0 for all i. If

the characteristic of k is zero, this implies that f ∈ k, which is impossible.
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If k has positive characteristic, then f must be a polynomial in xp1, . . . , x
p
n

with coefficients in k. Since the p-th roots of these coefficients are in k (as
k is algebraically closed), we have that f = gp for some g ∈ k[x1, . . . , xn],
contradicting the fact that f is irreducible. �

Suppose X is a quasi-projective variety. The closed algebraic set of
singular points of X is called the singular locus of X.

Theorem 10.17. Suppose that X is a normal quasi-projective variety. Let
Z be the singular locus of X. Then codimXZ ≥ 2.

Proof. We may assume that X is affine. Let Y be a codimension 1 sub-
variety of X with ideal I(Y ) ⊂ k[X]. The ideal I(Y ) is a height 1 prime
ideal and the property of being normal localizes by Exercise 1.58, so the
local ring R = k[X]I(Y ) is normal of dimension 1. Thus R is a regular local
ring by Theorem 1.87. Let f be a generator of the maximal ideal of R.
After possibly multiplying f by an element of k[X] which is in k[X] \ I(Y ),
we may assume that f ∈ k[X]. The ideal (f) in k[X] thus has a mini-
mal primary decomposition (f) = I(Y ) ∩ Q1 ∩ · · · ∩ Qr where Q1, . . . , Qr

are primary ideals in k[X] which are Ai-primary for respective prime ideals
A1, . . . , Ar which are not contained in I(Y ). Thus there exists q ∈ Y such
that q 
∈ Z(Ai) for 1 ≤ i ≤ r and so I(Y )mq = fOY,q. We then have
that there exists an affine open subset U of X such that U ∩ Y 
= ∅ and
IU (Y ) = (f) by Lemma 10.6. The variety Y ∩ U has a nonsingular point
p ∈ Y ∩ U , so that OY,p

∼= OX,p/(f) is a regular local ring. Let m be the
maximal ideal of OX,p and let n be the maximal ideal of OY,p. There exist
v1, . . . , vd−1 ∈ OY,p such that n = (v1, . . . , vd−1) where d = dimX. Let
v1, . . . , vd−1 be lifts of v1, . . . , vd−1 to OX,p. The ideal m = (v1, . . . , vd−1, f)
so that dimk m/m2 ≤ d. Thus OX,p is a regular local ring by Theorem
10.11 or Theorem 1.81 and so p is a nonsingular point of X. Thus Y is not
contained in the singular locus Z of X, and so codimXZ ≥ 2. �

Lemma 10.18. Suppose that Y is an irreducible codimension 1 subvariety
of a quasi-projective variety X. Suppose that p ∈ Y is a nonsingular point
of X. Then there exists an irreducible element f ∈ OX,p which is a local
equation of Y at p.

Proof. This follows from Lemma 10.6, Theorem 1.89, and Proposition 1.66.
�

Theorem 10.19. Suppose that X is an n-dimensional nonsingular quasi-
projective variety and Y is a nonsingular subvariety of X. Let π : B → X be
the blow-up of Y . Then B is nonsingular, and E = π−1(Y ) is an irreducible,
nonsingular codimension 1 subvariety of B. If p ∈ Y , then π−1(p) ∼= Pr−1,
where r = codimXY . Suppose that x1, . . . , xn are regular parameters in
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OX,p, such that x1 = · · · = xr = 0 are local equations of Y at p and q ∈
π−1(p). Then there exists a j with 1 ≤ j ≤ r and there exist α1, . . . , αr ∈ k
such that OB,q has regular parameters y1, . . . , yn such that

xi =

⎧⎨⎩
yj(yi + αi) for 1 ≤ i ≤ r and i 
= j,
yj for i = j,
yi for i > r.

A local equation of E in B at q is yj = 0.

With the hypotheses of Theorem 10.19, we have by Proposition 6.5 that

S(B) ∼= k[X][y1, . . . , yr]/J

where J = (yixj − xiyj | 1 ≤ i < j ≤ r).

Proof. Suppose that p ∈ Y . By Lemmas 10.3 and 10.6, there exist regular
parameters x1, . . . , xn in OX,p and an affine neighborhood U of p in X such
that x1 = · · · = xr = 0 are local equations of Y in U , x1 = · · · = xn = 0 are
local equations of p in U , and IY (U) = (x1, . . . , xr). We have by Theorem
6.4 that π−1(U) has the affine cover {V1, . . . , Vr} where

k[Vj] = k[U ]

[
x1
xj

, . . . ,
xr
xj

]
for 1 ≤ j ≤ r. Suppose that q ∈ π−1(p). Then q ∈ Vj for some j. Let
n = IVj (q) and m = IU (p). Without loss of generality, we may assume that
j = r. We have n ∩ k[U ] = m since π(q) = p. Now

k ∼= k[Vr]/n ∼= (k[U ]/m)[t1, . . . , tr−1] ∼= k[t1, . . . , tr−1]

where t1, . . . , tr−1 are the residues of x1
xr
, . . . , xr−1

xr
in k[Vr]/n. Since this k-

algebra is isomorphic to k, we must have that ti = αi for some αi ∈ k, so
that

n = mk[Vr] +

(
x1
xr

− α1, . . . ,
xr−1

xr
− αr−1

)
.

Since mk[Vr] = (xr, xr+1, . . . , xn), we have that the n functions

(10.8) xr, xr+1, . . . , xn,
x1
xr

− α1, . . . ,
xr−1

xr
− αr−1

generate the maximal ideal of OB,q, so that letting a = nOB,q be the maximal
ideal of OB,q, we have that dimk a/a

2 ≤ n. Since π : B → X is a birational
map, and by Theorem 10.11, we have that

n = dimOB,q ≤ dimk a/a
2 ≤ n.

Thus OB,q is a regular local ring, with regular parameters (10.8).
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We have that π−1(U) is a closed subvariety of U ×Pr−1, and xr = 0 is a
local equation in Vr of π−1(Y ∩ U) ⊂ (Y ∩ U) × Pr−1. By Krull’s principal
ideal theorem, Theorem 1.65, all irreducible components of π−1(Y ∩U) have
codimension 1 in π−1(U). Thus π−1(Y ∩ U) = (Y ∩ U) × Pr−1.

Since B \E → X \ Y is an isomorphism and X is nonsingular, we have
that B is nonsingular. �

Exercise 10.20. Consider the curve X = Z(y2 − x3) ⊂ A2, where k is an
algebraically closed field of characteristic 0.

a) Show that at the point p1 = (1, 1), the tangent space Tp1(X) is the
line Z(−3(x− 1) + 2(y − 1)).

b) Show that at the point p2 = (0, 0), the tangent space Tp2(X) is the
entire plane A2

k.

c) Show that the curve is singular only at the origin p2.

d) Show that the blow-up of p2 in C is nonsingular everywhere. (This
blow-up was constructed in Exercise 6.12).

Exercise 10.21. Let p be a prime number, and let K = Fp(t) where Fp is
the finite field with p elements and t is transcendental over Fp. Show that
R = K[x, y]/(xp + yp − t) is a regular ring (all localizations at prime ideals
are regular). Hint: You can use the fact that a polynomial ring over a field
is a regular ring.

Let f = xp + yp − t. Show that the matrix(
∂f

∂x
,
∂f

∂y

)
= (0, 0).

Conclude that the Jacobian criterion for nonsingularity of Proposition 10.14
is not valid over fields of characteristic p > 0 which are not algebraically
closed (not perfect).

Exercise 10.22. Let X ⊂ Pn be a projective variety of dimension r. Let
I(X) = (F1, . . . , Ft) ⊂ S(Pn) = k[x0, . . . , xn] where F1, . . . , Ft are homo-
geneous forms. Show that the singular locus of X is the algebraic set
Z(I(X) + In−r(M)) ⊂ Pn where M is the t × (n+ 1) matrix

M =

(
∂Fi

∂xj

)
and In−r(M) is the ideal generated by the n − r minors of M . Hint: Use
Euler’s formula, Exercise 1.35.
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10.5. Applications to rational maps

Theorem 10.23. Suppose that φ : X ��� Y is a rational map of projective
varieties and X is normal. Let Z be the closed subset of X consisting of the
points where φ is not a regular map. Then Z has codimension ≥ 2 in X.

Proof. The variety Y is a closed subset of a projective space Pn, so after
composing φ with a closed embedding, we may suppose that Y = Pn. Let
W be the set of singular points of X. The closed set W has codim ≥ 2 in
X by Theorem 10.17 since X is normal. Suppose that p ∈ Z ∩ (X \ W ).
We will find an affine open neighborhood Up of p in X and a representative
(f0 : . . . : fn) of φ such that f0, . . . , fn ∈ k[Up] and ZUp(f0, . . . , fn) has
codimension ≥ 2 in Up. Since Z ∩Up ⊂ ZUp(f0, . . . , fn) and there is an open
cover of X \ W by sets of this form, we will have that Z has codimension
≥ 2 in X.

We will now prove the assertion. Suppose that p ∈ X \ W . Let
f0, . . . , fn ∈ k(X) be such that (f0 : . . . : fn) is a representative of the
rational map φ. After multiplying all of the fi by a suitable element of
OX,p, we may assume that f0, . . . , fn ∈ OX,p. Since OX,p is a UFD (The-
orem 1.89), the greatest common divisor of a set of elements in OX,p is
defined. Let g be the greatest common divisor of the elements f0, . . . , fn in
OX,p. Let f i =

fi
g ∈ OX,p.

We will show that the ideal (f0, . . . , fn) in OX,p has height ≥ 2. Lemma
10.18 shows that for every codimension 1 subvariety S of X which contains
p, there exists an irreducible h ∈ OX,p which is a local equation of S at

p. Let U be an affine neighborhood of p in X such that f0, . . . , fn ∈ k[U ]
and h is a local equation of S in U . If S ∩ U ⊂ ZU (f0, . . . , fn), then by
the nullstellensatz, some power of f j is in IU (S ∩ U) = hk[U ] for all j, so h

divides f j in OX,p since h is irreducible in OX,p, giving a contradiction. Since

(f0 : . . . : fn) is a representative of φ, we have the desired conclusion. �

Corollary 10.24. Every rational map φ : X ��� Y of projective varieties
such that X is a nonsingular projective curve is regular.

Corollary 10.25. Every birational map of nonsingular projective curves is
an isomorphism.

Corollary 10.26. Every dominant rational map φ : X ��� Y of projective
curves such that X is nonsingular is regular and finite.

Proof. The map φ : X → Y is regular by Corollary 10.24. Consider the
injective k-algebra homomorphism φ∗ : k(Y ) → k(X). Let Z be the nor-
malization of Y in k(X) constructed in Theorem 7.17, with finite regular
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map π : Z → Y . The variety Z is a normal projective curve by Theorem
7.17 and by 1) of Theorem 8.2. Since Z has dimension 1 and is normal,
Z is nonsingular by Theorem 1.87. By Proposition 2.108 (as commented
in Section 4.4, this result is valid for rational maps of projective varieties),
there is a rational map ψ : Z ��� X such that ψ∗ : k(Z) → k(X) is the iden-
tity map. By Proposition 2.110 (as commented in Section 4.4, this result is
valid for rational maps of projective varieties), ψ is birational. Since ψ is
a birational map of nonsingular projective curves, ψ is an isomorphism by
Corollary 10.25. �

Proposition 10.27. Suppose that φ : X → Y is a birational regular map of
quasi-projective varieties which is not an isomorphism. Suppose that p ∈ X
with q = φ(p), ψ = φ−1 is not regular at q and OY,q is a UFD (for instance
if q is a nonsingular point of Y ). Then there exists a subvariety Z of X
with p ∈ Z such that codimXZ = 1 and codimY φ(Z) ≥ 2.

Proof. The homomorphism φ∗ : k(Y ) → k(X) is an isomorphism, with
inverse ψ∗. Replacing Y with an affine open neighborhood U of q in Y and
X with an affine open neighborhood of p in the preimage of U , we may
assume that X and Y are affine.

We have that X is a closed subset of an affine space An. Let t1, . . . , tn
be the coordinate functions on X (so that k[X] = k[t1, . . . , tn]). We may
represent the rational map ψ : Y ��� X by ψ = (g1, . . . , gn) where the
gi ∈ k(Y ) are rational functions on Y , so that φ∗(gi) = ti for 1 ≤ i ≤ n
(since φ∗ : k(Y ) → k(X) is the inverse of ψ∗ : k(X) → k(Y )). Since ψ is
not regular at q, at least one of the gi is not regular at q, say g1 
∈ OY,q.
We have that OY,q is a UFD by assumption. Thus we have an expression
g1 = u

v where u, v ∈ OY,q and u, v are relatively prime. We necessarily
have that v(q) = 0. We may if necessary replace Y and X with smaller
affine neighborhoods of q and p to obtain that u, v ∈ k[Y ]. Now ZY (u, v)
cannot contain an irreducible component D which has codimension 1 in Y
and contains q, since if it did, a local equation f = 0 of D at q would satisfy
f | u and f | v in OY,q, which is impossible since u and v are relatively
prime. Thus replacing Y and X with possibly smaller affine neighborhoods
of q and p, we may assume that ZY (u, v) has codimension ≥ 2 in Y .

We have that t1 = φ∗(g1) = φ∗(u)/φ∗(v), so that

(10.9) φ∗(v)t1 = φ∗(u)

in k(X). We have that t1, φ
∗(u), φ∗(v) ∈ k[X] and φ∗(v)(p) = 0, so that

p ∈ ZX(φ∗(v)). Set Z = ZX(φ∗(v)). Then codimXZ = 1 since p ∈ Z.
By (10.9) it follows that φ∗(u) ∈ IX(Z). Thus u, v ∈ IY (φ(Z)), so that
φ(Z) ⊂ ZY (u, v), which we have shown has codimension ≥ 2 in Y . �
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The conclusions of Proposition 10.27 may be false if OY,q is normal but
is not a UFD, as is shown by the example computed in Exercise 6.16 c).
In this example we construct the blow-up π1 : B(I1) → X where X =
Z(xy − zw) ⊂ A4 and I1 = (x, z)k[X] and show that B(I1) \ F1

∼= X \ {p}
where p is the origin and F1 = π−1

1 (p) ∼= P1.

Theorem 10.28. Suppose that φ : X → Y is a birational regular map of
projective varieties and Y is nonsingular. Let C = {q ∈ Y | dimφ−1(q) > 0}.
The set C is a closed subset of Y by Corollary 8.14. Let G = φ−1(C), a
closed subset of X. Then:

1. φ : X \G → Y \ C is an isomorphism.

2. codimY C ≥ 2.

3. The closed set G is a union of codimension 1 subvarieties of X. If
E is one of these components, then codimY φ(E) ≥ 2.

The set G is called the exceptional locus of φ.

Proof. We have that φ(X \ G) = Y \ C by Theorem 5.14 since X and Y
are projective. Proposition 10.27 now implies φ : X \ G → Y \ C is an
isomorphism. The second statement of the theorem follows from Theorem
10.23 applied to the rational map φ−1. Now we prove the third statement.
Suppose that E is an irreducible component of G and p ∈ E is a point which
is not contained in any other irreducible component of G. Let q = φ(p). Let
B be an affine neighborhood of q in Y , and let A be an affine neighborhood
of p in X such that A does not contain points of any irreducible component
of G except for E and φ(A) ⊂ B. Proposition 10.27 applied to φ : A →
B tells us that there exists a codimension 1 subvariety F of A such that
codimY φ(F ) ≥ 2. We must have that F ⊂ G ∩ A = E ∩ A. Since E is
irreducible, we have that F = E ∩A. �

Exercise 10.29. Let U = A2 with regular functions k[U ] = k[x, y]. Let
π : X → U be the blow-up of the origin p. Let E = π−1(p) ∼= P1, and let
S be the set of lines through the origin in U . In this problem, the analysis
of π : X → U given at the end of Section 6.1 and a careful reading of the
proof of Lemma 10.30 will be helpful.

a) Show that the map (of sets) Λ : P1 → S defined by Λ(α : β) =
L(α:β) = Z(αx+ βy) for (α : β) ∈ P1 is injective and onto.

b) Suppose that L is a line through the origin in U . Let L′ be the
strict transform of L in X. Show that the map P1 → E defined by

(α : β) �→ (L(α:β))
′ ∩E

is an injective and onto map of sets.
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c) Show that the map defined in part b) is an isomorphism of projec-
tive varieties.

d) Using the facts that X is covered by two affine open sets isomorphic
to A2 and that the strict transform L′ of a line L through p is a
line in one of these charts, show that if p′ is the point E ∩L′, then
the map

dπp′ : Tp′(L
′) → Tp(U)

is injective with image equal to Tp(L).

e) Show that for p′ = L′ ∩ E as in part d), the image dπp′(Tp′(X)) =
Tp(L).

10.6. Factorization of birational regular maps of nonsingular
surfaces

The proof in this section is based on the proof by Shafarevich in [136]. The
first proof of Theorem 10.32 was by Zariski [151].

Lemma 10.30. Suppose that X is a nonsingular projective surface and
π : Y → X is the blow-up of a point p ∈ X. Let E = π−1(p) ∼= P1. Then
there is a 1-1 correspondence between points q of E and one-dimensional
subspaces L of Tp(X), given by q �→ dπq(Tq(Y )).

Proof. Let u, v be regular parameters in OX,p. Let mp be the maximal ideal
of OX,p. Then the k-vector space mp/m

2
p

∼= ku ⊕ kv. By Theorem 10.19,
the distinct points q of E have regular parameters u1, v1 in OY,q which have
the forms

(10.10) u = u1, v = u1(v1 + α) for α ∈ k,

or

(10.11) u = u1v1, v = v1.

Let mq be the maximal ideal of OY,q. We have a k-vector space isomorphism
mq/m

2
q
∼= ku1 ⊕ kv1. The k-linear map π∗ : mp/m

2
p → mq/m

2
q is defined by

π∗(u) = u1 and π∗(v) = αu1 if (10.10) holds

and

π∗(u) = 0 and π∗(v) = v1 if (10.11) holds.

Let δu1 , δv1 be the dual basis of Tq(Y ) to u1, v1, and let δu, δv be the dual
basis of Tp(X) to u, v.

Suppose that (10.10) holds. Then

dπq(δu1) = δu1π
∗ = δu + αδv and dπq(δv1) = δv1π

∗ = 0.

Thus dπq(Tq(Y )) = (δu + αδv)k.
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Suppose that (10.11) holds. Then

dπq(δu1) = δu1π
∗ = 0 and dπq(δv1) = δv1π

∗ = δv.

Thus dπq(Tq(Y )) = δvk. �

Lemma 10.31. Suppose that φ : X ��� Y is a birational map of nonsingular
projective surfaces. Let Γ ⊂ X × Y be the graph of φ, with projections
π1 : Γ → X and π2 : Γ → Y . Suppose that φ−1 is not regular at a point
q ∈ Y . Then there exists a curve D ⊂ Γ such that π1(D) = C is a curve of
X and π2(D) = q.

Proof. By Theorem 5.14, we have that π2(Γ) = Y . We have that π−1
2 is

not regular at q since φ−1 is not regular at q. By Proposition 10.27, there
exists a curve D ⊂ Γ such that π2(D) = q. If π1(D) is not a curve, we must
have that π1(D) is a point p. But then D ⊂ π−1

1 (p) ∩ π−1
2 (q) = {(p, q)},

which is a point, giving a contradiction. �

Theorem 10.32. Suppose that φ : X → Y is a birational regular map of
nonsingular projective surfaces. Then φ has a factorization

X = Yn → Yn−1 → · · · → Y1 → Y0 = Y,

where each Yi+1 → Yi is the blow-up of a point.

Proof. Suppose that φ is not an isomorphism, so that φ−1 is not regular
at some point q ∈ Y . Let σ : Y ′ → Y be the blow-up of q, and let E =
σ−1(q) ∼= P1 be the exceptional locus of σ. Let φ′ : X ��� Y ′ be the rational
map φ′ = σ−1φ. We will show that φ′ is a regular map. Suppose that φ′ is
not a regular map. Let Γ ⊂ X × Y ′ be the graph of φ′, and suppose that
p ∈ X is a point where φ′ is not regular. Then by Lemma 10.31, there exists
a curve D ⊂ π−1

1 (p) such that π2(D) is a curve C in Y ′. Since σ | (Y ′ \ E)
is an isomorphism onto Y \ {q}, we have that C ⊂ E, so C = E since both
C and E are irreducible curves. Let ψ : Y ′ ��� X be the rational map
ψ = (φ′)−1. By Theorem 10.23, there exists a finite set T ⊂ Y ′ such that
ψ|(Y ′ \ T ) is a regular map. We have that ψ(E \ T ) = π1(D \ π−1

2 (T )) = p
and φ(p) = q.

We will show that

(10.12) dφp : Tp(X) → Tq(Y )

is an isomorphism. Suppose not. Then there exists a one-dimensional sub-
space L ⊂ Tq(Y ) such that dφp(Tp(X)) ⊂ L. Since ψ(E \ T ) = p, we have
that dσq′(Tq′(Y

′)) ⊂ L for q′ ∈ E \ T . But this is a contradiction to the
conclusions of Lemma 10.30. Thus (10.12) is an isomorphism. Now φ−1 is
not regular at q, so by Proposition 10.27, there exists a curve F ⊂ X such
that p ∈ F and φ(F ) = q. But then Tp(F ) ⊂ Tp(X) has dimension ≥ 1, and
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dφp(Tp(F )) = 0, a contradiction to the fact that (10.12) is an isomorphism.
This contradiction shows that φ′ is a regular map.

The exceptional locus of φ is a union of irreducible curves by Theorem
10.28. Let r be the number of irreducible components of the exceptional
locus of φ. The regular map φ′ maps φ−1(q) onto σ−1(q) = E. Thus there
exists a curve G ⊂ φ−1(q) which maps onto E, so the number of irreducible
components of the exceptional locus of φ′ is ≤ r − 1. By induction, after
enough blow-ups of points, we obtain the desired factorization of φ. �

There is a very general local form of this theorem by Abhyankar [3],
from which we can also deduce Theorem 10.32.

Theorem 10.33 (Abhyankar). Suppose that R and S are two-dimensional
regular local rings with a common quotient field K such that S dominates R
(R ⊂ S and mS ∩ R = mR, where mR and mS are the respective maximal
ideals of R and S). Then R → S factors by a finite sequence of quadratic
transforms

R = R0 → R1 → · · · → Rn = S.

A quadratic transform of a regular local ring R is a local ring of the
blow-up of the maximal ideal; so if x, y are regular parameters in a two-
dimensional regular local ring R, then a quadratic transform of R → R1 is
a local ring (a localization at a maximal ideal) of R[xy ] or R[ yx ].

10.7. Projective embedding of nonsingular varieties

Lemma 10.34. Suppose that R and S are local Noetherian rings with re-
spective maximal ideals mR and mS. Let f : R → S be a local homomorphism
of local Noetherian rings such that

1) R/mR → S/mS is an isomorphism,

2) mR → mS/m
2
S is surjective, and

3) S is a finitely generated R-module.

Then f is surjective.

Proof. By 2), we have that mS = mRS + m2
S , so by Nakayama’s lemma

(Lemma 1.18), we have that mRS = mS . By 1),

S = f(R) +mS = f(R) +mRS,

and by 3), S is a finitely generated R-module, so again by Nakayama’s
lemma, we have that S = f(R). �
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Lemma 10.35. Suppose that φ : X → Y is a regular map of quasi-projective
varieties such that

1) φ is bijective and

2) φ∗ : OY,φ(p) → OX,p is an isomorphism for all p ∈ X.

Then φ is an isomorphism.

Proof. We will find an affine cover {Vi} of Y such that for all i, Ui = φ−1(Vi)
is an affine open subset of X and φ∗ : k[Vi] → k[Ui] is an isomorphism. This
is enough to conclude that φ is an isomorphism, since each map φ : Ui → Vi

is then an isomorphism, with regular inverse ψi : Vi → Ui by Proposition
2.40 and Proposition 2.42. Now the ψi patch to give a continuous map
ψ : Y → X, which is an inverse to φ by Proposition 3.39.

Suppose that p ∈ X. Let q = φ(p) ∈ Y and let V be an affine neighbor-
hood of q in Y . Let U ⊂ φ−1(V ) be an affine neighborhood of p in X. We
then have (since φ is dominant) that φ∗ : k[V ] → k[U ] is 1-1. Let I(q) be the
ideal of q in V , and let I(p) be the ideal of p in U . By assumption, φ∗ induces
an isomorphism k[V ]I(q) → K[U ]I(p). Suppose that t1, . . . , tr generate k[U ]
as a k-algebra. Since ti ∈ k[U ]I(p) = k[V ]I(q), there exists h ∈ k[V ]\I(q) and
f1, . . . , fr ∈ k[U ] such that ti =

fi
h . Thus k[V ]h → k[U ]h is an isomorphism.

Now Vh is an affine neighborhood of q in Y , Uh is an affine neighborhood of
p in X, and φ∗ : k[Vh] → k[Uh] is an isomorphism. �

Theorem 10.36. Suppose that X and Y are projective varieties and φ :
X → Y is a regular map which is injective and such that dφp : Tp(X) →
Tφ(p)(Y ) is injective for all p ∈ X. Then φ is a closed embedding.

Proof. We have that φ(X) is a closed subvariety of Y by Theorem 5.14
since X is projective. Further, the map dφp factors through the inclusion
Tq(φ(X)) ⊂ Tq(Y ), so without loss of generality, we may assume that Y =
φ(X). Here X is a closed subvariety of Pn for some n. We have a sequence
of maps

X
λ→ Γφ ⊂ X × Y ⊂ Pn × Y

and a commutative diagram

X ��

φ
��	

		
		

		
		

	 Pn × Y

π2

��

Y

where λ : X → Γφ, defined by λ(p) = (p, φ(p)) for p ∈ X, is an isomorphism,
π2 is the projection on the second factor, and the inclusions in the top row are
all closed embeddings. Suppose that p ∈ X, with q = φ(p) ∈ Y , and U is an
affine open subset of Y which contains q. Let Z = Γφ|φ−1(U) = Γφ ∩ π−1

2 (U)
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which is a closed subset of π−1
2 (U) ∼= Pn × U . Let x0, . . . , xn be homoge-

neous coordinates on Pn. Then S = k[U ][x0, . . . , xn] is the homogeneous
coordinate ring of Pn × U , which is a graded ring, where elements of k[U ]
have degree 0 and the xi have degree 1 for 0 ≤ i ≤ n. Let I(Z) be the
homogeneous ideal of Z in S. Then

OX(φ−1(U)) ∼= OZ(Z) =
n⋂

i=0

(S/I(Z))(xi),

where (S/I(Z))(xi) denotes the elements of degree 0 in the localization of
S/I(Z) with respect to xi. Now the proof of Theorem 3.35 (with k replaced
with the ring k[U ]) or Theorem 11.47 shows that OX(φ−1(U)) is finite over
k[U ].

Further, for q ∈ Y , we can compute⋂
q∈V

OX(φ−1(V )) =

n⋂
i=0

T(xi),

where T = OY,q[x0, . . . , xn]/I(Z)OY,q[x0, . . . , xn] and the intersection is over
all affine open subsets V ⊂ U which contain q (since

⋂
q∈V OY (V ) = OY,q).

Again, the proof of Theorem 3.35, with k replaced with the ring OY,q, shows
that

⋂
q∈V OX(φ−1(V )) is finite over OY,q, where the intersection is over the

affine open subsets V of U containing q. Since φ is bijective and
⋂

q∈V V =

{q}, so that
⋂

q∈V φ−1(V ) = {p}, we have that
⋂

q∈V OX(φ−1(V )) = OX,p.

Thus OX,p is finite over OY,φ(p) for p ∈ X. Since Tp(X) → Tq(Y ) is an
injective homomorphism of finite-dimensional k-vector spaces, we have that
the natural homomorphism mq/m

2
q → mp/m

2
p is a surjection, where mp is

the maximal ideal of OX,p and mq is the maximal ideal of OY,q. Thus by
Lemma 10.34, we have that OX,p = OY,q for all p ∈ X. Finally, we have by
Lemma 10.35 that φ is an isomorphism. �

Corollary 10.37. Suppose that X ⊂ Pn is a projective variety and p ∈
Pn \X. Suppose that every line through p intersects X in at most one point
and p is not contained in the (Zariski closure in Pn of the) tangent space to
X at any point. Then the projection π from p is a closed embedding of X
into Pn−1.

Proof. Suppose that a ∈ X. Let b = π(a). Since a 
= p, we can make
a linear change of coordinates in Pn so that p = (0 : . . . : 0 : 1) and
a = (1 : 0 : . . . : 0). Now the projection π from p is defined by the rational
map (x0 : . . . : xn−1). Thus the restriction of π to D(x0) is just the map
π : An → An−1 which is the projection onto the first n − 1 factors. Since
a is the origin in An, dπa : Ta(Pn) → Tb(Pn−1), which we can identify with
π : An → An−1, is just the projection onto the first n−1 factors. The kernel
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of dπa is the line ZD(x0)(
x1
x0
, . . . , xn−1

x0
), which is the intersection of the line

containing p and a with D(x0). From the commutative diagram (10.5) and
the assumptions of the theorem, we have that dπa : Ta(X) → Tb(Pn−1) is
injective. Now we apply Theorem 10.36 to obtain the conclusions of the
corollary. �

Theorem 10.38. Suppose that X is a nonsingular projective variety of
dimension n. Then X is isomorphic to a subvariety of P2n+1.

Proof. It suffices to prove that ifX ⊂ PN withN > 2n+1, then there exists
p ∈ PN \ X satisfying the hypotheses of Corollary 10.37. Let U1, U2 ⊂ PN

be the respective sets of points not satisfying the respective assumptions of
Corollary 10.37.

Let a = (a0 : . . . : aN ), b = (b0 : . . . : bN ), c = (c0 : . . . : cN ) ∈ PN . Let

A =

⎛⎝ a0 · · · aN
b0 · · · bN
c0 · · · cN

⎞⎠ .

The coefficients of the linear forms which vanish on the three points a, b, c are
the elements of the kernel of the linear map A : kN+1 → k3. The condition
that a, b, c be collinear is that there are at least N − 1 independent forms in
the kernel; that is, A has rank ≤ 2.

Let x0, . . . , xN be our homogeneous coordinates on PN and let y0, . . . , yN
be the induced homogeneous coordinates on X. Let z0, . . . , zN be the cor-
responding homogeneous coordinates on a copy of X. Then

x0, . . . , xN , y0, . . . , yN , z0, . . . , zN

are trihomogeneous coordinates on Pn × X × X with trigraded coordinate
ring

S(PN × X × X) = k[x0, . . . , xN , y0, . . . , yN , z0, . . . , zN ].

Let

W = {(a, b, c) | a ∈ PN , b, c ∈ X, and a, b, c are collinear in PN}.

Then W is the closed set W = Z(I) of Pn × X × X where

I = I3

⎛⎝ x0 · · · xN
y0 · · · yN
z0 · · · zN

⎞⎠ ,

the ideal generated by the determinants of 3× 3 submatrices.

In PN × X × X, consider the set Γ, which is the Zariski closure in
PN × X × X of triples (a, b, c) with a ∈ PN , b, c ∈ X such that b 
= c
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and a, b, c are collinear. Let Γ′ be an irreducible component of Γ. Then Γ′

necessarily contains a point (a, b, c) such that a, b, c are collinear and b 
= c.
Let y = (b, c) for these values of b and c.

The projections PN × X × X to PN and X × X define regular maps
φ : Γ′ → PN and ψ : Γ′ → X×X. Now ψ−1(y) is a subset of (PN ×{y})∩W
which is the set of points (a, b, c) where a is any point of the line through
b and c. Hence dimψ−1(y) ≤ 1, and it follows from Theorem 8.13 that
dimΓ′ ≤ 2n+1. In particular, dimΓ ≤ 2n+1. By the definitions of U1 and
Γ, U1 ⊂ φ(Γ), and thus dimU1 ≤ dimΓ ≤ 2n+ 1.

Let x0, . . . , xN be homogeneous coordinates on PN and suppose that
p = (b0 : b1 : . . . : bN ) ∈ X is such that bi 
= 0. Suppose that F ∈ S(PN ) =
k[x0, . . . , xN ] is a homogeneous form of degree d. We will show that the
Zariski closure of the tangent space to Z(F ) ∩D(xi) in D(xi) ∼= AN at p is
the projective hyperplane in PN with equation

N∑
j=0

∂F

∂xj
(b)xj = 0.

Let u0, . . . , ui−1, ui+1, . . . , uN be coordinates on D(xi), defined by uj =
xj

xi

if j 
= i and f = F (u0, . . . , ui−1, 1, ui+1, . . . , uN ). For j 
= i, we have

∂f

∂uj
=

∂F

∂xj
(u0, . . . , ui−1, 1, ui, . . . , uN )

so
∂F

∂xj
(b0, . . . , bN ) = bd−1

i

∂f

∂uj

(
b0
bi
, . . . ,

bN
bi

)
.

By Euler’s formula, Exercise 1.35,

xi
∂F

∂xi
= dF −

∑
j �=i

xj
∂F

∂xj
.

Thus,∑N
j=0

∂F
∂xj

(b0, . . . , bN )xj =
∑

j �=i
∂F
∂xj

(b0, . . . , bN )(xj − bj
bi
xi)

= bd−1
i

(∑
j �=i

∂f
∂uj

(
b0
bi
, . . . , bNbi

)(
xiuj − bj

bi
xi

))
= xib

d−1
i

(∑
j �=i

∂f
∂uj

(
b0
bi
, . . . , bNbi

)(
uj − bj

bi

))
,

proving the assertion.

Now let Γ1 be the subset of PN ×X consisting of points (a, b) such that
a is in the Zariski closure of Tb(X).

Let a = (a0 : . . . : aN ) ∈ PN and b = (b0 : . . . : bN ) ∈ X. Let
I(X) = (F1, . . . , Ft) where F1, . . . , Ft are homogeneous. Then the condition
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that a is in the Zariski closure of Tb(X) in PN is that

N∑
i=0

∂Fj

∂xi
(b)ai = 0 for 1 ≤ j ≤ t.

Thus

Γ1 = Z

(
N∑
i=0

∂Fj(y0, . . . , yN )

∂xi
(y0, . . . , yN )xi | 1 ≤ j ≤ t

)
⊂ Pn × X

is a Zariski closed subset.

Let Γ′
1 be an irreducible component of Γ1. We necessarily have (a, b) ∈

Γ′
1 for some b ∈ X. We have projections ψ : Γ′

1 → X and φ : Γ′
1 → PN .

For our b ∈ X, we have dimψ−1(b) ≤ n since X is nonsingular, and hence
dimΓ′

1 ≤ 2n, and since U2 = φ(Γ1), we have dimU2 ≤ 2n.

We have shown that dimU1 ≤ 2n + 1 and dimU2 ≤ 2n. Thus if N >
2n+ 1 we have that U1 ∪ U2 
= PN . �

10.8. Complex manifolds

We have defined An
k to be kn (as a set) with the Zariski topology. If we

take k = C, the complex numbers, we have a finer topology, the Euclidean
topology on Cn. We also have the theory of analytic functions on (Euclidean)
open subsets of Cn. If U ⊂ Cn is a Zariski open subset and f is a regular
function (in the Zariski topology) on U , then f is also an analytic function
on U .

Definition 10.39. A complex manifold of dimension n is a Hausdorff topo-
logical space M such that M has a covering {Ui} by open subsets with
homeomorphisms φi : Ui → Vi between Ui and open subsets Vi of Cn such
that φj ◦φ−1

i : φi(Ui∩Uj) → φj(Ui∩Uj) are analytic (and hence bianalytic).

Complex projective space Pn
C has a covering by Zariski open subsets

Ui = An, where An is just Cn with the Zariski topology. The Euclidean
topology on Cn thus gives us the Euclidean topology on each Ui. These
topologies agree on Ui∩Uj for i 
= j. This defines the Euclidean topology on
Pn
C. We have that the Euclidean topology is finer than the Zariski topology

(a Zariski open subset is open in the Euclidean topology). Suppose that X is
a quasi-projective algebraic set which is contained in Pn. Then the Euclidean
topology on X is the subspace topology of the Euclidean topology of Pn

C.
In particular, any quasi-projective complex variety X (the base field k is C)
has the Euclidean topology, as we can transcribe the Euclidean topology to
X by an embedding φ : X → Pn by prescribing that φ−1(W ) is open in the
Euclidean topology on X whenever W is a Euclidean open subset of Pn

C.
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Suppose that X is a quasi-projective variety. As commented above, we
can consider X to be an open subset of a closed subvariety of a projective
space Pn and give X the induced Euclidean topology. Now Pn has an open
covering by open subsets Ui

∼= An as above. Suppose that V is a Zariski
open subset of X. Then V has an affine covering by Zariski open subsets
Wi,j = (Ui)gj ∩X where X is the Zariski closure of X in Pn and gj ∈ C[Ui].
Suppose that f ∈ OX(V ) is a regular function. Then each restriction of f
to each Wij is a continuous map from Wij to C in the Euclidean topology,
so f : V → C is continuous in the Euclidean topology.

The following lemma is [120, Exercise 13, page 100].

Lemma 10.40. Suppose that X is a topological space. Then X is Hausdorff
if and only if the diagonal Δ = {(p, p) | p ∈ X} is closed in X × X (where
X × X has the product topology).

Theorem 10.41. Suppose that X is a quasi-projective variety. Then X is
Hausdorff in the Euclidean topology.

Proof. The diagonal Δ of X×X is closed in the Zariski topology by Propo-
sition 5.8. The product topology of the Euclidean topologies on X is the
Euclidean topology on X × X, which is finer than the Zariski topology on
X×X. Thus Δ is closed in X×X in the product topology of the Euclidean
topology on X, so that X is Hausdorff in the Euclidean topology by Lemma
10.40. �

We have inclusions of rings

C[x1, . . . , xn] ⊂ C[x1, . . . , xn](x1,...,xn) ⊂ C{x1, . . . , xn} ⊂ C[[x1, . . . , xn]]

where C[x1, . . . , xn] is the polynomial ring in n variables, C[[x1, . . . , xn]] is
the ring of formal power series, and C{x1, . . . , xn} is the ring of formal power
series which have a positive radius of convergence (the germs of analytic
functions at the origin in Cn).

Theorem 10.42 (Analytic implicit function theorem). Suppose that f ∈
C{x1, . . . , xn} is such that f =

∑n
i=1 aixi+(higher-order terms) with ai ∈ C

and a1 
= 0. Then there exist g ∈ C{x2, . . . , xn} and a unit series u ∈
C{x1, . . . , xn} such that f = u(x1 − g(x2, . . . , xn)).

This is a special case of the Weierstrass preparation theorem ([102,
Section C.2.4], [62, page 8], or [161, pages 142–145]).



10.8. Complex manifolds 177

Corollary 10.43. Suppose that f ∈ C{x1, . . . , xn} is such that

f =
n∑

i=1

aixi + (higher-order terms)

with ai ∈ C and a1 
= 0. Then C{x2, . . . , xn} → C{x1, . . . , xn}/(f) is an
isomorphism.

Proof. With the notation of Theorem 10.42, we have that the ideal (f) =
(x1 − g(x2, . . . , xn)), so we can eliminate x1. �

Corollary 10.44. Suppose that f1, . . . , fr ∈ C{x1, . . . , xn} are such that

fi =
r∑

j=1

aijxj + (higher-order terms)

with Det(aij) 
= 0. Then the map

C{xr+1, . . . , xn} → C{x1, . . . , xn}/(f1, . . . , fr)
is an isomorphism.

Proof. Let B be the inverse of the matrix (aij). Define f ′
1, . . . , f

′
r ∈

C{x1, . . . , xn} by ⎛⎜⎜⎜⎝
f ′
1

f ′
2
...
f ′
r

⎞⎟⎟⎟⎠ = B

⎛⎜⎜⎜⎝
f1
f2
...
fr

⎞⎟⎟⎟⎠ .

Then we have an equality of ideals (f1, . . . , fr) = (f ′
1, . . . , f

′
r), so we may

replace the fi with the f ′
i and assume that (aij) is the identity matrix. By

Theorem 10.42,

f1 = u1(x1 − g1(x2, x3, . . . , xn))

where u1 ∈ C{x1, . . . , xn} is a unit and by considering the linear term in f1,
we see that g1 ∈ (x2, . . . , xn)

2C{x2, . . . , xn}. Now the ideal (f1, . . . , fr) =
(x1 − g1, f2, . . . , fr), so

C{x1, . . . , xn}/(f1, . . . , fr)
∼= C{x2, . . . , xn}/(f2(g1, x2, . . . , xn), . . . , fr(g1, x2, . . . , xn))

and for 2 ≤ i ≤ n,

fi(g1, x2, . . . , xn) = xi + (higher-order terms in x2, . . . , xn).

Thus we have the assumptions of the corollary with a reduction of r to r−1
and n to n − 1 and further have that the new matrix A giving the linear
part of the expression of f2, . . . , fr in terms of the variables x2, . . . , xn is
the identity matrix. By induction on r, repeating the above argument, we
obtain the conclusions of the corollary. �
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Theorem 10.45. Suppose that X is a nonsingular quasi-projective complex
variety of dimension r. Then X is a complex manifold of dimension r in
the Euclidean topology.

Proof. X is Hausdorff in the Euclidean topology by Theorem 10.41. Sup-
pose that p ∈ X. Then there exists an affine neighborhood W of p such that
C[W ] = C[x1, . . . , xn]/p for some prime ideal p in C[x1, . . . , xn]. We have a
closed embedding λ = (x1, . . . , xn) : W → Cn which is a homeomorphism in
the Euclidean topology onto its image since the restrictions of the xi to W
are regular functions on W and we have seen that they are thus continuous
in the Euclidean topology. We can translate p so that λ(p) is the origin
in Cn, and thus I(λ(p)) = (x1, . . . , xn). Let p = (f1, . . . , fm). Since X is
nonsingular at p, the matrix

A =

(
∂fi
∂xj

(λ(p))

)
has rank n − r. After possibly permuting the variables x1, . . . , xn and the
functions f1, . . . , fm, we may assume that if B is the (n − r) × (n − r)
submatrix of A consisting of the first n − r rows and columns of A, then
Det(B) 
= 0, so that the classes of f1, . . . , fn−r are linearly independent over
C in I(p)/I(p)2. Let R = C[x1, . . . , xn](x1,...,xn). We can extend f1, . . . , fn−r

to regular parameters f1, . . . , fn−r, g1, . . . , gr in the regular local ring R. By
Lemma 10.2, the ideal I = (f1, . . . , fn−r)R is a prime ideal in R of height
n− r. But I ⊂ pR and I and pR are prime ideals of the same height so

pC[x1, . . . , xn](x1,...,xn) = (f1, . . . , fn−r)C[x1, . . . , xn](x1,...,xn),

and thus

pC{x1, . . . , xn} = (f1, . . . , fn−r)C{x1, . . . , xn}.
Let

Lr+i =

n∑
j=1

∂fi
∂xj

(p)xj for 1 ≤ i ≤ n− r

and let L1, . . . , Lr be linear forms in x1, . . . , xn such that {L1, . . . , Ln} is a
basis of Cx1+ · · ·+Cxn. We have that C[x1, . . . , xn] = C[L1, . . . , Ln], so we
may replace the xi with Li for 1 ≤ i ≤ n. By Corollary 10.44, we have that
the map

C{x1, . . . , xr} → C{x1, . . . , xn}/pC{x1, . . . , xn}
is an isomorphism, so there exist functions hr+1, . . . , hn ∈ C{x1, . . . , xr}
such that xi − hi ∈ pC{x1, . . . , xn} for r+ 1 ≤ i ≤ n. All of the hi converge
within a polydisc

V = {(a1, . . . , ar) ∈ Cr | ||ai|| < ε for all i}
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for some small ε. Let π : Cn → Cr be the projection onto the first r factors
(which is analytic), and let U = π−1(V ) ∩ λ(W ). Then π : U → V has the
analytic inverse

(a1, . . . , ar) → (a1, . . . , ar, hr+1(a1, . . . , ar), . . . , hn(a1, . . . , ar)),

for (a1, . . . , ar) ∈ V . Let U = λ−1(U) and φ = πλ : U → V . The map φ
is a homeomorphism in the Euclidean topology since it is a composition of
homeomorphisms in the Euclidean topology.

Repeating this for every point p ∈ X, we obtain an open covering of
X by open sets {Ui} (in the Euclidean topology) with homeomorphisms
φi : Ui → Vi, with Vi an open subset (in the Euclidean topology) of Cr as
above. We will show that they satisfy the condition of the definition of a
complex manifold. Now we introduce some notation on our construction of
φi : Ui → Vi. There exists an affine open subset Wi of X such that Ui is an
open subset of Wi (in the Euclidean topology). We have a representation

C[Wi] = C[xi,1, . . . , xi,ni ]/pi = C[xi,1, . . . , xi,ni ]

such that φi(p) = (xi,1(p), . . . , xi,r(p)) for p ∈ Ui and there exist analytic
functions hij on Vi for r+1 ≤ j ≤ ni such that xi,j(p) = hij(xi,1(p), . . . , xi,r(p)).

Given i 
= j, there exist fk ∈ C[Wi] such that Wi∩Wj =
⋃

k(Wi)fk . The
restriction map

C[Wj ] → C[(Wi)fk ] = C[Wi]fk takes xj,l to
gl(xi,1, . . . , xi,ni)

fk(xi,1, . . . , xi,ni)
tl
,

for 1 ≤ l ≤ nj , where tl ∈ N and gl and fk are polynomials in xi,1, . . . , xi,ni .

We will show that φjφ
−1
i : φi(Ui ∩Uj) → φj(Ui ∩Uj) is an analytic map,

showing that X is a complex manifold. To show this, it suffices to show that

φjφ
−1
i : φi((Wi)fk ∩ Ui ∩ Uj) → φj((Wi)fk ∩ Ui ∩ Uj)

is an analytic map for all k.

Suppose that (a1, . . . , ar) ∈ φi((Wi)fk∩Ui∩Uj). Let p = φ−1
i (a1, . . . , ar).

Then

xi,1(p) = a1, . . . , xi,r(p) = ar

and

xi,r+1(p) = hir+1(a1, . . . , ar), . . . , xi,ni(p) = hini
(a1, . . . , ar).
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Thus

φjφ
−1
i (a1, . . . , ar)

= φj(p)

= (xj,1(p), . . . , xj,r(p))

=

(
g1(xi,1(p), . . . , xi,ni(p))

fk(xi,1(p), . . . , xi,ni(p))
t1
, . . . ,

gr(xi,1(p), . . . , xi,ni(p))

fk(xi,1(p), . . . , xi,ni(p))
tr

)
= (σ1, . . . , σr)

where

σb =
gb(a1, . . . , ar, h

i
r+1(a1, . . . , ar), . . . , h

i
ni
(a1, . . . , ar))

fk(a1, . . . , ar, h
i
r+1(a1, . . . , ar), . . . , h

i
ni
(a1, . . . , ar))t1

for 1 ≤ b ≤ r, showing that the homeomorphism φjφ
−1 is analytic on

(Wi)k ∩ Ui ∩ Uj . �

Exercise 10.46. We know that if X is a variety, then the diagonal ΔX =
{(p, p) | p ∈ X} is closed in X×X in the Zariski topology (proof of Proposi-
tion 5.8) and thatX is not Hausdorff in the Zariski topology ifX has positive
dimension (proved for A1 in Example 2.3). Why does this not contradict
Lemma 10.40?



Chapter 11

Sheaves

In this chapter we introduce the formalism of sheaves on a topological space.
The most important concepts from this section are the invertible sheaves and
coherent sheaves. Further discussion of sheaves can be found in Godement
[59] and Hartshorne [73].

11.1. Limits

In this section we define direct and inverse limits of systems of algebraic
structures.

A directed set I is a set with a partial order ≤ such that for any i, j ∈ I,
there exists k ∈ I such that i ≤ k and j ≤ k.

A directed system of Abelian groups is a set of Abelian groups {Ai},
indexed by a directed set I, such that if i ≤ j, then there is a homomorphism
φij : Ai → Aj which satisfies φii = idAi and φik = φjkφij if i ≤ j ≤ k.

Proposition 11.1. Suppose that {Ai}i∈I is a directed system of Abelian
groups. Then there exists a group lim→Ai with homomorphisms φi : Ai →
lim→Ai such that φi = φjφij for all i ≤ j ∈ I, which satisfies the following
universal property: suppose that B is an Abelian group with homomorphisms
τi : Ai → B such that τi = τjφij for i ≤ j ∈ I. Then there exists a unique
homomorphism τ : lim→Ai → B such that τφi = τi for i ∈ I. The group
lim→Ai with homomorphisms φi : Ai → lim→Ai is uniquely determined up
to isomorphism. It is called the direct limit of {Ai}.

The direct limit can be constructed as follows: let M =
⊕

i∈I Ai, and
let N be the subgroup generated by elements of the form a − φij(a) such

181
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that a ∈ Ai and i ≤ j. Let φi : Ai → M/N be the natural map. Then M/N
is the direct limit of the {Ai}.

We give an alternate construction of the direct limit. Let {Ai, φij} be
a directed system of Abelian groups. Let B be the disjoint union of pairs
(Ai, ai) such that ai ∈ Ai. Define a relation ∼ on B by (Ai, ai) ∼ (Aj , aj) if
there is a k ≥ i, j with φik(ai) = φjk(aj). The relation ∼ is an equivalence
relation on B. Let C = B/ ∼ be the set of equivalence classes. Let [Ai, ai]
denote the equivalence class of (Ai, ai). The set C is a group under the
following operation:

[Ai, ai] + [Aj , aj ] = [Ak, φik(ai) + φjk(aj)]

where k is any index with k ≥ i, j. Let φi : Ai → C be the map φi(a) =
[Ai, a] for a ∈ Ai. The map φi is a group homomorphism, which satisfies
φi = φjφij if i ≤ j.

Lemma 11.2. The group C with the homomorphisms φi constructed above
is the direct limit lim→Ai.

Proof. We will show that C with the homomorphisms φi constructed above
satisfies the universal property of Proposition 11.1. Suppose that G is an
Abelian group with homomorphisms τi : Ai → G such that τi = τjφij for
i ≤ j ∈ I. Define τ : C → G by the rule τ([Ai, ai]) = τi(ai). This is
well-defined since if [Ai, ai] = [Aj , aj ], then there is a k with i, j ≤ k and
φik(ai) = φjk(aj). Thus

τi(ai) = τk(φik(ai)) = τk(φjk(aj)) = τj(aj).

The map τ is a group homomorphism satisfying τi = τφi. If τ ′ : C → G
is a group homomorphism satisfying τi = τ ′φi for each i, then τ ′([Ai, ai]) =
τ ′(φi(ai)) = τi(ai) = τ([Ai, ai]). Thus τ

′ = τ . Thus C satisfies the universal
property of the direct limit, so C with the maps φi is the direct limit of the
{Ai}. �
Proposition 11.3. Let lim→Ai be the direct limit of a directed system of
Abelian groups {Ai, φij}. Then:

1) Suppose that x ∈ lim→Ai. Then x = φi(a) for some i and a ∈ Ai.

2) Suppose that a ∈ Ai satisfies φi(a) = 0. Then there is a j ≥ i such
that φij(a) = 0.

Proof. This follows easily from the construction C of lim→Ai given above.
The first statement follows since every element of C has the form [Ai, ai] =
φi(ai) for some i and ai ∈ Ai. The second statement follows since if [Ai, ai] =
0, then (Ai, ai) ∼ (Ai, 0), so by the definition of the relation, there is a j ≥ i
such that φij(ai) = φij(0) = 0. �
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The above construction and proofs carry through for commutative rings
{Ai}. If Mi are modules over the Ai, then we can construct a direct limit
of the modules {Mi} which is a lim→Ai module. All rings and modules
are Abelian groups, so we just apply the above construction and keep track
of the fact that all of the groups and homomorphisms constructed have
appropriate extra structure.

An important special case is when we have a direct system of groups,
rings, or modules which are all subgroups, subrings, or submodules Mi of a
larger group, ring, or module M and the maps in the system are inclusion
maps. Then the direct limit is just the union

⋃
Mi inside M .

Suppose that R, R′ are rings and λ : R → R′ is a homomorphism.
Suppose M,N are R-modules and M ′, N ′ are R′-modules. Then λ makes
M ′, N ′ and M ′ ⊗R′ N ′ into R-modules. Suppose that φ : M → M ′ and
ψ : N → N ′ are R-module homomorphisms. We then have an R-bilinear
map M × N → M ′ ⊗R′ N ′ defined by (x, y) �→ φ(x) ⊗ ψ(y) for x ∈ M and
y ∈ N . By the universal property of the tensor product (Definition 5.1),
there exists a unique homomorphism of R-modules

(11.1) φ⊗ ψ : M ⊗R N → M ′ ⊗R′ N ′

satisfying (φ⊗ ψ)(x⊗ y) = φ(x) ⊗ ψ(y) for x ∈ M , y ∈ N .

Lemma 11.4. Suppose that {Rα}α∈I is a directed system of rings and

{Mα}α∈I , {Nα}α∈I
are directed systems of Rα-modules. Then there is a natural isomorphism of
lim→Rα-modules

lim
→

(Mα ⊗Rα Nα) ∼= lim
→

Mα ⊗lim→ Rα lim
→

Nα.

Proof. Let λα′α : Rα → Rα′ , φα′α : Mα → Mα′ , ψα′α : Nα → Nα′ for α < α′

be the homomorphisms in the directed systems. Let R = lim→Rα, M =
lim→Mα, N = lim→Nα, D = lim→(Mα ⊗Rα Nα), with homomorphisms
λα : Rα → R, φα : Mα → M , ψα : Nα → N , and χα : Mα ⊗Rα Nα → D for
α ∈ I.

The homomorphisms of (11.1), φα ⊗ ψα : Mα ⊗Rα Nα → M ⊗R N ,
induce homomorphisms μ : D → M ⊗R N by the universal property of
limits (Proposition 11.1).

We will now define an R-bilinear homomorphism u : M × N → D.
Suppose x ∈ M , y ∈ N . There exists an index α ∈ I and xα ∈ Mα,
yα ∈ Nα such that x = φα(xα), y = ψα(yα) by Proposition 11.3. Define
u(x, y) = χα(xα ⊗ yα) ∈ D. Since the Rα, Mα, Nα, and Mα ⊗Rα Nα are
directed systems, u(x, y) is independent of choices of α, xα, yα, so u is well-
defined. Further, u is R-bilinear. Thus, by the universal property of tensor
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products, Definition 5.1, there exists a unique R-module homomorphism
ξ : M ⊗R N → D satisfying ξ(x × y) = u(x, y) for x ∈ M , y ∈ N . Here ξμ
and μξ are identity maps by our construction, so μ is an isomorphism with
inverse ξ. �

An inverse system of Abelian groups is a set of Abelian groups {Ai},
indexed by a directed set I, such that if i ≤ j, then there is a homomorphism
ψij : Aj → Ai which satisfies ψii = idAi and ψik = ψijψjk if i ≤ j ≤ k.

Proposition 11.5. Suppose that {Ai}i∈I is an inverse system of Abelian
groups. Then there exists a group lim←Ai with homomorphisms

ψi : lim←
Ai → Ai

such that ψi = ψijψj for i ≤ j in I, which satisfies the following universal
property: suppose that B is an Abelian group with homomorphisms σi :
B → Ai such that σi = ψijσj for i ≤ j in I. Then there exists a unique
homomorphism σ : B → lim←Ai such that σi = σψi for i ∈ I. The group
lim←Ai with homomorphisms ψi : lim←Ai → Ai is uniquely determined up
to isomorphism. It is called the inverse limit of the system {Ai}.

The inverse limit can be defined as

(11.2) lim
←

Ai =

{
(ai) ∈

∏
i∈I

Ai | ψij(aj) = ai for i ≤ j

}
.

The construction of inverse limits carries through for inverse systems of com-
mutative rings and for inverse systems of modules over a fixed commutative
ring.

In the case when we have an inverse system of groups, rings, or modules
which are all subgroups, subrings, or submodules Mi of a larger group, ring,
or module M and the maps in the system are all inclusions maps, the inverse
limit is the intersection

⋂
Mi inside of M .

Exercise 11.6. If I is a directed set and J is a subset of I, then J is called
cofinal in I if for every i ∈ I there exists j ∈ J such that i ≤ j. Suppose
{Ai}i∈I is a directed system of Abelian groups and J is a cofinal subset of
I. Show that there is a natural isomorphism

lim
→

Aj → lim
→

Ai

where the first limit is over the directed set J and the second limit is over
the directed set I.
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11.2. Presheaves and sheaves

In this section, we define presheaves and sheaves on a topological space.

Definition 11.7. Suppose that X is a topological space. A presheaf PF
of Abelian groups on X associates to every open subset U of X an Abelian
group PF (U), with PF (∅) = 0, and to every pair of open sets U1 ⊂ U2 a
restriction map resU2U1 : PF (U2) → PF (U1) which is a group homomor-
phism and such that resU,U = idPF (U) for all U and if U1 ⊂ U2 ⊂ U3, then
the diagram

PF (U3)

resU3U2

��

resU3U1

��















PF (U2)resU2U1

�� PF (U1)

is commutative.

We will often write f |U1 for resU2U1(f) and say that f |U1 is the restric-
tion of f to U1. We will write PF |U1 for the restriction of PF to U1.

Definition 11.8. Suppose that PF1 and PF2 are presheaves of Abelian
groups on a topological space X. A homomorphism of presheaves of Abelian
groups φ : PF1 → PF2 is a collection of homorphisms φ(U) : PF1(U) →
PF2(U) for each open subset U of X, such that if U ⊂ V , then the diagram

PF1(V )
φ(V )

��

resV,U

��

PF2(V )

resV,U

��

PF1(U)
φ(U)

�� PF2(U)

is commutative.

A homomorphism φ : PF1 → PF2 is an isomorphism if there exists a
homomorphism ψ : PF2 → PF1 such that ψ(U) ◦ φ(U) = idPF1(U) and
φ(U) ◦ ψ(U) = idPF2(U) for all open subsets U of X.

The stalk of a presheaf PF at a point p is lim→ PF (U), where we take
the direct limit over the open sets U of X which contain p. Elements of PFp

are called germs. If U ⊂ X is an open subset, t ∈ PF (U), and p ∈ U , then
tp will denote the germ which is the image of t in PFp.
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If φ : PF1 → PF2 is a homomorphism of presheaves and p ∈ X, then for
open neighborhoods V ⊂ U of p, we have a natural commutative diagram

PF1(U)
φ(U)

��

��

PF2(U)

��

PF1(V )
φ(V )

�� PF2(V )

��

(PF2)p

so we have a unique induced homomorphism of stalks φp : (PF1)p → (PF2)p
by the universal property of direct limits.

Lemma 11.9. Suppose that PF is a presheaf on a topological space X, U
is an open subset of X, and p ∈ U . Then (PF |U)p = PFp.

Proof. By the universal property of direct limits of Proposition 11.1, we
have a homomorphism π : (PF |U)p → PFp such that for V an open subset
of U , we have a commutative diagram

PF (V )

�� 

�
���

���
���

(PF |U)p �� PFp.

Now the injectivity and surjectivity of π follow from 2) and 1) of Propo-
sition 11.3, respectively. Alternatively, the proof follows from Exercise
11.6. �

Definition 11.10. A presheaf of Abelian groups F on a topological space
X is a sheaf of Abelian groups on X if for every open subset U of X and
collection {Ui}i∈I of open sets in X with U =

⋃
Ui:

1) If x1, x2 ∈ F (U) and resU,Uix1 = resU,Uix2 for all i, then x1 = x2.

2) If xi ∈ F (Ui) for i ∈ I are such that resUi,Ui∩Ujxi = resUj ,Ui∩Ujxj
for all i and j, then there is an x ∈ F (U) such that resU,Uix = xi
for all i.

We will often call condition 1) the “first sheaf axiom” and condition 2)
the “second sheaf axiom”.

It is common to denote F (U) by Γ(U, F ). An element σ ∈ Γ(X,F ) is
called a global section of F . If F and G are sheaves on a topological space
X, then a homomorphism of sheaves of Abelian groups φ : F → G is just
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a homomorphism of presheaves of Abelian groups, and an isomorphism of
sheaves is an isomorphism of presheaves.

Example 11.11. Suppose that X is a quasi-projective variety. Then the
association U �→ OX(U) for U an open subset of X is a sheaf on X.

Proof. We have that OX is a presheaf with restriction of functions. We
will show that OX is a sheaf. Suppose that U is an open subset of X and
{Ui} is an open cover of X. The restriction map OX(U) → OX(Ui) is
injective, so we immediately get condition 1) of the definition of a sheaf.
Now if xi ∈ OX(Ui) and xj ∈ OX(Uj) are such that they have the same
restriction in OX(Ui ∩ Uj), then xi = xj (as elements of k(X)). Thus if
resUi,Ui∩Ujxi = resUj ,Ui∩Ujxj for all i, j, then the elements xi are a common
element x ∈

⋂
i OX(Ui) = OX(U), so condition 2) of the definition of a sheaf

holds. �

In the above example, the stalk of OX at a point p ∈ X is the direct
limit over open sets U containing p,

lim
p∈U

OX(U) =
⋃
p∈U

OX(U) = OX,p,

as defined earlier.

Proposition 11.12. Suppose that PF is a presheaf of Abelian groups on a
topological space X. Then there is a sheaf of Abelian groups F on X and
a homomorphism f : PF → F of presheaves such that if F ′ is a sheaf of
Abelian groups on X and g : PF → F ′ is a homomorphism of presheaves on
X, then there is a unique homomorphism of sheaves h : F → F ′ such that
g = hf .

The sheaf F of Proposition 11.12 is uniquely determined up to isomor-
phism (since it satisfies the stated universal property). It is called the sheafi-
fication of PF . The sheafification F of PF has the property that the stalks
PFp = Fp for all p ∈ X.

Proof. For an open subset U of X, define F (U) to be the set of maps

s : U →
∐

PFp

where
∐

PFp is the disjoint union of the stalks PFp for p ∈ X such that:

1) For each p ∈ U , s(p) ∈ PFp.

2) For each p ∈ U , there exists a neighborhood V of p contained in
U and an element t ∈ PF (V ) such that for all Q ∈ V , the germ
tQ = s(Q).



188 11. Sheaves

We have that F is a presheaf of Abelian groups with the natural restric-
tion maps (since each stalk PFp is a group). Suppose that U is an open
subset of X and Ui are open subsets of X with

⋃
i Ui = U . The first sheaf

axiom holds since F (U) is completely determined by its stalks (condition
1) above). Since

⋃
Ui = U , elements xi ∈ F (Ui) satisfying the assumptions

of the second sheaf axiom induce a well-defined map x : U →
∐

PFp by
prescribing x(p) = (xi)p ∈ PFp if p ∈ Ui. Since the xi ∈ F (Ui) satisfy
condition 2) above on Ui for all i, we have that x also satisfies condition 2),
and thus x ∈ F (U) and the second sheaf axiom is satisfied. Thus F (U) is a
sheaf. We have a natural homomorphism f : PF → F of presheaves defined
by mapping t ∈ PF (U) to the map p �→ tp for p ∈ U .

Now suppose that F ′ is a sheaf of Abelian groups on X and g : PF → F ′

is a homomorphism of presheaves. The extension h : F → F ′ is defined as
follows. Suppose that U is an open subset of X and s ∈ F (U). By condition
2), there exists an open cover {Ui} of U and ti ∈ PF (Ui) such that s|Ui =
f(ti). We necessarily have that s|Ui ∩Uj = f(ti)|Ui ∩Uj = f(tj)|Ui ∩Uj for
all i, j. Thus the germs (ti)p = (tj)p in PFp = Fp for all p ∈ Ui ∩ Uj .

Let ui = g(Ui)(ti) ∈ F ′(Ui). Suppose that p ∈ Ui ∩ Uj . Then the
germ (ui)p = gp((ti)p) = gp((tj)p) = (uj)p. Using the second statement of
Proposition 11.3, we find that there exists an open neighborhood Vp of p in
Ui ∩ Uj such that ui | Vp = uj | Vp. Thus ui|Ui ∩ Uj = uj |Ui ∩ Uj since F ′

is a sheaf (the first sheaf axiom) and thus there exists a ∈ F ′(U) such that
a|Ui = ui = g(Ui)(ti) for all i, again since F ′ is a sheaf (the second sheaf
axiom).

We define h(U)(s) = a. The element a is uniquely determined by the
first sheaf axiom since we must have that h(Ui)(s|Ui) = h(Ui)(f(ti)) =
g(Ui)(ti) = ui for all i. �

Proposition 11.13. Let φ : F → G be a homomorphism of sheaves of
Abelian groups on a topological space X. Then φ is an isomorphism if and
only if the induced map on stalks φp : Fp → Gp is an isomorphism for every
p ∈ X.

Proof. If φ is an isomorphism, then φ(U) is a group isomorphism for all
open subsets U of X so φp is an isomorphism for all p ∈ X.

Suppose that φp is an isomorphism for all p ∈ X. To show that φ is an
isomorphism, we will show that φ(U) is an isomorphism for all open subsets
U of X. We can then define the inverse map ψ to φ by defining ψ(U) to be
the inverse to φ(U) for all open subsets U of X. To show that φ(U) is an
isomorphism, we must show that φ(U) is injective and surjective.

We will first show that φ(U) is injective. Suppose that s ∈ F (U) and
φ(U)(s) = 0. Then for all p ∈ U , 0 = φ(U)(s)p = φp(sp) = 0 in Gp. Thus
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for all p ∈ U , sp = 0 in Fp since φp is injective. Thus there exists an open
neighborhood Wp of p in U such that s|Wp = 0, by 2) of Proposition 11.3.
The open set U is covered by the open sets Wp for p ∈ U , so by the first
sheaf axiom, s = 0 in F (U). Thus φ(U) is injective.

Now we will show that φ(U) is surjective. Suppose t ∈ G(U). For
p ∈ U , let tp ∈ Gp be the germ of t at p. Since φp is surjective, there exists
sp ∈ Fp such that φp(sp) = tp. By 1) of Proposition 11.3, there exists an
open neighborhood Vp of p in U and h(p) ∈ F (Vp) such that the germ of
h(p) at p is sp. By 2) of Proposition 11.3, φp(h(p)p) = tp implies that there
exists a neighborhood Wp of p in Vp such that φ(Wp)(h(p)|Wp) = t|Wp. So
replacing Vp with Wp, we may assume that φ(Vp)(h(p)) = t|Vp. If p, q ∈ U
are two points, then

φ(Vp ∩ Vq)(h(p)) = t|Vp ∩ Vq = φ(Vp ∩ Vq)(h(q)).

Since φ(Vp ∩ Vq) was shown to be injective, we have that h(p)|Vp ∩ Vq =
h(q)|Vp ∩ Vq. Thus by the second sheaf axiom, there exists s ∈ F (U) such
that s|Vp = h(p) for all p ∈ U . Now

φ(U)(s)|Vp = φ(Vp)(h(p)) = t|Vp

for all p ∈ X and {Vp} is an open cover of U so φ(U)(s) = t by the first
sheaf axiom. �

Proposition 11.14 (The constant sheaf). Suppose that G is an Abelian
group and X is a topological space which has the property that if U is an
open subset of X, then all connected components of U are open. Define a
presheaf PGX on X by

PGX(U) = G

whenever U is a nonempty subset of X. Define the restriction maps to be
the identity. Let GX be the sheaf on X associated to PGX .

Suppose that U is an open subset of X and {Ui}i∈I are the connected
components of U . Then

GX(U) ∼=
∏
i∈I

G.

Proof. Let PF = PGX and F = GX . By Proposition 11.12, there is a
homomorphism of presheaves λ : PF → F such that for all open subsets U
of X and p ∈ U , there is a commutative diagram

PF (U) → F (U)
↓ ↓

PFp
∼=→ Fp.

Since PF (U) = PFp = Fp = G, we have that PF (U) → F (U) is an
injective homomorphism for all open subsets of X. In particular, this gives
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us natural inclusions λU : G → F (U) for all U , which is compatible with
restriction for V ⊂ U ,

G
λU

��

λV ���
��

��
��

��
F (U)

��

F (V ).

We thus have that the restriction map F (U) → Fp = G defined by
φ �→ φp is surjective for all open subsets U of X which contain p.

Suppose that p ∈ X and U is an open subset of X containing p. Suppose
that φ ∈ F (U). Let g = φp. Then (φ − λU (g))p = 0. We have that

Fp = lim
→

F (V ),

where the limit is over open subsets V of U containing p. Thus by the second
statement of Proposition 11.3, there exists an open subset V of U containing
p such that the restriction (φ − λV (g))|V = 0. Thus φ|V = λV (g), so that
φq = (λV (g))q = g for all q ∈ V .

We have shown that given an open subset U of X and φ ∈ F (U), the
map U → G defined by p �→ φp is continuous if we give G the discrete
topology (a point of G is an open set).

Suppose that U is a connected open subset of X. For g ∈ G and φ ∈
F (U),

W φ
g = {q ∈ U | φq = g}

is an open subset of U . Further, {W φ
g | g ∈ G} is an open cover of U by

disjoint open sets. Thus there exists g ∈ G such that W φ
g = U . In particular

if we take any p ∈ U , φq = φp for all q ∈ U .

Consider the restriction homomorphism

Ψ : F (U) → G

defined by Ψ(φ) = φp.

Suppose that φp = 0. Then φq = 0 for all q ∈ U , and so there exists an
open cover {Vj} of U such that φ|Vj = 0 for all j (by the second statement
of Proposition 11.3). Thus φ = 0 by the first sheaf axiom. We have already
established that Ψ is onto. We have shown that if U is a connected open set
and p ∈ U , then the restriction map F (U) → G is an isomorphism.

Suppose that U is an open subset of X, and let {Ui}i∈I be the connected
components of X, which by assumption are open. Consider the group ho-
momorphism

Λ : F (U) →
∏
i∈I

F (Ui)
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defined by φ �→ {φ|Ui}. By the first sheaf axiom Λ is injective. Since
Ui ∩ Uj = ∅ if i 
= j, so that F (Ui ∩ Uj) = (0), we have by the second sheaf
axiom that Λ is onto. Thus Λ is an isomorphism. Thus

F (U) ∼=
∏
i∈I

G. �

Suppose that f : X → Y is a continuous map of topological spaces and
F is a sheaf of groups on X. We define a presheaf f∗F on Y by f∗F (U) =
F (f−1(U)) for U an open subset of Y . Then f∗F is actually a sheaf.

We can now recognize that the analysis in the proof of Theorem 10.36
is actually of the sheaf φ∗Ox.

We extend our definitions of presheaves and sheaves of Abelian groups
to presheaves and sheaves of rings.

Definition 11.15. A locally ringed space is a pair (X,OX) where X is
a topological space and OX is a sheaf of rings on X such that for each
p ∈ X the stalk OX,p is a local ring. The space X is called the underlying
topological space of (X,OX) and OX is called the structure sheaf of X. A
morphism of locally ringed spaces from (X,OX) to (Y,OY ) is a pair (f, f#)
such that f : X → Y is a continuous map and f# : OY → f∗OX is a
map of sheaves of rings on Y such that for all p ∈ X, the induced map

f#
p : OY,f(p) → (f∗OX)f(p) → OX,p is a local homomorphism of local rings.
A morphism of locally ringed spacesX → Y is an isomorphism if there exists
a morphism of locally ringed spaces Y → X which is a two-sided inverse.

If X is a quasi-projective variety, then X with its sheaf of regular func-
tions OX is a locally ringed space. If X and Y are two quasi-projective
varieties, then the regular maps ϕ : X → Y are morphisms, with ϕ# in-
duced by ϕ∗.

Definition 11.16. Suppose that X is a locally ringed space. A sheaf of
OX-modules (an OX -module) is a sheaf F on X such that for each open
subset U of X the group F(U) is an OX(U)-module, and for each inclusion
of open subsets V ⊂ U of X, the restriction homomorphism F(U) → F(V )
is compatible with the module structures by the restriction ring homomor-
phism OX(U) → OX(V ). A homomorphism F → G of sheaves of OX -
modules is a homomorphism of sheaves such that for all open subsets U of
X, F(U) → G(U) is a homomorphism of OX(U)-modules.

If f : X → Y is a morphism of locally ringed spaces and F is a sheaf of
OX-modules, then f∗F is a sheaf of OY -modules.

A subsheaf of a sheaf F is a sheaf F ′ such that for every open subset
U of X, F ′(U) is a subgroup of F(U) and the restriction maps of the sheaf
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F ′ are induced by those of F . If F and F ′ are OX -modules, then F ′ is a
sub-OX-module, or an OX-submodule of F if F ′ is a subsheaf of F such
that F ′(U) is an OX(U)-submodule of F(U) for all open subsets U of X.

Example 11.17 (Ideal sheaf, on an affine variety). Suppose that X is an

affine variety and J ⊂ k[X] is an ideal. We associate to J a presheaf J̃ on
X defined by

J̃(U) =
⋂
p∈U

JI(p)

for an open subset U of X, where I(p) is the ideal of p in k[X] and

JI(p) = Jk[X]I(p) = JOX,p

is the localization of J at the maximal ideal I(p).

Using the definition of J̃ in Example 11.17, we verify that J̃ is a sheaf
of OX-modules. We calculate that the stalk

J̃p = JI(p)

for p ∈ X. We also observe that, by the definition, if U ⊂ X is an open set,
then

J̃(U) = JOX(U),

and if U is an affine open subset of X, then the restriction J̃ |U is in fact the

tilde on U of the ideal Jk[U ] in k[U ]; that is, J̃ |U = J̃k[U ].

Example 11.18 (Ideal sheaf, on a projective variety). Suppose that X ⊂
Pn is a projective variety, with homogeneous coordinates x0, . . . , xn and
homogeneous coordinate ring S(X). We may suppose that none of the xi
vanish everywhere on X. Suppose that J is a homogeneous ideal in S(X).

We associate to J a presheaf J̃ on X defined by

J̃(U) =
⋂
p∈U

J(I(p))

for an open subset U of X, where the ideal J(I(p)) in OX,p ⊂ k(X) is defined

to be the elements of degree 0 in the localization T−1J where T is the
multiplicative set of homogeneous elements of S(X) which are not in I(p).

Using the definition of J̃ in Example 11.18, we verify that J̃ is a sheaf
of OX-modules. We calculate that the stalk

J̃p = J(I(p))

for p ∈ X.

Looking back over the analysis we made of OX in Section 3.2, we find
that

(11.3) J̃(Xxi) = J(xi) is the dehomogenization of J for 0 ≤ i ≤ n.
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Here J(xi) denotes the elements of degree 0 in the localization Jxi . In partic-

ular, if the ideal J has the homogeneous generators F1, . . . , Fm, then J̃(Xxi)
is the ideal in OX(Xxi) = k[x0

xi
, . . . , xn

xi
] generated by

F1

(
x0
xi

, . . . ,
xn
xi

)
, . . . , Fm

(
x0
xi

, . . . ,
xn
xi

)
.

We deduce that the restriction of J̃ to Xxi is the tilde on the affine variety

Xxi of the ideal Γ(Xxi , J̃) in k[Xxi ]; that is,

J̃ |Xxi =
˜Γ(Xxi , J̃).

In fact, if U ⊂ X is any affine open subset, then the restriction of J̃ to U is
the tilde on U of the ideal Γ(J, U) ⊂ k[U ]; that is,

J̃ |U = Γ̃(U, J̃).

The ideal sheaf Ĩ which we have just defined has been previously en-
countered in Chapter 6 (before Lemma 6.7).

Suppose that A is a subsheaf of a sheaf B on a topological space X.
Then B/A will denote the sheaf associated to the presheaf U �→ B(U)/A(U)
for U an open subset of X.

Lemma 11.19. Suppose that A is a subsheaf of a sheaf B on a topological
space X and p ∈ X. Then (B/A)p ∼= Bp/Ap.

Proof. We have that the stalk of the sheaf B/A at p is the stalk at p of the
presheaf U �→ B(U)/A(U) for U an open subset X by the comment after
Proposition 11.12.

By the universal property of direct limits, Proposition 11.1, there is a
unique homomorphism Bp → (B/A)p such that for all open subsets U of X
containing p, we have a commutative diagram

B(U) → B(U)/A(U)
↓ ↓
Bp → (B/A)p

which is compatible with restriction. Now

0 → A(U) → B(U) → B(U)/A(U) → 0

is exact for all open subsets U of X so a diagram chase using Proposition
11.3 shows that

0 → Ap → Bp → (B/A)p → 0

is exact. �
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If α : F → G is a homomorphism of sheaves on a topological space X,
then we have sheaves Kernel(α), Image(α) and Cokernel(α) associated to
the respective presheaves defined by U �→ Kernel(α(U)), U �→ Image(α(U)),
and U �→ Cokernel(α(U)) for U an open subset of X.

A homomorphism α : F → G of sheaves on a topological spaceX is called
injective if αp : Fp → Gp is injective for all p ∈ X. The homomorphism α is
called surjective if αp : Fp → Gp is surjective for all p ∈ X. A sequence

(11.4) 0 → A → B → C → 0

of homomorphisms of sheaves is called short exact if for all p ∈ X, the
sequence of homomorphisms of groups

0 → Ap → Bp → Cp → 0

is short exact. Proving the following proposition is Exercise 11.22.

Proposition 11.20. Suppose that (11.4) is a short exact sequence of sheaves
and U is an open subset of X. Then

(11.5) 0 → A(U) → B(U) → C(U)

is exact. In particular, the presheaf U �→ Kernel(α(U)) is a sheaf for any
homomorphism of sheaves α : F → G.

Example 11.21. Suppose that A is a subsheaf of a sheaf B. Then the
presheaf U �→ B(U)/A(U) may not be a sheaf. Further, if α : A → B is a
homomorphism of sheaves, then the presheaf U �→ Image(α(U)) may not be
a sheaf, and if (11.4) is a short exact sequence of sheaves, then B(U) → C(U)
may not be surjective for some open subset U of X.

Proof. Let p be a nonsingular point on a projective curve X. Let Ip be the
ideal sheaf of p in X. For q ∈ X, we have that

Ip,q =
{

OX,q if q 
= p,
the maximal ideal mp ⊂ OX,p if q = p.

Let PF be the presheaf defined by

PF (U) = Ip(U)/Ip(U)2

for U an open set in X. Let F be the sheaf associated to PF . We calculate,
from Lemma 11.19, that the stalk

Fq =

{
0 if q 
= p,
mp/m

2
p
∼= k if q = p.

We will now establish that for an open subset U of X,

(11.6) F (U) =

{
k if p ∈ U,
0 if p 
∈ U.
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Suppose that p 
∈ U and x ∈ F (U). Then for each q ∈ U , the stalk Fq = 0.
Thus the image of x in Fq is zero, so there exists an open neighborhood
Uq of q, which is contained in U , such that the restriction of x in F (Uq) is
zero (by part 2) of Proposition 11.3). Thus we have a cover {Uq} of U by
open subsets of U such that the restriction of x in each F (Uq) is zero. Now
0 ∈ F (U) also has this property, so x = 0 by the first sheaf axiom. We have
established that F (U) = (0) if p 
∈ U .

Suppose that p ∈ U . We will show that the restriction homomorphism
Λ : F (U) → Fp

∼= k is an isomorphism. Let r ∈ k. Then there exist an
open neighborhood Up of p in U and φ ∈ F (Up) such that the restriction
of φ to Fp is r (by part 1) of Proposition 11.3). Let V = U \ {p}, which
is an open subset of U . The point p 
∈ V , so F (V ) = F (V ∩ Up) = (0).
Since the restriction of φ to F (V ∩ Up) is zero, which is the restriction of
0 ∈ F (V ) to F (V ∩ Up), we have by the second sheaf axiom that there
exists x ∈ F (U) which restricts to 0 in F (V ) and restricts to φ in F (Up) so
necessarily restricts to r ∈ Fp. Thus Λ is surjective.

Suppose that x′ ∈ F (U) and Λ(x′) = 0. Then there exists an open
neighborhood U ′

p of p in U such that the restriction of x′ to F (U ′
p) is zero,

by 2) of Proposition 11.3. Since the restriction of x′ to V = U \ {p} is
necessarily zero, we have that x′ = 0 in F (U) by the first sheaf axiom. Thus
Λ is injective and is necessarily an isomorphism.

From the natural inclusions of sheaves of OX -modules, I2
p ⊂ Ip ⊂ OX ,

we have (by applying Proposition 11.20 to each inclusion) inclusions of mod-
ules

I2
p(X) ⊂ Ip(X) ⊂ OX(X).

Now OX(X) = k (by Theorem 3.35). Further, Ip(X) cannot contain a
nonzero element of k since every element of Ip(X) must restrict to an element
of Ip,p = mp and hence must vanish at p. Thus I2

p(X) = Ip(X) = 0, and

PF (X) = Ip(X)/I2
p(X) = 0.

In contrast, by (11.6), F (X) ∼= k. Thus F 
= PF .

We have (by Proposition 11.12) a natural exact sequence of sheaves

0 → I2
p → Ip α→ F → 0.

The image of α is the presheaf PF , which we have already established is not
a sheaf. Further, the evaluation of the above short exact sequence at X is

0 → 0 → 0 → k → 0

which is not short exact. �

Exercise 11.22. Prove Proposition 11.20.
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Exercise 11.23. Let X be a topological space, let {Ui} be an open cover
of X, and suppose that for each i we have a sheaf Fi on Ui, and for each i, j
an isomorphism φij : Fi|Ui ∩ Uj → Fj |Ui ∩ Uj such that for each i, φii = id
and for each i, j, k, φik = φjk ◦ φij on Ui ∩Uj ∩Uk. Show that there exists a
unique sheaf F on X, with isomorphisms ψi : F|Ui → Fi such that for each
i, j, ψj = φij ◦ ψi on Ui ∩ Uj .

11.3. Some sheaves associated to modules

Theorem 11.24 (Sheafification of a module on an affine variety)). Suppose
that X is an affine variety and M is a k[X]-module. Then there is a unique

sheaf M̃ of OX-modules on X which has the property that

(11.7) M̃(Xf ) = Mf for f ∈ k[X],

and the restriction map M̃(X) = M̃(X1) = M → M̃(Xf ) = Mf is the map
a �→ a

1 .

For p ∈ X, the stalk

M̃p = lim
p∈U

M̃(U) = lim
f∈k[X]\I(p)

Mf = MI(p),

where I(p) is the maximal ideal in k[X] of the point p and MI(p) is the
localization of M at this prime ideal.

Proof. The property (11.7) and the sheaf axioms uniquely determine M̃(U)
for U an arbitrary open subset of X. In fact, U is a finite union of open sets
U = Xf1 ∪Xf2 ∪ · · ·∪Xfn for some fi ∈ k[X]. By the sheaf axioms, we have
an exact sequence of k[X]-module homomorphisms

(11.8) 0 → M̃(U)
α→

n⊕
i=1

M̃(Xfi)
β→

⊕
1≤i<j≤n

M̃(Xfi ∩Xfj ),

where

α(g) = {resU,Xfi
(g)}

for g ∈ M̃(U) and

β({hl}) = {resXfj
,Xfi

∩Xfj
(hj) − resXfi

,Xfi
∩Xfj

(hi)}

for {hl} ∈
⊕n

i=1 M̃(Xfi).

Since Xfi ∩Xfj = Xfifj , (11.8) tells us that M̃(U) can be identified with
the kernel of β, which has the explicit form

n⊕
i=1

Mfi
β→

⊕
1≤i<j≤n

Mfifj .
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We now construct the sheaf M̃ satisfying (11.7). Let U be an open subset

of the affine variety X, with regular functions A = k[X]. Define M̃(U) to
be the set of functions s : U →

∐
p∈U MI(p) such that s(p) ∈ MI(p) for each

p in U and such that for each p ∈ U there is an open neighborhood V of
p in U , a ∈ M , and f ∈ A such that Z(f) ∩ V = ∅ and for each q ∈ V ,

s(q) = a
f ∈ MI(q). We have that M̃ is a sheaf on X as it satisfies the sheaf

axioms.

For U an open subset of X, OX(U) =
⋂

p∈U AI(p) ⊂ k(X). It follows

that the map of sheaves OX → Ã defined by associating to t ∈ OX(U) the

map s : U → Ã(U) defined by s(p) = t for p ∈ U is an isomorphism of

sheaves of k-algebras. We thus have that Ã ∼= OX .

We have that property (11.7) holds for Ã by Proposition 2.84. For A-

modules M , the sheaf M̃ is naturally a sheaf of Ã ∼= OX-modules.

The fact that property (11.7) holds for M̃ follows from a careful analysis

of the natural map Mf → M̃(D(f)) for f ∈ A, as we now verify. Define an
Af -module homomorphism

ψ : Mf → M̃(D(f))

by ψ( a
fn ) = s where s(p) = a

fn ∈ MI(p) for p ∈ D(f).

We first will show that ψ is injective. Suppose that ψ( a
fn ) = ψ( b

fm ) for

some a
fn ,

b
fm ∈ Mf . Then

a
fn = b

fm in MI(p) for all p ∈ D(f), so for each p,

there exists hp ∈ A with hp 
∈ I(p) such that hp(f
ma − fnb) = 0 in M . Let

J = Ann(fma−fnb) be the annihilator of fma−fnb in A. Then hp ∈ J and
hp 
∈ I(p) so J is not contained in I(p). Since this is true for all p ∈ D(f),

we have Z(J) ∩ D(f) = ∅. Thus f ∈
√
J so f l ∈ J for some positive power

l, and so f l(fma− fnb) = 0, implying a
fn = b

fm in Mf , and so ψ is injective.

Now we will show that ψ is surjective. Let s ∈ M̃(D(f)). We can cover
D(f) with open sets Vi so that there are ai ∈ M and gi ∈ A such that
Z(gi)∩Vi = ∅ and s(p) = ai

gi
∈ MI(p) for all p ∈ Vi. The open sets D(h) with

h ∈ A are a basis of the topology of X (Lemma 2.83) so we may assume
that each Vi = D(hi) for some hi ∈ A. We have D(hi) ⊂ D(gi) for all i so√
(hi) ⊂

√
(gi) by the nullsetellensatz. Thus hni

i = cigi for some positive
power ni and ci ∈ A, so that ai

gi
= ciai

h
ni
i

in Mhi
. Replacing hi with hni

i (we

have D(hi) = D(hni
i )) and ai by ciai, we may assume that D(f) is covered

by open sets D(hi) such that s(p) = ai
hi

for p ∈ D(hi).

Since D(f) ⊂
⋃

D(hi), we have that Z({hi}) =
⋂
Z(hi) ⊂ Z(f). Since

A is Noetherian, the ideal ({hi}) is generated by a finite number of the hi, say
h1, . . . , hr, so D(f) ⊂ D(h1)∪· · ·∪D(hr) and we have that fn ∈ (h1, . . . , hr)
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for some positive power n by the nullstellensatz. Thus we have an expression

(11.9) fn = b1h1 + · · ·+ brhr

for some b1, . . . , br ∈ A.

For p ∈ D(hi)∩D(hj) = D(hihj), we have that s(p) = ai
hi

=
aj
hj

∈ MI(p).

By our proof of injectivity, ψ is injective when restricted to D(hihj), so we
have that ai

hi
=

aj
hj

in Mhihj
. Hence,

(hihj)
n(hjai − hiaj) = 0

in M for some n. We may pick n sufficiently large so that this equation and
(11.9) are valid for all i, j. Rewrite the equation as

hn+1
j (hni ai) − hn+1

i (hnj aj) = 0.

Then replace hi by hn+1
i and ai by hni ai (we have that D(hi) = D(hn+1

i ))
so that we still have that s(p) = ai

hi
for p ∈ D(hi), and we now have that

hjai = hiaj for all i, j.

Let a =
∑

i biai where the bi are from (11.9). Then for each j, we have

hja =
∑
i

bihjai =
∑
i

bihiaj = fnaj

so that a
fn =

aj
hj

on D(hj), and thus ψ( a
fn ) = s, so that ψ is surjective and

hence is an isomorphism. �

Important special cases of the construction of Theorem 11.24 are that

k̃[X] = OX and if Y is a subvariety of X, then the ideal sheaf IY = Ĩ(Y )
where I(Y ) is the prime ideal in k[X] of Y . More generally, we have a sheaf

of OX -modules Ĩ (an ideal sheaf) associated to any ideal I ⊂ k[X] (Example
11.17).

In the case when M is a k[X]-submodule of k(X) and f ∈ k[X], we have
that

(11.10) M̃(Xf ) = Mf =
⋂

p∈D(f)

Mp

where the intersection takes place in k(X). This follows from Lemma 1.77.

We have a corresponding construction for projective varieties. Suppose
that Y is an affine variety and X is a closed subvariety of Y ×Pr. The variety
Y × Pr has the coordinate ring S(Y × Pr) = A[x0, . . . , xr] where A = k[Y ]
and the polynomial ring A[x0, . . . , xr] over A is graded by deg(xi) = 1 for
all i. Let p ⊂ A[x0, . . . , xr] be the graded prime ideal p = I(X). Then the
coordinate ring of X is S(X) = A[x0, . . . , xr]/p =

⊕∞
i=0 Si.
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Theorem 11.25 (Sheafification of a graded module on a projective variety).
Suppose that X is a projective variety, or, more generally, Y is an affine
variety and X is a closed subvariety of Y × Pr, with coordinate ring S(X),

and N is a graded S(X)-module. Then there is a unique sheaf Ñ of OX-
modules on X which has the property that

(11.11) Ñ(XF ) = N(F ) for homogeneous F ∈ S(X)

and for forms F,G ∈ S(X) with XF ⊂ XG, the restriction map Ñ(XG) →
Ñ(XF ) is the natural map N(G) → N(F ) induced by localization.

Recall thatN(F ) denotes the set of elements of degree 0 in the localization
NF .

Using the sheaf axioms, we can give an explicit formula similar to (11.8)

for the calculation of Ñ(U), when U = XF1∪· · ·∪XFn for some homogeneous
forms Fi ∈ S(X)

We calculate that for p ∈ X, the stalk

(11.12) Ñp = N(I(p)),

where NI(p) denotes the elements of degree 0 in the localization T−1N where
T is the multiplicative system of homogeneous elements of S(X) \ I(p).

In fact, we have that the restriction of the sheaf Ñ to the affine open
subset XF (where F is homogeneous of positive degree) is just the sheaf

(11.13) Ñ |XF = Ñ(F )

on the affine variety XF (which has regular functions k[XF ] = S(X)(F )),

as follows from a comparison of the definition of Ñ below, the definition of

Ñ(F ) from Theorem 11.24, and (11.12).

The sheaf Ñ of Theorem 11.25 is constructed for general graded modules
N as follows. Let U be an open subset of the projective variety X, with
coordinate ring S = S(X), and suppose that N is a graded S-module.

Suppose that U is an open subset of X. Define Ñ(U) to be the set of
functions s : U →

∐
p∈U N(I(p)) such that s(p) ∈ NI(p) for each p ∈ U

and such that for each p ∈ U there is an open neighborhood V of p in
U and homogeneous elements a ∈ N and f ∈ S of the same degree such
that Z(f) ∩ V = ∅ and s(q) = a

f ∈ N(I(q)). Here I(p) is the homogeneous

ideal of the point p in S and N(I(p)) is the set of elements of degree 0 in

the localization T−1N where T is the multiplicative set of homogeneous
elements of S which are not in I(p). We have that Ñ is a sheaf on X as it
satisfies the sheaf axioms.

For U an open subset of X, OX(U) =
⋂

p∈U S(I(p)) ⊂ k(X). It follows

that the map of sheaves OX → S̃ defined by associating to t ∈ OX(U) the
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map s : U → S̃(U) defined by s(p) = t for p ∈ U is an isomorphism of

sheaves of k-algebras. We thus have that S̃ ∼= OX . We have that property
(11.11) holds for S̃ by Proposition 4.6.

For general modules N , the sheaf Ñ is naturally a sheaf of S̃ ∼= OX -
modules. The fact that property (11.11) holds for N follows from a careful

analysis of the natural map N(F ) → Ñ(D(F )) for F ∈ S homogeneous,
generalizing the proof of Theorem 11.24.

It follows from the above analysis that the definition in Theorem 11.25
is consistent with Example 11.18.

An important example which we have encountered before is the OX -
module Ĩ (ideal sheaf) associated to any homogeneous ideal I of S(X). In
particular, if Y is a closed algebraic set in X, with homogeneous reduced

ideal I(Y ) in S(X), the ideal sheaf of Y is IY = Ĩ(Y ). If X is a quasi-
projective variety and Y is a closed algebraic set in X, then X is an open
subset of projective variety X. Letting Y be the closed algebraic set in X
which is the closure of Y in X, we have that Y ∩ X = Y . We define the
ideal sheaf IY on X to be the restriction IY |X.

Suppose that X is a projective variety or a closed subvariety of Y × Pr

where Y is an affine variety, with a closed embedding i : X → Y × Pr. Let
S(Y × Pr) and S(X) = S(Y × Pr)/I(X) be the respective coordinate rings.
Suppose that M is a graded S(X)-module. Let M be the sheafification of
M as a graded S(X)-module. Then
(11.14)
i∗M is the sheafification of M regarded as a graded S(Y × Pr)-module.

Exercise 11.26. Suppose that φ : X → Y is regular map of affine varieties,

Mk[X] is a k[X]-module, and F = M̃k[X] is the induced sheaf on X. Let
Mk[Y ] be the k[Y ]-module which is Mk[X] with the k[Y ]-module structure

induced by the homomorphism φ∗ : k[Y ] → k[X]. Let G = M̃k[Y ] be the
induced sheaf on Y . Show that φ∗F = G.

Exercise 11.27. Prove formula (11.14).

11.4. Quasi-coherent and coherent sheaves

Definition 11.28. Let X be a quasi-projective variety. A sheaf of OX -
modules F is quasi-coherent if X can be covered by affine open sets Ui such
that for all i, the restriction F|Ui of F to Ui is isomorphic as a sheaf of OUi-

modules to a sheaf M̃i for some k[Ui]-module Mi. The sheaf F is coherent
if the Mi are all finitely generated k[Ui]-modules.
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The conclusions of the following example follow from the remark that

Ñ |XF
∼= Ñ(F ) for homogeneous F ∈ S(X) of positive degree in equation

(11.13).

Example 11.29. Suppose that Y is an affine variety and X is a closed
subvariety of Y ×Pr. Let S(X) be the graded coordinate ring of X, and let

N be a graded S(X)-module. Then Ñ is a quasi-coherent OX -module. If

N is a finitely generated S(X)-module, then Ñ is coherent.

Suppose that X is a locally ringed space and F , G are sheaves of OX -
modules on X. Then HomOX

(F ,G) denotes the OX(X)-module of OX -
module sheaf homomorphisms from F to G.

Lemma 11.30. Suppose that X is an affine variety, R = Γ(X,OX), and
M , N are R-modules. Then the natural map

HomOX
(M̃, Ñ) → HomR(M,N)

defined by ψ �→ ψ(X) is an isomorphism of R-modules.

Proof. Suppose that φ∈HomR(M,N). We will construct φ̃∈HomOX
(M̃, Ñ)

giving an inverse to the natural map HomOX
(M̃, Ñ) → HomR(M,N).

Let U be an open subset of X. Then U = Xf1 ∪ · · · ∪ Xfn for some
f1, . . . , fn ∈ k[X]. The homomorphism φ induces a commutative diagram⊕

iMfi

β1
��

⊕
φfi

��

⊕
i<j Mfifj

⊕
φfifj

��⊕
iNfi

β2
��
⊕

i<j Nfifj

where the horizontal maps are defined as in equation (11.8). Hence we have
a natural homomorphism

φ̃(U) : M̃(U) = Kernel β1 → Kernel β2 = Ñ(U),

which is compatible with restrictions. �

Lemma 11.31. Suppose that X is an affine variety and R = Γ(X,OX) =
k[X]. The sequence of R-modules

M → N → P

is exact if and only if the sequence of sheaves of OX-modules

M̃ → Ñ → P̃

is exact.

Thus if M̃ → Ñ is a homomorphism of OX-modules, then its kernel,
cokernel, and image are of the form K̃ for some R-module K.
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Proof. The sequence of sheaves is exact if and only if it is exact at all stalks;
that is,

Mm → Nm → Pm

is exact for all maximal ideals m of R. This is equivalent to the exactness
of M → N → P by [13, Proposition 3.9]. �

Theorem 11.32. Suppose that F is a sheaf of OX-modules on a quasi-
projective variety X. Then F is quasi-coherent (coherent) if and only if for
every affine open subset U of X, there exists a (finitely generated) k[U ]-

module M such that F|U ∼= M̃ .

If F is a quasi-coherent sheaf on X and U is an affine open subset of X,
then the above theorem tells us that

F|U = Γ̃(U,F),

by Theorem 11.24.

Proof. We will first assume that F is quasi-coherent and that U is an affine
open subset of X.

We observe that if V is an affine open subset of X such that F|V ∼= M̃

for some k[V ]-module M and h ∈ k[V ], then F|Vh
∼= M̃h. Since U ∩ V is

covered by affine open subsets Vh, we have that F|U is quasi-coherent since
F is quasi-coherent.

Let R = k[U ]. If V ⊂ U is an affine open subset and p ∈ V , then there
exists g ∈ R such that p ∈ Ug ⊂ V , and Ug = Vg. Thus U can be covered by a
finite number of open sets Ui = Ugi such that there are k[Ui] = Rgi-modules

Mi with F|Ui
∼= M̃i.

We have

F|Ugi ∩ Ugj = F|Ugigj
∼= (̃Mi)gj .

For every open subset W of U , the sequence

0 → Γ(W,F) →
∏
i

Γ(W ∩ Ugi ,F) →
∏
i<j

Γ(W ∩ Ugi ∩ Ugj ,F)

is exact by the sheaf axioms. Define new sheaves F∗
i and F∗

i.j on U by

Γ(W,F∗
i ) = Γ(W ∩ Ugi ,F)

and

Γ(W,F∗
i,j) = Γ(W ∩ Ugi ∩ Ugj ,F)

for an open subset W of U , so the sequence of sheaves

0 → F →
∏
i

F∗
i →

∏
i<j

F∗
i,j
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is exact. So to prove that F is of the form M̃ for some R-module, it suffices
to prove this for F∗

i and F∗
i,j , by Lemma 11.31, as a direct sum of tildes

of modules on an affine variety is the tilde of the sum. Viewing Mi as an
R-module, for all g ∈ R we have

Γ(Ug,F∗
i ) = Γ(Ug ∩ Ugi ,F) = Γ((Ugi)g,F|Ugi) = (Mi)g = Γ(Ug, M̃i)

so that F∗
i = M̃i. The same argument shows that F∗

i,j = (̃Mi)gj . Thus F is
the tilde of an R-module M .

The conclusions of the theorem for coherent sheaves reduces by the above
arguments to the statement that if U is affine, with R = k[U ], f1, . . . , fn ∈ R
are such that Uf1 , . . . , Ufn is an affine cover of U , and M is an R-module
such that Mfi is a finitely generated Rfi-module for 1 ≤ i ≤ n, then M is
a finitely generated R-module. We will now establish this statement, which
is a minor extension of Lemma 7.4.

For 1 ≤ i ≤ n, there exist elements σi1, . . . , σiti in M which generate Mfi

as an Rfi-module. Let N be the R-submodule of M generated by σij for
1 ≤ i ≤ n and 1 ≤ j ≤ ti. Since U =

⋃
i Ufi , we have that ZU (f1, . . . , fn) =

∅, so that the ideal (f1, . . . , fn) = R. Suppose m ∈ M . Then for 1 ≤ i ≤ n,
there exist rij ∈ R and λ ∈ N such that

fλ
i

⎛⎝m −
∑
j

rijσij

⎞⎠ = 0

in M , so that (fλ
1 , . . . , f

λ
n )m ⊂ N . But (fλ

1 , . . . , f
λ
n ) = R by Lemma 7.3 so

m ∈ N . Thus M = N is a finitely generated R-module. �

Definition 11.33. Suppose that X is a quasi-projective variety and F is a
coherent sheaf of OX-modules. The sheaf F is said to be invertible if there
exists an open cover {Ui} of X and OUi-module isomomorphisms φi : OUi →
F|Ui for all Ui in the cover.

Exercise 11.34. Suppose that X is a locally ringed space and F is a sheaf
of OX-modules on X. Show that there is a natural isomorphism of OX(X)-
modules HomOX

(OX ,F) → F(X).

Exercise 11.35. Suppose that X is a quasi-projective variety, F , G are
OX-modules, and φ : F → G is a homomorphism of OX-modules.

a) Suppose that F and G are quasi-coherent. Show that Kernel(φ),
Image(φ), and Cokernel(φ) are quasi-coherent OX-modules.

b) Suppose that F and G are coherent. Show that Kernel(φ), Image(φ),
and Cokernel(φ) are coherent OX -modules.
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Exercise 11.36. Suppose that X is a quasi-projective variety. Suppose
that F is a sheaf on X. Define the support of F by

Supp(F) = {p ∈ X | Fp 
= 0}.
Suppose that F is a coherent sheaf on X. Show that Supp(F) is a closed
set. Hint: You may use the following lemma from commutative algebra
[13, Exercise 19, page 46]: suppose that Y is an affine variety. Let A = k[Y ],
and suppose that M is a finitely generated A-module. Then

{p ∈ Y | MIY (p) 
= 0}
is a closed subset of Y .

11.5. Constructions of sheaves from sheaves of modules

In this section we give some constructions of sheaves from sheaves of mod-
ules. Our primary interest in these sheaves is in the case of coherent or quasi-
coherent OX-modules. In this case, the equations (11.15), (11.16), (11.17),
and (11.18) should be taken as the definitions of these sheaves. These for-
mulas, which give local realizations of the sheaves in terms of commutative
algebra, are all that is needed to work effectively with these sheaves.

Assume that X is a quasi-projective variety and F and G are quasi-
coherent sheaves on X. The tensor product F ⊗OX

G is a quasi-coherent
sheaf of OX -modules which is uniquely determined by the following property:
if U is an affine open subset of X and L = Γ(U,F), M = Γ(U,G), then
(11.15) (F ⊗OX

G)|U = Ñ

where N = L ⊗k[U ] M . We can use the sheaf axioms to show that the
condition (11.15) determines a unique sheaf on X. If F and G are coherent,
then F ⊗OX

G is coherent. The stalk (F ⊗OX
G)p ∼= Fp ⊗OX,p

Gp for p ∈ X.
We sometimes denote F⊗OX

G by F⊗G when there is no danger of confusion.

Assume that X is a quasi-projective variety and F is a quasi-coherent
sheaf on X and G is a coherent sheaf on X. The sheaf HomOX

(F ,G) is a
quasi-coherent sheaf of OX -modules which is uniquely determined by the
property that if U an affine open subset of X, then

(11.16) HomOX
(F ,G)|U = G̃

where

G = Homk[U ](Γ(U,F),Γ(U,G))
is the k[U ]-module of k[U ]-module homomorphisms from Γ(U,F) to Γ(U,G).
We can use the sheaf axioms to show that the condition (11.16) determines
a unique sheaf on X. If F is coherent, then HomOX

(F ,G) is coherent.
For p ∈ X, the stalk HomOX

(F ,G)p = HomOX,p
(Fp,Gp), the OX,p-module

homomorphisms from Fp to Gp, as follows from [50, Proposition 1.10].
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Suppose that φ : X → Y is a regular map of quasi-projective varieties
and M is a quasi-coherent sheaf of OY -modules. The inverse image φ∗M of
M by φ is a quasi-coherent sheaf of OX-modules, which has the following
defining property: if U is an affine open subset of X and V is an affine open
subset of Y such that φ(U) ⊂ V , then

(11.17) φ∗M|U = ˜(M ⊗k[V ] k[U ])

where M = Γ(V,M). We can use the sheaf axioms and basic properties
of tensor products to show that the condition (11.17) determines a unique
sheaf φ∗(M) on X. It follows from (11.17) that φ∗M is coherent if M is
coherent. If p ∈ X and q = φ(p), then (φ∗M)p ∼= Mq⊗OY,q

OX,p (by Lemma
11.4).

Definition 11.37. Suppose that X is a variety. A coherent OX -module I
is called an ideal sheaf if I is an OX -submodule of OX .

If I is an ideal sheaf on an affine variety X, we see from Theorem 11.32
that I = Γ(X, I) ⊂ k[X] is such that I = Ĩ, and we will see from Theorem
11.48 that if X is projective with coordinate ring S(X) and I is an ideal
sheaf on X, then there exists a homogeneous ideal I of S(X) such that

I = Ĩ .

We will see, by Proposition 11.53, that Definition 11.37 is consistent
with Examples 11.17 and 11.18.

Suppose that φ : X → Y is a regular map of quasi-projective varieties
and I is an ideal sheaf on Y . We define the inverse image ideal sheaf IOX

to be the natural image of φ∗I in OX induced by the inclusion I ⊂ OY ,
giving a map φ∗I → φ∗OY

∼= OX . The sheaf IOX is coherent since it is the
image of a homomorphism of coherent sheaves (Exercise 11.35). This ideal
sheaf has the defining property that when U an affine open subset of X and
V an affine open subset of Y such that φ(U) ⊂ V ,

(11.18) IOX |U = Ĩk[U ],

where I = Γ(V, I). If p ∈ X and q = φ(p), then (IOX)p = IqOX,p.

If I is an ideal sheaf on Y , then there exists a natural surjection of
OX-modules

φ∗I → IOX ,

but in general this map is not injective. We do have that

φ∗I/T (φ∗(I)) ∼= IOX ,

where T (φ∗(I)) is the OX-torsion of φ∗(I) (Exercise 11.43). The fact that
φ∗I → IOX is in general not injective can be seen in the following sim-
ple example. Let A = k[x, y] and B = k[x1, y1] be polynomial rings, and
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consider the injective k-algebra homomorphism A → B defined by x = x1,
y = x1y1. Let I = (x, y) ⊂ A. We have a short exact sequence of A-modules

0 → A → A2 → I → 0,

where the first map is defined by 1 �→ (y,−x) and the second map is defined
by (1, 0) �→ x and (0, 1) �→ y. Tensoring this sequence with B, we have the
right exact sequence (tensoring with a module is right exact by Proposition
5.5)

B → B2 → I ⊗A B → 0,

so that
I ⊗A B ∼= B2/(x1y1,−x1)B.

The class of (y1,−1) is nonzero in I ⊗AB, but x1(y1,−1) = 0. Thus I ⊗AB
has B-torsion, which must be in the kernel of the surjection onto the ideal
IB.

The above sheaves can be defined more generally for sheaves of OX -
modules on a locally ringed space X. We will give an outline of these
constructions here for the interested reader.

Suppose that F and G are OX -modules on a locally ringed space X.
Then we have a presheaf

U �→ F(U)⊗OX(U) G(U).

We denote by F ⊗OX
G (or sometimes F ⊗ G when there is no danger of

confusion) the sheaf associated to this presheaf. The stalk (F ⊗ G)p ∼=
Fp ⊗OX,p

Gp for p ∈ X (by Lemma 11.4).

To prove that this definition gives formula (11.15) in the case when
X is quasi-projective and F and G are quasi-coherent, observe that we
have a natural restriction homomorphism from Ñ to the presheaf V �→
F(V ) ⊗OX(V ) G(V ) for V an open subset of U . Then by Proposition 11.12,

there is a natural homomorphism of sheaves Ñ → (F⊗OX
G)|U . This map is

an isomorphism on stalks, so it is an isomorphism of sheaves by Proposition
11.13. The quasi-coherence (or coherence) of F ⊗OX

G then follows from
Theorem 11.32.

Suppose that F and G are OX-modules on a locally ringed space X. We
have a presheaf

U �→ HomOX |U (F|U,G|U),

for U an open subset of X, the OX(U)-module of OX |U -module sheaf ho-
momorphisms F|U → G|U . This presheaf is a sheaf (since F and G are
sheaves), which we write as HomOX

(F ,G).

Lemma 11.38. Suppose that X is a quasi-projective variety, F is quasi-
coherent and G is coherent on X. Then HomOX

(F ,G) is quasi-coherent.
Further, if F and G are both coherent, then HomOX

(F ,G) is coherent.
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Proof. Let H = HomOX
(F ,G). It suffices to prove the lemma when X is

affine. Let R = k[X], M = F(X), and N = G(X). Then N is a finitely

generated R-module, F = M̃ , and G = Ñ . Let A = HomR(M,N). We have

a natural homomorphism of sheaves Ã → H. For f ∈ R, we have

Ã(D(f)) = HomR(M,N)f ∼= HomRf
(Mf , Nf ) (by [50, Proposition 1.10])

∼= HomR̃f
(M̃f , Ñf ) by Lemma 11.30

∼= H(D(f)).

Since any affine open subset of X is a finite union of basic open sets D(fi),

we thus have that Ã(U) → H(U) is an isomorphism for all open subsets U of

X by the sheaf axioms. Thus H ∼= Ã is quasi-coherent. Further, if F and G
are both coherent, so that M and N are both finitely generated R-modules,
then A is a finitely generated R-module, so H ∼= Ã is coherent. �

From Lemmas 11.30, 11.32, and 11.38 we see that the formula 11.16
holds.

We now give an outline of the general construction of the pull-back f∗G
of a sheaf of OY -modules by a morphism of ringed spaces f : X → Y .

Suppose that f : X → Y is a continuous map of topological spaces and
G is a sheaf on Y . The inverse image sheaf f−1G on X is the sheaf associated
to the presheaf

U �→ lim
f(U)⊂V

G(V )

where U is an open subset of X and the limit is over the open sets V of Y
which contain f(U).

Let f : X → Y be a morphism of ringed spaces and G be an OY -module.
Then f−1G is an f−1OY -module and we have a natural homomorphism
f−1OY → OX of sheaves of rings on X. We define the inverse image of G
by the morphism f to be

f∗G = f−1G ⊗f−1OY
OX .

The sheaf f∗G is a sheaf of OX -modules. In the case when f : X → Y is a
regular maps of quasi-projective varieties and G is quasi-coherent, we have
the formula (11.17).

Exercise 11.39. Suppose that X is a closed subvariety of a quasi-projective
variety Y . Let i : X → Y be the inclusion, and let IX be the ideal sheaf of
X in Y . Show that there is a short exact sequence of sheaves of OY -modules

0 → IX → OY → i∗OX → 0.

Hint: First solve this when Y is affine.
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Exercise 11.40. Suppose that X is a quasi-projective variety of dimension
> 0 and p ∈ X. Define a presheaf F on X by

F(U) =

{
OX(U) if p 
∈ U,
0 if p ∈ U

for U an open subset of X.

a) Show that F is a sheaf of OX-modules.

b) Show that F is not coherent.

c) Observe that F is a sub-OX-module of OX which is not an ideal
sheaf.

Exercise 11.41. Suppose that X and Y are varieties, φ : X → Y is a
regular map, and F , G are OX-modules.

a) Show that there is a natural homomorphism of OY -modules

φ∗F ⊗OY
φ∗G → φ∗(F ⊗OX

G).

b) Suppose that V is a locally free sheaf on Y (every point q ∈ Y has
a neighborhood U such that V|U ∼= On

U for some n). Show that
there is a natural isomorphism of OY -modules

φ∗(F ⊗OX
φ∗V) ∼= φ∗F ⊗OY

V.

Exercise 11.42. Suppose that X is a quasi-projective variety and I and J
are ideal sheaves on X. Suppose that p ∈ X and Ip = Jp. Show that there
exists a neighborhood U of p in X such that I|U = J |U .

Exercise 11.43. If A is an integral domain and M is an A-module, then
the A-torsion submodule of M is

TA(M) = {x ∈ M | AnnA(x) 
= 0}.

The fact that TA(M) is a submodule of M is shown in [13, Exercise 12,
Chapter 3]. It has the property that M/TA(M) is A-torsion free (the torsion
submodule is 0).

Suppose that X is a quasi-projective variety and F is a quasi-coherent
OX-module. Suppose that σ ∈ Γ(X,F). Then we have a coherent ideal
sheaf AnnX(σ) on X defined by

Γ(U,AnnX(σ)) = {τ ∈ Γ(U,OX) | τ(σ|U) = 0}

for U an open subset of X.
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Define a presheaf T (F) on X by

T (F)(U) = {σ ∈ F(U) | the sheaf AnnU (σ) 
= 0}
for U an open subset of X. Show that T (F) is a quasi-coherent OX -module
which has the property that

T (F)(U) = TΓ(U,OX )(Γ(U,F))

if U is affine. The sheaf T (F) is called the sheaf of OX -torsion of F .

11.6. Some theorems about coherent sheaves

The principle results of this section (through Theorem 11.51) were originally
proven by Serre in [132]. In this section, we first define the twisted sheaf
OX(n). We show that, on a projective variety X with coordinate ring S(X),

a quasi-coherent sheaf is isomorphic to Ñ where N is a graded S(X)-module

and a coherent sheaf is isomorphic to Ñ where N is a finitely generated
graded S(X)-module (Theorem 11.46). We show that if φ : X → Y is a
regular map of projective varieties and F is a coherent sheaf on X, then
φ∗F is a coherent sheaf on Y (Theorem 11.51).

Suppose that X is a projective variety or more generally a closed sub-
variety of Y × Pr where Y is an affine variety. We have a natural closed
embedding i : X → Pr or more generally a closed embedding i : X →
Y × Pr so that X has the coordinate ring S(X) = S(Y × Pr)/I(X). Here
S(Y × Pr) = k[Y ][y0, . . . , yr] is a polynomial ring in the variables y0, . . . , yr,
with the grading that the elements of k[Y ] have degree 0 and the yi have
degree 1. The graded ideal I(X) =

⊕
j≥0 I(X)j , so that

(11.19) S(X) = S(Y × Pr)/I(X) = R[x0, . . . , xr]

where R = k[Y ]/I(X)0 and xi is the class of yi in S(X) (which has degree 1).

In the case that X is a projective variety, we have a closed embedding
of X in Pr for some r. Let p be a point. Then p is an affine variety with
k[p] = k. Thus we have a natural closed embedding of X in p × Pr ∼= Pr,
which has the coordinate ring

S(p × Pr) = k[p]⊗k k[y0, . . . , yr] ∼= k[y0, . . . , yr] = S(Pr).

The following theorems, which are stated for subvarieties of Y ×Pr, are thus
valid for the case of a subvariety of Pr, taking Y = p and k[Y ] = k[p] = k
in the proofs. We require the more general statements about subvarieties of
Y × Pr with Y an affine variety in the proof of Theorem 11.51 and other
later applications.

Suppose that N is a graded S(X)-module. Recall (Section 3.1) that for
n ∈ Z, we define N(n) to be the module N , but with a different grading,

N(n)i = Nn+i for i ∈ Z.
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We have a quasi-coherent sheaf of OX -modules Ñ(n) onX, which is coherent
if N is a finitely generated S(X)-module (Example 11.29). We define a

coherent sheaf OX(n) = ˜S(X)(n).

Lemma 11.44. Suppose that R is a ring and S = R[x0, . . . , xn] is a graded
R-algebra with deg xi = 1 for 0 ≤ i ≤ n. Let N be a graded S-module. Then

Nxi =
⊕
j∈Z

N(xi)x
j
i .

Proof. Write the graded Sxi-module Nxi as Nxi =
⊕

j∈ZN j , so that N0 =

N(xi). Suppose that j ∈ Z. We have that N(xi)x
j
i ⊂ N j . Suppose that

f ∈ N j . Then f = g
xl
i

with l ∈ N and g ∈ Na with a − l = j. Now

f =

(
g

xl+j
i

)
xji ∈ N(xi)x

j
i . �

Suppose that N is a graded S(X)-module. We have that

(11.20) Ñ(n) ∼= F ⊗ OX(n) if F = Ñ .

Letting S = S(X), this formula follows from the identitiesN(n) ∼= N⊗SS(n)

and Ñ(n) ∼= ˜N ⊗S S(n) ∼= Ñ ⊗S̃ S̃(n). This last equality of sheaves follows
from the sheaf axioms, since we have, by Lemma 11.44, natural isomorphisms
N(xi) ⊗S(xi)

S(n)(xi)
∼= N(n)(xi) which are compatible with localization.

More generally, we define F(n) = F ⊗ OX(n) if F is a sheaf of OX -
modules on X.

We have the following useful formula, which shows that OX(n) is an
invertible sheaf (Definition 11.33):

(11.21) Γ(Xxi ,OX(n)) = Γ(Xxi ,OX)xni

for 0 ≤ i ≤ n and n ∈ Z.

We now prove formula (11.21). By Lemma 11.44, the localization

S(X)xi =
⊕
n∈Z

S(X)(xi)x
n
i

as graded rings. Thus

Γ(Xxi ,OX(n)) = Γ(Xxi ,
˜S(X)(n)) = S(X)(xi)x

n
i

= Γ(Xxi , S̃(X))xni .

We have the following formula:

(11.22) i∗(OY×Pr(n)) ∼= OX(n).
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We now establish formula (11.22). By Lemma 11.44, we have that

I(X)yi =
⊕
n∈Z

I(X)(yi)y
n
i

and

Γ((Y × Pr)yi ,
˜I(X)(n)) = I(X)(yi)y

n
i .

We have short exact sequences of S(Y × Pr)(yi)-modules

0 → I(X)(yi)y
n
i → S(Y × Pr)(yi)y

n
i → S(X)(xi)x

n
i → 0

so we have natural isomorphisms

Γ(Xxi ,OX(n)) = S(X)(xi)x
n
i = S(Y × Pr)(yi)y

n
i /I(X)(yi)y

n
i∼= S(Y × Pr)(yi)y

n
i ⊗S(Y×Pr)(yi)

(S(Y × Pr)(yi)/I(X)(yi))
∼= S(Y × Pr)(yi)y

n
i ⊗S(Y×Pr)(yi)

S(X)(xi)

∼= Γ((Y × Pr)yi ,OY×Pr(n))⊗Γ((Y×Pr)yi ,OY ×Pr )Γ(Xxi ,OX)
∼= Γ(Xxi , i

∗(OY×Pr(n))).

These isomorphisms are compatible with localization, so by the sheaf axioms,
we have a natural isomorphism OX(n) ∼= i∗(OY×Pr(n)).

Suppose that G is a sheaf of OY×Pr -modules and n ∈ Z. Then

(11.23) i∗(G(n)) ∼= (i∗G)(n).

We now establish (11.23). We have that G(n) = G ⊗OY ×Pr
(OY×Pr(n))

and

(11.24) i∗(G(n)) =
(
G ⊗OY ×Pr

OY×Pr(n)
)
⊗OY ×Pr

OX
∼= G ⊗OY ×Pr

OX(n)

by (11.22). We have i∗G = G ⊗OY ×Pr
OX and

(i∗G)(n) =
(
G ⊗OY ×Pr

OX

)
⊗OX

OX(n) ∼= G ⊗OY ×Pr
OX(n) ∼= i∗(G(n))

by equation (11.24).

Suppose F is a sheaf of OX-modules. For all n ∈ Z, we have natural
isomorphisms

(11.25) (i∗F)(n) ∼= i∗(F(n)).

We now establish formula (11.25). We have that (i∗F)(n) is the sheaf asso-
ciated to the presheaf

U �→ Γ(U ∩ X,F) ⊗Γ(U,OY ×Pr ) Γ(U,OY×Pr(n))

for U an open subset of Y × Pr, and we have that i∗(F(n)) is the sheaf
associated to the presheaf

U �→ Γ(U∩X,F)⊗Γ(U∩X,OX)

(
Γ(U ∩X,OX) ⊗Γ(U,OY ×Pr ) Γ(U,OY×Pr(n))

)
.
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This last module is naturally isomorphic to

Γ(U ∩X,F) ⊗Γ(U,OY ×Pr ) Γ(U,OY×Pr(n)).

Thus (i∗F)(n) ∼= i∗(F(n)).

A sheaf F of OX-modules on a locally ringed space X is said to be
generated by a finite number of global sections if there exist

σ1, . . . , σn ∈ Γ(X,F)

such that Fp = σ1OX,p + · · ·+ σnOX,p for all p ∈ X.

Theorem 11.45. Let X be a projective variety, or, more generally, a closed
subvariety of Y × Pr where Y is an affine variety, with coordinate ring

S = S(X), and associated sheaf OX(1) = S̃(1). Let F be a coherent sheaf
on X. Then there exists an integer m0 such that for all n ≥ m0, the sheaf
F(n) is generated by a finite number of global sections.

Proof. Write the graded coordinate ring S of X as S = R[x0, . . . , xr] where
elements of R have degree 0 and x0, . . . , xr have degree 1, as in (11.19).

Let Bi = Γ(Xxi ,OX) = R[x0
xi
, . . . , xr

xi
] for 0 ≤ i ≤ r. Since F is coherent,

there exist finitely generated Bi-modules Mi such that F|Xxi
∼= M̃i for each

i. Let {sij} be a finite number of generators of Mi for each i. We have that

OX(n)|Xxi is naturally isomorphic to the module x̃ni Bi (by (11.21)), so the

sheaf F(n)|Xxi is naturally isomorphic to ˜Mi ⊗ (xni Bi).

We will now show that there exists a positive integer n such that xni sij
extends to tij ∈ Γ(X,F(n)) for all i, j.

It suffices to show that if n0 ∈ M0, then xn0n0 extends to an element of
Γ(X,F(n)) for all n � 0. Let

Mij = Γ(Xxixj ,F) ∼= (Mi)xj
xi

since F is coherent. There exists λ ∈ N and ni ∈ Mi for 0 < i ≤ r such that

n0 =
ni

(x0
xi
)λ

in Mi0. Since
ni

(x0
xi
)λ

=
nj

(x0
xj
)λ

in M0ij = (Mij)x0
xi

, there exists a ∈ N such that[
ni

(
x0
xj

)λ

− nj

(
x0
xi

)λ
](

x0
xi

)a

= 0
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in Mij . Let

σi = ni

(
x0
xi

)a+λ

xa+2λ
i ∈ Γ(Xxi ,F(a+ 2λ)) = Mix

a+2λ
i .

The differences of the restrictions

σi − σj = [(x0
xi
)a+λni − (x0

xi
)λ+a(

xj

xi
)λnj ]x

a+2λ
i

= (x0
xi
)a(

xj

xi
)λ[ni(

x0
xj
)λ − nj(

x0
xi
)λ]xa+2λ

i = 0

in Mijx
a+2j
i = Γ(Xxixj ,F(a+ 2λ)). Thus {σi} ∈

⊕
Mix

a+2λ
i is an element

of

Γ(X,F(a+ 2λ)),

and so σ0 = n0x
a+2λ
0 extends to an element of Γ(X,F(a+2λ)), and so n0x

n
0

extends to an element of Γ(X,F(n)) whenever n ≥ a+ 2λ.

The sections xni sij generate Mi ⊗ (xni Bi), and so the tij generate F(n)
everywhere. �

Theorem 11.46. Suppose that F is a quasi-coherent sheaf on a projective
variety X, or, more generally, on a closed subvariety X of Y × Pr where Y
is an affine variety, and X has the coordinate ring S(X). Then there exists

a graded S(X)-module M such that F ∼= M̃ . If F is coherent, there exists a

finitely generated graded S(X)-module M such that F = M̃ .

Proof. Suppose that F is quasi-coherent. Let S = S(X) = R[x0, . . . , xr]
be the coordinate ring of X, and define a graded S-module

M = Γ∗(F) =
⊕
n∈Z

Γ(X,F(n)).

We will show that there is a natural isomorphism of OX -modules β : M̃ →
F . It suffices to define isomorphisms over the affine open sets Xxi which
agree on the Xxixj . We have that

Γ(Xxi , M̃) = M(xi) =

{
m

xdi
| m ∈ Γ(X,F(d)) for some d

}
.

For fixed d, we have that F ∼= F(d)⊗OX(−d) and OX(−d)|Xxi =
˜x−d

i k[Xxi ],
so we may define M(xi) → F(Xxi)

∼= [F(d)(Xxi)]⊗ [OX(−d)(Xxi)] by

m

xdi
�→ (m|Xxi) ⊗ x−d

i .
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Suppose m ∈ Γ(X,F(d)) and (m|Xxi) ⊗ x−d
i = 0. Let mj = m|Xxj for

0 ≤ j ≤ r. We have that mi = 0 so mj|Xxixj = 0 in Γ(Xxixj ,F(d)) ∼=
F(d)(Xxj) xi

xj

. There exists λ ∈ N such that for all j, ( xi
xj
)λmj = 0 in

Γ(Xxi ,F(d)). Consider xλi m ∈ Γ(X,F(d+ λ)). Then

xλi m | Xxj =

((
xi
xj

)λ

mj

)
xλj = 0 for all j

so xλi m = 0. Thus m
xd
i

= 0 in M(xi). Thus the homomorphism M(xi) →
F(Xxi) is injective.

The proof of Theorem 11.45 shows that M(xi) → F(Xxi) is surjective
and hence is an isomorphism.

Thus we have natural isomorphisms βi : M̃(Xxi) → F | Xxi = F̃(Xxi)
which agree onXxi∩Xxj = Xxixj . Thus the βi patch to give an isomorphism
of sheaves β.

Now suppose that F is coherent. By Theorem 11.45, F(n) is generated
by a finite number of global sections for n � 0. For such an n, let M ′ be
the submodule of M generated by these sections, so that M ′ is a finitely
generated S-module. The inclusion of S-modules M ′ ⊂ M induces an in-
clusion of OX -modules M̃ ′ ⊂ M̃ = F . Tensoring with OX(n), we have an

inclusion M̃ ′(n) ⊂ F(n) which is an isomorphism since F(n) is generated

by global sections of M̃ ′(n). After tensoring with OX(−n), we obtain that

M̃ ′ ∼= F . �

The proof of the following theorem is similar to that of Theorem 3.35.

Theorem 11.47. Suppose that X is a projective variety, or, more generally,
a closed subvariety of Y ×Pr where Y is an affine variety. Let S = S(X) be
the homogeneous coordinate ring of X for this embedding, and let OX(n) be

the coherent sheaf S̃(n). Let S′ =
⊕

n≥0 Γ(X,OX(n)). Then S′ is a finite

S-module and Γ(X,OX(n)) = Sn for all n � 0.

Proof. Write S = R[x0, . . . , xr] where x0, . . . , xr have degree 1. We have
that

Γ(Xxi ,OX(n)) = S(n)(xi),

the elements of degree 0 in the localization S(n)xi . Now S(n) is the ring
S with a different grading, and we can identify S(n)(xi) with the elements
(Sxi)n of degree n in the localization Sxi (by Lemma 11.44). Since OX(n)
is a sheaf,

Γ(X,OX(n)) =
r⋂

i=0

Γ(Xxi ,OX(n)) =
r⋂

i=0

(Sxi)n
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where the intersection takes place in the graded ring
⋂r

i=0 Sxi . Since Sn is
certainly contained in (Sxi)n for all n, we have natural graded inclusions

S ⊂ S′ ⊂
r⋂

i=0

Sxi .

We will show that S′ is integral over S. Let s′ ∈ S′ be homogeneous of
degree d ≥ 0. Since s′ ∈ Sxi for each i, there exists an integer m such that
xmi s′ ∈ S for all i. The monomials of degree m in x0, . . . , xr generate Sm as
an R-module for all m. Thus there exists an n0 such that Sns

′ ⊂ S for all
n ≥ n0. Thus Sns

′ ⊂ Sn+d for all n ≥ n0. It follows that Sn(s
′)q ⊂ Sn+qd

for any q ≥ 1 and all n ≥ n0. Thus (s′)q ∈ 1
x
n0
0

S for all q ≥ 1, and so the

ring S[s′] is contained in 1
x
n0
0

S which is a finitely generated S-module. Thus

S[s′] is a finitely generated S-module and s′ is integral over S (Theorem
1.49). Thus S′ is contained in the integral closure of S in its quotient field.
Since S is a finitely generated k-algebra, the integral closure of S in its
quotient field is a finitely generated S-module, by Theorem 1.54. Thus S′ is a
finitely generated S-module by Lemma 1.55. Let F1, . . . , Fr be homogeneous
elements in S′ which generate S′ as an S-module. We showed above that
there exists N > 0 such that SNFi ⊂ S for all i. Thus S′

n = Sn for all
n ≥ max{deg(Fi)}+N . �

Proposition 11.48. Suppose that Y is an affine variety and X is a closed
subvariety of Y ×Pr. Let S(X) be the graded coordinate ring of X. Suppose
that I ⊂ OX is an ideal sheaf. Then there exists a graded ideal I ⊂ S(X)

such that Ĩ = I.

Proof. Let x0, . . . , xr be homogeneous coordinates on Pr. For n ∈ Z
and p ∈ Xxi , OX(n)p = xni OX,p (by (11.21)), so that OX(n) is an in-
vertible sheaf. Thus the natural inclusion I ⊂ OX induces an inclusion
I(n) = I ⊗OX

OX(n) ⊂ OX(n), and so Γ∗(I) =
⊕

n∈Z Γ(X, I(n)) is a
graded submodule of Γ∗(OX) =

⊕
n∈Z Γ(X,OX(n)). There exists n0 ∈ N

such that Γ(X,OX(n)) = S(X)n for n ≥ n0 by Theorem 11.47. Thus I =⊕
n≥n0

Γ(X, I(n)) is a graded ideal in S(X). We have that Ĩ = Γ̃∗(I) = I
by Theorem 11.46 (and its proof) and Exercise 11.57. �

Theorem 11.49. Let Y be an affine variety and X ⊂ Y × Pn be a closed
subvariety. Let F be a coherent OX-module. Then Γ(X,F) is a finitely
generated k[Y ]-module. In particular, if X ⊂ Pn is a projective variety, then
Γ(X,F) is a finitely generated k-vector space.

Proof. Let A = k[Y ] and p = I(X) which is a graded prime ideal in the
graded ring A[x0, . . . , xn]. The coordinate ring of X is the graded domain
S = A[x0, . . . , xn]/p ∼=

⊕
i≥0 Si, where S0 = A/p ∩ A. By Theorem 11.46,
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there exists a finitely generated S-module M such that M̃ ∼= F . By [73,
Theorem I.7.4], there is a finite filtration

0 = M0 ⊂ M1 ⊂ · · · ⊂ M r = M

of M by graded submodules, where for each i, M i/M i−1 ∼= (S/pi)(ni) for
some homogeneous prime ideal pi ⊂ S and some integer ni. The filtra-
tion gives a filtration of M̃ by coherent OX-modules, and the short exact
sequences

0 → M̃ i−1 → M̃ i → ˜M i/M i−1 → 0

induce exact sequences

0 → Γ(X, M̃ i−1) → Γ(X, M̃ i) → Γ(X, ˜M i/M i−1).

To show that Γ(X, M̃) is a finitely generated A-module, it thus suffices

to show that each Γ(X, ˜S/pi(ni)) is a finitely generated A-module, which
follows from (11.14), Exercise 11.27, (11.25), and Theorem 11.47. �

Theorem 11.50. Suppose that φ : X → Y is a regular map of quasi-
projective varieties and F is a quasi-coherent sheaf on X. Then φ∗F is a
quasi-coherent sheaf on Y . If Y is an affine variety, X is a closed subvariety
of Y × Pr, F is coherent on X, and π1 : Y × Pr → Y is the projection with
restriction π1 to X, then (π1)∗F is coherent on Y .

Proof. Suppose that F is quasi-coherent. We will show that φ∗F is quasi-
coherent. First assume that X and Y are affine, so that F = M̃ for some
k[X]-module M . Let A = k[Y ]. Let f ∈ A and U = Yf . Then

(φ∗F)(U) = F(φ−1(U)) = M̃(Xf ) = Mf .

Thus writing MA for M considered as an A-module, we have that (M̃A)(Yf )
= φ∗F(Yf ). Since any open subset of Y is a union of basic open sets Yf , we

have by the sheaf axioms that φ∗F = M̃A is quasi-coherent.

Now we prove, more generally, that φ∗F is quasi-coherent if X and Y
are quasi-projective and F is quasi-coherent. By Theorem 11.32, we may
assume that Y is affine. Cover X with a finite number of open affine sets
U1, . . . , Ur. Let Ui,j = Ui ∩ Uj which is affine (Exercise 5.21). By the sheaf
properties, we have exact sequences of sheaves

0 → φ∗F →
⊕
i

φ∗(λ
i
∗F|Ui) →

⊕
i<j

φ∗(λ
i,j
∗ F|Ui,j)

where λi : Ui → X and λi,j : Ui,j → X are the natural inclusions. We have

that φ∗λi
∗ = (φ◦λi)∗ and φ∗λ

i,j
∗ = (φ◦λi,j)∗, so the sheaves φ∗λi

∗(F|Ui) and

φ∗λ
i,j
∗ (F|Uij) are quasi-coherent by the first part of this proof. Thus φ∗F is

quasi-coherent by Exercise 11.35 and Theorem 11.32.
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Now suppose that F is coherent and X is a closed subvariety of Y × Pn

where Y is affine. We will show that (π1)∗F is coherent. Since (π1)∗F is
quasi-coherent, it suffices to show that Γ(Y, (π1)∗F) is a finitely generated
A = k[Y ]-module. But this follows from Theorem 11.49. �

Theorem 11.51. Suppose that φ : X → Y is a regular map of projective
varieties and F is a coherent sheaf on X. Then φ∗F is a coherent sheaf
on Y .

Proof. Let Γφ ⊂ X × Y be the graph of φ, with natural isomorphism
j = (id, φ) : X → Γφ. Let π2 : X × Y → Y be the projection, with induced
projection π2 : Γφ → Y . Then φ∗F ∼= (π2)∗j∗F , which is coherent by
Theorem 11.50. �

Suppose thatX is a variety, with function field k(X). The constant sheaf
k(X) satisfies Γ(U, k(X)) = k(X) for all open subsets U of X by Proposition
11.14, since all open subsets of X are connected.

Proposition 11.52. Suppose that φ : X → Y is a birational regular map
of projective varieties and Y is normal. Then φ∗OX = OY .

Proof. The inclusion OX → k(X) of OX -modules induces an inclusion
φ∗OX → φ∗k(X) = k(X) = k(Y ) of OY -modules. Since φ∗OX is a coherent
OY -module by Theorem 11.51 under the natural inclusion OY → φ∗OX and
OY is normal, we have that φ∗OX = OY . �

Proposition 11.53. Suppose that X is a variety and M is a quasi-coherent
sheaf on X such that M is a subsheaf of OX-modules of the constant sheaf
k(X). Suppose that U is an open subset of X. Then

M(U) =
⋂
p∈U

Mp

where the intersection takes place in k(X).

Proof. We have that M(U) ⊂ Γ(U, k(X)) = k(X) for all open subsets U
of X by Proposition 11.14 and Proposition 11.20. Let U be an open subset
of X and {V1, . . . , Vn} be an affine open cover of U . By the sheaf axioms,
M(U) =

⋂n
i=1 M(Vi), where the intersection is in k(X). The conclusions of

the proposition now hold by formula (11.10). �

A coherent sheaf F on a variety X is locally free if for all p ∈ X, there
exists an open neighborhood U of p in X such that F|U is a free OU -module
(isomorphic to Or

U for some r).



218 11. Sheaves

Lemma 11.54. Let X be a quasi-projective variety, let p ∈ X, and let F
be a coherent OX-module. Let

λ(p) = dimk Fp/mpFp

where mp is the maximal ideal of OX,p. Then λ(p) is upper semicontinuous
on X; that is, for t ∈ N, the set

{q ∈ X | λ(q) ≥ t}
is a closed set in X.

Further, there exists an open neighborhood U of p such that F|U is a
free OU -module (isomorphic to Or

U for some r) if and only if λ is constant
in a neighborhood of p.

Proof. Let p ∈ X and r = λ(p). Let k(p) = OX,p/mp. There exist
a1, . . . , ar ∈ Fp such that their images generate Fp ⊗ k(p). Let U1 be a
neighborhood of p such that the ai lift to elements of Γ(U1,F). Define an
OU1-module homomorphism φ : Or

U1
→ F|U1 by φ(b1, . . . , br) =

∑
aibi. Let

K be the cokernel of φ, which is a coherent OU -module (Lemma 11.31). We
have exact sequences

Or
X,p

φ→ Fp → Kp → 0

and

k(p)r
φ→ Fp ⊗ k(p) → Kp ⊗ k(p) → 0.

The homomorphism φ is surjective, so 0 = Kp ⊗ k(p) ∼= Kp/mpKp. By
Nakayama’s lemma, Lemma 1.18, Kp = 0. Hence p is in the open set
X \ Supp(K) (Exercise 11.36). Let U2 = U1 ∩ (X \ Supp(K)). We have
that K|U2 = 0, so a1, . . . , ar generate F|U2. Hence the images of a1, . . . , ar
generate Fq ⊗ k(q) for all q ∈ U2 so that λ(q) ≤ r if q ∈ U2.

We now prove the second statement. If F is a free OX-module of rank
r in a neighborhood U of p, then F|U ∼= (OX |U)r for some r and λ(q) = r
for all q ∈ U .

Conversely, suppose that U1 is a nontrivial open subset of X such that
λ(p) = r for all p ∈ U1. As in the first part of the proof, there exists a
possibly smaller open subset U2 of X, which we may take to be affine, with
a surjective OX-module homomorphism

ψ : Or
U2

ψ→ F|U2 → 0.

Let K be the kernel of ψ. We will show that K = 0, establishing that F|U2

is free, and we will then have completed the proof.

Suppose that K 
= 0. We will derive a contradiction. We have (since U2

is affine) a short exact sequence

0 → K → Rr → M → 0



11.6. Some theorems about coherent sheaves 219

where K = Γ(U2,K), R = Γ(U2,OX), and M = Γ(U2,F). Since K = K̃,
there exists 0 
= s ∈ K. Write s = (s1, . . . , sr) where si ∈ R and some
si 
= 0. Then Z(s1, . . . , sr) 
= U2 (by the nullsellensatz), so there exists
q ∈ U2 \ Z(s1, . . . , sr), giving us that s 
∈ mqOr

U2,q
. Thus the leftmost map

is nonzero in the exact sequence

K ⊗ k(q) → k(q)r → Fq ⊗ k(q) → 0,

giving us that λ(q) < r, a contradiction. �

The following extension theorem for coherent sheaves will be useful.

Theorem 11.55. Suppose that X is a variety and U is an open subset of
X. Suppose that F is a coherent sheaf on U and G is a quasi-coherent sheaf
on X such that F is an OU -submodule of G|U . Then there exists a coherent
sheaf F ′ on X such that F ′ is an OX-submodule of G and F ′|U = F .

Proof. Let i : U → X be the inclusion and define ρ : G → i∗(G|U) to be the
restriction ρ(V ) : G(V ) → G(U ∩ V ) for V an open subset of X. The sheaf
F is a submodule of G|U , so i∗F is a submodule of i∗(G|U). Let H be the
submodule H = ρ−1(i∗F) of G. Since ρ|U is the identity map, we have that
H|U = F . Let V be an affine open subset of X. Then since i∗F and G are
quasi-coherent and V is affine, there exist k[V ]-modules A, B, and C with

A a submodule of C such that G|V ∼= B̃, i∗F|V ∼= Ã, i∗(G|U)|V ∼= C̃, and
there exists a k[V ]-module homomorphism φ : B → C which induces ρ|V .

Thus H|V ∼= M̃ where M is the k[V ]-module

M = {(a, b) ∈ A ⊕ B | φ(b) = a},

and so H is quasi-coherent.

Let {Mi} be the directed system of all finitely generated OX-submodules
of H. We have that lim→ Mi =

⋃
i Mi = H, so that

⋃
i Mi = H, and

F =
⋃

i(Mi|U). Each Mi|U is coherent and F is coherent, so restricting to
a finite affine open cover ofX, we see that F = Mi|U for some i, establishing
the theorem. �

Exercise 11.56. Suppose that F is a coherent sheaf on a projective variety
X with projective coordinate ring S. Show that F is a quotient sheaf of a
finite direct sum E =

⊕n
i=1 OX(qi) for some n ∈ N and q1, . . . , qn ∈ Z.

Exercise 11.57. Suppose that X is a closed subvariety of Y × Pr where Y
is an affine variety and S(X) is the coordinate ring of X. Suppose that M
is a graded S(X)-module. Suppose that d0 ∈ Z. Let N =

⊕
d≥d0

Md, which

is a graded S(X)-module. Show that the quasi-coherent sheaves M̃ and Ñ
are isomorphic.
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Exercise 11.58. In this problem we consider the question of coherence of
the push-forward of a coherent sheaf.

a) Let p be the origin in A1, let U = A1 \ {p}, and let i : U → A1 be
the inclusion. Determine if i∗OU is a coherent OA1-module.

b) Let q be the origin in A2, let V = A2 \ {q}, and let j : V → A2 be
the inclusion. Determine if j∗OV is a coherent OA2-module.

Exercise 11.59. Suppose that F is a coherent sheaf on a projective variety
X with homogeneous coordinate ring S(X). Show that

⊕
n≥0 Γ(X,F(n)) is

a finitely generated S(X)-module.

Show that if X is a projective variety, p ∈ X, and F is the coherent
sheaf F = OX/Ip, where Ip is the ideal sheaf of p in X, then Γ∗(F) =⊕

n∈Z Γ(X,F(n)) is not a finitely generated S(X)-module.



Chapter 12

Applications to
Regular and Rational
Maps

In this chapter we define the blow-up of an ideal sheaf and use this to further
develop the theory of regular and rational maps.

12.1. Blow-ups of ideal sheaves

In this section, we extend the blow-up of an ideal to the blow-up of an ideal
sheaf.

Definition 12.1. Suppose that X is an affine variety and I is an ideal
sheaf on X. From Theorem 11.32, we have that I ∼= Ĩ where I is the ideal
Γ(X, I) in k[X]. We define the blow-up of the ideal sheaf I, written as
π : B(I) → X, by the construction of Definition 6.2 as B(I) = B(I).

If X is an affine variety with ideal sheaf I and U is an affine open subset
of X, then a set of generators of I = Γ(X, I) is a set of generators of Γ(U, I)
(by Exercise 1.47 since they generate locally at all local rings of U) so by
the construction of Definition 6.2, there is a natural commutative diagram
where the horizontal arrows are open embeddings

B(I|U) ��

πU

��

B(I)
πX

��

U �� X

identifying B(I | U) with π−1
X (U).

221
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Definition 12.2. Suppose that X is a projective variety and I is an ideal
sheaf on X. From Proposition 11.48, we can write I = Ĩ where I is a
homogeneous ideal in S(X). By Lemma 6.7, we can take I to be generated by
homogeneous elements F0, . . . , Fn of some common degree d. In Definition
6.8, we defined the blow-up π : B(I) → X of I, where B(I) is a projective
variety. We define the blow-up B(I) of I to be π : B(I) → X.

This definition is well-defined by the following lemma, and Proposition
3.39, applied to an affine open cover of X.

Lemma 12.3. Suppose that X is a projective variety and π : B(I) =
B(I) → X is the blow-up of the ideal sheaf I. Suppose that U ⊂ X is
an open affine subset. Then there is a natural commutative diagram where
the horizontal arrows are open embeddings

B(I|U) ��

πU

��

B(I)
πX

��

U �� X

identifying B(I|U) with π−1
X (U).

Proof. It is shown after Definition 6.8 that the conclusions of the lemma
are true when U = Xxi for homogeneous coordinates x0, . . . , xn on X. For
an arbitrary affine open subset U of X, each Xxi is affine, and Uxi is an
affine open subset of Xxi . Further, each Uxi ∩ Uxj = Uxixj is an affine open
subset of Uxi . We thus have natural commutative diagrams for all i, j

B(I|Uxixj )

��

�� B(I|Uxi)

��

�� B(I | Xxi)

��

�� B(I)
πX

��

Uxixj
�� Uxi

�� Xxi
�� X

where the horizontal maps are inclusions.

Since {Uxi} is an affine cover of U , B(I|U) =
⋃

iB(I|Uxi), so there is a
commutative diagram of well-defined maps

B(I|U) → B(I)
↓ ↓
U → X

which are regular by Proposition 3.39. �

Definition 12.4. Suppose that X is a quasi-projective variety which is an
open subset of a projective variety Y and I is an ideal sheaf on X. By
Theorem 11.55, there exists an ideal sheaf J of Y such that J |X = I. We
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define the blow-up B(I) of I to be B(I) = π−1(X) → X where π : B(J ) →
Y is the blow-up of J .

Since an open affine subset of X is also an open affine subset of Y , we
have that the conclusions of Lemma 12.3 hold when X is assumed to be
quasi-projective, showing that B(I) is well-defined in Definition 12.4. We
have that B(I) is a quasi-projective variety since it is an open subset of the
projective variety B(J ).

If X is a variety and I is an ideal sheaf of X, then I is nonzero if and
only if Ip 
= 0 for all p ∈ X.

Theorem 12.5 (The universal property of blowing up). Suppose that Y is
a quasi-projective variety and I is an ideal sheaf on Y . Let π : B(I) → Y
be the blow-up of I. Suppose that φ : X → Y is a regular map of quasi-
projective varieties such that the IOX is a nonzero locally principal ideal
sheaf (there is an affine open cover {Ui} of X such that the Γ(Ui, IOX) are
nonzero principal ideals). Then there exists a unique regular map ψ : X →
B(I) factoring φ.

A nonzero locally principal ideal sheaf is an example of an invertible
sheaf (Definition 11.33).

Proof. Let p ∈ X. Let V be an affine neighborhood of φ(p) in Y and U be
an affine neighborhood of p in X such that φ(U) ⊂ V . Let I = Γ(V, I) ⊂
k[V ]. Since IOX is locally principal, we may assume, after possibly replacing
U with a smaller affine neighborhood of p, that Ik[U ] = Γ(U, IOX) is a
principal ideal.

Let f0, . . . , fr be a set of generators of the k[V ]-ideal I. Then B(I) =
π−1(V ) ⊂ V × Pr is the graph of the rational map V ��� Pr defined by
(f0 : . . . : fr). The projection π : B(I) → V is a regular birational map,
which has the inverse rational map π−1 : V ��� B(I) defined by π−1 =
id × (f0 : . . . : fr). Thus we have a rational map π−1φ : U ��� B(I). Now
this rational map is exactly φ×(φ∗(f0) : . . . : φ∗(fr)). The ideal Ik[U ] which
is generated by φ∗(f0), . . . , φ∗(fr) in k[U ] is by assumption principal.

We will show that, after possibly replacing U with an affine neighborhood
of p in U , we have that there exists an i such that φ∗(fi) generates the ideal
Ik[U ]. By our choice of U , Ik[U ] = gk[U ] for some nonzero g ∈ k[U ]. Thus
there exists a relation

∑
aiφ

∗(fi) = g with all ai ∈ k[U ] and φ∗(fi) = dig for
some di ∈ k[U ] for 0 ≤ i ≤ r. Thus (

∑
aidi)g = g and so

∑
aidi = 1 since

g is nonzero and k[U ] is an integral domain. Thus there exists an i such
that di 
∈ IU (p). Thus Udi is an affine neighborhood of p and φ∗(fi)k[Udi ] =
Ik[Udi]. Thus after replacing U with Udi , we have that Ik[U ] = φ∗(fi)k[U ].
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Without loss of generality, we may assume that i = 0. Thus there
exist regular functions hi ∈ k[U ] such that φ∗(fi) = φ∗(f0)hi for i > 0. In
particular, φ × (φ∗(f0) : . . . : φ∗(fr)) = φ × (1 : h1 : . . . : hr), which is a
regular map on U , since the hi are regular on U and 1 is never zero.

Now the rational map π−1φ is uniquely determined and has at most one
regular extension to U . Thus there is a unique regular map ψ : U → B(I)
which factors φ|U .

We can thus construct an affine open cover {Ui} of X and unique regular
maps ψi : Ui → B(I) factoring φ|Ui. By Proposition 3.39 and since a regular
map of a quasi-projective variety is uniquely determined by its restriction to
a nontrivial open set, the ψi patch to a unique regular map ψ : X → B(I)
which factors φ. �

Proposition 12.6. Suppose that X ⊂ Pm is a projective variety, with homo-
geneous coordinate functions x0, . . . , xm on X. Suppose that φ : X ��� Pn is
a rational map, which is represented by homogeneous elements F0, . . . , Fn ∈
S(X) = k[x0, . . . , xm] of a common degree d (which are necessarily not all

zero). Let I = (F0, . . . , Fn) ⊂ S(X) and I = Ĩ. Suppose that p ∈ X. Then
φ is regular at p if and only if Ip is a principal ideal in OX,p. In particular,

φ is a regular map if and only if Ĩ is a locally principal ideal sheaf.

Proof. Suppose that Ip is a principal ideal for some p ∈ X. Without loss
of generality, we may suppose that p ∈ Xx0 . Then

I(Xx0) =

(
F0

xd0
, . . . ,

Fn

xd0

)
=

(
F0(1,

x1
x0

, . . . ,
xm
x0

), . . . , Fn(1,
x1
x0

, . . . ,
xm
x0

)

)
⊂ k[Xx0 ] = k

[
x1
x0

, . . . ,
xm
x0

]
.

Let I(p) be the ideal of p in k[Xx0 ]. We have by assumption that Ip =
I(Xx0)I(p) is a nonzero principal ideal in the local ring OX,p = k[Xx0 ]I(p), so

that some
Fj

xd
0
generates Ip (by Exercise 1.12 or as in the proof of Theorem

12.5). Without loss of generality, F0

xd
0
generates this ideal. Thus there exists

an affine neighborhood U of p contained in Xxi such that F0

xd
0
generates the

ideal I(U) in k[U ] (by Exercise 11.42). In particular, there exist regular
functions hj ∈ k[U ] such that

Fj

xd0
= hj

F0

xd0
for all j.

Now φ is represented by (F0

xd
0
: F1

xd
0
: . . . : Fn

xd
0
) which is equivalent to (1 : h1 :

. . . : hn), so that φ is regular at p.
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Now suppose that φ is regular at p. Then there exist an affine neigh-
borhood U of p and h0, . . . , hn ∈ k[U ] such that ZU (h0, . . . , hn) = ∅, and
φ is represented by (h0 : h1 : . . . : hn). Without loss of generality, we may
assume that p ∈ Xx0 and that U ⊂ Xx0 . Thus

Fi

xd0
hj = hi

Fj

xd0
for all i, j.

We must have that some hi satisfies hi(p) 
= 0. We may suppose that
h0(p) 
= 0. After possibly replacing U with a smaller affine neighborhood of
p, we may assume that h0(q) 
= 0 for all q ∈ U , so that h0 is a unit in k[U ].
We have that

Fi

xd0
=

hi
h0

F0

xd0

for all i, so that I(U) =
(
F0

xd
0
, . . . , Fn

xd
0

)
k[U ] is a principal ideal, generated by

F0

xd
0
. Thus the localization Ip = I(U)IU (p) is a principal ideal. �

Theorem 12.7 (Resolution of indeterminancy). Suppose that X ⊂ Pm is
a projective variety, with homogeneous coordinate functions x0, . . . , xm on
X. Suppose that φ : X ��� Pn is a rational map, which is represented
by homogeneous elements F0, . . . , Fn ∈ S(X) = k[x0, . . . , xm] of a common

degree d. Let I = (F0, . . . , Fn) ⊂ S(X) and I = Ĩ. Let π : B(I) → X be the
blow-up of I, and let φ be the rational map φ = φπ : B(I) ��� Pn. Then φ
is a regular map.

Proof. This follows directly from our definition of the blow-up B(I) as the
graph Γφ ⊂ X × Pn of the rational map φ = (F0, . . . , Fn). The map φπ is
the projection on the second factor Pn. �

12.2. Resolution of singularities

In this section we survey the main results on resolution of singularities.
The interested reader is referred to the book Resolution of Singularities
[35] and the article [38], which gives an accessible proof of resolution of
singularities of 3-folds in characteristic greater than 5, for the proofs of
the main results discussed in this section. Reading through Chapter 15 on
schemes in this book is adequate preparation for reading [35]. Reading [35]
is a good preparation for reading [38].

Definition 12.8. Suppose that X is a quasi-projective variety. A resolution
of singularities of X is a closed subvariety Y of X × Pn (for some n) such
that the projection π : Y → X is birational and Y is nonsingular.

Lemma 12.9. Suppose that π : Y → X is a resolution of singularities.
Then Y = B(I) for some ideal sheaf I on X.
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Proof. There exists a projective variety X such that X is an open subset
of X and a closed embedding of Y into X × Pn for some n. Let Y be the
Zariski closure of Y in X × Pn. We have that (X × Pn) ∩ Y = Y since Y
is closed in X × Pn. The projection Y → X is a birational regular map of
projective varieties so Y = B(J ) for some ideal sheaf J on X by Theorem
6.9. Letting I = J |X, we have that Y is isomorphic to the blow-up of I by
Lemma 12.3. �

Theorem 12.10. Suppose that X is a quasi-projective curve (a 1-dimen-
sional variety). Then X has a resolution of singularities.

Proof. There exists a projective variety X such that X is an open subset
of X. Let Y be the normalization of X in the function field k(X) of X (by
Theorem 7.17), with induced regular map φ : Y → X. The variety Y is a
projective variety (by Theorem 7.17), so there is a closed embedding of Y
in Pn for some n. The variety Y is nonsingular by Theorem 1.87 since Y is
a curve and Y is normal. We have closed embeddings

Y ∼= Γφ ⊂ Y × X ⊂ Pn × X

where Γφ is the graph of φ and the projection onto X is the map φ. Thus

Y is a resolution of singularities of X, and Y = Γφ ∩ (Y ×X) is a resolution
of singularities of X. �

Theorem 12.11. Suppose that X is a quasi-projective curve. Consider the
sequence

(12.1) · · · → Xn
πn→ · · · → X1

π1→ X0 = X,

where Xn+1 → Xn is obtained by blowing up the (finitely many) singular
points on Xn. Then this sequence is finite (there exists an n such that Xn

is nonsingular) and is thus a resolution of singularities of X.

Proof. It suffices to prove the theorem when X is projective. Then all Xn

are projective. Let φ : Y → X be the normalization of X (Theorem 7.17).
The variety Y is projective since X is, and Y is a resolution of singularities
of X (Theorem 12.10). We have a factorization (by Corollary 10.24)

Y → Xn
πn→ · · · → X1

π1→ X

of regular maps of projective varieties for all n. Since each map in the
sequence is a dominant regular map of curves, the preimage of a point by
each map is a finite set of points. Thus each map in the sequence is finite
by Theorem 9.6. If the sequence (12.1) is infinite, then there exists an affine
open subset U of X such that the induced sequence of preimages above U
in the sequence (12.1)

· · · → Un → · · · → U1 → U
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is infinite, and each Un is singular. Let Z be the preimage of U in Y . The
sets Z and Ui are all affine open sets since the maps to U are finite. Let
R = R0 = k[U ] and let R be the integral closure of R in the function field
k(X) of X. Then k[Z] = R. Let Ri = k[Ui] for all i. We have inclusions in
k(X)

R0 ⊂ R1 ⊂ · · · ⊂ Rn ⊂ · · · ⊂ R.

We have that Ri 
= Ri+1 for all i since mRi+1 is a locally principal ideal if
m is a maximal ideal of Ri such that (Ri)m is not regular (Ui+1 is the blow-
up of all singular points of Ui) and m(Ri)m is not principal (since (Ri)m is
not regular). Since R is finite over R and the sequence (12.1) is assumed
infinite, there exists an n such that Rn = R. But then Un is nonsingular, a
contradiction. �

An approach to resolve surface singularities is by the following algorithm.
Suppose that S is a surface. Let S1 be the normalization of S, so that S1

has only finitely many singular points (by Theorem 10.17), and let S2 →
S1 be the blow-up of all singular points on S2. If S2 is nonsingular, we
have obtained a resolution of singularities of S. Otherwise, we can repeat,
computing the normalization S3 of S2 and blowing up all singular points
of S3 to obtain S4. We can repeat as long as Si is singular, obtaining a
sequence

(12.2) · · · → S2n → S2n−1 → · · · → S2 → S1 → S.

Theorem 12.12. Suppose that S is a quasi-projective surface. Then some
Si is a resolution of singularities of S.

This theorem was proven when the ground field k has characteristic
0 by Zariski in [149] and was proven in arbitrary characteristic (in fact
over two-dimensional excellent integral schemes) by Lipman [101]. Zariski
discusses early approaches to resolution of surface singularities in his book
[148]. Zariski credited Walker’s proof [144] as the first complete proof of
resolution of singularities of complex surfaces.

The first proof of resolution of singularities of surfaces in positive char-
acteristic was given by Abhyankar in [2] (by a different method).

Hironaka proved the existence of a resolution of singularities of a variety
of any dimension in characteristic 0.

Theorem 12.13 (Hironaka). Suppose that X is a variety over a field of
characteristic 0. Then X has a resolution of singularities.

Hironaka’s first proof is in [79]. There have been many simplifications
in the proof (some papers and books on this are [22], [24], [54], [35], [90]).
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Abhyankar [4] proved resolution of singularities of three-dimensional va-
rieties over fields of positive characteristic greater than 5. Since then, Cos-
sart and Piltant have established the existence of a resolution of singularities
for reduced three-dimensional quasi-excellent schemes in [31]. All of these
proofs are extremely long. A much shorter proof of Abhyankar’s result is
given in [38].

Some recent papers on resolution in higher dimensions and positive char-
acteristic are [25], [75], [80], [94], [87], [140], [141].

Exercise 12.14. Resolve the singularities of the curve C = Z(x2−x4−y4) ⊂
A2 by blowing up points; that is, perform a sequence of blow-ups of points
above A2 so that the strict transform of C is nonsingular.

12.3. Valuations in algebraic geometry

Suppose that K is a field. A valuation ν of K is a map

ν : K× → Γν

from the multiplicative group K× of nonzero elements of K onto a totally
ordered Abelian group Γν , called the value group of ν. The map ν must
satisfy two properties:

1. ν(fg) = ν(f) + ν(g) for f, g ∈ K×,

2. ν(f + g) ≥ min{ν(f), ν(g)} for f, g ∈ K×.

The valuation ν extends to K by defining ν(0) = ∞, which is larger than
anything in Γν . The valuation ring of ν is

Vν = {f ∈ K | ν(f) ≥ 0}.

The basic theory of valuation rings is explained in the paper [152], [160,
Chapter V], [161, Chapter VI], and in [6]. A quick introduction is given in
the section on valuation rings in of [13, Chapter 5]. The next two theorems
state a couple of basic facts about valuation rings.

Theorem 12.15. A valuation ring Vν is Noetherian if and only if Γν
∼= Z.

Proof. [161, Theorem 16, page 41]. �

Theorem 12.16. A valuation ring Vν is a normal local ring.

Proof. [13, Proposition 5.18]. �

If K is a function field over a field κ, we require a valuation of K to also
satisfy the third property that

3. ν|κ× = 0.
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A valuation ν of K is called divisorial if Vν is a localization of a finitely
generated algebra over κ. Since such a ring is Noetherian, Γν

∼= Z if ν is
divisorial.

If K is the function field of a curve, then all of the valuation rings of
K are divisorial. In fact, by [161, Theorem 9, page 17], the valuation rings
of K are exactly the local rings of the points on the nonsingular projective
curve whose function field is K, and the field K itself (the valuation ring of
the trivial valuation).

If K has transcendence degree larger than 1 over its ground field κ (so
that K is the function field of a variety of dimension larger than 1), then
K admits many valuations whose valuation ring is not Noetherian. The
example in [161, pages 102–104] shows that every additive subgroup of the
rational numbers must appear as the valuation group of a valuation of K,
so K has many valuations whose value group is not finitely generated.

A theory of algebraic geometry built around valuation rings is developed
in Zariski’s paper [152]. This is the paper where Zariski’s main theorem
first appears. This theory requires the introduction of more local rings on a
variety than we have considered up to now.

Definition 12.17. Suppose that X is a quasi-projective variety and Y is a
subvariety of X. Then the local ring OX,Y is defined to be the localization
OX,Y = k[U ]IY (U) where U is any affine open subset ofX such that Y ∩U 
= ∅
and IY is the ideal sheaf of Y in X.

A special case is when Y is a point, in which case the above definition
agrees with the definition of the stalk OX,Y of OX at the point Y .

This ring is independent of the choice of U . In fact, we have that if p ∈ Y ,
then OX,Y is the localization OX,Y = (OX,p)IY,p

. We see this as follows.
Suppose that U is an affine neighborhood of p in X. Then OX,p = k[U ]I(p)
and IY,p = (IY (U))I(p) where I(p) is the ideal of p in k[U ]. Thus

(OX,p)IY,p
∼= k[U ]IY (U)

by Exercise 1.22 since IY (U) ⊂ I(p).

If U and V are two affine open subsets of X which intersect Y , then
there exists a point p in U ∩ V ∩ Y since Y is irreducible. Thus

k[U ]IY (U) = (OX,p)IY,p
= k[V ]IY (V ).

If X is affine, then the local rings OX,Y of X are precisely the local rings
k[X]P for P ∈ Spec(k[X]) (the spectrum of a ring is defined in Exercise
1.11). If X is projective, then the local rings OX,Y of X are precisely the
local rings S(X)(P ) for P ∈ Proj(S(X)) (the Proj of a graded ring is defined
in Exercise 3.7).
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Suppose that X is a variety and K = k(X) is the function field of X.
Let ν be a valuation of K. We will say that ν dominates a local ring S
contained in K if S ⊂ Vν and the maximal ideal of Vν intersects S in its
maximal ideal.

Theorem 12.18 (Zariski). Suppose that X is a projective variety and ν is
a valuation of k(X). Then there is a unique subvariety Y of X such that ν
dominates OX,Y .

Proof. Let S = k[x0, . . . , xn] be the coordinate ring of a projective embed-
ding of X. Suppose that i is such that ν( xi

x0
) ≤ ν(

xj

x0
) for 0 ≤ j ≤ n. Then

ν(
xj

xi
) = ν(

xj

x0
) − ν( xi

x0
) ≥ 0 for 0 ≤ j ≤ n. Thus

OX(Xxi) = k

[
x0
xi

, . . . ,
xn
xi

]
⊂ Vν .

Let p = mν ∩ OX(Xxi) where mν is the maximal ideal of Vν . Let Y be the
Zariski closure inX of the subvariety Z(p) ofXxi . Then OX,Y = (OX(Xxi))p
is dominated by ν.

Suppose that Z is another closed subvariety of X which has the property
that OX,Z is dominated by ν. There exists a linear form L ∈ S such that
L 
∈ I(Y ) and L 
∈ I(Z) (by Lemma 8.10). Then Z∩XL 
= ∅ and Y ∩XL 
= ∅.
Let R = k[XL], p1 = I(Y ∩ XL), and p2 = I(Z ∩ XL). Here Rp1 = OX,Y

and Rp2 = OX,Z . We have that R ⊂ Vν since Rp1 ⊂ Vν . Since Vν dominates
both Rp1 and Rp2 , we have that p1 = mν ∩ R = p2. But this is impossible
since I(Y ) and I(Z) are distinct prime ideals in S. �

We will call the subvariety Y of the conclusions of Theorem 12.18 the
center of ν on X.

The following lemma gives a characterization of valuation rings of divi-
sorial valuations.

Lemma 12.19. Suppose that K is an algebraic function field over a field κ.
Suppose ν is a divisorial valuation of K. Then there exists a normal local
ring R which is of finite type over κ and a height 1 prime ideal Q in R such
that RQ = Vν. Conversely, given a subring R of K with these properties
and a height 1 prime ideal Q of R, there exists a divisorial valuation ν of K
such that RQ = Vν.

Proof. A ring A = RQ as in the statement of the lemma is a normal Noe-
therian local ring of dimension 1, so it is a regular local ring of dimension
1 by Theorem 1.87. Let f ∈ A be a generator of its maximal ideal. Then
every nonzero element h ∈ K has a unique expression h = ufn where u ∈ A
is a unit and n ∈ Z. Define ν(h) = n ∈ Z. The function ν is a valuation of
K as it satisfies the three conditions of a valuation and A = Vν .
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Now suppose that ν is a divisorial valuation of K. The value group of ν
is Z by Theorem 12.15 since Vν is Noetherian. Let mν be the maximal ideal
of Vν . There exists f ∈ mν such that ν(f) = 1. Suppose g ∈ mν . Then
ν(g) ≥ 1. Let h = g

f ∈ K. We have that ν(h) ≥ 0 so h ∈ Vν . Thus g ∈ (f).

We have that mν = (f), so that Vν is a regular local ring of dimension 1. By
assumption, there exist a domain B with quotient field K which is finitely
generated over κ and a prime ideal P in B such that BP = Vν . Let R be
the integral closure of B in K, which is a finitely generated κ-algebra by
Theorem 1.54. Then R ⊂ BP since Vν is normal. Let Q = PP ∩ R. Then
Vν

∼= RQ. We have thatQ is a height 1 prime ideal inR since dimVν = 1. �

Zariski’s proof of resolution of singularities of surfaces in Theorem 12.12
([149]) is by assuming that the algorithm described before the statement
of the theorem does not terminate. Then we have an infinite sequence of
points pi ∈ S2i such that pi maps to pi−1 for all i and there is an infinite
sequence of distinct local rings

R → R1 → · · · → Ri → · · ·

where Ri = OS2i,pi is a normal but not regular local ring. Let V =
⋃∞

i=1Ri.
Then V is the valuation ring Vν of a valuation ν of k(S) (this uses the fact
that S has dimension 2).

Zariski then shows that ν has a local uniformization (defined below) and
then makes a delicate argument to show that this leads to a contradiction
to the assumption that the localizations of all of the Ri at the ideal of pi are
not regular.

Definition 12.20. Suppose that K is an algebraic function field and ν is
a valuation of K. The valuation ν has a local uniformization if there exists
a variety X whose function field is K such that the center of ν on X is a
regular local ring.

Zariski proved local uniformization of all valuations on characteristic 0
function fields [150] and was able to show from this result that resolution
of singularities is true for varieties of dimension ≤ 3 over (algebraically
closed) fields of characteristic 0 [153]. Hironaka’s proof of resolution of
singularities of characteristic 0 varieties [79] does not use valuations or local
uniformization.

The first proof of resolution of singularities of surfaces in characteristic
p > 0 was by Abhyankar [2]. It is by proving local uniformization of all val-
uations on a two-dimensional algebraic function field. The proof by Lipman
[101] of resolution of surface singularities does not use local uniformization.
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However, all proofs of resolution of singularities of three-dimensional vari-
eties in positive characteristic use valuations and are done by proving local
uniformization of all valuations of the function field.

Exercise 12.21. This exercise gives a geometric interpretation of divisorial
valuations.

a) Suppose that X is a normal projective variety and ν is a divisorial
valuation on k(X). Let Z be the center of ν on X, so that we
have an inclusion OX,Z ⊂ Vν . Show that OX,Z = Vν if and only if
codimXZ = 1.

b) Give an example of a divisorial valuation ν on k(P2) such that
Vν 
= OP2,Z , where Z is the center of ν on P2.

c) Suppose that X is a normal projective variety and ν is a divisorial
valuation on k(X). Show that there exists a birational regular map
φ : Y → X of normal projective varieties such that if W is the
center of ν on Y , then OY,W = Vν .

12.4. Factorization of birational maps

The blow-ups of a point and of a nonsingular curve in a nonsingular pro-
jective 3-fold X (a three-dimensional variety) give examples of birational
regular maps of nonsingular projective 3-folds (by Theorem 10.19). Further
examples can be found by taking products (sequences) of blow-ups of points
and nonsingular curves. In light of the fact that birational maps of nonsin-
gular projective surfaces can always be factored by a product of blow-ups of
points (Theorem 10.32), it is natural to ask if every birational regular map
of nonsingular projective 3-folds can be factored by a product of blow-ups of
points and nonsingular curves. This is, however, not true. Counterexamples
have been given by Hironaka [78], Shannon [137], and Sally [129], all in
their PhD theses (with Zariski, Abhyankar, and Kaplansky, respectively).
The examples of Shannon and Sally do not even factor locally. Here is a
simple example of a birational regular map of nonsingular projective 3-folds
which does not factor.

Example 12.22. There exists a birational regular map of projective non-
singular 3-folds which cannot be factored by a product of blow-ups of points
and nonsingular curves.

The example is constructed as follows. Let X = P3 with coordinate ring
S(X) = k[x0, x1, x2, x3], where we require that k has characteristic 
= 3. Let
C ⊂ X be the curve C = Z(I) where I is the homogeneous prime ideal

I = (x0, x1x2x3 + x31 + x32).
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The curve C has an isolated singularity at the point p = (0 : 0 : 0 : 1). Let

π1 : X1 → X be the blow-up of the curve C (of the ideal sheaf Ĩ). The
variety X1 \ π−1

1 (p) is nonsingular by Theorem 10.19. Let U = Xx3
∼= A3.

The regular functions on U are k[U ] = k[x, y, z] where

x =
x0
x3

, y =
x1
x3

, z =
x2
x3

.

We have that Ĩ(U) = (x, yz + y3 + z3) and p is the origin in U . We have

that π−1
1 (U) = B(Ĩ(U)) has an open cover by two affine open sets U1 and

U2 with

k[U1] = k[U ]

[
x

yz + y3 + z3

]
and k[U2] = k[U ]

[
yz + y3 + z3

x

]
by Theorem 6.4. Since

k[x, y, z, s]/(s(yz + y3 + z3) − x) ∼= k[y, z, s]

is a domain, we have that

k[U1] ∼= k[x, y, z, s]/(s(yz + y3 + z3) − x) ∼= k[y, z, s]

by Exercise 1.10, so U1
∼= A3 is nonsingular. Since

k[x, y, z, t]/(tx− (yz + y3 + z3))

is a domain, we have that

k[U2] ∼= k[x, y, z, t]/(tx− (yz + y3 + z3))

by Exercise 1.10. Let f = tx− (yz + y3 + z3). All singular points of U2 are

in U2 ∩ π−1
1 (p) = Z(x, y, z). The only point of U2 ∩ π−1

1 (p) on which ∂f
∂x = t

vanishes is q := Z(x, y, z, t), which is the only singular point of U2.

Further, we have that π−1
1 (C) is an irreducible surface E (yz+y3+z3 = 0

is a local equation of E in U1 and x = 0 is a local equation of E in U2) and
π−1
1 (α) ∼= P1 for all α ∈ C.

Let π2 : X2 → X1 be the blow-up of the point q. The open set π−1
2 (U2)

is naturally covered by four affine open sets V1, V2, V3, V4. We compute their
regular functions by taking the strict transform of f = 0 in the blow-up of
q in A4 (with k[A4] = k[x, y, z, t]) to see that X2 is nonsingular and π−1

2 (q)
is a surface F ∼= P1 × P1 (this is similar to the calculation of Exercise 6.16).
Let E be the strict transform of E on X2.

Let π = π1π2 : X2 → X. The map π is a birational regular map of
nonsingular projective 3-folds which is an isomorphism over X \π−1(C) and
π−1(C) = E ∪ F is a union of two irreducible surfaces.

Suppose that π : X2 → X factors as a product of blow-ups of points and
nonsingular curves. Then the first blow-up must be of a point α contained
in C since C is an irreducible singular curve. Let Iα be the ideal sheaf of
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α in X. We have that π−1(α) ∼= P1 if α 
= p and π−1(α) = F ∪ γ where
γ ∼= P1 is a curve which intersects F in a point if α = p. In each case,
there exists an affine open subset W of X2 which intersects π−1(α) in a
curve and such that π(W ) ⊂ T for some affine open neighborhood T of α
in X. Here ZW (IT (α)) = π−1(α) ∩ W which has codimension > 1 in W
so IαOW cannot be locally principal (by Krull’s principal ideal theorem).
Since IαOX2 is not locally principal, we have that π : X2 → X cannot factor
through the blow-up B(α) → X of α (since IαOB(α) is locally principal).
This contradiction shows that π : X2 → X is not a product of blow-ups of
points and nonsingular curves.

Hironaka [78] and Abhyankar [7] proposed the following problem:

Question 12.23. Suppose that φ : X → Y is a birational regular map of
nonsingular projective varieties. Does there exist a nonsingular projective
variety Z and a commutative diagram of regular maps

Z
↙ ↘

X → Y

such that the maps Z → X and Z → Y are products of blow-ups of nonsin-
gular subvarieties?

This question is still open, even in dimension 3 and characteristic 0.
However, we have the following theorem:

Theorem 12.24 (Abramovich, Karu, Matsuki, W
lodarczyk [9]). Suppose
that φ : X → Y is a birational regular map of nonsingular projective vari-
eties, over a field of characteristic 0. Then there is a factorization (for some
n)

Yn Yn−2 · · ·
↙ ↘ ↙ ↘ ↙ ↘

X Yn−1 Yn−3 Y0 = Y

where each diagonal arrow is a (finite) product of blow-ups of nonsingular
subvarieties.

This theorem is not known in positive characteristic (even in dimen-
sion 3).

Theorem 12.24 was proven earlier for toric and toroidal varieties
(W
lodarczyk [147], Abramovich, Matsuki, Rashid [10]). This is a category
of varieties which is built by only allowing Laurent monomials instead of ar-
bitrary polynomials. A regular map of nonsingular affine toric (or toroidal)
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varieties is then a monomial map

(12.3) φ : An → Am with φ = (M1, . . . ,Mm)

where theMi are monomialsMi =
∏n

j=1 x
aij
j for 1 ≤ i ≤ m in the coordinate

functions x1, . . . , xn of An. A regular map of nonsingular toric (or toroidal)
varieties is constructed by patching together maps of the form (12.3).

Question 12.25 has been proposed by Oda [123] for the restricted case
of toric (toroidal varieties).

Question 12.25. Suppose that φ : X → Y is a birational regular map of
nonsingular projective toric (toroidal) varieties. Does there exist a nonsin-
gular projective toric (toroidal) variety Z and a commutative diagram of
regular toric maps

Z
↙ ↘

X → Y

such that the maps Z → X and Z → Y are product of blow-ups of nonsin-
gular toric subvarieties?

This question is open even in dimension 3 and characteristic 0. How-
ever, local factorization is true in all dimensions and characteristic 0. The
following theorem was conjectured by Abhyankar [8, Section 8].

Theorem 12.26 (Cutkosky [33]). Suppose that φ : X → Y is a birational
regular map of nonsingular projective varieties over a field k of characteristic
0 and ν is the valuation of the function field k(X) = k(Y ). Then there exists
a nonsingular projective variety Z and a commutative diagram of regular
maps

Z
↙ ↘

X → Y

such that there exist affine neighborhoods U , V , W of the respective centers
p, q, r of ν on X,Y, Z such that W is an affine open subset of a sequence of
blow-ups of nonsingular subvarieties above U and also W is an affine open
subset of a sequence of blow-ups of nonsingular subvarieties above V .

The theorem was first proven by Christensen [29] for the case of a
toric valuation in dimension 3. A toric valuation ν of An is obtained
by assigning positive real numbers r1, . . . , rn as weights to the coordinate
functions x1, . . . , xn. The valuation of a polynomial f =

∑
I aix

I with
I = (i1, . . . , in) ∈ Nn and aI ∈ k is then

ν(f) = min{i1r1 + · · · + inrn | aI 
= 0}.
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The case of a toric valuation in dimension n is solved by Karu [86] and by
Cutkosky and Srinivasan [45]. The case of a general valuation is solved in
[33].

12.5. Monomialization of maps

We ask if it is possible to put an arbitrary regular map of varieties φ :
X → Y into a particularly nice form by performing sequences of blow-ups
of nonsingular subvarieties X1 → X and Y1 → Y to obtain a new map
φ1 : X1 → Y1 which has a simpler form. The simplest such form which
is possible is for X1 → Y1 to be “locally monomial”. This means that for
every point p of X1, there exist uniformizing parameters near p, such that
after possibly taking étale covers or using formal coordinates (these concepts
will be explained in Chapters 14 and 21), φ1 locally has an expression as
a monomial map of the type of (12.3). (Formally, every nonsingular point
looks like a point on An.)

Specifically, we have the following question.

Question 12.27. Suppose that φ : X → Y is a dominant regular map of
characteristic 0 varieties. Does there exist a commutative diagram of regular
maps

(12.4)
X1

φ1→ Y1

↓ ↓
X

φ→ Y

such that X1 and Y1 are nonsingular, the vertical arrow are products of blow-
ups of nonsingular subvarieties, and φ1 : X1 → Y1 is locally monomial (or
toroidal)?

We will call such a diagram (12.4) a monomialization (toroidalization)
of φ.

We prove in [34] and [37] that the answer to Question 12.27 is yes if X
and Y are three-dimensional varieties over an algebraically closed field k of
characteristic 0. (A simpler proof of the results of [34] is given in [39].) As
a corollary to this theorem, we obtain a different proof of Theorem 12.24 in
dimension 3. This theorem (the solution to Question 12.27 in dimension 3)
also shows that the Hironaka-Abhyankar Question 12.23 for factorization of
birational maps in dimension 3 and characteristic 0 is implied by the Oda
Question 12.25 for factorization of birational maps of toroidal varieties in
dimension 3.

Question 12.27 has a negative answer if we allow fields of positive charac-
teristic p. A simple example is the map φ : A1 → A1 defined by t �→ tp+tp+1.
Since A1 is a nonsingular curve, blow-ups do not change anything, so the
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question asks in this case if φ itself is locally monomial. The map is given
by the expression

u = xp + xp+1 = δxp

where δ = 1 + x is a unit in R = k[x]x. To represent u as a monomial, we

would have to set x = δ
1
px and then obtain u = xp. However, δ

1
p = 1+x

1
p is

not in the completion R̂ = k[[x]], so such a monomialization is not possible
by a formal change of variables.

From this argument, we also see why all maps of nonsingular curves are
locally monomial in characteristic 0. We can always represent a map of
nonsingular curves φ : X → Y locally at a point q ∈ X by an expression
u = αxn where u is a regular parameter in R = OY,φ(q), x is a regular
parameter in R = OX,q, and α is a unit in R. In this case, taking an
n-th root of α gives an étale map locally above q on X; in fact, with our

assumption that k = R/mq is algebraically closed, we have that α
1
n is in the

completion R̂ = k[[x]], so we have an expression u = xn where x = α
1
nx is

a regular parameter of R̂.

We have a local valuation-theoretic version of Question 12.27.

Question 12.28. Suppose that φ : X → Y is a dominant regular map
of projective varieties and ν is a valuation of k(X). Does there exist a
commutative diagram of regular maps

(12.5)
X1

φ1→ Y1

↓ ↓
X

φ→ Y

such that X1 and Y1 are nonsingular, there exist affine neighborhoods U ,
V , W , Z of the respective centers q, r, q′, r′ of ν on X, Y , X1, and Y1,
respectively, such that W and Z are affine open subsets of sequences of
blow-ups of nonsingular subvarieties above U and V , respectively, and there
are regular parameters x1, . . . , xn in OX1,q′ and y1, . . . , ym in OY ′,r′, units
δ1, . . . , δm ∈ OX1,q′ , and a matrix A = (aij) of natural numbers such that

(12.6) yi = δi

n∏
j=1

x
aij
j for 1 ≤ i ≤ m

and

(12.7) rank(A) = m?

This question makes sense over all fields (it is true for curves in every
characteristic). In characteristic 0, if (12.6) and (12.7) hold, then we can
make an étale or formal change of variables to represent the yi as monomials
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in regular parameters in an étale extension or the completion of OX1,q′ (the
condition (12.7) is essential!).

Theorem 12.29. Question 12.28 always has a positive answer over fields
of characteristic 0.

This is proven in [33] and [36].

Question 12.28 has a negative answer in positive characteristic p > 0,
even in dimension 2. A counterexample is given in [40]. It is shown in
[43] and most generally in [41] that when X and Y have dimension 2 and
the valuation has positive residue characteristic, then Question 12.28 has
a positive answer for defectless extensions of valued fields. The defect is
an interesting invariant of extensions of valuations (in this case from the
restriction of ν to the function field of Y to its extension ν on k(X)) which
can only occur for fairly complicated valuations in characteristic p > 0.
The presence of defect really says that information about the extension that
you should be able to extract from the quotient of value groups is lost. The
defect can be viewed as the cause of all of the trouble in local uniformization
in positive characteristic [93].



Chapter 13

Divisors

We define a divisor on a normal variety X to be a formal sum of prime
divisors (codimension 1 irreducible subvarieties of X) in Section 13.1. We
associate to a rational function f on X a divisor (f) (or div(f)) which is
the difference of the zeros of f and the poles of f , counting multiplicity.
The divisor class group Cl(X) of X (see (13.1)) is the group of equivalence
classes of divisors on X, modulo the divisors of rational functions on X.
In Section 13.4 we calculate some examples of divisor class groups, and
in Section 13.5, we analyze divisors in the most intuitive situation, on a
nonsingular projective curve.

Associated to a divisor D on a normal variety X, we have a coherent
sheaf OX(D), consisting of the rational functions on X whose poles are
bounded by D (Section 13.2).

If X is nonsingular, then the sheaf OX(D) of a divisor D on X is an
invertible sheaf (see (13.2)). Further, we can cover X with affine open
subsets Ui such that on each Ui, D ∩ Ui is the divisor of a rational function
gi ∈ k(X) on Ui. The set {(gi, Ui)} is called a Cartier divisor. The concept
of a Cartier divisor will be further explored, in the more general situation
of schemes, in Section 15.1.

The three concepts of divisors, invertible sheaves, and Cartier divisors
are equivalent on a nonsingular variety (see (13.16)). The concepts of in-
vertible sheaves and Cartier divisors agree on varieties, but not on schemes,
while the concepts of divisors and invertible sheaves are not the same on a
normal (but singular) variety. The concept of invertible sheaf is the most
general and is valid on an arbitrary variety (or scheme).

239
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Associated to a divisor D on a normal variety X, we have linear systems
on X, parametrizing effective divisors on X which are linearly equivalent to
D (Section 13.6). Rational maps from a normal variety can be interpreted
through linear systems. The divisors in a linear system (without fixed com-
ponent) are the pull-backs of linear hyperplane sections in the image. Using
this interpretation of rational map, we give criteria for a rational map from
a nonsingular variety to be a regular map, injective, and a closed embedding
in Section 13.7.

In Sections 13.8 and 13.9, we develop the geometric theory of invertible
sheaves on an arbitrary variety, generalizing the theory of divisors on a
normal nonsingular variety.

13.1. Divisors and the class group

Suppose that X is a normal quasi-projective variety. A prime divisor on
X is an irreducible codimension 1 subvariety E of X. A divisor on X is a
finite formal sum D =

∑
aiEi where the Ei are prime divisors on X and

ai ∈ Z. Let Div(X) be the group (under addition) of divisors on X. The
group Div(X) is the free Abelian group on the set of prime divisors of X.
The support of a divisor D =

∑
aiEi is the algebraic set in X,

Supp D =
⋃
ai �=0

Ei.

Suppose that D1, D2 are divisors on X. We will say that D1 ≥ D2 if
D1 − D2 =

∑
aiEi where all ai are nonnegative. A divisor D such that

D ≥ 0 is called effective.

Now suppose that E is a prime divisor of X. We associate to E the
local ring OX,E , the local ring of a subvariety which we defined in Definition
12.17.

Since X is normal, the singular locus of X has codimension ≥ 2 in X
(by Theorem 10.17), so there exists p ∈ E which is a nonsingular point of
X. Let U be an affine neighborhood of p in X. Let I be the ideal of E ∩ U
in k[U ] (that is, let I = IE(U) where IE is the ideal sheaf of E in X). The
ideal I is a height 1 prime ideal in k[U ]. Let I(p) be the ideal of the point p
in U , which is a maximal ideal in k[U ]. Now OX,p = k[U ]I(p) and the stalk
(IE)p is the localization II(p). Thus (IE)p = II(p) is a height 1 prime ideal
in OX,p. We have that OX,E is the localization (OX,p)(IE)p

. Now OX,p is

a regular local ring, since p is a nonsingular point of X, so the localization
OX,E is a regular local ring, by Theorem 1.88. Further, OX,E has dimension
1, so that the maximal ideal of OX,E is generated by one element t. Suppose
that 0 
= f ∈ k(X). Then we can (uniquely) write f = tnu where u ∈ OX,E

is a unit and n ∈ Z. This is true for f ∈ OX,E , and so this is true for
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f ∈ k(X) since every element of k(X) is a quotient of elements of OX,E . We
may thus define a map

νE : k(X) \ {0} → Z

by νE(f) = n if f = tnu where u is a unit in OX,E. The map νE has the
properties that νE(fg) = νE(f)+νE(g) and νE(f +g) ≥ min{νE(f), νE(g)}
for f, g ∈ k(X) \ {0}. Using the convention that νE(0) = ∞, this tells us
that νE is a valuation of k(X) with valuation ring

VνE = {f ∈ k(X) | νE(f) ≥ 0} = OX,E.

In fact, νE is a divisorial valuation (Lemma 12.19). Let V be a nonsingular
affine open subset of X such that V ∩ E 
= ∅ and IE(V ) = (t). Then t = 0
is a local equation of E ∩ V in V . We see that a nonzero element f ∈ k[V ]
has νE(f) = n if and only if tn divides f and no higher power of t divides
f in k[V ]. Thus n is nonnegative, and n represents the order of vanishing
of f along E, that is, the order of E as a “zero” of f . Also, n represents
the order of E as a “pole” of 1

f . Since any element f of k(X) \ {0} is a

quotient of elements of k[V ], we can interpret νE(f) as the order of the zero
of f along E if νE(f) > 0, and −νE(f) as the order of the pole of f along
E if νE(f) < 0. If νE(f) = 0, then E is neither a zero nor a pole of f . This
thinking in terms of zeros and poles is most intuitive when X is a curve, so
that a divisor is a point, and OX,E is the local ring of a point.

Lemma 13.1. Suppose that X is a normal quasi-projective variety and
0 
= f ∈ k(X). Then there are at most a finite number of prime divisors E
on X such that νE(f) 
= 0.

Proof. Since every quasi-projective variety has an open cover by a finite
number of affine open sets, we reduce to the case when X is affine. Write
f = g

h where g, h ∈ k[X]. Now ZX(g) has only a finite number of irreducible
components, and νE(g) = 0 unless E is an irreducible component of ZX(g).
The same statement holds for h, and since νE(f) = νE(g)− νE(h), we have
the statement of the lemma. �

We may thus define the divisor of a function 0 
= f ∈ k(X) (where X is
a normal quasi-projective variety) to be

(f) = (f)X =
∑

νE(f)E ∈ Div(X)

where the sum is over the prime divisors E of X. The divisor of zeros of f
is

(f)0 =
∑

E|νE(f)>0

νE(f)E
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and the divisor of poles of f is

(f)∞ =
∑

E|νE(f)<0

−νE(f)E,

so that

(f) = (f)0 − (f)∞.

A divisor D is called principal if D = (f) for some f ∈ k(X).

We define an equivalence relation ∼ on Div(X), called linear equivalence,
by D1 ∼ D2 if there exists 0 
= f ∈ k(X) such that (f)X = D1 − D2. Now
we define the divisor class group of (a normal quasi-projective variety) X to
be

(13.1) Cl(X) = Div(X)/ ∼ .

We will sometimes write div(f) or div(f)X for (f) = (f)X .

13.2. The sheaf associated to a divisor

Suppose that X is a normal quasi-projective variety. For D =
∑

aiEi a
divisor on X, with Ei prime divisors and ai ∈ Z and U an open subset of
X, we define the divisor D ∩ U on U to be

D ∩ U =
∑

Ei|Ei∩U �=∅
ai(Ei ∩ U).

We define the presheaf OX(D) of “functions whose poles are bounded
by D” by

Γ(U,OX(D)) = {f ∈ k(X) | (f)U +D ∩ U ≥ 0}
for U an open subset of X. By the convention that νE(0) = ∞ for all prime
divisors E, we have 0 ∈ Γ(U,OX(D)) for all D and U .

Each Γ(U,OX(D)) is a group since for f, g ∈ k(X) and prime divisor E
on X, νE(f + g) ≥ min{νE(f), νE(g)} and νE(−f) = νE(f).

Lemma 13.2. Suppose that X is a normal quasi-projective variety and D
is a divisor on X. Then OX(D) is a sheaf of OX-modules.

Proof. To show that OX(D) is a sheaf, we will verify that the sheaf axioms
hold. Suppose that U is an open subset of X and {Ui} is an open cover
of U and we have fi ∈ Γ(Ui,OX(D)) such that fi and fj have the same
restriction in Γ(Ui ∩ Uj ,OX(D)) for all i, j. Now for any open subset V
of X we have that Γ(V,OX(D)) is a subset of k(X), so we must have that
fi = fj (as elements of k(X)). Let f be this common element. Then
(f)U ∩ Ui + D ∩ Ui ≥ 0 for all i, and the fact that {Ui} is an open cover
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of U , so that each component of D ∩U must intersect some Ui nontrivially,
implies (f)U +D ∩ U ≥ 0. Thus f ∈ Γ(U,OX(D)).

Suppose that {Ui} is an open cover of an open subset U of X and
f ∈ Γ(U,OX(D)) is an element such that the restriction of f is zero in
Γ(Ui,OX(D)) for all i. Then we have that f = 0 as an element of k(X), so
f = 0 in Γ(U,OX(D)).

For U an open subset of X and f ∈ Γ(U,OX), we have that νE(f) ≥ 0
for all divisors E on X such that U ∩ E 
= ∅. Thus Γ(U,OX(D)) is a
Γ(U,OX)-module. �

Lemma 13.3. Suppose that X is a normal quasi-projective variety. Let 0
denote the divisor 0. Then OX(0) = OX .

Proof. Suppose that U is an open subset ofX, f ∈ OX(U), and E is a prime
divisor such that U ∩ E 
= ∅. Then there exists p ∈ U ∩ E. Now f ∈ OX,p

implies f ∈ OX,E (which is a localization of OX,p), so that νE(f) ≥ 0. Thus
(f)U ≥ 0, so that f ∈ OX(0)(U). We have established that OX ⊂ OX(0), so
it suffices by Proposition 11.13 to show that for all p ∈ X, OX,p = OX(0)p.
If f ∈ OX(0)p, then νE(f) ≥ 0 for all prime divisors E of X which contain
p. Thus f ∈ (OX,p)a for all height 1 prime ideals a of OX,p. We have that
OX,p is a normal local ring. Thus

⋂
a (OX,p)a = OX,p, where the intersection

is over the height 1 prime ideals a of OX,p by Lemma 1.79, so f ∈ OX,p. �

Let A be a Noetherian local domain with quotient field K. A fractional
ideal M of A is an A-submodule of K such that there exists d 
= 0 in A such
that dM ⊂ A. A fractional ideal is necessarily a finitely generated A-module.
If M is a fractional ideal, we have a natural inclusion of A-modules

HomA(M,A) = {f ∈ K | fM ⊂ A} ⊂ K.

Since HomA(M,A) is a finitely generated A-module, we have that
HomA(M,A) is a fractional ideal.

Given a fractional ideal M , we define its dual to be

M∨ = HomA(M,A).

Let P (A) be the set of height 1 prime ideals of A.

Theorem 13.4 ([23, Theorem 1, page 157]). Suppose that M is a fractional
ideal of A. Then

M∨ =
⋂

p∈P (A)

(M∨)p.

Lemma 13.5. Suppose that X is a normal quasi-projective variety and D
is a divisor on X. Then OX(D) is a coherent sheaf of OX-modules.



244 13. Divisors

Proof. We first give a proof with the assumption that X is nonsingular.
Let D = a1E1 + · · · + anEn. Suppose that p ∈ X. Since p is a nonsingular
point on X, every Ei such that p ∈ Ei has a local equation fi at p (Lemma
10.18). If p 
∈ Ei, then fi = 1 is a local equation of Ei at p. Let Up be an
affine neighborhood of p such that Γ(Up,OX(−Ei)) = Γ(Up, IEi) = (fi) for
all i. (Here (fi) means the ideal in k[Up].) Let f = fa1

1 · · · fan
n . Then (f)Up =

D∩Up. Suppose that U ⊂ Up is an open subset and g ∈ Γ(U,OX(D)). Then
(g)U ≥ −D ∩ U . We compute (fg)U = (f)U + (g)U ≥ D ∩ U − D ∩ U = 0.
Thus fg ∈ Γ(U,OX(0)) = Γ(U,OX) by Lemma 13.3, so that g ∈ 1

f Γ(U,OX).

Conversely, if h ∈ Γ(U,OX), then (hf )U ≥ −(f)U , so that h
f ∈ Γ(U,OX(D)).

In summary, we have that Γ(U,OX(D)) = 1
f Γ(U,OX) for all open subsets

U of Up, so that we have equality of sheaves

OX(D) | Up =
1

f
OUp .

We now prove the lemma for normal X. Let Z be the singular locus
of X, and let U = X \ Z. Let i : U → X be the inclusion. We have that
codimXZ > 1 since X is normal (Theorem 10.17). Let F = OX(D)|U ,
a coherent sheaf on U . We have a natural inclusion of OU -modules F ⊂
k(U) = k(X), where k(X) is the constant sheaf. By Theorem 11.55, there
exists a coherent sheaf H on X such that H|U = F and H is an OX -
submodule of k(X). We will denote the sheaf HomOX

(G,OX) (which was
defined in Section 11.5) by G∗ for an OX -module G. Let A = (H)∗∗. The
sheaf H is a coherent OX-module by Lemma 11.38, and we have natural
inclusions of OX -modules H ⊂ A ⊂ k(X). Further, since F is locally
isomorphic to OU as an OU -module, we have that A|U = F .

Suppose that V ⊂ X is an affine open subset. Let R = k[V ]. We let
N∨ = HomR(N,R) if N is an R-module. Let M = Γ(V,A). By Lemma
11.38 (and its proof) we have that M = (Γ(V,H))∨∨. By Theorem 13.4, we
have that M =

⋂
Q∈P (R)MQ where P (R) is the set of height 1 prime ideals

of R and the intersection is in k(X).

Suppose that W ⊂ V is a closed set and codimV W ≥ 2. If Q ∈ P (R),
then there exists p ∈ ZV (Q)\W (since codimV W ≥ 2 and codimV Z(Q) = 1)
so Q ⊂ I(p), and hence MI(p) ⊂ MQ. Thus by Proposition 11.53,

M = Γ(V,A) ⊂ Γ(V \W,A) =
⋂

p∈V \W
MI(p) ⊂

⋂
Q∈P (R)

MQ = M.

Thus Γ(V \ W,A) = Γ(V,A) for any affine open subset V of X and closed
subset W of V of codimension ≥ 2 in V . By the sheaf axioms, we have that

Γ(V \W,A) = Γ(V,A)
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for any open subset V of X and closed subset W of V of codimension ≥ 2
as we can express V as a union of affine open sets.

Suppose that V ⊂ X is an open subset. Since U = X \ Z does not
contain any prime divisor of X, we have that

Γ(V,OX(D)) = Γ(V ∩ U,OX(D)) = Γ(V ∩ U,A) = Γ(V,A).

Thus OX(D) = A = i∗(OX(D)|U) is a coherent OX -module. �

In the case that X is nonsingular, the fact that there exists an open
cover {Ui} of X and fi ∈ k(X) such that there are expressions

(13.2) OX(D) | Ui =
1

fi
OUi

for all i tells us that OX(D) is an invertible sheaf of OX-modules (Definition
11.33).

We have that the fi are “local equations” forD in the sense that (fi)Ui =
D ∩ Ui for all i. The set of pairs {(fi, Ui)} determines a Cartier divisor on
X (Definition 15.4).

In the appendix to [126, Section 1] it is explained that the sheaves
OX(D) on a normal variety X are the reflexive rank 1 sheaves on X [23,
Chapter 7, Section 4 ]. In particular, denoting the sheaf HomOX

(G,OX) by
G∗ for an OX-module G, as in the proof of Lemma 13.5, we have that

OX(−D) ∼= OX(D)∗

and

OX(D + E) ∼= (OX(D)⊗OX
OX(E))∗∗.

If D =
∑r

i=1 aiEi is an effective divisor on a normal variety X and U is
an affine open subset of X, then

Γ(U,OX(−D)) = {f ∈ k[U ] | νE1(f) ≥ a1} ∩ · · · ∩ {f ∈ k[U ] | νEr(f) ≥ ar}

= p
(a1)
1 ∩ · · · ∩ p

(ar)
r

where pi is the prime ideal pi = IEi∩U = Γ(U,OX(−Ei)) of the codimension

1 subvariety Ei ∩U of U and p
(ai)
i is the ai-th symbolic power of pi, defined

by p
(ai)
i = k[U ] ∩ (paii k[U ]pi), since k[U ]pi = OX,Ei is the valuation ring of

νEi , with maximal ideal piOX,Ei .

Proposition 13.6. Suppose that X is a normal quasi-projective variety
and D1 and D2 are divisors on X. Then D1 ∼ D2 if and only if OX(D1) ∼=
OX(D2) as sheaves of OX-modules.
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Proof. We will reduce to the case that X is nonsingular by the argument
used in the proof of Lemma 13.5. Let V be the nonsingular locus of X and

λ : V → X

be the inclusion. We have by Theorem 10.17 that codimX(X \ V ) ≥ 2 since
X is normal. Thus by the definition of OX(Di),

Γ(U,OX(Di)) = Γ(U ∩ V,OX(Di))

for all open subsets U of X, and so λ∗(OX(Di)|V ) ∼= OX(Di). Thus we may
assume that X = V is nonsingular.

Suppose that D1 ∼ D2. Then there exists g ∈ k(X) such that (g) =
D1 − D2. Multiplication by g thus gives us an OX -module isomorphism
OX(D1) → OX(D2) since for f ∈ k(X) and U an open subset of X,

(f)U +D1 ∩ U ≥ 0

if and only if (fg)U +D2 ∩ U ≥ 0.

Suppose that φ : OX(D1) → OX(D2) is an OX-module isomorphism.
For p ∈ X, the OX,p-module isomomorphism φp : OX(D1)p → OX(D2)p
extends uniquely to a k(X)-module isomorphism ψp : k(X) → k(X), since
the localizations (OX(Di)p)p = k(X) for i = 1, 2 (where p is the zero ideal

in OX,p). The map ψp is defined by ψp(
f
g ) =

φp(f)
g for f ∈ OX(D1)p and

0 
= g ∈ OX,p.

Suppose that U is an affine open subset of X such that OX(Di) | U =
1
fi
OU for some fi ∈ k(X) for i = 1, 2. Then

(13.3) Γ(U,OX(Di)) =
1

fi
k[U ] for i = 1, 2.

For g ∈ k[U ], we have that φ(U)( g
f1
) = gu

f2
for some fixed unit u ∈ k[U ].

Localizing at the zero ideal of k[U ] gives us a unique extension of φ(U) to
a k(X)-module isomorphism k(X) → k(X). But this extension must agree
with our extensions ψp for all p ∈ U (since the OX(Di) are coherent). Since
X is connected, all of our extensions ψp agree. A nonzero k(X)-module
homomorphism k(X) → k(X) is multiplication by a nonzero element of
k(X). Thus there exists a nonzero element g ∈ k(X) such that for all
open U in X, the Γ(U,OX)-module isomorphism φ(U) : Γ(U,OX(D1)) →
Γ(U,OX(D2)) is given by multiplication by g. This tells us that for any
f ∈ k(X) and open subset U of X, (f)U + D1 ∩ U ≥ 0 if and only if
(gf)U +D2 ∩ U ≥ 0.

By consideration of affine open subsets U on which an expression (13.3)

holds, we have that (g)U = ( f2f1 )U = (D2 − D1)U . Thus (g) = D2 − D1 so

that D1 ∼ D2. �
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In equation (13.2), we associated to a divisor D on a nonsingular variety
X an open cover {Ui} of X and gi ∈ k(X) which have the property that
(gi) ∩ Ui ∩ Uj = (gj) ∩ Ui ∩ Uj for all i, j.

Conversely, given an open cover {Ui} of X and gi ∈ k(X) such that
(gi)∩Ui ∩Uj = (gj)∩Ui ∩Uj for all i, j, we can associate a divisor D on X,
which is defined by the condition that D ∩Ui = (gi)∩Ui for all i. As in the
first part of the proof of Lemma 13.5, we have that OX(Di)|Ui =

1
gi
OUi .

Theorem 13.7. Suppose that X is a nonsingular quasi-projective variety
and L is an invertible sheaf on X. Then there exists a divisor D on X such
that L ∼= OX(D) as OX-modules.

Proof. Since X is quasi-compact (Exercise 7.6), X has a finite cover
{U1, . . . , Ur} with OUi-isomorphisms φi : OUi → L|Ui. Let σi = φi(Ui)(1) ∈
L(Ui), so that L|Ui = OUiσi is generated as an OUi-module by σi. Thus

L|Ui ∩ Uj = OUi∩Ujσi = OUi∩Ujσj

and there exists a unique unit gij ∈ OX(Ui∩Uj) ⊂ k(X) such that σi = gijσj .
Thus σi = gijgjiσi implies

(13.4) gji = g−1
ij .

The equality σi = gijσj = gijgjkσk implies

(13.5) gik = gijgjk.

We compute

(gi1)Ui∩Uj = (gijgj1)Ui∩Uj = (gij)Ui∩Uj + (gj1)Ui∩Uj = (gj1)Ui∩Uj

since gij is a unit in OX(Ui ∩ Uj). Thus there exists a unique divisor D on
X such that

D ∩ Ui = (gi1)Ui for 1 ≤ i ≤ r,

and we have that

OX(−D)|Ui = gi1OUi for 1 ≤ i ≤ r.

We have a natural inclusion of OX -modules L ⊂ k(X)σ1. For all i, we have

L|Ui = OUiσi = gi1OUiσ1 = (OX(−D)|Ui)σ1.

Thus L = OX(−D)σ1 ∼= OX(−D). �

Lemma 13.8. Suppose that X is a nonsingular quasi-projective variety and
I is a nonzero ideal sheaf on X. Then there exists an effective divisor
D on X and an ideal sheaf J on X such that the support of OX/J has
codimension ≥ 2 in X and I = OX(−D)J .
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Proof. We begin with some remarks about rings. Suppose that R is a local
ring of an algebraic variety and I is a nonzero ideal in R. Let d be the
dimension of R. Then the following are equivalent:

1. The ring R/I has dimension d − 1.

2. I has height 1 in R.

3. There exists a height 1 prime p in R such that I ⊂ p.

If we further have that R is a UFD, then a height 1 prime ideal p in R has
an expression p = (g) where g is an irreducible in R, so that I ⊂ p if and
only if I = gJ for some ideal J of R. Thus, assuming that R is a UFD, we
have that there exists a nonzero element f ∈ R and an ideal J in R such
that J has height ≥ 2 in R and I = fJ .

Now we prove the lemma. We have that Supp(OX/I) = E1∪· · ·∪Er∪W
where E1, . . . , Er are prime divisors and codimXW ≥ 2. Let I(Ei) be the
ideal sheaf of Ei in OX . Define the localization IEi of I in OX,Ei by taking
any p ∈ Ei and letting

IEi = (Ip)p ⊂ (OX,p)p = OX,Ei

where Ip is the stalk of I at p, p is the height 1 prime ideal p = I(Ei)p
in OX,p. Since OX,Ei is a one-dimensional regular local ring (a discrete
valuation ring), there exists a positive integer ai such that IEi = mai

Ei
where

mEi is the maximal ideal of OX,Ei . Let D be the divisor D =
∑r

i=1 aiEi.
Define a presheaf J on X by

J (U) = {f ∈ OX(U) | fOX(−D) ⊂ I}.

J is an ideal sheaf on X. The ideal sheaf OX(−D) has the properties that

OX(−D)Ei = mai
Ei

= IEi for 1 ≤ i ≤ r

and

OX(−D)G = OX,G = IG
if G is a prime divisor on X which is not one of the Ei.

Suppose that p ∈ X. For 1 ≤ i ≤ r, let fi be a local equation of Ei at p
(taking fi = 1 if p 
∈ Ei). Then OX(−D)p = fa1

1 · · · far
r OX,p and

Ip = fa1
1 · · · far

r (Ip : fa1
1 · · · far

r OX,p)
= (Ip : OX(−D)p)OX(−D)p = JpOX(−D).

Thus I = OX(−D)J . We have that Supp(OX/J ) does not contain a
prime divisor, since dim(OX,p/Jp) ≤ dimX − 2 for all p ∈ X. Thus
codimX(Supp(OX/J )) ≥ 2. �
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13.3. Divisors associated to forms

Suppose that X ⊂ Pn is a normal projective variety. Let x0, . . . , xn be
homogeneous coordinates on X, so that S(X) = k[x0, . . . , xn]. Suppose
that F ∈ S(X) is a nonzero homogeneous form of degree d. We associate to
F an effective divisor Div(F ) on X as follows. Let

fi =
F

xdi
∈ k(X) for 0 ≤ i ≤ n.

We have that

fj = fi

(
xi
xj

)d

.

Let Ui = Xxi for 0 ≤ i ≤ n, so that {U0, . . . , Un} is an affine open cover of
X. We have that

fi ∈ OX(Ui) = k

[
x0
xi

, . . . ,
xn
xi

]
for all i and xi

xj
is a unit in

OX(Ui ∩ Uj) = k

[
x0
xi

, . . . ,
xn
xi

,
xi
xj

]
for all i, j. We have that

(fi)Ui∩Uj = (fj)Ui∩Uj

for all i, j, so that there is a unique divisor E on X such that

E ∩ Ui = (fi)Ui for 1 ≤ i ≤ n.

We define

Div(F ) = E.

We have that Div(F ) ≥ 0 since (fi)Ui ≥ 0 for all i, as fi ∈ OX(Ui) for
all i.

13.4. Calculation of some class groups

Example 13.9. Cl(An) = (0).

Proof. Suppose that E is a prime divisor on An. Then the ideal of E, I(E),
is a height 1 prime ideal in the polynomial ring k[An]. Since k[An] is a UFD,
I(E) is a principal ideal, so there exists f ∈ k[An] such that (f) = E. �
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Example 13.10. Cl(Pn) ∼= Z.

Proof. For every irreducible form F ∈ S = S(Pn), Z(F ) is a prime divisor
on Pn. Suppose that E is a prime divisor on Pn. Let I(E) be the homoge-
neous prime ideal of E in S = k[x0, . . . , xn]. Since S is a polynomial ring
and I(E) is a height 1 prime ideal in S, we have that I(E) is a principal
ideal. Thus there exists an irreducible homogeneous form F ∈ S such that
I(E) = (F ). Now another form G in S is a generator of I(E) if and only if
F = λG where λ is a unit in S; that is, λ is a nonzero element of k. We can
thus associate to E the number d = deg(F ) which is called the degree of E.

Thus we can define a group homomorphism

deg : Div(Pn) → Z

by defining degE = d if E is a prime divisor of degree d and

deg
(∑

aiEi

)
=
∑

ai deg(Ei).

Suppose that f ∈ k(Pn) = k(x1
x0
, . . . , xn

x0
). Then we can write f = F

G
where F and G are homogeneous forms of a common degree d and F , G are
relatively prime in S (since S is a UFD). This expression is unique up to
multiplying F and G by a common nonzero element of k. Since S is a UFD
and F , G are homogeneous, there are factorizations

F =
∏

Fj , G =
∏

Gj

where Fj andGj are irreducible forms in S. LetDj = Z(Fj) and Ej = Z(Gj)
(the Dj may not all be distinct and the Ej may not all be distinct). Let
Ui = Xxi

∼= An for 0 ≤ i ≤ n. Then

(f) ∩ Ui =

(
F

xdi

)
∩ Ui −

(
G

xdi

)
∩ Ui =

∑
Dj ∩ Ui −

∑
Ej ∩ Ui.

Thus

(f) =
∑

Dj −
∑

Ej ,

and

deg ((f)) =
∑

degDj −
∑

degEj = d − d = 0.

Thus we have a well-defined group homomorphism

deg : Cl(Pn) → Z.

The homomorphism deg is onto since a linear form has degree 1, so the
associated prime divisor has degree 1.
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Suppose that D is a divisor on Pn which has degree 0. Write

D =
∑

Dj −
∑

Ej

where Dj and Ej are prime divisors and
∑

degDj =
∑

degEj . Let d be
this common degree.

Let Fj be homogeneous forms such that I(Fj) = Dj , and let Gj be
homogeneous forms such that I(Gj) = Ej . Then F =

∏
Fj has degree d

and G =
∏

Gj has degree d, so f = F
G ∈ k(Pn). We have that

(f) =
∑

Z(Fj) −
∑

Z(Gj) = D.

Thus the class of D is zero in Cl(Pn). �

Example 13.11. Cl(Pm × Pn) ∼= Z × Z.

The method of the previous example applied to the bihomogeneous co-
ordinate ring of Pm×Pn proves this result. Let S = k[x0, . . . , xm, y0, . . . , yn]
be the bihomogeneous coordinate ring of Pm×Pn. Prime divisors on Pm×Pn

correspond to irreducible bihomogeneous forms in S. Associated to a form
is a bidegree (d, e). Using the fact that S is a UFD, we argue as in the
previous example that this bidegree induces the desired isomorphism.

A consequence of this example is that the group Cl(Pm×Pn) is generated
by a prime divisor L1 of bidegree (1, 0) and a prime divisor L2 of bidegree
(0, 1). The divisor L1 is equal to H1 × Pn, where H1 is a linear subspace of
codimension 1 in Pm, and L2 = Pm × H2, where H2 is a linear subspace of
codimension 1 in Pn.

A particular example is P1 ×P1. Here L1 = {p}×P1 and L2 = P1 ×{q},
where p, q are any points in P1, are generators of Cl(P1 × P1).

Lemma 13.12. Suppose that D is a divisor on a nonsingular quasi-projective
variety X and p1, . . . , pm ∈ X are a finite set of points. Then there exists a
divisor D′ on X such that D′ ∼ D and pi 
∈ Supp D′ for i = 1, . . . ,m.

Proof. By assumption, X is an open subset of a projective variety X. Thus
X = X \Z for some closed subset Z of X. Choosing a projective embedding
of X, by the homogeneous nullstellensatz, Theorem 3.12, we find homoge-
neous forms

Fi ∈ I(Z ∪ {p1, . . . , pi−1, pi+1, . . . , pm}) ⊂ S(X)

for 1 ≤ i ≤ m such that Fi(pi) 
= 0 for 1 ≤ i ≤ m. Let di = deg(Fi). Taking
d = d1d2 · · · dm, set

F =
m∑
i=1

F
d
di
i ,
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a homogeneous form in S(X) of degree d. Let U = X \ Z(F ). By con-
struction, U is an affine open subset of X = X \ Z = X which contains
p1, . . . , pm. We may thus assume that X is an affine variety.

By induction on m, we may assume that p1, . . . , pi 
∈ Supp D and
pi+1 ∈ Supp D. We must construct a divisor D′ such that D′ ∼ D and
p1, . . . , pi+1 
∈ Supp D′. We will prove the inductive statement in the case
that D is a prime divisor. The case of a general divisor then follows by
applying the statement to each of its components as necessary.

Let π′ be a local equation of the prime divisor D in a neighborhood
of pi+1. The function π′ is regular at pi+1, so if (π′)∞ =

∑
klGl, then

pi+1 
∈ Gl for all l. Then for every l, there exists fl ∈ k[X] such that

fl ∈ I(Gl) and fl(pi+1) 
= 0. The function π = π′∏ fkl
l has no poles on X

(π ∈ Γ(X,OX(0))) so π ∈ k[X] by Lemma 13.3. Further, π = 0 is a local
equation of D at pi+1. Since pj 
∈ Supp D ∪ {p1, . . . , pj−1, pj+1, . . . , pi} for
1 ≤ j ≤ i, there exists gj ∈ I(D ∪ {p1, . . . , pj−1, pj+1, . . . , pi}) such that
gj(pj) 
= 0 (by the nullstellensatz, Theorem 2.5).

Let f = π +
∑i

j=1 αjg
2
j , where αj ∈ k is chosen so that αj 
= − π(pj)

gj(pj)2
.

Then

(13.6) f(pj) 
= 0 for 1 ≤ j ≤ i.

Since gj(D) = 0 for all j, π divides gj in the regular local ring OX,pi+1 and
we have an expression ∑

αjg
2
j = hπ2

for some h ∈ OX,pi+1 . Thus f = π(1 + πh) and since 1 + πh is a unit in
OX,pi+1 , f = 0 is a local equation of D in a neighborhood of pi+1. Thus we
have an expression

(f) = D +
∑

rsDs

where none of the prime divisors Ds contain pi+1. Let D
′ = D − (f). Then

pi+1 
∈ Supp D′. Further, pj 
∈ Supp (f) for 1 ≤ j ≤ i by (13.6). Thus D′

satisfies the conclusions of the inductive step. �

Suppose that φ : X → Y is a regular map of nonsingular quasi-projective
varieties. We will define a natural group homomorphism φ∗ : Cl(Y ) →
Cl(X).

Let Z be the Zariski closure of φ(X) in Y . Suppose that D is a divisor
on Y . Then by Lemma 13.12, there is a divisor D′ on Y such that D ∼ D′

and Z is not contained in the support of D′. Write D′ =
∑

aiEi −
∑

bjFj ,
where the ai, bj are positive and the Ei, Fj are distinct prime divisors.

We will define a divisor φ∗(D′) on X. Let {Ui} be an affine open cover
of Y such that there exist fi ∈ k(Y ) with (fi) ∩ Ui = D′ ∩ Ui for all i.
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After replacing the cover {Ui} with a refinement, we may write fi = gi
hi

for all i where gi and hi are regular on Ui and (gi)Ui =
∑

aj(Ej ∩ Ui) and
(hi)Ui =

∑
bj(Fj ∩Ui). Since Z is not contained in any of these divisors, the

restrictions gi and hi of gi and hi to Ui ∩ Z are nonzero regular functions.

Thus we have induced rational functions
gi
hi

∈ k(Z).

Let Vi = φ−1(Ui), which give an open cover of X. Let φ : X → Z be
the dominant regular map induced by φ, with inclusion of function fields
φ
∗
: k(Z) → k(X). We define φ∗(D′) to be the divisor on X determined by

the conditions

φ∗(D′) ∩ Vi =

(
φ
∗
(
gi
hi

))
∩ Vi

over the open cover {Vi} of X.

If D′′ is another divisor whose support does not contain Z such that
D ∼ D′′, then there exists f ∈ k(Y ) such that (f) = D′ − D′′. Since the
support of (f) contains no component of Z, f restricts to a nonzero element

f of k(Z). By our construction, we have that (φ
∗
(f)) = φ∗(D′) − φ∗(D′′).

Thus we have a well-defined group homomorphism φ∗ : Cl(Y ) → Cl(X),
defined by taking φ∗(D) to be the class of φ∗(D′), for any divisor D′ on Y
which is linearly equivalent to D and whose support does not contain φ(X).
We will write φ∗(D) ∼ φ∗(D′), even though φ∗(D) may only be defined up
to equivalence class. However, the divisor φ∗(D′) is actually a well-defined
divisor on X.

A particular case of this construction is the inclusion i : X → Y of a
closed subvariety X of Y into Y . Then the map i∗ on class groups can be
considered as a restriction map: given a divisor D on Y , find a divisor D′

linearly equivalent to D whose support does not contain X, and define i∗(D)
to be the class of D′ ∩X (of course a prime divisor on Y might intersect X
in a sum of prime divisors).

Example 13.13. Suppose that X is a nonsingular surface and p ∈ X is
a point. Let π : B → X be the blow-up of p, with exceptional divisor
π−1(p) = E ∼= P1. Let i : E → B be the inclusion. Then i∗(E) ∼ −q where
q is a point on E.

Proof. Let L be a curve on X which contains p and such that L is nonsin-
gular at p. There exists a divisor D on X such that L ∼ D and p 
∈ Supp(D)
(by Lemma 13.12). Let L′ be the strict transform of L on B. Then
π∗(L) = L′ + E, and π∗(D) ∼ π∗(L). Thus i∗(π∗(L)) ∼ i∗(π∗(D)) ∼ 0,
since Supp(π∗(D)) ∩ E = ∅. Thus i∗(E) ∼ i∗(−L′) = −q, where q is the
intersection point of E and L′. �
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Theorem 13.14 (Lefschetz). Suppose that H is a nonsingular variety which
is a codimension 1 closed subvariety of Pn for some n ≥ 4. Then the re-
striction homomorphism Cl(Pn) ∼= Z → Cl(H) is an isomorphism.

Proofs of this theorem can be found in [62, pages 156 and 163] over
C and for general fields in [64] and [74]. Since T = Z(xy − zw) ⊂ P3

is isomorphic to P1 × P1, which has class group Z × Z, we see that the
theorem fails for n < 4. The Segre embedding of P1 ×P1 into P3 is the map
φ = (x0y0 : x1y0 : x0y1 : x1y1). This map is induced by the corresponding
homomorphism

φ∗ : S(P3) = k[x, y, z, w] → S(P1 × P1) = k[x0, x1, y0, y1]

of coordinate rings.

Let L be a form of degree 1 on P3. Then φ∗(L) is a bihomogeneous form
of bidegree (1, 1) in S(P1×P1). Thus the divisor φ∗(L) has bidegree (1, 1) on
P1 × P1. Since the class of L generates Cl(P3), we have that the restriction
map

Λ : Cl(P3) ∼= Z → Cl(T ) ∼= Z2

is given by Λ(n) = (n, n) for n ∈ Z. So a divisor of degree n on P3, whose
support does not contain T , restricts to a divisor on T which is linearly
equivalent to n({p} × P1 + P1 × {q}) for any points p, q ∈ P1.

13.5. The class group of a curve

Suppose that X is a nonsingular projective curve. A divisor D on X is then
a sum D =

∑r
i=1 aipi where pi are points on X and ai ∈ Z. We define the

degree of the divisor D to be

deg(D) =
r∑

i=1

ai.

Suppose that X and Y are nonsingular projective curves and φ : X → Y
is a nonconstant regular map. Then φ is finite (by Corollary 10.26). The
degree of φ is defined to be the degree of the finite field extension

deg(φ) = [k(X) : k(Y )].

Lemma 13.15. Let p1, . . . , pr ∈ X, and set

R =
r⋂

i=1

OX,pi ,

where the intersection is in k(X). Then R is a principal ideal domain. There
exist elements ti ∈ R such that

(13.7) νpi(tj) = δij for 1 ≤ i ≤ j ≤ r.
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If u ∈ R, then

(13.8) u = tl11 · · · tlrr v
where li = νpi(u) and v is a unit in R.

Proof. For 1 ≤ i ≤ r we have that

(13.9) OX,pi = {f ∈ k(X) | νpi(f) ≥ 0}
since X is nonsingular.

Let ui be a regular parameter in the one-dimensional regular local ring
OX,pi . Then νpi(ui) = 1, so that (ui) = pi +D where D is a divisor on X
such that pi does not appear in D. By Lemma 13.12, there exists a divisor
D′ on X such that the support of D′ is disjoint from{p1, . . . , pr} and D′ ∼ D
so there exists a rational function fi ∈ k(X) such that (fi) = D′ − D. Let
ti = uifi. Then (ti) = pi +D′, so that ti ∈ R by (13.9) and the equations
(13.7) hold.

Let u ∈ R, and set li = νpi(u). We necessarily have that li ≥ 0 for all i.

Let v = ut−l1
1 · · · t−lr

r . We have that νpi(v) = 0 for all i. By (13.9) we have
that v and v−1 are in OX,pi for all i. Thus v, v

−1 ∈ R, so that v is a unit in
R. We thus have the expression (13.8) for u.

We will now show that R is a principal ideal domain. Let I be an ideal
in R. Let

li = inf{νpi(u) | u ∈ I}
for 1 ≤ i ≤ r. Set a = tl11 · · · tlrr , and let J = aR. For u ∈ I we have
that νpi(

u
a ) ≥ 0 for all i, so that u

a ∈ R, and thus u ∈ J . Thus I ⊂ J .

We will now show that J ⊂ I. Let J ′ = {ua−1 | u ∈ I}. Then J ′ is
an ideal in R, and inf{νpi(v) | v ∈ J ′} = 0 for 1 ≤ i ≤ r. Hence for
1 ≤ i ≤ r, there exists ui ∈ J ′ such that νpi(ui) = 0; that is, ui(pi) 
= 0. Let

c =
∑r

j=1 ujt1 · · · t̂j · · · tr ∈ J ′. Then c(pi) 
= 0 for all i, so that νpi(c) = 0

for all i. Thus c is a unit in R so that J ′ = R. Thus I = aJ ′ = aR is a
principal ideal. �

Since φ : X → Y is finite, it is surjective, and the preimage of every
point of Y in X is a finite set (by Theorems 7.5, 2.57, and 2.56). Suppose
that q ∈ Y . Let φ−1(q) = {p1, . . . , pr}. Let V be an affine neighborhood of
q. Then U = φ−1(V ) is an affine open subset of X and φ : U → V is finite
(by Theorem 7.5).

Lemma 13.16. Let q ∈ Y , let V be an affine neighborhood of q in Y , and
let U = φ−1(V ). Let φ−1(q) = {p1, . . . , pr}, and

R =
r⋂

i=1

OX,pi .
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Then

R = k[U ]OY,q =
{∑

aibi | ai ∈ k[U ], bi ∈ OY,q

}
,

where the product is in k(X), and we identify OY,q with its image in k(X)
by φ∗.

Proof. We have that OY,q ⊂ OX,pi and k[U ] ⊂ OX,pi for all i, since pi ∈ U
for all i, so that k[U ]OY,q ⊂ R.

Suppose that f ∈ R. Let z1, . . . , zs ∈ X be the poles of f on U . Let
wi = φ(zi) for 1 ≤ i ≤ s. We have that f is regular at the points φ−1(q) =
{p1, . . . , pr} since f ∈ R. There exists a function h ∈ k[V ] such that h(q) 
= 0
and h(wi) = 0 for all i by Lemma 8.10. Replacing h with a sufficiently high
power of h, we then also have that νzi(hf) ≥ 0 for all i. Thus hf has no
poles on U , so that

hf ∈
⋂
q∈U

OX,q = OX(U) = k[U ].

Since 1
h ∈ OY,q, we have that f ∈ k[U ]OY,q. Thus R ⊂ k[U ]OY,q. �

Theorem 13.17. Let φ−1(q) = {p1, . . . , pr} and R =
⋂r

i=1 OX,pi. Then R
is a free OY,q-module of rank n = deg(φ).

Proof. Since k[U ] is a finitely generated k[V ]-module and OY,q is a localiza-
tion of k[V ], we have that R = k[U ]OY,q is a finitely generated OY,q-module.
By the classification theorem for finitely generated modules over a principal
ideal domain [84, Theorem 3.10], the OY,q-module R is a direct sum of a
finite rank free OY,q-module and a torsion OY,q-module. Since R and OY,q

are contained in the field k(X), R has no OY,q torsion, so that R is a free
OY,q-module of finite rank.

Suppose that f1, . . . , fm is a basis of the free OY,q-module R. If m >
n = deg(φ), then f1, . . . , fm are linearly dependent over k(Y ). Clearing
denominators in a dependence relation over k(Y ) gives a dependence relation
over OY,q. Thus m ≤ n. Let h ∈ k(Y ). Let l be the maximum of the order
of a pole of h at the pj . Let t be a local parameter at q (a generator of the

maximal ideal of OY,q). Then the function tlh has no poles in the set φ−1(q)

so tlh ∈ R. Then there exists an expression tlh =
∑m

i=1 aifi with ai ∈ R, so

h =

m∑
i=1

ai
tl
fi,

showing that f1, . . . , fm span k(X) as a k(Y )-vector space. Thus m ≥ n.

�
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Theorem 13.18. Suppose that φ : X → Y is a dominant regular map of
nonsingular projective curves. Then deg φ∗(q) = degφ for every q ∈ Y . In
particular,

degφ∗(D) = degφdegD

for every divisor D on Y .

Proof. Let t be a local parameter at q in Y (a generator of the maximal
ideal of OY,q), and let φ−1(q) = {p1, . . . , pr}. Let R =

⋂r
i=1 OX,pi . Let

t1, . . . , tr ∈ R be the generators of the r distinct maximal ideals mi = (ti)
of R, found in Lemma 13.15. Then any two distinct ti, tj cannot both be
contained in any ml. Thus the ideal (ti, tj) is not contained in a maximal
ideal of R, so that (ti, tj) = R; that is, the ideals (ti) and (tj) are coprime
in R.

By Lemma 13.15, we have that t = tl11 · · · tlrr v where v is a unit in R and
li = νpi(t). Thus

φ∗(q) =
∑

lipi and degφ∗(q) =
∑

li.

Since the ideals (ti) are pairwise coprime, we have by Theorem 1.5 that

R/tR ∼=
r⊕

i=1

R/tlii R.

We will now show that for every i, every w ∈ R has a unique expression

(13.10) w ≡ α0 + α1ti + · · ·+ αli−1t
li−1
i mod (tlii )

with α0, . . . , αli−1 ∈ k.

We prove this formula by induction. Suppose that it has been established
that w has a unique expression

w ≡ α0 + α1ti + · · · + αs−1t
s−1
i mod (tsi )

with α0, . . . , αs−1 ∈ k. Then v = t−s
i (w− (α0 +α1ti + · · ·+αs−1t

s−1
i )) ∈ R.

Let v(pi) = αs ∈ k. Then νpi(v − αs) > 0, so that v ≡ αs mod (ti). Thus

w ≡ α0 + α1ti + · · · + αst
s
i mod (ts+1

i ),

establishing (13.10).

From (13.10), we see that dimk R/(tlii ) = li for all i, so that

dimk R/(t) =
r∑

i=1

li = deg φ∗(q).

Now by Theorem 13.17, we have OY,q-module isomorphisms

R/(t) ∼= (OY,q/(t))
deg(φ) ∼= kdeg(φ),

from which we conclude that dimk R/(t) = deg φ. �



258 13. Divisors

Corollary 13.19. The degree of a principal divisor on a nonsingular pro-
jective curve X is zero.

Proof. Suppose that f ∈ k(X) is a nonconstant rational function. The
inclusion of function fields k(P1) = k(t) → k(X) defined by mapping t to f
determines a nonconstant rational map φ : X → P1, which is a regular map
since X is a nonsingular curve (Corollary 10.26). We have a representation
φ = (f : 1).

For p ∈ X, write f = upz
np
p where up is a unit in OX,p, zp is a regular

parameter in OX,p, and np = νp(f). If np ≥ 0, then φ(p) = (f(p) : 1), and
if np < 0, then

φ(p) =

(
1 :

(
1

f

)
(p)

)
=

(
1 :

(
z
−np
p

up

)
(p)

)
= (1 : 0).

The function t is a local equation of 0 = (0 : 1) in P1 \ {(1 : 0)}, so

φ∗(0) =
∑

p∈φ−1(0)

νp(φ
∗(t))p =

∑
p∈φ−1(0)

νp(f)p = (f)0.

Similarly, 1
t is a local equation of ∞ = (1 : 0) in P1 \ {(0 : 1)}, so φ∗(∞) =

(f)∞.

By Theorem 13.18,

deg(f) = deg(f)0 − deg(f)∞ = deg φ∗(0) − deg φ∗(∞) = degφ − deg φ = 0.

�

Corollary 13.20. Suppose that X is a nonsingular projective curve. Then
the surjective group homomorphism deg : Div(X) → Z induces a surjective
group homomorphism deg : Cl(X) → Z.

Let X be a nonsingular projective curve and let Cl0(X) be the subgroup
of Cl(X) of classes of divisors of degree 0. By the above corollary, there is
a short exact sequence of groups

(13.11) 0 → Cl0(X) → Cl(X)
deg→ Z → 0.

Corollary 13.21. Suppose that X is a nonsingular projective curve. Then
Cl0(X) = (0) if and only if X ∼= P1. In fact, if X is a nonsingular projective
curve and p, q ∈ X are distinct points such that p ∼ q, then X ∼= P1.

Proof. We proved in Example 13.10 that Cl0(P1) = (0). Suppose that X
is a nonsingular projective curve and p, q ∈ X are distinct points such that
p ∼ q. Then there exists f ∈ k(X) such that (f) = p − q. The inclusion of
function fields k(P1) = k(t) → k(X) defined by t �→ f determines a regular
map φ : X → P1, represented by (f : 1). Now φ∗(0) = (f)0 = p, so degφ = 1
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by Theorem 13.18. Thus φ∗ : k(t) → k(X) is an isomorphism, and so φ is
birational. Thus φ is an isomorphism by Corollary 10.25, since X and P1

are nonsingular projective curves. �

By Corollary 13.19, the degree, deg(L), of an invertible sheaf L on a
nonsingular projective curve X is well-defined, since L ∼= OX(D) for some
divisor D on X by Theorem 13.7.

Exercise 13.22. Let k be an algebraically closed field of characteristic not
equal to 2, and let C be an irreducible quadric curve in P2 (C = Z(F ) where
F ∈ k[x0, x1, x2] is an irreducible form of degree 2). Let p ∈ C be a point
and let π : P2 ��� P1 be the projection from p. Let φ : C ��� P1 be the
induced rational map. Show that φ is a regular map and an isomorphism.

13.6. Divisors, rational maps, and linear systems

LetX be a normal quasi-projective variety and let φ : X ��� Pn be a rational
map. We may represent φ by an expression

φ = (f0 : . . . : fn)

with f0, . . . , fn ∈ k(X). We assume that none of the fi are zero. Let

Di = (fi) =

m∑
j=1

kijCj

where the Cj are distinct prime divisors on X.

Define the divisor

D = gcd(D0, . . . , Dn) =
∑

kjCj , where kj = min
i

kij.

The divisor D has the properties that Di − D ≥ 0 for all i and

(13.12) if F is a divisor such that Di ≥ F for all i, then D ≥ F.

Lemma 13.23. Suppose that X is a normal variety and p ∈ X. Then φ is
regular at p if and only if p 
∈

⋂n
i=0 Supp(Di − D).

Proof. The rational map φ is regular at p if and only if there exists α ∈ k(X)
such that αfi ∈ OX,p for all i and there exists j such that αfj(p) 
= 0.

Suppose that such an α ∈ k(X) exists. Then νE(αfi) ≥ 0 for all i and
prime divisors E which contain p, and νE(αfj) = 0 for all prime divisors
E which contain p. Thus there exists an open neighborhood U of p such
that (αfi)U ≥ 0 for all i and (αfj)U = 0. Thus (α)U = −(fj)U = −Dj ∩ U .
Further, (Di − Dj) ∩ U = (αfi)U ≥ 0, so that Di ∩ U ≥ Dj ∩ U for all i.
This is only possible if Dj ∩ U = D ∩ U , so that p 
∈

⋂n
i=0 Supp(Di − D).
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Now suppose that p 
∈
⋂n

i=0 Supp(Di − D). Then there exists Ds such
that ksi = ki for all i such that p ∈ Ci. Thus there exists a neighborhood U
of p such that (fs) ∩ U = D ∩ U . Let α = 1

fs
. Then α is a local equation

for the divisor −D on U . Suppose that E is a prime divisor on X such that
p ∈ E. Then

νE(αfi) = νE(α) + νE(fi) =

{
0 if E ∩ U 
= Cj ∩ U for any Cj ,
kij − kj if E ∩ U = Cj ∩ U for some Cj .

In particular, αfi ∈ OX(0)p = OX,p for all i, and αfs does not vanish at p,
so that φ is regular at p. �

Suppose that X is a normal projective variety and D is a divisor on X.
Then

Γ(X,OX(D)) = {f ∈ k(X) | (f) +D ≥ 0}
is a finite-dimensional vector space over k, by Theorem 11.50, since OX(D) is
coherent (Lemma 13.5). Suppose that f0, . . . , fr ∈ Γ(X,OX(D)) are linearly
independent over k. For t0, . . . , tr ∈ k which are not all zero, we have that
t0f0+· · ·+trfr ∈ Γ(X,OX(D)). We thus have an associated effective divisor
(t0f0+ · · ·+ trfr)+D on X, which is linearly equivalent to D. If 0 
= α ∈ k,
then the divisor (αt0f0+ · · ·+αtrfr) = (t0f0+ · · ·+ trfr). We define a linear
system L ⊂ |D| by

L = {(t0f0 + · · · + trfr) +D | (t0 : . . . : tr) ∈ Pr}.
The linear system L is a family, parameterized by Pr, of effective divisors
on X which are linearly equivalent to D. If we take f0, . . . , fr to be a k-
basis of Γ(X,OX(D)), then we write L = |D| and say that L is a complete
linear system. The linear system |D| is complete in the sense that if G is
an effective divisor on X which is linearly equivalent to D, then G ∈ |D|.
Observe that the linear system L determines the subspace of Γ(X,OX(D))
spanned by f0, . . . , fr, but we cannot recover our specific basis.

Linear systems give us another way to understand rational maps. Sup-
pose that D is a divisor on X, V is a linear subspace of Γ(X,OX(D)), and
L ⊂ |D| is the associated linear system. Then we associate to L a rational
map

φL = (f0 : . . . : fn) : X ��� Pn,

by choosing a basis f0, . . . , fn of V . We will also denote this rational map
by φV . A change of basis of V induces a linear automorphism of Pn, so maps
obtained from different choices of bases of V are the same, up to a change
of homogeneous coordinates on Pn.

Suppose that φ : X ��� Pn is a rational map. Then we have a rep-
resentation φ = (f0 : . . . : fn) with fi ∈ k(X). Let Di = (fi) and
D = gcd(D0, . . . , Dn). Then fi ∈ Γ(X,OX(−D)) for all i. If the fi are
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linearly independent, then φ is the rational map associated to the linear
system L ⊂ |−D| obtained from the span V ⊂ Γ(X,OX(−D)) of f0, . . . , fn.
If some of the fi are linearly dependent, then the projection Pn ��� Pm onto
an appropriate subspace of Pn is an isomorphism on the image of φ, and the
composed rational map X ��� Pm is given by φL.

Suppose that L is a linear system on a normal projective variety X. The
base locus of the linear system L is the closed subset of X:

Base(L) =
⋂
F∈L

Supp(F ).

We will say that a linear system L is base point free if Base(L) = ∅.

Example 13.24. Let A ∈ k[x0, . . . , xn] be a linear form on Pn. Let H =
Div(A) (a hyperplane of Pn). For r > 0, a k-basis of Γ(Pn,OX(rH)) is{

xi00 · · ·xinn
Ar

| i0 + · · · + in = r

}
so the complete linear system

|rH|=
{
Div
(∑

ti0...inx
i0
0 · · ·xinn

)
| i0 + · · ·+ in = r and (ti0...in) ∈ P(

n+r
n )−1

}
is base point free.

Lemma 13.25. Suppose that X is a normal projective variety, D is a divisor
on X, and p ∈ X. If OX(D)p is not invertible (not isomorphic to OX,p as
an OX,p-module), then p ∈ Base(|D|).

Proof. Suppose that p ∈ X and p 
∈ Base(|D|). We will show that OX(D)p
is invertible. There exists f ∈ Γ(X,OX(D)) such that p 
∈ Supp((f) +D).

Let E = (f)+D. Then OX(D)
1
f→ OX(E) is an isomorphism of OX -modules.

Since p 
∈ Supp(E), OX(E)p = OX,p so OX(D)p is invertible. �

We point out that for a divisor D on a normal projective variety X and
p ∈ X, OX(D)p is invertible if and only if there exists a local equation of
D at p; in fact, if h generates OX(D)p as an OX,p-module, then 1

h is a local
equation of D at p, as we now show. Let U be an affine open neighborhood
of p in X and g ∈ k(X) be such that D ∩ U = (g) ∩ U . Then, as shown in
the first part of the proof of Lemma 13.5, OX(D)|U = 1

gOU . Further, if V

is an open subset of U , then OX(D)|V = 1
gOV . Thus OX(D)p =

1
gOX,p, so

that h = u1
g where u is a unit in OX,p, and so 1

h is a local equation of D
at p.
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Lemma 13.26. Suppose that X is a normal projective variety and L ⊂ |D|
is the linear system associated to a subspace V of Γ(X,OX(D)). Then

1) The rational map

φV : X ��� Pn

associated to V is independent of the divisor G such that V ⊂
Γ(X,OX(G)).

2) Suppose that E is a codimension 1 subvariety of X such that E ⊂
Base(L). Then V ⊂ Γ(X,OX(D − E)), and the linear system
associated to V , regarded as a subspace of Γ(X,OX(D − E)), is
{F − E | F ∈ L}.

3) Suppose that Base(L) has codimension ≥ 2 in X. Then the locus
where the rational map φL is not a regular map is the closed subset
Base(L).

A consequence of Lemma 13.26 is that the rational map φν : X ��� Pn

is defined by a linear system whose base locus has codim ≥ 2 in X.

Proof. The first statement follows since the rational map φV depends
only on V . If E ⊂ Base(L) and f ∈ V , then (f) + D ≥ E. Thus
V ⊂ Γ(X,OX(D − E)). Let f0, . . . , fn be a basis of V . Define A =
−gcd((f0), . . . , (fn)) as before Lemma 13.23. We have that V ⊂ Γ(X,OX(A))
and the base locus of the linear system {(f) + A | f ∈ V } has codimension
≥ 2 in X by Lemma 13.23. By (13.12) we have that A ≤ D. It remains
to prove the third statement of the lemma. Since Base(L) has codimension
≥ 2 in X, we have that D = A. By Lemma 13.23, it suffices to show that
Base(L) =

⋂n
i=0(Supp((fi) + A)). By Lemma 13.25, we need to show that

if p ∈ X is such that OX(A)p is invertible, p ∈
⋂n

i=0(Supp((fi) + A)), and
G ∈ L, then p ∈ Supp(G). With these assumptions, let g be a local equation
of A at p. Then fig ∈ OX,p and fig(p) = 0 for all i. There exist t0, . . . , tn ∈ k
such that G = (

∑
tifi) + A so

∑
tifig is a local equation of G at p. Now

(
∑

tifigi)(p) =
∑

ti(fig)(p) = 0 so p ∈ G. �

Definition 13.27. A divisor D on a normal projective variety X is called
very ample if Base|D| = ∅ and the induced regular map φ|D| : X → Pn is a
closed embedding. The divisor D is called ample if OX(D) is invertible and
some positive multiple of D is very ample.

If D is very ample, then OX(D) is invertible by Lemma 13.25.

In Example 13.24, rH is very ample if r ≥ 1 as φ|rH| is a Veronese
embedding.
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Lemma 13.28. Suppose that φL : X → Pn is a regular map which is given
by a base point free linear system L. Then

L = {φ∗
L(H) | H is a linear hyperplane on Pn such that φL(X) 
⊂ H}.

Further, if p ∈ X, then the fiber

φ−1
L (φL(p)) =

⋂
F

Supp(F )

where the intersection is over F ∈ L such that p ∈ F .

The proof of Lemma 13.28 is Exercise 13.40.

Proposition 13.29. Suppose that D is a divisor on a normal projective
variety X and V is a subspace of Γ(X,OX(D)) such that the associated
linear system L is base point free. Let t be an indeterminate, and let R be
the graded k-algebra R = k[V t] ⊂ k(X)[t], where we set t to have degree
1. Then the graded k-algebra

⊕
n≥0 Γ(X,OX(nD)) is a finitely generated

R-module, where we regard
⊕

n≥0 Γ(X,OX(nD)) as a graded R-module by
the isomorphism⊕

n≥0

Γ(X,OX(nD)) ∼=
∑
n≥0

Γ(X,OX(nD))tn ⊂ k(X)[t].

Proof. The rational map φL : X ��� Pm (with m = dimk V −1) is a regular
map since L is base point free, and φ∗

LOPm(1) ∼= OX(D) (by Exercise 13.61).
Let F = (φL)∗OX . The sheaf F is a coherent OPm-module by Theorem
11.51. We have that

F(n) ∼= F ⊗ OPm(n) ∼= (φL)∗(φ
∗
LOPm(n)) ∼= (φL)∗OX(nD)

for n ∈ Z by Exercise 11.41. Further,⊕
n≥0

Γ(X,OX(nD)) ∼=
⊕
n≥0

Γ(Pm,F(n))

is a finitely generated S = S(Pm)-module by Exercise 11.59. Thus⊕
n≥0

Γ(X,OX(nD))

is a finitely generated R-module since R is the image of S in k(X)[t], by the
natural graded map which takes S1 onto V . �

Corollary 13.30. Suppose that X is a normal projective variety and D is
an ample divisor on X. Then there exists m0 > 0 such that mD is very
ample for m > m0, and there exists m1 ≥ m0 such that if m > m1 and W is
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the image of X in a projective space P by the closed embedding φ|mD|, and
S is the coordinate ring of W ∼= X by this embedding, then

S ∼=
⊕
n≥0

Γ(X,OX(nmD))

as graded rings.

However, if |D| is not base point free, then it is possible that the graded
k-algebra

⊕
n≥0 Γ(X,OX(nD)) is not a finitely generated k-algebra, even if

D is an effective divisor on a nonsingular projective surface X. An example
is given by Zariski in [159, Part 1, Section 2]. We will present this example
in Theorem 20.14.

13.7. Criteria for closed embeddings

Suppose that D is a divisor on a nonsingular projective variety X and V ⊂
Γ(X,OX(D)) is a linear subspace, with associated linear system L, such that
Base(L) has codimension ≥ 2 in X. Let f0, . . . , fn be a k-basis of V , so that
the rational map φ = φV : X ��� Pn is represented by φ = (f0 : . . . : fn).
Then we have seen that for p ∈ X, if α ∈ k(X) is a local equation of D at
p, then αfi ∈ OX,p for all i, and φ = (αf0 : . . . : αfn) is regular at p if and
only if αfi(p) 
= 0 for some i. In this case, (αf0 : . . . : αfn) represents φ as
a regular map in a neighborhood of p. Let Ip be the ideal sheaf of p in X.

Consider the commutative diagram:

Γ(X,OX(D))
restriction→ OX(D)p =

1
αOX,p

α→ OX,p

↓ ↓
OX(D)p/IpOX(D)p

α→ OX,p/(Ip)p ∼= k

where the isomorphism with k is the evaluation map g �→ g(p). The hori-
zontal maps, given by multiplication by α, are OX,p-module isomorphisms.

The composed map Λ : Γ(X,OX(D)) → OX(D)p/IpOX(D)p ∼= k is
given by f �→ (αf)(p) for f ∈ Γ(X,OX(D)).

We see that

(13.13)
φ is regular at p if and only if the natural map of V
to OX(D)p/IpOX(D)p ∼= k is surjective.

Now suppose that φ is a regular map on X and p, q are distinct points
of X. Let α be a local equation of D at p and let β be a local equation of
D at q. Then we have an evaluation map

Λ′ : Γ(X,OX(D)) → OX(D)p/IpOX(D)p ⊕ OX(D)q/IqOX(D)q ∼= k2,
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defined by Λ′(f) = ((αf)(p), (βf)(q)) for f ∈ Γ(X,OX(D)). We have that
φ(p) 
= φ(q) if and only if the vectors

(αf0(p), . . . , αfn(p)) and (βf0(q), . . . , βfn(q))

in kn+1 are linearly independent over k. Thus, since the row rank and
column rank of the matrix(

αf0(p) · · · αfn(p)
βf0(q) · · · βfn(q)

)
are equal,
(13.14)

φ is regular and injective if and only if the natural map of V to
OX(D)p/IpOX(D)p ⊕ OX(D)q/IqOX(D)q is surjective
for all p 
= q ∈ X.

Suppose that φ is an injective regular map. Then φ is a closed embedding
if and only if dφp : Tp(X) → Tq(Pn) is injective for all p ∈ X (with q = φ(p))
by Theorem 10.36.

Suppose that α = 0 is a local equation of D at p. Then (αfi)(p) 
= 0
for some i, say (αf0)(p) 
= 0. Then φ(p) is in U = Pn

x0
∼= An, which has the

regular functions

k[U ] = k

[
x1
x0

, . . . ,
xn
x0

]
.

Let λi =
(αfi)(p)
(αf0)(p)

for 1 ≤ i ≤ n. Then the maximal ideal mq = Iq(U) of q in

k[U ] is

mq =

(
x1
x0

− λ1, . . . ,
xn
x0

− λn

)
.

Now dφp is injective if and only if the dual map

φ∗ : mq/m
2
q → mp/m

2
p

is onto (where mp = (Ip)p). This map is onto if and only if the classes of

αf1
αf0

− λ1, . . . ,
αfn
αf0

− λn

span (Ip)p/(Ip)2p as a k-vector space. Since (αf0)(p) 
= 0, this holds if and
only if the classes of

αf1 − λ1(αf0), . . . , αfn − λn(αf0)

span (Ip)p/(Ip)2p as a k-vector space. Now {f ∈ V | (αf)(p) = 0} has the
basis

{f1 − λ1f0, . . . , fn − λnf0}.
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Thus:

(13.15)

Suppose that φ is an injective regular map.
Let Kp be the kernel of the natural map
V → OX(D)p/IpOX(D)p. Then φ is a closed embedding
if and only if the natural map of Kp

to IpOX(D)p/I2
pOX(D)p is surjective for all p ∈ X.

Lemma 13.31. Suppose that X is a nonsingular quasi-projective variety,
D is a divisor on X such that OX(D) is invertible, and p1, . . . , pn ∈ X are
distinct points. Then

1) The natural OX-module homomorphism

OX(D) ⊗ Ip1 ⊗ · · · ⊗ Ipn → OX(D)

is injective with image the coherent OX-submodule Ip1 · · · IpnOX(D)
of OX(D).

2) If U is an open subset of X, then

Γ(U,OX(D)⊗ Ip1 ⊗ · · · ⊗ Ipn)
= {f ∈ Γ(U,OX(D)) | pi ∈ (f)U +D ∩ U for all pi such that pi ∈ U}.

Proof. The first statement follows since Ipi,q ∼= OX,q if p 
= q and OX(D)q ∼=
OX,q for all q ∈ X and since OX,q is a flat OX,q-module for all q ∈ X. To
prove the second statement, by the sheaf axioms, it suffices to prove the
second statement for affine open sets U such that OX(D)|U is isomorphic
to OU . Let U be such an open set. Let g be a local equation of D in
U . Then OX(D)|U = 1

gOU . We may suppose that p1, . . . , ps ∈ U and

ps+1, . . . , pn 
∈ U . We compute

Γ(U,OX(D)⊗ Ip1 ⊗ · · · ⊗ Ipn)
= 1

gk[U ]⊗k[U ] IU (p1) ⊗k[U ] IU (p2) ⊗ · · · ⊗k[U ] IU (pn)
∼= 1

g IU (p1)IU (p2) · · · IU (ps).

Now f ∈ Γ(U,OX(D)⊗ Ip1 ⊗ · · · ⊗ Ips) if and only if gf ∈ IU (p1) · · · IU (ps)
which holds if and only if (gf)U ≥ 0 and (gf)(pi) = 0 for 1 ≤ i ≤ s. These
last conditions holds if and only if (f)U +D∩U ≥ 0 and pi ∈ (f)U +D∩U .

�

Theorem 13.32. Suppose that X is a nonsingular projective variety and A
and B are divisors on X.

1) Suppose that A is very ample and |B| is base point free. Then A+B
is very ample.

2) Suppose that A is ample and B is an arbitrary divisor on X. Then
there exists a positive integer n0 such that nA + B is very ample
for all n ≥ n0.
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Proof. We first establish 1). Since A is very ample, V = Γ(X,OX(A))
satisfies the conditions of (13.13), (13.14), and (13.15). Since |B| is base
point free, Γ(X,OX(B)) generates OX(B)p as an OX,p-module for all p ∈ X.
Thus we have natural surjections

Λ : Γ(X,OX(A)) ⊗ Γ(X,OX(B)) → (OX(A)p/IpOX(A)p) ⊗OXp
OX(B)p

∼= OX(A+B)p/IpOX(A+B)p

for all p ∈ X,

Λ′ : Γ(X,OX(A)) ⊗ Γ(X,OX(B))
→ (OX(A)p/IpOX(A)p ⊕ OX(A)q/IqOX(A)q) ⊗OX,p

OX(B)p
∼= (OX(A+B)p/IpOX(A+B)p) ⊕ (OX(A+B)qIqOX(A+B)q)

for all p, q ∈ X with p 
= q, and

Λ′′ : Γ(X,OX(A) ⊗ Ip) ⊗ Γ(X,OX(B))
→
(
IpOX(A)p/I2

pOX(A)p
)
⊗ OX(B)p

∼= IpOX(A+B)p/I2
pOX(A+B)p.

We have a natural k-vector space homomorphism

Γ(X,OX(A)) ⊗ Γ(X,OX(B)) → Γ(X,OX(A+B))

which factors Λ and Λ′ and a natural k-vector space homomorphism

Γ(X,OX(A) ⊗ Ip) ⊗ Γ(X,OX(B)) → Γ(X,OX(A+B) ⊗ Ip)

which factors Λ′′. Thus A + B satisfies the conditions of (13.13), (13.14),
and (13.15), so that A+B is very ample.

We now establish 2). There exists a positive integer n1 such that n1A is
very ample, so there exists a closed embedding φ : X → Pr such that

OX(n1A) ∼= φ∗OPr(1) = OX(1)

by Exercise 13.61. By Theorem 11.45, there exists n2 ≥ n1 such that for
0 ≤ t < n1, OX(tA + nn1A) is generated by global sections if n ≥ n2 and
OX(B+nn1A) is generated by global sections if n ≥ n2. Suppose n > 3n1n2.
Write

n− n1n2 = mn1 + t with 0 ≤ t < n1.

We then have m > n2. Thus

nA+B = (m − n2)n1A+ [(n2n1A+ tA) + (n2n1A+B)]

is the sum of a very ample divisor and a divisor D such that |D| is base
point free. Thus nA+B is very ample by 1) of this theorem. �
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Theorem 13.33. Suppose that X is a nonsingular projective variety and D
is a divisor on X such that Base(|D|) has codimension ≥ 2 in X. Let φ|D|
be the rational map associated to Γ(X,OX(D)). Then

1) φ|D| is a regular map if and only if for all p ∈ X,

dimk Γ(X,OX(D) ⊗ Ip) = dimk Γ(X,OX(D))− 1.

2) φ|D| is an injective regular map if and only if for all distinct points
p and q in X,

dimk Γ(X,OX(D)⊗ Ip ⊗ Iq) = dimk Γ(X,OX(D))− 2.

3) φ|D| is a closed embedding if and only if 2) holds and for all p ∈ X,

dimk Γ(X,OX(D)⊗ I2
p) = dimk Γ(X,OX(D))− (1 + dimX).

Proof. Consider the short exact sequence for p ∈ X,

0 → Ip → OX → OX/Ip → 0.

Since OX(D) is locally free, tensoring the sequence with OX(D) gives a
short exact sequence

0 → OX(D)⊗ Ip → OX(D) → (OX/Ip) ⊗ OX(D) → 0.

Now (OX/Ip)⊗OX(D) ∼= OX/Ip, so taking global sections, we get an exact
sequence

0 → Γ(X,OX(D)⊗ Ip) → Γ(X,OX(D)) → k,

so that the conclusion of 1) follows from (13.13).

Consider the short exact sequence for p 
= q ∈ X, which follows from
Theorem 1.5 applied to an affine open subset of X containing p and q,

0 → IpIq → OX → OX/IpIq ∼= OX/Ip ⊕ OX/Iq → 0.

Since the locus of points where Ip is not locally free and the locus of points
where Iq is not locally free are disjoint, we have that Ip ⊗ Iq ∼= IpIq. Since
OX(D) is locally free, tensoring the sequence with OX(D) gives a short
exact sequence

0 → OX(D)⊗IpIq → OX(D) → (OX/Ip)⊗OX(D)⊕(OX/Iq)⊗OX(D) → 0.

Now

(OX/IpIq) ⊗ OX(D) ∼= OX/IpIq ∼= OX/Ip ⊕ OX/Iq,
so taking global sections, we get an exact sequence

0 → Γ(X,OX(D)⊗ IpIq) → Γ(X,OX(D)) → k2,

so that the conclusion of 2) follows from 1) of this theorem and (13.14).
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Finally, 3) of the theorem follows from tensoring the short exact sequence

0 → I2
p → Ip → Ip/I2

p → 0

with OX(D) and taking global sections, applying (13.15), and since

dimk Ip/I2
p = dimX

(as p is a nonsingular point on X). �

Corollary 13.34. Suppose that X is a nonsingular projective curve and D
is a divisor on X. Then

1) |D| is base point free if and only if

dimk Γ(X,OX(D − p)) = dimk Γ(X,OX(D))− 1

for all p ∈ X.

2) Suppose that |D| is base point free. Then φ|D| is injective if and
only if

dimk Γ(X,OX(D − p− q)) = dimk Γ(X,OX(D))− 2

for all p 
= q ∈ X.

3) Suppose that |D| is base point free. Then φ|D| is a closed embedding
(and D is very ample) if and only if

dimk Γ(X,OX(D − p− q)) = dimk Γ(X,OX(D))− 2

for all p, q ∈ X.

13.8. Invertible sheaves

The constructions of ⊗ and Hom in Section 11.5 are fairly simple for in-
vertible sheaves. Suppose that F and G are invertible sheaves on a quasi-
projective variety X. Every point p ∈ X has an affine neighborhood U
such that F|U = σOU where σ ∈ Γ(U,F) is a local generator of F and
G|U = τOU where τ ∈ Γ(U,G) is a local generator of G. Thus F ⊗ G is in-
vertible. In fact, if F|U = σOU and G|U = τOU , then F⊗OX

G|U = σ⊗τOU .
We usually write στ for σ ⊗ τ .

Suppose that L is an invertible sheaf on X. Then HomOX
(L,OX) is

an invertible sheaf. In fact, if L|U = σOU , then HomOX
(L,OX)|U = σ̂OU ,

where σ̂(σ) = 1. We can write HomOX
(L,OX)|U = 1

σOU . The map α⊗β �→
β(α) determines an OX -module isomorphism

L ⊗OX
HomOX

(L,OX) ∼= OX .

We write L−1 = HomOX
(L,OX), since then

L ⊗ L−1 ∼= L−1 ⊗ L ∼= OX .
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Thus the tensor product and inverse operation make

Pic(X) = {L|L is invertible}/ ∼

into an Abelian group, where two invertible sheaves are equivalent if they
are isomorphic as OX -modules. Pic(X) is called the Picard group of X.

If X is nonsingular and D, E are divisors on X, then we have an affine
cover {Ui} of X and fi, gi ∈ k(X) such that

OX(D)|Ui =
1

fi
OUi

and

OX(E)|Ui =
1

gi
OUi .

Then

OX(D)⊗ OX(E)|Ui =
1

figi
OUi = OX(D + E)|Ui,

so that OX(D + E) ∼= OX(D)⊗ OX(E). We also have that OX(D)−1|Ui =
fiOX |Ui = OX(−D)|Ui so that OX(−D) ∼= OX(D)−1. It follows from
Proposition 13.6 and Theorem 13.7 that (with the assumption that X is
nonsingular) the map

(13.16) Cl(X) → Pic(X)

defined by D �→ OX(D) is a group isomorphism.

Suppose that L is an invertible sheaf on a quasi-projective variety X and
σ0, . . . , σn ∈ Γ(X,L). We have an associated rational map φ : X ��� Pn,
which is defined as follows. Suppose that U is an open subset of X such that
L|U is trivial; that is, there exists τ ∈ Γ(U,L) such that L|U = τOU . Write
σi = τfi for 0 ≤ i ≤ n where fi ∈ Γ(U,OX). We define φ = (f0 : f1 : . . . : fn)
on U . This gives a well-defined rational map, which we can write as φ =
(σ0 : . . . : σn). The rational map φ is a regular map if and only if σ0, . . . , σn
generate L; that is, for all p ∈ X, the restrictions of σ0, . . . , σn to Lp generate
Lp as an OX,p-module. Every regular map from X to a projective space Pn

can be represented in this way by an appropriate invertible sheaf L and
σ0, . . . , σn ∈ Γ(X,L) (take L = φ∗OPn(1) and σ0, . . . , σn to be the images
of x0, . . . , xn ∈ Γ(Pn,OPn(1)) in Γ(X,φ∗OPn(1)).

Definition 13.35. An invertible sheaf L on a projective variety X is called
very ample if the global sections Γ(X,L) generate L as an OX -module and
the regular map φ = (σ0 : · · · : σn) : X → Pn, where σ0, . . . , σn is a k-basis
of Γ(X,L), is a closed embedding. An invertible sheaf L on a projective
variety X is called ample if some positive tensor product Ln = L⊗n is very
ample.



13.9. Transition functions 271

Definition 13.35 is consistent with Definition 13.27 of very ample and
ample divisors on a normal variety X. A divisor D on a normal projective
variety X is very ample (ample) if and only if OX(D) is invertible and very
ample (ample).

Suppose that φ : X → Y is a regular map of quasi-projective varieties
and L is an invertible sheaf on Y . Then φ∗L is a coherent sheaf on X
(Section 11.5). If V ⊂ Y is an open subset on which L|V is trivial, then
L|V = τOV for some τ ∈ Γ(V,OY ). We have that

φ∗L|φ−1(V ) = τOV ⊗OV
Oφ−1(V ) = (τ ⊗ 1)Oφ−1(V ) = τOφ−1(V ).

Thus φ∗L is an invertible sheaf on X. If X and Y are nonsingular and D is
a divisor on Y , then φ∗(OY (D)) ∼= OX(φ∗(D)). This can be readily seen in
the case that φ is dominant. We then have an injection φ∗ : k(Y ) → k(X).
We cover Y with open subsets Vi such that OY (D)|Vi =

1
fi
OVi where fi is a

local equation of D on Vi. Then φ∗OY (D)|φ−1(Vi) =
1

φ∗(fi)
Oφ−1(Vi), where

φ∗(fi) is a local equation of φ∗(D) on φ−1(Vi). In the case where φ is not
dominant we must first shift the support of D as explained after Lemma
13.12.

13.9. Transition functions

Suppose that L is an invertible sheaf on a variety X. Then there exists an

open cover {Ui} of X and OUi-module isomorphisms φi : OX |Ui
∼=→ L|Ui for

all i. Consider the OX |Ui∩Uj-module isomorphisms φ−1
j ◦φi : OX |Ui∩Uj

∼=→
OX |Ui ∩ Uj . In the notation of the proof of Theorem 13.7, we have that

φ−1
j ◦ φi is multiplication by gij . We may thus identify φ−1

j ◦ φi with gij ,

which is a unit in Γ(Ui ∩ Uj ,OX) satisfying the relations (13.4),

gij = g−1
ji ,

and (13.5),

(13.17) gik = gijgjk.

We call the gij transition functions on Ui ∩ Uj for L.
Suppose that M is another invertible sheaf on X and there exist OUi-

module isomorphisms ψi : OX |Ui → M|Ui. Let hij = ψ−1
j ◦ψi be transition

functions on Ui∩Uj for M. Then we have that gijhij are transition functions
for L ⊗ M on Ui ∩ Uj and 1

gij
are transition functions for L−1 on Ui ∩ Uj .

Let O∗
X be the presheaf of (multiplicative) groups on X, defined for

U ⊂ X an open subset by

Γ(U,O∗
X) = {f ∈ Γ(U,OX) | f is a unit}.

Then O∗
X is a sheaf of groups on X, and gij ∈ Γ(Ui ∩ Uj ,O∗

X).
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Lemma 13.36. Suppose that L is an invertible sheaf on a variety X and
{Ui}i∈I is an open cover of X such that there exist OUi-module isomorphisms

φi : OX |Ui
∼=→ L|Ui for all i. Let φ−1

j ◦ φi : OX |Ui ∩Uj
∼=→ OX |Ui ∩Uj be the

respective associated transition functions, which we identify with elements
gij of Γ(Ui∩Uj ,O∗

X). Then L is isomorphic to OX as an OX-module if and

only if there exist fi ∈ Γ(Ui,O∗
X) for all i ∈ I such that gij = fjf

−1
i for all

i, j.

Proof. First suppose that there exist fi ∈ Γ(Ui,O∗
X) such that gij = fjf

−1
i

for all i, j. Then L|Ui = τiOUi where τi = φi(fi) = fiφi(1). For all i, j, on
Ui ∩ Uj , we have φi = gijφj . Thus φi(1) = gijφj(1) = fjf

−1
i φj(1) so that

τi = τj on Ui∩Uj . By the second sheaf axiom, there exists τ ∈ Γ(X,L) such
that τ |Ui = τi for all i. Define a homomorphism of sheaves of OX-modules
Λ : OX → L by Λ(f) = τf . Here Λ is an isomorphism at all stalks at points
of X, so that Λ is an isomorphism by Proposition 11.13.

Now suppose that L is isomorphic to OX as an OX -module. Then
there exists an isomorphism of OX-modules Λ : OX → L. Let τ = Λ(1).
Then L|Ui = τOUi for all i. Thus there exist fi ∈ Γ(Ui,O∗

X) such that
τ = fiφi(1) = φi(fi). Thus on Ui ∩Uj , we have that φi(fi) = φj(fj), so that

fiφi(1) = fjφj(1). Since φi(1) = gijφj(1), we have that gij = fjf
−1
i . �

Lemma 13.37. Suppose that L and M are invertible sheaves on a variety
X and {Ui}i∈I is an open cover of X such that there exist OUi-module

isomorphisms φi : OX |Ui
∼=→ L|Ui and ψi : OX |Ui

∼=→ M|Ui for all i. Let

φ−1
j ◦ φi : OX |Ui ∩ Uj

∼=→ OX |Ui ∩ Uj and ψ−1
j ◦ ψi : OX |Ui ∩ Uj

∼=→ OX |Ui ∩
Uj be the respective associated transition functions, which we identify with
elements gij and hij of Γ(Ui ∩ Uj ,O∗

X). Then L is isomorphic to M as an
OX-module if and only if there exist fi ∈ Γ(Ui,O∗

X) for all i ∈ I such that

gij = fjf
−1
i hij for all i, j.

Proof. We have that L is isomorphic to M if and only if L ⊗ M−1 ∼= OX .
As commented above Lemma 13.36, gijh

−1
ij are the transition functions of

L⊗M−1 on Ui∩Uj . The conclusions of this lemma now follow from Lemma
13.36. �

A situation where this criterion for isomorphism is very useful is in un-
derstanding the pull-back φ∗L of an invertible sheaf under a regular map φ :
Y → X of varieties. Suppose that {Ui}i∈I is an open cover of X and we have
trivializations φi : OUi → L|Ui for all i. Let φ

−1
j ◦ φi = gij ∈ Γ(Ui ∩Uj ,O∗

X)

be the transition functions on Ui ∩ Uj for L. Let Vi = φ−1(Ui).

For all i, we have an OY |Vi-module homomorphism

OY |Vi = OX ⊗OX
OY |Vi

φi⊗1→ (L ⊗OX
OY ) |Vi = φ∗L|Vi,



13.9. Transition functions 273

which is an isomorphism of sheaves, since it is an isomorphism at stalks of
points of Vi. Computing the transition functions of φi ⊗ 1, we see that

(φj ⊗ 1)−1 ◦ (φi ⊗ 1) = gij ∈ Γ(Vi ∩ Vj ,O∗
Y ),

where gij = φ∗(gij) under

φ∗ : Γ(Ui ∩ Uj ,O∗
X) → Γ(Vi ∩ Vj ,O∗

Y ).

We now rework Example 13.13 using this technique.

Example 13.38. Suppose that X is a nonsingular surface and p ∈ X is
a point. Let π : B → X be the blow-up of p. Let E = π−1(p) ∼= P1

be the exceptional divisor of π. Let i : E → B be the inclusion. Then
i∗(OB(E)) ∼= OE(−q), where q is a point on E.

Proof. Let x, y be regular parameters in the regular local ring OX,p. Let U
be an affine neighborhood of p such that x = y = 0 are local equations of
p in U . Then V = π−1(U) is covered by two affine charts U1 and U2 which
satisfy k[U1] = k[U ][xy ] and k[U2] = k[U ][ yx ]. In U1, y = 0 is a local equation

of E. Now (x, y)k[U1] = yk[U1], so that

k[U1 ∩ E] = k[U1]/(x, y)k[U1] = k

[
x

y

]
.

In U2, x = 0 is a local equation of E, so

k[U2 ∩ E] = k
[y
x

]
.

Now OB(E)|U1 = 1
yOB|U1 and OB(E)|U2 = 1

xOB|U2. Thus g12 = x
y is a

transition function for OB(E) on U1 ∩U2, so that g12 = i∗(xy ), which we can

identify with x
y , is the transition function for i∗OB(E) on U1 ∩ U2 ∩ E.

Now x
y is the local equation of a point q in E∩U1, which is not contained

in U2, so we have that OE(−q)|U1∩E = x
yOE |U1∩E and OE(−q)|U2∩E =

OE |U2 ∩ E. The associated transition function on U1 ∩ U2 ∩ E is h12 = x
y .

Since h12 = g12, we have that i∗OB(E) ∼= OE(−q) by Lemma 13.37. �

Suppose that L is an invertible sheaf on a nonsingular variety X and
σ ∈ Γ(X,L) is nonzero. We associate an effective divisor to σ in the following
way. Let {Ui} be an open cover of X such that there exist σi ∈ Γ(Ui,L) such
that L|Ui = σiOUi . We have expressions σ|Ui = fiσi where fi ∈ Γ(Ui,OX).
We define the divisor (σ) (or div(σ)) of σ to be the divisor D on X defined
by

D ∩ Ui = (fi)Ui .

This divisor is well-defined and independent of choice of local trivialization
of L. The pairs {(fi, Ui)} determine a Cartier divisor on X (Definition 15.4)
and the following discussion.
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Proposition 13.39. Suppose that φ : X → Y is a birational regular map of
projective varieties such that Y is normal. Suppose that L is an invertible
sheaf on Y . Then φ∗φ∗L ∼= L.

Proof. This follows from Proposition 11.52 and Exercise 11.41 since L is
locally isomorphic to OY . �

Exercise 13.40. Prove Lemma 13.28.

Exercise 13.41. Let x0, . . . , xn be homogeneous coordinates on X = Pn,
so that k[x0, . . . , xn] = S(Pn). Let ti = xi

x0
for 1 ≤ i ≤ n, so that

k(Pn) = k(t1, . . . , tn). Let E = Z(x0), a prime divisor on X. Suppose that
f(t1, . . . , tn) ∈ k[t1, . . . , tn] = k[Xx0 ] has degree m. Compute r = −νE(f),
and show that (f) + rE ≥ 0.

Exercise 13.42. Let the notation be as in Exercise 13.41. Suppose that Y
is a nonsingular closed subvariety of X such that Y 
⊂ Z(x0). Let i : Y → X
be the inclusion. We have a natural surjection i∗ : k[Pn

x0
] = k[t1, . . . , tn] →

k[Yx0 ]. Suppose that f ∈ k[t1, . . . , tn] is such that i∗(f) 
= 0. Show that
(i∗(f)) + ri∗(E) is an effective divisor on Y .

Exercise 13.43. Suppose thatm,n are positive integers. Show that Pm×Pn

is not isomorphic to Pm+n. Show that there is, however, a birational (but
not regular) map Pm × Pn ��� Pm+n.

Exercise 13.44. Suppose that X is a projective variety, with graded co-
ordinate ring S = S(X) and homogeneous coordinates x0, . . . , xm. Assume
that none of the xi vanish everywhere on X. Recall that for n ∈ Z, S(n) is

S with the grading S(n)t = Sn+t. Recall from (11.21) that OX(n) := S̃(n)
satisfies the following property:

Γ(Xxi ,OX(n)) = xni k

[
x0
xi

, . . . ,
xm
xi

]
= xni Γ(Xxi ,OX).

a) Show that

OX(n)|Xxi = xni OX |Xxi .

Conclude that OX(n) is an invertible sheaf on X.

b) Show that Sn ⊂ Γ(X,OX(n)) and that this inclusion is an equality
if X = Pm.

c) The following example shows that it is possible for Sn to be strictly
smaller than Γ(X,OX(n)). Let s, t be algebraically independent
over k and let R = k[s4, s3t, st3, t4] be the ring of Example 1.75.
Then R is a standard graded domain with the grading

deg s4 = deg s3t = deg st3 = deg t4 = 1.
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Thus R is the homogeneous coordinate ring of a projective curve C
in P3 (which is isomorphic to P1). Show that s2t2 ∈ Γ(C,OC(1)).
Show that⊕

n≥0

Γ(C,OC(n)) = k[s4, s3t, s2t2, st3, t4]

where k[s4, s3t, s2t2, st3, t4] is graded by

deg s4 = deg s3t = deg s2t2 = deg st3 = deg t4 = 1.

d) Suppose that X is nonsingular. Let Di = Div(xi) be the divisor
of xi on X (Section 13.3). Show that OX(n) is isomorphic as an
OX-module to OX(nDi).

e) Suppose that X is nonsingular. Let L be a linear form on X (which
does not vanish everywhere on X), and let D = Div(L) be the
divisor associated to L on X. Show that OX(n) is isomorphic as
an OX -module to OX(nD).

Exercise 13.45. Let X be a projective variety.

a) Suppose that I ⊂ OX is an ideal sheaf on X, which is not equal to
OX . Show that Γ(X, I) = (0).

b) Suppose that X is nonsingular, and let D =
∑r

i=1 aiEi be an effec-
tive divisor on X, with ai > 0, Ei prime divisors, so that OX(−D)
is the ideal sheaf OX(−D) = I(E1)

a1 · · · I(Er)
ar . Show that the

presheaf on X defined by

P (U) = Γ(U,OX(D))⊗Γ(U,OX ) Γ(U,OX(−D))

for U an open subset of X is not a sheaf on X; thus this presheaf
differs from the sheaf OX(D)⊗OX

OX(−D).

Exercise 13.46. Let X be a nonsingular variety of dimension 3, and let
p ∈ X be a point. Let π : B → X be the blow-up of p. Let E = π−1(p).
We know that E ∼= P2 and that Pic(E) ∼= Z is generated by OE(1). Let
i : E → B be the inclusion. Compute i∗OB(E) in Pic(E) in terms of the
generator OE(1).

Exercise 13.47. Show that the regular isomorphisms of Pn are the linear
isomorphisms (Section 4.2). Conclude that the group of automorphisms of
Pn is the variety

PGL(n, k) = Pn2+2n \ Z(Det).

Hint: Use Exercise 4.14 and Example 13.10.

Exercise 13.48. Suppose that Y is a nonsingular projective surface and
p ∈ Y is a point. Let π : X → Y be the blow-up of p with exceptional



276 13. Divisors

divisor E = π−1(p). Show that the group homomorphism

Cl(Y ) ⊕ Z → Cl(X)

defined by ([D], n) �→ [π∗D + nE] is a group isomorphism.

Exercise 13.49. Let H be a hyperplane on P2 as in Example 13.24. Let
p = (0 : 0 : 1), and define V = Γ(P2,OX(H) ⊗ Ip). Find a basis of V and
compute the linear system L = {(f) + H | f ∈ V } as a subsystem of the
complete linear system |H| described as the divisors of forms of degree 1 in
Example 13.24. Compute the base locus of L. Describe the rational map
φV and the geometry of this map.

Exercise 13.50. Let H be a hyperplane on P2 as in Example 13.24. Let
P1 = (0 : 0 : 1), P2 = (0 : 1 : 0), P3 = (1 : 0 : 0). Let

V = Γ(P2,OX(2H) ⊗ IP1 ⊗ IP2 ⊗ IP3).

Find a basis of V and compute the linear system L = {(f)+2H | f ∈ V } as
a subsystem of the complete linear system |2H| described as the divisors of
forms of degree 2 in Example 13.24. Compute the base locus of L. Describe
the rational map φV and the geometry of this map.

Exercise 13.51. Consider the projections π1 and π2 of P1×P1 onto the first
and second factors. Represent each map as φ|D| for an appropriate complete

linear system |D| on P1 × P1.

Exercise 13.52. Suppose that Y is a normal variety of dimension ≥ 2.

a) Suppose that q is a nonsingular point of Y and φ : X → Y is the
blow-up of q with exceptional divisor E. Show that

φ∗OX(nE) =

{
OX if n ≥ 0,
I−n
q if n < 0.

b) Suppose that Y is a normal variety, D is a divisor on Y , and
q1, . . . , qr are distinct nonsingular points on Y . Let φ : X → Y
be the blow-up of q1, . . . , qr with exceptional divisors E1, . . . , Er.
Show that

Γ(X,OX(φ∗(D)− E1 − · · · − Er)) = Γ(Y,OY (D)⊗ Iq1 ⊗ · · · ⊗ Iqr).

Exercise 13.53. Suppose that X is a normal projective variety and D is a
divisor on X. Show that the divisor D on X is very ample (Definition 13.27)
if and only if OX(D) is a very ample invertible sheaf (Definition 13.35).
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Exercise 13.54. Suppose that L is an invertible sheaf on a projective va-
riety X. Show that L is very ample if and only if there exists a closed
embedding ψ : X → Pn such that ψ∗OPn(1) ∼= L.

Exercise 13.55. Prove Corollary 13.30.

Exercise 13.56. Extend (and prove) Lemma 13.31 and Theorems 13.33
and 13.32 to invertible sheaves on an arbitrary projective variety.

Exercise 13.57. Let x0, x1 be homogeneous coordinates on X = P1, so
that k(X) = k(x0

x1
). Let p0 = (1 : 0), p1 = (0 : 1), p2 = (1 : 1) ∈ P1. Suppose

that n ∈ Z. Find a k-basis of each of the following vector spaces:

a) Γ(X,OX(np0)),

b) Γ(X,OX(np2)),

c) Γ(X,OX(np0 − p1)),

d) Γ(X,OX(np0 − p1 − p2)).

Exercise 13.58. Let the notation be as in Exercise 13.57, and let V be the
subspace of Γ(X,OX(3p0)) with basis {1, (x0

x1
)2, (x0

x1
)3}. Let L be the linear

system L = {(f) + 3p0 | f ∈ V }, with associated rational map φ = φL :
X ��� P2.

a) Show that L is base point free.

b) Compute the homogeneous coordinate ring of the image of φ in P2.

c) Is φ a closed embedding? Why or why not?

Exercise 13.59. Give an example of a linear system L on a projective
variety X such that L is not base point free, but the rational map φL is a
closed embedding of X.

Exercise 13.60. Let X ⊂ A3 be the affine surface with regular functions
k[X] = k[x, y, z] = k[x, y, z]/(xy − z2). Define prime divisors on X by
E1 = Z(x, z) and E2 = Z(y, z).

a) Show that OX(−E1) andOX(−E2) are not invertible sheaves. Hint:
Use a method from the proof of Theorem 10.17.

b) Show that E1 ∼ −E2.

Exercise 13.61. Suppose that D is a divisor on a normal projective variety
and V is a subspace of Γ(X,OX(D)) such that the associated linear system
L is base point free. Let φL : X → Pm be the associated regular map. Show
that φ∗

LOPm(n) ∼= OX(nD) for n ∈ Z.





Chapter 14

Differential Forms and
the Canonical Divisor

In Section 14.1, we discuss the algebraic theory of derivations and differen-
tials, which generalizes the notion of 1-forms on a manifold to rings. The
results of this section are used extensively in Chapters 21 and 22. In Section
14.2, we define the sheaf of 1-forms on a variety X, and in Section 14.3 we
define the sheaf of n-forms, canonical divisors, and the divisor of a ratio-
nal n-form on an n-dimensional nonsingular variety. We prove the useful
adjunction formula (Theorem 14.21) for computing canonical divisors.

14.1. Derivations and Kähler differentials

Definition 14.1. Suppose that A and B are rings and λ : A → B is a ring
homomorphism, making B into an A-module by cx = λ(c)x for x ∈ B and
c ∈ A. Suppose that M is a B-module. Then a map D : B → M is an
A-derivation from B to M if D satisfies the following three conditions:

1) D(f + g) = D(f) +D(g) for f, g ∈ B,

2) D(cf) = cD(f) if c ∈ A and f ∈ B,

3) D(fg) = fD(g) + gD(f) for f, g ∈ B.

Let DerA(B,M) be the set of all A-derivations from B to M . It is a B-
module.

We observe that if x ∈ B and n ∈ N, then 3) implies that D(xn) =
nxn−1D(x). Thus D(1B) = nD(1B) for all n > 0, and so

(14.1) D(1B) = 0.

279
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Thus 2) implies that D(c1B) = 0 for all c ∈ A. Conversely, if 3) holds and
D(c1B) = 0 for all c ∈ A, then D(cf) = cD(f) for all c ∈ A and f ∈ B.
We thus see that 2) can be replaced with the condition that D(c1B) = 0 for
all c ∈ A. A-derivations are often defined in this way ([161, page 120] or
[107, pages 180–181]).

Definition 14.2. Let F be the free B-module on the symbols {db|b ∈ B},
and let G be the submodule generated by the relations 1), 2), and 3) in the
definition of a derivation. We define the B-module of Kähler differentials of
B over A by

ΩB/A = F/G.

The map d = dB/A : B → ΩB/A defined by letting d(f) be the class of
df is an A-derivation of B.

Lemma 14.3. Suppose that M is a B-module. Then the map

Φ : HomB(ΩB/A,M) → DerA(B,M)

defined by Φ(τ)(f) = τ(df) for f ∈ B and τ ∈ HomB(ΩB/A,M) is a B-
module isomorphism.

The lemma shows that d : B → ΩB/A is a universal derivation: if M
is a B-module and D ∈ DerA(B,M), then there is a unique B-module
homomorphism σ : ΩB/A → M such that D = σdB/A.

The inverse Ψ to Φ (in Lemma 14.3) is defined as follows. Suppose that
D : B → M is an A-derivation. Define Ψ(D) = τ by

τ
(∑

αidbi

)
=
∑

αiD(bi).

A detailed proof of Lemma 14.3 is given in [50, page 384].

Lemma 14.4. Define a B-module homomorphism δ : B ⊗A B → B by
δ(a1 ⊗ a2) = a1a2, and let I be the kernel of δ. The quotient I/I2 is a
B-module. Then the map

Λ : ΩB/A → I/I2

defined by taking Λ(df) to be the class of 1 ⊗ f − f ⊗ 1 for f ∈ B is a
B-module isomorphism.

This lemma is established in [50, Theorem 16.24]. The module ΩB/A is

often defined to be I/I2 as constructed in Lemma 14.3, with the A-derivation
B → I/I2 defined by mapping f to the class of 1 ⊗ f − f ⊗ 1 for f ∈ B.

Example 14.5. Let κ be a ring, and let B = κ[x1, . . . , xn] be a polynomial
ring over κ. Then ΩB/κ is the free B-module with generators dx1, . . . , dxn,

ΩB/κ = Bdx1 ⊕ · · · ⊕Bdxn.
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The map d : B → ΩB/κ is

d(f) =
∂f

∂x1
dx1 + · · ·+ ∂f

∂xn
dxn

for f ∈ B.

Proof. We first use the three properties of a derivation to prove that

(14.2) df =
∂f

∂x1
dx1 + · · ·+ ∂f

∂xn
dxn

for f ∈ B. We have that d(1) = 0 by (14.1). The properties of a derivation
show that (14.2) holds for an arbitrary monomial. Then the formula holds
for all f since d and the ∂

∂xi
are κ-linear.

From equation (14.2) we conclude that ΩB/κ is generated by dx1, . . . , dxn
as a B-module. It remains to show that dx1, . . . , dxn are a free basis of ΩB/κ.
Suppose that we have a relation

(14.3) g1dx1 + · · ·+ gndxn = 0

for some g1, . . . , gn ∈ B. We will show that g1 = · · · = gn = 0. We have that
∂

∂xi
for 1 ≤ i ≤ n are κ-derivations on B. By Lemma 14.3, there exist B-

module homomorphisms τi : ΩB/κ → B for 1 ≤ i ≤ n such that τi(df) =
∂f
∂xi

for f ∈ B. Thus τi(dxj) = δij (the Kronecker delta). Applying τi to (14.3),
we obtain that

gi = τi(g1dx1 + · · · + gndxn) = 0

for 1 ≤ i ≤ n. �

The following theorem is proven in [107, Theorem 58] or [50, Proposition
16.3].

Theorem 14.6. Suppose that κ is a ring, A is a κ-algebra, J is an ideal of
A, and B = A/J . Then there is an exact sequence of B-modules

J/J2 δ→ ΩA/κ ⊗A B
v→ ΩB/κ → 0

where δ : J → ΩA/κ⊗AB is defined by x �→ dA/κ(x)⊗1 and v : ΩA/κ⊗AB →
ΩB/κ is defined by dA/κ(a) ⊗ b �→ bdB/κ(a).

Example 14.7. Suppose that R is a ring and A = R[x1, . . . , xn] is a poly-
nomial ring over R. Let I = (f1, . . . , fr) ⊂ R[x1, . . . , xn] be an ideal. Let
B = R[x1, . . . , xn]/I. Let

M = Bdx1 ⊕ · · · ⊕ Bdxn.

We have that

ΩB/R = M/df1B + · · · + dfrB.

Proof. This follows from Theorem 14.6. �
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Lemma 14.8. Suppose that B is an A-algebra and S is a multiplicative set
in B. Then we have a natural isomorphism of S−1B-modules

ΩS−1B/A
∼= S−1ΩB/A.

This follows from [50, Proposition 16.9].

Theorem 14.9. Suppose that f : A → B and g : B → C are ring homo-
morphisms. Then there is an exact sequence

ΩB/A ⊗B C
α→ ΩC/A

β→ ΩC/B → 0

of C-modules where α is defined by α(dB/Ab⊗c) = cdC/Ag(b) and β(dC/Ac) =
dC/Bc for b ∈ B and c ∈ C.

Proof. [107, Theorem 57] or [106, Theorem 25.1] or [50, Proposition 16.2].
�

Exercise 14.10. Suppose that

A
φ→ A′

↑ ↑
κ

λ→ κ′

is a commutative diagram of rings and ring homomorphisms. The A′-module
ΩA′/κ′ is naturally an A-module by ax := φ(a)x for a ∈ A and x ∈ ΩA′/κ′ .

Show that there is a natural A-module homomorphism δφ giving a com-
mutative diagram

ΩA/κ
δφ→ ΩA′/κ′

dA/κ ↑ ↑ dA′/κ′

A
φ→ A′.

Exercise 14.11. If A′ = A ⊗κ κ
′ in Exercise 14.10, show that

ΩA′/κ′ = ΩA/κ ⊗κ κ
′ = ΩA/κ ⊗A A′.

Exercise 14.12. Let k be an (algebraically closed) field of characteristic
not equal to 2 or 3. Let X be the affine variety X = Z(y2 − x3) ⊂ A2. Let
R = k[X].

a) Compute ΩR/k.

b) Show that ΩR/k has R-torsion (there exists a nonzero element ω of
ΩR/k and a nonzero element a of R such that aω = 0).
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14.2. Differentials on varieties

Suppose that X is a quasi-projective variety. If X is affine, then we define

the coherent sheaf ΩX/k on X by ΩX/k = Ω̃k[X]/k. We will show that there
is a natural isomorphism ΩX/k(V ) ∼= Ωk[V ]/k if V is an affine open subset of
X. If V = Xf for some f ∈ k[X], then

ΩX/k(Xf ) = (Ωk[X]/k)f ∼= Ωk[X]f /k
∼= Ωk[Xf ]/k

by Lemma 14.8. Suppose that V ⊂ X is an affine open subset. There exist
f1, . . . , fn ∈ k[X] such that Xfi ⊂ V for all i and V =

⋃n
i=1Xfi . We then

have that Xfi = Vfi for all i, so that k[X]fi = k[V ]fi . Thus(
Ωk[X]/k

)
fi

∼=
(
Ωk[V ]/k

)
fi

for all i, and (
Ωk[X]/k

)
fifj

∼=
(
Ωk[V ]/k

)
fifj

for all i, j. We have a commutative diagram

0 → ΩX/k(V ) →
⊕

iΩX/k(Xfi) →
⊕

i<j ΩX/k(Xfifj )

↓ ↓
0 → Ωk[V ]/k →

⊕
i

(
Ωk[V ]/k

)
fi

→
⊕

i<j

(
Ωk[V ]/k

)
fifj

where the horizontal arrows are exact and the vertical arrows are isomor-
phisms, inducing a natural isomorphism ΩX/k(V ) ∼= Ωk[V ]/k.

To define ΩX/k for arbitrary quasi-projective varieties, we cover X with
open affine subsets {Ui} and define ΩX/k|Ui = ΩUi/k. By the universal
property of Kähler differentials, ΩUi/k|Ui∩Uj and ΩUj/k|Ui∩Uj are naturally

isomorphic (Ui ∩ Uj is affine by Exercise 5.21). Thus they patch (Exercise
11.23) to give a coherent sheaf of OX -modules ΩX/k. If V is an affine open
subset of X, we have that ΩX/k(V ) ∼= Ωk[V ]/k.

Proposition 14.13. Suppose that X is a variety and p ∈ X. Let mp be
the maximal ideal of OX,p. Let k(p) = OX,p/mp

∼= k which is naturally an
OX,p-module. Then the following are naturally isomorphic k-vector spaces:

1) the tangent space Tp(X) = Homk(mp/m
2
p, k),

2) the derivations Derk(OX,p, k(p)),

3) the module of OX,p-module homomorphisms HomOX,p
((ΩX/k)p, k(p)).
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Proof. The vector spaces 1) and 2) are isomorphic since every k-derivation
D : OX,p → k(p) must vanish on m2

p and thus induces a k-linear map

mp/m
2
p → k, and further, given a k-linear map � : mp/m

2
p → k, we get a

k-derivation D : OX,p → k(p) defined by D(f) = �(f − f(p)).

The vector spaces of 2) and 3) are isomorphic since

HomOX,p
((ΩX/k)p, k(p)) ∼= HomOX,p

(ΩOX,p/k, k(p))
∼= Derk(OX,p, k(p))

by Lemmas 14.8 and 14.3. �

Theorem 14.14. Suppose that X is a quasi-projective variety. Then the
(nontrivial open) subset U of nonsingular points of X is the largest open
subset of X on which ΩX/k is locally free. The sheaf ΩX/k|U is locally free
of rank equal to the dimension of X.

Proof. Suppose that p ∈ X. Let λ : (ΩX/k)p → k(p) = OX,p/mp be an
OX,p-module homomorphism. Then for a ∈ mp and t ∈ (ΩX/k)p we have
that λ(at) = aλ(t) = 0. Thus we have a natural k-vector space isomorphism

HomOX,p
((ΩX/k)p,OX,p/mp)

∼=→ Homk((ΩX/k)p/mp(ΩX/k)p, k).

This last k-vector space is (noncanonically) isomorphic to (ΩX/k)p/mp(ΩX/k)p,
and the first k-vector space is isomorphic to Tp(X) by Proposition 14.13.
Thus

dimk(ΩX/k)p/mp(ΩX/k)p = dimk Tp(X) ≥ dimX

with equality if and only if p is a nonsingular point of X, by Proposition
10.14. The conclusions of the theorem now follow from Lemma 11.54. �

Proposition 14.15. Suppose that X is a nonsingular quasi-projective va-
riety, p ∈ X, and x1, . . . , xn are regular parameters in OX,p. Then there
exists an open neighborhood U of p such that dx1, . . . , dxn is a free basis of
ΩU/k.

This proposition is not true on varieties over nonperfect fields (see Exer-
cise 21.78). The generalization of this proposition to arbitrary fields is given
in [154], where a thorough study of the concept of singularity over arbitrary
fields is made.

Proof. Let A = OX,p with maximal ideal m = mp. Suppose that f ∈ A.
Then f = c +

∑n
i=1 aixi with ai ∈ A and c ∈ k. Thus df =

∑
aidxi +∑

xidai ∈ ΩA/k, so that df −
∑

aidxi ∈ mΩA/k. By Nakayama’s lemma
(Lemma 1.18) we have that dx1, . . . , dxn generate ΩA/k = (ΩX/k)p as an
A-module. Since dimX = n and p is a nonsingular point of X, by Theorem
14.14, (ΩX/k)p is a free OX,p-module of rank n. Let N be the kernel of
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the surjection (dx1, . . . , dxn) : An → (ΩX/k)p. Tensoring the short exact
sequence

0 → N → An → (ΩX/k)p → 0

with k(X), we see that the localization N ⊗ k(X) = 0 (the sequence is split
exact since (ΩX/k)p is a free A-module) and so N is a torsion submodule
of An, and thus N = 0. Thus dx1, . . . , dxn is a free basis of (ΩX/k)p, and
so there exists an open neighborhood U of p on which dx1, . . . , dxn is a free
basis of ΩU/k. �

Definition 14.16. Suppose that U is an open subset of a nonsingular variety
X. Elements f1, . . . , fn ∈ Γ(U,OX) are called uniformizing parameters on
U if df1, . . . , dfn is a free basis of ΩX/k|U .

Proposition 14.17. Suppose that U is an open subset of a nonsingular
variety X and f1, . . . , fn ∈ Γ(U,OX) are uniformizing parameters on U .
Suppose that p ∈ U . Then

f1 − f1(p), . . . , fn − fn(p)

are regular parameters in OX,p.

Proof. Let mp be the maximal ideal of OX,p. Let x1, . . . , xn be regular
parameters in OX,p. We have that f1 − f1(p), . . . , fn − fn(p) ∈ mp. Thus
there exist aij ∈ OX,p such that

fi − fi(p) =
∑
j

aijxj ,

so that

dfi ≡
∑

aijdxj mod mp(ΩX/k)p

for all i. Since {dfi} and {dxj} are free bases of (ΩX/k)p, we have that
Det(aij) is a unit in OX,p and the matrix (aij) is invertible over OX,p, so
that f1−f1(p), . . . , fn−fn(p) generate mp. Since OX,p has dimension n and
dimk mp/m

2
p = n, we have that f1−f1(p), . . . , fn−fn(p) is a regular system

of parameters in OX,p. �

Exercise 14.18. Suppose that f : X → Y is a regular map of varieties over
an algebraically closed field k. Show that there are a coherent OX -module
ΩX/Y and a natural exact sequence of coherent OX -modules

(14.4) f∗ΩY/k → ΩX/k → ΩX/Y → 0

which becomes the sequence of Theorem 14.9 with A = k, B = Γ(U,OY ),
and C = Γ(V,OX) when evaluated at an open affine subset V of Y which
maps into an open affine subset U of X.
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14.3. n-forms and canonical divisors

In this section, suppose that X is a nonsingular variety of dimension n.

If A is a ring and M is an A-module, then ∧nM is the quotient of
the tensor product M ⊗ · · · ⊗ M with itself n times, by the A-submodule
generated by all elements x1 ⊗ · · · ⊗ xn with all xi ∈ M and where xi = xj
for some i 
= j [95, Section 1 of Chapter XIX].

We define Ωn
X/k to be the coherent sheaf on X associated to the presheaf

U �→ ∧nΩX/k(U) for U an open subset of X. If U is an affine open subset
of X, then

Ωn
X/k(U) = ∧nΩk[U ]/k.

The sheaf Ωn
X/k is an invertible OX -module. In fact, if U is an open

subset of X such that

ΩX/k|U = OUdx1 ⊕ · · · ⊕ OUdxn,

then Ωn
X/k|U = OUdx1 ∧ · · · ∧ dxn is a free OU -module.

The rational differential n-forms on X are

Ωn
k(X)/k = ∧nΩk(X)/k = k(X)df1 ∧ · · · ∧ dfn

where f1, . . . , fn ∈ k(X) are any elements such that df1 ∧ · · · ∧ dfn 
= 0.

Let {Ui} be an affine cover of X, such that there exist ωi ∈ Γ(Ui,Ω
n
X/k)

satisfying Ωn
X/k|Ui = ωiOUi .

Let φ be a nonzero rational differential n-form on X. Then there exist
gi ∈ k(X) for all i such that φ = giωi. We have that

(gi)Ui∩Uj = (gj)Ui∩Uj

for all i, j since there exist units γij ∈ Γ(Ui ∩ Uj ,OX) such that ωi = γijωj

as ωi and ωj are both generators of Ωn
X/k|Ui∩Uj . Thus there exists a divisor

D on X such that

(14.5) D ∩ Ui = (gi)Ui for all i.

The divisor D is independent of our choice of {Ui} and {ωi}. We define D to
be the divisor of φ. We will denote the divisor D of φ by (φ), (φ)X , div(φ),
or div(φ)X .

Proposition 14.19. Suppose that φ1, φ2 are nonzero rational differential
n-forms on X. Then (φ1) ∼ (φ2). Let KX = (φ) be the divisor of a rational
differential n-form. Then Ωn

X/k
∼= OX(KX).

We call the divisor KX of a rational differential n-form on X a canonical
divisor of X. If X is a normal variety, we can define a canonical divisor on
X by defining a canonical divisor on the nonsingular locus U of X (whose
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complement has codimension ≥ 2 in X) and extending it to a divisor KX on
X. We then have that i∗Ωn

U/k
∼= OX(KX) where i : U → X is the inclusion

(as follows from the proof of Lemma 13.5).

Proof. Let φ be a nonzero rational differential n-form on X. Let D = (φ)
and L = φOX , which is a free OX -module. We have that

Ωn
X/k

∼= OX(D)⊗OX
L ∼= OX(D)

by equation (14.5). In particular, if φ1, φ2 are rational differential n-forms,
then (φ1) ∼ (φ2) (by Proposition 13.6). �

The following example is established in Exercise 14.23.

Example 14.20. The canonical divisor KPn = −(n + 1)L where L is a
linear hyperplane on Pn.

Theorem 14.21 (Adjunction). Suppose that V is a nonsingular codimen-
sion 1 closed subvariety of a nonsingular variety W , so that V is a prime
divisor on W , and let i : V → W be the inclusion. Then KV = i∗(KW +V );
that is,

OV (KV ) ∼= OW (KW + V ) ⊗OW
OV .

Proof. Let n = dim(W ). There exist an affine open cover {Ui} of a
neighborhood of V in W and uniformizing parameters x1(i), . . . , xn(i) ∈
Γ(Ui,OW ), such that x1(i) = 0 is a local equation of V in Ui. Thus there
are units gij ∈ Γ(Ui ∩ Uj ,O∗

W ) such that

(14.6) x1(i) = gijx1(j)

for all i, j. Since {dx1(i), . . . , dxn(i)} and {dx1(j), . . . , dxn(j)} are free bases
of Γ(Ui ∩ Uj ,Ω

n
W/k), there exists al,m(i, j) ∈ Γ(Ui ∩ Uj ,OW ) such that

d(xl(i)) =
∑

al,m(i, j)dxm(j)

and hij = Det(al,m(i, j)) is in Γ(Ui ∩ Uj ,O∗
W ). Now we have that

dx1(i) ∧ · · · ∧ dxn(i) = hijdx1(j) ∧ · · · ∧ dxn(j).

Let

cij = Det

⎛⎜⎝ a22(i, j) · · · a2n(i, j)
...

...
an2(i, j) · · · ann(i, j)

⎞⎟⎠ .

The ideal of V in W is IV ∼= OW (−V ). Taking d of (14.6), we have that for
all i, j,

hij ≡ gijcij mod Γ(Ui ∩ Uj , OW (−V )).

Thus the transition functions of Ωn
W/k⊗OV on Ui∩Uj are gijcij , where gij is

the image of gij in Γ(Ui∩Uj ,O∗
V ) and cij is the image of cij in Γ(Ui∩Uj ,O∗

V ).
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We have that the gij are the transition functions of OW (−V ) ⊗ OV on
Ui ∩ Uj .

The images x2(i), . . . , xn(i) of x2(i), . . . , xn(i) in Γ(Ui,OV ) are uniformiz-
ing parameters on Ui∩V since x1(i) = 0 is a local equation of V on Ui and so
dx2(i), . . . , dxn(i) is a free basis of Γ(Ui,ΩV/k) by Proposition 14.15. Thus

the cij are transition functions for Ωn−1
V/k on Ui ∩ Uj .

Since Ωn
W/k⊗OV and Ωn−1

V/k ⊗OW (−V ) have the same transition functions

on Ui∩Uj , Ω
n
W/k⊗OV and Ωn−1

V/k ⊗OW (−V ) are isomorphic by Lemma 13.37.

Thus Ωn−1
V/k

∼= Ωn
W/k ⊗ OW (V ) ⊗ OV . �

Corollary 14.22. Suppose that C is a nonsingular cubic curve in P2. Then
KC = 0 (so that OC(KC) ∼= OC).

Proof. This follows from adjunction since C ∼ 3L and KP2 = −3L, where
L is a linear hyperplane on P2. �

Exercise 14.23. Prove Example 14.20.

Exercise 14.24. Suppose that S is a nonsingular surface and π : X → S
is the blow-up of a point. Let E be the exceptional divisor of π. Show that
KX ∼ π∗(KS) + E.



Chapter 15

Schemes

In this chapter we discuss some generalizations of quasi-projective varieties,
beginning with subschemes of quasi-projective varieties. This concept will
be important in later chapters. Then we will give a quick survey of some
more general spaces. All of our constructions will be locally ringed spaces,
which were defined in Definition 11.15.

15.1. Subschemes of varieties, schemes, and Cartier divisors

Definition 15.1. A closed subscheme Z of a quasi-projective variety X is
a locally ringed space, consisting of the pair of a closed subset Y of X and
a sheaf of rings OZ = OX/I on Y where I is an ideal sheaf on X such that
Supp(OX/I) = Y . We call Y the associated topological space of Z. The
ideal sheaf of Z in X is IZ = I. We define the closed subscheme Zred of X
to be the subscheme associated to Y with ideal sheaf

√
I.

An open subscheme of a closed subscheme Z is an open subset U of a
closed subsheme Z, with the sheaf OU = OZ |U .

We will sometimes write “subscheme” or “scheme” to mean an open or
closed subscheme.

A subscheme is called affine if it is a closed subscheme of an affine variety,
projective if it is a closed subscheme of a projective variety, and quasi-
projective if it is an open subscheme of a projective subscheme.

Definition 15.2. A scheme X is a locally ringed space such that every
point p ∈ X has an open neighborhood U such that the open subset U with
the sheaf OX |U is an affine scheme.

289
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If Y is a closed subvariety of a quasi-projective variety X, then we can
regard Y as the scheme with associated topological space Y and sheaf of
rings OY

∼= OX/IY ; in particular, we have Y = Yred. More generally, if Y is
a (closed) algebraic set in a quasi-projective variety X, then we can regard
Y as a closed subscheme of X, with the structure such that Y = Yred.

If Z is a subscheme, then the natural inclusion IZ ⊂
√

IZ induces a
surjection OZ → OZred

, and so we have an inclusion of subschemes Zred ⊂ Z.

We say that a scheme Z is irreducible if the associated topological space
of Z is irreducible. A scheme Z is said to be reduced if OZ is reduced; that
is, Z = Zred so that IZ is a reduced ideal sheaf. A scheme Z is said to
be integral if Z is both reduced and irreducible. Thus a quasi-projective
scheme Z is integral if and only if Z is a variety and Z is reduced if and
only if Z is an algebraic set.

Example 15.3. Let X = A2 with regular functions k[X] = k[x, y] and let
Y be the closed subset Y = Z(y) ⊂ X. For n a positive integer, let In be

the ideal In = (yn) in k[X], and let In be the ideal sheaf In = Ĩn on X. Let
Yn be the locally ringed space

Yn = (Y,OA2/In).
The schemes Yn are different (nonisomorphic) closed subschemes of X with
the same underlying topological space Y . We have that (Yn)red = Y1 = Y
for all n. The subscheme Y1 = Y is a subvariety of X.

We consider some situations where schemes appear naturally.

Suppose that φ : X → Y is a regular map of quasi-projective varieties
and Z is a closed subscheme of Y . We define the scheme-theoretic fiber XZ

over Z to be the closed subscheme of X with associated topological space
the subset φ−1(Z) of X with the ideal sheaf IXZ

= IZOX , where IZ is the
ideal sheaf of Z in Y . A particularly important case is of the fiber Xp over a
point p ∈ Y . We will continue to write φ−1(Z) for the algebraic set (XZ)red.

Suppose that Z1 and Z2 are closed subschemes of a quasi-projective
variety X, with respective ideal sheaves IZ1 and IZ2 . Then the scheme-
theoretic intersection Z1 ∩Z2 is the closed subscheme of X with ideal sheaf
IZ1 + IZ2 . Earlier, we encountered the set-theoretic intersection Z1 ∩ Z2,
which is the algebraic set with ideal sheaf

√
IZ1 + IZ2 .

An effective divisor D on a normal variety X can be regarded as a closed
subscheme of X. The sheaf OD = OX/OX(−D).

We define sheaves, quasi-coherent sheaves, and coherent sheaves on a
scheme as in Chapter 11.

The definition of invertible sheaf and analysis in Section 13.9 are valid
on an arbitrary scheme. If L is an invertible sheaf on a scheme X, then
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there exists an affine cover {Ui} of X with OUi-module isomorphisms φi :
OX |Ui → L|Ui and transition functions gij ∈ Γ(Ui ∩ Uj ,O∗

X), the units in
Γ(Ui,∩Uj ,OX).

The total quotient ring of a ring A is defined to be QR(A) = S−1A
where S is the multiplicative set of nonzero divisors in A.

Let X be a scheme. There is a sheaf K on X which has the property
that K(U) = QR(OX(U)) whenever U is affine. The sheaf K is called the
sheaf of total quotient rings of OX . The sheaf of multiplicative groups K∗

is defined to be the group of invertible elements of K and O∗
X is the sheaf of

invertible elements of OX . We have inclusions OX ⊂ K and O∗
X ⊂ K∗.

Definition 15.4. A Cartier divisorD on a schemeX is a collection {(Ui, fi)}
where {Ui} is an open cover of X and fi ∈ Γ(Ui,K∗) are such that for each

i, j, fi
fj

∈ Γ(Ui ∩ Uj ,O∗
X).

We have encountered Cartier divisors on varieties earlier, in (13.2).
Cartier divisors are developed in more detail in [118, Section 9] and [73, Sec-
tion II.6].

Let X be a scheme. Then for D a Cartier divisor on X, OX(D) is the
invertible sheaf on X defined by

OX(D)|Ui =
1

fi
OX |Ui.

We have that OX(D1−D2) ∼= OX(D1)⊗OX(D2)
−1 if D1 and D2 are Cartier

divisors. We say that D1 is linearly equivalent to D2 if OX(D1) ∼= OX(D2).
A Cartier divisor on a scheme X is effective if it can be represented by
{(Ui, fi)} where each fi ∈ OX(Ui). In this case, we have an associated
subscheme D of X defined by ID|Ui = fiOUi .

Suppose that L is an invertible sheaf on a scheme X. A global section
s ∈ Γ(X,L) is called a nonzero divisor if the annihilator of the stalk sp by
OX,p is zero for all p ∈ X. This is equivalent to the annihilator of s|Ui as a
Γ(Ui,OX)-module being zero for all Ui in an affine cover of X.

Suppose that s ∈ Γ(X,L) is a nonzero divisor. Then there is associated
to s a subscheme div(s) (or (s)) of X which is an effective Cartier divisor.
The closed subscheme div(s) has the ideal sheaf Idiv(s) which is defined on

each Ui by

Idiv(s)|Ui = φ−1
i (s)OUi

where φi : OUi → L|Ui are local trivializations of L.
The effective divisor div(s) associated to s is well-defined; it is indepen-

dent of choice of local trivialization. This generalizes the construction of
div(s) on a nonsingular variety, given after Example 13.38.
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It is possible for Idiv(s),p to have embedded primes, where p ∈ div(s),

even when X is a variety. This is illustrated by Example 1.75.

Suppose that I is an ideal sheaf on a projective varietyX. Let x0, . . . , xn
be homogeneous coordinates on X, and let S(X) = k[x0, . . . , xn] be the
coordinate ring of X. Let m = (x0, . . . , xn) be the graded maximal ideal.
There exists a homogeneous ideal I in S(X) such that I is the sheafification

Ĩ of I (Proposition 11.48). Let I = Q0 ∩ Q1 ∩ · · · ∩ Qs be a homogeneous
primary decomposition of I, where Q0 is the m-primary component of I if
m is an associated prime of I and Q0 = S(X) otherwise. Let Pi =

√
Qi be

the associated (homogeneous) prime ideals to Qi. We have that

Isat = Q1 ∩ · · · ∩ Qs.

Let Yi = Z(Pi). Then

I = Ĩ = (̃Isat) = Q̃1 ∩ · · · ∩ Q̃s

is a primary decomposition of I, where the ideal sheaf Q̃i is IYi = P̃i primary.

Let Z be the subscheme of X with ideal sheaf IZ = I. We define the
homogeneous ideal of Z to be

I(Z) = Isat.

The homogeneous ideal I(Z) is uniquely determined by Z.

Definition 15.5. Suppose that L is an invertible sheaf on a projective
scheme V , F is a coherent sheaf on V , and s ∈ Γ(V,L). We will say that s
is not a zero divisor on F if for all p ∈ V , φ−1(s) is not a zero divisor on
Fp, where φ : OU → L|U is a trivialization of L in a neighborhood U of p.

Recall (after Definition 15.4) that for s ∈ Γ(V,L) a nonzero divisor,
div(s) is the subscheme of V defined by

Idiv(s) | U = φ−1(s)OU ,

where U is an open neighorhood of p in V admitting a local isomorphism
φ : OU → L|U .

As V is a closed subscheme of a projective space Pn, we have that OV =

S̃(V ) where S(V ) = S(Pn)/J for some homogeneous ideal J in S(Pn). We

can realize F = F̃ where F is a graded S(V )-module. Let I be the saturation
of the annihilator of F as a S(V )-module. Let

I = Q1 ∩ · · · ∩ Qt

be an irredundant primary decomposition of I, and let Pi be the prime ideals
associated to Qi. Suppose that s ∈ Γ(V,L) is a nonzero divisor. Then s is a
nonzero divisor on F if and only if the subvarieties Vi = Z(Pi) of V satisfy
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Vi 
⊂ Supp(div(s)) for 1 ≤ i ≤ t. We will call the Vi the associated varieties
of F .

Suppose that U is an affine open subset of V and φ is a local trivialization
φ : OU → L|U . Let S ⊂ {1, . . . , t} be the indices such that U ∩ Vi 
= ∅.
Then the annihilator of the module Γ(U,F) is the ideal Ĩ(U) which has the
irredundant primary decomposition

Ĩ(U) =
⋂
i∈S

Q̃i(U)

with
√

Q̃i(U) = I(U ∩ Vi). The element s is a nonzero divisor of F on U if

and only if φ−1(s) 
∈ I(U ∩ Vi) for i ∈ S.

Exercise 15.6. Suppose that X is a normal affine variety with regular
functions R = k[X]. Suppose that D is a divisor on X such that OX(D) is
invertible and f ∈ Γ(X,OX(D)) is nonzero. Suppose that (f)+D =

∑
aiEi

with Ei prime divisors and ai ∈ Z+. Show that, regarding f as an element
of Γ(X,OX(D)), we have

Idiv(f) = I
(a1)
E1

∩ · · · ∩ I
(ar)
Er

,

where IEi are the prime ideals of Ei in R and I
(ai)
Ei

= (IaiEi
RIEi

) ∩ R is the
ai-th symbolic power of IEi . Hint: Use Theorem 1.79.

Exercise 15.7. Suppose that X is nonsingular in Exercise 15.6. Show that
we then have

Idiv(f) = Ia1E1
Ia2E2

· · · IarEr
.

Exercise 15.8. Use Example 1.75 to give an example of a projective va-
riety X with coordinate ring S such that if L = Div(F ) for some nonzero
homogeneous linear form F ∈ S, then I(L) 
= (F ).

15.2. Blow-ups of ideals and associated graded rings of ideals

Suppose that X is an affine variety with regular functions R = k[X] and
J ⊂ R is an ideal. Let π : B(J) → X be the blow-up of J . From Theorem
6.4, we know that a coordinate ring of B(J) is the graded ring S(B(J)) ∼=⊕

i≥0 J
i. Let Z be the closed affine subscheme of X with ideal sheaf IZ = J̃ .

From Theorem 6.4, we see that the coordinate ring of the fiber B(J)Z of Z
in B(J) is

S(B(J)Z) ∼= S(B(J))/JS(B(J)) ∼=
⊕
i≥0

J i/J i+1.
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This last ring is (by definition) the associated graded ring grJR of J . In the
case that J = m is a maximal ideal of R (which corresponds to a point p of
X) we have that

S(B(J)Z) ∼=
⊕
i≥0

mi/mi+1 = grm(R).

When J = m, the scheme B(J)Z (and the ring S(B(J)Z)) is often called
the tangent cone of p (the tangent cone of Rm).

There is a nice way to compute the tangent cone which we now indicate.
Let k[x1, . . . , xn] be a polynomial ring. Given 0 
= f ∈ k[x1, . . . , xn], there
is an expression f = fd + fd+1 + · · · + fr where the fi are homogeneous
forms of degree i for all i and fd 
= 0. The initial form of f is defined
to be in(f) = fd. Given an ideal I in k[x1, . . . , xn], the initial ideal of I is
in(I) = (in(f) | 0 
= f ∈ I), the homogeneous ideal in k[x1, . . . , xn] generated
by the initial forms of elements of I.

Suppose that R ∼= k[x1, . . . , xn]/I and m = (x1, . . . , xn)R. Then (as
explained on the bottom of page 249 through the top of page 250 of [161]),
we have a graded isomorphism⊕

i≥0

mi/mi+1 ∼= k[x1, . . . , xn]/in(I).

We have that in(I) = I if I is a homogeneous ideal and in(I) = (in(f)) if
I = (f) is a principal ideal. However, if I is generated by f1, . . . , fm, it is
not true in general that in(I) is generated by in(f1), . . . , in(fm). In fact, this
can fail even if f1, . . . , fm is a complete intersection.

Suppose that p ∈ Z(J) ⊂ X, with corresponding maximal ideal n in R.
Then the fiber B(J)p of p in B(J) has the coordinate ring

S(B(J)p) ∼=
⊕
i≥0

J i/nJ i.

This ring is sometimes called the fiber cone.

Exercise 15.9. Let X be the reduced subscheme X = Z(x1x2) of P2 (a
union of two lines). Compute the blow-up π : X → X of the line Z(x1) in
X. Show that X is isomorphic to P1.

Exercise 15.10. Suppose that k has characteristic > 3 and let

f = x2 + y2 + z2 + x3 + y3 + z3,

an irreducible polynomial in the polynomial ring k[x, y, z]. Let S = Z(f) ⊂
A3. Let π : S → S be the blow-up of the origin p of S. Show that the fiber
Sp over p is isomorphic to Z(F ) ⊂ P2, where F = x2 + y2 + z2 ∈ k[x, y, z] =
S(P2).
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15.3. Abstract algebraic varieties

Definition 15.11. An abstract prevariety is an irreducible scheme (Defini-
tion 15.2).

A topological space X is called Noetherian if it satisfies the descending
chain condition for closed subsets. A prevariety X is a Noetherian topologi-
cal space [116, Proposition 1 and Proposition 2, pages 48–49]. The function
field k(X) of a prevariety X is the quotient field of OX(U) for any affine
open subset U of X

If X is a prevariety, then the product X × X is naturally a prevariety
(it is covered by the affine varieties Ui × Uj where {Ui} is an affine cover of
X).

Definition 15.12. An abstract prevariety X is an abstract variety if

Δ(X) = {(p, p) | p ∈ X}
is closed in X × X.

Example 15.13. Let p be a point in U1 = A1 and let q be a point in
U2 = A1. Define a prevariety X by gluing U1 to U2 by identifying the open
subsets U1 \{p} and U2 \{q}. Then X is a prevariety which is not a variety.

The following theorem follows from the valuative criterion of separated-
ness [73, Theorem II.4.3].

Theorem 15.14. An abstract prevariety X is an abstract variety if and
only if for p, q ∈ X the stalks OX,p ⊂ k(X) and OY,q ⊂ k(X) are equal if
and only if p = q.

A quasi-projective variety is an abstract variety since it is separated by
Proposition 3.36.

Definition 15.15. An abstract variety X is complete if for all abstract
varieties Y the projection π : X × Y → Y is a closed map.

A projective variety is complete. This follows from Corollary 5.13 or
the valuative criterion of properness [73, Theorem II.4.7]. An example by
Hironaka of a nonsingular, complete abstract variety which is not projective
is given in [73, Example 3.4.1 of Appendix B].

Theorem 15.16. Suppose that X is an abstract prevariety over C. Then:

1) The abstract prevariety X is Hausdorff in the Euclidean topology if
and only if X is an abstract variety.

2) The abstract prevariety X is compact (and Hausdorff) in the Eu-
clidean topology if and only if X is a complete abstract variety.
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Proof. This is proven in [116, Section 10 of Chapter 1]. Part 1) is estab-
lished for quasi-projective varieties over C in Theorem 10.41. �

Exercise 15.17. Show that an affine variety X is complete if and only if
X is a point.

Exercise 15.18. Show that the prevariety constructed in Example 15.13 is
not an abstract variety.

15.4. Varieties over nonclosed fields

Suppose that V ⊂ An is an affine variety over our algebraically closed field
k. Then k[V ] = k[x1, . . . , xn]/P where P is the prime ideal I(V ) of V . If k0
is a subfield of k such that the prime ideal P0 = P ∩ k0[x1, . . . , xn] satisfies
P = P0k[x1, . . . , xn], then we say that V is defined over k0 or that k0 is a field
of definition of V , and we define k0[V ] = k0[x1, . . . , xn]/P0. We define the
k0-rational points V (k0) of V to be the set of points p = (α1, . . . , αn) ∈ kn0
such that p ∈ V . These points correspond to the maximal ideals in k0[V ]
whose residue field is k0. The rational function field of V , regarded as a
variety over k0, written as k0(V ), is the quotient field of k0[V ]. We can also
consider field extensions k1 of k0 in k. Then we can regard V as a variety
over k1 with k1[V ] = k1[x1, . . . , xn]/Pk1[x1, . . . , xn] ∼= k[V ] ⊗k k1.

If V ⊂ Pn, we can extend these notions to define the concept of a field
of definition k0 of V . We then have the set of k0-rational points V (k0) of V ,
which are the set of points (α0 : . . . : αn) ∈ Pn such that α0, . . . , αn ∈ k0.

This philosophy, including the notions of generic points, independent
generic points, and specialization of points is developed in [146]. An excel-
lent discussion on this topic is in [116, Section 4 of Chapter 2].

An inherent difficulty with this approach is that if we start with a prime
ideal P in a polynomial ring k0[x1, . . . , xn], giving a variety Xk0 in An

k0
,

we might have that Pk[x1, . . . , xn] is no longer a prime ideal if k is an
algebraic closure of k0. In this case there is not a corresponding variety Xk

in An
k . If Pk[x1, . . . , xn] is a prime ideal, then Xk0 is said to be “absolutely

irreducible”.

15.5. General schemes

A very general definition of schemes is given in [65] and [69]. Some sections
in books giving good introductions to this are [73, Section 2 of Chapter II],
[116, Chapter II], and [53].

An affine scheme is defined to be the spectrum Spec(R) of a commutative
ring R (Exercise 1.11). The points of Spec(R) are the prime ideals of R,
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and it is given the Zariski topology. The closed sets are

Z(I) = {P ∈ Spec(R) | I ⊂ P}
where I is an ideal of R. The closed points are then the maximal ideals of R.
An affine scheme X = Spec(A) has a structure sheaf OX which generalizes
the notion of regular functions on an affine variety. The structure sheaf has
the property that the stalk OX,p = Ap for all p ∈ X.

A homomorphism φ : A → B of commutative rings determines a con-
tinuous map f : Spec(B) → Spec(A) by f(p) = φ−1(p) for p ∈ Spec(B).
These maps φ are the morphisms (as locally ringed spaces) from Spec(B) to
Spec(A), with f# induced by φ.

If R is the ring of regular functions k[V ] of an affine variety V , then the
closed points of Spec(k[V ]) are the ideals I(p) of the points p ∈ V .

A scheme is a topological space X with a sheaf of rings OX such that
there exists an open cover {Uα} of X such that

(Uα,OX |Uα) ∼= (Spec(Rα),OSpec(Rα)
)

for some commutative rings Rα. A morphism of schemes is a morphism of
locally ringed spaces. A scheme X is separated if the image of the diagonal
map Δ : X → X ×X is closed. An affine scheme is separated.

Let S =
⊕

n≥0 Sn be a graded ring where S0 = R is a commutative ring.

The projective scheme Proj(S) is the topological space which consists of the
graded prime ideals of S which do not contain S+ =

⊕
n>0 Sn. The closed

sets are
Z(I) = {P ∈ Proj(S) | I ⊂ P}

where I is a graded ideal of R. For F ∈ S homogeneous, Spec(S(F )) is
an affine open subset of Proj(S), and such open subsets are a basis for the
topology.

Our definition of a scheme follows the definitions in the later, second
version of EGA I [69] and in [73]. In the earlier edition of EGA I [65]
and in [116] a scheme is called a prescheme and a scheme is a separated
prescheme.





Chapter 16

The Degree of
a Projective Variety

In this chapter we define the degree of a projective variety X embedded in
a projective space Pn. Classically, the degree is defined to be the number of
intersection points ofX with a general linear subvariety of Pn of codimension
equal to the dimension of X. In a more algebraic approach, the degree
is defined from the Hilbert polynomial of Y . We will indicate why these
two definitions are in fact equal and derive a classical bound on the degree
of a nondegenerate variety (a variety which is not contained in a linear
hyperplane of Pn).

Let Pn be projective space over an algebraically closed field k. Let
x0, . . . , xn be homogeneous coordinates on Pn, so that the coordinate ring
of Pn is S = S(Pn) = k[x0, . . . , xn].

The linear hyperplanes in Pn are parametrized by the projective space

V = Pn

by associating to A = (a0 : . . . : an) ∈ V the hyperplane LA which is the
subscheme of Pn with underlying topological space Z(

∑n
i=0 aixi) and ideal

sheaf

ILA
=

˜(∑
aixi

)
.

We say that a property holds for a general linear hyperplane if it holds
for all LA with A in a dense open subset of V . A hyperplane LA with A in
this dense open set is called a general hyperplane.

299
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The intersection Y ∩ Z of two closed subschemes will be the scheme-
theoretic intersection defined in Section 15.1.

The proof of the next theorem follows directly from [55, Corollary 3.4.14
and Theorem 3.4.10].

Theorem 16.1. Suppose that Y ⊂ Pn is a closed algebraic set (a reduced
subscheme). Then for a general hyperplane H ⊂ Pn, we have that the
scheme-theoretic intersection Y ∩H does not contain any irreducible compo-
nent of Y and Y ∩H is reduced (an algebraic set). If all irreducible compo-
nents of Y have dimension m, then all irreducible components of Y ∩H have
dimension m− 1. Further, if Y is nonsingular, then Y ∩H is nonsingular,
and if Y is normal, then Y ∩ H is normal. If Y is a variety (integral) of
dimension ≥ 2, then Y ∩ H is a variety (integral).

Definition 16.2. Suppose that Y is a closed algebraic set in Pn (a reduced
closed subscheme) such that all irreducible components of Y have a common
dimension m. A linear subvariety L of Pn of codimension m is said to be
general for Y if there exist linear hyperplanes L1, . . . , Lm of Pn such that
L = L1 ∩ · · · ∩Lm and for 1 ≤ r ≤ m, X ∩L1 ∩ · · · ∩Lr is a closed algebraic
set in Pn such that all irreducible components have dimension m − r. If Y
is a variety, we further require that for 1 ≤ r ≤ m − 1, X ∩ L1 ∩ · · · ∩ Lr is
a variety.

The next corollary follows from successive application of Theorem 16.1.

Corollary 16.3. Suppose that Y is a closed algebraic set in Pn (a reduced
closed subscheme) such that all irreducible components of Y have dimension
m > 0. Then there exists a linear subvariety L of Pn of codimension m
which is general for Y .

Definition 16.4. A numerical polynomial is a polynomial P (z) ∈ Q[z] such
that P (n) ∈ Z for all integers n � 0.

For n ∈ N, define
(
z
n

)
∈ Q[z] by

(
z
0

)
= 1 and(

z

n

)
=

1

n!
z(z − 1) · · · (z − n+ 1)

for n ≥ 1.

Lemma 16.5. Suppose that P ∈ Q[z] is a numerical polynomial of degree
r. Then there are integers c0, c1, . . . , cr ∈ Z such that

(16.1) P (z) = c0

(
z

r

)
+ c1

(
z

r − 1

)
+ · · ·+ cr.

Proof. We prove the lemma by induction on r = degP , the case r =
0 certainly being true. Since deg

(
z
r

)
= r, we can express any numerical
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polynomial P (z) in the form (16.1), with c0, . . . , cr ∈ Q. Define the difference
polynomial ΔP (z) = P (z + 1) − P (z). Since Δ

(z
r

)
=
( z
r−1

)
,

ΔP = c0

(
z

r − 1

)
+ c1

(
z

r − 2

)
+ · · · + cr−1.

By induction, c0, . . . , cr−1 ∈ Z. But then cr ∈ Z since P (n) ∈ Z for n �
0. �

Theorem 16.6 (Hilbert, Serre). Let M =
⊕

n∈ZMn be a finitely gener-
ated graded S = k[x0, . . . , xn]-module. Then there is a unique polynomial
PM (z) ∈ Q[z] such that

PM (n) = dimk Mn

for n � 0. The degree of the polynomial PM (z) is dimZ(Ann(M)) (viewed
as an algebraic set in Pn), where Ann(M) = {f ∈ S | fM = 0}.

Proof. [161, Theorem 41 on page 232 and Theorem 42′ on page 235] or
[50, Section 12.1]. �

The polynomial PM is called the Hilbert polynomial of M . We define
the degree of M to be r! times the leading coefficient of PM , where r =
dimZ(Ann(M)) is the degree of PM .

Suppose that I, J are homogeneous ideals in S such that Isat = J sat.
Then

PS/I = PS/J

by Exercise 16.13.

Definition 16.7. Suppose that Y ⊂ Pn is a closed subscheme of dimension
r. We define the Hilbert polynomial PY of Y to be the Hilbert polynomial
PS/I(Y ). By Theorem 16.6, this polynomial has degree r. We define the
degree deg(Y ) of Y to be r! times the leading coefficient of PY .

Proposition 16.8. The following are true.

1) The degree of a nonempty closed subsheme Y of Pn is a positive
integer.

2) Suppose that Y is a closed algebraic set (a closed reduced sub-
scheme) in Pn and Y = Y1 ∪ Y2 is the union of closed algebraic
sets of the same dimension r such that dimY1 ∩ Y2 < r. Then
deg(Y ) = deg(Y1) + deg(Y2).

3) deg(Pn) = 1.

4) If H ⊂ Pn is a hypersurface whose ideal is generated by a homoge-
neous polynomial of degree d, then deg(H) = d.
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Proof. 1) The polynomial PY is nonzero of degree r = dimY by Theorem
16.6. By Lemma 16.5, we have a unique expression

PY (x) = c0

(
x

r

)
+ c1

(
x

r − 1

)
+ · · · + cr

where c0, . . . , cr ∈ Z and c0 
= 0. Thus deg(Y ) = c0 is a nonzero integer. We
have that c0 > 0 since PY (n) = dimk S(Y )n > 0 for n � 0.

2) Let I1 = I(Y1), I2 = I(Y2), and I = I(Y ), so that I = I(Y1 ∪ Y2) =
I1 ∩ I2. We have an exact sequence of graded S = S(Pr)-modules

0 → S/I
h�→(h,−h)→ S/I1 ⊕ S/I2

(f,g) �→f+g→ S/(I1 + I2) → 0.

The algebraic set Z(I1 + I2) = Y1 ∩ Y2 has dimension < r. Hence PS/(I1+I2)

has degree < r, and the leading coefficient of PS/I is the sum of the leading
coefficients of PY1 and PY2 .

3) Let S = S(Pn) = k[x0, . . . , xn]. For m > 0, dimk Sm =
(m+n

n

)
so

PS(x) =
(x+n

n

)
. The leading coefficient of this polynomial is 1

n! , so degPn

= 1.

4) Let F ∈ S be a degree d homogeneous polynomial which generates
the ideal of the scheme H. We have an exact sequence of graded S-modules

0 → S(−d)
F→ S → S/(F ) → 0.

Thus

dimk S(H)m = dimk Sm − dimk Sm−d,

so

PH(x) =

(
x+ n

n

)
−
(
x+ n − d

n

)
=

d

(n− 1)!
xn−1 + lower-order terms.

Thus degH = d. �

Theorem 16.9. Suppose that Y is a closed algebraic set in Pn such that all
irreducible components of Y have dimension m and L is a linear subvariety
of Pn of codimension m which is general for Y . Let d be the number of
irreducible components (points) of the reduced zero-dimensional scheme L∩
Y . Then

d = deg(Y ).

Proof. We first show that

deg(Y ) = deg(Y ∩ L).

By induction onm, we need only verify that deg(Y ) = deg(Y ∩LA) where LA

is a hyperplane section of Pn such that all irreducible components of LA∩Y
have dimension m− 1 and LA ∩ Y is reduced. With these assumptions, the
radical ideal I(LA ∩ Y ) = (I(Y ) + I(LA))

sat.
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We have that I(Y ) =
⋂

Qi where the Qi are the homogeneous prime
ideals of the irreducible components of Y . Let T = S/I(Y ), a graded S-
module where S = S(Pn). Let FA =

∑n
i=0 aixi. By our assumptions on A,

FA 
∈ Qi for any i, so we have a short exact sequence of graded S-modules

0 → T (−1)
FA→ T → T/FAT → 0.

Thus

PT/FAT (n) = PT (n)−PT (n− 1) =
deg(Y )

(m− 1)!
nm−1+ lower-order terms in n.

Since

I(Y ∩ LA)n = (I(Y ) + I(LA))
sat
n = (I(Y ) + (FA))

sat
n = (I(Y ) + (FA))n

for n � 0 and S/(I(Y ) + (FA)) ∼= T/FAT , we have that

PS/I(Y ∩LA) = PS/(I(Y )+(FA)) = PT/FAT

and thus deg(Y ∩ LA) = deg(Y ). By induction, we have that deg(Y ∩ L) =
deg(Y ).

By our assumption, I(Y ∩ L) =
⋂d

i=1 Pi where the Pi are the homoge-
neous ideals of points. Thus

S/Pi
∼= k[x]

is a standard graded polynomial ring in one variable. Thus PS/Pi
(n) is the

constant polynomial 1. By 2) of Proposition 16.8,

deg(Y ∩ L) = d. �

Theorem 16.10. Suppose that X is a projective subvariety of Pn and X is
not contained in a linear hyperplane (X is nondegenerate). Then

deg(X) ≥ codim(X) + 1.

Proof. Let m = codim(X). By Corollary 16.3, we can construct a lin-
ear subspace L of Pn of dimension m such that I(L) = (F1, . . . , Fm) with
F1, . . . , Fm in S = S(Pn) linear forms such that the ideals I0 = I(X) and
Ii = (Ii−1 + (Fi))

sat for i < m are prime ideals and

Im = (Im−1 + (Fm))sat = (I(L) + I(X))sat = I(X ∩ L).

Let Yi = Z(Ii) and Li = Z(F1, . . . , Fi) ∼= Pn−i. The variety Y0 = X, Yi is
a subvariety of Li for i < m, and Ym = X ∩ L is a closed algebraic set in
L = Lm (a union of d points). We will prove that Yi is nondegenerate in Li

for all i by induction on i.
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Suppose that i < m. Sheafify the graded short exact sequence of S(Li) =
S/(F1, . . . , Fi)-modules

0 → (S/Ii)(−1)
Fi+1→ S/Ii → S/(Ii + (Fi+1)) → 0

to obtain a short exact sequence of sheaves of OLi-modules

0 → OYi(−1) → OYi → OYi+1 → 0,

and obtain, after tensoring with OYi(1), a commutative diagram of sheaves
of OLi-modules with exact rows

0 → OLi → OLi(1) → OLi+1(1) → 0
↓ ↓ ↓

0 → OYi → OYi(1) → OYi+1(1) → 0.

Taking global sections, we obtain a commutative diagram of k-vector
spaces

0 → Γ(Li,OLi) → Γ(Li,OLi(1)) → Γ(Li+1,OLi+1(1)) → 0
α ↓ β ↓ γ ↓

0 → Γ(Yi,OYi) → Γ(Yi,OYi(1)) → Γ(Yi+1,OYi+1(1))

where the top and bottom rows are exact. The map α is an isomorphism
since Yi is a variety (and k is algebraically closed) by Theorem 3.35. By
the induction hypothesis, Yi is nondegenerate in Li; that is, β is injective.
After a diagram chase, we see that γ must also be injective, so that Yi+1 is
nondegenerate in Li+1.

We have established that the algebraic set Ym, which is a union of d
points in Lm

∼= Pcodim(X), is nondegenerate. Thus Ym must contain at least
codim(X) + 1 points, so

d = deg(X) ≥ codim(X) + 1. �

A nondegenerate subvariety X of Pn such that deg(X) = codim(X) + 1
is called a variety of minimal degree. There is a beautiful classification of
varieties of minimal degree by Del Pezzo [48] and Bertini [19]. A modern
proof is given by Eisenbud and Harris in [52].

Exercise 16.11. Let X be a proper subvariety of Pn. Give a simple direct
proof that a general linear hyperplane of Pn does not contain X.

Exercise 16.12. Suppose that f : Z → Z is a function such that the first
difference function Δf(n) = f(n+1)−f(n) is a numerical polynomial. Show
that there exists a numerical polynomial P (z) such that f(n) = P (n) for
n � 0.

Exercise 16.13. Suppose that S = k[x0, . . . , xn] and I ⊂ S is a homoge-
neous ideal. Show that PS/I = PS/Isat .
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Exercise 16.14. Suppose that X is a subvariety of Pn which has degree 1.
Show that X is a linear subvariety.

Exercise 16.15. Show that the degree of the d-th Veronese embedding of
Pn in PN is dn.

Exercise 16.16. Show that the degree of the Segre embedding of Pr × Ps

in PN is
(
r+s
r

)
.

Exercise 16.17. Let Y ⊂ Pn be an r-dimensional variety of degree 2. Show
that Y is contained in a linear subvariety of dimension r+1 in Pn, and that
Y is isomorphic to a quadric hypersurface in Pr+1.





Chapter 17

Cohomology

In this chapter we study basic properties of sheaf and Čech cohomology and
discuss some applications.

17.1. Complexes

We begin with some preliminaries on homological algebra. A complex A∗

is a sequence of homomorphisms of Abelian groups (or modules over a ring
R):

· · · → Ai di→ Ai+1 di+1

→ · · ·
for i ∈ Z with di+1di = 0 for all i. The homomorphisms di are called
differentials or coboundary maps.

Associated to a complex A∗ are cohomology groups (modules)

H i(A∗) = Kernel(di)/Image(di−1).

Definition 17.1. Suppose that A∗ and B∗ are complexes. A chain map (or
map of complexes) f : A∗ → B∗ is a sequence of homomorphisms f i : Ai →
Bi for all i such that the following diagram commutes:

· · · → Ai di→ Ai+1 di+1

→ Ai+2 → · · ·
↓ f i ↓ f i+1 ↓ f i+2

· · · → Bi ei→ Bi+1 ei+1

→ Bi+2 → · · · .

A chain map f : A∗ → B∗ is nullhomotopic if there are homomorphisms
si : Ai → Bi−1 such that

f i = ei−1si + si+1di

307
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for all i. The homomorphisms si are called a homotopy. If f and g are two
chain maps from A∗ to B∗, then f is homotopic to g if f−g is nullhomotopic.

Suppose that f is a chain map between complexes A∗ and B∗. Then
there are induced homomorphisms f∗ : H i(A∗) → H i(B∗).

Proposition 17.2. Suppose that f and g are homotopic chain maps between
complexes A∗ and B∗. Then f∗ = g∗ : Hn(A∗) → Hn(B∗) for all n ∈ Z.

Proof. Let si be the homotopy. Suppose that z ∈ Kernel(di). Then

fz − gz = ei−1siz + si+1diz = ei−1siz ∈ Image(ei−1)

so f∗ = g∗. �

17.2. Sheaf cohomology

In this section, we summarize some material from [73, Chapter III]. Asso-
ciated to a sheaf of Abelian groups F on a topological space X are sheaf
cohomology groups H i(X,F ) for all nonnegative integers i, which have the
properties that we have a natural isomorphism H0(X,F ) ∼= Γ(X,F ), and if

(17.1) 0 → A → A′ → A′′ → 0

is a short exact sequence of sheaves of Abelian groups on X, then there is a
long exact cohomology sequence of Abelian groups
(17.2)

0 → H0(X,A) → H0(X,A′) → H0(X,A′′) → H1(X,A) → H1(X,A′)
→ H1(X,A′′) → H2(X,A) → · · · .

Further, given a commutative diagram of homomorphisms of sheaves of
Abelian groups on X,

(17.3)
0 → A → A′ → A′′ → 0

↓ ↓ ↓
0 → B → B′ → B′′ → 0

where the horizontal diagrams are short exact, we have an induced commu-
tative diagram
(17.4)
0 → H0(X,A) → H0(X,A′) → H0(X,A′′) → H1(X,A) → · · ·

↓ ↓ ↓ ↓
0 → H0(X,B) → H0(X,B′) → H0(X,B′′) → H1(X,B) → · · · .

The sheaf cohomology groups are constructed by an injective resolution.
A sheaf of Abelian groups I on X is called injective if the functor Hom(·, I)
is exact on exact sequences of sheaves of Abelian groups on X. An injective
resolution of a sheaf of Abelian groups F on X is an exact sequence

(17.5) 0 → F → I0 → I1 → · · ·
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of sheaves of Abelian groups on X such that each Ii is injective. It follows
from [73, Corollary III.2.3] that every sheaf of Abelian groups F onX has an
injective resolution. The sheaf cohomology groups H i(X,F ) are computed
by choosing an injective resolution (17.5) and taking the cohomology of the
associated complex (di+1di = 0 for all i)

(17.6) Γ(X, I0)
d0→ Γ(X, I1)

d1→ · · · .
The sheaf cohomology groups H i(X,F ) are defined by

(17.7) H i(X,F ) = Kernel(di)/Image(di−1)

for i ≥ 0. These cohomology groups are independent of choice of injective
resolution [128, Theorem 6.14]. Given a commutative diagram (17.3), we
have an associated diagram (17.4) by [128, Theorem 6.26].

Lemma 17.3. Let X be a Noetherian topological space, and let F =
⊕

j Fj

be a direct sum of sheaves of Abelian groups Fj on X. Then

H i(X,F) ∼=
⊕
j

H i(X,Fj)

for all i.

This is established in [73, Proposition III.2.9 and Remark III.2.9.1].

If X is a locally ringed space, then we can construct corresponding co-
homology groups for sheaves of OX -modules. In this case, the cohomology
groups are constructed by taking an injective resolution (17.5) where the
Ii are injective OX -modules, taking the complex of global sections (17.6),
and then taking the cohomology (17.7) of this complex. The fact that every
sheaf of OX-modules has an injective resolution follows from [73, Proposition
III.2.2]. The cohomology groups of an OX-module F are in fact the same as
those that we compute regarding F as a sheaf of groups, by [73, Proposition
III.2.6].

Lemma 17.4. Let Y be a closed subscheme of a scheme X, let F be a
sheaf of Abelian groups on Y , and let j : Y → X be the inclusion. Then
H i(Y,F) = H i(X, j∗F) for all i.

This is proved in [73, Lemma III.2.10].

Suppose that Y is a closed subscheme of a scheme X and F is a sheaf
of Abelian groups on X, such that the support of F is contained in the
underlying topological space of Y . Then

(17.8) H i(X,F) = H i(Y,F|Y )

for all i. This follows, since letting j : Y → X be the inclusion, we have
that j∗(F|Y ) = F .
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Theorem 17.5. Suppose that X is a Noetherian topological space of dimen-
sion n. Then for all i > n and all sheaves of Abelian groups F on X, we
have that H i(X,F ) = 0.

This is proven in [73, Theorem III.2.7].

Corollary 17.6. Suppose that X is a scheme and F is a coherent sheaf
on X such that the support of F (which is a Zariski closed subset of X by
Exercise 11.36) has dimension n. Then H i(X,F) = 0 for all i > n.

Theorem 17.7. Suppose that X is an affine scheme and F is a quasi-
coherent sheaf on X. Then H i(X,F) = 0 for all i > 0.

This follows from [73, Theorem III.3.5]. In fact, if F = M̃ where M is
an A = k[X]-module and

0 → M → I0
d0→ I1

d1→ · · ·

is an injective resolution of M as an A-module, then

H i(X,F) = Kernel(di)/Image(di−1).

17.3. Čech cohomology

In practice, the most effective way to compute cohomology is by Čech co-
homology.

Suppose that X is a topological space and F is a sheaf of Abelian groups
on X.

Let U = {Ui}i∈I be an open cover of X. Fix a well-ordering on I. For
a finite set i0, . . . , ip ∈ I, let Ui0,...,ip = Ui0 ∩ · · · ∩ Uip . We define a complex
of Abelian groups C∗ = C∗(U,F) on X by

Cp(U,F) =
∏

i0<···<ip

F(Ui0,...,ip).

Define the coboundary map d = dp : Cp(U,F) → Cp+1(U,F) by

(17.9) (dp(α))i0,...,ip+1 =

p+1∑
k=0

(−1)kαi0,...,̂ik,...,ip+1
|Ui0,...,ip+1

for α = (αi0,...,ip) ∈ Cp(U,F). The notation îk means omit ik. We have that

d2 = 0, so that C∗ is a complex.

We write out the first part of the complex as

(17.10)
∏
i

F(Ui)
d0→
∏
j<k

F(Uj ∩ Uk)
d1→

∏
l<m<n

F(Ul ∩ Um ∩ Un)
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where the indicies i, j < k and l < m < n range over I. If α = (αi) ∈
C0(U,F), then

d0(α)j,k = αk − αj ,

and if α = (αj,k) ∈ C1(U,F), then

d1(α)l,m,n = αl,m − αl,n + αm,n.

Remark 17.8. We will sometimes find it useful to extend the symbol
αi0,i1,...,ip to be defined for all (p+1)-tuples of elements of I. To do this, we
define αi0,...,ip = 0 if any of the ij are equal, and if the ij are all distinct,
define

αi0,...,ip = (−1)sign(σ)ασ(i0),...,σ(ip)

where σ is the permutation such that σ(i0) < · · · < σ(ip). With this conven-
tion, the formula (17.9) holds for any (p + 1)-tuple i0, . . . , ip+1 of elements
of I.

Definition 17.9. We define the p-th Čech cohomology group of F with
respect to the covering U to be

Ȟp(U,F) = Hp(C∗(U,F)) = Kernel(dp)/Image(dp−1).

From the sheaf axioms, we have the following lemma.

Lemma 17.10. We have that

Ȟ0(U,F) = Γ(X,F) = H0(X,F).

Let V = {Vj}j∈J be another open cover of X. The cover V is a refine-
ment of U if there is an order-preserving map of index sets λ : J → I such
that Vj ⊂ Uλ(j) for all j ∈ J . If V is a refinement of U , then there is a
natural map of complexes

φ : C∗(U,F) → C∗(V ,F)

defined by
φp(α)j0,...,jp = αλ(j0),...,λ(jp)|Vj0,...,jp

for α ∈ Cp(U,F), where d∗ is the differential of C∗(U,F) and e∗ is the
differential of C∗(V ,F). The map φ is a map of complexes since epφp =
φp+1dp.

Thus we have natural homomorphisms of cohomology groups

Ȟp(U,F) → Ȟp(V ,F).

This map is independent of choice of function λ, as the maps of complexes φ
and ψ are homotopic (Proposition 17.2) if ψ is the induced map of complexes
obtained from another order-preserving map τ : J → I such that Vj ⊂ Uτ(j).

As the coverings of X form a partially ordered set under refinement, we
may make the following definition.
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Definition 17.11. The p-th Čech cohomology group of F is

Ȟp(X,F) = lim
→

Ȟp(U,F)

where the limit is over the (ordered) open covers U of X.

Theorem 17.12. There are natural homomorphisms Ȟ i(X,F) → H i(X,F),
which are isomorphisms if i ≤ 1.

Proof. [59, Corollary, page 227] or [73, Exercise III.4.4] (which gives a
sketch of the proof). �

Theorem 17.13. Suppose that X is a scheme, U is an affine cover of X,
and F is a quasi-coherent sheaf on X. Then

Ȟp(U,F) ∼= Ȟp(X,F) ∼= Hp(X,F)

for all p ≥ 0.

Theorem 17.13 is proven in [73, Theorem III.4.5]. The key point of
the proof in comparing the cohomologies is that for p > 0, the cohomology
groups Hp(U,F) for p > 0 of a quasi-coherent sheaf on an affine scheme U
vanish (by Theorem 17.7).

17.4. Applications

Now we give some applications of cohomology.

Theorem 17.14. Let X = Pr and hi(n) = dimk H
i(X,OX(n)). Then

hi(n) =

⎧⎪⎪⎨⎪⎪⎩
(r+n

r

)
for i = 0 and n ≥ 0,

0 for i = 0 and n < 0,
0 for 0 < i < r and all n ∈ Z,
h0(−n − r − 1) if i = r.

Proof. Let F be the quasi-coherent sheaf F =
⊕

n∈Z OX(n). Cohomology
commutes with direct sums (by Lemma 17.3) so

H i(X,F) ∼=
⊕
n∈Z

H i(X,OX(n)).

Let Ui = Xxi = D(xi) for 0 ≤ i ≤ r. Here U = {Ui} is an affine cover of X
so H i(X,F) = Ȟ i(U,F) (by Theorem 17.13). We have that

F(Ui0...ip)
∼=
⊕
n∈Z

Γ(Ui0...ip ,OX(n)).

Let S be the graded ring S = S(X) = k[x0, . . . , xr].
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We have that Γ(Uip ,OX(n)) = S(n)(xip )
, the elements of degree 0 in

the localization S(n)xip
, which is equal to the elements of degree n in Sxip

.
Writing

Ui0...ip = Ui0 ∩ · · · ∩ Uip

= (Uip) xi0
xip

∩ · · · ∩ (Uip)xip−1
xip

= (Uip) xi0
xip

···
xip−1
xip

,

we have that

Γ(Ui0...ip ,OX(n)) = [S(n)(xip )
] xi0
xip

···
xip−1
xip

which is the set of elements of degree n in Sxi0
···xip

. We thus have that the

Čech complex C∗(U,F) is isomorphic as a graded S-module to the complex
C∗ : ⊕

i0

Sxi0

d0→
⊕
i0<i1

Sxi0
xi1

d1→ · · · dr−1

→ Sx0x1···xr

where

ds(α)i0...is+1 =

s+1∑
k=0

(−1)kαi0...̂ik...is
|Ui0...is+1

for α ∈ Cs(U,F). The kernel of d0 can be identified with the intersection⋂
i Sxi in the quotient field of S, and this intersection is just S since S =

k[x0, . . . , xr] is a polynomial ring. Thus H0(X,F) = S, which establishes
the theorem for i = 0.

The group Hr(X,F) is the cokernel of

dr−1 :
⊕
k

Sx0···x̂k···xr → Sx0···xr .

The k-vector space Sx0···xr has the basis xl00 · · ·xlrr with li ∈ Z. The image of

dr−1 is generated by the monomials xl00 · · ·xlrr such that at least one li ≥ 0.
Thus the (classes) of the monomials

{xl00 · · ·xlrr |li < 0 for all i}
is a k-basis of Hr(X,F). We then have that a basis of Hr(X,OX(n)) is

{x−1
0 · · ·x−1

r xm0
0 · · ·xmr

r |mi ≤ 0 for all i and m0 + · · · +mr = n+ r + 1}
so

dimk H
r(X,OX(n)) = dimk S−n−r−1 = dimk H

0(X,OX(−n − r − 1))

establishing the theorem for i = r.

We now prove the theorem when 0 < i < r by induction on r. This state-
ment is vacuously true for r = 1, so we may assume that r > 1. Localizing
the complex C∗ with respect to xr, we obtain the Čech complex for the sheaf
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F|Ur on Ur with respect to the affine open cover {Ui ∩ Ur|i = 0, . . . , r}. By
Theorem 17.13, the cohomology of the complex C∗

xr
is the sheaf cohomology

of F|Ur on Ur, which is zero for i > 0 by Theorem 17.7. Since localization
is exact, we conclude that H i(X,F)xr = 0 for i > 0. Thus every element
of H i(X,F) for i > 0 is annihilated by some power of xr. To complete the
proof that H i(X,F) = 0 for 0 < i < r, we will show that multiplication
by xr induces a bijection of H i(X,F) into itself, from which it follows that
H i(X,F) = 0.

We have an exact sequence of graded S-modules

0 → S(−1)
xr→ S → S/xrS → 0.

Sheafifying gives an exact sequence of sheaves

0 → OX(−1) → OX → OH → 0

where H ∼= Pr−1 is the hyperplane Z(xr). Tensoring this last sequence with
OX(n) and taking the direct sum over n ∈ Z gives us a short exact sequence
of quasi-coherent OH -modules

0 → F(−1) → F → FH → 0

where FH =
⊕

n∈Z OH(n). Taking cohomology, we obtain a long exact
sequence

· · · → H i(X,F(−1))
xr→ H i(X,F) → H i(X,FH) → · · · .

Now

H i(X,FH) = H i
(
H,
⊕

OH(n)
)

∼=
⊕

H i(H,OH(n)),

so by induction on r, H i(X,FH) = 0 for 0 < i < r − 1.

For i = 0 and n ∈ Z, the left exact sequence

0 → H0(X,OX(n − 1)) → H0(X,OX(n)) → H0(H,OH(n)) → 0

is actually exact (the rightmost map is a surjection) since from our calcula-
tions earlier in this proof it is the short exact sequence

0 → Sn−1
xr→ Sn → (S/xrS)n → 0.

We also have at the end of the long exact sequence the right exact sequence

Hr−1(X,OH(n))
δ→ Hr(X,OX(n))

xr→ Hr(X,OX(n)) → 0.

From earlier in this proof, we know that Hr(X,OX(n)) has the k-basis of
(classes) of monomials

{xl00 · · ·xlrr | li < 0 for all i and l0 + · · ·+ lr = n}.
The kernel Kn of xr : H

r(X,OX(n− 1)) → Hr(X,OX(n)) has the k-basis

{xm0
0 · · ·xmr−1

r−1 x−1
r | mi < 0 for all i and m0 + · · · +mr−1 − 1 = n − 1}.
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Thus dimk Kn = dimk H
r−1(H,OH(n)) so δ is injective. Thus multiplica-

tion by xr : H i(X,F(−1)) → H i(X,F) is bijective for 0 < i < r and so
H i(X,F) = 0 for 0 < i < r. �

Lemma 17.15. Suppose that X is a variety and k(X) is the function field
of X. Let F be the presheaf defined by F (U) = k(X) for U an open subset
of X. Then F is a sheaf. We will also write the sheaf F as the constant
sheaf k(X). We then have that

H0(X, k(X)) = k(X) and H1(X, k(X)) = 0.

Proof. F is a sheaf by Proposition 11.14, since all open subsets of the
variety X are irreducible and hence connected.

We have that H0(X, k(X)) = F (X) = k(X) since the presheaf F is a
sheaf.

Let U = {Ui}i∈I be an open cover of X. We form an augmented complex

G∗ : 0 → G−1 → G0 → G1 → · · ·
of the complex C∗(U, F ) by

G∗ : 0 → k(X)
ε→ C0(U, F )

d0→ C1(U, F )
d1→ · · ·

where ε is the product of the identifications of k(X) with F (Ui, F ), for i ∈ I.

Fix j ∈ I. For p ≥ 1, define λ : Cp(U, F ) → Cp−1(U, F ) by (λα)i0,...,ip−1

= αj,i0,...,ip−1 , using the convention of Remark 17.8. We define λ : C0(U, F )
→ k(X) by (λα) = αj .

Suppose α ∈ Cp(U, F ) with p ≥ 1. We compute

dλ(α)i0,...,ip =

p∑
k=0

(−1)kλ(α)i0,...,̂ik,...,ip =

p∑
k=0

(−1)kαj,i0,...,̂ik,...,ip

and

λd(α)i0,...,ip = d(α)j,i0,...,ip = αi0,...,ip −
p∑

k=0

(−1)kαj,i0,...,̂ik,...,ip

so (dλ+ λd)(α) = α.

Suppose α ∈ C0(U, F ). We compute

dλ(α)i = (dαj)i = (αj)i = αj

and

λd(α)i = d(α)j,i = αi − αj

so we again have that (dλ+ λd)(α) = α.

Thus λ is a homotopy operator for the complex G∗, and we have shown
that the identity map is homotopic to the zero map. Thus the identity map
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and the zero map are the same maps H i(G∗) → H i(G∗) (by Proposition
17.2), so H i(G∗) = 0 for all i and G∗ is an exact complex. We conclude that
H0(U, F ) = k(X) and H i(U, F ) = 0 for i > 0. Thus

Ȟ1(X,F ) = lim
→

H1(U, F ) = 0

and by Theorem 17.12, we have that

H1(X,F ) ∼= Ȟ1(X,F ) = 0. �

Suppose that X is a variety and U = {Ui}i∈I is an open cover of X. The
sheaf O∗

X of units in OX is a group under multiplication. Thus the Čech
complex C∗(U,O∗

X) is a complex of Abelian groups under multiplication.
Taking F = O∗

X in (17.10), we have

d0(α)j,k = αkα
−1
j for α = (αi) ∈ C0(U,O∗

X)

and

d1(α)l,m,n = αl,mα−1
l,nαm,n for α = (αj,k) ∈ C1(U,O∗

X)

(recall the convention on indexing of Remark 17.8).

Theorem 17.16. Suppose that X is a variety. Then Pic(X) ∼= H1(X,O∗
X).

Proof. Let U = {Ui} be an open cover of X. Let

P (U) = {L ∈ Pic(X) | U is a trivializing open cover of X for L}.
Suppose that [L] ∈ P (U) is a class. Let φi : OX |Ui → L|Ui be a trivialization
of L. Let gij = φ−1

j φi. Then by formula (13.17), we have

gijg
−1
ik gjk = 1

for all i, j, k so {gij} is a cocycle in C1(U,O∗
X), giving a class [{gij}] in

Ȟ1(U,O∗
X). Taking M ∼= L in Lemma 13.37, we see that for a trivialization

ψi : OX |Ui → M|Ui, the transition functions hij = ψ−1
j ψi differ from the

gij by a coboundary. Thus the map ΨU : P (U) → Ȟ1(U,O∗
X) given by

ΨU ([L]) = [{gij}] is well-defined.
We now establish that ΨU is onto. Suppose that {gij} ∈ C1(U,O∗

X)

is a cocycle, so that gijg
−1
ik gjk = 1 by (17.10). Fix k ∈ I and define L by

L|Ui = gikOUi . We compute

gikOUi∩Uj = gijgjkOUi∩Uj = gjkOUi∩Uj

since gij ∈ Γ(Ui∩Uj ,O∗
X) is a unit on Ui∩Uj , so L is a well-defined invertible

sheaf and [L] ∈ P (U). We have φi = gik : OX |Ui → L|Ui is an isomorphism
for i ∈ I, so

ΨU ([L]) = [{φ−1
j φi}] = [{g−1

jk gik}] = [{gij}].
Thus ΨU is onto. The map ΨU is injective by Lemma 13.37.
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If [L], [M] ∈ P (U) with transition functions gij and hij , then the g−1
ij are

transition functions of L−1 and the gijhij are transition functions of L⊗M.
Thus ΨU is a group isomorphism.

Suppose that [L] ∈ Pic(X) and U = {Ui}i∈I is a trivializing open cover
of X for L, with isomorphisms φi : OX |Ui → L|Ui. Let V = {Vj}j∈J be a
refinement of U , so there is an order-preserving map of index sets λ : J → I
such that Vj ⊂ Uλ(j) for all j ∈ J . The map

φ : C∗(U,O∗
X) → C∗(V ,O∗

X)

of complexes defined after Lemma 17.10 takes a 1-cycle {gkl} to {gλ(k)λ(l)}.
Now ψi = φλ(i)|Vi gives a trivialization of L|Vi with transition functions

ψ−1
j ψi = gλ(i)λ(j). Since Pic(X) =

⋃
P (U) = lim→ P (U), the ΨU patch by

Theorem 17.12 to a group isomorphism

Pic(X) → lim
→

Ȟ1(U,O∗
X) = H1(X,O∗

X). �

Remark 17.17. Theorem 17.16 is true when X is an arbitrary scheme
and in fact for an arbitrary locally ringed space X. The construction of an
invertible sheaf L with a given cocycle {gij} as its transition functions is
a little more delicate in this case because of the possibility of zero divisors
in OX . Using the cocycle {gij}, we realize L as an inverse limit of sheaves
(λi)∗OUi and (λij)∗OUi∩Uj where λi : Ui → X and λij : Ui ∩ Uj → X are
the inclusions.

Theorem 17.18. Let X ⊂ Pr be a projective scheme and let OX(n) =
OPr(n) ⊗OPr

OX for n ∈ Z. Let F be a coherent sheaf on X. Then:

1) For each i ≥ 0, H i(X,F) is a finite-dimensional k-vector space.

2) There is an integer n0, depending only on F , such that for each
i > 0 and each n ≥ n0, H

i(X,F(n)) = 0 where F(n) = F⊗OX(n).

Proof. Let i : X → Pr be the given closed embedding. Let IX be the ideal
sheaf of the closed subscheme X in OPr . Then i∗OX = OPr/IX is a coherent
OPr -module, so i∗F is a coherent OPr -module. For U an open subset of Pr,
we have that

Γ(U, i∗F) = Γ(U ∩ X,F).

Computing cohomology by Čech cohomology, we see that

H i(X,F) = H i(Pr, i∗F)

for all i (alternatively, we get this isomorphism directly from Lemma 17.4).
Thus we may assume that X = Pr. Now conclusions 1) and 2) of Theorem
17.18 are true when F = OX(m) for some m ∈ Z by Theorem 17.14.



318 17. Cohomology

We prove the theorem for arbitrary coherent sheaves F on X by de-
scending induction on i. For i > r we have that H i(X,F(n)) = 0 for all
n ∈ Z by Corollary 17.6 or by Theorem 17.13, since X can be covered by
r + 1 open affine subschemes. The theorem is thus true in this case.

We can write F as a quotient sheaf of a sheaf E =
⊕m

i=0 OX(qi) for
suitable qi ∈ Z by Exercise 11.56. Let K be the kernel of this quotient,
giving an exact sequence

(17.11) 0 → K → E → F → 0.

Then K is also coherent. For instance, letting S be the coordinate ring
of X, we can realize E → F as the sheafification of a surjection of finitely
generated graded S-modules Ψ :

⊕
S(qi) → M . Then the kernel K of Ψ is

a finitely generated graded S-module since S is Noetherian. Thus K = K̃ is
coherent.

We have an exact sequence of k-vector spaces

· · · → H i(X, E) → H i(X,F) → H i+1(X,K) → · · · .
The module on the left is a finite-dimensional k-vector space since E is a
finite direct sum of sheaves OX(qi) and cohomology commutes with direct
sums. The vector space on the right is finite dimensional by induction. Thus
H i(X,F) is a finite-dimensional vector space, establishing 1).

To prove 2), tensor (17.11) with OX(n) and then take the long exact
cohomology sequence

· · · → H i(X, E(n)) → H i(X,F(n)) → H i+1(X,K(n)) → · · · .
For i > 0 and n � 0, the vector space on the left is zero by Theorem 17.14
and the vector space on the right is zero by induction. ThusH i(X,F(n)) = 0
for n � 0. �

Remark 17.19. Suppose that Y is an affine variety, X ⊂ Y ×Pr is a closed
subscheme, and F is a coherent sheaf on X. Then the proof of Theorem
17.18 extends to show that H i(X,F) is a finitely generated k[Y ]-module for
all i and H i(X,F(n)) = 0 for all i > 0 and n � 0.

Corollary 17.20. Suppose that F is a coherent sheaf on a projective scheme
X. Then F ⊗ OX(n) is generated by global sections for all n � 0.

Proof. For p ∈ X, tensor the short exact sequence

0 → IpF → F → F/IpF → 0

with OX(n) for n � 0 and take cohomology to conclude that
Γ(X,F ⊗ OX(n)) surjects onto Fp/IpFp. The stalk Fp is thus generated
by Γ(X,F ⊗ OX(n)) as an OX,p-module by Nakayama’s lemma. The con-
clusions of the corollary then follow from the facts that X is a Noetherian
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space and the closed set of points where F(n) is not generated by global
sections contains the closed set of points where F(n + 1) is not generated
by global sections. �

We write hi(X,F) = dimk H
i(X,F) if F is a coherent sheaf on a pro-

jective scheme X.

The Euler characteristic of a coherent sheaf F on an n-dimensional pro-
jective scheme X is

χ(F) =
n∑

i=0

(−1)ihi(X,F).

Corollary 17.21. Let Z be a projective scheme. Then

χ(OZ(n)) = PZ(n)

for n � 0, where PZ(n) is the Hilbert polynomial of the homogeneous coor-
dinate ring S(Z) of Z.

Proof. The statement of Theorem 11.47 is valid for arbitrary projective
schemes (although the proof requires a little modification). Thus for n � 0,
we have

PZ(n) = dimk S(Z)n = dimk Γ(Z,OZ(n)) = χ(OZ(n))

by Theorems 16.6, 11.47, and 17.18. �

Theorem 17.22 (Serre duality). Let X be a nonsingular projective variety
of dimension n, let D be a divisor on X, and let KX be a canonical divisor
on X. Then for all i,

dimk H
i(X,OX(D)) = dimk H

n−i(X,OX(−D +KX)).

This follows from [73, Corollary III.7.7]. We will present a proof for
curves (by Serre in [134]) in Section 18.2.

Theorem 17.23 (Künneth formula). Suppose X and Y are schemes and
F and G are quasi-coherent sheaves on X and Y , respectively. Let π1 :
X × Y → X and π2 : X × Y → Y be the projections. Then⊕

p+q=n

Hp(X,F)⊗k H
q(Y,G) ∼= Hn(X × Y, π∗

1F ⊗OX×Y
π∗
2G).

Proof. Let U be an affine open cover of X and V be an affine open cover
of Y . Then W = {Ui × Vj} is an affine open cover of X × Y . Define
complexes An = C−n(U,F) and Cn = C−n(V ,G) for n ∈ Z (where C∗(U,F)
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and C∗(V ,G) are the Čech complexes). Define B to be the complex B =
A⊗k C, so that Bn =

⊕
p+q=nAp ⊗Cq for n ∈ Z. Taking homology of these

complexes, we have that for p ∈ Z

Hp(A∗) ∼= H−p(C∗(U,F)) ∼= H−p(X,F),

Hp(C∗) ∼= H−p(C∗(V ,G)) ∼= H−p(Y,G),
and

Hp(B∗) ∼= H−p(C∗(W,π∗
1F ⊗ π∗

2G)).
By [128, Corollary 11.29 on page 340], we have⊕

p+q=n

Hp(A∗) ⊗ Hq(C∗) ∼= Hn(A∗ ⊗ C∗)

for n ∈ Z, giving us the conclusions of the theorem. �

Exercise 17.24. Suppose that X is a projective scheme and

0 → M0 → M1 → · · · → Mn → 0

is an exact sequence of coherent OX -modules. Show that
n∑

i=0

(−1)iχ(Mi) = 0.

Exercise 17.25. Let X = Pm×Pn with projections π1 and π2 onto the first
and second factors, respectively. For a, b ∈ Z let OX(a, b) = π∗

1OPm(a) ⊗
π∗
2OPn(b). Compute hi(X,OX(a, b)) for a, b ∈ Z and i ∈ N.

17.5. Higher direct images of sheaves

Definition 17.26. Suppose that φ : X → Y is a continuous map of topo-
logical spaces and F is a sheaf of groups on X. For i ≥ 0, the i-th direct
image sheaf of F is the sheaf Riφ∗F on Y associated to the presheaf

U �→ H i(φ−1(U),F)

for U an open subset of Y .

The sheaf R0φ∗F is equal to the sheaf φ∗F .

Given an open cover U of a topological space X and a sheaf F of Abelian
groups on X, define a complex of sheaves of Abelian groups C∗ = C∗(U,F)
on X by

(17.12) Cp(U,F)|V =
∏

i0<···<ip

F|Ui0,...,ip ∩ V

for V an open subset of X, with coboundary map d : Cp → Cp+1 as defined
by (17.9).
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Proposition 17.27. Suppose that φ : X → Y is a regular map of varieties
and F is a quasi-coherent sheaf on X. Then the sheaves Riφ∗F are quasi-
coherent on Y . In particular, for V an affine open subset of Y ,

Riφ∗F | V = M̃

where M = H i(φ−1(V ),F). If φ is the composition of a closed embedding
X → Y × Pn for some n, followed by projection onto the first factor, then
the sheaves Riφ∗F are coherent on Y .

Proof. Let U = {Ui} be an affine open cover of X. The sheaves Cp(U,F)
defined in (17.12) are quasi-coherent on X so the complex φ∗C∗(U,F) of
OY -modules is quasi-coherent by Theorem 11.50, and thus the sheaves
Hp(φ∗C∗(U,F)) are quasi-coherent on Y by Exercise 11.35.

Suppose V ⊂ Y is an affine open set. Then the open subset Ui × V of
X × Y is affine, so Γφ ∩ (Ui × V ) ∼= Ui ∩ φ−1(V ) is an open affine subset of
X ∼= Γφ. Let Wi = Ui ∩ φ−1(V ). Then W = {Wi} is an affine open cover of
φ−1(V ).

We have that

Hp(φ∗C∗(U,F))(V ) = Hp(Γ(V, φ∗C∗(U,F)))
= Hp(C∗(W,F)) = Hp(φ−1(V ),F)

by Exercise 11.35 and Theorem 17.13, and so

Rpφ∗F|V = M̃

where M = Hp(φ−1(V ),F) by Theorem 11.32.

The coherence of Rpφ∗F in the case when X is a closed subvariety of
Y × Pn follows from Remark 17.19. �

Lemma 17.28. Suppose that φ : X → Y is a regular map of varieties, F
is a quasi-coherent OX-module, and E is a locally free OY -module of finite
rank. Then

Riφ∗(F ⊗ φ∗E) ∼= Riφ∗F ⊗ E .

Proof. Let notation be as in Proposition 17.27. Since E is locally free,

φ∗(C∗(U,F ⊗ φ∗E)) ∼= φ∗(C∗(U,F)⊗ φ∗E) ∼= (φ∗C∗(U,F)) ⊗ E
by Exercise 11.41. Since E is locally free,

Hp((φ∗C∗(U,F)) ⊗ E) ∼= Hp(φ∗C∗(U,F))⊗ E ,
so if V is an affine open subset of Y ,

Γ(V,Rpφ∗(F ⊗ φ∗E)) = Hp(φ∗C∗(U,F ⊗ φ∗E))(V )

∼= Hp(φ∗C∗(U,F))(V ) ⊗OY (V ) E(V )

∼= Γ(V, (Rpφ∗F) ⊗ E). �
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The Leray spectral sequence [59, II.4.7.1]

(17.13) 2Ei,j = H i(Y,Rjφ∗F) ⇒i H
i+j(X,F)

relates the sheaf cohomology of F on X and the sheaf cohomology of the
higher direct image sheaves of F on Y . The method of using a double
complex to compute this spectral sequence using Čech cohomology is given
a lucid explanation in [105, Section 3].

Proposition 17.29. Suppose that X and Y are projective varieties and
φ : X → Y is a regular map. Let

Yi = {p ∈ Y | dimφ−1(p) ≥ i}.

The Yi are closed subsets of Y by Corollary 8.14. Suppose that F is a
coherent sheaf on X. Then

Supp(Riφ∗F) ⊂ Yi

for all i.

Proof. [105, Proposition 4.3]. �

Proposition 17.30. Suppose that Y is a nonsingular variety and W is a
nonsingular closed subvariety. Let π : X = B(W ) → Y be the blow-up of W
with exceptional divisor E = XW . Then E is a codimension 1 subvariety of
X, X and E are nonsingular,

(17.14) Riπ∗OX(mE) = 0 for i > 0 and m ≤ 0,

and

(17.15) π∗OX(mE) =

{
OY if m ≥ 0,
I−m
W if m < 0.

Proof. The assertions that E is a codimension 1 subvariety of X and X
and E are nonsingular in Proposition 17.30 were proven earlier in Theorem
10.19.

By Proposition 17.27, it suffices to show that there exists an affine cover
{V } of Y such that for all V ,

(17.16) H i(π−1(V ),OX(mE)) = 0 for i > 0 and m ≤ 0

and

(17.17) H0(π−1(V ),OX(mE)) =

{
k[V ] if m ≥ 0,
IV (W ∩ V )−m if m < 0.

Suppose that q ∈ Y \ W . Let V be an affine neighborhood of q in
Y \ W . Then π−1(V ) ∼= V since W ∩ V = ∅, so π−1(V ) is affine, and
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thus (17.16) holds on V by Theorem 17.7. Since W ∩ V = ∅, we have that
IV (W ∩ V ) = k[V ]. Further, E ∩ π−1(V ) = ∅, so

OX(mE)|π−1(V ) = Oπ−1(V )
∼= OV

for all m. Thus (17.17) holds on V .

Suppose that q ∈ W . Since Y and W are nonsingular, Lemma 10.3
implies that there exist f0, . . . , fr ∈ OY,q with r = codimY X − 1, such
that IW,q = (f0, . . . , fr) and f0, . . . , fr is an OY,q-regular sequence. There
then exists an affine neighborhood V of q in Y such that f0, . . . , fr ∈ k[V ],
(f0, . . . , fr) = IV (W ∩ V ), and f0, . . . , fr is a k[V ]-regular sequence. Let
J = (f0, . . . , fr) ⊂ k[V ], T = W ∩ V , U = π−1(V ), and F = E ∩ U . We
have that the coordinate ring

S(U) =
⊕
n≥0

Jn ∼= k[V ][tf0, . . . , tfr]

where t is an indeterminate with deg t = 1 by Theorem 6.4, and so for m ∈ Z
and 0 ≤ i ≤ r,

OU (m)|Utfi =
˜S(U)(m)|Utfi = tmfm

i OUtfi
= tmOU (−mF )|Utfi .

Thus

OX(−mE)|U = OU (−mF ) ∼= OU (m)

for m ∈ Z. Now

S(U)/JS(U) =
⊕
i≥0

J i/J i+1 = k[T ][f0, . . . , fr]

where f i is the class of fi in J/J2 and is a polynomial ring over k[T ] = k[V ]/J
in f0, . . . , f r by Theorem 1.76. Thus JS(U) is a prime ideal in S(U), and

S(F ) = S(U)/JS(U)

and so F ∼= W × Pr. Since S(F ) is integrally closed, we have by Theorem
11.47 that

(17.18) H0(F,OF (n)) = S(F )n = Jn/Jn+1

for n ≥ 0.

Since

OF (m) ∼= π∗
2OPr(m) ∼= π∗

1OT ⊗ π∗
2OPr(m)

where π1 : F ∼= W × Pr → W and π2 : F ∼= W × Pr → Pr are the natural
projections, we have that for all i ≥ 0,

H i(F,OF (m)) ∼=
⊕

α+β=i

Hα(T,OT ) ⊗Hβ(Pr,OPr(m))

by Theorem 17.23, so

(17.19) H i(F,OF (m)) = 0 for i > 0 and m ≥ 0
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since Hβ(Pr,OPr(m)) = 0 for β > 0 and m ≥ 0 and Hα(T,OT ) = 0 for
α > 0 since T is affine, and by Theorem 17.7. Further,

(17.20) H0(F,OF (n)) = 0 for n < 0.

We have short exact sequences

(17.21) 0 → OU (m+ 1) → OU (m) → OF (m) → 0

for all m ∈ Z, giving surjections, by (17.19),

H i(U,OU (m+ 1)) → H i(U,OU (m)) for i > 0 and m ≥ 0.

Since OU (1) is ample on U , H i(U,OU (m)) = 0 for m � 0 by Remark 17.19.
Thus (17.16) holds on U = π−1(V ).

By (17.16) and (17.18), we have short exact sequences

0 → H0(U,OU (m+ 1)) → H0(U,OU (m)) → Jm/Jm+1 → 0

for m ≥ 0. By Theorem 11.47, H0(U,OU (m)) = Jm for m � 0. Thus
H0(U,OU (m)) = Jm for all m ≥ 0. By (17.20) and (17.21), we have isomor-
phisms H0(U,OU (m+ 1)) → H0(U,OU (m)) for m < 0. Since H0(U,OU ) =
k[V ], we have that H0(U,OU (m)) = k[V ] for m ≤ 0. Thus (17.17) holds for
U = π−1(V ).

Since equations (17.16) and (17.17) hold on an affine cover {V } of Y ,
the conclusions (17.14) and (17.15) of this proposition hold on Y . �

Suppose that Y is a nonsingular affine variety and W is a nonsingular
subvariety of Y . Let R = k[Y ] and p = I(W ). Let π : X → Y be the
blow-up of W and let E = XW . Then OX,E is a valuation ring, since E is a
codimension 1 subvariety of the nonsingular variety X. We then have that

(17.22) Γ(X,OX(−nE)) = {f ∈ R | νE(f) ≥ n} = (pnRp) ∩R = p(n)

is the n-th symbolic power of p. Comparing (17.15) and (17.22), we have the
formula, with our assumption that p is a “regular prime” (R/p is a regular
ring),

(17.23) p(n) = pn.

This formula (17.23) was previously derived in Proposition 10.4.

For many prime ideals p in a regular local ring, this formula is not true
and we do not have equality of ordinary and symbolic powers of prime ideals.
In fact, the symbolic algebra

⊕
n≥0 p

(n) is in general not Noetherian. An

example of this is given by Roberts [127], using an earlier example of Nagata
[122]. A non-Noetherian example with p being a rational monomial curve
is given by Goto, Nishida, and Watanabe in [60].

We now give some more useful formulas on cohomology.
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Theorem 17.31. Suppose that Y is a nonsingular variety and φ : X → Y
is the blow-up of a nonsingular subvariety W of Y and L is an invertible
sheaf on Y . Then H i(X,φ∗L) = H i(Y,L) for all i.

Proof. We have that Riφ∗(φ∗L) = 0 for i > 0 and φ∗(φ∗L) ∼= L, by Propo-
sition 17.30 and Lemma 17.28. Thus the Leray spectral sequence

2Ei,j = H i(Y,Rjφ∗φ
∗L) ⇒i H

i+j(X,φ∗L)

degenerates at the 2E level, so that H i(Y,L) ∼= H i(X,φ∗L) as desired. �

Theorem 17.32. Suppose that φ : X → Y is a birational regular map of
nonsingular projective varieties over a field of characteristic 0 and L is an
invertible sheaf on Y . Then H i(X,φ∗L) = H i(Y,L) for all i.

Proof. By resolution of indeterminancy ([79] or [35, Theorem 6.39]), there
exists a regular birational map f : Z → X from a nonsingular projective
variety Z such that g = φ◦f factors as a product of blow-ups of nonsingular
subvarieties

g : Z = Zn
gn→ Zn−1

gn−1→ · · · g2→ Z1
g1→ Z0 = Y.

By Theorem 17.31 we have that g∗ : H i(Y,L) ∼= H i(Z, g∗L) for all i. The
isomorphisms g∗ : H∗(Y,L) → H i(Z, g∗L) factor as

H i(Y,L) φ∗
→ H i(X,φ∗L) f∗

→ H i(Z, g∗L).

Thus φ∗ is injective. By resolution of indeterminancy [79] there exists a
projective variety W and a birational regular map γ : W → Z such that
β = f ◦ γ is a product of blow-ups of nonsingular subvarieties, so we have
isomorphisms β∗ : H i(X,φ∗L) ∼= H i(W,β∗L) for all i. Thus f∗ is also
injective, and the theorem follows. �

17.6. Local cohomology and regularity

Suppose that R is a Noetherian ring and M is an R-module. Suppose that
I is an ideal in R, with generators I = (f1, . . . , fn). Consider the modified
Čech complex

C∗ : 0 → C0 → C1 → · · · → Cd → 0

where C0 = R and

Ct =
⊕

1≤i1<i2<···<it≤n

Rfi1fi2 ···fit .
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The local cohomology of M is

(17.24) H i
I(M) = H i(M ⊗R C∗).

We have that

H0
I (M) = {f ∈ M | Ikf = 0 for some k ≥ 0} = ΓI(M),

the set of elements of M which have support in I.

H i
I(M) does not depend on the choice of generators of I. Further,

H i
I(M) = H i√

I
(M).

If 0 → A → B → C → 0 is a short exact sequence of R-modules, then
there is a long exact sequence

0 → H0
I (A) → H0

I (B) → H0
I (C) → H1

I (A) → · · · .

An important use of local cohomology is to compute depth (Definition
1.67).

We have the following interpretation of depth in terms of local cohomol-
ogy ([27], [72], [73, Exercise III.3.4], [50, Theorem A4.3]).

Proposition 17.33. Suppose that M is a finitely generated R-module and
n ≥ 0. Then the following are equivalent:

1) depthIM ≥ n.

2) H i
I(M) = 0 for all i < n.

If R is a regular local ring of dimension d and I is the maximal ideal of
R, then

depthIR = d

since a regular system of parameters in R is a maximal R-regular sequence
in R [107, Theorem 36, page 121].

Suppose that X is a Noetherian affine scheme with R = Γ(X,OX) and

M is an R-module. Let M = M̃ be the quasi-coherent sheaf onX associated
to M . Suppose that I = (f1, . . . , fn) is an ideal in R.

Consider the Čech complex

F ∗ : F 0 → F 1 → · · · → Fn−1,

where

F t =
⊕

1≤i1<i2<···<it+1≤n

Rfi1fi2 ···fit+1
.

The sheaf cohomology of M̃ on U = X \ Z(I) is

H i(U, M̃) = H i(M ⊗R F ∗).
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The modified Čech complex C∗, used to compute local cohomology, is
obtained from the Čech complex F ∗ by shifting the Čech complex one to the
right and setting C0 = R. From this we see that there is an exact sequence

(17.25) 0 → H0
I (M) → M → H0(U, M̃) → H1

I (M) → 0

and isomorphisms

(17.26) H i(U, M̃) ∼= H i+1
I (M) for i ≥ 1,

where U = X \ Z(I). We have the interpretation of

H0(U, M̃) ∼= lim
→

HomR(I
n,M)

as an “ideal transform”.

A particularly important case of this is when X = An+1 so that κ[X] =
R = κ[x0, . . . , xn] is a polynomial ring over a field κ. We give R the standard
grading. Let m = (x0, . . . , xn). Let Q be the point Z(m) in An+1. Suppose

that M is a graded module over R. Let M̃ be the sheafification of M
on the affine variety X. Then the local and sheaf cohomology modules
H i(An+1 \Q, M̃) and H i

m(R) are graded, and the maps of equations (17.25)
and (17.26) are graded. From the natural surjection of the affine cone An+1\
Q onto the projective space Pn, we obtain graded isomorphisms

H i(An+1 \ Q, M̃) ∼=
⊕
j∈Z

H i(Pn, M̃(j)).

In the first cohomology module, M̃ is the sheaf associated to M on An+1.
In the second cohomology module, M̃(j) is the sheaf associated to M(j) on
Pn (M(j)d = Mj+d for d ∈ Z).

We thus have a degree-preserving exact sequence of graded R-modules

(17.27) 0 → H0
m(M) → M →

⊕
j∈Z

H0(Pn, M̃(j)) → H1
m(M) → 0

and isomorphisms

(17.28)
⊕
j∈Z

H i(Pn, M̃(j)) ∼= H i+1
m (M) for i ≥ 1.

We have the interpretation⊕
j∈Z

H0(Pn, M̃(j)) ∼= lim
→

HomR(m
n,M)

as an ideal transform.

We continue to study the graded polynomial ring R = κ[x0, . . . , xn] and
assume that M is a finitely generated graded R-module. Define

ai(M) =

{
sup{j | H i

m(M)j 
= 0} if H i
m(M) 
= 0,

−∞ otherwise.
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The regularity of M is defined to be

reg(M) = max
i

{ai(M) + i}.

Interpreting R as the coordinate ring S(Pn) of Pn and considering the

sheaf M̃ on Pn associated to M , we can define the regularity of M̃ to be

reg(M̃) = max{m | H i(Pn, M̃(m− i − 1)) 
= 0 for some i ≥ 1}
= maxi≥2{ai(M) + i}.

Thus

reg(M̃) ≤ reg(M).

The classical interpretations of regularity are for sections of invertible
sheaves on a projective variety X.

Definition 17.34. Suppose that F is a coherent sheaf on Pn. The sheaf F
is said to be m-regular if H i(Pn,F(m− i)) = 0 for all i > 0.

Thus reg(F) is the smallest m such that F is m-regular. The follow-
ing theorem by Mumford ([118, page 99]) generalizes a classical result of
Castelnuovo.

Theorem 17.35 (Geometric regularity theorem). Suppose that F is an
m-regular coherent sheaf on Pn. Then:

a) H0(Pn,F(k)) is spanned by H0(Pn,F(k − 1)) ⊗ H0(Pn,O(1)) if
k > m.

b) H i(Pn,F(k)) = 0 whenever i > 0, k + i ≥ m.

c) F(k) is generated by global sections if k ≥ m.

d) ⊕
d∈Z

H0(Pn,F(d))

is generated as an R =
⊕

d≥0H
0(Pn,OPn(d))-module in degrees

≤ m.

The following proof is based on [118].

Proof. The proof is by induction on n. If n = 0, the result is immediate.
For n > 0, let H be a hyperplane of Pn not containing any of the associated
varieties of F (defined after Definition 15.5 in Section 15.1). Tensor the
exact sequence

0 → OPn(−H) ∼= OPn(−1) → OPn → OH → 0
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with F(k). For all p ∈ Pn, if f is a local equation of H at p, then multipli-
cation by f is injective on Fp. Thus the sequence

(17.29) 0 → F(k − 1) → F(k) → FH(k) → 0,

where FH(k) = (F ⊗ OH)(k) is short exact. Taking cohomology, we obtain
an exact sequence

H i(Pn,F(m− i)) → H i(H,FH(m− i)) → H i+1(Pn,F(m− i − 1)).

Thus if F is m-regular, then the sheaf FH on H ∼= Pn−1 is m-regular. Thus
the induction hypothesis gives us the conclusions of the theorem for FH .

From the short exact sequence (17.29), we obtain an exact sequence

H i+1(Pn,F(m− i − 1)) → H i+1(Pn,F(m− i)) → H i+1(H,FH(m− i)).

If i ≥ 0, by b) for FH , the last group is (0). By m-regularity, the first group
is zero. Thus the middle group is (0) and F is (m+1)-regular. By induction
on k ≥ m− i, we obtain the conclusion b) for F .

We now prove a). Consider the commutative diagram

H0(Pn,F(k − 1))

��

H0(Pn,F(k − 1)) ⊗H0(Pn,OPn(1))
μ

��

λ
��

H0(Pn,F(k))

ν
��

H0(H,FH(k − 1)) ⊗ H0(H,OH(1))
τ �� H0(H,FH(k))

where the bottom row is exact. The map λ is surjective. Further, τ is surjec-
tive if k > m by conclusion a) for FH . Thus ν(Image(μ)) = H0(H,FH(k));
that is, H0(Pn,F(k)) is spanned by Image(μ) and H0(Pn,F(k − 1)).
Let σ ∈ H0(Pn,OPn(1)) be such that div(σ) = H. Then the image of
H0(Pn,F(k− 1)) in H0(Pn,F(k)) is equal to σ⊗H0(Pn,F(k− 1)) which is
contained in Image(μ). Thus μ is surjective and a) is proven for F .

By Corollary 17.20, F(k) is generated by its global sections if k is suffi-
ciently large. Thus by a),
(17.30)

H0(Pn,F(m))⊗ H0(Pn,OPn(k − m)) generates the sheaf F(k) if k � 0.

Let p ∈ Pn, and fix a local isomorphism of OPn(1) and OPn in a neighborhood
of p. For k ≥ m, this identifies OPn(k−m) with OPn in a neighborhood of p.
Then H0(Pn,OPn(k−m)) is identified with a vector space of elements of the
local ring OPn,p which generate OPn,p, and (17.30) tells us thatH0(Pn,F(m))
generates F(m)p as an OPn,p-module; that is, F(m) is generated by its global
sections. �
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Continuing to assume that M is a finitely generated graded module over
the polynomial ring R = κ[x0, . . . , xn], with maximal ideal m = (x0, . . . , xn),
let

F∗ : 0 → · · · → Fj → · · · → F1 → F0 → M → 0

be a minimal free resolution of M as a graded R-module. Let bj be the
maximum degree of the generators of Fj . Then

reg(M) = max{bj − j | j ≥ 0}.
In fact, we have (Eisenbud and Goto [51], Bayer and Mumford [17]) that

reg(M) = max{bj − j | j ≥ 0}
= max{n | ∃j such that TorRj (κ,M)n+j 
= 0}
= max{n | ∃j such that Hj

m(M)n−j 
= 0}.

The equality of the first and second of the right-hand sides of these
equations follows since TorRj (κ,M) = Hj(F∗ ⊗R/m), and as F∗ is minimal,
we have that the maps of the complex F∗ ⊗R/m are all zero. To obtain the
equality of the first and third conditions, we take the cohomology of the dual

of F∗, to compute ExtjR(M,R), and then apply graded local duality. The
right-hand side of the third equation is equal to reg(M) by the definition of
regularity.

We may also define local cohomology for sheaves of Abelian groups on a
topological space. Let X be a topological space, Y be a closed subset, and
F be a sheaf of Abelian groups on X. Let ΓY (X,F) be the subgroup of
Γ(X,F) consisting of all sections whose support is contained in Y . If

0 → A → B → C → 0

is a short exact sequence of sheaves of Abelian groups on X, then

0 → ΓY (X,A) → ΓY (X,B) → ΓY (X, C)
is exact, so we can define local cohomology groups H i

Y (X,F) by taking a
resolution

0 → F → I0 → I1 → · · ·
by injective sheaves of groups Ii, taking the associated complex

ΓY (X, I0)
d0→ ΓY (X, I1)

d1→ · · ·
and defining

H i
Y (X,F) = Kernel(di)/Image(di+1)

for i ≥ 0.

We summarize some properties of local cohomology, whose proofs can
be found in [72] and are derived in exercises in [73, Chapter III]. If X is a
locally ringed space and F is a sheaf of OX -modules, then H i

Y (X,F) can be
computed by taking an injective resolution by OX -modules.
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Continuing to suppose that F is a sheaf of Abelian groups on a topolog-
ical space, let U be the open subset U = X \ Y of X. Then we have a long
exact sequence of cohomology groups

0 → H0
Y (X,F) → H0(X,F) → H0(U,F|U) → H1

Y (X,F)
→ H1(X,F) → H1(U,F|U) → · · · .

Proposition 17.36 (Excision). Let V be an open subset of X containing
Y . Then for all i ≥ 0 there are natural isomorphisms

H i
Y (X,F) ∼= H i

Y (V,F|V ).

Proposition 17.37 (Mayer-Vietoris sequence). Let Y1, Y2 be two closed
subsets of X. Then there is a long exact sequence

· · · → H i
Y1∩Y2

(X,F) → H i
Y1
(X,F)⊕ H i

Y2
(X,F) → H i

Y1∪Y2
(X,F)

→ H i+1
Y1∩Y2

(X,F) → · · · .

Now suppose that X is a Noetherian affine scheme with R = Γ(X,OX)

and F = M̃ where M is an R-module. Let I ⊂ R be an ideal, and let Y
be the subscheme of X with Γ(X,OY ) = R/I. Then (by [72] and [27] or
[73, Exercise III.3.3] and [50, Appendix 4]) we have that

H i
Y (X,F) = H i

I(M)

as defined in equation (17.24).





Chapter 18

Curves

In this chapter we consider the geometry of nonsingular projective curves.

In Sections 18.1–18.3, we prove the Riemann-Roch theorem on a non-
singular projective curve X, Theorem 18.13, which gives a formula for the
dimension of the vector space Γ(X,OX(D)) of functions whose poles are
bounded by a given divisor D on X in terms of the genus g of X, the degree
degD ofD, and the dimension h0(X,OX(KX−D)), whereKX is a canonical
divisor on X. The Riemann-Roch theorem follows from the Riemann-Roch
inequality, Theorem 18.2 and Corollary 18.3, proven in Section 18.1 and
from Serre duality, Corollary 18.10, proven in Section 18.2.

The Riemann-Roch inequality, Theorem 18.2 and Corollary 18.3, give a
lower bound for h0(X,OX(D)), which is only in terms of g and degD and
which is an equality if and only if h1(X,OX(D)) = 0. Clifford’s theorem,
Theorem 18.20, gives an upper bound for h0(X,OX(D)) which only depends
on degD if h1(X,OX(D)) > 0.

As a consequence of the Riemann-Roch theorem, we show in Theorem
18.21 that if degD ≥ 2g + 1, then D is very ample and the complete linear
system |D| induces a closed embedding of X into a projective space. We
deduce in Theorem 18.22 a subdivision of curves by Kodaira dimension: the
curves of genus larger than 1, for which KX is ample; the elliptic curves
(genus 1), for which KX ∼ 0; and P1 (genus 0), for which −KX is ample.
The theory of Kodaira dimension generalizes to higher-dimensional varieties
[18], [91], [112], [113], [114], and [20].

In Section 18.4, we consider the Riemann-Roch problem, which is the
problem of computing the function h0(X,OX(nD)) for large n, where X is
a nonsingular projective variety and D is a divisor on X.

333
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In Sections 18.5 and Section 18.6, we consider regular maps f : X → Y
of nonsingular projective curves and find formulas relating the genus of X,
the genus of Y , and the ramification of f .

We work out the basic geometric theory of elliptic curves in Section
18.7, study the topology of complex curves in Section 18.8, and introduce
the theory of Abelian varieties and Jacobians of curves in Section 18.9.

18.1. The Riemann-Roch inequality

Suppose that X is a nonsingular projective curve. The genus of X is

g = g(X) = h0(X,OX(KX)).

We have that

(18.1) g(X) = h1(X,OX)

as follows from Serre duality (Corollary 18.10) which will be established in
Section 18.2. Recall the definition of the degree of a divisor on a curve
from Section 13.5. If D1 and D2 are linearly equivalent divisors on X, then
degD1 = degD2 by Corollary 13.19.

Lemma 18.1. Let D be a divisor on X. If h0(X,OX(D)) > 0, then deg(D)
≥ 0. If h0(X,OX(D)) > 0 and degD = 0, then D ∼ 0.

Proof. If h0(X,OX(D)) > 0, then there exists 0 
= f ∈ Γ(X,OX(D)).
Then E = (f) + D is an effective divisor, so that degE ≥ 0. We have
degD = degE ≥ 0 by Corollary 13.19. If degD = 0, then D is linearly
equivalent to an effective divisor of degree 0. The only such divisor is 0. �

For a coherent sheaf F on X, we have

χ(F) = h0(X,F)− h1(X,F)

by Theorem 17.5.

Theorem 18.2. Let D be a divisor on a nonsingular projective curve X of
genus g. Then

χ(OX(D)) = h0(X,OX(D))− h1(X,OX(D)) = degD + 1− g.

Proof. We must show that

(18.2) χ(OX(D)) = degD + 1− g

for every divisor D on X. The formula is true for D = 0 by Theorem 3.35,
the definition of genus, and equation (18.1).

Let D be any divisor, and let p ∈ X be a point. We will show that the
formula is true for D if and only if it is true for D + p. Since any divisor
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on X can be obtained by a finite sequence of addition and subtraction of
points, this will establish the formula (18.2) and prove the theorem.

Let I(p) be the ideal sheaf of the point p ∈ X. Using the fact that
I(p) = OX(−p) (a point is a divisor on a curve), we have a short exact
sequence of sheaves of OX-modules

0 → OX(−p) → OX → OX/I(p) → 0.

Now tensor with OX(D + p) to get a short exact sequence

(18.3) 0 → OX(D) → OX(D + p) → OX/I(p) → 0.

The sequence is short exact since OX(D + p) is a locally free (and thus
flat) OX -module (in fact, locally, this is just like tensoring with OX). The
support of OX/I(p) is just the point p, so that (OX/I(p))⊗OX

OX(D+p) ∼=
OX/I(p). Taking the long exact cohomology sequence associated to (18.3)
and using Corollary 17.6, we get an exact sequence

0 → H0(X,OX(D)) → H0(X,OX(D + p)) → H0(X,OX/I(p)) ∼= k
→ H1(X,OX(D)) → H1(X,OX(D + p)) → H1(X,OX/I(p)) = 0.

Thus

χ(OX(D + p)) = χ(OX(D)) + 1.

Since deg(D + p) = deg(D) + 1, we obtain the formula (18.2). �

Corollary 18.3 (The Riemann-Roch inequality). Suppose that D is a di-
visor on a nonsingular projective curve X of genus g. Then

h0(X,OX(D)) ≥ deg(D) + 1− g.

18.2. Serre duality

The proof in this section follows Serre [134].

We continue to assume that X is a nonsingular projective curve. For a
divisor D =

∑
aipi on X where pi are distinct points of X and ai ∈ Z, we

define for a point q ∈ X

νq(D) =

{
ai if q = pi,
0 if q 
= pi for all i.

A répartition r is a family {rp}p∈X of elements of k(X) such that rp ∈ OX,p

for all but finitely many p ∈ X. The set of all répartitions is an algebra
R over k. Suppose that D is a divisor on X. Then define R(D) to be the
k-subspace of R consisting of all r = {rp} such that νp(rp) ≥ −νp(D) for all
p ∈ X.

To every f ∈ k(X), we associate the répartition {rp} such that rp = f
for every p ∈ X, giving an injection of k(X) into R. We may then view
k(X) as a subring of R.
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Proposition 18.4. Suppose that D is a divisor on X. Then the k-vector
space I(D) = H1(X,OX(D)) is canonically isomorphic to R/(R(D)+k(X)).

Proof. For p ∈ X and r ∈ R, let [rp] be the class of rp in k(X)/OX(D)p.
Define a k-vector space homomorphism Λ : R →

⊕
p∈X k(X)/OX(D)p by

r �→ {[rp]}. Here Λ is well-defined since rp ∈ OX(D)p for all but finitely
many p ∈ X. We have that Λ(r) = 0 if and only if rp ∈ OX(D)p for all
p ∈ X which holds if and only if νp(rp) ≥ −νp(D) for all p ∈ X. Thus Λ
induces an isomorphism

(18.4) R/R(D) ∼=
⊕
p∈X

k(X)/OX(D)p.

Let A be the sheaf k(X)/OX(D). By Lemma 17.15, we have natural
exact sequences

0 → Γ(V,OX(D)) → Γ(V, k(X)) = k(X) → Γ(V,A)

for all open subsets V of X.

Suppose that U is a neighborhood of a point p ∈ X and s ∈ A(U).
There exists t ∈ k(X) such that the image of t in Ap is equal to sp. Let
t′ be the image of t in A(U). Then the germ of s − t′ in Ap is zero. Since
Ap is the limit of A(V ) over open sets V containing p, we have that there
exists an open neighborhood V of p in U such that the restriction of s − t′

in A(V ) is zero.

Then replacing U with V and s with its restriction to V , we have that
s is the class of t ∈ k(X), which is necessarily in OX(D)q for all but finitely
many q ∈ U . Thus there exists a neighborhood U ′ of p such that s = 0 on
U ′ \ {p}. In particular, every s ∈ H0(X,A) has finite support, so

(18.5) Φ : H0(X,A) →
⊕
p∈X

Ap

defined by s �→ {sp} is a well-defined homomorphism. By the sheaf axioms,
every element {αp} ∈

⊕
Ap lifts to a section of H0(X,A), and the kernel of

Φ is zero. Thus Φ is an isomorphism.

We have that Ap = k(X)/OX(D)p for p ∈ X so (18.4) and (18.5) give
us an isomorphism

(18.6) R/R(D) ∼= H0(X,A).

The sheaf OX(D) is a subsheaf of the constant sheaf k(X), so there is
an exact sequence

0 → OX(D) → k(X) → k(X)/OX(D) → 0.
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By Lemma 17.15, we have that H0(X, k(X)) = k(X) and H1(X, k(X)) = 0
so we have an exact sequence of cohomology modules

k(X) → H0(X,A) → H1(X,OX(D)) → 0.

Now using the isomorphism (18.6), we have the desired isomorphism

H1(X,OX(D)) ∼= R/(R(D) + k(X)). �

From now on, we identify H1(X,OX(D)) and R/(R(D) + k(X)) which
we will denote by I(D).

Let J(D) be the dual of the k-vector space I(D) = R/(R(D) + k(X)).
An element of J(D) is thus a linear form on R which vanishes on k(X) and
R(D). Suppose that D′ ≥ D. Then R(D′) ⊃ R(D) so that J(D) ⊃ J(D′).
The union of the J(D) for D running through the divisors of X will be
denoted by J .

Let f ∈ k(X) and α ∈ J . The map r �→ α(fr) is a linear form on R
vanishing on k(X), which we will denote by fα. If α ∈ J , then fα ∈ J .
This follows since if α ∈ J(D) and f ∈ Γ(X,OX(Δ)), then the linear form
fα vanishes on R(D − Δ) and thus belongs to J(D − Δ). The operator
(f, α) �→ fα gives J the structure of a vector space over k(X).

Proposition 18.5. The dimension of J as a k(X)-vector space is ≤ 1.

Proof. Suppose that α, α′ ∈ J are linearly independent over k(X). There
exists a divisor D such that α ∈ J(D) and α′ ∈ J(D). Let d = deg(D). For
every integer n ≥ 0, let Δn be a divisor of degree n (for example, Δn = np,
where p is a fixed point of X).

Suppose that f, g ∈ Γ(X,OX(Δn)). Then fα, gα′ ∈ J(D − Δn). Since
α, α′ are linearly independent over k(X), any relation fα+ gα′ = 0 implies
f = g = 0. Thus the map (f, g) �→ fα + gα′ is an injective k-vector space
homomorphism

Γ(X,OX(Δn))⊕ Γ(X,OX(Δn)) → J(D − Δn),

so we have the inequality

(18.7) dimk J(D −Δn) ≥ 2 dimk Γ(X,OX(Δn))

for all n. We will now show that (18.7) leads to a contradiction as n → ∞.
The left-hand side is

dimk I(D − Δn) = h1(X,OX(D − Δn))
= −deg(D − Δn) + g − 1 + h0(X,OX(D − Δn))
= n+ (g − 1− d) + h0(D,OX(D − Δn))

by Theorem 18.2.
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When n > d, deg(D−Δn) < 0 so that h0(X,OX(D−Δn)) = 0 by Lemma
18.1. Thus for large n, the left-hand side of (18.7) is equal to n + A0, A0

a constant. The right-hand side of (18.7) is equal to 2h0(X,OX(Δn)). By
Theorem 18.2,

h0(X,OX(Δn)) ≥ deg(Δn) + 1 − g = n+ 1− g.

Thus the right-hand side of (18.7) is ≥ 2n+A1 for some constant A1, giving
a contradiction for large n. �

The sheaf ΩX/k is a subsheaf of Ωk(X)/k. If p ∈ X and t is a regular
parameter in OX,p, then ΩX/k,p = OX,pdt by Proposition 14.15. We further
have that Ωk(X)/k = k(X)dt. We define νp(ω) = νp(f) if ω = fdt ∈ k(X)dt.
Recall (Section 14.3) that the divisor (ω) of ω ∈ Ωk(X)/k is

(ω) =
∑
p∈X

νp(ω)p.

Thus νp(ω) = νp(K) where (ω) = K is the divisor of ω. The quotient

field of ÔX,p = k[[t]] (Proposition 21.41) is the field of Laurent series k((t)).
Identifying f with its image in k((t)) by the inclusion k(X) → k((t)) induced
by the inclusion OX,p → k[[t]], we have an expression

f =
∑

n�−∞
ant

n

with all an ∈ k (n � −∞ in the summation means that an = 0 for n � 0).
The coefficient a−1 of t−1 in f is called the residue of ω = fdt at p, denoted
by Resp(ω). The following proposition shows that the definition is well-
defined.

Proposition 18.6 (Invariance of the residue). The preceding definition is
independent of the choice of regular parameter t in OX,p.

Proposition 18.6 is proven in [134, Section 11 of Chapter II].

Proposition 18.7 (Residue formula). For every ω ∈ Ωk(X)/k,∑
p∈X

Resp(ω) = 0.

Proposition 18.7 is proven in [134, Sections 12 and 13 of Chapter II].
The proof is by taking a projection to P1 and showing that it reduces to
verifying the formula for P1.

Given a divisor D on X, let ΩX/k(D) be the subsheaf of Ωk(X)/k defined
by

Γ(U,ΩX/k(D)) = {ω ∈ Ωk(X)/k | (ω) ∩ U ≥ D ∩ U}
for U an open subset of X.
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Let ω0 be a nonzero rational differential form, and let K = (ω0). Every
rational differential form ω can be written as ω = fω0 for some f ∈ k(X)
and (ω)∩U ≥ D∩U if and only if (f)∩U +(ω0)∩U ≥ D∩U , which holds
if and only if f ∈ Γ(U,OX(K − D)). Thus

ΩX/k(D) ∼= ΩX(K − D) ∼= ΩX/k ⊗ OX(−D).

Let Ω(D) = Γ(X,ΩX/k(D)).

We define a product 〈ω, 〉 of differentials ω ∈ Ωk(X)/k and répartitions
r ∈ R by the following formula:

〈ω, r〉 =
∑
p∈X

Resp(rpω).

This formula is well-defined since rpω ∈ (ΩX/k)p for all but finitely many
p ∈ X. The product has the following properties:

a) 〈ω, r〉 = 0 if r ∈ k(X).

b) 〈ω, r〉 = 0 if r ∈ R(D) and ω ∈ Ω(D).

c) If f ∈ k(X), then 〈fω, r〉 = 〈ω, fr〉.
Property a) follows from the residue formula (Proposition 18.7) and property
b) follows since then rpω ∈ (ΩX/k)p for all p ∈ X.

For every ω ∈ Ωk(X)/k, let θ(ω) be the linear form on R defined by

θ(ω)(r) = 〈ω, r〉.
If ω ∈ Ω(D), then θ(ω) ∈ J(D) by properties a) and b) since J(D) is the
dual of R/(R(D) + k(X)).

Lemma 18.8. Suppose that ω ∈ Ωk(X)/k is such that θ(ω) ∈ J(D). Then
ω ∈ Ω(D).

Proof. Suppose that ω 
∈ Ω(D). Then there is a point p ∈ X such that
νp(ω) < νp(D). Set n = νp(ω) + 1, and let r be the répartition defined by

rq =

{
0 if q 
= p,
1
tn where t is a regular parameter at p if q = p.

We have νp(rpω) = −1 so that Resp(rpω) 
= 0 and 〈ω, r〉 
= 0. But n ≤ νp(D)
so r ∈ R(D) (νq(0) = ∞). This is a contradiction since θ(ω) is assumed to
vanish on R(D). �

Theorem 18.9 (Serre duality). For every divisor D, the map θ is a k-vector
space isomorphism from Ω(D) to J(D).

Proof. Suppose that ω ∈ Ω(D) is such that θ(ω) = 0 in J(D). Then
θ(ω) ∈ J(Δ) for all divisors Δ so ω ∈ Ω(Δ) for all divisors Δ by Lemma
18.8 so that ω = 0. Hence θ is injective.
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By property c), θ is a k(X)-linear map from Ωk(X)/k to J . As Ωk(X)/k has
dimension 1 and J has dimension ≤ 1 as k(X)-vector spaces by Proposition
18.5, θ maps Ωk(X)/k onto J . Thus if α ∈ J(D), there exists ω ∈ Ωk(X)/k

such that θ(ω) = α and Lemma 18.8 then shows that ω ∈ Ω(D). �

Corollary 18.10. Suppose that D is a divisor on X. Then

h1(X,OX(D)) = h0(X,OX(KX −D))

where KX is a canonical divisor of X.

Exercise 18.11. Prove the residue formula of Proposition 18.7 for X = P1.

Exercise 18.12. Strengthen the conclusions of Proposition 18.5 to show
that dimk(X) J = 1.

18.3. The Riemann-Roch theorem

Theorem 18.13 (Riemann-Roch theorem). Let D be a divisor on a non-
singular projective curve X of genus g. Then

h0(X,OX(D)) = h0(X,OX(KX − D)) + degD + 1− g.

Proof. The theorem follows from Theorem 18.2 and Serre duality (Corollary
18.10). �

Corollary 18.14. Suppose that X is a nonsingular projective curve of genus
g. Then the degree of the canonical divisor is degKX = 2g − 2.

Proof. Take D = KX in the Riemann-Roch theorem. �

Corollary 18.15. Suppose that D is a divisor on a nonsingular projective
curve X of genus g such that degD > 2g − 2. Then

h0(X,OX(D)) = degD + 1 − g.

Proof. Since deg(KX − D) < 0, we have that h0(X,OX(KX − D)) = 0 by
Lemma 18.1. �

Corollary 18.16. Suppose that D is a divisor on a nonsingular projective
curve X of genus g such that deg(D) > 0. Then

h0(X,OX(nD)) = ndeg(D) + 1 − g

for n > 2g−2
deg(D) .
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Theorem 18.17. Suppose that X is a nonsingular projective curve. Then
X ∼= P1 if and only if g(X) = 0.

Proof. Theorem 17.14 implies that g(P1) = h1(P1,OP1) = 0. Suppose
g(X) = 0 and p ∈ X is a point. Then h0(X,OX(p)) = 2 by the Riemann-
Roch theorem (Theorem 18.13), Corollary 18.14, and Lemma 18.1. Now the
complete linear system |p| consists of effective divisors of degree equal to
1 = deg p by Corollary 13.19 and so X ∼= P1 by Corollary 13.20. �

A nonsingular projective curve X is called an elliptic curve if g(X) = 1.

Corollary 18.18. A nonsingular projective curve X is an elliptic curve if
and only if KX ∼ 0.

Proof. If g(X) = 1, then deg KX = 0 by Corollary 18.14. Since

h0(X,OX(KX)) = 1,

we have KX ∼ 0 by Lemma 18.1.

If KX ∼ 0, then g = 1 by Corollary 18.14 �

Theorem 18.19. Suppose that X is an elliptic curve and p0 ∈ X is a point.
Then the map X → Cl0(X) defined by p �→ [p − p0] is a bijection.

Proof. Suppose that D is a divisor of degree 0 on X. Then

h0(X,OX(KX − D − p0)) = 0

since deg(KX − D − p0) = −1. By the Riemann-Roch theorem, we then
have that

h0(X,OX(D + p0)) = 1.

Thus there is a unique effective divisor linearly equivalent to D + p0 which
must be a single point p, since deg(D+p0) = 1. In particular, there exists a
unique point p ∈ X such that p−p0 ∼ D from which the theorem follows. �

If D is a divisor on a nonsingular projective curve X and

h1(X,OX(D)) = 0,

then the Riemann-Roch theorem gives the dimension of h0(X,OX(D)) but
only gives a lower bound if h1(X,OX(D)) 
= 0. The following theorem gives
an upper bound for h0(X,OX(D)) when D is effective and h1(X,OX(D)) 
=
0. The bound is sharp, and in fact the curves X and divisors D for which
the upper bound is achieved are extremely special and are completely char-
acterized (this is part of Clifford’s original theorem). A proof of this char-
acterization is given in [73, Theorem IV.5.4].
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Theorem 18.20 (Clifford’s theorem). Suppose that D is a divisor on a
nonsingular projective curve X such that

h0(X,OX(D)) > 0 and h1(X,OX(D)) > 0.

Then

h0(X,OX(D)) ≤ 1

2
deg(D) + 1.

Proof. Let g = g(x). After possibly replacing D with a divisor linearly
equivalent to D and KX with a divisor linearly equivalent to KX , we may
assume that D ≥ 0 and D′ = KX − D ≥ 0. Further, we may assume that
h0(X,OX(D − p)) 
= h0(X,OX(D)) for all p ∈ X since otherwise we can
replace D with D − p and get a stronger inequality. We can then choose

g ∈ Γ(X,OX(D)) = {f ∈ k(X) | (f) +D ≥ 0}

such that g 
∈ Γ(X,OX(D − p)) for all p ∈ Supp(D′).

Consider the k-linear map

φ : Γ(X,OX(D′))/Γ(X,OX) → Γ(X,OX(KX))/Γ(X,OX(D))

defined by φ(f) = fg, where bar denotes residue. The map φ is well-defined,
since for f ∈ Γ(X,OX(D′)), (fg) ≥ −D − D′ = −KX and since

k = Γ(X,OX) = {f ∈ k(X) | (f) ≥ 0}

by Theorem 3.35 and Lemma 13.3, so we have that (gf) + D ≥ 0 if f ∈
Γ(X,OX).

Suppose φ(f) = 0 for some f ∈ Γ(X,OX(D′)). Then (f) + D′ ≥ 0 so
if p 
∈ Supp(D′), then νp(f) ≥ 0. Suppose p ∈ Supp(D′). Then νp(g) =
−νp(D) by our choice of g. Since (gf) +D ≥ 0, we have νp(fg) ≥ −νp(D)
and so

νp(f) ≥ −νp(D)− νp(g) = 0.

Thus νp(f) ≥ 0 for all p ∈ X and so f ∈ Γ(X,OX) and we have that φ is
injective. Thus

(18.8) h0(X,OX(D′)) − 1 ≤ g − h0(X,OX(D)).

By the Riemann-Roch theorem,

(18.9)
h0(X,OX(D′)) = deg(D′) + 1− g + h0(X,OX(KX − D′))

= g − 1 − deg(D) + h0(X,OX(D))

since

2g − 2 = degKX = degD + degD′.

Combining equations (18.8) and (18.9), we obtain the conclusions of the
theorem. �
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Theorem 18.21. Let D be a divisor on a nonsingular projective curve X
of genus g. Then:

1) If degD ≥ 2g, then |D| is base point free.

2) If degD ≥ 2g + 1, then D is very ample, so that the regular map

φ|D| : X → Ph0(X,OX(D))

is a closed embedding.

Proof. Conclusion 1) of this theorem follows from Corollary 18.15, which
tells us that

h0(X,OX(D − p)) = h0(X,OX(D))− 1

for all p ∈ X, and 1) of Corollary 13.34. Conclusion 2) follows from Corollary
18.15, which shows that

h0(X,OX(D − p− q)) = h0(X,OX(D))− 2

for all p, q ∈ X, and 3) of Corollary 13.34. �

Theorem 18.22. Suppose that X is a nonsingular projective curve. Then
KX is ample if g(X) > 1, KX ∼ 0 if X is an elliptic curve (g(X) = 1), and
−KX is ample if X ∼= P1 (g(X) = 0).

Proof. This follows from Corollary 18.14, Theorem 18.21, Theorem 18.17,
and Corollary 18.18. �

Theorem 18.22 generalizes to the theory of Kodaira dimension for higher-
dimensional varieties. This is especially worked out in the classification of
surfaces [18]. Some papers on the theory in higher dimensions are [91],
[112], [113], [114], and [20].

18.4. The Riemann-Roch problem on varieties

From Theorems 18.21, 17.18, and 17.35 we obtain the following theorem.

Theorem 18.23. Suppose that D is a divisor on a nonsingular projective
curve X such that deg D > 0. Then

R[D] =
⊕
n≥0

Γ(X,OX(nD))

is a finitely generated k-algebra.

Thus Corollary 18.16 is not so surprising, since h0(X,OX(nD)) is the
Hilbert function of R[D]. However, it may be that R[D] is not generated in
degree 1, so just knowing that R[D] is a finitely generated k-algebra is not
enough to conclude that its Hilbert function is eventually a polynomial. We
do have that the Hilbert function of a finitely generated graded k-algebra is
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eventually a quasi-polynomial, which has an expression P (n) = ad(n)n
d +

ad−1(n)n
d−1+ · · ·+a0(n) where the coefficients ai(n) are periodic functions.

The Riemann-Roch problem is to compute the function

PD(n) = h0(X,OX(nD))

for large n where D is a divisor on a nonsingular projective variety X.

It will follow from Theorem 19.1 that χ(OX(nD)) is a polynomial in
n. Thus if D is ample, we have that PD(n) is a polynomial for n � 0, as
PD(n) = χ(OX(nD)) for n � 0 by Theorem 17.18.

If D is a divisor of degree 0 on a nonsingular projective curve X, then
h0(X,OX(nD)) > 0 if and only if nD ∼ 0 by Lemma 18.1. We thus have
the following complete solution to the Riemann-Roch problem on a curve.

Theorem 18.24. Suppose that X is a nonsingular projective curve and D
is a divisor on X. Then for n � 0,

h0(X,OX(nD)) =

⎧⎨⎩
ndegD + 1− g(X) if degD > 0,
a periodic function in n if degD = 0,
0 if degD < 0.

There are examples of effective divisors D on a nonsingular projective
surface S such that R[D] =

⊕
n≥0 Γ(X,OX(nD)) is not a finitely generated

k-algebra. This was shown by Zariski in [159]; we will construct Zariski’s
example in Theorem 20.14. It may thus be expected that (the sometimes not
finitely generated k-algebra) R =

⊕
n≥0 Γ(S,OS(nD)) will not always have

a good Hilbert function, that is, that h0(S,OS(nD)) will not be polynomial-
like. However, Zariski showed in [159] that this function is almost a poly-
nomial on a surface.

Theorem 18.25 (Zariski). Let D be an effective divisor on a nonsingular
projective surface S over an algebraically closed field k. Then there exists a
quadratic polynomial P (n) and a bounded function λ(n) such that

h0(S,OS(nD)) = P (n) + λ(n).

for n ≥ 0.

In this same paper, Zariski asked if λ(n) is always eventually a periodic
function of n (a periodic function in n for n � 0). This question is answered
in [44].
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Theorem 18.26. Let D be an effective divisor on a nonsingular projective
surface S. Let λ(n) be the function of Theorem 18.25. Then:

1. If k has characteristic 0 or is the algebraic closure of a finite field,
then λ(n) is eventually a periodic function.

2. There are examples where λ(n) is not eventually periodic if k is of
positive characteristic and is not the algebraic closure of a finite
field.

Proof. Cutkosky and Srinivas [44, Theorems 2 and 3 and Example 3]. �

While the function h0(X,OX(nD)) is almost a polynomial function when
X is a surface, the behavior of the function h0(X,OX(nD)) in higher di-
mensions can be much more complicated.

Example 18.27. Over any algebraically closed field k, there exists a non-
singular projective 3-fold X and an effective divisor D on X such that

lim
n→∞

h0(X,OX(nD))

n3

is an irrational number. In particular, h0(X,OX(nD)) is not eventually a
polynomial-like function.

Proof. Cutkosky and Srinivas [44, Example 4]. �

The volume of an invertible sheaf L on a d-dimensional projective variety
X is defined as

Vol(L) = lim
n→∞

sup
h0(X,Ln)

nd/d!
.

The volume always exists as a limit over an algebraically closed field k
(by Lazarsfeld [98] and Lazarsfeld and Mustaţă [99]) and over an arbitrary
field (by Cutkosky [42]) but can be an irrational number (by Example 18.27).

Exercise 18.28. Find an example of a divisorD on a nonsingular projective
curve such that |D| is not base point free but |n0D| is base point free for
some positive multiple n0.

Exercise 18.29. Give an example of a finitely generated graded k-algebra
such that its Hilbert function is not eventually a polynomial.

18.5. The Hurwitz theorem

Suppose that φ : X → Y is a dominant regular map of nonsingular projective
curves. Recall that φ is then finite (Corollary 10.26). Suppose that P ∈ X.

The ramification index eP of φ at P is defined as follows. Let Q = φ(P ).
Recall that the valuation νQ is a valuation of k(Y ) whose valuation ring is
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OY,Q and νP is a valuation of k(X) whose valuation ring is OX,P . Thus νP
is an extension of νQ to k(X). Let x be a regular parameter in OX,P and y
be a regular parameter in OY,Q. Then

y = uxeP

for some unit u ∈ OX,P and positive integer eP . The number eP is called
the ramification index of νP over νQ or the ramification index of P over Q.
Since y = 0 is a local equation for the divisor Q on Y , we have that

φ∗(Q) =
∑

P∈φ−1(Q)

ePP,

and by Theorem 13.18,∑
P∈φ−1(Q)

eP = deg(φ∗(Q)) = deg(φ) = [k(X) : k(Y )]

does not depend on Q.

We will say that φ is ramified at P if eP > 1, tamely ramified at P if
the characteristic p of k does not divide eP , and wildly ramified at P if p
divides eP . We can then consider the set of all ramification points of φ in
X.

We will say that a dominant regular map φ : X → Y of varieties is sepa-
rable if the induced extension of fields k(Y ) → k(X) is finite and separable.

Proposition 18.30. Suppose that φ : X → Y is a finite regular map of
nonsingular curves and that φ is separable. Then there is an exact sequence
of OX-modules

(18.10) 0 → φ∗ΩY/k → ΩX/k → ΩX/Y → 0.

Proof. By formula (14.4), the sequence (18.10) is right exact, so we need
only show that the map

(18.11) φ∗ΩY/k → ΩX/k

is injective. Since φ∗ΩY/k and ΩX/k are invertible sheaves of OX -modules,
we need only show that the map (18.11) is nonzero. Tensoring over OX

with k(X), we reduce by Lemma 14.8 to showing that the natural map
Ωk(Y )/k ⊗k(Y ) k(X) → Ωk(X)/k is nonzero, which will follow if the natural
map

(18.12) Ωk(Y )/k → Ωk(X)/k

is nonzero. The field k(Y ) is separably generated over the algebraically
closed field k (by Theorem 1.14). Let z ∈ k(Y ) be a transcendental element
over k such that k(Y ) is separable over k(z). Then k(X) is separable over
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k(z), so z is also a separable transcendence basis of k(X) over k. By Theorem
21.75, dK(Y )/k(z) is a generator of Ωk(Y )/k and dk(X)/k(z) is a generator of
Ωk(X)/k. Thus (18.12) is an injection, and Ωk(Y )/k ⊗k(Y ) k(X) → Ωk(X)/k is
nonzero. �

Suppose that P ∈ X. Let Q = φ(P ). Let x be a regular parameter in
OX,P and y be a regular parameter in OY,Q. Taking stalks at P in (18.10)
gives us (by Proposition 14.15) the short exact sequence

(18.13) 0 → OX,Pdy → OX,Pdx → (ΩX/Y )P → 0.

We define
dy

dx
∈ OX,P

by

dy =
dy

dx
dx.

We have that y = uxeP where u is a unit in OX,P . Since d is a derivation,
we have that

dy = ePux
eP−1dx+ xeP du.

Now du = adx for some a ∈ OX,P , so dy = (epux
ep−1 + axep)dx. We thus

obtain the following proposition.

Proposition 18.31. Let φ : X → Y be a separable finite regular map of
nonsingular curves. Then:

1. The support of ΩX/Y is the finite set of ramification points of φ in
X.

2. For each P ∈ X, (ΩX/Y )P is a cyclic OX,P -module (generated by

one element) of k-dimension equal to νP (
dy
dx).

3. If φ is tamely ramified at P , then

dimk(ΩX/Y )P = eP − 1.

4. If φ is wildly ramified at P , then

dimk(ΩX/Y )P > eP − 1.

Let DX/Y be the ideal sheaf in OX which is the annihilator of ΩX/Y .
Let R be the effective divisor such that DX/Y = OX(−R). We then have

that DX/Y is the annihilator of ΩX/Y ⊗ Ω−1
X/k. Tensoring (18.10) with the

invertible sheaf Ω−1
X/k, we obtain the short exact sequence

0 → φ∗ΩY/k ⊗ Ω−1
X/k → OX → ΩX/Y ⊗ Ω−1

X/k → 0

so that

φ∗ΩY/k ⊗ Ω−1
X/k

∼= OX(−R)
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and

OR = OR/OX(−R) ∼= ΩX/Y ⊗ Ω−1
X/k

∼= ΩX/Y

since ΩX/Y has finite support. Thus

(18.14) R =
∑
p∈X

dimk(ΩX/Y )PP.

Taking degrees of divisors in

OX(−R) ∼= φ∗ΩY/k ⊗ Ω−1
X/k

∼= OX(φ∗(KY ) − KX),

we have that

degR = degKX − deg φ∗(KY )
= degKX − deg(φ) degKY

= (2g(X)− 2) − deg(φ)(2g(Y ) − 2)

by Theorem 13.18 and Corollary 18.14. We thus have the following theorem.

Theorem 18.32 (Hurwitz). Let φ : X → Y be a dominant separable regular
map of nonsingular projective curves. Then

2g(X)− 2 = deg(φ)(2g(Y ) − 2) + deg(R),

where R is the ramification divisor (18.14). If φ has only tame ramification,
then

deg(R) =
∑
P∈X

(eP − 1).

In the case that X and Y are affine, with coordinate rings A = k[Y ] and
B = k[X], the annihilator Γ(X,DX/Y ) = Γ(X,OX(−R)) of Γ(X,ΩX/Y ) =
ΩB/A is the different DB/A ([135, Proposition 14]). The different is defined
in [135, Chapter III] and [160, Section 11 of Chapter V], using the trace of
the quotient field of B over A. Proposition 18.31 is proven in [160, Theorem
28 of Section 11, Chapter V] and [135, Proposition 13]. On [160, page 312],
a derivation of “Hilbert’s formula” is given to compute deg(R) in the case
of a Galois extension, even in the presence of wild ramification.

18.6. Inseparable maps of curves

Recall that a dominant regular map φ : X → Y of varieties is separable if
the induced field extension k(Y ) → k(X) is finite and separable. We will
say that φ : X → Y is inseparable if k(Y ) → k(X) is not separable and that
φ : X → Y is purely inseparable if k(Y ) → k(X) is purely inseparable.

If K → L is a finite field extension, then there exists a (unique) in-
termediate field M (called the separable closure of K in L) such that L is
purely inseparable over M and M is separable over K (Theorem 1.15). It



18.6. Inseparable maps of curves 349

follows that any dominant finite regular map of algebraic varieties factors
as a purely inseparable finite map, followed by a separable finite map.

Suppose that κ is a perfect field of characteristic p > 0 and R is a κ-
algebra. Let Fr : R → R be the Frobenius homomorphism, defined by
Fr(x) = xp for x ∈ R. The map Fr is a ring homomorphism but it is
not a κ-algebra homomorphism. Let Rp be the ring R with the κ-algebra
structure · given by a ·x = apx for a ∈ κ and x ∈ R. Then Fr : R → Rp is a
κ-algebra homomorphism. Since Rp is equal to R as a ring, Rp is a domain
if and only if R is a domain, Rp is normal if and only if R is normal, and
Rp is regular if and only if R is regular.

Now suppose that R is also a domain with quotient field K. We can
express R as a κ-algebra by R = κ[S] for some subset S of K. Let Ω be an

algebraic closure of K. Define Λ : Rp → Ω by Λ(f) = f
1
p . For a ∈ κ and

x ∈ Rp, we have that

Λ(a · x) = Λ(apx) = ax
1
p = aΛ(x),

so Λ is a κ-algebra homomorphism, which identifiesRp with the κ-subalgebra

Λ(Rp) = κ[S
1
p ] of Ω (we have that Λ(κ) = κ as κ is perfect). The composi-

tion ΛFr(x) = x for x ∈ R, so Fr : R → Rp is identified with the natural
inclusion of κ-algebras

(18.15) κ[S] → κ[S
1
p ].

In particular, the quotient field of Rp is identified with K
1
p as a κ-algebra.

Now suppose that X is an affine variety over an algebraically closed
field k of characteristic p > 0. Let R = k[X]. The above construction
gives us a finitely generated k-algebra Rp which is a domain and a k-algebra
homomorphism Fr : R → Rp. Thus there is an affine variety Xp and a
regular map F : Xp → X such that F ∗ = Fr (by Proposition 2.40).

If X is a quasi-projective variety, we can apply the above construction
on an affine open cover of X to obtain by Proposition 3.39 a quasi-projective
variety Xp with regular map F : Xp → X. (If X is embedded in Pn, then Xp

is embedded in Pn
p which is isomorphic to Pn as a variety over k.) Applying

the construction (18.15) to Fr : k(X) → k(X), we see that k(Xp) ∼= k(X)
1
p

and F ∗ : k(X) → k(Xp) is the natural inclusion k(X) ⊂ k(X)
1
p . The regular

map F : Xp → X is called the k-linear Frobenius map. If X is normal,
then Xp is also normal, since Xp has an affine cover by normal varieties.

Theorem 18.33. Suppose that X is a variety of dimension n. Then

[k(X)
1
p : k(X)] = pn.
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Proof. An algebraic function field over a perfect field k is separably gen-
erated over k (by Theorem 1.14). The theorem then follows from 2) of
Theorem 21.76 since trdegkk(X) = dimX = n. �
Theorem 18.34. Suppose that f : X → Y is a finite purely inseparable
regular map of nonsingular projective curves. Then f is a composition of
k-linear Frobenius maps. In particular, g(X) = g(Y ).

Proof. Let the degree of f be [k(X) : k(Y )] = pr. Suppose that g ∈ k(X).

The minimal polynomial of g over k(Y ) is zp
i−h for some h ∈ k(Y ) and i ∈ N

with i ≤ r since g is purely inseparable over k(Y ) and [k(Y )[g] : k(Y )] divides

pr. Thus k(X)p
r ⊂ k(Y ) so k(X) ⊂ k(Y )

1
pr . Let F ′ be the composition of

k-linear Frobenius maps

Ypr
F→ Ypr−1 → · · · → Yp

F→ Y

where Ypi = (Ypi−1)p. Here F ′ has degree pr by Theorem 18.33. Since

k(X) ⊂ k(Y )
1
pr and both k(X) and k(Y )

1
pr have the same degree over

k(Y ), we have that k(X) = k(Y )
1
pr . Since a nonsingular projective curve is

uniquely determined by its function field (by Corollary 10.25), we have that
X ∼= Ypr , and thus f = F ′.

Let U = {Ui} be an affine open cover of Y with corresponding affine open
cover V = {Vi} of Ypr . Now each Γ(Ui,OY ) is isomorphic to Γ(Vi,OYpr

) as

a ring (but not as a k-algebra) and the Čech complexes C∗(U,OY ) and
C∗(V ,OYpr

) are isomorphic complexes of rings. Thus the cohomology is

isomorphic, so H1(Ypr ,OYpr
) is H1(Y,OY ) with the vector space operation

a · v = ap
r
v for a ∈ k. Since k is perfect, we have that

h1(Y,OY ) = dimk H
1(Y,OY ) = dimk H

1(Ypr ,OYpr
) = h1(Ypr ,OYpr

)

and g(Y ) = g(Ypr). �
Exercise 18.35. Let Pn be projective space over an algebraically closed
field k of characteristic p > 0. Show that (Pn)p is isomorphic to Pn (as
varieties over k).

Exercise 18.36. Suppose that f : X → Y is a finite regular map of non-
singular projective curves. Show that g(X) ≥ g(Y ).

Exercise 18.37 (Lüroth’s theorem). Suppose that k is an algebraically
closed field and L is a subfield of a one-dimensional rational function field
k(t) over k such that L contains k and is not equal to k. Show that L is a
one-dimensional rational function field over k.

Exercise 18.38. Give an example of a finite purely inseparable regular map
of nonsingular projective surfaces which is not a composition of Frobenius
maps.
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18.7. Elliptic curves

Recall that a nonsingular projective curve X is called an elliptic curve if
it has genus g(X) = 1. An elliptic curve is characterized by KX ∼ 0 by
Corollary 18.18. The theory of elliptic curves is particularly remarkable
and extensive. We give a brief introduction here. The group of regular
isomorphisms of a variety X will be denoted by Aut(X).

Every nonsingular cubic curve X in P2 is an elliptic curve. This follows
since by adjunction, Theorem 14.21, OX(KX) ∼= OP2(KP2 +X) ⊗ OX and
since KP2 = −X by Example 14.20.

The reader should peruse the definitions and statements of Section 21.7
on the Galois theory of varieties before reading the proofs of this section.

Lemma 18.39. Suppose that X is an elliptic curve and P,Q are two not
necessarily distinct points in X. Then there exists a regular automorphism
σ : X → X such that σ2 = id, σ(P ) = Q, and for any R ∈ X, R + σ(R) ∼
P +Q.

Proof. We have that h0(X,OX(P +Q)) = 2 by Corollary 18.15 and |P+Q|
is base point free by Theorem 18.21. We thus have a regular map φ =
φ|P+Q| : X → P1. A linear hyperplane section H on P1 is a point and
φ∗(H) is an effective divisor linearly equivalent to P +Q by Lemma 13.28.
Thus deg(φ) = [k(X) : k(P1)] = 2 by Theorem 13.18. The field extension
k(X)/k(P1) is separable by Theorem 18.34, since otherwise g(x) = g(P1) =
0. Thus k(X) is a Galois extension of k(P1), so X is Galois over P1 by
Theorem 21.69, with G(X/P1) ∼= Z2 by Proposition 21.67. Let σ ∈ G(X/P1)
be a generator. Since X is Galois over P1, σ interchanges the two points of
a fiber. There exists S ∈ P1 such that φ∗(S) = P +Q by Lemma 13.28, so
σ(P ) = Q. We have that ⋃

F∈|P+Q|
F =

⋃
S∈P1

φ∗(S) = X,

so for any R ∈ X, R+ σ(R) ∈ |P +Q|, and thus R+ σ(R) ∼ P +Q. �

Corollary 18.40. The group Aut(X) of regular automorphisms of an ellip-
tic curve X is transitive on X.

Lemma 18.41. Suppose that φ1 : X → P1 and φ2 : X → P1 are two
regular maps of degree 2 from an elliptic curve X to P1. Then there exist
automorphisms σ ∈ Aut|(X) and τ ∈ Aut(P1) such that φ2σ = τφ1.

Proof. Let P1 ∈ X be a ramification point of φ1 and P2 ∈ X be a ramifica-
tion point of φ2 (which exist by Theorem 18.32). By Corollary 18.40 there
is σ ∈ Aut(X) such that σ(P1) = P2. Since P1 is a ramification point of the
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degree 2 map φ1 and h0(X,OX(2P1)) = 2, we have that φ1 = φ|2P1|, and
since P2 is a ramification point of the degree 2 map φ2, φ2 = φ|2P2|. Since
σ takes P1 to P2, φ1 and φ2σ are induced by base point free linear systems
which are contained in |2P1|. But |2P1| is the only such linear system. Thus
φ1 and φ2σ are induced by the same linear system, so they differ only by an
automorphism of P1. �

Proposition 18.42. Suppose that X is an elliptic curve over an alge-
braically closed field k of characteristic 
= 2 and let P0 ∈ X be a point.
Then there is a closed embedding φ : X → P2 such that the image is the
curve with the homogeneous equation

(18.16) x2x
2
1 − x0(x0 − x2)(x0 − λx2) = 0

for some λ ∈ k \ {0, 1} and φ(P0) = (0 : 1 : 0).

The affine equation of the image φ(X)\{(0 : 1 : 0)} of X \P0 in P2
x2

∼= A2

is

(18.17) y2 = x(x− 1)(x− λ),

where x = x0
x2
, y = x1

x2
. We think of P0 as being the “point at infinity” on X

under this embedding, since φ(P0) = (0 : 1 : 0) = φ(X) ∩ Z(x2).

Proof. We have that h0(X,OX(nP0)) = n for n > 0 by the Riemann-Roch
theorem. The linear system |3P0| gives a closed embedding φ = φ|3P0| of
X into P2 by Theorem 18.21. Within the function field k(X), we have
inclusions

k = Γ(X,OX) = Γ(X,OX(P0)) ⊂ Γ(X,OX(2P0)) ⊂ · · · .

Choose x ∈ k(X) so that 1, x are a basis of Γ(X,OX(2P0)) and choose y ∈
k(X) so that 1, x, y are a basis of Γ(X,OX(3P0)). Since h

0(X,OX(6P0)) = 6,
there is a linear relation between the seven functions 1, x, y, x2, xy, x3, y2 ∈
Γ(X,OX(6P0)). Further, x3 and y2 must both have nonzero coefficients in
this relation, since otherwise the relation will have a pole of finite order at
P0, as x has a pole of order 2 at P0 and y has a pole of order 3 at P0. (1
has no pole at P0 and xy has a pole of order 5 at P0.) Replacing x and y
by suitable scalar multiples, we may assume that we have a relation

y2 + b1xy + b2y = f(x)

where f(x) is a degree 3 monic polynomial in x and b1, b2 ∈ k. Completing
the square in y by replacing y with

y′ = y +
1

2
(b1x+ b2),
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we obtain the relation

(18.18) y2 = g(x)

where g(x) = x3 + a1x
2 + a2x+ a3 for some a1, a2, a3 ∈ k (this is where we

need characteristic 
= 2).

We represent the closed embedding φ : X → P2 by φ = (x : y : 1) =
(x0
x2

: x1
x2

: 1). The relation (18.18) becomes

(18.19) x21x2 = x30 + a1x
2
0x2 + a2x0x

2
2 + a3x

3
2.

Thus φ(X) ⊂ Z(F ) where

F = x21x2 − x30 − a1x
2
0x

2
2 − a2x0x2 − a3x

3
2.

The image of φ is a closed irreducible curve φ(X), which has codimension
1 in P2. Since F is irreducible in the coordinate ring k[x0, x1, x2] of P2,
(F ) = I(φ(X)).

The regular functions on the affine open subset P2
x2

∼= A2 of P2 are

k[P2
x2
] = k[x, y] where x = x0

x2
, y = x1

x2
. The ideal of φ(X) ∩ P2

x2
is generated

by f = y2 − g(x).

Since φ(X) is nonsingular, g(x) can have no multiple roots (by the Jaco-
bian criterion of Proposition 10.14). Thus we can make a change of variables
x′ = αx+ β for some α 
= 0, β ∈ k, and replace y with a scalar multiple of y
to obtain an expression (18.18) with g(x) = x(x− 1)(x− λ) for some λ ∈ k
with λ 
= 0 or 1. Finally, we see that the set of points at infinity on φ(X)
is the algebraic set Z(x2) ∩ φ(X) = Z(x2, x

3
0) = {(0 : 1 : 0)}. Since x has a

pole of order 2 at P0 and y has a pole of order 3 at P0,

φ(P0) =

(
x

y
(P0) : 1 :

1

y
(P0)

)
= (0 : 1 : 0). �

We can regard P1 as P1 = A1∪{∞}, with k[A1] = k[z] and k(P1) = k(z).
The group of automorphisms of P1 consists of the linear automorphisms (Ex-
ercise 13.47), so they can be represented as fractional linear transformations

az + b

cz + d

with a, b, c, d ∈ k and ad − bc 
= 0. The corresponding transformation in
homogeneous coordinates is

(ax0 + bx1 : cx0 + dx1).
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Let G be the subgroup of Aut(P1) consisting of the automorphisms which
permute {0, 1,∞}. Then G ∼= S3 with

(18.20) G =

{
z,

1

z
, 1− z,

1

1− z
,

z

z − 1
,
z − 1

z

}
.

We have that the group G is generated by 1
z and 1− z.

Suppose that X is an elliptic curve with char k 
= 2 and P0 ∈ X. Con-
sider the linear system |2P0| which gives a regular map Ψ = φ|2P0| : X → P1

which is Galois of degree 2 (as we saw in the proof of Lemma 18.39). By
Hurwitz’s theorem (Ψ is tamely ramified since char k 
= 2), Ψ is ramified
over four points: a, b, c, d ∈ P1 with Ψ(P0) = d. There exists a unique linear
automorphism τ of P1 which takes d to ∞, a to 0, and b to 1. Let λ be the
image of c. Then τΨ is ramified over 0, 1, λ,∞.

Define the j invariant of X as

j(λ) = 28
(λ2 − λ+ 1)3

λ2(λ− 1)2
.

We have (we need only check the generators 1
z and 1 − z of G in (18.20))

that

(18.21) j(σ(λ)) = j(λ) for σ ∈ G.

Write P2 = A2 ∪ H where H = Z(x2) is “the hyperplane at infinity”.
The closed embedding φ = φ|3P0| of Proposition 18.42 gives an expression of
X as (isomorphic) to the union of the affine curve

C = Z(y2 − x(x− 1)(x− λ)) ⊂ A2

and the point “at infinity” P0 = (0 : 1 : 0). The degree 2 map Ψ = φ|2P0| is
the linear projection to P1 which takes (a, b) ∈ C to a ∈ A1 and P0 to ∞.

Theorem 18.43. Suppose that k is an algebraically closed field of charac-
teristic not equal to 2. For λ1, λ2 ∈ k \ {0, 1}, if X1 is an elliptic curve
which gives λ1 in the above construction of λ and X2 is an elliptic curve
which gives λ2, then X1 is isomorphic to X2 if and only if j(λ1) = j(λ2).
Further, every element of k is the j invariant of some elliptic curve X.

Proof. We will first show that j(λ) is uniquely determined by an elliptic
curve X. Suppose P1, P2 ∈ X and Ψ1 : X → P1 is induced by |2P1| so that
the ramification points of Ψ1 in P1 are 0, 1, λ1,∞ with Ψ1(P1) = ∞ and
Ψ2 : X → P1 is induced by |2P2| so that the ramification points of Ψ2 in
P1 are 0, 1, λ2,∞ with Ψ2(P2) = ∞. By Lemma 18.41 and its proof, there
exist automorphisms σ ∈ Aut(X) and τ ∈ Aut(P1) such that Ψ2σ = τΨ1

with σ(P1) = P2 so that τ(∞) = ∞ and τ sends the other ramification
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points {0, 1, λ1} to {0, 1, λ2} in some order. Let γ(z) be the fractional linear
transformation of P1 defined by

γ(z) =
z − τ(0)

τ(1) − τ(0)
.

Then γτ(0) = 0, γτ(1) = 1, and γτ(∞) = ∞, so γτ is the identity map.
Thus

λ1 = γτ(λ1) =
τ(λ1) − τ(0)

τ(1) − τ(0)
.

Since the sets {τ(0), τ(1), τ(λ1)} and {0, 1, λ2} are equal, we have that

λ2 ∈
{
λ1,

1

λ1
, 1− λ1,

1

1− λ1
,

λ1

λ1 − 1
,
λ1 − 1

λ1

}
,

and so j(λ1) = j(λ2) by (18.21).

Now suppose that X1 and X2 are two elliptic curves, giving λ1 and λ2,
respectively, and such that j(λ1) = j(λ2). The regular map j : A1 \{0, 1} →
A1 extends to a regular map j = (j : 1) : P1 → P1 with j−1(∞) = {0, 1,∞},
which induces

j∗ : k(P1) = k(j) → k(P1) = k(λ)

defined by

j �→ 28
(λ2 − λ+ 1)3

λ2(λ− 1)2
.

For j0 ∈ A1,

28(λ2 − λ+ 1)3 − j0λ
2(λ− 1)2 = 0

is an equation of degree 6 in λ, so counting multiplicities, it has six roots.
Thus

6 = deg(j∗(j0)) = [k(λ) : k(j)]

by Theorem 13.18. By (18.21), substituting λ for z, G acts on k(λ) by
k-automorphisms which leave k(j) invariant. Since [k(λ) : k(j)] = 6 and
|G| = 6, we have that k(λ) is Galois over k(j) with Galois group G. Thus
j : P1 → P1 is Galois with Galois group G (Theorem 21.69), and so

j(λ1) = j(λ2)

if and only if there exists τ ∈ G such that τ(λ1) = λ2.

By Proposition 18.42, X1 and X2 can be embedded in P2 with respective
affine equations

(18.22) y2 = x(x− 1)(x− λ1)

and

(18.23) y2 = x(x− 1)(x− λ2).
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Since j(λ1) = j(λ2), there exists τ ∈ G such that τ(λ1) = λ2, and thus
τ permutes 0, 1,∞. Let Ψ1 : X1 → P1 be the 2-1 cover induced by pro-
jection onto the x-axis in (18.22). Then τΨ1 : X1 → P1 is a degree 2
map which is ramified over 0, 1, λ2,∞ in P1. Let Q = (τΨ1)

−1(∞). Then
x ∈ H0(X1,OX1(2Q)) where τΨ1 = (x : 1). Proceeding as in the proof
of Proposition 18.42, we find y ∈ H0(X1,OX1(3Q)), giving the relation
y2 = g(x) of (18.18) and such that φ|3Q| = (x : y : 1) is a closed embedding

of X1 into P2. The points in X1 ⊂ P2 where τΨ1 : X1 → P1 is ramified are
Q and the points in X1 ∩ A2 where y = 0. Since τΨ1 is ramified over 0, 1,
λ2, and ∞ and g is monic of degree 3, we see that g(x) = x(x− 1)(x− λ2).
Thus X1 is isomorphic to the cubic curve with affine equation (18.23), so
X1 is isomorphic to X2.

Now given j0 ∈ k, we can solve the equation

28(λ2 − λ+ 1)3 − j0λ
2(λ− 1)2 = 0

to find a solution λ0 ∈ k, which cannot be 0 or 1. The elliptic curve with
affine equation

y2 = x(x− 1)(x− λ0)

defines a nonsingular cubic curve of degree 3 in P2 which is an elliptic curve
that has j0 as its j invariant. �

Let X be an elliptic curve with a fixed point P0 ∈ X. By Theorem
18.19, the map P �→ [P −P0] is a bijection from X to Cl0(X). This induces
a group structure on X with P0 as the zero element and with addition ⊕
defined by P ⊕ Q = R if and only if P +Q ∼ R+ P0 as divisors on X.

Proposition 18.44. Suppose that X is an elliptic curve with the group
structure given as above by the choice of a point P0 ∈ X. Then the addition
map X × X → X and the inverse map X → X are regular maps.

Proof. We will denote the addition of P and Q in X by P ⊕ Q and the
inverse of P by "P .

By Lemma 18.39, taking P = Q = P0, there is an automorphism σ of
X such that for any R ∈ X, R+ σ(R) ∼ 2P0. Thus "R = σ(R), and so the
inverse map " is a regular map.

Let P ∈ X. By Lemma 18.39, there is an automorphism τ of X such
that R + τ(R) ∼ P + P0 for all R ∈ X. Thus P " R = τ(R), and since "
is a regular map, we have that translation R �→ R ⊕ P is a regular map for
fixed P ∈ X.

Embed X into P2 by φ|3P0|. Let F = 0 be the homogeneous cubic

equation of X in P2. If L is a linear form on P2, then L intersects X in three
points with multiplicity, considering the restriction of F to L as a degree
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3 form on L ∼= P1. (This is a special case of Bézout’s theorem, which we
will prove later in Theorem 19.20.) Thus we have a map λ : X × X → X
obtained by letting the image of (P,Q) be the third point of intersection of
the line through P and Q with X (if P = Q, the line through P is required
to be tangent to X at p).

We will establish that this map is in fact regular everywhere. It will
follow that addition, (P,Q) �→ P ⊕ Q, is a regular map, since P + Q +
λ(P,Q) ∼ 3P0 and P +Q ∼ (P ⊕ Q) + P0, so (P ⊕ Q) ⊕ λ(P,Q) = P0 and
thus P ⊕ Q = "λ(P,Q).

Given P,Q ∈ X, there exists a linear form H of P2 such that all three
intersection points of the line through P and Q with X lie in P2

H . Thus
we are reduced to showing that if f = 0 is the equation of C = X ∩ P2

H in
P2
H

∼= A2 and if P,Q are points of C such that the line through P and Q
in C has three intersections with C in A2 (counting multiplicity), then the
rational map λ is regular near (P,Q).

We now consider P = (α, β) and Q = (γ, δ) as variable points in A2.
The line through P and Q in A2 can be parameterized as

x = α+ t(γ − α), y = β + t(δ − β).

The intersection points of this line with C are obtained from the solutions
in t to

g(t) = f(α+ t(γ − α), β + t(δ − β)) = 0.

Write g(t) = at3+bt2+ct+d with a, b, c, d in the polynomial ring k[α, β, γ, δ].
We now constrain P = (α, β) and Q = (γ, δ) to lie on C. Thus we consider
the residues a, b, c, d of a, b, c, d in

R = k[α, β, γ, δ]/(f(α, β), f(γ, δ))

(which is a domain by Proposition 5.7). Let α, β, γ, δ be the residues of
α, β, γ, δ in R, so that R = k[α, β, γ, δ]. Let g(t) = at3 + bt2 + ct + d be
the residue of g(t) in R[t]. We have that g(0) = f(α, β) = 0 and g(1) =
f(γ, δ) = 0. Thus d = 0 and a+ b+ c = 0, and we have a factorization

g(t) = t(t− 1)(at+ (a+ b)).

We see that if a 
= 0, then λ is the regular map defined by

λ ((u1, v1) × (u2, v2))

=

(
u1 − a+ b

a
(u1, v1, u2, v2)(u2 − u1), v1 − a+ b

a
(u1, v1, u2, v2)(v2 − v1)

)
.

�

In the language of [146], (α, β) and (γ, δ) in the above proof are “inde-
pendent generic points”.
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Lemma 18.45 (Rigidity lemma). Let X be a projective variety, Y and Z
be quasi-projective varieties, and f : X × Y → Z be a regular map such that
for some Q ∈ Y , f(X × {Q}) = P is a single point of Z. Then there is a
regular map g : Y → Z such that if π2 : X × Y → Y is the projection, we
have that f = g ◦ π2.

Proof. Let R ∈ X be a point and define g : Y → Z by g(y) = f(R, y).
Since two regular maps on a variety are equal if they agree on a nontrivial
open set, we need only show that f and g ◦ π2 agree on some open subset
of X × Y . Let U be an affine open neighborhood of P in Z, F = Z \ U ,
and G = π2(f

−1(F )). The set G is closed in Y since f−1(F ) is closed in
X × Y and X is projective, and hence π2 is a closed map (Corollary 5.13).
We have that Q 
∈ G since f(X × {Q}) = P 
∈ F . Thus V = Y \ G is a
nonempty open neighborhood of Q in Y . For each y ∈ V , the projective
variety X × {y} is mapped by f into the affine variety U and hence to a
single point of U (by Corollary 5.16). Thus for any x ∈ X and y ∈ V , we
have that

f(x, y) = f(R, y) = g ◦ π2(x, y),

proving the lemma. �

Corollary 18.46. Let X be an elliptic curve with group structure defined by
a point P0 ∈ X and let Y be an elliptic curve with group structure defined by
Q0 ∈ Y . Suppose that Φ : X → Y is a regular map such that Φ(P0) = Q0.
Then Φ is a group homomorphism.

Proof. Consider the regular map Ψ : X × X → Y defined by

Ψ(x, y) = Φ(x⊕ y) " Φ(x) " Φ(y).

Then Ψ(X × {P0}) = Ψ({P0} × X) = Q0, so Ψ(x, y) = Q0 for all x, y ∈ X
by Lemma 18.45. �

18.8. Complex curves

A nonsingular projective curve X over k = C has the structure of a Riemann
surface, and g = g(X) is the topological genus of X (X is topologically a
sphere with g handles). This is discussed, for instance, in [115] and [62].
Now such X has the Euclidean topology. We proved that when G is an
Abelian group, then Γ(U,G) ∼= Gr where r is the number of connected com-
ponents of U (by Proposition 11.14). This is the same as the first singular
cohomology H0

Sing(U,G). Now the Čech complex computes singular coho-

mology of X, since X can be triangulated ([49, Section 9 of Chapter X]
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or [62]) and computes sheaf cohomology, so we obtain that the sheaf coho-
mology H i(X,Zan) is isomorphic to H i

Sing(X,Z). We write Zan to indicate
that we are in the Euclidean topology. Now we regard X as a compact
two-dimensional oriented real manifold, and then we have (for instance by
[103]) that

H i
Sing(X,Z) =

⎧⎪⎪⎨⎪⎪⎩
Z if i = 0,
Z2g if i = 1,
Z if i = 2,
0 if i > 2.

Let Oan
X be the sheaf of analytic functions on X and (Oan

X )∗ be the sheaf
of nonvanishing analytic functions. Then we have a short exact sequence of
sheaves

0 → Z → Oan
X

e→ (Oan
X )∗ → 0,

where e denotes the exponential map f �→ ef .

It follows from GAGA [133] that if Y is a complex projective variety
and F is a coherent sheaf on Y , then the cohomology of the extension
Fan of F to an analytic sheaf is the same as the cohomology of F . Thus
H i(X,Oan

X ) ∼= H i(X,OX) for all i. Taking sheaf cohomology, we get the
long exact sequence

0 → Z → C
e→ C∗ → H1(X,Z) → H1(X,OX)

→ H1(X, (Oan
X )∗)

c→ H2(X,Z) → H2(X,OX).

Now X has genus g and dimension 1, so that H2(X,OX) = 0. Further,
e : C → C∗ is onto. Thus from our above exact sequence, we deduce that
we have an exact sequence of groups

0 → Cg/Z2g → H1(X, (Oan
X )∗)

c→ Z → 0,

since

H1(X,OX)/H1(X,Z) ∼= Cg/Z2g.

From the argument of Theorem 17.16, we have that

H1(X, (Oan
X )∗) ∼= Pican(X),

the group of invertible analytic sheaves on X, modulo isomorphism. Now
again by GAGA, we know that all global analytic sheaves on X are iso-
morphic to algebraic sheaves, and this isomorphism takes global analytic
homomorphisms to algebraic homomorphisms. Thus the natural map

Pic(X) → Pican(X)
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is an isomorphism. In conclusion, we have obtained the following theorem:

Theorem 18.47. Suppose that X is a nonsingular projective curve of genus
g over the complex numbers. Then there is a short exact sequence of groups

0 → G → Pic(X)
c→ Z → 0,

where G is a group Cg/Z2g.

The subset H1(X,Z) ∼= Z2g of H1(X,OX) ∼= Cg is in fact a lattice, if
we regard Cg as a 2g-dimensional real vector space. Thus in the Euclidean
topology, G ∼= (S1)2g where S is the circle R/Z and G is a “torus”. This
group G naturally has the structure of an analytic manifold (of complex
dimension g), and it is even an algebraic variety (of dimension g). The
group structure on G is algebraic. The map c is just the degree map, and
the exact sequence of the theorem is just the exact sequence

0 → Cl0(X) → Cl(X)
deg→ Z → 0

of (13.11).

Using our natural isomorphism of Pic(X) with Cl(X), the map c (for
Chern) is actually the degree of a divisor which we studied on a curve earlier.
We can thus identify the algebraic group G with the group Cl0(X) of linear
equivalence classes of divisors of degree 0 on X. This group G is called the
Jacobian of X (in honor of Jacobi). Fixing a point P0 ∈ X, we obtain a
map X → J defined by mapping a point P to the class of P −P0. This map
is a regular map and is a closed embedding if g > 0.

18.9. Abelian varieties and Jacobians of curves

In this section we discuss the algebraic construction of the Jacobian. We
need to introduce a couple of new concepts first.

An Abelian variety A (in honor of Abel) is a projective variety with a
group structure such that the multiplicationm : A×A → A is a regular map
and the inverse map i : A → A is a regular map. There is an extensive liter-
ature on these remarkable varieties. A few references are [146], [96], [119],
and [110]. The elliptic curves are the one-dimensional Abelian varieties. An
Abelian variety is commutative and nonsingular (as is shown in any of these
references). A g-dimensional Abelian variety over the complex numbers is
isomorphic by an analytic isomorphism to a complex torus Cg/Λ, where Λ
is a lattice in Cg.

Suppose that X is a variety and r is a positive integer. The symmetric
group Sr acts on the productXr by permuting factors. There exists a variety
X(r) whose function field is k(Xr)Sr which is a quotient Xr/Sr [119, II,
Section 7 and III Section 11]. In the case when X is a nonsingular projective
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curve, X(r) is nonsingular [111, Proposition 3.2]. The points of X(r) can be
considered as effective divisors p1 + p2 + · · ·+ pr of degree r on X.

We have the following theorem.

Theorem 18.48. Suppose that X is a nonsingular projective curve of genus
g. Then there exists an Abelian variety J of dimension g and a regular map
φ : X → J such that:

1. φ is a closed embedding.

2. φ induces a birational regular map X(g) → J by

p1 + · · ·+ pg �→
g∑

i=1

φ(pi).

3. φ induces a group isomorphism Cl0(X) → J by [D] �→
∑

niφ(pi) if
D =

∑
nipi.

The variety J of Theorem 18.48 is called the Jacobian of X.

An Abelian variety A of positive dimension n > 0 over the complex
numbers has lots of points of infinite order (under the group law of A). This
follows from the fact that there is an analytic isomorphism of A with the
quotient of Cg by a lattice of Cg. However, if A is an Abelian variety over
the algebraic closure of a finite field, then every element of A has finite order.
We see this as follows. Suppose that k is the algebraic closure of a finite field
and A is an Abelian variety over k. Then A is a subvariety of a projective
space Pn

k . Suppose that x ∈ A. Then there exists a finite field k′ such that
the embedding of A into Pn is defined over k, x is a rational point over k′,
and the addition on A is defined over k′. There are only finitely many points
of Pn which are rational over k′ so there are only finitely many points of A
which are rational over k′. All multiples of x are rational over k′ since the
multiplication is defined over k′ and x is rational over k′. Thus x has finite
order in the group A.

Let A be an Abelian variety over an algebraically closed field k. Let
A(k) be the group of points of A, so that A(k) is a Z-module. The rank of
A(k) is rank(A(k)) = dimQA(k)⊗Q. We have seen that if A is an Abelian
variety over the algebraic closure k of a finite field, then rank(A(k)) = 0.
However, we have the following theorem ensuring us that there are lots of
points of infinite order on an Abelian variety of positive dimension over any
other algebraically closed field.

Theorem 18.49. Suppose that A is a positive-dimensional Abelian variety
defined over an algebraically closed field k which is not the algebraic closure
of a finite field. Then the rank of A(k) is equal to the cardinality of k.
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Proof. [56, Theorem 10.1]. �

We also have the following proposition describing the points of finite
order in an Abelian variety.

Proposition 18.50. Let A be an Abelian variety of dimension g over an
algebraically closed field k. For n ∈ Z≥0, let

An(k) = {x ∈ A | nx = 0}.
Suppose that the characteristic p of k does not divide n. Then An(k) ∼=
(Z/nZ)2g.

Proof. [119, Proposition, page 64]. �

In the case when k = C, so that there is an analytic isomorphism A ∼=
Cg/Λ where Λ is a lattice in Cg, the proposition follows since An(C) ∼=
( 1nΛ)/Λ.

The history of Abelian varieties and Jacobian varieties is outlined at the
end of Milne’s article [111]. Milne proves many interesting facts about the
Jacobian in [111], including giving in [111, Section 7] a proof in modern
language of Weil’s proof in [146] of Theorem 18.48, the original proof using
the language of Foundations of Algebraic Geometry [145]. Milne refers to
Section 2 of Artin [12] for a proof in modern language of Weil’s theorem
that a “birational group” is isomorphic to an algebraic group [146].

Throughout these exercises C will denote a nonsingular projective curve
of genus g.

Exercise 18.51. Show that |KC | is base point free if g ≥ 1.

Exercise 18.52. Show that mKC is very ample if g ≥ 3 and m ≥ 2.

Exercise 18.53. If g = 2, show that mKC is very ample for m ≥ 3 and
φ|2KC | : C → P2 is a degree 2 regular map onto a quadric curve in P2 (which

is isomorphic to P1).

Exercise 18.54. Suppose that C is defined over an algebraically closed field
k of characteristic 0. Suppose that 0 
= f ∈ k(C) and that the regular map
φ = (f : 1) : C → P1 has degree n. Show that

g =
1

2

⎛⎝∑
p∈C

(ep − 1)

⎞⎠− n+ 1.

Exercise 18.55. A curve C is called a hyperelliptic curve if there exists a
degree 2 regular map φ : C → P1. Suppose that k is an algebraically closed
field of characteristic 0 and a1, . . . , al ∈ k are distinct. Let γ be the affine
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curve γ = Z(y2 − f(x)) ⊂ A2 where f(x) =
∏l

i=1(x − ai). Let C be the
resolution of singularities of the Zariski closure of γ in P2, and let π : C → P1

be the regular map which when restricted to γ is the projection of γ onto
the x-axis. Show that π is a degree 2 map. Compute the ramification of π
and show that C has genus g = l − 1.

Exercise 18.56. Suppose that C is a plane curve of degree 4.

a) Show that the effective canonical divisors on C are the divisors
i∗(L) where i : C → P2 is inclusion and L is a line on P2.

b) Show that the genus of C is 3.

c) IfD is any effective divisor of degree 2 on C, show that h0(C,OC(D))
= 1.

d) Conclude that C is not hyperelliptic.

Exercise 18.57. Suppose that C is not a hyperelliptic curve. Show that
KC is very ample.

Exercise 18.58. Suppose that C is a hyperelliptic curve with degree 2
regular map φ : C → P1 and p ∈ C is a ramification point. Show that

h0(C,OC(mp)) =

⎧⎨⎩
i+ 1 if m = 2i, 1 ≤ i ≤ g,
i+ 1 if m = 2i+ 1, 1 ≤ i ≤ g,
m+ 1 − g if m ≥ 2g.

Exercise 18.59. Suppose that g ≥ 2 and φ : C → C is a dominant regular
map. Show that φ is an isomorphism.





Chapter 19

An Introduction to
Intersection Theory

We give a treatment of intersection theory, based on the Snapper polynomial
([139]). Let V be a d-dimensional projective scheme (over an algebraically
closed field k). The results in this chapter are mostly from [89, Section 1].
More general intersection theories are presented in [57]. We conclude this
chapter with some examples and applications.

In Theorem 19.20, we give a proof of Bézout’s theorem, showing that two
projective plane curves intersect in m points counting multiplicity, where m
is the product of the degrees of the two curves. In Theorem 19.21, Corollary
19.22, and Theorem 19.23, we give formulas relating the degrees of projective
varieties W and π(W ) under a projection π.

Suppose that V is a nonsingular projective variety and W is a t-dimen-
sional closed subvariety of V . Associated to divisorsD1, . . . , Dt on V we have
the intersection product I(D1 · · ·Dt · W ) of (19.9). This product satisfies
the conditions that

(19.1) it is multilinear in divisors on V

by Proposition 19.6, and if D′
1, . . . , D

′
t are divisors on V such that

D′
1 ∼ D1, . . . , D

′
t ∼ Dt,

then

(19.2) I(D′
1 · · ·D′

t ·W ) = I(D1 · · ·Dt · W )

by the comment after Definition 19.2.

365
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By Theorem 16.1, if H1, . . . , Ht are very ample divisors on V , then there
exist effective divisors H ′

1, . . . , H
′
t on V such that H ′

1 ∼ H1, . . . , H
′
t ∼ Ht

and the scheme H ′
1 ∩ · · · ∩ H ′

t ∩ Y is reduced and finite (a zero-dimensional
algebraic set). Then if d is the number of points in H ′

1 ∩ · · · ∩ H ′
t ∩ Y , we

have by Propositions 19.8 and 19.5 that

(19.3) I(H ′
1 · · ·H ′

t) = d.

Using the three properties (19.1), (19.2), and (19.3), we can compute the
intersection product I(D1 · · ·Dt ·W ) for any divisors D1, . . . , Dt on V , since
any divisor on V is the difference of very ample divisors by 2) of Theorem
13.32.

Alternatively, we can use the three properties (19.1), (19.2), and (19.3)
to define the intersection product I(D1 · · · · Dt · W ). This is the way that
intersections products were first defined. Of course we must then prove that
our construction is well-defined. A first step on this is given by Theorem
16.9, which shows that the number of points d in the reduced scheme

H ′
1 ∩ · · · ∩H ′

t ∩ Y

does not depend on the choice of generalH ′
1, . . . , H

′
t which are linearly equiv-

alent to H1, . . . , Ht.

19.1. Definition, properties, and some examples of
intersection numbers

Suppose that V is a projective scheme (over an algebraically closed field k).

Theorem 19.1 (Snapper). Let F be a coherent sheaf on V and let s =
dimSupp F . Let L1, . . . ,Lt be t invertible sheaves on V . Then the Euler
characteristic

χ(F ⊗ Ln1
1 ⊗ · · · ⊗ Lnt

t ) =

∞∑
i=0

(−1)ihi(V,F ⊗ Ln1
1 ⊗ · · · ⊗ Lnt

t )

is a numerical polynomial in n1, . . . , nt of total degree s.

A numerical polynomial in n1, . . . , nt is a polynomial f(n1, . . . , nt) in
n1, . . . , nt with rational coefficients such that f(n1, . . . , nt) is an integer
whenever n1, . . . , nt are integers.

A coherent sheaf G of OV -modules is a torsion sheaf if for all p ∈ V and
a ∈ Gp, there exists a non-zerodivisor b ∈ OV,p such that ab = 0.

Proof. We will prove the theorem by induction on s. The theorem is trivial
when s = −1. Assume s ≥ 0. We may replace V with Supp(F), given the
subscheme structure defined by Ann(F). We then have reduced to the case
that the theorem holds for torsion sheaves on V .
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Let K ′ be the set of (F ,L1, . . . ,Lt) on V such that the theorem holds.
Since χ is exact on exact sequences of coherent modules, by Grothendieck’s
theory of dévissage (unscrewing) in [67, Section 3.1], we need only prove the
theorem for F = OV when V is a projective variety and if we assume that all
torsion sheaves G on V satisfy the conclusions of the theorem. We proceed
by induction on t, the case t = 0 being trivial. Since V is a projective
variety, there exists a > 0 such that the sheaf L1 ⊗ OV (a) is generated by
global sections by Theorem 11.45. Since L1 ⊗ OV (a) is generated by global
sections, there exists 0 
= σ ∈ Γ(V,L1 ⊗OV (a)). We thus have a short exact
sequence

(19.4) 0 → OV (−a) ⊗ L−1
1

σ→ OV → B → 0

where B = OV /σOV (−a) ⊗ L−1
1 . We can assume that a is sufficiently large

that there exists 0 
= τ ∈ Γ(V,OV (a)) giving a short exact sequence

(19.5) 0 → OV (−a)
τ→ OV → C → 0

where C = OV /τOV (−1). Tensor (19.4) with Ln1+1
1 ⊗ Ln2

2 ⊗ · · · ⊗ Lnt
t and

tensor (19.5) with Ln1
1 ⊗Ln2

2 ⊗· · ·⊗Lnt
t and take the long exact cohomology

sequences to get

χ(Ln1+1
1 ⊗ Ln2

2 ⊗ · · · ⊗ Lnt
t )

= χ(OV (−a) ⊗ Ln1
1 ⊗ Ln2

2 ⊗ · · · ⊗ Lnt
t ) + χ(B ⊗ Ln1+1

1 ⊗ Ln2
2 ⊗ · · · ⊗ Lnt

t )

and

χ(Ln1
1 ⊗ Ln2

2 ⊗ · · · ⊗ Lnt
t )

= χ(OV (−a) ⊗ Ln1
1 ⊗ Ln2

2 ⊗ · · · ⊗ Lnt
t ) + χ(C ⊗ Ln1

1 ⊗ Ln2
2 ⊗ · · · ⊗ Lnt

t ).

Since dimSupp B < dimV and dimSupp C < dimV , we have that

Q(n1, . . . , nt)

= χ(Ln1+1
1 ⊗ Ln2

2 ⊗ · · · ⊗ Lnt
t ) − χ(Ln1

1 ⊗ Ln2
2 ⊗ · · · ⊗ Lnt

t )

= χ(B ⊗ Ln1+1
1 ⊗ Ln2

2 ⊗ · · · ⊗ Lnt
t ) − χ(C ⊗ Ln1

1 ⊗ Ln2
2 ⊗ · · · ⊗ Lnt

t )

is a numerical polynomial in n1, . . . , nt of total degree < s. Expand Q ∈
Q[x1, . . . , xt] as

Q = c0

(
x1
r

)
+ c1

(
x1

r − 1

)
+ · · ·+ cr

where ci ∈ Q[x2, . . . , xt] and r < s is the degree of Q in x1. Set

P = c0

(
x1

r + 1

)
+ · · · + cr

(
x1
1

)
.
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The first difference

ΔP := P (n1 + 1, n2, . . . , nt) − P (n1, n2, . . . , nt) = Q(n1, . . . , nt)

since Δ
(
x1

j

)
=
(
x1

j−1

)
. Expand

χ(Ln1
1 ⊗ Ln2

2 ⊗ · · · ⊗ Lnt
t ) − P (n1, . . . , nt)

=
∑n1−1

i=0 Δ
(
χ(Li

1 ⊗ Ln2
2 ⊗ · · · ⊗ Lnt

t ) − P (i, n2, . . . , nt)
)

+χ(Ln2
2 ⊗ · · · ⊗ Lnt

t ) − P (0, n2, . . . , nt)
= χ(Ln2

2 ⊗ · · · ⊗ Lnt
t ) − P (0, n2, . . . , nt).

Since χ(Ln2
2 ⊗ · · · ⊗ Lnt

t ) is a numerical polynomial of total degree s by
induction on t, we have that χ(Ln1

1 ⊗Ln2
2 ⊗· · ·⊗Lnt

t ) is a numerical polynomial
of total degree s. �

Definition 19.2. Let L1, . . . ,Lt be t invertible sheaves on V , and let F be
a coherent sheaf on V such that dimSupp F ≤ t. The intersection number

(L1 · · · Lt;F)V

of L1, . . . ,Lt with F is the coefficient of the monomial n1 · · ·nt in

χ(F ⊗ Ln1
1 ⊗ · · · ⊗ Lnt

t ).

Observe that (L1 · · · Lt;F)V is independent of isomorphism class of
L1, . . . ,Lt and F .

Lemma 19.3. Suppose that F is a coherent sheaf on V and L1, . . . ,Lt are
invertible sheaves on V with dimSupp F ≤ t. Then

(L1 · · · Lt;F)V = χ(F)−
∑t

i=1 χ(F ⊗ L−1
i ) +

∑
i<j χ(F ⊗ L−1

i ⊗ L−1
j )

− · · · + (−1)tχ(F ⊗ L−1
1 ⊗ · · · ⊗ L−1

t ).

Proof. The polynomial P (n1, . . . , nt) = χ(F ⊗ Ln1
1 ⊗ · · · ⊗ Lnt

t ) has an
expansion

P (n1, n2, . . . , nt) =
∑

j1+···+jt≤t

aj1,...,jtn
j1
1 · · ·njt

t

with aj1,...,jt ∈ Q. Now for i1 < i2 < · · · < is ≤ t,

χ(F ⊗ L−1
i1

⊗ L−1
i2

· · · ⊗ L−1
is

)

=
∑

j1+···+js≤t(−1)j1+···+jsa0,...,0,j1,0,...,0,j2,0,...,0,js,0,...,0,

from which the conclusion of the lemma follows, using the identity

0 = (1− 1)d =
d∑

i=0

(
d

i

)
(−1)i. �

Proposition 19.4. The intersection number (L1 · · · Lt;F)V is an integer.
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Proof. This follows from Lemma 19.3, since an Euler characteristic is an
integer. �

Proposition 19.5. The intersection number

(L1 · · · Lt;F)V =

{
0 if dimSupp F < t,
h0(V,F) if dimSupp F = t = 0.

Proof. If dimSupp F < t, then χ(F ⊗ Ln1
1 ⊗ · · · ⊗ Lnt

t ) is polynomial of
degree less than t, and if dimSupp F = t = 0, then

(F)V = χ(F) = h0(F). �

Suppose that F is a coherent sheaf on V whose support has dimension
0. Let Supp(F) = {Q1, . . . , Qm}. Then the intersection multiplicity

(19.6) (F)V = h0(V,F) =
m∑
i=1

dimk FQi .

Proposition 19.6. The intersection number (L1 · · · Lt;F)V is a symmetric
t-linear form in L1, . . . ,Lt.

Proof. Let M and N be invertible sheaves on V . Taking successively n = 0
and m = 0, we have that

χ(F ⊗ Mm ⊗ (N−1)n ⊗ Ln2
2 ⊗ · · · ⊗ Lnt

t )
= (M · L2 · · · Lt · F)V mn2 · · ·nt − (N · L2 · · · Lt · F)V nn2 · · ·nt + · · · .

Now taking m = n = n1, we obtain

χ(F ⊗ (M ⊗ N−1)n1 ⊗ Ln2
2 ⊗ · · · ⊗ Lnt

t )
= ((M · L2 · · · Lt · F)V − (N · L2 · · · Lt · F)V )n1n2 · · ·nt + · · · ,

establishing linearity. �

Proposition 19.7. If

0 → F ′ → F → F ′′ → 0

is a short exact sequence of coherent OV -modules, then

(L1 · · · Lt;F)V = (L1 · · · Lt;F ′)V + (L1 · · · Lt;F ′′)V .

Proof. This follows from the additivity of the Euler characteristic on short
exact sequences. �

Let W be a closed subscheme of V of dimension less than or equal to t.
Then we define

(L1 · · · Lt · W ) = (L1 · · · Lt;OW )V .

We define

(L1 · · · Lt) = (L1 · · · Lt · V ).
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In Proposition 19.8, we use notation introduced in Section 15.1.

Proposition 19.8. Suppose that s ∈ Γ(V,L1) is a nonzero divisor and also
that s is not a zero divisor on F . Then

(L1 · · · Lt;F)V = (L2 · · · Lt;F ⊗ OΔ)V

where Δ = div(s) and OΔ = OV /Idiv(s). In particular, if dimV ≤ t, then

(L1 · · · Lt) = (L2 · · · Lt · Δ).

Proof. With our assumptions on s, we have short exact sequences

0→F⊗Ln1−1
1 ⊗Ln2

2 ⊗· · ·⊗Lnt
t

s→F⊗Ln1
1 ⊗· · ·⊗Lnt

t →(F⊗OΔ)⊗Ln1
1 ⊗· · ·⊗Lnt

t →0.

Hence

χ(F ⊗ OΔ ⊗ Ln1
1 ⊗ · · · ⊗ Lnt

t )

= χ(F ⊗ Ln1
1 ⊗ · · · ⊗ Lnt

t ) − χ(F ⊗ Ln1−1
1 ⊗ · · · ⊗ Lnt

t )
= (L1 · · · Lt · F)V n1n2 · · ·nt

+ · · · − (L1 · · · Lt · F)V (n1 − 1)n2 · · ·nt + · · ·
= (L1 · · · Lt · F)V n2 · · ·nt + · · · .

Further, taking n1 = 0, we have that

χ((F ⊗ OΔ) ⊗ Ln2
2 ⊗ · · · ⊗ Lnt

t ) = (L2 · · · Lt · FΔ)V n2 · · ·nt + · · · . �

Proposition 19.9. Suppose that W is a closed subscheme of V which con-
tains the subscheme X = Supp(F), where X is provided with the subscheme
structure defined by the annihilator of F ; that is, there is a natural surjection
OW → OX = OV /Ann(F). Then F may be considered as an OW -module,
and

(L1 · · · Lt;F)V = (L1 ⊗ OW · · · Lt ⊗ OW ;F)W .

In particular,

(L1 · · · Lt · W ) = (L1 ⊗ OW · · · Lt ⊗ OW ).

Proof. If L is any invertible sheaf on V , then

F ⊗ L ∼= F ⊗ OW ⊗ L.

Now set L = Ln1
1 ⊗ · · · ⊗ Lnt

t , and take Euler characteristics to obtain the
conclusions of the proposition. �

Corollary 19.10. Suppose that V = Supp(F). Let V1, . . . , Vs be the irre-
ducible components of V (which might not be reduced), and let Fi = F ⊗OVi

for 1 ≤ i ≤ s. Then

(L1 · · · Lt;F)V = (L1 · · · Lt;F1)V + · · · + (L1 · · · Lt;Fs)V .
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Proof. The canonical homomorphisms OV → OVj for j = 1, . . . , s give an
exact sequence of coherent OV -modules

0 → A → F →
⊕
j

Fj → B → 0

with Supp A, Supp B ⊂
⋃

i �=j(Vi ∩ Vj). The corollary now follows from
Propositions 19.5 and 19.7. �

If V is a scheme and W is a subvariety, then we compute the local
ring OV,W as in Definition 12.17. If U is an open affine subset of V which
intersects W , then OV,W = Γ(U,OV )P where P is the prime ideal of W in

Γ(U,OV ). If F is a coherent sheaf on V and F|U = M̃ for some Γ(U,OV )-
module M , then we define FW = MP .

Corollary 19.11. Suppose that V is irreducible and dimV ≤ t. Let � =
�OV,Vred

(FVred
). Then

(L1 · · · Lt;F)V = �(L1 · · · Lt;OVred
).

Proof. We have that OV,Vred
is an Artin local ring and FVred

is a finite
OV,Vred

-module. Let K′ be the set of F for which the corollary is true. The
corollary is certainly true when F = OVred

and when dimSupp F < t. The
conclusions of the corollary now follow from dévissage ([67, Section 3.1]). �

We define the degree of a regular map φ : V → V ′ of varieties (Definition
21.25) as follows:

deg(φ) =

{
[k(V ′) : k(V )] if dimV = dimV ′ and φ is dominant,
0 otherwise.

Proposition 19.12. Let φ : V ′ → V be a regular map of projective vari-
eties and assume that t ≥ max{dimV, dimV ′}. Let L1, . . . ,Lt be invertible
sheaves on V and set L′

i = φ∗Li for 1 ≤ i ≤ t. Then

(L′
1 · · · L′

t) = deg(φ) (L1 · · · Lt).

Proof. [89, Proposition 6]. �

IfD1, D2, . . . , Dn are divisors on an n-dimensional nonsingular projective
variety V , then we define

(19.7) (D1 · D2 · · ·Dn) = (OV (D1) · OV (D2) · · · OV (Dn)).

Observe that if D′
i ∼ Di for 1 ≤ i ≤ n, then

(19.8) (D′
1 · D′

2 · · ·D′
n) = (D1 · D2 · · ·Dn).
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Suppose that W is a t-dimensional subvariety of V . Then we define

(19.9) (D1 · · ·Dt · W ) = (OV (D1) · · · OV (Dt) · OW ).

Example 19.13. Suppose that L ∼= OX(D) is an invertible sheaf on a
nonsingular projective curve X. Then the intersection multiplicity

(L) = (L · X) = deg(D).

If D is effective, this follows since

(L) = (OX(D);OX)X = (OD)X = h0(X,OD)

by Propositions 19.8 and 19.5. For general D, write D = D1 −D2 where D1

and D2 are effective. Then

(OX(D)) = (OX(D1 −D2)) = (OX(D1)) − (OX(D2))

= deg(D1) − deg(D2) = deg(D).

Alternatively, (L · X) is the linear term of

χ(OX(nD)) = ndeg(D) + 1− g(X)

by the Riemann-Roch theorem.

Example 19.14. Suppose that C is a nonsingular curve on a nonsingular
projective surface X and D is a divisor on X. Then by Propositions 19.8
and 19.9 and Example 19.13,

(D · C) = (OX(D) ⊗ OC) = deg(OX(D)⊗ OC).

We will denote the self-intersection number (L · · · L) of an invertible
sheaf L on a d-dimensional scheme V , d times with itself by (Ld).

Example 19.15. The intersection product

(OPd(1)d) = 1

for d ≥ 1.

We prove this formula by induction on d. When d = 1, we have

(OP1(1)) = degOP1(1) = 1

by Example 19.13. If d > 1, by Propositions 19.8 and 19.9 we have

(OPd(1)d) = (OPd(1)d−1 · OPd(1)) = (OPd(1)d−1 · L) = (OPd−1(1)d−1)

where L ∼= Pd−1 is a hyperplane section of Pd.

Theorem 19.16. Let Z be a projective scheme of dimension d and let L be
an invertible sheaf on Z. Then

χ(Ln) =
(Ld)

d!
nd +Q(n)

where Q(n) is a polynomial with rational coefficients of degree ≤ d − 1.
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Proof. There exists b ∈ Q and a polynomial Q(n) with rational coefficients
of degree ≤ d − 1 such that

(19.10) χ(Ln) = bnd +Q(n)

by Theorem 19.1. We have

(−1)d(Ld)nd = (L−n · · · L−n)

= χ(OZ) − dχ(Ln) +

(
d

2

)
χ(L2n) − · · ·+ (−1)dχ(Ldn)

(19.11)

by multilinearity of the intersection product, Proposition 19.6, and Lemma
19.3. Substituting (19.10) into (19.11), we obtain

(−1)d(Ld)nd =

(
−d+

(
d

2

)
2d − · · · + (−1)ddd

)
bnd +

d∑
i=0

(−1)i
(
d

i

)
Q(in).

Thus

(19.12) b =

(
−d+

(
d

2

)
2d − · · · + (−1)ddd

)−1

(−1)d(Ld).

In the case that Z = Pd and L = OPd(1), we have that (OPd(1)d) = 1 by
Example 19.15 and

χ(Ln) =

(
d+ n− 1

n − 1

)
=

nd

d!
+ lower-order terms,

so that b = 1
d! in this case. We then see from (19.12) that(

−d+

(
d

2

)
2d + · · ·+ (−1)ddd

)−1

(−1)d =
1

d!
,

so that for general L,

b =
(Ld)

d!
in (19.10). �

Suppose that φ : X → Y is a regular map of normal varieties such that
φ = φ|D| where D is a divisor on X such that |D| is base point free. We
have that D = φ∗(H) where H is a hyperplane section of Y . Since the linear
system |D| has no base points, we have that (C ·D) ≥ 0 for all closed curves
C on X. An invertible sheaf L such that (L · C) ≥ 0 for all closed curves
C on X is called numerically effective (nef). For a closed curve C on X, we
have that φ(C) is contracted to a point on Y if and only if (C · D) = 0. A
nef divisor F does not always have the property that some positive multiple
mF gives a base point free linear system |mF |. We will give an example
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in Theorem 20.14 (and Exercise 20.17). More examples and explanations of
this can be found in [159], [44], [98].

Theorem 19.17. Suppose that Z is an arbitrary closed subscheme of Pn of
dimension r. Then

(19.13) deg(Z) = (OPn(1)r · Z) = (OZ(1)
r).

Proof. The quickest proof of the theorem follows from Corollary 17.21,
which tells us that χ(OZ(n)) is the Hilbert polynomial PZ(n) of Z, and
from Theorem 19.16.

We also give an alternate, more conceptual, proof. Let I ⊂ S = S(Pn)

be the saturated homogeneous ideal such that IZ = Ĩ. By prime avoidance
and since k is infinite ([28, Lemma 1.5.10–Proposition 1.5.12]), there exists
a linear form F ∈ S1 such that F1 is not contained in any associated prime
ideals of I. Thus the sequence

0 → (S/I)(−1)
F1→ S/I → S/(I + (F1)) → 0

is short exact. Let L1 = Z(F1) ⊂ Pn. Comparing Hilbert functions of S/I
and S/(I + (F1)) as in the proof of Theorem 16.9, we have that

PS/I(n) − PS/I(n− 1) = PS/(I+(F1))(n)

so that degZ = degZ ∩ L1. With our assumptions, we have that F1 ∈
Γ(Pn,OPn(1)) is not a zero divisor on OZ . Thus (OPn(1)r ·Z) = (OZ(1)

r−1 ·
Z∩L1) by Propositions 19.8 and 19.9. By induction, we can choose F1, . . . , Fr

∈ S with r = dimZ such that if Li = Z(Fi), we have that

degZ = degZ ∩ L1 ∩ · · · ∩ Lr

and
(OPn(1)r · Z) = (OZ∩L1∩···∩Lr)Pr .

The Hilbert polynomial of the zero-dimensional scheme Z ∩ L1 ∩ · · · ∩Lr is
the constant dimension

dimk(S/I + (F1) + · · · + (Fr))m for m � 0,

which is
h0(Pn,OZ∩L1∩···∩Lr(m)) = h0(Pn,OZ∩L1∩···∩Lr)

by Theorem 11.47, which is valid for arbitrary projective schemes. Since
Z ∩ L1 ∩ · · · ∩ Lr is a zero-dimensional scheme, we also have that

(OZ∩L1∩···∩Lr)Pr = h0(Pn,OZ∩L1∩···∩Lr)

by Proposition 19.5, from which the theorem follows. �

Corollary 19.18. Suppose that X is a nonsingular projective variety of
dimension d, H is an ample divisor on X, and D is a nonzero effective
divisor on X. Then (Hd−1 · D) > 0.
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Proof. There exists a positive integer n0 such that n0H is very ample on
X, and so there is a closed embedding X ⊂ Pr such that OPr(1) ⊗ OX

∼=
OX(n0H). Let A = n0H and suppose that E is a codimension 1 subvariety
of X. Then

(Ad−1 · E) = (OX(A)d−1 · OX(E))
= (OX(A)d−1 · OE) by Proposition 19.8
= (OPr(1)d−1 · OE) by Proposition 19.9
= (OPr(1)d−1 · E)
= deg(E) by Theorem 19.17.

Writing D =
∑

aiEi with Ei prime divisors on X and ai > 0, we have

(Hd−1 · D) = 1
nd−1
0

(Ad−1 · D)

= 1
nd−1
0

(
∑

ai deg(Ei)) > 0

by Proposition 19.6. �

Remark 19.19. Suppose that X is a nonsingular projective variety of
dimension d and D1, · · · , Dd are divisors on X with Dd ∼ 0. Then
(D1 · · · · · Dd) = 0.

The remark follows since

χ(OX(D1)
n1 ⊗ · · · ⊗ OX(Dd)

nd) = χ(OX(n1D1 + · · ·+ nd−1Dd−1))

does not depend on nd, so

(OX(D1) · · · · · OX(Dd)) = (OX(D1) · · · · · OX(Dd);OX)X = 0

by Definition 19.2 of the intersection product.

19.2. Applications to degree and multiplicity

Theorem 19.20 (Bézout’s theorem). Let Y and Z be distinct irreducible,
closed curves in P2, having degrees d and e, respectively. Let the intersection
points of Y and Z be {Q1, . . . , Qs}. Then

s∑
i=1

dimk OY ∩Z,Qi = de

where Y ∩ Z is the scheme-theoretic intersection. In particular, if Qi are
nonsingular points of both Y and Z and if Y and Z have distinct tangent
spaces at these points (Y and Z intersect transversally), then s = de.

Proof. We have that

de = de(OP2(1) · OP2(1)) = (OP2(d) · OP2(e))
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by Example 19.15 and Proposition 19.6. We also calculate

(OP2(d) · OP2(e)) = (OP2(Y ) · Z) = (OY ∩Z)P2

= h0(P2,OY ∩Z) =
∑s

i=1 dimk OY ∩Z,Qi

by Propositions 19.8, 19.9, and 19.5. �

Theorem 19.21. Suppose that W is an m-dimensional closed subvariety of
Pn. Let P ∈ Pn be a point not in W and let π : Pn ��� Pn−1 be projection
from the point P . Let W1 = π(W ) and let φ : W → W1 be the induced
regular map. Suppose that dimW1 = dimW . Then

deg(W1) = deg(φ)deg(W ).

Proof. Since φ∗OW1(1)
∼= OW (1), we have by Proposition 19.12 and Theo-

rem 19.17 that

deg(W1) = (OPn−1(1)m · W1) = (OW1(1)
m) = deg(φ)(OW (1)m)

= deg(φ)(OPn(1)m · W ) = deg(φ)deg(W ). �

Corollary 19.22. Suppose that W is a closed subvariety of Pn of dimension
m and L is a linear subspace of Pn of dimension n−m−1 such that W∩L = ∅
and the projection W1 of W from L to Pm+1 is birational. Then deg(W1) =
deg(W ). In particular, the degree of the homogeneous form defining W1 in
Pm+1 is degree d = degW .

Suppose that R is a d-dimensional local ring with maximal ideal m. Then
the length �R(R/mt+1) is a polynomial in t of degree d for t � 0, called the
Hilbert-Samuel polynomial. The leading coefficient times d! is an integer,
called the mutiplicity e(R) of R. This theory is explained in [161, Chapter
VIII].

Theorem 19.23. Suppose that W is a projective variety of dimension d
which is a closed subvariety of Pn. Suppose that P ∈ W . Let π : Pn ��� Pn−1

be the rational map which is the projection from the point P . Let W1 be the
projective subvariety of Pn−1 which is the closure of π(W \ {P}). Let μ be
the multiplicity of the local ring OW,P . Then:

1. μ ≤ deg(W ).

2. Suppose that μ < deg(W ). Then dimW = dimW1 and

(19.14) [k(W ) : k(W1)]deg(W1) = deg(W ) − μ.

3. Suppose that μ = deg(W ). Then dimW > dimW1 and W is a
cone over W1.

Proof. Let σ : Z → Pn be the blow-up of P with exceptional divisor
E = ZP . Let λ : Z → Pn−1 be the induced regular map (a resolution of
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indeterminacy of π). Let H0 be a hyperplane of Pn and H1 be a hyperplane
of Pn−1. We have a linear equivalence of divisors

(19.15) σ∗(H0) − E ∼ λ∗(H1).

Let W be the strict transform of W on Z. By Proposition 19.6, we have
that

(19.16) (λ∗(H1)
d · W ) = (σ∗(H0)

d · W ) + ((−E)d · W ).

Since deg(σ|W ) = 1, by Proposition 19.12 and Theorem 19.17, we have
that

(σ∗(H0)
d · W ) = (Hd

0 · W ) = deg(W ).

Let y0, . . . , yn be homogeneous coordinates on Pn. After a linear change
of variables, we may assume that P = (0, . . . , 0) ∈ U = An = Pn \ Z(y0).

Let Z ′ = σ−1(U), W ′ = W ∩ U , and W
′
= W ∩ σ−1(U). The variables

y1, . . . , yn are homogeneous coordinates on Pn−1 and π = (y1 : · · · : yn). Let
mP be the maximal ideal of P in k[U ].

We have an embedding of Z ′ in U ×Pn−1. The variety U ×Pn−1 has the
homogeneous coordinate ring k[U ][y1, . . . , yn]. The fiber Z ′

P = E ∼= Pn−1

has the homogeneous ideal IE = mpk[U ][y1, . . . , yn] and coordinate ring
S(E) = k(P )[y1, . . . , yn].

Let mP = mPk[W
′]. Then the coordinate ring of W

′
is the coordinate

ring of the blow-up of mP , which is S(W
′
) =
⊕

t≥0m
t
p by Theorem 6.4 and

Proposition 6.6. The homogeneous ideal of W
′
P = E ∩ W

′
is mPS(W

′
), so

the homogeneous coordinate ring of E ∩W
′
= E ∩ W is

S(E ∩ W ) =
⊕
t≥0

mt
P /m

t+1
P .

The embedding of E ∩W in E is realized by the natural surjection

k(P )[y1, . . . , yn] →
⊕
t≥0

mt
P /m

t+1
P

which maps the yi to the corresponding generators of mP .

Under this embedding, we have that deg(W ∩ E) is (d − 1)! times the
leading coefficient of the Hilbert polynomial of S(E∩W ), since dimW ∩E =
dimWP = d − 1.
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Let R = OW,P with maximal ideal mR. Since

�(R/mt+1
R ) =

t∑
s=0

dimk m
s
P /m

s+1
P ,

we have that deg(W ∩ E) = e(R).

As in Example 13.38, we calculate that OE⊗OZ(−E) ∼= OPn−1(1). Thus
by Proposition 19.8 and (19.13),

((−E)d · W ) = −((−E)d−1 · (W ∩ E)) = −deg(W ∩E) = −e(R) = −μ.

We can thus rewrite (19.16) as

(19.17) (λ∗(H1)
d · W ) = deg(W ) − μ.

By Proposition 19.12, we have that

(λ∗(H1)
d · W ) =

{
[k(W ) : k(W1)]deg(W1) if dimW = dimW1,
0 if dimW > dimW1.

Substituting into (19.17), we conclude that μ ≤ deg(W ) and μ = deg(W )
if and only if W1 has dimension < d, which holds if and only if W is a cone
with vertex P . If μ < deg(W ), then we obtain (19.14). �

Exercise 19.24. Suppose that X is an r-dimensional variety of degree 2 in
Pn. Show that X is birationally equivalent to Pr. Hint: We know that X
is a quadric hypersurface in a linear subvariety L ∼= Pr+1 of Pn by Exercise
16.17. Let p ∈ X be a nonsingular point, and consider the projection of L
from p to Pr and its effect on X. Is X necessarily isomorphic to Pr?



Chapter 20

Surfaces

In this chapter we will derive some basic properties of nonsingular projective
surfaces. For further reading on this topic, the books [18], [16], and [118]
are recommended.

20.1. The Riemann-Roch theorem and the Hodge index
theorem on a surface

Associated to divisors D1 and D2 on a nonsingular projective surface S,
we have the intersection product (D1 · D2) defined in (19.7). The product
(D1 · D2) is symmetric and bilinear by Proposition 19.6. If D′

1 ∼ D1 and
D′

2 ∼ D2, then (D′
1 · D′

2) = (D1 · D2) by (19.8). If D1 =
∑

aiEi and
D2 =

∑
bjEj , where Ei are prime divisors, then

(D1 · D2) =
∑
i,j

aibj(Ei · Ej).

Thus the computation of (D1 · D2) reduces to the case when D1 and D2

are prime divisors. In the case when D1, D2 are distinct prime divisors,
the intersection product has a nice interpretation, analogous to Bézout’s
theorem on P2.

Lemma 20.1. Suppose that D1, D2 are distinct prime divisors on the non-
singular projective surface S. Then

(D1 · D2) =
∑

p∈D1∩D2

dimk(OD1∩D2,p)

where D1 ∩D2 is the scheme-theoretic intersection.

379
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Proof. By Propositions 19.8 and 19.5, we have that

(D1 · D2) = (OS(D1);OD2)S = (OD1∩D2)S

= h0(S,OD1∩D2)

=
∑

p∈D1∩D2

dimk(OD1∩D2,p). �

Theorem 20.2 (Adjunction). Suppose that C is a nonsingular projective
curve of genus g on a nonsingular projective surface X with canonical divisor
KX . Then

(C · (C +KX)) = 2g − 2.

Proof. We have

(C · (C +KX)) = deg(OX(C +KX) ⊗ OC) = degOC(KC) = 2g − 2

by Theorem 14.21, Corollary 18.14, and Example 19.14. �

The following theorem is the Riemann-Roch theorem on a a surface. It
is often used with Serre duality (Theorem 17.22) which implies that

h2(X,OX(D)) = h0(X,OX(KX − D)).

Theorem 20.3. Suppose that X is a nonsingular projective surface and D
is a divisor on X. Then

χ(OX(D)) = h0(X,OX(D)) − h1(X,OX(D)) + h2(X,OX(D))
= 1

2 (D · (D − KX)) + χ(OX)

where KX is a canonical divisor on X.

Proof. We have that hi(X,OX(D)) = 0 for i > 2 by Theorem 17.5.

Write D = D2 − D1 where D1 and D2 are effective divisors. Let H be
an ample divisor on X. By Theorem 13.32, there exists a positive integer
n0 such that n0H +D1 and n0H +D2 are very ample. By Theorem 16.1,
there exist nonsingular curves C1 and C2 such that n0H + D1 ∼ C1 and
n0H +D2 ∼ C2 so D ∼ C2 − C1. We have short exact sequences

0 → OX(C2 − C1) → OX(C2) → OX(C2) ⊗ OC1 → 0

and

0 → OX → OX(C2) → OX(C2) ⊗ OC2 → 0.

Since χ is additive on short exact sequences (Exercise 17.24), we have

χ(OX(D)) = χ(OX(C2 − C1))

= χ(OX) + χ(OX(C2) ⊗ OC2) − χ(OX(C2) ⊗ OC1).
(20.1)
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By the Riemann-Roch theorem for curves (Theorem 18.2) and Example
19.14, we have

(20.2) χ(OX(C2) ⊗ OC2) = (C2)
2 + 1− g(C2)

and

(20.3) χ(OX(C2) ⊗ OC1) = (C1 · C2) + 1 − g(C1).

By Theorem 20.2, we have

(20.4) g(C1) =
1

2
(C1 · (C1 +KX)) + 1

and

(20.5) g(C2) =
1

2
(C2 · (C2 +KX)) + 1.

The theorem now follows from formulas (20.1)–(20.5). �

Corollary 20.4. Suppose that D is a divisor on a nonsingular projective
surface S. Then

h0(X,OX(D)) ≥ 1

2
(D · (D −KX)) + χ(OX) − h0(X,OX(KX − D)).

This follows by combining Theorems 20.3 and 17.22.

Lemma 20.5. Let H be an ample divisor on a nonsingular projective surface
X. Then there is an integer n0 such that for any divisor D on X, if (D·H) >
n0, then H2(X,OX(D)) = 0.

Proof. Let n0 = (KX · H). By Serre duality,

h2(X,OX(D)) = h0(X,OX(KX − D)).

If (D · H) > n0 and h0(X,OX(KX − D)) > 0, then KX − D is linearly
equivalent to an effective divisor and thus ((KX − D) · H) ≥ 0 by Corollary
19.18 and Remark 19.19. But

((KX − D) · H) = (KX ·H) − (D · H) < 0

if (D · H) > n0 = (KX ·H), giving a contradiction. �

Corollary 20.6. Let H be an ample divisor on a nonsingular projective
surface X and let D be a divisor on X such that (D ·H) > 0 and (D2) > 0.
Then for all n � 0, nD is linearly equivalent to an effective divisor.

Proof. Let n0 = (KX · H) be the constant of Lemma 20.5. Then there
exists n1 > 0 such that for n ≥ n1, we have

(nD · H) = n(D · H) > n0
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so h0(X,OX(KX − nD)) = 0. By Corollary 20.4, we have

h0(X,OX(nD)) ≥ 1

2
n2(D2) − 1

2
n(D ·KX) + χ(OX)

for n ≥ n1. Since (D2) > 0, h0(X,OX(nD)) > 0 for n � 0. �
Definition 20.7. A divisor D on a nonsingular projective surface X is said
to be numerically equivalent to zero, written D ≡ 0, if (D · E) = 0 for all
divisors E on X. We say that divisors D and E are numerically equivalent,
written as D ≡ E if D −E ≡ 0.

If D and E are linearly equivalent divisors, then OX(D − E) ∼= OX , so
that D ≡ E by Remark 19.19.

Theorem 20.8 (Hodge index theorem). Let H be an ample divisor on a
nonsingular projective surface X and suppose that D is a divisor on X such
that D 
≡ 0 and (D · H) = 0. Then (D2) < 0.

Proof. Suppose that (D2) ≥ 0. We will derive a contradiction.

First suppose that (D2) > 0. Let H ′ = D+nH. For n � 0, H ′ is ample
by Theorem 13.32. Since

(D ·H ′) = (D2) > 0,

we have that mD is linearly equivalent to a nonzero effective divisor for
m � 0 by Corollary 20.6 and Remark 19.19. Then

(mD · H) = m(D · H) > 0

by Corollary 19.18. Hence (D · H) > 0, giving a contradiction.

Now suppose that (D2) = 0. Since D 
≡ 0, there exists a divisor E such
that (D · E) 
= 0. Let

E1 = (H2)E − (E · H)H.

Then (D · E1) 
= 0 ((H2) > 0 by Corollary 19.18) and (E1 · H) = 0.

Let D1 = nD + E1 for n ∈ Z. Then (D1 · H) = 0 and

(D2
1) = 2n(D · E1) + (E2

1).

Since (D · E1) 
= 0, there exists n ∈ Z such that (D2
1) > 0. Now the first

case of the proof applied to D1 gives a contradiction. �

Let X be a nonsingular projective surface. Define

Num(X) = Pic(X)/ ≡ .

The group Num(X) is a finitely generated group [97] without torsion, so
Num(X) ∼= Zρ for some ρ. Let N(X) = Num(X) ⊗ R, which is a finite-
dimensional vector space. The intersection pairing is a nondegenerate bi-
linear form on N(X). By Sylvester’s theorem [95, Theorem 4.1, page 577],
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the form can be diagonalized with ±1’s on the diagonal, and the difference
of the number of +1’s minus the number of −1’s is an invariant called the
signature of the form. The Hodge index theorem tells us that the diagonal-
ized intersection form on a surface has exactly one +1. In particular, the
signature of the form is 2− ρ.

20.2. Contractions and linear systems

The self-intersection number (C2) = (C · C) of a curve C on a nonsingular
projective surface can by negative, as is shown by the following example.

Example 20.9. Let S be a nonsingular projective surface, and let p ∈ S
be a point. Let π : S1 → S be the blow-up of p with exceptional divisor E.
Then

(E2) = (E · E) = −1.

Proof. We have that (E ·E) = deg(OS1(E)⊗OE) by Example 19.14. Now
E ∼= P1 and OS1(E) ⊗ OE

∼= OP1(−q) where q is a point on P1 by Example
13.38, so (E · E) = −1. �

A remarkable fact is that there is a converse to this example.

Suppose that X is a normal projective surface and C = {C1, . . . , Cn} is
a finite set of closed curves on X. A contraction of C is a regular birational
map φ : X → Y such that Y is normal, there exists a point q ∈ Y such that
φ(Ci) = q for all i, and φ : X \ C → Y \ {q} is an isomorphism.

The contraction φ : X → Y of C, if it exists, must be unique. To see
this, suppose that φ1 : X → Y1 and φ2 : X → Y2 are two contractions of
C. Let Ψ : Y1 ��� Y2 be the induced birational map and let ΓΨ ⊂ Y1 × Y2

be the graph. Let π1 : ΓΨ → Y1 and π2 : ΓΨ → Y2 be the projections. Let
q1 = φ1(C) and q2 = φ2(C). Then Ψ : Y1\{q1} → Y2\{q2} is an isomorphism,
so π−1

1 (q1) = π−1
2 (q2) = {(q1, q2)}. By Zariski’s main theorem, Theorem 9.3,

both projections π1 and π2 are isomorphisms, so Y1
∼= Y2.

By Zariski’s connectedness theorem, Theorem 9.7, a set of curves C must
have a connected union to be contractible.

Theorem 20.10 (Castelnuovo’s contraction theorem). Suppose that S is
a nonsingular projective surface and E ∼= P1 is a curve on S such that
(E2) = −1. Then there exists a birational regular map φ : S → T where T
is a nonsingular projective surface such that φ(E) = p is a point on T and
φ : S → T is isomorphic to the blow-up π : B(p) → T of p.

Proof. We will first prove the existence of a contraction T of E. Let H
be a very ample divisor on S. After possibly replacing H with a positive
multiple of H, we may assume that H1(S,OS(H)) = 0 (by Theorem 17.18).
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Let m = (H · E) > 0 by Corollary 19.18. Then (E · (H + mE)) = 0. We
have an exact sequence

0 → OS(−mE) → OS → OmE → 0,

where mE is the subscheme of S with OmE = OS/Im
E . Tensoring with

OS(H +mE) and taking global sections, we have an exact sequence

H0(S,OS(H +mE)) → H0(S,OS(H +mE) ⊗ OmE)

→ H1(S,OS(H)) = 0.
(20.6)

Let L = OS(H +mE). For all n ≥ 1, we have short exact sequences

0 → OE ⊗ OS(−nE) → O(n+1)E → OnE → 0

since

OS(−nE)/OS(−(n+ 1)E) ∼= OE ⊗ OS(−nE).

Tensoring with L and taking global sections, we have exact sequences

H0(S,L ⊗ O(n+1)E) → H0(S,L ⊗ OnE)

→ H1(E,OE ⊗ OS(−nE) ⊗ L).
(20.7)

Now (E · (−nE)) = n and (OS(E) · L) = 0 so

OE ⊗ OS(−nE) ⊗ L ∼= OE(n) = OP1(n).

Thus H1(E,OS(−nE) ⊗ L ⊗ OE) = 0 for n ≥ 1 by Theorem 17.14.

Combining (20.6) and (20.7), we have a surjection

H0(S,OS(H +mE)) → H0(E,OS(H +mE) ⊗ OE) ∼= H0(E,OE).

Thus Base(|H +mE|)∩E = ∅, and so Base(|H +mE|) = ∅ since H is very
ample. Let φ : S → Pr be the regular map induced by |H +mE|. Suppose
C is a curve on S. Then φ(C) is a point if and only if ((H +mE) · C) = 0,
so the only curve contracted by φ is E. Let T be the normalization of
the image φ(S) in the function field of S (Theorem 7.17). Then we have a
factorization Ψ : S → T by Exercise 9.9 since S is normal. Let p = Ψ(E).
Then S\E → T \{p} is an isomorphism by Zariski’s main theorem (Theorem
9.3).

We have that Ψ∗OS
∼= OT be Proposition 11.52. By the theorem on

formal functions ([156] or [73, Theorem III.11.1])

ÔT,p
∼= lim

←
H0(En,OEn)

where En is the closed subscheme of S with the ideal sheaf mn
pOS (the

completion Â of a local ring A is defined in Section 21.5). Since Ψ−1(p) = E,
the sequence of ideal sheaves mn

pOS is confinal with respect to In
E , so

ÔT,p
∼= lim

←
H0(S,OS/In

E).
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We will show that H0(S,OnE) ∼= An = k[x, y]/(x, y)n so

ÔT,p
∼= lim

←
An

∼= k[[x, y]].

We then have that OT,p is a regular local ring (by Theorem 21.36). For
n = 1, H0(E,OE) ∼= k. For n > 1, we have short exact sequences

0 → In
E/In+1

E → OEn+1 → OEn → 0,

with

In
E/In+1

E
∼= OS(−nE) ⊗ OE

∼= OP1(n).

For n = 1, H0(P1,OP1(1)) is a two-dimensional vector space. Let x, y be a
basis. Then H0(S,OE2)

∼= A2. Inductively, if H0(S,OEn) is isomorphic to
An, lift x, y to H0(S,OEn+1). Since H

0(P1,OP1(n)) is the vector space with

basis xn, xn−1y, . . . , yn, we have that H0(S,OEn+1)
∼= An+1.

The contraction S → T is then the blow-up of p by Theorem 10.32. �

The above theorem may lead one to hope that any curve with negative
self-intersection number on a nonsingular projective surface can be con-
tracted by a regular map, but this is not true, as we show in the following
example.

Example 20.11. Suppose that the algebraically closed field k is not an
algebraic closure of a finite field. Then there exists a nonsingular projective
surface X over k and a nonsingular closed curve C on X with (C2) = −1
such that C is not contractible.

Proof. Let γ be a nonsingular cubic curve in S = P2
C and L be a line in S

such that γ∩L is reduced. Since (γ·L) = 3, γ∩L is a divisor γ∩L = q1+q2+q3
for distinct points q1, q2, q3 on γ.

Since the curve γ is nonsingular of degree 3, its canonical divisor is
Kγ = 0 by Corollary 14.22. Thus γ has genus 1 by Corollary 18.14. The

elliptic curve γ is isomorphic as a group to Cl0(γ), by Theorem 18.19, and
as explained before Proposition 18.44.

We will show that we can find a point p0 ∈ γ such that q1+ q2+ q3 −3p0
has infinite order in Cl0(γ). Let p be a point in γ. If q1 + q2 + q3 − 3p has
infinite order, then take p0 = p. Otherwise, there exists a positive integer m
such that m(q1 + q2 + q3 − 3p) ∼ 0. By Theorem 18.49, there exists p0 ∈ γ
such that p0 − p has infinite order. We will show that q1 + q2 + q3 − 3p0 has
infinite order. Suppose it does not. Then there eixsts a positive integer n
such that n(q1 + q2 + q3 − 3p0) ∼ 0, so

0 ∼ mn(q1+q2+q3−3p0) = nm(q1+q2+q3−3p)+mn3(p−p0) ∼ mn3(p−p0),

a contradiction since p0 − p is assumed to have infinite order. By Theorem
18.49, there exist distinct points p1, . . . , p10 ∈ γ such that the classes of
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q1+q2+q3−3p0, p1−p0, . . . , p10−p0 are linearly independent in the rational
vector space Cl0(γ) ⊗ Q. After possibly replacing L with a different line
linearly equivalent to L, we may assume that q1, q2, q3, p1, . . . , p10 are distinct
points of γ.

Suppose that there exist n,m1, . . . ,m10 ∈ Z such that n(q1 + q2 + q3) ∼
m1p1+· · ·+m10p10 on γ. Then fromm1+· · ·+m10 = deg(n(q1+q2+q3)) = 3n
we have that m1(p1 − p0) + · · · +m10(p10 − p0) ∼ n(q1 + q2 + q3 − 3p0) so
that m1 = · · · = m10 = n = 0.

Let π : X → S be the blow-up of the ten points p1, . . . , p10. Let H =
π∗(L) and Ei be the rational curves Ei = π−1(pi) for 1 ≤ i ≤ 10. We have
that

(20.8) Cl(X) = [H]Z⊕ [E1]Z⊕ · · · ⊕ [E10]Z

by Exercise 13.48 and Example 13.10. Let C be the strict transform of γ
on X. Since γ is a nonsingular curve, π : C → γ is an isomorphism (for
instance since γ is nonsingular and π : C → γ is birational). This allows us
to identify C with γ.

Since p1, . . . , p10 
∈ L, we can identify H ∩C = L∩ γ = q1 + q2 + q3. We
also have Ei ∩ C = pi for 1 ≤ i ≤ 10. We have that

C = π∗(γ)−E1−· · ·−E10 ∼ π∗(3L)−E1−· · ·−E10 ∼ 3H−E1−· · ·−E10.

We compute

(C2) = (C · (3H − E1 − · · · − E10)) = −1.

Suppose that there exists a contraction φ : X → Y of C. Let q = φ(C).
Let A be a very ample effective divisor on Y which does not contain q.
Let A = φ∗(A). Then A ∩ C = ∅ so OX(A) ⊗ OC

∼= OC . There exist
m1, . . . ,m10, n ∈ Z such that A ∼ nH + m1E1 + · · · + m10E10 by (20.8).
Thus

OC
∼= OX(A) ⊗ OC

∼= OX(nH +m1E1 + · · · +m10E10) ⊗ OC
∼= Oγ(n(q1 + q2 + q3) +m1p1 + · · ·+m10p10)

so n(q1 + q2 + q3) + m1p1 + · · · + m10p10 ∼ 0 on γ. Thus m1 = · · · =
m10 = n = 0, so that A = 0. Since φ∗ : Cl(Y ) → Cl(X) is injective (by
Proposition 13.39), we have that A ∼ 0 on Y . But this is impossible since
A is a hyperplane section of Y . �

We have the following necessary condition for the contractibility of a
union of curves.

Theorem 20.12. Suppose that S is a nonsingular projective surface and
C = {C1, . . . , Cn} is a finite set of curves on S such that C is contractible.
Then the intersection matrix A = ((Ci · Cj)) is negative definite.
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Proof. Let φ : S → S′ be the contraction of C and let H be a very ample
divisor on S′, which we may assume does not contain the point which is the
image of the Ci (Lemma 13.12). Let D = φ∗(H). Then (D2) = (H2) > 0
(Proposition 19.12 and Corollary 19.18) and (D ·Ci) = 0 for all i. With the
notation following the Hodge index theorem, Theorem 20.8, let

L = {v ∈ Num(S) | (v · D) = 0}.

The restriction of the intersection form to L is negative definite as com-
mented after the proof of Theorem 20.8. �

If C = {C1, . . . , Cn} is a finite set of curves on a nonsingular projective
surface S over C such that the union of the curves in C is connected and the
intersection matrix (Ci · Cj) is negative definite, then although there may
not be a contraction of these curves by a regular map, there does exist an
analytic map φ : S → T where T is a complex analytic (but not necessarily
algebraic) normal surface such that φ is an analytic contraction of the C.
This is proven by Grauert in [61]. We also have [11] that C is contractible
on a nonsingular projective surface S over a field k which is an algebraic
closure of a finite field if and only if the intersection matrix (Ci · Cj) is
negative definite (and the union of the curves in C is connected), showing
that the assumption that k is not an algebraic closure of a finite field is
necessary in Example 20.11.

Theorem 20.10 is the first result in a general philosophy that curves with
negative intersection number with the canonical divisor play a major role in
geometry; a nonsingular closed rational curve E on a nonsingular projective
surface S with (E2) = −1 satisfies (E · KS) = −1 by adjunction (Theorem
20.2). This philosophy has been realized to a remarkable degree. The theory
for projective surfaces is classical. In higher dimensions, much of the theory
has been developed, although many questions still remain (especially in
positive characteristic). A few papers and articles on this subject, which
contain detailed references, are Mori’s papers [112], [113], and [114], the
book [91] by Kollár and Mori, and the article [20] by Birkar, Cascini, Hacon,
and McKernan.

Let D be an effective divisor on a normal projective variety X. The fixed
component Bn of the complete linear system |nD| is the largest effective
divisor Bn ≤ nD such that Γ(X,OX(nD − Bn)) = Γ(X,OX(nD)).

Lemma 20.13. Suppose that D is an effective divisor on a normal projective
variety X. Let R[D] =

⊕
n≥0 Γ(X,OX(nD)). Then R[D] is not a finitely

generated k-algebra if

1) Bn 
= 0 for all n > 0,

2) Bn is bounded from above.
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Proof. Assume that 1) and 2) hold and that R[D] is a finitely generated
k-algebra. Then there exists a positive integer N , λ(i) ∈ Z+ and ui ∈
Γ(X,OX(λ(i)D)) for 1 ≤ i ≤ N such that Γ(X,OX(nD)) is spanned by the
products {

N∏
i=1

uνii | νi ≥ 0 for all i and
∑

λ(i)νi = n

}
.

Thus

Bn ≥ glb

{
N∑
i=1

νiBi |
∑

λ(i)νi = n

}
(glb means “greatest lower bound”). We have mBn ≥ Bmn for all m,n ∈ N.
Thus N !

i Bi ≥ BN ! for i = 1, 2, . . . , N . The divisorBN ! is nonzero by 1). Thus
B1, B2, . . . , BN have at least one prime divisor as a common component, so
condition 2) cannot be satisfied, as

∑
νi �→ ∞ as n �→ ∞. �

The following example is given by Zariski in [159].

Theorem 20.14 (Zariski). Suppose that k is a field which is not an algebraic
closure of a finite field. Then there is an effective divisor D on a nonsingular
projective surface X over k such that R[D] =

⊕
n≥0 Γ(X,OX(nD)) is not a

finitely generated k-algebra.

Proof. LetX ′ = P2
k, let E

′ be a nonsingular cubic curve onX ′, and letH ′ be
a line onX ′. Let α be a divisor on E′ such that OE′(α) ∼= OX′(H ′+E′)⊗OE′ .
The elliptic curve E′ is isomorphic to Cl0(E′) as a group by Theorem 18.19
and is explained before Proposition 18.44. By Theorem 18.49, there exists
a divisor β on E′ of degree 0 such that the class of β has infinite order in
Cl0(E′). The genus g of E′ is 1, as commented before Lemma 18.39. We
compute degα = ((H ′ + E′) · E′) = 12 (by Example 19.14), so

deg(α − β) = 12 > 2g + 1 = 5,

so α − β is a very ample divisor on E′ by Theorem 18.21. Thus there exist
distinct points p′1, . . . , p

′
12 ∈ E′ such that α−β ∼ p′1+ · · ·+ p′12 by Theorem

16.1. Now n(p′1 + · · ·+ p′12) − nα ∼ −nβ for all n ∈ Z, so

(20.9) n(p′1 + · · · + p′12) 
∼ nα

for all 0 
= n ∈ Z.

Let π : X → X ′ be the blow-up of the points p′1, . . . , p
′
12, with exceptional

divisors F1, . . . , F12. Let Γ′ ∈ |H ′| be an irreducible curve which does not
pass through any of the points p′1, . . . , p

′
12 (Theorem 16.1 and since |H ′| is

base point free). Let Γ = π∗(Γ′) and let E be the strict transform of E′ on
X, so that π∗(E′) = E +F1 + · · ·+F12. Set D = Γ+E. We will show that
the fixed component Bn of |nD| is precisely E (for n ∈ Z+). The theorem
will then follow from Lemma 20.13.



20.2. Contractions and linear systems 389

The restriction of π to E is an isomorphism onto E′. We compute

(E · E) = ((3Γ− F1 − · · · − F12) · E) = 3(H ′ · E′) − 12 = −3,

so for m,n ∈ Z, ((nΓ + mE) · E) = 3n − 3m. The canonical divisor KE

is zero, since E is an elliptic curve (Corollary 18.18). By Serre duality,
Corollary 18.10,

h1(E,OX(nΓ +mE) ⊗ OE) = 0 if n ≥ 1 and 0 ≤ m ≤ n− 1

and
(20.10)
OX(nΓ+mE)⊗OE is generated by global sections if n≥1 and 0≤m≤n − 1

by Theorem 18.21. However, when 0 
= m = n, we have

OX(n(Γ + E)) ⊗ OE
∼= OX(n(Γ + π∗(E′) − F1 − · · · − F12))⊗ OE
∼= OX′(n(H ′ + E′)) ⊗ OE′(−n(p′1 + · · ·+ p′12))∼= OE′(n(α − p′1 − · · · − p′12)).

Thus

h0(E,OX(nΓ + nE) ⊗ OE) = 0

by (20.9) and

h1(E,OX(nΓ + nE) ⊗ OE) = 0

by Theorem 18.2.

We have

(20.11) H1(X,OX(nΓ)) = H1(X ′,OX′(nΓ′)) = 0

and

(20.12) H0(X,OX(nΓ)) = H0(X ′,OX′(nΓ′))

for all n ≥ 0 by Theorem 17.32 and Theorem 17.14.

We have a short exact sequence of OX-modules

0 → OX(−E) → OX → OE → 0.

Tensor this short exact sequence with OX(nΓ +mE) and take cohomology
to obtain long exact sequences

0 → H0(X,OX(nΓ + (m − 1)E)) → H0(X,OX(nΓ +mE))
→ H0(E,OX(nΓ +mE) ⊗ OE) → H1(X,OX(nΓ + (m− 1)E))
→ H1(X,OX(nΓ +mE)) → H1(E,OX(nΓ +mE) ⊗ OE) = 0

for n ≥ 1 and 0 ≤ m ≤ n. By induction on m and (20.11), we have that

H1(X,OX(nΓ +mE)) = 0 for n ≥ 1 and 0 ≤ m ≤ n.

The OX -module OX(nΓ) is generated by global sections by (20.12), so
OX(nΓ + E) is generated by global sections except possibly at points of
E. But H0(X,OX(nΓ + E)) surjects onto H0(E,OX(nΓ + E) ⊗ OE) and
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OX(nΓ + E) ⊗ OE is generated by global sections by (20.10) if n ≥ 2,
so OX(nΓ + E) is generated by global sections (if n ≥ 2). By induction
and (20.10), OX(nΓ + (n − 1)E) is generated by global sections for all
n ≥ 1. Now H0(X,OX(nΓ + nE) ⊗ OE) = 0, so the fixed component
Bn of |nD| = |nΓ + nE| is E. �

This type of example cannot occur if k is an algebraic closure of a finite
field. If D is an effective divisor on a nonsingular projective surface X over
a field k which is the algebraic closure of a finite field, then

R[D] =
⊕
n≥0

Γ(X,OX(nD))

is a finitely generated k-algebra by [44, Theorem 3].

Exercise 20.15. Suppose that C is a nonsingular curve of degree d in P2.
Show that

g(C) =
1

2
(d − 1)(d− 2).

Exercise 20.16. Let C be a nonsingular curve and S = C × P1. Let
π : S → C be the projection onto C.

a) Suppose that p, q ∈ C. Show that π∗(p) ≡ π∗(q).

b) Let C be an elliptic curve over an algebraically closed field k which
is not the algebraic closure of a finite field, so there exist p, q ∈ C
such that the class of p−q in Cl0(C) has infinite order (by Theorem
18.49). Show that nπ∗(p) 
∼ mπ∗(q) for all m,n ∈ Z.

Exercise 20.17. Let D be the divisor constructed in Theorem 20.14. Show
that D is numerically effective; that is, (D · C) ≥ 0 for all curves C on X.

Exercise 20.18. Compute the functions hi(X,OX(nD)) for i = 0, 1, 2 and
n ∈ N for the divisor D constructed in Theorem 20.14.

Exercise 20.19. Modify the proof of Theorem 20.14 by starting with a
divisor β on E′ which has degree 0 and finite order r in Cl0(E′). (We
can always find such a β if r is relatively prime to the characteristic of k
by Proposition 18.50). Let X and D be the surface and divisor which we
construct. Is R[D] a finitely generated k-algebra? Is it generated in degree
1? Compute the functions hi(X,OX(nD)) for i = 0, 1, 2 and n ∈ N.



Chapter 21

Ramification
and Étale Maps

In this chapter, we consider algebraic analogues of the topological covering
spaces and branched (ramified) covers in the Euclidean topology. Finite
maps correlate with branched covers and the algebraic counterpart of the
topological covering spaces are the étale morphisms (Definition 21.79). A
regular map φ : X → Y of nonsingular complex varieties is a topological
covering space in the Euclidean topology if and only if φ is étale, by the
analytic implicit function theorem (Exercise 21.87). The concept of a cover-
ing space in the Zariski topology is much too restrictive a notion; there are
many finite maps of nonsingular complex varieties which are étale but are
not covering spaces in the Zariski topology (Exercise 21.88).

A related concept to étale is the more classical notion of an unramified
map (Section 21.4). If φ : X → Y is a finite regular map of varieties and Y
is normal, then φ is étale if and only if φ is unramified (Proposition 21.84).

We develop various characterizations of the concepts of étale and unram-
ified maps. We define Galois maps of varieties (Section 21.7). We develop
the concept of completion (Section 21.5) and prove the local form of Zariski’s
main theorem (Proposition 21.54) which we earlier used in the proof of global
forms of Zariski’s main theorem (Chapter 9) and prove Zariski’s subspace
theorem (Proposition 21.61).

We prove the purity of the branch locus, Theorem 21.92, which tells
us that if φ : X → Y is a finite separable regular map, Y is nonsingular,
and X is normal, then the ramification locus of φ has pure codimension 1
(all irreducible components of the ramification locus have codimension 1).
We also prove the Abhyankar-Jung theorem (Theorem 21.93) showing that
tamely ramified covers have a very simple form.

391
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Most of the results in this chapter are due to Zariski and Abhyankar.

21.1. Norms and Traces

We summarize some properties of norms and traces which will be useful in
this chapter.

Suppose that L is a finite extension of a field K and K is an algebraic
closure of K. Let σ1, . . . , σr be the distinct embeddings of L into K by
K-homomorphisms. For α ∈ L, the norm of α over K is defined to be

(21.1) NL/K(α) =

(
r∏

i=1

σi(α)

)[L:K]i

.

The trace of α over K is defined to be

(21.2) TrL/K(α) = [L : K]i

(
r∑

i=1

σi(α)

)
.

The inseparability index [L : K] is defined in formula (1.2).

Theorem 21.1. Let L/K be a finite extension. Then the norm NL/K is

a multiplicative homomorphism of L× into K× (where L× and K× are the
respective multiplicative groups of nonzero elements of L and K) and the
trace is an additive homomorphism of L into K. If K ⊂ F ⊂ L is a tower
of fields, then the two maps are transitive; in other words,

NL/K = NF/KNL/F and TrL/K = TrF/KTrL/F .

If L = K(α) and f(t) = tn + an−1t
n−1 + · · · + a0 ∈ K[t] is the minimal

polynomial of α over K, then

NL/K(α) = (−1)na0 and TrL/K(α) = −an−1.

Proof. [95, Theorem 5.1, page 285]. �

We now give an alternate construction of the trace and norm. Suppose
that L is a finite field extension of K and ω1, . . . , ωn is a basis of L over K.
For α ∈ L, we have expressions

(21.3) αωi =
n∑

j=1

aijωj

with aij ∈ K. Let A = Aα = (aij). From (21.3), we have Det(αIn −A) = 0.
Letting X be an indeterminate, we define the field polynomial PL/K,α(X) ∈
K[X] as

PL/K,α(X) = Det(XIn − A) ∈ K[X].

By its construction, we see that the field polynomial is independent of choice
of basis of L. It will only be the minimal polynomial of α overK if L = K(α).
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Proposition 21.2. For α ∈ L,

NL/K(α) = Det(Aα) and TrL/K(α) = trace(Aα) =
n∑

i=1

aii.

Proof. This follows from [160, formulas (6) and (7) on page 87 and (19)
and (20) on page 91]. �

21.2. Integral extensions

Suppose that K is a field and K∗ is a finite extension field. Suppose that A
is a subring of K whose quotient field is K and B is a subring of K∗ whose
quotient field is K∗ and that B is integral over A.

If A is Noetherian and normal, B is the integral closure of A in K∗,
and K∗ is finite separable over K, then B is a finite A-algebra [160, Corol-
lary 1, page 265]. However, there exist examples of Noetherian domains A
such that the normalization of A (in K) is not Noetherian and examples of
normal Noetherian domains A whose integral closure in a finite (necessarily
inseparable) field extension is not Noetherian [121, Example 5, page 207].
This type of pathology cannot occur when A is a localization of a finite type
algebra over a field (Theorem 1.54) and, more generally, when A is excellent
[107, Chapter 13].

Suppose that P and Q are respective prime ideals of A and B. We say
that Q lies over P or P lies below Q if Q ∩A = P .

We have the following useful lemmas.

Lemma 21.3 (Going up theorem). Let P and P ∗ be prime ideals in A such
that P ∗ ⊂ P and let Q∗ be a prime ideal in B lying over P ∗. Then there
exists a prime ideal Q in B lying over P such that Q∗ ⊂ Q.

Proof. [160, Corollary, page 259]. �

Corollary 21.4. Let notation be as above. Then:

1) Two distinct prime ideals P ′ and Q′ of B such that P ′ ⊂ Q′ cannot
lie over the same prime ideal of A.

2) Let P ′ be a prime ideal of B lying over P . For P ′ to be a maximal
ideal of B it is necessary and sufficient that P be a maximal ideal
of A.

Proof. [160, Complements 1) and 2) on page 259]. �

Lemma 21.5 (Going down theorem). Suppose that A is normal. Let P ⊂ Q
be prime ideals in A and let Q∗ be a prime ideal in B lying over Q. Then
there exists a prime ideal P ∗ in B lying over P with P ∗ ⊂ Q∗.
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Proof. [160, Theorem 6, page 262]. �

The example on page 32 [107] and the remark on page 37 [107] show
that the assumption that A is normal is necessary in Lemma 21.5.

Definition 21.6. An extension L of a field K is a normal extension of K (L
is normal over K) if L is an algebraic extension of K and if every irreducible
polynomial f(x) ∈ K[x] which has a root in L factors completely in L[x]
into linear factors.

Lemma 21.7. A finite extension L of a field K is normal over K if and
only if it satisfies the following condition: If M is any extension of L, then
any K-homomorphism of L into M is necessarily a K-automorphism of L.

Proof. [160, Theorem 15, page 77]. �
Lemma 21.8. Suppose that R is an integrally closed local domain with quo-
tient field K and T is the integral closure of R in a finite normal extension
L of K. Let {mi} be the prime ideals of T lying over mR. Then the mi are
the maximal ideals of T and Aut(L/K) acts transitively on the set {mi}, so
that {mi} is a finite set.

Proof. The fact that the mi are the maximal ideals of T follows from 2)
of Corollary 21.4. Let G = Aut(L/K). We have that σ(T ) = T for σ ∈ G
since T is the integral closure of R. Thus σ permutes the mi. Suppose there
exists an mj such that mj is not a conjugate σ(m1) of m1. We will derive
a contradiction. By Theorem 1.5, there exists x ∈ mj such that x 
∈ σ(m1)
for all σ ∈ G. Thus none of the conjugates σ(x) of x are in m1, and thus no
power of a product of conjugates of x is in the prime ideal m1. By (21.1),
y = NL/K(x) ∈ K is of this form (a power of a product of conjugates of x).
Thus y ∈ K ∩T = R since R is integrally closed. Finally, y ∈ mj ∩R = mR.
Since mR ⊂ m1 and m1 is a prime ideal, this is a contradiction. �

With the notation introduced in the first paragraph of this section, sup-
pose that P is a prime ideal of A. Then there exists a prime ideal Q of B
lying over P by Proposition 1.56, and if A is normal, then there are only a
finite number of prime ideals in B lying over P (by Lemma 21.8, applied to
the integral closure of AP in a finite normal extension of K containing K∗).

Let R be a normal (not necessarily Noetherian) local domain with max-
imal ideal mR and quotient field K, and let R∗ be the integral closure of R
in a finite extension field K∗ of K. Let m∗

1, . . . ,m
∗
r be the prime ideals of

R∗ which lie over mR. The m∗
i are the maximal ideals of R∗ by Corollary

21.4. Let Si = R∗
m∗

i
for 1 ≤ i ≤ r. We shall say that the Si are the local

rings of K∗ lying above (or over) R and that R is the local ring of K lying
below Si.
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Lemma 21.9. With the notation introduced in the above paragraph, we have
that Si ∩K = R for all i.

Proof. Let K̃ be a finite normal extension ofK containingK∗. Let R̃ be the
integral closure ofR in K̃ and let m̃1, . . . , m̃t be the maximal ideals of R̃ lying
over mR. We may assume that m̃1 ∩R∗ = m∗

i . Let S̃j = R̃m̃j for 1 ≤ j ≤ t.

Let G = Aut(K̃/K). We have that R ⊂ Si ∩ K ⊂ S̃1 ∩ K so it suffices to

show that S̃1 ∩ K = R. Let u ∈ S̃1 ∩ K. Given S̃j , there exists g ∈ G such

that g(S̃1) = S̃j , by Lemma 21.8, and hence g(u) ∈ S̃j . But u ∈ K implies

g(u) = u. Hence u ∈ S̃j for i = 1, . . . , t so that u ∈
⋂t

j=1 S̃j = R̃ by Lemma

1.77. Thus u ∈ R̃∩K = R, so that S̃1 ∩K = R, and hence Si ∩K = R. �

Now, with the notation introduced in the first paragraph of this section,
suppose that A is normal (not necessarily Noetherian) and B is the integral
closure of A in K∗. Then B∩K = A. Further, if K ′ is an intermediate field
between K and K∗, then B ∩K ′ is the integral closure of A in K ′. We saw
above that if P ∗ is a prime ideal of B and P = P ∗ ∩A, then BP ∗ ∩K = AP .

Suppose that C is a normal subring of K∗ whose quotient field is K∗.
Then C ∩ K is normal, but it can happen that the quotient field of C ∩ K
is not equal to K. Here is a simple example which was constructed by Bill
Heinzer. Let x and y be algebraically independent over a field κ, and let S∗ =
κ[x3, x2y](x3,x2y). Consider the automorphism of the quotient field K∗ =

κ(x3, x2y, xy2, y3) of the regular local ring S∗ over κ which interchanges
x and y. The image of S∗ by this automorphism is the two-dimensional
regular local ring S′ = κ[y3, y2x](y3,y2x). Regarding S∗ and S′ as subrings of
the formal power series ring κ[[x, y]], we see that the intersection of S∗ and
S′ is κ. Hence if K is the fixed field of this automorphism of K∗, we have
S∗ ∩K = S′ ∩ K = κ.

However, every valuation ring V of K∗ has the property that K ∩V is a
valuation ring of K, and hence its quotient field is K. This follows since the
restriction ν of a valuation ν∗ of K∗ to K is a valuation of K, and V ∩K is
the set of all element in K whose value is nonnegative.

A valuation ν of a field K is called a discrete valuation if its value group
is Z. A local domain R is called a discrete valuation ring (dvr) if R is the
valuation ring of the quotient field of R. The divisorial valuations, defined
in Section 12.3, are examples of discrete valuation rings.

Theorem 21.10. A domain R is a discrete valuation ring if and only if R
is a one-dimensional regular local ring.

Proof. Let K be the quotient field of R. First suppose that R is a one-
dimensional regular local ring. If 0 
= f ∈ R, then there exists n ∈ N such
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that 0 
= f ∈ mn
R \ mn+1

R . Since mR = (t) for some t ∈ R, f = tnv with
v ∈ R \mR. Thus v is a unit in R. Since K is the quotient field of R, every
nonzero element f ∈ K has a unique expression

(21.4) f = tnv

with n ∈ Z and v ∈ R a unit. Define ν : K× → Z by ν(f) = n if f has
the expression (21.4). From (21.4), it follows that ν is a valuation of K and
that R is the valuation ring of ν.

Now suppose that R = Vν where ν is a discrete valuation of K. Then
R = {f ∈ K | ν(f) ≥ 0} (with the convention that ν(0) = ∞). We have that
R is a Noetherian local domain by Theorems 12.15 and 12.16. There exists
t ∈ R such that ν(t) = 1. Suppose that f ∈ R is nonzero. Let ν(f) = n ≥ 0

and let u = f
tn . Then ν(u) = 0 so u ∈ R. Further, ν( 1u) = −ν(u) = 0

so 1
u ∈ R and thus u is a unit in R. It follows that mR = (t) and so

dimR/mR
mR/m

2
R = 1. Now R 
= K since 1

t 
∈ R. Thus

1 ≤ dimR ≤ dimR/mR
mR/m

2
R = 1

by Theorem 1.81, so R is a one-dimensional regular local ring. �

From the above proof, we have the following remark.

Remark 21.11. The maximal ideal mR in a discrete valuation ring R is
a principal ideal, mR = (t), and the nonzero ideals in R are the principal
ideals (tn) for n ∈ N.

Proposition 21.12. Let K be a field, ν a valuation of K, K∗ an algebraic
extension of K, and R∗

1, R
∗
2, . . . the local rings in K∗ lying over Vν. Then

R∗
i is the valuation ring Vν∗i

of a valuation ν∗i of K∗ where ν∗1 , ν
∗
2 , . . . are

exactly the extensions of ν to K∗.

Proof. [6, Proposition 2.38] �

Let R be a one-dimensional regular local ring with quotient field K and
let L be a finite extension of K. Let S1, . . . , Sg be the local rings of L which
lie over R. The Si are one-dimensional regular local rings by [160, Theorem
19 on page 281], [160, Theorem 13, page 275], and Theorem 1.87. Since the
maximal ideals mR of R and mSi of the Si are principal, there exist positive
integers ni such that mRSi = mni

Si
for 1 ≤ i ≤ g. We define

(21.5) e(Si/R) = ni and f(Si/R) = [Si/mSi : R/mR].

The index f(Si/R) is finite by [160, Lemma 1 on page 284]. The index
e(Si/R) is called the reduced ramification index of Si over R and f(Si/R)
is called the relative degree of Si over R. The reduced ramification index
has already been encountered in Section 18.5.
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We define

(21.6) e(ν∗/ν) = e(Si/R) and f(ν∗/ν) = f(Si/R)

if R = Vν and Si = Vν∗ where ν is a discrete valuation of K and ν∗ is an
extension of ν to K∗ (which is necessarily a discrete valuation).

Lemma 21.13 (Kronecker). Let A be a normal domain with quotient field
K. Let f(t), g(t) be monic polynomials in K[t] and let h(t) = f(t)g(t). Then
h(t) ∈ A[t] implies f(t), g(t) ∈ A[t].

Let K∗ be an overfield of K. If u ∈ K∗ is such that u is integral over
A, then the minimal polynomial of u over K is in A[t].

Proof. The second statement of the lemma follows from the first. We will
prove the first statement. Let L be a splitting field of h(t) over K. Let

f(t) =

n∑
i=0

fn−it
i =

n∏
i=1

(t − ui)

where fi ∈ K, f0 = 1, and ui ∈ L. Let pi(Y1, . . . , Yn) be (−1)i times the i-th
elementary symmetric function in Y1, . . . , Yn, so that fi = pi(u1, . . . , un).
Now f(ui) = 0 implies h(ui) = 0 which implies that the ui are integral over
A. Since the integral closure of A in L is a domain, the fact that u1, . . . , un
are integral over A implies fi = pi(u1, . . . , un) are integral over A. Since A
is normal and fi ∈ K, we must have fi ∈ A for i = 1, . . . , n, so f(t) ∈ A[t].
Similarily, g(t) ∈ A[t]. �

Theorem 21.14. Let A be an integral domain, let K be its quotient field,
and let x be an element of an extension of K. Suppose that x is integral
over A. Then x is algebraic over K, and the coefficients of the minimal
polynomial f(t) of x over K, in particular the norm and trace of x over K,
are elements of K which are integral over A. If A is integrally closed, these
coefficients are in A.

Proof. Let L be the algebraic closure of K. Since x is integral over A, it is
necessarily algebraic over K. Let n be the degree of the minimal polynomial
f(x) of x over K. Then f(t) =

∏
(t− xi) ∈ L[t] where the xi are conjugates

of x in L over K. Since an equation of integral dependence of x over A
is satisfied by all the conjugates xi of x over K, the coefficients of f(t)
are integral over A by Corollary 1.50. In particular, the norm NK(x)/K(x)
and trace TK(x)/K(x) are in K and are integral over A by Theorem 21.1. It
follows from (21.1) and (21.2) that if L is any finite extension ofK containing
x, then NL/K(x) and TL/K(x) are in K and are integral over A. �

Exercise 21.15. Let f(t) ∈ tk[[t]] be transcendental over k(t). Define an
injective k-algebra homomorphism φ : k[x, y] → k((t)), where k((t)) is the
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quotient field of k[[t]], by φ(g(x, y)) = g(t, f(t)) for g ∈ k[x, y], with induced
inclusion φ : k(x, y) → k((t)). Define a valuation ν of k(x, y) by

ν(g) = ordt(g(t, f(t)))

for g ∈ k(x, y). Show that ν|k× = 0 so that ν is a k-valuation and ν is a
dvr, but ν is not a divisorial valuation.

21.3. Discriminants and ramification

We first define the discriminant ideal of a normal domain. The construction
in this section follows [92]. It generalizes the classical construction of dis-
criminants of field extensions ([131], [160, Section 11 of Chapter 2]). Our
treatment is based on the section “The discriminant of an ideal” in [6].

Let K be a field and L be a finite field extension of K. Let {w1, . . . , wn}
be a basis of L/K. For a ∈ L, let Ta : L → L be the K-linear transformation
defined by Ta(b) = ab for b ∈ L. For a ∈ L, the trace of a relative to L/K
(Section 1.2) is

TrL/K(a) =
n∑

i=1

kii

where

Ta(wi) =
n∑

j=1

kijwj with kij ∈ K.

For a1, . . . , an ∈ L, the discriminant of (a1, . . . , an) relative to L/K is defined
to be

DL/K(a1, . . . , an) = Det(TrL/K(aiaj)).

Basic properties of the discriminant are derived in [160, Section 11 of
Chapter 2]. The condition of the discriminant DL/K(a1, . . . , an) being zero
or not zero is independent of choice of basis {a1, . . . , an} of L over K, so it
makes sense to say that the discriminant DL/K(a1, . . . , an) of a basis is zero
or not zero ([160, Corollary, page 93]). The discriminant DL/K(a1, . . . , an)
of a basis {a1, . . . , an} of L overK is nonzero if and only if L is separable over
K ([160, Theorem 22, page 95] or equation (21.2)). If L/K is separable, then
L has a primitive element b over K (Theorem 1.16), and then if n = [L : K],

(21.7) DL/K(1, b, b2, . . . , bn−1) =
∏
i<j

(bi − bj)
2

where the bi are the n distinct roots of the minimal polynomial f(x) of b
over K in an algebraic closure of K containing L by [160, formula (7) on
page 95]. Let f(x) = xn+ a1x

n−1+ · · ·+ an be the minimal polynomial of b
over K. We can then compute the discriminant DL/K(1, b, b2, . . . , bn−1) as

(21.8) DL/K(1, b, b2, . . . , bn−1) = (−1)
n(n−1)

2 Res(f, f ′)
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by [95, Proposition 8.5, page 204], where the resultant Res(f, f ′) is the
determinant of the (2n− 1) × (2n− 1) matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 a1 a2 . . . an−1 an 0 . . . . . . 0
0 1 a1 a2 . . . an−1 an 0 . . . 0
...
0 . . . 0 1 a1 a2 . . . an−1 an
n (n− 1)a1 (n− 2)a2 . . . an−1 0 . . . . . . 0
0 n (n− 1)a1 (n− 2)a2 . . . an−1 0 . . . 0
...
0 0 . . . 0 n (n− 1)a1 (n− 2)a2 . . . an−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We have that

(21.9) Res(f, f ′) =
n∏

i=1

f ′(bi)

by [95, formula (4), page 204]. The formula (21.8) is also called the discrim-
inant of f .

Let A be a normal domain with quotient field K, and let L be a fi-
nite extension of K with [L : K] = n. Let B be a domain with quotient
field L which contains A and is integral over A. If a1, . . . , an ∈ B, then
TrL/K(aiaj) ∈ A for all i, j by Theorem 21.14, so thatDL/K(a1, . . . , an) ∈ A.
We define the discriminant ideal D(B/A) of B over A to be the ideal
in A generated by the discriminants DL/K(w1, . . . , wn) of all the bases
{w1, . . . , wn} of L/K which are in B. If B is the integral closure of A
in L, we will sometimes write D(L/A) to denote D(B/A).

The following formula is useful in computing discriminants. Suppose
that {a1, . . . , an} and {b1, . . . , bn} are bases of L/K. Define kij ∈ K by
bi =

∑
j kijaj . Then ([160, equation (2), page 93] or [6, equation (5), page

26])

(21.10) DL/K(b1, . . . , bn) = Det(kij)
2DL/K(a1, . . . , an).

We thus have that D(B/A) localizes; that is, if S is a multiplicative set
in A, then

(21.11) D(S−1B/S−1A) = S−1D(B/A).

Definition 21.16. Suppose R is a local domain and S is a local domain
which dominates R (R ⊂ S and mS ∩ R = mR). We say that the extension
R → S is unramified if mRS = mS and S/mS is finite and separable over
R/mR. Otherwise, we say that the extension is ramified.
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This definition generalizes our definition of ramification for a regular
map of nonsingular curves in Section 18.5. A dominant regular map of
nonsingular projective curves φ : X → Y is ramified at P ∈ X if and only if
the extension OY,φ(P ) → OX,P is ramified.

Let A be a normal local domain with quotient field K. Let L be a finite
extension of K, and let B be a domain with quotient field L which contains
A and is integral over A. Let Q1, . . . , Qt be the prime ideals in B lying over
the maximal ideal mA. If the BQi are unramified over A for 1 ≤ i ≤ t,
then we say that B is unramified over A. Otherwise, we will say that B
is ramified over A. We will say that A is unramified in L if the integral
closure B of A in L is unramified over A.

Suppose that L is a finite extension field of a field K. Let M be the
maximal separable extension field of K in L. The separable degree of L over
K is [L : K]s = [M : K] (Section 1.2).

Let A be a ring containing a field κ such that A is a finite-dimensional
vector space over κ. We can extend the definitions of the trace and dis-
criminant to this situation to define the discriminant DA/κ(a1, . . . , an) of a
basis a1, . . . , an of A over κ. The formula (21.10) holds in this situation,
so the question of whether a discriminant of A over κ is zero or nonzero is
independent of the choice of a basis of A over κ. Since A is an Artinian ring,

A ∼= A1 ⊕ · · · ⊕ Am

where the Ai are Artin local rings by [13, Theorem 8.7].

Proposition 21.17. With the above assumptions on A and κ, a discrim-
inant of A over κ is nonzero if and only if each Ai is a field which is a
separable field extension of κ.

Proof. Let ei = (0, . . . , 0, 1Ai , 0, . . . , 0) ∈ A (where 1Ai is in the i-th po-
sition) for 1 ≤ i ≤ m. Let {wij | 1 ≤ j ≤ ni} be a κ-basis of Ai. Then
{eiwij | 1 ≤ i ≤ m, 1 ≤ j ≤ ni} is a κ-basis of A. Let a ∈ A and expand

a = ae1 + · · · + aem with ai ∈ Ai.

Then

aeiwij =

(∑
l

alel

)
eiwij = awijei =

(
ni∑
u=1

k
(i)
juwiu

)
ei for some k

(i)
ju ∈ κ.

Thus

TrA/κ(a) = TrA1/κ(a1) + · · ·+TrAm/κ(am)
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and i 
= u implies eiwijeuwuv = 0, so that TrA/κ(eiwijeuwuv) = 0. Thus

DA/k(e1w11, e1w12, . . . , e1w1n1 , e2w21, . . . , emwmnm)

= Det(TrA/κ(eiwijeuwuv))

=
m∏
i=1

Det(TrA/κ(eiwijeiwiv))

=
m∏
i=1

DAi/κ(wi1, . . . , wini),

so that

(21.12)
the discriminant of A over κ is nonzero if and only if
the discriminant of Ai over κi is nonzero for i = 1, . . . ,m.

Now suppose that the radical N =
√

(0) of A is nonzero, and let s > 1
be the integer which satisfies N s−1 
= 0 and N s = 0. For 0 ≤ i ≤ s − 1,
N i is a finite-dimensional vector space over κ, so there exist pi1, . . . piqi
in N i whose residue classes mod N i+1 form a κ-basis of N i/N i+1. Then
{pij | 0 ≤ i ≤ s − 1, 1 ≤ j ≤ qi} is a κ-basis of A. Now a ∈ N implies

apij =
∑
v>i

kijvupvu

for some kijvu ∈ κ, which implies TrA/κ(a) = 0. Thus since there exists
a basis {w1, . . . , wn} of A over κ with at least the last element wn ∈ N if
N 
= 0,

(21.13) N 
= 0 implies the discriminant of A/κ is zero.

The proposition now follows from (21.12), (21.13), and the fact that the
discriminant of a finite field extension L over κ is nonzero if and only if L
is separable over κ [160, Theorem 22, page 95]. �

We will say that a ∈ A is a primitive element of A over κ if A = κ[a].

Lemma 21.18. Suppose that κ is an infinite field and A ∼= A1 ⊕ · · · ⊕ Am

where the Ai are finite separable field extensions of κ. Then A has a primitive
element over κ.

Proof. Let ei = (0, . . . , 0, 1Ai , 0, . . . , 0) ∈ A (where 1Ai is in the i-th posi-
tion) for 1 ≤ i ≤ m. Let aj be primitive elements of Aj over κ (Theorem
1.16) and let gj(x) ∈ κ[x] be the respective minimal polynomials of the aj
over κ. Since κ is assumed to be infinite and two polynomials in κ[x] are co-
prime if and only if they have no common roots in an algebraic closure of κ,
after possibly multiplying the aj by suitable nonzero elements of κ, we may
assume that the gj(x) are pairwise coprime in κ[x]. Let a = e1a1+· · ·+emam.
Suppose f(x) = b0x

q + b1x
q−1 + · · · + bq ∈ κ[x] satisfies f(a) = 0. Then
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0 = ejf(a) = ejf(aj) so that f(aj) = 0 for 1 ≤ j ≤ m and thus gj(x) divides
f(x) in κ[x] for 1 ≤ j ≤ m, so that the minimal polynomial g(x) of a over
κ is divisible by

∏m
j=1 gj(x). Since dimκA =

∑m
i=1 deg(gi(x)), we have that

a is a primitive element of A over κ. �

Lemma 21.19. Suppose that the ring A is a finite-dimensional vector space
over an infinite field κ, so that A = A1 ⊕ · · · ⊕ Am where the Ai are Artin
local rings. Suppose that some Ai is not a separable field extension of κ.
Let Ni be the maximal ideal of Ai. Then there exists a ∈ A such that the
minimal polynomial of a in κ[x] has degree >

∑m
i=1[Ai/Ni : κ]s.

Proof. We will first find ai ∈ Ai such that the minimal polynomial of ai
over κ has degree ≥ [Ai/Ni : κ]s, with a strict inequality if Ai/Ni is not
a separable field extension of κ. Let bi ∈ Ai be such that the minimal
polynomial of the residue bi of bi in Ai/Ni has degree [Ai/Ni : κ] if Ai/Ni is
separable over κ and has degree ≥ [Ai/Ni : κ]sp, where p is the characteristic
of κ if Ai/Ni is not separable over κ (by the primitive element theorem in
[142, page 139]). If Ni = 0, then we take ai = bi. Suppose Ni 
= 0 and
Ai/Ni is separable over κ. Let hi(x) be the minimal polynomial of bi over κ.
If hi(bi) 
= 0, then we can take ai = bi, so suppose hi(bi) = 0. There exists
0 
= ci ∈ Ni. Let ai = bi + ci. Then h′i(bi)

r 
= 0 for all r, where h′i(x) is the
derivative of hi(x), so that h′i(bi) 
∈ Ni. We have hi(ai) = ci[h

′
i(bi)+cif ] with

f ∈ Ai. Thus h
′
i(bi) + cif 
∈ Ni which implies that h′i(bi) + cif is a nonzero

divisor in Ai, so that hi(ai) 
= 0. Since hi(ai) = hi(bi) = 0, hi(ai)
r = 0 and

hi(ai)
r−1 
= 0 for some r > 1 and so hri (x) is the minimal polynomial of ai

over κ, since hi(x) is irreducible in κ[x]. �

Now by the argument of the proof of Lemma 21.18, we can find a ∈ A
satisfying the conclusions of the lemma.

Theorem 21.20. Let R be a normal local domain with quotient field K and
K∗ be a finite algebraic extension of K. Let R∗ be a domain with quotient
field K∗ such that R∗ contains and is integral over R. Then D(R∗/R) = R
implies R∗ is unramified over R.

Proof. Let N∗ = mRR
∗, κ = R/mR and A = R∗/N∗. We will denote the

class of the residue of an element x ∈ R∗ in A by x.

Since D(R∗/R) = R, there exists a basis w1, . . . , wn of K∗ over K in
R∗ such that D(w1, . . . , wn) is a unit in R. Given w ∈ K∗, we have that
w = a1w1 + · · · + anwn with aj ∈ K. If w 
∈ w1R + · · · + wnR, then some
aj 
∈ R, say a1 
∈ R. It follows that a21 
∈ R, since if a21 ∈ R, then a1 is
integral over R, which is impossible since R is normal. Then

D(w,w2, . . . , wn) = a21D(w1, w2, . . . , wn) 
∈ R
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implies w is not integral over R, since if w is integral over R, then

D(w,w2, . . . , wn) ∈ R ∩K = R,

where R is the integral closure of R in K∗ (by Theorem 21.14). Since

w1R+ · · · + wnR ⊂ R∗,

we have that R∗ = w1R+ · · ·+wnR is the integral closure of R in K∗. Thus
w1, . . . , wn is a free R-basis of R∗, and so

N∗ = mRR
∗ = w1mR + · · · + wnmR

and A is a free κ-module of rank n with basis w1, . . . , wn. Let

(wiwj)wp =
n∑

q=1

aijpqwq

with aijpq ∈ R. Then

(wiwj)wp =
n∑

q=1

aijpqwq.

ThusD(w1, . . . , wn) is the discriminant ofD(w1, . . . , wn) modulomR. Hence

D(w1, . . . , wn) 
= 0,

since D(w1, . . . , wn) is a unit in R. Thus R∗ is unramified over R by Propo-
sition 21.17. �

Theorem 21.21. Let R be a Noetherian normal local domain and let K
be the quotient field of R. Let K∗ be a finite extension of K, and let R∗

be the integral closure of R in K∗. Suppose that R∗ is a finitely generated
R-module. Then R∗ is unramified over R if and only if the discriminant
ideal D(R∗/R) = R.

The separability index [L : K]s of a finite extension of fields L/K is
defined in (1.2).

Proof. The “if” direction follows from Theorem 21.20. We will prove the
“only if” direction. With our assumptions, R∗ is a finite R-module. Let
κ = R/mR and A = R∗/mRR

∗. The ring A is a finite κ-vector space, so A =⊕r
i=1Ai where the Ai are Artin local rings. Since R∗ is unramified over R,

we have that each Ai is a separable field extension of κ. Let u1, . . . , un ∈ R∗

be such that their residues u1, . . . , un in A are a κ-basis of A. By Nakayama’s
lemma (Lemma 1.18),

(21.14) R∗ = u1R+ · · ·+ unR.
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Let L = u1K + · · · + unK, a subring of K∗ by (21.14). Since L is a finite-
dimensional K-vector space, L is a subfield of K∗, so that L = K∗. Thus

[K∗ : K] ≤ n = [A : κ] =
t∑

i=1

[Ai : k
′]s.

The proof for general κ now follows from [6, Theorem 1.42] (referring to
[92] in the case when κ is finite). We will present here a proof with the
assumption that κ is an infinite field. Since the Ai are separable over the
infinite field κ, there exists a primitive element v ∈ A of A over κ by Lemma
21.18. Let v be a lift of v to R∗. Let f(x) ∈ K[x] be the minimal polynomial
of v over K. Then f(x) ∈ R[x] by Theorem 21.14 since R is normal. Let
h(x) ∈ κ[x] be the minimal polynomial of v over κ. Then h divides the
reduction f of f in κ[x], so

(21.15) [K∗ : K] ≥ deg(f) ≥ deg(h) = [A : κ] = n.

Thus [K∗ : K] = [A : κ] = n. Now Proposition 21.17 implies that the
discriminant D(u1, . . . , un) of A over κ is nonzero. Thus D(u1, . . . , un) 
∈
mR, which we have shown is in the discriminant ideal of R∗ over R, so
D(R∗/R) = R. �

Theorem 21.22. Let A be a normal domain with quotient field K. Let L
be a finite extension of K, and let B be the integral closure of A in L. Let
P be a prime ideal in A. Let Q1, . . . , Qt be the prime ideals in B lying over
P . Let κ = AP /PAP and κi = BQi/QiBQi for 1 ≤ i ≤ t. Then

(21.16)
t∑

i=1

[κi : κ]s ≤ [L : K],

and equality holds if and only if the discriminant ideal D(B/A) 
⊂ P .

Proof. We will prove the theorem with the assumptions that A is Noether-
ian, κ is infinite, and B is finite over A, referring to [6, Theorem 1.45] for
the general case. Write PBP = I1 ∩ · · · ∩ It where the Ii are Qi-primary
ideals by Lemma 21.8. There exists r > 0 such that Qr

i ⊂ Ii for 1 ≤ i ≤ t.
We have that

BP /PBP
∼=
⊕t

i=1BP /(Q
r
iBP + PBP ) by Theorem 1.5

∼=
⊕t

i=1BQi/(Q
r
iBQi + PBQi) by Lemma 1.28

∼=
⊕t

i=1BQi/IiBQi .

We have a natural surjection BP /PBP →
⊕t

i=1 κi. By the theorem of the
primitive element (Theorem 1.16) there exist ui ∈ κi such that the minimal
polynomial gi(x) ∈ κ[x] of ui has degree equal to [κi : κ]s. Since κ is assumed
to be infinite, we can replace the ui with suitable products of the ui with
elements of κ to get that the minimal polynomials gi(x) are pairwise coprime
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in κ[x]. Let v = u1 + · · · + ut. Then the minimal polynomial g(x) ∈ κ[x]
of v is divisible by

∏t
i=1 gi(x). Let v be a lift of v to BP . Let f(x) ∈ K[x]

be the minimal polynomial of v over K. Then f(x) ∈ AP [x] by Theorem
21.14. Let f(x) be the reduction of f(x) in κ[x]. Then f(v) = 0, so that
g(x) divides f(x) and thus

[L : K] ≥ [K(v) : K] ≥ deg g(x) ≥
t∑

i=1

[κi : κ]s.

Let R = AP and S be the integral closure of R in L. We have that
D(B/A)P = D(S/R) by (21.11) since S = T−1B where T = A \ P . Thus
D(S/R) = R if and only if D(B/A) 
⊂ P . By Theorem 21.21, D(S/R) = R
implies R → S is unramified, and it is shown in the proof of Theorem 21.21
that R → S unramified implies equality in (21.16). Assume equality holds in
(21.16). Then BP /PBP

∼=
⊕t

i=1 κi and each κi is a separable extension of κ
by Lemma 21.19. Thus BP /PBP has a primitive element u over κ by Lemma
21.18, and the discriminant D(1, u, . . . , un−1) 
= 0 by Proposition 21.17. Let
u be a lift of u to BP . Then the residue of D(1, u, . . . , un−1) ∈ AP in κ
is D(1, u, . . . , un−1), so that D(1, u, . . . , un−1) is a unit in AP . Now u is a
primitive element of L over K since 1, u, . . . , un−1 are linearly independent
over κ, since D(1, u, . . . , un−1) 
= 0 and by (21.10), so that L = K(u) since
[L : K] = n. Thus D(S/R) = R. �

A particularly strong form of Theorem 21.22 holds if A is a Dedekind
domain, as we have seen in the case of curves, Theorem 13.18, and more
generally as shown in [160, Section 9 of Chapter V].

Proposition 21.23. Suppose that R is a one-dimensional regular local
ring with quotient field K and L is a finite separable extension of K. Let
S1, . . . , Sg be the normal local rings of L which lie over R. Then the Si are
one-dimensional regular local rings, and the indices e(Si/R) and f(Si/R)
defined in equation (21.5) satisfy

g∑
i=1

e(Si/R)f(Si/R) = [L : K],

and if L is a Galois extension of K, then the e(Si/R) all have a common
value e and the f(Si/R) all have a common value f , so that efg = [L : K].

Proof. [160, Corollary, page 287] and [160, Theorem 22, page 289]. �

Suppose that R is a one-dimensional regular local ring with quotient field
K and L is a finite extension of K. Suppose that S is a normal local ring of
L which lies over R. Then R → S is unramified if and only if e(S/R) = 1
and S/mS is a separable field extension of R/mR.
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21.4. Ramification of regular maps of varieties

Proposition 21.24. Let A be a normal domain with quotient field K and
let L be a finite extension field of K. Suppose that the integral closure of A
in L is a finite A-module. Let

U = {P ∈ Spec(A) | AP is unramified in L}.
Then U = Spec(A) \ Z(D(B/A)) is an open subset of Spec(A).

Proof. By Theorem 21.21, for P ∈ Spec(A), AP is unramified in L if and
only if D(BP /AP ) = AP . By (21.11), D(BP/AP ) = D(B/A)P . Thus AP is
unramified in L if and only if D(B/A) 
⊂ P . �

If R is a normal local ring and L is a finite extension field of the quotient
field of R such that the integral closure of R in L is a finite R-module and
R is unramified in L, then RP is unramified in L for all P ∈ Spec(R). We
may thus define a normal domain A to be unramified in a finite extension
L of the quotient field of A if AP is unramified in L for all P ∈ Spec(A).

Definition 21.25. Let X and Y be varieties, and let φ : X → Y be a
regular map. The degree of φ is

deg(φ) =

{
[k(X) : k(Y )] if dimX = dimY and φ is dominant,
0 otherwise.

This definition was anticipated in Chapter 19.

Theorem 21.26. Suppose that φ : X → Y is a dominant finite map of
varieties and Y is normal. Then the number of points above any point
y ∈ Y is less than or equal to deg(φ).

Proof. Let U be an affine neighborhood of y in Y and let V = φ−1(U).
Then V is affine and φ : V → U is finite (by Theorem 7.5). Let W be
the normalization of V (Theorem 7.17). The variety W is also affine and
the induced map ψ : W → U is finite and factors through V . Further,
deg(ψ) = deg(φ) since k(W ) = k(V ) = k(X). It thus suffices to prove
the theorem with Y replaced by U and X replaced by W . The theorem
now follows from Theorem 21.22, taking P to be the prime ideal of y in
A = k[U ]. �

Definition 21.27. Suppose that φ : X → Y is a dominant finite map of
normal varieties and y ∈ Y . We will say that φ is ramified at y if OY,y → B
is ramified, where B is the integral closure of OY,y in k(X). The map φ is
said to be unramified at y if this extension is not ramified. We will say that
the map φ is unramified if φ is unramified at y for all y ∈ Y . We will say
that φ is unramified at x ∈ X if OY,φ(x) → OX,x is unramified.
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Theorem 21.28. Suppose that φ : X → Y is a dominant finite map of
normal varieties and y ∈ Y . Then φ is unramified at y if and only if the
number of points in the preimage φ−1(y) is equal to the degree deg(φ).

Proof. As in the proof of Theorem 21.26, we may assume that Y and X
are affine. The theorem then follows from Theorems 21.22 and 21.21, with
the observation that in the language of these theorems, k ∼= A/P ∼= B/Qi

for all Qi, since P is the ideal of y in A = k[Y ] and the Qi are the ideals in
B = k[X] of the points in the preimage of y by φ. �

Theorem 21.29. Suppose that φ : X → Y is a dominant finite map of
normal varieties. Then the set of points in Y at which φ is unramified is
open and is nonempty if and only if k(X) is a separable extension of k(Y ).

Proof. It suffices to prove this in the case when Y and X are affine. Let
A = k[Y ] and B = k[X]. Then φ is unramified at y ∈ Y if and only if the
ideal P = I(y) of y in A does not contain the discriminant ideal D(B/A)
by Theorem 21.21, that is, if and only if y 
∈ Z(D(B/A). Thus the set of
unramified points is open.

By Theorem 21.21 we have that the set of points in Y at which φ is
unramified is nonempty if and only if Z(D(B/A)) 
= Y , which holds if and
only if D(B/A) 
= (0). By Theorem 21.22, taking P to be the prime ideal
(0) in A, we have that D(B/A) 
= (0) if and only if

[k(X) : k(Y )]s = [k(X) : k(Y )]. �

Definition 21.30. Suppose that φ : X → Y is a dominant finite map of
normal varieties. The closed set of points p ∈ Y at which φ is ramified is
called the ramification locus of φ in Y .

Exercise 21.31. Suppose that R = κ[x1, . . . , xm] is a polynomial ring over
a field κ and f = zn + a1z

n−1 + · · · + an with ai ∈ R is an irreducible
polynomial in R[z]. Let S = R[z]/(f) = R[z] where z is the residue of z in
S. Then S is a domain which is finite over R. Let K be the quotient field
of R and L be the quotient field of S. Using the definition of D(S/R), show
that D(S/R) is generated by DL/K(1, z, . . . , zn−1).

Exercise 21.32. Let R = k[x] be a polynomial ring over an algebraically
closed field k of characteristic 
= 2 or 3 and let S = R[y]/(f). Let X be the
affine variety with regular functions S and induced regular map Φ : X → A1.
In each of the following problems, show that S is normal and finite over
R. Compute the ideal D(S/R) in terms of Res(f, f ′) using formula (21.8).
Compute the ramification locus of the map φ in A1.

a) f = y2 + 3xy + (x2 + 3).

b) f = y3 + x3 + 1.
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21.5. Completion

In this section, we will give a brief survey of the topic of completion of a
ring, referring to [161, Chapter VIII], [107, Chapter 9], and [50, Chapter
7] for more details.

Let A be a ring with a given topology. The ring A is called a topological
ring if the ring operations are continuous. Let A be a topological ring. An
A-module E, with a given topology, is said to be a topological A-module if
the module operations on E are continuous.

Let E be a topological A-module and let Σ(E) be a system of open
sets in E which contain the zero 0 of E and such that any open set in E
containing 0 contains a set of the system Σ(E). Then the system of sets of
the form x+U where x ∈ E and U ∈ Σ(E) is a basis for the topology of E.
Such a set Σ(E) is called a basis of neighborhoods of 0 for the topological
module E. It follows that if Σ(E) is a basis of neighborhoods of the zero of
a topological A-module E, then E is a Hausdorff (separated) space if and
only if ⋂

U∈Σ(E)

U = {0}.

Let I be an ideal of a ring R. The system {In | n ∈ N} is a basis of
neighborhoods of 0 of a topology of R called the I-adic topology. If E is an
R-module, then the I-adic topology of E is defined by taking {InE | n ∈ N}
as a basis of neighborhoods of 0. A submodule F of E has the I-adic
topology and the induced topology which has {(InE)∩F | n ∈ N} as a basis
of neighborhoods of 0. Since InF ⊂ (InE) ∩ F for all n ≥ 0, the inclusion
map F → E is continuous, with the respective I-adic topologies.

Theorem 21.33. Suppose that A is a Noetherian ring, I is an ideal of A,
and E is a finite A-module. Then for every submodule F of E, the I-adic
topology of F is induced by the I-adic topology of E.

Proof. Since E is a finite A-module, the Artin-Rees lemma, [161, Theorem
4′, page 255], tells us that there exists an integer k such that

InE ∩ F = In−k(InE ∩ F ) ⊂ In−kF

for every n ≥ k. �

Suppose that E is an A-module with the I-adic topology. A sequence
(xn) in E is called a Cauchy sequence in E if xn − xn+i ∈ IN(n)E for all
i ≥ 0, where N(n) �→ ∞ as n �→ ∞. A limit of a Cauchy sequence (xn) in E
is an element y of E such that given m ∈ N, there exists n0 ∈ N such that
xn − y ∈ ImE whenever n ≥ n0. If E is separated, a limit, if it exists, is
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unique. The module E is said to be complete if every Cauchy sequence in
E converges to a limit in E.

Theorem 21.34. Let A be a ring with an ideal I and M be an A-module
with the I-adic topology. Then there exists an A-module M̂ which is complete
and separated for the I-adic topology, with a continuous homomorphism φ :
M → M̂ , which satisfies the following universal property: for every A-
module M ′ which is complete and separated for the I-adic topology, and for
any continuous homorphism f : M → M ′, there exists a unique continuous
homomorphism f̂ : M̂ → M ′ satisfying f̂ ◦ φ = f .

It follows from the universal property that M̂ is unique up to isomor-
phism. The module M̂ is called the completion of M . It is a topological
Â-module. Several proofs of the theorem are given in [107, Section (23.H),

page 165]. The proof shows that the kernel of φ : M → M̂ is
⋂

n≥0 I
nM , so

φ is injective if and only if M is separated. One of the constructions shows
that

M̂ ∼= lim
←

M/InM.

The topology on M̂ is defined as follows. By (11.2), M̂ is naturally a sub-

module of
∏

n M/InM which has the product topology, and M̂ has the
subspace topology. We have the following useful properties.

Theorem 21.35. Suppose that R is a Noetherian ring and I is an ideal in
R. Let R̂ be the I-adic completion of R. Then R̂ is Noetherian.

Proof. [13, Theorem 10.26]. �

Theorem 21.36. Suppose that R is a Noetherian local ring and I is a proper
ideal of R. Let R̂ be the I-adic completion of R. Then dim R̂ = dimR.

Proof. [106, Theorem 15.7]. �

Lemma 21.37. Suppose that A is a Noetherian local ring and Â is the
mA-adic completion of A. Let I be an ideal of A. Then IÂ ∩A = I.

Proof. The map A → Â is faithfully flat by [107, (24.B), page 173, and
Theorem 56 (5), page 172]. The conclusions of the lemma now follow from
[107, (4.C)(ii), page 28]. �

If R is a local ring, then R̂ will denote the mR-adic completion of R,
unless we explicitly say otherwise.

Proposition 21.38. A Noetherian local ring R is separated in its mR-adic
topology. Thus the natural map R → R̂ is an inclusion.

Proof. [161, Theorem 9, page 262]. �



410 21. Ramification and Étale Maps

A local ring R is said to be equicharacteristic if R and its residue field
have the same characteristic. The ring R is equicharacteristic if and only
if R contains a field. A coefficient field of a local ring R is a subfield L of
R which is mapped onto the residue field R/mR. A coefficient field of R is
thus isomorphic to R/mR.

A theorem of fundamental importance is the following theorem of Cohen.
Proofs can be found in [30] and [161, Theorem 27].

Theorem 21.39. An equicharacteristic complete Noetherian local ring R
has a coefficient field.

If R has equicharacteristic 0, then the existence of a coefficient field
follows from Hensel’s lemma [161, Corollary 2, page 280].

We have the following corollary of Theorem 21.39 ([30] or [161, Corol-
lary on page 307]).

Corollary 21.40. An equicharacteristic complete regular local ring R is
isomorphic to a formal power series ring over a field. If K is a coef-
ficient field and x1, . . . , xd is a regular system of parameters in R, then
R = K[[x1, . . . , xd]] is a d-dimensional power series ring over K.

If R is a regular local ring of mixed characteristic (the characteristic

of R is 0 but the characteristic of its residue field is p > 0), then R̂ is a
power series ring over a complete discrete valuation ring if R is unramified
(p 
∈ m2

R). However, if R is ramified (p ∈ m2
R), this may not be true.

Examples of this are given on [30, pages 93–94].

The following two propositions are very helpful in computing comple-
tions. The following proposition follows from Corollary 21.40, as we always
have that our algebraically closed field k is a coefficient field of the local ring
of a point on a variety.

Proposition 21.41. Suppose that X is a variety and p ∈ X is a nonsin-
gular point. Let x1, . . . , xn be regular parameters in OX,p. Then ÔX,p =
k[[x1, . . . , xn]] is a power series ring over k in x1, . . . , xn.

The following proposition follows from [161, Theorem 6, page 257].

Proposition 21.42. Suppose that R is a Noetherian ring and I and J

are ideals in R. Then R̂/J ∼= R̂/JR̂ where the completion is the I-adic
completion.

Lemma 21.43. Suppose that R and S are local rings and φ : R → S
is a homomorphism such that φ(mR) ⊂ mS. Then there exists a unique

homomorphism φ̂ : R̂ → Ŝ such that φ̂(mR̂) ⊂ mŜ and φ̂(x) = φ(x) for
x ∈ R.
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Proof. We first prove existence. Suppose that y ∈ R̂. Let (yn) be a Cauchy
sequence in R which has y as its limit. Then (φ(yn)) is a Cauchy sequence in

S since φ(mR) ⊂ mS . Thus there exists z ∈ Ŝ which is the limit of (φ(yn)).
We have that z does not depend on the choice of Cauchy sequence (yn)

which has y as its limit. We may thus define φ̂(y) = z. The map φ̂ : R̂ → Ŝ

is a homomorphism such that φ̂(mR̂) ⊂ mŜ and φ̂(x) = φ(x) for x ∈ R.

We now prove uniqueness. Let ψ : R̂ → Ŝ be a homomorphism such
that ψ(mR̂) ⊂ mŜ and ψ(x) = φ(x) for x ∈ R. Let y ∈ R̂, and suppose
that (yn) is a Cauchy sequence in R which has y as its limit. Then 0 is the
limit of the Cauchy sequence (y − yn). Since ψ(mR̂) ⊂ mŜ , we have that
the Cauchy sequence (ψ(y − yn)) has 0 as its limit. Now

ψ(y − yn) = ψ(y)− ψ(yn) = ψ(y)− φ(yn)

so that the Cauchy sequence (φ(yn)) has ψ(y) as its limit, so that ψ(y) =

φ̂(y) by our construction of φ̂. �
Lemma 21.44. Suppose that R and S are equicharacteristic regular local
rings and φ : R → S is a homomorphism such that φ(mR) ⊂ mS. Sup-
pose that x1, . . . , xm are regular parameters in R and y1, . . . yn are regular
parameters in S and S/mS is finite and separable over R/mR. Then there

exist coefficient fields κ1 of R̂ and κ2 of Ŝ such that R̂ = κ[[x1, . . . , xn]] and

Ŝ = κ2[[y1, . . . , yn]] are power series rings and φ̂(κ1) ⊂ κ2.

Proof. This follows from Hensel’s lemma ([161, Theorem 17, page 279])
and Corollary 21.40. �

The conclusions of Lemma 21.44 may be false if S/mS is not separable

over R/mR; that is, there may not exist coefficient fields κ1 of R̂ and κ2 of

Ŝ, respectively, such that φ̂(κ1) ⊂ κ2. An example is given in [35, page 23].

A semilocal ring is a ring with a finite number of maximal ideals.

Theorem 21.45 (Chevalley). Let A be a complete Noetherian semilocal
ring, let m be the intersection of its maximal ideals, and let (an) be a de-
scending sequence of ideals in A such that

⋂∞
n=0 an = (0). Then there exists

an integral-valued function s(n) which tends to infinity with n, such that

an ⊂ ms(n) for all n ≥ 0.

Proof. [161, Theorem 13, page 270]. �

Suppose that R and S are Noetherian local rings such that R is a subring
of S. We say that R is a subspace of S if R, with its mR-adic topology, is
a subspace of S with its mS-adic topology. This is so if and only if S
dominates R and there exists a sequence of nonnegative integers a(n) such

that a(n) �→ ∞ as n �→ ∞ and R ∩ mn
S ⊂ m

a(n)
R for all n � 0. It follows
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from Theorem 21.45 that if R is a complete local ring and S is local ring
dominating R, then R is a subspace of S.

Lemma 21.46. Suppose that R and S are Noetherian local rings such that
S dominates R, with inclusion f : R → S. Let R̂ and Ŝ be the respective
completions of R and S and let f̂ : R̂ → Ŝ be the induced homomorphism.
Then R is a subspace of S if and only if f̂ is an injection.

Proof. First assume that R is a subspace of S. Suppose that y ∈ R̂ and
f̂(y) = 0. There exists a Cauchy sequence (yn) in R such that y is the limit of

(yn). Then (f(yn)) is a Cauchy sequence in S whose limit is f̂(y) = 0. Since
R is a subspace of S, given m > 0, there exists t0 such that R ∩ mt

S ⊂ mm
R

if t ≥ t0, and there exists m0 such that n > m0 implies f(yn) ∈ mt0
S so that

n > m0 implies yn ∈ mm
R . Thus y = 0 is the limit of the Cauchy sequence

(yn) and so f̂ is an injection.

Now suppose that f̂ is injective. Then in R̂,

(0) = Kernel f̂ =
∞⋂
n=0

an

where an = R̂ ∩ mn
Ŝ
. By Theorem 21.45, there exists an integer-valued

function s(n) which tends to ∞ with n, such that an ⊂ m
s(n)

R̂
for all n � 0.

Thus

R ∩ mn
S = R ∩ (S ∩ mŜn) = R ∩ an ⊂ R ∩ m

s(n)

R̂
= m

s(n)
R

by Lemma 21.37, and so R is a subspace of S. �

Exercise 21.47. In this exercise, consider two power series rings

κ[[x1, . . . , xm]] and κ[[y1, . . . , yn]]

over a field κ.

a) Suppose that h1, . . . , hm are in the maximal ideal of κ[[y1, . . . , yn]].
Show that there is a unique local κ-algebra homomorphism

φ : κ[[x1, . . . , xm]] → κ[[y1, . . . , yn]]

such that φ(xi) = hi. Explain why all local κ-algebra homomor-
phisms φ : κ[[x1, . . . , xm]] → κ[[y1, . . . , yn]] have this form. Hint:
Let R = κ[x1, . . . , xm]. Use the universal property of polyno-
mial rings to define a (unique) κ-algebra homomorphism ψ : R →
κ[[y1, . . . , yn]] such that ψ(xi) = hi. Let I be the maximal ideal
I = (x1, . . . , xn) of R. Explain why ψ extends to a homomorphism
of local rings ψ : RI → κ[[y1, . . . , yn]], which has the property that
ψ(IRI) ⊂ (y1, . . . , yn). By Lemma 21.43, ψ extends to a local

homomorphism ψ̂ : R̂I = κ[[x1, . . . , xm]] → κ[[y1, . . . , yn]].
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b) Can there be local homomorphisms

φ : κ[[x1, . . . , xm]] → κ[[y1, . . . , yn]]

which are not κ-algebra homomorphisms? Can there be ring ho-
momorphisms φ : κ[[x1, . . . , xm]] → κ[[y1, . . . , yn]] such that φ is
not a local homomorphism (φ does not map the maximal ideal of
κ[[x1, . . . , xm]] into the maximal ideal of κ[[y1, . . . , yn]])?

c) Suppose that φ : κ[[x1, . . . , xn]] → κ[[x1, . . . , xn]] is a local κ-
algebra homomorphism. Show that φ is an isomorphism if and
only if Det(aij) 
= 0 where

φ(xi) = ai1y1 + · · · + ainyn +
∑

i1+···+in>1

a(i)i1,...,iny
i1
1 · · · yinn

with aij , a(i)i1,...,in ∈ κ is the series expansion of φ(xi) for q ≤ i ≤
n.

21.6. Zariski’s main theorem and Zariski’s subspace theorem

In this section we give some generalizations by Abhyankar in [4, Section 10]
of some theorems of Zariski in [155].

Proposition 21.48. Suppose that R and S are complete Noetherian local
rings such that S dominates R, S/mS is finite algebraic over R/mR, and
mRS is mS-primary. Then S is a finite R-module. If S/mS = R/mR and
mRS = mS, then R = S.

Proof. The quotient S/mS is a finite length S-module since mRS is mS-
primary. Since S/mS is a finite R/mR-vector space, we have that S/mRS
is a finitely generated R-module.

By Proposition 21.38 and since S is a Noetherian local ring with mRS ⊂
mS , we have that

∞⋂
n=1

mn
RS = (0).

Let u1, . . . , us ∈ S generate S/mRS as an R-module. Let N =
∑s

i=1Rui.

Suppose a ∈ S. We will show that there exists a sequence of elements
a1, . . . , an, . . . in N such that

an =
s∑

i=1

mniui

with mni ∈ mn−1
R and a−

∑n
j=1 aj ∈ mn

RS.
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We will prove this by induction on n. The case n = 1 is immediate from
our assumptions. Assume that a1, . . . , an are defined. Then

a −
n∑

j=1

aj =
∑

mibi

with mi ∈ mn
R, bi ∈ S. Let ci be elements of N such that bi − ci ∈ mRS and

set

an+1 =
∑

mici =
∑

mn+1,iui.

Then an+1 is the required element and the sequence in well-defined.

Set

m∗
i =

∞∑
n=1

mni ∈ R

and a∗ =
∑

m∗
iui ∈ N . Then a − a∗ ∈ mn

RS for all n, so that a = a∗ and
thus S = N . �

A local ring R is said to be analytically irreducible if R̂ is a domain.

Proposition 21.49. Let R and S be analytically irreducible Noetherian local
domains such that S dominates R. Assume that there exists a subring T of
S with R ⊂ T such that T is a finite R-module and S = TT∩mS

. Also assume

that R is a subspace of S. Let R̂ and Ŝ be the completions of R and S. Let
K, L, K∗, and L∗ be the quotient fields of R, S, R̂, and Ŝ, respectively,
where K∗ is identified with a subfield of L∗. Then Ŝ = R̂[T ], Ŝ is a finite

R̂-module, and L∗ = K∗(L).

Proof. We have that R̂[T ] is a finite R̂-module and hence is a complete Noe-

therian local domain such that R̂[T ] dominates R̂ and mR̂[T ] =
√

mR̂R̂[T ]

by [161, Theorem 15, page 276] and [161, Corollary 2 on page 283]. Thus

Ŝ dominates R̂[T ]. In particular,

T ∩mR̂[T ] = T ∩ mŜ = T ∩ mS

and hence R̂[T ] dominates S. Consequently Ŝ and R̂[T ] have isomorphic

residue fields and mR̂[T ]Ŝ = mŜ . By Proposition 21.48 we have that Ŝ =

R̂[T ]. Thus Ŝ is a finite R̂-module and L∗ = K∗(L). �

Proposition 21.50. Suppose that R is a normal local ring which is essen-
tially of finite type over a field. Then its completion R̂ is a normal local
ring.

Proof. [121, Theorem 37.5] or [107, Theorem 79, page 258]. �
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Proposition 21.51. Let R be an analytically irreducible Noetherian local
domain, let R̂ be the completion of R, let K and K̂ be the respective quotient
fields of R and R̂, let V be a local (not necessarily Noetherian) domain with
quotient field K such that V dominates R, and let H be the smallest subring
of K̂ such that H contains V and R̂. Then mV H 
= H and there exists a
valuation ring V ∗ of K̂ such that V ∗ dominates V and R̂.

Proof. Suppose that mV H = H. We will derive a contradiction. Since H
is the set of all finite sums

∑
aibi with ai ∈ V and bi ∈ R̂, we have an

expression 1 = x1y1+ · · ·+xnyn where x1, . . . , xn ∈ mV and y1, . . . , yn ∈ R̂.
Since R and V have the same quotient field, we have expressions xi =

zi
z ,

where z, z1, . . . , zn ∈ R with z 
= 0. Then

z = z1y1 + · · · + znyn ∈ R ∩
(
(z1, . . . , zn)R̂

)
= (z1, . . . , zn)R

by Lemma 21.37. Hence z = z1r1 + · · · + znrn with r1, . . . , rn ∈ R. Then

1 = x1r1 + · · ·+ xnrn ∈ mV ,

a contradiction. Thus mVH 
= H, and so by the existence theorem of
valuations [161, Theorem 4, page 11] there exists a valuation ring V ∗ of K̂
such that H ⊂ V ∗ and mV H ⊂ mV ∗ . The valuation ring V ∗ thus dominates
V and R̂. �

Theorem 21.52. Let A be a subring of a field K and let P be a prime ideal
of A. Then ⋂

V ∈N
V = the integral closure of AP in K,

where N is the set of all valuation rings V of K such that V dominates AP .

Proof. [161, Theorem 8, page 17]. �

Proposition 21.53. Let R and S be Noetherian local domains such that R is
analytically irreducible, S dominates R, dimR = dimS, S/mS is finite over

R/mR, and mRS is mS-primary. Let R̂ and Ŝ be the respective completions
of R and S. Let f : R → S be the inclusion, with induced homomorphism
f̂ : R̂ → Ŝ. Then f̂ is an injection (and hence R is a subspace of S by
Lemma 21.46). If R is normal and R and S have the same quotient fields,
then R = S.

Proof. The ring f̂(R̂) is a complete local ring since it is isomorphic to a

quotient of R̂. By Proposition 21.48, Ŝ is a finite f̂(R̂)-module as Ŝ/mŜ
∼=

S/mS is finite over f̂(R̂)/mf̂(R̂)
∼= R/mR andmf(R̂)Ŝ = mRŜ ismŜ-primary.

Hence dim Ŝ = dim f̂(R̂) by Theorem 1.62. Thus dim f̂(R̂) = dim R̂, as

dim R̂ = dimR and dim Ŝ = dimS by Theorem 21.36. Since R̂ is a domain,
f̂ is then a monomorphism.
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Now assume that R is normal and the quotient fields of R and S coincide.
LetK and K̂ be the respective quotient fields of R and R̂. Since R is normal,
we have by Theorem 21.52 that R is the intersection of all valuation rings
of K which dominate R. Thus it suffices to show that if V is any valuation
ring of K which dominates R and z is an element of S, then z ∈ V . Since
K is the quotient field of R, we have an expression z = x

y where x, y ∈ R

and y 
= 0. Since z ∈ S ⊂ Ŝ and Ŝ is integral over R̂ (by Proposition

21.48), there exist z1, . . . , zn ∈ R̂ such that zn + z1z
n−1 + · · · + zn = 0.

By Proposition 21.51, there exists a valuation ring V ∗ of K̂ such that V ∗

dominates V and R̂. Since V ∗ is normal, R̂ ⊂ V ∗, and z is integral over R̂,
we have that z ∈ V ∗. Now V = V ∗ ∩K so z ∈ V . �

Proposition 21.54 (Zariski’s main theorem). Let κ be a field, let R be a
normal Noetherian local domain which is a localization of a finite type κ-
algebra, and let S be a Noetherian local domain such that S dominates R,
dimR = dimS, S/mS is finite over R/mR, mRS is mS-primary, and R
and S have a common quotient field. Then R = S.

Proof. The ring R is analytically irreducible by Proposition 21.50. The
proposition now follows from Proposition 21.53. �

Proposition 21.55. Let R be a Noetherian normal local ring which is es-
sentially of finite type over a field κ, let T be the integral closure of R in a
finite algebraic extension L of the quotient field K of R, let P be a prime
ideal in T with R ∩ P = mR, and let S = TP . Then S is normal and a lo-
calization of a finite type κ-algebra, S dominates R, dimR = dimS, S/mS

is finite algebraic over R/mR, mRS is primary for mS, the completions R̂

and Ŝ are normal domains, R is a subspace of S, and upon identifying the
quotient field K̂ of R̂ with a subfield of the quotient field L̂ of Ŝ, we have
that Ŝ = R̂[T ], Ŝ is a finite R̂-module, and L̂ = K̂(T ).

Proof. The ring T is a finitely generated R-module and S is a localization
of a finite type κ-algebra by Theorem 1.54. Thus S/mS is finite algebraic
over R/mR and mRS is primary for mS . We have that dimS = dimR by

Theorem 1.62. The completions R̂ and Ŝ are normal domains by Proposition
21.50. Proposition 21.53 implies that R is a subspace of S. The facts that
Ŝ = R̂[T ], Ŝ is a finite R̂-module, and L̂ = K̂(L) now follow from Proposition
21.49. �

Proposition 21.56. Let R be a Noetherian local domain with quotient field
K and let V be a valuation ring of K such that V 
= K, V dominates R,
and trdegR/mR

V/mV ≥ dimR− 1. Then trdegR/mR
V/mV = dimR− 1 and

V is a one-dimensional regular local ring.
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Proof. We have that the value group of V is isomorphic to Z and

trdegR/mR
V/mV = dimR − 1

by [161, Proposition 2, page 331] and [161, Proposition 3, page 335] (which
are generalizations of “Abhyankar’s inequality” in [3]). Thus V is a one-
dimensional regular local ring by Theorem 21.10. �

The following proposition generalizes Theorem 10.19.

Proposition 21.57. Let R be an n-dimensional Noetherian local domain
with n > 1. Let x1, . . . , xn ∈ R be a system of parameters in R and let Q =
(x1, . . . , xn). Let A = R[x2

x1
, . . . , xn

x1
] and let π : A → A/mRA be the natural

quotient map. Then mRA is a prime ideal, dimAmR = 1, mRA =
√
QA,

R ∩ mRA = mR, and π(x2
x1
), . . . , π(xn

x1
) are algebraically independent over

π(R) ∼= R/mR.

Proof. We have that QA = x1A. There exists a positive integer e such that
me

R ⊂ Q since Q is mR-primary, so that (mRA)
e ⊂ x1A. Let X1, . . . , Xn

be indeterminates. Suppose that R ∩ mRA 
= mR. We will derive a con-
tradiction. Then mRA = A and thus x1A = A, so there exists a nonzero
element y ∈ A such that x1y = 1. There thus exists a nonzero polynomial
f(X2, . . . , Xn) of some degree d in X2, . . . , Xn with coefficients in R such
that y = f(x2

x1
, . . . , xn

x1
). Thus

xd1 = xd+1
1 y = x1g(x1, . . . , xn)

where g(X1, . . . , Xn) is a nonzero homogeneous polynomial of degree d in
X1, . . . , Xn with coefficients in R. In particular, xd1 ∈ mRQ

d, which is a
contradiction by [161, Theorem 21, page 292], since x1, . . . , xn is a system
of parameters in R. Thus R ∩ mRA = mR and π(R) ∼= R/mR.

Suppose that π(x2
x1
), . . . , π(xn

x1
) are algebraically dependent over R/mR.

We will derive a contradiction. By our assumption that they are alge-
braically dependent, there exists a nonzero polynomial F (X2, . . . , Xn) of
some degree u in X2, . . . , Xn with coefficients in R at least one of which is
not in mR such that F (x2

x1
, . . . , xn

x1
) ∈ mRA. Thus there exists a polynomial

G(X2, . . . , Xn) in X2, . . . , Xn with coefficients in mR such that

F

(
x2
x1

, . . . ,
xn
x1

)
= G

(
x2
x1

, . . . ,
xn
x1

)
.

After multiplying both sides of this equation by xv1 for a suitable integer
v ≥ u, we obtain that

U(x1, . . . , xn) = V (x1, . . . , xn)

where U(X1, . . . , Xn) is a nonzero homogeneous polynomial of degree v
in X1, . . . , Xn with coefficients in R, at least one of which is not in mR,
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and V (X1, . . . , Xn) is either the zero polynomial or a nonzero homoge-
neous polynomial of degree v in X1, . . . , Xn with coefficients in mR. Thus
U(x1, . . . , xn) ∈ mRQ

v, which is a contradiction by [161, Theorem 21, page
292], since x1, . . . , xn is a system of parameters. Thus π(x2

x1
), . . . , π(xn

x1
) are

algebraically independent over π(R). Since

π(A) = π(R)

[
π

(
x2
x1

)
, . . . , π

(
xn
x1

)]
,

we have that π(A) is a domain and thus mRA is a prime ideal in A.

Now (mRA)
e ⊂ x1A = QA, which implies that x1AmRA is mRAmRA-

primary, which implies that dimAmRA = 1 by Krull’s principal ideal theo-
rem, Theorem 1.65. �

Proposition 21.58. Let R be an n-dimensional Noetherian local domain
with n > 0, and let K be the quotient field of R. Then there exists a one-
dimensional regular local ring V with quotient field K such that V dominates
R and trdegR/mR

V/mV = n− 1.

Proof. By Theorem 8.12, there exists a system of parameters x1, . . . , xn in
R, so that (x1, . . . , xn) is mR-primary. Let A = R[x2

x1
, . . . , xn

x1
]. By Propo-

sition 21.57, mRA is a prime ideal in A, and upon letting S = AmRA we have
that S is a one-dimensional Noetherian local domain with trdegR/mR

S/mS =
n−1. Let T be the integral closure of S inK. By the Krull-Akizuki theorem,
[121, Theorem 33.2] (or by Theorem 1.54 if R is a localization of a finite
type algebra over a field), we have that T is Noetherian and dimT = 1.
Let P be a maximal ideal of T , and let V = TP . Then V dominates S and
V/mV is algebraic over S/mS . We have that V is a regular local ring by
Theorem 1.87, since V is normal by Exercise 1.58. �

Proposition 21.59. Suppose that A and B are local domains which are lo-
calizations of finitely generated algebras over a field, A and B have respective
quotient fields K and L, and B dominates A. Then

dimA+ trdegKL = dimB + trdegA/mA
B/mB.

Proof. [107, Corollary, page 86, and Corollary 3, page 92]. �

Proposition 21.60. Let R and S be Noetherian local domains, with re-
spective quotient fields K and L, such that R is analytically irreducible, S
dominates R, trdegKL < ∞, and

dimR+ trdegKL = dimS + trdegR/mR
S/mS .

Then R is a subspace of S.

Proof. Let K̂ be the quotient field of the completion R̂ of R. If dimR = 0,
then the conclusions of the proposition follow trivially. Assume dimR > 0.
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Then dimS > 0, and by Proposition 21.58, there exists a one-dimensional
regular local ring W with quotient field L such that W dominates S and
trdegS/mS

W/mW = dimS − 1. Let V = K ∩ W . Since W is a valuation
ring of L, we have that V is a valuation ring of K, W dominates V , and
V dominates R. In particular, R ∩ mV = mR 
= (0), and hence mV 
= (0).
Now W is the valuation ring of a discrete valuation ω of L, so we have that
V is the valuation ring of the discrete valuation ν = ω|K and V is a one-
dimensional regular local ring by Theorem 21.10. Thus the principal ideals
mVW = mu

W where u is a positive integer, and K ∩ mui
W = mi

V for every
nonnegative integer i (by Remark 21.11).

We will now establish that

trdegV/mV
W/mW ≤ trdegKL.

Suppose that t1, . . . , tr ∈ W/mW are algebraically independent over V/mV .
Let t1, . . . , tr ∈ W be lifts of t1, . . . , tr. Suppose that t1, . . . , tr are alge-
braically dependent over K. We will derive a contradiction. With this
assumption, there exists a relation

(21.17)
∑

i1,...,ir

ai1,...,ir t
i1
1 · · · tirr = 0

with the finitely many coefficients ai1,...,ir ∈ K not all zero. Let j1, . . . , jr be
such that

ν(aj1,...,jr) = min{ν(ai1,...,ir)}.

Dividing the relation (21.17) by aj1,...,jr , we may assume that aj1,...,jr = 1
and ν(ai1,...,ir) ≥ 0 for all i1, . . . , ir. Let ai1,...,ir be the residue of ai1,...,ir in
V/mV . Then ∑

i1,...,ir

ai1,...,ir t
i1
1 · · · tirr = 0

is a nontrivial relation, contradicting our assumption that t1, . . . , tr are al-
gebraically independent over V/mV .

We have that

trdegS/mS
W/mW = dimS − 1,

trdegV/mV
W/mW+trdegR/mR

V/mV = trdegS/mS
W/mW+trdegR/mR

S/mS ,

and, by assumption,

dimR+ trdegKL = dimS + trdegR/mR
S/mS .
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Thus trdegR/mR
V/mV ≥ dimR−1. By Proposition 21.51, there exists a val-

uation ring V ∗ of K̂ such that V ∗ dominates V and R̂. Since dim R̂ = dimR
(by Theorem 21.36) and R̂/mR̂ = R/mR, we have that trdegR̂/mR̂

V ∗/mV ∗ ≥
dim R̂ − 1. Thus V ∗ is a one-dimensional regular local ring by Proposition
21.56. In particular,

⋂∞
i=0m

i
V ∗ = (0), and hence

∞⋂
i=0

(R̂ ∩ mi
V ∗) = (0).

Thus by Theorem 21.45, there exists a sequence of nonnegative integers

a(i) which tend to infinity with i such that R̂ ∩ (mV ∗)i ⊂ m
a(i)

R̂
for every

nonnegative integer i. We thus have

R∩mui
S ⊂ R∩mui

W = R∩mi
V ⊂ R∩mi

V ∗ ⊂ R∩(R̂∩mi
V ∗) ⊂ R∩m

a(i)

R̂
= m

a(i)
R

by Lemma 21.37. Thus there exists a sequence of nonnegative integers b(i)

which tend to infinity with i such that R∩mi
S ⊂ m

b(i)
R for every nonnegative

integer i. Thus R is a subspace of S. �

Proposition 21.61 (Zariski’s subspace theorem). Let R and S be local
domains which are localizations of finite type algebras over a field such that
R is analytically irreducible and S dominates R. Then R is a subspace of S
so that the natural map R̂ → Ŝ is an inclusion.

Proof. This follows from Propositions 21.59 and 21.60. �

Proposition 21.62. Suppose that φ : X → Y is a dominant regular map of
varieties, p ∈ X, and q = φ(p). Assume that OY,q is analytically irreducible
(which holds if OY,q is normal by Proposition 21.50) and that mqOX,p = mp

is the maximal ideal of OX,p. Then φ̂∗ : ÔY,q → ÔX,p is an isomorphism.

Proof. Let R = OY,q and S = OX,p. By Proposition 21.61, we have that

φ̂ : R̂ → Ŝ is an injection. Since R/mR = S/mS = k and mRS = S, we

have that φ̂∗ is an isomorphism by Proposition 21.48. �

Corollary 21.63. Suppose that φ : X → Y is a finite map of normal
varieties. Suppose that φ is unramified at p ∈ X. Then φ̂∗ : ÔY,φ(p) → ÔX,p

is an isomorphism.

The subspace theorem is not true in complex analytic geometry.

Example 21.64 (Gabrièlov, [58]). There exists an injective local C-algebra
homomorphism R → S of rings of germs of convergent power series, such
that the induced map R̂ → Ŝ of formal power series rings is not an injection.
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Exercise 21.65. In this exercise, we show that the assumption that OY,q

is analytically irreducible is necessary in Proposition 21.62.

a) Let Y be the nodal curve Y = Z(x2 − y2 − y3) ⊂ A2
k where k is an

algebraically closed field of characteristic 
= 2 or 3. Show that Y is
a variety with an isolated singularity at the origin q.

b) Let φ : X → Y be the blow-up of the ideal I(q) of Y . Show that
X is an affine variety which is the normalization of Y and the ring
of regular functions on X is

k[X] = k[x1, y1]/(1− y21 − x1y
3
1),

with the inclusion k[Y ] → k[X] defined by the substitutions x =
x1, y = x1y1.

c) Let p ∈ φ−1(q). Show that OY,q → OX,p is unramified but the

induced map on completions φ̂∗ : ÔY,q → ÔX,p is not an isomor-
phism.

Exercise 21.66. Let f1 = xy, f2 = x, f3 = y in the polynomial ring k[x, y].

Let R = k[x, y](x,y) and Q = (f1, f2, f3)R = mR. Let A = R[ f2f1 ,
f3
f1
]. Show

that mRA = A.

21.7. Galois theory of varieties

Suppose that φ : Y → X is a dominant finite regular map of normal varieties.
Let G(Y/X) be the group of all regular isomorphisms of Y/X, that is,
the group of all regular isomorphisms τ : Y → Y such that there is a
commutative diagram

Y

φ ���
��

��
��

�
τ �� Y

φ
��

X.

The group of k(X)-algebra isomorphisms of k(Y ) is denoted by
Aut(k(Y )/k(X)) (Section 1.2).

Proposition 21.67. The map

Φ : G(Y/X) → Aut(k(Y )/k(X))op

(where Aut(k(Y )/k(X))op is the opposite group) defined by τ �→ τ∗ is a
group isomorphism.

Proof. Suppose that τ ∈ G(Y/X). Then τ∗ gives an isomorphism of k(Y )
which fixes k(X), so τ∗ ∈ Aut(k(Y )/k(X)).

Now suppose that σ ∈ Aut(k(Y )/k(X)). Then there exists a unique
birational map τ : Y ��� Y such that τ∗ = σ. Suppose that U ⊂ X is an
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affine open subset. Let V = φ−1(U) which is an affine open subset of Y (by
Theorem 7.5). Let A = k[U ] and B = k[V ]. Here B is the integral closure of
A in k(Y ) (by φ∗ : k(X) → k(Y )). Suppose f ∈ B. Then f is integral over
A and σ(f) ∈ k(Y ) must satisfy the same equation of integrality over A as
f since A ⊂ k(X) is fixed by σ. Thus σ(f) ∈ B and σ(B) ⊂ B. Since σ is
an isomorphism, we have σ(B) = B. Hence σ is an A-algebra isomorphism
of B so τ |V ∈ G(V/U). Since this is true for all members of an affine cover
{Ui} of X, we have that τ ∈ G(Y/X) by Proposition 3.39.

Finally, we observe that the group structure is preserved since (τ1τ2)
∗ =

τ∗2 τ
∗
1 for τ1, τ2 ∈ G(Y/X). �

Suppose that H is a subgroup of G(Y/X). Then we can define (by
Theorem 7.17) a normal variety Y H by taking Y H to be the normalization

of X in the fixed field k(Y )H = k(Y )Φ(H) (σ ∈ H acts as σ∗). We call Y H

the quotient of Y by H.

Definition 21.68. Suppose that φ : Y → X is a dominant finite regular
map of normal varieties and k(Y ) is a separable extension of k(X). The
map φ is said to be Galois and Y is said to be Galois over X if for every
p ∈ X and q1, q2 ∈ φ−1(p) there exists τ ∈ G(Y/X) such that τ(q1) = q2.

Theorem 21.69. Suppose that φ : Y → X is a dominant finite regular map
of normal varieties. Then Y is Galois over X if and only if k(Y ) is Galois
over k(X).

Proof. Suppose that Y/X is Galois. Let Z = Y G(Y/X) and let

Y
α→ Z

β→ X

be the regular maps factoring φ. By Theorems 21.29 and 21.28, there exists
p ∈ X such that #{φ−1(p)} = [k(Y ) : k(X)]. Thus β is unramified above
p and α is unramified above all points of β−1(p) by Theorem 21.26 and
Theorem 21.28. Suppose that Z 
= X so that k(Z) 
= k(X). Then there exist
a1, a2 ∈ β−1(p) which are not equal. Let q1 ∈ α−1(a1) and q2 ∈ α−1(a2).
Since Y is Galois over X, there exists τ ∈ G(Y/X) such that τ(q1) = q2.
But G(Y/Z) = G(Y/X) (since τ ∈ G(Y/X) implies τ∗ : k(Z) → k(Z) is the
identity) so a1 = α(τ(q1)) = α(q2) = a2, a contradiction. Thus Z = X and
so k(Y )G(Y/X) = k(X), so that k(Y ) is Galois over k(X).

Now suppose that k(Y ) is Galois over k(X). Suppose that q ∈ X and
φ−1(q) = {p1, . . . , pr}. Let T be the integral closure of OX,q in k(Y ), and
let m1, . . . ,mr be the maximal ideals of T , with Tmi = OY,pi . By Lemma
21.8, if i 
= j, then there exists σ ∈ G(k(Y )/k(X)) such that σ(mi) = mj .
If τ ∈ G(Y/X) corresponds to σ, then we have τ(pj) = pi. Thus Y is Galois
over X. �
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We now summarize some results on quotients that we found in this
section. Suppose that φ : Y → X is a dominant finite map of normal
varieties and U ⊂ X is affine. Then V = φ−1(U) is affine (since φ is finite)
and k[V ] is the integral closure of k[U ] in k(Y ). Further, if Y is Galois over
X, then G = G(Y/X) acts naturally on k[V ] and the ring of invariants is
k[V ]G = k[U ].

Exercise 21.70. Suppose that X and Y are normal varieties over an alge-
braically closed field of characteristic 
= 2 and φ : Y → X is a finite map
with deg(φ) = 2. Show that φ is Galois.

Exercise 21.71. Suppose that φ : Y → X is a Galois map of nonsingular
curves. Suppose that p ∈ X and φ−1(p) = {q1, . . . , qt}. Show that the
divisor φ∗(p) = eq1+ · · ·+eqt where et = deg(φ). Hint: Use Theorem 13.18.

Exercise 21.72. Suppose that k is an algebraically closed field of charac-
teristic 
= 2. Let φ : A1

k → A1
k be defined by φ(z) = (z2 + 1)2. Show that φ

is not Galois. Hint: Use Exercise 21.71.

Exercise 21.73. Suppose that φ : Y → X is a finite regular Galois map of
varieties and H is a subgroup of G(Y/X). Let Z = Y H with natural regular
maps

Y
α→ Z

β→ X

factoring φ. Suppose that U is an affine open subset of X. Let V = φ−1(U)
and W = β−1(U). Here V and W are affine open subsets of Y and Z,
respectively, by Theorem 7.5.

a) Show that

G(V/U) = {(σ|V ) | σ ∈ G(Y/X)}.

b) Let

k[V ]H = {f ∈ k[V ] | σ∗(f) = f for all σ ∈ H}.

Show that k[W ] = k[V ]H .

c) Show that Y is Galois over Z.

Exercise 21.74. Let k be an algebraically closed field of characteristic 
= 3
and let φ : Y = A1

k → X = A1
k be the finite map defined by φ(t) = t3 − 3t.

Compute G(Y/X) and show that φ is not Galois. Hint: Use the fact that
every automorphism of A1 extends to an automorphism of P1.
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21.8. Derivations and Kähler differentials redux

We require some more results on derivations and differentials.

Theorem 21.75. Suppose that κ is a field and K is a finitely generated ex-
tension field, of transcendence degree n over k. Then ΩK/κ is a vector space
of dimension ≥ n over K. Suppose that x1, . . . , xn ∈ K. Then dx1, . . . , dxn
is a K-basis of ΩK/κ if and only if x1, . . . , xn is a separating transcendence
basis of K over κ.

Theorem 21.75 follows from [50, Theorem 16.4 and Corollary 16.17] or
the material in [160, Section 17, Chapter II] on derivations, along with the
isomorphism of K-vector spaces Derκ(K,K) ∼= HomK(ΩK/κ,K) of Lemma
14.3.

Suppose that K is a finitely generated extension field of an algebraically
closed field k and x1, . . . , xn is a separating transcendence basis of K over
k (which exists by Theorem 1.14). Let L = k(x1, . . . , xn). By Example 14.5
and Lemma 14.8, ΩL/k

∼=
⊕n

i=1 Ldxi. Since Derk(L,L) ∼= HomL(ΩL/k, L)

by Lemma 14.3, ∂
∂x1

, . . . , ∂
∂xn

is an L-basis of Derk(L,L), and by Theorem

21.75 and since Derk(K,K) ∼= HomK(ΩK/k,K) by Lemma 14.3, ∂
∂x1

, . . . , ∂
∂xn

extend uniquely to a K-basis of Derk(K,K). A direct proof of this is given
in Theorem 39 and its corollaries in [160, Section 17, Chapter II].

Suppose that 0 
= α ∈ K and δ ∈ Derk(L,L). Let g(t) ∈ L[t] be the
minimal polynomial of α over L. Write g(t) = td + ad−1t

d−1 + · · ·+ a0 with
ai ∈ L. Let

gδ(t) = δ(ad−1)t
d−1 + δ(ad−2)t

d−2 + · · · + δ(a0) ∈ L[t].

By the properties of derivations, we have that

0 = δ(g(α)) = gδ(α) + g′(α)δ(α)

where

g′(t) =
dg

dt
= dtd−1 + (d − 1)ad−1t

d−1 + · · · + a1

is the formal derivative of g(t). Since α is separable over L, we have that
g′(α) 
= 0. Thus

δ(α) = −gδ(α)

g′(α)
.

If δ(α) = 0, then gδ(α) = 0. Since gδ(t) has smaller degree in t than the
minimal polynomial g(t) of α, we have that gδ(t) = 0.

Suppose that k has characteristic 0. If δ(α) = 0 for all δ ∈ Derk(L,L),
then g(t) ∈ k[t], so that α ∈ k (as k is algebraically closed). Thus if k has
characteristic 0,

(21.18) k = {f ∈ K | δ(f) = 0 for all δ ∈ Derk(K,K)}.
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Suppose that K is a field of characteristic p > 0. A finite set of el-
ements x1, . . . , xn in K are said to be p-independent if the np monomials
xi11 x

i2
2 · · ·xinn with 0 ≤ iq < p for 1 ≤ q ≤ n are linearly independent over

Kp. If we also have that the set S = {x1, . . . , xn} satisfies K = Kp(S), then
we say that S is a p-basis of K.

Theorem 21.76. Suppose that K is a finitely generated extension field of
an algebraically closed field k of characteristic p > 0 and x1, . . . , xn is a
separating transcendence basis of K over k. Then:

1) The k(x1, . . . , xn)-basis

∂

∂x1
, . . . ,

∂

∂xn

of Derk(k(x1, . . . , xn), k(x1, . . . , xn)) extends uniquely to a K-basis
of

Derk(K,K) = DerKp(K,K).

2) [K : Kp] = pn and x1, . . . , xn is a p-basis of K.

3) Kp = {f ∈ K | δ(f) = 0 for all δ ∈ Derk(K,K)}.

Proof. Statement 1) follows from Theorem 21.75 since

Derk(K,K) ∼= Homk(ΩK/k,K)

by Lemma 14.3.

Suppose that f ∈ Kp(x1, . . . , xn). Then f has an expression

(21.19) f =
∑
I

aIx
i1
1 x

i2
2 · · ·xinn

where the sum is over I = (i1, . . . , in) ∈ Nn with 0 ≤ iq < p for 1 ≤ q ≤ n
and all aI ∈ Kp. Let I be such that i1 + · · · + in is maximal for aI 
= 0.
Suppose that i1 + · · · + in > 0. Without loss of generality, i1 > 0. Then

∂f

∂xinn · · · ∂xi11
= i1!i2! · · · in!aI 
= 0

so ∂f
∂x1


= 0. Thus f 
= 0, and so x1, . . . , xn are p-independent, and we have
that

[Kp(x1, . . . , xn) : K
p] = pn.

We have that [K : Kp] = pn by [160, Theorem 41, Section 17, Chapter II] ,
so x1, . . . , xn is a p-basis of K.

Now 3) follows from 2) and the above calculation showing that if an
element f with an expansion (21.19) has the property that all derivations
vanish on f , then f ∈ Kp. �
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Theorem 21.77. Let K be a field and F be a finitely generated extension
field of K. Then

dimK DerK(F, F ) ≥ trdegKF

and F is separably generated over K if and only if

dimK DerK(F, F ) = trdegKF.

Proof. [160, Theorem 41, page 127]. �

Exercise 21.78. Let κ = Fp(t), and let R = κ[x, y]/(xp + yp − t) be the
ring considered in Exercise 10.21. Let K be the quotient field of R. It was
shown in Exercise 10.21 that R is a regular ring of dimension 1.

a) Compute ΩR/κ.

b) Show that K is not separably generated over κ.

21.9. Étale maps and uniformizing parameters

Definition 21.79. A regular map of varieties φ : X → Y is said to be étale
if for all p ∈ X there are open neighborhoods U ⊂ X of p and V ⊂ Y of
φ(p) such that φ(U) ⊂ V and there exists a commutative diagram

U
open embedding→ Z

φ ↓ ↓
V

open embedding→ W

where Z and W are affine varieties, and

k[Z] = R[x1, . . . , xn]/(f1, . . . , fn)

with R = k[W ], and the rank of the n× n matrix ( ∂fi∂xj
(p)) over k is n.

This definition of étale is equivalent to the definition of étale in [109,
page 20] and [73, Exercise III.10.3], as will be explained after Definition
22.8. The definition is valid with φ : X → Y a map of schemes (and Z,W
affine schemes). A refinement of Definition 21.79 is given in Exercise 21.86.

The following is a version of Hensel’s lemma.

Lemma 21.80. Let R be a complete Noetherian local ring and let f1, . . . , fn
be elements of the polynomial ring R[x1, . . . , xn]. Assume a1, . . . , an ∈ R are
such that f1(a1, . . . , an), . . . , fn(a1, . . . , an) ∈ mR and

Det

(
∂fi
∂xj

)
(a1, . . . , an) 
∈ mR.

Then there exist α1, . . . , αn ∈ R such that αi − ai ∈ mR and

f1(α1, . . . , αn) = · · · = fn(α1, . . . , αn) = 0.
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Proof. We inductively define approximate roots a
(r)
1 , . . . , a

(r)
n ∈ R, with

a
(1)
i = ai, such that

(21.20) a
(r)
i ≡ a

(r−1)
i mod mr−1

R for 1 ≤ i ≤ n and r ≥ 2

and

(21.21) f1(a
(r)
1 , . . . , a(r)n ) ≡ · · · ≡ fn(a

(r)
1 , . . . , a(r)n ) ≡ 0 mod mr

R.

Suppose a
(r)
1 , . . . , a

(r)
n ∈ R satisfy (21.20) and (21.21). Let ε1, . . . , ε2 ∈

mr
R. Then

fi(a
(r)
1 +ε1, . . . , a

(r)
n +εn)≡fi(a

(r)
1 , . . . , a(r)n )+

n∑
j=1

∂fi
∂xj

(a1, . . . , an)εj mod mr+1
R .

Let

B = (bij) =

((
∂fi
∂xj

)
(a1, . . . , an)

)−1

,

a matrix with coefficients in R. Set

εi = −
n∑

j=1

bijfj(a
(r)
1 , . . . , a(r)n ) for 1 ≤ i ≤ n

and a
(r+1)
i = a

(r)
i + εi. Then

fi(a
(r)
1 + ε1, . . . , a

(r)
n + εn) ≡ 0 mod mr+1

R

for all i. Setting αi to be the limit of the Cauchy sequence (a
(r)
i ) for 1 ≤ i ≤

n, we have that

fi(α1, . . . , αn) ∈
∞⋂
i=1

mi
R = (0)

by Proposition 21.38. �

Theorem 21.81. Suppose that φ : X → Y is a regular map of varieties and
p ∈ X. Then φ is étale in some neighborhood of p if and only if the induced
map on complete local rings

φ̂∗ : ÔY,φ(p) → ÔX,p

is an isomorphism.

Proof. First suppose that φ : X → Y is étale in some neighborhood of
p ∈ X. Let notation be as in Definition 21.79. Let y1, . . . , ym be generators
of the maximal ideal n of q = φ(p) in R. Let m be the maximal ideal
of p in R[x1, . . . , xn]. Observe that every h ∈ R[x1, . . . , xn] has a unique
expression h = λ + f with λ ∈ k and f ∈ m. We have that f1, . . . , fn ∈ m.
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Replacing the xi with xi − xi(p) for 1 ≤ i ≤ n, we may assume that m =
(y1, . . . , ym, x1, . . . , xn). We have that

fi −
∑
j

∂fi
∂xj

(p)xj ∈ (y1, . . . , ym) +m2

for 1 ≤ i ≤ n. Define an n × n matrix A = (aij) by A =
(

∂fi
∂xj

(p)
)−1

. Then

for 1 ≤ i ≤ n,

(21.22) xi =
n∑

j=1

aijfj +
m∑
j=1

cijyj + hi

for some cij ∈ k and with hi ∈ m2. Now substitute the n expressions (21.22)
into hi in (21.22) to obtain an expression

xi =
∑
j

aijfj +
∑
j

cijyj +
∑
j,k

dijkfjfk +
∑
j,k

gijkfjyk +
∑
j,k

hijkyjyk +Ωi

with dijk, gijk, hijk ∈ k and Ωi ∈ m3. Iterating, we obtain Cauchy sequences
in R[x1, . . . , xn] which converge to series

xi =
∑

ai1...inj1...jmf
i1
1 · · · f in

n yj11 · · · yjmm

in R̂[[x1, . . . , xn]] with ai1...inj1...jm ∈ k. Thus we have expansions for 1 ≤
i ≤ n,

(21.23) xi = ψi(f1, . . . , fn),

with ψi(z1, . . . , zn) ∈ R̂[[z1, . . . , zn]] (a power series ring over R̂). By Lemma
21.80, there exist α1, . . . , αn ∈ mR̂ such that

f1(α1, . . . , αn) = · · · = fn(α1, . . . , αn) = 0.

Let Λ : R̂[[x1, . . . , xn]] → R̂ be the homomorphism defined by Λ(g) =

g(α1, . . . , αn) for g ∈ R̂[[x1, . . . , xn]] (Lemma 21.43), which has the kernel
(x1 − α1, . . . , xn − αn), so that (f1, . . . , fn) ⊂ (x1 − α1, . . . , xn − αn).

Evaluating (21.23) at (α1, . . . , αn), we have that

ψi(f1, . . . , fn)(α1, . . . , αn) = αi,

so that (f1, . . . , fn) = (x1 − α1, . . . , xn − αn). Thus

ÔX,p
∼= R̂[[x1, . . . , xn]]/(x1 − α1, . . . , xn − αn) ∼= R̂ ∼= ÔY,q.

Now suppose that φ̂∗ : ÔY,q → ÔX,p is an isomorphism. We may assume
that X and Y are affine. Let A = k[Y ] and B = k[X] be the respective rings

of regular functions. For any ideal I ⊂ OX,p, we have that (IÔX,p)∩OX,p = I
by Lemma 21.37. We have that

(21.24) mqOX,p = (mqÔX,p) ∩ OX,p = (mpÔX,p) ∩ OX,p = mp.
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Let n be the ideal of q in A. We have a representation B = A[x1, . . . , xn]/I,
where I is an ideal in a polynomial ring A[x1, . . . , xn] over A and m =
nA[x1, . . . , xn] + (x1, . . . , xn) is the ideal of p in A[x1, . . . , xn]. We have that

ΩA[x1,...,xn]m/A
∼= ΩA[x1,...,xn]/A ⊗A[x1,...,xn] A[x1, . . . , xn]m by Lemma 14.8

∼=
n⊕

i=1

A[x1, . . . , xn]mdxi

by Example 14.5. Let N = {df | f ∈ Im}, so that

ΩBm/A
∼=
(

n⊕
i=1

A[x1, . . . , xn]mdxi

)
/N

by Example 14.7. For 1 ≤ i ≤ n, there exists ai ∈ A, bi ∈ I, and ci ∈ m2

such that xi = ai + bi + ci by (21.24). Thus dxi ∈ N = mΩA[x1,...,xn]m/A and
so (ΩB/A) ⊗B Bm

∼= ΩBm/A = 0 by Nakayama’s lemma. Thus there exist

f1, . . . , fn ∈ I such that Det
(

∂fi
∂xj

(p)
)


= 0.

Define a ring C by C = A[x1, . . . , xn]/(f1, . . . , fn). By the first part of

this proof, the completion Ĉ of C at the maximal ideal mC is equal to Â.
Thus the natural maps A → C → B induce isomorphisms

ÔY,q
∼= Â ∼= Ĉ ∼= B̂ ∼= ÔX,p.

Since C is a subring of Ĉ and B is a subring of B̂ (by Proposition 21.38),
we have that CmC is a subring of BmB. Since B is a quotient of C, we have
that BmB = CmC . Thus Im = (f1, . . . , fm)m in A[x1, . . . , xn]m, from which it
follows that φ is étale near p. �

Theorem 21.82. Suppose that X is an n-dimensional variety and U is an
open subset of X. Suppose that f1, . . . , fn ∈ Γ(U,OX). Let φ = (f1, . . . , fn) :
U → An be the induced regular map. Then the following conditions are
equivalent:

1) φ is étale.

2) For all p ∈ U , t1 = f1−f1(p), . . . , tn = fn−fn(p) generate mp/m
2
p.

3) For all p ∈ U , the k-algebra homomorphism

k[[T1, . . . , Tn]] → ÔX,p

defined by Ti �→ ti is an isomorphism.

4) ΩX/k|U =
⊕n

i=1 OUdfi (f1, . . . , fn are uniformizing parameters on
U).

5) ΩU/An = 0.
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Proof. We observe that 3) is equivalent to the statement that

φ̂∗ : ÔAn,φ(p) → ÔU,p

is an isomorphism for all p ∈ U . The equivalence of 1) and 3) follows
from Theorem 21.81. The equivalence of 4) and 5) follows from the exact
sequence (14.4) and Example 14.5. If we assume 5) and N is the kernel
of the surjection φ∗ΩAn/k → ΩU/k, then we have that N ⊗ k(X) = 0 since
both φ∗ΩAn/k and ΩU/k have rank n, so that N = 0 since it is a torsion
submodule of the locally free sheaf φ∗ΩAn/k. The equivalence of 2) and 3)
is by Proposition 21.62.

It remains to establish that 2) is equivalent to 4). Condition 2) implies U
is nonsingular by Definition 10.12, and condition 4) implies U is nonsingular
by Theorem 14.14, so we may assume that U is nonsingular.

Condition 2) is the statement that for all p ∈ U , t1, . . . , tn generate
mp/m

2
p, which is equivalent to the statement that df1, . . . , dfn generate

(ΩX/k,p) ⊗ k(p) by Proposition 14.13. This is equivalent to the statement
that df1, . . . , dfn generate ΩX/k in some neighborhood of p (by Nakayama’s
lemma). So condition 2) is equivalent to the statement that ΩU/k is a quo-

tient of
⊕n

i=1 OUdfi. Since ΩU/k is locally free of rank n (as U is nonsingular)
this is equivalent to statement 4). �

Ramification can also be expressed in terms of Kähler differentials.

Theorem 21.83. Suppose that φ : X → Y is a dominant regular map of
varieties, p ∈ X, and q = φ(p). Then

OY,q → OX,p

is unramified if and only if (ΩX/Y )p = ΩOX,p/OY,q
= 0.

Proof. We may suppose that X,Y are affine. We express k[X] as a quo-
tient of a polynomial ring k[x1, . . . , xn, . . . , xm] so that the subring k[Y ] is
a quotient of the polynomial ring k[x1, . . . , xn]. There exist g1, . . . , gN ∈
k[x1, . . . , xm] such that k[X] = k[x1, . . . , xm]/(g1, . . . , gN ). Let xi be the
residues of xi in k[X]. The point p ∈ X has a maximal ideal α = I(p) in
k[x1, . . . , xm]. Under the corresponding embedding X ⊂ Am, suppose that
p is the point (ξ1, . . . , ξm).

We will first establish that the following condition (21.25) holds if and
only if OY,q → OX,p is unramified:

(21.25) the Jacobian matrix ∂(g1,...,gN )
∂(xn+1,...,xm)(p) has rank m− n.

First suppose that OY,q → OX,p is unramified. Suppose that D ∈
Derk(OX,p, k(p)) and D|OY,q = 0. Suppose that f ∈ OX,p. There exists
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g ∈ OY,q such that f−g ∈ m2
p since mp = mqOX,p and OX,p/mp

∼= OY,q/mq.
Thus D(f) = D(g) = 0, so D = 0.

Suppose that u1, . . . , um ∈ k. A necessary and sufficient condition that
there exists D ∈ Derk(OX,p, k(p)) such that D(xi) = ui is that

m∑
j=1

∂gi
∂xj

(p)uj = 0 for 1 ≤ i ≤ N.

This follows since

Derk(OX,p, k(p)) ∼= HomOX,p
(ΩOX,p/k, k(p))

by Proposition 14.13 and

ΩOX,p/k = OX,pdx1 ⊕ · · · ⊕ OX,pdxm/

⎛⎝ m∑
j=1

∂gi
∂xj

dxj | 1 ≤ i ≤ N

⎞⎠ .

We have earlier shown that if u1 = u2 = · · · = un = 0, then necessarily
un+1 = · · · = um = 0. Thus (21.25) holds.

Now suppose that (21.25) holds. We may assume after reindexing the
gi that

∂(g1, . . . , gm−n)

∂(xn+1, . . . , xm)
(p) has rank m− n.

Thus g1(ξ1, . . . , ξn, xn+1, . . . , xn), . . . , gm−n(ξ1, . . . , ξn, xn+1, . . . , xn) are uni-
formizing parameters at the point (ξn+1, . . . , ξm) in the affine space Am−n

with coordinate ring k(p)[xn+1, . . . , xm] by Theorem 21.82. Thus x1 −
ξ1, . . . , xn − ξn, g1, . . . , gm−n are uniformizing parameters in Am at p (they
are in fact a k-basis of α/α2). Thus

mqOX,p = (x1 − ξ1, . . . , xn − ξn)OX,p = αOX,p = mp

and so OY,q → OX,p is unramified.

It remains to show that equation (21.25) holds if and only if ΩOX,p/OY,q
=

0. From the surjection

(OY,q[xn+1, . . . , xm])α → (OY,q[xn+1, . . . , xm]/(g1, . . . , gN ))α = OX,p,

we have that

ΩOX,p/OY,q
= OX,pdxn+1 ⊕ · · · ⊕ OX,pdxm/

⎛⎝ m∑
j=n+1

∂gi
∂xj

dxj | 1 ≤ i ≤ N

⎞⎠ .

Thus
(
ΩOX,p/OY,q

)
⊗k(p) = 0 if and only if (21.25) holds, and this condition

is equivalent to ΩOX,p/OY,q
= 0 by Nakayama’s lemma, Lemma 1.18. �

Proposition 21.84. Suppose that φ : X → Y is a dominant regular map
of varieties such that φ is étale. Then φ is unramified.
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Proof. The proof of Theorem 21.81 shows that ΩX/Y = 0, which implies φ
is unramified by Theorem 21.83. �

The converse of Proposition 21.84 is false. An example is given in Ex-
ercise 21.89. However, the converse is true if Y is normal, as shown by the
following proposition, whose proof is Exercise 21.91.

Proposition 21.85. Suppose that φ : X → Y is a dominant regular map
of varieties and Y is normal. Then φ is unramified if and only if φ is étale.

Exercise 21.86. Show that a regular map of varieties φ : X → Y is étale
if and only if for every p ∈ X, there exist open affine neighborhoods A of
p and B of q = φ(p) such that k[A] is a quotient of a polynomial ring over

k[B], k[A] = k[B][x1, . . . , xn]/(f1, . . . , fn) where Det( ∂fi∂xj
) is a unit in k[A].

Hint: Use Exercise 1.7.

Exercise 21.87. Suppose that X is a variety over the complex numbers and
U is an open subset of X with uniformizing parameters f1, . . . , fn on U . Let
φ = (f1, . . . , fn) : U → An. Suppose that p ∈ U . Use the implicit function
theorem (Theorem 10.42) to show that there exists an open neighborhood
V of p in the Euclidean topology, which is contained in U such that φ : V →
φ(V ) is an analytic isomorphism.

Exercise 21.88. Show that the implicit function theorem (Theorem 10.42)
is false in the Zariski topology by considering the following example. Sup-
pose that k has characteristic 
= 2 Let X = Z(x21 − x2) ⊂ A2 and let
φ : X → A1 be defined by φ(a1, a2) = a2. At p = (1, 1), we have that
∂

∂x1
(x21 −x2) 
= 0. Show that φ is not 1-1 in any Zariski open subset U of X.

Exercise 21.89. Let φ : X → Y be the regular map of Exercise 21.65.
Show that ΩX/Y = 0 (so that φ is unramified) but that φ is not étale.

Exercise 21.90. Suppose that φ : X → Y is a finite regular map of varieties.
The ideal sheaf Ann(ΩX/Y ) is defined (in Exercise 11.43) by

Ann(ΩX/Y )(U) = {f ∈ OX(U) | fΩX/Y (U) = 0}

for U an open subset of X. Show that φ(Supp(OX/Ann(ΩX/Y ))) is the
locus in Y above which φ is ramified.

Conclude that

{p ∈ X | φ is unramified at p}
is an open subset of X which is nonempty if and only if k(X) is separable
over k(Y ).

Exercise 21.91. Prove Proposition 21.85.
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21.10. Purity of the branch locus and the Abhyankar-Jung
theorem

Suppose that φ : X → Y is a dominant finite regular map of normal varieties.
Let

(21.26) Δ = {p ∈ X | φ∗ : OY,φ(p) → OX,p is ramified}

be the locus of points in X where φ is ramified. We will call Δ the ramifi-
cation locus of φ in X. By Theorem 21.83, we have that Δ = Supp(ΩX/Y ),
so Δ is a closed subset of X. If we also assume that φ∗ : k(Y ) → k(X) is
separable, then Δ is a proper subset of X (for instance by Theorem 21.29).
We have that φ(Δ) is the ramification locus of φ in Y (or the branch locus
of φ). Since φ is finite, if Δ has pure codimension 1 in X (all irreducible
components have codimension 1), then the ramification locus φ(Δ) has pure
codimension 1 in Y .

The proof of the following theorem is based on the proof by Zariski in
[157, Proposition 2]. Stronger forms of Theorem 21.92 are by Nagata [121,
Theorem 41.1], Auslander [14], Grothendieck [64], and Bhatt, Carvajal-
Rojas, Grant, Schwede, and Tucker [21], although Y cannot be too far from
being a nonsingular variety for purity of the branch locus to hold.

Theorem 21.92 (Purity of the branch locus). Suppose that X is a normal
variety, Y is a nonsingular variety, and φ : X → Y is a dominant finite reg-
ular map such that k(Y ) → k(X) is separable. Then the closed set of points
of X at which φ is ramified has pure codimension 1 in X (all irreducible
components of the ramification locus have codimension 1).

Proof. Suppose that a ∈ X and a is not contained in an irreducible com-
ponent of Δ which has codimension 1 in X. Let q = φ(a) and let x1, . . . , xn
be regular parameters in OY,q. There exists, by Proposition 14.15, an affine
open neighborhood U of q in Y such that x1, . . . , xn are uniformizing pa-
rameters on U . Let α : U → An be the corresponding étale map (Theorem
21.82). Let V be an affine neighborhood of a such that φ(V ) ⊂ U and Δ∩V
has codimension ≥ 2 in V .

The elements x1, . . . , xn are a separating transcendence basis of k(X)
over k since they are a separating transcendence basis of k(Y ) over k by
Theorem 21.75 and k(X) is finite and separable over k(Y ). Thus the deriva-
tives ∂

∂xi
on the rational function field k(x1, . . . , xn) extend uniquely to a

k(Y )-basis of Derk(k(Y ), k(Y )) and to a k(X)-basis of Derk(k(X), k(X)),
as explained after Theorem 21.75. Suppose that E is a prime divisor on V .
Then there exists p′ ∈ E \Δ. By Theorem 21.83, we have that

ΩOX,p′/OY,q′
= 0
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where q′ = φ(p′), so

ΩOY,q′/k
⊗OY,q′ OX,p′

∼= ΩOX,p′/k

by (14.4), since ΩOY,q′/k
is a free module of rank equal to the dimension of

X by Proposition 14.15. Now Derk(OY,q′ ,OY,q′) is a free OY,q′-module with

basis ∂
∂x1

, . . . , ∂
∂xn

, so

Derk(OX,p′ ,OX,p′) ∼= HomOX,p′ (ΩOX,p′/k
,OX,p′)

∼= HomOY,q′ (ΩOY,q′/k
,OY,q′) ⊗OY,q′ OX,p′

∼= Derk(OY,q′ ,OY,q′) ⊗OY,q′ OX,p′

by Lemma 14.3 and since ΩOY,q′/k is a free OY,q′-module.

Thus ∂
∂x1

, . . . , ∂
∂xn

is a free basis of Derk(OX,p′ ,OX,p′) as an OX,p′-module.

In particular, the derivations ∂
∂xi

: k(X) → k(X) map OX,p′ into OX,p′ for

all i, and so ∂
∂xi

: OX,E → OX,E for all i, since OX,E is a localization of
OX,p′ .

Now, by Theorem 1.79, OX,a =
⋂

a∈E OX,E , where the intersection is
over all prime divisors E of V which contain a since OX,a is integrally closed.
Thus the derivations

(21.27)
∂

∂xi
: OX,a → OX,a for all i.

Suppose that k has characteristic 0. Then we have a natural k-algebra
homomorphism ψ : OX,a → k[[x1, . . . , xn]] defined by

ψ(f) =
∑

ci1,...,inx
i1
1 · · ·xinn

where

ci1,...,in =
1

i1! · · · in!

(
∂i1+···+inf

∂xi11 · · · ∂xinn

)
(a).

Now fibers of the composed map α ◦ φ : V → An are finite sets, so the ideal
(x1, . . . , xn)OX,a contains a power mr

a of the maximal ideal ma of OX,a.
Now ψ(mr

a) ⊂ (x1, . . . , xn) implies ψ(ma) ⊂ (x1, . . . , xn) since (x1, . . . , xn)
is a prime ideal in k[[x1, . . . , xn]]. Thus ψ extends uniquely to a k-algebra

homomorphism ψ : ÔX,a → k[[x1, . . . , xn]] such that ψ(m̂a) ⊂ (x1, . . . , xn)

and ψ(f) = ψ(f) for f ∈ OX,a by Lemma 21.43. The natural inclusions of
normal domains

k[x1, . . . , xn](x1,...,xn) = OAn,α(q) → OY,q → OX,a

induce k-algebra homomorphisms of integral domains, by Proposition 21.50,
of the same dimension n by Theorem 21.36,

k[[x1, . . . , xn]] = ÔAn,α(q) → ÔY,q → ÔX,a
ψ→ k[[x1, . . . , xn]]
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whose composite is the identity map. Thus each of these maps must be
an equality, and in particular, ÔY,q = ÔX,a, so that φ is unramified at a.
Thus a 
∈ Δ, completing the proof of Theorem 21.92 in the case that k has
characteristic 0.

Now suppose that k has characteristic p > 0. Then x1, . . . , xn is a p-basis
of k(X) by Theorem 21.76. Let f ∈ OX,a. Since x1, . . . , xn is a p-basis, we
can write f uniquely in the form

f =
∑

Ap
i1,...,in

xi11 · · ·xinn

with all Ai1,...,xn ∈ k(X) and 0 ≤ i1 + · · · + in < p for all i1, . . . , in in the
sum. Since all partials

∂i1+···+inf

∂xi11 · · · ∂xinn
∈ OX,a

by (21.27), we have that all Ap
i1,...,in

∈ OX,a, and thus all Ai1,...,in ∈ OX,a

since OX,a is integrally closed. If f is in the maximal ideal ma of OX,a, then
we have that A0,...,0 ∈ ma, so Ap

0,...,0 ∈ mp
a ⊂ m2

a. Thus ma ⊂
∑n

i=1 xiOX,a+

m2
a, so

ma = (x1, . . . , xn)OX,a +m2
a.

Thus ma = (x1, . . . , xn)OX,a by Nakayama’s lemma, Lemma 1.18. Thus
ma = mqOX,a, wheremq is the maximal ideal of OY,q and so a 
∈ Δ, complet-
ing the proof of Theorem 21.92 in the case that k has positive characteristic
p. �

The following theorem is the Abhyankar-Jung theorem, which general-
izes a topological proof in the complex analytic case by Jung [85]. A proof
based on Abhyankar’s original proof in [1] will be given in Section 21.12.
The above theorem on the purity of the branch locus is an important ingre-
dient in the proof. Generalizations of the Abhyankar-Jung theorem can be
found in [70, Section XII], [71], and other references.

Let K → K∗ be a finite separable field extension of algebraic function
fields, R be a normal algebraic local ring of K, and S be a normal local

ring of K∗ which lies over R. Let J(S/R) =
√

Ann(ΩS/R), which is an ideal

in S defining the locus in S where R → S is ramified (Theorem 21.83 and
Exercise 21.90). That is,

Z(J(S/R)) = {Q ∈ Spec(S) | RQ∩R → SQ is ramified}.

If S is finite over R, define

I(S/R) =
√

J(S/R) ∩ R
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which defines by Exercise 21.90 the locus in R where R → S is ramified.
That is, if S is finite over R,

Z(I(S/R))
= {P ∈Spec(R) | there exists Q ∈ Spec(S) such that RP →SQ is ramified}.
Theorem 21.93 (Abhyankar-Jung theorem). Suppose that Y is a nonsin-
gular variety and X is a normal variety, φ : X → Y is a dominant finite
regular map such that k(Y ) → k(X) is separable, and if the characteristic of
the ground field k is p > 0, then p does not divide the index [K ′ : k(Y )] where
K ′ is a Galois closure of k(X)/k(Y ). Suppose that p ∈ X and q = φ(p) ∈ Y
are such that there exist regular parameters x1, . . . , xn ∈ OY,q such that∏t

i=1 xi ∈ J(OX,p/OY,q) for some t ≤ n. Let d = [K ′ : k(Y )]. Then there

exists a subgroup Γ of Zt
d such that OX,p

∼= k[[x
1
d
1 , . . . , x

1
d
t , xt+1, . . . , xn]]

Γ,

where the basis element ei ∈ Zt
d acts on x

1
d
i by multiplication by a d-th root

of unity (in the ground field k) and is the identity on x
1
d
j if j 
= i.

Corollary 21.94. Let k be an algebraically closed field of characteristic 0,
let R = k[[x1, . . . , xn]] be a power series ring over k, and let f ∈ R[z] be
an irreducible monic polynomial. Suppose that the discriminant (21.8) of
f is a unit in R times a monomial in x1, . . . , xn. Then f(z) has a root

α ∈ k[[x
1
d
1 , . . . , x

1
d
n ]] (a fractional power series) for some d ∈ Z>0. We in

fact have a factorization f(z) =
∏deg(f)

i=1 (z − αi) where αi ∈ k[[x
1
d
1 , . . . , x

1
d
n ]]

for all i.

Proof. Let L be the quotient field of S = R[z]/(f) = R[z]. By Theorem
21.20, SP is unramified over RP if P is a prime ideal in R which does not
contain the monomial x1 · · ·xn. Let T be the integral closure of S in L.
We have that SQ → TQ is an isomorphism if Q is a prime ideal in S such
that SQ is a regular local ring. Thus TQ is unramified over SQ if SQ is
regular, and so TP is unramified over RP if P is a prime ideal in R which
does not contain x1 · · ·xn. Now the proof of Theorem 21.93 generalizes to
prove the Abhyankar-Jung theorem in the situation of this corollary, if we
use Nagata’s theorem [121, Theorem 41.1], which proves the purity of the
branch locus over an arbitrary regular local ring, giving us inclusions

R → S → T → k[[x
1
d
1 , . . . , x

1
d
n ]],

showing that the root α = z of f is in k[[x
1
d
1 , . . . , x

1
d
n ]]. The last assertion

of the corollary follows since the quotient field E of k[[x
1
d
1 , . . . , x

1
d
n ]] is Galois

over the quotient field of R, and the irreducible polynomial f has a root in

E, so all roots of f must be contained in the integral closure k[[x
1
d
1 , . . . , x

1
d
n ]]

of R in E. �
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Corollary 21.95 (Newton). Suppose that k is an algebraically closed field
of characteristic 0 and R = k[[x]] is a power series ring over k. Suppose

that f ∈ R[z] is irreducible and monic. Then f(z) has a root α ∈ k[[x
1
d ]] (a

fractional power series) for some d ∈ Z>0.

It follows that when k is algebraically closed of characteristic 0, the

Laurent field of fractional power series expansions (all series
∑∞

i=m aix
1
d for

some d ∈ Z>0, m ∈ Z, and ai ∈ k) is an algebraic closure of the Laurent
field k((x)) of formal power series in x over k.

Newton’s proof is constructive. His algorithm is explained in [35, Section
2.1] and in the book [26]. Some letters of Newton presenting this algorithm
are translated in [26].

This result is no longer true when k has characteristic p > 0. An example
showing that this fails is given in Exercise 21.98. The example computed in
the exercise is essentially the worst thing that can happen. A construction
of an algebraic closure of k((x)) when k is algebraically closed of positive
characteristic is given in [88]

The following example shows that Corollary 21.95 does not extend to
power series rings of dimension greater than 1.

Example 21.96. Let k be an algebraically closed field of characteristic 0
or p > 5 and let n ≥ 2 be a positive integer which is prime to p. Let
R = k[[x, y]] and f = zn + x2 − y3. Then there does not exist a fractional

power series solution z = α(x
1
d , y

1
d ) ∈ k[[x

1
d , y

1
d ] to f(x, y, z) = 0 for any

d ∈ Z>0. Further, this statement is true for any regular system of parameters
y1, y2 in R (so that R = k[[y1, y2]]).

Proof. If there were such a fractional power series solution α, then we would

have an inclusion S = R[z]/(f) → T = k[[x
1
d , y

1
d ]]. The finite extension R →

T is then unramified above primes that do not contain xy and thus R → S
is unramified above primes that do not contain xy. This is a contradiction
since R → S is ramified above the prime ideal (y3 − x2). �

Exercise 21.97. This exercise shows that the conclusions of Theorem 21.92
may fail if Y is normal but not nonsingular. Consider the finite map φ :
X → Y of affine varieties where

φ∗ : k[Y ] = k[x2, xy, y2] → k[X] = k[x, y]

is the natural inclusion and the characteristic of k is 
= 2. Show that X
and Y are normal and compute the locus of points in X at which φ is
ramified. Conclude that the ramification locus of φ in X does not have pure
codimension 1 in X, so the conclusions of Theorem 21.92 do not hold.
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Exercise 21.98. (This is [1, Example 1].) Consider the finite map φ : X →
Y of affine varieties over a field k of characteristic p > 2 where φ∗ : k[Y ] =
k[x, y] → k[X] = k[x, y, z]/(zp − xp−1z − yp−1) is the natural inclusion.
Show that X is normal and Y is nonsingular and that k(X) is a degree p
Galois extension of k(Y ) (an Artin-Schreier extension). Compute the locus
of points in X at which φ is ramified. Show that all of the hypotheses of
Theorem 21.8 hold, except the assumption that p does not divide the index
[k(Y ) : k(X)]. Show that the conclusions of Theorem 21.8 do not hold.

Exercise 21.99. Let k be a field of positive characteristic p > 0. Show that

σ =

∞∑
i=1

x
1− 1

pi

is algebraic over the rational function field k(x) with minimal polynomial
f(z) = zp − xp−1z − xp−1. Show that we have a factorization

f(z) =

p∏
i=1

(z − (σ + ix)).

Since this factorization holds in the field k(xQ) of all series with exponents
being well-ordered subsets of Q and coefficients elements of k, we see that
f(z) cannot have a root which is a fractional power series in x (with bounded
denominator). The field k(x)(σ) is an example of an Artin-Schreier exten-
sion of k(x). This type of extension is ultimately responsible for all of the
problems which arise in ramification in positive characteristic.

21.11. Galois theory of local rings

We introduce in this section some material from the section “Galois theory
of local rings” in [6], which we will need in the proof of the Abhyankar-Jung
theorem in Section 21.12.

Let K → K∗ be a finite Galois field extension with Galois group G =
G(K∗/K), let R be a normal local ring with quotient field K, and let S be
a normal local ring with quotient field K∗ which lies over R. The splitting
group Gs(S/R) is defined to be

Gs(S/R) = {σ ∈ G | σ(S) = S}.

The splitting field Ks = Ks(S/R) is defined to be Ks = (K∗)G
s(S/R).

Lemma 21.100. The field Ks is the smallest field K ′ lying between K and
K∗ for which S is the only normal local ring in K∗ lying above S ∩ K ′.
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Proof. Let T be the integral closure of R in K∗. Let n1, . . . , nu be the
maximal ideals of T , indexed so that S = Tn1 . Let T

s = T∩Ks, ms
i = ni∩Ts

for 1 ≤ i ≤ u. By the Chinese remainder theorem, Theorem 1.5, there exists
a ∈ T such that a ≡ 0 mod n1 and a ≡ 1 mod ni if i > 1. Then the norm

NK∗/Ks(a) =
∏

σ∈Gs(S/R)

σ(a) ∈ n1 ∩Ks = ms
1

and

NK∗/Ks(a) ≡ 1mod ni for i > 1.

Thus for i > 1, ms
1 
⊂ ni so that ni does not lie above ms

1.

Hence it is enough to show that if K ′ satisfies the assumption of the
lemma, then Ks ⊂ K ′. Suppose that σ ∈ G(K∗/K ′). If σ(nj) = n1 for
some j > 1, then nj ∩ K ′ = σ(nj ∩ K ′) = n1 ∩ K ′, which is a contradiction
to our assumptions. Thus Gs(K∗/K ′) ⊂ Gs, and so Ks ⊂ K ′. �

Lemma 21.101. Let Rs = Ks ∩ S. Then mRR
s = mRs and Rs/mRs ∼=

R/mR so that R → Rs is unramified.

Proof. Let T be the integral closure of R in K∗. Let n1, . . . , nu be the
maximal ideals of T , indexed so that S = Tn1 . Let T

s = T∩Ks, ms
i = ni∩T s

for 1 ≤ i ≤ u.

Suppose that a ∈ T s. By Lemma 21.100 and the Chinese remainder
theorem (Theorem 1.5), there exists b ∈ T s such that b ≡ a mod ms

1 and
b ≡ 1 mod ms

i for i > 1, so that b ≡ a mod n1 and b ≡ 1 mod ni for all
i > 1. Let σ1 = id, σ2, . . . , σq be a complete set of representatives of the
cosets of Gs(S/R) in G. Then σ1(b), . . . , σq(b) are the Ks/K conjugates of
b and hence

c = NKs/K(b) =

q∏
t=1

σt(b) ∈ R.

We have that σ1(b) = b ≡ a mod n1, and if t > 1, then there exists an i > 1
such that σt(ni) = n1, so that σt(b) ≡ 1 mod n1. Thus σ1(b) ≡ a mod n1

and for t > 1, σt(b) ≡ 1 mod n1. Hence c ≡ a mod n1 and c−a ∈ n1∩Ks =
ms

1 so that c ≡ a mod ms
1. Thus R

s/mRs ∼= T s/ms
1
∼= R/mR.

Let X1 = ms
1 and let X2, . . . , Xv be the other distinct maximal ideals in

T s, so that given i > 1, ms
i = Xt for some t > 1 and given t > 1, Xt = ms

i

for some i > 1. We have a primary decomposition

mRT
s = Y1 ∩ · · · ∩ Yv = Y1 · · ·Yv

where the Yt are primary for Xt by Theorem 1.5. Let

Z = X1 ∩ · · · ∩ Xv = X1 · · ·Xv.
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Suppose that a ∈ X1 is such that a 
∈ Xt for t > 1. We will show that
a ∈ Y1. To see this, let

a∗ =
q∏

i=2

σi(a) ∈ 1

a
K ⊂ Ks.

Since a∗ is integral over R, a∗ ∈ T s. Since a∗ 
∈ n1, we have that a∗ 
∈ X1.
Now aa∗ ∈ mR ⊂ Y1. Thus a ∈ Y1, since Y1 is X1-primary.

By the Chinese remainder theorem (Theorem 1.5), there exists e ∈ T s

such that e ≡ 0 mod X1 and e ≡ 1 mod Xt for t > 1. By the above
observation, e ∈ Y1. Suppose that f ∈ Z. Then f+e ∈ X1 and f+e 
∈ Xt if
t > 1. Thus f + e ∈ Y1 (again by the observation) and so f ∈ Y1. Thus Z ⊂
Y1 and hence X1 ⊂ Y1 so that X1 = Y1, so that mRR

s = X1R
s = mRs . �

The inertia group Gi(S/R) is defined to be

Gi(S/R) = {σ ∈ Gs(S/R) | σ(u) ≡ u mod mS for all u ∈ S}.

The inertia field Ki = Ki(S/R) is defined to be Ki = (K∗)G
i(S/R).

Lemma 21.102. Let Ri = S ∩Ki. Then mRR
i = mRsRi = mRi. Further,

Ri/mRi is isomorphic to the separable closure of R/mR in S/mS, so that
R → Ri and Rs → Ri are unramified. The group Gi(S/R) is a normal
subgroup of Gs(S/R) and Ri/mRi is a Galois extension of R/mR whose
Galois group is isomorphic to Gs(S/R)/Gi(S/R).

Proof. Let κ = R/mR = Rs/mRs , κi = Ri/mRi , and κ∗ = S/mS .

For a ∈ S, let a denote the residue of a in κ∗. For g ∈ Gs(S/R), define

a κ-algebra automorphism Φ(g) : κ∗ → κ∗ by Φ(g)(a) = g(a). We have
that Φ : Gs(S/R) → Aut(κ∗/κ) is a group homomorphism. Let fa(t) be the
minimal polynomial of a over Ks and let fa(t) be the minimal polynomial
of a over κ. We have that fa(t) ∈ Rs[t] by Theorem 21.14. Let fa(t) ∈ κ[t]
be obtained from fa(t) by reducing its coefficients modulo mR.

Since K∗ is Galois over Ks, we have a factorization

fa(t) =

deg fa∏
j=1

(t− aj) with aj ∈ K∗.

By Lemma 21.13, all aj ∈ S. Since fa(t) divides fa(t) in κ[t], we have that

fa(t) =

deg fa∏
u=1

(t− atu) with atu ∈ κ∗.

Thus κ∗ is a normal field extension of κ. Let κ′ be the separable closure of
κ in κ∗. The field κ′ is finite algebraic over κ by Theorem 21.22. Thus κ′ is
finite Galois over κ.
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Let a ∈ S be such that a is a primitive element of κ′ over κ. Then there
exists σu ∈ Gs(K∗/K) such that σu(a) = atu . Thus Φ(σu)(a) = atu , and so
Φ is surjective onto G(κ′/κ). We have that Kernel(Φ) = Gi(S/R). In partic-
ular, Gi(S/R) is a normal subgroup ofGs(S/R). LetG = Gs(S/R)/Gi(S/R).
We have that

Aut(κ∗/κ) = G(κ′/κ) ∼= G.

Further,

[Ki : Ks] = [Gs(K∗/K) : Gi(K∗/K)] = [κ′ : κ]

and Ki is a Galois extension of Ks, with Galois group G.

Since S is the only local ring of K∗ lying over Ri,

Gs(S/Ri) = G(K∗/Ki) = Gi(S/R) = Gi(S/Ri).

Thus by the first part of the proof,

Aut(κ∗/κi) ∼= Gs(S/Ri)/Gi(S/Ri) = (1).

Thus κ∗ is purely inseparable over κi since κ∗ is a normal extension of κ.
Hence κ′ ⊂ κi. Thus

[κi : κ]s = [κ′ : κ] = [Ki : Ks].

Now Ri is the unique local ring of Ki lying over Rs, so Ri is the integral
closure of Rs in Ki. By Theorem 21.22, D(Ri/Rs) = Rs and so by Theorem
21.20, Rs → Ri is unramified. Thus κi = κ′ and mRsRi = mRi , and so
R → Ri is unramified. �

21.12. A proof of the Abhyankar-Jung theorem

In this section we give a proof of Theorem 21.93, based on Abhyankar’s
original proof in [1].

If K is an algebraic function field over a field κ, we will say that a
local ring R with quotient field K is an algebraic local ring of K if R is a
localization of a finite type κ-algebra.

Suppose that R → S is an extension of dvrs (discrete valuation rings
are discussed at the end of Section 21.2). We have that e(S/R) = n if a
generator t of mR has an expansion t = unv where u is a generator of mS

and v is a unit in S (Section 21.2). Thus the extension R → S is unramified
if and only if e(S/R) = 1 and S/mS is a finite separable extension of R/mR.

If ν is a valuation of a field K, we will denote the valuation ring of ν by
Vν . Thus

Vν = {f ∈ K | ν(f) ≥ 0}.
We denote the maximal ideal of Vν by mν . Suppose that K → K∗ is a finite
field extension. If S = Vν is the valuation ring of a valuation ν of K∗ and
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R = Vν ∩ K = Vμ is the valuation ring of the restriction μ of ν to K, then
we will write e(ν/μ) = e(Vν/Vμ).

Proposition 21.103. Let R be a normal local domain which is essentially
of finite type over a field κ. Let K be the quotient field of R. Let K∗ be
a finite separable extension of K and let n = [K∗ : K]. Let x ∈ R be a
primitive element of K∗ over K, with minimal polynomial f(t) ∈ R[t] (such
an x exists by Theorem 21.14). Let Si for 1 ≤ i ≤ h be the local rings in K∗

lying over R and let S be the integral closure of R in K∗. Then R̂ and Ŝi

are normal local domains, the natural homomorphisms R̂ → Ŝi are injective
for all i, and we have a natural isomorphism

S ⊗R R̂ ∼=
h⊕

i=1

Ŝi.

Let E be the quotient field of R̂ and Ei be the quotient field of Ŝi for 1 ≤
i ≤ h. Let ei = [Ei : E]. Then n = e1 + · · · + eh. Further, x is a primitive
element of Ei over E for all i with minimal polynomial fi(t) ∈ E[t] and
there is a factorization f(t) = f1(t) · · · fh(t) in E[t].

Proof. We have that R̂ is a normal local domain by Proposition 21.50. By
[161, Theorem 16, page 277] and [161, Corollary 2, page 283], we have a
natural isomorphism

S ⊗R R̂ ∼=
⊕

Ŝi.

We have that the Ŝi are normal local domains by Proposition 21.50. We
have that

K∗ ⊗K E ∼= E[x] ∼= E[t]/(f(t)).

Let A be a ring. The total quotient ring of A is QR(A) = S−1A where
S is the multiplicative set of all nonzero divisors of A. Let

g ∈ K∗ ⊗K E = E[x].

Then g = a
b where a ∈ R̂[x] and b ∈ R̂ \ {0}. Since R̂ is a domain, b

is not a zero divisor in S ⊗R R̂ by [161, Theorem 16, page 277]. Thus

K∗ ⊗K E ⊂ QR(S ⊗R R̂). Since the reduced ring S ⊗R R̂ is naturally a

subring of QR(S ⊗R R̂), we have a natural inclusion S ⊗R R̂ ⊂ K∗ ⊗K E.
Now f(t) is reduced in E[t] since K∗ is separable over K. We have that
K∗ ⊗K E ∼=

⊕
E[t]/(fi(t)) is a direct sum of fields, where the fi(t) are

the irreducible factors of f(t) in E[t] by the Chinese remainder theorem,

Theorem 1.5. Thus QR(S ⊗R R̂) = K∗ ⊗K E. Now S ⊗R R̂ is reduced, so

QR(S⊗RR̂) ∼=
⊕

iEi. Thus, after reindexing, we have that Ei
∼= E[t]/(fi(t))

and we have that∑
[Ei : E] =

∑
deg(fi) = deg(f) = [K∗ : K]. �
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Suppose that K is an algebraic function field over a field κ and K ′ is a
finite separable extension of K. Suppose that R is a normal, algebraic local
ring of K and R′ is a normal local ring of K ′ which lies over R. Let E be
the quotient field of R̂ and let E′ be the quotient field of R̂′. Define

d(R′ : R) = [E′ : E], g(R′ : R) = [R′/mR′ : R/mR]s,

and

r(R′ : R) = d(R′ : R)/g(R′ : R).

We have that d(R′ : R), g(R′ : R), r(R′ : R) are all multiplicative in
towers of fields.

Now suppose that K∗ is a finite Galois extension of K and that R∗ is
a normal local ring of K∗ which lies over R. Let Rs = R∗ ∩ Ks where
Ks = Ks(R∗/R) is the splitting field of R∗ over R. Let Ri = R∗ ∩Ki where
Ki is the inertia field Ki = Ki(R∗/R) of R∗ over R. Let E,Es, Ei, E∗ be

the respective quotient fields of R̂, R̂s, R̂i, and R̂∗.

Since R∗ is the unique local ring of K∗ which dominates Rs by Lemma
21.100, we have by Proposition 21.103 that

(21.28) [K∗ : Ks] = d(R∗ : Rs) and [K∗ : Ki] = d(R∗ : Ri).

By Proposition 21.103 and Lemma 21.102 we have that

(21.29) [Ki : Ks] = d(Ri : Rs) = g(R∗ : R).

We have that R̂s ∼= R̂ by Lemma 21.101, Proposition 21.49, and Proposition
21.48, and so Es ∼= E. Thus

(21.30) d(Rs : R) = 1.

Lemma 21.104. Let notation be as above. Then r(R′ : R) is a positive
integer.

Proof. Let K∗ be a finite Galois extension of K which contains K ′, and let
R∗ be a normal local ring of K∗ such that R∗ lies over R′. We have that

Gi(R∗/R′) = Gi(R∗/R) ∩ G(K∗/K ′)

and

Gs(R∗/R′) = Gs(R∗/R) ∩G(K∗/K ′),
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so (K ′)s = K ′Ks and (K ′)i = K ′Ki. Thus we have a commutative diagram
of fields

K∗

↗ ↖
Ki → (K ′)i

↑ ↑
Ks → (K ′)s

↑ ↑
K → K ′

where Ks = Ks(R∗/R), Ki = Ki(R∗/R), (K ′)s = (K ′)s(R∗/R′), and
(K ′)i = (K ′)i(R∗/R′). Considering the induced commutative diagram of
fields

E∗

↗ ↖
Ei → (E′)i

↑ ↑
Es → (E′)s

↑ ↑
E → E′

where E,E′, E∗, Es, Ei, (E′)s, (E′)i are the respective quotient fields of

R̂, R̂′, R̂∗, R̂s, R̂i, (̂R′)s, (̂R′)i,

we see from (21.29) and (21.30) that

d(R′ : R)g(R∗ : R′) = g(R∗ : R)d((R′)i : Ri).

Thus d(R′ : R) = g(R′ : R)d((R′)i : Ri). �

We also read off the following formulas from the commutative diagrams
of the proof of Lemma 21.104 and from (21.28), (21.29), and (21.30):

[K∗ : Ki][R∗/mR∗ : R/mR]s = d(R′ : R)[K∗ : (K ′)i][R∗/mR∗ : R′/mR′ ]s,

so that

(21.31) [K∗ : Ki] = r(R′ : R)[K∗ : (K ′)i]

and

(21.32) [K∗ : Ks] = d(R′ : R)[K∗ : (K ′)s].

Lemma 21.105. Let notation be as above. Then:

1) Gi(R∗/R) ⊂ G(K∗/K ′) if and only if r(R′ : R) = 1.

2) Gs(R∗/R) ⊂ G(K∗/K ′) if and only if d(R′ : R) = 1.
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Proof. The lemma follows from equations (21.31) and (21.32) and the ob-
servations that Gi(R∗/R) ⊂ G(K∗/K ′) if and only if (K ′)i = Ki and
Gs(R∗/R) ⊂ G(K∗/K ′) if and only if (K ′)s = Ks. �

Proposition 21.106. Suppose that R is an algebraic normal local ring with
quotient field K, K ′ is a finite field extension of K, and R′ is a normal local
ring of K ′ which lies over R. Then R → R′ is unramified if and only if
r(R′/R) = 1.

Proof. The extension R → R′ is unramified if and only if R̂ → R̂′ is un-
ramified which holds if and only if D(R̂′/R̂) = R̂ by Theorem 21.21. This
holds if and only if

[R′/mR′ : R/mR]s = [E′ : E],

where E′ is the quotient field of R̂′ and E is the quotient field of R̂ by
Theorem 21.22. But this is equivalent to the condition that r(R′/R) = 1. �

Proposition 21.107. Let R be a normal algebraic local ring with quotient
field K. Let K ′ be a finite separable extension of K and let K∗ be a least
Galois extension of K containing K ′. Let I be an ideal defining the ram-
ification locus in R of R → K ′ (for a prime P ∈ Spec(R), RP → K ′ is
ramified if and only if I ⊂ P ). Then I is an ideal defining the ramification
locus in R of R → K∗.

Proof. We must show that for P ∈ Spec(R), RP → K ′ is ramified if and
only if RP → K∗ is ramified. It follows from the definition of ramification
that RP → K∗ unramified implies RP → K ′ is unramified.

Suppose that RP → K ′ is unramified. Let R∗
j with 1 ≤ j ≤ t be

the local rings of K∗ lying over RP , G = G(K∗/K), G′ = (K∗/K ′), and
Gj = Gi(R∗

j/R). Then Gj ⊂ G′ for 1 ≤ j ≤ t by Lemma 21.105 and

Proposition 21.106. Let G be the smallest subgroup of G which contains
G1, . . . , Gt. Since the Gj are conjugate subgroups, G is a normal subgroup

of G and G ⊂ G′. Thus the fixed field K of G is a Galois extension of K
containing K ′, and hence by minimality of K∗, we have that K = K∗; that
is, G = (1). Thus G1 = G2 = · · · = Gt = (1). Defining Ki

j to be the inertial

field Ki
j = (K∗)Gi , this implies that K∗ = Ki

j . Thus R is unramified in K∗

by Lemma 21.102. �

Lemma 21.108. Let R be a normal algebraic local ring with quotient field
K, which is an algebraic function field over an algebraically closed field, and
suppose that K∗ is a finite Galois extension of K. Let p be the characteristic
of K and let y1, . . . , yh be a finite number of elements in R such that for all j,
Nj = yjR is a height 1 prime ideal in R and hence that RNj is the valuation
ring of a discrete valuation ωj of K. Let ω∗

j be an extension of ωj to K∗
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and let nj = e(ω∗
j /ωj), which is defined in (21.6) (nj , the residue degree of

ω∗
j over ωj, and the inseparable degree of the residue field of ω∗

j over ωj only

depend on j since K → K∗ is Galois, as shown in [160, Section 10, Chapter
V]). Assume that if p 
= 0, then p does not divide nj for j = 1, . . . , h. Let

y
1
nj

j be an nj-th root of yj. Let

K = K(y
1
n1
1 , . . . , y

1
nh
h ) and K

∗
= K∗(y

1
n1
1 , . . . , y

1
nh
h ).

Let N0 be a height 1 prime deal in R different from N1, . . . , Nh and let ω0 be
the discrete valuation of K with valuation ring RN0 . Let ω∗

j be an extension

of ω∗
j to K

∗
and let ωj be the restriction of ω∗

j to K. Let Vωj , Vwj , Vω∗
j
, and

Vωj be the respective valuation rings. Then:

a) K
∗
/K, K/K, K

∗
/K∗, and K

∗
/K are Galois extensions.

b) For 1 ≤ j ≤ h, we have that e(ω∗
j/ω

∗
j ) = 1 and Vω∗

j
/mω∗

j
is separable

over Vω∗
j
/mω∗

j
. Further, e(ωj/ωj) = nj and Vωj/mωj is separable

over Vωj/mωj .

c) e(ω∗
0/ω

∗
0) = 1 and Vω∗

0
/mω∗

0
is separable over Vω∗

0
/mω∗

0
. Further,

e(ω∗
0/ω0) = e(ω∗

0/ω0) and the inseparability indices

[Vω∗
0
/mω∗

0
: Vω0/mω0 ]i = [Vω∗

0
/mω∗

0
: Vω0/mω0 ]i.

Proof. We assume that h = 1. The general case then follows by induction
on h, using the fact that e and the inseparable degree of residue field exten-
sions are multiplicative for extensions of dvrs in towers of fields. Statement
a) follows since the composition of two Galois extensions is again Galois
(Theorem 1.14, page 267 of [95]).

Let n = [K
∗
: K∗]. Then n | n1. Let x = y

1
n1
1 which is a generator of K

∗

over K∗ and let z = xn. Then f(X) = Xn − z is the minimal polynomial of

x over K∗. Now zn−1 (times the unit (−1)
n(n−1)

2 nn) is the discriminant of
f(X) (as follows from (21.7) and (21.9)). We have that zn−1 is a unit in Vω∗

0
,

so Vω∗
0
= D(K

∗
/Vω∗

0
) and thus Vω∗

0
→ Vω∗

0
is unramified, so e(ω∗

0/ω
∗
0) = 1

and Vω∗
0
/mω∗

0
→ Vω∗

0
/mω∗

0
is a finite separable extension.

Fix u ∈ Vω∗
1
which is a generator of mω∗

1
. Now x

u is a primitive element

of K
∗
over K∗ and g(X) = Xn − zu−n is the minimal polynomial of x

u over
K∗. Now ω∗

1(z) = nω∗
1(x) and ω∗

1(y1) = e(ω∗
1/ω1) = n1, so ω∗

1(x) = 1 and
thus ω∗

1(
z
un ) = n − n = 0. We thus have that z

un is a unit in Vω∗
1
and since

( z
un )

n−1 is the discriminant of g(X), we have that D(K
∗
/Vω∗

1
) = Vω∗

1
and

thus Vω∗
1
→ Vω∗

1
is unramified and so e(ω∗

1/ω
∗
1) = 1 and Vω∗

1
/mω∗

1
→ Vω∗

1
/mω∗

1

is a finite separable extension.
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We have that n1ω1(x) = ω1(y1), so e(ω1/ω1) ≥ n1. But

[Vω1/mω1 : Vω1/mω1 ]e(ω1/ω1) ≤ [K : K] = n1

by [160, Theorem 22, page 289]. Thus e(ω1/ω1) = n1 and Vω1/mω1 =
Vω1/mω1 .

By a similar calculation to the analysis of Vω∗
0

→ Vω∗
0
, we obtain that

e(ω0/ω0) = 1 and Vω0/mω0 → Vω0/mω0 is finite and separable.

From the identities

e(ω∗
0/ω0)e(ω0/ω0) = e(ω∗

0/ω
∗
0)e(ω

∗
0/ω0)

and
[Vω∗

0
/mω∗

0
: Vω∗

0
/mω∗

0
]i[Vω∗

0
/mω∗

0
: Vω0/mω0 ]i

= [Vω∗
0
/mω∗

0
: Vω0/mω0 ]i[Vω0/mω0 : Vω0/mω0 ]i,

we obtain that e(ω∗
0/ω0) = e(ω∗

0/ω0) and

[Vω∗
0
/mω∗

0
: Vω0/mω0 ]i = [Vω∗

0
/mω∗

0
: Vω0/mω0 ]i. �

Lemma 21.109. Let K be an algebraic function field and let K∗ be a finite
Galois extension of K. Let R be a normal algebraic local ring of K and let
R∗ be a normal algebraic local ring of K∗ such that R∗ lies over R. Let E
be the quotient field of R̂ and let E∗ be the quotient field of R̂∗. Then E∗ is
Galois over E with Galois group isomorphic to Gs(R∗/R) by restriction in
the commutative diagram

E → E∗

↑ ↑
K → K∗.

Proof. Let Ks be the splitting field of R∗ over R. The field K∗ is Galois

over Ks with Galois group G = Gs(R∗/R). Let Rs = R∗∩Ks. Then R̂s = R̂

by Lemma 21.101, and so the quotient field Es of R̂s is isomorphic to E.
Since R∗ is the unique local ring of K∗ lying over Rs, by Lemma 21.100, we
have that

(21.33) [E∗ : E] = [Ks : K]

by Proposition 21.103.

Suppose that σ ∈ Gs(R∗/R). Then there is a commutative diagram

R → R∗

↘ ↓ σ
R∗.

Taking completions and quotient fields, we obtain an E-automorphism of
E∗ which extends σ, and thus we have an inclusion of Gs(R∗/R) into
Aut(E∗/E). Thus by (21.33), we have that E∗ is Galois over E with Galois
group Gs(R∗/R). �
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We now give the proof of Theorem 21.93. Let K = k(Y ), K∗ = k(X),
R = OY,q, and R∗ = OX,p, so that R∗ lies over R. We are given the

assumption that
∏t

i=1 xi ∈ J(R∗/R) for some regular system of parame-
ters x1, . . . , xt, . . . , xn in R. Let K ′ be a least Galois extension of K con-
taining K∗. By assumption, the characteristic p of k(X) does not divide
[K ′ : K]. Let R′ be an algebraic local ring of K ′ which lies over R∗. Let

Ks = (K ′)G
s(R′/R) and let K

′
be the composite of K∗ and Ks. Then

K
′
= (K ′)G

s(R′/R∗) since

Gs(R′/R∗) = Gs(R′/R) ∩G(K ′/K∗).

Let Rs be the normal local ring of Ks such that R′ lies over Rs and let R
′

be the normal local ring of K
′
such that R′ lies over R

′
.

Now R → Rs and R∗ → R
′
are unramified by Lemma 21.101, so that

J(R
′
/Rs) = J(R

′
/R) ⊃ J(R∗/R)

by Theorem 21.83 and Theorem 14.9 and thus
∏t

i=1 xi ∈ I(R
′
/Rs), which

defines the ramification locus of Rs → K
′
since Rs → R

′
is finite as R

′
is the

unique local ring of K
′
lying over Rs by Lemma 21.100. Let K̃ be a least

Galois extension over Ks containing K
′
in K ′. Let R̃ be the normal local

ring of K̃ such that R′ lies over R̃. By Proposition 21.107 and since R̃ is

the unique local ring of K ′ lying over Rs,
∏t

i=1 xi ∈ I(R
′
/Rs) = I(R̃′/Rs)

defines the ramification locus of Rs in K̃.

Let E be the quotient field of R̂, let Es be the quotient field of R̂s, let

E
′
be the quotient field of R̂

′
, let E∗ be the quotient field of R̂∗, and let Ẽ

be the quotient field of ̂̃R. Then R̂ ∼= R̂s and R̂∗ ∼= R̂
′
, by Lemma 21.101,

so E ∼= Es and E∗ ∼= E
′
. Since K̃ is Galois over K

′
, we have that Ẽ is

Galois over E
′
by Lemma 21.109. Thus it suffices to prove the theorem with

R replaced with Rs and R∗ replaced with R
′
, K replaced with Ks and K∗

replaced with K
′
. In summary, we have reduced to the situation where we

have a tower of fields

K → K∗ → K̃

where K̃ is Galois over K, p does not divide [K̃ : K], and (after possibly per-

muting x1, . . . , xt and decreasing t)
√

D(K̃/R) = (
∏t

i=1 xi) where x1, . . . , xn

is a suitable regular system of parameters in R, and R̃ is the unique local
ring of K̃ which lies over R.

Let wi be the valuation of K with valuation ring Vωi = R(xi) for 1 ≤ i ≤
t, and let ω̃i be an extension of ωi to K̃ for 1 ≤ i ≤ t. Let ni = e(ω̃i/ωi)
for 1 ≤ i ≤ t (ni does not depend on the extension ω̃i of ωi, as explained

in Proposition 21.23). Now ni divides [K̃ : K] by Proposition 21.23, so p
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does not divide ni for 1 ≤ i ≤ t. Let K1 = K(x
1
n1
1 , . . . , x

1
nt
t ) and K2 =

K̃(x
1
n1
1 , . . . , x

1
nt
t ). Let R2 be a normal local ring of K2 which lies over R̃ and

let R1 = R2 ∩K1. All extensions in

K → K̃
↓ ↓
K1 → K2

are Galois by a) of Lemma 21.108.

We have that R̂ ∼= k[[x1, . . . , xn]] and R̂1 is the integral closure of R̂ in

k((x
1
n1
1 , . . . , x

1
nt
t , xt+1, . . . , xn))

by Proposition 21.55. Thus R̂1
∼= k[[x

1
n1
1 , . . . , x

1
nt
t , xt+1, . . . , xn]]. Since R̂1 is

regular, we have that R1 is a regular local ring.

Suppose that ν is a valuation of K whose valuation ring is RP where
P is a height 1 prime ideal in R. Let ν2 be an extension of ν to K2, let ν̃
be the restriction of ν2 to K̃, and let ν1 be the restriction of ν2 to K1. We
have that p does not divide [Vν̃/mν̃ : Vν/mν ] since p does not divide [K̃ : K]
and by Proposition 21.23. Hence Vν̃/mν̃ is separable over Vν/mν . If P is
a height 1 prime ideal of R such that P 
= (xi) for some i with 1 ≤ i ≤ t,

then we have that D(K̃/K) 
⊂ P , so RP → K̃ is unramified. Thus if ν
is a valuation of K whose valuation ring is RP , we have that e(ν̃/ν) = 1.
Thus by Lemma 21.108, R1 → R2 is unramified in codimension 1. By the
purity of the branch locus, Theorem 21.92, R1 → R2 is unramified since R1

is regular. Thus by Proposition 21.62,

R̂1
∼= R̂2

∼= k[[x
1
n1
1 , . . . , x

1
nt
t , xt+1, . . . , xn]].

Let E be the quotient field of R̂, let E∗ be the quotient field of R̂∗, let E1

be the quotient field of R̂1, and let E2 be the quotient field of R̂2.

Now E2 is Galois over E∗ with Galois group G(E2/E
∗) = Gs(R2/R

∗)
and E2 is Galois over E with Galois group G(E2/E) = Gs(R2/R) by Lemma
21.109. We further have that E2

∼= E1 is Galois over E with Galois group
G(E2/E) ∼=

⊕t
i=1 Z

ni , which acts by multiplication of roots of unity on the

x
1
ni
i . Now G(E2/E

∗) ∼= Gs(R2/R
∗) is a subgroup of G(E2/E) and thus

R̂∗ ∼= R̂
Gs(R2/R∗)
2 has the desired form.





Chapter 22

Bertini’s Theorems and
General Fibers of Maps

We first consider the question of when a variety X over a not necessarily al-
gebraically closed field k0 satisfies the property that the scheme X ′ obtained
from X by extending the field k0 to a larger field k′ is always reduced, ir-
reducible, or integral (reduced and irreducible). If this property holds for
all extension fields k′ of k0, then X is said to be geometrically reduced,
geometrically irreducible, or geometrically integral. In Corollary 22.3 we
characterize these conditions in terms of properties of the extension field
k0(X) of k0, and we say that the extension k0 → k0(X) is geometrically
reduced, geometrically irreducible, or geometrically integral if the variety
X has this property over k0. In Proposition 22.14 and more generally in
Theorem 22.18, it is shown that the general fiber of a dominant regular map
φ : X → Y of varieties has one of the properties geometrically reduced, geo-
metrically irreducible, or geometrically integral if and only if the extension
of function fields k(Y ) → k(X) has this property.

We establish Theorem 22.4, showing that the general fiber of a map from
a nonsingular characteristic 0 variety is nonsingular. This property does not
hold in positive characteristic, as shown by Exercise 22.20. In Definition 22.8
and Theorem 22.9 we introduce the general notion of a smooth morphism
of schemes.

We derive the two theorems of Bertini over algebraically closed fields k.
The first theorem of Bertini, Theorem 22.12, states that if X is a normal
variety over an algebraically closed field k of characteristic p ≥ 0 and L
is a linear system on X without fixed component which is not composite
with a pencil (L does not induce a rational map to a curve), then there is

451
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a power pe such that a general member of L has the form peD where D is
a prime divisor. Classical algebraic proofs of the first theorem are given by
Zariski in [151] (when k has characteristic 0), Matsusaka [104], and Zariski
in [158, Section I.6] (in any characteristic). Our proof of the first theorem
is based on the proof in [158, Section 1.6].

The second theorem of Bertini, Theorem 22.11, states that if X is a
nonsingular variety over an algebraically closed field k of characteristic 0 and
L is a linear system without fixed component on X, then a general member
of L is nonsingular outside the base locus of L. The second theorem is only
true in characteristic 0, as shown by Exercise 22.19.

22.1. Geometric integrality

A ring A containing a field κ is called geometrically irreducible over κ if the
nilradical of A⊗κ k

′ is a prime ideal for all extension fields k′ of κ. The ring
A is called geometrically reduced over κ if A⊗κ k

′ is reduced for all extension
fields k′ of κ. The ring A is called geometrically integral over κ if A⊗κ k

′ is
a domain for all extension fields k′ of κ.

A scheme X over a field κ (there is a natural inclusion κ → OX(U)
for all open subsets U of X) is called geometrically irreducible over κ if the
nilradical of OX(U)⊗κ k

′ is a prime ideal for all open affine subsets U of X
and extension fields k′ of κ. The scheme X is called geometrically reduced
over κ if OX(U) ⊗κ k′ is reduced for all open affine subsets U of X and
extension fields k′ of κ. The scheme X is called geometrically integral over κ
if OX(U)⊗κ k

′ is a domain for all open affine subsets U of X and extension
fields k′ of κ.

In the language of Foundations of Algebraic Geometry [145], a geomet-
rically integral variety is called “absolutely irreducible”.

Definition 22.1. If K is an extension field of a field κ of characteristic p,

then K is said to be a separable extension of κ if K and κp
−1

are linearly
disjoint over κ.

If K is an algebraic extension of κ, then this definition of separability
is equivalent to the definition of separability for algebraic extensions, by
[160, Theorem 34, page 109]. If K is a finitely generated extension of κ,
thenK is separably generated over κ if and only ifK is a separable extension
of κ, by [160, Theorem 35, page 111].

A dominant regular map ϕ : X → Y of varieties is said to be separable
if the induced extension of fields k(Y ) → k(X) is separable.
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Proposition 22.2. Suppose that F is a finitely generated extension field of
a field K. Then:

1) F is geometrically reduced over K if and only if F is separable
over K.

2) F is geometrically irreducible over K if and only if K is separably
closed in F (if α ∈ F is separably algebraic over K, then α ∈ K).

3) F is geometrically integral over K if and only if F is separable over
K and K is separably closed in F .

Proof. The “if” statement of 1) follows from [160, Theorem 39, Chapter
3, page 195]. For the “only if” statement of 1), suppose that F is not

separable over K. Then F and Kp−1
(where p is the characteristic of K) are

not linearly disjoint over K (Definition 22.1), so by Theorem 5.3, the kernel

p of the canonical homomorphism Λ of F ⊗K Kp−1
onto the subring S of an

algebraic closure of F generated by F and Kp−1
is nontrivial. Now f ∈ p

implies fp ∈ (F ⊗1)∩kernel(Λ) = (0) so all elements of p are nilpotent. We
now prove the “if” statement of 2). In the case that K has characteristic 0,
this follows from [160, Corollary 2 to Theorem 40, page 198]. Suppose that
K has characteristic p > 0. Since K is separably closed in F , we have that
F and K ′ are quasi-linearly disjoint over K by [160, Theorem 40, page 197],
and thus all free joins of F/K and K ′/K are equivalent by [160, Theorem 38
page 192], and so the zero ideal of F ⊗K K ′ is primary by [160, Corollary 2,
page 195]. For the “only if” statement of 2), suppose that K is not separably
closed in F . There exists α ∈ F \ K which is separably algebraic over K.
Let f(x) ∈ K[x] be the minimal polynomial of α. Let L = K(α). We have
that

L ⊗K L ∼= K(α)[x]/(f(x)).

Since we have a factorization f(x) = (x − α)g(x) in K(α)[x] where x − α
and g(x) are reduced and relatively prime, the zero ideal of L ⊗K L is not
primary. Since we have a natural inclusion L⊗K L ⊂ F ⊗K L, the zero ideal
of F ⊗K L is not primary. Conclusion 3) follows from 1) and 2). �

Corollary 22.3. Suppose that X is a variety over a (not necessarily alge-
braically closed) field k0 (as defined in Section 15.4). Then:

1) X is geometrically reduced over k0 if and only if k0(X) is separable
over k0.

2) X is geometrically irreducible over k0 if and only if k0 is separably
closed in k0(X).

3) X is geometrically integral over k0 if and only if k0(X) is separable
over k0 and k0 is separably closed in k0(X).
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Proof. By considering an affine cover of X, we reduce to the case when X
is an affine variety. Suppose that X is affine. Let S be the multiplicative
set S = k0[X] \ {0}, and let k′ be an extension field of k0. By consideration
of the natural inclusion

k0[X] ⊗k0 k
′ → k0(X) ⊗k0 k

′ = S−1(k0[X]⊗k0 k
′),

we see that k0[X] is geometrically irreducible, geometrically reduced, or
geometrically integral over k0 if and only if k0(X) has this property over
k0. �

22.2. Nonsingularity of the general fiber

In this section, we prove the following theorem.

Theorem 22.4. Let φ : X → Y be a dominant regular map of varieties over
an (algebraically closed) field k of characteristic 0, and suppose that X is
nonsingular. Then there exists a nonempty open subset U of Y such that the
fiber Xb is nonsingular for all b ∈ U ; that is, OXb,a = OX,a/mbOX,a, where
mb is the maximal ideal of OY,b, is a regular local ring for all a ∈ φ−1(b).

The conclusions of Theorem 22.4 are false in positive characteristic. Ex-
ercise 22.20 gives a positive characteristic example where k(X) is geometri-
cally integral over k(Y ) and all fibers of φ are singular.

Throughout this section we will assume that the assumptions of Theorem
22.4 hold. By Theorems 8.13 and 10.16, after replacing Y with an open
subset, we may assume that for all b ∈ Y , every irreducible component of
φ−1(b) has dimension n − m where m = dimY and n = dimX and Y is
nonsingular.

Lemma 22.5. With the above assumptions, suppose that b ∈ Y and Ta(X)
→ Tb(Y ) is surjective for all a ∈ φ−1(b). Then Xb is nonsingular.

Proof. Suppose that a ∈ φ−1(b). Let A = OXb,a = OX,a/mbOX,a, and let
n be the maximal ideal of A. We have that A/n ∼= k(a) ∼= k. The natural
surjection of local rings OX,a → A induces a surjection of k-vector spaces

(22.1) ma/m
2
a → n/n2 → 0

where ma is the maximal ideal of OX,a. Taking the dual of (22.1), we have
an injection of k-vector spaces,

0 → T (A) = Homk(n/n
2, k) → Ta(X).

The argument above (10.5) (after Definition 10.8) is applicable to our slightly
more general situation and shows that

T (A) ⊂ Kernel(dφa).
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Thus

dimA/n(n/n
2) = dimk(T (A)) ≤ dimTa(X) − dimTb(Y ) = dimX − dimY

since a is a nonsingular point of X and b is a nonsingular point of Y . We
have that

dimA/n n/n
2 ≥ dimA = dimφ−1(b) = dimX − dimY.

Thus dimA = dimA/n n/n
2, and A is a regular local ring. �

Lemma 22.6. Let assumptions be as above. Then there exists a nonempty
open subset V of X such that dφa is a surjection for all a ∈ V .

Proof. Let b ∈ Y and let u1, . . . , um be regular parameters in OY,b. Then
du1, . . . , dum is a free OY,b-basis of (ΩY/k)b by Proposition 14.15, and since
Ωk(Y )/k is a localization of (ΩY/k)b, it is also a k(Y )-basis of Ωk(Y )/k. Thus
u1, . . . , um is a transcendence basis of k(Y )/k by Theorem 21.75. We can
extend u1, . . . , um to a transcendence basis u1, . . . , un of k(X)/k. Since k
has characteristic 0, u1, . . . , un is a separating transcendence basis of k(X)
over k, so by Theorem 21.75, du1, . . . , dun is a k(X)-basis of Ωk(X)/k, and
thus there exists a nonempty open subset U of X such that du1, . . . , dun is
a free basis of ΩU/k. By Proposition 14.17, u1 − u1(a), . . . , un − un(a) are
regular parameters in OX,a for all a ∈ U . (Here we are making the usual
abuse of notation, identifying φ∗(ui) with ui for 1 ≤ i ≤ m; in particular,
by ui(a) for 1 ≤ i ≤ m we mean φ∗(ui)(a) = ui(φ(a))). By Propositions
14.15 and 14.17, there exists an open neighborhood W of b in Y such that
u1 − u1(c), . . . , um − um(c) are regular parameters in OY,c for all c ∈ W .

Suppose that a ∈ U ∩ φ−1(W ). Then u1 − u1(a), . . . , um − um(a) are
regular parameters in OY,φ(a) and u1 − u1(a), . . . , un − un(a) are regular
parameters in OX,a.

The classes of u1 − u1(a), . . . , um − um(a) form a k-basis of mφ(a)/m
2
φ(a)

and the classes of u1 −u1(a), . . . , un −un(a) form a k-basis of ma/m
2
a. Thus

mφ(a)/m
2
φ(a) → ma/m

2
a

is an inclusion of k-vector spaces, so

dφa : Ta(X) → Tφ(a)(Y )

is surjective. �

Lemma 22.7. Let assumptions be as above. Suppose that r ∈ N, and let

Xr = {a ∈ X | rank dφa ≤ r}.

Then dimφ(Xr) ≤ r.
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Proof. Let Y ′ be an irreducible component of the Zariski closure φ(Xr) of
φ(Xr) in Y , and letX ′ be an irreducible component of the Zariski closureXr

of Xr in X which dominates Y ′. Let φ′ : X ′ → Y ′ be the induced dominant
regular map. By Lemma 22.6, there exists a nonempty open subset V of X ′

such that dφ′
a is surjective for a ∈ V . Let a ∈ V ∩ Xr. We then have, by

(10.5) (after Definition 10.8), a commutative diagram of k-vector spaces,

Ta(X
′) → Ta(X)

dφ′
a ↓ ↓ dφa

Tφ′(a)(Y
′) → Tφ(a)(Y ).

The horizontal arrows are injections since X ′ is a subvariety of X and Y ′ is
a subvariety of Y . Since rank dφa ≤ r, we have that

dimY ′ ≤ dimk Tφ′(a)(Y
′) ≤ r. �

Now we give the proof of Theorem 22.4. Let

Xm−1 = {a ∈ X | rank dφa ≤ m− 1}.
Then dimφ(Xm−1) ≤ m − 1 by Lemma 22.7. Recall that we have made

the reduction that Y is nonsingular. Let U = Y \ φ(Xm−1), a nonempty
open subset of Y . Suppose that b ∈ U and a ∈ φ−1(b). Then a 
∈ Xm−1, so
rank dφa ≥ m, and since b is a nonsingular point of Y , dφa is surjective. By
Lemma 22.5, Xb is nonsingular.

We end this section by giving the definition of a smooth morphism. A
morphism of schemes is defined in Section 15.5. The k-morphisms of varieties
are the regular maps.

Definition 22.8. A morphism of schemes φ : X → Y is said to be smooth
of relative dimensionm if for all p ∈ X there are open neighborhoods U ⊂ X
of p and V ⊂ Y of φ(p) such that φ(U) ⊂ V , and there exists a commutative
diagram

U
open embedding→ Z

φ ↓ ↓
V

open embedding→ W

where Z and W are affine schemes, and if R = OW (W ), then

OZ(Z) = R[x1, . . . , xn+m]/(f1, . . . , fn)

and the rank of the (n+m)×n matrix ( ∂fi∂xj
(p)) over κ(p) = OX,p/mp is n.

This is the definition given in [116, Definition 3 on pages 436–437]. An
étale morphism (Definition 21.79) is a smooth morphism of relative dimen-
sion 0. A refinement of Definition 22.8 is given in Exercise 22.10.
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Using the general notion of a scheme of Section 15.5 (which has a larger
topological space including nonclosed points) we have the following.

Theorem 22.9. A morphism of schemes φ : X → Y is smooth of relative
dimension m if and only if the following three conditions hold.

1. f is flat,

2. if X ′ ⊂ X and Y ′ ⊂ Y are irreducible components such that
f(X ′) ⊂ Y ′, then dimX ′ = dimY ′ +m,

3. for each point x ∈ X (closed or not)

dimκ(x)(ΩX/Y ⊗ κ(x)) = m,

where κ(x) is the residue field of OX,x.

The proof of Theorem 22.9 follows from [116, Theorem 3’, page 437]
and [73, Theorem III.10.2]. The criterion of Theorem 22.9 is the definition
of a smooth morphism given in Section 10 of Chapter III of [73].

Exercise 22.10. Show that a regular map of varieties φ : X → Y is smooth
of relative dimension m if and only if for every p ∈ X, there exist open affine
neighborhoods A of p and B of q = φ(p) such that k[A] is a quotient of a
polynomial ring over k[B] of the form

k[A] = k[B][x1, . . . , xn+m]/(f1, . . . , fn)

where the ideal In(
∂fi
∂xj

) generated by the n × n minors of the matrix ( ∂fi∂xj
)

is equal to k[A]. Hint: Use Exercise 1.7 and Definition 22.8.

22.3. Bertini’s second theorem

Suppose that X is a normal variety and L is a linear system on X with-
out fixed component (Base(L) has codimension ≥ 2 in X). Then there
exists an effective D on X and linearly independent sections s0, . . . , sn ∈
Γ(X,OX(D)) such that

L = {La = div(a0s0+a1s1+ · · ·+ansn)+D | a = (a0 : . . . : an) ∈ VL = Pn}.

The projective space VL parametrizes the linear system L. The linear system
L induces a rational map

φL = (s0 : . . . : sn) : X ��� Pn.

Let X ′ be the projective variety which is the Zariski closure of φL(X) in Pn.
The function field of X ′ is

k(X ′) = k

(
s1
s0

, . . . ,
sn
s0

)
⊂ k(X).
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We now assume that X is nonsingular, and we associate to the linear
system L a closed subvariety ZL of X ×VL. Let x0, . . . , xn be homogeneous
coordinates on VL. Suppose that U ⊂ X is an affine open subset such that
D ∩ U has a local equation gU = 0 on U . Then OX(D) | U = 1

gU
OU .

Let sj | U =
hU,j

gU
with hU,j ∈ Γ(U,OX) for 0 ≤ j ≤ n. Define the closed

subscheme ZU of U ×VL so that the homogeneous ideal of ZU in the graded
ring k[U ][x0, . . . , xn] is generated by

∑n
j=0 hU,jxj . Then the coordinate ring

of ZU is

S(ZU ) = k[U ]⊗k k[x0, . . . , xn]/

⎛⎝ n∑
j=0

hU,jxj

⎞⎠ .

The ZU patch to determine a closed subscheme Z of X × VL. This is since
gU
gV

is a unit on U ∩ V if U, V are affine open subsets of X such that gU = 0

is a local equation of D on U and gV is a local equation of D on V .

Let π : Z → VL be the natural projection. The scheme-theoretic fiber
Za by π of a ∈ VL is isomorphic to the divisor Da for all a ∈ VL.

Theorem 22.11 (the second theorem of Bertini). Suppose that X is a
nonsingular variety over an algebraically closed field k of characteristic 0,
and L is a linear system on X without fixed component. Let W be the base
locus of L. Then there exists a dense open subset U of VL such that La \W
is nonsingular for a ∈ U .

This theorem is not true in positive characteristic. A counterexample is
given in Exercise 22.19.

Proof. Let Y = X \ W . Then L|Y is a base point free linear system. We
construct the family π : Z → VL for L|Y as above. The fibers Za are equal
to La \ W for a ∈ VL. Here Z is locally a hypersurface in homogeneous
coordinates of VL. Since L|Y is base point free, at every point of Z one of
the coefficients of the hypersurface is a unit. Thus Z is nonsingular by the
Jacobian criterion. The theorem now follows from Theorem 22.4. �

22.4. Bertini’s first theorem

Suppose that X is a normal variety and L is a linear system on X without
fixed component. Let notation be as in Section 22.3, with VL

∼= Pm. The
linear system L is said to be composite with a pencil if dimX ′ = 1; that is,

trdegkk

(
s1
s0

, . . . ,
sm
s0

)
= 1.

In this section, we prove the following theorem. Our proof is based on the
proof by Zariski in [158, Section 1.6].
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Theorem 22.12 (the first theorem of Bertini). Suppose that X is a normal
variety over an algebraically closed field k of characteristic p ≥ 0 and L
is a linear system on X without fixed component. Suppose that L is not
composite with a pencil.

Define pe by pe = 1 if K has characteristic 0, and so that pe is the largest
exponent such that k(X ′) ⊂ k(X)p

e
if k has characteristic p > 0. Then there

is a linear system L′ on X such that L = peL′ and there exists a Zariski
open subset C of VL such that La = peL′

a
1
pe

where L′
a

1
pe

is a prime divisor

for a ∈ C.

Suppose that κ is a field and f(x) = f(x1, . . . , xn) is in the polynomial
ring κ[x1, . . . , xn]. We say that f is geometrically irreducible over κ if f(x) is
irreducible in F [x1, . . . , xn] for all extension fields F of K; that is, f = f1f2
with f1, f2 ∈ F [x1, . . . , xn] implies f1 or f2 has degree 0.

Remark 22.13. By Propositions 1.31 and 22.2, the following are equivalent:

1) f is geometrically irreducible over κ,

2) F [x1, . . . , xn]/(f) is a domain for all extension fields F of κ,

3) κ[x1, . . . , xn]/(f) is geometrically integral over κ,

4) κ[x1, . . . , xn]/(f) is a domain, and letting L be the quotient field
of κ[x1, . . . , xn]/(f), we have that L is separable over κ and κ is
separably closed in L.

Proposition 22.14. Let A = k[X] be the ring of regular functions on an
affine variety X, and suppose that a nonzero element F in the polynomial
ring A[T1, . . . , Tn] over A has degree d. If R is an A-algebra, let F(R) be
the image of F in R[T1, . . . , Tn] ∼= A[T1, . . . , Tn] ⊗A R. Let K = k(X) be
the quotient field of A. Assume that F(K) is geometrically irreducible. Then
there exists a nonzero element f ∈ A such that for all r ∈ Xf , F(k(r)) is
irreducible.

Proof. Write F =
∑

cαT
α with cα ∈ A and where the indexing is over

multi-indices α = (α1, . . . , αn) with Tα = Tα1
1 · · ·Tαn

n . Define |α| = α1 +
· · ·+ αn.

Let p, q be positive integers such that p + q = d. Let T ′
β and T ′′

γ be

indeterminates indexed by multi-indices β = (i1, . . . , in) and γ = (j1, . . . , jn)
such that |β| ≤ p and |γ| ≤ q. Let B(p,q) be the polynomial ring

B(p,q) = A[{T ′
β | |β| ≤ p}, {T ′′

γ | |γ| ≤ q}],
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which we will denote by A[T ′′
β , T

′′
γ ]. Let I(p,q) be the ideal in B(p,q) generated

by {Pα | |α| ≤ d} where

Pα =
∑

β+γ=α

T ′
βT

′′
γ − cα.

Let Ω be an algebraically closed field containing K. Suppose that we have
a factorization

(22.2) F(Ω) = F1F2

for some F1, F2 ∈ Ω[T1, . . . , Tn] with degF1 = p and degF2 = q. Then
writing F1 =

∑
t′βT

β and F2 =
∑

t′′γT
γ with t′β, t

′′
γ ∈ Ω, we have that

Pα(t
′
β, t

′′
γ) = 0 for all α with |α| ≤ d. In fact, we have that there exists

a factorization (22.2) if and only if the equations Pα(T
′
β , T

′′
γ ) = 0 have a

common solution in Ω for all α with |α| ≤ d, so F(Ω) does not have a
factorization (22.2) if and only if Z(I(p,q)) = ∅ in An

Ω. By the nullstellensatz,
this is equivalent to the statement that

I(p,q)Ω[T
′
β, T

′′
γ ] = Ω[T ′

β , T
′′
γ ],

which is equivalent to the statement that

I(p,q)K[T ′
β , T

′′
γ ] = K[T ′

β, T
′
γ′ ].

Thus if F(Ω) does not have a factorization (22.2), then there exists 0 
=
f(p,q) ∈ A such that

I(p,q)Af [T
′
β, T

′′
γ ] = Af(p,q) [T

′
β, T

′′
γ ].

Suppose that r ∈ X has the associated maximal ideal m = I(r) ⊂ A. We
have (since k(r) ∼= k is algebraically closed) that F(k(r)) has a factorization

F(k(r)) = F 1F 2 for some F 1, F 2 ∈ k(r)[T1, . . . , Tn] with degF1 = p and
degF2 = q if and only if

I(p,q)k(r)[T
′
β, T

′′
γ ] = k(r)[T ′

β, T
′′
γ ],

which holds if and only if the closed set in An
k(r)

Z(I(p,q)k(r)[T
′
β, T

′′
γ ]) = ∅.

Thus, letting f =
∏

p+q=d f(p,q) (with the restriction that p and q are posi-

tive), we have that F(k(r)) is irreducible for all r ∈ Xf . �

Lemma 22.15. Suppose that P is a field which is algebraically closed in
a field Σ and Σ∗ = Σ(x1, . . . , xm) is a pure transcendental extension of Σ.
Then P (x1, . . . , xm) is algebraically closed in Σ∗.

Proof. This is [160, Lemma, page 196] or [151, Lemma 2]. �

The following proposition and its proof are based on [158, Proposition
1.6.1].
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Proposition 22.16. Let K/F be a field of algebraic functions, of transcen-
dence degree r ≥ 2. Let z1, . . . , zm be elements of K such that the field
F (z) = F (z1, . . . , zm) has transcendence degree s ≥ 2 over F , let u1, . . . , um
be algebraically independent elements over K, and let zu denote the lin-
ear form u1z1 + · · · + umzm. If F is separably closed in K, then the field
F (zu, u) = F (zu, u1, . . . , um) is separably closed in K(u1, . . . , um).

Proof. Step a). We will first reduce to the case s = r = 2 and F alge-
braically closed in K. Fix a transcendence basis {xr−s+1, xr−s+2, . . . , xr}
of F (z) over F and extend it to a transcendence basis {x1, x2, . . . , xr} of
K over F . Let F ′ be the algebraic closure of F (x1, . . . , xr−2) in K. Then
trdegF ′K = trdegF ′F ′(z) = 2. Suppose the proposition is true if s = r = 2.
Then F ′(zu, u) is separably closed in K(u).

We will now show that u1, . . . , um and zu are algebraically independent
over F ′. Assume that this is not the case. We will derive a contradiction.
At least one of the zi is transcendental over F

′. Without loss of generality,
we may assume that zm is transcendental over F ′. Since u1, . . . , um are
transcendental over K, and hence over F ′, we then have a relation

a0z
n
u + a1z

n−1
u + · · · + an = 0

with ai ∈ F ′[u1, . . . , um] for all i and the ai not all zero. After possibly
dividing out a common power of u1 from all of the ai, we may assume that u1
does not divide ai for some i. Then setting u1 = 0, we have a relation a0z

n
u+

· · ·+an = 0, with zn = u2z2+ · · ·+umzm and ai = ai(0, u2, . . . , un) with the
ai not all zero. Now, after dividing this new relation by the largest power
of u2 which divides all of the ai, we may repeat this argument, eventually
getting a relation

(22.3) b0z
l
m + b1z

l−1
m + · · · + b0 = 0

with all bi ∈ F ′[um] and the bi not all zero. Now zm ∈ K and um is
transcendental over K, so expanding (22.3) as a polynomial in K[um], the
coefficients must all be zero. Now these coefficients are of the form hi(zm)
with hi(y) in the polynomial ring F ′[y] not all zero. Since hi(zm) = 0 for all
i, we have that zm is algebraic over F ′, a contradiction. Thus u1, . . . , um, zu
are algebraically independent over F ′.

Since F is assumed to be separably closed in K (and therefore also in F ′)
it follows from Lemma 22.15 (taking Σ = F ′, Σ∗ = F ′(zu, u), and P to be the
algebraic closure of F in F ′) that P (zu, u) is algebraically closed in F ′(zu, u)
and thus is separably closed in K(u). Now P is purely inseparable over F ,
so F (zu, u) is separably closed in P (zu, u). Thus F (zu, u) is separably closed
in K(u).
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Step b). We now assume that s = r = 2 and that F is algebraically
closed in K. We will next find a reduction to the case m = 2. Let vi, wi for
1 ≤ i ≤ m and t1, t2 be m+2 elements which are algebraically independent
over K. Set

(22.4) ui = t1vi + t2wi for i = 1, 2, . . . ,m,

(22.5) zv = v1z1 + v2z2 + · · · + vmzm,

(22.6) zw = w1z1 + w2z2 + · · · + wmzm,

(22.7) zu = t1zv + t2zw = u1z1 + u2z2 + · · · + umzm.

By (22.4), we have that

(22.8) K(t1, t2, v, w) = K(t1, t2, v, u),

and thus the 2m+2 elements t1, t2, vi, ui are algebraically independent over
K. In particular, the ui are algebraically independent over K.

Let F ′ = F (v, w) = F ({vi}, {wj}) and K ′ = K(v, w) = K({vi}, {wj}).
We have that trdegF ′K ′ = 2, and F ′ is algebraically closed in K ′ by Lemma
22.15. By an argument as in the first step of the proof, regarding vi and
wj as indeterminates, we see that zv and zw are algebraically independent
over F ′. Since t1 and t2 are algebraically independent over K ′ and since
zu = t1zv + t2zw, we conclude, since we are assuming the proposition is true
if s = m = r = 2, that F ′(zu, t1, t2) is separably closed in K ′(t1, t2).

By (22.4), we have that the field F ′(zu, t1, t2) is generated over F (zu, u)
by the m+2 element t1, t2, vi. By (22.8), these elements are algebraically in-
dependent overK(u), and hence over F (zu, u). Thus F (zu, u) is algebraically
closed in F ′(zu, t1, t2) and so F (zu, u) is separably closed in K ′(t1, t2), and
thus also in K(u), since K(u) is contained in K ′(t1, t2).

Step c). Now assume that s = r = m = 2. We will next reduce to
the case that K is a Galois extension of F (z1, z2). We have that K is an
algebraic extension of F (z1, z2). Let K0 be the separable closure of F (z1, z2)
in K. Then F (zu, u) is separably closed in K(u) if it is separably closed in
K0(u). Hence we may replace the field K with K0 in the proof, and so we
may assume that K is a separable extension of F (z1, z2).

Let K ′ be the smallest Galois extension of F (z1, z2) containing K. Then
the ui are also algebraically independent over the finite extension K ′ of
K. Let F ′ be the algebraic closure of F in K ′. Then, assuming that the
proposition is true in the case that K is a Galois extension of F (z1, z2), we
have that F ′(zu, u) is separably closed in K ′(u). We will now show that
F ′(zu, u) ∩ K(u) = F (Zu, u), which will show that F (zu, u) is separably
closed in K(u).
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Let t ∈ F ′(zu, u) ∩ K(u). The elements u1, u2 and uz = u1z1 + u2z2 are
algebraically independent over F , hence also over the finite extension F ′ of
F . Thus the expression of t as a quotient

t =
f(u1, u2, zu)

g(u1, u2, zu)

with f, g ∈ F ′[u1, u2, zu] is uniquely determined if we normalize one of these
polynomials by imposing the condition that a preassigned nonzero coefficient
of the polynomial is 1.

Suppose σ ∈ G(K ′/K). Then σ extends naturally to an automorphism
of K ′(u) over K such that σ(u) = u. Hence σ(t) = t since t ∈ K(u), and
thus the coefficients of the polynomials must be invariant under σ. Thus
these coefficients must be in K, and since they are algebraic over F , they
must be in F . Hence t ∈ F (zu, u), proving our assertion.

Step d). We now further assume thatK is a Galois extension of F (z1, z2).
Let zv = v1z1 + v2z2 be a second linear form with indeterminate coeffi-
cients v1, v2, which are assumed to be algebraically independent over K(u).
The automorphisms in G(K/F (z1, z2)) extend uniquely to automorphisms
in G(K(u, v)/F (z1, z2, u, v)) and K(u, v) is Galois over F (z1, z2, u, v) with
Galois group G(K/F (z1, z2)). Let Hu be the algebraic closure of F (zu, u)
in K(u) and let Hv be the algebraic closure of F (zv, v) in K(v). We shall
prove that

(22.9) Hu(zv, v) = Hv(zu, u).

Since both fields in (22.9) contain the field F (u, v, z1, z2), it will suffice
to show that we have equality of Galois groups G1 = G2, where G1 =
G(K(u, v)/Hu(zv, v)) and G2 = G(K(u, v)/Hv(zu, u)). The field K(u, v)
has an automorphism σ which interchanges ui and vi for i = 1, 2 and which
is the identity on K. Then σ(Hu(zv, v)) = Hv(zu, u), and G2 = σ−1G1σ.
Now we have that σ commutes with each element of the Galois group
G(K(u, v)/F (u, v, z1, z2)) since these automorphisms are extensions of el-
ements of G(K/F (z1, z2)). Thus G1 = G2.

Since F is algebraically closed in K, we have that F is algebraically
closed in K(v), and thus also in Hv. We have that zu, u1, and u2 are
algebraically independent over F (zv, v) since zu and zv are algebraically
independent over F (u, v). Hence zu, u1, u2 are also algebraically independent
over Hv. Thus F (zu, u) is algebraically closed in Hv(zu, u), and thus by
(22.9), we have that F (zu, u) = Hu, completing the proof of the proposition.

�

We now give the proof of Theorem 22.12.
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Define an effective divisor D0 by (s0) + D = D0. Then 1, s1s0 , . . . ,
sm
s0

∈
Γ(X,OX(D0)) and

L =

{
div

(
a0 + a1

(
s1
s0

)
+ · · · + am

(
sm
s0

))
+D0 | a = (a0 : . . . : am) ∈ VL

}
.

Thus after replacing D with D0 and the si with si
s0
, we may assume that

s0 = 1. If pe > 1, we construct another linear system L′ as follows. Let
s′i ∈ k(X) be such that (s′i)

pe = si for 0 ≤ i ≤ m. Write D =
∑

niEi where
the Ei are the integral components of D. The linear system L has no fixed
component, so for each i, there exists a0, . . . , am ∈ k such that Ei is not a
component of div(a0s0+ · · ·+amsm)+D. So νEi(a0s0+ · · ·+amsm) = −ni.
Now

νEi(a0s0 + · · ·+ amsm) = peνEi(a
1
pe

0 s′0 + · · ·+ a
1
pe

m s′m)

so pe|ni for all i. Let D
′ = 1

peD. Then

L′ = {div(b0s′0 + · · ·+ bms′m) +D′}

is a linear system such that L = peL′. We have thus reduced to the case
that pe = 1, which we will assume for the rest of the proof.

Let S(VL) = k[u0, . . . , um] be the homogeneous coordinate ring of VL (a
graded polynomial ring over k with deg ui = 1 for all i).

Let U be a nonsingular affine open subset ofX such that U∩Supp D = ∅.
Then si ∈ k[U ] for all i by Lemma 13.3. Let F1, . . . , Fs be the irreducible
components of X \U which have codimension 1 in X. Since L has no fixed
component, for each i there exists pi ∈ Fi which is not in the base locus of
L. Let

Wi = {a ∈ VL | pi ∈ La}.

Wi is a proper linear subspace of VL since for each i there exists Gi ∈ L
such that pi 
∈ Gi. Hence VL \

⋃s
i=0Wi is a nonempty open subset of VL.

For a ∈ VL \
⋃s

i=0Wi, La is a prime divisor if and only if La ∩ U is a prime
divisor, since La cannot contain a codim 1 component of X \ U .

The coordinate ring of U × VL is

S(U × VL) = R ⊗k k[u0, . . . , um] = R[u0, . . . , um]

where R = k[U ]. The ideal (
∑m

i=0 siui) ⊂ R[u0, . . . , um] is a homogeneous
prime ideal (s0 = 1). Let Z = Z(

∑m
i=0 siui) ⊂ U×VL. Here Z is a subvariety

of U × VL with coordinate ring

S(Z) = R[u0, . . . , um]/

(
m∑
i=0

siui

)
∼= R[u1, . . . , um].
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Let k∗ = k(u0, . . . , um) and let K∗ be the quotient field of S(Z). We
have natural inclusions k∗ ⊂ K∗ and k(X) ⊂ K∗ such that u1, . . . , um are
algebraically independent over k(X).

Let F = k, zi = si for 1 ≤ i ≤ m, zu = −u0, and K = k(X). Then K∗ =
K(u1, . . . , um) and k∗ = F (zu, u1, . . . , um). Since F (z) = F (z1, . . . , zm) =
k(X ′) has transcendence degree ≥ 2 over F = k by assumption, we conclude
from Proposition 22.16 that k∗ is separably closed in K∗.

Observing that k(VL) = k(u1
u0
, . . . , um

u0
) and that k(Z) is the quotient

field of

R

[
u1
u0

, . . . ,
um
u0

]
/

(
1 +

m∑
i=1

si
ui
u0

)
,

we see that we have a commutative diagram of inclusions of fields

k(VL) → k(Z)
↓ ↓
k∗ → K∗.

Since k∗ is separably closed in K∗, the separable closure of k(VL) in k(Z) is
contained in k∗. Now k∗ = k(VL)(u0) is a transcendental extension of k(VL),
so k(VL) is separably closed in k(Z).

Since k is algebraically closed, there exist x1, . . . , xr ∈ K which are a
separating transcendence basis of K/k (by Theorem 1.14). After possibly
replacing U with a smaller affine open subset of X, we may assume that
x1, . . . , xr are uniformizing parameters in R = Γ(U,OX) (Theorem 21.75
and Definition 14.16), so

ΩR/k = Rdx1 ⊕ · · · ⊕ Rdxr

and dR/k : R → ΩR/k is the map

f �→ D1(f)dx1 + · · ·+Dr(f)dxr

where {D1, . . . , Dr} is the basis in Derk(k(X), k(X)) which is defined by
Di(xj) = δij for 1 ≤ i, j ≤ r.

Let S = R ⊗k k(Vl). We have that

ΩS/k(VL)
∼= ΩR/k ⊗k k(VL) ∼= Sdx1 ⊕ · · · ⊕ Sdxr

by Exercise 14.11 andD1, . . . , Dr extend naturally to a basis of Derk(VL)(S, S).
Let

A = k[Z ∩ (U × (VL)u0)] ⊗k[
u1
u0

,...,um
u0

] k(VL) ∼= S/

(
1 +

m∑
i=1

si
ui
u0

)
.

By Theorem 14.6, we have a right exact sequence of A-modules

A
δ→ Adx1 ⊕ · · · ⊕ Adxr → ΩA/k(VL) → 0



466 22. Bertini’s Theorems and General Fibers of Maps

where

δ(1) =
r∑

i=1

m∑
j=1

uj
u0

Di(sj)dxi.

Localizing at the quotient field k(Z) of A, we have, by Lemma 14.8, a right
exact sequence of k(Z)-vector spaces

k(Z)
δ→ k(Z)dx1 ⊕ · · · ⊕ k(Z)dxr → Ωk(Z)/k(VL) → 0.

Since at least one of the sj is not contained in k(X)p (not contained
in k if k has characteristic 0), we have for this sj that Di(sj) 
= 0 for
some i by Theorem 21.76 or (21.18). Further, since Derk(VL)(k(Z), k(Z)) ∼=
Homk(Z)(Ωk(Z)/k(VL), k(Z)) by Lemma 14.3, we have that

(22.10) dimk(Z)Derk(VL)(k(Z), k(Z)) = r − 1 = trdegk(VL)k(Z)

since dimZ = dimVL + dimX − 1 and

trdegkk(Z) = trdegk(VL)k(Z) + trdegkk(VL)

by (1.1).

We conclude from Theorem 21.77 and the equality (22.10) that k(Z) is
separably generated over k(VL). Since k(Z) is an algebraic function field
over k(VL), we have that k(Z) is a separable extension of k(VL) as observed
before Proposition 22.2. Thus k(Z) is geometrically integral over k(VL) by
Proposition 22.2, since we earlier showed that k(VL) is separably closed in
k(Z).

Let Y = Z∩ (U × (VL)u0) with projection π : Y → (VL)u0 . We must find
an open subset A of (VL)u0 \ (

⋃s
i=0Wi) such that for a ∈ A, the scheme Ya

has only one irreducible component γ and OYa,γ
∼= Oγ . For any a ∈ (VL)u0

we have that the irreducible components of Ya all have dimension r − 1
(where r = dimX).

The field k(Z) is separably generated over k(VL), so k(Z) has a separat-
ing transcendence basis y1, . . . , yr−1 over k(VL). Let L = k(VL)(y1, . . . , yr−1).
By the theorem of the primitive element, there exists a primitive element t of
k(Z) over L. Let g1(yr) ∈ L[yr] be the minimal polynomial of t over L. Then
k(Z) ∼= L[yr]/(g1). By Proposition 1.31, there exists g ∈ k[(VL)u0 ][y1, . . . , yr]
which is irreducible and gL[yr] = (g1).

Let B be the affine variety with

k[B] = k[(VL)u0 ][y1, . . . , yr]/(g).

Then B is birationally equivalent to Z, so there exist affine open subsets C
of Y and E of B such that C ∼= E and Ca

∼= Ea for all a ∈ (VL)u0 .
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Proposition 22.14 implies that there exists an affine open subset F of
(VL)u0 such that Ba is a variety for all a ∈ F .

Let F1, . . . , Fe be the irreducible components of Y \ C. By Theorem
8.13, there exists an affine open subset G of (VL)u0 such that for a ∈ G,
(Fi)a = ∅ if π(Fi) is not dense in (VL)u0 and dim(Fi)a < r − 1 if π(Fi) is
dense in (VL)u0 . Then for a ∈ (F ∩G) \ (

⋃s
i=0Wi), Ya is a variety, and Ya is

dense in Za, and so La is a prime divisor (since we have reduced to L = L′),
and the conclusions of the theorem follow.

Remark 22.17. If the assumptions of Theorem 22.12 hold, except that L is
composite with a pencil, then we can still conclude that L = peL′

a
1
pe

where

L′
a

1
pe

is a reduced divisor for a in a suitable open subset C of VL′

a
1
pe

. If L is

composite with a pencil, then (after replacing L with L′) Proposition 22.16
is not applicable and it may be that k(VL) is not separably closed in k(Z).
However, the argument showing that k(Z) is a separable extension of k(VL)
is still valid, allowing us to conclude that k(Z) is geometrically reduced over
k(VL). Now a modification of Proposition 22.14 and the arguments at the
end of the proof of Theorem 22.12 (or Theorem 22.18 below) allow us to
conclude that L′

a
1
pe

is reduced for a in a suitable open subset C of VL.

We mention a general result, which can be deduced from the methods
of this chapter. The proof follows directly from [68, Theorem IV.9.7.7].

Theorem 22.18. Suppose that φ : X → Y is a dominant regular map of
varieties over an algebraically closed field k. Then there exists a nonempty
open subset U ⊂ Y such that for all p ∈ U ,

1) the fiber Xp is irreducible if and only if k(X)/k(Y ) is geometrically
irreducible,

2) the fiber Xp is reduced if and only if k(X)/k(Y ) is geometrically
reduced,

3) the fiber Xp is integral if and only if k(X)/k(Y ) is geometrically
integral.

Proof. In this proof, we regard X and Y as general schemes (Section 15.5).
Let {Vi} be an affine cover of X such that there exist affine open subsets Ui

of Y such that f(Vi) ⊂ Ui for all i. Let η be the generic point of Y , so that
OY,η = k(Y ). Let k′ be an extension field of k(Y ). The ring k[Vi]⊗k[Ui] k(Y )
is the localization of k[Vi] with respect to the multiplicative set T = k[Ui] \
{0}, so it is a subring of k(X). Thus (k[Vi]⊗k[Ui]k(Y ))⊗k(Y )k

′ is a subring of
k(X)⊗k(Y )k

′ and k[Vi]⊗k[Ui]k
′ is irreducible (respectively, reduced, integral)

if and only if k(X) ⊗k(Y ) k
′ is irreducible (respectively, reduced, integral)

and so Xη is geometrically irreducible (respectively, reduced, integral) over
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k(X) if and only if k(Y ) is geometrically irreducible (respectively, reduced,
integral) over k(X). The theorem now follows from [68, Theorem IV.9.7.7].

�

Exercise 22.19. This exercise (from an example of Serre in [73, Exercise
III.10.7]) shows that the second theorem of Bertini, Theorem 22.11, is not
true in characteristic p > 0, even when the linear system is complete, base
point free, irreducible, and not composite with a pencil. Let k be an alge-
braically closed field of characteristic 2. Let p1, . . . , p7 ∈ X = P2

k be the
seven points with coefficients in Z2. Let L be the linear system of all cubic
curves passing through p1, . . . , p7. Prove the following statements.

a) L is a linear system with the base points p1, . . . , p7, and φL is an
inseparable regular map of degree 2 from X \ {p1, . . . , p7} → P2.

b) Every curve C ∈ L is singular. More precisely, either C consists of
three lines all passing through one of the pi or C is an irreducible
cubic curve with its only singular point some p 
= pi. Furthermore,
the correspondence C �→ the singular point of C is a 1-1 correspon-
dence between L and P2.

c) Let H be a cubic curve on P2
k, and let φ : Y → X be the blow-up

of the seven points p1, . . . , p7 with exceptional divisors E1, . . . , E7.
Show that the complete linear system |φ∗(H)−E1 − · · · −E7| has
no base points, is not composite with a pencil, all but finitely many
members of the linear system are irreducible (integral), but every
member of the linear system is singular.

Exercise 22.20. This exercise shows that Theorem 22.4 is not true in char-
acteristic p > 0, even when k(X) is geometrically integral over k(Y ). Let
D = φ∗(H) − E1 − · · · − E12 be the divisor on Y constructed in Exercise
22.19. Let π : Z → V|D| be the regular map constructed before Theorem
22.11 for the linear system L = |D|.

a) Show that the fiber Zp is a singular plane cubic for all p ∈ V|D|.

b) Show that the field k(Z) is geometrically integral over k(V|D|).

Exercise 22.21. Give an example of a linear system L on Pn which does
not have a fixed component, is composite with a pencil, and such that there
is a nontrivial open subset U of VL such that La is not integral for all a ∈ U .
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de Géométrie Algébrique du Bois-Marie, 1962; Advanced Studies in Pure Mathematics,

Vol. 2, North-Holland Publishing Co., Amsterdam; Masson & Cie, Éditeur, Paris, 1968.
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I.H.E.S. 20 (1964), 24 (1965), 28 (1966), 32 (1967).
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Diskriminantensatz. Unverzweigte Ringerweiterungen (German), Math. Z. 45 (1939), no. 1,
1–19, DOI 10.1007/BF01580269. MR1545800

[93] F.-V. Kuhlmann, Valuation theoretic and model theoretic aspects of local uniformization,

Resolution of singularities (Obergurgl, 1997), Progr. Math., vol. 181, Birkhäuser, Basel,
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